
Book of Abstracts

37th European Workshop
on Computational Geometry

April 7–9, 2021 in St. Petersburg, Russia

Preface

Originally, the 37th European Workshop on Computational Geometry (EuroCG 2021) was
scheduled to be held on April 7-9, 2021 at Saint Petersburg State University, Russia. EuroCG
is an annual workshop that combines a strong scientific tradition with a friendly and informal
atmosphere. Traditionally, the workshop is a forum where researchers can meet, discuss
their work, present their results, and establish scientific collaborations, in order to promote
research in the field of Computational Geometry, within Europe and beyond.

Due to the spread of the COVID-19, and due to the persistence of the pandemic and
travel restrictions, in December 2020 we took the decision to organize EuroCG 2021 as a
completely online event. To preserve the tradition of an informal gathering and to foster
spontaneous communication among the participants, we have selected Gather Town (https:
//gather.town) as a virtual conference venue. The space designed specifically for EuroCG
2021 contained two rooms for the two parallel sessions; the lecture hall for the introductory
meeting, business meeting and invited talks; and the main lobby, where additionally to
the socialisation, the participants could observe the posters announcing the main results of
the accepted papers and to continue discussions of the research during the coffee breaks.
Additionally we had set up several Discord channels for reporting technical problems and
for the discussion of the issues raised during to the business event. All talks were recorded
and made available to the registered participants in a private YouTube channel. The overall
online event went smoothly with only two talks being rescheduled due to technical problems.
Overall EuroCG 2021 had 262 registered participants, which is a double of the usual number.

We received 88 submissions, which underwent a limited refereeing process by the program
committee in order to ensure that acceptance policy is met. Finally 72 submissions were
selected for presentation at the workshop. The selected papers were split into 18 sessions
which were spread over three days of the workshop. Each paper was supported by a poster
that appeared at a poster stand in the main lobby for 20 minutes following the session in
which it was presented.

To encourage students to present their papers and to honour the outstanding presen-
tations, we announced a Best Student Presentation Award. The winners were decided by
voting among the workshop participants. In total, 77 votes were cast. The best presenta-
tion award was given to Sören Nickel (15 votes) for presenting the paper “Recognition of
Unit Disk Graphs for Caterpillars, Embedded Trees, and Outerplanar Graphs” authored by
Sujoy Bhore, Sören Nickel and Martin Nöllenburg. The second place was given to Leonie
Ryvkin (13 votes) for presenting the paper “On the Realizability of Free Space Diagrams”
authored by Maike Buchin, Leonie Ryvkin and Carola Wenk. The third place was given
to Eva-Maria Hainzl (12 votes) for presenting the paper: “Geometric Dominating Sets – A
Minimum Version of the No-Three-In-Line Problem”, authored by Oswin Aichholzer, David
Eppstein and Eva-Maria Hainzl. Congratulations to the young scientists for their successful
efforts to clearly convey to the audience their scientific results!

In addition to the 72 contributed talks, this book contains abstracts of the invited lectures
and two tutorials. The invited speakers were Anna Lubiw, János Pach, Gaiane Panina. They
were watched online by between 118 and 186 people. The tutorials were given by Serguei
Barannikov and Manfred Scheucher and took place on Friday, as the last events of the
workshop.

During the business meeting, Emilio Di Giacomo and Fabrizio Montecchiani presented
Perugia, where EuroCG 2022 will take place during March 14-16. There was a single bid for
organizing EuroCG 2022 by Rodrigo Silveira, who together with Clemens Huemer, Carlos
Seara, and David Orden will organize EuroCG 2022 in Barcelona.

EuroCG’21

ii

We gratefully thank all authors, speakers, invited speakers, program committee, external
reviewers, session chairs, local organizing team and participants for their contribution to
the success of this event. We gratefully thank Leonhard Euler International Mathematical
Institute in Saint Petersburg (EIMI), St. Petersburg Department of Steklov Mathematical
Institute of Russian Academy of Sciences (PDMI RAS), and St. Petersburg State University
(SPbU) for making this event possible and for helping us to make the participation in
EuroCG 2021 free of charge for all the participants. The workshop is financially supported
by a grant from the Government of the Russian Federation, agreements 075-15-2019-1619
and 075-15-2019-1620 and by a grant from Simons Foundation.

EuroCG does not have formally published proceedings; therefore, we expect most of the
results outlined here to be also submitted to peer-reviewed conferences and/or journals.
This book of abstracts, available through the EuroCG 2021 web site, should be regarded as
a collection of preprints.

We are hoping to see you in person in Perugia in April next year!

Saint Petersburg, April 20 Elena Arseneva
Tamara Mchedlidze
(EuroCG 2021 co-chairs)

Local Organisation Committee

Elena Arseneva (co-chair) Boris Zolotov
Tamara Mchedlidze (co-chair) Asya Gilmanova

Funded by:

iii

Program Committee

Elena Arseneva (co-chair) St. Petersburg University (SPbU)
Gill Barequet Technion — Israel Institute of Technology
Maike Buchin Ruhr Universität Bochum
Pilar Cano Universite libre de Bruxelles
Erin Chambers Saint Louis University
Jean-Lou De Carufel University of Ottawa
Ruy Fabila-Monroy Departamento de Matemáticas, Cinvestav
Michael Hoffmann ETH Zurich
Matthew Katz Ben-Gurion University
Deok-Soo Kim Hanyang University
Linda Kleist TU Braunschweig
Grigorios Koumoutsos Universite libre de Bruxelles
Tamara Mchedlidze (co-chair) Utrecht University
Piotr Micek Jagiellonian University
Debajyoti Mondal University of Saskatchewan
Wolfgang Mulzer Freie Universität Berlin
Martin Nöllenburg Vienna University of Technology
Evanthia Papadopoulou University of Lugano (USI)
Irene Parada TU Eindhoven
Hugo Parlier University of Luxembourg
Valentin Polishchuk Linkoping University
André Schulz FernUniversität in Hagen
Hang Si Weierstrass Institute for Applied Analysis and Stochastics
Rodrigo Silveira Universitat Politècnica de Catalunya
Marc Van Kreveld Utrecht University
Birgit Vogtenhuber Graz University of Technology
Carola Wenk Tulane University
André van Renssen The University of Sydney

EuroCG’21

iv

Table of Contents

Keeping your Distance: Algorithms and Hardness (Invited Talk) . A
Anna Lubiw

Crossing Lemmas for Multigraphs (Invited Talk) . B
János Pach

An universality theorem for stressable graphs in the plane (Invited Talk) . C
Gaiane Panina

Canonical Forms = Persistence Diagrams (Tutorial) . D
Serguei Barannikov

Using SAT Solvers in Combinatorics, Combinatorial Geometry, and Graph Drawing (Tutorial) E
Manfred Scheucher

Many Order Types on Integer Grids of Polynomial Size . 1
Manfred Scheucher

Tight bounds on the expected number of holes in random point sets . 2
Martin Balko, Manfred Scheucher and Pavel Valtr

Obstructing Classification via Projection . 3
Pantea Haghighatkhah, Wouter Meulemans, Bettina Speckmann, Jérôme Urhausen and Kevin
Verbeek

Route Reconstruction from Traffic Flow via Representative Trajectories . 4
Bram Custers, Wouter Meulemans, Bettina Speckmann and Kevin Verbeek

Route-preserving Road Network Generalization . 5
Mees van de Kerkhof, Marc Van Kreveld, Irina Kostitsyna, Maarten Löffler and Tim Ophelders

Path-Greedy Spanner in Near-Quadratic Time: Simpler and Better . 6
Paz Carmi and Idan Tomer

Lions and contamination, triangular grids, and Cheeger constants . 7
Henry Adams, Leah Gibson and Jack Pfaffinger

A Geometric Approach to Inelastic Collapse . 8
Bernard Chazelle, Kritkorn Karntikoon and Yufei Zheng

Max-Min 3-dispersion on a Convex Polygon . 9
Yasuaki Kobayashi, Shin-Ichi Nakano, Kei Uchizawa, Takeaki Uno, Yutaro Yamaguchi and
Katsuhisa Yamanaka

The maximal number of 3-term arithmetic progressions in finite sets in different geometries 10
Itai Benjamini and Shoni Gilboa

Notes on pivot pairings . 11
Barbara Giunti

Improved Bounds for Half-Guarding Monotone Polygons . 12
Hannah Miller Hillberg, Erik Krohn and Alex Pahlow

Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance . 13
Ivor van der Hoog, Mees van de Kerkhof, Marc Van Kreveld, Maarten Löffler, Frank Staals,
Jérôme Urhausen and Jordi L. Vermeulen

A Dynamic Data Structure for k-Nearest Neighbors Queries . 14
Sarita de Berg and Frank Staals

Tukey Depth Histograms . 15
Daniel Bertschinger, Jonas Passweg and Patrick Schnider

v

Enclosing Depth and other Depth Measures . 16
Patrick Schnider

Geometric Dominating Sets - A Minimum Version of the No-Three-In-Line Problem 17
Oswin Aichholzer, David Eppstein and Eva-Maria Hainzl

Polyline Bundle Simplification on Trees . 18
Yannick Bosch, Peter Schäfer and Sabine Storandt

Folding Polyiamonds into Octahedra . 19
Eva Vanessa Bolle and Linda Kleist

Computing Optimal Virtual Camera Trajectories . 20
Kerem Geva, Matthew Katz and Eli Packer

Polygon-Universal Graphs . 21
Tim Ophelders, Ignaz Rutter, Bettina Speckmann and Kevin Verbeek

Rectilinear Steiner Trees in Narrow Strips . 22
Henk Alkema and Mark de Berg

A density-based metric learning approach to geometric inference . 23
Ximena Fernandez, Eugenio Borghini, Pablo Groisman and Gabriel Mindlin

Bicolored Path Embedding Problems in Protein Folding Models . 24
Tianfeng Feng, Ryuhei Uehara and Giovanni Viglietta

On Voronoi diagrams of 1.5D terrains with multiple viewpoints . 25
Vahideh Keikha and Maria Saumell

Upward Planar Drawings with Three Slopes . 26
Jonathan Klawitter and Johannes Zink

Decomposing Polygons into Fat Components . 27
Maike Buchin and Leonie Selbach

StreamTable: An Area Proportional Visualization for Tables with Flowing Streams 28
Jared Espenant and Debajyoti Mondal

An example of a randomized order-dependent time analysis in incremental construction 29
Evanthia Papadopoulou and Kolja Junginger

A Tail Estimate with Exponential Decay for the Randomized Incremental Construction of Search
Structures . 30

Joachim Gudmundsson and Martin P. Seybold

Shortest Paths in Portalgons . 31
Maarten Löffler, Rodrigo Silveira and Frank Staals

Coordinating Programmable Matter via Shortest Path Trees . 32
Irina Kostitsyna, Tom Peters and Bettina Speckmann

Long plane trees . 33
Sergio Cabello, Michael Hoffmann, Katharina Klost, Wolfgang Mulzer and Josef Tkadlec

Terrain prickliness: theoretical grounds for low complexity viewsheds . 34
Ankush Acharyya, Ramesh Jallu, Maarten Löffler, Gert Meijer, Maria Saumell, Rodrigo
Silveira, Frank Staals and Hans Raj Tiwary

Tight Degree Bounds for Path-Greedy 5.19-Spanner on Convex Point Sets . 35
William Evans and Lucca Siaudzionis

Crossing Numbers of Beyond-Planar Graphs Revisited . 36
Nathan van Beusekom, Irene Parada and Bettina Speckmann

vi

Reducing Moser’s Square Packing Problem to a Bounded Number of Squares . 37
Meike Neuwohner

On 4-Crossing-Families in Point Sets and an Asymptotic Upper Bound . 38
Oswin Aichholzer, Jan Kyncl, Manfred Scheucher and Birgit Vogtenhuber

Collapses of higher order Delaunay complexes . 39
Mickaël Buchet, Bianca B. Dornelas and Michael Kerber

Nearest-Neighbor Decompositions of Drawings . 40
Jonas Cleve, Nicolas Grelier, Kristin Knorr, Maarten Löffler, Wolfgang Mulzer and Daniel Perz

Hardness of Recognition and 3-Coloring of L-graphs . 41
Petr Chmel and Vít Jelínek

Coloring Circle Arrangements: New 4-Chromatic Planar Graphs . 42
Man Kwun Chiu, Stefan Felsner, Manfred Scheucher, Felix Schröder, Raphael Steiner and
Birgit Vogtenhuber

Minimum-Error Triangulation is NP-hard . 43
Anna Arutyunova, Anne Driemel, Jan-Henrik Haunert, Herman Haverkort, Petra Mutzel and
Heiko Röglin

On the Queue-Number of Partial Orders . 44
Stefan Felsner, Torsten Ueckerdt and Kaja Wille

Uncertainty-Region Lower Bounds for the Preprocessing Model of Uncertainty . 45
Ivor van der Hoog, Irina Kostitsyna, Maarten Löffler and Bettina Speckmann

Approximating Independent Set and Dominating Set on VPG graphs . 46
Esther Galby and Andrea Munaro

Covering a Curve with Subtrajectories . 47
Hugo Akitaya, Frederik Brüning, Erin Chambers and Anne Driemel

Radial Level Planarity with Fixed Embedding . 48
Guido Brückner and Ignaz Rutter

Row-based Rectangle Contact Representations of Triangular Grid Graphs . 49
Martin Nöllenburg, Anaïs Villedieu and Jules Wulms

Recognition of Unit Disk Graphs for Caterpillars, Trees, and Outerplanar Graphs 50
Sujoy Bhore, Soeren Nickel and Martin Nöllenburg

On the Realizability of Free Space Diagrams . 51
Maike Buchin, Leonie Ryvkin and Carola Wenk

Accelerating Amoebots via Reconfigurable Circuits . 52
Michael Feldmann, Andreas Padalkin, Christian Scheideler and Shlomi Dolev

Coloring Drawings Of Graphs . 53
Christoph Hertrich, Felix Schröder and Raphael Steiner

Local Complexity of Polygons . 54
Fabian Klute, Meghana M. Reddy and Tillmann Miltzow

Minimum Link Fencing . 55
Sujoy Bhore, Fabian Klute, Maarten Löffler, Soeren Nickel, Martin Nöllenburg and Anaïs
Villedieu

Characterizing Universal Reconfigurability of Modular Pivoting Robots . 56
Hugo Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan Hendrickson, Adam Hesterberg, Matias
Korman, Oliver Korten, Jayson Lynch, Irene Parada and Vera Sacristán

vii

Rectangular Spiral Galaxies are Still Hard . 57
Erik D. Demaine, Maarten Löffler and Christiane Schmidt

Deletion only Dynamic Connectivity for Disk Graphs . 58
Haim Kaplan, Katharina Klost, Kristin Knorr, Wolfgang Mulzer and Liam Roditty

Maximum-Width Rainbow-Bisecting Empty Annulus . 59
Sandip Banerjee, Arpita Baral and Priya Ranjan Sinha Mahapatra

Axis-Aligned Square Contact Representations . 60
Andrew Nathenson

The Voronoi Diagram of Rotating Rays with applications to Floodlight Illumination 61
Carlos Alegria, Ioannis Mantas, Evanthia Papadopoulou, Marko Savić, Hendrik
Schrezenmaier, Martin Suderland and Carlos Seara

The Fréchet Distance for Plane Graphs . 62
Pan Fang and Carola Wenk

Sampling Hyperplanes and Revealing Disks . 63
Haim Kaplan, Alexander Kauer, Wolfgang Mulzer and Liam Roditty

On Minimum-Complexity Graph Simplification . 64
Omrit Filtser, Majid Mirzanezhad and Carola Wenk

On the Geometric Red-Blue Hitting Set Problem . 65
Raghunath Reddy Madireddy and Supantha Pandit

Intersecting Disks using Two Congruent Disks . 66
Byeonguk Kang, Jongmin Choi and Hee-Kap Ahn

Online Ply Maintenance . 67
Vikrant Ashvinkumar, Patrick Eades, Maarten Löffler and Seeun William Umboh

Hypergraph Represention via Axis-Aligned Point-Subspace Cover . 68
Oksana Firman and Joachim Spoerhase

Minimizing the Maximum Interference in Dual Power Sensor Networks . 69
Aviad Baron

Outerstring graphs of girth at least five are3-colorable . 70
Sandip Das, Joydeep Mukherjee and Uma Kant Sahoo

Disjoint Box Covering in a Rectilinear Polygon . 71
Sujoy Bhore, Guangping Li, Martin Nöllenburg and Jules Wulms

Uncertain Curve Simplification . 72
Kevin Buchin, Maarten Löffler, Aleksandr Popov and Marcel Roeloffzen

viii

Keeping your Distance: Algorithms and Hardness
(Invited Talk)
Anna Lubiw1

1 David R. Cheriton School of Computer Science, University of Waterloo

Abstract

Suppose each of us is given a region of the plane and must choose a position in that region,
and our sad goal is to be as far from each other as possible. This is known as the distant
representatives problem, and is related to packing problems. I will describe approximation
algorithms and hardness results for the problem, including some new results on distant
representatives when the regions are axis-aligned rectangles and line segments.

Biography

Anna Lubiw is a professor at the University of Waterloo in Canada, working in computational
geometry and graph algorithms. She has co-chaired SoCG, Graph Drawing, and WADS, and
is on the editorial boards of the Journal of Computational Geometry and the Journal of
Graph Algorithms and Applications. She received her PhD in 1986 from the University of
Toronto.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.

A

Crossing Lemmas for Multigraphs (Invited Talk)
János Pach1

1 Rényi Institute, Budapest and MIPT, Moscow

Abstract

According to the crossing lemma of Ajtai, Chvátal, Newborn, Szemerédi and Leighton (1981),
the crossing number of any graph with n vertices and m > 4n edges is at least c · m3

n2 . This
result, which is tight up to the constant factor, has been successfully applied to a variety
of problems in discrete and computational geometry, additive number theory, algebra, and
elsewhere. In some applications, it is the bottleneck that one needs a lower bound on the
crossing number of a multigraph rather than a graph. The aim of this talk is to review a
number of recent attempts on how to deal with this challenge.

Biography

János Pach is Research Adviser at Rényi Institute, Budapest and Head of the Laboratory of
Combinatorial and Geometric Structures at MIPT, Moscow. His main fields of interest are
discrete and computational geometry, convexity, and combinatorics. He wrote more than
300 research papers. His books, “Research Problems in Discrete Geometry” (with Brass
and Moser) and “Combinatorial Geometry” (with Agarwal) were translated into Japanese,
Russian, and Chinese. He is co-editor-in-chief of Discrete & Computational Geometry and
serves on the editorial boards of ten other professional journals. He was elected ACM Fellow
(2011), member of Academia Europeae (2014), and AMS Fellow (2015). He was invited
speaker at the International Congress of Mathematicians in Seoul (2014), and is Plenary
Speaker at the European Congress of Mathematics in Portorož (2021).

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.

B

An universality theorem for stressable graphs in the
plane (Invited Talk)
Gaiane Panina1

1 St. Petersburg Department of V. A. Steklov Institute of Mathematics RAS, St.
Petersburg University

Abstract

Universality theorems (in the sense of N. Mnëv) claim that the realization space of a
combinatorial object (a point configuration, a hyperplane arrangement, a convex polytope,
etc.) can be arbitrarily complicated. We prove a universality theorem for a graph in the
plane with a prescribed oriented matroid of stresses, that is the collection of signs of all
possible equilibrium stresses of the graph. This research is motivated by the Grassmanian
stratification (Gelfand, Goresky, MacPherson, Serganova) by thin Schubert cells, and by
a recent series of papers on stratifications of configuration spaces of tensegrities (Doray,
Karpenkov, Schepers, Servatius).

Biography

Gaiane Panina graduated from Leningrad State University in 1984, completed her PhD
at St. Petersburg Department of V.A. Steklov Mathematical Institute. Her habilitation
thesis (2007) is entitled “Virtual polytopes”. Chronologically, her research interests are:
convexity, polytopes, virtual polytopes, combinatorial rigidity, configuration spaces, Morse
theory, discrete Morse theory, combinatorial models of moduli spaces, combinatorial geometry,
universality. At present she runs special courses at the Mathematics and Computer Science
faculty of St. Petersburg State University.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.

C

Canonical Forms = Persistence Diagrams
(Tutorial)
Serguei Barannikov1

1 Skoltech, Paris Diderot University

Abstract

The tutorial is devoted to the following theorem: any filtered complex over a field k
can be brought by a linear transformation preserving the filtration to canonical form, a
canonically defined direct sum of indecomposable filtered complexes of two types: one-
dimensional complexes with trivial differential ∂(eti

) = 0 and two-dimensional complexes
with trivial homology ∂(esj) = erj . The proof of this theorem was first published in the
speaker’s 1994 paper “Framed Morse complex and its invariants”, AMS, Advances in Soviet
Mathematics, volume 21, pages 93–115 (1994). This classification theorem is usually referred
to in applied mathematics as the Persistent Homology Main (or Structure, or Principal)
Theorem. The proof is elementary and uses only the basics of a standard linear algebra
engineering course. The algorithms of more than 10 different software platforms, that exist
actually for computation of persistence diagrams, have at their cores the described in the
mentioned 1994 paper algorithm bringing filtered complexes to the canonical form.

Biography

Serguei Barannikov received his PhD in Mathematics from the University of California,
Berkeley (1999). After completion of his PhD Serguei Barannikov has worked for ten years
at Ecole Normale Supérieure in Paris. Serguei Barannikov is a leading research scientist at
Skolkovo Institute of Science and Technology, and also works as a researcher in mathematics
at Paris Diderot University.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.

D

Using SAT Solvers in Combinatorics, Combinatorial
Geometry, and Graph Drawing (Tutorial)
Manfred Scheucher1

1 Skoltech, Paris Diderot University

Abstract

In this tutorial, we discuss how modern SAT solvers can be used to tackle mathematical
problems from various areas, in particular, Combinatorics, Combinatorial Geometry, and
Graph Drawing. To give the audience a better understanding, which problems can be tackled
in this fashion, we will discuss some problems where we succeeded with our SAT attacks.

The focus will not be on the discussed problems themselves, but on the techniques that
we had to use to finally come to a solution and the underlying ideas. For example, while the
naive SAT formulation might already lead to an answer for some questions, it might also be
way to big for nowadays computers and one has to come up with an equivalent formulation
or deal with necessary/sufficient conditions instead. Also further ideas might be required so
that the SAT instances finally become solvable in reasonable time (e.g. additional constraints
for statements which hold “without loss of generality”). In particular, for our SAT attack
on universal point sets for planar graphs we had to combine four sophisticated tools which
have proven to be powerful on their own in the past: complete enumeration of order types,
complete enumeration of (planar) graphs, SAT solvers, and IP solvers.

We can certainly not adress all details in this tutorial, but we look forward to showing
the audience how to adress (their) problems in Combinatorics, Combinatorial Geometry, and
Graph Drawing via SAT models and solvers.

Literature:
1. K. Däubel, S. Jäger, T. Mütze, and M. Scheucher. On orthogonal symmetric chain

decompositions. In Electronic Journal of Combinatorics 26(3), 2019. [arχiv:1810.09847]
2. T. Mütze and M. Scheucher. On L-shaped Point Set Embeddings of Trees: First Non-

embeddable Examples. In Journal of Graph Algorithms and Applications 24(3), 2020.
[arχiv:1807.11043]

3. M. Scheucher. On Disjoint Holes in Point Sets. In Computational Geometry: Theory
and Applications 91, 2020. [arχiv:1807.10848]

4. M. Scheucher. A SAT attack on higher dimensional Erdős–Szekeres numbers. In prepara-
tion, 2021+.

5. M. Scheucher, H. Schrezenmaier, and R. Steiner. A Note On Universal Point Sets
for Planar Graphs. In Journal of Graph Algorithms and Applications 24(3), 2020.
[arχiv:1811.06482]

Biography

Manfred Scheucher did his Master’s at Graz University of Technology, Austria, supervised by
Prof. Oswin Aichholzer, and his PhD at Technische Universität Berlin, Germany, supervised
with Prof. Stefan Felsner.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.

E

Many Order Types on Integer Grids of
Polynomial Size∗

Manfred Scheucher1,2

1 Institut für Mathematik,
Technische Universität Berlin, Germany,
{scheucher}@math.tu-berlin.de

2 Fakultät für Mathematik und Informatik,
FernUniversität in Hagen, Germany

Abstract
Two labeled point configurations {p1, . . . , pn} and {q1, . . . , qn} are of the same order type if, for
every i, j, k, the triples (pi, pj , pk) and (qi, qj , qk) have the same orientation. In the 1980’s, Goodman,
Pollack and Sturmfels showed that (i) the number of order types on n points is of order 4n+o(n),
(ii) all order types can be realized with double-exponential integer coordinates, and that (iii) certain
order types indeed require double-exponential integer coordinates. In 2018, Caraballo, Díaz-Báñez,
Fabila-Monroy, Hidalgo-Toscano, Leaños, Montejano showed that at least n3n+o(n) order types can
be realized on an integer grid of polynomial size. In this article, we improve their result by showing
that at least n4n+o(n) order types can be realized on an integer grid of polynomial size, which is
essentially best possible.

1 Introduction

A set of n labeled points {p1, . . . , pn} in the plane with pi = (xi, yi) induces a chirotope,
that is, a mapping χ : [n]3 → {+, 0,−} which assigns an orientation χ(a, b, c) to each triple
of points (pa, pb, pc) with

χ(a, b, c) = sgn det

1 1 1
xa xb xc
ya yb yc

 .

Geometrically this means χ(a, b, c) is positive (negative) if the point pc lies to the left (right)
of the directed line −−→papb through pa directed towards pb. Figure 1 gives an illustration.
We say that two point sets are equivalent if they induce the same chirotope and call the
equivalence classes order types. An order type in which three or more points lie on a common
line is called degenerate.

Goodman and Pollack [14] (cf. [19, Section 6.2]) showed the number of order types on n
points is of order exp(4n logn + O(n)) = n4n+o(n). While the lower bound follows from a
simple recursive construction of non-degenerate order types, the proof of the upper bound
uses the Milnor–Thom theorem [20, 23] (cf. [22, 25]) - a powerful tool from real algebraic
geometry. The precise number of non-degenerate order types has been determined for up to
11 points by Aichholzer, Aurenhammer, and Krasser [1, 2] (cf. [18]). For their investigations,
they used computer-assistance to enumerate all “abstract” order types and heuristics to
either find a point set representation or to decide non-realizability. Similar approaches have

∗ The author acknowledges support by the internal research funding “Post-Doc-Funding” from Technische
Universität Berlin.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

1:2 Many Order Types on Integer Grids of Polynomial Size

+

–

pa
pb

pc

pd

Figure 1 A chirotope with χ(a, b, c) = + and χ(a, b, d) = −.

been taken by Fukuda, Miyata, and Moriyama [13] (cf. [12]) to investigate order types with
degeneracies for up to 8 points. It is interesting to note that deciding realizability is an
ETR-hard problem [21] and, since there are exp(Θ(n2)) abstract order types (cf. [8] and
[11]), most of them are non-realizable. For more details, we refer the interested reader to
the handbook article by Felsner and Goodman [10].

Grünbaum and Perles [16, pp. 93–94] (cf. [4, pp. 355]) showed that there exist degenerate
order types that are only realizable with irrational coordinates. Since we are mainly inter-
ested in order type representations with integer coordinates in this article, we will restrict
our attention in the following to the non-degenerate setting.

Goodman, Pollack, and Sturmfels [15] showed that all non-degenerate order types can
be realized with double-exponential integer coordinates and that certain order types in-
deed require double-exponential integer coordinates. Moreover, from their construction
one can also conclude that n4n+o(n) order types on n points require integer coordinates
of almost double-exponential size as outlined: For a slowly growing function f : N → R
with f(n) → ∞ as n → ∞ and m = bn/f(n)c � n, we can combine each of the
(n−m)4(n−m)+o(n−m) = n4n+o(n) order types of n −m points with the m-point construc-
tion from [15], which requires integer coordinates of size exp(exp(Ω(m))). Another infinite
family that requires integer coordinates of super-polynomial size are the so-called Horton
sets [3] (cf. [17]), which play a central role in the study of Erdős–Szekeres–type problems.

In 2018, Caraballo et al. [5] (cf. [6]) showed that at least n3n+o(n) non-degenerate order
types can be realized on an integer grid of size Θ(n2.5)×Θ(n2.5). In this article, we follow
a similar approach as in [5] and improve their result by showing that n4n+o(n) order types
can be realized on a grid of size Θ(n4)×Θ(n4).

I Theorem 1. The number of non-degenerate order types which can be realized on an integer
grid of size (3n4)× (3n4) is of order n4n+o(n).

An important consequence of Theorem 1 is that a significant proportion of all n-point order
types can be stored as point sets with Θ(logn) bits per point. While the exponent in our
n4n+o(n) bound is essentially best possible up to a lower-order error term, the question for
the smallest constant c remains open for which n4n+o(n) order types can be realized on a
grid of size Θ(nc)×Θ(nc).

Related Work

Besides the deterministic setting, also integer grid representations of "random" order types
have been intensively studied in the last years. Fabila-Monroy and Huemer [9] and Devillers
et al. [7] (cf. [24]) independently showed that, when a set {p1, . . . , pn} of real-valued points
with pi = (xi, yi) are chosen uniformly and independently from the square [0, n3+ε]×[0, n3+ε],
then the set {p′1, . . . , p′n} with rounded (integer-valued) coordinates p′i = ([xi], [yi]) is of the
same order type as the original set with high probability.

M. Scheucher 1:3

2 Proof of Theorem 1

Let n be a sufficiently large positive integer. It follows from Bertrand’s postulate that we
can find a prime number p satisfying n

2blognc < p < n
blognc . As an auxiliary point set, we let

Qp = {(x, y) ∈ {1, . . . , p}2 : y = x2 mod p}.
The point set Qp contains p points from the p × p integer grid, and each two points have
distinct x-coordinates. Moreover, Qp is non-degenerate because, by the Vandermonde de-
terminant, we have

det

1 1 1
a b c

a2 b2 c2

 = (b− a)(c− a)(c− b) 6= 0 mod p,

and hence χ(a, b, c) 6= 0 for any pairwise distinct a, b, c ∈ {1, . . . , p}. In the following, we
denote by R(Qp) = {(y, x) : (x, y) ∈ Qp} the reflection of Qp with respect to the line x = y.

Let α = 2n and m = α · (2n2 + n3). For sufficiently large n, we have 2n2 + n3 ≤ 2n3

and m + 2p ≤ 3n4. Our goal is to construct 4n+o(n) different n-point order types on the
integer grid

G = {−p, . . . ,m+ p} × {−p, . . . ,m+ p}.
We start with placing four scaled and translated copies of Qp, which we denote by D,U,L,R,
as follows:

To obtain D, we scale Qp in x-direction by a factor αnblognc and translate by (αn2,−p).
All points from D have x-coordinates between αn2 and 2αn2 and y-coordinates between
−p and 0;
To obtain U , we scale Qp in x-direction by a factor αnblognc and translate by (αn2,m).
All points from U have x-coordinates between αn2 and 2αn2 and y-coordinates between
m and m+ p;
To obtain L, we scale R(Qp) in y-direction by a factor αnblognc and translate by
(−p, αn2). All points from L have y-coordinates between αn2 and 2αn2 and x-coordinates
between −p and 0;
To obtain R, we scale R(Qp) in y-direction by a factor αnblognc and translate by
(m,αn2). All points from R have y-coordinates between αn2 and 2αn2 and x-coordinates
between m and m+ p.

Each pair of points (l, r) ∈ L×R spans an almost-horizontal line-segment with absolute slope
less than 1

n . Similarly, each pair of points from D×U spans an almost-vertical line-segment
with absolute reciprocal slope less than 1

n . As depicted in Figure 2, these line-segments
bound (p2−p)2 almost-square regions. Later, we will distribute the remaining n−4p points
among these almost-square regions in all possible way to obtain many different order types.

For every pair of distinct points d1, d2 from D, the x-distance between them is at least
αnblognc and their y-distance is less than p. Hence, the absolute value of the slope of the
line d1d2 is less than p

αnblognc . Moreover, since d1 and d2 have non-positive y-coordinates
and all points of G are at x-distance at most m from d1 and d2, the line d1d2 can only
pass through points of G with y-coordinate less than p·m

αnblognc ≤ αn2. (Recall that m =
α · (2n2 + n3) ≤ 2αn3 and p ≤ n

blognc .) We conclude that every point from U ∪ L ∪ R or
from the almost-square regions lies strictly above the line d1d2. Similar arguments apply to
lines spanned by pairs of points from U , L, and R, respectively. Note that, in particular,
our construction has the property that for any point q from an almost-square region, the
point set D ∪ U ∪ L ∪R ∪ {q} is non-degenerate.

EuroCG’21

1:4 Many Order Types on Integer Grids of Polynomial Size

αn2αn2 αn3
αnblog nc

D

p

L R

U

p

α
n
2

α
n
2

α
n
bl
og
n
c

α
n
3

Figure 2 An illustration of the construction. The four copies D,U,L,R of Qp are highlighted
gray and the (p2 − p)2 almost-square regions are highlighted green.

Almost-square regions

Consider an almost-square region A with top-left vertex a, bottom-left vertex b, top-right
vertex c, and bottom-right vertex d, as depicted in Figure 3. By our construction, the two
almost-horizontal line-segments `1, `2 bounding A meet in a common end-point l ∈ L. Let
r1, r2 ∈ R denote the other end-points of `1 and `2, respectively, which have y-distance
αnblognc.

The point l has x-coordinate between −p and 0, and the x-coordinates of the two points
r1 and r2 are between m and m+ p. Since we have chosen m = α · (2n2 + n3) and assumed
n to be sufficiently large, the x-distance between the points l and ri (for i = 1, 2) is between
αn3 and 2αn3. The point a lies on `1, b lies on `2, and the x-coordinates of both, a and b,
are between αn2 and 2αn2. Hence, we can bound the y-distance δ between a and b by

1
2αblognc = αnblognc · αn

2

α2n3 ≤ δ ≤ αnblognc · α2n2

αn3 = 2αblognc.

Moreover, since a and b lie on an almost-vertical line (i.e., absolute reciprocal slope less than
1
n), the x-distance between a and b is less than 2αblognc

n . An analogous argument applies to
the pairs (a, c), (b, d), and (c, d), and hence we can conclude that the almost-square region A

M. Scheucher 1:5

a

b

c

d

αn2αn2 αn3

α
n
bl
og
n
c

l

r1

r2

`1

`2 δ

Figure 3 An almost-square region.

contains at least (
1
2αblognc − 4αblognc

n

)2
≥ 1

5 (αblognc)2

points from the integer grid G, provided that n is sufficiently large.

Placing the remaining points

We have already placed p points in each of the four sets D,U,L,R. For each of the remaining
n− 4p points, we can iteratively choose one of the (p2− p)2 almost-square regions and place
it, unless our point set becomes degenerate. To deal with these degeneracy-issue, we denote
an almost-square region A alive if there is at least one point from A which we can add to
our current point configuration while preserving non-degeneracy. Otherwise we call A dead.

Having k points placed (4p ≤ k ≤ n− 1), these k points determine
(
k
2
)
lines which might

kill points from our integer grid and some almost-square regions become dead. That is, if we
add another point that lies on one of these

(
k
2
)
lines to our point configuration, we clearly

have a degenerate order type.
To obtain a lower bound on the number of alive almost-square regions, note that all

almost-square regions lie in an (αn2) × (αn2) square and that each of the
(
k
2
)
lines kills

at most αn2 grid points from almost-square regions. Moreover, since each almost-square
region contains at least 1

5 (αblognc)2 grid points, we conclude that the number of alive
almost-square regions is at least

(p2 − p)2 −
(
n

2

)
· αn2

1
5 (αblognc)2 ≥

1
17

(
n

blognc

)4

for sufficiently large n, since n
2blognc ≤ p ≤ n

blognc and α = 2n.

EuroCG’21

1:6 Many Order Types on Integer Grids of Polynomial Size

If we now place each of the remaining n− 4p points in an almost-square region which is
alive (one by one), we have at least

(
1
17

(
n

blognc

)4
)n−4p

= n4n−O(n log log n
log n)

possibilities for doing so. Each of these possibilities clearly gives us a different order type
because, when we move a point q from one almost-square region into another, this point q
moves over a line spanned by a pair (l, r) ∈ L×R or (d, u) ∈ D×U , and this affects χ(l, r, q)
or χ(d, u, q), respectively. This completes the proof of Theorem 1.

References
1 O. Aichholzer, F. Aurenhammer, and H. Krasser. Enumerating order types for small point

sets with applications. Order, 19(3):265–281, 2002.
2 O. Aichholzer and H. Krasser. Abstract order type extension and new results on the

rectilinear crossing number. Computational Geometry: Theory and Applications, 36(1):2–
15, 2006.

3 L. Barba, F. Duque, R. Fabila-Monroy, and C. Hidalgo-Toscano. Drawing the Horton set
in an integer grid of minimum size. Computational Geometry, 63:10–19, 2017.

4 A. Björner, M. Las Vergnas, N. White, B. Sturmfels, and G. M. Ziegler. Oriented Matroids,
volume 46 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 2 edition, 1999.

5 L. E. Caraballo, J.-M. Díaz-Báñez, R. Fabila-Monroy, C. Hidalgo-Toscano, J. Leaños,
and A. Montejano. On the number of order types in integer grids of small size, 2018.
arXiv:1811.02455.

6 L. E. Caraballo, J.-M. Díaz-Báñez, R. Fabila-Monroy, C. Hidalgo-Toscano, J. Leaños, and
A. Montejano. On the number of order types in integer grids of small size. Computational
Geometry, 95:101730, 2021.

7 O. Devillers, P. Duchon, M. Glisse, and X. Goaoc. On order types of random point sets,
2018. arXiv:1812.08525.

8 A. Dumitrescu and R. Mandal. New lower bounds for the number of pseudoline arrange-
ments. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA’19, pages 410–425. SIAM, 2019.

9 R. Fabila-Monroy and C. Huemer. Order types of random point sets can be realized with
small integer coordinates, pages 73–76. 2017.

10 S. Felsner and J. E. Goodman. Pseudoline Arrangements. In Toth, O’Rourke, and Good-
man, editors, Handbook of Discrete and Computational Geometry. CRC Press, third edition,
2018.

11 S. Felsner and P. Valtr. Coding and counting arrangements of pseudolines. Discrete &
Computational Geometry, 46(3), 2011.

12 L. Finschi and K. Fukuda. Generation of oriented matroids–a graph theoretical approach.
Discrete & Computational Geometry, 27(1):117–136, 2002.

13 K. Fukuda, H. Miyata, and S. Moriyama. Complete enumeration of small realizable oriented
matroids. Discrete & Computational Geometry, 49(2):359–381, 2013.

14 J. E. Goodman and R. Pollack. Multidimensional sorting. SIAM Journal on Computing,
12(3):484–507, 1983.

15 J. E. Goodman, R. Pollack, and B. Sturmfels. Coordinate representation of order types
requires exponential storage. In Proceedings of the Twenty-first Annual ACM Symposium on
Theory of Computing (STOC ’89), pages 405–410. Association for Computing Machinery,
1989.

M. Scheucher 1:7

16 B. Grünbaum. Convex Polytopes. Springer, 2003.
17 J. Horton. Sets with no empty convex 7-gons. Canadian Mathematical Bulletin, 26:482–484,

1983.
18 D. E. Knuth. Axioms and Hulls, volume 606 of LNCS. Springer, 1992.
19 J. Matoušek. Lectures on Discrete Geometry. Springer, 2002.
20 J. Milnor. On the Betti numbers of real varieties. Proceedings of the AMS, 15:275–280,

1964.
21 N. E. Mnëv. The universality theorems on the classification problem of configuration

varieties and convex polytopes varieties. In O. Y. Viro and A. M. Vershik, editors, Topology
and Geometry – Rohlin Seminar, volume 1346 of LNM, pages 527–543. Springer, 1988.

22 I. G. Petrovskĭı and O. A. Olĕınik. On the topology of real algebraic surfaces. Izvestiya
Akad. Nauk SSSR. Ser. Mat., 13:389–402, 1949. In Russian.

23 R. Thom. Sur L’Homologie des Variétés Algébriques Réelles, pages 255–265. Princeton
University Press, 1965.

24 I. van der Hoog, T. Miltzow, and M. van Schaik. Smoothed analysis of order types, 2019.
arXiv:1907.04645.

25 H. Warren. Lower bounds for approximation by nonlinear manifolds. Transactions of the
AMS, 133:167–178, 1968.

EuroCG’21

Tight bounds on the expected number of holes in
random point sets∗

Martin Balko1, Manfred Scheucher2,3, and Pavel Valtr1

1 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Czech Republic
{balko}@kam.mff.cuni.cz

2 Institut für Mathematik,
Technische Universität Berlin, Germany
{scheucher}@math.tu-berlin.de

3 Fakultät für Mathematik und Informatik,
FernUniversität in Hagen, Germany

Abstract
For integers d ≥ 2 and k ≥ d + 1, a k-hole in a set S of points in general position in Rd is a k-tuple
of points from S in convex position such that the interior of their convex hull does not contain any
point from S. For a convex body K ⊆ Rd of unit d-dimensional volume, we study the expected
number EHK

d,k(n) of k-holes in a set of n points drawn uniformly and independently at random
from K.

We prove an asymptotically tight lower bound on EHK
d,k(n) by showing that, for all fixed

integers d ≥ 2 and k ≥ d + 1, the number EHK
d,k(n) is at least Ω(nd). For some small holes, we

even determine the leading constant limn→∞ n−dEHK
d,k(n) exactly. We improve the currently best

known lower bound on limn→∞ n−dEHK
d,d+1(n) by Reitzner and Temesvari (2019) and we show that

our new bound is tight for d ≤ 3. In the plane, we show that the constant limn→∞ n−2EHK
2,k(n)

is independent of K for every fixed k ≥ 3 and we compute it exactly for k = 4, improving earlier
estimates by Fabila-Monroy, Huemer, and Mitsche (2015) and by the authors (2020).

1 Introduction

For a positive integer d, let S be a set of points from Rd in general position. That is, no
d+ 1 points from S lie on a k-dimensional affine subspace of Rd. Throughout the paper we
only consider point sets that are finite and in general position.

A point set P is in convex position if no point from P is contained in the convex hull of
the remaining points from P . A k-hole H in S is a set of k points from S in convex position
such that the convex hull conv(H) of H does not contain any point of S in its interior.

The study of k-holes in point sets was initiated by Erdős [7], who asked whether, for each
k ∈ N, every sufficiently large point set in the plane contains a k-hole. This was known to be

∗ M. Balko was supported by the grant no. 18-19158S of the Czech Science Foundation (GAČR), by
the Center for Foundations of Modern Computer Science (Charles University project UNCE/SCI/004),
and by the PRIMUS/17/SCI/3 project of Charles University. This article is part of a project that
has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 810115). M. Scheucher was partially
supported by DFG Grant FE 340/12-1 and by the internal research funding “Post-Doc-Funding” from
Technische Universität Berlin. We also gratefully acknowledge support from the internal research
program IFFP 2016–2020 by the FernUniversiät in Hagen. P. Valtr was supported by the grant no. 18-
19158S of the Czech Science Foundation (GAČR) and by the PRIMUS/17/SCI/3 project of Charles
University. We thank Sophia and Jonathan Rau for helping with the computation in the proof of
Theorem 2.4.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

2:2 Tight bounds on the expected number of holes in random point sets

true for k ≤ 5, but, in the 1980s, Horton [11] constructed arbitrarily large point sets without
7-holes. The question about the existence of 6-holes was a longstanding open problem until
2007, when Gerken [10] and Nicolas [15] showed that every sufficiently large set of points in
the plane contains a 6-hole.

The existence of k-holes was considered also in higher dimensions. Valtr [20] showed
that, for k ≤ 2d + 1, every sufficiently large set of points in Rd contains a k-hole. He
also constructed arbitrarily large sets of points in Rd that do not contain any k-hole with
k > 2d−1(P (d−1)+1), where P (d−1) denotes the product of the first d−1 prime numbers.
Very recently Bukh, Chao, and Holzman [6] improved this construction.

Estimating the number of k-holes in point sets in Rd attracted a lot of attention; see [1].
In particular, it is well-known that the minimum number of (d+ 1)-holes (also called empty
simplices) in sets of n points in Rd is of order O(nd). This is tight, as every set of n points
in Rd contains at least

(
n−1
d

)
(d+ 1)-holes [3, 12].

The tight upper bound O(nd) can be obtained by considering random point sets drawn
from a convex body. More formally, a convex body in Rd is a compact convex subset of Rd
with a nonempty interior. We use λd to denote the d-dimensional Lebesgue measure on Rd
and Kd to denote the set of all convex bodies in Rd of volume λd(K) = 1. For an integer
k ≥ d+ 1 and a convex body K ∈ Kd, let EHK

d,k(n) be the expected number of k-holes in a
set S of n points chosen uniformly and independently at random from K. Note that S is in
general position with probability 1.

Bárány and Füredi [3] proved the upper bound EHK
d,d+1(n) ≤ (2d)2d2 ·

(
n
d

)
for every

K ∈ Kd. Valtr [21] improved this bound in the plane by showing EHK
2,3(n) ≤ 4

(
n
2
)
for any

K ∈ K2. Very recently, Reitzner and Temesvari [16, Theorem 1.4] showed that this bound
on EHK

2,3(n) is asymptotically tight for every K ∈ K2. This follows from their more general
bounds limn→∞ n−2EHK

2,3(n) = 2 and

2
d! ≤ lim

n→∞
n−dEHK

d,d+1(n) ≤ d

(d+ 1)
κd+1
d−1κd2

κd−1
d κ(d−1)(d+1)

(1)

for d ≥ 2, where κd = π
d
2 Γ(d2 + 1)−1 is the volume of the d-dimensional Euclidean unit

ball. Moreover, the upper bound in (1) holds with equality in the case d = 2, and if K is a
d-dimensional ellipsoid with d ≥ 3. Note that, by (1), there are absolute positive constants
c1, c2 such that

d−c1d ≤ lim
n→∞

n−dEHK
d,d+1(n) ≤ d−c2d

for every d ≥ 2 and K ∈ Kd.
Considering general k-holes in random point sets in Rd, the authors [2] recently proved

that EHK
d,k(n) ≤ O(nd) for all fixed integers d ≥ 2 and k ≥ d+ 1 and every K ∈ Kd. More

precisely, we showed

EHK
d,k(n) ≤ 2d−1 ·

(
2d2d−1

(
k

bd/2c

))k−d−1
· n(n− 1) · · · (n− k + 2)

(k − d− 1)! · (n− k + 1)k−d−1 . (2)

In this paper, we also study the expected number EHK
d,k(n) of k-holes in random sets

of n points in K. In particular, we derive a lower bound that asymptotically matches the
upper bound (2) for all fixed values of k. Moreover, for some small holes, we even determine
the leading constants limn→∞ n−dEHK

d,k(n).

M. Balko, M. Scheucher, and P. Valtr 2:3

2 Our Results

Our main result is that for all fixed integers d ≥ 2 and k ≥ d+ 1 the number EHK
d,k(n) is in

Ω(nd), which matches the upper bound (2) by the authors [2] up to the leading constant.

I Theorem 2.1. For all integers d ≥ 2 and k ≥ d+ 1, there are constants C = C(d, k) > 0
and n0 = n0(d, k) such that, for every integer n ≥ n0 and every convex body K ⊆ Rd of unit
volume, we have EHK

d,k(n) ≥ C · nd.

In particular, we see that random point sets typically contain many k-holes no matter
how large k is, as long as it is fixed. This contrasts with the fact that, for every d ≥ 2, there
is a number t = t(d) and arbitrarily large sets of points in Rd without any t-holes [11, 20].

Theorem 2.1 together with (2) shows that EHK
d,k(n) = Θ(nd) for all fixed integers d and

k and every K ∈ Kd, which determines the asymptotic growth rate of EHK
d,k(n). We thus

focus on determining the leading constants limn→∞ n−dEHK
d,k(n).

For a convex body K ⊆ Rd (of a not necessarily unit volume), we use pKd to denote
the probability that the convex hull of d+ 2 points chosen uniformly and independently at
random from K is a d-simplex. That is, the probability that one of the d+ 2 points falls in
the convex hull of the remaining d + 1 points. The problem of computing pKd is known as
the d-dimensional Sylvester’s convex hull problem for K and it has been studied extensively.
Let pd = maxK pKd , where the maximum is taken over all covnex bodies K ⊆ Rd. We note
that the maximum is achieved, since it is well-known that every affine-invariant continuous
functional on the space of convex bodies attains a maximum.

First, we prove the following lower bound on the expected number EHK
d,d+1(n) of empty

simplices in random sets of n points in K, which improves the lower bound from (1) by
Reitzner and Temesvari [16] by a factor of d/pd−1.

I Theorem 2.2. For every integer d ≥ 2 and every convex body K ⊆ Rd of unit volume, we
have

lim
n→∞

n−dEHK
d,d+1(n) ≥ 2

(d− 1)!pd−1
.

Using the trivial fact p1 = 1 with the inequality EHK
2,3(n) ≤ 2(1 + o(1))n2 proved by

Valtr [21], we see that the leading constant in our estimate is asymptotically tight in the
planar case. An old result of Blaschke [4, 5] implies that Theorem 2.2 is also asymptotically
tight for simplices in R3.

I Corollary 2.3. For every convex body K ⊆ R3 of unit volume, we have

3 ≤ lim
n→∞

n−3EHK
3,4(n) ≤ 12π2

35 ≈ 3.38.

Moreover, the left inequality is tight if K is a tetrahedron and the right inequality is tight if
K is an ellipsoid.

Note that, in contrast to the planar case, the leading constant in EHK
3,4(n) depends on

the body K.
By Theorem 2.2, better upper bounds on pd−1 give stronger lower bounds on EHK

d,d+1(n).
The problem of estimating pd is equivalent to the problem of estimating the expected d-
dimensional volume EV Kd of the convex hull of d + 1 points drawn from a convex body
K ⊆ Rd uniformly and independently at random, since pKd = (d+2)EV K

d

λd(K) for every K ∈ Kd;
see [14, 18]. In the plane, Blaschke [4, 5] showed that EV K2 is maximized if K is a triangle,

EuroCG’21

2:4 Tight bounds on the expected number of holes in random point sets

which we use to derive the lower bound in Corollary 2.3. For d ≥ 3, it is one of the major
problems in convex geometry to decide whether EV Kd is maximized if K is a simplex [19].

Besides empty simplices, we also consider larger k-holes. The expected number EHK
2,4(n)

of 4-holes in random planar sets of n points was considered by Fabila-Monroy, Huemer, and
Mitsche [9], who showed EHK

2,4(n) ≤ 18πD2n2 + o(n2) for any K ∈ K2, where D = D(K) is
the diameter of K. Since we have D ≥ 2/

√
π, by the Isodiametric inequality [8], the leading

constant in their bound is at least 72 for any K ∈ K2. This result was strengthened by the
authors [2] to EHK

2,4(n) ≤ 12n2 + o(n2) for every K ∈ K2. Here we determine the leading
constant in EHK

2,4(n) exactly.

I Theorem 2.4. For every convex body K ⊆ R2 of unit area, we have

lim
n→∞

n−2EHK
2,4(n) = 10− 2π2

3 ≈ 3.420.

Our computer experiments support this result. We sampled random sets of n points
from a square and from a disk and the average number of 4-holes was around 3.42n2 for n =
25000 in our experiments. The source code of our program is available on the supplemental
website [17].

For larger k-holes in the plane, we do not determine the value limn→∞ n−2EHK
2,k(n)

exactly, but we can show that it does not depend on the convex body K. We recall that
this is not true in larger dimensions already for empty simplices.

I Theorem 2.5. For every integer k ≥ 3, there is a constant C = C(k) such that, for every
convex body K ⊆ R2 of unit area, we have

lim
n→∞

n−2EHK
2,k(n) = C.

The proof of our main result, Theorem 2.1, is quite technical. So is the proof of Theo-
rem 2.2, which is based on the Blaschke–Petkantschin formula (see Theorem 7.2.7 in [19])
and the well-known Lebesgue’s dominated convergence theorem. Therefore we decided to
devote Section 3 to an illustration of the proofs of Theorems 2.4 and 2.5. We only sketch
the idea of the proof for 3-holes, because the proof for k-holes becomes more technical as k
grows, but the main underlying idea remains the same. The full proofs of our results can
be found in the appendices.

2.1 Open problems
As we remarked earlier, any nontrivial upper bound on the probability pd−1 translates into
a stronger lower bound on limn→∞ n−dEHK

d,d+1(n). However, we are not aware of any such
estimate on pd−1. Kingman [13] showed

pB
d

d =
(d+ 2)

(
d+ 1
d+1

2

)d+1

2d
((d+ 1)2

(d+1)2

2

) ,

which is of order d−Θ(d). We conjecture that the upper bound on pKd is of this order for any
convex body from Kd.

I Conjecture 2.6. There is a constant c > 0 such that, for every d ≥ 2, we have pd ≤ d−cd.

M. Balko, M. Scheucher, and P. Valtr 2:5

We also believe that our lower bound from Theorem 2.2 is tight for simplices in arbitrarily
large dimension d, not only for d ≤ 3.

I Conjecture 2.7. For every d ≥ 2, if K is a d-dimensional simplex of unit volume, then
limn→∞ n−dEHK

d,d+1(n) = 2
(d−1)!pd−1

.

As remarked earlier, it is widely believed that pKd is maximized if K is a simplex. If this
is true, then it follows from the proof of Theorem 2.2 that Conjecture 2.7 is true as well.

It might also be interesting to determine limn→∞ n−2EHK
2,k(n) exactly for as many values

k > 4 as possible. Recall that, by Theorem 2.5, the number limn→∞ n−2EHK
2,k(n) is the

same for all convex bodies K ∈ K2.

3 Sketch of the proof for empty simplices in planar point sets

We sketch the proof that the expected number of 3-holes in a set S of n points selected
uniformly and independently at random from a convex body K ⊆ R2 of unit volume is
2n2 + o(n2). For two points pi and pj from S, we count the expected number of 3-holes in
S where pi and pj determine the longest edge.

Without loss of generality we can assume that pi = (0, 0) and pj = (`, 0) for some
` > 0, as otherwise we apply a suitable isometry to S. Let R be the set of points from
K ∩ ([0, `] × [− 2

` ,
2
`]) that are at distance at most ` from pi and also from pj . Note that

the set R is convex. The third point pk of the 3-hole satisfies x(pi) < x(pk) < x(pj), as
otherwise pipj is not the longest edge of the 3-hole. If |y(pk)| > 2

` , then the convex hull of
the 3-hole has area larger than 1, which is impossible. Consequently, pk lies in R. For a real
number y ∈ [− 2

` ,
2
`], let Iy be the line segment formed by points r ∈ R with y(r) = y. Note

that |Iy| ≤ ` for every y and that |I0| = `; see Figure 1.

pi

2
`

K
R

[0, `]× [− `
2 ,

`
2]

pj

pk

I0

Iy

`

Figure 1 Sketch of the proof.

Since there are n− 2 candidates for pk among S \ {pi, pj}, we can express the expected
number of 3-holes in S where pi and pj determine the longest edge as

(n− 2) ·
∫ 2/`

−2/`
|Iy| · Pr[pipjpk is empty in S]dy = (n− 2) ·

∫ 2/`

−2/`
|Iy| ·

(
1− |y| · `2

)n−3
dy.

EuroCG’21

2:6 Tight bounds on the expected number of holes in random point sets

We now substitute Y = yn and obtain

n− 2
n
·
∫ 2n/`

−2n/`
|IY/n| ·

(
1− |Y | · `2n

)n−3
dY.

By the Lebesgue dominated convergence theorem, we get for n→∞

2 ·
∫ ∞

0
|I0| · e−Y ·`/2dY = 2 ·

∫ ∞

0
` · e−Y ·`/2dY = 4.

Since there are
(
n
2
)
pairs {pi, pj} in S, the expected number of 3-holes in S is 4(1+o(1))·

(
n
2
)

=
2n2 + o(n2) for n going to infinity.

References
1 O. Aichholzer, M. Balko, T. Hackl, J. Kynčl, I. Parada, M. Scheucher, P. Valtr, and

B. Vogtenhuber. A superlinear lower bound on the number of 5-holes. Journal of Combi-
natorial Theory. Series A, 173:105236, 2020.

2 M. Balko, M. Scheucher, and P. Valtr. Holes and Islands in Random Point Sets. In 36th
International Symposium on Computational Geometry (SoCG 2020), volume 164 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 14:1–14:16. Schloss Dagstuhl,
2020.

3 I. Bárány and Z. Füredi. Empty simplices in Euclidean space. Canadian Mathematical
Bulletin, 30(4):436–445, 1987.

4 W. Blaschke. Lösung des ’Vierpunktproblems’ von Sylvester aus der Theorie der ge-
ometrischen Wahrscheinlichkeiten. Berichte über die Verhandlungen der Sächsischen
Akademie der Wissenschaften zu Leipzig. Mathematisch-Physische Klasse, 69:436–453,
1917.

5 W. Blaschke. Vorlesungen über Differentialgeometrie und geometrische Grundlagen von
Einsteins Relativitätstheorie II. Die Grundlehren der mathematischen Wissenschaften.
Springer, 1923.

6 B. Bukh, T. Chao, and R. Holzman. On convex holes in d-dimensional point sets. http:
//arXiv.org/abs/2007.08972, 2020.

7 P. Erdős. Some more problems on elementary geometry. Australian Mathematical Society
Gazette, 5:52–54, 1978.

8 L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Textbooks
in Mathematics. CRC Press, revised edition, 2015.

9 R. Fabila-Monroy, C. Huemer, and D. Mitsche. Empty non-convex and convex four-gons
in random point sets. Studia Scientiarum Mathematicarum Hungarica, 52(1):52–64, 2015.

10 T. Gerken. Empty Convex Hexagons in Planar Point Sets. Discrete & Computational
Geometry, 39(1):239–272, 2008.

11 J. Horton. Sets with no empty convex 7-gons. Canadian Mathematical Bulletin, 26:482–484,
1983.

12 M. Katchalski and A. Meir. On empty triangles determined by points in the plane. Acta
Mathematica Hungarica, 51(3-4):323–328, 1988.

13 J. F. C. Kingman. Random secants of a convex body. J. Appl. Probability, 6:660–672, 1969.
14 V. Klee. Research Problems: What is the Expected Volume of a Simplex Whose Vertices

are Chosen at Random from a Given Convex Body? American Mathematical Monthly,
76(3):286–288, 1969.

15 M. C. Nicolas. The Empty Hexagon Theorem. Discrete & Computational Geometry,
38(2):389–397, 2007.

M. Balko, M. Scheucher, and P. Valtr 2:7

16 M. Reitzner and D. Temesvari. Stars of empty simplices. http://arxiv.org/abs/1808.
08734, 2019.

17 M. Scheucher. Supplemental program for computer experiments. http://page.math.
tu-berlin.de/~scheuch/suppl/holes_in_random_sets/test_planar_holes.py.

18 R. Schneider. Random approximation of convex sets. Journal of Microscopy, 151(3):211–
227, 1988.

19 R. Schneider and W. Weil. Stochastic and integral geometry. Probability and its Applica-
tions. Springer, 2008.

20 P. Valtr. Sets in Rd with no large empty convex subsets. Discrete Mathematics, 108(1):115–
124, 1992.

21 P. Valtr. On the minimum number of empty polygons in planar point sets. Studia Scien-
tiarum Mathematicarum Hungarica, pages 155–163, 1995.

EuroCG’21

Obstructing Classification via Projection
Pantea Haghighatkhah1, Wouter Meulemans1,
Bettina Speckmann1, Jérôme Urhausen2, and Kevin Verbeek1

1 TU Eindhoven, The Netherlands
[p.haghighatkhah|w.meulemans|b.speckmann|k.a.b.verbeek]@tue.nl

2 Utrecht University, The Netherlands
j.e.urhausen@uu.nl

1 Introduction

Machine learning and data mining techniques are effective tools to classify large amounts of
data. But they tend to preserve any inherent bias in the data, for example, with regards
to gender or race. The identification and removal of bias receives significant attention and
various approaches have been described in the machine learning literature using, for example,
statistical methods [3], preprocessing [2, 4], or additional (possibly adversarial) models [6].
Abbasi et al. [1] recently introduced a geometric notion of stereotyping which postulates that
bias is in some form encoded in the geometric or topological features of the learned model
and that manipulating this geometry can remove the bias. In this paper we follow the same
premise and study a possible geometric approach for bias removal.

We model the data as points in Rd which are labeled with binary-valued properties, and
assume that it is “easy” to classify the data according to each property. Our goal is to obstruct
the classification according to one property by a suitable projection to a lower-dimensional
Euclidean space, while classification according to all other properties remains easy.

Formal problem statement Our input is a set of n points P = {p1, . . . , pn} in general
position in Rd. For convenience, we identify the points with their corresponding vector. For all
points in P we are given k binary-valued properties, represented as functions ai : P → {−1, 1}
for 1 ≤ i ≤ k. We denote the subset of points p ∈ P with ai(p) = 1 as P i

+, and the subset of
points p ∈ P with ai(p) = −1 as P i

− for 1 ≤ i ≤ k. For a point p ∈ P , we refer to the tuple
(a1(p), . . . , ak(p)) as the label of p. Note that there are 2k different possible labels.

We assume that it is “easy” to classify the points in P according to the properties by
using the point coordinates. Our goal is to compute a projection P ′ of P to lower dimensions
such that the first property a1 becomes hard to classify in P ′, and the other properties
a2, . . . , ak remain easy to classify in P ′. We denote by P− = P 1

− and P+ = P 1
+ the point

sets in which the special property a1 is set to −1 and +1, respectively. Similarly, we use
P ′− and P ′+ for the point sets P− and P+ after projection. Usually we consider a projection
along a single unit vector w (‖w‖ = 1), mapping points in Rd to points in Rd−1. For pi ∈ P ,
we denote its projection as p′i = pi − (pi · w)w (here (pi · w) is the dot product). Note that
this projection simply restricts p′i to a hyperplane in Rd, rather than mapping it to Rd−1.
Sometimes we will consider projections along multiple vectors w1, . . . , wr. In that case we
assume that {wj}r

j=1 form an orthonormal system, such that we can write the projection as
p′i = pi −

∑r
j=1(pi · wj)wi. Again, we assume that p′i still lies in Rd, but is restricted to the

(d− r)-dimensional flat that is orthogonal to w1, . . . , wr and passes through the origin.
We consider different models to define what is easy or hard to classify, based on some

form of “separability” between two point sets. We say that a property ai is separated in a
point set P to indicate that P i

− and P i
+ are separated (see Figure 1 for an example in R2).

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

3:2 Obstructing Classification via Projection

Figure 1 Left: data points with two linearly-separable properties: shape and color. Middle: a
projection which keeps shape separated, but not color. Right: a projection with the opposite effect.

Contributions and organization In Section 2 we consider linear separability as the classifi-
cation model. We first show that, if even one possible label is missing from P , then there
may be no projection that eliminates the linear separability of a1 whilst keeping the linear
separability of the other properties. On the other hand, if all possible labels are present
in the point set, then we show that it is always possible to achieve this goal. In Section 3
we introduce (b, c)-separability, which is a generalization of linear separability. Although a
single projection is no longer sufficient to avoid (b, c)-separability of a1 after projection, we
show that the number of projections needed to achieve this is linked to the Helly number
of the respective separability predicate. We then establish bounds on the Helly numbers of
(b, c)-separability for specific values of b and c.

2 Linear separability

One of the machine learning techniques that use linear separability for classification are
support vector machines (SVMs). SVMs compute the (optimal) hyperplane that separates
two classes in the training data (if linearly separable), and use that hyperplane for further
classifications. Linear separability is therefore a good first model to consider for classification.

For a point set P and property ai : P → {−1, 1}, we say that ai is easy to classify on P
if P i
− and P i

+ are (strictly) linearly separable; we say that ai is hard to classify otherwise.
Two point sets P and Q (P,Q ⊂ Rd) are linearly separable if there exists a hyperplane H
separating P from Q. The point sets are strictly linearly separable if we can additionally
require that none of the points lie on H. Equivalently, the point sets P and Q are linearly
separable if there exists a unit vector v ∈ Rd and constant c ∈ R such that (v · p) ≤ c for all
p ∈ P and (v · q) ≥ c for all q ∈ Q (v is the normal vector of the hyperplane H). We say
that P and Q are linearly separable along v. If the inequalities can be strict, then the point
sets are strictly linearly separable.

Let CH(P) denote the convex hull of a point set P . By definition, we have that x ∈ CH(P)
if and only if there exist coefficients λi ≥ 0 such that x =

∑n
i=1 λipi and

∑n
i=1 λi = 1. The

following lemma is illustrated in Figure 2.

I Lemma 1. Let P and Q be two point sets. If we project both P and Q along a unit vector
w to obtain P ′ and Q′, then P ′ and Q′ are not strictly linearly separable iff there exists a
line ` parallel to w that intersects both CH(P) and CH(Q). If ` intersects the interior of
CH(P) or CH(Q), then P ′ and Q′ are not linearly separable.

Assume now that the properties a1, . . . , ak are strictly linearly separable in P . Can we
project P along a unit vector w so that a2, . . . , ak are still strictly linearly separable in
P ′, but a1 is not? We consider two variants: (1) separation preserving and (2) separability

P. Haghighatkhah, W. Meulemans, B. Speckmann, J. Urhausen, and K. Verbeek 3:3

w
`

P

Q

w
`

Figure 2 Line ` intersects both CH(P) and CH(Q); after projection the convex hulls intersect.

preserving projections. The former preserves a fixed set of separating hyperplanes H2, . . . ,Hk

for properties a2, . . . , ak, the latter preserves only separability of a2, . . . , ak.
Lemma 2 proves that there exist point sets using only 2k − 1 possible labels for which

every separability preserving projection also keeps a1 strictly linearly separable after projec-
tion. The idea is to use the properties a2, . . . , ak to sufficiently restrict the direction of a
separability preserving projection to make it impossible for this projection to eliminate the
linear separability of a1. A simple example for d = k = 2 is shown in Figure 3.

(1, 0)

(0, 1)

ε

Figure 3 To keep a2 (shape) linearly separable after projection, the projection vector w should
be nearly vertical, but then a1 (color) will also remain linearly separable.

I Lemma 2. For all k > 1 and d ≥ k, there exist point sets P in Rd with properties
a1, . . . , ak using 2k − 1 labels such that any separability preserving projection along a unit
vector w also keeps a1 strictly linearly separable after projection.

We now assume that all 2k labels are used in P . Note that this assumption directly
implies that d ≥ k: take any set of k separating hyperplanes H1, . . . ,Hk for the k properties
and consider the arrangement formed by the hyperplanes in Rd. Clearly, all points in the
same cell of the arrangement must have the same label. However, it is well-known that it is
not possible to create 2k cells in Rd with only k hyperplanes if d < k. This has also interesting
implications for the case when d = k: if we apply a separation preserving projection to P ,
then a1 cannot be linearly separable in P ′, since P ′ is embedded in Rk−1.

We show that, if d ≥ k, then there always exists a separation preserving projection that
eliminates the strict linear separability of a1. Our proof uses a natural variant of both
Carathéodory’s and Radon’s theorem; see also Figure 4.

EuroCG’21

3:4 Obstructing Classification via Projection

Figure 4 Lemma 3 in 2D: only 4 points are needed to construct two intersecting convex hulls.

I Lemma 3. Let P and Q be two points sets in Rd such that CH(P)∩CH(Q) 6= ∅. Then there
exist subsets P ∗ ⊆ P and Q∗ ⊆ Q such that CH(P ∗) ∩ CH(Q∗) 6= ∅ and |P ∗|+ |Q∗| = d+ 2.

I Theorem 4. If P is a point set in Rd with k (d ≥ k) properties a1, . . . , ak using all 2k labels,
then there exists a separation preserving projection along a unit vector w that eliminates the
strict linear separability of a1.

Proof. We provide an explicit construction of the vector w. Let H2, . . . ,Hk be any separating
hyperplanes for each of the properties a2, . . . , ak in P , respectively. Let vi be the normal
of hyperplane Hi for 2 ≤ i ≤ k, and let A ⊂ Rd be the (k − 1)-dimensional linear subspace
spanned by v2, . . . , vk. Furthermore, let H∗ =

⋂k
i=2 Hi be the (d− k + 1)-dimensional flat

that is the intersection of the separating hyperplanes. Note that a projection along a vector
w is separation preserving if and only if w is parallel to H∗. Let T (p) be the point obtained
by performing an orthogonal projection of a point p ∈ P onto A. For ease of argument, we
also directly apply an affine transformation that maps H∗ (which intersects A in one point)
to the origin, and maps v2, . . . , vk to the standard basis vectors of Rk−1.

Now define Q− = {T (p) | p ∈ P−} and Q+ = {T (p) | p ∈ P+}. By construction, since all
labels are used by P , both Q− and Q+ must have a point in each orthant of Rk−1. If a point
set Q has a point in each orthant, then CH(Q) must contain the origin; because if it does
not, then there exists a vector v such that (v · q) > 0 for all q ∈ Q. But there must exist a
point q∗ ∈ Q whose sign for each coordinate is opposite from that of v (or zero), which means
that (v · q∗) ≤ 0, a contradiction. Thus, both CH(Q−) and CH(Q+) contain the origin, and
CH(Q−) ∩ CH(Q+) 6= ∅. We now apply Lemma 3 to Q− and Q+ to obtain Q∗− and Q∗+
consisting of k + 1 points in total. Let P ∗ ⊆ P be the corresponding set of original points
that map to Q∗− ∪Q∗+. We can now construct w as follows. Pick a point p∗ ∈ P ∗, and let F1
be the unique (k − 1)-dimensional flat that contains the remaining points in P ∗. Let F2 be
the flat obtained by translating H∗ to contain p∗. Since F1 is (k − 1)-dimensional and F2 is
(d − k + 1)-dimensional, F1 ∩ F2 consists of a single point r ∈ Rd. The desired projection
vector is now simply w = r − p∗ (normalized if necessary).

We finally show that the constructed vector w has the correct properties. First of all, w
is parallel to H∗ by construction, and hence the projection along w is separation preserving.
Second, since r ∈ F1 and p∗ is projected to coincide with r, all points in P ∗ will lie on
the same (k − 1)-dimensional flat F ′1 after projection. Also, since w is orthogonal to A,
there exists an affine map from Q∗− ∪ Q∗+ to P ∗ (after projection). Thus, we obtain that
CH(P ′−) ∩ CH(P ′+) 6= ∅; in particular, the convex hulls must intersect on F ′1. This implies
that a1 is not strictly linearly separable after projection. J

3 Generalized separability

In this section we consider a generalization of linear separability for classification. One
approach to achieve more complicated classification boundaries is to use clustering: the label

P. Haghighatkhah, W. Meulemans, B. Speckmann, J. Urhausen, and K. Verbeek 3:5

of a point is determined by the label of the “nearest” cluster. If we use more than one cluster
per class, then the resulting classification is more expressive than classification by linear
separation. This approach is also strongly related to nearest neighbor classification, another
common machine learning technique. Our generalized definition of separability is inspired by
such clustering-based classifications, with convex sets modeling the clusters.

