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Manifold Reconstruction Using the Relaxed Delaunay Triangulation

Renata L.M.E. Rêgo∗ Ramsay Dyer† Jean-Daniel Boissonnat†

Abstract

This work presents the first implementation of a mani-
fold reconstruction which is based on the relaxed Delau-
nay triangulation. Its theoretical foundation stems from
the idea of protection developed in [2]. We empirically
study its validity and practical aspects regarding the
sampling conditions including fallback solutions in case
of violation. Experiments indicate that it is possible to
reconstruct k-manifolds embedded in high-dimensional
space, given that the input point cloud is dense enough.

1 Introduction

The manifold learning process aims at retrieving some
information about an unknown manifold M from a given
set of sample points L drawn from M. In this context,
subcomplexes of the Delaunay triangulation have been
used to build a faithful approximation of M from L. Par-
ticularly, the restricted Delaunay complex Del(L,M)
(defined in [5]) can be shown to provide good topo-
logical and geometric approximation of planar curves
or surfaces in 3D-space, assuming a sufficiently dense
sampling [1].

De Silva [3] introduced a relaxed version of the De-
launay complex, and Boissonnat et al. [2] showed that
the relaxed Delaunay complex Delρ(L,W ) is equivalent
to Del(L,M), where W is a set of input points sam-
pled from M, L is a subset of W , and ρ is the relax-
ation parameter, defined in Section 2. The equivalence
is valid under sampling conditions specified for L and
W . The motivation for introducing Delρ(L,W ) is that
for manifold reconstruction only a discrete set of sam-
ples is available that represents M. Motivated by the
results of [2] we developed a manifold reconstruction al-
gorithm that takes as input a finite point set W sampled
from a k-manifold M and outputs an approximation of
M.

2 Foundations

First we introduce some notions of [2], which are the
foundation of our reconstruction algorithm. Essentially
the notion of a Delaunay center, i.e. an equidistant point
to all vertices of a simplex such that the corresponding

∗Center of Informatics-UFPE and Federal Institute of Pernam-
buco (IFPE) rlmer@cin.ufpe.br
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Figure 1: (left) The red Delaunay center is equidistant
to the blue vertices of a simplex while all other points
(black) are outside the red circumcircle. (middle) For
the green ρ-Delaunay center all points are outside the
smaller dashed green circle with radius dmax(x, σ) − ρ.
Each point within the red disc of diameter ρ around a
Delaunay center is a ρ-Delaunay center, however, note
that the red circumcircle is not necessarily empty any-
more. (right) Protection means that the black points
are outside the dashed green circle and thus sufficiently
far away for ensuring an empty red circumcircle.

circumball does not contain other points, is too strict
to be applicable in manifold reconstruction given only
a finite number of sample points. In this context the
generalized ρ-Delaunay center, i.e. a point not too far
away from a Delaunay center, as illustrated in Figure 1
(middle) and defined below is more useful.

Defnition 1 Assume ρ ≥ 0. A point x ∈ X ⊂ Rd
is a ρ-Delaunay center for a simplex σ ⊂ L if the
minimal distance dmin(x, L) = min ||q − x||, q ∈ L to x
is larger or equal to its ρ-shortened maximal distance to
a simplex point dmax(x, σ) = max ||p− x||, p ∈ σ:

dmin(x, L) ≥ dmax(x, σ)− ρ (1)

Note that for vanishing ρ we have a Delaunay center. A
relaxed Delaunay complex then generalizes to

Defnition 2 The ρ-Delaunay complex of L re-
stricted to X is the abstract simplicial complex,
Delρ(L,X), on L defined by:

σ ∈ Delρ(L,X)⇐⇒ σ has a ρ-Delaunay center in X.

Boissonnat et al. [2] proved that a ρ-Delaunay complex
is identical to the restricted Delaunay complex, if all ρ-
Delaunay centers are sufficiently protected. Notice that
this powerful insight enables the generation of the true
restricted Delaunay complex even if only a finite sam-
pling of a surface is available. Protection means that

This is an abstract of a presentation given at CG:YRF 2013. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 2: Stepwise simplex creation: (a) Initially a 0-
simplex is created which is the closest point (blue) to
x; (b,c) A 1-simplex (blue edge) and 2-simplex (blue
triangle) are created adding the second and third closest
vertex respectively; (d) No 3-simplex is created since
adding the fourth closest point would violate Equation
1 due to the two points highlighted in red.

a δ-thickened version of the circumball is still empty as
illustrated in Figure 1 (right) and formally defined as

Defnition 3 A point x ∈ X is a δ-protected center for
σ ⊂ L if:

dmin(x, L \ σ) ≥ dmax(x, σ) + δ (2)

Our main objective is to turn these insights into a
practical algorithm. This includes the determination of
landmarks L and estimation of ρ as well as strategies
for obtaining protected centers.

3 Proposed Algorithm

The main algorithm is straightforward, for each x ∈W ,
the algorithm creates successively higher dimensional
simplices, until the condition of Equation 1 is violated
(cf. Figure 2). In the following we address some addi-
tional aspects that complement our algorithm:

Landmark Selection is done with a self-organizing
learning based approach [4] choosing L ⊂W .

Relaxation Parameter Estimation. A simple argu-
ment with covering disks is used to estimate ρ: Let ε
be the sampling radius of W with respect to M, the
disks of radius ε centered on the input points w ∈ W
should cover the surface, i.e., if the surface area is A
then |W |πε2 ≥ A, and likewise |L|πλ2 ≥ A, where λ is
the sampling radius of L. Since the landmarks are well-
spaced and the input points are clustered according to
a uniform random distribution, it is reasonable to sup-
pose that |W |πε2 ≥ |L|πλ2. We know from [2] that if a
simplex σ ⊂ L has a Delaunay center in M, then by tri-
angle inequality it will have a ρ-relaxed Delaunay center

in W provided ρ ≥ 2ε and thus ρ ≥ 2ε ≥ 2
√
|L|
|W |λ.

Protection. Our experiments indicate that W needs
to be significantly denser than L. Such a requirement
is explained as follows: The most protection that we
could obtain is δ = C1λ, with a very small value for
constant C1. According to [2], we require δ ≥ C2ρ, with
a fairly big value of C2. As a consequence we need the
sampling radius ε of W to be much smaller than that

of the vertices λ: 2ε ≤ ρ ≤ C1

C2
λ. Therefore even for

very dense point clouds, the relaxed Delaunay centers
are sometimes not sufficiently protected. In practice we
improve protection with a perturbation strategy which
moves the vertex closest to the relaxed Delaunay center
x of a high-dimensional simplex by ρ towards x.

(a) (b) (c)

Figure 3: Reconstructions: (a) double torus; (b,c) Klein
bottle projected on dimensions 1,2,3 and 1,4,5.

Results. Figure 3 shows the reconstruction of a dou-
ble torus, and 3D projections of the reconstruction of a
Klein bottle embedded in 5D. The proposed algorithm
is able to produce a 2-manifold triangular mesh after 4
and 6 iterations of the vertex perturbation strategy for
the Klein bottle and double torus respectively. In both
cases |L| = 1K, while |W | = 5M for the double torus,
and |W | = 30M for the Klein bottle. By reducing |W |
at some point we experienced fail cases, i.e. high dimen-
sional simplices. We believe that the number of required
samples is strongly related to the extrinsic curvature of
a manifold within its ambient space, which will be ana-
lyzed more carefully in future work.

4 Conclusion

First experiments indicate that our implementation en-
ables manifold reconstruction based on relaxed Delau-
nay complex [2]. Currently, the main drawback is that
the density of the point cloud needs to be very high
in relation to the desired vertex density, i.e., number
of vertices in the mesh. For the future we hope that
our practical algorithm will enable improvements of the
theory as well as practical reconstruction.
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Longest-Edge Algorithms for Quality Delaunay Refinement

Carlos Bedregal∗ Maria-Cecilia Rivara∗

Abstract

We study of the computational cost of the Lepp-
Delaunay algorithm for the quality triangulation of
PSLG geometries, studying their theoretical and geo-
metric properties. Our goal is to demonstrate that this
is a provably good algorithm, proving that satisfying
size-optimal meshes are obtained.

1 Introduction

Chew [3] and Ruppert [5] developed Delaunay-based re-
finement algorithms for constrained and un-constrained
Delaunay triangulations, offering theoretical guarantees
on both the shape and size of the mesh produced for
the quality triangulation problem of PSLG geometries.

Lepp-Bisection algorithm [4] was designed for the (lo-
cal and iterative) refinement of quality triangulations for
finite element applications. It was recently proved that
this produces size-optimal refined triangulations [2, 1].

Lepp-Delaunay algorithm [4] is supported by the
properties of both the longest-edge propagating path
and the Delaunay algorithm. The longest edge propa-
gation strategy allows a more natural local improvement
of the target triangles, producing the most equilateral
triangulation, with the advantage of being independent
of the order of processing.

Our current study focuses on the Lepp-Delaunay al-
gorithm for the quality triangulation of PSLG geome-
tries. We aim to provide the proofs that this algorithm
produces size-optimal triangulations.

1.1 Longest Edge Propagating Path and Terminal
Triangles

When refining a non-quality triangle, the Lepp-
Delaunay algorithm propagates the refinement to a se-
quence of neighbor triangles in order to maintain a good
graded, conforming triangulation (where the intersec-
tion of neighbor triangles is either a common vertex or
a common edge). Given a triangle t, a longest edge
propagating path, Lepp(t), is defined as the sequence of
increasing neighbor triangles by the longest edge that
starts with t and finishes either with two terminal tri-
angles sharing a common – terminal – longest edge, or
with a boundary terminal triangle. (See Fig. 1)

∗Department of Computer Science, University of Chile,
{cbedrega,mcrivara}@dcc.uchile.cl
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Figure 1: (a) AB is an interior terminal edge shared by
terminal triangles {t2, t3} of Lepp(t0) = {t0, t1, t2, t3}.
(b) CD is a boundary terminal edge with terminal tri-
angle {t7} of Lepp(t4) = {t4, t5, t6, t7}

2 Study on the Lepp-Delaunay Algorithm

We consider the quality, size-optimal, Delaunay trian-
gulation of a PSLG geometry, also called Delaunay re-
finement. Given a PSLG-polygon P (a non-convex poly-
gon including interior points and/or interior edges), con-
struct a quality triangulation of P considering both the
interior of P and its boundary. Algorithm 1 briefly de-
scribes the Lepp-Delaunay algorithm.

Algorithm 1 Lepp-Delaunay Algorithm

Input: PSLG polygon P and min angle parameter ε
Construct τ , the Constrained Delaunay Triangulation
of P
Find S ⊂ τ , set of bad angled triangles defined by ε
for each t in S do
while t remains in τ do

Find Lepp(t), terminal triangles t1, t2, terminal
edge l, and p the midpoint of l
Perform constrained Delaunay insertion of p
Update S

end while
end for

Our analysis is based on the facts that (a) Lepp-
Delaunay algorithm inserts new points after finding a
pair of terminal triangles; (b) the new point inserted
corresponds to the midpoint of the edge shared by these
triangles. Since terminal triangles satisfy the Delaunay
property, the following result holds [4].

Proposition 1: For any pair of non-boundary De-
launay terminal triangles, their biggest angle γ ≤ 120◦.
(See Fig. 2)

This bound on the angles translates into a bound

This is an abstract of a presentation given at CG:YRF 2013. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 2: (left) Region R defines the area for point E
of neighbor triangle ABE. (right) Region R becomes a
point when γ = 120◦, triangle ABE is equilateral.

on the distance from the new point to existing points,
bounding also the length of new edges. Then, this dis-
tance can be bounded by a constant that depends on
the size of existing edges (like the shortest edge or the
radius of the circumcircle of the terminal triangle).

2.1 Bounds Based on Geometrical Properties

Consider point D the midpoint of longest edge AB, d(.)
the distance from new point D to a previous point p =
{A,B,C,E} and r the circumradius of triangle ABC.

