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THE COMPLEXITY OF COMPUTING MINIMUM CONVEX
COVERS FOR POLYGONS

JOSEPHO'ROURKE
Department of Electrical Engineering and Ccmputer Sciena: The Johns Hopkins University 
Baltimore, MD 21218 

AMI'RACI' 

The ccmputational complexity of the problem of finding a minimum convex cover fer a 
polygon is reviev.oo. Although an NP-hard lower bound has been proven, no upper bound on 
the ccmplexiry is known. The lack of known restrictions on the Steiner points that may be 
.oea:swY prevents naive searching algorithms from establishing the solvability of the problem. 
Jn this paper the P/'Oblem is proven to be decidable by using Tarski's decision procedure fa 
geomeuy. 

1. Introduction

Given an arbitrarY polygonal region of the plane, perhaps with polygonal holes, it is fre­
quently useful to deoompose the region into convex polygons. Such decompositions find appli­
cation in pattern reoognition [17-20] [23], artificial intelligena: am graphics [15], am VLSI 
design [6]. lf the convex polygons used in the decomposition are permitted to overlap, the 
decanposition is called a corwex cover. The problem dis� in this paper is the oomputation­
al oomplexity of finding the minimum convex oover, minimum in the sense of having the fewest 
number of pieces. 

The problem formulation in the style of Garey am Johnson [5] is as follows [6]: 
COVERING BY CONVEX POLYGONS {CCP) 

INSfANCE: A polygon P (not necessarily simply-oonnected), described by a sequena: of n 
pairs of intejlJ'lr ooordinate points in the plane, each pair representing the endpoints of a line 
segment on the boundary of P, am a positive intejlJ'lr K. 

QUESTION: Are there convex poly�ns C,, l�I �. whose union (as planar figures) is P?

Deoomposing a polygonal region into non-overlapping pieces (finding a partition) is a 
closely related but distinct problem. Minimum partitions of both simply-connected [3] [2) am
multiply-connected regions can be found in polynomial time. These results unfortunately do 
not bear directly on minimum covers. 

The use of Steiner points is discussed in the next section, am Section 3 sbows that naive 
algorithms oould miss finding the true minimum cover. Section 4 summarizes a proof of NP­
hardress for the problem, establishing a lower bound, and the section following proves that the 
problem is decidable (a new result), establishing an upper bound. Open problems are formulat­
ed in the final section. 

1. Steiner Points and Naive Algorithms

lt is instructive 10 oonsider brute-force searching algorithms for finding minimum oonvex 
COYers: such algorithms at least establish that the problem they solve is decidable. ln general, 
!l61ner po/ms, points that are not venia:s of the polygon being decomposed, may be required as 
'<llmia:s of the oonvex pieces of a minimum oover. lf the problem is restricted to find 
minimum covers without the use of Steiner points, then a searching algorithm is possible: oon-

This tesearch was supparled by lhe National Science Foundation under Gnlnt MCS 81-17424. 
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struct all possible oonvex pieces from the vertires, and then check subsets of these pieces far 
complere coverage. If the search examines smaller cardinality subsets first, the first cover 
found will be a minimwn cover. Clearly this algorithm requires exponential time. 

If Sreiner points are allo'Wed, it seems natural to restrict the convex pieces to be bounded 
by extensions of the polgon's edges (see Figure 1). Pavlidis observed that only maximal am­
vex subsets need to be considered [ 17]: those which are not enclosed within any other internal 
convex subset. It is then clear that there are only a finire nwnber of possible covers, and a 
searching algorithm is possible. Pavlidis investigated such algorithms for panern recognition 
applications [17-20], although he was not inrerested in minimum covers. Tn [11] it is shown 
that searching for minimwn covers under the edge-extension restriction can be accomplished by 
minimizing a Boolean expression, a known NP-complere problem. This does not, however, es­
tablish that the restricted minimwn rover problem is NP-complere, and the complexity of this 
problem remains unknown. 