Let P and Q be two point sets in Rd. We say that P and Q are (b, c)-separable if there
exist b convex sets S1, . . . , Sb and c convex sets T1, . . . , Tc such that for every point p ∈ P
we have that p ∈ S =

⋃
i Si, for every point q ∈ Q we have that q ∈ T =

⋃
j Tj , and that

S∩T = ∅ (see Figure 5). We can assume that b ≤ c. Linear separability and (1, 1)-separability
are equivalent.

Figure 5 Left: two points sets P (red) and Q (blue) that are (1, 2)-separable, but not linearly
separable. Right: two point sets that are (2, 2)-separable, but not (1, x)-separable for any value of x.

Given a point set P along with k properties a1, . . . , ak, the goal is now to compute a
separation preserving projection to a point set P ′ such that a1 is not (b, c)-separable in P ′.
We again assume that all k properties are strictly linearly separable in P . To achieve this
goal, we may need to project along multiple vectors w1, . . . , wr.

We first generalize Theorem 4 to a generic separability predicate F (P,Q) for point sets
P,Q ⊂ Rd.1 A separability predicate is well-behaved if it satisfies the following conditions:

1. If F (P,Q) does not hold, then F (P ′, Q′) does not hold, where P ′ and Q′ are obtained by
projecting P and Q along a single unit vector, respectively.

2. If P ′ ⊆ P and Q′ ⊆ Q, then F (P,Q) implies F (P ′, Q′).
3. If A is an affine map, then F (P,Q) holds if and only if F (A(P),A(Q)) holds.

Now assume that F has the Helly-type property [5]: if F (P,Q) does not hold, then there
exist small (bounded by a constant) subsets P ∗ ⊆ P and Q∗ ⊆ Q such that F (P ∗, Q∗) also
does not hold. The worst-case size of |P ∗|+ |Q∗| often depends on the number of dimensions
d of P and Q, and is referred to as the Helly number mF (d) of F . We can extend Theorem 4
to well-behaved separability predicates with the Helly-type property. The proof is analogous
to the proof of Theorem 4, except that we now need to project mF (k− 1) points to the same
(k − 1)-flat, and hence need mF (k − 1)− k projections.

I Theorem 5. Let P be a point set in Rd with k (d ≥ k) properties a1, . . . , ak and let F be a
well-behaved separation predicate in Rd. Either we can use at most min(mF (k−1)−k, d−k+1)
separation preserving projections to eliminate F (P−, P+), or this cannot be achieved with
any number of separation preserving projections.

Given Theorem 5, we now focus on the Helly numbers of (b, c)-separability for specific b
and c. Unfortunately, not every form of (b, c)-separability has the Helly-type property.

1 We assume that F is defined independently from the dimensionality of P and Q (like (b, c)-separability).
We do however require that P and Q are embedded in the same space.

EuroCG’21

3:6 Obstructing Classification via Projection

I Lemma 6. In d ≥ 2 dimensions, (1, 2)-separability does not have the Helly-type property.

Next, we consider (1,∞)-separability. This means that one of the point sets, say P , must
be covered with one convex set, but we can use arbitrarily many convex sets to cover Q.
Equivalently, P and Q are (1,∞)-separable if CH(P) ∩Q = ∅ or P ∩ CH(Q) = ∅.

I Lemma 7. In d ≥ 1 dimensions, (1,∞)-separability has Helly number 2d+ 2.

4 Conclusion

We studied the use of projections for obstructing classification of high-dimensional Euclidean
point data. Our results show that, if not all possible labels are present in the data, then it may
not be possible to eliminate the linear separability of one property while preserving it for the
other properties. This is not surprising if a property that we aim to keep is strongly correlated
with the property we aim to hide. Nonetheless, one should be aware of this effect when
employing projections for this purpose in practice. When going beyond linear separability,
we see that the number of projections required to hide a property increases significantly
in theory, and we expect a similar effect when using neural networks for classification in
practice. In other words, projecting a dataset once (or few times) may not be sufficient to
hide a property from a smart classifier. Projection, as a linear transformation, can however
be effective in eliminating certain linear relations in the data.

References
1 Mohsen Abbasi, Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian.

Fairness in representation: quantifying stereotyping as a representational harm. In Proc.
SIAM International Conference on Data Mining, pages 801–809, 2019. doi:10.1137/1.
9781611975673.90.

2 Alexander Amini, Ava P. Soleimany, Wilko Schwarting, Sangeeta N. Bhatia, and Daniela
Rus. Uncovering and mitigating algorithmic bias through learned latent structure. In Proc.
AAAI/ACM Conference on AI, Ethics, and Society, pages 289–295, 2019. doi:10.1145/
3306618.3314243.

3 Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
In Advances in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems, pages 3315–3323, 2016.

4 Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification with-
out discrimination. Knowledge and Information Systems, 33:1–33, 2011. doi:10.1007/
s10115-011-0463-8.

5 Rephael Wenger. Helly-type theorems and geometric transversals. In Jacob E. Goodman
and Joseph O’Rourke, editors, Handbook of Discrete and Computational Geometry, second
edition, pages 73–96. Chapman and Hall/CRC, 2004. doi:10.1201/9781420035315.ch4.

6 Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with
adversarial learning. In Proc. AAAI/ACM Conference on AI, Ethics, and Society, pages
335–340, 2018. doi:10.1145/3278721.3278779.

Route Reconstruction from Traffic Flow via
Representative Trajectories
Bram Custers1, Wouter Meulemans1, Bettina Speckmann1, and
Kevin Verbeek1

1 TU Eindhoven, the Netherlands
[b.a.custers|w.meulemans|b.speckmann|k.a.b.verbeek]@tue.nl

Related Version https://arxiv.org/abs/2012.05019

1 Introduction

Understanding human mobility patterns is an important aspect of traffic analysis and urban
planning. Trajectory data provide detailed views on specific routes, but typically do not
capture all traffic. On the other hand, loop detectors built into the road network capture all
traffic at specific locations, but provide no information on the individual routes. Given a set
of loop-detector data as well as a (small) set of representative trajectories, we investigate how
one can effectively combine these two to create a more complete picture of the underlying
mobility patterns. Specifically, we want to reconstruct a realistic set of routes from the
loop-detector data, using the given trajectories as representatives of typical behavior.

We model the loop-detector data as a network flow field that needs to be covered by
the reconstructed routes and we capture the realism of the routes via the strong Fréchet
distance to the representative trajectories. The full version discussed our modeling decisions
in detail; we summarize the resulting definitions, notation, and formal problem statement in
Section 2. Several forms of the algorithmic problem are NP-hard. Hence we explore heuristic
approaches which decompose the flow well, while following the representative trajectories
to varying degrees. In Section 3, we propose an iterative Fréchet Routes (FR) heuristic
which generates candidate routes which have bounded Fréchet distance to the representative
trajectories. We also describe a variant of multi-commodity min-cost flow (MCMCF) which
is only loosely coupled to the trajectories.

In Section 4 we experimentally evaluate our approaches in comparison to a global min-
cost flow (GMCF), which is essentially agnostic to the representative trajectories. To make
meaningful claims in terms of quality, we derive a ground truth by map-matching real-world
trajectories and by generating synthetic routes in a real-world network. We find that GMCF
explains the flow best, but produces a large number of often nonsensical routes (significantly
more than the ground truth). MCMCF produces a large number of mostly realistic routes
which explain the flow reasonably well. In contrast, FR produces much smaller sets of
realistic routes which still explain the flow well, at the cost of a higher running time.

Related work Our problem is closely related to flow decomposition [1]. Given a set of paths
that decompose the flow, it is NP-hard to determine the correct integral coefficients for each
path [10]. Minimizing the number of paths in a decomposition is also NP-hard [14], and thus
various approximation algorithms have been developed [6].

Reconstructing a route (in a network) given a GPS trajectory is referred to as map-
matching [2, 7, 8, 12, 15], see also the survey by Quddus et al. [13]. Of specific relevance
to our work is the result by Alt et al. [2] which solves map-matching under the Fréchet
distance (see Section 3). For simple routes, map-matching is NP-hard for various distance
measures [4, 11], though on a grid routes with bounded distance can be found efficiently [4].
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

4:2 Route Reconstruction from Traffic Flow via Representative Trajectories

2 Preliminaries

Our input has three components: (1) a road network, given as a graph G = (V,E) with n
vertices and m edges, embedded in R2; (2) a set of representative trajectories T , each encoded
by a sequence 〈p1, . . . , pn〉 of measurements, with pi = (xi, yi) ∈ R2; and (3) loop-detector
data. We model the loop-detector data as a flow field: a function φ : E → R≥0 that assigns
a traffic volume to each edge in the road network G.

Our goal is to reconstruct a realistic set of routes from the loop-detector data, using the
trajectories as representatives of typical behavior. A route P = 〈e1, . . . , ek〉 is a sequence of
edges that encode the traversed path in the road network G. We say that a route is simple
if it visits every vertex in G at most once. For ease of notation, we introduce the function
M(P, e) that indicates how often the edge e ∈ E is traversed in the route P .

We define a reconstruction P of the flow field φ as a pair P = (P, c) with a base set of
routes P (the basis) and fractional coefficients c : P → R≥0. A reconstruction (P, c) defines
a flow (f(P,c), SP , TP) as f(P,c)(e) =

∑
P∈PM(P, e)c(P) for all e ∈ E, where SP and TP are

the sets of start and end vertices of the routes in P, respectively. We quantify how well the
reconstruction represents the flow field via the flow deviation ∆(P, c, φ), which we define as
∆(P, c, φ) =

∑
e∈E(φ(e)− f(P,c)(e))2. We say that a route is realistic, if the minimal Fréchet

distance [3] to a trajectory T ∈ T is at most some parameter ε. We call a reconstruction
realistic if all its routes are realistic.

Formal problem statement Given a road network G = (V,E), the representative trajec-
tories T , the flow field φ induced by the loop-detector data, and realism parameter ε > 0,
compute a realistic reconstruction (P, c) such that the flow deviation ∆(P, c, φ) is minimized.

3 Route reconstruction algorithms

We describe two families of heuristics: Fréchet Routes (FR) which generate only realistic routes
(Section 3.1) and variants of min-cost flow which relax the realism constraint (Section 3.2).

3.1 Fréchet Routes
To compute a reconstruction, we decouple finding a base set P and coefficients c. We do so
iteratively, each time refining P and then computing the corresponding c. In each iteration,
we perform three steps: (1) we generate candidate routes for each representative in T and
add these to P; (2) we compute the optimal c for the current base set, which can be done
efficiently [5, 9]; (3) we prune P by eliminating duplicates and routes with coefficient zero.

The main question is how to generate candidate routes. To ensure realism, we modify
the map-matching algorithm by Alt et al. [2] to generate a candidate for a trajectory T ∈ T ;
see the full version for a short summary. This algorithm computes a path in a network G
that is within Fréchet distance ε of T . Here we interpret T as a piece-wise linear function. A
point T (τ) is reachable at a vertex v of G, if there is a path in G ending at v, such that the
Fréchet distance between this path and the subtrajectory up to T (τ) is at most ε. In the
algorithm, the reachable points are represented as reachable intervals at each vertex: parts
of the trajectory that have such a path ending at the vertex with Fréchet distance at most ε.

To achieve diversity and find routes that are likely to reduce the flow deviation, we
present two extensions to this technique below. Both are steered by the residual flow field
φr : E → R, defined as φr(e) = φ(e)−∑

P∈PM(P, e)c(P) for all edges e ∈ E. Specifically,
we want to find candidate routes that currently have high residual flow.

B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek 4:3

Edge-inclusion Fréchet Routes (EFR) We modify the map-matching algorithm to find a
route that must include a specific edge e = (u, v) with high residual flow. To do so, we
first construct a route from the start of T to u, finding all reachable intervals at u. Once
these are found, we project these via e to reachable intervals at v and start a new search
to construct a route from v to the end of T . We do this for up to k edges with the highest
positive residual flow that are fully within the Minkowski sum of T with a disk of radius ε,
for some parameter k ≥ 1.

EFR stops its search in the free-space manifold as soon as the begin/endpoint of the
reconstructed route lies within ε distance of the start/end of T . This might ignore flow on
edges in the ε-vicinity of the start and end of T . Hence, we greedily add suitable edges to
the ends of the route, taking care not to introduce cycles and not to decrease the average
amount of residual flow per edge in the route.

Weighted Fréchet Routes (WFR) Contrasting EFR, we now aim to find a route with high
total residual flow (weight). To this end, we refine each reachable interval into subintervals,
based on a lower bound of the total weight by which it can be reached. This lower bound
is simply the weight of the interval at u plus the residual flow of (u, v) when following the
left-right pointers of an edge (u, v) ∈ E. Due to monotonicity, the subintervals increase
in weight along the interval; the algorithm possibly prunes or shortens intervals found
previously, if their lower bound was weaker. Cycles in the road network G can lead to cycles
of dependency between the reachable intervals. To break such cyclic dependencies in deriving
the candidate route, we construct a high-weight route explicitly via back-tracking, using each
refinement at most once. Note that the resulting route may still contain cycles.

Hybrid (WEFR) We take the union of candidate routes generated by EFR and WFR.

3.2 Min-cost flow
We now describe two approaches that relax the realism constraint. For both, we solve a variant
of the min-cost flow problem for φ and then decompose the result into a reconstruction.

Multi-commodity min-cost flow (MCMCF) For each representative trajectory T we con-
struct a subgraph G(T) of G consisting of all vertices and edges within distance ε of T .
Vertices that are within distance ε from the start or end of T can act as sources or sinks of a
flow in G(T). Each representative trajectory hence induces a single (min-cost) flow problem.
Using the graphs G(T) for all T ∈ T , we construct a multi-commodity min-cost flow problem
on G, where each trajectory T has an associated commodity which is restricted to G(T). We
can solve the resulting MCMCF using standard software packages (see Section 4).

Global min-cost flow (GMCF) We retain only the sources and sinks of MCMCF and
otherwise impose no restriction on the flow. This results in a min-cost flow problem over the
entire road network G, which is essentially agnostic to the representative trajectories.

Heuristic path reconstruction Both approaches yield an edge flow (per commodity or
overall). Our goal is to approximate these flows via a reconstruction that may use non-simple
paths. For this, we first decompose the flow into path flows and cycle flows [1]. For every
cycle flow, we add it to a path flow with which it shares a vertex; if such a path flow does
not exist, we discard it. The resulting paths form the reconstruction.

EuroCG’21

4:4 Route Reconstruction from Traffic Flow via Representative Trajectories

4 Experimental Evaluation

We implemented all algorithms in C++ using Boost and MoveTK (https://movetk.win.tue.nl).
For flow problems and determining coefficients c, we use IBM ILOG CPLEX 12.9. We ran
all experiments single-threaded on an Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz.

Data Our road network G are the roads surrounding The Hague (the Netherlands) extracted
from OpenStreetMap1 with n = 60 277 nodes and m = 100 654 edges; see Figure 1. We
derive ground-truth sets of routes P∗ on G based on two complete sets of trajectories T ∗.
HS: T ∗ = P∗ consists of 5 000 shortest paths between random locations in G; variation is

created by randomly perturbing every edge length with a value in the interval [0, γ], for
some parameter γ ≥ 0, separately for each shortest-path computation; we use γ = 500m.

HR: T ∗ is a set of 11 445 real-world trajectories in the The Hague area, provided by HERE
Technologies. We map-match T ∗ to G to obtain P∗. To avoid bias, we map-match
using [16] instead of [2], as the latter is the basis for our Fréchet Routes.

We derive the flow field φ for G from P∗. The representative trajectories T are a random
sample of 5% of T ∗. For each dataset we create seven such samples.

Measures We quantify the performance via the five measures below (lower is better).
flow deviation flow induced by the reconstruction vs. input flow field: ∆(P, c, φ).
realism weighted average distance from reconstruction to ground truth:∑

P∈P(c(P) minT∈T ∗ dF (P, T))/
∑

P∈P c(P).
coverage average distance from ground truth to reconstruction: avgP ∗∈P∗ minP∈P dF (P ∗, P).
complexity number of reconstructed routes (size of the basis): |P|.
running time wall-clock time in minutes.

1 Data © OpenStreetMap contributors; retrieved from https://planet.osm.org/ in 2020.

HS φ

0

205

HR φ

0

1350

Figure 1 Road network of The Hague, |V | = 60 277, |E| = 100 654 and its input flow fields.

B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek 4:5

Results We compare WEFR, MCMCF, and GMCF. Figure 2 visualizes the flow deviation
as well as the ten reconstructed routes with the highest coefficient c. Though the overall
deviation of GMCF (1.8 × 107) is lower than that of MCMCF (3.7 × 107) and WEFR
(3.8×107), WEFR shows a spread of flow deviation over the network and often overrepresents
φ, whereas GMCF and MCMCF have concentrated deviation along the major traffic axis
and often underrepresent. We note that the most contributing routes for WEFR look like
actual routes, whereas the other methods give fairly unintuitive routes: they typically are
either very short (MCMCF) or follow an unrealistic path (GMCF).

We investigate the dependency on the realism threshold ε, using values {10m, 20m, 50m,
100m, 150m, 200m, 250m}. For WEFR we use imax = 8 and k = 2 (see full version for details).

W
EF

R

Residual flow field 10 highest-c routes

M
C

M
C

F
G

M
C

F

−1350 0 1350

Figure 2 Residual flow field at the end of the algorithm (left) and the 10 highest-coefficient
reconstructed routes (right) for one of the samples of HR for each technique with ε = 100m.

EuroCG’21

4:6 Route Reconstruction from Traffic Flow via Representative Trajectories

0 100 200
ε (m)

0

500

1000

1500

2000
C

ov
er

ag
e

(m
)

0 100 200
ε (m)

0

500

1000

1500

2000

2500

R
ea

lis
m

(m
)

0 100 200
ε (m)

0

50

100

150

200

R
un

ni
ng

tim
e

(m
in

)
0 100 200

ε (m)

0

10000

20000

30000

40000

50000

C
om

pl
ex

ity

0 100 200
ε (m)

0.0

0.2

0.4

0.6

0.8

1.0
D

ev
ia

tio
n

×107

WEFR
MCMCF
GMCF

0 100 200
ε (m)

0

2000

4000

6000

C
ov

er
ag

e
(m

)

0 100 200
ε (m)

0

500

1000

1500

2000

R
ea

lis
m

(m
)

0 100 200
ε (m)

0

100

200

300

400

R
un

ni
ng

tim
e

(m
in

)

0 100 200
ε (m)

0

20000

40000

60000

C
om

pl
ex

ity

0 100 200
ε (m)

0

1

2

3

4

5

D
ev

ia
tio

n

×108

WEFR
MCMCF
GMCF

Figure 3 Results for our methods on HS (top) and HR (bottom) for varying ε.

B. Custers, W. Meulemans, B. Speckmann, and K. Verbeek 4:7

We average the results over the seven samples per HS and HR. Since the complexity of
MCMCF and GMCF is considerably larger than that of WEFR, we analyze realism and
coverage for the 2 500 routes with highest coefficient (which is more than the complexity of
WEFR). See Figure 3: generally the same patterns arise. Notably, realism improves with ε
for GMCF, although it remains much worse than for WEFR and MCMCF. We attribute this
to the flexibility offered by having more starting vertices in G available. MCMCF and WEFR
behave similarly in coverage, realism and deviation. However, MCMCF has significantly
higher complexity, whereas WEFR has higher running time for large ε. This suggests that
realism is somewhat inherent in the flow information, demonstrating that the data sources
are complementary. Finally, the pattern in coverage for GMCF and for WEFR and MCMCF
seems to be opposite for the two datasets. We attribute this to the need for map-matching
in HR which causes deviations between the flow field and the representative trajectories.

Representatives Our experiments show that increasing the distance threshold improves
coverage and deviation, but reduces realism and efficiency. To mitigate these effects, we could
preprocess using clustering and proceed with a set of central trajectories only, as very similar
representatives do not offer much additional flexibility to the reconstruction. Furthermore,
we could use the information from such clustering methods, or from map-matching accuracy,
to vary the threshold ε per representative, to relate realism to the uncertainty in the data.
We leave to future work to investigate how such techniques affect efficiency and quality.

Reconstruction Though MCMCF does not guarantee a bound on the Fréchet distance, it
performs similarly to WEFR in realism, albeit with a very large basis. We could postprocess
paths to allow only those that are realistic or attempt to incorporate realism into the path
reconstruction phase of MCMCF, thereby reducing the complexity. Still, routes with a
small Fréchet distance to the representatives can back-track for short distances, resulting in
non-intuitive results. In future work we plan to consider stricter models for realism which
still allow us to avoid the computational hardness associated with the simplicity requirement.

References
1 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,

Algorithms, and Applications. Pearson Education, 1993.
2 Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar maps. Journal

of Algorithms, 49(2):262–283, 2003. doi:10.1016/S0196-6774(03)00085-3.
3 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal

curves. International Journal of Computational Geometry & Applications, 5(1):75–91, 1995.
doi:10.1142/S0218195995000064.

4 Quirijn W. Bouts, Irina Kostitsyna, Marc van Kreveld, Wouter Meulemans, Willem Sonke,
and Kevin Verbeek. Mapping polygons to the grid with small Hausdorff and Fréchet
distance. In Proc. 24th European Symposium on Algorithms, volume 57 of LIPIcs, pages
22:1–22:16, 2016. doi:10.4230/LIPIcs.ESA.2016.22.

5 Rasmus Bro and Sijmen De Jong. A fast non-negativity-constrained least squares algorithm.
Journal of Chemometrics, 11(5):393–401, 1997. doi:10.1002/(SICI)1099-128X(199709/
10)11:5<393::AID-CEM483>3.0.CO;2-L.

6 Tzvika Hartman, Avinatan Hassidim, Haim Kaplan, Danny Raz, and Michal Segalov. How
to split a flow? In Proc. IEEE International Conference on Computer Communications,
pages 828–836, 2012. doi:10.1109/INFCOM.2012.6195830.

EuroCG’21

4:8 Route Reconstruction from Traffic Flow via Representative Trajectories

7 Jan-Henrik Haunert and Benedikt Budig. An algorithm for map matching given incomplete
road data. In Proc. 20th International Conference on Advances in Geographic Information
Systems, pages 510–513, 2012. doi:10.1145/2424321.2424402.

8 George R. Jagadeesh and Thambipillai Srikanthan. Online map-matching of noisy and
sparse location data with hidden Markov and route choice models. IEEE Transactions
on Intelligent Transportation Systems, 18(9):2423–2434, 2017. doi:10.1109/TITS.2017.
2647967.

9 Dongmin Kim, Suvrit Sra, and Inderjit S Dhillon. Tackling box-constrained optimiza-
tion via a new projected quasi-Newton approach. SIAM Journal on Scientific Computing,
32(6):3548–3563, 2010. doi:10.1137/08073812X.

10 Kyle Kloster, Philipp Kuinke, Michael P. O’Brien, Felix Reidl, Fernando Sánchez Villaamil,
Blair D. Sullivan, and Andrew van der Poel. A practical FPT algorithm for flow decom-
position and transcript assembly. In Proc. 20th Workshop on Algorithm Engineering and
Experiments, pages 75–86, 2018. doi:10.1137/1.9781611975055.7.

11 Maarten Löffler and Wouter Meulemans. Discretized approaches to schematization. In
Proc. 29th Canadian Conference on Computational Geometry, 2017.

12 Paul Newson and John Krumm. Hidden Markov map matching through noise and sparse-
ness. In Proc. 17th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, pages 336–343, 2009. doi:10.1145/1653771.1653818.

13 Mohammed A. Quddus, Washington Y. Ochieng, and Robert B. Noland. Current map-
matching algorithms for transport applications: State-of-the art and future research di-
rections. Transportation Research Part C: Emerging Technologies, 15(5):312–328, 2007.
doi:10.1016/j.trc.2007.05.002.

14 Benedicte Vatinlen, Fabrice Chauvet, Philippe Chrétienne, and Philippe Mahey. Simple
bounds and greedy algorithms for decomposing a flow into a minimal set of paths. European
Journal of Operational Research, 185(3):1390–1401, 2008. doi:10.1016/j.ejor.2006.05.
043.

15 Carola Wenk, Randall Salas, and Dieter Pfoser. Addressing the need for map-matching
speed: Localizing global curve-matching algorithms. In Proc. 18th International Conference
on Scientific and Statistical Database Management, pages 379–388, 2006. doi:10.1109/
SSDBM.2006.11.

16 Can Yang and Gyozo Gidofalvi. Fast map matching, an algorithm integrating hidden
Markov model with precomputation. International Journal of Geographical Information
Science, 32(3):547–570, 2018. doi:10.1080/13658816.2017.1400548.

Route-preserving Road Network Generalization
Mees van de Kerkhof1, Irina Kostitsyna2, Marc van Kreveld1,
Maarten Löffler1, and Tim Ophelders2

1 Utrecht University
{m.a.vandekerkhof, m.j.vankreveld, m.loffler}@uu.nl

2 Eindhoven University of Technology
{i.kostitsyna, t.a.e.ophelders}@tue.nl

Abstract
We investigate an approach for road network generalization, where the input is a road network and
a collection of routes on these roads. The aim is to select a subset of the road network in which
many routes of the collection are fully preserved. We investigate the complexity of this problem and
show that it is NP-hard even when heavily restricted.

1 Introduction

Road network generalization is the process of reducing a road network in size by selecting
only the most relevant roads. Data-driven methods rely on other data than just the road
network. Car trajectories form the most obvious such other data source. Since route planning
and traffic analysis often use a road map as an interface, the visualization and analysis of
road networks are linked. If we want to support both use-cases simultaneously, we can use
route-preserving road network generalization (RPRNG), which we formulate as follows:

Given a road network, represented by an embedded graph G, a set R of routes on
this network, and a length budget B, compute a subgraph of G whose summed edge
length is at most B and which contains the maximum number of routes of R in full.

This formulation has advantages over generalization that is not route-preserving: the
subgraph that is obtained will represent as many driven routes as possible, with a preference
for routes that are driven more often. The formulation is simple and intuitive, and the budget
can be adjusted depending on the degree of generalization that is desired.

We want to emphasize the subtle difference between maximizing the total number of
routes that are fully contained, and maximizing the total road usage of the roads chosen
in the generalized network. In the latter problem, we can convert the routes into counts
on the edges of the graph G, and otherwise forget about these routes. We believe that
our version of preserving full routes gives rise to fewer artifacts. Figure 1 illustrates the
difference and potential for artifacts. Maximum road usage leads to three “dead ends” in the
generalized network that are not at destinations, and not a single route is fully preserved.
Route-preserving generalization does not have dead ends, and two full routes are preserved.

1.1 Related work
There has already been a lot of research on what makes a good road network generalization.
Among the criteria used for generalization, many are cartography-focused, in the sense that
the generalized road network should “look good”. These criteria include avoiding small faces
between the roads, avoiding coalescence, and controlling density [2, 4, 8, 9, 11, 20, 23, 24].
Other methods give preference to sequences of roads that are smooth continuations of each
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

5:2 Route-preserving Road Network Generalization

Figure 1 Left, a road network with six routes drawn. Vertices of the network that are the
endpoint of a route are shown as disks. Middle, generalization according to maximum road usage
with a budget of 11: all roads covered twice or more are chosen. Right, two equivalent outcomes of
route-preserving generalization with a budget of 10: there are two ways to contain two routes with a
budget of 10. A budget of 11 does not help to contain more routes.

other (strokes) [1, 10, 18, 16]. A global criterion that is often used is connectivity of the
generalized network [3, 12], which is one of several structural graph-based criteria [6, 7, 21].

The most important criterion for continuous generalization is avoiding sudden changes,
and avoiding that when zooming in one direction, a road segment disappears and then
reappears [3, 15]. This type of behavior is to be avoided for all continuous generalization
operations. One of the existing methods to road network generalization is coined “selective
omission”, where road segments, extended by good continuation to strokes, are scored based
on geometric, topological, and attribute factors [2, 24]. Selecting roads based on how many
routes are preserved can be used as another way for performing selective omission. Thus, a
heuristical solver for the RPRNG problem can be adapted to support continuous zooming.

One of the first road network generalization methods can be called a precursor to data-
driven generalization. Thomson and Richardson [17] let a subset of the vertices of a road
network be sources and destinations, and they compute shortest paths between each pair.
This gives artificial road usage, and they select the most used roads based on this computation.
Similarly, road usage can be estimated based on an agent-based simulation [14]. While data-
driven geography [13] has been around for longer, data-driven road network generalization
has—to the best of our knowledge—not been studied until very recently. Fekete et al. [5]
focus on finding the optimal placement for k points on a road network to maximize the
length of real-data subtrajectories captured between each pair of points, which could also be
applied for road network generalization. Yu et al. [22] refine road network generalization by
selecting strokes in the network and incorporating traffic flows mined from trajectory data.

Besides the few other data-driven road network generalization papers, many methods use
a scoring of roads, and clearly the road score can be based on actual road usage, which would
be data driven (in both meanings of the word “driven”). Note that our route-preserving
approach uses data in a different way: it is driven-route driven.

From the theoretical perspective, our research problem involves a weighted graph with
paths on that graph. Our problem does not use coordinates of the road network explicitly
(only to determine lengths of road segments), nor the coordinates and times of the trajectories.
Hence, the abstract view of our problem is a graph problem and not a network problem.
Since graph problems typically do not come with a set of paths on that graph, there are no
closely related graph problems. However, there are some connections which allow us to prove
NP-hardness of route-preserving road network generalization.

M. van de Kerkhof, I. Kostitsyna, M. van Kreveld, M. Löffler, T. Ophelders 5:3

v1

r1
r2
r3
r4

v2 v3 v4 v5 v6 v7

Figure 2 Example of the RPRNG problem on a path graph with seven vertices and four routes.
An optimal solution to cover two routes is a path between v3 and v7, which covers routes r2 and r3.

2 Theoretical results

In this section we show that the RPRNG problem is NP-hard, even for simple, sparsely
covered road networks. We do show the problem can be solved quickly in two special cases:
We present a polynomial-time algorithm for when the road network is a path, and an FPT
algorithm for when it is a tree with each segment of the network covered by at most c routes,
for some fixed constant c.

Let G = (V, E) be the graph representing the road network, with vertices V and edges
E, and let R be the set of routes in G. For simplicity of presentation, we assume that each
route in R begins and ends at a vertex in V , and that the routes are simple paths (i.e.,
non-self-intersecting). Furthermore, assume that each edge in G is traversed by at least one
route, otherwise we remove such edges in a preprocessing step. Define the ply of an edge
e ∈ E to be the number of routes in R traversing e. Similarly, the ply of a vertex v ∈ V is
the number of routes in R traversing v, not including routes ending at v.

Our theoretical results are summarized in Table 1. For our hardness proofs we reduce to
the decision version of the problem. For space reasons only sketches of the proofs are given.

2.1 When G is a path

We start with a dynamic programming (DP) algorithm for the case when G = (V, E) is a
path. Let V = {v1, v2, . . . , vn} be n vertices of G embedded on a line from left to right, and
let edges E = {ei = (vi, vi+1) | 1 ≤ i < n} (refer to Fig. 2). Let R be a set of m routes on G,
and let Ri be the set of routes that each start on or before vi and end after vi. Let F (i, k, S),
where i ≤ n, k ≤ m, and S ⊂ Ri, denote the solution for a subproblem in our dynamic
programming formulation on the first i vertices, with at least k routes to be covered, and
such that the routes in S are all covered up to vertex vi. The goal is to minimize the total
length of an output subgraph in F (i, k, S). A naive DP is given by the following recurrence:

F (i, k, S) = min
S∩Ri91⊆S′⊆Ri91

[F (i− 1, k − |S′ \Ri|, S′) + cost(ei−1, S′)] ,

Table 1 Algorithmic and hardness results for graph classes of G and bounds on the ply.

path tree planar graph
ply 1 poly-time poly-time poly-time
ply 2 poly-time poly-time NP-hard
ply c poly-time FPT NP-hard
ply ∞ poly-time NP-hard NP-hard

EuroCG’21

5:4 Route-preserving Road Network Generalization

v1

v2 v3

v4

v7

v5 v6

Figure 3 Example of the RPRNG problem on a tree graph with four routes. Vertices of degree
higher than three are split to form a binary tree, weight of edge (v4, v5) is set to 0.

with boundary conditions F (i, k, S) = 0 if i = 0 and k ≤ 0, and F (i, k, S) =∞ if i = 0 and
k > 0. We define the cost function

cost(e, S′) =
{

0 , if S′ = ∅ ,

‖e‖ , otherwise .

So the length of an edge e is included in the total cost if and only if it is covered by one
of the selected trajectories. Note that the recursion as written considers exponentially many
subsets S′. The path constraint lets us optimize this as we can compute and consider only
the O(|R|) maximal subsets instead. This means we have a polynomial size DP table and
can solve subproblems in O(|R|) time, giving the following theorem.

I Theorem 2.1. The RPRNG problem can be solved in O(n|R|3) time if G is a path.

2.2 When G is a tree with bounded ply
We now modify our dynamic programming algorithm to solve the RPRNG problem when G

is a tree, and the maximum ply is bounded by some constant c. The vertices of degree higher
than three can be split by inserting zero-weight edges to form a binary tree. Choose an
arbitrary root, and order the vertices according to the post-order traversal (refer to Fig. 3).
Let Ri be the set of routes which start on or below vi and traverse vi from bottom to top.

Consider a subproblem F (i, k, S) on a subtree rooted at the vertex vi, where at least k

routes must be covered, including the set S ⊂ Ri. In our dynamic program, we will merge
the solutions of the subproblems defined on the subtrees rooted at the children of vi. The
DP recursion is given by the following formula:

F (i, k, S) = min
S∩R`⊆S`⊆R`
S∩Rr⊆Sr⊆Rr

k`+kr=k−|S`∩Sr|

[F (i`, k`, S`) + cost(ei`
, S`) + F (ir, kr, Sr) + cost(eir

, Sr)] ,

where i` and ir index the left and right child of the vertex vi respectively, and ei`
and eir

denote the edges (vi`
, vi) and (vir , vi).

The boundary conditions are F (i, k, S) = 0 if vi is a leaf and k ≤ 0, and F (i, k, S) =∞
if vi is a leaf and k > 0. The values k` and kr in the two subproblems depend on the value
k and the number of routes covered by the solutions of the two subproblems which are
traversing vi from the left subtree into the right subtree (for example, for the vertex v5 in
the Fig. 3, the purple route is such route). More specifically, let k′ be the number of routes
in S` ∩ Sr, then k = k′ + k` + kr.

M. van de Kerkhof, I. Kostitsyna, M. van Kreveld, M. Löffler, T. Ophelders 5:5

u1

u2

u3

u5

u0

u4

v3

v1

v2v4

v5

Figure 4 Left: graph G′ from a Clique instance. Right: graph G with five routes corresponding
to the edges of G′. Subgraph of G on vertices {u0, u1, u2, u4} corresponds to the clique {v1, v2, v4}.

Unlike in the previous section, we can no longer consider only maximal subsets S of
the routes traversing vi; we need to consider all possible subsets. The size of the dynamic
programming table becomes n× |R| × 2c = O(n|R|), and we spend O(|R|2c) = O(|R|) time
per subproblem. We conclude with the following theorem.

I Theorem 2.2. The RPRNG problem, when G is a tree, is fixed-parameter tractable with
the maximum ply as the parameter: If the maximum ply is bounded by some constant c, it
can be solved in O(n|R|2) time.

2.3 When G is a tree with unbounded ply
In this section we show that the RPRNG problem is NP-hard by a reduction from the Clique
problem. Given an instance of the Clique problem on a graph G′ with sought clique of size
k′, we construct an instance of the RPRNG problem consisting of a road network graph G, a
set of routes R, an integer budget B, and an integer k and show that there is a clique of
size at least k′ in G′ if and only if there is a subgraph of G of total length at most B which
completely covers at least k routes from R.

We do this by creating a star graph, where there is a leaf vertex for each vertex of the
original graph, connected by an edge to a central vertex. For each edge of the original graph
there is a route on the star graph running between the vertices associated with the endpoints
of the edge; see Figure 4. We set B to k′ and k to k′(k′− 1)/2. Because a clique of n vertices
has n(n− 1)/2 edges, this means we can only capture k of the routes if and only if G′ has a
clique of size k′.

I Theorem 2.3. The RPRNG problem with the objective to maximize the number of covered
routes is NP-hard when G is a tree and the maximum ply is unbounded.

2.4 When G is a planar graph with bounded ply
Finally, we show that the RPRNG problem is NP-hard when G is a planar graph even if the
ply on edges and vertices is bounded by 2. We again reduce from the Clique problem.

Consider an instance of the Clique problem on a graph G′ = (V ′, E′), with an integer k.
We construct an instance of the RPRNG problem consisting of a graph G, a set of routes R,
a budget B, and the same integer k, such that G′ has a clique of size k if and only if there
exists a subgraph of G of total weight at most B which covers at least k routes.

To create this instance, we set G to be a |V ′| × 2|E′| grid graph, where we assign one
row to each vertex of V ′. We assign two adjacent columns of vertices to each edge of E′,

EuroCG’21

5:6 Route-preserving Road Network Generalization

d

c
a

b

v2

v3

v1

v4

a b c d

v1

v2

v3

v4

Figure 5 Left: graph G′ of a Clique instance. Right: corresponding grid graph G, and four
routes corresponding to the vertices of G′. Edges in a column associated with an edge of G′ have
weight 1, all other edges have weight 0

and set the weight of the |V ′| horizontal edges connecting these adjacent columns to 1. All
other edges have weight 0. We create a route for each vertex of V ′ that lies on the row
associated with its vertex, except for the edges in columns associated with edges where the
associated vertex is the lower-indexed endpoint. For those edges, the route travels vertically
to the row associated with the higher-indexed endpoint and uses that edge instead before
vertically going back to its own row. See Figure 5. We set B = k|E| − k(k − 1)/2. That
this is a correct reduction becomes clear when we consider that if we pick k routes that do
not overlap, we need a budget of k|E|. If two selected routes overlap, the amount of budget
needed decreases by 1. If the savings total k(k − 1)/2, this means we can select k vertices
that share k(k − 1)/2 edges between them in G′, implying they are a clique of size k. It is
easy to see that in the grid graph, no edge or vertex is covered by more than two routes.

I Theorem 2.4. The RPRNG problem with the objective to maximize the number of covered
routes is NP-hard even if G is a planar graph and the maximum ply is bounded by 2.

3 Conclusion

We have introduced a new, data-driven approach to road network generalization that can be
used when trajectory data is available as well. Theoretical analysis shows that the problem
is NP-hard for almost all variants. This paper presents our theoretical results. To assess
and validate the concept of route-preserving road network generalization, we study heuristic
approaches for solving this problem in [19]. An image of a generalization generated by one
of the heuristics can be seen in Figure 6. Theoretical future work can be done on finding an
algorithm with a proven approximation factor in the cases where the problem is NP-hard.

Acknowledgments. This research was started at the AGA workshop, January 2020, in
Langbroek (NL). M.v.d.K., M.v.K., and M.L. are (partially) supported by the Dutch Re-
search Council on the Commit2Data project “Geometric Algorithms for the Analysis and
Visualization of Heterogeneous Spatio-temporal Data” (no. 628.011.005). M.L. is partially
supported by Dutch Research Council on grant no. 614.001.504. The authors thank HERE
Technologies for providing data.

References
1 Stefan A. Benz and Robert Weibel. Road network selection for medium scales using an

extended stroke-mesh combination algorithm. Cartography and Geographic Information
Science, 41(4):323–339, 2014.

2 Jun Chen, Yungang Hu, Zhilin Li, Renliang Zhao, and Liqiu Meng. Selective omission
of road features based on mesh density for automatic map generalization. International
Journal of Geographical Information Science, 23(8):1013–1032, 2009.

M. van de Kerkhof, I. Kostitsyna, M. van Kreveld, M. Löffler, T. Ophelders 5:7

Figure 6 Top: Road network of the city of Leiden. Bottom: Heuristic generalization restricted
to 30% of the total road length.

3 Markus Chimani, Thomas C. van Dijk, and Jan-Henrik Haunert. How to eat a graph:
Computing selection sequences for the continuous generalization of road networks. In Proc.
22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, pages 243–252, 2014.

4 Cécile Duchêne, Blanca Baella, Cynthia A Brewer, Dirk Burghardt, Barbara P. Buttenfield,
Julien Gaffuri, Dominik Käuferle, François Lecordix, Emmanuel Maugeais, Ron Nijhuis,
Maria Pla, Marc Post, Nicolas Regnauld, Lawrence V. Stanislawski, Jantien Stoter, Katalin
Tóth, Sabine Urbanke, Vincent van Altenaand, and Antje Wiedemann. Generalisation in
practice within national mapping agencies. In D. Burghardt et al., editor, Abstracting
Geographic Information in a Data Rich World, pages 329–391. Springer, 2014.

5 Sándor P. Fekete, Alexander Hill, Dominik Krupke, Tyler Mayer, Joseph S. B. Mitchell,
Ojas Parekh, and Cynthia A. Phillips. Probing a Set of Trajectories to Maximize Captured
Information. In 18th International Symposium on Experimental Algorithms (SEA 2020),
pages 5:1–5:14, 2020.

6 Bin Jiang and Christophe Claramunt. A structural approach to the model generalization
of an urban street network. GeoInformatica, 8(2):157–171, 2004.

7 Bin Jiang and Christophe Claramunt. Topological analysis of urban street networks. En-
vironment and Planning B: Planning and design, 31(1):151–162, 2004.

8 Bin Jiang and Lars Harrie. Selection of streets from a network using self-organizing maps.
Transactions in GIS, 8(3):335–350, 2004.

9 Xingjian Liu, Tinghua Ai, and Yaolin Liu. Road density analysis based on skeleton parti-
tioning for road generalization. Geo-spatial Information Science, 12(2):110–116, 2009.

EuroCG’21

5:8 Route-preserving Road Network Generalization

10 Xingjian Liu, F Benjamin Zhan, and Tinghua Ai. Road selection based on Voronoi diagrams
and “strokes” in map generalization. International Journal of Applied Earth Observation
and Geoinformation, 12:S194–S202, 2010.

11 WilliamMackaness. Analysis of urban road networks to support cartographic generalization.
Cartography and Geographic Information Systems, 22(4):306–316, 1995.

12 William A. Mackaness and Kate M. Beard. Use of graph theory to support map general-
ization. Cartography and Geographic Information Systems, 20(4):210–221, 1993.

13 Harvey J. Miller and Michael F. Goodchild. Data-driven geography. GeoJournal, 80(4):449–
461, 2015.

14 B Morisset and Anne Ruas. Simulation and agent modelling for road selection in gen-
eralisation. In Proc. ICA 18th International Cartographic Conference, pages 1376–1380,
1997.

15 Radan Šuba, Martijn Meijers, and Peter Van Oosterom. Continuous road network gener-
alization throughout all scales. ISPRS International Journal of Geo-Information, 5(8):145,
2016.

16 Robert C. Thomson and Rupert Brooks. Exploiting perceptual grouping for map analysis,
understanding and generalization: The case of road and river networks. In International
Workshop on Graphics Recognition, pages 148–157, 2001.

17 Robert C. Thomson and Dianne E. Richardson. A graph theory approach to road net-
work generalisation. In Proc. 17th International Cartographic Conference, pages 1871–1880,
1995.

18 Robert C. Thomson and Dianne E. Richardson. The ‘good continuation’ principle of per-
ceptual organization applied to the generalization of road networks. In Proc. of the 19th
International Cartographic Conference, pages 1215—-1223, 1999.

19 Mees van de Kerkhof, Irina Kostitsyna, Marc van Kreveld, Maarten Löffler, and Tim
Ophelders. Route-preserving road network generalization. In Proceedings of the 28th In-
ternational Conference on Advances in Geographic Information Systems, SIGSPATIAL ’20,
page 381–384, 2020.

20 Marc van Kreveld and Jarno Peschier. On the automated generalization of road network
maps. In Proc. 3rd International Conference in GeoComputation, 1998.

21 Roy Weiss and Robert Weibel. Road network selection for small-scale maps using an
improved centrality-based algorithm. Journal of Spatial Information Science, 2014(9):71–
99, 2014.

22 Wenhao Yu, Yifan Zhang, Tinghua Ai, Qingfeng Guan, Zhanlong Chen, and Haixia Li.
Road network generalization considering traffic flow patterns. International Journal of
Geographical Information Science, 34(1):119–149, 2020.

23 Qingnian Zhang. Modeling structure and patterns in road network generalization. In ICA
Workshop on Generalisation and Multiple Representation, 2004.

24 Qi Zhou and Zhilin Li. Evaluation of properties to determine the importance of individual
roads for map generalization. In Advances in Cartography and GIScience, volume 1, pages
459–475. Springer, 2011.

Path-Greedy Spanner in Near-Quadratic Time:
Simpler and Better
Paz Carmi1 and Idan Tomer2

1 Ben-Gurion University of the Negev
carmip@bgu.ac.il

2 Ben-Gurion University of the Negev
idantom@post.bgu.ac.il

Abstract
The Path-Greedy algorithm produces high-quality spanners, having the most desirable properties
of geometric spanners both in theory and in practice. More specifically, it has a natural definition,
small degree, linear number of edges, low weight, and strong t-spanner for every t > 1.

In this paper we revisit the Path-Greedy spanner and present an algorithm that computes the
Path-Greedy spanner in O(n2 log n) time. This algorithm is based on Bose et al. O(n2 log n)
time algorithm, however, our algorithm is easier to implement, and in practice is potentially more
efficient.

1 Introduction

Geometric spanners are fundamental structures that have attracted a great deal of research
attention in the past few decades. Given a weighted graph G and a real number t > 1, a
t-spanner of G is a spanning sub-graph G∗ with the property that for every edge (p, q) ∈ G
there exists a path between p and q in G, whose weight is no more than t times the weight
of the edge (p, q). Thus, shortest-path distances in G∗ approximate shortest-path distances
in the underlying graph G, and the parameter t represents the approximation ratio. The
smallest t for which G∗ is a t-spanner of G is known as the spanning ratio of the graph G∗.

Spanners have been studied in many different settings, which depend on different aspects,
such as the type of underlying graph G, on the way in which weights are assigned to edges
in G, the specific value of the spanning ratio t, and on the function used to measure the
weight of a shortest path. In this paper, we concentrate on the setting where the underlying
graph is the complete geometric graph over set of points P , and a weight of an edge (p, q) is
equal to the distance d(p, q) between its endpoints p and q, such that (P, d) is a finite metric
space.

Probably one of the most studied geometric spanner is the Path-Greedy spanner in-
troduced by Althöfer et al. [3], see Algorithm 1. The Path-Greedy algorithm produces a t-
spanning graph with linear number of edges, bounded degree and bounded weight. The main
disadvantage of the Path-Greedy algorithm is its high time complexity, which is O(n3 logn).
Therefore, many attempts were made to reduce the construction time and in parallel to
compute more efficiently other types of geometric spanners.

Various experiments showed that the Path-Greedy algorithm produces spanners whose
size, weight, and maximum degree are much lower than the spanners produced by other
approaches. In [7], Das and Narasimhan showed how to construct a spanner that approxi-
mates the Path-Greedy spanner in O(n log2 n/log logn) time. This spanner is known in the
literature as the approximate-Greedy. In [8], Farshi and Gudmundsson showed that while the
theoretical bounds of the approximate-Greedy spanner is similar to the original Path-Greedy
spanner with respect to the number of edges, the degree, and the weight of the graph, in
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

6:2 Path-Greedy Spanner in Near-Quadratic Time: Simpler and Better

Algorithm 1 Path-Greedy(P, t)
Input: A set P of points in the plane and a constant t > 1
Output: A t-spanner G = (P,E) for P
1: L← the

(
n
2
)
pairs of distinct points sorted in non-decreasing order of their distances

2: E ← ∅
3: for all (p, q) ∈ L do
4: π ← length of the shortest path in G between p and q
5: if π > t · d(p, q) then
6: E ← E ∪ {(p, q)}
7: end if
8: end for
9: return G = (P,E)

practice the approximate-Greedy spanner behaves significantly worse with respect to these
properties. In [5], Bose et al. showed an algorithm that computes the Path-Greedy spanner
in O(n2 logn) time. Their algorithm maintains a stack for each point to be able to restore
the Dijkstra algorithm computation. In [1, 2, 6], the authors also considered simplifying the
Path-Greedy, and introduced algorithms that are more efficient in practice, e.g., linear in
space.

In [4], Bar-On and Carmi introduced the δ-Greedy t-spanner that has the same theoretical
and practical properties as the Path-Greedy spanner. They showed a simple algorithm that
computes δ-Greedy t-spanner in O(n2 logn) time.

In this paper we suggest a simplification to Bose et al. [5] algorithm construction. Our
algorithm is easier for understanding and implementation. In addition, to implement our
algorithm we require to maintain simple data structures. Moreover, even though both
algorithms have the same theoretical running time, our algorithm in practice is potentially
more efficient.

2 A Simple Near-Quadratic Greedy Algorithm

In this section, we show how to simplify the algorithm presented by Bose et al. [5], which
computes the Path-Greedy spanner in near-quadratic time. The main difference is that in
our algorithm there is no need to maintain a stack for the Dijkstra re-computation for each
point. Notice that the hardest part to implement in Bose et al. [5] algorithm is the stacks,
that are needed to maintain the required information for performing the undo operations
on the Dijkstra computations.

The high-level description of our algorithm is similar to Algorithm 3.2 introduced by
Bose et al. in [5], as presented in Section 2.1

2.1 Algorithm description
The high-level description of Algorithm 2 is as follows:
(i) For each point in P , initialize an empty Dijkstra’s priority queue, and for each pair (u, v),

set its entry in the weight-matrix with the value wt(u, v) =∞ if u 6= v, and wt(u, v) = 0
otherwise.

(ii) Sort the
(

n
2
)
pairs of distinct points in P in non-decreasing order of their distances, and

partition them into buckets, such that bucket i contains the set of pairs Ei of distance
between Li and 2Li.

P. Carmi and I. Tomer 6:3

(iii) Process the buckets in the sorted order, and for each bucket i:
for each point in P , run Bounded-Dijkstra (SSSP) up to 2tLi. More precisely, for each
point p ∈ P , run Dijkstra until the key in p’s priority queue is at most 2tLi; and
for each pair (u, v) ∈ Ei in sorted order, if wt(u, v) > t · d(u, v), then add (u, v) to
E and make local updates in the weight-matrix, such that all entries that correspond
to pairs in Ei are equal to the shortest-path distance in the updated graph G (i.e.,
update the weight of all points that are not too “far away” from u or v).

In Algorithm 3.2 [5], after adding the edge (u, v), all the points that are in the vicinity
of at least one of the endpoints u or v are updated. The update is performed by exe-
cuting Dijkstra-Undo and then Bounded-Dijkstra again, while updating the priority queue
and the weight-matrix for each updated point. The Dijkstra-Undo runs Dijkstra’s algo-
rithm backwards as long as the minimum key in the priority queue PQp of p is at least
min {(t− 1/2)Li, Li)}. In order to perform the Dijkstra-Undo, the algorithm maintains a
stack τp for each p ∈ P containing all the operations of the SSSP from p. In our algorithm,
we find the points that lie in the vicinity of u (and similarly of v), by traversing all the
points, such that their distance from u is between 0 to 2tLi− d(u, v), scanning in increasing
distance. For each such point p (i.e., wt(p, u) ≤ 2tLi − d(u, v)), we traverse all the points q,
such that wt(v, q) ≤ 2tLi − [wt(p, u) + d(u, v)]; see Figure 1. Then, for each such q, update
wt(p, q) and wt(q, p) in the weight-matrix to the minimum between its current value and
wt(p, u) + d(u, v) + wt(v, q).

u

v

q

p

2tLi − d(u, v)

2tLi − d(u, v)− wt(p, u)

Figure 1 Updating the points in the vicinity of an added edge (u, v).

In Algorithm 3.2 [5] (Line 20), after processing all the edges of bucket i, and before
proceeding to next bucket, the algorithm performs Dijkstra-Undo to update all keys in the
priority queues of all the points which may be affected by the addition of the edges of bucket
i to the resulted spanner. In our algorithm, to update these keys in the priority queues, we
run Procedure 3, before proceeding to the next bucket. In this procedure, for every edge
(u, v) in bucket i that was added to the resulted graph, we update the priority queue PQp

for all the points p ∈ P , such that wt(p, u) < 2tLi or wt(p, v) < 2tLi. That is, we update
the key of u (resp., of v) in the priority queue of p to be the minimum between the current
value and wt(p, u) + d(u, v) (resp., wt(p, v) + d(u, v)). Similarly, we update the key of p in
the priority queue of u and in the priority queue of v.

To summarize, we show that one can use only local information that already exists in
the weight-matrix to update the distances between pairs of points that can be affected
from the addition of a new edge to the spanner. Actually, this modification results in less
computations required per point, since here we update only the relevant points while in [5]
this is not the case.

EuroCG’21

6:4 Path-Greedy Spanner in Near-Quadratic Time: Simpler and Better

Algorithm 2 Simplified-Path-Greedy(P, t)
Input: A set P of points in the plane and a constant t > 1
Output: the greedy t-spanner G(P,E)
1: for all u, v ∈ P do
2: wt(u, v)← 0
3: if u 6= v then
4: wt(u, v)←∞
5: end if
6: end for
7: E′ ←

(
n
2
)
pairs of distinct points, sorted in non-decreasing order of their distances

8: i← 1, E0 ← ∅
9: while E′ \(

⋃i−1
k=0 Ek) 6= ∅ do

10: Li ← distance of shortest pair in E′ \(
⋃i−1

k=0 Ek)
11: Ei ← sorted list of all pairs in E′ \(

⋃i−1
k=0 Ek) whose distances are in [Li, 2Li)

12: i← i+ 1
13: end while
14: l← i− 1
15: E ← ∅
16: G← (P,E)
17: for all u ∈ P do
18: PQu ← priority queue storing all v ∈ P with the key wt(u, v)
19: SWu ← data structure storing all v ∈ P in sorted order by wt(u, v)
20: end for
21: for i← 1, . . . , l do
22: for all u ∈ P do
23: Bounded-Dijkstra(G, u, 2tLi, PQu)
24: end for
25: EN ← ∅
26: for all (u, v) ∈ Ei (in sorted order) do
27: if wt(u, v) > t · d(u, v) then
28: E ← E ∪ {(u, v)}
29: EN ← EN ∪ {(u, v)}
30: for all p ∈ SWu s.t wt(p, u) ≤ 2tLi − d(u, v) (in sorted order) do
31: for all q ∈ SWv s.t wt(v, q) ≤ 2tLi − [wt(p, u) + d(u, v)] (in sorted order) do
32: d← wt(p, u) + d(u, v) + wt(v, q)
33: wt(p, q)← min (wt(p, q), d)
34: wt(q, p)← wt(p, q)
35: update SWp and SWq

36: end for
37: end for
38: end if
39: end for
40: Update(EN)
41: end for
42: return G

P. Carmi and I. Tomer 6:5

Procedure 3 Update(EN)
Input: A set EN of new edges added in each iteration in Algorithm 2
1: for each (u, v) ∈ EN do
2: for each p ∈ SWu such that wt(p, u) < 2tLi do /* in sorted order */
3: δ ← wt(p, u) + d(u, v)
4: decrease the key of v in PQp to δ (if key > δ)
5: decrease the key of p in PQv to δ (if key > δ)
6: update SWp and SWu

7: for each p ∈ SWv such that wt(p, v) < 2tLi do /* in sorted order */
8: δ ← wt(p, v) + d(u, v)
9: decrease the key of u in PQp to δ (if key > δ)

10: decrease the key of p in PQu to δ (if key > δ)
11: update SWp and SWv

2.2 Correctness and running time
The correctness of our algorithm follows directly from the correctness of Algorithm 3.2 [5],
since they both perform the same required updates after adding an edge.

Next, we show that the running time of our algorithm is asymptotically similar to Al-
gorithm 3.2 [5]. There are two differences between our algorithm and Algorithm 3.2 [5]
with respect to the running time. The first difference is that Algorithm 3.2 [5] preforms
Dijkstra-Undo and Bounded-Dijkstra, for every point that satisfies the update condition (see
Line 28 in Algorithm 3.2 [5]), and our algorithm scans all the points in increasing order, and
then, for each pair that satisfies our condition (see Lines 29-30 in Algorithm 2), it updates
the points’ weights in O(1) time, and its SW in O(logn) time (using data structure e.g.,
AVL or Skip-List). Observe that the number of pairs examined by our algorithm is a subset
of the pairs examined by the Bounded-Dijkstra executed in Algorithm 3.2 [5]. The second
difference is that our algorithm, updates the priority queue, PQp in the end of each bucket
for all p ∈ P , such that d(p, u) < 2tLi or d(p, v) < 2tLi for all (u, v) that was added to the
spanner in this bucket. To go through the points in increasing order, we use a data structure
for SW (e.g., AVL or Skip-List). To maintain the priority queue, we update each point in
O(logn) time (even though implementations with O(1) time exists, for simplicity, and since
this part does not affect the overall running time, we use O(logn) updating time). Finally,
for every p ∈ P , the number of times p can be included in such update process is bounded
by O(1/(t− 1)O(d)) for every bucket (as shown in Lemma 3 [5]). Maintaining the queues
and SW data structures takes O(1/(t− 1)O(d)n logn) time, since the number of buckets is
O(n). Executing Bounded-Dijkstra in the beginning of each bucket takes O(n logn) time,
and thus, the total running time of our algorithm is O(1/(t− 1)O(d)n2 logn).

References
1 S. P. A. Alewijnse, Q. W. Bouts, Alex P. ten Brink, and K. Buchin. Distribution-sensitive

construction of the greedy spanner. Algorithmica, pages 1–23, 2016.
2 Sander P. A. Alewijnse, Quirijn W. Bouts, Alex P. ten Brink, and Kevin Buchin. Computing

the greedy spanner in linear space. Algorithmica, 73(3):589–606, 2015.
3 I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted

graphs. Discrete and Computational Geometry, 9(1):81–100, 1993.
4 Gali Bar-On and Paz Carmi. δ-greedy t-spanner. In WADS, pages 85–96, 2017.

EuroCG’21

6:6 Path-Greedy Spanner in Near-Quadratic Time: Simpler and Better

5 Prosenjit Bose, Paz Carmi, Mohammad Farshi, Anil Maheshwari, and Michiel H. M. Smid.
Computing the greedy spanner in near-quadratic time. Algorithmica, 58(3):711–729, 2010.

6 Quirijn W. Bouts, Alex P. ten Brink, and Kevin Buchin. A framework for computing the
greedy spanner. In SOCG’14, page 11, 2014.

7 G. Das and G. Narasimhan. A fast algorithm for constructing sparse Euclidean spanners.
Int. J. Comp. Geom. and Applic., 7(4):297–315, 1997.

8 Mohammad Farshi and Joachim Gudmundsson. Experimental study of geometric t-
spanners. ACM Journal of Experimental Algorithmics, 14, 2009. URL: http://doi.acm.
org/10.1145/1498698.1564499, doi:10.1145/1498698.1564499.

Lions and contamination, triangular grids, and
Cheeger constants
Henry Adams, Leah Gibson, and Jack Pfaffinger

Abstract
Suppose each vertex of a graph is originally occupied by contamination, except for those vertices
occupied by lions. As the lions wander on the graph, they clear the contamination from each vertex
they visit. However, the contamination simultaneously spreads to any adjacent vertex not occupied
by a lion. How many lions are required in order to clear the graph of contamination? We give a lower
bound on the number of lions needed in terms of the Cheeger constant of the graph. Furthermore,
the lion and contamination problem has been studied in detail on square grid graphs by Brass et
al. and Berger et al., and we extend this analysis to the setting of triangular grid graphs.

Related Version arXiv:2012.06702v2

1 Introduction

In the “lions and contamination" pursuit-evasion problem [1, 2, 5], lions are tasked with
clearing a square grid graph consisting of vertices and edges. At the start of the problem,
all vertices occupied by lions are considered cleared of contamination, and the rest of the
vertices are contaminated. The lions move along the edges of the grid, and each new vertex
they occupy becomes cleared. However, the contamination can also travel along the edges
of the grid not blocked by a lion and re-contaminate previously cleared vertices. How many
lions are needed to clear the grid?

Certainly n lions can clear an n× n grid graph by sweeping from one side to the other.
One might conjecture that n lions are required to clear an n × n grid graph. However, in
general it is not yet known whether n−1 lions suffice or not. As a lower bound, the paper [2]
proves that at least bn

2 c+ 1 lions are required to clear an n× n grid graph. The details of
the discretization certainly matter, in the following sense. For a n× n× n grid graph, one
might expect that n2 lions are required, but [1] shows that when n = 3, only 8 = n2 − 1
lions suffice to clear a 3× 3× 3 grid.

We consider the case of planar triangular grid graphs, under various models of lion
motion. Given Rn,l, a planar parallelogram of height n vertices and length l vertices
triangulated by equilateral triangles, n lions suffice to clear Rn,l. However, we conjecture that
n lions do not suffice when all lions must move simultaneously. In the setting of simultaneous
motion (which we refer to as “caffeinated lions," as the lions never take a break), we show
that b 3n

2 c lions suffice to clear Rn,l. Furthermore, via a comparison with [1, 2], we show
that bn

2 c lions are insufficient to clear a triangulated rhombus, in which each side of the
rhombus has length n. Lastly, for an equilateral triangle discretized into smaller triangles,
with n vertices per side, we conjecture that n

2
√

2 lions are not sufficient to clear the graph.
In the setting of an arbitrary graph G, we give a lower bound on the number of lions

needed to clear the graph in terms of the Cheeger constant of the graph. The Cheeger
constant, roughly speaking, is a measure of how hard it is to disconnect the graph into two
pieces of approximately equal size by cutting edges [4]. The use of the Cheeger constant
in graph theory is inspired by its successful applications in Riemannian geometry [3]. Our
bound on the number of lions in terms of a graph’s Cheeger constant is quite general (it
holds for any graph), and therefore we do not expect it to be sharp for any particular graph.
We use Cheeger constants for “polite lions” where only one lion may move at a time. If we
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

7:2 Lions and contamination, triangular grids, and Cheeger constants

let G be a connected graph with vertex set V and with volume Cheeger constant g, then
if k ≤ 1

2b
|V |
2 cg, then G cannot be cleared by k polite lions. The advantage of using the

volume Cheeger constant is that it gives a lower bound on the number of lions needed to
clear an arbitrary graph. That is not to say that the bound obtained by this method is near
the optimal number of lions. Rather, Theorems 2 and 3 gives a weak bound for any graph,
including graphs that do not have obvious symmetry that can be used to discover a better
bound.

We explain the connection to the Cheeger constant in Section 2, and give one result on
triangular grid graphs in Section 3.

2 Connection to Cheeger constant

In graph theory, the term Cheeger constant refers to a numerical measure of how much of a
bottleneck a graph has. The term arises from a related quantity, also known as a Cheeger
constant, that is used in differential geometry: the Cheeger constant of a Riemannian
manifold depends on the minimal area of a hypersurface that is required to divide the
manifold into two pieces [3]. For both graphs and manifolds, the Cheeger constant can be
used to provide lower bounds on the eigenvalues of the Laplacian (of the graph or of the
manifold). In the graph theory literature, there are several different quantities known as the
Cheeger constant, and they are each defined slightly differently. For some more background
and applications of Cheeger constants to graphs, see [4, Chapter 2]. In this section, we show
a relationship between the Cheeger constant of a graph and the number of lions needed to
clear this graph of contamination.

Let us simplify the lion and contamination problem a bit. Recall a graph with polite lions
is one in which at each turn, at most one lion can move. We will now define a new value for
our graph, which we will call the volume Cheeger constant.

I Definition 1. For a graph G, let the S be a subset of vertices and define the volume
Cheeger constant to be

g := min
{ |∂S|

min{|S|, |S|} : S ⊆ V (G), S 6= ∅, S 6= V (G)
}

,

where ∂S = {v ∈ S | uv ∈ E(G), u /∈ S} (i.e. the set of boundary vertices), and S is the set
V (G) \ S. Note that ∂S is defined differently than the vertex boundary used in [4] (for us,
∂S is a subset of S instead of S), but this doesn’t affect the value of the volume Cheeger
constant).

For a connected graph, we have 0 < g ≤ 1. For the upper bound, consider a connected
graph G. If |S| = 1, then min{|S|, |S|} = 1 and since G is connected, |∂S| = 1. Thus any
connected graph has a volume Cheeger constant at most 1 since g takes the minimum of
all vertex subsets. For the lower bound, note that if S is neither empty nor all of V (G),
then |∂S| ≥ 1 when G is connected. If G is disconnected then g = 0 since |∂S| = 0 if you
take S to be a connected component. Roughly speaking, a larger g tells us that overall the
graph has more connections; a smaller g says that the graph is easier to break into pieces.
Consider the graphs in Figure 1 for a few examples of Cheeger constants.

Henry Adams, Leah Gibson, and Jack Pfaffinger 7:3

Figure 1 From left to right, the volume Cheeger constants are g = 1
5 , g = 1

3 , g = 2
5 . These

Cheeger constants can be realized by taking the blue vertices to be set S.

We now give lower bounds on the number of lions needed to clear a graph in terms of
the volume Cheeger constant. We do this first for polite lions, and then next for arbitrary
lions.

I Theorem 2. Let G be a connected graph with vertex set V and with volume Cheeger
constant g. If k ≤ 1

2b
|V |
2 cg, then G cannot be cleared by k polite lions.

Proof. Suppose that k ≤ 1
2b
|V |
2 cg impolite lions can clear G. Since the number of cleared

vertices can increase by at most one in each step with polite lions, in the process of clearing
there must be a time t satisfying |C(t)| = b |V |2 c. Now, by the definition of the Cheeger
constant g, we have |∂C(t)| ≥ b |V |2 cg. Since 2k ≤ |∂C(t)|, this implies by Lemma 5 from
the following section that |C(t + 1)| ≤ |C(t)|. Therefore the number of cleared vertices is
always at most b |V |2 c, contradicting the clearing of G with k lions. J

I Theorem 3. Let G be a connected graph with volume Cheeger constant g. If k ≤ g|V |
4+g ,

then G cannot be cleared by k lions.

Proof. If k ≤ g|V |
4+g , then it follows that k(2 + g

2) ≤ g|V |
2 , and hence 2k ≤ g(|V |2 − k

2). This
implies that for any x satisfying 0 ≤ x ≤ k

2 , we have 2k ≤ g(|V |2 − x). By definition of the
volume Cheeger constant, g ≤ |∂S|

|V |
2 −x

, where S is any subset of V of size |V |2 ±x. Combining

these two facts implies that for any x satisfying 0 ≤ x ≤ k
2 , we have 2k ≤ g(|V |2 − x) ≤ |∂S|,

where S ⊆ V is any set of size |S| = |V |
2 ± x. By Lemma 4 from the following section the

size of the cleared set can increase by at most k in any step. Therefore there is some time t

when the number of cleared vertices is within ±k
2 of |V |2 and when |C(t + 1)| > |C(t)|. But

since 2k ≤ |∂C(t)| at this time step t, Lemma 5 then implies that the number of cleared
vertices cannot increase in the next set, giving a contradiction. Therefore k lions do not
suffice to clear graph G. J

The advantage of using the volume Cheeger constant is that it gives a lower bound on
the number of lions needed to clear an arbitrary graph. That is not to say that the bound
obtained by this method is near the optimal number of lions. Rather, Theorems 2 and 3
give a weak bound for any graph, including graphs that do not have obvious symmetry that
can be used to discover a better bound.

For example, if the volume Cheeger constant is g = 1, which happens if G is a complete
graph, then Theorem 3 implies that at least |V |/5 lions are needed to clear the graph G. If
g = 1

2 , then Theorem 3 says that at least |V |/9 lions are needed.

EuroCG’21

7:4 Lions and contamination, triangular grids, and Cheeger constants

3 Insufficiency of bn
2 c lions on a triangulated square

We will use some of the methods and proofs from [1] to show that bn
2 c (non-caffeinated)

lions cannot clear Rn := Rn,n where Rn,n is a planar graph which forms a parallelogram of
height n vertices and length n vertices, subdivided into a grid of equilateral. In this proof,
we stretch the “rhombus” graph Rn to instead be drawn as a square triangulated by right
triangles. It should be noted that this grid holds all of the same properties as before (the
isomorphism type of the graph is unchanged).

We define Sn to be the n×n square grid graph discussed in [1]; see Figure 2. When each
square is subdivided via a diagonal edge, drawn from the top left to the bottom right, then
we obtain a graph isomorphic to Rn as shown in Figure 3.

Figure 2 The graph S5. Figure 3 R5 with right triangles.

The following two lemmas from [1] hold in an arbitrary graph.

I Lemma 4 (Lemma 1 of [1]). Let k be the number of lions on a graph. The number of
cleared vertices cannot increase by more than k in one time step.

I Lemma 5 (Lemma 2 of [1]). Let k be the number of lions. If there are at least 2k boundary
vertices in the set C(t) of cleared vertices, then the number of cleared vertices cannot increase
in the following step: |∂C(t)| ≥ 2k implies |C(t + 1)| ≤ |C(t)|.

For the specific case of square grid graphs Sn, [1] defines a “fall-down transformation".
This transformation T takes any subset of the vertices of Sn, and maps it to a (potentially
different) subset of the same size. The first step in the fall-down transformation, roughly
speaking, is to allow gravity to act on the subset of vertices, so that each vertex falls as
far as possible towards the bottom of its column. The number of vertices in any column
remains unchanged by this step. The second step in the fall-down transformation is to then
allow a horizontal force to act on the current subset of vertices, so that each vertex moves
as far as possible to the left-hand side of its row, maintaining the number of vertices in any
row.

In the case of a square grid Sn, [1] proves that the fall-down transformation does not
increase the number of boundary vertices in a set:

I Lemma 6 (Lemma 4 of [1]). In the graph Sn, the fall-down transformation T is monotone,
meaning that the number of boundary vertices in a subset S of vertices from Sn does not
increase upon applying the fall-down transformation.

Since the vertex set of Sn is the same as the vertex set of Rn, we immediately get a fall-
down transformation T that maps a subset of vertices in Rn to a subset of vertices in Rn.
We will show that this new fall-down transformation has the same monotonicity property,
which is not a priori clear as the boundary of a set of vertices in Sn might be smaller than
the boundary of that same set of vertices in Rn. Another comment is that when defining

Henry Adams, Leah Gibson, and Jack Pfaffinger 7:5

the fall down transformation T on Sn, the choice of down vs. up or of left vs. right does not
matter. But these choices do matter when defining a fall-down transformation on Rn, due
to the diagonal edges as drawn in Figures 3 and 4. We want to emphasize we have chosen
to map down and to the left; the following lemma in part depends on this choice.
I Lemma 7. Let S be a set of vertices in Rn (or equivalently, in Sn). The set of boundary
vertices of T (S) in Rn is the same as the set of boundary vertices of T (S) in Sn.

Figure 4 Rn. Figure 5 Sn.