Proposition 2: For any Delaunay terminal triangle
it holds that d(p) ≥ r/2.

Consider the two terminal triangles ABC and ABE
as illustrated in Fig. 2.

For the obtuse triangle ABC with γ = 120◦ it holds
that OD = r/2 and angleDOB = 60, so d(A) = d(B) =
r
√

3/2. Distance d(C) will depend on the position of
point C, minimized when ABC is isosceles, and max-
imized when angle α tends to 0, so r/2 ≤ d(C) < r.
Distance d(E) = 3r/2, since AEB is equilateral.

For obtuse triangles with 90◦ < γ < 120◦, d(A), d(B)
and d(C) increases as point D approaches point O, so
r
√

3/2 < d(A) < r and r/2 < d(C) < r. On the
other hand, d(E) decreases the closer point E lies to
the circumcircle, and increases the further it lies, there-
fore r < d(E) < r

√
3.

For rectangle triangles, γ = 90◦, point D corresponds
to the circumcenter of triangle ABC, so the distance to
previous points A, B or C is r. For d(E) the argument
used obtuse with obtuse triangles still holds, so r ≤
d(E) ≤ r

√
3.

For acute triangles d(A) decreases as point D moves
away from O; the furthest place for inserting point D
happens when triangle ABC is equilateral, so r

√
3/2 ≤

d(A) < r. Distance d(C) on the other hand increases
as D moves away from the circumcenter of ABC, and
is maximized for the equilateral triangle, therefore r <
d(C) ≤ 3r/2. The argument of obtuse triangles for d(E)
holds for acute triangles, with d(E) minimized for the
isosceles triangle AEB with γ = 120, and maximized
for the equilateral triangle AEB (which is similar to
ABC); therefore r/2 ≤ d(E) ≤ r.

Additionally, we found that the distance of the new
point D to existing points can also be bounded by the
shortest edge of the terminal triangles. This yields a
similar result to the one described above: the new edge
is at least half the length of the shortest existing edge.
For lack of space this proof is not included here.

3 Current Work

With these results we aim to establish a bound on d(), as
well to define a bound on the number of points inserted
by the algorithm, using the concept of local feature
size introduced by Ruppert [5]. This theoretical frame-
work would help us to prove that the Lepp-Delaunay
algorithm generates meshes that are both graded and
size-optimal. A similar machinery has been used in
the demonstrations of other Delaunay refinement algo-
rithms [6].

Proving that the edge function is within a constant
factor of the local feature size yields to an output mesh
that is size-optimal within a constant factor of the min-
imum mesh meeting the same quality bounds. The con-
stant is independent of the size of the geometry and de-
pends on the requirements of the application. After the
constant is determined, the rest of the demonstration of
size optimality follows from the theoretical framework.

We are also developing a benchmark to experimen-
tally evaluate the performance of the algorithm. We
plan to measure the generation of new triangles dur-
ing the refinement process and to compare these results
with other known techniques.
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NTU-Neutralized Complexes for the Optimal Homologous Chain Problem

Bala Krishnamoorthy∗ Gavin W. Smith†

Abstract

Given a simplicial complex K with weights on its sim-
plices and a chain on K, the Optimal Homologous Chain
Problem (OHCP) is to find a chain with minimal weight
that is homologous (over Z) to the given chain. OHCP
has been shown to be NP-complete, but if the bound-
ary matrix of K is totally unimodular (TU), it becomes
solvable in polynomial time when modeled as a linear
program (LP). We define a condition on the simplicial
complex called non-total-unimodularity neutralized, or
NTU neutralized, which ensures that even when the
boundary matrix is not TU, the OHCP LP must contain
an integral optimal vertex for every input chain. Our
complete paper is at http://arxiv.org/abs/1304.4985.

1 Introduction

Consider the LP model of OHCP [1] for a given p-chain
c on a simplicial complex K with m p-simplices and n q-
simplices, where q = p+1. Let w be a set of nonnegative
weights on the p-simplices of K, and B represent the
boundary matrix [∂q] of K.

min
[
wT wT 0T 0T

]
z

subject to
[
I −I −B B

]
z = c (1)

z ≥ 0

There are two variables in z for each p- and q-simplex
in K, one each for possible positive and negative coef-
ficients of these simplices. We refer to the coordinates
corresponding to p-simplices (q-simplices) as x-variables
(y-variables). For two x-variables (y-variables) corre-
sponding to the same simplex, we call their difference
the p-coefficient (q-coefficient). We refer to (1) as the
OHCP LP, and let P denote its feasible region, and A
denote the equality constraint matrix.

It was shown [1] that A is totally unimodular (TU) iff
B is so. If A is TU, then all vertices of the OHCP LP
are integral for every input chain c ∈ Zm, which in turn
guarantees that solving the OHCP LP solves the asso-
ciated OHCP instance. For p = 1, this result amounts
to K not having any Möbius strips. We demonstrate
that even when B is not TU, the OHCP LP could still

∗Department of Mathematics, Washington State University,
bkrishna@math.wsu.edu
†Department of Mathematics, Washington State University,
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solve the instance. We provide a characterization of all
simplicial complexes where the OHCP LP can be used
to solve every OHCP instance, even when B is not TU.

1.1 An Example
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Consider the three different triangulations of a space.
In the left and right figures, we have a Möbius strip
self-intersecting at one (d) and two vertices (a, d), re-
spectively. In the middle figure, the self intersection is
along the edge ad, and so we do not have a Möbius strip.
Hence A is TU for the middle figure, while it is not for
the other two triangulations. Still, in the right triangu-
lation, the OHCP LP has an integral optimal solution
for every input chain. For example, consider the edge
fe (thick, black, and dashed) with multiplier 1 as the
input chain. Let the weights of dashed edges be 1, of
db and ba be 0.1, and of all other edges be 0.05. In the
right complex, there are two integral optimal solutions
to the OHCP LP (shown with thick arrows in contrast-
ing shades of gray). Any convex combination of these
two chains also represents an optimal solution for the
OHCP LP, including the solution consisting of all solid
edges with multipliers ±0.5, which is also a vertex of
P . This behavior may be explained by the presence
of a disk whose boundary is an odd number of dashed
edges, e.g., triangle adc, which neutralizes the Möbius
strip. If we alter the left triangulation by adding the
triangle akm, then it also becomes NTU-neutralized;
adcbnmlkj is a disc whose boundary is 9 dashed edges.

1.2 Related Work

Dey, Hirani, and Krishnamoorthy [1] showed A is TU if
and only if there are no pure subcomplexes L0 ⊂ L(⊆
K) of dimension p and q where Hp(L,L0) has torsion.

This is an abstract of a presentation given at CG:YRF 2013. It has been made public for the benefit of the community and should be considered a preprint rather
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2 Solutions and Projections with Minimal Inputs

Consider the special case of (1) with elementary input
chain ei for some i ≤ m. We refer to this instance of an
OHCP LP as OHCPi, and its feasible region as Pi.

Lemma 1 For a given complex K, there is an OHCP
LP with integral input chain c that has a non-integral
basic solution if and only if there is some i such that
OHCPi has a basic solution where all y-variables that
are non-zero are non-integral.

Call the space of x variables X
(
= R2m

)
. We discuss

projections of P, PA,Ker(A), basic solutions, and ver-
tices onto X . For any of these objects Ω, let Ω|X be
the projection of Ω onto X . Note that because all coef-
ficients of y-variables are 0 in the objective function of
(1), the optimum value occurs at a vertex of P |X .

Corollary 2 For a given complex K, there is an OHCP
LP with integral input chain c and polyhedron P that
has a non-integral vertex z where z|X is a vertex of
P |X if and only if there is some i such that OHCPi has
a non-integral vertex z′ with all non-zero y-variables
non-integral, and where z′|X is a vertex of Pi|X .

3 Column-Wise Containment in MNTU Matrices

We create a few definitions helpful for discussion. z is
concise if for each pair of variables for the same simplex,
one (or both) is 0. A set of vectors is linearly concise
if any linear combination of the set is concise. For any
OHCP LP, there is the unique feasible concise solution
where all the y-variables are 0. We call this solution the
identity solution, and denote it zI .

We examine vertices whose non-zero q-coefficients are
column-wise contained in minimal non-TU (MNTU)
submatrices of [∂q]. For any MNTU submatrix M , let
QM represent the set of columns intersecting M , and
let M be the set of elements of Ker(A) whose non-
zero q-coefficients are contained in QM . We call rows
of [∂q] that intersect M interior rows. For any concise
z ∈ R2(m+n), we define m(z) to be a particular element
of M with {z,m(z)} linearly concise, and for each inte-
rior row i, the ith p-coefficient of z and m(z) are equal.

Theorem 3 For any MNTU submatrix M of [∂q], and
any interior row i, there is a unique vertex zi of Pi whose
non-zero q-coefficients are contained in QM and whose
p-coefficients of interior rows are all 0. This vertex is
zI −m(zI) where zI is the identity solution to OHCPi.

4 NTU-Neutralized Complexes

Definition 1 For any interior row i of a MNTU subma-
trix M of [∂q], let ki represent a concise integral element

of Ker(A) where the sum of p-coefficients of interior rows
is odd,

(
ki −m(ki)

)
|X 6= 0, and the absolute value of

each p-coefficient of ki −m(ki) is not greater than its
absolute value in zi. If each interior row i of M has such
a ki, then M is neutralized. If all MNTU submatrices
of [∂q] are neutralized, then K is NTU-neutralized in
the qth dimension.

Theorem 4 For any MNTU submatrix M of [∂q], the
projection zi|X for each interior row i is a convex com-
bination of z1|X and z2|X where both z1 and z2 are
integral elements of Pi if and only if M is neutralized.

Theorem 5 For a given complex K with boundary ma-
trix [∂q], the projection z|X of each non-integral vertex
z of any OHCP LP over K with integral input p-chain
c and polyhedron P is not a vertex of P |X if and only
if K is NTU-neutralized in the qth dimension.

In the right triangulation of the Example 1.1 for the
OHCP with input chain fe, zi|X is all solid edges,
each with a coefficient of 0.5. m(zI)|X is the union
of these solid edges, each with coefficient −0.5, together
with edge fe with coefficient 1. The light and dark
grey chains are projections of two integral vertices z1|X
and z2|X , respectively. All coefficients in both of these
projections are 1. Triangle adc satisfies all criteria for
ki. Then zi|X = 1

2 (z1|X + z2|X ). Also, m(ki)|X =
ki|X − 1

2 (z1|X − z2|X ), and z1|X − (ki −m(ki))|X =
z2|X + (ki −m(ki))|X = zi|X .

5 Conclusion

Our main result implies that when K is NTU neutral-
ized, if an optimal solution of the OHCP LP is non-
integral then there must exist another integral optimal
solution with the same total weight. If a standard LP al-
gorithm finds the fractional optimal solution, we should
be able to find an adjacent integral optimal solution us-
ing an approach similar to that of Güler et al. [2] for
the same task in the context of interior point methods
for linear programming. This approach should run in
strongly polynomial time. An unresolved question of
interest is the complexity of checking whether a com-
plex is NTU neutralized.
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On the Subdivision Containment
Problem for Random 2-Complexes

Anna Gundert∗ Uli Wagner†

Abstract

For random graphs, the containment problem considers
the probability that a binomial random graph G(n, p)
contains a given graph as a substructure. When asking
for a copy of a subdivision of the given graph, it is well-
known that the (sharp) threshold is at p = 1/n.

We consider the analogous question for random 2-
dimensional complexes X2(n, p). Improving previous
results, we show that p = Θ(1/

√
n) is the (coarse)

threshold for containing a subdivision of any fixed com-
plete 2-complex.

Introduction A basic problem in graph theory is to de-
termine whether a given graphG, which may be thought
of as “large”, contains a fixed graph H as a substruc-
ture. The most straightforward form of containment is
that G contains a copy of H as a subgraph. Another
important variant is that G contains some subdivision
of H as a subgraph; in this case, one also says that G
contains H as a topological minor.

