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ABSTRACT

The computational complexity of the problem of fimding a minimum caavex cover for a
polygon is reviewed. Although an NP-hard lower bound has been proven, no upper bound on
the complexity is known. The lack of known restrictions on the Steiner points that may be
necessary prevents naive searching algorithms from establishing the solvability of the problem.
In this paper the problem is proven to be decidable by using Tarski’s decision procedure for

geometry.

1. Introduction

Given an arbitrary polygonal region of the plane, perhaps with polygonal holes, it is fre-
quently useful to decompose the region into convex polygons. Such decompositions find appli-
cation in pattern recognition [17-20] [23], artificial intelligence and graphics [15], and VLSI
design [6]. If the convex polygons used in the decamposition are permitted to overlap, the
decomposition is called a convex caver. The problem discussed in this paper is the computation-
al complexity of finding the mininum convex cover, minimum in the sense of having the fewest
number of pieces.

The problem formulation in the style of Garey and Johnson [5] is as follows [6]:
COVERING BY CONVEX POLYGONS (CCP)

INSTANCE: A polygon P (not necessarily simply-connected), described by a sequence of n
pairs of integer coordinate points in the plane, each pair representing the endpoints of a line
segment onthe boundary of P, and a positive integer K.

QUESTION: Are there convex polygons C,, 1</ <K, whose union (as plansr figures) is P ?

Decomposing a polygonal region into non-overlapping pieces (finding a partition) is a
closely related but distinct problem. Minimum partitions of both simply-connected [3] [2] and
multiply-connected regions can be found in polynomial time. These results unfortunately do
not bear directly on minimum covers.

The use of Steiner points is discussed in the next section, and Section 3 shows that naive
rithms could miss finding the true minimum cover. Section 4 summarizes a proof of NP-
for the problem, establishing a lower bound, and the section following proves that the
pblem is decidable (a new result), establishing an upper bound. Open problems are formulat-
in the final section.

2. Steiner Points and Naive Algorithms

Tt is instructive 1o consider brute-force searching algorithms for finding minimum convex
such algorithms at least establish that the problem they solve is decidable. Tn general,
points, points that are not vertices of the polygon being decomposed, may be required as
of the convex pieces of a minimum cover. If the problem is reswicted to find
covers without the use of Steiner points, then a searching algorithm is possible: con-
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struct all possible convex pieces from the vertices, and then check subsets of these pieces for
complete coverage. If the search examines smaller cardinality subsets first, the first cover
found will be a minimum cover. Clearly this algorithm requires exponential time.

If Steiner points are allowed, it seems natural to restrict the convex pieces to be bounded
by extensions of the polgon’s edges (see Figure 1). Pavlidis observed that only maximal con-
vex subsets need to be considered [17]: those which are not enclosed within any other internal
convex subset. Tt is then clear that there are only a finite number of possible covers, and a
searching algorithm is possible. Pavlidis investigated such algorithms for patiern recognition
applications [17-20], although he was not interested in minimum covers. In [11] it is shown
that searching for minimum covers under the edge-extension restriction can be accomplished by
minimizing a Boolean expression, a known NP-complete problem. This does not, however, es-
tablish that the restricted minimum cover problem is NP-complete, and the complexity of this
problem remains unknown

A special case where the restriction to edge extensions is especially appropriate is the class
of rectilinear polygons: those whose edges are parallel to one of two orthogonal directions. The
restriction in this case implies that each piece must be a rectangle. Again it is clear that the
problem is decidable by a searching algorithm. Masek showed that finding a minimum rectan-
gle cover of a multiply-connected rectlinear polygon is NP-complete [9]. Recently, Chaiken et
al have shown that if the class of rectlinear polygons is further restricted to be "convex” in the
sense that every horizontal and vertical line meets the region in an interval, then a minimum
rectangle cover can be found in polynomial time {1]. The problem for the important class of
simply-connected rectilinear polygons remains open.