Proof. We will show that the set of boundary vertices of T (S) in Rn is the same as the set
of boundary vertices of T (S) in Sn. First suppose that a vertex v of T (S) is a boundary
vertex in Rn. Referring to the diagram in Figure 4, this implies that one of d, c, b or a is
not in T (S). However, we can reduce this to the case that one of c or b is not in T (S), since
d /∈ T (S) ⇒ c /∈ T (S), and since a /∈ T (S) ⇒ b /∈ T (S). If c /∈ T (S), then v is a boundary
vertex of T (S) in both Rn and Sn. The same is true if b /∈ T (S). This proves that if v is a
boundary vertex of T (S) in Rn, then it is a boundary vertex of T (S) in Sn. But, referring
to Figure 5, if v is a boundary vertex of T (S) in Sn, then one of c or b is not in T (S), which
implies that v is a boundary vertex of T (S) in Rn as well. Therefore the set of boundary
vertices of T (S) in Rn is the same as the set of boundary vertices of T (S) in Sn. J

We know that T is monotone on Sn, i.e. that the number of boundary vertices does not
increase as a result of applying T . Lemma 7 therefore immediately implies that T is also
monotone on Rn, i.e. that the number of boundary vertices of a set S in Rn is no more than
the number of boundary vertices of T (S) in Rn.
I Corollary 8. In the graph Rn, the fall-down transformation T is monotone, meaning that
the number of boundary vertices in a subset S of vertices from Rn does not increase upon
applying the fall-down transformation.

This now brings us to the last lemma.
I Lemma 9 (Lemma 5 of [1]). Any vertex set S on Rn satisfying n2

2 − n
2 < |S| < n2

2 + n
2

has at least n boundary vertices.
Proof of Lemma 9. By Lemma 6, we know that the fall-down transformation T acts monotonically
on the number of boundary vertices in Rn. Thus the proof of Lemma 5 from [1] will also
hold for our grid graph with diagonal edges added. J

I Theorem 10. bn
2 c lions do not suffice to clear Rn.

Proof. Let the number of lions be k ≤ bn
2 c. The lions will eventually have to clear all n2

vertices. By Lemma 5, we know that |C(t + 1)| − |C(t)| ≤ k ≤ n
2 for all times t. Thus

there must be a time t where n2

2 − n
4 ≤ |C(t)| ≤ n2

2 + n
4 and |C(t + 1) ≥ |C(t)|. But by

Lemma 9, there are at least n boundary vertices of C(t) at time t, and so Lemma 5 tells us
that |C(t + 1)| ≤ |C(t)|, which is a contradiction. Thus k ≤ bn

2 c lions do not suffice to clear
Rn. J

EuroCG’21

7:6 Lions and contamination, triangular grids, and Cheeger constants

References
1 Florian Berger, Alexander Gilbers, Ansgar Grüne, and Rolf Klein. How many lions are

needed to clear a grid? Algorithms, 2(3):1069–1086, Sep 2009.
2 Peter Brass, Kyue D Kim, Hyeon-Suk Na, and Chan-Su Shin. Escaping off-line searchers

and a discrete isoperimetric theorem. In International Symposium on Algorithms and
Computation, pages 65–74. Springer, 2007.

3 Jeff Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Proceedings
of the Princeton conference in honor of Professor S. Bochner, pages 195–199, 1969.

4 Fan R. K. Chung. Spectral graph theory. Regional conference series in mathematics.
Published for the Conference Board of the mathematical sciences by the American
Mathematical Society, 1997.

5 Adrian Dumitrescu, Ichiro Suzuki, and Paweł Żyliński. Offline variants of the “lion and
man” problem: Some problems and techniques for measuring crowdedness and for safe path
planning. Theoretical Computer Science, 399(3):220–235, 2008.

A Geometric Approach to Inelastic Collapse∗

Bernard Chazelle1, Kritkorn Karntikoon2, and Yufei Zheng3

1 Department of Computer Science, Princeton University
chazelle@cs.princeton.edu

2 Department of Computer Science, Princeton University
kritkorn@cs.princeton.edu

3 Department of Computer Science, Princeton University
yufei@cs.princeton.edu

Abstract
We show in this note how to interpret logarithmic spiral tilings as one-dimensional particle systems
undergoing inelastic collapse. By deforming the spirals appropriately, we can simulate collisions
among particles with distinct or varying coefficients of restitution. Our geometric constructions
provide a strikingly simple illustration of a widely studied phenomenon in the physics of dissipative
gases: the collapse of inelastic particles.

1 Introduction

Collisions in a granular gas preserve momentum but not kinetic energy. Interactions are
dissipative, with the velocities of two colliding particles governed by a stochastic matrix
(p qq p), for p ≤ 1/2. When the coefficient of restitution, defined as r = 1 − 2p, is less than
1, the collisions are inelastic and the particles may collapse to a single point in a finite
amount of time: this intriguing phenomenon of inelastic collapse was first investigated in
one dimension by Bernu & Mazighi [2] and McNamara & Young [6]. Further studies and
extensions to a larger number n of particles were given in [1, 2, 3, 4, 5, 6, 7, 8]. In the case
n = 3, inelastic collapse requires r < 7−4

√
3 [4, 6, 7], while in general the requirement is that

n & 2(ln 2)/(1− r). Matching constructions for large n exist but entail intricate eigenvalue
estimates [1, 2]. We rederive these bounds by simple geometric means, and we also extend
them to other types of collisions. Our particle systems are derived from one-dimensional
projections of spiral tilings of a disk (see §2). Using different spirals allows the presence
of particles with different coefficients of restitution (see §3). The notable feature of our
arguments is to be entirely geometric.

2 The Inelastic Collapse of Identical Particles

We describe the dynamics of n identical particles moving towards the center of a disk and
colliding along the way. The one-dimensional system is derived by projection to a line. We
begin with the geometry of the system, which is a quadrilaterial tiling of the complex unit
disk by logarithmic spirals.

2.1 Spiral tilings
Fix 0 < λo < 1 and let Cα =

{
λ
|ϕ−α|
o eiϕ |ϕ ∈ R

}
. The curve Cα consists of two logarithmic

spirals running clockwise and counterclockwise from the point eiα. The family {Cα}0≤α<2π

∗ This work was supported in part by NSF grant CCF-2006125.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

8:2 A Geometric Approach to Inelastic Collapse

forms two foliations of the unit complex disk D (minus the origin). Whereas no pair of
spirals going in the same direction meet, the other pairs intersect infinitely often along the
diameter bisecting their starting points. Fix an integer n > 2 and write θ = π/n. We rectify
the spiral Cα by creating the vertices λ|kθ−α|o eikθ for all k ∈ Z; then we join consecutive pairs
by straightline segments, which produces the polygonal spiral CRα in Figure 1(i).

Figure 1 (i) The spirals Cα and CRα , for α = 0 and θ = π/3; (ii) an (n, λ)-tiling for a system of
2n = 12 colliding particles.

The collection of polygonal curves
{
CR2jθ | 0 ≤ j < n

}
forms an infinite sequence of nested

concentric similar 2n-gons Pk := λeiθPk−1, where λ = λθo and P0 is the outer “star" shown in
Figure 1(ii): its vertices eilθλ(1−(−1)l)/2 run in counterclockwise order (0 ≤ l < 2n). To ensure
that the shape is indeed a star, every other vertex of P0 needs to be reflex, which requires
that λ < cos θ. This partitions the polygon P0 into an infinite collection of similar convex
quadrilaterals, which forms an (n, λ)-tiling. We define the fundamental ratio ρ := ae/ac of
the (n, λ)-tiling and justify its name by noting that it is independent of the polygon Pk used
to define it. Referring to Figure 1(ii), we observe that ac = 1− λ cos θ and ae = λ cos θ − λ2

and that, for any 0 < λ < cos θ,

ρ = λ(cos θ − λ)
1− λ cos θ and 0 < ρ < 1 . (1)

2.2 Particles traveling in a disk
Place two particles at each one of the n outer vertices of P0 and set them in motion along
the two incident edges with a speed equal to bc. We show below that the particles will
zigzag toward the center (as in the trajectory c, b, e, f, g, . . .) provided that the coefficient of
restitution r is equal to ρ < 1, where r = 1− 2p; recall that, whenever two particles with
velocities u, v ∈ C collide, they bounce away from each other and update their velocities as
follows: (

u

v

)
←

(
p q

q p

)(
u

v

)
;

where 0 < p < q < 1 and p+ q = 1.

B. Chazelle, K. Karntikoon and Y. Zheng 8:3

I Lemma 2.1. The 2n particles travel along the edges of the tiling through pairwise collisions
if and only if the fundamental ratio ρ is equal to the coefficient of restitution r. If each
particle spends one unit of time on the boundary ∂P0, then it travels on ∂Pk for a duration
of δk, where δ = λ2/ρ. The total travel time is bounded if and only if λ < 1

cos θ − tan θ, in
which case it is equal to 1/(1− δ).

Proof. For convenience, we tilt the tiling by θ to put b and f on the X-axis (Figure 2). Two
particles travel from c and h to b with velocity u and v respectively. The first one bounces
at b and proceeds with velocity u′ = pu+ qv. Since ux = vx and uy = −vy, we have u′x = ux
and u′y = −ruy; therefore |slope(u′)| = r|slope(u)|. By similarity, bc and ef are parallel; hence
|slope(u′)| = r|slope(ef)|. The consistency of the particle collision with the tiling means that
u′ should be parallel to the segment be. The condition thus becomes |slope(be)| = r|slope(ef)|;
hence r = mf/mb = ρ.

Figure 2 How colliding particles follow the edges of the (n, λ)-tiling. The coefficient of restitution
must be equal to the ratio ρ = mf/mb.

If the particle travels from c to b in one unit of time, then uy = ac and u′y = −ruy = −rac.
It follows that the time δ for the particle to bounce from b to e is equal to me/|u′y| =
1
rme/ac = λ2/r. More generally, δ is the ratio between the time spent on be and that
spent on cb. By symmetry, the same ratio δ holds between the travel times along any two
consecutive edges on the trajectory. This follows from the fact that the travel time along an
edge is itself a ratio length/speed and that, from one boundary ∂Pk to the next, ∂Pk+1, the
ratio between consecutive lengths is independent of k and the same is true of consecutive
speeds. This implies a travel time of δk on ∂Pk. Convergence implies that δ < 1, which,
by (1), means that λ must be less than the smaller root of λ2 cos θ − 2λ+ cos θ (since the
larger one exceeds 1). This gives us the inequality λ < (1 − sin θ)/ cos θ. Note that this
condition is not implied by the previous requirement that 0 < λ < cos θ. J

By (1), setting r = ρ for any λ < cos θ produces a valid particle system traveling inward
through the (n, λ)-tiling. Of course, the interesting question is whether this holds for any value
of the coefficient of restitution. We address this issue below in the context of one-dimensional
systems.

EuroCG’21

8:4 A Geometric Approach to Inelastic Collapse

2.3 One-dimensional collapse
The real parts of the 2n particles’ positions in the unit disk D describe a one-dimensional
particle system. To see why, it is useful to distinguish between the positive particles, those
numbered 1, . . . , n counterclockwise around D, from the others, the negative particles. The
name comes from the fact that the positive (resp. negative) particles always remain in the
upper (resp. lower) complex halfplane. Each positive particle j is naturally paired with the
negative particle 2n+ 1− j, since their trajectories are conjugate. Particles can only collide
with other particles of the same sign or with their conjugates; in the latter case, the collision
does not alter the motion along the real axis. All the other collisions occur in conjugate
pairs. This shows that the real-axis motion of the positive particles alone constitutes a bona
fide collision system over n particles with the same coefficient of restitution.

I Theorem 2.2. Fix any integer n > 2, and write θ = π/n and r0 = (1− sin θ)/(1 + sin θ).
Given any positive coefficient of restitution r ≤ r0, there is a scaling factor λ such that
the line projection of the (n, λ)-tiling forms the trajectory of a one-dimensional n-particle
system exhibiting inelastic collapse. The collapse time is r/

(
r − λ2) for any r < r0 and

λ = q cos θ − (q2 cos2 θ − r)1/2, where q = (1 + r)/2.

Proof. Setting r = ρ in (1) yields the quadratic equation

λ2 − 2q(cos θ)λ+ r = 0; (2)

hence λ = q cos θ ±
√
q2 cos2 θ − r . The roots need to be real; hence sin θ ≤ p/q or,

equivalently, r ≤ r0. We verify that 0 < λ < cos θ, as required of a valid (n, λ)-tiling, which
is a consequence of

√
q2 cos2 θ − r < p cos θ. By Lemma 2.1, the collapse time is infinite if

δ = λ2/r ≥ 1 and equal to
∑
k≥0 δ

k = 1/(1 − δ) = r/(r − λ2) if δ < 1. The smaller root
of (2), if strictly smaller, always satisfies the latter condition while the larger one never does.
This follows from the fact that λ−λ+ = r, q cos θ ≥ √r, and λ+ ≥ q cos θ; hence λ2

+ ≥ r. J

In our construction, the upper bound on the coefficient of restitution is (1−sin θ)/(1+sin θ).
As n goes to infinity, this gives us n & 2π/(1 − r), which matches the bounds from [1, 2].
For n = 3, our construction rediscovers the classic bound of 7− 4

√
3 [4, 6, 7].

3 Distinct Coefficients of Restitution

Our construction does not require a fixed scaling λ. Instead of placing the vertices on
circles of radius λk for k ≥ 0, we can use an arbitrary decreasing radius sequence (λk)k≥0,
with λ0 = 1. We assign a coefficient restitution rk for the collisions at radius λk; the
dependency on k might reflect a gain or loss of elasticity after repeated collisions. For
notational convenience, let p = (1− r1)/2, λ = λ1, and µ = λ2. By reference to Figure 3, we
now kick a particle from a to b with velocity u = b− a (using complex numbers), and one
from c to b with velocity v = b− c. Post-collision, the first particle travels from b to d with
velocity u′ = pu+ (1− p)v = σ1(d− b), for some σ1 > 0; hence b− c+ p(c− a) = σ1(d− b).
Since a = 1, b = λeiθ, c = e2iθ, and d = µ, we divide the equation by eiθ and find that

λ− eiθ + 2pi sin θ = σ1
(
µe−iθ − λ);

therefore, λ− cos θ = σ1(µ cos θ − λ) and r1 = σ1µ. More generally, for k > 0, we replace λ
and µ by λk and λk+1, respectively, and we scale the relations by λk−1:

σk = λk−1 cos θ − λk
λk − λk+1 cos θ and rk = cos θ − λk/λk−1

λk/λk+1 − cos θ . (3)

B. Chazelle, K. Karntikoon and Y. Zheng 8:5

Of course, we retrieve the relation r = ρ in (1) in the case λk = λk corresponding to having
fixed coefficients of restitution.

Figure 3 An irregular tiling.

3.1 Finite-time inelastic collapse
From the relation u′ = σ1(d− b), we see that the time spent crossing bd is precisely 1/σ1.
More generally, 1/σk is the time spent on the (k + 1)-st star polygon, given a unit travel
time on the previous polygon. It follows that the total travel duration is the sum of all the
products of the form 1/σ1 · · ·σk, which is

1 +
∞∑

k=1

k∏

j=1

λj − λj+1 cos θ
λj−1 cos θ − λj

. (4)

By projection onto the real line, finite-time inelastic collapse is guaranteed if

λk+1 ≥
1 + c

cos θ λk − cλk−1,

for some fixed c < 1. Again, we can check that, if λk = λk, then bounded travel time means
that λ < 1

cos θ − tan θ, as claimed in Lemma 2.1.

3.2 Red-blue particles
Consider two species of particles, blue and red. The blue particles collide together with the
coefficient of restitution r1 and the same is true of the red ones. Particles of different colors,
however, collide with the coefficient r2. Arrange the particles as usual, with the sequence
blue, blue, red, red, blue, blue, red, red, etc. Set the scaling factor λk = µj if k = 2j, and
λk = λµj if k = 2j + 1. By (3), we choose

r1 = µ(cos θ − λ)
λ− µ cos θ and r2 = λ cos θ − µ

1− λ cos θ .

Each factor in (4) is of the form

λj − λj+1 cos θ
λj−1 cos θ − λj

=
{
µ(1− λ cos θ)/(λ cos θ − µ) = µ/r2 if j is even
(λ− µ cos θ)/(cos θ − λ) = µ/r1 else .

EuroCG’21

8:6 A Geometric Approach to Inelastic Collapse

The travel time is finite if µ2 < r1r2, which is

µ(λ− µ cos θ)(1− λ cos θ) < (cos θ − λ)(λ cos θ − µ).

References
1 D. Benedetto and E. Caglioti. The collapse phenomenon in one-dimensional inelastic point

particle systems. Physica D: Nonlinear Phenomena, 132(4):457 – 475, 1999.
2 B. Bernu and R. Mazighi. One-dimensional bounce of inelastically colliding marbles on a

wall. Journal of Physics A: Mathematical and General, 23(24):5745 – 5754, 1990.
3 B. Cipra, P. Dini, S. Kennedy, and A. Kolan. Stability of one-dimensional inelastic collision

sequences of four balls. Physica D: Nonlinear Phenomena, 125(3):183 – 200, 1999.
4 P. Constantin, E. Grossman, and M. Mungan. Inelastic collisions of three particles on a line

as a two-dimensional billiard. Physica D: Nonlinear Phenomena, 83(4):409 – 420, 1995.
5 S. McNamara. Inelastic collapse. pages 267 – 277, 2002.
6 W.R. Young. S. McNamara. Inelastic collapse and clumping in a one-dimensional granular

medium. Physics of Fluids A: Fluid Dynamics, 4(3):496 – 504, 1992.
7 K. Shida and T. Kawai. Cluster formation by inelastically colliding particles in one-

dimensional space. Physica A: Statistical Mechanics and its Applications, 162(1):145 –
160, 1989.

8 L.P. Kadanoff. T. Zhou. Inelastic collapse of three particles. Physical review E, 54(1):623
– 628, 1996.

Max-Min 3-dispersion on a Convex Polygon
Yasuaki Kobayashi1, Shin-ichi Nakano2, Kei Uchizawa3, Takeaki
Uno4, Yutaro Yamaguchi5, and Katsuhisa Yamanaka6

1 Kyoto University, Japan
kobayashi@iip.ist.i.kyoto-u.ac.jp

2 Gunma University, Japan
nakano@cs.gunma-u.ac.jp

3 Yamagata University, Japan
uchizawa@yz.yamagata-u.ac.jp

4 National Institute of Informatics, Japan
uno@nii.jp

5 Kyushu University, Japan
yutaro_yamaguchi@inf.kyushu-u.ac.jp

6 Iwate University, Japan
yamanaka@cis.iwate-u.ac.jp

Abstract
Given a set P of n points and an integer k, we wish to place k facilities on points in P so that the
minimum distance between facilities is maximized. The problem is called the k-dispersion problem,
and the set of such k points is called a k-dispersion of P . Note that the 2-dispersion problem
corresponds to the computation of the diameter of P . Thus the k-dispersion problem is a natural
generalization of the diameter problem. In this paper we consider the case of k = 3, which is the
3-dispersion problem, when P is in convex position. We give an O(n2)-time algorithm to compute
a 3-dispersion of P .

1 Introduction

The facility location problem and many of its variants have been studied [11, 12]. Typically,
given a set P of points in the Euclidean plane and an integer k, we wish to place k facilities
on points in P so that a designated function on distance is minimized. In contrast, in the
dispersion problem, we wish to place facilities so that a designated function on distance is
maximized.

The intuition of the problem is as follows. Assume that we are planning to open several
coffee shops in a city. We wish to locate the shops mutually far away from each other to avoid
self-competition. So we wish to find k points so that the minimum distance between the
shops is “maximized”. See more applications, including result diversification, in [9, 20, 21].

Now, we define the max-min k-dispersion problem. Given a set P of n points in the
Euclidean plane and an integer k with k < n, we wish to find a subset S ⊂ P with |S| = k

in which the cost cost(S) = minu,v∈S d(u, v) is maximized, where d(u, v) is the distance
between u and v in P . Such a set S is called a k-dispersion of P . This is the max-min
version of the k-dispersion problem [20, 24]. Several heuristics to solve the problem are
compared [14]. The max-sum version [6, 7, 8, 9, 10, 15, 17, 20] and a variety of related
problems [4, 6, 10] are studied.

The max-min k-dispersion problem is NP-hard even when the triangle inequality is satis-
fied [13, 24]. An exponential-time exact algorithm for the problem is known [2]. The running
time is O(nωk/3 logn), where ω < 2.373 is the matrix multiplication exponent.
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 79, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

9:2 Max-Min 3-dispersion on a Convex Polygon

y

z

x

Figure 1 An example of 3-dispersion. {x, y, z} is a 3-dispersion.

The problem in the D-dimensional Euclidean space can be solved in O(kn) time for
D = 1 if a set P of points are given in the order on the line and is NP-hard for D = 2 [24].
One can also solve the case D = 1 in O(n log logn) time [3] by the sorted matrix search
method [16] (see a good survey for the sorted matrix search method in [1, Section 3.3]), and
in O(n) time [2] by a reduction to the path partitioning problem [16]. Even if a set P of
points are not given in the order on the line the running time for D = 1 is O((2k2)kn) [5].
Thus if k is a constant we can solve the problem in O(n) time.

If P is a set of points on a circle, and the points in P are given in the order on the
circle, and the distance between them is the distance along the circle, then one can solve
the k-dispersion problem in O(n) time [23].

For approximation, the following results are known. Ravi et al. [20] proved that, unless P
= NP, the max-min k-dispersion problem cannot be approximated within any constant factor
in polynomial time, and cannot be approximated with a factor less than two in polynomial
time when the distance satisfies the triangle inequality. They also gave a polynomial-time
algorithm with approximation ratio two when the triangle inequality is satisfied.

When k is restricted, the following results for the D-dimensional Euclidean space are
known. For the case k = 3, one can solve the max-min 3-dispersion problem in O(n2 logn)
time [18]. For k = 2, the 2-dispersion of P corresponds to the computation of the diameter
of P , and one can compute it in O(n logn) time [19].

In this paper we consider the case where P is a set of points in convex position.
and d is the Euclidean distance. See an example of a 3-dispersion of P in Figure 1. By

the brute force algorithm and the algorithm in [18] one can compute a 3-dispersion of P in
O(n3) and O(n2 logn) time, respectively, for a set of points on the plane. In this paper we
give an algorithm to compute a 3-dispersion of P in O(n2) time using the property that P
is a set of points in convex position.

2 Preliminaries

Let P be a set of n points in convex position on the plane. In this paper, we assume n ≥ 3.
We denote the Euclidean distance between two points u, v by d(u, v). The cost of a set
S ⊂ P is defined as cost(S) = minu,v∈S d(u, v). Let S3 be the set of all possible three points
in P . We say S ∈ S3 is a 3-dispersion of P if cost(S) = maxS′∈S3 cost(S′).

We have the following two lemmas.

▶ Lemma 2.1. If a triangle with corner points pi, pr, pℓ satisfies d(pi, pr) ≥ L, d(pi, pℓ) ≥ L

and d(pℓ, pr) < L for some L, then ∠pℓpipr < 60◦.

Y. Kobayashi et al. 9:3

(a) (b)

Di

siti

Di

ti

si

ti

si
si

ti

Figure 2 Illustrations for the square submatrix Di of D for pi.

▶ Lemma 2.2. If a triangle with corner points pi, pr, pℓ satisfies d(pi, pr) < L, d(pi, pℓ) < L

and d(pℓ, pr) ≥ L for some L, then ∠pℓpipr > 60◦.

3 Algorithm

Let P = (p1, p2, . . . , pn) be the set of points in convex position and assume that they appear
clockwise in this order. Let D be the distance matrix of the points in P , that is, the element
at row y and column x is d(py, px). Let C1 = {d(pi, pj) | 1 ≤ i < j ≤ n}. The cost of a
3-dispersion in P is the distance between some pair of points in P , so it is in C1.

The outline of our algorithm is as follows. Our algorithm is a binary search and proceeds
in at most 2 log n stages. For each stage j = 1, 2, . . . , k, where k is at most 2 logn, we
(1) compute the median rj of Cj , where Cj is a subset of Cj−1, which is computed in the
(j − 1)st stage (except the case of j = 1), (2) compute n square submatrices of D defined
by rj along the main diagonal in D, then (3) we check if some square submatrix among
them has an element greater than or equal to rj , or not. We prove later that at least one
square submatrix above has an element greater than or equal to rj if and only if P has a
3-dispersion with cost rj or more. If the answer of (3) is YES then we set Cj+1 as the subset
of Cj consisting of the distances greater than or equal to rj , otherwise we set Cj+1 as the
subset of Cj consisting of the distances less than rj . Note that in either case the cost of a
3-dispersion of P is in Cj+1 and |Cj+1| ≤ |Cj |/2 holds. Since the size of Cj+1 is at most
half of Cj and |C1| ≤ n2, the number of stages is at most logn2 = 2 logn.

Now, we explain the details of each stage. For the computation of the median in (1), we
simply use a linear-time median-finding algorithm [22].

Next, we explain the detail of (2) for each stage j. Given rj , for each pi ∈ P , we compute
the first point, say si ∈ P , on the convex polygon with d(pi, si) ≥ rj when we check the
points clockwise from pi. Similarly, we compute the first point, say ti ∈ P , on the convex
polygon with d(pi, ti) ≥ rj when we check the points counterclockwise from pi. See such
an example in Figure 3. Note that, when we check the points clockwise from si to ti, for
some point, say pc, d(pi, pc) < rj may hold. See Figure 3. For each pi we define a square
submatrix Di of D induced by the rows si, . . . , ti and the columns si, . . . , ti. See Figure 2(a).
Note that Di is located in D along the main diagonal. The square submatrix Di may appear
in D as four separated squares if it contains p1 on the clockwise contour from si to ti. See
Figure 2(b).

If we search each si independently by scanning then total running time for the search of
s1, s2, . . . , sn is O(n2) in each stage, and O(n2 logn) in the whole algorithm. We are going
to improve this. Since si+1 may appear before si on the clockwise contour (See Figure 4)

EuroCG’21

9:4 Max-Min 3-dispersion on a Convex Polygon

p
i

s i

t i rj

Figure 3 An example of si and ti for pi. The drawn circle is a circle with the center of pi the
radius of length ri.

p
i p

i+1

si+1

si

rj

rj

Figure 4 si+1 may appear before si on the clockwise contour.

the search is not so simple.
We estimate the total number of distance checks for computing si of pi for each i =

1, 2, . . . , n in stage 1. Given r1, we check each point clockwise starting at pi, and si is the
first point from pi which has the distance r1 or more. It can be observed that the total
number of checks for the distance in stage 1 is at most n + |C1|/2 ≤ n + n2/2. In the
estimation, n checks are required for the pairs of (si, pi) for every i = 1, 2, . . . , n and |C1|/2
checks are required for the pairs (p, pi) which satisfies that p appears between pi and si
clockwise and d(p, pi) < r1, for every i = 1, 2, . . . , n. Remember that r1 is the median of
distances in C1. Then, in each stage j = 2, 3, . . . , k (k ≤ 2 logn), given rj , if the answer to
(3) of the preceding stage j − 1 is YES then we check each point clockwise starting at si of
the preceding stage j − 1 (since rj > rj−1 holds, all points before si of the preceding stage
are within distance rj from pi), otherwise we check each point clockwise starting again at
the starting point of the preceding stage j − 1. In either case we check at most n + n2/2j
points in total for the search for s1, s2, . . . , sn in the stage j, and at most 2n logn + 2n2

points for the whole algorithm. Note that the total number of checks in each stage j is n

for s1, s2, . . . , sn plus |Cj |/2 ≤ n2/2j for the points with distance less than rj from its pi.
Now, we give a lemma mentioned in (3). Assume that we are at stage j, and si and ti

for pi are given. If there is a set of three points in P containing pi with cost rj or more,
then the square submatrix Di has an element greater than or equal to rj . The reverse may
be wrong. If the submatrix Di for some pi has an element greater than or equal to rj at row
y and column x, it only ensures d(px, py) ≥ rj . That is, d(pi, px) < rj and/or d(pi, py) < rj
may hold. We show that this situation cannot occur in the following lemma.

▶ Lemma 3.1. The square submatrix Di of stage j has an element greater than or equal to

Y. Kobayashi et al. 9:5

si

rj

py

px

pi

Figure 5 An illustration for Lemma 3.1.

rj if and only if there is a set of three points S ⊂ P including pi with cost(S) ≥ rj.

Proof. If there is a set of three points S ⊂ P including pi with cost(S) ≥ rj then clearly
the square submatrix Di of stage j has an element greater than or equal to rj .

We only prove the other direction, that is, if the square submatrix Di of stage j has an
element greater than or equal to rj then there is a set of three points S ⊂ P including pi
with cost(S) ≥ rj . Assume that Di has an element greater than or equal to rj at row y and
column x, that is d(px, py) ≥ rj . We have the following four cases and in each case we show
that there exists a set S of three points such that cost(S) ≥ rj .

Case 1: d(pi, px) ≥ rj and d(pi, py) ≥ rj .
The set S = {pi, px, py} has cost(S) ≥ rj .

Case 2: d(pi, px) < rj and d(pi, py) < rj .
We show that, for S = {pi, si, ti}, cost(S) ≥ rj holds. We assume for a contradiction

that d(si, ti) < rj holds. Then, we have ∠sipiti < 60◦ by Lemma 2.1 and ∠pxpipy > 60◦ by
Lemma 2.2. This is a contradiction to the convexity of P .

Case 3: d(pi, px) < rj and d(pi, py) ≥ rj .
In this case, we show that the set {pi, si, py} attains cost(S) ≥ rj . Since, d(pi, py) ≥ rj

and d(pi, si) ≥ rj , we have to prove d(si, py) ≥ rj .
Assume for a contradiction that d(si, py) < rj holds. See Figure 5. Now, we first show

that {si, px, py} forms an obtuse triangle with the obtuse angle px, below. We focus on
the rectangle consisting of pi, py, px, and si. Since d(pi, py) ≥ rj and d(pi, si) ≥ rj , and
d(si, py) < rj , we have ∠sipipy < 60◦ by Lemma 2.1. Let p′ be the point on the line
segment between pi and si with d(pi, p′) = rj . Since ∠pip′px < 90◦ holds, we can observe
that ∠pisipx < 90◦ holds. Since d(pi, py) ≥ rj , d(px, py) ≥ rj , and d(pi, px) < rj , we
have ∠pipypx < 60◦ by Lemma 2.1. Now, the sum of the internal angles of the quadrangle
consisting of pi, si, px, and py implies that ∠sipxpy ≥ 150◦, and {si, px, py} are the points
of an obtuse triangle with obtuse angle at px. However d(px, py) ≥ rj and d(si, py) < rj ,
which is a contradiction.

Case 4: d(pi, px) ≥ rj and d(pi, py) < rj .
Symmetry to Case 3. Omitted. 2

Now, we are ready to describe our algorithm and the estimation of the running time.
First, as a preprocessing, we construct the set C1 = {d(pi, pj) | 1 ≤ i < j ≤ n} of distances
and n × n distance matrix D. Next, we repeat the following stage for each j = 1, 2, . . . , k,
where k ≤ 2 log n. (1) we compute the median rj of Cj , (2) compute si and ti of pi for

EuroCG’21

9:6 Max-Min 3-dispersion on a Convex Polygon

i = 1, 2, . . . , n, and (3) check whether there exists an index i, (1 ≤ i ≤ n), such that the
maximum value of Di is greater than or equal to rj . Then, if such i exists, we set Cj+1 =
{d(pi, pj) ∈ Cj | d(pi, pj) ≥ rj}, otherwise, we set Cj+1 = {d(pi, pj) ∈ Cj | d(pi, pj) < rj}.

The analysis of the running time is as follows. The preprocessing can be done in O(n2)
time. For (1), we can compute the median rj of stage j in O(n/2j−1) time by using a linear-
time median-finding algorithm [22], and hence O(n2) time for the whole algorithm. The
computation for (2) can be done in O(n2) time in the whole algorithm, as described above.
For (3), after O(n2)-time preprocessing for D, we can compute the maximum element in the
given submatrix in D in O(1) time for each query by using the range-query algorithm [25],
so we need O(n) time for each stage and O(n logn) time for the whole algorithm. (For
a separated square as shown in Figure 2(b) we need four queries but total time is still a
constant.)

Now, we have our main theorem.

▶ Theorem 3.2. One can compute a 3-dispersion of P in O(n2) time if P is a set of n
points in convex position.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers JP18H0-
4091, JP19K11812, JP20H05793, JP20H05962, JP20K19742. The fourth author is also sup-
ported by JST CREST Grant Number JPMJCR1401.

References
1 P. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Comput.

Surv., 30:412–458, 1998.
2 T. Akagi, T. Araki, T. Horiyama, S. Nakano, Y. Okamoto, Y. Otachi, T. Saitoh, R. Uehara,

T. Uno, and K. Wasa. Exact algorithms for the max-min dispersion problem. Proc. of FAW
2018, LNCS 10823:263–272, 2018.

3 T. Akagi and S. Nakano. Dispersion on the line. IPSJ SIG Technical Reports, 2016-AL-
158-3, 2016.

4 K. Amano and S. Nakano. An approximation algorithm for the 2-dispersion problem.
IEICE TRANS. INF.SYST., E103-D:506–508, 2020.

5 T. Araki and S. Nakano. The max-min dispersion on a line. Proc. of COCOA 2018, LNCS
11346:672–678, 2018.

6 C. Baur and S. P. Fekete. Approximation of geometric dispersion problems. Proc. of
APPROX 1998, pages 63–75, 1998.

7 B. Birnbaum and K. J. Goldman. An improved analysis for a greedy remote-clique algo-
rithm using factor-revealing LPs. Algorithmica, 50:42–59, 2009.

8 A. Cevallos, F. Eisenbrand, and R. Zenklusen. Max-sum diversity via convex programming.
Proc. of SoCG 2016, pages 26:1–26:14, 2016.

9 A. Cevallos, F. Eisenbrand, and R. Zenklusen. Local search for max-sum diversification.
Proc. of SODA 2017, pages 130–142, 2017.

10 B. Chandra and M. M. Halldorsson. Approximation algorithms for dispersion problems. J.
of Algorithms, 38:438–465, 2001.

11 Z. Drezner. Facility location: A Survey of Applications and Methods. Springer, 1995.
12 Z. Drezner and H.W. Hamacher. Facility Location: Applications and Theory. Springer,

2004.
13 E. Erkut. The discrete p-dispersion problem. European Journal of Operational Research,

46:48–60, 1990.

Y. Kobayashi et al. 9:7

14 E. Erkut, Y. Ulkusal, and O. Yenicerioglu. A comparison of p-dispersion heuristics. Com-
puters & Operational Research, 21:1103–1113, 1994.

15 S. P. Fekete and H. Meijer. Maximum dispersion and geometric maximum weight cliques.
Algorithmica, 38:501–511, 2004.

16 G. Frederickson. Optimal algorithms for tree partitioning. Proc. of SODA 1991, pages
168–177, 1991.

17 R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for maximum dispersion.
Operation Research Letters, 21:133–137, 1997.

18 T. Horiyama, S. Nakano, T. Saitoh, K. Suetsugu, A. Suzuki, R. Uehara, T. Uno, and
K. Wasa. Max-min 3-dispersion problems. Proc. of COCOON 2019, LNCS 11653:291–300,
2019.

19 F. P. Preparata and M. I. Shamos. Computational geometry: an introduction. Springer-
Verlag, 1985.

20 S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and special case algorithms for
dispersion problems. Operations Research, 42:299–310, 1994.

21 M. Sydow. Approximation guarantees for max sum and max min facility dispersion with
parameterised triangle inequality and applications in result diversification. Mathematica
Applicanda, 42:241–257, 2014.

22 R. L. Rivest T. H. Cormen, C. E. Leiserson and C. Stein. Introduction to algorithms, Third
Edition. MIT Press, 2000.

23 K. H. Tsai and D. W. Wang. Optimal algorithms for circle partitioning. Proc. of COCOON
1997, LNCS 1276:304–310, 1997.

24 D. W. Wang and Y.-S. Kuo. A study on two geometric location problems. Information
Processing Letters, 28:281–286, 1988.

25 H. Yuan and M. J. Atallah. Data structures for range minimum queries in multidimensional
arrays. Proc. of SODA 2010, pages 150–160, 2010.

EuroCG’21

The maximal number of 3-term arithmetic
progressions in finite sets in different geometries
Itai Benjamini1 and Shoni Gilboa2

1 Department of Mathematics, Weizmann Institute of Science, Rehovot 7610001,
Israel

2 Department of Mathematics and Computer Science, The Open University of
Israel, Raanana 4353701, Israel

Abstract
Green and Sisask showed that the maximal number of 3-term arithmetic progressions in n-element
sets of integers is dn2/2e; it is easy to see that the same holds if the set of integers is replaced
by the real line or by any Euclidean space. We study this problem in general metric spaces,
where a triple (a, b, c) of points in a metric space is considered a 3-term arithmetic progression if
d(a, b) = d(b, c) = 1

2 d(a, c). In particular, we show that the result of Green and Sisask extends to any
Cartan–Hadamard manifold (in particular, to the hyperbolic spaces), but does not hold in spherical
geometry or in the r-regular tree, for any r ≥ 3.

Related Version arXiv:2011.04410

1 Introduction

It was shown in [6, Theorem 1.2] that the maximal number of 3-term arithmetic progressions in
n-element sets of integers is dn2/2e (counting increasing, decreasing and constant progressions).
Combined with some tools from additive combinatorics, this result was used in [6] to obtain
their main result that dn2/2e is also the maximal number of 3-term arithmetic progressions
in n-element subsets of the additive group Z/pZ for prime p, provided that n/p is smaller
than some absolute constant. Additive structure is probably the most natural context of
arithmetic progressions, but it may be viewed also as a metric notion, which is the direction
we pursue here; we study the maximal number of 3-term arithmetic progressions in n-element
subsets of various metric spaces and examine how it relates to geometric properties of these
spaces.

I Definition 1.1. Let M be a metric space. We say that (a, b, c) ∈M3 is a 3-term arithmetic
progression in M if dM (a, b) = dM (b, c) = 1

2dM (a, c), where dM is the metric of M . For any
set A ⊆M , let

AT M (A) := {(a, b, c) ∈ A3 | dM (a, b) = dM (b, c) = 1
2dM (a, c)}

be the set of 3-term arithmetic progressions in the set A. For every positive integer n, let

µn(M) := max{|AT M (A)| : A ⊆M, |A| = n}

be the maximal number of 3-term arithmetic progressions in n-element subsets of M .

I Observation 1.2. Note that (b, b, b) ∈ AT M (A) for every b ∈ A and that if (a, b, c) ∈
AT M (A), then (c, b, a) ∈ AT M (A) as well.

As already mentioned, it was shown in [6] that µn(Z) = dn2/2e for every n, and the same
argument shows that for every n,

µn(R) = dn2/2e. (1)
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

10:2 Maximal number of 3-term arithmetic progressions in different geometries

This yields, by a simple projection argument, that the same is true for Euclidean spaces of
any dimension. We show that this extends to a rather large class of metric spaces. First,
let us recall some basic notions. Let M be a metric space; a curve γ : I →M , where I is a
connected subset of the real line, is a geodesic if dM (γ(y), γ(x)) = y − x for every x < y in I;
a set Γ ⊆ M is a geodesic segment with endpoints p, q if there is a geodesic γ : [a, b] → M

such that Γ = γ([a, b]), p = γ(a) and q = γ(b); the metric space M is uniquely geodesic if
any two distinct points in M are the endpoints of a unique geodesic segment; finally, a curve
γ : I →M , where I is a connected subset of the real line, is a local geodesic if around every
a ∈ I there is an open interval Ia such that the restriction of γ to I ∩ Ia is a geodesic.

I Theorem 1.3. Let M be a uniquely geodesic Riemannian manifold in which every local
geodesic is a geodesic. Then, µn(M) = dn2/2e for every n; moreover, any set A of n points
in M for which |AT M (A)| = dn2/2e is contained in the image of a geodesic.

The proof of Theorem 1.3 is given in section 2.
I Remark. In particular, Theorem 1.3 applies to the hyperbolic spaces, and more generally,
to any Cartan–Hadamard manifold, i.e., complete simply connected Riemannian manifold
that has everywhere nonpositive sectional curvature (see, e.g., [1, 4]). However, the result
does not extend to the wider class of Hadamard spaces, i.e., complete metric spaces of global
nonpositive curvature, in the sense of A. D. Alexandrov (note that each such metric space is
uniquely geodesic, and every local geodesic in it is a geodesic; see, e.g., [2, 3]). For instance,
let Tr be the (discrete) r-regular tree, r ≥ 2, equipped with the graph metric, and let T̂r be
the corresponding metric graph, where all the edges have unit length, which is a Hadamard
space. A simple computation shows that for every ball A in Tr,

|AT Tr
(A)| =

(
1
2 + (r − 2)2

2r2

)
|A|2 + 2(r − 2)

r2 |A|+ 2
r2 .

Since obviously µn(T̂r) ≥ µn(Tr) for every n, it follows that for every r ≥ 3,

lim sup
n→∞

µn(T̂r)
n2 ≥ lim sup

n→∞

µn(Tr)
n2 ≥ 1

2 + (r − 2)2

2r2 >
1
2 = lim

n→∞
dn2/2e
n2 .

Next, we consider the unit circle S1 = {u ∈ R2 : |u| = 1}, with respect to the arc length
metric.

I Theorem 1.4. For every n 6= 2,

µn(S1) = 1
2n

2 +

n n mod 4 = 0,
1
2n n mod 4 = 1,
2 n mod 4 = 2,
1
2n− 1 n mod 4 = 3.

The proof of Theorem 1.4 is given in section 3.
By considering subsets of the unit sphere S2 = {u ∈ R3 : |u| = 1} that are composed of

an appropriate set of n− 2 points on a great circle of the sphere and the pair of respective
poles, it is simple to show that for every n ≥ 2,

µn(S2) ≥ 1
2n

2 +

2n− 4 n mod 4 = 0,
5
2n− 8 n mod 4 = 1,
3n− 6 n mod 4 = 2,
5
2n− 7 n mod 4 = 3.

(2)

I. Benjamini and S. Gilboa 10:3

We believe that this lower bound for µn(S2) is tight for every n ≥ 2. Note that combining
(2) with Theorem 1.4 yields that µn(S2) > µn(S1) for every n ≥ 5.

2 Proof of Theorem 1.3

Theorem 1.3 will follow from the following, more general, theorem.

I Theorem 2.1. Let M be a metric space, and let L be a family of subsets of M ; we will
refer to any set in L as a ‘line’. Assume that the following conditions hold:
1. Each line in L is isometric to a subset of the real line.
2. For any two distinct points in M there is a unique line in L containing them both.
3. For every nonconstant 3-term arithmetic progression (a, b, c) in M , the points a, b, c lie

on a common line in L (which is obviously unique, by the previous condition).
Then, µn(M) ≤ dn2/2e for every n; moreover, if µn(M) = dn2/2e, then any set A of n
points in M for which |AT M (A)| = dn2/2e is contained in a line in L.

Proof. Let A be a set of n points in M .
If A is contained in a line L ∈ L, then since L is isometric to a subset of the real line, it

follows from (1) that |AT M (A)| ≤ µn(L) ≤ µn(R) =
⌈
n2/2

⌉
.

Assume that A is not contained in a line in L. For every L ∈ L, let rL := |A ∩ L|. Let
LA := {L ∈ L | rL ≥ 2} be the set of lines ‘determined’ by the set A. For every L ∈ LA,
since L is isometric to a subset of the real line, it follows from (1) that

|AT M (A ∩ L)| − rL ≤ µrL
(R)− rL =

⌈
r2
L

2

⌉
− rL =

(
rL
2

)
−
⌊rL

2

⌋
≤
(
rL
2

)
− 1. (3)

For any two distinct points of A, there is a unique line in LA containing them both. Therefore,

∑

L∈LA

(
rL
2

)
=
(
n

2

)
, (4)

and moreover, since the points in A are not all on a single line, it follows from Fisher’s
inequality [5] that

|LA| ≥ n. (5)

For each nonconstant (a, b, c) ∈ AT M (A), there is a unique line in LA containing all three
points a, b, c. Hence,

|AT M (A)| − n =
∑

L∈LA

(|AT M (A ∩ L)| − rL) .

Therefore, by (3), (4) and (5),

|AT M (A)| − n ≤
∑

L∈LA

((
rL
2

)
− 1
)

=
(
n

2

)
− |LA| ≤

(
n

2

)
− n,

and hence, |AT M (A)| ≤
(
n
2
)
<
⌈
n2/2

⌉
, which concludes the proof. J

We proceed to prove Theorem 1.3. Consider the family of ‘lines’

L := {γ(I) | γ : I →M is a maximal geodesic},

where a geodesic is maximal if it cannot be extended to a geodesic with a larger domain.

EuroCG’21

10:4 Maximal number of 3-term arithmetic progressions in different geometries

Any geodesic segment in M is contained in a unique line in L. Indeed, let Γ be a geodesic
segment in M , let p, q be its endpoints and let δ := dM (p, q). There is a unique geodesic
γ : [0, δ] → M such that γ([0, δ]) = Γ, γ(0) = p and γ(δ) = q. Since M is a Riemannian
manifold, γ may be uniquely extended to a maximal local geodesic γ̂ : I →M (i.e., a local
geodesic that cannot be extended to a local geodesic with a larger domain). Since each
local geodesic in M is a geodesic, it follows that γ̂(I) is the unique line in L containing the
geodesic segment Γ.

Let us verify that the metric space M and the family L of subsets of M satisfy all the
conditions of Theorem 2.1. For any geodesic γ : I → M , the set γ(I) is isometric to the
subset I of the real line; in particular, every line in L is isometric to a subset of the real line.
For any two distinct points p, q in M there is a unique geodesic segment Γ with endpoints
p, q, since M is uniquely geodesic; the unique line in L containing Γ is obviously the unique
line in L containing both p and q. Finally, if (a, b, c) is a nonconstant 3-term arithmetic
progression in M , then it is straightforward to show, since dM (a, b) + dM (b, c) = dM (a, c),
that the union Γ of a geodesic segment with endpoints a, b and a geodesic segment with
endpoints b, c is necessarily a geodesic segment with endpoints a, c; hence, the points a, b, c
lie on the line in L containing Γ.

Theorem 1.3 now follows from Theorem 2.1, upon taking an arbitrary nonconstant
geodesic γ : I → M and observing that for every n we may find an n-term arithmetic
progression An ⊂ I and then, µn(M) ≥ µn(γ(I)) = µn(I) ≥ |AT R(An)| = dn2/2e.

3 Proof of Theorem 1.4

For every pair of distinct points a, b in S1, let Ca,b be the open arc of S1 from a to b

counterclockwise, and let Ma,b be the midpoint of this arc.
First, we prove the lower bound in Theorem 1.4. We say that a set {p1, p2, . . . , pn} of

n ≥ 2 points in S1, where the points p1, p2, . . . , pn are ordered counterclockwise, is evenly
spread around the circle if dS1(p1, p2) = · · · = dS1(pn−1, pn) = dS1(pn, p1) = 2π/n. Let
F1 := {{a} | a ∈ S1} and for every n ≥ 2, let Fn be the family of all n-element subsets of S1

that are evenly spread around the circle. For every positive integer n which is divisible by 4,
let ρn be the rotation of S1 by an angle of π/n (counterclockwise) and let

F [−1]
n :={A \ {a} | A ∈ Fn, a ∈ A},
F [−2]
n :={A \ {a, b} | A ∈ Fn, a, b ∈ A such that dS1(a, b) ≤ π

2 and Ma,b,Mb,a ∈ A},
F [+1]
n :={A ∪ {a} | A ∈ Fn, ρn(a) ∈ A},
F [+2]
n :={A ∪ {a, b} | A ∈ Fn, a, b ∈ S1 such that ρn(a), ρn(b),Ma,b,Mb,a ∈ A}.

A straightforward computation yields that for every positive integer n,

|AT S1(A)| = 2nbn/4c+ n for any A ∈ Fn, (6)

and for every positive integer n which is divisible by 4,

|AT S1(A)| = 1
2 (n− 1)2 + 1

2 (n− 1)− 1 for any A ∈ F [−1]
n , (7a)

|AT S1(A)| = 1
2 (n− 2)2 + 2 for any A ∈ F [−2]

n , (7b)
|AT S1(A)| = 1

2 (n+ 1)2 + 1
2 (n+ 1) for any A ∈ F [+1]

n , (7c)
|AT S1(A)| = 1

2 (n+ 2)2 + 2 for any A ∈ F [+2]
n . (7d)

I. Benjamini and S. Gilboa 10:5

The lower bound in Theorem 1.4 follows since if n mod 4 = 0, then |AT S1(A)| = 1
2n

2 + n for
any A ∈ Fn, by (6); if n mod 4 = 1, then |AT S1(A)| = 1

2n
2 + 1

2n for any A ∈ Fn ∪F [+1]
n−1 , by

(6) and (7c); if n mod 4 = 2 and n > 2, then |AT S1(A)| = 1
2n

2 + 2 for any A ∈ F [−2]
n+2 ∪F

[+2]
n−2 ,

by (7b) and (7d); finally, if n mod 4 = 3, then |AT S1(A)| = 1
2n

2 + 1
2n− 1 for any A ∈ F [−1]

n+1 ,
by (7a).

We proceed to prove the upper bound in Theorem 1.4. Let A be a set of n points in S1.
For any b ∈ A, denote

wA(b) := |{(x, y, z) ∈ AT S1(A) : y = b}|.

Note that wA(b) is odd for every b ∈ A, by Observation 1.2; hence, 1
2wA(a) + 1

2wA(b) is an
integer for every a, b ∈ A. Denote

P :=
{
{a, b} ⊆ A | a 6= b,

∣∣|A ∩ Ca,b| − |A ∩ Cb,a|
∣∣ ≤ 1

}
.

I Lemma 3.1. For any {a, b} ∈ P,
1
2wA(a) + 1

2wA(b) ≤
⌊
n
2
⌋

+ 1. (8)

Proof. Denote

Ha := {x ∈ S1 | dS1(a, x) ≤ π
2 }, Hb := {x ∈ S1 | dS1(b, x) ≤ π

2 }.

We may assume that the arc Ca,b is at least as long as the arc Cb,a, and that if the two
arcs have the same length then |A ∩ Ca,b| ≤ |A ∩ Cb,a|.

If (b, b, b) 6= (x, b, y) ∈ AT S1(A), then x, y are both in A ∩Hb and at least one of them is
in the arc Ca,b. Hence, wA(b) ≤ 1 + 2|A∩Hb ∩Ca,b|. Similarly, wA(a) ≤ 1 + 2|A∩Ha ∩Ca,b|
and hence,

1
2wA(a) + 1

2wA(b) ≤ 1 + |A ∩Ha ∩ Ca,b|+ |A ∩Hb ∩ Ca,b|. (9)

If the points a, b are antipodal, thenHa∪Hb = S1, Ha∩Hb = {Ma,b,Mb,a}, |A∩Ca,b| = bn−2
2 c

and hence,

|A ∩Ha ∩ Ca,b|+ |A ∩Hb ∩ Ca,b| = |A ∩ Ca,b|+ |A ∩ {Ma,b}| ≤
⌊
n−2

2
⌋

+ 1 =
⌊
n
2
⌋
. (10)

If the points a, b are not antipodal, then the set Ca,b ∩Ha ∩Hb is empty and hence

|A ∩Ha ∩ Ca,b|+ |A ∩Hb ∩ Ca,b| ≤ |A ∩ Ca,b| ≤
⌈
n−2

2
⌉

=
⌈
n
2
⌉
− 1 ≤

⌊
n
2
⌋
. (11)

Combining (9), (10) and (11) yields (8). J

I Observation 3.2. By examining closely the proof of Lemma 3.1, it follows that if {a, b} ∈ P
and 1

2wA(a) + 1
2wA(b) = n

2 + 1 (in particular, n is even), then the points a, b are antipodal,
the set A is invariant under the reflection of R2 through the line through the points a, b and
moreover, the points Ma,b,Mb,a are in A.

If n is odd, then by (8),

|AT S1(A)| =
∑

b∈A
wA(b) =

∑

{a,b}∈P

(1
2wA(a) + 1

2wA(b)
)
≤ |P|

(
n−1

2 + 1
)

= 1
2n

2 + 1
2n,

which yields the desired upper bound if n mod 4 = 1. If n mod 4 = 3, then the desired upper
bound follows since |AT S1(A)| − n is even, by Observation 1.2, whereas

(1
2n

2 + 1
2n
)
− n =

nn−1
2 is odd in this case.

EuroCG’21

10:6 Maximal number of 3-term arithmetic progressions in different geometries

If n is even, then

|AT S1(A)| =
∑

b∈A
wA(b) = 2

∑

{a,b}∈P

(1
2wA(a) + 1

2wA(b)
)
. (12)

Hence, if n mod 4 = 0 then |AT S1(A)| ≤ 2|P|
(
n
2 + 1

)
= 1

2n
2 + n, by (8), as desired. Finally,

suppose that n mod 4 = 2 and let

P0 :=
{
{a, b} ∈ P | 1

2wA(a) + 1
2wA(b) = n

2 + 1
}
.

If |P0| ≤ 1, then by (12) and (8),

|AT S1(A)| ≤ 2|P0|
(
n
2 + 1

)
+ 2 (|P| − |P0|) n2 = 1

2n
2 + 2|P0| ≤ 1

2n
2 + 2

as desired. To conclude the proof we will show that if r := |P0| > 1, then |AT S1(A)| < 1
2n

2+2.
Note that by Observation 3.2, each member of P0 is a pair of antipodal points. Suppose that
P0 = {{pi, pr+i}}r−1

i=0 , where the points p0, p1, . . . , p2r−1 are ordered counterclockwise. It
follows from Observation 3.2 that the set {p0, p1, . . . , p2r−1} is evenly spread around the circle
and moreover, r is odd, since n is not divisible by 4. Let s := r−1

2 . For every 0 ≤ i ≤ 2r − 1,
the point

ai := Mpi,p(i+1) mod 2r
= Mp(i−s) mod 2r,p(i+1+s) mod 2r

is in A, by Observation 3.2, since {p(i−s) mod 2r, p(i+1+s) mod 2r} ∈ P0. Using Observation 3.2
once more, it follows that there are m0,m1 such that for every 0 ≤ i ≤ 2r − 1,

|A ∩ Cpi,ai
| = mi mod 2, |A ∩ Cai,p(i+1) mod 2r

| = m(i+1) mod 2.

Necessarily m0 6= m1, since n is not divisible by 4. Now it is simple to show, by using an
argument similar to the one used to prove Lemma 3.1, that for every 0 ≤ i ≤ 2r − 1,

1
2wA(ai) + 1

2wA(bi) ≤ n
2 − 1,

where bi is the point in A for which {ai, bi} ∈ P. Hence, if we denote P1 := {{ai, bi}}2r−1
i=0 ,

then by (12) and (8),

|AT S1(A)| ≤ 2|P0|
(
n
2 + 1

)
+ 2|P1|

(
n
2 − 1

)
+ 2 (|P| − |P0| − |P1|) n2

= 1
2n

2 + 2 (|P0| − |P1|) < 1
2n

2 + 2.

Acknowledgments. We thank Lev Buhovski, Dan Hefetz, Bo’az Klartag and Pierre Pansu
for fruitful discussions.

References
1 Werner Ballmann, Mikhael Gromov, and Viktor Schroeder. Manifolds of nonpositive

curvature, volume 61 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA,
1985. doi:10.1007/978-1-4684-9159-3.

2 Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, vol-
ume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, 1999. doi:10.1007/978-3-662-12494-9.

3 Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry, volume 33 of
Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001.
doi:10.1090/gsm/033.

I. Benjamini and S. Gilboa 10:7

4 Jeff Cheeger and David G. Ebin. Comparison theorems in Riemannian geometry. North-
Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New
York, 1975. North-Holland Mathematical Library, Vol. 9.

5 R. A. Fisher. An examination of the different possible solutions of a problem in incomplete
blocks. Ann. Eugenics, 10:52–75, 1940.

6 Ben Green and Olof Sisask. On the maximal number of 3-term arithmetic progressions in
subsets of Z/pZ. Bull. Lond. Math. Soc., 40(6):945–955, 2008. doi:10.1112/blms/bdn074.

EuroCG’21

Notes on pivot pairings

Barbara Giunti1,2

1 Università degli Studi di Modena e Reggio Emilia, Italy
2 Graz University of Technology, Graz, Austria

bgiunti@tugraz.at

Abstract
We present a row reduction algorithm to compute the barcode decomposition of persistence modules.
This algorithm dualises the standard persistence algorithm and clarifies the symmetry between clear
and compress optimisations.

1 Introduction

Persistent homology is a tool of Topological Data Analysis (TDA) whose applications range
widely from biology to urban planning to neuroscience (see [16] for an extended list of
applications). Persistent homology summarises a dataset’s information in the form of barcode
[6, 15]. The efficient computation of such barcodes is one of the main algorithmic problems
in TDA [17].

We provide an algorithm (Algorithm 1) for the barcode decomposition based on row pivot
pairing, which is the dual of the column pivot pairing presented in [10, 13]. The algorithm
reduces the boundary matrix of a given filtered simplicial complex proceeding by rows and
performing row additions, allowing the full exploitation of the compress optimisation [3].

A non-exhaustive list of algorithms to decompose persistence modules into interval
modules includes the so-called standard algorithm [13], the chunk algorithm [3], the twist
algorithm [9], the pHrow algorithm [12], and Ripser [2]. The implementation of the first four
can be found in [4] (cf. [5]), and that of Ripser in [1]. All of them take as input a filtered
simplicial complex and employ column operations. Moreover, in a recent and independent
work [14], a dualisation of the standard algorithm is presented, using row operations. In
addition to these algorithms, in [7] it is shown that the barcode decomposition can also be
achieved via the decomposition of filtered chain complexes, whose reduction is performed by
row operations. However, the reduction in [7] is different from the standard one, which is the
focus of this work. Thus, we will not further study the algorithm presented in [7].

As we mention, the idea of proceeding by row is not new. Here, we use the straightforward
idea of row pivots to clarify the duality between clear and compress optimisations in the
computation of persistent homology and cohomology. In [2, 5, 12], it is shown that, for
Vietoris-Rips complexes, the column reduction, coupled with the clear optimisation and
applied to the coboundary matrix, provides a significant speed-up in the computation of the
barcode. This improvement is not mirrored when the same reduction is coupled with the
compress optimisation and applied to the boundary matrix [2, 3, 12]. Here, we show that
the reason for this asymmetry is that the second procedure is not the true dual of the first
one: to obtain the dual, and thus the same number of operations, it is necessary to reduce
the boundary matrix via row operations instead of via column operations.
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

11:2 Notes on pivot pairings

2 Preliminaries

Throughout the work, the symbol K = {σ1, . . . , σm} denote a simplicial complex of dimension
d, such that for each i ≤ m, Ki := {σ1, . . . , σi} is again a simplicial complex. The chain
∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K, denoted by the symbol FK throughout the work, is called a
filtration of K.

Given a simplex σ of dimension h, its boundary is the set of the faces of σ in dimension
h − 1. If h = 0, the boundary is empty. Otherwise, it consists of exactly h + 1 simplices.
The boundary matrix ∂ of FK, is a (m×m)-matrix with coefficients in F2 where the j-th
column represents the boundary of σj , i.e. ∂[i, j] = 1 if and only if σi is in the boundary of
σj . Note that, since σi is in the complex before σj is added, ∂ is an upper-triangular matrix.

For 0 ≤ i ≤ m and 0 ≤ p ≤ d, we denote the p-th homology of Ki over the field F2 by
Hp(Ki). The inclusions Ki ↪→ Kj , for all i ≤ j, induce maps on the homology vector spaces
Hp(Ki) → Hp(Kj) for all 0 ≤ p ≤ d. This collection of vector spaces and maps forms a
diagram called a persistence module (Fig. 1(a)) [8].

(a) 0 V1 V2 · · · Vm−1 Vm

(b) 0 F2 F2 · · · F2 0
··· a a+1 ··· b b+1

1 1 1

Figure 1 (a) A persistence module; (b) An interval module with interval [a, b].

Since we consider only simplicial complexes with finitely many simplices, the vectors
spaces are finite-dimensional. In this case, a persistence module admits a nice decomposition
into interval modules, which consist of copies of F2 connected by the identity morphism for
the indices inside an interval, and zero otherwise (Fig. 1(b)) [11]. The collection of intervals
in the decomposition of a persistence module is called a barcode [6, 15], and it is an invariant
of isomorphism type. In [13, Sec. VII], the standard algorithm to retrieve the barcode of a
filtered simplicial complex is described. This algorithm retrieves the barcode by studying the
lowest elements in the columns of the boundary matrix, whose indices form the so-called
(column) pivots (see Definition 3.2). Namely, the algorithm performs left-to-right column
additions on columns with the same pivot until no two columns share the same pivot.

3 Row vs column pivot pairing

The (column) pivot pairing in a reduced boundary matrix ∂ provides the lifespan intervals of
the homological features of a persistence module [13]. Usually, the reduction is performed
using only one type of elementary column operation: adding a column to a later column.
Here, we prove that also a reduction performed using only one type of elementary row
operation, namely adding a row to a previous row, achieves the same pairing (cf. [14]). The
reason why other types of elementary row (column) operations are not allowed is that they
do not preserve the order of the generators, and thus cannot maintain the pairing.

Let FK be a filtered simplicial complex, as described in Section 2, with boundary matrix
∂. For the i-th row of ∂, let left (i) denote the column index of the leftmost element of such
row. If row i is zero, set left (i) = 0.

B. Giunti 11:3

I Definition 3.1. A matrix R is called row reduced if left (i) 6= left (i′) for all non-zero
rows i 6= i′. An index j is called a row pivot (of R) if there exists a row i of R such that
j = left (i).

We recall the some standard notions from [13]. The symbol low (j) denotes the index
row of the lowest element of column j. If column j is trivial, then low (j) = 0.

I Definition 3.2. A matrix C is called column reduced if low (j) 6= low (j′) for all non-zero
columns j 6= j′. An index i is called a column pivot (of C) if there exists a column j of C
such that j = low (i).

Algorithm 1, called row pivot reduction, takes as input the boundary matrix ∂ of a
filtered simplicial complex FK and reduces it by row operations. This algorithm is one of
the possible methods to achieve a row reduced matrix. Indeed, several different row reduced
matrices can be obtained by the same boundary matrix ∂. This follows from the fact that,
to the right of each row pivot, there can be several non-zero elements that do not affect the
row pivots.

Let m be the number of rows of ∂.
Algorithm 1: Row pivot reduction
Input: Boundary matrix ∂
Output: Row reduced boundary matrix ∂
R = ∂

for i = m, . . . , 1 do
if left (i) 6= 0 then

while there exists i′ > i with left (i′) = left (i) 6= 0 do
add row i′ to row i

In matrix notation, Algorithm 1 computes the reduced matrix as R = W · ∂, where W is
an invertible upper-triangular matrix with F2-coefficients.

For a matrix D, consider the following value:

rD (i, j) := rkDj
i − rkDj

i+1 + rkDj−1
i+1 − rkDj−1

i

where Dj
i is the lower left submatrix of D, given by all the rows of D with index h ≥ i and

all the columns with index l ≤ j. The Pairing Lemma [13] states that, for a column reduced
matrix C of a boundary matrix ∂, i = low (j) in C if and only if r∂ (i, j) = 1. An analogous
result holds for row reduced matrices (cf. [14, Lem 2.2]):

I Lemma 3.3 (Row pairing lemma). Let ∂ be a boundary matrix and R a row reduced matrix
of ∂. Then j = left (i) in R if and only if r∂ (i, j) = 1.

The proof is precisely the same as the Pairing Lemma [13] since the used technique
relies on the lower-left submatrices. Moreover, from the Pairing Lemma [13] and the above
Lemma 3.3, j = left (i) in a row reduced matrix R of ∂ if and only if i = low (j) in a column
reduced matrix C of ∂. In particular, if j = left (i) or i = low (j), the indices (i, j) form a
persistence pair.
I Remark. Since the coboundary matrix is the anti-transpose of the boundary one (i.e. an
element in position (i, j) is sent to position (m+ 1− j,m+ 1− i)), Algorithm 1 performs
the standard column reduction on the coboundary matrix. Indeed, for a reduced matrix R,
j = left (i) if and only if i = low (j) in its anti-transpose R−T . Thus, Lemma 3.3 provides
an alternative proof of the correctness of the standard persistence algorithm in cohomology,
result originally showed in [12].

EuroCG’21

11:4 Notes on pivot pairings

The running time of Algorithm 1 is at most cubic in the number of simplices, as it is for
the standard persistence algorithm. We now refine this estimate a little.

I 3.4. Computational costs of the reduction. In [13], it is shown that the running time of the
inner (i.e. while) loop in the standard persistence algorithm for the column j, representing
a h-simplex σj and whose column pivot is in row i, is (h+ 1)(j − i)2. If σj is positive, i.e.
at the end of the reduction column j is trivial, then the cost is higher: (h + 1)(j − 1)2.
When reducing the coboundary matrix via column operations, as in [2, 12], the running
time becomes c(j − i)2, where c is the number of cofaces of the simplex σj , and the cost
of reducing a positive column is c(j − 1)2. When reducing the boundary matrix via row
operations, as in Algorithm 1, the running time of the inner loop in Algorithm 1 for the row
i, representing a simplex σi and whose row pivot is in column j, is c(j − i)2. Note that, if σi

is negative, i.e. row i becomes zero at the end of the reduction, then the cost is c(m− j)2,
where m is the number of rows. Thus, using row operations, the negative rows are the more
expensive to reduce, dually to what happens when reducing by columns.

4 Clear and compress

We now recall two standard runtime optimisations from [3, 9], and show their duality using
row and column reductions. Similar observations can be found in [7].

A simplex in the filtered simplicial complex FK is called positive if it causes the birth of
a homological class, and negative if it causes the death of a homological class. By extension,
columns and rows in ∂ are called positive (resp. negative) if the corresponding simplices are
positive (negative).

I 4.1. Clear. The clear optimisation is based on the fact that if a row of index j is positive,
the j-th column of ∂ cannot be negative. As was already observed in [3, 9], this optimisation
is particularly effective when performed on the boundary matrices in decreasing degrees,
or, as shown in [5], when applied to the coboundary matrices in increasing degrees. Since
the clear avoids reducing columns that are already known not to contain pivots, it is quite
helpful in the persistent algorithms up-to-date. However, it is not so useful when reducing
by rows, since it shrinks by one the length of each row, but does not avoid any reduction.

I 4.2. Compress. The compress optimisation hinges on the fact that if a column of index i
is negative, the i-th row of ∂ cannot be positive. From Section 3, it follows the real advantages
of the compress optimisation are obtained when the matrix reduction is performed using row
operations. Indeed, in this case, it avoids a costly loop whose results is already known, while,
in accordance with previous results [5], it is quite inefficient when applied using column
operations because it only shortens the columns by one element. Performed using the row
reduction, the compress is particularly effective when applied to the boundary matrices in
increasing degrees.

Finally, for what we showed, in the computation of the barcode of a filtered simplicial
complex the number of rows that need to be reduced in the boundary matrix using the
compress optimisation is the same as the number of columns that have to be processed in the
coboundary matrix when exploiting the clear optimisation. In the case of acyclic complexes,
as done in [2, 7], we can be more precise and show that this number is

d+1∑

h=0

(
v − 1
h

)

B. Giunti 11:5

where d is the maximal dimension of the acyclic filtered simplicial complex and v the number
of vertices. It follows that any algorithm that reduces the coboundary matrix using column
operations and the clear can be described as reducing the boundary matrix using row
operations and the compress.

Acknowledgments. The author was supported by FAR2019-UniMORE and by the Austrian
Science Fund (FWF) grant number P 29984-N35. The author thanks Claudia Landi, Michael
Kerber, Wojciech Chachólski, and Håvard B. Bjerkevik for useful discussions and feedback.

References
1 Ulrich Bauer. Ripser: a lean C++ code for the computation of Vietoris–Rips persistence

barcodes. https://ripser.org, 2015-2020.
2 Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips persistence barcodes, 2019.

arXiv:1908.02518.
3 Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Clear and compress: Computing

persistent homology in chunks. Mathematics and Visualization, 03 2013. doi:10.1007/
978-3-319-04099-8_7.

4 Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. PHAT - Persistent
Homology Algorithms Toolbox. https://bitbucket.org/phat-code/phat/src/master/.

5 Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat—persistent
homology algorithms toolbox. J. Symbolic Comput., 78:76–90, 2017. doi:10.1016/j.jsc.
2016.03.008.

6 Gunnar Carlsson, Afra Zomorodian, Anne Collins, and Leonidas Guibas. Persistence
Barcodes for Shapes. In Roberto Scopigno and Denis Zorin, editors, Symposium on Geometry
Processing. The Eurographics Association, 2004. doi:10.2312/SGP/SGP04/127-138.

7 Wojciech Chachólski, Barbara Giunti, Alvin Jin, and Claudia Landi. Algorithmic decompo-
sition of filtered chain complexes, 2020. arXiv:2012.01033.

8 Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and stability
of persistence modules. SpringerBriefs in Mathematics. Springer, [Cham], 2016. doi:
10.1007/978-3-319-42545-0.

9 Chao Chen and Michael Kerber. Persistent homology computation with a twist. In
Proceedings 27th European Workshop on Computational Geometry, 2011.

10 David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and vineyards by
updating persistence in linear time. In Computational geometry (SCG’06), pages 119–126.
ACM, New York, 2006. doi:10.1145/1137856.1137877.

11 William Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules.
J. Algebra Appl., 14(5):1550066, 8, 2015. doi:10.1142/S0219498815500668.

12 Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in persistent
(co)homology. Inverse Problems, 27(12):124003, 17, 2011. doi:10.1088/0266-5611/27/
12/124003.

13 Herbert Edelsbrunner and John L. Harer. Computational topology. American Mathematical
Society, Providence, RI, 2010. An introduction. doi:10.1090/mbk/069.

14 Herbert Edelsbrunner and Katharina Ölsböck. Tri-partitions and bases of an ordered
complex. Discrete & Computational Geometry, 64(3):759–775, Oct 2020. doi:10.1007/
s00454-020-00188-x.

15 Robert Ghrist. Barcodes: the persistent topology of data. Bull. Amer. Math. Soc. (N.S.),
45(1):61–75, 2008. doi:10.1090/S0273-0979-07-01191-3.

16 Database of real-world applications of TDA. https://www.zotero.org/groups/2425412/tda-
applications. 2020.

EuroCG’21

11:6 Notes on pivot pairings

17 Nina Otter, Mason Porter, Ulrike Tillmann, Peter Grindrod, and Heather Harrington. A
roadmap for the computation of persistent homology. EPJ Data Science, 6, 06 2015.

Improved Approximation Bounds for
Half-Guarding Monotone Polygons
Hannah Miller Hillberg1, Erik Krohn1, and Alex Pahlow1

1 University of Wisconsin - Oshkosh
hillbergh,krohne,pahloa45@uwosh.edu

Abstract
We consider a variant of the art gallery problem where all guards are limited to seeing to the right
inside a monotone polygon. We provide a polynomial-time approximation for point guarding the
entire monotone polygon. We improve the best known approximation of 40 from [11], to 8.