For random graphs, the containment problem con-
siders the probability that a binomial random graph
G(n, p) contains a copy of a given graph H. For sub-
graph containment, it is well-known [4] that this prob-
ability has a (coarse) threshold of Θ(n−1/m(H)), where
m(H) is the density of the densest subgraph of H. The
(sharp) threshold for containment of any fixed graph as
a topological minor is p = 1/n by a well-known result
of Ajtai, Komlós and Szemerédi [1].

A random model Xk(n, p) for simplicial complexes of
arbitrary fixed dimension k which generalizes the ran-
dom graph model G(n, p) was introduced by Linial and
Meshulam [9] and has since then been studied exten-
sively, see, e.g., [10, 3, 2, 6, 7, 11]. Subgraph contain-
ment admits a direct generalization to higher dimen-
sions: We can ask whether a given simplicial complex
X contains a fixed complex F as a subcomplex. The
proof methods for random graphs extend directly to
random 2-complexes, and the threshold probability for
X2(n, p) to contain a fixed complex F as a subcomplex
is given by the density (in terms of triangles versus ver-
tices) of the densest subcomplex of F , see [3, 6]. For

∗Institut für Theor. Informatik, ETH Zürich, Switzerland,
anna.gundert@inf.ethz.ch. Supported by Swiss National Sci-
ence Foundation (SNF Projects 200021-125309, 200020-138230).
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the question of topological minors, a natural analogue
is whether X contains a subdivision of F . Cohen, Costa,
Farber and Kappeler [6] show that for any ε > 0 and
p ≥ n−1/2+ε, the random complex X2(n, p) asymptoti-
cally almost surely (a.a.s.), i.e., with probability tending
to 1 as n→∞, contains a subdivision of any fixed F .

We improve their result by showing that the (coarse)
threshold for containing a subdivision of any fixed com-
plete 2-complex is at p = Θ(1/

√
n).

Theorem 1

(i) For every t ∈ N there is a constant ct > 1 such that
X2(n, p) with p =

√
ct/n a.a.s. contains a subdivi-

sion of the complete 2-complex K2
t on t vertices.

(ii) For any t ≥ 7 the complex X2(n, p) with p�
√

1/n
a.a.s. does not contain a subdivision of K2

t .

Here we focus on part (i). The result in [6] is proved by
reduction to the subcomplex containment problem, by
showing that a given F can be subdivided to decrease
its triangle density. We use a different approach, based
on an idea going back at least to Brown, Erdős and Sós
[5] and used also in [3]: Our proof is based on studying
common links of pairs of vertices, which form random
graphs of the type G(n− 2, p2).

The somewhat technical proof of part (ii) is based on
bounds on the number of triangulations of a fixed sur-
face and will be presented in the full version.

Preliminaries A (finite) 2-dimensional complex (or 2-
complex ) is a set system of the form X = V ∪ E ∪ T ,
E ⊆

(
V
2

)
, T ⊆

(
V
3

)
, such that (e ⊂ τ, τ ∈ T ) implies

e ∈ E. The random 2-complex X2(n, p) has vertex set

V = [n], a complete 1-skeleton, i.e., E =
(
[n]
2

)
, and every

τ ∈
(
[n]
3

)
is added to T independently with probability

p, which may be constant or, more generally, a function
p(n) depending on n. The complete 2-complex K2

t has

V = [n], E =
(
[n]
2

)
and T =

(
[n]
3

)
.

A subdivision of X = (V,E, T ) is a 2-complex X ′ =
(V ′, E′, T ′) with V ⊆ V ′ that is obtained by replac-
ing the edges of X with internally-disjoint paths and
the triangles of X with internally-disjoint triangulated
disks such that for every triangle the subdivision of
the triangle agrees with the subdivisions of its edges.
The link lkX(v) of a vertex v ∈ V in X is the graph
({u ∈ V : {u, v} ∈ E}, {e : e ∪ {v} ∈ T}).

Figure 1: Subdivisions of K2
3 (a triangulated disk) and

ofK2
4 . Vertices and edges internal to triangles are drawn

in white.

This is an abstract of a presentation given at CG:YRF 2013. It has been made public for the benefit of the community and should be considered a preprint rather
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The Main Idea For fixed t > 0, we aim to find a sub-
division of K2

t in X2(n, p). We would be allowed to
subdivide the edges of K2

t , but there will be no need
for this: we will find t vertices such that the triangles
spanned by the edges between any three of them can be
filled with disjoint triangulated disks.

Fix a partition of the vertex set V = [n] into two sets
U and W , each of size n

2 . We will choose the t vertices
of K2

t from U , whereas the internal vertices for fillings
will come from W . To ensure disjointness of the fillings
of different triangles, we partition W into

(
t
3

)
sets Wσ,

σ ∈
(
[t]
3

)
, each of size n/(2

(
t
3

)
), and choose the internal

vertices of the filling for each triangle σ ∈
(
[t]
3

)
from Wσ.

For two vertices a and b, denote by Ga,b the graph
lkX(a)∩ lkX(b) which has vertex set [n]\{a, b} and edge
set {{v, w} : {a, v, w}, {b, v, w} ∈ X}. Denote by Cσa,b
the largest connected component of Ga,b[Wσ]. If there
are several components of maximum size, let Cσa,b be the
one containing the smallest vertex.

The basis of our proof is the following lemma:

Lemma 2 Let X be a 2-complex with vertex set [n]
and complete 1-skeleton. Suppose there is a set A ⊂ U ,
|A| = t such that for every {a, b}⊂A, c∈A\{a, b}, and

σ ∈
(
[t]
3

)
there are v, w ∈ Cσa,b with {a, b, v} ∈ X and

{c, w} ∈ Ga,b. Then X contains a subdivision of K2
t .

W a
b

c

v

w

U

W1

W2 W3

W4

Figure 2: Part of a subdivision of a K2
4 .

Proof. For {a, b, c}⊂A there exists a path in Ga,b[Wσ]
between v and w which together with the triangles
{a, b, v}, {a,w, c} and {b, w, c} creates a disk filling the
triangle created by the edges {a, b}, {b, c}, {a, c}. See

Figure 2 for an illustration. By fixing a distinct σ ∈
(
[t]
3

)
for every {a, b, c} we ensure disjoint fillings. �

For fixed a, b ∈ U and σ ∈
(
[t]
3

)
, call u ∈ U \ {a, b}

connected to Cσa,b if {u,w} ∈ Ga,b for some w ∈ Cσa,b
and let Nσ

a,b = {u ∈ U \{a,b} : u connected to Cσa,b}.
Consider two families of complexes X =

(
[n],

(
[n]
2

)
, T
)
:

• Aa,b,σ = {X : ∃v ∈ Cσa,b with {a, b, v} ∈ T}.
• For δ > 0: Ba,b,σ,δ = {X : |Nσ

a,b| ≥ (1−δ)(|U |−2)}.

Lemma 3 Let X be a 2-complex with vertex set [n]

and complete 1-skeleton. If there is a δ < 1/
(
t
3

)2
such

that X ∈ Aa,b,σ ∩ Ba,b,σ,δ for all a, b ∈ U and σ ∈
(
[t]
3

)
,

there exists A∈
(
U
t

)
fulfilling the conditions of Lemma 2.

Proof. A∈
(
U
t

)
chosen uniformly at random fulfills the

conditions of Lemma 2 with non-zero probability. �

Sketch of Proof for Theorem 1. For t ∈ N we show
that there is ct > 1 and δ < 1/

(
t
3

)2
such that X2(n, p)

for p =
√
ct/n a.a.s. fulfills the conditions of Lemma 3,

i.e., X2(n, p) ∈
⋂
a,b,σ Aa,b,σ ∩ Ba,b,σ,δ.

The probability of the events Aa,b,σ and Ba,b,σ,δ de-
pends on the size of Cσa,b, the largest connected compo-
nent of the graph Ga,b[Wσ], which is a random graph of
type G(|Wσ|, p2). As p2 = ct/n, for ct large enough such
a graph fails to have a giant component of size linear in
|Wσ| with exponentially small probability, see, e.g., [8].

For fixed a, b ∈ U , σ ∈
(
[t]
3

)
, both the number of v ∈

Cσa,b with {a, b, v} ∈ X as well as the number of u ∈ Nσ
a,b

are binomially distributed. Conditioning on the highly
probable event that Cσa,b is of linear size, we can then use

Chernoff’s inequality to show that X2(n, p) 6∈ Aa,b,σ ∩
Ba,b,σ,δ with probability exponentially small in n. As
the number of choices of a, b and σ is polynomial in n,
a union bound finishes the proof. �
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Dimension Detection by Local Homology

Tamal K. Dey∗ Fengtao Fan† Yusu Wang‡

Abstract

In this paper, we propose a purely topological method
to detect the dimension of a manifold from its sam-
pled points. Our approach detects the dimension by
determining the local homology of the manifold. We
show that the local homology at a point z can be com-
puted exactly for manifolds using Vietoris-Rips com-
plexes whose vertices are confined within a local neigh-
borhood of z.

1 Introduction

Learning about a manifold embedded in IRd from its
point data is a key problem in various manifold learning
applications. Most times, the intrinsic dimension of the
manifold M is one of the simplest, yet still very impor-
tant, quantities that one would like to infer from input
data. Therefore, considerable research has focused on
estimating the dimension for manifolds. Under the sta-
tistical setting, different approaches estimate the man-
ifold dimension based on the growth rate of the vol-
ume (or some analog of it) of an intrinsic ball [6, 7].
They generally assume that the input points are sam-
pled from some probabilistic distribution supported on
the hidden manifold. In the computational geometry
community, there are provable dimension detection al-
gorithms which all require (ε, δ)-sampling condition that
points are both ε-dense and δ-sparse. Cheng et al. [4]
developed an improved algorithm from them to toler-
ate a small amount of Hausdorff noise (of the order ε2

times the local feature size). More recently, Cheng et al.
[3] proposed an algorithm to estimate the dimension by
detecting the so-called slivers. This algorithm assumes
that the input points are sampled from the hidden man-
ifold using a Poisson process without noise.

In this paper we develop a dimension detection
method based on the topological concept of local homol-
ogy. The idea of using local homology to study stratified
spaces from sampled points was first proposed by Ben-
dich et al. [1] and further explored in [2]. Both of them
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used Delaunay triangulations in their algorithms. In a
recent paper [10], Skraba andWang proposed to approx-
imate the multi-scale representations of local homology
using families of Rips complexes.

2 Our results

Given a smooth m-dimensional manifold M embedded
in IRd, the local homology group H(M,M−z) at a point
z ∈ M is isomorphic to the reduced homology group
of an m-dimensional sphere, that is H(M,M − z) ∼=
H̃(Sm). Hence, given a set of noisy sampled points P of
M, we aim to detect the dimension of M by estimating
H(M,M−z) from P . Specifically, we assume that P is
an ε-sample of a manifold M with positive reach ρ(M)
in the sense that the Hausdorff distance between P and
M is at most ε. All homology groups are assumed to be
under Z2. The definitions of sampling related concepts
such as reach, ε-sample and Hausdorff distance can be
found in the book [5] whereas the topology related con-
cepts such as homology, reduced homology and relative
homology can be found in the book [9].
We first observe that the local homology H(M,M−z)

can be inferred by the image Im(i∗) of the map i∗ :
H(M,M−D̊2) → H(M,M−D̊1) which is induced from
the inclusion map i : (M,M − D̊2) →֒ (M,M − D̊1),
where D1 and D2 (D1 ⊂ D2 ⊂ M) are two closed topo-
logical balls containing z. However, in general, we only
have an ε-sample of the hidden manifold. Interestingly,
under appropriate sampling conditions, the manifold M
is a deformation retract of Xα = ∪q∈PBα(q) which is the
union of Euclidean balls centered at samples with radius
α. This deformation retraction and our observation en-
able us to prove that the local homology of M can be
inferred from the relative homology groups in Xα. Let
p̄ ∈ M denote the closest point to p ∈ P . Denote Br(z)
the Euclidean ball centered at z with radius r and B̊r(z)
the interior of Br(z). Let B

α,β = Xα−B̊β(p)∩Xα where
Xα = ∪q∈PBα(q). We show the following.

