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Preface

The 39th European Workshop on Computational Geometry (EuroCG 2023) was held on
March 29-31 in Barcelona, Spain. EuroCG is an annual workshop that combines a strong
scientific tradition with a friendly and informal atmosphere. The workshop is a forum where
established researchers and students can meet, discuss their work, present their results, and
establish scientific collaborations in order to promote research in the field of Computational
Geometry.

This year we had 116 registered participants. Concerning the scientific program, we
received 69 submissions, which underwent a limited refereeing process by the program
committee in order to ensure some minimal standards and to check for plausibility. We
selected 63 submissions for presentation at the workshop.

EuroCG does not have formally published proceedings; therefore, we expect most of the
results outlined here to be also submitted to peer-reviewed conferences and/or journals. This
book of abstracts, available through the EuroCG 2023 web site, should be regarded as a
collection of preprints. In addition to the 63 contributed talks, this book contains abstracts
of the three invited lectures.

The invited speakers were Sergio Cabello, Evanthia Papadopoulou and Alberto Méarquez.

Many thanks to all authors, session chairs, speakers, and invited speakers for the partici-
pation, and to the members of the program committee and all external reviewers for their
insightful comments. We also thank the organizing committee members. Finally, we are
very grateful for the generous support of our sponsors: Gold sponsor Omron, Contributors:
Universitat Politécnica de Catalunya, BarcelonaTech (UPC), Departament de Matematiques
(UPC), and Societat Catalana de Matematiques.

EuroCG 2023 has had a Best Student Presentation Award. The prize was voted by the
workshop attendees to recognize the effort of young researchers to present their work clearly
and elegantly. The winner was Max van Mulken, for the presentation of paper “Density
Approximation for Kinetic Groups”. During the business meeting Michael Bekos presented
the 40th edition of EuroCG, which will take place in Ioannina, Greece, March 13-15, 2024.
A single bid was presented for 2025 by Pavel Valtr and, as a consequence, EuroCG 2025 will
take place in Prague. Looking forward to seeing you all next year in Ioannina!

March 2023,

Clemens Huemer and Carlos Seara
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Three Open Problems

Sergio Cabello

University of Ljubljana & Institute of Mathematics, Physics and Mechanics,
Ljubljana

—— Abstract

I would like to share with you three open problems in Computational Geometry:

Expected volume of the stochastic bounding box;
Maximum matching in unit disk graphs or unit square graphs;
e Barrier resilience.

For each of these problems, there are interesting results and I will discuss some of the ideas that
have been used, but the main question remains open.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29-31, 2023.



Abstract Voronoi-like Graphs and Applications

Evanthia Papadopoulou

Universita della Svizzera italiana

—— Abstract

Differences between classical Voronoi diagrams of points, versus Voronoi diagrams of segments, disks,
polygons, or clusters of points in the plane, tend sometimes to be overlooked. As a result some basic
questions concerning the latter diagrams may remain open or non-optimally solved. In this talk, I
will discuss Voronoi-like graphs as a tool towards resolving such differences.

A Voronoi-like graph is a relaxed Voronoi structure, defined as a graph on the arrangement of a
given bisector system. In a Voronoi-like graph, a vertex v and its incident edges, within a small
neighborhood around v, must appear in a Voronoi diagram of three sites. For points in the Euclidean
plane, where the bisector system forms a line arrangement, a Voronoi-like graph always coincides
with the Voronoi diagram of the involved sites. How about bisector systems, which are not lines (nor
pseudolines), such as those related to line-segments, more generally, to abstract Voronoi diagrams? I
will answer this question in this talk and give examples of simple expected linear-time algorithms to
compute Voronoi-like trees (or forests). Examples include updating an abstract Voronoi diagram
after deletion of one site, updating a constraint Delaunay triangulation after inserting a new segment
constraint, and others.

Some parts of this talk are joint work with Kolja Junginger.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29-31, 2023.



Graph theory meets geometry

Alberto Marquez

Universidad de Sevilla

—— Abstract

Geometric graph theory involves considering the realization of a graph in Euclidean space and

studying its metric properties. This area has been extensively researched, with a vast literature

available. However, there are certain functional differences between geometric graph theory and

traditional graph theory, and studying these functional differences has been a focus of recent research.

By considering the ways in which geometric graph theory differs from traditional graph theory, we

can better understand how to modify geometric graphs in order to improve those functionals.
Joint work with several people, mainly D. Garijo and R. Silveira.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29-31, 2023.



Two Equivalent Representations of Bicolored Order
Types

Oswin Aichholzer! and Anna Brotzner?

1 Graz University of Technology, Graz, Austria
oaich@ist.tugraz.at

2 Malmo University, Malmo, Sweden
anna.brotzner@mau.se

—— Abstract

In their seminal work on Multidimensional Sorting, Goodman and Pollack introduced the so-called

order type, which for each ordered triple of a point set in the plane gives its orientation, clockwise
or counterclockwise. This information is sufficient to solve many problems from discrete geometry
where properties of point sets do not depend on the exact coordinates of the points but only on
their relative positions. Goodman and Pollack showed that an efficient way to store an order type in
a matrix A of quadratic size (w.r.t. the number of points) is to count for every oriented line spanned
by two points of the set how many of the remaining points lie to the left of this line.

We generalize the concept of order types to bicolored point sets (every point has one of two
colors). The bicolored order type contains the orientation of each bicolored triple of points, while no
information is stored for monochromatic triples. Similar to the uncolored case, we store the number
of blue points that are to the left of an oriented line spanned by two red points or by one red and
one blue point in Ap. Analogously the number of red points is stored in Ag.

We show that the equivalence of the information contained in the orientation of all bicolored
point triples and the two matrices Agp and Ag also holds in the colored case. This is remarkable,
as in general the bicolored order type does not even contain sufficient information to determine all
extreme points (points on the boundary of the convex hull of the point set).

1 Introduction

Many problems from discrete geometry are based on properties of point sets in the plane
that do not depend on the exact coordinates of the points but only on their relative positions.
In their seminal work on Multidimensional Sorting [1], Goodman and Pollack introduced
the so-called order type, which for each ordered triple of a point set in the plane gives its
orientation, clockwise, counterclockwise, or collinear. For a point set S the order type can be
stored in a matrix A which is of cubic size with respect to the number of points of S. For
every triple p,q,s € S we encode its orientation by A(p,q,s) € {—1,0,1} where “—1” means
clockwise, “0” means collinear, and “41” means counterclockwise. ! An alternative way to
code the order type is to use a matrix A of quadratic size. For two points p,q € S the entry
A(p, ¢) counts the number of points from S\ {p, ¢} to the left of the oriented line through p
and ¢. Goodman and Pollack [1] showed that the information contained in A is the same as
in A, and that the two matrices can be converted into each other in polynomial time.
Colored point sets have a long history in discrete and computational geometry — see
the recent survey of Kano and Urrutia [2] for a nice collection of problems in this area.

! Note that Goodman and Pollack[1] define A(p, ) as the set of points on the left of £,,. However, both
definitions contain the equivalent information. For convenience, we directly use the triple orientation
A(p, q, s) of the point triple (p,q, s).

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29-31, 2023.

This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



1:2 Two Equivalent Representations of Bicolored Order Types

brars

Figure 1 Counting points to the left of a line induced by the red point 71 and the blue point b;:
AB(r1,b1) =0 and Agr(r1,b1) = 2. For the two red points r2 and r3, Ag(r2,r3) = 2, while Ag(r2,73)
is not defined.

Consequently, we extend the concept of order types to bicolored order types. Let P be a set
of at least 3 points in the plane in general position, that is, no three points lie on a common
line. Using the symbol U for the disjoint union let P = B U R be partitioned into two disjoint
sets B and R, |B| = m and |R| = n, where the points by, ..., b, € B are colored blue, and
the points rq,...,r, € R are colored red. An oriented line through two points p,q € P,
directed from p to g, will be denoted by £,,. For three points p, g, s € P the triple orientation
A(p, q,s) (clockwise or counterclockwise) is determined by considering the oriented line £y,
and checking in which of the open half-planes defined by £,, (right or left) the point s lies.
We denote the collection of the orientations of all bicolored point triples of P (triples that
contain at least one blue and one red point) by A(P) or simply by A if it is clear from the
context which point set is considered. Point sets where all triple orientations are the same
belong to the same equivalence class called the bicolored order type of P.

» Definition 1.1. Let P be the set of all bicolored point sets in general position in the
plane consisting of m blue and n red points. The bicolored order type of size (m,n) is the
equivalence class on P where two sets of P are equivalent if all bicolored triple orientations
are the same.

Note that the orientation of monochromatic point triples is not encoded in A. Similar to A
for uncolored order types we define Ag, Ag to count the number of blue, respectively red,
points to the left of an oriented line spanned by two points from P. More precisely, for any
pair of red points r;,r; € R we count the number of blue points to the left of the oriented
line £, in Ap(r;,r;), and for any bicolored pair of points b; € B, 7; € R we count the
number of blue points to the left of the oriented line £y, in Ap (bi,r;) and the number of
blue points to the left of the oriented line £, in Ap(r;,b;). In an analogous way we count
the number of red points in Ar. See Figure 1 for an example.

In Section 2 we show our central result that the information contained in A\g and Agr
is equivalent to the information given by all bicolored triple orientations A. Moreover,
given one of the two representations of a bicolored order type, the other can be derived in
polynomial time. This result has to be seen in contrast to the fact that in general we cannot
use the bicolored order type to determine all extreme points of a bicolored point set as the
orientation of monochromatic point triples is not given; see Figure 2 for an example.

2 Equivalence of (Ap,Ag) and A

Given all point triples A, in the uncolored case it is straightforward to compute the A-matrix.
Goodman and Pollack [1] showed that the opposite direction also holds, namely that the
A-matrix uniquely determines A. Given A, for an extremal point p it holds that A(p, ¢) = 0 for
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bl ° * b2 bl ° ° b2

Figure 2 Two point sets with the same bicolored order type. We cannot determine whether r; lies
on the boundary of the convex hull as the orientation of the red point triple (ri,72,73) is unknown.

some point ¢ € P\ {p}. To compute the triple orientations from the A-matrix, we iteratively
choose an extremal point p and remove it from the set after computing all triple orientations
involving p. This is essentially done by sorting all remaining points radially around p, using
the information of A to compare the order of two elements.

We show that a similar equivalence holds for bicolored order types. Again, given all
bicolored triple orientations A, computing Ag and Apg is straightforward. So in the following,
we will argue the inverse direction, which requires some more involved steps.

For bicolored point sets, a bicolored edge {b, 7} lies on the boundary of the convex hull if
and only if either (1) Ag(b,r) = Agr(b,7) =0 or (2) Ag(b,r) =m —1 and Ag(b,r) =n —1
holds. Then b and r are extreme points and can be found by testing all mn bicolored edges.

For monochromatic edges we can in general not determine whether they lie on the
boundary of the convex hull, see Figure 2 for an example. The reason is that in Ag and Ar
it is not encoded if points of the same color as the monochromatic edge lie on both sides of
it. This also implies that we cannot always determine all extreme points.

However, if no bicolored edge on the boundary of the convex hull exists, we know that the
boundary of the convex hull consists solely of points of one color. We thus can find a point
of this color which is extremal to the set of the other color, that is, which lies outside of the
convex hull of the points of the other color, by inspecting all O(m? + n?) monochromatic

edges. For such an edge we check whether all points of the other color lie on one side of it.

As obviously an extreme point (for example from a bicolored edge on the boundary of the
convex hull) is also extremal to the set of the other color, we obtain the following observation.

» Observation 2.1. For a given bicolored point set P = B U R we can determine all points
which are extreme w.r.t. the other color by using A\g and Ar in O(m? 4+ n?) steps.

As we have seen, using just A\g and Ag it is not always possible to determine whether a
point is an extreme point. We therefore extend the concept and make use of points that are
not “dominated” by other points. We call such points undominated.

» Definition 2.2. A red point r € R is undominated if it (1) lies outside of the convex hull of
B, and (2) the wedge formed by the tangents of r to the convex hull of B which is opposite
of B is empty of points of R. The symmetric definition holds for a blue point b € B.

» Lemma 2.3. Given the matrices A\g and Ag and an undominated point p € BU R, all
bicolored triple orientations involving p can be determined in constant time per triple.

Proof. Without loss of generality let 7 € R be an undominated red point. By definition, r
lies outside the convex hull of B and the wedge between the two tangents of r to the convex
hull of B that lies opposite of B is empty. We first compute the triple orientations of r and
any two blue points; see Figure 3 for an illustration of the proof. Recall that for every b € B

EuroCG’23
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Figure 3 For an undominated point r € R the wedge marked in gray is empty of other points.
All bicolored triple orientations involving r can be determined by using Ap.

the number of blue points to the left of ¢, is given by Ag(r,b). Thus, the rotational order of
blue points around r can be read from \g, which yields the desired triple orientations.

+1, if )\B(T, bl) > )\B(’I’, bj)
-1

(1)

A(Tabiabj) :A(biabj7r) :A(bﬁrvbi) = { .
, otherwise.

This implies the inverse triple orientations A(b;, b;, ) = A(b;, 7, b;) = A(r, b;,b;) = —A(r, bs, bj).
Next we consider the triple orientations involving r, another red point and one blue

point. For every red point 7, the number of blue points lying to the left of ¢,.,, is given

by Ap(r, 7). If a blue point b lies on the right side of ¢, , then all blue points that lie to

the left of ¢,,, also lie to the left of ¢,4, as r is undominated. This is the case if and only if

Ap(r,rk) < Ag(r,b). Thus we get

+1, if Ag(r,rg) < Ap(r,b)

—1, otherwise.

A(r,b,ri) = A(b,r,r) = A(rg, r,b) = { (2)
Similar as before we have A(rg,b,7) = A(b,r, 1) = A(r, 7, 0) = —A(r, b, 7p).

Observe that for every triple we only query two entries in A\g. As claimed we can thus
compute any triple orientation that involves r in constant time per triple. <

Next, we show that for a bicolored point set with a monochromatic, say red, convex hull
we can always find an undominated red point by using only the information given in Ag
and Ar. A red point r which is extremal with respect to B can easily be found via searching
for another red point 75 such that Ag(r,re) = 0. Note that in that case both r and ro are
extremal w.r.t. B, and that ro serves as a witness for r. The proof of the following Lemma
describes how to additionally test whether r is undominated.

» Lemma 2.4. Let P = BUR be a bicolored point set with a monochromatic convex hull and
let p be a point which is extreme with respect to the other color class. Then, in O(m) steps
for p € R (respectively O(n) steps for p € B) we can determine whether p is undominated.

Proof. Assume without loss of generality that the convex hull is red and let » € R be
extremal with respect to B. From Ap we can easily find the blue points b! (Ag(r,b') = 0)
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(D)

Figure 4 The tangents £,,1, {;,m of r define the four wedges (A), (B), (C), and (D).

and b™ (Ag(r,b™) = m—1) of B which define the left and the right tangent of r to the convex
hull of B. If the wedge between these tangents through r that lies opposite of B — wedge (D)
in Figure 4 — is empty, then r is undominated. To see this, we first compute the number of
red points in wedge (A); see again Figure 4. For every red point r; we have Ag(r,r;) = 0 if
and only if r; lies in wedge (A). Counting the corresponding entries in Ap yields the number
of red points in (A). Finally, Ag(r,b') gives the total number of red points in (A) and (D)
together. Subtracting the number of red points in (A) from Ag(r,b') yields the number of
red points in the wedge (D). If (D) is empty, then r is undominated by definition.

To find the two tangents through r and for counting the number of red points in (A)
we have to inspect m entries of Ap, all other steps need only constantly many values of Ag
and Ag. Thus O(m) steps are sufficient to determine whether r is undominated. |

» Theorem 2.5. For a point set P = B U R the information contained in Ap and \g s
equivalent to the information given by all bicolored triple orientations A. Given one of the
two representations of a bicolored order type, the other can be computed in polynomial time.

Proof. Computing Ap and Ag from A can trivially be done in O(mn(m + n)) steps. So
assume we are given Ag and Ar and want to compute A. For any point set there always
exist undominated points, as every extreme point is obviously an undominated point. Thus,
by combining Observation 2.1 and Lemma 2.4 we can find an undominated point, say p,
in time O(m? + n3). The proof of Lemma 2.3 tells us how to compute all bicolored triple
orientations involving p in time O(m? + n?). After this, we can remove p from the set and
update the A-matrices as follows. If w.l.o.g. we remove a red point p = r; then, for every
triple (rg,bs,b5), @ < j, with A(rg,b;,b5) = 1, ry lies to the left of £y, so Ag(bi,b;) has
to be decremented by 1 for each such triple. Similarly, if A(rx,b;,b;) = —1, 7 lies to the
right of £;,, and thus A r(bj,b;) is decremented by 1. For each triple consisting of rj, a blue
point b and another red point 7, r; # i, we also need to update Ag. If A(rg,b,7) =1, then
the value of Ag(b, ;) is decremented by 1. Vice versa, in case A(rg,b, ) = —1, Ag(r, b) gets
decremented by 1. Moreover, the row and the column at index k are removed from both Ap

and \g as ry, is removed from the set. These updates can be done in total time O(m? + n?).

We are left with A-matrices of size (m+n —1) X (m+mn —1). Doing this repeatedly O(m +n)
times shows that all bicolored triple orientations A can be computed from A and Ar. The
total number of steps needed is O(m* + n?). <
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Note that the algorithms and thus the time bounds given in the previous proof are not
optimized, but just serve as witnesses to show that the transformation between the two
representations of a bicolored order type can be done in polynomial time.

3 Outlook

In a forthcoming paper, we use the equivalence between A and Ag, Ag to show that several
tasks on bicolored point sets can be solved in polynomial time by taking only the information
contained in its bicolored order type. We show how to sort one color class around a point of
the other color class, and how to determine whether the two color classes can be linearly
separated. Furthermore, we elaborate on how to determine crossings between bicolored edges.
We use this to find bicolored plane perfect matchings for a given bicolored order type. For
given Ap and Ap we show how to compute the number of crossings of the complete bipartite
graph drawn on the represented bicolored point set in quadratic time. Finally, we generate all
realizable bicolored order types of small cardinality and give their numbers up to m+n < 10
and compare them to the number of uncolored order types.
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—— Abstract

In a simple drawing of a complete graph, all edges are drawn as simple curves and every pair of

edges intersects in at most one point which is either a common vertex or a proper crossing. Simple
drawings generalize straight-line drawings in a similar vein as abstract order types generalize point
sets. They have been studied for many years and have become a source for many open problems
and conjectures.

We provide a SAT framework which allows enumerating simple drawings with specified properties
or to decide that no such drawing exists. Using this framework we look at open problems on classes
of simple drawings. Based on the data, we provide new strengthenings and modifications of existing
conjectures. Some of these problems concern non-crossing substructures in simple drawings. The
most prominent example may be the conjecture by Rafla (1988), which asserts that every simple
drawing of the complete graph K, contains a plane Hamiltonian cycle. Today, however, only the
existence of plane paths of logarithmic size and plane matchings of size 2(y/n) is known (Suk and
Zeng 2022; Aichholzer et al. 2022). Here we present a proof for the existence of plane Hamiltonian
subgraphs with 2n — 3 edges in conver drawings which are a rich subclass of simple drawings. Our
proof comes with a polynomial time algorithm.

1 Introduction

In a simple drawing of a graph in the plane (resp. on the sphere), the vertices are mapped
to distinct points, and edges are drawn as simple curves that connect the corresponding
endpoints but do not contain other vertices. Moreover, every pair of edges intersects in at
most one point, which is either a common vertex or a proper crossing (no touching), and no
three edges cross at a common point. Figure 1 shows the obstructions to simple drawings.
Throughout this article, we will only consider simple drawings of the complete graph K,,.
Problems related to simple drawings have attracted a lot of attention. One of the reasons
is that simple drawings are closely related to interesting classes of drawings such as crossing-
minimal drawings or straight-line drawings, a.k.a. geometric drawings. The focus of this
article will be on the class of convex drawings, which was recently introduced by Arroyo

Supplemental source code and data is available at [1]
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O = X M

Figure 1 The five obstructions to simple drawings.

et al. [5]. Convex drawings are nested between simple drawings and geometric drawings,
and a large subclass of convex drawings is in correspondence with acyclic oriented matroids
of rank 3. For further aspects of the convexity hierarchy we refer the interested reader to
[5, 4, 6].

The notion of convexity is based on the triangles of a drawing, i.e., the subdrawings
induced by three vertices. Since the edges of a triangle do not cross in simple drawings, a
triangle partitions the plane (resp. sphere) into exactly two connected components. The
closures of these components are the two sides of the triangle. A side S of a triangle is convez
if every edge that has its two vertices in S is completely drawn inside S. A simple drawing
of the K, is convex if every triangle has a convex side.

To study forced and forbidden substructures in general simple drawings and subclasses
such as convex drawings, we develop a Python program which generates a Boolean formula
in conjunctive normal form (CNF) that is satisfiable if and only if there exists a simple
drawing of K, (for a specified value of n) with prescribed properties. Moreover, the
solutions of these instances are in one-to-one correspondence with non-isomorphic simple
drawings with the prescribed properties. We then use the state of the art SAT solvers
PicoSAT [7] and CaDiCaL [8] to decide whether a solution exists and to enumerate the
solutions. Unsatisfiability results can be verified using the independent proof checking tool
DRAT-trim [21].

In order to encode a simple drawing of the complete graph in terms of a CNF, it is
important to note that combinatorial properties such as pairs of crossings are fully determined
by the rotation system. For a given simple drawing D and a vertex v of D, the cyclic order
m, of incident edges in counterclockwise order around v is called the rotation of v in D. The
collection of rotations of all vertices is called the rotation system of D. More specifically, the
rotation system captures the combinatorial properties of a simple drawing on the sphere —
the choice of the outer cell when stereographically projecting the drawing onto a plane has
no effect on the rotation system.

o . (¢] . HO .

4 5,1 * 5,2

m: 234 m: 2345 m: 2345

my: 134 m: 1345 m: 1354

m3: 124 m3: 1425 m3: 1425

my: 132 my: 1532 my: 1532
m5: 1423 ms: 1243

Figure 2 The three obstructions IIg, IIg ;, and II3 , for rotation systems.

The SAT encoding uses Boolean variables and clauses to encode the rotations of vertices.
To assert that the prescribed permutations for the vertices (which we refer to as pre-rotation
system) can be realized by a simple drawing, we use Boolean formulas to forbid obstructions.
A computational result of Abrego et al. [2] together with a result of Kynél [14, Theorem
1.1] characterizes drawability in terms of induced 4- and 5-tuples: A pre-rotation system on
n elements is drawable if and only if it does not contain I3, TI3 ; and IIg , (Figure 2) as
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a subconfiguration. To encode convex drawings, we use of result by Arroyo et al. [5] that
characterizes convex drawings in terms of 5-tuples: A simple drawing is convez if and only if
it does not contain 139 or I1g% (depicted in Figure 3) as a subconfiguration.

2 LI s, -
m: 2345 m: 2345
M 1345 m: 1354
m3: 1245 m3: 1245
4 5 my: 1253 my: 1253
3 T 1243 ms: 1423

Figure 3 The two obstructions II5% and II5% for convex drawings.

We discuss questions regarding plane substructures in drawings of the complete graph.
In particular we focus on variants of Rafla’s conjecture [17], which asserts that every simple
drawing of the complete graph contains a plane Hamiltonian cycle.

» Conjecture 1.1 ([17]). Every simple drawing of K,, contains a plane Hamiltonian cycle.

Rafla verified the conjecture for n < 7. Later Abrego et al. [2] did a complete enumeration
of all rotation systems for n < 9 and verified the conjecture for n < 9. Furthermore the
conjecture was proven for some particular subclasses such as geometric, monotone and
cylindrical drawings. With the SAT framework we are able to verify Conjecture 1.1 for all
n < 10.

Recently, Suk and Zeng [20] and Aichholzer et al. [3] independently showed that simple
drawings contain a plane path of length (logn)'=°(). Suk and Zeng also showed that
every simple drawing of K, contains a plane copy of every tree on (log n)l/ 4-0(1) vertices.
Aichholzer et al. moreover showed the existence of a plane matching of size Q(nl/ 2), which
improves older bounds from a series of papers [15, 16, 9, 19, 11, 10, 18].

Fulek and Ruiz—Vargas [11, Lemma 2.1] showed that every simple drawing of K,, contains
a plane subdrawing with 2n — 3 edges. Note that this bound is best-possible because every
plane subgraph of the straight-line drawing of K, on a point set in convex position (see
Figure 4(left)) is outerplanar and thus has at most 2n — 3 edges. In general, it is NP-complete
to determine the size of the largest plane subdrawing [12]. Based on the data for small n,
we conjecture that indeed every simple drawing contains a plane Hamiltonian subgraph on
2n — 3 edges. We verified this conjecture for n < 8.

» Conjecture 1.2. FEvery simple drawing of K, with n > 3 contains a plane Hamiltonian
subdrawing on 2n — 3 edges.

For the class of convex drawings, we succeeded in proving a strengthened version of the
conjecture where the plane Hamiltonian subgraph contains a spanning star.

ot

Figure 4 (left) the perfect convex C5 and (right) the perfect twisted drawing T5.
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2:4 Using SAT to study plane Hamiltonian substructures in simple drawings

» Theorem 1.3. Let D be a convexr drawing of K, with n > 3 and let vy be a vertex of D.
Then D contains a plane Hamiltonian cycle C which does not cross any edge incident to v,.
This Hamiltonian cycle can be computed in O(n?) time.

Proof sketch. We show that convex drawings have a layering structure and reduce the prob-
lem of finding a Hamiltonian cycle to finding a Hamiltonian path for each layer independently.
To simplify the proof and to reduce the number of cases that have to be considered, we make
use of the SAT framework.

For a convex drawing D of the complete graph K, and a fixed vertex v,, we give an
algorithm that computes a plane Hamiltonian cycle which does not cross edges incident to vy.
We assume that v, = n and that the other vertices are labeled from 1 to n — 1 in cyclic
order around v,. Moreover, by applying suitable stereographic projections, we can assume
that v, belongs to the outer face. We denote vertex v, = n as the star vertex and edges
incident to v, as star edges. We call an edge star-crossing if it crosses a star edge. For the
Hamiltonian cycle we only use edges which are not star-crossing. We particularly focus on
the edges e = {v, v + 1} between consecutive neighbors in the cyclic order around vy, that is,
1 <wv<nandv+1 is considered modulo n — 1. An edge e = {v,v + 1} is called good if it is
not star-crossing. Otherwise, if the edge b = {v,v + 1} crosses a star edge {w, v, }, then we
say that b is a bad edge and w is a witness for b.

If there is at most one bad edge {v,v + 1}, then the n — 2 good edges together with the
two star edges {v, v, } and {v+1,v,} form a Hamiltonian cycle. Hence it remains to deal with
the case of two or more bad edges. Firstly, using the properties of a convex drawing we prove
that every pair of bad edges appears in a nested structure as illustrated in Figure 5 where
for every witness w of a bad edge {v,v + 1}, we have w < v. For this we may have to relabel
the vertices cyclically and choose a different outer face. Next, the nesting property implies
that we can label the bad edges as by, ..., by, for some m > 2, such that if b, = {v;,v; + 1},
then 1 < vy < vy < ... <wv, =n—2. Moreover, let wZL and wZR be the leftmost and the
rightmost witnesses of the bad edge b;, and by L; = {z € [n — 1] : wf; < 2 < w}} and
Ri={xen—-1]:v;+1 <z <w;1} be the left and the right blocks of vertices between
two consecutive bad edges b; and b;11; see Figure 5.

To construct the desired plane Hamiltonian cycle of non-star-crossing edges, we begin
with the edge {v,,v1} and then iteratively add a plane path from v; to v;4+1 that includes all
previously unvisited vertices from L;_1, all the vertices of R; and some vertices of L;. When
reaching the vertex v,, +1 = n — 1, we close the plane Hamiltonian path by adding edge
{vm + 1,v,s}. Figure 6 illustrates the simple case, where all L;’s are empty.

In general, however, the L;’s are not empty and the procedure is more involved. The
path from v; to v;11 consists of a subpath from v; to v; +1 and a subpath from v; +1 to v;41.

bi+1

Vig1 + 1

Figure 5 An illustration of nesting of two bad edges, where bad edges are depicted in red.
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T T

Figure 6 Example of a plane Hamiltonian cycle (blue) in the case where L; = ) for all i.

For the former path (from v; to v; + 1), we go from v; to w!* via the previously unvisited
vertices from L;_; and then one by one with decreasing labels to w’. As long as there are
vertices in L; from which we can return to v; + 1 via a non-star-crossing edge, we traverse
these vertices and then return to v; + 1. The latter path (from v; + 1 to v;11) traverses all
the vertices of R; and some further vertices of L;, and lies entirely in the region between the

two bad edges b; and b;11. <

2 Variations

We also studied variations of plane Hamiltonian structures which we briefly mention below.

Extending Hamiltonian cycles

Another way to interpret Theorem 1.3 is the following: given a spanning star in a convex

drawing of K,,, we can extend this star to a plane Hamiltonian subdrawing of size 2n — 3.

As a variant of this formulation, we tested whether the other direction is true, i.e., whether

any given plane Hamiltonian cycle can be extended to a plane subdrawing with 2n — 3 edges.

We verified that such an extension is possible for n < 10.

» Conjecture 2.1. Let D be a convexr drawing of K,,. Then every plane Hamiltonian cycle
can be extended to a plane Hamiltonian subgraph on 2n — 3 edges.

Hamiltonian cycles avoiding a matching

Instead of a prescribed spanning star, we can also prescribe a matching and ask whether
there is a Hamiltonian cycle that together with the matching builds a plane Hamiltonian

substructure, i.e., the edges of the matching are not crossed by the Hamiltonian cycle.

Hoffman and T6th [13] investigated the geometric setting. They showed that for every plane
perfect matching M in a geometric drawing of K, there exists a plane Hamiltonian cycle
that (possibly contains edges of M but) does not cross any edge from M. We believe that
the same holds for convex drawings as well, and have verfied it for n < 11.

» Conjecture 2.2. For every plane (not necessarily perfect) matching M in a convex drawing
of K, there exists a plane Hamiltonian cycle that (possibly contains edges of M but) does
not cross any edge from M.

Hamiltonian paths with a prescribed edge

In general, it is not possible to find a Hamiltonian cycle containing a prescribed edge in
simple drawings. Even if we only ask for a Hamiltonian path containing a prescribed edge

EuroCG’23



2:6 Using SAT to study plane Hamiltonian substructures in simple drawings

there is an easy example: consider the edge {1,5} in the perfect twisted T depicted in
Figure 4. However, the relaxation to Hamiltonian paths seems to be true for convex drawings.
We have verified it for n < 11.

» Conjecture 2.3. Let D be a conver drawing of K,, and let e be an edge of D. Then D has
a plane Hamiltonian path containing the edge e.

3 Discussion

We remark that our SAT-based investigation of substructures certainly surpasses the enu-
merative approach from [2]. While their approach required the enumeration and testing of 7
billion rotation systems on 9 vertices, our framework allows us to make investigations for
up to n = 20 vertices with reasonably small resources. For example, most computations for
n = 9 only took about 1 CPU hour and 200MB RAM. Even though exact computation times
are not given in [2], the fact that the database for n < 9 covers about 1TB of disk space
shows that our approach works with significantly less resources. Moreover, an enumerative
approach for n = 10 (e.g. to test the existence of plane Hamiltonian cycles) would not be
possible in reasonable time with contemporary computers because there are way too many
rotation systems to be enumerated and tested.

Using our framework, we also studied uncrossed edges, crossing families, and empty
triangles in simple drawings of the complete graph and believe that SAT-based investigations
can be useful to make advancements in the study of simple drawings.
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—— Abstract

Given a set P of n points in the plane and two points x and y not in P, such that their union is in

general position, we say that  and y have the same view of P if the points of P are visible in the
same cyclic order from x and y. We show that for every set P of n points in strong general position
in the plane, there are Q(n*) points with mutually distinct views of P, confirming a conjecture by
Diaz-Banez, Fabila-Monroy and Pérez-Lantero.

1 Introduction

Let P be a set of n points in the plane in general position (no three points of P are collinear).
Let x be an additional reference point not in P, such that the set P U {z} is in general
position. The view of P from x, also called the radial ordering of P with respect to x [6],
is the clockwise cyclic order in which a rotating ray with origin at x meets the points of P.
How many points with mutually distinct views of P are there?

It is easy to see that the number of mutually distinct views of P is always at most O(n?):
indeed, consider the arrangement of (Z) lines drawn through every pair of points from P,
and observe that two points within the same cell of this arrangement have the same view
of P [1, 4, 5,6,9, 10]. On the other hand, there are constructions of sets of n points with
Q(n*) distinct views [6, 10]. The problem of estimating the maximum possible number of
distinct views of a set of n points in the plane also appears as Exercise 6.1.7 in Matousek’s
textbook [7].

How many distinct views are guaranteed in an arbitrary point set P? Diaz-Banez, Fabila-
Monroy and Pérez-Lantero [6] proved that an arbitrary set P of n points in strong general
position in the plane has Q(n3) points with mutually distinct views of P, and conjectured
that this lower bound can be improved to Q(n*). Here the condition of strong general
position means that P is in general position, and three distinct lines determined by pairs of
points in P cannot cross at a common point except at a point from P. Bieri and Schmidt [3]
conjectured that the number of views of any set of n points in general position is ©(n*),
and similarly for the number of “projective” cyclic orders obtained by rotating a line (rather
than a ray), which we might call projective views.

We confirm these conjectures for point sets in strong general position.

» Theorem 1.1. For every set P of n points in strong general position in the plane, there
are Q(n*) points with mutually distinct views of P.

We prove Theorem 1.1 in the following, slightly stronger, form, which guarantees the
lower bound also for projective views.

* Supported by project 21-32817S of the Czech Science Foundation (GACR) and by the grant
SVV-2020-260578.
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(a,c,b)

(a,b,c)

(a,c,b) a ¢ (a,c,b)

Figure 1 Six rays determined by three points a, b, ¢ split the plane into four regions; the three
“corner” regions have the same view (a, ¢, b), the remaining region has the view (a, b, c).

» Theorem 1.2. For every set P of n points in strong general position in the plane, there
is a subset X C P and a set Y of Q(n*) points with mutually distinct views of X, such that
the convex hull of Y is disjoint with the convexr hull of X.

We prove Theorem 1.2 in Section 3. The main idea of the proof is that every point set
in general position contains a subset of linear size that “looks like” the special construction
of a point set with Q(n?) views [6, 10].

2 Preliminaries

For every pair of distinct points a, b, we denote the line passing through them by ab. Ad-
ditionally, we denote the ray contained in ab with endpoint b and not containing a by ab—,
and the ray contained in ab with endpoint a and containing b by ab.

Let £ > 3 and let C be a sequence zizs...x; of k points in the plane, ordered by
increasing z-coordinate. We say that C' is a concave chain (also called a k-cap) if for every
pair of consecutive points z;, z;.1 € C, all the remaining points of C lie below the line ¥;7;71.
In particular, the points of C form the vertices of a convex polygon, ordered clockwise along
its boundary. Similarly, we say that C is a convez chain (also called a k-cup) if for every pair
of consecutive points x;, z;11 € C, all the remaining points of C' lie above the line ¥;7;;7.

Let P be a set of n points in the plane. Let p,q be additional reference points not in
P, such that the set P U {p,q} is in general position. If the view of P from p is distinct
from the view of P from ¢, then p and ¢ have distinct views of some triple of points from
P. The view of a three-point set {a,b,c} C P forming a triangle with vertices in clockwise
order (a, b, c) is determined by the arrangement of rays ab—, ba—, ac—, ca—,bc—, cb—. This
arrangement has four cells, the view from three of these cells is (a, ¢, b), and the view from
the remaining cell is (a, b, ¢); see Figure 1.

In the proof of Theorem 1.2, we will use the Positive Fraction Erd6s—Szekeres Theorem
by Bérany and Valtr [2, 8]. A finite planar point set is called a convexr k-clustering if it
is a disjoint union of k sets X,..., Xy of equal sizes such that every k-tuple (z1,..., k),
x1 € X4, ..., 2, € Xi, forms a convex polygon with vertices in clockwise order (z1,..., k).
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Figure 2 A configuration of linear size that exists in any point set of size n in general position.

» Theorem 2.1 (Positive Fraction Erdés—Szekeres Theorem [2, 8]). For every k > 3 there is
an g > 0 and an integer f(k) such that if X is a finite set of points in general position in
the plane with | X| > f(k), then it contains a convex k-clustering of size at least x| X]|.

3 Proof of Theorem 1.2

Let P be a set of n points in the plane in strong general position. By Theorem 2.1 there
exists a convex 20-clustering of P of size 2(n). In other words, there exist mutually dis-
joint subsets Xi,..., X909 C P, such that all X; are of equal size s = Q(n), and every
20-tuple (x1,...,x90) with 21 € X1,...,zr € Xgo forms a convex 20-gon with vertices in
clockwise order (z1,...,T2). We fix one such tuple (z1,...,x2). Eleven points from this
tuple form either a convex or a concave chain; without loss of generality, let the points
Z1,...,T11 form a concave chain xyx5...2z1;. Let X be the subset of P containing the
points x1, T2, T4, g, Ts, T10, 11 and all the points in X35 U X5 U X7 U Xg; see Figure 2 for an
illustration of X. We will show that there exist Q(n*) distinct views of X.
We define five intersection points ys3, ys, y7, Yo, ys as follows:

{yz} = z122—> Na2s—,
{ys} = z2w4— N w326,
{y7} = vawe— N w1078,
{yo} = xew3— N 211210,
{ye} = T2m4— N w1078,
Since x1x2x4T6xgT10x11 1S a concave chain, all these intersections are well-defined. Let L

be the set of all rays I3l5— where 3 € X3 and 5 € X5, and let R be the set of all rays ror7—
where rg € X9 and r7 € X7. The sizes of L and R are both s? = Q(n?).

» Observation 3.1. For every selection I3 € X3, ls € X5, r7 € X7, 19 € Xg, the sequence
T1Tol3xalsTrer7T8T9T10T11 1S @ concave chain.

Proof. The tuple (x1,z2,13, 24,15, z6, 77, Ts, r9, T10, £11) forms a convex 11-gon with vertices

EuroCG’23
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~ ab—

*q

.
a 15 ac—

Figure 3 The points p and g on the opposite side of ab— and inside the convex region bounded
by cb and ac— have distinct views of {a,b,c}.

in clockwise order by the selection of X. Since z1, %2, x19, 11 are fixed and form a concave
chain, it follows that xix2l3xalsTer7T8T9210T11 IS & concave chain. <

An immediate consequence is the following observation.

» Observation 3.2. For every i € {3,5,7,9} the set X; lies inside the triangle x;_1y;Ti+1.
Moreover, every ray from L intersects segments xgys and y7ys, and every ray from R inter-
sects segments xgyr and Ysye-

Furthermore, every ray from L intersects with every ray from R inside the quadrilateral

ZTeYsYeYr-

We now state the only tool we are using to distinguish different views.

» Lemma 3.3. Let a,b,c,p, q be points in the plane in general position. Assume that abc is
a triangle with vertices in clockwise order (a,b, c), the points p and q lie in the convex region
bounded by b and ac—, and p lies on the opposite side of ab— from q. Then the view of
{a,b,c} from p is distinct from the view from gq.

Proof. The situation is illustrated in Figure 3. When we look at the cells in the arrangement
of rays ab—, ba—, ac—, ca—, bc—, cb— (as in Figure 1), we immediately see that p and ¢ lie in
cells with distinct views of {a, b, c}. <

It remains to find the reference points with distinct views of X. We look at the ar-
rangement £ of rays and lines from L U R U {Zy7, U576, U6Us, Usy7} and for each cell in
this arrangement that lies in the quadrilateral zgysysyr we select a reference point from the
interior of this cell. To complete the proof of the theorem, we need to prove that we selected
Q(n*) points and that any two selected reference points have distinct views.

» Observation 3.4. There are Q(n?) cells in the arrangement L that lie in the quadrilateral
LeYsYeYr-

Proof. The situation is illustrated in Figure 4. The quadrilateral zgysysyr is a cell in the
arrangement of lines ¥577, 1576, J6v2, J6y7. Let r be a ray from R. By Observation 3.2, r
intersects segments xgy7 and y5ys. Hence, 7 splits the quadrilateral zgysysyr into two parts.
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Figure 5 A situation from Observation 3.5. Points p and ¢ have distinct views of the point set
{l3> l5a $8}~

Since there are s> = Q(n?) rays in R, the rays in R split the quadrilateral zysysyr into at
least s? + 1 parts.

Let [ be aray from L. By Observation 3.2, [ intersects segments ysxg and ygyy. Addition-
ally, by the same observation, it intersects with all the rays from R inside the quadrilateral
TeYsYsyr. Since the points of X are in strong general position, all these intersections are
distinct. Hence, [ splits at least s? + 1 regions inside xgysysyr bordered by zsysysys and
rays from R. Since there are s? = Q(n?) rays in L, the whole arrangement £ has at least
(s2+1)- (s> +1) = Q(n?) cells inside the quadrilateral x¢ysysyr- <

» Observation 3.5. Let p and q be two reference points from two distinct cells of the ar-
rangement L inside the quadrilateral xeysysy7. Then the view of X from p is distinct from
the view from q.

Proof. Since p and ¢ are from distinct cells inside the convex quadrilateral zgysysyr the
segment pq intersects some ray from L U R; without loss of generality, let it be a ray [ from
L. The ray [ is equal to some l3ls—, I3 € X3, 5 € X5. We now compare the views of
{l3, 15,28} from p and ¢ (we would take x4 instead of xg if the ray was from R). See Figure
5 for an illustration.

The sequence xolzz4lsrersgrip is a concave chain by Observation 3.1. Since the points
¢ and ys5 lie on the ray zgze—, it follows that the points zg and y5 lie above the lines iﬁ;

EuroCG’23
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and %). Similarly, the points y; and yg also lie above the lines 2%) and z@;}. Hence, the
whole quadrilateral zgysysy lies above these lines and thus in the convex region bounded
by rays a?g‘l; and l3xg—.

By Lemma 3.3 applied on the triangle I3lsxg and reference points p,q, the view of
{l3,15, 28} from p is distinct from the view from ¢. Hence, also the views of X from p
and ¢ are distinct. |

This concludes the proof of Theorem 1.2.

» Remark. By the hyperplane separation theorem, the quadrilateral xgysysy7 can be sep-
arated from X by a line. Since the reference points are chosen inside the quadrilateral
TeYsYeY7, the projective views of X from these reference points are the same as the views,
and therefore also pairwise distinct.
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—— Abstract

In the art gallery problem, we are given a closed polygon P, with rational coordinates and an

integer k. We are asked whether it is possible to find a set (of guards) G of size k such that any
point p € P is seen by a point in GG. We say two points p, ¢ see each other if the line segment pq is
contained inside P. It was shown by Abrahamsen, Adamaszek, and Miltzow that there is a polygon
that can be guarded with three guards, but requires four guards if the guards are required to have
rational coordinates. In other words, an optimal solution of size three might need to be irrational.
We show that an optimal solution of size two might need to be irrational. Note that it is well-known
that any polygon that can be guarded with one guard has an optimal guard placement with rational
coordinates.
Hence, our work closes the gap on when irrational guards are possible to occur.
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Figure 1 Any triangulation of a simple polygon can be three-colored. At least one of the color
classes has at most [n/3] vertices. This color class also guards the entire polygon, as every triangle
is incident to all three colors [7].

1 Introduction

In the art gallery problem, we are given a closed polygon P, on n vertices, with rational
coordinates and an integer k. We are asked whether it is possible to find a set (of guards) G
of size k such that any point p € P is seen by a point in G. We say two points p, q see each
other if the line segment pq is contained inside P.

We show that an optimal solution of two guards might need to have irrational coordinates.
In such a case, we say a polygon has irrational guards. Specifically, we construct a polygon
that can be guarded by two irrational guards but requires three rational guards.

The art gallery problem was formulated in 1973 by Victor Klee. See, for example, the
book by O’Rourke [8, page 2]. One of the earliest results states that every simple polygon on
n vertices can always be guarded with [n/3] guards [4, 7].

Interestingly, it is actually very tough to find any positive algorithmic results on the art
gallery problem. It seems like the art gallery problem is almost impenetrable. For instance,
only in 2002, Micha Sharir pointed out that the problem was even decidable [5, 6, see
acknowledgments]. The decidability of the art gallery problem is actually easy once you know
methods from real algebraic geometry [3]. The idea is to reduce the problem to the first-order
theory of the reals. We encode guard positions by variables, and then we check if every
point in the polygon is seen by at least one guard. Note that this is easy to encode in the
first-order theory of the reals, as we are allowed to use existential (3g1, go, . ..) and universal
quantifiers (Vp = (x,y)). Since then, despite much research on the art gallery problem, no
better algorithm appeared, as far as worst-case complexity is concerned. The underlying
reason for the difficulty to find better algorithms can be explained by the fact that the art
gallery problem is JR-complete [9, 2]. In a nutshell, IR-completeness precisely entails that
there is no better method for the worst-case complexity of the problem. (IR can be defined
as the class of problems that are equivalent to finding a real root to a multivariate polynomial
with integer coordinates. See the full version for an introduction.) More specifically, it was
shown that arbitrary algebraic numbers may be needed to describe an optimal solution to
the art gallery problem. This may come as a surprise to some readers, and was clearly a
surprise back then. Specifically, “in practice”, it seems very rare that irrational guards are
ever needed. The reason is that a typical situation is one of the following two. Either the
guards have some freedom to move around and still see the entire polygon. Or if a guard has
no freedom, it is forced to be on a line defined by vertices of the polygon. As the vertices of
the polygon are at rational coordinates, the guards will be at rational coordinates in that
case as well. Indeed, only in 2017, the first polygon requiring irrational guards was found [1].
Even though JR-reductions exhibit an infinite number of polygons that require irrational
guards, those polygons are not “concrete” in the naive sense of the word. And up to this day,
this is the only “concrete” polygon [1] that we know does require irrational guards. In this
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work, we find a second polygon. It is superior to the first one in the sense that it shows that
two guards are already enough to enforce irrational guards. As a single guard can always be
chosen to have rational coordinates, we settle the question of the minimum number of guards
required to have irrational guards. We summarize our results in the following theorem.

» Theorem 1.1. There exists a polygon with rational coordinates, such that there is only one
way of guarding this polygon optimally with two guards. Those two guards have irrational
coordinates.

Organization.

We provide background information in the full version. There we discuss our results from
different angles, we give a selected overview of related research on the art gallery problem,
and we add some background on the existential theory of the reals. In Section 2, we give an
overview of how we constructed the polygon and what is the intuition behind the different
parts. In Section 3, we give the polygon with coordinates of all vertices. Finally, in the full
version we also provide a formal proof of correctness and explain how we constructed the
polygon and what technical challenges we had to overcome.

2 Preparation

We aim to construct a polygon. This polygon should be guarded by two guards at irrational
coordinates but requires three guards at rational coordinates. We must restrict the possible
coordinates the guards can be positioned. In this section, we will explore the tools to restrict
the possible positions of the two guards within the polygon.

2.1 Basic Definitions

Each guard g will be able to guard some region of the polygon: we call this region its
visibility polygon vis(g). The visibility polygon includes all points for which the line segment
between the guard and the point is included in the polygon P. Notably, the union of the
visibility polygons of the two guards must be the art gallery. Otherwise, the art gallery is
not completely guarded.

A window is an edge of the visibility polygon vis(g) that is not part of the boundary of
P. We can find windows in the guard g’s visibility polygon, by shooting rays from g to reflex
vertices (the vertices of the polygon, with an interior angle larger than ). If these rays do
not leave the polygon at the reflex vertex, a window will exist between the reflex vertex and
the position where the ray does intersect the boundary of the polygon. Let the window’s end
be the intersection of the ray with an edge of the polygon.

Our final polygon consists of the core and a number of pockets, as shown in Figure 2.

The core of the polygon is the square in the center. We will enforce that both guards are
located in the core. As a square is a convex shape, this implies that both guards will guard
the core. The pockets are all regions outside the core. We will use pockets that are either
quadrilateral or triangular. Pockets are attached to either the core or another pocket: they
have one edge that lies on the boundary of the core or on the boundary of another pocket.
Quadrilateral pockets will always be attached to the core. Each quadrilateral pocket has one
edge that is not on the boundary of the core, nor adjacent to it. We will call this edge the
wall of a quadrilateral pocket. Similarly, triangular pockets will be attached to either the
core or a quadrilateral pocket. We will use pockets as a tool to limit the locations of the two
guards.

EuroCG’23
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Figure 2 Our final polygon: it has a core (gray), three quadrilateral pockets (blue), and four
narrow triangular pockets (yellow).

2.2 Guard Segments

We can force a guard to be positioned on a line segment within the polygon. Such a line
segment is called a guard segment. Guard segments are commonly used in the context of
the art gallery problem [1, 9]. In this section, we will describe how we construct a guard
segment. We denote by s the segment and by ¢ its supporting line.

To make s a guard segment, we add two triangular pockets where £ intersects 0P. Each
of the triangular pockets has an edge on ¢. Besides this one edge, the pockets lay on different
sides of £. Only a guard on the line segment between the two pockets can guard both
triangular pockets at the same time.

We have two guards in our polygon and both will be on distinct guard segments. If the
two guard segments are not intersecting, we can enforce that there must be one guard on
each of them as follows. First, we introduce only four triangular pockets. Second, we make
the triangular pockets sufficiently narrow. In this way, it is impossible to guard two of the
triangular pockets outside of a guard segment. Thus at least one guard must be on each
guard segment. A simple construction with two non-intersecting guard segments is shown in
Figure 3.

2.3 Guarding Quadrilateral Pockets

We will now describe how given the position of guard [ and a quadrilateral pocket @ will
limit the position of guard ¢. See Figure 4 for an illustration of the following description.
First, note that if [ will not guard @ completely then there will remain some unguarded
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Figure 3 A small polygon that can only be guarded by two guards, because each guard segment
(yellow dashed line) must contain a guard. The region where a guard could guard at least one pocket
is shaded in light yellow.
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Figure 4 A polygon with guard [. The guard ! defines an unguarded region in the quadrilateral
pocket, a front ray and a back ray, and a feasible segment.

region (orange) in Q. The part of the guard segment of ¢ where the unguarded region is
visible is referred as the feasible segment. It is bounded from the back ray and the front ray.
It is clear that ¢ must be on the feasible segment.

We can compute the front ray by first computing the window end’s s from [ to the wall
of @ and then shooting a ray from s in the direction of the second reflex vertex of Q.
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V22

7l Figure 5 Our complete polygon. The art gallery is shaded according to the function of each
region: gray is the core, yellow is the pockets used to create guard segments, and turquoise are
other pockets. The yellow dashed lines represent the guard segments. The coordinates of important
vertices are given.
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Figure 6 Our complete polygon. The optimal solution has two guards at irrational coordinates is
shown. The light blue regions are guarded by the upper left guard; the light red regions are guarded
by the bottom right guard; the purple (overlay of red and blue) regions are guarded by both. The
dashed lines are rays shot from the guards through reflex vertices. For each pocket, these windows
meet at a point on the art gallery’s wall, of which the coordinates are also given.
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Table 1 Coordinates of the vertices of the polygon (v1,...,v2s), the guards (! and t), and the
window’s ends (w1, wa, w3).

U1 (07 10) V12 (12 7, 7) V23 (47 —1.7)

V2 (2, 10) V13 (11 7, 6) V24 (4, 0)

vy (3,11) vis (F222,6) | v2s  (0,0)

va  (2.3,10) vis (A2, 4) | vas  (0,8)

Vs (4, 10) V16 (10, 4) V27 (—1, 7)

ve  (4,485522) | 7 (10,0) vag  (0,8.3)

vr o (6,%5288) | vis  (6,0) o (3.7-22-v2,11.7-2.2-2)

vs  (6,10) vig (6, 5542) | t*  (7.4-05-v2,1.7-05-V2)

Vo (107 10) Va0 (47 ;iilois) w1 (29357014%;18??52346 7 —76567?44\2/5:2/91;136485384)
vio  (10,6) var (4,2) ws (10717502»67§182??7338187 10100702»6723181?:)3370606)
vir (11.4,6) ver  (3,-2.7) w3 (34407047\6/(?5631085267 29343047\6/05815;804526)

3 Complete Polygon

In this section, we will present our complete polygon: a polygon that can be guarded by two
guards if and only if both guards are situated at irrational points.

3.1 The Polygon

As we described in Section 2 and displayed in Figure 5, the polygon consists of a core and
some pockets. The polygon has four triangular pockets defining two guard segments. The
two guard segments lie on the lines y = x + 8 and y = = — 5.7. Furthermore, the polygon has
three quadrilateral pockets. In Table 1, the coordinates of the vertices of the polygon, the
coordinates of the two guards, and the coordinates of the window’s ends are given.

The walls of the three quadrilateral pockets have the supporting lines:
—T76567-z+771790

1. Top pocket: y = o557 .
101007-z—587372

Right pocket: y =
3. Bottom pocket: y =

g

07175 :
29343-2—201500
34407 :
In the full version, we prove that this polygon can be guarded by two guards, if and only
if the guards are at irrational coordinates in and we discuss the difficulties we encountered
while searching for this polygon.
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—— Abstract
We study the problem of recognizing whether a given abstract simplicial complex K is the k-skeleton
of the nerve of j-dimensional convex sets in R?. We denote this problem by R(k, j,d). As a main
contribution, we unify the results of many previous works under this framework and show that
many of these works in fact imply stronger results than explicitly stated. This allows us to settle
the complexity status of R(1,3,d), which is equivalent to the problem of recognizing intersection
graphs of j-dimensional convex sets in R?, for any j and d. Furthermore, we point out some trivial
cases of R(k,j,d), and demonstrate that R(k,j,d) is IR-complete for j € {d — 1,d} and k > d.

1 Introduction

Let G = (V, E) be a graph. We say that G is an intersection graph of convex sets in RY if
there is a family F of convex sets in R? and a bijection V' — F mapping each vertex v; to
a set s; with the property that the sets s; and s; intersect if and only if the corresponding
vertices v; and v; are connected in G, that is, {v;,v;} € E. Such graphs are instances of
geometric intersection graphs, whose study is a core theme of discrete and computational
geometry. Historically, intersection graphs have mainly been considered for convex sets
in R', in which case they are called interval graphs, or for convex sets or segments in the
plane.

A fundamental computational question for geometric intersection graphs is the recogni-
tion problem defined as follows: given a graph G, and some (infinite) collection of geometric
objects C, decide whether GG is an intersection graph of objects of C. While the recognition
problem for interval graphs can be solved in linear time [4], the recognition of segment in-
tersection graphs in the plane is significantly harder. In fact, Matousek and Kratochvil have
shown that this problem is complete for the complexity class IR [11]. Their proof was later
simplified by Schaefer [15], see also the streamlined presentation by Matousek [12].

The complexity class IR was introduced by Schaefer and Stefankovi¢ [16]. It can be
thought of as an analogue of NP over the reals. More formally, the class is defined via a
canonical problem called ETR, short for Ezistential Theory of the Reals. The problem ETR
is a decision problem whose input consists of an integer n and a sentence of the form

X1, Xn €R (X1, ..., Xn),

where ¢ is a quantifier-free formula consisting only of polynomial equations and inequalities
connected by logical connectives. The decision problem is to decide whether there exists an
assignment of real values to the variables X7,..., X, such that the formula ¢ is true.

It is known that NP C 3R C PSPACE, where both inclusions are conjectured to be strict.
Many problems in computational geometry have been shown to be dR-complete, such as
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the realizability of abstract order types [14], the art gallery problem [1], the computation of
rectilinear crossing numbers [3], geometric embeddings of simplicial complexes [2], and the
recognition of several types of geometric intersection graphs [5, 7, 10, 13].

In this work, we extend the recognition problem of intersection graphs of convex sets to
the recognition problem of skeletons of nerves of convex sets. Let us introduce the relevant
notions. An (abstract) simplicial complex on a finite ground set V is a family of subsets
of V, called faces, that is closed under taking subsets. The dimension of a face is the number
of its elements minus one. The dimension of a simplicial is the maximum dimension of any
of its faces. In particular, a 1-dimensional simplicial complex is just a graph. The k-skeleton
of a simplicial complex K is the subcomplex of all faces of dimension at most k. Let F be
a family of convex sets in R%. The nerve of F, denoted by N(F) is the simplicial complex
with ground set F where {Fi,...,F,} C F is a face whenever F1 N ... N F,, # 0. In
other words, the intersection graph of a family F of convex sets is the 1-skeleton of the
nerve N(F). Consider now the following decision problem, which we denote by R(k, j,d):
given a simplicial complex K by its maximal faces, decide whether there exists a family F
of j-dimensional convex sets in R? such that K is the k-skeleton of N(F).

In some cases, the k-skeleton of a nerve of convex sets uniquely determines the entire
nerve: recall Helly’s theorem [9] which states that for a finite family F of convex sets, if
every d + 1 of its members have a common intersection, then all sets in F have a common
intersection. Phrased in the language of nerves, this says that if the d-skeleton of the nerve
N(F) is complete, then N(F) is an |F|-simplex. In other words, we can retrieve the nerve
of a family of convex sets in R% from its d-skeleton by filling in higher-dimensional faces
whenever all of their d-dimensional faces are present.

» Remark. The following Helly-type theorem implies the analogous statement that a nerve
of j-dimensional convex sets can be retrieved from its (j + 1)-skeleton.

» Theorem 1. Let F be a finite family of j-dimensional convex sets in R?. Assume that
any j + 2 or fewer members of F have a common intersection. Then all sets in F have a
common intersection.

This result is likely known, however we could not find a reference for it, so we include a
short proof. The proof requires some algebraic topology, in particular the notion of homology.
For background on this, we refer to the many textbooks on algebraic topology, for instance
the excellent work by Hatcher [8]. For readers not familiar with this concept, the idea of
the proof can still be seen by the intuitive notion that Hy(X) = 0 means that the space X
has no holes of dimension k.

Proof. We want to show that the nerve N(F) is an |F|-simplex. Consider a subfamily
F' C F and its induced sub-nerve N(F’). By the nerve theorem (see e.g. [8], Corollary
4G.3), the sub-nerve N(F’) is homotopy-equivalent to the union |JF’ of the sets in F’,
implying that the two objects have isomorphic homology groups. As | J 7’ has dimension at
most j, and F (and thus also F') is finite, we have that Hy(UF') = 0 for all k > j + 1.
Thus Hi(N(F')) =0 for all k > j + 1 and all 7/ C F. On the other hand, the assumption
that any j + 2 or fewer sets have a common intersection implies that the (j + 1)-skeleton of
N(F) is complete and thus Hi(N(F')) = 0 for all 1 < k < j and all subfamilies 7' C F.
Thus, N(F) must be a simplex. <

2 Containment results

We start by showing that all considered problems are in the complexity class dR.
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» Theorem 2. For all k,j and d, we have R(k,j,d) € IR.

Proof. Similarly to NP, containment in JR can be proven by providing a certificate con-
sisting of a polynomial number of real values, and a verification algorithm running on the
real RAM computation model which verifies these certificates [6]. As a certificate, we use
the coordinates of some point in R¢ for each maximal face of the input complex K. These
points then describe a family F of convex sets: Fach set F' is the convex hull of all points
representing maximal faces S of K such that F' € S.

Note that if K is the k-skeleton of N(F) for some family F of j-dimensional convex sets
in R, such a certificate must exist: The points can be placed in the maximal intersections
of F, and shrinking each set to the convex hull of these points cannot change N (F).

Such a certificate can be verified by testing that each set F' is j-dimensional (e.g., using
linear programming), and by testing that the k-skeleton of N(F) is indeed K. The latter
can be achieved in polynomial time by computing the intersection of each subfamily 7' C F
of at most min(k+ 1,d+ 1) sets. If k < d, this determines the k-skeleton of N(F). If k > d,
the k-skeleton of N(F) is determined by the d-skeleton of N(F) by Helly’s theorem [9]. <«

» Lemma 3. R(k,1,1) is in P for any k > 1.

Proof. R(1,1,1) is equivalent to recognizing interval graphs, and can thus be solved in
polynomial time (see [4]). Since we are considering a family F of intervals in R!, the 1-
skeleton of N(F) uniquely determines N (F). By Helly’s theorem, N(F) must be the clique
complex of its 1-skeleton. Thus, R(k, 1,1) can be solved as follows: Build the graph G given
by the 1-skeleton of the input complex K. Test the following four properties: (i) G is an
interval graph, (ii) K is at most k-dimensional, (iii) every maximal face of K is a clique
of G, and (iv) every clique of size < k in G is contained in some maximal face of K. Return
yes if the answer to all these tests is yes, otherwise return no. All tests can be performed in
polynomial time, thus R(k,1,1) € P. <

For some constellations of k, j, d, any simplicial complex of dimension at most k& can be
realized as the k-skeleton of the nerve of j-dimensional convex sets in R%. In this case we
say that the problem R(k, j,d) is trivial. Evans et al. prove triviality for R(1,2,3):

» Lemma 4 ([7]). R(1,2,3) is trivial.

Furthermore, we can show that if the dimensions j and d get large enough compared
to k, the problem also becomes trivial.

» Lemma 5. R(k,2k+ 1,2k + 1) is trivial.

Proof. Wegner has shown that every k-dimensional simplicial complex is the nerve of convex
sets in R2%*1 [18]. In particular, it is also the k-skeleton of a nerve. <

Finally, we prove the following lifting result.
» Lemma 6. If R(k,j,d) is trivial, R(k,j’,d") is trivial for alld’ > d and j < j' < d'.

Proof. We prove that both j and d can be increased by one without destroying triviality,
from which the lemma follows.

Any simplicial complex that can be realized in dimension d can also be realized in a
d-dimensional subspace of R4t1, thus increasing d by one preserves triviality.

To see that j can be increased, consider a realization of a simplicial complex as the k-
skeleton of the nerve of a family F of j-dimensional convex sets in R?. Now, consider any
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two subfamilies F1, 7y of F, such that (Nper, F) N (Nper, F) = 0. The two intersections
N FeF F and N FeF, F must have some distance €. Consider €,,;,, the minimum of all such
€ over all pairs of subfamilies Fi, F5. We extrude every object in F in some direction not
yet spanned by the object by some €’ small enough that no intersection (. F for ' C F
grows by more than €,,;,/3. This process can not introduce any additional intersections,
and thus the nerve of this family of j 4+ 1-dimensional sets is the same as the nerve of F.
We conclude that triviality of R(k,j,d) for j < d implies triviality of R(k,j + 1,d). <

3 Existing JR-Hardness Results

» Lemma 7. R(k,1,d) is AR-hard for k > 1 and d > 2.

Proof. For k =1 and d = 2, this is equivalent to recognizing segment intersection graphs in
the plane, which Schaefer [15] proved to be FR-hard by reduction from stretchability. Evans
et al. [7] generalize Schaefer’s proof for intersection graphs of segments in R? (k = 1 and
d = 3). Their proof works by arguing that all segments of their constructed graph must be
coplanar. Since the argument implies coplanarity no matter the dimension of the ambient
space, the proof also implies FR-hardness for £ = 1 and d > 3. Furthermore, for any “yes”-
instance of stretchability, the constructed graph can be drawn using segments with no triple
intersections. Thus, the proof implies IR-hardness for R(k,1,d) for k > 1, as well. <

Schaefer [15] furthermore proved that R(1,2,2) is IR-hard. In the proof of this result,
again no triple intersections occur in the representations of “yes”’-instances. Thus the same
proof applies to the following lemma.

» Lemma 8. R(k,2,2) is IR-hard for any k > 1.

This solves the complexity status of R(1, j,d) for all j and d. We summarize these results
in the following corollary.

» Corollary 9. For k =1, R(k,j,d) is
inP,ifj=d=1.
dR-complete, if j =1 andd > 2, or if j =d = 2.
trivial in all other cases.

4 Lifting to Higher Dimensions

We can extend a lifting result due to Tancer [17] to our setting. For this, the suspension of
a simplicial complex K with ground set V' and face family F' is the simplicial complex S(K)
with ground set V U {a,b} and faces FU{fU{a} | fe FYU{fU{b}| fe F}.

» Lemma 10. Let K be a simplicial complex and let j > d — 1. Then K is a nerve of
j-dimensional convex sets in R if and only if S(K) is a nerve of (j+1)-dimensional convex
sets in RITL,

Proof. We first show that if K is a nerve of convex sets in R? then S(K) is a nerve of convex
sets in R4, For this, let F be a family of sets in R? whose nerve is K and embed them on
the hyperplane 2447 = 0 in R?*!. For each set F' € F define F’ as the cartesian product
of F' and the segment defined by —2 < x441 < 2. Adding the hyperplanes z411 = —1 and
ZTgr1 = 1, it is easy to see that the nerve of the resulting set family is S(K).

In the other direction, consider a family F’ of (j + 1)-dimensional convex sets in R4+!
whose nerve is S(K). Let A and B be the convex sets that correspond to the vertices a and
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b, respectively. As a and b are not connected in S(K), the sets A and B must be disjoint. In
particular, they can be separated by a hyperplane h. For each other set F' € F’, consider
F := F'Nh and let F be the family of these intersections. Note that F is a family of
j-dimensional convex sets in RY. We claim that the nerve of F is K. Indeed, as K is a
subcomplex of S(K), every face of N(F) must be a face of K. On the other hand, for every
face f of K, there are points p, and p, in A and B, respectively, which lie in the intersection
corresponding to faces f U {a} and f U {b} of S(K), respectively. The intersection of the
segment p,p, with h lies in the intersection of the sets corresponding to f, showing that
every face of K must be a face of N(F). <

Combined with the fact that the d-skeleton determines the entire nerve, we get the
following reduction.

» Corollary 11. Let j € {d—1,d}. If R(d,j,d) is IR-hard, then so is R(d+ 1,7+ 1,d+1).

Using the dR-hardness of R(2,1,2) and R(2,2,2) implied by Lemmas 7 and 8, we thus
deduce the following

» Theorem 12. For any d > 2 and k > d, the problems R(k,d — 1,d) and R(k,d,d) are
dR-complete.

This strengthens a result of Tancer who has shown that R(d,d, d) is NP-hard [17].

5 Conclusion

We have introduced a generalization of the recognition problem of intersection graphs of
convex sets and have seen that several existing results in the literature of intersection graphs
imply stronger statements in this setting. In particular, the computational complexities of
recognizing intersections graphs of convex sets is completely settled. For small k, j, d, the
current state of knowledge is summarized in the tables in Figure 1. As can be seen, for many
decision problems R(k, j, d), the computational complexity is still open. We conjecture that
these cases are either dR-complete or trivial, determining which of the two remains an
interesting open problem. Of course, the analogous problems can be defined for objects
other than convex sets, giving rise to many interesting open problems.
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Figure 1 The complexity status of R(k,j,d) for k < 4 and d,j < 8. P denotes containment in P,
JR denotes dR-completeness, T denotes triviality, and ? indicates open cases.
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—— Abstract

We initiate the study of spanners under the Hausdorff and Fréchet distances. We show that any t-

Vit2—1 2 ¢
2 )
We also prove that for any ¢ > 1, there exist a set of points S and an €;-Hausdorff-spanner of S and

spanner of a planar point-set S is a -Hausdorff-spanner and a min{ %, }-Fréchet-spanner.

an e2-Fréchet-spanner of S, where €1 and €2 are constants, such that neither of them is a ¢t-spanner.

1 Introduction

Let S be a set of points in R?. The Fuclidean graph over S, denoted Gg, is the complete
graph over S, in which the weight of an edge (u,v) is the Euclidean distance between its
endpoints, denoted d(u,v). A subgraph H of G is a t-spanner of S, for a real number ¢ > 1,
if it is a t-spanner of Gg, that is, if for any pair of points u,v € S, the length of the shortest
path between v and v in H is at most ¢ - d(u, v). In general, a path in Gg between v and v
whose length is at most ¢ - d(u, v), is called a t-path.

Geometric spanners, i.e., t-spanners of Gg, have been studied extensively over the years
(see [2]), where the goal is often to construct a t-spanner, for a given ¢ > 1, with some
desirable properties, such as, small number of edges, small weight, small degree, and small
diameter (i.e., the maximum number of edges in a minimum-hop ¢-path).

In this paper we initiate the study of Hausdorff-spanners and Fréchet-spanners. A path
P(u,v) in Gg between v and v is an e-Hausdorff-path (e-Fréchet-path) if dg (P (u,v),uv) <
e - d(u,v) (dp(P(u,v),uav) < € -d(u,v)), where dg (dr) denotes the Hausdorff (Fréchet)
distance. Thus, a subgraph H of Gg is an e-Hausdorff-spanner (e-Fréchet-spanner) if there
exists in H an e-Hausdorfl-path (e-Fréchet-path) between any two points « and wv.

Let S be a set of points in the plane. We show that a ¢-spanner is an ¢;-Hausdorft-
spanuer, for e; = f(t), and an eo-Fréchet-spanner, for e = f(¢). We also prove that for any
t > 1, there exist an 1-Hausdorff-spanner H; and an eo-Fréchet-spanner Hs, where €1 and
€9 are constants, such that both H; and Hs are not a t-spanner.

* Supported by Grant 2019715/CCF-20-08551 from the US-Israel Binational Science Foundation/US
National Science Foundation, and by the Lynne and William Frankel Center for Computer Science at
Ben-Gurion University.
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2 Hausdorff spanners

2.1 t-spanners are c-Hausdorff-spanners

In this section we show that a ¢-spanner is an e-Hausdorff-spanner, for ¢ = f(t).

Let H be a t-spanner, t > 1, and let u,v € S. We assume, with loss of generality, that
d(u,v) =1 and that u = (0,0) and v = (1,0). Let P(u,v) be a t-path in H between u and
v. Then, P(u,v)’s length is at most ¢.

Figure 1 The furthest possible distance from a t-path to the segment between its endpoints.

» Observation 2.1. Let E be the ellipse with foci points at u and v, for which d(p,u) +
d(p,v) = t-d(u,v) =t, for every point p on its boundary. Then, P(u,v) C E. Moreover, the
points of E that are furthest from uwv are the boundary points above and below the midpoint
of wv; their distance to uv is @ (see Figure 1).

. Vi2—
» Lemma 2.2. P(u,v) is a tTl—Hausdorﬁ—path.

Proof. Since d(u,v) =1, we need to show that dg(P(u,v),uv) < ¥ tz_l. On the one hand,
by Observation 2.1, the distance from any point p on P(u,v) to uv is at most ¥ t;_l. On
the other hand, let ¢ = (¢4,0) be a point on wo. Then, since P(u,v) is a path between u

and v, there exists a point p on P(u,v) with z-coordinate ¢,. Now, by Observation 2.1, the

distance from ¢ to p is at most ¥ t;_l. We conclude that dy (P(u,v),av) < ¥ t22_1. <

We have shown that any ¢-path in H is a @—Hausdorff—path, and therefore H is a
@-Hausdorff—spanner. We conclude that

. _ t2—1
» Corollary 2.3. Any t-spanner is an e-Hausdorff-spanner, for ¢ = ¥5—.

2.2 c-Hausdorff-spanners are not necessarily t-spanners

In this section we show that not every Hausdorff spanner is a Euclidean spanner. More
precisely, we present an infinite sequence of graphs, such that all of them are c-Hausdorff-
spanners, for some fixed constant ¢ > 0, but for any ¢ > 1, there exists a graph in the
sequence that is not a t-spanner. Formally, we prove the following theorem.

» Theorem 2.4. There exists a constant ¢ > 0, such that for any t > 1, one can construct
a graph that is a c-Hausdorff-spanner and is not a t-spanner.
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To prove the theorem, we define a sequence of graphs Fy, F, Fs ... as follows: Let Fj
be the unit line segment with endpoints (0,0) and (1,0), that is, the endpoints are the
vertices of F{y and the segment is its single edge. Now, for any n > 0, we construct F,, from
F,_1, by considering each segment (i.e., edge) s of F,,_; and (i) partitioning s into three
subsegments of equal length by adding two new vertices, (ii) forming an equilateral triangle
with the middle subsegment as its base by adding a vertex on the outer side of the middle
subsegment and connecting it to the endpoints of the middle subsegmet, and (iii) removing
the middle subsegment. That is, the edge s is replaced by four edges obtained by adding
three new vertices; see Figure 2.

The curve that is obtained by applying this construction indefinitely is the fractal known
as the Koch curve [1]; it is one of the three curves forming the Koch snowflake. It is well
known that the length of the Koch curve is unbounded, that is, for every [ > 0, there exists
an integer n, such that the length of F,,, i.e., the sum of its edge lengths, is greater than [.

Figure 2 The graphs Fy, Fi, F> and F3.

Since the length of the path between the extreme vertices of F},, i.e., between its vertices
at (0,0) and (1,0), can be made arbitrarily long, we conclude that for any ¢ > 1, there exists
an integer n, such that F, is not a t-spanner.

We next show that there exists a constant ¢ > 0, such that for any n > 0, the graph Fj,
is a c-Hausdorff-spanner. We actually show that 6 is such a constant.

Notation and definitions.

Let F,, = (V, E). The level of a vertex v € V, denoted [(v), is the smallest index 0 < i < n,
such that v is already a vertex in F;. If [(v) < i — 1, we write [(v) =i

For a pair of vertices u,v € V, we denote the path between u and v by P(u,v) =
(u,v1,v2,...,v) and its corresponding sequence of levels by Pj(u,v), that is, P(u,v) =
(I(u),l(v1),1(v2),...,1(v)). The level of u,v, denoted I(u,v), is now the smallest level ¢ such
that there are at least two elements in the sequence P;(u,v) that are smaller or equal to i.
For example, if Pj(u,v) =(1,3,3,3,2,3,3,3), then I(u,v) = 2.

The path from the leftmost vertex to the rightmost vertex induces a natural order on

the vertices of F,,. We say that vertex u of F, precedes/succeeds vertex v of F,, if u appears
before/after v in this path.
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Next, we define the bounding rectangle of three consecutive vertices vy, vq,v3 € V; see
Figure 3. If the angle between 1705 and w303 is 240°, then the bounding rectangle of vy, va, v3
is the rectangle such that (i) v1vs is one of its diagonals and (ii) if I(v1) < I(v3), the edge
U103 is contained in one of its long edges. Otherwise, the edge T3v3 is contained in one of
its long edges. If the angle between w703 and w503 is 60°, then the bounding rectangle of
v1, V2, v3 is the rectangle such that (i) one of its edges is U173, and v is on the opposite edge.
Notice that the bounding rectangle is not always parallel to the axes, rather it is parallel to
either T103 or 3w3, in the former case, or to the line segment w703, in the latter case.

U3

vy U3

Figure 3 Top: The bounding rectangle when the angle between U772 and w203 is 240°. Bottom:
The bounding rectangle when the angle between 710z and w33 is 60°

» Observation 2.5. In F,,, for any two adjacent vertices, at least one of them is of level n.

» Observation 2.6. In the graph F,, and for 1 < i < n, let v1,vs be two vertices that are
adjacent to each other in the graph F;_1. Then there are exactly three vertices of level i
between v, and vs.

» Observation 2.7. In the graph F,, and for 1 < i < n, let vi,vs,v3 be three vertices that
are consecutive in the graph F; and let R be their bounding rectangle (with respect to F;).
Then P(v1,v3) C R, that is, the path between vi and vs in F),, is contained in R.

» Observation 2.8. Consider the rectangle R from Observation 2.7. Then, the length of its

diagonal is at most
3 1Y, (V3 1) _ V3
2 3 2 3) 37

which is the length of its diagonal assuming it is the longer of the two possible rectangles,
see Figure 3 (top).

We now bound (from above) the Hausdorff distance (denoted dg) between a path P(u,v)
in F,, and the line segment v as a function of I(u, v). The proof of the following lemma can
be found in the full version of this paper.

» Lemma 2.9. Consider the graph F,, = (V, E) and let u,v € V such that I(u,v) = i, then
dpr(P(u,v),w0) < 34

Next, we bound d(u,v) for vertices v and v of F,, (from below) as a function of I(u,v).
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» Lemma 2.10. Consider the graph F,, = (V, E) and let u,v € V such that l(u,v) =14, then
d(u,v) > 3 - ?

Proof. Let u’ (v') be the level-i~ vertex of F,, that precedes u (succeeds v). Since I(u,v) = i,
there is at most one vertex in P(u,v) of level i~. We distinguish between three cases. A
full description of Cases 2 and 3 can be found in the full version of this paper.

Case 1: There is no vertex of level ¢~ in P(u,v). By Observation 2.6, there are exactly
three vertices of level i between u' and v’. Moreover, at least two of them are in P(u,v)
(since {(u,v) = i and there is no vertex of level i~ in P(u,v)). Assume, without loss of
generality, that the middle and the right of these level-i vertices are in P(u,v).

We draw two parallel lines as depicted in Figure 4a. The first line passes through the
left and middle level-i vertices, and the second line passes through the right level-i vertex
and is parallel to the first line. Next, we observe that u lies on one side of these lines and v
lies on the other side, and therefore the distance between u and v is at least the height of
the level-i triangle, formed by the three level-i vertices. It is easy to verify that this height

is 3—1, . ? We conclude that d(u,v) > 3% . ?

Case 2: There is a 60°-vertex w of level i~ in P(u,v). Asin Case 1, we draw two parallel

lines (see Figure 4b) that separate between u and v, and conclude that d(u,v) > 3 - g

Case 3: There is a 240°-vertex w of level i~ in P(u,v). As in Case 1, we draw two
parallel lines (see Figure 4c) that separate between u and v, and conclude that d(u,v) >
37T = 312

We are now ready to prove Theorem 2.4. We first show that for any n > 0, the graph
F, is a 6-Hausdorff-spanner. Let u, v be two vertices of F,, and set 4 = I(u,v). Then, on the
one hand by Lemma 2.9, dy(P(u,v),uv) < y@, and on the other hand by Lemma 2.10,

d(u,v) > 3 - ? Therefore,

Next, let ¢ > 1. Then, there exists an integer n > 1, such that the length of the path
P between the extreme vertices of F,, (i.e., the vertices at (0,0) and (1,0)) is greater than
t, and therefore F, is not a t-spanner (since the length of P over the length of the segment
between the extreme vertices of F,, is simply the length of P).

3  Fréchet spanners

3.1 t-spanners are c-Fréchet-spanners

In this section we show that a t-spanner is an e-Fréchet-spanner, for ¢ = f(t).

Let H be a t-spanner, t > 1, and let u,v € S. We assume, with loss of generality, that
d(u,v) =1 and that v = (0,0) and v = (1,0). Let P(u,v) be a t-path in H between u and
v. Then, P(u,v)’s length is at most t.

We first prove that P(u,v) is an e-Fréchet-path, for e = £. This bound is useful when
t is ‘large’, but, since it is never smaller than 1/2, it is less useful when ¢ approaches 1, in
which case we would like to show (if possible) that e approaches 0. To address this issue,
we prove a second bound on &, which is better when 1 < ¢ < 2. Specially, we prove that

T2t

P(u,v) is also an e-Fréchet-path, for e = Vo
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3.1.1 Bound 1 — The bound for large ¢

» Lemma 3.1. P(u,v) is a %-Fréchet-path.

Proof. Let p be the middle point of P(u,v), that is, the distance from v to p (through
P(u,v)) is equal to the distance from p to v (through P(u,v)). Consider a dog and its
owner, both walking from u to v, where the dog is walking along P(u,v) and the owner is
walking along wo. Their hike consists of three stages. In the first, the owner is at v and the
dog advances to p; in the second, the owner advances from v to v, while the dog stays at p;
and in the third, the owner is at v and the dog advances from p to v.

We show that at any point along their hike, the distance between the dog and its owner
does not exceed t/2. Indeed, let p~ be a point on P(u,v), anywhere between v and p. Then,
the distance from u to p~ (through P(u,v)) is at most ¢/2, and therefore d(p~,u) < t/2.
Similarly, let p™ be a point on P(u,v), anywhere between p and v. Then, the distance from
pT tow (through P(u,v)) is at most ¢/2, and therefore d(p™,v) < t/2. Finally, let ¢ be a point
on uu. We need to show that d(p,q) < t/2. Indeed, if ¢, < p,, then d(p,q) < d(p,u) < t/2,
and if ¢, > p., then d(p,q) < d(p,v) < t/2. <

» Corollary 3.2. Any t-spanner is an e-Fréchet-spanner, for ¢ = %

3.1.2 Bound 2 — The bound for small t

Recalling Observation 2.1, we observe that

» Observation 3.3. Let p be any point on P(u,v), then (i) =5t < p, < 1 and (ii)
V. SN =,
5 SPy >

3 .

» Lemma 3.4. P(u,v) is a Vf};t—Fre’ch@t—path.

Proof. Consider a dog and its owner, both walking from u to v, where the dog is walking
along P(u,v) and the owner is walking along wo. We denote the location of the dog at time
0 <7 <1by P(r), where P(0) = u, P(1) = v, and, for any 71 < 79, the point P(r3)
does not precede the point P(71) (on P(u,v)). Moreover, we denote the z-coordinate of the
rightmost point visited by the dog by time 7 by x,, that is, z, = max{P(7'), |0 < 7' < 7}.

The location of the person is determined by the location of the dog. More precisely, at
time 7 the person is at (max{z, — %, 0},0). Finally, if at time 7 = 1 the person is not yet
at v, then she advances directly to v. Clearly, the person never moves backwards, since the
function . is non-decreasing.

We now prove that the distance between the dog and its owner never exceeds \/? Let
0 <7 < 1. We distinguish between three cases.

Case 1: max{z, — 51,0} < P(7),.

t—1

AP(r) mate, — 52.00,0) <[P, - (@ - 52 4 P

_\/t2—2t+1+t2—1_\/2t2—2t_ 27—t
N 4 4 4 2

where the first inequality is true, since, if max{z, — %, 0} # x, — %, then z, — % <0
and both P(7), and (P(7), — (z- — 15*)) are non-negative.
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Case 2: z, — 51 >0 and P(7), < z, — 51, We first observe that P(7), > z, — (t — 1),
since t >z, + (x; — P(7)z) + |1 — P(7)z| > 2 + (1 — P(7),). Now,
t—1

d(P(7),(max{z, — %,0},0)) =d(P(7),(zr — — 0))

= S - - e+ P = i - 5 - Pe + PO

<t =50~ -1+ P

G ()

Case 3: z, — 151 <0 and P(7), < 0. By Observations 3.3, we have —51 < P(71), < 0.

A(P(r) (max{r, — " 10},0)) = d(P(r), (0,0)) = /P2 + P

2
t—1\> [(vE&-1 2t
< - + = .
- 2 2 V2
We have shown that in all cases the distance between the dog and its owner is at most
VIt Moreover, if the dog reaches v first, then during the last part of the person’s hike,

V2
this distance only decreases. We thus conclude that P(u,v) is a ¥ ijgt—Fréchet—path. |
» Corollary 3.5. Any t-spanner is an e-Fréchet-spanner, for € = fzﬁ_t.

3.2 =-Fréchet-spanners are not necessarily ¢-spanners

Consider the graph F,,, defined in Section 2.2. One can prove that F), is a c-Fréchet-spanner,
for ¢ < 6, in essentially the same way as we proved that it is a c-Hausdorff-spanner, for
¢ < 6. More precisely, referring to Lemma 2.9, since both P(u,v) and o are contained in
the rectangle R, the Fréchet distance between them is at most the length of R’s diagonal,

that is, dp(P(u,v),uv) < 3}/,51. We thus conclude that

» Theorem 3.6. There exists a constant ¢ > 0, such that for any t > 1, one can construct
a graph that is a c-Fréchet-spanner and is not a t-spanner.

Acknowledgment. We thank Boris Aronov for helpful discussions on the connection be-
tween t-spanners and e-Hausdorff-spanners.
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(a) Case 1: There is no vertex of level i~ in P(u,v).

(b) Case 2: There is a 60°-vertex of level ¢~ in P(u,v).

2

A T e

I3 (3 i 3
(c) Case 3: There is a 240°-vertex of level ¢~ in P(u,v).

Figure 4 Proof of Lemma 2.10. The arrows mark the vertices that are known to be in P(u,v).
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—— Abstract

An arrangement of pseudocircles is a finite collection of simple closed curves in the plane such that
every pair of curves is either disjoint or intersects in two crossing points. We study flip graphs of
families of pseudocircle arrangements. We prove that triangle flips induce a connected flip graph
(i) on intersecting arrangements and (ii) on cylindrical intersecting arrangements. Our constructions
make essential use of variants of the sweeping lemma for pseudocircle arrangements due to Snoeyink
and Hershberger (Proc. SoCG 1989: 354-363). We also study cylindrical arrangements in their own
right and provide new combinatorial characterizations of this class of pseudocircle arrangements.

1 Introduction

Reconfiguration is a widely studied topic in discrete mathematics and theoretical computer
science [9]. In many cases, reconfiguration problems can be stated in terms of a flip graph. For
a class of objects, the flip graph has a vertex for each object and adjacencies are determined by
a local flip operation, which transforms one object into another. Typically, the first question
is whether a flip graph is connected. In the affirmative case, more refined questions regarding
diameter, the degree of connectivity, or Hamiltonicity can be of interest. Hamiltonicity of
flip graphs is related to Gray codes, cf. [8]. For further details on flip-graphs in general we
also refer the reader to the survey [2].

Ringel [10] showed flip-connectivity for arrangements of pseudolines under triangle flips.
There, an arrangement of pesudolines is a set of bi-infinite curves that pairwise intersect
exactly once. A triangle flip then corresponds to moving a pseudoline incident to a triangular
cell over the crossing of the two other pseudolines. If pseudolines are also allowed to be
disjoint, flipping triangles is not enough, as one also needs to allow two pseudolines to become
intersecting or non-intersecting. Snoeyink and Hershberger [11] showed flip-connectivity for
such arrangements of pseudolines with these three operations.

This work was initiated at a workshop of the collaborative DACH project Arrangements and Drawings
in Lutherstadt Wittenberg in April 2022. We thank all the participants for the inspiring atmosphere.
S.F. was supported by DFG Grant FE 340/13-1. J.O. was supported by ERC StG 757609. S.R. was
supported by DFG-Research Training Group 'Facets of Complexity’ (DFG-GRK 2434). M.S. was
supported by DFG Grant SCHE 2214/1-1.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29-31, 2023.

This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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Similarly, in the context of arrangements of pseudocircles, which have been first studied
by Griinbaum [7], flipping triangles is not enough if disjoint pseudocircles are allowed. In such
cases, the set of flips is extended by digon-create to allow two initially disjoint pseudocircles
to start intersecting in a digon and the reverse operation, called digon-collapse (see Section 2
for definitions).

With all the three flips, the flip-connectivity of arrangements of proper circles is evident
since one can shrink all the circles until they have pairwise disjoint interiors. Essentially the
same idea works for arrangements of pseudocircles. In this case, however, the fact that a
pseudocircle can be shrunk is based on the sweeping lemma of Snoeyink and Hershberger [11].
Allowing only triangle flips, Felsner and Scheucher [5] showed flip-connectivity for classes of
arrangements of proper circles and conjectured that the results persist for pseudocircles:

» Conjecture 1 ([5, Conjecture 8.6]). For every n € N:

(1) The flip graph of intersecting arrangements of n pseudocircles is connected.

(2) The flip graph of digon-free intersecting arrangements of n pseudocircles is connected.
As the main result of this article we prove part (1) of Conjecture 1.

» Theorem 1.1. The flip graph of arrangements of n pairwise intersecting pseudocircles is
connected.

For our proof of Theorem 1.1, we use cylindrical arrangements. These are arrangements
of pseudocircles in the plane such that the bounded interiors of all the pseudocircles have
a common intersection, which we call the center. We first show that every cylindrical
intersecting arrangement can be flipped into a canonical arrangement by only using triangle
flips and without leaving the class of cylindrical arrangements.

» Theorem 1.2. The flip graph of cylindrical arrangements of n pairwise intersecting
pseudocircles is connected.

Showing that every intersecting arrangement A can be flipped into some cylindrical
arrangement then completes the proof of Theorem 1.1. We further study the diameter of flip
graphs. In each of the two considered settings (cylindrical / general arrangements of pairwise
intersecting pseudocircles), we obtain asymptotically tight bounds for the diameter.

» Proposition 1.3. The flip graph of cylindrical arrangements of n pairwise intersecting
pseudocircles has diameter at least 2(;‘) and at most 4(2)

» Proposition 1.4. The flip graph of arrangements of n pairwise intersecting pseudocircles
has diameter ©(n?).

Last but not least, we present the following equivalent characterizations of cylindrical
arrangements of pseudocircles (cf. the full version of this paper). Item (2) uses a special
arrangement of three pseudocircles that we call NonKrupp(3) (see Section 2), for items (3-4),
we orient pseudocircles counterclockwise, which induces an orientation on the edges of the
arrangement, and the eccentricity in item (5) refers to the dual graph of the arrangement:
The eccentricity of a face in an arrangement of pseudocircles is the maximum distance to any
other face, where the distance between two faces z, 2’ is the minimum number of pseudocircles
that a curve starting in the interior of z and ending in the interior of z’ must cross.
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» Proposition 1.5. Let A be an arrangement of n pseudocircles with pairwise overlapping
interiors. Then, the following five statements are equivalent:

(1) A is cylindrical.

(2) A does not contain a NonKrupp(3) as a subarrangement.
(8) There is no clockwise oriented cycle in A.

(4) There is no clockwise oriented face in A.

(5) The unbounded face has eccentricity n.

2 Preliminaries

A pseudocirele is a simple closed curve C' which partitions the plane into a bounded region,
the interior int(C'), and an unbounded region, the exterior ext(C). An arrangement of
pseudocircles is a finite collection of pseudocircles such that every two pseudocircles either are
disjoint or they intersect in two points, where the curves cross properly. Furthermore, no three
pseudocircles intersect in a common point. An arrangement partitions the plane into vertices
(the intersection points), edges (maximal contiguous vertex-free pieces of pseudocircles), and
Jaces (connected components of the plane after removing all pseudocircles).

A face with k edges along its boundary is a k-face, a 2-face is a digon (some authors call
it empty lens), and a 3-face is a triangle. It is an instructive exercise to verify that there are
exactly four arrangements of three pairwise intersecting pseudocircles (shown in Figure 1).

WD &

(a) (c) (d)

Figure 1 The four non-isomorphic arrangements of 3 pairwise intersecting pseudocircles in the
plane. (a) shows the Krupp and (b)—(d) show the three types of NonKrupp arrangements.

Following [5], we call the arrangement, depicted in Figure 1(a), with 8 triangles the
Krupp arrangement and the other ones NonKrupp. To make them distinguishable we write
NonKrupp(k) to denote the NonKrupp arrangement whose unbounded face has complexity k,
e.g., NonKrupp(2) is the arrangement shown in Figure 1(c). Note that among the arrange-
ments of Figure 1, the arrangement (d), i.e., the NonKrupp(3), is the only non-cylindrical.