3. Counterexamples to Steiner Point Restrictions

Although the restriction that the pieces be bounded by edge extensions may seem natural
for pattern recognition applications, it is a true restriction, in that there are polygons whose
minimum covers require the use of pieces that are not bounded by such edge extensions. In
fact there are rectilinear polygons that need edges in their minimum covers that are neither
horizontal or vertical. Figure 2 shows a simply-connected example. As 9 mutually invisible
points can be located in the interior of the polygon, any convex cover must use at least 9
pieces. The eight horizontal and vertical rectangles shown in Figure 3 can be proven to be
necessary, leaving the ninth piece to use diagonal edges, as illustrated [12].

Although the diamond region in Figure 3 is not bounded by extensions of the polygon’s
edges, its vertices can be chosen to lie at intersections of edge extensions. It is natural to ask,
then, whether restricting the Steiner points in this way is a true restriction. In fact it is, as can
be verified by merging two copies of the polygon of Figure 2; the result is shown in Figures 4
and 5. The left diamond region requires a veriex somewhere along the segment labeled A in
Figure §, but no two edge extensions intersect there.
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One could also restrict Steiner points to the following recursively defined class: a veriex of
the polygon is of order Q; a point is of order k iff it lies at the intersection of lines determined
by points of no mare than order k—1, at least one of which is exactly arder k—1. Under this
definition, points at the intersection of edge extensions are of order 1. A simply-connected po-
lygon can be constructed that requires in its cover at least one vertex of order 2 or more [13],
and T conjecture that restricting Steiner points to any finite order is a true restriction.

The implication of these examples is that no naive searching algorithm for finding general

minimum covers is known, since the possible Steiner points are not known to be restrictable to
a finite class.

4. Covering by Convex Polygons is NP-Hard

Tt has recently been established that the problem of finding minimum convex covers of
multiply-connected polygons is NP-hard, with or without the use of Steiner points [15). The
proof is by reduction of 3SAT, a known NP-complete problem. Subsequently, Lingas simplified
by proof by reducing from Planar 3SAT, which simultaneously established that minimum parti-
tion of multiply-connected polygons is NP-complete, again with or without the use of Steiner
points [8].

These NP-hardness results use multiply-connected polygons in their proofs, and so they
do not establish any complexity results for simply-connected polygons. Also, the cover prob-
lem is not known to be in NP, for the reasons discussed in the previous two sections. Thus the
NP-hard result establishes a lower bound on the complexity; it is possible for an NP-hard prob-
lem to be undecidable. It is shown in the next section that, unlike several infinite tiling prob-
lems [7], CCP is in fact decidable.

S. Decidability of Covering by Convex Polygons

5.1 Proof Sketch

We now show that CCP is decidable by using a technique that Chazelle employed on a
similar problem [2]. A proof sketch is as follows [14).

Tt is first established that the number of vertices of each piece of a cover can be bouaded
by a function of n. This ensures that a searching algorithm need only try pieces up to a ceriain
size. Secondly it is shown that the property of being a valid cover is equivalent to a set of alge-
braic equations in the vertex coordinates. Finally Tarski’s decision procedure for first-order
sentences in the field of real numbers is invoked to determine whether the set of equations has
a solution.

Thus to determine whether a polygon has a cover of K or fewer pieces, a generic cover of
K pieces is constructed, and Tarski’s procedure is used to see if there exist vertex coordinates
that satisfy the covering equations..

5.2 Bounded Size of Covers

First it is shown that the number of pieces needed to cover a polygon is never more than
O(n).

Lemma 1. A polygon (perhaps multiply-connected) with n vertices has a cover with € 5n/3—4
convex pieces.

Proof Sketch. Tt is easily established by induction that a polygon with n vertices and A holes can

be triangulated into n—2+2h triangles. Since each hole must have at least 3 vertices, n >3+3hA.
Substitution then establishes that the number of triangles satisfies the bound in the Lemma. O
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Next it is shown that any piece of a convex cover never needs to have more than O(n)
vertices. This is established by expanding a given piece as much as possible.
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Lewna 2. Any convex polygonal subset C of an n vertex polygon P is itself enclosed within a
subset C’ that has no more than n vertices.

Proaf- Perform the following expansion procedure for each edge e of C. Let @P be the boun-
dary of P. If e does not touch 8P, move it parallel to itself away from the centroid of C, adjust-
ing its length to mate with extensions of its adgcent edges (see Figure 6). Continue this mo-
tion until either its length is reduced to zero or it touches 8P. If it touches 9P at a single point
that is not an endpoint of e or at two or more points, then halt. If it touches 8P at just one
endpoint, then swing e about this endpoint, again adjusting its length to match the extension of
its neighboring edge. Stop when another point of 8P is hit or e becomes collinear with its adja-
cent edge (see Figure 7).