A special case where the restriction to edge extensions is especially appropriare is the class 
of rectlllnear polygons: those whose edges are parallel to one of two orthogonal directions. The 
restriction in this case implies that each piece must be a rectangle. Again it is clear that the 
problem is decidable by a searching algorithm. Masek showed that finding a minimwn rectan­
gle cover of a multiply-connected rectlinear polygon is NP-complete [9]. Recently, Chaiken et 
al have shown that if the class of rectlinear polygons is further restricted to be "convex" in the 
sense that every horizontal and vertical line meets the region in an inrerval, then a minimwn 
rectangle cover can be found in polynomial time [ 1 ]. The problem for the important class of 
simply-connected rectilinear polygons remains open. 

3. Counterexamples to Steiner Point Restrictions

Although the restriction that the pieces be bounded by edge extensions may seem natural 
for patrern rerognition applications, it is a trUe restriction, in that there are polygons whose 
minimwn covers require the use of pieces that are not bounded by such edge exrensions. In 
fact there are rectilinear polygons that need edges in their minimum covers that are neither 
horizontal or vertical. Figure 2 shows a simply-connected example. As 9 mutually invisible 
points can be located in the interior of the polygon, any convex cover must use at least 9 
pieces. The eight horizontal and vertical rectangles shown in Figure 3 can be proven to be 
necessary, leaving the ninth piece to use diagonal edges, as illustrated (12]. 

Although the diamond region in Figure 3 is not bounded by extensions of the polygon's 
edges, its vertices can be chosen to lie at intersections of edge extensions. It is natural to ask, 
then, whether restricting the Sreiner points in this way is a true restriction. In fact it is, as can 
be verified by merging two copies of the polygon of Figure 2; the result is shown in Figures 4 
and 5. The left diamond region requires a vertex somewhere along the segment labeled A. in 
Figure 5, but no two edge exrensions intersect there. 
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One could also restrict Steiner points to the following recursiwly defined class: a vertex of 
the polygon is of order O; a point is of order k ill' it lies at the intersection of lines detennimd 
by points of no more than order k-1, at least one of which is exactly order k-1. Under this 
definition, points at the intersection of edge extensions are of order 1. A simply-connected po­
lygon can be constructed that requires in its cover at least one vertex of order 2 or more [13), 
and I co�ture that restricting Steiner points to any finite order is a true restriction. 

The implication of these examples is that no naive searching algorithm for finding general 
minimum covers is known, since the possible Steiner points are not known to be restrictable to 
a finite class. 

4. Covering by Convex Polygons is NP-Hard

It has recently been established that the problem of finding minimum convex covers of 
multiply-connected polygons is NP-hard, with or without the use of Steiner points US). The 
proof is by reduction of 3SAT, a known NP-complete problem. Subsequently, Linps simplified 
by proof by reducing from Planar 3SAT, which simultaneously established that minimum parti­
tion of multiply-connected polygons is NP-complete, again with or without the use of Steiner 
points [8). 

These NP-hardness results use multiply-connected polygons in their proofs, and so they 
do not establish any complexity results for simply-co1U1P..cted polygons. Also, the cover prob­
lem is not known to be in NP, for the reasons discussed in the previous two sections. Thus the 
NP-hard result establishes a lower bound on the complexity; it is possible for an NP-hard prob­
lem to be undecidable. It is shown in the next section that. unlike several infinite tiling prob­
lems [71, CCP is in fact decidable. 

5. Decidability of Covering by Convex Polygons

5.1 Proof Sketch 

We now show that CCP is decidable by using a technique that Chazelle employed on ·a 
similar problem [2). A proof sketch is as follows [14). 

It is first established that the number of vertices of each piece of a cover can be bounded 
by a function of n. This ensures that a searching algorithm need only trY pieces up to a cmtain 
siz.e. Secondly it is shown that the property of being a valid cover is equivalent to a set of alge­
braic equations in the vertex coordinates. Finally Tarski's decision procedure for first-order 
sentences in the field of real numbers is invoked to determine whether the set of equations has 
a solution. 

Thus to determine whether a polygon has a cover of K or fewer pieces, a generic cover of 
K pieces is constructed, and Tarski 's procedure is used to see if there exist vertex coordinates 
that satisfy the covering equations .. 

