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Abstract1

In the supplementary material for the media contribution we focus on the topological transitions of2

the thickening of the samples we consider. To improve readability we include the description of the3

construction, which can also be found in the main submission.4
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1 The construction5

We construct the set S (or the manifold M) and the sample P that prove the optimality of6

our bounds. The video visualizes the construction. Note that due to rescaling it suffices to7

construct sets of reach equal to 1.8

1.1 Sets of positive reach9

The construction of a set S that illustrates the tightness of our bound for sets of positive10

reach goes as follows: We define S to be a union of annuli Ai in R2, each of which has inner11

radius 1 and outer radius 1 + 2ε. We lay the annuli in a row at distance at least 2 away from12

each other and number them from i = 0.13

The sample P consists of circles Ci of radius 1 + ε lying in the middle of the annuli15

(Ci ⊆ Ai), and pairs of points {pi, p̃i}. Each pair {pi, p̃i} lies in the disk inside the annulus16

Ai, at a distance δ from Ai, and the two points lie at a distance 2ri from each other. The17

bisector of pi and p̃i intersects the circle Ci in two points. We let qi be the intersection point18

that is closest to pi (and thus p̃i). We denote the circumradius of pip̃iqi by Ri and note that19

Ri ≥ ri. Similarly, we let q′
i be the intersection point that is furthest1 from pi (and thus p̃i).20

We denote the circumradius of pip̃iq
′
i by R′

i.21

Figure 1 Each annulus Ai is sampled by a circle Ci and a pair of points {pi, p̃i}. The circumradius
is indicated by Ri.

22

23

We set r0 = δ+ε
2 and, for i ≥ 0,24

ri+1 =
{

Ri, if Ri < 1 − δ,

1 − δ, otherwise.
25

We stop the sequence at the first value of i = k such that rk = 1 − δ. Our constructed set26

S consists of the finitely many annuli A0 ∪ A1 ∪ . . . ∪ Ak and our sample P is defined as27 ⋃
0≤i≤k Ci ∪ {pi, p̃i}.28

1 If both intersection points are equidistant (as will be the case for i = k) we choose arbitrarily.14
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(a) For all r < r0, the union of balls (Ci ∪ {pi, p̃i}) ⊕ B(r) has three connected components.29

(b) At radius r1, the cycle in the union of balls (C0 ∪ {p0, p̃0}) ⊕ B(r) at the annulus A0 dies, while
a cycle is created in the union of balls (C1 ∪ {p1, p̃1}) ⊕ B(r) at the annulus A1.

29

30

(c) At radius r2, the cycle in the union of balls at the annulus A1 dies, while a cycle is created in the
union of balls at the annulus A2.

29

30

(d) The set (Ck ∪ {pk, p̃k}) ⊕ B(r) at radius
rk = 1 − δ. The two ‘holes’ are identical.

31

32

(e) The two ‘holes’ of the set (Ck ∪ {pk, p̃k}) ⊕
B(r) fill up simultaneously.

31

32

Figure 2 The changing homology of the set P ⊕ B(r) in the annuli A0, A1, A2, and Ak.33

For every r ≥ 0, the union of balls P ⊕ B(r) has different homology than the set S, where34

we use ⊕ to denote the Minkowski sum. We describe the development of the topology of the35

sets (Ci ∪ {pi, p̃i}) ⊕ B(r) as r increases:36

For r ∈ [0, r0), each set (Ci ∪ {pi, p̃i}) ⊕ B(r) has three connected components, as37

illustrated in Figure 2a. The three components merge into one at r = r0, as the two balls38

{pi} ⊕ B(r) and {p̃i} ⊕ B(r) intersect the set Ci ⊕ B(r).39

For r ∈ [ri, ri+1), the set (Ci ∪ {pi, p̃i}) ⊕ B(r) has the homotopy type of two circles40

that share a point (also known as a wedge of two circles or a bouquet), as illustrated in41
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Figures 2b and 2c. The smaller ‘hole’ creating the additional cycle appears when r = ri.42

The hole persists until r = Ri = ri+1. All sets (Cj ∪ {pj , p̃j}) ⊕ B(r) with j ≠ i have the43

homotopy type of a circle.44

At r = rk = 1 − δ, all sets (Ci ∪ {pi, p̃i}) ⊕ B(r) have the homotopy type of a circle but45

the last one, (Ck ∪ {pk, p̃k}) ⊕ B(r), which has the homotopy type of two circles that46

share a point (see Figure 2d). Unlike the other cases, however, the ‘holes’ in the set47

(Ck ∪ {pk, p̃k}) ⊕ B(r) are identical, and disappear simultaneously at r = Rk (Figure 2e).48