1 Introduction

An instance of the art gallery problem takes as input a simple polygon P . A polygon P is
defined by a set of points V = {v1, v2, . . . , vn}. There are edges connecting (vi, vi+1) where
i = 1, 2, . . . , n− 1. There is also an edge connecting (v1, vn). If these edges do not intersect
other than at adjacent points in V (or at v1 and vn), then P is called a simple polygon. For
any two points p, q ∈ P , we say that p sees q if the line segment pq does not go outside of P .
The art gallery problem seeks to find a guarding set of points G ⊆ P such that every point
p ∈ P is seen by a point in G. In the point guarding problem, guards can be placed anywhere
inside of P . In the vertex guarding problem, guards are only allowed to be placed at points
in V . The optimization problem is defined as finding the smallest such G in each case.

1.1 Previous Work
There are many results about guarding art galleries. Several results related to hardness
and approximations can be found in [2, 6, 7, 8, 9, 14]. Whether a polynomial time constant
factor approximation algorithm can be obtained for vertex guarding a simple polygon is a
longstanding and well-known open problem, although a claim for one was made in [4].
Additional Polygon Structure. Due to the inherent difficulty in fully understanding the
art gallery problem for simple polygons, there has been some work done guarding polygons
with additional structure, see [3, 5, 11, 13] for example. In this paper we consider monotone
polygons, described below.
α-Floodlights. Motivated by the fact that many cameras and other sensors often cannot
sense in 360°, previous works have considered the problem when guards have a fixed sensing
angle α for some 0 < α ≤ 360. This problem is often referred to as the α-floodlight problem.
More specifically, a half-guard is defined as a 180°-floodlight that sees only in one direction.
This subset of the floodlight problem is motivated by considering the polygon to be a time
sequence as one works from left to right. The leftmost point is time 0 and time increases
as one sweeps from left to right. A guard cannot see back in time, therefore, seeing back
to the left does not make sense. This variant attempts to model time in the problem by
ensuring that a region is guarded in a specific time range from the time it is placed until
some time in the future. A constant factor approximation for half-guarding was first shown
in [11] and NP-hardness with vertex guards was shown in [10]. Some of the work on the
α-floodlight problem has involved proving necessary and sufficient bounds on the number
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

12:2 Improved Approximation Bounds for Half-Guarding Monotone Polygons

of α-floodlights required to guard (or illuminate) an n vertex simple polygon P , where
floodlights are anchored at vertices in P and no vertex is assigned more than one floodlight,
see for example [15, 16]. Computing a minimum cardinality set of α-floodlights to illuminate
a simple polygon P is APX-hard for both point guarding and vertex guarding [1].

1.2 Our Contribution

In this paper, we improve the approximation bounds for half-guarding monotone polygons.
A simple polygon P is x-monotone (or simply monotone) if any vertical line intersects the
boundary of P in at most two points. A half-guard can see only to the right, so we redefine
sees as: a point p sees a point q if the line segment pq does not go outside of P and p.x ≤ q.x,
where p.x denotes the x-coordinate of a point p. In a monotone polygon, let l and r denote
the leftmost and rightmost point of P respectively. Consider the “top half” of the boundary
of P by walking along the boundary clockwise from l to r. We call this the ceiling of P . We
obtain the floor of P by walking counterclockwise along the boundary from l to r.

g

Figure 1 A regular guard can see this entire monotone polygon, but needs Ω(n) half-guards.

Krohn and Nilsson [13] give a constant factor approximation for monotone polygons
using guards that can see 360°. There are monotone polygons P that can be completely
guarded with one guard that require Ω(n) half-guards considered in this paper, see Figure
1. Due to the restricted nature of half-guards, new observations are needed to obtain the
approximation given in this paper. A 40-approximation for this problem was presented in
[11]. The algorithm in [11] places guards in 5 steps: guard the ceiling vertices, then the
floor vertices, then the entire ceiling boundary, then the entire floor boundary, and finally
any missing portions of the interior. We propose a modified algorithm that requires only
3 steps: guarding the entire ceiling, then the entire floor, and lastly any missing portions
of the interior. By modifying the algorithm and providing improved analysis, we obtain an
8-approximation.

The remainder of the paper is organized as follows. Section 2 gives an algorithm for point
guarding a monotone polygon using half-guards where we wish to guard the boundary of the
polygon. Section 3 provides a sketch of the 8-approximation.

2 Guarding the Boundary

In this section, we give an algorithm for guarding the boundary of a monotone polygon P
with half-guards that see to the right. We first give a 2-approximation algorithm for guarding
the entire ceiling. A symmetric algorithm works for guarding the entire floor giving us a
4-approximation for guarding the entire boundary of the polygon.

Before we describe the algorithm, we provide some preliminary definitions. A vertical line
that goes through a point p is denoted lp. Given two points p, q in P such that p.x < q.x, we
use (p, q) to denote the points s such that p.x < s.x < q.x. Similarly, we use (p, q] to denote
points s such that p.x < s.x ≤ q.x.

H. Miller Hillberg, E. Krohn and A. Pahlow 12:3

2.1 Ceiling Guard Algorithm
We first give a high level overview of the algorithm for guarding the entire boundary of the
ceiling. Any feasible solution must place a guard at the leftmost vertex where the ceiling and
floor come together (or this vertex would not be seen). We begin by placing a guard here.
We iteratively place guards from left to right. When placing the next guard, we let S denote
the guards the algorithm has already placed, and we let p denote the leftmost point on the
ceiling that is not seen by any guard in S. Note that p may be a ceiling vertex or any point
on the ceiling. The next guard g that is placed will lie somewhere on the line lp. We initially
place g at the intersection of lp and the floor, and we slide g upwards vertically along lp. The
algorithm locks in a final position for the guard g by sliding it upwards along lp until moving
it any higher will cause g to no longer see some unseen portion on the ceiling; let r be the
first such point. See, for example, Figure 2. In this figure, when g is initially placed on the
floor, it does not see r, but as we slide g up the line lp, r becomes a new point that g can
see. If we slide g up any higher than as depicted in the figure, then g would no longer see r,
and therefore we lock g in that position. We then add g to S, and we repeat this procedure
until the entire ceiling is guarded. The ceiling guarding algorithm is shown in Algorithm 1.

Figure 2 A guard g slides up lp and sees a point r. If g goes any higher, it will stop seeing r.

Algorithm 1 clearly returns a set of guards that sees the entire ceiling. All steps, except
the sliding step, can be trivially done in polynomial time. The analysis of [11] uses a similar
sliding step but only considers guarding a polynomial number of vertices on the ceiling or
floor. When considering an infinite number of points on the ceiling, it is not immediately
clear that the sliding can be done in polynomial time since each time a guard moves an ε
amount upwards, it will see a different part of the boundary. We use the following lemma to
help bound the number of locations a guard g must consider on lp.

I Lemma 1. Consider a guard g and a point on the floor f such that g.x < f.x. If g sees f ,
then the floor cannot block g from seeing any ceiling point in (g, f).

Proof. By assumption, g sees f . Consider a point on the ceiling p such that g.x < p.x < f.x.
If g is being blocked from seeing p because of a floor vertex, then g cannot see any point to
the right of p, see Figure 3. Therefore, g cannot see f and we have a contradiction. J

EuroCG’21

12:4 Improved Approximation Bounds for Half-Guarding Monotone Polygons

Algorithm 1 Ceiling Guard
1: procedure Ceiling Guard(monotone polygon P)
2: S ← {g} such that g is placed at the leftmost point l.
3: while there is a point on the ceiling that is not seen by a guard in S do
4: Let p be the leftmost ceiling point that is currently unseen by any guards in S.

Place a guard g where lp intersects the floor and slide g up. As g is being slid up, let
r be the first point on the ceiling that g would stop seeing if g moved any further up.
Place g at the highest location on lp such that g sees r.

5: S ← S ∪ {g}.
6: end while
7: return S

8: end procedure

Figure 3 If the floor blocks g from a ceiling point p, then g will not see any floor point f where
g.x < p.x < f.x. More generally, g will not see any point f where g.x < p.x < f.x.

We now give a sketch of a proof for why there are at most O(n3) potential guard locations
on lp that must be considered. The approximation analysis sketched later in Section 3 relies
on the fact that g is as high as possible on lp. If g is moved higher, then there is a point r
on the ceiling that would not be seen. In simple polygons, any point that is seen by a point
on lp must by seen by a contiguous line segment of lp, see Figure 2. There are several cases
to consider on whether or not g is moved upwards and how far it needs to move.

In the cases below, whenever the algorithm is sliding a guard, one only needs to consider
the following locations on lp: (A) Rays shot from a vertex through another vertex until it
hits lp. There are O(n2) potential locations on lp. (B) Shoot a ray from previously placed
guards g′ ∈ S through every vertex. Let C(g′) be the set of all of the points on the ceiling
that these rays hit. Let C =

⋃
g′∈S

C(g′). Shoot a ray from all c ∈ C through all vertices until

the ray hits lp. There are at most n guards, therefore |C(g′)| ≤ n. For each guard, there are
at most O(n2) potential locations on lp to consider for a total of O(n3) locations.
Case 1: If there exists some vertex vi such that g sees vertex vi, but does not see vertex vi+1
because vi is blocking g from seeing vi+1, see Figure 4. If there are multiple vi candidates,
we choose the vi that is leftmost. Shoot a ray from g through vi and let r be the point on

H. Miller Hillberg, E. Krohn and A. Pahlow 12:5

Figure 4 r is seen by g and g is the leftmost guard that sees r.

the boundary that is hit.
Case 1a: If r is on the ceiling, then no guard to the left of g is able to see r. If g is slid up,
then g would no longer see r. In other words, g is the leftmost guard that sees r. In this
case, we place g on the floor.
Case 1b: If r is on the floor, then moving g upwards will not see any more ceiling points to
the right of r because vi is blocking g from seeing them, see Figure 5. By Lemma 1, moving
g upwards will not result in seeing any more ceiling points since the floor cannot be blocking
g from any point on the ceiling to the left of r. However, the approximation analysis relies on
r being as high as possible on lp. Therefore, we slide g upwards until it would have stopped
seeing some previously unseen point r′ on the ceiling and set r = r′. If no previously unseen
ceiling point r′ ∈ [p, vi] exists, then it must be the case that all points on lp see all of the
ceiling points of [p, vi]. In this case, we place g on the ceiling at point p and set r = vi.

Figure 5 Case 1b where g cannot see vi+1 because vi is blocking it and r is on the floor.

Case 2: If, for all vi that are seen by g, g is not blocked from seeing vi+1 by vi, we slide g
upwards. If none of Case 1 happens while sliding upwards, then the algorithm stops whenever
g would stop seeing a previously unseen point on the ceiling. In Figure 6, a portion of the
edge e = [vi+1, vi+2], namely [vi+1, x], was seen by previously placed guards in the algorithm.

EuroCG’21

12:6 Improved Approximation Bounds for Half-Guarding Monotone Polygons

It is possible that previously placed guards saw a portion of e between (x, vi+2]. However, we
consider the rightmost point x such that all of [vi+1, x] is seen. Let r be the point directly to
the right of x. If g is pushed up too far (e.g. g3) in order to see vi+2, it ends up missing a
portion of e, namely r. One must slide g between the floor point of lp and g3 to ensure the
algorithm places guards that see all of e. In this case, we wish to place a guard on lp as high
as possible such that g sees r. Let g2 be the highest point on lp that sees r. Placing g above
g2 will cause it to miss seeing point r. Placing g lower than g2 might allow a guard in the
optimal solution to see r and also see more of e than g saw. Therefore, by using the set of
guard locations as defined in (B) above, g would be placed at g2. The approximation relies
on the fact that g is as high as possible on lp such that it still sees r.

Figure 6 No point on lp sees all of (x, vi+2). Algorithm places a guard at g2 to ensure r is seen.

3 Sketch of Approximation

We will now sketch out the proof of why Algorithm 1 will place no more than 2 times the
number of guards in the optimal solution. An optimal solution O is a minimum cardinality
guard set such that for any point p on the ceiling of P , there exists some g ∈ O that sees p.
The argument will be a charging argument; every guard placed will be charged to a guard in
O in a manner such that each guard in O will be charged at most twice. The approximation
argument similar to [11] is sketched here. Consider two consecutive guards gi, gi+1 ∈ S

returned by Algorithm 1:
Case 1: If an optimal guard is in (gi, gi+1], we charge gi+1 to that optimal guard.
Case 2: If there is no optimal guard in (gi, gi+1], then consider the point on the ceiling
directly above gi+1, call this point p. gi+1 was placed on lp because no previously placed
guards saw p. Consider an optimal guard o that sees p. o.x ≤ gi+1.x and even more so,
o.x ≤ gi.x since, by assumption, there is no optimal guard in (gi, gi+1]. Since gi did not see
p, it must be the case that the op line goes above gi and the floor blocks gi from seeing p, see

H. Miller Hillberg, E. Krohn and A. Pahlow 12:7

Figure 7. The op line cannot be below gi. If it were, then gi would have had the opportunity
to see p as gi was moving upwards. This is not possible because by assumption, p is not seen
by any previously placed guard and gi would not have gone so far upwards as to stop seeing
a previously unseen ceiling point.

Since gi is blocked from seeing p by the floor, gi cannot see any ceiling points to the right
of p. The reason that gi stopped moving upwards is because it saw some point r on the
ceiling that no previous guard saw. Since gi cannot see to the right of p, r must be to the
left of p. By assumption, the optimal guard o′ that sees r must be to the left of gi. If gi

were to have moved any higher up, it would have missed r. Any guard that sees r must be
“below” the gir line, see Figure 7. Any point on the ceiling that o′ sees to the right of r, gi

will also see (Lemma 1, [11]). Therefore, gi dominates o′ with respect to the ceiling to the
right of r. We charge gi+1 to o′ and o′ cannot be charged again.

Figure 7 If no optimal guard exists in (gi, gi+1], then o′ must exist to see r such that o′.x ≤ gi.x.

The entire ceiling can be guarded with at most 2 · |O| guards. A similar algorithm is
applied to the floor to give at most 4 · |O| guards to guard the entire boundary. Finally,
even though the entire boundary is guarded, it is possible that a portion of the interior is
unseen, see Figure 8. Let us assume that a guardset G = {g1, g2, . . . gk} guards the entire
boundary of a monotone polygon such that for all i, gi < gi+1. In [12], they prove that
between any consecutive guards of G, a region can exist that is unseen by any of the guards
in G. However, they prove that the region is convex and can be guarded with 1 additional
guard. If |G| = k, then there are at most k − 1 guards that need to be added to guard these
unseen interior regions. This doubles the approximation to give us the following theorem.

Figure 8 g1, g2 and g3 see all of the boundary. The shaded region is unguarded.

I Theorem 2. There is a polynomial-time 8-approximation algorithm for point guarding a
monotone polygon with half-guards.

EuroCG’21

12:8 Improved Approximation Bounds for Half-Guarding Monotone Polygons

References
1 Ahmed Abdelkader, Ahmed Saeed, Khaled A. Harras, and Amr Mohamed. The

inapproximability of illuminating polygons by α-floodlights. In CCCG, pages 287–295,
2015.

2 Alok Aggarwal. The art gallery theorem: its variations, applications and algorithmic aspects.
PhD thesis, The Johns Hopkins University, 1984.

3 Pritam Bhattacharya, Subir Ghosh, and Bodhayan Roy. Approximability of guarding weak
visibility polygons. Discrete Applied Mathematics, 228, 02 2017. doi:10.1016/j.dam.2016.
12.015.

4 Pritam Bhattacharya, Subir Kumar Ghosh, and Sudebkumar Prasant Pal. Constant
approximation algorithms for guarding simple polygons using vertex guards. CoRR,
abs/1712.05492, 2017. URL: http://arxiv.org/abs/1712.05492, arXiv:1712.05492.

5 Pritam Bhattacharya, Subir Kumar Ghosh, and Bodhayan Roy. Vertex guarding in weak
visibility polygons. In Sumit Ganguly and Ramesh Krishnamurti, editors, Algorithms and
Discrete Applied Mathematics, pages 45–57, Cham, 2015. Springer International Publishing.

6 Björn Brodén, Mikael Hammar, and Bengt J. Nilsson. Guarding lines and 2-link polygons
is APX-hard. In CCCG, pages 45–48, 2001.

7 Alon Efrat and Sariel Har-Peled. Guarding galleries and terrains. Information Processing
Letters, 100(6):238–245, 2006.

8 Stephan Eidenbenz. Inapproximability results for guarding polygons without holes. In
ISAAC, pages 427–436, 1998.

9 Subir Kumar Ghosh. On recognizing and characterizing visibility graphs of simple polygons.
Discrete & Computational Geometry, 17(2):143–162, 1997.

10 Matt Gibson, Erik Krohn, and Matt Rayford. Guarding monotone polygons with vertex
half-guards is np-hard. European Workshop on Computational Geometry, 2018. URL:
https://conference.imp.fu-berlin.de/eurocg18/program.

11 Matt Gibson, Erik Krohn, and Matthew Rayford. Guarding monotone polygons with half-
guards. In Joachim Gudmundsson and Michiel H. M. Smid, editors, Proceedings of the
29th Canadian Conference on Computational Geometry, CCCG 2017, July 26-28, 2017,
Carleton University, Ottawa, Ontario, Canada, pages 168–173, 2017.

12 Erik Krohn and Bengt J. Nilsson. The complexity of guarding monotone polygons. In
CCCG, pages 167–172, 2012.

13 Erik Krohn and Bengt J. Nilsson. Approximate guarding of monotone and rectilinear
polygons. Algorithmica, 66(3):564–594, 2013.

14 D. T. Lee and A. K. Lin. Computational complexity of art gallery problems. IEEE Trans.
Inform. Theory, 32(2):276–282, March 1986.

15 Bettina Speckmann and Csaba D. Tóth. Allocating vertex π-guards in simple polygons via
pseudo-triangulations. Discrete & Computational Geometry, 33(2):345–364, 2005.

16 Csaba D. Tóth. Art galleries with guards of uniform range of vision. Computational
Geometry, 21(3):185 – 192, 2002.

Mapping Multiple Regions to the Grid with
Bounded Hausdorff Distance
Ivor van der Hoog1, Mees van de Kerkhof1, Marc van Kreveld1,
Maarten Löffler1, Frank Staals1, Jérôme Urhausen1, and Jordi L.
Vermeulen1

1 Utrecht University, the Netherlands
{I.D.vanderHoog, M.A.vandeKerkhof, M.J.vanKreveld, M.Loffler, F.Staals,
J.E.Urhausen, J.L.Vermeulen}@uu.nl

Abstract
We study a problem motivated by digital geometry: given a set of disjoint geometric regions, assign
each region Ri a set of grid cells Pi, so that Pi is connected, similar to Ri, and does not touch
any grid cell assigned to another region. Similarity is measured using the Hausdorff distance. We
prove an asymptotically tight bound on the achievable Hausdorff distance for convex input regions
in terms of the number of input regions, and prove that there is no upper bound to the Hausdorff
distance for three or more general regions.

1 Introduction

Digital geometry is concerned with the proper representation of geometric objects and
their relationships using a grid of pixels. This greatly simplifies both representation and
many operations, but the downside is that common properties of geometric objects no
longer hold. For example, it may be that two digitized lines intersect in multiple connected
components. How to digitize a set of geometric objects so that such properties are guaranteed
is one objective in digital geometry, referred to as consistency. Another objective is the
representation of vector objects with bounded error, using subsets of pixels. Here we may
assume the unit grid, and measure error in one of multiple ways.

Early results in digital geometry were mostly concerned with consistency and arose in
computer vision. For a survey, see Klette and Rosenfeld [13, 14]. The interest from the
algorithms community is more recent. Besides consistency, the Hausdorff distance of digital
representations is a topic of study. Chun et al. [7] investigate the problem of representing
rays originating in the origin as digital rays such that certain properties are satisfied. They
show that rays can be represented on the n× n grid in a consistent manner with Hausdorff
distance O(logn). This bound is tight in the worst case. By ignoring one of the consistency

Figure 1 Three disjoint simply-connected regions and a grid representation of them.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

13:2 Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance

Figure 2 The Hausdorff distance between the green and red regions is large while the Hausdorff
distance between their boundaries is small. The inverse is true for the red and purple regions.

conditions, the distance bound improves to O(1). Their research is extended by Christ et
al. [5] to line segments (not necessarily starting in the origin), who obtain the logarithmic
distance bound in this case as well. A possible extension to curved rays was developed by
Chun et al. [6]. Recently, Chiu and Korman [3] extended some results to high dimensional
segments. Additionally, Chiu et al. [4] prove that the above mentioned lower bound of
Ω(logn) does not extend to higher dimensions and proved an Ω(log1/(1−d) n) bound instead.
Other results with a digital geometry flavor within the algorithms community are those on
snap rounding [8, 9, 12], integer hulls [1, 11], and discrete schematization [15].

In a recent paper, Bouts et al. [2] showed that any simple polygon, no matter how detailed,
can be represented by a simply-connected set of unit pixels such that the Hausdorff distance
to and from the input is bounded by the constant 3

2
√

2. They also prove that for the Fréchet
distance between the boundaries, a constant distance is not possible. In this paper we extend
their results to multiple regions, see Figure 1 for an example.

In Section 2, we show that when we restrict the m input regions to be convex, we can find
a grid representation within Hausdorff distance Θ(m). This bound is tight. Furthermore,
we can extend the result from Bouts et al. [2] to two general regions; that is, we can find
a representation with constant Hausdorff distance. This is in contrast with our proof in
Section 3 that for three or more general regions, there is no universal bound on the Hausdorff
distance of a grid representation.

We do not make any assumptions on the resolution of the input. If the minimum distance
between any pair of polygons is at least some constant (e.g., 4

√
2 is enough), then we can

realize a constant Hausdorff bound in all cases by applying the results from Bouts et al. [2]
separately on each polygon. We consider the case where no such assumptions are made.

Notation and definitions. We denote by Γ the (infinite) unit grid, whose unit squares
are referred to as pixels. The (symmetric) Hausdorff distance between two sets A,B ⊂
R2 is defined as H(A,B) = max{maxa∈A(minb∈B(|ab|)),maxb∈B(mina∈A(|ab|))}, where
|ab| is the distance between the points a and b. Furthermore, we denote by H ′(A,B) =
max{H(A,B), H(∂A, ∂B)} the maximum of the (symmetric) Hausdorff distance between
the sets themselves and between their boundaries. See Figure 2 for an example where the
distinction between H(·, ·) and H ′(·, ·) is important.

Consider a set of m disjoint simply-connected regions R = {R1, R2, . . . Rm} in the plane,
which we can imagine having different colors. A choice of pixels for each region can then be
seen as a coloring of the grid by m colors c1, . . . , cm, where pixels may remain uncolored.

In this paper, we show how to assign a simply-connected subset of the pixels Pi ⊂ Γ to
each region Ri ∈ R, such that the result is a set of m disjoint simply-connected regions.
Two such grid polygons are disjoint if they do not meet in any edge or vertex of the grid. A
grid polygon is connected if its pixels are connected by edge adjacency. A grid polygon is
simply-connected if it is connected and its complement is also connected by edge adjacency.
Hence, we do not allow vertex adjacency at all as it is ambiguous. In this paper a grid

van der Hoog, van de Kerkhof, van Kreveld, Löffler, Staals, Urhausen, Vermeulen 13:3

polygon is by default simply-connected. We call the set P1, P2, . . . , Pm of such grid polygons
a valid assignment, see for example Figure 1. We are interested in finding for any set of
regions R a valid assignment where for each region Ri ∈ R, its corresponding grid polygon
Pi has a (symmetric) Hausdorff distance to Ri of at most h and their boundaries are also
within (symmetric) Hausdorff distance h.

2 Input regions are convex regions

When R is a set of convex regions, we can easily show that a coloring has a Hausdorff distance
of Ω(m) in the worst case: we place m horizontal line segments of length Ω(m) that all pass
through the same pixels. Then P must have its elements on disjoint lines of pixels, giving
Hausdorff distance at least Ω(m) for the outer regions. Each Pi must extend sufficiently far
left and right. Since each Pi is connected, all Pi will intersect a common vertical line. The
topmost or bottommost intersection with this line belongs to a grid polygon with Hausdorff
distance Ω(m).

We will describe an algorithm that, given a set of convex regions R, gives a set of disjoint
grid polygons P that is a valid assignment and such that for all i, H ′(Ri, Pi) = O(m).

I Observation 2.1. Let R1, R2 ∈ R be two disjoint convex regions, and let ` be a horizontal
line that intersects R1 left of R2. Then any horizontal line intersecting both R1 and R2
intersects R1 left of R2. Analogously, all vertical lines that intersect both R1 and R2 do so
in the same above-below order.

Observation 2.1 allows us to define two partial orders �x and �y on R: Ri �x Rj if and
only if there is a horizontal line intersecting both regions and Ri intersects the line left of
Rj ; since the regions are convex we get a partial order [10]. We extend this partial order to
a linear order XR : R → [1,m] in any manner. A linear order YR : R → [1,m] is defined
symmetrically.

Given XR and YR, we assign a coloring as illustrated in Figure 3. Let Γk be a coarsening
of the grid Γ whose cells have k × k pixels with k = 2m. The factor 2 ensures that adjacent
polygons do not touch. These cells are also called superpixels. In the following, we ensure
that if the region Ri intersects a superpixel, this superpixel or an adjacent one contains a
pixel of Pi and vice versa. Thus, we get a bound of O(k) on the Hausdorff distance H(Ri, Pi).
For any superpixel S ∈ Γk, we denote by S[x, y] the pixel that is the (2x)th from the left and
(2y)th from the bottom within S. The horizontal and vertical lies induced by Γk are called
major lines. Each region Ri that intersects at most one major horizontal line and at most
one major vertical major line is a small region. Each region Ri that intersects at least two
major horizontal lines or at least two major vertical lines is a large region. Our assignment
of regions to pixels works as follows:

1. For each small region Ri we choose one superpixel S containing a point of Ri and color
the pixel p(S,Ri) := S[XR(Ri), YR(Ri)] with ci; this single pixel will be Pi.

2. For each superpixel S and each large region Ri intersecting S that also intersects the two
major horizontal lines incident to S, or the two major vertical lines incident to S, we
color p(S,Ri) = S[XR(Ri), YR(Ri)] with ci. We use full lines, not the edges of S here.

3. For any two pixels that are colored with ci in edge-adjacent superpixels (Ri must be
large), we color all pixels in the row or column between them with ci as well.

4. For any four superpixels that share a common vertex, if they each contain a pixel colored
with ci in Step 2, we color all pixels in the square between these pixels with ci as well.

EuroCG’21

13:4 Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance

(a) (b) (c)

Figure 3 The coloring algorithm for convex regions. (a) shows the input of five convex regions,
overlaid onto a superpixel grid with k = 10. (b) shows the pixels colored in Steps 1 and 2 of the
algorithm. (c) shows the final coloring obtained after Steps 3 and 4.

The set P of polygons induced by this grid coloring is a valid assignment, that is, the polygons
are connected and do not intersect or touch.

Overall, if a region Ri intersects a superpixel S, then Pi has a pixel in S or in any of
the 8 adjacent superpixels. Conversely, if Pi has a pixel in a superpixel S, we know that
Ri intersects S. This gives a bound on the Hausdorff distance between the regions and
the grid polygons. For the boundaries, note that if Ri contains a superpixel S and all four
edge-adjacent superpixels, then Pi contains S. Furthermore, if Pi contains a superpixel S,
then Ri also contains S. Together this gives a bound on the Hausdorff distance between the
boundaries. Since superpixels have size Θ(m), the Hausdorff distance between Ri and Pi

and between their boundaries is at most O(m). We thus obtain the following result.

I Theorem 2.2. If R consists of m convex regions, a valid assignment to regions exists such
that for each region Ri ∈ R and grid polygon Pi, we have H ′(Ri, Pi) = O(m). Furthermore,
there exists a set R of m convex regions such that for every valid assignment, there exists
some 1 ≤ i ≤ m with H(Ri, Pi) = Ω(m).

3 Two or three general regions

We extend the result from Bouts et al. [2] to two general regions using the result from van
Goethem et al. [16], that is, we can find two grid polygons with constant Hausdorff distance
to two input regions. Below, as a stark contrast, we show that the Hausdorff distance between
an input of at least three general regions and any corresponding grid polygons is unbounded.
Formally, for a given integer h > 0, we show a construction of regions R = {R,B,G} for
which there is no valid assignment of corresponding grid polygons with Hausdorff distance
smaller than h.

We only sketch the main idea here. We construct regions R = {R,B,G} that form nested
spirals that pass multiple times through a thin region I of height 1 (formal definition below).
The height of I is the bottleneck in the construction: it is traversed from left to right h
times by each of R, B, and G. If we remove the parts of R, B, and G inside the region I,
we get 3h+ 3 connected components in total. Outside the the region I, the three regions are
more than 2h apart. This is illustrated in Figure 4 for h = 3. We formally define I to be the
part of the plane within distance h of at least one of the bottom horizontal segments of the
regions R. All region components must be connected inside I. Inside I, it is possible that
the grid polygons make different connections than those in R. However, we argue that no
matter how these connections are made, the grid polygons PR, PB , and PG, together have to
pass through I from left to right at least h+ 2 times, thus requiring I to have height at least

van der Hoog, van de Kerkhof, van Kreveld, Löffler, Staals, Urhausen, Vermeulen 13:5

Figure 4 The regions for h = 3. The region I is highlighted. The dashed segment subdivides the
boundary of I into its left and right part.

2h+ 3. However, the available vertical space is only 2h+ 1 if the Hausdorff distance must
stay below h, allowing h+ 1 connections of pixel polygons. Hence, we obtain a contradiction.

The most involved part is to argue that PR, PB , and PG, together have to pass through
I at least h+ 2 times. This argument critically depends on the following lemma.

I Lemma 3.1. Given an alternating sequence V = r1, b1, g1, ..., rk, bk, gk of 3k 3-colored
points on a line `, any planar drawing below the line ` connecting points of the same color
induces a partition of the points into at least 2k + 1 components.

The line in Lemma 3.1 represents the left (or right) half of the boundary of I. We can
use the lemma to show that we can decrease the number of connected components by at
most h− 1 by connecting the regions incident to the right side of I to other regions on the
right side of I. The same holds for the regions on the left side of I. It thus follows that the
remaining 3h+ 3− 2(h− 1) = h+ 2 components on the left side must be connected to the
remaining h+ 2 components on the right side of I; after all, in the end there are only three
regions left; one for each color. Therefore, PR, PB, and PG pass through I at least h + 2
times as claimed. This allows us to obtain the following result:

I Theorem 3.2. For any h > 0 there exist three regions R = {R1, R2, R3}, for which there is
no valid assignment to grid polygons P1, P2, P3 so that all regions Ri ∈ R have H(Ri, Pi) < h.

4 Conclusion

In this paper we have shown what Hausdorff distance bounds can be attained when mapping
disjoint simply-connected regions to the unit grid. We expressed our bounds in the number
of regions. We have shown a worst case optimal bound of O(m) for convex regions. For
general regions there is a stark contrast between the bounds for two and three regions: for
two regions it is constant, while for three regions it is unbounded. In the full paper we also
show bounds on convex β-fat regions and point regions.

While we concentrated on worst-case optimal bounds, our constructive proof of the upper
bound for convex regions will often give visually unfortunate output. Also, for a given

EuroCG’21

13:6 Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance

instance we will not achieve O(1) Hausdorff distance even when it would be possible for that
instance. This leads to the following two open problems. Firstly, can we realize visually
reasonable output when this is possible for an instance (and how do we define this)? Secondly,
can we realize a Hausdorff distance that is at most a constant factor worse than the best
possible for each instance, in polynomial time?

References
1 Ernst Althaus, Friedrich Eisenbrand, Stefan Funke, and Kurt Mehlhorn. Point containment

in the integer hull of a polyhedron. In Proceedings 15th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 929–933, 2004.

2 Quirijn W Bouts, Irina Kostitsyna, Marc van Kreveld, Wouter Meulemans, Willem Sonke,
and Kevin Verbeek. Mapping polygons to the grid with small Hausdorff and Fréchet
distance. In Proceedings 24th Annual European Symposium on Algorithms, pages 22:1–
22:16, 2016.

3 Man-Kwun Chiu and Matias Korman. High dimensional consistent digital segments. SIAM
Journal on Discrete Mathematics, 32(4):2566–2590, 2018.

4 Man-Kwun Chiu, Matias Korman, Martin Suderland, and Takeshi Tokuyama. Distance
bounds for high dimensional consistent digital rays and 2-d partially-consistent digital rays.
arXiv preprint arXiv:2006.14059, 2020.

5 Tobias Christ, Dömötör Pálvölgyi, and Miloš Stojaković. Consistent digital line segments.
Discrete & Computational Geometry, 47(4):691–710, 2012.

6 Jinhee Chun, Kenya Kikuchi, and Takeshi Tokuyama. Consistent digital curved rays. In
Abstracts 34th European Workshop on Computational Geometry, 2019.

7 Jinhee Chun, Matias Korman, Martin Nöllenburg, and Takeshi Tokuyama. Consistent
digital rays. Discrete & Computational Geometry, 42(3):359–378, 2009.

8 Mark de Berg, Dan Halperin, and Mark Overmars. An intersection-sensitive algorithm for
snap rounding. Computational Geometry, 36(3):159–165, 2007.

9 Michael T. Goodrich, Leonidas J. Guibas, John Hershberger, and Paul J. Tanenbaum. Snap
rounding line segments efficiently in two and three dimensions. In Proceedings 13th Annual
Symposium on Computational Geometry, pages 284–293, 1997.

10 Leo J. Guibas and F. Frances Yao. On translating a set of rectangles. In Proceedings 12th
Annual ACM Symposium on Theory of Computing, pages 154–160, 1980.

11 Warwick Harvey. Computing two-dimensional integer hulls. SIAM Journal on Computing,
28(6):2285–2299, 1999.

12 John Hershberger. Stable snap rounding. Computational Geometry, 46(4):403–416, 2013.
13 Reinhard Klette and Azriel Rosenfeld. Digital Geometry: Geometric methods for digital

picture analysis. Elsevier, 2004.
14 Reinhard Klette and Azriel Rosenfeld. Digital straightness - a review. Discrete Applied

Mathematics, 139(1-3):197–230, 2004.
15 Maarten Löffler and Wouter Meulemans. Discretized approaches to schematization. In

Proceedings 29th Canadian Conference on Computational Geometry, 2017.
16 Arthur van Goethem, Irina Kostitsyna, Marc van Kreveld, Wouter Meulemans, Max

Sondag, and Jules Wulms. The Painter’s Problem: Covering a grid with colored connected
polygons. In Proceedings 25th International Symposium on Graph Drawing and Network
Visualization, pages 492–505, 2018.

A Dynamic Data Structure for k-Nearest
Neighbors Queries
Sarita de Berg1 and Frank Staals1

1 Department of Information and Computing Sciences, Utrecht University,
Netherlands
s.deberg@uu.nl, f.staals@uu.nl

Abstract
We present an insertion-only data structure that supports k-nearest neighbors queries for a set of n

point sites in O(Q(n) log n + k) time, based on any static data structure that can perform k′-nearest
neighbors queries in O(Q(n) + k′) time. The key component is a general query algorithm that allows
us to find k-nearest neighbors spread over t substructures simultaneously, thus reducing the O(tk)
term in the query time to O(k). Applying this to the logarithmic method yields an insertion-only
data structure with both efficient insertion and query time. We apply our method in the plane
for the Euclidean and geodesic distance. We then briefly discuss the main difficulties to achieve a
similar running time in the fully dynamic case.

1 Introduction

In the k-nearest neighbors (k-NN) problem we are given a set of n point sites S in Rd, and
we wish to preprocess these points such that for a query point q and an integer k, we can
find the k sites in S ‘closest’ to q efficiently. This static problem has been studied in many
different settings [3, 4, 8, 12, 13]. In particular, for sites in R2 and the Euclidean distance
metric, Chan and Tsakalidis [8] achieved the optimal O(log n + k) query time using linear
space and O(n log n) preprocessing time. Very recently, Liu showed how to achieve the same
query time for general distance functions (in R2) using O(n log log n) space [13].

In this paper, we study the dynamic version of the k-nearest neighbors problem, in which
points can be inserted into or deleted from S, and the points lie in the plane. When we wish
to report only one nearest neighbor (i.e. 1-NN searching), several efficient fully dynamic data
structures exist [5, 7, 11]. Actually, all these data structures are variants of the same data
structure by Chan [5]. For the Euclidean distance, the current best result using linear space
achieves O(log2 n) query time and polylogarithmic update time [7]. The variant by Kaplan
et al. [11] achieves similar results for general distance functions. These data structures can
also answer k-NN queries in O(log2 n + k log n) time [5]. Recently, Liu [13] claimed that
the version of Kaplan et al. [11] can support such queries in O(log2 n + k) time. However,
we believe that there are some issues with this approach, as we briefly discuss in Section 4.
For the Euclidean distance, Chan achieves a query time of O(log2 n/ log log n + k) for k-NN
queries using O(n log n) space, by adapting his original data structure [6].

We are actually interested mostly in the insertion-only variant of the problem. Since
nearest neighbor searching is decomposable, we can directly apply the logarithmic method [14]
to turn a static k-NN searching data structure into an insertion-only data structure. However,
this again yields an unwanted O(k log n) term in the query time. Our main goal is to
reduce this term to O(k) instead. In Section 2, we show how to achieve this goal. We
present a general query algorithm that allows us to find the k-nearest neighbors spread over t

substructures in O(Q(n)t + k) time, assuming that the static data structure supports k′-NN
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

14:2 A Dynamic Data Structure for k-Nearest Neighbors Queries

Figure 1 Example of expansion. Blue elements are included in a clan, orange elements are not.
The expansion (building the next subheap) occurs when all elements have been included in a clan.

queries in O(Q(n) + k′) time. This yields a linear space data structure supporting queries in
O(log2 n + k) time and insertions in O(log2 n) time, when using the Euclidean distance.1

Our original interest in the problem stems from a setting in which S is a set of points
inside a simple polygon P with m vertices, and we use the geodesic distance as the distance
measure. In this setting, Agarwal, Arge, and Staals [2] describe an insertion-only data
structure for 1-NN queries that achieves O(log2 n log2 m) query time, and O(log n log3 m)
insertion time. As we show in Section 3, applying our machinery in this setting allows for
efficient (O(log2 n log2 m + k log m) time) k-NN queries and insertions, as well.

2 Insertion-Only Data Structure

We describe a method that transforms a static k-NN data structure with query time
O(Q(n) + k) into an insertion-only k-NN data structure with query time O(Q(n) log n + k).
Insertions take O((P (n)/n) log n) time, where P (n) is the preprocessing time of the static data
structure, and C(n) is its space usage. We assume Q(n), P (n), and C(n) are non-decreasing.

To support insertions, we use the logarithmic method [14]. We partition the sites into
O(log n) groups S1, .., SO(logn) with |Si| = 2i for i ∈ {1, .., O(log n)}. To insert a site s, a new
group containing only s is created. When there are two groups of size 2i, these are removed
and a new group of size 2i+1 is created. For each group we store the sites in the static k-NN
data structure. This results in an amortized insertion time of O((P (n)/n) log n). This bound
can also be made worst-case [14]. The main remaining issue is then how to support queries
in O(Q(n) log n + k) time, thus avoiding an O(k log n) term in the query time.

Query algorithm. Let q be the query point and k the number of nearest neighbors we wish
to find. We use the heap selection algorithm of Frederickson [9] to answer k-NN queries
efficiently. This algorithm finds the k smallest elements of a binary min-heap of size N � k in
O(k) time by forming groups of elements, called clans, in the original heap. Representatives
of these clans are then added to another heap, and smaller clans are created from larger clans
and organised in heaps recursively. For our purposes, we (only) need to consider how clans
are formed in the original heap, because we do not build the entire heap we query before
starting the algorithm. Instead, the heap is expanded during the query when necessary, see
Figure 1 for an example. Note that any (non-root) element of the heap will only be included
in a clan by the Frederickson algorithm after its parent has been included in a clan.

The heap H, on which we call the heap selection algorithm, contains all sites s ∈ S

exactly once, with the distance d(s, q) as key for each site. Let S1, .., St be a partition of S

1 With a slight variation of this method we can match the O(log2 n/ log log n + k) query time of Chan’s [6]
fully dynamic data structure for planes. However, this increases the insertion time to O(log2+ε / log log n).

S. de Berg, F. Staals 14:3

Level 1

Level 2

Level 3

Level 0

. . .

. . .

. . .

H(S1) H(S2) H(S3) H(St)

H0

Figure 2 The heap that we construct for the k-nearest neighbors query. The subheaps of which
all elements have been included in a clan are indicated in blue. The subheaps that have been built,
but for which not all elements have been included in a clan, are indicated in orange. The white
subheaps have not been built so far, because not all elements of their predecessor are in a clan yet.

into t disjoint sets. For each set of sites Sj , j ∈ {1, .., t}, we define a heap H(Sj) containing
all sites in Sj . We then “connect” these t heaps by building a dummy heap H0 of size O(t)
that has the roots of all H(Sj) as leaves. We set the keys of the elements of H0 to −∞. Let
H be the complete data structure (heap) that we obtain this way, see Figure 2. It follows
that we can now compute the k sites closest to q by finding the |H0|+ k smallest elements in
the resulting heap H and reporting only the non-dummy sites.

What remains is how to (incrementally) build the heaps H(Sj) while running the heap se-
lection algorithm. Each such heap consists of a hierarchy of subheaps H1(Sj), .., HO(logn)(Sj),
such that every element of Sj appears in exactly one Hi(Sj). Moreover, since the sets S1, .., Sj
are pairwise disjoint, this holds for any s ∈ S, i.e. s appears in exactly one Hi(Sj). Each
heap H1(Sj) consists of the k1 = Q(n) sites in Sj closest to q, which we find by querying the
static data structure of that group. We call these the level 1 heaps. The subheap Hi(Sj) at
level i > 1 is built only after the last element e of Hi−1(Sj) is included in a clan, i.e. e is
considered by the heap selection algorithm. When e is included, we add a pointer from e to
the root of Hi(Sj), such that the root of Hi(Sj) becomes a child of e, as in Figure 1.

To construct a subheap Hi(Sj) at level i > 1, we query the static data structure of Sj
using ki = k12i−1. The new subheap is built using all sites returned by the query that have
not been encountered earlier. It follows that all elements of Hi(Sj) are larger than any of
the elements in H1(Sj), .., Hi−1(Sj). Thus, the heap property is preserved.

Analysis of query time. As stated before, finding the k-smallest non-dummy elements of
H takes O(k + |H0|) time [9]. In this section, we analyse the time used to construct H.

First, the level 0 and level 1 heaps are built. To build the level 1 heaps, we query each of
the substructures using k1 = Q(n). In total these queries take O((Q(n) + k1)t) = O(Q(n)t)
time. Building H0 takes only O(t) time. Retrieving the next ki elements to build Hi(Sj) for
i > 1 requires a single query and thus takes O(Q(n) + ki) time. To bound the time used to
build all heaps at level greater than 1, we first prove the following two lemmas.

I Lemma 1. The size of a subheap Hi(Sj), j ∈ {1, .., t}, at level i > 1 is exactly k12i−2.

EuroCG’21

14:4 A Dynamic Data Structure for k-Nearest Neighbors Queries

Proof. To create Hi(Sj), we query the static data structure of Sj to find the k12i−1 sites
closest to q. Of these sites, only the ones that have been not been included in any of the lower
level subheaps are included in Hi(Sj). The sites previously encountered are exactly the k12i−2

sites returned in the previous query. It follows that |Hi(Sj)| = k1(2i−1 − 2i−2) = k12i−2. J

I Lemma 2. The total size of all subheaps Hi(Sj) at level i > 1 is O(k).

Proof. There are essentially two types of subheaps: complete subheaps, of which all elements
have been included in a clan (shown blue in Figure 2), and incomplete subheaps, of which
only part of the elements has been included (shown orange in Figure 2). Note that the heap
Hi(Sj), i > 1, is only built when all elements of Hi−1(Sj) have been included in a clan. In
total, O(k) elements (not in H0) are included in a clan, so the total size of all complete
subheaps is O(k). Because the size of a subheap is at most twice the size of its predecessor,
it follows that the total size of all incomplete heaps at level greater than 1 is also O(k). J

Building Hi(Sj) takes O(Q(n)+ki) time. To pay for this, we charge O(1) to each element
of Hi−1(Sj). Because we choose k1 = Q(n), Lemma 1 implies that |Hi−1(Sj)| = Ω(Q(n)),
and that ki = k12i−1 = 22k12i−3 = O(|Hi−1(Sj)|). From Lemma 2, and the fact that all
subheaps are disjoint, it follows that we charge O(1) to only O(k) sites. We then have:

I Lemma 3. Let S1, .., St be disjoint sets of point sites of sizes n1, .., nt, each stored in a data
structure that supports k-NN queries in O(Q(ni) + k) time. There is a k-NN data structure
on

⋃
i Si that supports queries in O(Q(n)t + k) time. The data structure uses O(

∑
i C(ni))

space, where C(ni) is the space required by the k-NN structure on Si.

Applying Lemma 3 to the logarithmic method, we obtain the following result.

I Theorem 4. Let S be a set of n point sites, and let D be a static k-NN data structure of
size O(C(n)), that can be built in O(P (n)) time, and that can answer queries in O(Q(n) + k)
time. There is an insertion-only k-NN data structure on S of size O(C(n)) that supports
queries in O(Q(n) log n + k) time. Inserting a new site in S takes O((P (n)/n) log n) time.

Throughout this section, we used the standard assumption that for any two points p, q

their distance d(p, q) can be computed in constant time. When evaluating d(p, q) takes T

time, our technique achieves a query time of O(T (Q(n) log n + k)).

3 Applications

Points in R2. In the Euclidean metric, k-nearest neighbors queries in the plane can be
answered in O(log n + k) time, using O(n) space and O(n log n) preprocessing time [1, 8].

I Corollary 5. There is an insertion-only data structure of size O(n) that stores a set of n

sites in R2, allows for k-NNs queries in O(log2 n + k) time, and insertions in O(log2 n) time.

By using the logarithmic method with only O(logb n) groups, where |Si| = bi, we can
improve the query time to O(logb n log n + k), at the cost of increasing the insertion time
to O(b logb n log n). Setting b = logε n, we match the O(log2 n/ log log n + k) query time of
Chan [6] and still achieve an insertion time of O(log2+ε / log log n). For general distance
functions we achieve the same query time using Liu’s data structure [13], using O(n log log n)
space and expected O(polylog n) insertion time.

S. de Berg, F. Staals 14:5

...

...

..

...

...

..

...

...

..

...

...

..

. . .

. . .

. . .

q

d0

d1

d2

Figure 3 A partial decomposition of P and the corresponding heap used in a k-NN query for q.

Points in a simple polygon. In the geodesic k-nearest neighbors problem, S is a set of
sites inside a simple polygon P with m vertices. For any two points p and q the distance
d(p, q) is defined as the length of the shortest path between p and q fully contained within P .
The input polygon P can be preprocessed in O(m) time so that the geodesic distance d(p, q)
between any two points p, q ∈ P can be computed in O(log m) time [10].

We recursively partition the polygon P into two subpolygons Pr and P` of roughly the
same size [2]. We denote by Sr and S` the sites in Pr and P`, respectively. This results
in a decomposition of the polygon of O(log m) levels. For both sets, and at each of the
levels, we again use the logarithmic method to support insertions. At every level, we store
S` in the static k-NN query data structure of Theorem 22 of [2]. It requires O(n log n)
space, excluding the size of the polygon, and finds the k-nearest neighbors among S` for
a point q ∈ Pr in O((log n + k) log m) expected time. Building the data structure takes
O(n(log n log m + log2 m)) time. Insertions using the logarithmic method therefore take
O(log2 n log2 m + log n log3 m) time, as there are O(log m) levels in the decomposition of P .

During a k-NN query, we have a partition of S into O(log n log m) disjoint groups Sj , as
we consider one set of sites (S` or Sr) for each level of the decomposition. An example is
shown in Figure 3. Lemma 3 thus states that there is a data structure that allows for k-NN
queries in O(log2 n log3 m + k log m) time. We can reduce this by setting k1 = log n instead
of log n log m and charging O(log m) to each site of Hi−1(Sj) to pay for building Hi(Sj).

I Theorem 6. Let P be a simple polygon with m vertices. There is an insertion-only data
structure of size O(n log n log m + m) that stores a set of n point sites in P , allows for
geodesic k-NN queries in O(log2 n log2 m + k log m) expected time, and inserting a site in
O(log2 n log2 m + log n log3 m) time.

4 Supporting Deletions

The data structures for 1-NN queries also supporting deletions in O(polylog n) time are all
based on an idea of Chan [5]. Liu [13] recently claimed that this data structure (in particular
the version of Kaplan et al. [11]) also supports k-NN queries in O(log2 n + k) time. We
believe there are some issues with this approach, which we sketch below.

EuroCG’21

14:6 A Dynamic Data Structure for k-Nearest Neighbors Queries

The key ingredient for dynamic 1-NN searching is an algorithm that takes a subset S of n

of the sites and produces an (abstract) data structure T storing S, and a partition of S into
a set “good” sites G and a set of “bad” sites B. The key properties are that every site in S is
stored at most O(log n) times in T , and that G has size Ω(n). By recursively applying this
algorithm on the bad sites, we obtain a partition of S into r = O(log n) good sets G1, .., Gr.
Each good set Gi is stored in a static 1-NN searching data structure Di, and thus we can
answer queries by querying each of these O(log n) data structures. Deleting a site may cause
some sites in these good sets to become marked as bad. These sites are reinserted into the
structure of B, hence we essentially move some sites from a Gi to a new good set Gj . It
can be shown that the total number of good sets remains O(log n). When a query in some
static data structure Di returns a site marked as bad we simply discard it. Chan shows
that this still allows us to answer queries correctly, and that deletions (and insertions) take
O(polylog n) amortized time [5, 11]. Note that the data structures T1, .., Tr are used only to
collect which functions become bad when performing deletions, not to answer queries.2

Liu claims that this data structure can also support k-NN queries in O(log2 n+k) time [13].
Presumably, by replacing the 1-NN data structures D1, ..,Dr by k-NN data structures (all
details are omitted). However, the sites in D1, .., Dr are not pairwise disjoint, and thus we
may encounter a site in the output to a query in multiple Di’s. This yields an O(k log n)
term in the query time, which matches the bound given by Chan [5].

To answer k-NN queries efficiently, Chan adapted his original data structure to accomodate
k-NN queries. By using the data structures T1, .., Tr to answer queries, and deleting planes
that are removed from these structures explicitly, a query time of O(log2 n/ log log n + k) is
achieved. However, it is not straightforward how to generalize this approach for more general
distance functions (for example the geodesic distance function). We are currently working
on this problem.

References

1 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three di-
mensions. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 180–186. SIAM, 2009.

2 Pankaj K. Agarwal, Lars Arge, and Frank Staals. Improved dynamic geodesic nearest
neighbor searching in a simple polygon. In 34th International Symposium on Computational
Geometry, SoCG, volume 99 of LIPIcs, pages 4:1–4:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

3 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate near-
est neighbor in high dimensions. Commun. ACM, 51(1):117–122, 2008.

4 Timothy M. Chan. Random sampling, halfspace range reporting, and construction of ≤ k-
levels in three dimensions. SIAM J. Comput., 30(2):561–575, 2000.

5 Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor
queries. J. ACM, 57(3):16:1–16:15, 2010.

6 Timothy M. Chan. Three problems about dynamic convex hulls. Int. J. Comput. Geom.
Appl., 22(4):341–364, 2012.

2 In the presentation of Kaplan et al. [11] Di actually coincides with the lowest “layer” of in the “tower”
of shallow cuttings Ti. The issue sketched here also applies to this version, as the cuttings in Ti do not
cover the t-level of Gi but of Gi ∪ B for some B. The sites/functions in B are “good” w.r.t. some other
Gj , and may thus be encountered multiple times.

S. de Berg, F. Staals 14:7

7 Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. In 35th
International Symposium on Computational Geometry, SoCG, volume 129 of LIPIcs, pages
24:1–24:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

8 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d
and 3-d shallow cuttings. Discret. Comput. Geom., 56(4):866–881, 2016.

9 Greg N. Frederickson. An optimal algorithm for selection in a min-heap. Inf. Comput.,
104(2):197–214, 1993.

10 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple
polygon. J. Comput. Syst. Sci., 39(2):126–152, 1989.

11 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar voronoi diagrams for general distance functions and their algorithmic applications. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 2495–2504. SIAM, 2017.

12 Der-Tsai Lee. On k-nearest neighbor voronoi diagrams in the plane. IEEE Transactions
on Computers, C-31(6):478–487, June 1982.

13 Chih-Hung Liu. Nearly optimal planar k nearest neighbors queries under general distance
functions. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 2842–2859. SIAM, 2020.

14 Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture Notes
in Computer Science. Springer, 1983.

EuroCG’21

Tukey Depth Histograms∗

Daniel Bertschinger1, Jonas Passweg2, and Patrick Schnider3

1 Department of Computer Science, ETH Zürich, Switzerland
daniel.bertschinger@inf.ethz.ch

2 Department of Computer Science, ETH Zürich, Switzerland
jpassweg@student.ethz.ch

3 Department of Mathematical Sciences, University of Copenhagen
ps@math.ku.dk

Abstract
The Tukey depth of a flat with respect to a point set is a concept that appears in many areas of
discrete and computational geometry. In this work, we introduce the Tukey depth histogram of
k-flats in Rd with respect to a point set P , which is a vector Dk,d(P), whose i’th entry Dk,d

i (P)
denotes the number of k-flats spanned by k + 1 points of P that have Tukey depth i with respect to
P . We give a complete characterization of the depth histograms of points, that is, for any dimension
d we give a description of all possible histograms D0,d(P).

Related Version A full version is available at http://arxiv.org/abs/2103.08665

1 Introduction

Many fundamental problems on point sets, such as the number of extreme points, the number
of halving lines, or the crossing number do not depend on the actual location and distances of
the points, but rather on some underlying combinatorial structure of the point set. There is
a vast body of work of combinatorial representations of point sets, at the beginning of which
are the seminal series of papers by Goodman and Pollack [2, 3, 4], where many important
objects such as allowable sequences and order types are introduced. In particular order types
have proven to be a very powerful representation of point sets. For many problems however,
less information than what is encoded in order types is sufficient. One example for such a
problem is the determination of the Tukey depth of a query point with respect to a planar
point set. The Tukey depth of a query point q with respect to a point set P is the minimum
number of points of P that lie in a closed halfspace containing q. In the plane, this can be
computed knowing only for each k, how many directed lines through q and a point of P

have exactly k points to their left. This defines the `-vector of q. The Tukey depth of q is
now just the smallest k for which the corresponding entry in the `-vector is non-zero. In [6],
a characterization of all possible `-vectors is given, phrased in terms of frequency vectors,
which is an equivalent object.

Interesting objects emerge after forgetting yet another piece of information: instead of
knowing the `-vector of each point, assume we only know the sum of all `-vectors. This
corresponds to knowing for each j the number of j-edges that is, knowing the histogram of
j-edges. The number of j-edges that a point set admits is a fundamental question in discrete
geometry and has a rich history, see e.g. [7], Chapter 4 in [1] or Chapter 11 in [5] and the
references therein.

In this work, we investigate a similar concept: depth histograms of points. This corre-
sponds to knowing for each j how many points of Tukey depth j are in the point set. We

∗ The third author has received funding from the European Research Council under the European Unions
Seventh Framework Programme ERC Grant agreement ERC StG 716424 - CASe.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

15:2 Tukey Depth Histograms

give a complete characterization of possible such histograms for point sets in general position.
In particular, we will show the following:

I Theorem 1.1. A vector D0,d is a depth histogram of a point set in general position in Rd

if and only if for all nonzero entries D0,d
i with i ≥ 2 we have

i−1∑

j=1
D0,d

j ≥ 2i + d− 3.

In fact, both depth histograms of points as well as j-edges can be viewed as instances
of a more general definition, that of histograms of j-flats, which we will introduce in the
following. We hope that this work can serve as a small step in the systematic study of these
histograms.

In order to define histograms of j-flats, we first define the Tukey depth of a flat:

I Definition 1.2. Let Q be a set of k + 1 points in Rd, k < d, which span a unique k-flat
F . The affine Tukey depth of Q with respect to a point set P , denoted by atdP (Q), is the
minimum number of points of P in any closed halfspace containing F . The convex Tukey
depth of Q with respect to P , denoted by ctdP (Q), is the minimum number of points of P in
any closed halfspace containing conv(Q).

Note that for k = 0 both definitions coincide with the standard definition of Tukey depth,
and we just write tdP (q) in this case. Further note that if P ∪Q is in convex position, then
atdP (Q) = ctdP (Q).

I Definition 1.3. Let P be a set of points in Rd. The affine Tukey depth histogram of j-flats,
denoted by Dj,d(P), is a vector whose entries Dj,d

l (P) are the number of subsets Q ⊂ P of
size j + 1 whose affine Tukey depth is i. Similarly, replacing affine Tukey depth with convex
Tukey depth, we define the convex Tukey depth histogram of j-flats, denoted by cDj,d(P).

In the following, we will also call affine Tukey depth histograms just depth histograms,
that is, unless we specify the convex, we always mean an affine Tukey depth histogram. Note
however that for j = 0 or if P is in convex position, the two histograms coincide.

Many problems in discrete geometry can be phrased in terms of depth histograms. For
example, the number of extreme points of a point set P just corresponds to the entry D0,d

1 (P)
(note that each point of P has Tukey depth at least 1). Further, the number of j-edges or,
more generally, j-facets corresponds to the entry Dd−1,d

j (P).

2 The condition is necessary

I Lemma 2.1. For any point set P ⊆ Rd and any point p ∈ P we have tdP (p) ≤ n−d+2
2 .

Sketch of proof. Let P ⊆ Rd and let p ∈ P be any point with tdP (p) = k. We show that
any such point set consists of at least 2k− 2 + d points, which proves the lemma. Consider a
witnessing halfspace hp of p and its bounding hyperplane h. After rotation and translation,
we may assume that h contains p and d other points of P , and hp contains k − 1 points in
its interior. The same has to hold for the complement of hp, giving at least 2(k − 1) + d

points. J

I Lemma 2.2. For any point set P ⊆ Rd and any two points p, q ∈ P with tdP (p) ≤ tdP (q)
we have tdP (p) = tdP\q(p).

D. Bertschinger, J. Passweg, and P. Schnider 15:3

Proof. The point q cannot lie in any witnessing halfspace for p. J

By repeatedly applying the lemma one can easily show the following.
I Proposition 1. For any depth histogram [a1, a2, . . . , am−1, am], both [a1, a2, . . . , ai−1, ai]
and [a1, a2, . . . , ai−1, 1] with i ≤ m are depth histograms.

I Corollary 2.3 (Necessary condition of Theorem 1.1). For any depth histogram D0,d and all
nonzero entries D0,d

i with i ≥ 2 we have

i−1∑

j=1
D0,d

j ≥ 2i + d− 3.

Proof. For the sake of contradiction, let us assume that there is a depth histogram D0,d for
which there is a nonzero entry D0,d

i and
∑i−1

j=1 D0,d
j < 2i + d− 3. Using Proposition 1, we

can cut off the depth histogram D0,d at any point and so we can consider the histogram
D′ := [D0,d

1 , . . . , D0,d
i−1, 1]. But then for the point set P ′ corresponding to this histogram, we

have |P ′| < 2i + d− 2, which contradicts Lemma 2.1. J

2.1 Two special configurations
We make a small detour and revisit Lemma 2.1, noting that the given bound is tight. We
will show this using point sets in so-called symmetric configuration [6]. These point sets will
also be at the core of our proof that the condition of Theorem 1.1 is sufficient.

I Definition 2.4. A point set P ⊆ Rd in general position is in
1. symmetric configuration if and only if there exists a central point c ∈ P such that every

hyperplane through c and d− 1 other points of P separates the remaining points into
two halves of equal size.

2. eccentric configuration if and only if there exists a central point c ∈ P such that every
hyperplane through c and d− 1 other points of P almost separates the remaining points
into two halves of equal size, that is, divides the remaining points in two sets with
difference in cardinality of at most 1.

Note that depending on the dimension and the size of P , only one of the definitions can
be applied. Examples of such point sets are given in Figure 1.

c

p

c

p

q

Figure 1 Two point sets in symmetric and eccentric configuration, respectively. The lines through
c and p or c and q, respectively, (almost) divide the remaining point set.

The following follows from the definition:

EuroCG’21

15:4 Tukey Depth Histograms

I Lemma 2.5. The symmetric central point c in a symmetric (or eccentric) point set P has
depth tdP (c) = bn−d+2

2 c.

At first glance, it is not clear that symmetric and eccentric point sets of any size exist in
any dimension. We will show that they do in the next section, this will be an important step
in proving that the condition of Theorem 1.1 is sufficient. For space reasons, we only sketch
the argument for higher dimensions.

3 The condition is sufficient

To prove that the condition we gave in Theorem 1.1 is sufficient, we build up point sets
according to their histograms by adding points one-by-one. In other words, given a histogram,
we start with points in convex position (as many as there are of depth 1). We then add
new points in the “center” of the point set, push them outwards until they have the right
depth, without changing the depth of any other point, maintaining that we can always add
yet another point in the center to get a symmetric or eccentric point set.

3.1 Moving points
Note that the Tukey depth of q can only change if q is involved in a change in the order type.
In other words, q was pushed over a hyperplane formed by d other points of the point set.
We now formally characterize what happens in any such case.

I Proposition 2. Let P ∈ Rd be a point set and q ∈ P be an arbitrary point. Let q′ be a
point close to q, such that the order types of P and P ′ := P \ {q} ∪ {q′} only differ in one
simplex S, that is, S := conv{p1, . . . , pd, q} and S ′, respectively. Let h be the hyperplane
spanned by p1, . . . , pd and q̂ the intersection of h with the line qq′.

If q̂ /∈ conv{p1, . . . , pd}, then tdP (q) = tdP ′(q′), and
otherwise, if q̂ ∈ conv{p1, . . . , pd}, then |tdP (q)− tdP ′(q′)| ≤ 1.

For a proof, we refer to the full version of this paper. Note that whenever q has the
highest depth among all points, we also know that the depths of the other points do not
change.

I Observation 3.1. Whenever we have tdP (q) > tdP (p) for all points p in the point set, then
tdP (p) = tdP ′(p).

3.2 Inserting a new point
We have already seen point sets, that contain a point of maximum possible depth. These
special point sets will help us placing new points of large depth, which we then can push
outwards. For this, let P be a point set in general position and in symmetric (eccentric,
respectively) configuration missing the symmetric central point. If we place a new point
p at the location of the (previously inexistent) symmetric central point, then by Lemmas
2.1 and 2.5, we know that p has the maximal possible depth. Now, we are able to push p

outwards until it has the desired depth and the resulting point set is in eccentric (symmetric,
respectively) configuration. An example in dimension 2 can be found in Figure 2.

I Lemma 3.2. For any point set P ⊆ R2 in general position and in eccentric (symmetric,
resp.) configuration there exists a direction in which we can push the central point such that
after adding a new center we have a symmetric (eccentric, resp.) point set in general position.

D. Bertschinger, J. Passweg, and P. Schnider 15:5

Figure 2 A point set in symmetric configuration (left). After pushing the symmetric central point
out (second from left), we arrive at a point set in eccentric configuration missing the symmetric
central point. Adding a new point at maximum possible depth (third from left). Pushing out again
gets us back into a symmetric point set missing the symmetric central point (rightmost).

Proof. First, note that if P is in symmetric configuration, any direction does the job. If P is
eccentric, then there exist two neighbors p1 and p2 in the rotational order of points around
q without a symmetric central line dividing them. Now choose to move q outwards on an
“opposite” halfline, see Figure 3, right. J

q
q

p1 p2

Figure 3 The central point and the direction in which we push it if the point set is symmetric
(left) and if the point set is eccentric (right).

In higher dimensions it is not so easy to see how to get the directions and why they
always exist. The core of our proof is the following theorem, whose full proof can be found
in the full version of the paper:

I Theorem 3.3. For every symmetric point set P ⊆ Rd, there exist two directions v1 and
v2 such that we can push the central point into either direction; add a new central point and
arrive at an eccentric point set P ′. We can then push the newly added point into the other
direction, and arrive at a symmetric point set P ′′ missing the symmetric central point.

Sketch of proof. Project P to the sphere Sd−1 ⊆ Rd and note that the resulting point P ′

set is still symmetric. Assume without loss of generality that no point of P ′ is at the north
or the south pole. If we choose v1 and v2 as the directions to the north and the south pole,
respectively, we are almost done; the only issue is that the resulting point set is not in general
position. However, using stereographic projection at the north pole, we get an eccentric
point set Q ⊆ Rd−1 whose central point is the projection of the north pole. Using induction
on the dimension, we may assume that we can move the projection of the north pole into
some direction and add a new central point c so that the resulting point set Q′ is symmetric.
Reversing the stereographic projection, and placing the new central point c at the south pole,
the directions v1 and v2 are given by the moved north pole and the south pole. J

EuroCG’21

15:6 Tukey Depth Histograms

4 Conclusion

We have introduced Tukey depth histograms of j-flats, which relate to several problems in
discrete geometry. For histograms of points, we were able to give a full characterization.

It is an interesting open problem to find better necessary and also sufficient conditions,
perhaps even characterizations, of histograms of j-flats for j > 0. We hope that the ideas
and arguments in this paper might be useful in this endeavor.

Another interesting open problem is to relate depth histograms to other representations
of point sets. For example in the plane, the order type determines the `-vectors for each
point, but not vice-versa, that is, there are point sets that have the same sets of `-vectors
but different order types. Similarly, the set of `-vectors determines the histograms D0,2 and
D1,2. Is it true that the reverse is also true or are there point sets for which both D0,2 and
D1,2 are the same but whose sets of `-vectors are different?

References
1 Stefan Felsner. Geometric graphs and arrangements: some chapters from combinatorial

geometry. Springer Science & Business Media, 2012.
2 Jacob Goodman and Richard Pollack. A theorem of ordered duality. Geometriae Dedicata,

12:63–74, 01 1982. doi:10.1007/BF00147331.
3 Jacob Goodman and Richard Pollack. Multidimensional sorting. SIAM J. Comput., 12:484–

507, 08 1983. doi:10.1137/0212032.
4 Jacob Goodman and Richard Pollack. Semispaces of configurations, cell complexes of ar-

rangements. J. Comb. Theory, Ser. A, 37:257–293, 11 1984. doi:10.1016/0097-3165(84)
90050-5.

5 Jiri Matousek. Lectures on discrete geometry, volume 212. Springer Science & Business
Media, 2013.

6 A. J. Ruiz-Vargas and E. Welzl. Crossing-free perfect matchings in wheel point sets. In A
Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek, pages 735–764. 2017.
doi:10.1007/978-3-319-44479-6_30.

7 Uli Wagner. k-sets and k-facets. Contemporary Mathematics, 453:443, 2008.

Enclosing Depth and other Depth Measures∗

Patrick Schnider1

1 Department of Mathematical Sciences, University of Copenhagen
ps@math.ku.dk

Abstract
We study families of depth measures defined by natural sets of axioms. We show that any such
depth measure is a constant factor approximation of Tukey depth. Along the way, we introduce and
study a new depth measure called enclosing depth, which we believe to be of independent interest,
and show its relation to a constant-fraction Radon theorem on certain two-colored point sets.

Related Version A full version is available at http://arxiv.org/abs/2103.08421

1 Introduction

Medians are an important tool in the statistical analysis and visualization of data. Various
generalizations of medians to higher dimensions have been introduced and studied, see
e.g. [1, 9, 12] for surveys. Many of these generalized medians rely on a notion of depth of a
query point within a data set, a median then being a query point with the highest depth
among all possible query points. In particular, just like the median, many of these depth
measures only depend on the relative positions of the involved points, making them robust
against outliers. More formally, let SRd denote the family of all finite sets of points in Rd. A
depth measure is a function % : (SRd

,Rd)→ R≥0 which assigns to each pair (S, q) consisting
of a finite set of data points S and a query point q a value, which describes how deep the
query point q lies within the data set S. We call a depth measure % combinatorial if it
depends only on the order type of S ∪ {q}. In this paper, we consider general classes of
combinatorial depth measures, defined by a small set of axioms, and prove relations between
them and concrete depth measures, such as Tukey depth (TD) and Tverberg depth (TvD).

I Definition 1.1. Let S be a finite point set in Rd and let q be a query point. Then the
Tukey depth of q with respect to S, denoted by TD(S, q), is the minimum number of points
of S in any closed halfspace containing q.

Tukey depth was introduced by John W. Tukey in 1975 [15] and has received significant
attention since, both from a combinatrial as well as from an algorithmic perspective, see
e.g. Chapter 58 in [14] and the references therein. Notably, the centerpoint theorem states
that for any point set S ⊂ Rd, there exists a point q ∈ Rd for which TD(S, q) ≥ |S|

d+1 [13].
In order to define Tverberg depth, we need a preliminary definition: given a point set S

in Rd, an r-partition of S is a partition of S into r pairwise disjoint subsets S1, . . . , Sr ⊂ S
with

⋂r
i=1 conv(Si) 6= ∅. We call

⋂r
i=1 conv(Si) the intersection of the r-partition.

I Definition 1.2. Let S be a finite point set in Rd and let q be a query point. Then the
Tverberg depth of q with respect to S, denoted by TvD(S, q), is the maximum r such that
there is an r-partition of S whose intersection contains q.

∗ The author has received funding from the European Research Council under the European Unions
Seventh Framework Programme ERC Grant agreement ERC StG 716424 - CASe. Part of this work was
done when the author was employed at ETH Zürich.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

16:2 Enclosing Depth and other Depth Measures

Tverberg depth is named after Helge Tverberg who proved in 1966 that any set of
(d + 1)(r − 1) + 1 points in Rd allows an r-partition [16]. In particular, this implies that
there is a point q with TvD(S, q) ≥ |S|

d+1 . Just as for Tukey depth, there is an extensive body
of work on Tverbergs theorem, see the survey [3] and the references therein.

In R1, both Tukey and Tverberg depth give a very natural depth measure: it counts the
number of points of S to the left and to the right of q and then returns the minimum of the
two numbers. We call this measure the standard depth in R1.

Another depth measure that is important in this paper is called enclosing depth. We say
that a point set S of size (d+ 1)k in Rd k-encloses a point q if S can be partitioned into d+ 1
pairwise disjoint subsets S1, . . . , Sd+1, each of size k, in such a way that for every transversal
p1 ∈ S1, . . . , pd+1 ∈ Sd+1, the point q is in the convex hull of p1, . . . , pd+1. Intuitively, the
points of S are centered around the vertices of a simplex with q in its interior.

I Definition 1.3. Let S be a finite point set in Rd and let q be a query point. Then the
enclosing depth of q with respect to S, denoted by ED(S, q), is the maximum k such that
there exists a subset of S which k-encloses q.