Proposition 1 Let 0 < ε <
ρ(M)
22 , and θ1 ≤ α ≤ α′ ≤

θ′2, where θ1 =
(ε+ρ(M))−

√
ε2+ρ(M)2−6ερ(M)

2 and θ′2 =
ρ(M)−13ε

4 . Set δ = α + 3ε and δ′ = α′ + 3ε. For ε <

λ′ < ρ(M)− 4δ′ and λ ≥ λ′ + 2(α′ − α), we have,

Im(H(Xα,B
α,λ+3δ) → H(Xα′ ,Bα′,λ′+δ′)) ∼= H(M,M− p̄).

This is an abstract of a presentation given at CG:YRF 2013. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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(a) Head

(b) D1 (c) D0

Figure 1: Image data : Head, D1 and D0

In fact, knowing the local neighborhood of the point
p is enough for extracting the local homology at p̄.
Specifically, denote Xα,r = Xα ∩ Br(p) and X

β
α,r =

Xα,r ∩ Bβ(p), where Bβ(p) = IRd \ B̊β(p). We prove
that H(M,M − p̄) can be obtained from the relative
homology groups defined over the neighborhood of p

such as H(Xα,r,X
β
α,r) by applying the Excision theo-

rem ([9]). We then push our results further by relating
Rips complexes to the nerves of Xα,r and X

β
α,r. The

Rips complex Rr(P ) on the point set P contains all
simplices σ = [p0p1 . . . pk] (pi ∈ P ) with the pairwise
Euclidean distance d(pi, pj) < r for all 0 ≤ i, j ≤ k.
Denote Pα,r = {pi ∈ P | Bα(pi) ∩ Br(p) 6= ∅} and
P β
α,r = {Pα,r ∩ Bβ(p) 6= ∅}. We show that the local

homology of M at p̄ can be computed from the Rips
complexes built on Pα,r’s and P β

α,r’s.

Theorem 2 Let 0 < ε <
ρ(M)
58 and θ1 ≤ α ≤ ρ(M)−13ε

22 .

Let ε < η1, η2 < ρ(M) such that η1 ≥ 9α + 4ε and

η2 ≥ η1 + 12α+ 6ε. The inclusion

jα : (R2α(Pα,r),R2α(P η2

α,r)) →֒ (R6α(P3α,r),R6α(P η1

3α,r))

satisfies Im(jα∗)
∼= H(M,M− p̄) for any r ≥ η1 + η2.

Our main theorem provides the promised topological
method for dimension detection. The implementation
of our algorithm is straightforward from the theorem.

3 Experimental results

Table 1 presents the comparison results on the real
data. The real data contains images of a 2D transla-
tion of a smaller image within a black image (Shift)
(see [3]), a rotating head (Head, Fig. 1(a)), handwrit-
ten 1’s (D1, Fig. 1(b)) and 0’s (D0, Fig. 1(c)) from
MNIST database. Our method is compared with the di-
mension detection method via slivers (SLIVER) [3], the
maximum likelihood estimation (MLE) [8], the manifold
adaptive method (MA) [6], the packing number method
(PN) [7], the local PCA (LPCA) [4], and the isomap
method (ISOMAP) [11]. Notice that although Shift is
uniform and noise free, only ISOMAP and ours get the
correct dimension. The dimension of Head is consid-
ered to be around 3 or 4 in the literature. Ours falls

Shift Head D1 D0

Ours 2 3 4 3
SLIVER 3 4 3 2
MLE 4.27 4.31 11.47 14.86
MA 3.35 4.47 10.77 13.93
PN 3.62 3.98 6.22 8.86
LPCA 3 3 5 8.86
ISOMAP 2 3 5 [3, 6]

Table 1: Comparison results

into this range. Although the ground truth dimensions
for D1 and D0 are unknown, ours along with SLIVER,
PN, LPCA and ISOMAP report dimensions in range
[3, 7] for D1 and in range [2, 9] for D0.
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Computationally proving triangulated 4-manifolds to be diffeomorphic

Benjamin A. Burton Jonathan Spreer∗

Abstract

We present new computational methods for proving
diffeomorphy of triangulated 4-manifolds, including al-
gorithms and topological software that can for the first
time effectively handle the complexities that arise in di-
mension four and be used for large scale experiments.

1 Introduction

In dimensions ≤ 3, every topological manifold has a
unique smooth structure up to diffeomorphism. In di-
mensions ≥ 4 this is no longer true: there are pairs of 4-
manifolds which are homeomorphic (they represent the
same topological manifold) but not diffeomorphic (they
represent two distinct smooth manifolds) [9]. Finding
such pairs is important; indeed, the only outstanding
variant of the Poincaré conjecture asks whether one can
find two non-diffeomorphic smooth 4-spheres [9].

We move this problem to the piecewise linear setting,
which is better suited for computation. Here manifolds
are given as triangulations (decompositions into sim-
plices). Piecewise linear manifolds are in 1-to-1 corre-
spondence with smooth manifolds for dimensions ≤ 6,
and so results translate between both settings; we use
both languages interchangably in this paper.

Despite this equivalence, work on non-diffeomorphic
pairs is done exclusively in the smooth setting. The
only example of two 4-manifold triangulations that are
homeomorphic but not diffeomorphic follows a well-
established result for the smooth setting [1]. One of the
few candidates from the PL-world is a pair of triangu-
lations of the K3 surface (one of the four fundamental
building blocks of simply connected 4-manifolds): the
16-vertex (K3)16 of Casella and Kühnel [6], and the 17-
vertex (K3)17 of Spreer and Kühnel [12]. The smooth
type of (K3)17 is canonical, but the smooth type of
(K3)16 remains unknown. It is conjectured [12]:

Conjecture 1 (K3)16 and (K3)17 are diffeomorphic.

In the computational setting, proving that (K3)16
and (K3)17 are homeomorphic is easy, using the soft-
ware simpcomp [7] in conjunction with Freedman’s cel-
ebrated classification of simply connected 4-manifolds
[8]. Proving they are diffeomorphic is much harder. Our
approach is based on a theorem of Pachner [11], which
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Queensland, AUS. bab@maths.uq.edu.au, j.spreer@uq.edu.au

states that two triangulated manifolds are diffeomorphic
if and only if they are related by a sequence of bistellar
moves (local modifications).

Bistellar moves offer significant challenges in dimen-
sions ≥ 4: “effective” sequences of moves can be ex-
tremely difficult to find. Indeed, the number of moves
required to connect two diffeomorphic triangulations of
size n must have no computable upper bound [10].

Here we describe work in progress towards resolving
Conjecture 1, including effective heuristics and fast algo-
rithms for manipulating 4-manifold triangulations with
bistellar flips, and a tight lower bound on the size of a
1-vertex triangulation of the K3 surface with over a mil-
lion distinct realisations. This work has wider relevance,
and forms the beginning of a larger project to explicitly
construct and study “exotic” triangulated 4-manifolds.

2 Minimal triangulations of the K3 surface

For computation, we want to triangulate manifolds
using few top-dimensional simplices. We therefore work
with generalised triangulations, which are collections of
abstract simplices whose facets are identified in pairs—
these can allow far fewer simplices than the more rigid
simplicial complexes. We also favour triangulations
with just one vertex, which in lower dimensions offer
significant advantages for both theory and computation.

Proving minimality is extremely difficult in three di-
mensions. In four dimensions, we solve this completely
for the K3 surface in the one-vertex setting:

Proposition 1 For any triangulation of the K3 surface
we have f4 ≥ 146−6f0, where f4 denotes the number of
4-dimensional simplices and f0 denotes the number of
vertices. In the case where f0 = 1, this bound is tight.

We prove f4 ≥ 146 − 6f0 by combining (i) the fact
that the K3 surface is simply connected and has Euler
characteristic χ(K3) = f0−f1 +f2−f3 +f4 = 24, with
(ii) the Dehn-Sommerville equations 2f1 − 3f2 + 4f3 −
5f4 = 0 and 2f3 − 5f4 = 0. Here each fi denotes the
number of i-faces of the triangulation.

We prove this bound is tight by reducing both (K3)16
and (K3)17 using bistellar moves to one-vertex triangu-
lations with (f0, f1, f2, f3, f4) = (1, 1, 234, 350, 140). In
three dimensions, such a “simplification” of triangula-
tions is fast and effective [4], but in four dimensions it is
far more difficult and requires the interaction of many
different tools and heuristics.
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Our approach incorporates: (i) classical greedy tech-
niques, which reduce a triangulation as far as possible
using local moves; (ii) “composite” moves that collapse
edges and reduce triangulations near low-degree edges
and triangles; (iii) simulated annealing [2], where we ap-
ply the inverses of reducing moves to escape local min-
ima; (iv) breadth-first searching through the Pachner
graph (or “flip graph”) [4].

We note that the interaction between these tech-
niques is crucial: each technique failed to reduce (K3)16
and (K3)17 on its own. Again we contrast this with
three dimensions, where these techniques are found to
be highly effective even in isolation.

All computations were performed using the new 4-
manifold toolkit in the software package Regina [5].

3 Connecting triangulations (K3)16 and (K3)17

To prove Conjecture 1 we must find a sequence of local
modifications connecting (K3)16 and (K3)17. In three
dimensions, the following approach is often successful:
(i) simplify both triangulations as far as possible, and
then (ii) repeatedly apply random local modifications
that preserve the number of simplices until both trian-
gulations are identical. This often succeeds (provided
both triangulations represent the same manifold) be-
cause many manifolds appear to have only few distinct
minimal triangulations.

In contrast, for the K3 surface the number of min-
imal triangulations appears to be much larger, and so
the classical approach above does not work. Instead
we use a more sophisticated method to ensure that (i)
every minimal triangulation is visited only once and
(ii) we can detect if a longer “detour” through larger
triangulations is required. Specifically, we run a dual-
source breadth-first search through the Pachner graph,
whose nodes represent triangulations of the K3 surface
and whose arcs represent bistellar flips that preserve the
number of simplices. The two sources are our minimal
one-vertex triangulations of (K3)16 and (K3)17.

Each time we perform a local move, we must test
whether the resulting triangulation has been seen before
(up to combinatorial isomorphism). For this we com-
pute the isomorphism signature of the triangulation [3],
a polynomial-time computable hash that uniquely iden-
tifies the isomorphism type. This reduces the compari-
son to a fast lookup, and the overall algorithm runs in
time O(T log T · n2 log n), where T is the (large) num-
ber of triangulations, and n is the (small) number of
simplices in each. The search parallelises well, since the
bottlenecks are the hashing and performing local moves.

Thus far, the algorithm has detected 1 738 260 dis-
tinct minimal one-vertex triangulations of the K3 sur-
face. The search is ongoing, and has neither exhausted
the list of minimal triangulations nor connected (K3)16
with (K3)17. This enormous number of minimal trian-

gulations is both interesting and surprising, offering a
stark contrast to observations from dimension three.

4 Conclusion and future research

Proving Conjecture 1 would eliminate an impor-
tant candidate for a pair of homeomorphic but non-
diffeomorphic simply connected 4-manifolds. Moreover,
as noted earlier, this work has a wider appeal: it shows
for the first time how difficult problems of diffeomor-
phism and “exotic structures” in 4-manifold topology
can be realistically tackled using computational tools.

