
39th European Workshop
on Computational Geometry

March 29-31, 2023, Barcelona, Spain
https://dccg.upc.edu/eurocg23/

Book of Abstracts

Preface

The 39th European Workshop on Computational Geometry (EuroCG 2023) was held on
March 29-31 in Barcelona, Spain. EuroCG is an annual workshop that combines a strong
scientific tradition with a friendly and informal atmosphere. The workshop is a forum where
established researchers and students can meet, discuss their work, present their results, and
establish scientific collaborations in order to promote research in the field of Computational
Geometry.

This year we had 116 registered participants. Concerning the scientific program, we
received 69 submissions, which underwent a limited refereeing process by the program
committee in order to ensure some minimal standards and to check for plausibility. We
selected 63 submissions for presentation at the workshop.

EuroCG does not have formally published proceedings; therefore, we expect most of the
results outlined here to be also submitted to peer-reviewed conferences and/or journals. This
book of abstracts, available through the EuroCG 2023 web site, should be regarded as a
collection of preprints. In addition to the 63 contributed talks, this book contains abstracts
of the three invited lectures.

The invited speakers were Sergio Cabello, Evanthia Papadopoulou and Alberto Márquez.
Many thanks to all authors, session chairs, speakers, and invited speakers for the partici-

pation, and to the members of the program committee and all external reviewers for their
insightful comments. We also thank the organizing committee members. Finally, we are
very grateful for the generous support of our sponsors: Gold sponsor Omron, Contributors:
Universitat Politècnica de Catalunya, BarcelonaTech (UPC), Departament de Matemàtiques
(UPC), and Societat Catalana de Matemàtiques.

EuroCG 2023 has had a Best Student Presentation Award. The prize was voted by the
workshop attendees to recognize the effort of young researchers to present their work clearly
and elegantly. The winner was Max van Mulken, for the presentation of paper “Density
Approximation for Kinetic Groups”. During the business meeting Michael Bekos presented
the 40th edition of EuroCG, which will take place in Ioannina, Greece, March 13-15, 2024.
A single bid was presented for 2025 by Pavel Valtr and, as a consequence, EuroCG 2025 will
take place in Prague. Looking forward to seeing you all next year in Ioannina!

March 2023,

Clemens Huemer and Carlos Seara

Organizing Committee

Andrea de las Heras (Universitat Politècnica de Catalunya)
Guillermo Esteban (Universidad de Alcalá & Carleton University)
Delia Garijo (Universidad de Sevilla)
Clemens Huemer (Universitat Politècnica de Catalunya)
Fabian Klute (Universitat Politècnica de Catalunya)
Mercè Mora (Universitat Politècnica de Catalunya)
Nicolau Oliver (Universitat Politècnica de Catalunya)
David Orden (Universidad de Alcalá)
Irene Parada (Utrecht University)
Carlos Seara (Universitat Politècnica de Catalunya)
Rodrigo Silveira – chair (Universitat Politècnica de Catalunya)

Program Committee

Elena Arseneva (Università della Svizzera italiana)
Michael Bekos (University of Ioannina)
Kevin Buchin (TU Dortmund)
Mark de Berg (Eindhoven University of Technology)
Radoslav Fulek (University of California San Diego)
Delia Garijo (Universidad de Sevilla)
Panos Giannopoulos (City, University of London)
Michael Hoffmann (ETH Zürich)
Clemens Huemer – co-chair (Universitat Politècnica de Catalunya)
Michael Kerber (Graz University of Technology)
Boris Klemz (Universität Würzburg)
Leonardo Martínez Sandoval (Universidad Nacional Autónoma de México)
Fabrizio Montecchiani (University of Perugia)
Bengt Nilsson (Malmö University)
Arnau Padrol (Universitat de Barcelona)
Leonidas Palios (University of Ioannina)
Irene Parada (Utrecht University)
Pablo Pérez-Lantero (University of Santiago, Chile)
Valentin Polishchuk (Linköping University)
Maria Saumell (Czech Technical University in Prague)
Marko Savić (University of Novi Sad)
Manfred Scheucher (TU Berlin)
Lena Schlipf (Universität Tübingen)
Christiane Schmidt (Linköping University)
Dominique Schmitt (Université de Haute Alsace)
Patrick Schnider (ETH Zürich)
André Schulz (FernUniversität in Hagen)
Carlos Seara – co-chair (Universitat Politècnica de Catalunya)
Fabian Stehn (Universität Bayreuth)
Paweł Żyliński (University of Gdańsk)

External Reviewers

Henk Alkema Rahul Jain Chrysanthi Raftopoulou
Patrizio Angelini Andrei Jalba Meghana M Reddy
Helena Bergold Julia Katheder Marco Ricci
Sujoy Bhore Philipp Kindermann Christian Rieck
Piotr Borowiecki Sándor Kisfaludi-Bak Sandro Roch
Anna Brötzner Linda Kleist Jonathan Rollin
Sergio Cabello Felix Klesen Arpan Sadhukhan
Jean Cardinal Fabian Klute Felix Schröder
Anna De Mier Kolja Knauer Marie Diana Sieper
Bianca Dornelas Irina Kostitsyna Jan Soukup
Adrian Dumitrescu Miroslaw Kowaluk Milos Stojakovic
Kunal Dutta Robert Lauff Sabine Storandt
Nicolas El Maalouly Christos Levcopoulos Ichiro Suzuki
David Eppstein Ioannis Mantas Martin Tancer
Ruy Fabila-Monroy Bodo Manthey Alessandra Tappini
Stefan Felsner Lucas Meijer Leonidas Theocharous
Oksana Firman Till Miltzow Hans Raj Tiwary
Henry Förster Giacomo Ortali Thomas C. van Dijk
Jarosław Grytczuk Pavel Paták Simon Weber
Rimma Hamalainen Julian Pfeifle Alexander Wolff
Thekla Hamm Vincent Pilaud Ji Zeng
Tim Hegemann Tommaso Piselli Johannes Zink

Table of Contents

Invited Talks
Three Open Problems
Sergio Cabello . i
Abstract Voronoi-like Graphs and Applications
Evanthia Papadopoulou . ii
Graph theory meets geometry
Alberto Márquez . iii

Contributed Papers
Two Equivalent Representations of Bicolored Order Types
Anna Brötzner and Oswin Aichholzer 1
Using SAT to study plane substructures in simple drawings
Helena Bergold, Stefan Felsner, Meghana M Reddy, and Manfred Scheucher . . . 2
Many views of planar point sets
Jan Kynčl and Jan Soukup . 3
Sometimes Two Irrational Guards are Needed
Lucas Meijer and Till Miltzow . 4
On the Complexity of Recognizing Nerves of Convex Sets
Patrick Schnider and Simon Weber 5
Spanners under the Hausdorff and Fréchet Distances
Tsuri Farhana and Matthew Katz 6
Flip Graphs for Arrangements of Pseudocircles
Stefan Felsner, Johannes Obenaus, Sandro Roch, Manfred Scheucher, and Birgit
Vogtenhuber . 7
On the number of iterations of the DBA algorithm
Frederik Brüning, Anne Driemel, Alperen Ergür, and Heiko Röglin 8
On Degeneracy in the P-Matroid Oriented Matroid Complementarity Problem
Michaela Borzechowski and Simon Weber 9
Holes in convex drawings
Helena Bergold, Manfred Scheucher, and Felix Schröder 10
Maximum overlap area of a convex polyhedron and a convex polygon under translation
Honglin Zhu and Hyuk Jun Kweon 11
Extending Orthogonal Planar Graph Drawings is Fixed-Parameter Tractable
Sujoy Bhore, Robert Ganian, Liana Khazaliya, Fabrizio Montecchiani, and Martin
Nöllenburg . 12
(1 + ε)-ANN data structure for curves via subspaces of bounded doubling dimension
Jacobus Conradi, Anne Driemel, and Benedikt Kolbe 13
Improved Bounds for Discrete Voronoi Games
Mark de Berg and Geert van Wordragen 14
On polynomials associated to Voronoi diagrams of point sets and crossing numbers
Merce Claverol, Andrea de Las Heras Parrilla, David Flores Peñaloza, Clemens
Huemer, and David Orden . 15

Density Approximation for Kinetic Groups
Max van Mulken, Bettina Speckmann, and Kevin Verbeek 16
On the Size of Fully Diverse Sets of Polygons using Earth Movers or Wasserstein
Distance
Fabian Klute and Marc van Kreveld 17
A linear bound for the Colin de Verdière parameter µ for graphs embedded on surfaces
Camille Lanuel, Francis Lazarus, and Rudi Pendavingh 18
On the algebraic connectivity of token graphs of a cycle
Mónica Reyes, Cristina Dalfó, Miquel Angel Fiol, and Anrau Messegué 19
Euclidean One-of-a-Set TSP
Henk Alkema and Mark de Berg 20
Shortest coordinated motion for a pair of square robots
Guillermo Esteban, Dan Halperin, Víctor Ruíz, Vera Sacristán, and Rodrigo Silveira 21
Maintaining Triconnected Components under Node Expansion
Simon D Fink and Ignaz Rutter 22
Towards Space Efficient Two-Point Shortest Path Queries in a Polygonal Domain
Sarita de Berg, Frank Staals, and Tillmann Miltzow 23
Radon number of graph families
Attila Jung . 24
Proving non-realizability with grass-plucker3
Julian Pfeifle . 25
On the geometric thickness of 2-degenerate graphs
Rahul Jain, Marco Ricci, Jonathan Rollin, and André Schulz 26
Realizations of multiassociahedra via rigidity
Luis Crespo Ruiz and Francisco Santos 27
Bichromatic Perfect Matchings with Crossings
Oswin Aichholzer, Stefan Felsner, Rosna Paul, Manfred Scheucher, and Birgit Vogten-
huber . 28
Axis-Parallel Right Angle Crossing Graphs
Patrizio Angelini, Michael Bekos, Julia Katheder, Michael Kaufmann, and Maximilian
Pfister. 29
k-planar Placement and Packing of ∆-regular Caterpillars
Carla Binucci, Emilio Di Giacomo, Giuseppe Liotta, Michael Kaufmann, and Alessan-
dra Tappini . 30
Clustering with Obstacles
Mark de Berg, Leyla Biabani, Morteza Monemizadeh, and Leonidas Theocharous. . 31
2-point link distance queries in polygonal domains
Mart Hagedoorn and Valentin Polishchuck 32
Crossing-Free Hamiltonian Cycles in Simple Drawings of Complete Graphs
Oswin Aichholzer, Joachim Orthaber, and Birgit Vogtenhuber 33
Hamiltonian Cycles and Matchings in 1-planar Graphs
Meghana M Reddy, Michael Hoffmann, and Emanuel Seemann 34
Recognizing Unit Disk Graphs in Hyperbolic Geometry is ER-Complete
Nicholas Bieker, Thomas Bläsius, Emil Dohse, and Paul Jungeblut 35

Crossing Minimization in Time Interval Storylines
Alexander Dobler, Martin Nöllenburg, Daniel Stojanovic, Anaïs Villedieu, and Jules
Wulms. 36
The Complexity of Intersection Graphs of Lines in Space and Circle Orders
Jean Cardinal . 37
Interactive Exploration of the Temporal α-Shape
Felix Weitbrecht . 38
On the number of Delaunay Simplices over all Time Window in any Dimension
Felix Weitbrecht . 39
Vorosketch and the L0 distance
Herman Haverkort . 40
Applying The Pebble Game Algorithm to Rod Configurations
Signe Lundqvist, Klara Stokes, and Lars-Daniel Öhman 41
The Number of Edges in Maximal 2-planar Graphs
Michael Hoffmann and Meghana M Reddy. 42
Parameterized Complexity of Vertex Splitting to Pathwidth at most 1
Jakob Baumann, Matthias Pfretzschner, and Ignaz Rutter 43
Circling a Square: The Lawn Mowing Problem Is Algebraically Hard
Sándor Fekete, Dominik Krupke, Michael Perk, Christian Rieck, and Christian Scheffer44
Simply Realising an Imprecise Polyline is NP-hard
Thijs van der Horst, Tim Ophelders, and Bart van der Steenhoven 45
Oriented Spanners
Kevin Buchin, Joachim Gudmundsson, Antonia Kalb, Aleksandr Popov, Carolin Rehs,
André van Renssen, and Sampson Wong 46
Insertion-Only Dynamic Connectivity in General Disk Graphs
Haim Kaplan, Katharina Klost, Kristin Knorr, Wolfgang Mulzer, and Liam Roditty 47
An s-t Jordan curve crossing boundaries of a set of disk-homeomorphic objects in the
plane
Freija van Lent, Julian Golak, Alexander Grigoriev, and Aida Abiad 48
Simultaneous Drawing of Layered Trees
Julia Katheder, Stephen G Kobourov, Axel Kuckuk, Maximilian Pfister, and Johannes
Zink . 49
Classification of 2D bichromatic points with outliers
Erwin Glazenburg, Frank Staals, and Marc van Kreveld 50
Gradual Simplification of Polylines
Stefan Funke and Sabine Storandt 51
The Fréchet mean in the space of segments
Panos Giannopoulos and Sergio Cabello 52
On the Arrangement of Hyperplanes Determined by n Points
Michal Opler, Pavel Valtr, and Tung Anh Vu 54
Map Matching Queries Under Fréchet Distance on Low-Density Spanners
Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Aleksandr Popov, and Sampson
Wong . 55

Simultaneous Representation of Interval Graphs in the Sunflower Case
Ignaz Rutter and Peter Stumpf . 56
On Computing Local Separators for Skeletonization
J Andreas Bærentzen, Rasmus E Christensen, Emil Toftegaard Gæde, and Eva Roten-
berg. 57
Primal-Dual Cops and Robber
Minh Tuan Ha, Paul Jungeblut, and Torsten Ueckerdt 58
The Complexity of Recognizing Geometric Hypergraphs
Daniel Bertschinger, Nicolas El Maalouly, Linda Kleist, Tillmann Miltzow, and Simon
Weber . 59
Packing Fréchet Balls
Peyman Afshani and Aniket Basu Roy 60
Non-convex position of lines in R3

Ondřej Chwiedziuk, Barbora Dohnalová, and Miroslav Horský. 61
Computing Minimum Complexity 1D Curve Simplifications under the Fréchet Distance
Thijs van der Horst and Tim Ophelders 62
A Heuristic Algorithm for Maximal Contained Polyhedrons
Vahideh Keikha . 63
Crossing Optimization in Neighborhood Drawings
Patricia Bachmann and Ignaz Rutter 64

Three Open Problems
Sergio Cabello

University of Ljubljana & Institute of Mathematics, Physics and Mechanics,
Ljubljana

Abstract
I would like to share with you three open problems in Computational Geometry:

• Expected volume of the stochastic bounding box;
• Maximum matching in unit disk graphs or unit square graphs;
• Barrier resilience.

For each of these problems, there are interesting results and I will discuss some of the ideas that
have been used, but the main question remains open.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.

Abstract Voronoi-like Graphs and Applications
Evanthia Papadopoulou

Università della Svizzera italiana

Abstract
Differences between classical Voronoi diagrams of points, versus Voronoi diagrams of segments, disks,
polygons, or clusters of points in the plane, tend sometimes to be overlooked. As a result some basic
questions concerning the latter diagrams may remain open or non-optimally solved. In this talk, I
will discuss Voronoi-like graphs as a tool towards resolving such differences.

A Voronoi-like graph is a relaxed Voronoi structure, defined as a graph on the arrangement of a
given bisector system. In a Voronoi-like graph, a vertex v and its incident edges, within a small
neighborhood around v, must appear in a Voronoi diagram of three sites. For points in the Euclidean
plane, where the bisector system forms a line arrangement, a Voronoi-like graph always coincides
with the Voronoi diagram of the involved sites. How about bisector systems, which are not lines (nor
pseudolines), such as those related to line-segments, more generally, to abstract Voronoi diagrams? I
will answer this question in this talk and give examples of simple expected linear-time algorithms to
compute Voronoi-like trees (or forests). Examples include updating an abstract Voronoi diagram
after deletion of one site, updating a constraint Delaunay triangulation after inserting a new segment
constraint, and others.

Some parts of this talk are joint work with Kolja Junginger.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.

Graph theory meets geometry
Alberto Márquez

Universidad de Sevilla

Abstract
Geometric graph theory involves considering the realization of a graph in Euclidean space and
studying its metric properties. This area has been extensively researched, with a vast literature
available. However, there are certain functional differences between geometric graph theory and
traditional graph theory, and studying these functional differences has been a focus of recent research.
By considering the ways in which geometric graph theory differs from traditional graph theory, we
can better understand how to modify geometric graphs in order to improve those functionals.

Joint work with several people, mainly D. Garijo and R. Silveira.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.

Two Equivalent Representations of Bicolored Order
Types
Oswin Aichholzer1 and Anna Brötzner2

1 Graz University of Technology, Graz, Austria
oaich@ist.tugraz.at

2 Malmö University, Malmö, Sweden
anna.brotzner@mau.se

Abstract
In their seminal work on Multidimensional Sorting, Goodman and Pollack introduced the so-called
order type, which for each ordered triple of a point set in the plane gives its orientation, clockwise
or counterclockwise. This information is sufficient to solve many problems from discrete geometry
where properties of point sets do not depend on the exact coordinates of the points but only on
their relative positions. Goodman and Pollack showed that an efficient way to store an order type in
a matrix λ of quadratic size (w.r.t. the number of points) is to count for every oriented line spanned
by two points of the set how many of the remaining points lie to the left of this line.

We generalize the concept of order types to bicolored point sets (every point has one of two
colors). The bicolored order type contains the orientation of each bicolored triple of points, while no
information is stored for monochromatic triples. Similar to the uncolored case, we store the number
of blue points that are to the left of an oriented line spanned by two red points or by one red and
one blue point in λB . Analogously the number of red points is stored in λR.

We show that the equivalence of the information contained in the orientation of all bicolored
point triples and the two matrices λB and λR also holds in the colored case. This is remarkable,
as in general the bicolored order type does not even contain sufficient information to determine all
extreme points (points on the boundary of the convex hull of the point set).

1 Introduction

Many problems from discrete geometry are based on properties of point sets in the plane
that do not depend on the exact coordinates of the points but only on their relative positions.
In their seminal work on Multidimensional Sorting [1], Goodman and Pollack introduced
the so-called order type, which for each ordered triple of a point set in the plane gives its
orientation, clockwise, counterclockwise, or collinear. For a point set S the order type can be
stored in a matrix Λ which is of cubic size with respect to the number of points of S. For
every triple p, q, s ∈ S we encode its orientation by Λ(p, q, s) ∈ {−1, 0, 1} where “−1” means
clockwise, “0” means collinear, and “+1” means counterclockwise. 1 An alternative way to
code the order type is to use a matrix λ of quadratic size. For two points p, q ∈ S the entry
λ(p, q) counts the number of points from S \ {p, q} to the left of the oriented line through p

and q. Goodman and Pollack [1] showed that the information contained in λ is the same as
in Λ, and that the two matrices can be converted into each other in polynomial time.

Colored point sets have a long history in discrete and computational geometry – see
the recent survey of Kano and Urrutia [2] for a nice collection of problems in this area.

1 Note that Goodman and Pollack[1] define Λ(p, q) as the set of points on the left of ℓpq. However, both
definitions contain the equivalent information. For convenience, we directly use the triple orientation
Λ(p, q, s) of the point triple (p, q, s).

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

1:2 Two Equivalent Representations of Bicolored Order Types

b1

b2
r2

r1

r3
ℓr1b1

r4

ℓr2r3

Figure 1 Counting points to the left of a line induced by the red point r1 and the blue point b1:
λB(r1, b1) = 0 and λR(r1, b1) = 2. For the two red points r2 and r3, λB(r2, r3) = 2, while λR(r2, r3)
is not defined.

Consequently, we extend the concept of order types to bicolored order types. Let P be a set
of at least 3 points in the plane in general position, that is, no three points lie on a common
line. Using the symbol ∪̇ for the disjoint union let P = B ∪̇ R be partitioned into two disjoint
sets B and R, |B| = m and |R| = n, where the points b1, . . . , bm ∈ B are colored blue, and
the points r1, . . . , rn ∈ R are colored red. An oriented line through two points p, q ∈ P ,
directed from p to q, will be denoted by ℓpq. For three points p, q, s ∈ P the triple orientation
Λ(p, q, s) (clockwise or counterclockwise) is determined by considering the oriented line ℓpq

and checking in which of the open half-planes defined by ℓpq (right or left) the point s lies.
We denote the collection of the orientations of all bicolored point triples of P (triples that
contain at least one blue and one red point) by Λ(P) or simply by Λ if it is clear from the
context which point set is considered. Point sets where all triple orientations are the same
belong to the same equivalence class called the bicolored order type of P .

▶ Definition 1.1. Let P be the set of all bicolored point sets in general position in the
plane consisting of m blue and n red points. The bicolored order type of size (m, n) is the
equivalence class on P where two sets of P are equivalent if all bicolored triple orientations
are the same.

Note that the orientation of monochromatic point triples is not encoded in Λ. Similar to λ

for uncolored order types we define λB, λR to count the number of blue, respectively red,
points to the left of an oriented line spanned by two points from P . More precisely, for any
pair of red points ri, rj ∈ R we count the number of blue points to the left of the oriented
line ℓrirj in λB(ri, rj), and for any bicolored pair of points bi ∈ B, rj ∈ R we count the
number of blue points to the left of the oriented line ℓbirj

in λB(bi, rj) and the number of
blue points to the left of the oriented line ℓrjbi in λB(rj , bi). In an analogous way we count
the number of red points in λR. See Figure 1 for an example.

In Section 2 we show our central result that the information contained in λB and λR

is equivalent to the information given by all bicolored triple orientations Λ. Moreover,
given one of the two representations of a bicolored order type, the other can be derived in
polynomial time. This result has to be seen in contrast to the fact that in general we cannot
use the bicolored order type to determine all extreme points of a bicolored point set as the
orientation of monochromatic point triples is not given; see Figure 2 for an example.

2 Equivalence of (λB,λR) and Λ

Given all point triples Λ, in the uncolored case it is straightforward to compute the λ-matrix.
Goodman and Pollack [1] showed that the opposite direction also holds, namely that the
λ-matrix uniquely determines Λ. Given λ, for an extremal point p it holds that λ(p, q) = 0 for

O. Aichholzer and A. Brötzner 1:3

r1 r3

b1

r2

b2

r1 r3

b1

r2

b2

Figure 2 Two point sets with the same bicolored order type. We cannot determine whether r2 lies
on the boundary of the convex hull as the orientation of the red point triple (r1, r2, r3) is unknown.

some point q ∈ P \ {p}. To compute the triple orientations from the λ-matrix, we iteratively
choose an extremal point p and remove it from the set after computing all triple orientations
involving p. This is essentially done by sorting all remaining points radially around p, using
the information of λ to compare the order of two elements.

We show that a similar equivalence holds for bicolored order types. Again, given all
bicolored triple orientations Λ, computing λB and λR is straightforward. So in the following,
we will argue the inverse direction, which requires some more involved steps.

For bicolored point sets, a bicolored edge {b, r} lies on the boundary of the convex hull if
and only if either (1) λB(b, r) = λR(b, r) = 0 or (2) λB(b, r) = m − 1 and λR(b, r) = n − 1
holds. Then b and r are extreme points and can be found by testing all mn bicolored edges.

For monochromatic edges we can in general not determine whether they lie on the
boundary of the convex hull, see Figure 2 for an example. The reason is that in λB and λR

it is not encoded if points of the same color as the monochromatic edge lie on both sides of
it. This also implies that we cannot always determine all extreme points.

However, if no bicolored edge on the boundary of the convex hull exists, we know that the
boundary of the convex hull consists solely of points of one color. We thus can find a point
of this color which is extremal to the set of the other color, that is, which lies outside of the
convex hull of the points of the other color, by inspecting all O(m2 + n2) monochromatic
edges. For such an edge we check whether all points of the other color lie on one side of it.
As obviously an extreme point (for example from a bicolored edge on the boundary of the
convex hull) is also extremal to the set of the other color, we obtain the following observation.

▶ Observation 2.1. For a given bicolored point set P = B ∪̇ R we can determine all points
which are extreme w.r.t. the other color by using λB and λR in O(m2 + n2) steps.

As we have seen, using just λB and λR it is not always possible to determine whether a
point is an extreme point. We therefore extend the concept and make use of points that are
not “dominated” by other points. We call such points undominated.

▶ Definition 2.2. A red point r ∈ R is undominated if it (1) lies outside of the convex hull of
B, and (2) the wedge formed by the tangents of r to the convex hull of B which is opposite
of B is empty of points of R. The symmetric definition holds for a blue point b ∈ B.

▶ Lemma 2.3. Given the matrices λB and λR and an undominated point p ∈ B ∪̇ R, all
bicolored triple orientations involving p can be determined in constant time per triple.

Proof. Without loss of generality let r ∈ R be an undominated red point. By definition, r

lies outside the convex hull of B and the wedge between the two tangents of r to the convex
hull of B that lies opposite of B is empty. We first compute the triple orientations of r and
any two blue points; see Figure 3 for an illustration of the proof. Recall that for every b ∈ B

EuroCG’23

1:4 Two Equivalent Representations of Bicolored Order Types

r

bi
bj

rk

Figure 3 For an undominated point r ∈ R the wedge marked in gray is empty of other points.
All bicolored triple orientations involving r can be determined by using λB .

the number of blue points to the left of ℓrb is given by λB(r, b). Thus, the rotational order of
blue points around r can be read from λB , which yields the desired triple orientations.

Λ(r, bi, bj) = Λ(bi, bj , r) = Λ(bj , r, bi) =
{

+1, if λB(r, bi) > λB(r, bj)
−1, otherwise.

(1)

This implies the inverse triple orientations Λ(bj , bi, r) = Λ(bi, r, bj) = Λ(r, bj , bi) = −Λ(r, bi, bj).
Next we consider the triple orientations involving r, another red point and one blue

point. For every red point rk, the number of blue points lying to the left of ℓrrk
is given

by λB(r, rk). If a blue point b lies on the right side of ℓrrk
, then all blue points that lie to

the left of ℓrrk
also lie to the left of ℓrb, as r is undominated. This is the case if and only if

λB(r, rk) ≤ λB(r, b). Thus we get

Λ(r, b, rk) = Λ(b, rk, r) = Λ(rk, r, b) =
{

+1, if λB(r, rk) ≤ λB(r, b)
−1, otherwise.

(2)

Similar as before we have Λ(rk, b, r) = Λ(b, r, rk) = Λ(r, rk, b) = −Λ(r, b, rk).
Observe that for every triple we only query two entries in λB. As claimed we can thus

compute any triple orientation that involves r in constant time per triple. ◀

Next, we show that for a bicolored point set with a monochromatic, say red, convex hull
we can always find an undominated red point by using only the information given in λB

and λR. A red point r which is extremal with respect to B can easily be found via searching
for another red point r2 such that λB(r, r2) = 0. Note that in that case both r and r2 are
extremal w.r.t. B, and that r2 serves as a witness for r. The proof of the following Lemma
describes how to additionally test whether r is undominated.

▶ Lemma 2.4. Let P = B ∪̇ R be a bicolored point set with a monochromatic convex hull and
let p be a point which is extreme with respect to the other color class. Then, in O(m) steps
for p ∈ R (respectively O(n) steps for p ∈ B) we can determine whether p is undominated.

Proof. Assume without loss of generality that the convex hull is red and let r ∈ R be
extremal with respect to B. From λB we can easily find the blue points b1 (λB(r, b1) = 0)

O. Aichholzer and A. Brötzner 1:5

r

ℓrb1

ℓrbm
b1

bm

(A)

(B)

(C)

(D)

Figure 4 The tangents ℓrb1 , ℓrbm of r define the four wedges (A), (B), (C), and (D).

and bm (λB(r, bm) = m−1) of B which define the left and the right tangent of r to the convex
hull of B. If the wedge between these tangents through r that lies opposite of B – wedge (D)
in Figure 4 – is empty, then r is undominated. To see this, we first compute the number of
red points in wedge (A); see again Figure 4. For every red point rj we have λB(r, rj) = 0 if
and only if rj lies in wedge (A). Counting the corresponding entries in λB yields the number
of red points in (A). Finally, λR(r, b1) gives the total number of red points in (A) and (D)
together. Subtracting the number of red points in (A) from λR(r, b1) yields the number of
red points in the wedge (D). If (D) is empty, then r is undominated by definition.

To find the two tangents through r and for counting the number of red points in (A)
we have to inspect m entries of λB , all other steps need only constantly many values of λB

and λR. Thus O(m) steps are sufficient to determine whether r is undominated. ◀

▶ Theorem 2.5. For a point set P = B ∪̇ R the information contained in λB and λR is
equivalent to the information given by all bicolored triple orientations Λ. Given one of the
two representations of a bicolored order type, the other can be computed in polynomial time.

Proof. Computing λB and λR from Λ can trivially be done in O(mn(m + n)) steps. So
assume we are given λB and λR and want to compute Λ. For any point set there always
exist undominated points, as every extreme point is obviously an undominated point. Thus,
by combining Observation 2.1 and Lemma 2.4 we can find an undominated point, say p,
in time O(m3 + n3). The proof of Lemma 2.3 tells us how to compute all bicolored triple
orientations involving p in time O(m2 + n2). After this, we can remove p from the set and
update the λ-matrices as follows. If w.l.o.g. we remove a red point p = rk then, for every
triple (rk, bi, bj), i < j, with Λ(rk, bi, bj) = 1, rk lies to the left of ℓbibj

, so λR(bi, bj) has
to be decremented by 1 for each such triple. Similarly, if Λ(rk, bi, bj) = −1, rk lies to the
right of ℓbibj

and thus λR(bj , bi) is decremented by 1. For each triple consisting of rk, a blue
point b and another red point rl, rl ̸= rk, we also need to update λR. If Λ(rk, b, rl) = 1, then
the value of λR(b, rl) is decremented by 1. Vice versa, in case Λ(rk, b, rl) = −1, λR(rl, b) gets
decremented by 1. Moreover, the row and the column at index k are removed from both λB

and λR as rk is removed from the set. These updates can be done in total time O(m2 + n2).
We are left with λ-matrices of size (m + n − 1) × (m + n − 1). Doing this repeatedly O(m + n)
times shows that all bicolored triple orientations Λ can be computed from λB and λR. The
total number of steps needed is O(m4 + n4). ◀

EuroCG’23

1:6 Two Equivalent Representations of Bicolored Order Types

Note that the algorithms and thus the time bounds given in the previous proof are not
optimized, but just serve as witnesses to show that the transformation between the two
representations of a bicolored order type can be done in polynomial time.

3 Outlook

In a forthcoming paper, we use the equivalence between Λ and λB , λR to show that several
tasks on bicolored point sets can be solved in polynomial time by taking only the information
contained in its bicolored order type. We show how to sort one color class around a point of
the other color class, and how to determine whether the two color classes can be linearly
separated. Furthermore, we elaborate on how to determine crossings between bicolored edges.
We use this to find bicolored plane perfect matchings for a given bicolored order type. For
given λB and λR we show how to compute the number of crossings of the complete bipartite
graph drawn on the represented bicolored point set in quadratic time. Finally, we generate all
realizable bicolored order types of small cardinality and give their numbers up to m + n ≤ 10
and compare them to the number of uncolored order types.

References
1 Jacob E. Goodman and Richard Pollack. Multidimensional Sorting. SIAM Journal on

Computing, 12(3):484–507, 1983. doi:10.1137/0212032.
2 Mikio Kano and Jorge Urrutia. Discrete geometry on colored point sets in the plane — a sur-

vey. Graphs and Combinatorics, 37(1):1–53, Jan 2021. doi:10.1007/s00373-020-02210-8.

https://doi.org/10.1137/0212032
https://doi.org/10.1007/s00373-020-02210-8

Using SAT to study plane Hamiltonian
substructures in simple drawings∗†

Helena Bergold1, Stefan Felsner2, Meghana M. Reddy3, and
Manfred Scheucher2

1 Department of Computer Science, Freie Universität Berlin, Germany,
firstname.lastname@fu-berlin.de

2 Institut für Mathematik, Technische Universität Berlin, Germany,
lastname@math.tu-berlin.de

3 Department of Computer Science, ETH Zürich, Switzerland,
meghana.mreddy@inf.ethz.ch

Abstract
In a simple drawing of a complete graph, all edges are drawn as simple curves and every pair of
edges intersects in at most one point which is either a common vertex or a proper crossing. Simple
drawings generalize straight-line drawings in a similar vein as abstract order types generalize point
sets. They have been studied for many years and have become a source for many open problems
and conjectures.

We provide a SAT framework which allows enumerating simple drawings with specified properties
or to decide that no such drawing exists. Using this framework we look at open problems on classes
of simple drawings. Based on the data, we provide new strengthenings and modifications of existing
conjectures. Some of these problems concern non-crossing substructures in simple drawings. The
most prominent example may be the conjecture by Rafla (1988), which asserts that every simple
drawing of the complete graph Kn contains a plane Hamiltonian cycle. Today, however, only the
existence of plane paths of logarithmic size and plane matchings of size Ω(

√
n) is known (Suk and

Zeng 2022; Aichholzer et al. 2022). Here we present a proof for the existence of plane Hamiltonian
subgraphs with 2n− 3 edges in convex drawings which are a rich subclass of simple drawings. Our
proof comes with a polynomial time algorithm.

1 Introduction

In a simple drawing of a graph in the plane (resp. on the sphere), the vertices are mapped
to distinct points, and edges are drawn as simple curves that connect the corresponding
endpoints but do not contain other vertices. Moreover, every pair of edges intersects in at
most one point, which is either a common vertex or a proper crossing (no touching), and no
three edges cross at a common point. Figure 1 shows the obstructions to simple drawings.
Throughout this article, we will only consider simple drawings of the complete graph Kn.

Problems related to simple drawings have attracted a lot of attention. One of the reasons
is that simple drawings are closely related to interesting classes of drawings such as crossing-
minimal drawings or straight-line drawings, a.k.a. geometric drawings. The focus of this
article will be on the class of convex drawings, which was recently introduced by Arroyo

∗ Supplemental source code and data is available at [1]
† We thank Felix Schröder for fruitful discussions. H. Bergold was supported by the DFG-Research
Training Group ’Facets of Complexity’ (DFG-GRK 2434). S. Felsner was supported by the DFG
Grant FE 340/13-1. M. M. Reddy was supported by the Swiss National Science Foundation within the
collaborative DACH project Arrangements and Drawings as SNSF Project 200021E-171681. M. Scheucher
was supported by the DFG Grant SCHE 2214/1-1.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

2:2 Using SAT to study plane Hamiltonian substructures in simple drawings

Figure 1 The five obstructions to simple drawings.

et al. [5]. Convex drawings are nested between simple drawings and geometric drawings,
and a large subclass of convex drawings is in correspondence with acyclic oriented matroids
of rank 3. For further aspects of the convexity hierarchy we refer the interested reader to
[5, 4, 6].

The notion of convexity is based on the triangles of a drawing, i.e., the subdrawings
induced by three vertices. Since the edges of a triangle do not cross in simple drawings, a
triangle partitions the plane (resp. sphere) into exactly two connected components. The
closures of these components are the two sides of the triangle. A side S of a triangle is convex
if every edge that has its two vertices in S is completely drawn inside S. A simple drawing
of the Kn is convex if every triangle has a convex side.

To study forced and forbidden substructures in general simple drawings and subclasses
such as convex drawings, we develop a Python program which generates a Boolean formula
in conjunctive normal form (CNF) that is satisfiable if and only if there exists a simple
drawing of Kn (for a specified value of n) with prescribed properties. Moreover, the
solutions of these instances are in one-to-one correspondence with non-isomorphic simple
drawings with the prescribed properties. We then use the state of the art SAT solvers
PicoSAT [7] and CaDiCaL [8] to decide whether a solution exists and to enumerate the
solutions. Unsatisfiability results can be verified using the independent proof checking tool
DRAT-trim [21].

In order to encode a simple drawing of the complete graph in terms of a CNF, it is
important to note that combinatorial properties such as pairs of crossings are fully determined
by the rotation system. For a given simple drawing D and a vertex v of D, the cyclic order
πv of incident edges in counterclockwise order around v is called the rotation of v in D. The
collection of rotations of all vertices is called the rotation system of D. More specifically, the
rotation system captures the combinatorial properties of a simple drawing on the sphere –
the choice of the outer cell when stereographically projecting the drawing onto a plane has
no effect on the rotation system.

Πo
4 :

π1 : 2 3 4
π2 : 1 3 4
π3 : 1 2 4
π4 : 1 3 2

Πo
5,1 :

π1 : 2 3 4 5
π2 : 1 3 4 5
π3 : 1 4 2 5
π4 : 1 5 3 2
π5 : 1 4 2 3

Πo
5,2 :

π1 : 2 3 4 5
π2 : 1 3 5 4
π3 : 1 4 2 5
π4 : 1 5 3 2
π5 : 1 2 4 3

Figure 2 The three obstructions Πo
4, Πo

5,1, and Πo
5,2 for rotation systems.

The SAT encoding uses Boolean variables and clauses to encode the rotations of vertices.
To assert that the prescribed permutations for the vertices (which we refer to as pre-rotation
system) can be realized by a simple drawing, we use Boolean formulas to forbid obstructions.
A computational result of Ábrego et al. [2] together with a result of Kynčl [14, Theorem
1.1] characterizes drawability in terms of induced 4- and 5-tuples: A pre-rotation system on
n elements is drawable if and only if it does not contain Πo

4, Πo
5,1 and Πo

5,2 (Figure 2) as

H. Bergold, S. Felsner, M. M. Reddy, and M. Scheucher 2:3

a subconfiguration. To encode convex drawings, we use of result by Arroyo et al. [5] that
characterizes convex drawings in terms of 5-tuples: A simple drawing is convex if and only if
it does not contain Πoc

5,1 or Πoc
5,2 (depicted in Figure 3) as a subconfiguration.

Πoc
5,1 :

π1 : 2 3 4 5
π2 : 1 3 4 5
π3 : 1 2 4 5
π4 : 1 2 5 3
π5 : 1 2 4 3

2

5
3

1

4

13

2

5 4

Πoc
5,2 :

π1 : 2 3 4 5
π2 : 1 3 5 4
π3 : 1 2 4 5
π4 : 1 2 5 3
π5 : 1 4 2 3

Figure 3 The two obstructions Πoc
5,1 and Πoc

5,2 for convex drawings.

We discuss questions regarding plane substructures in drawings of the complete graph.
In particular we focus on variants of Rafla’s conjecture [17], which asserts that every simple
drawing of the complete graph contains a plane Hamiltonian cycle.

I Conjecture 1.1 ([17]). Every simple drawing of Kn contains a plane Hamiltonian cycle.

Rafla verified the conjecture for n ≤ 7. Later Ábrego et al. [2] did a complete enumeration
of all rotation systems for n ≤ 9 and verified the conjecture for n ≤ 9. Furthermore the
conjecture was proven for some particular subclasses such as geometric, monotone and
cylindrical drawings. With the SAT framework we are able to verify Conjecture 1.1 for all
n ≤ 10.

Recently, Suk and Zeng [20] and Aichholzer et al. [3] independently showed that simple
drawings contain a plane path of length (logn)1−o(1). Suk and Zeng also showed that
every simple drawing of Kn contains a plane copy of every tree on (logn)1/4−o(1) vertices.
Aichholzer et al. moreover showed the existence of a plane matching of size Ω(n1/2), which
improves older bounds from a series of papers [15, 16, 9, 19, 11, 10, 18].

Fulek and Ruiz–Vargas [11, Lemma 2.1] showed that every simple drawing of Kn contains
a plane subdrawing with 2n− 3 edges. Note that this bound is best-possible because every
plane subgraph of the straight-line drawing of Kn on a point set in convex position (see
Figure 4(left)) is outerplanar and thus has at most 2n−3 edges. In general, it is NP-complete
to determine the size of the largest plane subdrawing [12]. Based on the data for small n,
we conjecture that indeed every simple drawing contains a plane Hamiltonian subgraph on
2n− 3 edges. We verified this conjecture for n ≤ 8.

I Conjecture 1.2. Every simple drawing of Kn with n ≥ 3 contains a plane Hamiltonian
subdrawing on 2n− 3 edges.

For the class of convex drawings, we succeeded in proving a strengthened version of the
conjecture where the plane Hamiltonian subgraph contains a spanning star.

1 2 3 4 5

4

5

3

2

1

Figure 4 (left) the perfect convex C5 and (right) the perfect twisted drawing T5.

EuroCG’23

2:4 Using SAT to study plane Hamiltonian substructures in simple drawings

I Theorem 1.3. Let D be a convex drawing of Kn with n ≥ 3 and let v? be a vertex of D.
Then D contains a plane Hamiltonian cycle C which does not cross any edge incident to v?.
This Hamiltonian cycle can be computed in O(n2) time.

Proof sketch. We show that convex drawings have a layering structure and reduce the prob-
lem of finding a Hamiltonian cycle to finding a Hamiltonian path for each layer independently.
To simplify the proof and to reduce the number of cases that have to be considered, we make
use of the SAT framework.

For a convex drawing D of the complete graph Kn and a fixed vertex v?, we give an
algorithm that computes a plane Hamiltonian cycle which does not cross edges incident to v?.
We assume that v? = n and that the other vertices are labeled from 1 to n − 1 in cyclic
order around v?. Moreover, by applying suitable stereographic projections, we can assume
that v? belongs to the outer face. We denote vertex v? = n as the star vertex and edges
incident to v? as star edges. We call an edge star-crossing if it crosses a star edge. For the
Hamiltonian cycle we only use edges which are not star-crossing. We particularly focus on
the edges e = {v, v + 1} between consecutive neighbors in the cyclic order around v?, that is,
1 ≤ v < n and v + 1 is considered modulo n− 1. An edge e = {v, v + 1} is called good if it is
not star-crossing. Otherwise, if the edge b = {v, v + 1} crosses a star edge {w, v?}, then we
say that b is a bad edge and w is a witness for b.

If there is at most one bad edge {v, v + 1}, then the n− 2 good edges together with the
two star edges {v, v?} and {v+1, v?} form a Hamiltonian cycle. Hence it remains to deal with
the case of two or more bad edges. Firstly, using the properties of a convex drawing we prove
that every pair of bad edges appears in a nested structure as illustrated in Figure 5 where
for every witness w of a bad edge {v, v + 1}, we have w < v. For this we may have to relabel
the vertices cyclically and choose a different outer face. Next, the nesting property implies
that we can label the bad edges as b1, . . . , bm for some m ≥ 2, such that if bi = {vi, vi + 1},
then 1 < v1 < v2 < . . . < vm = n − 2. Moreover, let wL

i and wR
i be the leftmost and the

rightmost witnesses of the bad edge bi, and by Li = {x ∈ [n − 1] : wR
i+1 < x < wL

i } and
Ri = {x ∈ [n− 1] : vi + 1 ≤ x ≤ vi+1} be the left and the right blocks of vertices between
two consecutive bad edges bi and bi+1; see Figure 5.

To construct the desired plane Hamiltonian cycle of non-star-crossing edges, we begin
with the edge {v?, v1} and then iteratively add a plane path from vi to vi+1 that includes all
previously unvisited vertices from Li−1, all the vertices of Ri and some vertices of Li. When
reaching the vertex vm + 1 = n− 1, we close the plane Hamiltonian path by adding edge
{vm + 1, v?}. Figure 6 illustrates the simple case, where all Li’s are empty.

In general, however, the Li’s are not empty and the procedure is more involved. The
path from vi to vi+1 consists of a subpath from vi to vi + 1 and a subpath from vi + 1 to vi+1.

wL
i vi + 1vi vi+1 + 1

bi+1

wR
i

bi

wL
i+1 wR

i+1

Li Ri

vi+1

Figure 5 An illustration of nesting of two bad edges, where bad edges are depicted in red.

H. Bergold, S. Felsner, M. M. Reddy, and M. Scheucher 2:5

Figure 6 Example of a plane Hamiltonian cycle (blue) in the case where Li = ∅ for all i.

For the former path (from vi to vi + 1), we go from vi to wR
i via the previously unvisited

vertices from Li−1 and then one by one with decreasing labels to wL
i . As long as there are

vertices in Li from which we can return to vi + 1 via a non-star-crossing edge, we traverse
these vertices and then return to vi + 1. The latter path (from vi + 1 to vi+1) traverses all
the vertices of Ri and some further vertices of Li, and lies entirely in the region between the
two bad edges bi and bi+1. J

2 Variations

We also studied variations of plane Hamiltonian structures which we briefly mention below.

Extending Hamiltonian cycles

Another way to interpret Theorem 1.3 is the following: given a spanning star in a convex
drawing of Kn, we can extend this star to a plane Hamiltonian subdrawing of size 2n− 3.
As a variant of this formulation, we tested whether the other direction is true, i.e., whether
any given plane Hamiltonian cycle can be extended to a plane subdrawing with 2n− 3 edges.
We verified that such an extension is possible for n ≤ 10.

I Conjecture 2.1. Let D be a convex drawing of Kn. Then every plane Hamiltonian cycle
can be extended to a plane Hamiltonian subgraph on 2n− 3 edges.

Hamiltonian cycles avoiding a matching

Instead of a prescribed spanning star, we can also prescribe a matching and ask whether
there is a Hamiltonian cycle that together with the matching builds a plane Hamiltonian
substructure, i.e., the edges of the matching are not crossed by the Hamiltonian cycle.
Hoffman and Tóth [13] investigated the geometric setting. They showed that for every plane
perfect matching M in a geometric drawing of Kn there exists a plane Hamiltonian cycle
that (possibly contains edges of M but) does not cross any edge from M . We believe that
the same holds for convex drawings as well, and have verfied it for n ≤ 11.

I Conjecture 2.2. For every plane (not necessarily perfect) matching M in a convex drawing
of Kn there exists a plane Hamiltonian cycle that (possibly contains edges of M but) does
not cross any edge from M .

Hamiltonian paths with a prescribed edge

In general, it is not possible to find a Hamiltonian cycle containing a prescribed edge in
simple drawings. Even if we only ask for a Hamiltonian path containing a prescribed edge

EuroCG’23

2:6 Using SAT to study plane Hamiltonian substructures in simple drawings

there is an easy example: consider the edge {1, 5} in the perfect twisted T5 depicted in
Figure 4. However, the relaxation to Hamiltonian paths seems to be true for convex drawings.
We have verified it for n ≤ 11.

I Conjecture 2.3. Let D be a convex drawing of Kn and let e be an edge of D. Then D has
a plane Hamiltonian path containing the edge e.

3 Discussion

We remark that our SAT-based investigation of substructures certainly surpasses the enu-
merative approach from [2]. While their approach required the enumeration and testing of 7
billion rotation systems on 9 vertices, our framework allows us to make investigations for
up to n = 20 vertices with reasonably small resources. For example, most computations for
n = 9 only took about 1 CPU hour and 200MB RAM. Even though exact computation times
are not given in [2], the fact that the database for n ≤ 9 covers about 1TB of disk space
shows that our approach works with significantly less resources. Moreover, an enumerative
approach for n = 10 (e.g. to test the existence of plane Hamiltonian cycles) would not be
possible in reasonable time with contemporary computers because there are way too many
rotation systems to be enumerated and tested.

Using our framework, we also studied uncrossed edges, crossing families, and empty
triangles in simple drawings of the complete graph and believe that SAT-based investigations
can be useful to make advancements in the study of simple drawings.

References
1 Supplemental source code and data. https://page.math.tu-berlin.de/~scheuch/

supplemental/simple_drawings/rotsys_supplemental1.zip.
2 B. M. Ábrego, O. Aichholzer, S. Fernández-Merchant, T. Hackl, J. Pammer, A. Pilz,

P. Ramos, G. Salazar, and B. Vogtenhuber. All Good Drawings of Small Complete Graphs.
In Proc. 31st European Workshop on Computational Geometry EuroCG ’15, pages 57–60,
2015.

3 O. Aichholzer, A. García, J. Tejel, B. Vogtenhuber, and A. Weinberger. Twisted ways to find
plane structures in simple drawings of complete graphs. In 38th International Symposium
on Computational Geometry (SoCG 2022), volume 224 of LIPIcs, pages 5:1–5:18. Dagstuhl,
2022.

4 A. Arroyo, D. McQuillan, R. B. Richter, and G. Salazar. Levi’s Lemma, pseudolinear
drawings of Kn, and empty triangles. Journal of Graph Theory, 87(4):443–459, 2018.

5 A. Arroyo, D. McQuillan, R. B. Richter, and G. Salazar. Convex drawings of the complete
graph: topology meets geometry. Ars Mathematica Contemporanea, 22(3), 2022.

6 H. Bergold, S. Felsner, M. Scheucher, F. Schröder, and R. Steiner. Topological Drawings
meet Classical Theorems from Convex Geometry. In Discrete & Computational Geometry,
2022.

7 A. Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation
(JSAT), 4:75–97, 2008.

8 A. Biere. CaDiCaL at the SAT Race 2019. In Proc. of SAT Race 2019 – Solver and Bench-
mark Descriptions, volume B-2019-1 of Department of Computer Science Series, pages 8–9.
University of Helsinki, 2019.

9 J. Fox and B. Sudakov. Density theorems for bipartite graphs and related Ramsey-type
results. Combinatorica, 29:153–196, 2009.

https://page.math.tu-berlin.de/~scheuch/supplemental/simple_drawings/rotsys_supplemental1.zip
https://page.math.tu-berlin.de/~scheuch/supplemental/simple_drawings/rotsys_supplemental1.zip
http://eurocg15.fri.uni-lj.si/pub/eurocg15-book-of-abstracts.pdf
http://doi.org/10.4230/LIPIcs.SoCG.2022.5
http://doi.org/10.4230/LIPIcs.SoCG.2022.5
http://doi.org/10.1002/jgt.22167
http://doi.org/10.1002/jgt.22167
http://doi.org/10.26493/1855-3974.2134.ac9
http://doi.org/10.26493/1855-3974.2134.ac9
http://doi.org/10.1007/s00454-022-00408-6
http://doi.org/10.1007/s00454-022-00408-6
http://doi.org/10.3233/sat190039
http://researchportal.helsinki.fi/en/publications/proceedings-of-sat-race-2019-solver-and-benchmark-descriptions
http://doi.org/10.1007/s00493-009-2475-5
http://doi.org/10.1007/s00493-009-2475-5

H. Bergold, S. Felsner, M. M. Reddy, and M. Scheucher 2:7

10 R. Fulek. Estimating the number of disjoint edges in simple topological graphs via cylin-
drical drawings. SIAM Journal on Discrete Mathematics, 28(1):116–121, 2014.

11 R. Fulek and A. J. Ruiz-Vargas. Topological graphs: Empty triangles and disjoint match-
ings. In Proceedings of the 29th Annual Symposium on Computational Geometry (SoCG
2013, pages 259–266. ACM, 2013.

12 A. García Olaverri, J. Tejel Altarriba, and A. Pilz. On plane subgraphs of complete topo-
logical drawings. Ars Mathematica Contemporanea, 20(1):69–87, 2021.

13 M. Hoffmann and C. D. Tóth. Segment endpoint visibility graphs are Hamiltonian. Com-
putational Geometry, 26(1):47–68, 2003.

14 J. Kynčl. Simple realizability of complete abstract topological graphs simplified. Discrete
& Computational Geometry, 64:1–27, 2020.

15 J. Pach, J. Solymosi, and G. Tóth. Unavoidable configurations in complete topological
graphs. Discrete & Computational Geometry, 30(2):311–320, 2003.

16 J. Pach and G. Tóth. Disjoint edges in topological graphs. In Combinatorial Geometry
and Graph Theory, volume 3330 of LNTCS, pages 133–140. Springer, 2005.

17 N. H. Rafla. The good drawings Dn of the complete graph Kn. PhD thesis, McGill University,
Montreal, 1988.

18 A. J. Ruiz-Vargas. Many disjoint edges in topological graphs. Computational Geometry,
62:1–13, 2017.

19 A. Suk. Disjoint edges in complete topological graphs. In Proceedings of the Twenty-Eighth
Annual Symposium on Computational Geometry, SoCG ’12, pages 383–386. ACM, 2012.

20 A. Suk and J. Zeng. Unavoidable patterns in complete simple topological graphs. In Graph
Drawing and Network Visualization, volume 13764 of LNCS, pages 3–15. Springer, 2022.

21 N. Wetzler, M. J. H. Heule, and W. A. Hunt. DRAT-trim: Efficient checking and trimming
using expressive clausal proofs. In Theory and Applications of Satisfiability Testing – SAT
2014, volume 8561 of LNCS, pages 422–429. Springer, 2014.

EuroCG’23

http://doi.org/10.1137/130925554
http://doi.org/10.1137/130925554
http://doi.org/10.1145/2462356.2462394
http://doi.org/10.1145/2462356.2462394
http://doi.org/10.26493/1855-3974.2226.e93
http://doi.org/10.26493/1855-3974.2226.e93
http://doi.org/10.1016/S0925-7721(02)00172-4
http://doi.org/10.1007/s00454-020-00204-0
http://doi.org/10.1007/s00454-003-0012-9
http://doi.org/10.1007/s00454-003-0012-9
http://doi.org/10.1007/978-3-540-30540-8_15
http://doi.org/10.1016/j.comgeo.2016.11.003
http://doi.org/10.1145/2261250.2261308
http://doi.org/10.1007/978-3-031-22203-0_1
http://doi.org/10.1007/978-3-319-09284-3_31
http://doi.org/10.1007/978-3-319-09284-3_31

Many views of planar point sets∗

Jan Kynčl1 and Jan Soukup1

1 Department of Applied Mathematics, Charles University, Faculty of
Mathematics and Physics, Malostranské nám. 25, 118 00 Praha 1, Czech
Republic
{kyncl,soukup}@kam.mff.cuni.cz

Abstract
Given a set P of n points in the plane and two points x and y not in P , such that their union is in
general position, we say that x and y have the same view of P if the points of P are visible in the
same cyclic order from x and y. We show that for every set P of n points in strong general position
in the plane, there are Ω(n4) points with mutually distinct views of P , confirming a conjecture by
Díaz-Báñez, Fabila-Monroy and Pérez-Lantero.

1 Introduction

Let P be a set of n points in the plane in general position (no three points of P are collinear).
Let x be an additional reference point not in P , such that the set P ∪ {x} is in general
position. The view of P from x, also called the radial ordering of P with respect to x [6],
is the clockwise cyclic order in which a rotating ray with origin at x meets the points of P .
How many points with mutually distinct views of P are there?

It is easy to see that the number of mutually distinct views of P is always at most O(n4):
indeed, consider the arrangement of

(
n
2
)

lines drawn through every pair of points from P ,
and observe that two points within the same cell of this arrangement have the same view
of P [1, 4, 5, 6, 9, 10]. On the other hand, there are constructions of sets of n points with
Ω(n4) distinct views [6, 10]. The problem of estimating the maximum possible number of
distinct views of a set of n points in the plane also appears as Exercise 6.1.7 in Matoušek’s
textbook [7].

How many distinct views are guaranteed in an arbitrary point set P? Díaz-Báñez, Fabila-
Monroy and Pérez-Lantero [6] proved that an arbitrary set P of n points in strong general
position in the plane has Ω(n3) points with mutually distinct views of P , and conjectured
that this lower bound can be improved to Ω(n4). Here the condition of strong general
position means that P is in general position, and three distinct lines determined by pairs of
points in P cannot cross at a common point except at a point from P . Bieri and Schmidt [3]
conjectured that the number of views of any set of n points in general position is Θ(n4),
and similarly for the number of “projective” cyclic orders obtained by rotating a line (rather
than a ray), which we might call projective views.

We confirm these conjectures for point sets in strong general position.

▶ Theorem 1.1. For every set P of n points in strong general position in the plane, there
are Ω(n4) points with mutually distinct views of P .

We prove Theorem 1.1 in the following, slightly stronger, form, which guarantees the
lower bound also for projective views.

∗ Supported by project 21-32817S of the Czech Science Foundation (GAČR) and by the grant
SVV–2020–260578.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

3:2 Many views of planar point sets

a

b

c

(a, b, c)

(a, c, b)

(a, c, b)(a, c, b)

Figure 1 Six rays determined by three points a, b, c split the plane into four regions; the three
“corner” regions have the same view (a, c, b), the remaining region has the view (a, b, c).

▶ Theorem 1.2. For every set P of n points in strong general position in the plane, there
is a subset X ⊆ P and a set Y of Ω(n4) points with mutually distinct views of X, such that
the convex hull of Y is disjoint with the convex hull of X.

We prove Theorem 1.2 in Section 3. The main idea of the proof is that every point set
in general position contains a subset of linear size that “looks like” the special construction
of a point set with Ω(n4) views [6, 10].

2 Preliminaries

For every pair of distinct points a, b, we denote the line passing through them by ←→ab. Ad-
ditionally, we denote the ray contained in ←→ab with endpoint b and not containing a by ab�,
and the ray contained in ←→ab with endpoint a and containing b by −→ab.

Let k ≥ 3 and let C be a sequence x1x2 . . . xk of k points in the plane, ordered by
increasing x-coordinate. We say that C is a concave chain (also called a k-cap) if for every
pair of consecutive points xi, xi+1 ∈ C, all the remaining points of C lie below the line←−−−−→xixi+1.
In particular, the points of C form the vertices of a convex polygon, ordered clockwise along
its boundary. Similarly, we say that C is a convex chain (also called a k-cup) if for every pair
of consecutive points xi, xi+1 ∈ C, all the remaining points of C lie above the line ←−−−−→xixi+1.

Let P be a set of n points in the plane. Let p, q be additional reference points not in
P , such that the set P ∪ {p, q} is in general position. If the view of P from p is distinct
from the view of P from q, then p and q have distinct views of some triple of points from
P . The view of a three-point set {a, b, c} ⊆ P forming a triangle with vertices in clockwise
order (a, b, c) is determined by the arrangement of rays ab�, ba�, ac�, ca�, bc�, cb�. This
arrangement has four cells, the view from three of these cells is (a, c, b), and the view from
the remaining cell is (a, b, c); see Figure 1.

In the proof of Theorem 1.2, we will use the Positive Fraction Erdős–Szekeres Theorem
by Bárány and Valtr [2, 8]. A finite planar point set is called a convex k-clustering if it
is a disjoint union of k sets X1, . . . , Xk of equal sizes such that every k-tuple (x1, . . . , xk),
x1 ∈ X1, . . . , xk ∈ Xk, forms a convex polygon with vertices in clockwise order (x1, . . . , xk).

J. Kynčl and J. Soukup 3:3

x1

x2

X3 x4

X5 x6

X7

x8

x10

x11

X9

y3

y5

y7

y9

y6

Figure 2 A configuration of linear size that exists in any point set of size n in general position.

▶ Theorem 2.1 (Positive Fraction Erdős–Szekeres Theorem [2, 8]). For every k ≥ 3 there is
an εk > 0 and an integer f(k) such that if X is a finite set of points in general position in
the plane with |X| ≥ f(k), then it contains a convex k-clustering of size at least εk|X|.

3 Proof of Theorem 1.2

Let P be a set of n points in the plane in strong general position. By Theorem 2.1 there
exists a convex 20-clustering of P of size Ω(n). In other words, there exist mutually dis-
joint subsets X1, . . . , X20 ⊂ P , such that all Xi are of equal size s = Ω(n), and every
20-tuple (x1, . . . , x20) with x1 ∈ X1, . . . , xk ∈ X20 forms a convex 20-gon with vertices in
clockwise order (x1, . . . , x20). We fix one such tuple (x1, . . . , x20). Eleven points from this
tuple form either a convex or a concave chain; without loss of generality, let the points
x1, . . . , x11 form a concave chain x1x2 . . . x11. Let X be the subset of P containing the
points x1, x2, x4, x6, x8, x10, x11 and all the points in X3 ∪X5 ∪X7 ∪X9; see Figure 2 for an
illustration of X. We will show that there exist Ω(n4) distinct views of X.

We define five intersection points y3, y5, y7, y9, y6 as follows:

{y3} = x1x2� ∩ x6x4�,

{y5} = x2x4� ∩ x8x6�,

{y7} = x4x6� ∩ x10x8�,

{y9} = x6x8� ∩ x11x10�,

{y6} = x2x4� ∩ x10x8�.

Since x1x2x4x6x8x10x11 is a concave chain, all these intersections are well-defined. Let L

be the set of all rays l3l5� where l3 ∈ X3 and l5 ∈ X5, and let R be the set of all rays r9r7�
where r9 ∈ X9 and r7 ∈ X7. The sizes of L and R are both s2 = Ω(n2).

▶ Observation 3.1. For every selection l3 ∈ X3, l5 ∈ X5, r7 ∈ X7, r9 ∈ X9, the sequence
x1x2l3x4l5x6r7x8r9x10x11 is a concave chain.

Proof. The tuple (x1, x2, l3, x4, l5, x6, r7, x8, r9, x10, x11) forms a convex 11-gon with vertices

EuroCG’23

3:4 Many views of planar point sets

a

b

c

p

ab→

ac→

−→
cb

q

Figure 3 The points p and q on the opposite side of ab� and inside the convex region bounded
by −→

cb and ac� have distinct views of {a, b, c}.

in clockwise order by the selection of X. Since x1, x2, x10, x11 are fixed and form a concave
chain, it follows that x1x2l3x4l5x6r7x8r9x10x11 is a concave chain. ◀

An immediate consequence is the following observation.

▶ Observation 3.2. For every i ∈ {3, 5, 7, 9} the set Xi lies inside the triangle xi−1yixi+1.
Moreover, every ray from L intersects segments x6y5 and y7y6, and every ray from R inter-
sects segments x6y7 and y5y6.
Furthermore, every ray from L intersects with every ray from R inside the quadrilateral
x6y5y6y7.

We now state the only tool we are using to distinguish different views.

▶ Lemma 3.3. Let a, b, c, p, q be points in the plane in general position. Assume that abc is
a triangle with vertices in clockwise order (a, b, c), the points p and q lie in the convex region
bounded by −→cb and ac�, and p lies on the opposite side of ab� from q. Then the view of
{a, b, c} from p is distinct from the view from q.

Proof. The situation is illustrated in Figure 3. When we look at the cells in the arrangement
of rays ab�, ba�, ac�, ca�, bc�, cb� (as in Figure 1), we immediately see that p and q lie in
cells with distinct views of {a, b, c}. ◀

It remains to find the reference points with distinct views of X. We look at the ar-
rangement L of rays and lines from L ∪ R ∪ {←−−→x6y7,←−−→y5x6,←−−→y6y5,←−−→y6y7} and for each cell in
this arrangement that lies in the quadrilateral x6y5y6y7 we select a reference point from the
interior of this cell. To complete the proof of the theorem, we need to prove that we selected
Ω(n4) points and that any two selected reference points have distinct views.

▶ Observation 3.4. There are Ω(n4) cells in the arrangement L that lie in the quadrilateral
x6y5y6y7.

Proof. The situation is illustrated in Figure 4. The quadrilateral x6y5y6y7 is a cell in the
arrangement of lines ←−−→x6y7,←−−→y5x6,←−−→y6y5,←−−→y6y7. Let r be a ray from R. By Observation 3.2, r

intersects segments x6y7 and y5y6. Hence, r splits the quadrilateral x6y5y6y7 into two parts.

J. Kynčl and J. Soukup 3:5

x6

y5

y7

y6

R

L

Figure 4 Sets of rays L and R split the quadrilateral x6y5y6y7 into a “grid-like” structure.

x4

x6
x8

y5

y7

y6

p
q

l3

l5

x10

x2

Figure 5 A situation from Observation 3.5. Points p and q have distinct views of the point set
{l3, l5, x8}.

Since there are s2 = Ω(n2) rays in R, the rays in R split the quadrilateral x6y5y6y7 into at
least s2 + 1 parts.

Let l be a ray from L. By Observation 3.2, l intersects segments y5x6 and y6y7. Addition-
ally, by the same observation, it intersects with all the rays from R inside the quadrilateral
x6y5y6y7. Since the points of X are in strong general position, all these intersections are
distinct. Hence, l splits at least s2 + 1 regions inside x6y5y6y7 bordered by x6y5y6y7 and
rays from R. Since there are s2 = Ω(n2) rays in L, the whole arrangement L has at least
(s2 + 1) · (s2 + 1) = Ω(n4) cells inside the quadrilateral x6y5y6y7. ◀

▶ Observation 3.5. Let p and q be two reference points from two distinct cells of the ar-
rangement L inside the quadrilateral x6y5y6y7. Then the view of X from p is distinct from
the view from q.

Proof. Since p and q are from distinct cells inside the convex quadrilateral x6y5y6y7 the
segment pq intersects some ray from L ∪R; without loss of generality, let it be a ray l from
L. The ray l is equal to some l3l5�, l3 ∈ X3, l5 ∈ X5. We now compare the views of
{l3, l5, x8} from p and q (we would take x4 instead of x8 if the ray was from R). See Figure
5 for an illustration.

The sequence x2l3x4l5x6x8x10 is a concave chain by Observation 3.1. Since the points
x6 and y5 lie on the ray x8x6�, it follows that the points x6 and y5 lie above the lines ←−→l3x8

EuroCG’23

3:6 Many views of planar point sets

and ←−→l5x8. Similarly, the points y7 and y6 also lie above the lines ←−→l3x8 and ←−→l5x8. Hence, the
whole quadrilateral x6y5y6y7 lies above these lines and thus in the convex region bounded
by rays −−−→x8l5 and l3x8�.

By Lemma 3.3 applied on the triangle l3l5x8 and reference points p, q, the view of
{l3, l5, x8} from p is distinct from the view from q. Hence, also the views of X from p

and q are distinct. ◀

This concludes the proof of Theorem 1.2.
▶ Remark. By the hyperplane separation theorem, the quadrilateral x6y5y6y7 can be sep-
arated from X by a line. Since the reference points are chosen inside the quadrilateral
x6y5y6y7, the projective views of X from these reference points are the same as the views,
and therefore also pairwise distinct.

References
1 Thomas Auer and Martin Held. Heuristics for the generation of random polygons. In

Proceedings of the 8th Canadian Conference on Computational Geometry, pages 38–43,
Ottawa, Ontario, Canada, 1996.

2 Imre Bárány and Pavel Valtr. A positive fraction Erdős–Szekeres theorem. Discrete Com-
put. Geom., 19(3, Special Issue):335–342, 1998. Dedicated to the memory of Paul Erdős.
doi:10.1007/PL00009350.

3 Hanspeter Bieri and Peter-Michael Schmidt. On the permutations generated by rotational
sweeps of planar point sets. In Proceedings of the 8th Canadian Conference on Computa-
tional Geometry, pages 179–184, Ottawa, Ontario, Canada, 1996.

4 Linda Deneen and Gary Shute. Polygonizations of point sets in the plane. Discrete Comput.
Geom., 3(1):77–87, 1988. doi:10.1007/BF02187898.

5 Olivier Devillers, Vida Dujmović, Hazel Everett, Samuel Hornus, Sue Whitesides, and
Steve Wismath. Maintaining visibility information of planar point sets with a mov-
ing viewpoint. Internat. J. Comput. Geom. Appl., 17(4):297–304, 2007. doi:10.1142/
S0218195907002343.

6 José Miguel Díaz-Báñez, Ruy Fabila-Monroy, and Pablo Pérez-Lantero. On the numbers of
radial orderings of planar point sets. Discrete Math. Theor. Comput. Sci., 16(3):291–304,
2014.

7 Jiří Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathemat-
ics. Springer-Verlag, New York, 2002. doi:10.1007/978-1-4613-0039-7.

8 Attila Pór and Pavel Valtr. The partitioned version of the Erdős–Szekeres theorem. Discrete
Comput. Geom., 28(4):625–637, 2002. Discrete and computational geometry and graph
drawing (Columbia, SC, 2001). doi:10.1007/s00454-002-2894-1.

9 Benjamín Tovar, Luigi Freda, and Steven M. LaValle. Using a robot to learn geometric
information from permutations of landmarks. In Topology and robotics, volume 438 of
Contemp. Math., pages 33–45. Amer. Math. Soc., Providence, RI, 2007. doi:10.1090/
conm/438/08443.

10 Roland Ulber. On the number of star-shaped polygons and polyhedra. In Proceedings
11th Canadian Conference on Computational Geometry CCCG’99, page 4 pp, Vancouver,
Canada, 1999.

https://doi.org/10.1007/PL00009350
https://doi.org/10.1007/BF02187898
https://doi.org/10.1142/S0218195907002343
https://doi.org/10.1142/S0218195907002343
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/s00454-002-2894-1
https://doi.org/10.1090/conm/438/08443
https://doi.org/10.1090/conm/438/08443

Sometimes Two Irrational Guards are Needed
Lucas Meijer1 and Till Miltzow2

1 Department of Information and Computing Sciences, Utrecht University
l.meijer2@uu.nl

2 Department of Information and Computing Sciences, Utrecht University
t.miltzow@uu.nl

Abstract
In the art gallery problem, we are given a closed polygon P , with rational coordinates and an
integer k. We are asked whether it is possible to find a set (of guards) G of size k such that any
point p ∈ P is seen by a point in G. We say two points p, q see each other if the line segment pq is
contained inside P . It was shown by Abrahamsen, Adamaszek, and Miltzow that there is a polygon
that can be guarded with three guards, but requires four guards if the guards are required to have
rational coordinates. In other words, an optimal solution of size three might need to be irrational.
We show that an optimal solution of size two might need to be irrational. Note that it is well-known
that any polygon that can be guarded with one guard has an optimal guard placement with rational
coordinates.

Hence, our work closes the gap on when irrational guards are possible to occur.

Related Version arXiv:2212.01211

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

4:2 A Contribution to EuroCG 2023

Figure 1 Any triangulation of a simple polygon can be three-colored. At least one of the color
classes has at most ⌊n/3⌋ vertices. This color class also guards the entire polygon, as every triangle
is incident to all three colors [7].

1 Introduction

In the art gallery problem, we are given a closed polygon P , on n vertices, with rational
coordinates and an integer k. We are asked whether it is possible to find a set (of guards) G

of size k such that any point p ∈ P is seen by a point in G. We say two points p, q see each
other if the line segment pq is contained inside P .

We show that an optimal solution of two guards might need to have irrational coordinates.
In such a case, we say a polygon has irrational guards. Specifically, we construct a polygon
that can be guarded by two irrational guards but requires three rational guards.

The art gallery problem was formulated in 1973 by Victor Klee. See, for example, the
book by O’Rourke [8, page 2]. One of the earliest results states that every simple polygon on
n vertices can always be guarded with ⌊n/3⌋ guards [4, 7].

Interestingly, it is actually very tough to find any positive algorithmic results on the art
gallery problem. It seems like the art gallery problem is almost impenetrable. For instance,
only in 2002, Micha Sharir pointed out that the problem was even decidable [5, 6, see
acknowledgments]. The decidability of the art gallery problem is actually easy once you know
methods from real algebraic geometry [3]. The idea is to reduce the problem to the first-order
theory of the reals. We encode guard positions by variables, and then we check if every
point in the polygon is seen by at least one guard. Note that this is easy to encode in the
first-order theory of the reals, as we are allowed to use existential (∃g1, g2, . . .) and universal
quantifiers (∀p = (x, y)). Since then, despite much research on the art gallery problem, no
better algorithm appeared, as far as worst-case complexity is concerned. The underlying
reason for the difficulty to find better algorithms can be explained by the fact that the art
gallery problem is ∃R-complete [9, 2]. In a nutshell, ∃R-completeness precisely entails that
there is no better method for the worst-case complexity of the problem. (∃R can be defined
as the class of problems that are equivalent to finding a real root to a multivariate polynomial
with integer coordinates. See the full version for an introduction.) More specifically, it was
shown that arbitrary algebraic numbers may be needed to describe an optimal solution to
the art gallery problem. This may come as a surprise to some readers, and was clearly a
surprise back then. Specifically, “in practice”, it seems very rare that irrational guards are
ever needed. The reason is that a typical situation is one of the following two. Either the
guards have some freedom to move around and still see the entire polygon. Or if a guard has
no freedom, it is forced to be on a line defined by vertices of the polygon. As the vertices of
the polygon are at rational coordinates, the guards will be at rational coordinates in that
case as well. Indeed, only in 2017, the first polygon requiring irrational guards was found [1].
Even though ∃R-reductions exhibit an infinite number of polygons that require irrational
guards, those polygons are not “concrete” in the naive sense of the word. And up to this day,
this is the only “concrete” polygon [1] that we know does require irrational guards. In this

L. Meijer and T. Miltzow 4:3

work, we find a second polygon. It is superior to the first one in the sense that it shows that
two guards are already enough to enforce irrational guards. As a single guard can always be
chosen to have rational coordinates, we settle the question of the minimum number of guards
required to have irrational guards. We summarize our results in the following theorem.

▶ Theorem 1.1. There exists a polygon with rational coordinates, such that there is only one
way of guarding this polygon optimally with two guards. Those two guards have irrational
coordinates.

Organization.

We provide background information in the full version. There we discuss our results from
different angles, we give a selected overview of related research on the art gallery problem,
and we add some background on the existential theory of the reals. In Section 2, we give an
overview of how we constructed the polygon and what is the intuition behind the different
parts. In Section 3, we give the polygon with coordinates of all vertices. Finally, in the full
version we also provide a formal proof of correctness and explain how we constructed the
polygon and what technical challenges we had to overcome.

2 Preparation

We aim to construct a polygon. This polygon should be guarded by two guards at irrational
coordinates but requires three guards at rational coordinates. We must restrict the possible
coordinates the guards can be positioned. In this section, we will explore the tools to restrict
the possible positions of the two guards within the polygon.

2.1 Basic Definitions
Each guard g will be able to guard some region of the polygon: we call this region its
visibility polygon vis(g). The visibility polygon includes all points for which the line segment
between the guard and the point is included in the polygon P . Notably, the union of the
visibility polygons of the two guards must be the art gallery. Otherwise, the art gallery is
not completely guarded.

A window is an edge of the visibility polygon vis(g) that is not part of the boundary of
P . We can find windows in the guard g’s visibility polygon, by shooting rays from g to reflex
vertices (the vertices of the polygon, with an interior angle larger than π). If these rays do
not leave the polygon at the reflex vertex, a window will exist between the reflex vertex and
the position where the ray does intersect the boundary of the polygon. Let the window’s end
be the intersection of the ray with an edge of the polygon.

Our final polygon consists of the core and a number of pockets, as shown in Figure 2.
The core of the polygon is the square in the center. We will enforce that both guards are
located in the core. As a square is a convex shape, this implies that both guards will guard
the core. The pockets are all regions outside the core. We will use pockets that are either
quadrilateral or triangular. Pockets are attached to either the core or another pocket: they
have one edge that lies on the boundary of the core or on the boundary of another pocket.
Quadrilateral pockets will always be attached to the core. Each quadrilateral pocket has one
edge that is not on the boundary of the core, nor adjacent to it. We will call this edge the
wall of a quadrilateral pocket. Similarly, triangular pockets will be attached to either the
core or a quadrilateral pocket. We will use pockets as a tool to limit the locations of the two
guards.

EuroCG’23

4:4 A Contribution to EuroCG 2023

Figure 2 Our final polygon: it has a core (gray), three quadrilateral pockets (blue), and four
narrow triangular pockets (yellow).

2.2 Guard Segments
We can force a guard to be positioned on a line segment within the polygon. Such a line
segment is called a guard segment. Guard segments are commonly used in the context of
the art gallery problem [1, 9]. In this section, we will describe how we construct a guard
segment. We denote by s the segment and by ℓ its supporting line.

To make s a guard segment, we add two triangular pockets where ℓ intersects ∂P . Each
of the triangular pockets has an edge on ℓ. Besides this one edge, the pockets lay on different
sides of ℓ. Only a guard on the line segment between the two pockets can guard both
triangular pockets at the same time.

We have two guards in our polygon and both will be on distinct guard segments. If the
two guard segments are not intersecting, we can enforce that there must be one guard on
each of them as follows. First, we introduce only four triangular pockets. Second, we make
the triangular pockets sufficiently narrow. In this way, it is impossible to guard two of the
triangular pockets outside of a guard segment. Thus at least one guard must be on each
guard segment. A simple construction with two non-intersecting guard segments is shown in
Figure 3.

2.3 Guarding Quadrilateral Pockets
We will now describe how given the position of guard l and a quadrilateral pocket Q will
limit the position of guard t. See Figure 4 for an illustration of the following description.
First, note that if l will not guard Q completely then there will remain some unguarded

L. Meijer and T. Miltzow 4:5

Figure 3 A small polygon that can only be guarded by two guards, because each guard segment
(yellow dashed line) must contain a guard. The region where a guard could guard at least one pocket
is shaded in light yellow.

l

front
ray

feasib
le segm

ent

unguarded
region

b
a
ck

ray

Figure 4 A polygon with guard l. The guard l defines an unguarded region in the quadrilateral
pocket, a front ray and a back ray, and a feasible segment.

region (orange) in Q. The part of the guard segment of t where the unguarded region is
visible is referred as the feasible segment. It is bounded from the back ray and the front ray.
It is clear that t must be on the feasible segment.

We can compute the front ray by first computing the window end’s s from l to the wall
of Q and then shooting a ray from s in the direction of the second reflex vertex of Q.

EuroCG’23

4:6 A Contribution to EuroCG 2023

v9

v17v25

v5 v8

v10

v18v24

v2

v26

v6

v7

v14

v19

v20

v23

v11

v16 v15

v1

v3

v4

v12

v13

v21

v22

v27

v28

Figure 5 Our complete polygon. The art gallery is shaded according to the function of each
region: gray is the core, yellow is the pockets used to create guard segments, and turquoise are
other pockets. The yellow dashed lines represent the guard segments. The coordinates of important
vertices are given.

L. Meijer and T. Miltzow 4:7

l?

w1

w3

w2

t?

Figure 6 Our complete polygon. The optimal solution has two guards at irrational coordinates is
shown. The light blue regions are guarded by the upper left guard; the light red regions are guarded
by the bottom right guard; the purple (overlay of red and blue) regions are guarded by both. The
dashed lines are rays shot from the guards through reflex vertices. For each pocket, these windows
meet at a point on the art gallery’s wall, of which the coordinates are also given.

EuroCG’23

4:8 A Contribution to EuroCG 2023

Table 1 Coordinates of the vertices of the polygon (v1, . . . , v28), the guards (l and t), and the
window’s ends (w1, w2, w3).

v1 (0, 10) v12 (12.7, 7) v23 (4, −1.7)
v2 (2, 10) v13 (11.7, 6) v24 (4, 0)
v3 (3, 11) v14 (1230422

101007 , 6) v25 (0, 0)
v4 (2.3, 10) v15 (1016072

101007 , 4) v26 (0, 8)
v5 (4, 10) v16 (10, 4) v27 (−1, 7)
v6 (4, 465522

29357) v17 (10, 0) v28 (0, 8.3)
v7 (6, 312388

29357) v18 (6, 0) l∗ (3.7 − 2.2 ·
√

2, 11.7 − 2.2 ·
√

2)
v8 (6, 10) v19 (6, −25442

34407) t∗ (7.4 − 0.5 ·
√

2, 1.7 − 0.5 ·
√

2)
v9 (10, 10) v20 (4, −84128

34407) w1 (293570·
√

2+8052346
1425913 , −765670·

√
2+16485384

1425913)
v10 (10, 6) v21 (4, 2) w2 (1071750·

√
2+29733818

2673483 , 1010070·
√

2+13370606
2673483)

v11 (11.4, 6) v22 (3, −2.7) w3 (344070·
√

2+3108526
760803 , 293430·

√
2+1804526

760803)

3 Complete Polygon

In this section, we will present our complete polygon: a polygon that can be guarded by two
guards if and only if both guards are situated at irrational points.

3.1 The Polygon
As we described in Section 2 and displayed in Figure 5, the polygon consists of a core and
some pockets. The polygon has four triangular pockets defining two guard segments. The
two guard segments lie on the lines y = x + 8 and y = x − 5.7. Furthermore, the polygon has
three quadrilateral pockets. In Table 1, the coordinates of the vertices of the polygon, the
coordinates of the two guards, and the coordinates of the window’s ends are given.

The walls of the three quadrilateral pockets have the supporting lines:
1. Top pocket: y = −76567·x+771790

29357 .
2. Right pocket: y = 101007·x−587372

107175 .
3. Bottom pocket: y = 29343·x−201500

34407 .

In the full version, we prove that this polygon can be guarded by two guards, if and only
if the guards are at irrational coordinates in and we discuss the difficulties we encountered
while searching for this polygon.

4 Acknowledgments.

We would like to thank Thekla Hamm and Ivan Bliznets for their helpful comments on
the presentation. Lucas Meijer is generously supported by the Netherlands Organisation
for Scientific Research (NWO) under project no. VI.Vidi.213.150. Tillmann Miltzow is
generously supported by the Netherlands Organisation for Scientific Research (NWO) under
project no. 016.Veni.192.250 and no. VI.Vidi.213.150.

References
1 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. Irrational guards are

sometimes needed. In SoCG 2017, pages 3:1–3:15, 2017. Arxiv 1701.05475.
2 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The Art Gallery Problem is

∃R-complete. Journal of the ACM, 69(1):1–70, 2022. doi:10.1145/3486220.

https://doi.org/10.1145/3486220

L. Meijer and T. Miltzow 4:9

3 Sauguta Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic
Geometry, volume 10 of Algorithms and Computation in Mathematics. Springer, Berlin,
Heidelberg, 2006. doi:10.1007/3-540-33099-2.

4 Václav Chvátal. A combinatorial theorem in plane geometry. Journal of Combinatorial
Theory, Series B, 18(1):39–41, 1975.

5 Alon Efrat and Sariel Har-Peled. Guarding galleries and terrains. In IFIP 2002, pages
181–192, 2002.

6 Alon Efrat and Sariel Har-Peled. Guarding galleries and terrains. Inf. Process. Lett.,
100(6):238–245, 2006. doi:10.1016/j.ipl.2006.05.014.

7 Steve Fisk. A short proof of Chvátal’s watchman theorem. J. Comb. Theory, Ser. B,
24(3):374, 1978. URL: http://dx.doi.org/10.1016/0095-8956(78)90059-X, doi:10.
1016/0095-8956(78)90059-X.

8 Joseph O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.
9 Jack Stade. Complexity of the boundary-guarding art gallery problem. arXiv preprint

arXiv:2210.12817, 2022.

EuroCG’23

https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1016/j.ipl.2006.05.014
http://dx.doi.org/10.1016/0095-8956(78)90059-X
https://doi.org/10.1016/0095-8956(78)90059-X
https://doi.org/10.1016/0095-8956(78)90059-X

On the Complexity of Recognizing Nerves of
Convex Sets
Patrick Schnider1 and Simon Weber2

1 Department of Computer Science, ETH Zurich
patrick.schnider@inf.ethz.ch

2 Department of Computer Science, ETH Zurich
simon.weber@inf.ethz.ch

Abstract
We study the problem of recognizing whether a given abstract simplicial complex K is the k-skeleton
of the nerve of j-dimensional convex sets in Rd. We denote this problem by R(k, j, d). As a main
contribution, we unify the results of many previous works under this framework and show that
many of these works in fact imply stronger results than explicitly stated. This allows us to settle
the complexity status of R(1, j, d), which is equivalent to the problem of recognizing intersection
graphs of j-dimensional convex sets in Rd, for any j and d. Furthermore, we point out some trivial
cases of R(k, j, d), and demonstrate that R(k, j, d) is ∃R-complete for j ∈ {d − 1, d} and k ≥ d.

1 Introduction

Let G = (V, E) be a graph. We say that G is an intersection graph of convex sets in Rd if
there is a family F of convex sets in Rd and a bijection V → F mapping each vertex vi to
a set si with the property that the sets si and sj intersect if and only if the corresponding
vertices vi and vj are connected in G, that is, {vi, vj} ∈ E. Such graphs are instances of
geometric intersection graphs, whose study is a core theme of discrete and computational
geometry. Historically, intersection graphs have mainly been considered for convex sets
in R1, in which case they are called interval graphs, or for convex sets or segments in the
plane.

A fundamental computational question for geometric intersection graphs is the recogni-
tion problem defined as follows: given a graph G, and some (infinite) collection of geometric
objects C, decide whether G is an intersection graph of objects of C. While the recognition
problem for interval graphs can be solved in linear time [4], the recognition of segment in-
tersection graphs in the plane is significantly harder. In fact, Matoušek and Kratochvíl have
shown that this problem is complete for the complexity class ∃R [11]. Their proof was later
simplified by Schaefer [15], see also the streamlined presentation by Matoušek [12].

The complexity class ∃R was introduced by Schaefer and Štefankovič [16]. It can be
thought of as an analogue of NP over the reals. More formally, the class is defined via a
canonical problem called ETR, short for Existential Theory of the Reals. The problem ETR
is a decision problem whose input consists of an integer n and a sentence of the form

∃X1, . . . , Xn ∈ R : φ(X1, . . . , Xn),

where φ is a quantifier-free formula consisting only of polynomial equations and inequalities
connected by logical connectives. The decision problem is to decide whether there exists an
assignment of real values to the variables X1, . . . , Xn such that the formula φ is true.

It is known that NP ⊆ ∃R ⊆ PSPACE, where both inclusions are conjectured to be strict.
Many problems in computational geometry have been shown to be ∃R-complete, such as
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

5:2 On the Complexity of Recognizing Nerves of Convex Sets

the realizability of abstract order types [14], the art gallery problem [1], the computation of
rectilinear crossing numbers [3], geometric embeddings of simplicial complexes [2], and the
recognition of several types of geometric intersection graphs [5, 7, 10, 13].

In this work, we extend the recognition problem of intersection graphs of convex sets to
the recognition problem of skeletons of nerves of convex sets. Let us introduce the relevant
notions. An (abstract) simplicial complex on a finite ground set V is a family of subsets
of V , called faces, that is closed under taking subsets. The dimension of a face is the number
of its elements minus one. The dimension of a simplicial is the maximum dimension of any
of its faces. In particular, a 1-dimensional simplicial complex is just a graph. The k-skeleton
of a simplicial complex K is the subcomplex of all faces of dimension at most k. Let F be
a family of convex sets in Rd. The nerve of F , denoted by N(F) is the simplicial complex
with ground set F where {F1, . . . , Fm} ⊂ F is a face whenever F1 ∩ . . . ∩ Fm ̸= ∅. In
other words, the intersection graph of a family F of convex sets is the 1-skeleton of the
nerve N(F). Consider now the following decision problem, which we denote by R(k, j, d):
given a simplicial complex K by its maximal faces, decide whether there exists a family F
of j-dimensional convex sets in Rd such that K is the k-skeleton of N(F).

In some cases, the k-skeleton of a nerve of convex sets uniquely determines the entire
nerve: recall Helly’s theorem [9] which states that for a finite family F of convex sets, if
every d + 1 of its members have a common intersection, then all sets in F have a common
intersection. Phrased in the language of nerves, this says that if the d-skeleton of the nerve
N(F) is complete, then N(F) is an |F|-simplex. In other words, we can retrieve the nerve
of a family of convex sets in Rd from its d-skeleton by filling in higher-dimensional faces
whenever all of their d-dimensional faces are present.
▶ Remark. The following Helly-type theorem implies the analogous statement that a nerve
of j-dimensional convex sets can be retrieved from its (j + 1)-skeleton.

▶ Theorem 1. Let F be a finite family of j-dimensional convex sets in Rd. Assume that
any j + 2 or fewer members of F have a common intersection. Then all sets in F have a
common intersection.

This result is likely known, however we could not find a reference for it, so we include a
short proof. The proof requires some algebraic topology, in particular the notion of homology.
For background on this, we refer to the many textbooks on algebraic topology, for instance
the excellent work by Hatcher [8]. For readers not familiar with this concept, the idea of
the proof can still be seen by the intuitive notion that Hk(X) = 0 means that the space X

has no holes of dimension k.

Proof. We want to show that the nerve N(F) is an |F|-simplex. Consider a subfamily
F ′ ⊆ F and its induced sub-nerve N(F ′). By the nerve theorem (see e.g. [8], Corollary
4G.3), the sub-nerve N(F ′) is homotopy-equivalent to the union

⋃ F ′ of the sets in F ′,
implying that the two objects have isomorphic homology groups. As

⋃ F ′ has dimension at
most j, and F (and thus also F ′) is finite, we have that Hk(

⋃ F ′) = 0 for all k ≥ j + 1.
Thus Hk(N(F ′)) = 0 for all k ≥ j + 1 and all F ′ ⊆ F . On the other hand, the assumption
that any j + 2 or fewer sets have a common intersection implies that the (j + 1)-skeleton of
N(F) is complete and thus Hk(N(F ′)) = 0 for all 1 ≤ k ≤ j and all subfamilies F ′ ⊆ F .
Thus, N(F) must be a simplex. ◀

2 Containment results

We start by showing that all considered problems are in the complexity class ∃R.

P. Schnider and S. Weber 5:3

▶ Theorem 2. For all k, j and d, we have R(k, j, d) ∈ ∃R.

Proof. Similarly to NP, containment in ∃R can be proven by providing a certificate con-
sisting of a polynomial number of real values, and a verification algorithm running on the
real RAM computation model which verifies these certificates [6]. As a certificate, we use
the coordinates of some point in Rd for each maximal face of the input complex K. These
points then describe a family F of convex sets: Each set F is the convex hull of all points
representing maximal faces S of K such that F ∈ S.

Note that if K is the k-skeleton of N(F) for some family F of j-dimensional convex sets
in Rd, such a certificate must exist: The points can be placed in the maximal intersections
of F , and shrinking each set to the convex hull of these points cannot change N(F).

Such a certificate can be verified by testing that each set F is j-dimensional (e.g., using
linear programming), and by testing that the k-skeleton of N(F) is indeed K. The latter
can be achieved in polynomial time by computing the intersection of each subfamily F ′ ⊆ F
of at most min(k + 1, d + 1) sets. If k ≤ d, this determines the k-skeleton of N(F). If k > d,
the k-skeleton of N(F) is determined by the d-skeleton of N(F) by Helly’s theorem [9]. ◀

▶ Lemma 3. R(k, 1, 1) is in P for any k ≥ 1.

Proof. R(1, 1, 1) is equivalent to recognizing interval graphs, and can thus be solved in
polynomial time (see [4]). Since we are considering a family F of intervals in R1, the 1-
skeleton of N(F) uniquely determines N(F). By Helly’s theorem, N(F) must be the clique
complex of its 1-skeleton. Thus, R(k, 1, 1) can be solved as follows: Build the graph G given
by the 1-skeleton of the input complex K. Test the following four properties: (i) G is an
interval graph, (ii) K is at most k-dimensional, (iii) every maximal face of K is a clique
of G, and (iv) every clique of size < k in G is contained in some maximal face of K. Return
yes if the answer to all these tests is yes, otherwise return no. All tests can be performed in
polynomial time, thus R(k, 1, 1) ∈ P. ◀

For some constellations of k, j, d, any simplicial complex of dimension at most k can be
realized as the k-skeleton of the nerve of j-dimensional convex sets in Rd. In this case we
say that the problem R(k, j, d) is trivial. Evans et al. prove triviality for R(1, 2, 3):

▶ Lemma 4 ([7]). R(1, 2, 3) is trivial.

Furthermore, we can show that if the dimensions j and d get large enough compared
to k, the problem also becomes trivial.

▶ Lemma 5. R(k, 2k + 1, 2k + 1) is trivial.

Proof. Wegner has shown that every k-dimensional simplicial complex is the nerve of convex
sets in R2k+1 [18]. In particular, it is also the k-skeleton of a nerve. ◀

Finally, we prove the following lifting result.

▶ Lemma 6. If R(k, j, d) is trivial, R(k, j′, d′) is trivial for all d′ ≥ d and j ≤ j′ ≤ d′.

Proof. We prove that both j and d can be increased by one without destroying triviality,
from which the lemma follows.

Any simplicial complex that can be realized in dimension d can also be realized in a
d-dimensional subspace of Rd+1, thus increasing d by one preserves triviality.

To see that j can be increased, consider a realization of a simplicial complex as the k-
skeleton of the nerve of a family F of j-dimensional convex sets in Rd. Now, consider any

EuroCG’23

5:4 On the Complexity of Recognizing Nerves of Convex Sets

two subfamilies F1, F2 of F , such that
(⋂

F ∈F1
F

)
∩

(⋂
F ∈F2

F
)

= ∅. The two intersections⋂
F ∈F1

F and
⋂

F ∈F2
F must have some distance ϵ. Consider ϵmin, the minimum of all such

ϵ over all pairs of subfamilies F1, F2. We extrude every object in F in some direction not
yet spanned by the object by some ϵ′ small enough that no intersection

⋂
F ∈F ′ F for F ′ ⊆ F

grows by more than ϵmin/3. This process can not introduce any additional intersections,
and thus the nerve of this family of j + 1-dimensional sets is the same as the nerve of F .
We conclude that triviality of R(k, j, d) for j < d implies triviality of R(k, j + 1, d). ◀

3 Existing ∃R-Hardness Results

▶ Lemma 7. R(k, 1, d) is ∃R-hard for k ≥ 1 and d ≥ 2.

Proof. For k = 1 and d = 2, this is equivalent to recognizing segment intersection graphs in
the plane, which Schaefer [15] proved to be ∃R-hard by reduction from stretchability. Evans
et al. [7] generalize Schaefer’s proof for intersection graphs of segments in R3 (k = 1 and
d = 3). Their proof works by arguing that all segments of their constructed graph must be
coplanar. Since the argument implies coplanarity no matter the dimension of the ambient
space, the proof also implies ∃R-hardness for k = 1 and d > 3. Furthermore, for any “yes”-
instance of stretchability, the constructed graph can be drawn using segments with no triple
intersections. Thus, the proof implies ∃R-hardness for R(k, 1, d) for k > 1, as well. ◀

Schaefer [15] furthermore proved that R(1, 2, 2) is ∃R-hard. In the proof of this result,
again no triple intersections occur in the representations of “yes”-instances. Thus the same
proof applies to the following lemma.

▶ Lemma 8. R(k, 2, 2) is ∃R-hard for any k ≥ 1.

This solves the complexity status of R(1, j, d) for all j and d. We summarize these results
in the following corollary.

▶ Corollary 9. For k = 1, R(k, j, d) is
in P, if j = d = 1.
∃R-complete, if j = 1 and d > 2, or if j = d = 2.
trivial in all other cases.

4 Lifting to Higher Dimensions

We can extend a lifting result due to Tancer [17] to our setting. For this, the suspension of
a simplicial complex K with ground set V and face family F is the simplicial complex S(K)
with ground set V ∪ {a, b} and faces F ∪ {f ∪ {a} | f ∈ F} ∪ {f ∪ {b} | f ∈ F}.

▶ Lemma 10. Let K be a simplicial complex and let j ≥ d − 1. Then K is a nerve of
j-dimensional convex sets in Rd if and only if S(K) is a nerve of (j +1)-dimensional convex
sets in Rd+1.

Proof. We first show that if K is a nerve of convex sets in Rd then S(K) is a nerve of convex
sets in Rd+1. For this, let F be a family of sets in Rd whose nerve is K and embed them on
the hyperplane xd+1 = 0 in Rd+1. For each set F ∈ F define F ′ as the cartesian product
of F and the segment defined by −2 ≤ xd+1 ≤ 2. Adding the hyperplanes xd+1 = −1 and
xd+1 = 1, it is easy to see that the nerve of the resulting set family is S(K).

In the other direction, consider a family F ′ of (j + 1)-dimensional convex sets in Rd+1

whose nerve is S(K). Let A and B be the convex sets that correspond to the vertices a and

P. Schnider and S. Weber 5:5

b, respectively. As a and b are not connected in S(K), the sets A and B must be disjoint. In
particular, they can be separated by a hyperplane h. For each other set F ′ ∈ F ′, consider
F := F ′ ∩ h and let F be the family of these intersections. Note that F is a family of
j-dimensional convex sets in Rd. We claim that the nerve of F is K. Indeed, as K is a
subcomplex of S(K), every face of N(F) must be a face of K. On the other hand, for every
face f of K, there are points pa and pb in A and B, respectively, which lie in the intersection
corresponding to faces f ∪ {a} and f ∪ {b} of S(K), respectively. The intersection of the
segment papb with h lies in the intersection of the sets corresponding to f , showing that
every face of K must be a face of N(F). ◀

Combined with the fact that the d-skeleton determines the entire nerve, we get the
following reduction.

▶ Corollary 11. Let j ∈ {d − 1, d}. If R(d, j, d) is ∃R-hard, then so is R(d + 1, j + 1, d + 1).

Using the ∃R-hardness of R(2, 1, 2) and R(2, 2, 2) implied by Lemmas 7 and 8, we thus
deduce the following

▶ Theorem 12. For any d ≥ 2 and k ≥ d, the problems R(k, d − 1, d) and R(k, d, d) are
∃R-complete.

This strengthens a result of Tancer who has shown that R(d, d, d) is NP-hard [17].

5 Conclusion

We have introduced a generalization of the recognition problem of intersection graphs of
convex sets and have seen that several existing results in the literature of intersection graphs
imply stronger statements in this setting. In particular, the computational complexities of
recognizing intersections graphs of convex sets is completely settled. For small k, j, d, the
current state of knowledge is summarized in the tables in Figure 1. As can be seen, for many
decision problems R(k, j, d), the computational complexity is still open. We conjecture that
these cases are either ∃R-complete or trivial, determining which of the two remains an
interesting open problem. Of course, the analogous problems can be defined for objects
other than convex sets, giving rise to many interesting open problems.

EuroCG’23

5:6 On the Complexity of Recognizing Nerves of Convex Sets

j
d

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

j
d

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

j
d

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

j
d

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

P P

P P

k = 1 k = 2

k = 3 k = 4

∃R ∃R ∃R ∃R ∃R ∃R ∃R
∃R

∃R ∃R ∃R ∃R ∃R ∃R ∃R
∃R

∃R ∃R ∃R ∃R ∃R ∃R ∃R
∃R ∃R

∃R

∃R ∃R ∃R ∃R ∃R ∃R ∃R
∃R ∃R

∃R ∃R
∃R

T

T

T T T T T

T T T T T T

T T T T T

T T T T

T T T

T T

T

T T T T

T T T

T T

T T

T

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ? ? ?

? ?

?

Figure 1 The complexity status of R(k, j, d) for k ≤ 4 and d, j ≤ 8. P denotes containment in P,
∃R denotes ∃R-completeness, T denotes triviality, and ? indicates open cases.

P. Schnider and S. Weber 5:7

References
1 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery problem is

∃R-complete. ACM Journal of the ACM (JACM), 69(1):1–70, 2021.
2 Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow. Geometric embeddability of

complexes is ∃R-complete. arXiv preprint arXiv:2108.02585, 2021.
3 Daniel Bienstock. Some provably hard crossing number problems. In Proceedings of the

sixth annual symposium on Computational geometry, pages 253–260, 1990.
4 Kellogg S Booth and George S Lueker. Testing for the consecutive ones property, interval

graphs, and graph planarity using pq-tree algorithms. Journal of computer and system
sciences, 13(3):335–379, 1976.

5 Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogtenhu-
ber. Intersection graphs of rays and grounded segments. In International Workshop on
Graph-Theoretic Concepts in Computer Science, pages 153–166. Springer, 2017.

6 Jeff Erickson, Ivor Van Der Hoog, and Tillmann Miltzow. Smoothing the gap between NP
and ER. SIAM Journal on Computing, (0):FOCS20–102, 2022.

7 William Evans, Paweł Rzążewski, Noushin Saeedi, Chan-Su Shin, and Alexander Wolff.
Representing graphs and hypergraphs by touching polygons in 3d. In International Sym-
posium on Graph Drawing and Network Visualization, pages 18–32. Springer, 2019.

8 Allen Hatcher. Algebraic topology. Cambridge Univ. Press, Cambridge, 2000.
9 Eduard Helly. Über mengen konvexer körper mit gemeinschaftlichen punkten. Jahresbericht

der Deutschen Mathematiker-Vereinigung, 32:175–176, 1923.
10 Ross J Kang and Tobias Müller. Sphere and dot product representations of graphs. In

Proceedings of the twenty-seventh annual symposium on Computational geometry, pages
308–314, 2011.

11 Jan Kratochvíl and Jirí Matoušek. Intersection graphs of segments. Journal of Combina-
torial Theory, Series B, 62(2):289–315, 1994.

12 Jirí Matoušek. Intersection graphs of segments and ∃R. arXiv preprint arXiv:1406.2636,
2014.

13 Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs.
Journal of Combinatorial Theory, Series B, 103(1):114–143, 2013.

14 Nikolai E Mnëv. The universality theorems on the classification problem of configuration
varieties and convex polytopes varieties. In Topology and geometry—Rohlin seminar, pages
527–543. Springer, 1988.

15 Marcus Schaefer. Complexity of some geometric and topological problems. In International
Symposium on Graph Drawing, pages 334–344. Springer, 2009.

16 Marcus Schaefer and Daniel Štefankovič. Fixed points, nash equilibria, and the existential
theory of the reals. Theory of Computing Systems, 60(2):172–193, 2017.

17 Martin Tancer. d-collapsibility is NP-complete for d ≥ 4. Chic. J. Theoret. Comput. Sci,
3:1–28, 2010.

18 Gerd Wegner. Eigenschaften der Nerven homologisch-einfacher Familien im Rn. PhD
thesis, Universität Göttingen, 1967.

EuroCG’23

Spanners under the Hausdorff and Fréchet
Distances∗

Tsuri Farhana1 and Matthew J. Katz2

1 Department of Computer Science, Ben-Gurion University of the Negev, Beer
Sheva, Israel
tsurif@post.bgu.ac.il

2 Department of Computer Science, Ben-Gurion University of the Negev, Beer
Sheva, Israel
matya@cs.bgu.ac.il

Abstract
We initiate the study of spanners under the Hausdorff and Fréchet distances. We show that any t-
spanner of a planar point-set S is a

√
t2−1
2 -Hausdorff-spanner and a min{ t

2 ,

√
t2−t√

2 }-Fréchet-spanner.
We also prove that for any t > 1, there exist a set of points S and an ε1-Hausdorff-spanner of S and
an ε2-Fréchet-spanner of S, where ε1 and ε2 are constants, such that neither of them is a t-spanner.

1 Introduction

Let S be a set of points in Rd. The Euclidean graph over S, denoted GS , is the complete
graph over S, in which the weight of an edge (u, v) is the Euclidean distance between its
endpoints, denoted d(u, v). A subgraph H of GS is a t-spanner of S, for a real number t ≥ 1,
if it is a t-spanner of GS , that is, if for any pair of points u, v ∈ S, the length of the shortest
path between u and v in H is at most t · d(u, v). In general, a path in GS between u and v

whose length is at most t · d(u, v), is called a t-path.
Geometric spanners, i.e., t-spanners of GS , have been studied extensively over the years

(see [2]), where the goal is often to construct a t-spanner, for a given t > 1, with some
desirable properties, such as, small number of edges, small weight, small degree, and small
diameter (i.e., the maximum number of edges in a minimum-hop t-path).

In this paper we initiate the study of Hausdorff-spanners and Fréchet-spanners. A path
P (u, v) in GS between u and v is an ε-Hausdorff-path (ε-Fréchet-path) if dH(P (u, v), uv) ≤
ε · d(u, v) (dF (P (u, v), uv) ≤ ε · d(u, v)), where dH (dF) denotes the Hausdorff (Fréchet)
distance. Thus, a subgraph H of GS is an ε-Hausdorff-spanner (ε-Fréchet-spanner) if there
exists in H an ε-Hausdorff-path (ε-Fréchet-path) between any two points u and v.

Let S be a set of points in the plane. We show that a t-spanner is an ε1-Hausdorff-
spanner, for ε1 = f(t), and an ε2-Fréchet-spanner, for ε2 = f(t). We also prove that for any
t > 1, there exist an ε1-Hausdorff-spanner H1 and an ε2-Fréchet-spanner H2, where ε1 and
ε2 are constants, such that both H1 and H2 are not a t-spanner.

∗ Supported by Grant 2019715/CCF-20-08551 from the US-Israel Binational Science Foundation/US
National Science Foundation, and by the Lynne and William Frankel Center for Computer Science at
Ben-Gurion University.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

6:2 Hausdorff- and Fréchet-Spanners

2 Hausdorff spanners

2.1 t-spanners are ε-Hausdorff-spanners
In this section we show that a t-spanner is an ε-Hausdorff-spanner, for ε = f(t).

Let H be a t-spanner, t > 1, and let u, v ∈ S. We assume, with loss of generality, that
d(u, v) = 1 and that u = (0, 0) and v = (1, 0). Let P (u, v) be a t-path in H between u and
v. Then, P (u, v)’s length is at most t.

Figure 1 The furthest possible distance from a t-path to the segment between its endpoints.

▶ Observation 2.1. Let E be the ellipse with foci points at u and v, for which d(p, u) +
d(p, v) = t ·d(u, v) = t, for every point p on its boundary. Then, P (u, v) ⊂ E. Moreover, the
points of E that are furthest from uv are the boundary points above and below the midpoint
of uv; their distance to uv is

√
t2−1
2 (see Figure 1).

▶ Lemma 2.2. P (u, v) is a
√

t2−1
2 -Hausdorff-path.

Proof. Since d(u, v) = 1, we need to show that dH(P (u, v), uv) ≤
√

t2−1
2 . On the one hand,

by Observation 2.1, the distance from any point p on P (u, v) to uv is at most
√

t2−1
2 . On

the other hand, let q = (qx, 0) be a point on uv. Then, since P (u, v) is a path between u

and v, there exists a point p on P (u, v) with x-coordinate qx. Now, by Observation 2.1, the
distance from q to p is at most

√
t2−1
2 . We conclude that dH(P (u, v), uv) ≤

√
t2−1
2 . ◀

We have shown that any t-path in H is a
√

t2−1
2 -Hausdorff-path, and therefore H is a√

t2−1
2 -Hausdorff-spanner. We conclude that

▶ Corollary 2.3. Any t-spanner is an ε-Hausdorff-spanner, for ε =
√

t2−1
2 .

2.2 ε-Hausdorff-spanners are not necessarily t-spanners
In this section we show that not every Hausdorff spanner is a Euclidean spanner. More
precisely, we present an infinite sequence of graphs, such that all of them are c-Hausdorff-
spanners, for some fixed constant c > 0, but for any t ≥ 1, there exists a graph in the
sequence that is not a t-spanner. Formally, we prove the following theorem.

▶ Theorem 2.4. There exists a constant c > 0, such that for any t ≥ 1, one can construct
a graph that is a c-Hausdorff-spanner and is not a t-spanner.

T. Farhana and M. Katz 6:3

To prove the theorem, we define a sequence of graphs F0, F1, F2 . . . as follows: Let F0
be the unit line segment with endpoints (0, 0) and (1, 0), that is, the endpoints are the
vertices of F0 and the segment is its single edge. Now, for any n > 0, we construct Fn from
Fn−1, by considering each segment (i.e., edge) s of Fn−1 and (i) partitioning s into three
subsegments of equal length by adding two new vertices, (ii) forming an equilateral triangle
with the middle subsegment as its base by adding a vertex on the outer side of the middle
subsegment and connecting it to the endpoints of the middle subsegmet, and (iii) removing
the middle subsegment. That is, the edge s is replaced by four edges obtained by adding
three new vertices; see Figure 2.

The curve that is obtained by applying this construction indefinitely is the fractal known
as the Koch curve [1]; it is one of the three curves forming the Koch snowflake. It is well
known that the length of the Koch curve is unbounded, that is, for every l > 0, there exists
an integer n, such that the length of Fn, i.e., the sum of its edge lengths, is greater than l.

Figure 2 The graphs F0, F1, F2 and F3.

Since the length of the path between the extreme vertices of Fn, i.e., between its vertices
at (0, 0) and (1, 0), can be made arbitrarily long, we conclude that for any t ≥ 1, there exists
an integer n, such that Fn is not a t-spanner.

We next show that there exists a constant c > 0, such that for any n ≥ 0, the graph Fn

is a c-Hausdorff-spanner. We actually show that 6 is such a constant.

Notation and definitions.

Let Fn = (V, E). The level of a vertex v ∈ V , denoted l(v), is the smallest index 0 ≤ i ≤ n,
such that v is already a vertex in Fi. If l(v) ≤ i − 1, we write l(v) = i−.

For a pair of vertices u, v ∈ V , we denote the path between u and v by P (u, v) =
(u, v1, v2, . . . , v) and its corresponding sequence of levels by Pl(u, v), that is, Pl(u, v) =
(l(u), l(v1), l(v2), . . . , l(v)). The level of u, v, denoted l(u, v), is now the smallest level i such
that there are at least two elements in the sequence Pl(u, v) that are smaller or equal to i.
For example, if Pl(u, v) = (1, 3, 3, 3, 2, 3, 3, 3), then l(u, v) = 2.

The path from the leftmost vertex to the rightmost vertex induces a natural order on
the vertices of Fn. We say that vertex u of Fn precedes/succeeds vertex v of Fn if u appears
before/after v in this path.

EuroCG’23

6:4 Hausdorff- and Fréchet-Spanners

Next, we define the bounding rectangle of three consecutive vertices v1, v2, v3 ∈ V ; see
Figure 3. If the angle between v1v2 and v2v3 is 240◦, then the bounding rectangle of v1, v2, v3
is the rectangle such that (i) v1v3 is one of its diagonals and (ii) if l(v1) < l(v3), the edge
v1v2 is contained in one of its long edges. Otherwise, the edge v2v3 is contained in one of
its long edges. If the angle between v1v2 and v2v3 is 60◦, then the bounding rectangle of
v1, v2, v3 is the rectangle such that (i) one of its edges is v1v3, and v2 is on the opposite edge.
Notice that the bounding rectangle is not always parallel to the axes, rather it is parallel to
either v1v2 or v2v3, in the former case, or to the line segment v1v3, in the latter case.

Figure 3 Top: The bounding rectangle when the angle between v1v2 and v2v3 is 240◦. Bottom:
The bounding rectangle when the angle between v1v2 and v2v3 is 60◦

.

▶ Observation 2.5. In Fn, for any two adjacent vertices, at least one of them is of level n.

▶ Observation 2.6. In the graph Fn and for 1 ≤ i ≤ n, let v1, v2 be two vertices that are
adjacent to each other in the graph Fi−1. Then there are exactly three vertices of level i

between v1 and v2.

▶ Observation 2.7. In the graph Fn and for 1 ≤ i ≤ n, let v1, v2, v3 be three vertices that
are consecutive in the graph Fi and let R be their bounding rectangle (with respect to Fi).
Then P (v1, v3) ⊆ R, that is, the path between v1 and v3 in Fn is contained in R.

▶ Observation 2.8. Consider the rectangle R from Observation 2.7. Then, the length of its
diagonal is at most √(

3
2 · 1

3i

)2
+
(√

3
2 · 1

3i

)2

=
√

3
3i

,

which is the length of its diagonal assuming it is the longer of the two possible rectangles,
see Figure 3 (top).

We now bound (from above) the Hausdorff distance (denoted dH) between a path P (u, v)
in Fn and the line segment uv as a function of l(u, v). The proof of the following lemma can
be found in the full version of this paper.

▶ Lemma 2.9. Consider the graph Fn = (V, E) and let u, v ∈ V such that l(u, v) = i, then
dH(P (u, v), uv) ≤

√
3

3i−1 .

Next, we bound d(u, v) for vertices u and v of Fn (from below) as a function of l(u, v).

T. Farhana and M. Katz 6:5

▶ Lemma 2.10. Consider the graph Fn = (V, E) and let u, v ∈ V such that l(u, v) = i, then
d(u, v) ≥ 1

3i ·
√

3
2 .

Proof. Let u′ (v′) be the level-i− vertex of Fn that precedes u (succeeds v). Since l(u, v) = i,
there is at most one vertex in P (u, v) of level i−. We distinguish between three cases. A
full description of Cases 2 and 3 can be found in the full version of this paper.

Case 1: There is no vertex of level i− in P (u, v). By Observation 2.6, there are exactly
three vertices of level i between u′ and v′. Moreover, at least two of them are in P (u, v)
(since l(u, v) = i and there is no vertex of level i− in P (u, v)). Assume, without loss of
generality, that the middle and the right of these level-i vertices are in P (u, v).

We draw two parallel lines as depicted in Figure 4a. The first line passes through the
left and middle level-i vertices, and the second line passes through the right level-i vertex
and is parallel to the first line. Next, we observe that u lies on one side of these lines and v

lies on the other side, and therefore the distance between u and v is at least the height of
the level-i triangle, formed by the three level-i vertices. It is easy to verify that this height
is 1

3i ·
√

3
2 . We conclude that d(u, v) ≥ 1

3i ·
√

3
2 .

Case 2: There is a 60◦-vertex w of level i− in P (u, v). As in Case 1, we draw two parallel
lines (see Figure 4b) that separate between u and v, and conclude that d(u, v) ≥ 1

3i ·
√

3
2 .

Case 3: There is a 240◦-vertex w of level i− in P (u, v). As in Case 1, we draw two
parallel lines (see Figure 4c) that separate between u and v, and conclude that d(u, v) ≥
1
3i ≥ 1

3i ·
√

3
2 . ◀

We are now ready to prove Theorem 2.4. We first show that for any n ≥ 0, the graph
Fn is a 6-Hausdorff-spanner. Let u, v be two vertices of Fn and set i = l(u, v). Then, on the
one hand by Lemma 2.9, dH(P (u, v), uv) ≤

√
3

3i−1 , and on the other hand by Lemma 2.10,
d(u, v) ≥ 1

3i ·
√

3
2 . Therefore,

dH(P (u, v), uv)
d(u, v) ≤

√
3

3i−1

1
3i ·

√
3

2

= 6 .

Next, let t ≥ 1. Then, there exists an integer n > 1, such that the length of the path
P between the extreme vertices of Fn (i.e., the vertices at (0, 0) and (1, 0)) is greater than
t, and therefore Fn is not a t-spanner (since the length of P over the length of the segment
between the extreme vertices of Fn is simply the length of P).

3 Fréchet spanners

3.1 t-spanners are ε-Fréchet-spanners
In this section we show that a t-spanner is an ε-Fréchet-spanner, for ε = f(t).

Let H be a t-spanner, t > 1, and let u, v ∈ S. We assume, with loss of generality, that
d(u, v) = 1 and that u = (0, 0) and v = (1, 0). Let P (u, v) be a t-path in H between u and
v. Then, P (u, v)’s length is at most t.

We first prove that P (u, v) is an ε-Fréchet-path, for ε = t
2 . This bound is useful when

t is ‘large’, but, since it is never smaller than 1/2, it is less useful when t approaches 1, in
which case we would like to show (if possible) that ε approaches 0. To address this issue,
we prove a second bound on ε, which is better when 1 < t < 2. Specially, we prove that
P (u, v) is also an ε-Fréchet-path, for ε =

√
t2−t√

2 .

EuroCG’23

6:6 Hausdorff- and Fréchet-Spanners

3.1.1 Bound 1 — The bound for large t

▶ Lemma 3.1. P (u, v) is a t
2 -Fréchet-path.

Proof. Let p be the middle point of P (u, v), that is, the distance from u to p (through
P (u, v)) is equal to the distance from p to v (through P (u, v)). Consider a dog and its
owner, both walking from u to v, where the dog is walking along P (u, v) and the owner is
walking along uv. Their hike consists of three stages. In the first, the owner is at u and the
dog advances to p; in the second, the owner advances from u to v, while the dog stays at p;
and in the third, the owner is at v and the dog advances from p to v.

We show that at any point along their hike, the distance between the dog and its owner
does not exceed t/2. Indeed, let p− be a point on P (u, v), anywhere between u and p. Then,
the distance from u to p− (through P (u, v)) is at most t/2, and therefore d(p−, u) ≤ t/2.
Similarly, let p+ be a point on P (u, v), anywhere between p and v. Then, the distance from
p+ to v (through P (u, v)) is at most t/2, and therefore d(p+, v) ≤ t/2. Finally, let q be a point
on uv. We need to show that d(p, q) ≤ t/2. Indeed, if qx ≤ px, then d(p, q) ≤ d(p, u) ≤ t/2,
and if qx ≥ px, then d(p, q) ≤ d(p, v) ≤ t/2. ◀

▶ Corollary 3.2. Any t-spanner is an ε-Fréchet-spanner, for ε = t
2 .

3.1.2 Bound 2 — The bound for small t
Recalling Observation 2.1, we observe that
▶ Observation 3.3. Let p be any point on P (u, v), then (i) − t−1

2 ≤ px ≤ t−1
2 and (ii)

−
√

t2−1
2 ≤ py ≤

√
t2−1
2 .

▶ Lemma 3.4. P(u,v) is a
√

t2−t√
2 -Fréchet-path.

Proof. Consider a dog and its owner, both walking from u to v, where the dog is walking
along P (u, v) and the owner is walking along uv. We denote the location of the dog at time
0 ≤ τ ≤ 1 by P (τ), where P (0) = u, P (1) = v, and, for any τ1 < τ2, the point P (τ2)
does not precede the point P (τ1) (on P (u, v)). Moreover, we denote the x-coordinate of the
rightmost point visited by the dog by time τ by xτ , that is, xτ = max{P (τ ′)x | 0 ≤ τ ′ ≤ τ}.

The location of the person is determined by the location of the dog. More precisely, at
time τ the person is at (max{xτ − t−1

2 , 0}, 0). Finally, if at time τ = 1 the person is not yet
at v, then she advances directly to v. Clearly, the person never moves backwards, since the
function xτ is non-decreasing.

We now prove that the distance between the dog and its owner never exceeds
√

t2−t√
2 . Let

0 ≤ τ ≤ 1. We distinguish between three cases.

Case 1: max{xτ − t−1
2 , 0} ≤ P (τ)x.

d(P (τ),(max{xτ − t − 1
2 , 0}, 0)) ≤

√
(P (τ)x − (xτ − t − 1

2))2 + P (τ)2
y

≤
√

(xτ − (xτ − t − 1
2))2 + P (τ)2

y ≤

√√√√
(

t − 1
2

)2
+
(√

t2 − 1
2

)2

=
√

t2 − 2t + 1
4 + t2 − 1

4 =
√

2t2 − 2t

4 =
√

t2 − t√
2

,

where the first inequality is true, since, if max{xτ − t−1
2 , 0} ̸= xτ − t−1

2 , then xτ − t−1
2 < 0

and both P (τ)x and (P (τ)x − (xτ − t−1
2)) are non-negative.

T. Farhana and M. Katz 6:7

Case 2: xτ − t−1
2 > 0 and P (τ)x < xτ − t−1

2 . We first observe that P (τ)x ≥ xτ − (t − 1),
since t ≥ xτ + (xτ − P (τ)x) + |1 − P (τ)x| ≥ xτ + (1 − P (τ)x). Now,

d(P (τ),(max{xτ − t − 1
2 , 0}, 0)) = d(P (τ), (xτ − t − 1

2 , 0))

=
√

(P (τ)x − (xτ − t − 1
2))2 + P (τ)2

y =
√

((xτ − t − 1
2) − P (τ)x)2 + P (τ)2

y

≤
√

((xτ − t − 1
2) − (xτ − (t − 1)))2 + P (τ)2

y

≤

√√√√
(

t − 1
2

)2
+
(√

t2 − 1
2

)2

=
√

t2 − t√
2

.

Case 3: xτ − t−1
2 ≤ 0 and P (τ)x < 0. By Observations 3.3, we have − t−1

2 ≤ P (τ)x < 0.

d(P (τ),(max{xτ − t − 1
2 , 0}, 0)) = d(P (τ), (0, 0)) =

√
P (τ)2

x + P (τ)2
y

≤

√√√√
(

− t − 1
2

)2
+
(√

t2 − 1
2

)2

=
√

t2 − t√
2

.

We have shown that in all cases the distance between the dog and its owner is at most√
t2−t√

2 . Moreover, if the dog reaches v first, then during the last part of the person’s hike,
this distance only decreases. We thus conclude that P(u,v) is a

√
t2−t√

2 -Fréchet-path. ◀

▶ Corollary 3.5. Any t-spanner is an ε-Fréchet-spanner, for ε =
√

t2−t√
2 .

3.2 ε-Fréchet-spanners are not necessarily t-spanners
Consider the graph Fn, defined in Section 2.2. One can prove that Fn is a c-Fréchet-spanner,
for c ≤ 6, in essentially the same way as we proved that it is a c-Hausdorff-spanner, for
c ≤ 6. More precisely, referring to Lemma 2.9, since both P (u, v) and uv are contained in
the rectangle R, the Fréchet distance between them is at most the length of R’s diagonal,
that is, dF (P (u, v), uv) ≤

√
3

3i−1 . We thus conclude that

▶ Theorem 3.6. There exists a constant c > 0, such that for any t > 1, one can construct
a graph that is a c-Fréchet-spanner and is not a t-spanner.

Acknowledgment. We thank Boris Aronov for helpful discussions on the connection be-
tween t-spanners and ε-Hausdorff-spanners.

References
1 Helge von Koch. Sur une courbe continue sans tangente, obtenue par une construction

géométrique élémentaire. Arkiv för matematik, astronomi och fysik (in French). 1:681–704,
1904.

2 Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University
Press, 2009.

EuroCG’23

6:8 Hausdorff- and Fréchet-Spanners

(a) Case 1: There is no vertex of level i− in P (u, v).

(b) Case 2: There is a 60◦-vertex of level i− in P (u, v).

(c) Case 3: There is a 240◦-vertex of level i− in P (u, v).

Figure 4 Proof of Lemma 2.10. The arrows mark the vertices that are known to be in P (u, v).

Flip Graphs for Arrangements of Pseudocircles∗

Stefan Felsner1, Johannes Obenaus2, Sandro Roch3, Manfred
Scheucher4, and Birgit Vogtenhuber5

1 Institut für Mathematik, Technische Universität Berlin, Germany
felsner@math.tu-berlin.de

2 Institut für Informatik, Freie Universität Berlin, Germany
johannes.obenaus@fu-berlin.de

3 Institut für Mathematik, Technische Universität Berlin, Germany
roch@math.tu-berlin.de

4 Institut für Mathematik, Technische Universität Berlin, Germany
scheucher@math.tu-berlin.de

5 Institute of Software Technology, Graz University of Technology, Austria
bvogt@ist.tugraz.at

Abstract
An arrangement of pseudocircles is a finite collection of simple closed curves in the plane such that
every pair of curves is either disjoint or intersects in two crossing points. We study flip graphs of
families of pseudocircle arrangements. We prove that triangle flips induce a connected flip graph
(i) on intersecting arrangements and (ii) on cylindrical intersecting arrangements. Our constructions
make essential use of variants of the sweeping lemma for pseudocircle arrangements due to Snoeyink
and Hershberger (Proc. SoCG 1989: 354–363). We also study cylindrical arrangements in their own
right and provide new combinatorial characterizations of this class of pseudocircle arrangements.

1 Introduction

Reconfiguration is a widely studied topic in discrete mathematics and theoretical computer
science [9]. In many cases, reconfiguration problems can be stated in terms of a flip graph. For
a class of objects, the flip graph has a vertex for each object and adjacencies are determined by
a local flip operation, which transforms one object into another. Typically, the first question
is whether a flip graph is connected. In the affirmative case, more refined questions regarding
diameter, the degree of connectivity, or Hamiltonicity can be of interest. Hamiltonicity of
flip graphs is related to Gray codes, cf. [8]. For further details on flip-graphs in general we
also refer the reader to the survey [2].

Ringel [10] showed flip-connectivity for arrangements of pseudolines under triangle flips.
There, an arrangement of pesudolines is a set of bi-infinite curves that pairwise intersect
exactly once. A triangle flip then corresponds to moving a pseudoline incident to a triangular
cell over the crossing of the two other pseudolines. If pseudolines are also allowed to be
disjoint, flipping triangles is not enough, as one also needs to allow two pseudolines to become
intersecting or non-intersecting. Snoeyink and Hershberger [11] showed flip-connectivity for
such arrangements of pseudolines with these three operations.

∗ This work was initiated at a workshop of the collaborative DACH project Arrangements and Drawings
in Lutherstadt Wittenberg in April 2022. We thank all the participants for the inspiring atmosphere.
S.F. was supported by DFG Grant FE 340/13-1. J.O. was supported by ERC StG 757609. S.R. was
supported by DFG-Research Training Group ’Facets of Complexity’ (DFG-GRK 2434). M.S. was
supported by DFG Grant SCHE 2214/1-1.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

7:2 Flip Graphs for Arrangements of Pseudocircles

Similarly, in the context of arrangements of pseudocircles, which have been first studied
by Grünbaum [7], flipping triangles is not enough if disjoint pseudocircles are allowed. In such
cases, the set of flips is extended by digon-create to allow two initially disjoint pseudocircles
to start intersecting in a digon and the reverse operation, called digon-collapse (see Section 2
for definitions).

With all the three flips, the flip-connectivity of arrangements of proper circles is evident
since one can shrink all the circles until they have pairwise disjoint interiors. Essentially the
same idea works for arrangements of pseudocircles. In this case, however, the fact that a
pseudocircle can be shrunk is based on the sweeping lemma of Snoeyink and Hershberger [11].
Allowing only triangle flips, Felsner and Scheucher [5] showed flip-connectivity for classes of
arrangements of proper circles and conjectured that the results persist for pseudocircles:

▶ Conjecture 1 ([5, Conjecture 8.6]). For every n ∈ N:

(1) The flip graph of intersecting arrangements of n pseudocircles is connected.
(2) The flip graph of digon-free intersecting arrangements of n pseudocircles is connected.

As the main result of this article we prove part (1) of Conjecture 1.

▶ Theorem 1.1. The flip graph of arrangements of n pairwise intersecting pseudocircles is
connected.

For our proof of Theorem 1.1, we use cylindrical arrangements. These are arrangements
of pseudocircles in the plane such that the bounded interiors of all the pseudocircles have
a common intersection, which we call the center . We first show that every cylindrical
intersecting arrangement can be flipped into a canonical arrangement by only using triangle
flips and without leaving the class of cylindrical arrangements.

▶ Theorem 1.2. The flip graph of cylindrical arrangements of n pairwise intersecting
pseudocircles is connected.

Showing that every intersecting arrangement A can be flipped into some cylindrical
arrangement then completes the proof of Theorem 1.1. We further study the diameter of flip
graphs. In each of the two considered settings (cylindrical / general arrangements of pairwise
intersecting pseudocircles), we obtain asymptotically tight bounds for the diameter.

▶ Proposition 1.3. The flip graph of cylindrical arrangements of n pairwise intersecting
pseudocircles has diameter at least 2

(
n
3
)

and at most 4
(

n
3
)
.

▶ Proposition 1.4. The flip graph of arrangements of n pairwise intersecting pseudocircles
has diameter Θ(n3).

Last but not least, we present the following equivalent characterizations of cylindrical
arrangements of pseudocircles (cf. the full version of this paper). Item (2) uses a special
arrangement of three pseudocircles that we call NonKrupp(3) (see Section 2), for items (3-4),
we orient pseudocircles counterclockwise, which induces an orientation on the edges of the
arrangement, and the eccentricity in item (5) refers to the dual graph of the arrangement:
The eccentricity of a face in an arrangement of pseudocircles is the maximum distance to any
other face, where the distance between two faces z, z′ is the minimum number of pseudocircles
that a curve starting in the interior of z and ending in the interior of z′ must cross.

S. Felsner, J. Obenaus, S. Roch, M. Scheucher, and B. Vogtenhuber 7:3

▶ Proposition 1.5. Let A be an arrangement of n pseudocircles with pairwise overlapping
interiors. Then, the following five statements are equivalent:

(1) A is cylindrical.
(2) A does not contain a NonKrupp(3) as a subarrangement.
(3) There is no clockwise oriented cycle in A.
(4) There is no clockwise oriented face in A.
(5) The unbounded face has eccentricity n.

2 Preliminaries

A pseudocircle is a simple closed curve C which partitions the plane into a bounded region,
the interior int(C), and an unbounded region, the exterior ext(C). An arrangement of
pseudocircles is a finite collection of pseudocircles such that every two pseudocircles either are
disjoint or they intersect in two points, where the curves cross properly. Furthermore, no three
pseudocircles intersect in a common point. An arrangement partitions the plane into vertices
(the intersection points), edges (maximal contiguous vertex-free pieces of pseudocircles), and
faces (connected components of the plane after removing all pseudocircles).

A face with k edges along its boundary is a k-face, a 2-face is a digon (some authors call
it empty lens), and a 3-face is a triangle. It is an instructive exercise to verify that there are
exactly four arrangements of three pairwise intersecting pseudocircles (shown in Figure 1).

(a) (b) (d)(c)

Figure 1 The four non-isomorphic arrangements of 3 pairwise intersecting pseudocircles in the
plane. (a) shows the Krupp and (b)–(d) show the three types of NonKrupp arrangements.

Following [5], we call the arrangement, depicted in Figure 1(a), with 8 triangles the
Krupp arrangement and the other ones NonKrupp. To make them distinguishable we write
NonKrupp(k) to denote the NonKrupp arrangement whose unbounded face has complexity k,
e.g., NonKrupp(2) is the arrangement shown in Figure 1(c). Note that among the arrange-
ments of Figure 1, the arrangement (d), i.e., the NonKrupp(3), is the only non-cylindrical.

2.1 Sweeps and Flips
Snoeyink and Hershberger [11] studied continuous transformations of curves and, in particular,
of pseudocircles. More precisely, they define the sweep of a pseudocircle as a continuous
process to expand or shrink the pseudocircle. However, crucially, they also argue that
this continuous process can be viewed as a discrete process as the combinatorics of the
arrangement changes with one of the following operations, called flips:

a pseudocircle moves over the crossing of two others (triangle flip),
a pseudocircle gains two intersections with a pseudocircle (digon-create), or
a pseudocircle loses its two intersections with a pseudocircle (digon-collapse).

EuroCG’23

7:4 Flip Graphs for Arrangements of Pseudocircles

digon-collapse

digon-create

triangle-flip

Figure 2 An illustration of the three flip operations.

Figure 2 depicts the three flip operations. Whenever we speak of flips without further
specification we refer to these three flips, the term digon flip refers to the two flips involving
a digon, and otherwise we use the precise term when referring to a specific type of flip.

Snoeyink and Hershberger prove a sweeping lemma (cf. [11, Lemma 3.2]) for families of
simple curves that pairwise intersect at most twice and are either bi-infinite or closed (i.e.,
pseudocircles). The flip operations for bi-infinite curves are defined analogously.

▶ Lemma 2.1 (Sweeping Lemma [11]). Let A be an arrangement of pseudocircles or an
arrangement of bi-infinite curves that pairwise intersect at most twice. Then A can be swept
starting from any curve C in A by using three operations: triangle flips, digon-create, and
digon-collapse.

Note that in the context of pseudocircles we sweep towards the inside or outside, whereas
in the context of bi-infinite curves we sweep upwards or downwards. It is straight-forward to
verify that Lemma 2.1 implies the flip-connectivity for arrangements of pseudocircles.

It will be convenient to have a separate sweeping lemma for lenses. A lens in an
arrangement is a maximally bounded region in a subarrangement formed by two intersecting
pseudocircles. An arc is a contiguous subset of a pseudocircle, starting and ending at a
vertex of the arrangement.

Let A be an arrangement of pseudocircles and let Q be (the closure of) a lens bounded by
two pseudocircles CL and CR. We denote by L = CL ∩ Q and R = CR ∩ Q the two boundary
arcs on Q belonging to CL and CR, respectively. An arc of Q is a maximal connected piece
of the intersection of a pseudocircle C with Q, where C /∈ {CL, CR}. In other words, an arc
of Q is always a contiguous subset of C which has both endpoints on the boundary of Q and
whose relative interior lies completely in the interior of Q. If an arc a of Q has both endpoints
on L or both endpoints on R, then a forms a lens with L or R, respectively. Otherwise
the arc has one endpoint on L and one on R, in this case we call the arc transversal (see
Figure 3).

L
R

CLCR

Q

Figure 3 Illustration of Lemma 2.2: a lens Q with four transversal arcs and a sweep of Q.

S. Felsner, J. Obenaus, S. Roch, M. Scheucher, and B. Vogtenhuber 7:5

▶ Lemma 2.2. If Q is a lens and all the arcs of Q are transversal, then, using only triangle
flips, L can be swept towards R until the interior of Q does not contain a vertex of the
arrangement anymore.

2.2 Cylindrical Arrangements
An arrangement of pseudoparabolas is a finite collection of x-monotone curves defined over
a common interval such that every two curves are either disjoint or intersect in two points
where the curves cross. The following result gives a reversible mapping from cylindrical
arrangements to arrangements of pseudoparabolas. The result has been announced by Bultena
et al. [3, Lemma 1.3] and a full proof has been given by Agarwal et al. [1, Lemma 2.11].

▶ Proposition 2.3 ([3, 1]). A cylindrical arrangement of pseudocircles C can be mapped to an
arrangement of pseudoparabolas A in an axis-aligned rectangle B such that C is isomorphic to
the arrangement obtained by identifying the two vertical sides of B and mapping the resulting
cylindrical surface homeomorphically to a ring in the plane.

3 Flip Graphs on Pseudocircle Arrangements

We here sketch the flip-connectivity (Theorem 1.2 and Theorem 1.1).

3.1 Proof Sketch of Theorem 1.2: Connectivity Cylindrical
We prove the flip-connectivity for cylindrical arrangements by showing that any given
arrangement can be flipped to a canonical arrangement which is depicted in Figure 4.

C1

C2

Cn

C1

C2

Cn

Figure 4 The canonical arrangement for cylindrical arrangements.

Let A be an intersecting, cylindrical arrangement of n pseudocircles. Using Proposition 2.3,
we can represent A as a pseudoparabola arrangement, in which we label the curves from top
to bottom by C1, . . . , Cn. The idea is to flip the pseudoparabolas downwards one by one in
the order of increasing indices, as illustrated in Figure 5. The availability of suitable triangle
flips follows from Lemma 2.1 and our construction to consider pseudoparabolas from top to
bottom. This completes the proof sketch for Theorem 1.2.

3.2 Proof Sketch of Theorem 1.1: Connectivity Intersecting
Let A be an arrangement of n pairwise intersecting pseudocircles. We show by induction
on n that A can be transformed into a cylindrical arrangement with a finite number of
triangle flips. The flip-connectivity then follows from Theorem 1.2.

EuroCG’23

7:6 Flip Graphs for Arrangements of Pseudocircles

C1

Ck

Cn

Ck

Cn

Figure 5 Illustration of the proof of Theorem 1.2: flipping the pseudoparabola Ck downwards.

The induction base is trivially fulfilled for n = 2. For the induction step, we choose a
designated point p which lies inside a maximum number of pseudocircles. If p lies in the
interior of all pseudocircles, then A is already cylindrical and we are done.

Hence, we may assume that there exists a pseudocircle C which does not contain p in
its interior. We show how to expand C until containing p, using only triangle flips. First
observe that Lemma 2.1 guarantees the existence of a flip to expand C. Since C already
intersects all other pseudocircles, this must be a triangle or digon-collapse flip. As long as
there exists a triangle flip expanding C, we perform it and transform A accordingly.

Suppose now that C does not yet contain p and can only be expanded by collapsing a
digon formed with another pseudocircle C ′. Then all remaining pseudocircles must intersect
the lens int(C) ∩ ext(C ′) transversally (see Figure 6). Hence, using Lemma 2.2, we can
expand C ′ until C and C ′ are parallel. We say that two pseudocircles C and C ′ are parallel
in A if every vertex of A − {C, C ′} lies in (int(C) ∩ int(C ′)) or in (ext(C) ∩ ext(C ′)).

Next consider the arrangement A′ := A − C ′ which is obtained by deleting C ′ from A.
By the induction hypothesis, A′ can be transformed into a cylindrical arrangement by a
finite sequence of triangle flips. We now carefully mimic this flip sequence on A, while
maintaining that C and C ′ are parallel. Suppose that a triangle T in A′ is flipped. If none
of the edges of T belongs to C, we can directly apply this triangle flip also in A. If one of
the edges e of T belongs to C and e is crossed by C ′ then the digon D is located along e.
In this case, we apply two triangle flips to C ′ so that the digon is transferred to one of the
two neighboring edges of C as illustrated in Figure 6, obtaining that e is not crossed by C ′

(without changing A′). Finally, if e is not crossed by C ′ then we apply the according triangle
flip twice, namely, once for C and once for C ′. This completes the proof sketch.

TT
C

C ′

C

C ′

C

C ′

Figure 6 Left: C forms a digon with C′ that is in ext(C) ∩ int(C′). Middle: flip C′ so that it
becomes parallel to C. Right: flip C′ so that T becomes also a triangle in A.

S. Felsner, J. Obenaus, S. Roch, M. Scheucher, and B. Vogtenhuber 7:7

4 Conclusion

While we have proven part (1) of Conjecture 1, part (2) remains a challenging open question.
Also, several questions concerning the structure of the flip graphs remain open, such as
Hamiltonicity or the degree of connectivity. The maximum degree ∆ of the flip graph
corresponds to the maximum number of triangles among all arrangements and ∆ = 4

3
(

n
2
)

+
O(n) is known [6]. The minimum degree δ corresponds to the minimum number of triangles
among all arrangements. For (not necessarily digon-free) intersecting arrangements 2n

3 ≤
δ ≤ n − 1 is known and δ = n − 1 is conjectured for n ≥ 3. For digon-free intersecting
arrangements δ = max{8, ⌈ 4n

3 ⌉} holds for n ≥ 3 [4, 6].

References
1 Pankaj K. Agarwal, Eran Nevo, János Pach, Rom Pinchasi, Micha Sharir, and Shakhar

Smorodinsky. Lenses in arrangements of pseudo-circles and their applications. Journal of
the ACM, 51(2):139–186, 2004. doi:10.1145/972639.972641.

2 Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Computational Geometry,
42(1):60–80, 2009. doi:10.1016/j.comgeo.2008.04.001.

3 Bette Bultena, Branko Grünbaum, and Frank Ruskey. Convex drawings of intersecting
families of simple closed curves. In Proceedings of the 11th Canadian Conference on
Computational Geometry (CCCG’99), pages 18–21, 1999. URL: http://www.cccg.ca/
proceedings/1999/c14.pdf.

4 Stefan Felsner, Sandro Roch, and Manfred Scheucher. Arrangements of pseudocircles: On
digons and triangles, 2022. To appear in Proc. of GD’22. arXiv:2208.12110.

5 Stefan Felsner and Manfred Scheucher. Arrangements of Pseudocircles: On Circularizability.
Discrete & Computational Geometry, Ricky Pollack Memorial Issue, 64:776–813, 2020.
doi:10.1007/s00454-019-00077-y.

6 Stefan Felsner and Manfred Scheucher. Arrangements of Pseudocircles: Triangles and
Drawings. Discrete & Computational Geometry, 65:261–278, 2021. doi:10.1007/
s00454-020-00173-4.

7 B. Grünbaum. Arrangements and Spreads, volume 10 of CBMS Regional Conference Series
in Mathematics. American Mathematical Society, 1972. doi:10.1090/cbms/010.

8 Torsten Mütze. Combinatorial Gray codes-an updated survey, 2022. arXiv:2202.01280.
9 Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. doi:

10.3390/a11040052.
10 Gerhard Ringel. Teilungen der Ebene durch Geraden oder topologische Geraden. Mathema-

tische Zeitschrift, 64:79–102, 1956. doi:10.1007/BF01166556.
11 Jack Snoeyink and John Hershberger. Sweeping arrangements of curves. In Jacob Eli

Goodman, Richard Pollack, and William L. Steiger, editors, Discrete & Computational
Geometry: Papers from the DIMACS Special Year, volume 6 of DIMACS, pages 309–349.
AMS, 1991. doi:10.1090/dimacs/006/21.

EuroCG’23

https://doi.org/10.1145/972639.972641
https://doi.org/10.1016/j.comgeo.2008.04.001
http://www.cccg.ca/proceedings/1999/c14.pdf
http://www.cccg.ca/proceedings/1999/c14.pdf
http://arXiv.org/abs/2208.12110
https://doi.org/10.1007/s00454-019-00077-y
https://doi.org/10.1007/s00454-020-00173-4
https://doi.org/10.1007/s00454-020-00173-4
https://doi.org/10.1090/cbms/010
http://arXiv.org/abs/2202.01280
https://doi.org/10.3390/a11040052
https://doi.org/10.3390/a11040052
https://doi.org/10.1007/BF01166556
https://doi.org/10.1090/dimacs/006/21

On the number of iterations of the DBA algorithm
Frederik Brüning1, Anne Driemel2, Alperen Ergür3, and Heiko
Röglin4

1 Department of Computer Science, University of Bonn, Germany
2 Hausdorff Center for Mathematics, University of Bonn, Germany
3 The University of Texas at San Antonio, partially supported by NSF CCF

2110075
4 Department of Computer Science, University of Bonn, Germany

Abstract
The DTW Barycenter Averaging (DBA) algorithm is a widely used algorithm for estimating the
mean of a given set of point sequences. In this context, the mean is defined as a point sequence that
minimises the sum of dynamic time warping distances (DTW). In our paper, we aim to initiate a
theoretical study of the number of iterations that the algorithm performs until convergence. We
assume the algorithm is given n sequences of m points in Rd and a parameter k that specifies the
length of the mean sequence to be computed. In an attempt to better understand the performance
of the algorithm on non-degenerate input, we study DBA in the model of smoothed analysis, upper-
bounding the expected number of iterations in the worst case under random perturbations of the
input. Our smoothed upper bound is polynomial in k, n and d, and in case n is a constant, also
polynomial in m.

1 Introduction

The DTW Barycenter Averaging (DBA) algorithm [11] was introduced by Petitjean, Ket-
terlin and Gançarski in 2011 and has since been used in many applications for clustering
time series data. The objective is to find a representative time series that optimally sum-
marizes a given set of input time series. Here, the optimality is measured using the sum
of dynamic time warping (DTW) distances to the input sequences. The DBA algorithm
has found application in the context of optimization of energy systems [15], forecasting of
household electricity demand [14], and human activity recognition [13] to name a few. The
representation computed by the DBA algorithm is used to speed up classification tasks on
time series [10] and to improve the training of neural networks [5, 6]. Despite its popularity,
the DBA algorithm is a heuristic in the double meaning that it neither comes with any
guarantees on the quality of the solution nor on the running time.

Objective In this paper, we initiate a study of the number of iterations that the DBA
algorithm performs until convergence. While convergence properties of the algorithm have
been studied before [12], it seems that the running time of the algorithm has not been the
subject of rigorous study up to now. We follow a line of thought that has proved successful
for the closely related k-means algorithm by Stuart Lloyd [9]. For this algorithm it is known
that the number of iterations in the worst case is exponential [2, 7, 8, 16]. However, on most
practical instances k-means is reported to converge very fast. Moreover, using smoothed
analysis, it has been shown that the expected running time under random perturbations of
the input is merely polynomial [1].
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

8:2 On the number of iterations of the DBA algorithm

Preliminaries For n ∈ N, we define [n] as the set {1, . . . , n}. We call an ordered sequence of
points p1, . . . , pm in Rd a point sequence of length m. For two points p, q in Rd, we denote
with ∥p−q∥2 the squared Euclidean distance, where ∥.∥ is the standard Euclidean norm.
For m1, m2 ∈ N, each sequence (1, 1) = (i1, j1), (i2, j2), . . . , (iM , jM) = (m1, m2) such that
ik− ik−1 and jk− jk−1 are either 0 or 1 for all k is a warping path from (1, 1) to (m1, m2).
We denote with Wm1,m2 the set of all warping paths from (1, 1) to (m1, m2). For any two
point sequences γ1 = (γ1,1, . . . , γ1,m1) ∈ (Rd)m1 and γ2 = (γ2,1, . . . , γ2,m2) ∈ (Rd)m2 , we
also write Wγ1,γ2 =Wm1,m2 , and call elements of Wγ1,γ2 warping paths between γ1 and γ2.
The dynamic time warping distance between the sequences γ1 and γ2 is defined as

dDTW(γ1, γ2) = min
w∈Wγ1,γ2

∑

(i,j)∈w

∥γ1,i − γ2,j∥2

A warping path that attains the above minimum is also called an optimal warping path
between γ1 and γ2. We denote with W∗m1,m2 ⊂ Wm1,m2 the set of warping paths w such
that there exist point sequences γ1 ∈ (Rd)m1 and γ2 ∈ (Rd)m2 with this optimum warping
path w. Let X = {γ1, . . . , γn} ⊂ (Rd)m be a set of n point sequences of length m and
C ∈ (Rd)k be a point sequence of length k. We call a sequence π of tuples (p, c) where p

is an element of some point sequence in X and c is an element of the point sequence C an
assignment map between X and C. We call an assignment map between X and C valid
if for each 1 ≤ i ≤ n the sequence of all tuples (p, c) of π for which p is a point of γi forms a
warping path w(π)i between γi and C. We call a valid assignment map optimal if for each
1 ≤ i ≤ n the formed warping path is an optimal warping path. We define the cost of an
assignment map π as Φ(π) =

∑
(p,c)∈π∥p − c∥2. Similarly, we define the total warping

distance of a valid assignment map π with respect to a point sequence x = (x1, . . . , xk) as
Ψπ(x) =

∑n
i=1

∑
(j1,j2)∈w(π)i

∥γi,j1 − xj2∥2.

1.1 The DBA Algorithm
Let X be a set of n point sequences γ1, . . . , γn ∈ (Rd)m. Let C ∈ (Rd)k be another point
sequence and w(1), . . . , w(n) ∈ Wm,k be chosen such that w(i) is an optimal warping path
between γi and C. Then w(1), . . . , w(n) define an optimal assignment map π between X and
C. The assignment map π can be represented by sets S1(π), S2(π), . . . , Sk(π), where

Si(π) = ∪n
j=1{γj,t | (i, t) ∈ w(j)}

is the union of points over all n point sequences that are assigned to the i’th point of the
average point sequence C. By construction, the assignment map π minimizes the DTW
distance between the input point sequences γ1, . . . , γn ∈ (Rd)m and C.

In the opposite direction, we can also create an average point sequence, that minimizes
the sum of DTW distances for a fixed assignment map π. To this end, we define

Cπ = (c1(π), c2(π), c3(π), . . . , ck(π)) where ci(π) := 1
|Si(π)|

∑

p∈Si(π)

p.

The DBA algorithm alternately computes assignment maps and average point sequences
in the manner described above. It goes as follows.

1. Let π0 be an initial assignment map (e.g. defined by w
(1)
0 , . . . , w

(n)
0 drawn uniformly at

random from Wm,k). Let j ← 0.
2. Let j ← j + 1. Compute the average point sequence Cπj−1 based on πj−1.

F. Brüning, A. Driemel, A. Ergür and H. Röglin 8:3

3. Compute optimal warping paths w
(i)
j between γi and Cπj−1 for all 1 ≤ i ≤ n. The

warping paths define an optimal assignment map πj between X and Cπj−1 .
4. If Φ(πj) ̸= Φ(πj−1), then go to Step 2. Otherwise, terminate.

2 Upper bound based on geometric assumptions on the input data

We denote the set of valid assignment maps from n input point sequences of length m to
a point sequence of length k with An,m,k. It is |An,m,k| ≤ mkn. For an assignment map
π ∈ An,m,k and a point sequence x = (x1, x2, . . . , xk) with xi ∈ Rd, we can rewrite the total
warping distance as

Ψπ(x) :=
k∑

i=1

∑

y∈Si(π)

∥y − xi∥2

Our first observation is that for all x we have Ψπ(x) ≥ Ψπ(Cπ). We would like to express
Ψπ(x) in a way that resembles an inertia. We set Iπ :=

∑k
i=1

∑
y∈Si(π)(∥y∥2 − ∥ci(π)∥2).

Observe that Iπ = Ψπ(Cπ). We see Iπ as the inertia of the assignment map π, and we have

Ψπ(x) = Iπ +
k∑

i=1
|Si(π)| ∥xi − ci(π)∥2

This section uses two assumptions on the input data: First assumption is a basic nor-
malization assumption, and the second one is a non-degeneracy assumption.
Normalization Assumption: We assume the input data is normalized so that for any
vector y in any input point sequence we have ∥y∥2 ≤ B.
Separation Assumption: For any two different assignment maps α, β ∈ An,m,k we have

∥Cα − Cβ∥2 ≥ ε

With the help of the following lemma, we can derive an upper bound in Theorem 2.2.

▶ Lemma 2.1. For every α ∈ An,m,k, we have Iα ≤ Bn(m + k).

Proof.

Iα =
k∑

i=1

∑

y∈Si(α)

(∥y∥2 − ∥ci(α)∥2) ≤ B
k∑

i=1
|Si(α)|

Note that every warping path between the average point sequence of length k and an input
point sequence of length m consists of at most m + k many steps. This means every point
sequence contributes to the sum

∑k
i=1|Si(α)| with at most m + k elements, and hence we

have
∑k

i=1|Si(α)| ≤ n(m + k). ◀

▶ Theorem 2.2. If the input data satisfies the normalization assumption with parameter
B and separation assumption with parameter ε, then the number of steps performed by the
DBA algorithms is at most

B(m + k)
ε

Proof. Suppose the DBA algorithm has started from assignment map π0. If the DBA
algorithm takes a step from some assignment map α to some assignment map β this means

Iα = Ψα(Cα) > Ψβ(Cα) = Iβ +
k∑

i=1
|Si(β)| ∥ci(α)− ci(β)∥2

EuroCG’23

8:4 On the number of iterations of the DBA algorithm

Since |Si(β)| ≥ n for all i, this implies Iα > Iβ + n∥Cα − Cβ∥2. Using the seperation
assumption on the data and Lemma 2.1 , we get

Iα > Iβ + nε ≥ Iβ + ε

B(m + k)Iπ0 (1)

Let πT be the assignment map after T steps of DBA, then we have by (1) that

IπT
< Iπ0 − T

ε

B(m + k)Iπ0

◀

3 Smoothed Analysis

Our randomness model is as follows: An adversary specifies an instance X ′ ∈ ([0, 1]d)nm of
n point sequences γ1, . . . , γn of length m in [0, 1]d, where each sequence γi is given by its m

points γi = (γi,1, . . . , γi,m). Then we add to each vertex of X ′ an independent d-dimensional
random vector with independent Gaussian coordinates of mean 0 and standard deviation σ.
The resulting vectors form the input point sequences. We assume without loss of generality
that σ ≤ 1, since the case σ > 1 corresponds to a scaled down instance X ′ ∈ ([0, 1

σ]d)nm

with additive d-dimensional Gaussian random vectors with mean 0 and standard deviation
1. We call this randomness model m-length sequences with N (0, σ) perturbation.

We note that the results in this section hold for a more general family of random input
models (See Section 1.5 of [4] or Section 3.1 of [3]). We conduct the analysis only for
Gaussian perturbation for the sake of simplicity and obtain the following theorem.

▶ Theorem 3.1. Suppose d ≥ 2, then the expected number of iterations until DBA converges
is at most

O

(
n2m8 n

d +6d4k6 ln(nm)4

σ2

)
.

To proof Theorem 3.1, we first bound the probability that the normalization assumption
and the separation assumption hold for suitable parameters.

▶ Lemma 3.2. Let γ1, γ2, . . . , γn be independent m-length sequences with N (0, σ) perturba-
tion. Then, we have

P{ max
1≤i≤n

max
y∈γi

∥y∥ ≥
√

d + tσ
√

2d ln nm} ≤ e1−t2

Proof. By our assumptions every vector in input sequences is given by D + Y where D is
a deterministic vector with norm at most

√
d and Y is a random vector with Gaussian i.i.d

coordinates N (0, σ). By triangle inequality ∥D+Y ∥ ≤
√

d+∥Y ∥. Since Y has Gaussian i.i.d
coordinates N (0, σ), we can apply the standard tail bound P{∥Y ∥ ≥ tσ

√
d} ≤ e1− t2

2 . ◀

▶ Lemma 3.3. Let γ1, γ2, . . . , γn ∈ Rdm be m-length point sequences with N (0, σ) perturba-
tion. Let Cα and Cβ be two different average point sequences corresponding to assingment

maps α and β. Then, we have P{∥Cα−Cβ∥2 ≤ ε} ≤
(

nm
√

ε
σ

)d

. Furthermore, the separation
assumption with parameter ε holds on γ1, γ2, . . . , γn with probability at least

1−m4n

(
nm
√

ε

σ

)d

.

F. Brüning, A. Driemel, A. Ergür and H. Röglin 8:5

Proof. Since the instances are perturbed and the assignment maps are different, we have
with probability 1 that there exists an i ∈ [k] such that ci(α) ̸= ci(β). The event ∥Cα −
Cβ∥2 ≤ ε further implies ∥ci(α) − ci(β)∥ ≤ √ε. We first bound the probability that this
event ∥ci(α)− ci(β)∥ ≤ √ε occurs for the fixed ci(α) and ci(β).

Let Si(α) and Si(β) denote the sets of points in X that were assigned to ci(α) and ci(β)
respectively. Since ci(α) ̸= ci(β), it immediately follows that Si(α) ̸= Si(β). So we can
fix a point s ∈ Si(α)△Si(β). We let an adversary fix all points in Si(α) ∪ Si(β) \ {s}. In
order for ci(α) and ci(β) to be

√
ϵ-close, we need s to fall into a hyperball of radius nm

√
ϵ.

Because s is drawn from a Gaussian distribution with standard deviation σ, this happens
with probability at most

(
nm
√

ϵ
σ

)d

. So in total, we have

P{∥Cα − Cβ∥2 ≤ ε} ≤ P{∥ci(α)− ci(β)∥ ≤ √ε} ≤
(

nm
√

ε

σ

)d

To prove the second claim, we apply a union bound over all possible choices for ci(α)
and ci(β). Since each ci(α) and ci(β) is uniquely determined by its assigned points Si(α)
and Si(β) it suffices to bound these. For each input point sequence, there are at most

(
m
2
)

possible choices for the set of points that get assigned to a fixed center point: This is the
case since all points that get assigned to the same center point have to be consecutive. So
the points that get assigned to the center point are uniquely determined by the first and the
last point that gets assigned to the center point. For n input point sequences all possible
assignments to an arbitrary center point are therefore bounded by

(
m
2
)n. Since we choose

two center points ci(α) and ci(β), there are at most
(

m

2

)2n

≤ m4n

possible choices for the assigned points Si(α) and Si(β) that determine ci(α) and ci(β). The
statement follows by applying the union bound over possible choices for ci(α) and ci(β). ◀

As a combination of Lemma 3.2 and Lemma 3.3, we get the following Lemma.

▶ Lemma 3.4. Let γ1, γ2, . . . , γn be independent m-length sequences with N (0, σ) perturba-
tion, and suppose d ≥ 2 and k ≤ m. Then, the DBA algorithm implemented on the input
data γ1, γ2, . . . , γn converges in at most

s

(
a1n2m8 n

d +5d3k5 ln(nm)3

σ2

)

steps with probability at least 1− s−
d
2 − (2n)−dk − 2−8mdk2 where a1 is constant.

Proof. In Lemma 3.2, we set t = 2 ln((2n)dk28mdk2) ≤ 16mdk2 ln(4n) to get that the nor-
malization assumption is fulfilled for some B ≤ a2σ2d3k4m2 ln(nm)3 with probability at
least 1− (2n)−dk − 2−8mdk2 where a2 is constant. Then we use Lemma 3.3 with

ε = σ2

sn2m8 n
d +2

and apply Theorem 2.2. ◀

With the help of the Lemma 3.4, we are now ready to prove Theorem 3.1.

EuroCG’23

8:6 On the number of iterations of the DBA algorithm

Proof of Theorem 3.1. Let X be the number of steps that DBA performs. In the full ver-
sion, we show with some classical tools from real algebraic geometry that X ≤ a2(2n)dk28mdk2

for some constant a2. Let´s set M := a2(2n)dk28mdk2 for simplicity. We have

E[X] =
M∑

i=1
P{X ≥ i} ≤ K +

M∑

t=K

P{X ≥ t}

for any K. We set K := a1n2m8 n
d +5d3k5 ln(nm)3. By Lemma 3.4, it is

P{X ≥ sK} ≤ s−
d
2 + (2n)−dk + m−8mdk2

for all s ≥ 1. Therefore, we have

M∑

t=K

P{X ≥ t} ≤ K ·
M
K∑

s=1
s−

d
2 + (2n)−dk + m−8mdk2

Since d ≥ 2, we have s
−d

2 ≤ 1
s . Moreover, M

K

(
(2n)−dk + m−8mdk2

)
≤ 1. So, we have

M∑

t=K

P{X ≥ t} ≤ K


1 +

M
K∑

s=1

1
s


 ≤ K + K ln M

K

Hence,

EX =
M∑

t=1
P{X ≥ t} ≤ K +

M∑

t=K

P{X ≥ t} ≤ 2K + K ln M

K
≤ 2K + Kmdk2 ln

(
4a2
a1

n

)

◀

▶ Remark. Note that for the discrete case, where the positions of the points in the center
point sequence are restricted to the input points, we would get an upper bound on the
number of iterations which would be polynomial in n, instead of exponential in n, since for
the positions of ci(α) and ci(β) in the proof of Lemma 3.3, there are only

(
nm

2
)

instead of(
m
2
)2n possible choices.
In the full version, we complement these results with an exponential worst-case lower

bound. More specifically, we show that there is an instance of two point sequences with
length m = Θ(k) in the plane such that the DBA algorithm needs 2Ω(k) iterations to
converge. Our techniques used to construct this lower bound borrow from earlier work of
Vattani [16] on the k-means algorithm. Interestingly, our construction only needs n = 2
sequences. Note that in case n is a constant, our smoothed upper bound is polynomial in
k, m, n and d, avoiding these artificially constructed boundary cases.

References
1 David Arthur, Bodo Manthey, and Heiko Röglin. Smoothed analysis of the k-means method.

J. ACM, 58(5), October 2011.
2 David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In Proceedings

of the Twenty-Second Annual Symposium on Computational Geometry, SCG ’06, page
144–153, New York, NY, USA, 2006. Association for Computing Machinery.

3 Felipe Cucker, Alperen A Ergür, and Josue Tonelli-Cueto. Plantinga-vegter algorithm
takes average polynomial time. In Proceedings of the 2019 on international symposium on
symbolic and algebraic computation, pages 114–121, 2019.

F. Brüning, A. Driemel, A. Ergür and H. Röglin 8:7

4 Alperen Ergür, Grigoris Paouris, and J Rojas. Smoothed analysis for the condition number
of structured real polynomial systems. Mathematics of Computation, 2021.

5 Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and
Pierre-Alain Muller. Data augmentation using synthetic data for time series classification
with deep residual networks. arXiv preprint arXiv:1808.02455, 2018.

6 Germain Forestier, François Petitjean, Hoang Anh Dau, Geoffrey I Webb, and Eamonn
Keogh. Generating synthetic time series to augment sparse datasets. In 2017 IEEE inter-
national conference on data mining (ICDM), pages 865–870. IEEE, 2017.