2.1 Sweeps and Flips

Snoeyink and Hershberger [11] studied continuous transformations of curves and, in particular,
of pseudocircles. More precisely, they define the sweep of a pseudocircle as a continuous
process to expand or shrink the pseudocircle. However, crucially, they also argue that
this continuous process can be viewed as a discrete process as the combinatorics of the
arrangement changes with one of the following operations, called flips:

a pseudocircle moves over the crossing of two others (triangle flip),
a pseudocircle gains two intersections with a pseudocircle (digon-create), or
a pseudocircle loses its two intersections with a pseudocircle (digon-collapse).

EuroCG’23
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digon-collapse ) .
. triangle-flip
- -

digon-create

Figure 2 An illustration of the three flip operations.

Figure 2 depicts the three flip operations. Whenever we speak of flips without further
specification we refer to these three flips, the term digon flip refers to the two flips involving
a digon, and otherwise we use the precise term when referring to a specific type of flip.

Snoeyink and Hershberger prove a sweeping lemma (cf. [11, Lemma 3.2]) for families of
simple curves that pairwise intersect at most twice and are either bi-infinite or closed (i.e.,
pseudocircles). The flip operations for bi-infinite curves are defined analogously.

» Lemma 2.1 (Sweeping Lemma [11]). Let A be an arrangement of pseudocircles or an
arrangement of bi-infinite curves that pairwise intersect at most twice. Then A can be swept
starting from any curve C in A by using three operations: triangle flips, digon-create, and
digon-collapse.

Note that in the context of pseudocircles we sweep towards the inside or outside, whereas
in the context of bi-infinite curves we sweep upwards or downwards. It is straight-forward to
verify that Lemma 2.1 implies the flip-connectivity for arrangements of pseudocircles.

It will be convenient to have a separate sweeping lemma for lenses. A lens in an
arrangement is a maximally bounded region in a subarrangement formed by two intersecting
pseudocircles. An arc is a contiguous subset of a pseudocircle, starting and ending at a
vertex of the arrangement.

Let A be an arrangement of pseudocircles and let @ be (the closure of) a lens bounded by
two pseudocircles Cy, and Cr. We denote by L = C, N Q and R = Cr N Q the two boundary
arcs on @ belonging to Cp, and Cg, respectively. An arc of () is a maximal connected piece
of the intersection of a pseudocircle C' with @, where C ¢ {CL,Cr}. In other words, an arc
of @ is always a contiguous subset of C' which has both endpoints on the boundary of ¢ and
whose relative interior lies completely in the interior of Q. If an arc a of @) has both endpoints
on L or both endpoints on R, then a forms a lens with L or R, respectively. Otherwise
the arc has one endpoint on L and one on R, in this case we call the arc transversal (see
Figure 3).

OR CL

o 1

Figure 3 Illustration of Lemma 2.2: a lens @) with four transversal arcs and a sweep of Q.
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» Lemma 2.2. If Q is a lens and all the arcs of Q are transversal, then, using only triangle
flips, L can be swept towards R until the interior of Q does mot contain a vertex of the
arrangement anymore.

2.2 Cylindrical Arrangements

An arrangement of pseudoparabolas is a finite collection of z-monotone curves defined over
a common interval such that every two curves are either disjoint or intersect in two points
where the curves cross. The following result gives a reversible mapping from cylindrical
arrangements to arrangements of pseudoparabolas. The result has been announced by Bultena
et al. [3, Lemma 1.3] and a full proof has been given by Agarwal et al. [1, Lemma 2.11].

» Proposition 2.3 ([3, 1]). A cylindrical arrangement of pseudocircles C can be mapped to an
arrangement of pseudoparabolas A in an azis-aligned rectangle B such that C is isomorphic to
the arrangement obtained by identifying the two vertical sides of B and mapping the resulting
cylindrical surface homeomorphically to a ring in the plane.

3 Flip Graphs on Pseudocircle Arrangements

We here sketch the flip-connectivity (Theorem 1.2 and Theorem 1.1).

3.1 Proof Sketch of Theorem 1.2: Connectivity Cylindrical

We prove the flip-connectivity for cylindrical arrangements by showing that any given
arrangement can be flipped to a canonical arrangement which is depicted in Figure 4.

Figure 4 The canonical arrangement for cylindrical arrangements.

Let A be an intersecting, cylindrical arrangement of n pseudocircles. Using Proposition 2.3,
we can represent A as a pseudoparabola arrangement, in which we label the curves from top
to bottom by Ci,...,C),. The idea is to flip the pseudoparabolas downwards one by one in
the order of increasing indices, as illustrated in Figure 5. The availability of suitable triangle
flips follows from Lemma 2.1 and our construction to consider pseudoparabolas from top to
bottom. This completes the proof sketch for Theorem 1.2.

3.2 Proof Sketch of Theorem 1.1: Connectivity Intersecting

Let A be an arrangement of n pairwise intersecting pseudocircles. We show by induction
on n that A can be transformed into a cylindrical arrangement with a finite number of
triangle flips. The flip-connectivity then follows from Theorem 1.2.
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Figure 5 Illustration of the proof of Theorem 1.2: flipping the pseudoparabola C} downwards.

The induction base is trivially fulfilled for n = 2. For the induction step, we choose a
designated point p which lies inside a maximum number of pseudocircles. If p lies in the
interior of all pseudocircles, then A is already cylindrical and we are done.

Hence, we may assume that there exists a pseudocircle C' which does not contain p in
its interior. We show how to expand C' until containing p, using only triangle flips. First
observe that Lemma 2.1 guarantees the existence of a flip to expand C. Since C already
intersects all other pseudocircles, this must be a triangle or digon-collapse flip. As long as
there exists a triangle flip expanding C, we perform it and transform A accordingly.

Suppose now that C' does not yet contain p and can only be expanded by collapsing a
digon formed with another pseudocircle C’. Then all remaining pseudocircles must intersect
the lens int(C) Next(C’) transversally (see Figure 6). Hence, using Lemma 2.2, we can
expand C’ until C' and C’ are parallel. We say that two pseudocircles C and C’ are parallel
in A if every vertex of A — {C,C"} lies in (int(C) Nint(C”)) or in (ext(C) Next(C”)).

Next consider the arrangement A’ := A — C’ which is obtained by deleting C’ from A.
By the induction hypothesis, A’ can be transformed into a cylindrical arrangement by a
finite sequence of triangle flips. We now carefully mimic this flip sequence on A, while
maintaining that C and C’ are parallel. Suppose that a triangle T in A’ is flipped. If none
of the edges of T belongs to C, we can directly apply this triangle flip also in A. If one of
the edges e of T belongs to C' and e is crossed by C’ then the digon D is located along e.
In this case, we apply two triangle flips to C’ so that the digon is transferred to one of the
two neighboring edges of C' as illustrated in Figure 6, obtaining that e is not crossed by C’
(without changing A’). Finally, if e is not crossed by C’ then we apply the according triangle
flip twice, namely, once for C and once for C’. This completes the proof sketch.

C

Figure 6 Left: C forms a digon with C’ that is in ext(C) Nint(C"). Middle: flip C’ so that it
becomes parallel to C. Right: flip C’ so that T becomes also a triangle in A.



S. Felsner, J. Obenaus, S. Roch, M. Scheucher, and B. Vogtenhuber 77

4 Conclusion

While we have proven part (1) of Conjecture 1, part (2) remains a challenging open question.
Also, several questions concerning the structure of the flip graphs remain open, such as
Hamiltonicity or the degree of connectivity. The maximum degree A of the flip graph
corresponds to the maximum number of triangles among all arrangements and A = %(Z) +
O(n) is known [6]. The minimum degree ¢ corresponds to the minimum number of triangles
among all arrangements. For (not necessarily digon-free) intersecting arrangements %" <
0 <n—11is known and § = n — 1 is conjectured for n > 3. For digon-free intersecting

arrangements = max{8, [4*]} holds for n > 3 [4, 6].
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—— Abstract

The DTW Barycenter Averaging (DBA) algorithm is a widely used algorithm for estimating the
mean of a given set of point sequences. In this context, the mean is defined as a point sequence that
minimises the sum of dynamic time warping distances (DTW). In our paper, we aim to initiate a
theoretical study of the number of iterations that the algorithm performs until convergence. We
assume the algorithm is given n sequences of m points in R? and a parameter k that specifies the
length of the mean sequence to be computed. In an attempt to better understand the performance
of the algorithm on non-degenerate input, we study DBA in the model of smoothed analysis, upper-
bounding the expected number of iterations in the worst case under random perturbations of the
input. Our smoothed upper bound is polynomial in k, n and d, and in case n is a constant, also
polynomial in m.

1 Introduction

The DTW Barycenter Averaging (DBA) algorithm [11] was introduced by Petitjean, Ket-
terlin and Gangarski in 2011 and has since been used in many applications for clustering
time series data. The objective is to find a representative time series that optimally sum-
marizes a given set of input time series. Here, the optimality is measured using the sum
of dynamic time warping (DTW) distances to the input sequences. The DBA algorithm
has found application in the context of optimization of energy systems [15], forecasting of
household electricity demand [14], and human activity recognition [13] to name a few. The
representation computed by the DBA algorithm is used to speed up classification tasks on
time series [10] and to improve the training of neural networks [5, 6]. Despite its popularity,
the DBA algorithm is a heuristic in the double meaning that it neither comes with any
guarantees on the quality of the solution nor on the running time.

Objective In this paper, we initiate a study of the number of iterations that the DBA
algorithm performs until convergence. While convergence properties of the algorithm have
been studied before [12], it seems that the running time of the algorithm has not been the
subject of rigorous study up to now. We follow a line of thought that has proved successful
for the closely related k-means algorithm by Stuart Lloyd [9]. For this algorithm it is known
that the number of iterations in the worst case is exponential [2, 7, 8, 16]. However, on most
practical instances k-means is reported to converge very fast. Moreover, using smoothed
analysis, it has been shown that the expected running time under random perturbations of
the input is merely polynomial [1].

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29-31, 2023.

This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the

community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



8:2 On the number of iterations of the DBA algorithm

Preliminaries For n € N, we define [n] as the set {1,...,n}. We call an ordered sequence of
points p1, ..., pm in R? a point sequence of length m. For two points p, ¢ in R¢, we denote
with ||p—q||? the squared Euclidean distance, where ||.|| is the standard Euclidean norm.
For my,ms € N, each sequence (1,1) = (41, 41), (¢2,52), - - -, (iar, Jar) = (M1, m2) such that
ix —ir—1 and ji — jr—1 are either 0 or 1 for all k is a warping path from (1,1) to (my,m2).
We denote with W,,, m, the set of all warping paths from (1,1) to (mq,m2). For any two
point sequences v1 = (Y115, Y1.m;) € (RD™ and 2 = (92,1, -+, Y2.mp) € (RH)™2 we
also write W, », = Wy, m,, and call elements of W,, ,, warping paths between v; and vs.
The dynamic time warping distance between the sequences y; and -, is defined as

dprw(71,72) = we%in Z 71, — 2,517
V1,72 (i.))ew

A warping path that attains the above minimum is also called an optimal warping path
between 71 and 2. We denote with Wy, . C Wiy, m, the set of warping paths w such
that there exist point sequences v; € (R%)™ and v, € (R?)™2 with this optimum warping
path w. Let X = {71,...,7} C (RY)™ be a set of n point sequences of length m and
C € (R%)* be a point sequence of length k. We call a sequence 7 of tuples (p,c) where p
is an element of some point sequence in X and c is an element of the point sequence C' an
assignment map between X and C. We call an assignment map between X and C valid
if for each 1 < i < n the sequence of all tuples (p, ¢) of 7 for which p is a point of ; forms a
warping path w(7); between v; and C. We call a valid assignment map optimal if for each
1 <4 < n the formed warping path is an optimal warping path. We define the cost of an
assignment map T as (1) =3, e llp — c/|?. Similarly, we define the total warping
distance of a valid assignment map 7 with respect to a point sequence x = (x1,...,x) as

Ur(x) =300, Z(jl,h)ew(n)i”%,jl —z,|1%.

1.1 The DBA Algorithm

Let X be a set of n point sequences 71, ...,7, € (RY)™. Let C € (R?)* be another point
sequence and w™M, ... w™ e W,k be chosen such that w(® is an optimal warping path
between ; and C. Then w®, ... w( define an optimal assignment map 7 between X and
C'. The assignment map 7 can be represented by sets S1 (), S2(7w),. .., Sk(7), where

Si(m) = Uty {75 | (5, t) € w9}

is the union of points over all n point sequences that are assigned to the i’th point of the
average point sequence C. By construction, the assignment map 7 minimizes the DTW
distance between the input point sequences 71, ..., 7, € (R9)™ and C.

In the opposite direction, we can also create an average point sequence, that minimizes
the sum of DTW distances for a fixed assignment map w. To this end, we define

Cr = (ex(m), e2(m), c3(), ..., cx(m)) where ¢;(r) := |S%w>\ 2 r
v pES; ()

The DBA algorithm alternately computes assignment maps and average point sequences
in the manner described above. It goes as follows.

1)

1. Let mg be an initial assignment map (e.g. defined by wé Yo ,w(()") drawn uniformly at
random from W, x). Let j < 0.

2. Let j < j + 1. Compute the average point sequence Cr,_, based on m;_1.
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3. Compute optimal warping paths wj(-i) between «; and Cr,_, for all 1 < ¢ < n. The
warping paths define an optimal assignment map m; between X and C
4. If &(wj) # ®(m;j—1), then go to Step 2. Otherwise, terminate.

j-1°

2 Upper bound based on geometric assumptions on the input data

We denote the set of valid assignment maps from n input point sequences of length m to
a point sequence of length k with A, . It is [Apmi| < m*". For an assignment map
T € Apm.; and a point sequence x = (z1, T2, ..., z;) with z; € R¢, we can rewrite the total
warping distance as

=3 Sy - wl?

i=1 yesi(n)

Our first observation is that for all  we have U, (z) > U, (C;). We would like to express
U, (z) in a way that resembles an inertia. We set I, := Zle Z:yesi(ﬂ)(||y||2 — les(m))1?)-
Observe that I, = U, (C). We see I, as the inertia of the assignment map m, and we have

k
Ur(z) =L + Y _|Si(m)] ||z — ei(m)|)?
i=1
This section uses two assumptions on the input data: First assumption is a basic nor-
malization assumption, and the second one is a non-degeneracy assumption.
Normalization Assumption: We assume the input data is normalized so that for any
vector y in any input point sequence we have ||y||?> < B.
Separation Assumption: For any two different assignment maps «, 8 € A, m 1 we have

ICa — Csll* > €
With the help of the following lemma, we can derive an upper bound in Theorem 2.2.

» Lemma 2.1. For every a € Ay, m i, we have I, < Bn(m + k).

Proof.

k k
Z Y Uyl? = llei@)?) < BY ISi(«)
i=1 yeSi(a) =1
Note that every warping path between the average point sequence of length k£ and an input
point sequence of length m consists of at most m + k many steps. This means every point
sequence contributes to the sum Zf:1|5i(oz)| with at most m + k elements, and hence we
have 2% [Si(a)| < n(m+ k). <

» Theorem 2.2. If the input data satisfies the normalization assumption with parameter
B and separation assumption with parameter €, then the number of steps performed by the
DBA algorithms is at most
B(m+ k)
€
Proof. Suppose the DBA algorithm has started from assignment map mg. If the DBA
algorithm takes a step from some assignment map « to some assignment map S this means

I = U, (C) > Ts(C fIg+Z\S )| ei(e) — i (B)]1?
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Since |S;(B8)| > n for all i, this implies I, > I + n||C, — Cs||?>. Using the seperation
assumption on the data and Lemma 2.1 |, we get

€

mlﬂ'o (1)

Iy, > Ig+ne>1Ig+

Let 7 be the assignment map after T' steps of DBA, then we have by (1) that

3

I Iy — T ——=1Ix
T < 0 B(m+k) 0

3 Smoothed Analysis

Our randomness model is as follows: An adversary specifies an instance X’ € ([0, 1]4)™™ of
n point sequences i, ..., Y, of length m in [0, 1]¢, where each sequence =; is given by its m
points v; = (Y;.1, ..., %,m). Then we add to each vertex of X’ an independent d-dimensional
random vector with independent Gaussian coordinates of mean 0 and standard deviation o.
The resulting vectors form the input point sequences. We assume without loss of generality
that o < 1, since the case o > 1 corresponds to a scaled down instance X’ € ([0, 1]4)n™
with additive d-dimensional Gaussian random vectors with mean 0 and standard deviation
1. We call this randomness model m-length sequences with N (0, o) perturbation.

We note that the results in this section hold for a more general family of random input
models (See Section 1.5 of [4] or Section 3.1 of [3]). We conduct the analysis only for
Gaussian perturbation for the sake of simplicity and obtain the following theorem.

» Theorem 3.1. Suppose d > 2, then the expected number of iterations until DBA converges
1s at most

<n2m83+6d4k6 In(nm)* )
@) 5 :

g

To proof Theorem 3.1, we first bound the probability that the normalization assumption
and the separation assumption hold for suitable parameters.

» Lemma 3.2. Let v1,72, ...,V be independent m-length sequences with N'(0, ) perturba-
tion. Then, we have

P{ max max||y[| > Vd + tov2dInnm} < el

1<i<n y€vi

Proof. By our assumptions every vector in input sequences is given by D + Y where D is
a deterministic vector with norm at most v/d and Y is a random vector with Gaussian i.i.d
coordinates (0, o). By triangle inequality | D+Y|| < Vd+||Y. Since Y has Gaussian i.i.d
coordinates NV(0,0), we can apply the standard tail bound P{||Y|| > toVd} < . <

» Lemma 3.3. Let y1,7%2,...,vn € R be m-length point sequences with N'(0, ) perturba-
tion. Let C, and Cg be two different average point sequences corresponding to assingment

d
maps o and 3. Then, we have P{||C,, —Cp|* < e} < (%) . Furthermore, the separation

assumption with parameter € holds on 1,72, ..., Vn with probability at least

d
1— m4n (nm\ﬁ>
g
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Proof. Since the instances are perturbed and the assignment maps are different, we have
with probability 1 that there exists an i € [k] such that ¢;(«) # ¢;(8). The event ||C, —
Cs||* < e further implies ||c;(a) — ¢;(B)]] < v/2. We first bound the probability that this
event ||¢c;(a) — ¢;(B)]| < v/ occurs for the fixed ¢;(a) and ¢; ().

Let S;(a) and S;(/5) denote the sets of points in X that were assigned to ¢;(a) and ¢;(5)
respectively. Since ¢;(a) # ¢;(8), it immediately follows that S;(a) # S;(5). So we can
fix a point s € S;(a)AS;(8). We let an adversary fix all points in S;(a) U S;(8) \ {s}. In
order for ¢;(a) and ¢;(8) to be y/e-close, we need s to fall into a hyperball of radius nm./e.
Because s is drawn from a Gaussian distribution with standard deviation o, this happens

d
with probability at most (%‘/E) . So in total, we have

d
P{ICa - Coll’ < e} < B{leite) - cx(9)] < vE} < (25

To prove the second claim, we apply a union bound over all possible choices for ¢;(«)
and ¢;(). Since each ¢;(a) and ¢;(f) is uniquely determined by its assigned points S;(«)
and S;(p) it suffices to bound these. For each input point sequence, there are at most (T;)
possible choices for the set of points that get assigned to a fixed center point: This is the
case since all points that get assigned to the same center point have to be consecutive. So
the points that get assigned to the center point are uniquely determined by the first and the
last point that gets assigned to the center point. For n input point sequences all possible
assignments to an arbitrary center point are therefore bounded by (7;) ". Since we choose
two center points ¢;(a) and ¢;(3), there are at most

m 2n
(2> Sm4n

possible choices for the assigned points S;(«) and S;(5) that determine ¢;(a) and ¢;(3). The
statement follows by applying the union bound over possible choices for ¢;(a) and ¢;(3). <«

As a combination of Lemma 3.2 and Lemma 3.3, we get the following Lemma.

» Lemma 3.4. Let v1,72, .., Vs be independent m-length sequences with N'(0,c) perturba-
tion, and suppose d > 2 and k < m. Then, the DBA algorithm implemented on the input
data 1,72, ..., Yn converges in at most

s <a1n2m83+5d3k5 In(nm)3 )

o2

d
2

steps with probability at least 1 — s~2 — (2n)~9% — 2-8mdk* yhere ay is constant.

Proof. In Lemma 3.2, we set t = 2In((2n)%28md*) < 16mdk? In(4n) to get that the nor-
malization assumption is fulfilled for some B < as02d®k*m? In(nm)? with probability at
least 1 — (2n)~% — 2-8mdk® where ay is constant. Then we use Lemma 3.3 with

o2

82 +2

E =
sn?m

and apply Theorem 2.2. <

With the help of the Lemma 3.4, we are now ready to prove Theorem 3.1.
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Proof of Theorem 3.1. Let X be the number of steps that DBA performs. In the full ver-
sion, we show with some classical tools from real algebraic geometry that X < ag(2n) g8mdk’
for some constant ag. Let’s set M = aq (271)"”“287”‘“€2 for simplicity. We have

E[X]:ip{x zi}gK—kiP{X >t}

for any K. We set K := a;n?>m83T°d3k® In(nm)3. By Lemma 3.4, it is

4
2

P{X >sK}<s %+ (2n) %+ m ~8mdk?

for all s > 1. Therefore, we have
M ¥
SOPX >ty <K smE 4 (20) 7 4 oS
=K s=1

—d
Since d > 2, we have sz < % Moreover, % ((Zn)’dk + m’gmde) < 1. So, we have

M

px>n <k (165 ) <k g xw
1 WM
t=K a a s:ls B K

Hence,

M M
M 4
EX=Y P{X >t} <K+ P{X >t} <2K+ Kln - < 2K + Kmdk*In [ ~2n
t=1 t=K K a

<

» Remark. Note that for the discrete case, where the positions of the points in the center
point sequence are restricted to the input points, we would get an upper bound on the
number of iterations which would be polynomial in n, instead of exponential in n, since for
the positions of ¢;(a) and ¢;(8) in the proof of Lemma 3.3, there are only (") instead of

(ZL) n possible choices.

In the full version, we complement these results with an exponential worst-case lower
bound. More specifically, we show that there is an instance of two point sequences with
length m = O(k) in the plane such that the DBA algorithm needs 292(k) jterations to
converge. Our techniques used to construct this lower bound borrow from earlier work of
Vattani [16] on the k-means algorithm. Interestingly, our construction only needs n = 2
sequences. Note that in case n is a constant, our smoothed upper bound is polynomial in

k,m,n and d, avoiding these artificially constructed boundary cases.
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—— Abstract

We investigate degeneracy in the P-MATROID ORIENTED MATROID COMPLEMENTARITY PROBLEM
(P-OMCP) and its impact on the reduction of this problem to sink-finding in Unique Sink Orien-
tations (USOs). On one hand, this understanding of degeneracies allows us to prove a linear lower

bound for sink-finding in P-matroid USOs. On the other hand, it allows us to prove a promise pre-
serving reduction from P-OMCP to USO sink-finding, where we can drop the assumption that the
given P-OMCP is non-degenerate. This places the promise version of P-OMCP in the complexity
class PromiseUEOPL.

Related Version arXiv:2302.14585

1 Introduction

Degenerate input can be an issue in structural analysis and algorithm design for many
algebraic and geometric problems. It is often swept under the rug by assuming the input to
be non-degenerate. For example, one often assumes all input points of a geometric problem
to be in general position. In some problems (e.g., the minimum convex partition [7]), such
an assumption is inappropriate as it makes the problem considerably easier. In other cases,
degenerate inputs can be solved easily by resolving degeneracy using perturbation techniques.

In this paper, we investigate degeneracy in the context of the P-MATROID ORIENTED
MATROID COMPLEMENTARITY PROBLEM (P-OMCP). Assuming non-degeneracy, this prob-
lem can be solved by converting it into a Unique Sink Orientation of the hypercube graph,
and finding a sink within that orientation. Oriented matroids are abstractions for many
types of configurations of geometric objects, such as (pseudo-)hyperplane arrangements or
point configurations. Just like these geometric configurations, oriented matroids can exhibit
degeneracies. In this paper, we analyze the effects of these degeneracies on the reduction
from P-OMCP to Unique Sink Orientation sink-finding.

Both the P-OMCP as well as Unique Sink Orientations are combinatorial abstractions
of the P-MATRIX LINEAR COMPLEMENTARITY PROBLEM (P-LCP). The complexity status
of the P-LLCP remains an interesting and relevant open question, since the problem can
be used to solve many optimization problems, such as Linear Programming [6], and binary
Simple Stochastic Games [5, 10]. Sink-finding in Unique Sink Orientations can also be used
to solve geometric problems such as the problem of finding the smallest enclosing ball of a
set of balls [4].

* Michaela Borzechowski is supported by the German Research Foundation DFG within the Research
Training Group GRK 2434 Facets of Complexity. Simon Weber is supported by the Swiss National
Science Foundation under project no. 204320.
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2 Background
2.1 P-OMCP

We consider oriented matroids M = (Es,,C) given in circuit representation, where the
ground set Es, = SUT is made up of two parts S = {s1,...,s,} and T = {t1,...,t,},
SNT = (. The set C is the collection of circuits of M. We only introduce the notation
specific to this setting, and refer readers unfamiliar with oriented matroids to the full version
of this paper or textbooks like [9].

We call a set J C FEs, complementary, if it contains no complementary pair s;,t;.

» Definition 2.1 (P-matroid). An oriented matroid M = (Es,,C) is a P-matroid if S is a
basis and there is no sign-reversing circuit. A sign-reversing circuit is a circuit X such that
for each complementary pair s;,t; contained in X, X, = —X,.

Let ¢ be such that ¢ ¢ Es,. Then Eyp = SUTU {q}, and M = (E;L,é\) is called an
extension of M, if its minor M\\ q:= (B3, {X | X €C and X, =0}) is equal to M.

Given an extension M = (E;L,(/Z’\) of a P-matroid, the goal of the P-Matroid Oriented
Matroid Complementarity Problem (P-OMCP) is to find a circuit X € C with X > 0,
X, =+, and X, X;, =0 for every i € [n]. The matroid extension is given to an algorithm
by a circuit oracle, which given a set B C E;L and another element e € E;l \ B either
returns that B is not a basis of ./\//\l7 or returns the fundamental circuit C(B,e), which is the
unique circuit X € C with X, = + and X C BU {e}. It is known that in P-matroids and
P-matroid extensions, every complementary set B C S UT of size n is a basis [8].

A P-matroid extension (a P-OMCP instance) is non-degenerate, if for every complemen-
tary basis B, the circuit C(B,q) is non-zero on all elements in B U {¢q}. Every P-OMCP
instance has a unique solution [13].

2.2 Unique Sink Orientation (USQ)

The n-dimensional hypercube graph @Q,, (n-cube) is the undirected graph on the vertex set
V(Q.) = {0,1}", where two vertices are connected by an edge if they differ in exactly one
coordinate. An orientation O : V(Q,) — {—,+}™ assigns each vertex an orientation of its
incident edges, where O(v); = + denotes an outgoing edge from vertex v in dimension ¢ and

O(v); = — denotes an incoming edge. A Unique Sink Orientation (USO) is an orientation,
such that every non-empty subcube contains exactly one sink, i.e., a unique vertex v with
O(v); = — for all dimensions 7 in the subcube [12].

» Lemma 2.2 (Szab6-Welzl Condition [12]). An orientation O of @, is USO if and only if for
all pairs of distinct vertices v,w € V(Qy), we have: 3i € [n] : (v; # w;) A (O(v); # O(w);).

The classical algorithmic problem associated to USOs is that of finding the unique global
sink v with Vi : O(v); = —, with as few as possible queries to an oracle computing O.

2.3 Classical Reduction

Todd [13] showed that a non-degenerate P-OMCP given by a matroid M = (E;l,CA) can
be translated to an USO of the n-cube. Every vertex v of the cube is associated with a
complementary basis B(v) C SUT. For each i € [n], s; € B(v) if v; = 0, otherwise t; € B(v).
The orientation O(v) is then computed using the fundamental circuit C' := C(B(v), q):

Oy = 4T HOu=—orCu=—,
— ifCs, =+ or Gy, = +.
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As the P-OMCP instance is non-degenerate, no other case can occur. Todd showed that the
computed orientation O is USO, and that its sink v corresponds to a fundamental circuit
C(B(v), q) which is positive on all elements and thus a solution to the P-OMCP instance.

3 The Effect of Degeneracy on the Resulting USOs

In the above reduction, if the P-OMCP instance is degenerate, we can sometimes not decide
which way to orient an edge since Cs, = C, = 0. For now, we leave these edges unoriented.
This leads to a partial orientation of the hypercube, which is a function O : V(Qg) —
{—,0,+}* where O(v); = 0 denotes an unoriented edge. We call such a partial orientation
arising from a degenerate P-OMCP a partial P-matroid USO (PPU). In this section we aim
to understand the structure of unoriented edges in PPUs. All proofs can be found in the
full version.

Not every partial orientation can be turned into an USO by directing the unoriented
edges. We thus state the following condition inspired by the Szab6-Welzl condition:

» Definition 3.1. A partial orientation O is said to be partially Szabd-Welzl if for any two
distinct vertices v, w € V(Qy), either

O(v); = O(w); = 0 for all ¢ with v; # w;, or (1)
Ji:v; #w; A ((O(); =+ AO0w); = =)V (O(v); = = AO(w); = +)). (2)

» Lemma 3.2. A partial orientation O which is partially Szabd-Welzl can be extended to an
USO by orienting all unoriented edges towards the endpoint with fewer 1s, i.e., downwards.

» Lemma 3.3. A partial P-matroid USO is partially Szabd- Welzl.

» Lemma 3.4. In a partial P-matroid USO, the unoriented edges form a set of vertex-disjoint
faces. In each such face, the orientation is the same at every vertez.

Lemmas 3.2 to 3.4, and [11, Corollary 6] imply that the unoriented subcubes of a PPU
can in fact be oriented according to any USO.

4 Constructions Based on Degeneracy and Perturbations

In this section we show how existing constructions of oriented matroid extensions can be
interpreted as constructions of (partial) P-matroid USOs. An extension M of an oriented
matroid M can be uniquely described by a localization, a function ¢ from the set C* of
cocircuits of M to the set {—,0,4+}. Note that not every function f : C* — {—,0,+}
describes a valid extension and thus not every such function is a localization. We give some
more background about localizations as well as all omitted proofs in the full version. The
following lemma connects a localization to the circuits relevant to the resulting (partial)
P-matroid USO.

» Lemma 4.1. Let M be a P-matroid and let o be a localization for M describing the
extension M. Then, for any complementary basis B of M (and thus also of M\), and every
element e € B, the sign of e in the fundamental circuit C(B,q) of/T/l\ is the opposite of the
sign assigned by o to the fundamental cocircuit C*(B,e) of M.

Las Vergnas [9] showed that the set of localizations is closed under composition, i.e.,
given two localizations o1, 09, the following function is a localization too:

01(6), ifUl(C)7é0,

o2(c), otherwise.

Ve e C* : (01 002)(c) := {

EuroCG’'23
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Figure 1 The form of the PPU given by a lexicographic extension of a uniform P-matroid.

Lemma 4.1 allows us to understand the effect of such composition on the resulting (par-
tial) P-matroid USO: For localizations 01,09 and their corresponding PPUs O;, O, the
PPU O’ given by the localization o7 o o3 is

01 (’U)i, if 01(1})1‘ 7é 07

Os(v);, otherwise.

Vo e V(Qy),i€ [k : 0 (v);, = {

This can be seen as filling in all unoriented subcubes of O, with the orientation Os.

Furthermore, Las Vergnas [9] describes lexicographic extensions of oriented matroids.
Lexicographic extensions of uniform P-matroids give rise to PPUs in which all edges of
some dimension are oriented the same way, and one half is left unoriented while the other
half is completely oriented (see Figure 1).

» Lemma 4.2. Let M = (Es,,C) be a P-matroid. Let M be the lexicographic extension of
M by [+ -t;]. Then, in the partial P-matroid USO O defined by JT/l\, the upper i-facet (the
facet of vertices v with v; = 1) is an unoriented subcube, and all i-edges point towards this
facet. Furthermore, if M is uniform, the lower i-facet is completely oriented.

We can use these two construction techniques to prove a lower bound on the number of
queries needed by deterministic sink-finding algorithms on P-matroid USOs.

» Theorem 4.3. Let M = (E2,,C) be a uniform P-matroid. Then, for every deterministic
sink-finding algorithm A, there exists a non-degenerate extension M of M such that A
requires at least n queries to find the sink of the P-matroid USO given by M.

In essence, to prove this theorem, we successively build a localization by composition with
lexicographic extensions. The construction keeps the invariant that there exists an unori-
ented subcube guaranteed to contain the global sink. The dimension of this subcube is
reduced by at most one with every query, thus at least n queries are required.

Previously, the best known lower bound for sink-finding on P-matroid USOs was Q(logn)
queries [14]. In contrast, the stronger, almost-quadratic lower bound of Schurr and Szabé [11]
does not apply to P-matroid USOs (for a proof of this see Appendix B of the full version).

The P-Matrix Linear Complementarity Problem (P-LCP) is an algebraic analogue of
P-OMCP. We discuss our results (Sections 3 and 4) in the context of P-LCPs in Appendix A
of the full version.

5 The Search Problem Complexity of P-OMCP

An instance of UNIQUE END OF POTENTIAL LINE consists of an implicitly given exponen-
tially large graph G, in which each vertex has a positive cost and in- and out-degree at most
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one. Thus, the graph is a collection of directed paths called lines. The computational task
is as follows: if the nodes of G form a single line (that starts in some given start vertex)
with strictly increasing cost, then find the unique end node of this line — a sink. Otherwise,
either find some sink in G or a violation certificate that shows that G does not consist of a
single line. UNIQUE END OF POTENTIAL LINE is a total search problem, i.e., there always
exists a sink or a violation. Note that there might exist a sink and a violation simultaneously.

» Definition 5.1. The search complexity class Unique End of Potential Line (UniqueEOPL)
contains all problems that can be reduced in polynomial time to UNIQUE END OF POTEN-
TIAL LINE. Thus, the complexity class UniqueEOPL captures all total search problems where
the space of candidate solutions has the structure of a unique line with increasing cost.

UniqueEOPL was introduced in 2018 by Fearnley et al. [2]. UniqueEOPL is a subclass of
PPADNPLS [1]. Problems in UniqueEOPL are not known to be solvable in polynomial time.

The promise version of a total search problem with violations is to find a solution under
the promise that no violations exist for the given instance. PromiseUEOPL is the promise
version of the search problem class UniqueEOPL.

A search problem reduction from a problem R to a problem T is promise preserving,
if every violation of T is mapped back to a violation of R and every valid solution of T'
is mapped back to a valid solution or a violation of R. Promise preserving reductions
are transitive. When containment of a search problem R in UniqueEOPL is shown via a
polynomial time, promise preserving reduction, the promise version of R is contained in
PromiseUEOPL.

We now state the problem of USO sink-finding as a total search problem with a violation.

» Definition 5.2. Given an orientation function O : {0,1}" — {4+, —}", the task of the total
search problem UNIQUE SINK ORIENTATION SINK-FINDING (USO-SF) is to find:

(U1) A vertex v € {0,1}"™ such that Vi € [n] : O(v); = —. The vertex v is a sink.
(UV1) Two distinct vertices v,w € {0,1}" with Vi € [n] : (v; = w;) V (O(v); = O(w);).
The orientation O does not fulfill the Szabé-Welzl condition and thus is not USO.

» Lemma 5.3 ([2]). USO-SF is in UniqueEOPL and its promise version is in PromiseUEOPL.
Next, we define the P-OMCP problem as a total search problem with violations.

» Definition 5.4. Let M = (EQ\H,CA) be an oriented matroid with the set S being a basis.
The task of the total search version of P-OMCP is to find one of the following:

(M1) A circuit X € C such that X >0, X, = + and Vi € [n] : X,, X, = 0.
(MV1) A circuit Z € C which is sign-reversing.
(MV?2) A complementary set B C Es,, of size n which is not a basis of M.
(MV8) Two distinct, complementary circuits X,Y € C with X, =Y, = + and
Vien]: X5, Y, =X, Ys, =0,0r X5, =Y, and X3, =Y,

Note that a violation (MV8) implies that M is not a P-matroid extension. Technically,
the violation (MV1) would be enough to make this search problem total, but our reduction
to USO-SF detects only violations of type (MV2) and (MV3). Note that as Fearnley et
al. [3] already observed, there may be a difference in the complexity of a total search
problem depending on the violations chosen. There is no trivial way known to the authors
to transform a violation of type (MV3) or (MV2) to a violation of type (MV1).
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9:6 On Degeneracy in the P-OMCP

With the help of Lemmas 3.2 and 3.3 we now adapt Todd’s reduction of non-degenerate
P-OMCP instances to USO (recall Section 2.3) to also work with degenerate instances and
their respective total search versions.

Given a P-OMCP instance M = (E;UCA) (note that M is possibly not a P-matroid
extension, or degenerate), we define the orientation O : V(Q,) — {+, —}™

— if B(v) is not a basis,
— ify;=0and Cs, =0,
+ ifv;=1and Cy, =0,
+ ifv;,=0and Cs, = —

orv;, =1and C;, = —,

— otherwise,

with B(v) and C := C(B(v),q) defined as in Section 2.3. Furthermore, using Lemmas 3.2
and 3.3 we know that O is USO if M is a P-matroid extension.

» Theorem 5.5. The construction above is a polynomial time, promise preserving reduction
from P-OMCP to USO-SF.

The proof can be found in the full version. While the proof requires careful formality,
correctness largely follows from the statements Section 3. It follows that P-OMCP as
defined in Definition 5.4 is in UniqueEOPL and its promise version is in PromiseUEOPL.
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Holes in convex drawings”

Helena Bergold!, Manfred Scheucher?, and Felix Schroder?

1 Department of Computer Science, Freie Universitit Berlin
2 Imstitut fiir Mathematik, Technische Universitidt Berlin

—— Abstract
The Erdés—Szekeres theorem states that, for every positive integer k, every sufficiently large point
set in general position contains a subset of k points in convex position — a k-gon. In the same vein,
Erdds later asked for the existence of k-holes which are k-gons with no additional points in their
convex hulls. Today it is known that every sufficiently large point set in general position contains
6-holes, while there exist arbitrarily large point sets without 7-holes.

Harborth (1978) started the investigation of empty triangles in simple drawings of the complete
graph. In a simple drawing, vertices are mapped to points in the plane and edges are drawn as
simple curves connecting the corresponding endpoints such that any two edges intersect in at most
one point, which is either a common vertex or a proper crossing. For the subclass of convex drawings,
which in particular includes point sets, Arroyo et al. (2018) showed that quadratically many empty
triangles exist.

In this article, we generalize the concept of k-holes to simple drawings of the complete graph
K, and investigate their existence. We provide arbitrarily large simple drawings without 4-holes,
show that convex drawings contain quadratically many 4-holes, and generalize the Empty Hexagon
theorem (Gerken 2006; Nicolds 2007) by proving the existence of 6-holes in sufficiently large convex
drawings.

1 Introduction

The study of holes in point sets was motivated by the Erdés—Szekeres theorem [12] and
continues to be an active research branch. The classic theorem states that for every k € N
every sufficiently large point set in general position (i.e., no three points on a line) contains a
subset of k points in convex position — a so called k-gon. A variation suggested by Erdds [11]
is about the existence of holes. A k-hole H in a point set S is a k-gon with the property
that there are no points of S in the interior of the convex hull of H.

In this article, we investigate holes in simple drawings of the complete graph K,,. Even
though the notation of holes generalizes to simple drawings in a natural manner, we have to
introduce some basic notation before we can talk about these structures and our results.

In a simple drawing, vertices are mapped to distinct points in the plane (or on the sphere)
and edges are mapped to simple curves connecting the corresponding points such that two
edges have at most one point in common which is either a common endpoint or a proper
intersection. Furthermore we assume that no three edges cross in a common point. Simple
drawings can be considered as a generalization of point sets because a set of n points in
general position yields a geometric drawing of K, where the vertices are the points and the
edges are the straight-line segments connecting the vertices.

Moreover, we investigate the subclass of convex drawings introduced by Arroyo et al. [4].
To define convexity, we consider triangles which are subdrawings of K3 induced by three
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Figure 1 Drawing of the two forbidden subconfigurations of convex drawings. Note that the right
drawing is the T5.

vertices. Since the three edges of a triangle do not cross, the triangle separates the plane
(resp. the sphere) into two connected components. The closure of each of the components is
called a side of the triangle. A side S is conwvex, if for every two vertices in S, the connecting
edge is fully contained in S. A simple drawing is convez if every triangle has a convex side.
Furthermore, a convex drawing is f-convex if there is a marking point f in the plane such
that for all triangles the side not containing f is convex. A pseudolinear drawing is a simple
drawing in the plane such that all edges can be extended to pseudolines such that two have
at most one point in common. A pseudoline is a simple curve partitioning the plane in two
unbounded components. As shown by Arroyo et al. [3], a simple drawing of K, is convex
if and only if the two non-convex drawings of the K5 (see Figure 1) do not appear as a
subdrawing. Furthermore, they showed that a simple drawing of K,, is pseudolinear if and
only if it is f-convex and the marking point f is in the unbounded cell. For more information
about the convexity hierarchy, we refer the reader to [3, 4, 9].

Next, we introduce the notions of k-gons in simple drawings of the complete graph. A
k-gon C}, is a subdrawing isomorphic to the geometric drawing of k points in convex position,
see Figure 2(left). Two simple drawings are isomorphic if there exists a bijection on the
vertex sets such that the same pairs of edges cross. Note that isomorphism is independent
of the choice of the outer cell. Thus, in terms of crossings, a k-gon Cy is a (sub)drawing
with vertices v1, ..., v such that {v;, v¢} crosses {v;, vy} for i < j < £ < m. In contrast
to the geometric setting where every sufficiently large geometric drawing contains a k-gon,
simple drawings of complete graphs do not necessarily contain k-gons [16]. For example,
the perfect twisted drawing T, depicted in Figure 2(right) does not contain any 5-gon. In
terms of crossings, T,, can be characterized as a drawing of K,, with vertices vy, ..., v, such
that {v;,v;} crosses {ve, vy} for ¢ < j < £ < m. However, a theorem by Pach, Solymosi
and T6th [21] states that every sufficiently large drawing of K,, contains a k-gon or a T.
The currently best known bound is due to Suk and Zeng [23] who showed that every simple
drawing of K,, with n > 290g:(a) logy (b)ab* contains a C, or a Ty. Since convex drawings
do not contain Ty as a subdrawing, every convex drawing of K,, with n sufficiently large
contains a k-gon.

To eventually define k-holes for general k, let us first consider the special case of 3-holes,
which are also known as empty triangles. A triangle is empty if one of its two sides does
not contain any vertices in its interior. For general simple drawings Harborth [16] proved
that there are at least two empty triangles and conjectured that the minimum among all
simple drawings on n vertices is 2n — 4, which is obtained by T,,. Garcia et al. [13] recently
showed that the conjecture holds for a class containing the perfect twisted drawings, the so
called generalized twisted drawing. However, the conjecture remains open in general. The
best known lower bound is by Aichholzer et al. [2], who proved that there are at least n
empty triangles.
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In the geometric setting, the number of empty triangles behaves quite differently: every
point set has a quadratic number of empty triangles, and this bound is asymptotically
optimal [6]. Moreover, determining the minimum number remains a challenging problem
[10, Chapter 8.4]. For the current bounds, see [1]. The class of convex drawings behaves
similarly to the geometric setting: the minimum number of empty triangles is asymptotically

quadratic as shown by Arroyo et al. [3].

Figure 2 A drawing of C,, (left) and 75, (right) for n > 4.

In this article, we go beyond empty triangles and investigate the existence of k-holes in
simple drawings for k£ > 4. In the subdrawing induced by a k-gon with k& > 4, all triangles
have exactly one empty side which is the convex side. We define the conver side of a k-gon
as the union of all convex sides of its triangles and call a vertex which lies in the interior of
its convex side an interior vertex. The convex side of C,, in Figure 2 is highlighted grey. Note
that the triangles of a k-gon for k > 4 have exactly one convex side, which is the one not

containing the other vertices of the k-gon and hence the convex side of a k-gon is well-defined.

A k-hole is a k-gon which has no interior vertices. For example the vertices 1,2,n — 1, n form
a 4-hole in T;, which is highlighted grey in Figure 2. For a k-gon C} in a convex drawing,
Arroyo et al. [4] showed that the edges from an interior vertex to a vertex of Cy and edges
between two interior vertices are fully contained in the convex side of Cy.

In the geometric setting it is known that for k& < 6 every sufficiently large point set

contains a k-hole [15, 14, 19] and that there are arbitrarily large point sets without 7-holes [17].

Since the latter applies to simple drawings, the remaining questions in simple drawings are
about the existence of 4-, 5- and 6-holes.

Our Results: For n > 5 we present a non-convex simple drawing of K,, without 4-holes
(Section 2). Furthermore, we show that — as in the geometric setting — the number of
4-holes in convex drawings of K, is at least (n?) (Theorem 3.1), generalizing a result by
Bérdny and Fiiredi [6], and that every sufficiently large convex drawing contains a 5-hole
and a 6-hole (Theorem 3.2), generalizing the Empty Hexagon theorem by Gerken [14] and
Nicolés [19]. In order to show the latter, we prove that if a subdrawing of a convex drawing is
induced by a minimal k-gon with k£ > 5 together with its interior vertices, then it is f-convex
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(Theorem 3.3). This result might be of independent interest as it allows to transfer results
from the straight-line, pseudolinear, and f-convex setting to convex drawings.

2 Holes in simple drawings

The perfect twisted drawing 7T;, depicted in Figure 2(right) has exactly 2n — 4 empty triangles,
which are spanned by the vertices {1,2,i} for 3 <i <nand {i,n—1,n} for 1 <i<n-—2][16].
For n > 4, T,, has exactly one 4-hole, which is spanned by {1,2,n — 1,n}.

For n > 5, let T,, denote the non-convex drawing of K, that is obtained by starting with
the drawing of T,, and rerouting the edge {1,n} as illustrated in Figure 3. More precisely,
while in T;, the edge {1,n} crosses every edge {i,j} with 2 <i < j<n-—1,in T, it only
crosses the edges {i,j} with 2 < i < j < n — 2. Recall that the pairs of crossing edges
determine isomorphism class.

Figure 3 An illustration of the drawing T,, without 4-holes. The edge {1,n} is highlighted red.

» Proposition 2.1. For n > 5 the drawing ﬁ does not contain a 4-hole.

Proof. Rerouting the edge {1,n} only affects the emptiness of triangles incident to both
vertices 1 and n. In particular it only affects the vertex n — 1 which changes the side of
every triangles incident to {1,n}. In T,, the only empty triangles incident to {1,n} are
{1,n—1,n} and {1,n — 2,n}. Note that the triangle {1,2,n} is not empty in ﬁ Hence,
the empty triangles in ﬁ are {1,2,i} for 3<i<mn—1,and {i,n—1,n} for 1 <i<n-—2
and {1,n — 2,n}. Since no four vertices span four empty triangles, ﬁ does not contain a
4-hole. |

3 Holes in convex drawings

In this section, we show that convex drawings of the complete graph behave similarly to
geometric point sets when it comes to the existence of holes.

» Theorem 3.1. Every convex drawing of K, contains at least Q(n?) 4-holes.

The proof generalizes the idea of Bardny and Fiiredi [6] and is deferred to the full version.
The bound is asymptotically best possible as there are point sets (squared Horton sets [7]
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and random point sets [5]) which have only quadratically many 3-holes, 4-holes, 5-holes, and
6-holes.

Furthermore, we investigate larger holes. We show that every sufficiently large convex
drawing contains a 6-hole (and hence a 5-hole).

» Theorem 3.2. Every convex drawing of K, with n sufficiently large contains a 6-hole.

For the proof below we use the existence of a k-gon in sufficiently large simple drawings [21,
23]. Even though the existence of 6-holes directly implies the existence of 5-holes, when
adapting the proof to 5-holes one can obtain a better bound on the required number of
vertices.

An important part of the proof is that the subdrawing induced by a minimal k-gon together
with its interior vertices is f-convex, which then can be transformed into a pseudolinear
drawing. A k-gon is minimal if its convex side does not contain the convex side of another
k-gon.

» Theorem 3.3. Let C} be a minimal k-gon with n > k > 5 in a convex drawing of K,.
Then the subdrawing induced by the vertices on the convex side of Cy is f-conver.

Since the proof for the existence of 6-holes in point sets [14] also applies to the setting of
pseudolinear drawings [22], we can now use Theorem 3.3 to derive Theorem 3.2. Similarly, the
text-book proof for the existence of 5-holes in every 6-gon of a point set (see e.g. Section 3.2
in [18]) applies to pseudolinear drawings as it only uses triple orientations. However, proving
the existence of 6-holes via 9-gons! is far more technical. Hence we refer the interested reader
to [22] for a computer-assisted proof and [24] for a simplified proof of the Empty Hexagon
theorem with worse bounds.

Proof of Theorem 3.2. By the result of Suk and Zeng [23] every convex drawing of K, with
n > 2225108:(5)-k” logz (k) contains a k-gon. In order to find a 6-hole, we apply this result for
k =9. (To find a 5-hole, we can use k = 6.) Consider a minimal k-gon. By Theorem 3.3,
the subdrawing induced by the vertices from the convex side of the k-gon is f-convex. Since
the existence of holes is invariant under the choice of the outer cell, we can choose the cell
containing f as the unbounded cell to make the subdrawing pseudolinear. Next we apply
the results concerning the existence of a 6-hole (resp. 5-hole) in pseudolinear drawings and
conclude that the subdrawing induced by the k-gon and the interior vertices contains a 6-hole
(resp. 5-hole). This 6-hole (resp. 5-hole) in the subdrawing does not contain vertices of the
original drawing of K, since those vertices would be interior vertices of the k-gon. Therefore
it is also a 6-hole (resp. 5-hole) in the original drawing. This completes the argument. <

4 Discussion

We have shown that every convex drawing of K, with n > 5 contain a quadratic number
of 4-holes and that sufficiently large drawings contain 5- and 6-holes, while 7-holes do not
exist in general. However, it remains to determine the precise values of h°°™ (5) and h°™(6),

where h®™ (k) (resp. h8*°™(k)) denotes the smallest integer such that every convex (resp.

geometric) drawing of size n > h®™ (k) contains a k-hole. In the geometric setting it is
known that hge°™(5) = 10 [15] and 30 < h8®°™(6) < 1717 [14, 20]. In this article we showed

! Gerken [14] showed that every 9-gon in a point set yields a 6-hole and Nicolds [19] showed that a 25-gon
yields a 6-hole. Both articles involve very long case distinctions.

EuroCG’23
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heonv () < 2225'k*logy5logak 4 | for | = 5 and k = 6 (Theorem 3.2). Moreover, we used
the SAT framework from [8] to find configurations for n < 10 and n = 12 without 5-holes
and to prove that every drawing for n = 11,13,14, 15,16 contains a 5-hole. Based on our
computational data, we conjecture that h®°™(5) = 13. Note that unlike in the geometric
setting, the existence of 5-holes in convex drawings is not monotone as the existence of a
5-hole in all convex drawings of K17 does not imply the existence for n = 12.

It would be interesting to obtain better bounds on the size of a largest k-gon and on
the size of a largest f-convex subdrawing in a convex drawing of K,,. The currently best
estimate for a k-gon is by Suk and Zeng [23], which yields Q((logn)'/2=°(")), and combining
this with Theorem 3.3 yields an f-convex drawing of the same size.
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—— Abstract

Let P be a convex polyhedron and @ be a convex polygon with n vertices in total in three-dimensional

space. We present a deterministic algorithm that finds a translation vector v € R® maximizing the
overlap area |P N (Q + v)| in O(nlog®n) time. We then apply our algorithm to solve two related
problems. We give an O(nlog®n) time algorithm that finds the maximum overlap area of three
convex polygons with n vertices in total. We also give an O(n log? n) time algorithm that minimizes
the symmetric difference of two convex polygons under scaling and translation.

Related Version A full version of the paper is available at https://arxiv.org/abs/2301.02949.

1 Introduction

Shape matching is an important topic in computational geometry, with useful applications
in areas such as computer graphics. In a typical problem of shape matching, we are supplied
two or more shapes, and we want to determine how much the shapes resemble each other.
More precisely, given a similarity measure and a set of allowed transformations, we want to
transform the shapes to maximize their similarity measure.

While there are many candidates for the similarity measure, we focus on the area/volume
of overlap or of symmetric difference. The advantage to these is that they are robust against
noise on the boundary of the images [6]. For previous results in this area, see [6, 1, 3, 4, 2, 12].

While many have studied the matching problem for two convex polytopes of the same
dimension, few have examined the problem for polytopes of different dimensions or matching
more than two polytopes. In this paper, we present a deterministic algorithm for finding the
maximum overlap area of a convex polyhedron and a convex polygon under translation in
three-dimensional space. Using this algorithm, we also solve the problems of maximizing the
overlap of three convex polygons and of minimizing the symmetric difference of two convex
polygons under homothety.

2 Preliminaries

Let P C R3 be a convex polyhedron and @ C R? be a convex polygon with n vertices in total.
Throughout the paper, we assume that @ is in the zy-plane, and that the lowest point of P
is on the xy-plane. We want to find a translation vector v = (z,y,2) € R that maximizes
the overlap area f(v) = |P N (Q + v)|.

It is easy to observe that f(v) is continuous and piecewise quadratic on the interior of its
support. As noted in [6, 1, 3], f is smooth on a region R if P N (Q + v) is combinatorially
equivalent for all v € R, that is, if we have the same set of face-edge incidences between P
and Q. Following the convention of [1], we call the polygons that form the boundaries of
these regions the event polygons, and as in [6], we call the space of translations of @ the
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configuration space. The arrangement of the event polygons partition the configuration space
into cells with disjoint interiors. The overlap function f(v) is quadratic on each cell. Thus,
to locate a translation maximizing f, we need to characterize the event polygons.

For two sets A, B C R%, we write the Minkowski sum of A and B as A+ B := {a+bla €
A,b € B}. We also write A — B for the Minkowski sum of A with —B = {—b|b € B}. We
categorize the event polygons into three types and describe them in terms of Minkowski
sums:

(I) When @ + v contains a vertex of P. For each vertex u of P, we have an event polygon
u — Q. There are O(n) event polygons of this type.
(IT) When a vertex of @ + v is contained in a face of P. For each face F' of P and each vertex
v of @, we have an event polygon F' — v. There are O(n?) event polygons of this type.
(III) When an edge of @ + v intersects an edge of P. For each edge e of P and each edge €’ of
Q, we have an event polygon e — ¢’. There are O(n?) event polygons of this type.

The reason that convexity is fundamental is due to the following standard fact, as noted
and proved in [6, 12].

» Proposition 2.1. Let P be a d'-dimensional convez polytope and let Q be a d-dimensional
convex polytope. Suppose d' > d. Let f(v) = Vol(P N (Q + v)) be the volume of the overlap
function. Then, f(v)"/? is concave on its support supp(f) = {v|f(v) > 0}.

As in [5], we say a function f: R — R is unimodal (resp. strictly unimodal) if it increases
(resp. strictly increases) to a maximum value, possibly stays there for some interval, and then
decreases (resp. strictly decreases). Furthermore, we say a function f : R? — R is unimodal
(resp. strictly unimodal) if its restriction to any line is unimodal (resp. strictly unimodal).

» Corollary 2.2 ([5]). For any line | parameterized by | = p + vt in R, the function
f1(®) = f(p+ vt) is strictly unimodal.

We introduce a divide-and-conquer technique that we apply in our algorithm.

» Lemma 2.3 ([8]). Given n hyperplanes in R? and a region R C R%, a (1/r)-cutting is
a collection of simplices with disjoint interiors, which together cover R and such that the
interior of each simplex intersects at most n/r hyperplanes. A (1/r)-cutting of size O(r?)
can be computed deterministically in O(nr?=1) time. In addition, the set of hyperplanes
intersecting each simplex of the cutting is reported in the same time.

Another technique that we use in our algorithm is a generalization of Megiddo’s prune-
and-search [11]. This technique is of independent interest and can likely be applied to other
problems.

» Theorem 2.4. Let S =J;_, S; be a union of n sets of O(m) parallel lines in the plane,
none of which are parallel to the x-axis, and suppose the lines in each S; are indexed from
left to right.

Suppose there is an unknown point p* € R? and we are given an oracle that decides in
time T the relative position of p* to any line in the plane. Then we can find the relative
position of p* to every line in S in O(nlog®m + (T + n)log(mn)) time.

3 Maximum overlap of convex polyhedron and convex polygon

In this section, we prove our main result:
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» Theorem 3.1. Let P be a convex polyhedron and QQ a convex polygon with n vertices in
total. We can find a vector v € R® that mazimizes the overlap area |PN(Q+v)| in O(nlog? n)
time.

Following the convention in [6], we call a translation that maximizes the overlap function
f a goal placement. In the algorithm, we keep track of a closed target region R which we
know contains a goal placement and decrease its size until for each event polygon F', either
F Ninterior(R) = @ or F' D R. Then, f is quadratic on R and we can find the maximum of
f on R using standard calculus. Thus, the goal of our algorithm is to efficiently trim R to
eliminate event polygons that intersect it.

In the beginning of the algorithm, the target region is the interior of the Minkowski sum
P — @, where the overlap function is positive. By the unimodality of the overlap function,
the set of goal placements is convex. Thus, for a plane in the configuration space, either
it contains a goal placement, or all goal placements lie on one of the two open half spaces
separated by the plane. If we have a way of knowing which case it is for any plane, we
can decrease the size of our target region by cutting it with planes and finding the piece
to recurse. More precisely, we need a subroutine PlaneDecision that decides the relative
position of the set of goal placements to a plane S.

Whenever PlaneDecision reports that a goal placement is found on a plane, we can let
the algorithm terminate. Thus, we can assume it always reports a half-space containing a
goal placement.

As in Algorithm 1, we break down our algorithm into three stages.

Algorithm 1: Pseudocode for Theorem 3.1

input :A convex polyhedron P € R3 and a convex polygon Q € R? with n vertices

in total
output : A translation v € R® maximizing the area |P N (Q + v)|

1 Locate a horizontal slice containing a goal placement that does not contain any
vertices of P and replace P by this slice of P

2 Find a “tube” D + [, whose interior contains a goal placement and intersects O(n)
event polygons, where D is a triangle in the xz-plane and [, is the y-axis

3 Recursively construct a (1/2)-cutting of the target region D + [, to find a simplex
containing a goal placement that does not intersect any event polygon

3.1 Stage 1l

In the first stage of our algorithm, we make use of [6] to simplify our problem so that P can
be taken as a convex polyhedron with all of its vertices on two horizontal planes.

We sort the vertices of P by z-coordinate in increasing order and sort the vertices of @
in counterclockwise order. Next, we trim the target region with horizontal planes (planes
parallel to the zy-plane) to get to a slice that does not contain any vertices of P.

» Lemma 3.2. In O(nlog®n) time, we can locate a strip R = {(x,y, 2)|z € [0, 21]} whose
interior contains a goal placement and P has no vertices with z € [zg, #1].

By Chagzelle’s algorithm [7], the convex polyhedron P’ = {(z,y, z) € P|z € [z0,21]} can be
computed in O(n) time. From now on, we replace P with P’ (see Figure 1). Without loss of
generality, assume zgp = 0 and z; = 1.

EuroCG’'23
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=

Figure 1 The slice of P with z € [29, z1].

The region in the configuration space where |PN(Q+v)| > 0 is the Minkowski sum P — Q.
Since P only has two levels Py = {(z,y,2) € Plz =0} and P, = {(z,y,2) € P|z = 1} that
contain vertices, the Minkowski sum P — @ is simply the convex hull of (Py — Q) U (P, — @),
which has O(n) vertices. We can compute Py — @ and P; — @ in O(n) time and compute
their convex hull in O(nlogn) time by Chazelle’s algorithm [9].

3.2 PlaneDecision

Due to space constraints, we will not present the algorithm PlaneDecision. For details, see
the full version of the paper [10].

We present a perturbation method to reduce the problem of deciding the relative position
of the goal placement to an arbitrary plane to finding the maximum of the overlap over an
arbitrary plane.

» Lemma 3.3. Suppose we can compute max,es f(v) for any plane S C R3 in time T, then
we can perform PlaneDecision for any plane in time O(T).

Proof. The idea is to compute max,cgs/ f(v) for certain S’ that are perturbed slightly from
S to see in which direction relative to S does f increase.

We compute over an extension of the reals R[w]/(w?), where w > 0 is smaller than any
real number. Let A > 0 be the maximum of f over a plane S. Let Sy and S_ be the two
planes parallel to S that have distance w from S. We compute A, = max,egs, f(v) and
A_ = maxyes_ f(v) in O(T) time. Since f is piecewise quadratic, Ay and A_ as symbolic
expression will only involve quadratic terms in w. Since f is strictly unimodal on P — @,
there are three possibilities:

1. If AL > A, then halfspace on the side of S contains the set of goal placements.
2. If A_ > A, then halfspace on the side of S_ contains the set of goal placements.
3. If A> A, and A > A_, then A is the global maximum of f.

Thus, in O(T') time, we can finish PlaneDecision. <

With Theorem 3.3, it suffices for us to give an algorithm finding the maximum of the
overlap over any plane. Just like in our main algorithm, we want to prune the configuration
space (now restricted to a plane), until we locate a region that contains the maximum
and that does not intersect any event polygon. In Algorithm 2, we give an outline for
PlaneDecision:

» Proposition 3.4. For a plane S, we can perform PlaneDecision in O(nlogn) time.
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Algorithm 2: Pseudocode for PlaneDecision

input :A plane S C R?
output : A translation v € S maximizing the area |P N (Q + v)|
1 Compute SN (P — Q) and set it to be our initial target region.
2 Locate a strip on S containing a good placement whose interior intersects O(n) event
polygons.
3 Recursively construct a (1/2)-cutting of the strip to find a triangle containing a good
placement that does not intersect any event polygon

3.3 Stage 2

With the general PlaneDecision at our disposal, we now move on to Stage 2, the main
component of our algorithm. We project the entire configuration space and the event polygons
onto the zz-plane in order to find a target region D whose preimage D + [, intersects few
event polygons, where I, is the y-axis (see Figure 2).

(a) Projection of P (b) Projection of @

(c) Projection of the configuration space, and the target region D

Figure 2 Projecting onto the xz-plane.

The non-horizontal edges of the event polygons project to segments on the strip 0 < z < 1
on the xz-plane. We characterize our desired region D in the following lemma.

» Lemma 3.5. For a region D that does not intersect any of the segments that are the
projections of the non-horizontal edges of the event polygons, the preimage D + [, intersects
O(n) event polygons.

Now it remains to efficiently find such a region D with D 4+, containing a goal placement
and compute the O(n) event polygons that intersect its interior.

» Lemma 3.6. In O(nlog?®n) time, we can find a triangle D in the xz-plane such that the
interior of D + 1, contains a goal placement and intersects O(n) event polygons. We can
compute these O(n) event polygons in the same time bound.

EuroCG’'23
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3.4 Stage 3

Now, we have a target region R = D + [, whose interior contains a goal placement, and we
have the O(n) event polygons that intersect it.

» Lemma 3.7. In O(n log? n) time, we can find a region R’ C R containing a goal placement
that does not intersect any of the O(n) event polygons.

Finally, since the overlap function is quadratic on our final region R’, we can solve for
the maximum using standard calculus. This concludes the proof of Theorem 3.1.

4 Applications

We present two applications of Theorem 3.1 to other problems in computational geometry.
First, we give a deterministic algorithm for maximizing the overlap of three convex polygons.

» Theorem 4.1. Let P, QQ, R be three convex polygons with n wvertices in total in the
plane. We can find o pair of translations (vg,vr) € R* that mazimizes the overlap area
IPN(Q+vg) N (R+wvg)| in O(nlog®n) time.

In this problem, the configuration space is four-dimensional. An easy extension of
Proposition 2.1 and Theorem 2.2 shows that the function of overlap area is again unimodal.
This time, we have four-dimensional event polyhedra instead of event polygons that divide
the configuration space into four-dimensional cells on which g(vg, vg) is quadratic. We call
a hyperplane containing an event polyhedron an event hyperplane, and they are defined by
two types of events:

(I) When one vertex of P, Q@ + vg or R+ vg lies on an edge of another polygon. There are
O(n) groups of O(n) parallel event hyperplanes of this type.

(IT) When an edge from each of the three polygons intersect at one point. There are O(n?)
event hyperplanes of this type.

To overcome the difficulty of dealing with the O(n?) event hyperplanes of type (II), we
first prune the configuration space to a region intersecting no event hyperplanes of type (I).
We then show that the resulting region only intersects O(n) event hyperplanes of type (II),
at which point we can use Theorem 2.3 iteratively to finish.

Observe that maximizing the overlap over a hyperplane in which two polygons move
relatively in a line and the other polygon moves freely corresponds precisely to the problem
of overlapping a convex polyhedron (whose cross-sections are the intersections of the two
polygons moving in a line) and a convex polygon (the third polygon). Thus, Theorem 3.1
gives us a kind of “HyperplaneDecision” which we can use to prune the event hyperplanes
of type (I).

We also give a deterministic O(n log? n) time algorithm for minimizing the symmetric
difference of two convex polygons under homothety (a scaling and a translation), which is an
improvement to Yon et al’s O(nlog® n) time algorithm [12].

» Theorem 4.2. Let P and Q be convex polygons with n vertices in total. Then we can find
a homothety ¢ that minimizes the area of symmetric difference |P\ o(Q)] + |¢(Q) \ P| in
O(nlog®n) time.

We want to minimize the function h(y) = h(z,y,\) = |P \ ¢(Q)] + |¢(Q) \ P|, where
0(Q) = A\Q + (z,y). We can rewrite this as h(p) = |P| + |Q|)\? — 2|P N ¢(Q)|. Thus,
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minimizing h is the same as maximizing the function f(p) = |P N p(Q)| — c\?, where

CcC =

1
31Ql-
Consider the cone C' = {(z,y,\)|A € [0, M],(x,y) € A\Q}, where M = /|P|/c (see

Figure 3). Then f is negative for A\ > M so it is never maximized. We also put P into R?
by P = {(z,y,0)|(x,y) € P}. Since f(z,y,\) =|C N (P + (—x,—y,\))| — ¢\?, the problem
reduces to maximizing the overlap area of the cone C' and P under translation subtracted by

a quadratic function. Some modification of Theorem 3.1 gives Theorem 4.2.
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—— Abstract

We consider the extension problem for bend-minimal orthogonal drawings of planar graphs, which

is among the most fundamental geometric graph drawing representations. While the problem was
known to be NP-hard, it is natural to consider the case where the drawn part is connected and
only a small part of the graph is still to be drawn. Here, we prove the problem is in FPT when
parameterized by the size of the missing subgraph.

Related Version http://arxiv.org/abs/2302.10046

1 Introduction

Drawing extension problems are motivated, for instance, by visualizing networks, in which
certain subgraphs represent important motifs that require a specific drawing, or by visual-
izing dynamic networks, in which new edges and vertices must be integrated in an existing,
stable drawing. Generally speaking, we are given a graph G and a (typically connected)
subgraph H of G with a drawing I'(H), which is called a partial drawing of G. The drawing
I'(H) satisfies certain topological or geometric properties, e.g., planarity, upward planarity,
or 1-planarity, and the goal of the corresponding extension problem is to extend I'(H) to a
drawing I'(G) of the whole graph G (if possible) by inserting the missing vertices and edges
into I'(H) while maintaining the required drawing properties.

In this paper, we study the geometric drawing extension problem arising in the context
of one of the most fundamental graph drawing styles: orthogonal drawings [3,4,6,10]. In a
planar orthogonal drawing, edges are represented as polylines comprised of (one or more)
horizontal and vertical segments, ideally with as few overall bends as possible, where edges
are not allowed to intersect except at common endpoints. Orthogonal drawings find appli-
cations in various domains from VLSI and printed circuit board (PCB) design, to schematic
network visualizations, e.g., UML diagrams in software engineering, argument maps, or flow
charts.

Given the above, a key optimization goal in orthogonal drawings is bend minimization.
This task is known to be NP-hard [8] when optimizing over all possible combinatorial em-
beddings of a given graph, but can be solved in polynomial time for a fixed combinatorial
embedding using the network flow model of Tamassia [11].

Despite the general popularity of planar orthogonal graph drawings, the corresponding
extension problem has only been considered recently by Angelini et al. [1]. While they
showed that the existence of a planar orthogonal extension can be decided in linear time,
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L] =

(a) I'(G) (b) I'(H)

Figure 1 An orthogonal drawing of (a) a graph G and (b) a subgraph H of G.

the orthogonal bend-minimal drawing extension problem in general is easily seen to be NP-
hard as it generalizes the case in which the pre-drawn part of the graph is empty [8]. Our
paper addresses the parameterized complexity of the bend-minimal extension problem for
planar orthogonal graph drawings under the most natural parameterization of the problem,
which is the size of the subgraph that is still missing from the drawing.

Problem Statement. Let G be a planar graph and H be a connected subgraph of G. We
call the complement X = V(G)\ V(H) the missing vertezx set of G, and Ex = E(G)\ E(H)
the missing edge set. Let T'(H) be a planar orthogonal drawing of H. A planar orthogonal
drawing I'(Q) extends I'(H) if its restriction to the vertices and edges of H coincides with
I'(H). Moreover, I'(G) is a B-extension of I'(H) if it extends I'(H) and the total number of
bends along the edges of Eyx is at most 3, for some § € N. For example, Figure la shows a
T-extension I'(G) of the drawing I'(H) in Figure 1b, with the missing vertices drawn in red.

BEND-MINIMAL ORTHOGONAL EXTENSION (BMOE)
Input: (G, H,T'(H)), integer
Problem: Is there a S-extension I'(G) of T'(H)?

Our parameter of interest, denoted by k, is the number of vertices and edges missing
from H, ie., k= |V(G)\V(H)|+ |E(G) \ E(H)]|.

Contributions and overview. We establish the fixed-parameter tractability of BMOE
when parameterized by x. While there have been numerous recent advances in the parame-
terized study of drawing extension problems [5,7,9], the specific drawing styles considered in
those papers were primarily topological in nature, while for bend minimization the geometry
of the instance is crucial. In order to overcome this difficulty, we develop a new set of tools
summarized below. We first apply an initial branching step to simplify the problem (Sec-
tion 2). This step allows us to reduce our target problem to BEND-MINIMAL ORTHOGONAL
EXTENSION ON A FACE (F-BMOE), where the missing edges and vertices are drawn only
in a marked face f and we have some additional information about how the edges are geo-
metrically connected. Next, we focus on solving an instance of F-BMOE (Section 3). We
show that certain parts of the marked face f are irrelevant and can be pruned away, and also
use an involved argument to reduce the case of f being the outer face to the case of f being
an inner face. Once that is done, we enter the centerpiece of our approach (Section 4), where
the aim is to obtain a suitable discretization of our instance. To this end, we split the face f
into so-called sectors, which group together points that have the same “bend distances” to all
of the connecting points on the boundary of f. Furthermore, we construct a sector-grid—a
point-set such that each sector contains a bounded number of points from this set, and every
bend-minimal extension can be modified to only use points from this set for all vertices and
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bends. While this latter result would make it easy to handle each individual sector by brute
force, the issue is that the number of sectors can be very large, hindering tractability. To
deal with this obstacle, we capture the connections between sectors via a sector graph whose
vertices are the sectors and whose edges represent geometric adjacencies between sectors.
Crucially, we show that the sector graph has treewidth bounded by a function of k. Having
obtained this bound on the treewidth, the last step simply combines the already constructed
sector grid with dynamic programming to solve F-BMOE (and hence also BMOE).

Many technicalities and proofs have been omitted; see [2] for the full paper.

2 Initial Branching

Let ((G,H,T'(H)),8) be an instance of BMOE. A vertex w € V(H) is called an anchor if
it is incident to an edge in Ex. For a missing edge vw € Ex incident to a vertex v € V(H),
we will use “ports” to specify a direction that vw could potentially use to reach v in an
extension of I'(H); we denote these directions as d, which is an element from {| (north), 1
(south), < (east), — (west)}. Formally, a port candidate for vw € Ex and v € V(H) is a
pair (v,d). A port-function is an ordered set of port candidates which contains precisely one
port candidate for each vw € Ex,v € V(H), ordered lexicographically by v and then by w.

BEND-MINIMAL ORTHOGONAL EXTENSION ON A FACE (F-BMOE)

Input: Planar graph Gy; induced subgraph H; of Gy with k = |Xy|, where X; =
V(Gy)\V(Hy); drawing I'(Hy) of Hy consisting of a single inner face f; port-function P.
Task: Compute the minimum £ for which a 3-extension of I'(H ) exists s.t. (1) all missing
edges and vertices are drawn in face f, (2) each edge za € Ex where a € V(H) connects
to a via its port candidate defined by P, or determine that no such extension exists.

» Lemma 2.1. There is an algorithm that solves an instance T of BMOE in time 39 .
T(|Z|, k), where T'(a,b) is the time required to solve an instance of F-BMOE with instance
size a and parameter value b.

The algorithm in [1] can be used to test whether an instance of F-BMOE admits some
B-extension. Hence, we will assume to be dealing with instances where such an extension
exists. We will call a S-extension minimizing the value of 5 a solution.

3 Preprocessing

The first two steps that will allow us to solve F-BMOE include pruning out certain parts
of the face which are provably irrelevant, and reducing the case of f being the outer face to
the case of f being an inner face.

Let T'(G) be an orthogonal drawing of a graph G and let f be a face of I'(G). A feature
point of T'(G) is a point representing either a vertex or a bend of an edge. A reflex corner
p of f is a feature point that makes an angle larger than 7 inside f. Also, if p is an anchor,
then it is called an essential reflex corner. A projection £ of a reflex corner p is a horizontal
or vertical line-segment in the interior of f that starts at p and ends at its first intersection
with the boundary of f. Figure 2 (left) shows two projections ¢; and {5 of a reflex corner p.

Observe that each projection £ of a reflex corner p divides the face f into two connected
regions. If p is not essential and one of the two regions contains no reflex corners of its own
and no anchors, we call the region redundant. Our aim will be to show that such regions
can be safely removed from the instance. Namely, we can prove the following, where a clean
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Figure 2 Left: A reflex corner p and its projections ¢1 and ¢2. Middle: A face (striped) with all
its non-essential reflex corners and projections (anchor vertices have a gray filling while non-anchors
are solid). Right: The corresponding clean instance (dummy vertices are drawn as small squares).

instance is such that each projection of each non-essential reflex corner in f splits f into
two faces, each of which has at least one port on its boundary; see Figure 2 (right).

» Lemma 3.1. There is a polynomial-time algorithm that takes as input an arbitrary instance
of F-BMOE and outputs an equivalent instance which is clean.

Given Lemma 3.1, we will hereinafter assume that our instances of F-BMOE are clean.
Next, consider an instance of F-BMOE where the marked face is the outer face of I'(Hy),
and let us begin by constructing a rectangle that bounds I'(Hy) and will serve as a “frame”
for any solution. More formally, given an instance Z of F-BMOE and a rectangle R that
contains I'(Hy) in its interior, one easily sees that Z admits a solution that lies in the
interior of R. Based on this fact, we shall assume that any instance Z is modified such
that the outer face of I'(Hy) is a rectangle R containing no anchors (e.g., with four dummy
vertices at its corners connected in a cycle). Notice that, while this ensures that f is no
longer the outer face, f now contains a hole (that is, H is not connected anymore). The goal
is now to remove this hole by connecting it to the boundary of R. To do so, let us consider
an arbitrary horizontal or vertical line-segment { that connects the boundary of R with an
edge-segment in the drawing I'(H ) and intersects no other edge-segment of I'(H). Observe
that, w.l.o.g., we can assume that each edge-segment in a solution I'(G ;) only intersects ¢ in
single points (and not in a line-segment); otherwise, one may shift ¢ by a sufficiently small
€ to avoid such intersections. Roughly speaking, we can show that the instance Z can be
“cut open” along ¢ to construct an equivalent instance where the boundary of the polygon
includes R, and to branch in order to determine how the edges in a hypothetical solution
cross through (. However, to do so we need to ensure that there is a solution, in which the
number of such crossings through ( is bounded. To summarize, we can prove the following.

» Lemma 3.2. There is an algorithm that takes as input an instance T of F-BMOE where f
is the outer face and solves it in time 20(x* 108 k) -Q(|Z], k), where Q(a,b) is the time to solve
an instance of F-BMOE of size a and parameter value b such that f is the inner face.

4 The Sector Graph

For a point p € f, the bend distance bd(p, (a,d)) to a port candidate (a,d) is the minimum
integer ¢ such that there exists an orthogonal polyline with ¢ bends connecting p and a in
the interior of f which arrives to a from direction d.

» Definition 4.1. Let P = ((a1,d1), ..., (aq,dy)) be an ordered set of port candidates. For
each point p € f, we define its bend-vector as the tuple vect(p) = (bd(p, (a1,d1)), - -,
bd(p, (a(b dq)))
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» Definition 4.2. Given an ordered set of port candidates P, a sector F' is a maximal
connected set of points with the same bend-vector w.r.t. P.

When P is not specified explicitly, we will assume it to be the set of port candidates
provided by the considered instance of F-BMOE. The face f is now partitioned into a set
F of sectors. It is worth noting that sectors are connected regions in the face f, they do
not overlap, and they cover the whole interior of f. We further notice that a sector can
be degenerate, it may be a single point or a line-segment, and that pairs of (non-adjacent)
sectors may have the same bend-vectors. At this point, we can define a graph representation
capturing the adjacencies between the sectors in our instance; see Figure 3.

» Definition 4.3. Sectors A and B are adjacent if there exists a point p in A and a direction
d € {1,],4,—} such that the first point outside of A hit by the ray starting from p in
direction d is in B.

(a3, d3) II (a3, ds3)

(a1,dr) (a1, dy)

/‘— (a27d2)

Figure 3 Left: partioning a face f into a set F of sectors, with three anchors marked using white
circles. Right: the graph representation of F.

>—9o—9

(az, d2)

The sector graph G is the graph whose vertex set is the set of sectors F, and adjacencies of
vertices are defined via the adjacency of sectors. It is not difficult to observe that the sector
graph is a connected planar graph. Concerning its size, we observe that each sector contains
at least one intersection point between two projections and that any such intersection point
can be shared by at most nine sectors (four non-degenerate sectors plus five degenerate
sectors). Hence the number of vertices in G is upper-bounded by 922, where z is the number
of feature points in I'(Hy).

We now construct a “universal” point-set with the property that there exists a solu-
tion which places feature points only on these points, and where the intersection of the
point-set with each sector is upper-bounded by a function of the parameter. Namely, let
gridsize(k) = c- k® (for some constant ¢ ~ 10%). Then we can prove the following:

» Lemma 4.4. Given an instance T of F-BMOE we can construct a point-set (called a
sector grid) in time O(|Z|) with the following properties: (1) T admits a solution whose
feature points all lie on the sector grid, and (2) each sector contains at most gridsize(k)
points of the sector grid.

To complete the proof of our fixed-parameter tractability result we proceed by first
showing that the sector graphs in fact have treewidth bounded by a function of the parameter
k, and then by using this fact to design a dynamic programming algorithm solving F-BMOE.

» Theorem 4.5. Let G be a sector graph of a face f of the drawing T'(G). Then tw(G) <
(4+4k)** . Based on this, there is an algorithm that solves F-BMOE in time 2k [V(Gy)l.

By combining Theorem 4.5 with Lemma 2.1, we conclude:

» Corollary 4.6. BMOE can be solved in time R -n, where n is the number of feature
points of T'(H).
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—— Abstract

We consider the (1 + ¢)-Approximate Nearest Neighbour (ANN) Problem for polygonal curves in
d-dimensional space under the Fréchet distance and ask to what extent known data structures for
doubling spaces can be applied to this problem. For this we identify a subspace of curves which has
bounded doubling dimension and is close (in a Gromov-Hausdorff sense) to the target space, in which
we solve the (1 + &)-ANN problem, transfering the results to the original space of all curves. Our
results imply that there is a data structure for the (1 4+ €)-ANN problem for any set of parametrized
polygonal curves in R? with expected preprocessing time in QO(A)nlogn with space used in QO(A)n,
with a query time of 2°™ logn + 9™ where A = O(k(d + log(k®(S)e™!))) and ®(S) denotes
the spread of the set of vertices and edges of the curves in S.

1 Introduction

Given a set S of n points, the Nearest Neighbour Problem is the problem of constructing a
data-structure on S which can efficiently identify the point in S that minimizes the distance
to a given query point q. The Nearest Neighbour Problem is a fundamental problem. Its
variants have long been studied and applied in different areas, such as RNA sequencing
[2], disease diagnosing [13], motion pattern detection [4], shape indexing [1] or handwritten
digit recognition [9]. The problem has been studied as early as the 1960s [10], and classical
results such as the one by Shamos via point location in a Voronoi diagram achieve a query
time of O(logn) while using O(nlogn) space in R? [11], which was later improved upon by
Kirkpatrick to only require linear space and preprocessing time [8].

One complexity measure often used to generalize many different results to complicated
metric spaces is the notion of doubling dimension [5, 7, 14]. The Approximate Nearest Neigh-
bour (ANN) Problem in spaces with low doubling dimension has been studied extensively [7]
and results are known that roughly match the bounds known for R? [6]. The metric space we
are interested in is the space of polygonal curves in R% under the Fréchet distance. Polygonal
curves naturally arise from any sort of motion tracking, such as GPS data or motion capture
data, and are therefore of much interest. The metric space of curves under the Fréchet
distance has been shown to have unbounded doubling dimension [3], which suggests that
data structures designed for doubling spaces would perform poorly. Our work was inspired
by the work of Sheehy and Sheth on the bottleneck distance for persistence diagrams [12],
who showed that Clarkson’s Algorithm for computing r-nets can be extended to spaces that
are close to spaces of bounded doubling dimension. The primary motivation in this paper
is to find a workaround to the unbounded doubling dimension, and to leverage the rich
background of ANN results for doubling spaces to the Fréchet distance after all.
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2 Basic definitions

An edge in R? is the continuous map obtained from the linear interpolation of two points
a and b in R? parametrized over [0,1]. We may write ab to denote this unique edge. A
polygonal curve T of complexity n parametrized over [0, 1] is defined by a set of n points
in R? and is the result of (n — 2) concatenations of the (n — 1) edges in R¢ defined by any
two consecutive points. We call the underlying points of a polygonal curve of complexity n
its vertices. For 0 < s <t <1 we denote the subcurve of T from T'(s) to T'(t) by T[s, t].

» Definition 2.1 (Fréchet distance). Define the Fréchet distance for two curves X,Y in R as

dr(X,Y) = inf X(f(t) —Y(g(t
AXY)= e X)) - Y (o)

where f and g are continuous, non-decreasing and surjective.

The Fréchet distance is generally not a metric, but rather a pseudo-metric, as there are
curves X # Y, such that dz(X,Y) = 0. However this is easily remedied by considering the
quotient space induced by the equivalence relation X ~Y <= dz(X,Y) =0.

Problem definition ((1 + ¢)-ANN) Let (M, daq) be a metric space. Let P C M be a set
of points in M and a parameter € > 0 be given. For a given point ¢ € M, the problem of
finding the (1 + ¢)-Approximate Nearest Neighbour ((1 4 £)-ANN) asks to identify some
point & € P whose distance to ¢ approximates the distance to the nearest neighbour in P.
That is for every x € P it holds that da(q, 2) < (14 ¢) daq(g, x).

To answer such queries when M is the space of polygonal curves with the Fréchet distance,
we construct a subspace of curves that has bounded doubling dimension and is ’arbitrarily
close’ to the space of all curves. This then allows us to transfer results from spaces with
bounded doubling dimension to these close spaces.

We denote by X%* the set of polygonal curves in R¢ with complexity k. We further write
Xi’k for the subset of polygonal curves in X%* where the length of each edge is bounded
by A. The doubling constant of any metric space (M,dq) is defined as the minimal
number v, such that for any x € M and any r > 0 the disk of radius r centered at z, denoted
by DM(z), is contained in the union of at most v disks with radius r/2. The doubling
dimension of (M, d ) is defined as log,(v). We may omit the metric space in the notation
of a disk, whenever the metric space is clear, writing D,.(x) instead of DM(x) for x € M.

It turns out that for k > 3 the doubling dimension of (X%* dz) is unbounded [3]. A
slight modification to this construction yields an unbounded doubling dimension of Xfl\’k for
any A > 0. We thus turn to the following subspace of (X%* dz) which we want to analyze.

» Definition 2.2 ((p, )-curves). For any € > 0 and p € N define the space of (p, £)-curves in
X%+ as the subspace of (X%* dz) induced by the set of polygonal curves in X%* whose edge
lengths are all exact multiples of €. Further we require the edge lengths to be bounded by

pe. The space of (p, €)-curves in X%* is a natural subspace of (XZ?E’“, dx).

» Lemma 2.3. Let P € Xfl\’k be a polygonal curve and € > 0. We can construct a
([A/e] + 1,¢)-curve P" in X4 such that dx(P, P') < /2 in O(klog(A/e)) time.

Omitted proofs throughout this paper can be found in the full version.
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Figure 1 A curve P € Xi’k in blue, and an e-curve close to P resulting from Lemma 2.3 in red.

3 Bounding the doubling dimension of the space of (i, ¢)-curves

We now study the doubling dimension of the space of (u,¢)-curves in X4*. Unfortunately,
our bound is non-constructive. As such, it does not provide a doubling oracle that, for a
given disk of radius r, outputs a set of disks of radius r/2 which cover the disk of radius r.

Before diving into the analysis of the doubling dimension of the space of (u,€)-curves, we
begin by analysing properties of the ambient space R?. For this we often inspect so called
A-neighbourhoods of subsets of R%. For any subset A the A-neighbourhood of A is defined
by Na(A) = {z € R? | Ja € A : d(x,a) < A}. Note that the A-neighbourhood of a single
point = coincides with a disk of radius A centered at x.

It is well-known that the doubling dimension of R is in ©(d). The following lemma is a
generalization of the fact, that the doubling dimension of R? is in O(d).

» Lemma 3.1. For anyr > 0 and ¢ > 1, any disk D,.(p) C R? can be covered by O((2c+1)9)
disks of radius r/c.

The main result we now want to prove is the following theorem.

» Theorem 3.2. Let k,u,d € N and ¢ > 0. The doubling dimension of the space of
(1, €)-curves is bounded by O(k(d + log(kw))).

Let P be a (u,¢)-curve in X%*. Our objective is to cover the A-neighbourhood of P with
respect to dz with disks of radius A/2. We encounter the question of where, given p € R?,
we may place a second point g such that there is a subcurve of P that is close to pg. Indeed,
for any curve @ with d=(P,Q) < A, the endpoint ¢ of any edge pq of @ is such a point,
depending only on the starting point p of the edge in question.

» Definition 3.3. Let P be a polygonal curve and A > 0 and A > 0. For s € [0,1] define the
locus of edge endpoints of edges close to subcurves of P starting at the parameter s as

Lyxa(Ps)={qeR3p e R and 3t € [s,1] with ||p — ¢| = A and d#(P[s,t],5q) < A}.
It turns out that the set Ly a(P,s) is contained in a disk of constant size.

» Lemma 3.4. Let P be a polygonal curve. Let X > 0 and A > 0 be given. Then for every
s € [0,1] there is a point p* € R%, such that Ly a(P,s) C Dsa(p*).

» Definition 3.5. Let P be a polygonal curve and A > 0 and A > 0. For p € R? define the
locus of edge endpoints of edges starting at p which are close to subcurves of P as the set

LHoaPp)={qe Rd|||p —qll =X and 3s,t with 0 < s <t <1and dr(P[s,t],pq) < A}.

Similarly to Lemma 3.4 we can identify k disks that cover £y a(P,p) for given P, X\, A and p.
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Figure 2 Illustration of the set L a(P,s) in dark green, together with the points p and P(t)
realizing a point ¢ in Ly a (P, s), that is ||p — ¢|| = X and d#(P]s, t],pq) < A.

» Lemma 3.6. Let P € X%F be a polygonal curve. Let X >0 and A > 0 be given. Then for
every p € R there are k points p;,...,p; € R? such that £\ a(P,p) C Ule Dsa(pf).

Proof. The set I = {s € [0,1] | P(s) € Da(p)} can be described as a disjoint union of at
most k closed intervals, as the complexity of P is bounded by k. Assume that it is described
by exactly k such intervals, that is, I = Ule[li, i)

It suffices to show that £\ A(P,p) C Ule Laa(P,l;), as Lemma 3.4 then implies the
claim. Assume that an arbitrary ¢ € £, a(P,p) is given. Then by definition there are values
0 < s <t <1 such that d=(P[s,],7q) < A. This implies that ||p — P(s)|| < A, and hence
s € I and in turn s € [l;, ;] for some 1 < ¢ < k. But then the subcurve P[l;, s] is contained in
Da(p), and thus dz(P[l;,t],pq) < A implying that ¢ € Ly a(P,l;) and thus the claim. <

» Corollary 3.7. For every polygonal curve P in R, A >0, A >0, ¢ > 1 and point p € R¢
the set Najc ($A7(1+671)A(P,p)) can be covered by O(k(10c+ 3)4) many disks of radius A/c.

» Lemma 3.8. Let P be a polygonal curve. Let A >0, A >0 and ¢ > 1 be given. Then for
every p,p’ € R with ||p — p'|| < A/c we have that £y A(P,p) C Naje (g/\,(1+c—l)A(P,p/)),

We now prove a stronger version of Theorem 3.2, which allows us to analyse both the subspace
doubling constant as well as the doubling constant of (u, €)-curves in X%F,

» Lemma 3.9. Let k,pu,d € N ande > 0. Let a (u,e)-curve P in X4 be given, as well as
A >0 and c> 1. There is a family of curves Cp C Xiﬁ%A/c of size O(ku(10c + 3))*, such
that for any (p,e)-curve Q with dx(P, Q) < A there is a Q* € Cp with dx(Q,Q*) < AJe.

Proof. We construct the set Cp as follows. First, choose an element (mq,...,mg_1) €
{1,..., u}*~L. Next, choose one circle center of a cover of Da (P(0)) consisting of O((2¢+1)%)
many disks of radius r/¢, which exists by Lemma 3.1. Iteratively choose one point among
the circle centers of a cover of Na . (fmiila)(l_;'_c—l)A(P, q;-"_l)) of Corollary 3.7, consisting of
O(k(10c+3)%) many disks of radius r/c as the vertex ¢ of Q* for i < k. Then Q* € XZ’E]:_A/C,
as for any ¢ the fact that ¢; lies in N /. ($m1_157(1+cf1)A(P, qf_l)) implies that there is a
point ¢ € L., . (14e-1)a(P,qi_ 1), with |lgi_; —ql| = mi_1e and |lg — ¢;|| < A/c. Hence,
llgF — ¢4l < mie + AJec < pe + AJe. To account for all the choices, we have that
ICp| = O(ku(10c + 3)%).