Future developments will include: multiple-vertex tri-
angulations containing fewer 4-simplices; a richer set of
local modifications; and distributed algorithms for use
on high-performance computing facilities.
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Abstract

Bregman divergences are important distance measures that
are used extensively in data-driven applications such as com-
puter vision, text mining, and speech processing, and are a
key focus of interest in machine learning. As an example,
the Kullback-Liebler divergence is a natural distance mea-
sure between probability distributions widely used in statis-
tics and image processing. The Itakura-Saito is also com-
monly used in signal analysis and distance between speech
samples. Answering approximate nearest neighbor (ANN)
queries under these measures is very important in these ap-
plications and has been the subject of extensive study. In
the context of Euclidean geometry, there have been lower
bounds demonstrated for the high-dimensional setting, and
also on Locality Sensitive Hashing (LSH) techniques. We
aim to extend these tools to a broad subclass of Bregman di-
vergences to obtain at least matching lower bounds, and in
some cases stronger results.

1 Introduction

Bregman Divergences. Let φ : M⊂Rd→R be a strictly
convex function that is differentiable in the relative interior of
M. The Bregman divergence Dφ is defined as

Dφ (x,y) = φ(x)−φ(y)−〈∇φ(y),x− y〉.

More intuitively, as we can see in Figure 1, Dφ is defined by
a lifting map upto a convex function φ where Dφ (p,q) is the
vertical distance of φ(p) from the estimate obtained by lin-
earization of φ at q. This is just the Euclidean distance when
φ is the paraboloid, and thus we can view Dφ as in some
sense a natural generalization of the lifting map commonly
used in Euclidean discrete geometry for analysis of Voronoi
diagrams or convex hull algorithms.

An important subclass of Bregman divergences are the
uniform Bregman divergences. Suppose φ has domain M =

∏
d
i=1 Mi and can be written as φ(x) = ∑

d
i=1 φR(xi), where

φR : Mi ⊂ R→ R is also strictly convex and differentiable
in relint(Si) and each . Then Dφ (x,y) = ∑

d
i=1 DφR(xi,yi)

is a uniform Bregman divergence. Many commonly used
Bregman divergences are uniform, including the Kullback-
Leibler, Itakura-Saito, Exponential distance and Bit entropy.

p q

φ(q)φ(p)

Dφ(p, q)

φ

Figure 1: Illustrating the lifting map

1.1 Background and Overview of our work

The standard results for lower bounds on LSH (at least the
earlier work by Panigrahy et al. [2] and Motwani et al. [1])
leverage heavily the combinatorial properties of the Ham-
ming cube under the l1 distance. Very roughly, they show
that for any hashing function or partition of the cube into
cells of tables, the data structure is highly sensitive to noise
perturbation. If we obtain a query point by perturbation of
our dataset and then random selection, then the query point
has low probability of falling in the same hash bucket as
it’s nearest neighbor(or even approximate nearest neighbor).
This means that any lookup algorithm which uses tables must
touch a large number of cells (in expectation) to successfully
retrieve an approximate nearest neighbour.

Our first simpler result gives a distance-preserving geo-
metric isomorphism of the Hamming cube to a constructed
set of points under any uniform Bregman divergence which
we call a pseudo-Hamming-cube. The existence of such a
set is not immediately obvious as the Hamming cube is in-
herently symmetric and distances are defined under l1, while
Bregman divergences Dφ are not symmetric, but we find a
way to circumvent this difficulty.

Our second line of attack and subject of ongoing work, is
to directly analyze a combinatorial object we introduce and
stipulate as the Bregman cube. Here our distances are no
longer symmetric as Dφ (a,b) 6= Dφ (b,a). Indeed, we aim
to exploit this asymmetry (which we capture by a parameter
µ) to yield us stronger lower bounds than the Euclidean case
for l1. This requires defining an asymmetric noise perturba-
tion according to the distribution of unequal distances across
edges of our Bregman cube.
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2 Reduction from the Hamming cube to an isomor-
phic set of Bregman points

First we define precisely the Hamming cube. The Hamming
cube ({0,1}d , || · ||1) is the set of 2d vertices of a unit length
hypercube in Rd under the l1 distance. We define now a
combinatorial structure isomorphic to the Hamming cube,
which we term the pseudo-Hamming-cube. Given a Dφ :
R2d×R2d → R, a pseudo-Hamming-cube Cφ ⊂ R2d is a set
of 2d points such that there exists a bijection fφ : {0,1}d →
Cφ and a fixed constant c0 ∈ R so that Dφ ( fφ (x), fφ (y)) =
c0||x− y||1, ∀x,y ∈ {0,1}d .
We note that that c0 can be set to 1 by scaling φ appropriately.
We now show the existence of a pseudo-Hamming-cube for
any uniform Dφ .

Lemma 1 For any uniform Dφ :R2d×R2d→R, there exists
a pseudo-cube Cφ ⊂ R2d and a suitable constant c0 ∈ R.

Proof. Recall that for uniform Dφ , we have that φ(x) =
∑

d
i=1 φR(xi). Pick arbitrary a,b in the domain of φR and

hence obtain the two ordered pairs (a,b) and (b,a) in R2.
Now stipulate Cφ = {x1× x2 . . .xd s.t xi ∈ {(a,b),(b,a)}} ⊂
R2d . Note that |Cφ = 2d |. We define the isomorphism
hφ : {0,1}d →Cφ by using the helper function h̄ : {0,1} →
{(a,b),(b,a)} where h̄(0) = (a,b) and h̄(1) = (b,a). Now
we state for x ∈ {0,1}d , hφ (x) = h̄(x1)× h̄(x2)× . . . h̄(xd).
The insight is that for any two x,y ∈ Cφ , the ith component
of Dφ on h̄(xi) and h̄(yi) is symmetrized, as

DφR×φR((a,b),(b,a)) = DφR×φR((b,a),(a,b))

= DφR(b,a)+DφR(a,b).

Direct computation shows that ∀x,y ∈ {0,1}d , we have:

Dφ (hφ (x),hφ (y)) =
(
DφR (b,a)+DφR (a,b)

)
||x− y||1.

This completes our proof, with c0 = DφR(b,a) +
DφR(a,b). �

Now that we have defined a distance preserving isomorphism
between the l1 Hamming cube in Rd with our Dφ pseudo-
Hamming-cube in Rd , it is not hard to show that LSH and
ANN lower bounds for the l1 Hamming cube now transfer
over to Dφ . In particular, the results from [2] in combination
with our isomorphism imply:

Theorem 2 For asymmetric and uniform Bregman diver-
gences in R2d (where d is Ω(logn)), any t-probe random-
ized data structure that returns an approximate nearest neigh-
bor within a c multiplicative factor and with constant success
probability must use space n1+Ω( 1

ct ).

3 Asymmetric Bregman cube analysis

Our second line of attack and the heart of this paper is obtain-
ing improved bounds over the l1 analysis by employing the

asymmetry in our favor. We first introduce a new structure,
the asymmetric Bregman cube Cφ ⊂ Rd or simply Bregman
cube. We let Dφ be a uniform Bregman divergence, and pick
a, b∈R such that DφR(a,b)= 1. Assume that DφR(b,a)= µ ,
where µ > 1 is a parameter dependent on φR and the choice
of a and b. Then Cφ is defined as ({a,b}d ,Dφ ), i.e, the 2d

vertices of a cube along with the distance Dφ . Intuitively, this
is combinatorially equivalent to a regular Hamming cube but
now where distances of 1 and µ are associated with flipping
a bit from 0 to 1 and 1 to 0 respectively.

To handle perturbation in this asymmetric setting, we de-
fine a random variable νp1,p2 : {0,1}d → {0,1}d , such that
νp1,p2(x) is obtained by by flipping each 0 bit of x to 1 with
probability p1 and each 1 bit of x to 0 with probability p2. We
can extend this to a perturbation operator Rp1,p2 on boolean
functions such that Rp1,p2 f (x) = Eνp1 ,p2

[ f (νp1,p2(x))].
Rp1,p2 is a generalization of the regular symmetric noise

operator which is defined as Tp = Rp,p and is well studied in
Fourier analysis. The key to many of the lower bounds ob-
tained for the l1 cube revolve around the fact that νp,p applied
on any point in the Hamming cube displaces it a distance of
pd in expectation, and that Tp scatters/smooths out subsets of
the cube. This property is known as hypercontractivity and
can be seen more precisely as a contraction under a certain
norm. Let 1S be the characteristic function of a subset of the
Hamming cube, 1S : {0,1}d →{0,1}. Then it is well known
that:

||Tp1S||2 ≤ ||1S||1+(1−2p)2 (1)

Matters are different for an asymmetric cube Cφ with 0 to
1 bit-distance of 1 and 1 to 0 bit-distance of µ . νp,p no longer
would displace every point on our cube by an equal amount
in expectation, due to the asymmetry. We can prove however,
that νp1,

p1
µ

does have this property and displaces each point

by p1d distance in expectation. Problematically though, use-
ful bounds for hypercontractivity on all subsets do not hold
universally for Rp1,p2 due to certain worst case scenarios, and
we are forced to analyze hypercontractivity on partitions of
the cube under conditions specific to our problem. This is
the central technical challenge to our work going forward.
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Fault-Tolerant Clustering Revisited∗
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1 Introduction

Two of the most common clustering problems are k-
center and k-median clustering. In both these prob-
lems, the goal is to find the minimum cost partition of
a given point set P in some metric space M , into k clus-
ters. Each cluster is defined by a point in the set of
cluster centers, C ⊆ P, where |C| = k. In k-center
clustering, the cost is the maximum distance of a point
to its assigned cluster center, and in k-median cluster-
ing, the cost is the sum of distances of points to their
assigned cluster center. In both cases, given a set of clus-
ter centers C, the optimal strategy is to assign a point
to its closest center in C. In the fault-tolerant versions
of these problems, we assign each point to its lth closest
center in C, where 1 ≤ l ≤ k is a given integer. Intu-
itively, each center is prone to failure, and the cost of
clustering is the worst-case cost, when up to l−1 failures
among the closest centers for any point can be tolerated.
The problem is to compute the optimal set of centers C,
which minimizes the cost. The fault-tolerant k-center
problem was first studied by Krumke [4], who gave a 4-
approximation algorithm for this problem. Chaudhuri
et al. provided a 2-approximation algorithm for this
problem [1], which is the best possible under standard
complexity theoretic assumptions. In both these papers,
the version considered, differs slightly from ours in that
one only considers points which are not centers when
computing the point that has the furthest distance to
its lth closest center. Khuller et al. [3] later considered
both versions of the k-center problem. Their first ver-
sion is the same as ours, i.e. the cost is the maximum
distance of any point (including centers) to its lth near-
est center. They gave a 2-approximation when l < 4
and a 3-approximation otherwise. Their second version
is the same as that of Krumke [4]. For this version, they
provided a 2-approximation algorithm matching the re-
sult of Chaudhuri et al. [1].

For k-median clustering, a fault-tolerant version has
been considered by Swamy and Shmoys [6]. However,
our version is different from theirs.

Our Contribution. Our main contribution is in show-
ing that there is a natural reduction of the fault-tolerant

∗See [5] for the full version.
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versions of k-center and k-median to the ordinary (non-
fault-tolerant) versions. Though the approximation ra-
tios of our algorithms are not optimal, the authors feel
that the algorithms more than make up for this in their
conceptual simplicity and practicality from an imple-
mentation standpoint. For both these problems, we can
use any constant factor approximation algorithm for the
ordinary version of the respective problem. However,
using the algorithm by Gonzalez[2] for k-center gives
a smaller approximation factor, and this result is pre-
sented in full in this writeup. Additionally, to the best
of our knowledge, the fault-tolerant variant of k-median
that we investigate, has not been considered before.

2 Problem Definition and Algorithms

We are given a set of n points P = {p1, . . . , pn} in a met-
ric space M . Let d(p, p′) denote the distance between
the points p and p′. Let ball (p, x) denote the closed ball
of radius x with center p. For a given point p ∈ P, a
subset S ⊆ P and an integer 1 ≤ i ≤ |S|, let di(p, S)
denote the minimum x such that |ball (p, x) ∩ S| ≥ i.
We abbreviate d1(p, S) to d(p, S). Let nni(p, S) denote
the ith nearest neighbor of p in S, i.e. the point in S
such that d(p, nni(p, S)) = di(p, S). Let NNi(p, S) =
∪ij=1{nnj(p, S)} be the set of i nearest neighbors of p in
S. For both the problems, in the first step we run an ap-
proximation algorithm for the non-fault-tolerant version
of the problem for m = bk/lc centers, and in the second
step additional centers are added. In our analysis below
for fault-tolerant k-center, we use the well known 2-
approximation algorithm for m-center by Gonzalez 1 in
the first step, which we denote by kCenter(P,m). Let
kMedian(P,m) denote any constant factor approxima-
tion algorithm for m-median.