7 Sariel Har-Peled and Bardia Sadri. How fast is the k-means method? Algorithmica,
41(3):185–202, 2005.

8 Mary Inaba, Naoki Katoh, and Hiroshi Imai. Variance-based k-clustering algorithms by
voronoi diagrams and randomization. IEICE Transactions on Information and Systems,
83(6):1199–1206, 2000.

9 Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982.

10 François Petitjean, Germain Forestier, Geoffrey I Webb, Ann E Nicholson, Yanping Chen,
and Eamonn Keogh. Faster and more accurate classification of time series by exploiting
a novel dynamic time warping averaging algorithm. Knowledge and Information Systems,
47(1):1–26, 2016.

11 François Petitjean, Alain Ketterlin, and Pierre Gançarski. A global averaging method for
dynamic time warping, with applications to clustering. Pattern Recognition, 44(3):678–693,
2011.

12 David Schultz and Brijnesh Jain. Nonsmooth analysis and subgradient methods for aver-
aging in dynamic time warping spaces. Pattern Recognition, 74:340–358, 2018.

13 Skyler Seto, Wenyu Zhang, and Yichen Zhou. Multivariate time series classification using
dynamic time warping template selection for human activity recognition. In 2015 IEEE
symposium series on computational intelligence, pages 1399–1406. IEEE, 2015.

14 Thanchanok Teeraratkul, Daniel O’Neill, and Sanjay Lall. Shape-based approach to house-
hold electric load curve clustering and prediction. IEEE Transactions on Smart Grid,
9(5):5196–5206, 2017.

15 Holger Teichgraeber and Adam R Brandt. Clustering methods to find representative periods
for the optimization of energy systems: An initial framework and comparison. Applied
energy, 239:1283–1293, 2019.

16 Andrea Vattani. k-means requires exponentially many iterations even in the plane. Discrete
& Computational Geometry, 45(4):596–616, 2011.

EuroCG’23

On Degeneracy in the P-Matroid Oriented
Matroid Complementarity Problem∗

Michaela Borzechowski1 and Simon Weber2

1 Department of Mathematics and Computer Science, FU Berlin
michaela.borzechowski@fu-berlin.de

2 Department of Computer Science, ETH Zurich
simon.weber@inf.ethz.ch

Abstract
We investigate degeneracy in the P-Matroid Oriented Matroid Complementarity Problem
(P-OMCP) and its impact on the reduction of this problem to sink-finding in Unique Sink Orien-
tations (USOs). On one hand, this understanding of degeneracies allows us to prove a linear lower
bound for sink-finding in P-matroid USOs. On the other hand, it allows us to prove a promise pre-
serving reduction from P-OMCP to USO sink-finding, where we can drop the assumption that the
given P-OMCP is non-degenerate. This places the promise version of P-OMCP in the complexity
class PromiseUEOPL.

Related Version arXiv:2302.14585

1 Introduction

Degenerate input can be an issue in structural analysis and algorithm design for many
algebraic and geometric problems. It is often swept under the rug by assuming the input to
be non-degenerate. For example, one often assumes all input points of a geometric problem
to be in general position. In some problems (e.g., the minimum convex partition [7]), such
an assumption is inappropriate as it makes the problem considerably easier. In other cases,
degenerate inputs can be solved easily by resolving degeneracy using perturbation techniques.

In this paper, we investigate degeneracy in the context of the P-Matroid Oriented
Matroid Complementarity Problem (P-OMCP). Assuming non-degeneracy, this prob-
lem can be solved by converting it into a Unique Sink Orientation of the hypercube graph,
and finding a sink within that orientation. Oriented matroids are abstractions for many
types of configurations of geometric objects, such as (pseudo-)hyperplane arrangements or
point configurations. Just like these geometric configurations, oriented matroids can exhibit
degeneracies. In this paper, we analyze the effects of these degeneracies on the reduction
from P-OMCP to Unique Sink Orientation sink-finding.

Both the P-OMCP as well as Unique Sink Orientations are combinatorial abstractions
of the P-Matrix linear complementarity problem (P-LCP). The complexity status
of the P-LCP remains an interesting and relevant open question, since the problem can
be used to solve many optimization problems, such as Linear Programming [6], and binary
Simple Stochastic Games [5, 10]. Sink-finding in Unique Sink Orientations can also be used
to solve geometric problems such as the problem of finding the smallest enclosing ball of a
set of balls [4].

∗ Michaela Borzechowski is supported by the German Research Foundation DFG within the Research
Training Group GRK 2434 Facets of Complexity. Simon Weber is supported by the Swiss National
Science Foundation under project no. 204320.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://arxiv.org/abs/2302.14585

9:2 On Degeneracy in the P-OMCP

2 Background

2.1 P-OMCP
We consider oriented matroids M = (E2n, C) given in circuit representation, where the
ground set E2n = S ∪ T is made up of two parts S = {s1, . . . , sn} and T = {t1, . . . , tn},
S ∩ T = ∅. The set C is the collection of circuits of M. We only introduce the notation
specific to this setting, and refer readers unfamiliar with oriented matroids to the full version
of this paper or textbooks like [9].

We call a set J ⊆ E2n complementary, if it contains no complementary pair si, ti.

▶ Definition 2.1 (P-matroid). An oriented matroid M = (E2n, C) is a P-matroid if S is a
basis and there is no sign-reversing circuit. A sign-reversing circuit is a circuit X such that
for each complementary pair si, ti contained in X, Xsi

= −Xti
.

Let q be such that q /∈ E2n. Then Ê2n := S ∪ T ∪ {q}, and M̂ = (Ê2n, Ĉ) is called an
extension of M, if its minor M̂ \ q := (E2n, {X | X ∈ Ĉ and Xq = 0}) is equal to M.

Given an extension M̂ = (Ê2n, Ĉ) of a P-matroid, the goal of the P-Matroid Oriented
Matroid Complementarity Problem (P-OMCP) is to find a circuit X ∈ Ĉ with X ≥ 0,
Xq = +, and XsiXti = 0 for every i ∈ [n]. The matroid extension is given to an algorithm
by a circuit oracle, which given a set B ⊂ Ê2n and another element e ∈ Ê2n \ B either
returns that B is not a basis of M̂, or returns the fundamental circuit C(B, e), which is the
unique circuit X ∈ Ĉ with Xe = + and X ⊆ B ∪ {e}. It is known that in P-matroids and
P-matroid extensions, every complementary set B ⊂ S ∪ T of size n is a basis [8].

A P-matroid extension (a P-OMCP instance) is non-degenerate, if for every complemen-
tary basis B, the circuit C(B, q) is non-zero on all elements in B ∪ {q}. Every P-OMCP
instance has a unique solution [13].

2.2 Unique Sink Orientation (USO)
The n-dimensional hypercube graph Qn (n-cube) is the undirected graph on the vertex set
V (Qn) = {0, 1}n, where two vertices are connected by an edge if they differ in exactly one
coordinate. An orientation O : V (Qn) → {−, +}n assigns each vertex an orientation of its
incident edges, where O(v)i = + denotes an outgoing edge from vertex v in dimension i and
O(v)i = − denotes an incoming edge. A Unique Sink Orientation (USO) is an orientation,
such that every non-empty subcube contains exactly one sink, i.e., a unique vertex v with
O(v)i = − for all dimensions i in the subcube [12].

▶ Lemma 2.2 (Szabó-Welzl Condition [12]). An orientation O of Qn is USO if and only if for
all pairs of distinct vertices v, w ∈ V (Qn), we have: ∃i ∈ [n] : (vi ̸= wi) ∧ (O(v)i ̸= O(w)i).

The classical algorithmic problem associated to USOs is that of finding the unique global
sink v with ∀i : O(v)i = −, with as few as possible queries to an oracle computing O.

2.3 Classical Reduction
Todd [13] showed that a non-degenerate P-OMCP given by a matroid M̂ = (Ê2n, Ĉ) can
be translated to an USO of the n-cube. Every vertex v of the cube is associated with a
complementary basis B(v) ⊂ S∪T . For each i ∈ [n], si ∈ B(v) if vi = 0, otherwise ti ∈ B(v).
The orientation O(v) is then computed using the fundamental circuit C := C(B(v), q):

O(v)i :=
{

+ if Csi
= − or Cti

= −,

− if Csi
= + or Cti

= +.

M. Borzechowski and S. Weber 9:3

As the P-OMCP instance is non-degenerate, no other case can occur. Todd showed that the
computed orientation O is USO, and that its sink v corresponds to a fundamental circuit
C(B(v), q) which is positive on all elements and thus a solution to the P-OMCP instance.

3 The Effect of Degeneracy on the Resulting USOs

In the above reduction, if the P-OMCP instance is degenerate, we can sometimes not decide
which way to orient an edge since Csi

= Cti
= 0. For now, we leave these edges unoriented.

This leads to a partial orientation of the hypercube, which is a function O : V (Qk) →
{−, 0, +}k where O(v)i = 0 denotes an unoriented edge. We call such a partial orientation
arising from a degenerate P-OMCP a partial P-matroid USO (PPU). In this section we aim
to understand the structure of unoriented edges in PPUs. All proofs can be found in the
full version.

Not every partial orientation can be turned into an USO by directing the unoriented
edges. We thus state the following condition inspired by the Szabó-Welzl condition:
▶ Definition 3.1. A partial orientation O is said to be partially Szabó-Welzl if for any two
distinct vertices v, w ∈ V (Qk), either

O(v)i = O(w)i = 0 for all i with vi ̸= wi, or (1)
∃i : vi ̸= wi ∧

(
(O(v)i = + ∧ O(w)i = −) ∨ (O(v)i = − ∧ O(w)i = +)

)
. (2)

▶ Lemma 3.2. A partial orientation O which is partially Szabó-Welzl can be extended to an
USO by orienting all unoriented edges towards the endpoint with fewer 1s, i.e., downwards.
▶ Lemma 3.3. A partial P-matroid USO is partially Szabó-Welzl.
▶ Lemma 3.4. In a partial P-matroid USO, the unoriented edges form a set of vertex-disjoint
faces. In each such face, the orientation is the same at every vertex.

Lemmas 3.2 to 3.4, and [11, Corollary 6] imply that the unoriented subcubes of a PPU
can in fact be oriented according to any USO.

4 Constructions Based on Degeneracy and Perturbations

In this section we show how existing constructions of oriented matroid extensions can be
interpreted as constructions of (partial) P-matroid USOs. An extension M̂ of an oriented
matroid M can be uniquely described by a localization, a function σ from the set C∗ of
cocircuits of M to the set {−, 0, +}. Note that not every function f : C∗ → {−, 0, +}
describes a valid extension and thus not every such function is a localization. We give some
more background about localizations as well as all omitted proofs in the full version. The
following lemma connects a localization to the circuits relevant to the resulting (partial)
P-matroid USO.
▶ Lemma 4.1. Let M be a P-matroid and let σ be a localization for M describing the
extension M̂. Then, for any complementary basis B of M (and thus also of M̂), and every
element e ∈ B, the sign of e in the fundamental circuit C(B, q) of M̂ is the opposite of the
sign assigned by σ to the fundamental cocircuit C∗(B, e) of M.

Las Vergnas [9] showed that the set of localizations is closed under composition, i.e.,
given two localizations σ1, σ2, the following function is a localization too:

∀c ∈ C∗ : (σ1 ◦ σ2)(c) :=
{

σ1(c), if σ1(c) ̸= 0,

σ2(c), otherwise.

EuroCG’23

9:4 On Degeneracy in the P-OMCP

Figure 1 The form of the PPU given by a lexicographic extension of a uniform P-matroid.

Lemma 4.1 allows us to understand the effect of such composition on the resulting (par-
tial) P-matroid USO: For localizations σ1, σ2 and their corresponding PPUs O1, O2, the
PPU O′ given by the localization σ1 ◦ σ2 is

∀v ∈ V (Qk), i ∈ [k] : O′(v)i =
{

O1(v)i, if O1(v)i ̸= 0,

O2(v)i, otherwise.

This can be seen as filling in all unoriented subcubes of O1 with the orientation O2.
Furthermore, Las Vergnas [9] describes lexicographic extensions of oriented matroids.

Lexicographic extensions of uniform P-matroids give rise to PPUs in which all edges of
some dimension are oriented the same way, and one half is left unoriented while the other
half is completely oriented (see Figure 1).

▶ Lemma 4.2. Let M = (E2n, C) be a P-matroid. Let M̂ be the lexicographic extension of
M by [+ · ti]. Then, in the partial P-matroid USO O defined by M̂, the upper i-facet (the
facet of vertices v with vi = 1) is an unoriented subcube, and all i-edges point towards this
facet. Furthermore, if M is uniform, the lower i-facet is completely oriented.

We can use these two construction techniques to prove a lower bound on the number of
queries needed by deterministic sink-finding algorithms on P-matroid USOs.

▶ Theorem 4.3. Let M = (E2n, C) be a uniform P-matroid. Then, for every deterministic
sink-finding algorithm A, there exists a non-degenerate extension M̂ of M such that A
requires at least n queries to find the sink of the P-matroid USO given by M̂.

In essence, to prove this theorem, we successively build a localization by composition with
lexicographic extensions. The construction keeps the invariant that there exists an unori-
ented subcube guaranteed to contain the global sink. The dimension of this subcube is
reduced by at most one with every query, thus at least n queries are required.

Previously, the best known lower bound for sink-finding on P-matroid USOs was Ω(log n)
queries [14]. In contrast, the stronger, almost-quadratic lower bound of Schurr and Szabó [11]
does not apply to P-matroid USOs (for a proof of this see Appendix B of the full version).

The P-Matrix Linear Complementarity Problem (P-LCP) is an algebraic analogue of
P-OMCP. We discuss our results (Sections 3 and 4) in the context of P-LCPs in Appendix A
of the full version.

5 The Search Problem Complexity of P-OMCP

An instance of Unique End of Potential Line consists of an implicitly given exponen-
tially large graph G, in which each vertex has a positive cost and in- and out-degree at most

M. Borzechowski and S. Weber 9:5

one. Thus, the graph is a collection of directed paths called lines. The computational task
is as follows: if the nodes of G form a single line (that starts in some given start vertex)
with strictly increasing cost, then find the unique end node of this line — a sink. Otherwise,
either find some sink in G or a violation certificate that shows that G does not consist of a
single line. Unique End of Potential Line is a total search problem, i.e., there always
exists a sink or a violation. Note that there might exist a sink and a violation simultaneously.

▶ Definition 5.1. The search complexity class Unique End of Potential Line (UniqueEOPL)
contains all problems that can be reduced in polynomial time to Unique End of Poten-
tial Line. Thus, the complexity class UniqueEOPL captures all total search problems where
the space of candidate solutions has the structure of a unique line with increasing cost.

UniqueEOPL was introduced in 2018 by Fearnley et al. [2]. UniqueEOPL is a subclass of
PPAD ∩ PLS [1]. Problems in UniqueEOPL are not known to be solvable in polynomial time.

The promise version of a total search problem with violations is to find a solution under
the promise that no violations exist for the given instance. PromiseUEOPL is the promise
version of the search problem class UniqueEOPL.

A search problem reduction from a problem R to a problem T is promise preserving,
if every violation of T is mapped back to a violation of R and every valid solution of T

is mapped back to a valid solution or a violation of R. Promise preserving reductions
are transitive. When containment of a search problem R in UniqueEOPL is shown via a
polynomial time, promise preserving reduction, the promise version of R is contained in
PromiseUEOPL.

We now state the problem of USO sink-finding as a total search problem with a violation.

▶ Definition 5.2. Given an orientation function O : {0, 1}n → {+, −}n, the task of the total
search problem Unique Sink Orientation Sink-Finding (USO-SF) is to find:

(U1) A vertex v ∈ {0, 1}n such that ∀i ∈ [n] : O(v)i = −. The vertex v is a sink.
(UV1) Two distinct vertices v, w ∈ {0, 1}n with ∀i ∈ [n] : (vi = wi) ∨ (O(v)i = O(w)i).

The orientation O does not fulfill the Szabó-Welzl condition and thus is not USO.

▶ Lemma 5.3 ([2]). USO-SF is in UniqueEOPL and its promise version is in PromiseUEOPL.

Next, we define the P-OMCP problem as a total search problem with violations.

▶ Definition 5.4. Let M̂ = (Ê2n, Ĉ) be an oriented matroid with the set S being a basis.
The task of the total search version of P-OMCP is to find one of the following:

(M1) A circuit X ∈ Ĉ such that X ≥ 0, Xq = + and ∀i ∈ [n] : Xsi
Xti

= 0.

(MV1) A circuit Z ∈ C which is sign-reversing.
(MV2) A complementary set B ⊂ E2n of size n which is not a basis of M̂.
(MV3) Two distinct, complementary circuits X, Y ∈ C with Xq = Yq = + and

∀i ∈ [n] : Xsi
Yti

= Xti
Ysi

= 0, or Xsi
= Yti

and Xti
= Ysi

.

Note that a violation (MV3) implies that M̂ is not a P-matroid extension. Technically,
the violation (MV1) would be enough to make this search problem total, but our reduction
to USO-SF detects only violations of type (MV2) and (MV3). Note that as Fearnley et
al. [3] already observed, there may be a difference in the complexity of a total search
problem depending on the violations chosen. There is no trivial way known to the authors
to transform a violation of type (MV3) or (MV2) to a violation of type (MV1).

EuroCG’23

9:6 On Degeneracy in the P-OMCP

With the help of Lemmas 3.2 and 3.3 we now adapt Todd’s reduction of non-degenerate
P-OMCP instances to USO (recall Section 2.3) to also work with degenerate instances and
their respective total search versions.

Given a P-OMCP instance M̂ = (Ê2n, Ĉ) (note that M̂ is possibly not a P-matroid
extension, or degenerate), we define the orientation O : V (Qn) → {+, −}n:

O(v)i :=





− if B(v) is not a basis,
− if vi = 0 and Csi = 0,

+ if vi = 1 and Cti
= 0,

+ if vi = 0 and Csi
= −

or vi = 1 and Cti = −,

− otherwise,

with B(v) and C := C(B(v), q) defined as in Section 2.3. Furthermore, using Lemmas 3.2
and 3.3 we know that O is USO if M̂ is a P-matroid extension.

▶ Theorem 5.5. The construction above is a polynomial time, promise preserving reduction
from P-OMCP to USO-SF.

The proof can be found in the full version. While the proof requires careful formality,
correctness largely follows from the statements Section 3. It follows that P-OMCP as
defined in Definition 5.4 is in UniqueEOPL and its promise version is in PromiseUEOPL.

References
1 John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani. The complexity

of gradient descent: CLS = PPAD ∩ PLS. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2021, page 46–59, New York, NY, USA, 2021.
Association for Computing Machinery. doi:10.1145/3406325.3451052.

2 John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of potential
line. Journal of Computer and System Sciences, 114:1 – 35, 2020. doi:10.1016/j.jcss.
2020.05.007.

3 John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique end of potential
line. Journal of Computer and System Sciences, 114:1–35, 2020. doi:10.1016/j.jcss.
2020.05.007.

4 Kaspar Fischer and Bernd Gärtner. The smallest enclosing ball of balls: Combinatorial
structure and algorithms. International Journal of Computational Geometry and Applica-
tions (IJCGA), 14(4–5):341–387, 2004. doi:10.1142/S0218195904001500.

5 Bernd Gärtner and Leo Rüst. Simple stochastic games and p-matrix generalized linear
complementarity problems. In Maciej Liśkiewicz and Rüdiger Reischuk, editors, Fun-
damentals of Computation Theory, pages 209–220, Berlin, Heidelberg, 2005. Springer.
doi:10.1007/11537311_19.

6 Bernd Gärtner and Ingo Schurr. Linear programming and unique sink orientations. In
Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 749–
757, 2006. doi:10.5555/1109557.1109639.

7 Nicolas Grelier. Hardness and approximation of minimum convex partition. In 38th Inter-
national Symposium on Computational Geometry (SoCG 2022). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2022.

8 Lorenz Klaus. A fresh look at the complexity of pivoting in linear complementarity. PhD
thesis, ETH Zürich, 2012. doi:10.3929/ethz-a-007604201.

https://doi.org/10.1145/3406325.3451052
https://doi.org/10.1016/j.jcss.2020.05.007
https://doi.org/10.1016/j.jcss.2020.05.007
https://doi.org/10.1016/j.jcss.2020.05.007
https://doi.org/10.1016/j.jcss.2020.05.007
https://doi.org/10.1142/S0218195904001500
https://doi.org/10.1007/11537311_19
https://doi.org/10.5555/1109557.1109639
https://doi.org/10.3929/ethz-a-007604201

M. Borzechowski and S. Weber 9:7

9 Michel Las Vergnas. Extensions ponctuelles d’une géométrie combinatoire orienté. In
Problèmes Combinatoires et Théorie des Graphes, volume 260, pages 265–270, 1978.

10 Leo Rüst. The P-matrix linear complementarity problem: generalizations and specializa-
tions. PhD thesis, ETH Zürich, 2007.

11 Ingo Schurr and Tibor Szabó. Finding the sink takes some time: An almost quadratic
lower bound for finding the sink of unique sink oriented cubes. Discrete Comput. Geom.,
31(4):627–642, 2004. doi:10.1007/s00454-003-0813-8.

12 Tibor Szabó and Emo Welzl. Unique sink orientations of cubes. In Foundations of Computer
Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 547–555. IEEE, 2001. doi:
10.1109/SFCS.2001.959931.

13 Michael J. Todd. Complementarity in oriented matroids. SIAM Journal on Algebraic
Discrete Methods, 5(4):467–485, 1984.

14 Simon Weber and Joel Widmer. Realizability makes a difference: A complexity gap for
sink-finding in usos, 2022. doi:10.48550/ARXIV.2207.05985.

EuroCG’23

https://doi.org/10.1007/s00454-003-0813-8
https://doi.org/10.1109/SFCS.2001.959931
https://doi.org/10.1109/SFCS.2001.959931
https://doi.org/10.48550/ARXIV.2207.05985

Holes in convex drawings∗

Helena Bergold1, Manfred Scheucher2, and Felix Schröder2

1 Department of Computer Science, Freie Universität Berlin
2 Institut für Mathematik, Technische Universität Berlin

Abstract
The Erdős–Szekeres theorem states that, for every positive integer k, every sufficiently large point
set in general position contains a subset of k points in convex position – a k-gon. In the same vein,
Erdős later asked for the existence of k-holes which are k-gons with no additional points in their
convex hulls. Today it is known that every sufficiently large point set in general position contains
6-holes, while there exist arbitrarily large point sets without 7-holes.

Harborth (1978) started the investigation of empty triangles in simple drawings of the complete
graph. In a simple drawing, vertices are mapped to points in the plane and edges are drawn as
simple curves connecting the corresponding endpoints such that any two edges intersect in at most
one point, which is either a common vertex or a proper crossing. For the subclass of convex drawings,
which in particular includes point sets, Arroyo et al. (2018) showed that quadratically many empty
triangles exist.

In this article, we generalize the concept of k-holes to simple drawings of the complete graph
Kn and investigate their existence. We provide arbitrarily large simple drawings without 4-holes,
show that convex drawings contain quadratically many 4-holes, and generalize the Empty Hexagon
theorem (Gerken 2006; Nicolás 2007) by proving the existence of 6-holes in sufficiently large convex
drawings.

1 Introduction

The study of holes in point sets was motivated by the Erdős–Szekeres theorem [12] and
continues to be an active research branch. The classic theorem states that for every k ∈ N
every sufficiently large point set in general position (i.e., no three points on a line) contains a
subset of k points in convex position – a so called k-gon. A variation suggested by Erdős [11]
is about the existence of holes. A k-hole H in a point set S is a k-gon with the property
that there are no points of S in the interior of the convex hull of H.

In this article, we investigate holes in simple drawings of the complete graph Kn. Even
though the notation of holes generalizes to simple drawings in a natural manner, we have to
introduce some basic notation before we can talk about these structures and our results.

In a simple drawing, vertices are mapped to distinct points in the plane (or on the sphere)
and edges are mapped to simple curves connecting the corresponding points such that two
edges have at most one point in common which is either a common endpoint or a proper
intersection. Furthermore we assume that no three edges cross in a common point. Simple
drawings can be considered as a generalization of point sets because a set of n points in
general position yields a geometric drawing of Kn where the vertices are the points and the
edges are the straight-line segments connecting the vertices.

Moreover, we investigate the subclass of convex drawings introduced by Arroyo et al. [4].
To define convexity, we consider triangles which are subdrawings of K3 induced by three

∗ We thank the anonymous reviewers for their valuable comments and Meghana M. Reddy for fruitful
discussions. H. Bergold was supported by the DFG-Research Training Group ’Facets of Complexity’
(DFG-GRK 2434). M. Scheucher was supported by the DFG Grant SCHE 2214/1-1.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

10:2 Holes in convex drawings

Figure 1 Drawing of the two forbidden subconfigurations of convex drawings. Note that the right
drawing is the T5.

vertices. Since the three edges of a triangle do not cross, the triangle separates the plane
(resp. the sphere) into two connected components. The closure of each of the components is
called a side of the triangle. A side S is convex, if for every two vertices in S, the connecting
edge is fully contained in S. A simple drawing is convex if every triangle has a convex side.
Furthermore, a convex drawing is f-convex if there is a marking point f in the plane such
that for all triangles the side not containing f is convex. A pseudolinear drawing is a simple
drawing in the plane such that all edges can be extended to pseudolines such that two have
at most one point in common. A pseudoline is a simple curve partitioning the plane in two
unbounded components. As shown by Arroyo et al. [3], a simple drawing of Kn is convex
if and only if the two non-convex drawings of the K5 (see Figure 1) do not appear as a
subdrawing. Furthermore, they showed that a simple drawing of Kn is pseudolinear if and
only if it is f -convex and the marking point f is in the unbounded cell. For more information
about the convexity hierarchy, we refer the reader to [3, 4, 9].

Next, we introduce the notions of k-gons in simple drawings of the complete graph. A
k-gon Ck is a subdrawing isomorphic to the geometric drawing of k points in convex position,
see Figure 2(left). Two simple drawings are isomorphic if there exists a bijection on the
vertex sets such that the same pairs of edges cross. Note that isomorphism is independent
of the choice of the outer cell. Thus, in terms of crossings, a k-gon Ck is a (sub)drawing
with vertices v1, . . . , vk such that {vi, vℓ} crosses {vj , vm} for i < j < ℓ < m. In contrast
to the geometric setting where every sufficiently large geometric drawing contains a k-gon,
simple drawings of complete graphs do not necessarily contain k-gons [16]. For example,
the perfect twisted drawing Tn depicted in Figure 2(right) does not contain any 5-gon. In
terms of crossings, Tn can be characterized as a drawing of Kn with vertices v1, . . . , vn such
that {vi, vj} crosses {vℓ, vm} for i < j < ℓ < m. However, a theorem by Pach, Solymosi
and Tóth [21] states that every sufficiently large drawing of Kn contains a k-gon or a Tk.
The currently best known bound is due to Suk and Zeng [23] who showed that every simple
drawing of Kn with n > 29·log2(a) log2(b)a2b2 contains a Ca or a Tb. Since convex drawings
do not contain T5 as a subdrawing, every convex drawing of Kn with n sufficiently large
contains a k-gon.

To eventually define k-holes for general k, let us first consider the special case of 3-holes,
which are also known as empty triangles. A triangle is empty if one of its two sides does
not contain any vertices in its interior. For general simple drawings Harborth [16] proved
that there are at least two empty triangles and conjectured that the minimum among all
simple drawings on n vertices is 2n − 4, which is obtained by Tn. García et al. [13] recently
showed that the conjecture holds for a class containing the perfect twisted drawings, the so
called generalized twisted drawing. However, the conjecture remains open in general. The
best known lower bound is by Aichholzer et al. [2], who proved that there are at least n

empty triangles.

H. Bergold, M. Scheucher, and F. Schröder 10:3

In the geometric setting, the number of empty triangles behaves quite differently: every
point set has a quadratic number of empty triangles, and this bound is asymptotically
optimal [6]. Moreover, determining the minimum number remains a challenging problem
[10, Chapter 8.4]. For the current bounds, see [1]. The class of convex drawings behaves
similarly to the geometric setting: the minimum number of empty triangles is asymptotically
quadratic as shown by Arroyo et al. [3].

i

n− 1

2

1

n

...

. . .

Cn :

i n− 121 ... n...

Tn :

Figure 2 A drawing of Cn (left) and Tn (right) for n ≥ 4.

In this article, we go beyond empty triangles and investigate the existence of k-holes in
simple drawings for k ≥ 4. In the subdrawing induced by a k-gon with k ≥ 4, all triangles
have exactly one empty side which is the convex side. We define the convex side of a k-gon
as the union of all convex sides of its triangles and call a vertex which lies in the interior of
its convex side an interior vertex. The convex side of Cn in Figure 2 is highlighted grey. Note
that the triangles of a k-gon for k ≥ 4 have exactly one convex side, which is the one not
containing the other vertices of the k-gon and hence the convex side of a k-gon is well-defined.
A k-hole is a k-gon which has no interior vertices. For example the vertices 1, 2, n − 1, n form
a 4-hole in Tn which is highlighted grey in Figure 2. For a k-gon Ck in a convex drawing,
Arroyo et al. [4] showed that the edges from an interior vertex to a vertex of Ck and edges
between two interior vertices are fully contained in the convex side of Ck.

In the geometric setting it is known that for k ≤ 6 every sufficiently large point set
contains a k-hole [15, 14, 19] and that there are arbitrarily large point sets without 7-holes [17].
Since the latter applies to simple drawings, the remaining questions in simple drawings are
about the existence of 4-, 5- and 6-holes.

Our Results: For n ≥ 5 we present a non-convex simple drawing of Kn without 4-holes
(Section 2). Furthermore, we show that – as in the geometric setting – the number of
4-holes in convex drawings of Kn is at least Ω(n2) (Theorem 3.1), generalizing a result by
Bárány and Füredi [6], and that every sufficiently large convex drawing contains a 5-hole
and a 6-hole (Theorem 3.2), generalizing the Empty Hexagon theorem by Gerken [14] and
Nicolás [19]. In order to show the latter, we prove that if a subdrawing of a convex drawing is
induced by a minimal k-gon with k ≥ 5 together with its interior vertices, then it is f -convex

EuroCG’23

10:4 Holes in convex drawings

(Theorem 3.3). This result might be of independent interest as it allows to transfer results
from the straight-line, pseudolinear, and f -convex setting to convex drawings.

2 Holes in simple drawings

The perfect twisted drawing Tn depicted in Figure 2(right) has exactly 2n−4 empty triangles,
which are spanned by the vertices {1, 2, i} for 3 ≤ i ≤ n and {i, n−1, n} for 1 ≤ i ≤ n−2 [16].
For n ≥ 4, Tn has exactly one 4-hole, which is spanned by {1, 2, n − 1, n}.

For n ≥ 5, let T̃n denote the non-convex drawing of Kn that is obtained by starting with
the drawing of Tn and rerouting the edge {1, n} as illustrated in Figure 3. More precisely,
while in Tn the edge {1, n} crosses every edge {i, j} with 2 ≤ i < j ≤ n − 1, in T̃n it only
crosses the edges {i, j} with 2 ≤ i < j ≤ n − 2. Recall that the pairs of crossing edges
determine isomorphism class.

i21 ... n...

Figure 3 An illustration of the drawing T̃n without 4-holes. The edge {1, n} is highlighted red.

▶ Proposition 2.1. For n ≥ 5 the drawing T̃n does not contain a 4-hole.

Proof. Rerouting the edge {1, n} only affects the emptiness of triangles incident to both
vertices 1 and n. In particular it only affects the vertex n − 1 which changes the side of
every triangles incident to {1, n}. In T̃n, the only empty triangles incident to {1, n} are
{1, n − 1, n} and {1, n − 2, n}. Note that the triangle {1, 2, n} is not empty in T̃n. Hence,
the empty triangles in T̃n are {1, 2, i} for 3 ≤ i ≤ n − 1, and {i, n − 1, n} for 1 ≤ i ≤ n − 2,
and {1, n − 2, n}. Since no four vertices span four empty triangles, T̃n does not contain a
4-hole. ◀

3 Holes in convex drawings

In this section, we show that convex drawings of the complete graph behave similarly to
geometric point sets when it comes to the existence of holes.

▶ Theorem 3.1. Every convex drawing of Kn contains at least Ω(n2) 4-holes.

The proof generalizes the idea of Bárány and Füredi [6] and is deferred to the full version.
The bound is asymptotically best possible as there are point sets (squared Horton sets [7]

H. Bergold, M. Scheucher, and F. Schröder 10:5

and random point sets [5]) which have only quadratically many 3-holes, 4-holes, 5-holes, and
6-holes.

Furthermore, we investigate larger holes. We show that every sufficiently large convex
drawing contains a 6-hole (and hence a 5-hole).

▶ Theorem 3.2. Every convex drawing of Kn with n sufficiently large contains a 6-hole.

For the proof below we use the existence of a k-gon in sufficiently large simple drawings [21,
23]. Even though the existence of 6-holes directly implies the existence of 5-holes, when
adapting the proof to 5-holes one can obtain a better bound on the required number of
vertices.

An important part of the proof is that the subdrawing induced by a minimal k-gon together
with its interior vertices is f -convex, which then can be transformed into a pseudolinear
drawing. A k-gon is minimal if its convex side does not contain the convex side of another
k-gon.

▶ Theorem 3.3. Let Ck be a minimal k-gon with n ≥ k ≥ 5 in a convex drawing of Kn.
Then the subdrawing induced by the vertices on the convex side of Ck is f -convex.

Since the proof for the existence of 6-holes in point sets [14] also applies to the setting of
pseudolinear drawings [22], we can now use Theorem 3.3 to derive Theorem 3.2. Similarly, the
text-book proof for the existence of 5-holes in every 6-gon of a point set (see e.g. Section 3.2
in [18]) applies to pseudolinear drawings as it only uses triple orientations. However, proving
the existence of 6-holes via 9-gons1 is far more technical. Hence we refer the interested reader
to [22] for a computer-assisted proof and [24] for a simplified proof of the Empty Hexagon
theorem with worse bounds.

Proof of Theorem 3.2. By the result of Suk and Zeng [23] every convex drawing of Kn with
n > 2225 log2(5)·k2 log2(k) contains a k-gon. In order to find a 6-hole, we apply this result for
k = 9. (To find a 5-hole, we can use k = 6.) Consider a minimal k-gon. By Theorem 3.3,
the subdrawing induced by the vertices from the convex side of the k-gon is f -convex. Since
the existence of holes is invariant under the choice of the outer cell, we can choose the cell
containing f as the unbounded cell to make the subdrawing pseudolinear. Next we apply
the results concerning the existence of a 6-hole (resp. 5-hole) in pseudolinear drawings and
conclude that the subdrawing induced by the k-gon and the interior vertices contains a 6-hole
(resp. 5-hole). This 6-hole (resp. 5-hole) in the subdrawing does not contain vertices of the
original drawing of Kn since those vertices would be interior vertices of the k-gon. Therefore
it is also a 6-hole (resp. 5-hole) in the original drawing. This completes the argument. ◀

4 Discussion

We have shown that every convex drawing of Kn with n ≥ 5 contain a quadratic number
of 4-holes and that sufficiently large drawings contain 5- and 6-holes, while 7-holes do not
exist in general. However, it remains to determine the precise values of hconv(5) and hconv(6),
where hconv(k) (resp. hgeom(k)) denotes the smallest integer such that every convex (resp.
geometric) drawing of size n ≥ hconv(k) contains a k-hole. In the geometric setting it is
known that hgeom(5) = 10 [15] and 30 ≤ hgeom(6) ≤ 1717 [14, 20]. In this article we showed

1 Gerken [14] showed that every 9-gon in a point set yields a 6-hole and Nicolás [19] showed that a 25-gon
yields a 6-hole. Both articles involve very long case distinctions.

EuroCG’23

10:6 Holes in convex drawings

hconv(k) ≤ 2225·k2·log2 5·log2 k + 1 for k = 5 and k = 6 (Theorem 3.2). Moreover, we used
the SAT framework from [8] to find configurations for n ≤ 10 and n = 12 without 5-holes
and to prove that every drawing for n = 11, 13, 14, 15, 16 contains a 5-hole. Based on our
computational data, we conjecture that hconv(5) = 13. Note that unlike in the geometric
setting, the existence of 5-holes in convex drawings is not monotone as the existence of a
5-hole in all convex drawings of K11 does not imply the existence for n = 12.

It would be interesting to obtain better bounds on the size of a largest k-gon and on
the size of a largest f -convex subdrawing in a convex drawing of Kn. The currently best
estimate for a k-gon is by Suk and Zeng [23], which yields Ω((log n)1/2−o(1)), and combining
this with Theorem 3.3 yields an f -convex drawing of the same size.

References
1 Oswin Aichholzer, Martin Balko, Thomas Hackl, Jan Kynčl, Irene Parada, Manfred

Scheucher, Pavel Valtr, and Birgit Vogtenhuber. A superlinear lower bound on the
number of 5-holes. Journal of Combinatorial Theory, Series A, 173:105236, 2020.
doi:10.1016/j.jcta.2020.105236.

2 Oswin Aichholzer, Thomas Hackl, Alexander Pilz, Pedro Ramos, Vera Sacristán, and
Birgit Vogtenhuber. Empty triangles in good drawings of the complete graph. Graphs and
Combinatorics, 31:335–345, 2015. doi:10.1007/s00373-015-1550-5.

3 Alan Arroyo, Dan McQuillan, R. Bruce Richter, and Gelasio Salazar. Levi’s Lemma,
pseudolinear drawings of Kn, and empty triangles. Journal of Graph Theory, 87(4):443–459,
2018. doi:10.1002/jgt.22167.

4 Alan Arroyo, Dan McQuillan, R. Bruce Richter, and Gelasio Salazar. Convex drawings of
the complete graph: topology meets geometry. Ars Mathematica Contemporanea, 22(3),
2022. doi:10.26493/1855-3974.2134.ac9.

5 Martin Balko, Manfred Scheucher, and Pavel Valtr. Tight bounds on the expected number
of holes in random point sets. Random Structures & Algorithms, 62(1):29–51, 2023. doi:
10.1002/rsa.21088.

6 Imre Bárány and Zoltán Füredi. Empty simplices in Euclidean space. Canadian Mathematical
Bulletin, 30(4):436–445, 1987. doi:10.4153/cmb-1987-064-1.

7 Imre Bárány and Pavel Valtr. Planar point sets with a small number of empty convex
polygons. Studia Scientiarum Mathematicarum Hungarica, 41(2):243–266, 2004. doi:
10.1556/sscmath.41.2004.2.4.

8 Helena Bergold, Stefan Felsner, Meghana M. Reddy, and Manfred Scheucher. Using SAT to
study plane Hamiltonian substructures in simple drawings. In Proc. of EuroCG’23, 2023.

9 Helena Bergold, Stefan Felsner, Manfred Scheucher, Felix Schröder, and Raphael Steiner.
Topological Drawings meet Classical Theorems from Convex Geometry. Discrete & Compu-
tational Geometry, 2022. doi:10.1007/s00454-022-00408-6.

10 Peter Brass, William O. J. Moser, and János Pach. Research Problems in Discrete Geometry.
Springer, 2005. doi:10.1007/0-387-29929-7.

11 Paul Erdős. Some problems on elementary geometry. Australian Mathematical Society,
2:2–3, 1978. URL: https://users.renyi.hu/~p_erdos/1978-44.pdf.

12 Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio
Mathematica, 2:463–470, 1935. URL: http://www.renyi.hu/~p_erdos/1935-01.pdf.

13 Alfredo García, Javier Tejel, Birgit Vogtenhuber, and Alexandra Weinberger. Empty
triangles in generalized twisted drawings of Kn. In Graph Drawing and Network Visualization,
volume 13764 of LNCS, pages 40–48. Springer, 2022. doi:10.1007/978-3-031-22203-0_4.

14 Tobias Gerken. Empty Convex Hexagons in Planar Point Sets. Discrete & Computational
Geometry, 39(1):239–272, 2008. doi:10.1007/s00454-007-9018-x.

https://doi.org/10.1016/j.jcta.2020.105236
https://doi.org/10.1007/s00373-015-1550-5
https://doi.org/10.1002/jgt.22167
https://doi.org/10.26493/1855-3974.2134.ac9
https://doi.org/10.1002/rsa.21088
https://doi.org/10.1002/rsa.21088
https://doi.org/10.4153/cmb-1987-064-1
https://doi.org/10.1556/sscmath.41.2004.2.4
https://doi.org/10.1556/sscmath.41.2004.2.4
https://doi.org/10.1007/s00454-022-00408-6
https://doi.org/10.1007/0-387-29929-7
https://users.renyi.hu/~p_erdos/1978-44.pdf
http://www.renyi.hu/~p_erdos/1935-01.pdf
https://doi.org/10.1007/978-3-031-22203-0_4
https://doi.org/10.1007/s00454-007-9018-x

H. Bergold, M. Scheucher, and F. Schröder 10:7

15 Heiko Harborth. Konvexe Fünfecke in ebenen Punktmengen. Elemente der Math-
ematik, 33:116–118, 1978. URL: http://www.digizeitschriften.de/dms/img/?PID=
GDZPPN002079801.

16 Heiko Harborth. Empty triangles in drawings of the complete graph. Discrete Mathematics,
191(1-3):109–111, 1998. doi:10.1016/S0012-365X(98)00098-3.

17 Joseph D. Horton. Sets with no empty convex 7-gons. Canadian Mathematical Bulletin,
26:482–484, 1983. doi:10.4153/CMB-1983-077-8.

18 Jiří Matoušek. Lectures on Discrete Geometry. Springer, 2002. doi:10.1007/
978-1-4613-0039-7.

19 Carlos M. Nicolás. The Empty Hexagon Theorem. Discrete & Computational Geometry,
38(2):389–397, 2007. doi:10.1007/s00454-007-1343-6.

20 Mark H. Overmars. Finding sets of points without empty convex 6-gons. Discrete &
Computational Geometry, 29(1):153–158, 2003. doi:10.1007/s00454-002-2829-x.

21 János Pach, József Solymosi, and Géza Tóth. Unavoidable configurations in complete
topological graphs. Discrete & Computational Geometry, 30(2):311–320, 2003. doi:10.
1007/s00454-003-0012-9.

22 Manfred Scheucher. A SAT attack on higher dimensional Erdős–Szekeres numbers, 2022.
doi:10.48550/arxiv.2105.08406.

23 Andrew Suk and Ji Zeng. Unavoidable patterns in complete simple topological graphs. In
Graph Drawing and Network Visualization, volume 13764 of LNCS, pages 3–15. Springer,
2022. doi:10.1007/978-3-031-22203-0_1.

24 Pavel Valtr. On Empty Hexagons. In Surveys on Discrete and Computational Geometry:
Twenty Years Later, volume 453 of Contemporary Mathematics, pages 433–441. AMS, 2008.
doi:10.1090/conm/453/08809.

EuroCG’23

http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002079801
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002079801
https://doi.org/10.1016/S0012-365X(98)00098-3
https://doi.org/10.4153/CMB-1983-077-8
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/s00454-007-1343-6
https://doi.org/10.1007/s00454-002-2829-x
https://doi.org/10.1007/s00454-003-0012-9
https://doi.org/10.1007/s00454-003-0012-9
https://doi.org/10.48550/arxiv.2105.08406
https://doi.org/10.1007/978-3-031-22203-0_1
https://doi.org/10.1090/conm/453/08809

Maximum overlap area of a convex polyhedron and
a convex polygon under translation
Honglin Zhu1 and Hyuk Jun Kweon2

1 Massachusetts Institute of Technology
honglinz@mit.edu

2 Massachusetts Institute of Technology
kweon@mit.edu

Abstract
Let P be a convex polyhedron and Q be a convex polygon with n vertices in total in three-dimensional
space. We present a deterministic algorithm that finds a translation vector v ∈ R3 maximizing the
overlap area |P ∩ (Q + v)| in O(n log2 n) time. We then apply our algorithm to solve two related
problems. We give an O(n log3 n) time algorithm that finds the maximum overlap area of three
convex polygons with n vertices in total. We also give an O(n log2 n) time algorithm that minimizes
the symmetric difference of two convex polygons under scaling and translation.

Related Version A full version of the paper is available at https://arxiv.org/abs/2301.02949.

1 Introduction

Shape matching is an important topic in computational geometry, with useful applications
in areas such as computer graphics. In a typical problem of shape matching, we are supplied
two or more shapes, and we want to determine how much the shapes resemble each other.
More precisely, given a similarity measure and a set of allowed transformations, we want to
transform the shapes to maximize their similarity measure.

While there are many candidates for the similarity measure, we focus on the area/volume
of overlap or of symmetric difference. The advantage to these is that they are robust against
noise on the boundary of the images [6]. For previous results in this area, see [6, 1, 3, 4, 2, 12].

While many have studied the matching problem for two convex polytopes of the same
dimension, few have examined the problem for polytopes of different dimensions or matching
more than two polytopes. In this paper, we present a deterministic algorithm for finding the
maximum overlap area of a convex polyhedron and a convex polygon under translation in
three-dimensional space. Using this algorithm, we also solve the problems of maximizing the
overlap of three convex polygons and of minimizing the symmetric difference of two convex
polygons under homothety.

2 Preliminaries

Let P ⊂ R3 be a convex polyhedron and Q ⊂ R2 be a convex polygon with n vertices in total.
Throughout the paper, we assume that Q is in the xy-plane, and that the lowest point of P

is on the xy-plane. We want to find a translation vector v = (x, y, z) ∈ R3 that maximizes
the overlap area f(v) = |P ∩ (Q + v)|.

It is easy to observe that f(v) is continuous and piecewise quadratic on the interior of its
support. As noted in [6, 1, 3], f is smooth on a region R if P ∩ (Q + v) is combinatorially
equivalent for all v ∈ R, that is, if we have the same set of face-edge incidences between P

and Q. Following the convention of [1], we call the polygons that form the boundaries of
these regions the event polygons, and as in [6], we call the space of translations of Q the
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://arxiv.org/abs/2301.02949

11:2 Maximum overlap of polyhedron and polygon

configuration space. The arrangement of the event polygons partition the configuration space
into cells with disjoint interiors. The overlap function f(v) is quadratic on each cell. Thus,
to locate a translation maximizing f , we need to characterize the event polygons.

For two sets A, B ⊂ Rd, we write the Minkowski sum of A and B as A + B := {a + b|a ∈
A, b ∈ B}. We also write A − B for the Minkowski sum of A with −B = {−b|b ∈ B}. We
categorize the event polygons into three types and describe them in terms of Minkowski
sums:

(I) When Q + v contains a vertex of P . For each vertex u of P , we have an event polygon
u − Q. There are O(n) event polygons of this type.

(II) When a vertex of Q + v is contained in a face of P . For each face F of P and each vertex
v of Q, we have an event polygon F − v. There are O(n2) event polygons of this type.

(III) When an edge of Q + v intersects an edge of P . For each edge e of P and each edge e′ of
Q, we have an event polygon e − e′. There are O(n2) event polygons of this type.

The reason that convexity is fundamental is due to the following standard fact, as noted
and proved in [6, 12].

▶ Proposition 2.1. Let P be a d′-dimensional convex polytope and let Q be a d-dimensional
convex polytope. Suppose d′ ≥ d. Let f(v) = Vol(P ∩ (Q + v)) be the volume of the overlap
function. Then, f(v)1/d is concave on its support supp(f) = {v|f(v) > 0}.

As in [5], we say a function f : R → R is unimodal (resp. strictly unimodal) if it increases
(resp. strictly increases) to a maximum value, possibly stays there for some interval, and then
decreases (resp. strictly decreases). Furthermore, we say a function f : Rd → R is unimodal
(resp. strictly unimodal) if its restriction to any line is unimodal (resp. strictly unimodal).

▶ Corollary 2.2 ([5]). For any line l parameterized by l = p + vt in Rd′ , the function
fl(t) = f(p + vt) is strictly unimodal.

We introduce a divide-and-conquer technique that we apply in our algorithm.

▶ Lemma 2.3 ([8]). Given n hyperplanes in Rd and a region R ⊂ Rd, a (1/r)-cutting is
a collection of simplices with disjoint interiors, which together cover R and such that the
interior of each simplex intersects at most n/r hyperplanes. A (1/r)-cutting of size O(rd)
can be computed deterministically in O(nrd−1) time. In addition, the set of hyperplanes
intersecting each simplex of the cutting is reported in the same time.

Another technique that we use in our algorithm is a generalization of Megiddo’s prune-
and-search [11]. This technique is of independent interest and can likely be applied to other
problems.

▶ Theorem 2.4. Let S =
⋃n

i=1 Si be a union of n sets of O(m) parallel lines in the plane,
none of which are parallel to the x-axis, and suppose the lines in each Si are indexed from
left to right.

Suppose there is an unknown point p∗ ∈ R2 and we are given an oracle that decides in
time T the relative position of p∗ to any line in the plane. Then we can find the relative
position of p∗ to every line in S in O(n log2 m + (T + n) log(mn)) time.

3 Maximum overlap of convex polyhedron and convex polygon

In this section, we prove our main result:

H. Zhu and H. J. Kweon 11:3

▶ Theorem 3.1. Let P be a convex polyhedron and Q a convex polygon with n vertices in
total. We can find a vector v ∈ R3 that maximizes the overlap area |P ∩(Q+v)| in O(n log2 n)
time.

Following the convention in [6], we call a translation that maximizes the overlap function
f a goal placement. In the algorithm, we keep track of a closed target region R which we
know contains a goal placement and decrease its size until for each event polygon F , either
F ∩ interior(R) = ∅ or F ⊃ R. Then, f is quadratic on R and we can find the maximum of
f on R using standard calculus. Thus, the goal of our algorithm is to efficiently trim R to
eliminate event polygons that intersect it.

In the beginning of the algorithm, the target region is the interior of the Minkowski sum
P − Q, where the overlap function is positive. By the unimodality of the overlap function,
the set of goal placements is convex. Thus, for a plane in the configuration space, either
it contains a goal placement, or all goal placements lie on one of the two open half spaces
separated by the plane. If we have a way of knowing which case it is for any plane, we
can decrease the size of our target region by cutting it with planes and finding the piece
to recurse. More precisely, we need a subroutine PlaneDecision that decides the relative
position of the set of goal placements to a plane S.

Whenever PlaneDecision reports that a goal placement is found on a plane, we can let
the algorithm terminate. Thus, we can assume it always reports a half-space containing a
goal placement.

As in Algorithm 1, we break down our algorithm into three stages.

Algorithm 1: Pseudocode for Theorem 3.1
input : A convex polyhedron P ∈ R3 and a convex polygon Q ∈ R3 with n vertices

in total
output : A translation v ∈ R3 maximizing the area |P ∩ (Q + v)|

1 Locate a horizontal slice containing a goal placement that does not contain any
vertices of P and replace P by this slice of P

2 Find a “tube” D + ly whose interior contains a goal placement and intersects O(n)
event polygons, where D is a triangle in the xz-plane and ly is the y-axis

3 Recursively construct a (1/2)-cutting of the target region D + ly to find a simplex
containing a goal placement that does not intersect any event polygon

3.1 Stage 1
In the first stage of our algorithm, we make use of [6] to simplify our problem so that P can
be taken as a convex polyhedron with all of its vertices on two horizontal planes.

We sort the vertices of P by z-coordinate in increasing order and sort the vertices of Q

in counterclockwise order. Next, we trim the target region with horizontal planes (planes
parallel to the xy-plane) to get to a slice that does not contain any vertices of P .

▶ Lemma 3.2. In O(n log2 n) time, we can locate a strip R = {(x, y, z)|z ∈ [z0, z1]} whose
interior contains a goal placement and P has no vertices with z ∈ [z0, z1].

By Chazelle’s algorithm [7], the convex polyhedron P ′ = {(x, y, z) ∈ P |z ∈ [z0, z1]} can be
computed in O(n) time. From now on, we replace P with P ′ (see Figure 1). Without loss of
generality, assume z0 = 0 and z1 = 1.

EuroCG’23

11:4 Maximum overlap of polyhedron and polygon

Figure 1 The slice of P with z ∈ [z0, z1].

The region in the configuration space where |P ∩(Q+v)| > 0 is the Minkowski sum P −Q.
Since P only has two levels P0 = {(x, y, z) ∈ P |z = 0} and P1 = {(x, y, z) ∈ P |z = 1} that
contain vertices, the Minkowski sum P − Q is simply the convex hull of (P0 − Q) ∪ (P1 − Q),
which has O(n) vertices. We can compute P0 − Q and P1 − Q in O(n) time and compute
their convex hull in O(n log n) time by Chazelle’s algorithm [9].

3.2 PlaneDecision
Due to space constraints, we will not present the algorithm PlaneDecision. For details, see
the full version of the paper [10].

We present a perturbation method to reduce the problem of deciding the relative position
of the goal placement to an arbitrary plane to finding the maximum of the overlap over an
arbitrary plane.

▶ Lemma 3.3. Suppose we can compute maxv∈S f(v) for any plane S ⊂ R3 in time T , then
we can perform PlaneDecision for any plane in time O(T).

Proof. The idea is to compute maxv∈S′ f(v) for certain S′ that are perturbed slightly from
S to see in which direction relative to S does f increase.

We compute over an extension of the reals R[ω]/(ω3), where ω > 0 is smaller than any
real number. Let A > 0 be the maximum of f over a plane S. Let S+ and S− be the two
planes parallel to S that have distance ω from S. We compute A+ = maxv∈S+ f(v) and
A− = maxv∈S− f(v) in O(T) time. Since f is piecewise quadratic, A+ and A− as symbolic
expression will only involve quadratic terms in ω. Since f is strictly unimodal on P − Q,
there are three possibilities:

1. If A+ > A, then halfspace on the side of S+ contains the set of goal placements.
2. If A− > A, then halfspace on the side of S− contains the set of goal placements.
3. If A ≥ A+ and A ≥ A−, then A is the global maximum of f .

Thus, in O(T) time, we can finish PlaneDecision. ◀

With Theorem 3.3, it suffices for us to give an algorithm finding the maximum of the
overlap over any plane. Just like in our main algorithm, we want to prune the configuration
space (now restricted to a plane), until we locate a region that contains the maximum
and that does not intersect any event polygon. In Algorithm 2, we give an outline for
PlaneDecision:

▶ Proposition 3.4. For a plane S, we can perform PlaneDecision in O(n log n) time.

H. Zhu and H. J. Kweon 11:5

Algorithm 2: Pseudocode for PlaneDecision
input : A plane S ⊂ R3

output : A translation v ∈ S maximizing the area |P ∩ (Q + v)|
1 Compute S ∩ (P − Q) and set it to be our initial target region.
2 Locate a strip on S containing a good placement whose interior intersects O(n) event

polygons.
3 Recursively construct a (1/2)-cutting of the strip to find a triangle containing a good

placement that does not intersect any event polygon

3.3 Stage 2
With the general PlaneDecision at our disposal, we now move on to Stage 2, the main
component of our algorithm. We project the entire configuration space and the event polygons
onto the xz-plane in order to find a target region D whose preimage D + ly intersects few
event polygons, where ly is the y-axis (see Figure 2).

(a) Projection of P (b) Projection of Q

(c) Projection of the configuration space, and the target region D

Figure 2 Projecting onto the xz-plane.

The non-horizontal edges of the event polygons project to segments on the strip 0 < z < 1
on the xz-plane. We characterize our desired region D in the following lemma.

▶ Lemma 3.5. For a region D that does not intersect any of the segments that are the
projections of the non-horizontal edges of the event polygons, the preimage D + ly intersects
O(n) event polygons.

Now it remains to efficiently find such a region D with D + ly containing a goal placement
and compute the O(n) event polygons that intersect its interior.

▶ Lemma 3.6. In O(n log2 n) time, we can find a triangle D in the xz-plane such that the
interior of D + ly contains a goal placement and intersects O(n) event polygons. We can
compute these O(n) event polygons in the same time bound.

EuroCG’23

11:6 Maximum overlap of polyhedron and polygon

3.4 Stage 3
Now, we have a target region R = D + ly whose interior contains a goal placement, and we
have the O(n) event polygons that intersect it.

▶ Lemma 3.7. In O(n log2 n) time, we can find a region R′ ⊂ R containing a goal placement
that does not intersect any of the O(n) event polygons.

Finally, since the overlap function is quadratic on our final region R′, we can solve for
the maximum using standard calculus. This concludes the proof of Theorem 3.1.

4 Applications

We present two applications of Theorem 3.1 to other problems in computational geometry.
First, we give a deterministic algorithm for maximizing the overlap of three convex polygons.

▶ Theorem 4.1. Let P , Q, R be three convex polygons with n vertices in total in the
plane. We can find a pair of translations (vQ, vR) ∈ R4 that maximizes the overlap area
|P ∩ (Q + vQ) ∩ (R + vR)| in O(n log3 n) time.

In this problem, the configuration space is four-dimensional. An easy extension of
Proposition 2.1 and Theorem 2.2 shows that the function of overlap area is again unimodal.
This time, we have four-dimensional event polyhedra instead of event polygons that divide
the configuration space into four-dimensional cells on which g(vQ, vR) is quadratic. We call
a hyperplane containing an event polyhedron an event hyperplane, and they are defined by
two types of events:

(I) When one vertex of P , Q + vQ or R + vR lies on an edge of another polygon. There are
O(n) groups of O(n) parallel event hyperplanes of this type.

(II) When an edge from each of the three polygons intersect at one point. There are O(n3)
event hyperplanes of this type.

To overcome the difficulty of dealing with the O(n3) event hyperplanes of type (II), we
first prune the configuration space to a region intersecting no event hyperplanes of type (I).
We then show that the resulting region only intersects O(n) event hyperplanes of type (II),
at which point we can use Theorem 2.3 iteratively to finish.

Observe that maximizing the overlap over a hyperplane in which two polygons move
relatively in a line and the other polygon moves freely corresponds precisely to the problem
of overlapping a convex polyhedron (whose cross-sections are the intersections of the two
polygons moving in a line) and a convex polygon (the third polygon). Thus, Theorem 3.1
gives us a kind of “HyperplaneDecision” which we can use to prune the event hyperplanes
of type (I).

We also give a deterministic O(n log2 n) time algorithm for minimizing the symmetric
difference of two convex polygons under homothety (a scaling and a translation), which is an
improvement to Yon et al.’s O(n log3 n) time algorithm [12].

▶ Theorem 4.2. Let P and Q be convex polygons with n vertices in total. Then we can find
a homothety φ that minimizes the area of symmetric difference |P \ φ(Q)| + |φ(Q) \ P | in
O(n log2 n) time.

We want to minimize the function h(φ) = h(x, y, λ) = |P \ φ(Q)| + |φ(Q) \ P |, where
φ(Q) = λQ + (x, y). We can rewrite this as h(φ) = |P | + |Q|λ2 − 2|P ∩ φ(Q)|. Thus,

H. Zhu and H. J. Kweon 11:7

minimizing h is the same as maximizing the function f(φ) = |P ∩ φ(Q)| − cλ2, where
c = 1

2 |Q|.
Consider the cone C = {(x, y, λ)|λ ∈ [0, M], (x, y) ∈ λQ}, where M =

√
|P |/c (see

Figure 3). Then f is negative for λ > M so it is never maximized. We also put P into R3

by P = {(x, y, 0)|(x, y) ∈ P}. Since f(x, y, λ) = |C ∩ (P + (−x, −y, λ))| − cλ2, the problem
reduces to maximizing the overlap area of the cone C and P under translation subtracted by
a quadratic function. Some modification of Theorem 3.1 gives Theorem 4.2.

Q C

Figure 3 Formation of the cone C.

References
1 Hee-Kap Ahn, Peter Brass, and Chan-Su Shin. Maximum overlap and minimum convex

hull of two convex polyhedra under translations. Comput. Geom., 40(2):171–177, 2008.
doi:10.1016/j.comgeo.2007.08.001.

2 Hee-Kap Ahn, Siu-Wing Cheng, Hyuk Jun Kweon, and Juyoung Yon. Overlap of convex
polytopes under rigid motion. Comput. Geom., 47(1):15–24, 2014. doi:10.1016/j.comgeo.
2013.08.001.

3 Hee-Kap Ahn, Siu-Wing Cheng, and Iris Reinbacher. Maximum overlap of convex polytopes
under translation. Comput. Geom., 46(5):552–565, 2013. doi:10.1016/j.comgeo.2011.11.
003.

4 Hee-Kap Ahn, Otfried Cheong, Chong-Dae Park, Chan-Su Shin, and Antoine Vigneron.
Maximizing the overlap of two planar convex sets under rigid motions. Comput. Geom.,
37(1):3–15, 2007. doi:10.1016/j.comgeo.2006.01.005.

5 David Avis, Prosenjit Bose, Thomas C. Shermer, Jack Snoeyink, Godfried Toussaint, and
Binhai Zhu. On the sectional area of convex polytopes. In Communication at the 12th
Annu. ACM Sympos. Comput. Geom., page C. Association for Computing Machinery, New
York, NY, 1996.

6 Mark de Berg, Olivier Devillers, Marc van Kreveld, Otfried Schwarzkopf, and Monique
Teillaud. Computing the maximum overlap of two convex polygons under translations. In
International Symposium on Algorithms and Computation, pages 126–135. Springer, 1996.

7 Bernard Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra.
SIAM J. Comput., 21(4):671–696, 1992. doi:10.1137/0221041.

8 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom.,
9(2):145–158, 1993. doi:10.1007/BF02189314.

9 Bernard Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete
Comput. Geom., 10(4):377–409, 1993. doi:10.1007/BF02573985.

10 Hyuk Jun Kweon and Honglin Zhu. Maximum overlap area of a convex polyhedron and
a convex polygon under translation, 2023. URL: https://arxiv.org/abs/2301.02949,
doi:10.48550/ARXIV.2301.02949.

EuroCG’23

https://doi.org/10.1016/j.comgeo.2007.08.001
https://doi.org/10.1016/j.comgeo.2013.08.001
https://doi.org/10.1016/j.comgeo.2013.08.001
https://doi.org/10.1016/j.comgeo.2011.11.003
https://doi.org/10.1016/j.comgeo.2011.11.003
https://doi.org/10.1016/j.comgeo.2006.01.005
https://doi.org/10.1137/0221041
https://doi.org/10.1007/BF02189314
https://doi.org/10.1007/BF02573985
https://arxiv.org/abs/2301.02949
https://doi.org/10.48550/ARXIV.2301.02949

11:8 Maximum overlap of polyhedron and polygon

11 Nimrod Megiddo. Linear programming in linear time when the dimension is fixed. J. Assoc.
Comput. Mach., 31(1):114–127, 1984. doi:10.1145/2422.322418.

12 Juyoung Yon, Sang Won Bae, Siu-Wing Cheng, Otfried Cheong, and Bryan T. Wilkinson.
Approximating convex shapes with respect to symmetric difference under homotheties. In
32nd International Symposium on Computational Geometry, volume 51 of LIPIcs. Leibniz
Int. Proc. Inform., pages Art. No. 63, 15. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern,
2016.

https://doi.org/10.1145/2422.322418

Extending Orthogonal Planar Graph Drawings is
Fixed-Parameter Tractable
Sujoy Bhore1, Robert Ganian2, Liana Khazaliya2,
Fabrizio Montecchiani3, and Martin Nöllenburg2

1 Indian Institute of Technology Bombay, India
sujoy.bhore@gmail.com

2 Technische Universität Wien, Austria
{rganian,lkhazaliya,noellenburg}@ac.tuwien.ac.at

3 University of Perugia
fabrizio.montecchiani@unipg.it

Abstract
We consider the extension problem for bend-minimal orthogonal drawings of planar graphs, which
is among the most fundamental geometric graph drawing representations. While the problem was
known to be NP-hard, it is natural to consider the case where the drawn part is connected and
only a small part of the graph is still to be drawn. Here, we prove the problem is in FPT when
parameterized by the size of the missing subgraph.

Related Version http://arxiv.org/abs/2302.10046

1 Introduction

Drawing extension problems are motivated, for instance, by visualizing networks, in which
certain subgraphs represent important motifs that require a specific drawing, or by visual-
izing dynamic networks, in which new edges and vertices must be integrated in an existing,
stable drawing. Generally speaking, we are given a graph G and a (typically connected)
subgraph H of G with a drawing Γ(H), which is called a partial drawing of G. The drawing
Γ(H) satisfies certain topological or geometric properties, e.g., planarity, upward planarity,
or 1-planarity, and the goal of the corresponding extension problem is to extend Γ(H) to a
drawing Γ(G) of the whole graph G (if possible) by inserting the missing vertices and edges
into Γ(H) while maintaining the required drawing properties.

In this paper, we study the geometric drawing extension problem arising in the context
of one of the most fundamental graph drawing styles: orthogonal drawings [3, 4, 6, 10]. In a
planar orthogonal drawing, edges are represented as polylines comprised of (one or more)
horizontal and vertical segments, ideally with as few overall bends as possible, where edges
are not allowed to intersect except at common endpoints. Orthogonal drawings find appli-
cations in various domains from VLSI and printed circuit board (PCB) design, to schematic
network visualizations, e.g., UML diagrams in software engineering, argument maps, or flow
charts.

Given the above, a key optimization goal in orthogonal drawings is bend minimization.
This task is known to be NP-hard [8] when optimizing over all possible combinatorial em-
beddings of a given graph, but can be solved in polynomial time for a fixed combinatorial
embedding using the network flow model of Tamassia [11].

Despite the general popularity of planar orthogonal graph drawings, the corresponding
extension problem has only been considered recently by Angelini et al. [1]. While they
showed that the existence of a planar orthogonal extension can be decided in linear time,
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

http://arxiv.org/abs/2302.10046

12:2 Extending Orthogonal Planar Graph Drawings is Fixed-Parameter Tractable

a
x

(a) Γ(G)

a

(b) Γ(H)

Figure 1 An orthogonal drawing of (a) a graph G and (b) a subgraph H of G.

the orthogonal bend-minimal drawing extension problem in general is easily seen to be NP-
hard as it generalizes the case in which the pre-drawn part of the graph is empty [8]. Our
paper addresses the parameterized complexity of the bend-minimal extension problem for
planar orthogonal graph drawings under the most natural parameterization of the problem,
which is the size of the subgraph that is still missing from the drawing.

Problem Statement. Let G be a planar graph and H be a connected subgraph of G. We
call the complement X = V (G)\V (H) the missing vertex set of G, and EX = E(G)\E(H)
the missing edge set. Let Γ(H) be a planar orthogonal drawing of H. A planar orthogonal
drawing Γ(G) extends Γ(H) if its restriction to the vertices and edges of H coincides with
Γ(H). Moreover, Γ(G) is a β-extension of Γ(H) if it extends Γ(H) and the total number of
bends along the edges of EX is at most β, for some β ∈ N. For example, Figure 1a shows a
7-extension Γ(G) of the drawing Γ(H) in Figure 1b, with the missing vertices drawn in red.

Bend-Minimal Orthogonal Extension (BMOE)
Input: (G,H,Γ(H)), integer β
Problem: Is there a β-extension Γ(G) of Γ(H)?

Our parameter of interest, denoted by κ, is the number of vertices and edges missing
from H, i.e., κ = |V (G) \ V (H)|+ |E(G) \ E(H)|.

Contributions and overview. We establish the fixed-parameter tractability of BMOE
when parameterized by κ. While there have been numerous recent advances in the parame-
terized study of drawing extension problems [5,7,9], the specific drawing styles considered in
those papers were primarily topological in nature, while for bend minimization the geometry
of the instance is crucial. In order to overcome this difficulty, we develop a new set of tools
summarized below. We first apply an initial branching step to simplify the problem (Sec-
tion 2). This step allows us to reduce our target problem to Bend-Minimal Orthogonal
Extension on a Face (F-BMOE), where the missing edges and vertices are drawn only
in a marked face f and we have some additional information about how the edges are geo-
metrically connected. Next, we focus on solving an instance of F-BMOE (Section 3). We
show that certain parts of the marked face f are irrelevant and can be pruned away, and also
use an involved argument to reduce the case of f being the outer face to the case of f being
an inner face. Once that is done, we enter the centerpiece of our approach (Section 4), where
the aim is to obtain a suitable discretization of our instance. To this end, we split the face f
into so-called sectors, which group together points that have the same “bend distances” to all
of the connecting points on the boundary of f . Furthermore, we construct a sector-grid—a
point-set such that each sector contains a bounded number of points from this set, and every
bend-minimal extension can be modified to only use points from this set for all vertices and

S. Bhore, R. Ganian, L. Khazaliya, F. Montecchiani, M. Nöllenburg 12:3

bends. While this latter result would make it easy to handle each individual sector by brute
force, the issue is that the number of sectors can be very large, hindering tractability. To
deal with this obstacle, we capture the connections between sectors via a sector graph whose
vertices are the sectors and whose edges represent geometric adjacencies between sectors.
Crucially, we show that the sector graph has treewidth bounded by a function of κ. Having
obtained this bound on the treewidth, the last step simply combines the already constructed
sector grid with dynamic programming to solve F-BMOE (and hence also BMOE).

Many technicalities and proofs have been omitted; see [2] for the full paper.

2 Initial Branching

Let 〈(G,H,Γ(H)), β〉 be an instance of BMOE. A vertex w ∈ V (H) is called an anchor if
it is incident to an edge in EX . For a missing edge vw ∈ EX incident to a vertex v ∈ V (H),
we will use “ports” to specify a direction that vw could potentially use to reach v in an
extension of Γ(H); we denote these directions as d, which is an element from {↓ (north), ↑
(south), ← (east), → (west)}. Formally, a port candidate for vw ∈ EX and v ∈ V (H) is a
pair (v, d). A port-function is an ordered set of port candidates which contains precisely one
port candidate for each vw ∈ EX , v ∈ V (H), ordered lexicographically by v and then by w.

Bend-Minimal Orthogonal Extension on a Face (F-BMOE)
Input: Planar graph Gf ; induced subgraph Hf of Gf with k = |Xf |, where Xf =
V (Gf) \V (Hf); drawing Γ(Hf) of Hf consisting of a single inner face f ; port-function P.
Task: Compute the minimum β for which a β-extension of Γ(Hf) exists s.t. (1) all missing
edges and vertices are drawn in face f , (2) each edge xa ∈ EX where a ∈ V (H) connects
to a via its port candidate defined by P, or determine that no such extension exists.

I Lemma 2.1. There is an algorithm that solves an instance I of BMOE in time 3O(κ) ·
T (|I|, k), where T (a, b) is the time required to solve an instance of F-BMOE with instance
size a and parameter value b.

The algorithm in [1] can be used to test whether an instance of F-BMOE admits some
β-extension. Hence, we will assume to be dealing with instances where such an extension
exists. We will call a β-extension minimizing the value of β a solution.

3 Preprocessing

The first two steps that will allow us to solve F-BMOE include pruning out certain parts
of the face which are provably irrelevant, and reducing the case of f being the outer face to
the case of f being an inner face.

Let Γ(G) be an orthogonal drawing of a graph G and let f be a face of Γ(G). A feature
point of Γ(G) is a point representing either a vertex or a bend of an edge. A reflex corner
p of f is a feature point that makes an angle larger than π inside f . Also, if p is an anchor,
then it is called an essential reflex corner. A projection ` of a reflex corner p is a horizontal
or vertical line-segment in the interior of f that starts at p and ends at its first intersection
with the boundary of f . Figure 2 (left) shows two projections `1 and `2 of a reflex corner p.

Observe that each projection ` of a reflex corner p divides the face f into two connected
regions. If p is not essential and one of the two regions contains no reflex corners of its own
and no anchors, we call the region redundant. Our aim will be to show that such regions
can be safely removed from the instance. Namely, we can prove the following, where a clean

EuroCG’23

12:4 Extending Orthogonal Planar Graph Drawings is Fixed-Parameter Tractable

p `1

`2

Figure 2 Left: A reflex corner p and its projections `1 and `2. Middle: A face (striped) with all
its non-essential reflex corners and projections (anchor vertices have a gray filling while non-anchors
are solid). Right: The corresponding clean instance (dummy vertices are drawn as small squares).

instance is such that each projection of each non-essential reflex corner in f splits f into
two faces, each of which has at least one port on its boundary; see Figure 2 (right).

I Lemma 3.1. There is a polynomial-time algorithm that takes as input an arbitrary instance
of F-BMOE and outputs an equivalent instance which is clean.

Given Lemma 3.1, we will hereinafter assume that our instances of F-BMOE are clean.
Next, consider an instance of F-BMOE where the marked face is the outer face of Γ(Hf),
and let us begin by constructing a rectangle that bounds Γ(Hf) and will serve as a “frame”
for any solution. More formally, given an instance I of F-BMOE and a rectangle R that
contains Γ(Hf) in its interior, one easily sees that I admits a solution that lies in the
interior of R. Based on this fact, we shall assume that any instance I is modified such
that the outer face of Γ(Hf) is a rectangle R containing no anchors (e.g., with four dummy
vertices at its corners connected in a cycle). Notice that, while this ensures that f is no
longer the outer face, f now contains a hole (that is, Hf is not connected anymore). The goal
is now to remove this hole by connecting it to the boundary of R. To do so, let us consider
an arbitrary horizontal or vertical line-segment ζ that connects the boundary of R with an
edge-segment in the drawing Γ(Hf) and intersects no other edge-segment of Γ(Hf). Observe
that, w.l.o.g., we can assume that each edge-segment in a solution Γ(Gf) only intersects ζ in
single points (and not in a line-segment); otherwise, one may shift ζ by a sufficiently small
ε to avoid such intersections. Roughly speaking, we can show that the instance I can be
“cut open” along ζ to construct an equivalent instance where the boundary of the polygon
includes R, and to branch in order to determine how the edges in a hypothetical solution
cross through ζ. However, to do so we need to ensure that there is a solution, in which the
number of such crossings through ζ is bounded. To summarize, we can prove the following.

I Lemma 3.2. There is an algorithm that takes as input an instance I of F-BMOE where f
is the outer face and solves it in time 2O(k2 log k) ·Q(|I|, k), where Q(a, b) is the time to solve
an instance of F-BMOE of size a and parameter value b such that f is the inner face.

4 The Sector Graph

For a point p ∈ f , the bend distance bd(p, (a, d)) to a port candidate (a, d) is the minimum
integer q such that there exists an orthogonal polyline with q bends connecting p and a in
the interior of f which arrives to a from direction d.

I Definition 4.1. Let P = ((a1, d1), . . . , (aq, dq)) be an ordered set of port candidates. For
each point p ∈ f , we define its bend-vector as the tuple vect(p) = (bd(p, (a1, d1)), . . . ,
bd(p, (aq, dq))).

S. Bhore, R. Ganian, L. Khazaliya, F. Montecchiani, M. Nöllenburg 12:5

I Definition 4.2. Given an ordered set of port candidates P, a sector F is a maximal
connected set of points with the same bend-vector w.r.t. P.

When P is not specified explicitly, we will assume it to be the set of port candidates
provided by the considered instance of F-BMOE. The face f is now partitioned into a set
F of sectors. It is worth noting that sectors are connected regions in the face f , they do
not overlap, and they cover the whole interior of f . We further notice that a sector can
be degenerate, it may be a single point or a line-segment, and that pairs of (non-adjacent)
sectors may have the same bend-vectors. At this point, we can define a graph representation
capturing the adjacencies between the sectors in our instance; see Figure 3.

I Definition 4.3. Sectors A and B are adjacent if there exists a point p in A and a direction
d ∈ {↑, ↓,←,→} such that the first point outside of A hit by the ray starting from p in
direction d is in B.

(a1, d1)

(a2, d2)

(a3, d3)

(a1, d1)

(a2, d2)

(a3, d3)

Figure 3 Left: partioning a face f into a set F of sectors, with three anchors marked using white
circles. Right: the graph representation of F .

The sector graph G is the graph whose vertex set is the set of sectors F , and adjacencies of
vertices are defined via the adjacency of sectors. It is not difficult to observe that the sector
graph is a connected planar graph. Concerning its size, we observe that each sector contains
at least one intersection point between two projections and that any such intersection point
can be shared by at most nine sectors (four non-degenerate sectors plus five degenerate
sectors). Hence the number of vertices in G is upper-bounded by 9x2, where x is the number
of feature points in Γ(Hf).

We now construct a “universal” point-set with the property that there exists a solu-
tion which places feature points only on these points, and where the intersection of the
point-set with each sector is upper-bounded by a function of the parameter. Namely, let
gridsize(k) = c · k8 (for some constant c ≈ 106). Then we can prove the following:

I Lemma 4.4. Given an instance I of F-BMOE we can construct a point-set (called a
sector grid) in time O(|I|) with the following properties: (1) I admits a solution whose
feature points all lie on the sector grid, and (2) each sector contains at most gridsize(k)
points of the sector grid.

To complete the proof of our fixed-parameter tractability result we proceed by first
showing that the sector graphs in fact have treewidth bounded by a function of the parameter
k, and then by using this fact to design a dynamic programming algorithm solving F-BMOE.

I Theorem 4.5. Let G be a sector graph of a face f of the drawing Γ(G). Then tw(G) ≤
(4+4k)4k. Based on this, there is an algorithm that solves F-BMOE in time 2kO(1) ·|V (Gf)|.

By combining Theorem 4.5 with Lemma 2.1, we conclude:

I Corollary 4.6. BMOE can be solved in time 2κO(1) · n, where n is the number of feature
points of Γ(H).

EuroCG’23

12:6 Extending Orthogonal Planar Graph Drawings is Fixed-Parameter Tractable

References
1 Patrizio Angelini, Ignaz Rutter, and T. P. Sandhya. Extending partial orthogonal drawings.

J. Graph Algorithms Appl., 25(1):581–602, 2021. doi:10.7155/jgaa.00573.
2 Sujoy Bhore, Robert Ganian, Liana Khazaliya, Fabrizio Montecchiani, and Martin Nöl-

lenburg. Extending orthogonal planar graph drawings is fixed-parameter tractable, 2023.
URL: https://arxiv.org/abs/2302.10046, doi:10.48550/ARXIV.2302.10046.

3 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Draw-
ing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

4 Christian A. Duncan and Michael T. Goodrich. Planar orthogonal and polyline drawing
algorithms. In Roberto Tamassia, editor, Handbook of Graph Drawing and Visualization,
chapter 7, pages 223–246. CRC Press, 2013.

5 Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg.
Extending partial 1-planar drawings. In Artur Czumaj, Anuj Dawar, and Emanuela
Merelli, editors, Automata, Languages, and Programming (ICALP’20), volume 168 of
LIPIcs, pages 43:1–43:19. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.ICALP.2020.43.

6 Markus Eiglsperger, Sándor P. Fekete, and Gunnar W. Klau. Orthogonal graph drawing. In
Michael Kaufmann and Dorothea Wagner, editors, Drawing Graphs: Methods and Models,
volume 2025 of LNCS, chapter 6, pages 121–171. Springer-Verlag, 2001. doi:10.1007/
3-540-44969-8_6.

7 Robert Ganian, Thekla Hamm, Fabian Klute, Irene Parada, and Birgit Vogtenhuber.
Crossing-optimal extension of simple drawings. In Nikhil Bansal, Emanuela Merelli, and
James Worrell, editors, 48th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2021, volume 198 of LIPIcs, pages 72:1–72:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.72.

8 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM J. Comput., 31(2):601–625, 2001. doi:10.1137/
S0097539794277123.

9 Thekla Hamm and Petr Hlinený. Parameterised partially-predrawn crossing number. In
Xavier Goaoc and Michael Kerber, editors, 38th International Symposium on Computa-
tional Geometry, SoCG 2022, volume 224 of LIPIcs, pages 46:1–46:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SoCG.2022.46.

10 Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, volume 12 of Lecture
Notes Series on Computing. World Scientific, 2004. doi:10.1142/5648.

11 Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends.
SIAM J. Comput., 16(3):421–444, 1987. doi:10.1137/0216030.

http://dx.doi.org/10.7155/jgaa.00573
https://arxiv.org/abs/2302.10046
http://dx.doi.org/10.48550/ARXIV.2302.10046
http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.43
http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.43
http://dx.doi.org/10.1007/3-540-44969-8_6
http://dx.doi.org/10.1007/3-540-44969-8_6
http://dx.doi.org/10.4230/LIPIcs.ICALP.2021.72
http://dx.doi.org/10.1137/S0097539794277123
http://dx.doi.org/10.1137/S0097539794277123
http://dx.doi.org/10.4230/LIPIcs.SoCG.2022.46
http://dx.doi.org/10.1142/5648
http://dx.doi.org/10.1137/0216030

(1 + ε)-ANN data structure for curves via
subspaces of bounded doubling dimension

Jacobus Conradi1, Anne Driemel2, and Benedikt Kolbe2

1 Department of Computer Science, University of Bonn, Germany
2 Hausdorff Center for Mathematics, University of Bonn, Germany

Abstract
We consider the (1 + ε)-Approximate Nearest Neighbour (ANN) Problem for polygonal curves in
d-dimensional space under the Fréchet distance and ask to what extent known data structures for
doubling spaces can be applied to this problem. For this we identify a subspace of curves which has
bounded doubling dimension and is close (in a Gromov-Hausdorff sense) to the target space, in which
we solve the (1 + ε)-ANN problem, transfering the results to the original space of all curves. Our
results imply that there is a data structure for the (1 + ε)-ANN problem for any set of parametrized
polygonal curves in Rd with expected preprocessing time in 2O(λ)n log n with space used in 2O(λ)n,
with a query time of 2O(λ) log n + ε−O(λ), where λ = O(k(d + log(kΦ(S)ε−1))) and Φ(S) denotes
the spread of the set of vertices and edges of the curves in S.

1 Introduction

Given a set S of n points, the Nearest Neighbour Problem is the problem of constructing a
data-structure on S which can efficiently identify the point in S that minimizes the distance
to a given query point q. The Nearest Neighbour Problem is a fundamental problem. Its
variants have long been studied and applied in different areas, such as RNA sequencing
[2], disease diagnosing [13], motion pattern detection [4], shape indexing [1] or handwritten
digit recognition [9]. The problem has been studied as early as the 1960s [10], and classical
results such as the one by Shamos via point location in a Voronoi diagram achieve a query
time of O(log n) while using O(n log n) space in R2 [11], which was later improved upon by
Kirkpatrick to only require linear space and preprocessing time [8].

One complexity measure often used to generalize many different results to complicated
metric spaces is the notion of doubling dimension [5, 7, 14]. The Approximate Nearest Neigh-
bour (ANN) Problem in spaces with low doubling dimension has been studied extensively [7]
and results are known that roughly match the bounds known for Rd [6]. The metric space we
are interested in is the space of polygonal curves in Rd under the Fréchet distance. Polygonal
curves naturally arise from any sort of motion tracking, such as GPS data or motion capture
data, and are therefore of much interest. The metric space of curves under the Fréchet
distance has been shown to have unbounded doubling dimension [3], which suggests that
data structures designed for doubling spaces would perform poorly. Our work was inspired
by the work of Sheehy and Sheth on the bottleneck distance for persistence diagrams [12],
who showed that Clarkson’s Algorithm for computing r-nets can be extended to spaces that
are close to spaces of bounded doubling dimension. The primary motivation in this paper
is to find a workaround to the unbounded doubling dimension, and to leverage the rich
background of ANN results for doubling spaces to the Fréchet distance after all.
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

13:2 (1 + ε)-ANN data structure for curves under the Fréchet distance

2 Basic definitions

An edge in Rd is the continuous map obtained from the linear interpolation of two points
a and b in Rd parametrized over [0, 1]. We may write a b to denote this unique edge. A
polygonal curve T of complexity n parametrized over [0, 1] is defined by a set of n points
in Rd and is the result of (n − 2) concatenations of the (n − 1) edges in Rd defined by any
two consecutive points. We call the underlying points of a polygonal curve of complexity n

its vertices. For 0 ≤ s ≤ t ≤ 1 we denote the subcurve of T from T (s) to T (t) by T [s, t].

▶ Definition 2.1 (Fréchet distance). Define the Fréchet distance for two curves X, Y in Rd as

dF (X, Y) = inf
f,g:[0,1]→[0,1]

max
t∈[0,1]

∥X(f(t)) − Y (g(t))∥

where f and g are continuous, non-decreasing and surjective.

The Fréchet distance is generally not a metric, but rather a pseudo-metric, as there are
curves X ̸= Y , such that dF (X, Y) = 0. However this is easily remedied by considering the
quotient space induced by the equivalence relation X ∼ Y ⇐⇒ dF (X, Y) = 0.

Problem definition ((1 + ε)-ANN) Let (M, dM) be a metric space. Let P ⊂ M be a set
of points in M and a parameter ε > 0 be given. For a given point q ∈ M, the problem of
finding the (1 + ε)-Approximate Nearest Neighbour ((1 + ε)-ANN) asks to identify some
point x̂ ∈ P whose distance to q approximates the distance to the nearest neighbour in P .
That is for every x ∈ P it holds that dM(q, x̂) ≤ (1 + ε) dM(q, x).

To answer such queries when M is the space of polygonal curves with the Fréchet distance,
we construct a subspace of curves that has bounded doubling dimension and is ’arbitrarily
close’ to the space of all curves. This then allows us to transfer results from spaces with
bounded doubling dimension to these close spaces.

We denote by Xd,k the set of polygonal curves in Rd with complexity k. We further write
Xd,k

Λ for the subset of polygonal curves in Xd,k where the length of each edge is bounded
by Λ. The doubling constant of any metric space (M, dM) is defined as the minimal
number ν, such that for any x ∈ M and any r > 0 the disk of radius r centered at x, denoted
by DM

r (x), is contained in the union of at most ν disks with radius r/2. The doubling
dimension of (M, dM) is defined as log2(ν). We may omit the metric space in the notation
of a disk, whenever the metric space is clear, writing Dr(x) instead of DM

r (x) for x ∈ M.
It turns out that for k ≥ 3 the doubling dimension of (Xd,k, dF) is unbounded [3]. A

slight modification to this construction yields an unbounded doubling dimension of Xd,k
Λ for

any Λ > 0. We thus turn to the following subspace of (Xd,k, dF) which we want to analyze.

▶ Definition 2.2 ((µ, ε)-curves). For any ε > 0 and µ ∈ N define the space of (µ, ε)-curves in
Xd,k as the subspace of (Xd,k, dF) induced by the set of polygonal curves in Xd,k whose edge
lengths are all exact multiples of ε. Further we require the edge lengths to be bounded by
µε. The space of (µ, ε)-curves in Xd,k is a natural subspace of (Xd,k

µε , dF).

▶ Lemma 2.3. Let P ∈ Xd,k
Λ be a polygonal curve and ε > 0. We can construct a

(⌈Λ/ε⌉ + 1, ε)-curve P ′ in Xd,k such that dF (P, P ′) ≤ ε/2 in O(k log(Λ/ε)) time.

Omitted proofs throughout this paper can be found in the full version.

Conradi, Driemel, and Kolbe 13:3

ε

11ε11ε

5ε

13ε

6ε

4ε

14ε

Figure 1 A curve P ∈ Xd,k
Λ in blue, and an ε-curve close to P resulting from Lemma 2.3 in red.

3 Bounding the doubling dimension of the space of (µ, ε)-curves

We now study the doubling dimension of the space of (µ, ε)-curves in Xd,k. Unfortunately,
our bound is non-constructive. As such, it does not provide a doubling oracle that, for a
given disk of radius r, outputs a set of disks of radius r/2 which cover the disk of radius r.

Before diving into the analysis of the doubling dimension of the space of (µ, ε)-curves, we
begin by analysing properties of the ambient space Rd. For this we often inspect so called
∆-neighbourhoods of subsets of Rd. For any subset A the ∆-neighbourhood of A is defined
by N∆(A) = {x ∈ Rd | ∃a ∈ A : d(x, a) ≤ ∆}. Note that the ∆-neighbourhood of a single
point x coincides with a disk of radius ∆ centered at x.

It is well-known that the doubling dimension of Rd is in Θ(d). The following lemma is a
generalization of the fact, that the doubling dimension of Rd is in O(d).

▶ Lemma 3.1. For any r > 0 and c > 1, any disk Dr(p) ⊂ Rd can be covered by O((2c + 1)d)
disks of radius r/c.

The main result we now want to prove is the following theorem.

▶ Theorem 3.2. Let k, µ, d ∈ N and ε > 0. The doubling dimension of the space of
(µ, ε)-curves is bounded by O(k(d + log(kµ))).

Let P be a (µ, ε)-curve in Xd,k. Our objective is to cover the ∆-neighbourhood of P with
respect to dF with disks of radius ∆/2. We encounter the question of where, given p ∈ Rd,
we may place a second point q such that there is a subcurve of P that is close to p q. Indeed,
for any curve Q with dF (P, Q) ≤ ∆, the endpoint q of any edge p q of Q is such a point,
depending only on the starting point p of the edge in question.

▶ Definition 3.3. Let P be a polygonal curve and λ ≥ 0 and ∆ ≥ 0. For s ∈ [0, 1] define the
locus of edge endpoints of edges close to subcurves of P starting at the parameter s as

Lλ,∆(P, s) =
{

q ∈ Rd
∣∣∃p ∈ Rd and ∃t ∈ [s, 1] with ∥p − q∥ = λ and dF (P [s, t], p q) ≤ ∆

}
.

It turns out that the set Lλ,∆(P, s) is contained in a disk of constant size.

▶ Lemma 3.4. Let P be a polygonal curve. Let λ ≥ 0 and ∆ ≥ 0 be given. Then for every
s ∈ [0, 1] there is a point p∗ ∈ Rd, such that Lλ,∆(P, s) ⊂ D5∆(p∗).

▶ Definition 3.5. Let P be a polygonal curve and λ ≥ 0 and ∆ ≥ 0. For p ∈ Rd define the
locus of edge endpoints of edges starting at p which are close to subcurves of P as the set

Lλ,∆(P, p) =
{

q ∈ Rd
∣∣∥p − q∥ = λ and ∃s, t with 0 ≤ s ≤ t ≤ 1 and dF (P [s, t], p q) ≤ ∆

}
.

Similarly to Lemma 3.4 we can identify k disks that cover Lλ,∆(P, p) for given P, λ, ∆ and p.

EuroCG’23

13:4 (1 + ε)-ANN data structure for curves under the Fréchet distance

P

P (s)

Lλ,∆(P, s)

∆

p

q

P (t)

λ

p q

∆

Figure 2 Illustration of the set Lλ,∆(P, s) in dark green, together with the points p and P (t)
realizing a point q in Lλ,∆(P, s), that is ∥p − q∥ = λ and dF (P [s, t], p q) ≤ ∆.

▶ Lemma 3.6. Let P ∈ Xd,k be a polygonal curve. Let λ ≥ 0 and ∆ ≥ 0 be given. Then for
every p ∈ Rd there are k points p∗

1, . . . , p∗
k ∈ Rd such that Lλ,∆(P, p) ⊂ ⋃k

i=1 D5∆(p∗
i).

Proof. The set I = {s ∈ [0, 1] | P (s) ∈ D∆(p)} can be described as a disjoint union of at
most k closed intervals, as the complexity of P is bounded by k. Assume that it is described
by exactly k such intervals, that is, I =

⋃k
i=1[li, ri].

It suffices to show that Lλ,∆(P, p) ⊂ ⋃k
i=1 Lλ,∆(P, li), as Lemma 3.4 then implies the

claim. Assume that an arbitrary q ∈ Lλ,∆(P, p) is given. Then by definition there are values
0 ≤ s ≤ t ≤ 1 such that dF (P [s, t], p q) ≤ ∆. This implies that ∥p − P (s)∥ ≤ ∆, and hence
s ∈ I and in turn s ∈ [li, ri] for some 1 ≤ i ≤ k. But then the subcurve P [li, s] is contained in
D∆(p), and thus dF (P [li, t], p q) ≤ ∆ implying that q ∈ Lλ,∆(P, li) and thus the claim. ◀

▶ Corollary 3.7. For every polygonal curve P in Rd, ∆ > 0, λ > 0, c > 1 and point p ∈ Rd

the set N∆/c

(
Lλ,(1+c−1)∆(P, p)

)
can be covered by O(k(10c + 3)d) many disks of radius ∆/c.

▶ Lemma 3.8. Let P be a polygonal curve. Let λ ≥ 0, ∆ ≥ 0 and c ≥ 1 be given. Then for
every p, p′ ∈ Rd with ∥p − p′∥ ≤ ∆/c we have that Lλ,∆(P, p) ⊂ N∆/c

(
Lλ,(1+c−1)∆(P, p′)

)
.

We now prove a stronger version of Theorem 3.2, which allows us to analyse both the subspace
doubling constant as well as the doubling constant of (µ, ε)-curves in Xd,k.

▶ Lemma 3.9. Let k, µ, d ∈ N and ε > 0. Let a (µ, ε)-curve P in Xd,k be given, as well as
∆ > 0 and c ≥ 1. There is a family of curves CP ⊂ Xd,k

µε+∆/c of size O(kµ(10c + 3)d)k, such
that for any (µ, ε)-curve Q with dF (P, Q) ≤ ∆ there is a Q∗ ∈ CP with dF (Q, Q∗) ≤ ∆/c.

Proof. We construct the set CP as follows. First, choose an element (m1, . . . , mk−1) ∈
{1, . . . , µ}k−1. Next, choose one circle center of a cover of D∆(P (0)) consisting of O((2c+1)d)
many disks of radius r/c, which exists by Lemma 3.1. Iteratively choose one point among
the circle centers of a cover of N∆/c

(
Lmi−1ε,(1+c−1)∆(P, q∗

i−1)
)

of Corollary 3.7, consisting of
O(k(10c+3)d) many disks of radius r/c as the vertex q∗

i of Q∗ for i ≤ k. Then Q∗ ∈ Xd,k
µε+∆/c,

as for any i the fact that q∗
i lies in N∆/c

(
Lmi−1ε,(1+c−1)∆(P, q∗

i−1)
)

implies that there is a
point q ∈ Lmi−1ε,(1+c−1)∆(P, q∗

i−1), with ∥q∗
i−1 − q∥ = mi−1ε and ∥q − q∗

i ∥ ≤ ∆/c. Hence,
∥q∗

i − q∗
i−1∥ ≤ m1ε + ∆/c ≤ µε + ∆/c. To account for all the choices, we have that

|CP | = O(kµ(10c + 3)d)k.
Let Q be a given (µ, ε)-curve, with dF (P, Q) ≤ ∆. The curve Q consists of k − 1 edges

and induces an ordered set (m1, . . . , mk−1) ∈ {0, . . . , µ}k−1 representing the lengths of

Conradi, Driemel, and Kolbe 13:5

the edges in order. Let q1, . . . , qk be the vertices of Q. For all 1 ≤ i ≤ k it holds that
qi ∈ Lmi−1ε,∆(P, qi−1), by construction.

As dF (P, Q) ≤ ∆, the first vertex q1 lies in D∆(P (0)), and thus there is a point q∗
1

of the cover of D∆(P (0)) consisting of disks of radius r/c, that lies at distance at most
∆/c to q1. For every subsequent qi, by Lemma 3.8 and because qi ∈ Lmi−1ε,∆(P, qi−1),
qi ∈ N∆/c

(
Lmi−1ε,(1+c−1)∆(P, q∗

i−1)
)

and thus there is a point q∗
i of the ∆/c-cover of

N∆/c

(
Lmi−1ε,(1+c−1)∆(P, q∗

i−1)
)

that is at distance at most ∆/c to qi. This implies that
there is an element Q∗ (defined by exactly this choice of points) in CP that has distance
dF (Q, Q∗) ≤ ∆/c. ◀

Proof of Theorem 3.2. Let P be a (µ, ε)-curve in Xd,k and a value ∆ be given. By
Lemma 3.9, there is a family CP of curves of size O(kµ(43)d)k in Xd,k

µε+∆/4 ⊂ Xd,k, such that
for any (µ, ε)-curve Q with dF (P, Q) ≤ ∆ there is curve Q∗ in CP with dF (Q, Q∗) ≤ ∆/4.
For any Q∗ ∈ CP identify some (µ, ε)-curve Q̂∗ such that dF (Q∗, Q̂∗) ≤ ∆/4. If no such
element exists, ignore Q∗. Otherwise for any (µ, ε)-curve Q with dF (P, Q) ≤ ∆ there is
a curve Q∗ in CP with dF (Q, Q∗) ≤ ∆/4, and thus by the triangle inequality there is a
(µ, ε)-curve Q̂∗ with dF (Q, Q̂∗) ≤ ∆/2, proving the bounded doubling dimension. ◀

4 Approximate Nearest Neighbour

Har-Peled et al. [6] showed the following result for the (1 + ε)-ANN problem in metric spaces
of bounded doubling dimension.

▶ Theorem 4.1 ([6]). Given a set S of n points in a metric space M of bounded doubling
dimension ν, one can construct a data-structure for answering (1 + ε)-approximate nearest
neighbour queries. The query time is 2O(ν) log n + ε−O(ν), the expected preprocessing time is
2O(ν)n log n and the space used is 2O(ν)n.

A careful reading reveals an important specification for our purposes, namely, that the
doubling dimension is that of the n-point metric space defined by S induced by the metric
space M and not of the ambient metric space M.

▶ Lemma 4.2. Let (M, dM) be a metric space, and let S be some subset of M. Then the
doubling dimension of (S, dM) is at most twice the doubling dimension of (M, dM).

▶ Lemma 4.3. Given a set S of n polygonal curves in Xd,k
Λ and parameters 0 < ε < 1 and

ε′ > 0, one can construct a data-structure such that for given q ∈ Xd,k it outputs an element
s∗ ∈ S such that for all s ∈ S it holds that dF (s∗, q) ≤ (1 + ε)dF (s, q) + ε′. The query time
is 2O(ν) log n + ε−O(ν), the expected preprocessing time is 2O(ν)n log n and the space used is
2O(ν)n, where the doubling dimension ν is given by O(k(d + log(k(1 + Λ/ε′)))).

Proof. Define ε̂ = ε′/2. Let µ = ⌈Λ/ε̂⌉ + 1 = Θ(1 + Λ/ε′). We begin by simplifying every
polygonal curve s ∈ S via Lemma 2.3, resulting in a set S′ of (µ, ε̂)-curves. This takes
O (log(µ)nk) time, which is in O (2νn). As S′ lies in the space of (µ, ε̂)-curves, the doubling
dimension of the set S′ with the Fréchet distance is bounded by ν = O(k(d+log(k(1+Λ/ε′))))
via Theorem 3.2 and Lemma 4.2. Note that for every s ∈ S and its simplification s′ ∈ S′ it
holds that dF (s, s′) ≤ ε̂/2. We apply Theorem 4.1 to the set S′ and ε. Note that Theorem 4.1
assumes that the distance between any two points in the metric space of (µ, ε)-curves can be
computed in O(1) time. However, the continuous Fréchet distance takes polynomial time
in k. On the other hand, both 2k log k and ε−k log k dominate poly(k) for ε < 1. Thus the
running time is indeed as claimed. We then query the data structure with q, returning an

EuroCG’23

13:6 (1 + ε)-ANN data structure for curves under the Fréchet distance

element ŝ′ such that for every s′ ∈ S′ it holds that dF (q, ŝ′) ≤ (1 + ε)dF (q, s′). Lastly, the
element of S returned by the data structure will be the element ŝ ∈ S which corresponds to
ŝ′. We then get for every s ∈ S that

dF (q, ŝ) ≤ dF (q, ŝ′) + ε̂/2 ≤ (1 + ε)dF (q, s′) + ε̂/2 ≤ (1 + ε)(dF (q, s) + ε̂/2) + ε̂/2
≤ (1 + ε)dF (q, s) + ε̂ + εε̂/2 = (1 + ε)dF (q, s) + ε̂(1 + ε/2)
≤ (1 + ε)dF (q, s) + ε′. ◀

▶ Definition 4.4 (spread). For a point set P in some metric space (M, dM) we define the
spread Φ(P) as the ratio between the maximal and minimal pairwise distance of points in P .
Similarly, define the spread Φ(S) of a collection of sets as the ratio between the maximal and
minimal non-zero pairwise distances of sets in S where for two sets A, B ⊂ M their distance
is defined as dM(A, B) = mina∈A minb∈B dM(a, b).

▶ Theorem 4.5. Given a set S of n polygonal curves in Xd,k and 0 < ε ≤ 1 one can construct
a data-structure answering (1 + ε)-approximate nearest neighbour queries. The query time
is 2O(ν) log n + ε−O(ν), the expected preprocessing time is 2O(ν)n log n and the space used is
2O(ν)n, where ν = O(k(d + log(kΦ(S)ε−1))), where Φ(S) denotes the spread of set of vertices
and edges of the curves in S.

Proof Sketch. Let ε′ = ε/4 and ε′′ = ε′ (mins̸=s′∈S dF (s, s′)). Let E(S) be the set of edges
of curves in S and let further Λ = maxe∈E(S) ∥e∥, thus clearly S ⊂ Xd,k

Λ . We then apply
Lemma 4.3 with ε′ and ε′′ resulting in the described data structure. The correctness follows
directly, with the running time following as Λ/ mins ̸=s′∈S dF (s, s′) + 1 = O(Φ(S)). ◀

References
1 Jeffrey S Beis and David G Lowe. Shape indexing using approximate nearest-neighbour

search in high-dimensional spaces. In Proceedings of IEEE computer society conference on
computer vision and pattern recognition, pages 1000–1006. IEEE, 1997.

2 Eckart Bindewald and Bruce A Shapiro. Rna secondary structure prediction from sequence
alignments using a network of k-nearest neighbor classifiers. RNA, 12(3):342–352, 2006.
doi:10.1261/rna.2164906.

3 Anne Driemel, Amer Krivošija, and Christian Sohler. Clustering time series under the
fréchet distance. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on
Discrete algorithms, pages 766–785. SIAM, 2016. doi:1.9781611974331.ch55.

4 Joachim Gudmundsson, Marc van Kreveld, and Bettina Speckmann. Efficient detection
of motion patterns in spatio-temporal data sets. In Proceedings of the 12th Annual ACM
International Workshop on Geographic Information Systems, page 250–257. ACM, 2004.
doi:10.1145/1032222.1032259.

5 Anupam Gupta, Robert Krauthgamer, and James R Lee. Bounded geometries, fractals,
and low-distortion embeddings. In 44th Annual IEEE Symposium on Foundations of
Computer Science, 2003. Proceedings., pages 534–543. IEEE, 2003. doi:10.1109/SFCS.
2003.1238226.

6 Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional metrics
and their applications. SIAM Journal on Computing, 35(5):1148–1184, 2006. doi:10.1137/
S0097539704446281.

7 David R. Karger and Matthias Ruhl. Finding nearest neighbors in growth-restricted metrics.
In Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing,
page 741–750. Association for Computing Machinery, 2002. doi:10.1145/509907.510013.

https://doi.org/10.1261/rna.2164906
https://doi.org/1.9781611974331.ch55
https://doi.org/10.1145/1032222.1032259
https://doi.org/10.1109/SFCS.2003.1238226
https://doi.org/10.1109/SFCS.2003.1238226
https://doi.org/10.1137/S0097539704446281
https://doi.org/10.1137/S0097539704446281
https://doi.org/10.1145/509907.510013

Conradi, Driemel, and Kolbe 13:7

8 David Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,
12(1):28–35, 1983. doi:10.1137/0212002.

9 Yuchun Lee. Handwritten digit recognition using k nearest-neighbor, radial-basis function,
and backpropagation neural networks. Neural computation, 3(3):440–449, 1991. doi:
10.1162/neco.1991.3.3.440.

10 Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational
Geometry. The MIT Press, 1969.

11 Michael Ian Shamos and Dan Hoey. Closest-point problems. In 16th Annual Symposium
on Foundations of Computer Science (sfcs 1975), pages 151–162, 1975. doi:10.1109/SFCS.
1975.8.

12 Donald R. Sheehy and Siddharth S. Sheth. Nearly-Doubling Spaces of Persistence Diagrams.
In 38th International Symposium on Computational Geometry (SoCG 2022), volume 224,
pages 60:1–60:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/
LIPIcs.SoCG.2022.60.

13 Mai Shouman, Tim Turner, and Rob Stocker. Applying k-nearest neighbour in diagnosing
heart disease patients. International Journal of Information and Education Technology,
2(3):220–223, 2012. doi:10.7763/IJIET.2012.V2.114.

14 Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages
281–290, 2004. doi:10.1145/1007352.1007399.

EuroCG’23

https://doi.org/10.1137/0212002
https://doi.org/10.1162/neco.1991.3.3.440
https://doi.org/10.1162/neco.1991.3.3.440
https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.4230/LIPIcs.SoCG.2022.60
https://doi.org/10.4230/LIPIcs.SoCG.2022.60
https://doi.org/10.7763/IJIET.2012.V2.114
https://doi.org/10.1145/1007352.1007399

Improved Bounds for Discrete Voronoi Games
Mark de Berg1 and Geert van Wordragen2

1 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
M.T.d.Berg@tue.nl

2 Department of Computer Science, Aalto University, Finland
Geert.vanWordragen@aalto.fi

Abstract
In the planar one-round discrete Voronoi game, two players P and Q compete over a set V of
n voters represented by points in R2. First, P places k points, then Q places ℓ points, and then
each voter v ∈ V is won by the player who has placed a point closest to v. We present lower bounds
on the number of voters that P can always win, which improve the existing bounds for all k ⩾ 4. As
a by-product, we obtain improved bounds on small ε-nets for convex ranges.

1 Introduction

In the discrete Voronoi game, two players compete over a set V of n voters in Rd. Player P
places a set P of k points, player Q places a set Q of ℓ points that are disjoint from the
points in P , and then each voter v ∈ V is won by the player who has placed a point closest
to v. In other words, each player wins the voters located in its Voronoi cell in the Voronoi
diagram Vor(P ∪ Q). In case of ties, when a voter v lies on the boundary between a Voronoi
cell owned by P and a Voronoi cell owned by Q, then v is won by player P. There are two
variants of the discrete Voronoi game. In the multiple-round game, k = ℓ and the two players
alternate placing points. In the one-round game, which is the variant we are interested in,
P first places k points and then Q places ℓ points; here k and ℓ need not be equal. The
one-round discrete Voronoi game was introduced by Banik et al. [2].

The discrete one-round Voronoi game for k = ℓ = 1 is closely related to the concept of
plurality points in spatial voting theory [9]. In this theory, there is a d-dimensional policy
space, and voters are modelled as points indicating their preferred policies. A plurality
point is then a proposed policy that would win at least ⌈n/2⌉ voters against any competing
policy. Phrased in terms of Voronoi games, this means that P can place a single point
that wins at least ⌈n/2⌉ voters against any single point placed by Q. The discrete Voronoi
game with k > 1 and ℓ = 1 can be thought of as an election where a coalition of k parties
is colluding against a single other party. Another way to interpret Voronoi games is as a
competitive facility-location problem, which has also been studied in a graph-theoretic setting
(see e.g. [1, 8, 11]).

Previous work. The one-round discrete Voronoi game leads to interesting algorithmic as
well as combinatorial problems. The algorithmic problem is to compute an optimal set of
locations for a given set V of voters, for player P (assuming Q responds optimally) and
for player Q (for a given set of locations placed by P) [2, 5]. We are interested in the
combinatorial problem, which is to prove bounds on the number of voters that player P can
win, assuming player Q responds optimally to the points played by P . Tight bounds are only
known for the case k = ℓ = 1, where Chawla et al. [7] showed the following: for any set V of
n voters in Rd, player P can win at least ⌈n/(d + 1)⌉ voters and at most ⌈n/2⌉ voters, and
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

14:2 Improved Bounds for Discrete Voronoi Games

reference k = 1 k = 2 k = 3 k = 4 k = 5 arbitrary k

Banik et al. [3] 1/3 3/7 7/15 15/31 21/41 1 − 42
k

this paper 1/2 11/21 1 − 20
k

Table 1 Lower bounds on the fraction of voters that P can win on any voter set in R2, when P
has k points and Q has a single point, and the L2-metric is used.

these bounds are tight. Situations where P can win ⌈n/2⌉ voters are particularly interesting,
as these correspond to the existence of a plurality point in voting theory. The bounds just
mentioned imply that a plurality point does not always exist. In fact, a plurality point only
exists for certain very symmetric point sets, as shown by Wu et al. [12]. De Berg et al. [4]
showed how to test in O(n log n) time if a voter set admits a plurality point.

The combinatorial problem for k > 1 and ℓ = 1 was studied by Banik et al. [3]. Here
player P will never be able to win more than

(
1 − 1

2k

)
n voters, because player Q can always

win at least half of the voters of the most crowded Voronoi cell in Vor(P). Banik et al. [3]
present two methods to derive lower bounds on the number of voters that P can always win.
Below we discuss their results in R2, but we note that they generalize their methods to R3.

The first method uses a (weak) ε-net for convex ranges on the voter set V , that is, a point
set N such that any convex range R containing more than εn voters, will also contain a point
from N . Now, if ℓ = 1 then the voters won by Q lie in a single Voronoi cell in Vor(P ∪ Q).
Since Voronoi cells are convex, this means that if we set P := N then P wins at least (1 − ε)n
voters. Banik et al. use the ε-net construction for convex ranges by Mustafa and Ray [10].
There is no closed-form expression for the size of their ε-net, but the method can give a
(4/7)-net of size 2, for instance, and an (8/15)-net of size 3. The smallest size for which they
obtain an ε-net for some ε ⩽ 1/2, is k = 5. The second method of Banik et al. uses an ε-net
for disks, instead of convex sets. This is possible because one can show that a point q ∈ Q

that wins α voters, must have a disk around it that covers at least ⌊α/6⌋ voters without
containing a point from P . Banik et al. also present a (7/k)-net for disks of size k. Hence,
P wins at least

(
1 − 42

k

)
n voters, which is better than the first method when k ⩾ 137.

Our results. We study the combinatorial question—how many voters can player P win
from any voter set V of size n, under optimal play from Q—in the planar setting, for k > 1
and ℓ = 1. We obtain the following results.

We improve1 over the ε-net bounds by Mustafa and Ray [10] for convex ranges. This
gives an improvement over the results of Banik et al. [3] on the fraction of voters that P
can win when k ⩾ 4 and k is relatively small. We do not have a closed-form expression
for the size of our ε-net, but Theorem 2.3 gives a formula based on the quality of smaller
ε-nets, and Table 1 shows how our bounds compare to those of Banik et al. for k = 4, 5.
Note that our bounds improve the smallest k for which P can win at least half the voters,
from k = 5 to k = 4.
We present a new strategy for player P for large k. Unlike the strategies by Banik et al.,
it is not based on ε-nets. Instead, it uses a quadtree-based approach. By combining
this approach with several other ideas and using our ε-net method as a subroutine, we

1 Our definition of ε-net is slightly weaker than usual, since a range missing the ε-net may contain up to
⌈εn⌉ points, instead of ⌊εn⌋ points.

M. de Berg and G. van Wordragen 14:3

50 100 150 200 250

0.2

0.4

0.6

0.8

ϵ-nets for convex ranges (Banik et al.)

ϵ-nets for convex ranges (this paper)

ϵ-nets for disks (Banik et al.)

quadtrees (this paper)

Figure 1 Lower bounds on the fraction of voters that P can win on any voter set in R2 as a
function of k (the number of points of P) when Q has a single point. The red and green graphs do
not intersect, so for large k the quadtree method gives the best solution.

are able to show that there is a set P of k points that guarantees that P wins at least(
1 − 20

k

)
n − 6 voters, which significantly improves the

(
1 − 42

k

)
n bound of Banik et al.

Fig. 1 shows the bounds obtained by the various methods in a graphical way.

2 Better ε-nets for convex ranges

Below we present a new method to construct an ε-net for convex ranges in the plane, which
improves the results of Mustafa and Ray [10]. As mentioned in the introduction, this implies
improved bounds on the number of voters P can win with k points when Q has a single
point, for relatively small values of k.

Let L be a set of three concurrent lines and consider the six wedges defined by the lines.
Bukh [6] proved that for any continuous measure there is a choice of L where each of the
wedges has equal measure. Instead of a measure, we have V , a set of points in the plane
where no three points are collinear (it is in general position), thus we need a generalisation
where the wedges contain some specified number of points. In our generalisation, the weight
of a wedge is given by the number of points from V assigned to it. If a point v ∈ V lies in
the interior of a wedge then we assign v to that wedge, and if v lies on the boundary of two
or more wedges we assign v to one of them. (This assignment is not arbitrary, but we will do
it is such a way as to obtain the desired number of points in each wedge.) We call this a
wedge assignment. The weight of a half-plane is defined analogously.

▶ Theorem 2.1. Let V be a set of n points in general position in the plane, where n ⩾ 8
is even. For any given α, β, γ ∈ N such that 2α + 2β + 2γ = n, we can find a set of three
concurrent lines that partitions the plane into six wedges such that there is a wedge assignment
resulting in wedges whose weights are α, β, γ, α, β, γ in counterclockwise order.

Proof. Let ℓ(θ) be the directed line making an angle θ with the positive x-axis that has
exactly weight n/2 on either side of it, for a suitable assignment of points to the half-planes
on either side of ℓ(θ). Consider the line ℓ(θ) for θ = 0. For some point z = (x, 0) ∈ ℓ(θ),
consider the rays ρ1, . . . , ρ4 emanating from z such that the six wedges defined by these rays
and ℓ(0) have the desired number of voters; see Fig. 2. By varying θ and the point z, we
can ensure that the rays ρ1, . . . , ρ4 line up in such a way that, together with ℓ(θ), they form
three concurrent lines; see the full version for a complete proof. ◀

EuroCG’23

14:4 Improved Bounds for Discrete Voronoi Games

ρ1

ρ2

ρ3 ρ4

(x, 0)

`(0)

α

β

γ

γ
α

β

(ii)(i)

φ1
W1

W ′
3

W2

W ′
2W3

W ′
1

Figure 2 (i) Illustration for the proof of Theorem 2.1. (ii) Illustration for the proof of Theorem 2.3.

We also need the following easy-to-prove observation.

▶ Observation 2.2. Let L be a set of three lines intersecting in a common point p∗, and
consider the six closed wedges defined by L. Any convex set S not containing p∗ intersects at
most four wedges, and the wedges intersected by S are consecutive in the clockwise order.

We now have all the tools to prove our new bounds on ε-nets for convex ranges. The guarantee
they give is slightly weaker: where ordinarily placing an ε-net for n points means that a
range not intersecting the ε-net can contain at most εn (and thus at most ⌊εn⌋) points, our
ceiling-based ε-nets only guarantee that such a range contains at most ⌈εn⌉ points.

▶ Theorem 2.3. Let εk be the smallest value such that any finite point set in R2 admits
a weak εk-net of size k for convex ranges. Then for any set V of n ⩾ 8 points in general
position, with n even, and any r1, r2, s ∈ N0, we can make a ceiling-based ε-net for V with

ε = 1
2

(
1

εr1

+ 2
εr2

)−1
+ 1

2εs.

Proof. Let µ := 1
2

(
1

εr1
+ 2

εr2

)−1
. We apply Theorem 2.1 with β = γ =

⌈
µ

εr2
n

⌉
and

α = n
2 − 2β, which means α ⩽

⌊
µ

εr1
n

⌋
, giving us a set L of three concurrent lines. To show

that there exists a weak ceiling-based (εr1+2r2+3s+1)-net N for V , number the wedges defined
by L as W1, W ′

3, W2, W ′
1, W3, W ′

2 in clockwise order, as in Fig. 2(ii). Let Vi ⊂ V and V ′
i ⊂ V

be the subsets of points assigned to Wi and W ′
i , respectively. We can assume without loss

of generality that |V1| = |V ′
1 | = α, and |V2| = |V ′

2 | = β, and |V3| = |V ′
3 | = γ. We add the

following points to our net N : (i) the common intersection of the lines in L, denoted by
p∗; (ii) an εr1-net for V1, an εr2-net for V2, and an εr2-net for V3; (iii) for each of the three
collections of three consecutive wedges—these collections are indicated in red, green, and
blue in Fig. 2(ii)—an εs-net. By construction, the size of our net N is 1 + r1 + 2r2 + 3s. It
can be shown that N is a ceiling-based (µ + 1

2 εs)-net; see the full version. ◀

Note that ε0 = 1, since if the net is empty, a range can contain all n points from V . Moreover,
ε1 = 2/3, and ε2 = 4/7, and ε3 ⩽ 8/15 by the results of Mustafa and Ray [10]. Using
Theorem 2.3 we can obtain ceiling-based ε-nets with k ⩾ 4 points, by finding the best choice
of r1, r2, s such that k = r1 + 2r2 + 3s + 1. This gives ε4 ⩽ 1

2 , by setting r1, r2 = 0 and s = 1.
Hence, for even n, player P can always place four points to win at least as many voters as
player Q, as opposed to the five that were proven in earlier work. Note that this also holds
for n ⩽ 8, since then player P can simply pick four points coinciding with four of the at most
eight voters. A similar statement holds for larger k when n ⩽ 8.

M. de Berg and G. van Wordragen 14:5

Figure 3 A compressed quadtree subdivision. The six regions generated for m = 2 are indicated
in colour. Each region covers between three and eight voters, and one ‘free’ voter is left uncovered.

3 A quadtree-based strategy for player P
In this section we sketch our quadtree-based strategy for P , which gives good results when k

is relatively large. A detailed description can be found in the full version.

The algorithm. First, we construct a compressed quadtree T on the voter set V . This gives
a tree structure where each node ν is associated with a square or a donut region, which we
denote by σ(ν). Donut regions in a compressed quadtree do not contain voters. We use the
compressed quadtree to generate a set P of k points for player P, as follows.

We pick a parameter m based on the maximum number of points we want to place and
then we traverse the tree T in a bottom-up manner to generate a set R of regions containing
between m + 1 and 4m voters. Essentially, when we have collected the right number of voters
in our bottom-up traversal, we add a region to R and otherwise we pass the (at most m)
voters on to the parent node. Thus each region in R will be a quadtree cell σ(ν) minus
the quadtree cells σ(ν′) of certain nodes ν′ in the subtree rooted at ν. An example of this
is shown in Fig. 3. For each square σ(ν) corresponding to a region R(ν) ∈ R, we place
the following 13 points for player P: a grid of 3 × 3 points inside σ(ν), plus four points
outside σ(ν) as in Fig. 4(i).

▶ Lemma 3.1. The quadtree-based strategy places fewer than 13n/m points for player P.

An analysis of the number of voters player Q can win. To give an upper bound for
the number of voters player Q can win, we consider the child regions of the regions in R,
which are themselves not in R, as they have at most m voters. In the full version, we first
show that player Q can win voters from at most five such child regions: the child region
containing the point q played by Q, and the child regions immediately above, below, to the

(i) (ii) (iii)

Figure 4 (i) The 13 points P (R) placed around a region R ∈ R. (ii) The set Q(R′) of the
north-west child region R′. (iii) The set V (R′) of the north-west child region R′.

EuroCG’23

14:6 Improved Bounds for Discrete Voronoi Games

right, and to the left of q. We then continue to prove that Q can never win voters from all
five regions simultaneously, but, in fact, from only three of them. The proofs are based on
the following fact: Let R′ be a child region of a region R(ν) ∈ R. Then, due to the 13 points
we placed for each region in R, the area Q(R′) from which a point q ∈ R′ might win voters
has the shape shown in Fig. 4(ii). Moreover, the region V (R′) where q must be located to
win voters inside R′ has the shape shown in Fig. 4(iii). Since each child region contains at
most m < n/|R| voters and P places k ⩽ 13|R| points, and Q can win voters from at most
three child regions, we can conclude the following lemma.

▶ Lemma 3.2. The quadtree-based strategy can place at most k points such that P wins at
least

(
1 − 39

k

)
n voters against any single point placed by player Q.

A more refined strategy for player P. It can be shown that the analysis presented above is
tight. Hence, to get a better bound we need a better strategy. Recall that each region R ∈ R
contains between m + 1 and 4m voters. In the strategy above, we use the same 13 points for
any R, regardless of the exact number of voters it contains and how they are distributed over
the child regions of R. Our refined strategy takes this into account, and also incorporates
the ε-nets developed in the previous section; see the full version for details. This eventually
gives the following theorem.

▶ Theorem 3.3. Let V be a set of n voters in R2 in general position. For any given k,
player P can win at least

(
1 − 20

k

)
n − 6 voters by placing at most k points, against any single

point placed by player Q.

4 Conclusion

We studied the discrete one-round Voronoi game where player P can place k > 1 points and
player Q can place a single point. We improved the existing bounds on the number of voters
player P can win in the L2-metric. A challenging open problem is: Is it always possible for
player P to win at least half the voters in the L2-metric by placing fewer than four points?

References
1 Sayan Bandyapadhyay, Aritra Banik, Sandip Das, and Hirak Sarkar. Voronoi game on

graphs. Theoretical Computer Science, 562:270–282, 2015. doi:https://doi.org/10.
1016/j.tcs.2014.10.003.

2 Aritra Banik, Bhaswar B. Bhattacharya, and Sandip Das. Optimal strategies for the
one-round discrete Voronoi game on a line. J. Comb. Optim., 26(4):655–669, 2013. doi:
10.1007/s10878-011-9447-6.

3 Aritra Banik, Jean-Lou De Carufel, Anil Maheshwari, and Michiel H. M. Smid. Discrete
Voronoi games and ε-nets, in two and three dimensions. Comput. Geom., 55:41–58, 2016.
doi:10.1016/j.comgeo.2016.02.002.

4 Mark de Berg, Joachim Gudmundsson, and Mehran Mehr. Faster algorithms for computing
plurality points. ACM Trans. Algorithms, 14(3):36:1–36:23, 2018. doi:10.1145/3186990.

5 Mark de Berg, Sándor Kisfaludi-Bak, and Mehran Mehr. On one-round discrete Voronoi
games. In Proc. 30th International Symposium on Algorithms and Computation (ISAAC
2019), volume 149 of LIPIcs, pages 37:1–37:17, 2019. doi:10.4230/LIPIcs.ISAAC.2019.37.

6 Boris Bukh. A point in many triangles. Electron. J. Comb., 13(1), 2006. URL: http:
//www.combinatorics.org/Volume_13/Abstracts/v13i1n10.html.

7 Shuchi Chawla, Uday Rajan, R. Ravi, and Amitabh Sinha. Min-max payoffs in a two-player
location game. Oper. Res. Lett., 34(5):499–507, 2006. doi:10.1016/j.orl.2005.10.002.

https://doi.org/https://doi.org/10.1016/j.tcs.2014.10.003
https://doi.org/https://doi.org/10.1016/j.tcs.2014.10.003
https://doi.org/10.1007/s10878-011-9447-6
https://doi.org/10.1007/s10878-011-9447-6
https://doi.org/10.1016/j.comgeo.2016.02.002
https://doi.org/10.1145/3186990
https://doi.org/10.4230/LIPIcs.ISAAC.2019.37
http://www.combinatorics.org/Volume_13/Abstracts/v13i1n10.html
http://www.combinatorics.org/Volume_13/Abstracts/v13i1n10.html
https://doi.org/10.1016/j.orl.2005.10.002

M. de Berg and G. van Wordragen 14:7

8 Christoph Dürr and Nguyen Kim Thang. Nash equilibria in Voronoi games on graphs. In
Algorithms – ESA 2007, pages 17–28, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

9 Richard D. McKelvey and Richard E. Wendell. Voting equilibria in multidimensional choice
spaces. Mathematics of Operations Research, 1(2):144–158, 1976.

10 Nabil H. Mustafa and Saurabh Ray. An optimal extension of the centerpoint theorem.
Comput. Geom., 42(6-7):505–510, 2009. doi:10.1016/j.comgeo.2007.10.004.

11 Sachio Teramoto, Erik D. Demaine, and Ryuhei Uehara. Voronoi game on graphs and its
complexity. In 2006 IEEE Symposium on Computational Intelligence and Games, pages
265–271, 2006. doi:10.1109/CIG.2006.311711.

12 Yen-Wei Wu, Wei-Yin Lin, Hung-Lung Wang, and Kun-Mao Chao. Computing plurality
points and condorcet points in euclidean space. In Proc. 24th International Symposium on
Algorithms and Computation (ISAAC 2013), volume 8283 of Lecture Notes in Computer
Science, pages 688–698. Springer, 2013. doi:10.1007/978-3-642-45030-3_64.

EuroCG’23

https://doi.org/10.1016/j.comgeo.2007.10.004
https://doi.org/10.1109/CIG.2006.311711
https://doi.org/10.1007/978-3-642-45030-3_64

On polynomials associated to Voronoi diagrams of
point sets and crossing numbers
Mercè Claverol1, Andrea de las Heras-Parrilla1, David
Flores-Peñaloza2, Clemens Huemer1, and David Orden3

1 Universitat Politècnica de Catalunya
merce.claverol@upc.edu, andrea.de.las.heras@estudiantat.upc.edu,
clemens.huemer@upc.edu

2 Facultad de Ciencias, Universidad Nacional Autónoma de México
dflorespenaloza@ciencias.unam.mx

3 Universidad de Alcalá
david.orden@uah.es

Abstract
Three polynomials are defined for sets S of n points in general position in the plane: The Voronoi
polynomial with coefficients the numbers of vertices of the order-k Voronoi diagrams of S, the circle
polynomial with coefficients the numbers of circles through three points of S enclosing k points, and
the E≤k polynomial with coefficients the numbers of (at most k)-edges of S. We present several
formulas for the rectilinear crossing number of S in terms of these polynomials and their roots. We
also prove that the roots of the Voronoi polynomial lie on the unit circle if and only if S is in convex
position. Further, we present bounds on the location of the roots of these polynomials.

1 Introduction

Let S be a set of n ≥ 4 points in general position in the plane, meaning that no three points
of S are collinear and no four points of S are cocircular. The Voronoi diagram of order k

of S, Vk(S), is a subdivision of the plane into cells such that points in the same cell have
the same k nearest points of S. Voronoi diagrams have found many applications in a wide
range of disciplines, see e.g. [7, 27]. We define the Voronoi polynomial pV (z) =

∑n−1
k=1 vkzk−1,

where vk is the number of vertices of Vk(S). Proximity information among the points of S is
also encoded by the circle polynomial of S, which we define as pC(z) =

∑n−3
k=0 ckzk, where ck

is the number of circles passing through three points of S that enclose exactly k other points
of S. The numbers vk and ck are related via the well-known relation

vk = ck−1 + ck−2 (1)

where c−1 = 0 and cn−2 = 0, see e.g. [21]. The two polynomials pV (z) and pC(z) are
especially interesting due to their connection to the rectilinear crossing number problem.

The rectilinear crossing number of a point set S, cr(S), is the number of pairwise edge
crossings of the complete graph Kn when drawn with straight-line segments on S, i.e. the
vertices of Kn are the points of S. Equivalently, cr(S) is the number of convex quadrilaterals
with vertices in S. We denote cr(S) as α

(
n
4
)
, with 0 ≤ α ≤ 1. Note that for S in convex

position, α = 1. The rectilinear crossing number problem consists in, for each n, finding the
minimum value of cr(S) among all sets S of n points, no three of them collinear, commonly
denoted as cr(Kn). The limit of cr(Kn)/

(
n
4
)
, when n tends towards infinity, is the so-called

rectilinear crossing number constant α∗. This problem is solved only for n ≤ 27 and n = 30,
and the current best bound for the rectilinear crossing number constant is α∗ > 0, 37997, see
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

15:2 Voronoi polynomials of point sets and crossing numbers

the survey [3] and the web page [5]. A fruitful approach to the rectilinear crossing number
problem is proving bounds on the numbers of j-edges and of (≤ k)-edges of S [1, 2, 6, 11, 20].
An (oriented) j-edge of S is a directed straight line ℓ passing through two points of S such
that the open half-plane bounded by ℓ and on the right of ℓ contains exactly j points of
S. The number of j-edges of S is denoted by ej , and E≤k =

∑k
j=0 ej is the number of

(≤ k)-edges. We then also consider the E≤k polynomial pE(z) =
∑n−3

k=0 E≤kzk, which also
encodes information on higher order Voronoi diagrams, since the number of j-edges ej is the
number of unbounded cells of the order-(j +1) Voronoi diagram of S (see, e.g., Proposition 30
in [13]). Note that pE(z) has no term E≤n−2. For an illustration of the defined polynomials
for a particular point set, see Figure 1.

Figure 1 Left: 1591-th entry of the order type database for 8 points [4]. With complex stream
plots of its Voronoi polynomial (center): pV (z) = 10 + 23z + 27z2 + 24z3 + 17z4 + 9z5 + 2z6, and its
E≤k polynomial (right): pE(z) = 4 + 13z + 22z2 + 34z3 + 43z4 + 52z5; roots are red points.

For a point set S, we show that cr(S) appears in the first derivatives of these three
polynomials when evaluated at z = 1 and, in addition, we obtain appealing formulas for
cr(S) in terms of the roots of the polynomials. Motivated by this, we study the location of
such roots, showing several bounds on their modulus. As a particular result, we also prove
that the roots of the Voronoi polynomial lie on the unit circle if and only if S is in convex
position. Furthermore, the circle polynomial comes into play when considering the random
variable X that counts the number of points of S enclosed by the circle defined by three
points chosen uniformly at random from S. The probability generating function of X is
pC(z)/

(
n
3
)
. In [24] a central limit theorem for random variables with values in {0, . . . , n}

was shown, under the condition that the variance is large enough and that no root of the
probability generating function is too close to 1 ∈ C. We show that the random variable X

does not approximate a normal distribution, and use the result from [24] to derive that pC(z)
has a root close to 1 ∈ C.

Throughout this work, points (a, b) in the plane are identified with complex numbers
z = a + ib. To avoid cumbersome notation we omit indicating the point set S where it is
clear from context; for example, each polynomial considered depends on a point set S but
we write pC(z) instead of pS

C(z).

2 Known relations

A main source is the work by Lee [19], from where several of the following formulas can be
obtained.

For any point set S, and 0 ≤ k ≤ n − 3, it holds that, see [8, 12, 13, 19, 21],

ck + cn−k−3 = 2(k + 1)(n − k − 2). (2)

M. Claverol, A. de las Heras-Parrilla, D. Flores-Peñaloza, C. Huemer, D. Orden 15:3

From [15] we get the following two equations.

n−3∑

k=0
k · ck =

(
n

4

)
+ cr(S) = (1 + α)

(
n

4

)
. (3)

This was essentially also obtained in [29], though not stated in terms of cr(S).

n−3∑

k=0
k2 · ck =

(
n

5

)
+
(

n

4

)
+ (n − 3)cr(S). (4)

For k ≤ n−3
2 it holds that, see Lemma 3.1 in [14],

ck ≥ (k + 1)(n − k − 2), and cn−k−3 ≤ (k + 1)(n − k − 2). (5)

Next Equations (6), (7) and (8) hold for a point set S in convex position.

2ck = ck−1 + ck+1 + 2. (6)

Then, the number of vertices of Vk(S) fulfills, see e.g. Proposition 34, Equation (4) in [13],

vk = ck−1 + ck−2 = (2k − 1)n − 2k2 . (7)

This implies that
vk = vn−k. (8)

For every set S of n points in general position, the relation between E≤k and ck is, see
e.g. Proposition 33 in [13],

ck + E≤k = (k + 1)(2n − k − 2). (9)

3 Properties of the Voronoi, circle and E≤k
polynomials

For every set S of n points in general position:

▶ Proposition 1. Polynomials pC(z) =
∑n−3

k=0 ckzk, and pV (z) =
∑n−1

k=1 vkzk−1 satisfy

pV (z) = (1 + z)pC(z). (10)

▶ Proposition 2. The circle polynomial pC(z) =
∑n−3

k=0 ckzk satisfies
1. pC(1) =

(
n
3
)
.

2. p′
C(1) =

(
n
4
)

+ cr(S).
3. p′′

C(1) =
(

n
5
)

+ (n − 4)cr(S).
4. pC(−1) = n−1

2 for n odd.

▶ Proposition 3. The Voronoi polynomial pV (z) =
∑n−1

k=1 vkzk−1 satisfies
1. pV (1) = 2

(
n
3
)
.

2. p′
V (1) =

(
n
3
)

+ 2
(

n
4
)

+ 2cr(S).
3. p′′

V (1) = 2
(

n
4
)

+ 2
(

n
5
)

+ 2(n − 3)cr(S).
4. pV (−1) = 0.

5. p′
V (−1) = n−1

2 for n odd.

▶ Proposition 4. The E≤k
polynomial pE(z) =

∑n−3
k=0 E≤k

zk satisfies:
1. pE(1) = 3

(
n
3
)
.

EuroCG’23

15:4 Voronoi polynomials of point sets and crossing numbers

2. p′
E(1) =

∑n−3
k=0 kE≤k = 9

(
n
4
)

− cr(S).
3. p′′

E(1) =
∑n−3

k=0 k(k − 1)E≤k = 35
(

n
5
)

− (n − 4)cr(S).
4. pE(−1) = n(n−1)

2 for n odd.

Using Lemma 1 of Aziz and Mohammad in [9], we get an intriguing family of formulas
for the rectilinear crossing number.

▶ Proposition 5. The coefficients of the polynomials pV (z), pC(z) and pE(z) satisfy

1) cr(S) = 4
3(n − 3)

n−3∑

k=1

n−3∑

j=0
cj

zj+1
k

(zk − 1)2 =
n−3∑

j=0
cj

(
4

3(n − 3)

n−3∑

k=1

zj+1
k

(zk − 1)2

)
, (11)

where the zk are the (n − 3)-th roots of −3.

2) cr(S) = 2
3(n − 1)

n−1∑

k=1

n−1∑

j=1
vj

zj
k

(zk − 1)2 =
n−1∑

j=1
vj

(
2

3(n − 1)

n−1∑

k=1

zj
k

(zk − 1)2

)
, (12)

where the zk are the (n − 1)-th roots of −3.

3) cr(S) = − 4
n − 3

n−3∑

k=1

n−3∑

j=0
E≤j

zj+1
k

(zk − 1)2 =
n−3∑

j=0
E≤j

(
−4

n − 3

n−3∑

k=1

zj+1
k

(zk − 1)2

)
, (13)

where the zk are now the (n − 3)-th roots of − 1
3 .

4 On the roots of the Voronoi, circle and E≤k
polynomials

In this section, we study properties for the roots of these polynomials. By Proposition 1,
pV (z) has the same roots as pC(z) plus the root z = −1. A direct relation between roots of
polynomials and the rectilinear crossing number can be derived from the well-known relation

P ′(z)
P (z) =

n∑

i=1

1
z − ai

, (14)

where P (z) is a polynomial of degree n with roots a1, . . . , an, and z is any complex number
such that P (z) ̸= 0. For the circle polynomial pC(z) and z = 1, using Proposition 2 we get

(
n
4
)

+ cr(S)(
n
3
) =

n−3∑

i=1

1
1 − ai

, (15)

where the ai are the roots of pC(z) =
∑n−3

k=0 ckzk. Note that 1 is never a root of a polynomial
whose coefficients are all positive, as is the case in the polynomials introduced in this work.
Using Equation (14) and the reciprocal polynomial p∗

C(z) =
∑n−3

k=0 ckzn−k−3 we obtain

▶ Proposition 6.
n−3∑

k=0
(n − k − 3)ck = 3

(
n

4

)
− cr(S). (16)

▶ Proposition 7.
−2
(

n
4
)

+ 2cr(S)(
n
3
) =

n−3∑

i=1

1 + ai

1 − ai
, (17)

where the ai are the roots of pC(z) =
∑n−3

k=0 ckzk (also works for the roots of pV (z)).

M. Claverol, A. de las Heras-Parrilla, D. Flores-Peñaloza, C. Huemer, D. Orden 15:5

Of particular interest is pV (z) =
∑n−1

k=1 vkzk−1 for a set of n points in convex position.
By Equation (7), vk = (2k − 1)n − 2k2. By Equation (8), pV (z) is a palindromic polynomial,
so it has roots ai and 1/ai. Then, for sets S of n points in convex position,

n−2∑

i=1

1
1 − ai

= n − 2
2 , (18)

where the ai are the roots of pV (z) =
∑n−1

k=1 vkzk−1. For S in convex position, from
Proposition 7 we also have,

n−2∑

i=1

1 + ai

1 − ai
= 0. (19)

For our next result we use a theorem due to Malik [23], also see [28], Corollary 14.4.2.

▶ Theorem 4.1. Let S be a set of points in general position. Then S is in convex position if
and only if all the roots of the Voronoi polynomial of S, pV (z) =

∑n−1
k=1 vkzk−1, lie on the

unit circle.

In order to find a lower bound on the largest modulus of the roots of pC(z) with S not
in convex position, we use two theorems. The first one is due to Laguerre [18], Theorem 1,
see also [25], and [28], Theorem 3.2.1b. The second theorem is due to Obrechkoff [26], also
see [10] and [22], Chapter IX, 41, Exercise 5.

▶ Theorem 4.2. For every set S of n > 3 points in general position with rectilinear crossing
number cr(S) = α ·

(
n
4
)
, the Voronoi polynomial pV (z) =

∑n−1
k=1 vkzk−1 has a root of modulus

at least 1 + (1−α)π2

16(n−3)2 + O
(1

n4

)
.

Figure 2 Left: Point set S minimizing the rectilinear crossing number for n = 18 [5]. With
complex stream plots of its Voronoi (center), and E≤k (right) polynomials; with roots as red points
and circles illustrating, respectively, the bounds of Theorems 4.2 and 4.5.

For an illustration of Theorem 4.2 see Figure 2, center. We further show that the Voronoi
polynomial pV (z) has a root close to point 1 in the complex plane. Thereto, we apply
Theorem 1.2 from Michelen and Sahasrabudhe [24].

▶ Theorem 4.3. Let α be a constant from (0, 1] and let S be a set of n points in general
position with cr(S)

(n
4) = α. Then the Voronoi polynomial of S, pV (z) =

∑n−1
k=1 vkzk−1, has a

root ζ such that |1 − ζ| ∈ o
(

log(n)
n

)
.

EuroCG’23

15:6 Voronoi polynomials of point sets and crossing numbers

In the following, we study the location of the roots of the E≤k polynomial pE(z) =∑n−3
k=0 E≤kzk of a point set S. Note that its coefficients E≤k form an increasing sequence of

positive numbers. The well-known Eneström-Kakeya theorem [17] tells us that all the roots
of pE(z) are contained in the unit disk, and more precisely, that they are contained in an
annulus: The absolute values of the roots of pE(z) lie between the greatest and the least of

E≤n−4
E≤n−3

,
E≤n−5
E≤n−4

, . . . ,
E≤1
E≤2

,
E≤0
E≤1

.

We give a lower bound on the largest modulus of the roots of the E≤k polynomial.

▶ Theorem 4.4. Let S be a set of n > 3 points in general position, with rectilinear crossing
number cr(S) = α ·

(
n
4
)
. Then the E≤k polynomial of S, pE(z) =

∑n−3
k=0 E≤kzk, has a root of

modulus at least 3+α
9−α .

Next, we show a better lower bound on the largest modulus of pE(z) when n is large
enough. Thereto, we apply a theorem of Titchmarsh ([31], p. 171), also see [16], Theorem A.

▶ Theorem 4.5. Let S be a set of n points with h of them on the boundary of the convex
hull of S, in general position. Then pE(z) =

∑n−3
k=0 E≤kzk has a root of modulus at least

(
3
(

n
3
)

h

)− 1
n−3

.

For an illustration of Theorem 4.5, see Figure 2, right.

5 Discussion

We have introduced three polynomials pV (z), pC(z), pE(z) for sets S of n points in general
position in the plane, showing their connection to cr(S) and several bounds on the location
of their roots. The obvious open problem is using bounds on such roots to improve upon
the current best bound on the rectilinear crossing number problem. To the best of our
knowledge, this approach has not been explored so far. Besides, we think that the presented
polynomials are interesting objects of study on their own, given the many applications of
Voronoi diagrams. For some of the formulas presented for one of the polynomials, like
Equation (15), there are analogous statements for the other polynomials considered.

Further, several other polynomials on point sets can be considered. The reader interested
in crossing numbers has probably in mind the j-edge polynomial pe(z) =

∑n−2
j=0 ejzj of a

point set S. For this, the known formula for the rectilinear crossing number cr(S) in terms
of the numbers of j-edges ej of S, see [20], Lemma 5, translates into

2cr(S) − 6
(

n

4

)
= p′′

e (1) − (n − 3)p′
e(1). (20)

As is the case for the Voronoi polynomial and the circle polynomial, for sets S of n points
in convex position, the j-edge polynomial pe(z) has all its roots on the unit circle. This is
readily seen since pe(z) is then n times the all-ones polynomial, pe(z) = n

∑n−2
j=0 zj , as ej = n

for all j, if S is in convex position. Its roots are the (n − 1)-th roots of unity, except z = 1.

We finally propose to study the presented polynomials for random point sets. The
expected rectilinear crossing number is known for sets of n points chosen uniformly at
random from several convex shapes K, see e.g. [30], Section 1.4.5. pp. 63–64, and [3].

M. Claverol, A. de las Heras-Parrilla, D. Flores-Peñaloza, C. Huemer, D. Orden 15:7

Acknowledgments. M. C., A. d.-P., C. H., and D. O. were supported by project PID2019-
104129GB-I00/MCIN/AEI/10.13039/501100011033. C.H. was supported by project Gen.
Cat. DGR 2021-SGR-00266. D. F.-P. was supported by grants PAPIIT IN120520 and
PAPIIT IN115923 (UNAM, México).

References

1 B. M. Ábrego, M. Cetina, S. Fernández-Merchant, J. Leaños, G. Salazar, On ≤ k-edges,
crossings, and halving lines of geometric drawings of Kn. Discrete and Computational
Geometry, 48, 192–215, 2012.

2 B. M. Ábrego, S. Fernández-Merchant, A lower bound on the rectilinear crossing number.
Graphs and Combinatorics, 21, 293–300, 2005.

3 B. M. Abrego, S. Fernández-Merchant, G. Salazar, The rectilinear crossing number of Kn:
Closing in (or are we?), Thirty Essays on Geometric Graph Theory, 5–18, Springer, 2012.

4 O. Aichholzer, http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/
ordertypes/, accessed 2022.

5 O. Aichholzer, http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/
crossing/, accessed 2022.

6 O. Aichholzer, J. García, D. Orden, P. Ramos, New lower bounds for the number of (≤ k)-
edges and the rectilinear crossing number of Kn, Discrete and Computational Geometry, 38,
1–14, 2007.

7 F. Aurenhammer. Voronoi diagrams – a survey of a fundamental geometric data structure.
ACM Computing Surveys, 23(3), 345–405, 1991.

8 F. Ardila, The number of halving circles, The American Mathematical Monthly, 111, 586–591,
2004.

9 A. Aziz, Q. G. Mohammad, Simple proof of a theorem of Erdős and Lax. Proceedings of the
American Mathematical Society, 80, 119–122, 1980.

10 W. Bergweiler, A. Eremenko, Distribution of zeros of polynomials with positive coefficients,
Annales Academiae Scientiarum Fennicae Mathematica, 40, 375–383, 2015.

11 J. Balogh, G. Salazar, k-sets, convex quadrilaterals, and the rectilinear crossing number of
Kn, Discrete and Computational Geometry 35, 671–690, 2006.

12 K. L. Clarkson, P. W. Shor, Applications of random sampling in computational geometry,
II, Discrete and Computational Geometry, 4, 387–421, 1989.

13 M. Claverol, A. de las Heras-Parrilla, C. Huemer, A. Martínez-Moraian, The edge labeling
of higher order Voronoi diagrams. https://arxiv.org/abs/2109.13002, 2021.

14 M. Claverol, C. Huemer, A. Martínez-Moraian, On circles enclosing many points, Discrete
Mathematics, 344(10), 112541, 2021.

15 R. Fabila-Monroy, C. Huemer, E. Tramuns, The expected number of points in circles, 28th
European Workshop on Computational Geometry (EuroCG 2012), 69–72, 2012.

16 R. Gardner, B. Shields, The number of zeros of a polynomial in a disk, Journal of Classical
Analysis 3, 167–176, 2013.

17 S. Kakeya, On the limits of the roots of an algebraic equation with positive coefficients,
Tôhoku Mathematical Journal 2, 140–142, 1912.

18 M. Laguerre, Sur la résolution des équations numériques, Nouvelles annales de mathématiques
2e série, 17, 20–25, 1878.

19 D. T. Lee, On k-nearest neighbor Voronoi diagrams in the plane, IEEE Transactions on
Computers, 31, 478–487, 1982.

20 L. Lovász, K. Vesztergombi, U. Wagner, E. Welzl, Convex quadrilaterals and k-sets. Towards
a theory of geometric graphs, Contemporary Mathematics, 342, 139–148, 2004.

21 R. C. Lindenbergh, A Voronoi poset, Journal for Geometry and Graphics, 7, 41–52, 2003.

EuroCG’23

http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/
http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/ordertypes/
http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/crossing/
http://www.ist.tugraz.at/aichholzer/research/rp/triangulations/crossing/
https://arxiv.org/abs/2109.13002

15:8 Voronoi polynomials of point sets and crossing numbers

22 M. Marden, The geometry of polynomials, Mathematical Surveys and Monographs, Number
3, 1949. American Mathematical Society.

23 M. A. Malik, On the derivative of a polynomial, Journal of the London Mathematical Society,
s2-1(1), 57–60, 1969.

24 M. Michelen, J. Sahasrabudhe, Central limit theorems and the geometry of polynomials.
https://arxiv.org/abs/1908.09020, 2019.

25 J. von Sz. Nagy, Über einen Satz von Laguerre. Walter de Gruyter, Berlin/New York Berlin,
New York, 1933.

26 N. Obrechkoff, Sur un problème de Laguerre, Comptes Rendus 177, 102–104, 1923.
27 A. Okabe, B. Boots, K. Sugihara, S. N. Chiu. Spatial Tessellations: Concepts and Applica-

tions of Voronoi diagrams, second edition, Wiley, 2000.
28 Q. I. Rahman, G. Schmeisser, Analytic theory of polynomials. London Mathematical Society

Monographs New Series 26, Clarendon Press, Oxford, 2002.
29 J. Urrutia, A containment result on points and circles. Preprint, February 2004. https:

//www.matem.unam.mx/~urrutia/online_papers/PointCirc2.pdf
30 L. Santaló, Integral geometry and geometric probability, 2nd edition, Cambridge University

Press, 2004.
31 E. C. Titchmarsh, The theory of functions, 2nd edition, Oxford University Press, London,

1939.

https://arxiv.org/abs/1908.09020
https://www.matem.unam.mx/~urrutia/online_papers/PointCirc2.pdf
https://www.matem.unam.mx/~urrutia/online_papers/PointCirc2.pdf

Density Approximation for Kinetic Groups
Max van Mulken1, Bettina Speckmann1, and Kevin Verbeek1

1 Department of Mathematics and Computer Science, TU Eindhoven
[m.j.m.v.mulken|b.speckmann|k.a.b.verbeek]@tue.nl

Related Version arXiv:2212.03685

1 Introduction

Sets of moving entities can form groups which travel together for significant amounts of time.
Identifying and tracking groups is an important task in a variety of research areas, such as
wildlife ecology, urban transport, or sports analysis. Consequently, in recent years various
definitions and tracking algorithms have been proposed, such as herds [7], mobile groups [8],
clusters [2, 9], and flocks [3, 13]. In computational geometry, there is a sequence of papers on
variants of the trajectory grouping structure which allows a compact representation of all
groups within a set of moving entities [4, 10,14,15,16].

Not only the existence of one or more groups is an important fact to discover; in many
application areas the actual shape of the group and the density distribution of the moving
entities carries meaning as well. Consider, for example, the herd of wildebeest in Fig. 1.
Both its global shape and the distribution of dense areas indicate that this herd is migrating.
Research in wildlife ecology [6, 11] has established that animals often stay close together
when not under threat and respond to immediate danger by spreading out. Hence from the
density and the extent of a herd we can infer fear levels and external disturbances. The
density distribution and general shape of a group are not only meaningful in wildlife ecology,
but they can also provide useful insights when monitoring, for example, visitors of a festival.

In this paper we initiate the algorithmic study of the shape of a moving group. Specifically,
we identify and track particularly dense areas which provide a meaningful first idea of the
time-varying shape of the group. It is our goal to develop a solid theoretical foundation
which will eventually form the basis for a software system that can track group shapes in
real time. To develop an efficient algorithmic pipeline, we are making several simplifying
assumptions on the trajectories of the moving objects (known ahead of time, piecewise linear,
within a bounding box). In Section 5 we (briefly) explain how we intend to build further on
our theoretical results to lift these restrictions, trading theoretical guarantees for efficiency.

Figure 1 A herd of wildebeest, the shape of the group indicates migratory behavior.1

1https://commons.wikimedia.org/wiki/File:Wbeest_Mara.jpg on 25/11/2022.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://commons.wikimedia.org/wiki/File:Wbeest_Mara.jpg

16:2 Density Approximation for Kinetic Groups

Problem statement. Our input consists of a set P of n moving points in R2; we assume that
the points follow linear motion and are contained in a bounding box D = [0, D] × [0, D] with
size parameter D. The position of a point p ∈ P over time is described by a function p(t),
where t ∈ [0, T] is the time parameter. We often omit the dependence on t, and simply denote
the position of a point as p. We assume that the set P continuously forms a single group; we
aim to monitor the density of P over time. We measure the density of P at position (x, y)
using the well-known concept of kernel density estimation (KDE) [12]. KDE uses kernels
of some width σ around each point p ∈ P to construct a function KDEP : R2 → R+ such
that KDEP (x, y) estimates the density of P at position (x, y). We are mainly interested in
how the density peaks of P , i.e., the local maxima of the function KDEP , change over time.
Note that not all local maxima are equally relevant, since some are minor “bumps” caused
by noise. Our approach is guaranteed to track the most significant local maxima through
time, but may also track other maxima. We measure the significance of a local maximum
using the concept of topological persistence.

Approach and organization. We could simply attempt to maintain the entire function
KDEP over time and additionally keep track of its local maxima. However, doing so would
be computationally expensive. Furthermore, there are good reasons to approximate KDEP :
(1) KDE is itself also an approximation of the density, and (2) approximating KDEP may
eliminate local maxima that are not relevant. For a simple approach, consider building a
quadtree on P . Observe that in areas where P is dense, the quadtree cells will be relatively
small. Hence, we can associate the size of a quadtree cell with the density of P . This
approach has the added advantage that the spatial resolution near the density peaks is higher.
However, there are two main drawbacks: (1) the approximation does not depend on the
chosen kernel size for the KDE, which is an important parameter for analysis, and (2) we
cannot guarantee that all significant local maxima of KDEP are preserved.

The approach we present in this paper builds on the simple approach described above,
but eliminates its drawbacks. We first introduce how to approximate any function f using a
quadtree based on the volume underneath f , which is described in more detail in Section 2.
Next, in Section 3, we shift our focus to the function KDEP , and describe how to construct a
point set to estimate the volume underneath KDEP . This will allow us to efficiently maintain
the approximation as the underlying points move. In Section 4 we describe how to maintain
the approximation of KDEP , as well as its maxima, as the underlying points move using a
kinetic data structure. Lastly, in Section 5 we reflect upon our approach and sketch how our
theoretical results can serve as a guide towards a solution that is efficient in practice.

2 Volume-based quadtree

We first introduce the approximation of a function f : [0, D]2 → R+ using a volume-based
quadtree T , where D is the size of the domain. Specifically, instead of subdividing a cell in
the quadtree when it contains more than one point, we subdivide a cell in the quadtree if the
volume under the function f contained within the cell exceeds some pre-specified threshold
value ρ. Furthermore, we assign a single function value to each leaf cell of the quadtree
corresponding to the average value of f within the cell. This results in a 2-dimensional step
function fT that approximates f (see Fig. 2). In the following we assume, w.l.o.g., that the
total volume under f is 1.

Our goal is to pick threshold value ρ such that we can prove that fT has small additive
error with respect to f . This does not hold for all functions f , but only for functions that

M. van Mulken, B. Speckmann and K. Verbeek 16:3

Figure 2 A 2-dimensional function (left) approximated as a step function (right).

are Lipschitz continuous2. Thus, we also use the Lipschitz constant λ to express our bounds.
We summarize these results in the following theorem:

▶ Theorem 2.1. Let T be the volume-based quadtree of f : [0, D]2 → R+ with threshold ρ.

Then T has at most O

(
1
ρ log

(
D√
ρ/z∗

))
nodes in total, where z∗ is the maximum value of f .

Additionally, for any cell v ∈ T we have that |f(x, y) − fT (x, y)| ≤ min
(

2
√

2
3 λs(v), 3

√
6λ2ρ

)

for all (x, y) ∈ v, where s(v) is the side length of v and λ is the Lipschitz constant of f .

Proof sketch. We first obtain the minimum side length of any cell v in T using ρ and z∗.
By construction, the parent w of v in T must contain a total volume of at least ρ. Since the
maximum function value of f is z∗, the side length of w must be at least

√
ρ/z∗, and hence

the side length of v is at least 1
2
√

ρ/z∗. This directly implies that the depth of T is as most

log
(

2D√
ρ/z∗

)
. Next, observe that removing all leaves from T results in a tree that has at

most 1
ρ leaves (since they are interior disjoint). Combined with the maximum depth, this

gives us the size bound on T in the theorem statement.
To obtain the error bound we observe that, given any (x, y) ∈ [0, D]2 for which f(x, y) = z,

the cone with its apex at (x, y, z) and with slope λ must lie fully underneath f . Given any
cell v ∈ T , since the value of fT in v is set to the average value of f in v, we must have
f(xv, yv) = fT (xv, yv) for some (xv, yv) ∈ v. Therefore, we can use the cone centered at
(xv, yv) to bound how much volume is in v, bounding the function value of fT . ◀

3 From volume to points

We aim to maintain a volume-based quadtree for KDEP over time. We scale KDEP such
that the volume underneath KDEP is 1. Additionally, we assume the kernel width σ to be 1.
This implies that, for most kernels, both the Lipschitz constant and the maximum value are
also bounded by a small constant (see for example the kernel in Fig. 3 (right)).

We can now use the result from Section 2 to approximate KDEP with a volume-based
quadtree. However, doing so would require us to maintain the volume under KDEP as
the underlying points move, which is not very efficient. We therefore approximate this
volume using a discrete set of points. We do so in two steps: (1) we approximate the

2A function is Lipschitz continuous if there is some Lipschitz constant λ such that λ is the maximum
absolute slope of f in any direction.

EuroCG’23

16:4 Density Approximation for Kinetic Groups

r

Figure 3 An example of how a cone kernel can be approximated by a point set. In each grid cell,
⌈rz(c)⌉ points are arbitrarily placed.

volume under each kernel individually, and (2) we combine these kernel approximations to
obtain an approximation for the volume under KDEP . We use the concepts of coresets and
ε-approximations to compute a small set of points Q that can accurately approximate the
volume under KDEP . We choose the points in Q such that we do not have to update Q as
long as the original points in P do not change their trajectories. We can, however, update Q

efficiently when a trajectory changes.
Let K denote the kernel function. We approximate the volume under K for each point

p ∈ P using a point set Sp. To obtain Sp, we consider a regular r × r grid G on the domain
[−1, 1]2, for some value r to be chosen later. We construct a grid-based sampling Sp(r) of
K by arbitrarily placing ⌈rz(c)⌉ points in every cell c ∈ G, where z(c) is the average value
of K in the grid cell c. See Fig. 3 for an example. By carefully choosing r we can obtain,
for a chosen error εdsc > 0, a point set Sp consisting of O(1

ε3
dsc

) points such that we have∣∣∣ |Sp(r)∩R|
|Sp(r)| − VR(K)

∣∣∣ ≤ εdsc for any square region R ⊆ [0, D]2, where VR(K) denotes the
volume under K restricted to region R.

Now, we construct such grid-based samplings Sp around each point s ∈ P , and we assign
points in Sp the same movement direction as p. The complete set of points S =

⋃
p∈P Sp

now provides an approximation for the volume under KDEP with error at most εdsc for all
times t. We can now use a result by Agarwal et al. [1] to construct an ε-approximation Q of
S. In the remainder of this paper we will simply refer to the set of linearly moving points
Q as the coreset of KDEP , where the additive error with respect to the volume is εcor. We
summarize the result in the following theorem:

▶ Theorem 3.1. Let KDEP be a KDE function on a set of n linearly moving points P .
For any εcor > 0, we can construct a coreset Q of linearly moving points such that, at any
time and any square region R ⊆ [0, D]2, we get that

∣∣∣ |Q∩R|
|Q| − VR(KDEP)

∣∣∣ < εcor, where

VR(KDEP) is the volume under KDEP restricted to R. Q consists of O(1
ε2

cor
log

(
1

εcor

)
) points

and can be constructed in O(n poly
(

log n
εcor

)
) time.

We approximate the volume-based quadtree T of KDEP using the weight-based quadtree
T̃ of Q, in which we subdivide a node v ∈ T̃ when the fraction of points from Q that fall
in the region corresponding to v exceeds ρ (instead of the actual volume). We can alter
Theorem 2.1 slightly to give similar bounds on the size and error of the weight-based quadtree
T̃ , based on λ, ρ, and the coreset error εcor. This way, for any error ε > 0, we can set
ρ = Θ(ε3) and εcor = Θ(ε4) to obtain that |KDEP (x, y) − f

T̃
(x, y)| < ε for every time t.

M. van Mulken, B. Speckmann and K. Verbeek 16:5

4 KDS for density approximation

We now transformed the problem of maintaining local maxima of KDEP to the problem of
maintaining a quadtree on a set of moving points. We present a simple kinetic data structure
(KDS) that maintains the weight-based quadtree and the function f

T̃
, as well as its local

maxima. Note that the local maxima of f
T̃

correspond at least to the local maxima of KDEP

that have persistence 2ε or more [5].
The kinetic data structure to store T̃ and its local maxima is relatively simple. For each

cell in Tvol, we store whether it is a local maximum or not. Note that a local maximum is
defined as a cell that is higher than all of its spatial neighbors. We can show that any cell
that has a spatial neighbor that is three or more levels deeper in T̃ can never be a local
maximum. Therefore, in order to be able to update efficiently whether a node is a local
maximum, we store a set of pointers in each node v ∈ T̃ that points to all spatial neighbors
w ∈ T̃ of v such that v and w differ in depth by at most 2.

We trigger an event only when a point from Q crosses a boundary of a cell in T̃ . Then,
we must locally recompute T̃ , as well as which cells in T̃ correspond to local maxima. Using
the pointers described in the previous paragraph, this can be done efficiently. We summarize
the result in the following theorem.

▶ Theorem 4.1. Let f = KDEP be a KDE function on a set P of n linearly moving points
in [0, D]2. For any ε > 0, there exists a KDS that approximately maintains the local maxima
of f with persistence at least 2ε. The KDS can be initialized in O

(
n poly

(
log n

ε

))
time,

processes at most O
(
D poly

(1
ε

))
events, and can handle events and flight plan updates in

O
(
log D + poly

(1
ε

))
and O

(
poly

(
log n

ε

))
time, respectively.