It is straightforward to see that enclosing depth also gives the standard depth in R1. The
centerpoint theorem [13] and Tverberg’s theorem [16] show that both for Tukey as well as
Tverberg depth, there are deep points in any dimension. We will show that this also holds
for enclosing depth. In fact, we will show that enclosing depth can be bounded from below
by a constant fraction of Tukey depth. From this we get the main results of this paper: all
depth measures that satisfy the axioms given later are a constant factor approximation of
Tukey depth.

2 A first set of axioms

The first set of depth measures that we consider are super-additive depth measures. A
combinatorial depth measure % : (SRd

,Rd)→ R≥0 is called super-additive if it satisfies the
following conditions:
(i) for all S ∈ SRd and q, p ∈ Rd we have |%(S, q)− %(S ∪ {p}, q)| ≤ 1 (sensitivity),
(ii) for all S ∈ SRd and q ∈ Rd we have %(S, q) = 0 for q 6∈ conv(S) (locality),
(iii) for all S ∈ SRd and q ∈ Rd we have %(S, q) ≥ 1 for q ∈ conv(S) (non-triviality),
(iv) for any disjoint subsets S1, S2 ⊆ S and q ∈ Rd we have %(S, q) ≥ %(S1, q) + %(S2, q)

(super-additivity).

It is not hard to show that a one-dimensional depth measure which satisfies these
conditions has to be the standard depth measure (in fact, the arguments are generalized to
higher dimensions in the following two observations) and that no three conditions suffice for
this. Further, it can be shown that both Tukey depth and Tverberg depth are super-additive.
The following two observations follow from the definitions, see the full version for the proofs:

I Observation 2.1. For every depth measure % satisfying (i) sensitivity and (ii) locality and
for all S ∈ SRd and q ∈ Rd we have %(S, q) ≤ TD(S, q).

I Observation 2.2. For every depth measure % satisfying (iii) non-triviality and (iv) super-
additivity and for all S ∈ SRd and q ∈ Rd we have %(S, q) ≥ TvD(S, q).

Finally, it is not too hard to show that TvD(S, q) ≥ 1
dTD(S, q), see e.g. [7] for an argument.

Combining these observations, we thus get the following.

P. Schnider 16:3

q

Figure 1 Enclosing depth does not satisfy the super-additivity condition: the point q has enclosing
depth 1 with respect to both the blue and the red points, but its enclosing depth with respect to the
union of the two sets is still 1.

I Corollary 2.3. Let % be a super-additive depth measure. Then for every point set S and
query point q in Rd we have

TD(S, q) ≥ %(S, q) ≥ TvD(S, q) ≥ 1
d
TD(S, q).

From Corollary 2.3 it follows that for any super-additive depth measure and any point
set there is always a point of depth at least |S|

d+1 , for example any Tverberg point. On
the other hand, there are depth measures that give the standard depth in R1 that are not
super-additive, for example enclosing depth, see Figure 1.

3 A second set of axioms

The second family of depth measures we consider are central depth measures. A combinatorial
depth measure % : (SRd

,Rd)→ R≥0 is called central if it satisfies the following conditions:
(i) for all S ∈ SRd and q, p ∈ Rd we have |%(S, q)− %(S ∪ {p}, q)| ≤ 1 (sensitivity),
(ii) for all S ∈ SRd and q ∈ Rd we have %(S, q) = 0 for q 6∈ conv(S) (locality),

(iii’) for every S ∈ SRd there is a q ∈ Rd for which %(S, q) ≥ 1
d+1 |S| (centrality).

(iv’) for all S ∈ SRd and q, p ∈ Rd we have %(S ∪ {p}, q) ≥ %(S, q) (monotonicity),

We have seen before that any super-additive depth measure indeed satisfies the centrality
condition, and the super-additivity condition (iv) is stronger than the monotonicity condition
(iv’), so central depth measures are a superset of super-additive depth measures. It is actually
a strict superset, as for example the depth measure whose depth regions are defined as the
convex hulls of Tverberg depth regions is central but not super-additive.

While central depth measures enforce deep points by definition, they might still differ
from each other a lot locally. In the following, we will bound by how much they differ locally,
showing that every central depth measure is a constant factor approximation of Tukey depth.

I Theorem 3.1. Let % be a central depth measure in Rd. Then there exists a constant
c1 = c1(d), which depends only on the dimension d, such that

TD(S, q) ≥ %(S, q) ≥ ED(S, q)− (d+ 1) ≥ c1 · TD(S, q)− (d+ 1).

EuroCG’21

16:4 Enclosing Depth and other Depth Measures

Here the first inequality is just Observation 2.1. As for the second inequality, we only
give a sketch here and refer the interested reader to the full version. We would like to argue
that if S k-encloses q then %(S, q) = k. By centrality, there must indeed be a point q′ with
%(S, q′) = k (note that |S| = k(d + 1) by definition of k-enclosing), but this point can lie
anywhere in the centerpoint region of S and not every point in the centerpoint region is
k-enclosed by S. However, by adding d+ 1 points very close to q, we can ensure that q is
the only possible centerpoint in the new point set, and the second inequality then follows
from sensitivity and monotonicity after removing these points again. The most involved part
of Theorem 3.1 is the last inequality, which we will now prove:

I Theorem 3.2 (E(d)). There is a constant c1 = c1(d) such that for all S ∈ SRd and q ∈ Rd
we have ED(S, q) ≥ c1 · TD(S, q).

Note that E(1) is true and c1(1) = 1. Let P = R ∪ B be a bichromatic point set with
color classes R (red) and B (blue). We say that B surrounds R if for every halfspace h we
have |B ∩ h| ≥ |R ∩ h|. Note that this in particular implies |B| ≥ |R|. The statement E(d)
is related to the following constant-fraction Radon theorem:

I Theorem 3.3 (R(d)). Let P = R ∪B be a bichromatic point set in Rd where B surrounds
R. Then there is a constant c2 = c2(d) such that there are integers a and b and pairwise
disjoint subsets R1, . . . , Ra ⊆ R and B1, . . . , Bb ⊆ B with
1. a+ b = d+ 2,
2. |Ri| ≥ c2 · |R| for all 1 ≤ i ≤ a,
3. |Bi| ≥ c2 · |R| for all 1 ≤ i ≤ b,
4. for every transversal r1 ∈ R1, . . . , ra ∈ Ra, b1 ∈ B1, . . . , bb ∈ Bb, we have conv(r1, . . . , ra)∩

conv(b1, . . . , bb) 6= ∅.

In other words, the Radon partition respects the color classes. It can be shown that R(1)
can be satisfied choosing a = 1, b = 2 and c2(1) = 1

3 , see the appendix for a proof. In the
following, we will prove that R(d − 1) ⇒ E(d) and that E(d − 1) ⇒ R(d). By induction,
these two claims then imply Theorem 3.1.

I Lemma 3.4. R(d− 1)⇒ E(d).

Sketch of Proof. Assume without loss of generality that q is the origin an that the halfspace
h : xd ≤ 0 witnesses TD(S, q) = k. Consider the point set S′ derived from S by central
projection through q to the hyperplane xd = 1, and color all points from h red and the points
from the complement hc blue. Then S′ is a (d− 1)-dimensional point set where B surrounds
R. Further, every Radon partition in S′ which respects the color classes corresponds to a
simplex in S which contains q. J

For the proof of the second implication, we need to recall a few results, starting with the
Same Type Lemma by Bárány and Valtr [4].

I Theorem 3.5 (Theorem 2 in [4]). For every two natural numbers d and m there is a
constant c3(d,m) > 0 with the following property: Given point sets X1, . . . , Xm ⊆ Rd such
that X1 ∪ . . . ∪Xm is in general position, there are subsets Yi ⊆ Xi with |Yi| ≥ c3 · |Xi| such
that all transversals of the Yi have the same order type.

The second result that we will need is the Center Transversal Theorem, proved indepen-
dently by Dol’nikov [6] as well as Zivaljević and Vrećica [17]. We will only need the version
for two colors, so we state it in this restricted version:

P. Schnider 16:5

I Theorem 3.6 (Center Transversal for two colors). Let µ1 and µ2 be two finite Borel measures
on Rd. Then there exists a line ` such that for every closed halfspace H which contains `
and every i ∈ {1, 2} we have µi(H) ≥ µi(Rd)

d .

Such a line ` is called a center transversal. By a standard argument (replacing points
with balls of small radius, see e.g. [10]), the same result also holds for two point sets P1, P2
in general position, where µi(H) is replaced by |Pi ∩H|. The lemma that is at the core of
the proof of the center transversal theorem is the following, again proved independently by
Dol’nikov [6] as well as Zivaljević and Vrećica [17]:

I Lemma 3.7. Let g1 and g2 be two continuous assignments of points to the set of all
(d− 1)-dimensional linear subspaces of Rd. Then there exists such a subspace F in which
g1(F) = g2(F).

The centerpoint theorem follows by choosing in a unique way g1 and g2 in the centerpoint
region of projected masses. If the two measures can be separated by a hyperplane, we can do
something similar with the center transversal:

I Lemma 3.8. Let µ1 and µ2 be two finite Borel measures on Rd, which can be separated by
a hyperplane. Then there is a unique canonical choice of a center transversal.

For a proof we refer to the appendix. Again, the same statement holds for point sets in
general position. With these tools at hand, we are now ready to prove the second part of the
induction.

I Lemma 3.9. E(d− 1)⇒ R(d).

Sketch of Proof. Let ` be a line through the origin. Sweep a hyperplane orthogonal to `
from one side to the other (without loss of generality from left to right). Let h1 (h2) be a
sweep hyperplane with exactly |R|3 blue points to the left (right), and let A1 (A2) be the set
of these blue points. Let M be the set of red points between h1 and h2. Note that |M | ≥ |R|3 .
Let c be the unique center transversal of A1 and A2 given by Lemma 3.8. By Lemma 3.7,
there exists a choice of `, such that c is also a center transversal for M . The projection of c
to an orthogonal hyperplane is a centerpoint of the projection of A1, thus by the statement
E(d− 1) there are three subsets A1,1, . . . A1,d of A1, each of size c1 · |A1| whose projections
enclose the projection of c. Analogously we get subsets A2,1, . . . , A2,d of A2 and M1, . . . ,Md

of M . By Theorem 3.5 there are subsets A′1,1, . . . ,M ′d, each of size linear in the size of the
original subset, such that each transversal has the same order type. Pick one such transversal.
It can be shown that he convex hulls of the blue points (from A1 and A2) and the red points
(from M) intersect. In particular, there is a subset of d+ 2 red and blue points, which form
a Radon partition. By choosing the subsets from which these points were selected, we now
get the subsets required for R(d). J

4 Conclusion

We have introduced two families of depth measures, called super-additive depth measures
and central depth measures, where the first is a strict subset of the second. We have shown
that all these depth measures are a constant-factor approximation of Tukey depth.

It is known that Tukey depth is coNP-hard to compute when both |S| and d is part of the
input [8], and it is even hard to approximate [2] (see also [5]). Our result is thus an indication
that central depth measures are hard to compute. However, this does not follow directly, as

EuroCG’21

16:6 Enclosing Depth and other Depth Measures

our constant has an exponential dependence on d. It is an interesting open problem whether
the approximation factor can be improved.

There is a depth measure which has attracted a lot of research, which does not fit into
our framework: simplicial depth (SD). The reason for this is that while the depth studied in
this paper are linear in the size of the point set, simplicial depth has values of size O(|S|d+1).
However, after the right normalization, simplicial depth can be reformulated to satisfy all
conditions except super-additivity and centrality. It would be interesting to see whether there
is some function g depending on point sets and query points such that the depth measure
SD(S,q)
g(S,q) is super-additive. Such a function, if it exists, could potentially be used to improve
bounds for the first selection lemma (see e.g. [11]).

Acknowledgments. Thanks to Emo Welzl, Karim Adiprasito and Uli Wagner for the helpful
discussions.

References
1 Greg Aloupis. Geometric measures of data depth. In Data Depth: Robust Multivariate

Analysis, Computational Geometry and Applications, pages 147–158, 2003.
2 Edoardo Amaldi and Viggo Kann. The complexity and approximability of finding maximum

feasible subsystems of linear relations. Theoretical Computer Science, 147(1):181 – 210,
1995.

3 Imre Bárány and Pablo Soberón. Tverberg’s theorem is 50 years old: a survey. Bulletin of
the American Mathematical Society, 55(4):459–492, 2018.

4 Imre Bárány and Pavel Valtr. A positive fraction Erdös-Szekeres theorem. Discrete &
Computational Geometry, 19(3):335–342, 1998.

5 Dan Chen, Pat Morin, and Uli Wagner. Absolute approximation of Tukey depth: The-
ory and experiments. Computational Geometry, 46(5):566 – 573, 2013. Geometry and
Optimization.

6 VL Dol’nikov. Transversals of families of sets in in Rn and a connection between the Helly
and Borsuk theorems. Russian Academy of Sciences. Sbornik Mathematics, 79(1):93, 1994.

7 Sariel Har-Peled and Timothy Zhou. Improved approximation algorithms for tverberg
partitions. arXiv preprint arXiv:2007.08717, 2020.

8 D.S. Johnson and F.P. Preparata. The densest hemisphere problem. Theoretical Computer
Science, 6(1):93 – 107, 1978.

9 Regina Y. Liu, Jesse M. Parelius, and Kesar Singh. Multivariate analysis by data depth:
descriptive statistics, graphics and inference. Ann. Statist., 27(3):783–858, 06 1999. URL:
http://dx.doi.org/10.1214/aos/1018031260, doi:10.1214/aos/1018031260.

10 Jiří Matoušek. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Com-
binatorics and Geometry. Springer Publishing Company, Incorporated, 2007.

11 Jivr’i Matouvsek. Lectures on discrete geometry, volume 212 of Graduate texts in mathe-
matics. Springer, 2002.

12 Karl Mosler. Depth Statistics, pages 17–34. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013. URL: http://dx.doi.org/10.1007/978-3-642-35494-6_2, doi:10.1007/
978-3-642-35494-6_2.

13 Richard Rado. A theorem on general measure. Journal of the London Mathematical Society,
21:291–300, 1947.

14 Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and com-
putational geometry. Chapman and Hall/CRC, 2017.

15 John W. Tukey. Mathematics and the picturing of data. In Proc. International Congress
of Mathematicians, pages 523–531, 1975.

P. Schnider 16:7

16 Helge Tverberg. A generalization of Radon’s theorem. Journal of the London Mathematical
Society, 1(1):123–128, 1966.

17 Rade T. Zivaljević and Siniša T Vrećica. An extension of the ham sandwich theorem.
Bulletin of the London Mathematical Society, 22(2):183–186, 1990.

EuroCG’21

Geometric Dominating Sets - A Minimum Version
of the No-Three-In-Line Problem
Oswin Aichholzer1, David Eppstein2, and Eva-Maria Hainzl3

1 Graz University of Technology
oaich@ist.tugraz.at

2 University of California, Irvine
eppstein@uci.edu

3 Vienna University of Technology
eva-maria.hainzl@tuwien.ac.at

Abstract
We consider a minimizing variant of the well-known No-Three-In-Line Problem, the Geometric
Dominating Set Problem: What is the smallest number of points in an n× n grid such that every
grid point lies on a common line with two of the points in the set? We show a lower bound of Ω(n2/3)
points and provide a constructive upper bound of size 2dn/2e. If the points of the dominating sets
are required to be in general position we provide optimal solutions for grids of size up to 12× 12.
For arbitrary n the currently best upper bound remains the obvious 2n. Finally, we discuss some
further variations of the problem.

1 Introduction

The well-known No-Three-In-Line Problem asks for the largest point set in an n× n grid
without three points in a line. This problem has intrigued many mathematicians including
e.g. Paul Erdős for roughly 100 years now. Few results are known and explicit solutions
obtaining the trivial upper bound of 2n only exist for n up to 46 and n = 48, 50, 52 (See
e.g. [3]). Providing general bounds seems to be notoriously hard to solve; see [4, 6] for some
history of this problem.

In this note we concentrate on an interesting minimizing variant of the No-Three-In-Line
problem, which we call the Geometric Dominating Set Problem: What is the smallest number
of points (or points in general position) in an n× n grid such that every grid point lies on a
common line with two of the points in the set? This problem arose during the 2018 Bellairs
Winter Workshop on Computational Geometry. Later we found out that already in 1976
in Martin Gardner’s Mathematical Games column [4] the minimization version has been
mentioned. Gardner wrote: “Instead of asking for the maximum number of counters that can
be put on an order-n board, no three in line, let us ask for the minimum that can be placed
such that adding one more counter on any vacant cell will produce three in line.” According
to Gardner, the problem had already been mentioned briefly in a paper by Adena, Holton
and Kelly [1]. He mentioned their best results which they obtained by hand for 3 ≤ n ≤ 10.
These are 4, 4, 6, 6, 8, 8, 12, 12. Surprisingly, up to n = 8, their solutions are indeed optimal
solutions as we will see in Section 3. However, it seems that no progress has been made since
then, except for the special case where lines are restricted to vertical, horizontal and 45◦

diagonal lines [2].
This minimum version might remind one less of the No-Three-In-Line Problem, which

itself is based on a mathematical chess puzzle, and more of the Queens Domination Problem
that asks for a placement of five queens on a chessboard such that every square of the board
is attacked by a queen. In a more general setting this problem asks for the domination
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

17:2 Geometric Dominating Sets

Figure 1 Three out of 228 solutions: Every square lies on a line defined by two pawns where no
three pawns are allowed to lie on a common line.

number of the n× n queen graph. Inspired by that, we call the smallest size of a solution for
the Geometric Dominating Set Problem the geometric domination number Dn.

After introducing the Geometric Dominating Set Problem formally, we will prove non-
trivial asymptotic upper and lower bounds and provide further computational results.

1.1 Dominating Sets

In the spirit of mathematical chess puzzles, the Geometric Dominating Set Problem can be
formulated in two variants as

How many pawns do we have to place on a chessboard such that every square lies on
a straight line defined by two pawns? How many pawns do we need if no three pawns are
allowed to lie on a common line?

We will see in Section 3, the answer for a chessboard is eight and some solutions are
the placements shown in Figure 1. In fact, there are 228 possibilities to do so, and 44 if we
cancel out rotation and reflection symmetries.

I Definition 1.1. Three points are called collinear, if they lie on a common line. Conversely,
a set S is called in general position if no three points in S are collinear.

We call a point p in the n×n grid dominated (by a set S), if p ∈ S or there exist x, y ∈ S
such that {x, y, p} are collinear. Similarly, we say p is dominated by a line L if p lies on L.

A subset S of the n× n grid is called a (geometric) dominating set or simply dominating
if every point in the grid is dominated by S.

We call the smallest size of a dominating set of the n×n grid the (geometric) domination
number and denote it by Dn. The smallest size of a dominating set in general position (an
independent dominating set) is called the independent (geometric) domination number and
denoted by In. Note that every point in an independent dominating set is only dominated
by pairs that include the point itself.

1.2 Summary Of Results

We will show that
In ≥ Dn = Ω(n2/3) (Subsection 2, Theorem 2.3)
Dn ≤ 2dn/2e (Subsection 3, Theorem 3.1)

and present several computational results.

O. Aichholzer and D. Eppstein and E.M. Hainzl 17:3

2 Lower Bounds

For a lower bound on Dn, let us consider a set S of s points in the n× n grid. Any pair of
points in S can dominate at most n points, so it has to hold that

(
s
2
)
n ≥ n2 which is the

case if s ≥ 1
2 +

√
1
4 + 2n ≥

√
2n. Therefore, Dn = Ω(n1/2).

However, hardly any lines in the n× n grid dominate n points. In fact, we can prove a
significantly better bound by using the following theorem, where ϕ denotes the Euler-Phi
function.

I Theorem 2.1. Let n = 2k + 1 and S be a subset of the n× n grid with |S| ≤ 4
∑m
i=1 ϕ(i),

where 1 ≤ m ≤ k. Then the number of points dominated by lines incident to a fixed point
x ∈ S and the other points in S is bounded by

1 + 8
m∑

i=1

⌊n
i

⌋
ϕ(i) ≤ 48

π2nm+O (n logm) .

The proof of this theorem can be found in [6] and uses the following well known number
theoretic result.

I Theorem 2.2 (Arnold Walfisz [7]).

k∑

i=1
ϕ(i) = 3

π2 k
2 +O

(
k(log k) 2

3 (log log k) 4
3

)

m∑

i=1

ϕ(i)
i

= 6
π2m+O

(
(logm) 2

3 (log logm) 4
3

)

I Theorem 2.3 (A lower bound on Dn). For n ∈ N, it holds that Dn = Ω(n2/3).

Proof. First, let n = 2k + 1, k ∈ N and let S be a set of s points in the grid, where√
2n ≤ s ≤ 2n. (Recall that 2n is a trivial upper bound on Dn and

√
2n a lower bound.)

Let m be the smallest positive integer such that s ≤ 4 ·∑m
i=1 ϕ(i). Then s ∼ 12

π2m
2 by

Theorem 2.2.
By Theorem 2.1, the number of points dominated by lines incident to a fixed point p and

one of s− 1 additional points is bounded by 48
π2nm+O (n logm). To dominate all points in

the grid, we thus need

n2 ≤ s
(

48
π2nm+O (n logm)

)
.

Next, we plug in the asymptotic expression for s, such that the inequality simplifies to

n2 ≤
(

12
π2m

2 +O (m logm)
)(

48
π2nm+O (n logm)

)
= 576

π4 nm
3 +O

(
nm2 logm

)

If we divide by n, we can see that m = Ω(n1/3) and consequently s = Ω(n2/3) which
proves the claim for n odd.

For n even we embed the n× n grid into the (n+ 1)× (n+ 1) grid and obtain the same
asymptotic results. J

I Corollary 2.4. In = Ω(n2/3).

Proof. Since any independent dominating set is a dominating set, In ≥ Dn. J

EuroCG’21

17:4 Geometric Dominating Sets

3 Upper Bounds

I Theorem 3.1 (An upper bound on Dn). For n ∈ N , it holds that Dn ≤ 2
⌈
n
2
⌉
.

The proof is based on the construction in Figure 2 and can be found in [6]. If n = k2 is
an odd square the result can be slightly improved to n− 1 by a construction similar to the
one depicted for k = 3 and n = 9 in the leftmost drawing of Figure 6.

Figure 2 Dominating set construction for n = 16.

So far, for In there is no better upper bound known than the obvious 2n.

4 Small Cardinalities and Examples

Figure 3 The unique (up to symmetry) minimal independent dominating set of size 8 for the
10× 10 board and a small independent dominating set of size 16 for the 21× 21 board. The latter
gives the currently best known ratio (number of points / grid size) of 16/21 < 0, 762.

To obtain results for small grids we developed a search algorithm based on the classic
backtracking approach. To speed up the computation, both symmetries – rotation and
reflection – were taken into account. For n = 2, . . . , 12, we made an exhaustive enumeration
of all independent dominating sets, and the obtained results are summarized in Table 1. For
larger sets upper bounds on In are given in Table 2. Figure 3 gives two examples of small
independent dominating sets.

O. Aichholzer and D. Eppstein and E.M. Hainzl 17:5

n 2 3 4 5 6 7 8 9 10 11 12
In 4 4 4 6 6 8 8 8 8 10 10

non sym. sets 1 2 2 26 2 573 44 3 1 19 2
all sets 1 5 2 152 8 4136 228 11 4 108 12

Table 1 Size of smallest independent dominating sets for n = 2, . . . , 12 and number of different
sets, considering symmetry (rotation and reflection), and all sets.

n 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
In ≤ 12 12 14 14 15 16 16 16 16 18 20 20 22 24 24 24 24 25

Table 2 Currently best upper bounds for smallest independent dominating sets for n > 12.

Figure 4 Three independent dominating sets of cardinality 28 for a 36× 36 board.

We also obtained results for larger sets, but there is no evidence that our sets are (near
the) optimal solutions. Most of these examples are rather symmetric, but that might be
biased due to the approach we used to generate larger sets from smaller sets by adding
symmetric groups of points. Figure 4 shows three drawings for n = 36 with independent
dominating sets of size 28.

Figure 5 shows different dominating sets for n = 7. The best dominating sets that contain
collinear points are smaller than the best solutions in general position. For n ≤ 12 this is the
only board size where allowing collinear points leads to smaller dominating sets. Figure 6(left)
shows some nicely symmetric dominating sets with collinear points.

5 Variations of the Problem and Conclusion

We have already seen in the previous section that minimal examples can get smaller if we
allow dominating sets to contain collinearities, cf. Figures 5 and 6. We can also release the
restriction that the points of the dominating set have to lie within the grid, that is, the points
can have coordinates smaller than one, or larger than n. In Figure 6(right) we depict two
examples where the shown dominating sets are smaller than the best bounded solutions in
general position. So far we have not been able to find any examples where this idea combined
with collinear points in the dominating set provided even better solutions.

Another interesting variant is a game version: Two players alternatingly place a point
on the n× n-grid such that no three points are collinear. The last player who can place a
valid point wins the game (called normal play in game theory). It is not hard to see that for

EuroCG’21

17:6 Geometric Dominating Sets

Figure 5 Five different dominating sets for a 7 × 7-board. The first two sets are in general
position and have size 8, while the remaining three sets have size 7 but contain collinear points.

Figure 6 Left: Symmetric dominating sets with collinear points for n = 9 and n = 10. Right:
Smaller dominating sets for a 2× 2-board and a 7× 7-board if points are allowed to be outside of
the board. These solutions are unique up to symmetry.

any even n the second player has a winning strategy. She just always sets the point which is
center mirrored to the previous move of the first player. By symmetry arguments this move
is always valid, as long as the first player made a valid move. For n odd the situation is more
involved. If the first player does not start by placing the central point in her first move, then
we have again a winning strategy for the second player by the same reasoning (note that the
central place can not be used after the first two points have been placed, as this would cause
collinearity). So if the first player starts by placing the central point it can be shown that
for n = 3 she can also win the game. But for n = 5, 7, 9 still the second player has a winning
strategy. For odd n we currently do not know the outcome for games on grids of size n ≥ 11.

Several open problems arise from our considerations:
Is there a constant c > 0 such that Dn ≤ In ≤ (2− c)n holds for large enough n?
Do In and Dn grow in a monotone way, that is, is In+1 ≥ In and Dn+1 ≥ Dn?
Is there some n0 such that In > Dn for all n ≥ n0?
Do minimal dominating sets in general position always have even cardinality? For n ≤ 12
this is the case, but the currently best example for n = 17 might be a counterexample.
How much can the size of dominating sets (with or without collinear points) be improved
if the points are allowed to lie outside the grid?
Which player has a winning strategy in the game version for boards of size n ≥ 11, n odd.

In [6], the problem was also considered on the discrete n × n torus. By extending the
probabilistic approach of Guy and Kelly to the No-3-In-Line problem [5] an upper bound
of O(

√
n logn) holds, which remarkably is below the lower bound of the regular grid. We

can show a lower bound of Ω(
√
n) for the torus if n is prime, but if n is a power of 2, then

actually 4 points are sufficient. We will provide detailed results in the full version.

Acknowledgments. This research was initiated at the 33rd Bellairs Winter Workshop on
Computational Geometry in 2018, and continued at the 2019 edition of this workshop. We
thank the organizers and participants of both workshops for a very fruitful atmosphere.

O. Aichholzer and D. Eppstein and E.M. Hainzl 17:7

References
1 M.A. Adena, D.A. Holton, and P.A. Kelly. Some thoughts on the no-three-in-line problem.

In J. Seberry, editor, Combinatorial Mathematics: Proceedings of the Second Australian
Conference, August 16-27, 1977, volume 403 of Lecture Notes in Mathematics, pages 6–17.
Springer, 1974. doi:10.1007/BFb0057371.

2 A.S. Cooper, O. Pikhurko, J.R. Schmitt, and G.S. Warrington. Martin Gardner’s minimum
no-3-in-a-line problem. American Mathematical Monthly, 121(3):213–221, 2014. doi:10.
4169/amer.math.monthly.121.03.213.

3 A. Flammenkamp. Solutions to the no-three-in-line problem. Available on his homepage at
the University of Bielelefeld, 1997. Retrieved on April 29, 2020. URL: http://wwwhomes.
uni-bielefeld.de/achim/no3in/table.txt.

4 M. Gardner. Mathematical games: Combinatorial problems, some old, some new and all
newly attacked by computer. Scientific American, 235(4):131–137, October 1976. URL:
https://www.jstor.org/stable/24950467.

5 R. Guy and P. Kelly. The no-three-in-line problem. Canadian Mathematical Bulletin,
11:527–531, 1968. doi:10.4153/CMB-1968-062-3.

6 E.M. Hainzl. Geometric dominating sets. Master’s thesis, TU Graz, July 2020.
7 A. Walfisz. Weylsche Exponentialsummen in der neueren Zahlentheorie. Deutscher Verlag

der Wissenschaften, Berlin, 1963.

EuroCG’21

Polyline Bundle Simplification on Trees
Yannick Bosch, Peter Schäfer and Sabine Storandt

University of Konstanz
{yannick.bosch, peter.schaefer, sabine.storandt}@uni-konstanz.de

Abstract
The polyline bundle simplification problem asks for the smallest consistent simplification (with
respect to a given distance threshold) of a set of polylines which may share line segments and
bend points. As the problem was shown to be APX-hard in previous work, we consider here an
interesting special case where the polylines form a rooted tree. Tree bundles naturally arise in
the context of movement data visualization. Moreover, general bundles might be decomposable
into a (small) set of tree bundles. We present an algorithm that computes optimal tree bundle
simplifications in time O(n3) where n is the total number of points in the input. The applicability
of our approach is demonstrated in an experimental evaluation on real-world data.

1 Introduction

Polyline simplification is a well-studied optimization problem which can be solved to optimality
in polynomial time [3]. However, in case the input is a set of (partially) overlapping polylines,
individual simplification of each polyline leads to visually unpleasing results as shared parts
may be simplified in different ways. Aiming at more appealing results, Spoerhase et al. [5]
introduced the problem of Polyline Bundle Simplification (PBS), adding as an additional
constraint that shared parts must be simplified consistently (i.e. each point is either kept in
or discarded from all polylines containing it).

I Definition 1 (Polyline Bundle Simplification [5]). An instance of PBS consists of a triple
(P,L, δ) where P = (p1, . . . , pn) is a set of n points in the plane, L = {L1, . . . Ll} is a set of
simple polylines, each represented as lists of points from P , and δ is a distance parameter.
Given a triple (P,L, δ), the goal is to obtain a minimum size subset P ∗ ⊆ P of points such
that for each polyline L ∈ L its induced simplification S = L ∩ P ∗ contains the start and
end point of L and has a segment-wise Fréchet distance of at most δ to L.

PBS is a generalization of the classical polyline simplification problem but was proven
by Spoerhase et al. [5] to be NP-hard to approximate within a factor of n1/3−ε for any
ε > 0 even for two polylines. As a potentially practical feasible approach, a bi-criteria
(O(log(l + n)), 2)-approximation algorithm was presented in [5]. This algorithm is allowed
to return results within a distance threshold of 2δ, and based on this constraint relaxation
achieves a logarithmic approximation factor (compared to the optimal solution for δ) in
polynomial time.

With the general problem being APX-hard, we focus in this paper on designing efficient
algorithms for a special case of PBS in which the polylines form a rooted tree. Such polyline
bundles arise for example when aggregating vehicle trajectories from a certain starting
location, with the vehicles moving on (unique) shortest paths in an underlying road network.
Similar to the concept of the Imai-Iri algorithm for simplification of a single polyline [3], our
algorithm precomputes the possible set of shortcuts for the given distance threshold and
thereupon transforms the given geometric problem into a graph problem. But while in the
Imai-Iri algorithm a simple search for the minimum link-path in the shortcut graph suffices,
we need a more intricate dynamic programming approach to deal with the tree structure.
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

18:2 Polyline Bundle Simplification on Trees

2 Problem Statement

We now formally define the concept of a Polyline Tree Bundle (PTB).

I Definition 2 (Polyline Tree Bundle). A PTB is a set of simple polylines L where all L ∈ L
start at the same root point pr, and for any pair of polylines L,L′ ∈ L the only allowed
intersection is a common prefix (pr, ..., pi).

As described in Definition 1 for general polyline bundles, our optimization goal is to find
for a given distance threshold δ the smallest subset of points in the input such that the
induced simplification is valid with respect to δ for each L ∈ L. A distance function d is used
to measure the distance of a line segment (a, b) in the simplification to the corresponding
sub-polyline of L, which we abbreviate by L[a, . . . , b]. For a valid simplification, we require
d((a, b), L[a, . . . , b]) ≤ δ. In the following, we will consider two distance functions: (i) the
Fréchet distance (as used in [5]), and (ii) the maximum Euclidean distance.

To transform the PTB simplification problem into a graph problem, we construct two
directed graphs from the input data: a tree graph and a shortcut graph. We start by
considering the polylines as embedded directed paths which start at the root point. The tree
graph GT = (V,ET) is the union of these paths. More precisely, for each point p occurring
in the PTB there is a corresponding node v ∈ V (with vr corresponding to the root point
pr), and there exists a directed edge (v, w) ∈ ET if there is a polyline L ∈ L which contains
the segment between the respective points (in that direction). For a given distance function
d and threshold δ > 0, the shortcut graph GS = (V,ES) is the union of all valid shortcut
edges, i.e. edges (v, w) ∈

(
V
2
)
where for all polylines L ∈ L that contain v and w (in that

order), we have d((v, w), L[v, . . . , w]) ≤ δ. Note that ET ⊆ ES , i. e. all tree graph edges are
also contained in the shortcut graph.

The construction of these graphs can be accomplished in time O(n3). In a PTB on n
points, there can be at most n polylines with a total of O(n2) segments. Accordingly, the
tree graph can be constructed in time O(n2). We remark that we do not need to consider
the case where a polyline L′ ∈ L is a sub-polyline of L ∈ L. By definition, we will include
the endpoints of all polylines in our simplification and hence if the endpoint of L′ lies on
L, we could simply consider that point as the root of another PTB which can be simplified
independently. For the shortcut graph construction, we compute the set of valid shortcuts by
considering the polylines one after the other. To avoid redundant computations along shared
parts, we store the result for already considered node pairs. Accordingly, the total number of
potential shortcuts that need to be checked is in O(n2). The time Td to check the validity
of a shortcut depends on the distance function d. For both, the Fréchet distance and the
Euclidean distance, we have Td ∈ O(n). Therefore, the total construction time is in O(n3).

We are now ready to restate the PTB simplification problem (PTBS) as a graph problem.

I Definition 3 (Polyline Tree Bundle Simplification). Given a tree graph GT (V,ET) and a
shortcut graph GS(V,ES), the goal is to find a smallest node subset S ∈ V such that:

The root node and all leaf nodes of the tree graph are contained in S.
For each path from the root node to a leaf node in GT , its restriction to nodes in S has to
result in a valid path in GS (i.e. consecutive nodes are connected with a valid shortcut).

In Figure 1, optimal PTBS solutions for an example instance are shown.

Y.Bosch, P. Schäfer and S. Storandt 18:3

Figure 1 A tree bundle and two optimal consistent simplifications for different distance thresholds.

3 A Polynomial Time Algorithm for PTBS

In this section, we describe a dynamic programming approach that operates on the tree
graph GT and the shortcut graph GS , and returns an optimal PTBS solution in O(n2).

Let Sub(v) ⊆ GT be the sub-tree rooted at node v in the tree graph. Our main observation
is that we can break down an optimal solution recursively. If a node v is part of the solution
(v ∈ S), it’s easy to see that there can’t be shortcuts bypassing v. Thus, the solution S can be
split into two parts: an optimal solution for Sub(v) and an optimal solution for GT \ Sub(v).
We denote the size of an optimal solution for Sub(v) by s(v). As we don’t know a priori
which nodes will end up in the solution, we strive for computing s(v) for each node v ∈ V in
an efficient manner. For leaf nodes v, we obviously get s(v) = 1. To compute s(v) for an
inner node v, we assume that s(w) is already known for all nodes w ∈ Sub(v) \ {v}. For
each path from v to a leaf node in Sub(v), the solution for Sub(v) needs to contain a cover
node w such that (v, w) ∈ ES (that means there is a valid shortcut from v to w). To identify
the best selection of cover nodes, we compute a helping function h : V → N for each node
w ∈ Sub(v) as follows: Initially, h(w) = s(w) if (v, w) ∈ ES , and h(w) =∞ otherwise. Then,
in a post-order traversal of Sub(v), we set h(w) = min{h(w),

∑
u∈N(w) h(u)} where N(w)

denotes the set of children (out-neighbors) of w in GT . In that way, h(w) encodes the smallest
number of nodes that have to be kept in Sub(w) if for all paths from v to leaf nodes in Sub(w)
the respective cover node is contained in Sub(w). The optimal solution size s(v) for Sub(v) is
then equal to h(v) + 1 (as we have to additionally include v itself). Note that s(v) is always
well-defined (i.e., finite) as the tree edges are all valid shortcuts in GS . The time to compute
s(v) is in O(|Sub(v)|+ |{(v, w) ∈ Es}|) and hence can be upper bounded by O(n). To make
sure that at the time we want to compute s(v) all values s(w) for w ∈ Sub(v) \ {v} are
known, we also globally traverse the nodes in the tree graph in post-order. Hence altogether,
we have two nested post-order traversals with a total complexity of O(n2). The optimal set
of simplification nodes S can then be determined by backtracking.

For a faster running time in practice, we suggest to only compute h-values for nodes in
Sub(v) which are on a path from v to some potential cover node w with (v, w) ∈ ES . These
nodes can easily be identified by computing the reverse path from each such node w to v and
marking all nodes along the way (stopping as soon as a marked node is encountered to avoid
redundancy). For marked nodes w with an unmarked neighbor, we simply set

∑
u∈N(w) h(u)

to ∞ to maintain correctness. Especially for small distance thresholds δ and large sub-trees
Sub(v), this modification is expected to accelerate the computation of s(v) significantly.

Finally, we remark that minimizing the number of nodes in the simplified tree bundle is
equivalent to minimizing the number of segments; while for general polyline bundles these
two optimization goals might lead to different results as discussed in [5].

EuroCG’21

18:4 Polyline Bundle Simplification on Trees

•(−,−)

•(∞ ,−)

•(2,1)
•(1,0)

•(3,2)
•(∞ ,0)

•(1,0)

•(−,−)

•(∞ ,−)

•(1,1)
•(1,0)

•(3,2)
•(∞ ,0)

•(1,0)

•(−,−)

•(4,4)

•(1,1)
•(1,0)

•(3,2)
•(∞ ,0)

•(1,0)

v

v

v

v

w

w

Figure 2 Example: computation of h(w). Tree egdes are black, shortcuts are dashed blue,
solution shortcuts are dashed green. Attached to each node: h(w) and s(w).

In the first figure, w is currently reachable by a shortcut, so is one of its children. However, since
one child is not reachable by a shortcut (indicated by h = ∞), we compute h(w) = s(w) + 1.

In the second figure, h(w) is updated to 1, because the only child is reachable by a shortcut, and
the sum of h over the children is smaller than the original h(w).

In the bottom figure, we compute s(v) = h(v) as the sum of h over all children.

Y.Bosch, P. Schäfer and S. Storandt 18:5

0 1000 2000 3000 4000
Tree size [Nodes]

0

20

40

60

80

100

120

Sh
or

tc
ut

 ti
m

e
[s

]

5

20

35

50

65

80

95

110

125

140

155

170

185

200

0 1000 2000 3000 4000
Tree size [Nodes]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
[s

]

recursive engineered
iterative engineered

0 50 100 150 200
Delta [m]

0

500

1000

1500

2000

Si
m

pl
ifi

ca
tio

n
siz

e
[N

od
es

]

100

400

700

1000

1300

1600

1900

2200

2500

2800

3100

3400

3700

4000

Figure 3 Experimental results on tree bundles of different size extracted from road networks. The
left image shows the time (in seconds) to compute the shortcut graph in dependency of the number
of nodes in the input. More orange lines indicate larger values of δ. The image in the middle provides
running time results of the DP approach (subdivided by different means to compute a post-order of
the nodes in the tree graph). The right image depicts the computed optimal simplification sizes.
Here, darker lines indicate a larger number of nodes in the input. Points are averaged over 20 tree
bundles for every configuration of δ and the tree size. δ is given in meters.

4 Experiments

We implemented the dynamic programming-based approach for PTBS as well as the bi-criteria
approximation algorithm by Spoerhase et al. [5] suited for simplification of general polyline
bundles. Our input is constructed by randomly sampling a node from the road network of
Germany (extracted from OSM). Expanding from the root we construct a subgraph with
a certain size and perform a BFS to obtain a tree. A tree bundle is then generated by
backtracking from the leaves. Experiments were mainly conducted on a single core of an
AMD Ryzen 7 3700X with 4.1 GHz. Bi-criteria algorithm experiments were conducted on an
Intel Core i9 with 2.4 GHz.

Figure 3 illustrates the experimental results for our proposed approach on tree bundles of
different size and with different distance thresholds δ (limiting the Euclidean distance). In
compliance with our theoretical analysis, we observe that the time to compute the shortcut
graph clearly dominates the overall running time. The dynamic program (DP) itself then
produces the optimal solution very quickly, especially when using the engineering idea
described above and an iterative depth-first-search run in the tree to compute a post-order of
the nodes. In the right plot in Figure 3, it can be nicely observed that the optimal number
of nodes in the simplification converges for growing values of δ to the number of leaf nodes
in the tree graph, as those have to be kept by definition.

Furthermore, we compared the performance of the DP-based approach for PTBS to
that of the bi-criteria approximation algorithm (BCA) on the same input with the Fréchet
distance serving as the distance function. This experiment was conducted on a single core of
an Intel i5-4300U CPU with 1.90GHz and 12GB RAM. As BCA might return results where
the simplified polylines have a segment-wise Fréchet distance of up to 2δ to the original
polylines, we ran the BCA algorithm twice, once with δ and once with δ/2. Table 1 shows
the respective results for the example tree bundle illustrated in Figure 4 and δ = 0.00005.

We observe that BCA indeed makes use of the relaxed distance constraint. In the BCA
run with δ = 0.00005, the resulting Fréchet distance is 1.75 times larger than δ, coming
close to the theoretically guaranteed upper bound of 2. However, even with this increased
distance threshold, the BCA solution is worse than the optimal solution for the original
δ computed with the DP-based approach. And if we use BCA with δ/2 to ensure that it
enforces the same distance bound as the DP-approach, the quality deteriorates further. In

EuroCG’21

18:6 Polyline Bundle Simplification on Trees

Figure 4 Polyline tree bundle (based on the road network of Konstanz) with 8000 points.

addition, the DP-based approach is about 20 times faster. The same trend was observed on
other instances. We hence conclude that on tree bundles the DP-based approach is superior.
But of course BCA is more versatile as it can be applied to arbitrary polyline bundles.

δ Fréchet distance dF dF /δ retained points time (msec)
DP 0.00005 0.0000500 1.00 4009 21
BCA 0.00005 0.0000877 1.75 4029 407
BCA 0.000025 0.0000404 1.61 5276 350

Table 1 Comparison of the DP and the BCA algorithm on an input tree bundle with 8000 points.
Distances are given in geo-coordinates (0.00005 decimal degrees u 5m).

5 Outlook

We developed an efficient and exact approach for polyline tree bundle simplification. As
shown in our theoretical as well as empirical analysis, the running time is currently dominated
by the computation of the shortcut graph. Therefore, attempts to accelerate the approach
should focus on this step. For example, a shortcut (v, w) bypassing a node z of out-degree
larger than 1 can only be part of a feasible solution if for every subtree rooted at an out-
neighbor of z there is also a valid shortcut emerging from v that ends in that subtree. It
hence might be possible to reduce the number of potential shortcuts that have to be checked
based on structural observations.

Melkman and O’Rourke [4] and Chan and Chin [1] construct a shortcut graph for the
Euclidean distance in time O(n2). We will examine if their results are applicable to our
problem setting.

Another interesting direction for future work is the development of techniques to subdivide
a general polyline bundle into a set of tree bundles, which then could be simplified optimally
(and in parallel) with our approach. If only few points of the general bundle need to be
included in the solution set to realize a subdivision into tree bundles, then we would expect
to end up with a good overall simplification quality. We assume that real-life movement
trajectories might be well suited for such an approach.

Y.Bosch, P. Schäfer and S. Storandt 18:7

References
1 W. Chan and Francis Chin. Approximation of polygonal curves with minimum number of

line segments. volume 6, pages 378–387, 1992. doi:10.1007/3-540-56279-6_90.
2 Chenglin Fan, Omrit Filtser, Matthew J. Katz, Tim Wylie, and Binhai Zhu. On the chain

pair simplification problem. In Algorithms and Data Structures. Springer International
Publishing, 2015.

3 Imai Hiroshi and Iri Masao. Polygonal approximations of a curve—formulations and algo-
rithms. In Machine Intelligence and Pattern Recognition, volume 6, pages 71–86. Elsevier,
1988.

4 Avraham Melkman and Joseph O’Rourke. On polygonal chain approximation. In God-
fried T. Toussaint, editor, Computational Morphology, volume 6, pages 87–95. 1988.
doi:https://doi.org/10.1016/B978-0-444-70467-2.50012-6.

5 Joachim Spoerhase, Sabine Storandt, and Johannes Zink. Simplification of polyline bun-
dles. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

EuroCG’21

Folding Polyiamonds into Octahedra
Eva Bolle1 and Linda Kleist1

1 Technische Universität Braunschweig, Germany
{eva.bolle,l.kleist}@tu-bs.de

Abstract
We study polyiamonds (triangular polyominoes) that fold into the smallest yet unstudied platonic
solid – the octahedron. We present a characterization for the convex polyiamonds that fold into
an octahedron. Moreover, we show a sharp size bound for foldable polyiamonds. While there exist
unfoldable polyiamonds of size 14, every polyiamond of size at least 15 folds into the octahedron.

1 Introduction

Algorithmic origami is a comparatively young branch of computer science that studies the
algorithmic aspects of folding various materials. The construction of three-dimensional
objects from two-dimensional raw materials is of particular interest and has applications in
robotics in general [10, 12], and also in the construction of objects in space [9].

While foldings of polycubes and tetrahedra have already been studied, we take the next
step and focus on the question of whether a given polyiamond folds into the octahedron?

(a) The (unit) octahedron O. (b) A polyiamond P .

Figure 1 Does the polyiamond P fold into the octahedron O?

By an octahedron, we refer to the regular octahedron O composed of eight equilateral
(unit) triangles; for an illustration consider Figure 1(a). Note that in each of the six vertices
four triangles meet. Because all faces of the octahedron are triangles, our pieces of paper are
polygons arising from the triangular grid. A polyiamond of size n is a connected polygon in
the plane formed by joining n triangles from the triangular grid by identifying some of their
common sides; for an example consider Figure 1(b). To avoid confusion with the corners of
the octahedron, we refer to the vertices of the triangles forming P as the vertices of P ; note
that these vertices may also lie inside P .

We view P as a set which includes the n open triangles and a subset of the shared
unit-length boundary edges; the existence of such an edge models the fact that the triangles
are glued along this side. Because we only want robust connections between triangles via
their sides, we do not specify the existence/non-existence of vertices which do not influence
the foldability. However, for the upcoming definitions of slits and holes, we assume that
the vertices do not belong to the polyiamond. If a shared edge does not belong to P , we
call it a slit edge. We also allow the polyiamonds to have holes; a hole of a polyiamond is a
bounded connected component of its complement, which is different from a single vertex.
We call a hole a slit if it has area zero and consists of one or more slit edges. We consider
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

19:2 Folding Polyiamonds into Octahedra

two polyiamonds to be the same if they are congruent, i.e., if they can be transformed into
one another by a set of translations, rotations and reflections. Moreover, a polyiamond is
convex if it forms a convex set in the plane.

Folding model. We consider foldings in the grid folding model, where folds along the grid
lines are allowed such that in the final state every triangle covers a face of the octahedron,
i.e., we forbid folding material strictly outside or inside the octahedron. Consequently, in the
final state the folding angles are ±β := arccos(1/3) or ±180◦. A folding of a polyiamond P
into a (partial) octahedron O induces a triangle-face-map, i.e., a mapping of the triangles
of P to the faces of O. We say P folds into O (or also P is foldable), if P can be transformed
by folds along the grid lines into a folded state such that the induced triangle-face-map is
surjective, i.e., each face of O is covered by at least one triangle.

Related work. Past research has particularly focused on folding polyominoes into polycubes.
Allowing for folds along the box-pleat grid (square grid lines and alternating diagonals),
Benbernou et al. (with differing co-authors) show that every polycube Q of size n can be
folded from a sufficiently large square polyomino [6] or from a 2n× 1 strip-like polyomino [5].
Moreover, common unfoldings of polycubes have been investigated in the grid model. The
(square) grid model allows folds along the grid lines of a polyomino with fold angles of ±90◦
and ±180◦, and allows material only on the faces of the polyhedron. Benbernou et al. show
that there exist polyominoes that fold into all polycubes with bounded surface area [5] and
Aloupis et al. study common unfoldings of various classes of polycubes [4]. Moreover, there
exist polyominoes that fold into several different boxes [1, 11, 13, 14, 15].

Decision questions for folding (unit) cubes are studied by Aichholzer et al. [2, 3]. The
half-grid model allows folds of all degrees along the grid lines, the diagonals, as well as along
the horizontal and vertical halving lines of the squares. In this model, every polyomino of size
at least 10 folds into the cube [3]. The remaining polyominoes of smaller size are explored
by Czajkowski et al. [8]. In the grid model, Aichholzer et al. [3] characterized the foldable
tree-shaped polyominoes that fit within a 3× n strip. Investigating polyominoes with holes,
Aichholzer et al. [2] show that all but five basic holes (a single unit square, a slit of length 1,
a straight slit of length 2, a corner slit of length 2 and a U-shaped slit of length 3) guarantee
that the polyomino folds in the grid model into the cube.

In the context of polyiamonds, Aichholzer et al. [3] present a nice and simple characteri-
zation of polyiamonds that fold into the smallest platonic solid: Even when restricting to
folds along the grid lines, a polyiamond folds into the tetrahedron if and only if it contains
one of the two tetrahedral nets.

Results and organization. Our main results are as follows: In Section 2, we identify some
sufficient and necessary conditions for foldability and take a closer look at polyiamonds with
slits and holes. Among our findings, we characterize foldable polyiamonds containing a hole
of positive area: each but one polyiamond is foldable. In Section 3, we characterize the
convex foldable polyiamonds: A convex polyiamond folds into O if and only if it contains
one of five polyiamonds. Lastly, in Section 4, we show that every polyiamond of size ≥ 15 is
foldable. An unfoldable polyiamond of size 14 proves that this bound is best possible.

E. Bolle and L. Kleist 19:3

2 First Thoughts

2.1 Foldability
A polyiamond P contains a polyiamond P ′ if P ′ can be translated, rotated, and reflected
such that all triangles and triangle sides of P ′ also belong to P . Restricting our attention to
the triangles, a polyiamond P 4-contains a polyiamond P ′ if all triangles of P ′ belong to P .
As we will show in Observation 2.5, neither containment nor 4-containment of a foldable
polyiamond is a sufficient folding criterion. Nevertheless, we are able to show two sufficient
criteria based on 4-containment of foldable polyiamonds. By zig-zag-folding as indicated in
Figure 2, every polyiamond can be reduced to a contained convex polyiamond.

I Lemma 2.1. A polyiamond P is foldable if it 4-contains a convex foldable polyiamond C.

Figure 2 Folding strategy to reduce to convex subpolyiamonds by zig-zag-folds of the outside.

A net of a polyhedron is formed by cutting along certain edges and unfolding the resulting
connected set to lie flat. There exist two interesting facts for nets of 3-dimensional regular
convex polyhedra [7]: Firstly, each net is uniquely determined by a spanning tree of the
1-skeleton of the polyhedron, i.e., the cut edges form a spanning tree of the vertex-edge graph.
Secondly, dual polyhedra (e.g., the cube and the octahedron) have the same number of nets.
Consequently, there exist eleven octahedron nets. They are depicted in Figure 3.

Figure 3 The eleven nets of the octahedron. In a folding, vertices of the same label are mapped
to the same corner of O.

We can show that 4-containing a net is a sufficient folding criterion for a polyiamond.

I Lemma 2.2. A polyiamond is foldable if it 4-contains an octahedron net.

EuroCG’21

19:4 Folding Polyiamonds into Octahedra

2.2 Unfoldability
As indicated in Figure 4, the triangular grid graph allows for a proper 3-coloring. Because
every (connected) inner triangulation has at most one 3-coloring (up to exchange of the
colors), every polyiamond has a unique 3-coloring which is induced by the triangular grid. If
there exists a slit edge along a grid line, the polyiamond graph may have several vertices
corresponding to one grid vertex, see also Figure 6(b). Note that each corner of O has a
unique non-adjacent corner which we call its antipodal.

Figure 4 A 3-coloring of the triangular grid.

In order to study the unfoldability, we also consider partial foldings. In particular, when
relaxing the condition that all faces are covered, we say a polyiamond is folded into a partial
octahedron.

I Lemma 2.3. Let P be a polyiamond with a 3-coloring of its vertices. In every folding of P
to a (partial) octahedron, the vertices of each color class are mapped to (one vertex or a pair
of) antipodal corners of O.

The proof of Lemma 2.3 follows from the following observation: Consider two neighboring
triangles of P and note that their two private vertices have the same color. If their common
side is folded by ±β, the two vertices are mapped to antipodal corners of O; otherwise the
edge is folded by ±180◦ and the two vertices are mapped to the same corner of O.

Let C6 and C10 denote the polyiamonds depicted in Figures 5(a) and 5(c), respectively.
The following lemma is a crucial tool to disprove foldability.

I Lemma 2.4. Let P be a polyiamond folded into a partial octahedron O.
a. Every C6 4-contained in P covers at most 4 different faces of O.
b. If a C6 in P covers exactly 3 or 4 faces, then the induced triangle-face-mapping is unique

(up to symmetry) and as depicted in Figures 5(a) and 5(b), respectively.
c. Every C10 contained in P covers at most 6 different faces of O.

f1

f1
f2

f3
f2

f3

(a) A triangle-face-map of C6
covering 3 faces of O.

f1

f1
f1

f3
f2

f4

(b) A triangle-face-map of C6
covering 4 faces of O.

v

v2

v1

(c) Any triangle-face-map of
C10 covers at most 6 faces of O.

Figure 5 Illustration of Lemma 2.4 and its proof.

E. Bolle and L. Kleist 19:5

2.3 On Slits and Holes
Note that removing individual edges from a foldable polyiamond cannot destroy its foldability
(if connectivity is maintained). This allows us to focus on polyiamonds without slit edges.
We would like to remark that slits may in fact enable foldability.

I Observation 2.5. Let P be a polyiamond (4-)containing a foldable polyiamond P ′. Then,
the polyiamond P may not be foldable.

As we show in Theorem 3.1, the polyiamond P depicted in Figure 6(a) does not fold
into O, while the polyiamond P ′ with additional slit edges in Figure 6(b) can be transformed
into a polyiamond containing a net. Hence, P ′ is foldable by Lemma 2.2.

(a) This polyiamond does not
fold into O. (Theorem 3.1)

(b) With additional slit edges, the polyiamond folds into O.

Figure 6 Illustration for Observation 2.5.

We now characterize foldable polyiamonds with holes of positive area. Let O denote the
polyiamond illustrated in Figure 7(d).

I Theorem 2.6. Let P be a polyiamond containing a hole h of positive area. Then P folds
into O if and only if it is not the polyiamond O.

f1
f1

f2

f3
f4 f5

f6

f6

f5

f7f7
f7

f8

(a) Polyiamond Pa

f1
f1

f2

f3
f4 f5

f6

f6

f5

f7f7
f7 f8

f8

(b) Polyiamond Pb

f1
f1

f2

f3
f4

f6

f6

f5

f7f7
f7

f8

f8
f8

(c) Polyiamond Pc (d) Polyiamond O

Figure 7 llustration for the proof of Theorem 2.6.

For the proof, we focus on a largest hole h of P and distinguish two cases: If h contains
two neighboring triangles, P reduces (by zig-zag-folding) to the foldable polyiamond Pc

depicted in Figure 7(c). Otherwise, we focus on an individual triangle contained in h and
the case that P cannot be reduced to the foldable polyiamond Pa, see Figure 7(a). Then,
zig-zag-folds yield a foldable subpolyiamond P ′ of Pb depicted in Figure 7(b). It follows that
every polyiamond with a hole h of positive area and size ≥ 13 folds into O.

EuroCG’21

19:6 Folding Polyiamonds into Octahedra

d

e

f

d

y

x

A B
z

c
a

b

b b

c
c

c
c

b

z
w

B

z

A

r
u

vx

x

x

x
s

y

y

w

x

w

x

q

t

i

k

j

ig

m i

n

m

n

j

o

nn

p
nn

n n

p

p

k

q

s

qm

d
g

g

h

h

f

h
h

h h

h

h

e

h

hh

r

h
l

j

j

k

k

n

l

n

n

n

p

v

u u

u

v

v

u u

u

o

t

r
n

s

v

u

Figure 8 Construction of all C-free polyiamonds; the inclusion-wise maximal C-free polyiamonds
o, p, s, and w are highlighted in red.

E. Bolle and L. Kleist 19:7

3 Characterization for Convex Polyiamonds

In this section, we characterize convex foldable polyiamonds. Let C denote the set of five
convex polyiamonds depicted in Figure 9.

f1

f1

f1
f2

f3
f4 f5

f6

f6

f5

f7f7
f7

f8

f2

f1

f3
f4

f4
f4 f5

f5

f5

f6 f7f8
f1

f1
f2

f3
f8

f7
f6

f6
f5

f4

Figure 9 Illustration for Theorem 3.1; the set C of foldable polyiamonds and their foldings.

I Theorem 3.1. A convex polyiamond P folds into O if and only if it contains one of the
five polyiamonds in C.

In the proof we exploit the convexity and Lemma 2.1 for both directions. For one, it
suffices to present folding strategies for the polyiamonds in C, see Figure 9. For the other
direction, we construct all convex C-free polyiamonds (that contain no polyiamond in C), see
Figure 8, and show that the inclusion-wise maximal C-free polyiamonds do not fold into O.

4 A Sharp Size Bound

As shown in the proof of Theorem 3.1, the polyiamond s depicted in Figure 8 is not foldable,
i.e., there exist polyiamonds of size 14 that do not fold into O. In this section, we show the
following complementing theorem.

I Theorem 4.1. Every polyiamond P of size ≥ 15 folds into O.

To present an idea of the proof, we give some useful sufficient conditions and a simple
upper bound. Let P be a polyiamond and ` some grid line. The `-width of P denotes the size
of the polyiamond obtained by folding all edges parallel to ` in a zig-zag-fashion as indicated
in Figure 2. The width of P is the maximum of the three different `-widths. Because the
convex polyiamond P− := z, depicted in Figure 8, folds into O, we obtain the following.

I Lemma 4.2. Every polyiamond P of width at least 10 folds into O.

Moreover, we determine an upper bound on the size of polyiamonds of width ≤ 9, see
Figure 10 for the construction of the maximal polyiamonds of width at most 9. In particular,
they have size ≤ 42 which yields a nice and simple upper bound.

I Corollary 4.3. Every polyiamond of size > 42 folds into O.

To show the sharp bound, we need to work a little harder.

EuroCG’21

19:8 Folding Polyiamonds into Octahedra

(a) (b)

30

(c)

34

(d)

38

(e)

40

(f)

40

(g)

36

(h)

38

(i)

40

(j)

42

(k)

Figure 10 Illustration for the proof of Corollary 4.3. Construction of the maximal polyiamonds
of width ≤ 9; their sizes are indicated by numbers.

Proof sketch for the sharp upper bound. Theorem 4.1 is based on a strong sufficient
criterion. Let PX , PU , PZ , and PL denote the polyiamonds depicted in Figures 11(a)
to 11(d), respectively.

I Proposition 4.4. Every polyiamond P that 4-contains PX , PU , PZ , or PL and has
size ≥ 15 folds into O.

(a) PX (b) PU (c) PZ (d) PL

Figure 11 Illustration of the four polyiamonds used in Proposition 4.4.

We call a polyiamond P-free if it does not 4-contain any of the polyiamonds P−, PX ,
PU , PZ , or PL. By Theorem 3.1 and Proposition 4.4, it remains to show that no P-free
polyiamond of size ≥ 15 exists. To do so, we construct all P-free polyiamonds bottom-up
with computer assistance and observe that indeed no such polyiamond exists.

Acknowledgments We thank Christian Rieck for valuable suggestions on a draft of this
manuscript and the anonymous reviewers for constructive feedback. Additionally, the first
author thanks Tilman Stehr for his good advice concerning questions of implementation.

E. Bolle and L. Kleist 19:9

References
1 Zachary Abel, Erik Demaine, Martin Demaine, Hiroaki Matsui, Günter Rote, and Ryuhei

Uehara. Common developments of several different orthogonal boxes. In Canadian Con-
ference on Computational Geometry (CCCG ’11), 2011.

2 Oswin Aichholzer, Hugo Akitaya, Kenneth Cheung, Erik Demaine, Martin Demaine, Sán-
dor P. Fekete, Linda Kleist, Irina Kostitsyna, Maarten Löffler, Zuzana Masárová, and Klara
Mundilova. Folding polyominoes with holes into a cube. Computational Geometry (CGTA),
93:101700, 2020. doi:10.1016/j.comgeo.2020.101700.

3 Oswin Aichholzer, Michael Biro, Erik D. Demaine, Martin L. Demaine, David Eppstein,
Sándor P. Fekete, Adam Hesterberg, Irina Kostitsyna, and Christiane Schmidt. Folding
polyominoes into (poly)cubes. International Journal of Computational Geometry & Appli-
cations (IJGCA), 28:197–226, 2018. doi:10.1142/S0218195918500048.

4 Greg Aloupis, Prosenjit K. Bose, Sébastien Collette, Erik D. Demaine, Martin L. Demaine,
Karim Douïeb, Vida Dujmović, John Iacono, Stefan Langerman, and Pat Morin. Common
unfoldings of polyominoes and polycubes. In Computational Geometry, Graphs and Appli-
cations (CGGA ’10), pages 44–54. Springer, 2010. doi:10.1007/978-3-642-24983-9_5.

5 Nadia M. Benbernou, Erik D. Demaine, Martin L. Demaine, and Anna Lubiw. Univer-
sal hinge patterns for folding strips efficiently into any grid polyhedron. Computational
Geometry, page 101633, 2020. doi:10.1016/j.comgeo.2020.101633.

6 Nadia M. Benbernou, Erik D. Demaine, Martin L. Demaine, and Aviv Ovadya. Universal
hinge patterns for folding orthogonal shapes. Origami5: Proceedings of the 5th International
Conference on Origami in Science, Mathematics and Education (OSME ’11), pages 405–
419, 2011.

7 F. Buekenhout and M. Parker. The number of nets of the regular convex polytopes in
dimension ≤ 4. Discrete Mathematics, 186(1):69 – 94, 1998. doi:10.1016/S0012-365X(97)
00225-2.

8 K.Y. Czajkowski, Erik D. Demaine, Martin L. Demaine, K. Eppling, R. Kraft, Klara
Mundilova, and L. Smith. Folding small polyominoes into a unit cube. In Canadian
Conference on Computational Geometry (CCCG ’20), 2020.

9 E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus, and R. J.
Wood. Programmable matter by folding. Proceedings of the National Academy of Sciences,
107(28):12441–12445, 2010. doi:10.1073/pnas.0914069107.

10 Kaori Kuribayashi, Koichi Tsuchiya, Zhong You, Dacian Tomus, Minoru Umemoto,
Takahiro Ito, and Masahiro Sasaki. Self-deployable origami stent grafts as a biomedical
application of ni-rich tini shape memory alloy foil. Materials Science and Engineering: A,
419:131–137, 03 2006. doi:10.1016/j.msea.2005.12.016.

11 Jun Mitani and Ryuhei Uehara. Polygons folding to plural incongruent orthogonal boxes.
In Canadian Conference on Computational Geometry (CCCG ’08), pages 39–42, 2008.

12 Ala Qattawi, Mahmoud Abdelhamid, Ahmad Mayyas, and Mohammed Omar. Design
analysis for origami-based folded sheet metal parts. SAE International Journal of Materials
and Manufacturing, 7(2):488–498, 2014. URL: http://www.jstor.org/stable/26268627.

13 Toshihiro Shirakawa and Ryuhei Uehara. Common developments of three incongru-
ent orthogonal boxes. International Journal of Computational Geometry & Applications
(IJGCA), 23(01):65–71, 2013. doi:10.1142/S0218195913500040.

14 Ryuhei Uehara. A survey and recent results about common developments of two or more
boxes. In Origami6: Proceedings of the 6th International Meeting on Origami in Science,
Mathematics and Education (OSME ’14), volume 1, pages 77–84, 2014.

15 Dawei Xu, Takashi Horiyama, Toshihiro Shirakawa, and Ryuhei Uehara. Common devel-
opments of three incongruent boxes of area 30. Computational Geometry (CGTA), 64:1–12,
2017. doi:10.1016/j.comgeo.2017.03.001.

EuroCG’21

Computing Optimal Virtual Camera Trajectories
Kerem Geva1, Matthew J. Katz2, and Eli Packer3

1 Ben-Gurion University of the Negev, Israel
gevak@post.bgu.ac.il

2 Ben-Gurion University of the Negev, Israel
matya@cs.bgu.ac.il

3 Intel Corporation, Israel
eli.packer@intel.com

Abstract
We introduce algorithms for generating virtual camera trajectories for highly dynamic scenes.

The input to our algorithms is the locations of objects forming the scene in each time frame of a
given sequence of such frames. In each frame, we determine the location of a virtual camera, so that
(i) the objects of interest are well captured, and (ii) the induced trajectory of the virtual camera has
plausible geometric properties. The trajectories we create should facilitate the generation of good
quality virtual clips that both show the main events of the underlying scene and are appealing to
view.

1 Introduction

Immersive videos (also known as 360-degrees videos) are videos in which a view in every
direction is recorded simultaneously by using a collection of cameras. By capturing scenes
from various angles and applying Multi View Stereo techniques [3], one can create virtual
videos that mimic immersive videos. This means that there are six degrees of freedom to
determine the camera position, viewing direction and zoom-in level in each frame. Having
this technology at hand, videos of virtual cameras have become popular in recent years. The
virtual cameras trajectories are usually determined by administrators who run dedicated
software. The resulting trajectories are usually very simple, e.g., straight lines or trajectories
that follow a specific dynamic object.

Creating virtual videos is a very challenging task, mainly because it greatly depends
on the 3D reconstruction of the objects in the scene. The latter is a non-precise task with
many challenging difficulties. Just to name a few, it depends on precise camera calibrations,
visibility of several cameras and the multi-view stereo algorithm. As those contain inherent
errors, the results are never completely precise and visible errors are evident.

Another challenging task is to define good virtual camera trajectories. The challenge
here mainly relates to finding trajectories that are plausible for the viewers, reveal the major
interests of the scene and hide potential 3D reconstruction errors. Moreover, the geometry
of the trajectory is usually crucial for producing good results. In many cases, it should be
smooth, of uniform speed and without fast turns, etc.

In this work, we propose an algorithmic framework to create good camera trajectories.
Our main goal is to generate trajectories such that the most interesting objects of the
scene are visible, while certain plausible geometric features (such as those mentioned above)
are maintained. We apply computational geometry tools and multi-objective optimization
techniques to achieve this goal. As far as we know, we are the first to do so in this context.
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

20:2 A Contribution to EuroCG 2021

2 Overview

In this section we give an overview of our algorithm for the production of a virtual clip.
A clip is a sequence of k frames, where each frame captures a given simple scene. For

each frame, we need to determine the location of the virtual camera from which to capture
the given scene. This location should, on the one hand, enable a good view of the scene, and,
on the other hand, it should fit well in the sequence of locations forming the clip.

Our algorithm consists of the following three stages. In the first stage we consider each
frame separately. Given the scene for some frame fi, we compute a set of simple suitable
regions Ri around the scene. A region is considered suitable if any point in it is a suitable
location for the virtual camera, in the sense that it enables a good view of the scene (assuming
the camera is directed towards the center of the scene).

In the second stage we construct a layer graph G with k layers, one per frame. The nodes
of the i’th layer are the regions of Ri, and the subgraph induced by any two consecutive
layers is a complete weighted bipartite graph. The weight of an edge between r ∈ Ri and
r′ ∈ Ri+1 is determined by several parameters, see details below. Finally, we add nodes s
and t, and connect s to all the nodes of the first layer by edges of weight zero and connect t
to all the nodes of the last layer by edges of weight zero.

By computing a minimum-weight path from s to t in G, we obtain a crude plan for our
virtual camera. That is, if the computed path is π = s, r1, r2, . . . , rk, t, then the i’th frame
in the clip will correspond to the view from some point pi in the region ri, for i = 1, . . . , k.

The input to the third stage is thus the sequence of regions (r1, . . . , rk), and the goal
of this stage is to select a location for the camera in each of these regions. The final clip
will then consist of the sequence of views corresponding to these locations. We present two
alternative approaches for selecting the locations, where the emphasis in both approaches is
on the integration of the individual views.

In both approaches, we assume that the regions are simple polygons with some additional
properties, and we need to traverse the polygons in the given order, such that the resulting
path is (nearly) optimal in some sense. In the first approach, we are only interested in
minimizing the total length of the path, which is (a special case of) the touring polygons
problem [2], and in the second approach we are interested in optimizing several measures,
including path length, number and sharpness of turns and uniform edge length. Thus, we
term this approach as the multi-objective touring polygons problem. In this version of the
paper, we only discuss the second approach.

3 The layer graph

In this section we describe the construction of the layer graph for a sequence of k frames.
We focus on two main issues: determining the nodes of each layer of the graph and setting
the edge weights.

Below we describe one of several options for determining the nodes of a layer. The choice
of a specific option depends on the type of clip that we wish to create. Let ci denote the
“center” of the scene for the i’th frame (e.g. the position of the ball), and let Oi be the
annulus centered at ci with inner radius r and outer radius R. We restrict the location of
the virtual camera to the annulus Oi. The radii r and R are fixed; they are determined by
distance constraints of the system. On the one hand, the virtual camera should not be too
close to the scene’s center, so that inaccuracies in the reconstruction are not noticed by the
viewer, and, on the other hand, the camera should not be too far from the scene, so that it
is seen in sufficient detail, see Figure 1(a).

K. Geva, M. Katz and E. Packer 20:3

cici

cici

1 2
3

4
5

6

7

89

10

11

12

13

r

R

(a) (b)

(d) (c)

Figure 1 Constructing the set of suitable regions Ri.