This expansion procedure halts either when e disappears or it abuts ageinst 8P. The possi-
ble "abutments" are the vertices and edges of P. No two non-collinear edges can be stopped in
the expansion process by the same edge or vertex, nor even by an adjgcent edge and vertex.
Since there are n vertices and edges in 8P, there can be no more than n non-collinear edges in
the expanded polygon C'.

Clearly the method of construction guarantees that CCC'CP. O.

This bound is tight: an n edge convex polygon P has a convex subset, namely itself, that
is not enclosed in a polygon of fewer edges.

5.3 The Covering Property

The proceeding two lernmas establish that only covers of at most O(n) pieces, each of at
most O (n) vertices, need to be considered. Constructing an expression to represent the pro-
perty of covering will be simpler if the cover is first refined or fragmented. Given any cover,
introduce vertices wherever two edges of P or any C; in the cover intersect (and there is not al-
ready a vertex). Make the introduced vertices part of both intersecting parts. This. fragmenia-
tion ensures that every edge is entirely enclosed within at lease one comvex piece. After
refinement, each of the O (n) pieces has at most 0 (n2) vertices, and the polygon P has at most
0(n?) vertices.

Let a refined polygon P have vertices (a1,01) (a282), - - * 1 (Gp.bm), With m =0 (n?,
and let a refined cover C be represented by C,,.Cy - - - .G, Where each C; i§ a convex polygon
with vertices (x}, ), (xby2), + =+ (¥, s With m; =0(n?). Boundary lists are assumed to
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be oriented so that traversal always keeps the interior to the left. Thus outer boundary chaing
are oriented counterclockwise, and hole chains clockwise. All sets will be considered closed re-
gions, including their boundaries, unless otherwise mentioned. The next sk is to construct a
set of algebraic relations that that express the fact that C is a cover for P. The key idea is con-

tained in the following Lemma.

Figure 8

Lemma 3. The following two:conditions are necessury and sufficient for C 1o beia refined cover
for a refined polygon P:
(1) For every edge e of some C;€C, either
(a) e isequal to same edge of P, oriented in the same direction, or
(b) e is inside of some C; (different fram C;), but if it lies on 8C}, it is oriented in the
opposite direction.
(2) None of the vertices of P are inside the /nteriors of any of the C;.
Proof.

Necessity. Suppose C is a refined cover for P. We will first show that condition (1) holds
for an arbitrary edge e of C,€C. Let p, and p, be two arbitrary points on the interior of e, and
let N; and N, be neighborhoods of p, and p, outside of C; (see Figure 8). It cannot be the
case that IV, is inside Pand N, is outside or vice versa, because then 3P would cross e and the
refinement procedure would have split e. Consider each remaining case separately.

Case 1: Nynot SPand N,not CP.

Because p,€C; and p,€C;, and C is a cover, p,€P and p,€P. Since the neighborhoods
are outside of P, p; and p, lie on @P. They must lie on the same edge of P, and e must match
this edge exactly, otherwise e would have been refined. The orientations of the edges must
match to keep the inside of C; consistent with the inside of P. Thus clause (a) of condition (1)
holds.

Case 2: N,QPand Nz;P

Since the points in the neighborhood are in P, and C is a valid cover, they must be inside
some C;’s. Each neighborhoed must be entirely enclosed within one C;, and in fact the N; and
N, must be enclosed within the same C,, otherwise e would have been refined. This implies
that all of e is enclosed within C;. Since this C; encloses neighborhoods outside of C;, if e is
on 8C;, then the edge orientations are in opposite directions. Thus clause (b) of condition (1)

holds.
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A set of relations
check three conditions:

(1) Each piece C, must be convex.
(2)  Each edge of C must satisfy condition (1) of Lemma 3,

o . i
Of expressing the proposition that C is a refined cover for P must then
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(3) Each vertex of P must satisfy condition (2) of Lemma 3.