Let @ be a given (u, )-curve, with d=(P, Q) < A. The curve @ consists of k — 1 edges
and induces an ordered set (my,...,mp_1) € {0,...,u}*"! representing the lengths of
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the edges in order. Let ¢i,...,qr be the vertices of Q. For all 1 < ¢ < k it holds that
¢ € ZLm;_1e.a(P,qi—1), by construction.

As dr(P,Q) < A, the first vertex g lies in Da(P(0)), and thus there is a point ¢}
of the cover of Da(P(0)) consisting of disks of radius r/c, that lies at distance at most
A/c to ¢1. For every subsequent ¢;, by Lemma 3.8 and because ¢; € L, ,ea(P,qi—1),
¢ € Naje (,%,Liil(e’(l_;’_c—l)A(P, q;‘_l)) and thus there is a point ¢ of the A/c-cover of
Naje (L, iei4e-a(P,gi_y)) that is at distance at most A/c to ¢;. This implies that
there is an element Q* (defined by exactly this choice of points) in Cp that has distance
dr(Q,Q*) < AJe. |

Proof of Theorem 3.2. Let P be a (u,¢)-curve in X%*¥ and a value A be given. By

Lemma 3.9, there is a family Cp of curves of size O(kju(43)%)* in XZ’Ek+A/4 C X%k such that

for any (u,e)-curve @ with dz(P,Q) < A there is curve Q* in Cp with d#(Q, Q*) < A/4.

For any @Q* € Cp identify some (u,¢e)-curve @\* such that dz(Q*,@*) < A/4. If no such
element exists, ignore @*. Otherwise for any (u,e)-curve @ with dz(P,Q) < A there is
a curve Q* in Cp with dz(Q,Q*) < A/4, and thus by the triangle inequality there is a

—

(u, €)-curve @\* with dz(Q, Q*) < A/2, proving the bounded doubling dimension. <

4 Approximate Nearest Neighbour

Har-Peled et al. [6] showed the following result for the (1 4+ ¢)-ANN problem in metric spaces
of bounded doubling dimension.

» Theorem 4.1 ([6]). Given a set S of n points in a metric space M of bounded doubling
dimension v, one can construct a data-structure for answering (1 + €)-approximate nearest
neighbour queries. The query time is 2°0) logn + e~ 9W) | the expected preprocessing time is
20Wnlogn and the space used is 2°)n.

A careful reading reveals an important specification for our purposes, namely, that the
doubling dimension is that of the n-point metric space defined by S induced by the metric
space M and not of the ambient metric space M.

» Lemma 4.2. Let (M, d ) be a metric space, and let S be some subset of M. Then the
doubling dimension of (S,dnm) is at most twice the doubling dimension of (M,d ).

» Lemma 4.3. Given a set S of n polygonal curves in Xi’k and parameters 0 < e < 1 and
e’ >0, one can construct a data-structure such that for given q € X% it outputs an element
s* € S such that for all s € S it holds that dr(s*,q) < (1 +¢€)dz(s,q) +¢'. The query time
is 20 logn + = OW) | the expected preprocessing time is 2°nlogn and the space used is
20W)n, where the doubling dimension v is given by O(k(d + log(k(1+ A/€)))).

Proof. Define é = ¢'/2. Let p=[A/é] +1=0(14 A/e’). We begin by simplifying every
polygonal curve s € S via Lemma 2.3, resulting in a set S’ of (u,€)-curves. This takes
O (log(p)nk) time, which is in O (2n). As S’ lies in the space of (p, €)-curves, the doubling
dimension of the set S’ with the Fréchet distance is bounded by v = O(k(d+1log(k(1+A/e"))))
via Theorem 3.2 and Lemma 4.2. Note that for every s € S and its simplification s’ € S’ it
holds that d (s, s") < £/2. We apply Theorem 4.1 to the set S” and €. Note that Theorem 4.1
assumes that the distance between any two points in the metric space of (u,€)-curves can be
computed in O(1) time. However, the continuous Fréchet distance takes polynomial time
in k. On the other hand, both 2¥!°¢* and e~*1°8%¥ dominate poly(k) for ¢ < 1. Thus the
running time is indeed as claimed. We then query the data structure with ¢, returning an
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element s’ such that for every s’ € S’ it holds that dz(g, s') < (1 + €)dr(q, s'). Lastly, the
element of S returned by the data structure will be the element § € S which corresponds to
s’. We then get for every s € S that

(0,5) +6/2< (1 +e)dr(q,s') +2/2 < (1+e)(dr(q,s) +£/2) +£/2
+e)dr(q,s)+Eé+¢eé/2=(1+¢e)dr(q,s) +E(1+¢/2)
+€)d]:( )Jr <

» Definition 4.4 (spread). For a point set P in some metric space (M, dpq) we define the
spread ®(P) as the ratio between the maximal and minimal pairwise distance of points in P.
Similarly, define the spread ®(.5) of a collection of sets as the ratio between the maximal and
minimal non-zero pairwise distances of sets in S where for two sets A, B C M their distance
is defined as da(A4, B) = minge 4 minge g dpaqg(a, b).

» Theorem 4.5. Given a set S of n polygonal curves in X%* and 0 < £ < 1 one can construct
a data-structure answering (1 + €)-approximate nearest neighbour queries. The query time
is 20 logn 4+ e~ OW) | the expected preprocessing time is 20 nlogn and the space used is
20)n, where v = O(k(d 4 log(k®(S)e™1))), where ®(S) denotes the spread of set of vertices
and edges of the curves in S.

Proof Sketch. Let ¢’ =¢/4 and €’ = ¢’ (minszyecsdr(s,s’)). Let E(S) be the set of edges
of curves in S and let further A = max.cpg(s) |le||, thus clearly S C Xi’k. We then apply
Lemma 4.3 with ¢’ and €” resulting in the described data structure. The correctness follows
directly, with the running time following as A/ min,xyecsdr(s,s’) +1 = O(®(S5)). <
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—— Abstract

In the planar one-round discrete Voronoi game, two players P and Q compete over a set V of

n voters represented by points in R?. First, P places k points, then Q places £ points, and then
each voter v € V is won by the player who has placed a point closest to v. We present lower bounds
on the number of voters that P can always win, which improve the existing bounds for all k£ > 4. As
a by-product, we obtain improved bounds on small e-nets for convex ranges.

1 Introduction

In the discrete Voronoi game, two players compete over a set V of n voters in R%. Player P
places a set P of k points, player Q places a set () of ¢ points that are disjoint from the
points in P, and then each voter v € V' is won by the player who has placed a point closest
to v. In other words, each player wins the voters located in its Voronoi cell in the Voronoi
diagram Vor(P U Q). In case of ties, when a voter v lies on the boundary between a Voronoi
cell owned by P and a Voronoi cell owned by Q, then v is won by player P. There are two
variants of the discrete Voronoi game. In the multiple-round game, k = ¢ and the two players
alternate placing points. In the one-round game, which is the variant we are interested in,
P first places k points and then Q places ¢ points; here k and ¢ need not be equal. The
one-round discrete Voronoi game was introduced by Banik et al. [2].

The discrete one-round Voronoi game for k = ¢ = 1 is closely related to the concept of
plurality points in spatial voting theory [9]. In this theory, there is a d-dimensional policy
space, and voters are modelled as points indicating their preferred policies. A plurality
point is then a proposed policy that would win at least [n/2] voters against any competing
policy. Phrased in terms of Voronoi games, this means that P can place a single point
that wins at least [n/2] voters against any single point placed by Q. The discrete Voronoi
game with £ > 1 and ¢ = 1 can be thought of as an election where a coalition of k parties
is colluding against a single other party. Another way to interpret Voronoi games is as a
competitive facility-location problem, which has also been studied in a graph-theoretic setting
(see e.g. [1, 8, 11]).

Previous work. The one-round discrete Voronoi game leads to interesting algorithmic as
well as combinatorial problems. The algorithmic problem is to compute an optimal set of
locations for a given set V of voters, for player P (assuming Q responds optimally) and
for player Q (for a given set of locations placed by P) [2, 5]. We are interested in the
combinatorial problem, which is to prove bounds on the number of voters that player P can
win, assuming player Q responds optimally to the points played by P. Tight bounds are only
known for the case k = £ = 1, where Chawla et al. [7] showed the following: for any set V' of
n voters in RY, player P can win at least [n/(d + 1)] voters and at most [n/2] voters, and
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reference ‘ k=1 ‘ k=2 ‘ k=3 ‘ k=4 ‘ k=5 ‘ arbitrary k
Banik et al. [3] | 1/3 | 3/7 | 7/15 | 15/31 | 21/41 42

k

this paper 1/2 11/21 1-— 2170

Table 1 Lower bounds on the fraction of voters that 7P can win on any voter set in R%, when P
has k points and Q has a single point, and the La-metric is used.

these bounds are tight. Situations where P can win [n/2] voters are particularly interesting,
as these correspond to the existence of a plurality point in voting theory. The bounds just
mentioned imply that a plurality point does not always exist. In fact, a plurality point only
exists for certain very symmetric point sets, as shown by Wu et al. [12]. De Berg et al. [4]
showed how to test in O(nlogn) time if a voter set admits a plurality point.

The combinatorial problem for k¥ > 1 and ¢ = 1 was studied by Banik et al. [3]. Here
player P will never be able to win more than (1 - i) n voters, because player Q can always
win at least half of the voters of the most crowded Voronoi cell in Vor(P). Banik et al. [3]
present two methods to derive lower bounds on the number of voters that P can always win.
Below we discuss their results in R?, but we note that they generalize their methods to R3.

The first method uses a (weak) e-net for convex ranges on the voter set V, that is, a point
set N such that any convex range R containing more than en voters, will also contain a point
from N. Now, if £ = 1 then the voters won by Q lie in a single Voronoi cell in Vor(P U Q).
Since Voronoi cells are convex, this means that if we set P := N then P wins at least (1 —¢&)n
voters. Banik et al. use the e-net construction for convex ranges by Mustafa and Ray [10].
There is no closed-form expression for the size of their e-net, but the method can give a
(4/7)-net of size 2, for instance, and an (8/15)-net of size 3. The smallest size for which they
obtain an e-net for some € < 1/2, is k = 5. The second method of Banik et al. uses an e-net
for disks, instead of convex sets. This is possible because one can show that a point ¢ € Q
that wins a voters, must have a disk around it that covers at least |a/6] voters without
containing a point from P. Banik et al. also present a (7/k)-net for disks of size k. Hence,

P wins at least ( — %) n voters, which is better than the first method when k > 137.

Our results. We study the combinatorial question—how many voters can player P win
from any voter set V of size n, under optimal play from Q—in the planar setting, for k£ > 1

and ¢ = 1. We obtain the following results.

We improve!

over the e-net bounds by Mustafa and Ray [10] for convex ranges. This
gives an improvement over the results of Banik et al. [3] on the fraction of voters that P
can win when k > 4 and k is relatively small. We do not have a closed-form expression
for the size of our e-net, but Theorem 2.3 gives a formula based on the quality of smaller
e-nets, and Table 1 shows how our bounds compare to those of Banik et al. for k = 4, 5.
Note that our bounds improve the smallest k for which P can win at least half the voters,
from k=5 to k =4.

We present a new strategy for player P for large k. Unlike the strategies by Banik et al.,
it is not based on e-nets. Instead, it uses a quadtree-based approach. By combining
this approach with several other ideas and using our e-net method as a subroutine, we

L Our definition of e-net is slightly weaker than usual, since a range missing the e-net may contain up to
[en] points, instead of |en| points.
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—— €e-nets for convex ranges (Banik et al.)
e-nets for convex ranges (this paper)
e-nets for disks (Banik et al.)

—— quadtrees (this paper)

Joo e e e e e
50 100 150 200 250

Figure 1 Lower bounds on the fraction of voters that P can win on any voter set in R? as a
function of k£ (the number of points of P) when O has a single point. The red and green graphs do
not intersect, so for large k the quadtree method gives the best solution.

are able to show that there is a set P of k points that guarantees that P wins at least
(1 — 2—,?) n — 6 voters, which significantly improves the (1 — %) n bound of Banik et al.

Fig. 1 shows the bounds obtained by the various methods in a graphical way.

2 Better c-nets for convex ranges

Below we present a new method to construct an e-net for convex ranges in the plane, which
improves the results of Mustafa and Ray [10]. As mentioned in the introduction, this implies
improved bounds on the number of voters P can win with k points when Q has a single
point, for relatively small values of k.

Let L be a set of three concurrent lines and consider the six wedges defined by the lines.

Bukh [6] proved that for any continuous measure there is a choice of L where each of the
wedges has equal measure. Instead of a measure, we have V', a set of points in the plane
where no three points are collinear (it is in general position), thus we need a generalisation
where the wedges contain some specified number of points. In our generalisation, the weight
of a wedge is given by the number of points from V assigned to it. If a point v € V lies in
the interior of a wedge then we assign v to that wedge, and if v lies on the boundary of two
or more wedges we assign v to one of them. (This assignment is not arbitrary, but we will do
it is such a way as to obtain the desired number of points in each wedge.) We call this a
wedge assignment. The weight of a half-plane is defined analogously.

» Theorem 2.1. Let V be a set of n points in general position in the plane, where n > 8
is even. For any given «, 3,7 € N such that 2o+ 25 + 2y = n, we can find a set of three
concurrent lines that partitions the plane into six wedges such that there is a wedge assignment
resulting in wedges whose weights are «, 3,7, a, 8,7y in counterclockwise order.

Proof. Let £(f) be the directed line making an angle 6 with the positive z-axis that has
exactly weight n/2 on either side of it, for a suitable assignment of points to the half-planes
on either side of £(f). Consider the line £(6) for # = 0. For some point z = (z,0) € £(6),
consider the rays p1, ..., ps emanating from z such that the six wedges defined by these rays
and ¢(0) have the desired number of voters; see Fig. 2. By varying 6 and the point z, we
can ensure that the rays p1, ..., ps line up in such a way that, together with £(6), they form
three concurrent lines; see the full version for a complete proof. <
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ii
R .

Ws ws

p3 P4

Figure 2 (i) Illustration for the proof of Theorem 2.1. (ii) Hlustration for the proof of Theorem 2.3.

We also need the following easy-to-prove observation.

» Observation 2.2. Let L be a set of three lines intersecting in a common point p*, and
consider the siz closed wedges defined by L. Any convex set S not containing p* intersects at
most four wedges, and the wedges intersected by S are consecutive in the clockwise order.

We now have all the tools to prove our new bounds on e-nets for convex ranges. The guarantee
they give is slightly weaker: where ordinarily placing an e-net for n points means that a
range not intersecting the e-net can contain at most en (and thus at most |en]) points, our
ceiling-based e-nets only guarantee that such a range contains at most [en| points.

» Theorem 2.3. Let ¢}, be the smallest value such that any finite point set in R? admits
a weak e-net of size k for convex ranges. Then for any set V of n > 8 points in general
position, with n even, and any r1,72,s € Ng, we can make a ceiling-based e-net for V. with

1(1 2 *1+ 1
e=-|—+— —Es.
2 \&r,  Epy 2

2 €rq Enp Ery

-1
Proof. Let p := l( L +l) . We apply Theorem 2.1 with § = v = [Ln—‘ and
2

a = g — 23, which means a < LLnJ, giving us a set L of three concurrent lines. To show
T1

that there exists a weak ceiling-based (&,, +2r,+3s+1)-net N for V, number the wedges defined
by L as Wy, W4, Wo, W{, W5, W} in clockwise order, as in Fig. 2(ii). Let V; CV and V/ C V
be the subsets of points assigned to W; and W/, respectively. We can assume without loss
of generality that |Vi| = |V{/| = «, and |V3| = |V;]| = B, and |V5| = |V{| = 7. We add the
following points to our net N: (i) the common intersection of the lines in L, denoted by
p*; (ii) an e, -net for Vq, an e,,-net for Vo, and an e,,-net for Va; (iii) for each of the three
collections of three consecutive wedges—these collections are indicated in red, green, and
blue in Fig. 2(ii)—an e,-net. By construction, the size of our net N is 1 4+ r1 + 2ro + 3s. It
can be shown that N is a ceiling-based (u + %&)—net; see the full version. |

Note that £g = 1, since if the net is empty, a range can contain all n points from V. Moreover,
g1 = 2/3, and g2 = 4/7, and 3 < 8/15 by the results of Mustafa and Ray [10]. Using
Theorem 2.3 we can obtain ceiling-based e-nets with k& > 4 points, by finding the best choice
of r1,79, s such that k = + 2ry + 3s+ 1. This gives ¢4 < %, by setting 71,70 =0 and s = 1.
Hence, for even n, player P can always place four points to win at least as many voters as
player Q, as opposed to the five that were proven in earlier work. Note that this also holds
for n < 8, since then player P can simply pick four points coinciding with four of the at most
eight voters. A similar statement holds for larger & when n < 8.
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Figure 3 A compressed quadtree subdivision. The six regions generated for m = 2 are indicated
in colour. Each region covers between three and eight voters, and one ‘free’ voter is left uncovered.

3 A quadtree-based strategy for player P

In this section we sketch our quadtree-based strategy for P, which gives good results when &
is relatively large. A detailed description can be found in the full version.

The algorithm. First, we construct a compressed quadtree T on the voter set V. This gives
a tree structure where each node v is associated with a square or a donut region, which we
denote by o(v). Donut regions in a compressed quadtree do not contain voters. We use the
compressed quadtree to generate a set P of k points for player P, as follows.

We pick a parameter m based on the maximum number of points we want to place and
then we traverse the tree 7 in a bottom-up manner to generate a set R of regions containing
between m + 1 and 4m voters. Essentially, when we have collected the right number of voters
in our bottom-up traversal, we add a region to R and otherwise we pass the (at most m)
voters on to the parent node. Thus each region in R will be a quadtree cell o(v) minus
the quadtree cells o(v') of certain nodes v’ in the subtree rooted at v. An example of this
is shown in Fig. 3. For each square o(v) corresponding to a region R(v) € R, we place
the following 13 points for player P: a grid of 3 X 3 points inside o(v), plus four points
outside o(v) as in Fig. 4(i).

» Lemma 3.1. The quadtree-based strategy places fewer than 13n/m points for player P.

An analysis of the number of voters player Q can win. To give an upper bound for
the number of voters player @ can win, we consider the child regions of the regions in R,
which are themselves not in R, as they have at most m voters. In the full version, we first
show that player Q can win voters from at most five such child regions: the child region
containing the point ¢ played by Q, and the child regions immediately above, below, to the

(i) . (i) . (iii) .

Figure 4 (i) The 13 points P(R) placed around a region R € R. (ii) The set Q(R’) of the
north-west child region R'. (iii) The set V(R') of the north-west child region R'.
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right, and to the left of g. We then continue to prove that @ can never win voters from all
five regions simultaneously, but, in fact, from only three of them. The proofs are based on
the following fact: Let R’ be a child region of a region R(v) € R. Then, due to the 13 points
we placed for each region in R, the area Q(R’) from which a point ¢ € R’ might win voters
has the shape shown in Fig. 4(ii). Moreover, the region V(R’) where ¢ must be located to
win voters inside R’ has the shape shown in Fig. 4(iii). Since each child region contains at
most m < n/|R| voters and P places k < 13|R| points, and Q can win voters from at most
three child regions, we can conclude the following lemma.

» Lemma 3.2. The quadtree-based strategy can place at most k points such that P wins at
least ( — %) n voters against any single point placed by player Q.

A more refined strategy for player P. It can be shown that the analysis presented above is
tight. Hence, to get a better bound we need a better strategy. Recall that each region R € R
contains between m + 1 and 4m voters. In the strategy above, we use the same 13 points for
any R, regardless of the exact number of voters it contains and how they are distributed over
the child regions of R. Our refined strategy takes this into account, and also incorporates
the e-nets developed in the previous section; see the full version for details. This eventually
gives the following theorem.

» Theorem 3.3. Let V be a set of n voters in R? in general position. For any given k,
player P can win at least ( — 2?0) n—6 voters by placing at most k points, against any single

point placed by player Q.

4  Conclusion

We studied the discrete one-round Voronoi game where player P can place k > 1 points and
player Q can place a single point. We improved the existing bounds on the number of voters
player P can win in the Lo-metric. A challenging open problem is: Is it always possible for
player P to win at least half the voters in the Lo-metric by placing fewer than four points?
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—— Abstract

Three polynomials are defined for sets S of n points in general position in the plane: The Voronoi
polynomial with coefficients the numbers of vertices of the order-k£ Voronoi diagrams of S, the circle
polynomial with coefficients the numbers of circles through three points of S enclosing k points, and
the E<j polynomial with coefficients the numbers of (at most k)-edges of S. We present several
formulas for the rectilinear crossing number of S in terms of these polynomials and their roots. We
also prove that the roots of the Voronoi polynomial lie on the unit circle if and only if S is in convex
position. Further, we present bounds on the location of the roots of these polynomials.

1 Introduction

Let S be a set of n > 4 points in general position in the plane, meaning that no three points
of S are collinear and no four points of S are cocircular. The Voronoi diagram of order k
of S, Vi(S), is a subdivision of the plane into cells such that points in the same cell have
the same k nearest points of S. Voronoi diagrams have found many applications in a wide
range of disciplines, see e.g. [7, 27]. We define the Voronoi polynomial py (z) = 22;11 vpF L,
where vy, is the number of vertices of Vj(S). Proximity information among the points of S is
also encoded by the circle polynomial of S, which we define as pc(z) = Zz;g cp2¥, where ¢y,
is the number of circles passing through three points of S that enclose exactly k& other points
of S. The numbers vy and ¢ are related via the well-known relation

Uk = Cp—1 + Cp_2 (1)

where c.; = 0 and ¢,—3 = 0, see e.g. [21]. The two polynomials py(z) and pc(z) are
especially interesting due to their connection to the rectilinear crossing number problem.
The rectilinear crossing number of a point set S, e7(.5), is the number of pairwise edge
crossings of the complete graph K, when drawn with straight-line segments on S, i.e. the
vertices of K, are the points of S. Equivalently, ¢7(S) is the number of convex quadrilaterals
with vertices in 5. We denote ¢7(S) as a(7), with 0 < o < 1. Note that for S in convex
position, & = 1. The rectilinear crossing number problem consists in, for each n, finding the
minimum value of ¢7(S) among all sets S of n points, no three of them collinear, commonly
denoted as ¢r(K,,). The limit of er(K,)/(’;), when n tends towards infinity, is the so-called
rectilinear crossing number constant o. This problem is solved only for n < 27 and n = 30,
and the current best bound for the rectilinear crossing number constant is o* > 0,37997, see
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29-31, 2023.
This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
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the survey [3] and the web page [5]. A fruitful approach to the rectilinear crossing number
problem is proving bounds on the numbers of j-edges and of (< k)-edges of S [1, 2, 6, 11, 20].
An (oriented) j-edge of S is a directed straight line ¢ passing through two points of S such
that the open half-plane bounded by ¢ and on the right of ¢ contains exactly j points of
S. The number of j-edges of S is denoted by e;, and E<) = Z?:o e;j is the number of
(< k)-edges. We then also consider the E<y polynomial pg(z) = ZZ;S’ E<iz", which also
encodes information on higher order Voronoi diagrams, since the number of j-edges e; is the
number of unbounded cells of the order-(j + 1) Voronoi diagram of S (see, e.g., Proposition 30
in [13]). Note that pg(z) has no term E<,_o. For an illustration of the defined polynomials

for a particular point set, see Figure 1.
WERET )
%\g@})\ {//@y/ |

Figure 1 Left: 1591-th entry of the order type database for 8 points [4]. With complex stream
plots of its Voronoi polynomial (center): py(z) = 10 + 23z + 2722 + 2423 + 172* + 92° + 225 and its
FE<}, polynomial (right): pge(z) = 4 + 132z + 2222 + 342° + 432" + 522°; roots are red points.

BN
/=

For a point set S, we show that ¢r(S) appears in the first derivatives of these three
polynomials when evaluated at z = 1 and, in addition, we obtain appealing formulas for
¢r(S) in terms of the roots of the polynomials. Motivated by this, we study the location of
such roots, showing several bounds on their modulus. As a particular result, we also prove
that the roots of the Voronoi polynomial lie on the unit circle if and only if S is in convex
position. Furthermore, the circle polynomial comes into play when considering the random
variable X that counts the number of points of S enclosed by the circle defined by three
points chosen uniformly at random from S. The probability generating function of X is
pc(2)/(5). In [24] a central limit theorem for random variables with values in {0,...,n}
was shown, under the condition that the variance is large enough and that no root of the
probability generating function is too close to 1 € C. We show that the random variable X
does not approximate a normal distribution, and use the result from [24] to derive that pc(2)
has a root close to 1 € C.

Throughout this work, points (a,b) in the plane are identified with complex numbers
z = a + 1b. To avoid cumbersome notation we omit indicating the point set S where it is
clear from context; for example, each polynomial considered depends on a point set S but
we write pc(z) instead of p2(z).

2 Known relations

A main source is the work by Lee [19], from where several of the following formulas can be
obtained.

For any point set S, and 0 < k < n — 3, it holds that, see [8, 12, 13, 19, 21],

ek + cn—p—3 =2(k+1)(n—k—2). (2)
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From [15] we get the following two equations.

Zk ck—< )+cr(S):(1+a)(Z>.

This was essentially also obtained in [29], though not stated in terms of ¢7(.S).

n—3
Ska= (1) + () + (- 3)er(s).
5 4
k=0
For k < ”7*3 it holds that, see Lemma 3.1 in [14],
cp, > (k+1)(n—k—2),and ¢p_p—3 < (k+1)(n — k —2).
Next Equations (6), (7) and (8) hold for a point set S in convex position.

2¢c; = cp—1 + Cpy1 + 2.

15:3

(6)

Then, the number of vertices of Vi (S) fulfills, see e.g. Proposition 34, Equation (4) in [13],

Vg = Ck—1 + Ck—2a = (2k — 1)n — 2k2 .

This implies that
Vg = Un—k-

(7)

(8)

For every set S of n points in general position, the relation between F<) and ¢ is, see

e.g. Proposition 33 in [13],

cp + E<p = (k+ 1)(2n—k—2).

3 Properties of the Voronoi, circle and E-, polynomials

For every set S of n points in general position:

» Proposition 1. Polynomials pc(z) = ZZ;S cx2®, and py(z) = Zk L2t satisfy

pv(z) = (1 +2)pc(2).

» Proposition 2. The circle polynomial pc(z) = Z:;g’ ek satisfies
1. pe(1) = (%)

2. pe(1) = () + e (S).

3. pL(1) = (3) + (n—4)er(S)

4. pc(—1) =22 forn odd

» Proposition 3. The Voronoi polynomial py (z) = 22;11 v 2R 1 satisfies
1. pv(1) =2(3)

2. py (1) = (3) +2(3) + 2e7(9

3. (1) =2(3) +2(3) +2(n — 3)er(S).

4. p\/(—l) = 0.

5. pi(—1) =252 for n odd.

» Proposition 4. The E<, polynomial pg(z) = Z;g E<, 2" satisfies:

1. pe(l) =3(2).

9)
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2. plp(1) = ZpZg kB<k = 9(3) —r(S).
py(1) = 02 bk — 1) By, = 35(2) — (n — 4)er(S).
4. pp(-1) = 7"("2_1) for n odd.

@

Using Lemma 1 of Aziz and Mohammad in [9], we get an intriguing family of formulas
for the rectilinear crossing number.

» Proposition 5. The coefficients of the polynomials py (z), pc(z) and pe(z) satisfy

n—3n—3 _]+1 n—3 4 n—3 ]+1
1) &) ZZ zk—l =29 <3(n—3) Z (zkk— 1)2 > ()

kle =0

where the zy are the (n — 3)-th roots of —3.

n—1n-—1 j n—1 n—1 j

2 2] 2 2]
2) o7(S) = ———— vj—E— =) K . (12)

3(n—1) ; ; Tz —1)2 ; 7\ 3(n—-1) = (2 —1)2
where the z are the (n — 1)-th roots of —3.
n—3n—3 J+1 n—3 4 n—3 Zj+1

3 =>» Eg k 13
) ($) = —— ZZ G g g]<n_3;(zk_1)2), (13)

where the zj; are now the (n — 3)-th roots of —3.

4  On the roots of the Voronoi, circle and E-, polynomials

In this section, we study properties for the roots of these polynomials. By Proposition 1,
pyv (2) has the same roots as po(z) plus the root z = —1. A direct relation between roots of
polynomials and the rectilinear crossing number can be derived from the well-known relation

Pl(z) — 1
P(z) Z z—a; (14)

where P(z) is a polynomial of degree n with roots aq,...,a,, and z is any complex number
such that P(z) # 0. For the circle polynomial pc(2) and z = 1, using Proposition 2 we get

()?cr Z o (15)

where the a; are the roots of pc(z) = Zz;g crz¥. Note that 1 is never a root of a polynomial

whose coefficients are all positive, as is the case in the polynomials introduced in this work.
Using Equation (14) and the reciprocal polynomial pf (z) = ZZ;S cx2"F~3 we obtain

» Proposition 6.
n—3
S (n—k—3)e = 3<Z> —r (S). (16)
k=0
» Proposition 7.

—2(1) +2e7(S) ”z‘j”’ 1+aq

B Hi-a
=1

where the a; are the roots of pc(z) = > p_ gckzk (also works for the roots of py(2)).
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Of particular interest is py (z) = 22;11 vp2F~1 for a set of n points in convex position.
By Equation (7), vy = (2k — 1)n — 2k?. By Equation (8), py(2) is a palindromic polynomial,
so it has roots a; and 1/a;. Then, for sets S of n points in convex position,

1 n—2
= 18
Z 1-— a; 2 ’ ( )
i=1
where the a; are the roots of py(z) = Zz;ll vrz*1. For S in convex position, from
Proposition 7 we also have,
n—2
1+a
— =0. 19
> (19)
=1

For our next result we use a theorem due to Malik [23], also see [28], Corollary 14.4.2.

» Theorem 4.1. Let S be a set of points in general position. Then S is in convex position if
and only if all the roots of the Voronoi polynomial of S, py(z) = Z;ll vpz®7L, lie on the

unit circle.

In order to find a lower bound on the largest modulus of the roots of po(z) with S not
in convex position, we use two theorems. The first one is due to Laguerre [18], Theorem 1,
see also [25], and [28], Theorem 3.2.1b. The second theorem is due to Obrechkoff [26], also
see [10] and [22], Chapter IX, 41, Exercise 5.

» Theorem 4.2. For every set S of n > 3 points in general position with rectilinear crossing
number e7(S) = a- (7}), the Voronoi polynomial py (z) = 22;11 02"t has a root of modulus

1—a)w?

at leastl—l—ﬁ-i—O(%).

20 40 60 80 100 120

Figure 2 Left: Point set S minimizing the rectilinear crossing number for n = 18 [5]. With
complex stream plots of its Voronoi (center), and F<j (right) polynomials; with roots as red points
and circles illustrating, respectively, the bounds of Theorems 4.2 and 4.5.

For an illustration of Theorem 4.2 see Figure 2, center. We further show that the Voronoi

polynomial py(z) has a root close to point 1 in the complex plane. Thereto, we apply
Theorem 1.2 from Michelen and Sahasrabudhe [24].

» Theorem 4.3. Let o be a constant from (0, 1] and let S be a set of n points in general
position with CE,([;) = «. Then the Voronoi polynomial of S, py(z) = Zz;ll vpz®1, has a
4

root ¢ such that |1 — (| € o (M) .

n
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15:6 Voronoi polynomials of point sets and crossing numbers

In the following, we study the location of the roots of the E<j polynomial pg(z) =
Z;g’ E<iz" of a point set S. Note that its coefficients E< form an increasing sequence of
positive numbers. The well-known Enestrom-Kakeya theorem [17] tells us that all the roots
of pg(z) are contained in the unit disk, and more precisely, that they are contained in an
annulus: The absolute values of the roots of pg(z) lie between the greatest and the least of

E<n 4 Ecps E<1 Eq
, e : )
E<n3 E<noa E<y E<

We give a lower bound on the largest modulus of the roots of the F<; polynomial.

» Theorem 4.4. Let S be a set of n > 3 points in general position, with rectilinear crossing
number r(S) = a- (). Then the E<y polynomial of S, pg(z) = ZZ;S’ E<iz*, has a root of
modulus at least gf—z

Next, we show a better lower bound on the largest modulus of pg(z) when n is large
enough. Thereto, we apply a theorem of Titchmarsh ([31], p. 171), also see [16], Theorem A.

» Theorem 4.5. Let S be a set of n points with h of them on the boundary of the convex
hull of S, in general position. Then pg(z) = ZZ;S’ E<iz" has a root of modulus at least

(®)"

For an illustration of Theorem 4.5, see Figure 2, right.

5 Discussion

We have introduced three polynomials py (z), pc(z), pe(z) for sets S of n points in general
position in the plane, showing their connection to ¢r(S) and several bounds on the location
of their roots. The obvious open problem is using bounds on such roots to improve upon
the current best bound on the rectilinear crossing number problem. To the best of our
knowledge, this approach has not been explored so far. Besides, we think that the presented
polynomials are interesting objects of study on their own, given the many applications of
Voronoi diagrams. For some of the formulas presented for one of the polynomials, like
Equation (15), there are analogous statements for the other polynomials considered.

Further, several other polynomials on point sets can be considered. The reader interested
in crossing numbers has probably in mind the j-edge polynomial p.(z) = Z;:Oz e;z7 of a
point set S. For this, the known formula for the rectilinear crossing number ¢r(S) in terms
of the numbers of j-edges e; of S, see [20], Lemma 5, translates into

n

zer(s) 0} ) = 1) = (0 L0, (20)

As is the case for the Voronoi polynomial and the circle polynomial, for sets S of n points
in convex position, the j-edge polynomial p.(z) has all its roots on the unit circle. This is
readily seen since p.(z) is then n times the all-ones polynomial, p.(z) = n Z;L;OQ
for all j, if S is in convex position. Its roots are the (n — 1)-th roots of unity, except z = 1.

We finally propose to study the presented polynomials for random point sets. The
expected rectilinear crossing number is known for sets of n points chosen uniformly at

random from several convex shapes K, see e.g. [30], Section 1.4.5. pp. 63-64, and [3].

2l asej=mn
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1 Introduction

Sets of moving entities can form groups which travel together for significant amounts of time.
Identifying and tracking groups is an important task in a variety of research areas, such as
wildlife ecology, urban transport, or sports analysis. Consequently, in recent years various
definitions and tracking algorithms have been proposed, such as herds [7], mobile groups [8],
clusters [2,9], and flocks [3,13]. In computational geometry, there is a sequence of papers on
variants of the trajectory grouping structure which allows a compact representation of all
groups within a set of moving entities [4,10,14,15,16].

Not only the existence of one or more groups is an important fact to discover; in many
application areas the actual shape of the group and the density distribution of the moving
entities carries meaning as well. Consider, for example, the herd of wildebeest in Fig. 1.
Both its global shape and the distribution of dense areas indicate that this herd is migrating.
Research in wildlife ecology [6,11] has established that animals often stay close together
when not under threat and respond to immediate danger by spreading out. Hence from the
density and the extent of a herd we can infer fear levels and external disturbances. The
density distribution and general shape of a group are not only meaningful in wildlife ecology,
but they can also provide useful insights when monitoring, for example, visitors of a festival.

In this paper we initiate the algorithmic study of the shape of a moving group. Specifically,
we identify and track particularly dense areas which provide a meaningful first idea of the
time-varying shape of the group. It is our goal to develop a solid theoretical foundation
which will eventually form the basis for a software system that can track group shapes in
real time. To develop an efficient algorithmic pipeline, we are making several simplifying
assumptions on the trajectories of the moving objects (known ahead of time, piecewise linear,
within a bounding box). In Section 5 we (briefly) explain how we intend to build further on
our theoretical results to lift these restrictions, trading theoretical guarantees for efficiency.

Figure 1 A herd of wildebeest, the shape of the group indicates migratory behavior.!

"https: //commons.wikimedia.org/wiki/File:Wheest_ Mara.jpg on 25/11/2022.
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Problem statement. Our input consists of a set P of n moving points in R?; we assume that
the points follow linear motion and are contained in a bounding box D = [0, D] x [0, D] with
size parameter D. The position of a point p € P over time is described by a function p(t),
where t € [0, 7] is the time parameter. We often omit the dependence on ¢, and simply denote
the position of a point as p. We assume that the set P continuously forms a single group; we
aim to monitor the density of P over time. We measure the density of P at position (z,y)
using the well-known concept of kernel density estimation (KDE) [12]. KDE uses kernels
of some width ¢ around each point p € P to construct a function KDEp: R? — Rt such
that KDEp(z,y) estimates the density of P at position (z,y). We are mainly interested in
how the density peaks of P, i.e., the local maxima of the function KDEp, change over time.
Note that not all local maxima are equally relevant, since some are minor “bumps” caused
by noise. Our approach is guaranteed to track the most significant local maxima through
time, but may also track other maxima. We measure the significance of a local maximum
using the concept of topological persistence.

Approach and organization. We could simply attempt to maintain the entire function
KDEp over time and additionally keep track of its local maxima. However, doing so would
be computationally expensive. Furthermore, there are good reasons to approximate KDEp:
(1) KDE is itself also an approximation of the density, and (2) approximating KDEp may
eliminate local maxima that are not relevant. For a simple approach, consider building a
quadtree on P. Observe that in areas where P is dense, the quadtree cells will be relatively
small. Hence, we can associate the size of a quadtree cell with the density of P. This
approach has the added advantage that the spatial resolution near the density peaks is higher.
However, there are two main drawbacks: (1) the approximation does not depend on the
chosen kernel size for the KDE, which is an important parameter for analysis, and (2) we
cannot guarantee that all significant local maxima of KDEp are preserved.

The approach we present in this paper builds on the simple approach described above,
but eliminates its drawbacks. We first introduce how to approximate any function f using a
quadtree based on the volume underneath f, which is described in more detail in Section 2.
Next, in Section 3, we shift our focus to the function KDEp, and describe how to construct a
point set to estimate the volume underneath KDEp. This will allow us to efficiently maintain
the approximation as the underlying points move. In Section 4 we describe how to maintain
the approximation of KDEp, as well as its maxima, as the underlying points move using a
kinetic data structure. Lastly, in Section 5 we reflect upon our approach and sketch how our
theoretical results can serve as a guide towards a solution that is efficient in practice.

2 Volume-based quadtree

We first introduce the approximation of a function f: [0, D]> — R using a volume-based
quadtree T, where D is the size of the domain. Specifically, instead of subdividing a cell in
the quadtree when it contains more than one point, we subdivide a cell in the quadtree if the
volume under the function f contained within the cell exceeds some pre-specified threshold
value p. Furthermore, we assign a single function value to each leaf cell of the quadtree
corresponding to the average value of f within the cell. This results in a 2-dimensional step
function fr that approximates f (see Fig. 2). In the following we assume, w.l.o.g., that the
total volume under f is 1.

Our goal is to pick threshold value p such that we can prove that fr has small additive
error with respect to f. This does not hold for all functions f, but only for functions that
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Figure 2 A 2-dimensional function (left) approximated as a step function (right).

are Lipschitz continuous?. Thus, we also use the Lipschitz constant A to express our bounds.

We summarize these results in the following theorem:

» Theorem 2.1. Let T be the volume-based quadtree of f : [0, D]*> — R with threshold p.

Then T has at most O ([1) log (\/5/7>> nodes in total, where z* is the maximum value of f.

Additionally, for any cell v € T we have that |f(z,y) — fr(z,y)] < min (%As(v), / 6/\2,0)
for all (z,y) € v, where s(v) is the side length of v and X is the Lipschitz constant of f.

Proof sketch. We first obtain the minimum side length of any cell v in T using p and z*.

By construction, the parent w of v in T" must contain a total volume of at least p. Since the
maximum function value of f is z*, the side length of w must be at least /p/z*, and hence
the side length of v is at least %\/ p/z*. This directly implies that the depth of T" is as most

log | —22— ). Next, observe that removing all leaves from T results in a tree that has at
\p/z*

most % leaves (since they are interior disjoint). Combined with the maximum depth, this
gives us the size bound on T in the theorem statement.

To obtain the error bound we observe that, given any (z,y) € [0, D]? for which f(xz,y) = 2,
the cone with its apex at (x,y, z) and with slope A must lie fully underneath f. Given any
cell v € T, since the value of fpr in v is set to the average value of f in v, we must have
f(xy,y0) = fr(zy,yy) for some (z,,y,) € v. Therefore, we can use the cone centered at
(24, Y») to bound how much volume is in v, bounding the function value of fr. <

3 From volume to points

We aim to maintain a volume-based quadtree for KDEp over time. We scale KDEp such
that the volume underneath KDEp is 1. Additionally, we assume the kernel width o to be 1.
This implies that, for most kernels, both the Lipschitz constant and the maximum value are
also bounded by a small constant (see for example the kernel in Fig. 3 (right)).

We can now use the result from Section 2 to approximate KDEp with a volume-based
quadtree. However, doing so would require us to maintain the volume under KDEp as
the underlying points move, which is not very efficient. We therefore approximate this
volume using a discrete set of points. We do so in two steps: (1) we approximate the

2A function is Lipschitz continuous if there is some Lipschitz constant A such that X is the maximum
absolute slope of f in any direction.
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Figure 3 An example of how a cone kernel can be approximated by a point set. In each grid cell,
[rz(c)] points are arbitrarily placed.

volume under each kernel individually, and (2) we combine these kernel approximations to
obtain an approximation for the volume under KDEp. We use the concepts of coresets and
e-approximations to compute a small set of points () that can accurately approximate the
volume under KDEp. We choose the points in ) such that we do not have to update @ as
long as the original points in P do not change their trajectories. We can, however, update @
efficiently when a trajectory changes.

Let K denote the kernel function. We approximate the volume under K for each point
p € P using a point set S,. To obtain .S}, we consider a regular r x r grid G' on the domain
[—1,1]2, for some value r to be chosen later. We construct a grid-based sampling Sy (r) of
K by arbitrarily placing [rz(c)] points in every cell ¢ € G, where z(c) is the average value
of K in the grid cell c¢. See Fig. 3 for an example. By carefully choosing r we can obtain,
for a chosen error eqsc > 0, a point set S, consisting of O(é) points such that we have

% — VR(K)’ < eqsc for any square region R C [0, D]?, where Vz(K) denotes the

volume under K restricted to region R.

Now, we construct such grid-based samplings S}, around each point s € P, and we assign
points in .S, the same movement direction as p. The complete set of points & = UpeP Sp
now provides an approximation for the volume under KDEp with error at most 4. for all
times t. We can now use a result by Agarwal et al. [1] to construct an e-approximation ) of
S. In the remainder of this paper we will simply refer to the set of linearly moving points
Q as the coreset of KDEp, where the additive error with respect to the volume is ... We
summarize the result in the following theorem:

» Theorem 3.1. Let KDEp be a KDE function on a set of n linearly moving points P.
For any €.or > 0, we can construct a coreset @ of linearly moving points such that, at any

time and any square region R C [0, D)%, we get that |Q|8|R‘ — VR(KDEP)‘ < Ecor, where

Vr(KDEp) is the volume under KDEp restricted to R. Q consists of O(=—log (i>) points

cor Ecor

and can be constructed in O(n poly (log”)) time.

Ecor

We approximate the volume-based quadtree T' of KDEp using the weight-based quadtree
T of @, in which we subdivide a node v € T when the fraction of points from @ that fall
in the region corresponding to v exceeds p (instead of the actual volume). We can alter
Theorem 2.1 slightly to give similar bounds on the size and error of the weight-based quadtree
f, based on A, p, and the coreset error e.o,,. This way, for any error ¢ > 0, we can set
p = 0(e®) and ecor = O(e?) to obtain that [KDEp(z,y) — fz(z,y)| < € for every time ¢.
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4 KDS for density approximation

We now transformed the problem of maintaining local maxima of KDEp to the problem of
maintaining a quadtree on a set of moving points. We present a simple kinetic data structure
(KDS) that maintains the weight-based quadtree and the function f, as well as its local
maxima. Note that the local maxima of f= correspond at least to the local maxima of KDEp
that have persistence 2¢ or more [5].

The kinetic data structure to store 7" and its local maxima is relatively simple. For each
cell in T, we store whether it is a local maximum or not. Note that a local maximum is
defined as a cell that is higher than all of its spatial neighbors. We can show that any cell
that has a spatial neighbor that is three or more levels deeper in T can never be a local
maximum. Therefore, in order to be able to update efficiently whether a node is a local
maximum, we store a set of pointers in each node v € T that points to all spatial neighbors
w € T of v such that v and w differ in depth by at most 2.

We trigger an event only when a point from @ crosses a boundary of a cell in T. Then,
we must locally recompute T as well as which cells in 7' correspond to local maxima. Using
the pointers described in the previous paragraph, this can be done efficiently. We summarize
the result in the following theorem.

» Theorem 4.1. Let f = KDEp be a KDE function on a set P of n linearly moving points
in [0, D). For any ¢ > 0, there exists a KDS that approzimately maintains the local mazima

of f with persistence at least 2. The KDS can be initialized in O (n poly <1°g">) time,
processes at most O (D poly (l)) events, and can handle events and flight plan updates in
O (log D + poly (%)) and O (poly (log”)) time, respectively.

The coreset () only needs to change when a point changes its trajectory, which we can
also handle efficiently using the data structure by Agarwal et al. [1]. Although we only
prove results on maintaining persistent local maxima, our approach actually maintains an
approximation of the KDE function, and hence could also be used to track other shape
features on the density of P.

5 Discussion

We believe that approximating the density surface we want to maintain via a suitable coreset
of moving points is a promising direction also in practice. Below we briefly sketch how to
handle our various input restrictions.

First of all, we consider the bounding box restriction. Various bounds on the quadtree
complexity and the KDS quality measures depend on the size of the domain D. As we
assume that our input points represent a single group, it makes sense to assume that the
kernel functions of any point (its region of influence) must overlap with the kernel function
of at least one other point. Since we scale the input such that the kernel width is 0 = 1,
this directly implies that D = O(n) for a static set of points, although it is likely much
smaller. However, when points move in a single direction for a long time (say, when a herd is
migrating), they may easily leave a domain of that size. To address this problem without
blowing up the size of the domain, we can move the domain itself along a piecewise-linear
trajectory. A change of direction of the domain directly changes the trajectories of all points,
and all events in the KDS must be recomputed. The coreset, however, does not need to
change during such an event. We can limit the number of domain flight plan changes by
using a slightly larger domain than needed at any point in time.
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Second, we discuss the assumption that the trajectories are piecewise linear and known
ahead of time. For the coreset to exist, the range space formed by the trajectories of the
(samples around) the input objects and a set of square regions needs to have bounded VC-
dimension. We proved an upper bound on this VC-dimension in the case that all trajectories
are linear. Real-world animal trajectories are certainly not linear. However, since animals
cannot move at arbitrary speeds and subgroups can often be observed to stay together,
we still expect the corresponding range space to have bounded VC-dimension. A formal
proof seems out of reach for more than very restrictive motion models, but bounds might be
deduced from experimental data.

The actual computation of the coreset via the algorithm of Agarwal et al. [1] is impossible
if the trajectories are not known ahead of time. However, random sampling (that is, sample
a point p € P, and then sample from its kernel) can be expected to result in a coreset of
good size and quality in practice (the worst-case bounds on the size of the coreset which
we proved are unlikely to be necessary in practice). Since we generally do not know the
trajectories of the animals, but we do have bounds on their maximum speeds, a black-box
KDS could be used to maintain such a random sampling coreset efficiently.

Our theoretical results inform the direction of our future engineering efforts in two ways.
First of all, we now know that we can approximate well with a coreset whose size depends
only on the desired approximation factor and not on the input size. Second, we know how to
sample to find such a coreset, by constructing randomly shifted copies of the input points.
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—— Abstract

Diversity is a property of sets that shows how varied or different its elements are. We define full
diversity in a metric space and study the maximum size of fully diverse sets. A set is fully diverse
if each pair of elements is as distant as the maximum possible distance between any pair, up to a
constant factor. In a previous paper (Klute and van Kreveld, On Fully Diverse Sets of Geometric
Objects and Graphs, WG 2022), we showed how large a fully diverse set of simple polygons inside
a unit-diameter region can be when we assume the Hausdorff distance, the Fréchet distance, or the
area of symmetric difference to determine the distance between two simple polygons. In this paper
we extend these results by considering the Earth Movers Distance and the Wasserstein Distance: we
show that the maximum size of fully diverse sets is O(1) in both cases. When we restrict ourselves
to convex polygons, the Fréchet distance and area of symmetric difference also allow only O(1) such
polygons in a fully diverse set, unlike the simple polygon case for these measures.

Related Version

1 Introduction

The process of generating data, for example for benchmarks, may require that the resulting
data is sufficiently diverse. Another occurrence is the creation of a layout or configuration
from various options. For example, in graph drawing this observation has led to systems
that present several drawings and then let the user choose a drawing or indicate preference,
allowing for the creation of more drawings aligning with the preferred ones [2].

In a recent paper [10] we introduced a framework that allows us to study diversity of
“objects”, and analyze the maximum number of objects that are pairwise far apart. This
framework is applicable in many contexts.

Diversity as a counting problem. We define full diversity as in [10]. Let (S, u) be a metric
space where S is a base set or class of objects and p is a distance measure that assigns a
distance to any pair from S. We consider the case where p(a, b) is bounded for all a,b € S;
let M = sup, s f1(a,b) be the highest value that is attained (possibly in the limit) by
on S.

* Supported by the Netherlands Organisation for Scientific Research (NWO) under project no.
612.001.651 and the Austrian Science Foundation (FWF) grant J4510.
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0.2

0.2

Figure 1 Fully diverse set of n-vertex simple polygons that each fit inside a unit-diameter region.
Every pair gives a Fréchet distance of at least 0.2 if at any place, one polygon has a high peak where
the other has a low peak. We can have 21"/2) such simple polygons in a fully diverse set.

Table 1 Bounds on the maximum size of fully diverse sets in various metric spaces with geometric
measures. The descriptive complexity of the objects is n and U denotes a unit-diameter disk.

Object Metric Space | Diameter | Lower bound | Upper bound | Status
Polygons | HausdorfT distance U o(1) Q1) o(1) [10]
Polylines | Fréchet distance U o(1) 251 20 [10]
Polygons | Area symm. diff. U O(1) 25 20(nlogn) [10]
Point sets | Matching distance U O(n) Q(1) 0(1) new
Polygons | Wasserstein distance U O(1) Q(1) 0(1) new

» Definition 1. For a given ¢ > 1, a subset S C S is called %-diverse if for all z,y € 5‘, we

1
have u(z,y) > ¢
diverse.

- M. If ¢ can be chosen constant, independent of \5’ |, then S is called fully

Intuitively, we relate the distance of all pairs of the subset to the maximum distance
within the base set. Note that the metric space must be bounded to make this definition
meaningful. We are interested in the question how large fully diverse subsets can be. As
a simple example, consider all points in a unit square region in the plane and Euclidean
distance as the metric. Then the maximum distance is \/5, SO a %—diverse (sub)set of points
must have pairwise distances of at least v/2/c. It is easy to see that any %-diverse set has size
O(c?) by a packing argument, and any maximal %—diverse set has size (c?). The maximum
size of a fully diverse set of points is ©(c?) = O(1) if ¢ is a constant.

In our recent paper [10] we studied more complex objects like simple polygons, embeddings
of graphs, and graphs themselves, where we need to choose an appropriate distance measure.
In this paper we extend upon the geometric results. We assume that the objects reside in
a bounded space to make the metric space bounded. Let U be a unit-diameter disk in the
plane in which our objects reside. Results from [10] and new results are shown together in
Table 1. A construction for the lower bound for the Fréchet distance is shown in Figure 1.

The known results include the result that the metric space of n-vertex simple polygons
has a large diversity if distance is measured by area of symmetric difference. Our main new
result shows that this is not the case for Earth Movers Distance or Wasserstein distance.
The situation that the distance over which weight or area is moved counts in the measure,
“removes the large diversity” in the metric space.

Intuitively, convex polygons are much less diverse than simple polygons. However, for
the Hausdorff distance and the Earth Movers Distance this does not show, because even
simple polygons allow only constant-size fully diverse sets. This paper shows that the Fréchet
distance and area of symmetric difference also give only O(1) size fully diverse sets of convex
polygons in a unit-diameter region.
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Figure 2 Snapping the n points to ¢i grid points (left), and making batches at the grid points
to approximate the number of points snapped to the same grid point (right).

Relation to diversity and similar notions in science. Diversity has been studied in a variety
of scientific contexts. One well-known example is in ecosystems, specifically, the diversity of
species that are represented in a sample of animals or plants, see for instance [8, 13]. The
Shannon index is commonly used, also known as Shannon entropy in information theory.

In computer science, diversity has been studied in a variety of areas. For example, the
diversity of the output in selection tasks in big data [6] or recommender systems [12], of input
data sets for machine learning [11], or of colored point sets in computational geometry [15].

Diversity without a priori assigned categories is of interest in the study of the diversity of a
population in genetic algorithms, e.g. [16]. Following similar ideas, researchers later studied
the diversity of sets of solutions in satisfiability problems [9], multicriteria optimization
problems [14], and, recently, parameterized algorithms, e.g. [3]. Hebrard et al. [7] introduced
the maximization problem to find the set of solutions that maximizes this sum or minimum
distance over all sets of solutions.

2 Diversity of n-point Sets using Earth Movers Distance

We consider the matching distance for sets of n points inside a unit diameter disk U. This
is also the Earth Movers Distance between two sets of n points with unit weights, but the
Earth Movers Distance is more general. We first discuss the matching distance and then the
trivial adaptation for the Earth Movers Distance.

Assume that a set S of n-point sets is fully diverse, giving us the existence of a constant
¢ > 1. We will discretize any n-point set in such a way that any two n-point sets that have
the same discretization have distance < n/c (so they cannot be together in a fully diverse
set), and the number of different discretizations is constant (a function of ¢ but not of n).

Let ¢1,co > 1 be two constants. We generate a regular square grid with spacing 1/¢q,
so that we get at most ¢? grid points inside U, see Figure 2. Let P be an n-point set.
We snap all points of P to their nearest grid point. Let ny be the number of points of P
snapped to a grid point g. We discretize this number as well, at every grid point. To this
end we make batches of [n/ca] points and count the number of batches that is full. The
total discretization implies that there are c;' different discretized sets, since there are at
most ¢ choices for each of the ¢f grid points.

Let P and @ be two n-point sets with the same discretization. We analyze how we must
choose ¢; and ¢s so that P and @ necessarily have distance less than n/c. The total snapping
distance is at most v/2n /ey for P and for Q). The total cost of matching the points of P and
Q not in a full batch is upper-bounded by c2n/co, as there are at most this many points not
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in a full batch and the matching distance of any pair of points is at most 1. So an upper
bound on the matching cost of P and Q is 2v/2n/c; + c?n/cy. If we choose ¢; > 4y/2¢ and
c2 > ¢3/(2v/2), then both terms are less than n/(2c), so the matching cost of P and Q is
less than n/c. In other words, a fully diverse set of n-point sets must contain point sets with
different discretizations, and there are only O(1) discretizations. In particular, there are at
most cgi = (77¢3)36¢" = O(") = O(1) discretizations if we choose ¢; = 6¢ and ¢y = T7c3.

The reasoning above holds without any change for two point sets with total weight n
each, regardless of the number of points. We can change n to any other value; only the
relative weights of the points matters.

» Theorem 2. The maximum size of a fully diverse set of point sets with a fized total
weight inside a unit-diameter region, assuming minimum matching distance or Farth Movers
Distance, is ©(1).

3 Diversity of Distributions using the Wasserstein Distance

It is straightforward to extend this scheme to moving earth based on areas in simple polygons,
or, more generally, moving mass using the Wasserstein distance. We extend the results of
the previous section to distributions of unit mass inside U, after which we get the result for
equal-area simple polygons using the Earth Movers Distance as a corollary.

The Wasserstein Distance measures the similarity of two probability density functions,
and hence we assume the total mass of each to be 1. It is a metric that is essentially a
continuous version of the Earth Movers Distance for points.

We simply snap volume to the same set of grid points as for the n-point set case, and we
make batches as before as well. We replace n by 1 in the expressions, since this is the total
mass and therefore the maximum Wasserstein distance in a unit-diameter region.

» Theorem 3. The maximum size of a fully diverse set of distributions inside a unit-
diameter region, assuming Wasserstein Distance, is ©(1).

» Corollary 4. The maximum size of a fully diverse set of n-verter, equal-area simple
polygons inside a unit-diameter region, assuming Earth Movers Distance, is ©(1).

4 Diversity of Sets of Convex Polygons

Intuitively convex polygons have a lot less diversity than simple polygons, but does our
concept of full diversity reflect this? For the Hausdorff distance and Earth Movers Distance
the maximum size of a fully diverse set can be only O(1), and the same upper bound holds
when we restrict ourselves to convex polygons. So the question remains to be answered only
for the Fréchet distance and the area of symmetric difference. In these cases we show that
the maximum size of fully diverse sets becomes O(1) as well.

The case of the Fréchet distance is easy, since the Fréchet distance and Hausdorff distance
are the same for convex polygons (or their boundaries) [1, 4]. So the O(1) upper bound
directly transfers to this case.

The case of the area of symmetric difference requires a bit more work. We will show that
for any convex shape, there is a convex polygon with constant complexity that has only little
loss of area and no gain in area. Note that the maximum perimeter of a convex shape inside
a unit diameter region is 7 and the maximum area is /4 by the isoperimetric inequality.

Let ¢ > 1 be a constant. If a convex shape s has perimeter less than 3/c2, then we define
s’ as a triangle using any three points on the boundary of s, and call s" a simplification of s.
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Figure 3 A convex shape s and its simplification s’ by choosing a point on the boundary of s
with interdistance 1/c. The grey polygons are the symmetric difference; their area is the loss of
area when s is simplified to s’.

Since the area of s is < 1/c*, the triangle has lost at most that much area with respect to s.
If s has perimeter at least 3/c2, then we choose points on the boundary of s at intervals
1/c%; the last interval may be shorter (see Figure 3). Let s’ be the convex polygon with
these points as its vertices; again we call s’ the simplification of s. Clearly s’ has < mc? + 1
vertices. The small convex polygons that are the symmetric difference of s and s’ each have
perimeter at most 2/c? and therefore area < 1/c*. There are < 7c? 4+ 1 of these small
polygons, so their total area is < 5/c? since ¢ > 1.

Let S be a set of convex shapes inside U and let S’ = {s’ | s € S} be the set of
simplifications of the shapes in S. Let ¢ > 1 be a constant and let s}, s) be two convex
polygons that have area of symmetric difference at least 7/(4¢’), and hence they can be in a
fully diverse set. We know that if s} and s, were derived as simplifications from s; and so,
then the area of symmetric difference between s; and sg is at least m/(4¢/) —2-5/c?, with ¢
the constant used in the simplification. If we choose ¢ = ¢ and ¢’ = max(2¢/,80/7), then ¢”
is a constant that witnesses that s; and ss can be together in a fully diverse set S. Hence,
if 57 is fully diverse for some constant ¢, then S is fully diverse for a different constant ¢”.

We already remarked that each polygon in S’ has O(c?) vertices. Hence, the maximum
size of a fully diverse set of simplified convex polygons ' is 20(¢ 1°8©) = O(1), using the
upper bound for the full diversity for simple polygons obtained in [10].

» Theorem 5. The mazimum size of a fully diverse set of convexr polygons inside a unit-
diameter region is O(1) for Hausdorff distance, Fréchet distance, area of symmetric difference,
and Earth movers distance.

5 Conclusions and Open Problems

We have continued the study of the maximum size of fully diverse sets of polygons by
considering the Earth Movers Distance and the Wasserstein distance, and by considering
convex polygons as a special case for all measures. It may be interesting to see how realistic
polygons [5] behave, as a special case that lies in between the convex and the simple case.
For example, it seems the O(1) bound for convex polygons and area of symmetric difference
does not use convexity, only the fact that the perimeter is bounded, and hence the O(1)
bound may hold for all constant perimeter simple polygons as well.
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—— Abstract

The Colin de Verdiére graph parameter u(G) was introduced in 1990 by Y. Colin de Verdiere. It is
defined via spectral properties of a certain type of matrices, called Schrodinger operators, associated
to a graph G. We provide a combinatorial and self-contained proof that for all graphs G embedded
on a surface S, the Colin de Verdiére parameter p(G) is upper bounded by 7 — 2x(S), where x(S) is
the Euler characteristic of S.

Related Version https://arxiv.org/abs/2303.00556

1 Introduction

In this paper, we establish an upper bound for the Colin de Verdiére’s graph parameter u for
graphs that can be embedded on a fixed surface. This parameter was introduced by Colin de
Verdiére [4] in analogy with the multiplicity of the second eigenvalue of Schrodinger operators
on a Riemannian surface. The exact definition of u(G) resorts to a transversality condition
between the space of so-called discrete Schrodinger operators on a graph G = (V, E) and a
certain stratification of the space of symmetric matrices of dimension V' x V. This Strong
Arnold Hypothesis (SAH), as coined by Colin de Verdiere [3], expresses a stability property
and ensures that y is minor-monotone. It can thus be applied to the graph minor theory of
Robertson and Seymour. We refer to the survey by van der Holst, Lovasz and Schrijver [13]
for more properties on .

Here, we are interested in an upper bound for the parameter p of the minor-closed
family of graphs that can be embedded on a surface S. It is relatively easy to show that
w(K,) =n—1 for K,, the complete graph with n vertices [13]. On the other hand, the
largest n such that K, embeds on S is known as the Heawood number

(S) = {7—1— \/492— 24X(S)J |

where x(5) is the Euler characteristic of S. Colin de Verdiere [2] conjectured that the
maximum of y for all graphs that can be embedded in S is attained at K,s). In other
words, u is upper bounded by v(S) — 1. In practice, the known upper bounds have been
proved in the realm of Riemannian surfaces where p is defined for each Riemannian metric

* This work was conducted when this author was at the G-SCOP laboratory in Grenoble. This author is
(partially) supported by the grant ANR-17-CE40-0033 of the French National Research Agency ANR
(project SoS)
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as the maximum multiplicity of the second eigenvalue of Schrodinger differential operators
(based on the Laplace-Beltrami operator associated to the given metric). In this framework,
Besson [1] obtained the bound 7 — 2x(S). When the Euler characteristic is negative, this
bound was further decreased by 2 by Nadirashvili [8], who thus showed the upper bound
5 — 2x(S). Sévennec [10] eventually divided by two the dependency in the characteristic
to obtain the upper bound 5 — x(S). Note that all those bounds are linear in the genus
of S and remain far from the square root bound in the conjecture of Colin de Verdiere. It
can be proved that any upper bound for x4 in the Riemannian world holds for graphs, cf.
[6, Th. 6.3] and [2, Th. 7.1]. However, the proof relies on the construction of Schrédinger
differential operators from combinatorial ones and is not particularly illuminating from the
combinatorial viewpoint. The goal of this paper is to propose a purely combinatorial and
self-contained proof of the bound of Besson in the combinatorial framework of graphs. In
the following, S is a compact surface, orientable or not.

» Theorem 1.1. Let G be a graph that can be embedded on a surface S, then
1(G) <7 2x(S).

Our proof completes and slightly simplifies a proof of Pendavingh that appeared in his PhD
thesis [9]. Before describing the general strategy of the proof, we provide some relevant
definitions and basic facts.

2 Background

2.1 Schrodinger operators and 1

Let G = (V, E) be a connected simplicial’ graph with at least two vertices. A Schrédinger
operator on G, sometimes called a generalized Laplacian, is a symmetric V' x V' matrix such
that for i # j € V, its ij coefficient is negative if ¢j € E and zero otherwise. (There is
no condition on the diagonal coefficients.) We say that a Schrédinger operator L satisfies
the Strong Arnold Hypothesis (SAH) if there is no nonzero symmetric matrix X = (Xj;)
such that LX = 0 and X;; = 0 whenever ¢ = j or ¢j € E, in other words, if the only
symmetric matrix satisfying these conditions is zero. This is an algebraic translation of a
transversality condition between the space of the discrete Schrodinger operators on G and
a certain stratification of the space of symmetric matrices of dimension V' x V. It is not
necessary to understand the SAH for the purpose of this paper.

It follows from Perron-Frobenius theorem that the first (smallest) eigenvalue of a
Schrodinger operator L has multiplicity one [5]. Now, if Ay is the second eigenvalue of
L, then the first eigenvalue of L — A\old, where Id is the identity matrix, is negative and
its second eigenvalue is zero. This translation by —A;Id does not change the sequence
of multiplicities of the eigenvalues of L nor the stability of L with respect to the SAH.
Consequently, we can safely restrict to Schrodinger operators whose second eigenvalue is
zero. We can now define the Colin de Verdiére graph parameter u(G) as the maximal corank
(dimension of the kernel ker(L)) of any Schrodinger operator L satisfying the Strong Arnold
Hypothesis. In other words, u(G) is the largest integer p such that there exists a Schrodinger
operator L with dimker L = p and L satisfies the SAH.

Recall that a minor of G is a graph obtained from G by deleting edges, vertices or
contracting egdes. As a fundamental property, ¢ is minor-monotone.

LA graph is simplicial, or simple, if it has no loops or multiple edges.
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» Theorem 2.1 ([4]). If H is a minor of G, then u(H) < pu(G).
It also characterizes planar graphs.
» Theorem 2.2 ([4]). A graph G is planar if and only if u(G) < 3.
Colin de Verdiére made the following conjecture in [4].
» Conjecture 2.3. The chromatic number of a graph G satisfies chr(G) < p(G) + 1.

This conjecture contains the four colour theorem thanks to Theorem 2.2. It is implied
by Hadwiger’s conjecture (a graph which is not colourable with k colours has the complete
graph K11 as a minor), using the fact that p(K,) =n — 1 [13] and the minor-monotone
property of p.

We view a vector of RV as a discrete map V — R, so that a Schrédinger operator acts
linearly on the set of discrete maps. For f: V — R, we denote by Vf+7 VJQ, Vi the subsets of
vertices where f takes respectively positive, null and negative values. The support of f is
the subset VfJr uvy of vertices with nonzero values. As a simple property of Schrodinger
operators we have

» Lemma 2.4 ([13]). Let L be a Schrodinger operator of G and let f € ker L. Then, a vertex
v E VJP is adjacent to a vertex of VfJr if and only if v is adjacent to a vertex of Vi

A discrete version of the nodal theorem of Courant reads as follows.

» Theorem 2.5 ([5, 12]). Let L be a Schrodinger operator of G and let f € ker L be a nonzero
map with minimal support®. Then, the subgraphs of G induced respectively by VfJr and fo
are nonempty and connected.

2.2 Surfaces and Euler characteristic

By a surface of finite type we mean a topological space homeomorphic to a compact two
dimensional manifold minus a finite number of points. A surface may have nonempty
boundary and each of the finitely many boundary components is homeomorphic to a circle.
We shall only consider surfaces of finite type and omit to specify this condition. A closed
surface means a compact surface without boundary. By a triangulation of a surface, we mean
a simplicial complex together with a homeomorphism between its underlying space and the
surface.

The Euler characteristic x(X) of a finite simplicial complex (and more generally a finite
CW complex) is the alternating sum of the numbers of cells of each dimension. In particular,
the Euler characteristic of a graph I' = (V, E) is x(T") = |V| — |E|. For a surface S we define
x(S) as the Euler characteristic of a polygonisation of S, that is, a description of S as a
CW complex. The Euler characteristic is homotopy invariant: two spaces with the same
homotopy type have the same Euler characteristic.

The following property will be needed in our proof. It is a corollary of the Inclusion-
exclusion formula [11, p.205]. The proof is not completely trivial and can be found in [7,
Section 2] .

2 A discrete map f € ker L has minimal support if it is nonzero and for every nonzero g € ker L, if
VihuVy CVIUV, then VUV, =VIiUuvy
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» Proposition 2.6. Let X be a triangulated compact surface and let' Y be a subcomplex of X .
Then

X(X) = x(Y) + x(X\Y).

Here, X and Y should be considered as topological spaces, forgetting about their triangula-
tions. In general, X \ Y is not a subcomplex of X.

3 Overview of the proof

In this section, we give the main ideas of the proof of Theorem 1.1. The detailed proof can
be found in [7, Section 5].

Let G be a graph embedded on a surface S, which we can assume closed without loss
of generality. We may also assume that S is not homeomorphic to a sphere as otherwise
Theorem 1.1 follows directly from Theorem 2.2. In a first step, we remove an open disk
D c S\ G whose boundary avoids G, and build a graph® H embedded in S\ D such that
Cl1. H triangulates S\ D and subdivides 0D into a cycle of u(G) — 1 edges,

C2. @ is a minor of H, and

C3. the length of the shortest closed walk in H that is non-contractible in S\ D, i.e. the
edgewidth of H in S\ D, is u(G) — 1.

We denote by W the set of vertices of H.

We next choose a Schrodinger operator L for H whose corank achieves p(H). Condition
C2 and the monotonicity of p imply u(H) > u(G), so that ker L has dimension at least p(G).
By C1, 9D has u(G) — 1 vertices, so the vectors of the basis of ker L restricted to 9D are
linearly dependent. Thus there exists a nonzero vector f € ker L such that f cancels on the
vertices of D. We pick such an f with minimal support so that by Theorem 2.5 the subsets
of vertices W}" and Wf_ induce connected subgraphs of H. We connect the vertices of 0D
by inserting p(G) — 4 edges in D to obtain a graph H' with the same vertices as H and that
triangulates S. We can now extend f linearly on each face of H' to get a piecewise linear
map f:S — R. Let ST, S?, S; denote the subspaces of S where f is respectively positive,
null, and negative. By Theorem 2.5, SJJ[ and SJ? are connected open subsurfaces of S, while
SJQ is a closed subcomplex of some subdivision of the triangulation induced by H’. We can
thus apply Proposition 2.6 to write

x(8) = x (S9) +x (SFUS7) =x () +x (57) +x(s7)-

The subsets S}r and SJ? cannot be homeomorphic to spheres because they are both proper
subsets of S. We deduce from the classification of surfaces, that X(S}') <land x(S;) <1
It ensues that X(SJQ) > x(S) — 2. The goal is now to provide an upper bound for X(S?) in
terms of u(G) in order to obtain the desired upper bound for p(G).

Start by observing SJQ: it is formed of plain triangles adjacent by an edge or a vertex, or
connected together, via their vertices, by a piece of dimension 1. To provide the upper bound
for X(S?), we build a graph I" whose Euler characteristic is larger than SJOc by contracting its
two dimensional parts, that are the parts formed by the plain triangles. To ensure that this
operation results in the desired property on the Euler characteristic of I', precautions are
taken before the contraction to remove the singularities of the two dimensional parts while
keeping the same homotopy type. By definition of f, D C S9, so we can define K as the two

3 See [7, Section 4] for a detailed construction of such a graph.
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dimensional part containing D. Because of condition C3 on H, we can argue that K has a
non-contractible boundary in S\ D. It follows that this boundary has length at least the
edgewidth of H, hence at least ;(G) — 1 by condition C3. Thanks to Lemma 2.4 we may
infer that K contracts to a vertex of degree at least u(G) — 1 in I'. We also argue thanks to

Lemma 2.4 that ' has no vertex of degree one. By the handshaking lemma applied to I', we
deduce that x(S9) < x(T') < (3 —p(G))/2. We finally conclude that x(S) -2 < (3 —u(G))/2,
hence p(G) < 7 —2x(95).
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—— Abstract

We study the algebraic connectivity (the smallest non-zero eigenvalue of the Laplacian matrix and
also known as Fiedler eigenvalue) of token graphs. The k-token graph Fj(G) of a graph G is the
graph whose vertices are the k-subsets of vertices from G, two of which are adjacent if and only if
their symmetric difference is a pair of adjacent vertices in G. Recently, it was conjectured that the
algebraic connectivity of Fi(G) equals the algebraic connectivity of G. In this paper, we prove the
conjecture for the cycle graphs C,, for all n when k = 2.

1 Introduction

In computer networks, and particularly in digital communications, we often have a graph
designed in such a way that pieces of information, or tokens, can be moved from one vertex
to another. A large class of such graphs is the token graphs. Given a graph G, the k-token
graph Fj(G) of G is the graph whose vertices are the k-subsets of vertices of G, two of which
are adjacent if and only if their symmetric difference is a pair of adjacent vertices in G.
Vertices of Fj(G) correspond to the configurations of k indistinguishable tokens placed at
distinct vertices of G, where two configurations are adjacent (as vertices of Fj(G)) if and
only if one configuration can be reached from the other by moving in G one token along an
edge from its current position to an unoccupied vertex.

The algebraic connectivity can be used to find the size of the separator of a graph,
giving partitioning techniques. These techniques are useful in many scientific numerical
algorithms. Besides, the Embedding Lemma by Spielman and Teng [6] has been applied
to relate drawings of graphs with the algebraic connectivity. For more information, see
Fabila-Monroy, Hidalgo-Toscano, Huemer, Lara, and Mitsche [4].

Many properties of token graphs, such as its diameter, chromatic number, and Hamiltonian
paths have recently been studied by Fabila-Monroy, Flores-Penialoza, Huemer, Hurtado,
Urrutia, and Wood [5]. We focus on the study of the algebraic connectivity of the token graph
Fy(G), denoted by a(Fj(G)). Recently, it was conjectured by Dalf6, Duque, Fabila-Monroy,
Fiol, Huemer, Trujillo-Negrete, and Zaragoza Martinez [2] that the algebraic connectivity of
G and Fj(G) are equal, that is, a(G) = a(F;(G)). This conjecture has already been proven
when G is a complete graph, a complete bipartite graph or a tree, among other special cases
in [2] and [3]. We present results on this conjecture when G is the cyclic graph C),, on n

* This research has been supported by AGAUR from the Catalan Government under project 2021SGR00434
and MICINN from the Spanish Government under project PID2020-115442RB-100.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29-31, 2023.

This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
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vertices. In particular, for the case k = 2, we give an efficient algorithm to compute the
whole spectrum of F»(C),) (and, in particular, its algebraic connectivity).

1.1 Some notation

We use the following notation throughout the paper: L = L(G) is the Laplacian matrix of
the graph G, 7 = V3 UVo U --- UV, a (regular or not) partition of the vertex set, G/7 is the
quotient graph over m, A(G/x) and L(G/7) the adjacency and Laplacian matrices of G/,
respectively.

The transpose of a matrix M is denoted by M ', the identity matrix by I and the all-1
vector (1,...,1)" by 1.

The Laplacian matrix L(G) of a graph G on n vertices is positive semidefinite, with
eigenvalues (0 =)A; < Ag < --- < A,. Given some integers n and k (with k € [n]), we define
the (n;k)-binomial matriz B. This is a (Z) x n matrix whose rows are the characteristic
vectors of the k-subsets of [n] in a given order. Thus, if the i-th k-subset is A, then

1 ifjeA,
0 otherwise.

(B)ij = {

A partition 7 = (V1,...,V,) of V is called regular (or equitable) whenever, for any
i,j =1,...,r, the intersection numbers b;;(u) = |N(u) N V;|, where u € V;, do not depend
on the vertex u but only on the subsets (usually called classes or cells) V; and V; and N (u)
denote the set of vertices adjacent to u. In this case, such numbers are simply written as b;;,
and the r X r matrix @, = L(G/w) with entries

(@i =Y S p— by ifi—j,
h=1

is referred to as the quotient Laplacian matriz of G with respect to .

2  The spectrum of F»(C,,)

In this section, we give some results about the eigenvalues of F5(C,).

» Theorem 2.1.(i) If n = 2v is even, then the 2-token graph Fy(C,,) has the eigenvalues

A, = 8sin? (nrl), r=0,1,...,v—1, 1)

with A\g = 0, and A\,_1 = 8sin? (Z—:% g) is the spectral radius of F5(Cy,).

(i9) If n=2v+1 is odd, then the 2-token F5(C,) has the eigenvalues

A\, = 8cos? (nrj1>, r=12,...,v, (2)

with A, = 0, and A\, = 8 cos? (ﬁ) is a lower bound for the spectral radius (the mazimum

eigenvalue of its Laplacian matriz) of Fa(Cy).

Proof. Let us see that Fy = F5(C),) has a regular ‘path-shaped’ partition 7 with r = |n/2]
classes V1, Va, ..., V,., where V; consists of the vertices {u, v} such that dist(u,v) =i in C,,.
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4( 9 2

(b) (¢)

Figure 1 (a) The 2-token graph F»>(Cy) of the cycle graph Cy. The thick edges correspond to

each of the copies of the base graph or the quotient graph. (b) Its base graph with voltages on Zg.

(¢) The quotient graph of its path-shaped regular partition. In boldface, there is the numbering of
the vertex classes. In class ¢ € {1,2,3,4}, there are the vertices 75 that satisfy ¢ — j = ¢ (mod9).

Each vertex {u,v} in V; is adjacent to 2 vertices {u + 1,v} and {u,v + 1} in V5 (all
arithmetic is modulo n).
Each vertex {u,v} in V;, for ¢ = 2,...,r — 1, is adjacent to 2 vertices {u — 1,v} and
{u,v — 1} in V;_1, and 2 vertices {u + 1,v} and {u,v + 1} in Vi4q.
Every vertex {u,v} in V, is adjacent to 4 vertices {u &+ 1,v} and {u,v = 1}. If n is even
all these vertices are in V,._;. If n is odd, two of them are in V,._; and the other two in
Vr.
Then, (1) and (2) correspond to the eigenvalues of the matrix Q; for the even and odd
cases of n, respectively (Yueh [7, Section 3]). Moreover, in the case of even n, the maximum
eigenvalue in (1) is obtained when r = v —1. Then, A,_; is the spectral radius of F5(C,,). <«

Next, we show that, depending on the parity of n, much more can be stated about the
spectrum of Fy(C,).

2.1 The case of odd n

We now study the case of odd n. We follow the notation of [1].

Let G be a group. An (ordinary) voltage assignment on the (di)graph (that is, graph o
digraph) G = (V, E) is a mapping 3 : E — G with the property that 3(a~) = (B8(a™))~! for
every arc a € E. Thus, a voltage assigns an element g € G to each arc of the (di)graph, so
that a pair of mutually reverse arcs a™ and a~, forming an undirected edge, receive mutually
inverse elements g and g—!. The (di)graph G and the voltage assignment (3 determine a new
(di)graph G, called the lift of G, which is defined as follows. The vertex and arc sets of the
lift are simply the Cartesian products V2 =V x G and E® = E x G, respectively. Moreover,
for every arc a € E from a vertex u to a vertex v for u,v € V' (possibly, v = v) in G, and for
every element g € G, there is an arc (a,g) € E” from the vertex (u,g) € V” to the vertex
(v,gB(a)) € VA. For more details, see again [1].
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» Theorem 2.2 ([1]). The 2-token graph F»(C,,) of the cycle with an odd number n = 2v + 1
of vertices is the lift GP(P}) of the base graph the path P, with verter set {uy, ua, ..., u,}
and a loop at u,, and voltages on the group Z, as follows:

6(u,’ui+1) =-1 for ¢ = 1,...,1/—1,
Bluipru;) = +1 fori=1,...,v—1,
B(uyu,) = tv.

For example, in the case of n = 9, the 2-token graph F»(Cy) and its base graph are shown
in Figure 1. Then, the whole spectrum of F5(C,,) can be obtained from its Laplacian base
v x v matrix B(z) (see again [1]), with z = "% | or its similar tridiagonal matrix B*(r),
forr=0,1,...,n—1.

2 —1-2z"" 0 0 0
-1-=z 4 -1-z7"! 0 0
0 -1-=z 4 -1-z"" 0
B(z) = &
0 0 —-1—-=z 0
: : . 4 1z
0 0 0 —1—2z 4-2"—27"
2 2cos(=F) 0 0 0
2cos(=X) 4 2cos(=X) 0 0
0 2cos(=X) 4 2cos(=X) 0
B*(r) = :
0 0 2cos(=X) 0
: ' 4 2cos(F)
0 0 0 2cos(ZZ) 44 4(—1)"" cos(Z)

3)

» Theorem 2.3. Every eigenvalue \ of Fo(Cr) = GP(P)), with n = 2v + 1, has an eigenvector
Yy € R(g) with components

Yo = fie;CC =M  j=0,...,n—1, h=1,...,v, (4)

where € is an n-th root of unity, and f = (f1,..., fv) is a A-eigenvector of the matriz B((C).

2.2 The case of even n and odd n/2

In the case of n =2 (mod 4) (so that n/2 is odd), the 2-token F>(C) can also be seen as a lifted
graph, as shown in the following result. See an example of this kind of token graph in Figure 2.
Given an integer r, let us consider the path graph G = P4,11 with vertices

U—27, U—27r41, -5 U—1, U0, UL, ..., U2r—1, U2r,

(with its corresponding edges) and additional arcs

a;L = U—;Uij—1, a; = Uj—1U—, fOI‘iZO,l...,Q’/’,

bj = UU—it1, b; =u—_sq1u;, fori=0,1,...,2r

Let 8 be the voltage assignment on G in the cyclic group Zar41 given by

Blaf) = B(bS) = +r,
Bla;) = Bb;) = —r. (5)

Figure 2(b) shows the base graph G for r = 2. Now, we have the following result.
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Figure 2 (a) The token graph F5(C1o) of the cycle graph Cio, with the different copies of the
U-shaped regular partition, here drawn as paths. (b) Its base digraph with voltages in Z1o, which
gives rise to the U-shaped regular partition. The thick edges represent the path Py, obtained with
this partition. (c) The quotient graph of the path-shaped regular partition. In boldface, there is the
numbering of the vertex classes.

» Lemma 2.4. Given G = Pir41 with the voltage assignment (5) on Zar+1, the 2-token graph of the
cycle Cy, with n = 4r + 2 is the lift graph G?. That s,

F5(Carro) =GP,

Proof. The vertex set V(G?) of the lift G° has elements labeled with the pairs (u,g) for i =
—2r,...,2r and g € Zoy41. Thus |V(G?)| = (4r +1)(2r +1) = (4T;2), which corresponds to the
number of vertices of F»(Car42). Indeed, such vertices correspond to 2-subsets {i,;j} of the set
{1,2,...,4r + 2}. Thus, we have to show a 1-to-1 mapping between V (G?) and V (F2(Cir+2)) that
must be consequent with the adjacencies of both graphs. Let us take an example. The vertex
(u—2r41,1) = {2,4} (written as 24 in Figure 2) of G is adjacent to:

The vertices (u—_2r,1) and (u—_2r42,1) of the same ‘copy’

The vertex (uzr—2,7 + 1) by the arc a}ifl with voltage +7.

The vertex (uz,,r + 2) by the arc b,, with voltage —r.
Then, we find the following equivalences:

(u*Q’H 1) = {27 3} and (u*27”+27 1) = {23 5}7
(u2r—2,7+1) ={1,4} and (uar,r +2) = {3,4},
which correspond to the vertices adjacent to {2,4} in Fo(Cari2).
<

As a consequence, for each z = w’, where w = €'Z+1, with £ = 0,1,...,2r, an irreducible

representation of the Laplacian base matrix of GP~ Ry (C2r42) is the matrix B(z) as shown next.
Note that matrix B(z) is tridiagonal with respect to the main and the secondary diagonals.
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Figure 3 (a) The 2-token graph F5(Cs) of the cycle graph on 8 vertices. (b) Another view of
F5>(C3). (c) The quotient graph from the path-shaped regular partition. (d) The quotient graph of
the U-shaped regular partition obtained from (b). In boldface, there is the numbering of the vertex
classes.

2 -1 0 0 0 0 0 0 0 —2z" 0
-1 4 -1 0 0 0 0 0 —2" 0 —z7"
0 -1 4 0 0 0 0 0 0 —z7" 0
0 0 0 4 -1 0 —z" 0 -0 0 0
0 0 0 -1 4 -1-2" 0 —zT"-- 0 0 0
B(z) = 0 0 0 0 —1-2" 4 —1-2z" 0 0 0 0
0 0 0 2770 —1-2z" 4 -1 0 0 0
0 0 0 0 —z" 0 -1 4 0 0 0
0 —2z " 0 -~ 0 0 0 0 0 -4 -1 0
-z " 0 —z"--- 0 0 0 0 0 -1 4 -1
0 —-2" 0 0 0 0 0 0 0 -1 2

2.3 The case of even n and n/2

When we consider the case of cycles C,, with n and n/2 even, it is not very useful to represent
F>(Cy) as a lift graph to compute the whole spectrum. The reason is that, the base graph would
have too many vertices with respect to the original graph. Alternatively, besides the spectrum of
C.,, we can easily find another part of the spectrum by means of regular partitions. As an example,
the 2-token graph of Cs is shown in Figure 3(a) and (b), together with its regular partitions (c) (the
path P, /;) and (d) (the U-shaped graph). Compare such partitions with those in Figure 2(b) and
(¢). We use the new method of over-lifts to solve the case with even n.

2.4 The method of over-lifts

In this subsection, we use a new method called over-lifts, which allows us to unify the cases of cycles
with even n and compute the whole spectrum of F>(Cy). This is accomplished by means of a new
polynomial matrix B(z) that does not correspond to the base graph of a lift. By its characteristics,
we say that B(z) is associated with an over-lift. The basic difference is that such a matrix has
dimension v x v (recall that n = 2v), and there are n possible values for z (n-th roots of unity).
Thus, the total number of eigenvalues obtained is vn. However, F>(Cy) has (g) = v(n — 1) vertices,
which is the number of eigenvalues of .. We will see that, in fact, the v ‘extra’ eigenvalues provided

by B(z) are all equal to 4.
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» Theorem 2.5. Let L be the Laplacian matriz of Fo(Chr), with n = 2v. Let A be the multiset with
elements 4,4, %) 4. Then, the spectrum of L can be obtained from the spectrum of the v X v matric
B(z) or, equivalently, from the spectrum of its similar matriz B*(r):

2 —1-z"" 0 0 0
—1-=z 4 —1—z" 0 0
0 —-1-2 4 —1-z" 0
B(z) =
0 0 —-1—-=z 0
: 4 —1-2z7!
0 0 0 —1—z—z"—z""! 4
forz:(jT:e"QTﬂ,rzo,l, ,n—1, and
2 2cos(=X) 0 0 0
2cos(=F) 4 2cos(oF) 0 0
0 2cos(=X) 4 2cos(™X) 0
B*(r) = .
0 0 2cos(or) 0
' 4 2cos(=F)
0 0 0 2cos(=X) + 2005(@) 4
(6)
forr=0,1,...,n—1. Formally,
n—1
U spB(z) = U spB*(r)=AUspL, (7)
z€ER(n) r=0

where R(n) denotes the set of the n-th roots of unity,

3 The algebraic connectivity of F5(C),)

In this last section, we show that the conjecture posed in Dalfé, Duque, Fabila-Monroy, Fiol, Huemer,
Trujillo-Negrete, and Zaragoza Martinez [2] holds for the 2-token graphs of a cycle. Of all the cases
in which this conjecture is known to hold, this case turned out to be the most involved.

» Theorem 3.1. The algebraic connectivity of the 2-token graph F»>(Cy) equals the algebraic connec-
tivity of the cycle C,,.

» Corollary 3.2. The algebraic connectivity of the 2-token graph F»>(G) of a unicyclic graph G equals
the algebraic connectivity of G.
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—— Abstract
In ONE-OF-A-SET TSP, also known as GENERALISED TRAVELING SALESMAN PROBLEM, the input is
a collection P := {Pi, ..., P.} of sets in a metric space and the goal is to compute a minimum-length

tour that visits one element from each set. We study the Euclidean variant of this problem where
each P; is a set of points in R? that is contained in a given hypercube H;. We investigate how the
complexity of EUCLIDEAN ONE-OF-A-SET TSP depends on A, the ply of the set H := {Ha, ..., Hy} of
hypercubes, and we show that the problem can be solved in 9O/ TFEnt =) e for any fixed € > 0,
where n:=»""_ |P;| is the total number of points. Furthermore, we show that the problem cannot
be solved in 2°(™ time when A = ©(n), unless the Exponential Time Hypothesis (ETH) fails.

1 Introduction

In the TRAVELING SALESMAN PROBLEM we are given an edge-weighted complete graph and
the goal is to compute a tour, i.e., a simple cycle visiting all nodes, of minimum total weight.
The TRAVELING SALESMAN PROBLEM is among the most famous problems in computer
science and combinatorial optimization. One variation is the EUCLIDEAN TRAVELING
SALESMAN PROBLEM. In EUCLIDEAN TRAVELING SALESMAN PROBLEM the input is a
set P of n points in R?, and the goal is to compute a minimum-length tour visiting each
point. This problem was proven to be NP-hard in the 1970s [3, 10]. However, unlike the
general (metric) version, EUCLIDEAN TRAVELING SALESMAN PROBLEM in the plane can be
solved in subexponential time, i.e., in time 2°™). Both Kann [7] and Hwang et al. [5] have
given algorithms with n°(V™ running time. Smith and Wormald [11] gave a subexponential
algorithm that works in any (fixed) dimension d, taking nOm" ™ time. Recently De Berg et
al. [2] improved this to 20("171/61), which is tight up to constant factors in the exponent,
under the Exponential-Time Hypothesis (ETH) [6].

Meanwhile, generalised versions of the TRAVELING SALESMAN PROBLEM have also been
studied. One popular example is the ONE-OF-A-SET TSP, also known as GENERALISED
TRAVELING SALESMAN PROBLEM. Here, the n nodes of the graph are partitioned into sets
V; and the goal is to compute a tour of minimal weight visiting at least (or exactly) one
node of every set. Many publications have been made regarding the ONE-OF-A-SET TSP, see
for example the survey by Gutin and Punnen [4]. One simple but important result is that
ONE-OF-A-SET TSP can be reduced to TRAVELING SALESMAN PROBLEM for arbitrary |V;|.

In this paper, we focus on the combination of the two versions, EUCLIDEAN ONE-OF-A-
SET TSpP. For this variation, most research has been focused on the so-called grid cluster
variant, introduced by Bhattacharya et al. [1]. In this variant, a partition is specified by the
cells of the integer 1 x 1 grid (on the Euclidean plane); from every non-empty cell, exactly
one point needs to be visited. Khachay and Neznakhina have published many papers on
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20:2 Euclidean One-of-a-Set TSP

this topic between 2016 and 2020, showing that a PTAS exists if there are many (O(logn))
or few (n — O(logn)) non-empty cells [8], and that if the grid has fixed height or width, a
solution can be found in polynomial time [9].

Our contribution. We investigate the complexity of EUCLIDEAN ONE-OF-A-SET TSP. Let
H be a set {Hy, ..., H,} of hypercubes in R?. Let P be a family of sets of points Py, ..., P,
with P; C H; and |P;| < k for all i. We will use P to denote U; P;. Let A be the ply of the
given hypercubes, i.e., the smallest number such that every point in R? is in at most A of the
hypercubes. Our objective is to find a shortest tour T' = (py, ..., p,) such that for every P;
there exists a p € P; such that p € T. To do so, we will adapt the algorithm by De Berg et
al. [2]. This results in an algorithm running in QO FEnt =1/ ) time, for any fixed £ > 0.
Finally, we show that EUCLIDEAN ONE-OF-A-SET TSP in R? cannot be solved in time 2°(")
when A = O(n), unless ETH fails.