The coreset Q only needs to change when a point changes its trajectory, which we can
also handle efficiently using the data structure by Agarwal et al. [1]. Although we only
prove results on maintaining persistent local maxima, our approach actually maintains an
approximation of the KDE function, and hence could also be used to track other shape
features on the density of P .

5 Discussion

We believe that approximating the density surface we want to maintain via a suitable coreset
of moving points is a promising direction also in practice. Below we briefly sketch how to
handle our various input restrictions.

First of all, we consider the bounding box restriction. Various bounds on the quadtree
complexity and the KDS quality measures depend on the size of the domain D. As we
assume that our input points represent a single group, it makes sense to assume that the
kernel functions of any point (its region of influence) must overlap with the kernel function
of at least one other point. Since we scale the input such that the kernel width is σ = 1,
this directly implies that D = O(n) for a static set of points, although it is likely much
smaller. However, when points move in a single direction for a long time (say, when a herd is
migrating), they may easily leave a domain of that size. To address this problem without
blowing up the size of the domain, we can move the domain itself along a piecewise-linear
trajectory. A change of direction of the domain directly changes the trajectories of all points,
and all events in the KDS must be recomputed. The coreset, however, does not need to
change during such an event. We can limit the number of domain flight plan changes by
using a slightly larger domain than needed at any point in time.

EuroCG’23

16:6 Density Approximation for Kinetic Groups

Second, we discuss the assumption that the trajectories are piecewise linear and known
ahead of time. For the coreset to exist, the range space formed by the trajectories of the
(samples around) the input objects and a set of square regions needs to have bounded VC-
dimension. We proved an upper bound on this VC-dimension in the case that all trajectories
are linear. Real-world animal trajectories are certainly not linear. However, since animals
cannot move at arbitrary speeds and subgroups can often be observed to stay together,
we still expect the corresponding range space to have bounded VC-dimension. A formal
proof seems out of reach for more than very restrictive motion models, but bounds might be
deduced from experimental data.

The actual computation of the coreset via the algorithm of Agarwal et al. [1] is impossible
if the trajectories are not known ahead of time. However, random sampling (that is, sample
a point p ∈ P , and then sample from its kernel) can be expected to result in a coreset of
good size and quality in practice (the worst-case bounds on the size of the coreset which
we proved are unlikely to be necessary in practice). Since we generally do not know the
trajectories of the animals, but we do have bounds on their maximum speeds, a black-box
KDS could be used to maintain such a random sampling coreset efficiently.

Our theoretical results inform the direction of our future engineering efforts in two ways.
First of all, we now know that we can approximate well with a coreset whose size depends
only on the desired approximation factor and not on the input size. Second, we know how to
sample to find such a coreset, by constructing randomly shifted copies of the input points.

References
1 Pankaj Agarwal, Mark de Berg, Jie Gao, Leonidas Guibas, and Sariel Har-Peled. Staying

in the Middle: Exact and Approximate Medians in R1 and R2 for Moving Points. In
Proceedings of the 17th Canadian Conference on Computational Geometry, pages 43–46, 01
2005.

2 Gennady Andrienko and Natalia Andrienko. Interactive cluster analysis of diverse types of
spatiotemporal data. ACM SIGKDD Explorations, 11(2):19–28, 2010.

3 Marc Benkert, Joachim Gudmundsson, Florian Hübner, and Thomas Wolle. Reporting flock
patterns. Computational Geometry, 41(3):111–125, 2008.

4 Kevin Buchin, Maike Buchin, Marc van Kreveld, Bettina Speckmann, and Frank Staals.
Trajectory grouping structure. Journal of Computational Geometry, 6(1):75–98, 2015.

5 Kevin A. Buchin, Max J.M. van Mulken, Bettina Speckmann, and Kevin A.B. Verbeek.
Kinetic group density in 1d. In Proceesings of the 38th European Workshop on Computational
Geometry, pages 47:1–47:6, 2022.

6 Jasper Eikelboom. Sentinel animals: Enriching artificial intelligence with wildlife ecology to
guard rhinos. PhD thesis, Wageningen University, 2021.

7 Yan Huang, Cai Chen, and Pinliang Dong. Modeling herds and their evolvements from tra-
jectory data. In Proceedings of the 5th International Conference on Geographic Information
Science, pages 90–105, 2008.

8 San-Yih Hwang, Ying-Han Liu, Jeng-Kuen Chiu, and Ee-Peng Lim. Mining mobile group
patterns: A trajectory-based approach. In Proceedings of the 9th Conference on Advances
in Knowledge Discovery and Data Mining, pages 713–718, 2005.

9 Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. On discovering moving clusters in
spatio-temporal data. In Proceedings of the 9th International Conference on Advances in
Spatial and Temporal Databases, pages 364–381, 2005.

10 Irina Kostitsyna, Marc van Kreveld, Maarten Löffler, Bettina Speckmann, and Frank
Staals. Trajectory grouping structure under geodesic distance. In Proceedings of the 31st
International Symposium on Computational Geometry, pages 674–688, 2015.

M. van Mulken, B. Speckmann and K. Verbeek 16:7

11 Anders Nilsson. Predator behaviour and prey density: evaluating density-dependent
intraspecific interactions on predator functional responses. Journal of Animal Ecology,
70(1):14–19, 2001.

12 Emanuel Parzen. On Estimation of a Probability Density Function and Mode. The Annals
of Mathematical Statistics, 33(3):1065 – 1076, 1962.

13 Craig Reynolds. Flocks, herds and schools: A distributed behavioral model. In Proceedings
of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pages
25–34, 1987.

14 Arthur van Goethem, Marc van Kreveld, Maarten Löffler, Bettina Speckmann, and Frank
Staals. Grouping time-varying data for interactive exploration. In Proceedings of the 32nd
International Symposium on Computational Geometry, pages 61:1–61:16, 2016.

15 Marc van Kreveld, Maarten Löffler, Frank Staals, and Lionov Wiratma. A refined definition
for groups of moving entities and its computation. International Journal of Computational
Geometry & Applications, 28(02):181–196, 2018.

16 Lionov Wiratma, Marc van Kreveld, Maarten Löffler, and Frank Staals. An experimental
evaluation of grouping definitions for moving entities. In Proceedings of the 27th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems,
pages 89–98, 2019.

EuroCG’23

On the Size of Fully Diverse Sets of Polygons
using the Earth Movers Distance or Wasserstein
Distance∗

Fabian Klute1,2 and Marc van Kreveld2

1 Polytechnic University of Catalonia, Barcelona, Spain
fmklute@gmail.com

2 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands
m.j.vankreveld@uu.nl

Abstract
Diversity is a property of sets that shows how varied or different its elements are. We define full
diversity in a metric space and study the maximum size of fully diverse sets. A set is fully diverse
if each pair of elements is as distant as the maximum possible distance between any pair, up to a
constant factor. In a previous paper (Klute and van Kreveld, On Fully Diverse Sets of Geometric
Objects and Graphs, WG 2022), we showed how large a fully diverse set of simple polygons inside
a unit-diameter region can be when we assume the Hausdorff distance, the Fréchet distance, or the
area of symmetric difference to determine the distance between two simple polygons. In this paper
we extend these results by considering the Earth Movers Distance and the Wasserstein Distance: we
show that the maximum size of fully diverse sets is O(1) in both cases. When we restrict ourselves
to convex polygons, the Fréchet distance and area of symmetric difference also allow only O(1) such
polygons in a fully diverse set, unlike the simple polygon case for these measures.

Related Version

1 Introduction

The process of generating data, for example for benchmarks, may require that the resulting
data is sufficiently diverse. Another occurrence is the creation of a layout or configuration
from various options. For example, in graph drawing this observation has led to systems
that present several drawings and then let the user choose a drawing or indicate preference,
allowing for the creation of more drawings aligning with the preferred ones [2].

In a recent paper [10] we introduced a framework that allows us to study diversity of
“objects”, and analyze the maximum number of objects that are pairwise far apart. This
framework is applicable in many contexts.

Diversity as a counting problem. We define full diversity as in [10]. Let (S, µ) be a metric
space where S is a base set or class of objects and µ is a distance measure that assigns a
distance to any pair from S. We consider the case where µ(a, b) is bounded for all a, b ∈ S;
let M = supa,b∈S µ(a, b) be the highest value that is attained (possibly in the limit) by µ

on S.

∗ Supported by the Netherlands Organisation for Scientific Research (NWO) under project no.
612.001.651 and the Austrian Science Foundation (FWF) grant J4510.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

17:2 On the Size of Fully Diverse Sets of Polygons

0.2

0.2

Figure 1 Fully diverse set of n-vertex simple polygons that each fit inside a unit-diameter region.
Every pair gives a Fréchet distance of at least 0.2 if at any place, one polygon has a high peak where
the other has a low peak. We can have 2⌊n/2⌋ such simple polygons in a fully diverse set.

Table 1 Bounds on the maximum size of fully diverse sets in various metric spaces with geometric
measures. The descriptive complexity of the objects is n and U denotes a unit-diameter disk.

Object Metric Space Diameter Lower bound Upper bound Status
Polygons Hausdorff distance U Θ(1) Ω(1) O(1) [10]
Polylines Fréchet distance U Θ(1) 2Ω(n) 2O(n) [10]
Polygons Area symm. diff. U Θ(1) 2Ω(n) 2O(n log n) [10]
Point sets Matching distance U Θ(n) Ω(1) O(1) new
Polygons Wasserstein distance U Θ(1) Ω(1) O(1) new

▶ Definition 1. For a given c ≥ 1, a subset Ŝ ⊆ S is called 1
c -diverse if for all x, y ∈ Ŝ, we

have µ(x, y) ≥ 1
c · M . If c can be chosen constant, independent of |Ŝ|, then Ŝ is called fully

diverse.

Intuitively, we relate the distance of all pairs of the subset to the maximum distance
within the base set. Note that the metric space must be bounded to make this definition
meaningful. We are interested in the question how large fully diverse subsets can be. As
a simple example, consider all points in a unit square region in the plane and Euclidean
distance as the metric. Then the maximum distance is

√
2, so a 1

c -diverse (sub)set of points
must have pairwise distances of at least

√
2/c. It is easy to see that any 1

c -diverse set has size
O(c2) by a packing argument, and any maximal 1

c -diverse set has size Ω(c2). The maximum
size of a fully diverse set of points is Θ(c2) = Θ(1) if c is a constant.

In our recent paper [10] we studied more complex objects like simple polygons, embeddings
of graphs, and graphs themselves, where we need to choose an appropriate distance measure.
In this paper we extend upon the geometric results. We assume that the objects reside in
a bounded space to make the metric space bounded. Let U be a unit-diameter disk in the
plane in which our objects reside. Results from [10] and new results are shown together in
Table 1. A construction for the lower bound for the Fréchet distance is shown in Figure 1.

The known results include the result that the metric space of n-vertex simple polygons
has a large diversity if distance is measured by area of symmetric difference. Our main new
result shows that this is not the case for Earth Movers Distance or Wasserstein distance.
The situation that the distance over which weight or area is moved counts in the measure,
“removes the large diversity” in the metric space.

Intuitively, convex polygons are much less diverse than simple polygons. However, for
the Hausdorff distance and the Earth Movers Distance this does not show, because even
simple polygons allow only constant-size fully diverse sets. This paper shows that the Fréchet
distance and area of symmetric difference also give only O(1) size fully diverse sets of convex
polygons in a unit-diameter region.

F. Klute and M. van Kreveld 17:3

c1

c1

bn/c2c

U
c1

c1

U

Figure 2 Snapping the n points to c2
1 grid points (left), and making batches at the grid points

to approximate the number of points snapped to the same grid point (right).

Relation to diversity and similar notions in science. Diversity has been studied in a variety
of scientific contexts. One well-known example is in ecosystems, specifically, the diversity of
species that are represented in a sample of animals or plants, see for instance [8, 13]. The
Shannon index is commonly used, also known as Shannon entropy in information theory.

In computer science, diversity has been studied in a variety of areas. For example, the
diversity of the output in selection tasks in big data [6] or recommender systems [12], of input
data sets for machine learning [11], or of colored point sets in computational geometry [15].

Diversity without a priori assigned categories is of interest in the study of the diversity of a
population in genetic algorithms, e.g. [16]. Following similar ideas, researchers later studied
the diversity of sets of solutions in satisfiability problems [9], multicriteria optimization
problems [14], and, recently, parameterized algorithms, e.g. [3]. Hebrard et al. [7] introduced
the maximization problem to find the set of solutions that maximizes this sum or minimum
distance over all sets of solutions.

2 Diversity of n-point Sets using Earth Movers Distance

We consider the matching distance for sets of n points inside a unit diameter disk U . This
is also the Earth Movers Distance between two sets of n points with unit weights, but the
Earth Movers Distance is more general. We first discuss the matching distance and then the
trivial adaptation for the Earth Movers Distance.

Assume that a set S of n-point sets is fully diverse, giving us the existence of a constant
c ≥ 1. We will discretize any n-point set in such a way that any two n-point sets that have
the same discretization have distance < n/c (so they cannot be together in a fully diverse
set), and the number of different discretizations is constant (a function of c but not of n).

Let c1, c2 ≥ 1 be two constants. We generate a regular square grid with spacing 1/c1,
so that we get at most c2

1 grid points inside U , see Figure 2. Let P be an n-point set.
We snap all points of P to their nearest grid point. Let ng be the number of points of P

snapped to a grid point g. We discretize this number as well, at every grid point. To this
end we make batches of ⌊n/c2⌋ points and count the number of batches that is full. The
total discretization implies that there are c

c2
1

2 different discretized sets, since there are at
most c2 choices for each of the c2

1 grid points.
Let P and Q be two n-point sets with the same discretization. We analyze how we must

choose c1 and c2 so that P and Q necessarily have distance less than n/c. The total snapping
distance is at most

√
2n/c1 for P and for Q. The total cost of matching the points of P and

Q not in a full batch is upper-bounded by c2
1n/c2, as there are at most this many points not

EuroCG’23

17:4 On the Size of Fully Diverse Sets of Polygons

in a full batch and the matching distance of any pair of points is at most 1. So an upper
bound on the matching cost of P and Q is 2

√
2n/c1 + c2

1n/c2. If we choose c1 > 4
√

2c and
c2 > c3

1/(2
√

2), then both terms are less than n/(2c), so the matching cost of P and Q is
less than n/c. In other words, a fully diverse set of n-point sets must contain point sets with
different discretizations, and there are only O(1) discretizations. In particular, there are at
most c

c2
1

2 = (77c3)36c2 = cO(c2) = O(1) discretizations if we choose c1 = 6c and c2 = 77c3.
The reasoning above holds without any change for two point sets with total weight n

each, regardless of the number of points. We can change n to any other value; only the
relative weights of the points matters.

▶ Theorem 2. The maximum size of a fully diverse set of point sets with a fixed total
weight inside a unit-diameter region, assuming minimum matching distance or Earth Movers
Distance, is Θ(1).

3 Diversity of Distributions using the Wasserstein Distance

It is straightforward to extend this scheme to moving earth based on areas in simple polygons,
or, more generally, moving mass using the Wasserstein distance. We extend the results of
the previous section to distributions of unit mass inside U , after which we get the result for
equal-area simple polygons using the Earth Movers Distance as a corollary.

The Wasserstein Distance measures the similarity of two probability density functions,
and hence we assume the total mass of each to be 1. It is a metric that is essentially a
continuous version of the Earth Movers Distance for points.

We simply snap volume to the same set of grid points as for the n-point set case, and we
make batches as before as well. We replace n by 1 in the expressions, since this is the total
mass and therefore the maximum Wasserstein distance in a unit-diameter region.

▶ Theorem 3. The maximum size of a fully diverse set of distributions inside a unit-
diameter region, assuming Wasserstein Distance, is Θ(1).

▶ Corollary 4. The maximum size of a fully diverse set of n-vertex, equal-area simple
polygons inside a unit-diameter region, assuming Earth Movers Distance, is Θ(1).

4 Diversity of Sets of Convex Polygons

Intuitively convex polygons have a lot less diversity than simple polygons, but does our
concept of full diversity reflect this? For the Hausdorff distance and Earth Movers Distance
the maximum size of a fully diverse set can be only O(1), and the same upper bound holds
when we restrict ourselves to convex polygons. So the question remains to be answered only
for the Fréchet distance and the area of symmetric difference. In these cases we show that
the maximum size of fully diverse sets becomes O(1) as well.

The case of the Fréchet distance is easy, since the Fréchet distance and Hausdorff distance
are the same for convex polygons (or their boundaries) [1, 4]. So the O(1) upper bound
directly transfers to this case.

The case of the area of symmetric difference requires a bit more work. We will show that
for any convex shape, there is a convex polygon with constant complexity that has only little
loss of area and no gain in area. Note that the maximum perimeter of a convex shape inside
a unit diameter region is π and the maximum area is π/4 by the isoperimetric inequality.

Let c > 1 be a constant. If a convex shape s has perimeter less than 3/c2, then we define
s′ as a triangle using any three points on the boundary of s, and call s′ a simplification of s.

F. Klute and M. van Kreveld 17:5

1/c2

ss′

Figure 3 A convex shape s and its simplification s′ by choosing a point on the boundary of s

with interdistance 1/c2. The grey polygons are the symmetric difference; their area is the loss of
area when s is simplified to s′.

Since the area of s is < 1/c4, the triangle has lost at most that much area with respect to s.
If s has perimeter at least 3/c2, then we choose points on the boundary of s at intervals
1/c2; the last interval may be shorter (see Figure 3). Let s′ be the convex polygon with
these points as its vertices; again we call s′ the simplification of s. Clearly s′ has < πc2 + 1
vertices. The small convex polygons that are the symmetric difference of s and s′ each have
perimeter at most 2/c2 and therefore area < 1/c4. There are < πc2 + 1 of these small
polygons, so their total area is < 5/c2 since c > 1.

Let S be a set of convex shapes inside U and let S′ = {s′ | s ∈ S} be the set of
simplifications of the shapes in S. Let c′ > 1 be a constant and let s′

1, s′
2 be two convex

polygons that have area of symmetric difference at least π/(4c′), and hence they can be in a
fully diverse set. We know that if s′

1 and s′
2 were derived as simplifications from s1 and s2,

then the area of symmetric difference between s1 and s2 is at least π/(4c′) − 2 · 5/c2, with c

the constant used in the simplification. If we choose c = c′ and c′′ = max(2c′, 80/π), then c′′

is a constant that witnesses that s1 and s2 can be together in a fully diverse set S. Hence,
if S′ is fully diverse for some constant c′, then S is fully diverse for a different constant c′′.

We already remarked that each polygon in S′ has O(c2) vertices. Hence, the maximum
size of a fully diverse set of simplified convex polygons S′ is 2O(c2 log c) = O(1), using the
upper bound for the full diversity for simple polygons obtained in [10].

▶ Theorem 5. The maximum size of a fully diverse set of convex polygons inside a unit-
diameter region is Θ(1) for Hausdorff distance, Fréchet distance, area of symmetric difference,
and Earth movers distance.

5 Conclusions and Open Problems

We have continued the study of the maximum size of fully diverse sets of polygons by
considering the Earth Movers Distance and the Wasserstein distance, and by considering
convex polygons as a special case for all measures. It may be interesting to see how realistic
polygons [5] behave, as a special case that lies in between the convex and the simple case.
For example, it seems the O(1) bound for convex polygons and area of symmetric difference
does not use convexity, only the fact that the perimeter is bounded, and hence the O(1)
bound may hold for all constant perimeter simple polygons as well.

References
1 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for

planar curves. Algorithmica, 38(1):45–58, 2004. doi:10.1007/s00453-003-1042-5.
2 Benjamin Bach, Andre Suslik Spritzer, Evelyne Lutton, and Jean-Daniel Fekete. Interactive

random graph generation with evolutionary algorithms. In Proc. 20th Int. Symp. on

EuroCG’23

https://doi.org/10.1007/s00453-003-1042-5

17:6 On the Size of Fully Diverse Sets of Polygons

Graph Drawing (GD’12), volume 7704 of LNCS, pages 541–552, 2012. doi:10.1007/
978-3-642-36763-2_48.

3 Julien Baste, Michael R. Fellows, Lars Jaffke, Tomás Masarík, Mateus de Oliveira Oliveira,
Geevarghese Philip, and Frances A. Rosamond. Diversity of solutions: An exploration
through the lens of fixed-parameter tractability theory. In Proc. 29th International Joint
Conference on Artificial Intelligence (IJCAI’20), pages 1119–1125, 2020. doi:10.24963/
ijcai.2020/156.

4 Kevin Buchin, Maike Buchin, and Carola Wenk. Computing the Fréchet distance between
simple polygons in polynomial time. In Proc. 22nd Annual Symposium on Computational
Geometry, pages 80–87. ACM, 2006. doi:10.1145/1137856.1137870.

5 Mark de Berg, A. Frank van der Stappen, Jules Vleugels, and Matthew J. Katz. Realistic
input models for geometric algorithms. Algorithmica, 34(1):81–97, 2002. doi:10.1007/
s00453-002-0961-x.

6 Marina Drosou, H. V. Jagadish, Evaggelia Pitoura, and Julia Stoyanovich. Diversity in big
data: A review. Big Data, 5(2):73–84, 2017. doi:10.1089/big.2016.0054.

7 Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby Walsh. Finding diverse
and similar solutions in constraint programming. In Proc. 20th National Conference on
Artificial Intelligence (AAAI’05), pages 372–377, 2005.

8 Mark O Hill. Diversity and evenness: a unifying notation and its consequences. Ecology,
54(2):427–432, 1973. doi:10.2307/1934352.

9 Linnea Ingmar, Maria Garcia de la Banda, Peter J. Stuckey, and Guido Tack. Modelling
diversity of solutions. In Proc. 34th AAAI Conference on Artificial Intelligence (AAAI’20),
pages 1528–1535, 2020.

10 Fabian Klute and Marc van Kreveld. On fully diverse sets of geometric objects and graphs.
In International Workshop on Graph-Theoretic Concepts in Computer Science, volume
13453 of LNCS, pages 328–341. Springer, 2022. doi:10.1007/978-3-031-15914-5_24.

11 Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning. Found.
Trends Mach. Learn., 5(2-3):123–286, 2012. doi:10.1561/2200000044.

12 Matevz Kunaver and Tomaz Pozrl. Diversity in recommender systems - A survey. Knowl.-
Based Syst., 123:154–162, 2017. doi:10.1016/j.knosys.2017.02.009.

13 Hanna Tuomisto. A consistent terminology for quantifying species diversity? Yes, it does
exist. Oecologia, 164(4):853–860, 2010. doi:10.1007/s00442-010-1812-0.

14 Tamara Ulrich, Johannes Bader, and Lothar Thiele. Defining and optimizing indicator-
based diversity measures in multiobjective search. In Proc. 11th Int. Conf. on Parallel
Problem Solving from Nature (PPSN’10), volume 6238 of LNCS, pages 707–717, 2010.
doi:10.1007/978-3-642-15844-5_71.

15 Marc van Kreveld, Bettina Speckmann, and Jérôme Urhausen. Diverse partitions of colored
points. In Proc. 17th Algorithms and Data Structures Symp. (WADS’2021), volume 12808
of LNCS, pages 641–654, 2021. doi:10.1007/978-3-030-83508-8_46.

16 Mark Wineberg and Franz Oppacher. The underlying similarity of diversity measures used
in evolutionary computation. In Proc. Annual Genetic and Evolutionary Computation
Conference (GECCO’03), volume 2724 of LNCS, pages 1493–1504, 2003. doi:10.1007/
3-540-45110-2_21.

https://doi.org/10.1007/978-3-642-36763-2_48
https://doi.org/10.1007/978-3-642-36763-2_48
https://doi.org/10.24963/ijcai.2020/156
https://doi.org/10.24963/ijcai.2020/156
https://doi.org/10.1145/1137856.1137870
https://doi.org/10.1007/s00453-002-0961-x
https://doi.org/10.1007/s00453-002-0961-x
https://doi.org/10.1089/big.2016.0054
https://doi.org/10.2307/1934352
https://doi.org/10.1007/978-3-031-15914-5_24
https://doi.org/10.1561/2200000044
https://doi.org/10.1016/j.knosys.2017.02.009
https://doi.org/10.1007/s00442-010-1812-0
https://doi.org/10.1007/978-3-642-15844-5_71
https://doi.org/10.1007/978-3-030-83508-8_46
https://doi.org/10.1007/3-540-45110-2_21
https://doi.org/10.1007/3-540-45110-2_21

A linear bound for the Colin de Verdière parameter
µ for graphs embedded on surfaces
Camille Lanuel∗1, Francis Lazarus†2, and Rudi Pendavingh3

1 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
2 G-SCOP, CNRS, UGA, Grenoble, France
3 Department of Mathematics and Computer Science, Eindhoven University of

Technology, 5600 MB Eindhoven, Netherlands

Abstract
The Colin de Verdière graph parameter µ(G) was introduced in 1990 by Y. Colin de Verdière. It is
defined via spectral properties of a certain type of matrices, called Schrödinger operators, associated
to a graph G. We provide a combinatorial and self-contained proof that for all graphs G embedded
on a surface S, the Colin de Verdière parameter µ(G) is upper bounded by 7 − 2χ(S), where χ(S) is
the Euler characteristic of S.

Related Version https://arxiv.org/abs/2303.00556

1 Introduction

In this paper, we establish an upper bound for the Colin de Verdière’s graph parameter µ for
graphs that can be embedded on a fixed surface. This parameter was introduced by Colin de
Verdière [4] in analogy with the multiplicity of the second eigenvalue of Schrödinger operators
on a Riemannian surface. The exact definition of µ(G) resorts to a transversality condition
between the space of so-called discrete Schrödinger operators on a graph G = (V, E) and a
certain stratification of the space of symmetric matrices of dimension V × V . This Strong
Arnold Hypothesis (SAH), as coined by Colin de Verdière [3], expresses a stability property
and ensures that µ is minor-monotone. It can thus be applied to the graph minor theory of
Robertson and Seymour. We refer to the survey by van der Holst, Lovász and Schrijver [13]
for more properties on µ.

Here, we are interested in an upper bound for the parameter µ of the minor-closed
family of graphs that can be embedded on a surface S. It is relatively easy to show that
µ(Kn) = n − 1 for Kn, the complete graph with n vertices [13]. On the other hand, the
largest n such that Kn embeds on S is known as the Heawood number

γ(S) =
⌊

7 +
√

49 − 24χ(S)
2

⌋
,

where χ(S) is the Euler characteristic of S. Colin de Verdière [2] conjectured that the
maximum of µ for all graphs that can be embedded in S is attained at Kγ(S). In other
words, µ is upper bounded by γ(S) − 1. In practice, the known upper bounds have been
proved in the realm of Riemannian surfaces where µ is defined for each Riemannian metric

∗ This work was conducted when this author was at the G-SCOP laboratory in Grenoble. This author is
(partially) supported by the grant ANR-17-CE40-0033 of the French National Research Agency ANR
(project SoS)

† This author is partially supported by LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the
French program Investissement d’avenir.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

18:2 A linear bound for µ for graphs embedded on a surface

as the maximum multiplicity of the second eigenvalue of Schrödinger differential operators
(based on the Laplace-Beltrami operator associated to the given metric). In this framework,
Besson [1] obtained the bound 7 − 2χ(S). When the Euler characteristic is negative, this
bound was further decreased by 2 by Nadirashvili [8], who thus showed the upper bound
5 − 2χ(S). Sévennec [10] eventually divided by two the dependency in the characteristic
to obtain the upper bound 5 − χ(S). Note that all those bounds are linear in the genus
of S and remain far from the square root bound in the conjecture of Colin de Verdière. It
can be proved that any upper bound for µ in the Riemannian world holds for graphs, cf.
[6, Th. 6.3] and [2, Th. 7.1]. However, the proof relies on the construction of Schrödinger
differential operators from combinatorial ones and is not particularly illuminating from the
combinatorial viewpoint. The goal of this paper is to propose a purely combinatorial and
self-contained proof of the bound of Besson in the combinatorial framework of graphs. In
the following, S is a compact surface, orientable or not.

▶ Theorem 1.1. Let G be a graph that can be embedded on a surface S, then

µ(G) ⩽ 7 − 2χ(S).

Our proof completes and slightly simplifies a proof of Pendavingh that appeared in his PhD
thesis [9]. Before describing the general strategy of the proof, we provide some relevant
definitions and basic facts.

2 Background

2.1 Schrödinger operators and µ

Let G = (V, E) be a connected simplicial1 graph with at least two vertices. A Schrödinger
operator on G, sometimes called a generalized Laplacian, is a symmetric V × V matrix such
that for i ̸= j ∈ V , its ij coefficient is negative if ij ∈ E and zero otherwise. (There is
no condition on the diagonal coefficients.) We say that a Schrödinger operator L satisfies
the Strong Arnold Hypothesis (SAH) if there is no nonzero symmetric matrix X = (Xij)
such that LX = 0 and Xij = 0 whenever i = j or ij ̸∈ E, in other words, if the only
symmetric matrix satisfying these conditions is zero. This is an algebraic translation of a
transversality condition between the space of the discrete Schrödinger operators on G and
a certain stratification of the space of symmetric matrices of dimension V × V . It is not
necessary to understand the SAH for the purpose of this paper.

It follows from Perron–Frobenius theorem that the first (smallest) eigenvalue of a
Schrödinger operator L has multiplicity one [5]. Now, if λ2 is the second eigenvalue of
L, then the first eigenvalue of L − λ2Id, where Id is the identity matrix, is negative and
its second eigenvalue is zero. This translation by −λ2Id does not change the sequence
of multiplicities of the eigenvalues of L nor the stability of L with respect to the SAH.
Consequently, we can safely restrict to Schrödinger operators whose second eigenvalue is
zero. We can now define the Colin de Verdière graph parameter µ(G) as the maximal corank
(dimension of the kernel ker(L)) of any Schrödinger operator L satisfying the Strong Arnold
Hypothesis. In other words, µ(G) is the largest integer p such that there exists a Schrödinger
operator L with dim ker L = p and L satisfies the SAH.

Recall that a minor of G is a graph obtained from G by deleting edges, vertices or
contracting egdes. As a fundamental property, µ is minor-monotone.

1 A graph is simplicial, or simple, if it has no loops or multiple edges.

C. Lanuel, F. Lazarus, R. A. Pendavingh 18:3

▶ Theorem 2.1 ([4]). If H is a minor of G, then µ(H) ⩽ µ(G).

It also characterizes planar graphs.

▶ Theorem 2.2 ([4]). A graph G is planar if and only if µ(G) ⩽ 3.

Colin de Verdière made the following conjecture in [4].

▶ Conjecture 2.3. The chromatic number of a graph G satisfies chr(G) ⩽ µ(G) + 1.

This conjecture contains the four colour theorem thanks to Theorem 2.2. It is implied
by Hadwiger’s conjecture (a graph which is not colourable with k colours has the complete
graph Kk+1 as a minor), using the fact that µ(Kn) = n − 1 [13] and the minor-monotone
property of µ.

We view a vector of RV as a discrete map V → R, so that a Schrödinger operator acts
linearly on the set of discrete maps. For f : V → R, we denote by V +

f , V 0
f , V −

f the subsets of
vertices where f takes respectively positive, null and negative values. The support of f is
the subset V +

f ∪ V −
f of vertices with nonzero values. As a simple property of Schrödinger

operators we have

▶ Lemma 2.4 ([13]). Let L be a Schrödinger operator of G and let f ∈ ker L. Then, a vertex
v ∈ V 0

f is adjacent to a vertex of V +
f if and only if v is adjacent to a vertex of V −

f .

A discrete version of the nodal theorem of Courant reads as follows.

▶ Theorem 2.5 ([5, 12]). Let L be a Schrödinger operator of G and let f ∈ ker L be a nonzero
map with minimal support2. Then, the subgraphs of G induced respectively by V +

f and V −
f

are nonempty and connected.

2.2 Surfaces and Euler characteristic
By a surface of finite type we mean a topological space homeomorphic to a compact two
dimensional manifold minus a finite number of points. A surface may have nonempty
boundary and each of the finitely many boundary components is homeomorphic to a circle.
We shall only consider surfaces of finite type and omit to specify this condition. A closed
surface means a compact surface without boundary. By a triangulation of a surface, we mean
a simplicial complex together with a homeomorphism between its underlying space and the
surface.

The Euler characteristic χ(X) of a finite simplicial complex (and more generally a finite
CW complex) is the alternating sum of the numbers of cells of each dimension. In particular,
the Euler characteristic of a graph Γ = (V, E) is χ(Γ) = |V | − |E|. For a surface S we define
χ(S) as the Euler characteristic of a polygonisation of S, that is, a description of S as a
CW complex. The Euler characteristic is homotopy invariant: two spaces with the same
homotopy type have the same Euler characteristic.

The following property will be needed in our proof. It is a corollary of the Inclusion-
exclusion formula [11, p.205]. The proof is not completely trivial and can be found in [7,
Section 2] .

2 A discrete map f ∈ ker L has minimal support if it is nonzero and for every nonzero g ∈ ker L, if
V +

g ∪ V −
g ⊆ V +

f ∪ V −
f , then V +

g ∪ V −
g = V +

f ∪ V −
f .

EuroCG’23

18:4 A linear bound for µ for graphs embedded on a surface

▶ Proposition 2.6. Let X be a triangulated compact surface and let Y be a subcomplex of X.
Then

χ(X) = χ(Y) + χ(X \ Y).

Here, X and Y should be considered as topological spaces, forgetting about their triangula-
tions. In general, X \ Y is not a subcomplex of X.

3 Overview of the proof

In this section, we give the main ideas of the proof of Theorem 1.1. The detailed proof can
be found in [7, Section 5].

Let G be a graph embedded on a surface S, which we can assume closed without loss
of generality. We may also assume that S is not homeomorphic to a sphere as otherwise
Theorem 1.1 follows directly from Theorem 2.2. In a first step, we remove an open disk
D ⊂ S \ G whose boundary avoids G, and build a graph3 H embedded in S \ D such that
C1. H triangulates S \ D and subdivides ∂D into a cycle of µ(G) − 1 edges,
C2. G is a minor of H, and
C3. the length of the shortest closed walk in H that is non-contractible in S \ D, i.e. the

edgewidth of H in S \ D, is µ(G) − 1.
We denote by W the set of vertices of H.

We next choose a Schrödinger operator L for H whose corank achieves µ(H). Condition
C2 and the monotonicity of µ imply µ(H) ⩾ µ(G), so that ker L has dimension at least µ(G).
By C1, ∂D has µ(G) − 1 vertices, so the vectors of the basis of ker L restricted to ∂D are
linearly dependent. Thus there exists a nonzero vector f ∈ ker L such that f cancels on the
vertices of ∂D. We pick such an f with minimal support so that by Theorem 2.5 the subsets
of vertices W +

f and W −
f induce connected subgraphs of H. We connect the vertices of ∂D

by inserting µ(G) − 4 edges in D to obtain a graph H ′ with the same vertices as H and that
triangulates S. We can now extend f linearly on each face of H ′ to get a piecewise linear
map f̄ : S → R. Let S+

f , S0
f , S−

f denote the subspaces of S where f̄ is respectively positive,
null, and negative. By Theorem 2.5, S+

f and S−
f are connected open subsurfaces of S, while

S0
f is a closed subcomplex of some subdivision of the triangulation induced by H ′. We can

thus apply Proposition 2.6 to write

χ(S) = χ
(
S0

f

)
+ χ

(
S+

f ∪ S−
f

)
= χ

(
S0

f

)
+ χ

(
S+

f

)
+ χ

(
S−

f

)
.

The subsets S+
f and S−

f cannot be homeomorphic to spheres because they are both proper
subsets of S. We deduce from the classification of surfaces, that χ(S+

f) ⩽ 1 and χ(S−
f) ⩽ 1.

It ensues that χ(S0
f) ⩾ χ(S) − 2. The goal is now to provide an upper bound for χ(S0

f) in
terms of µ(G) in order to obtain the desired upper bound for µ(G).

Start by observing S0
f : it is formed of plain triangles adjacent by an edge or a vertex, or

connected together, via their vertices, by a piece of dimension 1. To provide the upper bound
for χ(S0

f), we build a graph Γ whose Euler characteristic is larger than S0
f by contracting its

two dimensional parts, that are the parts formed by the plain triangles. To ensure that this
operation results in the desired property on the Euler characteristic of Γ, precautions are
taken before the contraction to remove the singularities of the two dimensional parts while
keeping the same homotopy type. By definition of f̄ , D ⊂ S0

f , so we can define K as the two

3 See [7, Section 4] for a detailed construction of such a graph.

C. Lanuel, F. Lazarus, R. A. Pendavingh 18:5

dimensional part containing D. Because of condition C3 on H, we can argue that K has a
non-contractible boundary in S \ D. It follows that this boundary has length at least the
edgewidth of H, hence at least µ(G) − 1 by condition C3. Thanks to Lemma 2.4 we may
infer that K contracts to a vertex of degree at least µ(G) − 1 in Γ. We also argue thanks to
Lemma 2.4 that Γ has no vertex of degree one. By the handshaking lemma applied to Γ, we
deduce that χ(S0

f) ⩽ χ(Γ) ⩽ (3−µ(G))/2. We finally conclude that χ(S)−2 ⩽ (3−µ(G))/2,
hence µ(G) ⩽ 7 − 2χ(S).

References
1 Gérard Besson. Sur la multiplicité de la première valeur propre des surfaces riemanniennes.

Annales de l’institut Fourier, 30(1):109–128, 1980. URL: http://www.numdam.org/item/
10.5802/aif.777.pdf.

2 Yves Colin de Verdière. Construction de laplaciens dont une partie finie du spectre est
donnée. Annales scientifiques de l’école normale supérieure, 20(4):599–615, 1987.

3 Yves Colin de Verdière. Sur une hypothèse de transversalité d’Arnol’d. Comment. Math.
Helv., 63(2):184–193, 1988.

4 Yves Colin de Verdière. Sur un nouvel invariant des graphes et un critère de planarité.
Journal of Combinatorial Theory, Series B, 50(1):11–21, 1990.

5 Yves Colin de Verdière. Théorèmes de Courant et de Cheng combinatoires. Séminaire de
théorie spectrale et géométrie, 13:9–13, 1994.

6 Yves Colin de Verdière. Spectres de graphes. Number 4 in Cours Spécialiés. Société
Mathématique de France, 1998.

7 Camille Lanuel, Francis Lazarus, and Rudi Pendavingh. A linear bound for the Colin
de Verdière parameter µ for graphs embedded on surfaces, 2023. Preprint. URL: https:
//arxiv.org/abs/2303.00556, doi:10.48550/ARXIV.2303.00556.

8 Nikolai Semenovich Nadirashvili. Multiple eigenvalues of the Laplace operator. Mathematics
of the USSR-Sbornik, 61(1):225, 1988.

9 Rudolf Anton Pendavingh. Spectral and Geometrical Graph Characterizations. PhD thesis,
Amsterdam University, 1998.

10 Bruno Sévennec. Multiplicity of the second Schrödinger eigenvalue on closed surfaces.
Mathematische Annalen, 324(1):195–211, 2002.

11 Edwin H. Spanier. Algebraic topology. Springer Verlag, corrected reprint of the 1966 original
edition, 1989.

12 Hein Van der Holst. A short proof of the planarity characterization of Colin de
Verdière. Journal of Combinatorial Theory, Series B, 65(2):269–272, 1995. URL:
https://www.sciencedirect.com/science/article/pii/S0095895685710544/pdf?
md5=cb7b57b58c203666ae179c8de5e87e19&pid=1-s2.0-S0095895685710544-main.pdf.

13 Hein Van der Holst, László Lovász, and Alexander Schrijver. The Colin de Verdière graph
parameter. Graph Theory and Computational Biology (Balatonlelle, 1996), pages 29–85,
1999.

EuroCG’23

http://www.numdam.org/item/10.5802/aif.777.pdf
http://www.numdam.org/item/10.5802/aif.777.pdf
https://arxiv.org/abs/2303.00556
https://arxiv.org/abs/2303.00556
https://doi.org/10.48550/ARXIV.2303.00556
https://www.sciencedirect.com/science/article/pii/S0095895685710544/pdf?md5=cb7b57b58c203666ae179c8de5e87e19&pid=1-s2.0-S0095895685710544-main.pdf
https://www.sciencedirect.com/science/article/pii/S0095895685710544/pdf?md5=cb7b57b58c203666ae179c8de5e87e19&pid=1-s2.0-S0095895685710544-main.pdf

On the algebraic connectivity of token graphs of a
cycle∗

M. A. Reyes1, C. Dalfó1, M. A. Fiol2, and A. Messegué1

1 Dept. de Matemàtica, Universitat de Lleida, Lleida/Igualada, Catalonia
{monicaandrea,cristina.dalfo,visitant.arnau.messegue@udl.cat}

2 Dept. de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona,
Catalonia
miguel.angel.fiol@upc.edu

Abstract
We study the algebraic connectivity (the smallest non-zero eigenvalue of the Laplacian matrix and
also known as Fiedler eigenvalue) of token graphs. The k-token graph Fk(G) of a graph G is the
graph whose vertices are the k-subsets of vertices from G, two of which are adjacent if and only if
their symmetric difference is a pair of adjacent vertices in G. Recently, it was conjectured that the
algebraic connectivity of Fk(G) equals the algebraic connectivity of G. In this paper, we prove the
conjecture for the cycle graphs Cn for all n when k = 2.

1 Introduction

In computer networks, and particularly in digital communications, we often have a graph
designed in such a way that pieces of information, or tokens, can be moved from one vertex
to another. A large class of such graphs is the token graphs. Given a graph G, the k-token
graph Fk(G) of G is the graph whose vertices are the k-subsets of vertices of G, two of which
are adjacent if and only if their symmetric difference is a pair of adjacent vertices in G.
Vertices of Fk(G) correspond to the configurations of k indistinguishable tokens placed at
distinct vertices of G, where two configurations are adjacent (as vertices of Fk(G)) if and
only if one configuration can be reached from the other by moving in G one token along an
edge from its current position to an unoccupied vertex.

The algebraic connectivity can be used to find the size of the separator of a graph,
giving partitioning techniques. These techniques are useful in many scientific numerical
algorithms. Besides, the Embedding Lemma by Spielman and Teng [6] has been applied
to relate drawings of graphs with the algebraic connectivity. For more information, see
Fabila-Monroy, Hidalgo-Toscano, Huemer, Lara, and Mitsche [4].

Many properties of token graphs, such as its diameter, chromatic number, and Hamiltonian
paths have recently been studied by Fabila-Monroy, Flores-Peñaloza, Huemer, Hurtado,
Urrutia, and Wood [5]. We focus on the study of the algebraic connectivity of the token graph
Fk(G), denoted by α(Fk(G)). Recently, it was conjectured by Dalfó, Duque, Fabila-Monroy,
Fiol, Huemer, Trujillo-Negrete, and Zaragoza Martínez [2] that the algebraic connectivity of
G and Fk(G) are equal, that is, α(G) = α(Fk(G)). This conjecture has already been proven
when G is a complete graph, a complete bipartite graph or a tree, among other special cases
in [2] and [3]. We present results on this conjecture when G is the cyclic graph Cn on n

∗ This research has been supported by AGAUR from the Catalan Government under project 2021SGR00434
and MICINN from the Spanish Government under project PID2020-115442RB-I00.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

19:2 A Contribution to EuroCG 2023

vertices. In particular, for the case k = 2, we give an efficient algorithm to compute the
whole spectrum of F2(Cn) (and, in particular, its algebraic connectivity).

1.1 Some notation
We use the following notation throughout the paper: L = L(G) is the Laplacian matrix of
the graph G, π = V1 ∪ V2 ∪ · · · ∪ Vr a (regular or not) partition of the vertex set, G/π is the
quotient graph over π, A(G/π) and L(G/π) the adjacency and Laplacian matrices of G/π,
respectively.

The transpose of a matrix M is denoted by M⊤, the identity matrix by I and the all-1
vector (1, . . . , 1)⊤ by 1.

The Laplacian matrix L(G) of a graph G on n vertices is positive semidefinite, with
eigenvalues (0 =)λ1 ≤ λ2 ≤ · · · ≤ λn. Given some integers n and k (with k ∈ [n]), we define
the (n; k)-binomial matrix B. This is a

(
n
k

)
× n matrix whose rows are the characteristic

vectors of the k-subsets of [n] in a given order. Thus, if the i-th k-subset is A, then

(B)ij =
{

1 if j ∈ A,

0 otherwise.

A partition π = (V1, . . . , Vr) of V is called regular (or equitable) whenever, for any
i, j = 1, . . . , r, the intersection numbers bij(u) = |N(u) ∩ Vj |, where u ∈ Vi, do not depend
on the vertex u but only on the subsets (usually called classes or cells) Vi and Vj and N(u)
denote the set of vertices adjacent to u. In this case, such numbers are simply written as bij ,
and the r × r matrix QL = L(G/π) with entries

(QL)ij =





−bij if i ̸= j,
r∑

h=1
bih − bii if i = j,

is referred to as the quotient Laplacian matrix of G with respect to π.

2 The spectrum of F2(Cn)

In this section, we give some results about the eigenvalues of F2(Cn).

▶ Theorem 2.1.(i) If n = 2ν is even, then the 2-token graph F2(Cn) has the eigenvalues

λr = 8 sin2
(

rπ

n − 1

)
, r = 0, 1, . . . , ν − 1, (1)

with λ0 = 0, and λν−1 = 8 sin2
(

n−2
n−1

π
2

)
is the spectral radius of F2(Cn).

(ii) If n = 2ν + 1 is odd, then the 2-token F2(Cn) has the eigenvalues

λr = 8 cos2
(

rπ

n − 1

)
, r = 1, 2, . . . , ν, (2)

with λν = 0, and λ1 = 8 cos2
(

π
n−1

)
is a lower bound for the spectral radius (the maximum

eigenvalue of its Laplacian matrix) of F2(Cn).

Proof. Let us see that F2 = F2(Cn) has a regular ‘path-shaped’ partition π with r = ⌊n/2⌋
classes V1, V2, . . . , Vr, where Vi consists of the vertices {u, v} such that dist(u, v) = i in Cn.

M. A. Reyes, C. Dalfó, M. A. Fiol, A. Messegué 19:3

u1

(a)

-1 +1

u2

-1 +1

u3

-1 +1

u4 ±4

(b)

38
27

16

05

84 73

62

51

40

20

28

17

06

85

74
63

52

41

30

76

65

54

43

32

2110

18

07

86

75 64

53

42

31

08

87

2

(c)

2

2

2

2

2

2

9

9

9

9

1

2

3

4

Figure 1 (a) The 2-token graph F2(C9) of the cycle graph C9. The thick edges correspond to
each of the copies of the base graph or the quotient graph. (b) Its base graph with voltages on Z9.
(c) The quotient graph of its path-shaped regular partition. In boldface, there is the numbering of
the vertex classes. In class c ∈ {1, 2, 3, 4}, there are the vertices ij that satisfy i − j = c (mod 9).

Each vertex {u, v} in V1 is adjacent to 2 vertices {u + 1, v} and {u, v + 1} in V2 (all
arithmetic is modulo n).
Each vertex {u, v} in Vi, for i = 2, . . . , r − 1, is adjacent to 2 vertices {u − 1, v} and
{u, v − 1} in Vi−1, and 2 vertices {u + 1, v} and {u, v + 1} in Vi+1.
Every vertex {u, v} in Vr is adjacent to 4 vertices {u ± 1, v} and {u, v ± 1}. If n is even
all these vertices are in Vr−1. If n is odd, two of them are in Vr−1 and the other two in
Vr.

Then, (1) and (2) correspond to the eigenvalues of the matrix QL for the even and odd
cases of n, respectively (Yueh [7, Section 3]). Moreover, in the case of even n, the maximum
eigenvalue in (1) is obtained when r = ν −1. Then, λν−1 is the spectral radius of F2(Cn). ◀

Next, we show that, depending on the parity of n, much more can be stated about the
spectrum of Fk(Cn).

2.1 The case of odd n

We now study the case of odd n. We follow the notation of [1].
Let G be a group. An (ordinary) voltage assignment on the (di)graph (that is, graph o

digraph) G = (V, E) is a mapping β : E → G with the property that β(a−) = (β(a+))−1 for
every arc a ∈ E. Thus, a voltage assigns an element g ∈ G to each arc of the (di)graph, so
that a pair of mutually reverse arcs a+ and a−, forming an undirected edge, receive mutually
inverse elements g and g−1. The (di)graph G and the voltage assignment β determine a new
(di)graph Gβ , called the lift of G, which is defined as follows. The vertex and arc sets of the
lift are simply the Cartesian products V β = V × G and Eβ = E × G, respectively. Moreover,
for every arc a ∈ E from a vertex u to a vertex v for u, v ∈ V (possibly, u = v) in G, and for
every element g ∈ G, there is an arc (a, g) ∈ Eβ from the vertex (u, g) ∈ V β to the vertex
(v, gβ(a)) ∈ V β . For more details, see again [1].

EuroCG’23

19:4 A Contribution to EuroCG 2023

▶ Theorem 2.2 ([1]). The 2-token graph F2(Cn) of the cycle with an odd number n = 2ν + 1
of vertices is the lift Gβ(P +

ν) of the base graph the path P +
ν with vertex set {u1, u2, . . . , uν}

and a loop at uν , and voltages on the group Zn as follows:

β(uiui+1) = −1 for i = 1, . . . , ν − 1,

β(ui+1ui) = +1 for i = 1, . . . , ν − 1,

β(uνuν) = ±ν.

For example, in the case of n = 9, the 2-token graph F2(C9) and its base graph are shown
in Figure 1. Then, the whole spectrum of F2(Cn) can be obtained from its Laplacian base
ν × ν matrix B(z) (see again [1]), with z = eir 2π

n , or its similar tridiagonal matrix B∗(r),
for r = 0, 1, . . . , n − 1.

B(z) =




2 −1 − z−1 0 0 . . . 0
−1 − z 4 −1 − z−1 0 . . . 0

0 −1 − z 4 −1 − z−1 . . . 0

0 0 −1 − z
. 0

...
...

. 4 −1 − z−1

0 0 . . . 0 −1 − z 4 − zν − z−ν




∼=

B∗(r) =




2 2 cos(rπ
n

) 0 0 . . . 0
2 cos(rπ

n
) 4 2 cos(rπ

n
) 0 . . . 0

0 2 cos(rπ
n

) 4 2 cos(rπ
n

)
. . . 0

0 0 2 cos(rπ
n

)
. 0

...
...

. 4 2 cos(rπ
n

)
0 0 . . . 0 2 cos(rπ

n
) 4 + 4(−1)r+1 cos(rπ

n
)




.

(3)

▶ Theorem 2.3. Every eigenvalue λ of F2(Cn) ∼= Gβ(P +
ν), with n = 2ν + 1, has an eigenvector

y ∈ R(n
2) with components

y(i,j) = fi−jζj = fhζj j = 0, . . . , n − 1, h = 1, . . . , ν, (4)

where ζ is an n-th root of unity, and f = (f1, . . . , fν) is a λ-eigenvector of the matrix B(ζ).

2.2 The case of even n and odd n/2
In the case of n ≡ 2 (mod 4) (so that n/2 is odd), the 2-token F2(Cn) can also be seen as a lifted
graph, as shown in the following result. See an example of this kind of token graph in Figure 2.

Given an integer r, let us consider the path graph G = P4r+1 with vertices

u−2r, u−2r+1, . . . , u−1, u0, u1, . . . , u2r−1, u2r,

(with its corresponding edges) and additional arcs

a+
i = u−iui−1, a−

i = ui−1u−i, for i = 0, 1 . . . , 2r,

b+
i = uiu−i+1, b−

i = u−i+1ui, for i = 0, 1, . . . , 2r.

Let β be the voltage assignment on G in the cyclic group Z2r+1 given by

β(a+
i) = β(b+

i) = +r,

β(a−
i) = β(b−

i) = −r.
(5)

Figure 2(b) shows the base graph G for r = 2. Now, we have the following result.

M. A. Reyes, C. Dalfó, M. A. Fiol, A. Messegué 19:5

+
b

+
a

+
b

+
a

u1

(a)

u2

u3

u4

(b)

12

13 23

24

34

35

45

46

56
57

67

68
78

79

89

0201

19

09

08

29

03

14

25

36
37

47

58

69

07

18

4859

06

17

28 49

04

15

26
16

3805

27

39

u0

u-1

u-2

u-3

u-4 +
a

+
b

+
a

+
b

2

(c)

2

2

2

2

10

10

10

10

5

2

2

4

1

2

3

4

5

copy 0

copy 3
copy 1

copy 4

copy 2

copy 0
copy 3

copy 1

copy 4

copy 2

Figure 2 (a) The token graph F2(C10) of the cycle graph C10, with the different copies of the
U-shaped regular partition, here drawn as paths. (b) Its base digraph with voltages in Z10, which
gives rise to the U-shaped regular partition. The thick edges represent the path P9, obtained with
this partition. (c) The quotient graph of the path-shaped regular partition. In boldface, there is the
numbering of the vertex classes.

▶ Lemma 2.4. Given G = P4r+1 with the voltage assignment (5) on Z2r+1, the 2-token graph of the
cycle Cn with n = 4r + 2 is the lift graph Gβ. That is,

F2(C4r+2) ∼= Gβ .

Proof. The vertex set V (Gβ) of the lift Gβ has elements labeled with the pairs (ui, g) for i =
−2r, . . . , 2r and g ∈ Z2r+1. Thus |V (Gβ)| = (4r + 1)(2r + 1) =

(4r+2
2

)
, which corresponds to the

number of vertices of F2(C4r+2). Indeed, such vertices correspond to 2-subsets {i, j} of the set
{1, 2, . . . , 4r + 2}. Thus, we have to show a 1-to-1 mapping between V (Gβ) and V (F2(C4r+2)) that
must be consequent with the adjacencies of both graphs. Let us take an example. The vertex
(u−2r+1, 1) ≡ {2, 4} (written as 24 in Figure 2) of Gβ is adjacent to:

The vertices (u−2r, 1) and (u−2r+2, 1) of the same ‘copy’.

The vertex (u2r−2, r + 1) by the arc a+
2r−1 with voltage +r.

The vertex (u2r, r + 2) by the arc b−
2r with voltage −r.

Then, we find the following equivalences:
(u−2r, 1) ≡ {2, 3} and (u−2r+2, 1) ≡ {2, 5},

(u2r−2, r + 1) ≡ {1, 4} and (u2r, r + 2) ≡ {3, 4},
which correspond to the vertices adjacent to {2, 4} in F2(C4r+2).

◀

As a consequence, for each z = ωℓ, where ω = ei 2π
2r+1 , with ℓ = 0, 1, . . . , 2r, an irreducible

representation of the Laplacian base matrix of Gβ ∼= F2(C2r+2) is the matrix B(z) as shown next.
Note that matrix B(z) is tridiagonal with respect to the main and the secondary diagonals.

EuroCG’23

19:6 A Contribution to EuroCG 2023

1
1

12 23

13

28
38 14

24

34

25

48

27

18

17 35
26

37

15
16 36

78

68
58 47

45

46

5667

57

12 34 56 78 23 45 67 18

13 17
35 57

24 28
6846

14 27

36
58 25 47

16
38

15 37 26 48

2

(c)

2

2

2

2

4

8

8

8

4

1

1

1

1

4

4

4

1 1

11

2 2

22

1 1

1

4
1 1

4

4

4

1

(d)(b)(a)

1

2

3

4

1

2

3

4

5

6

7

Figure 3 (a) The 2-token graph F2(C8) of the cycle graph on 8 vertices. (b) Another view of
F2(C8). (c) The quotient graph from the path-shaped regular partition. (d) The quotient graph of
the U-shaped regular partition obtained from (b). In boldface, there is the numbering of the vertex
classes.

B(z) =




2 −1 0 · · · 0 0 0 0 0 · · · 0 −zr 0
−1 4 −1 · · · 0 0 0 0 0 · · · −zr 0 −z−r

0 −1 4 · · · 0 0 0 0 0 · · · 0 −z−r 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
...

0 0 0 · · · 4 −1 0 −zr 0 · · · 0 0 0
0 0 0 · · · −1 4 −1 − zr 0 −z−r · · · 0 0 0
0 0 0 · · · 0 −1 − z−r 4 −1 − z−r 0 · · · 0 0 0
0 0 0 · · · −z−r 0 −1 − zr 4 −1 · · · 0 0 0
0 0 0 · · · 0 −zr 0 −1 4 · · · 0 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
...

0 −z−r 0 · · · 0 0 0 0 0 · · · 4 −1 0
−z−r 0 −zr · · · 0 0 0 0 0 · · · −1 4 −1

0 −zr 0 · · · 0 0 0 0 0 · · · 0 −1 2




.

2.3 The case of even n and n/2
When we consider the case of cycles Cn with n and n/2 even, it is not very useful to represent
F2(Cn) as a lift graph to compute the whole spectrum. The reason is that, the base graph would
have too many vertices with respect to the original graph. Alternatively, besides the spectrum of
Cn, we can easily find another part of the spectrum by means of regular partitions. As an example,
the 2-token graph of C8 is shown in Figure 3(a) and (b), together with its regular partitions (c) (the
path Pn/2) and (d) (the U-shaped graph). Compare such partitions with those in Figure 2(b) and
(c). We use the new method of over-lifts to solve the case with even n.

2.4 The method of over-lifts
In this subsection, we use a new method called over-lifts, which allows us to unify the cases of cycles
with even n and compute the whole spectrum of F2(Cn). This is accomplished by means of a new
polynomial matrix B(z) that does not correspond to the base graph of a lift. By its characteristics,
we say that B(z) is associated with an over-lift. The basic difference is that such a matrix has
dimension ν × ν (recall that n = 2ν), and there are n possible values for z (n-th roots of unity).
Thus, the total number of eigenvalues obtained is νn. However, F2(Cn) has

(
n
2

)
= ν(n − 1) vertices,

which is the number of eigenvalues of Ł. We will see that, in fact, the ν ‘extra’ eigenvalues provided
by B(z) are all equal to 4.

M. A. Reyes, C. Dalfó, M. A. Fiol, A. Messegué 19:7

▶ Theorem 2.5. Let L be the Laplacian matrix of F2(Cn), with n = 2ν. Let Λ be the multiset with
elements 4, 4, (ν). . ., 4. Then, the spectrum of L can be obtained from the spectrum of the ν × ν matrix
B(z) or, equivalently, from the spectrum of its similar matrix B∗(r):

B(z) =




2 −1 − z−1 0 0 . . . 0
−1 − z 4 −1 − z−1 0 . . . 0

0 −1 − z 4 −1 − z−1 . . . 0

0 0 −1 − z
. 0

...
...

. 4 −1 − z−1

0 0 . . . 0 −1 − z − zν − zν+1 4




for z = ζr = eir 2π
n , r = 0, 1, . . . , n − 1, and

B∗(r) =




2 2 cos(rπ
n

) 0 0 . . . 0
2 cos(rπ

n
) 4 2 cos(rπ

n
) 0 . . . 0

0 2 cos(rπ
n

) 4 2 cos(rπ
n

)
. . . 0

0 0 2 cos(rπ
n

)
. 0

...
...

. 4 2 cos(rπ
n

)
0 0 . . . 0 2 cos(rπ

n
) + 2 cos(r(n−1)π

n
) 4




(6)

for r = 0, 1, . . . , n − 1. Formally,

⋃

z∈R(n)

sp B(z) =
n−1⋃

r=0

sp B∗(r) = Λ ∪ sp L, (7)

where R(n) denotes the set of the n-th roots of unity,

3 The algebraic connectivity of F2(Cn)
In this last section, we show that the conjecture posed in Dalfó, Duque, Fabila-Monroy, Fiol, Huemer,
Trujillo-Negrete, and Zaragoza Martínez [2] holds for the 2-token graphs of a cycle. Of all the cases
in which this conjecture is known to hold, this case turned out to be the most involved.

▶ Theorem 3.1. The algebraic connectivity of the 2-token graph F2(Cn) equals the algebraic connec-
tivity of the cycle Cn.

▶ Corollary 3.2. The algebraic connectivity of the 2-token graph F2(G) of a unicyclic graph G equals
the algebraic connectivity of G.

References
1 C. Dalfó, M. A. Fiol, S. Pavlíková, and J. Širán. A note on the spectra and eigenspaces of

the universal adjacency matrices of arbitrary lifts of graphs. Linear Multilinear Algebra,
2022, DOI: 10.1080/03081087.2022.2042174.

2 C. Dalfó, F. Duque, R. Fabila-Monroy, M. A. Fiol, C. Huemer, A. L. Trujillo-Negrete, and
F. J. Zaragoza Martínez. On the laplacian spectra of token graphs. Linear Algebra Appl.,
625 (322-348), 2021.

3 C. Dalfó and M. A. Fiol. On the algebraic connectivity of token graphs. 2022,
arXiv:2209.01030v1.

EuroCG’23

19:8 A Contribution to EuroCG 2023

4 R. Fabila-Monroy, C. Hidalgo-Toscano Carlos, C. Huemer, D. Lara, and D. Mitsche. Optimal
grid drawings of complete multipartite graphs and an integer variant of the algebraic
connectivity. Graph Drawing and Network Visualization. Lecture Notes in Computer
Science, 11282 (593-605), 2018.

5 R. Fabila-Monroy, D. Flores-Peñaloza, C. Huemer, F. Hurtado, J. Urrutia, and D. R. Wood.
Token graphs. Graphs Combin., 28 (no. 3, 365-380), 2012.

6 D. A. Spielman and S.-H. Teng. Spectral partitioning works: Planar graphs and
finite element meshes. Linear Algebra and its Applications, 421 (284-305), 2007,
https://doi.org10.1016/j.laa.2006.07.020.

7 W. C. Yueh. Eigenvalues of several tridiagonal matrices. Appl. Math. E-Notes, 5 (66-74),
2005.

Euclidean One-of-a-Set TSP
Henk Alkema1 and Mark de Berg2

1 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
h.y.alkema@tue.nl

2 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
m.t.d.berg@tue.nl

Abstract
In One-of-a-Set tsp, also known as Generalised Traveling Salesman Problem, the input is
a collection P := {P1, ..., Pr} of sets in a metric space and the goal is to compute a minimum-length
tour that visits one element from each set. We study the Euclidean variant of this problem where
each Pi is a set of points in Rd that is contained in a given hypercube Hi. We investigate how the
complexity of Euclidean One-of-a-Set tsp depends on λ, the ply of the set H := {H1, ..., Hr} of
hypercubes, and we show that the problem can be solved in 2O(λ1/d+εn1−1/d) time for any fixed ε > 0,
where n :=

∑r

i=1 |Pi| is the total number of points. Furthermore, we show that the problem cannot
be solved in 2o(n) time when λ = Θ(n), unless the Exponential Time Hypothesis (ETH) fails.

1 Introduction

In the Traveling Salesman Problem we are given an edge-weighted complete graph and
the goal is to compute a tour, i.e., a simple cycle visiting all nodes, of minimum total weight.
The Traveling Salesman Problem is among the most famous problems in computer
science and combinatorial optimization. One variation is the Euclidean Traveling
Salesman Problem. In Euclidean Traveling Salesman Problem the input is a
set P of n points in Rd, and the goal is to compute a minimum-length tour visiting each
point. This problem was proven to be np-hard in the 1970s [3, 10]. However, unlike the
general (metric) version, Euclidean Traveling Salesman Problem in the plane can be
solved in subexponential time, i.e., in time 2o(n). Both Kann [7] and Hwang et al. [5] have
given algorithms with nO(

√
n) running time. Smith and Wormald [11] gave a subexponential

algorithm that works in any (fixed) dimension d, taking nO(n1−1/d) time. Recently De Berg et
al. [2] improved this to 2O(n1−1/d), which is tight up to constant factors in the exponent,
under the Exponential-Time Hypothesis (ETH) [6].

Meanwhile, generalised versions of the Traveling Salesman Problem have also been
studied. One popular example is the One-of-a-Set tsp, also known as Generalised
Traveling Salesman Problem. Here, the n nodes of the graph are partitioned into sets
Vi and the goal is to compute a tour of minimal weight visiting at least (or exactly) one
node of every set. Many publications have been made regarding the One-of-a-Set tsp, see
for example the survey by Gutin and Punnen [4]. One simple but important result is that
One-of-a-Set tsp can be reduced to Traveling Salesman Problem for arbitrary |Vi|.

In this paper, we focus on the combination of the two versions, Euclidean One-of-a-
Set tsp. For this variation, most research has been focused on the so-called grid cluster
variant, introduced by Bhattacharya et al. [1]. In this variant, a partition is specified by the
cells of the integer 1 × 1 grid (on the Euclidean plane); from every non-empty cell, exactly
one point needs to be visited. Khachay and Neznakhina have published many papers on
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

20:2 Euclidean One-of-a-Set TSP

this topic between 2016 and 2020, showing that a PTAS exists if there are many (O(log n))
or few (n − O(log n)) non-empty cells [8], and that if the grid has fixed height or width, a
solution can be found in polynomial time [9].

Our contribution. We investigate the complexity of Euclidean One-of-a-Set tsp. Let
H be a set {H1, ..., Hr} of hypercubes in Rd. Let P be a family of sets of points P1, ..., Pr

with Pi ⊂ Hi and |Pi| ≤ k for all i. We will use P to denote ∪iPi. Let λ be the ply of the
given hypercubes, i.e., the smallest number such that every point in Rd is in at most λ of the
hypercubes. Our objective is to find a shortest tour T = (p1, ..., pn) such that for every Pi

there exists a p ∈ Pi such that p ∈ T . To do so, we will adapt the algorithm by De Berg et
al. [2]. This results in an algorithm running in 2O(λ1/d+εn1−1/d) time, for any fixed ε > 0.
Finally, we show that Euclidean One-of-a-Set tsp in R2 cannot be solved in time 2o(n)

when λ = Θ(n), unless ETH fails.

2 A subexponential algorithm for Euclidean One-of-Set TSP

Our separator theorem for Euclidean One-of-a-Set tsp is similar to the distance-based
separator introduced by De Berg et al. [2]. Before we can state our result, we need to
introduce some terminology and notation from their paper. A separator σ is defined to be
the boundary of an axis-aligned hypercube. We denote the region of all points in Rd inside
or on σ by σin, and the region of all points in Rd strictly outside σ by σout. The size of a
separator σ, denoted by size(σ), is defined to be its edge length. For a separator σ and a
scaling factor t > 0, we define tσ to be the separator obtained by scaling σ by a factor t with
respect to its center. Note that a separator σ induces a partition of the given point set P

into two subsets, namely P ∩ σin and P ∩ σout. A separator is balanced with respect to a set
Q ⊆ P if max(|Q ∩ σin|, |Q ∩ σout|) ≤ 4d

4d+1 n. If a separator is balanced with respect to P

itself, we call it a balanced separator.
The separator used by De Berg et al., which is the same separator we will use, is chosen

such that there are only few points close to it. To quantify this, let the relative distance from
a point p to σ, denoted by rdist(p, σ), be defined as follows:

rdist(p, σ) := d∞(p, σ)/size(σ),

where d∞(p, σ) denotes the shortest ℓ∞-distance between p and any point on σ. Note that if
t is the scaling factor such that p ∈ tσ, then rdist(p, σ) = |1 − t|/2. For integers i define

P (i, σ) := {p ∈ P : rdist(p, σ) ≤ 2i/n1/d}.

Note that the smaller i is, the closer to σ the points in P (i, σ) are required to be. De Berg et
al. choose σ such that the size of the sets P (i, σ) decrease rapidly as i decreases. Our slightly
generalised theorem allows for more control over the dependence of i of the sizes of these sets.

▶ Theorem 2.1. Let P be a set of n points in Rd and let Q ⊆ P . Let ζ > 0 be arbitrary but
fixed. Then there is a separator σ that is balanced with respect to Q and such that

|P (i, σ)| =
{

O((3/2)in1−1/d) for all i < 0
O((2 + ζ)in1−1/d) for all i ≥ 0

Moreover, such a separator can be found in O(nd+1) time.

H. Alkema and M. de Berg 20:3

The proof is analogous to the proof of Theorem 1 and Corollary 3 in the original paper by
De Berg et al. We will now use this distance-based separator theorem to present an efficient
algorithm for Euclidean One-of-a-Set tsp.

Let S(P) := {pq : (p, q) ∈ P × P} be the set of all line segments defined by P . We say a
point set Pi is split by a separator σ if at least one point of Pi is in σin and at least one point
of Pi is in σout. We want to find a separator that is crossed only a few times by an optimal
TSP tour. Moreover, this separator should split only few of the point sets Pi. Finally, we
want to control the number of ways in which we have to “guess” a set of crossing segments.
For this De Berg et al. uses the so-called Packing Property, which is known to hold for the set
of edges of an optimal TSP. Intuitively, it states that an optimal tour cannot contain many
long edges close together; the precise definition is not important for this paper. Note that the
packing property also holds for the edges in an optimal tour for Euclidean One-of-a-Set
tsp. Hence, we can restrict our attention to subsets of S(P) with the packing property. For
a separator σ, we are thus interested in the following collection of sets of segments crossing σ:

C(σ, P) := {S ⊆ S(P) : S has the packing property and all segments in S cross σ}.

Our main separator theorem, presented next, states that we can find a separator σ that is
balanced, splits few Pi, and is such that the sets in C(σ, P), as well as the collection C(σ, P)
itself, are small. Since the packing property is hard to test, we will not enumerate C(σ, P)
but a slightly larger collection of candidate sets, which we denote by C′(σ, P).

▶ Theorem 2.2. Let P = {P1, ..., Pr} be a family of point sets in Rd, and let H = {H1, ..., Hr}
be a set of hypercubes such that Pi ⊂ Hi. Let Q ⊆ P , where P = P1 ∪ · · · ∪ Pr. Then, for
any fixed 0 < ε < 1/d, there exists a separator σ with the following properties:
1. σ is balanced with respect to Q.
2. Each candidate set S ∈ C′(σ, P) contains O(n1−1/d) segments.
3. C(σ, P) ⊆ C′(σ, P) and |C′(σ, P)| = 2O(n1−1/d).
4. σ splits O(λ 1

d +εn1−1/d) of the sets Pi, where λ is the ply of H.
Moreover, σ and the collection C′(σ, P) can be computed in 2O(n1−1/d) time.

Proof. The separator chosen is the one found by applying Theorem 2.1 with ζ = dε. Hence,
the proof of properties 1-3 is analogous to that of the original paper by De Berg et al.

It remains to prove that σ splits O(λ 1
d +εn1−1/d) of the Pi. Assume without loss of

generality that size(σ) = 1. Let j =
⌈

log λ
d

⌉
. We can now partition the family of point sets

Pi split by σ into two categories, neither of which contains too many sets:
Pi split by σ with at least one point in P (j, σ). Since there are O((2 + ζ)jn1−1/d)
points in P (j, σ), the number of such point sets is limited to

O((2 + ζ)jn1−1/d) = O((2 + dε)
log λ

d n1−1/d) = O(λ
log(2+dε)

d n1−1/d) = O(λ1/d+εn1−1/d).

Pi split by σ with no points in P (j, σ). Such Pi contain at least one point p in
σin at least a distance 2j/n1/d ≥ (λ/n)1/d from σ. Therefore, at least ((λ/n)1/d)d−1 =
(λ/n)1−1/d of σ is ‘covered’ by Hi, i.e., the volume vol(σ ∩ Hi) is at least (λ/n)1−1/d. Note
that Hi is a d-dimensional hypercube, while σ is only the boundary of a d-dimensional
hypercube. Furthermore, note that the total (d − 1-dimensional) volume of σ is 2d. See
Figure 1 for an example. Furthermore, since H has a ply of λ, we get that

∑
i vol(σ ∩ Hi) ≤∫

σ
λdσ = 2dλ. In conclusion, there are O(2dλ/(λ/n)1−1/d) = O(λ1/dn1−1/d) point sets

Pi split by σ with no points in P (j, σ).
In total, there are therefore O(λ1/d+εn1−1/d) point sets split by σ. ◀

EuroCG’23

20:4 Euclidean One-of-a-Set TSP

x
p

σ

Figure 1 Any hypercube (in red) containing a point p in σin covers at least xd−1 of σ (in black),
where x is the distance between p and σ. In this example, the hypercubes are 2-dimensional and σ

is 1-dimensional.

σ σ

B B

Figure 2 Two different ways to pair up the boundary points B (the endpoints of the segments
crossing σ). For both options, the two resulting subproblems can be solved independently.

We are now ready to describe the algorithm itself. We will start with a brief overview of
how the original algorithm works. Then, we will explain what changes are made. Finally, we
will show that the claimed running time is indeed obtained.

The original algorithm starts by finding a suitable separator σ using its equivalent of
Theorem 2.2. Then, it “guesses” how σ is crossed, by simply iterating over all possible
candidate sets. By doing so, the problem is split into two subproblems, one containing the
points in σin, and one containing the points in σout. Note that a candidate set by itself is
not enough to create two independent subproblems; the order and direction in which the
segments crossing σ are traversed is also important. Specifically, all that matters is how the
boundary points, the endpoints of the segments crossing σ, are paired up on both sides. See
Figure 2 for an example.

Therefore, for every possible matching on the boundary points in σin, the corresponding
Euclidean Path Cover subproblem on all points in σin is created and solved recursively.
The same is done σout. After solving all versions of both subproblems, the so-called rank-
based approach is used to efficiently find the correct combination of matchings on both
sides resulting in the shortest overall tour. Finally, we note that always simply taking a
separator which is balanced with respect to the whole point set of the subproblem can result
in arbitrarily large sets of boundary points; to prevent this from impacting the running time,
as soon as the set of boundary points grows too large compared to the total number of points,
a separator balanced with respect to the set of boundary points is taken instead.

Our adapted algorithm contains three changes compared to the original. Let 0 < ε < 1/d

be arbitrary but fixed. First, we choose our separator σ using Theorem 2.2 instead of the
equivalent from the original paper. Note that this does not impact the correctness or running
time in any way. Second, candidate sets containing more than one point of any set Pi can be

H. Alkema and M. de Berg 20:5

x1 ¬x1

x2

x3

x4

¬x2

¬x3

¬x4

Figure 3 An example for the proof of Theorem 2.4. The unlabeled points all have to be visited.
In blue, a point set ensuring we visit x2 or ¬x2. In red, a point set corresponding to the clause
x1 ∨ ¬x3 ∨ ¬x4. A short tour exists if and only if we need to visit only one of each pair (xi, ¬xi).

ignored. Finally, when “guessing” the correct candidate set, for every point set Pi split by
σ, we also guess whether a point of Pi in σin or a point in σout is used. By doing so, the
subproblems generated are indeed once more independent. Note that for every boundary
point this choice (if applicable) is automatically made.

This brings us to our main theorem, whose proof can be found in the full version of the
paper.

▶ Theorem 2.3. Let ε > 0 be arbitary but fixed. Then Generalised Euclidean TSP on
point sets in d-dimensional hypercubes with ply λ can be solved in 2O(λ

1
d

+ε
n1−1/d) time.

Finally, we show that for λ = Θ(n), the problem cannot be solved in subexponential time.

▶ Theorem 2.4. Euclidean One-of-a-Set tsp in R2 cannot be solved in 2o(n) time,
unless ETH fails.

We will give a proof sketch below. For the full proof, see the full version of the paper. We
give a reduction from 3-SAT. We map all literals xi and ¬xi to points in the plane. We
make one point set for each pair of literals, ensuring that for all i, at least one of xi and ¬xi

is visited. Then, we add points such that a short tour exists if and only if at most one of
each xi and ¬xi is visited. Finally, we add the clauses of our 3-SAT problem. See Figure 3
for an example.

3 Conclusion

We proved that Euclidean One-of-a-Set tsp on point sets in d-dimensional hypercubes
with ply λ can be solved in 2O(λ1/d+εn1−1/d) time, for any fixed ε > 0. This implies that
when the hypercubes Hi are pairwise disjoint—or, more generally, when the ply of H is
considered to be a constant—then the running time is the same time as for Euclidean
Traveling Salesman Problem. Hence, in this case it is optimal, up to constants in the
term O(n1−1/d) in the exponent [2].

For further research, there are many interesting problems. First of all, we wonder whether
a 2O(λ1/dn1−1/d) algorithm can be found, that is, whether the ε can be removed from the

EuroCG’23

20:6 Euclidean One-of-a-Set TSP

exponent. Secondly, we currently measure how ‘intertwined’ the point sets are by using the
ply of hypercubes containing the point sets. As the hypercubes are not used in the algorithm
itself, other measuring methods might result in better calculated running times. Finally,
instead of using finite point sets Pi, it is interesting to consider a continuous version of the
problem, where each set Pi is a region of space (such a ball, hypercube, or polytope).

References

1 Binay Bhattacharya, Ante Ćustić, Akbar Rafiey, Arash Rafiey, and Vladyslav Sokol. Approx-
imation algorithms for generalized mst and tsp in grid clusters. In Zaixin Lu, Donghyun Kim,
Weili Wu, Wei Li, and Ding-Zhu Du, editors, Combinatorial Optimization and Applications,
pages 110–125, Cham, 2015. Springer International Publishing.

2 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, and Sudeshna Kolay. An eth-tight
exact algorithm for euclidean TSP. In 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS, pages 450–461, 2018. doi:10.1109/FOCS.2018.00050.

3 M. R. Garey, Ronald L. Graham, and David S. Johnson. Some NP-complete geometric
problems. In STOC, pages 10–22. ACM, 1976.

4 G. Gutin and A.P. Punnen. The Traveling Salesman Problem and Its Variations. Combina-
torial Optimization. Springer US, 2006. URL: https://books.google.nl/books?id=JBK_
BAAAQBAJ.

5 R. Z. Hwang, R. C. Chang, and Richard C. T. Lee. The searching over separators strategy
to solve some NP-hard problems in subexponential time. Algorithmica, 9(4):398–423, 1993.
doi:10.1007/BF01228511.

6 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

7 Viggo Kann. On the approximability of NP-complete optimization problems. PhD thesis,
Royal Institute of Technology Stockholm, 1992.

8 Michael Khachay and Katherine Neznakhina. Approximation algorithms for gen-
eralized tsp in grid clusters. volume 1623, page 39 – 48, 2016. Cited by:
0. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019587518&
partnerID=40&md5=63c5e550cfc1fb1682373e7df6cf4651.

9 Michael Khachay and Katherine Neznakhina. Complexity and approximability of the
euclidean generalized traveling salesman problem in grid clusters. Annals of Mathematics
and Artificial Intelligence, 88(1):53–69, Mar 2020. doi:10.1007/s10472-019-09626-w.

10 Christos H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete.
Theor. Comput. Sci., 4(3):237–244, 1977.

11 Warren D. Smith and Nicholas C. Wormald. Geometric separator theorems & applications.
In FOCS, pages 232–243. IEEE Computer Society, 1998. doi:10.1109/SFCS.1998.743449.

https://doi.org/10.1109/FOCS.2018.00050
https://books.google.nl/books?id=JBK_BAAAQBAJ
https://books.google.nl/books?id=JBK_BAAAQBAJ
https://doi.org/10.1007/BF01228511
https://doi.org/10.1006/jcss.2000.1727
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019587518&partnerID=40&md5=63c5e550cfc1fb1682373e7df6cf4651
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019587518&partnerID=40&md5=63c5e550cfc1fb1682373e7df6cf4651
https://doi.org/10.1007/s10472-019-09626-w
https://doi.org/10.1109/SFCS.1998.743449

Shortest coordinated motion for a pair of square
robots∗

Guillermo Esteban1,2, Dan Halperin3, Víctor Ruíz4, Vera
Sacristán4, and Rodrigo I. Silveira4

1 Departamento de Física y Matemáticas, Universidad de Alcalá
2 School of Computer Science, Carleton University
3 School of Computer Science, Tel Aviv University
4 Departament de Matemàtiques, Universitat Politècnica de Catalunya

Abstract
We study the problem of determining minimum-length coordinated motions for two axis-aligned
square robots translating in an obstacle-free plane: Given feasible start and goal configurations, find
a continuous motion for the two squares from start to goal, comprising only robot-robot collision-free
configurations, such that the total Euclidean distance traveled by the two squares is minimal among
all possible such motions. We present an adaptation of the tools developed for the case of discs by
Kirkpatrick and Liu [Characterizing minimum-length coordinated motions for two discs. Proceedings
28th CCCG, 252–259, 2016.] to the case of squares. Certain aspects of the case of squares are
more complicated, requiring additional and more involved arguments over the case of discs. Our
contribution can serve as a basic component in optimizing the coordinated motion of two squares
among obstacles, as well as for local planning in sampling-based algorithms, which are often used in
practice, in the same setting.

1 Introduction

The basic motion planning problem is, given start and goal placements for moving objects
(robots), to decide whether the objects can move from start to goal without colliding with
obstacles in the environment nor with one another, and if so, to plan such a motion. This
problem has been intensively investigated for almost five decades now; see, e.g., several books
and surveys [1, 3, 4, 7, 9, 11]. The basic problem is relatively well understood, has general
theoretical solutions as well as an arsenal of more practical approaches used by practitioners
in robotics, molecular biology, animation, computer games, and additional domains where
one needs to automatically plan or simulate feasible collision-free motions; see, e.g., [8].

1.1 Optimal motion in the absence of obstacles
Let A and B be two axis-aligned square robots in the plane. The position of robot A (resp.,
B) at a given moment is denoted by A (resp., B), and refers to the coordinates of its center.
We define the radius of a square as the length of its apothem. Let rA and rB be the radii of
robot A and robot B, respectively.

Given any point X in the plane, we denote by sq(X) the open axis-aligned square, centered
at X, with radius r = rA + rB. We say that a pair of positions (A,B) is feasible if A /∈ sq(B).

∗ Partially supported by project PID2019-104129GB-I00/MCIN/AEI/10.13039/501100011033 of the
Spanish Ministry of Science and Innovation. Work by D.H. has been supported in part by the Israel
Science Foundation (grant no. 1736/19), by NSF/US-Israel-BSF (grant no. 2019754), by the Israel
Ministry of Science and Technology (grant no. 103129), by the Blavatnik Computer Science Research
Fund, and by the Yandex Machine Learning Initiative for Machine Learning at Tel Aviv University.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

21:2 Shortest coordinated motion for a pair of square robots

Notice that this implies that B /∈ sq(A). An instance of our problem consists of a feasible
pair of initial and final positions (A0, B0) and (A1, B1), respectively. A trajectory from a
point X0 to a point X1 in the plane is any continuous rectifiable curve mX : [0, 1]→ R2 such
that mX(0) = X0 and mX(1) = X1. Given an instance of our problem, a coordinated motion
m is a pair of trajectories m = (mA,mB). Throughout this paper we refer to coordinated
motions simply as motions. A motion is feasible if for all t ∈ [0, 1] the pair of positions
m(t) = (mA(t),mB(t)) is feasible. We denote the Euclidean arc-length of a trajectory mX

by `(mX). We define the length of a motion m = (mA,mB) as `(m) = `(mA) + `(mB). We
focus in this paper on minimum-length coordinated translational motion for two squares.
Our goal is to find a description of a minimum-length feasible motion (mA,mB), for each
instance of the problem. We note that, in the figures of this paper, squares representing
robots are drawn with filled color, while squares sq(X) are depicted with a white filling.

Feasible motion for two squares translating among polygonal obstacles with n vertices
can be found in O(n2) time, if one exists [12]. For an arbitrary number of unit squares in the
same setting, the problem is known to be PSPACE-hard [13]. Other results for the geometric
shortest path problem are reviewed in [10]. Recently, Kirkpatrick and Liu [6] solved the
minimum-length coordinated motion for two discs, as we discuss next.

1.2 The Kirkpatrick-Liu analysis for two discs
Kirkpatrick and Liu [6] describe, for any pair of initial and final positions of the discs, two
motions that involve at most six (straight or circular-arc) segments. Then, either (i) a single
motion is feasible and optimal, or (ii) among the two motions, one is optimal among all
clockwise1 motions and the other is optimal among all counterclockwise motions. The proof
of the optimality of the motions involves an extensive case analysis that depends on the
relative initial and final positions of the discs. However, all motions have a simple structure:

1. Move robot A from its initial position to an intermediate position Aint.
2. Move robot B from its initial position to its final position.
3. Move robot A from the intermediate position Aint to its final position.

The main mathematical tool employed in [6] is Cauchy’s surface area formula. Its use in
the context of optimal motion planning was introduced by Icking et al. [5] for a line segment
translating and rotating in the plane. The study of the full rigid motion of a segment involves
rotation, which raises the question how to measure the distance between two configurations
of the moving object. Icking et al. [5] focus on what they call the d2-distance, which measures
the length of the motion of a segment pq by averaging the distance travelled by its two
endpoints p and q. We remark that the case of a segment has attracted much attention—the
interesting history of the problem, as well as other distance measures, are reviewed in [5].

There is a close relation between minimizing the d2-distance traveled by a segment and
the minimum-length coordinated motion of two discs. Assume the sum of the radii of the two
discs equals the length |pq| of the segment. Then, if the two discs are osculating throughout
the whole motion, the two problems are equivalent.

In this paper, we adapt the techniques from [6] to square robots. Our problem involves
several differences because certain results are not applicable to discs, or because some cases

1 Formally defined in Section 2; roughly, clockwise here refers to the direction of rotation of a vector from
the center of one robot to the center of the other robot throughout the motion, from start to goal.

G. Esteban et al. 21:3

θ

x

C

hC(θ)

Figure 1 The support function hC(θ) of a closed curve C.

and other details were omitted in [6]. First, for squares, the shape and relative position
matters. The square corners create discontinuities in tangency points, which impacts the
definition of the cases that need to be analyzed. The relative position of the two squares
(more precisely, the slope of the line passing through the centers of the two squares) also
has to be taken into account. For example, the possible shapes of optimal motions can vary
considerably between horizontally-aligned and non-horizontally-aligned squares, giving rise
to situations that do not exist for disc robots. Second, when a disc slides along the boundary
of another disc, the distance between their centers remains constant, as opposed to the case
for squares, where the distance varies with the angle of contact. This forces us to derive new
conditions that guarantee the optimality of motions

2 The general approach

In this section we present the general framework used by Kirkpatrick and Liu [6] to prove
that a motion is optimal. The trace of a trajectory mX is defined as the image of mX in the
plane. For the remaining of this paper, we will use the notation mX to refer to a trajectory
mX and its trace. Let m̂X be the boundary of the convex hull of mX . The trajectory mX is
said to be convex if m̂X = mX ∪X0X1, where X0X1 is the segment whose endpoints are
mX(0) = X0 and mX(1) = X1.

Let m = (mA,mB) be a motion from (A0, B0) to (A1, B1). If both mA and mB are
convex, and `(m̂A) + `(m̂B) is minimized over all motions from (A0, B0) to (A1, B1), then m
is optimal among all motions from (A0, B0) to (A1, B1). The convexity of mA and mB is
easy to verify, but the minimality of `(m̂A) + `(m̂B) is not. In order to facilitate proving
optimality, the problem of measuring `(m̂A) + `(m̂B) can be translated into the problem of
computing the width of a strip defined by a pair of supporting lines, one for m̂A and one for
m̂B [5]. Given a closed curve C, its support function hC(θ) can be seen as the distance from
the origin to the extremal supporting line of C in the direction θ + π/2. See Figure 1 for
an illustration. Cauchy’s surface area formula [2] implies that if C1 and C2 are two closed
convex curves, then `(C1) + `(C2) =

∫ 2π
0 (hC1(θ) + hC2(θ + π))dθ.

We define hmA
(θ) (resp., hmB

(θ)) to be the support function of m̂A (resp., m̂B). Then
hm(θ) = hmA

(θ) + hmB
(θ + π) can be interpreted as follows. For each θ ∈ S1, let cmA

(θ)
be the supporting line for m̂A in direction θ + π/2 and cmB

(θ) the supporting line for m̂B

in direction θ + π + π/2. Then hm(θ) is the distance between the two supporting lines, as
illustrated in Figure 2.

Given two points X,Y , we define ∠(X,Y) as the angle that vector −−→Y X forms with
the positive x-axis. Let θ0 = ∠(A0, B0) and θ1 = ∠(A1, B1). If I is the range of angles
∠(mA(t),mB(t)) for all t ∈ [0, 1], then either [θ0, θ1] ⊆ I or S1 \ [θ0, θ1] ⊆ I (or both), due

EuroCG’23

21:4 Shortest coordinated motion for a pair of square robots

x
θ

hm(θ)mA

mB

cmA
(θ)

cmB
(θ)

Figure 2 The support function hm(θ) of a motion m = (mA,mB).

θ

x

Y
dr(θ, θ

′)

X

θ′

r

θ

x

Y dr(θ, θ
′)

θ′

X r

Figure 3 Illustration of dr(θ, θ′) for the same value of θ and two different values of θ′.

to the continuity of the trajectories. In the first case, we call m a counterclockwise motion.
In the second case, we call it clockwise. All motions fall in at least one of the two categories,
counterclockwise or clockwise. Moreover, a motion can be clockwise and counter-clockwise at
the same time. Therefore, our strategy consists in finding a feasible minimum-length motion
in each of the two categories, and taking the best of both.

Given r = rA+rB and two angles θ and θ′, we define dr(θ, θ′) as the width of the minimum
strip containing any pair of points X and Y such that i) the bounding lines of the strip have
slope θ + π/2, ii) ∠(X,Y) = θ′ and iii) Y lies on the boundary of sq(X). Refer to Figure 3.

Let 1[θ0,θ1] be the indicator function of the interval [θ0, θ1], and let hm(θ) = hmA
(θ) +

hmB
(θ), θ ∈ S1, where hmA

(θ) is the support function of the segment A0A1, and hmB
(θ) is

that of B0B1. Let LB(θ) = max{hm(θ), s(θ) · 1[θ0,θ1]}, where s(θ) = maxθ′∈[θ0,θ1] dr(θ, θ′) is
defined as the distance between the centers of the robots. We can then observe the following.

I Observation 2.1. If m = (mA,mB) is a feasible counterclockwise motion from (A0, B0)
to (A1, B1), then hm(θ) ≥ LB(θ) for all θ ∈ S1.

An analogous result holds for clockwise motions by replacing 1[θ0,θ1] by 1S1\[θ0,θ1] in
the definition of function LB(θ). Finally, we present two conditions guaranteeing that the
support function hm(θ) coincides with LB(θ), hence implying that m has minimum length.

I Lemma 2.2. Let m = (mA,mB) be a motion from (A0, B0) to (A1, B1). For any angle
θ ∈ S1, if the support points for hm(θ) are Ai and Bj , for i, j ∈ {0, 1}, then hm(θ) = LB(θ).

I Lemma 2.3. Let m = (mA,mB) be a motion from (A0, B0) to (A1, B1). For any angle
θ ∈ [θ0, θ1], if the support points for hm(θ) are one point X of mA or mB and a boundary
point of its square sq(X), then hm(θ) = LB(θ).

G. Esteban et al. 21:5

Recall that by Cauchy’s surface area formula, the length of a (convex) motion equals the
integral of hm(θ) over all angles θ. Lemma 2.2 says that for a particular θ, no motion can
have smaller hm(θ) than the motion consisting of the two line segments A0A1 and B0B1.
Lemma 2.3 applies to the angles where the supporting lines are at a point X for one robot
and at the boundary of sq(X) for the other robot. In this case, the distance between the
supporting lines has to be at least s(θ), achieved when one robot is sliding around the other
one. Any smaller distance at that angle would imply a collision.

3 The minimum-length motion

In this section we present optimal motions for any initial and final configurations of two
square robots, which will be different depending on the relative positions of A0, A1, B0, B1.

I Theorem 3.1. Let A and B be two axis-aligned square robots. Let their initial positions be
A0 and B0, and their final positions be A1 and B1, respectively. Up to exchanging the roles
of A and B, there exists a position Aint such that the following is a minimum-length feasible
motion:

1. Move robot A along the shortest path from A0 to Aint avoiding robot B.
2. Move robot B along the shortest path from B0 to B1 avoiding robot A.
3. Move robot A along the shortest path from Aint to A1 avoiding robot B.

The corridor corrA is the Minkowski sum of the closed line-segment A0A1 and a square
sq(X), where X is the origin. The definition of corrB is analogous. See Figure 4, where corrA
is depicted in red and corrB in blue. The relative position of A0, A1, B0, B1 with respect to
corrA and corrB completely determines the shape of an optimal motion. Up to symmetry,
exchanging the roles of A and B, or exchanging the roles of A0 by A1 and B0 by B1, we can
classify these relative positions in three types:

Easy: A0 /∈ corrB and B1 /∈ corrA. See Figure 4(a).
Nested: A0 ∈ corrB, A1 ∈ corrB, B0 /∈ corrA and B1 /∈ corrA. See Figure 4(b).
Multi-obstruction: A0 ∈ corrB, B0 ∈ corrA. See Figure 4(c).

Due to space limitations, we only present a high-level description of the cases to convey
the general nature of our constructions, and defer most of the details to the full version.

For each case, the main challenges are i) defining an intermediate position Aint and ii)
proving that the motion defined in Section 1.2 is feasible and optimal. In the following, it will
be more convenient to assume, without loss of generality, that B0 and B1 are horizontally
aligned; this can be achieved with a suitable rotation (note that in the figures that follow,
squares have been rotated accordingly).

We start by noting that in the easy case, an optimal motion consists of translating each
of the robots directly from its initial to its final position along a straight-line segment, but
the order might be relevant. In the remaining cases, a straight-line motion is not possible,
see, for instance, Figure 5, so we need a finer analysis.

Let vis(A0) be the region of corrB\(sq(B0)∪sq(B1)) that is visible from A0. Let cone(A0)
be the set of all points x such that the segment A0x intersects sq(B0), but not sq(B1). Let
tij denote the upper tangent line from Ai to sq(Bj), for i, j = 0, 1. In the nested case
(resp., multi-obstruction) vis(A0) (resp., cone(A0)) is decomposed into four zones, defined
by the tangents tij , see Figures 6 and 7. For each zone we specify a different location for the
intermediate point Aint. Let pij be the support point of line tij in sq(Bj). We say that two
tangents ti0 and ti1 are twisted if pi1 is to the left of ti0, for i ∈ {0, 1}, see Figure 6.

EuroCG’23

21:6 Shortest coordinated motion for a pair of square robots

B0

B1A0

A1

A0 A1B0
B1

A1

A0
B0

B1

(a) Easy case.

(b) Nested case. (c) Multi-obstruction case.

sq(A0)

sq(A0)

sq(A0)

sq(A1)

sq(A1)

sq(A1)

sq(B1)

sq(B1) sq(B1)

sq(B0)

sq(B1)

sq(B1)

Figure 4 Examples of corridors corrA (red) and corrB (blue).

B1B0

A0

Aint = A1

t01t00

B1B0

A0

A1

t10

Aint

t01t00

Figure 5 Some optimal motions in the nested case. Left: A1 ∈ Zone I. Right: A1 ∈ Zone III.

To prove optimality we only examine motions that are counterclockwise; clockwise optimal
motions can be obtained by reflecting the initial and final placements across the x-axis,
and then examining counterclockwise motions. In the nested case, we differentiate three
cases. If the motion is fully counterclockwise (i.e., it does not contain clockwise (sub)motion
parts), and none of the tangents are twisted, we can verify that the sufficient conditions
from Lemmas 2.2 and 2.3 are fulfilled for any relative position of A0, A1, B0, B1. To that
end, we argue that for any angle θ ∈ [θ0, θ1], either both supporting lines are touching Ai
and Bj , for i, j ∈ {0, 1}, or one is touching a point X of one of the motions, and the other a
boundary point of its square sq(X). If the motion is fully counterclockwise, but at least one
pair of tangents ti0, ti1 is twisted, it might happen that the motion described above is not
feasible. Hence, we prove that there exists a clockwise optimal motion that is feasible and
globally optimal. Finally, if the motion contains clockwise (sub)motion parts, for some angles,
the motion might not satisfy any of the two sufficient conditions from Lemmas 2.2 and 2.3.
Therefore, we present an alternative motion m′, which is different in the coordination scheme
from m, but that is counterclockwise all the time and has exactly the same trace for A and
B (thus also the same length). By proving that m′ is optimal, we obtain that m is optimal
as well.

In the multi-obstruction case we show that the motion m is fully counterclockwise. Then,
by a reasoning analogous to the nested case, we prove that at least one of the sufficient

G. Esteban et al. 21:7

B0
B1

A0

t01
t00

Zone I

Zone II

Zone III

Zone IV
p00

p01

Figure 6 Zones in the nested case when t00 and t01 are twisted.

B1B0

A0

t01t00 p00

p01Zone I

Zone II

Zone IIIZone IV

Figure 7 Zones in the nested case when t00 and t01 are not twisted.

conditions from Lemmas 2.2 and 2.3 is fulfilled for each of the six cases that arise, hence
proving the optimality of the motion.

References
1 Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Ly-

dia E. Kavraki, and Sebastian Thrun. Principles of Robot Motion: Theory, Algorithms,
and Implementation. MIT Press, June 2005.

2 Harold Gordon Eggleston. Convexity, 1966.
3 Dan Halperin, Lydia Kavraki, and Kiril Solovey. Robotics. In Jacob E. Goodman, Joseph

O’Rourke, and Csaba Tóth, editors, Handbook of Discrete and Computational Geometry,
chapter 51, pages 1343–1376. Chapman & Hall/CRC, 3rd edition, 2018.

4 Dan Halperin, Oren Slazman, and Micha Sharir. Algorithmic motion planning. In Jacob E.
Goodman, Joseph O’Rourke, and Csaba Tóth, editors, Handbook of Discrete and Com-
putational Geometry, chapter 50, pages 1311–1342. Chapman & Hall/CRC, 3rd edition,
2018.

5 Christian Icking, Günter Rote, Emo Welzl, and Chee Yap. Shortest paths for line segments.
Algorithmica, 10(2):182–200, 1993.

6 David G. Kirkpatrick and Paul Liu. Characterizing minimum-length coordinated motions
for two discs. In Proc. 28th CCCG, pages 252–259, 2016.

7 Jean-Claude Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.
8 Jean-Claude Latombe. Motion planning: A journey of robots, molecules, digital actors,

and other artifacts. International Journal of Robotics Research, 18(11):1119–1128, 1999.
9 Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

10 Joseph S. B. Mitchell. Shortest paths and networks. In Jacob E. Goodman, Joseph
O’Rourke, and Csaba Tóth, editors, Handbook of Discrete and Computational Geometry,
chapter 31, pages 811–848. Chapman & Hall/CRC, 3rd edition, 2018.

EuroCG’23

21:8 Shortest coordinated motion for a pair of square robots

11 Oren Salzman. Sampling-based robot motion planning. Commun. ACM, 62(10):54–63,
2019. URL: https://doi.org/10.1145/3318164, doi:10.1145/3318164.

12 Micha Sharir and Shmuel Sifrony. Coordinated motion planning for two independent
robots. Ann. Math. Artif. Intell., 3(1):107–130, 1991. URL: https://doi.org/10.1007/
BF01530889, doi:10.1007/BF01530889.

13 Kiril Solovey and Dan Halperin. On the hardness of unlabeled multi-robot motion plan-
ning. Int. J. Robotics Res., 35(14):1750–1759, 2016. URL: https://doi.org/10.1177/
0278364916672311, doi:10.1177/0278364916672311.

https://doi.org/10.1145/3318164
http://dx.doi.org/10.1145/3318164
https://doi.org/10.1007/BF01530889
https://doi.org/10.1007/BF01530889
http://dx.doi.org/10.1007/BF01530889
https://doi.org/10.1177/0278364916672311
https://doi.org/10.1177/0278364916672311
http://dx.doi.org/10.1177/0278364916672311

Maintaining Triconnected Components under Node
Expansion∗

Simon D. Fink and Ignaz Rutter

Faculty of Informatics and Mathematics, University of Passau, Germany
{finksim,rutter}@fim.uni-passau.de

Abstract
SPQR-trees model the decomposition of a biconnected graph into triconnected components. In this
paper, we study the problem of dynamically maintaining an SPQR-tree while expanding vertices
into arbitrary biconnected graphs. This allows us to efficiently merge two SPQR-trees by identifying
the edges incident to two vertices with each other.

Using efficient expansions and merges allows us to improve the runtime of the Synchronized
Planarity algorithm by Bläsius et al. [2] from O(m2) to O(m · ∆), where ∆ is the maximum
pipe degree. This also reduces the time for solving several constrained planarity problems, e.g. for
Clustered Planarity from O((n+ d)2) to O(n+ d ·∆), where d is the total number of cluster
border–edge crossings and ∆ is the maximum number of edges crossing a single cluster border.

Related Version A full version of this paper is available at arXiv:2301.03972.

1 Introduction

The SPQR-tree is a data structure that represents the decomposition of a graph at its
separation pairs, that is the pairs of vertices whose removal disconnects the graph. The
components obtained by this decomposition are called skeletons. SPQR-trees form a central
component of many graph visualization techniques and are used for, e.g., planarity testing
and variations thereof [4, 7] and for computing embeddings and layouts [6, 9]. Initially,
SPQR-trees were devised by Di Battista and Tamassia for incremental planarity testing [4].
Their use was quickly expanded to other on-line problems [3] and to the fully-dynamic setting,
that is allowing insertion and deletion of vertices and edges in O(

√
n) time [5], where n is

the number of vertices in the graph.
In this paper, we consider an incremental setting where we allow a single operation that

expands a vertex v into an arbitrary biconnected graph Gν . The approach of Eppstein et
al. [5] allows this in O((deg(v) + |Gν |) ·

√
n) time by only representing parts of triconnected

components.1 We improve this to O(deg(v) + |Gν |) using an algorithm that is much simpler
and explicitly yields full triconnected components together with an embedding of their
skeletons, which will become important for our applications later.

The main idea of our approach is that the subtree of the SPQR-tree affected by expanding
a vertex v has size linear in the degree of v, but may contain arbitrarily large skeletons. In a
“non-normalized” version of an SPQR-tree, the affected cycle (‘S’) skeletons can easily be
split to have a constant size, while we develop a custom splitting operation to limit the size
of triconnected ‘R’ skeletons. This limits the size of the affected structure to be linear in the
degree of v and allows us to perform the expansion efficiently. In Section 2 we describe the
datastructure we build upon to apply (and show the correctness of) these operations. Our

∗ Funded by DFG-grant RU-1903/3-1.
1 Unfortunately, the recent improvements by Holm and Rotenberg are not applicable here, as they

maintain triconnectivity in an only incremental setting [8], while maintaining only planarity information
in the fully-dynamic setting [7].

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://arxiv.org/abs/2301.03972

22:2 Maintaining Triconnected Components under Node Expansion

v

Gµ

(a)

Gν

(b) (c)

Figure 1 Expanding a vertex v of Gµ into a graph Gν with the mapping φ indicated by orange
vertices at the same position, resulting in the graph Gµ[v →φ Gν]. The red and orange dashed edges
are only relevant in the context of Section 3, in which the figure can also be interpreted as follows.
(a) The single allocation skeleton Gµ of u with the single allocation vertex v of u from Figure 5b.
The neighbors of v are marked in orange. (b) The inserted graph Gν with orange marked vertices.
(c) The result of applying InsertGraph(S, u,Gν , φ) followed by an application of Integrate on the
generated virtual vertices v and v′.

main algorithm is described in Section 3, while Section 4 summarizes our improvements to
the runtime of solving Synchronized- and Clustered Planarity.

Preliminaries Let G be a loop-free multi-graph with n vertices V (G) and m edges E(G).
We denote the open neighborhood of a vertex v by N(v), excluding v itself. We use A ·∪B to
denote the union of two disjoint sets A,B. A bond is a graph that consists solely of two pole
vertices connected by multiple parallel edges, a polygon is a simple cycle, while a rigid is any
simple triconnected graph. A wheel is a cycle with an additional central vertex connected to
all other vertices. Finally, let Gα, Gβ be two graphs, u ∈ V (Gα) and M ⊂ V (Gβ), and φ a
bijection between N(u) and M . The graph Gα[u→φ Gβ] where u in Gα was expanded into
Gβ is obtained from the disjoint union of Gα, Gβ by identifying each neighbor x of u with
φ(x) and removing u; see Figure 1 for an example.

2 (Extended) Skeleton Decompositions

A skeleton structure S = (G, origV, origE, twinE) that represents a graph GS = (V,E) consists
of a set G of disjoint skeleton graphs together with three surjective mappings twinE, origE,
and origV that satisfy the following conditions:

Each skeleton Gµ = (Vµ, Ereal
µ ·∪ Evirt

µ) in G is a multi-graph where each edge is either in
Ereal
µ and thus called real or in Evirt

µ and thus called virtual.
Bijection twinE : Evirt → Evirt matches all virtual edges Evirt =

⋃
µE

virt
µ such that

twinE(e) 6= e and twinE2 = id, where id is the identity function.
Surjection origV :

⋃
µ Vµ → V maps all skeleton vertices to graph vertices.

Bijection origE :
⋃
µE

real
µ → E maps all real edges to the graph edge set E.

As the mappings are surjective, V and E are exactly the images of origV and origE. For
each vertex v ∈ GS , the skeletons that contain an allocation vertex v′ with origV(v′) = v are
called the allocation skeletons of v. Furthermore, let TS be the graph where each node µ
corresponds to a skeleton Gµ of G. Two nodes of TS are adjacent if their skeletons contain a
pair of virtual edges matched with each other. Figure 2 shows an example of S, GS , and TS .

We call a skeleton structure a skeleton decomposition if it satisfies the following conditions:
1 (bicon) Each skeleton is biconnected.
2 (tree) Graph TS is simple, loop-free, connected and acyclic, i.e., a tree.
3 (orig-inj) For each skeleton Gµ, the restriction origV |Vµ

is injective.
4 (orig-real) For each real edge uv, the endpoints of origE(uv) are origV(u) and origV(v).

S. D. Fink and I. Rutter 22:3

u
(a)

(b) (c)

Figure 2 Different views on the skeleton decomposition S. (a) The graph GS with a vertex u
marked in blue. (b) The skeletons of G. Virtual edges are drawn in gray with their matching twinE
being shown in orange. (c) The tree TS . Allocation vertices and skeletons of u are marked in blue.

split(,)

join(e1, e2) e1

(a) (b)
e2

Figure 3 (a) The graph from Figure 2a with two arbitrary SplitSeparationPair operations
already applied. (b) Splitting the big skeleton from the same graph along a bipartition into green
and red bridges.

5 (orig-virt) Let uv and u′v′ be two virtual edges with uv = twinE(u′v′). For their respective
skeletons Gµ and G′

µ, it is origV(Vµ) ∩ origV(Vµ′) = origV({u, v}) = origV({u′, v′}).
6 (subgraph) The allocation skeletons of any vertex of GS form a connected subgraph of TS .

To model the decomposition into triconnected components, we define the operations
SplitSeparationPair and its converse, JoinSeparationPair. The former splits a skeleton
into two along a given bipartition of the bridges between a given separation pair, while the
latter removes a given pair of matched virtual edges by merging their skeletons. Both leave
the represented graph unaffected while splitting a node or contracting an edge in TS ; see
Figure 3 for an example and the full version for formal definitions and proofs. Similar to
Angelini et al. [1], we define the unique SPQR-tree of GS as a skeleton decomposition S = (G,
origV, origE, twinE) where any skeleton in G is either a polygon, a bond, or triconnected
(“rigid”), and two skeletons adjacent in TS are never both polygons or both bonds.

We now define a further set of operations which allow us to isolate vertices out of
arbitrary triconnected components by replacing them with a (“virtual”) placeholder vertex.
Modification of the edges incident to the placeholder is disallowed, which is why we call
them “occupied”. We keep track of these splits using an extended skeleton decomposition
S = (G, origV, origE, twinE, twinV). Skeletons now have the form Gµ = (Vµ ·∪ V virt

µ , Ereal
µ ·∪

Evirt
µ ·∪Eocc

µ), where the edges in Eocc
µ are occupied. Bijection twinV : V virt → V virt matches

virtual vertices V virt =
⋃
µ V

virt
µ , such that twinV(v) 6= v, twinV2 = id. Two virtual vertices

matched by twinV induce an edge between their skeletons in TS . Condition 2 (tree) equally
applies to these edges, which in particular ensures that there are no parallel twinE and
twinV tree edges in TS . Similarly, the connected subgraphs of condition 6 (subgraph) can
also contain tree edges induced by twinV. All other conditions remain unchanged, but we
add two further conditions to ensure that twinV is consistent:

7 (stars) For each vα, vβ with twinV(vα) = vβ , it is deg(vα) = deg(vβ). All edges incident
to vα and vβ are part of Eocc

µ (and thus occupied) and have distinct endpoints (except

EuroCG’23

22:4 Maintaining Triconnected Components under Node Expansion

v

Gµ

u

vvα

vβ

Gα

Gβ

uα uβisolate(v)

integ(vα, vβ)

(b)(a)

Figure 4 (a) A triconnected skeleton Gµ with a highlighted vertex v incident to two gray virtual
edges. The matching of virtual edges is hinted at by orange dashes lines. (b) The result of applying
IsolateVertex to isolate v out of the skeleton. The red occupied edges in the old skeleton Gα form
a star with center vα, while the red occupied edges in Gβ connect all neighbors of v to form a star
with center vβ 6= v. The centers vα and vβ are virtual and matched with each other. Neighbor u of
v was split into vertices uα and uβ .

for vα and vβ). Conversely, each occupied edge is adjacent to exactly one virtual vertex.
8 (orig-stars) Let vα and vβ again be two virtual vertices matched with each other by twinV.

For their respective skeletons Gα and Gβ (where α and β are adjacent in TS), it is
origV(Vα) ∩ origV(Vβ) = origV(N(vα)) = origV(N(vβ)).

Operations SplitSeparationPair and JoinSeparationPair can also be applied to an
extended skeleton decomposition, yielding an extended skeleton decomposition without
modifying twinV. To ensure that conditions 7 (stars) and 8 (orig-stars) remain unaffected,
SplitSeparationPair cannot be applied if a vertex of the separation pair is virtual.

Operations IsolateVertex and Integrate allow us to isolate vertices out of triconnected
components and integrate them back in without changing the represented graph; see Figure 4.
To isolate a vertex v, each neighbor u ∈ N(v) is split into two non-adjacent vertices uα
and uβ , where uβ is incident to all edges connecting u with v, while uα keeps all other edges
of u. We connect all uα to a single new virtual vertex vα using occupied edges, and all uβ to
a single new virtual vertex vβ using occupied edges. Finally, we match vα and vβ via twinV.
As Integrate is the converse of IsolateVertex and has no preconditions, any changes
made by IsolateVertex can be undone at any time to obtain a (non-extended) skeleton
decomposition, and thus possibly the SPQR-tree of the represented graph.

3 Node Expansion in Extended Skeleton Decompositions

We now introduce the dynamic operation InsertGraph(S, u,Gν , φ) that changes the repre-
sented graph by expanding a single vertex u into an arbitrary connected graph Gν . This is
done by identifying |N(u)| marked vertices in Gν with the neighbors of u via a bijection φ
and then removing u and its incident edges; see Figure 1. To ensure that connectivity is not
reduced, we require Gν to be biconnected when all marked vertices are collapsed into a single
node. InsertGraph itself requires u ∈ GS to have only a single allocation vertex v ∈ Gµ (and
thus only a single allocation skeleton Gµ). The full procedure InsertGraphSPQR(S, u,Gν , φ)
can be applied to any graph vertex u and, given an SPQR-tree S, yields the SPQR-tree of
GS [u→φ Gν]. It consists of three preparations steps, the insertion of Gν via InsertGraph,
and two further clean-up steps:
1. Apply SplitSeparationPair so that each polygon allocation skeleton of u has size ≤ 3.
2. Isolate all allocation vertices of u in rigid skeletons by applying IsolateVertex.
3. Apply JoinSeparationPair to any pair of adjacent allocation skeletons of u. Condition

6 (subgraph) ensures this yields a single component Gµ with size linear in deg(u) that is

S. D. Fink and I. Rutter 22:5

(a)

v

(b)

Figure 5 The preprocessing steps of InsertGraphSPQR being applied to the SPQR-tree of Figure 2b.
(a) The state after Step 2, after all allocation skeletons of u have been split. (b) The state after
Step 3, after all allocation skeletons of u have been merged into a single one.

the sole allocation skeleton of u with the single allocation vertex v of u; see Figure 5.

4. Apply InsertGraph to insert Gν as skeleton, followed by an application of Integrate to
the virtual vertices {v, v′} introduced by the insertion, thus integrating Gν into Gµ.

5. Apply SplitSeparationPair to all separation pairs in Gµ not containing a virtual vertex.

6. Exhaustively apply Integrate and also apply JoinSeparationPair to any two adjacent
polygons and to any two adjacent bonds to obtain the SPQR-tree of the updated graph.

The basic idea behind the correctness of this procedure (which we show in the full version)
is that splitting the newly inserted component according to its SPQR-tree in Step 5 yields
biconnected components that are each either a polygon, a bond, or “almost” triconnected.
The latter (and only those) might still contain virtual vertices and all their remaining
separation pairs, which were not split in Step 5, contain one of these virtual vertices. This,
together with the fact that there still may be pairs of adjacent skeletons where both are
polygons or both are bonds, prevents the instance from being an SPQR-tree. Both issues are
resolved in Step 6: The adjacent skeletons are obviously fixed by the JoinSeparationPair
applications. In the full version, we show that all separation pairs are removed by the
Integrate applications, making the remaining components triconnected. If the SPQR-tree
of the to-be-inserted graph is already known, we can isolate both vertices that should be
replaced, identify their neighborhoods and then only spend time linear in the degree of the
replaced vertices on clean-up operations. We call this variant MergeSPQR. Furthermore, it is
easy to maintain rotation information (i.e. a cyclic order of all incident edges) for each vertex
in a rigid, as each rigid allows exactly two planar embeddings, where one is the reverse of the
other [4]. This also allows maintaining a flag indicating whether the graph remained planar
(i.e. the rotations of integrated vertices agree with the rigid they are re-integrated to).

I Theorem 3.1. SPQR-trees support the operation InsertGraphSPQR in time O(|Gν |) and
MergeSPQR in time O(deg(u)) while marking non-planar graphs as such. Queries for one of
the two possible rotations of vertices in planar triconnected skeletons take constant time.

By using union-find to keep track of which rigid skeleton vertices belong to, we can also
efficiently check whether a pair of vertices is triconnected and provide synchronized rotation
information for all vertices in a rigid. Note that the use of union-find leads to the inverse
Ackerman function being incorporated as overhead factor to every operation.

EuroCG’23

22:6 Maintaining Triconnected Components under Node Expansion

4 Application to Synchronized Planarity

We use our datastructure to improve the runtime of the algorithm for solving Synchronized
Planarity by Bläsius et al. [2] from O(m2) to O(m ·∆), where ∆ is the maximum pipe
degree (i.e. the maximum degree of a vertex with synchronization constraints that enforce
its rotation to be the same as that of another vertex). The algorithm spends a major part
of its runtime on computing embedding trees, which describe all possible rotations of a
single vertex in a planar graph. Once the embedding trees are available, each of the at most
O(m) executed operations runs in time linear in the degree of the pipe it is applied on, that
is in O(∆) [2]. The quadratic runtime thus only stems from the linear re-computation of
embedding trees before each operation. As the SPQR-tree describes all embeddings of the
whole graph, it can be used to efficiently derive embedding trees of single vertices. The
applied operations might change the underlying graph by expanding vertices, thus one would
still need to spend linear time on re-computing SPQR-trees each iteration. Our dynamic
data structure can now be used to reduce the runtime of solving Synchronized Planarity
by once generating SPQR-trees upfront, maintaining them throughout all applied operations,
and deriving any needed embedding tree from an SPQR-tree. The full version provides more
backgrounds on the problem, the operations needed to solve it, how embedding trees can be
derived from SPQR-trees and how we modify individual operations.

I Theorem 4.1. Synchronized Planarity can be solved in time in O(m ·∆).

I Corollary 4.2. Clustered Planarity can be solved in time in O(n+ d ·∆), where d
is the total number of crossings between cluster borders and edges and ∆ is the maximum
number of edge crossings on a single cluster border.

References
1 Patrizio Angelini, Thomas Bläsius, and Ignaz Rutter. Testing mutual duality of planar

graphs. International Journal of Computational Geometry & Applications, 24(4):325–346,
2014. arXiv:1303.1640, doi:10.1142/S0218195914600103.

2 Thomas Bläsius, Simon D. Fink, and Ignaz Rutter. Synchronized planarity with applications
to constrained planarity problems. In Proceedings of the 29th Annual European Symposium
on Algorithms (ESA’21), volume 204 of LIPIcs, pages 19:1–19:14, 2021. doi:10.4230/
LIPIcs.ESA.2021.19.

3 G. Di Battista and R. Tamassia. On-line maintenance of triconnected components with
SPQR-trees. Algorithmica, 15(4):302–318, 1996. doi:10.1007/bf01961541.

4 Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM Journal on
Computing, 25(5):956–997, 1996. doi:10.1137/s0097539794280736.

5 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator
based sparsification. Journal of Computer and System Sciences, 52(1):3–27, 1996. doi:
10.1006/jcss.1996.0002.

6 Carsten Gutwenger. Application of SPQR-trees in the planarization approach for drawing
graphs. PhD thesis, 2010. URL: https://eldorado.tu-dortmund.de/bitstream/2003/
27430/1/diss_gutwenger.pdf.

7 Jacob Holm and Eva Rotenberg. Fully-dynamic planarity testing in polylogarithmic time.
In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and
Julia Chuzhoy, editors, Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing (STOC’20), volume abs/1911.03449, pages 167–180. ACM, 2020.
arXiv:1911.03449, doi:10.1145/3357713.3384249.

http://arxiv.org/abs/1303.1640
https://doi.org/10.1142/S0218195914600103
https://doi.org/10.4230/LIPIcs.ESA.2021.19
https://doi.org/10.4230/LIPIcs.ESA.2021.19
https://doi.org/10.1007/bf01961541
https://doi.org/10.1137/s0097539794280736
https://doi.org/10.1006/jcss.1996.0002
https://doi.org/10.1006/jcss.1996.0002
https://eldorado.tu-dortmund.de/bitstream/2003/27430/1/diss_gutwenger.pdf
https://eldorado.tu-dortmund.de/bitstream/2003/27430/1/diss_gutwenger.pdf
http://arxiv.org/abs/1911.03449
https://doi.org/10.1145/3357713.3384249

S. D. Fink and I. Rutter 22:7

8 Jacob Holm and Eva Rotenberg. Worst-case polylog incremental SPQR-trees: Em-
beddings, planarity, and triconnectivity. In Proceedings of the 31st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA’20), pages 2378–2397. SIAM, 2020.
doi:10.1137/1.9781611975994.146.

9 Rene Weiskircher. New applications of SPQR-trees in graph drawing. PhD thesis, Universität
des Saarlandes, 2002. doi:10.22028/D291-25752.

EuroCG’23

https://doi.org/10.1137/1.9781611975994.146
https://doi.org/10.22028/D291-25752

Towards Space Efficient Two-Point Shortest Path
Queries in a Polygonal Domain
Sarita de Berg1, Tillmann Miltzow1, and Frank Staals1

1 Department of Information and Computing Sciences, Utrecht University, The
Netherlands
s.deberg@uu.nl, t.miltzow@uu.nl, f.staals@uu.nl

Abstract
We devise a data structure that can answer shortest path queries for two query points in a polygonal
domain P on n vertices. For any ε > 0, the space complexity of the data structure is O(n10+ε) and
queries can be answered in O(log n) time. This is the first improvement upon a conference paper by
Chiang and Mitchell [8] from 1999. They present a data structure with O(n11) space complexity.
Furthermore, our main result can be extended to include a space-time trade-off. Specifically, we
devise data structures with O(n10+ε/ℓ5+O(ε)) space complexity and O(ℓ log n) query time for any
integer 1 ≤ ℓ ≤ n.

Related Version A full version of the paper is available at https://arxiv.org/abs/2303.00666.

1 Introduction

In the two-point shortest path problem, we are given a polygonal domain P with n vertices,
and we wish to store P so that given two query points s, t ∈ P we can compute their geodesic
distance d(s, t), i.e. the length of a shortest path fully contained in P , in O(log n) time.

The main motivation to study the two-point shortest path problem is that it is a very
natural problem. It is central in computational geometry, and forms a basis for many other
problems. The problem was solved optimally for simple polygons (polygonal domains without
holes) by Guibas and Hershberger [13], and turned out to be a key ingredient to solve many
other problems in simple polygons. A few noteworthy examples are data structures for
geodesic Voronoi diagrams [20], furthest point Voronoi diagram [25], k-th nearest neighbor
search [1, 11], and more [12, 19]. In real life situations, the environment is often less restricted
than a simple polygon. For example, consider a boat in the sea surrounded by a number
of islands (Figure 2). Finding the fastest route to an emergency, such as a sinking boat,
corresponds to finding the shortest path among obstacles, i.e. in a polygonal domain. This
is just one of many examples where finding the shortest path in a polygonal domain is a
natural model of a real life situation, which makes it an interesting problem to study.

t
s

Figure 1 Given P and the query points s, t we want to compute the shortest path efficiently.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://arxiv.org/abs/2303.00666

23:2 Towards Space Efficient Two-Point Shortest Path Queries in a Polygonal Domain

Figure 2 Finding the shortest path among islands for a boat to an emergency.

Related Work. Chiang and Mitchell [8] announced a data structure for the two-point
shortest path problem in polygonal domains at SODA 1999. They use O(n11) space and
achieve a query time of O(log n). They also present another data structure that uses “only”
O(n10 log n) space but O(log2 n) query time. Since then, there have been no improvements
on the two-point shortest path problem in its general form. Instead, related and restricted
versions were considered. We briefly discuss the most relevant ones.

As mentioned before, when the domain is restricted to a simple polygon, there exists an
optimal linear size data structure with O(log n) query time by Guibas and Hershberger [13].

By parameterizing the query time by the number of holes h, Guo, Maheshwari, and
Sack [15] manage to build a data structure that uses O(n2) space and has query time O(h log n).

Bae and Okamoto [3] study the special case where both query points are restricted
to lie on the boundary of the polygonal domain. They present a data structure of size
O(n4λ66(n)) ≈ O(n5) that can answer queries in O(log n) time.

When we consider the algorithmic question of finding the shortest path between two
(fixed) points in a polygonal domain, the state-of-the-art algorithms build the so-called
shortest path map from the source s [14, 16]. Hershberger and Suri presented such an O(n)
space data structure that can answer shortest path queries from a fixed point s in O(log n)
time [13]. The construction takes O(n log n) time and space. This was recently improved by
Wang [26] to run in O(n + h log h) time and to use only O(n) working space.

Two other relaxations that were considered are approximation [5, 23], and using the
L1-norm [6, 7, 24].

Results. Our main result is the first improvement in more than two decades that achieves
optimal O(log n) query time.

▶ Theorem 1.1 (Main Theorem). Let P be a polygonal domain with n vertices. For any
constant ε > 0, we can build a data structure in O(n10+ε) space and expected time that can
answer two-point shortest path queries in O(log n) time. The shortest path of k vertices can
be returned in additional O(k) time.

One of the main downsides of the two-point shortest path data structure is the large space
complexity. One strategy to mitigate the space complexity is to allow for a larger query time.
For instance, Chiang and Mitchell presented a myriad of different space-time trade-offs. One
of them being O(n5+10δ+ε) space with O(n1−δ log n) query time for 0 < δ ≤ 1. Our methods
allow naturally for such a trade-off. We summarize our findings in the following theorem.

S. de Berg, T. Miltzow, and F. Staals 23:3

v

Figure 3 The augmented shortest path map of a vertex v. The shortest path map edges are solid,
and the additional edges in the augmented shortest path map are dotted. Each region is bounded by
three curves, of which at least two are line segments. Two regions and their apices are highlighted.

▶ Theorem 1.2. Let P be a polygonal domain with n vertices. For any constant ε > 0 and
integer 1 ≤ ℓ ≤ n, we can build a data structure in O(n10+ε/ℓ5+O(ε)) space and expected time
that can answer two-point shortest path queries in O(ℓ log n) time.

For example, for ℓ = n4/5 we obtain an O(n6+ε) size data structure with query time
O(n4/5 log n), which improves the O(n7+ε) data structure with similar query time of [8].

Organization. In Section 2, we give an overview of our main data structure. A full version
of the paper is available [10].

2 Global Approach

Direct Visibility. As a first step, we build the visibility complex as described by Pocchiola
and Vegter [21]. It allows us to query in O(log n) time if s and t can see each other. If so,
the line segment connecting them is the shortest path. The visibility complex uses O(n2)
space and can be built in O(n2) time. So, in the remainder we assume that s and t cannot
see each other, hence their shortest path will visit at least one vertex of P .

Augmented Shortest Path Maps. In our approach, we build a data structure on the regions
provided by the augmented shortest path maps of all vertices of P . The shortest path map of
a point p ∈ P is a partition of P into maximal regions, such that for every point in a region
R the shortest path to p traverses the same vertices of P [17]. To obtain the augmented
shortest path map SPM (p), we connect each boundary vertex of R with the apex vR of the
region, i.e. the first vertex on the shortest path from any point in R towards p. See Figure 3
for an example. All regions in SPM (p) are “almost” triangles; they are bounded by three
curves, two of which are line segments, and the remaining is either a line segment or a piece
of a hyperbola. The (augmented) shortest path map has complexity O(n) [17]. Let T be
the multi-set of all augmented shortest path regions of all the vertices of P . As there are n

vertices in P , there are O(n2) regions in T .
Because we are only interested in shortest paths that contain at least one vertex, the

shortest path between two points s, t ∈ P consists of an edge from s to some vertex v of

EuroCG’23

23:4 Towards Space Efficient Two-Point Shortest Path Queries in a Polygonal Domain

s

t

Figure 4 Two pairs of relevant regions in red and blue with the path whose length is fST (s, t).

P that is visible from s, a shortest path from v to a vertex u (possibly equal to v) that is
visible from t, and an edge from u to t. For two regions S, T ∈ T with s ∈ S and t ∈ T ,
we define fST (s, t) = ||svS || + d(vS , vT) + ||vT t||. The distance d(s, t) between s and t is
realised by this function when vS = v and vT = u. As for any pair S, T with s ∈ S and t ∈ T

the function fST (s, t) corresponds to the length of some path between s and t in P , we can
obtain the shortest distance by taking the minimum over all of these functions, see Figure 4.
In other words, if we denote by Tp all regions that contain a point p ∈ P , we have

d(s, t) = min{fST (s, t) : S ∈ Ts, T ∈ Tt}.

Lower Envelope. Given two multi-sets A, B ⊆ T , we can construct a data structure of size
O(min{|A|, |B|, n}6+ε) that we can query at any point (s, t) with s ∈ ⋂ A and t ∈ ⋂ B to
find min{fST (s, t) : S ∈ A, T ∈ B} in O(log(min{|A|, |B|, n})) time as follows. We refer to
this as the Lower Envelope data structure.

The functions fST are four-variate algebraic functions of constant degree. Each such
function gives rise to a surface in R5, which is the graph of the function f . Koltun [18] shows
that the vertical decomposition of m such surfaces in R5 has complexity O(m6+ε), and can
be stored in a data structure of size O(m6+ε) so that we can query the value of the lower
envelope, and thus d(s, t), in O(log m) time. We limit the number of functions fST (s, t) by
using an observation of Chiang and Mitchell [8]. They note that we do not need to consider
all pairs S ∈ A, T ∈ B, but only min{|A|, |B|, n} relevant pairs. Two regions form a relevant
pair, if they belong to the same augmented shortest path map SPM (v), of some vertex v.
(To be specific, if v is any vertex on the shortest path from s to t, then the minimum is
achieved for S and T in the shortest path map of v.) We thus obtain a Lower Envelope
data structure by constructing the vertical decomposition of these min{|A|, |B|, n} functions.

Naively, to build a data structure that can answer shortest-path queries for any pair of
query points s, t, we would need to construct this data structure for all possible combinations
of Ts and Tt. The overlay of the n augmented shortest path maps has worst-case complexity
Ω(n4) [8], which implies that we would have to build Ω(n8) of the Lower Envelope
data structures. Indeed, this results in an O(n14+ε) size data structure, and is one of the
approaches Chiang and Mitchell consider [8]. Next, we describe how we use cuttings to
reduce the number of Lower Envelope data structures we construct.

S. de Berg, T. Miltzow, and F. Staals 23:5

Lower Envelope
data structure

Ξ

Ξ∆

∆

∆′

on S ∈

and T ∈

Figure 5 Overview of our data structure. The first level cutting tree (red) is built by recursively
constructing a cutting Ξ on the (orange) regions that intersect a cell ∆ (purple). For each cell ∆,
we store a second level cutting tree (blue). For each cell ∆′ in Ξ∆, we build a Lower Envelope
data structure on all regions that fully contain ∆ (dark red) and ∆′ (dark blue).

Cutting Trees. Now, we explain how to determine Ts more efficiently using cuttings and
cutting-trees. Suppose we have a set A of N (not necessarily disjoint) triangles in the plane.
A 1/r-cutting Ξ of A is then a subdivision of the plane into constant complexity cells, for
example triangles, such that each cell in Ξ is intersected by the boundaries of at most N/r

triangles in A [4]. There can thus still be many triangles that fully contain a cell, but only a
limited number whose boundary intersects a cell. In our case, the regions in T are almost
triangles, called Tarski cells [2]. As we explain in the appendix, we can always construct
such a cutting with only O(r2) cells for these types of regions efficiently.

Let Ξ be a 1/r-cutting of T . For s ∈ ∆ ∈ Ξ the regions R ∈ T that fully contain ∆ also
contain s. To be able to find the remaining regions in Ts, we recursively build cuttings on
the N/r regions whose boundary intersects ∆. This gives us a so-called cutting tree. The set
Ts is then the disjoint union of all regions obtained in a root to leaf path in the cutting tree.

The Multi-Level Data Structure. Our data structure is essentially a nested cutting tree,
as in [9]. See Figure 5 for an illustration. The first level is a cutting tree that is used to
find the regions that contain s, as described before. For each cell ∆ ∈ Ξ in a cutting Ξ, we
construct another cutting tree to find the regions containing t. Let A be the set of regions
fully containing ∆ and |A| = k, then the second-level cutting Ξ∆ is built on the O(kn)
candidate relevant regions. See Figure 6. We process the regions intersected by a cell in Ξ∆
recursively to obtain a cutting tree. Additionally, for each cell ∆′ ∈ Ξ∆, we construct the
Lower Envelope data structure on the sets A, B, where B is the set of regions that fully
contain ∆′. This allows us to obtain min fST (s, t) for S ∈ A and T ∈ B efficiently.

Queries. To query our data structure with two sites s, t, we first locate the cell ∆s containing
s in the cutting Ξ at the root. We compute min fST (s, t) for all regions S that intersect ∆s,
but do not fully contain ∆s, by recursively querying the child node corresponding to ∆s. To

EuroCG’23

23:6 Towards Space Efficient Two-Point Shortest Path Queries in a Polygonal Domain

s

A

vS

vT

T

∆′
t

Figure 6 A sketch of the subproblem considered here, computing minS∈A,T ∈T fST (s, t). We
build a 1/r-cutting Ξ∆ (shown in purple) on the set of relevant regions in T (blue). The regions
Tt ⊆ T either fully contain the cell ∆′ ∈ Ξ∆ of the cutting that contains t (dark blue), or their
boundaries intersect ∆′ (light blue).

compute min fST (s, t) for all S that fully contain ∆s, we query its associated data structure.
To this end, we locate the cell ∆t containing t in Ξ∆s

, and use its lower envelope structure
to compute min fST (s, t) over all S that fully contain ∆s and all T that fully contain ∆t.
We recursively query the child corresponding to ∆t to find min fST (s, t) over all regions T

that intersect ∆t.

Sketch of the Analysis. By choosing r as nδ for some constant δ = O(ε), we can achieve
that each cutting tree has only constant height. The total query time is thus O(log n). Next,
we sketch the analysis to bound the space usage of the first-level cutting tree, under the
assumption that a second-level cutting tree, including the Lower Envelope data structures,
uses O(n2 min{k, n}6+ε) space. The analysis for the second-level cutting tree is similar.

To bound the space usage, we analyze the space used by the large levels, where the
number of regions is greater than n, and the small levels of the tree separately, see Figure 7.
There are only O(n2) large nodes in the tree. For these min{k, n} = n, so each stores a data
structure of size O(n8+ε). For the small nodes, the size of the second-level data structures
decreases in each step, as k becomes smaller than n. Therefore, the space of the root of a
small subtree, which is O(n8+ε), dominates the space of the other nodes in the subtree. As
there are O(n2) small root nodes, the resulting space usage is O(n10+ε).

3 Concluding remarks

The Lower Envelope data structure we use is actually more powerful than we require:
it allows us to perform point location queries in the vertical decomposition of the entire
arrangement, while we are only interested in lower envelope queries. The (projected) lower
envelope of m four-variate functions has a complexity of only O(m4+ε) [22]. However, it is
unclear if we can store this lower envelope in a data structure of size O(m4+ε) while retaining
the O(log m) query time. We are currently investigating if we can achieve such a bound
using kinetic Voronoi diagrams. This would then immediately improve the space usage of
our two-point shortest path data structure.

S. de Berg, T. Miltzow, and F. Staals 23:7

n2

n

O(n8+ε)

O(n8+ε)

nodes # regions

1

n2

n4 1


large

small

Figure 7 We analyze the large levels, built on ≥ n regions, and the small levels, built on < n

regions, separately. The total space usage is O(n10+ε).

References
1 Pankaj K. Agarwal, Lars Arge, and Frank Staals. Improved dynamic geodesic nearest

neighbor searching in a simple polygon. In 34th International Symposium on Computational
Geometry, SoCG, volume 99 of LIPIcs, pages 4:1–4:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

2 Pankaj K. Agarwal and Jirí Matoušek. On range searching with semialgebraic sets. Discret.
Comput. Geom., 11:393–418, 1994.

3 Sang Won Bae and Yoshio Okamoto. Querying two boundary points for shortest paths in a
polygonal domain. Comput. Geom., 45(7):284–293, 2012.

4 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discret. Comput. Geom.,
9:145–158, 1993.

5 Danny Z. Chen. On the all-pairs Euclidean short path problem. In Proceedings of the 6th
annual ACM-SIAM symposium on Discrete algorithms, SODA, pages 292–301, 1995.

6 Danny Z. Chen, Rajasekhar Inkulu, and Haitao Wang. Two-point L1 shortest path queries
in the plane. Journal of Computational Geometry, 7(1):473–519, 2016.

7 Danny Z. Chen, Kevin S. Klenk, and Hung-Yi T. Tu. Shortest path queries among weighted
obstacles in the rectilinear plane. SIAM Journal on Computing, 29(4):1223–1246, 2000.

8 Yi-Jen Chiang and Joseph S. B. Mitchell. Two-point Euclidean shortest path queries in the
plane. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 215–224, 1999.

9 Kenneth L. Clarkson. New applications of random sampling in computational geometry.
Discret. Comput. Geom., 2:195–222, 1987.

10 Sarita de Berg, Tillman Miltzow, and Frank Staals. Towards space efficient two-point
shortest path queries in a polygonal domain. CoRR, abs/2303.00666, 2023.

11 Sarita de Berg and Frank Staals. Dynamic data structures for k-nearest neighbor queries. In
Proceedings of the 32nd International Symposium on Algorithms and Computation, ISAAC,
volume 212 of LIPIcs, pages 14:1–14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

12 Patrick Eades, Ivor van der Hoog, Maarten Löffler, and Frank Staals. Trajectory visibility.
In Proceedings of the 17th Scandinavian Symposium and Workshops on Algorithm Theory,

EuroCG’23

23:8 Towards Space Efficient Two-Point Shortest Path Queries in a Polygonal Domain

SWAT 2020, volume 162 of LIPIcs, pages 23:1–23:22. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

13 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple
polygon. J. Comput. Syst. Sci., 39(2):126–152, 1989.

14 Leonidas J. Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert E. Tarjan.
Linear-time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2(1):209–233, 1987.

15 Hua Guo, Anil Maheshwari, and Jörg-Rüdiger Sack. Shortest path queries in polygonal
domains. In Proceedings of the 4th International Conference on Algorithmic Aspects in
Information and Management, AAIM, volume 5034 of Lecture Notes in Computer Science,
pages 200–211. Springer, 2008.

16 John Hershberger and Jack Snoeyink. Computing minimum length paths of a given homotopy
class. Computational geometry, 4(2):63–97, 1994.

17 John Hershberger and Subhash Suri. An optimal algorithm for Euclidean shortest paths in
the plane. SIAM J. Comput., 28(6):2215–2256, 1999.

18 Vladlen Koltun. Almost tight upper bounds for vertical decompositions in four dimensions.
J. ACM, 51(5):699–730, 2004.

19 Matias Korman, André van Renssen, Marcel Roeloffzen, and Frank Staals. Kinetic geodesic
voronoi diagrams in a simple polygon. In Proceedings of the 47th International Colloquium
on Automata, Languages, and Programming, ICALP, volume 168 of LIPIcs, pages 75:1–75:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

20 Eunjin Oh. Optimal algorithm for geodesic nearest-point voronoi diagrams in simple polygons.
In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 391–409. SIAM, 2019.

21 Michel Pocchiola and Gert Vegter. The visibility complex. Int. J. Comput. Geom. Appl.,
06(03):279–308, 1996. doi:10.1142/S0218195996000204.

22 Micha Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. Discret.
Comput. Geom., 12:327–345, 1994.

23 Mikkel Thorup. Compact oracles for approximate distances around obstacles in the plane.
In Proceedings of the 15th Annual European Symposium, ESA, volume 4698 of Lecture Notes
in Computer Science, pages 383–394. Springer, 2007.

24 Haitao Wang. A divide-and-conquer algorithm for two-point L1 shortest path queries in
polygonal domains. J. Comput. Geom., 11(1):235–282, 2020.

25 Haitao Wang. An optimal deterministic algorithm for geodesic farthest-point voronoi
diagrams in simple polygons. In 37th International Symposium on Computational Geometry,
SoCG 2021, volume 189 of LIPIcs, pages 59:1–59:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

26 Haitao Wang. Shortest paths among obstacles in the plane revisited. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 810–821. SIAM, 2021.

https://doi.org/10.1142/S0218195996000204

Radon number of graph families∗

Attila Jung1

1 Department of Computer Science, Eötvös Loránd University, Budapest
jungattila@gmail.com

Abstract
Motivated by Bukh’s counterexample to Eckhoff’s Partition Conjecture, we define Radon numbers
for families of isomorphism classes of graphs and completely characterize families with Radon number
at most four in terms of small forbidden subgraphs.

1 Introduction

Radon’s Lemma [7] states that whenever we have X ⊂ Rd with ∣X ∣ ≥ d+2, we can partition X

into two disjoint subsets X+∪X− =X such that conv(X+)∩conv(X−) ≠ ∅, where conv(S) is
the convex hull of S ⊂ Rd. One of its generalizations is Tverberg’s Theorem [8], which can be
stated as follows. For any k ≥ 2 if we have X ⊂ Rd with ∣X ∣ ≥ (d + 1)(k − 1) + 1, then we can
partition X into disjoint subsets X1 ∪ . . .∪Xk such that ⋂i conv(Xi) ≠ ∅. Eckhoff’s Partition
Conjecture [2, 3] states that Tverberg’s Theorem is a purely combinatorial consequence of
Radon’s Lemma. For an exact statement, we need to define abstract convexity spaces and
their generalized Radon numbers. For an overview of convexity spaces and their invariants
see the book by van de Vel [9].

A set X and a family of its subsets C forms a convexity space if X and ∅ are members of C,C is closed under arbitrary intersections, and under union of nested sets. In this sense Rd and
the family of all the convex sets in Rd forms a convexity space. The convex hull of a subset
S ⊆X in a convexity space is conv(S) = ⋂S⊂C∈C C. The kth generalized Radon number of a
convexity space (X,C) is the smallest rk such that any subset S ⊆ X with ∣S∣ = rk can be
partitioned into k nonempty disjoint subsets S = ⊍k

i=1Si with ⋂k
i=1 conv(Si) ≠ ∅. If no such

number exists, let rk = ∞. We will call r = r2 simply the (not generalized) Radon number.
Calder [2] and Eckhoff [3] conjectured rk ≤ (r − 1)(k − 1) + 1 for every convexity space.

Upper bounds on rk can be used to prove the existence of weak epsilon-nets [4]. It was
confirmed by Jamison [5] that the conjecture holds if r2 = 3. In general, the best upper
bound of rk in terms of k and r = r2 is rk ≤ (2k)log2 r by Jamison [5] and rk ≤ krrrlog2 r

by
Pálvölgyi [6]. However, after being open for more than thirty years, the conjecture itself was
refuted by Bukh [1], as he constructed convexity spaces with r = 4 and rk ≥ 3k − 1.

Bukh first constructs a violating subset S, which shows that rk ≥ 3k−1, and decides which
convex hulls of subsets of S intersect. Every intersection can be described using a hypergraph
with the base set S, with the resulting hypergraph family satisfying certain natural conditions.
After adding a new point to every required intersection, the (not generalized) Radon number
of the resulting convexity space depends on the following property.

▸ Definition 1.1. A family H of hypergraphs has Radon number at most r, if for ev-
ery H1, . . . , Hr ∈ H, there is a partition I ⊍ J = [r] into nonempty subsets such that(⋂i∈I Hi)⋃(⋂j∈J Hj) ∈ H.

∗ Research was supported by the Rényi Doctoral Fellowship and by the NKFIH grant FK132060.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

24:2 Radon number of graph families

To see how this property arises from a convexity space with bounded Radon number, let
Hx, Hy, Hz and Hw be collections of all the convex sets containing the points x, y, z and w

respectively. In this case conv({x, y}) is the intersection of all the convex sets in Hx∩Hy and
conv({x, y})∩conv({z, w}) is the intersection of all the convex sets in (Hx∩Hy)∪(Hz ∩Hw).
In this paper, we investigate the property described in Definition 1.1 in the case when H is a
family of graphs with the hope that it will contribute to a better understanding of Radon
numbers of convexity spaces.

The paper is organized as follows. In Section 2 we define the Radon number for graph
families and give some general results. In Section 3 we show that graph families with Radon
number at most three are trivial, and in Section 4 we state and prove our main result,
Theorem 4.1, which characterizes graph families with Radon number four. Section 5 contains
open questions. Due to space restrictions, some proofs will only be available in the final
version of the paper.

2 Radon number of graph families

In the rest of the paper, we will consider graph families which are closed under any isomor-
phism of any graphs in the family and are also closed under taking subgraphs. Since the
considered graph families are closed under isomorphisms of individual graphs, we have to
fix a vertex set as the domain of these isomorphisms. In this paper, we assume that the
underlying vertex set is finite but large enough. We only consider simple graphs and identify
graphs with their edge sets. We will denote the number of edges in a graph G by ∣G∣.
▸ Definition 2.1. A family G of graphs has Radon number at most r, if no matter how
we choose G1, . . . , Gr ∈ G, there is a partition I ⊍ J = [r] into nonempty subsets such that(⋂i∈I Gi)⋃(⋂j∈J Gj) ∈ G.

We will call (⋂i∈I Gi)⋃(⋂j∈J Gj) a Radon-major of G1, . . . , Gr. The smallest number
r(G) such that G has Radon number at most r is the Radon number of the family G.

▸ Example 2.2. If G consists of all the n-cliques and their subgraphs, then r(G) = n + 1.

Proof. First, we show that r(G) ≤ n+1. Let G1, . . . , Gn be cliques on n vertices and consider
the sequence ∩j

i=1V (Gi) for 1 ≤ j ≤ n+1, where V (Gi) is the vertex set of Gi. If there exists a j

with ∩j
i=1V (Gi) = ∩j+1

i=1 V (Gi), then ∩j
i=1Gi ⊂ Gj+1 and thus G = (∩j

i=1Gi)∪(∩n+1
i=j+1Gi) ⊂ Gj+1,

which implies G ∈ G. Otherwise we have ∣∩n
i=1V (Gi)∣ ≤ 1, and thus (∩n

i=1Gi)∪Gn+1 = Gn+1 ∈ G.
To show that r(G) > n, let G1, . . . , Gn be different n-cliques on base set [n+ 1]. For every

partition I ⊍ J = [n + 1], the graph G = (∩i∈IGi) ∪ (∩j∈JGj) has n + 1 vertices, but none of
them is isolated. Thus, G is not a subgraph of an n-clique. ◂

Our main tool in considering Radon numbers of graph families will be an analog of Helly’s
Theorem. We need two preliminary definitions to state it.

▸ Definition 2.3. The h-Helly closure Hh(G) of a graph family G consists of all graphs H

for which every at most h-edge subgraph of H is an element of G.

As an example, if G consists of all the stars with at most h edges, then its h-Helly closure
consists of all the stars with an arbitrary number of edges.

▸ Definition 2.4. We say that a graph family G implies a graph G under the condition
r(G) ≤ t if every graph family G′ ⊇ G with r(G′) ≤ t contains G as well. In notation G r≤tÐ→ G.
We also write G r≤tÐ→ F for a graph family F , if G r≤tÐ→ F for every F ∈ F .

A. Jung 24:3

The following is an analog of Helly’s Theorem for graph families.

▸ Lemma 2.5 (Helly Property). For every graph family G and every integer h > 0 we have

G r≤h+1Ð→ Hh(G).
Proof. The proof of Lemma 2.5 mimics Radon’s proof [7] of Helly’s Theorem. Let G′ be a
family containing G and satisfying r(G′) ≤ h + 1. We will prove H ∈ G′ for every H ∈ Hh(G)
by induction on the number of edges in H. If H has h elements, then it is equal to some
G ∈ G and hence a member of G′. For the induction step, assume that H has more than h

edges and that every proper subgraph of H is a member of G′. Let H1, . . . , Hh+1 be different
subgraphs of H, each containing exactly ∣H ∣ − 1 edges. For every I ⊍ J = [h + 1], we have(⋂i∈I Hi)⋃(⋂j∈J Hj) =H, showing that G′ must contain H as well. ◂
▸ Lemma 2.6. If r(G) ≤ t for a graph family G, and a graph family G′ consists of graphs
with at most t − 2 edges, then r(G ∪ G′) ≤ t as well.

Proof. Let G1, . . . , Gt ∈ G ∪ G′. If there is any Gi with at most t − 2 edges, then there are
two different I, I ′ ⊂ [t] with ∣I ∣ = ∣I ′∣ = t − 1, i ∈ I ∩ I ′ and ∩j∈IGj = ∩j∈I′Gj by the pigeonhole
principle. In particular, ∩j∈IGj ⊂ Gk if {k} = [t] ∖ I and ∩j∈IGj ∪Gk ⊆ Gk ∈ G ∪ G′.

Otherwise G1, . . . , Gt ∈ G and there exists I ⊍J = [t] with (∩i∈IGi)∪(∩j∈JGj) ⊂ G ∈ G. ◂
▸ Corollary 2.7. Every graph family G with r(G) = t is a union of a family of graphs with at
most (t − 2) edges and a (t − 1)-Helly closure of a family of graphs with exactly t − 1 edges.

3 Graph families with Radon number at most 3 are trivial

▸ Claim 3.1. If r(G) = 2 for a graph family, then either G is the empty family or G contains
the empty graph with no edges or G contains all the graphs.

Proof. Graph families with Radon number 2 are not only closed under isomorphism of graphs
and taking subgraphs (as all the considered families), but also under union of graphs. ◂
▸ Claim 3.2. If r(G) = 3 for a graph family G, then G consists of all the graphs with exactly
one edge.

Proof. If G contains only graphs with exactly one edge, then r(G) = 3. Suppose G contains
one of the two different non-isomorphic simple graphs with exactly two edges, a path (denoted
from now by the symbol ∧), or a graph consisting of two disjoint edges (denoted by =). We
show that any of them contains the other in its 2-Helly closure, thus G must contain all the
graphs.

If we have ∧ ∈ G, then every triangle is a member of G by Lemma 2.5. Let Gi be the
triangle with vertices {i} ∖ {1, 2, 3, 4} and consider G1, G2, G3. Every Radon-major of them
is isomorphic to G1 ∪ (G2 ∩G3), which contains two disjoint edges. Thus, = must also be a
member of G, since G is closed under taking subgraphs.

If have = ∈ G, we can use G1 = {12, 45, 78}, G2 = {12, 56, 89} and G3 = {23, 45, 89} to show
that ∧ must also be a member of G (we denote edges of the form {i, j} simply by ij). ◂

EuroCG’23

24:4 Radon number of graph families

4 Graph families with Radon number 4

We will use the following symbols for the five isomorphism classes of graphs with exactly
three edges: ≡,),△,3,⊓. The first denotes a graph with three disjoint edges, the second a
star with three edges, the third a triangle, the fourth a disjoint union of a path with two
edges and an edge, and the fifth a path with three edges.

▸ Theorem 4.1. If a graph family G with Radon number at most 4 contains any of the four
families {≡},{),3},{),△,⊓},{△,3,⊓},
then it contains all the graphs. If a graph family contains none of the above-listed families,
then its 3-Helly closure has Radon number at most 4.

We prove the first part of Theorem 4.1 in Subsection 4.1 and we sketch the proof of the
second part in Subsection 4.2.

4.1 Implications
Proof of the first part of Theorem 4.1. If G contains one of the listed four families and
has Radon number at most 4, then it must contain the 3-Helly closure of that family by
Lemma 2.5. We will show that much more is true, and G must contain all other graphs with
at most three edges under the assumption that r(G) ≤ 4. In the proofs, we will repeatedly
find four graphs in the 3-Helly closure of the previously guaranteed graphs in G with the
property that all the Radon-majors of them contain at least one new 3-edge subgraph.

Consider the seven different 2-partitions of {1, 2, 3, 4}, namely 1∣234, 2∣134, 3∣124, 4∣123,
12∣34, 13∣24 and 14∣23. Let I1, J1, . . . , I7, J7 be the subsets of these partitions in the previous
order. For example I1 = {1} or J7 = {2, 3}.

If ≡ is in G, consider seven vertex-disjoint copies of ∧, each corresponding to a different 2-
partition of {1, 2, 3, 4}. Name the two edges of the kth copy as {e(k)i , e

(k)
j } and let G1, . . . , G4

be such that Gℓ = {e(k)i ∶ ℓ ∈ Ik} ∪ {e(k)j ∶ ℓ ∈ Jk}. All the Gis are part of the 3-Helly closure
of {≡} and every Radon-major of them contains 3 as a subgraph, thus {≡} r≤4Ð→ 3. Similar
constructions show that {≡,3} r≤4Ð→△,) and ⊓. Thus, if r(G) ≤ 4 and ≡ ∈ G, then G contains
all the graphs with at most three edges. But every graph is in their 3-Helly closure, so G
must contain all the graphs by Lemma 2.5.

If we have {),3} ⊂ G, then the graphs Gℓ = {{0, k} ∶ ℓ ∈ Ik} ∪ {{k, 8} ∶ ℓ ∈ Jk} for
ℓ ∈ {1, 2, 3, 4} show that {),3} r≤4Ð→ ⊓. Now the graphs Gi ∶ i ∈ {1, 2, 3, 4} with Gi being the
complete bipartite graph between {i, 5} and {i, 5} ∖ {1, . . . , 5} show that {),3,⊓} r≤4Ð→ △.
From here four different five-clique on {1, 2, . . . , 6} shows that {),△,⊓,3} r≤4Ð→ ≡.

Four different four-cliques on {1, 2, 3, 4, 5} shows us that {),△,⊓} r≤4Ð→ 3 and from there
we have seen {),△,⊓,3} r≤4Ð→ ≡.

Finally, if we have {△,3,⊓} ⊂ G, then we can take G1 to be a five cycle with vertices
1, 2, 3, 4, 5, G2 a disjoint union of two triangles with vertices 1, 2, 3 and 4, 5, 6, G3 a path
with five vertices 2, 3, 4, 6, 5 and G4 another path with five vertices 1, 3, 4, 5, 6, showing{△,3,⊓} r≤4Ð→). We are done, since we have seen that {),△,⊓,3} r≤4Ð→ ≡. ◂
4.2 Radon-closed families
To show that a certain graph family G has Radon number 4, we have to exclude the possibility
of the existence of G1, . . . , G4 ∈ G without a Radon-major in G. The following claims show

A. Jung 24:5

some necessary properties of such quadruples of graphs. Due to space restrictions, the proofs
of corollaries will be available only in the final version of this paper.

▸ Claim 4.2. If G1, . . . , G4 ∈ G has no Radon-major in G, then the 3-wise intersections of
them must be nonempty and distinct.

Proof. If a three-wise intersection is empty, for example G1 ∩G2 ∩G3 = ∅, then G4 is a
Radon major, as (G1 ∩G2 ∩G3) ∪G4 = G4.

If two of the three-wise intersections are equal, for example G1 ∩G2 ∩G3 = G2 ∩G3 ∩G4,
then G4 is a Radon-major, as (G1 ∩G2 ∩G3) ∪G4 = (G2 ∩G3 ∩G4) ∪G4 = G4. ◂
▸ Claim 4.3. If G1, . . . , G4 are arbitrary graphs, then ⋃4

i=1(⋂j≠i Gj) ∈ H3({G1, . . . , G4}).
Proof. If we choose 3 edges from the union of the 3-wise intersections, there will be a Gi

among G1, . . . , G4, which contains all the 3 edges. ◂
▸ Corollary 4.4. If G is one of {)},{),⊓} or {),△}, then r(H3(G)) = 4.

Given four graphs G1, . . . , G4 and subset I ⊂ {1, 2, 3, 4}, we will say that an edge e ∈ ∪n
i=1Gi

is I-type, if e ∈ ⋂i∈I Gi but for every J ⊋ I we have e /∈ ⋂j∈J Gj .

▸ Claim 4.5. If G1, . . . , G4 ∈ H has no Radon-major in a 3-Helly closure H of a graph family,
then there is either a {1, 2}-type edge or a {3, 4}-type edge in ∪iGi.

Proof. If there is no {1, 2}-type edge, then G1 ∩G2 = (G1 ∩G2 ∩G3) ∪ (G1 ∩G2 ∩G4) ∈ H
by Claim 4.3. We must have an edge e in (G3 ∩G4) ∖ ((G1 ∩G3 ∩G4) ∪ (G2 ∩G3 ∩G4)),
otherwise (G1 ∩G2) ∪ (G3 ∩G4) ∈ H would be a Radon-major. ◂
▸ Corollary 4.6. If G is one of {3,△} or {3,⊓}, then r(H3(G)) = 4.

▸ Claim 4.7. If all G ∈ H3(G) has ∣G∣ ≤ 4, then r(H3(G)) ≤ 4.

Proof. Let G1, . . . , G4 ∈ H and consider first the 3-wise intersections of them. If G1, . . . , G4
have no Radon-major in H, then by Claim 4.2 every Gi must contain at least 3 edges, one in
each distinct 3-wise intersection where Gi is one of the intersecting graphs.

By Claim 4.5 at least three of the 2-wise intersections must be of size at least three. It
follows from the pigeon-hole principle that at least one of the Gis have at least five edges. ◂
▸ Corollary 4.8. If G is one of {⊓},{3},{△} or {⊓,△}, then r(H3(G)) = 4.

Proof of the second part of Theorem 4.1. If G does not contain any graph with at least
three edges, then r(G) ≤ 4 by Lemma 2.6.

If G does contain graphs with at least three edges, r(G) = 4 and G does not have{≡},{),3},{),△,⊓} or{△,3,⊓} as subfamilies, then its 3-Helly closure equals to the 3-Helly
closure of one of the remaining nonempty subfamilies of the five isomorphism classes of
graphs with three edges. These subfamilies are exactly the families listed in Corollaries 4.8,
4.4 and 4.6 and the Radon number of each of their 3-Helly closures is 4. ◂
5 Open questions

We chose the following two questions with the hope that investigating them will bring us
closer to improving Bukh’s counterexample to Eckhoff’s Conjecture. The next step towards
the general setting of hypergraphs might be to consider families of 3-uniform hypergraphs
with the straightforward generalization of the definition of Radon numbers for graph families.

EuroCG’23

24:6 Radon number of graph families

▸ Problem 5.1. Characterize families of 3-uniform hypergraphs with Radon number 4.

One might also try to find analogs of Bukh’s construction with larger Radon numbers.
The first step might be to consider graph families with Radon number 5.

▸ Problem 5.2. Characterize graph families G with Radon number r(G) = 5.

Acknowledgement. The author would like to thank Dömötör Pálvölgyi for a lot of interesting
and encouraging discussions during the research.

References
1 Boris Bukh. Radon partitions in convexity spaces. arXiv preprint arXiv:1009.2384, 2010.
2 JR Calder. Some elementary properties of interval convexities. Journal of the London

Mathematical Society, 2(3):422–428, 1971.
3 Jürgen Eckhoff. Radon’s theorem revisited. In Contributions to geometry, pages 164–185.

Springer, 1979.
4 Andreas F Holmsen and Donggyu Lee. Radon numbers and the fractional helly theorem.

Israel Journal of Mathematics, 241(1):433–447, 2021.
5 Robert Jamison. Partition numbers for trees and ordered sets. Pacific Journal of Mathe-

matics, 96(1):115–140, 1981.
6 Dömötör Pálvölgyi. Radon numbers grow linearly. Discrete & Computational Geometry,

68(1):165–171, 2022.
7 Johann Radon. Mengen konvexer körper, die einen gemeinsamen punkt enthalten. Mathe-

matische Annalen, 83(1):113–115, 1921.
8 Helge Tverberg. A generalization of radon’s theorem. Journal of the London Mathematical

Society, 1(1):123–128, 1966.
9 Marcel LJ van De Vel. Theory of convex structures. Elsevier, 1993.

Proving non-realizability with grass-plucker3∗

Julian Pfeifle

Universitat Politècnica de Catalunya
julian.pfeifle@upc.edu

Abstract
One of the great challenges of convexity is being able to decide whether or not a given simplicial
complex that could be realizable as a convex set actually can be realized as the convex hull of
a finite point set or not. Recently there have been two algorithmic approaches for this, namely
slack realization spaces and Plücker trees. None of these are “better” that the other in every case:
the latter is usually faster and can tackle more problems and bigger instances, but the former can
still solve some problems that the other one can’t. This extended abstract reports on the recent
improvement of Plücker trees to Plücker cubes, which work towards closing this gap.

1 Introduction

High-dimensional objects can be counter-intuitive: some manifolds cannot be triangulated;
some manifolds have the homology of a sphere but are not spheres; some spheres have vertex
links that are not spheres. We don’t even understand the boundary between combinatorics,
topology and geometry: Given a triangulated combinatorial manifold homeomorphic to a
sphere, does there exist a convex polytope whose boundary is that triangulation? We know
that in the overwhelming majority of cases, the answer is “no” [1, 8], but we cannot yet
effectively (never mind efficiently) decide any given concrete instance.