The first check can be accomplished by computing the aross products of suaessive edge
vectars (see Figure 10). Thus C, is convex and ariented counterclockwise iff (superseript I’
will be dropped when clear from the context)

=% Yra 1) — (g7 %400 22) 2 0. Vi, 1grgmy (1)

Clause (2) of condition (1) merely requires a check for equal edges. The ed,
e = ((x,1), (x2,9,)) equals an edge of P iff =

qr st Xy=a, » Y10y » XTBpp1 » YT Dp4s 0))
where ((a,,b,), (@,4.b,41)) is an edge of P.
] Clause (b) requires determining whether an edge is inside a convex polygon C;. Tt is iff
its two endpoints are. A point is inside C; iff it is inside every half-plane determined by C’s

edges. This half-plane check can be performed by a cross-product. Thus the point (xp¥) is
inside C; (see Figure 11) iff

=)o) — o)) 2 0 Vr, Igrgm, 3)

The check that no vertex of P should be inside any C; can be made by slight modification
of equation (3).

Tt should now be clear that the property that C is a cover for P can be expressed by a
series of algebraic equations of the form (1), (2), or (3), coupled by the logical connectives and
and or.

5.4 Tarski’s Decidability Theorem

The bounds derived in Section 3 and the equations constructed in Section 4 can be cam-
bined to write a single algebraic relation that precisely captures the question "Is there a cover of
P with K or fewer convex pieces?”

We know that each of the X pieces cannot have more than m = O (n?) vertices. So set C
to consist of C1.Cy, * - - ,Cg, where C; = ((x}.}). * - . (X.V;)). Here the X’s and y's are
real variables. Now, using the particular integer coordinate vertices of the given P, construct
the equations that express the cover property for C. Then the answer to the question is "Yes"
iff

Ix! Ay} Ix] Iyi - xR E

such that the equations are satisfied. The fact that there may be covers with less than X pieces
or with pieces using less than m vertices clearly will not affect the validity of a cover of the size
of C.

Tarski developed a decision procedure for all first-order sentences of no free variables in
the field of real numbers [22] [4] [21). The expression above is such a sentence, and is there-
fore decidable by his procedure. The procedure eliminates quantifiers and reduces the sentence
1o a single polynomial relation of no variables, which is easily checked for validity. Modern
formulations of Tarski’s procedure [10] appear to require O(2%") time. Despite this slowness,
the procedure establishes the decidability of the minimum convex cover problem:

Theorem. The minimum convex cover problem is decidable.
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6. Discassion

The proof of the prereding section can easily be modified to hold under any of the various
restrictions we have discussed, such as to simply-connected polygons or to rectangular pieces.
Thus all these minimum covering (and partition) problems are decidable.

The current state of knowledge on the complexity of the various problems is displayed in

the Table below.
Polveon Class Components Cover Partition
multiply-connected convex NP-hard NP-comaplete
simply-connected convex ? o(n?)
rectlinear, multiply-connected | rectangulasr | NP-complete | polynomial
rectilinear, simply-connected | rectangular ? 0(n%)

Tt is an outstanding open problem to determine whether a simply-connected polygon can
be minimally covered in polynomial time, even when restricted to the rectilinear case. It would
also be of interest to derive some restrictions on the class of convex pieces that are required in
general minimum covers. For example, if the vertices of the original polygon have rational
coardinates, are irrational coordinates ever required in a minimum cover?

Acknowledgements

I am indebted to Kenneth J. Supowit and the participants of a MoGill University Compua-
tional Geometry seminar for clarifying discussions.

REFERENCES

[1] S. Chaiken, D. J. Kleitman, M. Saks, and J. Shearer, "Covering Regions by Rectangles,”
SIAM Journal on Algebraic and Discrete Methods, Vol. 2, No. 4, Dec. 1981, pp. 394-410.

[2] B. M. Chazelle, "Computational geometry and convexity,” PhD Dissertation, Carnegie-
Mellon University, Technical Report CMU-CS-80-150, 1980, pp. 140-14S.

[3] B. M. Chazelle and D. Dobkin, "Decomposing a polygon into its convex parts," Proc. of
11th ACM Symp. on T heory of Computing, Atlanta, Georgia, pp. 38-48, 1979.