For every larger r, the set (Ck ∪ {pk, p̃k}) ⊕ B(r) is contractible.49

Recall that R′
i denotes the circumradius of the triangle pip̃iq

′
i. For i < k, R′

k < R′
i < 1 +ε,50

and each set (Ci ∪ {pi, p̃i}) ⊕ B(r) becomes contractible at R′
i.51

At r = 1 + ε the connected components of P ⊕ B(r) merge.52

1.2 Manifolds53

The construction of the set M that illustrates the tightness of our bound for manifolds goes54

as follows: We define M to be a union of tori of revolution Ti in R3. Each of these tori is55

the 1-offset of a circle (in the horizontal plane) of radius 2 in R3.56

We number the tori from i = 0, and lay them out in a row at a distance at least 2 apart57

from one another. Due to this assumption, the reach of M equals 1.58

The sample P consists of sets Ci which are tori with a part cut out, and pairs of points59

{pi, p̃i} lying inside the hole of each torus Ti. To construct each set Ci we take the δ-60

offset of Ti, keep the part that lies inside the solid torus bounded by Ti, and remove an61

ε-neighbourhood of the circle obtained by revolving the point (1, 0, 0) around the z-axis; see62

the red set in Figures 3 and 4.63

Ti Ci
pi p̃i

C′
i

Figure 3 The (half of the) torus Ti depicted in blue; the sample — the set Ci and the points pi

and p̃i — in red. In black we indicate the circle C′
i. The closest point projection of this circle onto

M is indicated in blue.

64

65

66

Let C ′
i be the circle found by revolving the point (1 − δ, 0, 0) around the z-axis. Each68

pair of points, pi and p̃i, lies on C ′
i at a distance 2ri from each other. Let qi and q̃i be the69

two points in the intersection of the bisector of pi and p̃i and the set Ci that lie closest to pi70

and p̃i. Note that qi and q̃i lie on the boundary2 of Ci, and {qi, q̃i} = πCi

(
pi+p̃i

2
)
, where πCi

71

denotes the closest point projection on Ci. Denote the circumradius of the simplex pip̃iqiq̃i72

by Ri; see Figure 5.73

We denote the mirror images of qi and q̃i in the yz plane of Figure 4 by q′
i and q̃′

i.74

Similarly, we write R′
i for the circumradius of pip̃iq

′
iq̃

′
i.75

2 Here we think of Ci as a manifold with boundary.67
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1 − δ

y

z

Ci

Ti

C′
i

(−2, 0, 0)

pi

x
ε

δ

p̃i

qi

δ
q̃i

q′
i

q̃′
i

(2, 0, 0)

1
ri

(1, 0, 0)(−1, 0, 0)

Figure 4 The sets Ti, Ci and C′
i are obtained by rotating around the z-axis, respectively, the

blue circles, the red arcs and the white point.
76

77

Ti

Ri

pi

qi

q̃i

p̃i

Ci

Figure 5 The torus Ti (in blue), the sample Ci ∪ {pi, p̃i} (in red), the points qi, q̃i (in red), and
the circumsphere of pip̃iqiq̃i (in light grey below).

78

79

We define the distance 2ri between each pair of points pi and p̃i inductively. We set the80

distance r0 such that the balls B(p0, r) and B(p̃0, r) start to intersect at the same value of r81

as the balls B(q0, r) and B(q̃0, r) start to intersect:82

r0 = 1
2 d (q0, q̃0) =

√
ϵ2 −

(
ϵ2 − δ2 + 2δ

2

)2
83

We then define84

ri+1 =
{

Ri, if Ri < 1 − δ,

1 − δ, otherwise.
85

We stop the sequence at the first value of i = k such that ri = 1 − δ. In [1] we show that86

such a value indeed exists.87

The manifold M thus consists of the finitely many tori T0 ∪ T1 ∪ . . . ∪ Tk, and the sample88

P is defined as
⋃

0≤i≤k (Ci ∪ {pi, p̃i}).89
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p0 p̃0
C0

C0 ⊕ B(r0)

B(p0, r0) B(p̃0, r0)

Figure 6 The situation at r0. The sample P in red and its thickening P ⊕ B(r) (or boundary of
the thickening) in purple. The balls B(p0, r0) and B(p̃0, r0) touch and the thickened torus C0 ⊕B(r0)
‘closes up’ and generates 2-homology.

90

91

92

For every r ≥ 0, the union of balls P ⊕ B(r) has different homology than the set M. We93

describe the development of the topology of the sets
⋃k

i=0(Ci ∪ {pi, p̃i}) ⊕ B(r) = P ⊕ B(r)94

as r increases. For this we need to introduce some notation: We denote half the distance95

from pi to Ci by r. That is,96

2r =
√

|δ2 + ε2 + δ(ε2 − δ2 + 2δ)| =
√

|ε2(1 + δ) + δ2(3 − δ)|.97

Write s and s′ for the points on C0 that are closest to p0 and write s̃ and s̃′ for the points98

on C0 that are closest to p̃0.99

For r ∈ [0, min(r, r0)) each set (Ci ∪ {pi, p̃i}) ⊕ B(r) has three connected components. It100

has the homotopy type of a circle and two points.101

Figure 7 The two balls {p0, p̃0} ⊕ B(r) start touching C0 ⊕ B(r). For these particular parameters
r < r0, which means that the set directly after this point has the homotopy type of a bouquet of
circles.