The two most sucessful general approaches known so far are the classical Plücker embedding
of the Grassmannian [2] approach going back to Bokowski and Sturmfels, and the more
recent slack realization spaces [6, 7] by Gouveia, Macchia and Wiebe. Early implementations
of the Plücker embedding approach used linear programming and special combinations of
Grassmann-Plücker polynomials (1) called “biquadratic final polynomials”, while the most
recent grass-plucker algorithm [9], released in polymake 4.7 [5], uses a combinatorial search
to combine such polynomials in a more general way. In contrast, the slack realization space
approach also uses linear programming [7], and has been implemented in Macaulay 2.

While generally the grass-plucker algorithm can process larger instances and is faster, the
slack realization space approach can still prove several more instances of non-realizability,
largely because it allows to successively specialize certain orientations in an ad-hoc decision
tree. The grass-plucker3 algorithm presented in this paper systematically incorporates this
feature into the Plücker embedding approach, under the name of Plücker cubes.

2 An example

Let’s input the prismatoid #375 [3] into our algorithm grass-plucker3 and describe its output.
Σ = Π375 is a simplicial sphere of dimension 4 with 15 vertices, which we label

0,. . . ,9, a,b,c,d,e for convenience, and the following list of 101 facets:

01234, 0124b, 0128b, 0128d, 0129d, 013ab, 0134b, 0136a, 0136c, 0138c, 0138d, 0139d, 016ab,
016bc, 018bc, 023ab, 0234b, 0235a, 0259a, 026ab, 0268b, 02689, 0269a, 0289d, 0359a, 0369a,

∗ Supported by the grant PID2019-106188GB-I00 from the Spanish Ministry of Education (MEC).

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

25:2 Proving non-realizability with grass-plucker3

0369c, 038ce, 0389d, 0389e, 039ce, 06bce, 068be, 0689e, 069ce, 08bce, 1234d, 1239d, 124bd,
128bd, 134bd, 136ce, 1368a, 1368e, 138ab, 138bd, 138ce, 16abc, 168ac, 168ce, 18abc, 2345b,
23456, 23467, 23478, 2348d, 235ab, 2356c, 2357c, 2367c, 2378e, 2379e, 2389d, 2389e, 245bd,
24568, 2458d, 24678, 256ab, 2568b, 2569a, 2569c, 2579c, 258bd, 267ce, 2678e, 2689e, 269ce,
279ce, 3456b, 3467b, 347bd, 3478d, 356ab, 3569a, 3569c, 3579c, 367ab, 367ce, 3678a, 3678e,
378ab, 378bd, 379ce, 4568b, 458bd, 467bd, 4678d, 67abd, 678ad, 78abd.

This list of facets is the entire input to the problem! The task is to determine the
realizability of Σ as a convex polytope without recourse to any other information.

In this case, our algorithm proves that Σ is in fact not realizable as a convex polytope,
and it does so by exhibiting the “Plücker cube” depicted in Figure 1:

{
[B]?, [F]?

}

[B]? = +, [F]? = +

[B]? = +, [F]? = −

[B]? = −, [F]? = +

[B]? = −, [F]? = −

+[A][B]? − [C][D]? + [E][F]? = 0

+[A][M] + [D]?[V] + [K][E] = 0

−[G][H]? + [I][B]? − [J][F]? = 0

+[R][H]? + [O][S] + [T][U] = 0

−[K][B]? − [L][D]? + [M][F]? = 0

+[A][M] + [D]?[V] + [K][E] = 0

−[N][F]? + [Q][C]− [B]?[P] = 0

Figure 1 A Plücker cube (in this case, a square) proving the non-realizability of Π375. Notice
the difference between the polynomials with 3 terms that must equal 0 in any realization (explained
in item 2 below) and the sign choices for the blue monomials in the inner square (see item 3).

This diagram is read as follows: Since the sphere Σ = Π375 has dimension d = 4, each
4-simplex facet has d + 1 = 5 vertices, and each solid d + 2 = 6 vertices, see Table 1 below.

(In the case d = 2, each triangular facet of a simplicial 2-sphere has d + 1 = 3 vertices,
while the solid tetrahedra that “live in the space Rd+1” have d + 2 = 4 vertices.)

A = 234675 B = 23578b C = 234785 D = 23567b E = 234b57 F = 235678
G = 237e85 H = 23678b I = 367e82 J = 237e8b K = 236c75 L = 2357c8
M = 2357cb N = 234b58 O = 3678a2 P = 245683 Q = 2568b3 R = 23467a
S = 346b72 T = 367ab2 U = 246783 V = 2357c4

Table 1 The solids involved in Figure 1, where we have labeled the 15 vertices by 0,. . . ,9,a,. . . ,e.

In Figure 1, we don’t actually consider the solids from Table 1 themselves, but we moreover
orient them positively using the orientation of the sphere Σ whenever we can (see item 1
below). This orientation is denoted by square brackets [X] around the letter X denoting the
solid. Whenever the orientation could be either way we indicate this by appending a small
question mark to the square brackets, like [X]?; this is explained in items 3 and 4 below.

We now discuss each feature of Figure 1 in turn.

J. Pfeifle 25:3

1. The “black” solids: All solids in Figure 1 except for B, F and D, H are oriented positively:
in any convex realization of Σ inRd+1, the determinant of the (d+2)×(d+2) matrix whose
columns contain the homogeneous coordinates of the vertices in each black solid, listed
in the given order, is positive. This can be done because each black solid S = F ∪ {v0}
contains the vertex set of a facet F of Σ, and using a basis for the top-dimensional
homology of Σ (which has rank 1 and only depends on the combinatorics of the sphere,
not on any realization), we can permute the vertices in F , i.e., reorient F , to achieve that
the extra vertex v0 lies on the “positive” side of the hyperplane spanned by F .
For example, the solid A = 234675 contains the facets f = 23456 and f ′ = 23467, which
both turn out to be oriented positively in the homology basis. Appending the extra
vertex v0 = 7 to f and adjacent-swapping 5 twice towards the end yields [A] and preserves
the positive orientation, as does appending the extra vertex v′

0 = 5 to f ′.
On the other hand, the solid K = 236c75 contains the positive facet f = 2357c and the
negative facet f ′ = 2367c. Appending v0 = 6 to f one reaches [K] with an even number
of adjacent swaps, preserving the orientation, while after appending v′

0 = 5 to f ′ one
needs one adjacent swap to make the solid positively oriented.

2. The polynomials: Each polynomial in Figure 1 is a Grassmann–Plücker polynomial (in
this paper, a GP polynomial)

Γ(I, J) :=
d+2∑

k=1
(−1)k

[
i1, . . . , id, jk

][
j1, . . . , ĵk, . . . , jd+2

]
(1)

for any two index sets I ∈
([n]

d

)
and J ∈

([n]
d+2
)
, where as usual the hat notation ĵk means

omission of the k-th index from J . Each monomial has d + 1 entries and is therefore a
solid of Σ.
It turns out that every GP polynomial is zero in any convex realization of Σ, and these
relations are called Grassmann-Plücker relations, or in this paper, GP relations:

Γ(I, J) = 0 for all I ∈
(

[n]
d

)
, J ∈

(
[n]

d + 2

)
.

The reason why the signs in the GP polynomials of Figure 1 do not alternate as nicely as
(1) suggests is because we have permuted some solids to make them positively oriented.

3. The sign choices for the “blue” solids: In contrast, the solids [B]? and [F]? do not contain a
(boundary) facet of Σ, so their orientations can take either sign depending on the concrete
realization of Σ, cf. Figure 2. The 22 = 4 vertices [B]? = ±, [F]? = ± of the 2-dimensional
Plücker cube account for all combinations of signs of these undetermined solids.

4. The “red” solids: The orientations of the solids [D]? and [H]? are also not determined
by the combinatorics of Σ, and again for every sign with which these solids appear in a
GP polynomial, there is a GP polynomial in which it appears with the opposite sign.

Some more comments on the notation:
The presentation of the black solids in Table 1 has been chosen so that the first five
indices describe a positively oriented facet, and the last index a vertex not on it.
By checking against the list of facets, one may check that no red solid and no blue solid
contains any facet, compare Figure 2 below. To make this visually explicit, we append a
small question mark to these solids: [B]?, [F]?, [B]?, [H]?.
The only reason for distinguishing blue and red solids is to keep track of which signs (the
blue ones) are being exhaustively enumerated, i.e. all sign combinations appear in the
Plücker cube, and which ones (the red ones) only appear opportunistically.

EuroCG’23

25:4 Proving non-realizability with grass-plucker3

1′

2′

3′

4′

1′′

2′′

3′′

4′′

Figure 2 If a solid tetrahedron determined by the vertices of the sphere (in this case, an
octahedron) does not contain a boundary facet, its orientation can be positive or negative.

The positive orientation [X] of a solid X is actually one of the two equivalence classes of
permutations of the vertices of X with the same parity. Which class we are really talking
about in any particular case is determined by the orientation of the boundary of Σ given
by the top homology class. We represent undetermined solids by the lexicographical
ordering of its vertices.
The fact that all terms connected to the central square in Figure 1 and containing red
solids are negative is purely coincidental.

2.1 What is the actual point of the whole diagram?
Consider the undetermined solids [B]? = [23578b]? and [F]? = [235678]?. For each of the
22 = 4 possible sign patterns that can occur, the monomials containing these solids in the
GP polynomial at the corresponding vertex of the cube are positive.

For example, if [B]? = + and [F]? = −, then the monomials containing these solids in
the following GP relation are positive:

− [G][H]? + [I][B]? − [J][F]? = 0. (2)

If, in this realization of Σ with [B]? = + and [F]? = − that we are considering, it also
happens that [H]? = −, then all terms in the GP polynomial in (2) are positive — but
that cannot be, because any GP polynomial vanishes for any realization of Σ.

On the other hand, if [H]? = +, then the GP polynomial

+[R][H]? + [O][S] + [T][U]

connected to it in the lower right of Figure 1 is positive, which is also impossible.

In this way, Figure 1 provides a GP polynomial contradicting realizability for any
combination of signs of the participating undetermined solids. Notice that the GP polynomial
+[A][M] + [D]?[V] + [K][E] is used in two distinct vertices.

3 The grass-plucker3 algorithm

On a high level, we execute the following steps:

J. Pfeifle 25:5

Enumeration of GP polynomials: The Γ(I, J)’s are at the heart of all subsequent data
structures, and generating and storing them efficiently is vital. Even though the user
can limit their number, for example by specifying the maximal number of terms or the
maximal number of undetermined solids, control of memory consumption is still a critical
issue. For this reason, the present implementation limits the maximum number of vertices
of Σ to 32, and stores each Γ(I, J) in implicit form as a single 64-bit integer whose high
and low 32 bits contain a bitset representation of I and J , respectively.1

Identification of potential leaves: Some spheres have a positive GP polynomial with no
undetermined solids, which directly proves their non-realizability.
The next step up are GP polynomials with exactly one undetermined solid, and they are
special and precious: They make up leaves of the resulting decision tree.
We maintain an ordered list for leaves and another ordered list for non-leaf decision trees,
and refer to both leaves and trees via their indices (offsets) in those lists.
Next, we represent each undetermined solid S as a bitset in a signed integer dubbed
sush (for “signed undetermined solid hash”), and maintain two map data structures
that operate on such a sush S: leaf_of_sush takes S to the index of one leaf, i.e. a
GP polynomial in which S occurs as the only undetermined solid with the specified sign,
while nonleaf_trees_of_sush takes S to all indices of the trees in which S is unpaired.
Whenever we encounter a new GP polynomial Γ with exactly one undetermined solid S,
we check whether leaf_of_sush[-S] already exists (in which case we have found a
certificate consisting of two GP polynomials), and whether nonleaf_trees_of_sush[-S]
exists (in which case we “close off” the unpaired solid −S in those trees, and hopefully
come closer to having a tree with no unpaired solids).

Enumeration of cubes, and conversion to trees: If no certificate was found yet, we enu-
merate all tuples C = {S1, S2, . . . , Sk} of “blue” sushes such that for each assignment of
signs to the Si, there exists a GP polynomial in which the Si occur with those signs — in
Section 2, we would find C = {[B]?, [F]?}, among others. In general, there are many such
GP polynomials for each “cube vertex”, i.e., each selection of signs, and we choose from
among them in a compatible way according to some criteria: For instance, we will favor
GP polynomials with fewer “red” undetermined solids that are not in C, and if a given
“red” undetermined solid (such as [D]? in Section 2) occurs in more than one vertex, we
make sure it always occurs with the same sign. Each choice yields a tree with “special”
nodes corresponding to the cube vertices, and “usual” nodes corresponding to the chosen
GP polynomials. Of course, we immediately check if each obtained tree can be completed
using leaf_of_sush, and this yields the result in Section 2.

Joining trees: If still no certificate was found, we have accumulated a collection T of trees,
and a collection U of unmatched signed undetermined solids in those trees. We next pair
the trees by iterating over U in a convenient order, for example by prioritizing the sushes
that yield new leaves when joining trees among them. For the sake of conserving memory,
it is absolutely crucial that these trees be represented in an implicit way by only storing
the indices of trees that are joined. We therefore work with an ordered list of “explicit
trees”, which store all trees found in the previous steps, and an ordered list of “implicit
trees”, which are small data structures storing little more than the indices of the parent
trees and the sush along which the join was made, and the currently unpaired sushes.

1 Actually, we store ±Γ(I, J) as a signed 64 bit integer because we need to consider both versions of the
GP polynomial, and therefore only allow up to 31 vertices; so one bit goes unused. A way around this
limitation is to use general bitsets to store the index sets.

EuroCG’23

25:6 Proving non-realizability with grass-plucker3

End: If after iterating over all of U no certificate has been found, the algorithm gives up.

4 Discussion and Outlook

Some portions of the algorithm are still under active development, especially the efficient
generation of GP polynomials in the first step, and the order in which the sushes in U are
selected in the last step. Nevertheless, the current version already resides in the source tree
for the upcoming version 4.8 of polymake, which means it will become available once that
release is published.

The largest benchmark instance that is as yet just out of reach, and which the algorithm
will hopefully manage to process after the current phase of development, is an 11-dimensional
sphere with 24 vertices and 5778 facets whose realizability status is unknown at present.

Another interesting benchmark example is the sphere with the evocative name f374225,
which Firsching [4] conjectured to be non-realizable. However, neither Gouveia, Macchia &
Wiebe’s algorithm nor our grass-plucker3 can as yet certify this.

A further family of testcases to be examined is the entire collection of Criado & Santos’s
topological prismatoids [3], for which Gouveia, Macchia & Wiebe can currently certify more
instances of non-realizability.

5 Acknowledgements

The author is indebted to the three anonymous referees for their in-depth reading of the
preliminary version and their many detailed and pertinent comments. Thank you!

References
1 Karim Adiprasito and Arnau Padrol. The universality theorem for neighborly polytopes.

Combinatorica, 37:129–136, 2017.
2 Jürgen Bokowski and Bernd Sturmfels. Computational synthetic geometry, volume 1355.

Berlin etc.: Springer-Verlag, 1989.
3 Francisco Criado and Francisco Santos. Topological Prismatoids and Small Simplicial

Spheres of Large Diameter. Experimental Mathematics, 2019. https:doi.org/10.1080/
10586458.2019.1641766.

4 Moritz Firsching. Realizability and inscribability for simplicial polytopes via nonlinear
optimization. Math. Program., 166(1-2 (A)):273–295, 2017.

5 Ewgenij Gawrilow and Michael Joswig. polymake: a framework for analyzing convex poly-
topes. In Polytopes—combinatorics and computation (Oberwolfach, 1997), volume 29 of
DMV Sem., pages 43–73. Birkhäuser, Basel, 2000.

6 João Gouveia, Antonio Macchia, Rekha R. Thomas, and Amy Wiebe. The slack realization
space of a polytope. SIAM J. Discrete Math., 33(3):1637–1653, 2019.

7 Antonio Macchia and Amy Wiebe. Slack ideals in macaulay2, 2020. arXiv:2003.07382.
8 Arnau Padrol. Many neighborly polytopes and oriented matroids. Discrete Comput. Geom.,

50(4):865–902, 2013. doi:10.1007/s00454-013-9544-7.
9 Julian Pfeifle. Positive Plücker tree certificates for non-realizability. Experimental Math.,

pages 1–17, 2022. https://doi.org/10.1080/10586458.2021.1994487.

https:doi.org/10.1080/10586458.2019.1641766
https:doi.org/10.1080/10586458.2019.1641766
https://arxiv.org/abs/2003.07382
https://doi.org/10.1007/s00454-013-9544-7
https://doi.org/10.1080/10586458.2021.1994487

On the geometric thickness of 2-degenerate
graphs
Rahul Jain1, Marco Ricci1, Jonathan Rollin1, and André Schulz1

1 FernUniversität in Hagen, Germany
{rahul.jain,marco.ricci,jonathan.rollin,andre.schulz}@fernuni-hagen.de

Abstract
A graph is 2-degenerate if every subgraph contains a vertex of degree at most 2. We show that every
2-degenerate graph can be drawn with straight lines such that the drawing decomposes into 4 plane
forests. Therefore, the geometric arboricity, and hence the geometric thickness, of 2-degenerate
graphs is at most 4. On the other hand, we show that there are 2-degenerate graphs that do not
admit any straight-line drawing with a decomposition of the edge set into 2 plane graphs. That is,
there are 2-degenerate graphs with geometric thickness, and hence geometric arboricity, at least 3.
This answers two questions posed by Eppstein [Separating thickness from geometric thickness. In
Towards a Theory of Geometric Graphs, vol. 342 of Contemp. Math., AMS, 2004].

Related Version Full Version: https://arxiv.org/abs/2302.14721 [14]

1 Introduction

A graph is planar if it can be drawn without crossings on a plane. Planar graphs exhibit
many nice properties, which can be exploited to solve problems for this class more efficiently
compared to general graphs. However, in many situations, graphs cannot be assumed to be
planar even if they are sparse. It is therefore desirable to define graph classes which extend
planar graphs. Several approaches for extending planar graphs have been established over the
last years [3, 12]. Often these classes are defined via drawings, for which the types of crossings
and/or the number of crossings are restricted. A natural way to describe how close a graph
is to being a planar graph is provided by the graph parameter thickness. The thickness of a
graph G is the smallest number θ(G) such that the edges of G can be partitioned into θ(G)
planar subgraphs of G. Related graph parameters are geometric thickness and book thickness.
Geometric thickness was introduced by Kainen under the name real linear thickness [15].
The geometric thickness θ̄(G) of a graph G is the smallest number of colors that is needed to
find an edge-colored geometric drawing (i.e., one with edges drawn as straight-line segments)
of G with no monochromatic crossings. For the book thickness bt(G), we only consider
geometric drawings with vertices in convex position.

An immediate consequence from the definitions of thickness, geometric thickness and
book thickness is that for every graph G we have θ(G) ≤ θ̄(G) ≤ bt(G). Eppstein shows that
the three thickness parameters can be arbitrarily “separated”. Specifically, for any number
k there exists a graph with geometric thickness 2 and book thickness at least k [9] as well
as a graph with thickness 3 and geometric thickness at least k [10]. The latter result is
particularly notable since any graph of thickness k admits a k-edge-colored drawing of G
with no monochromatic crossings if edges are not required to be straight lines. This follows
from a result by Pach and Wenger [20], stating that any planar graph can be drawn without
crossings on arbitrary vertex positions with polylines.

Related to the geometric thickness is the geometric arboricity ā(G) of a graph G, in-
troduced by Dujmović and Wood [5]. It denotes the smallest number of colors among all
edge-colored geometric drawings of G without monochromatic crossings where every color
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://arxiv.org/abs/2302.14721

26:2 On the geometric thickness of 2-degenerate graphs

class is acyclic. As every such plane forest is a plane graph, we have θ̄(G) ≤ ā(G). Moreover,
every plane graph can be decomposed into three forests [22], and therefore 3θ̄(G) ≥ ā(G).

Bounds on the geometric thickness are known for several graph classes. Due to Dillencourt
et al. [4] we have n

5.646 + 0.342 ≤ θ̄(Kn) ≤ n
4 for the complete graph Kn. Graphs with

bounded degree can have arbitrarily high geometric thickness. In particular, as shown by
Barárt et al. [1], there are d-regular graphs with n vertices and geometric thickness at least
c
√
dn1/2−4/d−ε for every ε > 0 and some constant c. However, due to Duncan et al. [7], if

the maximum degree of a graph is 4, its geometric thickness is at most 2. For graphs with
treewidth t, Dujmović and Wood [5] showed that the maximum geometric thickness is dt/2e.
Hutchinson et al. [13] showed that graphs with n vertices and geometric thickness 2 can have
at most 6n− 18 edges. As shown by Durocher et al. [8], there are n-vertex graphs for any
n ≥ 9 with geometric thickness 2 and 2n− 19 edges. In the same paper, it is proven that it
is NP-hard to determine if the geometric thickness of a given graph is at most 2. Computing
thickness [16] and book thickness [2] are also known to be NP-hard problems. For bounds
on the thickness for several graph classes, we refer to the survey of Mutzel et al. [17]. An
overview on bounds for book thickness is given on the webpage of Pupyrev [21].

A graph G is d-degenerate if every subgraph contains a vertex of degree at most d. So we
can repeatedly find a vertex of degree at most d and remove it, until no vertices remain. The
reversal of this vertex order (known as a degeneracy order) yields a construction sequence
for G that adds vertex by vertex and each new vertex is connected to at most d previously
added vertices (called its predecessors). Adding a vertex with exactly two predecessors is also
known as a Henneberg 1 step [11]. In particular, any 2-degenerate graph is a subgraph of a
so-called Laman graph, however not every Laman graph is 2-degenerate. Laman graphs are
the generically minimal rigid graphs and they are exactly those graphs constructable from a
single edge by some sequence of Henneberg 1 and Henneberg 2 steps (the latter step consists
of subdividing an arbitrary existing edge and adding a new edge between the subdivision
vertex and an arbitrary, yet non-adjacent vertex). All d-degenerate graphs are (d, `)-sparse,
for any

(
d+1

2
)
≥ ` ≥ 0, that is, every subgraph on n vertices has at most dn− ` edges.

Our Results. In this paper, we study the geometric thickness of 2-degenerate graphs. Due
to the Nash-Williams theorem [18, 19], every 2-degenerate graph can be decomposed into 2
forests and hence has arboricity at most 2 and therefore thickness at most 2. On the other
hand, as observed by Eppstein [9], 2-degenerate graphs can have unbounded book thickness.
Eppstein’s examples of graphs with thickness 3 and arbitrarily high geometric thickness are
3-degenerate graphs [10]. Eppstein asks whether the geometric thickness of 2-degenerate
graphs is bounded by a constant from above and whether there are 2-degenerate graphs with
geometric thickness greater than 2. The currently best upper bound of O(logn) follows from
a result by Duncan for graphs with arboricity 2 [6]. We improve this bound and answer both
of Eppstein’s questions with the following two theorems.

I Theorem 1. For each 2-degenerate graph G we have θ̄(G) ≤ ā(G) ≤ 4.

I Theorem 2. There is a 2-degenerate graph G with ā(G) ≥ θ̄(G) ≥ 3.

We give proof ideas for these theorems in Sections 2 and 3, respectively.

2 The upper bound

In this section, we outline the proof of Theorem 1. We describe, for any 2-degenerate graph,
a construction for a straight-line drawing such that the edges can be colored using four colors,

R. Jain, M. Ricci, J. Rollin, and A. Schulz 26:3

no vertex

no vertex
no vertex &
no h-crossing

no vertex &
no v-crossing

height
= k

hs

h

xD′

height
≤ k−2

height
= k−1

h

hs

Figure 1 Left: For each vertex v in a feasible drawing, there are no other vertices on the vertical
and the horizontal line through v. Moreover, v is h-open to the right and v-open to the bottom.
Right: All vertices in the highest level (of height k) are placed to the right of all vertices of smaller
height. Each vertex in that level is incident to one edge of color h and one edge of color hs.

avoiding monochromatic crossings and monochromatic cycles. This shows that 2-degenerate
graphs have geometric arboricity, and hence geometric thickness, at most four.

For a graph G we denote its edge set with E(G) and its vertex set with V (G). Consider
a 2-degenerate graph G with a given, fixed degeneracy order. We define the height of a
vertex v in G as the length t of a longest path u0 · · ·ut with ut = v such that for each i, with
1 ≤ i ≤ t, the vertex ui−1 is a predecessor of ui. The height of G is the largest height among
its vertices. The set of vertices of the same height is called a level of G.

Our construction process embeds G level by level with increasing height. The levels are
placed alternately either strictly below or strictly to the right of the already embedded part of
the graph. If a level is placed below, then we use specific colors v and vs (short for “vertical”
and “vertical slanted”, respectively) for all edges between this level and levels of smaller
height. Similarly, we use specific colors h and hs (short for “horizontal” and “horizontal
slanted”, respectively) if a level is placed to the right. See Figure 1 (right).

To make our construction work, we need several additional constraints to be satisfied
in each step which we will describe next. For a point p in the plane, we use the notation
x(p) and y(p) to refer to the x- and y-coordinates of p, respectively. Consider a drawing D of
a 2-degenerate graph G together with a coloring of the edges with colors {h, hs, v, vs}. For
the remaining proof, we assume that each vertex of G has either 0 or exactly 2 predecessors.
If not, we add a dummy vertex without predecessors to the graph and make it the second
predecessor of all those vertices which originally only had 1 predecessor. Let k denote the
height of G. We say that D is feasible if it satisfies the following constraints:
(C1) For each vertex in G the edges to its predecessors are colored differently. If k > 0, then

each vertex of height k in G is incident to edges of colors h and hs only.
(C2) There exists some xD ∈ R such that for each vertex v ∈ V (G) we have x(v) > xD if

and only if v is of height k in G.
(C3) There is no monochromatic crossing.
(C4) No two vertices of G lie on the same horizontal or vertical line.
(C5) Each v ∈ V (G) is h-open to the right, that is, the horizontal ray emanating at v directed

to the right avoids all h-edges.
(C6) Each v ∈ V (G) is v-open to the bottom, that is, the vertical ray emanating at v directed

downwards avoids all v-edges.
These constraints are schematized in Figure 1. We now show how to construct a feasible
drawing for G. We prove this using induction on the height of the graph. The base case
k = 0 is trivial, as there are no edges in the graph. Assume that k ≥ 1 and the theorem is
true for all 2-degenerate graphs with height k − 1. Let H denote the subgraph of G induced

EuroCG’23

26:4 On the geometric thickness of 2-degenerate graphs

by vertices with height less than k. By induction, there is a feasible drawing D of H.
As a first step, we reflect the drawing D at the straight line y = −x. Additionally,

we swap the colors hs and vs as well as the colors h and v. Let D′ denote the resulting
drawing. From now on, all appearing coordinates of vertices refer to coordinates in D′. By
construction, D′ satisfies (C3–C6). Applying (C1) to D shows that in D′ each vertex of
height k − 1 is incident to one edge of color v and one edge of color vs. Applying (C2) to D
shows that there exists yD′ ∈ R such that for each vertex v ∈ V (H) we have y(v) < yD′ in
D′ if and only if v is of height k − 1.

As the second (and last) step, we place the points of height k of G such that the resulting
drawing is feasible. We only give a rough description of this placement here and refer to the
full version of this paper [14, Section 2] for a precise formulation. Let Lk denote the set of
these vertices and let xD′ denote the largest x-coordinate among all vertices in D′. We choose
a sufficiently small, positive slope m such that for any distinct u, v ∈ V (H) with y(u) < y(v),
the horizontal line through v and the straight line through u with slope m intersect at a
point p with x(p) > xD′ . For each vertex w ∈ Lk let u and v be the two predecessors of w in
H with y(u) < y(v) and let pw denote the intersection point of the straight line of slope m
passing through u (called a slanted line) and the horizontal line passing through v. We place
w at point pw and connect w to v using an edge of color h and we connect w to u using an
edge of color hs. Then (C1), (C2) and (C6) are clearly satisfied. However, this placement
comes with some issues: Several vertices in Lk might have the same predecessors and, hence,
are placed on the same point, new edges of the same color with a common endpoint in H
overlap (along a horizontal or slanted line), and (C3–C5) might not be satisfied, yet. To
address these issues, we use a small perturbation, moving each point w ∈ Lk slightly to
the bottom-right (along a straight line of slope −1/m through pw) such that all vertices
w ∈ Lk are placed at different distances to their respective point pw. In the full version of
this paper [14, Section 2] we describe such a perturbation which yields a feasible drawing of
G. This eventually shows that the geometric arboricity, and hence the geometric thickness,
of G is at most four.

3 The lower bound

In this section, we shall describe a 2-degenerate graph with geometric thickness at least 3.
For a positive integer n let G(n) denote the graph constructed as follows. Start with a vertex
set Λ0 of size n and for each pair of vertices from Λ0 add one new vertex adjacent to both
vertices from the pair. Let Λ1 denote the set of vertices added in the last step. For each pair
of vertices from Λ1 add 89 new vertices, each adjacent to both vertices from the pair. Let Λ2
denote the set of vertices added in the last step. For each pair of vertices from Λ2 add one
new vertex adjacent to both vertices from the pair. Let Λ3 denote the set of vertices added in
the last step. This concludes the construction. Observe that for each i = 1, 2, 3, each vertex
in Λi has exactly two neighbors in Λi−1. Hence, G(n) is 2-degenerate. We claim that for
sufficiently large n the graph G(n) has geometric thickness at least 3. Due to limited space
we briefly sketch of our arguments here. A complete proof is provided in the full version of
this paper [14, Section 3].

Consider a geometric drawing of G(n), for large n, and assume that there is a partition
of its edge set into two plane subgraphs A and B. In the first step, we find a large, and
particularly nice grid structure (called a tidy grid) formed by edges between Λ0 and Λ1
where many disjoint A-edges cross many disjoint B-edges. We additionally ensure that
there is a large subset Λ′1 ⊆ Λ1 spread out over many cells of this grid. Next, we consider

R. Jain, M. Ricci, J. Rollin, and A. Schulz 26:5

y2

y1

y4
y3

Y

89
Λ3

Λ2

Λ1

Λ0 Λ0

Λ1

A-edges B-edges

x

x′

y

B-edges

A
-e
d
g
es

Figure 2 Left: Sketch of the graph G(n). Middle: A tidy grid. Right: The situation leading to a
contradiction in the proof of Theorem 2 with x, x′ ∈ Λ1, Y ⊆ Λ2, and y1, y2, y3, y4 ∈ Λ3.

the connections of vertices from Λ′1 via the edges towards Λ2. We show that the drawing
restrictions imposed by the surrounding grid edges force many of the edges between Λ′1 and
Λ2 to stay within the grid. In particular, this gives a large subset Λ′2 ⊆ Λ2 spread out over
many cells of the grid. Similarly to the previous argument, we then find many of the edges
between Λ′2 and Λ3 staying within the grid. We eventually arrive at a situation depicted in
Figure 2 (right): A cell with a set Y of five vertices from Λ2 with the same predecessors in
Λ1, such that for each y ∈ Y there are four vertices y1, . . . , y4 ∈ Λ2 (one from the bottom-left,
one from the bottom-right, one from the top-right, and one from the top-left part of the grid)
and for each i the common neighbor of y and yi from Λ3 lies in the grid. It turns out, that
each y ∈ Y either has an A-edge to the left and an A-edge to the right or it has a B-edge to
the top and a B-edge to the bottom (using directions from Figure 2). As this is impossible to
realize for all five vertices in Y simultaneously, the geometric thickness of G(n) is at least 3.

References

1 János Barát, Jiří Matoušek, and David R. Wood. Bounded-degree graphs have arbitrarily
large geometric thickness. The Electronic Journal of Combinatorics, 13:R3, 2006. doi:
10.37236/1029.

2 Fan R. K. Chung, Frank T. Leighton, and Arnold L. Rosenberg. Embedding graphs in
books: A layout problem with applications to VLSI design. SIAM Journal on Algebraic
Discrete Methods, 8(1):33–58, 1987. doi:10.1137/0608002.

3 Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing
beyond planarity. ACM Computing Surveys, 52:1–37, January 2020. arXiv:1804.07257,
doi:10.1145/3301281.

4 Michael B. Dillencourt, David Eppstein, and Daniel S. Hirschberg. Geometric thickness
of complete graphs. Journal of Graph Algorithms & Applications, 4(3):5–17, 2000. arXiv:
math/9910185, doi:10.1007/s00454-007-1318-7.

5 Vida Dujmović and David R. Wood. Graph treewidth and geometric thickness parameters.
Discrete & Computational Geometry, 37:641–670, 2007. arXiv:math/0503553, doi:10.
1007/s00454-007-1318-7.

6 Christian A. Duncan. On graph thickness, geometric thickness, and separator theorems.
Computational Geometry, 44:95–99, February 2011. doi:10.1016/j.comgeo.2010.09.005.

7 Christian A. Duncan, David Eppstein, and Stephen G. Kobourov. The geometric thickness
of low degree graphs. In SCG ’04: Proceedings of the Twentieth Annual Symposium on

EuroCG’23

https://doi.org/10.37236/1029
https://doi.org/10.37236/1029
https://doi.org/10.1137/0608002
http://arxiv.org/abs/1804.07257
https://doi.org/10.1145/3301281
http://arxiv.org/abs/math/9910185
http://arxiv.org/abs/math/9910185
https://doi.org/10.1007/s00454-007-1318-7
http://arxiv.org/abs/math/0503553
https://doi.org/10.1007/s00454-007-1318-7
https://doi.org/10.1007/s00454-007-1318-7
https://doi.org/10.1016/j.comgeo.2010.09.005

26:6 On the geometric thickness of 2-degenerate graphs

Computational Geometry, pages 340–346, New York, NY, USA, June 2004. Association for
Computing Machinery. arXiv:math/0312056, doi:10.1145/997817.997868.

8 Stephane Durocher, Ellen Gethner, and Debajyoti Mondal. Thickness and colorability of
geometric graphs. Computational Geometry, 56:1–18, 2016. doi:10.1016/j.comgeo.2016.
03.003.

9 David Eppstein. Separating geometric thickness from book thickness. Preprint, 2001.
arXiv:math/0109195.

10 David Eppstein. Separating thickness from geometric thickness. In János Pach, editor, To-
wards a Theory of Geometric Graphs, volume 342 of Contemporary Mathematics. American
Mathematical Society, 2004. arXiv:math/0204252.

11 Lebrecht Henneberg. Die Graphische Statik der Starren Körper. In Felix Klein and Conrad
Müller, editors, Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer
Anwendungen: Vierter Band: Mechanik, pages 345–434, Wiesbaden, Germany, 1908. B. G.
Teubner Verlag. doi:10.1007/978-3-663-16021-2_5.

12 Seok-Hee Hong and Takeshi Tokuyama, editors. Beyond Planar Graphs. Communications
of NII Shonan Meetings. Springer, 2020. doi:10.1007/978-981-15-6533-5.

13 Joan P. Hutchinson, Thomas C. Shermer, and Andrew Vince. On representations of
some thickness-two graphs. Computational Geometry, 13(3):161–171, 1999. doi:10.1016/
S0925-7721(99)00018-8.

14 Rahul Jain, Marco Ricci, Jonathan Rollin, and André Schulz. On the geometric thickness
of 2-degenerate graphs. Preprint, 2023. arXiv:2302.14721.

15 Paul C. Kainen. Thickness and coarseness of graphs. Abhandlungen aus dem Mathematis-
chen Seminar der Universität Hamburg, 39:88–95, 1973. doi:10.1007/BF02992822.

16 Anthony Mansfield. Determining the thickness of graphs is NP-hard. Mathematical
Proceedings of the Cambridge Philosophical Society, 93(1):9–23, 1983. doi:10.1017/
S030500410006028X.

17 Petra Mutzel, Thomas Odenthal, and Mark Scharbodt. The thickness of graphs: A survey.
Graphs and Combinatorics, 14:59–73, 1998. doi:10.1007/PL00007219.

18 Crispin St.J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of
the London Mathematical Society, 36:445–450, 1961. doi:10.1112/jlms/s1-36.1.445.

19 Crispin St.J. A. Nash-Williams. Decomposition of finite graphs into forests. Journal of the
London Mathematical Society, 39:12, 1964. doi:10.1112/jlms/s1-39.1.12.

20 János Pach and Rephael Wenger. Embedding planar graphs at fixed vertex locations.
Graphs and Combinatorics, 17(4):717–728, 2001. doi:10.1007/PL00007258.

21 Sergey Pupyrev. Linear Graph Layouts. Accessed: 2022-11-30. URL: https://spupyrev.
github.io/linearlayouts.html.

22 Walter Schnyder. Embedding planar graphs on the grid. In SODA ’90: Proceedings of the
first annual ACM-SIAM Symposium on Discrete Algorithms, pages 138–148. Society for
Industrial and Applied Mathematics, January 1990. doi:10.5555/320176.320191.

http://arxiv.org/abs/math/0312056
https://doi.org/10.1145/997817.997868
https://doi.org/10.1016/j.comgeo.2016.03.003
https://doi.org/10.1016/j.comgeo.2016.03.003
http://arxiv.org/abs/math/0109195
http://arxiv.org/abs/math/0204252
https://doi.org/10.1007/978-3-663-16021-2_5
https://doi.org/10.1007/978-981-15-6533-5
https://doi.org/10.1016/S0925-7721(99)00018-8
https://doi.org/10.1016/S0925-7721(99)00018-8
http://arxiv.org/abs/2302.14721
https://doi.org/10.1007/BF02992822
https://doi.org/10.1017/S030500410006028X
https://doi.org/10.1017/S030500410006028X
https://doi.org/10.1007/PL00007219
https://doi.org/10.1112/jlms/s1-36.1.445
https://doi.org/10.1112/jlms/s1-39.1.12
https://doi.org/10.1007/PL00007258
https://spupyrev.github.io/linearlayouts.html
https://spupyrev.github.io/linearlayouts.html
https://doi.org/10.5555/320176.320191

Realizations of multiassociahedra via rigidity∗

Luis Crespo Ruiz and Francisco Santos

Departamento de Matemáticas, Estadística y Computación, Universidad de
Cantabria, 39005 Santander, Spain
luis.cresporuiz@unican.es, francisco.santos@unican.es

Abstract
Let ∆k(n) denote the simplicial complex of (k + 1)-crossing-free subsets of edges in

([n]
2

)
. Here

k, n ∈ N and n ≥ 2k + 1. Jonsson (2005) proved that (neglecting the short edges that cannot
be part of any (k + 1)-crossing), ∆k(n) is a shellable sphere of dimension k(n − 2k − 1) − 1, and
conjectured it to be polytopal. It was later noticed by Stump (2011) that the same result and
question follows from the work of Knutson and Miller (2004) on subword complexes.

Despite considerable effort, the only values of (k, n) for which the conjecture is known to hold
are n ≤ 2k + 3 (Pilaud and Santos, 2012) and (2, 8) (Bokowski and Pilaud, 2009). Using ideas from
rigidity theory we realize ∆k(n) as a polytope for (k, n) ∈ {(2, 9), (2, 10), (3, 10)}. We also realize it
as a simplicial fan for all n ≤ 13 and arbitrary k, except the pairs (3, 12) and (3, 13).

Related Version arXiv:2212.14265

1 The multiassociahedron

Triangulations of the convex n-gon P (n > 2) are the facets of an abstract simplicial complex
with vertex set

([n]
2

)
and defined by taking as simplices all the non-crossing sets of diagonals.

This simplicial complex, ignoring the boundary edges {i, i + 1}, is a polytopal sphere of
dimension n − 4 dual to the associahedron. (Here and all throughout the paper, indices for
vertices of the n-gon are regarded modulo n).

A similar complex can be defined if we forbid crossings of more than a certain number k

of edges (assuming n > 2k + 1), instead of forbidding pairwise crossings.

▶ Definition 1.1. Two disjoint elements {i, j}, {k, l} ∈
([n]

2
)
, with i < j and k < l, of

([n]
2

)

cross if i < k < j < l or k < i < l < j. That is, if they cross when seen as diagonals of a
convex n-gon. A k-crossing is a subset of k elements of

([n]
2

)
such that every pair cross. A

subset of
([n]

2
)

is (k + 1)-free if it doesn’t contain any (k + 1)-crossing. A k-triangulation is
a maximal (k + 1)-free set. We call ∆k(n) the simplicial complex consisting of (k + 1)-free
sets of diagonals, whose facets are the k-triangulations.

Diagonals of length at most k (where length is measured cyclically) cannot participate
in any (k + 1)-crossing. Thus, it makes sense to define the reduced complex ∆k(n) obtained
from ∆k(n) by deleting them. We call ∆k(n) the multiassociahedron or k-associahedron.
See [16, 17, 20] for additional information.

It was proved in [15, 9] that every k-triangulation of the n-gon has exactly k(2n−2k −1)
diagonals. That is, ∆k(n) is pure of dimension k(2n − 2k − 1) − 1. Jonsson [11] further
proved that the reduced version ∆k(n) is a shellable sphere of dimension k(n − 2k − 1) − 1,
and conjectured it to be the normal fan of a polytope.

∗ Supported by grant PID2019-106188GB-I00 funded by MCIN/AEI/10.13039/501100011033, by
FPU19/04163 of the Spanish Government, and by project CLaPPo (21.SI03.64658) of Universidad
de Cantabria and Banco Santander

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

27:2 Realizations of multiassociahedra via rigidity

▶ Conjecture 1.2 ([11]). For every n ≥ 2k +1 the complex ∆k(n) is a polytopal sphere. That
is, there is a simplicial polytope of dimension k(n − 2k − 1) − 1 and with

(
n
2
)

− kn vertices
whose lattice of proper faces is isomorphic to ∆k(n).

Conjecture 1.2 is easy to prove for n ≤ 2k + 3. ∆k(2k + 1) is indeed a −1-sphere (the
complex whose only face is the empty set). ∆k(2k +2) is the face poset of a (k −1)-simplex,
and ∆k(2k + 3) is (the polar of) the cyclic polytope of dimension 2k − 1 with n vertices
(Lemma 8.7 in [17]). The only additional case for which Jonsson’s conjecture is known to
hold is k = 2 and n = 8 [2]. In some additional cases ∆k(n) has been realized as a complete
simplicial fan, but it is open whether this fan is polytopal. This includes the cases n ≤ 2k+4
[1], the cases k = 2 and n ≤ 13 [14] and the cases k = 3 and n ≤ 11 [1].

Interest in the polytopality of ∆k(n) also comes from cluster algebras and Coxeter com-
binatorics. Let w ∈ W be an element in a Coxeter group W and let Q be a word of a
certain length N . Assume that Q contains as a subword a reduced expression for w. The
subword complex of Q and w is the simplicial complex with vertex set [N] and with faces
the subsets of positions that can be deleted from Q and still contain a reduced expression
for w. Knutson and Miller [13, Theorem 3.7 and Question 6.4] proved that every subword
complex is either a shellable ball or sphere, and they asked whether all spherical subword
complexes are polytopal. It was later proved by Stump [20, Theorem 2.1] that ∆k(n) is
a spherical subword complex for the Coxeter system of type An−2k−1 and, moreover, it
is universal: every other spherical subword complex of type A appears as a link in some
∆k(n) [18, Proposition 5.6]. Hence, Conjecture 1.2 is equivalent to a positive answer in type
A to the question of Knutson and Miller.

2 Realizing a simplicial complex as a polytope

If ∆ is a pure simplicial complex with vertex set V of dimension D − 1 (so that its facets
have size D) to realize it as a polytope we only need to find a vector configuration V =
{vi}i∈V ⊂ RD on which ∆ yields a complete simplicial fan, and then prove that the fan is a
regular triangulation of V. See [8, Section 9.5] for details.

We want to apply this to the complex ∆k(n), for which V ⊂
([n]

2
)

and D = k(n−2k −1).
This complex has two important properties. On the one hand, it is a pseudo-manifold.
From the point of view of k-triangulations this is equivalent to the following property, which
defines flips among k-triangulations:
▶ Proposition 2.1 (Flips [17, section 5]). For every edge f of a k-triangulation T with length
greater than k, there is a unique edge e ∈

([n]
2

)
such that

T△{e, f} := T \ {f} ∪ {e}

is another k-triangulation.
On the other hand, since ∆k(n) is a sphere, the link of every face of codimension two is

a cycle. We will need the following property of these cycles, that we prove in the full version
of this paper [6, Corollary 2.13]:
▶ Proposition 2.2 (Short cycles). All links of dimension 1 in ∆k(n) are cycles of length ≤ 5.

With these two properties, the following is our main result about how to realize ∆k(n) [6,
Corollary 2.13], which is a version of [8, Corollary 4.5.20] adapted to our case:

▶ Theorem 2.3. Let V = {vij}{i,j}∈([n]
2) ⊂ Rk(2n−2k−1) be a vector configuration. V embeds

∆k(n) as a complete fan in Rk(n−2k−1) if and only if it satisfies the following properties:

L. Crespo Ruiz, F. Santos 27:3

1. (Basis collection) For every facet (k-triangulation) T , the vectors {vij : {i, j} ∈ T} are
a linear basis.

2. (Interior Cocircuit Property, ICoP) For every flip between two k-triangulations T1 and
T2, the unique linear dependence among the vectors {vij : {i, j} ∈ T1 ∪ T2} has the same
sign for the two elements involved in the flip (the unique elements in T1 \T2 and T2 \T1).

3. (Elementary cycles of length 5) Given a codimension 2 face ρ whose link Z is a cycle of
length five (see Proposition 2.2), there are three consecutive elements i1, i2, i3 ∈ Z such
that the unique linear dependence among the vectors {vi : i ∈ ρ∪{i1, i2, i3}} has opposite
sign for i2 than the sign it takes for i1 and i3.

Once we have the complete fan, we need it to be polytopal, which is equivalent to the
feasibility of a system of linear inequalities. For this we use a version of [19, Theorem 3.7],
which in turn is closely related to [8, Proposition 5.2.6(i)].

3 Rigidity

The number k(2n−2k −1) = 2kn−
(2k+1

2
)

of edges in a k-triangulation happens to coincide
with the rank of any abstract rigidity matroid of dimension 2k on n elements. These ma-
troids capture and generalize the combinatorial rigidity of graphs with n vertices generically
embedded in R2k. This numerical coincidence (plus some evidence) led [17] to conjecture
that all k-triangulations of the n-gon are bases in the generic bar-and-joint rigidity matroid
of n points in dimension 2k. If this is true then a natural way to apply Theorem 2.3 is to
use as vector configuration V the rows of the corresponding rigidity matrix, as follows.

Let p = (p1, . . . , pn) be a set of n points in Rd, labelled by [n]. Their bar-and-joint
rigidity matrix is the following

(
n
2
)

× nd matrix:

R(p) :=




p1 − p2 p2 − p1 0 . . . 0 0
p1 − p3 0 p3 − p1 . . . 0 0

...
...

...
...

...
p1 − pn 0 0 . . . 0 pn − p1

0 p2 − p3 p3 − p2 . . . 0 0
...

...
...

...
...

0 0 0 . . . pn−1 − pn pn − pn−1




. (1)

The shape of the matrix is as follows: there is a row for each pair {i, j} ∈
([n]

2
)
, so rows

can be considered labeled by edges in the complete graph Kn. Then, there are n blocks of
columns, one for each point pi and with d columns in each block; in the row of an edge {i, j}
(or {j, i}) only the blocks of vertices i and j ae nonzero, and they contain respectively the
vectors pi − pj and pj − pi. Put differently, the matrix can be interpreted as a “directed
incidence matrix” of the complete graph Kn, except instead of having a single +1 and
−1 corresponding each incidence between a vertex and an edge we have the d-dimensional
vectors pi − pj and pj − pi. For any E ⊂

([n]
2

)
we denote by R(p)|E the restriction of R(p)

to the rows or elements indexed by E.

▶ Definition 3.1. Let E ⊂
([n]

2
)

be a subset of edges of Kn (equivalently, of rows of R(p)).
We say that E, or the corresponding subgraph of Kn, is self-stress-free or independent if the
rows of R(p)|E are linearly independent, and rigid or spanning if they are linearly spanning
(that is, they have the same rank as the whole matrix R(p)).

EuroCG’23

27:4 Realizations of multiassociahedra via rigidity

Put differently, self-stress-free and rigid graphs are, respectively, the independent and
spanning sets in the linear matroid of rows of R(p). We call this matroid the bar-and-joint
rigidity matroid of p and denote it R(p). The following two matrices “with the same shape”
(in particular, with the same size) as R(p) also define abstract rigidity matroids:

The hyperconnectivity matroid of p ⊂ Rd, denoted H(p), is the matroid of rows of

H(p) :=




p2 −p1 0 . . . 0 0
p3 0 −p1 . . . 0 0
...

...
...

...
...

pn 0 0 . . . 0 −p1
0 p3 −p2 . . . 0 0
...

...
...

...
...

0 0 0 . . . pn −pn−1




(2)

For points q = (q1, . . . , qn) in R2 and a parameter d ∈ N, the d-dimensional cofactor
rigidity matroid of the points q1, . . . , qn, which we denote Cd(q), is the matroid of rows
of

Cd(q) :=




c12 −c12 0 . . . 0 0
c13 0 −c13 . . . 0 0
...

...
...

...
...

c1n 0 0 . . . 0 −c1n

0 c23 −c23 . . . 0 0
...

...
...

...
...

0 0 0 . . . cn−1,n −cn−1,n




, (3)

where the vector cij ∈ Rd associated to qi = (xi, yi) and qj = (xj , yj) is

cij =
(
(xi − xj)d−1, (yi − yj)(xi − xj)d−2, . . . , (yi − yj)d−1)

.

For d = 1 this is independent of the choice of p and equals the directed incidence matrix
of Kn. For d = 2 we recover the two-dimensional bar-and-joint rigidity matrix p.

In [4] we prove that the three theories coincide when the points p or q are chosen along
the moment curve (for bar-and-joint and hyperconnectivity) and the parabola (for cofactor).
More precisely:

▶ Theorem 3.2 ([4]). Let t1 < · · · < tn ∈ R be real parameters. Let

pi = (1, ti, . . . , td−1
i) ∈ Rd, p′

i = (ti, t2
i , . . . , td

i) ∈ Rd, qi = (ti, t2
i) ∈ R2.

Then, the matrices H(p1, . . . , pn), R(p′
1, . . . , p′

n) and C(q1, . . . , qn) can be obtained from
one another multiplying on the right by a regular matrix and then multiplying its rows by
some positive scalars. In particular, the rows of the three matrices define the same oriented
matroid.

▶ Definition 3.3. We call the matrix H(p1, . . . , pn) in the statement of Theorem 3.2 the
polynomial d-rigidity matrix with parameters t1, . . . , tn. We denote it Pd(t1, . . . , tn), and
denote Pd(t1, . . . , tn) the corresponding matroid.

L. Crespo Ruiz, F. Santos 27:5

Now, for any choice of points p ∈ R2k or q ∈ R2 in general position, the rows of the ma-
trices R(p), H(p) or C2k(q) are a real vector configuration V ⊂ R2kn of rank k(2n − 2k − 1)
(since this is the rank of in any abstract rigidity matroid). Moreover, if p is chosen along
the moment curve or q along the parabola, then the three theories give linearly equivalent
embeddings. The question we address is whether using these vectors as the rays for a real-
ization of the k-associahedron ∆k(n) we get that the reduced version ∆k(n) is a polytopal
fan. We pose the conjecture that positions along the moment curve realizing ∆k(n) as a
basis collection exist for every k and n:

▶ Conjecture 3.4. k-triangulations of the n-gon are isostatic (that is, bases) in the bar-and-
joint rigidity matroid of generic points along the moment curve in dimension 2k.

This conjecture implies the one from [17] mentioned above, but it would imply the same
for the generic cofactor rigidity matroid and for the generic hyperconnectivity matroid. In
fact the latter is already known to hold by a previous result of ours [5, Corollary 2.17].

4 Main results

The proofs of the following results are included in the full version.
First, as evidence for Conjecture 3.4 we prove the case k = 2:

▶ Theorem 4.1 ([6, Theorem 1.4]). 2-triangulations are isostatic in dimension 2k for generic
positions along the moment curve.

One may be tempted to change “generic” to “arbitrary” in Conjecture 3.4, but we show
that this stronger conjecture fails in the worst possible way: for every k ≥ 3 and n ≥ 2k + 3,
the standard positions along the moment curve make some k-triangulation not a basis.

▶ Theorem 4.2 ([6, Theorem 1.6]). The graph K9 − {16, 37, 49} is a 3-triangulation of the
n-gon, but it is dependent in the rigidity matroid C6 for any configuration {q1, q9} ⊂ R2 if
the lines through q1q6, q3q7, and q4q9 meet at a point. This occurs, for example, if we take
the nine points on the parabola with ti = i.

In fact, for n ≤ 2k + 3 we can characterize exactly what positions realize ∆k(n) as a fan,
for cofactor rigidity (and, in particular, for the other two forms of rigidity with positions
along the moment curve). In the case n = 2k + 3 this is governed by the geometry of
the star-polygon formed by the k-relevant edges. More precisely, we call “big side” of each
relevant edge (that is, edge of k + 1) in a (2k + 3)-gon the open half-plane containing k + 1
vartices:

▶ Theorem 4.3 ([6, Theorem 3.14]). 1. For n = 2k + 2, any choice of q1, . . . , q2k+2 ∈ R2

in convex position realizes ∆k(n) as a polytopal fan.
2. Let q1, q2, . . . , q2k+3 ∈ R2 be in convex position. ∆k(2k+3) is realized by C2k(q1, . . . , q2k+3)

as a complete fan if and only if the big sides of all relevant edges have a non-empty in-
tersection.

Interestingly, from part (2) of this result it is quite easy to show that no positions of
points along the moment curve realize ∆3(12). More generally:

▶ Corollary 4.4 ([6, Theorem 1.7]). If k ≥ 3, n ≥ 2k + 6 then no choice of points q ⊂ R2 in
convex position realizes ∆k(n) as a fan via cofactor rigidity.

EuroCG’23

27:6 Realizations of multiassociahedra via rigidity

Observe that this is not a counter-example to Conjecture 3.4; it implies that via rigid-
ity along the moment curve we cannot achieve the three conditions of Theorem 2.3, but
Conjecture 3.4 is about condition 1 alone.

Finally, for every n ≤ 13 we have experimentally found positions along the moment curve
realizing ∆k(n) as a fan, except in the cases (n, k) ∈ {(3, 12), (3, 13)} which are forbidden
by Corollary 4.4. For many of them we have also realized the polytope:

▶ Theorem 4.5 ([6, Lemma 4.13]). Let t = {1, 2, . . . , n} be standard positions for the pa-
rameters. Then:
1. Standard positions for P4(t) realize ∆2(n) as the normal fan of a polytope if n ≤ 9.
2. The non-standard positions t = (−2, 1, 2, 3, 4, 5, 6, 7, 9, 20) for P4(t) realize ∆2(10) as the

normal fan of a polytope.
3. Standard positions for P4(t) realize ∆2(n) as a complete fan for all n ≤ 13.

▶ Theorem 4.6 ([6, Lemma 4.14]). Equispaced positions along the circle realize ∆k(n) as a
fan for (n, k) ∈ {(3, 10), (3, 11), (4, 12), (4, 13)}. The first one is polytopal.

References
1 Nantel Bergeron, Cesar Ceballos, Jean-Philippe Labbé, Fan realizations of subword com-

plexes and multi-associahedra via Gale duality, Discrete Comput. Geom. 54(1), 195–231
(2015).

2 Jürgen Bokowski, Vincent Pilaud, On symmetric realizations of the simplicial complex of
3-crossing-free sets of diagonals of the octagon, Proceedings of the 21st Annual Canadian
Conference on Computational Geometry, Vancouver, British Columbia, Canada, August
17–19, 2009.

3 Cesar Ceballos, Jean-Philippe Labbé, and Christian Stump. Subword complexes, cluster
complexes, and generalized multi-associahedra. J. Algebraic Combin., 39(1):17–51, 2014.

4 Luis Crespo Ruiz, Francisco Santos, Bar-and-joint rigidity on the moment curve coincides
with cofactor rigidity on a conic, preprint arXiv:2106.08923, 2021. Accepted in Combina-
torial Theory.

5 Luis Crespo Ruiz, Francisco Santos, Multitriangulations and tropical Pfaffians, preprint
arXiv:2203.04633, 2022

6 Luis Crespo Ruiz, Francisco Santos, Realizations of multiassociahedra via rigidity, preprint
arXiv:2212.14265, 2022.

7 Peter R. Cromwell, Polyhedra, Cambridge University Press, 1997.
8 Jesús A. De Loera, Jörg Rambau, Francisco Santos, Triangulations: Structures for Algo-

rithms and Applications, Springer-Verlag, 2012.
9 Andreas Dress, Jack H. Koolen and Vincent Moulton. On line arrangements in the hyper-

bolic plane. Eur. J. Comb., 23(5) (2002), 549–557.
10 Branko Grünbaum, Geoffrey C. Shephard, Tilings and Patterns, W. H. Freeman & Co.,

1989.
11 Jakob Jonsson, Generalized triangulations and diagonal-free subsets of stack polyominoes,

J. Comb. Theory Ser. A 112(1) (2005), 117–142.
12 Gil Kalai, Hyperconnectivity of graphs, Graphs and Combinatorics, 1 (1985), 65–79.
13 Allen Knutson and Ezra Miller. Subword complexes in Coxeter groups. Adv. Math., 184(1)

(2004), 161–176.
14 Thibault Manneville, Fan realizations for some 2-associahedra, Experimental Mathematics,

27(4), 377–394 (2017).
15 Tomoki Nakamigawa. A generalization of diagonal flips in a convex polygon. Theor. Com-

put. Sci. 235(2) (2000), 271–282.

https://arxiv.org/abs/2106.08923
https://arxiv.org/abs/2203.04633
https://arxiv.org/abs/2212.14265

L. Crespo Ruiz, F. Santos 27:7

16 Vincent Pilaud, Michel Pocchiola, Multitriangulations, Pseudotriangulations and Primitive
Sorting Networks. Discrete Comput. Geom. 41 (2012), 142–191.

17 Vincent Pilaud, F. Santos, Multitriangulations as Complexes of Star Polygons, Discrete
Comput. Geom 41 (2009), 284–317.

18 Vincent Pilaud, Francisco Santos, The brick polytope of a sorting network. European J.
Combin. 33:4 (2012), 632–662.

19 Günter Rote, Francisco Santos, Ileana Streinu, Expansive Motions and the Polytope
of Pointed Pseudo-Triangulations, In “Discrete and Computational Geometry – The
Goodman-Pollack Festschrift” (B. Aronov, S. Basu, J. Pach, M. Sharir, eds), Algorithms
and Combinatorics 25, Springer Verlag, Berlin, June 2003, pp. 699–736.

20 Christian Stump. A new perspective on k-triangulations. J. Comb. Theory A 118(6) (2011),
1794–1800.

21 Walter Whiteley, Some Matroids from Discrete Applied Geometry, in Matroid Theory
(Joseph E. Bonin, James G. Oxley and Brigitte Servatius, Editors), Contemporary Math-
ematics 197, 1996, pp. 171–311

EuroCG’23

Bichromatic Perfect Matchings with Crossings∗

Oswin Aichholzer1, Stefan Felsner2, Rosna Paul1, Manfred
Scheucher2, and Birgit Vogtenhuber1

1 Institute of Software Technology, Graz University of Technology, Austria
oaich,ropaul,bvogt@ist.tugraz.at

2 Institute for Mathematics, Technical University of Berlin, Germany
felsner,scheucher@math.tu-berlin.de

Abstract
We consider bichromatic point sets with n red and n blue points and study straight-line bichromatic
perfect matchings on them. We show that every such point set in convex position admits a matching
with at least 3n2

8 − O(n) crossings. Moreover, this bound is asymptotically tight since for any
k > 3n2

8 there exist bichromatic point sets that do not admit any perfect matching with k crossings.

1 Introduction

Let P = R ∪ B, |R| = |B| = n be a point set in general position, that is, no three points
of P are collinear. We refer to R and B as the set of red and blue points, respectively.
A straight-line matching M of P where every point in R is uniquely matched to a point in B

is called a straight-line bichromatic perfect matching (all matchings considered in this work
are straight-line, so we will mostly omit this term). In this work, we study the existence of
bichromatic perfect matchings with a fixed number k of crossings on P , where 0 ≤ k ≤

(
n
2
)
.

It is well known and easy to see that there exists a crossing-free (that is, k = 0) such
matching for every P [7]. Perfect matchings with k crossings on uncolored point sets have
been considered in [2]. There it is shown that for every k ≤ n2

16 −O(n
√

n), every point set of
size 2n admits a perfect matching with exactly k crossings and that there exist such point
sets where every perfect matching has fewer than 20n2

72 crossings. As a direct consequence,
there exist bichromatic point sets which do not admit bichromatic perfect matchings with k

crossings for k > 20n2

72 . On the other hand, 2n uncolored points in convex position admit
perfect matchings with k crossings for all k, where 0 ≤ k ≤

(
n
2
)
[2]. But when we color the

points, the situation changes quite drastically.
Consider a point set P of 2n points in convex position (convex point set, for short) with

an alternating coloring, that is, every second point along the convex hull is red (and the other
points are blue). Moreover, let the number n of red (and blue) points be even. Then the
number of crossings in a bichromatic perfect matching M on P is at most n(n−2)

2 =
(

n
2
)
− n

2 .
The idea is as follows: Label the points of P as p0, p1, . . . , p2n−1 along the boundary of the
convex hull. The point pi cannot be matched to pi+n since both points are of the same
color. Hence, for any edge e in such a matching M of P , the number of crossings of e is at
most n− 2. As every crossing involves two edges, the number of crossings in M is at most
n(n−2)

2 =
(

n
2
)
− n

2 . This bound is tight, since it is possible to construct a bichromatic perfect
matching M on P with exactly

(
n
2
)
− n

2 crossings as follows. For 0 ≤ i ≤ n− 1, match the
point pi to the point pi+n+1, when i is even. Otherwise, match pi to pi+n−1. Together this
leads to the following question.

∗ O.A. and R.P. supported by the Austrian Science Fund (FWF): W1230. S.F. supported by the DFG
Grant FE 340/13-1. M.S. supported by the DFG Grant SCHE 2214/1-1.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

28:2 Bichromatic Perfect Matchings with Crossings

I Open Problem 1. For which values of k does every bichromatic convex point set P = R∪B,
|R| = |B| = n, admit a straight-line bichromatic perfect matching with exactly k crossings?

The above example implies that if k >
(

n
2
)
− n

2 , there exist bichromatic point sets with n

red and n blue points that do not have any bichromatic perfect matching with k crossings.
Thus, Open Problem 1 can be true only for k ≤

(
n
2
)
− n

2 . In this paper, we further improve
the bound on k as follows.

I Theorem 1.1. For any k > 3n2

8 , there exists a bichromatic convex point set with n red and
n blue points that does not have a straight-line bichromatic perfect matching with k crossings.

Related work: A survey by Kano and Urrutia [6] gives an overview of various problems
on bichromatic point sets, including matching problems. Crossing-free bichromatic perfect
matchings have been studied from various perspectives such as their structure [5, 8], linear
transformation distance [1], and matchings compatible to each other [3, 4]. Sharir and
Welzl [9] proved that the number of crossing-free bichromatic perfect matchings on 2n

points is at most O(7.61n). However, not much is known about the number or existence of
bichromatic perfect matchings with k crossings, for k > 0.

2 Bichromatic Convex Point Sets

Let Cn,n be the collection of all bichromatic convex point sets P = R∪B with |R| = |B| = n.
For a point set P ∈ Cn,n, we label the points in P in clockwise direction along the convex hull
as p0, p1, . . . , p2n−1 and refer to this as the clockwise ordering. We will consider all indices
modulo 2n. The number of crossings in any birchromatic perfect matching MP of P is
denoted by cr(MP). If MP has the maximum number of crossings among all such matchings
of P , then it is called a max-crossing matching on P . Among all max-crossing matchings for
all P ∈ Cn,n, we are interested in max-crossing matchings which have the minimum number
of crossings. We call such a matching a min-max-crossing matching of Cn,n. Further, from
now on, we refer to bichromatic perfect matchings just as matchings, unless otherwise stated.

For P ∈ Cn,n we define the collection of all points of the same color which are consecutive
in clockwise order as a block. For example, if R1 = {pa, pa+1, . . . , pa+s} is a block of red
points, then pa−1 and pa+s+1 are blue, and the next collection will be a block of blue points
including pa+s+1. By repeating the process along the boundary of the convex hull of P , we
get a collection of blocks {R1, B1, R2, B2, . . . , Rs, Bs} w.r.t. the clockwise order such that
|R1∪R2∪. . .∪Rs| = |B1∪B2∪. . .∪Bs| = n. These blocks are non-empty and alternate in color.
A bichromatic convex point set with the collection of blocks {R1, B1, R2, B2, . . . , Rs, Bs}
is called a 2s–block coloring. For example, a 2n–block coloring is an alternating coloring.
If all 2s blocks have the same cardinality, then the coloring is called a balanced 2s–block
coloring. See Figure 2(a) for a bichromatic point set with a balanced 4–block coloring.
Strictly speaking, a balanced 4–block coloring can only be achieved if n is even. If n is
odd, the cardinalities of some blocks differ by at least ±1. We call a 4–block coloring with
maximum cardinality difference of ±1 nearly balanced. Considering the properties that we
discuss in this paper, nearly balanced 4–block colorings and balanced 4–block colorings
behave very similarly. So abusing the terminology a bit, we will mostly refer to all of them as
balanced 4–block colorings. With these definitions we can now formulate a stronger version
of Theorem 1.1.

I Theorem 2.1. Let P ∈ Cn,n have a balanced 4–block coloring and let M∨P be a max-crossing
matching of P . Then cr(M∨P) = 3n2

8 −O(n). Moreover, M∨P is a min-max-crossing matching
of the set Cn,n.

O. Aichholzer, S. Felsner, R. Paul, M. Scheucher and B. Vogtenhuber 28:3

Clearly, Theorem 2.1 implies Theorem 1.1, as any bichromatic convex point set with a
balanced 4–block coloring satisfies Theorem 1.1. Theorem 2.1 will follow from Lemma 2.4
and Lemma 2.5 below which are stated and shown in the next sections.

2.1 Min-Max-Crossing Matching for 4–block colorings
In this section, we construct a min-max-crossing matching among all bichromatic convex
point sets with a 4–block coloring.

I Lemma 2.2. Let P ∈ Cn,n have a 4–block coloring with blocks R1, B1, R2, B2 and let
M∨P be a max-crossing matching on P . Then for any block X ∈ {R1, R2, B1, B2}, the edges
emanating from X form a crossing family, that is, every pair of these edges forms a crossing.

Proof. Let e and f be two edges of M∨P such that e = ribi′ and f = rjbj′ where ri, rj ∈ X

with i < j. For the sake of contradiction, assume that e and f do not cross. By replacing
e and f by e′ = ribj′ and f ′ = rjbi′ , we get a new matching, say M ′

P . As all points are in
convex position, the edges crossing e and f will also cross the new edges e′ and f ′. Also,
the edges crossing exactly one of e and f will cross exactly one of e′ and f ′. In addition,
e′ and f ′ cross each other. Hence the number of crossings of M ′

P is strictly larger than the
number of crossings of M∨P , a contradiction. J

Recall the clockwise ordering of the points in P . Without loss of generality, assume that
R1 = {p1, p2, . . . , p|R1|}. Let M∨P be a max-crossing matching of P . Assume that in M∨P , the
point pi ∈ R1 is matched to a point (say p′i) in B2, and pj ∈ R1 is matched to a point (say p′j)
in B1 such that i < j. By the clockwise ordering of P , i < j < j′ < i′ and hence pip

′
i does

not cross pjp′j . This is a contradiction by Lemma 2.2. Thus, in M∨P , if pi ∈ R1 is matched to
a point in B2, then all pj ∈ R1 with i < j must be matched to a point in B2. More precisely,
there exists an integer a1 for R1 such that all pi ∈ R1 with i ≤ a1 are matched to B1 and all
pi ∈ R1 with i > a1 are matched to B2. In a similar way we can show that all pi ∈ B1 with
i ≤ |R1|+ |B1| − a1 have to be matched to R2 and the remaining unmatched points have to
be matched to R1. In other words, there exists an integer a1 such that first a1 points of R1
are matched to the last a1 points of B1 (as a crossing family). The remaining last |R1| − a1
points of R1 have to be matched to the first |R1| − a1 points of B2 (as a crossing family).
This fixes the remaining edges of M∨P . That is, the remaining last n− |B1| − |R1|+ a1 points
of B2 must be matched, as a crossing family, to the first n− |B1| − |R1|+ a1 points of R2
(see Figure 1). Finally, match the remaining points as a crossing family. Hence, to get a
max-crossing matching on P , it is sufficient to determine the optimal value of a1.

I Lemma 2.3. Let P ∈ Cn,n have a 4–block coloring with blocks R1, B1, R2, and B2.
Let MP be a matching on P such that the first x points of the set R1 are matched to the
last x points of B1, as a crossing family. Then MP is a max-crossing matching on P iff
x = 1

2 (|R1|+ |B1| − n
2).

Proof. Consider a matching MP with the above property. Assume that |R1| = r1 ≥ n
2

and |B1| = b1 ≥ n
2 . The number of pairs of non-crossing edges in MP is obtained by

(r1−x)(b1−x) + x(n− r1− b1 + x) = r1b1− 2xb1− 2xr1 + nx + 2x2. As we want to find the
value of x that gives the maximum number of crossings, we calculate the value of x such that
f(x) = (n− 2r1 − 2b1)x + 2x2 + r1b1 attains the minimum. This is achieved by setting the
first derivative of f(x) to zero as f ′′(x) > 0. We get f ′(x) = 0 for x = 1

2 (r1 + b1 − n
2). J

By the proof of Lemma 2.3 the minimum number of pairs of non-crossing edges in M∨P is
r1b1 − 1

2 (r1 + b1 − n
2)2. This gives the exact structure and the number of crossings in M∨P .

EuroCG’23

28:4 Bichromatic Perfect Matchings with Crossings

R1

R2

B1
B2

{ {

{

a1 |R1| − a1

|B1| − a1

n− |R1| − |B1| + a1

{
Figure 1 Structure of a max-crossing matching in a 4–block coloring.

The number of crossings cr(M∨P) can be obtained by subtracting the number of non-crossing
edge pairs from the theoretical maximum number of the crossing edge pairs in M∨P . That is,
cr(M∨P) =

(
n
2
)
− (r1b1 − 1

2 (r1 + b1 − n
2)2). Next we check which coloring, among all 4–block

colorings, produces a min-max-crossing matching for all 4–block colorings. Full proofs for
statements marked with (?) can be found in the full version of this paper.

I Lemma 2.4. (?) Let P ∈ Cn,n have a balanced 4–block coloring and let M∨P be a max-
crossing matching of P . Then cr(M∨P) = 3n2

8 −O(n). Moreover, M∨P is a min-max-crossing
matching for all the 4-block colored point sets of size 2n.

Proof sketch. The minimum number of pairs of non-crossing edges in M∨P is given by
h(r1, b1) = r1b1 − 1

2 (r1 + b1 − n
2)2. Since we want to find the values of r1 and b1 that

minimizes the number of crossings among max-crossing matchings of the 4–block colorings,
we need to maximize h(r1, b1) for r1, b1 ≥ n

2 . By analyzing the partial derivatives of the
function h, it follows that h attains its maximum when r1 = b1 = n

2 . This shows that the
number of crossings in a max-crossing matching is minimized on a balanced 4–block coloring.
If n is a multiple of 4, then cr(M∨P) = 3n2

8 − n
2 . Otherwise, cr(M∨P) is either b 3n2

8 − n
2 c or

d 3n2

8 − n
2 e. These values are obtained for r1 = b1 = dn

2 e and x = 1
2 (r1 + b1− n

2) by analyzing
the structure of matchings in each of the remaining cases. J

We remark that the balanced 4–block coloring is not the only coloring that gives the
min-max-crossing matching. See Figure 2(a) for the matching constructed in the above proof
and Figure 2(b) for a different example.

2.2 Min-Max-Crossing Matching for all colorings
In the following, we extend Lemma 2.4 to all bichromatic convex point sets. Let P ∈ Cn,n.
For any point v ∈ P , the point w ∈ P is called the antipodal point of v, if the line through v

and w partitions P into two equal sized halves (this is possible as we have an even number
of points). If the antipodal points v and w are of the same color, then they are called
monochromatic antipodal points (in short m-antipodal points) and if they have different colors
then they are called bichromatic antipodal points (in short b-antipodal points).

O. Aichholzer, S. Felsner, R. Paul, M. Scheucher and B. Vogtenhuber 28:5

R1

R2

B1

B2

(a) (b)

B1

R1

B2

R2

Figure 2 A balanced 4–block coloring (a) and a slightly unbalanced 4–block coloring (b) on 16
points and max-crossing matchings on them, each with 20 crossings.

I Lemma 2.5. (?) Let P ∈ Cn,n and let M∨P be a max-crossing matching of P . Then
cr(M∨P) ≥ 3n2

8 −O(n). Moreover, if Q ∈ Cn,n has a balanced 4–block coloring and M∨Q is a
max-crossing matching of Q, then M∨Q is a min-max-crossing matching of the set Cn,n.

To prove Lemma 2.5, we make use of the following well-known theorem.

I Theorem 2.6 (Ham sandwich theorem [10]). For any bichromatic point set P = R ∪ B

there exists a halfplane H such that |R ∩H| = b |R|2 c and |B ∩H| = b |B|2 c.

Proof sketch of Lemma 2.5. For a point set P ∈ Cn,n, construct a new bichromatic point
set with 4–block coloring using the following steps S1-S4.
S1: Remove all b-antipodal points from P , name the obtained bichromatic point set as S.
S2: Partition the set S into 4 groups as follows. First, partition S into two halves, say L

and R, each having an equal number of red and blue points. Using the ham sandwich
theorem partition one of the two halves such that each partition has an equal number of
red and blue points. This partition can be duplicated on the other half as S consists only
of m-antipodal points. Thus, we get 4 groups, each having an equal number of red and
blue points. They are labeled as RU , RL, LL, LU w.r.t. clockwise order (see Figure 3).

S3: Add all the removed b-antipodal points back to S to get P and the partition of S induces
a partition RP U , RP L, LP L, LP U in P . Here the number of red (blue) points of RP U and
the number of blue (red) points of LP L are equal. The same holds for RP L and LP U .
Sort the points in RP U and LP L such that all the red points appear before the blue
points w.r.t. the clockwise order. Then sort the points in RP L and LP U such that all the
blue points appear before the red points. This gives a bichromatic point set K with the
partition RKU , RKL, LKL, LKU . See Figure 4.

S4: Define the matchings MP and MK on P and K, respectively, as follows. For any
pair (X, Y) ∈ {(RP U , LP L), (RP L, LP U), (RKU , LKL), (RKL, LKU)}, the points in X are
matched to points in Y such that any two of the matching edges emanating from the
same colored points on X cross each other. Hence the matching edges of X give two
crossing families, where the size of each family is determined by the number of points
in X of each color. By our construction, the size of the crossing families is the same
in both P and K. But in P , these crossing families cross each other and in K, these

EuroCG’23

28:6 Bichromatic Perfect Matchings with Crossings

` `

R RL L

RU

RL

RU

RL

LL

LU

LL

LU

Figure 3 A bichromatic point set S with 16 points (left) and 20 points (right). In both cases,
dotted lines represent a partition w.r.t. the ham sandwich theorem on the set R and L.

RPU RKU

RPL
RKL

LPL

LPU

LKL

LKU

Figure 4 An example of bichromatic point set P (left) and the corresponding K (right) with 24
points. Also, the partial matching MP and MK .

crossing families do not cross each other. Hence, cr(MP) ≥ cr(MK). By construction,
K ∈ Cn,n has a 4–block coloring. But it might not be a balanced 4–block coloring. Thus,
by Lemma 2.4, cr(MK) ≥ cr(M∨Q). Also, the constructed matching MP might not be
a max-crossing matching of P . Hence, if M∨P is a max-crossing matching for P , then
cr(M∨P) ≥ cr(MP). This implies cr(M∨P) ≥ cr(M∨Q), which completes the proof. J

As mentioned, Theorem 2.1 now follows directly from Lemma 2.4 and Lemma 2.5.

3 Conclusion

We showed that for any k > 3n2

8 there exists a bichromatic point set with n red and n

blue points that does not admit any bichromatic perfect matching with k crossings. By
straight-forward calculations, we can show that, for n even, bichromatic convex point sets
containing n red and n blue points with alternating coloring cannot have a bichromatic
perfect matching with one or two crossings. In ongoing work, we study the range k ∈ [3, 3n2

8]
for bichromatic convex point sets and also work on extending our results to bichromatic
point sets in general (non-convex) position.

O. Aichholzer, S. Felsner, R. Paul, M. Scheucher and B. Vogtenhuber 28:7

References
1 Oswin Aichholzer, Luis Barba, Thomas Hackl, Alexander Pilz, and Birgit Vogtenhuber.

Linear transformation distance for bichromatic matchings. Computational Geometry, 68:77–
88, 2018. doi:10.1016/j.comgeo.2017.05.003.

2 Oswin Aichholzer, Ruy Fabila-Monroy, Philipp Kindermann, Irene Parada, Rosna Paul,
Daniel Perz, Patrick Schnider, and Birgit Vogtenhuber. Perfect matchings with crossings. In
Combinatorial Algorithms (IWOCA 2022), volume 13270 of LNCS, pages 46–59. Springer,
2022. doi:10.1007/978-3-031-06678-8_4.

3 Oswin Aichholzer, Ferran Hurtado, and Birgit Vogtenhuber. Compatible matchings for
bichromatic plane straight-line graphs. Proceedings of EuroCG’12, pages 257–260, 2012.
URL: https://www.eurocg.org/2012/booklet.pdf.

4 Greg Aloupis, Luis Barba, Stefan Langerman, and Diane L. Souvaine. Bichromatic compat-
ible matchings. Computational Geometry, 48(8):622–633, 2015. doi:10.1016/j.comgeo.
2014.08.009.

5 Andrei Asinowski, Tillmann Miltzow, and Günter Rote. Quasi-parallel segments and
characterization of unique bichromatic matchings. J. Comput. Geom., 6(1):185–219, 2015.
doi:10.20382/jocg.v6i1a8.

6 Mikio Kano and Jorge Urrutia. Discrete geometry on colored point sets in the plane — a sur-
vey. Graphs and Combinatorics, 37(1):1–53, Jan 2021. doi:10.1007/s00373-020-02210-8.

7 Loren C Larson. Problem-solving through problems. Springer Science & Business Media,
2012.

8 Marko Savić and Miloš Stojaković. Structural properties of bichromatic non-crossing
matchings. Applied Mathematics and Computation, 415:126695, 2022.

9 Micha Sharir and Emo Welzl. On the number of crossing-free matchings, cycles, and
partitions. SIAM Journal on Computing, 36(3):695–720, 2006. doi:10.1137/050636036.

10 Csaba D. Tóth, Joseph O’Rourke, and Jacob E. Goodman. Handbook of Discrete and
Computational Geometry. CRC press, third edition, 2017. doi:10.1201/9781315119601.

EuroCG’23

https://doi.org/10.1016/j.comgeo.2017.05.003
https://doi.org/10.1007/978-3-031-06678-8_4
https://www.eurocg.org/2012/booklet.pdf
https://doi.org/10.1016/j.comgeo.2014.08.009
https://doi.org/10.1016/j.comgeo.2014.08.009
https://doi.org/10.20382/jocg.v6i1a8
https://doi.org/10.1007/s00373-020-02210-8
https://doi.org/10.1137/050636036
https://doi.org/10.1201/9781315119601

Axis-Parallel Right Angle Crossing Graphs
Patrizio Angelini1, Michael A. Bekos2, Julia Katheder3,
Michael Kaufmann3, and Maximilian Pfister3

1 Department of Mathematics, Natural, and Applied Sciences, John Cabot
University, Rome, Italy. pangelini@johncabot.edu

2 Department of Mathematics, University of Ioannina, Ioannina, Greece.
bekos@uoi.gr

3 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Tübingen,
Germany. julia.katheder@uni-tuebingen.de, mk@informatik.uni-tuebingen.de,
maximilian.pfister@uni-tuebingen.de

Abstract
In this work, we introduce RAC drawings of graphs in which each pair of crossing edge-segments are
axis parallel. We study relationships with traditional RAC drawings and give edge-density bounds.

1 Introduction

RAC drawings of graphs were introduced a decade ago in [17] as an extension of planar
drawings, and since then they have been a fruitful subject of intense research in Graph
Drawing [3, 12, 14, 18, 19]. The motivation for their study primarily stems from cognitive
experiments indicating that the negative effect of edge crossings in a drawing tends to be
eliminated when the angles formed at the edge crossings are large [22]. In that aspect, RAC
drawings form the optimal case of this scenario, in which all crossing angles occur at 90◦.

The research on RAC drawings has mainly focused on two main directions depending on
whether bends are allowed along the edges or not. Formally, a k-bend RAC graph is one
admitting a k-bend RAC drawing, i.e., a drawing in which each edge is a polyline with at
most k bends and the angle between any two crossing edge-segments is 90◦. Concerning
the edge density, a 0-bend RAC graph (or simply RAC graph) with n vertices has at most
4n − 10 edges [17]. The corresponding edge-density bounds for 1- and 2-bend RAC graphs
are 5.5n − 10 [1] and 74.2n [6], respectively, while for k ≥ 3 it is known that every graph
is k-bend RAC [17]. The research on RAC graphs, however, is not limited to the study of
edge-density bounds. Several algorithmic and combinatorial results [3, 4, 5, 13, 16, 19], as
well as relationships with other graph classes [7, 9, 10, 11, 18] are known; for a survey see [15].

Our contribution. In this work, we introduce and study a natural subfamily of k-bend RAC
graphs, called k-bend apRAC, which restricts all edge segments involved in crossings to be axis
parallel. The motivation for this model is two-fold. First, by restricting the crossings to be axis
parallel we expect to improve readability as, e.g., with orthogonal graph drawings [8, 20, 21].
Second, several algorithms from the literature about k-bend RAC graphs in fact yield k-bend
apRAC drawings; see, e.g., [2, 3, 17]. So, two natural questions that arise are the following.
▶ Question 1. Do the classes of k-bend RAC and k-bend apRAC graphs coincide?
For k ≥ 3, the answer to Question 1 is positive, as the construction given in [17], establishing
that every graph is 3-bend RAC, can be converted to 3-bend apRAC by a rotation of 45◦.
For k = 0, we give a negative answer to Question 1 by determining 0-bend RAC graphs that
are not 0-bend apRAC. For k ∈ {1, 2}, giving an answer to Question 1 is more challenging
due to the degrees of freedom introduced by bends and we leave it as an open problem.
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

29:2 Axis-Parallel Right Angle Crossing Graphs

(a)

v
v′

u

(b)

u

v1

v2

v3

(c)

v u

w

(d)

Figure 1 Forbidden configurations by Properties 1 to 4.

▶ Question 2. What is the edge density of k-bend apRAC graphs with n vertices?

For k ≥ 3, the answer to Question 2 follows from the one of Question 1. For k = 0, the trivial
upper-bound is 4n − 10 [17]. However, we are able to provide corresponding lower-bound
constructions with at most 4n − Θ(

√
n) edges. For k = 1, we prove that a 1-bend apRAC

graph with n vertices has at most 5n − 6 edges and provide a lower-bound construction with
5n − Θ(

√
n) edges. For k = 2, we give an upper bound of 10n − 12 on the edge density of

2-bend apRAC graphs, which is significantly smaller than the trivial one of 74.2n derived
from 2-bend RAC graphs [6]. Our lower-bound construction is a graph with n vertices and
10n−Θ(

√
n) edges. Notably, this bound extends to general 2-bend RAC graphs and improves

the previous bound of 7.83n − O(
√

n) [6], answering an open question in [1].

2 Preliminaries

Properties 1 and 2 hold for 0-bend RAC (and thus for 0-bend apRAC) drawings.

▶ Property 1 ([17]). In a 0-bend RAC drawing no edge is crossed by two adjacent edges.

▶ Property 2 ([17]). A 0-bend RAC drawing does not contain a triangle T formed by edges
of the graph and two edges (u, v) and (u, v′), such that u lies outside T and v, v′ lie inside T .

The following two properties are limited to 0-bend apRAC drawings.

▶ Property 3. A 0-bend apRAC drawing does not contain a triangle T formed by edges of
the graph and three vertices v1, v2, v3 adjacent to a vertex u, such that v1, v2, v3 lie outside
T and u lies inside T .

Proof. Assuming the contrary, Property 1 implies that no two edges incident to u cross the
same boundary edge of T . Hence, T consists of three axis-parallel edges; a contradiction. ◀

▶ Property 4. Let Γ be a 0-bend apRAC drawing containing a triangle T formed by edges
of the graph and two adjacent vertices u and v such that u is contained inside T while v is
outside T . Then, Γ cannot contain a vertex adjacent to u, v and all vertices of T .

Proof. For a contradiction, let w be a vertex adjacent to u, v and all vertices of T . If w is
inside T in Γ, then (v, u) and (v, w) violate Property 2; a contradiction. Otherwise, since
(u, v) and (u, w) cross T , by Property 1, it follows that T is a right-angle triangle, whose
legs are axis-parallel. W.l.o.g., let (v1, v2) and (v2, v3) be the legs of T crossed by (u, v) and
(u, w), respectively, such that (v1, v2) is horizontal and (v2, v3) is vertical. It follows that the
edge (v2, v3) of T is crossed by (u, w) and (w, v1) violating Property 1; a contradiction. ◀

P. Angelini, M. Bekos, J. Katheder, M. Kaufmann and M. Pfister 29:3

u

(a)
b

dw c = v

a

(b)

c = v

b

a

d w

(c)

Figure 2 Illustrations for the proof of Theorem 3.2.

3 0-bend apRAC graphs

In this section, we present bounds on the edge density of 0-bend apRAC graphs and we
further establish that these graphs form a proper subset of the 0-bend RAC graphs.

▶ Theorem 3.1. A 0-bend apRAC graph with n vertices has at most 4n − 10 edges. Also,
there exist infinitely many 0-bend apRAC graphs with n vertices and 4n − Θ(

√
n) edges.

Proof. The upper bound directly follows from [17]. The lower bound is obtained from an
axis-parallel

√
n × √

n drawing of an n-vertex grid, where each quadrangle contains a pair of
crossing edges that can be made axis-parallel by a rotation of the grid by 45◦. ◀

▶ Theorem 3.2. There exist RAC graphs that are not 0-bend apRAC.

Proof. Denote by G the graph shown in Fig. 2a, which is 0-bend RAC as witnessed in
the figure. We next establish that G is not 0-bend apRAC, implying that any RAC graph
containing it as a subgraph is not 0-bend apRAC. For a contradiction, assume that G admits
a 0-bend apRAC drawing Γ. Denote by u the (sole) vertex of degree six in G and let G′ be
the subgraph of G without u, that is, G′ = G \ {u}. Let Γ′ be the subdrawing of Γ restricted
to G′. If Γ′ is plane, then u lies in a (triangular) face of Γ′ since G′ is a maximal planar
graph. However, Property 3 applied to the internal faces and Property 2 applied to the
external face of Γ′ imply that u cannot lie in any face of Γ′; a contradiction.

Hence, Γ′ necessarily contains at least one crossing, say between edges (a, b) and (c, d).
Note that a, b, c and d are pairwise different, since Γ′ is 0-bend. Any edge of G′ belongs to
exactly two cycles of length three. In particular, let (a, b) belong to two cycles abv and abw,
while (c, d) belongs to cycles cdx and cdy. We first consider the case where v is contained
inside the triangle representing abw - the case where w is contained inside the triangle abv is
symmetric. By assumption, since (c, d) intersects (a, b) and since no edge can intersect two
edges of a three cycle by Property 1, we have that one endpoint, say c, is either contained
inside the triangle representing abv or it coincides with v; see Fig. 2b. In any case, c is
contained inside the triangle representing abw, which is impossible by Property 4 since u is
connected to all vertices of G′. We then consider the case where the triangles representing
abv and abw do not contain a vertex of the other; see Fig. 2c. As above, c is either inside
abv or coincides with v and d is either inside abw or coincides with w. However, c = v and
d = w at the same time implies a K4 in G′, which is not possible. Hence, by Property 4 we
derive a contradiction also in this case. ◀

EuroCG’23

29:4 Axis-Parallel Right Angle Crossing Graphs

(a) (b)

Figure 3 Lower bound construction for the class of 1-bend apRAC graphs. Here and in the
following, the drawings have been rotated by 45◦ for layout reasons.

4 1-bend apRAC graphs

In this section, we will establish an upper bound and an almost matching lower bound for
the class of 1-bend apRAC graphs.

▶ Theorem 4.1. A 1-bend apRAC graph with n vertices has at most 5n − 6 edges. Also,
there exist infinitely many 1-bend apRAC graphs with n vertices and 5n − Θ(

√
n) edges.

Proof. For the upper bound, consider a 1-bend apRAC drawing Γ of an n-vertex graph G.
Each edge segment in Γ is either horizontal (h) or vertical (v) or oblique (o). For x, y ∈
{h, v, o}, let Exy be the edges of G with two edge segments of type x and y. Then, Ehv, Eho,
Evo and Eoo form a partition of the edge set of G, assuming that edges that consist of only
one h-, v- or o-segment are counted towards Eho, Evo and Eoo, respectively. By construction,
any crossing involves exactly one vertical and one horizontal segment. Hence, the subgraph
of G induced by Eho ∪ Eoo is planar and contains at most 3n − 6 edges. Further, as every
segment is incident to a vertex and since any vertex is incident to at most two vertical
segments, we have |Evo ∪ Ehv| ≤ 2n. Thus, |E| = |Eho| + |Evo| + |Ehv| + |Eoo| ≤ 5n − 6.

For the lower bound, Fig. 3a depicts a so-called tile consisting of a 6-cycle with seven
internal edges. Fig. 3b illustrates a tiling which consists of 4 × 2 tiles. Choose h ≥ 1 and set
w = 2h. The resulting w × h tiling contains n = (2h + 1)2 vertices. Since the tiling consists
of 2h2 many tiles and since any tile contributes at least ten edges in total (seven internal
edges and six boundary edges, each shared by at most two tiles), it follows that the number
of edges is at least 2h2 · 10 = 5n − Θ(

√
n) since h =

√
n−1
2 . ◀

The current-best lower-bound construction for general 1-bend RAC graphs with n vertices
has 5n − 10 edges [1]. Therefore, by Theorem 4.1 it may be 1-bend apRAC as well. Towards
an answer to Question 1 for k = 1, we deem important to state that it is far from clear to us
whether and how this construction can be converted to be 1-bend apRAC.

5 2-bend apRAC graphs

In Theorems 5.1 and 5.2 we give upper and lower bounds on the edge density of 2-bend
apRAC graphs, respectively.

P. Angelini, M. Bekos, J. Katheder, M. Kaufmann and M. Pfister 29:5

▶ Theorem 5.1. A 2-bend apRAC graph with n vertices G has at most 10n − 12 edges.

Proof. Consider a 2-bend apRAC drawing Γ of an n-vertex graph G. Each edge segment in Γ
is either horizontal (h) or vertical (v) or oblique (o). Denote by S the set of edges that contain
at least one segment in {h,v} incident to a vertex. Since any vertex is incident to at most two
vertical and at most two horizontal segments, it follows that |S| ≤ 4n. Let Eh, Ev and Eo be
the set of edges of E\S whose middle part is h, v and o, respectively. Assuming that an edge of
E\S consisting of less than three segments belongs to Eo, it follows that Eh, Ev and Eo form a
partition of E \S. Observe that the edges of Eo cannot be involved in any crossing in Γ, as all
of its segments are oblique. Further, no two edges of Eh or Ev can cross. Hence, the subgraphs
induced by Eh ∪Eo and Ev ∪Eo are planar and contain at most 3n−6 edges each. Recall that
|S| ≤ 4n and thus |E| ≤ |S| + |Eh| + |Ev| + 2|Eo| ≤ 4n + 3n − 6 + 3n − 6 = 10n − 12. ◀

▶ Theorem 5.2. There exist infinitely many 2-bend apRAC graphs with n vertices and
10n − Θ(

√
n) edges.

Proof. Our proof follows the general idea of the lower-bound construction of Theorem 4.1
using a different tile, namely, the one shown in Fig. 4. We construct an h × h tiling for h ≥ 3;
for space reason see Fig. 5 for an exemplary 2 × 2 tiling. Observe that besides the boundary
edges of the tiles and the interior edges of the tiles, there exist edges that bridge two tiles.
Fig. 6 outlines how the boundary, bridging and internal edges of a tile are connected.

Denote by I the set of tiles whose boundary edges do not bound the outer face. Consider
an arbitrary tile t ∈ I. Every boundary edge of t bounds at most two tiles in I, hence for
each of the 16 boundary edges, we assign t one half of it. Similarly, we assign to t one half of
each of the 16 bridging edges that have an endpoint at a vertex of t and that are partially
contained inside t. Since t contains 54 internal edges, we have that t contributes at least
8 + 8 + 54 = 70 edges in the construction.

The tiling contains n = 3h · (h + 1) + (h + 1) · (4h + 1) = 7h2 + 8h + 1 vertices in total.
Since |I| = (h2 − (4h−4)) and h = 1

7 · (
√

7n + 9−4) it follows that m ≥ 70 · (h2 − (4h−4)) ≥
70 · (n

7 − 8
49

√
7n + 9 + 25

49) − 70 · (4 · (1
7 · (

√
7n + 9 − 4)) − 4) = 10n − Θ(

√
n) as desired. ◀

6 Conclusion and Open Problems

We conclude with the following open problems:

Are there k-bend RAC graphs that are not k-bend apRAC for k ∈ {1, 2}? For k = 1, we
strongly believe that the construction in [1] is not 1-bend apRAC.
Both the proofs for the upper bound as well as the lower-bound construction for the
k-bend apRAC case with k ∈ {1, 2} do not take the simplicity of the drawing into
consideration, i.e., it is possible that two edges have more than one point in common
(endpoint and crossing point). Do we get different bounds for simple drawings similar to
the 1-bend RAC case [1]?
For k ∈ {0, 1, 2}, narrow the gaps between the lower and the upper bounds. In particular,
do the tight upper bounds contain subtractive lower-order terms of Θ(

√
n)?

It is known that the recognition of 0-bend RAC graphs is NP-hard [5] (in fact, even for the
fixed embedding setting it was shown to be ∃R-hard [23]). What about the recognition
of 0-bend apRAC graphs?

EuroCG’23

29:6 Axis-Parallel Right Angle Crossing Graphs

Figure 4 Tile for Theorem 5.2. The edges colored blue, red and gray are internal edges, the black
edges are boundary edges and the green (half-) edges are bridging edges. Observe that the subgraph
induced by the red and green edges is crossing-free, the same holds for the subgraph induced by the
black and blue edges.

P. Angelini, M. Bekos, J. Katheder, M. Kaufmann and M. Pfister 29:7

Figure 5 A 2×2 tiling using the tile shown in Fig. 4. Since the printed version might be cluttered,
we refer the reader to the electronic version.

EuroCG’23

29:8 Axis-Parallel Right Angle Crossing Graphs

(a) (b)

(c) (d)

Figure 6 In (a), the edges which are drawn gray in Fig. 5 are drawn with colors and partially
bundled to avoid clutter. (b) and (c) schematize the crossing-free subgraphs induced by the blue
and black, and by the red and green edges, respectively. (d) depicts the same information as (c) in a
larger 3 × 3 tiling.

P. Angelini, M. Bekos, J. Katheder, M. Kaufmann and M. Pfister 29:9

References
1 Patrizio Angelini, Michael A. Bekos, Henry Förster, and Michael Kaufmann. On RAC

drawings of graphs with one bend per edge. Theor. Comput. Sci., 828-829:42–54, 2020.
doi:10.1016/j.tcs.2020.04.018.

2 Patrizio Angelini, Michael A. Bekos, Julia Katheder, Michael Kaufmann, and Maximilian
Pfister. RAC drawings of graphs with low degree. In Stefan Szeider, Robert Ganian, and
Alexandra Silva, editors, MFCS, volume 241 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.MFCS.2022.11.

3 Patrizio Angelini, Luca Cittadini, Walter Didimo, Fabrizio Frati, Giuseppe Di Battista,
Michael Kaufmann, and Antonios Symvonis. On the perspectives opened by right angle
crossing drawings. J. Graph Algorithms Appl., 15(1):53–78, 2011. doi:10.7155/jgaa.00217.

4 Evmorfia N. Argyriou, Michael A. Bekos, Michael Kaufmann, and Antonios Symvonis.
Geometric RAC simultaneous drawings of graphs. J. Graph Algorithms Appl., 17(1):11–34,
2013. doi:10.7155/jgaa.00282.

5 Evmorfia N. Argyriou, Michael A. Bekos, and Antonios Symvonis. The straight-line RAC
drawing problem is NP-hard. J. Graph Algorithms Appl., 16(2):569–597, 2012. doi:
10.7155/jgaa.00274.

6 Karin Arikushi, Radoslav Fulek, Balázs Keszegh, Filip Moric, and Csaba D. Tóth. Graphs
that admit right angle crossing drawings. Comput. Geom., 45(4):169–177, 2012. doi:
10.1016/j.comgeo.2011.11.008.

7 Michael A. Bekos, Walter Didimo, Giuseppe Liotta, Saeed Mehrabi, and Fabrizio Mon-
tecchiani. On RAC drawings of 1-planar graphs. Theor. Comput. Sci., 689:48–57, 2017.
doi:10.1016/j.tcs.2017.05.039.

8 Therese C. Biedl and Goos Kant. A better heuristic for orthogonal graph drawings. Comput.
Geom., 9(3):159–180, 1998. doi:10.1016/S0925-7721(97)00026-6.

9 Franz J. Brandenburg, Walter Didimo, William S. Evans, Philipp Kindermann, Giuseppe
Liotta, and Fabrizio Montecchiani. Recognizing and drawing IC-planar graphs. Theor.
Comput. Sci., 636:1–16, 2016. doi:10.1016/j.tcs.2016.04.026.

10 Steven Chaplick, Fabian Lipp, Alexander Wolff, and Johannes Zink. Compact drawings of
1-planar graphs with right-angle crossings and few bends. Comput. Geom., 84:50–68, 2019.
doi:10.1016/j.comgeo.2019.07.006.

11 Hooman Reisi Dehkordi and Peter Eades. Every outer-1-plane graph has a right angle
crossing drawing. Int. J. Comput. Geom. Appl., 22(6):543–558, 2012. doi:10.1142/
S021819591250015X.

12 Emilio Di Giacomo, Walter Didimo, Peter Eades, and Giuseppe Liotta. 2-layer right angle
crossing drawings. Algorithmica, 68(4):954–997, 2014. doi:10.1007/s00453-012-9706-7.

13 Emilio Di Giacomo, Walter Didimo, Luca Grilli, Giuseppe Liotta, and Salvatore Agostino
Romeo. Heuristics for the maximum 2-layer RAC subgraph problem. Comput. J., 58(5):1085–
1098, 2015. doi:10.1093/comjnl/bxu017.

14 Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Henk Meijer. Area, curve
complexity, and crossing resolution of non-planar graph drawings. Theory Comput. Syst.,
49(3):565–575, 2011. doi:10.1007/s00224-010-9275-6.

15 Walter Didimo. Right angle crossing drawings of graphs. In Seok-Hee Hong and Takeshi
Tokuyama, editors, Beyond Planar Graphs, pages 149–169. Springer, 2020. doi:10.1007/
978-981-15-6533-5_9.

16 Walter Didimo, Peter Eades, and Giuseppe Liotta. A characterization of complete bipartite
RAC graphs. Inf. Process. Lett., 110(16):687–691, 2010. doi:10.1016/j.ipl.2010.05.023.

17 Walter Didimo, Peter Eades, and Giuseppe Liotta. Drawing graphs with right angle crossings.
Theor. Comput. Sci., 412(39):5156–5166, 2011. doi:10.1016/j.tcs.2011.05.025.

EuroCG’23

https://doi.org/10.1016/j.tcs.2020.04.018
https://doi.org/10.4230/LIPIcs.MFCS.2022.11
https://doi.org/10.7155/jgaa.00217
https://doi.org/10.7155/jgaa.00282
https://doi.org/10.7155/jgaa.00274
https://doi.org/10.7155/jgaa.00274
https://doi.org/10.1016/j.comgeo.2011.11.008
https://doi.org/10.1016/j.comgeo.2011.11.008
https://doi.org/10.1016/j.tcs.2017.05.039
https://doi.org/10.1016/S0925-7721(97)00026-6
https://doi.org/10.1016/j.tcs.2016.04.026
https://doi.org/10.1016/j.comgeo.2019.07.006
https://doi.org/10.1142/S021819591250015X
https://doi.org/10.1142/S021819591250015X
https://doi.org/10.1007/s00453-012-9706-7
https://doi.org/10.1093/comjnl/bxu017
https://doi.org/10.1007/s00224-010-9275-6
https://doi.org/10.1007/978-981-15-6533-5_9
https://doi.org/10.1007/978-981-15-6533-5_9
https://doi.org/10.1016/j.ipl.2010.05.023
https://doi.org/10.1016/j.tcs.2011.05.025

29:10 Axis-Parallel Right Angle Crossing Graphs

18 Peter Eades and Giuseppe Liotta. Right angle crossing graphs and 1-planarity. Discret.
Appl. Math., 161(7-8):961–969, 2013. doi:10.1016/j.dam.2012.11.019.

19 Henry Förster and Michael Kaufmann. On compact RAC drawings. In Fabrizio Grandoni,
Grzegorz Herman, and Peter Sanders, editors, ESA, volume 173 of LIPIcs, pages 53:1–53:21.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.
53.

20 Ulrich Fößmeier and Michael Kaufmann. Drawing high degree graphs with low bend
numbers. In Franz-Josef Brandenburg, editor, GD, volume 1027 of LNCS, pages 254–266.
Springer, 1995. doi:10.1007/BFb0021809.

21 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM J. Comput., 31(2):601–625, 2001. doi:10.1137/
S0097539794277123.

22 Weidong Huang, Peter Eades, and Seok-Hee Hong. Larger crossing angles make graphs easier
to read. J. Vis. Lang. Comput., 25(4):452–465, 2014. doi:10.1016/j.jvlc.2014.03.001.

23 Marcus Schaefer. RAC-drawability is ∃R-complete. In Helen C. Purchase and Ignaz
Rutter, editors, GD, volume 12868 of LNCS, pages 72–86. Springer, 2021. doi:10.1007/
978-3-030-92931-2_5.

https://doi.org/10.1016/j.dam.2012.11.019
https://doi.org/10.4230/LIPIcs.ESA.2020.53
https://doi.org/10.4230/LIPIcs.ESA.2020.53
https://doi.org/10.1007/BFb0021809
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1007/978-3-030-92931-2_5
https://doi.org/10.1007/978-3-030-92931-2_5

k-planar Placement and Packing of ∆-regular
Caterpillars∗

Carla Binucci1, Emilio Di Giacomo1, Michael Kaufmann2,
Giuseppe Liotta1, and Alessandra Tappini1

1 Dipartimento di Ingegneria, Università degli Studi di Perugia,
via G. Duranti 93, 06125, Perugia, Italy.
{carla.binucci, emilio.digiacomo, giuseppe.liotta,
alessandra.tappini}@unipg.it

2 Wilhelm-Schickard Institut für Informatik, Universität Tübingen,
Sand 13, 72076, Tübingen, Germany.
mk@informatik.uni-tuebingen.de

Abstract
This paper studies a packing problem in the case that the host graph is k-planar, i.e., it can be
drawn with at most k crossings per edge, and focuses on families of ∆-regular caterpillars, that are
caterpillars whose non-leaf vertices have the same degree ∆. We study the dependency of k on the
number h of caterpillars that are packed, both when these caterpillars are all isomorphic and when
they are not. We give necessary and sufficient conditions for the packing of h isomorphic ∆-regular
caterpillars and sufficient conditions for the packing of a set of h caterpillars such that each one is
∆-regular and the value of ∆ can be different for different caterpillars.

1 Introduction

Graph packing is a classical problem in graph theory. It requires to merge several smaller
graphs into a larger graph, called the host graph, without creating multiple edges. More pre-
cisely, let G1, G2, . . . , Gh be h graphs, all having n vertices, an h-packing of G1, G2, . . . , Gh is
an n-vertex graph G that contains G1, G2, . . . , Gh as edge-disjoint spanning subgraphs. We
say that G1, G2, . . . , Gh can be packed into G and that G is the host graph of G1, G2, . . . , Gh.
If the h input graphs are all isomorphic, an h-packing is called an h-placement and we talk
about placement problem in this case. We also say that G1, G2, . . . , Gh can be placed into
G. Many combinatorial problems can be regarded as packing/placement problems. For
example, the Hamiltonian cycle problem for a graph G can be stated as the problem of
packing an n-vertex cycle with the complement of G.

When no restriction is imposed on the host graph, we say that the host graph is Kn.
Some classical results in this setting are those by Bollobás and Eldridge [3], Teo and Yap
[20], Sauer and Spencer [19], while related famous conjectures are by Erdős and Sós from
1963 [6] and by Gyárfás from 1978 [12]. Within this line of research, Wang and Sauer [21],
and Mahéo et al. [17] characterized triples of trees that admit a packing into Kn. Haler
and Wang [13] extended this result to four copies of a tree. Further results in this area

∗ This work is partially supported by: (i) MIUR, grant 20174LF3T8 “AHeAD: efficient Algorithms for
HArnessing networked Data”; (ii) Dipartimento di Ingegneria - Università degli Studi di Perugia, grants
RICBA21LG: “Algoritmi, modelli e sistemi per la rappresentazione visuale di reti” and RICBA22CB
“Modelli, algoritmi e sistemi per la visualizzazione e l’analisi di grafi e reti”. The research in this paper
started during the Summer Workshop on Graph Drawing 2021, Castiglione del Lago (PG).

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

30:2 k-planar Placement and Packing of ∆-regular Caterpillars

are by Hedetniemi et al. [14], Wozniak and Wojda [22] and Aichholzer et al. [1]. Also refer
to [13, 21, 23] for results about the placement problem.

A tighter relation to graph drawing was established when researchers did not consider
Kn to be the host graph, but required the host graph to be planar. A central question
here is how to pack two trees of size n into a planar graph of size n. After a long series of
intermediate steps [7, 8, 9, 10, 18], enlarging the class of trees that could be packed, Geyer
et al. [11] showed that any two non-star trees can be embedded into a planar graph.

Relaxing the planarity condition allows for packing of more (than two) trees, and re-
stricting the number of crossings for each edge, i.e., in the so-called beyond planar set-
ting [5, 15, 16], still keeps the host graph sparse. The study of the packing problem in
the beyond planarity setting was started by De Luca et al. [4], who consider how to pack
caterpillars, paths, and cycles into 1-planar graphs. While two trees can always be packed
into a planar graph, it may not be possible to pack three trees into a 1-planar graph.

In this work, we further generalize the problem by allowing the host graph to be k-planar
for any k ≥ 1, and we study the dependency of k on the number of caterpillars to be packed
and on their vertex degree. We consider ∆-regular caterpillars, which are caterpillars whose
non-leaf vertices all have the same degree ∆. Our results can be briefly outlined as follows.

We characterize those families of h ∆-regular caterpillars which admit a placement into
a k-planar graph and show that k ∈ O(∆h + h2).
We consider the packing problem of h caterpillars, C1, C2, . . . , Ch, such that Ci is ∆i-
regular, for i ∈ {1, 2, . . . , h}, and ∆i ≥ ∆i+1, for i ∈ {1, 2, . . . , h − 1}. By extending
the techniques of the bullet above, we give sufficient conditions for the existence of a
k-planar packing of these caterpillars and show that k ∈ O(∆1h2).

For reasons of space, some proofs are omitted and can be found in the full version, which
also contains additional results [2].

2 Preliminaries

Given a graph G, we denote by degG(v) the degree of a vertex v in G. Let G1, G2, . . . , Gh

be h graphs, all having n vertices. The following property holds.
▶ Property 1. A packing of h connected n-vertex graphs exists only if n ≥ 2h and degGi

(v) ≤
n − h, for each i ∈ {1, 2, . . . , h} and for each vertex v.

A k-planar graph is a graph that admits a drawing in the plane such that each edge
is crossed at most k times. If the host graph of an h-packing (h-placement) is k-planar,
we will talk about a k-planar h-packing (k-planar h-placement) or simply about a k-planar
packing/placement, when the value of h is not relevant.

A caterpillar is a tree T such that removing all leaves we are left with a path, called spine;
T is ∆-regular, for ∆ ≥ 2, if degT (v) = ∆ for every spine vertex v. The number of vertices
of a ∆-regular caterpillar is n = σ(∆−1)+2, where σ is the number of vertices of the spine.
While ∆-regular caterpillars are defined for any value of σ ≥ 1, when we want to pack a set
of h ≥ 2 caterpillars, Property 1 requires that each caterpillar has σ ≥ 2. Otherwise, the
unique spine vertex would have degree n − 1 and Property 1 would not hold.

3 h-placement of ∆-regular Caterpillars into k-planar Graphs

We start by showing that Property 1 is, in general, not sufficient to guarantee a placement
even for ∆-regular caterpillars.

C. Binucci et al. 30:3

u1

u2

u3

u4
u5

(a)

v17

v1

v2
v3 v4 v5

v6

v7

v8

v9

v10
v11v12v13

v14

v15

v16

upper part

lower part

hole
short

edge

(b)

v17

v1

v2
v3 v4 v5

v6

v7

v8

v9

v10
v11v12v13

v14

v15

v16

(c)

Figure 1 (a) A zig-zag drawing of a 4-regular caterpillar; (b) the upper and the lower part are
highlighted; (c) a 2-packing obtained by the drawing of (b) with a copy of it rotated by one step.

▶ Theorem 1. For every h ≥ 2, let ∆ be a positive integer such that h−1
∆−1 is not integer. A

set of h ∆-regular caterpillars with n = 2h vertices cannot be placed into any graph.

In order to establish necessary and sufficient conditions for the existence of a k-planar
h-placement of h isomorphic ∆-regular caterpillars, we now describe a construction of a type
of drawings called zig-zag drawings and study their properties.

Let C be a ∆-regular caterpillar with n vertices; we construct a drawing Γ of C as shown
in Figure 1. The number of vertices of the spine of C is σ = n−2

∆−1 ; consider a set of σ points
on a circle γ and denote by u1, u2, . . . , uσ these points according to the circular clockwise
order they appear along γ. Draw the spine of C by connecting, for i = 1, 2, . . . , ⌊ σ

2 ⌋, the
points ui and ui+1 to the point uσ−i+1; see Figure 1a. If σ is even and i = σ

2 , the points
ui+1 and uσ−i+1 coincide and therefore the point u σ

2
is connected only to u σ

2 +1. Notice that
all points ui have two incident edges, except u1 and u⌊ σ

2 ⌋+1 which have only one. We add
the leaves adjacent to each vertex ui ̸∈ {u1, u⌊ σ

2 ⌋+1} by connecting uσ−i+1 to ∆ − 2 points
between ui and ui+1; we then add the leaves adjacent to u1 by connecting it to ∆ − 1 points
between uσ and u1; we finally add the leaves adjacent to u⌊ σ

2 ⌋+1 by connecting it to ∆ − 1
points between u σ

2
and u σ

2 +1 if σ is even, or to ∆ − 1 points between u⌊ σ
2 ⌋+1 and u⌊ σ

2 ⌋+2 if
σ is odd. The resulting drawing is called a zig-zag drawing of C.

From now on, we assume that in a zig-zag drawing the points that represent vertices
are equally spaced on the circle γ. Let χ be the convex hull of the points representing the
vertices of C in Γ. A zig-zag drawing has exactly two sides of χ that coincide with two edges
of C; we call these two edges short edges of Γ. Denote by v1, v2, . . . , vn the vertices of Γ
according to the circular clockwise order they appear along χ with v1 ≡ u1; see Figure 1b.
Notice that (v1, vn) is a short edge and vn is its leaf vertex.

Consider a straight line s that intersects both short edges of Γ; line s intersects all the
edges of the zig-zag drawing. Without loss of generality, assume that s is horizontal and
denote by U the set of vertices that are above s and by L the set of vertices that are below s.
The vertices in U form the upper part of Γ and those in L form the lower part of Γ. Without
loss of generality, assume that v1 is in the upper part (and therefore vn is in the lower part).
It follows that each edge has the end-vertex with lower index in the upper part, and the
end-vertex with higher index in the lower part. Hence the short edge different from (v1, vn),
which we denote as (vr−1, vr), is such that vr−1 is in the upper part and vr is in the lower
part. The first vertex of the upper part, i.e., vertex v1, is called starting point of Γ, while
the first vertex of the lower part, i.e., vertex vr, is called ending point of Γ. We observe that

EuroCG’23

30:4 k-planar Placement and Packing of ∆-regular Caterpillars

r = 1 + n
2 if the number of vertices of the spine σ = n−2

∆−1 is even, while r = 1 + n−(∆−1)
2 if

σ is odd. This can be written with a single formula as r = 1 + n−(∆−1)(σ mod 2)
2 .

Let ℓ be a positive integer and let Γ′ be the drawing obtained by re-mapping vertex vi

to the point1 representing vi+ℓ in Γ. We say that Γ′ is the drawing obtained by rotating Γ
by ℓ steps. Note that the starting point of Γ′ is vj with j = 1 + ℓ and the ending point is vr

with r = 1 + ℓ + n−(∆−1)(σ mod 2)
2 = j + n−(∆−1)(σ mod 2)

2 . The drawing in Figure 1c is the
union of two zig-zag drawings Γ1 and Γ2, where Γ2 is obtained by rotating Γ1 by one step;
Γ1 has starting point v1 and ending point v8; Γ2 has starting point v2 and ending point v9.

▶ Lemma 1. Let Γ1 be a zig-zag drawing of a ∆-regular caterpillar C with starting point j1;
let Γ2 be a zig-zag drawing of C with starting point j2. If 0 < j2 − j1 < n−(∆−1)(σ mod 2)

2 ,
where σ is the number of spine vertices of C, then Γ1 ∪ Γ2 has no multiple edges.

The next lemma computes the maximum number of crossings per edge in the union of
two zig-zag drawings without overlapping edges. We state the lemma assuming that the two
∆-regular caterpillars can have different vertex degrees, as we are going to use the lemma
to establish upper bounds on k both for k-planar h-placements and for k-planar h-packings.

▶ Lemma 2. Let C1 be an n-vertex ∆1-regular caterpillar and let C2 be an n-vertex ∆2-
regular caterpillar with ∆i ≤ n − 2 (for i = 1, 2). Let Γ1 be a zig-zag drawing of C1
with starting point vj1 and let Γ2 be a zig-zag drawing of C2 with starting point vj2 with
0 < j2 − j1 < n

2 . If Γ1 ∪ Γ2 has no multiple edges, then any edge of Γ1 ∪ Γ2 is crossed at
most 2(∆1 + ∆2) + 4(j2 − j1) times.

We are now ready to characterize the ∆-regular caterpillars that admit an h-placement.

▶ Theorem 2. Let C1, C2, . . . , Ch be h isomorphic ∆-regular caterpillars with n vertices. An
h-placement of C1, C2, . . . , Ch exists if and only if: (i) ∆ ≤ n−h; and (ii) n ≥ 2h+(∆−1)·(σ
mod 2), where σ is the number of spine vertices of each Ci (i = 1, 2, . . . , h). Further, if an
h-placement exists, there exists one that is k-planar for k ∈ O(∆h + h2).

Proof. We first prove the sufficient condition. Let C1, C2, . . . , Ch be the h caterpillars and
assume that n ≥ 2h + (∆ − 1)(σ mod 2). We compute an h-placement of C1, C2, . . . , Ch

starting from a zig-zag drawing Γ1 of C1 and obtaining the drawing Γi of Ci by rotating Γ1
by i − 1 steps, for i = 2, 3, . . . , h. Since h ≤ n−(∆−1)(σ mod 2)

2 each Γi is rotated by less than
n−(∆−1)(σ mod 2)

2 steps and each pair of drawings Γi and Γj satisfies Lemma 1. Thus, there
are no multiple edges and the union of all Γi’s is a valid h-placement of C1, C2, . . . , Ch.

We now prove the necessary condition. If σ is even, then conditions (i) and (ii) are
necessary by Property 1. Hence, consider the case when σ is odd. Condition (i) is necessary
by Property 1. Assume, by contradiction, that condition (ii) is not necessary, i.e., there
exists a placement of h caterpillars C1, C2, . . . , Ch such that n < 2h + (∆ − 1). Since
C1, C2, . . . , Ch admit an h-placement, by Property 1 n must be at least 2h. Thus, it would
be 2h ≤ n < 2h + (∆ − 1); in other words, n = 2h + α with 0 ≤ α ≤ ∆ − 2.

Let G be the host graph of the h-placement and let v be a vertex of G to which the
largest number of spine vertices of C1, C2, . . . , Ch is mapped. Let β be the number of spine
vertices that are mapped to v. There are other h − β leaf vertices that are mapped to v

(because one vertex per caterpillar has to be mapped to each vertex of G). The degree of

1 In a drawing with the vertices in convex position the indices of the vertices are handled in a circular
fashion, i.e., the element with index n is followed by the element with index 1.

C. Binucci et al. 30:5

v in G is at most n − 1 and each of the spine vertices mapped to v has degree ∆. Hence,
the β spine vertices mapped to v have degree β∆ in total. Vertex v can have at most
n − 1 − β∆ other edges and therefore it must be n − 1 − β∆ ≥ h − β, i.e., β ≤ n−1−h

∆−1 . On
the other hand, there are σh spine vertices in total and, since G has n vertices, there are
at least ⌈ σh

n ⌉ spine vertices mapped to v, i.e., β ≥ ⌈ σh
n ⌉. Putting together the conditions

on β, we obtain:
⌈

σh
n

⌉
≤ β ≤ n−1−h

∆−1 . Since h = n−α
2 and n = σ(∆ − 1) + 2, we obtain:⌈

σ
2 − σα

2(σ(∆−1)+2)

⌉
≤ β ≤ σ(∆−1)+α

2(∆−1) , which implies:

⌈
σ

2 − α

2(∆ − 1) + 4
σ

⌉
≤ σ

2 + α

2(∆ − 1) . (1)

We prove that Eq. (1) does not hold. Since σ is odd, it is σ = 2i + 1 for i ∈ N, and thus:
⌈

i + 1
2 − ζ

⌉
≤ i + 1

2 + ζ ′, (2)

with ζ = α
2(∆−1)+ 4

σ

and ζ ′ = α
2(∆−1) . We have ζ < ζ ′ and ζ ′ = α

2(∆−1) ≤ ∆−2
2(∆−1) < ∆−1

2(∆−1) =
1
2 . The first term of Eq. (2) is i + 1 because 0 < 1

2 − ζ < 1; the second term is less than i + 1
because 0 < 1

2 + ζ ′ < 1. It follows that Eq. (2), and hence Eq. (1), does not hold.
We now prove the bound on the number of crossings along an edge. Consider an edge e

of Γ1; the number of crossings along an edge of the drawing of another caterpillar is bounded
by the same number. By Lemma 2, the number of crossings χe along e due to the edges
of another drawing Γl (with 2 ≤ l ≤ h) is at most 2(∆1 + ∆l) + 4(jl − j1). Summing over
all drawings distinct from Γ1, we obtain χe ≤ ∑h

l=2(2(∆1 + ∆l) + 4(jl − j1)). Considering
that ∆l = ∆ for every l and that jl − j1 = l − 1, we have χe ≤ ∑h

l=2(4∆ + 4(l − 1)) ≤
(4∆ − 2)h + 2h2 − 4∆. ◀

Theorem 2 considers h copies of the same caterpillar that are packed into a host graph. By
exploiting the zig-zag drawing technique, we can establish sufficient conditions for packing
∆1-, ∆2-, . . . , ∆h-regular caterpillars with ∆i ̸= ∆j , 1 ≤ i, j ≤ h.

▶ Theorem 3. Let C1, C2, . . . , Ch be h caterpillars such that Ci is ∆i-regular, for 1 ≤ i ≤ h,
and ∆h ≤ ∆h−1 ≤ · · · ≤ ∆1 ≤ n − h. If

∑h
i=1 ∆i ≤ n − 1 and

∑h
i=2

⌈ ∆i

2
⌉

< n−(∆1−1)
2 , then

there exists a k-planar packing with k ∈ O(∆1h2).

4 Open Problems

We conclude with some open problems related to our results. (i) Extend the characterization
of Theorem 2 to the placement of caterpillars that are not ∆-regular; (ii) Theorem 3 gives
sufficient conditions for the k-planar packing of a family of caterpillars. It would be interest-
ing to give a complete characterization of the packability of this family into k-planar graphs.

References
1 Oswin Aichholzer, Thomas Hackl, Matias Korman, Marc van Kreveld, Maarten Löffler,

Alexander Pilz, Bettina Speckmann, and Emo Welzl. Packing plane spanning trees and
paths in complete geometric graphs. Information Processing Letters, 124:35 – 41, 2017.

2 Carla Binucci, Emilio Di Giacomo, Giuseppe Liotta, Michael Kaufmann, and Alessandra
Tappini. k-planar placement and packing of ∆-regular caterpillars, 2023. doi:10.48550/
arXiv.2301.01226.

EuroCG’23

https://doi.org/10.48550/arXiv.2301.01226
https://doi.org/10.48550/arXiv.2301.01226

30:6 k-planar Placement and Packing of ∆-regular Caterpillars

3 Béla Bollobás and Stephen E. Eldridge. Packings of graphs and applications to computa-
tional complexity. J. Comb. Theory, Ser. B, 25(2):105–124, 1978.

4 Felice De Luca, Emilio Di Giacomo, Seok-Hee Hong, Stephen G. Kobourov, William
Lenhart, Giuseppe Liotta, Henk Meijer, Alessandra Tappini, and Stephen K. Wismath.
Packing trees into 1-planar graphs. J. Graph Algorithms Appl., 25(2):605–624, 2021.

5 Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing
beyond planarity. ACM Comput. Surv., 52(1):4:1–4:37, 2019.

6 P. Erdős. Extremal problems in graph theory. In Theory of Graphs and its Applications,
Proc. Sympos. Smolenice, pages 29–36, 1964.

7 Fabrizio Frati. Planar packing of diameter-four trees. In Proceedings of the 21st Annual
Canadian Conference on Computational Geometry, pages 95–98, 2009.

8 Fabrizio Frati, Markus Geyer, and Michael Kaufmann. Planar packing of trees and spider
trees. Inf. Process. Lett., 109(6):301–307, 2009.

9 Alfredo García Olaverri, M. Carmen Hernando, Ferran Hurtado, Marc Noy, and Javier
Tejel. Packing trees into planar graphs. Journal of Graph Theory, 40(3):172–181, 2002.

10 Markus Geyer, Michael Hoffmann, Michael Kaufmann, Vincent Kusters, and Csaba D.
Tóth. Planar packing of binary trees. In WADS 2013, volume 8037 of LNCS, pages 353–
364. Springer, 2013.

11 Markus Geyer, Michael Hoffmann, Michael Kaufmann, Vincent Kusters, and Csaba D.
Tóth. The planar tree packing theorem. JoCG, 8(2):109–177, 2017.

12 András Gyárfás and Jenő Lehel. Packing trees of different order into Kn. In Combinatorics
(Proc. Fifth Hungarian Colloq., Keszthely, 1976), volume 1, pages 463–469. North-Holland
New York, 1978.

13 Sean P. Haler and Hong Wang. Packing four copies of a tree into a complete graph.
Australas. J Comb., 59:323–332, 2014. URL: http://ajc.maths.uq.edu.au/pdf/59/ajc_
v59_p323.pdf.

14 S.M. Hedetniemi, Stephen Hedetniemi, and P.J. Slater. A note on packing two trees into
Kn. Ars Combinatoria, 11, 01 1981.

15 Seok-Hee Hong and Takeshi Tokuyama, editors. Beyond Planar Graphs. Springer, 2020.
doi:10.1007/978-981-15-6533-5.

16 Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. An annotated bibliog-
raphy on 1-planarity. Computer Science Review, 25:49 – 67, 2017.

17 Maryvonne Mahéo, Jean-François Saclé, and Mariusz Wozniak. Edge-disjoint placement of
three trees. Eur. J. Comb., 17(6):543–563, 1996.

18 Yoshiaki Oda and Katsuhiro Ota. Tight planar packings of two trees. In 22nd European
Workshop on Computational Geometry, 2006.

19 Norbert Sauer and Joel Spencer. Edge disjoint placement of graphs. J. Comb. Theory, Ser.
B, 25(3):295–302, 1978.

20 S. K. Teo and H. P. Yap. Packing two graphs of order n having total size at most 2n − 2.
Graphs Comb., 6(2):197–205, 1990.

21 Hong Wang and Norbert Sauer. Packing three copies of a tree into a complete graph.
European Journal of Combinatorics, 14(2):137 – 142, 1993.

22 Mariusz Wozniak and A. Pawel Wojda. Triple placement of graphs. Graphs and Combina-
torics, 9(1):85–91, 1993.

23 Andrzej Zak. A note on k-placeable graphs. Discret. Math., 311(22):2634–2636, 2011.
doi:10.1016/j.disc.2011.08.002.

http://ajc.maths.uq.edu.au/pdf/59/ajc_v59_p323.pdf
http://ajc.maths.uq.edu.au/pdf/59/ajc_v59_p323.pdf
https://doi.org/10.1007/978-981-15-6533-5
https://doi.org/10.1016/j.disc.2011.08.002

Clustering with Obstacles
Mark de Berg1, Leyla Biabani2, Morteza Monemizadeh3, and
Leonidas Theocharous4

1 Department of Mathematics and Computer Science, TU Eindhoven
M.T.d.Berg@tue.nl

2 Department of Mathematics and Computer Science, TU Eindhoven
l.biabani@tue.nl

3 Department of Mathematics and Computer Science, TU Eindhoven
M.Monemizadeh@tue.nl

4 Department of Mathematics and Computer Science, TU Eindhoven
l.theocharous@tue.nl

Abstract
We study the discrete k-median problem on a set of n points in a polygonal domain P with m

vertices. Here the goal is to find a set S ⊂ D of k centers such that
∑

d∈D
{mins∈S{∥π(d, s)∥}} is

minimized, where ∥π(d, s)∥ denotes the length of the shortest path between d and s. We develop an
exact algorithm for this problem, which runs in time poly(n, m) + nO(

√
k). Subsequently, we show

that our approach can also be applied to solve the discrete k-center problem with z outliers in the
same running time.

1 Introduction

Problem statement. Let P be a polygonal domain (that is, a polygon with holes) with m

vertices, and let D be a set of n demand points in P . The discrete k-median problem asks
to find a set S ⊂ D of k center points such that the quantity

∑
d∈D{mins∈S{∥π(d, s)∥}}

is minimized, where ∥π(p, q)∥ denotes the length of the shortest path π(p, q) between two
points p, q in P . The discrete k-center problem asks to find a set S ⊂ D of k center points
such that the maximum distance of points in D to their nearest center in S is minimized. An
outlier can significantly increase the maximum distance to the nearest center, so we study
the k-center problem with z outliers, which asks to minimize the maximum distance of all
but z points of D to their nearest center in S.

Our interest lies in developing a subexponential exact algorithm for these problems, which
depends exponentially on k and not on the complexity of the polygonal domain. We first
show how to do this for k-median and as a nice by-product, we show that our approach can
also be applied to the k-center problem with z outliers.

Previous work. In the Euclidean setting, exact algorithms for k-median and k-center have
been known for a long time. Most relevant to our paper is the work by Hwang et al. [4],
who presented algorithms with running time nO(

√
k) for the planar version of the problems.

Their approach works with the Voronoi diagram of the (unknown) optimal solution, and
“guesses” a cycle separator of its dual graph. The separator splits the problem into two
subproblems, which are then solved recursively. This is an idea that we also make use of.
The same approach was employed more recently by Marx and Pilipczuk [5] to solve a wide
range of covering and packing problems defined on planar graphs. This includes k-center,
which they solve in nO(

√
k). To the best of our understanding, their approach cannot be used

to tackle k-median and also cannot directly handle outliers. For small values of k and in the
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

31:2 Clustering with Obstacles

p

q

b(p, q)
x(p, q)

H

xH(p, q)

Figure 1 Illustration for the definition of b(p, q), x(p, q) and xH(p, q).

setting of a simple polygon, only the 1-center and 2-center problems have received attention.
More specifically, Ahn et al. [1] studied the problem of computing the geodesic center of
a (weakly) simple polygon P , where the task is to find the point s ∈ P which minimizes
the maximum geodesic distance from any other point in P . They developed a linear-time
algorithm for this problem. Their algorithm can be used to compute the 1-center of a set
D of n points in P : as observed in [2], the 1-center of D coincides with the 1-center of the
relative convex hull of D (denoted by rch(D)). Since the geodesic convex hull is a weakly
simple polygon that can be computed in time O(n log n + m) (where m is the complexity of
P), the 1-center of D can be computed in the same time. For k = 2, Oh et al. [7] observed
that the 2-center of rch(D) does not anymore necessarily coincide with the 2-center of D

and went on to present an O(m(n + m) log3 (n + m))-time algorithm for the 2-center of D.
When holes are also allowed, we are not aware of any work that specifically addresses the
1-center or the 2-center problem with respect to a given subset of points in the domain.

Notation. We denote the outer polygon of our polygonal domain P by P0, and we use H to
denote the collection of holes in P . Recall that π(p, q) denotes the shortest path between two
points p, q in P . For a finite set D ⊂ P , the geodesic Voronoi diagram of D in P , denoted
gvd(D), is the partition of P into |D| Voronoi cells, where the Voronoi cell V (q) of a point
q ∈ D is defined as VD(q) := {x ∈ P : ∥π(x, q)∥ ⩽ ∥π(x, p)∥ for all p ∈ D}. When the set
D is clear from the context, we may simply write V (q). For two points p, q ∈ P , let b(p, q)
denote their geodesic bisector and let bD(p, q) denote the part of b(p, q) which appears in
gvd(D). Let B(p, q) = {x ∈ P : ∥π(p, x)∥ ⩽ ∥π(q, x)∥}. We will denote by x(p, q) the first
point of b(p, q) that is met during a clockwise transversal of ∂P0 which starts from a point of
∂P0 ∩ B(p, q). Finally, we will denote by xH(p, q) the first point of b(p, q) that is met during
a clockwise transversal of hole H, starting from a point of H ∩ B(p, q); see Fig. 1.

2 The k-median problem in a polygonal domain.

The idea is to extend the approach by Hwang et al. [4], which worked for R2, to a polygonal
domain. We therefore start by considering the geodesic Voronoi diagram of our (unknown)
optimal solution S. In the Euclidean case, the dual of this diagram is called the Delaunay
triangulation, denoted by dt(S). Every inner face of dt(S) is a triangle, and one can add a

M. de Berg and L. Biabani M. Monemizadeh and L. Theocharous 31:3

p(i) (ii)

Figure 2 (i) An example where the dual of the geodesic Voronoi diagram corresponds to a tree.
(ii) Adding p to the outside face of P and connecting it to cells incident to ∂P0 via the intervals Ii.

set I of three extra points to S sufficiently far away, such that the outside face of dt(S ∪ I)
also becomes a triangle. This results in a maximal planar graph. Hence, by Miller’s separator
theorem [6] there exists a simple cycle separator C of dt(S ∪ I) of size O(

√
k) which is

(2/3)-balanced with respect to S ∪ I. (The latter means that at most 2/3 of the points in
S ∪ I lie inside C and at most 2/3 of the points in S ∪ I lie outside C.) In our setting, it is
not guaranteed that the dual of gvd(S) is an (almost) triangulated graph. See Fig.2(i) for
an example where it corresponds to a tree. Therefore we will need a few extra steps before
we can apply a separator theorem.

2.1 Transforming the dual of gvd(S)
Let G = (V, E) denote the dual graph of gvd(S). The goal is to transform G to a graph
G∗ = (V ∗, E∗) such that any face of G∗ has size at most three. The Voronoi cells of gvd(S)
which are incident to ∂P0, induce a decomposition of ∂P0 into disjoint intervals. Note that
it is possible for a Voronoi cell to contribute to more than one interval. The following lemma
gives a linear bound on the number of these intervals.

▶ Lemma 2.1. Let I1, . . . , Ir denote the intervals along ∂P0 induced by gvd(S), enumerated
in clockwise order. Then r = O(k).

Proof. For 1 ⩽ i ⩽ r, let si ∈ S be the point in our solution S whose Voronoi cell has Ii

on its boundary. Note that the si need not all be distinct. For i = 1, ...r − 1, we charge
Ii to b(si, si+1). Any bisector can be charged at most two times. Moreover, a bisector
uniquely corresponds to an edge of G and we know that G is a planar graph. Therefore
r ⩽ 2|E| ⩽ 6k − 12. ◀

Now let p denote an arbitrary point in the outside face of P . We connect p to each si via
any arbitrary interior point of Ii. Let {e1, . . . , er} denote the set of these extra edges. Then
we have so far, V ∗ = V ∪ {p} and E∗ = E ∪ {ei}r

i=1. It’s easy to see that we can embed
these edges such that: (i) they are pairwise non-crossing and (ii) any face of the resulting
graph incident to p is a triangle. See Figure 2 (ii) for an example.

Handling the faces that do not contain p. Now we need to handle the faces of G∗ that
are not incident to p. By construction, the outer face of G∗ contains p and thus is a triangle.

EuroCG’23

31:4 Clustering with Obstacles

H1 H2

p

(i) (ii) (iii)

Figure 3 Holes H1 and H2 are essential, so we add a vertex for each of them. In (iii), observe
that every face has bounded size.

Therefore, the only way G∗ can contain a face of size at least four is if there exists a cycle of
size four “around” a hole as in Figure 3 (i).

We define an essential hole to be a hole H ∈ H which is incident to at least four Voronoi
cells of gvd(S). Since every essential hole corresponds to a face of G (or G∗), the number of
essential holes is O(k). Let H∗ denote the set of essential holes and for every H ∈ H∗ let
pH be an arbitrary point in H. We add the set {pH}H∈H∗ to V ∗ and we connect pH to the
vertices of the Voronoi cells which intersect H. If V (q) is such a Voronoi cell, then, similarly
as before, we can embed the edge (pH , q) by going through any interior point of H ∩ V (q).
At the end of this process, G∗ is a graph where every face is a triangle.

2.2 Applying the Separator Theorem to G∗

We now want to apply Miller’s Separator Theorem to G∗. One thing that prevents us
from doing so, is that G∗ could be a multigraph, because p may be connected to the same
Voronoi vertex more than once. (Recall that a Voronoi cell may contribute to more than one
interval Ii). To deal with this, we can add a “dummy vertex” to each edge which has p as an
endpoint; see Figure 2 (ii). This way we only increase the number of vertices and edges by
O(k). Moreover, the faces of the resulting graph still have bounded size, which ensures that
a separator theorem can still be applied (see below). Note that we want our separator to
be balanced with respect to V . To ensure that, we employ the cost-balanced version of the
Planar Separator Theorem, proven by Djidjev and Venkatesan [3].

Planar Separator Theorem. Let G = (V, E) be a maximal planar graph with n

nodes. Let each node v ∈ V have a non-negative weight, denoted weight(v), with∑
v∈V weight(v) = 1. Then V can be partitioned in O(n) time into three sets A, B, C

such that (i) C is a simple cycle of size O(
√

n), (ii) G has no arcs between a node in
A and a node in B, and (iii)

∑
v∈A weight(v) ⩽ 2/3 and

∑
v∈B weight(v) ⩽ 2/3.

The theorem is stated for maximal planar graphs, but as pointed out in [3], it can be extended
to graphs with faces of bounded size (as is our case). In our application, we give weight zero
to the intermediate vertices as well as all vertices in V ∗ \ V , and weight 1

|V | to each vertex in
V . Thus we obtain a simple-cycle separator C, which we can turn into a separator for G∗ by
ignoring any of the dummy vertices appearing on it. We obtain the following lemma.

M. de Berg and L. Biabani M. Monemizadeh and L. Theocharous 31:5

Figure 4 An example of three points and two holes, such that all three pairwise bisectors between
the points intersect both holes.

▶ Lemma 2.2. There exists a separator C for G∗ with the following properties: 1. C is a
simple cycle, 2. C has size O(

√
k) and 3. C is (2/3)-balanced with respect to V .

2.3 Guessing and Embedding the Separator
What we would like to do now, is guess the separator C of G∗. Regarding the essential holes,
note that we know that |H∗| = O(k), but we don’t have any bound on H in terms of n. This
is problematic for the running time because we will need to “guess” what the essential holes
are. However, we will argue that only O(n3) holes are good candidates for being essential.
We start with the following lemma.

▶ Lemma 2.3. Let P be a polygon and let H = {H1, H2, ..., Hm} be the set of holes in P .
Let T = {p, q, r} be a set of three points in P . Then there are at most two holes in H that
are incident to all three Voronoi cells VT (p), VT (q), VT (r).

Proof. Assume for contradiction that there exist three holes Hi, Hj , Hk incident to all three
cells VT (p), VT (q), VT (r) . Since Voronoi cells are connected, for each x ∈ {p, q, r} and for
each H ∈ {Hi, H,j , Hk}, there exists a path connecting x to H which stays inside V (x).
In this way, we get a planar embedding of K3,3, which is a contradiction. (Note that it is
possible to have two holes bordering VT (p), VT (q), VT (r), see Figure 4.) ◀

Now we define the set of candidate essential holes R as follows: for every triplet of points
in D we identify at most two holes which are incident to all three pairwise bisectors between
the points. We then place these holes in R. Clearly, |R| = O(n3). Therefore we can afford
to guess O(

√
k) essential holes on our separator C. Now we give a more detailed description

of how our algorithm works. Recall that each node in G∗ (and, hence, each node on the
separator we are looking for) corresponds to either a point in D, or to the extra point p we
added, or to an essential hole. Thus, to find the separator, we guess all ordered subsets of
size O(

√
k) from the set R ∪ D ∪ p. This results in nO(

√
k) candidate separators. We then

would like to use each separator to split our problem into two independent subproblems,
one for the inside and one for the outside of the separator. To do that, we have to make
sure that for every demand point d ∈ D its closest center point in the optimal solution, is
located at the same side of the separator as d. For this, it suffices to embed the edges of the
separator such that no edge crosses a Voronoi cell of a point which is not one of its endpoints.
We have three categories of edges:

EuroCG’23

31:6 Clustering with Obstacles

Edges that connect p to a Voronoi site q. Clearly if (p, q) ∈ E∗, then there exists
some r ∈ S such that (q, r) ∈ E and then we can embed such an edge by going through
the point x(q, r). Note that we don’t know r, but we can afford to guess it from D and
therefore there are n options.
Edges that connect a Voronoi site q to a pH for some H ∈ R. If (q, pH) ∈ E∗,
then again there exists some r ∈ S such that q, r ∈ E and then we can embed such an
edge by going through xH(q, r). Again we can guess r from D and there are n options.
Edges that connect two Voronoi sites q and r. Note that then one of the following
holds if (q, r) ∈ E:
1. there exists a t ∈ S, such that VS(q), VS(r), VS(t) meet at a point c in P or at a hole

H ∈ H∗

2. bS(q, r) intersects ∂P0 at two points.
Therefore we can check for all t ∈ D whether 1. holds and if yes we embed (q, r) via c or
xH(q, r). Otherwise, we can embed (q, r) via x(q, r). Again we have at most n guesses.

Assuming our guessed separator is correct, the points on the separator have to be part of
the optimal solution that we seek. Therefore in the two subproblems, these points have to be
passed on as part of the input. If we assume that our separator has size i then we also need
to guess how many of the remaining k − i optimal centers lie in the inside and how many lie
in the outside subproblem. In terms of running time, this is clearly not a problem since it
can only give an extra factor of O(k) = O(n). The base case of our algorithm is when k = 1,
where we simply try all possible options. The recursion then leads to an algorithm with total
running time poly(n, m) + nO(

√
k).

3 The k-Center problem with outliers

To solve the k-center problem with z outliers, we first show that the same approach as our
k-median algorithm works to solve the so-called (k, r)-coverage problem, and then we show
how to reduce the k-center problem with z outliers to the (k, r)-coverage problem. Let P be
a polygonal domain, D denote a set of n demand points in P , and k, r be two parameters.
We define a (k, r)-coverage of D as a set of k balls of radius at most r, such that the number
of outliers (that is, points in D not covered by the balls) is minimized.

The divide-and-conquer algorithm we presented earlier for k-median clustering has a base
case of k = 1. Our algorithm relies on the n candidates for the optimal centers in k-median,
and has a running time of nO(

√
k). However, we only use the properties of k-median to solve

for the base case and determine the candidate centers when guessing the separator in an
optimal solution. Therefore, the same approach can be applied to solve the (k, r)-coverage
problem, where for the base case, we can consider all the possible O(n) balls of radius r

and find the one that covers the maximum number of points in D. This means that our
algorithm can compute an optimal (k, r)-coverage in nO(

√
k) time.

It remains to reduce the k-center problem with z outliers to the (k, r)-coverage problem.
Observe that if r is at least the optimal radius for k-center clustering with z outliers, then
the number of outliers for (k, r)-coverage is at most z. Additionally, any minimal ball in an
optimal solution for the k-center of D with z outliers contains either three points from D on
its boundary or two points from D that form a diametrically opposite pair. Therefore, there
are at most O(n3) candidates for the optimal radius. By performing a binary search over
these O(n3) possible radii, we can find the minimum radius r∗ such that the (k, r∗)-coverage
covers all but at most z outliers. This (k, r∗)-coverage is an optimal solution for the k-center
problem with z outliers, and the running time to find it is O(nO(

√
k) · log (n3)) = nO(

√
k).

M. de Berg and L. Biabani M. Monemizadeh and L. Theocharous 31:7

References
1 Hee-Kap Ahn, Luis Barba, Prosenjit Bose, Jean-Lou De Carufel, Matias Korman, and

Eunjin Oh. A linear-time algorithm for the geodesic center of a simple polygon. Discret.
Comput. Geom., 56(4):836–859, 2016. doi:10.1007/s00454-016-9796-0.

2 B. Aronov, S. Fortune, and G. Wilfong. The furthest-site geodesic voronoi diagram.
In Proceedings of the Fourth Annual Symposium on Computational Geometry, SCG ’88,
page 229–240, New York, NY, USA, 1988. Association for Computing Machinery. doi:
10.1145/73393.73417.

3 Hristo Djidjev and Shankar M. Venkatesan. Reduced constants for simple cycle graph
separation. Acta Informatica, 34(3):231–243, 1997. doi:10.1007/s002360050082.

4 R. Z. Hwang, R. C. Chang, and Richard C. T. Lee. The searching over separators strategy
to solve some NP-hard problems in subexponential time. Algorithmica, 9(4):398–423, 1993.
doi:10.1007/BF01228511.

5 Dániel Marx and Michał Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using voronoi diagrams. ACM Trans. Algorithms, 18(2), mar 2022.
doi:10.1145/3483425.

6 Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs.
Journal of Computer and System Sciences, 32(3):265–279, 1986. URL: https://www.
sciencedirect.com/science/article/pii/0022000086900309, doi:https://doi.org/
10.1016/0022-0000(86)90030-9.

7 Eunjin Oh, Sang Won Bae, and Hee-Kap Ahn. Computing a geodesic two-center of
points in a simple polygon. Computational Geometry, 82:45–59, 2019. URL: https:
//www.sciencedirect.com/science/article/pii/S0925772119300756, doi:https://
doi.org/10.1016/j.comgeo.2019.05.001.

EuroCG’23

https://doi.org/10.1007/s00454-016-9796-0
https://doi.org/10.1145/73393.73417
https://doi.org/10.1145/73393.73417
https://doi.org/10.1007/s002360050082
https://doi.org/10.1007/BF01228511
https://doi.org/10.1145/3483425
https://www.sciencedirect.com/science/article/pii/0022000086900309
https://www.sciencedirect.com/science/article/pii/0022000086900309
https://doi.org/https://doi.org/10.1016/0022-0000(86)90030-9
https://doi.org/https://doi.org/10.1016/0022-0000(86)90030-9
https://www.sciencedirect.com/science/article/pii/S0925772119300756
https://www.sciencedirect.com/science/article/pii/S0925772119300756
https://doi.org/https://doi.org/10.1016/j.comgeo.2019.05.001
https://doi.org/https://doi.org/10.1016/j.comgeo.2019.05.001

2-point link distance queries in polygonal domains
Mart Hagedoorn1 and Valentin Polishchuk2

1 TU Dortmund, Germany
mart.hagedoorn@tu-dortmund.de

2 Linköping University, Sweden
valentin.polishchuk@alumni.stonybrook.edu

Abstract
We show how to preprocess a polygonal domain with holes so that the link distance (the number of
links in a minimum-link path) between two query points in the domain can be reported efficiently.
Answering 2-point link distance queries in polygonal domains have been open questions since the
same problem was studied for simple polygons in the 90s.

1 Introduction and Preliminaries

A minimum-link (minlink) path between points s, t in a polygonal domain P is an s-t path
with a minimum number of edges (links); the number of links in a minlink path is the link
distance between s and t. Unlike the geodesic distance, link distance does not obey the
triangle inequality: if s and t see each other, then the link distance from any point on the
segment st to both s and t is 1 – as well as the link distance between s and t themselves.

1.1 Terminology

The visibility polygon (VP) of a point p ∈ P is the set of points seen by p. The weak visibility
polygon of a subset S ⊆ P is the union of the VPs of the points of S; equivalently, the weak
visibility polygon are the points seen by at least one point of S. The visibility graph (VG)
of P is the graph on vertices of P , whose edges connect pairs of mutually visible vertices.
We assume that edges of P are also edges of the VG (i.e., that neighboring vertices of P see
each other along the boundary edge).

For a line segment ℓ in P , let ℓ be the chord of P containing ℓ (i.e., ℓ is ℓ extended
maximally within P). We define the Extended Visibility Graph EVG = {uv : uv is an edge
of VG} as the set of chords of P obtained by maximally extending every edge of VG.

Furthermore, the link distance map, denoted LDM(s), from the source point s is the
decomposition of P into cells such that the link distance from s to any point within one
cell is the same. Note that the cells of an LDM are not required to be maximal (i.e., that
the link distance necessarily changes as you step from a cell to a neighboring cell): the only
requirement is that the distance never changes within a cell. Thus, for a polygon P we are
allowed to overlay the EVG with an LDM(s). Hence, for the remainder of the paper, when
referring to LDM(s) we assume all chords of the EVG are included.

Algorithms for computing link distance [5, 7, 10, 12] employ the “staged illumination”
paradigm (see, e.g., the handbooks [11, Chapter 12] and [13, Chapter 31.3]): At the first
stage, place the light source at s and illuminate VP of s. At the beginning of any subsequent
stage, the boundary between the lit and the dark portions of P is defined by a set of windows
which are used to calculate the next illuminated VP.
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

32:2 2-point link distance queries in polygonal domains

1

2

2

3

Figure 1 LDM(c) is obtained by starting the illumination from c (yellow); the edges of the map
(windows) are solid red, and the cells are marked with the link distance to c

1.2 Prior work on 2-point queries and Our results
While LDMs give complete answers to the 1-point link. (for a fixed source, report the distance
from a query point to the source), for the 2-point distance query problem (report the distance
between two query points s and t), the solutions achieving optimal O(log n) query time are
much more involved [1, 3, 6, 14].

No data structure for 2-point link distance queries in polygonal domains with holes has
been known previously. The contribution of this paper is working out such data structure
(analogous to the 2d decomposition for geodesic queries [3]) by extending the solution of [1]
(for 2-point link distance queries in simple polygons) to polygons with holes.

2 Two-point link distance queries

In this section we show how to compute the 2d LDM equivalence decomposition – the data
structures for 2-point link distance queries, analogous to the structures of [3] for geodesic
queries (see Section 1.2). Our data structures extend the data structure of [1] (for 2-point
link distance queries in simple polygons) to polygonal domains with holes. The extension,
allowing us to track combinatorial changes in LDM(s) for s ∈ P , is two-fold:
Same windows Where for simple polygons only the boundary is decomposed in “atomic

segments” [1], we decompose the whole polygon into cells by overlaying LDMs from
extensions of VG edges – for all s in one cell σ of this decomposition, LDM(s) has the
same set W (σ) of windows.

Same arrangement of windows We track possible intersections among windows in LDM(s),
which may change because the rotating windows sweep through the domain as s moves

2.1 Static and Rotating windows
Every window w necessarily goes through a vertex of P (Fig. 2). If the chord w goes through
another vertex (w ∈ EVG), we call w a pinned window – such windows do not change as s

moves locally; in particular, chords of EVG are pinned windows (the term “pinned” is
borrowed from [1]). Otherwise we call w a bash window, and the endpoints of w – bash
points. A bash point lies in the interior of an edge of P ; we call such an edge a bash wall
(the term “bash” is borrowed from [9]). As s moves slightly, pinned windows of LDM(s)
do not change, whilst a bash window w may remain still or may rotate (refer to Fig. 3 –
as s moves left, all windows rotate). Any window w coming after a pinned window or bash
window is called a static bash window or bash-bash window, respectively.

Overall, we obtain the classification of LDM windows into static and rotating. The
former may be EVG chords or static bash windows; the latter are bash-bash windows.

M. Hagedoorn and V. Polishchuk 32:3

s

Figure 2 Pinned windows (those not aligned with edges of P) are blue (the aligned VG edges
are dotted blue), and static bash windows are green, rotating windows are red.

Figure 3 Figure 1 from [8]: the coordinates of the vertex t1 of the path are obtained as a solution
to a system of 2 linear equations with 2 unknowns and integer coefficients

2.2 LDMs overlay
We build LDMs from all chords of the EVG; let WEVG denote the set of all windows in these
LDMs. The first step in constructing our data structures is computing the overlay O of the
windows in WEVG. Similar to [1], we build the full overlay of the LDMs, while [1] considered
only the interaction of WEVG with the boundary of P .

Now, consider LDM(s) for a point s in P . As s moves, the bash-bash windows of LDM(s)
rotate and the map may change combinatorially when either:

Simple case A window hits a vertex of P when s crosses an edge of O, or
New case The arrangement of the windows changes because 3 windows pass through a

common point (out of the 3 windows, at least one must be a rotating window).

We called the first event “simple” because this is the only thing that may happen in a
simple polygon (where windows are pairwise-disjoint). As we will show in Section 2.5, to
account for new events one needs to build LDMs from intersection points of windows in
WEVG, as well as to do some additional, less straightforward computations described later.

An important connection between the overlay O and static windows in LDMs is that all
possible static windows in an LDM from any point of P are known in advance. Note that
we do not claim that any window from WEVG is necessarily a window in any LDM.

EuroCG’23

32:4 2-point link distance queries in polygonal domains

t
w2

w3

w1

t
w2

wτ
3

w1

s

t
w2

w3

w1

s

v1

v2

u1

u2

u3

v3

Figure 4 P is bold, static windows from WEVG are dotted, bash paths are solid. Left: LDM(s)
may change combinatorially when s crosses a bash-bash window of LDM(t) where t = w1 ∩ w2 for
some static windows w1, w2 ∈ WEVG of LDM(s); some possible locations for such s are shown with
hollow circles. Middle: LDM(s) may change when there are two bash paths between s and t ∈ w3.
Right: Each of s, t moves on a curve so as to remain connected by 3 bash paths.

2.3 Parametric maps (for simple cases)
If the new cases are ignored, then LDMs (with the corresponding projection functions) built
for all cells of O define the 2d LDM equivalence decomposition. The data structure can be
used to answer 2-point link distance queries in the same way as the 2d SPM equivalence
decomposition [3] answers geodesic distance queries: given query points s and t, first s is
located in a cell σ of O and then t is located in the parametric LDM(s).

In fact, since LDM edges (the windows) are straight line segments (not hyperbolic arcs
as edges of SPM), one possibility for locating t in the parametric LDM(s) is to use the
monotone subdivision method of [4].

2.4 Triple points (for new cases)
What remains is to account for the new cases (window arrangement changes due to 3 windows
passing through a common point). In Section 2.5 we give an algorithm to compute the
locations S ⊂ P for s such that 3 windows in LDM(s) may intersect in a common point t.
The set S is overlaid with O. By construction, for all points s in one cell of the obtained 2d
overlay O∗, LDM(s) is the same combinatorially: it has the same windows and they form
the same arrangement (before the arrangement changes, 3 windows must pass through a
common point, at which moment s is in S). Our final data structure, the (full) 2d LDM
equivalence decomposition (“full” in the sense that it accounts for both simple and new
cases) is built from O∗ in the same way as the data structure for handling simple cases was
built from O (Section 2.3).

2.5 Intersecting 3 windows
To find the (super)set S of sources potentially having triple points in their LDMs, we first
build another decomposition for tracking bash-bash windows (Section ??). We are now
ready to compute S. We emphasize that we do not claim that LDM(s) has a triple point
for every s in S; we only claim that S is sufficiently rich to “catch” all possible (sources of)
maps with triple points.

Let w1, w2, w3 be windows of LDM(s) that intersect at t, of which at least 1 window
rotates (so that LDM(s) changes combinatorially when the 3 windows intersect at t). Recall
that the (super)set WEVG of possible static windows in LDM(s) does not depend on s. We
make 3 different guesses on how many of the 3 windows w1, w2, w3 are rotating (1, 2, or all
3), and do different things for each of the guesses (Fig. 4):

M. Hagedoorn and V. Polishchuk 32:5

Assuming only w1 is rotating, LDM(s) changes when w1 passes through t = w2 ∩ w3
(the intersection point of two static windows w2, w3). At this point there is a bash path
between s and t, implying that s is on a bash-bash window of LDM(t). We thus build
LDM(t) from every intersection point t of two (potential) static windows w2, w3 ∈ WEVG
and add to S all bash-bash windows of LDMs.
Assuming 2 windows (say, w1, w2) are rotating, LDM(s) changes when their intersection
point t passes through w3. At this point there are two bash paths between s and t (in
one path t ∈ w1, in the other t ∈ w2). That is, s is the intersection point of two rotating
windows in LDM(t) (one window belonging to the bash path from t that starts from
following w1; the other – following w2). We thus take every window w3 ∈ WEVG as the
potential static window in LDM(s) and intersect it with every cell τ of O; let wτ

3 denote
part of w3 inside τ . For all points t ∈ wτ

3 , LDM(t) has the same set of windows, and
in particular, the same set of bash-bash windows; each window is a known function of t

(via the projection functions). For every pair of the bash-bash windows (with the same
link distance from t) in LDM(t) we add to S the curve traced by their intersection as t

varies along wτ
3 .

Assuming all 3 windows are rotating, we go through all pairs of cells σ, τ in D, guessing
that s ∈ σ, t ∈ τ . In addition, we go through all triples v1, v2, v3 of vertices visible from s

and all triples u1, u2, u3 of vertices visible to t, guessing that the vertices support the
first and the last windows resp. of the 3 bash paths (ending with the windows w1, w2, w3)
between s and t. Since vertices of P are endpoints of atomic segments, the decomposition
D includes chords of EVG, implying that the set of vertices visible to any point in a cell
of D is the same: it is thus legitimate to speak about a triple of vertices visible to s ∈ σ

or to t ∈ τ without specifying the exact locations of s and t in the cells.
Using the projection functions, we know whether for some number k of links there indeed
exist 3 length-k bash paths from s, with the first links of the paths supported by v1, v2, v3
and last links supported by u1, u2, u3. If yes, let w1(s), w2(s), w3(s) be these last links
(windows of LDM(s)). For t to be a triple point, the system





t ∈ w1(s)
t ∈ w2(s)
t ∈ w3(s)

(1)

of 3 equations (each involving the projection function) with 4 unknowns (the coordinates
of s and t) must be satisfied (for s ∈ σ, t ∈ τ). We solve the system and obtain the
decomposition for the 2d LDM equivalence decomposition (the set S ⊆ P such that
LDM(s) may change combinatorially only when s is crossing S). That is, for the 2d set
S we take only the first two coordinates of the 4d pairs (s, t) (i.e., the coordinates for
s; the knowledge of corresponding locations for t is ignored). Fig. 5 is a snapshot of a
GeoGebra example for S (dashed pink curve).

▶ Theorem 2.1. 2-point link distance queries in P can be answered in O(log n) time after
polynomial-time preprocessing.

We focused on reporting the link distance between query points s, t. To report the
minlink s-t path, we can enhance the parametric LDMs with backpointers (similarly to [10]).

EuroCG’23

32:6 2-point link distance queries in polygonal domains

3 Conclusions

We presented data structures for 2-point link distance queries in polygonal domains. We were
only after polynomiality, and one obvious question is improving efficiency of our algorithms
(fast solutions with small additive errors are known [1]). As far as 2-point link distance
queries go, in polygonal domains with holes, even the visibility queries (Do s and t see each
other, i.e., is the link distance between them equal to 1?) are quite challenging [2].

References
1 Esther M Arkin, Joseph SB Mitchell, and Subhash Suri. Logarithmic-time link path queries

in a simple polygon. International Journal of Computational Geometry & Applications,
5(04):369–395, 1995.

2 Danny Z Chen and Haitao Wang. Visibility and ray shooting queries in polygonal domains.
Computational Geometry, 48(2):31–41, 2015.

3 Yi-Jen Chiang and Joseph SB Mitchell. Two-point euclidean shortest path queries in the
plane. In Proc. 10th ACM-SIAM Symposium on Discrete Algorithms. Citeseer, 1999.

4 Herbert Edelsbrunner, Leonidas J Guibas, and Jorge Stolfi. Optimal point location in a
monotone subdivision. SIAM Journal on Computing, 15(2):317–340, 1986.

5 Subir Kumar Ghosh. Computing the visibility polygon from a convex set and related
problems. Journal of Algorithms, 12(1):75–95, 1991.

6 Leonidas J Guibas and John Hershberger. Optimal shortest path queries in a simple poly-
gon. In Proceedings of the third annual symposium on Computational geometry, pages
50–63, 1987.

7 John Hershberger and Jack Snoeyink. Computing minimum length paths of a given homo-
topy class. Computational geometry, 4(2):63–97, 1994.

8 Simon Kahan and Jack Snoeyink. On the bit complexity of minimum link paths: Su-
perquadratic algorithms for problems solvable in linear time. In Proceedings of the twelfth
annual symposium on Computational geometry, pages 151–158, 1996.

9 Joseph SB Mitchell, C Piatko, and Esther M Arkin. Computing a shortest k-link path in
a polygon. In Proceedings., 33rd Annual Symposium on Foundations of Computer Science,
pages 573–582. IEEE, 1992.