5.2 Bounded Size of Covers 

First it is shown that the number of pieces needed to cover a polygon is never more than 
O(n). 
Lemma J. A polygon (perhaps multiply-connected) with n vertices has a cover with � Sn/r-4 
convex pieces. 
Proqf Sketch. It is easily established by imuction that a polygon with n vertices and h holes can 
be triangulated into n-2+2h triangles. Since each hole must have at least 3 vertices, n �3+3h. 
Substitution then establishes that the number of triangles satisfies the bound in the Lemma. D 
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NeXt it is shown that any piem of a convex cover never needs to haw more than O (n) 
vertices- This is established by expanding a given piece as much as possible. 
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u,nma 2. Any comex polygonal subset C of an n verteX polygon1P is itself enclosed within a 
subset C' that has no mbre than n vertices. 
Proqf. Perform the following expansion procedure for ·each edge e of C. Let aP be the boun­
darY of P. If e does not touch aP, move it parallel to itself away from the centroid of C, adjust­
ing its length to mate with extensions of its adjacent edges (see Figure 6). Continue this mo­
tion until either its length is reduced to zero or it touches aP. If it touches aP at a single point 
that is not an endpoint of e or at two or more points,, then halL If it touches aP at just one 
endpoint. then swing e about this endpoint. again adjusting its length to match the extension of 
its neighboring ede,::. Stop when another point of aP is hit or e becomes collinear with its adja­
cent edge (see Figure 7). 

This expansion procedure halts either when e disappears or it abuts apinst aP. The possi­
ble "abutments" are the vertices and edges of P. No two non-collinear edges can be stopped in 
the expansion process by the· same edge or vertex., nor even by an adjwent edge and vertex. 
Since there are n vertices and edges in aP, there can be no more than n non-collinear edges in 
the expanded polygon C '. 

Qearly the method of construction guararuees that C !;C'cP. □.

This bound is tighc an n ede,:: convex polygon P has a convex subset. namely itself, that 
is not enclosed in a polygon of fewer edges. 

5.3 The Covering Property 

The pro<Eeding two lemmas establish that only covers of at most O (n) pieces. each of at

most O(n) vertices, need to be considered. Constructing an expression to represent the pro­

perty of covering will be simpler if the cover is first refined or fragmented. Given any cover,

introduce vertices wherever two edges of P or any C; in the cover intersect (and there is not al­

ready a vertex). Make the introduced vertices part of both intersecting parts. This fragmerua­

tion ensures that every edge is entirely enclosed within at lease one convex piece. After

refinement, each of the O (n) pieces has at most O(n2) vertices, and the polygon P has at most

0 (n 2) vertices.

Let a refined polygon P have vertices (a 1 ,bo, (a2,b2), · · ·, (am ,bm), with m - O(ni), 

and let a refined cover C be represented by C 1,C 2, • • • ,C1c, where each C1 is a convex polygon 

with vertices (x'1 ,y'1 ), (x'2,y'2), • • • , (X:..,,lm, ), with m1 - O(n2). Boundary lists are assumed to 
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be oriented so that traversal always keeps the interior to the left. Thus outer boumary chains 
are oriented counterclockwise, and hole chains clockwise. All sets will be considered closed re­
gions, including their boundaries, unless otherwise mentioned. The next task is to construct a 
set of algebraic relations that that express the fact that C is a cover for P. The key idea is con­
tained in the following Lemma. 
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Lemma J. The following two,cODditions are necessary and sufficient for C to be1a refined cover 
for a refined polygon F. 
( l) For every edge e of some C1 EC, either

(a) e is equal to some edge of P, oriented in the same direction, or
(b) e is inside of some C1 (different from C1 ), but if it lies on ac1, it is oriented in the

opposite direction. 
(2) Nooe of the vertires of Pare inside the Interiors of an,y of the C1• 

Proof.
Necessity. Suppose C is a refined cover for P. We will first show that condition (1) holds 

for an arbitrary edge e of C1 EC. Let p1 and p2 be two arbitrary points on the interior of e, and 
let N1 and N2 be neighborhoods of p1 and p2 outside of C1 (see Figure 8). Tt cannot be the 
case that N 1 is inside P and N 2 is outside or vim versa, because then aP would cross e and the 
refinement prO<Edure would have split e. Consider each remaining case separately. 
Case 1: N1notC.PandN2notC.P. 