We first run the algorithm kCenter(P,m) (resp.
kMedian(P,m)). Let Q ⊆ P denote the set of m
centers output and let Q = {q1, . . . , qm}. Let C =⋃m

i=1 NNl(qi,P), i.e. we take the l nearest neighbors in
P of each point qi, for i = 1, . . . ,m. We only use this set
C in the analysis. If however C has less than k points
we can throw in k − |C| additional points chosen arbi-
trarily from P \ C, since adding additional centers can
only decrease the cost of our solution. Let fCenter(l, k)
and fMedian(l, k) denote these algorithms for the fault-
tolerant k-center and k-median problems, respectively.

1For k iterations, add the point furthest from the current set
of centers, to the set of centers, where the first center is arbitrary.
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3 Results

3.1 Fault-tolerant k center

For an instance of the problem on a point set P, let
C∗ = {w1, w2, .., wk} be an optimal set of centers, and
let ropt be its cost (i.e. ropt = maxp∈P dl(p, C

∗)). Simi-
larly, let C = {c1, . . . , ck} be the set of centers returned
by fCenter(l, k), and let ralg be its cost. We assume
l|k, i.e. m = k/l. Algorithm fCenter(l, k) first calls
kCenter(P,m). Let Q = {q1, . . . , qm} be the returned
set of centers, computed in that order by Gonzalez’s al-
gorithm. Let ri = d(qi, Qi−1) for 2 ≤ i ≤ m, where
Qi−1 = {q1, . . . , qi−1}. (The m = 1 case is easier.)

The following is easy to see, and is used in the cor-
rectness proof of Gonzalez’s algorithm.

Lemma 1 For i 6= j, d(qi, qj) ≥ rm.

Lemma 2 For any qi, NNl(qi, C
∗) ⊆ ball (qi, ropt) and

NNl(qi,P) ⊆ ball (qi, ropt).

Proof. The first claim follows since qi ∈ P and so
dl(qi, C

∗) ≤ ropt. As C∗ ⊆ P, the second claim fol-
lows. �

Lemma 3 We have that, ralg ≤ rm + ropt.

Proof. As in Gonzalez’s algorithm, we have rm =
maxp∈P d(p, Qm−1), and so d(p, Q) ≤ rm for any p ∈ P.
Consider any point p ∈ P and let q = nn1(p, Q). By how
fCenter(l, k) is defined, NNl(q,P) ⊆ C. Now, d(p, v) ≤
d(p, q)+d(q, nnl(q,P)) for any v ∈ NNl(q,P), by the tri-
angle inequality. Now, d(p, q) + d(q, nnl(q,P)) ≤ rm +
ropt, by Lemma 2. As such, |ball (p, rm + ropt) ∩ C| ≥ l,
and so ralg ≤ rm + ropt. �

The proof of the following lemma is easy and is
present in the full version [5].

Lemma 4 If ralg > 3ropt, then for any 1 ≤ i 6= j ≤
m, ball (qi, ropt) and ball (qj , ropt) are disjoint and each
contains at least l centers from C∗.

Lemma 5 We have that, ralg ≤ 3ropt.

Proof. Suppose otherwise that ralg > 3ropt. By
Lemma 4, for i = 1, . . . ,m, |ball (qi, ropt) ∩ C∗| ≥ l, and
for 1 ≤ i < j ≤ m, ball (qi, ropt) ∩ ball (qj , ropt) = ∅.
Assign all points in C∗ ∩ ball (qi, ropt) to qi. Notice, qi
is the unique point from Q within distance ropt for any
point assigned to it. Now |Q| = m = k/l, and each
point in Q gets at least l points of C∗ assigned to it
uniquely. As such, there are at least ml = k points
of C∗ assigned to some point of Q. Since |C∗| = k, it
follows that each center in C∗ gets assigned to a cen-
ter in Q within distance ropt. For p ∈ P, let v be its
closest center in C∗. Let q be v’s center from Q in
distance ≤ ropt. We have d(p, q) ≤ d(p, v) + d(v, q) ≤
ropt + ropt = 2ropt, by the triangle inequality. More-
over, since for 1 ≤ j ≤ l, d(q, nnj(q,P)) ≤ ropt, we have,

d(p, nnj(q,P)) ≤ d(p, q)+d(q, nnj(q,P)) ≤ 2ropt +ropt =
3ropt. Since for q ∈ Q, NNl(q,P) ⊆ C, this implies that
for any point p ∈ P, we have |ball (p, 3ropt) ∩ C| ≥ l and
so ralg ≤ 3ropt, a contradiction. �

Theorem 6 For a given point set P in a metric space
M , fCenter(l, k) achieves a 3-approximation to the op-
timal solution of the fault-tolerant k-center problem
when l|k, and a 4-approximation otherwise.

Proof. The l|k case follows from Lemma 5. The proof
for the other case is similar, and can be found in [5]. �

3.2 Fault-tolerant k median

Theorem 7 For a given point set P in a metric space
M , the algorithm fMedian(l, k) achieves a (1 + 4c)-
approximation to the optimal solution of the fault-
tolerant k-median problem, where c is the approxima-
tion guarantee of the subroutine kMedian.

In the full version [5] we show that this theorem is im-
plied by the following lemma, which is used to bound the
cost of the optimum non-fault-tolerant m-median solu-
tion in terms of the optimum fault-tolerant k-median
solution. See [5] for the proof of the lemma.

Lemma 8 For any point set P in a metric space M
and an integer 1 ≤ l ≤ |P|, there exists Q ⊆ P such that
(1) |Q| ≤ |P| /l, and (2) ∀p ∈ P, d1(p, Q) ≤ 2dl(p,P).

This lemma can also be used to get a result for
fault-tolerant k-center similar to Theorem 7. This
gives a weaker approximation guarantee than that of
Theorem 6, but has the advantage, that any con-
stant factor approximation algorithm can be used for
kCenter(P,m).
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Discrete Morse Gradient Fields and Stable Matchings

João Paixão⇤ Thomas Lewiner⇤

Abstract

Forman’s discrete Morse theory for cell complexes es-
sentially relies on a discrete analogue of gradient fields,
defined as an acyclic matching between incident cells.
One can easily extract from this object several pieces of
topological and geometrical information of a cell com-
plex such as homology or the Morse-Smale decompo-
sition. Most constructions of this discrete gradient are
based on some variant of greedy pairing of adjacent cells,
similar to a steepest descent algorithm. In this work,
an equivalent formulation in terms of stable matching
is proposed to study the geometric accuracy of the con-
struction. It further simplifies the proofs of previous
results regarding the behavior of the gradient field and
the position of critical points.

1 Introduction

Forman introduced a combinatorial Morse theory [3] to
study the topology of discrete objects such as cell and
simplicial complexes. In this theory, the main objects
from the smooth theory such as a Morse function, the
corresponding gradient field, its critical points, and its
flow have a discrete analogue. In particular, the discrete
gradient is essentially an alternating cycle-free matching
on the Hasse diagram of the complex. The Morse-Smale
complex can be seamlessly obtained from the discrete
gradient field, by purely combinatorial algorithms [7, 2,
5] avoiding any numerical integration or di↵erentiation.
The main issue is how faithful the discrete gradient is to
the geometry of a function sampled at the vertices of the
complex. This geometric accuracy can be formulated as
the position of the critical elements (i.e. the cells of the
Morse-Smale decomposition) with respect to Bancho↵’s
critical points, obtained by a simplex-wise interpolation
of the function [1].
There are numerous constructions proposed for a ge-

ometric faithful discrete gradient field. Lewiner et al.
[7, 2] propose a modified greedy weighted matching al-
gorithm with weights based on the di↵erence of the func-
tion values at incident cells. The algorithm checks if the
matching would have an alternating cycle at each step
before adding a new edge to the matching. The geo-
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metric accuracy of the algorithm was proven robust if
the triangulation is subdivided twice [6]. The results
rely on a complicated proof technique, making it dif-
ficult to generalize and refine the results. Gyulassy et
al. [5] suggested that a priority-queue based algorithm
avoids checking for cycles. Robins et al.[8] developed an
algorithm which uses homotopy expansions to build the
gradient on the lower star of each vertex, and the au-
thors were able to prove a one–to–one correspondence
between the critical cells and Bancho↵’s critical points.

In this work, we propose a construction of a discrete
gradient field for triangulated surfaces using a stable
matching algorithm [4]. This construction is equivalent
to the greedy one [7] for the same weights. The main
advantage is that stable matchings are characterized by
a local stability condition, which simplifies the proofs for
the geometric accuracy, and gives a better description
of the constructed gradient.

2 Stable matching

Given a triangulated surface K, one defines its Hasse
diagram H to be a directed graph in which the set of
nodes of H is the set of simplexes of K and there is an
arc (⌧ , �) if and only if simplex ⌧ is contained in simplex
� and dim(⌧)+1 = dim(�). A scalar function f : K0 !
R sampled on the vertices of a triangulated surface, can
be extended to all the simplexes � 2 K as the mean of
the values of f on the vertices of simplex �. For the
stable matching, the arcs of the Hasse diagram of K are
sort by the weight function W(⌧,�) = f (�)� f (⌧).

Given a matching M on H, an arc (⌧,�) /2 M is
unstable if there exists ⇢, ⇢0 2 H matched with ⌧ and �
respectively such that:

W(⌧,�) > W(⌧, ⇢) and W(⌧,�) > W(⇢0,�) .

If there is no unstable arc, then M is called stable
matching [4]. A stable matching always exists since H
is a bipartite graph. In this work, the weights are as-
sumed to be distinct, therefore the stable matching is
unique and can be found by the classical Gale–Shapley
algorithm [4].

A matching M on H defines a discrete vector field V,
where V-paths are alternating paths in M . A discrete
vector field is a gradient [3] ifM is alternating cycle-free.
One of the advantages of using stable matchings is that
they are characterized by the local stability condition
which is used to prove the results of the next section.
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3 Results

Gradient paths In Morse theory, the gradient field is
�rf , and f is thus expected to decrease along the gra-
dient path. Let V be the discrete vector field on a trian-
gulated surface K, obtained from stable matching M ,
ordered by a scalar function f , as in the previous sec-
tion. A V–path is decreasing if the value of f at the
first vertex of the path is greater than its value at the
last vertex.

Theorem 1 f is globally decreasing on each V–
path [6]. In addition V is a valid discrete gradient vector

field, i.e. V has no closed V–path.

The proof idea is the following: if there exists a non-
decreasing V-path J ⇢ � ⌧ ⇢0 I of length 2, then it is
easy to show that (⌧,�) is unstable. Since the paths are
non-decreasing, there is no alternating cycle in M .

Relationship to greedy construction When the edges
weights are distinct, it is known that the greedy
weighted matching is equivalent to the stable match-
ing. Moreover, Theorem 1 ensures that the stability
of the matching automatically avoids alternating cycle.
Therefore the stable matching construction is equivalent
to the greedy construction [7, 2]. The stable matching
formulation leads to the following results regarding the
geometric accuracy of the greedy construction.

Critical points The following results are concerned
with the relation between Forman’s critical vertices,
edges, and triangles [3] (i.e. unmatched nodes of H)
to the Bancho↵ minima, saddles, and maxima [1] re-
spectively. They are proven solely with the stability
condition. Due to space constraints, only the result for
critical vertices is presented.