2 A subexponential algorithm for Euclidean One-of-Set TSP

Our separator theorem for EUCLIDEAN ONE-OF-A-SET TSP is similar to the distance-based
separator introduced by De Berg et al. [2]. Before we can state our result, we need to
introduce some terminology and notation from their paper. A separator o is defined to be
the boundary of an axis-aligned hypercube. We denote the region of all points in R inside
or on ¢ by iy, and the region of all points in R strictly outside ¢ by ooy. The size of a
separator o, denoted by size(o), is defined to be its edge length. For a separator ¢ and a
scaling factor ¢ > 0, we define to to be the separator obtained by scaling ¢ by a factor ¢ with
respect to its center. Note that a separator o induces a partition of the given point set P
into two subsets, namely P N oy, and P N ogyg. A separator is balanced with respect to a set
Q C P if max(|Q N o, |Q Noout]) < %n. If a separator is balanced with respect to P
itself, we call it a balanced separator.

The separator used by De Berg et al., which is the same separator we will use, is chosen
such that there are only few points close to it. To quantify this, let the relative distance from
a point p to o, denoted by rdist(p, o), be defined as follows:

rdist(p, o) := deo(p, o)/ size(0),

where d (p, o) denotes the shortest .-distance between p and any point on o. Note that if
t is the scaling factor such that p € to, then rdist(p, o) = |1 — t|/2. For integers 7 define

P(i,0) := {p € P : rdist(p,0) < 2°/n'/?}.

Note that the smaller 4 is, the closer to o the points in P(i, o) are required to be. De Berg et
al. choose o such that the size of the sets P(i,0) decrease rapidly as i decreases. Our slightly
generalised theorem allows for more control over the dependence of i of the sizes of these sets.

» Theorem 2.1. Let P be a set of n points in R* and let Q C P. Let ¢ > 0 be arbitrary but
fixed. Then there is a separator o that is balanced with respect to @ and such that

P(i, 0)| = O((3/2)'n'=Y4)  foralli <0
o O((24 ¢)'n*=Y4)  for alli>0

Moreover, such a separator can be found in O(n+1) time.
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The proof is analogous to the proof of Theorem 1 and Corollary 3 in the original paper by
De Berg et al. We will now use this distance-based separator theorem to present an efficient
algorithm for EUCLIDEAN ONE-OF-A-SET TSP.

Let S(P) :={pq : (p,q) € P x P} be the set of all line segments defined by P. We say a
point set P; is split by a separator o if at least one point of P; is in o, and at least one point
of P; is in o4y. We want to find a separator that is crossed only a few times by an optimal
TSP tour. Moreover, this separator should split only few of the point sets P;. Finally, we
want to control the number of ways in which we have to “guess” a set of crossing segments.
For this De Berg et al. uses the so-called Packing Property, which is known to hold for the set
of edges of an optimal TSP. Intuitively, it states that an optimal tour cannot contain many
long edges close together; the precise definition is not important for this paper. Note that the
packing property also holds for the edges in an optimal tour for EUCLIDEAN ONE-OF-A-SET
TSP. Hence, we can restrict our attention to subsets of S(P) with the packing property. For
a separator o, we are thus interested in the following collection of sets of segments crossing o:

C(o,P) :={S C S(P) : S has the packing property and all segments in S cross o}.

Our main separator theorem, presented next, states that we can find a separator o that is
balanced, splits few P;, and is such that the sets in C(o, P), as well as the collection C(c, P)
itself, are small. Since the packing property is hard to test, we will not enumerate C(c, P)
but a slightly larger collection of candidate sets, which we denote by C'(c, P).

» Theorem 2.2. Let P = { P, ..., P,} be a family of point sets in R?, and let H = {Hy, ..., H,}
be a set of hypercubes such that P; C H;. Let Q C P, where P= Py U---U P,.. Then, for
any fized 0 < e < 1/d, there exists a separator o with the following properties:

1. o is balanced with respect to Q.

2. Each candidate set S € C'(o, P) contains O(n'~1/?) segments.

3. C(o,P) C C'(0,P) and [C'(c, P)| = 200" ™9,

4. o splits O()\é“‘snl_l/d) of the sets P;, where X is the ply of H.

Moreover, o and the collection C'(o, P) can be computed in 20 M) time.

Proof. The separator chosen is the one found by applying Theorem 2.1 with {( = de. Hence,
the proof of properties 1-3 is analogous to that of the original paper by De Berg et al.

It remains to prove that o splits O()ﬁ“nl*l/d) of the P;. Assume without loss of
generality that size(c) = 1. Let j = {%—‘. We can now partition the family of point sets
P; split by o into two categories, neither of which contains too many sets:

P; split by ¢ with at least one point in P(j, o). Since there are O((2 4 ¢)/n'~1/%)

points in P(j, o), the number of such point sets is limited to

log A

O((2+ ¢)n' =) = O((2 + de) *F* !~/ = OWF = 1 =1/ = (A e 1= 1/d),

P; split by o with no points in P(j,0). Such P; contain at least one point p in
Oin at least a distance 27 /n'/¢ > (A\/n)'/? from o. Therefore, at least ((A/n)Y/?)d=1 =
(A/n)1=4 of 7 is ‘covered’ by Hj, i.e., the volume vol(c N H;) is at least (A/n)' =1/, Note
that H; is a d-dimensional hypercube, while ¢ is only the boundary of a d-dimensional
hypercube. Furthermore, note that the total (d — 1-dimensional) volume of ¢ is 2d. See
Figure 1 for an example. Furthermore, since # has a ply of A, we get that ). vol(c N H;) <
[, Ado = 2d\. In conclusion, there are O(2d\/(A/n)'~1/4) = O(A\Ydnt=1/d) point sets
P; split by ¢ with no points in P(j,0).

In total, there are therefore O(AY/@ten1=1/4) point sets split by o. <
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Doa—»

g

Figure 1 Any hypercube (in red) containing a point p in s, covers at least 2%~ of ¢ (in black),
where z is the distance between p and o. In this example, the hypercubes are 2-dimensional and o
is 1-dimensional.

g g

Figure 2 Two different ways to pair up the boundary points B (the endpoints of the segments
crossing o). For both options, the two resulting subproblems can be solved independently.

We are now ready to describe the algorithm itself. We will start with a brief overview of
how the original algorithm works. Then, we will explain what changes are made. Finally, we
will show that the claimed running time is indeed obtained.

The original algorithm starts by finding a suitable separator ¢ using its equivalent of
Theorem 2.2. Then, it “guesses” how o is crossed, by simply iterating over all possible
candidate sets. By doing so, the problem is split into two subproblems, one containing the
points in oy,, and one containing the points in o4,. Note that a candidate set by itself is
not enough to create two independent subproblems; the order and direction in which the
segments crossing o are traversed is also important. Specifically, all that matters is how the
boundary points, the endpoints of the segments crossing o, are paired up on both sides. See
Figure 2 for an example.

Therefore, for every possible matching on the boundary points in oj,, the corresponding
EucLiDEAN PATH COVER subproblem on all points in oy, is created and solved recursively.
The same is done o,y. After solving all versions of both subproblems, the so-called rank-
based approach is used to efficiently find the correct combination of matchings on both
sides resulting in the shortest overall tour. Finally, we note that always simply taking a
separator which is balanced with respect to the whole point set of the subproblem can result
in arbitrarily large sets of boundary points; to prevent this from impacting the running time,
as soon as the set of boundary points grows too large compared to the total number of points,
a separator balanced with respect to the set of boundary points is taken instead.

Our adapted algorithm contains three changes compared to the original. Let 0 < e < 1/d
be arbitrary but fixed. First, we choose our separator ¢ using Theorem 2.2 instead of the
equivalent from the original paper. Note that this does not impact the correctness or running
time in any way. Second, candidate sets containing more than one point of any set P; can be
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Figure 3 An example for the proof of Theorem 2.4. The unlabeled points all have to be visited.

In blue, a point set ensuring we visit z2 or —x2. In red, a point set corresponding to the clause
21V —xg V —za. A short tour exists if and only if we need to visit only one of each pair (x;, —x;).

ignored. Finally, when “guessing” the correct candidate set, for every point set P; split by
o, we also guess whether a point of P; in oy, or a point in o, is used. By doing so, the
subproblems generated are indeed once more independent. Note that for every boundary
point this choice (if applicable) is automatically made.

This brings us to our main theorem, whose proof can be found in the full version of the

paper.

» Theorem 2.3. Let ¢ > 0 be arbitary but fired. Then GENERALISED EUCLIDEAN TSP on

1. - A
point sets in d-dimensional hypercubes with ply A can be solved in 0T =) e,

Finally, we show that for A = ©(n), the problem cannot be solved in subexponential time.

» Theorem 2.4. EUCLIDEAN ONE-OF-A-SET TSP in R? cannot be solved in 2°0) time,
unless ETH fails.

We will give a proof sketch below. For the full proof, see the full version of the paper. We
give a reduction from 3-SAT. We map all literals z; and —x; to points in the plane. We
make one point set for each pair of literals, ensuring that for all ¢, at least one of z; and —z;
is visited. Then, we add points such that a short tour exists if and only if at most one of
each x; and —x; is visited. Finally, we add the clauses of our 3-SAT problem. See Figure 3
for an example.

3 Conclusion

We proved that EUCLIDEAN ONE-OF-A-SET TSP on point sets in d-dimensional hypercubes
with ply A can be solved in QO Eni =1/ ) time, for any fixed € > 0. This implies that
when the hypercubes H,; are pairwise disjoint—or, more generally, when the ply of H is
considered to be a constant—then the running time is the same time as for EUCLIDEAN
TRAVELING SALESMAN PROBLEM. Hence, in this case it is optimal, up to constants in the
term O(n'~1/9) in the exponent [2].

For further research, there are many interesting problems. First of all, we wonder whether
a 200"V Jloorithm can be found, that is, whether the & can be removed from the
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exponent. Secondly, we currently measure how ‘intertwined’ the point sets are by using the
ply of hypercubes containing the point sets. As the hypercubes are not used in the algorithm
itself, other measuring methods might result in better calculated running times. Finally,
instead of using finite point sets P;, it is interesting to consider a continuous version of the
problem, where each set P; is a region of space (such a ball, hypercube, or polytope).
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—— Abstract
We study the problem of determining minimum-length coordinated motions for two axis-aligned
square robots translating in an obstacle-free plane: Given feasible start and goal configurations, find
a continuous motion for the two squares from start to goal, comprising only robot-robot collision-free
configurations, such that the total Euclidean distance traveled by the two squares is minimal among
all possible such motions. We present an adaptation of the tools developed for the case of discs by
Kirkpatrick and Liu [Characterizing minimum-length coordinated motions for two discs. Proceedings
28th CCCG, 252-259, 2016.] to the case of squares. Certain aspects of the case of squares are
more complicated, requiring additional and more involved arguments over the case of discs. Our
contribution can serve as a basic component in optimizing the coordinated motion of two squares
among obstacles, as well as for local planning in sampling-based algorithms, which are often used in
practice, in the same setting.

1 Introduction

The basic motion planning problem is, given start and goal placements for moving objects
(robots), to decide whether the objects can move from start to goal without colliding with
obstacles in the environment nor with one another, and if so, to plan such a motion. This
problem has been intensively investigated for almost five decades now; see, e.g., several books
and surveys [1, 3, 4, 7, 9, 11]. The basic problem is relatively well understood, has general
theoretical solutions as well as an arsenal of more practical approaches used by practitioners
in robotics, molecular biology, animation, computer games, and additional domains where
one needs to automatically plan or simulate feasible collision-free motions; see, e.g., [8].

1.1 Optimal motion in the absence of obstacles

Let A and B be two axis-aligned square robots in the plane. The position of robot A (resp.,
B) at a given moment is denoted by A (resp., B), and refers to the coordinates of its center.
We define the radius of a square as the length of its apothem. Let r, and rp be the radii of
robot A and robot B, respectively.

Given any point X in the plane, we denote by sq(X) the open axis-aligned square, centered
at X, with radius r = r, + rg. We say that a pair of positions (A, B) is feasible if A ¢ sq(B).

* Partially supported by project PID2019-104129GB-100/MCIN/AEI/10.13039/501100011033 of the
Spanish Ministry of Science and Innovation. Work by D.H. has been supported in part by the Israel
Science Foundation (grant no. 1736/19), by NSF/US-Israel-BSF (grant no. 2019754), by the Israel
Ministry of Science and Technology (grant no. 103129), by the Blavatnik Computer Science Research
Fund, and by the Yandex Machine Learning Initiative for Machine Learning at Tel Aviv University.
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Notice that this implies that B ¢ sq(A). An instance of our problem consists of a feasible
pair of initial and final positions (Ao, By) and (A1, By), respectively. A trajectory from a
point Xy to a point X; in the plane is any continuous rectifiable curve mx : [0,1] — R? such
that mx (0) = X and mx (1) = X;. Given an instance of our problem, a coordinated motion
m is a pair of trajectories m = (ma, mp). Throughout this paper we refer to coordinated
motions simply as motions. A motion is feasible if for all t € [0,1] the pair of positions
m(t) = (ma(t),mp(t)) is feasible. We denote the Euclidean arc-length of a trajectory mx
by ¢(mx). We define the length of a motion m = (ma, mp) as £(m) = €(my) + {(mp). We
focus in this paper on minimum-length coordinated translational motion for two squares.
Our goal is to find a description of a minimum-length feasible motion (m4, mpg), for each
instance of the problem. We note that, in the figures of this paper, squares representing
robots are drawn with filled color, while squares sq(X) are depicted with a white filling.

Feasible motion for two squares translating among polygonal obstacles with n vertices
can be found in O(n?) time, if one exists [12]. For an arbitrary number of unit squares in the
same setting, the problem is known to be PSPACE-hard [13]. Other results for the geometric
shortest path problem are reviewed in [10]. Recently, Kirkpatrick and Liu [6] solved the
minimum-length coordinated motion for two discs, as we discuss next.

1.2 The Kirkpatrick-Liu analysis for two discs

Kirkpatrick and Liu [6] describe, for any pair of initial and final positions of the discs, two
motions that involve at most six (straight or circular-arc) segments. Then, either (i) a single
motion is feasible and optimal, or (ii) among the two motions, one is optimal among all
clockwise! motions and the other is optimal among all counterclockwise motions. The proof
of the optimality of the motions involves an extensive case analysis that depends on the
relative initial and final positions of the discs. However, all motions have a simple structure:

1. Move robot A from its initial position to an intermediate position A;n;.
2. Move robot B from its initial position to its final position.
3. Move robot A from the intermediate position A;,; to its final position.

The main mathematical tool employed in [6] is Cauchy’s surface area formula. Tts use in
the context of optimal motion planning was introduced by Icking et al. [5] for a line segment
translating and rotating in the plane. The study of the full rigid motion of a segment involves
rotation, which raises the question how to measure the distance between two configurations
of the moving object. Icking et al. [5] focus on what they call the do-distance, which measures
the length of the motion of a segment pg by averaging the distance travelled by its two
endpoints p and q. We remark that the case of a segment has attracted much attention—the
interesting history of the problem, as well as other distance measures, are reviewed in [5].

There is a close relation between minimizing the ds-distance traveled by a segment and
the minimum-length coordinated motion of two discs. Assume the sum of the radii of the two
discs equals the length |pg| of the segment. Then, if the two discs are osculating throughout
the whole motion, the two problems are equivalent.

In this paper, we adapt the techniques from [6] to square robots. Our problem involves
several differences because certain results are not applicable to discs, or because some cases

L Formally defined in Section 2; roughly, clockwise here refers to the direction of rotation of a vector from
the center of one robot to the center of the other robot throughout the motion, from start to goal.



G. Esteban et al. 21:3

he(0)
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Figure 1 The support function hc(6) of a closed curve C.

and other details were omitted in [6]. First, for squares, the shape and relative position
matters. The square corners create discontinuities in tangency points, which impacts the
definition of the cases that need to be analyzed. The relative position of the two squares
(more precisely, the slope of the line passing through the centers of the two squares) also
has to be taken into account. For example, the possible shapes of optimal motions can vary
considerably between horizontally-aligned and non-horizontally-aligned squares, giving rise
to situations that do not exist for disc robots. Second, when a disc slides along the boundary
of another disc, the distance between their centers remains constant, as opposed to the case
for squares, where the distance varies with the angle of contact. This forces us to derive new
conditions that guarantee the optimality of motions

2 The general approach

In this section we present the general framework used by Kirkpatrick and Liu [6] to prove
that a motion is optimal. The trace of a trajectory myx is defined as the image of mx in the
plane. For the remaining of this paper, we will use the notation myx to refer to a trajectory
mx and its trace. Let mx be the boundary of the convex hull of mx. The trajectory mx is

said to be conver if mx = mx U XoX1, where XyX; is the segment whose endpoints are
mx(0) = Xp and mx (1) = X;.

Let m = (ma,mp) be a motion from (Ag, By) to (A1, B;y). If both m4 and mp are
convex, and £(14) + £(7hg) is minimized over all motions from (Ag, By) to (A1, By), then m
is optimal among all motions from (Ao, By) to (A1, B1). The convexity of m and mp is
easy to verify, but the minimality of (i 4) + £(/p) is not. In order to facilitate proving
optimality, the problem of measuring ¢(m ) + £(Mmp) can be translated into the problem of
computing the width of a strip defined by a pair of supporting lines, one for m 4 and one for
mp [5]. Given a closed curve C, its support function hc(0) can be seen as the distance from
the origin to the extremal supporting line of C' in the direction § 4+ 7/2. See Figure 1 for
an illustration. Cauchy’s surface area formula [2] implies that if C; and Cs are two closed
convex curves, then £(Cy) + £(Cy) = fo% (hey (0) + hey (0 + 7))db.

We define h,, , (6) (resp., hm,(6)) to be the support function of M4 (resp., rip). Then
B (0) = Ry (0) + By (6 + ) can be interpreted as follows. For each 6 € S, let ¢y, ()
be the supporting line for M 4 in direction § + 7/2 and ¢, () the supporting line for mp
in direction 6 4+ m + 7/2. Then h,, () is the distance between the two supporting lines, as
illustrated in Figure 2.

Given two points X,Y, we define Z(X,Y) as the angle that vector 57)—(2 forms with
the positive z-axis. Let g = Z(Ap, By) and 6y = Z(Ay, By). If I is the range of angles
Z(ma(t),mp(t)) for all t € [0,1], then either [0y, 0;] C I or S\ [0, 61] C I (or both), due
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Figure 3 Illustration of d,(6,0’) for the same value of § and two different values of 6’.

to the continuity of the trajectories. In the first case, we call m a counterclockwise motion.
In the second case, we call it clockwise. All motions fall in at least one of the two categories,
counterclockwise or clockwise. Moreover, a motion can be clockwise and counter-clockwise at
the same time. Therefore, our strategy consists in finding a feasible minimum-length motion
in each of the two categories, and taking the best of both.

Given r = rp +rp and two angles 6 and 0, we define d,.(0, 8’) as the width of the minimum
strip containing any pair of points X and Y such that i) the bounding lines of the strip have
slope 0 + /2, ii) Z(X,Y) = 6" and iii) Y lies on the boundary of sq(X). Refer to Figure 3.

Let 1jg,9,) be the indicator function of the interval [0, 61], and let hy,(6) = hu, , (0) +
Ry (0),0 € S, where hy, , () is the support function of the segment AgAy, and hy,, () is
that of BoBi. Let LB(6) = max{hy,(6),s(6) - 1jg,,0,)}, where s(0) = maxg¢[g, 0, dr(0,0) is
defined as the distance between the centers of the robots. We can then observe the following.

» Observation 2.1. If m = (ma,mg) is a feasible counterclockwise motion from (Ao, By)
to (A1, By), then h,,(0) > LB(0) for all 0 € S*.

An analogous result holds for clockwise motions by replacing 1j9,,6,] by 1s1\[6y,6,) N
the definition of function LB(6). Finally, we present two conditions guaranteeing that the
support function h,, () coincides with LB(#), hence implying that m has minimum length.

» Lemma 2.2. Let m = (ma, mp) be a motion from (Ao, Bo) to (A1, B1). For any angle
0 € S, if the support points for h,,(0) are A; and B;, fori,j € {0,1}, then hy,(0) = LB(6).

» Lemma 2.3. Let m = (ma, mp) be a motion from (Ao, Bo) to (A1, B1). For any angle
0 € [0, 01], if the support points for h.,(0) are one point X of ma or mp and a boundary
point of its square sq(X), then h,,(6) = LB(6).
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Recall that by Cauchy’s surface area formula, the length of a (convex) motion equals the
integral of h,,(0) over all angles 6. Lemma 2.2 says that for a particular 6, no motion can

have smaller h,, () than the motion consisting of the two line segments AgA; and BoB.
Lemma 2.3 applies to the angles where the supporting lines are at a point X for one robot
and at the boundary of sq(X) for the other robot. In this case, the distance between the
supporting lines has to be at least s(6), achieved when one robot is sliding around the other
one. Any smaller distance at that angle would imply a collision.

3 The minimum-length motion

In this section we present optimal motions for any initial and final configurations of two
square robots, which will be different depending on the relative positions of Ag, A1, By, B1.

» Theorem 3.1. Let A and B be two axis-aligned square robots. Let their initial positions be
Ag and By, and their final positions be Ay and By, respectively. Up to exchanging the roles
of A and B, there exists a position A;ns such that the following is a minimum-length feasible
motion:

1. Mowe robot A along the shortest path from Ag to A;ne avoiding robot B.
2. Move robot B along the shortest path from By to By avoiding robot A.
3. Mowve robot A along the shortest path from A to A1 avoiding robot B.

The corridor corry is the Minkowski sum of the closed line-segment AgA; and a square
sq(X), where X is the origin. The definition of corrg is analogous. See Figure 4, where corry
is depicted in red and corrg in blue. The relative position of Ag, A1, By, B1 with respect to
corry and corrg completely determines the shape of an optimal motion. Up to symmetry,
exchanging the roles of A and B, or exchanging the roles of Ag by A; and By by B, we can
classify these relative positions in three types:

Easy: Ao ¢ corrg and By ¢ corry. See Figure 4(a).
Nested: Ag € cormg, A1 € cormg, By & corry and By ¢ corry. See Figure 4(b).
Multi-obstruction: Ag € corrg, By € corra. See Figure 4(c).

Due to space limitations, we only present a high-level description of the cases to convey
the general nature of our constructions, and defer most of the details to the full version.

For each case, the main challenges are i) defining an intermediate position A;,; and ii)
proving that the motion defined in Section 1.2 is feasible and optimal. In the following, it will
be more convenient to assume, without loss of generality, that By and B; are horizontally
aligned; this can be achieved with a suitable rotation (note that in the figures that follow,
squares have been rotated accordingly).

We start by noting that in the easy case, an optimal motion consists of translating each
of the robots directly from its initial to its final position along a straight-line segment, but
the order might be relevant. In the remaining cases, a straight-line motion is not possible,
see, for instance, Figure 5, so we need a finer analysis.

Let vis(Ag) be the region of corrg\ (sq(Bo)Usq(By)) that is visible from Ag. Let cone(Ap)
be the set of all points = such that the segment Agz intersects sq(By), but not sq(Bj). Let
t;; denote the upper tangent line from A; to sq(Bj), for 4,5 = 0,1. In the nested case
(resp., multi-obstruction) vis(Ag) (resp., cone(Ap)) is decomposed into four zones, defined
by the tangents t;;, see Figures 6 and 7. For each zone we specify a different location for the
intermediate point A;y;. Let p;; be the support point of line ¢;; in sq(B;). We say that two
tangents t;o and t;1 are twisted if p;; is to the left of t;0, for i € {0, 1}, see Figure 6.
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(a) Easy case. sa(B A
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(b) Nested case. (¢) Multi-obstruction case.

Figure 4 Examples of corridors corry (red) and corrg (blue).

Figure 5 Some optimal motions in the nested case. Left: A; € Zone I. Right: A; € Zone III.

To prove optimality we only examine motions that are counterclockwise; clockwise optimal
motions can be obtained by reflecting the initial and final placements across the z-axis,
and then examining counterclockwise motions. In the nested case, we differentiate three
cases. If the motion is fully counterclockwise (i.e., it does not contain clockwise (sub)motion
parts), and none of the tangents are twisted, we can verify that the sufficient conditions
from Lemmas 2.2 and 2.3 are fulfilled for any relative position of Ag, A1, By, B1. To that
end, we argue that for any angle 0 € [6y, 0;], either both supporting lines are touching A;
and Bj, for i, j € {0,1}, or one is touching a point X of one of the motions, and the other a
boundary point of its square sq(X). If the motion is fully counterclockwise, but at least one
pair of tangents t;g,t;1 is twisted, it might happen that the motion described above is not
feasible. Hence, we prove that there exists a clockwise optimal motion that is feasible and
globally optimal. Finally, if the motion contains clockwise (sub)motion parts, for some angles,
the motion might not satisfy any of the two sufficient conditions from Lemmas 2.2 and 2.3.
Therefore, we present an alternative motion m’, which is different in the coordination scheme
from m, but that is counterclockwise all the time and has exactly the same trace for A and
B (thus also the same length). By proving that m’ is optimal, we obtain that m is optimal
as well.

In the multi-obstruction case we show that the motion m is fully counterclockwise. Then,
by a reasoning analogous to the nested case, we prove that at least one of the sufficient
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Zone |

Zone 11
Zone 111
Zone IV

Figure 6 Zones in the nested case when top and to1 are twisted.

top W\ Joo a1

Zone IV Zone 111
Zone 11

Figure 7 Zones in the nested case when top and to1 are not twisted.

conditions from Lemmas 2.2 and 2.3 is fulfilled for each of the six cases that arise, hence
proving the optimality of the motion.
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—— Abstract

SPQR-trees model the decomposition of a biconnected graph into triconnected components. In this

paper, we study the problem of dynamically maintaining an SPQR-tree while expanding vertices
into arbitrary biconnected graphs. This allows us to efficiently merge two SPQR-trees by identifying
the edges incident to two vertices with each other.

Using efficient expansions and merges allows us to improve the runtime of the SYNCHRONIZED
PLANARITY algorithm by Blisius et al. [2] from O(m?) to O(m - A), where A is the maximum
pipe degree. This also reduces the time for solving several constrained planarity problems, e.g. for
CLUSTERED PLANARITY from O((n + d)?) to O(n + d - A), where d is the total number of cluster
border—edge crossings and A is the maximum number of edges crossing a single cluster border.

Related Version A full version of this paper is available at arXiv:2301.03972.

1 Introduction

The SPQR-tree is a data structure that represents the decomposition of a graph at its
separation pairs, that is the pairs of vertices whose removal disconnects the graph. The
components obtained by this decomposition are called skeletons. SPQR-trees form a central
component of many graph visualization techniques and are used for, e.g., planarity testing
and variations thereof [4, 7] and for computing embeddings and layouts [6, 9]. Initially,
SPQR-trees were devised by Di Battista and Tamassia for incremental planarity testing [4].
Their use was quickly expanded to other on-line problems [3] and to the fully-dynamic setting,
that is allowing insertion and deletion of vertices and edges in O(y/n) time [5], where n is
the number of vertices in the graph.

In this paper, we consider an incremental setting where we allow a single operation that
expands a vertex v into an arbitrary biconnected graph G,. The approach of Eppstein et
al. [5] allows this in O((deg(v) + |G,|) - v/n) time by only representing parts of triconnected
components.! We improve this to O(deg(v) + |G, |) using an algorithm that is much simpler
and explicitly yields full triconnected components together with an embedding of their
skeletons, which will become important for our applications later.

The main idea of our approach is that the subtree of the SPQR-tree affected by expanding
a vertex v has size linear in the degree of v, but may contain arbitrarily large skeletons. In a
“non-normalized” version of an SPQR-tree, the affected cycle (‘S’) skeletons can easily be
split to have a constant size, while we develop a custom splitting operation to limit the size
of triconnected ‘R’ skeletons. This limits the size of the affected structure to be linear in the
degree of v and allows us to perform the expansion efficiently. In Section 2 we describe the
datastructure we build upon to apply (and show the correctness of) these operations. Our

* Funded by DFG-grant RU-1903/3-1.

1 Unfortunately, the recent improvements by Holm and Rotenberg are not applicable here, as they
maintain triconnectivity in an only incremental setting [8], while maintaining only planarity information
in the fully-dynamic setting [7].
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(a) (b) (c)

N b

Figure 1 Expanding a vertex v of G, into a graph G, with the mapping ¢ indicated by orange
vertices at the same position, resulting in the graph G,[v —4 G.]. The red and orange dashed edges
are only relevant in the context of Section 3, in which the figure can also be interpreted as follows.
(a) The single allocation skeleton G,, of u with the single allocation vertex v of u from Figure 5b.
The neighbors of v are marked in orange. (b) The inserted graph G, with orange marked vertices.
(c) The result of applying InsertGraph(S,u,G., @) followed by an application of Integrate on the
generated virtual vertices v and v’.

main algorithm is described in Section 3, while Section 4 summarizes our improvements to
the runtime of solving SYNCHRONIZED- and CLUSTERED PLANARITY.

Preliminaries Let G be a loop-free multi-graph with n vertices V(G) and m edges E(G).
We denote the open neighborhood of a vertex v by N(v), excluding v itself. We use AJ B to
denote the union of two disjoint sets A, B. A bond is a graph that consists solely of two pole
vertices connected by multiple parallel edges, a polygon is a simple cycle, while a rigid is any
simple triconnected graph. A wheel is a cycle with an additional central vertex connected to
all other vertices. Finally, let G, G be two graphs, u € V(G,) and M C V(Gp), and ¢ a
bijection between N(u) and M. The graph Go[u —¢ Gg] where u in G, was expanded into
G is obtained from the disjoint union of G, G by identifying each neighbor x of u with
¢(x) and removing u; see Figure 1 for an example.

2 (Extended) Skeleton Decompositions

A skeleton structure S = (G, origV, origE, twinE) that represents a graph Gs = (V, E)) consists
of a set G of disjoint skeleton graphs together with three surjective mappings twink, origk,
and origV that satisfy the following conditions:
Each skeleton G, = (V,,, E;eal ©) El‘:i”) in G is a multi-graph where each edge is either in
Elrfal and thus called real or in El‘:irt and thus called virtual.
Bijection twinE : EV'* — EY" matches all virtual edges BV = J, E;** such that
twinE(e) # e and twinE? = id, where id is the identity function.
Surjection origV : | L Vi, — V maps all skeleton vertices to graph vertices.
Bijection origE : u E{fal — FE maps all real edges to the graph edge set E.
As the mappings are surjective, V and E are exactly the images of origV and origE. For
each vertex v € Gg, the skeletons that contain an allocation vertex v’ with origV(v') = v are
called the allocation skeletons of v. Furthermore, let Ts be the graph where each node p
corresponds to a skeleton G, of G. Two nodes of T's are adjacent if their skeletons contain a
pair of virtual edges matched with each other. Figure 2 shows an example of S, Gs, and Ts.
We call a skeleton structure a skeleton decomposition if it satisfies the following conditions:
1 (bicon) Each skeleton is biconnected.
2 (tree) Graph Ts is simple, loop-free, connected and acyclic, i.e., a tree.
3 (orig-inj) For each skeleton G, the restriction origV |y, is injective.
4 (orig-real) For each real edge uv, the endpoints of origE(uv) are origV(u) and origV (v).
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Figure 2 Different views on the skeleton decomposition S. (a) The graph Gs with a vertex u
marked in blue. (b) The skeletons of G. Virtual edges are drawn in gray with their matching twinE
being shown in orange. (c) The tree Ts. Allocation vertices and skeletons of u are marked in blue.
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Figure 3 (a) The graph from Figure 2a with two arbitrary SplitSeparationPair operations
already applied. (b) Splitting the big skeleton from the same graph along a bipartition into green
and red bridges.

.

5 (orig-virt) Let uv and w'v’ be two virtual edges with uv = twinE(u/v’). For their respective
skeletons G, and G, it is origV(V},) NorigV(V,,/) = origV({u,v}) = origV ({u',v'}).

6 (subgraph) The allocation skeletons of any vertex of Gs form a connected subgraph of Ts.

To model the decomposition into triconnected components, we define the operations
SplitSeparationPair and its converse, JoinSeparationPair. The former splits a skeleton
into two along a given bipartition of the bridges between a given separation pair, while the
latter removes a given pair of matched virtual edges by merging their skeletons. Both leave
the represented graph unaffected while splitting a node or contracting an edge in Ts; see
Figure 3 for an example and the full version for formal definitions and proofs. Similar to
Angelini et al. [1], we define the unique SPQR-tree of Gs as a skeleton decomposition § = (G,
origV, origE, twinE) where any skeleton in G is either a polygon, a bond, or triconnected
(“rigid”), and two skeletons adjacent in Ts are never both polygons or both bonds.

We now define a further set of operations which allow us to isolate vertices out of

arbitrary triconnected components by replacing them with a (“virtual”) placeholder vertex.

Modification of the edges incident to the placeholder is disallowed, which is why we call
them “occupied”. We keep track of these splits using an extended skeleton decomposition
S = (G, origV, origE, twinE, twinV). Skeletons now have the form G, = (V}, U Vuvm, Eﬁeal ©]
EYTt Y Egc©), where the edges in B are occupied. Bijection twinV : V¥ — V' matches
virtual vertices V't = J W Vi it such that twinV(v) # v, twinV? = id. Two virtual vertices
matched by twinV induce an edge between their skeletons in Ts. Condition 2 (tree) equally
applies to these edges, which in particular ensures that there are no parallel twinE and
twinV tree edges in Ts. Similarly, the connected subgraphs of condition 6 (subgraph) can
also contain tree edges induced by twinV. All other conditions remain unchanged, but we
add two further conditions to ensure that twinV is consistent:

7 (stars) For each v,,vg with twinV(vy) = vg, it is deg(vy) = deg(vg). All edges incident
to v, and vg are part of E)° (and thus occupied) and have distinct endpoints (except
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(a) (b)
isolate(v)

v, Ve v
integ(va,vp) e
G, Ga

Figure 4 (a) A triconnected skeleton G,, with a highlighted vertex v incident to two gray virtual
edges. The matching of virtual edges is hinted at by orange dashes lines. (b) The result of applying
IsolateVertex to isolate v out of the skeleton. The red occupied edges in the old skeleton G, form
a star with center v, while the red occupied edges in G connect all neighbors of v to form a star
with center vg # v. The centers v, and vg are virtual and matched with each other. Neighbor u of
v was split into vertices u. and ug.

for v, and vg). Conversely, each occupied edge is adjacent to exactly one virtual vertex.

8 (orig-stars) Let v, and vg again be two virtual vertices matched with each other by twinV.
For their respective skeletons G, and Gg (where o and f are adjacent in Ts), it is
origV (V) NorigV(V3) = origV (N (vy)) = origV (N (vg)).

Operations SplitSeparationPair and JoinSeparationPair can also be applied to an
extended skeleton decomposition, yielding an extended skeleton decomposition without
modifying twinV. To ensure that conditions 7 (stars) and 8 (orig-stars) remain unaffected,
SplitSeparationPair cannot be applied if a vertex of the separation pair is virtual.

Operations IsolateVertex and Integrate allow us to isolate vertices out of triconnected
components and integrate them back in without changing the represented graph; see Figure 4.
To isolate a vertex v, each neighbor u € N(v) is split into two non-adjacent vertices u,
and ug, where ug is incident to all edges connecting v with v, while u, keeps all other edges
of u. We connect all u,, to a single new virtual vertex v, using occupied edges, and all ug to
a single new virtual vertex vg using occupied edges. Finally, we match v, and vg via twinV.
As Integrate is the converse of IsolateVertex and has no preconditions, any changes
made by IsolateVertex can be undone at any time to obtain a (non-extended) skeleton
decomposition, and thus possibly the SPQR-tree of the represented graph.

3 Node Expansion in Extended Skeleton Decompositions

We now introduce the dynamic operation InsertGraph(S,u,G,,¢) that changes the repre-
sented graph by expanding a single vertex u into an arbitrary connected graph G,. This is
done by identifying | N (u)| marked vertices in G, with the neighbors of u via a bijection ¢
and then removing v and its incident edges; see Figure 1. To ensure that connectivity is not
reduced, we require GG, to be biconnected when all marked vertices are collapsed into a single
node. InsertGraph itself requires u € G5 to have only a single allocation vertex v € G, (and
thus only a single allocation skeleton G,). The full procedure InsertGraphgyg (S, u, G, ¢)
can be applied to any graph vertex u and, given an SPQR-tree S, yields the SPQR-tree of
Gs[u —4 G,]. It consists of three preparations steps, the insertion of G, via InsertGraph,
and two further clean-up steps:
1. Apply SplitSeparationPair so that each polygon allocation skeleton of w has size < 3.
2. Isolate all allocation vertices of w in rigid skeletons by applying IsolateVertex.
3. Apply JoinSeparationPair to any pair of adjacent allocation skeletons of u. Condition
6 (subgraph) ensures this yields a single component G,, with size linear in deg(u) that is
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Figure 5 The preprocessing steps of InsertGraphg,, being applied to the SPQR-tree of Figure 2b.

(a) The state after Step 2, after all allocation skeletons of u have been split. (b) The state after
Step 3, after all allocation skeletons of u have been merged into a single one.

the sole allocation skeleton of u with the single allocation vertex v of u; see Figure 5.

4. Apply InsertGraph to insert GG, as skeleton, followed by an application of Integrate to
the virtual vertices {v,v'} introduced by the insertion, thus integrating G, into G,,.

5. Apply SplitSeparationPair to all separation pairs in G, not containing a virtual vertex.

6. Exhaustively apply Integrate and also apply JoinSeparationPair to any two adjacent

polygons and to any two adjacent bonds to obtain the SPQR-tree of the updated graph.

The basic idea behind the correctness of this procedure (which we show in the full version)
is that splitting the newly inserted component according to its SPQR-tree in Step 5 yields

biconnected components that are each either a polygon, a bond, or “almost” triconnected.

The latter (and only those) might still contain virtual vertices and all their remaining
separation pairs, which were not split in Step 5, contain one of these virtual vertices. This,
together with the fact that there still may be pairs of adjacent skeletons where both are
polygons or both are bonds, prevents the instance from being an SPQR-tree. Both issues are
resolved in Step 6: The adjacent skeletons are obviously fixed by the JoinSeparationPair
applications. In the full version, we show that all separation pairs are removed by the
Integrate applications, making the remaining components triconnected. If the SPQR-tree
of the to-be-inserted graph is already known, we can isolate both vertices that should be
replaced, identify their neighborhoods and then only spend time linear in the degree of the
replaced vertices on clean-up operations. We call this variant Mergegpgg. Furthermore, it is
easy to maintain rotation information (i.e. a cyclic order of all incident edges) for each vertex
in a rigid, as each rigid allows exactly two planar embeddings, where one is the reverse of the
other [4]. This also allows maintaining a flag indicating whether the graph remained planar
(i.e. the rotations of integrated vertices agree with the rigid they are re-integrated to).

» Theorem 3.1. SPQR-trees support the operation InsertGraphgyg, in time O(|G,|) and
Mergegpqy in time O(deg(u)) while marking non-planar graphs as such. Queries for one of
the two possible rotations of vertices in planar triconnected skeletons take constant time.

By using union-find to keep track of which rigid skeleton vertices belong to, we can also
efficiently check whether a pair of vertices is triconnected and provide synchronized rotation
information for all vertices in a rigid. Note that the use of union-find leads to the inverse
Ackerman function being incorporated as overhead factor to every operation.
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4 Application to Synchronized Planarity

We use our datastructure to improve the runtime of the algorithm for solving SYNCHRONIZED
PLANARITY by Blisius et al. [2] from O(m?) to O(m - A), where A is the maximum pipe
degree (i.e. the maximum degree of a vertex with synchronization constraints that enforce
its rotation to be the same as that of another vertex). The algorithm spends a major part
of its runtime on computing embedding trees, which describe all possible rotations of a
single vertex in a planar graph. Once the embedding trees are available, each of the at most
O(m) executed operations runs in time linear in the degree of the pipe it is applied on, that
is in O(A) [2]. The quadratic runtime thus only stems from the linear re-computation of
embedding trees before each operation. As the SPQR-tree describes all embeddings of the
whole graph, it can be used to efficiently derive embedding trees of single vertices. The
applied operations might change the underlying graph by expanding vertices, thus one would
still need to spend linear time on re-computing SPQR-trees each iteration. Our dynamic
data structure can now be used to reduce the runtime of solving SYNCHRONIZED PLANARITY
by once generating SPQR-trees upfront, maintaining them throughout all applied operations,
and deriving any needed embedding tree from an SPQR-tree. The full version provides more
backgrounds on the problem, the operations needed to solve it, how embedding trees can be
derived from SPQR-trees and how we modify individual operations.

» Theorem 4.1. SYNCHRONIZED PLANARITY can be solved in time in O(m - A).

» Corollary 4.2. CLUSTERED PLANARITY can be solved in time in O(n+ d - A), where d
1s the total number of crossings between cluster borders and edges and A is the mazximum
number of edge crossings on a single cluster border.
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—— Abstract

We devise a data structure that can answer shortest path queries for two query points in a polygonal

n10+5) and

domain P on n vertices. For any ¢ > 0, the space complexity of the data structure is O(
queries can be answered in O(logn) time. This is the first improvement upon a conference paper by
Chiang and Mitchell [8] from 1999. They present a data structure with O(nll) space complexity.
Furthermore, our main result can be extended to include a space-time trade-off. Specifically, we
devise data structures with O(n%</£°+°) space complexity and O(£logn) query time for any

integer 1 < ¢ < n.

Related Version A full version of the paper is available at https://arxiv.org/abs/2303.00666.

1 Introduction

In the two-point shortest path problem, we are given a polygonal domain P with n vertices,
and we wish to store P so that given two query points s,t € P we can compute their geodesic
distance d(s,t), i.e. the length of a shortest path fully contained in P, in O(logn) time.
The main motivation to study the two-point shortest path problem is that it is a very
natural problem. It is central in computational geometry, and forms a basis for many other
problems. The problem was solved optimally for simple polygons (polygonal domains without
holes) by Guibas and Hershberger [13], and turned out to be a key ingredient to solve many
other problems in simple polygons. A few noteworthy examples are data structures for
geodesic Voronoi diagrams [20], furthest point Voronoi diagram [25], k-th nearest neighbor
search [1, 11], and more [12, 19]. In real life situations, the environment is often less restricted
than a simple polygon. For example, consider a boat in the sea surrounded by a number
of islands (Figure 2). Finding the fastest route to an emergency, such as a sinking boat,
corresponds to finding the shortest path among obstacles, i.e. in a polygonal domain. This
is just one of many examples where finding the shortest path in a polygonal domain is a
natural model of a real life situation, which makes it an interesting problem to study.

Figure 1 Given P and the query points s,t we want to compute the shortest path efficiently.
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Figure 2 Finding the shortest path among islands for a boat to an emergency.

Related Work. Chiang and Mitchell [8] announced a data structure for the two-point
shortest path problem in polygonal domains at SODA 1999. They use O(n!!) space and
achieve a query time of O(logn). They also present another data structure that uses “only”
O(n'%logn) space but O(log®n) query time. Since then, there have been no improvements
on the two-point shortest path problem in its general form. Instead, related and restricted
versions were considered. We briefly discuss the most relevant ones.

As mentioned before, when the domain is restricted to a simple polygon, there exists an
optimal linear size data structure with O(logn) query time by Guibas and Hershberger [13].

By parameterizing the query time by the number of holes h, Guo, Maheshwari, and
Sack [15] manage to build a data structure that uses O(n?) space and has query time O(hlogn).

Bae and Okamoto [3] study the special case where both query points are restricted
to lie on the boundary of the polygonal domain. They present a data structure of size
O(n*X¢6(n)) &~ O(n®) that can answer queries in O(logn) time.

When we consider the algorithmic question of finding the shortest path between two
(fixed) points in a polygonal domain, the state-of-the-art algorithms build the so-called
shortest path map from the source s [14, 16]. Hershberger and Suri presented such an O(n)
space data structure that can answer shortest path queries from a fixed point s in O(logn)
time [13]. The construction takes O(nlogn) time and space. This was recently improved by
Wang [26] to run in O(n + hlogh) time and to use only O(n) working space.

Two other relaxations that were considered are approximation [5, 23], and using the
Ly-norm [6, 7, 24].

Results. Our main result is the first improvement in more than two decades that achieves
optimal O(logn) query time.

» Theorem 1.1 (Main Theorem). Let P be a polygonal domain with n vertices. For any
constant € > 0, we can build a data structure in O(n'°*¢) space and expected time that can
answer two-point shortest path queries in O(logn) time. The shortest path of k vertices can
be returned in additional O(k) time.

One of the main downsides of the two-point shortest path data structure is the large space
complexity. One strategy to mitigate the space complexity is to allow for a larger query time.
For instance, Chiang and Mitchell presented a myriad of different space-time trade-offs. One
of them being O(n®+199+¢) space with O(n' =% logn) query time for 0 < § < 1. Our methods
allow naturally for such a trade-off. We summarize our findings in the following theorem.
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Figure 3 The augmented shortest path map of a vertex v. The shortest path map edges are solid,
and the additional edges in the augmented shortest path map are dotted. Each region is bounded by
three curves, of which at least two are line segments. Two regions and their apices are highlighted.

» Theorem 1.2. Let P be a polygonal domain with n vertices. For any constant € > 0 and
integer 1 < £ < n, we can build a data structure in O(n'0%e /(5+0©)) space and expected time
that can answer two-point shortest path queries in O(£logn) time.

For example, for £ = n*/® we obtain an O(n®%) size data structure with query time
O(n*®logn), which improves the O(n7*¢) data structure with similar query time of [8].

Organization. In Section 2, we give an overview of our main data structure. A full version
of the paper is available [10].

2 Global Approach

Direct Visibility. As a first step, we build the visibility complex as described by Pocchiola
and Vegter [21]. Tt allows us to query in O(logn) time if s and ¢ can see each other. If so,
the line segment connecting them is the shortest path. The visibility complex uses O(n?)
space and can be built in O(n?) time. So, in the remainder we assume that s and ¢ cannot
see each other, hence their shortest path will visit at least one vertex of P.

Augmented Shortest Path Maps. In our approach, we build a data structure on the regions
provided by the augmented shortest path maps of all vertices of P. The shortest path map of
a point p € P is a partition of P into maximal regions, such that for every point in a region
R the shortest path to p traverses the same vertices of P [17]. To obtain the augmented
shortest path map SPM (p), we connect each boundary vertex of R with the apex vy of the
region, i.e. the first vertex on the shortest path from any point in R towards p. See Figure 3
for an example. All regions in SPM(p) are “almost” triangles; they are bounded by three
curves, two of which are line segments, and the remaining is either a line segment or a piece
of a hyperbola. The (augmented) shortest path map has complexity O(n) [17]. Let T be
the multi-set of all augmented shortest path regions of all the vertices of P. As there are n
vertices in P, there are O(n?) regions in 7.

Because we are only interested in shortest paths that contain at least one vertex, the
shortest path between two points s,t € P consists of an edge from s to some vertex v of
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Figure 4 Two pairs of relevant regions in red and blue with the path whose length is fsr(s,t).

P that is visible from s, a shortest path from v to a vertex u (possibly equal to v) that is
visible from ¢, and an edge from u to t. For two regions S,T € T with s € S and t € T,
we define fsr(s,t) = ||svs|| + d(vs,vr) + ||vrt]|. The distance d(s,t) between s and ¢ is
realised by this function when vg = v and vy = u. As for any pair S, T with s € Sandt € T
the function fsr(s,t) corresponds to the length of some path between s and ¢ in P, we can
obtain the shortest distance by taking the minimum over all of these functions, see Figure 4.
In other words, if we denote by 7, all regions that contain a point p € P, we have

d(s,t) = min{fsr(s,t): S €T, T € Tt}

Lower Envelope. Given two multi-sets A, B C 7T, we can construct a data structure of size
O(min{| A, |B|,n}5%¢) that we can query at any point (s,t) with s € (A and t € "B to
find min{fsr(s,t) : S € A, T € B} in O(log(min{|A|, |B|,n})) time as follows. We refer to
this as the LOWER ENVELOPE data structure.

The functions fg7 are four-variate algebraic functions of constant degree. Each such
function gives rise to a surface in R®, which is the graph of the function f. Koltun [18] shows
that the vertical decomposition of m such surfaces in R® has complexity O(m57¢), and can
be stored in a data structure of size O(m®+¢) so that we can query the value of the lower
envelope, and thus d(s,t), in O(logm) time. We limit the number of functions fsr(s,t) by
using an observation of Chiang and Mitchell [8]. They note that we do not need to consider
all pairs S € A, T € B, but only min{|A|, |B|,n} relevant pairs. Two regions form a relevant
pair, if they belong to the same augmented shortest path map SPM (v), of some vertex v.
(To be specific, if v is any vertex on the shortest path from s to ¢, then the minimum is
achieved for S and T in the shortest path map of v.) We thus obtain a LOWER ENVELOPE
data structure by constructing the vertical decomposition of these min{|.A|, |B|,n} functions.

Naively, to build a data structure that can answer shortest-path queries for any pair of
query points s, t, we would need to construct this data structure for all possible combinations
of T, and T;. The overlay of the n augmented shortest path maps has worst-case complexity
Q(n*) [8], which implies that we would have to build Q(n®) of the LOWER ENVELOPE
data structures. Indeed, this results in an O(n'4¢) size data structure, and is one of the
approaches Chiang and Mitchell consider [8]. Next, we describe how we use cuttings to
reduce the number of LOWER ENVELOPE data structures we construct.
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LOWER ENVELOPE
data structure

on S €

and T €

Figure 5 Overview of our data structure. The first level cutting tree (red) is built by recursively
constructing a cutting = on the (orange) regions that intersect a cell A (purple). For each cell A,
we store a second level cutting tree (blue). For each cell A’ in Za, we build a LOWER ENVELOPE
data structure on all regions that fully contain A (dark red) and A’ (dark blue).

Cutting Trees. Now, we explain how to determine 7; more efficiently using cuttings and

cutting-trees. Suppose we have a set A of N (not necessarily disjoint) triangles in the plane.

A 1/r-cutting Z of A is then a subdivision of the plane into constant complexity cells, for
example triangles, such that each cell in = is intersected by the boundaries of at most N/r
triangles in A [4]. There can thus still be many triangles that fully contain a cell, but only a
limited number whose boundary intersects a cell. In our case, the regions in 7 are almost
triangles, called Tarski cells [2]. As we explain in the appendix, we can always construct
such a cutting with only O(72) cells for these types of regions efficiently.

Let = be a 1/r-cutting of 7. For s € A € E the regions R € T that fully contain A also
contain s. To be able to find the remaining regions in 7, we recursively build cuttings on
the N/r regions whose boundary intersects A. This gives us a so-called cutting tree. The set

Ts is then the disjoint union of all regions obtained in a root to leaf path in the cutting tree.

The Multi-Level Data Structure. Our data structure is essentially a nested cutting tree,
as in [9]. See Figure 5 for an illustration. The first level is a cutting tree that is used to
find the regions that contain s, as described before. For each cell A € = in a cutting =, we
construct another cutting tree to find the regions containing t. Let A be the set of regions
fully containing A and |A| = k, then the second-level cutting Za is built on the O(kn)
candidate relevant regions. See Figure 6. We process the regions intersected by a cell in Ea
recursively to obtain a cutting tree. Additionally, for each cell A’ € ZEa, we construct the
LowER ENVELOPE data structure on the sets A, B, where B is the set of regions that fully
contain A’. This allows us to obtain min fsr(s,t) for S € A and T € B efficiently.

Queries. To query our data structure with two sites s, t, we first locate the cell A, containing
s in the cutting E at the root. We compute min fgr(s, ) for all regions S that intersect Ay,
but do not fully contain Ay, by recursively querying the child node corresponding to Ag. To
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Figure 6 A sketch of the subproblem considered here, computing minsea,7e7 fs7(s,t). We
build a 1/r-cutting Za (shown in purple) on the set of relevant regions in 7 (blue). The regions
T: C T either fully contain the cell A" € E5 of the cutting that contains ¢ (dark blue), or their
boundaries intersect A’ (light blue).

compute min fgr(s,t) for all S that fully contain Ay, we query its associated data structure.
To this end, we locate the cell A; containing ¢ in Za_, and use its lower envelope structure
to compute min fer(s,t) over all S that fully contain Ag and all T that fully contain A,.
We recursively query the child corresponding to A; to find min fsr(s,t) over all regions T’
that intersect A;.

Sketch of the Analysis. By choosing r as n’ for some constant § = O(e), we can achieve
that each cutting tree has only constant height. The total query time is thus O(logn). Next,
we sketch the analysis to bound the space usage of the first-level cutting tree, under the
assumption that a second-level cutting tree, including the LOWER ENVELOPE data structures,
uses O(n? min{k,n}5%¢) space. The analysis for the second-level cutting tree is similar.

To bound the space usage, we analyze the space used by the large levels, where the
number of regions is greater than n, and the small levels of the tree separately, see Figure 7.
There are only O(n?) large nodes in the tree. For these min{k,n} = n, so each stores a data
structure of size O(n®¢). For the small nodes, the size of the second-level data structures
decreases in each step, as k becomes smaller than n. Therefore, the space of the root of a
small subtree, which is O(n®+¢), dominates the space of the other nodes in the subtree. As
there are O(n?) small root nodes, the resulting space usage is O(n'0%¢).

3 Concluding remarks

The LOWER ENVELOPE data structure we use is actually more powerful than we require:
it allows us to perform point location queries in the vertical decomposition of the entire
arrangement, while we are only interested in lower envelope queries. The (projected) lower
envelope of m four-variate functions has a complexity of only O(m**¢) [22]. However, it is
unclear if we can store this lower envelope in a data structure of size O(m**¢) while retaining
the O(logm) query time. We are currently investigating if we can achieve such a bound
using kinetic Voronoi diagrams. This would then immediately improve the space usage of
our two-point shortest path data structure.
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Figure 7 We analyze the large levels, built on > n regions, and the small levels, built on < n
regions, separately. The total space usage is O(n'%"%).

n
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—— Abstract

Motivated by Bukh’s counterexample to Eckhoff’s Partition Conjecture, we define Radon numbers

for families of isomorphism classes of graphs and completely characterize families with Radon number
at most four in terms of small forbidden subgraphs.

1 Introduction

Radon’s Lemma [7] states that whenever we have X ¢ R? with |X| > d+2, we can partition X
into two disjoint subsets X*u X~ = X such that conv(X*)nconv(X ™) # @, where conv(S) is
the convex hull of S ¢ R%. One of its generalizations is Tverberg’s Theorem [8], which can be
stated as follows. For any k > 2 if we have X c R? with |X|> (d+1)(k-1) + 1, then we can
partition X into disjoint subsets X; U...u X} such that N; conv(X;) # @. Eckhoff’s Partition
Conjecture [2, 3] states that Tverberg’s Theorem is a purely combinatorial consequence of
Radon’s Lemma. For an exact statement, we need to define abstract convexity spaces and
their generalized Radon numbers. For an overview of convexity spaces and their invariants
see the book by van de Vel [9].

A set X and a family of its subsets C forms a convexity space if X and @ are members of C,
C is closed under arbitrary intersections, and under union of nested sets. In this sense R and
the family of all the convex sets in R? forms a convexity space. The convex hull of a subset
S ¢ X in a convexity space is conv(S) = Ngccec C- The kth generalized Radon number of a
convexity space (X,C) is the smallest 7, such that any subset S ¢ X with |S| = 7, can be
partitioned into k& nonempty disjoint subsets S = vk, S; with N%; conv(S;) # @. If no such
number exists, let ry = co. We will call r = ro simply the (not generalized) Radon number.
Calder [2] and Eckhoff [3] conjectured ry, < (r—1)(k—1) + 1 for every convexity space.

Upper bounds on rj, can be used to prove the existence of weak epsilon-nets [4]. It was
confirmed by Jamison [5] that the conjecture holds if ro = 3. In general, the best upper

s

bound of 7 in terms of k and 7 = ro is r < (2k)'°%27 by Jamison [5] and 7y, < krrrlogz by
Pélvolgyi [6]. However, after being open for more than thirty years, the conjecture itself was
refuted by Bukh [1], as he constructed convexity spaces with r = 4 and r, > 3k — 1.

Bukh first constructs a violating subset .S, which shows that r, > 3k—1, and decides which
convex hulls of subsets of S intersect. Every intersection can be described using a hypergraph
with the base set .S, with the resulting hypergraph family satisfying certain natural conditions.
After adding a new point to every required intersection, the (not generalized) Radon number
of the resulting convexity space depends on the following property.

» Definition 1.1. A family A of hypergraphs has Radon number at most r, if for ev-
ery Hy,...,H, € H, there is a partition I v .J = [r] into nonempty subsets such that

(niel Hi) U (ﬂjeJ Hj) eH.
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To see how this property arises from a convexity space with bounded Radon number, let
H,,H,,H, and H, be collections of all the convex sets containing the points z,y, z and w
respectively. In this case conv({x,y}) is the intersection of all the convex sets in H, n H, and
conv({z,y})nconv({z,w}) is the intersection of all the convex sets in (H,nH,)u(H.NnH,).
In this paper, we investigate the property described in Definition 1.1 in the case when H is a
family of graphs with the hope that it will contribute to a better understanding of Radon
numbers of convexity spaces.

The paper is organized as follows. In Section 2 we define the Radon number for graph
families and give some general results. In Section 3 we show that graph families with Radon
number at most three are trivial, and in Section 4 we state and prove our main result,
Theorem 4.1, which characterizes graph families with Radon number four. Section 5 contains
open questions. Due to space restrictions, some proofs will only be available in the final
version of the paper.

2 Radon number of graph families

In the rest of the paper, we will consider graph families which are closed under any isomor-
phism of any graphs in the family and are also closed under taking subgraphs. Since the
considered graph families are closed under isomorphisms of individual graphs, we have to
fix a vertex set as the domain of these isomorphisms. In this paper, we assume that the
underlying vertex set is finite but large enough. We only consider simple graphs and identify
graphs with their edge sets. We will denote the number of edges in a graph G by |G]|.

» Definition 2.1. A family G of graphs has Radon number at most r, if no matter how
we choose G1,...,G, € G, there is a partition I v J = [r] into nonempty subsets such that
(Nier G U (ﬂjeJ Gj) €eg.

We will call (N;er Gi)U (mjeJ Gj) a Radon-major of G1,...,G,. The smallest number
r(G) such that G has Radon number at most r is the Radon number of the family G.

» Example 2.2. If G consists of all the n-cliques and their subgraphs, then r(G) =n + 1.

Proof. First, we show that 7(G) <n+1. Let Gy,...,G, be cliques on n vertices and consider
the sequence ﬂz=1V(Gi) for 1 < j < n+1, where V(G;) is the vertex set of G;. If there exists a j
with nzﬂV(Gi) = ﬂgillV(Gi)7 then n{zlGi c Gj41 and thus G = (ﬂ{zlGi) u (n?jjﬂlGi) c Gjiu,
which implies G € G. Otherwise we have |nI"; V(G;)| < 1, and thus (N, G;)UGp+1 = Gpi1 €G.

To show that r(G) > n, let G1,..., G, be different n-cliques on base set [n +1]. For every
partition I wJ = [n + 1], the graph G = (n;e1G;) U (njesG;) has n+ 1 vertices, but none of
them is isolated. Thus, G is not a subgraph of an n-clique. <

Our main tool in considering Radon numbers of graph families will be an analog of Helly’s
Theorem. We need two preliminary definitions to state it.

» Definition 2.3. The h-Helly closure #,(G) of a graph family G consists of all graphs H
for which every at most h-edge subgraph of H is an element of G.

As an example, if G consists of all the stars with at most h edges, then its h-Helly closure
consists of all the stars with an arbitrary number of edges.

» Definition 2.4. We say that a graph family G implies a graph G under the condition
r(G) <t if every graph family G’ 2 G with r(G’) < ¢ contains G as well. In notation G = q.
We also write G L Ffora graph family F, if G =5 F for every F e F.
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The following is an analog of Helly’s Theorem for graph families.

» Lemma 2.5 (Helly Property). For every graph family G and every integer h >0 we have

r<h+1

Proof. The proof of Lemma 2.5 mimics Radon’s proof [7] of Helly’s Theorem. Let G’ be a
family containing G and satisfying r(G’) < h + 1. We will prove H € G’ for every H € H;,(G)
by induction on the number of edges in H. If H has h elements, then it is equal to some
G € G and hence a member of G’. For the induction step, assume that H has more than h
edges and that every proper subgraph of H is a member of G'. Let Hy,..., Hy.q be different
subgraphs of H, each containing exactly |[H| -1 edges. For every [ v J = [h + 1], we have
(Nier Hi) U (ﬂjeJ Hj) = H, showing that G’ must contain H as well. <

» Lemma 2.6. If r(G) <t for a graph family G, and a graph family G' consists of graphs
with at most t —2 edges, then r(GuG’') <t as well.

Proof. Let G1,...,Gy € GuG'. If there is any GG; with at most ¢t — 2 edges, then there are

two different I, 1" c [t] with |I|=|I'|=t-1, i€ I nI" and nje;G; = NjerrG; by the pigeonhole

principle. In particular, nje;Gj ¢ Gy if {k} = [t]~T and nje;G; UGL S GreGuUG'.
Otherwise Gy, ..., G € G and there exists TwJ = [t] with (N;erGi) U(NjesGj) cGeG. <

» Corollary 2.7. Every graph family G with r(G) =t is a union of a family of graphs with at
most (t —2) edges and a (t —1)-Helly closure of a family of graphs with exactly t — 1 edges.

3  Graph families with Radon number at most 3 are trivial

» Claim 3.1. If r(G) =2 for a graph family, then either G is the empty family or G contains
the empty graph with no edges or G contains all the graphs.

Proof. Graph families with Radon number 2 are not only closed under isomorphism of graphs
and taking subgraphs (as all the considered families), but also under union of graphs. <

» Claim 3.2. If r(G) =3 for a graph family G, then G consists of all the graphs with exactly
one edge.

Proof. If G contains only graphs with exactly one edge, then r(G) = 3. Suppose G contains
one of the two different non-isomorphic simple graphs with exactly two edges, a path (denoted
from now by the symbol A), or a graph consisting of two disjoint edges (denoted by =). We
show that any of them contains the other in its 2-Helly closure, thus G must contain all the
graphs.

If we have A € G, then every triangle is a member of G by Lemma 2.5. Let G; be the
triangle with vertices {i} \ {1,2,3,4} and consider Gy, G2, G3. Every Radon-major of them
is isomorphic to G1 U (G2 N G3), which contains two disjoint edges. Thus, = must also be a
member of G, since G is closed under taking subgraphs.

If have = € G, we can use G = {12,45,78}, G2 = {12,56,89} and G3 = {23,45,89} to show
that A must also be a member of G (we denote edges of the form {i,j} simply by ij). “
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4 Graph families with Radon number 4

We will use the following symbols for the five isomorphism classes of graphs with exactly
three edges: =, 4, A =, 1. The first denotes a graph with three disjoint edges, the second a
star with three edges, the third a triangle, the fourth a disjoint union of a path with two
edges and an edge, and the fifth a path with three edges.

» Theorem 4.1. If a graph family G with Radon number at most 4 contains any of the four
families

{=h{x 20 {5 8,00 {2,2,0},
then it contains all the graphs. If a graph family contains none of the above-listed families,
then its 3-Helly closure has Radon number at most 4.

We prove the first part of Theorem 4.1 in Subsection 4.1 and we sketch the proof of the
second part in Subsection 4.2.

4.1 Implications

Proof of the first part of Theorem 4.1. If G contains one of the listed four families and
has Radon number at most 4, then it must contain the 3-Helly closure of that family by
Lemma 2.5. We will show that much more is true, and G must contain all other graphs with
at most three edges under the assumption that 7(G) < 4. In the proofs, we will repeatedly
find four graphs in the 3-Helly closure of the previously guaranteed graphs in G with the
property that all the Radon-majors of them contain at least one new 3-edge subgraph.

Consider the seven different 2-partitions of {1,2, 3,4}, namely 1|234, 2|134, 3|124, 4|123,
12|34, 13|24 and 14|23. Let Iy, J1,. .., Iz, J7 be the subsets of these partitions in the previous
order. For example I; = {1} or J7 = {2,3}.

If = is in G, consider seven vertex-disjoint copies of A, each corresponding to a different 2-
partition of {1,2,3,4}. Name the two edges of the kth copy as {egk), eEk)} and let G,...,Gy
be such that G, = {egk) lelp}u {e§k) 1l e Jg}. All the G;s are part of the 3-Helly closure
of {=} and every Radon-major of them contains = as a subgraph, thus {=} =% . Similar
constructions show that {=,=} =5 A, x and N. Thus, if 7(G) <4 and = € G, then G contains
all the graphs with at most three edges. But every graph is in their 3-Helly closure, so G
must contain all the graphs by Lemma 2.5.

If we have {x,=2} c G, then the graphs G, = {{0,k} : ¢ € I};} u {{k,8} : £ € J} for
£e{1,2,3,4} show that {+, =} "4 . Now the graphs G, :i€{1,2,3,4} with G; being the

r<4

complete bipartite graph between {i,5} and {#,5} ~ {1,...,5} show that {+,2,n} — A.
From here four different five-clique on {1,2,...,6} shows that {~, &, n, =} ==

Four different four-cliques on {1,2,3,4,5} shows us that {+, A, r} %% « and from there

r<4
we have seen {X, A M =~} — =

Finally, if we have {4, 2,1} c G, then we can take G; to be a five cycle with vertices
1,2,3,4,5, G2 a disjoint union of two triangles with vertices 1,2,3 and 4,5,6, G3 a path
with five vertices 2,3,4,6,5 and G4 another path with five vertices 1,3,4,5,6, showing

r<4 . r<4
{A,2,n} — &. We are done, since we have seen that {4, A, n =2} — =. )

4.2 Radon-closed families

To show that a certain graph family G has Radon number 4, we have to exclude the possibility
of the existence of Gy, ...,G4 € G without a Radon-major in G. The following claims show
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some necessary properties of such quadruples of graphs. Due to space restrictions, the proofs
of corollaries will be available only in the final version of this paper.

» Claim 4.2. IfG4,...,G4 € G has no Radon-major in G, then the 3-wise intersections of
them must be nonempty and distinct.

Proof. If a three-wise intersection is empty, for example G; N Go N G3 = @, then G4 is a
Radon major, as (G1 NnGanG3) UGy = Gy.

If two of the three-wise intersections are equal, for example Gy N Go NG = Go N G3 N Gy,
then G4 is a Radon-major, as (G1 N GanG3) UGy = (GanGsnGy) UGy =Gy <

» Claim 4.3. If G1,...,Gy4 are arbitrary graphs, then Ui, (Njzi G;) € Ha({G1,...,G4a}).

Proof. If we choose 3 edges from the union of the 3-wise intersections, there will be a G;
among G1,...,G4, which contains all the 3 edges. <

» Corollary 4.4. If G is one of {~},{~,n} or {x, A}, then r(H3(G)) = 4.

Given four graphs G1,...,G4 and subset I c {1,2, 3,4}, we will say that an edge e € U, G;
is I-type, if e € N;e; G but for every J 2 I we have e ¢ Njes Gj.

» Claim 4.5. If G4,...,G4 € H has no Radon-major in a 3-Helly closure H of a graph family,
then there is either a {1,2}-type edge or a {3,4}-type edge in U;G;.

Proof. If there is no {1,2}-type edge, then G1 N G2 = (G1NnGanG3) U (G1NnGanGy) e H
by Claim 4.3. We must have an edge e in (GsnGy) N ((G1nG3nGy)u(GanGsnGy)),
otherwise (G1 N G2) U (G3nGy) € H would be a Radon-major. “

» Corollary 4.6. If G is one of {=, 2} or {=,n}, then r(H3(G)) = 4.
» Claim 4.7. If all G € H3(G) has |G| <4, then r(H3(G)) < 4.

Proof. Let GG1,...,G4 € H and consider first the 3-wise intersections of them. If G1,...,Gy
have no Radon-major in #, then by Claim 4.2 every GG; must contain at least 3 edges, one in
each distinct 3-wise intersection where G; is one of the intersecting graphs.

By Claim 4.5 at least three of the 2-wise intersections must be of size at least three. It
follows from the pigeon-hole principle that at least one of the G;s have at least five edges. <«

» Corollary 4.8. If G is one of {n},{=},{2a} or {m, A}, then r(H3(G)) = 4.

Proof of the second part of Theorem 4.1. If G does not contain any graph with at least
three edges, then 7(G) <4 by Lemma 2.6.

If G does contain graphs with at least three edges, r(G) = 4 and G does not have
{=},{~, 2}, {~, &,n} or{A, 2, N} as subfamilies, then its 3-Helly closure equals to the 3-Helly
closure of one of the remaining nonempty subfamilies of the five isomorphism classes of
graphs with three edges. These subfamilies are exactly the families listed in Corollaries 4.8,
4.4 and 4.6 and the Radon number of each of their 3-Helly closures is 4. <

5 Open questions

We chose the following two questions with the hope that investigating them will bring us
closer to improving Bukh’s counterexample to Eckhoff’s Conjecture. The next step towards
the general setting of hypergraphs might be to consider families of 3-uniform hypergraphs
with the straightforward generalization of the definition of Radon numbers for graph families.

EuroCG’23
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» Problem 5.1. Characterize families of 3-uniform hypergraphs with Radon number 4.

One might also try to find analogs of Bukh’s construction with larger Radon numbers.
The first step might be to consider graph families with Radon number 5.

» Problem 5.2. Characterize graph families G with Radon number r(G) = 5.

Acknowledgement. The author would like to thank Domé&tor Palvolgyi for a lot of interesting
and encouraging discussions during the research.
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—— Abstract

One of the great challenges of convexity is being able to decide whether or not a given simplicial
complex that could be realizable as a convex set actually can be realized as the convex hull of
a finite point set or not. Recently there have been two algorithmic approaches for this, namely
slack realization spaces and Pliicker trees. None of these are “better” that the other in every case:
the latter is usually faster and can tackle more problems and bigger instances, but the former can
still solve some problems that the other one can’t. This extended abstract reports on the recent
improvement of Pliicker trees to Pliicker cubes, which work towards closing this gap.

1 Introduction

High-dimensional objects can be counter-intuitive: some manifolds cannot be triangulated;
some manifolds have the homology of a sphere but are not spheres; some spheres have vertex
links that are not spheres. We don’t even understand the boundary between combinatorics,
topology and geometry: Given a triangulated combinatorial manifold homeomorphic to a
sphere, does there exist a convex polytope whose boundary is that triangulation? We know
that in the overwhelming majority of cases, the answer is “no” [1, 8], but we cannot yet
effectively (never mind efficiently) decide any given concrete instance.

The two most sucessful general approaches known so far are the classical Pliicker embedding
of the Grassmannian [2] approach going back to Bokowski and Sturmfels, and the more
recent slack realization spaces [6, 7] by Gouveia, Macchia and Wiebe. Early implementations
of the Pliicker embedding approach used linear programming and special combinations of
Grassmann-Pliicker polynomials (1) called “biquadratic final polynomials”, while the most
recent grass-plucker algorithm [9], released in polymake 4.7 [5], uses a combinatorial search
to combine such polynomials in a more general way. In contrast, the slack realization space
approach also uses linear programming [7], and has been implemented in Macaulay 2.

While generally the grass-plucker algorithm can process larger instances and is faster, the
slack realization space approach can still prove several more instances of non-realizability,
largely because it allows to successively specialize certain orientations in an ad-hoc decision
tree. The grass-plucker3 algorithm presented in this paper systematically incorporates this
feature into the Pliicker embedding approach, under the name of Pliicker cubes.

2 An example

Let’s input the prismatoid #375 [3] into our algorithm grass-plucker3 and describe its output.
> = Il375 is a simplicial sphere of dimension 4 with 15 vertices, which we label
0,...,9,a,b,c,d,e for convenience, and the following list of 101 facets:

01234, 0124b, 0128b, 0128d, 0129d, 013ab, 0134b, 0136a, 0136¢c, 0138c, 0138d, 0139d, 016ab,
016bc, 018bc, 023ab, 0234b, 0235a, 0259a, 026ab, 0268b, 02689, 0269a, 0289d, 0359a, 0369a,

* Supported by the grant PID2019-106188GB-100 from the Spanish Ministry of Education (MEC).
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0369¢, 038ce, 0389d, 0389e, 039ce, 06bce, 068be, 0689, 069ce, 08bce, 1234d, 1239d, 124bd,
128bd, 134bd, 136ce, 1368a, 1368¢, 138ab, 138bd, 138ce, 16abc, 168ac, 168ce, 18abc, 2345b,
23456, 23467, 23478, 2348d, 235ab, 2356¢, 2357c, 2367c, 2378e, 2379, 2389d, 2389, 245bd,
24568, 2458d, 24678, 256ab, 2568b, 2569a, 2569¢, 2579¢, 258bd, 267ce, 2678¢, 2689, 269ce,
279ce, 3456b, 3467b, 347bd, 3478d, 356ab, 3569a, 3569c, 3579¢, 367ab, 367ce, 3678a, 3678e
378ab, 378bd, 379ce, 4568b, 458bd, 467bd, 4678d, 67abd, 678ad, 78abd.

This list of facets is the entire input to the problem! The task is to determine the
realizability of ¥ as a convex polytope without recourse to any other information.

In this case, our algorithm proves that ¥ is in fact not realizable as a convex polytope,
and it does so by exhibiting the “Pliicker cube” depicted in Figure 1:

HAIM] + [DI'[V] + [KIE] = 0 HAM] + [DI[V] + [KE] = 0
| |
~[K)[BI’ - [LID) + [MI[F)* =0 +HAIBY - [CIDT + [E)FT =0
\ /
(B = =, [F]' =+ — [BI =+, [F)' =+

(B = =, [F) = = — [BI' =+, [F)" =
/ \
~INI[FT” + [QI[C] - [BI'[P] = 0 ~(GIHT + (N[BY - )FY =0

Figure 1 A Pliicker cube (in this case, a square) proving the non-realizability of II375. Notice
the difference between the polynomials with 3 terms that must equal 0 in any realization (explained
in item 2 below) and the sign choices for the blue monomials in the inner square (see item 3).

This diagram is read as follows: Since the sphere ¥ = Il375 has dimension d = 4, each
4-simplex facet has d + 1 = 5 vertices, and each solid d + 2 = 6 vertices, see Table 1 below.

(In the case d = 2, each triangular facet of a simplicial 2-sphere has d + 1 = 3 vertices,
while the solid tetrahedra that “live in the space R?T!” have d + 2 = 4 vertices.)

A =234675 B =23578b (C =1234785 D =23567b E =234b57 F = 235678
G =237e85 H =23678b I =367e82 J=237e8b K =236c75 L = 2357c8
M =2357cb N =234b58 O =3678a2 P =245683 (Q = 2568b3 R = 23467a
S =346b72 T =367ab2 U =246783 V =2357c4

Table 1 The solids involved in Figure 1, where we have labeled the 15 vertices by 0,...,9,a,...

In Figure 1, we don’t actually consider the solids from Table 1 themselves, but we moreover
orient them positively using the orientation of the sphere ¥ whenever we can (see item 1
below). This orientation is denoted by square brackets [X] around the letter X denoting the
solid. Whenever the orientation could be either way we indicate this by appending a small
question mark to the square brackets, like [X]?; this is explained in items 3 and 4 below.

We now discuss each feature of Figure 1 in turn.



J. Pfeifle 25:3

1. The “black” solids: All solids in Figure 1 except for B, F' and D, H are oriented positively:
in any convex realization of ¥ in R4+, the determinant of the (d+2) x (d-+2) matrix whose
columns contain the homogeneous coordinates of the vertices in each black solid, listed
in the given order, is positive. This can be done because each black solid S = F U {vg}
contains the vertex set of a facet F' of 3, and using a basis for the top-dimensional
homology of ¥ (which has rank 1 and only depends on the combinatorics of the sphere,
not on any realization), we can permute the vertices in F, i.e., reorient F, to achieve that
the extra vertex vy lies on the “positive” side of the hyperplane spanned by F.

For example, the solid A = 234675 contains the facets f = 23456 and f’ = 23467, which
both turn out to be oriented positively in the homology basis. Appending the extra
vertex vg = 7 to f and adjacent-swapping 5 twice towards the end yields [A] and preserves
the positive orientation, as does appending the extra vertex v =5 to f’.

On the other hand, the solid K = 236¢75 contains the positive facet f = 2357c and the
negative facet f’ = 2367c. Appending vg = 6 to f one reaches [K] with an even number
of adjacent swaps, preserving the orientation, while after appending v, = 5 to f’ one
needs one adjacent swap to make the solid positively oriented.

2. The polynomials: Each polynomial in Figure 1 is a Grassmann—Pliicker polynomial (in
this paper, a GP polynomial)

d+2
F(I7J) = Z(_l)k[ila"'aidajk] [j17"'7jka"'ajd+2] (1)
k=1

for any two index sets I € ([Z]) and J € ( d[f_]Q), where as usual the hat notation 3k means

omission of the k-th index from J. Each monomial has d + 1 entries and is therefore a
solid of X.

It turns out that every GP polynomial is zero in any convex realization of ¥, and these
relations are called Grassmann-Pliicker relations, or in this paper, GP relations:

I(I,J) =0 foralllc (@), Je (d[:i]Q).

The reason why the signs in the GP polynomials of Figure 1 do not alternate as nicely as
(1) suggests is because we have permuted some solids to make them positively oriented.

3. The sign choices for the “blue” solids: In contrast, the solids [B]” and [F]* do not contain a
(boundary) facet of ¥, so their orientations can take either sign depending on the concrete
realization of 3, cf. Figure 2. The 2% = 4 vertices [B]" = +, [F]" = + of the 2-dimensional
Pliicker cube account for all combinations of signs of these undetermined solids.

4. The “red” solids: The orientations of the solids [D]* and [H]" are also not determined
by the combinatorics of ¥, and again for every sign with which these solids appear in a
GP polynomial, there is a GP polynomial in which it appears with the opposite sign.

Some more comments on the notation:

The presentation of the black solids in Table 1 has been chosen so that the first five
indices describe a positively oriented facet, and the last index a vertex not on it.

By checking against the list of facets, one may check that no red solid and no blue solid
contains any facet, compare Figure 2 below. To make this visually explicit, we append a
small question mark to these solids: [B]*, [F]*, [B]*, [H]".

The only reason for distinguishing blue and red solids is to keep track of which signs (the
blue ones) are being exhaustively enumerated, i.e. all sign combinations appear in the
Pliicker cube, and which ones (the red ones) only appear opportunistically.

EuroCG’23



25:4 Proving non-realizability with grass-plucker3

Figure 2 If a solid tetrahedron determined by the vertices of the sphere (in this case, an

octahedron) does not contain a boundary facet, its orientation can be positive or negative.

The positive orientation [X] of a solid X is actually one of the two equivalence classes of
permutations of the vertices of X with the same parity. Which class we are really talking
about in any particular case is determined by the orientation of the boundary of ¥ given
by the top homology class. We represent undetermined solids by the lexicographical
ordering of its vertices.

The fact that all terms connected to the central square in Figure 1 and containing red
solids are negative is purely coincidental.

2.1 What is the actual point of the whole diagram?

Consider the undetermined solids [B]” = [23578b]° and [F]’ = [235678]". For each of the
22 = 4 possible sign patterns that can occur, the monomials containing these solids in the
GP polynomial at the corresponding vertex of the cube are positive.

For example, if [B]’ = + and [F]’ = —, then the monomials containing these solids in

the following GP relation are positive:

— [GI[H]" + [1][B] = [J][F]" = o. (2)
If, in this realization of X with [B]’ = + and [F]* = — that we are considering, it also
happens that [[]’ = —, then all terms in the GP polynomial in (2) are positive — but

that cannot be, because any GP polynomial vanishes for any realization of 3.

On the other hand, if [/]” = +, then the GP polynomial
+[R|[H]" + [O][8] + [T][U]

connected to it in the lower right of Figure 1 is positive, which is also impossible.

In this way, Figure 1 provides a GP polynomial contradicting realizability for any

combination of signs of the participating undetermined solids. Notice that the GP polynomial
+[A][M] + [D]’[V] + [K][E] is used in two distinct vertices.

3

The grass-plucker3 algorithm

On a high level, we execute the following steps:
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Enumeration of GP polynomials: The T'(I,J)’s are at the heart of all subsequent data
structures, and generating and storing them efficiently is vital. Even though the user
can limit their number, for example by specifying the maximal number of terms or the
maximal number of undetermined solids, control of memory consumption is still a critical
issue. For this reason, the present implementation limits the maximum number of vertices
of ¥ to 32, and stores each I'(Z, J) in implicit form as a single 64-bit integer whose high
and low 32 bits contain a bitset representation of I and J, respectively.!

Identification of potential leaves: Some spheres have a positive GP polynomial with no
undetermined solids, which directly proves their non-realizability.
The next step up are GP polynomials with exactly one undetermined solid, and they are
special and precious: They make up leaves of the resulting decision tree.
We maintain an ordered list for leaves and another ordered list for non-leaf decision trees,
and refer to both leaves and trees via their indices (offsets) in those lists.
Next, we represent each undetermined solid S as a bitset in a signed integer dubbed
sush (for “signed undetermined solid hash”), and maintain two map data structures
that operate on such a sush S: leaf_of_sush takes S to the index of one leaf, i.e. a
GP polynomial in which S occurs as the only undetermined solid with the specified sign,
while nonleaf_trees_of_sush takes S to all indices of the trees in which S is unpaired.
Whenever we encounter a new GP polynomial I" with exactly one undetermined solid S,
we check whether leaf_of_sush[-S] already exists (in which case we have found a
certificate consisting of two GP polynomials), and whether nonleaf_trees_of_sush[-S]
exists (in which case we “close off” the unpaired solid —S in those trees, and hopefully
come closer to having a tree with no unpaired solids).

Enumeration of cubes, and conversion to trees: If no certificate was found yet, we enu-
merate all tuples C' = {S1, Sa, ..., Sk} of “blue” sushes such that for each assignment of
signs to the S;, there exists a GP polynomial in which the S; occur with those signs — in
Section 2, we would find C' = {[B]*, [F]’}, among others. In general, there are many such
GP polynomials for each “cube vertex”, i.e., each selection of signs, and we choose from
among them in a compatible way according to some criteria: For instance, we will favor
GP polynomials with fewer “red” undetermined solids that are not in C, and if a given
“red” undetermined solid (such as [D]” in Section 2) occurs in more than one vertex, we
make sure it always occurs with the same sign. Each choice yields a tree with “special”
nodes corresponding to the cube vertices, and “usual” nodes corresponding to the chosen
GP polynomials. Of course, we immediately check if each obtained tree can be completed
using leaf_of_sush, and this yields the result in Section 2.

Joining trees: If still no certificate was found, we have accumulated a collection T of trees,
and a collection U of unmatched signed undetermined solids in those trees. We next pair
the trees by iterating over U in a convenient order, for example by prioritizing the sushes
that yield new leaves when joining trees among them. For the sake of conserving memory,
it is absolutely crucial that these trees be represented in an implicit way by only storing
the indices of trees that are joined. We therefore work with an ordered list of “explicit
trees”, which store all trees found in the previous steps, and an ordered list of “implicit
trees”, which are small data structures storing little more than the indices of the parent
trees and the sush along which the join was made, and the currently unpaired sushes.

1 Actually, we store £I'(I,J) as a signed 64 bit integer because we need to consider both versions of the
GP polynomial, and therefore only allow up to 31 vertices; so one bit goes unused. A way around this
limitation is to use general bitsets to store the index sets.
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End: If after iterating over all of & no certificate has been found, the algorithm gives up.

4 Discussion and Outlook

Some portions of the algorithm are still under active development, especially the efficient
generation of GP polynomials in the first step, and the order in which the sushes in U are
selected in the last step. Nevertheless, the current version already resides in the source tree
for the upcoming version 4.8 of polymake, which means it will become available once that
release is published.

The largest benchmark instance that is as yet just out of reach, and which the algorithm
will hopefully manage to process after the current phase of development, is an 11-dimensional
sphere with 24 vertices and 5778 facets whose realizability status is unknown at present.

Another interesting benchmark example is the sphere with the evocative name £374225,
which Firsching [4] conjectured to be non-realizable. However, neither Gouveia, Macchia &
Wiebe’s algorithm nor our grass-plucker3 can as yet certify this.

A further family of testcases to be examined is the entire collection of Criado & Santos’s
topological prismatoids [3], for which Gouveia, Macchia & Wiebe can currently certify more
instances of non-realizability.
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—— Abstract

A graph is 2-degenerate if every subgraph contains a vertex of degree at most 2. We show that every
2-degenerate graph can be drawn with straight lines such that the drawing decomposes into 4 plane
forests. Therefore, the geometric arboricity, and hence the geometric thickness, of 2-degenerate
graphs is at most 4. On the other hand, we show that there are 2-degenerate graphs that do not
admit any straight-line drawing with a decomposition of the edge set into 2 plane graphs. That is,
there are 2-degenerate graphs with geometric thickness, and hence geometric arboricity, at least 3.
This answers two questions posed by Eppstein [Separating thickness from geometric thickness. In
Towards a Theory of Geometric Graphs, vol. 342 of Contemp. Math., AMS, 2004].

Related Version Full Version: https://arxiv.org/abs/2302.14721 [14]

1 Introduction

A graph is planar if it can be drawn without crossings on a plane. Planar graphs exhibit
many nice properties, which can be exploited to solve problems for this class more efficiently
compared to general graphs. However, in many situations, graphs cannot be assumed to be
planar even if they are sparse. It is therefore desirable to define graph classes which extend
planar graphs. Several approaches for extending planar graphs have been established over the
last years [3, 12]. Often these classes are defined via drawings, for which the types of crossings
and/or the number of crossings are restricted. A natural way to describe how close a graph
is to being a planar graph is provided by the graph parameter thickness. The thickness of a
graph G is the smallest number §(G) such that the edges of G can be partitioned into 6(G)
planar subgraphs of G. Related graph parameters are geometric thickness and book thickness.
Geometric thickness was introduced by Kainen under the name real linear thickness [15].
The geometric thickness é(G) of a graph G is the smallest number of colors that is needed to
find an edge-colored geometric drawing (i.e., one with edges drawn as straight-line segments)
of G with no monochromatic crossings. For the book thickness bt(G), we only consider
geometric drawings with vertices in convex position.

An immediate consequence from the definitions of thickness, geometric thickness and
book thickness is that for every graph G we have 6(G) < 6(G) < bt(G). Eppstein shows that
the three thickness parameters can be arbitrarily “separated”. Specifically, for any number
k there exists a graph with geometric thickness 2 and book thickness at least &k [9] as well
as a graph with thickness 3 and geometric thickness at least &k [10]. The latter result is
particularly notable since any graph of thickness k& admits a k-edge-colored drawing of G
with no monochromatic crossings if edges are not required to be straight lines. This follows
from a result by Pach and Wenger [20], stating that any planar graph can be drawn without
crossings on arbitrary vertex positions with polylines.

Related to the geometric thickness is the geometric arboricity a(G) of a graph G, in-
troduced by Dujmovié¢ and Wood [5]. It denotes the smallest number of colors among all
edge-colored geometric drawings of G without monochromatic crossings where every color
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class is acyclic. As every such plane forest is a plane graph, we have 6(G) < a(G). Moreover,
every plane graph can be decomposed into three forests [22], and therefore 36(G) > a(G).

Bounds on the geometric thickness are known for several graph classes. Due to Dillencourt
et al. [4] we have =2 + 0.342 < 0(K,) < 2 for the complete graph K. Graphs with
bounded degree can have arbitrarily high geometric thickness. In particular, as shown by
Barart et al. [1], there are d-regular graphs with n vertices and geometric thickness at least
eV/dn'/?=4/4=¢ for every £ > 0 and some constant ¢. However, due to Duncan et al. [7], if
the maximum degree of a graph is 4, its geometric thickness is at most 2. For graphs with
treewidth ¢, Dujmovi¢ and Wood [5] showed that the maximum geometric thickness is [t/2].
Hutchinson et al. [13] showed that graphs with n vertices and geometric thickness 2 can have
at most 6n — 18 edges. As shown by Durocher et al. [8], there are n-vertex graphs for any
n > 9 with geometric thickness 2 and 2n — 19 edges. In the same paper, it is proven that it
is NP-hard to determine if the geometric thickness of a given graph is at most 2. Computing
thickness [16] and book thickness [2] are also known to be NP-hard problems. For bounds
on the thickness for several graph classes, we refer to the survey of Mutzel et al. [17]. An
overview on bounds for book thickness is given on the webpage of Pupyrev [21].

A graph G is d-degenerate if every subgraph contains a vertex of degree at most d. So we

can repeatedly find a vertex of degree at most d and remove it, until no vertices remain. The
reversal of this vertex order (known as a degeneracy order) yields a construction sequence
for G that adds vertex by vertex and each new vertex is connected to at most d previously
added vertices (called its predecessors). Adding a vertex with exactly two predecessors is also
known as a Henneberg 1 step [11]. In particular, any 2-degenerate graph is a subgraph of a
so-called Laman graph, however not every Laman graph is 2-degenerate. Laman graphs are
the generically minimal rigid graphs and they are exactly those graphs constructable from a
single edge by some sequence of Henneberg 1 and Henneberg 2 steps (the latter step consists
of subdividing an arbitrary existing edge and adding a new edge between the subdivision
vertex and an arbitrary, yet non-adjacent vertex). All d-degenerate graphs are (d, £)-sparse,
for any (d'QH) > ¢ > 0, that is, every subgraph on n vertices has at most dn — ¢ edges.
Our Results. 1In this paper, we study the geometric thickness of 2-degenerate graphs. Due
to the Nash-Williams theorem [18, 19], every 2-degenerate graph can be decomposed into 2
forests and hence has arboricity at most 2 and therefore thickness at most 2. On the other
hand, as observed by Eppstein [9], 2-degenerate graphs can have unbounded book thickness.
Eppstein’s examples of graphs with thickness 3 and arbitrarily high geometric thickness are
3-degenerate graphs [10]. Eppstein asks whether the geometric thickness of 2-degenerate
graphs is bounded by a constant from above and whether there are 2-degenerate graphs with
geometric thickness greater than 2. The currently best upper bound of O(logn) follows from
a result by Duncan for graphs with arboricity 2 [6]. We improve this bound and answer both
of Eppstein’s questions with the following two theorems.

» Theorem 1. For each 2-degenerate graph G we have 0(G) < a(G) < 4.
» Theorem 2. There is a 2-degenerate graph G with a(G) > 6(G) > 3.

We give proof ideas for these theorems in Sections 2 and 3, respectively.