10 J S. B. Mitchell, G Rote, and GJ Woeginger. Minimum-link paths among obstacles in the
plane. Algorithmica, 8(1):431–459, 1992.

11 Jörg-Rüdiger Sack and Jorge Urrutia. Handbook of computational geometry. Elsevier, 1999.
12 Subhash Suri. A linear time algorithm for minimum link paths inside a simple polygon.

Computer Vision, Graphics, and Image Processing, 35(1):99–110, 1986.
13 Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and com-

putational geometry. CRC press, 2017.
14 Haitao Wang. A divide-and-conquer algorithm for two-point L1 shortest path queries

in polygonal domains. J. Comput. Geom., 11(1):235–282, 2020. doi:10.20382/jocg.
v11i1a10.

https://doi.org/10.20382/jocg.v11i1a10
https://doi.org/10.20382/jocg.v11i1a10

M. Hagedoorn and V. Polishchuk 32:7

Figure 5 https://www.geogebra.org/classic/sumsrytt: P ’s edges and vertices are black;
move s slightly and see LDM change (triple point appearing) as s crosses S (dashed pink)

EuroCG’23

https://www.geogebra.org/classic/sumsrytt

Towards Crossing-Free Hamiltonian Cycles in
Simple Drawings of Complete Graphs∗

Oswin Aichholzer1, Joachim Orthaber1, and Birgit Vogtenhuber1

1 Institute of Software Technology, Graz University of Technology, Austria
{oaich,orthaber,bvogt}@ist.tugraz.at

Abstract
It is a longstanding conjecture that every simple drawing of a complete graph on n ≥ 3 vertices
contains a crossing-free Hamiltonian cycle. We confirm this conjecture for cylindrical drawings,
strongly c-monotone drawings, as well as x-bounded drawings. Moreover, we introduce the stronger
question of whether a crossing-free Hamiltonian path between each pair of vertices always exists.

1 Introduction

A simple drawing is a drawing of a graph where each pair of edges meets in at most one point
(a crossing or a common endpoint) and no edge crosses itself. A fundamental line of research
is concerned with finding crossing-free sub-drawings (that is, sub-drawings with pairwise
non-crossing edges; also called plane sub-drawings) in simple drawings of the complete graph
Kn on n vertices. In 1988, Nabil Rafla stated the following conjecture in his PhD thesis [18].

▶ Conjecture 1 (Rafla [18]). Every simple drawing of the complete graph Kn on n ≥ 3
vertices contains at least one crossing-free Hamiltonian cycle.

Two simple drawings D and D′ of the same graph are called weakly isomorphic if two
edges in D cross if and only if the corresponding edges in D′ have a crossing. They are called
strongly isomorphic if there exists a homeomorphism (on the sphere) mapping D to D′. Weak
isomorphism classes can be uniquely represented by rotation systems (see [1, 15] for details).

Related Work. Under the assumption that Conjecture 1 is true, Rafla enumerated all
different simple drawings of Kn for n ≤ 7 up to weak isomorphism. Since then, Conjecture 1
and relaxations of it have attracted considerable attention. Especially, note that a crossing-
free Hamiltonian cycle in a simple drawing D implies that D also contains a crossing-free
Hamiltonian path (just remove an arbitrary edge of the cycle). Furthermore, for even n, a
crossing-free Hamiltonian path in turn implies that D contains a plane perfect matching
(take every second edge in the path). However, even the question of the existence of a plane
perfect matching in every simple drawing of K2n is still open.

In 2003 Pach, Solymosi, and Tóth [17] showed that every simple drawing of Kn contains
plane sub-drawings isomorphic to any tree of size O(log(n)1/6). This immediately implies a
lower bound of Ω(log(n)1/6) for the largest crossing-free path and largest plane matching
in every simple drawing of Kn. Subsequently, a lot of progress has been made with regard
to plane matchings (see [5, 19] and references therein). Until recently, a lower bound of

∗ O.A. and J.O. partially supported by the Austrian Science Fund (FWF) grant W1230. B.V. partially
supported by Austrian Science Fund within the collaborative DACH project Arrangements and Drawings
as FWF project I 3340-N35.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

33:2 Crossing-Free Hamiltonian Cycles

Ω(n1/2−ε), shown by Ruiz-Vargas [19], was best known. This bound has lately been improved
to Ω(

√
n) in [5], via the introduction and use of generalized twisted drawings.

In the same paper a lower bound of Ω(log(n)/ log(log(n))) for the longest crossing-free
path was shown; this is the first improvement in that direction over the result from [17].
Furthermore, the authors of [5] obtained the same bound for the longest crossing-free cycle.

In another direction, in [17] it was also shown that every simple drawing of Kn contains a
sub-drawing of size Ω(log(n)1/8) which is weakly isomorphic to a convex straight-line drawing
or a so-called twisted drawing (which has been introduced by Harborth and Mengersen in
the context of maximally crossing drawings [14] and empty triangles [13]). This implies the
existence of various plane sub-drawings of the respective size. Recently, Suk and Zeng [20]
improved the above bound from [17] to Ω(log(n)1/4−ε) and also (independently of [5]) proved
the existence of a crossing-free path of length Ω(log(n)1−ε) in every simple drawing of Kn.

Furthermore, Ruiz-Vargas [19] showed that every c-monotone drawing of Kn contains a
plane matching of size Ω(n1−ϵ); so “almost” a perfect matching. Also, in [5] it is shown that
every c-monotone drawing contains a sub-drawing of size Ω(

√
n) that is weakly isomorphic

to either an x-monotone drawing or a generalized twisted drawing, implying that c-monotone
drawings of Kn contain a crossing-free path as well as a crossing-free cycle of size Ω(

√
n).

Concerning crossing-free Hamiltonian cycles, Conjecture 1 has been confirmed for all
simple drawings on n ≤ 9 vertices using the rotation system database [1], and Ebenführer
tested the conjecture on randomly generated realizable rotation systems for up to 30 vertices
in his Master’s thesis [9]. Furthermore, in [3, 9] it was shown that simplicity of the drawings
is crucial, by providing a star-simple drawing (non-incident edges are allowed to cross more
than once) of K6 that does not contain any “crossing-free” Hamiltonian cycle (where edges
are only considered to be “crossing” when they cross an odd number of times).

Finally, Arroyo, Richter, and Sunohara [7] showed the existence of a crossing-free Hamil-
tonian cycle in so-called pseudospherical (or h-convex) drawings of Kn. In a current paper,
Bergold et al. [8] extend this to (generalized) convex drawings. And in [5] Conjecture 1 is
shown to be true for generalized twisted drawings on an odd number of vertices.

Our Contribution. We extend this line of research, showing Conjecture 1 to be true for
cylindrical drawings as well as strongly c-monotone drawings. Moreover, we show the inclusion
of (strongly) cylindrical drawings in (strongly) c-monotone drawings and the equivalence
of x-monotone and x-bounded drawings of Kn, from which it follows that Conjecture 1 is
also true for x-bounded drawings. Finally, we consider the question whether there exists
a crossing-free Hamiltonian path between each pair of vertices, which we show to be a
generalization of Conjecture 1.

All missing proofs can be found in the full version of this paper.

2 Crossing-Free Hamiltonian Cycles

We start by defining some sub-classes of simple drawings and analyzing relations between them.
If every vertical line in the plane crosses each edge of a simple drawing D at most once, we

call D an x-monotone drawing. When the relative interior of each edge is contained between
the vertical lines through its left and right end-vertices we call D an x-bounded drawing.
Obviously x-bounded drawings are a generalization of x-monotone drawings. Interestingly,
for drawings of Kn these classes are basically the same (Fulek et al. [10] show a similar result
on not necessarily simple drawings of not necessarily complete graphs).

O. Aichholzer, J. Orthaber, and B. Vogtenhuber 33:3

▶ Theorem 2.1. For every x-bounded drawing D of Kn there exists a weakly isomorphic
x-monotone drawing D′.

As a generalization of Hill’s drawing of Kn (confer [11, 12]), we call a simple drawing
cylindrical if all vertices lie on two concentric circles and no edge crosses any of these two
circles (this is the version of cylindrical drawings introduced in [2]). If, in addition, all edges
connecting vertices on the inner (outer, respectively) circle lie inside (outside, respectively)
that circle, then we call the drawing strongly cylindrical.

We say that an edge e in a simple drawing is c-monotone with respect to a point p of
the plane if every ray starting at p crosses e at most once. We call a simple drawing D in
the plane a c-monotone drawing if all edges in D are c-monotone with respect to a common
point pc (as defined in [5]). If, in addition, for each star S in D, there exists a ray starting
at pc that does not cross any edge of S, we say that D is strongly c-monotone.

We state three more results before coming to crossing-free Hamiltonian cycles. In addition,
Figure 1 gives an overview on more classes and their relations.

Cn

Zn

Tn

straight-line

2-page-book

strongly cylindrical

generalized twisted

strongly c-monotone

cylindrical
c-monotone

x-monotone
x-bounded

f-convex h-convex
generalized convex

simple

twisted drawing

Hill’s drawing

convex straight-line drawing

Figure 1 Relations between special drawings (yellow) and classes of simple drawings of Kn

(seagreen/violet). Arrows indicate that the “source class” is contained in the “target class” (concerning
weak isomorphism); darkorange arrows are shown in the full version of this work. Conjecture 1 is (now)
known to be true for the yellow/seagreen classes; for the darker seagreen ones this is shown below.

▶ Lemma 2.2. Let e be an edge of a strongly c-monotone (with respect to pc) drawing of Kn.
Then the sub-drawing induced by all vertices in the wedge bounded by the rays from pc through
the end-vertices of e and containing e is strongly isomorphic to an x-monotone drawing.

▶ Lemma 2.3. In every cylindrical drawing, per circle, there exists at most one edge between
neighboring vertices that is crossed by other edges.

▶ Theorem 2.4. For every cylindrical drawing D there exists a weakly isomorphic drawing D′

that is c-monotone. Moreover, for every strongly cylindrical drawing D there exists a weakly
isomorphic drawing D′ that is strongly c-monotone.

For straight-line drawings of Kn it is easy to see that a crossing-free Hamiltonian cycle
always exists (for example, pick an arbitrary vertex v, visit all other vertices in circular
order around v, and add v at some position to close the cycle). Further, it was known
that every 2-page-book, x-monotone, and strongly cylindrical drawing of Kn contains a
crossing-free Hamiltonian cycle (see, for example, [4]); however, as we are not aware of

EuroCG’23

33:4 Crossing-Free Hamiltonian Cycles

a reference containing proofs for these statements, we present such proofs in this work,
starting with x-monotone and x-bounded drawings (which include 2-page-book drawings as
a sub-class). We remark that 2-page-book drawings of Kn with n ≥ 3 actually contain a
Hamiltonian cycle of completely uncrossed edges.

▶ Theorem 2.5. Every x-monotone and every x-bounded drawing of the complete graph Kn

on n ≥ 3 vertices contains at least one crossing-free Hamiltonian cycle.

Proof. First, let D be an x-monotone drawing of Kn, let the vertices v1, . . . , vn be in that
order from left to right in horizontal direction, and see Figure 2 for an example illustration of
the construction. Consider the edge e = {v1, vn} and the Hamiltonian path P = v1v2 . . . vn

(which is crossing-free by the definition of x-monotone drawings). If e does not cross P then
e + P is a crossing-free Hamiltonian cycle. Otherwise, e has k > 0 crossings with P and
partitions the vertices of D \ {v1, vn} into a set above e and a set below e.

Our goal is to find crossing-free paths P1 and P2 from v1 to vn, which visit all vertices
above and below e, respectively. Let xi be the i-th crossing between e and P from left to
right (in horizontal direction, which is the same as along P or e). Further, let vai

and vbi
be

the vertices directly before and after xi, respectively. Then the edge f0 from v1 to vb1 and
the edge fk from vak

to vn cannot cross e (because e is incident to f0 and fk). Similarly,
for every crossing xi (1 ≤ i ≤ k − 1) the edge fi from vai

to vbi+1 cannot cross e because
otherwise, fi and e would have to cross at least twice. In other words, for 1 ≤ i ≤ k, the
edges fi alternate between lying completely above and completely below e.

Therefore, the edges fi lying above e combined with all edges of P that also lie above e

(basically, sub-paths of P from v1 or vbi−1 to vai
or vn) form a crossing-free path P1 from v1

to vn (because the edges lie in separate vertical strips and the start-/end-vertices coincide)
visiting all vertices above e. In the same manner, there is a crossing-free path P2 visiting
all vertices below e. Then joining P1 and P2 results in a crossing-free Hamiltonian cycle
because e separates P1 and P2, which completes the proof for x-monotone drawings.

For x-bounded drawings, the statement follows from the above proof and Theorem 2.1. ◀

ef0

f1

f2

f3

f4

f5

v1
vn

x1 x2 x3 x4

x5vb1 vb3 vb5va2
va4

va1
va3

va5
vb2 vb4

P2

P1

Figure 2 Constructing a crossing-free Hamiltonian cycle in an x-monotone drawing of Kn from
crossing-free paths P1 (darkorange) above and P2 (violet) below the edge e = {v1, vn} (seagreen).

The result on strongly c-monotone drawings follows now almost immediately.

▶ Theorem 2.6. Every strongly c-monotone drawing of the complete graph Kn on n ≥ 3
vertices contains at least one crossing-free Hamiltonian cycle.

Proof. Let the vertices v1 to vn be in that order counter-clockwise around pc and consider
the n edges ei = {vi, vi+1} between neighboring vertices (see Figure 3(a) for visual assistance).
If all of them are in the “short” direction (counter-clockwise from vi to vi+1) around pc, then
they form a crossing-free Hamiltonian cycle (by the definition of c-monotone drawings) and
we are done. Otherwise there is some edge ej (for 1 ≤ j ≤ n) going the “long” direction
(clockwise from vj to vj+1) around pc. But then the whole drawing is strongly isomorphic
to an x-monotone drawing by Lemma 2.2 (for which being strongly c-monotone is crucial).
Therefore we know by Theorem 2.5 that a crossing-free Hamiltonian cycle exists. ◀

O. Aichholzer, J. Orthaber, and B. Vogtenhuber 33:5

OR

pc pc

vj
vj+1

v1
v2

vn en
e1 e2

v3

ej

(a)

pc

(b)

Figure 3 (a) A crossing-free Hamiltonian cycle in a strongly c-monotone drawing of Kn: Either
visiting the vertices in circular order around pc is sufficient or the drawing is strongly isomorphic
to an x-monotone drawing. (b) A strongly c-monotone drawing that is neither x-monotone nor
cylindrical nor generalized convex (the darkorange K5 cannot be drawn straight-line).

In Figure 3(b) we give an example of a strongly c-monotone drawing that is neither
x-monotone nor cylindrical (it does not have any uncrossed edge) and also not generalized
convex (it contains a non-straight-line drawing of K5; confer Arroyo et al. [6]).

We conclude by verifying Conjecture 1 for cylindrical drawings, using the same idea as in
a previously known proof for strongly cylindrical drawings. Note that for strongly cylindrical
drawings, Conjecture 1 is also true by Theorem 2.4 together with Theorem 2.6.

▶ Theorem 2.7. Every cylindrical drawing of the complete graph Kn on n ≥ 3 vertices
contains at least one crossing-free Hamiltonian cycle.

Proof. Assume first that there are at least two vertices on each circle and confer Figure 4.
Then by Lemma 2.3, every cylindrical drawing contains two completely uncrossed paths P1
and P2 (one per circle) that together contain all vertices. Consider the end-vertices va and vb

of P1, and vc and vd of P2. Then both, the pair of edges {va, vc} and {vb, vd}, and the pair
{va, vd} and {vb, vc}, connect the completely uncrossed paths P1 and P2 to a Hamiltonian
cycle. Since there can be at most one crossing in the sub-drawing induced by the four-tuple
of vertices {va, vb, vc, vd}, at least one of those two Hamiltonian cycles is crossing-free.

Finally, if there is only a single vertex v on one of the circles, then the two edges
connecting v to P2, the completely uncrossed path on the other circle, are incident; therefore,
they do not cross anyway. And if all vertices lie on the same circle, then the drawing is
strongly isomorphic to a 2-page-book drawing and the result follows from Theorem 2.5. ◀

vdvc

vb
va

P2

P1

Figure 4 In a cylindrical drawing of Kn: Connecting the two completely uncrossed paths of
rim edges (darkorange) with one of two pairs of lateral edges (seagreen/yellow) to a crossing-free
Hamiltonian cycle.

EuroCG’23

33:6 Crossing-Free Hamiltonian Cycles

3 Conclusion

We showed the existence of a crossing-free Hamiltonian cycle in every strongly c-monotone
drawing and in every cylindrical drawing of Kn. By Theorem 2.1, we also extended the
result to x-bounded drawings. Furthermore, this work contains the first published proofs of
Conjecture 1 for 2-page-book, x-monotone, and strongly cylindrical drawings.

During our research, in addition, we came up with the following conjecture.
▶ Conjecture 2. Every simple drawing D of Kn for n ≥ 1 contains, for each pair of vertices
va and vb in D, a crossing-free Hamiltonian path starting in va and ending in vb.

In the full version we show that this conjecture is in fact at least as strong as Conjecture 1.
▶ Theorem 3.1. A positive answer to Conjecture 2 implies a positive answer to Conjecture 1.

In particular, if Conjecture 2 is true for all simple drawings of Kn+1 for some n ≥ 3 then
Conjecture 1 is true for all simple drawings of Kn.

We can confirm Conjecture 2 for all simple drawings on n ≤ 9 vertices using the rotation
system database. In the full version, we show it to be true for cylindrical and strongly
c-monotone drawings as well. A next goal is to extend those results to more classes of simple
drawings, especially, generalized twisted drawings on an even number of vertices. Further,
the classes of c-monotone drawings and crossing maximal drawings are of interest, too.

Another intriguing question is to figure out the essential reason why Conjecture 1 should
be true in general for simple drawings, while it is not true anymore for star-simple drawings.

Moreover, it would be interesting to know whether Theorem 3.1 can be strengthened to
an equivalence of Conjectures 1 and 2. We remark, however, that even if Conjecture 2 is
strictly stronger than Conjecture 1, it could potentially be easier to prove.

Acknowledgments. All results presented in this work are also contained in the Master’s
thesis [16] of Joachim Orthaber. We thank Rosna Paul, Daniel Perz, and Alexandra
Weinberger for fruitful discussions. We also thank the three anonymous referees for their
helpful comments, including the suggestion to use better distinguishable colors in the figures.
The colors we now use were recommended in [21].

References

1 Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Thomas Hackl, Jürgen
Pammer, Alexander Pilz, Pedro Ramos, Gelasio Salazar, and Birgit Vogtenhuber. All
good drawings of small complete graphs. In Proceedings of the 31st European Workshop on
Computational Geometry (EuroCG 2015), pages 57–60, 2015. URL: http://eurocg15.fri.
uni-lj.si/pub/eurocg15-book-of-abstracts.pdf.

2 Bernardo M. Ábrego, Oswin Aichholzer, Silvia Fernández-Merchant, Pedro Ramos, and
Gelasio Salazar. Shellable drawings and the cylindrical crossing number of Kn. Discrete &
Computational Geometry, 52(4):743–753, 2014. doi:10.1007/s00454-014-9635-0.

3 Oswin Aichholzer, Florian Ebenführer, Irene Parada, Alexander Pilz, and Birgit Vogtenhuber.
On semi-simple drawings of the complete graph. In Proceedings of the XVII Spanish Meeting
on Computational Geometry (EGC 2017), pages 25–28, 2017. URL: https://dmat.ua.es/
en/egc17/documentos/book-of-abstracts.pdf.

4 Oswin Aichholzer, Alfredo García, Irene Parada, Birgit Vogtenhuber, and Alexandra
Weinberger. Simple drawings of Km,n contain shooting stars. In Proceedings of
the 36th European Workshop on Computational Geometry (EuroCG 2020), pages 36:1–
36:7, 2020. URL: https://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/data/
uploads/papers/eurocg20_paper_36.pdf.

http://eurocg15.fri.uni-lj.si/pub/eurocg15-book-of-abstracts.pdf
http://eurocg15.fri.uni-lj.si/pub/eurocg15-book-of-abstracts.pdf
https://doi.org/10.1007/s00454-014-9635-0
https://dmat.ua.es/en/egc17/documentos/book-of-abstracts.pdf
https://dmat.ua.es/en/egc17/documentos/book-of-abstracts.pdf
https://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/data/uploads/papers/eurocg20_paper_36.pdf
https://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/data/uploads/papers/eurocg20_paper_36.pdf

O. Aichholzer, J. Orthaber, and B. Vogtenhuber 33:7

5 Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, and Alexandra Wein-
berger. Twisted ways to find plane structures in simple drawings of complete graphs. In
Proceedings of the 38th International Symposium on Computational Geometry (SoCG 2022),
pages 5:1–5:18, 2022. doi:10.4230/LIPIcs.SoCG.2022.5.

6 Alan Arroyo, Dan McQuillan, R. Bruce Richter, and Gelasio Salazar. Convex drawings of
the complete graph: topology meets geometry. Ars Mathematica Contemporanea, 22(3):27,
2022. doi:10.26493/1855-3974.2134.ac9.

7 Alan Arroyo, R. Bruce Richter, and Matthew Sunohara. Extending drawings of com-
plete graphs into arrangements of pseudocircles. SIAM Journal on Discrete Mathematics,
35(2):1050–1076, 2021. doi:10.1137/20M1313234.

8 Helena Bergold, Stefan Felsner, Meghana M. Reddy, and Manfred Scheucher. Using SAT to
study plane substructures in simple drawings. In Proceedings of the 39th European Workshop
on Computational Geometry (EuroCG 2023), pages 2:1–2:7, 2023.

9 Florian Ebenführer. Realizability of rotation systems. Master’s thesis, Graz Univer-
sity of Technology, Austria, 2017. URL: https://diglib.tugraz.at/realizability-of-
rotation-systems-2017.

10 Radoslav Fulek, Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič. Hanani–
Tutte, monotone drawings, and level-planarity. In Thirty essays on geometric graph theory,
pages 263–287. Springer, 2013. doi:10.1007/978-1-4614-0110-0_14.

11 Richard K. Guy, Tom Jenkyns, and Jonathan Schaer. The toroidal crossing number of the
complete graph. Journal of Combinatorial Theory, 4(4):376–390, 1968. doi:10.1016/S0021-
9800(68)80063-8.

12 Frank Harary and Anthony Hill. On the number of crossings in a complete graph.
Proceedings of the Edinburgh Mathematical Society, 13(4):333–338, 1963. doi:10.1017/
S0013091500025645.

13 Heiko Harborth. Empty triangles in drawings of the complete graph. Discrete Mathematics,
191(1-3):109–111, 1998. doi:10.1016/S0012-365X(98)00098-3.

14 Heiko Harborth and Ingrid Mengersen. Drawings of the complete graph with maximum
number of crossings. In Proceedings of the 23rd Southeastern International Conference on
Combinatorics, Graph Theory, and Computing, pages 225–228, 1992.

15 Jan Kynčl. Enumeration of simple complete topological graphs. European Journal of
Combinatorics, 30(7):1676–1685, 2009. doi:10.1016/j.ejc.2009.03.005.

16 Joachim Orthaber. Crossing-free Hamiltonian cycles in simple drawings of the complete
graph (and what we found along the way). Master’s thesis, Graz University of Technology,
Austria, 2022.

17 János Pach, József Solymosi, and Géza Tóth. Unavoidable configurations in complete
topological graphs. Discrete & Computational Geometry, 30(2):311–320, 2003. doi:10.
1007/s00454-003-0012-9.

18 Nabil H. Rafla. The good drawings Dn of the complete graph Kn. PhD thesis, McGill
University, Montreal, 1988. URL: https://escholarship.mcgill.ca/concern/theses/
x346d4920.

19 Andres J. Ruiz-Vargas. Many disjoint edges in topological graphs. Computational Geometry,
62:1–13, 2017. doi:10.1016/j.comgeo.2016.11.003.

20 Andrew Suk and Ji Zeng. Unavoidable patterns in complete simple topological graphs. In
Proceedings of the 30th International Symposium on Graph Drawing and Network Visualiza-
tion (GD 2022), pages 3–15, 2023. doi:10.1007/978-3-031-22203-0_1.

21 Bang Wong. Color blindness. Nature Methods, 8(6):441, 2011. URL: https://www.nature.
com/articles/nmeth.1618.pdf.

EuroCG’23

https://doi.org/10.4230/LIPIcs.SoCG.2022.5
https://doi.org/10.26493/1855-3974.2134.ac9
https://doi.org/10.1137/20M1313234
https://diglib.tugraz.at/realizability-of-rotation-systems-2017
https://diglib.tugraz.at/realizability-of-rotation-systems-2017
https://doi.org/10.1007/978-1-4614-0110-0_14
https://doi.org/10.1016/S0021-9800(68)80063-8
https://doi.org/10.1016/S0021-9800(68)80063-8
https://doi.org/10.1017/S0013091500025645
https://doi.org/10.1017/S0013091500025645
https://doi.org/10.1016/S0012-365X(98)00098-3
https://doi.org/10.1016/j.ejc.2009.03.005
https://doi.org/10.1007/s00454-003-0012-9
https://doi.org/10.1007/s00454-003-0012-9
https://escholarship.mcgill.ca/concern/theses/x346d4920
https://escholarship.mcgill.ca/concern/theses/x346d4920
https://doi.org/10.1016/j.comgeo.2016.11.003
https://doi.org/10.1007/978-3-031-22203-0_1
https://www.nature.com/articles/nmeth.1618.pdf
https://www.nature.com/articles/nmeth.1618.pdf

Hamiltonian Cycles and Matchings in 1-planar
Graphs∗

Michael Hoffmann, Meghana M. Reddy, and Emanuel Seemann

Department of Computer Science, ETH Zürich, Switzerland,
{hoffmann, meghana.mreddy}@inf.ethz.ch, emanuel.seemann@me.com

Abstract
A graph is 1-planar if it can be drawn in the plane such that every edge has at most one crossing. A
1-planar graph is triangulated if it has a 1-plane drawing where every face is a triangle, i.e., every
face contains either exactly three distinct vertices or exactly two distinct vertices and one crossing.
We investigate the Hamiltonicity and matching properties of 1-planar graphs. We show that there
always exists a Hamiltonian cycle with one prescribed edge in a 4-connected triangulated 1-planar
graph. The result also holds for 4-connected maximal 1-planar graphs.

A connected graph with an even number of vertices is k-extendable if any matching of size k can
be extended to a perfect matching. We prove that all 4-connected triangulated 1-planar graphs are
1-extendable and all 5-connected triangulated 1-planar graphs are 2-extendable. We also construct
an infinite family of 7-connected triangulated 1-planar graphs that have a unique 1-plane drawing.

1 Introduction

Planar graphs are graphs that can be drawn in the plane without any crossings. The class
of 1-planar graphs was discovered by Ringel [8] in 1961 while trying to prove the 4-color
theorem. A graph is 1-planar if it has a local crossing number of one, i.e., it can be drawn
in the plane such that every edge has at most one crossing. Over time, these graphs found
a new home as generalizations of planar graphs. Consequently, a sizeable part of research
on 1-planar graphs is concerned with generalizing properties of planar graphs. For instance,
while planar graphs on n vertices can have at most 3n−6 edges, 1-planar graphs on n vertices
can have at most 4n − 8 edges. Not all results generalize this well, probably since 1-planar
graphs are NP-hard to recognize [6] while their planar counterparts can be recognized in
polynomial time [2].

In this article, we show generalizations of results concerning Hamiltonian cycles and
matching extensions in planar graphs to 1-planar graphs. For hamiltonicity, we generalize a
result by Thomassen [9], which states that 4-connected planar graphs contain a Hamiltonian
cycle through any prescribed edge e. A connected graph with an even number of vertices is
k-extendable if any matching of size k can be extended to a perfect matching. For matching
extensions, we generalize results by Plummer [7] which showed that 4-connected planar
graphs are 1-extendable and identified conditions under which they are 2-extendable.

A graph is called triangulated if there exists a drawing of the graph that is triangulated,
i.e., every face is a triangle. A graph is called internally triangulated if there exists a drawing
of the graph where every internal face is a triangle (which implies that the outer face is not
necessarily a triangle). A planar (resp. 1-planar) graph is called optimal if it contains the
maximum number of edges possible. A planar (resp. 1-planar) graph is called maximal if
no edge can be added to the graph such that it remains planar (resp. 1-planar). A 1-plane

∗ M. Hoffmann and M. M. Reddy were supported by the Swiss National Science Foundation within the
collaborative DACH project Arrangements and Drawings as SNSF Project 200021E-171681.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

34:2 Hamiltonian Cycles and Matchings in 1-planar Graphs

drawing D is locally-maximal if for each crossing of two edges, the end vertices of these edges
induce a K4 in D. A graph is called locally-maximal 1-planar if it admits such a drawing. A
1-plane drawing D is near-optimal if the subdrawing H of D induced by uncrossed edges
contains faces of sizes three or four only, such that the vertices of faces of size four induce a
K4 in D, and no two triangular faces of H share an edge. A graph is called near-optimal
1-planar if it admits such a drawing.

2 Hamiltonian cycles

Fabrici et al. [4] proved that every 4-connected locally-maximal 1-planar graph is Hamiltonian.
Independently, Biedl [1] studied Hamiltonian cycles in 4-connected 1-planar graphs and showed
that there exist 4-connected 1-planar graphs without a Hamiltonian cycle. However, she
proved that 4-connected 1-planar graphs that are triangulated always contain a Hamiltonian
cycle. Both the theorems are a generalization of a theorem by Tutte [10], which states that
4-connected planar graphs are Hamiltonian.

▶ Theorem 1 ([1]). Any 4-connected triangulated 1-planar graph G has a Hamiltonian cycle.

The main idea behind the proof by Biedl [1] is to pick a 4-connected triangulated 1-plane
drawing of G, and for each crossing, one of the two edges involved in the crossing is removed.
The edge that is removed is chosen such that the resulting graph remains 4-connected. Once
we obtain a 4-connected plane graph, Tutte’s theorem [10] can be applied to construct a
Hamiltonian cycle.

We study the generalization of Theorem 1 where a prescribed edge e must be part of the
Hamiltonian cycle. For 4-connected planar graphs, this generalization of Tutte’s theorem is
known as Thomassen’s theorem [9]. If the prescribed edge is one of the edges that is removed
to obtain a 4-connected plane graph, then the proof technique of Biedl [1] cannot be used to
prove Hamiltonicity. Nevertheless, we can still prove that there exists a Hamiltonian cycle
that contains a prescribed edge e of a 4-connected triangulated 1-planar graph.

▶ Theorem 2. Let G be a 4-connected triangulated 1-planar graph. Let e be an arbitrary
edge of G. Then there exists a Hamiltonian cycle in G that contains e.

We fix a triangulated 1-plane drawing of G. The main idea is to re-use Biedl’s edge-
removing strategy whenever possible. If the prescribed edge e is not removed by Biedl’s
edge-removing strategy, the proof is trivial and follows immediately. In the case where the
prescribed edge e would be removed, we need to be more careful. In this case the edge e must
be involved in a crossing, say with the edge f . Instead of removing the edge e we remove
the edge f , and remove all the other edges as directed by Biedl’s edge-removing strategy to
obtain a graph G′. At this point we can no longer guarantee that G′ is 4-connected. However
we can now guarantee that G′ is a maximal planar graph, so every 3-cut in G′ must be a
separating triangle. Furthermore, we know that every separating triangle of G′ contains the
edge e. This motivates the following definition.

▶ Definition 3 (Bishop’s hat). Let G be a plane graph. A bishop’s hat H over the edge
e = (v1, v2) is a set of vertices {c1, ..., ck} such that the triangle (v1, v2, ci) exists in G and is
separating for all i ∈ [k].

We call the edge e the brim of the bishop’s hat and refer to each ci as a tip. Refer to
Figure 1 for an illustration. For any plane drawing of a bishop’s hat H we say that H is
one-sided if there is a triangle ∆ = (v1, v2, ci) that contains all other separating triangles

M. Hoffmann, M. M. Reddy, and E. Seemann 34:3

v1 v2

c1

c2

e

c3

Figure 1 A bishop’s hat on 3 vertices with brim e.

of H in its interior. Otherwise we say that H is two-sided. For one-sided bishop’s hats we
label the tips ci in the order they appear under set inclusion, i.e. ci is the tip such that
∆ = (v1, v2, ci) contains all tips cj in its interior, where 1 ≤ j < i ≤ k. For a two-sided
bishop’s hat, we can label the tips analogously on the two sides independently. We refer to
the number of tips k of the bishop’s hat as the height of the bishop’s hat. We also refer to c1
as the lowest tip and ck as the highest tip for brevity.

Using this definition, we know that all separating triangles of G′ are contained in a
bishop’s hat H. We prove Theorem 2 using the following theorem for maximal planar graphs.

▶ Theorem 4. Let G be a maximal planar graph that is free of separating triangles apart
from a bishop’s hat of arbitrary height. Then G contains a Hamiltonian cycle.In particular,
one can construct a Hamiltonian cycle that goes through the brim e of the bishop’s hat.

The proof of this theorem relies on tools developed by Whitney [11] and later by Chen [3].

▶ Definition 5 ([3]). Let G be an internally triangulated plane graph and let A and B be
two vertices on the outer face of an internally triangulated drawing of G. (G, A, B) is said to
satisfy Whitney’s condition if it satisfies both

(W1) G has no separating triangles, and
(W2) for the two paths (A = a0, a1, ..., am = B) and (B = b0, b1, ..., bn = A) along the
outer face there are no chords of the type (ai, aj) or (bi, bj)

▶ Lemma 6 ([11]). Let G be an internally triangulated plane graph and let A and B be two
vertices on the outer face of an internally triangulated drawing of G. If (G, A, B) satisfies
Whitney’s condition, then there is a Hamiltonian path from A to B.

▶ Theorem 7 ([3], Theorem 6). Let G be a 4-connected maximal planar graph. Let e and
f be two edges that lie on the same face of G. Then there is a Hamiltonian cycle that goes
through both e and f .

Chen [3] proved the above theorem using Whitney’s result detailed in Lemma 6. Using
these tools we can prove the following lemma.

▶ Lemma 8. Let G be a maximal plane graph with a one-sided bishop’s hat H. Let ci, ci+1
be two consecutive tips of H. Then there is path from ci to ci+1 whose interior consists of
all the vertices contained inside of the cycle {ci, v2, ci+1, v1} in the plane drawing of G.

We refer to the paths from Lemma 8 as local Hamiltonian paths. We prove a similar
lemma for the lowest tip c1 of the bishop’s hat.

EuroCG’23

34:4 Hamiltonian Cycles and Matchings in 1-planar Graphs

▶ Lemma 9. Let G be a maximal plane graph with a one-sided bishop’s hat H. Let c1 be the
lowest tip of H. Then there is path from v2 to c1 whose interior consists of all the vertices
contained inside of the cycle {v1, v2, c1} in the plane drawing of G.

The proofs of Lemmata 8 and 9 are deferred to the full version.

Proof of Theorem 4. As we can freely choose which face of G is considered as the outer
face, it suffices to prove the theorem for one-sided bishop’s hats.

Assume G has a one-sided bishop’s hat of height k. Let ck be the highest tip of this hat
and e = (v1, v2) the brim. We consider the subgraph G′ of G, which is obtained from G by
removing all vertices and edges contained strictly inside the bishop’s hat. In G′ the triangle
∆ = (v1, v2, ck) is a facial triangle. G′ is also 4-connected, as the triangle ∆ is no longer
separating. Therefore we can apply Theorem 7 on the edges e = (v2, ck) and f = (v1, v2) and
obtain a Hamiltonian cycle C that contains both the edges e and f , and all the vertices of G′.
Inside the bishop’s hat, we concatenate the local Hamiltonian paths obtained by applying
Lemma 8 to every pair of consecutive tips, along with the path from v2 to c1 obtained by
Lemma 9. We then create a Hamiltonian cycle in G from C by replacing the edge (v2, ck)
with the path constructed using the local Hamiltonian paths. This cycle contains the edge
e = (v1, v2). This construction can be seen in Figure 2. ◀

v1 v2

ck

v1 v2

ck

v1 v2

ck

Figure 2 Building the Hamiltonian cycle through e = (v1, v2) in G with a one-sided bishop’s hat
of height k. (left) the cycle C given by Chen’s Theorem containing all the exterior vertices and
edges (v1, v2) and (v2, ck). (middle) the concatenated local Hamiltonian paths. (right) the cycle and
path combined to obtain the desired Hamiltonian cycle.

Proof of Theorem 2. We start with a 4-connected triangulated 1-plane graph G. We apply
Biedl’s algorithm to every crossing that does not involve e to get a 4-connected subgraph G′

of G. If e is not crossed, G′ is plane. In this case we can directly apply Thomassen’s Theorem
to G′ to get a Hamiltonian cycle that contains e. If e is crossed, we instead remove the edge
that crosses e. This can potentially cause G′ to become 3-connected with a bishop’s hat of
arbitrary height with brim e. Note that all separating triangles of G′ are part of this bishop’s
hat by construction. We apply Theorem 4 to get a Hamiltonian cycle passing through e. ◀

We can further make the following observation about maximal 1-planar graphs, which
then immediately implies Corollary 11. The proof is deferred to the full version.

▶ Lemma 10. Let G be a 4-connected maximal 1-planar graph. Then every 1-plane drawing
of G is triangulated.

▶ Corollary 11. Let G be a 4-connected maximal 1-planar graph. Let e be an arbitrary edge
of G. Then there exists a Hamiltonian cycle in G that contains e.

M. Hoffmann, M. M. Reddy, and E. Seemann 34:5

3 Matching extendability

Theorem 2 immediately implies that for any given edge e of a 4-connected triangulated
1-planar graph, there exists a perfect matching that contains e.

▶ Corollary 12. Every 4-connected triangulated 1-planar graph of even order is 1-extendable.

Further using Lemma 10, we get:

▶ Corollary 13. Every 4-connected maximal 1-planar graph of even order is 1-extendable.

Plummer [7] and Fujisawa et al. [5] studied 2-extendability of planar and 1-planar graphs.
Plummer [7] proved the 2-extendability of 4-connected maximal planar graphs with forbidden
substructures called generalized butterflies. Let G be a graph, and let e = (u, v), f = (w, x) be
two edges of G. If the graph G \ {u, v, w, x} contains a component C with an odd number of
vertices, the induced subgraph G[V (C)∪{u, v, w, x}] is called a generalized butterfly. Fujisawa
et al. [5] proved that any optimal 1-planar graph of even order with no generalized butterfly is
2-extendable. Since trivially 5-connected graphs do not contain generalized butterflies, both
the papers were able to extend their results to 5-connected planar graphs and 5-connected
optimal 1-planar graphs, respectively. We prove that 5-connected triangulated planar graphs
are 2-extendable. It is not difficult to see that optimal 1-planar graphs are triangulated, thus,
our result is a strengthening of Fujisawa et al.’s result. The proof of the theorem is deferred
to the full version.

▶ Theorem 14. Every 5-connected triangulated 1-planar graph of even order is 2-extendable.

4 1-planar graphs with high connectivity

Biedl [1] constructed a class of 5-connected 1-plane graphs that are non-Hamiltonian. Interest-
ingly, these graphs contained a matching of size ⌊ n

2 ⌋ − 1, which are one edge away from being
a perfect matching. This motivated Biedl [1] to question whether 1-planar graphs with higher
connectivity are Hamiltonian. In particular, if we can prove that 6- or 7-connected 1-planar
graphs are always triangulated, then we can use techniques similar to Theorem 2 to prove
hamiltonicity for these graphs. Unfortunately, we discovered that there exist 7-connected
1-planar graphs that are neither maximal nor triangulated. The counterexample suggests
that new tools that do not depend on a triangulated drawing are required to address the
problem of Hamiltonicity of 1-planar graphs with high connectivity.

▶ Theorem 15. For each k ∈ N, there exists a 7-connected triangulated near-optimal 1-planar
graph with n = 24 + 8k vertices. If k ≥ 3, this graph is maximal 1-planar.

▶ Theorem 16. There exist 7-connected 1-planar graphs that are neither maximal nor
triangulated.

To this end, we first prove that there exist many 7-connected triangulated near-optimal
1-planar graphs. We then show that these graphs have many edges that can be removed such
that the resulting graph remains 7-connected. We briefly describe the construction of the
graph. We start with the double stop-sign graph given by Fabrici and Madaras, illustrated
in Figure 3. Using computer-based testing, we verified that the double stop-sign graph is
7-connected. We then increase the number of 8-cycles around the central K4. The resulting
graph is called a k-layered double stop-sign graph, where k refers to the number of newly
added 8-cyles. A 1-layered double stop-sign graph is illustrated in Figure 3. We can prove the

EuroCG’23

34:6 Hamiltonian Cycles and Matchings in 1-planar Graphs

Figure 3 (left) The double stop-sign graph. (right) The 1-layered double stop-sign graph, where
the new layer is depicted in red.

7-connectedness of the new graph by using the fact that the double stop-sign is 7-connected
and thus there must exist seven internally vertex-disjoint paths between any two vertices,
which can be extended to obtain seven new paths in the new graph. Finally, we can observe
that one of the diagonal edges between two consecutive layers can be removed, and the graph
remains 7-connected, thereby proving Theorem 16.

5 Conclusion

There are quite a few properties of 1-planar graphs that still need to be investigated. Based
on our work, we list the most interesting open questions below.

▶ Open Question 17. Let G be a 4-connected triangulated 1-planar graph that contains no
generalized butterflies. Is G then 2-extendable?

▶ Open Question 18. For a 4-connected triangulated 1-planar graph, is there a Hamiltonian
cycle through any two of its edges?

▶ Open Question 19. Are 6- or 7- connected 1-planar graphs Hamiltonian?

References
1 Therese Biedl. Are highly connected 1-planar graphs hamiltonian? CoRR, abs/1911.02153,

2019. URL: http://arxiv.org/abs/1911.02153, arXiv:1911.02153.
2 Ulrik Brandes. The left-right planarity test. Manuscript submitted for publication, 2009,

accessed at https://www.uni-konstanz.de/algo/publications/b-lrpt-sub.pdf on 04/08/2022.
3 Chiuyuan Chen. Any maximal planar graph with only one separating triangle is hamiltonian.

J. Comb. Optim., 7(1):79–86, 2003. doi:10.1023/A:1021998507140.
4 Igor Fabrici, Jochen Harant, Tomás Madaras, Samuel Mohr, Roman Soták, and Carol T.

Zamfirescu. Long cycles and spanning subgraphs of locally maximal 1-planar graphs. J.
Graph Theory, 95(1):125–137, 2020. doi:10.1002/jgt.22542.

5 Jun Fujisawa, Keita Segawa, and Yusuke Suzuki. The matching extendability of optimal
1-planar graphs. Graphs Comb., 34(5):1089–1099, 2018. doi:10.1007/s00373-018-1932-6.

http://arxiv.org/abs/1911.02153
http://arxiv.org/abs/1911.02153
https://doi.org/10.1023/A:1021998507140
https://doi.org/10.1002/jgt.22542
https://doi.org/10.1007/s00373-018-1932-6

M. Hoffmann, M. M. Reddy, and E. Seemann 34:7

6 Vladimir P. Korzhik and Bojan Mohar. Minimal obstructions for 1-immersions and hardness
of 1-planarity testing. J. Graph Theory, 72(1):30–71, 2013. doi:10.1002/jgt.21630.

7 Michael D. Plummer. Extending matchings in planar graphs IV. Discret. Math., 109(1-
3):207–219, 1992. doi:10.1016/0012-365X(92)90292-N.

8 Gerhard Ringel. Ein Sechsfarbenproblem auf der Kugel. In Abhandlungen aus dem Mathe-
matischen Seminar der Universität Hamburg, volume 29, pages 107–117. Springer, 1965.

9 Carsten Thomassen. A theorem on paths in planar graphs. J. Graph Theory, 7(2):169–176,
1983. doi:10.1002/jgt.3190070205.

10 W. T. Tutte. A theorem on planar graphs. Transactions of the American Mathematical
Society, 82(1):99–116, 1956. URL: http://www.jstor.org/stable/1992980.

11 Hassler Whitney. A theorem on graphs. Annals of Mathematics, 32(2):378–390, 1931. URL:
http://www.jstor.org/stable/1968197.

EuroCG’23

https://doi.org/10.1002/jgt.21630
https://doi.org/10.1016/0012-365X(92)90292-N
https://doi.org/10.1002/jgt.3190070205
http://www.jstor.org/stable/1992980
http://www.jstor.org/stable/1968197

Recognizing Unit Disk Graphs in Hyperbolic
Geometry is ∃R-Complete
Nicholas Bieker1, Thomas Bläsius2, Emil Dohse3, and Paul
Jungeblut4

1 Karlsruhe Institute of Technology
bieker.nicholas@gmail.com

2 Karlsruhe Institute of Technology
thomas.blaesius@kit.edu

3 Karlsruhe Institute of Technology
emildohse@gmail.com

4 Karlsruhe Institute of Technology
paul.jungeblut@kit.edu

Abstract
A graph G is a (Euclidean) unit disk graph if it is the intersection graph of unit disks in the
Euclidean plane R2. Recognizing them is known to be ∃R-complete, i.e., as hard as solving a system
of polynomial inequalities. In this note we describe a simple framework to translate ∃R-hardness
reductions from the Euclidean plane R2 to the hyperbolic plane H2. We apply our framework to
prove that the recognition of unit disk graphs in the hyperbolic plane is also ∃R-complete.

Related Version Full Version: https://arxiv.org/abs/2301.05550 [4]

1 Introduction

A graph is a unit disk graph if its vertices can be represented by unit disk such that two
vertices are adjacent if and only if their corresponding disks intersect. The class of unit disk
graphs (UDG) is a well studied graph class due to its mathematical beauty and its practical
relevance, e.g., in the context of sensor networks.

Naturally, unit disk graphs are usually considered in the Euclidean plane R2. However,
in the past decade, research on intersection graphs of equally sized disks in the hyperbolic
plane H2 has gained traction (stay tuned why we have to talk about equally sized disks
instead of unit disks here). Hyperbolic geometry is well suited to represent a wider range
of graph structures, including complex scale-free networks with heterogeneous degree dis-
tributions [8, 9, 12, 17, 23]; see Figure 1. Most research on such graphs is driven by the
network science community studying probabilistic network models, i.e., hyperbolic random
graphs. However, when omitting the probability distribution and looking at hyperbolic unit
disk graphs as a graph class, little is known so far.

A graph G is a hyperbolic unit disk graph if it is the intersection graph of equally sized
disks in the hyperbolic plane H2. In particular, the radius of the disks may depend on G1.
We denote by HUDG the class of hyperbolic unit disk graphs [7]2.

1 For example, stars with up to five leaves are Euclidean unit disk graphs. On the other hand, for every
star S there exists a radius rS such that S has an intersection representation of disks with radius rS

in H2. However, there is no universal radius r∗ such that all stars have an intersection representation
of disks with radius r∗ in H2.

2 We note that there are earlier results on a related family of graph classes parameterized by the disk
size by Kisfaludi-Bak [15]. In a sense, the class HUDG is the union of all these classes. This subtle
difference is important when considering asymptotic behavior as it can be desirable to grow the disk

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://arxiv.org/abs/2301.05550

35:2 Recognizing Unit Disk Graphs in Hyperbolic Geometry is ∃R-Complete

Figure 1 Two hyperbolic unit disk graphs. Thee green circle indicates the threshold distance
below which vertices are connected. A small threshold (left) yields structures similar to Euclidean
unit disk graphs. A large threshold (right) facilitates heterogeneous vertex degrees.

When choosing disks of small radius, the difference between Euclidean and hyperbolic
geometry becomes negligible; also see our interactive visualization3 and Figure 1.

Arguably the most fundamental algorithmic question when it comes to studying graph
classes is the computational complexity of the recognition problem, i.e., Recog(HUDG) is
the problem of testing whether a given graph is part of HUDG. In this paper we prove that
Recog(HUDG) is ∃R-complete. Containment in ∃R is less obvious than in the Euclidean
plane as distances are not (square roots of) a polynomial in hyperbolic geometry. Nonethe-
less, containment is easy to show when using the hyperboloid model of the hyperbolic plane.
For ∃R-hardness, our proof consists of five steps switching back and forth between Euclidean
and hyperbolic variants of problems in a particular way. Our proof has framework-character
in the sense that the first three steps are independent of the specific problem and the re-
maining steps can probably be translated to other problems. Thus we believe that this can
be a template for proving ∃R-hardness for other hyperbolic problems that have an ∃R-hard
Euclidean counterpart. For our framework, we in particular use the Beltrami-Klein model
of the hyperbolic plane to observe that SimpleStretchability is equivalent in Euclidean
and hyperbolic geometry in the sense that a pseudoline arrangement is stretchable in the
Euclidean plane if and only if it is stretchable in the hyperbolic plane.

1.1 Existential Theory of the Reals
The existential theory of the reals is the set of all true sentences of the form ∃X ∈ Rn : φ(X),
where φ(X) is a quantifier-free formula consisting of polynomial equations and inequalities,
e.g. ∃X, Y ∈ R : XY = 6 ∧ X + 2Y = 5. We denote the decision problem whether such
a sentence is true by ETR (which also stands for “existential theory of the reals”) and
define the complexity class ∃R to contain all decision problems that polynomial-time reduce
to ETR. It holds NP ⊆ ∃R ⊆ PSPACE [10]. The class ∃R has gained increasing attention
in the computational geometry community over the last years as it exactly captures the

size with the graph size; see [7] for a detailed discussion.
3 https://thobl.github.io/hyperbolic-unit-disk-graph

https://thobl.github.io/hyperbolic-unit-disk-graph

N. Bieker, T. Bläsius, E. Dohse and P. Jungeblut 35:3

−2 −1 1 2

−2

2

2

D

`1

`2

`3

S+

Figure 2 Left: The Beltrami-Klein disk with three hyperbolic lines. Right: The upper sheet S+

used for the hyperboloid model (in the full version [4]).

complexity of many geometry problems like the art gallery problem [2], geometric packing [3]
or the recognition of many classes of geometric intersection graphs [16, 19, 25].

1.2 Hyperbolic Geometry
The are several ways to embed the hyperbolic plane into Euclidean space. In this paper
we use the Beltrami-Klein model and the hyperboloid model (the latter only in the full
version [4]). In the Beltrami-Klein model the hyperbolic plane H2 is represented by the
interior of a unit disk D in R2 (the boundary of D is not part of the model). The set of
hyperbolic lines is exactly the set of chords of D. See Figure 2 (left).

2 Simple Stretchability in the Euclidean and the Hyperbolic Plane

An pseudoline arrangement A is a collection of pseudolines (x-monotone4 curves in R2) such
that each pair of curves intersects at most once. We assume that each pseudoline ℓ ∈ A
is oriented and thus divides the plane R2 into two open half-planes ℓ− and ℓ+. Further, A
partitions the plane into cells, i.e., maximal connected components of R2 \ A not on any
pseudoline. We say that A is simple if any two lines intersect exactly once and no three lines
intersect in the same point. Given a pseudoline arrangement A = {ℓ1, . . . , ℓn} we assign to
each p ∈ R2 a sign vector σ(p) = (σi(p))n

i=1 ∈ {−, 0, +}n, where

σi(p) :=





− if p ∈ ℓ−
i

0 if p ∈ ℓi

+ if p ∈ ℓ+
i

.

The combinatorial description D of A is then given by {σ(p) | p ∈ R2}5. We say that A
realizes D. A pseudoline arrangement is stretchable if there is a line arrangement with the
same combinatorial description. Not every pseudoline arrangement is stretchable and, given
a combinatorial description D, deciding whether D is stretchable is known as the Stretch-
ability problem (or SimpleStretchability if D is simple). Stretchability and Sim-

4 Requiring the curves to be x-monotone is a well-established way to make sure a pseudoline is homeo-
morphic to a straight line under some homeomorphism of the plane.

5 Pseudoline arrangements are closely related to oriented matroids of rank 3, see [6].

EuroCG’23

35:4 Recognizing Unit Disk Graphs in Hyperbolic Geometry is ∃R-Complete

↔ ↔

Figure 3 Transforming line arrangements between Euclidean and hyperbolic geometry.

pleStretchability are famously known to be ∃R-complete [22, 24, 28]. SimpleStretch-
ability is the starting problem for many ∃R-hardness reductions, e.g. [5, 13, 16, 25, 26].

Apart from line arrangements in the Euclidean plane R2 one might also consider line
arrangements in the hyperbolic plane H2. The main result of this section is that Sim-
pleStretchability is equivalent in Euclidean and hyperbolic geometry.

▶ Proposition 1. Let D be a combinatorial description of a simple pseudoline arrangement.
Then there is a line arrangement realizing D in R2 if and only if there is one in H2.

Proof. The proof is an easy application of the Beltrami-Klein model of the hyperbolic plane.
Given a Euclidean line arrangement, we can obtain a hyperbolic line arrangement with the
same combinatorial description and vice versa, see Figure 3.

Let AR be a simple line arrangement in R2 and D be a disk strictly enclosing all intersec-
tions of AR. For each line in AR, keep only its part inside D. We think of D as a unit disk
and obtain a representation of a hyperbolic line arrangement in the Beltrami-Klein model.

For the other direction let AH be a simple hyperbolic line arrangement and take a repre-
sentation inside the Beltrami-Klein disk D, so all hyperbolic lines are chords of D. Remove D

and extend all chords to lines. The resulting Euclidean line arrangement has the same com-
binatorial description D because AH was simple: All possible intersections between two lines
were already inside the Beltrami-Klein disk D. ◀

▶ Remark. Proposition 1 is only about simple (pseudo)line arrangements. There is no
corresponding result for the general (non-simple) Stretchability problem: For example,
given three lines ℓ1, ℓ2, ℓ3 ⊆ H2, lines ℓ2 and ℓ3 may cross each other while both being parallel
to ℓ1. However, Proposition 1 may be extended to line arrangements where each pair of lines
is still required to cross but multiple lines are allowed to cross at the same point.

3 The Framework

Let ΠR be a geometric decision problem for which ∃R-hardness is shown in Euclidean ge-
ometry by a polynomial-time reduction f from (Euclidean) SimpleStretchability. We
denote by ΠH the corresponding decision problem obtained by considering the hyperbolic
plane H2 instead of the Euclidean plane R2. Our framework below consists of several (hope-
fully) simple steps that allow us to prove ∃R-hardness of ΠH by using the reduction for ΠR:

1. Let D be an instance of SimpleStretchability in H2, i.e., a combinatorial description
of a simple pseudoline arrangement.

2. Use Proposition 1 to consider D to be an instance of SimpleStretchability in R2.
3. Use the reduction f to obtain an instance I = f(D) of ΠR equivalent to D.

N. Bieker, T. Bläsius, E. Dohse and P. Jungeblut 35:5

4. Prove that every yes-instance of ΠR is also a yes-instance of ΠH.
5. Prove that a hyperbolic line arrangement realizing D can be extracted from a realization

of I in H2.

Steps 1, 2 and 3 require no work when applying the framework.
Step 4 ensures that a stretchable instance D yields a yes-instance of ΠH. This step

requires to come up with a new argument but we expect it to be relatively simple because
locally R2 and H2 are very similar. A promising approach is to scale a Euclidean realization
of I to a tiny area and then interpret the Euclidean polar coordinates as hyperbolic ones.

Step 5 ensures correctness. By showing that a line arrangement realizing D can be
extracted from a realization of I in H2 we show that a no-instance D maps to a no-instance
of ΠH. Reduction f might help us again here (though not as a black box as in Step 3): If we
are lucky, the argument why a realization of I in R2 induces a Euclidean line arrangement
realizing D only uses the axioms of absolute geometry (the common “subset” of Euclidean
and hyperbolic geometry) and works without any adaptations for realizations in H2, too.

4 Recognition of Hyperbolic Unit Disk Graphs

We apply our framework to prove that Recog(HUDG), the recognition problem of hyper-
bolic unit disk graphs, is ∃R-hard. For Euclidean geometry this is shown in [14, 20, 21].
Let us recall that UDG and HUDG are not the same class: For example, star graphs with at
least six leaves are hyperbolic unit disk graphs but not Euclidean ones.

For Step 1 of our framework let D be an instance of SimpleStretchability in H2. We
consider it to be an equivalent instance in R2 for Step 2. In Step 3 we use the reduction f

from the literature proving that Recog(UDG) in R2 is ∃R-hard [14, 20, 21]. We obtain a
graph GD that is a Euclidean unit disk graph if and only if D is stretchable.

Though not required for the framework, let us shortly summarize the reduction f to
construct GD from D as given in [20]. Let n be the number of pseudolines ℓ1, . . . , ℓn and
m = 1 +

(
n+1

2
)

be the number of cells C1, . . . , Cm. The arrangement described by D has
exactly this number of cells because it is simple. We define GD to be the graph with vertex
set V = A ∪ B ∪ C for A = {a1, . . . , an}, B = {b1, . . . , bn} and C = {c1, . . . , cm}. Here we
assume that vertex ci corresponds to cell Ci. For the edges, each of the sets A, B, C forms
a clique. Further, each ai ∈ A (for i ∈ {1, . . . , n}) is connected to cj (for j ∈ {1, . . . , m}) if
and only if Cj ∈ ℓ−

i . Similarly, each bi ∈ B is connected to cj if and only if Cj ∈ ℓ+
i .

For Step 4 we have to show that every Euclidean unit disk graph is also a hyperbolic unit
disk graph. This has recently been proven by Bläsius, Friedrich, Katzmann and Stephan:

▶ Lemma 2 ([7]). Every Euclidean unit disk graph is also a hyperbolic one, so UDG ⊆ HUDG.

As foreshadowed above, the proof scales a Euclidean unit disk intersection representation
to a tiny area until the Euclidean and hyperbolic plane are “similar enough”. Then the polar
coordinates in R2 can be used as polar coordinates in H2 without changing any adjacencies.

For Step 5 it remains to prove how a line arrangement realizing D in H2 can be extracted
from a realization of GD in H2.

▶ Lemma 3 (adapted from [20, Lemma 1]). Given a realization of GD as the intersection
graph of equally sized disks in H2. Then the line arrangement L = {ℓ1, . . . , ℓn} defined by

ℓi := {p ∈ H2 | d(p, ai) = d(p, bi)}

has combinatorial description D. Here d(·, ·) denotes the hyperbolic distance.

EuroCG’23

35:6 Recognizing Unit Disk Graphs in Hyperbolic Geometry is ∃R-Complete

Proof. The proof is exactly the same as the proof of Lemma 1 in [20] where McDiarmid
and Müller prove that taking the perpendicular bisectors of the segments between any pair
of points ai and bi yields a Euclidean line arrangement realizing D. Their argument works
in H2 by just replacing Euclidean distances with hyperbolic distances.

Let us note that the ℓi are indeed hyperbolic lines, as easily seen in the Beltrami-Klein
model of the hyperbolic plane: Given two points a and b inside the unit disk D, their Eu-
clidean perpendicular bisector is a line ℓ. The chord of D on ℓ is the hyperbolic perpendicular
bisector (and in particular a line as lines in H2 and chords of D are in bijection). ◀

At this point we proved ∃R-hardness of Recog(HUDG). To get ∃R-completeness we
prove ∃R-membership in the full version of this paper [4]. The idea is to use the hyperboloid
model of the hyperbolic plane, where distances can be computed by taking the arcosh(·) (a
monotone function) of a polynomial. We conclude with the following theorem:

▶ Theorem 4. Recognizing hyperbolic unit disk graphs is ∃R-complete.

5 Conclusion and Outlook

We presented a simple framework that allows us to translate ∃R-hardness reductions for
geometric decision problems in R2 into reductions for their counterparts H2. As an appli-
cation we proved that Recog(HUDG) is ∃R-complete. Promising candidates for further
applications of our framework are the recognition of unit ball graphs (i.e., a generalization
of our result to higher dimensions) as already done in Rd in [14] or Recog(CONV), the
recognition problem for intersection graphs of convex sets (Euclidean reduction is in [25]).

Technically, the framework also works for the recognition problems Recog(HSEG) and
Recog(HDISK), where (H)SEG and (H)DISK denote the classes of intersection graphs of
(hyperbolic) segments and disks, respectively (Euclidean reductions are in [14, 16, 19, 21,
25]). However, these are not really interesting as SEG = HSEG (easy to see in the Beltrami-
Klein model) and DISK = HDISK (easy to see in the Poincaré model, not considered here).
Therefore ∃R-completeness for Recog(HSEG) and Recog(HDISK) follows directly from the
Euclidean cases. Other interesting problems to consider in H2 are linkage realizability [1, 26],
simultaneous graph embeddings [11, 18] or RAC-drawings [27].

Acknowledgements We thank Torsten Ueckerdt for discussion on proving the membership
of Recog(HUDG) in ∃R.

References
1 Zachary Abel, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Jayson Lynch, and

Tao B. Schardl. Who Needs Crossings? Hardness of Plane Graph Rigidity. In Sándor
Fekete and Anna Lubiw, editors, 32nd International Symposium on Computational Geom-
etry (SoCG 2016), volume 51 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 3:1–3:15, 2016. doi:10.4230/LIPIcs.SoCG.2016.3.

2 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The Art Gallery Problem
is ∃R-complete. Journal of the ACM, 69(1):1–70, 2022. doi:10.1145/3486220.

3 Mikkel Abrahamsen, Tillmann Miltzow, and Nadja Seiferth. Framework for ER-
Completeness of Two-Dimensional Packing Problems. In 61st Annual Symposium on
Foundations of Computer Science (FOCS 2020), pages 1014–1021, 2020. doi:10.1109/
FOCS46700.2020.00098.

https://doi.org/10.4230/LIPIcs.SoCG.2016.3
https://doi.org/10.1145/3486220
https://doi.org/10.1109/FOCS46700.2020.00098
https://doi.org/10.1109/FOCS46700.2020.00098

N. Bieker, T. Bläsius, E. Dohse and P. Jungeblut 35:7

4 Nicholas Bieker, Thomas Bläsius, Emil Dohse, and Paul Jungeblut. Recognizing Unit Disk
Graphs in Hyperbolic Geometry is ∃R-Complete, 2023. arXiv:2301.05550.

5 Daniel Bienstock. Some Provably Hard Crossing Number Problems. Discrete & Computa-
tional Geometry, 6(3):443–459, 1991. doi:10.1007/BF02574701.

6 Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and M. Ziegler, Gün-
ter. Oriented Matroids. Cambridge University Press, 2nd edition, 1999. doi:10.1017/
CBO9780511586507.

7 Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, and Daniel Stephan. Strongly
hyperbolic unit disk graphs, 2022. To appear at STACS 2023. arXiv:2107.05518.

8 Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Cliques in hyperbolic random
graphs. Algorithmica, 80:2324–2344, 2018. doi:10.1007/s00453-017-0323-3.

9 Michel Bode, Nikolaos Fountoulakis, and Tobias Müller. On the largest component
of a hyperbolic model of complex networks. Electronic Journal of Combinatorics,
22(1–52):P3.24, 2015. URL: https://www.combinatorics.org/ojs/index.php/eljc/
article/view/v22i3p24.

10 John Canny. Some Algebraic and Geometric Computations in PSPACE. In Proceedings
of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages
460–467, 1988. doi:10.1145/62212.62257.

11 Jean Cardianl and Vincent Kusters. The Complexity of Simultaneous Geometric Graph
Embedding. Journal of Graph Algorithms and Applications, 19(1):259–272, 2015. doi:
10.7155/jgaa.00356.

12 Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs:
Degree sequence and clustering. In International Colloquium on Automata, Languages, and
Programming (ICALP, pages 573–585, 2012. doi:10.1007/978-3-642-31585-5_51.

13 Udo Hoffmann. On the Complexity of the Planar Slope Number Problem. Journal of Graph
Algorithms and Applications, 21(2):183–193, 2017. doi:10.7155/jgaa.00411.

14 Ross J. Kang and Tobias Müller. Sphere and Dot Product Representations of
Graphs. Discrete & Computational Geometry, 47(3):548–568, 2012. doi:10.1007/
s00454-012-9394-8.

15 Sándor Kisfaludi-Bak. Hyperbolic Intersection Graphs and (Quasi)-Polynomial Time. In
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1621–1638, 2020. doi:10.1137/1.9781611975994.100.

16 Jan Kratochvíl and Jiří Matoušek. Intersection Graphs of Segments. Journal of Combina-
torial Theory, Series B, 62(2):289–315, 1994. doi:10.1006/jctb.1994.1071.

17 Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián
Boguñá. Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106,
2010. doi:10.1103/PhysRevE.82.036106.

18 Jan Kynčl. Simple Realizability of Complete Abstract Topological Graphs in P. Discrete
& Computational Geometry, 45(3):383–399, 2011. doi:10.1007/s00454-010-9320-x.

19 Jiří Matoušek. Intersection graphs of segments and ∃R, 2014. arXiv:1406.2636.
20 Colin McDiarmid and Tobias Müller. The Number of Bits Needed to Represent a Unit

Disk Graph. In Dimitrios M. Thilikos, editor, Graph Theoretic Concepts in Computer
Science (WG 2010), volume 6410 of Lecture Notes in Computer Science, pages 315–323,
2010. doi:10.1007/978-3-642-16926-7_29.

21 Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs.
Journal of Combinatorial Theory, Series B, 103(1):114–143, 2013. doi:10.1016/j.jctb.
2012.09.004.

22 Nikolai E. Mnëv. The Universality Theorems on the Classification Problem of Configuration
Varieties and Convex Polytopes Varieties. In Oleg Y. Viro and Anatoly M Vershik, editors,

EuroCG’23

http://arxiv.org/abs/2301.05550
https://doi.org/10.1007/BF02574701
https://doi.org/10.1017/CBO9780511586507
https://doi.org/10.1017/CBO9780511586507
http://arxiv.org/abs/2107.05518
https://doi.org/10.1007/s00453-017-0323-3
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i3p24
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i3p24
https://doi.org/10.1145/62212.62257
https://doi.org/10.7155/jgaa.00356
https://doi.org/10.7155/jgaa.00356
https://doi.org/10.1007/978-3-642-31585-5_51
https://doi.org/10.7155/jgaa.00411
https://doi.org/10.1007/s00454-012-9394-8
https://doi.org/10.1007/s00454-012-9394-8
https://doi.org/10.1137/1.9781611975994.100
https://doi.org/10.1006/jctb.1994.1071
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1007/s00454-010-9320-x
http://arxiv.org/abs/1406.2636
https://doi.org/10.1007/978-3-642-16926-7_29
https://doi.org/10.1016/j.jctb.2012.09.004
https://doi.org/10.1016/j.jctb.2012.09.004

35:8 Recognizing Unit Disk Graphs in Hyperbolic Geometry is ∃R-Complete

Topology and Geometry — Rohlin Seminar, volume 1346 of Lecture Notes in Mathematics,
pages 527–543. Springer, Berlin, Heidelberg, 1988. doi:10.1007/BFb0082792.

23 Tobias Müller and Merlijn Staps. The diameter of KPKVB random graphs. Advances in
Applied Probability, 51(2):358–377, 2019. doi:10.1017/apr.2019.23.

24 Jürgen Richter-Gebert. Mnëv’s Universality Theorem revisited,
2002. URL: https://geo.ma.tum.de/_Resources/Persistent/3/e/a/2/
3ea2ad59228a1a24a67d1e994fa77266a599e73a/15_MnevsUniversalityhTheorem.pdf.

25 Marcus Schaefer. Complexity of Some Geometric and Topological Problems. In David Epp-
stein and Emden R. Gansner, editors, Graph Drawing (GD 2009), volume 5849 of Lecture
Notes in Computer Science, pages 334–344, 2010. doi:10.1007/978-3-642-11805-0_32.

26 Marcus Schaefer. Realizability of Graphs and Linkages. In János Pach, editor, Thirty
Essays on Geometric Graph Theory, pages 461–482. Springer, 2013. doi:10.1007/
978-1-4614-0110-0_24.

27 Marcus Schaefer. RAC-Drawability is ∃R-Complete. In Helen C. Purchase and Ignaz Rut-
ter, editors, Graph Drawing and Network Visualization (GD 2021), volume 12868 of Lecture
Notes in Computer Science, pages 72–86, 2021. doi:10.1007/978-3-030-92931-2_5.

28 Peter W. Shor. Stretchability of Pseudolines is NP-Hard. In Peter Gritzmann and Bernd
Sturmfels, editors, Applied Geometry And Discrete Mathematics, Proceedings of a DIMACS
Workshop, Providence, Rhode Island, USA, September 18, 1990, volume 4 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 531–554, 1991.
doi:10.1090/dimacs/004/41.

https://doi.org/10.1007/BFb0082792
https://doi.org/10.1017/apr.2019.23
https://geo.ma.tum.de/_Resources/Persistent/3/e/a/2/3ea2ad59228a1a24a67d1e994fa77266a599e73a/15_MnevsUniversalityhTheorem.pdf
https://geo.ma.tum.de/_Resources/Persistent/3/e/a/2/3ea2ad59228a1a24a67d1e994fa77266a599e73a/15_MnevsUniversalityhTheorem.pdf
https://doi.org/10.1007/978-3-642-11805-0_32
https://doi.org/10.1007/978-1-4614-0110-0_24
https://doi.org/10.1007/978-1-4614-0110-0_24
https://doi.org/10.1007/978-3-030-92931-2_5
https://doi.org/10.1090/dimacs/004/41

Crossing Minimization in Time Interval Storylines∗

Alexander Dobler, Martin Nöllenburg, Daniel Stojanovic,
Anaïs Villedieu, and Jules Wulms

Algorithms and Complexity Group, TU Wien
{adobler|noellenburg|avilledieu|jwulms}@ac.tuwien.ac.at,
e11907566@student.tuwien.ac.at

Abstract
Storyline visualizations are a popular way of visualizing characters and their interactions over time:
Characters are drawn as x-monotone curves and interactions are visualized through close proximity
of the corresponding character curves in a vertical strip. Existing methods to generate storylines
assume a total ordering of the interactions, although real-world data often do not contain such a
total order. Instead, multiple interactions are often grouped into coarser time intervals such as years.
We exploit this grouping property by introducing a new model called storylines with time intervals
and present two methods to minimize the number of crossings and horizontal space usage. We then
evaluate these algorithms on a small benchmark set to show their effectiveness.

Related Version arXiv:2302.14213

1 Introduction

Storyline visualizations are a popular way of visualizing characters and their interactions
through time. They were popularized by Munroe’s xkcd comic [13] (see Fig. 1 for a storyline
describing a movie as a series of scenes through time, in which the characters participate). A
character is drawn using an x-monotone curve, and the vertical ordering of the character curves
varies from left to right. A scene is represented by closely gathering the curves of characters
involved in said scene at the relevant spot on the x-axis, which represents time. Storylines
attracted significant interest in visualization research, especially the question of designing
automated methods to create storylines adhering to certain quality criteria [12,14,15].

Figure 1 The xkcd comic showing a storyline of the Star Wars movie.

While different design optimization goals can be specified, most theoretical research
has been focused on crossing minimization [8, 11] and variants like block crossing mini-
mization [16,17]. This problem is NP-hard [11,16] and is commonly solved using ILP and
SAT formulations [8, 17]; it has many similarities with the metro line crossing minimization
problem [1–3,5]. Recently a new model for storylines was proposed by Di Giacomo et al. [7]
that allows for one character to be part of multiple interactions at the same point in time,
by modeling each character as a tree rather than a curve. Using this model, it is possible to

∗ Alexander Dobler was supported by the Vienna Science and Technology Fund (WWTF)
[10.47379/ICT19035]. Anaïs Villedieu was supported by the Austrian Science Fund (FWF) under
grant P31119. We thank Martin Gronemann for the initial discussion.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

36:2 Crossing Minimization in Time Interval Storylines

Figure 2 (a) A classic storyline with blue character lines. Interactions are shown in gray, they
happen on specific timestamps and have a duration. (b) A time interval storyline. The horizontal
orange segment shows a slice, every interaction on this segment has the same timestamp. A layer is
highlighted in red, containing two interactions with the same timestamp but not sharing a character.

represent data sets which have a more loosely defined ordering of interactions. Furthermore,
authorship networks have been a popular application for storylines visualizations [7, 10]. In
this paper we introduce time interval storylines, an alternative approach to visualize data
sets with less precise temporal attributes. In the time interval model, a set of discrete, totally
ordered timestamps is given, which serve to label disjoint time intervals (e.g., the timestamp
2021 represents all interactions occurring between January and December of the year 2021).
Each interval is represented in a storyline as a horizontal section in which all interactions with
the same timestamp occur. The horizontal ordering within this section, however, does not
correspond to a temporal ordering anymore (see Fig. 2). For example, an authorship network
often sorts publications by year. In a traditional storyline model, the complete temporal
ordering of the interactions must be provided. Previous models like the one by van Dijk et
al. [17] can place multiple disjoint interactions in the same vertical layer, but the assignment of
interactions to the totally ordered set of layers must be given as input. Unlike the traditional
model, we have no pre-specified assignment of interactions to layers, but interactions with
the same timestamp can be assigned to any layer within the time interval of this timestamp.

Problem setting. We are given a triple S = (C, I, T), of characters C = {c1, . . . , cn},
interactions I = {I1, . . . , Im}, and totally ordered timestamps T = {t1, . . . , tp} as input.
Each interaction (Cj , t) = Ij ∈ I consists of a set Cj ⊆ C of characters involved in the
interaction and a timestamp t ∈ T at which the interaction Ij occurred, respectively denoted
by char(Ij) = Cj and time(Ij) = t. A subset of interactions can form a layer ℓ, when for
every pair of interactions I, I ′ in ℓ, time(I) = time(I ′). A time interval storyline is composed
of a sequence of layers to which interactions are assigned. Intuitively, a layer represents a
column in the storyline visualization, in which interactions are represented as vertical stacks.
Thus, to each layer we associate a vertical ordering of C. Consider the set S containing all
interactions with timestamp t, we call the union of layers containing S a slice.

Characters are represented with curves passing through each layer at most once. To
represent an interaction I = (C, t) in a layer ℓ, the ordering of the characters in ℓ must
be such that the characters of C appear consecutively in that ordering. For a pair I, I ′ of
interactions in the same layer, it must hold that char(I) ∩ char(I ′) = ∅.

For a layer ℓ, we denote the set of interactions by inter(ℓ) and the timestamp of a layer by
time(ℓ) (with slight abuse of notation). We focus on combinatorial storylines, as opposed to
geometric storylines, meaning that our algorithm should output a (horizontal) ordering oL(S)
of layers, and for each layer ℓ, a (vertical) ordering oc(ℓ) of the characters, and all interactions
must occur in some layer. For two interactions I, I ′ such that time(I) < time(I ′), let ℓ and
ℓ′ be the layers of I and I ′, respectively. Then ℓ must be before ℓ′ in oL(S). A character

A. Dobler et al. 36:3

is active in a layer if it appears in the character ordering for that layer. A character must
be active in a contiguous range of layers including the first and last interaction it is involved
in. A character is active in a layer if it appears in the character ordering for that layer.

Contributions. In this paper we introduce the time interval storylines model, as well as
two methods to compute layer and character orderings. In Section 2.1 we introduce an
algorithmic pipeline based on ILP formulations and heuristics that computes time interval
storylines. We further present an ILP formulation that outputs a crossing-minimal time
interval storyline in Section 2.2. Lastly in Section 3, we experimentally evaluate our pipeline
and ILP formulation. Due to space constraints, some details are omitted and can be found
in the full version of the paper [4].

2 Computing combinatorial storylines

2.1 A pipeline heuristic
As the traditional storyline crossing minimization problem is a restricted version of the time
interval formulation, our problem is immediately NP-hard [11]. Thus, we first aim to design
an efficient heuristic to generate time interval storylines, which consists of the following
stages.

(i) Initially, we assign each interaction to a layer,
(ii) then, we compute a horizontal ordering oL(S) of the layers obtained in step (i), and
(iii) finally, we compute a vertical ordering oc(ℓ) of the characters for each layer ℓ ∈ oL(S).

For step (i), the assignment is obtained using graph coloring. For each t ∈ T , we create
a conflict graph Gt = (It, E) where It ⊆ I and I ∈ It if and only if time(I) = t. Two
interactions are connected by an edge if they share at least one character. Each color class
then corresponds to a set of interactions which share no characters and can appear together
in a layer. We solve this problem using a straightforward ILP formulation based on variables
xv,c = 1 if color c is assigned to vertex v and 0 otherwise. We can choose to limit the size of
each color class by adding an upper bound on the number of interactions assigned to each
color, which forces fewer interactions per layer. While this allows us to limit the height of
each slice, it likely results in more layers.

To compute a horizontal ordering of the layers in step (ii), we use a traveling salesperson
(TSP) model. Concretely, for the slice corresponding to the timestamp t, we create a complete
weighted graph G = (L, E), where L corresponds to all the layers ℓ such that time(ℓ) = t.
For each edge e between a pair of layers ℓ and ℓ′ in L, we associate a weight we, estimating
the number of crossings that may occur if the two layers are consecutive as follows.

Minimizing the crossings of the curves representing the characters is NP-complete [6, 11],
thus we propose two heuristics to estimate the number of crossings. First, we propose to use
set similarity measures to describe how similar the interactions in two layers ℓ and ℓ′ are: If
ℓ and ℓ′ both have an interaction that contains the same set of characters, then no crossing
should be induced by the curves corresponding to those characters, when these two layers
are consecutive (see Fig. 3a). Second, we consider pattern matching methods that guess how
many crossings could be induced by a certain ordering of the characters. There are certain
patterns of interactions between two layers for which a crossing is unavoidable (see Fig. 3b).
We count how many of these patterns occur between each pair of layers in G and set the
weight of the corresponding edge to that crossing count. More details on these heuristics can
be found in the full version [4].

EuroCG’23

36:4 Crossing Minimization in Time Interval Storylines

a
ab
b

c
d c

d

` `′ ` `′
` `′

(a) (b)

Figure 3 (a) The orange and light green characters are together in two interactions, which
increases similarity between ℓ and ℓ′, but the two blue characters are once together and once apart,
which decreases similarity. (b) An example of an unavoidable crossing pattern.

To finish step (ii), we solve the path formulation of the TSP problem on G and find a
horizontal ordering of the layers for each time slice. We have now obtained a traditional
storyline, in which each interaction belongs to a specific layer, and all layers are totally
ordered. Thus, we can solve step (iii) using the state-of-the-art crossing minimization ILP by
Gronemann et al. [8].

We call the pipeline variants Ps and Pp, when using the set similarity heuristic and the
pattern matching heuristic in step (ii), respectively.

2.2 An ILP formulation
Crossing minimization in storylines is generally solved using ILP formulations [8, 16]. We
propose two formulations to handle slices, which build on the ideas of Gronemann et al. [8].
Both formulations will give us an assignment of interactions to layers, that are already totally
ordered, and an ordering of characters per layer. For each timestamp t ∈ T , let Lt be a set of
|{I | time(I) = t}| layers corresponding the number of interactions at t, and let L =

⋃
t∈T Lt.

In the first formulation we assume that a character c is active in all layers between the first
timestamp and last timestamp, inclusively, where there exists an interaction I such that
c ∈ char(I). In the second formulation we will introduce additional variables that model
whether a character really needs to be active, since, in fact, character curves do not need
to be active before their first interaction or after their last interaction. In contrast to the
pipeline approach, the presented ILP formulations are able to find the crossing-minimal
solution for the explored search space.

First formulation. Let Cℓ be the characters that appear in layer ℓ ∈ L, as discussed before.
First we introduce for each t ∈ T the binary variables yℓ,I for ℓ ∈ Lt and I ∈ I where
time(I) = t. These should be one iff interaction I is assigned to layer ℓ. This is realized by
constraints of type (1). If two different interactions I and I ′ share a character they cannot
be in the same layer, realized by type (2) constraints.

∑

ℓ∈Lt

yℓ,I = 1 t ∈ T, I ∈ I, time(I) = t (1)

yℓ,I + yℓ,I′ ≤ 1 time(I) = time(I ′) = t, char(I) ∩ char(I ′) ̸= ∅, ℓ ∈ Lt (2)

Next we introduce binary ordering variables xℓ,ci,cj
for each layer ℓ ∈ L and ci, cj ∈ Cℓ with

i < j. Variable xℓ,ci,cj should be one iff ci comes before cj on layer ℓ. Standard transitivity
constraints (3) (see e.g. [9]) ensure that the binary variables induce a total order.

0 ≤ xℓ,ch,ci + xℓ,ci,cj − xℓ,ch,cj ≤ 1 ci, cj , ch ∈ Cℓ, i < j < h (3)

A. Dobler et al. 36:5

Figure 4 A storyline for a dataset corresponding to the first chapter of Anna Karenina created by
ILP1. The x-axis is labeled by the scenes of the book, which are separated by dashed gray lines and
correspond to the timestamps. Interactions are visualized with black vertical bars and correspond to
the characters in the book interacting with each other shown as x-monotone curves. The storyline
contains 58 layers, 34 timestamps, and 23 crossings.

The crux is now to model the assignment of some interaction I to some layer ℓ, linking the x-
and y-variables together. This is done with so-called tree-constraints [8]: Let ℓ ∈ Lt, I ∈ I
with time(I) = t and ci, cj , ck ∈ Cℓ such that i < j, ci, cj ∈ char(I), and ck ̸∈ char(I). If
i < j < k we add constraints (4) and (5), which ensure that ck is either before or after both
ci and cj . We elaborate on the analogous cases k < i < j and i < k < j in the full version [4].

xℓ,ci,ck
≤ xℓ,cj ,ck

+ 1 − yℓ,I (4)
xℓ,cj ,ck

≤ xℓ,ci,ck
+ 1 − yℓ,I (5)

Lastly, to optimize the number of crossings we have to provide an objective function. For
this we introduce binary variables zℓ,ci,cj for all layers ℓ but the rightmost one and all
ci, cj ∈ Cℓ ∩ Cℓ′ where ℓ′ is the adjacent layer of ℓ to the right. Variable zℓ,ci,cj

should be one
iff the character lines of ci and cj cross between layers ℓ and ℓ′. Linking variables zℓ,ci,cj is
done by introducing the constraints corresponding to setting zℓ,ci,cj

≥ xℓ,ci,cj
⊕xℓ′,ci,cj

(see
the full version [4]) where x⊕y denotes the exclusive-or relation of two binary variables x and
y. The objective is then to simply minimize

∑
zℓ,ci,cj

. A solution to the ILP model is then
transformed into a storyline realization of the input. We call this formulation ILP1. Figure 4
shows a storyline visualization that was computed with ILP1 and a simple post-processing
method that assigns x- and y-coordinates (refer to the full version [4] for more information).

Extensions and Second Formulation In the above formulation we have one layer for each
interaction, which does not utilize the potential of having multiple interactions in one layer.
We can, however, minimize the number of layers beforehand, using the graph coloring problem
as in Section 2.1. If we need q colors for timestamp t, we let Lt only consist of q layers. This
can of course result in more crossings in the end. We call this adapted formulation ILP1ML.

Additionally, in the above model a character was contained in all layers of the first and
last timestamp that contains an interaction, in which the character appears. By introducing
further variables and adapting the constraints given in ILP1, this can be relaxed, so that a
character’s active range actually only spans from the first to the last interaction it appears in.
This new formulation is given in the full version [4] and is referred to as ILP2. We can then
introduce the fewest possible number of layers as above, resulting in formulation ILP2ML.

3 Evaluation

We evaluated our six algorithms on seven instances that were used in previous work on
storylines. The number of layers that could be saved by the coloring pipeline-step, the number
of crossings, and the runtimes are reported in the full paper [4] together with the complete

EuroCG’23

36:6 Crossing Minimization in Time Interval Storylines

description of instances, experimental setup, and evaluation. It also contains visualizations of
storylines produced by our algorithms. Generally, the layer-minimization step of the pipeline,
using graph coloring, reduces the number of layers for all but one instance, in one case even
by 50%. The ILP-formulations perform better than the pipeline-approaches w.r.t. crossings,
if they do not time out (3600 s). And even if they time out, the best feasible solution found
by the solver is sometimes better than the solution provided by the pipeline-approaches.
The ILP-approaches perform far worse w.r.t. runtime and three of the four instances timed
out for all ILP-approaches. It has to be mentioned that, by construction, optimal solutions
for ILP2 will always have the least crossings, and optimal solutions for ILP2ML will always
have fewer crossings than all other algorithms minimizing layers. We think though, that our
ILP-formulations can be further optimized for scalability.

References
1 Matthew Asquith, Joachim Gudmundsson, and Damian Merrick. An ILP for the metro-line

crossing problem. In Proc. 14th Symposium on Computing: Australasian Theory Symposium
(CATS), volume 77 of CRPIT, pages 49–56, 2008.

2 Michael A. Bekos, Michael Kaufmann, Katerina Potika, and Antonios Symvonis. Line
crossing minimization on metro maps. In Seok-Hee Hong, Takao Nishizeki, and Wu Quan,
editors, Proc. 15th International Symposium on Graph Drawing (GD), volume 4875 of
LNCS, pages 231–242. Springer, 2007. doi:10.1007/978-3-540-77537-9_24.

3 Marc Benkert, Martin Nöllenburg, Takeaki Uno, and Alexander Wolff. Minimizing intra-
edge crossings in wiring diagrams and public transportation maps. In M. Kaufmann and
D. Wagner, editors, Proc. 14th International Symposium on Graph Drawing (GD), volume
4372 of LNCS, pages 270–281. Springer-Verlag, 2007. doi:10.1007/978-3-540-70904-6_
27.

4 Alexander Dobler, Martin Nöllenburg, Daniel Stojanovic, Anaïs Villedieu, and Jules Wulms.
Crossing minimization in time interval storylines, 2023. doi:10.48550/ARXIV.2302.14213.

5 Martin Fink and Sergey Pupyrev. Metro-line crossing minimization: Hardness, approxima-
tions, and tractable cases. In Stephen Wismath and Alexander Wolff, editors, Proc. 22nd
International Symposium on Graph Drawing and Network Visualization (GD), volume 8242
of LNCS, pages 328–339. Springer-Verlag, 2013. doi:10.1007/978-3-319-03841-4_29.

6 M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM. J. Alg. Discr.
Meth., 4(3):312–316, 1983. doi:10.1137/0604033.

7 Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani, and Alessan-
dra Tappini. Storyline visualizations with ubiquitous actors. In David Auber and
Pavel Valtr, editors, Proc. 28th International Symposium on Graph Drawing and Net-
work Visualization (GD), volume 12590 of LNCS, pages 324–332. Springer, 2020. doi:
10.1007/978-3-030-68766-3_25.

8 Martin Gronemann, Michael Jünger, Frauke Liers, and Francesco Mambelli. Crossing
minimization in storyline visualization. In Yifan Hu and Martin Nöllenburg, editors, Proc.
24th International Symposium on Graph Drawing and Network Visualization (GD), volume
9801 of LNCS, pages 367–381. Springer, 2016. doi:10.1007/978-3-319-50106-2_29.

9 Martin Grötschel, Michael Jünger, and Gerhard Reinelt. Facets of the linear ordering
polytope. Math. Program., 33(1):43–60, 1985. doi:10.1007/BF01582010.

10 Tim Herrmann. Storyline-Visualisierungen für wissenschaftliche Kollaborationsgraphen.
Master’s thesis, University of Würzburg, 2022.

11 Irina Kostitsyna, Martin Nöllenburg, Valentin Polishchuk, André Schulz, and Darren
Strash. On minimizing crossings in storyline visualizations. In Emilio Di Giacomo and
Anna Lubiw, editors, Proc. 23rd International Symposium on Graph Drawing and Network

https://doi.org/10.1007/978-3-540-77537-9_24
https://doi.org/10.1007/978-3-540-70904-6_27
https://doi.org/10.1007/978-3-540-70904-6_27
https://doi.org/10.48550/ARXIV.2302.14213
https://doi.org/10.1007/978-3-319-03841-4_29
https://doi.org/10.1137/0604033
https://doi.org/10.1007/978-3-030-68766-3_25
https://doi.org/10.1007/978-3-030-68766-3_25
https://doi.org/10.1007/978-3-319-50106-2_29
https://doi.org/10.1007/BF01582010

A. Dobler et al. 36:7

Visualization (GD), volume 9411 of LNCS, pages 192–198. Springer, 2015. doi:10.1007/
978-3-319-27261-0_16.

12 Shixia Liu, Yingcai Wu, Enxun Wei, Mengchen Liu, and Yang Liu. Storyflow: Tracking
the evolution of stories. IEEE Trans. Vis. Comput. Graph., 19(12):2436–2445, 2013. doi:
10.1109/TVCG.2013.196.

13 Randall Munroe. Movie Narrative Charts, November 2009. URL: https://xkcd.com/657/.
14 Michael Ogawa and Kwan-Liu Ma. Software evolution storylines. In Alexandru C. Telea,

Carsten Görg, and Steven P. Reiss, editors, Proc. ACM 5th Symposium on Software
Visualization (SOFTVIS), pages 35–42. ACM, 2010. doi:10.1145/1879211.1879219.

15 Yuzuru Tanahashi and Kwan-Liu Ma. Design considerations for optimizing storyline
visualizations. IEEE Trans. Vis. Comput. Graph., 18(12):2679–2688, 2012. doi:10.1109/
TVCG.2012.212.

16 Thomas C. van Dijk, Martin Fink, Norbert Fischer, Fabian Lipp, Peter Markfelder, Alexan-
der Ravsky, Subhash Suri, and Alexander Wolff. Block crossings in storyline visualizations.
J. Graph Algorithms Appl., 21(5):873–913, 2017. doi:10.7155/jgaa.00443.

17 Thomas C. van Dijk, Fabian Lipp, Peter Markfelder, and Alexander Wolff. Computing
storyline visualizations with few block crossings. In Fabrizio Frati and Kwan-Liu Ma, editors,
Proc. 25th International Symposium on Graph Drawing and Network Visualization (GD),
volume 10692 of LNCS, pages 365–378. Springer, 2017. doi:10.1007/978-3-319-73915-1_
29.

EuroCG’23

https://doi.org/10.1007/978-3-319-27261-0_16
https://doi.org/10.1007/978-3-319-27261-0_16
https://doi.org/10.1109/TVCG.2013.196
https://doi.org/10.1109/TVCG.2013.196
https://xkcd.com/657/
https://doi.org/10.1145/1879211.1879219
https://doi.org/10.1109/TVCG.2012.212
https://doi.org/10.1109/TVCG.2012.212
https://doi.org/10.7155/jgaa.00443
https://doi.org/10.1007/978-3-319-73915-1_29
https://doi.org/10.1007/978-3-319-73915-1_29

The Complexity of Intersection Graphs of Lines in
Space and Circle Orders
Jean Cardinal

Université libre de Bruxelles (ULB)
jean.cardinal@ulb.be

Abstract
We consider the complexity of the recognition problem for two families of combinatorial structures.
A graph G = (V, E) is said to be an intersection graph of lines in space if every v ∈ V can be
mapped to a straight line `(v) in R3 so that vw is an edge in E if and only if `(v) and `(w) intersect.
A partially ordered set (X,≺) is said to be a circle order, or a 2-space-time order, if every x ∈ X can
be mapped to a closed circular disk C(x) so that y ≺ x if and only if C(y) is contained in C(x). We
prove that the recognition problems for intersection graphs of lines and circle orders are both ∃R-
complete, hence polynomial-time equivalent to deciding whether a system of polynomial equalities
and inequalities has a solution over the reals. The second result addresses an open problem posed
by Brightwell and Luczak.

1 Introduction

The complexity class ∃R is the set of decision problems that are polynomial-time reducible
to deciding the validity of a sentence in the existential theory of the reals. This class was
popularized by Schaefer and Stefankovic [32, 35], and since then many problems have been
classified as ∃R-complete [7]. The class ∃R contains NP, hence ∃R-complete problems are
NP-hard. It is also known that ∃R ⊆ PSPACE [6].

Among known ∃R-complete problems, we find many computational geometry problems
in which we are asked to decide whether some combinatorial structure has a geometric real-
ization, hence recognition problems for combinatorial families defined by geometric construc-
tions. This includes, among others, realizable oriented matroids and order types [26, 27],
linkages [33], simultaneously embeddable planar graphs [9, 34], and several classes of geomet-
ric intersection graphs, including segment intersection graphs [22, 23] and disk intersection
graphs [19, 24]. More recently, other fundamental problems in computational geometry have
been shown to be ∃R-complete, such as the art gallery problem [1], and several families of
geometric packing problems [2].

In this paper, we prove the ∃R-completeness of the recognition problem for two families
of combinatorial objects: (i) intersection graphs of lines in 3-space, and (ii) circle orders.

1.1 Lines in space
Arrangements of lines in 3-space are a classical topic in discrete geometry [14, 11, 29]. We
consider the problem of deciding, given a graph G, whether we can we map each of its
vertices to a line in R3 so that two vertices are adjacent if and only if the two corresponding
lines intersect. Such graphs will be referred to as intersection graphs of lines in space.

Pach, Tardos, and Tóth studied complements of intersection graphs of lines in space,
and proved that graphs of maximum degree three and line graphs (adjacency graphs of
edges of a graph) are intersection graphs of lines in space [28]. They also considered the
computational complexity of various combinatorial optimization problems on these graphs.
Davies [12] showed that intersection graphs of lines in space are not χ-bounded: There exist
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

37:2 The Complexity of Intersection Graphs of Lines in Space and Circle Orders

such graphs that have arbitrary large girth and chromatic number. On the other hand,
Cardinal, Payne, and Solomon showed that they satisfy a nice Erdős-Hajnal property: They
either have a clique or an independent set of size Ω(n1/3) [10].

Regarding the recognition problem, two closely related results to ours have been proved.
First, Matous̆ek and Kratochvíl showed that intersection graphs of line segments in the
plane are ∃R-complete [22]. This also holds for the more restricted classes of outersegment,
grounded segments, and ray intersection graphs [8]. Evans, Rzazewski, Saeedi, Shin, and
Wolff [15] proved that intersection graphs of line segments in R3 are ∃R-complete as well.
We prove that we only need lines for this to hold.

I Theorem 1.1. Deciding whether a graph is an intersection graph of lines in space is
∃R-complete.

1.2 Geometric containement orders
Geometric containment orders are posets of the form (X,⊂), where X is a countable set of
(usually convex) subsets of Rd, for some constant d, and ⊂ is the usual containment relation.
Geometric containment orders are well-studied [18]. The classical Dushnik-Miller dimension
of a poset can be defined in terms of geometric containment orders, as the smallest d such
that the poset is isomorphic to a containment order of translates of the negative orthant in
Rd [42]. Circle orders are containment orders of closed disks in the plane, and more generally,
d-sphere orders are containment orders of closed balls in Rd [39, 17, 5]. The corresponding
notion of dimension is the Minkowski dimension [25].

The definition of d-sphere orders is motivated by causal set theory in physics and the
notion of space-time order [3, 31, 13, 40]. In 1992, Scheinerman [37] proved that circle orders
are also one-to-one with parabola orders and Loewner orders for 2× 2 Hermitian matrices,
and gave a general equivalence statement for Q/L orders, an algebraically defined class of
posets.

In a survey on the combinatorics of the causal set approach to quantum gravity [4],
Brightwell and Luczak pose the problem of recognizing circle orders in those terms: “It is
remarkable that this concrete question is apparently not easy to answer computationally;
to the best of our knowledge, the complexity of determining whether a given finite partial
order is (for instance) a circle order is unknown.” We prove that the problem is ∃R-complete.
We recall that a poset is bipartite if it can be partitioned into two antichains, or subsets of
pairwise incomparable elements.

I Theorem 1.2. Deciding whether a poset is a circle order is ∃R-complete, even when the
input is restricted to bipartite posets.

Outline. Theorem 1.1 is proved in Section 2, and Theorem 1.2 is proved in Section 3.
Our proofs build on the classical complexity-theoretic interpretation of Mnëv’s Universality
Theorem [26, 27], and on recent hardness results from Kang and Müller [20], and Felsner
and Scheucher [16]. Note that in both cases, containment in ∃R is easy to prove, and we
concentrate on the hardness part.
Acknowledgments. The proof of Theorem 1.1 is based on an idea due to Udo Hoffmann.
The author wishes to thank Till Miltzow and the EuroCG referees for their comments on a
preliminary version.

J. Cardinal 37:3

2 ∃R-Completeness of intersection graphs of lines

Our proof is by reduction from the affine realizability problem for matroids of rank 3. In
short, we are given a ground set E together with a collection I of subsets of E defining
the maximal independent sets of the matroid. In rank 3, the maximal independent sets
have size three, hence I is a collection of triples. We wish to decide whether there exists
a map f : E → R2 such that for every triple a, b, c ∈ E, the points f(a), f(b), f(c) form a
nondegenerate triangle if and only if {a, b, c} ∈ I. It is somehow a folklore result that this
problem is ∃R-complete, and a detailed proof was given recently by Kim, de Mesmay, and
Miltzow [21].

Given a graph G = (V,E), a line realization of G is a map ` from V to the set of lines
in R3 such that vw ∈ E ⇔ `(v) ∩ `(w) 6= ∅. For a subset S ⊆ V , we use the notation
`(S) = {`(v) : v ∈ S}. The following observation will be useful.
I Observation 1. In a line realization of a complete graph on the vertex set V , the lines of
`(V) intersect in one point or are coplanar.

We also use the following statement, which allows us to force a collection of lines in a
line realization to lie in a plane.

I Lemma 2.1. Let Gn be the complete graph on 2n vertices minus a perfect matching. For
n > 3 all lines of a line realization ` of Gn are coplanar.

Proof. Let (A,B) be the bipartition of the vertices of Gn into two cliques of size n, and
consider a line realization ` of Gn. We show that the lines of `(A) are coplanar. For
contradiction, suppose otherwise. Then from Observation 1, all lines of A must intersect
in one point p. Furthermore, there are three vertices a1, a2, a3 ∈ A such that the lines
`(a1), `(a2), `(a3) ∈ `(A) are not coplanar. There is also a vertex b ∈ B adjacent to a1, a2
and a3 in Gn, but not adjacent to a fourth vertex a4 ∈ A. Hence the line `(b) must intersect
`(a1), `(a2) and `(a3) but avoid `(a4). The only possibility to intersect all three lines is in
p, but then `(b) also intersects `(a4), a contradiction. By symmetry, all lines in `(B) must
be coplanar as well, and lying in the same plane as those in `(A). J

Proof of Theorem 1.1. We reduce from realizability of a rank-3 matroid M = (E, I), as
defined above. It is convenient to let E = {1, 2, . . . , n}, and consider the set system S on E
defined as the set of rank-2 flats of M . In a realization of M , these flats correspond to all
inclusionwise maximal subsets of collinear points. Note that |S| ≤

(
n
2
)
.

We start by considering a line realization of the graph Gn defined in Lemma 2.1. We
consider the bipartition of the vertices of Gn into the two cliques A = {a1, . . . , an} and
B = {b1, . . . , bn}, where ai is adjacent to bj if i 6= j. Then for each set C ∈ S, we add a
new vertex vC and an edge vCai for each i ∈ C. We let H be the resulting graph, defined
on the vertex set A ∪B ∪ {vC : C ∈ S}. We claim that H is a intersection graph of lines if
and only if the input matroid M is realizable.

To construct a realization of M from a line realization ` of H we use planar point-line
duality on the lines in `(A). From Lemma 2.1, the lines of `(A ∪ B) all lie in a plane P .
For every set C ∈ S, the vertices {vC} ∪ {ai : i ∈ C} form a maximal clique in H. From
Observation 1, this clique must be realized by an intersection point common to all lines
{`(ai) : i ∈ C}, since otherwise `(vC) lies in P and intersects some lines in `(B). Point-line
duality in P maps lines with a common intersection point to collinear points. We denote by
p(ai) the point that is dual to the line `(ai) in P . Therefore, the dual points {p(ai) : i ∈ C}
are collinear in P . From the maximality of the clique {vC} ∪ {ai : i ∈ C}, the points
{p(ai) : i ∈ C} form a maximal collinear set, and p(A) is a realization of M in P .

EuroCG’23

37:4 The Complexity of Intersection Graphs of Lines in Space and Circle Orders

On the other hand, a realization ofM in the plane can be mapped to a dual arrangement
of lines. Let A = {ai : i ∈ E}, and `(ai) be the line representing element i, for every i ∈ E.
Now each line `(bj) ∈ `(B) can be represented by a line parallel to `(aj) and intersecting
all the other lines `(ai) and `(bi) for i 6= j. We embed this realization into a plane P in R3

and add a line `(vC) for each C ∈ S that pierces P in the common intersection point of the
lines {ai : i ∈ C} (see Figure 1). This yields a line realization of H. J

P

a4
b4

a3
b3

a1
b1

a5
b5

a2
b2

v{3,4}
v{1,3,5}

v{2,4,5}
v{1,2}

v{1,4}

v{2,3}

Figure 1 A line realization of the graph H constructed from a realizable rank-3 matroid on 5
elements with rank-2 flats S = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3, 5}, {2, 4, 5}}.

3 ∃R-Completeness of circle orders

A pseudoline arrangement is a collection of x-monotone curves that pairwise intersect exactly
once. A pseudoline arrangement is simple if no triple of lines intersect in the same point, and
stretchable if it is isomorphic to an arrangement of straight lines, see Figure 2. A well-known
consequence of Mnëv’s Theorem – see Shor [38], and Richter-Gebert [30] – is that deciding
whether a given pseudoline arrangement is stretchable is ∃R-complete.

Figure 2 A pseudoline arrangement and an isomorphic line arrangement.

J. Cardinal 37:5

In order to deal with circle orders, we make use of recent analogous results on arrangement
of circles due to Kang and Müller [20], and Felsner and Scheucher [16]. An arrangement of
Jordan curves is said to be a pseudocircle arrangement if every pair of curves is either disjoint
or intersects in exactly two points. A triple of pseudocircles is said to form a Krupp if they
pairwise intersect in distinct points and their interiors have a common point. A pseudocircle
arrangement is said to be a great-pseudocircle arrangement if every triple of pseudocircles
forms a Krupp. See Figure 3 for illustrations. Similarly to pseudoline arrangements, we
are only concerned with the topological structure of the arrangement. Great-pseudocircle
arrangements constitute a combinatorial abstraction of arrangements of great circles on
a sphere, hence of line arrangements in the projective plane. In fact, great-pseudocircle
arrangements and simple pseudoline arrangements are essentially the same combinatorial
family, see Felsner and Scheucher [16].

I Lemma 3.1. Great-pseudocircle arrangements are one-to-one with simple pseudoline ar-
rangements.

Every great-pseudocircle arrangement realizes two copies of a pseudoline arrangement,
see Figure 3. When stretchable, they correspond to realizations of pseudolines as great
circles on the 2-sphere, or equivalently as lines in the projective plane.

Figure 3 A Krupp, and a great-pseudocircle arrangement realizing two copies of the pseudoline
arrangement of Figure 2.

We need a technical lemma on the structure of circle arrangements. A collection of n
circles in the plane partitions the plane into connected subsets that we refer to as cells. To
each cell, one can assign a binary string of length n indicating, for each circle, whether the
cell lies in the interior or the exterior of the circle. We refer to this string as the label of the
cell.

I Lemma 3.2. The maximum number of dictinct cell labels of an arrangement of n circles
is equal to the maximum number of cells of a circle arrangement, and is n(n− 1) + 2. This
bound is attained by great-pseudocircle arrangements.

Proof. One can proceed by induction on n. We let f(n) be the maximum number of labels,
with f(1) = 2. When adding the nth circle to the arrangement, the number of additional
labels is at most the number of newly created cells. This number is in turn bounded by the
number of new intersection points: One can charge every new cell to the intersection point
on its left in a clockwise sweep around the new circle. Therefore f(n) ≤ f(n− 1) + 2(n− 1),
solving to the announced bound. From this reasoning, tight examples must be such that
no two cells have the same label, and one can check that this bound is attained by great-
pseudocircle arrangements. J

EuroCG’23

37:6 The Complexity of Intersection Graphs of Lines in Space and Circle Orders

The circularizability problem is the problem of deciding whether a pseudocircle arrange-
ment is isomorphic to a circle arrangement. It is the analogue of the stretchability problem
for pseudoline arrangements, and is in fact polynomial-time equivalent to it.

I Theorem 3.3 (Kang and Müller [20], Felsner and Scheucher [16]). Deciding whether a
pseudocircle arrangement is circularizable is ∃R-complete, even when the input is restricted
to great-pseudocircle arrangements.

With these tools at hand, we now prove our second main result.

Proof of Theorem 1.2. We reduce from the circularizability problem. Given a great-
pseudocircle arrangement C, we construct a bipartite poset P = (X,≺) that is a circle
order if and only if C is circularizable. We define the ground set X of P as X := C ∪ F ,
where C is the set of great-pseudocircles of C, and F is the set of cell labels of C. Both C
and F induce empty posets in P , and for a pair (c, f) ∈ C × F , we let c ≺ f if and only if
the cell corresponding to f lies in the disk bounded by c. We show that P is a circle order
if and only if C is circularizable.

Indeed, if C is circularizable, then we can consider a circle realization of C and add a
small circle within each cell of the arrangement to realize P . For the other direction, suppose
P has a realization as a circle order and consider the arrangement D induced by C in this
realization. Since every f ∈ F has an associated circle as well, every cell label of C is realized
in D. From Lemma 3.2, the number of cells is as large as can be for an arrangement of circles,
hence no other cell can appear in D. Therefore D must be a circularization of C. J

Note that a similar proof was given by Tanenbaum, Goodrich, and Scheinerman [41]
to prove hardness of point-halfspace incidence orders. Also note that from a theorem of
Scheinerman [36], the vertex-edge incidence poset of a graph is a circle order if and only if
the graph is planar. Hence for vertex-edge incidence posets, the problem reduces to planarity
testing and can therefore be solved in linear time.

References
1 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery problem is
∃R-complete. J. ACM, 69(1):4:1–4:70, 2022.

2 Mikkel Abrahamsen, Tillmann Miltzow, and Nadja Seiferth. Framework for ER-
completeness of two-dimensional packing problems. In Sandy Irani, editor, 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 1014–1021. IEEE, 2020.

3 Graham Brightwell and Ruth Gregory. Structure of random discrete spacetime. Phys. Rev.
Lett., 66:260–263, Jan 1991.

4 Graham Brightwell and Malwina Luczak. The mathematics of causal sets. In Recent Trends
in Combinatorics, volume 159 of The IMA Volumes in Mathematics and its Applications.
Springer, 2016.

5 Graham Brightwell and Peter Winkler. Sphere orders. Order, 6:235–240, 1989.
6 John Canny. Some algebraic and geometric computations in PSPACE. In Symposium on

Theory of Computing (STOC), pages 460–467. ACM, 1988.
7 Jean Cardinal. Computational geometry column 62. SIGACT News, 46(4):69–78, 2015.
8 Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogten-

huber. Intersection graphs of rays and grounded segments. J. Graph Algorithms Appl.,
22(2):273–295, 2018.

J. Cardinal 37:7

9 Jean Cardinal and Vincent Kusters. The complexity of simultaneous geometric graph
embedding. J. Graph Algorithms Appl., 19(1):259–272, 2015.

10 Jean Cardinal, Michael S. Payne, and Noam Solomon. Ramsey-type theorems for lines in
3-space. Discret. Math. Theor. Comput. Sci., 18(3), 2016.

11 Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, Micha Sharir, and Jorge
Stolfi. Lines in space: Combinatorics and algorithms. Algorithmica, 15(5):428–447, 1996.

12 James Davies. Box and segment intersection graphs with large girth and chromatic number.
Advances in combinatorics, 2021.

13 Fay Dowker. Introduction to causal sets and their phenomenology. General Relativity and
Gravitation, 45(9):1651–1667, 2013.

14 Herbert Edelsbrunner. Lines in space-a collection of results. In Jacob E. Goodman, Richard
Pollack, and William Steiger, editors, Discrete and Computational Geometry: Papers from
the DIMACS Special Year, volume 6 of DIMACS Series in Discrete Mathematics and The-
oretical Computer Science, pages 77–94. DIMACS/AMS, 1990.

15 William S. Evans, Pawel Rzazewski, Noushin Saeedi, Chan-Su Shin, and Alexander Wolff.
Representing graphs and hypergraphs by touching polygons in 3D. In Daniel Archambault
and Csaba D. Tóth, editors, Graph Drawing and Network Visualization - 27th Interna-
tional Symposium, GD 2019, Prague, Czech Republic, September 17-20, 2019, Proceedings,
volume 11904 of Lecture Notes in Computer Science, pages 18–32. Springer, 2019.

16 Stefan Felsner and Manfred Scheucher. Arrangements of pseudocircles: On circularizability.
In Therese C. Biedl and Andreas Kerren, editors, Graph Drawing and Network Visualiza-
tion - 26th International Symposium, GD 2018, Barcelona, Spain, September 26-28, 2018,
Proceedings, volume 11282 of Lecture Notes in Computer Science, pages 555–568. Springer,
2018.

17 Peter C. Fishburn. Interval orders and circle orders. Order, 5:225–234, 1988.
18 Peter C. Fishburn and William T. Trotter. Geometric containment orders: A survey. Order,

15(2):167–182, 1998.
19 Ross J. Kang and Tobias Müller. Sphere and dot product representations of graphs. Discret.

Comput. Geom., 47(3):548–568, 2012.
20 Ross J. Kang and Tobias Müller. Arrangements of pseudocircles and circles. Discret.

Comput. Geom., 51(4):896–925, 2014.
21 Eunjung Kim, Arnaud de Mesmay, and Tillmann Miltzow. Representing matroids over the

reals is ∃R-complete. ArXiv e-prints, 2023.
22 Jan Kratochvíl and Jirí Matousek. Intersection graphs of segments. J. Comb. Theory, Ser.

B, 62(2):289–315, 1994.
23 Jiří Matoušek. Intersection graphs of segments and ∃R. ArXiv e-prints, 2014.
24 Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs. J.

Comb. Theory, Ser. B, 103(1):114–143, 2013.
25 David A. Meyer. Spherical containment and the Minkowski dimension of partial orders.

Order, 10:227–237, 1993.
26 Nicolai E. Mnëv. Varieties of combinatorial types of projective configurations and convex

polyhedra. Dokl. Akad. Nauk SSSR, 283(6):1312–1314, 1985.
27 Nicolai E. Mnëv. The universality theorems on the classification problem of configuration

varieties and convex polytopes varieties. In Topology and geometry – Rohlin seminar, pages
527–543. Springer, 1988.

28 János Pach, Gábor Tardos, and Géza Tóth. Disjointness graphs of segments in the space.
Comb. Probab. Comput., 30(4):498–512, 2021.

29 Orit E. Raz. Configurations of lines in space and combinatorial rigidity. Discret. Comput.
Geom., 58(4):986–1009, 2017.

EuroCG’23

37:8 The Complexity of Intersection Graphs of Lines in Space and Circle Orders

30 Jürgen Richter-Gebert. Mnëv’s universality theorem revisited. In Proceedings of the Sémi-
naire Lotharingien de Combinatoire, pages 211–225, 1995.

31 David P. Rideout and Rafael D. Sorkin. Classical sequential growth dynamics for causal
sets. Phys. Rev. D, 61:024002, Dec 1999.

32 Marcus Schaefer. Complexity of some geometric and topological problems. In David Epp-
stein and Emden R. Gansner, editors, Graph Drawing, 17th International Symposium, GD
2009, Chicago, IL, USA, September 22-25, 2009. Revised Papers, volume 5849 of Lecture
Notes in Computer Science, pages 334–344. Springer, 2009.

33 Marcus Schaefer. Realizability of graphs and linkages. In Thirty Essays on Geometric
Graph Theory. Springer, 2012.

34 Marcus Schaefer. On the complexity of some geometric problems with fixed parameters.
J. Graph Algorithms Appl., 25(1):195–218, 2021.

35 Marcus Schaefer and Daniel Stefankovic. Fixed points, Nash equilibria, and the existential
theory of the reals. Theory Comput. Syst., 60(2):172–193, 2017.

36 Edward R. Scheinerman. A note on planar graphs and circle orders. SIAM J. Discret.
Math., 4(3):448–451, 1991.

37 Edward R. Scheinerman. The many faces of circle orders. Order, 9(4):343–348, 1992.
38 Peter W. Shor. Stretchability of pseudolines is NP-hard. Applied Geometry and Discrete

Mathematics–The Victor Klee Festschrift, 4:531–554, 1991.
39 Jeffrey B. Sidney, Stuart J. Sidney, and Jorge Urrutia. Circle orders, N-gon orders and the

crossing number. Order, 5:1–10, 1988.
40 Sumati Surya. The causal set approach to quantum gravity. Living Reviews in Relativity,

22(1), 2019.
41 Paul J. Tanenbaum, Michael T. Goodrich, and Edward R. Scheinerman. Characterization

and recognition of point-halfspace and related orders. In Roberto Tamassia and Ioannis G.
Tollis, editors, Graph Drawing, DIMACS International Workshop, GD’94, Princeton, New
Jersey, USA, October 10-12, 1994, Proceedings, volume 894 of Lecture Notes in Computer
Science, pages 234–245. Springer, 1994.

42 William T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory. Johns
Hopkins Studies in Nineteenth C Architecture Series. Johns Hopkins University Press, 1992.

Interactive Exploration of the Temporal α-Shape
Felix Weitbrecht1

1 Universität Stuttgart, Germany
weitbrecht@fmi.uni-stuttgart.de

Abstract
An interesting subcomplex of the Delaunay triangulation are α-shapes, which give a more detailed
representation of the shape of point sets than the convex hull. We extend an algorithm [3, 4] which
computes all Delaunay simplices over all time windows to also compute the temporal α-shape,
which is a description of all α-shapes over all time windows and all values of α, in output-sensitive
linear time. We present an interactive demo application based on a fast query data structure.
Experimental results show that our algorithm can be used on real-world data sets and achieves a
speedup of at least ∼52 over the approach of [1].

Related Version https://arxiv.org/abs/2303.00878

1 Introduction

A common property of point sets to examine is their shape. The convex hull comes to mind,
but a more general way to formalize the notion of shape are α-shapes [2], which generalize the
convex hull to allow concavities, holes and disjointness, see Figure 1. If points are associated
with timestamps it is also interesting to examine α-shapes of time windows. In interactive
visualization applications, freshly computing the α-shape for every request seems wasteful
and slow. If multiple α-shapes or time windows are required, a precomputed query data
structure may be more efficient, like in [1], which considers storm events in the United States
and visualizes their α-shape for various time windows. This approach examines all pairs of
points which are close enough to admit an α-ball through their (potential) edge, so α needs
to be fixed in advance and precomputation only works quickly if the value of α is chosen
small enough. We show how to compute the temporal α-shape, i.e. all α-shapes over all time
windows and over all values of α, in output-sensitive linear time in any fixed dimension d,
based on a temporal Delaunay enumeration algorithm [3, 4]. Unlike [1], the runtime of our
approach does not depend on the value(s) of α as it considers all values of α at once while
still being ∼52 times faster for some α-values.

Figure 1 A point set representing a particle swarm and an α-shape describing its shape.

2 Preliminaries

We are given a point set P = {p1, . . . , pn} ⊂ Rd in general position. Point indices represent
the temporal order and a point pi exists only at time i. We say Pi,j for {pi, pi+1, . . . , pj}.
We consider d fixed, so we refer to d-simplices as simplices and to (d− 1)-simplices as faces.
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://arxiv.org/abs/2303.00878

38:2 Interactive Exploration of the Temporal α-Shape

If f is a face of a simplex s, we call s a coface of f . We consider the d-dimensional α-shape,
i.e. that set of faces f with vertices in P for which an α-ball (an open hypersphere of radius α)
exists which passes through the vertices of f and contains no points of P in its interior.

The Delaunay triangulation DT (P) is that unique subdivision of the convex hull which
consists only of d-simplices whose open circumhyperspheres contain no points of P in their
interior. Ti,j is the Delaunay triangulation of Pi,j and T is the set of all Delaunay d-simplices
occurring over all Ti,j . It can be shown that all α-faces are also Delaunay faces (Figure 2),
and that every Delaunay face is an α-face for a value range of α determined by its cofaces.

The Delaunay enumeration algorithm of [3, 4] computes T in time O(|T |). With minor
modifications it provides face-simplex associations in a well-structured order, as well as
simplex lifetimes. When speaking of faces in the following, we mean faces appearing in T .

Figure 2 A point set and its Delaunay triangulation in black, and an α-shape in red.

3 Activity Spaces of Delaunay Triangulations and α-Shapes

In settings where we have geometric elements which are part of some structure (like the
Delaunay triangulation or the α-shape) in certain time windows, the set of time windows for
which an element is part of that structure is called its activity space, and it can be visualized
in activity space diagrams, like it is done in two dimensions in [1]. To accommodate different
values of α, we introduce a third dimension to activity spaces. We will now study how the
activity spaces of α-faces are related to those of Delaunay simplices and Delaunay faces so
we can explain exactly what is encompassed by the temporal α-shape.

3.1 Activity Spaces of Delaunay Simplices
A simplex s is a Delaunay simplex in a time window [i, j] iff (a) all vertices of s have point
indices between i and j and (b) the open circumsphere C of s contains no points of Pi,j .
Let ilower and iupper be the lowest and highest point indices among the vertices of s, then
(a) is fulfilled iff i ≤ ilower ∧ iupper ≤ j. For (b), consider the points inside C which come
before pilower , i.e. C∩P1,ilower−1. Let ibefore be the largest point index among them, or −∞ if
no such points exist. Now (b) is fulfilled iff ibefore < i∧ j < iafter (iafter defined analogously).

Since i and j are independent and both must lie within a certain interval, the set of
time windows [i, j] for which s is a Delaunay simplex can be represented as a rectangle
]ibefore, ilower]× [iupper, iafter[, see Figure 3. The two dimensions give the range of the lower
end of time windows in which s is a Delaunay simplex, and of the upper end, respectively.

F. Weitbrecht 38:3

p6

p7

p10

p2
p4

p13

p1

p3

p5

p8

p9
p11p12

p14

lower time window end

u
p
p
er

ti
m
e
w
in
d
ow

en
d

10

13

4 6

Figure 3 Left: A Delaunay simplex s and some points, some inside the circumsphere of s.
Right: The activity space of s, bounded by ilower = 6, iupper = 10, ibefore = 4, and iafter = 13.

3.2 Activity Spaces of Delaunay Faces
Activity spaces of Delaunay faces are not necessarily rectangular because, unlike Delaunay
simplices, faces may have different empty spheres in different time windows. A Delaunay
face f occurring in T is a Delaunay face in time window [i, j] iff (a) all vertices of f have
point indices between i and j and (b) an open sphere S exists which contains no points of Pi,j

and passes through all vertices of f . Like before, (a) is fulfilled iff i ≤ ilower ∧ iupper ≤ j.
For (b), we can always find such an empty sphere for faces on the convex hull boundary

by choosing its center sufficiently far away. For all other faces, such an empty sphere exists
as long as points on one side of f are not too close to points on the other side of f . Otherwise
there exists some pair of points which certifies that no such sphere can exist. There may be
many such pairs over all time windows, and (b) is fulfilled iff the time window [i, j] contains
no such pair. Figure 4 shows an example of the resulting activity space.

lower time window end

u
p
p
er

ti
m
e
w
in
d
ow

en
d

f

p4

p5

p2

p3

p1

p6

p7

(1, 2)

(2, 6)

(6, 7)

Figure 4 Left: All spheres through the vertices of Delaunay face f are centered on the dashed
line. Some points form simplices with f in some time windows. The pairs {p1, p2}, {p2, p6}, and
{p6, p7} prevent f from being a Delaunay face. More such pairs exist, but their influence on the
activity space of f is dominated by that of the 3 mentioned pairs. Right: Subtracting the rectangles
defined by the 3 pairs (transparent grey) from]−∞, 4]× [5,∞[gives the activity space of f (blue).

EuroCG’23

38:4 Interactive Exploration of the Temporal α-Shape

I Definition 3.1. The staircase property
The activity space of a Delaunay face is shaped like a staircase, obtained by taking the

rectangle]−∞, ilower]× [iupper,∞[and subtracting from it every rectangle]−∞, ia]× [ib,∞[
corresponding to a pair as described above (w.l.o.g. we assume ia < ib).

3.3 Activity Spaces of α-faces
Every Delaunay face is also an α-face for certain values of α, so activity spaces of α-faces
have 3 dimensions: 2 temporal dimensions as before, and a dimension for the α-value range.

An α-ball of some face f may be centered on either side of f . We will consider both
sides separately and study the activity space for one side only; the activity space of f then
is the union of both sides’ activity spaces. Consider some Delaunay face f and fix one side
of it as the front, the other as the back. We want to know what the activity space looks like
if we only consider α-balls whose center is in front of f . Let sfront and sback be the cofaces
of f in Ti,j , Cfront and Cback their circumspheres, and rfront and rback their circumradii. All
spheres through the vertices of f are centered on a common line, this is true in particular
for Cfront and Cback as well as for the α-ball centered in front of f . To ensure that the α-ball
is empty, it must be centered between Cfront and Cback, see Figure 5. We are only interested
in α-balls in front of f , so Cback is irrelevant if it is centered behind f .

f

Figure 5 The cofaces of Delaunay face f determining the possible centers of empty α-balls of f .
The circumspheres of f ’s cofaces are filled in grey, their circumcenters are shown by circles. Crosses
indicate possible centers of empty α-balls, which are shown with a dash dotted outline.

We get that rback ≤ α ≤ rfront in case Cback and Cfront are centered in front of f , and
rmin ≤ α ≤ rfront if only Cfront is centered in front of f . Here rmin is the radius of the
smallest sphere passing through the vertices of f . If Cfront is also centered behind f , no
empty α-ball may exist in front of f and the value range of α is empty.

The α-face activity space of f is defined by its cofaces occurring in T . For every pair
of cofaces sfront and sback, we get a cuboid whose extent in the temporal dimensions is the
intersection of the activity spaces of sfront and sback, and the α-value range is determined as
above. The front activity space of f is the union of these cuboids over all pairs of cofaces.

The requirement for the α-ball to be centered in front of f implies that, if we project
the front activity space down into the two temporal dimensions, it may only cover a subset
of the activity space of f as a Delaunay face. Still, the staircase property applies w.r.t. the
temporal dimensions because the staircase is effectively shortened in one dimension. No two
front cuboids overlap even when disregarding the third dimension.

F. Weitbrecht 38:5

4 Computing the Temporal α-Shape

We can now present our algorithm to compute the temporal α-shape. We have to compute
the α-shape activity space of every Delaunay face occurring in T . Consider some Delaunay
face f in T and fix one side as the front side. We describe the process for this side of f . In
the following we first collect all cofaces of f in T . Then we compute the cuboids described in
Section 3.3 by intersecting the activity space rectangles of all pairs of cofaces and computing
the corresponding α-value range. Discarding rectangles which force an empty α-value range
and choosing a sensible computation order lets us avoid explicitly computing empty cuboids.

Since f has exactly one front coface in every time window it is a Delaunay face in, we can
partition the staircase representing the Delaunay face front activity space of f into rectangles
which correspond to the front cofaces of f over all time windows. With some additional
bookkeeping, the Delaunay enumeration algorithm [3, 4] allows us to list these cofaces in a
nice order in what is essentially one pass over T . We get a partition of the Delaunay face
front activity space of f into lists of rectangles. Figure 6 shows some examples.

Figure 6 The front activity space of four faces represented by their front rectangle lists. For
each face, the rectangles corresponding to the same rectangle list are highlighted in the same color.

We can make some useful observations about these rectangle lists.

I Lemma 4.1. Every rectangle is aligned with the right or bottom staircase boundary.

I Lemma 4.2. Two rectangles have the same left boundary iff they are in the same list.

I Lemma 4.3. The rectangles within each list are stacked on top of each other.

We reorganize this staircase representation into two lists, a bottom list and a right list.
The bottom list holds all rectangles touching the bottom boundary, ordered left to right.
The right list holds all remaining rectangles, ordered bottom to top. Front rectangles which
correspond to simplices whose circumcenter lies behind f force an empty α-value range, so
we remove them. This effectively cuts off some rectangles of the bottom list from the left,
and some rectangles of the right list from the top, see Figure 7, top left.

To ensure minimality of the final cuboid set, we merge all back rectangles of f with no
effect on the α-value range of the front into one combined rectangle (Figure 7, bottom left).
That rectangle can include time windows where f is not Delaunay, but this is not an issue as
the next step will intersect back and front rectangles, and the latter have not been extended.

We have worked only with Delaunay simplex activity spaces so far. To construct the
cuboids representing the α-face front activity space we now overlay the front staircase and
the back staircase, i.e. we intersect front rectangles with back rectangles. Each pair of cofaces
(i.e. pair of front rectangle and back rectangle) determines a certain range of α as described
in Section 3.3. This range, together with the intersection of the temporal dimensions of the
two rectangles, produces the resulting cuboid.

EuroCG’23

38:6 Interactive Exploration of the Temporal α-Shape

simplify

simplify

front:

back: deconstruct deconstruct deconstruct

intersect intersect intersect

Figure 7 The bottom (orange) and right (green) lists of f ’s front and back as they are simplified
and intersected. Simplification: We remove some front rectangles from the left, and merge some
back rectangles from the bottom right into the rectangle shown with orange stripes. Intersection:
The back staircase is deconstructed rectangle by rectangle, always intersecting the removed rectangle
with the front rectangles. This corresponds to cutting off all remaining rectangles from the top or
from the left. The resulting intersected rectangles are shown with red stripes. Together with their
α-value range they form the cuboids which partition the α-face front activity space of f .

Intersections can be accomplished in output-sensitive linear time because intersections
happen at the boundaries of the remaining front staircase, see Figure 7. We repeat this
process for both sides of every Delaunay face f in T and get the following theorem.

I Theorem 4.4. There exists an algorithm to compute a minimal description A of all
α-shapes over all time windows and all values of α for a set of timestamped points in Rd in
output-sensitive linear time O(|A|) for arbitrary fixed d.

Note that the size of the temporal α-shape is not necessarily O(|T |). Overlaying the
front and back Delaunay face activity spaces of some face f may create Ω(n2) cuboids for f ,
and one can easily construct families of instances where |A| ∈ Ω(n · |T |). It is trivial to show
that |A| ∈ O(n2 · |T |), but better bounds, both in terms of |T | and in terms of n, are likely.

5 Demo Application

We use the temporal α-shape to interactively visualize spatio-temporal point sets. Our
demo data set is a 2D particle animation with 400 particles. A copy of each particle is
created for each movement step, so each of the 1,200 steps is encoded with 400 timestamps
and we get 480,000 total data points. Section 6 shows that duplicating each point for each
movement step only makes the temporal α-shape twice as large as necessary in this instance.
Figure 8 shows our interactive visualization application on this data set. A video demo is
available online at https://youtu.be/Esh7_uzmBac.

https://youtu.be/Esh7_uzmBac

F. Weitbrecht 38:7

Figure 8 Interactive visualization of spatio-temporal point sets using α-shapes. The particle
sets in red are overlaid only for reference. Top: Following particle swarm movement by advancing
the time window. Bottom left and bottom middle: Changing the α-value to control the level
of detail in the outline. Bottom right: Revealing swarm trajectories using a larger time window.

6 Experimental Results

Using a basic 2D implementation of our algorithm on an Intel® Xeon® E5-2650 v4 CPU
the data set of Section 5 takes 147.3 seconds to compute the 45,494,688 simplices of T , and
222.1 seconds to compute the 127,227,279 cuboids representing the temporal α-shape.

Short time windows and small α-values may be irrelevant for real-world applications.
We restrict the time window size and α-value range to realistic values and count how many
cuboids are necessary to correctly answer queries. Considering only time windows aligned
with movement steps (encoded using 400 distinct timestamps), we need 49% of all cuboids.
Ignoring time windows shorter than 128 movement steps we still need 21%. Restricting α
to ≥ 0.1 (α-shape fragmentation occurs below 0.1), we still need 30% and 11%, respectively.

Finally we consider the data set used in [1]. The approach of [1] takes “less than two
minutes” for a single small α-value and 59,789 points on an Intel® Core i7-7700T CPU, and
“about 20 minutes” for a single larger α-value. Our approach, on an Intel® Core i5-10500
CPU, takes 20.7 seconds to compute the temporal α-shape. Accounting for query structure
setup time in [1], this gives a speedup of at least ∼52 over [1], and likely much more for
larger α-values, all while considering not just a single value of α, but all values at once.

EuroCG’23

38:8 Interactive Exploration of the Temporal α-Shape

7 Conclusion

We presented an algorithm to compute the temporal α-shape, which is a minimal description
of all α-shapes of a spatio-temporal point set over all time windows and all values of α
in output-sensitive linear time, in arbitrary fixed dimensions. Experiments verified the
practicality of our algorithm and showed a speedup of at least ∼52 over the approach of [1]
while considering not just one value of α, but all values at once. It remains to be seen how
the size of the temporal α-shape can be bounded in terms of n and |T |.

References
1 Annika Bonerath, Benjamin Niedermann, and Jan-Henrik Haunert. Retrieving α-shapes

and schematic polygonal approximations for sets of points within queried temporal ranges.
In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 249–258. ACM, 2019. doi:10.1145/3347146.
3359087.

2 Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape of a set
of points in the plane. IEEE Transactions on Information Theory, 29(4):551–559, 1983.
doi:10.1109/TIT.1983.1056714.

3 Stefan Funke and Felix Weitbrecht. Efficiently computing all Delaunay triangles occurring
over all contiguous subsequences. In 31st International Symposium on Algorithms and
Computation (ISAAC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.ISAAC.2020.28.

4 Felix Weitbrecht. Linear time point location in Delaunay simplex enumeration over all
contiguous subsequences. In EuroCG, pages 399–404, 2022. URL: http://eurocg2022.
unipg.it/booklet/EuroCG2022-Booklet.pdf.

https://doi.org/10.1145/3347146.3359087
https://doi.org/10.1145/3347146.3359087
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.4230/LIPIcs.ISAAC.2020.28
https://doi.org/10.4230/LIPIcs.ISAAC.2020.28
http://eurocg2022.unipg.it/booklet/EuroCG2022-Booklet.pdf
http://eurocg2022.unipg.it/booklet/EuroCG2022-Booklet.pdf

On the Number of Delaunay Simplices over all
Time Windows in any Dimension
Felix Weitbrecht1

1 Universität Stuttgart, Germany
weitbrecht@fmi.uni-stuttgart.de

Abstract
Temporal point data can be examined in great detail by considering time windows (contiguous
subsequences) within the data using the Delaunay triangulation and its subcomplexes. Setting up
a query structure for not only the Delaunay triangulation of the full point set, but also those of all
time windows, requires precomputing T , the set of all Delaunay simplices over all time windows.
We assume points are ordered randomly and investigate how |T | behaves with certain realistic
assumptions on the input points. We show that many sub-quadratic bounds on the complexity of the
Delaunay triangulation apply to E[|T |] with only an added logn factor, and that many other bounds
apply directly to E[|T |]. In the case where arbitrary orderings are allowed, we give asymptotic upper
bounds for arbitrary d and exact upper bounds for d ≤ 2, and we give worst-case instances.

1 Introduction

Examining time windows within spatial data sampled over time allows deeper insight, for
example to visualize [6, 8] or reconstruct [1, 25] shapes. The Delaunay triangulation and
its subcomplexes are valuable tools for such purposes, for example one can use α-shapes
of time windows to visualize the temporal evolution of data as in [8] or [27], see Figure 1.
Precomputing the set of all Delaunay simplices over all time windows, T , would be useful
for this purpose. Precomputation complexity depends on |T |, so we consider certain classes
of point sets and investigate how |T | behaves if the points are ordered randomly. We show
how expected complexity bounds on the Delaunay triangulation can apply to |T |. We study
how arbitrary point sets in arbitrary order behave in the worst case.

Figure 1 Interactive exploration of the α-shape of temporal point data representing a particle
swarm (left) and storm events in the United States (right), from [27].

We consider for fixed d ≥ 1 the d-dimensional Delaunay triangulation DT (P), i.e. that
(unique) subdivision of the convex hull of P which consists only of d-simplices whose open
circumhyperspheres contain no points from P in their interior. We are given a point set
P = {p1, . . . , pn} ⊂ Rd in general position. Point indices represent the temporal order
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

39:2 Delaunay Simplices in Time Windows

and a point pi exists only at time i. We write Pi,j for {pi, . . . , pj} and Ti,j for DT (Pi,j)
(1 ≤ i < j ≤ n). The set T :=

⋃
i<j Ti,j is the set of all Delaunay simplices occurring over

all time windows Pi,j .

1.1 Motivation and Related Work
Efficiently precomputing all Delaunay simplices over all time windows is possible in practice
[8, 17, 26], but the output complexity depends on the input data. It was previously shown
that in two dimensions, E[|T |] = Θ(n logn) [17]. The lower bound can be shown to hold,
and be tight, for d ≥ 1, but the matching upper bound only holds for d ≤ 2; it is not
possible to give a matching upper bound in three or more dimensions without making
restrictive assumptions on P . This is because the complexity of the d-dimensional Delaunay
triangulation varies between O(n) and Ω(ndd/2e), while in one and two dimensions it is Θ(n).

Worst-case inputs are rare in practice, so it is also important to analyze the complexity
of realistic input models. Restricting the shape, distribution, or sampling condition of points
can yield good upper bounds [3, 4, 5, 7, 9, 10, 11, 12, 13, 16, 19, 20] or lower bounds [11, 15].
Upper bounds are typically of more interest, so they will be our focus in the following.

1.2 Contribution
Section 2 bounds the expected complexity of T when points have a random ordering. We give
universal bounds, and bounds derived from Delaunay triangulation complexity bounds where
we show that many sub-quadratic bounds apply to E[|T |] with only an added logn factor,
and that many other bounds apply directly to E[|T |]. Section 3 investigates the worst case
if the points are ordered arbitrarily, giving exact bounds for d ≤ 2 and asymptotically tight
bounds for d > 2. We provide constructions with matching complexity for all bounds in this
section. Section 4 concludes with an outlook on future work.

2 On the Expected Size of T

In this section P is ordered according to a permutation chosen u.a.r. and we give bounds
on E[|T |], the expected number of Delaunay simplices over all time windows. We can count
Delaunay simplices of T by considering the smallest time window containing their vertices:

I Lemma 2.1. Any Delaunay simplex s ∈ T is also a Delaunay simplex in the Delaunay
triangulation of the minimal time window of P containing all vertices of s.

We reformulate E[|T |] using Lemma 2.1 and linearity of expectation, with δs as an indicator
variable which is 1 if the simplex s has both pi and pj as a vertex, and 0 otherwise. The points
are ordered randomly, so E[δs] is simply the probability of d + 1 points (the vertices of s)
randomly selected from j − i+ 1 points (those of the time window) containing two specific
points. Skipping some intermediate steps for brevity of presentation, we get:

E[|T |] = E

[
n−d∑

i=1

n∑

j=i+d

∑

s∈Ti,j

δs

]
=

n−d∑

i=1

n∑

j=i+d

E

[∑

s∈Ti,j

δs

]

=
n−d∑

i=1

n∑

j=i+d

E[|Ti,j |]
d(d+ 1)

(j − i+ 1)(j − i) (1)

We can now transform existing upper (or lower) bounds on the expected complexity of the
Delaunay triangulation into bounds on E[|T |], provided the bound holds for random subsets.

F. Weitbrecht 39:3

Table 1 Expected Delaunay triangulation complexity bounds compatible with Theorem 2.2

Points d E[|DT (P)|] Citation
Distributed u.a.r. in a compact convex of fixed volume ≥ 1 O(n) [9, 13]
ε-net on a flat torus ≥ 1 O(n) [7]
Distributed u.a.r. on the surface of a fixed convex polytope 3 O(n) [20]
ε-net of a fixed polyhedral surface 3 O(n) [7]
(ε, κ)-sample of a fixed polyhedral surface 3 O(nκ2) [4, 7]
Distributed u.a.r. on a cylinder of constant height 3 O(n logn) [11]
Distributed u.a.r. on a fixed polyhedral surface 3 O(n log2 n) [4]1

Distributed u.a.r. on a fixed generic smooth surface 3 O(n log3 n) [5]1

I Theorem 2.2. Let P be a family of point sets in Rd for fixed arbitrary d, with an expected
upper bound E[|DT (P)|] = O(f(n)) for P ∈ P which has the property that, if R is a
random subset of size r, E[|DT (R)|] = O(f(r)). Then, if P is ordered by a permutation
chosen u.a.r., E[|T |] = O(f(n) logn).

Proof. Use the bound in Equation 1. We can bound f(j−i+1)
j−i+1 with f(n)

n since f(n) ∈ Ω(n).

E[|T |] =
n−d∑

i=1

n∑

j=i+d

E[|Ti,j |]
d(d+ 1)

(j − i+ 1)(j − i) = O
(

n−d∑

i=1

n∑

j=i+d

f(j − i+ 1)
(j − i+ 1)(j − i)

)

= O
(
f(n)
n

n−d∑

i=1

n∑

j=i+d

1
j − i

)
= O

(
f(n)
n

n logn
)

= O(f(n) logn)
J

Table 1 gives an overview of some bounds compatible with Theorem 2.2. For upper bounds
f(n) ∈ Ω(n2) we can show E[|T |] = O(f(n)) with the same approach. The complexity of
the Delaunay triangulation is O(ndd/2e), and this bound is at least quadratic for d ≥ 3, so
we get the higher-dimensional analogon of the O(n logn) 2D bound of [17]:

I Corollary 2.3. For d ≥ 3, E[|T |] = O(ndd/2e), and this bound is tight.

The bound is tight because instances of P exist with |DT (P)| = Θ(ndd/2e) for all n, d [22, 23].

3 On the Maximum Size of T

In this section P has an arbitrary fixed order. We derive a tight asymptotic upper bound
on |T | for arbitrary d in Section 3.1 and Section 3.2 gives exact upper bounds for small d.

3.1 Asymptotic Upper Bounds
Clearly |T | = O(n2+dd/2e) because there are only quadratically many time windows and any
one Delaunay triangulation is of size O(ndd/2e), but we can do better. Theorem 3.2 shows
that |T | = O(n1+dd/2e), and Lemma 3.4 shows that this is tight in the worst case.

Cyclic polytopes are the basis of the proofs in this section. The upper bound theorem [24]
states that cyclic polytopes maximize the number of i-dimensional faces among all simplicial

1 By Chernoff bounds, random samples are (O(
√

log n
n),O(logn))-samples with high probability [16].

EuroCG’23

39:4 Delaunay Simplices in Time Windows

(d − 1)-spheres for all i < d, i.e. the number Ci(n, d) of i-faces of a cyclic polytope with n
vertices in d dimensions is an upper bound on the number of i-faces of any convex polytope
with n vertices in d dimensions. Cyclic polytopes with the same dimension and number of
vertices are combinatorially equivalent, and one way of construction is to choose n distinct
points {x(t1), . . . , x(tn)} from the moment curve x(t) = (t, t2, . . . , td)T restricted to t > 0.

We can identify Delaunay simplices of a d-dimensional point set with convex hull facets
of a d+ 1-dimensional point set [14], and we can bound the number of such facets using the
upper bound theorem. This lets us bound the number of Delaunay simplices of Ti,j which
are incident to both pi and pj in Lemma 3.1, which we use in Theorem 3.2 to bound |T |.

I Lemma 3.1. There are O((j− i+ 1)b(d−1)/2c) simplices incident to both pi and pj in Ti,j.

Proof. Let S(k, d) be the maximum number of Delaunay simplices incident to any two
common points in the Delaunay triangulation of any k points in d dimensions. For d ≤ 2 or
k ≤ d+ 1, S(k, d) is O(1). For d ≥ 3 and k > d+ 1, we use the lifting map to project P onto
a paraboloid in (d+ 1)-space [14]. Then a (d+ 1)-subset F of P forms a Delaunay simplex
if and only if the points of F lifted onto the paraboloid form a lower convex hull facet.

We bound the number of facets incident to two common points, pa and pb, on any convex
hull H of k > d+ 1 points in d+ 1 dimensions in general position. This bound applies to the
convex hull of the lifted points, and to the Delaunay triangulation of the original points.

The facets (i.e. d-simplices) of H which are incident to pa each have exactly one
(d− 1)-simplex not incident to pa. The set K1 of these (d − 1)-simplices is a simplicial
(d−1)-sphere with at most k−1 vertices. We apply the same logic to a vertex in K1, say pb:

The facets (i.e. (d − 1)-simplices) of K1 which are incident to pb each have exactly
one (d− 2)-simplex not incident to pb. The set K2 of these (d− 2)-simplices is a simplicial
(d−2)-sphere with at most k−2 vertices. By construction, the facets of K2 are in one-to-one
correspondence with those facets of H which are incident to pa and pb. By the upper bound
theorem [24], the number of facets in K2 is at most Cd−2(k − 2, d− 1) = O(kb(d−1)/2c). J

I Theorem 3.2. The number of Delaunay simplices over all time windows in d dimensions
is O(n1+dd/2e) for all d ≥ 1.

Proof. We use Lemma 2.1 and count for each time window Pi,j the Delaunay simplices for
which Pi,j is the minimal enclosing time window, which are bounded by Lemma 3.1:

|T | =
n−d∑

i=1

n∑

j=i+d

O((j − i+ 1)b(d−1)/2c) = O(n1+dd/2e)

We omit the tedious derivation of explicitly summing up the Cd−2(k−2, d−1) of Lemma 3.1,
which would give an explicit upper bound of |T | ≤

(
n−bd/2c
dd/2e+1

)
+
(

n−dd/2e
bd/2c+1

)
− n+ d. J

Gale’s Evenness Condition characterizes cyclic polytope facets:

I Theorem 3.3 (Gale’s Evenness Condition [18]). Let P = {x(t1), . . . , x(tn)} be a set of
distinct points chosen from the moment curve x(t) = (t, t2, . . . , td)T restricted to t > 0
and ordered by increasing ti. Then a d-subset F ⊆ P forms a facet of the cyclic polytope
Cd(n) = CH(P) iff the following condition is satisfied: for every pair of points (x(ti1), x(ti2))
in P \ F with i1 < i2, the number of points x(t) in F with ti1 < t < ti2 is even.

We adapt a construction from [21] and use Gale’s Evenness Condition in Lemma 3.4 to
show that the bound given in Theorem 3.2 is asymptotically tight.

F. Weitbrecht 39:5

I Lemma 3.4. Point sets P with T ∈ Ω(n1+dd/2e) exist for all n ≥ d ≥ 1.

Proof. Pick n points P ′ = {p′1, . . . , p′n} with strictly increasing t > 0 on the moment curve
x(t) = (t, t2, . . . , td)T such that every p′j is strictly outside the circumhypersphere of simplices
formed by d+1 points with index < j. The convex hull of any subset R = {p′i1

, . . . , p′ik
} ⊆ P ′

with i1 < i2 < · · · < ik and k > d is a cyclic polytope, so Gale’s Evenness Condition tells
us which d-subsets F ⊂ R form a facet of CH(R), and thus also which F no longer form
a facet after inserting a point p′j ∈ P ′ with j > ik into CH(R): they are exactly those F
for which Gale’s Evenness Condition holds w.r.t. R, but not w.r.t. R ∪ {p′j}, i.e. p′ik

∈ F
(and p′i1

∈ F if d is even), and all other points of F can be decomposed into bd−1
2 c pairwise

disjoint pairs of points with consecutive indices in R. Roughly estimating the number of
such d-subsets of R, we see that Ω(kb(d−1)/2c) facets disappear when inserting p′j .

Now consider the Delaunay triangulation of R and how it changes when inserting p′j . Due
to the choice of the p′i, no Delaunay simplex of DT (R) contains p′j in its circumhypersphere,
so each d-subset F forming a disappearing facet corresponds to a d + 1-subset F ∪ {p′j}
forming a Delaunay simplex of DT (R ∪ {p′j}). We are now ready to construct P . Re-order
the points of P ′ by reversing the order within the first and second half:

P = {p1, . . . , pn}, with pi =
{

p′bn/2c−i+1 , i ≤ bn
2 c

p′n+bn/2c−i+1 , i > bn
2 c

Ordered by t-value, P would look like this: [pbn/2c, pbn/2c−1, . . . , p1, pn, pn−1, . . . , pbn/2c+1].
Observe that for i ≤ bn

2 c − d, all facets of Ti,bn/2c that would disappear upon insertion
of some pj with j > bn

2 c have pi as a vertex, and the resulting Delaunay simplices of
DT (Pi,bn/2c ∪ {pj}) all have pj as a vertex. By construction, pbn/2c+1, pbn/2c+2, . . . , pj−1
are strictly outside of the circumhypersphere of these Delaunay simplices, so they are also
Delaunay simplices in Ti,j . Bound the number of Delaunay simplices in T using Lemma 2.1:

|T | ≥
bn/2c−d∑

i=1

n∑

j=bn/2c+1

Ω((bn2 c − i+ 1)b(d−1)/2c) = Ω(n1+dd/2e) J

3.2 Exact Upper Bounds
We give exact upper bounds and constructions that realize them in one and two dimensions.
Surprisingly, the explicit bound of Theorem 3.2 is tight in two dimensions, but not in one.

pi

i

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

Figure 2 1D point set with point indices plotted in the second dimension.

EuroCG’23

39:6 Delaunay Simplices in Time Windows

I Lemma 3.5. For d = 1 and n ≥ 2, |T | ≤ bn2

4 c+ n− 2, and this bound is tight.

Proof. The one-dimensional Delaunay triangulation is the set of segments defined by two
neighboring points on a line. By Lemma 2.1, a segment pipj (i < j) is in T iff Pi,j contains no
points between pi and pj . Plot the points in a 2D coordinate system, with pi corresponding
to the x-value and the index i corresponding to the y-value, and we get that pipj ∈ T iff
there exists a closed axis-aligned rectangle containing pi and pj but no other points from P .
It is shown in [2] that at most bn2

4 c+ n− 2 such pairs of points can exist.
The construction in Lemma 3.4 reaches this bound, see Figure 2: for i ≤ bn

2 c < j we get
bn2

4 c segments of the type pipj , plus n− 2 segments of the type pipi+1 for i /∈ {bn
2 c, n}. J

p1
p3

p5

p7

p9

p11

p2

p4

p6

p8

p10

−c c

p12

r(p1)

r(p12)

Figure 3 Split parabola construction scheme, not to scale. Triangles of either half parabola in
orange, quadrilateral used in the proof in grey, and its diagonal edge.

I Lemma 3.6. For d = 2 and n ≥ 2, |T | ≤ (n− 2)2, and this bound is tight.

Proof. We bound for every time window Pi,j the number of triangles of Ti,j incident to both
pi and pj . This bounds |T | by Lemma 2.1. Each of the n(n−1)

2 time windows contributes
up to 2 triangles to the total, but the n − 1 time windows of length 2 admit no triangles
and the n − 2 time windows of length 3 admit only one triangle each. We get a bound of
|T | ≤ 2 n(n−1)

2 − 2(n− 1)− (n− 2) = (n− 2)2. It can be realized as follows, like in Figure 3:

P = {p1, . . . , pn}, with pi =
{

(i+ c, i2)T , i odd
(−i− c, i2)T , i even

Let r(p) be the reflection over the y-axis, and P ′ = P ∪ {r(p) | p ∈ P}, and c a constant
chosen large enough so that every point of P ′ with negative x-value is strictly outside the
circumcircle of any triangle formed by 3 points of P ′ with positive x-value.

We show that the edge pipj exists in Ti,j and has a triangle on both sides for all j > i+2.
Due to the choice of c, Ti,j consists of two separate, independently triangulated half parabolas
which are connected by exactly 3 edges between their lowest and highest points. If i and j

F. Weitbrecht 39:7

have the same parity, the edge pipj is on the convex hull boundary of one half, and thus
exists in Ti,j . The edge is between both halves, so a triangle exists on both sides.

Otherwise, assume w.l.o.g. that j is even. The convex quadrilateral pipj−1pjpi+1 in the
middle is fixed already. A sphere morphing argument using spheres through pi+1, pj , r(pi)
and pi, pj−1, r(pj) shows that pipj is the diagonal edge triangulating that quadrilateral. J

4 Outlook

Applying other complexity bounds on the Delaunay triangulation to the number of Delaunay
simplices over all time windows remains an interesting challenge, especially when point order
is not randomized or points are distributed less evenly. Exact upper bounds on |T | for d ≥ 3,
and finding for which d the explicit bound given in Theorem 3.2 is tight, would also be nice.

References
1 Ehsan Aganj, Jean-Philippe Pons, Florent Ségonne, and Renaud Keriven. Spatio-temporal

shape from silhouette using four-dimensional Delaunay meshing. In 2007 IEEE 11th In-
ternational Conference on Computer Vision, pages 1–8. IEEE, 2007. doi:10.1109/ICCV.
2007.4409016.

2 Noga Alon, Zoltán Füredi, and Meir Katchalski. Separating pairs of points by stan-
dard boxes. European Journal of Combinatorics, 6(3):205–210, 1985. doi:10.1016/
S0195-6698(85)80028-7.

3 Nina Amenta, Dominique Attali, and Olivier Devillers. A tight bound for the Delaunay
triangulation of points on a polyhedron. Discrete & Computational Geometry, 48(1):19–38,
2012. doi:10.1007/s00454-012-9415-7.

4 Dominique Attali and Jean-Daniel Boissonnat. A linear bound on the complexity of the De-
launay triangulation of points on polyhedral surfaces. Discrete & Computational Geometry,
31(3):369–384, 2004. doi:10.1007/s00454-003-2870-4.

5 Dominique Attali, Jean-Daniel Boissonnat, and André Lieutier. Complexity of the De-
launay triangulation of points on surfaces: the smooth case. In Proceedings of the
nineteenth annual symposium on Computational Geometry, pages 201–210, 2003. doi:
10.1145/777792.777823.

6 Michael J. Bannister, William E. Devanny, Michael T. Goodrich, Joseph A. Simons, and
Lowell Trott. Windows into geometric events: Data structures for time-windowed querying
of temporal point sets. In Proceedings of the 26th Canadian Conference on Computational
Geometry (CCCG), pages 11–19, 2014. URL: https://www.cccg.ca/proceedings/2014/
papers/paper02.pdf.

7 Jean-Daniel Boissonnat, Olivier Devillers, Kunal Dutta, and Marc Glisse. Randomized
incremental construction of Delaunay triangulations of nice point sets. Discrete & Compu-
tational Geometry, pages 1–33, 2020. doi:10.1007/s00454-020-00235-7.

8 Annika Bonerath, Benjamin Niedermann, and Jan-Henrik Haunert. Retrieving α-shapes
and schematic polygonal approximations for sets of points within queried temporal ranges.
In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 249–258. ACM, 2019. doi:10.1145/3347146.
3359087.

9 Olivier Devillers. Delaunay triangulation and randomized constructions. In Encyclopedia
of Algorithms. Springer, 2016. doi:10.1007/978-1-4939-2864-4_711.

10 Olivier Devillers and Charles Duménil. A poisson sample of a smooth surface is a good
sample. In EuroCG 2019 - 35th European Workshop on Computational Geometry, Utrecht,
Netherlands, March 2019. URL: https://hal.archives-ouvertes.fr/hal-02394144.

EuroCG’23

https://doi.org/10.1109/ICCV.2007.4409016
https://doi.org/10.1109/ICCV.2007.4409016
https://doi.org/10.1016/S0195-6698(85)80028-7
https://doi.org/10.1016/S0195-6698(85)80028-7
https://doi.org/10.1007/s00454-012-9415-7
https://doi.org/10.1007/s00454-003-2870-4
https://doi.org/10.1145/777792.777823
https://doi.org/10.1145/777792.777823
https://www.cccg.ca/proceedings/2014/papers/paper02.pdf
https://www.cccg.ca/proceedings/2014/papers/paper02.pdf
https://doi.org/10.1007/s00454-020-00235-7
https://doi.org/10.1145/3347146.3359087
https://doi.org/10.1145/3347146.3359087
https://doi.org/10.1007/978-1-4939-2864-4_711
https://hal.archives-ouvertes.fr/hal-02394144

39:8 Delaunay Simplices in Time Windows

11 Olivier Devillers, Jeff Erickson, and Xavier Goaoc. Empty-ellipse graphs. In 19th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’08), pages 1249–1256, 2008. URL:
https://dl.acm.org/doi/10.5555/1347082.1347218.

12 Rex A Dwyer. Higher-dimensional Voronoi diagrams in linear expected time. Discrete &
Computational Geometry, 6(3):343–367, 1991. doi:10.1007/BF02574694.

13 Rex A Dwyer. The expected number of k-faces of a Voronoi diagram. Computers &
Mathematics with Applications, 26(5):13–19, 1993. doi:10.1016/0898-1221(93)90068-7.

14 Herbert Edelsbrunner and Raimund Seidel. Voronoi diagrams and arrangements. Discrete
& Computational Geometry, 1(1):25–44, 1986. doi:10.1007/BF02187681.

15 Jeff Erickson. Nice point sets can have nasty Delaunay triangulations. Discrete & Compu-
tational Geometry, 30:109–132, 2003. doi:10.1007/s00454-003-2927-4.

16 Jeff Erickson. Dense point sets have sparse Delaunay triangulations or “... but not
too nasty”. Discrete & Computational Geometry, 33(1):83–115, 2005. doi:10.1007/
s00454-004-1089-3.

17 Stefan Funke and Felix Weitbrecht. Efficiently computing all Delaunay triangles occurring
over all contiguous subsequences. In 31st International Symposium on Algorithms and
Computation (ISAAC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.ISAAC.2020.28.

18 David Gale. Neighborly and cyclic polytopes. In Proc. Sympos. Pure Math, volume 7,
pages 225–232, 1963. doi:10.1090/pspum/007/0152944.

19 Mordecai J Golin and Hyeon-Suk Na. The probabilistic complexity of the Voronoi dia-
gram of points on a polyhedron. In Proceedings of the eighteenth annual symposium on
Computational geometry, pages 209–216, 2002. doi:10.1145/513400.513426.

20 Mordecai J Golin and Hyeon-Suk Na. On the average complexity of 3d-Voronoi diagrams
of random points on convex polytopes. Computational Geometry, 25(3):197–231, 2003.
doi:10.1016/S0925-7721(02)00123-2.

21 Bernd Gonska and Günter M. Ziegler. Inscribable stacked polytopes. Advances in Geom-
etry, 13(4):723–740, 2013. doi:10.1515/advgeom-2013-0014.

22 Raimund Seidel. The complexity of Voronoi diagrams in higher dimensions. In Proceed-
ings of the 20th Annual Allerton Conference on Communication, Control, and Computing,
volume 300, pages 94–95, 1982.

23 Raimund Seidel. Exact upper bounds for the number of faces in d-dimensional Voronoi
diagrams. In Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift,
pages 517–530, 1991. doi:10.1090/dimacs/004/40.

24 Richard P Stanley. The upper bound conjecture and cohen-macaulay rings. Studies in
Applied Mathematics, 54(2):135–142, 1975. doi:10.1002/sapm1975542135.

25 Jochen Süßmuth, Marco Winter, and Günther Greiner. Reconstructing animated meshes
from time-varying point clouds. In Computer Graphics Forum, volume 27, pages 1469–1476.
Wiley Online Library, 2008. doi:10.1111/j.1467-8659.2008.01287.x.

26 Felix Weitbrecht. Linear time point location in Delaunay simplex enumeration over all
contiguous subsequences. In EuroCG, pages 399–404, 2022. URL: http://eurocg2022.
unipg.it/booklet/EuroCG2022-Booklet.pdf.

27 Felix Weitbrecht. Interactive exploration of the temporal α-shape. In EuroCG, 2023.

https://dl.acm.org/doi/10.5555/1347082.1347218
https://doi.org/10.1007/BF02574694
https://doi.org/10.1016/0898-1221(93)90068-7
https://doi.org/10.1007/BF02187681
https://doi.org/10.1007/s00454-003-2927-4
https://doi.org/10.1007/s00454-004-1089-3
https://doi.org/10.1007/s00454-004-1089-3
https://doi.org/10.4230/LIPIcs.ISAAC.2020.28
https://doi.org/10.4230/LIPIcs.ISAAC.2020.28
https://doi.org/10.1090/pspum/007/0152944
https://doi.org/10.1145/513400.513426
https://doi.org/10.1016/S0925-7721(02)00123-2
https://doi.org/10.1515/advgeom-2013-0014
https://doi.org/10.1090/dimacs/004/40
https://doi.org/10.1002/sapm1975542135
https://doi.org/10.1111/j.1467-8659.2008.01287.x
http://eurocg2022.unipg.it/booklet/EuroCG2022-Booklet.pdf
http://eurocg2022.unipg.it/booklet/EuroCG2022-Booklet.pdf

Vorosketch and the L0 distance
Herman Haverkort

Institute of Computer Science, University of Bonn
haverkort@uni-bonn.de

Abstract
This paper briefly introduces Vorosketch, a simple tool that sketches Voronoi diagrams for a variety
of distance measures, suitable for use in lectures, articles, and research. Experiments with Vorosketch
led us to the following discovery. Consider the Voronoi diagram of a set of points in the plane when
the distance between two points a and b is given by Lp(a− b), where Lp((x, y)) = (|x|p + |y|p)1/p.

For p = 0, this distance is undefined. Nevertheless, the Voronoi diagram has a limit as p converges
to zero from above or from below: it is the diagram that corresponds to the distance function
L∗((x, y)) := |xy|. This suggests that L∗ provides a natural definition of a geometric L0 distance.

1 Drawing Voronoi diagrams with Vorosketch

Given a set S of n points in the plane (called sites) and a distance function d : S × R2 → R,
the Voronoi region of a point a ∈ S is the set {q ∈ R2 | d(a, q) ≤ mins∈S d(s, q)}. The
Voronoi diagram of S with respect to d is a subdivision of the plane into the Voronoi regions
of the sites of S (ignoring, for now, complications arising from overlap between regions).
Each edge of the Voronoi diagram lies on the boundary between the regions of two sites a
and b, and thus, it is a part of the bisector B(a, b) between a and b, that is, the set of points
B(a, b) := {q ∈ R2 | d(a, q) = d(b, q)}.

When d is simply the Euclidean (L2) distance, the Voronoi diagram can be computed by
various algorithms in O(n logn) time (see e.g. [3, 13]) and various efficient implementations
exist. These exploit various convenient properties of Voronoi diagrams, including that all
regions are simply connected and that the bisector between any pair of points from S is a
straight line.

Besides Voronoi diagrams for the Euclidean distance, diagrams for many other distance
functions have been considered. In general, this results in Voronoi diagrams that do not have
the aforementioned convenient properties: bisectors are not straight anymore and/or regions
might consist of multiple connected components. As a result, the standard algorithms to
compute Voronoi diagrams can be used only with non-trivial adaptations, if at all.