Because p1EC; and p2EC1 , and C is a cover, p1EP and p2EP. Sina: the neighborhoods 
are outside of P, p1 and p2 lie on aP. They must lie on the same edge of P, and e must match 
this edge exactly, otherwise e would have been refined. The orientations of the edges must 
match to keep the inside of C1 consistent with the inside of P. Thus clause (a) of condition ( 1) 
holds. 
Case 2: N,r;;;Pand N2r;;..P. 

Sinre the points in the neighborhood are in P, and C is a valid cover, they must be inside 
some C/s. Each neighborhood must be entirely enclosed within one C1, and in fact the N1 and 
N2 must be enclosed within the same C1, otherwise e would have been refined. This implies 
that all of e is enclosed within C1 . Sinre this C1 encloses neighborhoods outside of C1, if e is 
on 8C1, then the edge orientations are in opposite directions. Thus clause (b) of condition ( 1) 
holds. 
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Conrerning condition (2), if aoy vertex of P is in the interior of sane C,, then sinre a neighborhood of this vertex includes points outside of P, C, encloses points ouESide of P, con­tradicting the assumption that, C is a valid cover. 
Suffeiency. 

Suppose the two conditions hold true, but C is not a valid cover. Then either 3pEPthatis not inside any C,, or 3p¢P that is inside some C,. A contradiction will be derived in bothcases. 
Case 1: 3pEP s.t. p¢C1 VI. 

" Let Q be the connected component of P - Uc; in which p lies. Q's boumary is com-;-1 posed of edges from either P or the e; 's (see Figure 9). Suppose all the edges of Q come fromP. Then Q must in fact }:ie the same as P, and all the C, are outside P. But then the edges thatform the boundary of U Ci do not satisfy either clause .(a) or (b) of condition (1). So suppose;-1 
at least one edge e of Q comes from C,. Clause (a) of condition (1) cannot be •true fore, be­cause the subtraction P-C; would eliminate e from Q1s boumary. Similarly clause (b) cannot be true because the subtraction P-C;-C1 would eliminate e. Thus all possibilities contradictcondition (1). 

Case 2: 3priP s.t. pEC1 for some I. 
" Let Q be the connected component•of UC, - P that includes p. Tf all the edges of Q,-, come from P, then Q coincides with a hole of P. Aey vertex on the boumary of this hole must be inside some Ci, contradicting condition (2). So suppose at least one edge e of Q comesfrom C;. This edge cannot satisfy either clause (a) or (b) of condition (1), because in the firstcase it would be removed by the subtraction of P, and in the second case it would be absorbedby the union with C1• Thus all aises contradict the lemma. D 

( x11.,, !h+,) 

( XA, !j�) 

Figure JO ( XA , �A )

Figure 11 

A set of relation; for e,tpressmg the proposition that C is a refined cover for P must then 
check three conditions: 
(1) Each piere C; must be convex. (2) &ch edge of C must satisfy condition ( 1) of Lemma 3. 
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(3) Each vertex of P must satisfy corxlition (2) of Lemma 3.
The first check can be accomplished by computing the cross products of SUa::e&fflle edge 

vectors (see Figure 10). Thus C1 is a>nvex and oriented counterclockwise iff (superscript l's 
will be dropped when clear from the oontext) 

<x.+i-x, )(y,+2-Y,+1> - <x.+2-.x;.+1 ><Y,+1-:Y,) � 
1 
o. V ,. 1�, �m, ( 1) 

Clause (a) of c:orxlition ( 1) merely requires a check for equal edges. The edge 
e = «xi.Yo, Cx2,Y2» equals an edge of P iff 

3 r s.t. Xi-a, , Yi➔, , X:f"'llr+I • y,:=-b,+J, (2) 
where ((a,,b, >• (a,+i ,b,+i)) is an edge of P. 