2  The upper bound

In this section, we outline the proof of Theorem 1. We describe, for any 2-degenerate graph,
a construction for a straight-line drawing such that the edges can be colored using four colors,
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Figure 1 Left: For each vertex v in a feasible drawing, there are no other vertices on the vertical
and the horizontal line through v. Moreover, v is h-open to the right and v-open to the bottom.
Right: All vertices in the highest level (of height k) are placed to the right of all vertices of smaller
height. Each vertex in that level is incident to one edge of color h and one edge of color hs.

avoiding monochromatic crossings and monochromatic cycles. This shows that 2-degenerate
graphs have geometric arboricity, and hence geometric thickness, at most four.

For a graph G we denote its edge set with F(G) and its vertex set with V(G). Consider
a 2-degenerate graph G with a given, fixed degeneracy order. We define the height of a
vertex v in G as the length ¢ of a longest path ug - - - u; with u; = v such that for each i, with
1 < i <t, the vertex u;_; is a predecessor of u;. The height of G is the largest height among
its vertices. The set of vertices of the same height is called a level of G.

Our construction process embeds G level by level with increasing height. The levels are
placed alternately either strictly below or strictly to the right of the already embedded part of
the graph. If a level is placed below, then we use specific colors v and vs (short for “vertical”
and “vertical slanted”; respectively) for all edges between this level and levels of smaller
height. Similarly, we use specific colors h and hs (short for “horizontal” and “horizontal
slanted”, respectively) if a level is placed to the right. See Figure 1 (right).

To make our construction work, we need several additional constraints to be satisfied
in each step which we will describe next. For a point p in the plane, we use the notation
x(p) and y(p) to refer to the x- and y-coordinates of p, respectively. Consider a drawing D of
a 2-degenerate graph G together with a coloring of the edges with colors {h, hs,v,vs}. For
the remaining proof, we assume that each vertex of G has either 0 or exactly 2 predecessors.
If not, we add a dummy vertex without predecessors to the graph and make it the second
predecessor of all those vertices which originally only had 1 predecessor. Let k denote the
height of G. We say that D is feasible if it satisfies the following constraints:

(C1) For each vertex in G the edges to its predecessors are colored differently. If k£ > 0, then
each vertex of height £ in G is incident to edges of colors h and hs only.

(C2) There exists some xp € R such that for each vertex v € V(G) we have x(v) > zp if
and only if v is of height %k in G.

(C3) There is no monochromatic crossing.

(C4) No two vertices of G lie on the same horizontal or vertical line.

(C5) Each v € V(G) is h-open to the right, that is, the horizontal ray emanating at v directed
to the right avoids all h-edges.

(C6) Each v € V(G) is v-open to the bottom, that is, the vertical ray emanating at v directed
downwards avoids all v-edges.

These constraints are schematized in Figure 1. We now show how to construct a feasible

drawing for G. We prove this using induction on the height of the graph. The base case

k = 0 is trivial, as there are no edges in the graph. Assume that k£ > 1 and the theorem is

true for all 2-degenerate graphs with height £k — 1. Let H denote the subgraph of G induced
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by vertices with height less than k. By induction, there is a feasible drawing D of H.

As a first step, we reflect the drawing D at the straight line y = —z. Additionally,
we swap the colors hs and vs as well as the colors h and v. Let D’ denote the resulting
drawing. From now on, all appearing coordinates of vertices refer to coordinates in D’. By
construction, D’ satisfies (C3-C6). Applying (C1) to D shows that in D’ each vertex of
height k — 1 is incident to one edge of color v and one edge of color vs. Applying (C2) to D
shows that there exists yp € R such that for each vertex v € V(H) we have y(v) < yps in
D’ if and only if v is of height k — 1.

As the second (and last) step, we place the points of height k of G such that the resulting
drawing is feasible. We only give a rough description of this placement here and refer to the
full version of this paper [14, Section 2] for a precise formulation. Let Ly denote the set of
these vertices and let zp, denote the largest x-coordinate among all vertices in D’. We choose
a sufficiently small, positive slope m such that for any distinct u, v € V/(H) with y(u) < y(v),
the horizontal line through v and the straight line through u with slope m intersect at a
point p with x(p) > zp/. For each vertex w € Ly, let u and v be the two predecessors of w in
H with y(u) < y(v) and let p* denote the intersection point of the straight line of slope m
passing through u (called a slanted line) and the horizontal line passing through v. We place
w at point p* and connect w to v using an edge of color h and we connect w to u using an
edge of color hs. Then (C1), (C2) and (C6) are clearly satisfied. However, this placement
comes with some issues: Several vertices in Ly might have the same predecessors and, hence,
are placed on the same point, new edges of the same color with a common endpoint in H
overlap (along a horizontal or slanted line), and (C3-C5) might not be satisfied, yet. To
address these issues, we use a small perturbation, moving each point w € Lj slightly to
the bottom-right (along a straight line of slope —1/m through p*) such that all vertices
w € Ly are placed at different distances to their respective point p*. In the full version of
this paper [14, Section 2] we describe such a perturbation which yields a feasible drawing of
G. This eventually shows that the geometric arboricity, and hence the geometric thickness,
of G is at most four.

3 The lower bound

In this section, we shall describe a 2-degenerate graph with geometric thickness at least 3.
For a positive integer n let G(n) denote the graph constructed as follows. Start with a vertex
set Ay of size n and for each pair of vertices from Ay add one new vertex adjacent to both
vertices from the pair. Let A; denote the set of vertices added in the last step. For each pair
of vertices from Ay add 89 new vertices, each adjacent to both vertices from the pair. Let Ag
denote the set of vertices added in the last step. For each pair of vertices from As add one
new vertex adjacent to both vertices from the pair. Let A3 denote the set of vertices added in
the last step. This concludes the construction. Observe that for each ¢ = 1,2, 3, each vertex
in A; has exactly two neighbors in A;_;. Hence, G(n) is 2-degenerate. We claim that for
sufficiently large n the graph G(n) has geometric thickness at least 3. Due to limited space
we briefly sketch of our arguments here. A complete proof is provided in the full version of
this paper [14, Section 3].

Consider a geometric drawing of G(n), for large n, and assume that there is a partition
of its edge set into two plane subgraphs A and B. In the first step, we find a large, and
particularly nice grid structure (called a tidy grid) formed by edges between Ao and A
where many disjoint A-edges cross many disjoint B-edges. We additionally ensure that
there is a large subset A] C A; spread out over many cells of this grid. Next, we consider
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‘\\B—edges//'

Figure 2 Left: Sketch of the graph G(n). Middle: A tidy grid. Right: The situation leading to a
contradiction in the proof of Theorem 2 with x, ' € A1, Y C A2, and y1, y2, ys3, ya € As.

the connections of vertices from A} via the edges towards A;. We show that the drawing
restrictions imposed by the surrounding grid edges force many of the edges between A} and
A5 to stay within the grid. In particular, this gives a large subset A5, C Ay spread out over
many cells of the grid. Similarly to the previous argument, we then find many of the edges
between A} and A3 staying within the grid. We eventually arrive at a situation depicted in
Figure 2 (right): A cell with a set Y of five vertices from Ay with the same predecessors in
A4, such that for each y € Y there are four vertices y1,...,ys € A2 (one from the bottom-left,
one from the bottom-right, one from the top-right, and one from the top-left part of the grid)
and for each i the common neighbor of y and y; from Aj lies in the grid. It turns out, that
each y € Y either has an A-edge to the left and an A-edge to the right or it has a B-edge to
the top and a B-edge to the bottom (using directions from Figure 2). As this is impossible to

realize for all five vertices in Y simultaneously, the geometric thickness of G(n) is at least 3.

—— References

1 Janos Barat, Jifi Matousek, and David R. Wood. Bounded-degree graphs have arbitrarily
large geometric thickness. The FElectronic Journal of Combinatorics, 13:R3, 2006. doi:
10.37236/1029.

2 Fan R. K. Chung, Frank T. Leighton, and Arnold L. Rosenberg. Embedding graphs in
books: A layout problem with applications to VLSI design. SIAM Journal on Algebraic
Discrete Methods, 8(1):33-58, 1987. doi:10.1137/0608002.

3 Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing
beyond planarity. ACM Computing Surveys, 52:1-37, January 2020. arXiv:1804.07257,
doi:10.1145/3301281.

4  Michael B. Dillencourt, David Eppstein, and Daniel S. Hirschberg. Geometric thickness

of complete graphs. Journal of Graph Algorithms & Applications, 4(3):5-17, 2000. arXiv:
math/9910185, doi:10.1007/s00454-007-1318-7.

5 Vida Dujmovi¢ and David R. Wood. Graph treewidth and geometric thickness parameters.
Discrete & Computational Geometry, 37:641-670, 2007. arXiv:math/0503553, doi:10.

1007/s00454-007-1318-7.

6  Christian A. Duncan. On graph thickness, geometric thickness, and separator theorems.
Computational Geometry, 44:95-99, February 2011. doi:10.1016/j.comgeo.2010.09.005.

7  Christian A. Duncan, David Eppstein, and Stephen G. Kobourov. The geometric thickness
of low degree graphs. In SCG ’04: Proceedings of the Twentieth Annual Symposium on

EuroCG’'23


https://doi.org/10.37236/1029
https://doi.org/10.37236/1029
https://doi.org/10.1137/0608002
http://arxiv.org/abs/1804.07257
https://doi.org/10.1145/3301281
http://arxiv.org/abs/math/9910185
http://arxiv.org/abs/math/9910185
https://doi.org/10.1007/s00454-007-1318-7
http://arxiv.org/abs/math/0503553
https://doi.org/10.1007/s00454-007-1318-7
https://doi.org/10.1007/s00454-007-1318-7
https://doi.org/10.1016/j.comgeo.2010.09.005

26:6

10

11

12

13

14

15

16

17

18

19

20

21

22

On the geometric thickness of 2-degenerate graphs

Computational Geometry, pages 340-346, New York, NY, USA, June 2004. Association for
Computing Machinery. arXiv:math/0312056, doi:10.1145/997817.997868.

Stephane Durocher, Ellen Gethner, and Debajyoti Mondal. Thickness and colorability of
geometric graphs. Computational Geometry, 56:1-18, 2016. doi:10.1016/j.comgeo.2016.
03.003.

David Eppstein. Separating geometric thickness from book thickness. Preprint, 2001.
arXiv:math/0109195.

David Eppstein. Separating thickness from geometric thickness. In Janos Pach, editor, To-
wards a Theory of Geometric Graphs, volume 342 of Contemporary Mathematics. American
Mathematical Society, 2004. arXiv:math/0204252.

Lebrecht Henneberg. Die Graphische Statik der Starren Koérper. In Felix Klein and Conrad
Miiller, editors, Encyklopddie der Mathematischen Wissenschaften mit Einschluss ihrer
Anwendungen: Vierter Band: Mechanik, pages 345-434, Wiesbaden, Germany, 1908. B. G.
Teubner Verlag. doi:10.1007/978-3-663-16021-2_5.

Seok-Hee Hong and Takeshi Tokuyama, editors. Beyond Planar Graphs. Communications
of NII Shonan Meetings. Springer, 2020. doi:10.1007/978-981-15-6533-5.

Joan P. Hutchinson, Thomas C. Shermer, and Andrew Vince. On representations of
some thickness-two graphs. Computational Geometry, 13(3):161-171, 1999. doi:10.1016/
50925-7721(99)00018-8.

Rahul Jain, Marco Ricci, Jonathan Rollin, and André Schulz. On the geometric thickness
of 2-degenerate graphs. Preprint, 2023. arXiv:2302.14721.

Paul C. Kainen. Thickness and coarseness of graphs. Abhandlungen aus dem Mathematis-
chen Seminar der Universitit Hamburg, 39:88-95, 1973. doi:10.1007/BF02992822.
Anthony Mansfield. Determining the thickness of graphs is NP-hard. Mathematical
Proceedings of the Cambridge Philosophical Society, 93(1):9-23, 1983. doi:10.1017/
S030500410006028X.

Petra Mutzel, Thomas Odenthal, and Mark Scharbodt. The thickness of graphs: A survey.
Graphs and Combinatorics, 14:59-73, 1998. doi:10.1007/PL00007219.

Crispin St.J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of
the London Mathematical Society, 36:445-450, 1961. doi:10.1112/jlms/s1-36.1.445.
Crispin St.J. A. Nash-Williams. Decomposition of finite graphs into forests. Journal of the
London Mathematical Society, 39:12, 1964. doi:10.1112/j1lms/s1-39.1.12.

Jénos Pach and Rephael Wenger. Embedding planar graphs at fixed vertex locations.
Graphs and Combinatorics, 17(4):717-728, 2001. doi:10.1007/PLO0007258.

Sergey Pupyrev. Linear Graph Layouts. Accessed: 2022-11-30. URL: https://spupyrev.
github.io/linearlayouts.html.

Walter Schnyder. Embedding planar graphs on the grid. In SODA ’90: Proceedings of the
first annual ACM-SIAM Symposium on Discrete Algorithms, pages 138-148. Society for
Industrial and Applied Mathematics, January 1990. doi:10.5555/320176.320191.


http://arxiv.org/abs/math/0312056
https://doi.org/10.1145/997817.997868
https://doi.org/10.1016/j.comgeo.2016.03.003
https://doi.org/10.1016/j.comgeo.2016.03.003
http://arxiv.org/abs/math/0109195
http://arxiv.org/abs/math/0204252
https://doi.org/10.1007/978-3-663-16021-2_5
https://doi.org/10.1007/978-981-15-6533-5
https://doi.org/10.1016/S0925-7721(99)00018-8
https://doi.org/10.1016/S0925-7721(99)00018-8
http://arxiv.org/abs/2302.14721
https://doi.org/10.1007/BF02992822
https://doi.org/10.1017/S030500410006028X
https://doi.org/10.1017/S030500410006028X
https://doi.org/10.1007/PL00007219
https://doi.org/10.1112/jlms/s1-36.1.445
https://doi.org/10.1112/jlms/s1-39.1.12
https://doi.org/10.1007/PL00007258
https://spupyrev.github.io/linearlayouts.html
https://spupyrev.github.io/linearlayouts.html
https://doi.org/10.5555/320176.320191

Realizations of multiassociahedra via rigidity”

Luis Crespo Ruiz and Francisco Santos

Departamento de Matematicas, Estadistica y Computacién, Universidad de
Cantabria, 39005 Santander, Spain
luis.cresporuiz@unican.es, francisco.santos@unican.es

—— Abstract

Let Ag(n) denote the simplicial complex of (k + 1)-crossing-free subsets of edges in ([Z]). Here
k,n € N and n > 2k + 1. Jonsson (2005) proved that (neglecting the short edges that cannot
be part of any (k + 1)-crossing), Ax(n) is a shellable sphere of dimension k(n — 2k — 1) — 1, and
conjectured it to be polytopal. It was later noticed by Stump (2011) that the same result and
question follows from the work of Knutson and Miller (2004) on subword complexes.

Despite considerable effort, the only values of (k,n) for which the conjecture is known to hold
are n < 2k + 3 (Pilaud and Santos, 2012) and (2, 8) (Bokowski and Pilaud, 2009). Using ideas from
rigidity theory we realize Ay (n) as a polytope for (k,n) € {(2,9), (2, 10), (3,10)}. We also realize it
as a simplicial fan for all n < 13 and arbitrary k, except the pairs (3,12) and (3, 13).

Related Version arXiv:2212.14265

1 The multiassociahedron

Triangulations of the convex n-gon P (n > 2) are the facets of an abstract simplicial complex
with vertex set ([Z]) and defined by taking as simplices all the non-crossing sets of diagonals.
This simplicial complex, ignoring the boundary edges {i,7 + 1}, is a polytopal sphere of
dimension n — 4 dual to the associahedron. (Here and all throughout the paper, indices for
vertices of the n-gon are regarded modulo n).

A similar complex can be defined if we forbid crossings of more than a certain number &
of edges (assuming n > 2k + 1), instead of forbidding pairwise crossings.

» Definition 1.1. Two disjoint elements {i,j}, {k,{} € ([g])7 with i < j and k < [, of ([Z])
cross ifi <k < j<lork<i<l<j. Thatis, if they cross when seen as diagonals of a
convex n-gon. A k-crossing is a subset of k elements of ([g]) such that every pair cross. A
subset of ([;‘]) is (k + 1)-free if it doesn’t contain any (k + 1)-crossing. A k-triangulation is
a maximal (k + 1)-free set. We call Ag(n) the simplicial complex consisting of (k + 1)-free
sets of diagonals, whose facets are the k-triangulations.

Diagonals of length at most k (where length is measured cyclically) cannot participate
in any (k + 1)-crossing. Thus, it makes sense to define the reduced complex Ay (n) obtained
from A (n) by deleting them. We call Ay(n) the multiassociahedron or k-associahedron.
See [16, 17, 20] for additional information.

It was proved in [15, 9] that every k-triangulation of the n-gon has exactly k(2n —2k —1)
diagonals. That is, Ag(n) is pure of dimension k(2n — 2k — 1) — 1. Jonsson [11] further
proved that the reduced version Ay(n) is a shellable sphere of dimension k(n — 2k — 1) — 1,
and conjectured it to be the normal fan of a polytope.
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» Conjecture 1.2 ([11]). For every n > 2k+1 the complex Ag(n) is a polytopal sphere. That
is, there is a simplicial polytope of dimension k(n — 2k — 1) — 1 and with (}) — kn vertices
whose lattice of proper faces is isomorphic to Ag(n).

Conjecture 1.2 is easy to prove for n < 2k + 3. Ax(2k 4 1) is indeed a —1-sphere (the
complex whose only face is the empty set). Ay (2k +2) is the face poset of a (k — 1)-simplex,
and Ay(2k + 3) is (the polar of) the cyclic polytope of dimension 2k — 1 with n vertices
(Lemma 8.7 in [17]). The only additional case for which Jonsson’s conjecture is known to
hold is & = 2 and n = 8 [2]. In some additional cases Ay (n) has been realized as a complete
simplicial fan, but it is open whether this fan is polytopal. This includes the cases n < 2k+4
[1], the cases k = 2 and n < 13 [14] and the cases k = 3 and n < 11 [1].

Interest in the polytopality of Ay(n) also comes from cluster algebras and Coxeter com-
binatorics. Let w € W be an element in a Coxeter group W and let @ be a word of a
certain length N. Assume that ) contains as a subword a reduced expression for w. The
subword complex of @ and w is the simplicial complex with vertex set [N] and with faces
the subsets of positions that can be deleted from ) and still contain a reduced expression
for w. Knutson and Miller [13, Theorem 3.7 and Question 6.4] proved that every subword
complex is either a shellable ball or sphere, and they asked whether all spherical subword
complexes are polytopal. It was later proved by Stump [20, Theorem 2.1] that Ag(n) is
a spherical subword complex for the Coxeter system of type A, _2x_1 and, moreover, it
is universal: every other spherical subword complex of type A appears as a link in some
Zk(n) [18, Proposition 5.6]. Hence, Conjecture 1.2 is equivalent to a positive answer in type
A to the question of Knutson and Miller.

2 Realizing a simplicial complex as a polytope

If A is a pure simplicial complex with vertex set V' of dimension D — 1 (so that its facets
have size D) to realize it as a polytope we only need to find a vector configuration V =
{vi}iev € RP on which A yields a complete simplicial fan, and then prove that the fan is a
regular triangulation of V. See [8, Section 9.5] for details.

We want to apply this to the complex Ay (n), for which V C ([g]) and D = k(n—2k—1).
This complex has two important properties. On the one hand, it is a pseudo-manifold.
From the point of view of k-triangulations this is equivalent to the following property, which
defines flips among k-triangulations:

» Proposition 2.1 (Flips [17, section 5]). For every edge f of a k-triangulation 7" with length
greater than k, there is a unique edge e € ([Z]) such that

TA{e, f}:=T\{ftU{e}

is another k-triangulation.

On the other hand, since Ay (n) is a sphere, the link of every face of codimension two is
a cycle. We will need the following property of these cycles, that we prove in the full version
of this paper [6, Corollary 2.13]:

» Proposition 2.2 (Short cycles). All links of dimension 1 in Ay (n) are cycles of length < 5.
With these two properties, the following is our main result about how to realize A (n) [6,
Corollary 2.13], which is a version of [8, Corollary 4.5.20] adapted to our case:
» Theorem 2.3. LetV = {'Uij}{ij}e([n]) C RF2n=2k=1) e o vector configuration. V embeds
) 2

Ar(n) as a complete fan in RF=26=1) 4f and only if it satisfies the following properties:
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1. (Basis collection) For every facet (k-triangulation) T, the vectors {v;; : {i,j} € T} are
a linear basis.

2. (Interior Cocircuit Property, ICoP) For every flip between two k-triangulations Ty and
Ty, the unique linear dependence among the vectors {v;; : {i,j} € Ty UTs} has the same
sign for the two elements involved in the flip (the unique elements in Ty \To and To\ Ty ).

3. (Elementary cycles of length 5) Given a codimension 2 face p whose link Z is a cycle of
length five (see Proposition 2.2), there are three consecutive elements i1,i2,13 € Z such
that the unique linear dependence among the vectors {v; : i € pU{iy,ia,i3}} has opposite
sign for ig than the sign it takes for i1 and is3.

Once we have the complete fan, we need it to be polytopal, which is equivalent to the
feasibility of a system of linear inequalities. For this we use a version of [19, Theorem 3.7,
which in turn is closely related to [8, Proposition 5.2.6(i)].

3 Rigidity

The number k(2n —2k —1) = 2kn — (Qk; 1) of edges in a k-triangulation happens to coincide
with the rank of any abstract rigidity matroid of dimension 2k on n elements. These ma-
troids capture and generalize the combinatorial rigidity of graphs with n vertices generically
embedded in R?*. This numerical coincidence (plus some evidence) led [17] to conjecture
that all k-triangulations of the n-gon are bases in the generic bar-and-joint rigidity matroid
of n points in dimension 2k. If this is true then a natural way to apply Theorem 2.3 is to
use as vector configuration V the rows of the corresponding rigidity matrix, as follows.

Let p = (p1,...,pn) be a set of n points in R?, labelled by [n]. Their bar-and-joint

rigidity matriz is the following (g) X nd matrix:

p1L—D2 P2 —DP1 0 0 0
P1 — P3 0 pP3—p1 .- 0 0
R(p) == | p1—pn 0 0 0 pn—p1 |- (1)
0 P2—DP3 P3—DP2 .- 0 0
0 0 0 cer Pn—1—Dn Pn—DPn-1

The shape of the matrix is as follows: there is a row for each pair {i,j} € ([g]), SO TOWS
can be considered labeled by edges in the complete graph K,. Then, there are n blocks of
columns, one for each point p; and with d columns in each block; in the row of an edge {4, j}
(or {j,i}) only the blocks of vertices ¢ and j ae nonzero, and they contain respectively the
vectors p; — p; and p; — p;. Put differently, the matrix can be interpreted as a “directed
incidence matrix” of the complete graph K,, except instead of having a single +1 and
—1 corresponding each incidence between a vertex and an edge we have the d-dimensional
vectors p; — p; and p; — p;. For any E C ([TQL]) we denote by R(p)|g the restriction of R(p)
to the rows or elements indexed by E.

» Definition 3.1. Let ' C ([g]) be a subset of edges of K,, (equivalently, of rows of R(p)).
We say that E, or the corresponding subgraph of K, is self-stress-free or independent if the
rows of R(p)|g are linearly independent, and rigid or spanning if they are linearly spanning
(that is, they have the same rank as the whole matrix R(p)).

EuroCG’23
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Put differently, self-stress-free and rigid graphs are, respectively, the independent and
spanning sets in the linear matroid of rows of R(p). We call this matroid the bar-and-joint
rigidity matroid of p and denote it R(p). The following two matrices “with the same shape”
(in particular, with the same size) as R(p) also define abstract rigidity matroids:

The hyperconnectivity matroid of p C R, denoted H(p), is the matroid of rows of

P2 —P1 0 [N 0 0
p3 0 —-p1 ... O 0
H(p) = | Pn 0 0 ... 0 —P1 (2)
0 p3  —p2 0 0
0 0 0 ... DPn —pna
For points q = (q1,-.-,¢,) in R? and a parameter d € N, the d-dimensional cofactor
rigidity matroid of the points ¢1, ..., ¢,, which we denote C4(q), is the matroid of rows
of
Ci2 —Ci2 0 A 0 0
Ci3 0 —C13 ... 0 0
Ca(q) := | c1n 0 0 . 0 —Cin , (3)
0 Ca3 —Ca3 0 0
0 0 0 ... Cocim —Cnoim

where the vector ¢;; € R? associated to ¢; = (z;,v;) and ¢; = (z;,y;) is

cij = (@i — )" (i —y) (@i — )2, (i — )T

For d = 1 this is independent of the choice of p and equals the directed incidence matrix
of K,,. For d = 2 we recover the two-dimensional bar-and-joint rigidity matrix p.

In [4] we prove that the three theories coincide when the points p or q are chosen along
the moment curve (for bar-and-joint and hyperconnectivity) and the parabola (for cofactor).
More precisely:

» Theorem 3.2 ([4]). Lett; < --- <t, € R be real parameters. Let
pi=(Lity,.. t Y eRY pl=(t,t7,... . t]) eRY, ¢ = (t;,17) € R%.

Then, the matrices H(p1,...,pn), Ry, ...,p)) and C(q1,...,qn) can be obtained from
one another multiplying on the right by a regular matriz and then multiplying its rows by
some positive scalars. In particular, the rows of the three matrices define the same oriented
matroid.

» Definition 3.3. We call the matrix H(py,...,p,) in the statement of Theorem 3.2 the
polynomial d-rigidity matriz with parameters tq,...,t,. We denote it Py(t1,...,t,), and
denote Py(ty,...,t,) the corresponding matroid.
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Now, for any choice of points p € R?* or q € R? in general position, the rows of the ma-
trices R(p), H(p) or Cy;(q) are a real vector configuration V C R?*™ of rank k(2n — 2k — 1)
(since this is the rank of in any abstract rigidity matroid). Moreover, if p is chosen along
the moment curve or q along the parabola, then the three theories give linearly equivalent
embeddings. The question we address is whether using these vectors as the rays for a real-
ization of the k-associahedron Ay (n) we get that the reduced version Ay (n) is a polytopal
fan. We pose the conjecture that positions along the moment curve realizing Ag(n) as a
basis collection exist for every k and n:

» Conjecture 3.4. k-triangulations of the n-gon are isostatic (that is, bases) in the bar-and-
joint rigidity matroid of generic points along the moment curve in dimension 2k.

This conjecture implies the one from [17] mentioned above, but it would imply the same
for the generic cofactor rigidity matroid and for the generic hyperconnectivity matroid. In
fact the latter is already known to hold by a previous result of ours [5, Corollary 2.17].

4 Main results

The proofs of the following results are included in the full version.
First, as evidence for Conjecture 3.4 we prove the case k = 2:

» Theorem 4.1 ([6, Theorem 1.4]). 2-triangulations are isostatic in dimension 2k for generic
positions along the moment curve.

One may be tempted to change “generic” to “arbitrary” in Conjecture 3.4, but we show
that this stronger conjecture fails in the worst possible way: for every k > 3 and n > 2k + 3,
the standard positions along the moment curve make some k-triangulation not a basis.

» Theorem 4.2 ([6, Theorem 1.6]). The graph Ko — {16,37,49} is a 3-triangulation of the
n-gon, but it is dependent in the rigidity matroid Cg for any configuration {qi,qe} C R? if
the lines through q1qe, q3q7, and quqe meet at a point. This occurs, for example, if we take
the nine points on the parabola with t; = 1.

In fact, for n < 2k + 3 we can characterize exactly what positions realize Ag(n) as a fan,
for cofactor rigidity (and, in particular, for the other two forms of rigidity with positions
along the moment curve). In the case n = 2k + 3 this is governed by the geometry of
the star-polygon formed by the k-relevant edges. More precisely, we call “big side” of each
relevant edge (that is, edge of k + 1) in a (2k 4 3)-gon the open half-plane containing k + 1
vartices:

» Theorem 4.3 ([6, Theorem 3.14]). 1. For n = 2k + 2, any choice of qi,...,qario € R?
in conver position realizes Ay (n) as a polytopal fan.

2. Letqi,qa,...,qons3 € R? bein convex position. Ay (2k-+3) is realized by Cop(q1, - . ., qars3)
as a complete fan if and only if the big sides of all relevant edges have a non-empty in-
tersection.

Interestingly, from part (2) of this result it is quite easy to show that no positions of
points along the moment curve realize A3(12). More generally:

» Corollary 4.4 ([6, Theorem 1.7]). If k > 3,n > 2k + 6 then no choice of points q C R? in
convex position realizes Ak(n) as a fan via cofactor rigidity.

EuroCG’23
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Observe that this is not a counter-example to Conjecture 3.4; it implies that via rigid-
ity along the moment curve we cannot achieve the three conditions of Theorem 2.3, but
Conjecture 3.4 is about condition 1 alone.

Finally, for every n < 13 we have experimentally found positions along the moment curve
realizing Ax(n) as a fan, except in the cases (n,k) € {(3,12),(3,13)} which are forbidden
by Corollary 4.4. For many of them we have also realized the polytope:

» Theorem 4.5 ([6, Lemma 4.13]). Let t = {1,2,...,n} be standard positions for the pa-

rameters. Then:

1. Standard positions for Py(t) realize Ay(n) as the normal fan of a polytope if n < 9.

2. The non-standard positions t = (—2,1,2,3,4,5,6,7,9,20) for P,(t) realize A(10) as the
normal fan of a polytope.

3. Standard positions for Py(t) realize Aa(n) as a complete fan for all n < 13.

» Theorem 4.6 ([6, Lemma 4.14]). Equispaced positions along the circle realize Ag(n) as a
fan for (n,k) € {(3,10),(3,11), (4,12), (4,13)}. The first one is polytopal.
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—— Abstract

We consider bichromatic point sets with n red and n blue points and study straight-line bichromatic

perfect matchings on them. We show that every such point set in convex position admits a matching

3n?
8

k> % there exist bichromatic point sets that do not admit any perfect matching with k crossings.

with at least

— O(n) crossings. Moreover, this bound is asymptotically tight since for any

1 Introduction

Let P = RU B, |R| = |B| = n be a point set in general position, that is, no three points
of P are collinear. We refer to R and B as the set of red and blue points, respectively.
A straight-line matching M of P where every point in R is uniquely matched to a point in B
is called a straight-line bichromatic perfect matching (all matchings considered in this work
are straight-line, so we will mostly omit this term). In this work, we study the existence of
bichromatic perfect matchings with a fixed number & of crossings on P, where 0 < k < (g)
It is well known and easy to see that there exists a crossing-free (that is, ¥ = 0) such
matching for every P [7]. Perfect matchings with k crossings on uncolored point sets have
n

been considered in [2]. There it is shown that for every k < 1—; — O(ny/n), every point set of

size 2n admits a perfect matching with exactly k crossings and that there exist such point
2

sets where every perfect matching has fewer than 207—75 crossings. As a direct consequence,

there exist bichromatic point sets which do not admit bichromatic perfect matchings with &
20n?

perfect matchings \I/zith k crossings for all k, where 0 < k < (3) [2]. But when we color the
points, the situation changes quite drastically.

Consider a point set P of 2n points in convex position (convex point set, for short) with
an alternating coloring, that is, every second point along the convex hull is red (and the other
points are blue). Moreover, let the number n of red (and blue) points be even. Then the
number of crossings in a bichromatic perfect matching M on P is at most w =(3) — %
The idea is as follows: Label the points of P as pg,p1,--.,DP2n—1 along the boundary of the
convex hull. The point p; cannot be matched to p;1, since both points are of the same
color. Hence, for any edge e in such a matching M of P, the number of crossings of e is at

crossings for k > On the other hand, 2n uncolored points in convex position admit

most n — 2. As every crossing involves two edges, the number of crossings in M is at most

@ = (72’) — 5. This bound is tight, since it is possible to construct a bichromatic perfect
matching M on P with exactly (g) — 5 crossings as follows. For 0 <i <n — 1, match the

point p; to the point p;1,41, when i is even. Otherwise, match p; to p;+,—1. Together this
leads to the following question.

* 0.A. and R.P. supported by the Austrian Science Fund (FWF): W1230. S.F. supported by the DFG
Grant FE 340/13-1. M.S. supported by the DFG Grant SCHE 2214/1-1.
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» Open Problem 1. For which values of k does every bichromatic convex point set P = RUB,
|R| = |B| = n, admit a straight-line bichromatic perfect matching with exactly k crossings?

The above example implies that if & > (g) — 5, there exist bichromatic point sets with n
red and n blue points that do not have any bichromatic perfect matching with k crossings.
Thus, Open Problem 1 can be true only for £ < (g) — 4. In this paper, we further improve
the bound on k as follows.

» Theorem 1.1. For any k > %, there exists a bichromatic convex point set with n red and
n blue points that does not have a straight-line bichromatic perfect matching with k crossings.

Related work: A survey by Kano and Urrutia [6] gives an overview of various problems
on bichromatic point sets, including matching problems. Crossing-free bichromatic perfect
matchings have been studied from various perspectives such as their structure [5, 8], linear
transformation distance [1], and matchings compatible to each other [3, 4]. Sharir and
Welzl [9] proved that the number of crossing-free bichromatic perfect matchings on 2n
points is at most O(7.61™). However, not much is known about the number or existence of
bichromatic perfect matchings with k crossings, for k£ > 0.

2 Bichromatic Convex Point Sets

Let Cy, , be the collection of all bichromatic convex point sets P = RU B with |R| = |B| = n.
For a point set P € Cy, ,, we label the points in P in clockwise direction along the convex hull
as po,P1, - - - s Pon—1 and refer to this as the clockwise ordering. We will consider all indices
modulo 2n. The number of crossings in any birchromatic perfect matching Mp of P is
denoted by er(Mp). If Mp has the maximum number of crossings among all such matchings
of P, then it is called a maz-crossing matching on P. Among all max-crossing matchings for
all P € C,, ,,, we are interested in max-crossing matchings which have the minimum number
of crossings. We call such a matching a min-maz-crossing matching of C, ,,. Further, from
now on, we refer to bichromatic perfect matchings just as matchings, unless otherwise stated.

For P € C,,,,, we define the collection of all points of the same color which are consecutive
in clockwise order as a block. For example, if Ry = {ps,Da+t1,---,Dat+s} is a block of red
points, then p,_; and p,ys+1 are blue, and the next collection will be a block of blue points
including py4s+1. By repeating the process along the boundary of the convex hull of P, we
get a collection of blocks {R1, By, Ra, Ba, ..., Rs, Bs} w.r.t. the clockwise order such that
|R1URsU. . .URs| = |BjUBsU...UB;s| = n. These blocks are non-empty and alternate in color.
A bichromatic convex point set with the collection of blocks {Ry, By, Ra, Ba, ..., Rs, Bs}
is called a 2s—block coloring. For example, a 2n—block coloring is an alternating coloring.
If all 2s blocks have the same cardinality, then the coloring is called a balanced 2s—block
coloring. See Figure 2(a) for a bichromatic point set with a balanced 4-block coloring.
Strictly speaking, a balanced 4-block coloring can only be achieved if n is even. If n is
odd, the cardinalities of some blocks differ by at least 1. We call a 4-block coloring with
maximum cardinality difference of +1 nearly balanced. Considering the properties that we
discuss in this paper, nearly balanced 4-block colorings and balanced 4-block colorings
behave very similarly. So abusing the terminology a bit, we will mostly refer to all of them as
balanced 4-block colorings. With these definitions we can now formulate a stronger version
of Theorem 1.1.

» Theorem 2.1. Let P € Cy, , have a balanced 4-block coloring and let MY, be a maz-crossing
Q.2

matching of P. Then et(M}) = 32~ — O(n). Moreover, M}, is a min-maa-crossing matching

of the set Cp, .
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Clearly, Theorem 2.1 implies Theorem 1.1, as any bichromatic convex point set with a
balanced 4-block coloring satisfies Theorem 1.1. Theorem 2.1 will follow from Lemma 2.4
and Lemma 2.5 below which are stated and shown in the next sections.

2.1 Min-Max-Crossing Matching for 4—block colorings

In this section, we construct a min-max-crossing matching among all bichromatic convex
point sets with a 4-block coloring.

» Lemma 2.2. Let P € C,,, have a 4-block coloring with blocks R1,B1, Ra, By and let
MY, be a maz-crossing matching on P. Then for any block X € {R1, Ry, B1, Ba}, the edges
emanating from X form a crossing family, that is, every pair of these edges forms a crossing.

Proof. Let e and f be two edges of M}, such that e = r;b; and f = rjbj where 1y, 7, € X
with ¢ < j. For the sake of contradiction, assume that e and f do not cross. By replacing
eand f by ¢ =r;b; and f' = r;b;, we get a new matching, say Mp. As all points are in
convex position, the edges crossing e and f will also cross the new edges ¢’ and f’. Also,
the edges crossing exactly one of e and f will cross exactly one of ¢ and f’. In addition,
e’ and f’ cross each other. Hence the number of crossings of M}, is strictly larger than the
number of crossings of M}, a contradiction. |

Recall the clockwise ordering of the points in P. Without loss of generality, assume that
Ry = {p1,p2,...,pR,|}- Let M} be a max-crossing matching of P. Assume that in M}, the
point p; € Ry is matched to a point (say p}) in By, and p; € R; is matched to a point (say ;)
in B; such that ¢ < j. By the clockwise ordering of P, i < j < j' < i’ and hence p;p; does
not cross pjp;. This is a contradiction by Lemma 2.2. Thus, in M}, if p; € Ry is matched to
a point in By, then all p; € Ry with ¢ < j must be matched to a point in By. More precisely,
there exists an integer a; for Ry such that all p; € Ry with ¢ < a; are matched to B and all
p; € Ry with ¢ > a; are matched to Bs. In a similar way we can show that all p; € B; with
i <|Ri| + |B1| — a1 have to be matched to Ry and the remaining unmatched points have to
be matched to R;. In other words, there exists an integer a1 such that first a; points of R;
are matched to the last a; points of B; (as a crossing family). The remaining last |R;| — a1

points of Ry have to be matched to the first |R;| — a; points of By (as a crossing family).

This fixes the remaining edges of M},. That is, the remaining last n — |B;| — |R1| + a1 points
of By must be matched, as a crossing family, to the first n — |Bi| — |R;| + a1 points of R
(see Figure 1). Finally, match the remaining points as a crossing family. Hence, to get a
max-crossing matching on P, it is sufficient to determine the optimal value of a;.

» Lemma 2.3. Let P € C,, have a 4-block coloring with blocks Ry, B, Rz, and Bs.
Let Mp be a matching on P such that the first x points of the set Ry are matched to the
last = points of By, as a crossing family. Then Mp is a max-crossing matching on P iff
v = 3(|Ri|+|Bi| - 5).

Proof. Consider a matching Mp with the above property. Assume that [R;| = r; > §
and |Bi| = by > %. The number of pairs of non-crossing edges in Mp is obtained by
(r1 —x)(by —x) +x(n—r1 — by + ) = r1by — 22b; — 2271 +nw + 222, As we want to find the
value of = that gives the maximum number of crossings, we calculate the value of z such that
f(x) = (n — 2ry — 2by)x + 222 + r1b; attains the minimum. This is achieved by setting the

first derivative of f(x) to zero as f”(z) > 0. We get f'(z) =0 for z = S(ri + by — 2). <«

By the proof of Lemma 2.3 the minimum number of pairs of non-crossing edges in MY, is

r1by — 3 (r1 + by — %)2. This gives the exact structure and the number of crossings in Mjp.

EuroCG’23
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n— |R1‘ — |B1| + ay

Figure 1 Structure of a max-crossing matching in a 4-block coloring.

The number of crossings &f(M}) can be obtained by subtracting the number of non-crossing
edge pairs from the theoretical maximum number of the crossing edge pairs in M}. That is,
er(Mp) = (4) — (riby — 3(r1 + by — 2)?). Next we check which coloring, among all 4-block
colorings, produces a min-max-crossing matching for all 4-block colorings. Full proofs for
statements marked with (x) can be found in the full version of this paper.

» Lemma 2.4. (x) Let P € C,,, have a balanced 4-block coloring and let M}, be a maz-
crossing matching of P. Then ct(M)) = % —O(n). Moreover, M} is a min-maz-crossing

matching for all the 4-block colored point sets of size 2n.

Proof sketch. The minimum number of pairs of non-crossing edges in My, is given by

h(r1,b1) = mby — %(rl + b1 — %)2 Since we want to find the values of r; and b; that

minimizes the number of crossings among max-crossing matchings of the 4-block colorings,

we need to maximize h(r1,by) for r1,b; > §. By analyzing the partial derivatives of the

function h, it follows that h attains its maximum when ry = by = 5. This shows that the

number of crossings in a max-crossing matching is minimized on a balanced 4-block coloring.
2 2
If n is a multiple of 4, then er(M}) = 32- — 2. Otherwise, cr(M},) is either |32~ — 2| or

8 2 8 2
[% — 27. These values are obtained for r1 = b; = [2] and = % (r; + by — 2) by analyzing
the structure of matchings in each of the remaining cases. |

We remark that the balanced 4-block coloring is not the only coloring that gives the
min-max-crossing matching. See Figure 2(a) for the matching constructed in the above proof
and Figure 2(b) for a different example.

2.2 Min-Max-Crossing Matching for all colorings

In the following, we extend Lemma 2.4 to all bichromatic convex point sets. Let P € Cy, ,.
For any point v € P, the point w € P is called the antipodal point of v, if the line through v
and w partitions P into two equal sized halves (this is possible as we have an even number
of points). If the antipodal points v and w are of the same color, then they are called
monochromatic antipodal points (in short m-antipodal points) and if they have different colors
then they are called bichromatic antipodal points (in short b-antipodal points).
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R Ry

B2 BQ
By

Ry Ry

(a) (b)

Figure 2 A balanced 4-block coloring (a) and a slightly unbalanced 4-block coloring (b) on 16
points and max-crossing matchings on them, each with 20 crossings.

» Lemma 2.5. (x) Let P € C,.,, and let M}, be a maa-crossing matching of P. Then
2

er(Mp) > 22 — O(n). Moreover, if Q € Cn has a balanced 4-block coloring and Mé is a

maz-crossing matching of Q, then MYQ is a min-maz-crossing matching of the set Cy, .

To prove Lemma 2.5, we make use of the following well-known theorem.

» Theorem 2.6 (Ham sandwich theorem [10]). For any bichromatic point set P = RU B
there exists a halfplane H such that |RN H| = L@J and |BN H| = \_@j

Proof sketch of Lemma 2.5. For a point set P € C, ,, construct a new bichromatic point

set with 4-block coloring using the following steps S1-S4.

S1: Remove all b-antipodal points from P, name the obtained bichromatic point set as S.

S2: Partition the set S into 4 groups as follows. First, partition S into two halves, say L
and R, each having an equal number of red and blue points. Using the ham sandwich
theorem partition one of the two halves such that each partition has an equal number of
red and blue points. This partition can be duplicated on the other half as S consists only
of m-antipodal points. Thus, we get 4 groups, each having an equal number of red and
blue points. They are labeled as Ry, Ry, Ly, Ly w.r.t. clockwise order (see Figure 3).

S3: Add all the removed b-antipodal points back to S to get P and the partition of .S induces
a partition Rpy, Rpr, Lpr, Lpy in P. Here the number of red (blue) points of Rpy and

the number of blue (red) points of Lpy, are equal. The same holds for Rpy, and Lpy.

Sort the points in Rpy and Lpy, such that all the red points appear before the blue
points w.r.t. the clockwise order. Then sort the points in Rpy, and Lpy such that all the
blue points appear before the red points. This gives a bichromatic point set K with the
partition Rxy, Rxr, Lk, Lxy. See Figure 4.

S4: Define the matchings Mp and My on P and K, respectively, as follows. For any
pair (X, Y) S {(RPUa LPL), (RPL7 LPU), (RKU; LKL), (RKL7 LKU)}, the points in X are
matched to points in Y such that any two of the matching edges emanating from the
same colored points on X cross each other. Hence the matching edges of X give two
crossing families, where the size of each family is determined by the number of points
in X of each color. By our construction, the size of the crossing families is the same
in both P and K. But in P, these crossing families cross each other and in K, these

EuroCG’23
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Figure 3 A bichromatic point set S with 16 points (left) and 20 points (right). In both cases,
dotted lines represent a partition w.r.t. the ham sandwich theorem on the set R and L.

RPU RKU
n
Rpp
Rir
Lpy Liy
[ ]
Lpy Liy,

Figure 4 An example of bichromatic point set P (left) and the corresponding K (right) with 24
points. Also, the partial matching Mp and Mg.

crossing families do not cross each other. Hence, tr(Mp) > cr(Mk). By construction,
K € C,,,, has a 4-block coloring. But it might not be a balanced 4-block coloring. Thus,
by Lemma 2.4, ct(Mg) > H(Mé) Also, the constructed matching Mp might not be
a max-crossing matching of P. Hence, if M}, is a max-crossing matching for P, then
er(Mp) > er(Mp). This implies cr(M}) > er(My), which completes the proof. <

As mentioned, Theorem 2.1 now follows directly from Lemma 2.4 and Lemma 2.5.

3 Conclusion

We showed that for any k& > % there exists a bichromatic point set with n red and n
blue points that does not admit any bichromatic perfect matching with k crossings. By
straight-forward calculations, we can show that, for n even, bichromatic convex point sets
containing n red and n blue points with alternating coloring cannot have a bichromatic
perfect matching with one or two crossings. In ongoing work, we study the range k € [3, %]
for bichromatic convex point sets and also work on extending our results to bichromatic
point sets in general (non-convex) position.
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—— Abstract

In this work, we introduce RAC drawings of graphs in which each pair of crossing edge-segments are
axis parallel. We study relationships with traditional RAC drawings and give edge-density bounds.

1 Introduction

RAC drawings of graphs were introduced a decade ago in [17] as an extension of planar
drawings, and since then they have been a fruitful subject of intense research in Graph
Drawing [3, 12, 14, 18, 19]. The motivation for their study primarily stems from cognitive
experiments indicating that the negative effect of edge crossings in a drawing tends to be
eliminated when the angles formed at the edge crossings are large [22]. In that aspect, RAC
drawings form the optimal case of this scenario, in which all crossing angles occur at 90°.
The research on RAC drawings has mainly focused on two main directions depending on
whether bends are allowed along the edges or not. Formally, a k-bend RAC graph is one
admitting a k-bend RAC drawing, i.e., a drawing in which each edge is a polyline with at
most k bends and the angle between any two crossing edge-segments is 90°. Concerning
the edge density, a 0-bend RAC graph (or simply RAC graph) with n vertices has at most
4n — 10 edges [17]. The corresponding edge-density bounds for 1- and 2-bend RAC graphs
are 5.5n — 10 [1] and 74.2n [6], respectively, while for k£ > 3 it is known that every graph
is k-bend RAC [17]. The research on RAC graphs, however, is not limited to the study of
edge-density bounds. Several algorithmic and combinatorial results [3, 4, 5, 13, 16, 19], as
well as relationships with other graph classes [7, 9, 10, 11, 18] are known; for a survey see [15].

Our contribution. In this work, we introduce and study a natural subfamily of k-bend RAC
graphs, called k-bend apRAC, which restricts all edge segments involved in crossings to be axis
parallel. The motivation for this model is two-fold. First, by restricting the crossings to be axis
parallel we expect to improve readability as, e.g., with orthogonal graph drawings [8, 20, 21].
Second, several algorithms from the literature about k-bend RAC graphs in fact yield k-bend
apRAC drawings; see, e.g., [2, 3, 17]. So, two natural questions that arise are the following.

» Question 1. Do the classes of k-bend RAC and k-bend apRAC graphs coincide?

For k > 3, the answer to Question 1 is positive, as the construction given in [17], establishing
that every graph is 3-bend RAC, can be converted to 3-bend apRAC by a rotation of 45°.
For k£ = 0, we give a negative answer to Question 1 by determining 0-bend RAC graphs that
are not 0-bend apRAC. For k € {1,2}, giving an answer to Question 1 is more challenging
due to the degrees of freedom introduced by bends and we leave it as an open problem.
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Figure 1 Forbidden configurations by Properties 1 to 4.

» Question 2. What is the edge density of k-bend apRAC graphs with n vertices?

For k > 3, the answer to Question 2 follows from the one of Question 1. For k = 0, the trivial
upper-bound is 4n — 10 [17]. However, we are able to provide corresponding lower-bound
constructions with at most 4n — ©(y/n) edges. For k = 1, we prove that a 1-bend apRAC
graph with n vertices has at most 5n — 6 edges and provide a lower-bound construction with
5n — O(y/n) edges. For k = 2, we give an upper bound of 10n — 12 on the edge density of
2-bend apRAC graphs, which is significantly smaller than the trivial one of 74.2n derived
from 2-bend RAC graphs [6]. Our lower-bound construction is a graph with n vertices and
10n —©(y/n) edges. Notably, this bound extends to general 2-bend RAC graphs and improves
the previous bound of 7.83n — O(y/n) [6], answering an open question in [1].

2 Preliminaries

Properties 1 and 2 hold for 0-bend RAC (and thus for 0-bend apRAC) drawings.
» Property 1 ([17]). In a 0-bend RAC drawing no edge is crossed by two adjacent edges.

» Property 2 ([17]). A 0-bend RAC drawing does not contain a triangle T" formed by edges
of the graph and two edges (u,v) and (u,v"), such that u lies outside T" and v, v’ lie inside T.

The following two properties are limited to 0-bend apRAC drawings.

» Property 3. A 0-bend apRAC drawing does not contain a triangle 7" formed by edges of
the graph and three vertices vy, v, v3 adjacent to a vertex u, such that vy, vs, v3 lie outside
T and w lies inside T'.

Proof. Assuming the contrary, Property 1 implies that no two edges incident to u cross the
same boundary edge of T. Hence, T consists of three axis-parallel edges; a contradiction. <«

» Property 4. Let I" be a 0-bend apRAC drawing containing a triangle T" formed by edges
of the graph and two adjacent vertices u and v such that u is contained inside T" while v is
outside T'. Then, I' cannot contain a vertex adjacent to u, v and all vertices of T.

Proof. For a contradiction, let w be a vertex adjacent to u, v and all vertices of T. If w is
inside T in T, then (v, u) and (v, w) violate Property 2; a contradiction. Otherwise, since
(u,v) and (u,w) cross T, by Property 1, it follows that T is a right-angle triangle, whose
legs are axis-parallel. W.l.o.g., let (v1,v2) and (vg,v3) be the legs of T' crossed by (u,v) and
(u, w), respectively, such that (vq,v9) is horizontal and (vg, vs) is vertical. It follows that the
edge (vg,v3) of T is crossed by (u,w) and (w,vq) violating Property 1; a contradiction. <«
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Figure 2 Illustrations for the proof of Theorem 3.2.

3 0-bend apRAC graphs

In this section, we present bounds on the edge density of 0-bend apRAC graphs and we
further establish that these graphs form a proper subset of the 0-bend RAC graphs.

» Theorem 3.1. A 0-bend apRAC graph with n vertices has at most 4n — 10 edges. Also,
there exist infinitely many 0-bend apRAC graphs with n vertices and 4n — ©(y/n) edges.

Proof. The upper bound directly follows from [17]. The lower bound is obtained from an
axis-parallel \/n x y/n drawing of an n-vertex grid, where each quadrangle contains a pair of
crossing edges that can be made axis-parallel by a rotation of the grid by 45°. |

» Theorem 3.2. There exist RAC graphs that are not 0-bend apRAC.

Proof. Denote by G the graph shown in Fig. 2a, which is 0-bend RAC as witnessed in
the figure. We next establish that G is not 0-bend apRAC, implying that any RAC graph
containing it as a subgraph is not 0-bend apRAC. For a contradiction, assume that G admits
a 0-bend apRAC drawing I'. Denote by u the (sole) vertex of degree six in G and let G’ be
the subgraph of G without u, that is, G’ = G \ {u}. Let I be the subdrawing of T' restricted
to G'. If TV is plane, then u lies in a (triangular) face of I since G’ is a maximal planar
graph. However, Property 3 applied to the internal faces and Property 2 applied to the
external face of I'V imply that u cannot lie in any face of I'/; a contradiction.

Hence, I necessarily contains at least one crossing, say between edges (a,b) and (¢, d).

Note that a,b, c and d are pairwise different, since I is 0-bend. Any edge of G’ belongs to
exactly two cycles of length three. In particular, let (a,b) belong to two cycles abv and abw,
while (¢, d) belongs to cycles cdx and cdy. We first consider the case where v is contained
inside the triangle representing abw - the case where w is contained inside the triangle abv is
symmetric. By assumption, since (c,d) intersects (a,b) and since no edge can intersect two
edges of a three cycle by Property 1, we have that one endpoint, say ¢, is either contained
inside the triangle representing abv or it coincides with v; see Fig. 2b. In any case, c is
contained inside the triangle representing abw, which is impossible by Property 4 since u is
connected to all vertices of G’. We then consider the case where the triangles representing
abv and abw do not contain a vertex of the other; see Fig. 2c. As above, c is either inside
abv or coincides with v and d is either inside abw or coincides with w. However, ¢ = v and
d = w at the same time implies a K4 in G’, which is not possible. Hence, by Property 4 we
derive a contradiction also in this case. <
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(a) (b)

Figure 3 Lower bound construction for the class of 1-bend apRAC graphs. Here and in the
following, the drawings have been rotated by 45° for layout reasons.

4 1-bend apRAC graphs

In this section, we will establish an upper bound and an almost matching lower bound for
the class of 1-bend apRAC graphs.

» Theorem 4.1. A 1-bend apRAC graph with n vertices has at most 5n — 6 edges. Also,
there exist infinitely many 1-bend apRAC graphs with n vertices and 5n — ©(y/n) edges.

Proof. For the upper bound, consider a 1-bend apRAC drawing I' of an n-vertex graph G.
Each edge segment in T is either horizontal (h) or vertical (v) or oblique (o). For x,y €
{h,v,0}, let Eyy be the edges of G with two edge segments of type = and y. Then, Ep,,, Epo,
FE,, and FE,, form a partition of the edge set of GG, assuming that edges that consist of only
one h-, v- or o-segment are counted towards Ey,, E,, and E,,, respectively. By construction,
any crossing involves exactly one vertical and one horizontal segment. Hence, the subgraph
of G induced by Ep, U E,, is planar and contains at most 3n — 6 edges. Further, as every
segment is incident to a vertex and since any vertex is incident to at most two vertical
segments, we have |Ey, U Ep,| < 2n. Thus, |E| = |Eno| + | Evo| + |Env| + |Eoo| < 5n — 6.
For the lower bound, Fig. 3a depicts a so-called tile consisting of a 6-cycle with seven
internal edges. Fig. 3b illustrates a tiling which consists of 4 x 2 tiles. Choose h > 1 and set
w = 2h. The resulting w x h tiling contains n = (2h + 1)? vertices. Since the tiling consists
of 2h? many tiles and since any tile contributes at least ten edges in total (seven internal
edges and six boundary edges, each shared by at most two tiles), it follows that the number

of edges is at least 2h? - 10 = 5n — ©(y/n) since h = \/Z_l. <

The current-best lower-bound construction for general 1-bend RAC graphs with n vertices
has 5n — 10 edges [1]. Therefore, by Theorem 4.1 it may be 1-bend apRAC as well. Towards
an answer to Question 1 for k = 1, we deem important to state that it is far from clear to us
whether and how this construction can be converted to be 1-bend apRAC.

5 2-bend apRAC graphs

In Theorems 5.1 and 5.2 we give upper and lower bounds on the edge density of 2-bend
apRAC graphs, respectively.
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» Theorem 5.1. A 2-bend apRAC graph with n vertices G has at most 10n — 12 edges.

Proof. Consider a 2-bend apRAC drawing I" of an n-vertex graph G. Each edge segment in T’
is either horizontal (h) or vertical (v) or oblique (0). Denote by .S the set of edges that contain
at least one segment in {h,v} incident to a vertex. Since any vertex is incident to at most two
vertical and at most two horizontal segments, it follows that |S| < 4n. Let Ep, E, and E, be
the set of edges of E'\ S whose middle part is h, v and o, respectively. Assuming that an edge of
E\ S consisting of less than three segments belongs to E,, it follows that Fj, E, and E, form a
partition of E'\ S. Observe that the edges of E, cannot be involved in any crossing in T, as all
of its segments are oblique. Further, no two edges of Ej, or E, can cross. Hence, the subgraphs
induced by Er, UFE, and F, U FE, are planar and contain at most 3n — 6 edges each. Recall that
|S] < 4n and thus |E| < |S|+ |Ep| + |Ey| +2|Ey] <4n+3n—6+3n—6=10n—12. <«

» Theorem 5.2. There exist infinitely many 2-bend apRAC graphs with n vertices and
10n — ©(y/n) edges.

Proof. Our proof follows the general idea of the lower-bound construction of Theorem 4.1
using a different tile, namely, the one shown in Fig. 4. We construct an h x h tiling for h > 3;
for space reason see Fig. 5 for an exemplary 2 x 2 tiling. Observe that besides the boundary

edges of the tiles and the interior edges of the tiles, there exist edges that bridge two tiles.

Fig. 6 outlines how the boundary, bridging and internal edges of a tile are connected.

Denote by Z the set of tiles whose boundary edges do not bound the outer face. Consider
an arbitrary tile t € Z. Every boundary edge of ¢ bounds at most two tiles in Z, hence for
each of the 16 boundary edges, we assign ¢ one half of it. Similarly, we assign to ¢ one half of
each of the 16 bridging edges that have an endpoint at a vertex of ¢ and that are partially
contained inside ¢. Since t contains 54 internal edges, we have that ¢ contributes at least
8 + 8 + 54 = 70 edges in the construction.

The tiling contains n = 3h - (h+ 1)+ (h +1) - (4h + 1) = Th? + 8h + 1 vertices in total.

Since |Z| = (h? — (4h—4)) and h = 1 -

70 (2 — 2VTn+9+22)—70- (4-(

(v/Tn + 9 —4) it follows that m > 70 (h? — (4h—4)) >
1. (VTn+9—4)) —4) = 10n — O(y/n) as desired. <«

6 Conclusion and Open Problems

We conclude with the following open problems:

Are there k-bend RAC graphs that are not k-bend apRAC for k € {1,2}? For k =1, we
strongly believe that the construction in [1] is not 1-bend apRAC.

Both the proofs for the upper bound as well as the lower-bound construction for the
k-bend apRAC case with k& € {1,2} do not take the simplicity of the drawing into
consideration, i.e., it is possible that two edges have more than one point in common
(endpoint and crossing point). Do we get different bounds for simple drawings similar to
the 1-bend RAC case [1]?

For k € {0, 1,2}, narrow the gaps between the lower and the upper bounds. In particular,
do the tight upper bounds contain subtractive lower-order terms of O(y/n)?

It is known that the recognition of 0-bend RAC graphs is NP-hard [5] (in fact, even for the
fixed embedding setting it was shown to be JR-hard [23]). What about the recognition
of 0-bend apRAC graphs?

EuroCG’23
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[ Figure 5 A 2 x 2 tiling using the tile shown in Fig. 4. Since the printed version might be cluttered,
we refer the reader to the electronic version
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(c) (d)

Figure 6 In (a), the edges which are drawn gray in Fig. 5 are drawn with colors and partially
bundled to avoid clutter. (b) and (c) schematize the crossing-free subgraphs induced by the blue
and black, and by the red and green edges, respectively. (d) depicts the same information as (c) in a
larger 3 x 3 tiling.
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—— Abstract

This paper studies a packing problem in the case that the host graph is k-planar, i.e., it can be
drawn with at most k crossings per edge, and focuses on families of A-regular caterpillars, that are
caterpillars whose non-leaf vertices have the same degree A. We study the dependency of k on the
number h of caterpillars that are packed, both when these caterpillars are all isomorphic and when
they are not. We give necessary and sufficient conditions for the packing of h isomorphic A-regular
caterpillars and sufficient conditions for the packing of a set of h caterpillars such that each one is
A-regular and the value of A can be different for different caterpillars.

1 Introduction

Graph packing is a classical problem in graph theory. It requires to merge several smaller
graphs into a larger graph, called the host graph, without creating multiple edges. More pre-
cisely, let G1,Go, ..., Gy be h graphs, all having n vertices, an h-packing of G1,Ga, ..., Gy is
an n-vertex graph G that contains G1, Ga, ..., Gy as edge-disjoint spanning subgraphs. We
say that G1,Ga, ..., Gy can be packed into G and that G is the host graph of G1,Gs,...,Gp.
If the h input graphs are all isomorphic, an h-packing is called an h-placement and we talk
about placement problem in this case. We also say that G1,Gs, ..., G can be placed into
G. Many combinatorial problems can be regarded as packing/placement problems. For
example, the Hamiltonian cycle problem for a graph G can be stated as the problem of
packing an n-vertex cycle with the complement of G.

When no restriction is imposed on the host graph, we say that the host graph is K.
Some classical results in this setting are those by Bollobas and Eldridge [3], Teo and Yap
[20], Sauer and Spencer [19], while related famous conjectures are by Erdds and Sés from
1963 [6] and by Gyarfas from 1978 [12]. Within this line of research, Wang and Sauer [21],
and Mahéo et al. [17] characterized triples of trees that admit a packing into K,. Haler
and Wang [13] extended this result to four copies of a tree. Further results in this area

* This work is partially supported by: () MIUR, grant 20174LF3T8 “AHeAD: efficient Algorithms for
HArnessing networked Data”; (¢¢) Dipartimento di Ingegneria - Universita degli Studi di Perugia, grants
RICBA21LG: “Algoritmi, modelli e sistemi per la rappresentazione visuale di reti” and RICBA22CB
“Modelli, algoritmi e sistemi per la visualizzazione e ’analisi di grafi e reti”. The research in this paper
started during the Summer Workshop on Graph Drawing 2021, Castiglione del Lago (PG).

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29-31, 2023.

This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.
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are by Hedetniemi et al. [14], Wozniak and Wojda [22] and Aichholzer et al. [1]. Also refer
to [13, 21, 23] for results about the placement problem.

A tighter relation to graph drawing was established when researchers did not consider
K, to be the host graph, but required the host graph to be planar. A central question
here is how to pack two trees of size n into a planar graph of size n. After a long series of
intermediate steps [7, 8, 9, 10, 18], enlarging the class of trees that could be packed, Geyer
et al. [11] showed that any two non-star trees can be embedded into a planar graph.

Relaxing the planarity condition allows for packing of more (than two) trees, and re-
stricting the number of crossings for each edge, i.e., in the so-called beyond planar set-
ting [5, 15, 16], still keeps the host graph sparse. The study of the packing problem in
the beyond planarity setting was started by De Luca et al. [4], who consider how to pack
caterpillars, paths, and cycles into 1-planar graphs. While two trees can always be packed
into a planar graph, it may not be possible to pack three trees into a 1-planar graph.

In this work, we further generalize the problem by allowing the host graph to be k-planar
for any £ > 1, and we study the dependency of k£ on the number of caterpillars to be packed
and on their vertex degree. We consider A-regular caterpillars, which are caterpillars whose
non-leaf vertices all have the same degree A. Our results can be briefly outlined as follows.

We characterize those families of h A-regular caterpillars which admit a placement into
a k-planar graph and show that k € O(Ah + h?).

We consider the packing problem of h caterpillars, Cy,Cs, ..., C}, such that C; is A;-
regular, for ¢ € {1,2,...,h}, and A; > A;yq, for ¢ € {1,2,...,h — 1}. By extending
the techniques of the bullet above, we give sufficient conditions for the existence of a
k-planar packing of these caterpillars and show that k € O(Ah?).

For reasons of space, some proofs are omitted and can be found in the full version, which
also contains additional results [2].

2 Preliminaries

Given a graph G, we denote by deg.(v) the degree of a vertex v in G. Let G1,Ga,...,Gp
be h graphs, all having n vertices. The following property holds.

» Property 1. A packing of h connected n-vertex graphs exists only if n > 2h and degg, (v) <
n — h, for each i € {1,2,...,h} and for each vertex v.

A k-planar graph is a graph that admits a drawing in the plane such that each edge
is crossed at most k times. If the host graph of an h-packing (h-placement) is k-planar,
we will talk about a k-planar h-packing (k-planar h-placement) or simply about a k-planar
packing/placement, when the value of h is not relevant.

A caterpillar is a tree T such that removing all leaves we are left with a path, called spine;
T is A-regular, for A > 2, if deg,(v) = A for every spine vertex v. The number of vertices
of a A-regular caterpillar is n = 0(A — 1) +2, where o is the number of vertices of the spine.
While A-regular caterpillars are defined for any value of ¢ > 1, when we want to pack a set
of h > 2 caterpillars, Property 1 requires that each caterpillar has ¢ > 2. Otherwise, the
unique spine vertex would have degree n — 1 and Property 1 would not hold.

3 h-placement of A-regular Caterpillars into i-planar Graphs

We start by showing that Property 1 is, in general, not sufficient to guarantee a placement
even for A-regular caterpillars.
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Figure 1 (a) A zig-zag drawing of a 4-regular caterpillar; (b) the upper and the lower part are
highlighted; (¢) a 2-packing obtained by the drawing of (b) with a copy of it rotated by one step.

» Theorem 1. For every h > 2, let A be a positive integer such that % is not integer. A
set of h A-regular caterpillars with n = 2h vertices cannot be placed into any graph.

In order to establish necessary and sufficient conditions for the existence of a k-planar
h-placement of h isomorphic A-regular caterpillars, we now describe a construction of a type
of drawings called zig-zag drawings and study their properties.

Let C be a A-regular caterpillar with n vertices; we construct a drawing I' of C' as shown
in Figure 1. The number of vertices of the spine of C is o = Z;j; consider a set of o points
on a circle v and denote by uy,us,...,u, these points according to the circular clockwise
order they appear along 7. Draw the spine of C' by connecting, for i = 1,2,...,[%], the
points u; and u;1;1 to the point uy_;i1; see Figure la. If o is even and ¢ = §, the points
Ui+1 and uy, ;41 coincide and therefore the point ug is connected only to ug41. Notice that
all points u; have two incident edges, except u; and Ug )41 which have only one. We add
the leaves adjacent to each vertex u; & {u1,u| ¢ 11} by connecting uy—i+1 to A —2 points
between wu; and u;41; we then add the leaves adjacent to u; by connecting it to A — 1 points
between u, and uq; we finally add the leaves adjacent to u| ¢ |41 by connecting it to A—-1
points between ug and ug 41 if o is even, or to A —1 points between u|g)41 and ujg |0 if
o is odd. The resulting drawing is called a zig-zag drawing of C.

From now on, we assume that in a zig-zag drawing the points that represent vertices
are equally spaced on the circle . Let x be the convex hull of the points representing the
vertices of C' in I'. A zig-zag drawing has exactly two sides of x that coincide with two edges
of C'; we call these two edges short edges of I'. Denote by v1,vs,...,v, the vertices of T’
according to the circular clockwise order they appear along x with v; = uy; see Figure 1b.
Notice that (v, v,) is a short edge and wv,, is its leaf vertex.

Consider a straight line s that intersects both short edges of I'; line s intersects all the
edges of the zig-zag drawing. Without loss of generality, assume that s is horizontal and
denote by U the set of vertices that are above s and by L the set of vertices that are below s.
The vertices in U form the upper part of I' and those in L form the lower part of I'. Without
loss of generality, assume that vy is in the upper part (and therefore v,, is in the lower part).
It follows that each edge has the end-vertex with lower index in the upper part, and the
end-vertex with higher index in the lower part. Hence the short edge different from (vy,v,),
which we denote as (v,_1,v,), is such that v,_; is in the upper part and v, is in the lower
part. The first vertex of the upper part, i.e., vertex vy, is called starting point of I', while
the first vertex of the lower part, i.e., vertex v, is called ending point of I'. We observe that

EuroCG’23



30:4 k-planar Placement and Packing of A-regular Caterpillars

r =1+ % if the number of vertices of the spine o = Z;_Ql is even, while r = 1 + w if
o is odd. This can be written with a single formula as r = 1 + "7(A71)(2‘7 mod 2)
Let ¢ be a positive integer and let IV be the drawing obtained by re-mapping vertex v;

to the point! representing v; 4, in I'. We say that I is the drawing obtained by rotating I’

by ¢ steps. Note that the starting point of I'' is v; with j = 14 ¢ and the ending point is v,
withr =140+ n—(A—1)(c mod 2) __ j+ n—(A—1)(c mod 2)
= 2 = 2

union of two zig-zag drawings I'; and I's, where I'; is obtained by rotating I'; by one step;

. The drawing in Figure 1c is the

I'y has starting point v; and ending point vg; I's has starting point vy and ending point vg.

» Lemma 1. Let 'y be a zig-zag drawing of a A-reqular caterpillar C with starting point ji;
let Ty be a zig-zag drawing of C with starting point ja. If 0 < jo — j1 < ”7(A71)gj mod 2)
where o is the number of spine vertices of C, then I'y UT'y has no multiple edges.

)

The next lemma computes the maximum number of crossings per edge in the union of
two zig-zag drawings without overlapping edges. We state the lemma assuming that the two
A-regular caterpillars can have different vertex degrees, as we are going to use the lemma
to establish upper bounds on & both for k-planar h-placements and for k-planar h-packings.

» Lemma 2. Let C; be an n-vertex Aq-regular caterpillar and let Cy be an n-vertex As-
reqular caterpillar with A; < n — 2 (for i = 1,2). Let I'y be a zig-zag drawing of C4
with starting point vj, and let 'y be a zig-zag drawing of Co with starting point v, with
0 <j2—g1<g. IfT1UTy has no multiple edges, then any edge of I'y UTy is crossed at
most 2(A1 + Ag) + 4(ja — j1) times.

We are now ready to characterize the A-regular caterpillars that admit an h-placement.

» Theorem 2. Let C1,Cy, ..., Cy be h isomorphic A-regular caterpillars with n vertices. An
h-placement of C1,Csy, . .., Cy, exists if and only if: (i) A <n—h; and (i) n > 2h+(A=1)-(o
mod 2), where o is the number of spine vertices of each C; (i =1,2,...,h). Further, if an
h-placement exists, there exists one that is k-planar for k € O(Ah + h?).

Proof. We first prove the sufficient condition. Let Cy,Cs,...,C} be the h caterpillars and
assume that n > 2h + (A — 1)(c mod 2). We compute an h-placement of Cy,Cs,...,Ch
starting from a zig-zag drawing I'; of C and obtaining the drawing I'; of C; by rotating I'y
by i — 1 steps, for i = 2,3, ..., h. Since h < n=(A=D(e mod2) o, o} T, is rotated by less than

2
"_(A_l)g’ mod 2) steps and each pair of drawings T; and I'; satisfies Lemma 1. Thus, there

are no multiple edges and the union of all I';’s is a valid h-placement of C7,Cy, ..., Ch.

We now prove the necessary condition. If o is even, then conditions (i) and (ii) are
necessary by Property 1. Hence, consider the case when o is odd. Condition (i) is necessary
by Property 1. Assume, by contradiction, that condition (ii) is not necessary, i.e., there
exists a placement of h caterpillars Cy,Cs,...,Cy such that n < 2h + (A —1). Since
C1,Cs,...,Cy admit an h-placement, by Property 1 n must be at least 2h. Thus, it would
be 2h < n < 2h + (A — 1); in other words, n = 2h + o with 0 < a < A — 2.

Let G be the host graph of the h-placement and let v be a vertex of G to which the
largest number of spine vertices of C1,Cy,...,Cy is mapped. Let 8 be the number of spine
vertices that are mapped to v. There are other h — 3 leaf vertices that are mapped to v
(because one vertex per caterpillar has to be mapped to each vertex of G). The degree of

! In a drawing with the vertices in convex position the indices of the vertices are handled in a circular
fashion, i.e., the element with index n is followed by the element with index 1.
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v in G is at most n — 1 and each of the spine vertices mapped to v has degree A. Hence,
the 8 spine vertices mapped to v have degree SA in total. Vertex v can have at most
n — 1 — BA other edges and therefore it must ben —1— A > h -, ie., < "371:1’1. On
the other hand, there are oh spine vertices in total and, since G has n vertices, there are
at least ’—er spine vertices mapped to v, i.e., 8 > [%hl Putting together the conditions
on f3, we obtain: [%h] < B < ”;71:1’1. Since h = %5 and n = (A — 1) + 2, we obtain:

p oo o(A-1)+a S G iaqe
[5 - m—‘ < B < =a=t1y» which implies:

g___* |2, @ (1)
2 2A-D+2[ 72 2A-1)
We prove that Eq. (1) does not hold. Since o is odd, it is ¢ = 2i 4+ 1 for ¢ € N, and thus:
1 1
N S I 5
[1—1—2 C-‘_H—Q—FC, (2)
with ¢ = 5577 and ¢/ = g8y, We have ¢ < ¢ and ¢ = 5255 < 5577 < 5fa-1) =

%. The first term of Eq. (2) is i + 1 because 0 < £ —{ < 1; the second term is less than i + 1
because 0 < £ + ¢’ < 1. It follows that Eq. (2), and hence Eq. (1), does not hold.

We now prove the bound on the number of crossings along an edge. Consider an edge e
of I't; the number of crossings along an edge of the drawing of another caterpillar is bounded
by the same number. By Lemma 2, the number of crossings y. along e due to the edges
of another drawing T'; (with 2 < < h) is at most 2(A; + A;) + 4(j; — j1). Summing over
all drawings distinct from I'y, we obtain x, < 2?22(2(A1 + A}) +4(j; — 1)) Considering
that A; = A for every [ and that j; — j3 = 1 — 1, we have x, < Z?:Q(4A +4(1-1)) <
(4A — 2)h + 2h2 — 4A. |

Theorem 2 considers h copies of the same caterpillar that are packed into a host graph. By
exploiting the zig-zag drawing technique, we can establish sufficient conditions for packing
Aq-, Ao-, ..., Ap-regular caterpillars with A; # A;, 1 <4,5 < h.

» Theorem 3. Let C1,C5,...,Cy be h caterpillars such that C; is A;-regular, for 1 < i < h,
and Ay, < Ap_1 << A; <n-—h. IfZ?:lAi <n-1 andZ?zQ {%] < %, then
there exists a k-planar packing with k € O(A1h?).

4 Open Problems

We conclude with some open problems related to our results. (i) Extend the characterization
of Theorem 2 to the placement of caterpillars that are not A-regular; (ii) Theorem 3 gives
sufficient conditions for the k-planar packing of a family of caterpillars. It would be interest-
ing to give a complete characterization of the packability of this family into k-planar graphs.
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—— Abstract

We study the discrete k-median problem on a set of n points in a polygonal domain P with m
vertices. Here the goal is to find a set S C D of k centers such that ), {minses{|ln(d,s)[}} is
minimized, where ||7(d, s)|| denotes the length of the shortest path between d and s. We develop an

Ok, Subsequently, we show

exact algorithm for this problem, which runs in time poly(n,m) +n
that our approach can also be applied to solve the discrete k-center problem with z outliers in the

same running time.

1 Introduction

Problem statement. Let P be a polygonal domain (that is, a polygon with holes) with m
vertices, and let D be a set of n demand points in P. The discrete k-median problem asks
to find a set S C D of k center points such that the quantity ), ,{minses{|7(d,s)[/}}
is minimized, where ||7(p, q)|| denotes the length of the shortest path m(p, ¢) between two
points p, ¢ in P. The discrete k-center problem asks to find a set S C D of k center points
such that the maximum distance of points in D to their nearest center in S is minimized. An
outlier can significantly increase the maximum distance to the nearest center, so we study
the k-center problem with z outliers, which asks to minimize the maximum distance of all
but z points of D to their nearest center in S.

Our interest lies in developing a subexponential exact algorithm for these problems, which
depends exponentially on £ and not on the complexity of the polygonal domain. We first
show how to do this for k-median and as a nice by-product, we show that our approach can
also be applied to the k-center problem with z outliers.

Previous work. In the Euclidean setting, exact algorithms for k-median and k-center have
been known for a long time. Most relevant to our paper is the work by Hwang et al. [4],
who presented algorithms with running time nOWk) for the planar version of the problems.
Their approach works with the Voronoi diagram of the (unknown) optimal solution, and
“guesses” a cycle separator of its dual graph. The separator splits the problem into two
subproblems, which are then solved recursively. This is an idea that we also make use of.
The same approach was employed more recently by Marx and Pilipczuk [5] to solve a wide
range of covering and packing problems defined on planar graphs. This includes k-center,
which they solve in nO(Vk) | To the best of our understanding, their approach cannot be used
to tackle k-median and also cannot directly handle outliers. For small values of k and in the
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Figure 1 Illustration for the definition of b(p, q), z(p, ¢) and zu(p, q).

setting of a simple polygon, only the 1-center and 2-center problems have received attention.
More specifically, Ahn et al. [1] studied the problem of computing the geodesic center of
a (weakly) simple polygon P, where the task is to find the point s € P which minimizes
the maximum geodesic distance from any other point in P. They developed a linear-time
algorithm for this problem. Their algorithm can be used to compute the 1-center of a set
D of n points in P: as observed in [2], the 1-center of D coincides with the 1-center of the
relative convex hull of D (denoted by RCH(D)). Since the geodesic convex hull is a weakly
simple polygon that can be computed in time O(nlogn + m) (where m is the complexity of
P), the 1-center of D can be computed in the same time. For k = 2, Oh et al. [7] observed
that the 2-center of RCH(D) does not anymore necessarily coincide with the 2-center of D
and went on to present an O(m(n + m)log® (n + m))-time algorithm for the 2-center of D.
When holes are also allowed, we are not aware of any work that specifically addresses the
1-center or the 2-center problem with respect to a given subset of points in the domain.

Notation. We denote the outer polygon of our polygonal domain P by Py, and we use H to
denote the collection of holes in P. Recall that m(p, ¢) denotes the shortest path between two
points p,q in P. For a finite set D C P, the geodesic Voronoi diagram of D in P, denoted
avD(D), is the partition of P into |D| Voronoi cells, where the Voronoi cell V(g) of a point
q € D is defined as Vp(q) := {z € P : ||7(z,q)|| < ||n(z,p)| for all p € D}. When the set
D is clear from the context, we may simply write V(q). For two points p,q € P, let b(p, q)
denote their geodesic bisector and let bp(p, q) denote the part of b(p,q) which appears in
avD(D). Let B(p,q) ={z € P : ||n(p,2)|| < ||7(g,z)||}. We will denote by z(p, q) the first
point of b(p, ¢) that is met during a clockwise transversal of 9Py which starts from a point of
0Py N B(p, q). Finally, we will denote by x g (p, ¢) the first point of b(p, ¢) that is met during
a clockwise transversal of hole H, starting from a point of H N B(p, q); see Fig. 1.

2 The k-median problem in a polygonal domain.

The idea is to extend the approach by Hwang et al. [4], which worked for R?, to a polygonal
domain. We therefore start by considering the geodesic Voronoi diagram of our (unknown)
optimal solution S. In the Euclidean case, the dual of this diagram is called the Delaunay
triangulation, denoted by DT(S). Every inner face of DT(S) is a triangle, and one can add a
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(i) (i) P

N

Figure 2 (i) An example where the dual of the geodesic Voronoi diagram corresponds to a tree.

(ii) Adding p to the outside face of P and connecting it to cells incident to 9P, via the intervals I;.

set I of three extra points to S sufficiently far away, such that the outside face of DT(S U T)
also becomes a triangle. This results in a maximal planar graph. Hence, by Miller’s separator
theorem [6] there exists a simple cycle separator C' of DT(S U I) of size O(v/k) which is
(2/3)-balanced with respect to S U I. (The latter means that at most 2/3 of the points in
S U lie inside C' and at most 2/3 of the points in S U I lie outside C.) In our setting, it is
not guaranteed that the dual of GvD(S) is an (almost) triangulated graph. See Fig.2(i) for
an example where it corresponds to a tree. Therefore we will need a few extra steps before
we can apply a separator theorem.

2.1 Transforming the dual of GvD(S)

Let G = (V, E) denote the dual graph of avD(S). The goal is to transform G to a graph
G* = (V*, E*) such that any face of G* has size at most three. The Voronoi cells of GvD(S)
which are incident to Py, induce a decomposition of Py into disjoint intervals. Note that
it is possible for a Voronoi cell to contribute to more than one interval. The following lemma
gives a linear bound on the number of these intervals.

» Lemma 2.1. Let I,..., I, denote the intervals along 0Py induced by GvD(S), enumerated
in clockwise order. Then r = O(k).

Proof. For 1 <i < r, let s; € S be the point in our solution S whose Voronoi cell has I;
on its boundary. Note that the s; need not all be distinct. For ¢ = 1,...r — 1, we charge
I; to b(s;, 8;+1). Any bisector can be charged at most two times. Moreover, a bisector
uniquely corresponds to an edge of G and we know that G is a planar graph. Therefore
r < 2|F| < 6k — 12. <

Now let p denote an arbitrary point in the outside face of P. We connect p to each s; via
any arbitrary interior point of I;. Let {eq,...,e,} denote the set of these extra edges. Then
we have so far, V* = VU {p} and E* = EU{e;}]_,. It’s easy to see that we can embed
these edges such that: (i) they are pairwise non-crossing and (ii) any face of the resulting
graph incident to p is a triangle. See Figure 2 (ii) for an example.

Handling the faces that do not contain p. Now we need to handle the faces of G* that

are not incident to p. By construction, the outer face of G* contains p and thus is a triangle.
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Figure 3 Holes H;, and H, are essential, so we add a vertex for each of them. In (iii), observe
that every face has bounded size.

Therefore, the only way G* can contain a face of size at least four is if there exists a cycle of
size four “around” a hole as in Figure 3 (i).

We define an essential hole to be a hole H € H which is incident to at least four Voronoi
cells of avD(S). Since every essential hole corresponds to a face of G (or G*), the number of
essential holes is O(k). Let H* denote the set of essential holes and for every H € H* let
pm be an arbitrary point in H. We add the set {py}ren+ to V* and we connect py to the
vertices of the Voronoi cells which intersect H. If V(q) is such a Voronoi cell, then, similarly
as before, we can embed the edge (pg,q) by going through any interior point of H NV (q).
At the end of this process, G* is a graph where every face is a triangle.

2.2 Applying the Separator Theorem to G*

We now want to apply Miller’s Separator Theorem to G*. One thing that prevents us
from doing so, is that G* could be a multigraph, because p may be connected to the same
Voronoi vertex more than once. (Recall that a Voronoi cell may contribute to more than one
interval I;). To deal with this, we can add a “dummy vertex” to each edge which has p as an
endpoint; see Figure 2 (ii). This way we only increase the number of vertices and edges by
O(k). Moreover, the faces of the resulting graph still have bounded size, which ensures that
a separator theorem can still be applied (see below). Note that we want our separator to
be balanced with respect to V. To ensure that, we employ the cost-balanced version of the
Planar Separator Theorem, proven by Djidjev and Venkatesan [3].

Planar Separator Theorem. Let G = (V,€) be a maximal planar graph with n
nodes. Let each node v € V have a non-negative weight, denoted weight(v), with
> vev weight(v) = 1. Then V can be partitioned in O(n) time into three sets A, B, C
such that (i) C is a simple cycle of size O(y/n), (ii) G has no arcs between a node in
A and a node in B, and (iii) ) . 4, weight(v) < 2/3 and }_ _ weight(v) < 2/3.

The theorem is stated for maximal planar graphs, but as pointed out in [3], it can be extended
to graphs with faces of bounded size (as is our case). In our application, we give weight zero
to the intermediate vertices as well as all vertices in V*\ V, and weight ﬁ to each vertex in
V. Thus we obtain a simple-cycle separator C, which we can turn into a separator for G* by
ignoring any of the dummy vertices appearing on it. We obtain the following lemma.
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Figure 4 An example of three points and two holes, such that all three pairwise bisectors between
the points intersect both holes.

» Lemma 2.2. There exists a separator C for G* with the following properties: 1. C is a
simple cycle, 2. C has size O(VE) and 3. C is (2/3)-balanced with respect to V.

2.3 Guessing and Embedding the Separator

What we would like to do now, is guess the separator C' of G*. Regarding the essential holes,
note that we know that |H*| = O(k), but we don’t have any bound on # in terms of n. This
is problematic for the running time because we will need to “guess” what the essential holes
are. However, we will argue that only O(n?) holes are good candidates for being essential.
We start with the following lemma.

» Lemma 2.3. Let P be a polygon and let H = {H;, Ho, ..., H,,} be the set of holes in P.
Let T = {p,q,r} be a set of three points in P. Then there are at most two holes in H that
are incident to all three Voronoi cells Vp(p), Vr(q), Vr(r).

Proof. Assume for contradiction that there exist three holes H;, H;, Hy, incident to all three
cells Vr(p), Vr(q), Vr(r) . Since Voronoi cells are connected, for each x € {p,q,r} and for

each H € {H;,H,;, Hy}, there exists a path connecting = to H which stays inside V(z).

In this way, we get a planar embedding of K3 3, which is a contradiction. (Note that it is
possible to have two holes bordering Vr(p), Vr(q), Vr(r), see Figure 4.) <

Now we define the set of candidate essential holes R as follows: for every triplet of points
in D we identify at most two holes which are incident to all three pairwise bisectors between
the points. We then place these holes in R. Clearly, |R| = O(n?®). Therefore we can afford
to guess O(\/E) essential holes on our separator C. Now we give a more detailed description
of how our algorithm works. Recall that each node in G* (and, hence, each node on the
separator we are looking for) corresponds to either a point in D, or to the extra point p we
added, or to an essential hole. Thus, to find the separator, we guess all ordered subsets of
size O(Vk) from the set RU D U p. This results in nP®) candidate separators. We then
would like to use each separator to split our problem into two independent subproblems,
one for the inside and one for the outside of the separator. To do that, we have to make
sure that for every demand point d € D its closest center point in the optimal solution, is
located at the same side of the separator as d. For this, it suffices to embed the edges of the

separator such that no edge crosses a Voronoi cell of a point which is not one of its endpoints.

We have three categories of edges:

EuroCG’'23
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Edges that connect p to a Voronoi site ¢q. Clearly if (p,q) € E*, then there exists

some r € S such that (¢,r) € E and then we can embed such an edge by going through

the point z(q, ). Note that we don’t know r, but we can afford to guess it from D and

therefore there are n options.

Edges that connect a Voronoi site g to a py for some H € R. If (¢,pu) € E*,

then again there exists some r € S such that ¢, € E and then we can embed such an

edge by going through z(q,r). Again we can guess r from D and there are n options.

Edges that connect two Voronoi sites ¢ and r. Note that then one of the following

holds if (¢,r) € E:

1. there exists a ¢t € S, such that Vs(q), Vs(r), Vs(t) meet at a point ¢ in P or at a hole
H e H*

2. bs(q, ) intersects OPy at two points.

Therefore we can check for all ¢ € D whether 1. holds and if yes we embed (¢, r) via ¢ or

2 (q,r). Otherwise, we can embed (g,7) via (g, ). Again we have at most n guesses.

Assuming our guessed separator is correct, the points on the separator have to be part of
the optimal solution that we seek. Therefore in the two subproblems, these points have to be
passed on as part of the input. If we assume that our separator has size i then we also need
to guess how many of the remaining k& — ¢ optimal centers lie in the inside and how many lie
in the outside subproblem. In terms of running time, this is clearly not a problem since it
can only give an extra factor of O(k) = O(n). The base case of our algorithm is when k = 1,
where we simply try all possible options. The recursion then leads to an algorithm with total
running time poly(n, m) + n°V®),

3 The k-Center problem with outliers

To solve the k-center problem with z outliers, we first show that the same approach as our
k-median algorithm works to solve the so-called (k,r)-coverage problem, and then we show
how to reduce the k-center problem with z outliers to the (k,r)-coverage problem. Let P be
a polygonal domain, D denote a set of n demand points in P, and k, r be two parameters.
We define a (k, r)-coverage of D as a set of k balls of radius at most r, such that the number
of outliers (that is, points in D not covered by the balls) is minimized.

The divide-and-conquer algorithm we presented earlier for k-median clustering has a base
case of kK = 1. Our algorithm relies on the n candidates for the optimal centers in k-median,
and has a running time of nOWk), However, we only use the properties of k-median to solve
for the base case and determine the candidate centers when guessing the separator in an
optimal solution. Therefore, the same approach can be applied to solve the (k,r)-coverage
problem, where for the base case, we can consider all the possible O(n) balls of radius r
and find the one that covers the maximum number of points in D. This means that our
algorithm can compute an optimal (k,r)-coverage in nOk) time.

It remains to reduce the k-center problem with z outliers to the (k,r)-coverage problem.
Observe that if r is at least the optimal radius for k-center clustering with z outliers, then
the number of outliers for (k,r)-coverage is at most z. Additionally, any minimal ball in an
optimal solution for the k-center of D with z outliers contains either three points from D on
its boundary or two points from D that form a diametrically opposite pair. Therefore, there
are at most O(n3) candidates for the optimal radius. By performing a binary search over
these O(n?3) possible radii, we can find the minimum radius r* such that the (k,r*)-coverage
covers all but at most z outliers. This (k, r*)-coverage is an optimal solution for the k-center
problem with z outliers, and the running time to find it is O(n®V® . log (n?)) = nOVk),
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—— Abstract

We show how to preprocess a polygonal domain with holes so that the link distance (the number of
links in a minimum-link path) between two query points in the domain can be reported efficiently.
Answering 2-point link distance queries in polygonal domains have been open questions since the
same problem was studied for simple polygons in the 90s.

1 Introduction and Preliminaries

A minimum-link (minlink) path between points s,¢ in a polygonal domain P is an s-t path
with a minimum number of edges (links); the number of links in a minlink path is the link
distance between s and ¢. Unlike the geodesic distance, link distance does not obey the
triangle inequality: if s and ¢ see each other, then the link distance from any point on the
segment st to both s and ¢ is 1 — as well as the link distance between s and ¢ themselves.

1.1 Terminology

The wvisibility polygon (VP) of a point p € P is the set of points seen by p. The weak visibility
polygon of a subset S C P is the union of the VPs of the points of S; equivalently, the weak
visibility polygon are the points seen by at least one point of S. The visibility graph (VG)
of P is the graph on vertices of P, whose edges connect pairs of mutually visible vertices.
We assume that edges of P are also edges of the VG (i.e., that neighboring vertices of P see
each other along the boundary edge).

For a line segment ¢ in P, let ¢ be the chord of P containing ¢ (i.e., £ is ¢ extended
maximally within P). We define the Extended Visibility Graph EVG = {uv : wv is an edge
of VG} as the set of chords of P obtained by maximally extending every edge of VG.

Furthermore, the link distance map, denoted LDM(s), from the source point s is the
decomposition of P into cells such that the link distance from s to any point within one
cell is the same. Note that the cells of an LDM are not required to be maximal (i.e., that
the link distance necessarily changes as you step from a cell to a neighboring cell): the only
requirement is that the distance never changes within a cell. Thus, for a polygon P we are
allowed to overlay the EVG with an LDM(s). Hence, for the remainder of the paper, when
referring to LDM(s) we assume all chords of the EVG are included.