Nevertheless, I wanted to study such Voronoi diagrams experimentally, and produce figures
of such Voronoi diagrams to explain the topic to students. Therefore I wrote Vorosketch [8]:
a tool that is not at the summit of speed or accuracy, but can easily be extended with novel
distance functions, regardless of whether we understand the geometry of the bisectors yet.
Vorosketch produces bitmap images of Voronoi diagrams. The running time is dominated
by distance computations. For a bitmap of r × r pixels, Θ(nr2) distances are computed:
from each site to the centre of each pixel. However, in practice, the number of distance
computations tends to be much smaller than nr2, thanks to a two-phase approach.

In the first phase, Vorosketch subdivides the drawing area into blocks of 20× 20 pixels.
For each block B and for each site a, Vorosketch computes a lower bound `(a,B) and an
upper bound u(a,B) such that `(a,B) ≤ d(a, q) ≤ u(a,B) holds for each pixel centre q ∈ B.
In the second phase, Vorosketch computes, for each pixel centre q ∈ B, the distances to only
those sites a for which `(a,B) ≤ mins∈S u(s,B), and selects out of those, the site closest
to q. Bisectors are detected and drawn wherever there is a square of 2× 2 pixels that do not
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

40:2 Vorosketch and the L0 distance

all belong to the same region (so one has to be a bit careful: bisector parts along regions
that are locally smaller or narrower than a pixel’s width might be missed).

Naturally, the speed of the computation depends strongly on how tight the computed lower
and upper bounds are, but the output quality does not depend on it. To experiment with a
new distance measure quickly, it suffices to insert the code for the single-pixel computation
in the second phase, and Vorosketch will just use trivial (correct but useless) bounds in the
first phase. If desired, one can speed up the computation of diagrams for the new distance
measure later by implementing the calculation of tighter bounds.

Vorosketch offers various options to control the line work and colours of the drawing.
Regions may be coloured in different colours—using some rudimentary heuristic to give
adjacent regions contrasting colours. Colours or shades may be set to depend on the distance
to the site (see Figures 1a, 1e, 1f); saturation may be set to depend on the number of
neighbours of a region (Figure 1c). One may also choose to apply shading depending on the
direction of the distance-to-closest-site gradient—thus visualising the hills and valleys of the
distance landscape (Figures 1a, 1c). Alternatively, or on top of that, one may draw distance
contour lines. Areas that belong to two Voronoi regions are filled with a checkerboard pattern
according to the colours of the two sites involved (Figures 1c, 1d). Vorosketch can also draw
second-closest-site, second-order, and farthest-site Voronoi diagrams.

In the current version of Vorosketch [8], the following distance measures are supported:
Lp distance for p = −∞, all p ∈ R, and p =∞, using L∗ for L0 (see Section 2);
distance when only travelling in directions that are integral multiples of 60 degrees;
Kalrsruhe/Moscow/Amsterdam distance (travel only on lines through or circles around
the origin) [12], and the novel Köln/Cologne distance (like Karlsruhe, but measuring
travel time when speed is proportional to the distance from the origin, as if modelling
congestion in the centre—see Figure 1a);
distance when the plane is interpreted as an equal-area azimuthal, elliptical (see Figure 1b)
or cylindrical projection of a sphere;
distance when the plane is interpreted as one of various models of the hyperbolic plane;
the energy required to send a spaceship from any point into an orbit that reaches the site
(or vice versa), subject to gravity towards the centre of the coordinate system (see the
Vorosketch website [8] for details on its definition and computation);
L1 and L2 distance with unrestricted-access highways (the distance between two points
is the travel time, when speed is 1 when going cross-country, while travel along specified
line segments is faster; see Figure 1c); for these distance measures, Vorosketch includes a
preprocessing phase that exploits geometric properties of shortest paths in this setting [7];
combinations of distance measures that can be obtained from the previous by standard
arithmetic operations; this includes distance measures calculated according to one function
(for example, Euclidean), subject to constraints on another distance function (for example,
turn angle, as with half-plane Voronoi diagrams [5, 6]);
subtractively/additively and divisively/multiplicatively weighted versions of the above
(including power diagrams [2, 11]).

Moreover, for line segment or polylinear sites, the following distance measures are included:
L1 (see Figure 1d) and L2 distance;
angular-size distance (the distance between a point q and a site s is 2π divided by the
angular size of s as seen from q, minus one; see Figure 1e);
detour distance (the distance to a point q from a line segment site with endpoints s and t
is ||sq||+ ||qt|| − ||st||), and dilation distance (detour distance divided by ||st||).

H. J. Haverkort 40:3

For point sites that each have an associated vector (direction, and, in some cases, magnitude):
turn distance: the distance to a point q from a site s is the angle between the site’s
associated vector and the segment sq (see [9]);
left-turn distance: same as above, but always measuring the angle from the site vector to
sq in counterclockwise direction (as studied by Alegría et al. [1]);
Dubins distance: the distance to a point q from a site s is the distance that a car would
have to drive from s to q, without reversing, given its initial position and direction vector
and with minimum turn radius equal to the magnitude of the vector [4];
the “catch” distance for moving sites (see Figure 1f): the distance from a point q to a
site s is defined as the distance one has to travel from q (at a fixed speed) to meet the
moving site s as soon as possible, given its initial position, direction and speed1.

The examples in Figures 1e and 1f in particular raise the question what properties the
curvy bisectors have with these distance measures—where the distance contours are simply
composed of (non-concentric) circular arcs.

2 The geometric L0 distance

The Lp distance between two points a and b is given by Lp(a − b) where Lp((x, y)) =
(|x|p + |y|p)1/p. The Lp distances are widely studied in computational geometry, in particular
with p ≥ 1, in which case the distance constitutes a metric. With the help of Vorosketch, Rolf
Klein and I studied what happens if p drops to zero or even becomes negative [10]. We see that
the values of the Lp distance function differ depending on whether p tends to zero from above
or from below: If x 6= 0 and y 6= 0, then limp↓0 Lp((x, y)) =∞ whereas limp↑0 Lp((x, y)) = 0.
To verify this, define r = y/x; then limp→0 Lp((x, y)) = x limp→0(1 + rp)1/p = x limp→0 21/p.
Nevertheless, we found that, at least for points in general position, the limit of the Voronoi
diagram under the Lp distance as p approaches zero is well-defined. In other words, even
though, for small values of |p|, the Lp and L(−p) distances have very different values, they
induce almost identical Voronoi diagrams.

To be precise, observe that the terms |x|p and |y|p in the definition of Lp are undefined if
p < 0 and x = 0 or y = 0, respectively. We extend the function Lp, for p < 0, to a continuous
function on all arguments (x, y) by setting its value to zero if x or y is equal to zero. Thus,
given two points a and b in the plane, we can calculate and compare their Lp distances to
any other point in the plane, for any p 6= 0.

Figure 2 shows an example of the Voronoi diagram of two points under the Lp distance
for two values of p very close to zero. The figure shows, in particular, the bisector Bp(a, b)
of two points a = (ax, ay) and b = (bx, by), that is, it shows the set of points in the plane
that are equidistant to a and b under the Lp distance. The bisector Bp(a, b) separates the
set Vp(a, b) of points that are closer to a from the set Vp(b, a) of points that are closer to b.
We obtained the following result:

1 The special case in which the sites have the same speed as the catchers, also has an interpretation in
terms of illumination. In that case the distance is proportional to the Euclidean distance times the
secant of the angle between sq and the site vector (provided the angle is less than π/2). This can be
interpreted as the size, as seen from q, of a small unit-size diffuse linear light source at s whose normal is
the site vector. The Voronoi diagram models from which site each part of the plane receives most light.

EuroCG’23

40:4 Vorosketch and the L0 distance

a b

c d

e f

Figure 1 Voronoi diagrams of: (a) points by Köln distance; (b) points on a sphere in equal-area
elliptical projection; (c) points by L2 distance with highways; (d) multiplicatively weighted polylines
by L1 distance; (e) line segments by angular size; (f) moving points by catch distance.

H. J. Haverkort 40:5

Figure 2 A bisector (in black) of two points under the Lp distance for p = −0.05 (left) and
p = 0.05 (right), as computed by Vorosketch. The bisector divides the plane into two regions (points
closer to a and points closer to b) that each seem to consist of three faces.

a

b

B∗(a, b)

λ

ρ

V∗(b, a)

V∗(a, b)

V∗(b, a)

B∗(a, b)

I II III

IV V VI

VII VIII IX

V∗(a, b) B∗(a, b)

Figure 3 A bisector of two points a and b under the L∗ distance.

I Theorem 1. Let a and b be two point sites in the real plane with different X- and Y -
coordinates. Then their bisector Bp(a, b) and the sets Vp(a, b) and Vp(b, a) under the Lp

distance converge, as p tends to zero from above or from below, to their bisector B∗(a, b) and
the sets V∗(a, b) and V∗(b, a) under the L∗ distance as defined by L∗((x, y)) = |xy|.

Note that L∗(a − b) is simply the area of the axis-parallel bounding box of a and b. Let
λ and ρ denote the other two vertices of their axis-parallel bounding box. The bisector
B∗(a, b) consists of the line through λ and ρ and of two hyperbola branches through λ

and ρ, respectively, whose asymptotes are the vertical and horizontal lines through the
bounding box’s centre; see Figure 3. This can easily be verified by solving the equation
L∗(a− q) = L∗(b− q) for q in each of the nine regions that result from subdividing the plane
by the axis-parallel lines through a and b. The bisector B∗(a, b) divides the plane into six
faces, such that each face is entirely contained in either V∗(a, b) or V∗(b, a).

It follows that for point sites in general position (that is, if no two points are on a
common horizontal or vertical line2), the limit of their Lp Voronoi diagram as p tends to
zero is well-defined and it equals the L∗Voronoi diagram. Thus, it appears that defining
L0((x, y)) as L∗((x, y)) = |xy|, which equals exp(ln |x| + ln |y|) if x, y 6= 0, constitutes a
natural interpretation of Lp((x, y)) = (|x|p + |y|p)1/p for p = 0. Therefore we propose to
call the L∗ distance measure the geometric L0 distance, and the resulting Voronoi diagram
the geometric L0 Voronoi diagram. Note that this definition is notably distinct from other,

2 For a discussion of non-general position, see [10].

EuroCG’23

40:6 Vorosketch and the L0 distance

unrelated, definitions of L0 that have been proposed3, and whose Voronoi diagrams would be
very different from the L∗Voronoi diagram. Figure 4 shows, for comparison, the Lp Voronoi
diagram of the same sites for several values of p.

Our proof of Theorem 1 is based on the following approach. Assume that |p| < 1 is
sufficiently small, but not zero. Consider two point sites a and b that do not lie on a common
horizontal or vertical line. If we subject these points to translation, reflection in a coordinate
axis, or reflection in the line y = x, the bisector under the Lp distance undergoes the same
transformation. Therefore, to investigate the shape of the bisector, it suffices to consider
two sites a = (−u,−1) and b = (u, 1) where u ≥ 1. Figure 3 shows how the plane is divided
into nine regions by the horizontal and vertical lines through a and b. Regions III and VII
do not contain any point of Bp(a, b). For each of the other regions, we can analyse, for any
vertical line `, the vertical distance between any point of Bp(a, b)∩ ` and the unique point of
B∗(a, b)∩ ` within that region, and prove that the limit of this distance is zero as p tends to 0
from above or from below. Our proof can be found in detail in our manuscript on arXiv [10].

References
1 Carlos Alegría, Ioannis Mantas, Evanthia Papadopoulou, Marko Savic, Hendrik Schrezen-

maier, Carlos Seara and Martin Suderland. The Voronoi diagram of rotating rays with
applications to floodlight illumination. Proc. 29th Eur. Symp. on Algorithms (ESA 2021),
LIPIcs 204:5.1–16, 2021.

2 Franz Aurenhammer. Power diagrams: properties, algorithms and applications. SIAM J.
Comput. 16(1):78–96, 1987.

3 Mark de Berg, Otfried Cheong, Marc van Kreveld and Mark Overmars. Computational
Geometry: algorithms and applications. Springer, 2008.

4 Xuân-Nam Bui and Jean-Daniel Boissonnat. Accessibility region for a car that only moves
forwards along optimal paths. Technical report RR-2181, inria-00074491, INRIA, 1994.

5 Yongxi Cheng, Bo Li and Yinfeng Xu. Semi Voronoi diagrams. Proc. 9th Int. Conf. Comp.
Geom., Graphs and Appl. (CGGA 2010), LNCS 7033:19–26, 2011.

6 Chenglin Fan, Jun Luo, Jinfei Liu and Yinfeng Xu. Half-plane Voronoi diagram. Proc. 8th
Int. Symp. Voronoi Diagrams in Sci. and Eng. (ISVD 2011), pages 127–133, 2011.

7 Laxmi P. Gewali, Alex C. Meng, Joseph S. B. Mitchell, and Simeon Ntafos. Path planning
in 0/1/∞ weighted regions with applications. INFORMS J. Comput. 3(2):253–272, 1990.

8 Herman Haverkort. Vorosketch, version 0.31β.
From http://herman.haverkort.net/vorosketch/, 3 March 2023.

9 Herman Haverkort and Rolf Klein. Hyperbolae are the locus of constant angle difference.
CoRR (arXiv) abs/2112.00454, 2021.

10 Herman Haverkort and Rolf Klein. The limit of Lp Voronoi diagrams as p → 0 is the
bounding-box-area Voronoi diagram. CoRR (arXiv) abs/2207.07377, 2022.

11 Hiroshi Imai, Masao Iri, and Kazuo Murota. Voronoi diagram in the Laguerre geometry
and its applications. SIAM J. Comput. 14(1):93–105, 1985.

12 Rolf Klein. Voronoi diagrams in the Moscow metric. Proc. 14th Int. Workshop Graph-
Theoretic Concepts in Computer Sci. (WG 1988), LNCS 344:434–441, 1988.

13 Rolf Klein, Anne Driemel and Herman Haverkort. Algorithmische Geometrie: Grundlagen,
Methoden, Anwendungen. Springer, 2022.

3 https://en.wikipedia.org/wiki/Lp_space#When_p_=_0, retrieved 10 January 2023.

http://herman.haverkort.net/vorosketch/
https://en.wikipedia.org/wiki/Lp_space#When_p_=_0

H. J. Haverkort 40:7

p = −∞ p = −1 p = −0.2

p = −0.1 p = 0 p = 0.1

p = 0.2 p = 0.5 p = 0.7

p = 1 p = 2 p =∞

Figure 4 Voronoi Diagrams under the Lp distance for various values of p. Note that features
narrower than a pixel might not have been detected completely.

EuroCG’23

Applying The Pebble Game Algorithm to Rod
Configurations ∗

Signe Lundqvist1, Klara Stokes1, and Lars-Daniel Öhman1

1 Department of Mathematics and Mathematical Statistics, Umeå University
signe.lundqvist@umu.se
klara.stokes@umu.se
lars-daniel.ohman@umu.se

Abstract
We present results on rigidity of structures of rigid rods connected in joints: rod configurations.

The underlying combinatorial structure of a rod configuration is an incidence structure. Our aim is
to find simple ways of determining which rod configurations admit non-trivial motions, using the
underlying incidence structure.

Rigidity of graphs in the plane is well understood. Indeed, there is a polynomial time algorithm
for deciding whether most realisations of a graph are rigid. One of the results presented here equates
rigidity of sufficiently generic rod configurations to rigidity of a related graph. As a consequence, it
is possible to determine the rigidity of rod configurations using the previously mentioned polynomial
time algorithm. We use this to show that all v3-configurations on up to 15 points and all triangle-free
v3-configurations on up to 20 points are rigid in regular position, if such a realisation exists. We
also conjecture that the smallest v3-configuration that is flexible in regular position is a previously
known 283-configuration.

Related Version arXiv:2112.01960

1 Introduction

A rod configuration is a realisation of a hypergraph as points and lines in the plane. We
are interested in motions of rod configurations, where the motions are assumed to preserve
collinearity of points incident to the same line, and the pairwise distance between points
incident to the same line. Theorem 2.1 says that sufficiently generic rod configurations
realising an incidence geometry are rigid if and only if almost all realisations of an associated
graph are rigid. Determining whether almost all realisations of a given graph are rigid can be
done in polynomial time, using for example the pebble game algorithm [7]. As a consequence
of our result, determining the rigidity of sufficiently generic rod configurations can also be
done efficiently using the pebble game algorithm.

We consider only the two-dimensional setting. Throughout, S = (P,L, I) will denote
a connected rank two incidence geometry, with point set P , line set L and incidence set
I. For basic definitions and more on incidence geometries, see for example [3], where rank
two incidence geometries are referred to as point-line geometries. All graphs are assumed
to be simple. A linear realisation of an incidence geometry is a realisation of an incidence
geometry as points and straight lines in the plane. Let S = (P,L, I) be an incidence geometry,
and ρ an assignment of a line slope fj to each element `j ∈ L. A linear realisation of an
incidence geometry S = (P,L, I) with line slopes given by ρ is an assignment of a pair of

∗ This work has been supported by the Knut and Alice Wallenberg Foundation Grant 2020.0001 and
2020.0007.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

41:2 Applying the Pebble Game Algorithm to Rod Configurations

point coordinates (xi, yi) to each element pi ∈ P and a y-intercept hj to each element `j ∈ L
such that

fjxi + yi + hj = 0 (1)

whenever (pi, `j) ∈ I. Finding a linear realisation of an incidence geometry with an assigned
set of line slopes ρ amounts to solving a system of I equations of the form (1). Let M(S, ρ)
denote that system of equations. A linear realisation is trivial if all points are assigned the
same point coordinates. There are trivial linear realisations of any incidence geometry with
any line slopes. A linear realisation is proper if all points are assigned distinct coordinates.
Not all incidence geometries have proper linear realisations. The Fano plane, for instance,
does not have proper linear realisations for any choice of line slopes.

In 1989, Whiteley proved that an incidence geometry has proper linear realisations for
almost all choices of line slopes if and only if for any subset I ′ ⊆ I

|I ′| ≤ |L′|+ 2|P ′| − 3 (2)

where P ′ × L′ ⊆ P × L is the support of I ′ [11]. Specifically, incidence geometries with sets
of incidences that satisfy (2) have proper linear realisations if the line slopes are chosen to be
algebraically independent over Q. Incidence geometries with sets of incidences that do not
satisfy (2) can have proper linear realisations for some choices of line slopes ρ, however, the
line slopes given by ρ must then be algebraically dependent over Q. Furthermore, the rows
of M(S, ρ) would necessarily be dependent [11]. We say that a proper linear realisation of
an incidence geometry S = (P,L, I) is regular if every subset of I ′ satisfying (2) corresponds
to independent rows of M(S, ρ). Intuitively, a rod configuration is a proper linear realisation
where the lines move like rigid bodies. We will give a more formal definition in Section 2.
For the remainder of this section we will focus on the special case of graphs.

Given a graph G = (V,E), any map f : V → R2 gives a proper linear realisation of
G. Linear realisations of graphs are more commonly known as bar-and-joint frameworks
or frameworks. A continuous motion of a bar-and-joint framework is a motion of the
vertices which preserves the distance between any pair of adjacent vertices. A bar-and-joint
framework is rigid if the only continuous motions of the framework are translations and
rotations, otherwise it is flexible. An infinitesimal motion of a bar-and-joint framework is
an assignment m : V → R2 such that 〈m(i) −m(j), f(i) − f(j)〉 = 0, whenever (i, j) ∈ E,
where 〈−,−〉 denotes the standard scalar product in R2. A bar-and-joint framework is
infinitesimally rigid if the only infinitesimal motions of the framework are linearisations of
translations and rotations. Otherwise it is infinitesimally flexible.

It is known that almost all realisations of a given graph will have the same rigidity
properties [5]. In particular, all bar-and-joint framework of a graph such that the vertices
are given coordinates that are algebraically independent over Q (generic frameworks) have
the same rigidity properties. We can therefore say that a graph is generically rigid in the
plane if all its generic frameworks are infinitesimally rigid, otherwise we say that the graph
is generically flexible.

A graph is (2, 3)-sparse if |E′| ≤ 2|V ′| − 3 for all subsets E′ ⊆ E, where V ′ is the set of
vertices generated by E′. A graph is (2, 3)-tight if it is (2, 3)-sparse and |E| = 2|V | − 3. A
classical result in rigidity theory says that a graph is generically rigid in R2 if and only if
it has a (2, 3)-tight spanning subgraph [8]. The (2, 3)-tight graphs, or Laman graphs, are
minimally rigid, in the sense that they are generically rigid, but removing any edge results in
a generically flexible graph.

S.Lundqvist, K.Stokes and L-D.Öhman 41:3

There are several algorithms for determining generic rigidity, or (2, 3)-sparsity of graphs.
For the experiment in Section 4 we implemented the pebble game, which is briefly outlined
below. However, there is an algorithm which is faster at determining (2, 3)-sparsity [4].
The pebble game algorithm, introduced by Jacobs and Hendrickson, can determine generic
rigidity of graphs [7]. The input of the pebble game algorithm is a graph G = (V,E) and
an ordering of E. The output of the algorithm is a set of accepted edges, which generate a
spanning (2, 3)-sparse subgraph. In the specified ordering, the algorithm checks whether the
graph generated by the current edge and the previously accepted edges is (2, 3)-sparse. If it
is, then the current edge is accepted. From the end state of the algorithm, it is possible to
determine whether the graph is generically flexible or generically rigid. Furthermore, it is
possible to tell from the end state of the algorithm whether the graph is (2, 3)-tight.

2 Theoretical Results

Given an incidence geometry S = (P,L, I) we define a cone graph of S, denoted GC(S),
to be a graph with a vertex for each p ∈ P and a vertex for each ` ∈ L, and edge set
consisting of edges from the vertex representing a line ` to all vertices representing points
incident to `, and edges {(p, q)}(q,`)∈I , where p is some chosen vertex representing a point
incident to `. We can also define an incidence geometry, the cone incidence geometry, denoted
SC = (PC , LC , IC), by PC = P ∪ L and LC = L ∪ {(p, v`) | (p, `) ∈ I}, where v` is the
element of PC corresponding to `. The incidences in IC are defined by inclusion, i.e. p ∈ PC

is incident to ` ∈ LC if p ∈ `. Cone graphs are not uniquely defined. However, if one cone
graph of an incidence geometry S is generically rigid in the plane, then all cone graphs of
the incidence geometry are generically rigid in the plane [10].

Figure 1 A rod configuration realising an incidence geometry S and a cone graph GC(S) of S.

Suppose that there is some proper linear realisation of S with line slopes given by ρ. A
proper linear realisation of S assigns point coordinates to elements of P . Define a (non-
generic) bar-and-joint framework of a cone graph GC(S) by assigning coordinates to the
vertices of GC(S) representing elements of L, so that the vertices corresponding to elements
of L are not on the lines representing elements of L in the linear realisation. Note that
such an assignment defines a proper linear realisation of SC with line slopes given by ρ′,
such that ρ′ restricted to L is ρ. A rod configuration is a proper linear realisation ρ of S,
which is continuously or infinitesimally rigid if some cone graph of S has a continuously or
infinitesimally rigid bar-and-joint framework in the special position defined by ρ respectively.
Otherwise it is infinitesimally flexible. A rod configuration is minimally rigid if it is rigid,
but removing any rod results in a flexible rod configuration. We say that a rod configuration
is regular if some linear realisation of SC with line slopes restricting to ρ on L is regular.

EuroCG’23

41:4 Applying the Pebble Game Algorithm to Rod Configurations

Figure 2 The cone graph GC(S) from Figure 1 and the non-generic bar-and-joint framework of
GC(S) given by the linear realisation of S drawn in Figure 1.

I Theorem 2.1. Let S = (P,L, I) be an incidence geometry such that SC has a regular
proper linear realisation. Then all cone graphs of S are rigid in R2 if and only if all regular
rod configurations realising S in R2 are infinitesimally rigid.

The full proof of Theorem 2.1 can be found in a recent preprint [10], but we give a
very brief sketch here. That GC(S) is rigid in the plane if all regular rod configurations
realising S are infinitesimally rigid follows from the fact that if some framework of a graph is
infinitesimally rigid, then all generic frameworks of that graph are rigid [5]. To prove the
other direction of Theorem 2.1, we recursively construct a spanning (2, 3)-sparse subgraph of
a cone graph GC(S). If GC(S) is generically rigid in R2, then the constructed (2, 3)-sparse
subgraph is (2, 3)-tight and therefore minimally rigid in generic position. To complete the
proof, we prove, using a result of Whiteley [11], that the constructed minimally rigid subgraph
of GC(S) remains infinitesimally rigid in the non-generic position defined by any regular
proper linear realisation of SC . Since a spanning subgraph is infinitesimally rigid in this
position, so is GC(S).

3 An algorithm for testing rigidity of rod configurations

As a consequence of Theorem 2.1, we get an algorithm for determining infinitesimal rigidity
of regular rod configurations realising incidence geometries.

I Algorithm 3.1. Given an incidence geometry S, create a cone graph GC(S) by adding a
vertex vp for each p ∈ P and a vertex v` for each ` ∈ L. Then add an edge (vp, vl) whenever
(p, `) ∈ I. Finally pick an arbitrary ordering of P . Add edges {(vp, vq)}(q,`)∈I , where p is the
first element of P in the chosen ordering to be incident to `.

We can then apply the pebble game algorithm to GC(S). The output of the pebble game
algorithm is a spanning (2, 3)-sparse subgraph G′ of GC(S). If G′ is (2, 3)-tight, then GC(S)
is generically rigid, so regular rod configurations realising S are infinitesimally rigid, by
Theorem 2.1. If G′ is not (2, 3)-tight, then it follows from Theorem 2.1 that regular rod
configurations realising S are infinitesimally flexible.

Whiteley proved that if GC(S) is generically minimally rigid, then regular rod config-
urations realising that incidence geometry are infinitesimally rigid [11]. If GC(S) is not
minimally rigid, then testing minimal rigidity can be done by in turn removing each line
of the rod configuration, and running Algorithm 3.1 to test whether the rod configuration
remains rigid when the line is removed.

S.Lundqvist, K.Stokes and L-D.Öhman 41:5

The pebble game algorithm runs in O(ve)-time, where v and e are the numbers of vertices
and edges of the input graph respectively [7]. The cone graph of an incidence geometry
S = (P,L, I) has one vertex for each element in P , and one vertex for each element of L. The
cone graph S has an edge (p, c`) for each incidence (p, `), and P (`)− 1 edges corresponding
to a line ` ∈ L, where P (`) denotes the number of points incident to `. In total, the
cone graph has |P | + |L| vertices, and 2|I| − |L| edges. Algorithm 3.1 therefore runs in
O((|P |+ |L|)(2|I| − |L|))-time. Since it is possible to bound both the number of incidences
and the number of points by constants times the number of lines, the algorithm runs in
O(|L|2)-time.

To determine whether a rod configuration is minimally rigid, we may need to run
Algorithm 3.1 |L| times. With this approach, determining whether a rod configuration is
minimally rigid can be done in O(|L|3)-time.

4 A Computational Experiment

A v3-configuration is an incidence geometry with v points and v lines, such that each line is
incident to 3 points and each point is incident to 3 lines. For more on vk-configurations see
for example [6].

Figure 3 The smallest known flexible v3-configuration.

In previous work, we found an infinite family of flexible v3-configurations [9]. The smallest
flexible v3-configuration we found is a 283-configuration (see Figure 3). To test whether there
exist smaller flexible v3-configurations, we applied Algorithm 3.1 to small v3-configurations.
First, we used Orbiter [2] to generate all combinatorial v3-configurations for 9 ≤ v ≤ 15.
There were 269120 v3-configurations generated for 9 ≤ v ≤ 15, 245342 of which were 153-
configurations. The 163-configurations were too many to handle. We also used Orbiter to
generate all triangle-free v3-configurations for 16 ≤ v ≤ 20. There were 181 triangle-free
v3-configurations for 16 ≤ v ≤ 20, 162 of which were 203-configurations. We then created
a cone graph of each v3-configuration and applied the pebble game to it, in order to test
whether regular rod configurations realising the v3-configuration are infinitesimally flexible.
Orbiter generates also disconnected incidence geometries, which are flexible in the trivial way
that the two components can move in relation to each other. We are interested in flexible

EuroCG’23

41:6 Applying the Pebble Game Algorithm to Rod Configurations

connected incidence geometries.
Out of the v3-configurations that we applied the algorithm to, the only ones that had

flexible cone graphs were a 143-configuration, which consisted of two copies of the Fano plane,
and a 153-configuration which consisted of one copy of the Fano plane and one copy of the
Möbius-Kantor configuration. Both of these v3-configurations are disconnected. Hence, out
of the connected v3-configurations that we tested, none have flexible realisations as regular
rod configurations. We did not manage to test all v3 configurations for 9 ≤ v ≤ 27, but
we think it is reasonable to believe that the smallest flexible v3-configuration is the flexible
283-configuration that we previously found.

5 Conclusion

Theorem 2.1 gives an efficient way of determining rigidity of regular rod configurations.
However, in general there is no known way to efficiently determine whether an incidence
geometry has realisations as regular rod configurations. Finding a maximum size subset of
incidences satisfying (2) is known to be NP-hard , which suggests that deciding whether a
proper linear realisation is regular is also difficult [1]. In general, even finding proper linear
realisations of incidence geometries is not easy. Finding regular proper linear realisations of
incidence geometries is therefore an interesting, but potentially difficult problem. We also
have no examples of incidence geometries that have proper linear realisations, but no regular
proper linear realisations. Finding such examples would be interesting.

The algorithm to determine minimal rigidity of rod configurations is based on the
algorithm for determining ridigity of rod configurations. While determining minimal rigidity
can still be done fairly efficiently, it might still be interesting to get a better understanding
of minimal rigidity of rod configurations.

Acknowledgments. We thank Anton Betten for his valuable help with Orbiter.

References
1 Alex R. Berg and Tibor Jordán. Algorithms for graph rigidity and scene analysis.

In Algorithms—ESA 2003, volume 2832 of Lecture Notes in Comput. Sci., pages 78–
89. Springer, Berlin, 2003. URL: https://doi.org/10.1007/978-3-540-39658-1_10,
doi:10.1007/978-3-540-39658-1_10.

2 Anton Betten. The Orbiter ecosystem for combinatorial objects. In ISSAC 2020—
Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation,
pages 30–37. ACM, New York, 2020. doi:10.1145/3373207.3403984.

3 Bart De Bruyn. An introduction to incidence geometry. Frontiers in Mathematics.
Birkhäuser/Springer, Cham, 2016. doi:10.1007/978-3-319-43811-5.

4 Harold N. Gabow and Herbert H. Westermann. Forests, frames, and games: algorithms
for matroid sums and applications. Algorithmica, 7(5-6):465–497, 1992. doi:10.1007/
BF01758774.

5 Herman Gluck. Almost all simply connected closed surfaces are rigid. In Geometric topology
(Proc. Conf., Park City, Utah, 1974), Lecture Notes in Math., Vol. 438, pages 225–239.
Springer, Berlin, 1975.

6 Branko Grünbaum. Configurations of points and lines, volume 103 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2009. doi:10.1090/gsm/
103.

https://doi.org/10.1007/978-3-540-39658-1_10
https://doi.org/10.1007/978-3-540-39658-1_10
https://doi.org/10.1145/3373207.3403984
https://doi.org/10.1007/978-3-319-43811-5
https://doi.org/10.1007/BF01758774
https://doi.org/10.1007/BF01758774
https://doi.org/10.1090/gsm/103
https://doi.org/10.1090/gsm/103

S.Lundqvist, K.Stokes and L-D.Öhman 41:7

7 Donald J. Jacobs and Bruce Hendrickson. An algorithm for two-dimensional rigidity per-
colation: the pebble game. J. Comput. Phys., 137(2):346–365, 1997. doi:10.1006/jcph.
1997.5809.

8 Gerard Laman. On graphs and rigidity of plane skeletal structures. J. Engrg. Math.,
4:331–340, 1970. doi:10.1007/BF01534980.

9 Signe Lundqvist, Klara Stokes, and Lars-Daniel Öhman. Exploring the in-
finitesimal rigidity of planar configurations of points and rods. preprint, 2021.
https://arxiv.org/pdf/2112.01960.pdf.

10 Signe Lundqvist, Klara Stokes, and Lars-Daniel Öhman. When is a rod configuration
infinitesimally rigid? preprint, 2022. https://arxiv.org/pdf/2112.01960.pdf.

11 Walter Whiteley. A matroid on hypergraphs, with applications in scene analysis and geom-
etry. Discrete Comput. Geom., 4(1):75–95, 1989. doi:10.1007/BF02187716.

EuroCG’23

https://doi.org/10.1006/jcph.1997.5809
https://doi.org/10.1006/jcph.1997.5809
https://doi.org/10.1007/BF01534980
https://doi.org/10.1007/BF02187716

The Number of Edges in Maximal 2-planar Graphs∗

Michael Hoffmann and Meghana M. Reddy

Department of Computer Science, ETH Zürich, Switzerland,
{hoffmann, meghana.mreddy}@inf.ethz.ch

Abstract
A graph is 2-planar if it has local crossing number two, that is, it can be drawn in the plane such
that every edge has at most two crossings. A graph is maximal 2-planar if no edge can be added
such that the resulting graph remains 2-planar. A 2-planar graph on n vertices has at most 5n − 10
edges, and some (maximal) 2-planar graphs—referred to as optimal 2-planar—achieve this bound.
However, in strong contrast to maximal planar graphs, a maximal 2-planar graph may have fewer
than the maximum possible number of edges. In this paper, we determine the minimum edge density
of maximal 2-planar graphs by proving that every maximal 2-planar graph on n ≥ 5 vertices has at
least 2n edges. We also show that this bound is tight, up to an additive constant.

1 Introduction

Maximal planar graphs a.k.a. (combinatorial) triangulations are a rather important and
well-studied class of graphs with a number of nice and useful properties. To begin with, the
number of edges is uniquely determined by the number of vertices, as every maximal planar
graph on n ≥ 3 vertices has 3n− 6 edges. It is natural to wonder if a similar statement can
be made for the various families of near-planar graphs, which have received considerable
attention over the past decade; see, e.g. [7, 8].

In this paper we focus on k-planar graphs, specifically for k = 2. These are graphs with
local crossing number at most k, that is, they admit a drawing in R2 where every edge has at
most k crossings. The maximum number of edges in a k-planar graph on n vertices increases
with k, but the exact dependency is not known. A general upper bound of O(

√
kn) is known

due to Ackerman and Pach and Tóth [1, 11] for graphs that admit a simple k-plane drawing,
that is, a drawing where every pair of edges has at most one common point. A 1-planar graph
on n vertices has at most 4n− 8 edges and there are infinitely many optimal 1-planar graphs
that achieve this bound, as shown by Bodendiek, Schumacher, and Wagner [5]. A 2-planar
graph on n vertices has at most 5n− 10 edges and there are infinitely many optimal 2-planar
graphs that achieve this bound, as shown by Pach and Tóth [11]. In fact, there are complete
characterizations, for optimal 1-planar graphs by Suzuki [13] and for optimal 2-planar graphs
by Bekos, Kaufmann, and Raftopoulou [4].

Much less is known about maximal k-planar graphs, that is, graphs for which adding
any edge results in a graph that is not k-planar anymore. In contrast to planar graphs,
where maximal and optimal coincide, the difference between maximal and optimal can be
quite large for k-planar graphs, even—perhaps counterintuitively—maximal k-planar graphs
for k ≥ 1 may have fewer edges than maximal planar graphs on the same number of vertices.
Hudák, Madaras, and Suzuki [9] describe an infinite family of maximal 1-planar graphs with
only 8n/3 + O(1) ≈ 2.667n edges. An improved construction with 45n/17 + O(1) ≈ 2.647n

edges was given by Brandenburg, Eppstein, Gleißner, Goodrich, Hanauer, and Reislhuber [6]

∗ M. Hoffmann and M. M. Reddy were supported by the Swiss National Science Foundation within the
collaborative DACH project Arrangements and Drawings as SNSF Project 200021E-171681.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

42:2 The Number of Edges in Maximal 2-planar Graphs

who also established a lower bound by showing that every maximal 1-planar graph has at
least 28n/13−O(1) ≈ 2.153n edges. Later, this lower bound was improved to 20n/9 ≈ 2.22n

by Barát and Tóth [3].
Maximal 2-planar graphs were studied by Auer, Brandenburg, Gleißner, and Hanauer [2]

who constructed an infinite family of maximal 2-planar graphs with n vertices and 387n/147+
O(1) ≈ 2.63n edges.1 We are not aware of any nontrivial lower bounds on the number of
edges in maximal k-planar graphs, for k ≥ 2.

Results. In this paper, we give tight bounds on the number of edges in maximal 2-planar
graphs, up to an additive constant.

I Theorem 1. Every maximal 2-planar graph on n ≥ 5 vertices has at least 2n edges.

I Theorem 2. There exists a constant c ∈ N such that for every n ∈ N there exists a
maximal 2-planar graph on n vertices with at most 2n + c edges.

2 Preliminaries

A drawing is simple if every pair of edges has at most one common point. A drawing is
k-plane, for k ∈ N, if every edge has at most k crossings. A graph is k-planar if it admits
a k-plane drawing. A graph is maximal k-planar if no edge can be added to it so that the
resulting graph is still k-planar.

To analyze a k-planar graph one often analyzes one of its k-plane drawings. It is, therefore,
useful to impose additional restrictions on this drawing if possible. One such restriction
is to consider a crossing-minimal k-plane drawing, that is, a drawing that minimizes the
total number of edge crossings among all k-plane drawings of the graph. For small k, such a
drawing is always simple; for k ≥ 4 this is not the case in general [12, Footnote 112].

I Lemma 3 (Pach, Radoičić, Tardos, and Tóth [10, Lemma 1.1]). For k ≤ 3, every crossing-
minimal k-plane drawing is simple.

In figures, we use the following convention to depict edges: Uncrossed edges are shown
green, singly crossed edges are shown purple, doubly crossed edges are shown blue, and edges
for which the number of crossings is undetermined are shown black.

3 The Lower Bound

In this section we briefly describe our lower bound on the edge density of maximal 2-planar
graphs by analyzing the distribution of vertex degrees. As we aim for a lower bound of 2n

edges, we want to show that the average vertex degree is at least four. Then, the density
bound follows by the handshaking lemma. However, maximal 2-planar graphs may contain
vertices of degree less than four. By the following property (whose proof is deferred to the
full version), we know that the degree of every vertex is at least two. But degree two vertices,
so-called hermits, may exist, as well as vertices of degree three.

I Lemma 4. For k ≤ 2, every maximal k-planar graph on n ≥ 3 vertices is 2-connected.

1 Maximality is proven via uniqueness of the 2-plane drawing of the graph. However, there is no explicit
proof of the uniqueness in this short abstract.

M. Hoffmann, M. M. Reddy 42:3

In order to lower bound the average degree by four, we employ a charging scheme where
we argue that every low-degree vertex, that is, every vertex of degree two and three claims
a certain number of halfedges at an adjacent high-degree vertex, that is, a vertex of degree
at least five. Claims are exclusive, that is, every halfedge at a high-degree vertex can be
claimed at most once. We use the term halfedge because the claim is not on the whole edge
but rather on its incidence to one of its high-degree endpoints. The incidence at the other
endpoint may or may not be claimed independently (by another vertex). For an edge uv we
denote by −⇀uv the corresponding halfedge at v and by −⇀vu the corresponding halfedge at u.
Vertices of degree four have a special role, as they are neither low– nor high-degree. However,
a vertex of degree four that is adjacent to a hermit is treated like a low-degree vertex. More
precisely, our charging scheme works as follows:

(C1) Every hermit claims two halfedges at each high-degree neighbor.
(C2) Every degree three vertex claims three halfedges at some high-degree neighbor.
(C3) Every degree four vertex that is adjacent to a hermit h claims two halfedges at some

neighbor v of degree ≥ 6. Further, the vertices h and v are adjacent, so h also claims
two halfedges at v by (C1). If deg(v) = 6, then v is adjacent to exactly one hermit.

(C4) At most one vertex claims (one or more) halfedges at a degree five vertex.

We state some useful properties of low-degree vertices. Then we present the proof of
Theorem 1 in Section 3.3. The validity of our charging scheme is deferred to the full version.

3.1 Hermits and degree four vertices
I Lemma 5. Let h be a hermit and let x, y be its neighbors in G. Then x and y are adjacent
in G and all three edges xy, hx, hy are uncrossed in D. Further, deg(x) ≥ 4 and deg(y) ≥ 4.

We refer to the edge xy as the base of the hermit h, which hosts h.

I Lemma 6. Let G be a maximal 2-planar graph on n ≥ 5 vertices. Every edge of G hosts
at most one hermit. Further, a vertex of degree i in G is adjacent to at most bi/3c hermits.

By Lemma 5, both neighbors of a hermit have degree at least four. A vertex is of type
T4-H if it has degree four and it is adjacent to a hermit. The following lemma characterizes
these vertices and ensures that every hermit has at least one high-degree neighbor.

I Lemma 7. Let u be a T4-H vertex with neighbors h, v, w, x in G such that h is a hermit
and v is the second neighbor of h. Then both uw and ux are doubly crossed in D, and the two
faces of D \ h incident to uv are triangles that are bounded by (parts of) edges incident to u

and doubly crossed edges incident to v. Furthermore, we have deg(v) ≥ 6, and if deg(v) = 6,
then h is the only hermit adjacent to v in G.

In our charging scheme, each hermit h claims two halfedges at each
high-degree neighbor v: the halfedge −⇀hv and the halfedge −⇀uv, where uv

denotes the edge that hosts h. Each T4-H vertex u claims the two doubly
crossed halfedges at v that bound the triangular faces incident to uv in D.

v

u
h

w x

3.2 Degree three vertices
We distinguish four different types of degree three vertices in G, depending on their neigh-
borhood and on the crossings on their incident edges in D. Consider a degree three vertex u

in G. Every vertex is incident to at least one uncrossed edge in D (the proof is deferred to
the full version).

EuroCG’23

42:4 The Number of Edges in Maximal 2-planar Graphs

T3-1: exactly one uncrossed edge. The two other edges incident to u are crossed.

I Lemma 8. Let u be a T3-1 vertex with neighbors v, w, x in G such that the edge uv is
uncrossed in D. Then the two faces of D incident to uv are triangles that are bounded
by (parts of) edges incident to u and doubly crossed edges incident to v. Furthermore, we
have deg(v) ≥ 5.

In our charging scheme, each T3-1 vertex u claims three halfedges at
its adjacent high-degree vertex v: the uncrossed halfedge −⇀uv along with the
two neighboring halfedges at v, which are doubly crossed by Lemma 8.

v

uw x

T3-2: exactly two uncrossed edges. The third edge incident to u is crossed.

I Lemma 9. Let u be a T3-2 vertex with neighbors v, w, x s.t. the edge uv is crossed. Then uv

is singly crossed by a doubly crossed edge wb in D, deg(w) ≥ 5 and min{deg(v), deg(x)} ≥ 4.

A halfedge −⇀wx is peripheral for a vertex u of G if (1) u is a common neighbor of w and x;
(2) deg(w) ≥ 5; and (3) deg(x) ≥ 4. In our charging scheme, every T3-2
vertex u claims three halfedges at the adjacent high-degree vertex w: the
halfedge −⇀uw, the doubly crossed halfedge −⇀bw, and one of the uncrossed
peripheral halfedges −⇀vw or −⇀xw. While the former two are closely tied to u,

u

v x

w

the situation is more complicated for the latter two halfedges. Eventually, we argue that u

can exclusively claim (at least) one of the two peripheral halfedges. But for the time being
we say that it assesses both of them and these edges are depicted in lightblue.

T3-3: all three incident edges uncrossed. We say that such a vertex is of type T3-3. As
an immediate consequence of Lemma ?? each T3-3 vertex u together with its neighbors N(u)
induces a plane K4 in D. We further distiguish two subtypes of T3-3 vertices.

The first subtype accounts for the fact that there may be two adjacent T3-3 vertices in D.
We refer to such a pair as an inefficient hermit and a T3-3 vertex that is part of an inefficient
hermit is called a T3-3 hermit. T3-3 hermits behave similar to hermits, we defer the details
of T3-3 hermits to the full version. The second subtype is formed by those T3-3 vertices
that are not T3-3 hermits; we call them T3-3 minglers. All neighbors of a T3-3 mingler have
degree at least four.

I Lemma 10. Let u be a T3-3 mingler in D, and let v, w, x be its neighbors. Then each
of v, w, x has degree at least four. Further, at least one vertex among v, w, x has degree at
least six, or at least two vertices among v, w, x have degree at least five.

Let Q denote the plane K4 induced by u, v, w, x in D. The T3-3 mingler u

claims the three halfedges of Q at one of its high-degree neighbors. That is,
the vertex u assesses all of its peripheral halfedges at high-degree neighbors.

u

v

? ?

3.3 Proof of Theorem 1
Let G be a maximal 2-planar graph on n ≥ 5 vertices, and let m denote the number of edges
in G. We denote by vi the number of vertices of degree i in G. By Lemma 4 we know that G

M. Hoffmann, M. M. Reddy 42:5

is 2-connected and, therefore, we have v0 = v1 = 0. Thus, we have

n =
n−1∑

i=2
vi and by the Handshaking Lemma 2m =

n−1∑

i=2
i · vi. (1)

Vertices of degree four or higher can be adjacent to hermits. Let vhj
i denote the number

of vertices of degree i incident to j hermits in G. By Lemma 6 we have

vi =
bi/3c∑

j=0
vhj

i for all i ≥ 3. (2)

By Lemma 5 both neighbors of a hermit have degree at least four. Thus, double counting
the edges between hermits and their neighbors we obtain

2v2 ≤ vh1
4 + vh1

5 + vh1
6 + 2vh2

6 + vh1
7 + 2vh2

7 + 2v8 + vh1
9 + 2vh2

9 + 3vh3
9 +

n−1∑

i=10
bi/3cvi. (3)

If a vertex u claims halfedges at a vertex v, we say that v serves u. According to (C2),
every vertex of degree three claims three halfedges at a high-degree neighbor. Every degree
four vertex that is adjacent to a hermit together with this hermit claims four halfedges at a
high-degree neighbor by (C3). We sum up the number of these claims and assess how many
of them can be served by the different types of high-degree vertices.

In general, a high-degree vertex of degree i ≥ 5 can serve at most bi/3c such claims.
For i ∈ {5, 6, 7, 9}, we make a more detailed analysis, taking into account the number of
adjacent hermits. Specifically, by (C3) and (C4) a degree five vertex serves at most one
low-degree vertex, which is either a hermit or a degree three vertex. A degree six vertex
can serve two degree three vertices but only if it is not adjacent to a hermit. If a degree six
vertex serves a degree four vertex, it is adjacent to exactly one hermit by (C3). In particular,
a degree six vertex that is adjacent to two hermits does not serve any degree three or degree
four vertex. Altogether we obtain the following inequality:

v3+vh1
4 ≤ vh0

5 +2vh0
6 +vh1

6 +2vh0
7 +2vh1

7 +vh2
7 +2v8+3vh0

9 +2vh1
9 +2vh2

9 +vh3
9 +

n−1∑

i=10
bi/3cvi. (4)

The combination ((3) + (4))/2 together with (2) yields

v2 + 1
2v3 ≤

1
2v5 + v6 + 3

2v7 + 2v8 + 2v9 +
n−1∑

i=10
bi/3cvi. (5)

Now, using these equations and inequalities, we can prove that m− 2n ≥ 0, to complete the
proof of Theorem 1. Let us start from the left hand side, using (1).

m− 2n = 1
2

n−1∑

i=2
ivi − 2

n−1∑

i=2
vi =

n−1∑

i=2

i− 4
2 vi

= −v2 −
1
2v3 + 1

2v5 + v6 + 3
2v7 + 2v8 + 5

2v9 +
n−1∑

i=10

i− 4
2 vi

By (5) the right hand side is nonnegative, quod erat demonstrandum.

EuroCG’23

42:6 The Number of Edges in Maximal 2-planar Graphs

4 The Upper Bound: Proof outline of Theorem 2

We illustrate a family of maximal 2-planar graphs with 2n + c edges in Figure 1. The graphs
can roughly be described as braided cylindrical grids where each layer consists of a cycle on
ten vertices and every pair of consecutive layers have edges between them. The number of
layers in the graph can be increased arbitrarily, and the gadget graph is attached to each of
the green edges of the innermost and the outermost cycles. The graph is maximal 2-planar
and has 2n + c edges, where c = 350. The details are deferred to the full version.

vi+1
9

vi+1
5

x6 x7

x3 x5

x1

x4 x2

x8

x0

Figure 1 The layered graph (left); the gadget that we attach to the extreme green edges (right).

5 Conclusions

We have obtained tight bounds on the number of edges in maximal 2-planar graphs, up to an
additive constant. Naturally, one would expect that our approach can also be applied to other
families of near-planar graphs, specifically, to maximal 1- and 3-planar graphs. Intuitively,
for k-planar graphs the challenge with increasing k is that the structure of the drawings gets
more involved, whereas with decreasing k we aim for a higher bound.

References
1 Eyal Ackerman. On topological graphs with at most four crossings per edge. Computational

Geometry, 85:101574, 2019. doi:10.1016/j.comgeo.2019.101574.
2 Christopher Auer, Franz-Josef Brandenburg, Andreas Gleißner, and Kathrin Hanauer. On

sparse maximal 2-planar graphs. In Proc. 20th Int. Sympos. Graph Drawing (GD 2012),
volume 7704 of Lecture Notes Comput. Sci., pages 555–556. Springer, 2012. URL: https:
//doi.org/10.1007/978-3-642-36763-2_50, doi:10.1007/978-3-642-36763-2_50.

3 János Barát and Géza Tóth. Improvements on the density of maximal 1-planar graphs. J.
Graph Theory, 88(1):101–109, 2018. doi:10.1002/jgt.22187.

4 Michael A. Bekos, Michael Kaufmann, and Chrysanthi N. Raftopoulou. On optimal 2-
and 3-planar graphs. In Proc. 33rd Internat. Sympos. Comput. Geom. (SoCG 2017), vol-
ume 77 of LIPIcs, pages 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. URL: https://doi.org/10.4230/LIPIcs.SoCG.2017.16, doi:10.4230/LIPIcs.
SoCG.2017.16.

http://dx.doi.org/10.1016/j.comgeo.2019.101574
https://doi.org/10.1007/978-3-642-36763-2_50
https://doi.org/10.1007/978-3-642-36763-2_50
http://dx.doi.org/10.1007/978-3-642-36763-2_50
http://dx.doi.org/10.1002/jgt.22187
https://doi.org/10.4230/LIPIcs.SoCG.2017.16
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.16
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.16

M. Hoffmann, M. M. Reddy 42:7

5 Rainer Bodendiek, Heinz Schumacher, and Klaus Wagner. Bemerkungen zu einem Sechs-
farbenproblem von G. Ringel. Abhandlungen aus dem Mathematischen Seminar der Uni-
versität Hamburg, 53:41–52, 1983. doi:10.1007/BF02941309.

6 Franz-Josef Brandenburg, David Eppstein, Andreas Gleißner, Michael T. Goodrich,
Kathrin Hanauer, and Josef Reislhuber. On the density of maximal 1-planar graphs. In Proc.
20th Int. Sympos. Graph Drawing (GD 2012), volume 7704 of Lecture Notes Comput. Sci.,
pages 327–338. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-36763-2_
29, doi:10.1007/978-3-642-36763-2_29.

7 Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing
beyond planarity. ACM Comput. Surv., 52(1):1–37, 2020. doi:10.1145/3301281.

8 Seok-Hee Hong and Takeshi Tokuyama, editors. Beyond Planar Graphs. Springer, Singa-
pore, 2020. doi:10.1007/978-981-15-6533-5.

9 Dávid Hudák, Tomaš Madaras, and Yusuke Suzuki. On properties of maximal 1-planar
graphs. Discussiones Mathematicae, 32:737–747, 2012. doi:10.7151/dmgt.1639.

10 János Pach, Radoš Radoičić, Gábor Tardos, and Géza Tóth. Improving the crossing lemma
by finding more crossings in sparse graphs. Discrete Comput. Geom., 36(4):527–552, 2006.
doi:10.1007/s00454-006-1264-9.

11 János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Combinator-
ica, 17(3):427–439, 1997. URL: https://doi.org/10.1007/BF01215922, doi:10.1007/
BF01215922.

12 Marcus Schaefer. The graph crossing number and its variants: A survey. The Electronic
Journal of Combinatorics, 20, 2013. Version 7 (April 8, 2022). doi:10.37236/2713.

13 Yusuke Suzuki. Optimal 1-planar graphs which triangulate other surfaces. Discr. Math.,
310(1):6–11, 2010. doi:10.1016/j.disc.2009.07.016.

EuroCG’23

http://dx.doi.org/10.1007/BF02941309
https://doi.org/10.1007/978-3-642-36763-2_29
https://doi.org/10.1007/978-3-642-36763-2_29
http://dx.doi.org/10.1007/978-3-642-36763-2_29
http://dx.doi.org/10.1145/3301281
http://dx.doi.org/10.1007/978-981-15-6533-5
http://dx.doi.org/10.7151/dmgt.1639
http://dx.doi.org/10.1007/s00454-006-1264-9
https://doi.org/10.1007/BF01215922
http://dx.doi.org/10.1007/BF01215922
http://dx.doi.org/10.1007/BF01215922
http://dx.doi.org/10.37236/2713
http://dx.doi.org/10.1016/j.disc.2009.07.016

Parameterized Complexity of Vertex Splitting to
Pathwidth at most 1
Jakob Baumann1, Matthias Pfretzschner1, and Ignaz Rutter1

1 University of Passau
{baumannjak,pfretzschner,rutter}@fim.uni-passau.de

Abstract
Motivated by the planarization of 2-layered straight-line drawings, we consider the problem of
modifying a graph such that the resulting graph has pathwidth at most 1. The problem Pathwidth-
One Vertex Explosion (POVE) asks whether such a graph can be obtained using at most k

vertex explosions, where a vertex explosion replaces a vertex v by deg(v) degree-1 vertices, each
incident to exactly one edge that was originally incident to v. For POVE, we give an FPT algorithm
with running time O(4k ·m) and a quadratic kernel. Similarly, a vertex split replaces a vertex v by
two distinct vertices v1 and v2 and distributes the edges originally incident to v arbitrarily to v1

and v2. Analogously to POVE, we define the problem variant Pathwidth-One Vertex Splitting
(POVS) that uses the split operation instead of vertex explosions. Here we obtain a linear kernel
and a branching algorithm with running time O((6k + 12)k ·m).

Related Version arXiv:2302.14725

1 Introduction

Crossings are one of the main aspects that negatively affect the readability of drawings [14].
It is therefore natural to try and modify a given graph in such a way that it can be drawn
without crossings while preserving as much of the information as possible. We consider three
different operations.

A deletion operation simply removes a vertex from the graph. A vertex explosion replaces
a vertex v by deg(v) degree-1 vertices, each incident to exactly one edge that was originally
incident to v. Finally, a vertex split replaces a vertex v by two distinct vertices v1 and v2
and distributes the edges originally incident to v arbitrarily to v1 and v2.

Nöllenburg et al. [12] have recently studied the vertex splitting problem, which is known
to be NP-complete [7]. In particular, they gave a non-uniform FPT-algorithm for deciding
whether a given graph can be planarized with at most k splits. We observe that, since
degree-1 vertices can always be inserted into a planar drawing, the vertex explosion model and
the vertex deletion model are equivalent for planar graphs. The latter problem, also known
as Vertex Planarization, has been studied extensively in the literature [8, 9, 10, 11, 15].
In particular, Jansen et al. [8] gave an FPT-algorithm with running time O(2O(k log k) · n).

Ahmed et al. [2] investigated the problem of splitting the vertices of a bipartite graph so
that it admits a 2-layered drawing without crossings. They assume that the input graph is
bipartite and only the vertices of one of the two sets in the bipartition may be split. Under
this condition, they give an O(k6)-kernel for the vertex explosion model, which results in an
O(2O(k6)m)-time algorithm. They ask whether similar results can be obtained in the vertex
splitting model. Figure 1 illustrates the three operations in the context of 2-layered drawings.

We note that a graph admits a 2-layer drawing without crossings if and only if it has
pathwidth at most 1, i.e., it is a disjoint union of caterpillars [3, 6], where a caterpillar consists
of an induced path with an arbitrary number of adjacent degree-1 vertices. Motivated by
this, we more generally consider the problem of turning a graph G = (V,E) into a graph of
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

43:2 Parameterized Complexity of Vertex Splitting to Pathwidth at most 1

(a) (b) (c)

Figure 1 Given the shown bipartite graph, a crossing-free 2-layered drawing can be obtained
using one vertex deletion (a), two vertex explosions (b), or three vertex splits (c).

pathwidth at most 1 by the above operations. In order to model the restriction of Ahmed et
al. [2] that only one side of their bipartite input graph may be split, we further assume that
we are given a subset S ⊆ V , to which we may apply modification operations as part of the
input.

More formally, we consider the following two problems, both of which have been shown to
be NP-hard [1]. Given as input an undirected graph G = (V,E), a set S ⊆ V , and a positive
integer k, the problem Pathwidth-One Vertex Explosion (POVE) asks whether there
is a set W ⊆ S with |W | ≤ k such that the graph resulting from exploding all vertices in W
has pathwidth at most 1. Analogously, we define the problem Pathwidth-One Vertex
Splitting (POVS), which asks for a sequence of at most k vertex splits. For both problems,
the new vertices resulting from the respective operation are also included in S.

We note that the analogous problem with the deletion operation has been studied
extensively [5, 13, 16]. Here, an FPT algorithm with running time O(3.888k · nO(1)) [16] and
a quadratic kernel [5] are known. In this work, we show the following results.

For POVE, we develop a quadratic kernel and an algorithm with running time O(4k ·m),
thereby improving over the results of Ahmed et al. [2] in a more general setting. For POVS,
we give a linear kernel and an algorithm with running time O((6k + 12)k ·m). This answers
the open question of Ahmed et al. [2]. For detailed proofs, we refer to the full version of the
paper [4].

2 Preliminaries

Given a graph G, we let n and m denote the number of vertices and edges of G, respectively.
A path decomposition of a graph G = (V,E) is a sequence P = X1, . . . , Xl of subsets of V ,
called bags, such that

1.
⋃

1≤i≤l

Xi = V ,

2. for every edge {u, v} ∈ E, there exists an i ∈ {1, . . . , l} such that u, v ∈ Xi, and
3. for every vertex v ∈ V , the bags containing v are a contiguous subsequence of P .

The width of a path decomposition is one less than the size of its largest bag. The pathwidth
of G is the minimum width of a path decomposition of G.

We refer to vertices of degree 1 as pendant vertices. A graph is a caterpillar (respectively
a pseudo-caterpillar), if it consists of a path (a simple cycle) with an arbitrary number of
adjacent pendant vertices. The path (the cycle) is called the spine of the (pseudo-)caterpillar.

J. Baumann, M. Pfretzschner, and I. Rutter 43:3

(a) (b)

Figure 2 (a) The graph T2. (b) Two graphs that do not contain T2 as a subgraph, but both
contain N2 (marked in orange; the root is additionally highlighted in blue) as a substructure.

Philip et al. [13] mainly characterized the graphs of pathwidth at most 1 as the graphs
containing no cycles and no T2 (see Figure 2a) as a subgraph. We additionally use slightly
different sets of forbidden substructures. An N2 substructure consists of a root vertex r
adjacent to three distinct vertices of degree at least 2. Note that every T2 contains an N2
substructure, however, the existence of an N2 substructure does not generally imply the
existence of a T2 subgraph; see Figure 2b. In the following proposition, we state the different
characterizations for graphs of pathwidth at most 1 that we use.

I Proposition 2.1. For a graph G, the following statements are equivalent.
1. G has pathwidth at most 1
2. every connected component of G is a caterpillar
3. G is acyclic and contains no N2 substructure
4. G contains no N2 substructure and no connected component that is a pseudo-caterpillar.

For a vertex v ∈ V (G), we define deg∗(v) as the number of non-pendant neighbors of v.
If deg∗(v) = d, we say that v has degree* d. Additionally, we let µ(v) := max(deg∗(v)− 2, 0)
denote the potential of v. The global potential µ(G) :=

∑
v∈V (G) µ(v) is defined as the sum

of the potentials of all nodes in G.

3 FPT Algorithms for Pathwidth-One Vertex Explosion

We start by sketching a simple branching algorithm for POVE, similar to the algorithm by
Philip et al. [13] for the deletion variant of the problem.

I Theorem 3.1. The problem POVE can be solved in time O(4k ·m).

Proof. For an N2 substructure X, observe that exploding vertices not contained in X cannot
eliminate X, because the degrees of the vertices in X remain the same due to the new
degree-1 vertices resulting from the explosion. To obtain a graph of pathwidth at most 1, it
is therefore always necessary to explode one of the four vertices of every N2 substructure
by Proposition 2.1. We can thus define a branching rule that first picks an arbitrary N2
substructure X from the instance and then branches on which of the four vertices of X
should be exploded. Note that we only branch for vertices of X that are also contained in S,
i.e., vertices that are allowed to be exploded. Each branch reduces the parameter by 1, the
corresponding search tree thus consists of O(4k) nodes and spends O(m) time at each node
to identify the next N2 substructure and to explode the chosen vertex. We remark that
exploding a degree-1 vertex has no effect, it is therefore not necessary to include the new
vertices resulting from a vertex explosion in the set S.

EuroCG’23

43:4 Parameterized Complexity of Vertex Splitting to Pathwidth at most 1

v v

(a)

G−X

G−X

X

(b)

Figure 3 Reductions removing most pendant neighbors (a) and all caterpillars (b).

After exhaustively applying this branching rule, the resulting instance contains no N2
substructures. By Proposition 2.1, it thus only remains to eliminate connected components
that are a pseudo-caterpillar. Since a pseudo-caterpillar can (only) be turned into a caterpillar
by exploding a vertex of its spine, the remaining instance (in each leaf of the search tree)
can be solved in O(m) time. J

We now turn to our kernelization algorithm for POVE. To obtain a quadratic kernel, we
first show with the following lemma that we can use reduction rules to obtain an equivalent
graph G whose size is bounded linearly in the global potential µ(G). Subsequently, our goal
is to develop an upper bound for µ(G).

I Lemma 3.2. Given an instance of POVE, an equivalent instance with |V (G)| ≤ 8 · µ(G)
can be computed in O(m) time.

Sketch of Proof. We sketch how an equivalent instance of size |V (G)| ∈ O(µ(G)) can be
obtained using reduction rules. To obtain the bound |V (G)| ≤ 8 · µ(G), additional reduction
rules and a more refined analysis are necessary, for which we refer to the full version [4].

Our first reduction rule removes all but one pendant neighbors of a vertex v; see Figure 3a.
Roughly speaking, the correctness of this reduction follows from the observation that all N2
substructures and cycles of the instance are preserved. Note that we cannot remove the last
pendant neighbor of v, since this could unintentionally remove N2 substructures from the
graph.

The next two reduction rules eliminate all connected components that form a (pseudo-)
caterpillar from the instance. Since a caterpillar has pathwidth at most 1, we can safely
remove the corresponding component; see Figure 3b. Given a pseudo-caterpillar X, we need
to explode one arbitrary vertex of its spine to obtain a caterpillar. If the spine of X contains
a vertex of S, we can thus remove X from the instance and decrease the parameter by 1.
Otherwise, we reduce to a trivial no-instance; see Figure 4.

Our next reduction rule shortens paths of degree*-2 vertices to constant size. Given such
a path of length at least 3, observe that only the first and the last vertex of the path can be
contained in an N2 substructure, because the inner vertices have less than three neighbors
of degree at least 2. These inner vertices are thus only contained in a minimum solution if
exploding them breaks a cycle. Note that, in this case, exploding any vertex of the path is
sufficient to break all cycles the path is contained in. We can thus safely shorten such a path
to length 3 by ensuring that the inner vertex of the new path is contained in S if and only if
the old path has an inner vertex contained in S; see Figure 5.

After exhaustively applying the reduction rules described above, we can show that
|V (G)| ∈ O(µ(G)). Let V3 denote the vertices of G of degree* at least 3. Since all vertices of

J. Baumann, M. Pfretzschner, and I. Rutter 43:5

G−X

X

G−X

X

G−X

no-instance

Figure 4 The reduction eliminating pseudo-caterpillars. The vertices of S are marked in green.

u v w x

u v w x

u v w x

u v w x

Figure 5 The reduction shortening degree*-2 paths. The inner vertices are highlighted in orange.

degree* at most 2 have potential 0, we can rewrite µ(G) as

µ(G) =
∑

v∈V3

(deg∗(v)− 2) =
∑

v∈V3

deg∗(v)− 2 · |V3|.

Note that every vertex in V3 contributes at least 1 to the global potential, thus |V3| ≤ µ(G).
Using this bound in the equation above, we get

∑
v∈V3

deg∗(v) ≤ 3 · µ(G). Note that this
bounds exactly the number of non-pendant neighbors of the vertices in V3. Since we have
reduction rules removing all components that form a (pseudo-)caterpillar, every component
must contain a vertex of V3. Because we additionally used a reduction rule to shorten paths
of degree*-2 vertices, it is possible to use a handshaking-argument to bound the number of
all non-pendant vertices in G in O(µ(G)). Since our first reduction rule ensures that each
vertex has at most one pendant neighbor, we consequently have |V (G)| ∈ O(µ(G)). J

To obtain a kernel for POVE, it thus suffices to reduce to an instance with bounded µ(G).
Consider a vertex v of G with µ(v) > k. Since exploding a vertex of V (G) \ {v} decreases
µ(v) by at most 1, after exploding at most k vertices in V (G) \ {v} we still have µ(v) > 0.
Because µ(v) > 0 implies that G contains an N2 substructure, it is therefore always necessary

EuroCG’23

43:6 Parameterized Complexity of Vertex Splitting to Pathwidth at most 1

to explode vertex v. If v ∈ S, we thus explode v, and we reduce to a trivial no-instance
otherwise. Subsequently, every vertex v has µ(v) ≤ k, hence exploding v decreases its own
potential by at most k, and the potential of each of its at most k + 2 non-pendant neighbors
by at most 1. A sequence of k explosions can thus decrease the global potential by at
most 2k2 + 2k. If µ(G) > 2k2 + 2k, our final reduction rule therefore reduces to a trivial
no-instance. Using Lemma 3.2 with µ(G) ≤ 2k2 + 2k, we finally obtain the following result.

I Theorem 3.3. POVE admits a kernel of size 16(k2 +k). It can be computed in time O(m).

4 FPT Algorithms for Pathwidth-One Vertex Splitting

Linear Kernel. One can prove that the reduction rules for reducing pendant vertices,
removing (pseudo-)caterpillars, and shortening degree*-2 paths we used for POVE are also
safe for the problem POVS. Since only these are needed to establish the upper bound of
|V (G)| ≤ 8 · µ(G) in Lemma 3.2, the lemma also applies for POVS.

The main difference to the kernelization of POVE lies in the way the global potential
changes due to splits. While a vertex explosion can decrease the global potential linearly
in k, we can show that a single vertex split decreases µ(G) by at most 2. If µ(G) > 2k, we
can thus again reduce to a trivial no-instance. Using Lemma 3.2 with µ(G) ≤ 2k, we obtain
the following result.

I Theorem 4.1. POVS admits a kernel of size 16k. It can be computed in time O(m).

Branching Algorithm. As in Section 3, our branching algorithm for POVS eliminates every
N2 substructure of G by branching on which of its four vertices should be split. In this case,
however, we need to additionally consider the possible ways to split a single vertex. The
following lemma helps us limit the number of suitable splits.

I Lemma 4.2. For every instance of POVS, there exists a minimum sequence of splits such
that every split operation splits off at most two edges.

I Theorem 4.3. The problem POVS can be solved in time O((6k + 12)k ·m).

Sketch of Proof. From the kernelization, we use the reduction rule that reduces pendant
vertices, and the rule that yields the upper bound µ(G) ≤ 2k. Together, these two rules
ensure that each vertex has degree at most 2k + 3. We now branch on the way of splitting
an N2 substructure with root r and neighbors {x, y, z} as above (see Figure 6). If we split r,
then, by Lemma 4.2, we may assume that we split off one of the neighbors {x, y, z}, together
with at most one other neighbor of r; these are 3 · (2k + 3) = 6k + 9 choices. If we split a
vertex v ∈ {x, y, z}, then it is necessary that we only split off the edge rv at v to eliminate the
N2 substructure, thus there is only one possibility for each of them, totaling three additional
possible choices. Overall, we thus find a branching vector of size 6k + 12. Recall that,
by definition, the new vertices resulting from a split operation are included in the set S
of splittable vertices. This is important, since it may be necessary to split these vertices
again. J

References
1 Reyan Ahmed, Patrizio Angelini, Michael A. Bekos, Giuseppe Di Battista, Michael Kauf-

mann, Philipp Kindermann, Stephen G. Kobourov, Martin Nöllenburg, Antonios Symvonis,
Anaïs Villedieu, and Markus Wallinger. Splitting vertices in 2-layer graph drawings. CoRR,
abs/2301.10872, 2023. arXiv:2301.10872, doi:10.48550/arXiv.2301.10872.

http://arxiv.org/abs/2301.10872
https://doi.org/10.48550/arXiv.2301.10872

J. Baumann, M. Pfretzschner, and I. Rutter 43:7

r

x

y z

a

N2

(a)

r

x1

y z

x2

a

(b)

r1

x

y z

r2

a

(c)

Figure 6 (a) An N2 substructure {r, x, y, z}. (b)-(c) Two possible branches eliminating the N2
substructure. The former splits off edge rx at x, the latter splits off the edges rz and ra at r.

2 Reyan Ahmed, Stephen G. Kobourov, and Myroslav Kryven. An FPT algorithm for
bipartite vertex splitting. In Patrizio Angelini and Reinhard von Hanxleden, editors,
Graph Drawing and Network Visualization - 30th International Symposium, GD 2022,
volume 13764 of Lecture Notes in Computer Science, pages 261–268. Springer, 2022. doi:
10.1007/978-3-031-22203-0_19.

3 Stefan Arnborg, Andrzej Proskurowski, and Detlef Seese. Monadic second order logic, tree
automata and forbidden minors. In Egon Börger, Hans Kleine Büning, Michael M. Richter,
and Wolfgang Schönfeld, editors, Computer Science Logic, CSL ’90, volume 533 of Lecture
Notes in Computer Science, pages 1–16. Springer, 1990. doi:10.1007/3-540-54487-9_49.

4 Jakob Baumann, Matthias Pfretzschner, and Ignaz Rutter. Parameterized complexity of
vertex splitting to pathwidth at most 1. CoRR, abs/2302.14725, 2023. arXiv:2302.14725,
doi:10.48550/ARXIV.2302.14725.

5 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. An
improved FPT algorithm and a quadratic kernel for pathwidth one vertex deletion. Algo-
rithmica, 64(1):170–188, 2012. doi:10.1007/s00453-011-9578-2.

6 Peter Eades, Brendan D McKay, and Nicholas C Wormald. On an edge crossing problem.
In Proc. 9th Australian Computer Science Conference, volume 327, page 334, 1986.

7 Luérbio Faria, Celina M. H. de Figueiredo, and Candido Ferreira Xavier de Mendonça Neto.
Splitting Number is NP-complete. In Juraj Hromkovic and Ondrej Sýkora, editors, Graph-
Theoretic Concepts in Computer Science, WG ’98, volume 1517 of Lecture Notes in Computer
Science, pages 285–297. Springer, 1998. doi:10.1007/10692760_23.

8 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1802–1811. SIAM, 2014. doi:
10.1137/1.9781611973402.130.

9 Ken-ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In 50th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2009, pages 639–648. IEEE
Computer Society, 2009. doi:10.1109/FOCS.2009.45.

10 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

11 Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. In
Andreas Brandstädt, Dieter Kratsch, and Haiko Müller, editors, Graph-Theoretic Concepts
in Computer Science, WG 2007, volume 4769 of Lecture Notes in Computer Science, pages
292–303. Springer, 2007. doi:10.1007/978-3-540-74839-7_28.

12 Martin Nöllenburg, Manuel Sorge, Soeren Terziadis, Anaïs Villedieu, Hsiang-Yun Wu, and
Jules Wulms. Planarizing graphs and their drawings by vertex splitting. In Patrizio Angelini
and Reinhard von Hanxleden, editors, Graph Drawing and Network Visualization - 30th

EuroCG’23

https://doi.org/10.1007/978-3-031-22203-0_19
https://doi.org/10.1007/978-3-031-22203-0_19
https://doi.org/10.1007/3-540-54487-9_49
http://arxiv.org/abs/2302.14725
https://doi.org/10.48550/ARXIV.2302.14725
https://doi.org/10.1007/s00453-011-9578-2
https://doi.org/10.1007/10692760_23
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1007/978-3-540-74839-7_28

43:8 Parameterized Complexity of Vertex Splitting to Pathwidth at most 1

International Symposium, GD 2022, volume 13764 of Lecture Notes in Computer Science,
pages 232–246. Springer, 2022. doi:10.1007/978-3-031-22203-0_17.

13 Geevarghese Philip, Venkatesh Raman, and Yngve Villanger. A quartic kernel for pathwidth-
one vertex deletion. In Dimitrios M. Thilikos, editor, Graph Theoretic Concepts in Computer
Science, WG 2010, volume 6410 of Lecture Notes in Computer Science, pages 196–207, 2010.
doi:10.1007/978-3-642-16926-7_19.

14 Helen C. Purchase, Robert F. Cohen, and Murray I. James. Validating graph drawing
aesthetics. In Franz-Josef Brandenburg, editor, Symposium on Graph Drawing, GD ’95,
volume 1027 of Lecture Notes in Computer Science, pages 435–446. Springer, 1995. doi:
10.1007/BFb0021827.

15 Neil Robertson and Paul D. Seymour. Graph minors .xiii. the disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

16 Dekel Tsur. Faster algorithm for pathwidth one vertex deletion. Theor. Comput. Sci.,
921:63–74, 2022. doi:10.1016/j.tcs.2022.04.001.

https://doi.org/10.1007/978-3-031-22203-0_17
https://doi.org/10.1007/978-3-642-16926-7_19
https://doi.org/10.1007/BFb0021827
https://doi.org/10.1007/BFb0021827
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1016/j.tcs.2022.04.001

Circling a Square: The Lawn Mowing Problem
Is Algebraically Hard
Sándor P. Fekete1, Dominik Krupke1, Michael Perk1, Christian
Rieck1, and Christian Scheffer2

1 Department of Computer Science, TU Braunschweig
s.fekete@tu-bs.de, d.krupke@tu-bs.de, perk@ibr.cs.tu-bs.de,
rieck@ibr.cs.tu-bs.de

2 Faculty of Electrical Engineering and Computer Science, Bochum University of
Applied Sciences, Bochum, Germany
christian.scheffer@hs-bochum.de

Abstract
For a given polygonal region P , the Lawn Mowing Problem (LMP) asks for a shortest tour T that
gets within Euclidean distance 1 of every point in P ; this is equivalent to computing a shortest tour
for a unit-disk cutter D that covers all of P . We show that the LMP is algebraically hard: it is not
solvable by radicals over the field of rationals, even for a simple case in which P is a 4 × 4 square.
This implies that it is impossible to compute exact optimal solutions under models of computation
that rely on elementary arithmetic operations and the extraction of kth roots.

1 Introduction

Long before the invention of computers, geometry already faced unsolvable algorithmic
problems. This hardness was not rooted in the asymptotic complexity of finding the best of
a finite number of candidates, but in the impossibility of obtaining solutions with a given set
of construction tools: Computing the length of the diagonal of a square is not possible with
only rational numbers; trisecting any given angle cannot be done with ruler and compass,
nor can a square be computed whose area is equal to that of a given circle.

In the following, we consider the Lawn Mowing Problem (LMP), in which we are given a
(not necessarily simple or even connected) polygonal region P and a disk cutter D of radius 1;
the task is to find a closed roundtrip (a tour) of minimum Euclidean length, such that the
cutter “mows” all of P , i.e., a shortest tour that moves the center of D within distance 1 from
every point in P . The LMP naturally occurs in a wide spectrum of practical applications,
such as robotics, manufacturing, farming, quality control, and image processing, so it is
of both theoretical and practical importance. As a generalization of the classic Traveling
Salesman Problem (TSP), the LMP is also NP-hard; however, while the TSP has shown
to be amenable to exact methods for computing provably optimal solutions even for large
instances, the LMP has defied such attempts, with only some moderate recent progress [20].

The main result of this paper is to establish a fundamental reason for this perceived
difficulty: Computing an optimal lawn mowing tour is not only NP-hard, but also algebraically
hard, even for the seemingly harmless case of mowing a 4× 4 square by a unit-radius disk,
as it requires computing zeroes of high-order irreducible polynomials. As a consequence,
computing even near-optimal solutions for the LMP requires dealing with algebraic issues of
numerical approximation and accuracy, making the LMP fundamentally more challenging
than its special case, the discrete (Euclidean) TSP.
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

44:2 Circling a Square: The Lawn Mowing Problem Is Algebraically Hard

Related Work There is a wide range of practical applications for the LMP, including
manufacturing [3, 23, 24], cleaning [9], robotic coverage [10, 11, 22, 27], inspection [15],
CAD [14], farming [4, 12, 30] and pest control [6]. In Computational Geometry, the Lawn
Mowing Problem was first introduced by Arkin et al. [1], who later gave the currently best
approximation algorithm with a performance guarantee of 2

√
3αTSP ≈ 3.46αTSP [2], where

αTSP is the performance guarantee for an approximation algorithm for the TSP.
Optimally covering even relatively simple regions by a set of n unit disks has received

considerable attention, but is excruciatingly difficult; see [7, 8, 21, 25, 28, 29]. As recently
as 2005, Fejes Tóth [16] established optimal values for n = 8, 9, 10. Progress on covering by
(not necessarily equal) disks has been achieved by Fekete et al. [17, 18].

A seminal result for understanding algebraic aspects of geometric optimization problems
was achieved by Bajaj [5], who established algebraic hardness for the Fermat-Weber problem
of finding a point in R2 that minimizes the sum of Euclidean distances to all points in a
given set. Note, however, that the Fermat-Weber problem is relatively benign in practical
difficulty, as it amounts to minimizing a smooth, convex function over a compact set, which
can be achieved with high accuracy by using a numerical approach such as Newton’s method.
This was exploited for algorithmic purposes by Fekete et al. [19].

The use of straight-edge and compass is known to be equivalent to the use of (+,−, ∗, /,√)
over Q [13]. Our main result implies that the Lawn Mowing Problem is not solvable by
radicals over Q, i.e., a solution is not expressible in terms of (+,−, ∗, /, k

√) over Q.

2 Optimal Tours in Rectangles

Recent work by Fekete et al. [20] shows that when mowing a triangle, optimal tours may
need to contain vertices with irrational coordinates. In the following we show even if P is a
4× 4 square, an optimal tour may involve coordinates that cannot be described with radicals.

I Theorem 2.1. For any rational height h ≥ 4, there are rectangles P with height h and
rational vertex coordinates for which the Lawn Mowing Problem is not solvable by radicals.

See Figure 3 for the structure of optimal trajectories. A key observation is that covering
each of the four corners (0,−2), (4,−2), (4, 2), (0, 2) of a 4×4 square S requires the disk center
to leave the subsquare λ with vertices λ0 = (1,−1), λ1 = (3,−1), λ2 = (3, 1), λ3 = (1, 1),
obtained by offsetting the boundary of P by the unit radius of D, which is the locus of all
disk centers for which λ stays inside P . However, covering the area close to the center of P
also requires keeping the center of D within λ; as we argue in the following, this results in a
trajectory as shown in Figure 3a, with a “long” portion (shown vertically in the figure) for
which the disk covers the center of P and the boundary of D traces the boundary of P , and
a “short” portion for which D only dips into λ without tracing the boundary of P .

We start our proof by considering an optimal lawn mowing tour for a rectangle and then
argue why no solution can be obtained in terms of (+,−, ∗, /, k

√) over Q.

2.1 Properties of Optimal Tours
For the 4 × 4 square S, consider the upper left 2 × 2 subsquare S0 with corners (0, 0),
(0, 2), (2, 2), (0, 2), further subdivided into four 1× 1 quadrants S0,0, . . . , S0,3, as shown in
Figure 1a, and an optimal path ω that enters S0 at the bottom and leaves it to the right.
Let ps = (pxs , 0), pt = (2, pyt) be the points where ω enters and leaves S0, respectively. For
the following lemmas, we assume that a covering path exists that obeys the above conditions.
We will later determine that path and show that it covers S0.

S. Fekete, D. Krupke, M. Perk, C. Rieck, C. Scheffer 44:3

S0,2S0,3

S0,0 S0,1

ps

pt

ωlower

ωupper

s2s3

s0 s1

(a) The upper left 2 × 2 subsquare S0 of S.

s′1

ps

pδ

pt

s0 s1

S0,3

s′0

(b) Visualization of Lemma 2.3.

Figure 1 Computing an optimal path ω through the square S0.

I Lemma 2.2. pxs ≤ 1 and pyt ≥ 1 and either pxs = 1 or pyt = 1.

Proof. To cover s1, ω must intersect a unit circle centered in s1. Any path with ps right of
(1, 0) or pt below (2, 1) can be made shorter by shifting the point ps to (1, 0) or pt to (2, 1).
Any path with ps left of (1, 0) and pt above (2, 1) must enter S0,1, resulting in a detour. J

Without loss of generality, we assume that pxs = 1. The next step is to find the optimal
position of pt. As an optimal path ω must enter the quadrant S0,3 once, we can subdivide
the path into two parts. We denote the part from ps to S0,3 as the lower portion and from
S0,3 to pt as the upper portion of ω. For some δ > 0, let pyt = 1 + δ and pδ = (1, δ).

I Lemma 2.3. For any δ > 0, ω has a subpath pspδ.

Proof. Let s′
1 = (2, δ) and ε = s1s

′
1. Segment ε must be covered by ω. We distinguish two

cases; (i) ε is covered by the lower portion of ω or (ii) ε is covered by the upper portion of ω.
For case (i), let us assume that ε is covered by the lower portion of ω. When ω would enter
S0,1 it would also have to enter S0,0 to cover the left side of S0,0. It is clear that traversing
the segment pspδ of length δ is the best way to cover the lower portion of S0,0, S0,1, as any
other path would need additional segments in x-direction, see Figure 1b. Any path that obeys
case (ii) is suboptimal, as it has to cover ε from within S0,2, for a detour of at least 2δ. J

We can now define the optimal path ω, which has four vertices. The exact coordinates
are defined in the proof of Lemma 2.4.

I Lemma 2.4. The unique optimal lawn mowing path between two adjacent sides of S0 is
ω = (ps, pδ, q, pt) and has length LS0 ≈ 2.618.

Proof. We now identify a shortest path for visiting one point q in the unit circle C centered in
s3 dependent on δ, which is a necessary condition for a feasible path. Let c = d(pδ, q)+d(q, pt)
be the distance from both points to C. Consider an ellipse E with foci pδ, pt which touches C
in a single point, see Figure 2a. By the definition of an ellipse, the intersection point q
minimizes the distance c. For any δ ∈ [0, 1] we want to find a minimum distance c that allows
E to have a single intersection point with C. Let pc = (pxc , pyc) be the center point of E and
dE be the distance from the center point of E and a, b the major/minor axis.

pxc = 3
2 pyc = 1

2 + δ dE = d(pδ, pc) = 1√
2

a = 1
2dE b =

√
a2 − d2

E (1)

EuroCG’23

44:4 Circling a Square: The Lawn Mowing Problem Is Algebraically Hard

q

E

s3

pt

pδ

ps

(a) Any 0 ≤ δ ≤ 1 defines pδ, pt, q and ellipse E.

pt
q

pδ

ps

(b) The optimal path ω through S0.

Figure 2 Visualizations for Lemma 2.4.

The ellipse can now be defined with its center point pc, the major/minor axis a, b and the
angle θ, which is the angle between a line through pδ, pt and the x-axis. We formulate the
shortest path problem as a minimization problem while inserting Equation (1).

min c+ δ

s.t. x2 + (y − 2)2 − 1 = 0

((x− pxc) cos(θ) + (y − pyc) sin(θ))2

a2 + ((x− pxc) sin(θ)− (y − pyc) cos(θ))2

b2 = 1
√

(x− 1)2 + (y − δ)2 +
√

(x− 2)2 + (y − 1− δ)2 − c = 0

The objective minimizes the total length of the path ω with variables that encode the
exact coordinates of pδ, q, pt. An intersection point of E and C with center s3 = (0, 2) is a
solution to the first and second constraints, respectively. An exact optimization approach
using Mathematica reveals that δ, qx, qy can only be expressed as the first, third, and first
roots of three irreducible high-degree polynomials fδ, fqx , fqy , see Equations (2) to (4).

fδ(x) =9x16 − 216x15 + 2514x14 − 18 846x13 + 101 755x12 − 418 512x11+ (2)
1 350 994x10 − 3 475 302x9 + 7 165 772x8 − 11 828 976x7 + 15 512 224x6−
15 916 002x5 + 12 459 638x4 − 7 145 094x3 + 2 800 022x2 − 656 964x+ 67 417

fqx(x) =256x16 − 1792x14 + 5312x12 − 8768x10 + 384x9 + 8544x8 − 1632x7− (3)
3648x6 + 1200x5 − 152x4 + 288x3 + 252x2 − 324x+ 81

fqy (x) =256x16 − 8192x15 + 122 624x14 − 1 139 712x13 + 7 361 472x12− (4)
35 034 880x11 + 127 069 376x10 − 358 188 736x9 + 792 777 952x8−
1 381 642 752x7 + 1 888 549 824x6 − 2 001 789 968x5 + 1 611 461 512x4−
951 341 552x3 + 387 921 820x2 − 97 469 232x+ 11 350 269

The value for δ ≈ 0.335752 defines the points pδ and pt. Together with the values for
qx, qy, we can define all points in ω as follows:

ps = (1, 0) pδ = (1, δ) ≈ (1, 0.336) q ≈ (0.772, 1.365) pt = (2, 1 + δ) ≈ (2, 1.336) (5)

S. Fekete, D. Krupke, M. Perk, C. Rieck, C. Scheffer 44:5

S3

ω

S3

pt

pδ

ps

q

S1

S0

S2

(a) Optimal lawn mowing tour for a 4 × 4 square.

S3

ω

P

pt

pδ

ps

q

(b) Optimal lawn mowing tour for a rectangle.

Figure 3 Optimal lawn mowing tours for a 4 × 4 square and a 4 × h rectangle.

The combined length of the path is δ + c ≈ 2.617676448. As ω contains a subpath that
crosses the full height of S0,0 and another subpath that crosses the full width of S0,2, both
quadrants are covered by ω, see Figure 2b. By construction, the bottom right quadrant is
covered by the segment pspδ and the point pt. The top left quadrant is covered by q, because
S0,3 is fully contained in a unit disk centered in q. Therefore, ω is a feasible path between
two adjacent edges of S0 with a length of L ≈ 2.618. J

I Lemma 2.5. A square P of side length 4 has a unique optimal lawn mowing tour T of
length L = 4LS0 , where LS0 ≈ 2.618.

Proof. We start by subdividing P by its vertical and horizontal center line into four quadrants
(squares) S0, . . . , S3 with side length 2. To cover the center point of each quadrant, a lawn
mowing tour has to intersect it at least once. As P is convex, T cannot leave P at any point.
Finally, T is symmetric with respect to the vertical and horizontal lines because otherwise,
the quadrant subpaths could be replaced by the shortest one. By Lemma 2.4, there is a
unique optimal lawn mowing path through each quadrant yielding an optimal tour of length
L = 4LS0 ≈ 4 · 2.618 ≈ 10.472, see Figure 3a. J

The optimal path from Lemma 2.4 can be used more extensively on rectangles with
fixed width 4 and arbitrary height h ≥ 4. For this, we extend the path from ps outwards
perpendicular to the 2× 2 square S0. One can use a similar construction as in Lemma 2.5 to
obtain optimal tours for arbitrary rectangles, refer to Figure 3b.

I Corollary 2.6. Any rectangle P with width 4 and height h ≥ 4 has a unique optimal lawn
mowing tour T of length L = 4LS0 + 2h− 8.

2.2 Algebraic Hardness of the LMP
As our next step, we show that the coordinates of the optimal path ω are not solvable by
radicals. For this, we employ a similar technique as Bajaj [5] for the generalized Weber
problem. A field K is said to be an extension (written as K/Q) of Q if K contains Q. Given
a polynomial f(x) ∈ Q[x], a finite extension K of Q is a splitting field over Q for f(x) if it
can be factorized into linear polynomials f(x) = (x− a1) · · · (x− ak) ∈ K[x] but not over
any proper subfield of K. Alternatively, K is a splitting field of f(x) of degree n over Q

EuroCG’23

44:6 Circling a Square: The Lawn Mowing Problem Is Algebraically Hard

if K is a minimal extension of Q in which f(x) has n roots. Then the Galois group of the
polynomial f is defined as the Galois group of K/Q. In principle, the Galois group is a
certain permutation group of the roots of the polynomial. From the fundamental theorem of
Galois theory, one can derive a condition for solvability by radicals of the roots of f(x) in
terms of algebraic properties of its Galois group. We now state three additional theorems
from Galois theory and Bajaj’s work. The proofs can be found in [26, 5].

I Lemma 2.7 ([26]). f(x) ∈ Q[x] is solvable by radicals over Q iff the Galois group over Q
of f(x), Gal(f(x)), is a solvable group.

I Lemma 2.8 ([26]). The symmetric group Sn is not solvable for n ≥ 5.

I Lemma 2.9 ([5]). If n ≡ 0 mod 2 and n > 2 then the occurrence of an (n − 1)-cycle,
an n-cycle, and a permutation of type 2 + (n− 3) on factoring the polynomial f(x) modulo
primes that do not divide the discriminant of f(x) establishes that Gal(f(x)) over Q is the
symmetric group Sn.

I Theorem 2.1. For any rational height h ≥ 4, there are rectangles P with height h and
rational vertex coordinates for which the Lawn Mowing Problem is not solvable by radicals.

Proof. It suffices to show that fδ is not solvable by the radicals as it describes the y-
coordinates of two points in the solution. We provide three factorizations of fδ modulo three
primes that do not divide the discriminant disc(fδ(x)).

fδ(x) ≡ 9(x16 + 22x15 + 11x14 + 22x13 + 8x12 + 20x11 + 15x10 + 10x9 + 11x8 + 12x7+
9x6 + 10x5 + x4 + 7x3 + 13x2 + 6x+ 3) mod 23

fδ(x) ≡ 9(x+ 41)(x2 + 21x+ 15)(x13 + 8x12 + 4x11 + 46x10 + 4x9 + 14x8 + 32x7 + 14x5+
31x4 + 41x3 + 37x2 + 32x+ 41) mod 47

fδ(x) ≡ 9(x+ 19)(x15 + 16x14 + 54x13 + 7x12 + 9x11 + 36x10 + 45x9 + x8 + 45x7 + 3x6+
22x5 + 36x4 + 26x3 + 22x2 + 54x+ 23) mod 59

For the good primes p = 23, 47, and 59 the degrees of the irreducible factors of fδ(x)
mod p gives us an 16− cycle, a 2 + 13 permutation and a 15-cycle, which is enough to show
with Lemma 2.9 and n = 16 that Gal(fδ) = S16. By Lemma 2.8, S16 is not solvable; with
Lemma 2.7, this proves the theorem. J

3 Conclusion

We have shown that the Lawn Mowing Problem is algebraically hard, even when mowing a
4×4 square P by a unit-radius cutter D. This implies that computing provably optimal tours
(such as for the TSP) would involve complicated coordinates; even good approximations
(such as a PTAS) require good numerical approximations of the involved algebraic terms.

While our proof makes intricate use of the underlying structure of optimal tours, it is
conceivable that similar techniques may help to better understand the difficulty of other
excruciatingly hard optimization problems, such as disk packing or covering.

S. Fekete, D. Krupke, M. Perk, C. Rieck, C. Scheffer 44:7

References
1 Esther M. Arkin, Sándor P. Fekete, and Joseph S. B. Mitchell. The lawnmower problem.

In Canadian Conference on Computational Geometry (CCCG), pages 461–466, 1993.
2 Esther M. Arkin, Sándor P. Fekete, and Joseph S. B. Mitchell. Approximation algorithms

for lawn mowing and milling. Computational Geometry, 17:25–50, 2000. doi:10.1016/
S0925-7721(00)00015-8.

3 Esther M. Arkin, Martin Held, and Christopher L. Smith. Optimization problems re-
lated to zigzag pocket machining. Algorithmica, 26(2):197–236, 2000. doi:10.1007/
s004539910010.

4 Rik Bähnemann, Nicholas Lawrance, Jen Jen Chung, Michael Pantic, Roland Siegwart, and
Juan Nieto. Revisiting Boustrophedon coverage path planning as a generalized traveling
salesman problem. In Field and Service Robotics, pages 277–290, 2021. doi:10.1007/
978-981-15-9460-1_20.

5 Chanderjit Bajaj. The algebraic degree of geometric optimization problems. Discrete &
Computational Geometry, 3(2):177–191, 1988.

6 Aaron T. Becker, Mustapha Debboun, Sándor P. Fekete, Dominik Krupke, and An Nguyen.
Zapping Zika with a mosquito-managing drone: Computing optimal flight patterns with
minimum turn cost. In Symposium on Computational Geometry (SoCG), pages 62:1–62:5,
2017. doi:10.4230/LIPIcs.SoCG.2017.62.

7 Károly Bezdek. Körök optimális fedései (Optimal Covering of Circles). PhD thesis, Eötvös
Lorand University, 1979.

8 Károly Bezdek. Über einige optimale Konfigurationen von Kreisen. Ann. Univ. Sci. Bu-
dapest Rolando Eötvös Sect. Math, 27:143–151, 1984.

9 Richard Bormann, Joshua Hampp, and Martin Hägele. New brooms sweep clean–An au-
tonomous robotic cleaning assistant for professional office cleaning. In International Con-
ference on Robotics and Automation (ICRA), pages 4470–4477, 2015. doi:10.1109/ICRA.
2015.7139818.

10 Tauã M. Cabreira, Lisane B. Brisolara, and Paulo R. Ferreira Jr. Survey on cover-
age path planning with unmanned aerial vehicles. Drones, 3(1):4, 2019. doi:10.3390/
drones3010004.

11 Howie Choset. Coverage for robotics–a survey of recent results. Annals of Mathematics
and Artificial Intelligence, 31(1):113–126, 2001. doi:10.1023/A:1016639210559.

12 Howie Choset and Philippe Pignon. Coverage path planning: The Boustrophedon cellu-
lar decomposition. In Field and Service Robotics, pages 203–209, 1998. doi:10.1007/
978-1-4471-1273-0_32.

13 Richard Courant. What is mathematics? Oxford University Press, 1941.
14 Gershon Elber and Myung-Soo Kim. Offsets, sweeps and Minkowski sums. Computer-Aided

Design, 31(3), 1999. doi:10.1016/S0010-4485(99)00012-3.
15 Brendan Englot and Franz Hover. Sampling-based coverage path planning for inspection

of complex structures. In International Conference on Automated Planning and Scheduling
(ICAPS), volume 22, pages 29–37. AAAI, 2012. doi:10.1609/icaps.v22i1.13529.

16 Gábor Fejes Tóth. Thinnest covering of a circle by eight, nine, or ten congruent circles.
Combinatorial and Computational Geometry, 52:361–376, 2005.

17 Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, and Sahil Shah.
Worst-case optimal covering of rectangles by disks. In Symposium on Computational Ge-
ometry (SoCG), pages 42:1–42:23, 2020. doi:10.4230/LIPIcs.SoCG.2020.42.

18 Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer. Covering rectangles by disks:
The video. In Symposium on Computational Geometry (SoCG), pages 71:1–75:5, 2020.
doi:10.4230/LIPIcs.SoCG.2020.75.

EuroCG’23

https://doi.org/10.1016/S0925-7721(00)00015-8
https://doi.org/10.1016/S0925-7721(00)00015-8
https://doi.org/10.1007/s004539910010
https://doi.org/10.1007/s004539910010
https://doi.org/10.1007/978-981-15-9460-1_20
https://doi.org/10.1007/978-981-15-9460-1_20
https://doi.org/10.4230/LIPIcs.SoCG.2017.62
https://doi.org/10.1109/ICRA.2015.7139818
https://doi.org/10.1109/ICRA.2015.7139818
https://doi.org/10.3390/drones3010004
https://doi.org/10.3390/drones3010004
https://doi.org/10.1023/A:1016639210559
https://doi.org/10.1007/978-1-4471-1273-0_32
https://doi.org/10.1007/978-1-4471-1273-0_32
https://doi.org/10.1016/S0010-4485(99)00012-3
https://doi.org/10.1609/icaps.v22i1.13529
https://doi.org/10.4230/LIPIcs.SoCG.2020.42
https://doi.org/10.4230/LIPIcs.SoCG.2020.75

44:8 Circling a Square: The Lawn Mowing Problem Is Algebraically Hard

19 Sándor P. Fekete, Henk Meijer, André Rohe, and Walter Tietze. Solving a “hard” problem
to approximate an “easy” one: Heuristics for maximum matchings and maximum Traveling
Salesman problems. ACM Journal of Experimental Algorithms, 7, 2002. 21 pages. doi:
10.1145/944618.944629.

20 Sándor P. Fekete, Dominik Krupke, Michael Perk, Christian Rieck, and Christian Scheffer.
A closer cut: Computing near-optimal lawn mowing tours. In 2023 Proceedings of the
Symposium on Algorithm Engineering and Experiments (ALENEX), pages 1–14, 2023. doi:
10.1137/1.9781611977561.ch1.

21 Erich Friedman. Circles covering squares web page. https://erich-friedman.github.
io/packing/circovsqu, 2014. Online, accessed January 10, 2023.

22 Enric Galceran and Marc Carreras. A survey on coverage path planning for robotics.
Robotics and Autonomous Systems, 61(12):1258–1276, 2013. doi:10.1016/j.robot.2013.
09.004.

23 Martin Held. On the Computational Geometry of Pocket Machining, volume 500 of LNCS.
Springer, 1991. doi:10.1007/3-540-54103-9.

24 Martin Held, Gábor Lukács, and László Andor. Pocket machining based on contour-parallel
tool paths generated by means of proximity maps. Computer-Aided Design, 26(3):189–203,
1994. doi:10.1016/0010-4485(94)90042-6.

25 Aladár Heppes and Hans Melissen. Covering a rectangle with equal circles. Periodica
Mathematica Hungarica, 34(1-2):65–81, 1997. doi:10.1023/A:1004224507766.

26 Israel N. Herstein. Topics in algebra. John Wiley & Sons, 1991.
27 Katharin R. Jensen-Nau, Tucker Hermans, and Kam K. Leang. Near-optimal area-coverage

path planning of energy-constrained aerial robots with application in autonomous en-
vironmental monitoring. IEEE Transactions on Automation Science and Engineering,
18(3):1453–1468, 2021. doi:10.1109/TASE.2020.3016276.

28 Johannes B. M. Melissen and Peter C. Schuur. Covering a rectangle with six and seven cir-
cles. Discrete Applied Mathematics, 99(1-3):149–156, 2000. doi:10.1016/S0166-218X(99)
00130-4.

29 Eric H. Neville. On the solution of numerical functional equations. Proceedings of the
London Mathematical Society, 2(1):308–326, 1915. doi:10.1112/plms/s2_14.1.308.

30 Timo Oksanen and Arto Visala. Coverage path planning algorithms for agricultural field
machines. Journal of Field Robotics, 26(8):651–668, 2009. doi:10.1002/rob.20300.

https://doi.org/10.1145/944618.944629
https://doi.org/10.1145/944618.944629
https://doi.org/10.1137/1.9781611977561.ch1
https://doi.org/10.1137/1.9781611977561.ch1
https://erich-friedman.github.io/packing/circovsqu
https://erich-friedman.github.io/packing/circovsqu
https://doi.org/10.1016/j.robot.2013.09.004
https://doi.org/10.1016/j.robot.2013.09.004
https://doi.org/10.1007/3-540-54103-9
https://doi.org/10.1016/0010-4485(94)90042-6
https://doi.org/10.1023/A:1004224507766
https://doi.org/10.1109/TASE.2020.3016276
https://doi.org/10.1016/S0166-218X(99)00130-4
https://doi.org/10.1016/S0166-218X(99)00130-4
https://doi.org/10.1112/plms/s2_14.1.308
https://doi.org/10.1002/rob.20300

Simply Realising an Imprecise Polyline is NP-hard
Thijs van der Horst1,2, Tim Ophelders1,2, and Bart van der
Steenhoven2

1 Department of Information and Computing Sciences, Utrecht University, the
Netherlands
{t.w.j.vanderhorst|t.a.e.ophelders}@uu.nl

2 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
b.j.v.d.steenhoven@student.tue.nl

Abstract
We consider the problem of deciding, given a sequence of regions, if there is a choice of points, one
for each region, such that the induced polyline is simple or weakly simple, meaning that it can touch
but not cross itself. Specifically, we consider the case where each region is a translate of the same
shape. We show that the problem is NP-hard when the shape is a unit-disk or unit-square. We
argue that the problem is is NP-complete when the shape is a vertical unit-segment.

1 Introduction

Finding a planar drawing of a graph has been studied widely due to its many applications, for
example in floor-planning and visualisations [7]. Often when the graphs come from geometric
data, such as road networks, vertices already have predetermined locations. In these cases,
if edges must be drawn as straight line segments, there is a unique corresponding drawing.
Real-world data such as GPS trajectories are often imprecise. Imprecision can be modeled
by assigning to each vertex an imprecision region. A geometric graph induced by assigning
each vertex to a point in its imprecision region is called a realisation.

Algorithms for imprecise data have been considered in the past [5, 8]. We consider the
problem of deciding whether imprecise data admits a realisation without self-intersections.
Godau [4] showed that this problem is NP-hard if the imprecision regions are closed disks
of varying radius. In follow-up work, Angelini et al. [2] showed that the problem remains
NP-hard when the regions are pairwise-disjoint unit-disks, or unit-squares. In this work, we
consider the problem for a very restricted graph class, namely path-graphs. That is, we are
looking for a realisation that is a simple polyline.

Efficient algorithms exist to determine whether a polygon or polyline is weakly simple [1, 3].
When the polygon is imprecise however, Löffler [6] showed that determining whether a weakly
simple realisation exists when the imprecision regions are scaled translates of a fixed shape,
such as a segment or circle, is NP-hard. Finally, Silveira et al. [9] show that the problem is
NP-complete for straight-line drawings of graphs where each vertex has degree exactly one
(i.e. the graph is a matching), using unit-length vertical segments as imprecision regions.

Definitions and problem statement. A polygonal chain or polyline is a piecewise-linear
path in the plane, given by a sequence P = (pi)n

i=0 of points called vertices. With slight
abuse of notation, we interpret P as the polyline, instead of its vertices. An imprecise polyline
is given by a sequence of regions R = (ri)n

i=0 in the plane. We call the polyline (pi)n
i=0 a

realisation of R if pi ∈ ri for each i.
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

45:2 Simply Realising an Imprecise Polyline is NP-hard

A polyline is simple (or plane) if it does not cross or touch itself. An ε-perturbation of a
polyline P = (pi)n

i=0 is a polyline P ′ = (p′
i)n

i=0 such that ∥pi − p′
i∥ ≤ ε for all i. A polyline

(pi)n
i=0 is weakly simple if for every ε > 0 there is an ε-perturbation that is simple. We are

interested in the problem of deciding whether an imprecise polyline R admits a weakly simple
realisation.

Results and organisation. We show that the problem is NP-hard already when each region
is a translate of the same shape S. This setting differs from [6] in the sense that now all
regions must have uniform size. In Section 2 we prove this for the case where S is a unit
disk, and discuss how the construction can be adapted to show NP-hardness for unit squares.
Hence, computing the infimum ε for which a polyline has a simple ε-perturbation under the
L1, L2, and L∞ norms is NP-hard. In the full version we additionally show NP-completeness
if S is a unit-length vertical segment.

2 Unit disks as regions

We prove by reduction from planar monotone 3SAT that the problem is NP-hard when all
regions are unit disks. We first introduce planar monotone 3SAT. A monotone 3CNF formula
is a formula φ(x1, . . . , xm) :=

∧
i Ci with Boolean variables x1, . . . , xm, where each clause Ci

is either positive (of the form (xj ∨ xk ∨ xl)) or negative (of the form (¬xj ∨ ¬xk ∨ ¬xl)). A
monotone rectilinear layout of a monotone 3CNF formula is a plane drawing of the incidence
graph between its clauses and variables, in which variables are drawn as disjoint horizontal
segments on the x-axis, all positive clauses lie above the x-axis, all negative clauses lie below
the x-axis, and edges are rectilinear, do not cross the x-axis, and have at most one bend.
We may assume for each clause that its central edge does not bend, see Figure 1. Planar
monotone 3SAT is an NP-complete problem that asks, given a monotone 3CNF formula
φ with a given monotone rectilinear layout, whether φ is satisfiable. For our reduction we
construct gadgets consisting of imprecise polylines corresponding to variables, clauses, and
edges of the layout. We then show how to connect these gadgets into a single imprecise
polyline that has a weakly simple realisation if and only if the formula φ if satisfiable.

x1 x2 x3 x4

x1 ∨ x2 ∨ x3

x1 ∨ x3 ∨ x4

¬x2 ∨ ¬x3 ∨ ¬x4

Figure 1 Example of an induced variable-clause graph for planar monotone 3SAT.

Pivot gadget. Before we construct the gadgets for the variables and clauses, we introduce
an auxiliary gadget: the pivot gadget. The purpose of the pivot gadget is to force a given
edge of any weakly simple realisation to go through some fixed point of our choosing. The
gadget is illustrated in Figure 2 and consists of three components. Two of these components
together form the pivot so that the edge of the third component must pass through the

T. van der Horst, T. Ophelders, and B. van der Steenhoven 45:3

1′2′

3′ 5′

6′7′

1 2

35

6 7

1′′
2′′

4′

4

ε

(a) (b)

Figure 2 (a) The pivot gadget. (b) A weakly simple realisation, showing a simple perturbation.
Note that this perturbation moves most vertices outside of their assigned disks

center (0, 0) of the pivot. The coordinates of the top component will be:

1, . . . , 7 7→ (−1 − ε, 2), (1, 2), (1, 5), (0, −1), (−1, 5), (−1, 2), (1 + ε, 2)

for some value ε > 0, and the bottom component is a rotated copy of the top component:

1′, . . . , 7′ 7→ (1 + ε, −2), (−1, −2), (−1, −5), (0, 1), (1, −5), (1, −2), (−1 − ε, −2).

There is some freedom in choosing the placement of regions 1′′ and 2′′, but to make sure
that the realisation passes through the pivot we require that the x-coordinate of region 1′′ is
less than -1, that of region 2′′ is greater than 1, and the tangent lines to the pair of circles 1′′

and 2′′ all intersect the segment between (0, −5) and (0, 5). We can accommodate any angle
of the edge between regions 1′′ and 2′′ by choosing ε > 0 sufficiently small. Namely, such
that the point (−ε, 2) where we will realise region 1 lies above the tangent lines from point
(0, 0) to region 1′′, and such that symmetric properties hold for regions 7, 1′ and 7′.

Figure 2(b) depicts a weakly simple realisation of the pivot gadget. Other weakly simple
realisations may differ in placement for points in regions 1, 7, 1′, 7′, 1′′ and 2′′ only; the
segment connecting 1′′ and 2′′ must always pass through (0, 0).

▶ Lemma 1. For any weakly simple realisation, the segment of the pivot gadget connecting
regions 1′′ and 2′′ must pass through (0, 0).

▶ Lemma 2. Any choice of points for regions 1′′ and 2′′ such that the segment connecting
them passes through (0, 0) has a corresponding weakly simple realisation of the pivot gadget.

Variable gadget. We construct a variable gadget that can take on two distinct states, one
for true and one for false, see Figure 3(a). The exact coordinates of the regions are as follows,

1 2

3

4

5 6

(a)

1 2

3

4

5 6

(b)

1 2

3

4

5 6

(c)

Figure 3 (a) The variable gadget. (b) The false state. (c) The true state.

EuroCG’23

45:4 Simply Realising an Imprecise Polyline is NP-hard

x2

x3x1

1

2 3

4

(a)

x2

x1

1

2

3

4

x3

(b)

x2

x3x1

1

2 3

4

(c)

x2

x1

1

2

3

4

x3

(d)

Figure 4 (a) The clause gadget, with realisations where (b) x1, (c) x2, or (d) x3 is true.

assuming the left most region is centered at (0, 0) and l > 8 is arbitrary:

1, . . . , 6 7→ (0, 0), (8, 0), (5, 2), (5, −2), (2, 0), (l, 0).

▶ Lemma 3. The variable gadget admits exactly two weakly simple realisations.

If the final horizontal line from region 5 to 6 is above the blocking vertical line between
regions 3 and 4, then the gadget is in its false state (Figure 3(b)). We consider the situation
where it is below as the true state (Figure 3(c)).

Clause gadget. The clause gadget is used to represent formulas of the form (x1 ∨ x2 ∨ x3),
where the variables can also all be negated. The initial placement of the regions for this
gadget can be seen in Figure 4(a). We use an X-shape to schematically represent the pivot
gadgets. The regions x1, x2 and x3 correspond to the literals of the clause and the regions 1,
2, 3 and 4 are used to put restrictions on these literals. The exact positions of the regions of
this gadget are as follows, centering the top-left region at (0, 0):

1, 2, 3, 4 7→ (0, 0), (0, −5), (6, −5), (6, 0).

We place the point for x1 at (5, −3), x2 at (2, −4.6) and x3 at (1, −3). The construction
used to connect the regions of these literals to variable gadgets and the exact placement
of the pivot gadgets is explained later. For now, it is only important to know that when
a variable is false, then the part of the polyline going to the literal point must either go

T. van der Horst, T. Ophelders, and B. van der Steenhoven 45:5

completely vertical through the pivot gadget at the bottom, or completely horizontal through
the pivot gadgets at the sides. The regions of x1, x2, and x3 are placed precisely so that in
this situation there is exactly one realisation that does not intersect the pivot gadget. We
shall refer to the position of a variable in this realisation as its false position and say that it
is covered in a solution if it lies in the interior of the polyline defined by the corner points of
the clause gadget. If the variable is true then the line can be placed at an angle through the
pivot gadget, allowing the literal point to be realised in multiple ways. We refer to the left-,
bottom- and rightmost positions of x1, x2, and x3 as their respective true position.

▶ Lemma 4. For every choice of two of the three literals there exists a realisation that
uncovers their false positions, and any realisation uncovers at most two false positions.

Connecting variables and clauses. For the reduction we must connect the variable gadgets
to the clause gadgets. For this we follow the layout given by the planar monotone 3SAT
instance (see Figure 1). Clauses always connect to variables in a downward or upward facing
E-shape. To preserve the planarity of this graph, our reduction should follow this shape to a
close enough degree. So the clause gadget is to be placed directly above one of the variable
gadgets and the other two variable gadgets connect to it with a bend from the side.

1

2
3

(a)

1

2
3

(b)

1

2
3

(c)

1

2

3

(d)

Figure 5 (a) The right wire gadget to connect a variable to a clause. Realisations where (b) both
are in the false state, (c) the variable is in its false state and the clause in its true state and (d) the
variable gadget in its true state.

Consider the right connection from a variable to a clause. The wire gadget in this case
involves three regions and two pivot gadgets (see Figure 5(a)). Region 1 is horizontally
aligned with the variable gadget of the corresponding to the right literal of the clause. As in
Figure 3, we place these variable regions between region 2 and 6, resulting in a realisation
with a horizontal line at the top if the state is false and at the bottom if the state is true.
We denote the position of region 1 as (0, 0). Region 3 is the right literal region of the clause
gadget. The position of this region is determined by the clause gadget. Let region 3 be
positioned at (−a, b). For our wire gadget, we place region 2 at position (1, b + 1) and place
two pivot gadgets at (−a

2 + 1, b + 1) and (0, b
2 + 1), oriented appropriately. We stretch the

variable-clause graph without changing its validity, so that a and b are large enough that the
components of the wire gadget do not overlap.

▶ Lemma 5. If a variable gadget for xi is in its false state, any weakly simple realisation
places xi in its false position. Otherwise xi can be placed in either its true or false position.

The wire gadget for connecting the left literal of a clause to its variable gadget is the
above gadget but mirrored. For connecting the middle variable to the clause we do the same,
except here we need only a single pivot gadget and no region 2, as this connection does not
need to bend. All three versions of the wire gadget can be seen in effect in Figure 6.

EuroCG’23

45:6 Simply Realising an Imprecise Polyline is NP-hard

x1 x2 x3

x1 ∨ x2 ∨ x3

(a)

(b) (c)

Figure 6 Example of the construction for variable-clause graph (a). The weakly simple
realisation in (b) sets x2 to true and the realisation in (c) sets x1 to true.

The complete reduction. The general construction works as follows. First we place all
gadgets as prescribed by the layout obtained from the planar monotone 3SAT instance.
Next, we connect the gadgets in a planar manner. For this, we connect the variables from
left to right as in Figure 6. We connect the gadgets in the top half of the construction by
processing the clauses on the outer face (that lie above the x-axis) as follows, and connecting
the results from left to right. Connect the clause to its right wire (and its pivot gadgets), then
recursively process and connect the clauses in the region enclosed by its right and middle
wire, then connect the middle wire, then recursively process and connect the clauses in the
region enclosed by the middle and left wire, and finally connect the left wire. The gadgets
in the bottom half are connected in a symmetric manner. We can put everything together
by connecting the variables, top half, and bottom half (their loose endpoints all lie on the
“outer face”).

Correctness of the reduction follows from the correctness of the individual gadgets. As
each gadget and connection uses a constant number of regions, whose positions can be
determined based on the variable-clause graph, the reduction is polynomial in size and time.

▶ Theorem 6. Deciding whether there exists a weakly simple realisation for a sequence of
unit disks is NP-hard.

▶ Observation 7. If our construction admits a weakly simple realisation, then there is one
that uses only the top, right, bottom and leftmost points of its regions. The problem hence
remains NP-hard when each region is a subset of a unit disk and contains these four points.

The problem we considered can also be looked at from a different point of view. One could
consider the center of each region in the sequence to be a vertex of an input polyline and the
regions themselves denoting how we are allowed to perturb these vertices. In that case the
setting of unit disks that we discussed corresponds to perturbing vertices by unit distance
under the L2 norm. Under the L1 norm the regions are diamond-shaped and contained in
a unit disk. Thus by the above observation the problem remains NP-hard. After an affine
transformation, it follows that the problem is also NP-hard under the L∞ norm.

T. van der Horst, T. Ophelders, and B. van der Steenhoven 45:7

3 Discussion

We showed that deciding if an imprecise polygon has a weakly simple realisation is NP-hard
if each region is a unit disk, unit square, or vertical unit segment. By growing each region
slightly, the same follows for deciding whether a simple realisation exists. Whereas the case
of vertical segments is NP-complete, it is unclear whether the problems of Section 2 lie in NP,
as it is unclear whether polynomially many bits suffice to encode a solution. The settings of
Section 2 lie in the complexity class ∃R, and we wonder if these settings are ∃R-hard.

References
1 Hugo A. Akitaya, Greg Aloupis, Jeff Erickson, and Csaba D. Tóth. Recognizing weakly

simple polygons. Discret. Comput. Geom., 58(4):785–821, 2017.
2 Patrizio Angelini, Giordano Da Lozzo, Marco Di Bartolomeo, Giuseppe Di Battista, Seok-

Hee Hong, Maurizio Patrignani, and Vincenzo Roselli. Anchored drawings of planar graphs.
In GD, volume 8871 of Lecture Notes in Computer Science, pages 404–415. Springer, 2014.

3 Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In
SODA, pages 1655–1670. SIAM, 2015.

4 Michael Godau. On the difficulty of embedding planar graphs with inaccuracies. In GD,
volume 894 of Lecture Notes in Computer Science, pages 254–261. Springer, 1994.

5 Maarten Löffler. Data Imprecision in Computational Geometry. PhD thesis, Utrecht
University, 2009.

6 Maarten Löffler. Existence and computation of tours through imprecise points. Int. J.
Comput. Geom. Appl., 21(1):1–24, 2011.

7 Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, volume 12 of Lecture
Notes Series on Computing. World Scientific, 2004.

8 Marcel Roeloffzen. Finding structures on imprecise points. Master’s thesis, TU Eindhoven,
2009.

9 Rodrigo I. Silveira, Bettina Speckmann, and Kevin Verbeek. Non-crossing paths with
geographic constraints. Discret. Math. Theor. Comput. Sci., 21(3), 2019.

EuroCG’23

Oriented Spanners
Kevin Buchin1, Joachim Gudmundsson2, Antonia Kalb1, Aleksandr
Popov∗3, Carolin Rehs1, André van Renssen2, and Sampson Wong2

1 Technical University of Dortmund, Germany
kevin.buchin, antonia.kalb, carolin.rehs@tu-dortmund.de

2 University of Sydney, Australia
joachim.gudmundsson, andre.vanrenssen@sydney.edu.au,
sampson.wong123@gmail.com

3 TU Eindhoven, The Netherlands a.popov@tue.nl

Abstract
Given a point set P and a parameter t, a (directed) geometric t-spanner G = (P, E) is a subgraph
of the complete (bi-directed) graph such that for every pair of points the shortest path in G is at
most a factor t longer than the corresponding Euclidean distance.

In this paper, we introduce a new model: the oriented (geometric) spanner. This is a directed
graph where every edge is one-way, i.e. (p, p′) ∈ E =⇒ (p′, p) /∈ E. We investigate bounds for
the minimal dilation. For 2-dimensional point sets, we prove NP-hardness of computing a minimal
oriented dilation graph. For 1-dimensional point sets, 1-spanners are trivial to obtain. Therefore, we
restrict the graphs: We present a dynamic program to compute a 1-page planar minimal oriented
dilation graph in O(n8) time and a greedy algorithm to compute a constant dilation spanner in
O(n3) time.

1 Introduction

1.1 Problem Setup and Related Work
Spanners are a well studied problem [2, 11, 13]: Given a set P of n points and a parameter t,
we want to compute a subgraph G of the complete (bi-directed) graph such that for every
p, p′ ∈ P the shortest path from p to p′ in G is at most a factor t longer than the shortest
path in the complete (bi-directed) graph, that is the (directed) edge (p, p′).

We introduce a new model, oriented spanners. This is a directed spanner G = (P, E)
with E ⊂ P × P where (p, p′) ∈ E implies (p′, p) /∈ E. As in an oriented graph the length
of the shortest path from p to p′ and back is not twice their distance, the term of dilation
changes. This new measurement for oriented graphs is similar to the dilation of round trip
spanners [5, 6].

Like (directed) spanners, oriented spanners can be motivated by infrastructure. For
example, the new constraint to one-way roads or tracks becomes interesting in applications
with space limitations. Another use case for oriented spanners are communication networks.
E.g. to exclude a hack, we could require that two neighbouring devices must not exchange
data by the same direct connection.

The spanner-problem has many variations, e.g. spanners may be required to be planar [2]
or have bounded degree [1, 9]. It is NP-hard to compute a minimal dilation graph, if the
number of edges is bounded [4, 7] or planarity is required [3, 10]. Such restrictions are also
of interested for oriented spanners.

∗ Supported by the Dutch Research Council (NWO) under the project number 612.001.801.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

46:2 Oriented Spanners

In this paper, we firstly define oriented spanners. As introduction to this new model
we analyse bounds of the oriented dilation (see Section 2) and the hardness of computing
a minimal oriented dilation graph (see Section 3). We show that oriented spanners for
1-dimensional points sets can be computed efficiently.

1.2 Basic Definitions
A spanner is a tuple G = (P, E) of a given point set P and edges E. It is a subgraph of
the complete graph K(P) = (P, P × P \ {(p, p) | p ∈ P}) (loops are not allowed). In this
paper, all edges are directed, i.e. the edge (p, p′) goes from p to p′. By ∆p1p2p3 we denote
the directed triangle of these points, that is the edge set {(p1, p2), (p2, p3), (p3, p1)}.

In this paper, we only consider geometric spanners. For geometric spanners, the length
of an edge (p, p′) is the Euclidean distance |p − p′|. The length of a path or cycle is the
sum of the length of its edges. In general, for a (un-)directed t-spanner G, the dilation
t = max

{ |dG(p,p′)|
|p−p′| | p, p′ ∈ P

}
represents the relation of the shortest path dG(p, p′) from p

to p′ in G to the shortest path in K(P), that is the edge (p, p′).

▶ Definition 1.1 (minimal dilation graph). For a point set P , a t-spanner is called a minimal
dilation graph for P , if there is no t′-spanner for P with t′ < t.

An oriented graph satisfies (p, p′) ∈ E =⇒ (p′, p) /∈ E. By this restriction, if the relation
of dG(p, p′) to |p−p′| is minimized by adding the edge (p, p′), the dilation in the other direction
is never 1. Therefore, considering the dilation as t = max

{ |dG(p,p′)|
|p−p′| | p, p′ ∈ P

}
, would not

tell much about the quality of an oriented spanner. This means to obtain meaningful results,
we need to define the term of oriented dilation.

By CG(p, p′) we denote the shortest oriented cycle containing the points p and p′ in an
oriented graph G. The optimal oriented cycle ∆(p, p′) for two points p, p′ ∈ P is the shortest
oriented cycle containing p and p′ in K(P). Notice, ∆(p, p′) is the triangle ∆pp′p′′ with
p′′ = arg min

p∗∈P
|p− p∗|+ |p∗ − p′|.

▶ Definition 1.2 (oriented dilation). Given a point set P and an oriented graph G for P , the
oriented dilation of two points p, p′ ∈ P is defined as

odil(p, p′) = |CG(p, p′)|
|∆G(p, p′)| .

The dilation t of an oriented graph is defined as t = max{odil(p, p′) | ∀p, p′ ∈ P}.

The minimal oriented dilation graph is defined analogously to Definition 1.1. Since it
is NP-hard to compute this graph for a 2-dimensional point set (Section 3), we investigate
1-dimensional point sets. In this paper, we number the points in a 1-dimensional point set P

in increasing order, i.e. p1 is the left most point in P .

▶ Definition 1.3 (1-page planar). Let P be a 1-dimensional point set. Let H be the closed
half plane defined by the dimension axis of P . A graph G = (P, E) is called 1-page planar, if
G can be embedded in R2 such that each edge in E lies in H and no edges intersect. An edge
may be bend, this does not change its length. (Compare to book embedding of graphs [8].)

A 1-page planar graph G = (P, E) is called maximal 1-page planar, if for every edge
e /∈ E the graph G′ = (P, E ∪ {e}) is not 1-page planar. We call the edge set {(pi, pi+1) |
∀pi ∈ P, i ≤ |P | − 1} the baseline. A directed edge (pj , pi) with i < j is called a back edge.

Buchin, Gudmundsson, Kalb, Popov, Rehs, van Renssen, Wong 46:3

In the following, we call a 1-page planar oriented spanner that includes a baseline and all
other edges are back edges, a 1-PPB spanner. Lemma 1.4 shows that a 1-PPB spanner has a
smaller dilation than a spanner with the same edge set but a different orientation. Without
loss of generality, we consider only 1-PPB spanners.

▶ Lemma∗ 1.4 (oriented dilation of 1-PPB). Let G = (P, E) be a 1-page planar oriented
t-spanner for a 1-dimensional point set P . Let G′ = (P, E′) be a 1-PPB t′-spanner for P ,
we achieve by flipping the orientation of some edges of E and adding missing baseline edges.
It holds t′ ≤ t.

2 Bounds for Minimal Oriented Dilation

In this section, we bound the minimal dilation of oriented spanners for 1- and 2-dimensional
point sets, to motivate the problem of computing a minimal dilation graph (Section 3).

▶ Theorem 2.1. There are 2-dimensional point sets for which no oriented 1-spanner exists.

Proof. We show that there is no 1-spanner for the point set P where p1, p2 and p4 form an
equilateral triangle and p3 is its centre (compare to Figure 1). The optimal oriented cycle
∆(pi, pj) with i, j ∈ {1, 2, 4} is ∆pip3pj or ∆pjp3pi. Each of these triangles is optimal for
∆(p3, pi). If there is an oriented 1-spanner G = (P, E), these triangles have to be contained in
E. Ignoring the orientation, the union of these triangles is the complete graph K4. Therefore,
E contains no further edges. It remains to orientate the edges. But, there is no possibility to
orientate the edges of K4 such that for each i, j ∈ {1, 2, 4} the optimal triangle ∆pip3pj or
∆pjp3pi is contained. ◀

p1 p2

p3

p4

Figure 1 No possibility to orientate the faces of K4 consistently

▶ Lemma∗ 2.2 (bound for oriented dilation in 1 dimension). Let P be a 1-dimensional point
set. The oriented dilation of any t-spanner for P is bounded by

t ≤ max{odil(pi, pi+2), odil(pi, pi+3) | ∀pi ∈ P}.

Lemma 2.2 gives a non-planar oriented 1-spanner for every 1-dimensional point set. Note,
that this graph is even sparse, i.e. |E| ∈ O(|P |).

▶ Corollary 2.3. For every 1-dimensional point set P , the non-planar oriented graph G =
(P, E) with E = {(pi, pi+1), (pi+2, pi), (pi+3, pi) | ∀pi ∈ P} is a 1-spanner for P .

The proofs of results marked by ∗ are given in the full version.

EuroCG’23

46:4 Oriented Spanners

▶ Lemma∗ 2.4 (bound for oriented dilation of 1-PPB). Let P be a 1-dimensional point set.
The oriented dilation of a 1-PPB t-spanner for P is bounded by

t ≤ max{odil(pi, pi+2) | ∀pi ∈ P}.

If a spanner G = (P, E) with |P | > 3 is 1-page planar, there is a tuple pi, pi+2 ∈ P where
CG(pi, pi+2) ̸= ∆(pi, pi+2). Combining this with Lemma 2.4, we follow

▶ Corollary 2.5. There is no 1-page planar 1-spanner for any point set P with |P | > 3.

Let G = (P, E) be a graph with |P | = 5, E = {(pi, pi+1) | ∀pi ∈ P} ∪ {(p3, p1), (p5, p3)}
and the distances |p1 − p2| = |p4 − p5| = ϵ and |p2 − p3| = |p3 − p4| = 1. For an arbitrary
small ϵ, G is an almost 1-spanner. Further, holds

▶ Theorem 2.6. There are 1-dimensional point sets where no 1-page planar oriented t-spanner
exists for t < 2.

Proof. We show that t ≥ 2 holds for every t-spanner of the point set P with |P | = 5 where
each consecutive pair of points has distance 1. Since a 1-PPB spanner has a smaller dilation
than a spanner with the same edge set but another orientation (Lemma 1.4) and maximality
decreases dilation, it suffices to look at all maximal 1-PPB graphs for P . These are listed in
Figure 2. Since each consecutive pair of points has distance 1, it holds |∆(pi, pi+2)| = 4. For
every maximal 1-PPB graph G for P , there is a tuple pi, pi+2 ∈ P where CG(pi, pi+2) visits
every point, i.e. CG(pi, pi+2) = (p1, p2), . . . , (p4, p5), (p5, p1). In Figure 2a) that is p2, p4, in
b,c) p3, p5 and in d,e) p1, p3. Combining these observations with Lemma 2.4, gives

t ≥ max
{ |CG(pi, pi+2)|
|∆(pi, pi+2)| | ∀pi ∈ P

}
=

max
pi∈P
|CG(pi, pi+2)|

4 = |p1 − p5| · 2
4 = 8

4 = 2

for the dilation t of every 1-page planar oriented spanner for P . ◀

Algorithm 1 returns a constant dilation spanner for any given set of n 1-dimensional
points in O(n3) time. Theorem 2.6 is the biggest tight lower bound we have proven jet.
We do not know the maximal dilation of an optimal 1-page planar oriented spanner and if
Algorithm 1 is worst-case optimal.

▶ Corollary 2.7. There is a 1-PPB O(1)-spanner for every 1-dimensional point set.

Algorithm 1 Greedy O(1)-spanner
Require: 1-dimensional point set P = {p1, . . . , pn} (numbered from left to right)
Ensure: 1-page planar oriented O(1)-spanner for P

Sort edges in E′ = {(pj , pi) | ∀ i + 2 ≤ j ≤ n} ascending by length // possible back edges
for each (pj , pi) ∈ E′ do

if ∄(pr, pl) ∈ E with (l < i < r < j) or (i < l < j < r) then // preserve planarity
E ← E ∪ {(pj , pi)} // add back edge (pj , pi)

end if
end for
return G = (P, E′ ∪ {(pi, pi+1) | ∀ 1 ≤ i ≤ n− 1}) // add baseline

Buchin, Gudmundsson, Kalb, Popov, Rehs, van Renssen, Wong 46:5

(a)
p1 p2 p3 p4 p5

(b)
p1 p2 p3 p4 p5

(c)
p1 p2 p3 p4 p5

(d)
p1 p2 p3 p4 p5

(e)
p1 p2 p3 p4 p5

Figure 2 All maximal 1-PPB graphs for a 1-dimensional set of 5 points

EuroCG’23

46:6 Oriented Spanners

3 Hardness

Since there is no oriented 1-spanner for every 2-dimensional point set (Theorem 2.1), we are
interested in computing a minimal oriented dilation graph.

▶ Theorem 3.1. Let P be a 2-dimensional set of n points. Given a parameter m′ ≥ n, it is
NP-hard to compute a minimal oriented dilation graph G = (P, E) with |E| ≤ m′.

Proof. We prove the problem is NP-hard even for m′ = n. We reduce the problem of
constructing an oriented minimal dilation cycle (m′ = n) to the Euclidean Travelling
Salesman Problem (Euclidean-TSP is NP-hard [12]). The denominator in the definition
of (oriented) dilation is fixed by the point set. So, the oriented dilation is minimized by
minimizing the largest shortest oriented cycle over all pairs of points. Since a minimal
dilation cycle is searched (m′ = n), the shortest oriented cycle is the same for each pair of
points. Therefore, to compute a minimal oriented dilation graph with n edges, is the same
as searching for the shortest Hamilton cycle. That is Euclidean-TSP. ◀

For a 1-dimensional point set, unlike non-planar oriented spanners (Theorem 2.3), the
minimal dilation of a 1-page planar spanner is not always 1 (Theorem 2.5). For a given set
of n points, Algorithm 2 computes in O(n8) time a 1-PPB minimal dilation graph. The
dynamic program bases on the following idea (compare to Figure 3): We want to minimize the
dilation t of a graph for {pl, . . . , pr}. Due to planarity, if (pr, pl) ∈ E, it holds (pj , pi) /∈ E

for l < i < r < j and i < l < j < r. We test all candidates for a split point pk. By
Lemma 2.4, it holds t = max{t′, t′′, odil(pk−1, pk+1)} where t′ is the minimal dilation for
{pl, . . . , pk} and t′′ is the minimal dilation for {pk, . . . , pr}. Point pk−1 and pk+1 is the only
tuple of distance 2 (compare to Lemma 2.4) which crosses the split point pk. Maintaining
the parameters l′ and r′ such that (pl′ , pl) ∈ CG(pl, pl+1) and (pr, pr′) ∈ CG(pr−1, pr), we
can realise CG(pk−1, pk+1) = CG(pk−1, pk) ∪ CG(pk, pk+1) to separate the problem at pk

(compare to Figure 3a)). Each recursion terminates with a forbidden combination of l,l′,r′
and r or with a set of 3 points.

▶ Corollary 3.2. Given a 1-dimensional point set P , computing a 1-page planar minimal
oriented dilation graph for P needs polynomial time.

4 Open Problems

This paper is a first introduction to this new concept of the oriented spanners. Since it is
NP-hard to compute a minimal oriented dilation graph for a 2-dimensional point set, we
focused on 1-dimensional point sets. The 1-dimensional results might be expanded to an
approximation algorithm for 2-dimensional point sets, which we plan to present in the future.

We prove that there are 1-dimensional point sets for which every 1-page planar oriented
spanner has a dilation bigger or equal than 2 and we present a greedy algorithm that computes
a 1-page planar oriented O(1)-spanner for every set of points. It remains to close this gap by
proving tighter bounds.

References
1 Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Cyril Gavoille, Anil Maheshwari, and

Michiel Smid. Towards plane spanners of degree 3. Journal of Computational Geometry,
8(1):11–31, 2017.

Buchin, Gudmundsson, Kalb, Popov, Rehs, van Renssen, Wong 46:7

Algorithm 2 Minimal dilation spanner
Require: 1-dimensional point set P = {p1, . . . , pn} (numbered from left to right)
Ensure: 1-page planar minimal oriented dilation spanner for P

Initialise table oE = [1, . . . , n]× [1, . . . , n]× [1, . . . , n]× [1, . . . , n]
// odil(E′) returns the oriented dilation of 1-PPB spanner with E′ as back edges
// oE(l, l′, r′, r)= back edges set E′ of a minimal dilation spanner G for {pl, . . . , pr} with
(pl′ , pl) ∈ CG(pl, pl+1) and (pr, pr′) ∈ CG(pr−1, pr)
Fill table by dynamic program based on the recursion formula:

oE(l, l′, r′, r) =





“invalid”, if l′ < l + 2, r′ > r − 2 or l > r (contradicts definition) (1)

“invalid”, if r < l + 2 (no oriented spanners for |P | < 3) (2)

(pr, pl), if l′ = r and r′ = l (spanner for |P | = 3 is a cycle) (3)

“invalid”, if l′ < r, r′ > l and l′ > r′ (contradicts planarity) (4)

E′ = oE(l, l′, kr, r − 1) ∪ {(pr, pl)}, if l′ < r and r′ = l, choose
l ≤ kr ≤ r − 3 s.t. odil(E′) is minimal (5)

E′ = oE(l + 1, kl, r′, r) ∪ {(pr, pl)}, if l′ = r and r′ > l, choose
l + 3 ≤ kl ≤ r s.t. odil(E′) is minimal (6)

E′ = oE(l, l′, kr, k) ∪ oE(k, kl, r′, r) ∪ {(pr, pl)}, if l′ < r, r′ > l

and l′ ≤ r′, choose l ≤ kr ≤ k − 2, l + 2 ≤ k ≤ r − 2 and
k + 2 ≤ kl ≤ r s.t. odil(E′) is minimal

(7)

E′ ← oE(1, l′, r′, n), choose l′ and r′ s.t. odil(E′) is minimal
return G = (P, E′ ∪ {(pi, pi+1) | ∀ 1 ≤ i ≤ n− 1}) // add baseline

EuroCG’23

46:8 Oriented Spanners

(a)
pl pl′ pkr pk pkl pr′ pr

oE(l, l′, r′, r) = oE(l, l′, kr, k) ∪ oE(k, kl, r′, r) ∪ {(pr, pl)}

(b)
pl=r′ pl′ pkr pr−1 pr

oE(l, l′, l, r) = oE(l, l′, kr, r − 1) ∪ {(pr, pl)}

(c)
pl pl+1 pkl pr′ pr=l′

oE(l, r, r′, r) = oE(l + 1, kl, r′, r) ∪ {(pr, pl)}

Figure 3 Visualisation of the recursive cases of the recursion formula in Algorithm 2

Buchin, Gudmundsson, Kalb, Popov, Rehs, van Renssen, Wong 46:9

2 Prosenjit Bose and Michiel Smid. On plane geometric spanners: A survey and open problems.
Journal of Computational Geometry, 46(7):818–830, 2013.

3 Ulrik Brandes and Dagmar Handke. NP-completness results for minimum planar spanners.
In Graph-Theoretic Concepts in Computer Science, pages 85–99. Springer, 1997.

4 Leizhen Cai. NP-completeness of minimum spanner problems. Discrete Applied Mathematics,
48(2):187–194, 1994.

5 Lenore J. Cowen and Christopher G. Wagner. Compact roundtrip routing for digraphs. In
Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
885–886. Society for Industrial and Applied Mathematics, 1999.

6 Lenore J. Cowen and Christopher G. Wagner. Compact roundtrip routing in directed
networks. Journal of Algorithms, 50(1):79–95, 2004.

7 Panos Giannopoulos, Rolf Klein, Christian Knauer, Martin Kutz, and Dániel Marx. Com-
puting geometric minimum-dilation graphs is NP-hard. Journal of Computational Geometry,
20(2):147–173, 2010.

8 Xiaxia Guan, Chuxiong Wu, Weihua Yang, and Jixiang Meng. A survey on book-embedding
of planar graphs. Frontiers of Mathematics in China, 17(2):255–273, 2022.

9 Iyad Kanj, Ljubomir Perkovic, and Duru Turkoglu. Degree four plane spanners: Simpler
and better. Journal of Computational Geometry, 8(2):3–31, 2017.

10 Yusuke Kobayashi. NP-hardness and fixed-parameter tractability of the minimum spanner
problem. Theoretical Computer Science, 746:88–97, 2018.

11 Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University
Press, 2007.

12 Christos Papadimitriou. The euclidean traveling salesman problem is NP-complete. Theo-
retical Computer Science, 4(3):237–244, 1977.

13 David Peleg and Alejandro Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–116,
1989.

EuroCG’23

Insertion-Only Dynamic Connectivity in General
Disk Graphs
Haim Kaplan1, Katharina Klost2, Kristin Knorr∗2, Wolfgang
Mulzer†2, and Liam Roditty3

1 School of Computer Science, Tel Aviv University
haimk@tau.ac.il

2 Institut für Informatik, Freie Universität Berlin
{kathklost, knorrkri, mulzer}@inf.fu-berlin.de

3 Department of Computer Science, Bar Ilan University
liamr@macs.biu.ac.il

Abstract
Let S ⊆ R2 be a set of n sites in the plane, so that every site s ∈ S has an associated radius rs > 0.
Let D(S) be the disk intersection graph defined by S, i.e., the graph with vertex set S and an edge
between two distinct sites s, t ∈ S if and only if the disks with centers s, t and radii rs, rt intersect.
Our goal is to design data structures that maintain the connectivity structure of D(S) as S changes
dynamically over time.

We consider the incremental case, where new sites can be inserted into S. While previous work
focuses on data structures whose running time depends on the ratio between the smallest and the
largest site in S, we present a data structure with O(α(n)) amortized query time and O(log5 n)
expected amortized insertion time.

1 Introduction

The question if two vertices in a given graph are connected is crucial for many applications.
If multiple such connectivity queries need to be answered, it makes sense to preprocess the
graph into a suitable data structure. In the static case, where the graph does not change, we
get an optimal answer by using a graph search to determine the connected components and
by labeling the vertices with their respective components. In the dynamic case, where the
graph can change over time, things get more interesting, and many variants of the problem
have been studied.

We construct an insertion-only dynamic connectivity data structure for disk graphs.
Given a set S ⊆ R2 of n sites in the plane with associated radii rs for each site s, the disk
graph D(S) for S is the intersection graph of the disks Ds induced by the sites and their
radii. While D(S) is represented by O(n) numbers describing the disks, it might have Θ(n2)
edges. Thus, when we start with an empty disk graph and successively insert sites, up to
Ω(n2) edges may be created. We describe a data structure whose overall running time for
any sequence of n site insertions is o(n2), while allowing for efficient connectivity queries.
For unit disk graphs (i.e., all associated radii rs = 1), a fully dynamic data structure with
a similar performance guarantee is already given by Kaplan et al. [2]. In the same paper,
Kaplan et al. present an incremental data structure whose running time depends on the ratio

∗ Supported by the German Science Foundation within the research training group ‘Facets of Complexity’
(GRK 2434).

† Supported in part by ERC StG 757609.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

47:2 Insertion-Only Dynamic Connectivity in General Disk Graphs

D(S)
Perfect

Binary Tree

Disjoint Set
DS H

AWNN
S

S

S

join

Figure 1 Overview of the data structure (Theorem 2.5)

C0

C1

C2

C0

in l0

Q : l3

C1

in l1

C2

in l2
empty

l3

C0∪C1 C2

C0∪C1∪C2

Figure 2 Disk graph with associated component tree and queue Q (tiling of a component
corresponds to the tiling of nodes storing its disks).

Ψ of the smallest and the largest radius in S. In this setting, they achieve O(α(n)) amortized
query time and O(log(Ψ) log4 n) expected amortized insertion time.

We focus on general disk graphs, with no assumption on the radius ratio. Our approach
has two main ingredients. First, we simply represent the connected components in a data
structure for the disjoint set union problem [1]. This allows for fast queries, in O(α(n))
amortized time, also mentioned by Reif [5]. The second ingredient is an efficient data
structure to find all components in D(S) that are intersected by any given disk (and hence
tells us which components need to be merged after an insertion of a new site). A schematic
overview of the data structure is given in Figure 1.

2 Insertion-Only Data Structure for Unbounded Radii

As in the incremental data structure for disk graphs with bounded radius ratio by Kaplan et
al. [2], we use a disjoint set union data structure to represent the connected components of
D(S) and to perform the connectivity queries. To insert a new site s into S, we first find the
set Cs of components in D(S) that are intersected by Ds. Then, once Cs is known, we can
simply update the disjoint set union structure to support further queries.

In order to identify Cs efficiently, we use a component tree TC. This is a binary tree
whose leaves store the connected components of D(S). The idea is illustrated in Figure 2
showing a disk graph and its associated component tree. We require that TC is a complete
binary tree, and some of its leaves may not have a connected component assigned to them,
like l3 in Figure 2. Those leaves are empty. Typically, we will not distinguish the leaf

H. Kaplan, K. Klost, K. Knorr, W. Mulzer, and L. Roditty 47:3

(+ +)

Q :

l0 l1 l2 l3

l2 Q :

l0 l1 l2 l3

l3l3Q :

l0 l1

Figure 3 If the tree has no empty leaves before the insertion of an isolated component, a new
root and an empty subtree are added (second tree is an intermediate state before actual insertion).

storing a connected component and the component itself. Also when suitable, we will treat a
connected component as a set of sites. Every node of TC stores a fully dynamic additively
weighted nearest neighbor data structure (AWNN). An AWNN stores a set P of n points, each
associated with a weight wp. On a nearest neighbor query with a point q ∈ R2 it returns the
point p ∈ P that minimizes ∥pq∥ + wp. For this data structure, we use the following result
by Kaplan et al. [3] with an improvement by Liu [4].

▶ Lemma 2.1 (Kaplan et al. [3, Theorem 8.3, Section 9], Liu [4, Corollary 4.3]). There is a
fully dynamic AWNN data structure that allows insertions in O(log2 n) amortized expected
time and deletions in O(log4 n) amortized expected time. Furthermore, a nearest neighbor
query takes O(log2 n) worst case time. The data structure requires O(n log n) space.

The component tree maintains the following invariants. Invariant 2 allows us to use a query
to the AWNN to find the disk whose boundary is closed to a query point.
Invariant 1: Every connected component of D(S) is stored in exactly one leaf of TC , and
Invariant 2: The AWNN of a node u ∈ TC contains the sites of all connected components

that lie in the subtree rooted at u, where a site s ∈ S has assigned weight −rs.
In addition to TC , we store a queue QC that contains exactly the empty leaves in TC .

We now describe how to update TC when a new site s is inserted. We maintain TC in
such a way that the structure of TC changes only when s creates a new isolated component in
D(S). In the following lemma, we consider the slightly more general case of inserting a new
connected component C that does not intersect any connected component already stored
in TC .

▶ Lemma 2.2. Let TC be a component tree of height h with n sites and let C be an isolated
connected component. We can insert C into TC in amortized time O(h · |C| · log2 n).

Proof. The insertion performs two basic steps: first, we find or create an empty leaf li into
which C can be inserted. Second, the AWNN structures along the path from li to the root of
TC are updated.

For the first step, we check if QC is non-empty. If so, we extract the first element from
QC to obtain our empty leaf li. If QC is empty, there are no empty leaves, and we have to
expand the component tree. For this, we create a new root for TC , and we attach the old tree
as one child. The other child is an empty complete tree of the same size as the old tree. This
creates a complete binary tree, see intemediate state in Figure 3. We copy the AWNN of the
former root to the new root, we add all new empty leaves to QC , and we extract li from QC .

EuroCG’23

47:4 Insertion-Only Dynamic Connectivity in General Disk Graphs

+

Q : l1 Q :

l0 l1 l0 l1

C0

Ds

Figure 4 Inserting a component (potentially isolated disk Ds) into an empty leaf (Ci stored in
li): The isolated component C, yellow disk Ds, is inserted in the empty leaf l1 and all its ancestors
(indicated by coloring).

For the second step, we insert C into li, and we store an AWNN structure with the sites
from C in li. Then, the AWNN structures on all ancestors of li are updated by inserting the
sites of C, see Figure 4 and Figure 3 in case of tree extension respectively.

This procedure maintains both invariants: since an isolated component does not affect the
remaining connected components of D(S), it has to be inserted into a new leaf, maintaining
the first invariant. The second invariant is taken care of in the second step, by construction.
Afterwards, the queue has the correct state, since we extract the leaf used in the insertion.

The running time for finding or creating an empty leaf is amortized O(1). This is
immediate if QC ≠ ∅, and otherwise, we can charge the cost of building the empty tree,
inserting the empty leaves into QC , and producing an AWNN structure for the new root to the
previous insertions. The most expensive step consists in updating the AWNN structures for
the new component. In each of the h AWNN structures of the ancestors of li, we must insert
|C| disks. By Lemma 2.1, this results into an expected amortized time of O(h·|C|·log2 n). ◀

Next, we describe how to find the set Cs of connected components that are intersected by
a disk Ds.

▶ Lemma 2.3. Let TC be a component tree of height h that stores n disks. We can find Cs in
worst case time O(max{|Cs| · h, 1} · log2 n}).

Proof. First, observe that if the site returned by a query to an AWNN structure with s does
not intersect Ds, then Ds does not intersect any disk for the sites stored in this AWNN. Thus,
the case where Cs = ∅ can be identified by a query to the AWNN structure in the root of TC ,
in O(log2 n) time.

In any other case, we perform a top down traversal of TC. Let u be the current node.
We query the AWNN structures of both children of u with s, and we recurse only into the
children where the nearest neighbor intersects Ds. The set Cs then contains exactly the
connected components of all leaves where Ds intersects its weighted nearest neighbor. Since
every leaf found corresponds to one connected component intersecting Ds and we recurse
into all subtrees whose union of sites have a non-empty intersection with s, we do not miss
any connected components.

For every connected component, there are at most h queries to AWNN structures along
the path from the root to the components. A query takes O(log2 n) amortized time by
Lemma 2.1, giving an amortized time of O(|Cs| · h · log2 n), if s is not isolated. The overall
time follows from taking the maximum of both cases. ◀

H. Kaplan, K. Klost, K. Knorr, W. Mulzer, and L. Roditty 47:5

+

Q : l1

l0 l1 l0 l1

Q : l1

C0

Ds

Figure 5 Inserting a site if |Cs| = 1 (Ci stored in li): The yellow disk Ds intersects C0 (dashed
edge). Site s is added to the AWNN of the associated leaf l0 and its ancestors.

+

Q :

l0 l1 l2 l3 l0 l1 l2 l3

l3 Q : l3 l2

merge

C0

C2

Ds

C1

Figure 6 Inserting a site if |Cs| > 1 (Ci stored in li): Ds intesects C0 and C2. Since |C0| = 3 and
|C2| = 2, the largest component CL is C0. Thus, Ds and C2 are merged into C0 and C2 is removed
from l2 up to the lca, the root. The empty leave l2 is enqueued.

Using Lemma 2.2 and Lemma 2.3, we can now describe how to insert a single disk into a
component tree.

▶ Lemma 2.4. Let TC be a component tree that stores n sites. A new site s can be inserted
into TC in O(log5 n) amortized expected time.

Proof. First, we use the algorithm from Lemma 2.3. to find Cs. If |Cs| = 0, we use Lemma 2.2
to insert s as a singleton isolated connected component.

Otherwise, if |Cs| ≥ 1, let CL = arg maxC∈Cs
|C| be a largest connected component in

Cs. We insert s into CL and into the AWNN structures of all ancestors of CL. Then, if
|Cs| = 1, we are done, see Figure 5. If |Cs| > 1, all components in Cs now form a new, larger,
component in D(S). We perform the following clean-up step in TC .

For each component Ci ∈ Cs \ {CL}, all sites from Ci are inserted into CL. Let lca be
the lowest common ancestor of the leaves for Ci and CL in TC. Then all sites from Ci are
deleted from the AWNN structures along the path from Ci to lca, and reinserted along the
path from CL to lca. Finally, all newly empty leaves are inserted into QC . For an illustration
of the insertion of s and the clean-up step, see Figure 6.

To show correctness, we again argue that the invariants are maintained. If |Cs| = 0 this
follows by Lemma 2.2. In the other case, we directly insert s into a connected component
intersected by s and update all AWNN structures along the way. As Lemma 2.3 correctly finds
all relevant connected components, and we explicitly move the sites in these components to
CL during clean-up, Invariant 1 is fulfilled. In a similar vein, we update all AWNN structures
of sites that move to a new connected component, satisfying Invariant 2. Moreover, we keep

EuroCG’23

47:6 Insertion-Only Dynamic Connectivity in General Disk Graphs

QC updated by inserting or removing empty leaves when needed during the algorithm.
To complete the proof, it remains to analyze the running time. In the worst case, where

all components are singletons, a component tree that stores n sites has height O(log n). If
|Cs| = 0 the running time for finding Cs is O(log2 n) by Lemma 2.3. The insertion and
restructuring is done with Lemma 2.2, yielding an expected amortized time of O(log3 n).
In the case |Cs| = 1, with h = O(log n) a running time of O(log3 n) for finding Cs follows
by Lemma 2.3. Following similar arguments to the case |Cs| = 0, the time needed for the
insertion and restructuring is expected amortized O(log3 n).

Finally, we consider the case |Cs| > 1. By Lemma 2.3, finding Cs takes worst case time
O(|Cs| · log3 n). Then the insertion of s can be done in expected amortized time O(log3 n),
as in the cases above. It remains to analyze the running time of the clean-up step. We know
that the first common ancestor might be the root of TC . Hence, in the worst case, we have
to perform

∑
Ci∈(Cs\{CL}) |Ci| · O(log n) insertions and deletions for a single clean-up step.

As the time for the deletions in the AWNN structures dominates, this is expected amortized∑
Ci∈Cs\{CL} O(|Ci| · log4 n) worst case time. Note that since |Ci| ≥ 1 and we have to insert

s, the running time of Lemma 2.3 is dominated by the clean-up step.
The overall time spent on all clean-up steps over all insertions is then upper bounded

by
∑

s∈S

∑
Ci∈(Cs\{CL}) O(|Ci| · log4 n). Observe, that during the lifetime of the component

tree, each disk can only be merged into O(log n) connected components. Thus, we have
∑

s∈S

∑

Ci∈Cs\{CL}
|Ci| = O(n log n),

and the overall expected time spent on clean-up steps is O(n log5 n). As the case |Cs| > 1
turned out to be the most complex case, the overall running time follows. ◀

▶ Theorem 2.5. There is an incremental data structure for connectivity queries in disk
graphs with O(α(n)) amortized query time and O(log5 n) expected amortized update time.

Proof. We use a component tree as described above to maintain the connected components.
Additionally, we maintain a disjoint set data structure H, where each connected component
forms a set, see Figure 1. Queries are performed directly in H in O(α(n)) amortized time.

When inserting an isolated component during the update, this component is added to H.
When merging several connected components in the clean-up step, this change is reflected in
H by suitable union operations. The time for updates in the component tree dominates the
updates in H, leading to an expected amortized update time of O(log5 n). ◀

3 Conclusion

We introduced a data structure that solves the incremental connectivity problem in general
disk graphs with O(α(n)) amortized query and O(log5 n) amortized expected update time.
The question of finding efficient fully-dynamic data structures for both the general and the
bounded case remains open.

References
1 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.
2 Haim Kaplan, Alexander Kauer, Katharina Klost, Kristin Knorr, Wolfgang Mulzer, Liam

Roditty, and Paul Seiferth. Dynamic connectivity in disk graphs. In 38th International

H. Kaplan, K. Klost, K. Knorr, W. Mulzer, and L. Roditty 47:7

Symposium on Computational Geometry (SoCG 2022), pages 49:1–49:17, 2022. doi:10.
4230/LIPIcs.SoCG.2022.49.

3 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
Discrete Comput. Geom., 64(3):838–904, 2020. doi:10.1007/s00454-020-00243-7.

4 Chih-Hung Liu. Nearly optimal planar k nearest neighbors queries under general distance
functions. SIAM Journal on Computing, 51(3):723–765, 2022. doi:10.1137/20m1388371.

5 John H. Reif. A topological approach to dynamic graph connectivity. Information Processing
Letters, 25(1):65–70, 1987. doi:10.1016/0020-0190(87)90095-0.

EuroCG’23

https://doi.org/10.4230/LIPIcs.SoCG.2022.49
https://doi.org/10.4230/LIPIcs.SoCG.2022.49
https://doi.org/10.1007/s00454-020-00243-7
https://doi.org/10.1137/20m1388371
https://doi.org/10.1016/0020-0190(87)90095-0

An s-t Jordan curve crossing boundaries of a set of
disk-homeomorphic objects in the plane
Aida Abiad1, Julian Golak2, Alexander Grigoriev3, and Freija van
Lent4

1 Department of Mathematics and Computer Science, Eindhoven University
of Technology
Department of Mathematics: Analysis, Logic and Discrete Mathematics,
Ghent University
Department of Mathematics and Data Science, Vrije Universiteit Brussel
a.abiad.monge@tue.nl

2 Department of Data Analytics and Digitalisation, Maastricht University
julian@golak.de

3 Department of Data Analytics and Digitalisation, Maastricht University
a.grigoriev@maastrichtuniversity.nl

4 Department of Data Analytics and Digitalisation, Maastricht University
f.vanlent@maastrichtuniversity.nl

Abstract
Let Sn be a set of n objects in the plane homeomorphic to disks, further referred to as shapes. Let G

be a geometric intersection multigraph for Sn, i.e., each shape in Sn is represented by a vertex in G,
and two vertices of G are connected by k edges, where k is the number of intersection components
between the two corresponding shapes. For the case of two shapes having ∆ intersection components,
we prove that for any two points in the plane there is a Jordan curve connecting these two points
and crossing the boundaries of the shapes at most 2∆ + 2 times. For the general case of n objects,
we prove that any two points in the plane can be connected by a Jordan curve that crosses the
boundaries of the shapes at most 2M min{n, ∆ + 1}, where M is the number of inclusion-maximal
intersection components and ∆ is the maximum degree of G.

1 Introduction

Take any drawing of a finite number of shapes in the plane and choose two arbitrary, interior
points in this embedding. An interior point is defined as a point that is not on a boundary
of any shape. To connect these two points, one can draw a continuous line that crosses the
boundaries of the shapes the least number of times. It is trivial to find an upper bound
for the number of crossings of a line between two points in a given embedding of shapes:
such line can be found using trial and error. However, we show that there exists an upper
bound for the number of crossings of a minimum crossing Jordan curve between any two
points in any embedding of n disk-homeomorphic objects in the plane that solely depends
on the number of objects, n, and the maximum degree of the corresponding intersection
multigraph, ∆.

A similar, but not identical, problem to bounding any minimum crossing curve between
a point s and a point t has been widely studied in the area of sensor networks. Intrusion
detection and border surveillance constitute a major application category for wireless sensor
networks. One application is to detect intruders as they cross a border or enter a protected
area. This type of coverage is referred to as barrier coverage, where the sensors form a barrier
for the intruders. In [2], Kumar et al. specify the key notion of k-barrier coverage, which
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

48:2 An s-t Jordan curve crossing boundaries of a set of objects in the plane

holds if every path joining a point in S to a point in T must intersect at least k distinct sensor
regions. The notion of barrier coverage closest to bounding a minimum crossing {s, t}-curve
is discussed by Bereg and Kirkpatrick, see [1]. They define the thickness of a barrier as the
minimum number of sensor region intersections of a path between any two regions.

In this work, we begin by introducing some preliminary definitions and lemmas, and
providing a formal problem definition. In Section 2, we present an upper bound for any
minimum crossing curve for embeddings of 2 shapes. Then, we extend this result for
embeddings of n shapes in Section 3. Finally, we summarize our findings and discuss some
open questions.

1.1 Preliminary Definitions and Lemmas
This section introduces several preliminary definitions that allow us to delve into the problem.

▶ Definition 1.1. A {s,t}-simple curve is a curve between an interior point s and an interior
point t that does not intersect itself.

▶ Definition 1.2. A set of points in the plane is a 2-dimensional geometric shape S if it is
homeomorphic to the closed disk {(x, y)|x2 + y2 ≤ 1}.

▶ Remark. Sn = {S1, . . . , Sn} is a collection of n shapes.
Important to note is that a shape S can be non-convex but cannot intersect itself.

▶ Definition 1.3. Γ(S) is the closed Jordan curve that determines the boundary of a shape S.

▶ Definition 1.4. A minimum crossing {s, t}-curve is a {s,t}-simple curve that intersects
boundaries of shapes the least number of times.

▶ Remark. We assume that, in any intersection of two shapes, one can at least fit an open
ball of sufficiently small diameter. (Assumption 1)
This assumption is made to prevent shapes from solely touching instead of intersecting or
having uncountably many boundary points in common.

In the following definition, a geometric intersection multigraph is introduced. Note
that geometric intersection multigraphs are an extension of intersection graphs. Classical
intersection graphs are simple graphs that include at most one edge between any two
shapes [3]. Intersection multigraphs include a connecting edge for every intersection that any
two shapes have in a given embedding, making it is a multigraph.

▶ Definition 1.5. An intersection multigraph GA
Sn

is a multigraph where each shape of the
collection Sn in an embedding A is represented by a vertex, and two vertices of GA

Sn
are

connected by e edges, with e being the number of connected components of the intersection
between the corresponding shapes in embedding A. Define the maximum degree of the
intersection multigraph as ∆

▶ Definition 1.6. Given a collection of shapes Sn, a face f is an open disc resulting from
considering the plane without the boundaries of the shapes, i.e. R2\Γ(Sn). Define the
boundary of a face f as Γ(f), and F as the set of all faces in an embedding.

▶ Definition 1.7. The dual graph G∗ of an embedding is the graph where each vertex v(f)
corresponds to a face f in the plane. Any two vertices v(f) and v(g) are connected if their
corresponding faces f and g are adjacent to each other.

A. Abiad, J. Golak, A. Grigoriev and F. van Lent 48:3

Figure 1 An example of an intersection multigraph, as defined in Definition 1.5.

Figure 2 An example of a dual graph of an embedding of shapes, as defined in Definition 1.7.

Examples of an intersection multigraph and a dual graph can be found in Figures 1 and 2,
respectively.

▶ Lemma 1.8. For any path of length k in the dual graph, there is a corresponding minimum
crossing curve in the embedding crossing k boundaries.