Our goal is to define the set Ri of suitable regions within Oi. We begin by dividing
Oi into m sectors, where in each sector the direction from any point in it to ci is more
or less fixed, but, the difference between the directions corresponding to two points from
non-adjacent sectors is significant and noticeable; see Figure 1(b). The second step is to
find the regions in Oi that should be avoided, in the sense that if the camera is placed in
one of them, it will not capture the scene (and in particular ci) well due to obstructions by
other objects, e.g. some player; see Figure 1(c). After performing these two steps, we get a
partition of (the good portion of) Oi into disjoint regions that can be further partitioned
and refined into simple polygons. These polygons consist of the set of suitable regions Ri

around the i’th scene; see Figure 1(d).
As stated in the overview, the set of nodes of the i’th layer, Vi, corresponds to the regions

Ri, and V = (∪k
i=1Vi) ∪ {s, t}, where V is the node set of the graph. Set Ei = {(u, v)|u ∈

Vi, v ∈ Vi+1}, for 1 ≤ i ≤ k − 1, and E0 = {(s, v)|v ∈ V1} and Ek = {(v, t)|v ∈ Vk}. Then,
the edge set of the graph is E = E0 ∪ E1 ∪ · · · ∪ Ek−1 ∪ Ek.

Let vx
i be the vertex in layer i that corresponds to the region rx ∈ Ri, and let S(vx

i) be
the sector to which rx belongs in Oi (1 ≤ S(vx

i) ≤ m). We determine the weight of an edge
e ∈ E as follows:

w(e) = 0 for each e ∈ E0 ∪ Ek.
w(e) = 0 for each e = (vx

i , v
y
i+1) such that rx ∩ ry 6= ∅

Otherwise, the weight of e = (vx
i , v

y
i+1) is determined by several parameters including the

distance between rx and ry, and the difference between S(vx
i) and S(vy

i+1). So that, the
edges connecting regions in different sectors will have higher weight than those connecting
regions in the same sector, as well as the edges connecting distant regions will have higher
weight than those connecting nearby regions.

We compute a minimum-weight path from s to t in G = (E, V,W), and get a path

EuroCG’21

20:4 A Contribution to EuroCG 2021

p = (s, vx1
1 , vx2

2 , . . . , vxk

k , t) that visits in order exactly one vertex in each layer of the graph.
The i’th frame in our clip will correspond to the view from some point pi in the region rxi

for i = 1, . . . , k.

4 Multi-objective shortest polygon tours

Recall that once a suitable region in each frame is chosen (see Section 2), we wish to find a
trajectory with some desirable properties that visits these regions in order. Next, we list the
features that we wish to optimize.

Length. Each trajectory vertex corresponds to the position of the camera in a specific
frame, and, in general, shorter trajectories allow slower movement of the camera and thus
a more plausible viewing experience.
Number of links. Each trajectory vertex introduces a sharp turn. We could smooth
the trajectories, but this will not remove the zigzagging effect which is less plausible to
view. Hence, minimizing the number of links may help in decreasing this effect. Finding
touring polygons of minimum links was studied in [4].
Uniform speed. As frames come at constant rate, minimizing the differences in edge
length will result in more uniform speed. The latter is important for smoothing the
virtual clips.
Angle turns. Minimizing the angles between consecutive trajectory edges helps diminish
the turns of the camera and thus improve the overall quality.

In order to optimize the above criteria, we apply the multi-objective shortest path problem
(MOSP) algorithm by Breugem et al. [1] (see also, [5]). The input to their algorithm is a
graph, where each edge is associated with a vector of d non-negative integer weights. Each of
the d weights of an edge corresponds to a different objective one would like to minimize. The
output of the algorithm is a set of ‘good’ paths, where each path is characterized by the sum
vector, which is the sum of the vectors of its edges, i.e., the sum of the weights on the path’s
edges for each of the d objectives. They find a subset of all possible paths which they term
the Pareto-optimal frontier. Those are all the paths for which it is impossible to improve one
objective without harming the others and thus they constitute the locally optimal paths. In
general, the best path depends on the priorities of the various objectives. For any path π and
objective z, let πz be the total weights of objective z on the edges of π. As the size of the
Pareto-optimal frontier is exponential in the worst case (the problem is in fact NP-complete),
Breugem et al. propose a FPTAS with approximation factor ε2, for any given ε2 > 0. Their
idea is to find a collection of paths Q that approximates all Pareto-optimal paths in the
following sense. For any Pareto-optimal path π there is a path π′ ∈ Q, such that for any
objective z, π′z ≤ (1 + ε2)πz. They show that the size of Q is polynomial in the input.

In order to use MOSP, we transform our problem to a shortest path problem on a grid.
In each suitable region we lay a grid of size ε1 > 0. The grid points in the suitable regions
consist of the set of vertices V of the graph G. The edges of G correspond to the Cartesian
products of the vertex sets of consecutive regions (with an exception that we mention below).
We formulate the above objectives (except for the first which is obvious) as a shortest path
problem as follows.

Number of links. The appropriate cost on each edge will be 1 to reflect the use of one
link. We also add edges between non-consecutive regions of weight 1 if they pass through
all intermediate ones.
Uniform speed. The appropriate cost on each edge will be the square of its length to
discourage the use of long edges.

K. Geva, M. Katz and E. Packer 20:5

Angle turns. As this criterion has strong correlation with the shortest distance objective,
we ignore it in our formulation.

Once MOSP produces the almost-Pareto-optimal paths (up to ε2), we can choose the one
that serves the predefined priorities on the objectives.

The running time of MOSP is O(nm(n log(nC)/ε2)d−1), where n is the number of vertices,
m is the number of edges, C is the square of the length of the longest edge after normalizing the
distances, and d is the number of objectives. Suppose that our input consists of k frames and
the area of each region is at most w, then in our setting n = O(kw/ε21) and m = O((kw/ε21)2)
(or m = O(k(w/ε21)2) if we do not have edges between non-consecutive regions), and the
overall running time is T (k,w, ε1, ε2) = O((kw/ε21)3((kw/ε21) log(kwC/ε21)/ε2)d−1).

5 Future work

We are planning to implement the framework described in this paper and to run the program
that is obtained on real-world data from sport events. The idea is to render the clips from
the computed virtual camera trajectories and to compare them with clips obtained with
manual or semi-manual techniques. We plan to perform a plethora of experiments with
various objectives and parameters.

Moreover, in Section 3 we described one (somewhat simplistic) way to determine the
nodes of a layer of the layer graph. We intend to generalize it by, e.g., allowing some control
over the camera’s orientation, so that it is not necessarily determined by its location with
respect to the center ci.

Acknowledgments

The authors would like to thank J.S.B Mitchell and Alon Efrat for helpful discussions.

References
1 Thomas Breugem, Twan Dollevoet, and Wilco van den Heuvel. Analysis of FPTASes for

the multi-objective shortest path problem. Comput. Oper. Res., 78:44–58, 2017. URL:
https://doi.org/10.1016/j.cor.2016.06.022, doi:10.1016/j.cor.2016.06.022.

2 Moshe Dror, Alon Efrat, Anna Lubiw, and Joseph S. B. Mitchell. Touring a sequence
of polygons. In Lawrence L. Larmore and Michel X. Goemans, editors, Proceedings of
the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego,
CA, USA, pages 473–482. ACM, 2003. URL: https://doi.org/10.1145/780542.780612,
doi:10.1145/780542.780612.

3 Yasutaka Furukawa and Carlos Hernández. Multi-view stereo: A tutorial. Found. Trends
Comput. Graph. Vis., 9(1-2):1–148, 2015. URL: https://doi.org/10.1561/0600000052,
doi:10.1561/0600000052.

4 Leonidas J. Guibas, John Hershberger, Joseph S. B. Mitchell, and Jack Snoeyink. Ap-
proximating polygons and subdivisions with minimum link paths. Int. J. Comput. Geom.
Appl., 3(4):383–415, 1993. URL: https://doi.org/10.1142/S0218195993000257, doi:
10.1142/S0218195993000257.

5 George Tsaggouris and Christos D. Zaroliagis. Multiobjective optimization: Improved
FPTAS for shortest paths and non-linear objectives with applications. Theory Comput.
Syst., 45(1):162–186, 2009. URL: https://doi.org/10.1007/s00224-007-9096-4, doi:
10.1007/s00224-007-9096-4.

EuroCG’21

Polygon-Universal Graphs
Tim Ophelders1, Ignaz Rutter2, Bettina Speckmann1, and
Kevin Verbeek1

1 Department of Mathematics and Computer Science, TU Eindhoven, The
Netherlands
{t.a.e.ophelders|b.speckmann|k.a.b.verbeek}@tue.nl

2 Department of Computer Science and Mathematics, University of Passau,
Germany
rutter@fim.uni-passau.de

Related Version A full version of the paper is available at arxiv.org/abs/2103.06916.

1 Introduction

We study a fundamental question from graph drawing: given a pair (G,C) of a graph G and
a cycle C in G together with a simple polygon P , is there a straight-line drawing of G inside
P which maps C to P? We say that such a drawing of (G,C) respects P (see Fig. 1). We
fully characterize those instances (G,C) which are polygon-universal, that is, they have a
drawing that respects P for any simple (not necessarily convex) polygon P . Specifically, we
identify two necessary conditions for an instance to be polygon-universal. Both conditions
are based purely on graph and cycle distances and are easy to check (see Section 2). In the
remainder of the paper we show that these two conditions are also sufficient. If an instance
(G,C) is planar, that is, if there exists a planar drawing of G with C on the outer face, we
show that the same conditions guarantee for every simple polygon P the existence of a planar
drawing of (G,C) that respects P . If (G,C) is polygon-universal, then our proofs directly
imply a linear-time algorithm to construct a drawing that respects a given polygon P .

Related work Tutte [5] proved that there is a straight-line planar drawing of a planar
graph G inside an arbitrary convex polygon P if one fixes the outer face of (an arbitrary
planar embedding of) G to P . This result has been generalized to allow polygons P that are
non-strictly convex [1, 2] or even star-shaped polygons [3]. These results have applications in
partial drawing extension problems. Here, in addition to an input graph G, we are given
a subgraph H ⊆ G together with a fixed drawing Γ of H. The question is whether one
can extend the given drawing Γ to a planar straight-line drawing of the whole graph G by

C

c1 c8

c7

c6

c5c4

c3

c2

p1

p2p3

p4 p5

p6

p7

p8

P

Figure 1 Left: an instance (G, C). Center left: a drawing of (G, C) that respects a polygon P

(shaded in grey). Center right: there is no drawing of (G, C) that respects this polygon. Right: A
triangulated convex polygon with a drawing that is not triangulation-respecting; moving the vertices
along the dashed arrows results in a triangulation-respecting drawing.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

21:2 Polygon-Universal Graphs

drawing the vertices and edges of G−H inside the faces of H. If the embedding of G is fixed,
the results by Tutte and others allow to reduce the problem by removing vertices of G that
are contained in convex or star-shaped faces of Γ. Such reduction rules have led to efficient
testing algorithms for special cases, for example, when the drawing of H is convex [4].

Notation Let G = (V,E) be a graph with n vertices. A drawing D of G is a map from
each v ∈ V to points in the plane and from each edge e ∈ E to a Jordan arc connecting its
endpoints. A straight-line drawing maps each edge to a straight line segment. A drawing is
planar, if no two edges intersect, except at common endpoints. A graph G is planar if it has a
planar drawing. Let C = [c1, . . . , ct] with ci ∈ V be a simple cycle in G. An instance (G,C)
is planar if G has a planar drawing with C as the outer face. Let P be a simple polygon with t
vertices [p1, . . . , pt] with pi ∈ R2. A drawing D of (G,C) respects P if it is a map D : V → P

from vertices to points in P such that D(ci) = pi and for each edge {u, v} ∈ E, the line
segment between D(u) and D(v) lies in P (see Figure 1). That is, D is a straight-line
drawing of G inside P that fixes the vertices of C to the corresponding vertices of P . An
instance (G,C) is (planar) polygon-universal if it admits a (planar) straight-line drawing
that respects every simple (not necessarily convex) polygon P on t vertices.

Our algorithms use a triangulation T of P to construct a drawing or prove the non-
universality. We say that a drawing of (G,C) respects T if no edge of G properly crosses
an edge of T . Although every triangulation-respecting drawing is also polygon-respecting,
the converse is not true. In fact, there are graphs G, cycles C, and polygons P that have
a polygon-respecting drawing, but no triangulation of P admits a triangulation-respecting
drawing (see Figure 2).

c2

p2
c3

p3

c4c1

c5c6

p4

p5p6

p1

Figure 2 A graph G and a polygon for which there exists a drawing of G, but no triangulation
with a triangulation-respecting drawing.

2 Necessary conditions for polygon-universality

We present two necessary conditions for an instance (G,C) to be polygon-universal. Intuitively,
both conditions capture the fact that there need to be “enough” vertices in G between cycle
vertices for the drawing not to become “too tight”. The Pair Condition captures this fact for
any two vertices on the cycle C. The Triple Condition is a bit more involved: even if the
Pair Condition is satisfied for any pair of vertices on the cycle, there can still be triples of
vertices which together “pull too much” on the graph. Specifically, for an instance (G,C)
of a graph G and a cycle C ⊆ G with t vertices, we denote by dG : V × V → N0 the graph
distance in G and by dC : V (C)×V (C)→ N0 the distance (number of edges) along the cycle
C. The following conditions are necessary for (G,C) to be polygon-universal for all simple
polygons P :

Pair For all i and j, we have dC(ci, cj) ≤ dG(ci, cj) (and hence dC(ci, cj) = dG(ci, cj)).
Triple For all vertices v ∈ V and distinct i, j, k with dC(ci, cj) + dC(cj , ck) + dC(ci, ck) ≥ t

(and hence = t), we have dG(ci, v) + dG(cj , v) + dG(ck, v) > t/2.

T. Ophelders and I. Rutter and B. Speckmann and K. Verbeek 21:3

To establish that these two conditions are necessary, we use the link distance between two
points inside certain simple polygons P . Specifically, the link distance of two points q1 and
q2 with respect to a simple polygon P is the minimum number of segments for a polyline
π that lies inside P and connects q1 and q2. If the Pair Condition is violated for two cycle
vertices ci and cj , we can construct a Pair Spiral polygon P (see Figure 3 (left)) such that
the link distance between pi and pj (the vertices of P to which ci and cj are mapped)
exceeds dG(ci, cj). Clearly there is no drawing (G,C) that respects P .

If the first condition holds, but the second condition is violated by a vertex v and three
vertices ci, cj , ck of the cycle C, then the distance along C between any pair of ci, cj , ck is
the same as the shortest path between them that passes through v. That is, dC(ci, cj) =
dG(ci, v) + dG(cj , v), dC(cj , ck) = dG(cj , v) + dG(ck, v) and dC(ci, ck) = dG(ci, v) + dG(ck, v).
In that case, we can construct a Triple Spiral polygon P (see Figure 3 (right)) such that there
is no point that lies within link-distance dG(ci, v) from ci, link distance dG(cj , v) from cj ,
and link distance dG(ck, v) from ck simultaneously. Hence, there exists no drawing of the
aforementioned shortest paths through v that respects P .

pj

pi

pkv

pi

pj

Figure 3 Left: Pair Spiral. Points with link-distance greater than dG(ci, cj) from pi shaded red.
Right: Triple Spiral. Points of link-distance ≤ dG(cx, v) from px for one x ∈ {i, j, k} in light gray; for
two x ∈ {i, j, k} in dark gray; there is no point q in P with dG(cx, q) ≤ dG(cx, v) for all x ∈ {i, j, k}.

3 Triangulation-respecting drawings

In this section we are given the following input: an instance (G,C) consisting of a graph G
with n vertices and a cycle C with t vertices, and a simple polygon P with t vertices together
with an arbitrary triangulation T of P . We study the following question: is there a drawing
of (G,C) that respects both P and T ?

We describe a dynamic programming algorithm which can answer this question in linear
time. The basic idea is as follows: every edge of T defines a pocket of P . We recursively
sketch a drawing of G within each pocket. Such a sketch assigns an approximate location,
such as an edge or a triangle, to each vertex. Ultimately we combine the location constraints
on vertex positions posed by the sketches and decide if they can be satisfied.

We root (the dual tree of) T at an arbitrary triangle Troot. Each edge e of T partitions P
into two regions, one of which contains Troot. Let Q be the region not containing Troot. We
say that Q is a pocket with the lid e = eQ, and we denote the unique triangle outside Q
adjacent to eQ by T+

Q . Since a pocket is uniquely defined by its lid, we will for an edge e
also write Qe to denote the pocket with lid e. We say that a pocket is trivial if its lid lies on
the boundary of P ; in such case the pocket consists of only that edge. If Q is a non-trivial
pocket, then we denote the unique triangle inside Q adjacent to eQ by TQ (see Figure 4).

We first define triangulation-respecting drawings for pockets: a triangulation-respecting
drawing for a pocket Q with lid eQ = (pi, pj) is an assignment of the vertices of G to locations
inside the polygon P , such that (i) any vertex c` with i ≤ ` ≤ j is assigned to the polygon

EuroCG’21

21:4 Polygon-Universal Graphs

Troot

eQ

Q TQ

T+
Q

P

pi pj

Figure 4 A triangulation with labels for the pocket Q (shaded dark) and triangles TQ and T +
Q

incident to edge eQ of the triangulation.

vertex p` and (ii) for any edge f of G, the vertices of f lie on a common triangle (or edges
or vertices thereof). Note that we consider the triangles of the triangulation as closed, and
hence two distinct triangles may share a segment (namely an edge of the triangulation) or a
point (namely a vertex of P). We define a triangulation-respecting drawing for the entire
triangulation analogously, requiring that c` is assigned to p` for all `.

A sketch is an assignment of the vertices of G to simplices (vertices, edges, or triangles)
of the triangulation with the property that, if we draw each vertex anywhere on its assigned
simplex, then the result is a triangulation-respecting drawing. We hence interpret a simplex
as a closed region of the plane. Formally, a sketch of the triangulation is a function Γ that
assigns vertices of G to simplices of T , such that (i) for any vertex ci of the cycle, Γ(ci) = pi,
and (ii) for any two adjacent vertices u and v, there exists a triangle of T that contains
both Γ(u) and Γ(v). A sketch of a pocket is defined similarly, except that vertices pi of
the polygon that lie outside the pocket do not need ci assigned to them. We show that a
sketch exists (for a pocket or a triangulation) if and only if there is a triangulation-respecting
drawing (for that pocket or triangulation). If a pocket admits a sketch, we call the pocket
sketchable. If a particular pocket is sketchable, then so are all of its subpockets, because any
sketch for a pocket is automatically a sketch for any of its subpockets.

We present an algorithm that for any sketchable pocket constructs a sketch, and for
any other pocket reports that it is not sketchable. This algorithm recursively constructs
particularly well-behaved sketches for child pockets, and combines these sketches into a new
well-behaved sketch. To obtain a sketch for T , we combine the three well-behaved sketches
for the three pockets whose lids are the edges of the root triangle Troot – assuming that all
three pockets are sketchable.

I Theorem 1. There is a linear-time algorithm to decide if (G,C) has a triangulation-
respecting drawing for a simple polygon P with fixed triangulation T ; the same algorithm
also constructs a drawing if one exists.

4 Planar triangulation-respecting drawings

We are given the same input as in Section 3, namely an instance (G,C) consisting of a graph
G with n vertices and a cycle C with t vertices, and a simple polygon P with t vertices
together with an arbitrary triangulation T of P . In addition, we assume that the instance
(G,C) is planar, that is, G has a planar drawing D with C on the outer face. Note that D
does not necessarily map vertices of C to vertices of P .

Analogously to Section 3, we can ask the following question: is there a planar drawing
of (G,C) that respects both P and T ? However, the answer to this question is often ‘no’,

T. Ophelders and I. Rutter and B. Speckmann and K. Verbeek 21:5

C
G

P

Figure 5 Left: A planar instance. Center: a triangulation-respecting drawing in which two
vertices coincide. Right: a perturbed drawing that is planar but not triangulation-respecting.

even when both triangulation-respecting drawings and planar polygon-respecting drawings
exist. Consider, for example, Figure 5: a planar triangulation-respecting drawing for
this combination of (G,C), P , and T does not exist; any drawing inside P either places
two vertices on top of each other, or edges cross edges of the triangulation. Nonetheless,
triangulation-respecting drawings are a useful tool for our final goal of constructing planar
polygon-respecting drawings. For example, the triangulation-respecting drawing of Figure 5
can be perturbed infinitesimally to obtain a planar polygon-respecting drawing (that is not
triangulation-respecting). We show that if a planar instance (G,C) has a triangulation-
respecting drawing, then it also has a weakly-planar triangulation-respecting one, that is, a
triangulation-respecting drawing that is planar and polygon-respecting after infinitesimal
perturbation. (That is, vertices may be moved to a simplex of T that contains the original
location.) Hence, the algorithm described in Section 3 can decide for a planar instance (G,C)
whether there is a weakly-planar triangulation-respecting drawing.

Consider now a planar drawing D of (G,C). We call the triple (G,C,D) a plane instance.
In the following, we create weakly-planar triangulation-respecting drawings W, such that a
planar polygon-respecting perturbation W̃ of W “mimics” D inside P . More specifically, W̃
is isotopic to D in the plane, that is, one can be continuously deformed into the other without
introducing crossings. We say that W accommodates (D, T). A plane instance (G,C,D) is
sketchable if (G,C) has a sketch (for T). Recall here, that a sketch does not have a notion of
planarity. However, we show in Theorem 2 that any sketchable plane instance (G,C,D) has
a drawing W which accommodates (D, T).

I Theorem 2. A plane instance (G,C,D) has a drawing that accommodates (D, T) if and
only if (G,C,D) is sketchable.

The algorithm implied by Theorem 1 can check in linear time if a plane instance (G,C,D)
has a sketch and via Theorem 2 the same algorithm can decide in linear time if (G,C,D)
has an accommodating drawing. This drawing can be constructed in polynomial time.

5 Sufficient conditions for polygon-universality

In Section 2 we proved that the Pair and Triple Conditions are necessary for an instance
(G,C) to be polygon-universal. In Sections 3 and 4 we argued that an instance (G,C) has
a triangulation-respecting drawing for a triangulation T of P if and only if it has a sketch
for T . We can show that the Pair Condition alone already implies that each pocket has a
sketch. The Triple Condition then allows us to combine sketches at the root Troot of T .

I Theorem 3. Let (G,C) be an instance that satisfies the Pair and Triple Conditions. Then
(G,C) has a triangulation-respecting drawing for any triangulation of any simple polygon.

EuroCG’21

21:6 Polygon-Universal Graphs

I Corollary 4. Let (G,C,D) be a plane instance that satisfies the Pair and Triple Conditions.
Then (G,C) has a drawing that accommodates (D, T) for any triangulation T of any simple
polygon.

6 Discussion and Conclusion

We have characterized the (planar) polygon-universal graphs (G,C) by means of simple
combinatorial conditions involving (graph-theoretic) distances along the cycle C and in the
graph G. In particular, this shows that, even though the recognition of polygon-universal
graphs most naturally lies in ∀∃R, it can in fact be tested in polynomial time, by explicitly
checking the Pair and the Triple Conditions. Our main open question concerns the restriction
to simple polygons without holes. Can a similar characterization be achieved in the presence of
holes? Or is the polygon-universality problem for simple polygons with holes ∀∃R-complete?

Another interesting question concerns the running time for recognizing polygon-universal
graphs. Testing the Pair and Triple Conditions naively requires at least Ω(n3) time. On the
other hand, at least in the non-planar case, given (G,C) and a polygon P with arbitrary
triangulation T , we can in linear time either find an extension or a violation of the Pair/Triple
Condition, which shows that the instance is not polygon-universal. (Recall that a polygon-
extension for P might exist, though not one that respects T , see Figure 2). For planar
instances, the contraction to minimal instances causes an additional linear factor in the
running time. Can (planar) polygon-universality be tested in o(n2) time?

References
1 Erin W. Chambers, David Eppstein, Michael T. Goodrich, and Maarten Löffler. Drawing

graphs in the plane with a prescribed outer face and polynomial area. Journal of Graph
Algorithms and Applications, 16(2):243–259, 2012. doi:10.7155/jgaa.00257.

2 Christian A. Duncan, Michael T. Goodrich, and Stephen G. Kobourov. Planar drawings
of higher-genus graphs. Journal of Graph Algorithms and Applications, 15(1):7–32, 2011.
doi:10.1007/978-3-642-11805-0_7.

3 Seok-Hee Hong and Hiroshi Nagamochi. Convex drawings of graphs with non-convex
boundary constraints. Discrete Applied Mathematics, 156(12):2368–2380, 2008. doi:
10.1016/j.dam.2007.10.012.

4 Tamara Mchedlidze, Martin Nöllenburg, and Ignaz Rutter. Extending convex partial draw-
ings of graphs. Algorithmica, 76(1):47–67, 2016. doi:10.1007/s00453-015-0018-6.

5 William T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society,
13(3):743–768, 1963. doi:10.1112/plms/s3-13.1.743.

Rectilinear Steiner Trees in Narrow Strips
Henk Alkema1 and Mark de Berg2

1 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
h.y.alkema@tue.nl

2 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands
m.t.d.berg@tue.nl

Abstract
A rectilinear Steiner tree for a set P of points in R2 is a tree that connects the points in P using
horizontal and vertical line segments. The goal of Minimum Rectilinear Steiner Tree is to
find a rectilinear Steiner tree with minimal total length. We investigate how the complexity of
Minimum Rectilinear Steiner Tree for point sets P inside the strip (−∞,+∞)× [0, δ] depends
on the strip width δ. We give an algorithm with running time nO(

√
δ) for sparse point sets, where

each 1× δ rectangle inside the strip contains O(1) points.

1 Introduction

In the Minimum Steiner Tree problem in the plane, we are given as input a set P of
points in the plane, called terminals, and the goal is to find a minimum-length tree that
connects the terminals in P . Thus the given terminals must be nodes of the tree, but the
tree may also use so-called Steiner points as nodes. Minimum Steiner Tree is a classic
optimization problem. It was among the first problems to be proven NP-hard, not only for
the case where the length of the tree is measured using Euclidean metric [10] but also in the
rectilinear version [11]. It was also shown to be NP-hard for other metrics [5]

The rectilinear version of the problem, where the edges of the tree must be horizontal or
vertical, is one of the most widely studied variants, and it is also the topic of our paper. The
Minimum Rectilinear Steiner Tree problem dates back more than 50 years [12, 13]. Its
popularity arises from its many applications, in particular in the design of integrated circuits [6,
3, 4, 19]. The two most important early insights on Minimum Rectilinear Steiner Tree
came from Hanan [13] and Hwang [15]. Hanan observed that any terminal set P admits
a minimum rectilinear Steiner tree (MRST, for short) whose edges lie on the grid formed
by all horizontal and vertical lines passing through at least one terminal in P . This grid is
often called the Hanan grid. This implies that the Minimum Rectilinear Steiner Tree
problem can be reduced to a purely combinatorial problem—namely, a Steiner-tree problem
on graphs—which is not possible for the Euclidean version of the problem. Hwang provided
a characterization of the different components of an MRST.

As mentioned, Minimum Rectilinear Steiner Tree can be considered a special case
of the Steiner-tree problem on graphs. Here the input is an edge-weighted graph G =
(V (G), E(G)) and a terminal set P ⊆ V (G), and the goal is to compute a minimum-
length subtree of G that includes all terminals. In 1971 Dreyfus and Wagner [8] gave
an algorithm solving the Steiner-tree problem on graphs in time 3n · logW · |V (G)|O(1),
where W is the maximum edge weight in G. This was improved by Björklund et al. [2]
and Nederlof [17], to 2n ·W · |V (G)|O(1). A variant of the Dreyfus-Wagner algorithm for
Minimum Rectilinear Steiner Tree runs in time O(n2 ·3n). Thobmorson et al. [18] and
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

22:2 Rectilinear Steiner Trees in Narrow Strips

Deneen et al. [7] gave randomized algorithms for the special case of Minimum Rectilinear
Steiner Tree where the terminals are drawn independently and uniformly from a rectangle.
Both algorithms run in 2O(

√
n logn) expected time. Finally, Fomin et al. [9] presented a

2O(
√
n logn) algorithm for general (non-random) point sets in 2018.

Due to the many applications of Minimum Steiner Tree variants in the plane, there
has also been significant interest in practical implementations. These implementations rely
on the insight that a minimum Steiner tree can always be decomposed into so-called full
components, which are maximal subtrees that do not have any terminals as internal nodes [14].
(This holds for the Euclidean as well as the rectilinear version.) To compute an exact solution,
a set of candidate full components is first computed and then it is computed which subset of
candidate full components can be concatenated into an MRST. This process was introduced
by Winter in 1985 [20], in his software package GeoSteiner. Throughout the years, GeoSteiner,
which has become a collaboration between Warme, Winter and Zachariasen, has remained
the fastest publicly available software package for computing minimum Steiner trees in the
plane. By 2018, it could solve instances for up to 4,000 points for the rectilinear version, and
up to 10,000 points for the Euclidean version [16].

Our contribution. The fastest known algorithm for Minimum Rectilinear Steiner Tree
in R2 runs in 2O(

√
n logn) time [9]. In R1, on the other hand, the problem can be solved

in O(n logn) time by just sorting the points. To better understand the computational
complexity of the classic Minimum Rectilinear Steiner Tree problem in the plane, we
investigate how the complexity depends on the width of the terminal set P . If P is “almost
1-dimensional” in the sense that the points lie in a narrow strip R× [0, δ], then can we solve
Minimum Rectilinear Steiner Tree more efficiently than in the general case? If so,
how does the complexity scale with δ? Can we obtain an algorithm that is fixed-parameter
tractable with respect to δ? This follows the line of research started recently by Alkema et
al. [1], who studied these questions for the Traveling Salesman Problem. To be able to
use that the points lie in a narrow strip, we need a further assumption, namely that for any
x ∈ R the rectangle [x, x+ 1]× [0, δ] contains O(1) points. We show that for these sparse
point sets in R2 there exists an MRST that intersects any vertical line only O(

√
δ) times.

We also give a dynamic-programming algorithm that runs in nO(
√
δ) time. In the full version

of this paper, we also give an algorithm with min{nO(
√
δ), 2O(δ

√
δ)n} expected running time

for points generated randomly inside a rectangle of height δ and expected width n.

2 Preliminaries

Let P := {p1, . . . , pn} be a set of terminals in a 2-dimensional strip with height δ —we call
such a strip a δ-strip—which we assume without loss of generality to be R× [0, δ]. We use
xi and yi to denote the x- and y-coordinate of point pi, respectively. The points can be
sorted on their x-coordinates in O(n logn) time. Therefore, we will from now on assume
that xi 6 xj for all 1 6 i 6 j 6 n. We denote the vertical distance between two horizontal
edges e, e′ (or the horizontal distance between two vertical edges) by dist(e, e′).

Next we give some (mostly standard) terminology concerning rectilinear Steiner trees.
A rectilinear tree is a tree structure embedded in the plane whose edges are horizontal or
vertical line segments overlapping only at their endpoints. The length of a tree T , or ‖T‖,
is the sum of the lengths of its edges. A rectilinear Steiner tree for a set P of terminals is
a rectilinear tree such that each terminal p ∈ P is an endpoint of an edge in the tree. A
minimal rectilinear Steiner minimal tree (MRST) is such a tree of minimum length.

Separators will play a crucial role in our algorithm. A separator is a vertical line, not

H. Alkema and M. de Berg 22:3

` `′

ei,1

ei+1

` `′

ei+1

ei

Figure 1 Illustration for the proof of Observation 2. On the left, T . On the right, T ′. Since
dist(ei, ei+1) < dist(`, `′), the tree T ′ is shorter than T .

containing any of the points in P , that separates P into two non-empty subsets. For all
1 6 i < n such that xi < xi+1, we define si to be the separator with x-coordinate (xi+xi+1)/2.
The tonicity of a rectilinear tree T at a separator s is the number of times T crosses s;
The tonicity of a rectilinear tree T is the maximum over the tonicity of T at all separators.
Finally, a well-known property of the MRST is the following:
I Observation 1. [Hanan [13]] Let P be a set of terminals in R2. Then there exists an MRST
on P that is a subset of the Hanan grid, the grid formed by taking all horizontal and vertical
lines which pass through at least one of the points of P .
From now on, we will only consider rectilinear Steiner trees that lie on the Hanan grid.
Furthermore, we can now directly conclude that the tonicity of an MRST is at most n.

3 Sparse point sets inside a narrow strip

We say a point set is sparse if for all x the rectangle [x, x + 1] × [0, δ] contains at most k
points for some arbitrary but fixed sparseness constant k. In this section, we will give a
nO(

√
δ) algorithm for sparse point sets. We will do so in two steps. First, we will show that

all separators are crossed at most O(
√
δ) times. Then, we will give a dynamic-programming

algorithm running in the desired time.
We will start by showing that parallel edges of an MRST cannot be too close.

I Observation 2. Let E = {e1, . . . , em} be a set of m horizontal edges of an MRST T which
all intersect two vertical lines ` and `′. Then m 6 1 + bδ/dist(`, `′)c. A similar statement
holds when E is a set of vertical edges intersecting two horizontal lines.

Proof. W.l.o.g., let the edges in E be numbered from top to bottom, and let ` lie to the left
of `′. Suppose for a contradiction that m > 1 + bδ/dist(`, `′)c. Since dist(e1, em) 6 δ, there
are two edges ei and ei+1 such that dist(ei, ei+1) 6 δ/(m − 1) < dist(`, `′). We will now
create a rectilinear Steiner tree T ′ strictly shorter than T , giving the desired contradiction.
To this end we first delete the part of ei between ` and `′. Let ei,1 denote the part of ei to
the left of ` (if any) and let ei,2 denote the part of ei to the right of `′ (if any); see Figure 1.
The deletion splits T into two components. Assume without loss of generality that ei,2 is
in the same component as ei+1. By deleting ei,2 and connecting ei,1 to ei+1 with a vertical
edge contained in `, we create a rectilinear Steiner Tree T ′ such that

‖T ′‖ = ‖T‖ − dist(`, `′)− |ei,2|+ dist(ei, ei+1) < ‖T‖,

giving the desired contradiction. J

When combined with the characterization of Hwang [15], this leads to the following lemma.

EuroCG’21

22:4 Rectilinear Steiner Trees in Narrow Strips

si si

q1

q2

q3

q4

q5

Figure 2 An example of an MRST and its crossing pattern C = {{q1, q2, q5}, {q3, q4}} at si

I Lemma 3. Let P be a sparse point set in a δ-strip. Then there exists a
(

(9k + 18)(2 +
√
δ)

)
-

tonic MRST on P , where k is the sparseness constant.

Proof. As the full proof is rather long, it can be found in the full version. We give a proof
sketch below. Let s be a separator. Hwang previously showed that there exists an MRST
such that each so-called full component has one of four different shapes [15]. For each of
these shapes, every point can only be ‘responsible’ for a constant number of edges crossing s.
Since the point set is sparse, the more edges cross s, the longer the average edge crossing s
therefore has to be. We can then use Observation 2 to show that T is O(

√
δ)-tonic at s. J

Lemma 3 gives rise to a dynamic-programming algorithm, as explained next. Let T be a
rectilinear Steiner tree, and let si be a separator. We define the crossing pattern of T at si
as follows. Let X(si) be the set of at most n points where the Hanan grid crosses si, and let
X(si, T) ⊆ X(si) be the subset of points where T crosses si. If T is an MRST,

|X(si, T)| 6 (9k + 18)(2 +
√
δ) = O(

√
δ)

by Lemma 3. We partition X(si, T) into parts (that is, subsets) such that two points from
X(si, T) are in the same part if the path in T between these points fully lies to the left
of si. The resulting partition of X(si, T) is the crossing pattern of T at si; see Figure 2
for an example. We will say that a rectilinear forest T adheres to C at si if T lies fully to
the left of si, and there exists a rectilinear forest T ′ which lies fully to the right of si such
that T ∪ T ′ is a rectilinear Steiner tree with crossing pattern C at si. Note that not all
crossing patterns can lead to an MRST: those that require crossing edges on the left-hand
side (because they do not have a proper “nesting structure”) can never lead to an MRST. We
call the crossing patterns that contain at most (9k + 18)(2 +

√
δ) points and do not require

crossing edges on the left-hand side viable crossing patterns. We will now count the number
of viable crossing patterns at si. There are nO(

√
δ) possible sets X(si, T) that contain at

most (9k + 18)(2 +
√
δ) points. The number of viable partitions of these points—also known

as the number of non-crossing partitions—follows the Catalan numbers. Hence, there are
2O(

√
δ) possible viable partitions for each X(si, T). This implies that the total number of

viable crossing patterns for si is nO(
√
δ) · 2O(

√
δ) = nO(

√
δ).

The algorithm. We can now define a table entry A[i,X] for each separator si and viable
crossing pattern X at si as follows.

A[i,X] := the minimum length of a rectilinear forest adhering to X at si.

H. Alkema and M. de Berg 22:5

Note that the length of an MRST equals A[n, {∅}]. Next we describe a recursive formula to
compute the table entries. As a base case, we will use A[0, X] = 0 for X = {∅}, and ∞ for
all other X.

Let sj and si be consecutive separators, with j < i. Note that since the point set is
sparse, at most k points share an x-coordinate. Therefore, j > i − k. Let F (X, si) be a
minimum-length rectilinear forest adhering to X at si, and let X ′ be its (unknown) crossing
pattern at sj . Then the value of A[i,X] equals the value of A[j,X ′] plus the total length
of the edges of F (X, si) between sj and si. The total length of F (X, si) between these two
separators only depends on X ′ and X. Since this subproblem contains O(

√
δ) points with

three different x-coordinates, its Hanan grid contains only O(
√
δ) edges. Therefore, its value

can be computed in 2O(
√
δ) time by simply checking every possible subset of edges. Let

L(X ′, X) denote the total length of the solution to this subproblem. If no solution exists, we
define it to be ∞. Then we get

A[i,X] = min
viable X′

A[j,X ′] + L(X ′, X),

where sj is the separator immediately preceding si, and the sum is over all crossing patterns
X ′ that are viable at sj .

The running time. We first determine the number of table entries. There are O(n) separators,
and we have already seen that for every si there are nO(

√
δ) possible viable crossing patterns.

Hence, the total number of table entries is nO(
√
δ). Next, we calculate the time needed per

table entry. For each of the nO(
√
δ) possible viable crossing patterns X ′ we compute L(X ′, X)

in 2O(
√
δ) time. This brings the total time needed per table entry to nO(

√
δ).

Since we have nO(
√
δ) table entries, each needing nO(

√
δ) time, we conclude:

I Theorem 4. Let P be a sparse point set of size n inside a δ-strip. Then we can compute
an MRST on P in nO(

√
δ) time.

4 Concluding remarks

We proved that for sparse point sets in a strip of width δ, an MRST can be found in nO(
√
δ)

time. We wonder whether an algorithm with running time 2O(
√
δ log δ) · poly(n) is possible.

For δ = Θ(n) the running time would then equal the 2O(
√
n logn) of the algorithm for arbitrary

point sets in the plane [9]. Another direction for future research is to study the problem in
higher dimensions. We believe that our algorithmic results may carry over to Rd to points
that are almost collinear, that is, that lie in a narrow cylinder. Generalizing the results to,
say, points lying in a narrow slab will most likely be more challenging.

References
1 Henk Alkema, Mark de Berg, and Sándor Kisfaludi-Bak. Euclidean TSP in narrow strips.

In Proc. 36th International Symposium on Computational Geometry (SoCG 2020), volume
164 of LIPIcs, pages 4:1–4:16, 2020. doi:10.4230/LIPIcs.SoCG.2020.4.

2 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets
Möbius: fast subset convolution. In Proc. 39th Annual ACM Symposium on Theory of
Computing (STOC 2007), pages 67–74. ACM, 2007. doi:10.1145/1250790.1250801.

3 Marcus Brazil, Doreen A. Thomas, Jia F. Weng, and Martin Zachariasen. Canonical forms
and algorithms for Steiner trees in uniform orientation metrics. Algorithmica, 44(4):281–
300, 2006. doi:10.1007/s00453-005-1178-6.

EuroCG’21

22:6 Rectilinear Steiner Trees in Narrow Strips

4 Marcus Brazil and Martin Zachariasen. Steiner trees for fixed orientation metrics. J. Glob.
Optim., 43(1):141–169, 2009. doi:10.1007/s10898-008-9305-y.

5 Marcus Brazil and Martin Zachariasen. The uniform orientation Steiner tree prob-
lem is NP-hard. Int. J. Comput. Geom. Appl., 24(2):87–106, 2014. doi:10.1142/
S0218195914500046.

6 Marcus Brazil and Martin Zachariasen. Optimal Interconnection Trees in the Plane, vol-
ume 29. Springer, 05 2015. doi:10.1007/978-3-319-13915-9.

7 Linda Deneen, Gary Shute, and Clark Thomborson. A probably fast, provably optimal
algorithm for rectilinear Steiner trees. Random Structures & Algorithms, 5:535 – 557, 10
1994. doi:10.1002/rsa.3240050405.

8 S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. Networks, 1(3):195–207,
1971. doi:10.1002/net.3230010302.

9 Fedor Fomin, Daniel Lokshtanov, Sudeshna Kolay, Fahad Panolan, and Saket Saurabh.
Subexponential algorithms for rectilinear Steiner tree and arborescence problems. ACM
Transactions on Algorithms, 16:1–37, 03 2020. doi:10.1145/3381420.

10 M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing Steiner
minimal trees. SIAM Journal on Applied Mathematics, 32(4):835–859, 1977. URL: http:
//www.jstor.org/stable/2100193.

11 M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete.
SIAM Journal on Applied Mathematics, 32(4):826–834, 1977. URL: http://www.jstor.
org/stable/2100192.

12 E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathe-
matics, 16(1):1–29, 1968. URL: http://www.jstor.org/stable/2099400.

13 M. Hanan. On Steiner’s problem with rectilinear distance. SIAM Journal on Applied
Mathematics, 14(2):255–265, 1966. URL: http://www.jstor.org/stable/2946265.

14 F. K. Hwang. On Steiner minimal trees with rectilinear distance. SIAM Journal on Applied
Mathematics, 30(1):104–114, 1976. URL: http://www.jstor.org/stable/2100587.

15 F. K. Hwang and Dana S. Richards. Steiner tree problems. Networks, 22(1):55–89, 1992.
doi:10.1002/net.3230220105.

16 Daniel Juhl, David Warme, Pawel Winter, and Martin Zachariasen. The geoSteiner software
package for computing Steiner trees in the plane: an updated computational study. Mathe-
matical Programming Computation, 10:487–532, 2018. doi:10.1007/s12532-018-0135-8.

17 Jesper Nederlof. Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica,
65(4):868–884, 2013. doi:10.1007/s00453-012-9630-x.

18 Clark D. Thomborson, Linda L. Deneen, and Gary M. Shute. Computing a rectilinear
Steiner minimal tree in nO(

√
n) time. In Proc. International Workshop on Parallel Algo-

rithms and Architectures, volume 269 of Lecture Notes in Computer Science, pages 176–183,
1987. doi:10.1007/3-540-18099-0_44.

19 Peter Widmayer, Ying-Fung Wu, and C. K. Wong. On some distance problems in fixed
orientations. SIAM J. Comput., 16(4):728–746, 1987. doi:10.1137/0216049.

20 Pawel Winter. An algorithm for the steiner problem in the euclidean plane. Networks,
15(3):323–345, 1985. doi:10.1002/net.3230150305.

A density-based metric learning approach to
geometric inference ∗

Eugenio Borghini1, Ximena Fernández2, Pablo Groisman3, and
Gabriel Mindlin4

1 Departamento de Matemática and IMAS-CONICET, FCEN, Universidad de
Buenos Aires, Argentina. eborghini@dm.uba.ar

2 Department of Mathematics, Swansea University, UK and Departamento de
Matemática, FCEN, Universidad de Buenos Aires, Argentina.
x.l.fernandez@swansea.ac.uk

3 Departamento de Matemática, IMAS-CONICET, FCEN, Universidad de
Buenos Aires, Argentina and NYU-ECNU Institute of Mathematical Sciences
at NYU Shanghai. pgroisma@dm.uba.ar

4 IFIBA, CONICET and Departamento de Física, FCEN, Universidad de
Buenos Aires, Argentina. gabo@df.uba.ar

Abstract
We address the problem of estimating intrinsic distances in a manifold from a finite sample. We
prove that the metric space defined by the sample endowed with a computable metric known as
sample Fermat distance converges almost surely in the sense of Gromov–Hausdorff. The limiting
object is the manifold itself endowed with the population Fermat distance, an intrinsic metric that
accounts for both the geometry of the manifold and the density that produces the sample. The
benefits of using Fermat distance as compared with the traditional Euclidean distance are illustrated
by concrete applications in manifold learning and persistent homology.

Related Version arXiv:2012.07621

1 Introduction

Let Xn be a set of n independent sample points with common density f supported on a
smooth manifoldM embedded in RD. We assume that bothM and f are unknown. The
goal of manifold learning is to recover information about f and M from Xn. Given an
intrinsic density-based metric ρ in M (the Fermat distance), we are interested in finding
computable estimators ρn of ρ over the sample Xn such that the metric space (Xn, ρn) is a
good estimator of (M, ρ) in the sense of Gromov–Hausdorff.

The problem of learning intrinsic distances from samples has a long history. It is a
crucial step in several learning tasks, such as finding low dimensional representations of
data embedded in a possibly high dimensional Euclidean space, clustering and topology
learning. Persistent homology is a central computational technique in Topological Data
Analysis [2, 8, 9, 15, 18] developed to infer topological features from a sample, encoding
valuable information about the shape of the underlying space. The results generated by this
algorithm depend strongly on the notion of distance associated to the data.

Under the manifold assumption, intrinsic distances based on the distribution that pro-
duced the data capture both the geometry of the underlying manifold and the density of
the point cloud, which can be convenient in presence of noise and outliers.

∗ This work was supported by the EPSRC grant New Approaches to Data Science: Application Driven
Topological Data Analysis EP/R018472/1.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

23:2 A density-based metric learning approach to geometric inference

In this article, we present a density-based Riemannian metric called Fermat distance
together with a computable estimator based on a finite sample. We study the consistency of
the estimator, as well as its Gromov–Hausdorff convergence. Finally, we show applications
of the use of this estimator to overcome some weaknesses of classical algorithms in manifold
learning and persistent homology. A full version of this manuscript (including proofs) is
available at [3].

2 Density-based distance learning

Let M be a smooth closed Riemannian manifold without boundary of dimension d > 1
with Riemannian metric tensor g together with a continuous positive C∞ density function
f : M → R>0. For p > 1, consider the deformed metric tensor gp = f2(1−p)/dg. Since f
is smooth, gp is a Riemannian metric tensor. Thus, M has a metric space structure given
by the geodesic distance with respect to gp, denoted by df,p. The distance df,p is called
deformed distance under gp in [13] and also population Fermat distance in [11].

I Definition 2.1. [11, 13] For p > 1, the population Fermat distance between x, y ∈M is

df,p(x, y) = inf
γ

∫

I

1
f(γt)(p−1)/d

√
g(γ̇t, γ̇t)dt (1)

where the infimum is taken over all piecewise smooth curves γ : I →M with γ0 = x, γ1 = y.

In the special case when f is uniform, the population Fermat distance reduces to (a
multiple of) the inherited Riemannian distance dM from the ambient Euclidean space. When
this is not the case, this distance takes into account the density. Indeed, geodesics in M
respect to the distance df,p are more likely to lie in regions with high values of f . The name
Fermat distance comes from the analogy with optics, in which df,p is the optical distance as
defined by Fermat principle when the refraction index is given by f−(p−1)/d.

Consider now a set Xn = {x1, x2, . . . , xn} ⊆ M of n independent sample points in M
with common density f . Suppose that M is embedded in RD and it is endowed with the
standard inherited Riemannian metric. Our aim is to approximate df,p(x, y), assuming no
knowledge about M and the Riemannian distance defined on it. To achieve this, we will
define an estimator for this distance over the sample. We denote by |x − y| the Euclidean
distance between points x, y ∈M.

I Definition 2.2. [11, 14] For p > 1, the sample Fermat distance between x, y ∈ M is
defined as

dXn,p(x, y) = inf
γ

r∑

i=0
|xi+1 − xi|p

where the infimum is taken over all paths γ = (x0, x1, . . . , xr+1) of finite length with x0 = x,
xr+1 = y and {x1, x2, . . . , xr} ⊆ Xn.

I Example 2.3 (Eyeglasses). We illustrate the effect of the Fermat distance dXn,p in a
manifoldM embedded in RD by considering the eyeglasses curve in R2, uniformly sampled
and perturbed with Gaussian noise, Figure 1. We compute the sample Fermat distance
between each pair of points for a series of values of p > 1 and embed the sampled points in
R2 in such a way that the Euclidean distance in the embedding reflects the Fermat distance,
using the Multidimensional Scaling algorithm (MDS)[17]. As p becomes larger, the geometry
of the data overcomes the bottleneck region and it deforms into a circle. We also compute
the Isomap [1, 16] embedding in R2 for different values of the parameter k, the number

E. Borghini, X. Fernández, P. Groisman, G. Mindlin 23:3

of nearest neighbors used to compute the neighborhood graph. Due to the noise near the
bottleneck region, some points that are far in the sense of the inherited Riemannian distance
become close in the distance estimated by Isomap. We show only the case k = 10 but similar
results are obtained for different values of k. Note that, even if both Isomap distance and
the sample Fermat distance converge to an intrinsic distance, the first one is independent
of the density while the second one favors high density regions. As a consequence, Isomap
embedding is sensitive to noise, while with Fermat distance the points lying in low density
regions are mapped to points that are far from the rest of the sample (see the red points
in Figure 1). The larger the power p, the stronger this effect. This feature allows Fermat
distance to recover the underlying geometry of the manifold, even with noise.

Figure 1 Top: A sample with noise of 2000 points of the eyeglasses dataset and Isomap projection
with k = 10. Bottom: MDS embedding in R2 using Fermat distance for p = 1.5, 2.5, 3.0.

I Remark (Complexity.). The computation of the matrix of pairwise sample Fermat distances
between points in Xn has complexity O(n3) (but can be reduced to O(n2 log2 n) with high
probability) [11].

Our first result, Theorem 2.4, shows that the sample Fermat distance converges to the
population Fermat distance for closed (i.e. compact and without boundary) submanifolds
of RD. This was previously known for isometrically embedded (closures of) open sets of
Rd, [11]. Here we extend this result to a general class of manifolds and prove that the
convergence is uniform (not only pointwise, as stated in [11]).

I Theorem 2.4. For every p > 1 and λ ∈
(
(p− 1)/pd, 1/d

)
, given ε > 0 there exist µ, θ > 0

such that, for n large enough

P
(

sup
x,y∈M

∣∣∣n(p−1)/ddXn,p(x, y)− µdf,p(x, y)
∣∣∣ > ε

)
≤ exp

(
−θn(1−λd)/(d+2p)

)
.

The constant µ depends only on p and d and is defined in [12].
Our goal is to compare globally the metric spaces (Xn, dXn,p) and (M, df,p). In this

sense, the relevant metric is the Gromov–Hausdorff distance, that allows to measure how
far apart are two metric spaces from each other. We show that the sample Xn endowed

EuroCG’21

23:4 A density-based metric learning approach to geometric inference

with a re-scaling of the sample Fermat distance converges to the metric space given by the
manifoldM with the (population) Fermat distance, in the sense of Gromov–Hausdorff.

I Theorem 2.5. Let ε > 0 and λ ∈
(
(p − 1)/pd, 1/d

)
. There exists a constant θ > 0 such

that, for n large enough,

P
(
dGH((M, df,p), (Xn, n(p−1)/d

µ dXn,p)) > ε
)
≤ exp

(
−θn(1−λd)/(d+2p)

)
.

3 Density-based manifold learning

In this section we couple the estimation of Fermat distance on input data with the Mul-
tidimensional Scaling method to achieve dimensionality reduction. This strategy is similar
to the one used by the Isomap algorithm. However, it is known that the Isomap algorithm
suffers from topological instability in presence of noise, since it may construct erroneous
connections (called short-circuits) in the neighborhood graph that potentially impair its
performance. In contrast, since noise generally corresponds with regions of low density,
noisy points are treated by our method almost as not being part of the manifold. This
effects increases with the value of p. In particular, they do not affect substantially the
inference of the right geometry of the data.

I Example 3.1 (Trefoil). The Trefoil is a (non-trivial) knot, that is, a particular embedding
of a topological circle S1 in R3. In particular, it is homeomorphic to S1. It is expected that
a projection onto R2 should be a circle. However, in presence of noise, Isomap projection to
R2 poorly recovers the underlying geometry of the data, while MDS with matrix distance
computed with the sample estimator of Fermat metric globally recovers the existence of a
circle (see Figure 2). The noise becomes isolated points as p increases.

4 Intrinsic persistence diagrams

In this section we apply Theorem 2.5 to the topological inference of features from data. In
particular, we explore the convenience of the computation of persistence diagrams using as
input the data endowed with the sample Fermat distance. We refer the reader to [2, 4, 5, 8]
for a more complete exposition of the persistent homology theory.

For the computation of the persistent homology of a point cloud, one imagines each point
as a ball (that is, representing a small surrounding region) and builds a combinatorial model
for the space connecting the points according to whether the corresponding regions intersect.
More precisely, for every fixed value of a parameter or scale that controls the size of the region
that each point represents, one gets a simplicial complex (ie, a higher dimensional analogue
of a graph). This family of simplicial complexes, also known as a filtration, is the input of the
procedure to compute persistent homology. Indeed, the topological features of this family
of complexes change as the scale parameter grows: different connected components join in
one, some loops are filled, new cavities appear, etc. By analyzing these transitions, we are
able to assign a birth and a death value to each of these features, and the difference between
them represents its lifetime. The most persistent features represent topological signatures,
whereas the shortest intervals may be considered as noise. The output of this procedure is
summarized in an object called persistence diagram, denoted by dgm(·) (see Figure 3).

In general, we usually only get an approximation of the metric space under consideration,
so we will be interested in comparing persistence diagrams built on top different metric
spaces. The bottleneck distance, denoted by db(·), is a frequently used quantity to measure

E. Borghini, X. Fernández, P. Groisman, G. Mindlin 23:5

Figure 2 Reduction of dimensionality of the Trefoil knot using Isomap and Fermat distance + MDS.

the difference between two persistence diagrams. The stability theorem [5, 7] links this
distance to the Gromov–Hausdorff distance between metric spaces. More concretely, it
states that for any two precompact metric spaces X and Y,

db

(
dgm

(
X, ρX

)
,dgm

(
Y, ρY)

))
≤ 2dGH

(
(X, ρX), (Y, ρY)

)
,

where dGH denotes the Gromov–Hausdorff distance.
We apply Theorem 2.5 to the estimation of the persistence diagram of a submanifold

of an Euclidean space from a sample. This problem has already been studied in [6, 10],
where the authors prove the almost sure convergence (in the sense of bottleneck distance) of
the persistence diagrams associated to the sample to the persistence diagram of the desired
metric space. However, in these works the distance function of the underlying metric space
is assumed to be known which is not the case in most of real-life applications. We deduce
an analogue result in our context, where the novelty lies in that both the underlying set
and distance function of the metric space under study are unknown. This result is a direct
consequence of Theorem 2.5 and the stability theorem.

I Corollary 4.1. Let ε > 0 and λ ∈
(
(p − 1)/pd, 1/d

)
. There exists a constant θ > 0 such

that, for n large enough,

P
(
db
(
dgm(M, df,p),dgm(Xn, n(p−1)/d

µ dXn,p)
)
> ε
)
≤ exp

(
−θn(1−λd)/(d+2p)

)
.

EuroCG’21

23:6 A density-based metric learning approach to geometric inference

Figure 3 Persistent homology pipeline. From a point cloud construct a filtration of simplicial com-
plexes parametrized by real numbers representing the radius of a covering of balls. Then, compute the
persistent generators of homology groups and summarize the information in a persistence diagram.

I Remark. Persistent diagrams computed with Fermat distance and Euclidean distance
are different in general. In persistence diagrams computed with intrinsic distances –rather
than the Euclidean one– topological features persist longer. For instance, when Euclidean
distance is used, the topology of the manifold is not expected to be reproduced for radii
larger than the reach ofM. This limitation is absent when intrinsic metrics are used.

Persistence diagrams strongly depend on the notion of distance defined in the input data.
In the next example we show the convenience of using Fermat distance.

I Example 4.2 (Eyeglasses). We compute the persistence diagram associated to the sample
points from Example 2.3, Figure 1. We compare the results obtained with different distance
choices: the Euclidean distance, the Isomap estimator of the inherited Riemannian distance
and the sample Fermat distance for p = 2.5 and p = 3 (see Figure 4). The homology of
the eyeglasses curve has one generator of H0 and one generator of H1. However, it can be
noticed that for both Euclidean and Isomap distances, the persistence diagram displays two

REFERENCES 23:7

salient generators for the first homology group H1, which can be attributed to the small
reach of the manifold and the presence of noise. With the Fermat distance for different
choices of p the diagram shows accurately only one persistent generator for H1. On the
other hand, the number of noticeable connected components increases with p. This effect is
caused by the presence of noise in regions of extremely low density, becoming isolated points
(or outliers) as p evolves.

Figure 4 Persistence diagrams associated to the eyeglasses point cloud with noise for different dis-
tances: Euclidean, Isomap distance with k = 10, Fermat with p = 2.5 and p = 3.

References

1 M. Bernstein, V. De Silva, J. C. Langford, and J. B. Tenenbaum. Graph approximations
to geodesics on embedded manifolds. Technical report, 2000.

2 Jean-Daniel Boissonnat, Frédéric Chazal, and Mariette Yvinec. Geometric and topolog-
ical inference. Cambridge Texts in Applied Mathematics. Cambridge University Press,
Cambridge, 2018.

3 Eugenio Borghini, Ximena Fernández, Pablo Groisman, and Gabriel Mindlin. Intrinsic
persistent homology via density-based metric learning. arXiv:2012.07621, 2020.

4 Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and stability
of persistence modules. SpringerBriefs in Mathematics. Springer, Cham, 2016.

EuroCG’21

23:8 REFERENCES

5 Frédéric Chazal, Vin de Silva, and Steve Oudot. Persistence stability for geometric
complexes. Geom. Dedicata, 173:193–214, 2014.

6 Frédéric Chazal, Marc Glisse, Catherine Labruère, and Bertrand Michel. Convergence
rates for persistence diagram estimation in topological data analysis. J. Mach. Learn.
Res., 16:3603–3635, 2015.

7 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence
diagrams. Discrete Comput. Geom., 37(1):103–120, 2007.

8 Herbert Edelsbrunner and John Harer. Persistent homology—a survey. In Surveys on
discrete and computational geometry, volume 453 of Contemp. Math., pages 257–282.
Amer. Math. Soc., Providence, RI, 2008.

9 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence
and simplification. Discrete Comput. Geom., 28(4):511–533, 2002. Discrete and compu-
tational geometry and graph drawing (Columbia, SC, 2001).

10 Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman
Balakrishnan, and Aarti Singh. Confidence sets for persistence diagrams. Ann. Statist.,
42(6):2301–2339, 2014.

11 Pablo Groisman, Matthieu Jonckheere, and Facundo Sapienza. Nonhomogeneous eu-
clidean first-passage percolation and distance learning. arXiv:1810.09398, 2018.

12 C. Douglas Howard and Charles M. Newman. Euclidean models of first-passage perco-
lation. Probab. Theory Related Fields, 108(2):153–170, 1997.

13 Sung Jin Hwang, Steven B. Damelin, and Alfred O. Hero, III. Shortest path through
random points. Ann. Appl. Probab., 26(5):2791–2823, 2016.

14 D. Mckenzie and S. Damelin. Power weighted shortest paths for clustering euclidean
data. arXiv:1905.13345, 2019.

15 Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of sub-
manifolds with high confidence from random samples. Discrete Comput. Geom., 39(1-
3):419–441, 2008.

16 J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

17 W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika,
17:401–419, 1952.

18 Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete Com-
put. Geom., 33(2):249–274, 2005.

Bicolored Path Embedding Problems in Protein
Folding Models
Tianfeng Feng1, Ryuhei Uehara2, and Giovanni Viglietta3

1 School of Information Science, Japan Advanced Institute of Science and
Technology (JAIST)
ftflluy@jaist.ac.jp

2 School of Information Science, Japan Advanced Institute of Science and
Technology (JAIST)
uehara@jaist.ac.jp

3 School of Information Science, Japan Advanced Institute of Science and
Technology (JAIST)
johnny@jaist.ac.jp

Abstract
In this paper, we introduce a path embedding problem inspired by the well-known HP model of
protein folding. A graph is said bicolored if each vertex is assigned a label in the set {red, blue}. For
a given bicolored path P and a given bicolored graph G, our problem asks whether we can embed P
into G in such a way as to match the colors of the vertices, or not.

We first show that our problem is NP-complete even if G is a dense graph of the same size as P .
We then study the special case where G is a grid graph (a typical scenario in protein folding models),
showing that the path embedding problem remains NP-complete even if P is monochromatic, or
if G and P have the same size. By contrast, we prove that the path embedding problem becomes
tractable if the grid graph G has fixed height. Finally, we show the NP-hardness of a maximization
problem directly inspired by the HP model of protein folding.

1 Introduction

The protein folding problem asks how a protein’s amino acid sequence dictates its three-
dimensional atomic structure. This problem has wide applications and a long history dating
back to the 1960s [7]. From the viewpoint of theoretical computer science, there is ongoing
research aiming at revealing insights into reality by working on simplified abstract models.

One of the most popular such models is the hydrophobic-polar (HP) model [6, 8]. A
protein in the HP model is represented as an abstract open chain, where each link has unit
length and each joint is marked either H (hydrophobic, i.e., non-polar) or P (hydrophilic,
i.e., polar). A protein is usually envisioned as a path embedded in a grid within the 2D or
3D lattice, where each joint in the chain maps to a point on the lattice, and each link maps
to a single edge. The HP model of energy specifies that a chain desires to maximize the
number of H-H contacts, which are pairs of H nodes that are adjacent on the lattice but
not adjacent along the chain. The optimal folding problem in the HP model asks to find an
embedding of a sequence of Hs and Ps on the 2D square lattice that maximizes the number
of H-H contacts. This problem is known to be NP-hard in general [3].

Previous results on the HP model mostly concern the 2D square lattice, and some
techniques rely on the properties of parity in a lattice (see [4, Sec. 9.3] for a comprehensive
survey). However, such parity-related observations have no meaning in the original protein
folding problem that we aim to model. Also, the number of H-H contacts is not the only
possible measure that may be used to capture the intricate physical and chemical laws that
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

24:2 Bicolored Path Embedding Problems in Protein Folding Models

describe how a real protein folds. These facts have taken us to a new variant of the protein
folding problem within the HP model, which we named bicolored path embedding problem.

In our model, we combine the basic ideas of protein folding with the complementary
problem of protein design, where the goal is to synthesize a protein of a given shape (and
function) from an amino acid sequence. Thus, we provide the “blueprint” of the folded shape
of a protein, in the form of an input (grid) graph G with colors assigned to its vertices, and
we ask if a given colored path P can be (injectively) embedded in G in such a way that vertex
colors match. In other terms, we are effectively asking whether a given amino acid sequence
can fold into (part of) a protein with prescribed structure. Since the HP model has nodes of
only two types, we assume both G and P to be bicolored, say, with colors “red” and “blue”.1

In Section 2, we prove that the bicolored path embedding problem is NP-complete even
if G is a dense graph of the same size as P (i.e., with the same number of vertices).2 In
Section 3, we consider the case where G is a (square) grid graph, which is the standard
assumption in the HP model. We first prove that the path embedding problem remains
NP-complete even if P is monochromatic (e.g., all its vertices are blue), and then we prove
that the problem is NP-complete even if G and P have the same size. Next, we contrast
these hardness results with a polynomial-time algorithm for the case where G is a grid of
fixed height: thus, the bicolored path embedding problem, parameterized according to the
height of G, is in XP. In Section 4, we show that maximizing red-red contacts in the bicolored
path embedding problem (defined in the same way as H-H contacts in the HP model) is also
NP-hard.3

2 Bijective embedding in a dense graph

Let us first consider the case where the bicolored blueprint G is a “precise” description of
a protein, i.e., it has to be matched exactly by the amino acid sequence represented by
the bicolored path P . In other words, G and P have the same number of vertices, and
the embedding should therefore be bijective. We will show that the embedding problem is
NP-hard even if G is a dense graph (intuitively, a blueprint with many edges should allow
greater leeway in the construction of an embedding of P) by a reduction from the strongly
NP-complete 3-Partition problem [9]. We recall that the input to the 3-Partition problem is
a multiset of 3m positive integers {a1, a2, . . . , a3m}, and the goal is to decide whether it can
be partitioned into m multisets of equal sum S. Our reduction is sketched in Figure 1.

The path P has length m · (S + 1), and is made up of m consecutive copies of a sub-path
denoted by PS+1, which in turn consist of a red vertex followed by S blue vertices. The
blueprint G contains a complete bipartite graph K6m,m with m red vertices on one side and
6m blue vertices on the other side. These blue vertices are further connected in all possible
ways, forming a clique Q of size 6m (the gray box in the figure). Additionally, for each ai, we
construct a clique of ai − 2 blue vertices (in the 3-Partition problem, we can safely assume
that ai > 2), and we connect two of its vertices with two vertices of Q.

1 With regard to bicolored and monochromatic graphs, we do not adhere to established terminology from
classical graph coloring theory; for the purposes of this paper, a coloring of a graph is simply a labeling
of its vertices, with no extra constraints. In particular, adjacent vertices may have the same color.

2 Formally, an infinite collection of graphs S is said to be a set of dense graphs if there is a positive
constant α such that, for any large-enough n, every graph in S with n vertices has at least α · n2 edges.

3 We remark that, in previous work, it has been established that the problem of maximizing H-H contacts
is NP-hard when G is not given, and P can be embedded in any way on a grid [3].

T. Feng, R. Uehara, and G. Viglietta 24:3

P

G

K6m

K6m,m

S SS

PS+1PS+1PS+1

Ka -2i

Ka -2j

Ka -2k

Figure 1 Sketch of the NP-hardness reduction from the 3-Partition problem. For clarity, the
edges of the clique K6m, as well as some edges of the complete bipartite graph K6m,m, have been
omitted.

It is easy to see that the graph G is dense, it has the same size as P , and there is an
embedding of P into G if and only if the ai’s can be partitioned into multisets of sum S.

I Theorem 1. The bicolored path embedding problem is NP-complete even if the blueprint G

is a dense graph of the same size as the path P . J

3 Embedding in a grid graph

In this section we focus on blueprint graphs G which are grid graphs, i.e., they are obtained
from regular tilings of the plane (sometimes these are also called lattice graphs). This is the
typical setting of the standard HP model.

3.1 Monochromatic path
If the path P only consists of blue vertices, there is a simple NP-hardness reduction from
the Hamiltonian path problem (i.e., given a graph, decide if there is a walk that visits each
vertex exactly once), which is known to be NP-complete even if the graph G is an induced
subgraph of a square grid graph, a triangular grid graph, or a hexagonal grid graph [1, 2, 13].

Figure 2 NP-hardness reduction from the Hamiltonian path problem for several grid graphs

EuroCG’21

24:4 Bicolored Path Embedding Problems in Protein Folding Models

Our reduction is sketched in Figure 2: given a graph G′ on n vertices, which is an induced
subgraph of a grid graph, we color all its vertices blue, and we “complete” it to a grid graph
G by adding red vertices. Obviously, we can embed a path P of n blue vertices into G if and
only if G′ has a Hamiltonian path.

I Theorem 2. The bicolored path embedding problem is NP-complete even if the blueprint G

is a (square, triangular, or hexagonal) grid graph, and P is a monochromatic path. J

3.2 Bijective embedding in a square grid graph
Let us turn again to bijective embeddings, this time in the case where the blueprint G is
a square grid graph. We will give another NP-hardness reduction from the Hamiltonian
path problem. We start from a square grid graph R(m′, n′) with an induced subgraph G′

(which is an instance of the Hamiltonian path problem), and we construct the blueprint G

by “expanding” each vertex v of R(m′, n′) into a (k + 2)× (k + 2) block Bv (where k is a
large-enough even constant, defined later). If v is not a vertex of G′, then all vertices of Bv

are blue; if v is a vertex of G, then Bv is illustrated in Figure 3: its four central vertices are
red, and all other vertices are blue. The size of G is therefore (k + 2) ·m′ × (k + 2) · n′; the
full construction is shown in Figure 4.

k
2

k
2

k
2

k
2

k+2

R(m',n')

G'

v

Figure 3 Transformation of a vertex v of G′ into the (k + 2)× (k + 2) block Bv

The path P is sketched in Figure 5: there is a copy of the subpath P ′ for each vertex of
G′, and then a final trail of blue vertices such that the total length of P matches the size of
G. Now, to embed P into G, we have to start from a set of four red vertices in some block
Bv, and then move to another set of four red vertices in some other block Bw. Since we must
traverse exactly 2k blue vertices between these two red sets, this is possible only if v and w

are adjacent in G′ (note that a “diagonal” move would take 2k + 1 steps on blue vertices).
Thus, embedding P into G is impossible if G′ is not Hamiltonian.

Assume now that G′ is Hamiltonian. We can embed all copies of P ′ into G by “mimicking”
a Hamiltonian path in G′ and moving from one set of red vertices to the next by covering
the 2× k rectangle between them in a zig-zag fashion. Eventually, the region of G covered
by all the copies of P ′ looks like a winding “tube” of width 2, as sketched in Figure 6.

T. Feng, R. Uehara, and G. Viglietta 24:5

Figure 4 Complete construction of G: each block represents a vertex in the original graph

P

P' x size of the induced subgraph G'

4 2k

P' Enough nodes to fill
the board

Figure 5 Construction of the path P

Now we have to cover the remaining part of G with the trailing sequence of blue vertices
of P . In order to do that, we partition this region into maximal “horizontal rectangles”,
i.e., in such a way that no two rectangles touch each other along vertical edges, as shown in
Figure 6. Then we do a depth-first traversal of these rectangles. When we visit a rectangle,
we cover it as shown in Figure 7: we further divide it into smaller rectangular “tiles”, one for
each unvisited neighboring rectangle. After covering a tile, we visit its adjacent rectangle in
the partition, and then we move to the next tile when we backtrack from that rectangle.

Constructing the tiles such that each of them can be covered completely before moving
on to the next rectangle is indeed possible. In [10], the grid graphs containing a Hamiltonian
path with assigned endpoints have been characterized: as it turns out, if the size of a tile is
even and one of its sides is longer than four vertices, then there is a Hamiltonian path in the
tile with any assigned endpoints having odd distance. Because k is a large even constant, we
can indeed subdivide each rectangle in the appropriate number of tiles, each of which has
even size and at least one side longer than four vertices (choosing k = 100 suffices by a big
margin). It follows that we can embed P into G.