Figure 1: Critical vertex V0 (unmatched green node)
surrounded by the arcs (black arrows) in the stable
matching on the barycentric subdivision (blue) ofK. By
Theorem 3, V0 is a critical vertex if and only if Vi > V0

for 1  i  6.

Theorem 2 A vertex v is a critical vertex of V if and

only if v is minimum over its 2-neighborhood.

Barycentric subdivision On a subdivision of the tri-
angulated surface, our results about the relation of For-
man’s theory and Bancho↵’s theory are more precise.
Let K 0 be the first barycentric subdivision of K, with
scalar function f 0 linearly interpolated from f . Let V 0

be the discrete gradient on K 0, obtained from the stable
matching ordered by f 0.

Theorem 3 A vertex v is a Bancho↵ minimum of K 0

if and only v is critical vertex of V 0
. If a vertex v is a

Bancho↵ saddle of K 0
, then in V 0

, there exists a critical

edge in the lower star of v. If a vertex v is a Bancho↵

maximum, then in V 0
, there exists a critical triangle in

the lower star of v.

This result improves upon previous results on the ge-
ometric accuracy of the greedy construction [6] since it
requires one less barycentric subdivision and it gives a
more precise location of the critical points. Moreover
the proof is considerably simpler, which might yield a
generalization to higher dimensions.
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On the Most Likely Convex Hull of Uncertain Points in the Plane

Hakan Yıldız ∗

Abstract

Consider a set of points in the plane, where the existence
each point is uncertain and only known probabilistically.
We study the problem of finding the most likely convex
hull, i.e, the polygon with the highest probability of
being the convex hull of the points. We present anO(n3)
dynamic programming algorithm to solve the problem.

1 Introduction

Given a set of points P in the plane, the convex hull of
P is a minimal convex polygon that contains all points
in P. Computing convex hulls is a well-studied prob-
lem and worst-case optimal algorithms exist for both
its planar and high-dimensional forms [3].

In this work, we revisit the convex hull problem in
an uncertainty setting where the existence of the input
points is uncertain and only known probabilistically. In
particular, we are given a point set P in the plane such
that each point of P is known to exist with an indepen-
dent probability. Under these conditions, we want to
compute a convex polygon C such that the probability
that C is the convex hull of the outcome of a probabilis-
tic experiment is maximum. For simplicity, we refer to
this polygon as the most likely convex hull of P.

Our contribution is a dynamic programming algo-
rithm to compute the most likely convex hull in O(n3)
time and O(n2) space. We note that our method re-
sembles some similar approaches previously proposed
for various convex subset problems [2, 1].

2 Definitions

Let P be an uncertain set of n points. We represent
P as a set of pairs {(s1, π1), . . . , (sn, πn)} where each
si is a point in the plane and each πi is a real number
in the range (0, 1]. The point si is the site where the
ith point of P may exist, and the number πi is the
associated probability of existence. In a probabilistic
experiment, the ith point exists at si with probability
πi and is absent otherwise.

Let S be the set of all sites for the points in P, i.e.,
S = {s1, . . . , sn}. A subset A ⊆ S is the outcome of a

∗Department of Computer Science, University of California
Santa Barbara, hakan@cs.ucsb.edu

probabilistic experiment on P with probability:∏
i | si∈A

πi ×
∏

i | si /∈A

πi

where πi is the complementary probability (1−πi). For
ease of reference, we denote this probability by π(A).
Consider a convex polygon C. We define the likeliness
of C, denoted L(C), to be the probability that C is the
convex hull of the outcome of a probabilistic experiment
on P. We can write L(C) as

L(C) = Pr
[
CH(A) = C

]
=

∑
A⊆S

CH(A)=C

π(A)

where CH(A) is the convex hull of A. The most likely
convex hull of P is the polygon C that maximizes L(C).

3 Algorithm

We now explain our algorithm to find the most likely
convex hull. We begin with an observation. Let C be
a convex polygon and V be the set of its vertices such
that V ⊆ S. Let Sout ⊆ S be the set of sites outside
C. Observe that C is the convex hull of an experiment
outcome A ⊆ S if and only if A contains all points
in V and no points in Sout. This implies the following
relation, whose formal proof we omit from this abstract:

Lemma 1

L(C) = Pr
[
V ⊆ A ∧ Sout ∩A = ∅

]
=

∏
i | si∈V

πi ×
∏

i | si∈Sout

πi

For each site si ⊆ S, we compute the most likely convex
hull C such that si is the lowest vertex (along y-axis) of
C. The hull with the maximum likeliness among these
is the most likely convex hull of P. We compute the
most likely hull for a particular lowest vertex si as fol-
lows. Let sj and sk be two sites in S above si such that
sk is radially to the left of sj with respect to si. Let
Gkj denote open region bounded by the segment sjsk
and the rays −−→sisj and −−→sisk. (See Figure 1a.) We de-
fine the contribution of the directed edge ~sjsk, denoted
C( ~sjsk), as πj times the product of the complementary
probabilities of all sites in Gkj . That is,

C( ~sjsk) = πj ×
∏

u | su∈Gk
j

πu
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For a site sj above si, let Gji to be the open region
bounded by the downward ray extending from si and
the ray −−→sisj . We define Gij be the complementary re-

gion of Gji . (See Figure 1b.) We define the contribution
of the directed edge ~sisj , denoted C( ~sisj), as πi times
the product of the complementary probabilities of all
sites in Gji . Similarly, we define the contribution of the
reverse edge ~sjsi, denoted C( ~sjsi), to be πj times the
complementary probabilities of all sites in Gij . The fol-
lowing lemma shows how edge contributions relate to
the likeliness of a convex polygon.

Lemma 2 Let C be a convex polygon with vertices
si, sα(1), . . . , sα(m) in counter-clockwise order such that
si is the lowest vertex of C. Then,

L(C) = C( ~sisα(1))× C( ~sα(1)sα(2))× · · ·
× C( ~sα(m−1)sα(m))× C( ~sα(m)si)

Proof. One can partition the space outside C into the

regions G
α(1)
i , G

α(2)
α(1), . . . , G

α(m)
α(m−1), G

i
α(m) by drawing a

downward ray from si and drawing rays −−−−→sisα(j) for each
1 ≤ j ≤ m. (See Figure 1c for an example.) Then, by
Lemma 1, it is easy to see that the L(C) is the product
of the contributions of the edges of C. �

We note that the contribution of each edge can be
computed in constant time after an O(n2)-time prepro-
cessing. The idea in brief is to utilize a modified version
of a triangle query structure by Eppstein et al. [4]. We
omit the details of this structure from this manuscript.

Our dynamic programming strategy is as follows. For
each directed edge ~sjsk, we compute the convex chain
starting at si and ending with edge ~sjsk, such that the
product of contributions of the edges participating in
the chain is maximum. Let T ( ~sjsk) denote the prod-
uct of contributions for this chain (and also the chain
itself as an abuse of notation). By Lemma 2, the chain
T ( ~sjsi) with the maximum value among all sites sj is
the most likely convex hull whose lowest vertex is si.
The following recurrence is easy to observe and is the
core of our dynamic programming algorithm:

T ( ~sjsk) = C( ~sjsk)× max
s∈S

s is radially right to sj w.r.t. si
s→sj→sk is a left turn

T ( ~ssj)

We utilize the above recurrence to compute all T (·) val-
ues as follows. We begin by setting T ( ~sisj) to C( ~sisj)
for all sites sj . Then, we process all sites above si in
right-to-left radial order (with respect to si). When we
process a site sj , we compute T ( ~sjsk) values for all sites
sk radially to the left of sj . This can be done in O(n)
time as follows. Let Lj be the set of sites in S that are
radially left to sj plus si. Similarly, let Rj be the set of
sites radially right to sj plus si. Let sβ(1), . . . , sβ(m) be

sα(2)
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sj sβ(u)
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Figure 1

the sites in Rj in clockwise order around sj . For each
site sβ(u) in Rj , we define s∗u be the site s among the se-
quence sβ(u), sβ(u+1), . . . , sβ(m) that maximizes T ( ~ssj).
The site s∗u can be computed for all sites sβ(u) in linear
time by sweeping the sites in Rj in counter-clockwise
order. (We compute this counter-clockwise order in a
preprocessing step.)

For each site sβ(u) in Rj , we set the value T ( ~sjsk)

to C( ~sjsk) × T ( ~s∗usj) for all sites sk in Lj inside the
wedge bounded by the lines ←−−−−−→sβ(u−1)sj and ←−−−→sβ(u)sj . No-
tice that the sites in this wedge are the sites that form
a left turn when connected to sβ(u), sβ(u+1), . . . , sβ(m)

through sj (which is the condition in the recurrence re-
lation). Finally, we note that by considering the sites
sβ(u) in radial order around sj , we can locate each site
in the wedge of interest in constant time.

The processing of a single point sj takes O(n) time,
and thus we can find the most likely hull where si is
the lowest vertex in O(n2) time. It follows that the
most likely hull of P can be found in O(n3) time. The
space cost is O(n2), dominated by the storage of the
T (·) values.

Theorem 3 The most likely convex hull of n uncertain
points in the plane can be computed in O(n3) time and
O(n2) space.
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An arc-based integer programming formulation for proportional symbol maps

Rafael G. Cano∗ Cid C. de Souza∗ Pedro J. de Rezende∗ Tallys Yunes†

Abstract

Proportional symbol maps are a cartographic tool that
employs scaled symbols to represent data associated
with specific locations. The symbols we consider are
opaque disks, which may be partially covered by other
overlapping disks. We address the problem of creating
a drawing that corresponds to stacking the disks, in se-
quence, in such a way as to maximize the total visible
length of their boundaries. We propose a novel integer
programming formulation and test it in on real-world
instances with a branch-and-cut algorithm. When com-
pared with state-of-the-art models from the literature,
our model significantly reduces computation times.

1 Introduction

Proportional symbol maps are a cartographic tool to
visualize data associated with specific locations (e.g.,
earthquake magnitudes and city populations). Symbols
whose area is proportional to the numerical values they
represent are placed at the locations where those values
were collected. Although symbols can be of any geo-
metric shape, opaque disks are the most frequently used
and, for this reason, the focus of our study. Portions of
a disk may not be visible when overlapping occurs and,
when large portions of a disk are covered, it becomes
difficult to deduce its size. Therefore, the way in which
the disks are drawn affects the quality of a symbol map.

Let S be a set of n disks and A be an arrangement,
which is the subdivision defined by the boundaries of
the disks in S (see Fig. 1). We denote the set of arcs
of A by R. A drawing of S is a subset of the arcs and
vertices of A that is drawn on top of the filled interiors
of the disks in S. We focus on stacking drawings, i.e., a
drawing that corresponds to the disks being stacked up,
in sequence, starting from the one at the bottom of the
stack. According to Cabello et al. [1], two metrics can
be considered to determine the quality of a drawing: the
minimum visible boundary length of any disk and the
total visible boundary length over all disks. The Max-
Min and Max-Total problems consist in maximizing the
former and the latter values, respectively.

∗Institute of Computing, University of Campinas, Brazil,
{rgcano,cid,rezende}@ic.unicamp.br. Supported by CNPq,
FAPESP and FAEPEX/UNICAMP.
†School of Business Administration, University of Miami,
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v
r

Figure 1: An arrangement A with vertex v and arc r
(left), and a stacking drawing of the disks in A (right).

Cabello et al. [1] describe a greedy algorithm to solve
the Max-Min problem in O(n2 log n) time. Kunigami
et al. [3] propose an integer linear programming (ILP)
model to solve the Max-Total problem. Their model is
based on two sets of binary variables: an arc variable
xr for each r ∈ R (to indicate whether r is visible in the
solution) and an ordering variable wij for each pair of
disks i, j ∈ S (to indicate the relative order between i
and j). The computational complexity of the Max-Total
problem for stacking drawings remains open.