Algorithms for computing link distance [5, 7,10, 12] employ the “staged illumination”
paradigm (see, e.g., the handbooks [11, Chapter 12] and [13, Chapter 31.3]): At the first
stage, place the light source at s and illuminate VP of s. At the beginning of any subsequent
stage, the boundary between the lit and the dark portions of P is defined by a set of windows
which are used to calculate the next illuminated VP.
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Figure 1 LDM(c) is obtained by starting the illumination from ¢ (yellow); the edges of the map
(windows) are solid red, and the cells are marked with the link distance to ¢

1.2 Prior work on 2-point queries and Our results

While LDMs give complete answers to the 1-point link. (for a fized source, report the distance
from a query point to the source), for the 2-point distance query problem (report the distance
between two query points s and t), the solutions achieving optimal O(logn) query time are
much more involved [1,3,6,14].

No data structure for 2-point link distance queries in polygonal domains with holes has
been known previously. The contribution of this paper is working out such data structure
(analogous to the 2d decomposition for geodesic queries [3]) by extending the solution of [1]
(for 2-point link distance queries in simple polygons) to polygons with holes.

2 Two-point link distance queries

In this section we show how to compute the 2d LDM equivalence decomposition — the data

structures for 2-point link distance queries, analogous to the structures of [3] for geodesic

queries (see Section 1.2). Our data structures extend the data structure of [1] (for 2-point
link distance queries in simple polygons) to polygonal domains with holes. The extension,
allowing us to track combinatorial changes in LDM(s) for s € P, is two-fold:

Same windows Where for simple polygons only the boundary is decomposed in “atomic
segments” [1], we decompose the whole polygon into cells by overlaying LDMs from
extensions of VG edges — for all s in one cell ¢ of this decomposition, LDM(s) has the
same set W (o) of windows.

Same arrangement of windows We track possible intersections among windows in LDM(s),
which may change because the rotating windows sweep through the domain as s moves

2.1 Static and Rotating windows

Every window w necessarily goes through a vertex of P (Fig. 2). If the chord w goes through
another vertex (w € EVG), we call w a pinned window — such windows do not change as s
moves locally; in particular, chords of EVG are pinned windows (the term “pinned” is
borrowed from [1]). Otherwise we call w a bash window, and the endpoints of W — bash
points. A bash point lies in the interior of an edge of P; we call such an edge a bash wall
(the term “bash” is borrowed from [9]). As s moves slightly, pinned windows of LDM(s)
do not change, whilst a bash window w may remain still or may rotate (refer to Fig. 3 —
as s moves left, all windows rotate). Any window w coming after a pinned window or bash
window is called a static bash window or bash-bash window, respectively.

Overall, we obtain the classification of LDM windows into static and rotating. The
former may be EVG chords or static bash windows; the latter are bash-bash windows.
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Figure 2 Pinned windows (those not aligned with edges of P) are blue (the aligned VG edges

are dotted blue), and static bash windows are green, rotating windows are red
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Figure 3 Figure 1 from [8]: the coordinates of the vertex ¢; of the path are obtained as a solution

to a system of 2 linear equations with 2 unknowns and integer coefficients

2.2 LDMs overlay
We build LDMs from all chords of the EVG; let Wgvyg denote the set of all windows in these

LDMs. The first step in constructing our data structures is computing the overlay O of the
windows in Wgyg. Similar to [1], we build the full overlay of the LDMs, while [1] considered

only the interaction of Wgyg with the boundary of P.
Now, consider LDM(s) for a point s in P. As s moves, the bash-bash windows of LDM(s)
rotate and the map may change combinatorially when either:
Simple case A window hits a vertex of P when s crosses an edge of O, or

New case The arrangement of the windows changes because 3 windows pass through a
common point (out of the 3 windows, at least one must be a rotating window).

We called the first event “simple” because this is the only thing that may happen in a

simple polygon (where windows are pairwise-disjoint). As we will show in Section 2.5, to
account for new events one needs to build LDMs from intersection points of windows in
WEgva, as well as to do some additional, less straightforward computations described later.
An important connection between the overlay O and static windows in LDMs is that all
possible static windows in an LDM from any point of P are known in advance. Note that
we do not claim that any window from Wgy¢ is necessarily a window in any LDM.

EuroCG’23
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Figure 4 P is bold, static windows from Wgyq are dotted, bash paths are solid. Left: LDM(s)
may change combinatorially when s crosses a bash-bash window of LDM(t) where ¢t = wq N w2 for
some static windows w1, w2 € Wgvg of LDM(s); some possible locations for such s are shown with
hollow circles. Middle: LDM(s) may change when there are two bash paths between s and t € ws.
Right: Each of s, t moves on a curve so as to remain connected by 3 bash paths.

2.3 Parametric maps (for simple cases)

If the new cases are ignored, then LDMs (with the corresponding projection functions) built
for all cells of O define the 2d LDM equivalence decomposition. The data structure can be
used to answer 2-point link distance queries in the same way as the 2d SPM equivalence
decomposition [3] answers geodesic distance queries: given query points s and ¢, first s is
located in a cell o of O and then ¢ is located in the parametric LDM(s).

In fact, since LDM edges (the windows) are straight line segments (not hyperbolic arcs
as edges of SPM), one possibility for locating ¢ in the parametric LDM(s) is to use the
monotone subdivision method of [4].

2.4 Triple points (for new cases)

What remains is to account for the new cases (window arrangement changes due to 3 windows
passing through a common point). In Section 2.5 we give an algorithm to compute the
locations S C P for s such that 3 windows in LDM(s) may intersect in a common point t.
The set S is overlaid with O. By construction, for all points s in one cell of the obtained 2d
overlay O*, LDM(s) is the same combinatorially: it has the same windows and they form
the same arrangement (before the arrangement changes, 3 windows must pass through a
common point, at which moment s is in §). Our final data structure, the (full) 2d LDM
equivalence decomposition (“full” in the sense that it accounts for both simple and new
cases) is built from O* in the same way as the data structure for handling simple cases was
built from O (Section 2.3).

2.5 Intersecting 3 windows

To find the (super)set S of sources potentially having triple points in their LDMs, we first
build another decomposition for tracking bash-bash windows (Section ??). We are now
ready to compute S. We emphasize that we do not claim that LDM(s) has a triple point
for every s in S; we only claim that S is sufficiently rich to “catch” all possible (sources of)
maps with triple points.

Let w1, ws, w3 be windows of LDM(s) that intersect at ¢, of which at least 1 window
rotates (so that LDM(s) changes combinatorially when the 3 windows intersect at t). Recall
that the (super)set Wgyg of possible static windows in LDM(s) does not depend on s. We
make 3 different guesses on how many of the 3 windows w1, ws, w3 are rotating (1, 2, or all
3), and do different things for each of the guesses (Fig. 4):
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Assuming only w; is rotating, LDM(s) changes when w; passes through ¢ = ws N ws
(the intersection point of two static windows ws,ws). At this point there is a bash path
between s and ¢, implying that s is on a bash-bash window of LDM(¢). We thus build
LDM(t) from every intersection point ¢ of two (potential) static windows ws, w3 € Wryg
and add to S all bash-bash windows of LDMs.

Assuming 2 windows (say, wy, we) are rotating, LDM(s) changes when their intersection
point ¢ passes through ws. At this point there are two bash paths between s and ¢ (in
one path ¢ € wy, in the other ¢ € wq). That is, s is the intersection point of two rotating
windows in LDM(¢) (one window belonging to the bash path from ¢ that starts from
following wy; the other — following ws). We thus take every window ws € Wgyg as the
potential static window in LDM(s) and intersect it with every cell 7 of O; let w] denote
part of ws inside 7. For all points ¢ € w], LDM(¢) has the same set of windows, and
in particular, the same set of bash-bash windows; each window is a known function of ¢
(via the projection functions). For every pair of the bash-bash windows (with the same
link distance from t) in LDM(¢) we add to S the curve traced by their intersection as ¢
varies along w3.

Assuming all 3 windows are rotating, we go through all pairs of cells o, 7 in D, guessing
that s € o,t € 7. In addition, we go through all triples vy, v9, v3 of vertices visible from s
and all triples wuq,usq,us of vertices visible to ¢, guessing that the vertices support the
first and the last windows resp. of the 3 bash paths (ending with the windows wq, ws, ws)
between s and t. Since vertices of P are endpoints of atomic segments, the decomposition
D includes chords of EVG, implying that the set of vertices visible to any point in a cell
of D is the same: it is thus legitimate to speak about a triple of vertices visible to s € o
or to t € 7 without specifying the exact locations of s and ¢ in the cells.

Using the projection functions, we know whether for some number £ of links there indeed
exist 3 length-k bash paths from s, with the first links of the paths supported by vy, v9, v3
and last links supported by wy, ug, us. If yes, let wi(s), wa(s), w3(s) be these last links
(windows of LDM(s)). For ¢ to be a triple point, the system

t € wi(s)
t € wa(s) (1)
t € ws(s)

of 3 equations (each involving the projection function) with 4 unknowns (the coordinates
of s and t) must be satisfied (for s € o,t € 7). We solve the system and obtain the
decomposition for the 2d LDM equivalence decomposition (the set S C P such that
LDM(s) may change combinatorially only when s is crossing S). That is, for the 2d set
S we take only the first two coordinates of the 4d pairs (s, t) (i.e., the coordinates for
s; the knowledge of corresponding locations for ¢ is ignored). Fig. 5 is a snapshot of a
GeoGebra example for S (dashed pink curve).

» Theorem 2.1. 2-point link distance queries in P can be answered in O(logn) time after
polynomial-time preprocessing.

We focused on reporting the link distance between query points s, t. To report the
minlink s-¢ path, we can enhance the parametric LDMs with backpointers (similarly to [10]).

EuroCG’23
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3 Conclusions

We presented data structures for 2-point link distance queries in polygonal domains. We were
only after polynomiality, and one obvious question is improving efficiency of our algorithms
(fast solutions with small additive errors are known [1]). As far as 2-point link distance
queries go, in polygonal domains with holes, even the visibility queries (Do s and ¢ see each
other, i.e., is the link distance between them equal to 17) are quite challenging [2].
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Figure 5 https://www.geogebra.org/classic/sumsrytt: P’s edges and vertices are black; EuroCG’'23
move s slightly and see LDM change (triple point appearing) as s crosses S (dashed pink)
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—— Abstract
It is a longstanding conjecture that every simple drawing of a complete graph on n > 3 vertices
contains a crossing-free Hamiltonian cycle. We confirm this conjecture for cylindrical drawings,
strongly c-monotone drawings, as well as z-bounded drawings. Moreover, we introduce the stronger
question of whether a crossing-free Hamiltonian path between each pair of vertices always exists.

1 Introduction

A simple drawing is a drawing of a graph where each pair of edges meets in at most one point
(a crossing or a common endpoint) and no edge crosses itself. A fundamental line of research
is concerned with finding crossing-free sub-drawings (that is, sub-drawings with pairwise
non-crossing edges; also called plane sub-drawings) in simple drawings of the complete graph
K, on n vertices. In 1988, Nabil Rafla stated the following conjecture in his PhD thesis [18].

» Conjecture 1 (Rafla [18]). Ewvery simple drawing of the complete graph K, onn > 3
vertices contains at least one crossing-free Hamiltonian cycle.

Two simple drawings D and D’ of the same graph are called weakly isomorphic if two
edges in D cross if and only if the corresponding edges in D’ have a crossing. They are called
strongly isomorphic if there exists a homeomorphism (on the sphere) mapping D to D’. Weak
isomorphism classes can be uniquely represented by rotation systems (see [1, 15] for details).

Related Work. Under the assumption that Conjecture 1 is true, Rafla enumerated all
different simple drawings of K, for n < 7 up to weak isomorphism. Since then, Conjecture 1
and relaxations of it have attracted considerable attention. Especially, note that a crossing-
free Hamiltonian cycle in a simple drawing D implies that D also contains a crossing-free
Hamiltonian path (just remove an arbitrary edge of the cycle). Furthermore, for even n, a
crossing-free Hamiltonian path in turn implies that D contains a plane perfect matching
(take every second edge in the path). However, even the question of the existence of a plane
perfect matching in every simple drawing of K, is still open.

In 2003 Pach, Solymosi, and T6th [17] showed that every simple drawing of K, contains
plane sub-drawings isomorphic to any tree of size O(log(n)'/¢). This immediately implies a
lower bound of Q(log(n)/%) for the largest crossing-free path and largest plane matching
in every simple drawing of K,,. Subsequently, a lot of progress has been made with regard
to plane matchings (see [5, 19] and references therein). Until recently, a lower bound of

* 0.A. and J.O. partially supported by the Austrian Science Fund (FWF) grant W1230. B.V. partially
supported by Austrian Science Fund within the collaborative DACH project Arrangements and Drawings
as FWF project T 3340-N35.
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Q(n'/2=¢), shown by Ruiz-Vargas [19], was best known. This bound has lately been improved
to Q(y/n) in [5], via the introduction and use of generalized twisted drawings.

In the same paper a lower bound of ©(log(n)/log(log(n))) for the longest crossing-free
path was shown; this is the first improvement in that direction over the result from [17].
Furthermore, the authors of [5] obtained the same bound for the longest crossing-free cycle.

In another direction, in [17] it was also shown that every simple drawing of K,, contains a
sub-drawing of size Q(log(n)'/®) which is weakly isomorphic to a convex straight-line drawing
or a so-called twisted drawing (which has been introduced by Harborth and Mengersen in
the context of maximally crossing drawings [14] and empty triangles [13]). This implies the
existence of various plane sub-drawings of the respective size. Recently, Suk and Zeng [20]
improved the above bound from [17] to Q(log(n)'/4~¢) and also (independently of [5]) proved
the existence of a crossing-free path of length Q(log(n)!~¢) in every simple drawing of K,,.

Furthermore, Ruiz-Vargas [19] showed that every c-monotone drawing of K,, contains a
plane matching of size Q(n!~¢); so “almost” a perfect matching. Also, in [5] it is shown that
every c-monotone drawing contains a sub-drawing of size Q(y/n) that is weakly isomorphic
to either an z-monotone drawing or a generalized twisted drawing, implying that c-monotone
drawings of K, contain a crossing-free path as well as a crossing-free cycle of size Q(y/n).

Concerning crossing-free Hamiltonian cycles, Conjecture 1 has been confirmed for all
simple drawings on n < 9 vertices using the rotation system database [1], and Ebenfiihrer
tested the conjecture on randomly generated realizable rotation systems for up to 30 vertices
in his Master’s thesis [9]. Furthermore, in [3, 9] it was shown that simplicity of the drawings
is crucial, by providing a star-simple drawing (non-incident edges are allowed to cross more
than once) of K that does not contain any “crossing-free” Hamiltonian cycle (where edges
are only considered to be “crossing” when they cross an odd number of times).

Finally, Arroyo, Richter, and Sunohara [7] showed the existence of a crossing-free Hamil-
tonian cycle in so-called pseudospherical (or h-convex) drawings of K,,. In a current paper,
Bergold et al. [8] extend this to (generalized) convex drawings. And in [5] Conjecture 1 is
shown to be true for generalized twisted drawings on an odd number of vertices.

Our Contribution. We extend this line of research, showing Conjecture 1 to be true for
cylindrical drawings as well as strongly c-monotone drawings. Moreover, we show the inclusion
of (strongly) cylindrical drawings in (strongly) c-monotone drawings and the equivalence
of z-monotone and x-bounded drawings of K, from which it follows that Conjecture 1 is
also true for z-bounded drawings. Finally, we consider the question whether there exists
a crossing-free Hamiltonian path between each pair of vertices, which we show to be a
generalization of Conjecture 1.

All missing proofs can be found in the full version of this paper.

2 Crossing-Free Hamiltonian Cycles

We start by defining some sub-classes of simple drawings and analyzing relations between them.

If every vertical line in the plane crosses each edge of a simple drawing D at most once, we
call D an x-monotone drawing. When the relative interior of each edge is contained between
the vertical lines through its left and right end-vertices we call D an z-bounded drawing.
Obviously z-bounded drawings are a generalization of z-monotone drawings. Interestingly,
for drawings of K, these classes are basically the same (Fulek et al. [10] show a similar result
on not necessarily simple drawings of not necessarily complete graphs).
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» Theorem 2.1. For every x-bounded drawing D of K,, there exists a weakly isomorphic
x-monotone drawing D’.

As a generalization of Hill’s drawing of K, (confer [11, 12]), we call a simple drawing
cylindrical if all vertices lie on two concentric circles and no edge crosses any of these two
circles (this is the version of cylindrical drawings introduced in [2]). If, in addition, all edges
connecting vertices on the inner (outer, respectively) circle lie inside (outside, respectively)
that circle, then we call the drawing strongly cylindrical.

We say that an edge e in a simple drawing is c-monotone with respect to a point p of
the plane if every ray starting at p crosses e at most once. We call a simple drawing D in
the plane a c-monotone drawing if all edges in D are c-monotone with respect to a common
point p. (as defined in [5]). If, in addition, for each star S in D, there exists a ray starting
at p. that does not cross any edge of S, we say that D is strongly c-monotone.

We state three more results before coming to crossing-free Hamiltonian cycles. In addition,
Figure 1 gives an overview on more classes and their relations.

Hill’s drawing

~
twisted drawing -

~ - -

Figure 1 Relations between special drawings (yellow) and classes of simple drawings of K,
(seagreen/violet). Arrows indicate that the “source class” is contained in the “target class” (concerning
weak isomorphism); darkorange arrows are shown in the full version of this work. Conjecture 1 is (now)
known to be true for the yellow/seagreen classes; for the darker seagreen ones this is shown below.

» Lemma 2.2. Let e be an edge of a strongly c-monotone (with respect to p.) drawing of K,,.
Then the sub-drawing induced by all vertices in the wedge bounded by the rays from p. through
the end-vertices of e and containing e is strongly isomorphic to an x-monotone drawing.

» Lemma 2.3. In every cylindrical drawing, per circle, there exists at most one edge between
neighboring vertices that is crossed by other edges.

» Theorem 2.4. For every cylindrical drawing D there exists a weakly isomorphic drawing D’
that is c-monotone. Moreover, for every strongly cylindrical drawing D there exists a weakly
isomorphic drawing D’ that is strongly c-monotone.

For straight-line drawings of K, it is easy to see that a crossing-free Hamiltonian cycle
always exists (for example, pick an arbitrary vertex v, visit all other vertices in circular
order around v, and add v at some position to close the cycle). Further, it was known
that every 2-page-book, z-monotone, and strongly cylindrical drawing of K, contains a
crossing-free Hamiltonian cycle (see, for example, [4]); however, as we are not aware of
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a reference containing proofs for these statements, we present such proofs in this work,
starting with z-monotone and z-bounded drawings (which include 2-page-book drawings as
a sub-class). We remark that 2-page-book drawings of K, with n > 3 actually contain a
Hamiltonian cycle of completely uncrossed edges.

» Theorem 2.5. FEvery x-monotone and every x-bounded drawing of the complete graph K,
on n > 3 vertices contains at least one crossing-free Hamiltonian cycle.

Proof. First, let D be an z-monotone drawing of K, let the vertices v1,...,v, be in that
order from left to right in horizontal direction, and see Figure 2 for an example illustration of
the construction. Consider the edge e = {v1, v, } and the Hamiltonian path P = vyvy... v,
(which is crossing-free by the definition of z-monotone drawings). If e does not cross P then
e + P is a crossing-free Hamiltonian cycle. Otherwise, e has k > 0 crossings with P and
partitions the vertices of D\ {v1,v,} into a set above e and a set below e.

Our goal is to find crossing-free paths P; and P, from vy to v,, which visit all vertices
above and below e, respectively. Let x; be the i-th crossing between e and P from left to
right (in horizontal direction, which is the same as along P or e). Further, let v,, and v, be
the vertices directly before and after xz;, respectively. Then the edge fo from v; to v, and
the edge fi from v,, to v, cannot cross e (because e is incident to fy and fi). Similarly,

for every crossing z; (1 < i < k — 1) the edge f; from v,, to vp,,, cannot cross e because

i+1
otherwise, f; and e would have to cross at least twice. In other words, for 1 < i < k, the
edges f; alternate between lying completely above and completely below e.

Therefore, the edges f; lying above e combined with all edges of P that also lie above e
(basically, sub-paths of P from vy or vp,_, to v,, or v,) form a crossing-free path P; from vy
to v, (because the edges lie in separate vertical strips and the start-/end-vertices coincide)
visiting all vertices above e. In the same manner, there is a crossing-free path P, visiting
all vertices below e. Then joining P; and Ps results in a crossing-free Hamiltonian cycle
because e separates P; and Ps, which completes the proof for z-monotone drawings.

For z-bounded drawings, the statement follows from the above proof and Theorem 2.1. <«

Figure 2 Constructing a crossing-free Hamiltonian cycle in an z-monotone drawing of K, from
crossing-free paths Py (darkorange) above and Pa (violet) below the edge e = {v1,vn} (seagreen).

The result on strongly c-monotone drawings follows now almost immediately.

» Theorem 2.6. FEvery strongly c-monotone drawing of the complete graph K, onn > 3
vertices contains at least one crossing-free Hamiltonian cycle.

Proof. Let the vertices vy to v, be in that order counter-clockwise around p. and consider
the n edges e; = {v;, v;41} between neighboring vertices (see Figure 3(a) for visual assistance).
If all of them are in the “short” direction (counter-clockwise from v; to v;41) around p., then
they form a crossing-free Hamiltonian cycle (by the definition of c-monotone drawings) and
we are done. Otherwise there is some edge e; (for 1 < j < n) going the “long” direction
(clockwise from v; to vj+1) around p.. But then the whole drawing is strongly isomorphic
to an z-monotone drawing by Lemma 2.2 (for which being strongly c-monotone is crucial).
Therefore we know by Theorem 2.5 that a crossing-free Hamiltonian cycle exists. <
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Up

(%) U3
(a) (b)

Figure 3 (a) A crossing-free Hamiltonian cycle in a strongly c-monotone drawing of K,,: Either
visiting the vertices in circular order around p. is sufficient or the drawing is strongly isomorphic
to an x-monotone drawing. (b) A strongly c-monotone drawing that is neither z-monotone nor
cylindrical nor generalized convex (the darkorange K5 cannot be drawn straight-line).

In Figure 3(b) we give an example of a strongly c-monotone drawing that is neither
z-monotone nor cylindrical (it does not have any uncrossed edge) and also not generalized
convex (it contains a non-straight-line drawing of Kj; confer Arroyo et al. [6]).

We conclude by verifying Conjecture 1 for cylindrical drawings, using the same idea as in
a previously known proof for strongly cylindrical drawings. Note that for strongly cylindrical
drawings, Conjecture 1 is also true by Theorem 2.4 together with Theorem 2.6.

» Theorem 2.7. FEwvery cylindrical drawing of the complete graph K, on n > 3 wvertices
contains at least one crossing-free Hamiltonian cycle.

Proof. Assume first that there are at least two vertices on each circle and confer Figure 4.

Then by Lemma 2.3, every cylindrical drawing contains two completely uncrossed paths P
and Ps (one per circle) that together contain all vertices. Consider the end-vertices v, and vy
of Py, and v. and vy of Py. Then both, the pair of edges {vq, v.} and {vp, vq}, and the pair
{vq,vq} and {vp, v}, connect the completely uncrossed paths P; and Ps to a Hamiltonian
cycle. Since there can be at most one crossing in the sub-drawing induced by the four-tuple
of vertices {vq, Vp, Ve, Va }, at least one of those two Hamiltonian cycles is crossing-free.
Finally, if there is only a single vertex v on one of the circles, then the two edges
connecting v to P, the completely uncrossed path on the other circle, are incident; therefore,
they do not cross anyway. And if all vertices lie on the same circle, then the drawing is
strongly isomorphic to a 2-page-book drawing and the result follows from Theorem 2.5. <«

Ub
Vg

Figure 4 In a cylindrical drawing of K,: Connecting the two completely uncrossed paths of
rim edges (darkorange) with one of two pairs of lateral edges (seagreen/yellow) to a crossing-free
Hamiltonian cycle.
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3 Conclusion

We showed the existence of a crossing-free Hamiltonian cycle in every strongly c-monotone
drawing and in every cylindrical drawing of K,. By Theorem 2.1, we also extended the
result to z-bounded drawings. Furthermore, this work contains the first published proofs of
Conjecture 1 for 2-page-book, z-monotone, and strongly cylindrical drawings.

During our research, in addition, we came up with the following conjecture.

» Conjecture 2. FEvery simple drawing D of K,, for n > 1 contains, for each pair of vertices
ve and vy in D, a crossing-free Hamiltonian path starting in v, and ending in vp.

In the full version we show that this conjecture is in fact at least as strong as Conjecture 1.

» Theorem 3.1. A positive answer to Conjecture 2 implies a positive answer to Conjecture 1.
In particular, if Conjecture 2 is true for all simple drawings of Ky+1 for some n > 3 then
Conjecture 1 is true for all simple drawings of K.

We can confirm Conjecture 2 for all simple drawings on n < 9 vertices using the rotation
system database. In the full version, we show it to be true for cylindrical and strongly
c-monotone drawings as well. A next goal is to extend those results to more classes of simple
drawings, especially, generalized twisted drawings on an even number of vertices. Further,
the classes of c-monotone drawings and crossing maximal drawings are of interest, too.

Another intriguing question is to figure out the essential reason why Conjecture 1 should
be true in general for simple drawings, while it is not true anymore for star-simple drawings.

Moreover, it would be interesting to know whether Theorem 3.1 can be strengthened to
an equivalence of Conjectures 1 and 2. We remark, however, that even if Conjecture 2 is
strictly stronger than Conjecture 1, it could potentially be easier to prove.

Acknowledgments. All results presented in this work are also contained in the Master’s
thesis [16] of Joachim Orthaber. We thank Rosna Paul, Daniel Perz, and Alexandra
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—— Abstract

A graph is 1-planar if it can be drawn in the plane such that every edge has at most one crossing. A

1-planar graph is triangulated if it has a 1-plane drawing where every face is a triangle, i.e., every
face contains either exactly three distinct vertices or exactly two distinct vertices and one crossing.
We investigate the Hamiltonicity and matching properties of 1-planar graphs. We show that there
always exists a Hamiltonian cycle with one prescribed edge in a 4-connected triangulated 1-planar
graph. The result also holds for 4-connected maximal 1-planar graphs.

A connected graph with an even number of vertices is k-extendable if any matching of size k can
be extended to a perfect matching. We prove that all 4-connected triangulated 1-planar graphs are
1-extendable and all 5-connected triangulated 1-planar graphs are 2-extendable. We also construct
an infinite family of 7-connected triangulated 1-planar graphs that have a unique 1-plane drawing.

1 Introduction

Planar graphs are graphs that can be drawn in the plane without any crossings. The class
of 1-planar graphs was discovered by Ringel [8] in 1961 while trying to prove the 4-color
theorem. A graph is 1-planar if it has a local crossing number of one, i.e., it can be drawn
in the plane such that every edge has at most one crossing. Over time, these graphs found
a new home as generalizations of planar graphs. Consequently, a sizeable part of research
on l-planar graphs is concerned with generalizing properties of planar graphs. For instance,
while planar graphs on n vertices can have at most 3n —6 edges, 1-planar graphs on n vertices
can have at most 4n — 8 edges. Not all results generalize this well, probably since 1-planar
graphs are NP-hard to recognize [6] while their planar counterparts can be recognized in
polynomial time [2].

In this article, we show generalizations of results concerning Hamiltonian cycles and
matching extensions in planar graphs to 1-planar graphs. For hamiltonicity, we generalize a
result by Thomassen [9], which states that 4-connected planar graphs contain a Hamiltonian
cycle through any prescribed edge e. A connected graph with an even number of vertices is
k-extendable if any matching of size k can be extended to a perfect matching. For matching
extensions, we generalize results by Plummer [7] which showed that 4-connected planar
graphs are 1-extendable and identified conditions under which they are 2-extendable.

A graph is called triangulated if there exists a drawing of the graph that is triangulated,
i.e., every face is a triangle. A graph is called internally triangulated if there exists a drawing
of the graph where every internal face is a triangle (which implies that the outer face is not
necessarily a triangle). A planar (resp. 1-planar) graph is called optimal if it contains the
maximum number of edges possible. A planar (resp. 1-planar) graph is called mazimal if
no edge can be added to the graph such that it remains planar (resp. 1-planar). A 1-plane
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collaborative DACH project Arrangements and Drawings as SNSF Project 200021E-171681.
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drawing D is locally-mazimal if for each crossing of two edges, the end vertices of these edges
induce a K4 in D. A graph is called locally-maximal 1-planar if it admits such a drawing. A
1-plane drawing D is near-optimal if the subdrawing H of D induced by uncrossed edges
contains faces of sizes three or four only, such that the vertices of faces of size four induce a
K, in D, and no two triangular faces of H share an edge. A graph is called near-optimal
1-planar if it admits such a drawing.

2 Hamiltonian cycles

Fabrici et al. [4] proved that every 4-connected locally-maximal 1-planar graph is Hamiltonian.
Independently, Biedl [1] studied Hamiltonian cycles in 4-connected 1-planar graphs and showed
that there exist 4-connected 1-planar graphs without a Hamiltonian cycle. However, she
proved that 4-connected 1-planar graphs that are triangulated always contain a Hamiltonian
cycle. Both the theorems are a generalization of a theorem by Tutte [10], which states that
4-connected planar graphs are Hamiltonian.

» Theorem 1 ([1]). Any 4-connected triangulated 1-planar graph G has a Hamiltonian cycle.

The main idea behind the proof by Biedl [1] is to pick a 4-connected triangulated 1-plane
drawing of GG, and for each crossing, one of the two edges involved in the crossing is removed.
The edge that is removed is chosen such that the resulting graph remains 4-connected. Once
we obtain a 4-connected plane graph, Tutte’s theorem [10] can be applied to construct a
Hamiltonian cycle.

We study the generalization of Theorem 1 where a prescribed edge e must be part of the
Hamiltonian cycle. For 4-connected planar graphs, this generalization of Tutte’s theorem is
known as Thomassen’s theorem [9]. If the prescribed edge is one of the edges that is removed
to obtain a 4-connected plane graph, then the proof technique of Biedl [1] cannot be used to
prove Hamiltonicity. Nevertheless, we can still prove that there exists a Hamiltonian cycle
that contains a prescribed edge e of a 4-connected triangulated 1-planar graph.

» Theorem 2. Let G be a 4-connected triangulated 1-planar graph. Let e be an arbitrary
edge of G. Then there exists a Hamiltonian cycle in G that contains e.

We fix a triangulated 1-plane drawing of G. The main idea is to re-use Biedl’s edge-
removing strategy whenever possible. If the prescribed edge e is not removed by Biedl’s
edge-removing strategy, the proof is trivial and follows immediately. In the case where the
prescribed edge e would be removed, we need to be more careful. In this case the edge e must
be involved in a crossing, say with the edge f. Instead of removing the edge e we remove
the edge f, and remove all the other edges as directed by Biedl’s edge-removing strategy to
obtain a graph G’. At this point we can no longer guarantee that G’ is 4-connected. However
we can now guarantee that G’ is a maximal planar graph, so every 3-cut in G’ must be a
separating triangle. Furthermore, we know that every separating triangle of G’ contains the
edge e. This motivates the following definition.

» Definition 3 (Bishop’s hat). Let G be a plane graph. A bishop’s hat H over the edge
e = (v1,v2) is a set of vertices {cy, ..., c; } such that the triangle (v1, v, ¢;) exists in G and is
separating for all ¢ € [k].

We call the edge e the brim of the bishop’s hat and refer to each ¢; as a tip. Refer to
Figure 1 for an illustration. For any plane drawing of a bishop’s hat H we say that H is
one-sided if there is a triangle A = (vy, v, ¢;) that contains all other separating triangles
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Figure 1 A bishop’s hat on 3 vertices with brim e.

of H in its interior. Otherwise we say that H is two-sided. For one-sided bishop’s hats we
label the tips ¢; in the order they appear under set inclusion, i.e. ¢; is the tip such that
A = (v1,v2,¢;) contains all tips ¢; in its interior, where 1 < j < i < k. For a two-sided
bishop’s hat, we can label the tips analogously on the two sides independently. We refer to
the number of tips k of the bishop’s hat as the height of the bishop’s hat. We also refer to ¢;
as the lowest tip and ¢ as the highest tip for brevity.

Using this definition, we know that all separating triangles of G’ are contained in a
bishop’s hat H. We prove Theorem 2 using the following theorem for maximal planar graphs.

» Theorem 4. Let G be a maximal planar graph that is free of separating triangles apart
from a bishop’s hat of arbitrary height. Then G contains a Hamiltonian cycle.In particular,
one can construct a Hamiltonian cycle that goes through the brim e of the bishop’s hat.

The proof of this theorem relies on tools developed by Whitney [11] and later by Chen [3].

» Definition 5 ([3]). Let G be an internally triangulated plane graph and let A and B be
two vertices on the outer face of an internally triangulated drawing of G. (G, A, B) is said to
satisfy Whitney’s condition if it satisfies both

(W1) G has no separating triangles, and
(W2) for the two paths (A = ag,ay,...,a,m = B) and (B = by, by, ...,b, = A) along the
outer face there are no chords of the type (a;,a;) or (b;,b;)

» Lemma 6 ([11]). Let G be an internally triangulated plane graph and let A and B be two
vertices on the outer face of an internally triangulated drawing of G. If (G, A, B) satisfies
Whitney’s condition, then there is a Hamiltonian path from A to B.

» Theorem 7 ([3], Theorem 6). Let G be a 4-connected mazimal planar graph. Let e and
f be two edges that lie on the same face of G. Then there is a Hamiltonian cycle that goes
through both e and f.

Chen [3] proved the above theorem using Whitney’s result detailed in Lemma 6. Using
these tools we can prove the following lemma.

» Lemma 8. Let G be a mazximal plane graph with a one-sided bishop’s hat H. Let ¢;, ¢;4+1
be two consecutive tips of H. Then there is path from c; to c;+1 whose interior consists of
all the vertices contained inside of the cycle {c;,va, ciy1,v1} in the plane drawing of G.

We refer to the paths from Lemma 8 as local Hamiltonian paths. We prove a similar
lemma, for the lowest tip ¢; of the bishop’s hat.
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» Lemma 9. Let G be a maximal plane graph with a one-sided bishop’s hat H. Let c1 be the
lowest tip of H. Then there is path from vs to ¢y whose interior consists of all the vertices
contained inside of the cycle {vi,vs,c1} in the plane drawing of G.

The proofs of Lemmata 8 and 9 are deferred to the full version.

Proof of Theorem 4. As we can freely choose which face of G is considered as the outer
face, it suffices to prove the theorem for one-sided bishop’s hats.

Assume G has a one-sided bishop’s hat of height k. Let ¢i be the highest tip of this hat
and e = (vy,vy) the brim. We consider the subgraph G’ of G, which is obtained from G by
removing all vertices and edges contained strictly inside the bishop’s hat. In G’ the triangle
A = (v1,v9,cg) is a facial triangle. G’ is also 4-connected, as the triangle A is no longer
separating. Therefore we can apply Theorem 7 on the edges e = (ve, ¢x) and f = (v1,v2) and
obtain a Hamiltonian cycle C' that contains both the edges e and f, and all the vertices of G.
Inside the bishop’s hat, we concatenate the local Hamiltonian paths obtained by applying
Lemma 8 to every pair of consecutive tips, along with the path from vy to ¢; obtained by
Lemma 9. We then create a Hamiltonian cycle in G from C by replacing the edge (ve, )
with the path constructed using the local Hamiltonian paths. This cycle contains the edge
e = (v1,v2). This construction can be seen in Figure 2. |

Ck Ck Ck

Figure 2 Building the Hamiltonian cycle through e = (v1,v2) in G with a one-sided bishop’s hat
of height k. (left) the cycle C' given by Chen’s Theorem containing all the exterior vertices and
edges (v1,v2) and (v2,ck). (middle) the concatenated local Hamiltonian paths. (right) the cycle and
path combined to obtain the desired Hamiltonian cycle.

Proof of Theorem 2. We start with a 4-connected triangulated 1-plane graph G. We apply
Biedl’s algorithm to every crossing that does not involve e to get a 4-connected subgraph G’
of G. If e is not crossed, G’ is plane. In this case we can directly apply Thomassen’s Theorem
to G’ to get a Hamiltonian cycle that contains e. If e is crossed, we instead remove the edge
that crosses e. This can potentially cause G’ to become 3-connected with a bishop’s hat of
arbitrary height with brim e. Note that all separating triangles of G’ are part of this bishop’s
hat by construction. We apply Theorem 4 to get a Hamiltonian cycle passing through e. <«

We can further make the following observation about maximal 1-planar graphs, which
then immediately implies Corollary 11. The proof is deferred to the full version.

» Lemma 10. Let G be a 4-connected mazimal 1-planar graph. Then every I-plane drawing
of G is triangulated.

» Corollary 11. Let G be a 4-connected mazximal 1-planar graph. Let e be an arbitrary edge
of G. Then there exists a Hamiltonian cycle in G that contains e.
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3 Matching extendability

Theorem 2 immediately implies that for any given edge e of a 4-connected triangulated
1-planar graph, there exists a perfect matching that contains e.

» Corollary 12. Every 4-connected triangulated 1-planar graph of even order is 1-extendable.
Further using Lemma 10, we get:
» Corollary 13. FEvery 4-connected maximal 1-planar graph of even order is 1-extendable.

Plummer [7] and Fujisawa et al. [5] studied 2-extendability of planar and 1-planar graphs.
Plummer [7] proved the 2-extendability of 4-connected maximal planar graphs with forbidden
substructures called generalized butterflies. Let G be a graph, and let e = (u,v), f = (w, z) be
two edges of G. If the graph G \ {u, v, w,z} contains a component C' with an odd number of
vertices, the induced subgraph G[V (C)U{u, v, w, z}] is called a generalized butterfly. Fujisawa
et al. [5] proved that any optimal 1-planar graph of even order with no generalized butterfly is
2-extendable. Since trivially 5-connected graphs do not contain generalized butterflies, both
the papers were able to extend their results to 5-connected planar graphs and 5-connected
optimal 1-planar graphs, respectively. We prove that 5-connected triangulated planar graphs
are 2-extendable. It is not difficult to see that optimal 1-planar graphs are triangulated, thus,
our result is a strengthening of Fujisawa et al’s result. The proof of the theorem is deferred
to the full version.

» Theorem 14. FEvery 5-connected triangulated 1-planar graph of even order is 2-extendable.

4 1-planar graphs with high connectivity

Biedl [1] constructed a class of 5-connected 1-plane graphs that are non-Hamiltonian. Interest-
n

ingly, these graphs contained a matching of size | 5| — 1, which are one edge away from being
a perfect matching. This motivated Biedl [1] to question whether 1-planar graphs with higher
connectivity are Hamiltonian. In particular, if we can prove that 6- or 7-connected 1-planar
graphs are always triangulated, then we can use techniques similar to Theorem 2 to prove
hamiltonicity for these graphs. Unfortunately, we discovered that there exist 7-connected
1-planar graphs that are neither maximal nor triangulated. The counterexample suggests
that new tools that do not depend on a triangulated drawing are required to address the

problem of Hamiltonicity of 1-planar graphs with high connectivity.

» Theorem 15. For each k € N, there exists a T-connected triangulated near-optimal 1-planar
graph with n = 24 + 8k wvertices. If k > 3, this graph is maximal 1-planar.

» Theorem 16. There exist T-connected 1-planar graphs that are neither maximal nor
triangulated.

To this end, we first prove that there exist many 7-connected triangulated near-optimal
1-planar graphs. We then show that these graphs have many edges that can be removed such
that the resulting graph remains 7-connected. We briefly describe the construction of the
graph. We start with the double stop-sign graph given by Fabrici and Madaras, illustrated
in Figure 3. Using computer-based testing, we verified that the double stop-sign graph is
7-connected. We then increase the number of 8-cycles around the central Ky. The resulting
graph is called a k-layered double stop-sign graph, where k refers to the number of newly
added 8-cyles. A 1-layered double stop-sign graph is illustrated in Figure 3. We can prove the
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Figure 3 (left) The double stop-sign graph. (right) The 1-layered double stop-sign graph, where
the new layer is depicted in red.

7-connectedness of the new graph by using the fact that the double stop-sign is 7-connected
and thus there must exist seven internally vertex-disjoint paths between any two vertices,
which can be extended to obtain seven new paths in the new graph. Finally, we can observe
that one of the diagonal edges between two consecutive layers can be removed, and the graph
remains 7-connected, thereby proving Theorem 16.

5 Conclusion

There are quite a few properties of 1-planar graphs that still need to be investigated. Based
on our work, we list the most interesting open questions below.

» Open Question 17. Let G be a 4-connected triangulated 1-planar graph that contains no
generalized butterflies. Is G then 2-extendable?

» Open Question 18. For a 4-connected triangulated 1-planar graph, is there a Hamiltonian
cycle through any two of its edges?

» Open Question 19. Are 6- or 7- connected 1-planar graphs Hamiltonian?
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—— Abstract
A graph G is a (Euclidean) unit disk graph if it is the intersection graph of unit disks in the

Euclidean plane R?. Recognizing them is known to be IR-complete, i.e., as hard as solving a system
of polynomial inequalities. In this note we describe a simple framework to translate FR-hardness
reductions from the Euclidean plane R? to the hyperbolic plane H?. We apply our framework to
prove that the recognition of unit disk graphs in the hyperbolic plane is also IR-complete.

Related Version Full Version: https://arxiv.org/abs/2301.05550 [4]

1 Introduction

A graph is a unit disk graph if its vertices can be represented by unit disk such that two
vertices are adjacent if and only if their corresponding disks intersect. The class of unit disk
graphs (UDG) is a well studied graph class due to its mathematical beauty and its practical
relevance, e.g., in the context of sensor networks.

Naturally, unit disk graphs are usually considered in the Euclidean plane R%. However,
in the past decade, research on intersection graphs of equally sized disks in the hyperbolic
plane H? has gained traction (stay tuned why we have to talk about equally sized disks
instead of unit disks here). Hyperbolic geometry is well suited to represent a wider range
of graph structures, including complex scale-free networks with heterogeneous degree dis-
tributions [8, 9, 12, 17, 23]; see Figure 1. Most research on such graphs is driven by the
network science community studying probabilistic network models, i.e., hyperbolic random
graphs. However, when omitting the probability distribution and looking at hyperbolic unit
disk graphs as a graph class, little is known so far.

A graph G is a hyperbolic unit disk graph if it is the intersection graph of equally sized
disks in the hyperbolic plane H?. In particular, the radius of the disks may depend on G*.
We denote by HUDG the class of hyperbolic unit disk graphs [7]%.

For example, stars with up to five leaves are Euclidean unit disk graphs. On the other hand, for every
star S there exists a radius rg such that S has an intersection representation of disks with radius rg
in H2. However, there is no universal radius 7« such that all stars have an intersection representation
of disks with radius 7« in HZ2.

We note that there are earlier results on a related family of graph classes parameterized by the disk
size by Kisfaludi-Bak [15]. In a sense, the class HUDG is the union of all these classes. This subtle
difference is important when considering asymptotic behavior as it can be desirable to grow the disk
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Figure 1 Two hyperbolic unit disk graphs. Thee green circle indicates the threshold distance
below which vertices are connected. A small threshold (left) yields structures similar to Euclidean
unit disk graphs. A large threshold (right) facilitates heterogeneous vertex degrees.

When choosing disks of small radius, the difference between Euclidean and hyperbolic
geometry becomes negligible; also see our interactive visualization? and Figure 1.

Arguably the most fundamental algorithmic question when it comes to studying graph
classes is the computational complexity of the recognition problem, i.e., RECoG(HUDG) is
the problem of testing whether a given graph is part of HUDG. In this paper we prove that
RECOG(HUDG) is dR-complete. Containment in IR is less obvious than in the Euclidean
plane as distances are not (square roots of) a polynomial in hyperbolic geometry. Nonethe-
less, containment is easy to show when using the hyperboloid model of the hyperbolic plane.
For dR-hardness, our proof consists of five steps switching back and forth between Euclidean
and hyperbolic variants of problems in a particular way. Our proof has framework-character
in the sense that the first three steps are independent of the specific problem and the re-
maining steps can probably be translated to other problems. Thus we believe that this can
be a template for proving IR-hardness for other hyperbolic problems that have an dR-hard
Euclidean counterpart. For our framework, we in particular use the Beltrami-Klein model
of the hyperbolic plane to observe that SIMPLESTRETCHABILITY is equivalent in Euclidean
and hyperbolic geometry in the sense that a pseudoline arrangement is stretchable in the
Euclidean plane if and only if it is stretchable in the hyperbolic plane.

1.1 Existential Theory of the Reals

The existential theory of the reals is the set of all true sentences of the form 3X € R™ : ¢(X),
where ¢(X) is a quantifier-free formula consisting of polynomial equations and inequalities,
eg. 3X,Y e R: XY =6A X +2Y = 5. We denote the decision problem whether such
a sentence is true by ETR (which also stands for “existential theory of the reals”) and
define the complexity class IR to contain all decision problems that polynomial-time reduce
to ETR. It holds NP C 3R C PSPACE [10]. The class 3R has gained increasing attention
in the computational geometry community over the last years as it exactly captures the

size with the graph size; see [7] for a detailed discussion.
3 https://thobl.github.io/hyperbolic-unit-disk-graph


https://thobl.github.io/hyperbolic-unit-disk-graph

N. Bieker, T. Blasius, E. Dohse and P. Jungeblut 35:3

Figure 2 Left: The Beltrami-Klein disk with three hyperbolic lines. Right: The upper sheet ST
used for the hyperboloid model (in the full version [4]).

complexity of many geometry problems like the art gallery problem [2], geometric packing [3]
or the recognition of many classes of geometric intersection graphs [16, 19, 25].

1.2 Hyperbolic Geometry

The are several ways to embed the hyperbolic plane into Euclidean space. In this paper
we use the Beltrami-Klein model and the hyperboloid model (the latter only in the full
version [4]). In the Beltrami-Klein model the hyperbolic plane H? is represented by the
interior of a unit disk D in R? (the boundary of D is not part of the model). The set of
hyperbolic lines is exactly the set of chords of D. See Figure 2 (left).

2 Simple Stretchability in the Euclidean and the Hyperbolic Plane

An pseudoline arrangement A is a collection of pseudolines (z-monotone* curves in R?) such
that each pair of curves intersects at most once. We assume that each pseudoline ¢ € A
is oriented and thus divides the plane R? into two open half-planes £~ and ¢*. Further, A
partitions the plane into cells, i.e., maximal connected components of R? \ A not on any
pseudoline. We say that A is simple if any two lines intersect exactly once and no three lines
intersect in the same point. Given a pseudoline arrangement A = {¢1,...,¢,} we assign to
each p € R? a sign vector o(p) = (0:(p))™; € {—,0,+}", where

— ifpel;
+ ifpeﬂj'

The combinatorial description D of A is then given by {o(p) | p € R?}®. We say that A
realizes D. A pseudoline arrangement is stretchable if there is a line arrangement with the
same combinatorial description. Not every pseudoline arrangement is stretchable and, given
a combinatorial description D, deciding whether D is stretchable is known as the STRETCH-
ABILITY problem (or SIMPLESTRETCHABILITY if D is simple). STRETCHABILITY and SIM-

4 Requiring the curves to be z-monotone is a well-established way to make sure a pseudoline is homeo-
morphic to a straight line under some homeomorphism of the plane.
5 Psecudoline arrangements are closely related to oriented matroids of rank 3, see [6].
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Figure 3 Transforming line arrangements between Euclidean and hyperbolic geometry.

PLESTRETCHABILITY are famously known to be IR-complete [22, 24, 28]. SIMPLESTRETCH-
ABILITY is the starting problem for many JR-hardness reductions, e.g. [5, 13, 16, 25, 26].
Apart from line arrangements in the Euclidean plane R? one might also consider line
arrangements in the hyperbolic plane H?. The main result of this section is that Sim-
PLESTRETCHABILITY is equivalent in Fuclidean and hyperbolic geometry.

» Proposition 1. Let D be a combinatorial description of a simple pseudoline arrangement.
Then there is a line arrangement realizing D in R? if and only if there is one in H2.

Proof. The proof is an easy application of the Beltrami-Klein model of the hyperbolic plane.
Given a Euclidean line arrangement, we can obtain a hyperbolic line arrangement with the
same combinatorial description and vice versa, see Figure 3.

Let Ag be a simple line arrangement in R? and D be a disk strictly enclosing all intersec-
tions of Ag. For each line in Ag, keep only its part inside D. We think of D as a unit disk
and obtain a representation of a hyperbolic line arrangement in the Beltrami-Klein model.

For the other direction let Ay be a simple hyperbolic line arrangement and take a repre-
sentation inside the Beltrami-Klein disk D, so all hyperbolic lines are chords of D. Remove D
and extend all chords to lines. The resulting Euclidean line arrangement has the same com-
binatorial description D because Ay was simple: All possible intersections between two lines
were already inside the Beltrami-Klein disk D. |

» Remark. Proposition 1 is only about simple (pseudo)line arrangements. There is no
corresponding result for the general (non-simple) STRETCHABILITY problem: For example,
given three lines £1, ¢5, ¢3 C H?, lines ¢ and ¢3 may cross each other while both being parallel
to ¢1. However, Proposition 1 may be extended to line arrangements where each pair of lines
is still required to cross but multiple lines are allowed to cross at the same point.

3 The Framework

Let IIg be a geometric decision problem for which dR-hardness is shown in Euclidean ge-
ometry by a polynomial-time reduction f from (Euclidean) SIMPLESTRETCHABILITY. We
denote by Il the corresponding decision problem obtained by considering the hyperbolic
plane H? instead of the Euclidean plane R2. Our framework below consists of several (hope-
fully) simple steps that allow us to prove JR-hardness of Il by using the reduction for Ilg:

1. Let D be an instance of SIMPLESTRETCHABILITY in H?, i.e., a combinatorial description
of a simple pseudoline arrangement.

2. Use Proposition 1 to consider D to be an instance of SIMPLESTRETCHABILITY in R2.

3. Use the reduction f to obtain an instance I = f(D) of Iy equivalent to D.
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4. Prove that every yes-instance of Il is also a yes-instance of Ily.
5. Prove that a hyperbolic line arrangement realizing D can be extracted from a realization
of I in H2.

Steps 1, 2 and 3 require no work when applying the framework.

Step 4 ensures that a stretchable instance D yields a yes-instance of Ily. This step
requires to come up with a new argument but we expect it to be relatively simple because
locally R? and H? are very similar. A promising approach is to scale a Euclidean realization
of I to a tiny area and then interpret the Euclidean polar coordinates as hyperbolic ones.

Step 5 ensures correctness. By showing that a line arrangement realizing D can be
extracted from a realization of I in H? we show that a no-instance D maps to a no-instance
of ITy. Reduction f might help us again here (though not as a black box as in Step 3): If we
are lucky, the argument why a realization of I in R? induces a Euclidean line arrangement
realizing D only uses the axioms of absolute geometry (the common “subset” of Euclidean
and hyperbolic geometry) and works without any adaptations for realizations in H2, too.

4 Recognition of Hyperbolic Unit Disk Graphs

We apply our framework to prove that RECoOG(HUDG), the recognition problem of hyper-
bolic unit disk graphs, is IR-hard. For Euclidean geometry this is shown in [14, 20, 21].
Let us recall that UDG and HUDG are not the same class: For example, star graphs with at
least six leaves are hyperbolic unit disk graphs but not Euclidean ones.

For Step 1 of our framework let D be an instance of SIMPLESTRETCHABILITY in HZ2. We
consider it to be an equivalent instance in R? for Step 2. In Step 3 we use the reduction f
from the literature proving that RECOG(UDG) in R? is IR-hard [14, 20, 21]. We obtain a
graph Gp that is a Euclidean unit disk graph if and only if D is stretchable.

Though not required for the framework, let us shortly summarize the reduction f to
construct Gp from D as given in [20]. Let n be the number of pseudolines /1, ..., ¢, and
m=1+ (";1) be the number of cells C,...,C,,. The arrangement described by D has
exactly this number of cells because it is simple. We define Gp to be the graph with vertex
set V.=AUBUC for A={ay,...,an}, B=1{b1,...,b,} and C = {c1,..., ¢y }. Here we
assume that vertex ¢; corresponds to cell C;. For the edges, each of the sets A, B, C forms
a clique. Further, each a; € A (for i € {1,...,n}) is connected to ¢; (for j € {1,...,m}) if
and only if C; € ¢; . Similarly, each b; € B is connected to ¢; if and only if C; € ;.

For Step 4 we have to show that every Euclidean unit disk graph is also a hyperbolic unit
disk graph. This has recently been proven by Blésius, Friedrich, Katzmann and Stephan:

» Lemma 2 ([7]). Every FEuclidean unit disk graph is also a hyperbolic one, so UDG C HUDG.

As foreshadowed above, the proof scales a Euclidean unit disk intersection representation
to a tiny area until the Euclidean and hyperbolic plane are “similar enough”. Then the polar
coordinates in R? can be used as polar coordinates in H? without changing any adjacencies.

For Step 5 it remains to prove how a line arrangement realizing D in H? can be extracted
from a realization of Gp in H?.

» Lemma 3 (adapted from [20, Lemma 1]). Given a realization of Gp as the intersection
graph of equally sized disks in H?. Then the line arrangement L = {{1,...,0,} defined by

6= {p e H* | d(p,a;) = d(p,b;)}

has combinatorial description D. Here d(-,-) denotes the hyperbolic distance.
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Proof. The proof is exactly the same as the proof of Lemma 1 in [20] where McDiarmid
and Miiller prove that taking the perpendicular bisectors of the segments between any pair
of points a; and b; yields a Euclidean line arrangement realizing D. Their argument works
in H? by just replacing Euclidean distances with hyperbolic distances.

Let us note that the ¢; are indeed hyperbolic lines, as easily seen in the Beltrami-Klein
model of the hyperbolic plane: Given two points a and b inside the unit disk D, their Eu-
clidean perpendicular bisector is a line £. The chord of D on ¢ is the hyperbolic perpendicular
bisector (and in particular a line as lines in H? and chords of D are in bijection). <

At this point we proved JR-hardness of REcoG(HUDG). To get JR-completeness we
prove IR-membership in the full version of this paper [4]. The idea is to use the hyperboloid
model of the hyperbolic plane, where distances can be computed by taking the arcosh(-) (a
monotone function) of a polynomial. We conclude with the following theorem:

» Theorem 4. Recognizing hyperbolic unit disk graphs is AR-complete.

5 Conclusion and Outlook

We presented a simple framework that allows us to translate JR-hardness reductions for
geometric decision problems in R2 into reductions for their counterparts H2. As an appli-
cation we proved that RECOG(HUDG) is dR-complete. Promising candidates for further
applications of our framework are the recognition of unit ball graphs (i.e., a generalization
of our result to higher dimensions) as already done in R? in [14] or RECOG(CONV), the
recognition problem for intersection graphs of convex sets (Euclidean reduction is in [25]).

Technically, the framework also works for the recognition problems REcoc(HSEG) and
RECOG(HDISK), where (H)SEG and (H)DISK denote the classes of intersection graphs of
(hyperbolic) segments and disks, respectively (Euclidean reductions are in [14, 16, 19, 21,
25]). However, these are not really interesting as SEG = HSEG (easy to see in the Beltrami-
Klein model) and DISK = HDISK (easy to see in the Poincaré model, not considered here).
Therefore IR-completeness for RECoG(HSEG) and REcoG(HDISK) follows directly from the
Euclidean cases. Other interesting problems to consider in H? are linkage realizability [1, 26],
simultaneous graph embeddings [11, 18] or RAC-drawings [27].

Acknowledgements We thank Torsten Ueckerdt for discussion on proving the membership
of REcoc(HUDG) in JR.
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—— Abstract

Storyline visualizations are a popular way of visualizing characters and their interactions over time:

Characters are drawn as z-monotone curves and interactions are visualized through close proximity
of the corresponding character curves in a vertical strip. Existing methods to generate storylines
assume a total ordering of the interactions, although real-world data often do not contain such a
total order. Instead, multiple interactions are often grouped into coarser time intervals such as years.
We exploit this grouping property by introducing a new model called storylines with time intervals
and present two methods to minimize the number of crossings and horizontal space usage. We then
evaluate these algorithms on a small benchmark set to show their effectiveness.

Related Version arXiv:2302.14213

1 Introduction

Storyline visualizations are a popular way of visualizing characters and their interactions
through time. They were popularized by Munroe’s xked comic [13] (see Fig. 1 for a storyline
describing a movie as a series of scenes through time, in which the characters participate). A
character is drawn using an z-monotone curve, and the vertical ordering of the character curves
varies from left to right. A scene is represented by closely gathering the curves of characters
involved in said scene at the relevant spot on the xz-axis, which represents time. Storylines
attracted significant interest in visualization research, especially the question of designing
automated methods to create storylines adhering to certain quality criteria [12,14,15].
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Figure 1 The xkcd comic showing a storyline of the Star Wars movie.

While different design optimization goals can be specified, most theoretical research
has been focused on crossing minimization [8,11] and variants like block crossing mini-
mization [16,17]. This problem is NP-hard [11,16] and is commonly solved using ILP and
SAT formulations [8,17]; it has many similarities with the metro line crossing minimization
problem [1-3,5]. Recently a new model for storylines was proposed by Di Giacomo et al. [7]
that allows for one character to be part of multiple interactions at the same point in time,
by modeling each character as a tree rather than a curve. Using this model, it is possible to
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Figure 2 (a) A classic storyline with blue character lines. Interactions are shown in gray, they
happen on specific timestamps and have a duration. (b) A time interval storyline. The horizontal
orange segment shows a slice, every interaction on this segment has the same timestamp. A layer is
highlighted in red, containing two interactions with the same timestamp but not sharing a character.

represent data sets which have a more loosely defined ordering of interactions. Furthermore,
authorship networks have been a popular application for storylines visualizations [7,10]. In
this paper we introduce time interval storylines, an alternative approach to visualize data
sets with less precise temporal attributes. In the time interval model, a set of discrete, totally
ordered timestamps is given, which serve to label disjoint time intervals (e.g., the timestamp
2021 represents all interactions occurring between January and December of the year 2021).
Each interval is represented in a storyline as a horizontal section in which all interactions with
the same timestamp occur. The horizontal ordering within this section, however, does not
correspond to a temporal ordering anymore (see Fig. 2). For example, an authorship network
often sorts publications by year. In a traditional storyline model, the complete temporal
ordering of the interactions must be provided. Previous models like the one by van Dijk et
al. [17] can place multiple disjoint interactions in the same vertical layer, but the assignment of
interactions to the totally ordered set of layers must be given as input. Unlike the traditional
model, we have no pre-specified assignment of interactions to layers, but interactions with
the same timestamp can be assigned to any layer within the time interval of this timestamp.

Problem setting. We are given a triple § = (C,Z,T), of characters C = {cy,...,¢n},
interactions Z = {I1,...,I,}, and totally ordered timestamps T' = {t1,...,t,} as input.
Each interaction (Cj,t) = I; € I consists of a set C; C C of characters involved in the
interaction and a timestamp ¢ € T" at which the interaction I; occurred, respectively denoted
by char(l;) = C; and time(l;) = t. A subset of interactions can form a layer ¢, when for
every pair of interactions I, I’ in ¢, time(I) = time(I’). A time interval storyline is composed
of a sequence of layers to which interactions are assigned. Intuitively, a layer represents a
column in the storyline visualization, in which interactions are represented as vertical stacks.
Thus, to each layer we associate a vertical ordering of C. Consider the set S containing all
interactions with timestamp ¢, we call the union of layers containing S a slice.

Characters are represented with curves passing through each layer at most once. To
represent an interaction I = (C,t) in a layer £, the ordering of the characters in ¢ must
be such that the characters of C' appear consecutively in that ordering. For a pair I, I’ of
interactions in the same layer, it must hold that char(I) N char(I’) = 0.

For a layer £, we denote the set of interactions by inter({) and the timestamp of a layer by
time(¢) (with slight abuse of notation). We focus on combinatorial storylines, as opposed to
geometric storylines, meaning that our algorithm should output a (horizontal) ordering oy, (S)
of layers, and for each layer £, a (vertical) ordering o.(¢) of the characters, and all interactions
must occur in some layer. For two interactions I, I’ such that time([) < time(I’), let £ and
¢ be the layers of I and I, respectively. Then ¢ must be before ¢ in or(S). A character
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is active in a layer if it appears in the character ordering for that layer. A character must
be active in a contiguous range of layers including the first and last interaction it is involved
in. A character is active in a layer if it appears in the character ordering for that layer.

Contributions. In this paper we introduce the time interval storylines model, as well as
two methods to compute layer and character orderings. In Section 2.1 we introduce an
algorithmic pipeline based on ILP formulations and heuristics that computes time interval
storylines. We further present an ILP formulation that outputs a crossing-minimal time
interval storyline in Section 2.2. Lastly in Section 3, we experimentally evaluate our pipeline
and ILP formulation. Due to space constraints, some details are omitted and can be found
in the full version of the paper [4].

2 Computing combinatorial storylines

2.1 A pipeline heuristic

As the traditional storyline crossing minimization problem is a restricted version of the time
interval formulation, our problem is immediately NP-hard [11]. Thus, we first aim to design
an efficient heuristic to generate time interval storylines, which consists of the following
stages.

(i) Initially, we assign each interaction to a layer,
(ii) then, we compute a horizontal ordering o, (S) of the layers obtained in step (i), and

(iii) finally, we compute a vertical ordering o.(¢) of the characters for each layer ¢ € or,(S).

For step (i), the assignment is obtained using graph coloring. For each t € T, we create
a conflict graph Gy = (Z;, F) where Z; C 7 and I € Z; if and only if time(I) = ¢t. Two
interactions are connected by an edge if they share at least one character. Each color class
then corresponds to a set of interactions which share no characters and can appear together
in a layer. We solve this problem using a straightforward ILP formulation based on variables
Zy,c = 1 if color ¢ is assigned to vertex v and 0 otherwise. We can choose to limit the size of
each color class by adding an upper bound on the number of interactions assigned to each
color, which forces fewer interactions per layer. While this allows us to limit the height of
each slice, it likely results in more layers.

To compute a horizontal ordering of the layers in step (ii), we use a traveling salesperson
(TSP) model. Concretely, for the slice corresponding to the timestamp ¢, we create a complete

weighted graph G = (£, E), where £ corresponds to all the layers £ such that time(f) = t.

For each edge e between a pair of layers £ and ¢’ in £, we associate a weight w,, estimating
the number of crossings that may occur if the two layers are consecutive as follows.
Minimizing the crossings of the curves representing the characters is NP-complete [6,11],
thus we propose two heuristics to estimate the number of crossings. First, we propose to use
set similarity measures to describe how similar the interactions in two layers £ and ¢ are: If
£ and ¢’ both have an interaction that contains the same set of characters, then no crossing
should be induced by the curves corresponding to those characters, when these two layers
are consecutive (see Fig. 3a). Second, we consider pattern matching methods that guess how
many crossings could be induced by a certain ordering of the characters. There are certain

patterns of interactions between two layers for which a crossing is unavoidable (see Fig. 3b).

We count how many of these patterns occur between each pair of layers in G and set the
weight of the corresponding edge to that crossing count. More details on these heuristics can
be found in the full version [4].

EuroCG’23
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Figure 3 (a) The orange and light green characters are together in two interactions, which
increases similarity between ¢ and £, but the two blue characters are once together and once apart,
which decreases similarity. (b) An example of an unavoidable crossing pattern.

To finish step (ii), we solve the path formulation of the TSP problem on G and find a
horizontal ordering of the layers for each time slice. We have now obtained a traditional
storyline, in which each interaction belongs to a specific layer, and all layers are totally
ordered. Thus, we can solve step (iii) using the state-of-the-art crossing minimization ILP by
Gronemann et al. [8].

We call the pipeline variants Py and P, when using the set similarity heuristic and the
pattern matching heuristic in step (ii), respectively.

2.2 An ILP formulation

Crossing minimization in storylines is generally solved using ILP formulations [8,16]. We
propose two formulations to handle slices, which build on the ideas of Gronemann et al. [8].
Both formulations will give us an assignment of interactions to layers, that are already totally
ordered, and an ordering of characters per layer. For each timestamp ¢ € T, let L; be a set of
[{I | time(I) = t}| layers corresponding the number of interactions at ¢, and let £ = J,cp Lt
In the first formulation we assume that a character c is active in all layers between the first
timestamp and last timestamp, inclusively, where there exists an interaction I such that
¢ € char(I). In the second formulation we will introduce additional variables that model
whether a character really needs to be active, since, in fact, character curves do not need
to be active before their first interaction or after their last interaction. In contrast to the
pipeline approach, the presented ILP formulations are able to find the crossing-minimal
solution for the explored search space.

First formulation. Let C; be the characters that appear in layer ¢ € £, as discussed before.
First we introduce for each ¢ € T the binary variables vy, ; for £ € £; and I € T where
time(I) = t. These should be one iff interaction I is assigned to layer £. This is realized by
constraints of type (1). If two different interactions I and I’ share a character they cannot
be in the same layer, realized by type (2) constraints.

> =1 teT,Ie tine(I)=t (1)
teL,
Yer +yer <1 time(I) = time(I’') = t, char(I) Nchar(I') # 0,0 € L, (2)

Next we introduce binary ordering variables xy ., ., for each layer £ € £ and ¢;, ¢; € C, with
i < j. Variable xy, ., should be one iff ¢; comes before ¢; on layer £. Standard transitivity
constraints (3) (see e.g. [9]) ensure that the binary variables induce a total order.

0 < Te,cp,,cq + Lo,cic; = Lhep,cj < 1 Ci; Cj, Ch S C@,i <] <h (3)
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Figure 4 A storyline for a dataset corresponding to the first chapter of Anna Karenina created by
ILP1. The z-axis is labeled by the scenes of the book, which are separated by dashed gray lines and
correspond to the timestamps. Interactions are visualized with black vertical bars and correspond to
the characters in the book interacting with each other shown as z-monotone curves. The storyline
contains 58 layers, 34 timestamps, and 23 crossings.

The crux is now to model the assignment of some interaction I to some layer ¢, linking the x-
and y-variables together. This is done with so-called tree-constraints [8]: Let £ € £, I € T
with time(J) =t and ¢;, ¢;, ¢, € Cp such that ¢ < j, ¢;,¢; € char([]), and ¢ ¢ char([). If
i < j < k we add constraints (4) and (5), which ensure that ¢y is either before or after both
¢; and ¢;. We elaborate on the analogous cases k < ¢ < j and 4 < k < j in the full version [4].

Theiep < To,cjep, T I —yer (4>
xZ,Cj,ck < Tl,c;ch +1-— Ye,1 (5)

Lastly, to optimize the number of crossings we have to provide an objective function. For
this we introduce binary variables 2z, ., for all layers ¢ but the rightmost one and all
¢, ¢j € CgNCy where £ is the adjacent layer of £ to the right. Variable 24,¢;,c; should be one
iff the character lines of ¢; and ¢; cross between layers ¢ and ¢'. Linking variables 2p,ci,c; 18
done by introducing the constraints corresponding to setting z¢,c,.c; > To,c;,c; Do c; c; (see
the full version [4]) where 2 @&y denotes the exclusive-or relation of two binary variables z and
y. The objective is then to simply minimize ) z¢ ., c,. A solution to the ILP model is then
transformed into a storyline realization of the input. We call this formulation ILP1. Figure 4
shows a storyline visualization that was computed with ILP1 and a simple post-processing
method that assigns - and y-coordinates (refer to the full version [4] for more information).

Extensions and Second Formulation In the above formulation we have one layer for each
interaction, which does not utilize the potential of having multiple interactions in one layer.
We can, however, minimize the number of layers beforehand, using the graph coloring problem
as in Section 2.1. If we need ¢ colors for timestamp ¢, we let £; only consist of ¢ layers. This
can of course result in more crossings in the end. We call this adapted formulation ILP1ML.
Additionally, in the above model a character was contained in all layers of the first and
last timestamp that contains an interaction, in which the character appears. By introducing
further variables and adapting the constraints given in ILP1, this can be relaxed, so that a
character’s active range actually only spans from the first to the last interaction it appears in.
This new formulation is given in the full version [4] and is referred to as ILP2. We can then
introduce the fewest possible number of layers as above, resulting in formulation ILP2ML.

3 Evaluation

We evaluated our six algorithms on seven instances that were used in previous work on
storylines. The number of layers that could be saved by the coloring pipeline-step, the number
of crossings, and the runtimes are reported in the full paper [4] together with the complete
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description of instances, experimental setup, and evaluation. It also contains visualizations of
storylines produced by our algorithms. Generally, the layer-minimization step of the pipeline,
using graph coloring, reduces the number of layers for all but one instance, in one case even
by 50%. The ILP-formulations perform better than the pipeline-approaches w.r.t. crossings,
if they do not time out (3600 s). And even if they time out, the best feasible solution found
by the solver is sometimes better than the solution provided by the pipeline-approaches.
The ILP-approaches perform far worse w.r.t. runtime and three of the four instances timed
out for all ILP-approaches. It has to be mentioned that, by construction, optimal solutions
for ILP2 will always have the least crossings, and optimal solutions for ILP2ML will always
have fewer crossings than all other algorithms minimizing layers. We think though, that our
ILP-formulations can be further optimized for scalability.
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—— Abstract

We consider the complexity of the recognition problem for two families of combinatorial structures.

A graph G = (V, E) is said to be an intersection graph of lines in space if every v € V can be
mapped to a straight line £(v) in R® so that vw is an edge in E if and only if £(v) and £(w) intersect.
A partially ordered set (X, <) is said to be a circle order, or a 2-space-time order, if every € X can
be mapped to a closed circular disk C'(x) so that y < z if and only if C(y) is contained in C(z). We
prove that the recognition problems for intersection graphs of lines and circle orders are both JdR-
complete, hence polynomial-time equivalent to deciding whether a system of polynomial equalities
and inequalities has a solution over the reals. The second result addresses an open problem posed
by Brightwell and Luczak.

1 Introduction

The complexity class IR is the set of decision problems that are polynomial-time reducible
to deciding the validity of a sentence in the existential theory of the reals. This class was
popularized by Schaefer and Stefankovic [32, 35], and since then many problems have been
classified as IR-complete [7]. The class IR contains NP, hence JR-complete problems are
NP-hard. Tt is also known that IR C PSPACE [6].

Among known JR-complete problems, we find many computational geometry problems
in which we are asked to decide whether some combinatorial structure has a geometric real-
ization, hence recognition problems for combinatorial families defined by geometric construc-
tions. This includes, among others, realizable oriented matroids and order types [26, 27],
linkages [33], simultaneously embeddable planar graphs [9, 34], and several classes of geomet-
ric intersection graphs, including segment intersection graphs [22, 23] and disk intersection
graphs [19, 24]. More recently, other fundamental problems in computational geometry have
been shown to be JR-complete, such as the art gallery problem [1], and several families of
geometric packing problems [2].

In this paper, we prove the IR-completeness of the recognition problem for two families
of combinatorial objects: (i) intersection graphs of lines in 3-space, and (ii) circle orders.

1.1 Lines in space

Arrangements of lines in 3-space are a classical topic in discrete geometry [14, 11, 29]. We
consider the problem of deciding, given a graph G, whether we can we map each of its
vertices to a line in R? so that two vertices are adjacent if and only if the two corresponding
lines intersect. Such graphs will be referred to as intersection graphs of lines in space.
Pach, Tardos, and Toth studied complements of intersection graphs of lines in space,
and proved that graphs of maximum degree three and line graphs (adjacency graphs of
edges of a graph) are intersection graphs of lines in space [28]. They also considered the
computational complexity of various combinatorial optimization problems on these graphs.
Davies [12] showed that intersection graphs of lines in space are not x-bounded: There exist
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such graphs that have arbitrary large girth and chromatic number. On the other hand,
Cardinal, Payne, and Solomon showed that they satisfy a nice Erdés-Hajnal property: They
either have a clique or an independent set of size Q(n'/3) [10].

Regarding the recognition problem, two closely related results to ours have been proved.
First, Matousek and Kratochvil showed that intersection graphs of line segments in the
plane are JR-complete [22]. This also holds for the more restricted classes of outersegment,
grounded segments, and ray intersection graphs [8]. Evans, Rzazewski, Saeedi, Shin, and
Wolff [15] proved that intersection graphs of line segments in R? are IR-complete as well.
We prove that we only need lines for this to hold.

» Theorem 1.1. Deciding whether a graph is an intersection graph of lines in space is
dR-complete.

1.2 Geometric containement orders

Geometric containment orders are posets of the form (X, C), where X is a countable set of
(usually convex) subsets of R?, for some constant d, and C is the usual containment relation.
Geometric containment orders are well-studied [18]. The classical Dushnik-Miller dimension
of a poset can be defined in terms of geometric containment orders, as the smallest d such
that the poset is isomorphic to a containment order of translates of the negative orthant in
R? [42]. Circle orders are containment orders of closed disks in the plane, and more generally,
d-sphere orders are containment orders of closed balls in R [39, 17, 5]. The corresponding
notion of dimension is the Minkowski dimension [25].

The definition of d-sphere orders is motivated by causal set theory in physics and the
notion of space-time order [3, 31, 13, 40]. In 1992, Scheinerman [37] proved that circle orders
are also one-to-one with parabola orders and Loewner orders for 2 x 2 Hermitian matrices,
and gave a general equivalence statement for QQ/L orders, an algebraically defined class of
posets.

In a survey on the combinatorics of the causal set approach to quantum gravity [4],
Brightwell and Luczak pose the problem of recognizing circle orders in those terms: “It is
remarkable that this concrete question is apparently not easy to answer computationally;
to the best of our knowledge, the complexity of determining whether a given finite partial
order is (for instance) a circle order is unknown.” We prove that the problem is IR-complete.
We recall that a poset is bipartite if it can be partitioned into two antichains, or subsets of
pairwise incomparable elements.

» Theorem 1.2. Deciding whether a poset is a circle order is IR-complete, even when the
input is restricted to bipartite posets.

Outline. Theorem 1.1 is proved in Section 2, and Theorem 1.2 is proved in Section 3.
Our proofs build on the classical complexity-theoretic interpretation of Mnév’s Universality
Theorem [26, 27], and on recent hardness results from Kang and Miiller [20], and Felsner
and Scheucher [16]. Note that in both cases, containment in 3R is easy to prove, and we
concentrate on the hardness part.

Acknowledgments. The proof of Theorem 1.1 is based on an idea due to Udo Hoffmann.
The author wishes to thank Till Miltzow and the EuroCG referees for their comments on a
preliminary version.
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2 JR-Completeness of intersection graphs of lines

Our proof is by reduction from the affine realizability problem for matroids of rank 3. In
short, we are given a ground set FE together with a collection Z of subsets of E defining
the maximal independent sets of the matroid. In rank 3, the maximal independent sets
have size three, hence 7 is a collection of triples. We wish to decide whether there exists
amap f: E — R? such that for every triple a,b,c € E, the points f(a), f(b), f(c) form a
nondegenerate triangle if and only if {a,b,c} € Z. It is somehow a folklore result that this
problem is dR-complete, and a detailed proof was given recently by Kim, de Mesmay, and
Miltzow [21].

Given a graph G = (V, E), a line realization of G is a map ¢ from V to the set of lines
in R? such that vw € E < £(v) N{(w) # 0. For a subset S C V, we use the notation
0(S) = {¢(v) : v € S}. The following observation will be useful.

» Observation 1. In a line realization of a complete graph on the vertex set V', the lines of
£(V) intersect in one point or are coplanar.

We also use the following statement, which allows us to force a collection of lines in a
line realization to lie in a plane.

» Lemma 2.1. Let G,, be the complete graph on 2n vertices minus a perfect matching. For
n > 3 all lines of a line realization ¢ of G,, are coplanar.

Proof. Let (A, B) be the bipartition of the vertices of G,, into two cliques of size n, and
consider a line realization ¢ of G,. We show that the lines of ¢(A) are coplanar. For
contradiction, suppose otherwise. Then from Observation 1, all lines of A must intersect
in one point p. Furthermore, there are three vertices ai,as,a3 € A such that the lines
l(a1),0(az),(ag) € L(A) are not coplanar. There is also a vertex b € B adjacent to a1, as
and ag in G, but not adjacent to a fourth vertex a4 € A. Hence the line ¢(b) must intersect
l(ay1),l(az) and f(as) but avoid ¢(as). The only possibility to intersect all three lines is in
p, but then £(b) also intersects £(a4), a contradiction. By symmetry, all lines in ¢(B) must
be coplanar as well, and lying in the same plane as those in ¢(A). |

Proof of Theorem 1.1. We reduce from realizability of a rank-3 matroid M = (E,Z), as
defined above. It is convenient to let £ = {1,2,...,n}, and consider the set system S on E
defined as the set of rank-2 flats of M. In a realization of M, these flats correspond to all
inclusionwise maximal subsets of collinear points. Note that |S| < (g)

We start by considering a line realization of the graph G,, defined in Lemma 2.1. We
consider the bipartition of the vertices of G, into the two cliques A = {a1,...,a,} and
B = {b1,...,b,}, where q; is adjacent to b; if i # j. Then for each set C' € S, we add a
new vertex vo and an edge voa; for each i € C. We let H be the resulting graph, defined
on the vertex set AU B U {vc : C € S}. We claim that H is a intersection graph of lines if
and only if the input matroid M is realizable.

To construct a realization of M from a line realization ¢ of H we use planar point-line
duality on the lines in ¢(A). From Lemma 2.1, the lines of £(A U B) all lie in a plane P.
For every set C' € S, the vertices {vc} U {a; : ¢ € C} form a maximal clique in H. From
Observation 1, this clique must be realized by an intersection point common to all lines
{l(a;) : i € C}, since otherwise ¢(v¢) lies in P and intersects some lines in ¢(B). Point-line
duality in P maps lines with a common intersection point to collinear points. We denote by
p(a;) the point that is dual to the line £(a;) in P. Therefore, the dual points {p(a;) : i € C}
are collinear in P. From the maximality of the clique {vc} U {a; : i € C}, the points
{p(a;) : i € C'} form a maximal collinear set, and p(A) is a realization of M in P.
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On the other hand, a realization of M in the plane can be mapped to a dual arrangement
of lines. Let A = {a; : i € E}, and {(a;) be the line representing element i, for every i € E.
Now each line ¢(b;) € ¢(B) can be represented by a line parallel to ¢(a;) and intersecting
all the other lines £(a;) and £(b;) for i # j. We embed this realization into a plane P in R?
and add a line £(v¢) for each C' € S that pierces P in the common intersection point of the
lines {a; : i € C} (see Figure 1). This yields a line realization of H. <

V{2,3}
v 5
V(3.4 {1,3,5}

Figure 1 A line realization of the graph H constructed from a realizable rank-3 matroid on 5
elements with rank-2 flats S = {{1, 2}, {2, 3}, {3, 4}, {1,4},{1,3,5},{2,4,5}}.

3 JR-Completeness of circle orders

A pseudoline arrangement is a collection of z-monotone curves that pairwise intersect exactly
once. A pseudoline arrangement is simple if no triple of lines intersect in the same point, and
stretchable if it is isomorphic to an arrangement of straight lines, see Figure 2. A well-known
consequence of Mnév’s Theorem — see Shor [38], and Richter-Gebert [30] — is that deciding
whether a given pseudoline arrangement is stretchable is IR-complete.

R

Figure 2 A pseudoline arrangement and an isomorphic line arrangement.




J. Cardinal 37:5

In order to deal with circle orders, we make use of recent analogous results on arrangement
of circles due to Kang and Miiller [20], and Felsner and Scheucher [16]. An arrangement of
Jordan curves is said to be a pseudocircle arrangement if every pair of curves is either disjoint
or intersects in exactly two points. A triple of pseudocircles is said to form a Krupp if they
pairwise intersect in distinct points and their interiors have a common point. A pseudocircle
arrangement is said to be a great-pseudocircle arrangement if every triple of pseudocircles
forms a Krupp. See Figure 3 for illustrations. Similarly to pseudoline arrangements, we
are only concerned with the topological structure of the arrangement. Great-pseudocircle
arrangements constitute a combinatorial abstraction of arrangements of great circles on
a sphere, hence of line arrangements in the projective plane. In fact, great-pseudocircle
arrangements and simple pseudoline arrangements are essentially the same combinatorial
family, see Felsner and Scheucher [16].

» Lemma 3.1. Great-pseudocircle arrangements are one-to-one with simple pseudoline ar-
rangements.

Every great-pseudocircle arrangement realizes two copies of a pseudoline arrangement,
see Figure 3. When stretchable, they correspond to realizations of pseudolines as great
circles on the 2-sphere, or equivalently as lines in the projective plane.

Figure 3 A Krupp, and a great-pseudocircle arrangement realizing two copies of the pseudoline
arrangement of Figure 2.

We need a technical lemma on the structure of circle arrangements. A collection of n
circles in the plane partitions the plane into connected subsets that we refer to as cells. To
each cell, one can assign a binary string of length n indicating, for each circle, whether the
cell lies in the interior or the exterior of the circle. We refer to this string as the label of the
cell.

» Lemma 3.2. The mazimum number of dictinct cell labels of an arrangement of n circles
is equal to the mazimum number of cells of a circle arrangement, and is n(n — 1) + 2. This
bound is attained by great-pseudocircle arrangements.

Proof. One can proceed by induction on n. We let f(n) be the maximum number of labels,
with f(1) = 2. When adding the nth circle to the arrangement, the number of additional
labels is at most the number of newly created cells. This number is in turn bounded by the
number of new intersection points: One can charge every new cell to the intersection point
on its left in a clockwise sweep around the new circle. Therefore f(n) < f(n—1)42(n—1),
solving to the announced bound. From this reasoning, tight examples must be such that
no two cells have the same label, and one can check that this bound is attained by great-
pseudocircle arrangements. <
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The circularizability problem is the problem of deciding whether a pseudocircle arrange-
ment is isomorphic to a circle arrangement. It is the analogue of the stretchability problem
for pseudoline arrangements, and is in fact polynomial-time equivalent to it.

» Theorem 3.3 (Kang and Miiller [20], Felsner and Scheucher [16]). Deciding whether a
pseudocircle arrangement is circularizable is AR-complete, even when the input is restricted
to great-pseudocircle arrangements.

With these tools at hand, we now prove our second main result.

Proof of Theorem 1.2. We reduce from the circularizability problem. Given a great-
pseudocircle arrangement C, we construct a bipartite poset P = (X, <) that is a circle
order if and only if C is circularizable. We define the ground set X of P as X := CUF,
where C' is the set of great-pseudocircles of C, and F is the set of cell labels of C. Both C
and F induce empty posets in P, and for a pair (¢, f) € C x F, we let ¢ < f if and only if
the cell corresponding to f lies in the disk bounded by ¢. We show that P is a circle order
if and only if C is circularizable.

Indeed, if C is circularizable, then we can consider a circle realization of C and add a
small circle within each cell of the arrangement to realize P. For the other direction, suppose
P has a realization as a circle order and consider the arrangement D induced by C' in this
realization. Since every f € F' has an associated circle as well, every cell label of C is realized
in D. From Lemma 3.2, the number of cells is as large as can be for an arrangement of circles,
hence no other cell can appear in D. Therefore D must be a circularization of C. |

Note that a similar proof was given by Tanenbaum, Goodrich, and Scheinerman [41]
to prove hardness of point-halfspace incidence orders. Also note that from a theorem of
Scheinerman [36], the vertex-edge incidence poset of a graph is a circle order if and only if
the graph is planar. Hence for vertex-edge incidence posets, the problem reduces to planarity
testing and can therefore be solved in linear time.
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—— Abstract
An interesting subcomplex of the Delaunay triangulation are a-shapes, which give a more detailed
representation of the shape of point sets than the convex hull. We extend an algorithm [3, 4] which
computes all Delaunay simplices over all time windows to also compute the temporal a-shape,
which is a description of all a-shapes over all time windows and all values of «, in output-sensitive
linear time. We present an interactive demo application based on a fast query data structure.
Experimental results show that our algorithm can be used on real-world data sets and achieves a
speedup of at least ~52 over the approach of [1].

Related Version https://arxiv.org/abs/2303.00878

1 Introduction

A common property of point sets to examine is their shape. The convex hull comes to mind,
but a more general way to formalize the notion of shape are a-shapes [2], which generalize the
convex hull to allow concavities, holes and disjointness, see Figure 1. If points are associated
with timestamps it is also interesting to examine a-shapes of time windows. In interactive
visualization applications, freshly computing the a-shape for every request seems wasteful
and slow. If multiple a-shapes or time windows are required, a precomputed query data
structure may be more efficient, like in [1], which considers storm events in the United States
and visualizes their a-shape for various time windows. This approach examines all pairs of
points which are close enough to admit an a-ball through their (potential) edge, so « needs
to be fixed in advance and precomputation only works quickly if the value of « is chosen
small enough. We show how to compute the temporal a-shape, i.e. all a-shapes over all time
windows and over all values of «, in output-sensitive linear time in any fixed dimension d,
based on a temporal Delaunay enumeration algorithm [3, 4]. Unlike [1], the runtime of our
approach does not depend on the value(s) of « as it considers all values of a at once while
still being ~52 times faster for some a-values.

Figure 1 A point set representing a particle swarm and an a-shape describing its shape.

2 Preliminaries

We are given a point set P = {p1,...,pn} C R? in general position. Point indices represent
the temporal order and a point p; exists only at time i. We say P, ; for {p;,pit1,---,Dj}-
We consider d fixed, so we refer to d-simplices as simplices and to (d — 1)-simplices as faces.
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If f is a face of a simplex s, we call s a coface of f. We consider the d-dimensional a-shape,
i.e. that set of faces f with vertices in P for which an a-ball (an open hypersphere of radius «)
exists which passes through the vertices of f and contains no points of P in its interior.
The Delaunay triangulation DT'(P) is that unique subdivision of the convex hull which
consists only of d-simplices whose open circumhyperspheres contain no points of P in their
interior. T; ; is the Delaunay triangulation of F; ; and T is the set of all Delaunay d-simplices
occurring over all T; ;. It can be shown that all a-faces are also Delaunay faces (Figure 2),
and that every Delaunay face is an a-face for a value range of a determined by its cofaces.
The Delaunay enumeration algorithm of [3, 4] computes T in time O(|T|). With minor
modifications it provides face-simplex associations in a well-structured order, as well as
simplex lifetimes. When speaking of faces in the following, we mean faces appearing in 7T'.

Figure 2 A point set and its Delaunay triangulation in black, and an a-shape in red.

3 Activity Spaces of Delaunay Triangulations and a-Shapes

In settings where we have geometric elements which are part of some structure (like the
Delaunay triangulation or the a-shape) in certain time windows, the set of time windows for
which an element is part of that structure is called its activity space, and it can be visualized
in activity space diagrams, like it is done in two dimensions in [1]. To accommodate different
values of «, we introduce a third dimension to activity spaces. We will now study how the
activity spaces of a-faces are related to those of Delaunay simplices and Delaunay faces so
we can explain exactly what is encompassed by the temporal a-shape.

3.1 Activity Spaces of Delaunay Simplices

A simplex s is a Delaunay simplex in a time window [i, j] iff (a) all vertices of s have point
indices between ¢ and j and (b) the open circumsphere C' of s contains no points of P; ;.
Let ilower and iypper be the lowest and highest point indices among the vertices of s, then
(a) is fulfilled iff i < djower A Gupper < j. For (b), consider the points inside C' which come
before p;, ..., i.e. CN Py . ..—1. Let ipefore be the largest point index among them, or —oo if
no such points exist. Now (b) is fulfilled iff épefore < i AJ < Gatter (fatter defined analogously).
Since 7 and j are independent and both must lie within a certain interval, the set of
time windows [i, j] for which s is a Delaunay simplex can be represented as a rectangle
|ibefores Tlower] X [fupper; Tafter|; se€ Figure 3. The two dimensions give the range of the lower
end of time windows in which s is a Delaunay simplex, and of the upper end, respectively.
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Figure 3 Left: A Delaunay simplex s and some points, some inside the circumsphere of s.
Right: The activity space of s, bounded by iiower = 6, tupper = 10, ibefore = 4, and Zafter = 13.

3.2 Activity Spaces of Delaunay Faces

Activity spaces of Delaunay faces are not necessarily rectangular because, unlike Delaunay
simplices, faces may have different empty spheres in different time windows. A Delaunay
face f occurring in T is a Delaunay face in time window [¢, j] iff (a) all vertices of f have
point indices between ¢ and j and (b) an open sphere S exists which contains no points of P; ;
and passes through all vertices of f. Like before, (a) is fulfilled iff i < diower A Gupper < J-

For (b), we can always find such an empty sphere for faces on the convex hull boundary
by choosing its center sufficiently far away. For all other faces, such an empty sphere exists
as long as points on one side of f are not too close to points on the other side of f. Otherwise
there exists some pair of points which certifies that no such sphere can exist. There may be
many such pairs over all time windows, and (b) is fulfilled iff the time window [¢, j] contains
no such pair. Figure 4 shows an example of the resulting activity space.

A
P4

(6,7)

upper time window end

M 2)

Ps lower time window end
Figure 4 Left: All spheres through the vertices of Delaunay face f are centered on the dashed
line. Some points form simplices with f in some time windows. The pairs {p1,p2}, {p2,ps}, and
{pe,p7} prevent f from being a Delaunay face. More such pairs exist, but their influence on the
activity space of f is dominated by that of the 3 mentioned pairs. Right: Subtracting the rectangles
defined by the 3 pairs (transparent grey) from |—o0,4] x [5, oo[ gives the activity space of f (blue).
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» Definition 3.1. The staircase property

The activity space of a Delaunay face is shaped like a staircase, obtained by taking the
rectangle |—00, lower] X [fupper, 00[ and subtracting from it every rectangle |—00, 4] X [i5, 00|
corresponding to a pair as described above (w.l.o.g. we assume i, < 7).

3.3 Activity Spaces of a-faces

Every Delaunay face is also an a-face for certain values of «, so activity spaces of a-faces
have 3 dimensions: 2 temporal dimensions as before, and a dimension for the a-value range.

An a-ball of some face f may be centered on either side of f. We will consider both
sides separately and study the activity space for one side only; the activity space of f then
is the union of both sides’ activity spaces. Consider some Delaunay face f and fix one side
of it as the front, the other as the back. We want to know what the activity space looks like
if we only consider a-balls whose center is in front of f. Let Sfont and spack be the cofaces
of fin T} j, Cront and Cpack their circumspheres, and 7gont and Tpack their circumradii. All
spheres through the vertices of f are centered on a common line, this is true in particular
for Cront and Chack as well as for the a-ball centered in front of f. To ensure that the a-ball
is empty, it must be centered between Ch.ont and Cpack, see Figure 5. We are only interested
in a-balls in front of f, so Cpack is irrelevant if it is centered behind f.

S

Figure 5 The cofaces of Delaunay face f determining the possible centers of empty a-balls of f.
The circumspheres of f’s cofaces are filled in grey, their circumcenters are shown by circles. Crosses
indicate possible centers of empty a-balls, which are shown with a dash dotted outline.

We get that mpack < @ < rgong in case Cphack and Chong are centered in front of f, and
Pmin < @ < Tgont if only Chont is centered in front of f. Here rp;, is the radius of the
smallest sphere passing through the vertices of f. If Cgont is also centered behind f, no
empty a-ball may exist in front of f and the value range of « is empty.