I Theorem 3. The bicolored path embedding problem is NP-complete even if the blueprint G

is a square grid graph of the same size as the path P . J

EuroCG’21

24:6 Bicolored Path Embedding Problems in Protein Folding Models

1

3

2

4

5
6

7
8

9

Figure 6 Partition into rectangles of the region not covered by the zig-zagging copies of P ′

3.3 Fixed-height rectangular blueprint

We can contrast our previous hardness results with an embedding algorithm that runs in
polynomial time, provided that the blueprint G is a grid graph of fixed height k. Thus, let
G be a bicolored m× k grid, and let P be a bicolored path of n vertices. Our approach is
based on dynamic programming, where a sub-problem consists of embedding part of P into
a sub-grid of G going from the first column to the ath column, with 1 ≤ a ≤ m. A sub-
problem’s specification also contains a description of the intersection between a hypothetical
embedding of P and the ath column of G, illustrated in Figure 8: for each vertex w in the
ath column, the sub-problem specifies which vertex vi of P is mapped to w (if any), as well
as an extra bit of information that encodes whether the left or right neighbor of vi along P

should be mapped to the left neighbor of w (if such information is incompatible with the rest
of the specification, this bit is ignored). Thus, the total number of sub-problems is 2k ·nk ·m
(the last factor represents the m choices of a).

The output to a sub-problem is “Yes” if an embedding satisfying the given constraints
exists, “No” if it does not exist, and “N/A” if the sub-problem specifies no intersection on
the ath column, and it is not possible to embed P entirely to the left of the ath colum (this
implies that P should be embedded entirely to the right of the ath column, but we are still
unable to determine if this is possible).

Solving a sub-problem S for column a amounts to finding a sub-problem S′ for column
a− 1 with a “Yes” answer such that the specifications of S and S′ are compatible. In other
words, the mappings described by S and S′ on columns a and a− 1 should (i) match the
colors in G and P , and (ii) match with each other: for example, if S indicates that the vertex
vi+1 of P should be mapped to the left neighbor w′ of w (where w is in column a), then S′

should indicate that vi+1 is indeed mapped to w′ (which is in column a− 1). Thus, S can be
solved by looking up at most nk sub-problems, and each compatibility test takes O(k) time.

I Theorem 4. Given a bicolored square grid graph G of size m× k and a bicolored path P

of size n, the embedding problem for G and P can be solved in O(k · 2k · n2k ·m) time. J

T. Feng, R. Uehara, and G. Viglietta 24:7

2

1
6

3

4
5

2

1

3

6

4

5

Figure 7 Traversal order of the tiles of a rectangle and its six neighboring rectangles

Note that, if k is a constant, the running time of our algorithm is O(n2km), hence polynomial.

I Corollary 5. The bicolored path embedding problem where the blueprint G is a square grid
graph, parameterized according to the height of G, is in XP. J

4 Maximizing red-red contacts in a grid graph

Finally, let us turn to the problem of maximizing red-red contacts in the context of the
bicolored path embedding problem. Recall that, according to the HP model of energy, an
amino acid chain tends to fold in a way that maximizes the number of H nodes that are close
together in the folded state, even if they are not adjacent along the chain. In other words,
when G and P are given, we seek an embedding of P into G that covers a large number of
adjacent red vertices of G without traversing the edges between them. A red-red contact in
an embedding of P is a pair of adjacent red vertices u, v in G such that the embedding of P

covers both u and v, but does not contain the edge {u, v}.
The problem of maximizing red-red contacts in the bicolored path embedding problem

is also NP-hard, even when restricted to instances where the path P is guaranteed to be
embeddable into G. Figure 9 shows a reduction from the Hamiltonian path problem, where
Block 2 of G is constructed as the graph in Section 3.1: that is, we are given a graph G′, we
color its n vertices blue, and then we “complete” it to a grid graph by adding r red vertices
around it. Then we take an integer k greater than r, and we construct Block 1, which is a
grid of at least k red vertices. Block 3 of G and the path P are constructed as in the figure.

Now it is easy to see that, if G′ does not have a Hamiltonian path, we can only embed P

in Block 3, which yields no red-red contacts. Otherwise, we can embed the blue part of P in
Block 2 and the red part in Block 1, which produces a large number of red-red contacts.

EuroCG’21

24:8 Bicolored Path Embedding Problems in Protein Folding Models

R(m,k)

vx=1 vx=mvx=avx=a-1

P

f(vi)

f(v
j
)

f(v
j+1
)

f(v
j+2
)

v1 vnvi v
j

v
j+1

v
j+2

Figure 8 Illustration of the dynamic-programming algorithm for rectangular blueprints

k

Block 1 Block 2 Block 3

P

G

n

k

Figure 9 NP-hardness reduction for the problem of maximizing red-red contacts

I Theorem 6. Given a bicolored grid graph G and a bicolored path P that can be embedded
in G, it is NP-hard to find an embedding of P in G that maximizes red-red contacts. J

This result can easily be extended to grid graphs induced by different tilings of the plane
(cf. Section 3.1). Also, it shows that the related approximation problem is NP-hard, as well.

Acknowledgments. The authors wish to thank the anonymous reviewers for useful observa-
tions and suggestions. This work is partially supported by JSPS KAKENHI Grant Numbers
17H06287 and 18H04091.

References
1 Esther M. Arkin, Sándor P. Fekete, Kamrul Islam, Henk Meijer, Joseph S. B. Mitchell,

Yurai Núñez-Rodríguez, Valentin Polishchuk, David Rappaport, and Henry Xiao. Not being
(super) thin or solid is hard: A study of grid Hamiltonicity. Computational Geometry,
42(6–7):582–605, 2009.

T. Feng, R. Uehara, and G. Viglietta 24:9

2 Michael Buro. Simple Amazons endgames and their connection to Hamilton circuits in
cubic subgrid graphs. In International Conference on Computers and Games, pages 250–261.
Springer, 2000.

3 Pierluigi Crescenzi, Deborah Goldman, Christos Papadimitriou, Antonio Piccolboni, and
Mihalis Yannakakis. On the complexity of protein folding. Journal of Computational
Biology, 5(3):423–465, 1998.

4 Erik D. Demaine and Joseph O’Rourke. Geometric folding algorithms: linkages, origami,
polyhedra. Cambridge University Press, 2007.

5 Erik D. Demaine and Mikhail Rudoy. Hamiltonicity is hard in thin or polygonal grid graphs,
but easy in thin polygonal grid graphs. arXiv:1706.10046, 2017.

6 Ken A. Dill. Theory for the folding and stability of globular proteins. Biochemistry,
24(6):1501–1509, 1985.

7 Ken A. Dill and Justin L. MacCallum. The protein-folding problem, 50 yeas on. Science,
338(6110):1042–1046, 2012.

8 Kit Fun Lau and Ken A. Dill. A lattice statistical mechanics model of the conformational
and sequence spaces of proteins. Macromolecules, 22(10):3986–3997, 1989.

9 Michael R. Garey and David S. Johnson. Computers and intractability, volume 174. Freeman
San Francisco, 1979.

10 Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid
graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

11 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972.

12 F. Luccio and C. Mugnia. Hamiltonian paths on a rectangular chessboard. In Proceedings
of the 16th Annual Allerton Conference, pages 161–173, 1978.

13 Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric problems related to
the travelling salesman problem. Journal of Algorithms, 5(2):231–246, 1984.

EuroCG’21

On Voronoi diagrams of 1.5D terrains with
multiple viewpoints∗

Vahideh Keikha1 and Maria Saumell1,2

1 The Czech Academy of Sciences, Institute of Computer Science, Czech
Republic
(keikha,saumell)@cs.cas.cz

2 Department of Theoretical Computer Science, Faculty of Information
Technology, Czech Technical University in Prague, Czech Republic

Abstract
Given an n-vertex 1.5D terrain T and a set P of m < n viewpoints, the Voronoi visibility map
VorVis(T ,P) is a partitioning of T into regions such that each region is assigned to the closest
visible viewpoint. The colored visibility map ColVis(T ,P) is a partitioning of T into regions
that have the same set of visible viewpoints. In this paper, we propose an algorithm to compute
VorVis(T ,P) which runs in O(n+(m2 +kc) log n) time, where kc and kv denote the total complexity
of ColVis(T ,P) and VorVis(T ,P), respectively. This improves upon a previous algorithm for this
problem. We also show that the next problem can be solved in the same running time: What is
the minimum value of r such that, if the viewpoints can only see objects within distance r, the
partitioning of T into visible and invisible portions does not change?

1 Introduction

A 1.5D terrain T is an x-monotone polygonal chain of n vertices in R2. Two points on T are
visible if the segment connecting them does not contain any point strictly below T .

Visibility problems in terrains are fundamental in geographical information science and
have many applications, such as placing fireguard or telecommunication towers [3], identifying
areas that are not visible from sensitive sites [14], or solving problems related to sensor
networks [16]. Although 2.5D terrains are more interesting for modelling and forecasting,
1.5D terrains are easier to visualize and they give insights into the difficulties of 2.5D terrains
in terrain analysis. We focus on the variant where a set P of m viewpoints are located on
vertices of T , and our goal is to efficiently extract information about the visibility of T with
respect to P. We continue the work of [11], where the following structures are defined.

The visibility map Vis(T ,P) is a partitioning of T into a visible region (containing all
portions of T that are visible by at least one element in P) and an invisible region (containing
the portions that are not visible by any element in P). The colored visibility map ColVis(T ,P)
is a partitioning of T into regions that have the same set of visible viewpoints (see Fig. 1b
for an example). Finally, the Voronoi visibility map VorVis(T ,P) is a partitioning of T into
regions that have the same closest visible viewpoint (see Fig. 1c), where the distance used is
the Euclidean distance (not the distance along the terrain).

Algorithms to compute these structures for 1.5D and 2.5D terrains are proposed in [11].
The algorithm to obtain VorVis(T ,P) of a 1.5D terrain runs in O(n + (m2 + kc) log n +
kv(m + log n log m)) time, where kc and kv denote the total complexity of ColVis(T ,P) and

∗ Supported by the Czech Science Foundation, grant number GJ19-06792Y, and with institutional support
RVO:67985807. This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

25:2 On Voronoi diagrams of 1.5D terrains with multiple viewpoints

pi

pk

(a) (b)

pj

pi

pk

pj

pi

(c)

Figure 1 (a) The viewshed of a viewpoint. (b) ColVis(T ,P). (c) VorVis(T ,P).

VorVis(T ,P), respectively. It first computes ColVis(T ,P), and then it spends Θ(m) time
to find each single region of VorVis(T ,P). In this note, we show that VorVis(T ,P) can be
extracted from ColVis(T ,P) in a 1.5D terrain without adding any extra running time. We
use an observation related to the bisectors of pairs of viewpoints that also allows to prove a
relation between kc and kv.

The new algorithm for VorVis(T ,P) also allows to efficiently solve a problem related to
limited range of sight. These problems are motivated by the fact that, even though many visi-
bility problems assume an infinite range of visibility, the intensity of light, signals. . . decreases
over distance in realistic environments. In this spirit, the problem of illuminating a polygonal
area with the minimum total energy was introduced by O’Rourke [15], and studied in [6, 7].
We consider a related problem on terrains, namely, computing the minimum value r∗ such
that, if the viewpoints can only see objects within distance r∗, the obtained visibility map is
the same as Vis(T ,P). We show that this problem can also be solved in O(n+(m2 +kc) log n)
time.

Related Work. When m = 1, computing the visibility map of a 1.5D terrain can
be done in O(n) time [12]. One of the first results on the variant where m > 1 is an
O((n + m) log m) time algorithm to detect if there are any visible pairs of viewpoints above a
1.5D terrain [2]. Later, a systematic study of Vis(T ,P), VorVis(T ,P) and ColVis(T ,P) was
carried out in [11] for 1.5D and 2.5D terrains. Apart from the mentioned output-sensitive
algorithm for VorVis(T ,P) of a 1.5D terrain, the authors also propose an algorithm running
in O(mn log m) time, which is worst-case nearly optimal, since the maximum complexity of
VorVis(T ,P) is Θ(mn). A problem which is very related to the construction of Vis(T ,P) is
that of computing the total visibility index of the terrain, that is, the number of viewpoints
that are visible from each of the viewpoints. This problem can be solved in O(n log2 n)
time [1].

The situation where the locations of the viewpoints are unknown has been much studied.
It is well-known that computing the minimum number of viewpoints to keep a 1.5D terrain
illuminated is NP-Hard [13], but the problem admits a PTAS [8, 9, 10]. If the viewpoints are
restricted to lie on a line, the same problem can be solved in linear time [5].

Assumptions. As in [11], we assume that no three vertices of T are aligned. Here we
also assume that no edge of T is contained in the bisector of two viewpoints in P.

V. Keikha and M. Saumell 25:3

Omitted proofs and details will be given in the full version of this paper.

2 Complexity of the Voronoi visibility map

In this section, we prove an upper bound on kv.
Let us introduce some terminology. The viewshed of a viewpoint p is the set of points

of T that are visible from p (see Fig. 1a for an example). Further, the Voronoi viewshed
WT (p,P) of p is the set of points in the viewshed of p that are closer to p than to any other
viewpoint that is visible from them.

We denote by bi,j the perpendicular bisector of two viewpoints pi, pj . Since no edge of T
is contained in the bisector of two viewpoints, the shared boundary between two consecutive
regions of VorVis(T ,P) is a single point of T , which we call an event point of VorVis(T ,P).

We denote by qi,j an event point of VorVis(T ,P) such that a point infinitesimally to the
left and right of qi,j belongs to WT (pi,P) and WT (pj ,P), respectively (notice that an event
qi,j is different from an event qj,i). There are three (not mutually exclusive) possibilities: (i)
pi becomes invisible at qi,j

1; (ii) pj becomes visible at qi,j ; (iii) pi and pj are visible at qi,j ,
and qi,j is an intersection point between bi,j and T .

I Lemma 2.1. Let pi ∈ P be lower than pj ∈ P. Let q be an intersection between bi,j and
T to the left (resp. right) of pi. Then any point to the left (resp. right) of q visible from pi

is closer to pj than to pi. Thus, there is no event qi,j or qj,i of type (iii) to the left (resp.
right) of q.

We can now prove the following:

I Theorem 2.2. kv ≤ kc + m2.

Proof. Notice that events of type (i) and (ii) are also events of ColVis(T ,P). Let us prove
that there are at most m2 events of type (iii): Let pi, pj be a pair of viewpoints. If pi and pj

are at the same height, bi,j is vertical and only intersects T once, so there is at most one
event of VorVis(T ,P) on bi,j ∩ T . Otherwise, we assume without loss of generality that pi is
lower than pj . By Lemma 2.1 the only candidates for events qi,j or qj,i of type (iii) are the
left-most intersection point of type bi,j ∩ T among all such points to the right of pi and the
right-most one among all points to the left. Thus, every pair of viewpoints creates at most
two events of type (iii). J

3 Computation of the Voronoi visibility map

Let VorVis(T ,P`) and ColVis(T ,P`) be the corresponding maps if viewpoints only see
themselves and to their left. VorVis(T ,Pr) and ColVis(T ,Pr) are defined analogously.

The outline of the algorithm we propose is given in Figure 2. Its main highlight is a way
to compute VorVis(T ,P`) and VorVis(T ,Pr) so that new events of the diagrams are found in
O(log m) time rather than O(m). We next explain the algorithm to compute VorVis(T ,Pr).

The algorithm sweeps the terrain from left to right and stops at points that are candidates
for event points. The candidates for events of type (i) and (ii) are the events of ColVis(T ,Pr).
We explain below which are the candidates for events of type (iii).

1 When we write that pi becomes invisible at qi,j , we mean that it is visible immediately to the left of
qi,j and invisible immediately to its right. We use the same rational when we write that pj becomes
invisible at qi,j .

EuroCG’21

25:4 On Voronoi diagrams of 1.5D terrains with multiple viewpoints

compute ColVis (T ,Pr)

compute VorVis (T ,Pr)

merge VorVis (T ,P`) and VorVis (T ,Pr)

compute ColVis (T ,P`)

compute VorVis (T ,P`)

Figure 2 Outline of the algorithm to compute VorVis(T ,P).

Events of ColVis(T ,Pr). We compute ColVis(T ,Pr) using the algorithm from [11]
which returns a doubly-linked list with the vertices of ColVis(T ,Pr) sorted from left to right,
together with the following visibility information: The visible viewpoints are specified for
the first component of ColVis(T ,Pr) and, for the other components, the algorithm outputs
the changes in the set of visible viewpoints with respect to the component immediately to
the left.

Data structures. A binary table V indicates, at any given point of the sweep, which
are the visible viewpoints, that is, V [i] = 1 if and only if pi is visible at the moment.

Maintaining the set of viewpoints sorted by distance to the point of T currently swept by
the line would be too expensive because every bisector bi,j might intersect the terrain Θ(n)
times. Instead, we maintain a table L containing all viewpoints that have been swept by the
line such that some pairs of viewpoints are sorted with respect to the distance to the current
intersection point between the sweep line and the terrain, but some other pairs (which are
never checked by the algorithm) are unordered. The table is filled by the algorithm from the
last position to the first.

Additionally, we maintain a balanced binary search tree H which contains the positions
of L occupied by viewpoints that are currently visible. As we will see, the viewpoints that
are currently visible appear in L correctly sorted with respect to the current distance to the
terrain. The algorithm always chooses as the “owner” of the current Voronoi visibility region
the following viewpoint: among all elements that are currently visible, the one appearing
earliest in L, whose position in L is found by obtaining the minimum element of H.

For all i, we also maintain a pointer from V [i] to the position in L (if any) containing pi.
Finally, we also use a data structure that allows to answer ray-shooting queries in T in

O(log n) time [4]
Unordered sets of viewpoints and candidates for events of type (iii). Let pi ∈ P

be lower than pj ∈ P . Let q be the left-most intersection point of type bi,j ∩T among all such
points to the right of pi. If pj is to the left of pi, q is to the right of both pi and pj , while if
pj is to the right of pi, q lies between both viewpoints. In both cases, a point infinitesimally
to the left of q is closer to pi than to pj , and a point infinitesimally to the right is closer to
pj .

If pj is to the left of pi, by Lemma 2.1, q is the only candidate for event of type (iii) to
the right of pi. Such a point is found in O(log n) time by a ray-shooting query and added to
the list of candidates for events swept by the line. When the line sweeps q, pi and pj are
swapped in L because pj becomes closer to the terrain. Even though later the terrain might
intersect bi,j again and pi might become closer than pj , pi and pj are never swapped again
in L. The reason for this is that the algorithm only takes into account the visible viewpoints
to output the Voronoi visibility regions and, by Lemma 2.1, any point to the right of q which

V. Keikha and M. Saumell 25:5

is visible from pi is closer to pj than to pi. Therefore, whenever both pi and pj are visible,
pj is indeed closer to the terrain than pi.

If pj is to the right of pi, since q is to the left of pj and viewpoints can only see to their
right, q is not a candidate for event of type (iii). By Lemma 2.1, there is no candidate for
event of type (iii) to the right of pi.

Finally, notice that there are no candidates for events of type (iii) to the left of pi because
in VorVis(T ,Pr) viewpoints can only see to their right.

Description of the algorithm. Given q, r on T with x(q) < x(r), we denote by T [q, r]
the closed portion of the terrain between q and r. We create a list E of potential events
sorted from left to right containing all events of ColVis(T ,Pr) and the O(m2) candidates
for events of type (iii). We also add an event at the right-most point of the terrain. Using
E and the data structures mentioned above, we output VorVis(T ,Pr) as a list of pairs
([q, r], pi) such that pi is the closest visible viewpoint in T [q, r] (if T [q, r] is not visible from
any viewpoint, we output ([q, r],⊥)). The variables t` and p∗ in the algorithm below refer to
the left endpoint of the portion of T currently analyzed by the algorithm and the closest
visible viewpoint in that portion, respectively. The variable pmin refers to the viewpoint
contained in the position of L given by the minimum element of H (if H is empty, pmin = ⊥).

Initially, V [i] := 0 and L[i] := ∅ for all i, H := ∅, t` := left-most point of T , and p∗ ← ⊥.
We repeat the following procedure until E is empty: We extract the next element q from

E, and proceed according to the following cases (for the sake of simplicity, in the description
below we deliberately ignore some degenerate situations which we tackle right after):

(i) One or more viewpoints become visible at q. For all such viewpoints pi, we set V [i] := 1.
If one of these viewpoints is at q, we insert it at the highest index j such that L[j] = ∅.
For every viewpoint becoming visible at q, we insert to H the position of L containing it.
If, after updating pmin, pmin 6= p∗, we output ([t`, q], p∗), set t` := q, and set p∗ := pmin.

(ii) One or more viewpoints become invisible at q. For all such viewpoints pi, we set V [i] := 0
and we delete from H the position of L containing pi. If, after updating pmin, pmin 6= p∗,
we output ([t`, q], p∗), set t` := q, and set p∗ := pmin.

(iii) q is an intersection point between T and bi,j . We swap pi and pj in L. If necessary, we
update H according to the visibility of the viewpoints contained in the positions of L

affected by the swap (for example, if pi is visible and pj is not, we add to H the new
position of L containing pi and we remove the old one). If, after updating pmin, pmin 6= p∗,
we output ([t`, q], p∗), set t` := q, and set p∗ := pmin. If q is an intersection point between
T and other bisectors distinct from bi,j , the bisectors can be processed in any order.

(iv) q is the right-most point of T . We output ([t`, q], p∗).

It remains to explain in which order to process events of distinct type occurring at the
same time. Viewpoints becoming visible have priority over the other types of events, and
viewpoints becoming invisible have priority over intersections of the terrain with bisectors.

Merging the two diagrams. We overlap VorVis(T ,P`) and VorVis(T ,Pr), and de-
compose the terrain by sweeping it from left to right and stopping at the endpoint of every
pair of the form ([q, r], pi) belonging to any of the two diagrams. After this decomposition,
for any portion of the terrain there are two candidate viewpoints, and the distribution of the
portion between the two viewpoints can be done in O(log n) time via a ray shooting query
with their bisector (with similar arguments to those in the proof of Lemma 2.1, one can
prove that the portion gets split into at most two portions of the final diagram).

We conclude:

EuroCG’21

25:6 On Voronoi diagrams of 1.5D terrains with multiple viewpoints

I Theorem 3.1. VorVis(T ,P) can be constructed in O(n + (m2 + kc) log n) time and
O(n + m2 + kc) space.

4 Computation of r∗

Notice that r∗ is realized at a vertex of VorVis(T ,P) at maximum distance from its closest
visible viewpoint (r∗ is the distance from the vertex to the viewpoint). Thus, after constructing
VorVis(T ,P), we can traverse it in linear time to identify such a vertex. We obtain:

I Theorem 4.1. The problem of computing the minimum range of the viewpoints that keeps
Vis(T ,P) unchanged can be solved in O(n + (m2 + kc) log n) time.

5 Final remark

We have shown that VorVis(T ,P) can be constructed almost for free (asymptotically) if
ColVis(T ,P) is computed first. Therefore, any faster algorithm for VorVis(T ,P) must use
less information than the one encoded in ColVis(T ,P).

References
1 Peyman Afshani, Mark De Berg, Henri Casanova, Ben Karsin, Colin Lambrechts, Nodari

Sitchinava, and Constantinos Tsirogiannis. An efficient algorithm for the 1D total visibility-
index problem and its parallelization. Journal of Experimental Algorithmics, 23:1–23, 2018.

2 Boaz Ben-Moshe, Olaf Hall-Holt, Matthew J Katz, and Joseph SB Mitchell. Computing the
visibility graph of points within a polygon. In Proceedings of the 20th Annual Symposium
on Computational Geometry, pages 27–35, 2004.

3 Filipe X. Catry, Francisco C. Rego, Teresa Santos, Joel Almeida, and Paulo Relvas. Forest
fires prevention in Portugal - using GIS to help improving early fire detection effectiveness.
In Proceedings of the 4th International Wildland Fire Conference, 2007.

4 Bernard Chazelle, Herbert Edelsbrunner, Michelangelo Grigni, Leonidas J. Guibas, John
Hershberger, Micha Sharir, and Jack Snoeyink. Ray shooting in polygons using geodesic
triangulations. Algorithmica, 12(1):54–68, 1994.

5 Ovidiu Daescu, Stephan Friedrichs, Hemant Malik, Valentin Polishchuk, and Christiane
Schmidt. Altitude terrain guarding and guarding uni-monotone polygons. Computational
Geometry: Theory and Applications, 84:22–35, 2019.

6 Friedrich Eisenbrand, Stefan Funke, Andreas Karrenbauer, and Domagoj Matijevic. Energy-
aware stage illumination. International Journal of Computational Geometry & Applications,
18(01n02):107–129, 2008.

7 Maximilian Ernestus, Stephan Friedrichs, Michael Hemmer, Jan Kokemüller, Alexander
Kröller, Mahdi Moeini, and Christiane Schmidt. Algorithms for art gallery illumination.
Journal of Global Optimization, 68(1):23–45, 2017.

8 Stephan Friedrichs, Michael Hemmer, James King, and Christiane Schmidt. The continuous
1.5D terrain guarding problem: Discretization, optimal solutions, and PTAS. Journal of
Computational Geometry, 7(1):256–284, 2016.

9 Stephan Friedrichs, Michael Hemmer, and Christiane Schmidt. A PTAS for the continu-
ous 1.5D terrain guarding problem. In Proceedings of the 26th Canadian Conference on
Computational Geometry, 2014.

10 Matt Gibson, Gaurav Kanade, Erik Krohn, and Kasturi Varadarajan. An approximation
scheme for terrain guarding. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, pages 140–148. Springer, 2009.

V. Keikha and M. Saumell 25:7

11 Ferran Hurtado, Maarten Löffler, Inês Matos, Vera Sacristán, Maria Saumell, Rodrigo I.
Silveira, and Frank Staals. Terrain visibility with multiple viewpoints. International Journal
of Computational Geometry & Applications, 24(04):275–306, 2014.

12 Barry Joe and Richard B Simpson. Corrections to Lee’s visibility polygon algorithm. BIT
Numerical Mathematics, 27(4):458–473, 1987.

13 James King and Erik Krohn. Terrain guarding is NP-hard. SIAM Journal on Computing,
40(5):1316–1339, 2011.

14 Bernd Möller. Changing wind-power landscapes: regional assessment of visual impact on
land use and population in Northern Jutland, Denmark. Applied Energy, 83(5):477–494,
2006. doi:10.1016/j.apenergy.2005.04.004.

15 Joseph O’Rourke. Open problems from CCCG 2005. In Proceedings of the 18th Canadian
Conference on Computational Geometry, 2006.

16 Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network survey.
Computer Networks, 52(12):2292–2330, 2008. doi:10.1016/j.comnet.2008.04.002.

EuroCG’21

Upward Planar Drawings with Three Slopes
Jonathan Klawitter and Johannes Zink

Universität Würzburg, Germany, {firstname.lastname}@uni-wuerzburg.de

Abstract
We study upward planar straight-line drawings that use only three different slopes. We show that
deciding whether a digraph admits such a drawing is NP-hard already for embedded outerplanar
digraphs, though linear-time solvable for trees with and without given embedding.

1 Introduction

One of the main goals in graph drawing is to generate clear drawings. To achieve this, we
may reduce the visual complexity by using only few different geometric primitives [22] – in
our case few slopes. Using only few different slopes is common for schematic drawings; for
example, if we allow two different slopes we get orthogonal drawings [9], with three or four
slopes we get hexalinear and octilinear drawings [31], respectively. Here, we additionally
require our graphs to be drawn upward and planar.

Upward planarity. An upward planar drawing of a directed graph (or digraph for short) G

is a planar drawing of G where every edge is drawn as a monotonic upward curve. We call G

upward planar if it admits an upward planar drawing and upward plane if it is equipped with
an upward planar embedding. Note that an upward planar embedding, given by the cyclic
sequences of edges around each vertex, is necessarily bimodal, that is, each cyclic sequence
can be split into a contiguous subsequence of incoming edges and a contiguous subsequence
of outgoing edges [9].

Upward planarity testing is an NP-complete problem for general digraphs [17], though
several fixed-parameter tractable algorithms exist [5, 14, 18]. Furthermore, the problem is
polynomial-time solvable, for example for single source digraphs [3], outerplanar digraphs [33],
series-parallel digraphs [14], and triconnected digraphs [2]. If the embedding of a digraph is
given, upward planarity can be tested in polynomial time [2].

k-slope drawings. A k-slope drawing of a graph G is a straight-line drawing of G where
every edge is drawn with one of at most k different slopes; see Fig. 1a–b. The (planar) slope
number of G is the smallest k such that G admits a planar k-slope drawing. If only planar
drawings are allowed, this is called the planar slope number of G. Both numbers have been
studied extensively for a variety of classes [4,11,13,15,16,20,21,25,27–29,32,34]. Determining
the planar slope number of a graph is hard in the existential theory of the reals [19].

Di Battista and Tamassia [10] have shown that if a digraph is upward planar, then it even
admits an upward planar straight-line drawing. We may therefore ask how many slopes are
necessary for a digraph G to admit an upward planar drawing. The answer to this question
defines the upward planar slope number of G. To the best of our knowledge, this number has
so far only been studied by Czyzowicz et al. [6,7] for lattices and, allowing one bend per edge,
by Di Giacomo et al. [12] for series-parallel digraphs and by Bekos et al. [1] for st-graphs.

Most research on slope numbers is concerned with the minimum number of slopes
required to draw any graph of a fixed class. We can consider the problem also from a different
perspective, namely, given only k slopes, decide whether a given digraph admits an upward
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

26:2 Upward Planar Drawings with Three Slopes

planar k-slope drawing. For k = 2, this question has been investigated by Klawitter and
Mchedlidze [23] who show that deciding whether a given upward plane digraph admits an
upward planar 2-slope drawing can be done in linear time. For the variable embedding
scenario, they give a linear-time algorithm for single-source digraphs, a quartic-time algorithm
for series-parallel digraphs, and a fixed-parameter tractable algorithm for general digraphs.
Here, we investigate the next natural case k = 3. Note that a 2-slope drawing can be
stretched in the direction of one slope without affecting the length of edges drawn with the
other slope. The fact that this does not hold for three (or more) slopes introduces interesting
new geometric aspects for 3-slope drawings.

(a) (c)

G

u
p

up

(b)

Figure 1 (a) A digraph G with (b) upward planar 3-slope drawing; (c) drawing rotated by 45◦.

Note that the maximum indegree and outdegree of a digraph G are natural lower bounds
on its upward planar slope number. Since we have k = 3, we assume that our digraphs
have maximum indegree and outdegree at most three. Further note that an upward planar
3-slope drawing of a digraph G on any three slopes can be affinely transformed into one with
slopes 45◦, 90◦, and 135◦. Hence, we restrict considerations to this slope set. For illustrative
purposes however, we rotate drawings by 45◦ clockwise and thus use the slope set {↑,↗,→};
see Fig. 1c. A 3-slope assignment of a digraph G assigns each edge of G one of the slopes
in {↑,↗,→}. If G is upward plane, we say a 3-slope assignment of G is consistent if the
assignment complies with the cyclic edge order around each vertex; for example, if a vertex
has three incoming edges, then they need to be assigned the slopes→, ↗, and ↑ in ccw order.
Clearly, if an upward plane embedding does not admit a consistent 3-slope assignment, then
it also does not admit an upward plane 3-slope drawing.

Contribution. We initiate research on upward planar 3-slope drawings by examining the
complexity of the decision problem. Some of our results are generalizable to k ≥ 3 slopes.
We classify whether an embedded tree T admits an upward planar 3-slope drawing. In the
affirmative, we can construct such a drawing. Otherwise, we can change the embedding of T

such that it admits a desired drawing. We further show that it is NP-hard to decide whether
a given upward outerplanar1 digraph admits an upward planar 3-slope drawing.

For statements marked with “?”, a proof is available on arXiv [24].

1 An upward outerplanar digraph admits an upward planar drawing with each vertex on the outer face.

Klawitter and Zink 26:3

(a) (b) (c)

T

u

v

u

v

u

v

u

v

Figure 2 (a) The tree T does not admit a consistent 3-slope assignment, (b) unless we change the
embedding; (c) an upward planar 3-slope drawing of T with exponentially shrinking edge lengths.

2 Trees

We start with the class of directed trees2 with indegree and outdegree at most three. While
every bimodal embedding of a tree induces an upward planar embedding, it does not
necessarily admit an upward planar 3-slope drawing; see tree T in Fig. 2a. There the edge uv

of T needs to get slope ↑ by u but slope ↗ by v and thus obstructs a consistent 3-slope
assignment. However, we can always change the embedding of T such that it admits a
consistent 3-slope assignment and drawing; see Fig. 2b. We show that both testing whether
an embedding is suitable and finding a suitable embedding can be accomplished in linear time.

I Theorem 2.1 (?). Under a fixed bimodal embedding, a directed tree T admits an upward
planar 3-slope drawing if and only if it admits a consistent 3-slope assignment. Moreover,
this can be tested in linear time and, in the affirmative, a drawing can be constructed.

Proof sketch. While the “only-if”-direction is clear, the converse can be shown by drawing T

with edge lengths exponentially shrinking as the distance from a start edge increases;
see Fig. 2c. A consistent 3-slope assignment is either directly obstructed by an edge as in
Fig. 2a or can be computed straightforwardly. J

I Theorem 2.2 (?). Given a directed tree T with indegree and outdegree at most three, we
can construct an upward planar 3-slope drawing of T in linear time.

Proof sketch. To find a suitable embedding, pick a start vertex, order its incident edges
bimodally, and continue vertex by vertex to construct a consistent 3-slope assignment. J

We conjecture that a similar approach also works for cactus graphs, though constructing
an actual drawing is geometrically more involved. We will investigate this further.

3 Outerplanar Graphs

In this section, we show that already for upward outerplanar digraphs, it is NP-hard to
decide whether a digraph admits an upward planar 3-slope drawing. It remains open whether
the problem is also NP-complete since containment in NP is not immediately clear. More
precisely, if the problem was in NP, there would be small proof certificates for yes-instances
that a verifier could use to decide the problem in polynomial time. Typically a combinatorial
characterization or a drawing of the input graph could act as such a certificate. However in our

2 A directed tree (or polytree) is a digraph whose underlying undirected graph is a tree.

EuroCG’21

26:4 Upward Planar Drawings with Three Slopes

case, we do not know whether there are graphs that require irrational (or super-polynomial
precise) coordinates and if so, how to treat them implicitly. Yet NP-hardness holds true,
even if an upward outerplanar embedding is given. Remember that for an arbitrary number
of slopes, upward planarity for outerplanar digraphs can be decided in polynomial time [33] –
if an embedding is given, even in linear time. We show NP-hardness by reduction from
Planar Monotone 3-SAT [8], an NP-complete version of 3-SAT, where the three literals
of each clause are all either negated or unnegated – from now on called negative and positive
clauses, respectively. Moreover, the incidence graph3 is planar and has a planar drawing
where the vertices are rectangles, the edges are vertical straight-line segments, the variables
are arranged on a horizontal line, the positive clauses are above, and the negative clauses
are below this line. For an example, see Fig. 5a. For a given formula F and a rectangular
drawing of its incidence graph, we construct a corresponding upward outerplanar digraph GF ,
which can only be drawn upward planar with 3 slopes if F is satisfiable. Our construction
follows ideas of Nöllenburg [30] and Kraus [26] and utilizes the following observations.

Up to scaling and mirroring diagonally, G� in Fig. 3a admits an upward planar 3-slope
drawing only as an outerplanar square as in Fig. 3b. We can attach multiple squares (and
triangles) to each other as in Fig. 3c–d. The drawing of such a bigger digraph is unique up
to scaling and mirroring diagonally. If the squares form a tree, the drawing is outerplanar.
We refer to these squares as unit squares, since, once set, the side lengths for all attached
squares are the same. To allow a certain small degree of freedom, we exploit the following.

(a) (b) (c)

G�

(d)

Figure 3 (a) The digraph G� admits only an upward 3-slope drawing as square (b); (c, d) by
combining copies of G� and triangles we can build larger rigid structures.

e1

e2

Figure 4 Upward planar 3-slope drawing of the digraph G↔.

I Lemma 3.1 (?). In any upward planar 3-slope drawing of the digraph G↔ (see Fig. 4), . . .

3 In the incidence graph of a SAT formula, there is a vertex for each variable and each clause, and for
each occurrence of a variable in a clause, there is an edge between the corresponding vertices.

Klawitter and Zink 26:5

x1 x2 x3 x4

x1 ∨ x2 ∨ x3

x1 ∨ x3 ∨ x4

¬x1 ∨ ¬x2 ∨ ¬x4

¬x2 ∨ ¬x3 ∨ ¬x4

(a) Rectangular drawing of the incidence graph of a Planar Monotone 3-SAT formula F .

(b) Outerplanar drawing of the digraph GF obtained from (a). Chains of unit squares are drawn as straight
line segments. The variable/clause/edge gadgets occupy the areas of their corresponding rectangles. Here,
x1 and x4 are set to false (brush on the left), while x2 and x3 are set to true (brush on the right)

Figure 5 Schematic example for our NP-hardness reduction from Planar Monotone 3-SAT.

the edges e1 and e2 are parallel and have the same arbitrary length ` > 0,
all other edges are oriented as in Fig. 4 up to mirroring along a diagonal axis, and
all other vertical and horizontal edges have the same lengths, as well as all diagonal edges.

With this construction kit of useful (sub)graphs in hand, we build a bigger graph whose
upward planar drawings represent the satisfying truth assignments for F . The high-level
construction is depicted in Fig. 5b. We construct, for each variable xi, an individual
digraph – the variable gadget for xi. Similarly, for each clause cj , there is an individual
digraph – the clause gadget for cj . All gadgets mainly consist of chains of G�s. For a
drawing, this enforces a rigid frame structure built from unit squares. We glue all variable
gadgets together in a row and connect variable and clause gadgets by edge gadgets such that
the composite graph remains upward outerplanar (see Fig. 5b) and all G�s are drawn as
unit squares.

A variable gadget is depicted in Fig. 6. Its base structure is the (violet) frame composed
of chains of unit squares. The core element is the (red) central chain of unit squares (with a
few side-arms), which has one degree of flexibility, namely, moving as a whole to the left or
to the right without leaving the frame structure of the gadget. It looks and behaves a bit like
a pipe cleaning brush that is stuck inside the frame but can be moved a bit back and forth.
Hence, we also call it a brush. It is connected via a G↔ to the brush of the previous variable

EuroCG’21

26:6 Upward Planar Drawings with Three Slopes

(c)

< 1

truefalse

(a)

? ?

truefalse

(b)

truefalse

(d)

? ?

Figure 6 A variable gadget, contained in two positive and one negative clauses, being set to false.

gadget (see Fig. 6a/d) and the first brush is connected to the frame via a G↔ (see the left
of Fig. 5b). This allows only a horizontal shift of the brushes, but no vertical movement
relative to its anchor point at the frame structure. Note that the horizontal position in any
variable gadget is independent of those in all other gadgets. If the brush is positioned close
to the very left (right), the corresponding variable is set to false (true).

For each occurrence of a variable in a positive clause, we have a construction as depicted
in Fig. 6b. There, a long chain of (green) G�s – from now on called bolt – is attached to the
frame structure via two G↔s, which allow only a vertical, but no horizontal shift. The bolt
has on its left side an arm, which can only be placed in one of two pockets of the frame. It
can always be placed in the upper pocket, which pushes the bolt outwards with respect to
the variable gadget (into an edge and then a clause gadget). It can only be placed in the
lower pocket if the brush is shifted close to the very right (i.e. set to true) – then the bolt
can “fall” into a cove of the brush. For each occurrence of a variable in a negative clause,
we have the same construction, but upside-down, such that the bolt can be pulled into the

Klawitter and Zink 26:7

true

false false

true

false false

true

false false

true true

false

true true

false

true true

false

true true true false false false

Figure 7 Positive clause gadget (negative clause gadget is mirrored vertically) in 8 configurations.

variable gadget only if the brush is shifted close to the very left (i.e. set to false).
Note that, to maintain outerplanarity of the whole construction, the frame structure is

not contiguous, but connected by G↔s and the arms of the bolts. Hence, the frame structure
decomposes into many components that have fixed relative horizontal positions and their unit
squares have the same side lengths. However, the components can shift up and down relative
to each other. To keep this vertical shift small enough not to affect the correct functioning
of our reduction, we use, for each such component, the construction depicted in Fig. 6c. The
chain of brushes has no flexibility in vertical direction and serves as a base ground for an
“anchor” of the frame structure. The frame structure can move less than one unit up or
down unless it violates planarity. If the frame structure would be shifted up enough to be
completely above the brush, it would get in conflict with the adjacent bolt.

An edge gadget consists of only three straights chains – two are frame segments, one
is a bolt in the middle. Their purpose is to synchronize the distance of the clause gadgets
to the variable gadgets and to provide these chains of unit squares for the clause gadgets.
Several edge gadgets are depicted on yellow background color in Fig. 5b.

A clause gadget for a positive clause is depicted in Fig. 7. Within a frame, which is
connected at six points to the frames of three edge gadgets, there is a horizontal (orange)
bar, which is attached via two G↔s to the frame – one G↔ allows a horizontal, the other
allows a vertical shift. It resembles a crane that can move up and extend its arm, while it
holds the horizontal bar on a vertical (orange) rope. The three bolts from the corresponding
variable gadgets reach into the clause gadget. The lengths of these bolts is chosen such
that, if they are pushed out of their variable gadget and into the clause gadget, they only
slightly fit inside the gadget. Depending on whether each of the bolts is pushed into the
clause gadget or pulled out of it, we have eight possible configurations (with sufficiently small

EuroCG’21

26:8 Upward Planar Drawings with Three Slopes

vertical slack). They represent the eight possible truth assignments to a clause. In Fig. 7, we
illustrate that in each configuration, we can accommodate the horizontal bar in an upward
planar 3-slope drawing of the clause gadget – except for the case when all three bolts push
into the clause gadget, which represents the truth assignment false to all contained variables.
A negative clause gadget uses the same construction, but mirrored vertically. There, three
bolts pushing into the clause gadget means the contained variables are all set to true.

We conclude with our main theorem. In the future, we plan to generalize Theorem 3.2 to
k ≥ 3 slopes. In the fixed embedding setting, the main idea is to simply add 2(k− 3) dummy
leaves to each vertex that automatically occupy the additional slopes.

I Theorem 3.2 (?). Deciding whether a directed outerplanar graph admits an upward planar
3-slope drawing is NP-hard, even when an upward outerplanar embedding is given.

Acknowledgments. We would like to thank the reviewers for their helpful comments.

References
1 Michael A. Bekos, Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Fabrizio

Montecchiani. Universal Slope Sets for Upward Planar Drawings. In Therese Biedl and
Andreas Kerren, editors, Graph Drawing and Network Visualization, pages 77–91. Springer
International Publishing, 2018. doi:10.1007/978-3-030-04414-5_6.

2 Paola Bertolazzi, Giuseppe Di Battista, Giuseppe Liotta, and Carlo Mannino. Upward
drawings of triconnected digraphs. Algorithmica, 12(6):476–497, 1994. doi:10.1007/
BF01188716.

3 Paola Bertolazzi, Giuseppe Di Battista, Carlo Mannino, and Roberto Tamassia. Opti-
mal Upward Planarity Testing of Single-Source Digraphs. SIAM Journal on Computing,
27(1):132–169, 1998. doi:10.1137/S0097539794279626.

4 Guido Brückner, Nadine Davina Krisam, and Tamara Mchedlidze. Level-planar drawings
with few slopes. In Daniel Archambault and Csaba D. Tóth, editors, Graph Drawing and
Network Visualization, pages 559–572, 2019. doi:10.1007/978-3-030-35802-0_42.

5 Hubert Chan. A Parameterized Algorithm for Upward Planarity Testing. In Susanne
Albers and Tomasz Radzik, editors, Algorithms – ESA 2004, pages 157–168. Springer,
2004. doi:10.1007/978-3-540-30140-0_16.

6 Jurek Czyzowicz. Lattice diagrams with few slopes. Journal of Combinatorial Theory,
Series A, 56(1):96–108, 1991. doi:10.1016/0097-3165(91)90025-C.

7 Jurek Czyzowicz, Andrzej Pelc, and Ivan Rival. Drawing orders with few slopes. Discrete
Mathematics, 82(3):233–250, 1990. doi:10.1016/0012-365X(90)90201-R.

8 Mark de Berg and Amirali Khosravi. Optimal binary space partitions for segments in the
plane. International Journal of Computational Geometry & Applications, 22(3):187–206,
2012. doi:10.1142/s0218195912500045.

9 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Draw-
ing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

10 Giuseppe Di Battista and Roberto Tamassia. Algorithms for plane representations of
acyclic digraphs. Theoretical Computer Science, 61(2):175–198, 1988. doi:10.1016/
0304-3975(88)90123-5.

11 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Drawing Outer 1-planar
Graphs with Few Slopes. In Christian Duncan and Antonios Symvonis, editors, Graph
Drawing, pages 174–185. Springer, 2014. doi:10.1007/978-3-662-45803-7_15.

12 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. 1-Bend Upward Planar
Drawings of SP-Digraphs. In Yifan Hu and Martin Nöllenburg, editors, Graph Drawing

Klawitter and Zink 26:9

and Network Visualization, pages 123–130. Springer International Publishing, 2016. doi:
10.1007/978-3-319-50106-2_10.

13 Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Drawing subcubic planar
graphs with four slopes and optimal angular resolution. Theoretical Computer Science,
714:51–73, 2018. doi:10.1016/j.tcs.2017.12.004.

14 Walter Didimo, Francesco Giordano, and Giuseppe Liotta. Upward Spirality and Upward
Planarity Testing. SIAM Journal on Discrete Mathematics, 23(4):1842–1899, 2010. doi:
10.1137/070696854.

15 Vida Dujmović, David Eppstein, Matthew Suderman, and David R. Wood. Drawings of
planar graphs with few slopes and segments. Computational Geometry, 38(3):194–212, 2007.
doi:10.1016/j.comgeo.2006.09.002.

16 Vida Dujmović, Matthew Suderman, and David R. Wood. Graph drawings with few slopes.
Computational Geometry, 38(3):181–193, 2007. doi:10.1016/j.comgeo.2006.08.002.

17 Ashim Garg and Roberto Tamassia. On the Computational Complexity of Upward and
Rectilinear Planarity Testing. SIAM Journal on Computing, 31(2):601–625, 2001. doi:
10.1137/S0097539794277123.

18 Patrick Healy and Karol Lynch. Two fixed-parameter tractable algorithms for testing
upward planarity. International Journal of Foundations of Computer Science, 17(05):1095–
1114, 2006. doi:10.1142/S0129054106004285.

19 Udo Hoffmann. On the Complexity of the Planar Slope Number Problem. Journal of Graph
Algorithms and Applications, 21(2):183–193, 2017. doi:10.7155/jgaa.00411.

20 Vít Jelínek, Eva Jelínková, Jan Kratochvíl, Bernard Lidický, Marek Tesař, and Tomáš
Vyskočil. The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree. Graphs
and Combinatorics, 29(4):981–1005, 2013. doi:10.1007/s00373-012-1157-z.

21 Balázs Keszegh, János Pach, and Dömötör Pálvölgyi. Drawing Planar Graphs of Bounded
Degree with Few Slopes. SIAM Journal on Discrete Mathematics, 27(2):1171–1183, 2013.
doi:10.1137/100815001.

22 Philipp Kindermann, Wouter Meulemans, and André Schulz. Experimental analysis of the
accessibility of drawings with few segments. Journal of Graph Algorithms and Applications,
22(3):501–518, 2018. doi:10.7155/jgaa.00474.

23 Jonathan Klawitter and Tamara Mchedlidze. Upward planar drawings with two slopes,
2021. In preparation.

24 Jonathan Klawitter and Johannes Zink. Upward planar drawings with three slopes, 2021.
arXiv:2103.06801.

25 Kolja Knauer, Piotr Micek, and Bartosz Walczak. Outerplanar graph drawings with few
slopes. Computational Geometry, 47(5):614–624, 2014. doi:doi.org/10.1016/j.comgeo.
2014.01.003.

26 Rebecca Kraus. Level-außenplanare Zeichnungen mit wenigen Steigungen, 2020. Bachelor
Thesis, University of Würzburg.

27 William Lenhart, Giuseppe Liotta, Debajyoti Mondal, and Rahnuma Islam Nishat. Planar
and Plane Slope Number of Partial 2-Trees. In Stephen Wismath and Alexander Wolff, ed-
itors, Graph Drawing, pages 412–423. Springer, 2013. doi:10.1007/978-3-319-03841-4_
36.

28 Padmini Mukkamala and Dömötör Pálvölgyi. Drawing Cubic Graphs with the Four Basic
Slopes. In Marc van Kreveld and Bettina Speckmann, editors, Graph Drawing, pages 254–
265. Springer, 2012. doi:10.1007/978-3-642-25878-7_25.

29 Padmini Mukkamala and Mario Szegedy. Geometric representation of cubic graphs with
four directions. Computational Geometry, 42(9):842–851, 2009. doi:10.1016/j.comgeo.
2009.01.005.

EuroCG’21

26:10 Upward Planar Drawings with Three Slopes

30 Martin Nöllenburg. Automated Drawing of Metro Maps, 2010. Diploma Thesis, University
of Karlsruhe (TH).

31 Martin Nöllenburg and Alexander Wolff. Drawing and labeling high-quality metro maps by
mixed-integer programming. IEEE Transactions on Visualization and Computer Graphics,
17(5):626–641, 2011. doi:10.1109/TVCG.2010.81.

32 János Pach and Dömötör Pálvölgyi. Bounded-degree graphs can have arbitrarily large slope
numbers. Electronic Journal of Combinatorics, 13(1):N1, 2006.

33 Achilleas Papakostas. Upward planarity testing of outerplanar dags. In Roberto Tamassia
and Ioannis G. Tollis, editors, Graph Drawing, pages 298–306. Springer, 1995. doi:10.
1007/3-540-58950-3_385.

34 G. A. Wade and J.-H. Chu. Drawability of Complete Graphs Using a Minimal Slope Set.
The Computer Journal, 37(2):139–142, 1994. doi:10.1093/comjnl/37.2.139.

Decomposing Polygons into Fat Components
Maike Buchin1 and Leonie Selbach1

1 Ruhr University Bochum
maike.buchin@rub.de, leonie.selbach@rub.de

Abstract
We study the problem of decomposing (i.e. partitioning or covering) polygons into components
that are α-fat, which means that the aspect ratio of each subpolygon is at most α. We consider
decompositions without Steiner points. We present a polynomial-time algorithm for simple polygons
that finds the minimum α such that an α-fat partition exists. Furthermore, we show that finding an
α-fat partition or covering with minimum cardinality is NP-hard for polygons with holes.

Related Version A full version of this paper is available at https://arxiv.org/abs/2103.08995 [1]

1 Introduction

A decomposition of a polygon P is a set of subpolygons whose union is exactly P . If the
subpolygons are not allowed to overlap, the set is a partition of P . Otherwise, we call the set
a covering. Here, we consider decompositions without Steiner points. Thus, a polygon is
decomposed by adding diagonals between its vertices. Polygon decomposition problems arise
in many theoretical and practical applications and can be categorized with regard to the
type of subpolygon that is used [6]. We consider decompositions into fat components. Our
research is motivated by a bioinformatical application: The fragmentation of tissue samples
can be modeled as a constrained shape decomposition problem in which specifically round or
fat components are desired [7].

A polygon P is called α-fat if its aspect ratio (AR) is at most α. There are different
definitions for the aspect ratio and in this paper we consider the following two (see Fig. 1):
square-fatness: ARsquare = ratio between the side length of the smallest axis-parallel square

containing P and side length of the largest axis-parallel square contained in P [5].
disk-fatness: ARdisk = ratio between the diameter of the smallest circle enclosing P (mini-

mum circumscribed circle or MCC) and the diameter of the largest circle enclosed in P
(maximum inscribed circle or MIC) [3].

A polygon P is called α-small if the side length of the enclosing square or respectively the
diameter of the enclosing circle is at most α. The minimum α-fat partition (or covering)
problem is finding a partition (or covering) with minimum cardinality such that every
subpolygon is α-fat. We have analog problems with α-smallness instead of α-fatness.

(a) (b)

Figure 1 Partition that is 1.5-fat with square-fatness (a) and 1.4-fat with disk-fatness (b).

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

27:2 Decomposing Polygons into Fat Components

Worman showed that the minimum α-small partition problem as well as the covering
problem are NP-hard for polygons with holes [8]. Square-smallness was used for the reduction,
but with some adjustments the construction holds for disk-smallness as well [1]. In the
following results disk-smallness and -fatness was used. Damian and Pemmaraju showed that
the minimum α-small partition problem is polynomial-time solvable for simple polygons
and that a faster 2-approximation algorithm exists [3]. Additionally, the authors presented
an approximation algorithm for convex polygons. Damian proved that the minimum α-fat
partition problem can be solved in polynomial time for simple polygons and conjectured that
this problem is NP-hard for polygons with holes [2]. The min-fat partition problem is finding
the smallest α for which an α-fat partition exists. Solving the min-fat partition problem was
stated as an open problem by Damian [4].

This paper includes two main results. In section 2 consider the min-fat partition problem
using disk-fatness and present a polynomial-time algorithms for simple polygons. In section 3
we consider the minimum α-fat partition and covering problem and confirm the conjecture
that these problems are NP-hard for polygons with holes. This result is true for both
square- and disk-fatness. Because of the line constraints, we present only the reduction
for square-fatness. All missing proofs and results can be found in the full version of this
paper [1].

2 Min-fat partition problem for simple polygons

We extend the method of Damian [2] to solve the min-fat partition problem for simple
polygons while using the definition of disk-fatness. Our goal is to find a partition such that
the largest aspect ratio (AR) of any subpolygon is minimized. Note that the value of the
largest AR in this optimal partition equals the desired α in the min-fat partition problem.

Let P be a simple polygon, with vertices labeled from 1 to n counterclockwise. A diagonal
(i, j) is a line segment that connects two vertices i and j and does not intersect the outside of
P . Let G(P) be the visibility graph of P consisting of the n vertices of P and m diagonals.
We define S as the set consisting of all vertices and edges of G(P). For each diagonal (i, j)
with i < j, let Pi,j be the subpolygon with vertices {i, i+ 1, . . . , j} (see Fig. 2a). To solve
the min-fat partition problem, we compute an optimal partition Zi,j for each Pi,j . This
can be done iteratively. Let Q be the polygon in Zi,j adjacent to (i, j). Note that the
vertices of Q induce a path q from i to j in the visibility graph (see Fig. 2b) and we have
Zi,j =

⋃
(k,l)∈q Zk,l ∪Q. The idea is to find an optimal partition by computing the optimal

path q. We define edge weights w(i, j) as the value of am optimal partition Zi,j of Pi,j :

w(i, j) = max
P ′∈Zi,j

AR(P ′) = max{ max
(k,l)∈q

w(k, l), AR(Q)}

for AR(Q) = d(MCC)/d(MIC) being the ratio between the diameters d(·) of the minimum
circumscribed circle MCC and maximum inscribed circle MIC of Q. If j is equal to i+ 1,
the partition Zi,i+1 is empty and we set w(i, i+ 1) = 0. Otherwise, w(i, j) equals the value
of the largest AR in an min-fat partition of Pi,j .

However, the computation of w(i, j) presents the following problem: Finding the path
q and its correct edges requires knowledge about the resulting polygon Q and its aspect
ratio, which is obviously not available beforehand. Therefore, we compute paths on different
reduced graphs that ensure that the aspect ratio of each possible polygon is below a certain
value and then choose the best one. For this, we consider all pairs of circles (C, I) such
that the following properties hold: (i, j) lies completely inside of C and outside of I, I is
tangent to 3 elements in S, and C either touches 3 vertices of P or its diameter connects 2

M. Buchin and L. Selbach 27:3

i
i+ 1 j

(a) Pi,j .

i
i+ 1 j

q

(b) Polygon Q.

i
i+ 1 j

CI

(c) Graph G(C,I)
i,j .

Figure 2 In (a): Subpolygon Pi,j . In (b): Polygon Q (gray) in an optimal partition of Pi,j

induced by a path q (blue edges) in the visibility graph. In (c): Reduced visibility graph G(C,I)
i,j (fat

edges) for a pair of circles (C, I).

vertices. Note that for any subpolygon the pair (MCC,MIC) fulfills these properties. For
each (C, I), let G(C,I)

i,j be the subgraph of G(P) consisting of edges that lie inside of Pi,j and
C and outside of I (see Fig. 2c).

We can compute the weights w(i, j) by using dynamic programming with increasing
values of j − i. For each pair of circles (C, I), we compute a corresponding weight W (C, I)
and use those values to determine an edge weight w′(i, j) as follows:

w′(i, j) = minW (C, I) = min min
q∈G

(C,I)
i,j

max{ max
(k,l)∈q

w′(i, j), d(C)/d(I)}.

The weights of all edges except for (i, j) have already been computed. We search in G(C,I)
i,j

for the path q such that the value max{max(k,l)∈q w
′(k, l), d(C)/d(I)} is minimized. We

denote this optimal value as W (C, I). Over all possible combinations of circles, we search for
the pair (C, I) with minimum W (C, I) and set w′(i, j) = W (C, I). We can show by induction
that w′(i, j) is actually equal to the largest aspect ratio in the corresponding partition and
that this partition is indeed optimal and thus w′(i, j) = w(i, j).

I Lemma 2.1. For an edge (i, j) in the visibility graph G(P) with j 6= i+1, let w′(i, j) be the
computed weight and Zi,j the corresponding partition. Then, w′(i, j) = maxP ′∈Zi,j AR(P ′).

I Lemma 2.2. The computed partition Zi,j is an optimal partition of Pi,j , meaning that the
largest aspect ratio of any subpolygon is minimized.

I Theorem 2.3. For a simple polygon P , the min-fat partition problem using disk-fatness
can be solved in time O(n3m5 logn) with n being the number of vertices of P and m being
the number of edges in the visibility graph G(P).

Proof. First, we have to compute the visibility graph of P which takes O(n+m) time. For
every edge (i, j) in the visibility graph, we determine an optimal partition Zi,j by computing
the optimal weight w(i, j). For each (i, j), we consider pairs of circles (C, I). There are
O(n3) circles C and O(m3) circles I to consider. Computing the optimal path in G(C,I)

i,j can
be done by an adjusted version of Dijkstra’s Algorithm and therefore takes O(m logn) time.
Thus, the overall runtime of the algorithm is O(n3m5 logn). J

EuroCG’21

27:4 Decomposing Polygons into Fat Components

3 Minimum α-fat decomposition problems for polygons with holes

We show that given a polygon with holes, it is NP-complete to decide whether there exists an
α-fat partition or covering with a given number of components. Similarily to Worman [8], we
show its NP-hardness by a reduction from planar 3,4-SAT. This is the problem of deciding if
a boolean formula φ is satisfiable under the following 3 restrictions: In conjunctive normal
form φ has exactly 3 literals per clause, each literal appears in at most 4 clauses, and the
graph G(φ) = (V,E) with V = U ∪ C and E = {(u, c) |u ∈ U, c ∈ C, u or ū is a literal in c},
where U are the literals and C the clauses, is planar.

We construct a polygon representing the graph G(φ) that has an α-fat partition of size
k if and only if φ is satisfiable. We determine the value k during this construction. Our
construction uses a fixed value of α and consists of 3 different polygon components: variable,
wire and clause polygons. In contrast to the related reduction of Worman, the constructions
differ depending on the definition of fatness that is applied. Here, we present the method for
square-fatness, the one for disk-fatness can be found in the full version [1].

We set α = 1.2. All polygon components have a width of at most 5, thus the side length
of the enclosing squares cannot exceed 6. The variable polygon is shown in Figure 3a. It
has four terminals at which wires can be connected. With the given α, this polygon can
be minimally partitioned with 8 subpolygons in two ways (see Fig. 3b). These partitions
represent the True and False assignment that will be carried to the corresponding clauses.

Each wire consists of a set of individual wire polygons that are connected with each other
(as depicted in Figure 4) to carry the variable assignment to the clause polygon. The wires
can be attached at the terminals in two possible orientations (see Fig. 5) depending on
whether the variable appears in the clause negated or unnegated. If the wire is connected in
the unnegated orientation and the variable is set to True, the green polygon in Figure 5a
can cover the top part of the wire as well, but this is not the case if the variable is set to
False. The reverse is true if the wire is connected in the negated orientation. If a wire is
partitioned in this way (unnegated position and True assignment or negated position and
False assignment), we say that it carries True.

1 2

34

(a)
(b)

Figure 3 The variable polygon with four terminals indicated by 1, 2, 3, 4 in blue (a) and its
minimal 1.2-fat partitions representing the True (green) and False (red) assignment (b).

M. Buchin and L. Selbach 27:5

(a) (b) (c)

Figure 4 A single wire polygon (a), its two partitions that represent the True (green) or False
(red) assignment (b), and two connected wire polygons (c).

0.9

(a) True assignment of variable.

0.9

(b) False assignment of variable.

Figure 5 Attaching a wire to the variable in unnegated orientation (on bottom right terminal)
and in negated orientation (on bottom left terminal) which switches the True/False value.

The variable assignment is carried to the clause polygon (see Fig. 6). For each of the
three variables contained in the clause, this polygon has one terminal where the wires will
be attached. Depending on the values these wires carry, a different number of polygons is
needed to partition the clause polygon into 1.2-fat components. If some wire carries True
(see Fig. 7a and 7b), the tip of the connected terminal (gray) is already covered and center
part of the clause polygon (dark green) can be covered as well. If more than one wire carries
True either one of the corresponding polygons (light green) can cover the center. In either
case, the partition requires exactly four polygons. If all wires carry False (see Fig. 7c), the
a part of the center (red area) cannot be covered by any of the bigger polygons (light red)
and thus five polygons are needed to partition the clause polygon.

The whole polygon representing G(φ) is constructed based on a planar orthogonal grid
drawing of G(φ). That is a planar embedding of the graph such that every vertex is located at
an integer grid point, the edges are non-overlapping, and every edge is a chain of orthogonal
lines that bend at integer grid points. A schematic example for the placement of variable
and clause polygons on the vertices of the drawing can be seen in Figure 8. To construct
the edges, the wires have to be bend, shifted or offset. This is achieved by the constructions
presented in Figure 9. The drawing of G(φ) is scaled to accommodate the size of the variable
and clause polygons as well as the needed adjustments of the wire polygons.

EuroCG’21

27:6 Decomposing Polygons into Fat Components

1

23

0.5

0.50.5

Figure 6 The clause polygon with three terminals indicated by 1, 2, 3 in blue.

(a) True, False, False (b) True, True, True (c) False, False, False

Figure 7 Partition of the clause polygon depending on different assignments that are transmitted
by the wires (True green edges, False red edges).

Figure 8 Placement of 5 variable and 3 clause polygons on a planar orthogonal grid drawing.

M. Buchin and L. Selbach 27:7

(a) (b) (c)

Figure 9 Bending (a), shifting (b) and offsetting (c) a wire that carries True (green edges) or
False (red edges).

As we consider the decision problem, the number k of allowed subpolygons is fixed. We
have k = 8v + 4c+ w where v is the number of variables, c the number of clauses and w the
number of wire polygons needed in the construction. Bending, shifting and offsetting a wire
counts as 3, 2, and 5 wire polygons, respectively.

I Theorem 3.1. Deciding the α-fat partition problem is NP-complete for polygons with holes
if square-fatness is applied.

Note that we can find a minimum 1.2-fat covering with the same number of components
as the minimum partition and that the constructed polygon is orthogonal. Thus, the result
remains true for the corresponding covering problem and also for orthogonal polygons with
holes. However, the presented construction does not work for disk-fatness: If α is set to the
smallest aspect ratio needed such that all components in the construction are still feasible,
other subpolygons become feasible, and the transmission of True/False values would no
longer be consistent. We can adjust the construction for disk-fatness, but this adjusted
construction in turn does not work for square-fatness anymore [1].

4 Conclusion

We presented a polynomial-time algorithm for the min-fat partition problem for simple
polygons. Furthermore, we proved that it is NP-complete to decide the α-fat partition
problem and covering problem for polygons with holes. Both results are true for disk-fatness
and the latter also holds for square-fatness. It remains open whether the minimum α-fat or
min-fat covering problem is solvable for simple polygons. Moreover, there are no results for
any related fat decomposition problems that allow Steiner points yet.

References
1 Maike Buchin and Leonie Selbach. Decomposing polygons into fat components, 2021.

arXiv:2103.08995.
2 Mirela Damian. Exact and approximation algorithms for computing optimal fat decompo-

sitions. Computational Geometry, 28(1):19–27, 2004.
3 Mirela Damian and Sriram V Pemmaraju. Computing optimal diameter-bounded polygon

partitions. Algorithmica, 40(1):1–14, 2004.
4 Erik Demaine and Joseph O’Rourke. Open problems from CCCG 2002. In Proceedings of

the 15th Canadian Conference on Computational Geometry, pages 178–181, 2003.

EuroCG’21

27:8 Decomposing Polygons into Fat Components

5 Matthew J Katz. 3-d vertical ray shooting and 2-d point enclosure, range searching, and
arc shooting amidst convex fat objects. Computational Geometry, 8(6):299–316, 1997.

6 J Mark Keil. Polygon decomposition. Handbook of computational geometry, 2:491–518,
2000.

7 Leonie Selbach, Tobias Kowalski, Klaus Gerwert, Maike Buchin, and Axel Mosig. Shape
Decomposition Algorithms for Laser Capture Microdissection. In 20th International Work-
shop on Algorithms in Bioinformatics, volume 172 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 13:1–13:17, 2020.

8 Chris Worman. Decomposing polygons into diameter bounded components. In Proceedings
of the 15th Canadian Conference on Computational Geometry, pages 103–106, 2003.

StreamTable: An Area Proportional Visualization
for Tables with Flowing Streams∗

Jared Espenant and Debajyoti Mondal

Department of Computer Science
University of Saskatchewan, Saskatoon, Saskatchewan, Canada
jae608@usask.ca, d.mondal@usask.ca

Abstract
Let M be an r × c table with each cell weighted by a nonzero positive number. A StreamTable
visualization of M represents the columns as non-overlapping vertical streams and the rows as
horizontal stripes such that the area of intersection between a column and a row is equal to the
weight of the corresponding cell. To avoid large wiggle of the streams, it is desirable to keep
the consecutive cells in a stream to be adjacent. Let B be the smallest axis-aligned bounding
box containing the StreamTable. Then the difference between the area of B and the sum of the
weights is referred to as the excess area.

We examine the complexity of optimizing various table aesthetics (minimizing excess area, or
maximizing cell adjacencies in streams) in a StreamTable visualization.

If the row permutation is fixed and the row heights are given as a part of the input, then we
provide an O(rc)-time algorithm that optimizes these aesthetics.
If the row permutation is fixed but the row heights can be chosen, then we discuss a tech-
nique to compute an aesthetic StreamTable by solving a quadratically constrained quadratic
program, followed by iterative improvements.
If row permutations can be chosen, then we show that it is NP-hard to find a row permutation
that optimizes the area or adjacency aesthetics.

1 Introduction

Proportional area charts and cartographic visualizations commonly map data value to area.
Table cartogram [4] is a brilliant way to visualize tables, where each table cell is mapped to
a convex quadrilateral with area equal to the cell’s weight. Furthermore, the visualization
preserves cell adjacencies and the quadrilaterals are packed together in a rectangle with no
empty space in between. However, since the cells in a table cartogram are represented with
convex quadrilaterals, neither the rows nor the columns remain axis aligned (e.g., see Figure
4 in [4]). This motivated us to look for solutions where the rows are represented with fixed
horizontal stripes and the cells are represented with axis aligned rectangles.

Streamgraphs are examples where the columns can be thought of as vertical stripes. Given
a set of variables, a streamgraph visualizes how the value changes over time by representing
each variable with an x-monotone flowing river-like stream. The width of the stream at a
timestamp is determined by the value of the variable at that time. Figure 1(a) illustrates
a streamgraph with five variables. Streamgraphs are often used to create infographics of
temporal data [2], e.g., box office revenues for movies [1], various statistics or demographics
of a population over time [7], etc.

In this paper, we introduce StreamTable that extends this idea of a streamgraph to
visualize tables or spreadsheets. We formally define a StreamTable as follows.

∗ Work is supported in part by the Natural Sciences and Engineering Research Council of Canada
(NSERC), and by two CFREF grants coordinated by GIFS and GIWS.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

35:2 Area Proportional Visualization for Tables

2017 2018 20202019

4 2 2 2

2 2 8 2

4 4

4 4

22

22

(a) (b) (c) (d)

r1

r2

r3

r4

r1

r2

r3

r4

r1

r2

r3

r4

c1 c2 c3 c4 c1 c2 c4c3c1 c2 c4c3

v1

v2

v3

v4

v5

Figure 1 (a) A streamgraph. (b) A table T . (c) A StreamTable for T . (d) A StreamTable
visualization with smooth streams.

StreamTable Let T be an r × c table with r rows and c ≥ 2 columns, where each cell is
weighted by a nonzero positive integer. A StreamTable visualization of T is a partition of
an axis-aligned rectangle R into r consecutive horizontal stripes that represent the rows
of T , where each stripe is further partitioned into rectangles to represent the cells of its
corresponding row. A column q of T is thus represented by a sequence of rectangles
corresponding to the cells of q. By a stream we refer to such a sequence of rectangles that
represents a column of T . Furthermore, a StreamTable must satisfy the following properties.
P1 The left side of the leftmost stream (resp., the right side of the rightmost stream) must

be aligned to the left side (resp., right side) of R.
P2 For each cell of T , the area of its corresponding rectangle in the StreamTable must be

equal to the cell’s weight.
Property P1 provides an aesthetic alignment with the row labels and a sense of total
visualization area. Property P2 provides an area proportional representation of the table cells.
Figure 1(b) illustrates a table and Figure 1(c) illustrates a corresponding StreamTable. The
stripes (rows) are shown in dotted lines and the partition of the stripes are shown in dashed
lines. Figure 1(d) illustrates an aesthetic visualization of the streams after smoothing the
corners. StreamTable computation can also be viewed as a variant of floorplanning [3, 10].

Note that a StreamTable may contain rectangular regions that do not correspond to
any cell. We refer to such regions as empty regions and the sum of the area of all empty
regions as the excess area. While computing a StreamTable, a natural optimization criteria
is to minimize this excess area. However, minimizing excess area may sometimes result
into disconnected streams, e.g., Figure 2(b) illustrates a StreamTable where the consecutive
rectangles for column c2 are not adjacent. If a pair of cells are consecutive in a column but
the corresponding rectangles are nonadjacent in the stream, then they split the stream. To
maintain the stream connectedness, it is desirable to minimize the number of such splits.
As illustrated in Figure 2(c)-(d), one may choose non-uniform row heights or reorder the
rows to optimize the aesthetics. Such reordering operations also appear in matrix reordering
problems [8] where the goal is to reveal clusters in matrix data.

Our Contribution. We explore StreamTable from a theoretical perspective and consider
the following two problems.

Problem 1 (StreamTable with no Split, Minimum Excess Area, and Fixed Row Ordering).
Given an r × c table T , can we compute a StreamTable for T in polynomial time with no
split and minimum excess area? Note that in this problem, the StreamTable must respect
the row ordering of T .