102

103

104

For r ∈ [min(r, r0), max(r, r0)) there are two possibilities depending on whether r < r0 or105

r > r0. In the first case the set (C0 ∪ {p0, p̃0}) ⊕ B(r) is homotopic to three topological106

circles that have a single point in common (also called a bouquet of three circles), see107
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Figure 7. If r0 < r the set (C0 ∪ {p0, p̃0}) ⊕ B(r) will have the homotopy type of a torus108

and two points.109

Figure 8 The 2-cycle of the torus is being created in C0 ⊕ B(r). At this point, also the two balls
{p0, p̃0} ⊕ B(r) start touching.

110

111

For r ∈ [max(r, r0), r1) there are again a number of possibilities. Before we distinguish112

the cases we make some observations. We note that by assumption (on r) the line113

segments p0p̃0, p0s, p0s′, p̃0s̃, and p̃0s̃′ are contained in (C0 ∪ {p0, p̃0}) ⊕ B(r). The114

points s, s′, s̃, and s̃′ all lie on a 2-cycle (slightly deformed torus) that is contained in115

(C0 ∪ {p0, p̃0}) ⊕ B(r) , see Figure 8. The circumcentre of the simplex p0p̃0q0q̃0 is not116

contained in (C0 ∪ {p0, p̃0}) ⊕ B(r), again by assumption on r. We want to determine117

if the line segments p0p̃0, p0s, p0s′, p̃0s̃, and p̃0s̃′ form parts of some 1-cycles (and if so118

how many) or if the circumcentre of p0p̃0q0q̃0 is enclosed in a void.119

This brings us to our case analysis. Firstly, the triangle p0ss′ (and therefore the triangle120

p̃0s̃s̃′) can be acute or obtuse. If it is acute we need to distinguish whether the circumradius121

of p0ss′ lies inside [max(r, r0), r1) or not. If the circumradius does lie inside the interval122

[max(r−1, r0), r1) then below that value of the circumradius the line segments p0s, p0s′,123

p̃0s̃, and p̃0s̃′ are not part of any boundary. This means that there are either three or124

one non-trivial 1-cycles. In both other cases (an acute triangle, but r larger than the125

circumradius, or obtuse) these line segments do not contribute to a non-trivial cycle.126

Secondly, we consider the triangle p0p̃0q0 (and symmetrically the triangle p0p̃0q̃0). This127

triangle is acute thanks to [1, Lemma 20]. If r is smaller than the circumradius of this128

triangle, the segment p0p̃0 contributes to a 1-cycle. If r is larger than the circumradius of129

this triangle, the segment p0p̃0 no longer contributes to a 1-cycle.130

If none of the segments p0p̃0, p0s, p0s′, p̃0s̃, and p̃0s̃′ form parts of some 1-cycles, then131

the circumcentre of p0p̃0q0q̃0 is enclosed in a void (2-cycle), see Figure 9.132

For every i ≥ 2 and r ∈ [ri−1, ri), the set (Ci ∪ {pi, p̃i}) ⊕ B(r) has homotopy type of a134

torus with either a circle or a 2-sphere attached, depending on whether the radius r is135

smaller or larger than the cirumradius of the triangle pip̃iqi. The tunnel or void appears136

when r = ri−1 (and in the case of a tunnel it may change from a tunnel to a void when r137

equals the circumradius of triangle pip̃iqi) and disappears at r = Ri = ri+1.138

At r = rk = 1 − δ, the homotopy type of all sets Ci ⊕ B(r) changes from that of a torus139

to that of a circle, since the ‘interior’ of the torus fills up.140

For r ≥ 1 − δ, the set (Ck ∪ {pk, p̃k}) ⊕ B(r) has, at first, the homotopy type of two141

circles that share a point. The two gaps creating the two 1-cycles are identical. Thus, as142

the radius r increases, the homotopy type of the set (Ck ∪ {pk, p̃k}) ⊕ B(r) changes from143
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Figure 9 We see the void from two different viewpoints.133

that of two circles that share a point to that of two 2-spheres that share a point (there144

are two voids that around the circumcentres of pk, p̃kqk, q̃k and pk, p̃kq′
k, q̃′

k, which fill up145

when r = Rk), to that of a point.146

Similarly, the homology type of every other set (Ci ∪ {pi, p̃i}) ⊕ B(r) changes from that147

of a circle to that of a 2-sphere (when r equals the circumradius of the triangle pi, p̃iq
′
i148

which is also the circumradius of pi, p̃iq̃
′
i), to that of a point (at r = R′

i). This happens for149

r larger than 1 − δ because as long as r < 1 − δ, the z-axis in Figure 4 is not intersected150

by the thickening of the sample P .151
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