▶ Definition 1.9. The height h of a face f is the number of shapes present in this face. We
define the maximum height over all faces as hmax.

▶ Lemma 1.10. A face f of height h can only be adjacent to faces of height h − 1 or h + 1.

1.2 Problem definition and summary of results
Let Sn be a set of n shapes in an embedding A in the plane. Let GA

Sn
be the geometric

intersection multigraph for this embedding A of Sn with maximum degree ∆. This paper
shows an upper bound for the number of crossings of a minimum crossing {s, t}-curve that
solely depends on n and ∆ in embeddings of 2 shapes and embeddings of n shapes.

2 Embeddings of 2 shapes

In this section, we present a linear upper bound for any minimum crossing {s, t}-curve in an
embedding of two shapes. The main result is shown in Theorem 2.1.

▶ Theorem 2.1. Given an embedding of two shapes S1 and S2 in R2, there exists a simple
{s, t}-curve C crossing Γ(S1) ∪ Γ(S2) at most 2∆ + 2 times for any two points s, t ∈
R2\(Γ(S1) ∪ Γ(S2)).

To show that the result of Theorem 2.1 holds, we introduce some additional definitions.

▶ Definition 2.2. In an embedding of two shapes S1 and S2, a face f is an intersection face
if f ⊆ S1 ∩ S2.

▶ Definition 2.3. For a shape S and a face f ⊂ S, f is chordal in S if S\f consists of more
than one component. Consequently, a face f is non-chordal in S if S\f is one component.

EuroCG’23

48:4 An s-t Jordan curve crossing boundaries of a set of objects in the plane

Figure 3 In this shape, face 4 is chordal and 1, 2 and 3 are non-chordal.

The proof of Theorem 2.1 requires Lemmas 2.5, 2.6 and 2.7. These lemmas are based
upon the partition of the faces of shapes into three mutually-exclusive sets: intersection
faces, chordal faces and non-chordal faces. The sets are defined in Definition 2.4 and a visual
example of chordal and non-chordal faces is shown in Figure 3. Lemma 2.5 shows that for
any interior points s, t in S1, there exists a minimum crossing {s, t}-curve within S1 that
crosses the boundary of S2 at most 2∆ times. This result is extended in Lemmas 2.6, 2.7
and 2.8 to eventually show in Theorem 2.1 that for any interior points s, t ∈ R2, the number
of boundary crossings is at most 2∆ + 2.

▶ Definition 2.4. Given an embedding A of two shapes S1 and S2, every face f ⊆ S1 can
be assigned into one of the following three sets of faces:
1. FI = {f |f ⊆ S1 ∩ S2}, f is an intersection face; or
2. FC = {f |f ⊆ S1\S2 and f is chordal in S1}; or
3. FNC = {f |f ⊆ S1\S2 and f is not chordal in S1}.
By symmetry, a similar assignment into three sets of faces holds for every face f ⊆ S2.

▶ Remark. Given an embedding of shapes S1 and S2, by Definition 2.4 and Lemma 1.10,
faces assigned to the same set cannot be adjacent to each other.
▶ Remark. Given an embedding of shapes S1 and S2, by Definition 2.4 and Lemma 1.10,
faces f ∈ FC and g ∈ FNC cannot be adjacent.

Using Definition 2.4 and the above remarks, we show the following lemmas.

▶ Lemma 2.5. In an embedding of shapes S1 and S2 with interior points s, t ∈ S1, there
exists a minimum crossing {s, t}-curve Cs,t ⊂ S1 crossing Γ(S2) at most 2∆ times.

Proof. The intuition of the proof goes as follows. Since Cs,t ⊂ S1, we only utilize faces
f ⊂ S1 and consider the subgraph GAS1 of the dual graph. Using Definition 1.7 and Lemma
1.8, partition the vertices of GAS1 into chordal, non-chordal and intersection vertices. This
is similar to the three sets of faces in Definition 2.4. Clearly, GAS1 is a tripartite graph.

i. Case ∆ = 1. Denote the unique intersection face by fI . Any vertices v(f), v(g) of
faces f, g ⊂ S1\S2 are connected to v(fI) and thus there exists a path P = v(f)v(fI)v(g)
of length 2∆ = 2. By Lemma 1.8, there also exists a simple {s, t}-curve in A, for interior
points s, t ∈ S1, that crosses Γ(S1) ∪ Γ(S2) at most 2 times.

ii. Case ∆ ≥ 2. We bound the diameter of tripartite GAS1 , as this will provide an
upper bound on a shortest path between any two vertices v(f) and v(g), f, g ⊂ S1. By
Definition 2.3 and Lemma 1.10, a face of S1 that is adjacent to two intersection faces
is a chordal face of S1\S2. Notice that there exists a path PI1,Id

= v(fI,1)v(fC,1)v(fI,2)
. . . v(fI,d−1)v(fC,d−1)v(fI,d) between any pair of intersection faces fI,1 and fI,d, where
v(fI,i), with i = 1, . . . , d, are the vertices of distinct intersection faces, and v(fC,j), with
j = 1, . . . , d − 1, correspond to k distinct chordal faces. This path P has a length of at most
2(∆ − 1). Now notice that every face f ⊂ S1 is either an intersection face or adjacent to an
intersection face. Therefore, there exists a path like P ′ = v(f)Pv(g) in the dual subgraph

A. Abiad, J. Golak, A. Grigoriev and F. van Lent 48:5

Figure 4 An example illustrating Definition 2.4 and Lemma 2.5.

Figure 5 An almost tight example for Theorem 2.1.

GAS1 between any two vertices v(f) and v(g), f, g ∈ S1, having a length of at most 2∆. By
Lemma 1.8, there also exists a simple {s, t}-curve in A, for interior points s, t ∈ S1, that
crosses Γ(S1) ∪ Γ(S2) at most 2∆ times. ◀

▶ Lemma 2.6. In an embedding of shapes S1 and S2 with interior points s, t ∈ S1 ∪ S2, there
exists a minimum crossing {s, t}-curve Cs,t crossing Γ(S1) ∪ Γ(S2) at most 2∆ times.

▶ Lemma 2.7. In an embedding of shapes S1 and S2 with interior points s, t ∈ R2\(S1 ∪ S2),
there exists a minimum crossing {s, t}-curve Cs,t crossing Γ(S1) ∪ Γ(S2) at most 2∆ + 2
times.

▶ Lemma 2.8. In an embedding A of shapes S1 and S2 with interior points s ∈ R2\(S1 ∪S2),
t ∈ S1, there exists a simple {s, t}-curve Cs,t crossing Γ(S1) ∪ Γ(S2) at most 2∆ + 1 times.

Proof of Theorem 2.1

Proof. Given two shapes in an embedding A, arbitrarily label them S1 and S2, and denote
Γ(S1) ∪ Γ(S2) by Γ. Consider a minimum crossing {s, t}-curve Cs,t. By Lemmas 2.5 and
2.6, for any s, t ∈ S1 ∪ S2, Cs,t crosses Γ at most 2∆ times. In Lemma 2.7, we show that
Cs,t crosses Γ at most 2∆ + 2 times for any s, t ∈ R2\(S1 ∪ S2). By Lemma 2.8, for any
s ∈ R2\(S1 ∪ S2) and t ∈ S1, Cs,t crosses Γ at most 2∆ + 1 times. Note that this result also
holds for a minimum crossing curve Cs′,t′ with s′ = t and t′ = s. Hence, for any interior
points s, t ∈ R2 there exists a minimum crossing curve Cs,t crossing Γ(S1) ∪ Γ(S2) at most
2∆ + 2 times. ◀

Figure 5 displays an almost tight example for Theorem 2.1 with a bound of 2∆ − 2.

3 Embeddings of n shapes

In this section, we show that there exists an upper bound for any minimum crossing {s, t}-
curve in an embedding of n shapes. We first provide the definition of a maximal inclusion
face and then show the main result in Theorem 3.2.

EuroCG’23

48:6 An s-t Jordan curve crossing boundaries of a set of objects in the plane

Figure 6 An example of a dual graph partitioned by height.

▶ Definition 3.1. A face f is a maximal inclusion face (in short, MIF) if every face adjacent
to f has lower height. Additionally, define the complete set of MIFs as M.

▶ Theorem 3.2. Given an embedding of a finite collection of shapes Sn in R2 and the set of
Maximal Inclusion Faces M, there exists a simple {s, t}-curve Cs,t crossing Γ(Sn) at most
2|M| min{n, ∆ + 1} times for any two interior points s, t ∈ R2.

We use Lemmas 3.3 and 3.4 to show that Theorem 3.2 holds. In Lemma 3.3, we bound
the diameter of the dual graph of an embedding of n shapes using hmax and |M|. Lemma
3.4 then bounds hmax.

▶ Lemma 3.3. Given an embedding A of a set of shapes Sn and its dual graph GA, the
diameter of GA is upper bounded by 2hmax|M|.

Lemma 3.3 is a result of partitioning the vertices of the dual graph of an embedding of shapes
by the height of the corresponding faces. An example of this type of partitioning is given in
Figure 6.

▶ Lemma 3.4. Given an embedding of shapes S1, .., Sn, the maximum height of a face hmax
is upper bounded by min{n, ∆ + 1}.

Sketch of the proof of Theorem 3.2

Proof. As shown in Lemma 3.3, the diameter of the dual graph GA of an embedding A of a
set of shapes Sn is upper bounded by 2hmax|M|. By Lemma 3.4, hmax is upper bounded
by min{n, ∆ + 1}. It follows that the diameter of the dual graph is bounded above by
2|M| min{n, ∆ + 1}, and therefore the length of any shortest path in GA is bounded by the
same number. If there exists a path between any two vertices in GA with maximum length
2|M| min{n, ∆ + 1}, then by Lemma 1.8 there exists a minimum crossing {s, t}-curve Cs,t

in A crossing Γ(Sn) at most 2|M| min{n, ∆ + 1} times. ◀

4 Conclusion and open questions

In this paper, we have shown that there exists a linear upper bound of 2∆ + 2 for a minimum
crossing {s, t}- curve in any embedding of 2 shapes in the plane. For embeddings of n shapes,
we establish an upper bound of 2|M| min{n, ∆ + 1}.

Several questions remain. Firstly, what is the theoretic upper bound on the number of
maximal inclusion faces (|M|) in terms of n and ∆? The best example we have constructed
so far encounters 1

2 n∆ maximal inclusion faces, as demonstrated by an example of nested
shapes in Figure 7. We conjecture that this number is the right theoretic upper bound for
|M|. Consequently, what is the true hypothesis on the number of crossings of any minimum
crossing {s, t}-curve in terms of n and ∆ only?

A. Abiad, J. Golak, A. Grigoriev and F. van Lent 48:7

Figure 7 An almost tight example for Theorem 3.2.

References
1 Sergey Bereg and David Kirkpatrick. Approximating barrier resilience in wireless sensor

networks. In International Symposium on Algorithms and Experiments for Sensor Systems,
Wireless Networks and Distributed Robotics, pages 29–40. Springer, 2009.

2 Santosh Kumar, Ten H Lai, and Anish Arora. Barrier coverage with wireless sensors. In
Proceedings of the 11th annual international conference on Mobile computing and networking,
pages 284–298, 2005.

3 Terry A McKee and Fred R McMorris. Topics in intersection graph theory. SIAM, 1999.

EuroCG’23

Simultaneous Drawing of Layered Trees
Julia Katheder1, Stephen G. Kobourov2, Axel Kuckuk1,
Maximilian Pfister1, and Johannes Zink3

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Tübingen,
Germany
firstname.lastname@uni-tuebingen.de

2 Department of Computer Science, University of Arizona, Tucson, USA
lastname@cs.arizona.edu

3 Institut für Informatik, Universität Würzburg, Würzburg, Germany
lastname@informatik.uni-wuerzburg.de

Abstract
We study the crossing minimization problem in a layered graph drawing of rooted trees whose leaves
have a given fixed order on the first layer. The task is to permute the vertices on the other layers to
minimize the number of crossings. While this problem is known to be NP-hard for multiple trees
even on just two layers, we give a polynomial-time algorithm for the restricted case of two trees. On
the other hand, when restricting the number of layers to three, we describe an XP-algorithm in the
number of trees.

1 Introduction

Visualizing hierarchical structures as directed trees is essential for many applications, from
software engineering [2] to medical ontologies [1] and phylogenetics in biology [12]. Phylo-
genetic trees in particular can serve as an example to illustrate the challenges of working
with hierarchical structures, as they are inferred from large amounts of data using various
computational methods [19] and need to be analyzed and checked for plausibility using
domain knowledge [9]. From a human perspective, visual representations are needed for this
purpose. Most available techniques focus on the visualization of a single tree [6]. However,
certain tasks may require working with multiple, possible interrelated trees, such as the
comparison of trees [9, 11] or analyzing ambiguous lineages [13]. Graham and Kennedy [6]
provide a survey for drawing multipe trees in this context.

While there are many different visualization styles for trees (see an overview by Schulz [15]),
directed node-link diagrams are the standard. The most common approach to visualize a
directed graph as a node-link diagram is the layered drawing approach due to Sugiyama
et al. [17]. After assigning vertices to layers, the next step is to permute the vertices on
each layer such that the number of crossings is minimized, as crossings negatively affect the
readability of a graph drawing [14, 18]. However, this problem turns out to be hard even
when restricting the number of layers or the type of graphs. For example, if the number of
layers is restricted to two, crossing minimization remains NP-hard for general graphs [5], even
if the permutation on one layer is fixed [4], known as the one sided crossing minimization
(OSCM) problem.

For the special case of trees on two layers, OSCM can be solved in polynomial time [7]
and even if both layers are variable, the problem can be reduced to the minimum linear
arrangement problem [16], which is polynomial-time solvable [3]. For arbitrarily many layers,
the problem is still NP-hard even for trees [7], however, the obtained trees in the reduction [7]
are not rooted (and we do not see an obvious way to adjust their construction).
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

49:2 Simultaneous Drawing of Layered Trees

Our Contributions. We consider the crossing minimization problem for an n-vertex forest
of k trees whose vertices are assigned to l layers such that all leaves are on the first layer and
their order is fixed. We first describe a linear-time algorithm for the special case that all but
one tree are paths (see Sec. 3). The general case where k ∈ O(n) is known to be NP-hard [10]
even for l = 2 and trees of maximum degree 4. However, we show that the case k = 2 is
polynomial-time solvable for arbitrary l using a dynamic program (see Sec. 4). Moreover, we
describe an XP-algorithm in k modeling the solution space by a k-dimensional grid graph for
l = 3 (see Sec. 5). We conclude with the elusive open case of k ≥ 3 and l ≥ 4 (see Sec. 6).

2 Preliminaries

. . .

...

T1 T2 TkTk−1

1

2

3

l
. . .

Figure 1 Upward drawing of k disjoint directed rooted trees T1, . . . Tk on l layers. As indicated
by the filled vertices, the total order ≺1 of the first layer is given, while ≺2, . . . ,≺l need to be
determined. In the following figures, we drop the arrow heads and assume an upward direction.

Let F be a forest of k disjoint rooted trees T1, . . . , Tk directed towards the roots such
that all vertices except for the roots have outdegree 1. Let an assignment of vertices to l
layers be given, such that each tree Ti is drawn upward, i.e., for any directed edge (u, v) ∈ Ti,
we have that the layer of u, denoted by L(u), is strictly less than L(v). This implies that
if L(u) = 1, u is a leaf of Ti. The other way around, we also require that for any leaf v,
L(v) = 1 and, for any root r, L(r) = l. We further require that the total order ≺1 of the
first layer (i.e., the order of all leaves) is given as part of the input and defines a crossing-free
embedding Ei with respect to each individual tree Ti, that is, there exists an ordering of the
(non-leaf) vertices of Ti such that no two edges of Ti cross, see Fig. 1 for an illustration. We
let Vj(Ti) denote the (ordered) set of vertices of Ti on the j-th layer. If we refer specifically
to the order of Vj(Ti), we also use ≺ij and, with respect to layer j, we also refer to ≺ij as
a partial order. Furthermore, we define the (unordered) set of all vertices on layer j as
Vj(F) = Vj(T1) ∪ · · · ∪ Vj(Tk).

The task is to find a total order ≺j of Vj(F) for each j ∈ {2, . . . , l} such that the total
number of pairwise edge crossings implied by a corresponding straight-line realization of F is
minimized. We restrict the notion of an upward drawing even further since we require that
for any directed edge (u, v) ∈ Ti, we have that L(u) + 1 = L(v). If our input does not fulfill
this requirement, this can be achieved by subdividing edges which span several layers (as
commonly done in the Sugiyama framework). Henceforth, we assume that n is the number of
vertices after subdivision and n1, . . . , nk is the number of vertices of T1, . . . , Tk, respectively.

The following observation guarantees that in an optimal solution, we have that the partial
order ≺ij for a layer j restricted to the vertices of Ti is consistent with the embedding Ei.

For statements marked with a (?), the proofs are available in the long version on arXiv [8].

I Claim 2.1 (?). In a crossing-minimal drawing of F , no edges of the same tree cross.

J. Katheder, S. Kobourov, A. Kuckuk, M. Pfister, and J. Zink 49:3

Thus, in an optimal solution, the total order of each layer respects the partial orders of
the embeddings of the trees and we only need to combine these partial orders appropriately.

3 One Tree and Multiple Paths on Arbitrarily Many Layers

T1GD

(a) The drawing of T1 along with a bounding box
induces the faces corresponding to the vertices of
the upward dual graph GD. Note that faces with
an equal maximum layer of their respective vertices
are connected by a bidirectional edge in GD.

T1T3 T4 T5T2 T6 T7 T8 T9 T10

(b) Drawing with the minimum number of crossings
of a forest F = {T1, . . . , T10}, while each Ti with
i ∈ {2, . . . , 10} is a path. Note that, for T5 and
T9, two paths in GD have minimum value, yet the
leftmost path is chosen as described in Sec. 3.

Figure 2 Drawing one tree and multiple paths with minimum crossings on arbitrary many layers.

In this section, we sketch out a simple linear-time algorithm to solve the problem for
arbitrary k and l if the given forest is heavily restricted. For more details, see the extended
description of the algorithm in the long version [8].

Let F = {T1, . . . , Tk} be a given forest such that Ti is a path for i ∈ {2, . . . , k}. Recall
that the total order ≺1 allows for a crossing-free drawing D of the tree T1. Consider the
weak dual graph of the union of D and the axis-parallel bounding box of D, that is, the graph
having a node for every inner face of this union and an edge if two faces of D are adjacent.
From this dual graph, we obtain a directed auxiliary graph GD where we add edge directions
towards the faces terminating at a higher layer; see Fig. 2(a). Observe that GD has two sinks.
When assigning unit costs to each edge of GD, the total costs of a directed path P in GD
correspond to the number of crossings a path Ti drawn upward along the faces of P induces.

By the given order of the vertices on the first layer, we know the node f of GD corre-
sponding to the face where a path Ti originates, that is, the face where the leaf of Ti lies.
The optimal way to draw Ti upward is then derived by computing a shortest path P in GD
that starts at f and terminates at one of the two sinks of GD (we consider both sinks as
potential endpoints and take the one admitting the shorter path). In order to ensure that,
for i, j ∈ {2, . . . , k}, no two paths Ti and Tj cross, we always choose the leftmost minimum
cost path as shown in Fig. 2(b).
I Theorem 3.1 (?). Given an n-vertex forest F = {T1, . . . , Tk} on l ∈ O(n) layers whose
leaves have a fixed order on the first layer such that T1 is a directed rooted tree and, for
each i ∈ {2, . . . , k}, Ti is a directed path, we can compute a drawing of F with the minimum
number of crossings in O(n) time.

We remark that we can use the same algorithm in the case when T1 is a planar graph and
the paths T2, . . . , Tk start and end on any layer (although the runtime grows to quadratic).

4 Two Trees on Arbitrarily Many Layers

In this section, we assume that we are given a forest F = {T1, T2} with embeddings E1 and E2.
We fix the drawing of T1 according to E1 and the only remaining task is to add the non-leaf

EuroCG’23

49:4 Simultaneous Drawing of Layered Trees

vertices of T2 in the order prescribed by E2 such that the number of crossings is minimized.
To this end, we describe a dynamic programming approach. In a complete drawing, we

specify, for a vertex v of T2, its position on its layer with respect to the closest neighbor b
of T1 to the right of v. We use the symbol ∅ if there is no such neighbor. Let Pv be the set
of predecessors of v in T2. If v lies on a layer i ≥ 3, we define the number of crossings in an
optimal partial solution for the drawing of the subtree of T2 rooted at v and placed after b as

o[v, b] =
∑

w∈Pv

min
bw∈Vi−1(T1)∪{∅}

(o[w, bw] + c(w, bw, v, b)) ,

where c(w, bw, v, b) is the number of crossings of the edge (w, v) with edges of T1 if bw is the
right neighbor of w and b is the right neighbor of v. This value is solely dependent on the
placement of the vertices v and w within the partial orders ≺1

i and ≺1
i−1, respectively. As

≺1 is fixed, the number of crossings in an optimal partial solution for the second layer is

o[v, b] =
∑

w∈Pv

c(w, bw, v, b) ,

where bw is given by≺1. The minimum number of crossings is then o∗ = min{o[r2, r1], o[r2, ∅]},
where r1 and r2 are the roots of T1 and T2, respectively. We return the drawing corresponding
to o∗, i.e., we specify for each vertex v of T2 its right neighbor b of T1 when computing o∗. If
we have equally good right neighbors for v, we take the leftmost one. Finally, for vertices
of T2 having the same right neighbor, we arrange them in the order given by E2.

Next, we prove the correctness of our dynamic program by the following claims.
I Claim 4.1 (?). The computed drawing of T2 is planar.

Proof sketch. Consider the bottommost layer where the vertices in the computed drawing
of T2 are not arranged as in the given planar embedding. With moving a vertex on this layer,
we could decrease the number of crossings and the values of the dynamic program. J

Following from Claim 4.1, it only remains to consider crossings between T1 and T2.
I Claim 4.2 (?). The number of crossings in the computed drawing is minimum.

Proof sketch. In our dynamic program, all possible arrangements of the endpoints of an edge
e ∈ T2 with respect to T1 are considered, which determine the number of crossings of e. J

I Claim 4.3 (?). The running time of our algorithm is in O(n2
1 · n2) ⊆ O(n3).

Proof sketch. For each edge of T2, we pre-compute the number of crossings depending on its
O(n2

1) possible arrangements in O(n2
1n2) time. We use them then to compute the O(n1n2)

entries o[v, b], where every entry depends on O(n1) other entries, in total O(n2
1n2) time. J

I Theorem 4.4. Let F = {T1, T2} be a n-vertex forest of two rooted trees, each of them
given with a layered upward-planar embedding where all leaves are assigned to layer 1 and
have a fixed order and both roots are assigned to layer k. We can compute a drawing of F
with the minimum number of crossings in O(n3) time.

We remark that we can generalize this approach to a graph G1 with a given layered
upward-planar embedding and a tree T2 because we can do the crossing calculation in the
same way for a graph as for a tree. Though the root layer may contain an arbitrary number
of vertices of G1, the optimal position for the root of T2 can be determined in linear time.

J. Katheder, S. Kobourov, A. Kuckuk, M. Pfister, and J. Zink 49:5

1 5 7 3 4 6 2 8

1 2 3

(a) Here, we are given three trees with a total order
of the vertices on the first and the third layer.

1 5 73 4 62 8

1 2 3

(b) Drawing with the minimum number of crossings
(six pairwise crossings). The total order of the vertices
on the middle layer corresponds to the shortest st-
path highlighted in orange on the right side.

s

t

3 4

6 2

4 4

7 2

7 6

10 4

34 3

9

6 5 5

0

46

25

9 6 8

647

11 8 10

(c) Grid graph H whose st-paths represent pre-
cisely the (allowed) total orders of the vertices
on the second layer. The st-path highlighted in
orange is the shortest path with weight 12.

Figure 3 Reducing the problem of finding a layered drawing of k trees on three layers with the
minimum number of crossings to a shortest-path problem in a weighted k-dimensional grid graph.

5 Multiple Trees on Three Layers

We consider the case that we are given a forest F = {T1, . . . , Tk} of k trees spanning three
layers each. Note that on the third layer there are only the k roots with k! ways to arrange
them. We consider each permutation of the roots individually. Consequently, we henceforth
assume that both the total order ≺1 of the leaves and the total order ≺3 of the roots are
fixed, and the only remaining task is to combine the k given partial orders 〈≺1

2, . . . ,≺k2〉 of
the vertices on the second layer to a total order ≺2.

Let σ be a permutation of V2(F) respecting these partial orders. For i ∈ {1, . . . , k} and
some vertex v ∈ V2(F), we denote the position (starting at 0) of v within the subsequence
of σ consisting of the vertices V2(Ti)∪{v} by piv,σ. Note that, in a drawing using σ as ≺2, we
can charge every crossing to precisely two vertices of V2(F) as any crossing occurs between
two edges that have two distinct endpoints on the second layer. Now we claim that for a
vertex v ∈ V2(Tj), where j ∈ {1, . . . , k}, the number of crossings charged to v with respect
to σ depends only on piv,σ for each i ∈ {1, . . . , k}\{j}. Consider the (crossing-free) embedding
of Ti together with all leaves and roots alone and then insert v and its incident edges onto
the second layer. We denote the resulting number of crossings by civ,p where p = piv,σ. The
number cv,σ of crossings charged to v is then cv,σ =

∑
i∈{1,...,k}\{j} c

i
v,p and the total number

of crossings cσ =
∑
v∈V2(F) cv,σ/2.

I Lemma 5.1 (?). For all combinations of i ∈ {1, . . . , k}, v ∈ V2(F) \ V2(Ti), and p ∈
{0, . . . , |V2(Ti)|}, we can compute every value civ,p in a total of O(n2) time.

We now construct a weighted directed acyclic st-graph H (see Fig. 3) whose st-paths
represent precisely all total orders of V2(F) that respect the partial orders 〈≺1

2, . . . ,≺k2〉.
Moreover, for an st-path π representing a total order σ of V2(F), the weight of π is twice
the number of crossings induced by σ. We let H be the k-dimensional grid graph of side
lengths |V2(T1)| × · · · × |V2(Tk)| directed from one corner to an opposite corner, that is,

EuroCG’23

49:6 Simultaneous Drawing of Layered Trees

H has the node set {(x1, . . . , xk) | x1 ∈ {0, . . . , |V2(T1)|}, . . . , xk ∈ {0, . . . , |V2(Tk)|}} and
there is a directed edge from (x1, . . . , xk) to (y1, . . . , yk) if xj + 1 = yj for exactly one
j ∈ {0, . . . , k} and xi = yi otherwise. Observe that, within H, (0, . . . , 0) is the unique source
and (|V2(T1)|, . . . , |V2(Tk)|) is the unique sink. We denote these nodes by s and t, respectively.
We let the edge from (x1, . . . , xk) to (y1, . . . , yk) where xj + 1 = yj represent (i) taking the
yj-th vertex of V2(Tj), which we denote as v, (ii) after having taken xi vertices of V2(Ti) for
each i ∈ {1, . . . , k}. Thus, we let the weight of this edge be the number of crossings charged
to v in this situation, that is, the weight is

∑
i∈{1,...,k}\{j} c

i
v,xi

.
Clearly, any st-path π in H has length n2. If we traverse π, we can think of the second

layer being empty when we start at s, and then, for each edge of π, we take the corresponding
vertex of V2 and add it to the second layer. Since the edge weights equal the number of
crossings the corresponding vertex would induce in this situation, finding a shortest st-path
in H means finding a crossing-minimal total order ≺2. By construing H (using Lemma 5.1 to
compute the edge weights) and searching for a shortest st-path, we obtain an XP-algorithm
in k; see Theorem 5.2, which we formally prove in the full version [8].

I Theorem 5.2 (?). Given an n-vertex forest F of k directed rooted trees on three layers
whose roots are on the third layer and whose leaves have a fixed order on the first layer, we
can compute a drawing of F with the minimum number of crossings in O(k2nk) time.

We remark that our result also holds for k planar graphs provided that on the third layer
there are O(k) vertices. This includes the case that there are no vertices on the third layer
and we have just two layers. For planar graphs and an arbitrary number of vertices on the
third layer, our result holds if the total order of vertices on the third layer is fixed as well.

6 Open Problems

Can we solve the case l = 3 layers in FPT-time in the number k of trees? Is the case k = 3
and l = 4 polynomial-time solvable, and if so, for which k and l does it become hard?

References
1 Olivier Bodenreider. The unified medical language system (UMLS): Integrating biomedi-

cal terminology. Nucleic Acids Research, 32(suppl_1):267–270, 2004. doi:10.1093/nar/
gkh061.

2 Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer Widom.
Change detection in hierarchically structured information. ACM SIGMOD Record,
25(2):493–504, 1996. doi:10.1145/235968.233366.

3 Fan R. K. Chung. On optimal linear arrangements of trees. Computers and Mathematics
with Applications, 10(1):43–60, 1984. doi:10.1016/0898-1221(84)90085-3.

4 Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379–403, 1994. doi:10.1007/bf01187020.

5 Michael R. Garey and David S. Johnson. Crossing number is NP-complete. SIAM Journal
on Algebraic Discrete Methods, 4(3):312–316, 1983. doi:10.1137/0604033.

6 Martin Graham and Jessie Kennedy. A survey of multiple tree visualisation. Information
Visualization, 9(4):235–252, 2010. doi:10.1057/ivs.2009.29.

7 Martin Harrigan and Patrick Healy. k-level crossing minimization is NP-hard for trees. In
Naoki Katoh and Amit Kumar, editors, Proc. 5th International Workshop on Algorithms
and Computation (WALCOM’11), volume 6552 of Lecture Notes in Computer Science,
pages 70–76. Springer, 2011. doi:10.1007/978-3-642-19094-0_9.

https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1145/235968.233366
https://doi.org/10.1016/0898-1221(84)90085-3
https://doi.org/10.1007/bf01187020
https://doi.org/10.1137/0604033
https://doi.org/10.1057/ivs.2009.29
https://doi.org/10.1007/978-3-642-19094-0_9

J. Katheder, S. Kobourov, A. Kuckuk, M. Pfister, and J. Zink 49:7

8 Julia Katheder, Stephen G. Kobourov, Axel Kuckuk, Maximilian Pfister, and Johannes
Zink. Simultaneous drawing of layered trees. arXiv preprint, 2023. arXiv:2302.11952.

9 Zipeng Liu, Shing Hei Zhan, and Tamara Munzner. Aggregated dendrograms for visual
comparison between many phylogenetic trees. IEEE transactions on visualization and
computer graphics, 26(9):2732–2747, 2019. doi:10.1109/tvcg.2019.2898186.

10 Xavier Muñoz, Walter Unger, and Imrich Vrto. One sided crossing minimization is NP-hard
for sparse graphs. In Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors, Proc.
9th International Symposium on Graph Drawing (GD’01), volume 2265 of Lecture Notes in
Computer Science, pages 115–123. Springer, 2001. doi:10.1007/3-540-45848-4_10.

11 Tamara Munzner, François Guimbretiere, Serdar Tasiran, Li Zhang, and Yunhong Zhou.
Treejuxtaposer: scalable tree comparison using Focus+Context with guaranteed visibility.
ACM Transactions on Graphics, 22(3):453–462, 2003. doi:10.1145/1201775.882291.

12 Georgios A Pavlopoulos, Theodoros G Soldatos, Adriano Barbosa-Silva, and Reinhard
Schneider. A reference guide for tree analysis and visualization. BioData mining, 3(1):1–
24, 2010. doi:10.1186/1756-0381-3-1.

13 Pere Puigbò, Yuri I Wolf, and Eugene V Koonin. Search for a ’tree of life’ in the thicket of
the phylogenetic forest. Journal of Biology, 8(6):1–17, 2009. doi:10.1186/jbiol159.

14 Helen C. Purchase, David A. Carrington, and Jo-Anne Allder. Empirical evaluation of
aesthetics-based graph layout. Empirical Software Engineering, 7(3):233–255, 2002. doi:
10.1023/A:1016344215610.

15 Hans-Jörg Schulz. Treevis.net: A tree visualization reference. IEEE Computer Graphics
and Applications, 31(6):11–15, 2011. doi:10.1109/mcg.2011.103.

16 Farhad Shahrokhi, Ondrej Sýkora, László A. Székely, and Imrich Vrto. On bipartite draw-
ings and the linear arrangement problem. SIAM Journal on Computing, 30(6):1773–1789,
2000. doi:10.1137/S0097539797331671.

17 Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics,
11(2):109–125, 1981. doi:10.1109/TSMC.1981.4308636.

18 Colin Ware, Helen C. Purchase, Linda Colpoys, and Matthew McGill. Cognitive mea-
surements of graph aesthetics. Information Visualization, 1(2):103–110, 2002. doi:
10.1057/palgrave.ivs.9500013.

19 Ziheng Yang and Bruce Rannala. Molecular phylogenetics: principles and practice. Nature
reviews genetics, 13(5):303–314, 2012. doi:10.1038/nrg3186.

EuroCG’23

http://arxiv.org/abs/2302.11952
https://doi.org/10.1109/tvcg.2019.2898186
https://doi.org/10.1007/3-540-45848-4_10
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1186/1756-0381-3-1
https://doi.org/10.1186/jbiol159
https://doi.org/10.1023/A:1016344215610
https://doi.org/10.1023/A:1016344215610
https://doi.org/10.1109/mcg.2011.103
https://doi.org/10.1137/S0097539797331671
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1038/nrg3186

Classification of 2D bichromatic points with
outliers∗

Erwin Glazenburg, Marc van Kreveld, and Frank Staals

Utrecht University
[e.p.glazenburg, m.j.vankreveld, f.staals]@uu.nl

Abstract
Let R ∪ B be a set of n points in R2, and let k be an integer. We present an algorithm to compute
a linear separator ŝ that separates the “red” points R from the “blue” points B with at most k

outliers while minimizing the distance to the farthest outlier in O(nk + n log n) time.

1 Introduction

Classification is a well known and well studied problem: given a “training” set of n data
items with known classes, decide which class to assign to a new query item. A support vector
machine (SVM) [3] is a popular classification method, in particular for binary classification
problems in which there are only two classes: “red” and “blue”. An SVM maps the input data
items to points in some high dimensional Rd, and constructs a hyperplane s that separates
the “red” points R from the “blue” points B “as well as possible”. Intuitively, it tries to
minimize the distance from s to the set Xs ⊆ R ∪ B of points misclassified by s while
maximizing the distance to the closest correctly classified points. A red point counts as
misclassified if it lies strictly on the blue side of s, and vice versa.

Unfortunately, an SVM typically does not provide guarantees on the number of misclassi-
fied points, nor the distances between the points and the separating plane. Our main goal is
to develop a separator that does provide such guarantees, both in terms of the number of
misclassified points, and the distances to the points. We focus on the case where R and B

are sets of points in the plane, as in Figure 1.
Aronov et al. [1] also considered computing optimal separators. They consider minimizing

the following four error measures:

Mmis(s) = |Xs|, the number of misclassified points.
M(s) = Mmax(s) = maxp∈Xs dist(s, p), the maximum distance to a misclassified point.
Msum(s) =

∑
p∈Xs

dist(s, p), the sum of distances to misclassified points.
Msum2(s) =

∑
p∈Xs

dist(s, p)2, the sum of squared distances to misclassified points.

For n points in R2, the running times for computing an optimal separator vary from
O(n log n) for the Mmax measure to O(n2) for the Mmis and Msum2 measures. Har-Peled
and Koltun [7] achieved similar results. Chan [2] showed that minimizing Mmis can even
be done in an output sensitive O((n + k2) log2 n) time, where k is the smallest number of
misclassifications possible.

∗ EG is supported by the Netherlands Organisation for Scientific Research (NWO) under project
OCENW.M20.135.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

50:2 Classification of 2D bichromatic points with outliers

s1

s2

Figure 1 Some red and blue points with two separators s1 and s2. The distances from s1 to its
furthest misclassified points are shown as dashed lines.

Problem Definition. We propose a novel, natural measure that includes both the number
of misclassified points and the distance of the misclassified points to the separating line.
Given a number k we define a separator s to be valid if it misclassifies at most k points, i.e.
Mmis(s) ≤ k. We then wish to find a valid separator ŝopt that minimizes the distance to
the farthest misclassified point, that is, ŝopt = argmins∈V Mmax(s), where V is the set of all
valid separators. We refer to this problem as the k-mis MinMax problem.

Results and Organization. As a warmup, we first consider minimizing the maximum
distance to misclassified points without any constraint on the number of misclassified points.
In Section 2, we prove some useful properties of solutions to this MinMax problem. In
Section 3 we build on these insights and characterize solutions to the k-mis MinMax problem.
In Section 4 we present an O(nk + n log n) time algorithm to find an optimal separator that
misclassifies at most k points. Some proofs are omitted due to a lack of space; these will
appear in the full version of this article.

Notation and definitions. We use the standard point-line duality that maps any point
p = (px, py) in the primal plane to the line p∗ : y = pxx − py in the dual plane, and any line
ℓ : y = mx + c in the primal plane into the point (m, −c) in the dual plane.

We describe an algorithm for finding an optimal separator ŝ that classifies points above
as blue, and points below as red; in the dual this means lines above the separating point ŝ∗

are classified as red and lines below as blue. We can then repeat the algorithm to find the
best separator that classifies the other way around, and finally output the best of the two.

For an arrangement of lines A, the ≤ k-level of A is the set of points for which there are
at most k lines below it, and the k-level is the boundary of this set. Note that a k-level lies
exactly on existing lines in A. The ≥ k-level is defined similarly. Although these terms refer
to a region in the plane, with a slight abuse of notation we will use them to refer to the part
of the arrangement that lies in, or on the boundary of, this region. The 0-level of A is also
called the lower envelope L(A), and the n-level is also called the upper envelope U(A).

Erwin Glazenburg, Marc van Kreveld, and Frank Staals 50:3

s1

s2

m

U(B∗)

L(R∗)

s∗max

s∗1

s∗2

Figure 2 Some primal points and separators (left) with their duals (right). Valid cells for k = 2
are green.

hb
wb

hr

wr

b

r

α

smax(m) = mx + c

Figure 3 The optimal separating line smax(m) for a given slope m, with extremal points r and b.

2 Properties of the MinMax problem

For the MinMax problem we wish to compute ŝmax = argminsM(s), a separator with
minimum distance to the farthest misclassified point.

2.1 Fixed slope
First we consider the problem for lines with a fixed slope m; note that the dual points of
these lines all lie on the vertical line x = m in the dual plane. For slope m there is some
optimal intercept c such that the resulting separating line smax(m) = mx + c minimizes the
error M(smax(m)). The error for any separator with slope m is defined by a red point r

and/or a blue point b, the extremal points in that direction, as in Figure 3. Changing the
intercept will not change which points are extremal, only the distances to these extremal
points. Separator smax(m) minimises distances to r and b, so it is in their middle with equal
distance to both.

▶ Lemma 2.1. In the dual plane, for a fixed slope m the optimal MinMax separator s∗
max(m)

is vertically in the middle of L(R∗) and U(B∗) at x = m.

EuroCG’23

50:4 Classification of 2D bichromatic points with outliers

2.2 Any slope
Let s∗

max = {s∗
max(m) | m ∈ R} be the curve in the dual plane representing the optimal

separator for the MinMax problem for any given slope, shown in black in Figure 2. By
Lemma 2.1 s∗

max is in the middle of the red and blue envelopes U(B∗) and L(R∗) for every
slope. Since the lower or upper envelope of a set of n lines is a polygonal chain with O(n)
vertices, s∗

max is also a polygonal chain with O(n) vertices.

▶ Lemma 2.2. The global optimum ŝ∗
max for the MinMax problem lies on a vertex of s∗

max.

3 Properties of the k-mis MinMax problem

Recall we are given an integer k ≤ n, and a separator s is valid if Mmis(s) ≤ k. We want to
compute an optimal separator ŝopt, which is a valid separator with minimum M(ŝopt).

The MinMax problem is a special case of this problem with k = n. Note that if an
optimal solution to the MinMax problem ŝmax is valid for a given k, it is also an optimal
solution for the k-mis MinMax problem. However ŝmax is not always valid, for example in
Figure 2 where the whole curve s∗

max is invalid.
Any perfect separator sperfect with Mmis(sperfect) = 0 will have error M(sperfect) = 0

as well, and therefor be optimal. We can check if any such separators exist in O(n log n)
time by calculating the envelopes U(B∗) and L(R∗) and intersecting them: all points above
U(B∗) and below L(R∗) are perfect separators. From now on we will assume there are no
perfect separators.

Let A be the arrangement of the dual lines in R∗ ∪ B∗. For any two separators s∗
1 and s∗

2
in the same face of A, Mmis(s∗

1) = Mmis(s∗
2). Let faces containing valid separators be valid

faces. Note that points on the boundary of a valid face are also valid, since in the primal
plane points on the separator are counted as correctly classified.

Let R∗
k be the ≤ k-level of R∗, let B∗

k be the ≥ (n − k)-level of B∗. Then all valid points
lie inside R∗

k ∩ B∗
k, since any point s∗ above R∗

k has more than k red lines below it, so
Mmis(s∗) > k as well, making it invalid (similarly for B∗

k).
This means we are not interested in all of A, but only in the overlay I of R∗

k and B∗
k.

Both R∗
k and B∗

k have complexity O(nk) [5], but we can not yet draw conclusions about the
complexity of I since intersections between R∗

k and B∗
k add additional complexity. Following

an idea of Chan [2] we can form O(k) concave chains such that every edge in R∗
k is covered by

an edge of at least one chain, the concave chain decomposition of R∗
k. Similarly we can form

O(k) convex chains that cover B∗
k. Since a concave chain and a convex chain can intersect at

only two points, there are O(k2) intersections between the concave chains and the convex
chains, and therefore O(k2) intersections between R∗

k and B∗
k. Therefore, the overlay I has

complexity O(nk + k2) = O(nk).
In our algorithm we will want to divide I into vertical slabs divided by vertical lines at

each vertex of s∗
max, as shown in Figure 4. Let S be the resulting arrangement. At any given

slope there are k red and k blue lines in I, by definition of ≤ k-levels, so each vertical line
has only O(k) intersections in I. Since s∗

max has O(n) vertices we add O(n) vertical lines,
adding a total of O(nk) vertices to S. This means S still has complexity O(nk).

Erwin Glazenburg, Marc van Kreveld, and Frank Staals 50:5

Figure 4 An arrangement with vertical slabs S. Every segment of s∗
max defines one slab.

3.1 Properties of the optimum
▶ Lemma 3.1. For a fixed slope m, an optimal separator sopt(m) with that slope is a valid
point s∗

opt(m) in the dual plane with the smallest vertical distance to s∗
max(m).

If there are no valid points in the dual plane at x = m, then all separators with slope m

misclassify more than k points, so s∗
opt(m) does not exist.

Let s∗
opt = {s∗

opt(m) | m ∈ R} be the set of points in the dual plane representing an
optimal separator for the k-mis MinMax problem for any slope, shown in purple in Figure 5.
s∗

opt forms a set of polylines, is non-continuous and need not be defined for every slope.
A global optimum ŝ∗

opt clearly lies on s∗
opt. We can further characterize this optimum:

▶ Lemma 3.2. An optimal dual point ŝ∗
opt is one of the following:

a. A vertex of a valid cell, vertically closest to s∗
max.

b. A (valid) vertex of s∗
max.

c. The valid point vertically closest to a vertex of s∗
max.

d. The intersection of a valid edge with s∗
max.

Proof. Intuition: in the primal plane, the optimal separating line has to be bounded by at
least three points. These can either be extremal points that we want the separator to be as
close to as possible, or points that the separator is not allowed to cross because that would
make it invalid. The four cases are shown in Figure 5.

Proof by contradiction. Let s′∗ be an optimal dual point that is not any of the four cases
a, b, c, d. Then it has to be one of the following five cases, for each of which we show that
we can change s′∗ slightly to decrease M(s′∗), meaning s′∗ was not optimal, a contradiction.

1. s′∗ is not inside a valid face; clearly this is not possible.
2. s′∗ is in the interior of a valid face and not on s∗

max. Then moving vertically towards
s∗

max will decrease M(s′∗) by Lemma 3.1.
3. s′∗ lies in the interior of a valid face and in the interior of an edge of s∗

max. Then moving
to one of the two adjacent vertices will decrease M(s′∗), by the same proof of Lemma 2.2.

4. s′∗ lies in the interior of a valid edge e∗, not on s∗
max and not above/below a s∗

max vertex.
This means primal line s′ goes through point e, as in Figure 6. It has a single extremal
point (if multiple points of the same color would be equally far away we would be below

EuroCG’23

50:6 Classification of 2D bichromatic points with outliers

a
b

c
d

s∗opt

s∗max

r1

b1

b2
b3

r2
r3

r2

r1

b1sopt

b3
b2

r3
sopt

b1

r2
r3

sopt

b1

b2

r3

sopt

Figure 5 Left: the cases a, b, c, d for s∗
opt in the dual plane; the red/blue shaded regions represent

some correctly classified lines. Right: from top to bottom, the cases a, b, c, d for sopt in the primal
plane.

a s∗
max vertex, and if a blue and red point would be equally far away we would be on

s∗
max). W.l.o.g. let the extremal point be a blue point b, and let cb be a circle centered at

b tangent to s′. We can rotate s′ either clockwise or counterclockwise around e (clockwise
in Figure 6) to make it intersect cb, decreasing the distance to b and decreasing M(s′∗).

5. s′∗ lies in the interior of a valid edge e∗ above/below a s∗
max vertex, or on a valid vertex,

but there is another point s2 with the same slope that is closer to s∗
opt. Then s2 is better

by Lemma 3.1.

Now the only remaining cases are cases a, b, c, d, proving the lemma. ◀

▶ Lemma 3.3. There are O(nk) points of type a and d, and O(n) points of type b and c.

e
b

cb

s′∗

Figure 6 Separator s′∗ going through point e with extremal point b.

Erwin Glazenburg, Marc van Kreveld, and Frank Staals 50:7

4 Solving the k-mis MinMax problem

We now have all the ingredients to solve the k-mis MinMax problem in O(nk + n log n) time.

1. Construct L(R∗) and U(B∗). This takes O(n log n) time with a convex hull algorithm [4].
2. Construct s∗

max from L(R∗) and U(B∗). This takes O(n) time by simultaneously scanning
L(R∗) and U(B∗) from left to right.

3. Construct R∗
k and B∗

k. This can be done in O(nk + n log n) time by Everett et al. [5].
4. Overlay R∗

k and B∗
k to get I. Almost all faces in R∗

k are convex, since it is an arrangement
of lines, except for the upper unbounded face which has the k-level as boundary. This face
can be trivially triangulated, making the arrangement convex. The same holds for B∗

k.
We can then use Finke and Hinrichs’ algorithm [6] to overlay two convex arrangements in
time linear in both input and output size, which is O(nk) in our case.

5. Walk through the faces of arrangement I in depth-first search order, maintaining the
number of misclassifications per face, and storing it for each face. For two neighboring
faces F1 and F2, |Mmis(F1) − Mmis(F2)| = 1, since we cross only a single line. This means
we can maintain the number of misclassifications in constant time per step, so going
through the whole arrangement takes O(nk) time.

6. Insert vertical lines into I at each vertex of s∗
max to get S. This can for example be done

in O(nk) time using Finke and Hinrichs algorithm [6].
7. Insert curve s∗

max into S in O(nk) time, again using Finke and Hinrichs algorithm [6].
Let S ′ be the resulting arrangement.

8. Iterate through all vertices of S ′ in O(nk) time. For vertex s∗, if Mmis(s∗) ≤ k, calculate
its error M(s∗). Maintain the vertex with the smallest error.

Step 8 in the above algorithm will iterate through all type a points because they are all
vertices of I, all type b points because these vertices were inserted when inserting s∗

max into
S to get S ′, all type c vertices because they were introduced when inserting the vertical lines
into I to get S, and all type d vertices because they were introduced when inserting s∗

max
into S to get S ′. By Lemma 3.2, we have found the optimal separator.

▶ Theorem 4.1. Let R, B be two sets of red and blue points respectively, with |R ∪ B| = n,
and let k be an integer. We can compute an optimal separating line that misclassifies at most
k points in O(nk + n log n) time.

EuroCG’23

50:8 Classification of 2D bichromatic points with outliers

References
1 Boris Aronov, Delia Garijo, Yurai Núñez Rodríguez, David Rappaport, Carlos Seara, and

Jorge Urrutia. Minimizing the error of linear separators on linearly inseparable data. Discret.
Appl. Math., 160(10-11):1441–1452, 2012. doi:10.1016/j.dam.2012.03.009.

2 Timothy M. Chan. Low-dimensional linear programming with violations. SIAM J. Comput.,
34(4):879–893, 2005. doi:10.1137/S0097539703439404.

3 Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297,
1995. doi:10.1007/BF00994018.

4 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
geometry: algorithms and applications, 3rd Edition. Springer, 2008. URL: https://www.
worldcat.org/oclc/227584184.

5 Hazel Everett, Jean-Marc Robert, and Marc J. van Kreveld. An optimal algorithm for
the (≤ k)-levels, with applications to separation and transversal problems. Int. J. Comput.
Geom. Appl., 6(3):247–261, 1996.

6 Ulrich Finke and Klaus H. Hinrichs. Overlaying simply connected planar subdivisions in
linear time. In Jack Snoeyink, editor, Proceedings of the Eleventh Annual Symposium on
Computational Geometry, pages 119–126. ACM, 1995. doi:10.1145/220279.220292.

7 Sariel Har-Peled and Vladlen Koltun. Separability with outliers. In Algorithms and
Computation, 16th International Symposium, ISAAC 2005, Sanya, Hainan, China, December
19-21, 2005, Proceedings, volume 3827 of Lecture Notes in Computer Science, pages 28–39.
Springer, 2005. doi:10.1007/11602613_5.

https://doi.org/10.1016/j.dam.2012.03.009
https://doi.org/10.1137/S0097539703439404
https://doi.org/10.1007/BF00994018
https://www.worldcat.org/oclc/227584184
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1145/220279.220292
https://doi.org/10.1007/11602613_5

Gradual Simplification of Polylines
Stefan Funke1 and Sabine Storandt2

1 University of Stuttgart
funke@fmi.uni-stuttgart.de

2 University of Konstanz
storandt@inf.uni-konstanz.de

Abstract
We propose the gradual polyline simplification problem, where a fine-grained succession of consistent
simplifications of a given input polyline must be computed. We discuss different problem variants
and present exact and approximate algorithms to solve them efficiently.

1 Introduction

Polyline simplification is the process of reducing the complexity of linear structures while
ensuring that the output still resembles the main features of the input. There is a wide range
of applications for polyline simplification, including data compression, noise reduction in
trajectories, or visualization of linear structures on maps.

Formally, a polyline L = p1, p2, . . . , pn is defined as a sequence of points and the induced
straight line segments between consecutive points. In the polyline simplification problem,
the input is a polyline, a distance measure dX , and a threshold ε > 0. A line segment sij

(also called shortcut) between polyline points pi and pj>i is called valid if dX(sij , L[i, j]) ≤ ε,
where L[i, j] refers to the subpolyline of L from pi to pj . We also refer to dX(sij , L[i, j]) as
the shortcut error of sij . The goal of polyline simplification is to compute a minimum-sized
path from p1 to pn that only uses valid shortcuts. The endpoints of these shortcuts define
the simplified polyline L′ ⊆ L. Typical similarity measures for polylines are the Hausdorff
distance dH and the Fréchet distance dF . The polyline simplification problem can be solved
optimally in O(n2) for dH [5] and in O(n2 log n) for dF [6].

In [3], the problem of progressive simplification was introduced, motivated by the ap-
plication of visualizing polylines on different levels of granularity e.g. in zoomable digital
maps. Here, given a sequence of distance threshold values ε1 < ε2 < · · · < εk, one needs
to find a valid polyline simplification for ε1, followed by a valid polyline simplification for
ε2, and so on, with the constraint that the simplification for εi contains of a subset of the
points chosen for the simplification for εi−1 for all i > 1 (also referred to as consistency).
The optimization goal is to find a sequence of simplifications with the smallest number of
shortcuts accumulated over all simplification levels. It was shown in [3] that the problem can
be solved to optimality in O(n3k) for both dH and dF . Furthermore, a continuous version
was discussed which can be solved in O(n5).

Specifying a reasonable sequence of distance thresholds for progressive simplification is a
non-trivial task. For example, it could easily happen that several consecutive ε values in
the sequence induce the same simplification; thus only adding computational complexity
but no further visual benefits. Furthermore, adding one ε to the sequence might impact all
simplifications, as it might be beneficial to retain certain points in earlier simplifications to
get smaller simplifications in later stages. The continuous version gets rid of the issue of
needing to specify ε1 < ε2 < · · · < εk but at the cost of a significant increase in running time.
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

51:2 Gradual Simplification of Polylines

Figure 1 Example polyline (grey) and gradual simplification (blue and red shortcuts) with the
optimal ordering for sum-error. The red polyline corresponds to the respective simplification of the
input polyline after half the points have been shortcutted.

In this paper, we will introduce and discuss the notion of gradual line simplification as an
alternative to progressive simplification.

2 The Gradual Line Simplification (GLS) Problem

While in progressive line simplification (PLS) the sequence of distance thresholds is provided
as input and the goal is to find the smallest consistent simplification sequence that adheres
to these thresholds, GLS takes an orthogonal view.

▶ Definition 2.1 (Gradual Line Simplification). Given a polyline L = p1, p2, . . . , pn, a gradual
simplification corresponds to an ordering of the inner points p2, . . . , pn−1 which are then
shortcutted in the respective order. The goal is to find a contraction order that minimizes
the maximum shortcut error (max-error) or the total sum of shortcut errors (sum-error).

Figure 1 illustrates the outcome of gradual line simplification on a small example instance.
Consistency is not an issue for GLS as every contraction order yields a consistent simplification
sequence. And compared to PLS, the produced simplification sequence is more fine-grained.
However, GLS deviates from the wide-spread approach for polyline simplification where the
distance threshold ε is provided. In this scenario, the validity of a shortcut is determined
by deciding whether its error is smaller or larger than ε. In GLS, we need to compute the
actual shortcut errors which is computationally more demanding. Nevertheless, we will show
that contraction orders with high quality outputs can be computed efficiently.

3 Algorithms for GLS

We will propose exact and approximate algorithms to find good contraction orders for
max-error GLS and sum-error GLS. The algorithms heavily rely on access to shortcut errors
dX(sij , L[i, j]). Under dH , such errors can be computed in O(j − i) ⊆ O(n). Under dF , using
the algorithms by Alt and Godau [2], the error can be computed in O(n2), or O(n log n) if
parametric search is applied. Recently, a data structure (FDS) proposed by Buchin et al. [4]
allows to preprocess a given polyline in time and space O(n · k3+δ + n2) for δ > 0 and then
answer shortcut error queries in time O(n

k log2 n + log4 n) for some choice of k ∈ [1, n].

S. Funke and S. Storandt 51:3

3.1 Exact Algorithms
We first show that both the max-error and the sum-error problem can be solved to optimality
in polytime. In particular, we design efficient dynamic programs (DP) that require O(n3)
time and O(n2) space.

Let ε(sij) denote the shortcut error of sij with respect to L[i, j]. Further, let εmax(sij)
denote the max-error of an optimal solution of the gradual simplification problem restricted
to L[i, j] (which automatically implies that sij is part of the solution). Similarly, εsum(sij)
denotes the optimal sum-error of gradual polyline simplification for L[i, j]. Let pk be
the last point shortcutted before pi and pj , i.e. the point whose shortcutting resulted
in the insertion of sij . Then the shortcuts (or original segments) sik and skj are part
of the solution as well, and we have εmax(sij) = max{εmax(sik), εmax(skj), ε(sij)} and
εsum(sij) = εsum(sik) + εsum(skj) + ε(sij). Based on these formulas, we can construct the
solution set recursively starting with s1n, which always has to be contained in any solution.
However, we don’t know the value of k if we go top-down. But this can easily be overcome
by iterating over all possible k with i < k < j and picking the minimum resulting max- or
-sum-error. We can store already computed solutions for each sij in a look-up table to avoid
redundant computations. This results in the following dynamic program: We allocate an
n × n table and initially set all entries to 0. In cell cij with i < j, we store εmax(sij) or
εsum(sij), respectively. The table cells are filled by using the above formulas. As we always
need access to all shortcuts of smaller hop length to get the correct results, we consider the
cells sorted increasingly by j − i.

▶ Theorem 3.1. The DP approach solves max-error GLS and sum-error GLS in time O(n3)
under dH and dF , respectively, using quadratic space.

Proof. The created table clearly has a space consumption of Θ(n2). The running time is
determined by the time needed to fill those Θ(n2) cells. To get the correct cell value for
cij , we first need to compute ε(sij) and then iterate over all values k between i and j and
check cells cik and ckj . The latter part can be accomplished in constant time per considered
cell and hence takes O(n) in total. The computation of ε(sij) depends on the distance
measure. For dH , it takes time O(n). For the Frèchet distance, as discussed above, this
would take O(n log n) when using the parametric search technique. However, based on the
FDS by Buchin et al. with a choice of k =

√
n, preprocessing the polyline and determining

all potential shortcut errors can be accomplished in o(n3). Thus, we spend on average O(n)
time per cell for both dH and dF , which amounts to an overall running time of O(n3). ◀

3.2 Approximation Algorithms
The cubic running time and the quadratic space consumption of the exact algorithm might
be prohibitive in practice, especially when dealing with large inputs. Therefore, we next
investigate approximation algorithms with better performance.

We first observe that the max-error problem variant is very easy to approximate for dF

based on a well-known lemma by Agarwal [1], rephrased below in our terminology:

▶ Lemma 3.2. Given a polyline L, consider a shortcut sij for the subpolyline L[i, j] with
error ε. Then for any shortcut sab with i ≤ a < b ≤ j, its error under dF is bounded by
dF (sab, L[a, b]) ≤ 2ε.

According to the lemma, the error of shortcut s1n – which has to be contained in all gradual
simplifications – is at least half the error of any other possible shortcut sab with 1 ≤ a < b ≤ n.
Thus, we get the following corollary.

EuroCG’23

51:4 Gradual Simplification of Polylines

▶ Corollary 3.3. Any ordering is a 2-approximation for max-error GLS under dF .

Now let us turn to the sum-error problem variant. Note that the sum-error variant
coincides with minimizing the average shortcut error, as the total number of shortcuts is n−2
for any ordering. In the following we present and analyze a greedy algorithm for sum-error
GLS. The idea is to simply always choose the point next whose shortcutting will result in
the currently smallest shortcut error.

▶ Theorem 3.4. The greedy ordering is a 4-approximation for sum-error GLS under dF .

Proof. Let L be a polyline of size n. Let S1, . . . , Sn−2 be the shortcuts created by the greedy
algorithm in their insertion order and let π1, . . . , πn−2 denote the the points in L according
to their contraction order. Further, let S∗

1 , . . . , S∗
n−2 be the shortcuts inserted based on an

optimal point ordering. We use Li or L∗
j to refer to the subpolylines shortcutted by Si or

S∗
j , respectively. Furthermore we use ε(S) to denote the shortcut error of a shortcut S.

We construct an assignment of shortcuts inserted by the greedy algorithm to optimal
shortcuts. In particular, we assign shortcut Si to S∗

j if the following two conditions are met:

At the moment before πi is shortcutted by the greedy algorithm, there are at least three
points in L∗

j that are not yet shortcutted, including πi.
Index j is the smallest index in the optimal ordering for which the above property holds.

Note that the assignment is well-defined, as we have S∗
n−2 = s1n and the first condition

is always true for S∗
n−2 as we never shortcut its endpoints.

We now show that if Si is assigned to S∗
j it holds ε(Si) ≤ 2ε(S∗

j). This applies because if
at least three points of L∗

j are not shortcutted before the shortcutting of point πi, we know
that shortcutting the middle of these three points would result in a shortcut for a subpolyline
of L∗

j . According to Lemma 3.2, the error of any such shortcut is upper bounded by 2ε(S∗
j).

As the greedy algorithm selects the next point to shortcut based on the minimum possible
induced error at the current stage, we thus conclude that ε(Si) ≤ 2ε(S∗

j) has to hold as well.
Let now cj be the number of shortcuts Si assigned to a particular shortcut S∗

j in the optimal
solution. Then the greedy sum-error can be upper bound by

∑n−2
i=1 ε(Si) ≤ ∑n−2

j=1 cj · 2ε(S∗
j).

To complete the proof, we will argue that cj ≤ 2 for all j = 1, . . . , n − 2. Assume now
for contradiction that there exists a shortcut S∗

j to which we assigned at least three greedy
shortcuts. Let the respective points that resulted in these shortcut insertions in that order
be q1, q2, q3. Based on the assignment criterion, we have q1, q2, q3 ∈ L∗

j . Furthermore, there
need to be three points that are not shortcutted yet at the point greedy considers q3 in order
for the respective shortcut to get assigned to S∗

j . Hence we have at least also q4, q5 ∈ L∗
j

that are shortcutted after q3. Now we consider the point p∗ that was shortcutted by S∗
j

in the optimal solution. At that moment, there were only the points pl, p∗, pr left in L∗
j ,

where pl is the left endpoint of S∗
j and pr the right one. Hence the shortcuts (or original line

segments) Sl = (pl, p∗) and Sr = (p∗, pr) exist in the optimal solution. If those are shortcuts,
their index needs to be smaller than j, as they were constructed before S∗

j . Now if we have
q1, q2, q3, q4, q5 in L∗

j , at least three of them have to be contained in either the subpolyline
belonging to Sl or Sr. W.l.o.g. assume it is Sl. That automatically implies that Sl is indeed
a shortcut and not an original segment. Now if we shortcut the qi with smallest index i in
Sl (which implies i ≤ 3), we assign Si to Sl, as Sl has a smaller index than S∗

j , and there
are at least three not yet shortcutted points in the respective subpolyline including qi. This
contradicts our claim that Si is assigned to S∗

j . We therefore conclude that cj ≤ 2 holds.
Accordingly, we get

∑n−2
j=1 cj · 2ε(S∗

j) ≤ ∑n−2
j=1 2 · 2ε(S∗

j) = 4
∑n−2

j=1 ε(S∗
j) = 4 · OPT . ◀

S. Funke and S. Storandt 51:5

Thus, a greedy ordering provides simultaneously a 2-approximation for max-error and a
4-approximation for sum-error (or average-error).

Regarding the running time, we observe that the greedy algorithm only needs to compute
linearly many shortcut errors instead of the quadratically many required by the exact
algorithm: There are the initial errors of shortcuts sii+1 for i = 1, . . . , n − 1 which can be
computed in constant time each. Then, after selecting the next point to contract, only the
values for its two former neighbors need to be updated. As there are n − 2 contractions
overall, the total number of non-trivial error computations is 2n − 4. If we use the standard
approach by Alt and Godau, then computing the errors would take O(n3) in total and thus
the running time would not be better than for the exact approach. If we use parameteric
search, then the time decreases to O(n2 log n). For these two variants the space consumption
is linear. However, we can again exploit the FDS by Buchin et al. to achieve further speed-up
(while accepting an increased space consumption).

▶ Lemma 3.5. The greedy algorithm can be implemented to run in O(n2) time and space.

Proof. Recall that FDS requires a preprocessing time of O(n · k3+δ + n2) and has a query
time of O(n

k log2 n + log4 n) for some k ∈ [1, n]. As we need to issue O(n) shortcut error
queries, the total time of the greedy algorithm based on the DS can be expressed as
O(n · k3+δ + n2 + n2

k log2 n + n log4 n). If we choose k to be slightly smaller than n1/3, e.g.
k = n(3−δ)/9, then all summands are in O(n2). Selecting n − 2 times the one with minimum
error among the current O(n) shortcut candidates can also be accomplished in O(n2). ◀

4 Future Work

For the Hausdorff distance, the greedy algorithm could be implemented potentially even
faster when using suitable data structures. But it is unclear whether this would also provide
a constant factor approximation for gradual line simplification. Another direction for future
work would be the investigation of different objective functions, as e.g. the sum of squared
shortcut errors, or the sum over the shortcut errors of each individual simplification.

References
1 Pankaj K Agarwal, Sariel Har-Peled, Nabil H Mustafa, and Yusu Wang. Near-linear time

approximation algorithms for curve simplification. Algorithmica, 42(3), 2005.
2 Helmut Alt and Michael Godau. Computing the fréchet distance between two polygonal

curves. International Journal of Computational Geometry & Applications, 1995.
3 Kevin Buchin, Maximilian Konzack, and Wim Reddingius. Progressive simplification of

polygonal curves. Computational Geometry, 2020.
4 Maike Buchin, Ivor van der Hoog, Tim Ophelders, Lena Schlipf, Rodrigo I. Silveira, and

Frank Staals. Efficient Fréchet Distance Queries for Segments. In 30th Annual European
Symposium on Algorithms (ESA 2022), 2022. doi:10.4230/LIPIcs.ESA.2022.29.

5 Wing Shiu Chan and Francis Chin. Approximation of polygonal curves with minimum
number of line segments or minimum error. International Journal of Computational
Geometry & Applications, 1996.

6 Sabine Storandt and Johannes Zink. Polyline simplification under the local Fréchet distance
has subcubic complexity in 2D. arXiv preprint arXiv:2201.01344, 2022.

EuroCG’23

https://doi.org/10.4230/LIPIcs.ESA.2022.29

The Fréchet mean in the space of segments∗

Sergio Cabello1 and Panos Giannopoulos2

1 Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
Institute of Mathematics, Physics and Mechanics, Slovenia.
sergio.cabello@fmf.uni-lj.si

2 City, University of London, UK
Panos.Giannopoulos@city.ac.uk

Abstract
The Fréchet mean generalizes the classic notion of mean or average to any abstract metric space. We
study the Fréchet mean in the space of straight-line segments in R2 under the Hausdorff distance. First,
we give an example of two segments with infinitely many Fréchet means. Then, we give an algorithm
that computes a (1+ε)-approximation to k-means clustering in O(n8k−2+η+(n/ε)4k+1 log4k+1(n/ε))
time, for any η > 0.

1 Introduction

The Fréchet mean [7] is a generalization of the classic notion of mean or average to any
abstract metric space. For an n-point set P = {p1, . . . , pn} in a metric space (M, d), a
Fréchet mean is any element in the set

arg min
p∈M

n∑

i=1
d2(p, pi).

For Euclidean spaces, the Fréchet mean is the usual arithmetic mean. Other usual means
can be recovered as Fréchet means by considering other distances. Note that, in general
spaces, the Fréchet mean may not be unique or may be the empty set, if the minimum is
not attained. The Fréchet mean has become a well-studied concept in Statistics and in
Riemannian spaces, where sometimes it is known as Karcher mean.

Our objective is to understand the concept and the computation of the Fréchet mean in
the space of segments in the plane under the Hausdorff distance. More generally, we would
like to consider clustering problems in the space of segments, where the cost of each cluster
is given by the functional defining the Fréchet mean. This is the k-means problem. (The
1-means problem is precisely the problem of computing the Fréchet-mean.)

1.1 Formalization of the problem
For each point p ∈ R2, we use x(p) and y(p) for its two coordinates. Thus, p = (x(p), y(p)).
For any two points p, q ∈ R2, we denote by pq the segment with endpoints p and q, and by
|pq| the Euclidean distance between them: |pq|2 = (x(p)− x(q))2 + (y(p)− y(q))2.

Let (S, dH) be the space of closed straight-line segments in R2, where dH is the Hausdorff
distance. Recall that the Hausdorff distance dH(A,B) between any two closed subsets
A,B ⊂ R2 is defined by

dH(A,B) = max
{

max
a∈A

min
b∈B
|ab|, max

b∈B
min
a∈A
|ab|
}
.

∗ Research partially supported by the Slovenian Research Agency (P1-0297, J1-2452, N1-0218, N1-0285).

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

52:2 The Fréchet mean in the space of segments

Define δ(p, s) = minq∈s |pq| for the distance from a point p to a segment or line s. It is well
known and easy to see that for any two segments s1 = a1b1 and s2 = a2b2 in S

dH(s1, s2) = max{δ(a1, s2), δ(b1, s2), δ(a2, s1), δ(b2, s1)}.

We are interested in computing a Fréchet mean in (S, dH). That is, given a set S of n
segments, find a segment s∗1 ∈ S such that the so-called Fréchet variance

costS(s1) :=
∑

s∈S
d2
H(s1, s)

is minimized at s∗1. More generally and motivated by clustering problems, for any k segments
s1, . . . , sk playing the role of “centers” of the cluster, we define the objective function

costS({s1, . . . , sk}) :=
∑

s∈S
min{d2

H(s1, s), . . . , d2
H(sk, s)}

and define the k-means problem as the problem of finding a minimizer.
As we shall see, the problem is already non-trivial even for the Fréchet mean of two

segments. We then present a (1 + ε)-approximation for the k-means problem.

1.2 Related work
The k-means and k-medians clustering problem has been studied extensively in geometric
and general metric spaces. While the mean minimizes the sum of the squares of the distances,
the median minimizes the sum of the distances, and each of these concepts has its own
advantages. For general metric spaces, both k-means and k-median clustering are APX-
hard [3]. For Euclidean k-means, where the input is a set of points, and in fixed dimension,
several PTASs are known [4, 5]. For curves, which are a generalization of segments, previous
work has focused on k-medians [1, 11]. The Fréchet mean has been considered for persistence
diagrams [10, 13], point sets on the unit circle [2], and in the space of graphs [6, 8, 9], to
name a few spaces. For a general, comprehensive treatment of Fréchet means see [12].

2 An example of Fréchet mean in (S, dH)

Let s1 = a1b1, s2 = a2b2 be perpendicular segments, centered at the origin o, with |s1| =
|s2| = 2; see Figure 1. We show that the set of Fréchet means in this case is 3-dimensional.

Let D be the disk centered at o with radius 1 and let D1, . . . , D4 be the disks centered
at a1/2, a2/2, b1/2, b2/2 with radius 1

2 . The region D \ (D1 ∪ · · · ∪D4) has four connected
regions. Let Ai be the closure of the connected region in the i-th quadrant; see Figure 1.

I Theorem 2.1. A segment is a Fréchet mean of {s1, s2} if and only if it goes through the
origin and has its endpoints in different regions A1, . . . , A4.

Proof. Note that dH(s1, s2) = 1. Therefore, for any solution (Fréchet mean) segment s we
have d2

H(s, s1) + d2
H(s, s2) ≤ d2

H(s1, s1) + d2
H(s1, s2) = 0 + d2

H(s1, s2) = 1.
Observe that any solution segment s must pass through the origin. Otherwise, both of

dH(s, s1) and dH(s, s2) can be simultaneously decreased by translating s such that its center
coincides with the origin.

Next, consider a solution segment s = ab that passes through the origin o with its
endpoints a, b in the first and third quadrant, respectively. See Figure 1. Let ac and a′

be the points of intersection of the supporting line ` of s with the boundary of D and the

S. Cabello and P. Giannopoulos 52:3

s2

s1

αo

s
a

a1

a2

a′
a′′

ac

b

b1

b2

`

D2

D1

A2 A1

A3 A4

Figure 1 For the set of segments S = {s1, s2}, there is an infinite family of Fréchet means.

boundary of D2 respectively. Note that ∠oa′a2 is right. As a moves from o to a′, we have
δ(a2, s) = |a2a| > δ(a, s2) and the unique minimum of |a2a| is attained at a = a′. When a
moves from a′ to ac, δ(a2, s) = |a2a

′| is constant. At a = ac we have that δ(a2, s) = δ(ac, s2),
and beyond that δ(a2, s) < δ(a, s2). Similarly, the minimum value of δ(a1, s) is |a1a

′′|, where
a′′ is the projection of a1 onto ` (the intersection of ` with the boundary of D1). We also have
that δ(a1, s) = δ(ac, s1) when a lies between a′′ and ac, and beyond ac, δ(a1, s) < δ(a, s1).

Assume that a′′ ∈ a′ac, as in Figure 1; the other case is symmetric. Using α := ∠aoa1,
for every position of a in the segment a′′ac we have

δ2(a, s1)+δ2(a, s2) ≤ δ2(a1, s)+δ2(a2, s) = |a1a
′′|2+|a2a

′|2 = sin2 α+sin2(π/2−α) = 1.

For every position of a in the segment oa′′ we have δ2(a1, s)+δ2(a2, s) > |a1a
′′|2+|a2a

′|2 = 1,
while for every position of a past ac we have that δ2(a, s1)+δ2(a, s2) > δ2(a1, s)+δ2(a2, s) = 1.

For the endpoint b of s in the third quadrant, the situation is symmetric. Using that the
Haussdorf distance is attained at some endpoint, we get that each segment with an endpoint
in A1 and an endpoint in A3 gives the minimum possible value of d2

H(s, s1) + d2
H(s, s2) ≥ 1,

and therefore is a Fréchet mean. The situation is symmetric for the other quadrants. J

3 A (1 + ε)-approximation for k-means in (S, dH)

We use the following adaptation of the definition of Vigneron [14, Section 2.1]. Let F = {fi :
Rd → R | i ∈ I} be a finite family of functions, where I is some index set. We say that F is
nice if there exists a constant λ > d > 0 such that:

each fi ∈ F is nonnegative and bounded;
for each fi ∈ F , there exists a semialgebraic set supp(fi) ⊆ Rd and an algebraic function
gi of degree at most λ with fi(x) = gi(x) for x ∈ supp(fi) and fi(x) = 0 for x /∈ supp(fi);
for each fi ∈ F , the semialgebraic set supp(fi) ⊆ Rd is a boolean combination of at most
λ subsets of Rd, each of them defined by an algebraic inequality of degree at most λ;
for each fi ∈ F , the restriction of fi to supp(fi) is continuous.

EuroCG’23

52:4 The Fréchet mean in the space of segments

σ(ab)

τ(a, ab)

τ(b, ab) ℓab

ℓ⊥(a, ab)ℓ⊥(b, ab)

b
a

Figure 2 The regions σ(ab), τ(a, ab) and τ(b, ab).

Our use of this concept will be through the following result for computing an approximation
to the minimum of the function

∑
i fi.

I Theorem 3.1 (Adaptation of Theorem 3.4 in Vigneron [14]). Assume that ε ∈ (0, 1).
Let F = {fi : Rd → R | i ∈ I} be a nice family of m functions. Define g =

∑
i∈I fi

and assume that minx∈Rd g(x) exists. Then we can compute a point x′ε ∈ Rd such that
g(x′ε) ≤ (1 + ε) minx∈Rd g(x) in time O(m2d−2+η + (m/ε)d+1 logd+1(m/ε)) for any η > 0.
The constant hidden in the O-notation depends on η.

Let us first consider the simpler case of two segments ab and a′b′ and how their Hausdorff
distance is defined. We parameterize a segment s = ab as the point (x(a), y(a), x(b), y(b)) in
R4. Note that in this parameterization the segments ab and ba give different points in R4.

Let `ab be the line supporting the segment ab. For a point p, the distance δ(p, ab) is given
by one of the three terms |pa|, |pb|, or δ(p, `ab). For each point q ∈ R2 and each segment
ab, let `⊥(q, ab) be the line perpendicular to `ab through q. The lines `⊥(a, ab) and `⊥(b, ab)
partition the plane into three 2-dimensional faces (Figure 2) with closures

σ(ab) = the closed slab between `⊥(a, ab) and `⊥(b, ab),
τ(a, ab) = the closed halfspace defined by `⊥(a, ab) that does not contain b,
τ(b, ab) = the closed halfspace defined by `⊥(b, ab) that does not contain a.

We then have

δ(p, ab) =





|pa| if p ∈ τ(a, ab),
|pb| if p ∈ τ(b, ab),
δ(p, `ab) if p ∈ σ(ab).

For any two segments ab and a′b′, dH(ab, a′b′) is given by one of the functions in the family

F(ab, a′b′) :=
{
|aa′|, |ab′|, |ba′|, |bb′|, δ(a, `a′b′), δ(b, `a′b′), δ(a′, `ab), δ(b′, `ab)

}
.

We next argue that all the expressions involved are algebraic. A point p lies on the line
`⊥(a, ab) if and only the scalar product of the vectors ~ap and ~ab is zero. This is equivalent
to
(
x(p), y(p), x(a), y(a), x(b), y(b)

)
being a zero of the algebraic function

ψ(x, y, xa, ya, xb, yb) := (x− xa)(xb − xa) + (y − ya)(yb − ya).

S. Cabello and P. Giannopoulos 52:5

The sign of this expression also tells on which side of `⊥(a, ab) the point p lies. Symmetrically,
the sign of ψ

(
x(p), y(p), x(b), y(b), x(a), y(a)

)
also tells on which side of `⊥(b, ab) point p is.

In the following, we will treat the segment a′b′ as variable, identified with R4, while the
segment ab will be fixed. We next show that the space R4 can be decomposed into cells
such that, within a cell, the distance is defined always by the same function from F(ab, a′b′).
Such a decomposition is given by the eight algebraic hypersurfaces describing the conditions

a′ ∈ `⊥(a, ab), b′ ∈ `⊥(a, ab), a′ ∈ `⊥(b, ab), b′ ∈ `⊥(b, ab),
a ∈ `⊥(a′, a′b′), b ∈ `⊥(a′, a′b′), a ∈ `⊥(b′, a′b′), b ∈ `⊥(b′, a′b′).

Finally, we note that each function in F(ab, a′b′) is algebraic.
We parameterize the space of (sequences of) k segments a1b1, . . . , akbk by the point

(
x(a1), y(a1), x(b1), y(b1), . . . , x(ak), y(ak), x(bk), y(bk)

)
∈ R4k.

Similarly, each z ∈ R4k defines a k-tuple of segments with s1(z) = a1(z)b1(z), . . . , sk(z) =
ak(z)bk(z) by taking the inverse of the parameterization.

I Theorem 3.2. Let k be a fixed, positive integer and let s be a segment in the plane. In
O(1) time we can construct a nice family Fs = {f : Rk → R} of O(1) functions such that

∀z ∈ Rk :
∑

f∈Fs

f(z) = min
i∈[k]

dH(s, si(z))2.

Proof. Let s = ab be the fixed segment. For each index i ∈ [k], we consider the set Σ(i) of 8
hypersurfaces in R4k, each of them given by one of the following conditions

ai ∈ `⊥(a, ab), bi ∈ `⊥(a, ab), ai ∈ `⊥(b, ab), bi ∈ `⊥(b, ab),
a ∈ `⊥(ai, aibi), b ∈ `⊥(ai, aibi), a ∈ `⊥(bi, aibi), b ∈ `⊥(bi, aibi).

Note that here x(a), y(a), x(b) and y(b) are input data while x(ai), y(ai), x(bi) and y(bi)
are variables defining coordinates in the parameter space R4k.

Let Σ = ∪i∈[k]Σ(i) and let AΣ be the arrangement in R4k induced by Σ. From the
foregoing discussion, we have the following property: for each cell c of AΣ and each index
i ∈ [k], the distance dH(s, si(z)) is described by the same function from F(s, aibi) for all
z ∈ c. To clarify that only the coordinates of ai, bi are relevant in the functions in F(s, aibi),
we change the notation to Gi and take each function gi of Gi to map from R4k to R. Formally,
for each function fi ∈ F(s, aibi) we put into Gi the function gi(z) := fi(ab, si(z)).

We next define a set Λ(s) of hypersurfaces in R4k playing the role of “bisectors”. For
each i, j ∈ [k] with i < j, we define Λ(i, j) as the hypersurfaces given by setting any of the
functions of Gi equal to any of the functions of Gj . Since Gi has 8 functions for each i ∈ [k],
the set Λ(i, j) has 82 = 64 hypersurfaces.

We set Λ = ∪i∈[k] ∪j∈[k]\[i] Λ(i, j). Let AΛ be the arrangement in R4k induced by Λ. For
each cell c ∈ AΛ the sign of each function gi(z)− gj(z) remains constant.

Finally, let A be the arrangement in R4k induced by the hypersurfaces in Σ∪Λ. Consider
a cell c ∈ A. Because c is contained in a cell of AΣ, for each i ∈ [k] there is some function
gc,i ∈ Gi such that dH(s, si(z)) = gc,i(z) for all z ∈ c. Moreover, because c is contained in a
cell of AΛ, for each distinct i, j ∈ [k] the sign of

dH(s, si(z))− dH(s, sj(z)) = gc,i(z)− gc,j(z)

is constant for all z ∈ c. This implies that, for each cell c ∈ A, there exists some index
ι(c) ∈ [k] with the following property: for each z ∈ c it holds mini∈[k] dH(s, si(z)) = gc,ι(c)(z).

EuroCG’23

52:6 The Fréchet mean in the space of segments

For any set A, let 1A be the function with 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A.
For each cell c ∈ A, define the function hc : Rk → R by hc(z) = 1c(z) · gc,ι(c)(z). Finally, set
F := {hc | c ∈ A}. We can then express the function z ∈ R4k 7→ min{dH(s, si(z) | i ∈ [k]} as

min
i∈[k]

dH(s, si(z)) =
∑

c∈A
1c(z) gc,ι(c)(z) =

∑

c∈A
hc(z) =

∑

h∈F
h(z).

Since Σ∪Λ has O(k2) = O(1) hypersurfaces, the arrangement A has O(1) cells, each of them
described by O(1) algebraic inequalities of constant description complexity and the family of
functions F has the desired properties. J

I Theorem 3.3. Let k a fixed, positive integer and let ε ∈ (0, 1). Let S be a family of n > k

segments in the plane. We can compute k segments s1,ε, . . . , sk,ε in R2 such that

costS({s1,ε, . . . , sk,ε}) ≤ (1 + ε) min
{

costS({s1, . . . , sk}) | s1, . . . , sk segments
}
.

in time O(n8k−2+η + (n/ε)4k+1 log4k+1(n/ε)), for any η > 0. The constant hidden in the
O-notation depends on η and on k.

Proof. For each segment s ∈ S we compute the family Fs of Theorem 3.2. Define F = ∪s∈SFs
and the function g =

∑
f∈F f . Note that F is a family of O(n) nice functions and

∀z ∈ R4k : g(z) =
∑

s∈S

∑

f∈Fs

f(z) =
∑

s∈S
min
i∈[k]

dH(s, si(z))2 = costS({s1(z), . . . , sk(z)}).

We can then use Theorem 3.1 to find in time O(|F|2·4k−2+η + (|F|/ε)4k+1 log4k+1(|F|/ε)),
for any η > 0, a point z′ε ∈ R4k such that

g(z′ε) ≤ (1 + ε) min
z∈R4k

costS({s1(z), . . . , sk(z)}).

The point z′ε ∈ R4k defines the segments s1,ε := s1(z′ε), . . . , sk,ε := sk(z′ε). Since s1(z), . . . , sk(z)
goes over all k tuples of segments when z iterates over all R4k, we have

costS({s1,ε, . . . , sk,ε} = g(z′ε) ≤ (1 + ε) min
s1,...,sk

costS({s1, . . . , sk}). J

The next natural step in this line of work is to construct coresets to reduce the number
of segments to consider, while keeping a good estimate of costS(·), and apply Theorem 3.3
to the coreset.

References
1 Maike Buchin, Anne Driemel, and Dennis Rohde. Approximating (k, `)-median cluster-

ing for polygonal curves. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, pages 2697–2717, 2021.

2 Frédéric Cazals, Bernard Delmas, and Timothee O’Donnell. Fréchet mean and p-mean
on the unit circle: Decidability, algorithm, and applications to clustering on the flat torus.
In 19th International Symposium on Experimental Algorithms, SEA 2021, volume 190 of
LIPIcs, pages 15:1–15:16, 2021.

3 Vincent Cohen-Addad, Karthik C. S., and Euiwoong Lee. On approximability of clustering
problems without candidate centers. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, pages 2635–2648, 2021.

S. Cabello and P. Giannopoulos 52:7

4 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approx-
imation schemes for k-means and k-median in Euclidean and minor-free metrics. SIAM
Journal on Computing, 48(2):644–667, 2019.

5 Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA, and projective clustering. SIAM Journal on
Computing, 49(3):601–657, 2020.

6 Daniel Ferguson and François G. Meyer. Computation of the sample Fréchet mean for
sets of large graphs with applications to regression. In Proceedings of the 2022 SIAM
International Conference on Data Mining, SDM 2022, pages 379–387, 2022.

7 M. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié. Annales
de L’Institut Henri Poincaré, 10(4):215–310, 1948.

8 Eric D. Kolaczyk, Lizhen Lin, Steven J. Rosenberg, Jie Xu, and Jackson Walters. Averages
of unlabeled networks: Geometric characterization and asymptotic behavior. The Annals
of Statistics, 48(1):514–538, 2020.

9 François G. Meyer. The Fréchet mean of inhomogeneous random graphs. In Complex Net-
works & Their Applications X - Volume 1, Proceedings of the Tenth International Confer-
ence on Complex Networks and Their Applications, COMPLEX NETWORKS 2021, volume
1015 of Studies in Computational Intelligence, pages 207–219, 2021.

10 Yuriy Mileyko, Sayan Mukherjee, and John Harer. Probability measures on the space of
persistence diagrams. Inverse Problems, 27(12):124007, 2011.

11 Abhinandan Nath and Erin Taylor. k-median clustering under discrete Fréchet and Haus-
dorff distances. In 36th International Symposium on Computational Geometry, SoCG 2020,
volume 164 of LIPIcs, pages 58:1–58:15, 2020.

12 Christof Schötz. The Fréchet Mean and Statistics in Non-Euclidean Spaces. PhD thesis,
Heidelberg University, The Faculty of Mathematics and Computer Science, 2021.

13 Katharine Turner, Yuriy Mileyko, Sayan Mukherjee, and John Harer. Fréchet means for
distributions of persistence diagrams. Discret. Comput. Geom., 52(1):44–70, 2014.

14 Antoine Vigneron. Geometric optimization and sums of algebraic functions. ACM Trans.
Algorithms, 10(1):4:1–4:20, 2014.

EuroCG’23

On the Arrangement of Hyperplanes Determined
by n Points
Michal Opler1, Pavel Valtr2, and Tung Anh Vu3

1 Czech Technical University in Prague
michal.opler@fit.cvut.cz

2 Charles University
valtr@kam.mff.cuni.cz

3 Charles University
tung@kam.mff.cuni.cz

Abstract
For any d ≤ 6 and for any n, we determine the maximum number of cells in the arrangement of
hyperplanes determined by n points in Rd. It is shown that this number can be expressed as a
polynomial in n of degree d2 for any fixed d, and exact formulas for the first d − 1 coefficients of
this polynomial are given.

1 Introduction

Arrangements of lines in the plane and their higher-dimensional generalization, arrangements
of hyperplanes in Rd, are a basic geometric structure. If a finite set of hyperplanes is
in general position, which means that the intersection of every k hyperplanes is (d − k)-
dimensional, k = 2, 3 . . . , d + 1, the arrangement is called simple. If the hyperplanes of
a hyperplane arrangement A are removed from Rd, the remaining part of Rd consists of
connected components called cells of A. The following proposition implies that the number
of cells of a simple arrangement of n hyperplanes in Rd is a function of n and d only, and is
thus independent of the arrangement.
I Proposition 1. The number of cells in a simple arrangement of n hyperplanes in Rd is

Φd(n) =
(
n

0

)
+
(
n

1

)
+ · · ·+

(
n

d

)
.

For d = 2, Proposition 1 says that n lines in general position in the plane partition
the plane into Φ2(n) =

(
n
0
)

+
(

n
1
)

+
(

n
2
)

= n2

2 + n
2 + 1 cells. This fact is well known also

outside of the discrete and computational geometry community due to the fact that it has
several elementary proofs which nicely demonstrate the principle of mathematical induction.
Proposition 1 for general d also has simple proofs using mathematical induction.

In this paper we consider arrangements of all hyperplanes in Rd determined by d-element
subsets of a given set of n points in general position in Rd. In particular, we are interested
in the (maximum) number of cells in such arrangements.

Let P be a set of n ≥ d points in general position in Rd. The affine hull of each d-tuple of
points of P is a hyperplane. We denote the arrangement of these

(
n
d

)
hyperplanes by A(P),

or by A(p1, . . . , pn) if P = {p1, . . . , pn}.
We find it a very natural question to ask how many cells A(P) can have. Surprisingly,

as far as we know, this question has been considered only in dimensions 2 and 3 so far. We
study this question for general d. If P is in a “sufficiently general” position, the number of
cells, denoted fd(n), depends only on n and d. By a computer assisted proof, we determine
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

54:2 On the Arrangement of Hyperplanes Determined by n Points

fd(n) for d ≤ 5 and any n ≥ d. We can also determine f6(n) using a result of Koizumi
et al. [3] who studied the so-called characteristic polynomial of hyperplane arrangements
in vector spaces. It turns out that Koizumi et al. compute the characteristic polynomial
of arrangements up to dimension six which are equivalent to A(P). This is discussed in
more detail in the initial part of Section 3. We also show that for any fixed d, fd(n) can be
expressed as a polynomial in n of degree d2, and in Theorem 3.2 we give exact formulas for
the first two coefficients of this polynomial, which shows the growth rate of fd(n) for any
fixed d. In the second part of Theorem 3.2 we actually show a stronger result that for any
d, the first d− 1 coefficients of fd(n) and Φd(

(
n
d

)
) are equal.

When trying to find some results about the numbers fd(n), we found a discussion on
mathoverflow [2] where the question was asked by Min Wu in February 2020. Few days later
Richard Stanley outlined on the same place how to obtain f2(n) and f3(n). The computation
of f3(n) required some case distinction and relatively complicated formulas appeared in the
computation. Stanley wrote that there could be an error in the computation. It turns out
that his formula for f3(n) was not quite correct but the method works. We managed to
correct the formula and extend the method to higher dimensions.

We now prepare for the definition of the type of “sufficiently general” position which is
suitable for us. Let P be a set of n ≥ d points in general position in Rd. We say that a
hyperplane arrangement B is central if it has a non-empty intersection, i.e., if

⋂
H∈BH 6= ∅.

We associate with every central subarrangement B of A(P) a poset PB of sets ordered by
inclusion defined as

PB := {F ⊆ P | ∃H ∈ B : ∩B ⊆ aff(F) ⊆ H} .

In other words, PB contains all tuples of points from P spanning an affine space that
(i) contains the common intersection of B, and simultaneously (ii) is contained in some
hyperplane H ∈ B. Our definition of a “sufficiently general” position ensures that if a
subarrangement B of A(P) is central then the intersection

⋂B is given by the structure of
the minimal elements of PB. The support SB of B is the set system consisting of the minimal
elements of PB. If the sets in SB are denoted by S1, . . . , Sk, we have

⋂B =
⋂k

i=1 aff(Si). It
follows from a basic result in linear algebra that, under the assumption that B is a central
arrangement, codim (

⋂B) ≤ ∑k
i=1 codim(aff(Si)). Intuitively, the previous inequality is

strict in case of certain degeneracy.
We say that P is in a very general position, if for any central subarrangement B ⊆ A(P)

with support {S1, . . . , Sk} we have

codim
(⋂
B
)

=
k∑

i=1
codim(aff(Si)), (1)

which is equivalent to

dim
(⋂
B
)

=
k∑

i=1
|Si|−(k − 1) · (d+ 1)− 1. (2)

An example of six points in general position in the plane which are not in very general
position is depicted in Figure 1, where the arrangement B of the three lines piqi, i = 1, . . . , 3,
intersecting in a common point has support SB = {{p1, q1}, {p2, q2}, {p3, q3}}, and it holds
that 2 = codim (

⋂B) 6= ∑3
i=1 codim(aff(Si)) = 1 + 1 + 1 = 3.

In the full version of this paper, it is shown that any set in general position can be
perturbed to a set in a very general position. This proposition is used in the proof of the

M. Opler, P. Valtr, T. A. Vu 54:3

p1

q1

p2

q2

p3

q3

Figure 1 The lines given by pairs of points {pi, qi}, i = 1, 2, 3, have a common intersection.

main results, and it also easily implies that any hyperplane arrangement determined by a
set of n points in Rd has at most fd(n) cells. Indeed, if we slightly perturb any point set
to a set in general position and then to a set in very general position, the number of cells
cannot decrease and it reaches exactly the value of fd(n).

We were able to find the related sequences in the On-Line Encyclopedia of Integer
Sequences [7]. Sequence A055503 [6] corresponds to the number of cells in an arrange-
ment of lines determined by n points in very general position in the plane, i.e. f2(n).
Sequence A002817 [4] corresponds to the number of such cells which are bounded. Se-
quence A037255 [5] corresponds to the number of cells in an arrangement of lines determined
by a generic set of n points in the real projective plane. (The sequence for the real projective
plane can be obtained from the previous two sequences as the arithmetic mean of the two
sequences, since if we embed a real plane containing a line arrangement to a real projective
plane then each pair of opposite unbounded cells merges into a single cell.)

Open problems

A natural open problem is to determine or estimate the maximum number of k-faces in a
hyperplane arrangement determined by a set of n points in Rd. It is widely open if there is
a closed formula for fd(n) similar to the one given for Φd(n) in Proposition 1.

2 Warm-up: two-dimensional space

In this section, we count the number of cells in a line arrangement determined by a set P
of n points in very general position in the two-dimensional space. For each cell we assume
without loss of generality that the bottommost point is unique if it exists. Let P ′ be the
set of intersections between all pairs of lines given by

(
P
2
)
, and let Q = P ′ \ P . Each cell C

satisfies exactly one of the following three conditions:

1. the bottommost point of C belongs to P ,
2. the bottommost point of C belongs to Q,
3. C does not have a bottommost point.

In the first case, every point p ∈ P can be a bottommost point of a cell. There are n− 1
lines passing through p, so there are n− 2 cells with p as its bottommost point, see Figure 2
for an example. Thus, the number of cells satisfying condition 1. is

n · (n− 2). (3)

EuroCG’23

54:4 On the Arrangement of Hyperplanes Determined by n Points

p

Figure 2 There are five lines passing through p and only four regions with p as its bottommost
point.

In the second case, the cell C is given by a point q ∈ Q. The number of such points, and
in turn the number of cells satisfying condition 2. is

1
2 ·
(
n

2

)
·
(
n− 2

2

)
. (4)

To count the number of cells that are unbounded from below, consider a horizontal line `
which lies below all points of P ′. Then each unbounded cell is intersected by ` exactly once.
Let L be the set of lines given by all pairs of points of P , and let Q be the set of points
in which lines of L and ` intersect. Projecting each unbounded cell onto ` lets us count
the number of unbounded cells as the number of line segments on ` given by Q and two
additional cells are not bounded from either the left or the right. As such, the number of
unbounded cells is (

n

2

)
+ 1. (5)

By (3), (4), and (5) we have

f2(n) = n(n− 2) +
(
n

2

)(
1
2

(
n− 2

2

)
+ 1
)

+ 1. (6)

3 Computing the characteristic polynomial

In this section, we focus on computing the characteristic polynomial of the arrangement
using a mechanical method that can be implemented by a program. The number of cells as
well as the number of bounded cells can then easily be retrieved from the polynomial.

First, let us formally introduce the characteristic polynomial. Recall that a hyperplane
arrangement A is central if

⋂
H∈AH 6= ∅. The rank of A, denoted by rank(A), is the

dimension of the space spanned by the normals to the hyperplanes in A. For any cen-
tral arrangement A, we have rank(A) = codim(

⋂A). The characteristic polynomial of a
hyperplane arrangement A, denoted by χA(t), is defined as

χA(t) =
∑

B⊆A
B central

(−1)|B|td−rank(B) =
∑

B⊆A
B central

(−1)|B|tdim(
⋂
B).

Note that the characteristic polynomial is typically defined using a so-called intersectional
lattice associated with A and its Möbius function. The equivalence of the definition above
is due to Whitney’s theorem [8, Lemma 2.3.8]. We chose to omit the standard definition as
our approach really boils down to computing the characteristic polynomial as a sum over all
central subarrangements of A. Note that this differs from the approach of Koizumi et al. [3]

M. Opler, P. Valtr, T. A. Vu 54:5

who compute the Möbius function of the intersection lattice and only subsequently recover
the polynomial via its more usual definition.

The connection between the characteristic polynomial and the number of cells of a hy-
perplane arrangement is a celebrated result by Zaslavsky [9]. The number of cells of an
hyperplane arrangement A in a real d-dimensional space is equal to (−1)dχA(−1), while the
number of bounded cells is obtained as (−1)rank(A)χA(1).

3.1 Algorithm for general d-dimensional space

Inspired by the approach used in Section 2, we devise an algorithm that computes the char-
acteristic polynomial of n points in very general position in d-dimensional space expressed
as a polynomial in both t and n.

I Theorem 3.1. There is an algorithm that receives an integer d ∈ N as input and outputs
a polynomial Q(t, n) such that for arbitrary integer n ≥ d and an arbitrary set of n points
Pn ⊂ Rd in very general position, we have Q(t, n) = χA(Pn)(t).

Now, we briefly try to sketch the basic idea behind the algorithm. Recall that we associate
with any subarrangement B a poset PB of sets ordered by inclusion defined in Section 1.
Furthermore, recall that we defined the support SB as the collection of all minimal sets
of PB. Our goal is to show how central arrangements with different supports contribute to
the characteristic polynomial.

We notice that there are only finitely many ways how the support of a central subar-
rangement can look like. We call these classes of isomorphic supports types. It is easy to
prove that there are only finitely many non-isomorphic types as each can contain at most d
sets. For example in three-dimensional space, a central arrangement B intersecting in a com-
mon line can have the following three possible types of support: (i) a single pair of points
{p, q} in the case when all the hyperplanes in B contain the line spanned by p and q, (ii) two
disjoint triples of points {p1, q1, r1}, {p2, q2, r2} in the case when B contains precisely the
two hyperplanes spanned by these triples, and (iii) two triples sharing one common point
{p, q1, r1}, {p, q2, r2} which again corresponds to an arrangement B containing precisely the
two hyperplanes.

The algorithm computes Q(t, n) by enumerating all possible support types and summing
the contributions of all central subarrangements with a given support type. However, we
remark that this is far from a full description of the algorithm since there is a great deal of
non-trivial care needed to handle overcounting.

3.2 Three-, four- and five-dimensional space

We were able to successfully compute the characteristic polynomials for d = 4 and d = 5
by implementing the algorithm of Subsection 3.1. We include below only the polynomials
f3(n), f4(n) and the first three terms of the polynomial f5(n) counting the number of cells
determined by the hyperplane arrangement determined by n points in very general position.
The full characteristic polynomials can be found in [1].

EuroCG’23

54:6 On the Arrangement of Hyperplanes Determined by n Points

f3(n) = 1
1296 n

9 − 1
144 n

8 − 1
27 n

7 + 61
72 n

6 − 2237
432 n5 + 2231

144 n4 − 14945
648 n3 + 41

3 n2

− 13
18 n+ 1

f4(n) = 1
7962624 n

16 − 1
331776 n

15 + 65
1990656 n

14 − 157
497664 n

13 + 1315
442368 n

12 − 923
124416 n

11

− 486709
1990656 n

10 + 198593
55296 n9 − 201042623

7962624 n8 + 108860747
995328 n7 − 103295189

331776 n6

+ 73347065
124416 n5 − 120791941

165888 n4 + 3824591
6912 n3 − 259219

1152 n2 + 531
16 n+ 1

f5(n) = 1
2985984000000 n

25 − 1
59719680000 n

24 + 47
119439360000 n

23 +O(n22)

3.3 Asymptotic behavior
Although we were unable to compute the exact number of cells fd(n) for d > 6, we can
use our techniques to obtain at least their asymptotic growth. It is not hard to deduce
that fd(n) must be a polynomial in n of degree d2. We can however precisely determine
its first d − 1 coefficients, which, somewhat surprisingly, are exactly the same as if the

(
n
d

)

hyperplanes of A(P) were in a general position.

I Theorem 3.2. For every d ≥ 3

fd(n) = 1
(d!)d+1 · n

d2
+ d2 − d3

2 · (d!)d+1 · n
d2−1 +O(nd2−2).

In fact, the first d− 1 coefficients of Φd

((
n
d

))
and fd(n) are equal.

Acknowledgments. The work on this paper was supported by grant no. 21-32817S of the
Czech Science Foundation (GAČR). We thank Kolja Knauer for pointing out some references
to us. The research presented in this paper has been started during the KAMAK workshop
in 2022. We are grateful to the organizers of this wonderful event.

References
1 Anonymized. URL: https://anonymous.4open.science/r/

polynomial-computation-8BC2.
2 Min Wu (https://mathoverflow.net/users/123506/min wu). Number of regions formed by

n points in general position. MathOverflow. URL: https://mathoverflow.net/q/353042
(version: 2020-02-19). URL: https://mathoverflow.net/q/353042.

3 Hiroshi Koizumi, Yasuhide Numata, and Akimichi Takemura. On intersection lattices of
hyperplane arrangements generated by generic points. Ann. Comb., 16(4):789–813, 2012.
doi:10.1007/s00026-012-0161-6.

4 OEIS Foundation Inc. (2022). Entry A002817 in The On-Line Encyclopedia of Integer
Sequences. Accessed 2022-12-03. URL: https://oeis.org/A002817.

5 OEIS Foundation Inc. (2022). Entry A037255 in The On-Line Encyclopedia of Integer
Sequences. Accessed 2022-12-03. URL: https://oeis.org/A037255.

6 OEIS Foundation Inc. (2022). Entry A055503 in The On-Line Encyclopedia of Integer
Sequences. Accessed 2022-12-03. URL: https://oeis.org/A055503.

7 OEIS Foundation Inc. (2022). The On-Line Encyclopedia of Integer Sequences. Published
electronically at http://oeis.org.

https://anonymous.4open.science/r/polynomial-computation-8BC2
https://anonymous.4open.science/r/polynomial-computation-8BC2
https://mathoverflow.net/q/353042
https://doi.org/10.1007/s00026-012-0161-6
https://oeis.org/A002817
https://oeis.org/A037255
https://oeis.org/A055503

M. Opler, P. Valtr, T. A. Vu 54:7

8 Peter Orlik and Hiroaki Terao. Arrangements of hyperplanes, volume 300. Springer Science
& Business Media, 2013.

9 Thomas Zaslavsky. Facing up to arrangements: Face-count formulas for partitions of space
by hyperplanes: Face-count formulas for partitions of space by hyperplanes, volume 154.
American Mathematical Soc., 1975.

EuroCG’23

Map Matching Queries Under Fréchet Distance on
Low-Density Spanners
Kevin Buchin1, Maike Buchin2, Joachim Gudmundsson3, Aleksandr
Popov∗4, and Sampson Wong3

1 Department of Computer Science, TU Dortmund, Germany
kevin.buchin@tu-dortmund.de

2 Faculty of Computer Science, Ruhr-Universität Bochum, Germany
maike.buchin@rub.de

3 School of Computer Science, University of Sydney, Australia
{joachim.gudmundsson, swon7907}@sydney.edu.au

4 Department of Mathematics and Computer Science, TU Eindhoven, The
Netherlands
a.popov@tue.nl

Abstract
Map matching is a common task when analysing GPS tracks, like vehicle trajectories—the goal
is to match a recorded noisy polygonal curve to a path on the map, usually represented as a
geometric graph. Fréchet distance is a commonly used metric for curves, making it a natural fit.
The map-matching problem is well-studied, yet until recently no-one tackled the data structure
question: preprocess a given graph so that one can query the minimum Fréchet distance between
all graph paths and a polygonal curve. Recently, Gudmundsson, Seybold, and Wong have studied
this problem for arbitrary query polygonal curves and c-packed graphs. In this abstract, we relax
the requirement on graphs to be λ-low-density t-spanners, more closely corresponding to real-world
networks. We also show how to report a path that minimises the distance efficiently rather than
only return the minimal distance.

1 Introduction

Location data is ubiquitous, and analysis of that data is a common task. GPS trajectories of
vehicles or people often suffer from being noisy or skipping large portions of the movement.
To analyse them more precisely, one may use map matching. The idea is that the vehicles
move on a road network, so one could snap their trajectories to a road network in a way
that most closely resembles the original, prior to performing further analysis. It is a popular
problem [1, 6, 11, 12, 20, 21], also under the Fréchet distance [2, 4, 5, 7, 8, 10, 18]. There
is also some work on the problem under realistic input assumptions, which aim to exclude
particular types of degenerate instances to provide stronger results, including the work by
Chen, Driemel, Guibas, Nguyen, and Wenk [7], where the graph is low density and the curve
is c-packed. Finally, there is work by Gudmundsson, Seybold, and Wong [9] on the data
structure formulation of the problem, assuming that the graph is c-packed and not making
any assumptions on the query curve.

In this paper, we solve the map matching query problem under realistic assumptions:

▶ Problem 1. Given a geometric graph P = (V, E) with n = |V | + |E|, construct a data
structure that can answer the following queries: for a polygonal curve Q in R2 on m points,

∗ Supported by the Dutch Research Council (NWO) under the project number 612.001.801.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

mailto:kevin.buchin@tu-dortmund.de
mailto:maike.buchin@rub.de
mailto:joachim.gudmundsson@sydney.edu.au
mailto:swon7907@sydney.edu.au
mailto:a.popov@tue.nl

55:2 Map Matching Queries Under Fréchet Distance on Low-Density Spanners

Barcelona
- Plaça

Catalunya

Carre
r d

'Aragó

Carre
r d

'Arag
ó

Via Augusta

Carrer de Muntaner

Carrer d'Aribau

ró de
terols
7 m

Figure 1 An example road network in the centre of Barcelona. The total road length in a disk of
some radius r is closer to cr2 than cr, so this road network is not c-packed; but it is λ-low-density
and a t-spanner for bounded λ and t. Map data from OpenStreetMap [16].

1. compute minπ dF(π, Q) and
2. report arg minπ dF(π, Q),
where π ranges over all paths between two vertices in P .

We use the following graph properties as the realistic input assumptions.

▶ Definition 2. A graph P = (V, E) is λ-low density [17, 19] if for every disk of radius r > 0
in the plane, there are at most λ edges of length at least 2r that intersect the disk.

▶ Definition 3. A graph P = (V, E) is called a t-spanner if for any two vertices u, v ∈ P , we
have dP (u, v) ≤ t · ∥u − v∥, where ∥·∥ is the Euclidean norm.

We present a (1 + ε)-approximation under the assumptions listed above. Our approach
differentiates from previous work by Gudmundsson et al. [9] in two key aspects:

we require the graph P to be λ-low density and a t-spanner, rather than c-packed, which
is a more realistic assumption for a road network [3, 7, 15], while still allowing the query
curve to remain unrestricted;
we tackle the problem of reporting the path that minimises the Fréchet distance.

The relaxation of the graph assumptions is important. Consider the example map of
Figure 1. It is clear that this road network is a t-spanner and λ-low-density for some low
t and λ. However, it is not c-packed, as that would require the total length of roads be at
most cr in all disks of radius r, and it is instead often much closer to cr2. On some scale,

K. Buchin, M. Buchin, J. Gudmundsson, A. Popov, and S. Wong 55:3

this problem arises with many road networks, including city streets or motorways. Therefore,
our assumptions make the approach significantly more applicable on real-life road networks.

In order to achieve these results, we have to use different techniques, albeit at the cost
of a

√
n factor replacing a polylogarithmic factor in the running time. Where the paper by

Gudmundsson et al. [9] uses a semi-separated pair decomposition, we construct a hierarchy
of small balanced separators and store appropriate associated data to guide the search for
the optimal Fréchet distance. Combined with the changes in analysis and the capability to
report the optimal curve, we get the following result.

▶ Theorem 4. Suppose we are given a λ-low-density t-spanner of complexity n and a fixed
0 < ε < 1. Let χ = 1/ε2 log 1/ε and let φ = (λ/ε3 + t2/ε2)2. In time O(λχ2n

5/2 log n) and
using O(λχ2n

3/2) space, we can construct a data structure for Problem 1 achieving a (1 + ε)-
approximation that performs distance queries in time O(m

√
n log mn · φ · λ/ε · (log2 n + log n ·

φ + φ · λ/ε)), and answers the reporting queries for a path of length k in O(k/ε) extra time.

The rest of the paper is organised as follows. We first tackle the simpler problem of finding
a path in the graph that most closely follows a line segment between two vertices of the graph
in terms of the Fréchet distance in Section 3. In that setting, we find a 3-approximation. In
Section 4, we generalise this to an arbitrary query line segment that does not have to start or
end at a graph vertex, and show how to achieve a (1 + ε)-approximation. We also describe
how to report a path that corresponds to a (1 + ε)-approximation. Finally, in Section 5, we
discuss how to combine the segment queries in order to handle a polygonal curve.

2 Preliminaries

In this paper, we work with geometric graphs, that is, graphs embedded in the plane with
straight-line edges. For a graph P = (V, E), we denote its complexity as n = |V | + |E|.
Depending on the context, P either means the graph or its set of vertices V . We denote the
fact that a path π goes from p ∈ V to q ∈ V by π : p⇝ q. We use one more graph property
in this paper. An edge is cut by a disk if exactly one of its endpoints is inside the disk.

▶ Definition 5. A graph P = (V, E) is τ -lanky [13] if for every disk of radius r > 0 centred
at any vertex v ∈ V , there are at most τ edges of length at least r that are cut by the disk.

A τ -lanky graph has degree at most τ ; and any λ-low-density graph is also λ-lanky.
The query is a polygonal curve in the plane, that is, a sequence of points in R2 connected

with line segments. For the query curve Q, let m be the number of points in the sequence.

3 Straightest Path Queries

In this section, we present a 3-approximation to the following problem, so that for the value
r that we return, we have minπ dF(π, pq) ≤ r ≤ 3 · minπ dF(π, pq). Recall that n = |V | + |E|.

▶ Problem 6. Given a geometric graph P , construct a data structure that can answer the
following queries: for a pair of vertices p, q ∈ P , compute minπ dF(π, pq), where π : p⇝ q.

In order to solve the problem efficiently, we impose an additional constraint on P : we
require that P has a graph property satisfying two criteria:
1. the property is decreasing monotone, so holds on all induced subgraphs;
2. and any graph with the property admits an O(

√
n)-size separator.

EuroCG’23

55:4 Map Matching Queries Under Fréchet Distance on Low-Density Spanners

1

2 3

4 5 6 7

10 11

1

1 3

36

7

2

44

5

10

11

Figure 2 A representation of the hierarchy (left) for the graph (right). A query segment is shown
in magenta, a possible path in blue. We check nodes 5, 2, and 1. If we pick the transit vertex in 5,
then the path may be 10 → 2 → 5, so we may need to go up the tree to find the next transit pair.

An example of such a property is planarity: any subgraph of a planar graph is planar,
and the existence of small separators in planar graphs is a classical result [14]. However, not
all road networks are planar, as most road networks include bridges and tunnels. Instead, we
require that P is τ -lanky [13]. It is trivial to show that any subgraph of a τ -lanky graph
is also τ -lanky; and Le and Than [13] show that a τ -lanky graph of complexity n admits a
balanced separator of size O(τ

√
n) that can be found in O(τn) expected time.

Intuition. When constructing the data structure, we can invoke an existing algorithm by
Alt, Efrat, Rote, and Wenk in order to compute the Fréchet distance between a line segment
and paths in a graph [2]. Broadly, the idea is to find sufficient structure in the graph to be
able to find a small set of vertices so that any path in the graph passes through at least
one of these vertices; we call them transit vertices. Then we can precompute the distances
between the optimal path and the line segment when going from any vertex of the graph
to one of the transit vertices. At query time, we then only need to find an optimal transit
vertex. Since we are composing two paths, the computed distance is only a 3-approximation.

More specifically, a balanced separator in a graph forms a set of transit vertices. We can
compute them hierarchically and store them with the precomputed distances in a binary
tree. At query time, we can efficiently find all the relevant transit vertices. See Figure 2.

Data structure. We construct a hierarchy of separators on the graph and store it as a binary
tree with extra information. Each node in the tree represents both an induced subgraph of
P , and a separator of that induced subgraph. Consider the node i corresponding to some
induced subgraph Pi of P . Node i represents the balanced separator Si, i.e. the subset
of vertices of Pi splitting it into two subgraphs Ai and Bi. The root stores the top-level
balanced separator for the entire graph. The two children of each node correspond to the
subgraphs Ai and Bi. The recursion ends when the subgraphs in the leaves are of some
constant size. In a leaf i, assign Si = Pi. For every pair of vertices (p, s) ∈ Pi × Si, we store
minπ dF(π, ps), where π : p⇝ s in P . (Note that a path π may leave Pi.) We call all vertices
in Si transit vertices; and all pairs (p, s) ∈ Pi × Si are called transit pairs.

In addition, for each vertex v ∈ P , we store the pointer to the tree node i so that v ∈ Si.
There is exactly one such node in the tree for every vertex: a vertex is either in a separator
or in one of the induced subgraphs (or eventually in a leaf, treated as Si).

Construction. We construct the hierarchy top–down, computing the separators on the
induced subgraphs at every level using the result of Le and Than [13]. For each transit

K. Buchin, M. Buchin, J. Gudmundsson, A. Popov, and S. Wong 55:5

pair (p, s) in a node, we can compute the appropriate Fréchet distance in the original graph
using the algorithm by Alt et al. [2], extended by Gudmundsson et al. [9, Lemma 13]. As we
construct the separators, also store in a table the pointer for each vertex to the correct node.

Distance query. Suppose the query is to find the minimal Fréchet distance between the
segment pq and some path between p and q. Initialise opt = ∞. First, we use the table to
find the pointers to the two nodes in the tree i and j so that p ∈ Si and q ∈ Sj . Then we
find their lowest common ancestor, call it node a. For every node a′ on the path from a to
the root of the tree, perform the following procedure.

Denote Duv = minπ dF(π, uv) over all π : u ⇝ v. For the query pq, denote D′
u =

minr∈pq∥r − u∥, so the shortest distance between u and any point on pq. For all s ∈ Sa′ ,
fetch the stored Dps and Dsq and compute D′

s. Then compute D = max(Dps, Dsq) + D′
s

and finally assign opt = min(opt, D). At the end, return opt.

Correctness. We show that we consider all the relevant transit vertices.

▶ Lemma 7. For the query pq, the procedure considers a transit vertex s such that s lies on
the optimal path π = arg minπ′ dF(π′, pq), where π′ : p⇝ q.

Proof. We consider two cases based on where the lowest common ancestor is found. Suppose
that the lowest common ancestor a contains p, q, or both in the separator, i.e. p ∈ Sa or
q ∈ Sa, and so s = p or s = q. Then π passes through s, and we test s as a transit vertex.

Now assume that Sa does not contain p or q; then p and q are separated by Sa. If the
path π stays within the subgraph Pa, then it has to cross through some s ∈ Sa, which we
test. If not, then it intersects some separator that separates Pa from the rest of the graph;
and we test exactly all the vertices in these separators, on the path from a to the root. ◀

Omitting some further analysis, we get the result of this section.

▶ Theorem 8. Given a τ -lanky graph of complexity n, we can construct the data structure
for Problem 6 in time O(τn

5/2 log n) and using O(τn
√

n) space, so the distance queries can
be answered in time O(τ

√
n).

4 Map Matching Segment Queries

In this section, we briefly discuss the extension to a (1 + ε)-approximation and reporting.
Let xy be an arbitrary query segment. We can immediately use the approach of Section 3
on arbitrary query segments, with a tweak. To get a (1 + ε)-approximation, we construct
an exponential grid around each graph vertex that is denser closer to the vertex. For every
transit pair, we compute the distances for all pairs of grid points. At query time, we sample
the query segment to find the right spot in the Fréchet alignment for the transit vertex.

Next we discuss the modifications that are required to also report a curve that realises
(1 + ε)-approximate distance. First, we impose fixed coordinates for the sample points that
we take on the query segment when aligning the transit vertex: they have to be located at
points that are O(k/ε) away from a fixed point on the line containing xy for some natural k.

Next, we describe the modifications to the data structure. To handle reporting, with
each transit pair, for each pair of grid points, in addition to the Fréchet distance, we also
store the first vertex on the optimal path, so p′ ∈ P such that for π′ = arg minπ dF(π, xz),
the path π′ is of the shape π′ : p → p′ ⇝ s. (Here z is the point on xy that maps to s.)

EuroCG’23

55:6 Map Matching Queries Under Fréchet Distance on Low-Density Spanners

q

s

p′

p

x

y

z

Figure 3 A query trajectory xy is shown in magenta, and the optimal path in the graph is shown
in blue. We sample points on xy at regular distance and snap them to the exponential grid around
the graph vertices. Once we find z on xy that maps to the transit vertex s, we can query the pair
ps with (snapped) xz to find the next vertex p′.

The query proceeds as follows. Perform the distance query for xy and record the optimal
transit vertex s. Find the point z among the O(1/ε) samples on xy that aligns with s. Query
the pairs (p, s) and (s, q) with xz and zy, respectively, and retrieve the stored adjacent
vertices p′ and q′. Repeat until the path is reported. If p and q are both in a leaf, we proceed
as if s = q. Suppose s ∈ Si. If the optimal path leaves Pi, then it may be that p′ /∈ Pi, and
the pair (p′, s) is not stored in node i. However, then p′ must be in some separator between
Pi and a subgraph Pj , on the path from i to the root. Thus, we can go up until we find
p′ ∈ Sj , and continue the procedure for the transit pair (s, p′). See Figure 3.

The modifications do not affect construction time or space, and cost extra O(log n + k/ε)
time to report a path of length k. We show that we report a (1 + ε)-approximate path.

▶ Lemma 9. For query xy, if π = arg minπ∗ dF(π∗, xy) is of the shape π : p → p′ ⇝ s, and
p′ is aligned under the Fréchet alignment to some x′ ∈ xy, then π′ = arg minπ∗ dF(π∗, x′y)
of the shape π′ : p′ ⇝ s is a subpath of π.

Proof. The sample points are placed on the line segment independently from context, so the
location of sample points is the same on xy and x′y. We snap these sample points to the grid,
and the grid does not depend on the path. Thus, we can view xy as a sequence of grid points
that all possible sample points would snap to; and x′y then snaps to a subsequence of those
grid points. For the pairs of grid points, the distances are computed exactly; so compared to
a distance query, we do not introduce extra error, and so we get a (1 + ε)-approximation. ◀

5 Complete Map Matching Queries

The rest of the approach is the same as for Gudmundsson et al. [9]; we need to show it still
can be used in our setting, but we omit the proof here. The remaining data structures aim to
select a small number of points in the graph in any window of size r that are εr-close to any
point in the graph. This allows us to test the possible start and end points for (sub)paths.
In the end, we obtain Theorem 4.

References
1 Mohamed Ali, John Krumm, Travis Rautman, and Ankur Teredesai. ACM SIGSPATIAL

GIS cup 2012. In Isabel Cruz, Craig Knoblock, Peer Kröger, Egemen Tanin, and Peter
Widmayer, editors, Proceedings of the 20th International Conference on Advances in Geo-

K. Buchin, M. Buchin, J. Gudmundsson, A. Popov, and S. Wong 55:7

graphic Information Systems (SIGSPATIAL 2012), pages 597–600, New York, NY, USA,
2012. ACM. doi:10.1145/2424321.2424426.

2 Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar maps. Journal
of Algorithms, 49(2):262–283, 2003. doi:10.1016/S0196-6774(03)00085-3.

3 Boris Aronov, Kevin Buchin, Maike Buchin, Bart Jansen, Tom de Jong, Marc van Kreveld,
Maarten Löffler, Jun Luo, Rodrigo I. Silveira, and Bettina Speckmann. Connect the dot:
Computing feed-links for network extension. Journal of Spatial Information Science, 3:3–31,
2011. doi:10.5311/JOSIS.2011.3.47.

4 Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching
vehicle tracking data. In Kjell Bratbergsengen, editor, Proceedings of the 31st International
Conference on Very Large Data Bases (VLDB 2005), pages 853–864, Los Angeles, CA, USA,
2005. VLDB Endowment. URL: https://dl.acm.org/doi/10.5555/1083592.1083691.

5 Erin Chambers, Brittany Terese Fasy, Yusu Wang, and Carola Wenk. Map-matching using
shortest paths. ACM Transactions on Spatial Algorithms and Systems, 6(1):6:1–6:17, 2020.
doi:10.1145/3368617.

6 Pingfu Chao, Yehong Xu, Wen Hua, and Xiaofang Zhou. A survey on map-matching
algorithms. In Renata Borovica-Gajic, Jianzhong Qi, and Weiqing Wang, editors, Databases
Theory and Applications: 31st Australasian Database Conference (ADC 2020), volume 12008
of Lecture Notes in Computer Science, pages 121–133, Berlin, Germany, 2020. Springer.
doi:10.1007/978-3-030-39469-1_10.

7 Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Carola Wenk. Approx-
imate map matching with respect to the Fréchet distance. In Matthias Müller-Hannemann
and Renato Werneck, editors, Proceedings of the 2011 Workshop on Algorithm Engin-
eering and Experiments (ALENEX), pages 75–83, Philadelphia, PA, USA, 2011. SIAM.
doi:10.1137/1.9781611972917.8.

8 Daniel Chen, Christian Sommer, and Daniel Wolleb. Fast map matching with vertex-
monotone Fréchet distance. In Matthias Müller-Hannemann and Federico Perea, editors,
21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS 2021), volume 96 of Open Access Series in Informatics (OASIcs), pages
10:1–10:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/OASIcs.ATMOS.2021.10.

9 Joachim Gudmundsson, Martin P. Seybold, and Sampson Wong. Map matching queries
on realistic input graphs under the Fréchet distance. In Nikhil Bansal and Viswanath
Nagarajan, editors, Proceedings of the 2023 Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA), pages 1464–1492, Philadelphia, PA, USA, 2023. SIAM. doi:10.1137/
1.9781611977554.ch53.

10 Joachim Gudmundsson and Michiel Smid. Fast algorithms for approximate Fréchet matching
queries in geometric trees. Computational Geometry: Theory & Applications, 48(6):479–494,
2015. doi:10.1016/j.comgeo.2015.02.003.

11 Mahdi Hashemi and Hassan A. Karimi. A critical review of real-time map-matching
algorithms: Current issues and future directions. Computers, Environment and Urban
Systems, 48:153–165, 2014. doi:10.1016/j.compenvurbsys.2014.07.009.

12 Matej Kubicka, Arben Cela, Hugues Mounier, and Silviu-Iulian Niculescu. Comparative
study and application-oriented classification of vehicular map-matching methods. IEEE
Intelligent Transportation Systems Magazine, 10(2):150–166, 2018. doi:10.1109/MITS.
2018.2806630.

13 Hung Le and Cuong Than. Greedy spanners in Euclidean spaces admit sublinear separators.
In Joseph Naor and Niv Buchbinder, editors, Proceedings of the 2022 Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA), pages 3287–3310, Philadelphia, PA, USA, 2022.
SIAM. doi:10.1137/1.9781611977073.130.

EuroCG’23

https://doi.org/10.1145/2424321.2424426
https://doi.org/10.1016/S0196-6774(03)00085-3
https://doi.org/10.5311/JOSIS.2011.3.47
https://dl.acm.org/doi/10.5555/1083592.1083691
https://doi.org/10.1145/3368617
https://doi.org/10.1007/978-3-030-39469-1_10
https://doi.org/10.1137/1.9781611972917.8
https://doi.org/10.4230/OASIcs.ATMOS.2021.10
https://doi.org/10.1137/1.9781611977554.ch53
https://doi.org/10.1137/1.9781611977554.ch53
https://doi.org/10.1016/j.comgeo.2015.02.003
https://doi.org/10.1016/j.compenvurbsys.2014.07.009
https://doi.org/10.1109/MITS.2018.2806630
https://doi.org/10.1109/MITS.2018.2806630
https://doi.org/10.1137/1.9781611977073.130

55:8 Map Matching Queries Under Fréchet Distance on Low-Density Spanners

14 Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979. doi:10.1137/0136016.

15 Stig Nordbeck. Computing distances in road networks. Papers in Regional Science, 12(1):207–
220, 1964. doi:10.1111/j.1435-5597.1964.tb01266.x.

16 OpenStreetMap. Map data, 2023. URL: https://openstreetmap.org.
17 Otfried Schwarzkopf and Jules Vleugels. Range searching in low-density environments. In-

formation Processing Letters, 60(3):121–127, 1996. doi:10.1016/S0020-0190(96)00154-8.
18 Martin P. Seybold. Robust map matching for heterogeneous data via dominance decomposi-

tions. In Nitesh Chawla and Wei Wang, editors, Proceedings of the 2017 SIAM International
Conference on Data Mining (SDM), pages 813–821, Philadelphia, PA, USA, 2017. SIAM.
doi:10.1137/1.9781611974973.91.

19 A. Frank van der Stappen. Motion Planning Amidst Fat Obstacles. PhD thesis, Uni-
versiteit Utrecht, 1994. URL: https://webspace.science.uu.nl/~stapp101/PhDThesis_
AFvanderStappen.pdf.

20 Hong Wei, Yin Wang, George Forman, and Yanmin Zhu. Map matching: Comparison of
approaches using sparse and noisy data. In Craig Knoblock, Peer Kröger, John Krumm,
Markus Schneider, and Peter Widmayer, editors, Proceedings of the 21st International
Conference on Advances in Geographic Information Systems (SIGSPATIAL 2013), pages
444–447, New York, NY, USA, 2013. ACM. doi:10.1145/2525314.2525456.

21 Yu Zheng and Xiaofang Zhou, editors. Computing with Spatial Trajectories. Springer, Berlin,
Germany, 2011. doi:10.1007/978-1-4614-1629-6.

https://doi.org/10.1137/0136016
https://doi.org/10.1111/j.1435-5597.1964.tb01266.x
https://openstreetmap.org
https://doi.org/10.1016/S0020-0190(96)00154-8
https://doi.org/10.1137/1.9781611974973.91
https://webspace.science.uu.nl/~stapp101/PhDThesis_AFvanderStappen.pdf
https://webspace.science.uu.nl/~stapp101/PhDThesis_AFvanderStappen.pdf
https://doi.org/10.1145/2525314.2525456
https://doi.org/10.1007/978-1-4614-1629-6

Simultaneous Representation of Interval Graphs in
the Sunflower Case
Ignaz Rutter1 and Peter Stumpf1

1 Faculty of Computer Science and Mathematics, University of Passau, Germany
{rutter,stumpf}@fim.uni-passau.de

Abstract
A simultaneous representation of graphs G1, . . . , Gk consists of a (geometric) intersection represen-
tation Ri for each graph Gi such that each vertex v is represented by the same geometric object in
each Ri for which Gi contains v. While the existence of simultaneous interval representations for
k = 2 can be tested efficiently [8], testing it for graphs where k is part of the input is NP-complete [3].
An important special case of simultaneous representations is the sunflower case, where Gi ∩ Gj

is the same shared graph S for each i 6= j. We give a polynomial-time algorithm for deciding the
existence of a simultaneous interval representation for the sunflower case, even when k is not fixed.
This answers an open question of Jampani and Lubiw [10].

1 Introduction

A fundamental problem in the area of intersection graphs is the recognition problem, where
the task is to decide whether a given graph G admits a particular type of (geometric)
intersection representation. The simultaneous representation problem is a generalization
of the recognition problem which asks for k input graphs G1, . . . , Gk whether there exist
corresponding representations R1, . . . , Rk such that each vertex v that is shared by two
graphs Gi and Gj is represented by the same geometric object in Ri and in Rj . For ease
of notation, we refer to G = (G1, . . . , Gk) as a simultaneous graph, and to R = (R1, . . . , Rk)
as a simultaneous representation. In a sunflower simultaneous graph, any two graphs Gi
and Gj with i 6= j share the same shared graph S.

Simultaneous representations have first been studied in the context of graph embeddings
where the goal is to embed each simultaneous graph without edge crossings while any
shared vertices have the same coordinates in all embeddings; see [1] for a survey. The
notion of simultaneous representation of general intersection graph classes was introduced by
Jampani and Lubiw, who gave an O(n3)-algorithms for recognizing simultaneous sunflower
permutation graphs [10], proved NP-completeness for sunflower chordal graphs [10], and gave
an O(n2 logn)-time algorithm for simultaneous interval graphs with k = 2 [8]. The running
times of the algorithms were subsequently reduced to optimal linear time [2, 12].

Since then, the simultaneous representation problem has also been studied for proper
and unit interval graphs [13] as well as circle graphs [6]. Bok and Jedličková showed that
recognizing simultaneous non-sunflower interval graphs with k not fixed is NP-complete [3].
We show how to efficiently recognize simultaneous sunflower interval graphs when the number
of input graphs is not fixed, thereby answering the open question of Jampani and Lubiw [9].

2 Preliminaries

For n ∈ N we set [n] = {j ∈ N | 1 ≤ j ≤ n}. In this paper all graphs are simple. Theorems
and lemmas marked with a star (?) are proven in the full version.
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

56:2 Simultaneous Representation of Interval Graphs in the Sunflower Case

G1 G2a b

j

i a

b h c j d
e f

g l
c

dk

e f
a

g

b c

j

d

k

l

i h

Figure 1 A simultenous graph G = (G1, G2) and a simultenous interval representation of G

Simultaneous Interval Graphs An interval representation R = {Iv | v ∈ V } of a graph
G = (V,E) associates with each vertex v ∈ V an interval Iv = [x, y] ⊂ R such that for each
pair of vertices u, v ∈ V we have Iu∩ Iv 6= ∅ ⇔ uv ∈ E; see Figure 1. In the following we only
consider sunflower graphs G = (G1, . . . , Gk) with shared graph S. Note that it is necessary
that S is an induced subgraph of each input graph Gi. For a graph G and a vertex v ∈ V (G)
let C(v) denote its maximal cliques containing v. A valid clique ordering of G is a linear
ordering of the maximal cliques of G such that for each v ∈ V (G) the set C(v) is consecutive.

I Proposition 2.1 (Fulkerson and Gross [7]). A graph is an interval graph if and only if it
admits a valid clique ordering.

Let G = (G1, . . . , Gk) be a sunflower graph with shared graph S. Let Ci denote the set of
maximal cliques of Gi and let C =

⋃k
i=1 Ci. For a vertex v ∈ V (Gi), we define Ci(v) = {C ∈

Ci | v ∈ C} and for v ∈ V (S), we define C(v) = {C ∈ C | v ∈ C}. We further define C(S) as
the set of maximal cliques in the shared graph S. A simultaneous clique ordering of G is a
linear ordering σ of C such that (i) for each v ∈ V (S) the set C(v) is consecutive, and (ii) the
restriction of σ to Ci is a clique ordering of Gi for i ∈ [k]. The following theorem provides a
combinatorial description of sunflower interval graphs.

I Theorem 2.2 (?). A sunflower graph G is a simultaneous interval graph if and only if it
admits a simultaneous clique ordering.

PQ-Trees. A PQ-tree T on a set M of leaves is a rooted ordered tree where each inner node
is either a P-node or a Q-node [5]. The children of a P-node can be permuted arbitrarily,
whereas the order of the children of a Q-node is fixed up to reversal. In this paper, we
treat P-nodes with two children as Q-nodes. A PQ-tree represents all linear orderings of
M obtained this way. Given a set M and sets S1, . . . , Sl ⊆ M , a PQ-tree that represents
precisely those linear orderings of M where each of the subsets S1, . . . , Sr is consecutive can
be computed in O(|M | + ∑r

i=1 |Si|) time [5]. For an inner node µ of a PQ-tree, let L(µ)
denote the leaves of the subtree rooted at µ. For a leaf µ let L(µ) = {µ}. We denote the
lowest common ancestor of a set N ⊆ V (T) by lcaT (N).

Given a PQ-tree T on the set M and a subset M ′ ⊆ M , there exists a PQ-tree T ′,
called the projection of T to M ′, that represents exactly the linear orders of M ′ that are
restrictions of orderings represented by T . For two PQ-trees T1, T2 on the set M , there
exists a PQ-tree T , called the intersection T1 ∩ T2 representing precisely the linear orders
of M represented by T1 and T2. Both the projection and the intersection can be computed in
O(|M |) time [4]. The PQ-tree representing an empty set of linear orderings is the null-tree.

I. Rutter and P. Stumpf 56:3

T1

{a, g, e}
{a, g, f}

{b, g}
{c, j}

{j, d}
{d, k}

{a, g, e}
{a, g, f}

{a, i}
{b, g}

{b, h}
{c, h}

{c, j}
{j, d}

{d, k}
{l, i}

T

T2

{a, i}
{i, l}

{b, h}{h, c}
{c, j}

{j, d}

T1|S

{a}
{b}

{c, j}
{j, d}

T2|S

{a} {b}
{c, j}

{j, d}

TS

{a} {b} {c, j} {j, d}

Figure 2 A PQ-tree is a rooted ordered tree where each inner node is either a P-node (circles)
or a Q-node (squares). Depicted are the constructed PQ-trees for G from Figure 1 with circles for
P-nodes and squares for Q-nodes.

3 Recognition Algorithm

We aim for a characterization of sunflower interval graphs that can be tested efficiently.
Let G = (G1, . . . , Gk) be a sunflower graph and let T be the PQ-tree on C that enforces
consecutivities of each set C(v) with v ∈ V (S); see Figure 2. Note that if T is the null-
tree, then there exists no simultaneous clique ordering and by Theorem 2.2 there is no
simultaneous interval representation of G. For i ∈ [k], let Ti be the PQ-tree on Ci that
enforces consecutivities of each set Ci(v) with v ∈ V (Gi). By Proposition 2.1, if any Ti is
the null-tree, then Gi is not an interval graph and there is no simultaneous representation.
Without loss of generality, we can assume that all linear orderings represented by Ti are
represented by the projection T ?i of T onto Ci. Otherwise, we can replace Ti by Ti ∩ T ?i since
a simultaneous clique ordering for G only induces orders on Ci that are induced by T .

We aim to describe the clique orderings for S that can be induced by T1, . . . , Tk with
PQ-trees. This allows us to find a clique ordering for S that is compatible with all T1, . . . , Tk.
With a 2-SAT formula taking care of Q-nodes, we can then merge their orders in T , yielding
a simultaneous clique ordering. In order to synchronize T1, . . . , Tk, we consider the relation
between consecutive sets and nodes of a PQ-tree.

I Lemma 3.1 (?). Let M be a finite set and let {S1, . . . , Sk} ⊆ 2M with |Si| ≥ 2 for i ∈ [k].

EuroCG’23

56:4 Simultaneous Representation of Interval Graphs in the Sunflower Case

Let T be the PQ-tree on M obtained by making S1, . . . , Sk consecutive. Then:

(i) For each Si ∈ S, there is either a P-node λ with L(λ) = Si or a Q-node µ with a
consecutive subset of children ν1, . . . , νl such that

⋃l
i=1 L(νi) = Si.

(ii) Let µ be a P-node and let ν be a child of µ that is not a leaf. Then if ν is a P-node,
there is an Si with L(ν) = Si. If ν is a Q-node, there is an Si with

⋃l
i=1 L(νi) = Si for

a consecutive subset of children ν1, . . . , νl of ν.

Proof. (i) follows straightforwardly from the construction [5]; see the full version.
For (ii), let ν be a P-node and suppose there is no Si with L(ν) = Si. First observe that

by (i), for any Si with Si ∩L(µ) 6= ∅, we have either L(µ) ⊆ Si or Si ⊆ L(λ) for some child λ
of µ. This means, that after contracting the arc µν, no Si can be violated. This contradicts
the definition of T since T represents more linear orderings of M after the contraction of µν.

Next let ν be a Q-node and suppose there is no Si with
⋃l
i=1 L(νi) = Si for any consecutive

subset of children ν1, . . . , νl of ν. If ν has precisely two children, we treat it as a P-node and
argue as above that there is an Si with L(ν) = Si. Hence, assume that ν has at least three
children. By (i), for any Si with Si ∩ L(ν) 6= ∅, we then have either L(µ) ⊆ Si or Si ⊆ L(λ)
for some child λ of µ. This means that after switching the label of µ from Q-node to P-node,
still all represented linear orderings have all Si consecutive. This contradicts the choice of T ,
since by making µ a P-node, T represents additional linear orderings. J

For any clique CS ∈ C(S), observe that the set Mi(CS) =
⋂
v∈CS

(C(v) ∩ Ci) of maximal
cliques of Gi containing CS is consecutive in Ti, since the intersection of consecutive sets
is itself consecutive in a linear order. With Lemma 3.1 (i), we obtain the following lemma
which associates maximal cliques of the shared graph S with nodes of Ti. Note that if a set
is consecutive in all linear orderings represented by a PQ-tree T ?, it can be added to the set
{S1, . . . , Sk} of consecutive sets without changing T ?.

I Lemma 3.2. For i ∈ [k], CS ∈ C(S), there is either a P -node λ in Ti with L(λ) = Mi(CS)
or a Q-node µ with a consecutive set of children ν1, . . . , νl such that

⋃l
j=1 L(νj) = Mi(CS).

We can now construct for each Ti a PQ-tree describing the corresponding orderings of C(S).
For i ∈ [k], let Ti|S be the PQ-tree on C(S) obtained from Ti by doing for each CS ∈ C(S)
the following. Note that for distinct C1, C2 ∈ C(S), the sets Mi(C1) and Mi(C2) are disjoint,
since the set of shared vertices in a maximal clique C ∈ Ci would otherwise be C1 as well
as C2. If there is a P-node λ in Ti with L(λ) = Mi(CS), then replace the subtree of λ by a
leaf CS . Otherwise, by Lemma 3.2, there is a Q-node µ with a consecutive set of children
ν1, . . . , νl such that

⋃l
j=1 L(νj) = Mi(CS). We then replace the subtrees of ν1, . . . , νl by a

single leaf CS (as a child of µ at the former position of ν1, . . . , νl). Finally, let Ti|S be the
projection of the resulting PQ-tree onto C(S).

We can now describe all orders of C(S) that occur in a representation of each of G1, . . . , Gk
with the intersection of these PQ-trees TS =

⋂k
i=1 Ti|S . Note that if TS is the null-tree,

then there is no simultaneous clique ordering. Recall that we consider P-nodes with only
two children as Q-nodes. As the last part of our construction, we define a 2-SAT formula
that ensures that the flips of the Q-nodes of various PQ-trees order cliques the same way.
More precisely, we define φ as a 2-SAT formula with a variable xµ for each Q-node µ in T ,
T1, . . . , Tk, T1|S , . . . , Tk|S or TS , a variable yC1,C2 for each pair of cliques C1, C2 ∈ Ci and a
variable <C3,C4 for some i ∈ [k] and for each pair of cliques C3, C4 ∈ C(S). The variables
express whether the order of children of a Q-node is reversed or whether e.g. C1 is left of C2.

For T ? ∈ {T, T1, . . . , Tk, T1|S , . . . , Tk|S , TS} and C1, C2 ∈ L(T ?) where µ = lcaT?(C1, C2)
is a Q-node, we add xµ ⇔ yC1,C2 to φ if C1 is ordered before C2 in T ? and xµ ⇔ ¬yC1,C2

I. Rutter and P. Stumpf 56:5

otherwise. The clauses ensure that two Q-nodes that decide the order of two leaves are
flipped in a way such that they decide for the same order of the two leaves. Additionally,
for i ∈ [k] and C1, C2 ∈ C(S) such that µ = lcaTi

(Mi(C1) ∪Mi(C2)) is a Q-node, we add
xµ ⇔ yC1,C2 to φ if Mi(C1) is ordered before Mi(C2) in Ti and xµ ⇔ ¬yC1,C2 otherwise. By
Lemma 3.2 the sets Mi(C1) and Mi(C2) both are actually consecutive in Ti. These clauses
are similar to the other clauses, but consider sets Mi(C1) and Mi(C2) instead of actual leaves.
They ensure that each Ti is consistent with the projection Ti|S . Note that a simultaneous
clique ordering provides an ordering of the cliques that arranges all PQ-trees such that φ is
satisfied. If φ is not satisfyable, then there is no simultaneous clique ordering. On the other
hand, with this the necessary conditions are also sufficient.

I Theorem 3.3 (?). (G1, . . . , Gk) is a sunflower interval graph if and only if φ is satisfyable
and neither T nor TS is the null-tree.

sketch of proof. If (G1, . . . , Gk) is a sunflower interval graph the requirements are necessary
as discussed above. Hence, assume that neither T nor TS are the null-tree and that φ has a
satisfying assignment Γ. By Theorem 2.2, it suffices to find a simultaneous clique ordering.
We aim to operate on T and each Ti such that the order σ of T induces the order of each Ti,
thus ensuring that σ is a simultaneous clique ordering. We first flip all Q-nodes according
to Γ. This ensures that any two cliques C1, C2 in C or C(S) are ordered as described by yC1,C2

in each PQ-tree where lca(C1, C2) is a Q-node and the sets Mi(C1), Mi(C2) are ordered as
described by yC1,C2 in Ti, if lca(Mi(C1) ∪Mi(C2)) is a Q-node in Ti, for i ∈ [k].

We next have to deal with the P-nodes of T . Let µ be a P-node of T . Then, by
Lemma 3.1 (ii) for each child ν of µ that is an inner node, there is a vertex v ∈ S such
that C(v) ⊆ L(ν). We choose for each child ν of µ a clique C(ν) ∈ C(S) that contains v.
We then order the children ν of µ that are inner nodes according to the order of the C(ν)
given by TS . For i ∈ [k], we order the sets Mi(C(ν)) in Ti accordingly. Note that these sets
are not empty since each Gi contains a clique containing C(ν). Further note that this does
not flip any Q-nodes of Ti since projection and intersection preserve Q-nodes that order two
leaves of the projection set [2]. I.e., for each pair of cliques C1, C2 ∈ C(S) such that the order
of Mi(C1),Mi(C2) is decided by a Q-node µ in Ti, there is a Q-node in TS deciding the order
of C1, C2 the same way as µ orders Mi(C1), Mi(C2) (after flipping Q-nodes according to φ).

With this, for any P-node µ of T and any two children ν1, ν2 of µ that are inner nodes,
each Ti orders any pair of C1 ∈ L(ν1) ∩ Ci and C2 ∈ L(ν2) ∩ Ci the same way as T . This
allows us to order the children of µ simultaneously according to T1, . . . , Tk where each inner
node ν is ordered as any leaf C ∈ L(ν) ∩ Ci. Note that each child of µ that is a leaf is
contained in a single Ti, i.e., it can be placed solely considering the order in Ti (which ensures
the correct order with regards to the children of µ that are inner nodes). Since L(ν) ∩ Ci is
consecutive in Ti, the choice of C(ν) does not matter. I.e., we find an order of all children
of µ, which is compatible with the orders given by T1, . . . , Tk. By construction, T provides a
simultaneous clique ordering. J

This allows to recognize sunflower interval graphs in polynomial time by constructing T ,TS
and φ and then using Theorem 3.3. If G is a simultaneous interval graph, we obtain a
simultaneous clique ordering of G by following the construction in the proof of Theorem 3.3.
With the construction in Theorem 2.2, we then obtain a simultaneous interval representation.

I Corollary 3.4. Sunflower interval graphs can be recognized in polynomial time. For
yes-instances simultaneous interval representations can also be provided in polynomial time.

EuroCG’23

56:6 Simultaneous Representation of Interval Graphs in the Sunflower Case

With a more careful construction of the 2-SAT formula and a more sophisticated imple-
mentation the running time can be improved to O(

∑k
i=1(|V (Gi)|+ |E(Gi)|)); see the full

version.

References
1 Thomas Bläsius, Stephen G. Kobourov, and Ignaz Rutter. Simultaneous embedding of

planar graphs. CoRR, abs/1204.5853, 2012. URL: http://arxiv.org/abs/1204.5853.
2 Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-ordering with applications to con-

strained embedding problems. ACM Trans. Algorithms, 12(2):16:1–16:46, 2015. URL:
http://doi.acm.org/10.1145/2738054, doi:10.1145/2738054.

3 Jan Bok and Nikola Jedličková. A note on simultaneous representation problem for interval
and circular-arc graphs. arXiv preprint arXiv:1811.04062, 2018.

4 Kellogg S. Booth. PQ Tree Algorithms. PhD thesis, University of California, Berkeley, 1975.
5 Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval

graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System Sci-
ences, 13(3):335–379, 1976. doi:http://dx.doi.org/10.1016/S0022-0000(76)80045-1.

6 Steven Chaplick, Radoslav Fulek, and Pavel Klavík. Extending partial representations of
circle graphs. J. Graph Theory, 91(4):365–394, 2019. doi:10.1002/jgt.22436.

7 Delbert Fulkerson and Oliver Gross. Incidence matrices and interval graphs. Pacific journal
of mathematics, 15(3):835–855, 1965.

8 Krishnam Raju Jampani and Anna Lubiw. Simultaneous interval graphs. In Otfried
Cheong, Kyung-Yong Chwa, and Kunsoo Park, editors, Algorithms and Computation:
21st International Symposium, ISAAC 2010, Jeju Island, Proceedings, Part I, pages 206–
217. Springer, 2010. URL: http://dx.doi.org/10.1007/978-3-642-17517-6_20, doi:
10.1007/978-3-642-17517-6_20.

9 Krishnam Raju Jampani and Anna Lubiw. Simultaneous interval graphs. In Algorithms
and Computation, pages 206–217. Springer, 2010.

10 Krishnam Raju Jampani and Anna Lubiw. The simultaneous representation problem
for chordal, comparability and permutation graphs. Journal of Graph Algorithms and
Applications, 16(2):283–315, 2012. doi:10.7155/jgaa.00259.

11 Norbert Korte and Rolf H Möhring. A simple linear-time algorithm to recognize interval
graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science,
pages 1–16. Springer, 1986.

12 Miriam Münch, Ignaz Rutter, and Peter Stumpf. Partial and simultaneous transitive orien-
tations via modular decompositions. In Sang Won Bae and Heejin Park, editors, Proceedings
of the 33rd International Symposium on Algorithms and Computation (ISAAC’22), volume
248 of LIPIcs, pages 51:1–51:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ISAAC.2022.51.

13 Ignaz Rutter, Darren Strash, Peter Stumpf, and Michael Vollmer. Simultaneous representa-
tion of proper and unit interval graphs. In Michael A. Bender, Ola Svensson, and Grzegorz
Herman, editors, Proceedings of the 27th Annual European Symposium on Algorithms
(ESA’19), volume 144 of LIPIcs, pages 80:1–80:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.80.

http://arxiv.org/abs/1204.5853
http://doi.acm.org/10.1145/2738054
https://doi.org/10.1145/2738054
https://doi.org/http://dx.doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1002/jgt.22436
http://dx.doi.org/10.1007/978-3-642-17517-6_20
https://doi.org/10.1007/978-3-642-17517-6_20
https://doi.org/10.1007/978-3-642-17517-6_20
https://doi.org/10.7155/jgaa.00259
https://doi.org/10.4230/LIPIcs.ISAAC.2022.51
https://doi.org/10.4230/LIPIcs.ESA.2019.80

On Computing Local Separators for
Skeletonization∗

J. Andreas Bærentzen, Rasmus E. Christensen, Emil Toftegaard
Gæde, and Eva Rotenberg

Technical University of Denmark, Lyngby, Denmark
{janba,etoga,erot}@dtu.dk

Abstract
The notion of local separators for computing curve skeletons stems from the recent algorithm
by Bærentzen and Rotenberg in [ACM Tran. Graphics’21]. Here the computation of such local
separators plays an intrinsic role, with expensive computation becoming prohibitive for practical
application to larger inputs.

In this work, we dive into these computations, examining and analysing in greater detail the
individual steps, to clarify what bottlenecks exist for theoretical and empirical running times.

We give a simple modification to a phase of the computation, asymptotically improving the
running time, and present empirical results that demonstrate the increase in practical performance.

1 Introduction

Curve skeletons are simplified, stick-like representations of shapes, that can be used for a
wide variety of applications [7, 17, 4, 14, 20], and can be computed through a wide variety of
approaches [8, 16, 3, 19, 13, 22, 15, 21, 1, 6, 11].

J.A. Bærentzen and E. Rotenberg propose in [2] a new algorithm for computing a curve
skeleton using local separators, which we will refer to as the Local Separator Skeletonization
algorithm, or simply LSS. The LSS algorithm seemingly generates output of high quality,
while making relatively little assumptions about the input, requiring it only to be a spatially
embedded graph. It works by a three phased approach, as seen in Figure 1, in which first a
number of minimal local separators are computed, then a set of non-overlapping separators
are selected, and finally a skeleton is extracted.

Figure 1 Visualisation of the three phases of the LSS algorithm. From left to right: A shaded
render of the input, a number of computed minimal separators, a non-overlapping subset of the
separators, and the resulting skeleton after extraction.

The LSS algorithm has the drawback that finding minimal local separators is computa-
tionally costly, requiring the input to be simplified in order for the running time not to be
prohibitive. In this paper we give a brief analysis of the cost of computing local separators,

∗ Emil Toftegaard Gæde and Eva Rotenberg are supported by Eva Rotenberg’s Carlsberg Foundation
Young Researcher Fellowship CF21-0302 - “Graph Algorithms with Geometric Applications”

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

57:2 On Computing Local Separators for Skeletonization

examine practical bottlenecks, and propose a simple modification that we show improves the
running time of LSS, without altering the output.

1.1 Preliminaries
We consider a spatially embedded straight line graph, G = ⟨V, E⟩, with no assumptions
about the origin of the graph, such as whether it is sampled from the surface of a manifold,
created from a point cloud, or otherwise. If G is not connected, we simply run our algorithms
on each component separately, thus we assume G to be connected.

In graph theory, an induced subgraph G[V ′], is the graph G′ = ⟨V ′, E′⟩ where E′ is a
subset of E that contains any edge where both endpoints are in V ′. We define the closed
neighbourhood of a vertex, v ∈ V , denoted N(v), to be set of vertices adjacent to v and v

itself. For a set of vertices, S ⊆ V , we define the neighbourhood as N(S) =
⋃

N(s), s ∈ S.
A vertex separator is a subset of vertices whose removal disconnects the graph. A minimal

vertex separator is a separator where no proper subset is itself a separator. In [2], this
notion is extended to local separators, defined as a subset of vertices, S ⊂ V , that is a vertex
separator of G[N(S)]. Intuitively, we cannot remove a vertex from a minimal local separator
without the remaining set ceasing to be a local separator. Formally we define a minimal local
separator as S ⊂ V s.t. S is a separator of G[N(S)] and there exists no subset S′ ⊂ S s.t.
S′ is a separator of G[N(S′)]. We note that S′ does not need to separate the same induced
subgraph as S.

2 Computing Local Separators

We recall the local separator construction algorithm of LSS, and supply a theoretical analysis
of the worst case running time. With this in mind we then perform an empirical examination,
detailing how the running time is distributed amongst the phases of computation in practice.
Finally, we use this analysis to show our improvement to the running time of the algorithm,
both asymptotically and empirically.

The algorithm for computing local separators is a heuristic algorithm that, intuitively,
captures structural features of the input. It works in two phases. First, given a vertex v ∈ V ,
a local separator is constructed as follows (Figure 2): we maintain a candidate separator Σ,
and what is called the front F = N(Σ) \ Σ. Additionally, we maintain some bounding sphere
B(Σ) that contains Σ (and possibly other vertices in V).

Initially, Σ contains v, F contains the vertices adjacent to v, and the bounding sphere
has its centre at v and radius 0. We then iteratively pick, from F , the vertex closest to the
centre of the bounding sphere, say s, and add it to Σ. We also remove it from F and add all
neighbours of s not in Σ to F , and then update the bounding sphere to encapsulate s.

This procedure is repeated until the graph induced by F consists of more than one
connected component (i.e. Σ is a local separator of G[N(Σ)]). The process is visualised in
Figure 2, with (A) showing the initial configuration, (B-E) showing the iterative growing of
the separator, and (F) showing the final separator after disconnecting the front.

We subsequently elaborate on shrinking a separator that has been constructed in the
previous phase. First the vertices of Σ are ordered from high to low according to the distance
from the centre of B(Σ) to each vertex, after performing a Laplacian smoothing of Σ. We
then perform a pass over Σ and move any vertices that are adjacent to exactly one component
of F , but whose removal from Σ would not reconnect F , to that adjacent component. After
such a linear scan over Σ, we restart the process (as removing vertices later in the order,

J.A. Bærentzen, R. E. Christensen E. T. Gæde and E. Rotenberg 57:3

Figure 2 The process of growing a separator. Red vertices are those currently in the separator,
orange vertices and edges are those currently in the front, and green vertices are the vertices of the
front that are closest to the centre of the bounding sphere, which is indicated by the dotted circle.
This figure is heavily inspired by Figure 6 of [2].

may make vertices earlier in the order eligible for removal), until no vertices are able to be
removed (i.e. Σ is a minimal local separator).

We finally analyse the complexity of computing a local separator. Let VF , EF denote the
vertices and edges of the F respectively, and consider each iteration of the growing phase:

1. Find closest v ∈ F to B(Σ) O(|VF |) by linear scan through VF

2. Move v to Σ and update B(Σ) O(1)
3. Add N(v) \ Σ to VF O(deg(v))
4. Check if F is connected O(|EF |) by breadth first search through F

Let Σ∗ denote the result of the growing phase. We spend |Σ∗| iterations growing, and in the
worst case Σ∗ and F are proportional to G s.t. |Σ∗| = O(|V |), |VF | = O(|V |), |EF | = O(|E|).
Thus we spend a total of O(|V |2) time on step 1, O(|V |) time on step 2, O(|E|) time on step
3, and O(|V ||E|) on step 4. The total running time spent in the growing phase, in the worst
case, is then O(|V |2 + |E||V |).

To shrink the separator we compute a smoothing of positions, by considering for each
vertex the positions of its neighbours, and order the vertices accordingly. Having smoothed
and sorted Σ∗, the procedure then iterates over Σ∗ and removes vertices until Σ∗ is minimal:

5. Compute smoothing of Σ∗ O(deg(s)) for all s ∈ Σ∗ totalling O(E)
6. Order Σ∗ according to smoothed positions O(|Σ∗| log |Σ∗|)
7. Iterate over s ∈ Σ∗ in their sorted order O(|Σ∗|) total time

Check if s is incident to exactly one connected component of F . O(1)
If it is, remove it from Σ∗ and inform N(v) ∩ Σ∗ O(deg(v)), uniquely charged to v.

8. Repeat step 7 until Σ∗ is minimal O(|Σ∗|) repetitions

In the worst case we remove only a constant number of vertices in each iteration of step
7, requiring O(|Σ∗|) passes over O(|Σ∗|) vertices, totalling O(|Σ∗|2) time. When removing a
vertex v from Σ∗ we inform the neighbours in Σ∗ that they are now adjacent to the connected
component of F that v was moved to. This incurs at most a cost of O(deg(s)) for all s ∈ Σ∗

totalling O(E). The worst case running time for shrinking is then O(|V |2 + |E|), and the
total time to compute a minimal local separator, including both growing and shrinking, in
the worst case, is then O(|V |2 + |V ||E|).

EuroCG’23

57:4 On Computing Local Separators for Skeletonization

In order to further our understanding of what makes the computation slow in practice,
we perform a series of measurements that also include details about how time is spent in
each step.

Input Vertices Edges Step 1 (s) Step 3 & 4 (s) Step 5 & 6 (s) Step 7 & 8 (s)
wsm0.25 4946 14856 0.29 19.1 2.11 0.33
wsm0.5 9898 29712 1.38 89.9 10.3 1.17
wsm1 19803 59427 9.19 589.4 89.9 5.7
wsv60 6166 63136 1.50 193.6 17.8 1.2
wsv90 20966 233615 34.9 4372.9 478.9 14.4
Table 1 Measurements of the phases of computing a separator on a small sample of increasingly

simplified meshes (wsm*) and voxel grids (wsv*) all constructed from the wooden_statue.

From our resulting measurements, shown in Table 1, we see that the dominating is step
4 (checking for connectivity), making it the most fitting candidate for optimisation. In
Figure 3 we show the wooden_statue used to generate wsm* and wsv* respectively, as well
as computed non-overlapping separators on both mesh and voxel grid.

Figure 3 Left: the wooden_statue input used to generate wsm* and wsv*. Centre: separators
computed on wsm1. Right: separators computed on wsv90.

3 Dynamic Connectivity

The simplest and most intuitive solution to the fully dynamic connectivity problem is the
use of augmented Euler Tour Trees [9]. These augmented trees give O(log |V |) insertions,
O(|V | log |V |) deletions and O(log |V |) connectivity queries.

In order to improve and bring into balance the update times, one can use the dynamic
connectivity data structure of Holm, de Lichtenberg and Thorup [10]. It is directly cited
in [2] as a suggestion, and it has been previously examined in practice [12]. We refer to this
data structure as the HLT data structure.

The HLT data structure maintains a hierarchical decomposition of forests of augmented
Euler Tour Trees, using the levels of the hierarchy to limit redundant searches when recon-
necting. This allows for updates in amortized O(log2 |V |) time [10].

To integrate the HLT data structure into our computations of local separators, we simply
maintain the front as part of the iterative growing. The complexity of growing is then:

1. Find closest v ∈ F to B(Σ) O(|VF |) by linear scan through VF

J.A. Bærentzen, R. E. Christensen E. T. Gæde and E. Rotenberg 57:5

2. Move v to Σ and update B(Σ) O(1)
3. Add N(v) \ Σ to F O(deg(v) log2 |VF |) amortized using HLT.
4. Check if F is connected O(1) by maintaining the number of components in HLT

The total time becomes O(|V |2 + |E| log2 |V |) by the same observations as previously.
In practice, it is suggested [12] to limit the height of the hierarchy of the dynamic

connectivity data structure, by not using the hierarchy, once forests reach small size. We have
implemented and integrated the structure into our computations, and measured that the
optimal threshold is one that is large enough to effectively eliminate the use of the hierarchy.

Figure 4 Time spent computing separators for a mesh (wsm1) and a voxel grid (wsv90) as a
function of threshold value for the dynamic connectivity data structure.

As shown in Figure 4, the running time decreases as the threshold increases up to a
certain point before flattening out. At this point, the threshold is large enough that the
hierarchy consists of a single level, essentially reducing the structure to simply an augmented
forest of Euler Tour Trees.

4 Empirical Results

Here we present our main result, showing how our variation compares to LSS in terms of
running time. All values shown are the medians of three runs on a HP Elitebook 840 G8
with an i7 processor. The source code is publicly available through the GEL repository [5]
and is compiled using O3 optimisations. In Figure 5, we compare the old method to the one
using dynamic connectivity (dyn), and find that for both meshes and voxels there is a large
improvement. It is worth noting that this improvement seems even greater for voxel grids.

However, we also examine running times on a more refined scale, in order to examine
how the relation between phases has changed, as seen in Table 2.

Of note is that not only has the check for connectivity been drastically reduced, especially
for voxel grids, but it also seems that the bottleneck has shifted in this case towards shrinking.

In addition to measuring on wooden_statue, we have also measured the time spent
checking connectivity on the Groningen Skeletonization Benchmark [18], the results of which
can be seen in Figure 6. We note that input for which the old method exceeded half an hour
was left out.