[4] P. Cohen, "Decision procedures for real and p-adic fields," Conmmunications on Pure and
Applied Mathematics, Vol. 22, 1969, pp. 131-151.

[S] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, San Francisco: W. H. Freeman, 1979.

[6] D. S. Johnson, "The NP-Completeness Column: An Ongoing Guide," Journal of Algo-
rithms, June 1982.

[7]1 H. R. Lewis, Unsofvable Classes of Quantification Fornulas, Reading, Mass.: Addison-
Wesley, 1979.

[8] A. Lingas, "The Power of Non-Rectilinear Holes;" to appear in the Proc. of the 9th Collo-
quium on Automata, Languages, and Programming, Aarhus, 1982.

[9] W. J. Masek, "Some NP-complete set covering problems,” unpublishea manuscript, Aug.
1979; quoted in [5, p. 232].

[10] L. Monk, "Elementary-recursive decision procedures,” PhD Thesis, University of Califor-
nia, Berkeley, 1975.

83




[11] J. O’Rourke, "Polygon decomposition and switching function minimizason,” Comauter
Graphics and Image Processing, Vol. 19, pp. 384-391, Aug. 1982

[12] J. O’Rourke, "Minimum Convex Covers: Some Counterexamples,”" Johns Hopkins
University, Department of Electrical Engineering and Computer Science, Technical Re-
port JHU-EECS 82-1, Jan. 1982.

[13] J. O’Rourke, "A Note on Minimum Convex Covers for Polfgons," Johns Hopkins'

University, Department of Electrical Engineering and Computer Science, Technical Re-
port JHU-EECS 82-3, Mar. 1982.

[14] J. O’Rourke, "The Decidability of Covering by Convex Polygons," Johns Hopkins Univer-
sity, Department of Electrical Engineering and Computer Science, Technical Report
JHU-EECS 82-4, May 1982.

[15] J. O’Rourke and K. J. Supowit, "Some NP-hard polygon decomposition problems,” to ap-
pear in IEEE Trans. on Information Theory, Mar. 1983.

[16] L. Pagli, E. Lodi, F. Luccio, C. Mugnai, and W. Lipski, "On two dimensional data organi-
zation 2," Findamenta Informaticae, vol. 2, pp. 211-226, 1979.

[17] T. Pavlidis, "Analysis of set patterns,” Pattern Recognition, vol. 1, pp. 165-178, 1968.

[18] T. Pavlidis, "Representation of figures by labelled graphs," Pattern Recognition, vol. 4, pp.
5-17, 1972.

[19] T. Pavlidis, "Structural pattern recognition: Primitives and juxtaposition: relations,” in
Frontiers of Pattern Recognition (Ed. S. Watanabe), New York: Academic Press, pp. 421-
451, 1972.

[20] T. Pavlidis, Structural Pattern Recognition, pp. 236-241, Berlin-Heidleberg-New York:
Springer Verlag, 1977.

[21] M. O. Rabin, "Decidable theories,” in The Handbook of Mathematical Logic, ed. J. Rarwise,
North-Holland, 1978, pp. 595-629.

[22] A. Tarski, "A decision method for elementary algebra and geometry,” second edition, re-
vised, University of California press, 1951.

[23] G. T. Tousssint, "Pattern recognition and geometrical complexity,” Proc. of Sth Irternation-
al Conference on Pattern Recognition, Miami Beach, Florida, pp. 1324-1347, Dec. 1980.

84
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ABSTRACT

This paper presents an algorithm, that constructs all
Voronoi diagrams for k nearest neighbor searching
simultaneously. Its space and time complexity of O(N")

is shown to be optimal.

1. INTRODUCTION

In (6] Shamos and Hoey introduce the idea of generalized
Voronoi diagrams to get an optimal solution of the

k nearest neighbor problem and give an O(N logN) algorithm
to construct the order one diagram.

Lee ([2]) extends this to an algorithm, that computes

an order k diagram in O(k?N logN).

To answer k nearest neighbor queries with arbitrary k

we now want to construct all Voronoi diagrams.

This paper presents a simple solution of this problem.

The given algorithm has time and space complexity O(N")
and is shown to be optimal. Its implementation is not very
difficult and the constant factors for the complexity are

expected to be quite good.
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