The a-face activity space of f is defined by its cofaces occurring in T'. For every pair
of cofaces Sgront and Spack, we get a cuboid whose extent in the temporal dimensions is the
intersection of the activity spaces of sgont and spack, and the a-value range is determined as
above. The front activity space of f is the union of these cuboids over all pairs of cofaces.

The requirement for the a-ball to be centered in front of f implies that, if we project
the front activity space down into the two temporal dimensions, it may only cover a subset
of the activity space of f as a Delaunay face. Still, the staircase property applies w.r.t. the
temporal dimensions because the staircase is effectively shortened in one dimension. No two
front cuboids overlap even when disregarding the third dimension.
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4 Computing the Temporal a-Shape

We can now present our algorithm to compute the temporal a-shape. We have to compute
the a-shape activity space of every Delaunay face occurring in 7. Consider some Delaunay
face f in T and fix one side as the front side. We describe the process for this side of f. In
the following we first collect all cofaces of f in 7. Then we compute the cuboids described in
Section 3.3 by intersecting the activity space rectangles of all pairs of cofaces and computing
the corresponding a-value range. Discarding rectangles which force an empty a-value range
and choosing a sensible computation order lets us avoid explicitly computing empty cuboids.

Since f has exactly one front coface in every time window it is a Delaunay face in, we can
partition the staircase representing the Delaunay face front activity space of f into rectangles
which correspond to the front cofaces of f over all time windows. With some additional
bookkeeping, the Delaunay enumeration algorithm [3, 4] allows us to list these cofaces in a
nice order in what is essentially one pass over T. We get a partition of the Delaunay face
front activity space of f into lists of rectangles. Figure 6 shows some examples.

[ I R

Figure 6 The front activity space of four faces represented by their front rectangle lists. For
each face, the rectangles corresponding to the same rectangle list are highlighted in the same color.

We can make some useful observations about these rectangle lists.
» Lemma 4.1. FEvery rectangle is aligned with the right or bottom staircase boundary.
» Lemma 4.2. Two rectangles have the same left boundary iff they are in the same list.
» Lemma 4.3. The rectangles within each list are stacked on top of each other.

We reorganize this staircase representation into two lists, a bottom list and a right list.
The bottom list holds all rectangles touching the bottom boundary, ordered left to right.
The right list holds all remaining rectangles, ordered bottom to top. Front rectangles which
correspond to simplices whose circumcenter lies behind f force an empty a-value range, so
we remove them. This effectively cuts off some rectangles of the bottom list from the left,
and some rectangles of the right list from the top, see Figure 7, top left.

To ensure minimality of the final cuboid set, we merge all back rectangles of f with no
effect on the a-value range of the front into one combined rectangle (Figure 7, bottom left).
That rectangle can include time windows where f is not Delaunay, but this is not an issue as
the next step will intersect back and front rectangles, and the latter have not been extended.

We have worked only with Delaunay simplex activity spaces so far. To construct the
cuboids representing the a-face front activity space we now overlay the front staircase and
the back staircase, i.e. we intersect front rectangles with back rectangles. Each pair of cofaces
(i.e. pair of front rectangle and back rectangle) determines a certain range of « as described
in Section 3.3. This range, together with the intersection of the temporal dimensions of the
two rectangles, produces the resulting cuboid.

EuroCG’23
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Figure 7 The bottom (orange) and right (green) lists of f’s front and back as they are simplified
and intersected. Simplification: We remove some front rectangles from the left, and merge some
back rectangles from the bottom right into the rectangle shown with orange stripes. Intersection:
The back staircase is deconstructed rectangle by rectangle, always intersecting the removed rectangle
with the front rectangles. This corresponds to cutting off all remaining rectangles from the top or
from the left. The resulting intersected rectangles are shown with red stripes. Together with their
a-value range they form the cuboids which partition the a-face front activity space of f.

Intersections can be accomplished in output-sensitive linear time because intersections
happen at the boundaries of the remaining front staircase, see Figure 7. We repeat this
process for both sides of every Delaunay face f in T and get the following theorem.

» Theorem 4.4. There exists an algorithm to compute a minimal description A of all
a-shapes over all time windows and all values of o for a set of timestamped points in R? in
output-sensitive linear time O(|A|) for arbitrary fized d.

Note that the size of the temporal a-shape is not necessarily O(|T|). Overlaying the
front and back Delaunay face activity spaces of some face f may create 2(n?) cuboids for f,
and one can easily construct families of instances where |A| € Q(n-|T). It is trivial to show
that |A| € O(n? - |T|), but better bounds, both in terms of |T| and in terms of n, are likely.

5 Demo Application

We use the temporal a-shape to interactively visualize spatio-temporal point sets. Our
demo data set is a 2D particle animation with 400 particles. A copy of each particle is
created for each movement step, so each of the 1,200 steps is encoded with 400 timestamps
and we get 480,000 total data points. Section 6 shows that duplicating each point for each
movement step only makes the temporal a-shape twice as large as necessary in this instance.
Figure 8 shows our interactive visualization application on this data set. A video demo is
available online at https://youtu.be/Esh7_uzmBac.
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Figure 8 Interactive visualization of spatio-temporal point sets using a-shapes. The particle
sets in red are overlaid only for reference. Top: Following particle swarm movement by advancing
the time window. Bottom left and bottom middle: Changing the a-value to control the level
of detail in the outline. Bottom right: Revealing swarm trajectories using a larger time window.

6 Experimental Results

Using a basic 2D implementation of our algorithm on an Intel® Xeon® E5-2650 v4 CPU
the data set of Section 5 takes 147.3 seconds to compute the 45,494,688 simplices of T', and
222.1 seconds to compute the 127,227,279 cuboids representing the temporal a-shape.

Short time windows and small a-values may be irrelevant for real-world applications.
We restrict the time window size and a-value range to realistic values and count how many
cuboids are necessary to correctly answer queries. Considering only time windows aligned
with movement steps (encoded using 400 distinct timestamps), we need 49% of all cuboids.
Ignoring time windows shorter than 128 movement steps we still need 21%. Restricting «
to > 0.1 (a-shape fragmentation occurs below 0.1), we still need 30% and 11%, respectively.

Finally we consider the data set used in [1]. The approach of [1] takes “less than two
minutes” for a single small a-value and 59,789 points on an Intel® Core i7-7700T CPU, and
“about 20 minutes” for a single larger a-value. Our approach, on an Intel® Core i5-10500
CPU, takes 20.7 seconds to compute the temporal a-shape. Accounting for query structure
setup time in [1], this gives a speedup of at least ~52 over [1], and likely much more for
larger a-values, all while considering not just a single value of «, but all values at once.
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7 Conclusion

We presented an algorithm to compute the temporal a-shape, which is a minimal description
of all a-shapes of a spatio-temporal point set over all time windows and all values of «
in output-sensitive linear time, in arbitrary fixed dimensions. Experiments verified the
practicality of our algorithm and showed a speedup of at least ~52 over the approach of [1]
while considering not just one value of «, but all values at once. It remains to be seen how
the size of the temporal a-shape can be bounded in terms of n and |T|.
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—— Abstract
Temporal point data can be examined in great detail by considering time windows (contiguous
subsequences) within the data using the Delaunay triangulation and its subcomplexes. Setting up
a query structure for not only the Delaunay triangulation of the full point set, but also those of all
time windows, requires precomputing T, the set of all Delaunay simplices over all time windows.
We assume points are ordered randomly and investigate how |T| behaves with certain realistic
assumptions on the input points. We show that many sub-quadratic bounds on the complexity of the
Delaunay triangulation apply to E[|T'|] with only an added log n factor, and that many other bounds
apply directly to E[|T|]. In the case where arbitrary orderings are allowed, we give asymptotic upper
bounds for arbitrary d and exact upper bounds for d < 2, and we give worst-case instances.

1 Introduction

Examining time windows within spatial data sampled over time allows deeper insight, for
example to visualize [6, 8] or reconstruct [1, 25] shapes. The Delaunay triangulation and
its subcomplexes are valuable tools for such purposes, for example one can use a-shapes
of time windows to visualize the temporal evolution of data as in [8] or [27], see Figure 1.
Precomputing the set of all Delaunay simplices over all time windows, T', would be useful
for this purpose. Precomputation complexity depends on |T'|, so we consider certain classes
of point sets and investigate how |T'| behaves if the points are ordered randomly. We show
how expected complexity bounds on the Delaunay triangulation can apply to |T'|. We study
how arbitrary point sets in arbitrary order behave in the worst case.

start time: ® " |g1338 start time: ® ' 20050
window size: @ © 400 window size: ® ' 15691
a =9 1046 a @ 10.03

Figure 1 Interactive exploration of the a-shape of temporal point data representing a particle
swarm (left) and storm events in the United States (right), from [27].

We consider for fixed d > 1 the d-dimensional Delaunay triangulation DT(P), i.e. that
(unique) subdivision of the convex hull of P which consists only of d-simplices whose open
circumhyperspheres contain no points from P in their interior. We are given a point set
P = {p1,...,pn} C R in general position. Point indices represent the temporal order
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29-31, 2023.
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and a point p; exists only at time i. We write P; ; for {p;,...,p;} and T} ; for DT(P; ;)
(1<i<j<n). ThesetT:=J
all time windows F; ;.

i< T; ; is the set of all Delaunay simplices occurring over

1.1 Motivation and Related Work

Efficiently precomputing all Delaunay simplices over all time windows is possible in practice
[8, 17, 26], but the output complexity depends on the input data. It was previously shown
that in two dimensions, E[|T|] = O(nlogn) [17]. The lower bound can be shown to hold,
and be tight, for d > 1, but the matching upper bound only holds for d < 2; it is not
possible to give a matching upper bound in three or more dimensions without making
restrictive assumptions on P. This is because the complexity of the d-dimensional Delaunay
triangulation varies between O(n) and Q(n!%/?1), while in one and two dimensions it is ©(n).
Worst-case inputs are rare in practice, so it is also important to analyze the complexity
of realistic input models. Restricting the shape, distribution, or sampling condition of points
can yield good upper bounds [3, 4, 5, 7, 9, 10, 11, 12, 13, 16, 19, 20] or lower bounds [11, 15].
Upper bounds are typically of more interest, so they will be our focus in the following.

1.2 Contribution

Section 2 bounds the expected complexity of T when points have a random ordering. We give
universal bounds, and bounds derived from Delaunay triangulation complexity bounds where
we show that many sub-quadratic bounds apply to E[|T|] with only an added logn factor,
and that many other bounds apply directly to E[|T|]. Section 3 investigates the worst case
if the points are ordered arbitrarily, giving exact bounds for d < 2 and asymptotically tight
bounds for d > 2. We provide constructions with matching complexity for all bounds in this
section. Section 4 concludes with an outlook on future work.

2 On the Expected Size of T

In this section P is ordered according to a permutation chosen u.a.r. and we give bounds
on E[|T]], the expected number of Delaunay simplices over all time windows. We can count
Delaunay simplices of T' by considering the smallest time window containing their vertices:

» Lemma 2.1. Any Delaunay simplex s € T is also a Delaunay simplex in the Delaunay
triangulation of the minimal time window of P containing all vertices of s.

We reformulate E|[|T|] using Lemma 2.1 and linearity of expectation, with d5 as an indicator
variable which is 1 if the simplex s has both p; and p; as a vertex, and 0 otherwise. The points
are ordered randomly, so E[ds] is simply the probability of d + 1 points (the vertices of s)
randomly selected from j — ¢ 4+ 1 points (those of the time window) containing two specific
points. Skipping some intermediate steps for brevity of presentation, we get:

2)5ps zﬂ!’z‘iiE >

i=1 j=i+d s€Ty ; i=1 j=i+d s€Ty j

_"_ ” d(d+1)
—Z Z Tl =G =9 W

E[T]] =

We can now transform existing upper (or lower) bounds on the expected complexity of the
Delaunay triangulation into bounds on E[|T|], provided the bound holds for random subsets.
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Table 1 Expected Delaunay triangulation complexity bounds compatible with Theorem 2.2

Points | d | E[IDT(P)]] | Citation |
Distributed u.a.r. in a compact convex of fixed volume >1 O(n) [9, 13]
e-net on a flat torus >1 O(n) (7]
Distributed u.a.r. on the surface of a fixed convex polytope 3 O(n) [20]
e-net of a fixed polyhedral surface 3 O(n) [7]
(e, k)-sample of a fixed polyhedral surface 3 O(nr?) [4, 7]
Distributed u.a.r. on a cylinder of constant height 3 O(nlogn) [11]
Distributed u.a.r. on a fixed polyhedral surface 3 O(nlog®n) [4]*
Distributed u.a.r. on a fixed generic smooth surface 3 O(nlog®n) [5]*

» Theorem 2.2. Let P be a family of point sets in R? for fized arbitrary d, with an expected
upper bound E[|DT(P)|] = O(f(n)) for P € P which has the property that, if R is a
random subset of size r, E[|DT(R)|] = O(f(r)). Then, if P is ordered by a permutation
chosen w.a.r., E[|T|] = O(f(n)logn).

Proof. Use the bound in Equation 1. We can bound £4=1 with f( )

since f(n) € Q(n).

j—i+1
d(d+ ]*ZJrl)
of f™ _
Z Z — nlogn | = O(f(n)logn)
i=1 j= z+d‘] L " <

Table 1 gives an overview of some bounds compatible with Theorem 2.2. For upper bounds
f(n) € Q(n?) we can show E[|T|] = O(f(n)) with the same approach. The complexity of
the Delaunay triangulation is O(n(d/ 2] ), and this bound is at least quadratic for d > 3, so
we get the higher-dimensional analogon of the O(nlogn) 2D bound of [17]:

» Corollary 2.3. For d >3, E[|T|] = O(n[%?1), and this bound is tight.

The bound is tight because instances of P exist with |[DT(P)| = ©(nl/%/?1) for all n, d [22, 23)].

3 On the Maximum Size of T

In this section P has an arbitrary fixed order. We derive a tight asymptotic upper bound
on |T| for arbitrary d in Section 3.1 and Section 3.2 gives exact upper bounds for small d.

3.1 Asymptotic Upper Bounds

Clearly |T| = O(n
one Delaunay triangulation is of size O(n/%/21), but we can do better. Theorem 3.2 shows
that |T| = O(n'*t1%/21) and Lemma 3.4 shows that this is tight in the worst case.

Cyclic polytopes are the basis of the proofs in this section. The upper bound theorem [24]
states that cyclic polytopes maximize the number of i-dimensional faces among all simplicial

2+[d/ 27) because there are only quadratically many time windows and any

! By Chernoff bounds, random samples are (O(y/'%2%), O(log n))-samples with high probability [16].
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(d — 1)-spheres for all ¢ < d, i.e. the number C;(n,d) of i-faces of a cyclic polytope with n
vertices in d dimensions is an upper bound on the number of i-faces of any convex polytope
with n vertices in d dimensions. Cyclic polytopes with the same dimension and number of
vertices are combinatorially equivalent, and one way of construction is to choose n distinct
points {z(t1),...,2(t,)} from the moment curve z(t) = (¢,t2,...,t4)7T restricted to t > 0.
We can identify Delaunay simplices of a d-dimensional point set with convex hull facets
of a d + 1-dimensional point set [14], and we can bound the number of such facets using the
upper bound theorem. This lets us bound the number of Delaunay simplices of T; ; which
are incident to both p; and p; in Lemma 3.1, which we use in Theorem 3.2 to bound |T|.

» Lemma 3.1. There are O((j —i+ 1)L4=D/2]) simplices incident to both p; and p; in T ;.

Proof. Let S(k,d) be the maximum number of Delaunay simplices incident to any two
common points in the Delaunay triangulation of any k points in d dimensions. For d < 2 or
kE<d+1, S(k,d)is O(1). For d > 3 and k > d+ 1, we use the lifting map to project P onto
a paraboloid in (d + 1)-space [14]. Then a (d + 1)-subset F' of P forms a Delaunay simplex
if and only if the points of F' lifted onto the paraboloid form a lower convex hull facet.

We bound the number of facets incident to two common points, p, and pp, on any convex
hull H of k£ > d+ 1 points in d+ 1 dimensions in general position. This bound applies to the
convex hull of the lifted points, and to the Delaunay triangulation of the original points.

The facets (i.e. d-simplices) of H which are incident to p, each have exactly one
(d — 1)-simplex not incident to p,. The set K1 of these (d — 1)-simplices is a simplicial
(d—1)-sphere with at most k — 1 vertices. We apply the same logic to a vertex in Ky, say pp:

The facets (i.e. (d — 1)-simplices) of Ky which are incident to p, each have exactly
one (d — 2)-simplex not incident to pp. The set Ko of these (d — 2)-simplices is a simplicial
(d—2)-sphere with at most k—2 vertices. By construction, the facets of Iy are in one-to-one
correspondence with those facets of 4 which are incident to p, and py. By the upper bound
theorem [24], the number of facets in Ky is at most Cy_o(k — 2,d — 1) = O(kLd=D/2]) <

» Theorem 3.2. The number of Delaunay simplices over all time windows in d dimensions
is O(n*+14/21) for all d > 1.

Proof. We use Lemma 2.1 and count for each time window F; ; the Delaunay simplices for
which F; ; is the minimal enclosing time window, which are bounded by Lemma 3.1:

n—d n
|T| = Z Z O((j — i + 1)LE=D/2) = O(pltTd/2])
i=1 j=i+d

We omit the tedious derivation of explicitly summing up the Cy_o(k—2,d—1) of Lemma 3.1,

which would give an explicit upper bound of |T| < (?df/gﬁ/ﬂ) + (T{;/Bﬁ/f}) —n+d. <

Gale’s Evenness Condition characterizes cyclic polytope facets:

» Theorem 3.3 (Gale's Evenness Condition [18]). Let P = {z(t1),...,x(tn)} be a set of
distinct points chosen from the moment curve x(t) = (t,t%,...,tH)7T restricted to t > 0
and ordered by increasing t;. Then a d-subset F' C P forms a facet of the cyclic polytope
Cy(n) = CH(P) iff the following condition is satisfied: for every pair of points (x(t;,), x(t:,))
in P\ F with iy < iz, the number of points x(t) in F with t;;, <t < t;, is even.

We adapt a construction from [21] and use Gale’s Evenness Condition in Lemma 3.4 to
show that the bound given in Theorem 3.2 is asymptotically tight.
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» Lemma 3.4. Point sets P with T € Q(n'+19/21) exist for alln >d > 1.

Proof. Pick n points P’ = {p,...,p,,} with strictly increasing ¢ > 0 on the moment curve
z(t) = (t,12,...,t9)T such that every p; is strictly outside the circumhypersphere of simplices
formed by d+1 points with index < j. The convex hull of any subset R = {p; ,...,p} } € P’
with 41 < is < --- < ix and k > d is a cyclic polytope, so Gale’s Evenness Condition tells
us which d-subsets F' C R form a facet of CH(R), and thus also which F no longer form
a facet after inserting a point pj; € P’ with j > i) into CH(R): they are exactly those [’
for which Gale’s Evenness Condition holds w.r.t. R, but not w.r.t. RU{p}, ie pj €F
(and pj, € F if d is even), and all other points of F' can be decomposed into | 4] pairwise
disjoint pairs of points with consecutive indices in R. Roughly estimating the number of
such d-subsets of R, we sce that Q(kl(?~1)/2]) facets disappear when inserting p).

Now consider the Delaunay triangulation of R and how it changes when inserting p;-. Due
to the choice of the pj, no Delaunay simplex of DT'(R) contains pj in its circumhypersphere,
so each d-subset I’ forming a disappearing facet corresponds to a d + l-subset F'U {p’}
forming a Delaunay simplex of DT'(RU {p}}). We are now ready to construct P. Re-order

the points of P’ by reversing the order within the first and second half:

/ . - < n
P=A{p1,...,pn}, with p; = p,L"/QJ_"H 71,_ LZJ
Pt nj2)—it1 + 1> 5]
Ordered by t-value, P would look like this: [p|,/2],P[n/2]=15- s P1s PrsPr—1s -+ Pln/2]+1)-

Observe that for i < [§] — d, all facets of T |,,/2) that would disappear upon insertion
of some p; with j > [§] have p; as a vertex, and the resulting Delaunay simplices of
DT(P;|5/2) U{p,}) all have p; as a vertex. By construction, p|n/2)41;P(n/2/+2;- - > Pj-1
are strictly outside of the circumhypersphere of these Delaunay simplices, so they are also
Delaunay simplices in 7; ;. Bound the number of Delaunay simplices in 7" using Lemma 2.1:

n/2)-d  n
W=D Q((Lg]—i+1)1(d*1)/2J):Q(and/?]) <

=1 j=|n/2]+1

3.2 Exact Upper Bounds

We give exact upper bounds and constructions that realize them in one and two dimensions.
Surprisingly, the explicit bound of Theorem 3.2 is tight in two dimensions, but not in one.
A’
® Do
® P9
® D8
® p7
® Do

® P4
® D3
® D2
® D1

Pi

»
|

Figure 2 1D point set with point indices plotted in the second dimension.
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» Lemma 3.5. Ford=1andn > 2, |T| < L"TZJ +n —2, and this bound is tight.

Proof. The one-dimensional Delaunay triangulation is the set of segments defined by two
neighboring points on a line. By Lemma 2.1, a segment p;p; (¢ < j) is in T iff P; ; contains no
points between p; and p;. Plot the points in a 2D coordinate system, with p; corresponding
to the x-value and the index 4 corresponding to the y-value, and we get that p;p; € T iff
there exists a closed axis-aligned rectangle containing p; and p; but no other points from P.

It is shown in [2] that at most L”TQJ + n — 2 such pairs of points can exist.
The construction in Lemma 3.4 reaches this bound, see Figure 2: for i < [§] < j we get

n2

| % | segments of the type p;p;, plus n — 2 segments of the type pip;;1 fori ¢ {[5],n}. <«

7(p12)

P12
P

P1o

ps

Pe

Pa

P2 T(p
—c

Figure 3 Split parabola construction scheme, not to scale. Triangles of either half parabola in
orange, quadrilateral used in the proof in grey, and its diagonal edge.

» Lemma 3.6. Ford =2 andn > 2, |T| < (n — 2)%, and this bound is tight.

Proof. We bound for every time window F; ; the number of triangles of T ; incident to both
pi and p;. This bounds |T'| by Lemma 2.1. Each of the @ time windows contributes
up to 2 triangles to the total, but the n — 1 time windows of length 2 admit no triangles
and the n — 2 time windows of length 3 admit only one triangle each. We get a bound of
IT| < 2% —2(n—1)— (n—2) = (n—2)%. It can be realized as follows, like in Figure 3:

. oNT .
T f e i

Let r(p) be the reflection over the y-axis, and P’ = PU{r(p) | p € P}, and ¢ a constant
chosen large enough so that every point of P’ with negative z-value is strictly outside the
circumcircle of any triangle formed by 3 points of P’ with positive z-value.

We show that the edge p;p; exists in T; ; and has a triangle on both sides for all j > i4-2.
Due to the choice of ¢, T; ; consists of two separate, independently triangulated half parabolas
which are connected by exactly 3 edges between their lowest and highest points. If ¢ and j
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have the same parity, the edge p;p; is on the convex hull boundary of one half, and thus
exists in T; ;. The edge is between both halves, so a triangle exists on both sides.
Otherwise, assume w.l.o.g. that j is even. The convex quadrilateral p;p;_1p;p;+1 in the
middle is fixed already. A sphere morphing argument using spheres through p;y1, p;, 7(p;)
and p;, pj—1,7(p;) shows that p;p; is the diagonal edge triangulating that quadrilateral. <

4 Qutlook

Applying other complexity bounds on the Delaunay triangulation to the number of Delaunay
simplices over all time windows remains an interesting challenge, especially when point order
is not randomized or points are distributed less evenly. Exact upper bounds on |T'| for d > 3,
and finding for which d the explicit bound given in Theorem 3.2 is tight, would also be nice.

—— References

1 Ehsan Aganj, Jean-Philippe Pons, Florent Ségonne, and Renaud Keriven. Spatio-temporal
shape from silhouette using four-dimensional Delaunay meshing. In 2007 IEEE 11th In-
ternational Conference on Computer Vision, pages 1-8. IEEE, 2007. doi:10.1109/ICCV.
2007 .4409016.

2 Noga Alon, Zoltan Fiiredi, and Meir Katchalski. Separating pairs of points by stan-
dard boxes. Furopean Journal of Combinatorics, 6(3):205-210, 1985. doi:10.1016/
S50195-6698(85)80028-7.

3 Nina Amenta, Dominique Attali, and Olivier Devillers. A tight bound for the Delaunay
triangulation of points on a polyhedron. Discrete & Computational Geometry, 48(1):19-38,
2012. d0i:10.1007/s00454-012-9415-7.

4  Dominique Attali and Jean-Daniel Boissonnat. A linear bound on the complexity of the De-
launay triangulation of points on polyhedral surfaces. Discrete € Computational Geometry,
31(3):369-384, 2004. doi:10.1007/s00454-003-2870-4.

5 Dominique Attali, Jean-Daniel Boissonnat, and André Lieutier. Complexity of the De-
launay triangulation of points on surfaces: the smooth case. In Proceedings of the
nineteenth annual symposium on Computational Geometry, pages 201-210, 2003. doi:
10.1145/777792.777823.

6  Michael J. Bannister, William E. Devanny, Michael T. Goodrich, Joseph A. Simons, and
Lowell Trott. Windows into geometric events: Data structures for time-windowed querying
of temporal point sets. In Proceedings of the 26th Canadian Conference on Computational
Geometry (CCCG), pages 11-19, 2014. URL: https://www.cccg.ca/proceedings/2014/
papers/paper02.pdf.

7 Jean-Daniel Boissonnat, Olivier Devillers, Kunal Dutta, and Marc Glisse. Randomized
incremental construction of Delaunay triangulations of nice point sets. Discrete & Compu-
tational Geometry, pages 1-33, 2020. doi:10.1007/s00454-020-00235-7.

8 Annika Bonerath, Benjamin Niedermann, and Jan-Henrik Haunert. Retrieving a-shapes
and schematic polygonal approximations for sets of points within queried temporal ranges.
In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 249-258. ACM, 2019. doi:10.1145/3347146.
3359087.

9  Olivier Devillers. Delaunay triangulation and randomized constructions. In Encyclopedia
of Algorithms. Springer, 2016. doi:10.1007/978-1-4939-2864-4_711.

10  Olivier Devillers and Charles Duménil. A poisson sample of a smooth surface is a good
sample. In FuroCG 2019 - 35th European Workshop on Computational Geometry, Utrecht,
Netherlands, March 2019. URL: https://hal.archives-ouvertes.fr/hal-02394144.

EuroCG’'23


https://doi.org/10.1109/ICCV.2007.4409016
https://doi.org/10.1109/ICCV.2007.4409016
https://doi.org/10.1016/S0195-6698(85)80028-7
https://doi.org/10.1016/S0195-6698(85)80028-7
https://doi.org/10.1007/s00454-012-9415-7
https://doi.org/10.1007/s00454-003-2870-4
https://doi.org/10.1145/777792.777823
https://doi.org/10.1145/777792.777823
https://www.cccg.ca/proceedings/2014/papers/paper02.pdf
https://www.cccg.ca/proceedings/2014/papers/paper02.pdf
https://doi.org/10.1007/s00454-020-00235-7
https://doi.org/10.1145/3347146.3359087
https://doi.org/10.1145/3347146.3359087
https://doi.org/10.1007/978-1-4939-2864-4_711
https://hal.archives-ouvertes.fr/hal-02394144

39:8

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Delaunay Simplices in Time Windows

Olivier Devillers, Jeff Erickson, and Xavier Goaoc. Empty-ellipse graphs. In 19th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’08), pages 1249-1256, 2008. URL:
https://dl.acm.org/doi/10.5555/1347082.1347218.

Rex A Dwyer. Higher-dimensional Voronoi diagrams in linear expected time. Discrete &
Computational Geometry, 6(3):343-367, 1991. doi:10.1007/BF02574694.

Rex A Dwyer. The expected number of k-faces of a Voronoi diagram. Computers &
Mathematics with Applications, 26(5):13-19, 1993. doi:10.1016/0898-1221(93)90068-7.
Herbert Edelsbrunner and Raimund Seidel. Voronoi diagrams and arrangements. Discrete
& Computational Geometry, 1(1):25-44, 1986. doi:10.1007/BF02187681.

Jeff Erickson. Nice point sets can have nasty Delaunay triangulations. Discrete & Compu-
tational Geometry, 30:109-132, 2003. doi:10.1007/s00454-003-2927-4.

Jeff Erickson. Dense point sets have sparse Delaunay triangulations or “.. but not
too mnasty”. Discrete & Computational Geometry, 33(1):83-115, 2005. doi:10.1007/
s00454-004-1089-3.

Stefan Funke and Felix Weitbrecht. Efficiently computing all Delaunay triangles occurring
over all contiguous subsequences. In 31st International Symposium on Algorithms and
Computation (ISAAC 2020). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2020. doi:
10.4230/LIPIcs.ISAAC.2020.28.

David Gale. Neighborly and cyclic polytopes. In Proc. Sympos. Pure Math, volume 7,
pages 225-232, 1963. doi:10.1090/pspum/007/0152944.

Mordecai J Golin and Hyeon-Suk Na. The probabilistic complexity of the Voronoi dia-
gram of points on a polyhedron. In Proceedings of the eighteenth annual symposium on
Computational geometry, pages 209-216, 2002. doi:10.1145/513400.513426.

Mordecai J Golin and Hyeon-Suk Na. On the average complexity of 3d-Voronoi diagrams
of random points on convex polytopes. Computational Geometry, 25(3):197-231, 2003.
doi:10.1016/50925-7721(02)00123-2.

Bernd Gonska and Giinter M. Ziegler. Inscribable stacked polytopes. Advances in Geom-
etry, 13(4):723-740, 2013. doi:10.1515/advgeom-2013-0014.

Raimund Seidel. The complexity of Voronoi diagrams in higher dimensions. In Proceed-
ings of the 20th Annual Allerton Conference on Communication, Control, and Computing,
volume 300, pages 94-95, 1982.

Raimund Seidel. Exact upper bounds for the number of faces in d-dimensional Voronoi
diagrams. In Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift,
pages 517-530, 1991. doi:10.1090/dimacs/004/40.

Richard P Stanley. The upper bound conjecture and cohen-macaulay rings. Studies in
Applied Mathematics, 54(2):135-142, 1975. doi:10.1002/sapm1975542135.

Jochen Siifmuth, Marco Winter, and Giinther Greiner. Reconstructing animated meshes
from time-varying point clouds. In Computer Graphics Forum, volume 27, pages 1469-1476.
Wiley Online Library, 2008. doi:10.1111/j.1467-8659.2008.01287.x.

Felix Weitbrecht. Linear time point location in Delaunay simplex enumeration over all
contiguous subsequences. In EuroCG, pages 399-404, 2022. URL: http://eurocg2022.
unipg.it/booklet/EuroCG2022-Booklet.pdf.

Felix Weitbrecht. Interactive exploration of the temporal a-shape. In FuroCG, 2023.


https://dl.acm.org/doi/10.5555/1347082.1347218
https://doi.org/10.1007/BF02574694
https://doi.org/10.1016/0898-1221(93)90068-7
https://doi.org/10.1007/BF02187681
https://doi.org/10.1007/s00454-003-2927-4
https://doi.org/10.1007/s00454-004-1089-3
https://doi.org/10.1007/s00454-004-1089-3
https://doi.org/10.4230/LIPIcs.ISAAC.2020.28
https://doi.org/10.4230/LIPIcs.ISAAC.2020.28
https://doi.org/10.1090/pspum/007/0152944
https://doi.org/10.1145/513400.513426
https://doi.org/10.1016/S0925-7721(02)00123-2
https://doi.org/10.1515/advgeom-2013-0014
https://doi.org/10.1090/dimacs/004/40
https://doi.org/10.1002/sapm1975542135
https://doi.org/10.1111/j.1467-8659.2008.01287.x
http://eurocg2022.unipg.it/booklet/EuroCG2022-Booklet.pdf
http://eurocg2022.unipg.it/booklet/EuroCG2022-Booklet.pdf

Vorosketch and the L, distance
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—— Abstract

This paper briefly introduces Vorosketch, a simple tool that sketches Voronoi diagrams for a variety

of distance measures, suitable for use in lectures, articles, and research. Experiments with Vorosketch
led us to the following discovery. Consider the Voronoi diagram of a set of points in the plane when
the distance between two points a and b is given by Ly(a — b), where L,((z,y)) = (|z|? + |y[?)"/?.
For p = 0, this distance is undefined. Nevertheless, the Voronoi diagram has a limit as p converges
to zero from above or from below: it is the diagram that corresponds to the distance function
L.((z,y)) := |zy|. This suggests that L. provides a natural definition of a geometric Lo distance.

1 Drawing Voronoi diagrams with Vorosketch

Given a set S of n points in the plane (called sites) and a distance function d : S x R? — R,
the Voronoi region of a point a € S is the set {¢ € R? | d(a,q) < mingesd(s,q)}. The
Voronoi diagram of S with respect to d is a subdivision of the plane into the Voronoi regions
of the sites of S (ignoring, for now, complications arising from overlap between regions).
Each edge of the Voronoi diagram lies on the boundary between the regions of two sites a
and b, and thus, it is a part of the bisector B(a,b) between a and b, that is, the set of points
Ba,b) == {q € B? | d(a,q) = d(b, )}.

When d is simply the Euclidean (L9) distance, the Voronoi diagram can be computed by
various algorithms in O(nlogn) time (see e.g. [3, 13]) and various efficient implementations
exist. These exploit various convenient properties of Voronoi diagrams, including that all
regions are simply connected and that the bisector between any pair of points from S is a
straight line.

Besides Voronoi diagrams for the Euclidean distance, diagrams for many other distance
functions have been considered. In general, this results in Voronoi diagrams that do not have
the aforementioned convenient properties: bisectors are not straight anymore and/or regions
might consist of multiple connected components. As a result, the standard algorithms to
compute Voronoi diagrams can be used only with non-trivial adaptations, if at all.

Nevertheless, I wanted to study such Voronoi diagrams experimentally, and produce figures
of such Voronoi diagrams to explain the topic to students. Therefore I wrote Vorosketch [8]:
a tool that is not at the summit of speed or accuracy, but can easily be extended with novel
distance functions, regardless of whether we understand the geometry of the bisectors yet.
Vorosketch produces bitmap images of Voronoi diagrams. The running time is dominated
by distance computations. For a bitmap of 7 x r pixels, ©(nr?) distances are computed:
from each site to the centre of each pixel. However, in practice, the number of distance
computations tends to be much smaller than nr2, thanks to a two-phase approach.

In the first phase, Vorosketch subdivides the drawing area into blocks of 20 x 20 pixels.
For each block B and for each site a, Vorosketch computes a lower bound #(a, B) and an
upper bound u(a, B) such that ¢(a, B) < d(a, q) < u(a, B) holds for each pixel centre ¢ € B.
In the second phase, Vorosketch computes, for each pixel centre ¢ € B, the distances to only
those sites a for which £(a, B) < mingeg u(s, B), and selects out of those, the site closest
to ¢g. Bisectors are detected and drawn wherever there is a square of 2 x 2 pixels that do not
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all belong to the same region (so one has to be a bit careful: bisector parts along regions
that are locally smaller or narrower than a pixel’s width might be missed).

Naturally, the speed of the computation depends strongly on how tight the computed lower
and upper bounds are, but the output quality does not depend on it. To experiment with a
new distance measure quickly, it suffices to insert the code for the single-pixel computation
in the second phase, and Vorosketch will just use trivial (correct but useless) bounds in the
first phase. If desired, one can speed up the computation of diagrams for the new distance
measure later by implementing the calculation of tighter bounds.

Vorosketch offers various options to control the line work and colours of the drawing.
Regions may be coloured in different colours—using some rudimentary heuristic to give
adjacent regions contrasting colours. Colours or shades may be set to depend on the distance
to the site (see Figures la, le, 1f); saturation may be set to depend on the number of
neighbours of a region (Figure 1c¢). One may also choose to apply shading depending on the
direction of the distance-to-closest-site gradient—thus visualising the hills and valleys of the
distance landscape (Figures la, 1c). Alternatively, or on top of that, one may draw distance
contour lines. Areas that belong to two Voronoi regions are filled with a checkerboard pattern
according to the colours of the two sites involved (Figures lc, 1d). Vorosketch can also draw
second-closest-site, second-order, and farthest-site Voronoi diagrams.

In the current version of Vorosketch [8], the following distance measures are supported:
L, distance for p = —o0, all p € R, and p = oo, using L, for Ly (see Section 2);
distance when only travelling in directions that are integral multiples of 60 degrees;
Kalrsruhe/Moscow/Amsterdam distance (travel only on lines through or circles around
the origin) [12], and the novel Kéln/Cologne distance (like Karlsruhe, but measuring
travel time when speed is proportional to the distance from the origin, as if modelling
congestion in the centre—see Figure 1a);
distance when the plane is interpreted as an equal-area azimuthal, elliptical (see Figure 1b)
or cylindrical projection of a sphere;
distance when the plane is interpreted as one of various models of the hyperbolic plane;
the energy required to send a spaceship from any point into an orbit that reaches the site
(or vice versa), subject to gravity towards the centre of the coordinate system (see the
Vorosketch website [8] for details on its definition and computation);
Ly and Lo distance with unrestricted-access highways (the distance between two points
is the travel time, when speed is 1 when going cross-country, while travel along specified
line segments is faster; see Figure 1c); for these distance measures, Vorosketch includes a
preprocessing phase that exploits geometric properties of shortest paths in this setting [7];
combinations of distance measures that can be obtained from the previous by standard
arithmetic operations; this includes distance measures calculated according to one function
(for example, Euclidean), subject to constraints on another distance function (for example,
turn angle, as with half-plane Voronoi diagrams [5, 6]);
subtractively /additively and divisively /multiplicatively weighted versions of the above
(including power diagrams [2, 11]).

Moreover, for line segment or polylinear sites, the following distance measures are included:
L, (see Figure 1d) and Lo distance;
angular-size distance (the distance between a point g and a site s is 27 divided by the
angular size of s as seen from ¢, minus one; see Figure le);
detour distance (the distance to a point ¢ from a line segment site with endpoints s and ¢
is |[sql| + ||gt|] — ||st]|), and dilation distance (detour distance divided by ||st|]).



H. J. Haverkort 40:3

For point sites that each have an associated vector (direction, and, in some cases, magnitude):

turn distance: the distance to a point ¢ from a site s is the angle between the site’s
associated vector and the segment sq (see [9]);

left-turn distance: same as above, but always measuring the angle from the site vector to
sq in counterclockwise direction (as studied by Alegria et al. [1]);

Dubins distance: the distance to a point ¢ from a site s is the distance that a car would
have to drive from s to ¢, without reversing, given its initial position and direction vector
and with minimum turn radius equal to the magnitude of the vector [4];

the “catch” distance for moving sites (see Figure 1f): the distance from a point ¢ to a
site s is defined as the distance one has to travel from ¢ (at a fixed speed) to meet the
moving site s as soon as possible, given its initial position, direction and speed!.

The examples in Figures le and 1f in particular raise the question what properties the
curvy bisectors have with these distance measures—where the distance contours are simply
composed of (non-concentric) circular arcs.

2 The geometric L, distance

The L, distance between two points a and b is given by L,(a — b) where L,((z,y)) =
(|z” 4 |y[P)'/P. The L, distances are widely studied in computational geometry, in particular
with p > 1, in which case the distance constitutes a metric. With the help of Vorosketch, Rolf
Klein and I studied what happens if p drops to zero or even becomes negative [10]. We see that
the values of the L, distance function differ depending on whether p tends to zero from above

or from below: If x # 0 and y # 0, then lim, o L,((x, y)) = oo whereas limpyo Lp((2,y)) = 0.
To verify this, define r = y/x; then lim,_,0 L,((x,y)) = x limy_,(1 + r?)Y/P = 2 lim,,_,o 2'/7.

Nevertheless, we found that, at least for points in general position, the limit of the Voronoi
diagram under the L, distance as p approaches zero is well-defined. In other words, even
though, for small values of |p[, the L, and L(_,) distances have very different values, they
induce almost identical Voronoi diagrams.

To be precise, observe that the terms |z|? and |y|P in the definition of L, are undefined if
p < 0and z =0 or y =0, respectively. We extend the function L,, for p < 0, to a continuous
function on all arguments (z,y) by setting its value to zero if = or y is equal to zero. Thus,
given two points a and b in the plane, we can calculate and compare their L, distances to
any other point in the plane, for any p # 0.

Figure 2 shows an example of the Voronoi diagram of two points under the L,, distance
for two values of p very close to zero. The figure shows, in particular, the bisector By(a,b)
of two points a = (az,ay) and b = (bs, by), that is, it shows the set of points in the plane
that are equidistant to a and b under the L, distance. The bisector B, (a,b) separates the

set V,(a,b) of points that are closer to a from the set V,(b, a) of points that are closer to b.

We obtained the following result:

1 The special case in which the sites have the same speed as the catchers, also has an interpretation in
terms of illumination. In that case the distance is proportional to the Euclidean distance times the
secant of the angle between sq and the site vector (provided the angle is less than 7/2). This can be
interpreted as the size, as seen from ¢, of a small unit-size diffuse linear light source at s whose normal is
the site vector. The Voronoi diagram models from which site each part of the plane receives most light.
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[ Figure 1 Voronoi diagrams of: (a) points by Kéln distance; (b) points on a sphere in equal-area
elliptical projection; (c) points by Lo distance with highways; (d) multiplicatively weighted polylines
by L. distance; (e) line segments by angular size; (f) moving points by catch distance.
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Figure 2 A bisector (in black) of two points under the L, distance for p = —0.05 (left) and
p = 0.05 (right), as computed by Vorosketch. The bisector divides the plane into two regions (points
closer to a and points closer to b) that each seem to consist of three faces.

I 1T IIT
Vi(b,a)

v A \Y b VI
a a B.(a,b)
T Vi(a,b)
VI VIII XN B (4, 0)

Vi(a,b) B.(a,b) V(b a)

Figure 3 A bisector of two points a and b under the L. distance.

» Theorem 1. Let a and b be two point sites in the real plane with different X- and Y -
coordinates. Then their bisector By,(a,b) and the sets V,(a,b) and V,(b,a) under the L,
distance converge, as p tends to zero from above or from below, to their bisector By(a,b) and
the sets Vi(a,b) and Vi(b,a) under the L, distance as defined by L.((x,y)) = |zy|.

Note that L.(a — b) is simply the area of the axis-parallel bounding box of a and b. Let
A and p denote the other two vertices of their axis-parallel bounding box. The bisector
B.(a,b) consists of the line through A and p and of two hyperbola branches through A
and p, respectively, whose asymptotes are the vertical and horizontal lines through the
bounding box’s centre; see Figure 3. This can easily be verified by solving the equation
L.(a—q) = L.(b—q) for q in each of the nine regions that result from subdividing the plane
by the axis-parallel lines through a and b. The bisector B, (a,b) divides the plane into six
faces, such that each face is entirely contained in either V. (a,b) or Vi (b, a).

It follows that for point sites in general position (that is, if no two points are on a
common horizontal or vertical line?), the limit of their L, Voronoi diagram as p tends to
zero is well-defined and it equals the L, Voronoi diagram. Thus, it appears that defining
Lo((z,y)) as L.((x,y)) = |zy|, which equals exp(In |z| + In |y|) if x,y # 0, constitutes a
natural interpretation of L,((z,y)) = (|z|? + |y|?)}/? for p = 0. Therefore we propose to
call the L, distance measure the geometric Lo distance, and the resulting Voronoi diagram
the geometric Ly Voronoi diagram. Note that this definition is notably distinct from other,

2 For a discussion of non-general position, see [10].
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unrelated, definitions of Ly that have been proposed?, and whose Voronoi diagrams would be
very different from the L. Voronoi diagram. Figure 4 shows, for comparison, the L, Voronoi
diagram of the same sites for several values of p.

Our proof of Theorem 1 is based on the following approach. Assume that |p| < 1 is
sufficiently small, but not zero. Consider two point sites a and b that do not lie on a common
horizontal or vertical line. If we subject these points to translation, reflection in a coordinate
axis, or reflection in the line y = x, the bisector under the L, distance undergoes the same
transformation. Therefore, to investigate the shape of the bisector, it suffices to consider
two sites a = (—u, —1) and b = (u, 1) where u > 1. Figure 3 shows how the plane is divided
into nine regions by the horizontal and vertical lines through a and b. Regions III and VII
do not contain any point of B,(a,b). For each of the other regions, we can analyse, for any
vertical line ¢, the vertical distance between any point of By (a,b) N ¢ and the unique point of
B, (a,b) N ¢ within that region, and prove that the limit of this distance is zero as p tends to 0
from above or from below. Our proof can be found in detail in our manuscript on arXiv [10].
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Figure 4 Voronoi Diagrams under the L, distance for various values of p. Note that features
narrower than a pixel might not have been detected completely.
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—— Abstract

We present results on rigidity of structures of rigid rods connected in joints: rod configurations.
The underlying combinatorial structure of a rod configuration is an incidence structure. Our aim is
to find simple ways of determining which rod configurations admit non-trivial motions, using the
underlying incidence structure.

Rigidity of graphs in the plane is well understood. Indeed, there is a polynomial time algorithm
for deciding whether most realisations of a graph are rigid. One of the results presented here equates
rigidity of sufficiently generic rod configurations to rigidity of a related graph. As a consequence, it
is possible to determine the rigidity of rod configurations using the previously mentioned polynomial
time algorithm. We use this to show that all vs-configurations on up to 15 points and all triangle-free
vs-configurations on up to 20 points are rigid in regular position, if such a realisation exists. We
also conjecture that the smallest vs-configuration that is flexible in regular position is a previously
known 283-configuration.

Related Version arXiv:2112.01960

1 Introduction

A rod configuration is a realisation of a hypergraph as points and lines in the plane. We
are interested in motions of rod configurations, where the motions are assumed to preserve
collinearity of points incident to the same line, and the pairwise distance between points
incident to the same line. Theorem 2.1 says that sufficiently generic rod configurations
realising an incidence geometry are rigid if and only if almost all realisations of an associated
graph are rigid. Determining whether almost all realisations of a given graph are rigid can be
done in polynomial time, using for example the pebble game algorithm [7]. As a consequence
of our result, determining the rigidity of sufficiently generic rod configurations can also be
done efficiently using the pebble game algorithm.

We consider only the two-dimensional setting. Throughout, S = (P, L, I) will denote
a connected rank two incidence geometry, with point set P, line set L and incidence set
I. For basic definitions and more on incidence geometries, see for example [3], where rank
two incidence geometries are referred to as point-line geometries. All graphs are assumed
to be simple. A linear realisation of an incidence geometry is a realisation of an incidence
geometry as points and straight lines in the plane. Let S = (P, L, I) be an incidence geometry,
and p an assignment of a line slope f; to each element ¢; € L. A linear realisation of an
incidence geometry S = (P, L, I) with line slopes given by p is an assignment of a pair of

* This work has been supported by the Knut and Alice Wallenberg Foundation Grant 2020.0001 and
2020.0007.
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point coordinates (z;, ;) to each element p; € P and a y-intercept h; to each element ¢; € L
such that

fizi+yi+h; =0 1)

whenever (p;,¢;) € I. Finding a linear realisation of an incidence geometry with an assigned
set of line slopes p amounts to solving a system of I equations of the form (1). Let M (S, p)
denote that system of equations. A linear realisation is trivial if all points are assigned the
same point coordinates. There are trivial linear realisations of any incidence geometry with
any line slopes. A linear realisation is proper if all points are assigned distinct coordinates.
Not all incidence geometries have proper linear realisations. The Fano plane, for instance,
does not have proper linear realisations for any choice of line slopes.

In 1989, Whiteley proved that an incidence geometry has proper linear realisations for
almost all choices of line slopes if and only if for any subset I' C I

[l < [L'[+2[P] =3 (2)

where P’ x L' C P x L is the support of I’ [11]. Specifically, incidence geometries with sets
of incidences that satisfy (2) have proper linear realisations if the line slopes are chosen to be
algebraically independent over Q. Incidence geometries with sets of incidences that do not
satisfy (2) can have proper linear realisations for some choices of line slopes p, however, the
line slopes given by p must then be algebraically dependent over Q. Furthermore, the rows
of M (S, p) would necessarily be dependent [11]. We say that a proper linear realisation of
an incidence geometry S = (P, L, I) is regular if every subset of I’ satisfying (2) corresponds
to independent rows of M (S, p). Intuitively, a rod configuration is a proper linear realisation
where the lines move like rigid bodies. We will give a more formal definition in Section 2.
For the remainder of this section we will focus on the special case of graphs.

Given a graph G = (V, E), any map f : V — R? gives a proper linear realisation of
G. Linear realisations of graphs are more commonly known as bar-and-joint frameworks
or frameworks. A continuous motion of a bar-and-joint framework is a motion of the
vertices which preserves the distance between any pair of adjacent vertices. A bar-and-joint
framework is rigid if the only continuous motions of the framework are translations and
rotations, otherwise it is flexible. An infinitesimal motion of a bar-and-joint framework is
an assignment m : V — R? such that (m(i) — m(j), f(i) — f(4)) = 0, whenever (i, j) € E,
where (—, —) denotes the standard scalar product in R?. A bar-and-joint framework is
infinitesimally rigid if the only infinitesimal motions of the framework are linearisations of
translations and rotations. Otherwise it is infinitesimally flexible.

It is known that almost all realisations of a given graph will have the same rigidity
properties [5]. In particular, all bar-and-joint framework of a graph such that the vertices
are given coordinates that are algebraically independent over Q (generic frameworks) have
the same rigidity properties. We can therefore say that a graph is generically rigid in the
plane if all its generic frameworks are infinitesimally rigid, otherwise we say that the graph
is generically flexible.

A graph is (2, 3)-sparse if |[E’'| < 2|V’| — 3 for all subsets E’ C E, where V' is the set of
vertices generated by E’. A graph is (2, 3)-tight if it is (2, 3)-sparse and |E| =2|V| —3. A
classical result in rigidity theory says that a graph is generically rigid in R? if and only if
it has a (2, 3)-tight spanning subgraph [8]. The (2, 3)-tight graphs, or Laman graphs, are
manimally rigid, in the sense that they are generically rigid, but removing any edge results in
a generically flexible graph.
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There are several algorithms for determining generic rigidity, or (2, 3)-sparsity of graphs.
For the experiment in Section 4 we implemented the pebble game, which is briefly outlined
below. However, there is an algorithm which is faster at determining (2, 3)-sparsity [4].
The pebble game algorithm, introduced by Jacobs and Hendrickson, can determine generic
rigidity of graphs [7]. The input of the pebble game algorithm is a graph G = (V, E) and
an ordering of E. The output of the algorithm is a set of accepted edges, which generate a
spanning (2, 3)-sparse subgraph. In the specified ordering, the algorithm checks whether the
graph generated by the current edge and the previously accepted edges is (2, 3)-sparse. If it
is, then the current edge is accepted. From the end state of the algorithm, it is possible to
determine whether the graph is generically flexible or generically rigid. Furthermore, it is
possible to tell from the end state of the algorithm whether the graph is (2, 3)-tight.

2 Theoretical Results

Given an incidence geometry S = (P, L,I) we define a cone graph of S, denoted G¢(9),
to be a graph with a vertex for each p € P and a vertex for each ¢ € L, and edge set
consisting of edges from the vertex representing a line ¢ to all vertices representing points
incident to ¢, and edges {(p,q)}(q,0)c1, Where p is some chosen vertex representing a point
incident to £. We can also define an incidence geometry, the cone incidence geometry, denoted
SC = (PY,LC, 1), by PY = PUL and LY = LU {(p,v) | (p,£) € I}, where vy is the
element of PC corresponding to £. The incidences in I¢ are defined by inclusion, i.e. p € P¢
is incident to £ € L¢ if p € £. Cone graphs are not uniquely defined. However, if one cone
graph of an incidence geometry S is generically rigid in the plane, then all cone graphs of
the incidence geometry are generically rigid in the plane [10].

Figure 1 A rod configuration realising an incidence geometry S and a cone graph G°(S) of S.

Suppose that there is some proper linear realisation of S with line slopes given by p. A
proper linear realisation of S assigns point coordinates to elements of P. Define a (non-
generic) bar-and-joint framework of a cone graph G¢(S) by assigning coordinates to the
vertices of G (S) representing elements of L, so that the vertices corresponding to elements
of L are not on the lines representing elements of L in the linear realisation. Note that
such an assignment defines a proper linear realisation of S¢ with line slopes given by p’,
such that p’ restricted to L is p. A rod configuration is a proper linear realisation p of S,
which is continuously or infinitesimally rigid if some cone graph of .S has a continuously or
infinitesimally rigid bar-and-joint framework in the special position defined by p respectively.
Otherwise it is infinitesimally flexible. A rod configuration is minimally rigid if it is rigid,
but removing any rod results in a flexible rod configuration. We say that a rod configuration
is regular if some linear realisation of S¢ with line slopes restricting to p on L is regular.
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Figure 2 The cone graph G€ (S) from Figure 1 and the non-generic bar-and-joint framework of
GO(S) given by the linear realisation of S drawn in Figure 1.

» Theorem 2.1. Let S = (P,L,I) be an incidence geometry such that S¢ has a regular
proper linear realisation. Then all cone graphs of S are rigid in R? if and only if all reqular
rod configurations realising S in R? are infinitesimally rigid.

The full proof of Theorem 2.1 can be found in a recent preprint [10], but we give a
very brief sketch here. That G¢(S) is rigid in the plane if all regular rod configurations
realising S are infinitesimally rigid follows from the fact that if some framework of a graph is
infinitesimally rigid, then all generic frameworks of that graph are rigid [5]. To prove the
other direction of Theorem 2.1, we recursively construct a spanning (2, 3)-sparse subgraph of
a cone graph GY(S). If GY(9) is generically rigid in R?, then the constructed (2, 3)-sparse
subgraph is (2, 3)-tight and therefore minimally rigid in generic position. To complete the
proof, we prove, using a result of Whiteley [11], that the constructed minimally rigid subgraph
of GY(S) remains infinitesimally rigid in the non-generic position defined by any regular
proper linear realisation of S¢. Since a spanning subgraph is infinitesimally rigid in this
position, so is G(9).

3 An algorithm for testing rigidity of rod configurations

As a consequence of Theorem 2.1, we get an algorithm for determining infinitesimal rigidity
of regular rod configurations realising incidence geometries.

» Algorithm 3.1. Given an incidence geometry S, create a cone graph G€(S) by adding a
vertez vy, for each p € P and a vertex vy for each ¢ € L. Then add an edge (vy,,v;) whenever
(p,£) € I. Finally pick an arbitrary ordering of P. Add edges {(vp,vq)}(q,0yc1, where p is the
first element of P in the chosen ordering to be incident to £.

We can then apply the pebble game algorithm to G€(S). The output of the pebble game
algorithm is a spanning (2, 3)-sparse subgraph G' of G (S). If G’ is (2,3)-tight, then GC(S)
is generically Tigid, so regular rod configurations realising S are infinitesimally rigid, by
Theorem 2.1. If G' is not (2,3)-tight, then it follows from Theorem 2.1 that regular rod
configurations realising S are infinitesimally flexible.

Whiteley proved that if GY(S) is generically minimally rigid, then regular rod config-
urations realising that incidence geometry are infinitesimally rigid [11]. If G€(S) is not
minimally rigid, then testing minimal rigidity can be done by in turn removing each line
of the rod configuration, and running Algorithm 3.1 to test whether the rod configuration
remains rigid when the line is removed.
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The pebble game algorithm runs in O(ve)-time, where v and e are the numbers of vertices
and edges of the input graph respectively [7]. The cone graph of an incidence geometry
S = (P, L, I) has one vertex for each element in P, and one vertex for each element of L. The
cone graph S has an edge (p, ¢;) for each incidence (p,¢), and P(¢) — 1 edges corresponding
to a line ¢ € L, where P({) denotes the number of points incident to ¢. In total, the
cone graph has |P| + |L| vertices, and 2|I| — |L| edges. Algorithm 3.1 therefore runs in
O((|P| + |L|)(2|I| — |L]))-time. Since it is possible to bound both the number of incidences
and the number of points by constants times the number of lines, the algorithm runs in
O(|L|?)-time.

To determine whether a rod configuration is minimally rigid, we may need to run
Algorithm 3.1 |L| times. With this approach, determining whether a rod configuration is
minimally rigid can be done in O(|L|?)-time.

4 A Computational Experiment

A ws-configuration is an incidence geometry with v points and v lines, such that each line is
incident to 3 points and each point is incident to 3 lines. For more on vg-configurations see
for example [6].

Figure 3 The smallest known flexible vs-configuration.

In previous work, we found an infinite family of flexible vs-configurations [9]. The smallest
flexible vs-configuration we found is a 283-configuration (see Figure 3). To test whether there
exist smaller flexible vs-configurations, we applied Algorithm 3.1 to small vs-configurations.
First, we used Orbiter [2] to generate all combinatorial vs-configurations for 9 < v < 15.
There were 269120 vs-configurations generated for 9 < v < 15, 245342 of which were 153-
configurations. The 163-configurations were too many to handle. We also used Orbiter to
generate all triangle-free vs-configurations for 16 < v < 20. There were 181 triangle-free
vz-configurations for 16 < v < 20, 162 of which were 203-configurations. We then created
a cone graph of each vs-configuration and applied the pebble game to it, in order to test
whether regular rod configurations realising the vs-configuration are infinitesimally flexible.
Orbiter generates also disconnected incidence geometries, which are flexible in the trivial way
that the two components can move in relation to each other. We are interested in flexible
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connected incidence geometries.

Out of the vs-configurations that we applied the algorithm to, the only ones that had
flexible cone graphs were a 143-configuration, which consisted of two copies of the Fano plane,
and a 153-configuration which consisted of one copy of the Fano plane and one copy of the
Mobius-Kantor configuration. Both of these vs-configurations are disconnected. Hence, out
of the connected vs-configurations that we tested, none have flexible realisations as regular
rod configurations. We did not manage to test all v3 configurations for 9 < v < 27, but
we think it is reasonable to believe that the smallest flexible vs-configuration is the flexible
283-configuration that we previously found.

5 Conclusion

Theorem 2.1 gives an efficient way of determining rigidity of regular rod configurations.
However, in general there is no known way to efficiently determine whether an incidence
geometry has realisations as regular rod configurations. Finding a maximum size subset of
incidences satisfying (2) is known to be NP-hard , which suggests that deciding whether a
proper linear realisation is regular is also difficult [1]. In general, even finding proper linear
realisations of incidence geometries is not easy. Finding regular proper linear realisations of
incidence geometries is therefore an interesting, but potentially difficult problem. We also
have no examples of incidence geometries that have proper linear realisations, but no regular
proper linear realisations. Finding such examples would be interesting.

The algorithm to determine minimal rigidity of rod configurations is based on the
algorithm for determining ridigity of rod configurations. While determining minimal rigidity
can still be done fairly efficiently, it might still be interesting to get a better understanding
of minimal rigidity of rod configurations.

Acknowledgments. We thank Anton Betten for his valuable help with Orbiter.
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—— Abstract

A graph is 2-planar if it has local crossing number two, that is, it can be drawn in the plane such

that every edge has at most two crossings. A graph is maximal 2-planar if no edge can be added
such that the resulting graph remains 2-planar. A 2-planar graph on n vertices has at most 5n — 10
edges, and some (maximal) 2-planar graphs—referred to as optimal 2-planar—achieve this bound.
However, in strong contrast to maximal planar graphs, a maximal 2-planar graph may have fewer
than the maximum possible number of edges. In this paper, we determine the minimum edge density
of maximal 2-planar graphs by proving that every maximal 2-planar graph on n > 5 vertices has at
least 2n edges. We also show that this bound is tight, up to an additive constant.

1 Introduction

Maximal planar graphs a.k.a. (combinatorial) triangulations are a rather important and
well-studied class of graphs with a number of nice and useful properties. To begin with, the
number of edges is uniquely determined by the number of vertices, as every maximal planar
graph on n > 3 vertices has 3n — 6 edges. It is natural to wonder if a similar statement can
be made for the various families of near-planar graphs, which have received considerable
attention over the past decade; see, e.g. [7, 8.

In this paper we focus on k-planar graphs, specifically for £ = 2. These are graphs with
local crossing number at most k, that is, they admit a drawing in R? where every edge has at
most k crossings. The maximum number of edges in a k-planar graph on n vertices increases
with k, but the exact dependency is not known. A general upper bound of O(\/En) is known
due to Ackerman and Pach and T6th [1, 11] for graphs that admit a simple k-plane drawing,
that is, a drawing where every pair of edges has at most one common point. A 1-planar graph
on n vertices has at most 4n — 8 edges and there are infinitely many optimal 1-planar graphs
that achieve this bound, as shown by Bodendiek, Schumacher, and Wagner [5]. A 2-planar
graph on n vertices has at most 5n — 10 edges and there are infinitely many optimal 2-planar
graphs that achieve this bound, as shown by Pach and Téth [11]. In fact, there are complete
characterizations, for optimal 1-planar graphs by Suzuki [13] and for optimal 2-planar graphs
by Bekos, Kaufmann, and Raftopoulou [4].

Much less is known about maximal k-planar graphs, that is, graphs for which adding
any edge results in a graph that is not k-planar anymore. In contrast to planar graphs,
where maximal and optimal coincide, the difference between maximal and optimal can be
quite large for k-planar graphs, even—perhaps counterintuitively—maximal k-planar graphs
for £ > 1 may have fewer edges than maximal planar graphs on the same number of vertices.
Hudék, Madaras, and Suzuki [9] describe an infinite family of maximal 1-planar graphs with
only 8n/3 + O(1) = 2.667n edges. An improved construction with 45n/17 + O(1) & 2.647n
edges was given by Brandenburg, Eppstein, Gleifiner, Goodrich, Hanauer, and Reislhuber [6]

* M. Hoffmann and M. M. Reddy were supported by the Swiss National Science Foundation within the
collaborative DACH project Arrangements and Drawings as SNSF Project 200021E-171681.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29-31, 2023.

This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



42:2 The Number of Edges in Maximal 2-planar Graphs

who also established a lower bound by showing that every maximal 1-planar graph has at
least 28n/13 — O(1) & 2.153n edges. Later, this lower bound was improved to 20n/9 ~ 2.22n
by Bardt and Téth [3].

Maximal 2-planar graphs were studied by Auer, Brandenburg, Gleifiner, and Hanauer [2]
who constructed an infinite family of maximal 2-planar graphs with n vertices and 387n/147+
O(1) ~ 2.63n edges.! We are not aware of any nontrivial lower bounds on the number of
edges in maximal k-planar graphs, for k£ > 2.

Results. In this paper, we give tight bounds on the number of edges in maximal 2-planar
graphs, up to an additive constant.

» Theorem 1. Every maximal 2-planar graph on n > 5 vertices has at least 2n edges.

» Theorem 2. There exists a constant ¢ € IN such that for every n € IN there exists a
mazimal 2-planar graph on n vertices with at most 2n + ¢ edges.

2 Preliminaries

A drawing is simple if every pair of edges has at most one common point. A drawing is
k-plane, for k € IN, if every edge has at most k crossings. A graph is k-planar if it admits
a k-plane drawing. A graph is maximal k-planar if no edge can be added to it so that the
resulting graph is still k-planar.

To analyze a k-planar graph one often analyzes one of its k-plane drawings. It is, therefore,
useful to impose additional restrictions on this drawing if possible. One such restriction
is to consider a crossing-minimal k-plane drawing, that is, a drawing that minimizes the
total number of edge crossings among all k-plane drawings of the graph. For small k, such a
drawing is always simple; for k > 4 this is not the case in general [12, Footnote 112].

» Lemma 3 (Pach, Radoici¢, Tardos, and Téth [10, Lemma 1.1]). For k < 3, every crossing-
minimal k-plane drawing is simple.

In figures, we use the following convention to depict edges: Uncrossed edges are shown
green, singly crossed edges are shown purple, doubly crossed edges are shown blue, and edges
for which the number of crossings is undetermined are shown black.

3 The Lower Bound

In this section we briefly describe our lower bound on the edge density of maximal 2-planar
graphs by analyzing the distribution of vertex degrees. As we aim for a lower bound of 2n
edges, we want to show that the average vertex degree is at least four. Then, the density
bound follows by the handshaking lemma. However, maximal 2-planar graphs may contain
vertices of degree less than four. By the following property (whose proof is deferred to the
full version), we know that the degree of every vertex is at least two. But degree two vertices,
so-called hermits, may exist, as well as vertices of degree three.

» Lemma 4. For k < 2, every maximal k-planar graph on n > 3 vertices is 2-connected.

! Maximality is proven via uniqueness of the 2-plane drawing of the graph. However, there is no explicit
proof of the uniqueness in this short abstract.
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In order to lower bound the average degree by four, we employ a charging scheme where
we argue that every low-degree vertex, that is, every vertex of degree two and three claims
a certain number of halfedges at an adjacent high-degree vertex, that is, a vertex of degree
at least five. Claims are exclusive, that is, every halfedge at a high-degree vertex can be
claimed at most once. We use the term halfedge because the claim is not on the whole edge
but rather on its incidence to one of its high-degree endpoints. The incidence at the other
endpoint may or may not be claimed independently (by another vertex). For an edge uv we
denote by @wv the corresponding halfedge at v and by ot the corresponding halfedge at wu.
Vertices of degree four have a special role, as they are neither low— nor high-degree. However,
a vertex of degree four that is adjacent to a hermit is treated like a low-degree vertex. More
precisely, our charging scheme works as follows:

(C1) Every hermit claims two halfedges at each high-degree neighbor.

(C2) Every degree three vertex claims three halfedges at some high-degree neighbor.

(C3) Every degree four vertex that is adjacent to a hermit h claims two halfedges at some
neighbor v of degree > 6. Further, the vertices h and v are adjacent, so h also claims
two halfedges at v by (C1). If deg(v) = 6, then v is adjacent to exactly one hermit.

(C4) At most one vertex claims (one or more) halfedges at a degree five vertex.

We state some useful properties of low-degree vertices. Then we present the proof of
Theorem 1 in Section 3.3. The validity of our charging scheme is deferred to the full version.

3.1 Hermits and degree four vertices

» Lemma 5. Let h be a hermit and let x,y be its neighbors in G. Then x and y are adjacent
in G and all three edges xy, hx, hy are uncrossed in D. Further, deg(xz) > 4 and deg(y) > 4.

We refer to the edge zy as the base of the hermit h, which hosts h.

» Lemma 6. Let G be a mazimal 2-planar graph on n > 5 vertices. Every edge of G hosts
at most one hermit. Further, a vertex of degree i in G is adjacent to at most |i/3| hermits.

By Lemma 5, both neighbors of a hermit have degree at least four. A vertex is of type
T4-H if it has degree four and it is adjacent to a hermit. The following lemma characterizes
these vertices and ensures that every hermit has at least one high-degree neighbor.

» Lemma 7. Let u be a T4-H vertex with neighbors h,v,w,x in G such that h is a hermit
and v is the second neighbor of h. Then both vw and ux are doubly crossed in D, and the two
faces of D\ h incident to uv are triangles that are bounded by (parts of) edges incident to u
and doubly crossed edges incident to v. Furthermore, we have deg(v) > 6, and if deg(v) = 6,
then h is the only hermit adjacent to v in G.

In our charging scheme, each hermit A claims two halfedges at each

high-degree neighbor v: the halfedge m and the halfedge wv, where uv
denotes the edge that hosts h. Each T4-H vertex u claims the two doubly
crossed halfedges at v that bound the triangular faces incident to wv in D.

3.2 Degree three vertices

We distinguish four different types of degree three vertices in G, depending on their neigh-
borhood and on the crossings on their incident edges in D. Consider a degree three vertex u
in G. Every vertex is incident to at least one uncrossed edge in D (the proof is deferred to
the full version).

EuroCG’23



42:4 The Number of Edges in Maximal 2-planar Graphs

T3-1: exactly one uncrossed edge. The two other edges incident to u are crossed.

» Lemma 8. Let u be a T3-1 vertex with neighbors v,w,x in G such that the edge uv is
uncrossed in D. Then the two faces of D incident to uv are triangles that are bounded
by (parts of) edges incident to u and doubly crossed edges incident to v. Furthermore, we
have deg(v) > 5.

v
In our charging scheme, each T3-1 vertex u claims three halfedges at /\ \/\
its adjacent high-degree vertex v: the uncrossed halfedge wv along with the \

two neighboring halfedges at v, which are doubly crossed by Lemma 8. m
w x

T3-2: exactly two uncrossed edges. The third edge incident to w is crossed.

» Lemma 9. Let u be a T3-2 vertex with neighbors v, w, x s.t. the edge uv is crossed. Then uv
is singly crossed by a doubly crossed edge wb in D, deg(w) > 5 and min{deg(v), deg(z)} > 4.

A halfedge w2 is peripheral for a vertex u of G if (1) u is a common neighbor of w and x;
(2) deg(w) > 5; and (3) deg(x) > 4. In our charging scheme, every T3-2 7“9;\
vertex u claims three halfedges at the adjacent high-degree vertex w: the N\

halfedge ww, the doubly crossed halfedge ZTU, and one of the uncrossed

peripheral halfedges 7w or Zw. While the former two are closely tied to u, v
the situation is more complicated for the latter two halfedges. Eventually, we argue that u
can exclusively claim (at least) one of the two peripheral halfedges. But for the time being
we say that it assesses both of them and these edges are depicted in lightblue.

T3-3: all three incident edges uncrossed. We say that such a vertex is of type T3-3. As
an immediate consequence of Lemma 7?7 each T3-3 vertex u together with its neighbors N(u)
induces a plane K4 in D. We further distiguish two subtypes of T3-3 vertices.

The first subtype accounts for the fact that there may be two adjacent T3-3 vertices in D.
We refer to such a pair as an inefficient hermit and a T3-3 vertex that is part of an inefficient
hermit is called a T3-8 hermit. T3-3 hermits behave similar to hermits, we defer the details
of T3-3 hermits to the full version. The second subtype is formed by those T3-3 vertices
that are not T3-3 hermits; we call them T3-8 minglers. All neighbors of a T3-3 mingler have
degree at least four.

» Lemma 10. Let u be a T3-8 mingler in D, and let v, w,x be its neighbors. Then each
of v,w,x has degree at least four. Further, at least one vertexr among v, w,x has degree at
least six, or at least two vertices among v, w,x have degree at least five.

Let @ denote the plane K4 induced by u, v, w, z in D. The T3-3 mingler u /
claims the three halfedges of @) at one of its high-degree neighbors. That is, ’/ el
the vertex u assesses all of its peripheral halfedges at high-degree neighbors. , // AP

3.3 Proof of Theorem 1

Let G be a maximal 2-planar graph on n > 5 vertices, and let m denote the number of edges
in G. We denote by v; the number of vertices of degree ¢ in G. By Lemma 4 we know that G
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is 2-connected and, therefore, we have vg = v; = 0. Thus, we have

n—1 n—1
n= Z v; and by the Handshaking Lemma 2m = Zl - ;. (1)
i=2 1=2

Vertices of degree four or higher can be adjacent to hermits. Let vlhj denote the number
of vertices of degree ¢ incident to j hermits in G. By Lemma 6 we have

i3]
v = Z vy for all ¢ > 3. (2)
=0

By Lemma 5 both neighbors of a hermit have degree at least four. Thus, double counting
the edges between hermits and their neighbors we obtain

n—1
20y < vl 4 Bl 4ol 4 2082 4 B 2082 4 2ug 4wl + 2082 4+ 3083 + Z [i/3]vi. (3)
i=10

If a vertex u claims halfedges at a vertex v, we say that v serves u. According to (C2),
every vertex of degree three claims three halfedges at a high-degree neighbor. Every degree
four vertex that is adjacent to a hermit together with this hermit claims four halfedges at a
high-degree neighbor by (C3). We sum up the number of these claims and assess how many
of them can be served by the different types of high-degree vertices.

In general, a high-degree vertex of degree i > 5 can serve at most [i/3] such claims.

For ¢ € {5,6,7,9}, we make a more detailed analysis, taking into account the number of
adjacent hermits. Specifically, by (C3) and (C4) a degree five vertex serves at most one
low-degree vertex, which is either a hermit or a degree three vertex. A degree six vertex
can serve two degree three vertices but only if it is not adjacent to a hermit. If a degree six
vertex serves a degree four vertex, it is adjacent to exactly one hermit by (C3). In particular,
a degree six vertex that is adjacent to two hermits does not serve any degree three or degree
four vertex. Altogether we obtain the following inequality:

n—1
a0y < vR0+20g0 + 0! +2020+ 200" + 0l + 2us+ 3v 0+ 208" + 208 +0b3+ > [i/3[vi. (4)

i=10
The combination ((3) + (4))/2 together with (2) yields
11 3 =
’UQ+§'03 < 51}5—1—@64—§v7+2v8—|—2v9+i:21:0Li/3Jvi. (5)

Now, using these equations and inequalities, we can prove that m — 2n > 0, to complete the
proof of Theorem 1. Let us start from the left hand side, using (1).

ln—l n—1 n—li_4
m—2n = §§ivi—2;vi = ; 5 v;

L s+ 05 + vg + Svr + 208 + g + ni:l i
= —Vo — =V — ( —U V. —U V;
2 2 3 2 5 6 2 7 8 2 9 Pt 9

By (5) the right hand side is nonnegative, quod erat demonstrandum.
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4 The Upper Bound: Proof outline of Theorem 2

We illustrate a family of maximal 2-planar graphs with 2n 4 ¢ edges in Figure 1. The graphs
can roughly be described as braided cylindrical grids where each layer consists of a cycle on
ten vertices and every pair of consecutive layers have edges between them. The number of
layers in the graph can be increased arbitrarily, and the gadget graph is attached to each of
the green edges of the innermost and the outermost cycles. The graph is maximal 2-planar
and has 2n + ¢ edges, where ¢ = 350. The details are deferred to the full version.

Figure 1 The layered graph (left); the gadget that we attach to the extreme green edges (right).

5 Conclusions

We have obtained tight bounds on the number of edges in maximal 2-planar graphs, up to an
additive constant. Naturally, one would expect that our approach can also be applied to other
families of near-planar graphs, specifically, to maximal 1- and 3-planar graphs. Intuitively,
for k-planar graphs the challenge with increasing k is that the structure of the drawings gets
more involved, whereas with decreasing k we aim for a higher bound.
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—— Abstract

Motivated by the planarization of 2-layered straight-line drawings, we consider the problem of
modifying a graph such that the resulting graph has pathwidth at most 1. The problem PATHWIDTH-
ONE VERTEX EXPLOSION (POVE) asks whether such a graph can be obtained using at most k
vertex explosions, where a vertex explosion replaces a vertex v by deg(v) degree-1 vertices, each
incident to exactly one edge that was originally incident to v. For POVE, we give an FPT algorithm

with running time 0(4’“ -m) and a quadratic kernel. Similarly, a vertez split replaces a vertex v by
two distinct vertices v1 and v2 and distributes the edges originally incident to v arbitrarily to v1
and v2. Analogously to POVE, we define the problem variant PATHWIDTH-ONE VERTEX SPLITTING
(POVS) that uses the split operation instead of vertex explosions. Here we obtain a linear kernel
and a branching algorithm with running time O((6k 4+ 12)* - m).

Related Version arXiv:2302.14725

1 Introduction

Crossings are one of the main aspects that negatively affect the readability of drawings [14].
It is therefore natural to try and modify a given graph in such a way that it can be drawn
without crossings while preserving as much of the information as possible. We consider three
different operations.

A deletion operation simply removes a vertex from the graph. A vertex explosion replaces
a vertex v by deg(v) degree-1 vertices, each incident to exactly one edge that was originally
incident to v. Finally, a vertex split replaces a vertex v by two distinct vertices v; and wvq
and distributes the edges originally incident to v arbitrarily to v; and vs.

Nollenburg et al. [12] have recently studied the vertex splitting problem, which is known
to be NP-complete [7]. In particular, they gave a non-uniform FPT-algorithm for deciding
whether a given graph can be planarized with at most k£ splits. We observe that, since
degree-1 vertices can always be inserted into a planar drawing, the vertex explosion model and
the vertex deletion model are equivalent for planar graphs. The latter problem, also known
as VERTEX PLANARIZATION, has been studied extensively in the literature [8, 9, 10, 11, 15].
In particular, Jansen et al. [8] gave an FPT-algorithm with running time O(2°(*1°8%) . ),

Ahmed et al. [2] investigated the problem of splitting the vertices of a bipartite graph so
that it admits a 2-layered drawing without crossings. They assume that the input graph is
bipartite and only the vertices of one of the two sets in the bipartition may be split. Under
this condition, they give an O(k®)-kernel for the vertex explosion model, which results in an
O(2O(k6)m)—time algorithm. They ask whether similar results can be obtained in the vertex
splitting model. Figure 1 illustrates the three operations in the context of 2-layered drawings.

We note that a graph admits a 2-layer drawing without crossings if and only if it has
pathwidth at most 1, i.e., it is a disjoint union of caterpillars [3, 6], where a caterpillar consists
of an induced path with an arbitrary number of adjacent degree-1 vertices. Motivated by
this, we more generally consider the problem of turning a graph G = (V, E) into a graph of
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(a) (b) (<)

Figure 1 Given the shown bipartite graph, a crossing-free 2-layered drawing can be obtained
using one vertex deletion (a), two vertex explosions (b), or three vertex splits (c).

pathwidth at most 1 by the above operations. In order to model the restriction of Ahmed et
al. [2] that only one side of their bipartite input graph may be split, we further assume that
we are given a subset S C V| to which we may apply modification operations as part of the
input.

More formally, we consider the following two problems, both of which have been shown to
be NP-hard [1]. Given as input an undirected graph G = (V, E), a set S C V, and a positive
integer k, the problem PATHWIDTH-ONE VERTEX EXPLOSION (POVE) asks whether there
is a set W C S with |[W| < k such that the graph resulting from exploding all vertices in W
has pathwidth at most 1. Analogously, we define the problem PATHWIDTH-ONE VERTEX
SPLITTING (POVS), which asks for a sequence of at most k vertex splits. For both problems,
the new vertices resulting from the respective operation are also included in S.

We note that the analogous problem with the deletion operation has been studied
extensively [5, 13, 16]. Here, an FPT algorithm with running time O(3.888% - n©(1)) [16] and
a quadratic kernel [5] are known. In this work, we show the following results.

For POVE, we develop a quadratic kernel and an algorithm with running time O(4* - m),
thereby improving over the results of Ahmed et al. [2] in a more general setting. For POVS,
we give a linear kernel and an algorithm with running time O((6k + 12)* - m). This answers
the open question of Ahmed et al. [2]. For detailed proofs, we refer to the full version of the

paper [4].

2 Preliminaries

Given a graph G, we let n and m denote the number of vertices and edges of G, respectively.
A path decomposition of a graph G = (V, E) is a sequence P = Xy, ..., X of subsets of V,
called bags, such that
1. U X;=V,

1<i<l
2. for every edge {u,v} € E, there exists an ¢ € {1,...,l} such that u,v € X;, and
3. for every vertex v € V, the bags containing v are a contiguous subsequence of P.

The width of a path decomposition is one less than the size of its largest bag. The pathwidth
of GG is the minimum width of a path decomposition of G.

We refer to vertices of degree 1 as pendant vertices. A graph is a caterpillar (respectively
a pseudo-caterpillar), if it consists of a path (a simple cycle) with an arbitrary number of
adjacent pendant vertices. The path (the cycle) is called the spine of the (pseudo-)caterpillar.
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Figure 2 (a) The graph 75. (b) Two graphs that do not contain 7% as a subgraph, but both
contain N (marked in orange; the root is additionally highlighted in blue) as a substructure.

Philip et al. [13] mainly characterized the graphs of pathwidth at most 1 as the graphs
containing no cycles and no 75 (see Figure 2a) as a subgraph. We additionally use slightly
different sets of forbidden substructures. An Ny substructure consists of a root vertex r
adjacent to three distinct vertices of degree at least 2. Note that every T, contains an No
substructure, however, the existence of an Ny substructure does not generally imply the
existence of a T subgraph; see Figure 2b. In the following proposition, we state the different
characterizations for graphs of pathwidth at most 1 that we use.

» Proposition 2.1. For a graph G, the following statements are equivalent.

1. G has pathwidth at most 1

2. every connected component of G is a caterpillar

3. G is acyclic and contains no Na substructure

4. G contains no No substructure and no connected component that is a pseudo-caterpillar.

For a vertex v € V(G), we define deg*(v) as the number of non-pendant neighbors of v.

If deg*(v) = d, we say that v has degree* d. Additionally, we let u(v) := max(deg*(v) — 2,0)
denote the potential of v. The global potential u(G) = ZUGV(G) p(v) is defined as the sum
of the potentials of all nodes in G.

3 FPT Algorithms for Pathwidth-One Vertex Explosion

We start by sketching a simple branching algorithm for POVE, similar to the algorithm by
Philip et al. [13] for the deletion variant of the problem.

» Theorem 3.1. The problem POVE can be solved in time O(4* - m).

Proof. For an N, substructure X, observe that exploding vertices not contained in X cannot
eliminate X, because the degrees of the vertices in X remain the same due to the new
degree-1 vertices resulting from the explosion. To obtain a graph of pathwidth at most 1, it
is therefore always necessary to explode one of the four vertices of every Ns substructure
by Proposition 2.1. We can thus define a branching rule that first picks an arbitrary Ny
substructure X from the instance and then branches on which of the four vertices of X
should be exploded. Note that we only branch for vertices of X that are also contained in .S,
i.e., vertices that are allowed to be exploded. Each branch reduces the parameter by 1, the
corresponding search tree thus consists of O(4%) nodes and spends O(m) time at each node
to identify the next Ns substructure and to explode the chosen vertex. We remark that
exploding a degree-1 vertex has no effect, it is therefore not necessary to include the new
vertices resulting from a vertex explosion in the set S.

EuroCG’'23
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T P

Figure 3 Reductions removing most pendant neighbors (a) and all caterpillars (b).

(a)

After exhaustively applying this branching rule, the resulting instance contains no Nj
substructures. By Proposition 2.1, it thus only remains to eliminate connected components
that are a pseudo-caterpillar. Since a pseudo-caterpillar can (only) be turned into a caterpillar
by exploding a vertex of its spine, the remaining instance (in each leaf of the search tree)
can be solved in O(m) time. <

We now turn to our kernelization algorithm for POVE. To obtain a quadratic kernel, we
first show with the following lemma that we can use reduction rules to obtain an equivalent
graph G whose size is bounded linearly in the global potential u(G). Subsequently, our goal
is to develop an upper bound for u(G).

» Lemma 3.2. Given an instance of POVE, an equivalent instance with |V(G)| < 8 - u(G)
can be computed in O(m) time.

Sketch of Proof. We sketch how an equivalent instance of size |[V(G)| € O(u(G)) can be
obtained using reduction rules. To obtain the bound |V (G)| < 8 - u(G), additional reduction
rules and a more refined analysis are necessary, for which we refer to the full version [4].

Our first reduction rule removes all but one pendant neighbors of a vertex v; see Figure 3a.
Roughly speaking, the correctness of this reduction follows from the observation that all Ny
substructures and cycles of the instance are preserved. Note that we cannot remove the last
pendant neighbor of v, since this could unintentionally remove N5 substructures from the
graph.

The next two reduction rules eliminate all connected components that form a (pseudo-)
caterpillar from the instance. Since a caterpillar has pathwidth at most 1, we can safely
remove the corresponding component; see Figure 3b. Given a pseudo-caterpillar X, we need
to explode one arbitrary vertex of its spine to obtain a caterpillar. If the spine of X contains
a vertex of S, we can thus remove X from the instance and decrease the parameter by 1.
Otherwise, we reduce to a trivial no-instance; see Figure 4.

Our next reduction rule shortens paths of degree*-2 vertices to constant size. Given such
a path of length at least 3, observe that only the first and the last vertex of the path can be
contained in an Ny substructure, because the inner vertices have less than three neighbors
of degree at least 2. These inner vertices are thus only contained in a minimum solution if
exploding them breaks a cycle. Note that, in this case, exploding any vertex of the path is
sufficient to break all cycles the path is contained in. We can thus safely shorten such a path
to length 3 by ensuring that the inner vertex of the new path is contained in S if and only if
the old path has an inner vertex contained in S; see Figure 5.

After exhaustively applying the reduction rules described above, we can show that
[V(G)| € O(u(@)). Let V3 denote the vertices of G of degree* at least 3. Since all vertices of
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Figure 4 The reduction eliminating pseudo-caterpillars. The vertices of S are marked in green.
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Figure 5 The reduction shortening degree*-2 paths. The inner vertices are highlighted in orange.

degree* at most 2 have potential 0, we can rewrite u(G) as

WG) =) (deg"(v) —2) = ) deg"(v) —2-|Vi.

vEV3 vEV3

Note that every vertex in V3 contributes at least 1 to the global potential, thus |V5| < u(G).

Using this bound in the equation above, we get }_, .y, deg*(v) < 3 u(G). Note that this
bounds exactly the number of non-pendant neighbors of the vertices in V3. Since we have
reduction rules removing all components that form a (pseudo-)caterpillar, every component
must contain a vertex of V3. Because we additionally used a reduction rule to shorten paths
of degree*-2 vertices, it is possible to use a handshaking-argument to bound the number of
all non-pendant vertices in G in O(p(G)). Since our first reduction rule ensures that each

vertex has at most one pendant neighbor, we consequently have |V(G)| € O(u(QG)). <

To obtain a kernel for POVE,; it thus suffices to reduce to an instance with bounded u(G).

Consider a vertex v of G with p(v) > k. Since exploding a vertex of V(G) \ {v} decreases

wu(v) by at most 1, after exploding at most k vertices in V(G) \ {v} we still have p(v) > 0.

Because p(v) > 0 implies that G contains an No substructure, it is therefore always necessary

EuroCG’'23
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to explode vertex v. If v € S, we thus explode v, and we reduce to a trivial no-instance
otherwise. Subsequently, every vertex v has p(v) < k, hence exploding v decreases its own
potential by at most k, and the potential of each of its at most k£ + 2 non-pendant neighbors
by at most 1. A sequence of k explosions can thus decrease the global potential by at
most 2k% + 2k. If u(G) > 2k? + 2k, our final reduction rule therefore reduces to a trivial
no-instance. Using Lemma 3.2 with u(G) < 2k? + 2k, we finally obtain the following result.

» Theorem 3.3. POVE admits a kernel of size 16(k*+k). It can be computed in time O(m).

4 FPT Algorithms for Pathwidth-One Vertex Splitting

Linear Kernel. One can prove that the reduction rules for reducing pendant vertices,
removing (pseudo-)caterpillars, and shortening degree*-2 paths we used for POVE are also
safe for the problem POVS. Since only these are needed to establish the upper bound of
[V(G)|] < 8- u(G) in Lemma 3.2, the lemma also applies for POVS.

The main difference to the kernelization of POVE lies in the way the global potential
changes due to splits. While a vertex explosion can decrease the global potential linearly
in k, we can show that a single vertex split decreases u(G) by at most 2. If u(G) > 2k, we
can thus again reduce to a trivial no-instance. Using Lemma 3.2 with u(G) < 2k, we obtain
the following result.

» Theorem 4.1. POVS admits a kernel of size 16k. It can be computed in time O(m).

Branching Algorithm. As in Section 3, our branching algorithm for POVS eliminates every
N5 substructure of G by branching on which of its four vertices should be split. In this case,
however, we need to additionally consider the possible ways to split a single vertex. The
following lemma helps us limit the number of suitable splits.

» Lemma 4.2. For every instance of POVS, there exists a minimum sequence of splits such
that every split operation splits off at most two edges.

» Theorem 4.3. The problem POVS can be solved in time O((6k + 12)* - m).

Sketch of Proof. From the kernelization, we use the reduction rule that reduces pendant
vertices, and the rule that yields the upper bound pu(G) < 2k. Together, these two rules
ensure that each vertex has degree at most 2k + 3. We now branch on the way of splitting
an Ny substructure with root r and neighbors {z,y, z} as above (see Figure 6). If we split r,
then, by Lemma 4.2, we may assume that we split off one of the neighbors {x,y, z}, together
with at most one other neighbor of r; these are 3 - (2k 4+ 3) = 6k + 9 choices. If we split a
vertex v € {x,y, z}, then it is necessary that we only split off the edge rv at v to eliminate the
N5 substructure, thus there is only one possibility for each of them, totaling three additional
possible choices. Overall, we thus find a branching vector of size 6k + 12. Recall that,
by definition, the new vertices resulting from a split operation are included in the set S
of splittable vertices. This is important, since it may be necessary to split these vertices
again. <
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—— Abstract

For a given polygonal region P, the Lawn Mowing Problem (LMP) asks for a shortest tour 7" that
gets within Euclidean distance 1 of every point in P; this is equivalent to computing a shortest tour
for a unit-disk cutter D that covers all of P. We show that the LMP is algebraically hard: it is not
solvable by radicals over the field of rationals, even for a simple case in which P is a 4 X 4 square.
This implies that it is impossible to compute exact optimal solutions under models of computation
that rely on elementary arithmetic operations and the extraction of kth roots.

1 Introduction

Long before the invention of computers, geometry already faced unsolvable algorithmic
problems. This hardness was not rooted in the asymptotic complexity of finding the best of
a finite number of candidates, but in the impossibility of obtaining solutions with a given set
of construction tools: Computing the length of the diagonal of a square is not possible with
only rational numbers; trisecting any given angle cannot be done with ruler and compass,
nor can a square be computed whose area is equal to that of a given circle.

In the following, we consider the Lawn Mowing Problem (LMP), in which we are given a
(not necessarily simple or even connected) polygonal region P and a disk cutter D of radius 1;
the task is to find a closed roundtrip (a tour) of minimum Euclidean length, such that the
cutter “mows” all of P, i.e., a shortest tour that moves the center of D within distance 1 from
every point in P. The LMP naturally occurs in a wide spectrum of practical applications,
such as robotics, manufacturing, farming, quality control, and image processing, so it is
of both theoretical and practical importance. As a generalization of the classic Traveling
Salesman Problem (TSP), the LMP is also NP-hard; however, while the TSP has shown
to be amenable to exact methods for computing provably optimal solutions even for large
instances, the LMP has defied such attempts, with only some moderate recent progress [20].

The main result of this paper is to establish a fundamental reason for this perceived
difficulty: Computing an optimal lawn mowing tour is not only NP-hard, but also algebraically
hard, even for the seemingly harmless case of mowing a 4 x 4 square by a unit-radius disk,
as it requires computing zeroes of high-order irreducible polynomials. As a consequence,
computing even near-optimal solutions for the LMP requires dealing with algebraic issues of
numerical approximation and accuracy, making the LMP fundamentally more challenging
than its special case, the discrete (Euclidean) TSP.
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Related Work There is a wide range of practical applications for the LMP, including
manufacturing [3, 23, 24], cleaning [9], robotic coverage [10, 11, 22, 27], inspection [15],
CAD [14], farming [4, 12, 30] and pest control [6]. In Computational Geometry, the Lawn
Mowing Problem was first introduced by Arkin et al. [1], who later gave the currently best
approximation algorithm with a performance guarantee of 2v/3arsp = 3.46arsp [2], where
argp is the performance guarantee for an approximation algorithm for the TSP.