EuroCG’23

57:6 On Computing Local Separators for Skeletonization

Figure 5 Running times of local separator computations without (old) and with (dyn) the use of
dynamic connectivity. Left shows performance on meshes while right shows performance on voxels.

Input Vertices Edges Step 1 (s) Step 3 & 4 (s) Step 5 & 6 (s) Step 7 & 8 (s)
wsm0.25 4946 14856 0.21 4.28 1.43 0.22
wsm0.5 9898 29712 1.05 17.2 7.78 0.85
wsm1 19803 59427 8.68 109.1 80.8 5.08
wsv60 6166 63136 1.4 22.7 16.2 1.07
wsv90 20966 233615 21.9 214.7 313.9 9.75
Table 2 Measurements of the phases of computing a separator on a small sample of meshes

(wsm*) and voxel grids (wsv*) all of similar structure, using the dynamic connectivity data structure.

Acknowledgements

The authors would like to thank Ivor van der Hoog for his extensive and useful feedback.

J.A. Bærentzen, R. E. Christensen E. T. Gæde and E. Rotenberg 57:7

Figure 6 Time spent checking connectivity on input from the Groningen Skeletonization Bench-
mark.

References
1 Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo Chu, Daniel Cohen-Or, and Tong-Yee

Lee. Skeleton extraction by mesh contraction. ACM Trans. Graph., 27(3):44, 2008. doi:
10.1145/1360612.1360643.

2 Andreas Bærentzen and Eva Rotenberg. Skeletonization via local separators. ACM Trans.
Graph., 40(5):187:1–187:18, 2021. doi:10.1145/3459233.

3 Harry Blum. A transformation for extracting new descriptions of shape. Models for the
perception of speech and visual form, pages 362–380, 1967.

4 Angela Brennecke and Tobias Isenberg. 3d shape matching using skeleton graphs. In
Thomas Schulze, Stefan Schlechtweg, and Volkmar Hinz, editors, Simulation und Visu-
alisierung 2004 (SimVis 2004) 4-5 März 2004, Magdeburg, pages 299–310. SCS Publish-
ing House e.V., 2004. URL: http://wwwisg.cs.uni-magdeburg.de/graphik/pub/files/
Brennecke_2004_3SM.pdf.

5 J. Andreas Bærentzen. Gel library, 2022. URL: https://github.com/janba/GEL.
6 Junjie Cao, Andrea Tagliasacchi, Matt Olson, Hao Zhang, and Zhixun Su. Point cloud

skeletons via laplacian based contraction. In SMI 2010, Shape Modeling International
Conference, Aix en Provence, France, June 21-23 2010, pages 187–197. IEEE Computer
Society, 2010. doi:10.1109/SMI.2010.25.

7 Nicu D. Cornea, Deborah Silver, and Patrick Min. Curve-skeleton properties, applications,
and algorithms. IEEE Trans. Vis. Comput. Graph., 13(3):530–548, 2007. doi:10.1109/
TVCG.2007.1002.

EuroCG’23

https://doi.org/10.1145/1360612.1360643
https://doi.org/10.1145/1360612.1360643
https://doi.org/10.1145/3459233
http://wwwisg.cs.uni-magdeburg.de/graphik/pub/files/Brennecke_2004_3SM.pdf
http://wwwisg.cs.uni-magdeburg.de/graphik/pub/files/Brennecke_2004_3SM.pdf
https://github.com/janba/GEL
https://doi.org/10.1109/SMI.2010.25
https://doi.org/10.1109/TVCG.2007.1002
https://doi.org/10.1109/TVCG.2007.1002

57:8 On Computing Local Separators for Skeletonization

8 Tamal K. Dey and Jian Sun. Defining and computing curve-skeletons with medial geodesic
function. In Alla Sheffer and Konrad Polthier, editors, Proceedings of the Fourth Eurographics
Symposium on Geometry Processing, Cagliari, Sardinia, Italy, June 26-28, 2006, volume
256 of ACM International Conference Proceeding Series, pages 143–152. Eurographics
Association, 2006. doi:10.2312/SGP/SGP06/143-152.

9 Monika Henzinger and Valerie King. Randomized dynamic graph algorithms with
polylogarithmic time per operation. Journal of the ACM, 46:502–516, 01 1995. doi:
10.1145/225058.225269.

10 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, 2001. doi:10.1145/502090.502095.

11 Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun Gong, Hao Zhang, Guiqing Li, and
Baoquan Chen. L1-medial skeleton of point cloud. ACM Trans. Graph., 32(4):65:1–65:8,
2013. doi:10.1145/2461912.2461913.

12 Raj D. Iyer, David Karger, Hariharan S. Rahul, and Mikkel Thorup. An experimental study
of poly-logarithmic fully-dynamic connectivity algorithms. Acm Journal of Experimental
Algorithmics, 6:4, 2001. doi:10.1145/945394.945398.

13 Andrei C. Jalba, Jacek Kustra, and Alexandru C. Telea. Surface and curve skeletonization
of large 3d models on the GPU. IEEE Trans. Pattern Anal. Mach. Intell., 35(6):1495–1508,
2013. doi:10.1109/TPAMI.2012.212.

14 Diane Perchet, Catalin I. Fetita, and Françoise J. Prêteux. Advanced navigation tools for
virtual bronchoscopy. In Edward R. Dougherty, Jaakko Astola, and Karen O. Egiazarian,
editors, Image Processing: Algorithms and Systems III, San Jose, California, USA, January
18, 2004, volume 5298 of SPIE Proceedings, pages 147–158. SPIE, 2004. doi:10.1117/12.
533096.

15 Dennie Reniers, Jarke J. van Wijk, and Alexandru C. Telea. Computing multiscale curve
and surface skeletons of genus 0 shapes using a global importance measure. IEEE Trans.
Vis. Comput. Graph., 14(2):355–368, 2008. doi:10.1109/TVCG.2008.23.

16 Andrea Tagliasacchi, Ibraheem Alhashim, Matt Olson, and Hao Zhang. Mean curvature
skeletons. Comput. Graph. Forum, 31(5):1735–1744, 2012. doi:10.1111/j.1467-8659.
2012.03178.x.

17 Andrea Tagliasacchi, Thomas Delamé, Michela Spagnuolo, Nina Amenta, and Alexandru C.
Telea. 3d skeletons: A state-of-the-art report. Comput. Graph. Forum, 35(2):573–597, 2016.
doi:10.1111/cgf.12865.

18 Alexandru Telea. 3d skeletonization benchmark. https://webspace.science.uu.nl/
~telea001/Shapes/SkelBenchmark, 2016. Accessed: 2022-10-31.

19 Alexandru C. Telea and Andrei C. Jalba. Computing curve skeletons from medial surfaces of
3d shapes. In Hamish A. Carr and Silvester Czanner, editors, Theory and Practice of Com-
puter Graphics, Rutherford, United Kingdom, 2012. Proceedings, pages 99–106. Eurographics
Association, 2012. doi:10.2312/LocalChapterEvents/TPCG/TPCG12/099-106.

20 Ming Wan, Frank Dachille, and Arie E. Kaufman. Distance-field-based skeletons for virtual
navigation. In Thomas Ertl, Kenneth I. Joy, and Amitabh Varshney, editors, 12th IEEE
Visualization Conference, IEEE Vis 2001, San Diego, CA, USA, October 24-26, 2001,
Proceedings, pages 239–246. IEEE Computer Society, 2001. doi:10.1109/VISUAL.2001.
964517.

21 Yu-Shuen Wang and Tong-Yee Lee. Curve-skeleton extraction using iterative least squares
optimization. IEEE Trans. Vis. Comput. Graph., 14(4):926–936, 2008. doi:10.1109/TVCG.
2008.38.

https://doi.org/10.2312/SGP/SGP06/143-152
https://doi.org/10.1145/225058.225269
https://doi.org/10.1145/225058.225269
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/2461912.2461913
https://doi.org/10.1145/945394.945398
https://doi.org/10.1109/TPAMI.2012.212
https://doi.org/10.1117/12.533096
https://doi.org/10.1117/12.533096
https://doi.org/10.1109/TVCG.2008.23
https://doi.org/10.1111/j.1467-8659.2012.03178.x
https://doi.org/10.1111/j.1467-8659.2012.03178.x
https://doi.org/10.1111/cgf.12865
https://webspace.science.uu.nl/~telea001/Shapes/SkelBenchmark
https://webspace.science.uu.nl/~telea001/Shapes/SkelBenchmark
https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG12/099-106
https://doi.org/10.1109/VISUAL.2001.964517
https://doi.org/10.1109/VISUAL.2001.964517
https://doi.org/10.1109/TVCG.2008.38
https://doi.org/10.1109/TVCG.2008.38

J.A. Bærentzen, R. E. Christensen E. T. Gæde and E. Rotenberg 57:9

22 Yajie Yan, Kyle Sykes, Erin W. Chambers, David Letscher, and Tao Ju. Erosion thickness
on medial axes of 3d shapes. ACM Trans. Graph., 35(4):38:1–38:12, 2016. doi:10.1145/
2897824.2925938.

EuroCG’23

https://doi.org/10.1145/2897824.2925938
https://doi.org/10.1145/2897824.2925938

Primal-Dual Cops and Robber
Minh Tuan Ha1, Paul Jungeblut2, and Torsten Ueckerdt3

1 Karlsruhe Institute of Technology
uwpwm@student.kit.edu

2 Karlsruhe Institute of Technology
paul.jungeblut@kit.edu

3 Karlsruhe Institute of Technology
torsten.ueckerdt@kit.edu

Abstract
Cops and Robber is a family of two-player games played on graphs in which one player controls a
number of cops and the other player controls a robber. In alternating turns, each player moves (all)
their figures. The cops try to capture the robber while the latter tries to flee indefinitely. In this
paper we consider a variant of the game played on a planar graph where the robber moves between
adjacent vertices while the cops move between adjacent faces. The cops capture the robber if they
occupy all incident faces. We prove that a constant number of cops suffices to capture the robber
on any planar graph of maximum degree ∆ if and only if ∆ ≤ 4.

Related Version Full Version: https://arxiv.org/abs/2301.05514 [9]

1 Introduction

Cops and Robber is probably the most classical combinatorial pursuit-evasion game on
graphs. The robber models an intruder in a network that the cops try to capture. Two
players play with complete information on a fixed finite graph G = (V, E). The cop player
controls a set of k cops, each occupying a vertex of G (possibly several cops on the same
vertex), while the robber player controls a single robber that also occupies a vertex of G.
The players take alternating turns, where the cop player in his turn can decide for each cop
individually whether to stay at its position or move the cop along an edge of G onto an
adjacent vertex. Similarly, the robber player on her turn can leave the robber at its position
or move it along an edge of G. The cop player starts by choosing starting positions for his k

cops and wins the game as soon as at least one cop occupies the same vertex as the robber,
i.e., when the robber is captured. The robber player, seeing the cops’ positions, chooses the
starting position for her robber and wins if she can avoid capture indefinitely. The least
integer k for which, assuming perfect play on either side, k cops can always capture the
robber, is called the cop number of G, usually denoted by c(G).

In this paper, we introduce Primal-Dual Cops and Robber which is played on a plane
graph G, i.e., with a fixed plane embedding. Here, the cops occupy the faces of G and can
move between adjacent faces (i.e., faces that share an edge), while the robber still moves
along edges between adjacent vertices of G. In this game, the robber is captured if every
face incident to the robber’s vertex is occupied by at least one cop. Analogously, we call the
least integer k for which k cops can always capture the robber in the Primal-Dual Cops and
Robber game the primal-dual cop number of G and denote it by c∗(G).

An obvious lower bound for c∗(G) is the maximum number of faces incident to any
vertex in G: The robber can choose such a vertex as its start position and just stay there
indefinitely (note that there is no zugzwang, i.e., no obligation to move during one’s turn). In
particular, if G has maximum degree ∆(G) and there exists a vertex v with deg(v) = ∆(G),
which is not a cut-vertex, then c∗(G) ≥ ∆(G). E.g., c∗(K2,n) = ∆(K2,n) = n for any n ≥ 2.
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://arxiv.org/abs/2301.05514

58:2 Primal-Dual Cops and Robber

Our contribution. We investigate whether the primal-dual cop number c∗(G) is bounded
in terms of ∆(G) for all plane graphs G. The answer is ‘Yes’ if ∆(G) ≤ 4 and ‘No’ otherwise.

▶ Theorem 1.1. Each of the following holds.
1. For every plane graph G with ∆(G) ≤ 3 we have c∗(G) ≤ 3.
2. For every plane graph G with ∆(G) ≤ 4 we have c∗(G) ≤ 12.
3. For some n-vertex plane graphs G with ∆(G) = 5 we have c∗(G) = Ω

(√
log(n)

)
.

Related work. Let us just briefly mention that Cops and Robber was introduced by
Nowakowski and Winkler [11] and Quillot [13] for one cop and Aigner and Fromme [1] for k

cops 40 years ago. Since then numerous results and variants were presented, see e.g., [2, 3].
Perhaps most similar to our new variant are the recent surrounding variant of Burgess et
al. [5] with vertex-cops and the containment variant of Crytser et al. [6, 12] with edge-cops.
In these variants the robber is captured if every adjacent vertex, respectively every incident
edge, is occupied by a cop. The smallest number of cops that always suffices for any planar
graph G is 3 in the classical variant [1], 7 in the surrounding variant [4], 7∆(G) in the
containment variant [6] and 3 when both, cops and robber, move on edges [7].

2 Cops win always if the maximum degree is at most four

We start with an observation that simplifies the proofs of statements 1 and 2 in Theorem 1.1.

▶ Observation 2.1. Let the robber be on a vertex u with a neighbor v of degree 1. Then the
robber is never required to move to v to evade the cops.

This is true because the set of faces required to capture the robber at v is a subset of the
faces required to capture him at u. Further, his only possible moves at v are either staying
there or moving back to u. As there is no zugzwang, he could just stay at u all along.

In both of the following proofs we assume that the graph contains only degree-3-vertices
(respectively degree-4-vertices) and degree-1-vertices. This can always be achieved by adding
leaves to vertices not yet having the correct degree.

Proof of statement 1 in Theorem 1.1. We give a winning strategy for three cops c1, c2, c3
in a planar graph G with ∆(G) ≤ 3. First the cops choose arbitrary faces to start on. Then
the robber chooses its start vertex u, which we assume to be of degree 3 by Observation 2.1
(it is trivial to capture him if all vertices have degree 1). Let ∠u

1 ,∠u
2 ,∠u

3 be the three angles
incident to u. We denote the face containing an angle ∠ by f(∠) and define for each cop ci

a target face fi, i = 1, 2, 3. Initially we set fi = f(∠u
i). The goal of each cop is to reach his

target face, thereby capturing the robber when all three cops arrive. If the robber moves,
each cop updates his target face. Our strategy guarantees that the total distance of all three
cops to their target faces decreases over time, so it reaches zero after finitely many turns.

Clearly, in every game the robber has to move at some point to avoid being captured.
Assume that the robber moves from vertex u to vertex v (both of degree 3 by Observa-
tion 2.1). Without loss of generality the angles around u and v are labeled as in Figure 1
with fi = f(∠u

i) being the current target face of cop ci, i = 1, 2, 3.
First assume that c3 (or symmetrically c2) has not reached his target face yet. In this

case we assign the new target faces f1 = f(∠v
1), f2 = f(∠v

2) and f3 = f(∠v
3). Note that

for i = 1, 2 faces f(∠u
i) and f(∠v

i) are adjacent, so cop ci can keep his distance to his target
face unchanged (or even decrease it) during his next turn. Further note that f(∠u

3) = f(∠v
3),

M. T. Ha, P. Jungeblut and T. Ueckerdt 58:3

6 u
1

6 u
2

6 u
3

6 v
1

6 v
2

6 v
3

u v

w

Figure 1 Labeling of the angles for a robber move from u to v (and possibly further to w).

vu

6 u
1

6 u
2

6 u
3

6 v
1

6 v
2

6 v
3

6 u
4

6 v
4

Figure 2 A vertex cop and its four accompanying face-cops moving from u to v.

so cop c3 can even decrease his distance by one during the next turn. Thus the total distance
of the three cops to their target faces decreased by at least one.

It remains the case that c2 and c3 have already reached their target faces (but c1 has not,
as the game would be over otherwise). In this case we move c1 one step towards his target
face f1 = f(∠u

1) and c2, c3 both to f(∠v
2). Now its the robber’s turn again. If she does not

move, we assign target faces fi = f(∠v
i), i = 1, 2, 3, and the total distance decreases after

the cops’ next turn. If she moves back to u, we assign target faces fi = f(∠u
i), i = 1, 2, 3,

and the total distance decreases after the cops’ next turn. The last possibility for the robber
is to move towards another neighbor w of v, see Figure 1. Then we assign f1 = f(∠v

1)
and f2, f3 to be the faces containing the other two angles at w. In their next turn, c2 and
c3 can again reach their target faces, while c1 can decrease his distance to his target face
f(∠v

1) by one compared to the initial situation with the robber at vertex u. Again, the total
distance is decreased, which concludes the proof. ◀

To prove statement 2 in Theorem 1.1, we reduce our Primal-Dual Cops and Robber to
the classical Cops and Robber with cops on vertices of G and then use a result from the
literature.

▶ Lemma 2.2. In a plane graph G with ∆(G) ≤ 4, four face-cops can simulate a vertex-cop.

Proof. Let c be a vertex-cop starting at a vertex u ∈ V (G) with up to four incident angles ∠u
i

(for i ∈ {1, 2, 3, 4}). We place four face-cops on the (up to) four faces f(∠u
i). If the vertex-

cop moves to an adjacent vertex v, the four face cops around it can in one step also move to
faces containing the angles incident to v, see Figure 2 for the case that u and v both have
degree 4. For vertices of degree less then 4 it only gets easier for the face-cops. ◀

An immediate corollary of Lemma 2.2 is that c∗(G) ≤ 4 · c(G) for planar graphs G

with ∆(G) ≤ 4. With c(G) ≤ 3 for all planar graphs G [1], statement 2 in Theorem 1.1
follows.

3 Robber wins sometimes if the maximum degree is at least five

In this section we prove statement 3 in Theorem 1.1, i.e., that c∗(G) = Ω
(√

log(n)
)

for
some n-vertex plane graphs G with ∆(G) ≥ 5. We utilize a result of Nisse and Suchan [10]

EuroCG’23

58:4 Primal-Dual Cops and Robber

Figure 3 G4,2,2: An n × n grid with each edge subdivided four times and two rings. Faces are
colored according to their closest grid vertex. Deep and shallow faces are light and dark, respectively.

about the cop number cp,q(G) for a different variant of Cops and Robber for any graph G

and positive integers p and q. Here (as in the classical variant) the cops and the robber are
on the vertices of G. However, in each turn the cops may traverse up to p edges of G, while
the robber may traverse up to q edges of G. We refer to p and q as the velocities of the cops
and the robber, respectively.

▶ Theorem 3.1 ([8, 10]). Let Gn be the n × n grid graph, p be the velocity of the cops and q

be the velocity of the robber. If p < q, then cp,q(Gn) = Ω
(√

log(n)
)
.

The idea to prove statement 3 in Theorem 1.1 is to construct a “grid-like” graph Gn,s,r

for positive integers n, s, r in which the robber in the primal-dual variant can move around
faster than the cops. Then she can simulate the evasion strategy of the robber in the variant
of Nisse and Suchan.

We start with the n × n grid graph Gn, n ≥ 3, with a planar embedding such that the
4-faces are the inner faces. We call the vertices of Gn the grid vertices. Then, each edge
of Gn is subdivided by 2s new vertices, called subdivision vertices, to obtain Gn,s. Two grid
vertices are called neighboring if they are adjacent in Gn. Further, inside each inner face of
Gn,s we add r nested cycles, called rings, of length 12s each and call their vertices the ring
vertices. Between any two consecutive rings we add a planar matching of 12s edges. Each
inner face of Gn,s has 8s subdivision vertices on its boundary and 12s ring vertices on its
outermost ring. At last, we add (in a crossing-free way) three edges from each subdivision
vertex to the outermost ring vertices in the two incident faces of Gn,s such that two edges
go to one ring, the third edge to the other ring, and every ring vertex receives exactly one
such edge. Along the 2s vertices of each subdivision path in Gn,s the side with two edges
to the ring should always switch. Thus each inner face of Gn,s receives 12s edges which are
connected to the 12s vertices of the outermost ring such that the drawing remains planar.

Call the resulting graph Gn,s,r and note that ∆(Gn,s,r) = 5. See also Figure 3. We
shall use a robber strategy in which she only focuses on grid vertices and moves between
these through the paths of subdivision vertices, i.e., only plays on Gn,s. The purpose of the
additional rings in Gn,s,r is to slow down the cops and force them to stay close to grid and
subdivision vertices, too, thereby simulating the game of Nisse and Suchan on Gn.

Formally, we call an inner face of Gn,s,r shallow if it is incident to some subdivision
vertex, and deep otherwise. Lemma 3.2 below implies that, due to the number of rings, cops
should not use deep faces. Omitted proofs of statements marked with (⋆) can be found in
the full version [9].

M. T. Ha, P. Jungeblut and T. Ueckerdt 58:5

▶ Lemma 3.2 (⋆). Let a1, a2 be two shallow faces of Gn,s,r inside the same inner face A

of Gn. If r > 3s, then any cop moving from a1 to a2 along a shortest path without leaving A

uses only shallow faces.

We have to hinder the cops from taking shortcuts through the outer face f0 of Gn,s,r.
To this end let G′

n,s,r be a copy of Gn,s,r with outer face f ′
0. Change the outer face of G′

n,s,r

such that f ′
0 is an inner face (while not changing the cyclic ordering of the edges around the

vertices) and define Gn,s,r to be the graph obtained from gluing Gn,s,r into face f ′
0 of G′

n,s,r

and identifying corresponding vertices. The robber will always stay on vertices of Gn,s,r and
whenever a cop uses a vertex v′ of G′

n,s,r she acts as if he was on the corresponding vertex v

of Gn,s,r. Without loss of generality, we can therefore assume below that the game is played
on Gn,s,r with the cops being prohibited to enter the outer face.

For a face f ∈ F , we denote by vf the grid vertex closest to f , breaking ties arbitrarily.

▶ Lemma 3.3 (⋆). Let a, b be two shallow faces whose closest grid vertices va, vb have
distance d in Gn. If r > 3s, then in Gn,s,r the robber moving from va to vb needs at
most (2s + 1)d steps, while any cop moving from a to b needs at least 3s(d − 4) steps.

Proof of statement 3 in Theorem 1.1. Nisse and Suchan [10] (see also [8] for the omitted
proofs) describe an evasion strategy for a robber with velocity q that requires Ω

(√
log(n)

)

vertex-cops with velocity p to capture him in Gn, provided q > p; see Theorem 3.1. We
describe how a robber with velocity 1 in Gn,s,r (for sufficiently large n, s, r) can simulate
this strategy against face-cops with velocity 1.

We choose p = 15, q = 16 and consider the game of Nisse and Suchan for these velocities.
For their graph Gn in which the robber can win against k = Ω

(√
log(n)

)
vertex-cops, we

then consider Gn,s,r with s = 16 and r = 3s + 1 = 49. Now we copy the evasion strategy S
for the robber as follows: Whenever it is the robber’s turn and the face-cops occupy faces
f1, f2, . . . , fk in Gn,s,r, consider the corresponding situation in Gn where the vertex-cops
occupy vf1 , vf2 , . . . , vfk

. Based on these positions, S tells the robber to go to a vertex v at
distance d ≤ q = 16 from the current position of the robber in Gn. By Lemma 3.3, the
robber in Gn,r,s can go to v in at most (2s + 1)d ≤ (2 · 16 + 1) · 16 = 528 turns.

In the meantime, each face-cop also makes up to 528 moves in Gn,r,s, traveling from some
face a to some face b, which is interpreted in Gn as the corresponding vertex-cop traveling
from va to vb. For va and vb to be at distance d′ ≥ 16 in Gn, by Lemma 3.2 the face-cop
needs at least 3s(d′ − 4) ≥ 3 · 16 · 12 = 576 turns, which is strictly more than 528. Thus,
after 528 turns, each vertex-cop made at most p = 15 steps in Gn, as required for strategy S.

Hence, the robber can evade k face-cops in Gn,s,r, proving c∗(Gn,s,r) > k. Since Gn,s,r

for s, r ∈ O(1) has O(n2) vertices, this completes the proof. ◀

4 Conclusions

Let c∗
∆ denote the largest primal-dual cop number among all plane graphs with maximum

degree ∆. We have shown that c∗
3 = 3, c∗

4 ≤ 12 (this bound is certainly not optimal), and
c∗

5 = ∞, while it is easy to see that c∗
1 = 1, c∗

2 = 2, and c∗
∆ = ∞ for all ∆ > 5. Let us

remark that our proof for ∆ = 5 also holds for a variant of the game where the robber is
already captured when one cop is on one incident face. On the other hand, our proof for
∆ = 3 holds verbatim to prove that three cops also suffice in a variant of the game where
the graph is embedded without crossings in any other surface, which makes it is interesting
to consider ∆ = 4 here.

EuroCG’23

58:6 Primal-Dual Cops and Robber

Another interesting direction would be to identify classes of plane graphs with unbounded
maximum degree in which c∗(G) ≤ f(∆(G)) for some function f . For example, what about
plane 3-trees, also known as stacked triangulations?

References
1 Martin S. Aigner and M. Fromme. A Game of Cops and Robbers. Discrete Applied

Mathematics, 8(1):1–12, 1984. doi:10.1016/0166-218X(84)90073-8.
2 Anthony Bonato. An Invitation to Pursuit-Evasion Games and Graph Theory. American

Mathematical Society, 2022.
3 Anthony Bonato and Richard J. Nowakowski. The Game of Cops and Robbers on Graphs.

American Mathematical Society, 2011. doi:10.1090/stml/061.
4 Peter Bradshaw and Seyyed Aliasghar Hosseini. Surrounding Cops and Robbers on Graphs

of Bounded Genus, 2019. arXiv:1909.09916.
5 Andrea C. Burgess, Rosalind A. Cameron, Nancy E. Clarke, Peter Danziger, Stephen

Finbow, Caleb W. Jones, and David A. Pike. Cops that surround a robber. Discrete
Applied Mathematics, 285:552–566, 2020. doi:10.1016/j.dam.2020.06.019.

6 Danny Crytser, Natasha Komarov, and John Mackey. Containment: A Variation of
Cops and Robber. Graphs and Combinatorics, 36(3):591–605, 2020. doi:10.1007/
s00373-020-02140-5.

7 Andrzej Dudek, Przemysław Gordinowicz, and Paweł Prałat. Cops and Robbers playing on
edges. Journal of Combinatorics, 5(1):131–153, 2014. doi:10.4310/JOC.2014.v5.n1.a6.

8 Fedor V. Fomin, Petr A. Golovach, Jan Kratochvíl, Nicolas Nisse, and Karol Suchan.
Pursuing a fast robber on a graph. Theoretical Computer Science, 411(7–9):1167–1181,
2010. doi:10.1016/j.tcs.2009.12.010.

9 Minh Tuan Ha, Paul Jungeblut, and Torsten Ueckerdt. Primal-Dual Cops and Robber,
2023. arXiv:2301.05514.

10 Nicolas Nisse and Karol Suchan. Fast Robber in Planar Graphs. In Hajo Broersma, Thomas
Erlebach, Tom Friedetzky, and Daniel Paulusma, editors, Graph-Theoretic Concepts in
Computer Science (WG 2008), volume 5344 of Lecture Notes in Computer Science, pages
312–323, 2008. doi:10.1007/978-3-540-92248-3_28.

11 Richard J. Nowakowski and Peter Winkler. Vertex-to-Vertex Pursuit in a Graph. Discrete
Mathematics, 43(2–3):235–239, 1983. doi:10.1016/0012-365X(83)90160-7.

12 Paweł Prałat. Containment Game Played on Random Graphs: Another Zig-Zag Theorem.
The Electronic Journal of Combinatorics, 22(2), 2015. doi:10.37236/4777.

13 Alain Quilliot. Jeux et pointes fixes sur les graphes. PhD thesis, Université de Paris VI,
1978.

https://doi.org/10.1016/0166-218X(84)90073-8
https://doi.org/10.1090/stml/061
http://arxiv.org/abs/1909.09916
https://doi.org/10.1016/j.dam.2020.06.019
https://doi.org/10.1007/s00373-020-02140-5
https://doi.org/10.1007/s00373-020-02140-5
https://doi.org/10.4310/JOC.2014.v5.n1.a6
https://doi.org/10.1016/j.tcs.2009.12.010
http://arxiv.org/abs/2301.05514
https://doi.org/10.1007/978-3-540-92248-3_28
https://doi.org/10.1016/0012-365X(83)90160-7
https://doi.org/10.37236/4777

The Complexity of Recognizing Geometric
Hypergraphs
Daniel Bertschinger1, Nicolas El Maalouly1, Linda Kleist2,
Tillmann Miltzow3, and Simon Weber1

1 Department of Computer Science, ETH Zurich
{daniel.bertschinger,nicolas.elmaalouly,simon.weber}@inf.ethz.ch

2 Department of Computer Science, TU Braunschweig
kleist@ibr.cs.tu-bs.de

3 Department of Information and Computing Sciences, Utrecht University
t.miltzow@uu.nl

Abstract
As set systems, hypergraphs are omnipresent and have various representations. In a geometric
representation of a hypergraph H = (V, E), each vertex v ∈ V is a associated with a point pv ∈ Rd

and each hyperedge e ∈ E is associated with a connected set se ⊂ Rd such that {pv | v ∈ V } ∩ se =
{pv | v ∈ e} for all e ∈ E. We say that a given hypergraph H is representable by some (infinite)
family F of sets in Rd, if there exist P ⊂ Rd and S ⊆ F such that (P, S) is a geometric representation
of H. For a family F , we define Recognition(F) as the problem to determine if a given hypergraph
is representable by F . It is known that the Recognition problem is ∃R-hard for halfspaces in Rd.
We study the families of balls and ellipsoids in Rd, as well as other convex sets, and show that
their Recognition problems are also ∃R-complete. This means that these recognition problems
are equivalent to deciding whether a multivariate system of polynomial equations with integer
coefficients has a real solution.

Related Version arXiv:2302.13597

1 Introduction

As set systems, hypergraphs appear in various contexts, such as databases, clustering, and
machine learning. A hypergraph can be represented in various ways. As a generalization of
graphs, one can represent vertices by points and hyperedges by connected sets in Rd such
that each set contains exactly the points of a hyperedge. It is desirable that these sets satisfy
additional properties, e.g., being (strictly) convex, similar or even translates of each other.

For an introductory example, suppose we are organizing a workshop in Barcelona in 2023
and have a list of accepted talks. Clearly, each participant wants to quickly identify talks of
their specific interest. In order to create a good overview, we want to find a good represen-
tation. To this end, we label each talk by several tags, e.g., hypergraphs, graph drawing,
complexity theory, planar graphs, etc. Then, we create a representation, where each
tag is represented by a unit disk (or another nice geometric object of our choice) containing
points representing the talks that have this tag, see Figure 1 for an example. In other words,
we are interested in a geometric representation of the hypergraph where the vertex set is
given by the talks and the tags define the hyperedges.

In this work, we investigate the complexity of deciding whether a given hypergraph has
such a geometric representation. We start with a formal definition.

Problem Definition. In a geometric representation of a hypergraph H = (V,E), each
vertex v ∈ V is associated with a point pv ∈ Rd and each hyperedge e ∈ E is associated
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

https://arxiv.org/abs/2302.13597

59:2 The Complexity of Recognizing Geometric Hypergraphs

H = (V,E)

V = {1, 2, 3, 4}

E = { {1, 2, 3}, {1, 4}, {3, 4} }

1

2

3

4

Figure 1 An abstract hypergraph and a geometric representation with unit disks.

with a connected set se ⊂ Rd such that {pv | v ∈ V } ∩ se = {pv | v ∈ e} for all e ∈ E.
We say that a given hypergraph H is representable by some (possibly infinite) family F of
sets in Rd, if there exist P ⊂ Rd and S ⊆ F such that (P, S) is a geometric representation
of H. For a family F of geometric objects, we define Recognition(F) as the problem to
determine whether a given hypergraph is representable by F .

Next, we give some definitions describing the geometric families studied in this work.

Bi-curved, Difference-separable, and Computable Convex Sets. We study convex sets
that are bi-curved, difference-separable and computable. While the first two properties are
needed for ∃R-hardness, the last one is used to show ∃R-membership.

Let C ⊂ Rd be a convex set. We call C computable if for any point p ∈ Rd we can
decide on a real RAM whether p is contained in C. We say that C is bi-curved if there
exists a unit vector v ∈ Rd, such that there are two distinct tangent hyperplanes on C with
normal vector v; with each of these hyperplanes intersecting C in a single point, and C

being smooth at both of these intersection points. Informally, a convex set is bi-curved, if
its boundary has two smoothly curved parts in which the tangent hyperplanes are parallel.
Note that a convex, bi-curved set is necessarily bounded. As a matter of fact, any strictly
convex bounded set in any dimension is bi-curved. For such sets, any unit vector v fulfills
the conditions. As can be seen in Figure 2 (left), being strictly convex is not necessary for
being bi-curved.

We call C difference-separable if for any two translates C1, C2 of C, there exists a hyper-
plane which strictly separates C1 \ C2 from C2 \ C1. Being difference-separable is fulfilled
by any convex set in R2, see Figure 2 (middle) for an example. For a proof of this fact
we refer to [28, Corollary 2.1.2.2]. However, in higher dimensions this is not the case: for
a counterexample, consider two 3-cubes as in Figure 2 (right). In higher dimensions, the
bi-curved and difference-separable families include the balls and ellipsoids. We are not aware
of other natural geometric families with those two properties.

Figure 2 Left: two parallel tangent hyperplanes of a burger-like set proving its bi-curvedness.
Middle: a hyperplane separating the symmetric difference of two translates of the burger-like set.
Right: two cubes in R3 whose symmetric difference cannot be separated by a plane.

D. Bertschinger, N. El Maalouly, L. Kleist, T. Miltzow, and S. Weber 59:3

We are now ready to state our results.

Results. Our main contribution is to revive the study of recognition of geometric hy-
pergraphs. We first consider the maybe simplest type of geometric hypergraphs, namely
those that stem from halfspaces. It is known due to Tanenbaum, Goodrich, and Scheiner-
man [47] that the Recognition problem for geometric hypergraphs of halfspaces is NP-
hard, but their proof actually implies ∃R-hardness as well. We complement this by proving
∃R-membership to yield the following theorem:

I Theorem 1 (Tanenbaum, Goodrich, Scheinerman [47]). For every d ≥ 2, Recognition(F)
is ∃R-complete for the family F of halfspaces in Rd.

Next we consider families of objects that are translates of a given object.

I Theorem 2. For d ≥ 2, let C ⊆ Rd be a convex, bi-curved, difference-separable and
computable set, and let F be the family of all translates of C. Then Recognition(F) is
∃R-complete.

We note that for d = 1, the Recognition problems of halfspaces and translates of convex
sets can be solved by sorting and thus can be decided in polynomial time.

One might be under the impression that the Recognition problem is ∃R-complete for
every reasonable family of geometric objects of dimension at least two. We show that is not
the case by looking at translates of polygons.

I Theorem 3. Let P be a simple polygon with integer coordinates, and F the family of all
translates of P . Then Recognition(F) is contained in NP.

Organization. In the remainder of Section 1, we give an overview over related work. We
sketch our proof techniques in Section 2. All details can be found in the full version of this
paper.

Open problems. As mentioned above, we are not aware of interesting families of bi-curved
and difference-separable sets in higher dimensions beyond balls and ellipsoids. The families
of translates of a given polygon show the need for some curvature in order to show ∃R-
hardness. We wonder if it is sufficient for ∃R-hardness to assume curvature at only one
boundary part instead of two opposite ones. Another open question is to consider families
that include rotated copies or homothetic copies of a fixed geometric object. Allowing for
rotation, it is conceivable that ∃R-hardness even holds for polygons.

1.1 Related work
In this section we give a concise overview over related work on the complexity class ∃R,
geometric intersection graphs, and on other set systems related to hypergraphs.

The Existential Theory of the Reals. The complexity class ∃R (pronounced as ‘ER’ or
‘exists R’) is defined via its canonical complete problem ETR (short for Existential Theory
of the Reals) and contains all problems that polynomial-time many-one reduce to it. In an
instance of ETR, we are given a sentence of the form

∃x1, . . . , xn ∈ R : ϕ(x1, . . . , xn),

EuroCG’23

59:4 The Complexity of Recognizing Geometric Hypergraphs

where ϕ is a well-formed and quantifier-free formula consisting of polynomial equations and
inequalities in the variables and the logical connectives {∧,∨,¬}. The goal is to decide
whether this sentence is true.

The complexity class ∃R gains its importance from its numerous influential complete
problems. Important ∃R-completeness results include the realizability of abstract order
types [32, 44], geometric linkages [37], and the recognition of geometric intersection graphs,
as further discussed below. More results concern graph drawing [17, 18, 27, 38], the Haus-
dorff distance [23], polytopes [16, 35], Nash-equilibria [8, 10, 11, 20, 40], training neural
networks [4, 9], matrix factorization [14, 41, 42, 43, 48], continuous constraint satisfaction
problems [31], geometric packing [5], the art gallery problem [2], and covering polygons with
convex polygons [1].

Geometric Hypergraphs Many aspects of hypergraphs with geometric representations have
been studied. Hypergraphs represented by touching polygons in R3 have been studied by
Evans et al. [19]. Bounds on the number of hyperedges in hypergraphs representable by
homothets of a fixed convex set S have been established by Axenovich and Ueckerdt [7].
Smorodinsky studied the chromatic number and the complexity of coloring of hypergraphs
represented by various types of sets in the plane [45]. Dey and Pach [15] generalize many
extremal properties of geometric graphs to hypergraphs where the hyperedges are induced
simplices of some point set in Rd. Haussler and Welzl [21] defined ε-nets, subsets of vertices of
hypergraphs called range spaces with nice properties. Such ε-nets of geometric hypergraphs
have been studied quite intensely [6, 29, 33, 34].

While there are many structural results, we are not aware of any research into the
complexity of recognizing hypergraphs given by geometric representations, other than the
recognition of embeddability of simplicial complexes, as we will discuss in the next paragraph.

Other Representations of Hypergraphs. Hypergraphs are in close relation with abstract
simplicial complexes. In particular, an abstract simplicial complex (complex for short) is
a set system that is closed under taking subsets. A k-complex is a complex in which the
maximum size of a set is k. In a geometric representation of an abstract simplicial complex
H = (V,E) each `-set of E is represented by a `-simplex such that two simplices of any
two sets intersect exactly in the simplex defined by their intersection (and are disjoint in
case of an empty intersection). Note that 1-complexes are graphs and hence deciding the
representability in the plane corresponds to graph planarity (which is in P). In stark contrast,
Abrahamsen, Kleist and Miltzow recently showed that deciding whether a 2-complex has a
geometric embedding in R3 is ∃R-complete [3]; they also prove hardness for other dimensions.

Recognizing Geometric Intersection Graphs. Given a set of geometric objects, its inter-
section graph has a vertex for each object, and an edge between any two intersecting objects.
The complexity of recognizing geometric intersection graphs has been studied for various
geometric objects. We summarize these results in Figure 3. While intersection graphs of
circle chords (Spinnrad [46]), unit intervals (Looges and Olariu [26]) and intervals (Booth
and Lueker [12]) can be recognized in polynomial time, recognizing string graphs (Schaefer
and Sedgwick [39]) is NP-complete. In contrast, ∃R-completeness of recognizing intersection
graphs has been proved for (unit) disks by McDiarmid and Müller [30], convex sets by Schae-
fer [36], downward rays by Cardinal et al. [13], outer segments by Cardinal et al. [13], unit
segments by Hoffmann et al. [22], segments by Kratochvíl and Matoušek [25], k-polylines by
Hoffmann et al. [22], and unit balls by Kang and Müller [24].

D. Bertschinger, N. El Maalouly, L. Kleist, T. Miltzow, and S. Weber 59:5

unit interval

intervalunit disk

disk circle chord

downward ray

orthogonal ray

ray

orthogonal unit segment

orthogonal segment

unit segmentouter segment

k-polyline

convex

segment

outer string

string

Figure 3 Containment relations of geometric intersection graphs. Recognition of a green class is
in P, of a grey class is NP-complete, of a blue class is ∃R-complete, and of a white class is unknown.

The existing research landscape indicates that recognition problems of intersection graphs
are ∃R-complete in case that the family of objects satisfy two conditions: Firstly, they need
to be “geometrically solid”, i.e., not strings. Secondly, some non-linearity must be present
by either allowing rotations, or by the objects having some curvature. Our results indicate
that this general intuition might translate to the recognition of geometric hypergraphs.

2 Proof Techniques

Membership We prove containment in ∃R and NP using standard arguments, providing
witnesses and verification algorithms. For Theorem 2, we simply give translation vectors
and coordinates for all translates of C and points. To verify this certificate, we use that
the convex set C is computable. For Theorem 3, the proof uses a similar argument to the
one used to show that the problem of packing translates of polygons inside a polygon is in
NP [5]: we triangulate the polygon P , and the NP-certificate consists of the triangles of each
polygon a point p is contained in, see Figure 4. Verifying this certificate reduces to linear
programming.

p

Figure 4 The polygon P , its triangulation, and the triangle that p is contained.

EuroCG’23

59:6 The Complexity of Recognizing Geometric Hypergraphs

Hardness We prove the hardness parts of Theorems 1 and 2 by reduction from stretcha-
bility of simple pseudohyperplane arrangements. The hypergraph we build from the given
arrangement differs from the one built in the proof of Theorem 1 given in [47], because
we it can also be used for the proof of Theorem 2 and thus we have a single construction
which works nicely for both theorems. Given a simple pseudohyperplane arrangement A, we
construct a hypergraph H as follows: We double each pseudohyperplane by giving it a par-
allel twin. In this arrangement, we place a point in every d-dimensional cell. These points
represent the vertices of H. Every pseudohyperplane ` then defines a hyperedge, which
contains all of the points on the same side of ` as its twin pseudohyperplane. The points
between the two pseudohyperplanes are thus contained in both hyperedges. See Figure 5
for an illustration of this construction.

Figure 5 Illustration of the reduction used in the proofs of Theorems 1 and 2. Construction of
the hypergraph H from a simple pseudohyperplane arrangement A.

Because this construction can also be performed on a simple hyperplane arrangement,
it is straightforward to prove that if A is stretchable, H can be represented by halfspaces.
Conversely, we show that the hyperplanes bounding the halfspaces in a representation of H
must be a stretching of A.

For Theorem 2, bi-curvedness of a set C implies that locally, C can approximate any
halfspace with normal vector close to v as in the definition of bi-curved. Since the given
pseudohyperplane arrangement A is simple, adding some small amount of curvature to the
hyperplanes in a stretching of A does not change the combinatorical structure of the ar-
rangement. This allows us to prove that stretchability of A implies representability of H by
translates of C. To prove that representability of H by translates of C implies stretchablity
of A, we use that the set C is difference-separable. Given two translates of C represent-
ing a pair of twin hyperedges, the hyperplane guaranteed by separability of C is used as
the stretched hyperplane of the corresponding pseudohyperplane. The proof that this con-
structed hyperplane arrangement has the same combinatorical structure as A works similarly
to the proof of Theorem 1.

References

1 Mikkel Abrahamsen. Covering Polygons is Even Harder. In Nisheeth K. Vishnoi, editor,
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages
375–386, 2022. doi:10.1109/FOCS52979.2021.00045.

2 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The Art Gallery Problem
is ∃R-complete. In STOC 2018: Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pages 65–73, 2018. doi:10.1145/3188745.3188868.

3 Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow. Geometric embeddability of
complexes is ∃r-complete. CoRR, abs/2108.02585, 2021. URL: https://arxiv.org/abs/
2108.02585, arXiv:2108.02585.

https://doi.org/10.1109/FOCS52979.2021.00045
https://doi.org/10.1145/3188745.3188868
https://arxiv.org/abs/2108.02585
https://arxiv.org/abs/2108.02585
http://arxiv.org/abs/2108.02585

D. Bertschinger, N. El Maalouly, L. Kleist, T. Miltzow, and S. Weber 59:7

4 Mikkel Abrahamsen, Linda Kleist, and Tillmann Miltzow. Training Neural Networks is ER-
complete. In Marc A. Ranzato, Alina Beygelzimer, K. Nguyen, Percy Liang, Jennifer W.
Vaughan, and Yann Dauphin, editors, Advances in Neural Information Processing Systems
(NeurIPS 2021), volume 34, 2021.

5 Mikkel Abrahamsen, Tillmann Miltzow, and Nadja Seiferth. Framework for ER-
Completeness of Two-Dimensional Packing Problems. In 2020 IEEE 61st Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 1014–1021, 2020. doi:
10.1109/FOCS46700.2020.00098.

6 Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ε-nets for axis-parallel rectangles
and boxes. SIAM Journal on Computing, 39(7):3248–3282, 2010. doi:10.1137/090762968.

7 Maria Axenovich and Torsten Ueckerdt. Density of range capturing hypergraphs. Journal
of Computational Geometry, 7(1), 2016. doi:10.20382/jocg.v7i1a1.

8 Marie L. T. Berthelsen and Kristoffer A. Hansen. On the Computational Complex-
ity of Decision Problems About Multi-player Nash Equilibria. In Dimitris Fotakis and
Evangelos Markakis, editors, International Symposium on Algorithmic Game Theory, vol-
ume 11801 of Lecture Notes in Computer Science, pages 153–167, 2019. doi:10.1007/
978-3-030-30473-7_11.

9 Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, and Si-
mon Weber. Training fully connected neural networks is ∃R-complete. arXiv preprint
arXiv:2204.01368, 2022.

10 Vittorio Bilò and Marios Mavronicolas. A Catalog of EXISTS-R-Complete Decision Prob-
lems About Nash Equilibria in Multi-Player Games. In Nicolas Ollinger and Heribert
Vollmer, editors, 33rd Symposium on Theoretical Aspects of Computer Science (STACS
2016), Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–17:13, 2016.
doi:10.4230/LIPIcs.STACS.2016.17.

11 Vittorio Bilò and Marios Mavronicolas. Existential-R-Complete Decision Problems about
Symmetric Nash Equilibria in Symmetric Multi-Player Games. In Vollmer Heribert and
Brigitte Vallée, editors, 34th Symposium on Theoretical Aspects of Computer Science
(STACS 2017), volume 66 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 13:1–13:14, 2017. doi:10.4230/LIPIcs.STACS.2017.13.

12 Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System
Sciences, 13(3):335–379, 1976. doi:10.1016/S0022-0000(76)80045-1.

13 Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogtenhu-
ber. Intersection Graphs of Rays and Grounded Segments. Journal of Graph Algorithms
and Applications, 22(2):273–294, 2018. doi:10.7155/jgaa.00470.

14 Dmitry Chistikov, Stefan Kiefer, Ines Marusic, Mahsa Shirmohammadi, and James Wor-
rell. On Restricted Nonnegative Matrix Factorization. In Ioannis Chatzigiannakis, Michael
Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Collo-
quium on Automata, Languages, and Programming (ICALP 2016), volume 55 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 103:1–103:14, 2016. doi:
10.4230/LIPIcs.ICALP.2016.103.

15 T. K. Dey and J. Pach. Extremal problems for geometric hypergraphs. Discrete & Com-
putational Geometry, 19(4):473–484, Apr 1998. doi:10.1007/PL00009365.

16 Michael G. Dobbins, Andreas Holmsen, and Tillmann Miltzow. A Universality Theorem
for Nested Polytopes. arXiv preprint, 2019. arXiv:1908.02213.

17 Michael G. Dobbins, Linda Kleist, Tillmann Miltzow, and Paweł Rzążewski. Completeness
for the complexity class ∀∃R and area-universality. Discrete & Computational Geometry
(DCG), 2022. doi:10.1007/s00454-022-00381-0.

EuroCG’23

https://doi.org/10.1109/FOCS46700.2020.00098
https://doi.org/10.1109/FOCS46700.2020.00098
https://doi.org/10.1137/090762968
https://doi.org/10.20382/jocg.v7i1a1
https://doi.org/10.1007/978-3-030-30473-7_11
https://doi.org/10.1007/978-3-030-30473-7_11
https://doi.org/10.4230/LIPIcs.STACS.2016.17
https://doi.org/10.4230/LIPIcs.STACS.2017.13
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.7155/jgaa.00470
https://doi.org/10.4230/LIPIcs.ICALP.2016.103
https://doi.org/10.4230/LIPIcs.ICALP.2016.103
https://doi.org/10.1007/PL00009365
http://arxiv.org/abs/1908.02213
https://doi.org/10.1007/s00454-022-00381-0

59:8 The Complexity of Recognizing Geometric Hypergraphs

18 Jeff Erickson. Optimal Curve Straightening is ∃R-Complete. arXiv preprint, 2019. arXiv:
arXiv:1908.09400.

19 William Evans, Paweł Rzążewski, Noushin Saeedi, Chan-Su Shin, and Alexander Wolff.
Representing graphs and hypergraphs by touching polygons in 3d. In Daniel Archambault
and Csaba D. Tóth, editors, Graph Drawing and Network Visualization, pages 18–32, Cham,
2019. Springer International Publishing. doi:10.1007/978-3-030-35802-0_2.

20 Jugal Garg, Ruta Mehta, Vijay V. Vazirani, and Sadra Yazdanbod. ∃R-Completeness for
Decision Versions of Multi-Player (Symmetric) Nash Equilibria. ACM Transactions on
Economics and Computation, 6(1):1:1–1:23, 2018. doi:10.1145/3175494.

21 David Haussler and Emo Welzl. Epsilon-nets and simplex range queries. In Proceedings of
the second annual symposium on Computational geometry, pages 61–71, 1986.

22 Michael Hoffmann, Tillmann Miltzow, Simon Weber, and Lasse Wulf. Recognition of unit
segment graphs is ∃R-complete. Unpublished, in preparation.

23 Paul Jungeblut, Linda Kleist, and Tillmann Miltzow. The complexity of the hausdorff
distance. In Xavier Goaoc and Michael Kerber, editors, 38th International Symposium
on Computational Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224
of LIPIcs, pages 48:1–48:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.SoCG.2022.48.

24 Ross J. Kang and Tobias Müller. Sphere and dot product representations of graphs. Discrete
& Computational Geometry, 47(3):548–568, Apr 2012. doi:10.1007/s00454-012-9394-8.

25 Jan Kratochvíl and Jiří Matoušek. Intersection Graphs of Segments. Journal of Combina-
torial Theory, Series B, 62(2):289–315, 1994. doi:10.1006/jctb.1994.1071.

26 Peter J. Looges and Stephan Olariu. Optimal greedy algorithms for indifference
graphs. Computers & Mathematics with Applications, 25(7):15–25, 1993. doi:10.1016/
0898-1221(93)90308-I.

27 Anna Lubiw, Tillmann Miltzow, and Debajyoti Mondal. The Complexity of Drawing a
Graph in a Polygonal Region. In Therese Biedl and Andreas Kerren, editors, GD 2018:
Graph Drawing and Network Visualization, volume 11282 of Lecture Notes in Computer
Science, pages 387–401, 2018. doi:10.1007/978-3-030-04414-5_28.

28 Lihong Ma. Bisectors and Voronoi Diagrams for Convex Distance Functions. PhD thesis,
FernUniversität Hagen, 2000.

29 Jiří Matoušek, Raimund Seidel, and E. Welzl. How to net a lot with little: Small ε-nets
for disks and halfspaces. In Proceedings of the Sixth Annual Symposium on Computational
Geometry, SCG ’90, page 16–22, New York, NY, USA, 1990. Association for Computing
Machinery. doi:10.1145/98524.98530.

30 Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs.
Journal of Combinatorial Theory, Series B, 103(1):114–143, 2013.

31 Tillmann Miltzow and Reinier F. Schmiermann. On Classifying Continuous Constraint
Satisfaction Problems. In Nisheeth K. Vishnoi, editor, 2021 IEEE 62nd Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 781–791, 2022. doi:10.1109/
FOCS52979.2021.00081.

32 Nikolai E. Mnëv. The Universality Theorems on the Classification Problem of Configuration
Varieties and Convex Polytopes Varieties. In Oleg Y. Viro and Anatoly M Vershik, editors,
Topology and Geometry — Rohlin Seminar, volume 1346 of Lecture Notes in Mathematics,
pages 527–543. Springer, 1988. doi:10.1007/BFb0082792.

33 János Pach and Gábor Tardos. Tight lower bounds for the size of epsilon-nets. Journal of
the American Mathematical Society, 26(3):645–658, 2013.

34 János Pach and Gerhard Woeginger. Some new bounds for epsilon-nets. In Proceedings
of the Sixth Annual Symposium on Computational Geometry, SCG ’90, page 10–15, New
York, NY, USA, 1990. Association for Computing Machinery. doi:10.1145/98524.98529.

http://arxiv.org/abs/arXiv:1908.09400
http://arxiv.org/abs/arXiv:1908.09400
https://doi.org/10.1007/978-3-030-35802-0_2
https://doi.org/10.1145/3175494
https://doi.org/10.4230/LIPIcs.SoCG.2022.48
https://doi.org/10.1007/s00454-012-9394-8
https://doi.org/10.1006/jctb.1994.1071
https://doi.org/10.1016/0898-1221(93)90308-I
https://doi.org/10.1016/0898-1221(93)90308-I
https://doi.org/10.1007/978-3-030-04414-5_28
https://doi.org/10.1145/98524.98530
https://doi.org/10.1109/FOCS52979.2021.00081
https://doi.org/10.1109/FOCS52979.2021.00081
https://doi.org/10.1007/BFb0082792
https://doi.org/10.1145/98524.98529

D. Bertschinger, N. El Maalouly, L. Kleist, T. Miltzow, and S. Weber 59:9

35 Jürgen Richter-Gebert and Günter M. Ziegler. Realization Spaces of 4-Polytopes are
Universal. Bulletin of the American Mathematical Society, 32(4):403–412, 1995. doi:
10.1090/S0273-0979-1995-00604-X.

36 Marcus Schaefer. Complexity of some geometric and topological problems. In David Epp-
stein and Emden R. Gansner, editors, Graph Drawing, pages 334–344, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

37 Marcus Schaefer. Realizability of Graphs and Linkages, pages 461–482. Thirty Essays on
Geometric Graph Theory. Springer, 2013. doi:10.1007/978-1-4614-0110-0_24.

38 Marcus Schaefer. Complexity of Geometric k-Planarity for Fixed k. Journal of Graph
Algorithms and Applications, 25(1):29–41, 2021. doi:10.7155/jgaa.00548.

39 Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Recognizing string graphs in np.
Journal of Computer and System Sciences, 67(2):365–380, 2003. Also STOC 2002.

40 Marcus Schaefer and Daniel Štefankovič. Fixed Points, Nash Equilibria, and the Existential
Theory of the Reals. Theory of Computing Systems, 60:172–193, 2017. doi:10.1007/
s00224-015-9662-0.

41 Marcus Schaefer and Daniel Štefankovič. The Complexity of Tensor Rank. Theory of
Computing Systems, 62(5):1161–1174, 2018. doi:10.1007/s00224-017-9800-y.

42 Yaroslav Shitov. A Universality Theorem for Nonnegative Matrix Factorizations. arXiv
preprint, 2016. arXiv:1606.09068.

43 Yaroslav Shitov. The complexity of positive semidefinite matrix factorization. SIAM Jour-
nal on Optimization, 27(3):1898–1909, 2017. doi:10.1137/16M1080616.

44 Peter W. Shor. Stretchability of Pseudolines is NP-Hard. In Peter Gritzmann and Bernd
Sturmfels, editors, Applied Geometry And Discrete Mathematics, volume 4 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 531–554, 1991.
doi:10.1090/dimacs/004/41.

45 Shakhar Smorodinsky. On the chromatic number of geometric hypergraphs. SIAM Journal
of Discrete Mathematics, 21(3):676–687, 2007. doi:10.1137/050642368.

46 Jeremy Spinrad. Recognition of circle graphs. Journal of Algorithms, 16(2):264–282, 1994.
47 Paul J. Tanenbaum, Michael T. Goodrich, and Edward R. Scheinerman. Characterization

and recognition of point-halfspace and related orders. In Roberto Tamassia and Ioannis G.
Tollis, editors, Graph Drawing, pages 234–245, Berlin, Heidelberg, 1995. Springer Berlin
Heidelberg.

48 Levent Tuncel, Stephen Vavasis, and Jingye Xu. Computational complexity of decomposing
a symmetric matrix as a sum of positive semidefinite and diagonal matrices. arXiv preprint
arXiv:2209.05678, 2022.

EuroCG’23

https://doi.org/10.1090/S0273-0979-1995-00604-X
https://doi.org/10.1090/S0273-0979-1995-00604-X
https://doi.org/10.1007/978-1-4614-0110-0_24
https://doi.org/10.7155/jgaa.00548
https://doi.org/10.1007/s00224-015-9662-0
https://doi.org/10.1007/s00224-015-9662-0
https://doi.org/10.1007/s00224-017-9800-y
http://arxiv.org/abs/1606.09068
https://doi.org/10.1137/16M1080616
https://doi.org/10.1090/dimacs/004/41
https://doi.org/10.1137/050642368

Packing Fréchet Balls
Peyman Afshani1 and Aniket Basu Roy2

1 Aarhus University
peyman@cs.au.dk

2 Aarhus University
aniket@cs.au.dk

Abstract
Given a collecton of polygonal chains we define a ball for every chain under the Fréchet and Hausdorff
metric and study the intersection graphs of these balls. We show that computing the maximum
independent set for the discrete and continuous variants is a different ball game altogether. In
particular, we show that the discrete variant admits a PTAS. However, the problem becomes hard
to approximate beyond a constant even when the polygonal chains are as long as 7 and in the plane.
For the discrete case, we use the fact that both the Fréchet and Hausdorff distance metrics have a
constant doubling dimension for constant ambient dimension and constant length of the polygonal
chain. Thus, one can use the known sublinear separators to run a polynomial time local search
algorithm. On the other hand, for the continuous variant, we reduce the problem of finding the
maximum independent set of boxes in d-dimensions to a unit ball graph for curves of length O(d).
For d = 2, the former problem, known as the Maximum Independent Set of Rectangles, enjoys a
constant-factor approximation algorithm [Mitchell 2021, Galvez et al. 2022]. It is already APX-hard
for d > 2 [Chlevík and Chlevíková 2007], thus implying that finding a maximum independent set
of unit balls under continuous (weak) Fréchet or Hausdorff metric is hard to approximate for even
small polygonal chains in the plane.

1 Introduction

Studying similarities between curves has been a major area of research in Computational
Geometry. Two such measures are Fréchet and Hausdorff distances, named after Maurice
Fréchet [12] and Felix Hausdorff [16]. In Computational Geometry, it was Alt and Godau
[3, 13] who initiated the idea to use Fréchet distance measure to study similarities between
curves. Later, Eiter and Mannila [11] proposed the idea of discrete Fréchet distance in an
attempt to approximate the curves.

In this article, we study optimization problems, such as packing, on a family of curves
with respect to Fréchet and Hausdorff distance measures. More precisely, for every curve we
define a metric ball of some radius with respect to the above distance measures. Thus for
n curves we get n different balls and we study graph optimization problems e.g., maximum
independent set, on the intersection graph of these balls.

1.1 Related work
The main focus involving Fréchet metric has been to get faster algorithms to compute the
Fréchet distance between two input polygonal chains. Let m be the length of the polygonal
chains. Godau [13] gave an O(m3)-time algorithm for computing the continuous Fréchet
distance which was improved by Alt and Godau [3] to O(m2 logm), whereas Eiter and
Mannila [11] gave an O(m2) time dynamic programming based algorithm for the discrete
variant. Subsequently, the running times were improved to O(m2(log logm)2) for the con-
tinuous variant by Buchin et al. [6] and to O(m2 log logm/ logm) for the discrete variant
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

60:2 Packing Fréchet Balls

by Agarwal et al. [2]. However, there are results that prove strongly subquadratic time
algorithms do not exist assuming SETH [4].

There has also been a host of work done to compute approximate distances [5, 7] and
involving geometric range searching [1]. Recently, there has been bounds given on the VC-
dimension of set systems defined by Fréchet and Hausdorff balls [9].

1.2 Our Contribution
We make an attempt to distinguish the hardness of approximation for a representative set
of problems, viz., MaxIndependentSet, MinDominatingSet, and MinVertexCover,
between discrete and continuous distance measures, viz., Fréchet and Hausdorff distance
metric, focusing on polygonal chains of constant length. To that end, we propose the
following results.

I Theorem 3.1. Local search yields a PTAS for MaxIndependentSet, MinDominat-
ingSet, MinVertexCover for ball graphs with respect to (Xm, δdF) and (Xm, δdH) where
m = O(1) and X is a doubling metric.

I Theorem 4.4. The problems MaxIndependentSet, MinDominatingSet, MinClique
are APX-hard for unit ball graphs under the (weak) continuous Fréchet and Hausdorff metrics
even when the polygonal chains are of length 7 in the plane.

2 Preliminaries

Given a point pi and a positive real number ri in a metric space (X, δ), we define a metric ball
B(pi, ri) := {x ∈ X | δ(pi, x) ≤ ri}. We shall often refer to B(pi, ri) as Bi. In our setting
we are usually given a set of n metric balls that we also refer as a neighborhood system,
Γ = {B1, . . . , Bn} and we define the depth of a point x with respect to Γ, depthΓ(x) :=
|{Bi ∈ Γ | x ∈ Bi}|. We define the ply of the system as ply(Γ) := maxx∈X depthΓ(x). We
may refer to Γ as a k-ply neighborhood system when ply(Γ) = k. The intersection graph
G = (V,E) of Γ if for every Bi ∈ Γ there is a vertex vi ∈ V and (vi, vj) ∈ E for i 6= j iff
Bi ∩ Bj 6= ∅. The intersection graph G may also be referred as the ball graph with respect
to the metric space (X, δ).

Our algorithmic results for the discrete distance metrics hold for points embedded in
doubling metrics whereas we show hardness when the curves are in the Euclidean plane.
Given a sequence of points (p1, . . . , pm), where pi ∈ Rd, a polygonal chain or curve C is the
union of the line segments pi, pi+1 for 1 ≤ i < m. We say that m is the length of C. Given
a metric space X e.g., Euclidean space Rd, we shall refer to Xm to be the space of all point
tuples of length at most m in X.

I Definition 2.1 (Traversal). Given two polygonal chains P = (p1, . . . , pmP
) and Q =

(q1, . . . , qmQ
) in Rd, we say T = (i1, j1), . . . , (it, jt) is a traversal for P and Q, where 1 ≤

i1, . . . , it ≤ mP and 1 ≤ j1, . . . , jt ≤ mQ, if the following conditions are satisfied.
1. i1, j1 = 1, it = mP , jt = mQ

2. ik+1 − ik ∈ {0, 1} and jk+1 − jk ∈ {0, 1} for 1 ≤ k < t

3. (ik+1 − ik) + (jk+1 − jk) ∈ {1, 2} for 1 ≤ k < t

I Definition 2.2 (Discrete Fréchet distance). Given two polygonal chains P = (p1, . . . , pmP
)

and Q = (q1, . . . , qmQ
) in Rd, let T be the set of possible traversals for P and Q. We define

the discrete Fréchet distance between P and Q as follows.

δdF (P,Q) := min
T∈T

max
(ik,jk)∈T

‖pik − qjk
‖

P. Afshani and A. Basu Roy 60:3

Observe that any polygonal chain P = (p1, . . . , pmP
) in Rd has a uniform parametrization

which allows us to express it as a parametrized curve p : [0, 1]→ Rd.

IDefinition 2.3 (Continuous Fréchet distance). Given two polygonal chains P = (p1, . . . , pmP
)

and Q = (q1, . . . , qmQ
) in Rd, we define the continuous Fréchet distance between P and Q

as follows.
δF (P,Q) := inf

f :[0,1]→[0,1]
max
α∈[0,1]

‖p(α)− q(f(α))‖

where f ranges over all continuous and monotone mappings such that f(0) = 0 and f(1) = 1.
If we drop the restriction of monotonicity then we call it the weak Fréchet distance.

Now we define the Hausdorff distance measure. Although we are concerned with polyg-
onal chains, we define it for a general subset of points.

I Definition 2.4 (Directed Hausdorff distance). Given two subsets P,Q ⊆ Rd, the directed
Hausdorff distance from P to Q is as follows.

δ−→
H

(P,Q) := sup
p∈P

inf
q∈Q
‖p− q‖

I Definition 2.5 (Hausdorff distance). Given two subsets P,Q ⊆ Rd, the Hausdorff distance
from P to Q is as follows.

δH(P,Q) := max{δ−→
H

(P,Q), δ−→
H

(Q,P)}

When both P and Q are discrete point sets then we say that the Hausdorff distance is
discrete. Thus when P and Q are polygonal chains, the discrete Hausdorff distance between
them is the Hausdorff distance between the two sets of points defining the chains.

It is a known fact that the above distance measures are metrics and therefore, we can
define a ball graph with respect to them which shall be our objects of interest in this arti-
cle. We shall denote the metrics, discrete Fréchet, discrete Hausdorff, continuous Fréchet,
continuous Hausdorff, and weak Fréchet as (Xm, δdF), (Xm, δdH), (Xm, δF), (Xm, δH), and
(Xm, δwF), respectively. Once we define a ball graph with respect to these metrics, we
address a few graph optimization questions like, MaxIndependentSet, MinDominat-
ingSet, MinVertexCover, etc.

Below we state a few theorems that we need to prove our results. We elaborate on these
theorems in the full version.

I Theorem 2.6 ([15]). Local search yields a PTAS for MaxIndependentSet, MinDom-
inatingSet, MinVertexCover for graphs with strongly sublinear separators.

I Lemma 2.7 (Theorem 46 in [10]). The doubling dimension of the discrete Fréchet metric
ddim(Xm, δdF) ≤ (4γ)m if that of the ambient metric space ddim(X, δ) ≤ γ.
I Lemma 2.8. The doubling dimension of the discrete Hausdorff metric ddim(Xm, δdH) ≤
(4γ)m if the doubling dimension of the ambient metric space ddim(X, δ) ≤ γ.
I Theorem 2.9 ([18]). Let Γ be a k-ply neighborhood system of n balls in a metric space with
doubling dimension γ. Then there exists a balanced separator S in the intersection graph of
Γ, where

|S| = O

(
k1/(γ+1)

(
n

logn

)1−1/(2γ+2)
)
.

I Theorem 2.10 (Theorem 7 in [8]). Each of the problems, MaxIndependentSet, Min-
DominatingSet, MinVertexCover is APX-hard when restricted to intersection graphs
of axis-parallel d-dimensional boxes, for d ≥ 3.

EuroCG’23

60:4 Packing Fréchet Balls

3 Discrete Fréchet and Hausdorff Distances

As a consequence of Theorem 2.9, we have the following results for ball graphs with respect
to (Xm, δdF) and (Xm, δdH).

I Theorem 3.1. Local search yields a PTAS for MaxIndependentSet, MinDominat-
ingSet, MinVertexCover for ball graphs with respect to (Xm, δdF) and (Xm, δdH) where
m = O(1) and X is a doubling metric.

Proof. As the doubling dimension of X is constant and m is also a constant, from Lemmata
2.7 and 2.8, the size of the separator of any subset of balls in the ball graph is sublinear
in the size of the subset. Hence, from Theorem 2.6 it follows that local search gives a
(1 + ε)-approximate solution for MaxIndependentSet, MinDominatingSet, and Min-
VertexCover in time nO(1/ε2). J

The above list of optimization problems is by no means exhaustive. The purpose is to
pick a representative set of problems to show the contrast in hardness between the discrete
and continuous variants.

4 Continuous Fréchet Distance

Our main result of this section is that the intersection graph of boxes in Rd can be realized
as the unit ball graphs of polygonal chains of length 3d in R2 under the continuous Hausdorff
and (weak) Fréchet metrics. For the sake of brevity, we only say continuous Fréchet metrics.
We first describe a slightly less efficient realization that uses slightly more line segments and
then we show how the number can be cut down to the claimed amount.

The main gadget that we use is the following embedding of intervals into curves consisting
of 5 line segments.

I Lemma 4.1. Consider a set S of n intervals, [ai, bi], for 1 ≤ i ≤ n. Each interval Ii ∈ S
can be embedded to a curve Ci such that the following three properties hold. (i) if Ii and Ij
are disjoint, then the curves Ci and Cj have Fréchet distance two but (ii) if Ii and Ij are
intersecting, then Ci and Cj have Fréchet distance one. (iii) Furthermore, each Ci starts at
some fix X-coordinate Xs and ends at some fixed X-coordinate Xe where Xe −Xs = O(n).

Proof. Observe that we can assume that the coordinates of the intervals are even integers,
between Xs and Xe = Xs+4n, by sorting them and then relabelling them with even integers
starting Xs. Now, Ci will be a Y -monotone curve, i.e., a function from X to Y , defined on
the range [Xs, Xe], as follows (see Figure 1):

Ci(x) =





0 x ≤ ai
1 ai < x ≤ bi
2 bi < x

(1)

The claimed property of this embedding can be easily verified by a case analysis (See
Figure 2).

Consider two intersecting intervals Ii = [ai, bj] and Ij = [aj , bj] and w.l.o.g, assume that
aj ≤ ai, which implies we must have bj < ai as otherwise, they will be intersecting. Since
the coordinates are even integers, it follows that ai ≥ bj + 2 which in turn implies that
the point Vj = (aj , Cj(aj)) has distance at least two to the curve Ci.

P. Afshani and A. Basu Roy 60:5

ai bi

X

Y

1

2

Figure 1 Embedding an interval as a curve.

ai bi

X

Y

1

2

aj bj

Vj

ai bi

X

Y

1

2

aj bj

V

bkak

Vj

Figure 2 (left) The case for two disjoint intervals Ii = [ai, bi] and Ij = [aj , bj]. (right) The case
for the interval Ii = [ai, bi] intersecting the two intervals Ij = [aj , bj] and Ik = [ak, bk].

If Ii and Ij are intersecting, then we must have ai ≤ bj . Now, one can verify that
|Cj(x)− Ci(x)| ≤ 1 for every value of x and thus the curves have Fréchet distance of 1.

J

I Lemma 4.2. Given a set of boxes B = {B1, . . . , Bn} in Rd, for every Bi we can construct
a polygonal chain Ci, consisting of 6d − 1 line segments each, such that the intersection
graph of B is isomorphic to the unit ball graph defined over Ci, for 2 ≤ i ≤ n under the
continuous (weak) Fréchet distance metric.

Proof. A box in d-dimension is a Cartesian product of d intervals. Let Bi = [ai1, bi1]×· · ·×
[aid, bid]. Observe that two boxes Bi and Bj intersect if and only if for every k, 1 ≤ k ≤ d,
the intervals [aik, bik] and [ajk, bjk] intersect. Next, we can embed the k-th dimension of the
boxes into the integers in the range [4n(k − 1), 4nk) using the interval embedding outlined
in the above lemma. See Figure 3. J

X

Y

1

2

Figure 3 Each interval representing a side of the box is embedded into a curve.

EuroCG’23

60:6 Packing Fréchet Balls

In the above representation we are using at most six line segments to encode every
dimension of the box. Thus, a d-dimensional box would require polygonal chains consisting
of 6d−1 line segments. Below, we show that this can be reduced significantly by some slight
compromises: first, by embedding the x-coordinates on an exponential grid, and second, by
having curves representing non-intersecting boxes Fréchet distance of 2 − ε, for some fixed
ε > 0. We state the lemma without the proof (which can be found in the full version) below.

I Lemma 4.3. Given a set of boxes B = {B1, . . . , Bn} in Rd, for every Bi we can construct
a polygonal chain Ci of 2d + 1 complexity such that if two boxes Bi and Bj intersect, then
Ci and Cj have (weak) Fréchet distance of 1 but otherwise, they have Fréchet distance of
2− ε, where ε > 0 is a fixed constant.

X

Y

1

2

Figure 4 Embedding the construction on the exponential grid allows us to represent each di-
mension of the box with only two line segments. This picture is drawn with X-axis in the log-scale.

I Theorem 4.4. The problems MaxIndependentSet, MinDominatingSet, MinClique
are APX-hard for unit ball graphs under the (weak) continuous Fréchet and Hausdorff metrics
even when the polygonal chains are of length 7 in the plane.

Proof. This follows from Lemma 4.3 in combination with Theorem 2.10. J

5 Conclusion

We find it worthwhile to note that by our construction, finding a PTAS for the (weak)
continuous Fréchet or Hausdorff distance in the plane for polygonal chains consisting of
5 line segments, would also improve the polynomial time constant-factor approximation
algorithm for the intersection graphs of boxes in R2 by Mitchell [17] and Galvez et al. [14],
which has been a major open problem.

For boxes in Rd, the only known technique is to divide and conquer by projecting the
boxes in Rd−1 and incur an O(logn) multiplicative overhead in the overall approximation
factor. Therefore, the current best known approximation factor is O(logd−2 n) achievable in
polynomial time. As solving the MaxIndependentSet for unit balls for polygonal chains
of length 2d + 1 in the plane is at least as hard as for the d-dimensional boxes, we ask
whether there exists a polynomial time O(logm n)-approximation algorithm for MaxInde-
pendentSet for polygonal chains of length m in the plane, for m > 5.

P. Afshani and A. Basu Roy 60:7

References
1 Peyman Afshani and Anne Driemel. On the complexity of range searching among curves. In

Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 898–917. SIAM, 2018.

2 Pankaj K Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing the
discrete Fréchet distance in subquadratic time. SIAM Journal on Computing, 43(2):429–
449, 2014.

3 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5(01n02):75–91,
1995.

4 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly
subquadratic algorithms unless SETH fails. In 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science, pages 661–670. IEEE, 2014.

5 Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet distance.
Journal of Computational Geometry, 7(2):46–76, 2016.

6 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four Soviets
walk the dog—with an application to Alt’s conjecture. In Proceedings of the Twenty-Fifth
annual ACM-SIAM Symposium on Discrete algorithms, pages 1399–1413. SIAM, 2014.

7 Timothy M Chan and Zahed Rahmati. An improved approximation algorithm for the
discrete Fréchet distance. Information Processing Letters, 138:72–74, 2018.

8 Miroslav Chlebík and Janka Chlebíková. The complexity of combinatorial optimization
problems on d-dimensional boxes. SIAM Journal on Discrete Mathematics, 21(1):158–169,
2007.

9 Anne Driemel, André Nusser, Jeff M Phillips, and Ioannis Psarros. The VC dimension of
metric balls under Fréchet and Hausdorff distances. Discrete & Computational Geometry,
66(4):1351–1381, 2021.

10 Anne Driemel, Ioannis Psarros, and Melanie Schmidt. Sublinear data structures for short
Fréchet queries, 2019. arXiv:1907.04420.

11 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Technical University of Vienna, 1994.

12 M Maurice Fréchet. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo
Matematico di Palermo (1884-1940), 22(1):1–72, 1906.

13 Michael Godau. A natural metric for curves — computing the distance for polygonal chains
and approximation algorithms. In Annual Symposium on Theoretical Aspects of Computer
Science, pages 127–136, 1991.

14 Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy, and
Andreas Wiese. A (2+ε)-approximation algorithm for maximum independent set of rect-
angles, 2021. arXiv:2106.00623.

15 Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-expansion
and low-density graphs. In Algorithms – ESA 2015 - 23rd Annual European Symposium,
Patras, Greece, September 14–16, 2015, Proceedings, pages 717–728, 2015.

16 Felix Hausdorff. Grundzüge der mengenlehre, volume 7. von Veit, 1914.
17 Joseph S. B. Mitchell. Approximating maximum independent set for rectangles in the plane.

In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 339–350, 2022.

18 Yingchao Zhao and Shang hua Teng. Combinatorial and spectral aspects of nearest neighbor
graphs in doubling dimensional and nearly-euclidean spaces. Theoretical Computer Science,
410(11):1081–1092, 2009. Algorithms, Complexity and Models of Computation.

EuroCG’23

http://arxiv.org/abs/1907.04420
http://arxiv.org/abs/2106.00623

Non-convex position of lines in R3

Barbora Dohnalová1, Miroslav Horský2, and Ondřej Chwiedziuk3

1 Faculty of Mathematics and Physics, Charles University
bdohnalova@matfyz.cz

2 Faculty of Mathematics and Physics, Charles University
mhorsky@matfyz.cz

3 Faculty of Mathematics and Physics, Charles University
chwiedziuk@matfyz.cz

Abstract
Bárány, Kalai and Pór recently proved that for each d, k ≥ 1 there exists a finite number n = n(d, k)
such that there exist n k-flats in Rd which are not in convex position, that is there exists no convex
set touching all the k-flats. In particular, for k = 1, d = 3 there exist n lines in R3, which are not in
convex position. We discovered a specific upper bound for certain special cases and for the general
position.

1 Introduction

1.1 Motivation
We consider the following problem: what is the minimum number of points in R2 in general
position which can be in non-convex position? This is a special case of the problem proposed
in [2]. The solution can be easily seen from figure 1.

Figure 1 Four points in non-convex position in the plane.

1.2 Problem Setup
This problem is generalised in [2]. We will consider another particular version: assume that
we have lines in general position. Then we ask if there is a convex set such that every line
touches the convex set but does not pass through it. How many lines in an appropriate
arrangement do we need so that there will not be any such convex set? From [2] we know
that this number is finite but we would like to know at least an upper bound.

Precise Problem Formulation.

▶ Definition 1.1. We say that lines {pi}n
i=1 : ∀ipi ⊂ R3 are in convex position if there exists

an open convex nonempty set M ⊂ R3 such that ∀i ∈ {1, . . . , n} : pi ∩ M = ∅ ∧ pi ∩ M ̸= ∅.

▶ Definition 1.2. Lines {pi}n
i=1 are in general position if no two lines lie in the same plane.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

61:2 Non-convex position of lines in R3

▶ Definition 1.3. Lines {pi}n
i=1 are in general position with respect to direction vectors if

every triple of the direction vectors of distinct lines are linearly independent.

▶ Problem 1.4. What is the minimum number n for which there exist lines {pi}n
i=1 in

general position such that they are not in convex position?

2 Non-general position

Before discussing the general solution we will solve some examples in non-general position.
A trivial example of this is when four lines are parallel to each other. Then the problem
degenerates to the two-dimensional problem solved above. Therefore we will take a look
at some more interesting non-trivial examples. The first case assumes that at most three
lines can lie in one plane and at most three lines can be parallel to each other. Second case
assumes that lines can lie in one plane but they are not parallel to each other.

Both solutions use the construction of a plane W which separates two open half-spaces.
Then we add two lines p1, p2 that do not intersect the plane W and lie in the opposite
half-spaces. Then each line segment with endpoints at p1 and p2 intersects W . If we take
enough lines q1, . . . , qn in W , then {p1, p2, q1, . . . , qn} are not in convex position. The first
construction takes three parallel lines in the plane W . The second one takes five lines in W .

▶ Theorem 2.1. Let there be a plane W ⊂ R3, ϱ1, ϱ2 ⊂ R3 open half-spaces separated by W ,
lines q1, q2, q3 ⊂ W parallel to each other and lines p1, p2 such that p1 ⊂ ϱ1, p2 ⊂ ϱ2. Then
{p1, p2, q1, q2, q3} are not in convex position.

P2

P1

q1

q2

q3
PW

Q1

Q2

Figure 2 Three parallel lines from the construction of non-convex position of lines.

Proof. Suppose that lines are in convex position. Then there exists an open convex set
M ⊂ R3 such that ∀p ∈ {p1, p2, q1, q2, q3} : p ∩ M = ∅ ∧ p ∩ M ̸= ∅.

Three parallel lines q1, q2, q3 divide W into four cells. Let P1 ∈ p1 ∩ ∂M, P2 ∈ p2 ∩ ∂M .
Then P1P2 intersects W in one point PW , which is a convex combination of P1, P2. This
point can lie either on some qi or in some cell Q of W separated by our parallel lines.

The first case implies that PW ∈ M , which derives a contradiction.
Second case states that PW lies in Q. The boundary of Q is defined by at most two of

the lines q1, q2, q3. We take the one that does not belong to ∂Q, without loss of generality q1.
We choose any point Q1 ∈ q1 ∩ ∂M . Then PW Q1 intersects at least one of the other lines
q2, q3 at one point Q2 (illustrated in figure 2). This implies that Q2 ∈ M , which derives a
contradiction too. Therefore they are not in convex position. ◀

B. Dohnalová, M. Horský and O. Chwiedziuk 61:3

▶ Theorem 2.2. Let there be a plane W ⊂ R3, ϱ1, ϱ2 ⊂ R3 open half-spaces separated by W .
Then there exist lines q1, q2, q3, q4, q5 ⊂ W pairwise non-parallel, p1 ⊂ ϱ1, p2 ⊂ ϱ2, such that
lines {p1, p2, q1, q2, q3, q4, q5} are not in convex position.

2

2

2

3

3

3

3

3

3

3

4

4
4

4

4

3

Figure 3 Five lines in a plane from the construction of non-convex position of lines.

Proof. Suppose that they are in convex position. Then there exists an open convex set
M ⊂ R3 such that ∀i ∈ {1, . . . , n} : pi ∩ M = ∅ ∧ pi ∩ M ̸= ∅.

We take an arrangement such that every open subset of W separated by lines q1, . . . , q5 is
formed by at most four lines, for example as shown in figure 3. Let P1 ∈ p1∩∂M, P2 ∈ p2∩∂M .
Then P1P2 intersects W in one point PW , which is a convex combination of P1, P2. This
point can lie either on some qi or in some open set Q.

The first case implies that PW ∈ M , which derives a contradiction.
In the second case, without loss of generality we take q1 such that q1 ∩ ∂Q = ∅. We

choose any point Q1 ∈ q1. Then PW Q1 intersects at least one of the other lines q2, . . . , q5 at
one point QP . This implies that QP ∈ M , which derives a contradiction as well. Hence they
are not in convex position. ◀

3 General position

One of the possible definitions of general position is that no two lines lie in the same
hyperplane. In the next few paragraphs we will show a construction of 10 lines in such
position which are in non-convex position.

▶ Definition 3.1. A gadget is a set of 8 lines in R3 arranged in the way illustrated in Figures 4
and 5. Line z is not included in the 8 lines of the construction, it is simply an axis intersected
by all of the other lines. For the sake of simplicity we shall assume in the following lemmata
that the line z is the z-axis. (The particular position of the lines is not important, only their
ordering along the line z and the cyclic order of their direction vectors.)

EuroCG’23

61:4 Non-convex position of lines in R3

z

k

l
a1

a2

a3
a4
p

q

Figure 4 Side view of the gadget.

k

l

a1

p

a2

a3qa4

Figure 5 Top view of the gadget.

In the following paragraphs assume the lines in the gadget from Definition 3.1. are in
convex position and let C be the convex set from the definiton of a convex position. Let K,
L, P and Q be the points where C touches lines k, l, p and q.

▶ Lemma 3.2. Let ϱ1 be the plane determined by lines z and a1. Let ϱ+
1 and ϱ−

1 be the two
closed half-spaces separated by ϱ1.

If points K and L lie in the opposite open half-spaces from ϱ1 then P and Q must lie in
the same half-space. (And vice versa for P and Q.)

Proof. If K lies in the opposite open half-space to L and P lies in the opposite open half-space
to Q, then a1 would intersect C.

Denote X and Y the points where the line segments KL and PQ intersect the plane ϱ1.
Since K and L both have larger z-coordinate than a1, X also has larger z-coordinate than
a1. Similarly Y has z-coordinate smaller than a1. Therefore a1 will intersect the segment
XY and hence the whole convex set C. ◀

We can rephrase Lemma 3.2 as the following condition: It holds for at least one of the
pairs {K, L} and {P, Q} that either both of the points from the pair lie in ϱ+

1 or both of
them lie in ϱ−

1 .

▶ Lemma 3.3. At least one point from the set {K, L} and at least one point from the set
{P, Q} lies on z.

Proof. Suppose that no point from the set {K, L, P, Q} lies on z. Lemma 3.2 must hold for
all the lines a1, a2, a3, a4. Consider the lines a2 and a4. One of the pairs {K, L} or {P, Q}
has to satisfy the condition from Lemma 3.2 (that is, it lies in the same half-space) for a2
and the other pair has to satisfy the condition for a4. Note that no pair can satisfy both
conditions at once.

However, if we choose K, L to satisfy the condition for a2 and P, Q to satisfy the condition
for a4, then C is intersected by a3. If we choose P, Q to satisfy the condition for a2 and
K, L to satisfy the condition for a4, then C is intersected by a1. This yields a contradiction.
Therefore at least one of the points K, L, P, Q must lie on z.

Without loss of generality assume that K lies on z. If none of the points P, Q lie on z,
then one of the lines a1, a2, a3, a4 would intersect the triangle K, P, Q, hence the whole
convex set C. This means at least one of the points P, Q has to also lie on z. ◀

We have shown that any convex set which touches all the lines in the gadget has to
intersect line z (and contain the whole line segment between the two points of intersection).

B. Dohnalová, M. Horský and O. Chwiedziuk 61:5

This allows us to use the gadget as a substitute for lines in non-general position. For example
in the construction with three parallel lines blocking the plane (see Figure 2) we can substitute
the outer two parallel lines with two gadgets and get a construction in general position with
19 lines.

However, there exists a simpler way to obtain a set of lines in non-convex position from
the gadget. It requires one more lemma to prove.

▶ Lemma 3.4. Consider the cells determined by planes ϱ1, ϱ2, ϱ3, ϱ4 (where z and ai

determine ϱi). The convex set C cannot contain points from more than one of those cells.

Proof. Without loss of generality suppose K and P are the two points lying on z. Suppose
there exist two points R, S ∈ C such that each lies in a different cell. Since C must be
three-dimensional, we can assume that R and S do not lie in the same hyperplane passing
through the z axis.

Let ϱi be the plane which separates R and S and let X be the intersection of RS and
ϱi. Either X has higher z-coordinate than ai, therefore PX intersects ai, or X has smaller
z-coordinate than ai, therefore KX intersects ai. In both cases ai intersects C, which is a
contradiction. ◀

k

l

a1

p

a2

a3qa4

e

f

Figure 6 Example of 10 lines in non-convex position. (Line e, which is parallel to z, is drawn as
a point.)

Thus we can simply add two lines, e and f , to the construction such that they do not
traverse the same cell. (For example choose one line parallel with z and let the other one be
any line that does not pass through the same cell.) As we have shown in the previous lemma
it is impossible for C to touch them both at the same time. We have therefore proven the
following theorem:

▶ Theorem 3.5. There exist 10 lines in R3 in general position which are in non-convex
position.

4 Lower bound for general position with respect to direction vectors

▶ Definition 4.1. We say points p1, . . . , pn in R3 on a common plane T are in a convex
(weakly convex) position, if for some distance preserving map f from T to R2 the points
f(p1), . . . , f(pn) are in convex (weakly convex, respectively) position.

▶ Remark. Let {l1, . . . , ln} be a set of lines in R3 in convex position, then a set of lines we
get by removing a line is still in convex position.

EuroCG’23

61:6 Non-convex position of lines in R3

▶ Lemma 4.2. Let {l1, . . . , ln} be a set of lines and T a plane in R3. If for each i ∈ [n]
T ∩ li = {pi} for some not necessarily different points p1, . . . , pn in R3 that are in weakly
convex position or are collinear, then the lines are in convex position.

Proof. Assume first that the convex hull of the points p1, ... , pn is a two dimensional polytope
P . Then there exists a point q on the line that is orthogonal to the plane T and passing
through the barycenter of P , such that the convex hull of the points q, p1, . . . , pn is a three
dimensional polytope H which has nonempty intersection with each of those lines but int H

has empty intersection with each of those lines.
If the convex hull of the points p1, . . . , pn is less than two dimensional we add additional
lines so that the points in the intersection of the lines and the plane T are in convex position,
then we use the previous part of the proof and the remark before this lemma. ◀

▶ Lemma 4.3. Let {p1, . . . , pn} be a set of points in R2 in convex position, then ∃r > 0,
such that ∀(a1, . . . , an) ∈ Br(p1)× . . . ×Br(pn) the points a1, . . . , an are in convex position.

Proof. For the case n ≤ 3 this statement is obvious. Now we will prove the case when n = 4.
First we make an observation, for all triples of points x, y, z in R2 the following holds

points x, y, z are collinear ⇐⇒ det




x1 x2 1
y1 y2 1
z1 z2 1


 = 0.

We define map F : R2 ×R2 ×R2 ×R2 → R so that F (x, y, z, v) = 0 if and only if at least
one triple of the four points x, y, z, v is collinear. So we define F as follows:

F (x, y, z, v) = det




x1 x2 1
y1 y2 1
z1 z2 1


 det




x1 x2 1
y1 y2 1
v1 v2 1


 det




x1 x2 1
v1 v2 1
z1 z2 1


 det




v1 v2 1
y1 y2 1
z1 z2 1


 .

Because F is continuous and F (p1, p2, p3, p4) ̸= 0 then

∃r ∈ R, r > 0 ∀(a1, . . . , a4) ∈ Br(p1) × . . . × Br(p4) : F (a1, a2, a3, a4) ̸= 0.

Now suppose there exist points (a1, . . . , a4) ∈ Br(p1)× . . . ×Br(p4) that are in non-convex
position, then for each i ∈ [4] there exists a point bi on a line segment between ai and pi such
that there is a triple of the points b1, b2, b3, b4 that is collinear. But then F (b1, b2, b3, b4) = 0.
The case when n ≥ 5 follows from the following fact: a set of points is in non-convex position
if and only if there is a quadruple of these points that is in non-convex position, this is a
special case of Carathéodory’s theorem. ◀

▶ Lemma 4.4. Let {l1, . . . , ln} be a set of lines in R3 passing through the origin and let
T be a plane in R3 such that for each i ∈ [n] it holds that T ∩ li = {pi} for some points
p1, . . . , pn in R3 that are in convex position. If s1, . . . , sn are lines in R3 and assume that
for every i ∈ [n] si is parallel to li, then they are in convex position.

Proof. For any i ∈ [n] the distance between the only point in K ∩ li and the only point in
K ∩ si is the same for every plane K parallel to the plane T , we indicate this distance as
di. We define d = 2 · maxi∈[n] (di). Now we can shift the plane T further from the origin so
that there exists r ∈ R from Lemma 4.3 that is greater than d. (We used the Lemma 4.3
on the set of points T ∩ ⋃

i∈[n] li and the plane T .) Hence we showed that the set of points

B. Dohnalová, M. Horský and O. Chwiedziuk 61:7

T ∩ ⋃
i∈[n] si is in convex position, from Lemma 4.2 follows that the lines s1, . . . , sn are in

convex position. ◀

▶ Theorem 4.5. Let 4 ≤ n ≤ 5 and {l1, . . . , ln} be a set of lines in R3, if every triple of
their direction vectors are linearly independent, then they are in convex position.

Proof. We use the fact that there is only one order type of sets of points in general position
with size less then 6 in the projective plane, that means those sets can be projectively
transformed into sets of points in convex position (as shown in [1]). That means for any
lines l′

1, . . . , l′
n passing through the origin there exists a plane T so that the set of points

T ∩ ⋃
i∈[n] l′

i is in convex position. With the use of the Lemma 4.4 the theorem follows. ◀

5 Conclusion

We have shown constructions of lines in non-convex position for 5 and 7 lines in non-general
position and 10 lines in general position. For the general position with respect to direction
vectors, we have shown only the lower bound of 6 lines, the upper bound remains to be
found.

Acknowledgments. We would like to thank the organizers of the Seminar on Combinatorial
Problems, Jan Kynčl and Pavel Valtr, for their guidance through this problem.

The work on this paper was supported by grant no. 21-32817S of the Czech Science
Foundation (GAČR).

References
1 Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. Enumerating order types for

small point sets with applications. Order, 19(3):265–281, 2002. URL: https://doi-org.
ezproxy.is.cuni.cz/10.1023/A:1021231927255, doi:10.1023/A:1021231927255.

2 Imre Bárány, Gil Kalai, and Attila Pór. Erdős–Szekeres theorem for k-flats. Discrete &
Computational Geometry, Oct 2022. doi:10.1007/s00454-022-00450-4.

EuroCG’23

https://doi-org.ezproxy.is.cuni.cz/10.1023/A:1021231927255
https://doi-org.ezproxy.is.cuni.cz/10.1023/A:1021231927255
https://doi.org/10.1023/A:1021231927255
https://doi.org/10.1007/s00454-022-00450-4

Computing Minimum Complexity 1D Curve
Simplifications under the Fréchet Distance
Thijs van der Horst1,2 and Tim Ophelders1,2

1 Department of Information and Computing Sciences, Utrecht University, the
Netherlands
{t.w.j.vanderhorst|t.a.e.ophelders}@uu.nl

2 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands

Abstract
We consider the problem of simplifying curves under the Fréchet distance. Let P be a curve and
ε ≥ 0 be a distance threshold. An ε-simplification is a curve within Fréchet distance ε of P . We
consider ε-simplifications of minimum complexity (i.e. minimum number of vertices). Parameterized
by ε, we define a continuous family of minimum complexity ε-simplifications P ε of a curve P in
one dimension. We present a data structure that after linear preprocessing time can report the ε-
simplification in linear output-sensitive time. Moreover, for k ≥ 1, we show how this data structure
can be used to report a simplification P ε with at most k vertices that is closest to P in O(k) time.

1 Introduction

Curve simplification is widely studied in computational geometry. It has applications in
areas such as geographic information systems [7] and visualisation [8]. Generally, the goal
is to transform a curve into a different but similar curve that is easier to work with for the
application at hand. For computational purposes, curves are often represented as polylines.
Because the running times of algorithms depend mainly on the number of vertices, it is very
natural to look for a simplification with a minimum number of vertices.

Consider a polyline P with n vertices. An ε-simplification of P is a curve within
distance ε of P . Commonly used distance measures are the Hausdorff distance and Fréchet
distance. Although it is slightly harder to compute, the Fréchet distance is more popular
in computational geometry because it takes the connectivity of the curve into account.
Bereg et al. [1] give algorithms for simplifying a polygonal curve in R3 to one with the
minimum number of vertices, where the discrete Fréchet distance is used to measure the
similarity between the original curve and its simplification. Depending on the application,
it may be natural to require that the vertices of a simplification form a subsequence of those
of the original curve. Under this constraint, the algorithm by Bereg et al. runs in O(n2)
time. If there are no restrictions, their algorithm runs in O(n log n) time instead. Under
the continuous Fréchet distance in general dimensions, Bringmann and Chaudhury [2] give
an O(n3) time algorithm for the case where vertices must be a subsequence of those of P ,
and give a matching conditional lower bound. Van Kreveld et al. [10] show that under the
Hausdorff distance the problem is NP-hard, if vertices are again restricted. The problem
remains NP-hard in the unrestricted case, as shown by van de Kerkhof et al. [9].

Related work. In this work we consider curve simplification under the Fréchet distance,
restricting vertices to lie on P while respecting their order along P , for curves in one
dimension. We consider computing two types of simplifications: min-# simplifications and
closest k-curves. A min-# ε-simplification of P is an ε-simplification with the minimum
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

62:2 Minimum Complexity 1D Curve Simplifications under the Fréchet Distance

p4

p5

x

P (x)

Figure 1 An illustration of a simplification (dashed) for a curve P (solid). Only the vertical axis
carries geometric information, the horizontal axis is used only to illustrate the connectivity. The
minimum edge length of P is realized by p4p5. The vertices p4 and p5 have become degenerate and
do not correspond to vertices in the simplification.

number of vertices. A closest k-curve of P is a curve P ′ with at most k vertices and the
minimum Fréchet distance to P .

Van de Kerkhof et al. [9] give a linear time algorithm for min-# curve simplification
in one dimension, with the same restrictions as in our setting. If vertices are restricted
further, requiring them to be a subsequence of the vertices of P , then Driemel et al. [4]
give a linear time algorithm for computing a simplification with at most two vertices more
than the minimum number. Their simplification takes the form of a signature. The class of
signatures also contains a 2-approximation for the closest k-curve, in that it contains a curve
with k vertices that is at most twice as far as the closest k-curve. Driemel et al. [4] give an
O(k log k) time algorithm for computing such a curve, after O(n log n) time preprocessing.

Results and organization. In Section 2 we present our family of simplifications for curves in
one dimension. We show that our ε-simplification P ε of a curve P is a min-# ε-simplification
of P . We further show that for any positive integer k, there is a simplification in the family
that is a closest k-curve for P . In Section 3 we give a data structure for computing P ε for
any ε ≥ 0. After O(n) time preprocessing, we can compute P ε in O(k) time, where k is the
complexity of P ε. This data structure is extended to support querying the minimum ε ≥ 0
for which P ε has at most k vertices in O(k) time. By virtue of being a min-# simplification,
P ε is automatically a closest k-curve.

Preliminaries. A (polygonal) n-curve in one dimension is a continuous piecewise-linear
function P : [0, 1] → R connecting a sequence p1, . . . , pn of values, which we refer to as
vertices. A vertex pi is degenerate if it is not a local minimum or maximum of P . An edge of
P is an interval bounded by consecutive vertices pi, pi+1. We say that an edge is increasing
if pi < pi+1 and decreasing if pi > pi+1.

A reparameterization is a non-decreasing, continuous surjection f : [0, 1] → [0, 1] where
f(0) = 0 and f(1) = 1. Two reparameterizations f and g describe a matching (f, g) between
two curves P and Q, where P (f(t)) is matched with Q(g(t)). A matching (f, g) between
1D curves P and Q is said to have cost maxt |P (f(t)) − Q(g(t))|. The (continuous) Fréchet
distance dF (P, Q) between P and Q is the minimum cost over all matchings.

T. van der Horst, T. Ophelders 62:3

Figure 2 The matching induced by the simplification. (left) Simplifying (truncating) a single
edge. Dashed segments indicate point to point matchings, dashed areas indicate subsegments
matching to a single point. (right) Simplifying a more complex curve by half its minimum edge
length.

2 Simplifications

Throughout this work we consider a polygonal 1D n-curve P without degenerate vertices.
In this section we present our family of simplifications of P and show that this family
consists of min-# ε-simplifications and contains the closest k-curves. The simplification
is closely related to truncated smoothings for Reeb graphs [3] and the simplification of
van de Kerkhof et al. [9].

Let ε′ be the minimum edge length of P , and let ε ∈ [0, ε′/2]. The ε-simplification P ε

of P is the curve obtained by truncating the edges of P by ε on both sides and removing
any degenerate vertex that is created, see Figure 1. We extend the definition to all ε ≥ 0
by recursively defining the ε-simplification of P for ε greater than ε′/2 to be the (ε − ε′/2)-
simplification of P ε′/2 if ε′ > 0 (i.e. if P has at least one edge), and as P otherwise.

▶ Theorem 1. The Fréchet distance between P and its ε-simplification is at most ε.

Proof. Let ε ≥ 0 and let ε′ be the minimum edge length of P . If ε ≤ ε′/2 then there is
a natural matching between P and P ε induced by the truncating operation performed for
the simplification. See Figure 2 for an illustration of this matching. This matching has cost
at most ε, since points are moved by distance at most ε during truncation. For general ε,
applying the triangle inequality to the recursive definition of the simplification yields that

dF (P, P ε) ≤
{

ε if ε ≤ ε′/2,
dF (P, P ε−ε′/2) + ε′/2 otherwise,

which implies dF (P, P ε) ≤ ε. ◀

We proceed to show that the ε-simplification of P is a min-# ε-simplification of P . An
important consequence is that certain simplifications are also closest k-curves for P .

▶ Theorem 2. Let P be a curve in one dimension and let ε ≥ 0. The ε-simplification P ε

of P is a min-# ε-simplification of P .

Proof. There is a matching between P and P ε that has cost at most ε, where minima on P ε

correspond to minima on P that lie ε lower, and maxima on P ε correspond to maxima on
P that lie ε higher. Let V ε

orig be the corresponding sequence of k vertices on P . Note that
consecutive vertices of V ε

orig are strictly more than 2ε apart, since P ε alternates between
minima and maxima.

Let Q be a curve within distance ε of P and consider a matching between P and Q that
has cost at most ε. We show that Q has at least as many vertices as P ε. For two consecutive
vertices pi and pj of V ε

orig, consider the subcurve P ′ of P starting at pi and ending at pj ,
and let Q′ be the subcurve of Q matched to P ′. Because pi and pj are more than 2ε apart,

EuroCG’23

62:4 Minimum Complexity 1D Curve Simplifications under the Fréchet Distance

pi

ℓi
ri

mi

pi

ℓi

ri

mi

Figure 3 (left) The sublevel set component of pi, below the dashed line segment. Points ℓi and
ri are the minima of the left and right parts of this component. (right) If pi is incident to a shortest
edge of P then mi is the length of this edge.

Q′ must contain an increasing edge if pi ≤ pj and a decreasing edge otherwise. For any
three consecutive vertices pi, pj , ph of V ε

orig we have that either pi ≤ pj or pj ≤ ph, but not
both, as P ε alternates between minima and maxima. Hence the subcurves of Q matched
to the subcurves of P between pi and pj , and between pj and ph, together contain at least
two distinct edges, one for each orientation. There must therefore be at least k − 1 distinct
edges on Q, which together have at least k distinct vertices. ◀

▶ Theorem 3. Let P be a curve in one dimension and let k ≥ 1 be an integer. Let ε ≥ 0 be
the smallest value for which P ε has at most k vertices. Then P ε is a closest k-curve for P .

Proof. Let Q be a curve with at most k vertices. Let ε′ = dF (P, Q). By Theorem 2, the
ε′-simplification of P has at most k vertices. Thus we obtain that ε ≤ ε′ = dF (P, Q). It
follows from Theorem 1 that dF (P, P ε) ≤ ε ≤ dF (P, Q). ◀

3 Constructing simplifications in linear time

In this section we present a data structure for computing the simplifications of a curve. The
data structure relies on computing the death times of the vertices of P . We define the death
time of a vertex pi of P to be the smallest value ε ≥ 0 for which pi is degenerate in P ε.

We proceed to express the death time of a vertex in terms of the extreme values in its
sub- or superlevel set component. The sublevel set of a point p on P is the set of points
on P with value at most p. The sublevel set component of p is the connected component of
its sublevel set that contains p, see Figure 3. The superlevel set component of p is defined
symmetrically. For a local maximum pi of P , let P − be its sublevel set component. We
define the points ℓi and ri as (global) minima on the prefix and suffix curves of P − that
end and start at pi, respectively. We let mi := min{|pi − ℓi|, |pi − ri|}, see Figure 3. We
symmetrically define P + to be the superlevel set component of a local minimum pi of P ,
and symmetrically define ℓi and ri in terms of P +. The definition of mi is the same as for
local maxima. We show that the death time of an interior vertex pi is equal to mi/2.

▶ Lemma 4. For any 2 ≤ i ≤ n − 1, the death time of vertex pi is equal to mi/2.

Proof. Let pi be a vertex of P for some 2 ≤ i ≤ n − 1 and assume without loss of generality
that pi is a local maximum. We distinguish between the case where pi is incident to a
shortest edge of P and the case where no incident edge is a shortest edge.

First assume that pi is incident to a shortest edge e of P and assume without loss of
generality that e = pi−1pi. The death time of pi is equal to ∥e∥/2, since truncating e by half

T. van der Horst, T. Ophelders 62:5

p1 p2 p3 p4 p5 p6 p7 p8 p9

p1

p2

p3

p7

p5

p6

p9

p8

p4

Figure 4 A max-Cartesian tree.

the minimum edge length truncates e into a point and pi is not an endpoint of P . Observe
that mi = ∥e∥. Indeed, because e is a shortest edge of P , we have that pi−2 ≥ pi ≥ pi−1
(if pi−2 exists) and pi+1 ≤ pi−1. Thus we obtain that ℓi = pi−1 and ri ≤ ℓi, and hence
mi = |pi − ℓi| = ∥e∥. See Figure 3. Hence the death time of pi is mi/2.

Next assume that pi is not incident to a shortest edge of P . Let ε be equal to half the
minimum edge length of P . Note that ℓi and ri are both local minima of P and therefore
vertices of P . As every local minimum of P gets increased by ε by the simplification,
every local maximum gets decreased by ε, and the minimum edge length of P is 2ε, we
obtain that the points ℓε

i := ℓi + ε and rε
i := ri + ε are the analogues of ℓi and ri for

the point pε
i , with respect to P ε. It follows that mε

i , the analogue of mi, is equal to
min{|pε

i − ℓε
i |, |pε

i − rε
i |} = mi − 2ε. Applying the above recursively on the point pε

i , curve
P ε and value mε

i shows that the death time of pi is mi/2. ◀

With the expression mi for the death times of vertices, we are able to compute the death
time of every vertex in linear time. To this end we use Cartesian trees, introduced by
Vuillemin [11]. A Cartesian tree is a tree with the heap property. We call a Cartesian
tree a max-Cartesian tree if it has the max-heap property and a min-Cartesian tree if it
has the min-heap property. A max-Cartesian tree T for a sequence of values x1, . . . , xn is
recursively defined as follows. The root of T contains the maximum value xj in the sequence.
The subtree left of the root node is a max-Cartesian tree for the sequence x1, . . . , xj−1, and
the right subtree is a max-Cartesian tree for the sequence xj+1, . . . , xn (see Figure 4). Min-
Cartesian trees are defined symmetrically.

▶ Lemma 5. We can compute the death time of every vertex of P in O(n) time.

Proof. To compute the death times of the vertices, we build two Cartesian trees; a max-
Cartesian tree Tmax and a min-Cartesian tree Tmin, both built on the sequence of vertices
p1, . . . pn of P . These trees can be constructed in O(n) time [6].

For a given node v of Tmax storing vertex pi, the vertices stored in the subtree rooted
at v are precisely those in the sublevel set component of pi. Thus if pi is a local maximum,
the values ℓi and ri are precisely the minimum values stored in the left and right subtrees
of v, respectively. We can therefore compute the death times of the local maxima of P with
a bottom-up traversal of Tmax, taking O(n) time. Repeating the above process for Tmin, we
compute the death times of the local minima of P in O(n) time as well. ◀

Having computed the death times of the vertices, computing P ε is merely a matter of
removing vertices of P with a death time at most ε, decreasing the leftover local maxima
by ε, and increasing the leftover local minima by ε. To identify the vertices present in the

EuroCG’23

62:6 Minimum Complexity 1D Curve Simplifications under the Fréchet Distance

simplification, we store the vertices of P in another max-Cartesian tree, storing the vertices
based on death time. The vertices with a death time greater than ε can be found in linear
output-sensitive time by traversing the tree from the root. We obtain the following result.

▶ Theorem 6. We can preprocess an n-curve P in R in O(n) time, after which we can query
it for the ε-simplification of P in O(k) time for any ε ≥ 0, where k is the output complexity.

Using death times, we can extend this data structure to support queries for closest k-curves.

▶ Theorem 7. We can preprocess an n-curve P in R in O(n) time, after which we can
query it for a closest k-curve for P in O(k) time for any k ≥ 1.

Proof. We store the death times of P in a max-heap in O(n) time. To compute a closest
k-curve we proceed as follows. Let ε be the (k + 1)-st greatest death time. We can compute
ε in O(k) time using the algorithm for selection in binary heaps by Frederickson [5]. Note
that P ε has at most k vertices and for any ε′ < ε that P ε′ has more than k. Thus by
Theorem 3, P ε is a closest k-curve for P . We report P ε in O(k) time using Theorem 6. ◀

References
1 Sergey Bereg, Minghui Jiang, Wencheng Wang, Boting Yang, and Binhai Zhu. Simplifying

3d polygonal chains under the discrete Fréchet distance. In Proc. 8th Latin American
Symposium on Theoretical Informatics (LATIN), volume 4957, pages 630–641, 2008. doi:
10.1007/978-3-540-78773-0_54.

2 Karl Bringmann and Bhaskar Ray Chaudhury. Polyline simplification has cubic complexity.
Journal of Computational Geometry, 11(2):94–130, 2020. doi:10.20382/jocg.v11i2a5.

3 Erin Wolf Chambers, Elizabeth Munch, and Tim Ophelders. A family of metrics from
the truncated smoothing of reeb graphs. In Proc. 37th International Symposium on
Computational Geometry (SoCG), volume 189, pages 22:1–22:17, 2021. doi:10.4230/
LIPIcs.SoCG.2021.22.

4 Anne Driemel, Amer Krivosija, and Christian Sohler. Clustering time series under the
Fréchet distance. In Proc. 27th Annual Symposium on Discrete Algorithms (SODA), pages
766–785, 2016. doi:10.1137/1.9781611974331.ch55.

5 Greg N. Frederickson. An optimal algorithm for selection in a min-heap. Information and
Computation, 104(2):197–214, 1993. doi:10.1006/inco.1993.1030.

6 Harold N. Gabow, Jon Louis Bentley, and Robert Endre Tarjan. Scaling and related
techniques for geometry problems. In Proc. 16th Annual ACM Symposium on Theory of
Computing, pages 135–143, 1984. doi:10.1145/800057.808675.

7 Zhilin Li. Digital map generalization at the age of enlightenment: a review of the first forty
years. The Cartographic Journal, 44(1):80–93, 2007. doi:10.1179/000870407X173913.

8 Damian Merrick and Joachim Gudmundsson. Path simplification for metro map layout. In
Proc. Graph Drawing, 14th International Symposium, volume 4372, pages 258–269, 2006.
doi:10.1007/978-3-540-70904-6_26.

9 Mees van de Kerkhof, Irina Kostitsyna, Maarten Löffler, Majid Mirzanezhad, and Carola
Wenk. Global curve simplification. In Proc. 27th Annual European Symposium on
Algorithms, volume 144, pages 67:1–67:14, 2019. doi:10.4230/LIPIcs.ESA.2019.67.

10 Marc J. van Kreveld, Maarten Löffler, and Lionov Wiratma. On optimal polyline
simplification using the Hausdorff and Fréchet distance. Journal of Computational
Geometry, 11(1):1–25, 2020. doi:10.20382/jocg.v11i1a1.

11 Jean Vuillemin. A unifying look at data structures. Communications of the ACM,
23(4):229–239, 1980. doi:10.1145/358841.358852.

https://doi.org/10.1007/978-3-540-78773-0_54
https://doi.org/10.1007/978-3-540-78773-0_54
https://doi.org/10.20382/jocg.v11i2a5
https://doi.org/10.4230/LIPIcs.SoCG.2021.22
https://doi.org/10.4230/LIPIcs.SoCG.2021.22
https://doi.org/10.1137/1.9781611974331.ch55
https://doi.org/10.1006/inco.1993.1030
https://doi.org/10.1145/800057.808675
https://doi.org/10.1179/000870407X173913
https://doi.org/10.1007/978-3-540-70904-6_26
https://doi.org/10.4230/LIPIcs.ESA.2019.67
https://doi.org/10.20382/jocg.v11i1a1
https://doi.org/10.1145/358841.358852

A Heuristic Algorithm for Maximal Contained
Polyhedrons∗

Vahideh Keikha

The Czech Academy of Sciences, Institute of Computer Science, Czech Republic
Department of Computer Science, University of Sistan and Baluchestan, Zahedan,
Iran
keikha@cs.cas.cz

Abstract
Let P be a polyhedron with n vertices chosen from a 3D grid; our objective is to approximate

the largest volume convex polyhedron that is inscribed in P. We propose a heuristic algorithm for
this problem that is extendable to higher dimensions and we analyze its efficiency in implementation.
Our experimental studies hold promises of providing good efficiency in practice.

1 Introduction

In computational geometry, a simple polygon is a closed polygonal chain in the plane that
does not intersect itself and has no holes, and a convex shape is the boundary of a convex
set. Analogs to simple polygons, a simple polyhedron is a 3D shape with flat polygonal
faces, straight edges, sharp corners, and no holes. A polyhedron with holes is a simple
polyhedron minus the interiors of some other simple polyhedrons. First let P be a simple
polygon of n vertices. The best-known algorithm for computing a convex polygon Q ⊆ P of
the maximum area takes O(n7) time [2]. In 3D (indeed, any fixed dimension), computing the
largest volume convex polytope1 in a simple polyhedron is still solvable in polynomial time.
A simple idea is determining the complete face-lattice of the polyhedron. After computing
the triangulation of the face-lattice, one then can use the formula for the volume of a simplex;
see Lemma 2 in [4]. However, computing the largest volume contained polytope in arbitrarily
high dimensions becomes more complicated. Computing the volume of an arbitrary convex
polyhedron itself is an NP-hard problem in arbitrary high dimensions [4], and also difficult
to be arbitrarily approximated [1].

I Problem 1 (Largest Convex Polyhedron). Let P be a polyhedron (possibly with holes) with
all vertices on the vertices of a 3D grid. Our objective is to approximate a largest-volume
convex polyhedron Q inside P.

See Fig. 1 for an illustration of a polyhedron constructed on a 3D grid, and Fig. 2(a,b)
for an illustration of P and Q. Observe that the coordinates of the vertices of P cannot be
arbitrary real-valued numbers, and are of the form i×ak + ck, where i is an integer, a1, a2, a3
are grid constants for the three dimensions, and c1, c2, c3 are offset. The grid constants are
the same for all three dimensions, that is, a1 = a2 = a3 = a. The constants c1, c2, c3 could
be eliminated w.l.o.g. by appropriately translating the origin so that one can simplify the
coordinates of all three dimensions to i × a, where i is an integer. The orientation of the
coordinate system is assumed to be given and fixed.

∗ Supported by the CAS PPPLZ grant L100302301 and the institutional support RVO: 67985807.
1 We refer to [6] for the basic properties of convex polytopes.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

63:2 A Heuristic Algorithm for Maximal Contained Polyhedrons

(a) (b)

Figure 1 (a) A 3D grid. (b) A simple polyhedron with vertices chosen from a 3D grid that is
decomposed into a set of convex pieces. Each of the convex pieces of the polyhedron is shown in a
different color.

One of the main applications of our problem is high-clearance motion planning, in which
the objective is computing a path for a convex robot contained in a non-convex environment
from an initial position to a final position while remaining as far as possible from the
boundaries of the environment. See, e.g., [3].

We introduce Genetic Algorithm (GA) as a heuristic method for solving our problem. For
computing the volume of a polytope, we just need to find an interior point for decomposing
the polytope into a set of pyramids. For the generalization of GA to input polyhedrons with
holes, we use a point inclusion algorithm for approximating the volume of the polyhedrons.
We simply count the number of grid points inside the polyhedron2 as an approximation
to the volume. This would relax us from having any restrictions on the number of holes
and their complexity, which is a big challenge in the literature of our problem; see, e.g., [7].
We do not bound the error rate of this technique. Also, to the best of our knowledge,
heuristic algorithms have not been studied in our problem. Hence, we did not find alternative
approaches to make a comparison.

2 Genetic Algorithms (GA)

Genetic Algorithms (GA) are powerful stochastic search techniques that are applicable to a
variety of non-convex optimization problems [9].

The basic idea of Genetic Algorithm [9] is that a population of candidate solutions
(so-called individuals) to an optimization problem is evolved toward better solutions using
successive generations, and with applying the basic operators Crossover and Mutation. Each
candidate solution has a set of genes which can be mutated and altered.

The Genetic parameters are the population size and the number of generations. In
a Genetic Algorithm, the candidate solutions (population) improve over the evolution of
each generation. The evolution usually starts from a population of randomly generated
individuals (also referred to as offsprings), and is an iterative process, with the population
in each iteration called a generation. In each generation, the fitness of every individual
in the population is evaluated; the fitness is usually the value of the objective function in

2 But we do not count the grid points on an edge or a face for preventing some potential inaccuracies
caused in these cases.

V. Keikha 63:3

(a) (b) (c)

(d) (e) (f)

Figure 2 (a,b) Problem definition and optimal solution. The largest convex polyhedron of the
input polyhedron is shown in green. (c,d) Cutting two polyhedrons for the crossover operation
along z-axis. (e) Concatenating the cut polyhedrons for making a new offspring of a possibly larger
volume (here a modification is done for convexity). Note that the result is the convex hull of the
union of the polyhedrons. (f) Mutation of a vertex of polyhedron may result in the appearance of a
non-convex vertex. Note that the resulting shape is not convex yet.

the optimization problem being solved. GAs operate on a population, which is a set of
proposed solutions to the problem. Each proposed solution is called an individual (or a
chromosome/offspring). Each chromosome is composed of a set of genes. GA’s employ a set
of biological evolutions to improve each proposed solution among a number of generations.
The number of generations could be fixed, but usually would be determined by the desired
value of the accuracy, based on a predefined threshold for the error.

3 Preparation for Experimental Studies

In this section, we introduce a formulation for a Genetic Algorithm for Problem 1 that is
useful for higher dimensions and all population-based heuristic algorithms in similar problems.

We use the output of a convex decomposition of a polyhedron as the population in the
first generation. During the evolution process, we keep it invariant that each individual lies
entirely within P. The individual of the largest volume is called elite of the generation.

We have implemented our algorithm in C++ with Visual Studio 2013. The algorithm is
performed on a Core (TM) i9CPU and 8GB RAM computer with Windows 10 operating
system. In some of the computations, we have used CGAL-5.1.

Initializing the first population As said before, before the initialization step, the
input non-convex polyhedron is already generated uniformly at random from the vertices of
a 3D grid. We then computed a convex decomposition of the input of a fixed number of m

pieces (as the individuals). We use the output of a convex decomposition of a polyhedron
from CGAL as the candidates of the population in the first generation. Note that if we have
fewer convex pieces than the desired number, a convex decomposition can always be made
to have a desired number of pieces, by simply splitting convex pieces. The genes of each

EuroCG’23

63:4 A Heuristic Algorithm for Maximal Contained Polyhedrons

individual are the set of its vertices. In the following, we describe the GA operators.
Crossover We select two polyhedrons and exchange half of their vertices from either

the upper or lower hull. See Fig. 2(c,d) for an illustration of the decomposition process and
Fig. 2(e) for the concatenation of two polyhedrons. Note that the resulting polyhedrons are
intersecting, and each polyhedron is the convex hull of the new point sets. We exchange
half of the top-most vertices of selected polyhedrons along the z-axis (could be also another
arbitrary axis). To store and update a polyhedron and its set of vertices, we use existing
data structures for adjacency lists for graph traversal.

Mutation Similar to the usual technique for mutation operator, our suggestion is to
sample d positive real numbers uniformly at random in the domain of the points of the grid,
where d is the number of the dimension of the problem, and find the closest gene (which is
a vertex here) in the corresponding individual and substitute it with the selected random
point. In other words, a vertex with the smallest Euclidean distance to the sampled point
will be replaced. This would change some vertex of the mutated polyhedron by a random
vertex. See Fig. 2(f) for an illustration.

Selection We keep the size of the population at a fixed number m throughout the
algorithm. After performing the GA operators in each generation, the m polyhedrons
which have the highest volume will determine the new population. From this number, the
polyhedron of the highest volume (elite) is directly inserted into the new generation.

Modification of the individuals For each resulting individual from the GA operators,
we may need to modify the resulting convex polyhedron to lie within P. First, we compute
the intersection of the offspring computed from the mutation or crossover and P. If the
intersection is empty, the offspring is valid, otherwise, we cut the offspring to fit it inside P.

Evaluating fitness value The volume of each individual determines its fitness value.
If the input polyhedron does not have any holes, the volume of each polytope can easily
be computed using the decomposition of the polytope. Here we find the mean of all of
its vertices, connect this point to all vertices of the polyhedron, and split the polyhedron
into a set of pyramids. For polyhedrons with holes, we use a point inclusion algorithm for
approximating the volume. For this purpose, we count the number of grid points within
the polyhedron for computing the volume of a polyhedron, however, the efficiency of this
algorithm highly depends on the resolution of the original grid. Also, we consider an identifier
for each chromosome that would give a zero value if the polyhedron is only in 2D. This
can be done by storing the maximum difference between the height of the vertices of the
polyhedron in different dimensions. In the following, we elaborate on the details.

For computing the number of the grid points inside each polyhedron Q, we simply
perform a point-inclusion test for the grid points within all the cubes which lie within
the bounding cube of Q. The convex polyhedrons can be preprocessed using the Dobkin-
Kirkpatrick hierarchy technique so that the point-in-convex-polyhedron test takes O(n) space
and O(log n) query time [10] (Sec. 38.3). We then simply multiply the number of grid points
(strictly) inside Q with an identifier that is either 0 or 1, where 0 is indicating Q is restricted
in 2D, and 1 is indicating Q is a proper polyhedron. So, we determine a 0 volume for the
case where a polyhedron has its faces in the plane.

4 Experimental Results

Because of the exponential time complexity of our method (see [8]), the exact result could
not be obtained on a large set of points in a reasonable computational time. Thus, we ran
the GA on synthetic data of a reasonable size.

V. Keikha 63:5

0 10 20 30

5

10

15
20

25
30

35

0 10 20 30

5

10

20

25
30

35

15

0 10 20 30

5

10

20

25
30

35

15

0 10 20 30

5
10

20

25
30

35

15

0 10 20 30

5

10

20

25
30

35

15

0 10 20 30

5

10

20

25
30

35

15

0 10 20 30

5

10

20

25
30

35

15

0 10 20 30

5

10

20

25
30

35

15

g=10 g=40 g=70 g=100

g=110 g=120 g=130 g=140

Figure 3 An illustration of the progress of GA over time: We have illustrated the changes on the
vertices of an elite offspring of 40 vertices mapped in 2D by ignoring the third axis (note that some
vertices might be missing during the mapping if they lie on the boundary), in different generations.
The coordinates of the grid points are divided by 100. Observe that there is an inverse relationship
between the number of reported vertices and the number of generations.

The mutation rate is the number of offspring produced in each generation over the
population size, using the mutation operator. The crossover rate is defined analogously.

Here the rate of the mutation operation is chosen 0.2, and the rate of the crossover
operation is chosen 0.6. We observed that our selected rate of mutation helps to escape
from local minima at the beginning of the execution of the algorithm, and also prevents
premature convergence, and handle the diversity of the population throughout the algorithm.
For evaluating the efficiency of our algorithm in practice, we have implemented the GA and
tested it on a 3D grid G in the range [0, 4000]. The simple polyhedron P has 40, 70 or 100
vertices selected uniformly at random from G. Constructing each polyhedron is done by first
sampling vertices of convex polyhedrons from the grid and then merging the resulting convex
polyhedrons to achieve a certain number of vertices (using any union algorithm [5]). It may
need several steps but still takes a constant time for a fixed number of vertices. We run each
test to at most 160 generations. Also, we stop the algorithm whenever we find an offspring
convex polyhedron of volume 70% of the volume of P. These bounds are chosen arbitrarily
and can be increased if more accurate approximations are required. One always can allow the
GA to run for a longer time, to see the progress of the algorithm with more generations. We
observed that in 160 generations, we usually have found some convex polyhedron that has at
least 70% of the volume of the input polyhedron if such a polyhedron exists. Experimental
results of the Genetic Algorithm on synthetic point sets of sizes 40, 70, and 100 are shown
in Table 1. The polyhedrons of the dataset of size 100 have one hole of s vertices chosen
uniformly at random with d ≤ s ≤ 30, where d is the dimension of the problem.

The reported time in the GA time column of each dataset determines the so far elapsed
time. See Fig. 3 for an illustration of the progress of GA over time.

The third column of Table 1 demonstrates the number of vertices of the current elite poly-
hedron in the generation demonstrated in the second column. The fifth column demonstrates
the ratio of the volume of the elite polyhedron (in the current generation) and the volume of
the largest contained ball in P , and the last column demonstrates the ratio of the volume of
the current elite polyhedron and the volume of P. Although the time required to solve an
optimization problem with meta-heuristic techniques might be long, our reported running

EuroCG’23

63:6 A Heuristic Algorithm for Maximal Contained Polyhedrons

Input
size

of generation # of vertices
of elite polyhe-
dron

GA Time (s) Vol(elite polyhe-
dron)/ Vol(largest
contained ball)

Vol(elite polyhe-
dron)/ Vol(P)

40

40 29 2.3867 1.3685 0.2107
100 28 4.8967 1.6557 0.4238
120 17 6.0163 1.7657 0.6214
143 11 6.4162 1.8514 0.7123

70

40 56 3.5223 1.5114 0.1125
100 42 5.9185 2.3352 0.5689
120 36 6.1945 2.4732 0.6351
151 31 6.9790 2.5647 0.7418

100

40 79 4.5421 2.4236 0.2895
100 68 6.9928 2.5930 0.5872
120 61 8.2568 2.6638 0.6253
158 57 9.1644 2.7458 0.6942

Table 1 Summary of the experiment results.

times are reasonable concerning the number of vertices, even on an average hardware setup.
However, the time required to solve the problem may increase with the scale of the problem.

5 Discussion

Considering the theoretical aspects of our problem remained open. One open question
is finding some quick and efficient approximation algorithms for computing the biggest
convex polyhedron in arbitrary polyhedrons in our problem formulation in arbitrarily high
dimensions. This would give a baseline to evaluate the fitness of the individuals properly.
One can use this value to stop further generations when the individuals approach the optimal
value. We believe our results besides the introduced dataset give a baseline for future studies.

References

1 Imre Bárány and Zoltán Füredi. Computing the volume is difficult. Discrete & Computa-
tional Geometry, 2(4):319–326, 1987.

2 Jyun-Sheng Chang and Chee-Keng Yap. A polynomial solution for the potato-peeling
problem. Discrete & Computational Geometry, 1(2):155–182, 1986.

3 Paul Chew and Klara Kedem. A convex polygon among polygonal obstacles: Placement
and high-clearance motion. Computational Geometry, 3(2):59–89, 1993.

4 Martin E. Dyer and Alan M. Frieze. On the complexity of computing the volume of a
polyhedron. SIAM Journal on Computing, 17(5):967–974, 1988.

5 Herbert Edelsbrunner. The union of balls and its dual shape. In Proc. ninth annual
Symposium on Computational geometry, pages 218–231, 1993.

6 Martin Henk, Jürgen Richter-Gebert, and Günter M Ziegler. Basic properties of convex
polytopes. Chapman and Hall/CRC, 2017.

7 Nilanjana Karmakar and Arindam Biswas. Construction of an approximate 3D orthogo-
nal convex skull. In Proc. International Workshop on Computational Topology in Image
Context, pages 180–192, 2016.

V. Keikha 63:7

8 Fernando G Lobo, David E Goldberg, and Martin Pelikan. Time complexity of genetic
algorithms on exponentially scaled problems. In Proceedings of the 2nd annual conference
on genetic and evolutionary computation, pages 151–158, 2000.

9 Zhang Qing-feng. The application of genetic algorithm in optimization problems. Journal
of Shanxi Normal University, pages 1–8, 2014.

10 Jack Snoeyink. Point location. In Handbook of discrete and computational geometry, pages
1005–1028. Chapman and Hall/CRC, 2017.

EuroCG’23

Crossing Optimization in Neighborhood Drawings
Patricia Bachmann1 and Ignaz Rutter1

1 University of Passau
{bachmanp, rutter}@fim.uni-passau.de

Abstract
We consider the problem of modifying a given straight-line drawing Γ of a graph G so that it
emphasizes readability of the neighborhood of a given vertex v while preserving the user’s mental
map. To model the mental map preservation, we seek a neighborhood drawing, i.e., a straight-line
drawing Γ′ of the graph G[v] induced by the neighborhood of v that has v at the same position as
in Γ and all other vertices of G[v] may only be moved on the ray from v to their position in Γ. Our
objective is to find a neighborhood drawing with few crossings.

We give an algorithm for testing whether a vertex v has a neighborhood drawing without
crossings. We further show that neighborhood drawings with minimum skewness can be computed
efficiently. Finally, we evaluate the crossing reduction in practice and showcase some examples.

1 Introduction

Whether a particular graph layout is informative or useful strongly depends on the specific
task that it is used for [4, 5]. While there exist approaches that focus on visualizing the
neighborhood of specific vertices, e.g., Da Lozzo et al. [2] consider the task of visualizing
the neighborhood of a given vertex using limited screen space, most general-purpose layout
algorithms such as force-directed methods [1] are designed to give a good overview of the
overall structure of a graph. This focus on the global structure leads to suboptimal results
in the visualization of more local structures such as the neighborhood of a particular vertex.

We study the problem of visualizing the neighborhoods of specific vertices in a way that
allows the user to understand the neighborhood of a vertex with the context of a drawing
of the entire graph. To this end, we assume that our input consists of a graph G = (V,E)
together with a geometric drawing Γ of G and a particular vertex v of G. The neighborhood
graph of v in G, denoted by G[v], is the subgraph of G induced by the neighborhood of v.
The drawing Γ induces a drawing Γ[v] of G[v]. We seek a new drawing ∆ of G[v] such that
∆ is more readable than Γ[v] and yet sufficiently similar to it. This motivates the following
problem. Given a graph G with a straight-line drawing Γ of G and a center vertex v, we
call a drawing ∆ of G[v] a neighborhood drawing if Γ(v) = ∆(v) and for all neighbors u of v
there exists c > 0 such that Γ(v)− Γ(u) = c · (∆(u)−∆(v)), i.e. the position of u in ∆ lies
on the ray from v through u in Γ. We may assume w.l.o.g. that Γ maps v to the origin. In
particular, the order of the edges incident to v is the same in Γ[v] and in ∆, and the angles
between consecutive edges incident to v are preserved, see Figure 1 for an example.

In this paper we initiate the study of the problem of optimizing crossings in neighborhood
drawings. In particular, we characterize the neighborhoods that admit planar drawings, we
give an efficient algorithm for computing a neighborhood drawing with minimum skewness,
and we experimentally evaluate our approach in terms of the crossing reduction.

2 Planar Neighborhood Drawings

Let G[v] be a neighborhood graph. We call the edges of G that are incident to v spine
edges. An edge of G[v] not incident to v is called peripheral edge. Note that, since G[v] is
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29–31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

64:2 Crossing Optimization in Neighborhood Drawings

(a) (b)

Figure 1 (a) Neighborhood graph G[v]. (b) Crossing-free neighborhood drawing ∆ of G[v].

a neighborhood graph, each peripheral edge e = xy determines a 3-cycle Ce = xyv in G[v],
which is represented as a (geometric) triangle in Γ[v]. Two peripheral edges uw and xy

alternate if their endpoints alternate in the circular order around v determined by Γ. The
goal of this section is to prove that a neighborhood graph admits a planar neighborhood
drawing if and only if there are no alternating 3-cycles. We begin with a preparatory lemma.

I Lemma 2.1. Let G[v] be neighborhood graph that admits a planar neighborhood drawing ∆.
Then, for any vertex u of the outer face of G[v], the drawing ∆′ obtained by moving u along
its ray away from v is a planar neighborhood drawing.

Proof. Let ∆′ be the drawing obtained by moving u along its ray away from v. We can only
cause crossings on edges incident to u. Assume for the sake of contradiction that uw crosses
an edge xz in ∆′. Then w.l.o.g. uw passes the vertex x such that x now lies between uw

and v, see Figure 2. But then the edge xv would have crossed uw in ∆, a contradiction. J

w

∆(u)

∆′(u)

x

z

v

Figure 2 If moving u creates a crossing in ∆′ then ∆ is not planar.

I Theorem 2.2. A neighborhood graph G[v] admits a planar neighborhood drawing if and
only if no two of its peripheral edges alternate.

Proof. Assume that uw and xy are alternating peripheral edges and, for the sake of con-
tradiction, that ∆ is a planar neighborhood drawing of G[v]. We derive a contradiction by
showing that ∆ contains a crossing. Consider the triangle Tuw = ∆[Cuw]. Since uw and xy
alternate and since neither vx nor vy may cross uw, it follows that the two vertices x and y

P. Bachmann and I. Rutter 64:3

(a) (b)

(c) (d)

Figure 3 Constructing E by Theorem 2.2. (a) Neighborhood graph G[v]. (b) Clockwise oriented
drawing of G[v]. (c) Auxiliary graph H, vertex corresponding to f0 highlighted. (d) Drawing of E .

lies on different sides of Tuw in ∆. But then the edge xy crosses one of the edges that form
its boundary; a contradiction.

Conversely, assume that G[v] has no alternating peripheral edges. Note that we can
add the peripheral edges between any two spine edges that are consecutive around v, if
they are not already in G[v], without creating alternating peripheral edges. In the following
we assume that G[v] has been augmented in this way. Then G[v] contains a wheel with
center v whose outer edges are the peripheral edges between consecutive edges around v; see
Figure 3(b). Since this wheel is triconnected, it has a unique planar embedding where the
cycle of the peripheral edges lies on the outer face. We now add the remaining peripheral
edges of G[v] in a planar way in the outer face. Note that if this is not possible, then two
of these peripheral edges cross, which implies that they alternate. Hence G[v] is planar,
and since it contains the 3-connected wheel as a spanning subgraph, its planar embedding
is unique up to reversal and the choice of the outer face. We choose its embedding E such
that the rotation around v coincides with the order of the rays emanating from v in Γ.

Each peripheral edge e = uw defines two angles at v that sum to 2π. Assuming that no
two rays are exactly opposite of each other, one of them is less than π, and we direct e in such

EuroCG’23

64:4 Crossing Optimization in Neighborhood Drawings

a way that the smaller angle lies to its right. We call this orientation a clockwise orientation.
Note that each face f of E that is bounded only by peripheral edges can be incident to at
most one edge e such that f lies right of e; otherwise the angles around v would sum to more
than π. Moreover, there exists a unique face f0 that is bounded only by peripheral edges
such that f0 lies to the left of all its incident edges. This can be seen as follows. Consider
the auxiliary graph H obtained by creating a vertex for each face that is bounded only by
peripheral edges and so that a face f has a directed edge to a face g if and only if there is
an edge that has f to its right and g to its left. Observe that, since G is outerplanar after
removing v with all its incident edges, H is a tree. By the above observation, every vertex
has out-degree at most 1. It then follows that H has a single sink, which corresponds to the
desired face f0. We take f0 as the outer face of E .

We now show that G[v] admits a planar neighborhood drawing with embedding E . We
first gradually delete the peripheral edges that lie on the outer face. We do this until we get
a drawing of G[v] containing only the wheel which admits a straight line drawing ∆. We
now draw the peripheral edges in ∆ in the reverse order in which we deleted them. This
way a peripheral edge e is added to ∆ after another peripheral edge e′ if and only if e′ is
nested in e. To draw a peripheral edge uw in ∆ we move the respective endpoints away
from v such that uw can be drawn as a straight line without creating any crossings. By
Lemma 2.1 we know that moving u, resp. w, away from v does not create any crossings in
∆. Further, to determine how far to move the two endpoints we consider vertices on the
outer face that form a path from u to w following the angle < π formed at v, see Figure 4(a).
From those, we find a vertex x furthest away from v. Since these vertices are not on the

u w

(a)

x
u

w

(b)

x

Figure 4 The vertices used to determine the new positions of u and w are highlighted in (a).

outer face after drawing the edge uw, they will never be visited again when drawing the
remaining peripheral edges. Hence, we visit each vertex of G[v] at most once while drawing
peripheral edges, resulting in a linear runtime.

J

3 Crossing-Minimization Heuristic

There exists a class of graphs that show that the number of crossings can grow arbitrarily
large for any number of alternating 3-cycles. These graphs can be constructed as follows:
Let abc and def be two alternating 3-cycles with a = d = v. We now add vertices xi, yj ,

P. Bachmann and I. Rutter 64:5

a = d = v

b

c

f

e

: : :
xi

: : :
yi

Figure 5 A graph with arbitrarily many crossings and only two alternating 3-cycles.

i, j ∈ N as follows: vertices xi are added to G between c and f in the ordering around v,
vertices yj are inserted between b and e. All xi and yj are adjacent to v. Additionally,
all xi are adjacent to f , whereas all yj are adjacent to b. By construction, either edge bc
crosses i+ 1 edges (and ef none) or ef crosses j + 1 edges (and bc none). Since we can add
arbitrarily many such triangles vxif (resp. vyjb), the number of crossings can be arbitrarily
high, even for only two alternating 3-cylces. An example of such a graph can be seen in
Fig. 5. This construction proves the following theorem.

I Theorem 3.1. There exists no function f : N→ N such that for a neighborhood graph G
with k alternating 3-cycles the number of crossings is f(k).

Since the number of alternating 3-cycles does not necessarily influence the number of
crossings in a neighborhood drawing, we instead present a heuristic focusing on the skewness
of the neighborhood graph. That is, we want to find the minimum number of peripheral
edges such that their removal results in a planar neighborhood graph. For this planar
neighborhood graph we can compute the crossing free drawing in linear time. We show that
computing this minimum number of peripheral edges can be done in polynomial time by
solving Vertex Cover on the circle graph formed by alternating peripheral edges.

I Theorem 3.2. Let G = (V,E) be a neighborhood graph with center v. A straight-line
neighborhood drawing ∆ of G with minimal skewness can be computed in polynomial time.

Proof. Consider a straight-line drawing ∆ of peripheral edges of G such that each endpoint
lies on the correct ray at unit-distance from v; see Fig. 6 (a). Then two peripheral edges
intersect in their interior if and only if they alternate. Hence, this drawing ∆ is an intersec-
tion representation of the conflict graph GC describing the alternations, where each vertex
of GC is represented by a chord in ∆ (we can move the endpoint in such a way that chords
sharing an endpoint do not cross, and no new crossings are produced). Thus, the conflict
graph GC is a circle graph. A minimum set of peripheral edges that resolves all alternating
peripheral edges is a vertex cover in this graph. For circle graphs there exists an algorithm
that computes a maximum independent set in O(nmin{d, α}) where α is the independence
number of the circle graph and d its density [3]. By slightly modifying this algorithm we
can compute a vertex cover in polynomial time for our conflict graph. J

EuroCG’23

64:6 Crossing Optimization in Neighborhood Drawings

a

bc

d

e

a b

c

d e

(a) (b)

Figure 6 (a) Peripheral edges in ∆. (b) Conflict graph GC (without isolated vertices).

3.1 Experimental Evaluation
To evaluate the effectiveness of the heuristic from Theorem 3.2 for the purpose of crossing
reduction in neighborhood drawings, we implemented the algorithm and evaluate it in terms
of the crossing reduction and the skewness of the produced neighborhood drawings.

The implementation uses mostly JavaScript with the library D3.js, and Python 3.9 as
well as Sagemath, which was used to compute the vertex cover of the conflict graph. For the
evaluation we considered 237 neighborhoods of 15 different graphs: 11 randomly generated
graphs with a fixed number of vertices and edges, where each edge is present with the same
probability p and four graphs published in the visone wiki1.

Crossing Minimization. To evaluate the performance in terms of crossing minimization,
we compared for each neighborhood the number of crossings in the initial drawing with the
number of crossings after applying our heuristic. Figure 7(a) shows that in almost all cases
our algorithm reduces the number of crossings and that overall, despite Theorem 3.1, the
number of crossings seem to be correlated with the number of alternating triangles. As
Figure 7(b) shows, with an increasing number of alternating 3-cycles, our heuristic becomes
less effective at reducing crossings. The crossing reduction is around 45% on average, al-
though for neighborhood drawings with up to 10 alternating 3-cycles this number is around
56% and a little over 50% for neighborhood drawings with up to 20 alternating 3-cycles; see
Table 1. The distribution of percentages of reduced crossings is illustrated in Figure 8(a).

alternating 3-cycles Avg. crossing reduction Avg. # edges contributing to skewness
≤ 10 56.41% 10.41%
≤ 20 50.56% 14.68%
≤ 52 44.97% 19.79%

Table 1 Percentage of reduced crossings on average for different numbers of alternating 3-cycles.

Notably, for a small number of instances, namely two, our heuristic increases the number of
crossings, albeit by a very small number, i.e. by six and one crossing, respectively.

1 https://visone.ethz.ch/wiki/index.php/Knecht_Classroom_(data)

P. Bachmann and I. Rutter 64:7

0 10 20 30 40 50
Alternating 3-cycles

0

100

200

300

400

500

Ab
so

lu
te

 n
um

be
r o

f c
ro

ss
in

gs

legend
crossingsBefore
crossingsAfter

(a)

0 10 20 30 40 50
Alternating 3-cycles

20

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
ed

uc
ed

 c
ro

ss
in

gs

(b)

Figure 7 (a) Crossing number in neighborhood drawings before and after optimizing. (b) Per-
centages of reduced crossings tend to decrease as the number of alternating 3-cycles increase.

20 0 20 40 60 80 100
Percentage of crossings reduced by heuristic

0

10

20

30

40

Co
un

t

(a)

0 5 10 15 20 25 30 35
Skewness of optimized neighborhood drawing

0

10

20

30

40

50

60

70

Co
un

t

(b)

0 10 20 30 40
Percentage of edges to delete for planar drawing

0

5

10

15

20

25

30

35

40

Co
un

t

(c)

Figure 8 Distribution of reduced crossings (%), skewness and edges adding to skewness (%).

Skewness. We also investigated the skewness of our optimized neighborhood drawings.
Figure 8(b) and (c) show the distributions of both the skewness and the percentage of edges
that contribute to said skewness. Our evaluation shows that on average around 20% of edges
in an optimized neighborhood drawing contribute to the skewness of the neighborhood graph.
This percentage decreases with fewer alternating 3-cycles in the neighborhood drawing, see
Table 1. For 20 or less alternating 3-cycles, around 14% of edges contribute the the skewness
and for 10 or less alternating 3-cycles the number is around 10%.

3.2 Discussion
Our evaluation shows that our heuristic for crossing minimization works well for neigh-
borhood graphs with few alternating 3-cycles, namely up to and including 20 alternating
3-cycles, in that it reduces the number of crossings by at least half and only around 14% of
edges contribute to the skewness of the neighborhood graph. However, for more alternating
3-cycles the effectiveness of crossing minimization decreases to less than half on average while
almost 20% of the edges of the neighborhood graph on average contribute to its skewness.

In practice, displaying neighborhood drawings also becomes problematic for some cases.
That is, the vertices of a triangle uvw are moved further away from the center v the larger
the angle at v in order to eliminate the crossings caused by the vertices that lie inside of
∆(Cuw). As a result, vertices are often moved beyond the edge of the screen, see Figure 9.

EuroCG’23

64:8 Crossing Optimization in Neighborhood Drawings

(a) (b)

Figure 9 Neighborhood drawing (a) before and (b) after transformation.

4 Conclusion

We have shown that a neighborhood graph admits a crossing-free drawing ∆ if and only if
it contains no alternating peripheral edges. We can compute ∆ in linear time. For general
graphs, we give a heuristic to compute a neighborhood drawing with minimal skewness.
Our application complements the theoretical results and, on average, reduces the crossings
of neighborhood drawings by 45% and even 50% for graphs with few alternating 3-cycles.
It also shows that, on average, removing 20% of the edges from optimized neighborhood
drawings results in a crossing-free drawing. This result also improves for neighborhood
graphs with fewer alternating 3-cycles.

The next step is to investigate so-called open neighborhood drawings. In such drawings,
we omit spine edges and only keep peripheral edges. This ensures that alternating peripheral
edges no longer create crossings on spine edges. An interesting result would be to show if
open neighborhood drawings always omit a crossing-free straight-line drawing.

References
1 Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed

placement. Software: Practice and Experience, 21(11):1129–1164, nov 1991. doi:10.1002/
spe.4380211102.

2 Giordano Da Lozzo, Giuseppe Di Battista, and Francesco Ingrassia. Drawing graphs on a
smartphone. J. Graph Algorithms Appl., 16(1):109–126, 2012. doi:10.7155/jgaa.00252.

3 Nicholas Nash and David Gregg. An output sensitive algorithm for computing a maximum
independent set of a circle graph. Information Processing Letters, 110(16):630–634, jul
2010. doi:10.1016/j.ipl.2010.05.016.

4 Helen C. Purchase, David Carrington, and Jo-Anne Allder. Empirical Software Engineering,
7(3):233–255, 2002. doi:10.1023/a:1016344215610.

5 Helen C. Purchase, Robert F. Cohen, and Murray James. Validating graph draw-
ing aesthetics. In Graph Drawing, pages 435–446. Springer Berlin Heidelberg, 1996.
doi:10.1007/bfb0021827.

https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.7155/jgaa.00252
https://doi.org/10.1016/j.ipl.2010.05.016
https://doi.org/10.1023/a:1016344215610
https://doi.org/10.1007/bfb0021827

	Table of Contents
	Invited Talks
	Three Open ProblemsSergio Cabello
	Abstract Voronoi-like Graphs and ApplicationsEvanthia Papadopoulou
	Graph theory meets geometryAlberto Márquez

	Contributed Papers
	Two Equivalent Representations of Bicolored Order TypesAnna Brötzner and Oswin Aichholzer
	Introduction
	Equivalence of (B,R) and
	Outlook

	Using SAT to study plane substructures in simple drawingsHelena Bergold, Stefan Felsner, Meghana M Reddy, and Manfred Scheucher
	Introduction
	Variations
	Discussion

	Many views of planar point setsJan Kynčl and Jan Soukup
	Introduction
	Preliminaries
	Proof of Theorem 1.2

	Sometimes Two Irrational Guards are NeededLucas Meijer and Till Miltzow
	Introduction
	Preparation
	Complete Polygon
	Acknowledgments.

	On the Complexity of Recognizing Nerves of Convex SetsPatrick Schnider and Simon Weber
	Introduction
	Containment results
	Existing ER-Hardness Results
	Lifting to Higher Dimensions
	Conclusion

	Spanners under the Hausdorff and Fréchet DistancesTsuri Farhana and Matthew Katz
	Introduction
	Hausdorff spanners
	Fréchet spanners

	Flip Graphs for Arrangements of PseudocirclesStefan Felsner, Johannes Obenaus, Sandro Roch, Manfred Scheucher, and Birgit Vogtenhuber
	Introduction
	Preliminaries
	Flip Graphs on Pseudocircle Arrangements
	Conclusion

	On the number of iterations of the DBA algorithmFrederik Brüning, Anne Driemel, Alperen Ergür, and Heiko Röglin
	Introduction
	Upper bound based on geometric assumptions on the input data
	Smoothed Analysis

	On Degeneracy in the P-Matroid Oriented Matroid Complementarity ProblemMichaela Borzechowski and Simon Weber
	Introduction
	Background
	The Effect of Degeneracy on the Resulting USOs
	Constructions Based on Degeneracy and Perturbations
	The Search Problem Complexity of P-OMCP

	Holes in convex drawingsHelena Bergold, Manfred Scheucher, and Felix Schröder
	Introduction
	Holes in simple drawings
	Holes in convex drawings
	Discussion

	Maximum overlap area of a convex polyhedron and a convex polygon under translationHonglin Zhu and Hyuk Jun Kweon
	Introduction
	Preliminaries
	Maximum overlap of convex polyhedron and convex polygon
	Applications

	Extending Orthogonal Planar Graph Drawings is Fixed-Parameter TractableSujoy Bhore, Robert Ganian, Liana Khazaliya, Fabrizio Montecchiani, and Martin Nöllenburg
	Introduction
	Initial Branching
	Preprocessing
	The Sector Graph

	 (1+)-ANN data structure for curves via subspaces of bounded doubling dimensionJacobus Conradi, Anne Driemel, and Benedikt Kolbe
	Introduction
	Basic definitions
	Bounding the doubling dimension of the space of (,)-curves
	Approximate Nearest Neighbour

	Improved Bounds for Discrete Voronoi GamesMark de Berg and Geert van Wordragen
	Introduction
	Better ε-nets for convex ranges
	A quadtree-based strategy for player P
	Conclusion

	On polynomials associated to Voronoi diagrams of point sets and crossing numbersMerce Claverol, Andrea de Las Heras Parrilla, David Flores Peñaloza, Clemens Huemer, and David Orden
	Introduction
	Known relations
	Properties of the Voronoi, circle and Ek polynomials
	On the roots of the Voronoi, circle and Ek polynomials
	Discussion

	Density Approximation for Kinetic GroupsMax van Mulken, Bettina Speckmann, and Kevin Verbeek
	Introduction
	Volume-based quadtree
	From volume to points
	KDS for density approximation
	Discussion

	On the Size of Fully Diverse Sets of Polygons using Earth Movers or Wasserstein DistanceFabian Klute and Marc van Kreveld
	Introduction
	Diversity of n-point Sets using Earth Movers Distance
	Diversity of Distributions using the Wasserstein Distance
	Diversity of Sets of Convex Polygons
	Conclusions and Open Problems

	A linear bound for the Colin de Verdière parameter for graphs embedded on surfacesCamille Lanuel, Francis Lazarus, and Rudi Pendavingh
	Introduction
	Background
	Overview of the proof

	On the algebraic connectivity of token graphs of a cycleMónica Reyes, Cristina Dalfó, Miquel Angel Fiol, and Anrau Messegué
	Introduction
	The spectrum of F2(Cn)
	The algebraic connectivity of F2(Cn)

	Euclidean One-of-a-Set TSPHenk Alkema and Mark de Berg
	Introduction
	A subexponential algorithm for Euclidean One-of-Set TSP
	Conclusion

	Shortest coordinated motion for a pair of square robotsGuillermo Esteban, Dan Halperin, Víctor Ruíz, Vera Sacristán, and Rodrigo Silveira
	Introduction
	The general approach
	The minimum-length motion

	Maintaining Triconnected Components under Node ExpansionSimon D Fink and Ignaz Rutter
	Introduction
	(Extended) Skeleton Decompositions
	Node Expansion in Extended Skeleton Decompositions
	Application to Synchronized Planarity

	Towards Space Efficient Two-Point Shortest Path Queries in a Polygonal DomainSarita de Berg, Frank Staals, and Tillmann Miltzow
	Introduction
	Global Approach
	Concluding remarks

	Radon number of graph familiesAttila Jung
	Introduction
	Radon number of graph families
	Graph families with Radon number at most 3 are trivial
	Graph families with Radon number 4
	Open questions

	Proving non-realizability with grass-plucker3Julian Pfeifle
	Introduction
	An example
	The grass-plucker3 algorithm
	Discussion and Outlook
	Acknowledgements

	On the geometric thickness of 2-degenerate graphsRahul Jain, Marco Ricci, Jonathan Rollin, and André Schulz
	Introduction
	The upper bound
	The lower bound

	Realizations of multiassociahedra via rigidityLuis Crespo Ruiz and Francisco Santos
	The multiassociahedron
	Realizing a simplicial complex as a polytope
	Rigidity
	Main results

	Bichromatic Perfect Matchings with CrossingsOswin Aichholzer, Stefan Felsner, Rosna Paul, Manfred Scheucher, and Birgit Vogtenhuber
	Introduction
	Bichromatic Convex Point Sets
	Conclusion

	Axis-Parallel Right Angle Crossing GraphsPatrizio Angelini, Michael Bekos, Julia Katheder, Michael Kaufmann, and Maximilian Pfister
	Introduction
	Preliminaries
	0-bend apRAC graphs
	1-bend apRAC graphs
	2-bend apRAC graphs
	Conclusion and Open Problems

	k-planar Placement and Packing of -regular CaterpillarsCarla Binucci, Emilio Di Giacomo, Giuseppe Liotta, Michael Kaufmann, and Alessandra Tappini
	Introduction
	Preliminaries
	–placement of –regular Caterpillars into –planar Graphs
	Open Problems

	Clustering with ObstaclesMark de Berg, Leyla Biabani, Morteza Monemizadeh, and Leonidas Theocharous
	Introduction
	The k-median problem in a polygonal domain.
	The k-Center problem with outliers

	2-point link distance queries in polygonal domainsMart Hagedoorn and Valentin Polishchuck
	Introduction and Preliminaries
	Two-point link distance queries
	Conclusions

	Crossing-Free Hamiltonian Cycles in Simple Drawings of Complete GraphsOswin Aichholzer, Joachim Orthaber, and Birgit Vogtenhuber
	Introduction
	Crossing-Free Hamiltonian Cycles
	Conclusion

	Hamiltonian Cycles and Matchings in 1-planar GraphsMeghana M Reddy, Michael Hoffmann, and Emanuel Seemann
	Introduction
	Hamiltonian cycles
	Matching extendability
	1-planar graphs with high connectivity
	Conclusion

	Recognizing Unit Disk Graphs in Hyperbolic Geometry is ER-CompleteNicholas Bieker, Thomas Bläsius, Emil Dohse, and Paul Jungeblut
	Introduction
	Simple Stretchability in the Euclidean and the Hyperbolic Plane
	The Framework
	Recognition of Hyperbolic Unit Disk Graphs
	Conclusion and Outlook

	Crossing Minimization in Time Interval StorylinesAlexander Dobler, Martin Nöllenburg, Daniel Stojanovic, Anaïs Villedieu, and Jules Wulms
	Introduction
	Computing combinatorial storylines
	Evaluation

	The Complexity of Intersection Graphs of Lines in Space and Circle OrdersJean Cardinal
	Introduction
	R-Completeness of intersection graphs of lines
	R-Completeness of circle orders

	Interactive Exploration of the Temporal -ShapeFelix Weitbrecht
	Introduction
	Preliminaries
	Activity Spaces of Delaunay Triangulations and -Shapes
	Computing the Temporal -Shape
	Demo Application
	Experimental Results
	Conclusion

	On the number of Delaunay Simplices over all Time Window in any DimensionFelix Weitbrecht
	Introduction
	On the Expected Size of T
	On the Maximum Size of T
	Outlook

	Vorosketch and the L0 distanceHerman Haverkort
	Drawing Voronoi diagrams with Vorosketch
	The geometric L0 distance

	Applying The Pebble Game Algorithm to Rod ConfigurationsSigne Lundqvist, Klara Stokes, and Lars-Daniel Öhman
	Introduction
	Theoretical Results
	An algorithm for testing rigidity of rod configurations
	A Computational Experiment
	Conclusion

	The Number of Edges in Maximal 2-planar GraphsMichael Hoffmann and Meghana M Reddy
	Introduction
	Preliminaries
	The Lower Bound
	The Upper Bound: Proof outline of Theorem 2
	Conclusions

	Parameterized Complexity of Vertex Splitting to Pathwidth at most 1Jakob Baumann, Matthias Pfretzschner, and Ignaz Rutter
	Introduction
	Preliminaries
	FPT Algorithms for Pathwidth-One Vertex Explosion
	FPT Algorithms for Pathwidth-One Vertex Splitting

	Circling a Square: The Lawn Mowing Problem Is Algebraically HardSándor Fekete, Dominik Krupke, Michael Perk, Christian Rieck, and Christian Scheffer
	Introduction
	Optimal Tours in Rectangles
	Conclusion

	Simply Realising an Imprecise Polyline is NP-hardThijs van der Horst, Tim Ophelders, and Bart van der Steenhoven
	Introduction
	Unit disks as regions
	Discussion

	Oriented SpannersKevin Buchin, Joachim Gudmundsson, Antonia Kalb, Aleksandr Popov, Carolin Rehs, André van Renssen, and Sampson Wong
	Introduction
	Bounds for Minimal Oriented Dilation
	Hardness
	Open Problems

	Insertion-Only Dynamic Connectivity in General Disk GraphsHaim Kaplan, Katharina Klost, Kristin Knorr, Wolfgang Mulzer, and Liam Roditty
	Introduction
	Insertion-Only Data Structure for Unbounded Radii
	Conclusion

	An s-t Jordan curve crossing boundaries of a set of disk-homeomorphic objects in the planeFreija van Lent, Julian Golak, Alexander Grigoriev, and Aida Abiad
	Introduction
	Embeddings of 2 shapes
	Embeddings of n shapes
	Conclusion and open questions

	Simultaneous Drawing of Layered TreesJulia Katheder, Stephen G Kobourov, Axel Kuckuk, Maximilian Pfister, and Johannes Zink
	Introduction
	Preliminaries
	One Tree and Multiple Paths on Arbitrarily Many Layers
	Two Trees on Arbitrarily Many Layers
	Multiple Trees on Three Layers
	Open Problems

	Classification of 2D bichromatic points with outliersErwin Glazenburg, Frank Staals, and Marc van Kreveld
	Introduction
	Properties of the MinMax problem
	Properties of the k-mis MinMax problem
	Solving the k-mis MinMax problem

	Gradual Simplification of PolylinesStefan Funke and Sabine Storandt
	Introduction
	The Gradual Line Simplification (GLS) Problem
	Algorithms for GLS
	Future Work

	The Fréchet mean in the space of segmentsPanos Giannopoulos and Sergio Cabello
	Introduction
	An example of Fréchet mean in (S, dH)
	A (1+)-approximation for k-means in (S, dH)

	On the Arrangement of Hyperplanes Determined by n PointsMichal Opler, Pavel Valtr, and Tung Anh Vu
	Introduction
	Warm-up: two-dimensional space
	Computing the characteristic polynomial

	Map Matching Queries Under Fréchet Distance on Low-Density SpannersKevin Buchin, Maike Buchin, Joachim Gudmundsson, Aleksandr Popov, and Sampson Wong
	Introduction
	Preliminaries
	Straightest Path Queries
	Map Matching Segment Queries
	Complete Map Matching Queries

	Simultaneous Representation of Interval Graphs in the Sunflower CaseIgnaz Rutter and Peter Stumpf
	Introduction
	Preliminaries
	Recognition Algorithm

	On Computing Local Separators for SkeletonizationJ Andreas Bærentzen, Rasmus E Christensen, Emil Toftegaard Gæde, and Eva Rotenberg
	Introduction
	Computing Local Separators
	Dynamic Connectivity
	Empirical Results

	Primal-Dual Cops and RobberMinh Tuan Ha, Paul Jungeblut, and Torsten Ueckerdt
	Introduction
	Cops win always if the maximum degree is at most four
	Robber wins sometimes if the maximum degree is at least five
	Conclusions

	The Complexity of Recognizing Geometric HypergraphsDaniel Bertschinger, Nicolas El Maalouly, Linda Kleist, Tillmann Miltzow, and Simon Weber
	Introduction
	Proof Techniques

	Packing Fréchet BallsPeyman Afshani and Aniket Basu Roy
	Introduction
	Preliminaries
	Discrete Fréchet and Hausdorff Distances
	Continuous Fréchet Distance
	Conclusion

	Non-convex position of lines in R3Ondřej Chwiedziuk, Barbora Dohnalová, and Miroslav Horský
	Introduction
	Non-general position
	General position
	Lower bound for general position with respect to direction vectors
	Conclusion

	Computing Minimum Complexity 1D Curve Simplifications under the Fréchet DistanceThijs van der Horst and Tim Ophelders
	Introduction
	Simplifications
	Constructing simplifications in linear time

	A Heuristic Algorithm for Maximal Contained PolyhedronsVahideh Keikha
	Introduction
	Genetic Algorithms (GA)
	Preparation for Experimental Studies
	Experimental Results
	Discussion

	Crossing Optimization in Neighborhood DrawingsPatricia Bachmann and Ignaz Rutter
	Introduction
	Planar Neighborhood Drawings
	Crossing-Minimization Heuristic
	Conclusion