Clause (b) requires determining whether an edge is inside a convex polygon Cj. It is iff
its two endpoints are. A point is inside C, iff it is inside every half-plane determined by C, 's edges. This half-plane check can be performed by a a-oss-product. Thus the point (xo,Yo), isinside c, (see Figure 11) iff 

(Ji;.+i--x.)(yo-y,) - Cxo-x,)(y,+i-Y,) � 0, Vr, l�r�m, (3) 

The check that no venex of P should be inside any C, can be:made by slight modifiauion 
of equation (3). 

It should now be clear that the property that C is a rover for P can be expressed by·a 
series of algebraic equations of the form ( 1), (2), or (3), coupled by the logical connectives and 
and or. 

5.4 Tarski's DeddabWty Theorem 

The bounds derived in Section 3 and the equations constructed in Section 4 can be can­
bined to write a single algebraic relation that precisely captures the question "Is there a cover ·of 
P with Kor fewer convex pieces?" 

We know that each of the K pieces cannot have more than rm - O(n2) venices. So set C 
to consist of C1,C2, · · · ,CK, where C, - ((� • .Y'i ), · · ·, (�.In,)). Here the x's and y's are 
real variables. Now, using the particular integer coordinate vertices of the given P, construct 
the equations that express the cover property for C. Then the answer to the question is "Yes" 
iff 

::lxl ::lyl =1x1 ::lyi · • · ::l� :3� 
such that the equations are satisfied. The fact that there may be covers with less than K pieces 
or with pieces using less than m vertices clearly will not affect the validity of a cover of the size 
ofC. 

Tarski developed a decision procedure for all first-order sentences of no free variables in 
the field of real numbers [22] [4] [21]. The expression above is such a sentence, and is there­
fore decidable by his procedure. The procedure eliminates quantifiers and reduces the sentence 
to a single polynomial relation of no variables, which is easily checked for validity. Modern 
formulations of Tarski's procedure [10] appear to require 0(2:1!') time. Despite this slowness, 
the procedure establishes the decidability of the minimum convex cover problem: 
Theorem. The minimum convex cover problem is decidable. 
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6. Discussion 

The proof of the preceding section can easily be modifietl to hold under any of the various 
restrictions we have discussed, such as to simply-conoected polygons or to rectangular pieces. 

Thus all these minimum covering (and partition) problems are decidable. 

The current state of knowledge on the oomplexity of the various problems is displayed in 
the Table below. 

Polnon Class 
multiply-connected 
simply-connected 

rectlinear, multiply-connected 
rectilinear, simply-connected 

Camnonents 
convex 
convex 

rectangular 
rectangular 

Cover Panition 
NP-hard NP-complete 

? O(n3) 
NP-complete polynomial 

? O(n3) 

It is an outstanding open problem to determim whether a simply-oonnected polygon can 
be minimally covered in polynomial time, even when restricted to the rectilinear case. It would 
also be of interest to derive some restrictions on the class of convex pieces that are required in 
general minimum rovers. For example, if the vertices of the original polygon have rational 
coordinates, are irrational coordinates ever required in a minimum cover? 
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ABSTRACT 

This paper presents an algorithm, that constructs all 

voronoi diagrams for k nearest neighbor searching 

simultaneously. Its space and time complexity of O(N 4) 

is shown to be optimal. 

1. INTRODUCTION

' 

In (6) Shames and Hoey introduce the idea of generalized 

voronoi diagrams to get an optimal solution of the 

k nearest neighbor problem and give an O(N logN) algorithm 

to construct the order one diagram. 

Lee ([2]) extends this to an algorithm, that computes 

an order k diagram in O(k 2 N logN). 

To answer k nearest neighbor queries with arbitrary k 

we now want to construct all Voronoi diagrams. 

This paper presents a simple solution of this problem. 

The given algorithm has time and space complexity O(N 4) 

and is shown to be optimal. Its implementation is not very 

difficult and the constant factors for the complexity are 

expected to be quite good. 
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