Optimally covering even relatively simple regions by a set of n unit disks has received
considerable attention, but is excruciatingly difficult; see [7, 8, 21, 25, 28, 29]. As recently
as 2005, Fejes Téth [16] established optimal values for n = 8,9, 10. Progress on covering by
(not necessarily equal) disks has been achieved by Fekete et al. [17, 18].

A seminal result for understanding algebraic aspects of geometric optimization problems
was achieved by Bajaj [5], who established algebraic hardness for the Fermat-Weber problem
of finding a point in R? that minimizes the sum of Euclidean distances to all points in a
given set. Note, however, that the Fermat-Weber problem is relatively benign in practical
difficulty, as it amounts to minimizing a smooth, convex function over a compact set, which
can be achieved with high accuracy by using a numerical approach such as Newton’s method.
This was exploited for algorithmic purposes by Fekete et al. [19].

The use of straight-edge and compass is known to be equivalent to the use of (+, —, *, /, \/)
over Q [13]. Our main result implies that the Lawn Mowing Problem is not solvable by
radicals over Q, i.e., a solution is not expressible in terms of (+, —, %, /, {e/) over Q.

2 Optimal Tours in Rectangles

Recent work by Fekete et al. [20] shows that when mowing a triangle, optimal tours may
need to contain vertices with irrational coordinates. In the following we show even if P is a
4 x 4 square, an optimal tour may involve coordinates that cannot be described with radicals.

» Theorem 2.1. For any rational height h > 4, there are rectangles P with height h and
rational vertex coordinates for which the Lawn Mowing Problem is not solvable by radicals.

See Figure 3 for the structure of optimal trajectories. A key observation is that covering
each of the four corners (0, —2), (4, —2), (4,2), (0, 2) of a 4 x 4 square S requires the disk center
to leave the subsquare A with vertices Ao = (1,—1), A\; = (3,—1), Ao = (3,1), A3 = (1, 1),
obtained by offsetting the boundary of P by the unit radius of D, which is the locus of all
disk centers for which A stays inside P. However, covering the area close to the center of P
also requires keeping the center of D within A; as we argue in the following, this results in a
trajectory as shown in Figure 3a, with a “long” portion (shown vertically in the figure) for
which the disk covers the center of P and the boundary of D traces the boundary of P, and
a “short” portion for which D only dips into A without tracing the boundary of P.

We start our proof by considering an optimal lawn mowing tour for a rectangle and then
argue why no solution can be obtained in terms of (+, —, %, /, \k/) over Q.

2.1 Properties of Optimal Tours

For the 4 x 4 square S, consider the upper left 2 x 2 subsquare Sy with corners (0,0),
(0,2), (2,2), (0,2), further subdivided into four 1 x 1 quadrants So.g, - .. ,S0,3, as shown in
Figure la, and an optimal path w that enters Sy at the bottom and leaves it to the right.
Let ps = (p%,0),p: = (2,p!) be the points where w enters and leaves Sy, respectively. For
the following lemmas, we assume that a covering path exists that obeys the above conditions.
We will later determine that path and show that it covers Sj.
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(a) The upper left 2 x 2 subsquare So of S. (b) Visualization of Lemma 2.3.

Figure 1 Computing an optimal path w through the square Sp.

» Lemma 2.2. p? <1 and p! > 1 and either p* =1 or p{ = 1.

Proof. To cover s1, w must intersect a unit circle centered in s1. Any path with pg right of

(1,0) or p; below (2,1) can be made shorter by shifting the point ps to (1,0) or p; to (2,1).

Any path with ps left of (1,0) and p; above (2,1) must enter Sp 1, resulting in a detour. <

Without loss of generality, we assume that p? = 1. The next step is to find the optimal
position of p;. As an optimal path w must enter the quadrant Sy 3 once, we can subdivide
the path into two parts. We denote the part from p, to Sp 3 as the lower portion and from
So,3 to p as the upper portion of w. For some § > 0, let p{ =1+ 6 and ps = (1,9).

» Lemma 2.3. For any § > 0, w has a subpath psps.

Proof. Let s§ = (2,0) and € = s15]. Segment ¢ must be covered by w. We distinguish two

cases; (i) € is covered by the lower portion of w or (ii) € is covered by the upper portion of w.

For case (i), let us assume that ¢ is covered by the lower portion of w. When w would enter
Sp,1 it would also have to enter Sy o to cover the left side of Sy . It is clear that traversing
the segment p,;ps of length ¢ is the best way to cover the lower portion of Sy g, Sp 1, as any
other path would need additional segments in x-direction, see Figure 1b. Any path that obeys
case (ii) is suboptimal, as it has to cover ¢ from within Sy o, for a detour of at least 2. <

We can now define the optimal path w, which has four vertices. The exact coordinates
are defined in the proof of Lemma 2.4.

» Lemma 2.4. The unique optimal lawn mowing path between two adjacent sides of Sy is
w = (ps,Ds,¢,0t) and has length Lg, ~ 2.618.

Proof. We now identify a shortest path for visiting one point ¢ in the unit circle C centered in
s3 dependent on ¢, which is a necessary condition for a feasible path. Let ¢ = d(ps, ¢) +d(q, pt)
be the distance from both points to C. Consider an ellipse E with foci ps, p; which touches C
in a single point, see Figure 2a. By the definition of an ellipse, the intersection point ¢
minimizes the distance ¢. For any ¢ € [0, 1] we want to find a minimum distance ¢ that allows
E to have a single intersection point with C. Let p. = (pZ, p¥) be the center point of F and
dg be the distance from the center point of E and a,b the major/minor axis.

1 1 1
sz yzf = = —_— = — = 2 _ 2 1
pe=5 Pe=5+0 dp=dpspc) 75 ° sdp b=1/a® —dj (1)
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(a) Any 0 < § <1 defines ps, pt,q and ellipse E.  (b) The optimal path w through So.

Figure 2 Visualizations for Lemma 2.4.

The ellipse can now be defined with its center point p., the major/minor axis a, b and the
angle 6, which is the angle between a line through ps, p; and the z-axis. We formulate the
shortest path problem as a minimization problem while inserting Equation (1).

min c+9

st. 2+ (y—2)2-1 =0
((z = pe) cos(d) + (y = p)sin(6))® | ((x—pg)sin(®) — (y —p)cos(6))® _ |

a2 b2
Ve 1P+ =0+ @R -1 -0 —c ~ 0

The objective minimizes the total length of the path w with variables that encode the
exact coordinates of ps, ¢, p;. An intersection point of E and C with center s3 = (0,2) is a
solution to the first and second constraints, respectively. An exact optimization approach
using Mathematica reveals that d, ¢”, ¢ can only be expressed as the first, third, and first
roots of three irreducible high-degree polynomials f5, fo=, fqu, see Equations (2) to (4).

fs(x) =920 — 2162 + 25142 — 1884623 4 101 75522 — 418 51221 + (2)
135099420 — 34753022° 4+ 7165 7722% — 1182897627 + 1551222425 —
15916 0022° + 12459 638z* — 714509423 + 2800 02222 — 656 964z + 67 417

foe (x) =2562'6 — 17922 4 531222 — 876820 4 3842° + 85442® — 163227 — (3)
36482° 4 12002° — 1522* + 28823 + 25222 — 3242 + 81
fou () =2562'0 — 81922'° 4 1226242 — 113971223 + 7361472212~ (4)

35034880z 4+ 127069 37620 — 358 188 7362” + 792 777 95225 —
138164275227 + 1888549 82425 — 2001 789 9682° + 1611 461 51224 —
951 341 552z + 387921 82022 — 97 469 2322 + 11 350 269

The value for § ~ 0.335752 defines the points ps and p;. Together with the values for
q%,q¥, we can define all points in w as follows:

ps=(1,0) ps=(1,6)~(1,0.336) ¢~ (0.772,1.365) p; = (2,1+6)~ (2,1.336) (5)
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(a) Optimal lawn mowing tour for a 4 x 4 square. (b) Optimal lawn mowing tour for a rectangle.

Figure 3 Optimal lawn mowing tours for a 4 X 4 square and a 4 X h rectangle.

The combined length of the path is § + ¢ = 2.617676448. As w contains a subpath that
crosses the full height of Sy o and another subpath that crosses the full width of Sy 2, both
quadrants are covered by w, see Figure 2b. By construction, the bottom right quadrant is
covered by the segment psps and the point p;. The top left quadrant is covered by ¢, because
So,3 is fully contained in a unit disk centered in ¢q. Therefore, w is a feasible path between
two adjacent edges of Sy with a length of L ~ 2.618. <

» Lemma 2.5. A square P of side length 4 has a unique optimal lawn mowing tour T of
length L = 4Lg,, where Lg, ~ 2.618.

Proof. We start by subdividing P by its vertical and horizontal center line into four quadrants
(squares) Sy, ..., S3 with side length 2. To cover the center point of each quadrant, a lawn
mowing tour has to intersect it at least once. As P is convex, T’ cannot leave P at any point.
Finally, T' is symmetric with respect to the vertical and horizontal lines because otherwise,
the quadrant subpaths could be replaced by the shortest one. By Lemma 2.4, there is a
unique optimal lawn mowing path through each quadrant yielding an optimal tour of length
L =4Lg, =~4-2.618 = 10.472, see Figure 3a. <

The optimal path from Lemma 2.4 can be used more extensively on rectangles with
fixed width 4 and arbitrary height h > 4. For this, we extend the path from ps outwards
perpendicular to the 2 x 2 square Sy. One can use a similar construction as in Lemma 2.5 to
obtain optimal tours for arbitrary rectangles, refer to Figure 3b.

» Corollary 2.6. Any rectangle P with width 4 and height h > 4 has a unique optimal lawn
mowing tour T of length L = 4Lg, + 2h — 8.

2.2 Algebraic Hardness of the LMP

As our next step, we show that the coordinates of the optimal path w are not solvable by
radicals. For this, we employ a similar technique as Bajaj [5] for the generalized Weber
problem. A field K is said to be an extension (written as K/Q) of Q if K contains Q. Given
a polynomial f(z) € Q[z], a finite extension K of Q is a splitting field over Q for f(x) if it
can be factorized into linear polynomials f(z) = (z — a1) - -+ (x — ax) € K[z] but not over
any proper subfield of K. Alternatively, K is a splitting field of f(z) of degree n over Q
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if K is a minimal extension of Q in which f(z) has n roots. Then the Galois group of the
polynomial f is defined as the Galois group of K/Q. In principle, the Galois group is a
certain permutation group of the roots of the polynomial. From the fundamental theorem of
Galois theory, one can derive a condition for solvability by radicals of the roots of f(x) in
terms of algebraic properties of its Galois group. We now state three additional theorems
from Galois theory and Bajaj’s work. The proofs can be found in [26, 5].

» Lemma 2.7 ([26]). f(z) € Q[x] is solvable by radicals over Q iff the Galois group over Q
of f(z), Gal(f(x)), is a solvable group.

» Lemma 2.8 ([26]). The symmetric group Sy is not solvable for n > 5.

» Lemma 2.9 ([5]). If n =0 mod 2 and n > 2 then the occurrence of an (n — 1)-cycle,
an n-cycle, and a permutation of type 2+ (n — 3) on factoring the polynomial f(x) modulo
primes that do not divide the discriminant of f(z) establishes that Gal(f(x)) over Q is the
symmetric group Sy,.

» Theorem 2.1. For any rational height h > 4, there are rectangles P with height h and
rational verter coordinates for which the Lawn Mowing Problem is not solvable by radicals.

Proof. It suffices to show that fs is not solvable by the radicals as it describes the y-
coordinates of two points in the solution. We provide three factorizations of fs modulo three
primes that do not divide the discriminant disc(fs(x)).

fs(z) = 9(2'0 + 222" + 112 + 222" + 822 + 202! + 15210 + 102° + 112® 4+ 1227+
92 + 1025 + 2* + 72% 4+ 132? + 62 +3) mod 23

fs(z) = 9(x +41) (2 + 212 + 15) (2" + 822 + 4o + 462" + 42° + 142® 4 3227 + 1425+
312t +412% + 3727 4 322 4+ 41) mod 47

fs(x) = 9(z +19) (2" + 162 + 5423 + 7212 + 9211 4 36210 + 4527 + 28 + 4527 4 325+
2215 + 3621 4 262° + 2222 + 542 4+ 23) mod 59

For the good primes p = 23,47, and 59 the degrees of the irreducible factors of f5(x)
mod p gives us an 16 — cycle, a 2+ 13 permutation and a 15-cycle, which is enough to show
with Lemma 2.9 and n = 16 that Gal(fs) = Si6. By Lemma 2.8, S is not solvable; with
Lemma 2.7, this proves the theorem. |

3 Conclusion

We have shown that the Lawn Mowing Problem is algebraically hard, even when mowing a
4 x 4 square P by a unit-radius cutter D. This implies that computing provably optimal tours
(such as for the TSP) would involve complicated coordinates; even good approximations
(such as a PTAS) require good numerical approximations of the involved algebraic terms.
While our proof makes intricate use of the underlying structure of optimal tours, it is
conceivable that similar techniques may help to better understand the difficulty of other
excruciatingly hard optimization problems, such as disk packing or covering.
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—— Abstract

We consider the problem of deciding, given a sequence of regions, if there is a choice of points, one
for each region, such that the induced polyline is simple or weakly simple, meaning that it can touch
but not cross itself. Specifically, we consider the case where each region is a translate of the same
shape. We show that the problem is NP-hard when the shape is a unit-disk or unit-square. We
argue that the problem is is NP-complete when the shape is a vertical unit-segment.

1 Introduction

Finding a planar drawing of a graph has been studied widely due to its many applications, for
example in floor-planning and visualisations [7]. Often when the graphs come from geometric
data, such as road networks, vertices already have predetermined locations. In these cases,
if edges must be drawn as straight line segments, there is a unique corresponding drawing.
Real-world data such as GPS trajectories are often imprecise. Imprecision can be modeled
by assigning to each vertex an imprecision region. A geometric graph induced by assigning
each vertex to a point in its imprecision region is called a realisation.

Algorithms for imprecise data have been considered in the past [5, 8]. We consider the
problem of deciding whether imprecise data admits a realisation without self-intersections.
Godau [4] showed that this problem is NP-hard if the imprecision regions are closed disks
of varying radius. In follow-up work, Angelini et al. [2] showed that the problem remains
NP-hard when the regions are pairwise-disjoint unit-disks, or unit-squares. In this work, we
consider the problem for a very restricted graph class, namely path-graphs. That is, we are
looking for a realisation that is a simple polyline.

Efficient algorithms exist to determine whether a polygon or polyline is weakly simple [1, 3].
When the polygon is imprecise however, Loffler [6] showed that determining whether a weakly
simple realisation exists when the imprecision regions are scaled translates of a fixed shape,
such as a segment or circle, is NP-hard. Finally, Silveira et al. [9] show that the problem is
NP-complete for straight-line drawings of graphs where each vertex has degree exactly one
(i.e. the graph is a matching), using unit-length vertical segments as imprecision regions.

Definitions and problem statement. A polygonal chain or polyline is a piecewise-linear
path in the plane, given by a sequence P = (p;)I, of points called vertices. With slight
abuse of notation, we interpret P as the polyline, instead of its vertices. An imprecise polyline
is given by a sequence of regions R = (r;)], in the plane. We call the polyline (p;)i, a
realisation of R if p; € r; for each i.
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A polyline is simple (or plane) if it does not cross or touch itself. An e-perturbation of a
polyline P = (p;), is a polyline P’ = (p})I_, such that ||p; — p}|| < e for all . A polyline
(pi)iq is weakly simple if for every € > 0 there is an e-perturbation that is simple. We are
interested in the problem of deciding whether an imprecise polyline R admits a weakly simple
realisation.

Results and organisation. We show that the problem is NP-hard already when each region
is a translate of the same shape S. This setting differs from [6] in the sense that now all
regions must have uniform size. In Section 2 we prove this for the case where S is a unit
disk, and discuss how the construction can be adapted to show NP-hardness for unit squares.
Hence, computing the infimum ¢ for which a polyline has a simple e-perturbation under the
Ly, Ly, and Lo, norms is NP-hard. In the full version we additionally show NP-completeness
if S is a unit-length vertical segment.

2 Unit disks as regions

We prove by reduction from planar monotone 3SAT that the problem is NP-hard when all
regions are unit disks. We first introduce planar monotone 3SAT. A monotone 3CNF formula
is a formula ¢(21,...,2y,) := /\; C; with Boolean variables x1, ..., Z,,, where each clause C;
is either positive (of the form (x; V x V x;)) or negative (of the form (—z; V ~zy V —ay)). A
monotone rectilinear layout of a monotone 3CNF formula is a plane drawing of the incidence
graph between its clauses and variables, in which variables are drawn as disjoint horizontal
segments on the z-axis, all positive clauses lie above the x-axis, all negative clauses lie below
the x-axis, and edges are rectilinear, do not cross the z-axis, and have at most one bend.
We may assume for each clause that its central edge does not bend, see Figure 1. Planar
monotone 3SAT is an NP-complete problem that asks, given a monotone 3CNF formula
 with a given monotone rectilinear layout, whether ¢ is satisfiable. For our reduction we
construct gadgets consisting of imprecise polylines corresponding to variables, clauses, and
edges of the layout. We then show how to connect these gadgets into a single imprecise
polyline that has a weakly simple realisation if and only if the formula ¢ if satisfiable.

T \/Ig\/l’4

T T2 T3 Lyq

x1 Ve Vs

- V 3 V Xy

Figure 1 Example of an induced variable-clause graph for planar monotone 3SAT.

Pivot gadget. Before we construct the gadgets for the variables and clauses, we introduce
an auxiliary gadget: the pivot gadget. The purpose of the pivot gadget is to force a given
edge of any weakly simple realisation to go through some fixed point of our choosing. The
gadget is illustrated in Figure 2 and consists of three components. Two of these components
together form the pivot so that the edge of the third component must pass through the



T. van der Horst, T. Ophelders, and B. van der Steenhoven 45:3

Figure 2 (a) The pivot gadget. (b) A weakly simple realisation, showing a simple perturbation.
Note that this perturbation moves most vertices outside of their assigned disks

center (0,0) of the pivot. The coordinates of the top component will be:

1,...,7—=(-1-¢,2),(1,2),(1,5),(0,-1),(-1,5),(—-1,2),(1 +¢,2)

for some value € > 0, and the bottom component is a rotated copy of the top component:
]-la R 7 (]- +e, _Q)a (_17 _2)» (_17 _5)7 (07 1)7 (17 _5)7 (17 _2)7 (_]- -5 _2)'

There is some freedom in choosing the placement of regions 1” and 2", but to make sure
that the realisation passes through the pivot we require that the x-coordinate of region 1” is
less than -1, that of region 2” is greater than 1, and the tangent lines to the pair of circles 1”
and 2" all intersect the segment between (0, —5) and (0,5). We can accommodate any angle
of the edge between regions 1” and 2” by choosing € > 0 sufficiently small. Namely, such
that the point (—¢,2) where we will realise region 1 lies above the tangent lines from point
(0,0) to region 1”7, and such that symmetric properties hold for regions 7, 1’ and 7’.

Figure 2(b) depicts a weakly simple realisation of the pivot gadget. Other weakly simple
realisations may differ in placement for points in regions 1, 7, 1’, 7/, 1” and 2" only; the
segment connecting 1” and 2” must always pass through (0,0).

» Lemma 1. For any weakly simple realisation, the segment of the pivot gadget connecting
regions 1” and 2" must pass through (0,0).

» Lemma 2. Any choice of points for regions 1" and 2" such that the segment connecting
them passes through (0,0) has a corresponding weakly simple realisation of the pivot gadget.

Variable gadget. We construct a variable gadget that can take on two distinct states, one
for true and one for false, see Figure 3(a). The exact coordinates of the regions are as follows,

.\3/’ "3, "3
- - e - RN e s I~ . N - p—@ -7
175 20 6 .'1/\'55 ‘2 ) .'6) .'1\5/' .2/' .
- .- - -~ -~ N - - - -~ - e ———— - —e-

D4 v4n Cdn

(a) (b) ()

Figure 3 (a) The variable gadget. (b) The false state. (c) The true state.
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><
><

(d)

Figure 4 (a) The clause gadget, with realisations where (b) z1, (¢) z2, or (d) z3 is true.

assuming the left most region is centered at (0,0) and [ > 8 is arbitrary:
1,...,6—(0,0),(8,0),(5,2),(5,-2),(2,0), (I,0).
» Lemma 3. The variable gadget admits exactly two weakly simple realisations.

If the final horizontal line from region 5 to 6 is above the blocking vertical line between
regions 3 and 4, then the gadget is in its false state (Figure 3(b)). We consider the situation
where it is below as the true state (Figure 3(c)).

Clause gadget. The clause gadget is used to represent formulas of the form (z1 V 22 V x3),
where the variables can also all be negated. The initial placement of the regions for this
gadget can be seen in Figure 4(a). We use an X-shape to schematically represent the pivot
gadgets. The regions x1, x2 and z3 correspond to the literals of the clause and the regions 1,
2, 3 and 4 are used to put restrictions on these literals. The exact positions of the regions of
this gadget are as follows, centering the top-left region at (0,0):

1,2,3,4+ (0,0),(0,—5), (6,—5),(6,0).

We place the point for 1 at (5, —3), x2 at (2, —4.6) and x5 at (1,—3). The construction
used to connect the regions of these literals to variable gadgets and the exact placement
of the pivot gadgets is explained later. For now, it is only important to know that when
a variable is false, then the part of the polyline going to the literal point must either go
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completely vertical through the pivot gadget at the bottom, or completely horizontal through
the pivot gadgets at the sides. The regions of x1, x2, and x3 are placed precisely so that in
this situation there is exactly one realisation that does not intersect the pivot gadget. We
shall refer to the position of a variable in this realisation as its false position and say that it
is covered in a solution if it lies in the interior of the polyline defined by the corner points of
the clause gadget. If the variable is true then the line can be placed at an angle through the
pivot gadget, allowing the literal point to be realised in multiple ways. We refer to the left-,
bottom- and rightmost positions of x1, 2, and x3 as their respective true position.

» Lemma 4. For every choice of two of the three literals there exists a realisation that
uncovers their false positions, and any realisation uncovers at most two false positions.

Connecting variables and clauses. For the reduction we must connect the variable gadgets
to the clause gadgets. For this we follow the layout given by the planar monotone 3SAT
instance (see Figure 1). Clauses always connect to variables in a downward or upward facing
E-shape. To preserve the planarity of this graph, our reduction should follow this shape to a
close enough degree. So the clause gadget is to be placed directly above one of the variable
gadgets and the other two variable gadgets connect to it with a bend from the side.

\ X (20
3\ =

(a) (b)

Figure 5 (a) The right wire gadget to connect a variable to a clause. Realisations where (b) both
are in the false state, (c) the variable is in its false state and the clause in its true state and (d) the
variable gadget in its true state.

(d)

Consider the right connection from a variable to a clause. The wire gadget in this case
involves three regions and two pivot gadgets (see Figure 5(a)). Region 1 is horizontally
aligned with the variable gadget of the corresponding to the right literal of the clause. As in
Figure 3, we place these variable regions between region 2 and 6, resulting in a realisation
with a horizontal line at the top if the state is false and at the bottom if the state is true.
We denote the position of region 1 as (0,0). Region 3 is the right literal region of the clause
gadget. The position of this region is determined by the clause gadget. Let region 3 be
positioned at (—a,b). For our wire gadget, we place region 2 at position (1,b+ 1) and place
two pivot gadgets at (5* + 1,0+ 1) and (0, % + 1), oriented appropriately. We stretch the
variable-clause graph without changing its validity, so that a and b are large enough that the
components of the wire gadget do not overlap.

» Lemma 5. If a variable gadget for x; is in its false state, any weakly simple realisation
places x; in its false position. Otherwise x; can be placed in either its true or false position.

The wire gadget for connecting the left literal of a clause to its variable gadget is the
above gadget but mirrored. For connecting the middle variable to the clause we do the same,
except here we need only a single pivot gadget and no region 2, as this connection does not
need to bend. All three versions of the wire gadget can be seen in effect in Figure 6.

EuroCG’23
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x1 Ve Vs

T T2 T3

(b)

Figure 6 Example of the construction for variable-clause graph (a). The weakly simple
realisation in (b) sets x2 to true and the realisation in (c) sets x1 to true.

The complete reduction. The general construction works as follows. First we place all
gadgets as prescribed by the layout obtained from the planar monotone 3SAT instance.
Next, we connect the gadgets in a planar manner. For this, we connect the variables from
left to right as in Figure 6. We connect the gadgets in the top half of the construction by
processing the clauses on the outer face (that lie above the z-axis) as follows, and connecting
the results from left to right. Connect the clause to its right wire (and its pivot gadgets), then
recursively process and connect the clauses in the region enclosed by its right and middle
wire, then connect the middle wire, then recursively process and connect the clauses in the
region enclosed by the middle and left wire, and finally connect the left wire. The gadgets
in the bottom half are connected in a symmetric manner. We can put everything together
by connecting the variables, top half, and bottom half (their loose endpoints all lie on the
“outer face”).

Correctness of the reduction follows from the correctness of the individual gadgets. As
each gadget and connection uses a constant number of regions, whose positions can be
determined based on the variable-clause graph, the reduction is polynomial in size and time.

» Theorem 6. Deciding whether there exists a weakly simple realisation for a sequence of
unit disks is NP-hard.

» Observation 7. If our construction admits a weakly simple realisation, then there is one
that uses only the top, right, bottom and leftmost points of its regions. The problem hence
remains NP-hard when each region is a subset of a unit disk and contains these four points.

The problem we considered can also be looked at from a different point of view. One could
consider the center of each region in the sequence to be a vertex of an input polyline and the
regions themselves denoting how we are allowed to perturb these vertices. In that case the
setting of unit disks that we discussed corresponds to perturbing vertices by unit distance
under the Ls norm. Under the L; norm the regions are diamond-shaped and contained in
a unit disk. Thus by the above observation the problem remains NP-hard. After an affine
transformation, it follows that the problem is also NP-hard under the L., norm.
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3 Discussion

We showed that deciding if an imprecise polygon has a weakly simple realisation is NP-hard
if each region is a unit disk, unit square, or vertical unit segment. By growing each region
slightly, the same follows for deciding whether a simple realisation exists. Whereas the case
of vertical segments is NP-complete, it is unclear whether the problems of Section 2 lie in NP,
as it is unclear whether polynomially many bits suffice to encode a solution. The settings of
Section 2 lie in the complexity class IR, and we wonder if these settings are FR-hard.
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—— Abstract

Given a point set P and a parameter t, a (directed) geometric ¢-spanner G = (P, E) is a subgraph
of the complete (bi-directed) graph such that for every pair of points the shortest path in G is at
most a factor ¢ longer than the corresponding Euclidean distance.

In this paper, we introduce a new model: the oriented (geometric) spanner. This is a directed
graph where every edge is one-way, i.e. (p,p’) € E = (p’,p) ¢ E. We investigate bounds for
the minimal dilation. For 2-dimensional point sets, we prove NP-hardness of computing a minimal
oriented dilation graph. For 1-dimensional point sets, 1-spanners are trivial to obtain. Therefore, we
restrict the graphs: We present a dynamic program to compute a 1-page planar minimal oriented
dilation graph in O(ng) time and a greedy algorithm to compute a constant dilation spanner in
O(n?) time.

1 Introduction

1.1 Problem Setup and Related Work

Spanners are a well studied problem [2, 11, 13]: Given a set P of n points and a parameter ¢,
we want to compute a subgraph G of the complete (bi-directed) graph such that for every
p,p’ € P the shortest path from p to p’ in G is at most a factor ¢ longer than the shortest
path in the complete (bi-directed) graph, that is the (directed) edge (p,p’).

We introduce a new model, oriented spanners. This is a directed spanner G = (P, E)
with E C P x P where (p,p’) € F implies (p/,p) ¢ E. As in an oriented graph the length
of the shortest path from p to p’ and back is not twice their distance, the term of dilation
changes. This new measurement for oriented graphs is similar to the dilation of round trip
spanners [5, 6].

Like (directed) spanners, oriented spanners can be motivated by infrastructure. For
example, the new constraint to one-way roads or tracks becomes interesting in applications
with space limitations. Another use case for oriented spanners are communication networks.
E.g. to exclude a hack, we could require that two neighbouring devices must not exchange
data by the same direct connection.

The spanner-problem has many variations, e.g. spanners may be required to be planar [2]
or have bounded degree [1, 9]. It is NP-hard to compute a minimal dilation graph, if the
number of edges is bounded [4, 7] or planarity is required [3, 10]. Such restrictions are also
of interested for oriented spanners.
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In this paper, we firstly define oriented spanners. As introduction to this new model
we analyse bounds of the oriented dilation (see Section 2) and the hardness of computing
a minimal oriented dilation graph (see Section 3). We show that oriented spanners for
1-dimensional points sets can be computed efficiently.

1.2 Basic Definitions

A spanner is a tuple G = (P, E) of a given point set P and edges E. It is a subgraph of
the complete graph K(P) = (P,P x P\ {(p,p) | p € P}) (loops are not allowed). In this
paper, all edges are directed, i.e. the edge (p,p’) goes from p to p’. By Apipaps we denote
the directed triangle of these points, that is the edge set {(p1, p2), (p2,p3), (P3, 1)}

In this paper, we only consider geometric spanners. For geometric spanners, the length
of an edge (p,p’) is the Euclidean distance |p — p’|. The length of a path or cycle is the
sum of the length of its edges. In general, for a (un-)directed t-spanner G, the dilation
t = max {% | p,p’ € P} represents the relation of the shortest path de(p,p’) from p
to p’ in G to the shortest path in K(P), that is the edge (p,p’).

» Definition 1.1 (minimal dilation graph). For a point set P, a t-spanner is called a minimal
dilation graph for P, if there is no t’-spanner for P with ¢’ < t.

An oriented graph satisfies (p,p’) € E = (p,p) ¢ E. By this restriction, if the relation
of dg(p,p’) to |p—p’| is minimized by adding the edge (p, p’), the dilation in the other direction
is never 1. Therefore, considering the dilation as ¢ = max {‘dli(_ip]’f‘/)l | p,p’ € P}, would not
tell much about the quality of an oriented spanner. This means to obtain meaningful results,
we need to define the term of oriented dilation.

By Ca(p,p’) we denote the shortest oriented cycle containing the points p and p’ in an
oriented graph G. The optimal oriented cycle A(p,p’) for two points p,p’ € P is the shortest
oriented cycle containing p and p’ in K(P). Notice, A(p,p’) is the triangle App'p” with

p" = argmin|p — p*[ + |p* — p'|.
p*EP
» Definition 1.2 (oriented dilation). Given a point set P and an oriented graph G for P, the

oriented dilation of two points p,p’ € P is defined as

_ |CG(p7p,)|
|Aq(p, )]

The dilation t of an oriented graph is defined as t = max{odil(p,p’) | Vp,p’ € P}.

odil(p, p)

The minimal oriented dilation graph is defined analogously to Definition 1.1. Since it
is NP-hard to compute this graph for a 2-dimensional point set (Section 3), we investigate
1-dimensional point sets. In this paper, we number the points in a 1-dimensional point set P
in increasing order, i.e. p; is the left most point in P.

» Definition 1.3 (1-page planar). Let P be a 1-dimensional point set. Let H be the closed
half plane defined by the dimension axis of P. A graph G = (P, E) is called 1-page planar, if
G can be embedded in R? such that each edge in F lies in H and no edges intersect. An edge
may be bend, this does not change its length. (Compare to book embedding of graphs [8].)

A 1-page planar graph G = (P, E) is called mazimal 1-page planar, if for every edge
e ¢ E the graph G’ = (P, E U {e}) is not 1-page planar. We call the edge set {(p;,pi+1) |
Vp; € P,i < |P| — 1} the baseline. A directed edge (p;, p;) with i < j is called a back edge.
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In the following, we call a 1-page planar oriented spanner that includes a baseline and all
other edges are back edges, a 1-PPB spanner. Lemma 1.4 shows that a 1-PPB spanner has a
smaller dilation than a spanner with the same edge set but a different orientation. Without
loss of generality, we consider only 1-PPB spanners.

» Lemma* 1.4 (oriented dilation of 1-PPB). Let G = (P, E) be a 1-page planar oriented
t-spanner for a 1-dimensional point set P. Let G' = (P,E’) be a 1-PPB t'-spanner for P,
we achieve by flipping the orientation of some edges of E and adding missing baseline edges.
It holds t' < t.

2 Bounds for Minimal Oriented Dilation

In this section, we bound the minimal dilation of oriented spanners for 1- and 2-dimensional
point sets, to motivate the problem of computing a minimal dilation graph (Section 3).

» Theorem 2.1. There are 2-dimensional point sets for which no oriented 1-spanner exists.

Proof. We show that there is no 1-spanner for the point set P where p;, ps and p4 form an
equilateral triangle and ps is its centre (compare to Figure 1). The optimal oriented cycle
A(p;,p;j) with 4,5 € {1,2,4} is Ap;psp; or Ap;psp;. Each of these triangles is optimal for
A(ps, pi). If there is an oriented 1-spanner G = (P, E), these triangles have to be contained in
E. Ignoring the orientation, the union of these triangles is the complete graph K4. Therefore,
E contains no further edges. It remains to orientate the edges. But, there is no possibility to
orientate the edges of K4 such that for each i, j € {1,2,4} the optimal triangle Ap;psp; or
Ap;psp; is contained. <

Figure 1 No possibility to orientate the faces of K4 consistently

» Lemma* 2.2 (bound for oriented dilation in 1 dimension). Let P be a 1-dimensional point
set. The oriented dilation of any t-spanner for P is bounded by

t < max{odil(p;, pit2), odil(ps, piy3) | Vpi € P}.

Lemma 2.2 gives a non-planar oriented 1-spanner for every 1-dimensional point set. Note,
that this graph is even sparse, i.e. |E| € O(|P]).

» Corollary 2.3. For every 1-dimensional point set P, the non-planar oriented graph G =
(P, E) with E = {(pi,pi+1), (Pi+2,Di), (Di+3,0i) | Vpi € P} is a 1-spanner for P.

The proofs of results marked by * are given in the full version.
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» Lemma* 2.4 (bound for oriented dilation of 1-PPB). Let P be a 1-dimensional point set.
The oriented dilation of a 1-PPB t-spanner for P is bounded by

t < max{odil(p;, pi+2) | Vp; € P}.

If a spanner G = (P, E) with |P| > 3 is 1-page planar, there is a tuple p;, p; 12 € P where
Ce(pi, piva) # A(pi, pity2). Combining this with Lemma 2.4, we follow

» Corollary 2.5. There is no 1-page planar 1-spanner for any point set P with |P| > 3.

Let G = (P, E) be a graph with |P| =5, E = {(pi, pi+1) | Vp: € P} U{(p3,p1), (P5,P3)}
and the distances |p1 — pa| = |ps — ps| = € and |p2 — p3| = |p3 — p4| = 1. For an arbitrary
small €, G is an almost 1-spanner. Further, holds

» Theorem 2.6. There are 1-dimensional point sets where no 1-page planar oriented t-spanner
exists for t < 2.

Proof. We show that ¢ > 2 holds for every t-spanner of the point set P with |P| =5 where
each consecutive pair of points has distance 1. Since a 1-PPB spanner has a smaller dilation
than a spanner with the same edge set but another orientation (Lemma 1.4) and maximality
decreases dilation, it suffices to look at all maximal 1-PPB graphs for P. These are listed in
Figure 2. Since each consecutive pair of points has distance 1, it holds |A(p;, pi+2)| = 4. For
every maximal 1-PPB graph G for P, there is a tuple p;, piy2 € P where Cg(p;, pi+2) visits
every point, i.e. Cg(pi, pi+2) = (p1,p2), - - -, (P1,P5), (P5, p1). In Figure 2a) that is p2,p4, in
b,c) ps,ps and in d,e) p1,p3. Combining these observations with Lemma 2.4, gives

max|Cea(pi, pit2)]

|Cc(pi; pis2)| pi€P lpr —ps|-2 8
tzmax{i VpiéP}: = =-=2
Alipiso)] | i T T
for the dilation t of every 1-page planar oriented spanner for P. <

Algorithm 1 returns a constant dilation spanner for any given set of n 1-dimensional
points in O(n?) time. Theorem 2.6 is the biggest tight lower bound we have proven jet.
We do not know the maximal dilation of an optimal 1-page planar oriented spanner and if
Algorithm 1 is worst-case optimal.

» Corollary 2.7. There is a 1-PPB O(1)-spanner for every 1-dimensional point set.

Algorithm 1 Greedy O(1)-spanner

Require: 1-dimensional point set P = {p1,...,p,} (numbered from left to right)
Ensure: 1l-page planar oriented O(1)-spanner for P
Sort edges in E' = {(p;,p;) | V i+ 2 < j < n} ascending by length // possible back edges
for each (p;,p;) € E' do
if (p,p) € Ewith (I<i<r<j)or(i<l<j<r)then // preserve planarity
E «— EU{(p;,pi)} // add back edge (p;, p;)
end if
end for
return G = (P, EF' U{(pi,pit1) |V1<i<n-1}) // add baseline




Buchin, Gudmundsson, Kalb, Popov, Rehs, van Renssen, Wong 46:5

(a)

O—0—0—0—©

O—0—0—60—©
(c)

&—0—0—60—©
(d)

O—O—0—0—©

(e)
O—O—0—0—0©

Figure 2 All maximal 1-PPB graphs for a 1-dimensional set of 5 points
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3 Hardness

Since there is no oriented 1-spanner for every 2-dimensional point set (Theorem 2.1), we are
interested in computing a minimal oriented dilation graph.

» Theorem 3.1. Let P be a 2-dimensional set of n points. Given a parameter m’ > n, it is
NP-hard to compute a minimal oriented dilation graph G = (P, E) with |E| <m/'.

Proof. We prove the problem is NP-hard even for m’ = n. We reduce the problem of
constructing an oriented minimal dilation cycle (m’ = n) to the Euclidean Travelling
Salesman Problem (EUCLIDEAN-TSP is NP-hard [12]). The denominator in the definition
of (oriented) dilation is fixed by the point set. So, the oriented dilation is minimized by
minimizing the largest shortest oriented cycle over all pairs of points. Since a minimal
dilation cycle is searched (m’ = n), the shortest oriented cycle is the same for each pair of
points. Therefore, to compute a minimal oriented dilation graph with n edges, is the same
as searching for the shortest Hamilton cycle. That is EUCLIDEAN-TSP. <

For a 1-dimensional point set, unlike non-planar oriented spanners (Theorem 2.3), the
minimal dilation of a 1-page planar spanner is not always 1 (Theorem 2.5). For a given set
of n points, Algorithm 2 computes in O(n®) time a 1-PPB minimal dilation graph. The
dynamic program bases on the following idea (compare to Figure 3): We want to minimize the
dilation t of a graph for {p;,...,p,}. Due to planarity, if (p,,p;) € E, it holds (p;,p;) ¢ E
forl<i<r<jandi <l < j <r. We test all candidates for a split point px. By
Lemma 2.4, it holds ¢t = max{t',t"”,odil(pk—1,pr+1)} where ' is the minimal dilation for
{p1,...,pr} and ¢’ is the minimal dilation for {pg,...,p.}. Point px_1 and piy1 is the only
tuple of distance 2 (compare to Lemma 2.4) which crosses the split point p;. Maintaining
the parameters " and ' such that (py,p;) € Co(pi,piv1) and (pr, pr) € Ca(pr—1,pr), We
can realise Cq(pr—1,pr+1) = Co(Pr—-1,pr) U Ca(pk, pr+1) to separate the problem at py
(compare to Figure 3a)). Each recursion terminates with a forbidden combination of 1,I’,r’
and r or with a set of 3 points.

» Corollary 3.2. Given a 1-dimensional point set P, computing a 1-page planar minimal
oriented dilation graph for P needs polynomial time.

4 Open Problems

This paper is a first introduction to this new concept of the oriented spanners. Since it is
NP-hard to compute a minimal oriented dilation graph for a 2-dimensional point set, we
focused on 1-dimensional point sets. The 1-dimensional results might be expanded to an
approximation algorithm for 2-dimensional point sets, which we plan to present in the future.

We prove that there are 1-dimensional point sets for which every 1-page planar oriented
spanner has a dilation bigger or equal than 2 and we present a greedy algorithm that computes
a 1-page planar oriented O(1)-spanner for every set of points. It remains to close this gap by
proving tighter bounds.
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Algorithm 2 Minimal dilation spanner

Require: 1-dimensional point set P = {py,...,p,} (numbered from left to right)
Ensure: 1-page planar minimal oriented dilation spanner for P

Initialise table OE = [1,...,n] X [1,...,n] x [1,...,n] x [1,...,n]

// ODIL(E’) returns the oriented dilation of 1-PPB spanner with E' as back edges

// OE(U',r',r)= back edges set E' of a minimal dilation spanner G for {py,...

(prr,1) € Ca(pr,pi+1) and (pr,pr) € Ca(pr—1,pr)
Fill table by dynamic program based on the recursion formula:

oE(L,I',r" 1) =

“invalid”, if I’ <142, 7" > r —2 or | > r (contradicts definition)

“invalid”, if r < [+ 2 (no oriented spanners for |P| < 3)
(pryp1), if ' =7 and r' = [ (spanner for |P| = 3 is a cycle)
“invalid”, if I’ < r, ' > [ and I’ > r’ (contradicts planarity)

E' = oE(l,l, kry,r — 1) U{(pr,p1)}, if ! < r and +' = I, choose
1 <k.<r—3st. ODIL(E’) is minimal

E' =oE(l+ 1,k,r",r) U{(pr,p)}, if ! =7 and ' > [, choose
l+3 <k <rs.t. ODIL(E’) is minimal

E' =oE(l,l', k., k) UOE(k, ki, ", ) U{(pr,p1)}, T ' <r, 1" >1
and I’ < 7', choose | < k, <k—-2,14+2<k<r—2and
k+2 <k, <rst. ODIL(E’) is minimal

E' + oE(1,I',7',n), choose I’ and ' s.t. ODIL(E’) is minimal

return G = (P, E'U{(p;,pi+1) |V1<i<n-—-1})

, Dy} with

// add baseline
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------- ©-0 00 @
(a)

oE(LU,r",r) =0oE(l,l, k., k) UOE(k, ki, r",7) U {(pr,p1)}

WO O - -0-®

oE(L,I',1,r) = oE(L, ', kp,r — 1) U {(pr, p1)}

oE(l,r,7",r) = 0E(l + 1, ki, v, ) U{(pr,p1)}

Figure 3 Visualisation of the recursive cases of the recursion formula in Algorithm 2
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—— Abstract

Let S C R? be a set of n sites in the plane, so that every site s € S has an associated radius rs > 0.
Let D(S) be the disk intersection graph defined by S, i.e., the graph with vertex set S and an edge
between two distinct sites s,t € S if and only if the disks with centers s, ¢t and radii rs, r; intersect.
Our goal is to design data structures that maintain the connectivity structure of D(S) as S changes
dynamically over time.

We consider the incremental case, where new sites can be inserted into S. While previous work
focuses on data structures whose running time depends on the ratio between the smallest and the
largest site in S, we present a data structure with O(a(n)) amortized query time and O(log® n)
expected amortized insertion time.

1 Introduction

The question if two vertices in a given graph are connected is crucial for many applications.
If multiple such connectivity queries need to be answered, it makes sense to preprocess the
graph into a suitable data structure. In the static case, where the graph does not change, we
get an optimal answer by using a graph search to determine the connected components and
by labeling the vertices with their respective components. In the dynamic case, where the
graph can change over time, things get more interesting, and many variants of the problem
have been studied.

We construct an insertion-only dynamic connectivity data structure for disk graphs.
Given a set S C R? of n sites in the plane with associated radii r, for each site s, the disk
graph D(S) for S is the intersection graph of the disks D induced by the sites and their
radii. While D(S) is represented by O(n) numbers describing the disks, it might have ©(n?)
edges. Thus, when we start with an empty disk graph and successively insert sites, up to
Q(n?) edges may be created. We describe a data structure whose overall running time for
any sequence of n site insertions is o(n?), while allowing for efficient connectivity queries.
For unit disk graphs (i.e., all associated radii r; = 1), a fully dynamic data structure with
a similar performance guarantee is already given by Kaplan et al. [2]. In the same paper,
Kaplan et al. present an incremental data structure whose running time depends on the ratio

)

* Supported by the German Science Foundation within the research training group ‘Facets of Complexity
(GRK 2434).
T Supported in part by ERC StG 757609.

39th European Workshop on Computational Geometry, Barcelona, Spain, March 29-31, 2023.

This is an extended abstract of a presentation given at EuroCG’23. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



47:2 Insertion-Only Dynamic Connectivity in General Disk Graphs

S Perfect S > -
D(S) Binary Tree LUV

S

Disjoint Set join
DS H

Figure 1 Overview of the data structure (Theorem 2.5)

Co C1 Co empty
in lo in ll in lQ I3

Cs

G Q:[L]]

Figure 2 Disk graph with associated component tree and queue @ (tiling of a component
corresponds to the tiling of nodes storing its disks).

U of the smallest and the largest radius in S. In this setting, they achieve O(a(n)) amortized
query time and O(log(¥)log* n) expected amortized insertion time.

We focus on general disk graphs, with no assumption on the radius ratio. Our approach
has two main ingredients. First, we simply represent the connected components in a data
structure for the disjoint set union problem [1]. This allows for fast queries, in O(a(n))
amortized time, also mentioned by Reif [5]. The second ingredient is an efficient data
structure to find all components in D(S) that are intersected by any given disk (and hence
tells us which components need to be merged after an insertion of a new site). A schematic
overview of the data structure is given in Figure 1.

2 Insertion-Only Data Structure for Unbounded Radii

As in the incremental data structure for disk graphs with bounded radius ratio by Kaplan et
al. [2], we use a disjoint set union data structure to represent the connected components of
D(S) and to perform the connectivity queries. To insert a new site s into S, we first find the
set Cs of components in D(S) that are intersected by Ds. Then, once Cy is known, we can
simply update the disjoint set union structure to support further queries.

In order to identify C, efficiently, we use a component tree T. This is a binary tree
whose leaves store the connected components of D(S). The idea is illustrated in Figure 2
showing a disk graph and its associated component tree. We require that T¢ is a complete
binary tree, and some of its leaves may not have a connected component assigned to them,
like I3 in Figure 2. Those leaves are empty. Typically, we will not distinguish the leaf
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Figure 3 If the tree has no empty leaves before the insertion of an isolated component, a new
root and an empty subtree are added (second tree is an intermediate state before actual insertion).

storing a connected component and the component itself. Also when suitable, we will treat a
connected component as a set of sites. Every node of T¢ stores a fully dynamic additively
weighted nearest neighbor data structure (AWNN). An AWNN stores a set P of n points, each
associated with a weight w,. On a nearest neighbor query with a point ¢ € R? it returns the
point p € P that minimizes ||pg|| + w,. For this data structure, we use the following result
by Kaplan et al. [3] with an improvement by Liu [4].

» Lemma 2.1 (Kaplan et al. [3, Theorem 8.3, Section 9], Liu [4, Corollary 4.3]). There is a
fully dynamic AWNN data structure that allows insertions in O(log2 n) amortized expected
time and deletions in O(log* n) amortized expected time. Furthermore, a nearest neighbor
query takes O(log® n) worst case time. The data structure requires O(nlogn) space.

The component tree maintains the following invariants. Invariant 2 allows us to use a query

to the AWNN to find the disk whose boundary is closed to a query point.

Invariant 1: Every connected component of D(.5) is stored in exactly one leaf of T¢, and

Invariant 2: The AWNN of a node u € T¢ contains the sites of all connected components
that lie in the subtree rooted at u, where a site s € S has assigned weight —rs.

In addition to T¢, we store a queue Q¢ that contains exactly the empty leaves in T¢.

We now describe how to update T¢ when a new site s is inserted. We maintain T¢ in
such a way that the structure of Ty changes only when s creates a new isolated component in
D(S). In the following lemma, we consider the slightly more general case of inserting a new
connected component C' that does not intersect any connected component already stored
in Tc.

» Lemma 2.2. Let Ty be a component tree of height h with n sites and let C' be an isolated
connected component. We can insert C into Te in amortized time O(h - |C| - log®n).

Proof. The insertion performs two basic steps: first, we find or create an empty leaf [; into
which C can be inserted. Second, the AWNN structures along the path from [; to the root of
Te are updated.

For the first step, we check if Q¢ is non-empty. If so, we extract the first element from
Q¢ to obtain our empty leaf [;. If Q¢ is empty, there are no empty leaves, and we have to
expand the component tree. For this, we create a new root for T¢, and we attach the old tree
as one child. The other child is an empty complete tree of the same size as the old tree. This
creates a complete binary tree, see intemediate state in Figure 3. We copy the AWNN of the

former root to the new root, we add all new empty leaves to ¢, and we extract [; from Q¢.
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Figure 4 Inserting a component (potentially isolated disk D;) into an empty leaf (C; stored in
l;): The isolated component C, yellow disk D;, is inserted in the empty leaf 1 and all its ancestors
(indicated by coloring).

For the second step, we insert C' into [;, and we store an AWNN structure with the sites
from C' in [;. Then, the AWNN structures on all ancestors of I; are updated by inserting the
sites of C, see Figure 4 and Figure 3 in case of tree extension respectively.

This procedure maintains both invariants: since an isolated component does not affect the
remaining connected components of D(S), it has to be inserted into a new leaf, maintaining
the first invariant. The second invariant is taken care of in the second step, by construction.
Afterwards, the queue has the correct state, since we extract the leaf used in the insertion.

The running time for finding or creating an empty leaf is amortized O(1). This is
immediate if Q¢ # (), and otherwise, we can charge the cost of building the empty tree,
inserting the empty leaves into Q)¢, and producing an AWNN structure for the new root to the
previous insertions. The most expensive step consists in updating the AWNN structures for
the new component. In each of the h AWNN structures of the ancestors of [;, we must insert
|C| disks. By Lemma 2.1, this results into an expected amortized time of O(h-|C|-log?n). <

Next, we describe how to find the set Cs of connected components that are intersected by
a disk Dy.

» Lemma 2.3. Let T¢ be a component tree of height h that stores n disks. We can find Cy in
worst case time O(max{|C,| - h,1} - log?n}).

Proof. First, observe that if the site returned by a query to an AWNN structure with s does
not intersect D, then D4 does not intersect any disk for the sites stored in this AWNN. Thus,
the case where C; = () can be identified by a query to the AWNN structure in the root of T¢,
in O(log®n) time.

In any other case, we perform a top down traversal of T¢. Let u be the current node.
We query the AWNN structures of both children of u with s, and we recurse only into the
children where the nearest neighbor intersects Ds. The set Cs then contains exactly the
connected components of all leaves where D intersects its weighted nearest neighbor. Since
every leaf found corresponds to one connected component intersecting Ds and we recurse
into all subtrees whose union of sites have a non-empty intersection with s, we do not miss
any connected components.

For every connected component, there are at most h queries to AWNN structures along
the path from the root to the components. A query takes O(log®n) amortized time by
Lemma 2.1, giving an amortized time of O(|Cs| - h - log? n), if s is not isolated. The overall
time follows from taking the maximum of both cases. <
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Figure 5 Inserting a site if |Cs| = 1 (C; stored in l;): The yellow disk Dy intersects Co (dashed
edge). Site s is added to the AWNN of the associated leaf ip and its ancestors.
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Figure 6 Inserting a site if |Cs| > 1 (C; stored in [;): D, intesects Co and Ca. Since |Co| = 3 and
|C2| = 2, the largest component Cp, is Cp. Thus, D, and Cs are merged into Cy and Cs is removed
from l2 up to the Ica, the root. The empty leave Iz is enqueued.

Using Lemma 2.2 and Lemma 2.3, we can now describe how to insert a single disk into a
component tree.

» Lemma 2.4. Let T¢ be a component tree that stores n sites. A new site s can be inserted
into Te in O(log® n) amortized expected time.

Proof. First, we use the algorithm from Lemma 2.3. to find Cs. If |Cs| = 0, we use Lemma 2.2
to insert s as a singleton isolated connected component.

Otherwise, if |Cs| > 1, let C, = argmaxcec, |C| be a largest connected component in
Cs. We insert s into C, and into the AWNN structures of all ancestors of Cr. Then, if
ICs| = 1, we are done, see Figure 5. If |Cs| > 1, all components in Cs now form a new, larger,
component in D(S). We perform the following clean-up step in T¢.

For each component C; € Cs \ {CL}, all sites from C; are inserted into Cr,. Let Ica be
the lowest common ancestor of the leaves for C; and Cp, in T¢. Then all sites from C; are
deleted from the AWNN structures along the path from C; to Ica, and reinserted along the
path from Cp, to Ica. Finally, all newly empty leaves are inserted into Q¢. For an illustration
of the insertion of s and the clean-up step, see Figure 6.

To show correctness, we again argue that the invariants are maintained. If |Cs| = 0 this
follows by Lemma 2.2. In the other case, we directly insert s into a connected component
intersected by s and update all AWNN structures along the way. As Lemma 2.3 correctly finds
all relevant connected components, and we explicitly move the sites in these components to
C, during clean-up, Invariant 1 is fulfilled. In a similar vein, we update all AWNN structures
of sites that move to a new connected component, satisfying Invariant 2. Moreover, we keep
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Q¢ updated by inserting or removing empty leaves when needed during the algorithm.

To complete the proof, it remains to analyze the running time. In the worst case, where
all components are singletons, a component tree that stores n sites has height O(logn). If
|Cs| = 0 the running time for finding C, is O(log>n) by Lemma 2.3. The insertion and
restructuring is done with Lemma 2.2, yielding an expected amortized time of O(log®n).
In the case |Cs| = 1, with h = O(logn) a running time of O(log®n) for finding C, follows
by Lemma 2.3. Following similar arguments to the case |Cs| = 0, the time needed for the
insertion and restructuring is expected amortized O(log® n).

Finally, we consider the case [Cs| > 1. By Lemma 2.3, finding C takes worst case time
O(|Cs| - log® n). Then the insertion of s can be done in expected amortized time O(log®n),
as in the cases above. It remains to analyze the running time of the clean-up step. We know
that the first common ancestor might be the root of 7. Hence, in the worst case, we have
to perform } o cc.\(c,y) |Cil - O(logn) insertions and deletions for a single clean-up step.
As the time for the deletions in the AWNN structures dominates, this is expected amortized
>ociecnicny OUC - log* n) worst case time. Note that since |C;| > 1 and we have to insert
s, the running time of Lemma 2.3 is dominated by the clean-up step.

The overall time spent on all clean-up steps over all insertions is then upper bounded
by > ses 2ociecayort OUCH - log*n). Observe, that during the lifetime of the component
tree, each disk can only be merged into O(logn) connected components. Thus, we have

S > ¢ =0(nlogn),

s€S CyeC\{CL}

and the overall expected time spent on clean-up steps is O(nlog®n). As the case |Cy| > 1
turned out to be the most complex case, the overall running time follows. |

» Theorem 2.5. There is an incremental data structure for connectivity queries in disk
graphs with O(a(n)) amortized query time and O(log® n) expected amortized update time.

Proof. We use a component tree as described above to maintain the connected components.
Additionally, we maintain a disjoint set data structure H, where each connected component
forms a set, see Figure 1. Queries are performed directly in H in O(a(n)) amortized time.
When inserting an isolated component during the update, this component is added to H.
When merging several connected components in the clean-up step, this change is reflected in
‘H by suitable union operations. The time for updates in the component tree dominates the
updates in H, leading to an expected amortized update time of O(log5 n). |

3 Conclusion

We introduced a data structure that solves the incremental connectivity problem in general
disk graphs with O(a(n)) amortized query and O(log® n) amortized expected update time.
The question of finding efficient fully-dynamic data structures for both the general and the
bounded case remains open.
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—— Abstract

Let S,, be a set of n objects in the plane homeomorphic to disks, further referred to as shapes. Let G
be a geometric intersection multigraph for S,, i.e., each shape in S, is represented by a vertex in G,
and two vertices of G are connected by k edges, where k is the number of intersection components
between the two corresponding shapes. For the case of two shapes having A intersection components,
we prove that for any two points in the plane there is a Jordan curve connecting these two points
and crossing the boundaries of the shapes at most 2A + 2 times. For the general case of n objects,
we prove that any two points in the plane can be connected by a Jordan curve that crosses the
boundaries of the shapes at most 2M min{n, A 4+ 1}, where M is the number of inclusion-maximal
intersection components and A is the maximum degree of G.

1 Introduction

Take any drawing of a finite number of shapes in the plane and choose two arbitrary, interior
points in this embedding. An interior point is defined as a point that is not on a boundary
of any shape. To connect these two points, one can draw a continuous line that crosses the
boundaries of the shapes the least number of times. It is trivial to find an upper bound
for the number of crossings of a line between two points in a given embedding of shapes:
such line can be found using trial and error. However, we show that there exists an upper
bound for the number of crossings of a minimum crossing Jordan curve between any two
points in any embedding of n disk-homeomorphic objects in the plane that solely depends
on the number of objects, n, and the maximum degree of the corresponding intersection
multigraph, A.

A similar, but not identical, problem to bounding any minimum crossing curve between
a point s and a point ¢ has been widely studied in the area of sensor networks. Intrusion
detection and border surveillance constitute a major application category for wireless sensor
networks. One application is to detect intruders as they cross a border or enter a protected
area. This type of coverage is referred to as barrier coverage, where the sensors form a barrier
for the intruders. In [2], Kumar et al. specify the key notion of k-barrier coverage, which
39th European Workshop on Computational Geometry, Barcelona, Spain, March 29-31, 2023.
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holds if every path joining a point in S to a point in T must intersect at least k distinct sensor
regions. The notion of barrier coverage closest to bounding a minimum crossing {s, t}-curve
is discussed by Bereg and Kirkpatrick, see [1]. They define the thickness of a barrier as the
minimum number of sensor region intersections of a path between any two regions.

In this work, we begin by introducing some preliminary definitions and lemmas, and
providing a formal problem definition. In Section 2, we present an upper bound for any
minimum crossing curve for embeddings of 2 shapes. Then, we extend this result for
embeddings of n shapes in Section 3. Finally, we summarize our findings and discuss some
open questions.

1.1 Preliminary Definitions and Lemmas

This section introduces several preliminary definitions that allow us to delve into the problem.

» Definition 1.1. A {s,t}-simple curve is a curve between an interior point s and an interior
point ¢ that does not intersect itself.

» Definition 1.2. A set of points in the plane is a 2-dimensional geometric shape S if it is
homeomorphic to the closed disk {(x,y)|x® +y? < 1}.

» Remark. S, = {S1,...,S,} is a collection of n shapes.

Important to note is that a shape S can be non-convex but cannot intersect itself.
» Definition 1.3. T'(S) is the closed Jordan curve that determines the boundary of a shape S.

» Definition 1.4. A minimum crossing {s,t}-curve is a {s,t}-simple curve that intersects
boundaries of shapes the least number of times.

» Remark. We assume that, in any intersection of two shapes, one can at least fit an open
ball of sufficiently small diameter. (Assumption 1)

This assumption is made to prevent shapes from solely touching instead of intersecting or
having uncountably many boundary points in common.

In the following definition, a geometric intersection multigraph is introduced. Note
that geometric intersection multigraphs are an extension of intersection graphs. Classical
intersection graphs are simple graphs that include at most one edge between any two
shapes [3]. Intersection multigraphs include a connecting edge for every intersection that any
two shapes have in a given embedding, making it is a multigraph.

» Definition 1.5. An intersection multigraph Géﬂ is a multigraph where each shape of the
collection §,, in an embedding A is represented by a vertex, and two vertices of Géﬂ are
connected by e edges, with e being the number of connected components of the intersection
between the corresponding shapes in embedding A. Define the maximum degree of the
intersection multigraph as A

» Definition 1.6. Given a collection of shapes S,,, a face f is an open disc resulting from
considering the plane without the boundaries of the shapes, i.e. R*\I'(S,)). Define the
boundary of a face f as T'(f), and F as the set of all faces in an embedding.

» Definition 1.7. The dual graph G* of an embedding is the graph where each vertex v(f)
corresponds to a face f in the plane. Any two vertices v(f) and v(g) are connected if their
corresponding faces f and g are adjacent to each other.
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Figure 1 An example of an intersection multigraph, as defined in Definition 1.5.

Figure 2 An example of a dual graph of an embedding of shapes, as defined in Definition 1.7.

Examples of an intersection multigraph and a dual graph can be found in Figures 1 and 2,
respectively.

» Lemma 1.8. For any path of length k in the dual graph, there is a corresponding minimum
crossing curve in the embedding crossing k boundaries.

» Definition 1.9. The height h of a face f is the number of shapes present in this face. We
define the maximum height over all faces as Az -

» Lemma 1.10. A face f of height h can only be adjacent to faces of height h — 1 or h + 1.

1.2 Problem definition and summary of results

Let S, be a set of n shapes in an embedding A in the plane. Let Géﬂ be the geometric
intersection multigraph for this embedding A of S,, with maximum degree A. This paper
shows an upper bound for the number of crossings of a minimum crossing {s, t}-curve that
solely depends on n and A in embeddings of 2 shapes and embeddings of n shapes.

2 Embeddings of 2 shapes

In this section, we present a linear upper bound for any minimum crossing {s,t}-curve in an
embedding of two shapes. The main result is shown in Theorem 2.1.

» Theorem 2.1. Given an embedding of two shapes Sy and So in R?, there exists a simple
{s,t}-curve C crossing T'(S1) UT(S2) at most 2A + 2 times for any two points s,t €
R?\(I'(S1) UT(S2)).

To show that the result of Theorem 2.1 holds, we introduce some additional definitions.

» Definition 2.2. In an embedding of two shapes S7 and Sy, a face f is an intersection face
if fCS1NS,.

» Definition 2.3. For a shape S and a face f C S, f is chordal in S if S\ f consists of more
than one component. Consequently, a face f is non-chordal in S if S\ f is one component.
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Q

Figure 3 In this shape, face 4 is chordal and 1, 2 and 3 are non-chordal.

The proof of Theorem 2.1 requires Lemmas 2.5, 2.6 and 2.7. These lemmas are based
upon the partition of the faces of shapes into three mutually-exclusive sets: intersection
faces, chordal faces and non-chordal faces. The sets are defined in Definition 2.4 and a visual
example of chordal and non-chordal faces is shown in Figure 3. Lemma 2.5 shows that for
any interior points s, ¢ in Sy, there exists a minimum crossing {s, t}-curve within S; that
crosses the boundary of Sy at most 2A times. This result is extended in Lemmas 2.6, 2.7
and 2.8 to eventually show in Theorem 2.1 that for any interior points s,¢ € R2, the number
of boundary crossings is at most 2A + 2.

» Definition 2.4. Given an embedding A of two shapes S; and Ss, every face f C S; can
be assigned into one of the following three sets of faces:

1. Fr=A{f|f € S1NS2}, fisan intersection face; or

2. Fo={f|f € 51\S2 and f is chordal in Sy }; or

3. Fne ={f|f € 51\S2 and f is not chordal in S;}.

By symmetry, a similar assignment into three sets of faces holds for every face f C Ss.

» Remark. Given an embedding of shapes S; and Ss, by Definition 2.4 and Lemma 1.10,
faces assigned to the same set cannot be adjacent to each other.

» Remark. Given an embedding of shapes S; and So, by Definition 2.4 and Lemma 1.10,
faces f € Fo and g € Fy¢ cannot be adjacent.

Using Definition 2.4 and the above remarks, we show the following lemmas.

» Lemma 2.5. In an embedding of shapes S1 and Sy with interior points s,t € Sy, there
exists a minimum crossing {s,t}-curve Csy C Sy crossing I'(S2) at most 2A times.

Proof. The intuition of the proof goes as follows. Since C,; C S;, we only utilize faces
f € S1 and consider the subgraph G*s1 of the dual graph. Using Definition 1.7 and Lemma
1.8, partition the vertices of G**s1 into chordal, non-chordal and intersection vertices. This
is similar to the three sets of faces in Definition 2.4. Clearly, G451 is a tripartite graph.

i. Case A = 1. Denote the unique intersection face by fr. Any vertices v(f),v(g) of
faces f,g C S1\S2 are connected to v(fr) and thus there exists a path P = v(f)v(fr)v(g)
of length 2A = 2. By Lemma 1.8, there also exists a simple {s, ¢t}-curve in A, for interior
points s,t € Sy, that crosses I'(S1) UT'(S2) at most 2 times.

ii. Case A > 2. We bound the diameter of tripartite G451, as this will provide an
upper bound on a shortest path between any two vertices v(f) and v(g), f,9 C S1. By
Definition 2.3 and Lemma 1.10, a face of S; that is adjacent to two intersection faces
is a chordal face of S1\S2. Notice that there exists a path P, 1, = v(fr.1)v(fe,1)v(f1,2)
oo u(fra—1)v(fe,a—1)v(fr.q) between any pair of intersection faces fri and fr 4, where
v(fr:), with i = 1,...,d, are the vertices of distinct intersection faces, and v(fc,;), with
j=1,...,d—1, correspond to k distinct chordal faces. This path P has a length of at most
2(A —1). Now notice that every face f C S; is either an intersection face or adjacent to an
intersection face. Therefore, there exists a path like P’ = v(f)Pv(g) in the dual subgraph
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Figure 4 An example illustrating Definition 2.4 and Lemma 2.5.

Figure 5 An almost tight example for Theorem 2.1.

GAs1 between any two vertices v(f) and v(g), f,g € S, having a length of at most 2A. By
Lemma 1.8, there also exists a simple {s,t}-curve in A, for interior points s,t € Sp, that
crosses I'(S1) UT'(S2) at most 2A times. <

» Lemma 2.6. In an embedding of shapes S1 and Sa with interior points s,t € S1 U Sa, there
exists a minimum crossing {s,t}-curve Cy ;. crossing I'(S1) UT'(S2) at most 2A times.

» Lemma 2.7. In an embedding of shapes Sy and Sy with interior points s,t € R?\(S;USs),
there exists a minimum crossing {s,t}-curve Csy crossing I'(S1) UT'(S2) at most 2A + 2
times.

» Lemma 2.8. In an embedding A of shapes S1 and Sy with interior points s € R?\(S;USs),
t € S1, there exists a simple {s,t}-curve Cs; crossing I'(S1) UT'(S2) at most 2A + 1 times.

Proof of Theorem 2.1

Proof. Given two shapes in an embedding A, arbitrarily label them S; and Ss, and denote
I'(S1) UT(S2) by I'. Consider a minimum crossing {s, t}-curve Cs ;. By Lemmas 2.5 and
2.6, for any s,t € S; U Ss, Cs ¢ crosses I' at most 2A times. In Lemma 2.7, we show that
Cs ¢ crosses I' at most 2A + 2 times for any s, € R*\(S; U S3). By Lemma 2.8, for any
s € R?\(S1 U S2) and t € Sy, Cs 4 crosses I' at most 2A + 1 times. Note that this result also
holds for a minimum crossing curve Cy » with ' = ¢ and ¢’ = s. Hence, for any interior
points s,t € R? there exists a minimum crossing curve Cj ; crossing I'(S1) UT'(S2) at most
2A + 2 times. |

Figure 5 displays an almost tight example for Theorem 2.1 with a bound of 2A — 2.

3 Embeddings of n shapes

In this section, we show that there exists an upper bound for any minimum crossing {s, ¢}-
curve in an embedding of n shapes. We first provide the definition of a maximal inclusion
face and then show the main result in Theorem 3.2.
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Figure 6 An example of a dual graph partitioned by height.

» Definition 3.1. A face f is a mazimal inclusion face (in short, MIF) if every face adjacent
to f has lower height. Additionally, define the complete set of MIF's as M.

» Theorem 3.2. Given an embedding of a finite collection of shapes Sy, in R? and the set of
Mazimal Inclusion Faces M, there exists a simple {s,t}-curve Csy crossing I'(S,) at most
2| M| min{n, A + 1} times for any two interior points s,t € R2.

We use Lemmas 3.3 and 3.4 to show that Theorem 3.2 holds. In Lemma 3.3, we bound
the diameter of the dual graph of an embedding of n shapes using hy.x and |[M]. Lemma
3.4 then bounds hyax.-

» Lemma 3.3. Given an embedding A of a set of shapes S, and its dual graph G*, the
diameter of GA is upper bounded by 2hmax| M.

Lemma 3.3 is a result of partitioning the vertices of the dual graph of an embedding of shapes
by the height of the corresponding faces. An example of this type of partitioning is given in
Figure 6.

» Lemma 3.4. Given an embedding of shapes Si, .., Sy, the mazimum height of a face hyax
is upper bounded by min{n, A + 1}.

Sketch of the proof of Theorem 3.2

Proof. As shown in Lemma 3.3, the diameter of the dual graph G of an embedding A of a
set of shapes S, is upper bounded by 2h,,q.|M|. By Lemma 3.4, hy,q, is upper bounded
by min{n, A + 1}. Tt follows that the diameter of the dual graph is bounded above by
2| M| min{n, A + 1}, and therefore the length of any shortest path in G** is bounded by the
same number. If there exists a path between any two vertices in G** with maximum length
2| M|min{n, A + 1}, then by Lemma 1.8 there exists a minimum crossing {s, t}-curve Cj ¢
in A crossing I'(S,,) at most 2| M| min{n, A + 1} times. <

4 Conclusion and open questions

In this paper, we have shown that there exists a linear upper bound of 2A + 2 for a minimum
crossing {s,t}- curve in any embedding of 2 shapes in the plane. For embeddings of n shapes,
we establish an upper bound of 2| M| min{n, A + 1}.

Several questions remain. Firstly, what is the theoretic upper bound on the number of
maximal inclusion faces (|M]) in terms of n and A? The best example we have constructed
so far encounters %nA maximal inclusion faces, as demonstrated by an example of nested
shapes in Figure 7. We conjecture that this number is the right theoretic upper bound for
|M]. Consequently, what is the true hypothesis on the number of crossings of any minimum
crossing {s,t}-curve in terms of n and A only?
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Figure 7 An almost tight example for Theorem 3.2.
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—— Abstract

We study the crossing minimization problem in a layered graph drawing of rooted trees whose leaves
have a given fixed order on the first layer. The task is to permute the vertices on the other layers to
minimize the number of crossings. While this problem is known to be NP-hard for multiple trees
even on just two layers, we give a polynomial-time algorithm for the restricted case of two trees. On
the other hand, when restricting the number of layers to three, we describe an XP-algorithm in the
number of trees.

1 Introduction

Visualizing hierarchical structures as directed trees is essential for many applications, from
software engineering [2] to medical ontologies [1] and phylogenetics in biology [12]. Phylo-
genetic trees in particular can serve as an example to illustrate the challenges of working
with hierarchical structures, as they are inferred from large amounts of data using various
computational methods [19] and need to be analyzed and checked for plausibility using
domain knowledge [9]. From a human perspective, visual representations are needed for this
purpose. Most available techniques focus on the visualization of a single tree [6]. However,
certain tasks may require working with multiple, possible interrelated trees, such as the
comparison of trees [9, 11] or analyzing ambiguous lineages [13]. Graham and Kennedy [6]
provide a survey for drawing multipe trees in this context.

While there are many different visualization styles for trees (see an overview by Schulz [15]),
directed node-link diagrams are the standard. The most common approach to visualize a
directed graph as a node-link diagram is the layered drawing approach due to Sugiyama
et al. [17]. After assigning vertices to layers, the next step is to permute the vertices on
each layer such that the number of crossings is minimized, as crossings negatively affect the
readability of a graph drawing [14, 18]. However, this problem turns out to be hard even
when restricting the number of layers or the type of graphs. For example, if the number of
layers is restricted to two, crossing minimization remains NP-hard for general graphs [5], even
if the permutation on one layer is fixed [4], known as the one sided crossing minimization
(OSCM) problem.

For the special case of trees on two layers, OSCM can be solved in polynomial time [7]
and even if both layers are variable, the problem can be reduced to the minimum linear
arrangement problem [16], which is polynomial-time solvable [3]. For arbitrarily many layers,
the problem is still NP-hard even for trees [7], however, the obtained trees in the reduction [7]
are not rooted (and we do not see an obvious way to adjust their construction).
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49:2 Simultaneous Drawing of Layered Trees

Our Contributions. We consider the crossing minimization problem for an n-vertex forest
of k trees whose vertices are assigned to [ layers such that all leaves are on the first layer and
their order is fixed. We first describe a linear-time algorithm for the special case that all but
one tree are paths (see Sec. 3). The general case where k € O(n) is known to be NP-hard [10]
even for [ = 2 and trees of maximum degree 4. However, we show that the case k = 2 is
polynomial-time solvable for arbitrary ! using a dynamic program (see Sec. 4). Moreover, we
describe an XP-algorithm in k£ modeling the solution space by a k-dimensional grid graph for
[ =3 (see Sec. 5). We conclude with the elusive open case of k > 3 and | > 4 (see Sec. 6).

2 Preliminaries

T Ty . T T

_________ PR

l

A

Figure 1 Upward drawing of k disjoint directed rooted trees T1,...T) on ! layers. As indicated
by the filled vertices, the total order <; of the first layer is given, while <2,...,<; need to be
determined. In the following figures, we drop the arrow heads and assume an upward direction.

Let F be a forest of k disjoint rooted trees T, ..., T} directed towards the roots such
that all vertices except for the roots have outdegree 1. Let an assignment of vertices to [
layers be given, such that each tree T; is drawn upward, i.e., for any directed edge (u,v) € Tj,
we have that the layer of u, denoted by L(u), is strictly less than L(v). This implies that
if L(u) = 1, u is a leaf of T;. The other way around, we also require that for any leaf v,
L(v) = 1 and, for any root r, L(r) = l. We further require that the total order <; of the
first layer (i.e., the order of all leaves) is given as part of the input and defines a crossing-free
embedding &; with respect to each individual tree T;, that is, there exists an ordering of the
(non-leaf) vertices of T; such that no two edges of T; cross, see Fig. 1 for an illustration. We
let V;(T;) denote the (ordered) set of vertices of T; on the j-th layer. If we refer specifically
to the order of V;(T;), we also use <§- and, with respect to layer j, we also refer to 42 as
a partial order. Furthermore, we define the (unordered) set of all vertices on layer j as
Vi(F) =V;(Th) U+ U V(Th).

The task is to find a total order <; of V;(F) for each j € {2,...,[} such that the total
number of pairwise edge crossings implied by a corresponding straight-line realization of F is
minimized. We restrict the notion of an upward drawing even further since we require that
for any directed edge (u,v) € T;, we have that L(u) + 1 = L(v). If our input does not fulfill
this requirement, this can be achieved by subdividing edges which span several layers (as
commonly done in the Sugiyama framework). Henceforth, we assume that n is the number of
vertices after subdivision and nq,...,ny is the number of vertices of T1, ..., Tk, respectively.

The following observation guarantees that in an optimal solution, we have that the partial
order <§- for a layer j restricted to the vertices of T; is consistent with the embedding &;.

For statements marked with a (x), the proofs are available in the long version on arXiv [8].

» Claim 2.1 (). In a crossing-minimal drawing of F, no edges of the same tree cross.
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Thus, in an optimal solution, the total order of each layer respects the partial orders of
the embeddings of the trees and we only need to combine these partial orders appropriately.

3 One Tree and Multiple Paths on Arbitrarily Many Layers

GD Ty T3 Ty Ts Tl

7
(a) The drawing of T} along with a bounding box  (b) Drawing with the minimum number of crossings
induces the faces corresponding to the vertices of of a forest F = {T1,...,Tio}, while each T; with
the upward dual graph Gp. Note that faces with i € {2,...,10} is a path. Note that, for 75 and
an equal maximum layer of their respective vertices Ty, two paths in Gp have minimum value, yet the
are connected by a bidirectional edge in Gp. leftmost path is chosen as described in Sec. 3.

Figure 2 Drawing one tree and multiple paths with minimum crossings on arbitrary many layers.

In this section, we sketch out a simple linear-time algorithm to solve the problem for
arbitrary k and [ if the given forest is heavily restricted. For more details, see the extended
description of the algorithm in the long version [8].

Let F = {T1,...,Tx} be a given forest such that T; is a path for i € {2,...,k}. Recall
that the total order <; allows for a crossing-free drawing D of the tree T7. Consider the
weak dual graph of the union of D and the axis-parallel bounding box of D, that is, the graph
having a node for every inner face of this union and an edge if two faces of D are adjacent.
From this dual graph, we obtain a directed auxiliary graph G p where we add edge directions
towards the faces terminating at a higher layer; see Fig. 2(a). Observe that Gp has two sinks.
When assigning unit costs to each edge of Gp, the total costs of a directed path P in Gp
correspond to the number of crossings a path 7; drawn upward along the faces of P induces.

By the given order of the vertices on the first layer, we know the node f of Gp corre-
sponding to the face where a path T; originates, that is, the face where the leaf of T; lies.
The optimal way to draw T; upward is then derived by computing a shortest path P in Gp
that starts at f and terminates at one of the two sinks of Gp (we consider both sinks as
potential endpoints and take the one admitting the shorter path). In order to ensure that,
for 4,5 € {2,...,k}, no two paths T; and T} cross, we always choose the leftmost minimum
cost path as shown in Fig. 2(b).

» Theorem 3.1 (%). Given an n-vertex forest F = {T1,..., Ty} onl € O(n) layers whose
leaves have a fixed order on the first layer such that Ty is a directed rooted tree and, for
each i € {2,...,k}, T; is a directed path, we can compute a drawing of F with the minimum
number of crossings in O(n) time.

We remark that we can use the same algorithm in the case when 77 is a planar graph and
the paths T5, ..., T} start and end on any layer (although the runtime grows to quadratic).

4 Two Trees on Arbitrarily Many Layers

In this section, we assume that we are given a forest F = {T}, T2} with embeddings £; and &.
We fix the drawing of 77 according to & and the only remaining task is to add the non-leaf
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vertices of Th in the order prescribed by & such that the number of crossings is minimized.

To this end, we describe a dynamic programming approach. In a complete drawing, we
specify, for a vertex v of T5, its position on its layer with respect to the closest neighbor b
of T7 to the right of v. We use the symbol @ if there is no such neighbor. Let P, be the set
of predecessors of v in T,. If v lies on a layer ¢ > 3, we define the number of crossings in an
optimal partial solution for the drawing of the subtree of T5 rooted at v and placed after b as

olv,b] = Z min (olw, by] + c(w, by, v,b)) ,

by €Vi_1(T1)U{@
wep, wE 1(Th)u{z}

where c(w, by, v, b) is the number of crossings of the edge (w,v) with edges of T; if b,, is the
right neighbor of w and b is the right neighbor of v. This value is solely dependent on the
placement of the vertices v and w within the partial orders <} and <! ,, respectively. As
=< is fixed, the number of crossings in an optimal partial solution for the second layer is

olv,b] = Z c(w, by, v,b),

weP,

where by, is given by <;. The minimum number of crossings is then 0o* = min{o[rz, 1], o[r2, 0]},
where 71 and ry are the roots of 71 and 75, respectively. We return the drawing corresponding
to 0%, i.e., we specify for each vertex v of Ts its right neighbor b of T} when computing o*. If
we have equally good right neighbors for v, we take the leftmost one. Finally, for vertices
of Ty having the same right neighbor, we arrange them in the order given by &;.

Next, we prove the correctness of our dynamic program by the following claims.

» Claim 4.1 (x). The computed drawing of T3 is planar.

Proof sketch. Consider the bottommost layer where the vertices in the computed drawing
of T, are not arranged as in the given planar embedding. With moving a vertex on this layer,
we could decrease the number of crossings and the values of the dynamic program. |

Following from Claim 4.1, it only remains to consider crossings between 77 and T5.

» Claim 4.2 (x). The number of crossings in the computed drawing is minimum.

Proof sketch. In our dynamic program, all possible arrangements of the endpoints of an edge
e € Ty with respect to T7 are considered, which determine the number of crossings of e. <«

» Claim 4.3 (x). The running time of our algorithm is in O(n? - ny) C O(n?).

Proof sketch. For each edge of T3, we pre-compute the number of crossings depending on its
O(n?) possible arrangements in O(n2ny) time. We use them then to compute the O(nina)
entries o[v, b], where every entry depends on O(n;) other entries, in total O(n3ns) time. <«

» Theorem 4.4. Let F = {T1,T>} be a n-vertex forest of two rooted trees, each of them
given with a layered upward-planar embedding where all leaves are assigned to layer 1 and
have a fized order and both roots are assigned to layer k. We can compute a drawing of F
with the minimum number of crossings in O(n3) time.

We remark that we can generalize this approach to a graph G; with a given layered
upward-planar embedding and a tree Tb because we can do the crossing calculation in the
same way for a graph as for a tree. Though the root layer may contain an arbitrary number
of vertices of (1, the optimal position for the root of 75 can be determined in linear time.
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1 5 7 3 4 6 2 8

(a) Here, we are given three trees with a total order
of the vertices on the first and the third layer.

1 2 3 4 5) 6 7 8

(b) Drawing with the minimum number of crossings  (c) Grid graph H whose st-paths represent pre-
(six pairwise crossings). The total order of the vertices cisely the (allowed) total orders of the vertices
on the middle layer corresponds to the shortest st-  on the second layer. The st-path highlighted in
path highlighted in orange on the right side. orange is the shortest path with weight 12.

Figure 3 Reducing the problem of finding a layered drawing of k trees on three layers with the
minimum number of crossings to a shortest-path problem in a weighted k-dimensional grid graph.

5 Multiple Trees on Three Layers

We consider the case that we are given a forest F = {T4,...,T)} of k trees spanning three
layers each. Note that on the third layer there are only the k roots with k! ways to arrange
them. We consider each permutation of the roots individually. Consequently, we henceforth
assume that both the total order <; of the leaves and the total order <3 of the roots are
fixed, and the only remaining task is to combine the k given partial orders (<3, ..., <5) of
the vertices on the second layer to a total order <a.

Let o be a permutation of V5(F) respecting these partial orders. For i € {1,...,k} and
some vertex v € Va(F), we denote the position (starting at 0) of v within the subsequence
of o consisting of the vertices Va(T;)U{v} by p, ,. Note that, in a drawing using o as <o, we
can charge every crossing to precisely two vertices of Vo(F) as any crossing occurs between
two edges that have two distinct endpoints on the second layer. Now we claim that for a
vertex v € Vo(Tj), where j € {1,...,k}, the number of crossings charged to v with respect
to o depends only on pf, , for each i € {1,...,k}\{j}. Consider the (crossing-free) embedding
of T; together with all leaves and roots alone and then insert v and its incident edges onto
the second layer. We denote the resulting number of crossings by cf)yp where p = pf)’a. The
number ¢, , of crossings charged to v is then ¢, , = Zie{lka}\{j} cfj’p and the total number

of crossings ¢, =3, cy; () Cv,0 /2.

» Lemma 5.1 (x). For all combinations of i € {1,...,k}, v € Vo(F) \ Va(T3), and p €

{0,..., [Va(Ty)|}, we can compute every value ¢, , in a total of O(n?) time.

We now construct a weighted directed acyclic st-graph H (see Fig. 3) whose st-paths
represent precisely all total orders of Vo(F) that respect the partial orders (<3,..., <5).
Moreover, for an st-path 7 representing a total order o of V5(F), the weight of 7 is twice
the number of crossings induced by 0. We let H be the k-dimensional grid graph of side
lengths |Vo(T)| x -+ X [Va(Ty)| directed from one corner to an opposite corner, that is,

EuroCG’23



49:6 Simultaneous Drawing of Layered Trees

H has the node set {(x1,...,2x) | 21 € {0,...,|Va(T1)|},.. ., 2 € {0,...,|Va(Tk)|}} and
there is a directed edge from (z1,...,2%) to (y1,...,yk) if ; + 1 = y, for exactly one
j€40,...,k} and x; = y; otherwise. Observe that, within H, (0,...,0) is the unique source
and (|[Va(Th)|, ..., |Va(Tk)]) is the unique sink. We denote these nodes by s and ¢, respectively.
We let the edge from (z1,...,2%) to (y1,...,yr) where z; + 1 = y; represent (i) taking the
y;-th vertex of V(T}), which we denote as v, (ii) after having taken x; vertices of V2(T;) for
each i € {1,...,k}. Thus, we let the weight of this edge be the number of crossings charged
to v in this situation, that is, the weight is Zie{l,‘..,k}\{j} Cho,e

Clearly, any st-path 7 in H has length ns. If we traverse 7, we can think of the second
layer being empty when we start at s, and then, for each edge of 7, we take the corresponding
vertex of V5 and add it to the second layer. Since the edge weights equal the number of
crossings the corresponding vertex would induce in this situation, finding a shortest st-path
in H means finding a crossing-minimal total order <5. By construing H (using Lemma 5.1 to
compute the edge weights) and searching for a shortest st-path, we obtain an XP-algorithm
in k; see Theorem 5.2, which we formally prove in the full version [8].

» Theorem 5.2 (x). Given an n-vertex forest F of k directed rooted trees on three layers
whose roots are on the third layer and whose leaves have a fixed order on the first layer, we
can compute a drawing of F with the minimum number of crossings in O(k*n¥) time.

We remark that our result also holds for k planar graphs provided that on the third layer
there are O(k) vertices. This includes the case that there are no vertices on the third layer
and we have just two layers. For planar graphs and an arbitrary number of vertices on the
third layer, our result holds if the total order of vertices on the third layer is fixed as well.

6 Open Problems

Can we solve the case [ = 3 layers in FPT-time in the number k of trees? Is the case k = 3
and [ = 4 polynomial-time solvable, and if so, for which k£ and ! does it become hard?

—— References

1  Olivier Bodenreider. The unified medical language system (UMLS): Integrating biomedi-
cal terminology. Nucleic Acids Research, 32(suppl_1):267-270, 2004. doi:10.1093/nar/
gkh061.

2 Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer Widom.
Change detection in hierarchically structured information. ACM SIGMOD Record,
25(2):493-504, 1996. doi:10.1145/235968.233366.

3 Fan R. K. Chung. On optimal linear arrangements of trees. Computers and Mathematics
with Applications, 10(1):43-60, 1984. doi:10.1016/0898-1221(84)90085-3.

4  Peter Eades and Nicholas C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379-403, 1994. doi:10.1007/b£01187020.

5 Michael R. Garey and David S. Johnson. Crossing number is NP-complete. STAM Journal
on Algebraic Discrete Methods, 4(3):312-316, 1983. doi:10.1137/0604033.

6  Martin Graham and Jessie Kennedy. A survey of multiple tree visualisation. Information
Visualization, 9(4):235-252, 2010. doi:10.1057/ivs.2009.29.

7  Martin Harrigan and Patrick Healy. k-level crossing minimization is NP-hard for trees. In
Naoki Katoh and Amit Kumar, editors, Proc. 5th International Workshop on Algorithms
and Computation (WALCOM’11), volume 6552 of Lecture Notes in Computer Science,
pages 70-76. Springer, 2011. doi:10.1007/978-3-642-19094-0_9.


https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1145/235968.233366
https://doi.org/10.1016/0898-1221(84)90085-3
https://doi.org/10.1007/bf01187020
https://doi.org/10.1137/0604033
https://doi.org/10.1057/ivs.2009.29
https://doi.org/10.1007/978-3-642-19094-0_9

J. Katheder, S. Kobourov, A. Kuckuk, M. Pfister, and J. Zink 49:7

10

11

12

13

14

15

16

17

18

19

Julia Katheder, Stephen G. Kobourov, Axel Kuckuk, Maximilian Pfister, and Johannes
Zink. Simultaneous drawing of layered trees. arXiv preprint, 2023. arXiv:2302.11952.
Zipeng Liu, Shing Hei Zhan, and Tamara Munzner. Aggregated dendrograms for visual
comparison between many phylogenetic trees. IEEE transactions on wisualization and
computer graphics, 26(9):2732-2747, 2019. doi:10.1109/tvcg.2019.2898186.

Xavier Mufioz, Walter Unger, and Imrich Vrto. One sided crossing minimization is NP-hard
for sparse graphs. In Petra Mutzel, Michael Jiinger, and Sebastian Leipert, editors, Proc.
9th International Symposium on Graph Drawing (GD’01), volume 2265 of Lecture Notes in
Computer Science, pages 115-123. Springer, 2001. doi:10.1007/3-540-45848-4_10.
Tamara Munzner, Francois Guimbretiere, Serdar Tasiran, Li Zhang, and Yunhong Zhou.
Treejuxtaposer: scalable tree comparison using Focus+Context with guaranteed visibility.
ACM Transactions on Graphics, 22(3):453-462, 2003. doi:10.1145/1201775.882291.
Georgios A Pavlopoulos, Theodoros G Soldatos, Adriano Barbosa-Silva, and Reinhard
Schneider. A reference guide for tree analysis and visualization. BioData mining, 3(1):1-
24, 2010. doi:10.1186/1756-0381-3-1.

Pere Puigbo, Yuri I Wolf, and Eugene V Koonin. Search for a ’tree of life’ in the thicket of
the phylogenetic forest. Journal of Biology, 8(6):1-17, 2009. doi:10.1186/jbiol159.
Helen C. Purchase, David A. Carrington, and Jo-Anne Allder. Empirical evaluation of
aesthetics-based graph layout. Empirical Software Engineering, 7(3):233-255, 2002. doi:
10.1023/A:1016344215610.

Hans-Jorg Schulz. Treevis.net: A tree visualization reference. IEEE Computer Graphics
and Applications, 31(6):11-15, 2011. doi:10.1109/mcg.2011.103.

Farhad Shahrokhi, Ondrej Sykora, Lészl6 A. Székely, and Imrich Vrto. On bipartite draw-
ings and the linear arrangement problem. SIAM Journal on Computing, 30(6):1773-1789,
2000. doi:10.1137/50097539797331671.

Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics,
11(2):109-125, 1981. doi:10.1109/TSMC.1981.4308636.

Colin Ware, Helen C. Purchase, Linda Colpoys, and Matthew McGill. Cognitive mea-
surements of graph aesthetics. Information Visualization, 1(2):103-110, 2002. doi:
10.1057/palgrave.ivs.9500013.

Ziheng Yang and Bruce Rannala. Molecular phylogenetics: principles and practice. Nature
reviews genetics, 13(5):303-314, 2012. doi:10.1038/nrg3186.

EuroCG’23


http://arxiv.org/abs/2302.11952
https://doi.org/10.1109/tvcg.2019.2898186
https://doi.org/10.1007/3-540-45848-4_10
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1186/1756-0381-3-1
https://doi.org/10.1186/jbiol159
https://doi.org/10.1023/A:1016344215610
https://doi.org/10.1023/A:1016344215610
https://doi.org/10.1109/mcg.2011.103
https://doi.org/10.1137/S0097539797331671
https://doi.or