We propose a novel ILP model for the Max-Total
problem for stacking drawings (Sect. 2). Our formu-
lations are in terms of arc variables only, thus reducing
the dimension of the resulting polyhedra and the exe-
cution times. We prove that this model is a projection
of the one described in [3] and also show how to make
it stronger by lifting some of its inequalities (Sect. 3).
We implement and test a branch-and-cut algorithm on
real-world benchmark instances. A comparison with the
formulations from [3] shows that our algorithm signifi-
cantly improves computation times (Sect. 4).

2 Integer Linear Programming Model

Given an arc r ∈ R, we denote by `r the length of r, by
dr the disk whose boundary contains r and by Sr the
set of disks that contain r in their interior. For each
r ∈ R, we define a binary variable xr that is equal to 1
if r is visible in the drawing, and equal to 0 otherwise.
The objective is then to maximize

∑
r∈R `rxr.

Note that when an arc r is visible in a drawing, it
induces an order between dr and each disk in Sr (dr

must be drawn above each i ∈ Sr). We define an induced
order graph GO = (V,E) as a directed multigraph with
a vertex vi ∈ V for every disk i ∈ S, and a directed edge
erj = (vdr

, vj) for each arc r ∈ R and disk j ∈ Sr. An
example is shown in Fig. 2. Let C be the set of all cycles
in GO. Given a cycle C ∈ C, let RC be the set of arcs
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that give rise to the edges of C, i.e., RC = {r : erj ∈
C, for some j ∈ S}. For each cycle C ∈ C, we cannot
have all arcs from RC visible in a solution because they
induce a cyclic order among the corresponding disks.
Thus, the following constraints must be satisfied:∑

r∈RC

xr ≤ |C| − 1, ∀ C ∈ C. (1)
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Figure 2: An arrangement with four disks (left) and its
graph GO (right).

3 Polyhedral Study

We refer to the model presented in Section 2 as arc
model (AM) and to the one proposed in [3] as graph
orientation model (GOM). Proofs are omitted due to
space limitations.

Theorem 1 The polyhedron defined by the linear re-
laxation of the AM model is the projection onto the
x-space of the one associated with the GOM model.

Let P be the polyhedron defined by the convex hull of
all integer feasible solutions of the AM model. It follows
from Theorem 1 and from the results presented in [3]
that the dimension of P is |R|. Furthermore, given an
arc r ∈ R, the inequality xr ≥ 0 always defines a facet
of P , but xr ≤ 1 is facet-defining if and only if Sr = ∅.

Generally, inequalities (1) do not define facets of P ,
but they can be strengthened by lifting procedures, as
shown in Fig. 3 (left). Arcs a, b and c form a cycle that
yields the inequality xa + xb + xc ≤ 2. However, if arc
d is visible, b and c must be covered by disk dd. Thus,
the inequality xa + xb + xc + xd ≤ 2 is valid. Whereas
the original AM model gives the same dual bounds as
GOM (due to Theorem 1), the formulation obtained by
lifting inequalities (1) (denoted by AM++) is stronger.

It should be noted that, even after lifting, the in-
equalities obtained might still not be facet-defining, as
shown in Fig. 3 (right). Arcs r1, . . . , r4 induce a 4-cycle
in GO and yield the inequality

∑4
k=1 xrk

≤ 3, which can
be lifted by adding

∑4
k=1 xsk

. The resulting constraint
does not define a facet of P because it is the sum of the
valid inequalities

∑4
k=1 xrk

≤ 1 and
∑4

k=1 xsk
≤ 2. So

far, it is unclear which conditions should be met by a
cycle so that it leads to a strong lifted inequality.

s2

s4 s3

s1

r2

r4 r3

r1

d

a

c

b

Figure 3: An arrangement that allows for lifting (left)
and a lifted inequality that is not facet-defining (right).

4 Computational Results

We assess the effectiveness of our algorithm using a set
of 28 instances1 generated from data on the population
of cities from several countries. Inequalities (1) (without
lifting) are separated in polynomial time with a routine
based on a procedure described by Grötschel et al. [2].
The program was coded in C++ and compiled with gcc
4.4.3. We used CGAL 3.5.1 to build the arrangements
and CPLEX 12.4 to solve the integer programs. The
experiments were run on an Intel Xeon X3430, 2.40GHz
CPU with 8GB RAM.

Table 1 summarizes the results for the hardest in-
stances, showing the number of disks and arcs in each
one and the execution times, in seconds. Column
Speedup shows the ratio between the execution times of
GOM and AM++. Model AM++ performs better for
all instances, especially for the hardest ones (reported
here), for which it presents an average speedup of 23.6.
The remaining instances are solved in less than two min-
utes. Still, AM++ achieves a speedup of 2.2.

Instance |S| |R| GOM AM AM++ Speedup

Egypt 98 2033 99 19 8 12.4
France 135 3230 5039 435 62 81.3
Germany 150 2072 124 15 8 15.5
Greece 102 3482 5755 495 78 73.8
Japan 150 3544 249 17 13 19.2
Portugal 150 5070 304 39 30 10.1
USA (West) 87 3717 709 124 39 18.2

Table 1: Results for the seven hardest instances.
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Algorithms for tracking movement and guarding regions using radio
tomographic imaging
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Abstract

Radio Tomographic Imaging (RTI) is an emerging tech-
nology that locates moving objects in areas surrounded
by simple and inexpensive radios. RTI is useful in emer-
gencies, rescue operations, and security breaches, since
the objects being tracked need not carry an electronic
device. Tracking humans moving through a building,
for example, could help firefighters save lives by locat-
ing victims quickly. RTI works by placing small inex-
pensive radios in a region of interest. The radios can
send and receive wireless signals, and form a network of
links that cover the region of interest. When a person
walks through the region, they interfere with the links,
creating a “shadow” of broken links that can be used to
infer presence and track individuals.

This yields the following problem: given a collection
of radios and a set of “visible” links, infer the trajectory
of a person moving through the region. This inference
must be robust under link errors and occlusion, as well
as be performed in real time. In addition, there is an
associated planning problem of where to place the radios
in order to make the tracking algorithm as effective as
possible.

In this paper, we present geometric algorithms for
these questions. The key technical developments in-
clude a generalization of stabbing line and transversal
problems.

1 Problem Definitions

We are given a collection of “sensors” represented as
points in plane, in which pairs of sensors have a link be-
tween them. Someone moves in a straight line through
the room. We are given a set of sensors which fire and
we have to identify a candidate trajectory for the ob-
ject’s path.

Defnition 1 Given a set of n sensors P = {p1, ..., pn}
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in the region, the signature for input line ` is defined
as the set of all the line segments ij connecting sensors
pi and pj which ` hits. Clearly, the maximum length of
signature for a line is

(
n
2

)
.

Problem 1 Given a region R in the plane, the set of
n locations for sensors {p1, ..., pn} and input signature
σ(`), we desire to find all lines `∗ with the same signa-
ture as input path `.

In fact, this is “reverse” line stabbing. In the tradi-
tional problem, you are given segments and a line and
want to find which segments are hit. In the reverse ver-
sion, given a collection of segments that are hit, we need
to find the region of feasibility. To solve this, we use du-
ality. The dual point to the line ` : y = ax + b is the
point `∗ = (a,−b). Similarly, for a point p = (c, d) its
dual line is p∗ : y = cx − d. Based on this transfor-
mation, the sensors described as points in primal space
will be mapped to lines and line segments connecting
sensors in primal space will be shown as double wedges
in dual space. It yields a dual arrangement A(P ) of
complexity O(n2) in dual space. The first observation
we make connects primal and dual signatures.

Observation 1 Points inside some face of arrangement
in dual space correspond to some set of lines in primal
space with the same signature.

This implies that we can compactly describe all valid
lines by returning a list of dual cells.

2 Problem Hierarchy

Here we describe different versions of the problem and
we show two different approaches for attacking the prob-
lem using the underlying graph and geometric struc-
tures. We try to give a brief sketch of the algorithms
and basic ideas.

2.1 Case 0: Stabbing Line Segments

This is the basic case of our problem in which a set of m
segments is given as input and the goal is to find all the
possible lines which hit all of these segments. This can
be done by finding the intersection of multiple double
wedges corresponding to the link which are hit. There
has been some previous work on this which solves the

This is an abstract of a presentation given at CG:YRF 2013. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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problem in m logm time and linear space using some
nice characterization of double wedges in dual space [2].
They exploit a key combinatorial property of the feasi-
ble space (which they call the stabbing region) in the
dual that allows them to design a divide-and-conquer
strategy that can merge two partial stabbing regions in
linear time.

2.2 Case 1: Full Information, All Links

In this version, we assume all the links between pairs
of nodes are “active”. The input is the set of segments
which are hit (called “blue”) and the remaining links
are called “red”. The goal is to find all the lines which
hit the blue links and avoid red ones. In this setting we
have the following nice property:

Lemma 1 If f, f ′ are two bounded cells of A(P ), then
σ(f) 6= σ(f ′). If f is unbounded, then at most one other
face has the same signature as f .

Lemma 2 (Nested signatures property) There are no
two lines `, `′ such that σ+(`) ⊂ σ+(`′).

We have three different approaches to attack this prob-
lem:
Approach I Based on Lemma 2, since in the all links
case the nested signatures property does not hold, this
problem can be reduced to problem in [2] with just the
input as blue links, and can be solved by the same di-
vide and conquer approach.
Approach II The set of blue segments induce a bipar-
tite subgraph on the network and results in a unique
partitioning on the nodes. The resulting candidate re-
gion, can be interpreted as the intersection of upper and
lower envelopes defined by the dual lines of the parti-
tioned nodes.
Approach III The trivial solution is to enumerate and
store all the signatures of cells in the dual arrangement
and find the desired region based on the query signa-
ture, But it needs too much storage (n2 cells, each with
their own signature of length n2). We can reduce the
complexity by using hashing: Identify a canonical point
p(c) in each cell of the dual arrangement. There are only
n2 strings(one for each region). Hash each string into a
table of size n2 and store the canonical point associated
with the region. When a query comes in, hash its sig-
nature and return the O(1) sized list of potential cells.
For each canonical (dual) point, check if it matches the
signature. By Lemma 1 and 2 since all regions have a
distinct signature (and no signatures are contained in
others), we can return the desired bounded region.

2.3 Case 2: Full Information, Not All Links

In this case, we have the same blue-red setup as before,
but not all sensor pairs are active (because of occlusion
or other problems). Furthermore, Lemma 1 is no longer

true: two different cells can have signatures that nest,
and multiple cells can have the same signature. Fur-
thermore, we do not have the nice characterization of
dual structure as before to use the divide and conquer
approach in [2].
Approach I If the graph is connected, the blue seg-
ments induce the bipartite characterization on the un-
derlying network and approach will be the same as be-
fore in Case 1. If not, then blue segments will result
in multiple partitionings on the network with size ex-
ponential in the number of components. Here the main
challenge is that to design an algorithm that runs in lin-
ear space and polynomial time to compute the desired
answer.
Approach II We use a generalized hashing strategy.
The main problem is how to store compact IDs for cells
so that we can identify matches. This can be done in
the preprocessing step: Identify all the cells that have
the same signatures. Then choose a single canonical
point from each, hash the canonical points, also store
the number of segments in the signature. When a query
arrives, we probe the hash table as before, and eliminate
all table entries that do not match the signature size.
For the rest, we check if the point signature matches
the query signature, and return that point if it does.
Finally, we use the returned points to identify the group
of faces to be returned.

2.4 Case 3: Online Tracking

All above approaches work when we are tracking offline,
but what about if we want to track the object in real
time ? The challenge here is that the query signature
just determines the blue segments in each step and does
not give complete information about the red set. We
need to take more effort to compute and update the
red set incrementally in each step using simplex range
searching [1] on segments. More precisely, this case is
a new version of the problem including blue-red-gray
segments. Gray segments are the ones which are not
hit till this step, but it might be hit in future. These
segments cause incomplete information in the query sig-
nature and we cannot use the same hashing approach
as we used for offline case anymore. We need to use a
different strategy and design an efficient algorithm to
do the online updates.
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