J. Espenant and D. Mondal 35:3

r1

r2

r3

r2

r1

r3

r1

r2

r3

c1 c2 c3 c1 c2 c3

c3c2c1

2 2 8

6 4 2

2 2 8

r1

r2

r3

c1 c2 c3

(a) (b) (c) (d)

Figure 2 (a) A table. (b) A StreamTable with no excess area and 2 splits. (c) A StreamTable
with non-uniform row heights, non-zero excess area, but no split. (d) A StreamTable with no excess
area and 1 split, which is obtained by reordering the rows.

While Problem 1 remains open, if the input additionally specifies a set {h1, . . . , hr} of
nonzero positive numbers to be chosen as row heights, then we can compute a StreamTable
with minimum excess area in O(rc) time. We show how to minimize the excess area further
by leveraging a quadratically constrained quadratic program, and then iteratively adjusting
the row heights. Since choosing a fixed row height helps to obtain a fast algorithm and
to compare the cell areas more accurately, we examined whether one can leverage the row
ordering to further improve the StreamTable aesthetics.

Problem 2 (Row-Permutable StreamTable with Uniform Row Heights). Given a table
T and a non-zero positive number δ > 0, can we compute a StreamTable in polynomial time
by setting δ as the row height, and minimizing the excess area (or, the number of splits)?
Note that in this problem, the row ordering can be chosen.

We show that Problem 2 is NP-hard. In particular, we show that computing a StreamTable
with no excess area and minimum number of split is NP-hard and similarly, computing a
StreamTable with no split and minimum excess area is NP-hard.

2 StreamTable (No Split, Min. Excess Area, Fixed Row Ordering)

In this section we compute StreamTables by respecting the row ordering of the input table.
We first explore the case when the row heights are given, and then the case when the row
heights can be chosen.

2.1 Fixed Row Heights
Let T be an r × c table and let {h1, . . . , hr} be a set of nonzero positive numbers to be
chosen as row heights. We now introduce some notation for the rectangles and streams in
the StreamTable. Let wi,j be the weight for the (i, j)th entry of T , where 1 ≤ i ≤ r and
1 ≤ j ≤ c, and let Ri,j be the rectangle with height hi and width (wi,j/hi,j). Let ai,j and
bi,j be the x-coordinates of the left and right side Ri,j .

We now show that a StreamTable R for T with no split and minimum excess area can be
constructed using a greedy algorithm G, as follows:

Step 1. Draw the rectangles Ri,1 of the first column such that they are left aligned.
Step 2. For each j < c, draw the jth stream by minimizing the sum of x-coordinates
ai,j , but ensuring that the stream remains connected.

EuroCG’21

35:4 Area Proportional Visualization for Tables

Step 3. Draw the rectangles Ri,c of the last column by minimizing the maximum
x-coordinate over bi,c, but ensuring that the rectangles are right aligned.

For every column j, let A(R, j) be the orthogonal polygonal chain determined by the left
side of Ri,j . Similarly, we define (resp., B(R, j)) for the right side of Ri,j . We now have the
following lemma.

I Lemma 2.1. G computes a StreamTable R with no split and minimum excess area.

Proof. We employ an induction on the number of columns. For an r × c table T with c = 2,
it is straightforward to verify the lemma. We now assume that the lemma holds for every
table with j columns where 1 ≤ j < c. Consider now a table with c columns and let R∗ be
an optimal StreamTable with no split and minimum excess area.

We first show that the first two streams of R∗ can be replaced with the corresponding
streams of R. To observe this first note that the stream for the first column must be drawn
left-aligned, and since the rectangle heights are given, the right side of the streams B(R, 1)
must coincide with B(R∗, 1). Consider now the left sides of the second streams. If A(R, 2)
does not coincide with A(R∗, 2), then there must be non-zero area between them. Let
A be an orthogonal polygonal chain constructed by taking the left envelope of these two
chains. In other words, for each row, we choose the part of the chain that have the minimum
x-coordinate. Since the streams for R and R∗ are connected, the stream determined by A
must be connected. Since the sum of x-coordinates is smaller for A, the polygonal chain
A(R, 2) must coincide with A. Thus the right side of the stream, i.e., the polygonal chain
B(R, 2), must remain to the left of B(R∗, 2).

We can now construct an r × (c− 1) table T ′ by treating the polygonal chain B(R, 2) as
B(R, 1). By induction, G provides a StreamTable R′ with no split and minimum excess area.
We can thus obtain the StreamTable R by replacing the first stream with the two streams
that were constructed using the greedy approach. J

We now have the following theorem. We omit the proof due to space constraints.

I Theorem 2.2. Given an r × c table T and a height for each row, a StreamTable R for T
with no split and minimum excess area can be computed in O(rc) time such that R respects
the row ordering of T .

We now show how to formulate a system of linear equations to compute a StreamTable
for T with no split and minimum excess area such that the height of the ith row is set to
hi, where 1 ≤ i ≤ r. This will be useful for the subsequent section. Let di,j be a variable
to model the adjacency between Ri,j and Ri+1,j , where 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ c. We

minimize the excess area:
r∑

j=1

c−1∑
k=1

hj(aj,k+1 − bj,k), subject to the following constraints.

1. aj,1 = aj+1,1 and bj,c = bj+1,c, where j = 1, . . . , r−1. This ensures StreamTable property
P1.

2. bj,k − aj,k = (wj,k/hj), where j = 1, . . . , r and k = 1, . . . , c. This ensures property P2.
3. aj,k ≤ dj,k ≤ bj,k and aj+1,k ≤ dj,k ≤ bj+1,k, where 1 ≤ j ≤ r − 1 and 1 ≤ k ≤ c. This

ensures that there is no split in the streams.
Since h1, . . . , hr are fixed constants, the above system with the constraint that the variables
must be non-negative can be modeled as a linear program, e.g., see Figure 3 (left).

J. Espenant and D. Mondal 35:5

2.2 Variable Row Heights
A straightforward solution in this case is to treat h1, . . . , hj as variables, which yields
a quadratically constrained quadratic program. Note that scaling down the height of a
StreamTable by some δ ∈ (0, 1] and scaling up the width by 1/δ do not change the excess
area. Therefore, a non-linear program solver may end up generating a final table with bad
aspect ratio. Hence we suggest to add another constraint: h1 + . . .+ hk = H, where H is
the desired height of the visualization. Figure 3 (right) illustrates an example where the
solution (not necessarily optimal) is computed using a non-linear program solver Gurobi [6],
and Figure 4 is obtained by smoothing the corners of the streams.

1924

1932

1948

1956

1964

1972

1980

1988

1994

2002

2010

2014

2006

1998

1992

1928
1936

1952

1960

1968

1976

1984

197

182

187

188

151

134

126

101

82
86

81
81

88
77

57
54

67
65

5142
39

48

Finland

Austria

Sweden

NorwayUnited StatesGermany

Netherlands

ItalyCanada

Switzerland

U.K.

France

Total MedalsOlympic Year

1924

1932

1948

1956

1964

1972

1980

1988

1994

2002

2010

2014

2006

1998

1992

1928
1936

1952

1960

1968

1976

1984

197

182

187

188

151

134

126

101

82
86

81
81

88
77

57
54

67
65

5142
39

48

Finland

AustriaSwedenNorwayUnited StatesGermany

Netherlands

ItalyCanada

Switzerland

U.K.

France

Total MedalsOlympic Year

Figure 3 StreamTables of a Winter Olympics dataset (left) using a linear program with row
height proportional to the row sum, and (right) using Gurobi with a fixed total height.

1924

1932

1948

1956

1964

1972

1980

1988

1994

2002

2010

2014

2006

1998

1992

1928
1936

1952

1960

1968

1976

1984

197

182

187

188

151

134

126

101

82
86

81
81

88
77

57
54

67
65

5142
39

48

Finland

AustriaSwedenNorwayUnited StatesGermany

Netherlands

ItalyCanada

Switzerland

U.K.

France

Total MedalsOlympic Year

Figure 4 An aesthetic StreamTable created by corner smoothing.

EuroCG’21

35:6 Area Proportional Visualization for Tables

We now show how a non-optimal StreamTable may be improved further by examining
each empty cell individually, while deciding whether that cell can be removed by shrinking
the height of the corresponding row. By Ei,j we denote the empty rectangle between the
rectangles Ri,j and Ri,j+1. We first refer the reader to Figure 5(a)–(b). Assume that we
want to decide whether the empty cell Ei,j(= E2,4) can be removed by scaling down the
height of the second row. The idea is to grow the rectangles to the left (resp., right) of Ei,j

towards the right (resp., left) respecting the adjacencies and area.

R2,4

R1,1 R1,2 R1,3 R1,4 R1,5

E2,2 E2,4

R2,3 R2,5

R3,4R3,1 R3,2R3,3 R3,5

(0,0)

Wc

(a)
(b)

(c)

E2,3

(Wc, 0)

Hn
R2,1

E2,1
Hc

R2,2

`2,1 e2,1 `2,2 e2,2 `2,3 `2,4 `2,5

Wc

(d)

Hn

`2,1 e2,1 `2,2 e2,2 `2,3 `2,4 `2,5

L

Hc

Figure 5 (a) A StreamTable with width Wc and height Hc. (b) Removal of the empty rectangle
E2,4 (c)–(d) Illustration for computing the new height Hn of the second row.

Now consider a rectangle Ri,k(= R2,2) before Ei,j(= E2,4). Let Gi,k be the rectangle
determined by the ith row with left and right sides coinciding with the left and right sides of
Ri,1 and Ri,k, respectively. Figure 5(a) shows G2,2 in a falling pattern. Let `i,k be the width
of Gi,k. Let Ai,k be the initial area of Gi,k, and our goal is to keep this area fixed as we scale
down the height of the ith row. The height of Gi,k is defined by f(`i,k) = Ai,k/`i,k. Since
the rectangles of the (i − 1)th and (i + 1)th rows do not move, f(`i,k) does not split the
(k+ 1)th stream as long as `i,k is upper bounded by the right sides of Ri−1,k+1 and Ri+1,k+1.
Figure 5(c) plots these functions, where Hc is the current height of the second row. The
height function for G2,2 is drawn in thick purple in the interval [`2,2,min{q1,3, q3,3}], where
q1,3 and q3,3 are the right sides of R1,3 and R3,3, respectively.

We construct such functions also for all the empty rectangles Ei,q, where 1 ≤ q < j.
These are labelled with ei,q. Finally, we construct these functions symmetrically for the
rectangles that appear after Ei,j . We then find a height Hn by determining the common
interval L where all these functions are valid individually (Figure 5(c)), and determining the
first intersection (if any) in this interval, as illustrated in Figure 5(d).

We iterate over the empty rectangles as long as we can find an empty rectangle to improve
the solution, or to a maximum number of iterations.

3 StreamTable (Uniform Row Heights, Variable Row Ordering)

We now show that computing StreamTables with no split (resp., minimum excess area) while
minimizing the excess area (resp., number of splits) by reordering the rows is NP-hard.

J. Espenant and D. Mondal 35:7

I Theorem 3.1. Given a table T and a non-zero positive number δ > 0, it is NP-hard to
compute a StreamTable with no split and minimum excess area, where each row is of height δ
and the ordering of the rows can be chosen.

Proof. We reduce the NP-complete problem betweenness [9]. Given an instance S of
betweenness, we construct an r × (4c+ 1) table T and a positive integer δ such that there
exists a StreamTable for T with no split and excess area at most 15rc

12 if and only if S admits
a total order. We omit the details due to space constraints. J

I Theorem 3.2. Given a table T and a non-zero positive number δ > 0, it is NP-hard to
compute a StreamTable with zero excess area and minimum number of splits, where each row
is of height δ and the ordering of the rows can be chosen.

Proof. We reduce the NP-complete problem Hamiltonian path in a cubic graph [5]. Given
an instance G with n vertices and m edges, we construct an n×m table T and a positive
integer δ such that there exists a StreamTable for T with δ height for each row, zero excess
area, and at most 4(n− 1) splits, if and only if G admits a Hamiltonian path. We omit the
details due to space constraints. J

References
1 Marco Di Bartolomeo and Yifan Hu. There is more to streamgraphs than movies: Better

aesthetics via ordering and lassoing. Comput. Graph. Forum, 35(3):341–350, 2016.
2 Lee Byron and Martin Wattenberg. Stacked graphs - geometry & aesthetics. IEEE Trans.

Vis. Comput. Graph., 14(6):1245–1252, 2008.
3 Temo Chen and Michael K. H. Fan. On convex formulation of the floorplan area min-

imization problem. In Majid Sarrafzadeh, editor, Proceedings of the 1998 International
Symposium on Physical Design (ISPD), pages 124–128. ACM, 1998.

4 William S. Evans, Stefan Felsner, Michael Kaufmann, Stephen G. Kobourov, Debajyoti
Mondal, Rahnuma Islam Nishat, and Kevin Verbeek. Table cartogram. Comput. Geom.,
68:174–185, 2018.

5 M. R. Garey, David S. Johnson, and Robert Endre Tarjan. The planar Hamiltonian circuit
problem is NP-complete. SIAM J. Comput., 5(4):704–714, 1976.

6 LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020. URL:
https://www.gurobi.com/wp-content/plugins/hd_documentations/documentation/
9.1/refman.pdf.

7 Susan Havre, Elizabeth G. Hetzler, Paul Whitney, and Lucy T. Nowell. Themeriver: Visu-
alizing thematic changes in large document collections. IEEE Trans. Vis. Comput. Graph.,
8(1):9–20, 2002.

8 Erkki Mäkinen and Harri Siirtola. Reordering the reorderable matrix as an algorithmic
problem. In Michael Anderson, Peter C.-H. Cheng, and Volker Haarslev, editors, Proc. of
the First International Conference on Theory and Application of Diagrams, volume 1889
of LNCS, pages 453–467. Springer, 2000.

9 Jaroslav Opatrny. Total ordering problem. SIAM J. Comput., 8(1):111–114, 1979.
10 E. Rosenberg. Optimal module sizing in VLSI floorplanning by nonlinear programming.

ZOR Methods Model. Oper. Res., 33(2):131–143, 1989.

EuroCG’21

An example of a randomized order-dependent time
analysis in incremental construction∗

Kolja Junginger1 and Evanthia Papadopoulou2

1,2 Faculty of Informatics, Università della Svizzera italiana
{kolja.junginger, evanthia.papadopoulou}@usi.ch

Abstract
Abstract Voronoi-like diagrams were introduced by the authors in SoCG 2018 [4] serving as interme-
diate structures in a simple randomised incremental algorithm to perform site-deletion in abstract
Voronoi diagrams in expected linear time. The intermediate Voronoi-like structures depend on the
permutation order of the randomized algorithm and this complicates the time complexity analysis of
the incremental construction. In this abstract we present a method to perform the time-complexity
analysis, which can be of independent interest when analysing the expectation of order-dependent
structures.

Related Version arXiv:1803.05372v2

1 Introduction

We present the time complexity analysis of a simple randomized incremental algorithm,
which was described by the authors in [4] to perform deletion in abstract Voronoi diagrams
in expected linear time, and which also applies to other related Voronoi structures [5].
The technique uses Voronoi-like diagrams as intermediate structures, which are defined as
graphs on the arrangement of the underlying bisector system. These intermediate structures,
however, depend on the randomization order of the incremental algorithm and this complicates
the algorithm’s time complexity analysis. We present a strategy of how to perform this
analysis, which can be of independent interest when analyzing expectation in order-dependent
environments.

Backwards analysis [8] offers simple and elegant means to analyse a randomized incremen-
tal algorithm. It was first used by Chew [1] in a simple incremental technique to compute the
Voronoi diagram of points in convex position in expected linear time. Seidel [8] demonstrated
a variety of problems, whose time analysis can be performed in simple terms by backwards
analysis and since then it has become a standard in computational geometry, see, e.g., [2]
and references therein. He also pointed out a negative example of an order-dependent trian-
gulation where the standard arguments were not applicable. Similarly, standard arguments
are not easy to apply to our order-dependent Voronoi-like structures.

In [4], the cost of one insertion operation is expressed in terms of the resulting structure,
as typically done in backwards analysis. However, depending on the permutation order, at
any step i of the incremental algorithm, there can be a large number of different resulting
structures, which are defined on the same set of i objects, preventing the use of standard
arguments in deriving the expectation. In this paper, we give an alternative derivation. We
consider all possible permutations on i objects, and partition them into disjoint groups of i
permutations each. The i permutations within one group all have a different ith element,
while the order of the remaining elements is kept intact. We show that the step i of the

∗ Supported in part by the Swiss National Science Foundation, DACH project SNF-200021E_154387.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

29:2 A randomized order-dependent time analysis

α

β γ

δ

ε

ζ

η

V(S)

ϑ

Figure 1 S = ∂VR(s, S) shown in black and V(S) = V(S \ {s}) ∩ VR(s, S) shown in red;
S = (α, β, γ, δ, ε, ζ, η, ϑ). (Reproduced from [4].)

algorithm on an entire group can be performed in total O(i) time. Since all permutations
are equally likely, we can derive that step i is performed in expected O(1) time. The method
gives a simple alternative to backwards analysis, applicable to both order-dependent and
order-independent structures.

We first review concepts of abstract Voronoi and Voronoi-like diagrams and the randomized
incremental construction of [4]. Then in Section 3, we give the strategy to perform the time
complexity analysis, and in Section 4 we outline its derivation.

2 Review of abstract Voronoi and Voronoi-like diagrams

Let S be a set of n abstract sites and let J = {J(p, q) : p 6= q ∈ S} be their underlying
bisector system, which is admissible, i.e., it satisfies the axioms of abstract Voronoi diagrams
for every subset S′ ⊆ S. That is, each bisector curve is an unbounded Jordan curve; each
Voronoi region is non-empty and connected; Voronoi regions cover the plane; and any two
bisectors intersect transversally and in a finite number of points [6].

The bisector J(p, q) of two sites p, q ∈ S is an unbounded Jordan curve that divides the
plane into two open domains: the dominance region of p, D(p, q), and the dominance region
of q, D(q, p). The Voronoi region of site p is

VR(p, S) =
⋂

q∈S\{p}
D(p, q).

The abstract Voronoi diagram of S is V(S) = R2 \⋃p∈S VR(p, S).
Without loss of generality, we restrict all computations within the domain DΓ enclosed

by a large closed curve Γ (e.g., a circle or rectangle) which encloses all intersections of the
bisector system. Each bisector crosses Γ twice and transversally.

Consider a Voronoi region VR(s, S) and let S denote the sequence of Voronoi edges along
∂VR(s, S), i.e., S = ∂VR(s, S) ∩DΓ. The arcs in S can be interpreted as sites that induce
the Voronoi diagram V(S) = V(S \ {s}) ∩VR(s, S) ∩DΓ, see Figure 1. We compute V(S) in
order to update the Voronoi diagram after deletion of the site s. V(S) is a tree, if VR(s, S)
is bounded, and a forest otherwise. Its regions may have multiple faces that belong to the
same site; in fact, S is a Davenport-Schinzel sequence of order 2.

Given S′ ⊆ S, we need a diagram that is related to S′. To this aim we use the notion of a
boundary curve on S′ and its Voronoi-like diagram. For any arc α ∈ S, let sα denote the site
in S such that α ⊆ J(s, sα). Consider the set Jp of all bisectors related to a site p ∈ S, i.e.,
the set of the bisectors J(p, ·).

K. Junginger and E. Papadopoulou 29:3

R(η,P)

β′

P
α

β γ
ε

Vl(P)

η

g

Figure 2 A boundary curve P on S′ ⊆ S and its Voronoi-like diagram Vl(P). S′ is shown in bold
and Vl(P) in red. The gray arc g is a Γ-arc, the blue arc β′ is an auxiliary arc, and the remaining
arcs are original. (Reproduced from [4].)

I Definition 2.1 ([4]). A path in the arrangement of all bisectors in Jp is called p-monotone,
if any two consecutive arcs α, β, with α ⊆ J(p, sα) and β ⊆ J(p, sβ), coincide locally around
their common endpoint v with the Voronoi edges of ∂VR(p, {p, sα, sβ}), incident to v.

I Definition 2.2 ([4]). A boundary curve P on a set of core arcs S′ ⊆ S is a closed s-monotone
path in the arrangement of Js ∪Γ that contains all arcs in S′. The part of the plane enclosed
by P is called its domain DP , see Figure 2.

A boundary curve consists of pieces of s-bisectors called boundary arcs, and pieces of Γ,
called Γ-arcs. The Γ-arcs serve as links to boundary arcs and they correspond to openings of
the domain DP to infinity. Among the boundary arcs, those that contain an arc of S′ are
called original and the others are called auxiliary. Original arcs are expanded versions of the
core arcs in S′. In Figure 2, core arcs are shown in bold.

Let S′ ⊆ S \ {s} denote the set of sites that, together with s, induce the bisectors of the
arcs in S′. Let JS′ = {J(p, q) ∈ J | p, q ∈ S′}. We consider the arrangement of JS′ ∪ Γ.

I Definition 2.3 ([4]). The Voronoi-like diagram of a boundary curve P on S′ ⊆ S is a plane
graph defined on the arrangement of bisectors JS′ that induces a subdivision on the domain
DP as follows (see Figure 2): (1) for each boundary arc α ∈ P there is exactly one distinct
face R(α,P), called the Voronoi-like region of α, whose boundary is an sα-monotone path in
JS′ ∪ Γ connecting the endpoints of α; and (2) the faces cover DP :

⋃
α∈P\ΓR(α,P) = DP .

The Voronoi-like diagram of P is Vl(P) = DP \
⋃
α∈P R(α,P).

Vl(P) is unique and its complexity is O(|P|), where |P| is the number of boundary arcs
in P [4].

The incremental construction. Any random permutation of the arcs in S, defines a series of
boundary curves Pi, i = 1, . . . , h, h = |S|, and a series of shrinking domains DPi , where P1 is
the boundary curve defined by a single core arc, and Ph = ∂(VR(s, S) ∩DΓ); Vl(Ph) = V(S)
[4]. The incremental algorithm is inspired by Chew [1] and works in two phases for a random
permutation of S o = (α1, . . . , αh). In phase 1, delete the arcs in S in the reverse order
o−1, while registering their neighboring arcs at the time of deletion. In phase 2, insert back
the arcs one by one in the order o, starting at P1 = ∂(D(s, sα1) ∩DΓ) and Vl(P1) = ∅. At
any step i, we compute Vl(Pi+1) from Vl(Pi) by inserting the core arc αi following an arc
insertion operation ⊕, which is detailed in [4]. The insertion point for αi is determined by
the recorded neighbors from phase 1, followed by a scan of any auxiliary arcs between them.

EuroCG’21

29:4 A randomized order-dependent time analysis

β∗

P

Vl(P)

J(sβ , s)

R(β,Pβ)

Figure 3 Vl(Pβ) is derived from Vl(P) by inserting the region R(β,Pβ) [4].

The arc insertion operation ⊕. Given Vl(P) and β∗ ∈ S′, such that β∗ 6∈ P, we identify
the original arc β ∈ J(s, sβ)∩DP such that β ⊇ β∗, and insert it in P to obtain Pβ = P ⊕ β
and Vl(Pβ) = Vl(P)⊕ β. To derive Pβ we substitute the portion of P between the endpoints
of β, with β, see Figure 3. Then, a merge curve J(β) is computed, similarly to an ordinary
Voronoi diagram, which connects the endpoints of β and reveals the Voronoi-like region
R(β,Pβ), such that J(β) ∪ β = ∂R(β,Pβ). Updating the diagram, we obtain Vl(P) ⊕ β,
which turns out to be Vl(Pβ). The case analysis and correctness were established in [4]. The
time complexity is proportional to the complexity of J(β), plus some additional parameters
for scanning auxiliary arcs and for splitting Voronoi-like regions. For the purposes of this
paper, we ignore these additional parameters and we reduce the dependency of the time
complexity to |R(β,Pβ)|.

In summary, the simplified cost of the algorithm’s step i in this paper is assumed
|R(αi,Pi+1)|.

3 The time analysis strategy

Consider the decision tree T , which encodes all possible random choices that can be made
by our incremental algorithm on a set of h core arcs S, h = |S|, see Fig. 4. Any path in T
from the root to a leaf corresponds to one possible execution of the incremental construction.
At level-i, there are h!/(h− i)! nodes, and each node corresponds to a unique permutation
of i core arcs. The arity of each node is h − i corresponding to all possible choices of the
algorithm at this node. T has h! leaves and its root corresponds to the empty permutation.

Let Si ⊆ S be a subset of i core arcs. Si is associated with i! different nodes at level-i of
T , which are called the block of the set Si. Each node within a block is associated with a
boundary curve and its diagram. The boundary curves of different nodes in the same block
can vary considerably depending on the path, i.e., the permutation order, that leads to each

level i

α1 α2 α3 αh. . .

.
. . .

...

. . .

α4

Πi . . .G(oi)

T

α1α2 αhα1αh

α4...α`

{}

Figure 4 There are h!/(h− i)! nodes at level-i of the decision tree T , each corresponding to a
unique permutation of i core arcs. Level i is partitioned into groups of size i.

K. Junginger and E. Papadopoulou 29:5

node. T has
(
h
i

)
distinct such blocks at level i.

We use the following strategy: we partition each block of nodes at level-i into (i − 1)!
disjoint groups of i nodes each; for each group we show that the step i of our algorithm
requires total time O(i), for all the i permutations of the group.

Let oi = (α1, α2, . . . , αi) be an arbitrary permutation of Si. From oi we define a group
G = G(oi) of i permutations: for each 1 ≤ j < i, remove αj from its position in oi and
append it to the end of oi.

oi = (α1, α2, . . . , αj−1, αj , αj+1 . . . , αi−1, αi) (1)

oj = (α1, α2, . . . , αj−1, αj+1, . . . , αi−1, αi, αj) (2)

Each permutation oj in G corresponds to a boundary curve Bj , 1 ≤ j ≤ i, which is
derived by arc insertion following the order in oj . Bi is the base boundary curve of the group
that is derived from oi. Figure 5 illustrates an example for i = 3.

The rule of equation (2) follows two principles: 1) each of the i elements in Si appears
in the ith position of exactly one permutation in each group; and 2) each permutation has
a minimal number of inversions with respect to oi. Property 1 is used to derive the time
complexity of step i on G by reducing it to the structural complexity of a resulting diagram.
Property 2 minimizes the differences between the resulting boundary curves. By combining
the two, we can reduce the time complexity of step i to the structural complexity of Vl(Bi).

Let T (i, oj) denote the time complexity of step i when inserting the last arc of permutation
oj in deriving Vl(Bj).
I Lemma 3.1. The time for step i on the entire group G = G(oi) is

T (i, G) =
∑

oj∈G
T (i, oj) = O(i)

After proving Lemma 3.1 it remains to argue that the partitioning of each block of i!
nodes (permutations) following the scheme of equation (2) is possible. The answer to this
question is provided by Levenshtein [7] and this was pointed out to us by Stefan Felsner [3].

I Lemma 3.2. Let Πi denote the block of all i! permutations of the set Si. There exists a
set F ⊂ Πi of (i− 1)! permutations such that Πi =

⋃̇
o∈FG(o).

Levenshtein calls this set F a code capable of correcting single deletions and proves that
these codes exist for all i ∈ N [7, Theorem 3.1]. Given Lemmata 3.1,3.2, we conclude:

I Theorem 3.3. The expected time complexity of step i of the randomized algorithm is O(1).

4 Proving Lemma 3.1

In this section we establish relations between the Voronoi-like diagrams of Bi and the rest
of the boundary curves Bj in G = G(oi), j < i, so that we can prove Lemma 3.1. Figure 5
illustrates an example of Bi, i = 3, and B1.

Bi
B1

γ
α

β

γ
α

β

α′

β′

(a) (b)

Figure 5 (a) Boundary curve Bi, oi = (γ, β, α). (b) Boundary curve B1, o1 = (β, α, γ).

EuroCG’21

29:6 A randomized order-dependent time analysis

Diα1

α2

α3

α4

αi

Bj

B1

Bi

Si

Figure 6 Schematic differences between the boundary curves B1, . . . ,Bi.

B1 γ
α

β

α′

β′α̃

Figure 7 Let o1 = (β, α, γ) and oi = (γ, β, α); then α = sourcej(α′). Bi is shown in Fig. 5(a).

Let Di denote the domain of the base boundary curve Bi in G = G(oi), see Figure 6. The
boundary curves Bj , j < i, significantly overlap with Bi as they share the same set of core
arcs Si. However, they may also get in and out of the domain Di because their auxiliary
arcs need not be the same. Let inj = Bj ∩Di, and outj = Bj \Di, denote the portion of Bj
inside, and outside of Di, respectively.

I Observation 4.1. The boundary curve Bj , j 6= i, contains no auxiliary arcs of the core arc
αj and these are the only auxiliary arcs of Bi that do not also appear in Bj.

I Definition 4.2. Let α′ be an auxiliary arc in Bj and let α ∈ Si be a core arc of the same
site. We say that α′ is an auxiliary arc of α if there is an original arc α̃ ⊇ α ∪ α′, which
was created for the first time when inserting the core arc α during the construction of Bj ,
see Figure 7. The core arc α is called the source of α′ and is denoted as sourcej(α′). If α′
appears counterclockwise (resp. clockwise) from its source α on the underlying bisector then
α′ is called a ccw (resp. cw) auxiliary arc.

Let in+
j (resp. in−j) include the ccw (resp. cw) auxiliary arcs of inj . In Figure 5, arcs α′

and β′ belong in in+
j for j = 1.

I Observation 4.3. Let α′ ∈ inj and let αk = sourcej(α′). Then, k > j, i.e., αk follows αj
in oi. Further, if α′ ∈ in+

j then (αk, αj , α′) appear ccw in Bj.

We define the set Nj of source arcs for each j.

Nj = {sourcej(α′) ∈ Si | α′ ∈ in+
j }.

Using Observation 4.3, we derive the following disjointness property. In contrast the sets
in+
j and in+

k , k 6= j, may have many common arcs.

I Lemma 4.4. Nj ∩Nk = ∅ for all k 6= j. Thus,
∑i
j=1 |Nj | = O(i).

Next, we point out the special structure of in+
j , which is shown in Figure 8.

K. Junginger and E. Papadopoulou 29:7

αk

α`

αj

α′β′,β′′, . . .

Bj

Figure 8 If α′, β′ ∈ in+
j , then j < k < `, and (αk, α`, αj , β′, α′) appear in ccw order on Bj .

I Observation 4.5. Let α′, β′ ∈ in+
j such that αk = sourcej(α′), α` = sourcej(β′), and

k < `. Then, j < k < `, and (αk, α`, αj , β′, α′) appear in ccw order in Bj . All auxiliary arcs
of α` appear before the auxiliary arcs of αk as we move on Bj counterclockwise from αj.

Next, we compare R(αj ,Bj) and R(αj ,Bi) and bound the differences in their adjacencies.
We observe that any common arcs to both Bj and Bi that have adjacent regions in Vl(Bi), the
same arcs must also have adjacent regions in Vl(Bj). We also use Observations 4.1 and 4.5.

I Lemma 4.6. |R(αj ,Bj)| ≤ 2|R(αj ,Bi)|+ |Nj |.

By Lemmata 4.6 and 4.4, we derive that
∑i
j=1 |R(αj ,Bj)| = O(i). This completes the

proof of Lemma 3.1 for the simplified time complexity formula of this abstract.

Acknowledgments. We thank Stefan Felsner for making the connection to the seemingly
unrelated result of Levenshtein [7] on perfect codes, which established the proof of Lemma 3.2.

References
1 L. Paul Chew. Building Voronoi diagrams for convex polygons in linear expected time.

Technical report, Dartmouth College, Hanover, USA, 1990.
2 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:

Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.
3 Stefan Felsner. Personal communication, 2019.
4 Kolja Junginger and Evanthia Papadopoulou. Deletion in Abstract Voronoi Diagrams in

Expected Linear Time. In 34th International Symposium on Computational Geometry
(SoCG 2018), volume 99 of LIPIcs, pages 50:1–50:14, Dagstuhl, Germany, 2018. URL:
http://drops.dagstuhl.de/opus/volltexte/2018/8763.

5 Kolja Junginger and Evanthia Papadopoulou. Deletion in abstract Voronoi diagrams
in expected linear time and related problems. CoRR, abs/1803.05372v2, 2020. URL:
http://arxiv.org/abs/1803.05372, arXiv:1803.05372v2.

6 Rolf Klein. Concrete and Abstract Voronoi Diagrams, volume 400 of Lecture Notes in
Computer Science. Springer-Verlag, 1989.

7 Vladimir Levenshtein. On perfect codes in deletion and insertion metric. Discrete Mathe-
matics and Applications, 2(3):241–258, 1992.

8 Raimund Seidel. Backwards analysis of randomized geometric algorithms. In Trends in
Discrete and Computational Geometry, Algorithms and Combinatorics, volume 10, pages
37–68. Springer-Verlag, 1993.

EuroCG’21

A Tail Estimate with Exponential Decay for the
Randomized Incremental Construction of Search
Structures∗

Joachim Gudmundsson1 and Martin P. Seybold1

1 School of Computer Science, University of Sydney, Australia
joachim.gudmundsson@sydney.edu.au, mpseybold@gmail.com

Abstract
We revisit the randomized incremental construction (RIC) of the Trapezoidal Search DAG (TSD)
for a set of n segments. It is well known that this point location structure has O(n+ k) expected
size and O(n lnn+ k) expected construction time, where k is the number of intersection points.

Our main result is an improved tail bound, with exponential decay, for the size of the TSD on
non-crossing segments (k = 0): There is a constant such that the probability for a TSD to exceed
its expected size by more than this factor is at most 1/en. This yields improved bounds on the TSD
construction and their maintenance. I.e. TSD construction takes with high probability O(n lnn)
time and TSD size can be made worst case O(n) with an expected rebuild cost of O(1).

1 Introduction

RIC is one of the most successful and influential paradigms in Computational Geometry.
The idea is to first permute all n input objects, uniformly at random, before inserting them,
one at a time, in an initially empty structure under this order. The theory developed for
history based RIC lead to a tail bound technique [13, 8] that holds as soon as the actual
geometric problem under consideration provides a certain boundedness property. To our
knowledge, the strongest tail bound to date is from Clarkson et al. [8, Corollary 26], which
states the following. Given a function M such that M(j) upper bounds the size of the
structure on j objects. If M(j)/j is non-decreasing, then, for all λ > 1, the probability
that the history size exceeds λM(n) is at most (e/λ)λ/e. This includes the TSD size for
non-crossing segments (k = 0). Assuming intersecting segments, Matoušek and Seidel [12]
show how to use an isoperimetric inequality for permutations to derive a tail bound of O(n−c),
given there are at least k ≥ Cn log15 n many intersections in the input (both constants c and
C depend on the deviation threshold λ). Mehlhorn et al. [13] show that the general approach
can yield a tail bound of at most 1/eΩ(k/n lnn), given there are at least k ≥ n lnn ln(3) n

intersections in the input. Recently, Sen [22] gave tail estimates for ‘conflict graph’ based
RICs (cf. Chapter 3.4 in [17]) using Freedman’s inequality for Martingales. The work also
shows a lower bound on tail estimates for the runtime, i.e. the total number of ‘conflict
graph’ modifications, for computing the trapezoidation of non-crossing segments that rules
out high probability tail bounds [22, Section 6]. In this variation of the RIC, not only one
endpoint per segment is maintained in conflict lists, but edges in a bipartite conflict graph,
over existing trapezoids and uninserted segments, that contain an edge if the geometric
objects intersect (see Appendix and Figure 4 in [22]). Hence this lower bound construction
does not translate to the TSD (i.e. history based RIC).

∗ Full paper: https://arxiv.org/abs/2101.04914

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

30:2 A Tail Estimate with Exponential Decay for the RIC

Technique Size With Prob. ≥ Condition
Isoperimetric[12] O(k) 1−O(1/nc) k ≥ Cn log15 n

Hoeffding[13] O(k) 1− 1/eΩ(k/n lnn) k ≥ n lnn ln(3) n

Freedman[22] O(k) 1− 1/ek/nα(n) k ≥ n lnn
Hoeffding[8] O(n) 1− (e/λ)λ/e
Pairwise Events O(n) 1− 1/en

Table 1 Tail bounds for the history size of TSDs on n segments. k denotes the number of
intersection points and α(n) the inverse of Ackermann’s function.

We introduce a new and direct technique to analyze the size of the TSD that is based
on pairwise events and an inductive application of Chernoff’s method. Our main result is a
much sharper tail estimate for the TSD size of non-crossing segments (see Table 1). This
complements the known high probability bound for the point location cost and shows that
the TSD has, with very high probability, size O(j) after every insertion step j.

2 Recap: Trapezoidal Search DAGs

Let S be a set of n segments in the plane. We identify the permutations over S with the
set of bijective mappings to {1, . . . , n}, i.e. P(S) = {π : S → {1, . . . , n} | π bijective}. The
integer π(s) is called the priority of the segment s.

An implicit, infinitesimal shear transformation allows to assume, without loss of generality,
that all distinct endpoints have different x-coordinates (e.g. Chapter 6.3 in [9]). Trapezoida-
tion T (S) is defined by emitting two vertical rays (in negative and positive y-direction) from
each end or intersection point until the ray meets the first segment or the bounding rectangle
(see Figure 1). To simplify presentation, we also implicitly move common endpoints infinites-
imal along their segment, towards their interior. This gives that non-crossing segments have
no points in common, though there may exist some spatially empty trapezoids in T (S). We
identify T (S) with the set of faces in this decomposition of the plane. Elements in T (S) are
trapezoidal regions that have a boundary that is defined by at most four segments of S (see
Figure 1). Note that boundaries of the trapezoids in T (S) are solely determined by the set
of segments S, irrespective of the permutation. We will need the following notations. Let
γ > 1 be the smallest constant1 such that |T (S)| ≤ γn holds for any S that is sufficiently
large. For a segment s ∈ S, let f(s, S) = {∆ ∈ T (S) : ∆ is bounded by s} denote the set of
faces that are bounded by s (i.e. top, bottom, left, or right). Let si = π−1(i) be the priority
i segment and let S≤k = {s1, . . . , sk}.

The expected size of the TSD is typically analyzed by considering
∑n
j=1Dj where the

random variable Dj := |f(sj , S≤j)| denotes the number of faces that are created by inserting
sj into trapezoidation T (S≤j−1), equivalently that are removed by deleting sj from T (S≤j)
(see Figure 2). Classic Backward Analysis [9, p. 136] in this context is the following argument.
Let S′ ⊆ S be a fixed subset of j segments, then

E
P(S)

[
Dj

∣∣∣S≤j = S′
]

= 1
j

∑

s∈S′

∑

∆∈T (S′)

χ
(
∆ ∈ f(s, S′)

)
≤ 4γj

j
,

where the binary indicator variable χ(∆ ∈ f(s, S′)) is 1 iff the trapezoid ∆ is bounded by
segment s. The equality is due to that every segment in S′ is equally likely to be picked

1 See, e.g., Lemma 6.2 in [9] that shows |T (S)| ≤ 3|S|+ 1 for non-crossing segments.

Joachim Gudmundsson and Martin P. Seybold 30:3

b

c

a

d

b

c

a

b

c

a

d

b

c

a

d

b

c

a

∆(v)

d

Figure 1 Trapezoidations over the segments S = {a = (a.l, a.r), b = (b.l, b.r), c = (c.l, c.r), d =
(d.l, d.r)} where c.l = d.l is a common endpoint. T ({a}), T ({a, b}), T ({a, b, c}), and T ({a, b, c, d})
have 4, 7, 10, and 13 faces respectively (cf. leaves in Figure 2).

a

a

a

b

b

b

b

c

c

c c

c

T ({a})

T ({a, b})

T ({a, b, c})

v

d

d T ({a, b, c, d})

d

u

Figure 2 TSD for the history of trapezoidations under permutation π =
(
a b c d
1 2 3 4

)
from Fig-

ure 1. TSD node v corresponds to the trapezoid ∆(v), which has the boundaries top(∆(v)) = c,
bottom(∆(v)) = b, left(∆(v)) = a.r, and right(∆(v)) = b.r and the spatially empty ∆(u) is due to
common endpoint left(∆(u)) = c.l = d.l = right(∆(u)). Path with heavy line width is not a search
path, since d.r is left of a.r.

EuroCG’21

30:4 A Tail Estimate with Exponential Decay for the RIC

X(π) = 1
1 1
0 0 1

D1 = 4
A2 = {a} N2 = {} D2 = 5
A3 = {a, b} N3 = {} D3 = 6
A4 = {c} N4 = {a, b} D4 = 4

Table 2 Outcome of the pairwise events and the partitions for segments S = {a, b, c, d} and order
π from Figures 1 and 2.

for sj . Since the bound on the value of the conditional expectation does not depend on the
actual set S′, we have E[Dj] ≤ 4γ unconditionally for each step j. Since the destruction of a
face (of a leaf node) creates at most three search nodes, linearity of expectations gives that
the expected number of TSD nodes is at most 12γn.

3 A tail bound using Pairwise Events

We define for each 1 ≤ i < j ≤ n an event, i.e. a binary random variable, Xi,j : P(S)→ {0, 1}
by setting

Xi,j =
{

1 if f(sj , S≤j) contains a trapezoid bounded by si
0 otherwise

.

To simplify presentation, we place the events in a lower triangle matrix and call the set
r(j) := {Xi,j : 1 ≤ i < j} the events of row j and the set c(i) := {Xi,j : i < j ≤ n} the
events of column i.

Imagine that the random permutation is built backwards, i.e. by successively choosing
one of the remaining elements uniformly at random to assign the largest available priority
value. For every step j at least one of the row events occurs, i.e. 0 <

∑
i<j Xi,j < j, since at

least one trapezoid is destroyed in step j and the exact probability of the events r(j) depends
on the geometry of the segments S≤j .

Consider the events in row j. Conditioned that the random permutation starts with
S′ = S \ {sj+1, . . . , sn}, the experiment chooses s ∈ S′ uniformly at random and assigns
the priority value j to it. Clearly the number of occurring (row) events depends on which
segment of S′ is picked as sj , as this determines the value f(sj , S′). Note that the choice of
sj also fixes a partition of S′ = {sj}∪A∪N into those segments that are and aren’t adjacent
to sj , the sets A and N respectively. This defines a partition S≤j = {sj} ∪Aj ∪Nj in every
backward step j. Eventually si is picked from S≤i, which determines the outcomes of all
column events c(i). I.e. when si is picked from S≤i, the objects in the set are multi colored
(Aj or Nj for each j > i) and Xi,j occurs if and only if the pick has the respective color Aj .

This shows for the event probability that

E[Xi,j |si+1, . . . , sn] = E[Xi,j |Y, si+1, . . . , sn] (1)

for every Y ∈ c(i′) with i′ > i. See Table 2 for an example.
Moreover, we have, for every t > 0, the two equations

E[
∏

j>1
exp(tX1,j)|s2, . . . , sn] =

∏

j>1
E[exp(tX1,j)|s2, . . . , sn] (2)

E[
∏

j>i

exp(tXi,j)|si, . . . , sn] =
∏

j>i

E[exp(tXi,j)|si, . . . , sn] , (3)

Joachim Gudmundsson and Martin P. Seybold 30:5

where (si, . . . , sn) denotes the conditioning of the random permutations on this suffix. Note
that for a set of events {Bi} that are either certain or impossible, i.e. E[Bi] = Pr[Bi] ∈
{0, 1}, we have that the outcome of each event is identical to its probability and thus
E[
∏
i exp(tBi)] =

∏
i exp(tE[Bi]) =

∏
i E[exp(tBi)].

There is a close relation between the row events r(j) and the random variable Dj .

I Lemma 3.1. Let S be a set of non-crossing segments. For every π ∈ P(S) and j ≥ 2, we
have Dj(π)/6 ≤∑i<j Xi,j(π) ≤ 3Dj(π).

Proof. Let S′ := S≤j(π) be the segments with priority at most j in π. Clearly every trapezoid
that is incident to sj is bounded by at most three other segments, which gives the upper
bound. For the lower bound, we first count those trapezoids of f(sj , S′) that have sj as top
or bottom boundary. Let P be the set of endpoints that define the vertical boundaries of
these trapezoids, excluding the endpoints of sj = (ql, qr). Partition P into points P+ above
and P− below sj , which blocks their vertical rays in trapezoidation T (S′). Consider the two
sets P+ and P− sorted by their x-coordinates. Between the endpoints of sj , the vertical
boundaries of points in P+ can define at most |P+|+ 1 trapezoids. Hence f(sj , S′) contains
at most |P |+ 2 trapezoids that have sj on their top or bottom boundary. The remaining
trapezoids of f(sj , S′) are either bounded by ql or by qr. There is at most one trapezoid in
T (S′) that has endpoint ql as right vertical boundary but not sj as bottom or top segment.
The argument for qr is symmetric.

Putting the bounds for all cases of trapezoids in f(sj , S′) together and using that
|P | ≤ 2

∑
i<j Xi,j(π), we have

Dj(π) ≤ (2 + |P |) + 2 ≤
(

2 + 2
∑

i<j

Xi,j(π)
)

+ 2 ≤ 6
∑

i<j

Xi,j(π) .

In the last step we used the fact that 1 ≤∑i<j Xi,j(π). J

Hence
∑
j Dj(π)/6 ≤∑i,j Xi,j(π) ≤ 3

∑
j Dj(π) holds for every permutation π ∈ P(S). This

also gives, for every j, the bounds on the expected values

E [Dj] /6 ≤ E
[∑

i<j

Xi,j

]
≤ 3E [Dj] ≤ 12γ ,

and thus E[
∑
i,j Xi,j] ≤ 12γn.

Furthermore, consider the isolated event Xi,j in row j. Since the element si is picked
uniformly at random from the set S<j , we have that its event probability is within the range

1/6
j − 1 ≤ E[Xi,j] ≤

12γ
j − 1 . (4)

Hence the events have roughly Harmonic distribution, i.e. up to bounded multiplicative
distortions.

We find it noteworthy that our technique completely captures, with only one lemma,
the entire nature of the geometric problem within these constant distortion factors of the
pairwise events. However, due to the nature of the incremental selection process, there is a
strong dependence between the events in r(j), e.g. between Xi,j and {Xi+1,j , . . . , Xj−1,j}.
We circumnavigate this obstacle using conditional expectations in the proof of our tail bound.

I Theorem 3.2. There is a constant λ > 1 such that, for every set S of n non-crossing
segments, we have Pr[

∑n
j=2

∑j−1
i=1 Xi,j > λn] < 1/en .

EuroCG’21

30:6 A Tail Estimate with Exponential Decay for the RIC

Proof. For the Chernoff Method, set t := ln 2 and B := 12γ+1
ln 2 n. To leverage Equation (2) and

(3) for our events, we regroup the summation terms by column index. Let Ci :=
∑
Y ∈c(i) Y

for each 1 ≤ i < n. For Pr[
∑
i<n Ci > B], Markov’s inequality gives that

Pr
[

exp
(
t
∑

i<n

Ci
)
> etB

]
≤ E

[
exp

(
t
∑

i<n

Ci
)]
/etB , (5)

where exp(x) = ex. Defining Qi := exp(tC1 + . . . + tCi), we will show by induction that
E[Qn−1|sn] ≤ exp(E[

∑
i<n Ci|sn]) for each sn ∈ S. The conditioning (si, . . . , sn) denotes

that the permutations P(S) are restricted to those that have this suffix of elements.
For i = 1 and each suffix condition (s2, . . . , sn), we have

E[Q1|s2, . . . , sn] = E[
n∏

j=2
etX1,j |s2, . . . , sn]

=
n∏

j=2
E[etX1,j |s2, . . . , sn]

=
n∏

j=2

(
(1− E[X1,j |s2, . . . , sn])e0 + E[X1,j |s2, . . . , sn]et

)

=
n∏

j=2

(
1 + (et − 1)︸ ︷︷ ︸

=1

E[X1,j |s2, . . . , sn]
)

≤ exp
(
E[

n∑

j=2
X1,j |s2, . . . , sn]

)
= exp

(
E[C1|s2, . . . , sn]

)
,

where the second equality is due to Equation (2) under the given suffix conditioning. The
third equality is due to the definition of expected values, the fourth due to the distributive
law, and the fifth equality due to our choice of t. The inequality is due to 1 + x ≤ ex.

For i > 1 and each condition (si+1, . . . , sn), let S′ = S \ {si+1, . . . , sn} and we have

E
[
Qi

∣∣∣si+1, . . . , sn

]

=1
i

∑

si∈S′
E
[
Qi−1 · etCi

∣∣∣si, si+1, . . . , sn

]

=1
i

∑

si∈S′
E
[
E[Qi−1|c(i), si, . . . , sn]︸ ︷︷ ︸

= E[Qi−1|si, . . . , sn]

etCi

∣∣∣si, . . . , sn
]

≤1
i

∑

si∈S′

exp(E[C1 + . . .+ Ci−1|si, . . . , sn] · E[etCi |si, . . . , sn]︸ ︷︷ ︸
≤exp(E[Ci|si, . . . , sn])

≤1
i

∑

si∈S′

exp(E[C1 + . . .+ Ci|si, . . . , sn]

= exp(E[C1 + . . .+ Ci|si+1, . . . , sn]).

The first equality is due to that every element of S′ is equally likely to be picked for si.
The second equality is due to the ‘law of total expectation’. The third equality is due to a
property of our events, see Equation (1). The resulting terms are bounded by the induction
hypothesis and analogously to the case i = 1, but using Equation (3) for the events c(i)
instead. This concludes the induction.

Joachim Gudmundsson and Martin P. Seybold 30:7

Since E[Qn−1] = 1
n

∑
sn∈S E[Qn−1|sn], we have that E[Qn−1] ≤ exp

(
E[
∑
i<n Ci]

)
. Now

we change the summation order back to rows first to use E[
∑
j≥2

∑
i<j Xi,j] ≤ 12γn from

Lemma 3.1.
Hence (5) gives an exponentially decaying tail bound of e−n. J

This complements the known high probability bound for the point location cost2 and
shows that the TSD has, with very high probability, size O(j) after every insertion step j.
Since the RIC time for the TSD solely entails point location costs and search node creations,
we have shown the following statements.

I Corollary 3.3. RIC of a TSD for n non-crossing segments takes w.h.p. O(n lnn) time.

I Corollary 3.4. The TSD size, for n non-crossing segments, can be made O(n) with ‘rebuild
if too large’ by merely increasing the expected construction time by an additive constant.

Acknowledgments

The authors want to thank Wolfgang Mulzer for pointing out an incorrect statement in an
earlier draft, Boris Aronov for discussions during his stay, Daniel Bahrdt for the github
project OsmGraphCreator, and Raimund Seidel for sharing his excellent lecture notes on a
CG course he thought 1991 at UC Berkeley.

References
1 Pankaj K. Agarwal, Lars Arge, Jeff Erickson, Paolo Giulio Franciosa, and Jeffrey Scott

Vitter. Efficient searching with linear constraints. In Proc. of the 17th Symposium on
Principles of Database Systems (PODS’98), pages 169–178, 1998. doi:10.1145/275487.
275506.

2 Pankaj K. Agarwal, Boris Aronov, Sariel Har-Peled, Jeff M. Phillips, Ke Yi, and Wuzhou
Zhang. Nearest neighbor searching under uncertainty II. In Proc. of the 32nd Symposium on
Principles of Database Systems (PODS’13), pages 115–126, 2013. doi:10.1145/2463664.
2465219.

3 D. S. Andrews, J. Snoeyink, J. Boritz, T. Chan, G. Denham, J. Harrison, and C. Zhu.
Further comparison of algorithms for geometric intersection problems. In Proc. 6th Inter-
national Symposium on Spatial Data Handling, 1994. URL: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.18.2254.

4 D. S. Andrews and Jack Snoeyink. Geometry in GIS is not combinatorial: Segment in-
tersection for polygon overlay. In Proc. of 11th Symposium on Computational Geome-
try (SoCG’95), pages C24–C25, 1995. URL: https://doi.org/10.1145/220279.220333,
doi:10.1145/220279.220333.

5 Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallelism in randomized incre-
mental algorithms. J. ACM, 67(5):27:1–27:27, 2020. doi:10.1145/3402819.

6 Milutin Brankovic, Nikola Grujic, André van Renssen, and Martin P. Seybold. A simple
dynamization of trapezoidal point location in planar subdivisions. In Proc. 47th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP’20), pages 18:1–
18:18, 2020. doi:10.4230/LIPIcs.ICALP.2020.18.

7 Timothy M. Chan. A simple trapezoid sweep algorithm for reporting red/blue segment inter-
sections. In Proc. of the 6th Canadian Conference on Computational Geometry (CCCG’94),
pages 263–268, 1994.

2 Cf. [9, Chapter 6.4] and [17, Lemma 3.1.5 and Theorem 3.1.4].

EuroCG’21

30:8 A Tail Estimate with Exponential Decay for the RIC

8 Kenneth L. Clarkson, Kurt Mehlhorn, and Raimund Seidel. Four results on randomized
incremental constructions. Computational Geometry: Theory and Applications, 3:185–212,
1993. doi:10.1016/0925-7721(93)90009-U.

9 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Com-
putational Geometry: Algorithms and Applications, 3rd Edition. Springer, 2008. doi:
10.1007/978-3-540-77974-2.

10 Michael Hemmer, Michal Kleinbort, and Dan Halperin. Improved implementation of point
location in general two-dimensional subdivisions. In Proc. 20th European Symposium on
Algorithms (ESA’12), pages 611–623, 2012. doi:10.1007/978-3-642-33090-2_53.

11 Michael Hemmer, Michal Kleinbort, and Dan Halperin. Optimal randomized incremental
construction for guaranteed logarithmic planar point location. Computational Geometry:
Theory and Applications, 58:110–123, 2016. doi:10.1016/j.comgeo.2016.07.006.

12 Jirí Matoušek and Raimund Seidel. A tail estimate for mulmuley’s segment intersection
algorithm. In Proc. 19th International Colloquium on Automata, Languages and Program-
ming (ICALP’92), pages 427–438, 1992. doi:10.1007/3-540-55719-9_94.

13 Kurt Mehlhorn, Micha Sharir, and Emo Welzl. Tail estimates for the space complexity
of randomized incremental algorithms. In Proc. of the 3rd Symposium on Discrete Al-
gorithms (SODA’93), pages 89–93, 1992. URL: http://dl.acm.org/citation.cfm?id=
139404.139423.

14 Ketan Mulmuley. A fast planar partition algorithm, I. J. of Symbolic Computation, 10(3-
4):253–280, 1990. doi:10.1016/S0747-7171(08)80064-8.

15 Ketan Mulmuley. A fast planar partition algorithm, II. J. ACM, 38(1):74–103, 1991.
doi:10.1145/102782.102785.

16 Ketan Mulmuley. Randomized multidimensional search trees: Lazy balancing and dynamic
shuffling. In Proc. of the 32nd Symposium on Foundations of Computer Science (FOCS’91),
pages 180–196, 1991. doi:10.1109/SFCS.1991.185368.

17 Ketan Mulmuley. Computational Geometry: An Introduction Through Randomized Algo-
rithms. Prentice Hall, 1994.

18 Raimund Seidel. A simple and fast incremental randomized algorithm for computing trape-
zoidal decompositions and for triangulating polygons. Computational Geometry: Theory
and Applications, 1:51–64, 1991. doi:10.1016/0925-7721(91)90012-4.

19 Raimund Seidel. Backwards Analysis of Randomized Geometric Algorithms, pages 37–67.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1993. doi:10.1007/978-3-642-58043-7_
3.

20 Raimund Seidel. Teaching computational geometry. In Proc. of the 5th Canadian Confer-
ence on Computational Geometry (CCCG’93), pages 272–272, 1993.

21 Raimund Seidel and Cecilia R. Aragon. Randomized search trees. Algorithmica, 16(4-
5):464–497, 1996. doi:10.1007/BF01940876.

22 Sandeep Sen. A unified approach to tail estimates for randomized incremental construction.
In Proc. of the 36th Symposium on Theoretical Aspects of Computer Science (STACS’19),
pages 58:1–58:16, 2019. doi:10.4230/LIPIcs.STACS.2019.58.

23 Jean Vuillemin. A unifying look at data structures. Commun. ACM, 23(4):229–239, 1980.
URL: https://doi.org/10.1145/358841.358852, doi:10.1145/358841.358852.

24 Ron Wein, Eric Berberich, Efi Fogel, Dan Halperin, Michael Hemmer, Oren Salzman, and
Baruch Zukerman. 2D arrangements. In CGAL User and Reference Manual. 2020. URL:
https://doc.cgal.org/5.1.1/Manual/packages.html#PkgArrangementOnSurface2.

Shortest Paths in Portalgons
Maarten Löffler1, Rodrigo I. Silveira2, and Frank Staals1

1 Department of Information and Computing Sciences, Utrecht University,
Netherlands
m.loffler@uu.nl, f.staals@uu.nl

2 Department de Matemàtiques, Universitat Politècnica de Catalunya, Spain
rodrigo.silveira@upc.edu

1 Introduction

We introduce portalgons, collections of polygons with some edges identified, as an abstract
generalization of simple polygons, polygons with holes, polyhedral surfaces, and even ruled
surfaces. We are interested in understanding shortest paths in portalgons. To the best of
our knowledge, this is a rather unexplored concept which, though it has been long adopted
into popular culture [3, 5, 11], has only been studied from a computational point of view in
the context of annular ray shooting by Erickson and Nayyeri [6]. The concept of portalgons
is related to the topological representation of surfaces by polygons with edges identified
(see, e.g., [9, Chapter 6]). Shortest paths have been studied in many different geometric
settings, such as simple polygons, polygonal domains, terrains, surfaces, and polyhedra (see,
e.g., [1, 2, 7, 8]; refer to [10] for a comprehensive survey).

Portalgons. We define a portalgon P to be a tuple (F , P), where F is a collection of
polygons, called fragments, and P is a collection of portals. We assume that all fragments in
F are simple polygons.1 A portal is a pair (e, ê) of directed, equal length, edges from some
fragments (possibly the same) of F . We refer to e and ê as portal edges. In particular, ê is
the twin of e, and vice versa. See Fig. 1. If p is a point on a portal edge e, then p̂ will denote
the corresponding point on ê. More precisely, let e = −→uv and ê = −→wz be a portal, where u, v
are vertices of the fragment containing e and w, z are vertices of the fragments containing ê.
If p = λu+ (1− λ)v, for some λ ∈ (0, 1), then p̂ = λw + (1− λ)z.2

Let n be the total number of vertices in (the fragments of) P, and let m be the number
of portal edges. We will require that no edge is part of multiple portals, and thus the number

1 It will be clear later that this does not restrict the problem, since any non-simple fragment can be
represented by a collection of simple fragments by using additional portals.

2 If a vertex is incident to two portal edges then the vertex twin might not be unique—in this case a set
of points of any cardinality might be identified.

e

ê p̂

p e

ê p̂

p

s

t

p=p̂s

t
Σ

Figure 1 Left: A portalgon consisting of one fragment with one portal (and two portal edges, e
and ê). Points p and p̂ are identified as twins. Middle: the shortest path from s to t (dashed) goes
through the portal. Right: the surface Σ associated to this portalgon is a cylinder.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

31:2 Shortest Paths in Portalgons

s

t

Figure 2 The complexity of the shortest path between s and t is independent of n and m.

of portals is m/2. Furthermore note that m ≤ n. We denote the number of vertices and the
number of portal edges in a fragment F ∈ F by nF and mF , respectively.

We assume that for any portal (e, ê) the portal edges have opposite orientations, i.e., the
interior of the fragment containing e lies to the right of e and the interior of the fragment
containing ê lies to the left of ê. As a result, the portalgon P describes an orientable surface
(2-manifold with boundary) Σ, see Fig. 1(right). Specifically, Σ is the space obtained from P
by taking the collection F and identifying corresponding pairs of points on portal edges (i.e.,
p with p̂, for each p in a portal edge). Note that Σ does not necessarily have a non-intersecting
embedding in 3-space. Any point p in Σ maps to a point or a set of identified points in P
(the latter happens when p maps to a point on a portal edge). With some abuse of notation
we may therefore write P to mean Σ when it causes no confusion.

Shortest paths. Let π(p, q) denote a geodesic shortest path on Σ connecting p to q. The
length of this path is the (geodesic) distance between p and q. A path π(p, q) uniquely
corresponds to an alternating sequence p = v0, s0, v1, s1, .., sk, vk+1 = q of points and maximal
open-ended segments. In particular, any point vi, with i ∈ 1, .., k, is either a portalgon vertex
or a point on a portal edge, and any segment si is a straight line segment that connects two
such points vi and vi+1 and is completely contained in a single fragment of P . We define the
complexity of the path as the length of this sequence, i.e., 2k + 3.3

In this work we are interested in understanding shortest paths in portalgons. As seen in
the simple example of Fig. 1, a shortest path can go through one or multiple portals. More
interestingly, it can go through the same portal multiple times, as shown in Fig 2. In that
example, the complexity of π(s, t) can be increased arbitrarily by moving the bottom segment
horizontally towards the right. This shows that the complexity of a shortest path may not
be bounded by any function of n and m, in which case we will say that it is unbounded. This
fact was already observed in [6], where it is shown that such a path can be computed in
O(n+ log k) time, where k is the number of times the shortest path goes through the portal.

In this paper we would like to understand the conditions that can make a portalgon have
high complexity shortest paths, and how to prevent it. It is interesting to note that the
increase in the complexity of π(s, t) in the example above requires to make the fragment
thin and very wide. This may suggest that bounding the aspect ratio of fragments may be
enough to obtain constant-complexity paths. However, that is not the case. In the example
in Fig. 3, with three fragments and three portals, π(s, t) can be made to cross the triangular

3 We use this, arguably somewhat complicated, definition of complexity of a path to avoid counting
“singleton points”; when a path π(p, q) passes through a portal then intuitively this portal splits π(p, q)
into two parts, one part ending at a point v, and the other part starting at point v̂. However, if v is an
endpoint of the portal, there may be multiple copies of v, all of which lie on π(p, q). However, π(p, q)
“continues” only through one these endpoints. Hence, we want to avoid counting these other points as
part of the complexity of π(p, q).

Löffler, Silveira, Staals 31:3

s

t

Figure 3 The shortest path from s to t can go through the left (triangular) fragment an unbounded
number of times, even though the fragment is fat. (The depicted path is shown schematically.)

≡≡≡≡

Figure 4 Five equivalent portalgons, with the shortest path between (the same) two points.

fragment as many times as desired—i.e., a number of times linear in n—even though that
fragment is fat [4]. To that end, the distance to the green “helper” portal has to be made
shorter than depicted, arbitrarily close to 0. Then the shortest path between s and t would
be as in the figure, crossing the fat fragment from blue to red twice. We can repeat the
construction in the figure, adding more helper portals, but each time we have to zoom in,
leading to exponential scale.

Contributions. In this work we study shortest paths in portalgons to understand when
they can be unbounded, and how that can be avoided. We will show that if a portalgon with
only one portal contains an unbounded shortest path, there is always an equivalent portalgon
with the property that all shortest paths have a complexity which can be expressed as a
function of n and m. We also study the computational problem of finding such an equivalent
portalgon: under some conditions (when the portal edges are parallel and we are allowed the
use of the floor operation) this can be done in linear time, but in general, the time required
may be unbounded in n and m.

2 Portalgons and happiness

In this section we formalize several concepts that will be useful to understand portalgons.

Equivalent portalgons. Given a portalgon P , there are many other portalgons that describe
the same underlying space Σ. For instance, we can always cut a fragment into two smaller
fragments by transforming a chord of the fragment into a portal, or, assuming this does not
cause any overlap, we can glue two fragments along a portal, see Fig. 4. More formally, two
portalgons P and Q are equivalent, denoted P ≡ Q, when for any pair of points s, t ∈ P the
distance between them is the same in both, or in other words, when there is an isometry
between them.

Happiness. Our ultimate goal will be to find, for a given input portalgon, an equivalent
portalgon such that all its shortest paths have bounded complexity. To this end, we introduce
the notion of a happy portalgon, and more specifically a happy fragment of a portalgon.

EuroCG’21

31:4 Shortest Paths in Portalgons

≡ ≡

Figure 5 Left: a fragment with two parallel edges and ∆ 6= 0. Center: result of cutting the
fragment along a perpendicular ray, resulting in a new fragment with several portals, which is
equivalent to a fragment with one portal and ∆ = 0 (right).

Let P = (F , P) be a portalgon, let χ be a path in P, and let F ∈ F be a fragment in
F . We define c(X) as the number of connected components in X. The happiness H(F)
of fragment F is defined as H(F) = maxp,q∈P c(F ∩ π(p, q)). The happiness of P is then
defined as H(P) = maxF ∈F H(F). We say that a portalgon is h-happy when H(P) ≤ h.

Note that in an h-happy portalgon, a shortest path crosses every portal at most h times.
Therefore, if P is an h-happy portalgon with n vertices and m portals, the shortest path
between any two points s and t in P, π(s, t), has complexity O(n+ hm).

The remainder of this work is devoted to exploring whether any portalgon can be
transformed into an equivalent one that is O(1)-happy, something that we believe to be true.

I Conjecture (Universal Happiness). Let P be a portalgon with n vertices. There exists a
portalgon P ′ ≡ P with O(n) vertices that is O(1)-happy.

3 Making portalgons happy

In this section we study how to rearrange a portalgon into an equivalent happy portalgon.
Since any fragment with only one portal edge is happy, we sketch our main ideas for the next
simplest case: a portalgon consisting of a single fragment F with exactly two parallel portal
edges. We assume w.l.o.g. that the portal edges e and ê are horizontal, e is above ê and e
starts further to the left. Let ∆ and v be the horizontal, resp. vertical, distance between the
start vertices of e and ê.

I Lemma 1. If ∆ = 0, then the fragment is 2-happy.

If ∆ 6= 0, the fragment might be happy or not. Next we present a method to make a
fragment happy by splitting it into smaller fragments. Let z = ∆/v. Conceptually, from the
start vertex of ê we shoot a ray with slope z in the interior of F , until we hit a boundary
(i.e., non-portal) edge. Then we cut along this ray, which results in several smaller fragments,
which we finally glue together again. Refer to Figure 5. This leads to the following result.

I Lemma 2. Let F be a parallelogram with two parallel portal edges. There is always an
equivalent parallelogram F ′ with ∆ = 0. This parallelogram F ′ is 2-happy.

If F is not a parallelogram, it may happen that when gluing together the new smaller
fragments we obtain a non-simple polygon. Therefore we cannot always transform F into a
single equivalent happy fragment; refer to Figure 6. Fortunately, we can still transform any
fragment into a constant number of happy fragments; that is, we can prove the Universal
Happiness Conjecture for the case of one fragment with two parallel portal edges. Refer to
Figure 7.

Löffler, Silveira, Staals 31:5

≡≡

Figure 6 Example of fragment (left) where the cutting along the perpendicular ray produces a
non-simple polygon (center). However, here this can be fixed using one more fragment (right).

I Lemma 3. Consider a fragment F with two horizontal portals e and ê. Let m be the line
through the start points of e and ê. If F is not 5-happy, then there is a line segment parallel
to m from a point on e to a point on ê that lies completely within F .

I Observation 4. Let F be a simple fragment, let ab be a line segment inside F . A single
connected component π ∩ F of a shortest path π can intersect ab in at most one component.

Observation 4 implies that the two endpoints p and q of a maximal component π(p, q) of
a shortest path in F cannot lie on the same portal-edge e unless π(p, q) = pq ⊆ e.

I Theorem 5. Let P be a portalgon with one fragment F with n vertices, and one portal
whose edges are parallel. There exists a 5-happy portalgon P ′ equivalent to P consisting of at
most three fragments and total complexity O(n).

Proof. Assume without loss of generality that both portal edges e and ê are horizontal and
oriented left-right. We now argue that when no three vertices of F are colinear, and F is not
already 5-happy, we can split F into at most seven 4-happy fragments of total complexity
O(n). Refer to Figure 7. Finally, we show how to reduce the number of fragments to three,
while remaining 4-happy, even without the general position assumption.

Let m be the line through the start points of e and ê. By Lemma 3, if there is no translate
of m whose intersection with F contains a segment connecting e to ê, F is already 5-happy.
Let m` be the leftmost such translate of m and mr the rightmost such translate; m` contains
a vertex ` of F and mr contains a vertex r of F (possibly, ` or m is an endpoint of e or ê).
Let a and â be the intersection points of m` with e and ê, and let b and b̂ be the intersection
points of mr with e and ê. We cut the parallelogram Z = abâb̂ from F , which splits F into
at most seven fragments (since, by general position, aâ and bb̂ contain at most two reflex
vertices each). Using a transformation similar to that of Lemma 2, we turn Z into a 4-happy
fragment (the fact that the sides aâ and bb̂ are actually portal edges increases the happiness
by at most two). Let T and B be the fragments containing the starting points of e and ê,
respectively. We argue that T is 4-happy. The argument that B is 4-happy is symmetric.
The same holds for the fragments containing the endpoints of e and ê. Any other fragments
(if they exist) contain only one portal edge and are thus already 2-happy.

Consider the connected components of a shortest path π = π(s, t) with F . By Observa-
tion 4 such a component either: (i) contains s, (ii) contains t, or (iii) connects a point pi on
e to a point qi on ê. Again by Observation 4 each such component can intersect aâ at most
once, so each such component can intersect T at most once.

We now further distinguish the type (iii) components into three types, depending on
whether pi lies on the part of e in T and whether qi lies on the part of ê in B. If pi lies
outside T the component does not intersect T at all (by Observation 4). There is only one
component for which pi lies inside T , and qi lies inside B that can intersect T (as such a
component must go through point `), and one component for which pi lies in T and qi lies

EuroCG’21

31:6 Shortest Paths in Portalgons

â

e

ê

`
r

m` mr

Z

a b

b̂

m

Figure 7 (a) Fragment F with two parallel portals (b) The lines m` and mr intersecting e and
ê in a, â define a parallelogram Z = abâb̂ that splits F into at most seven sub fragments. (c) The
resulting set of 5-happy fragments. Note that it is possible to reduce the number of fragments by
shifting m` slightly to the right and mr slightly to the left.

∆

v

∆ + v2

∆ = ∆(1 + 1/z2)z = ∆/v
sk

t

Figure 8 Finding the last intersection of the ray with the portal.

outside of B. The main idea here is that π(pi, qi) “blocks” the remainder of π from entering
B again, and thus pi is the last component of type (iii) that intersects T .

It follows that there are thus only four components of π ∩ F that intersect T , and each
such component intersects T in only one consecutive subpath. Hence T is 4-happy.

We conclude that the portalgon P ’ that we end up with is 4-happy, equivalent to P , and
has at most |F| + 6 fragments. Furthermore, every vertex of P appears in at most O(1)
fragments of P ′, and thus P ′ has complexity O(n).

Finally, observe that (before splitting F) we can actually shift the left and right sides
of Z inwards by some arbitrarily small ε. It then follows that F is now split into only
three fragments, two of which are already 4-happy. We transform the remaining fragment
(parallelogram Z) into a 2-happy parallelogram as before. We now get only three fragments
(of total complexity O(n)), even if F contains three or more colinear vertices. J

Let k be the number of times the ray hits the portal. Since k is unbounded in terms
of n, computing a happy portalgon equivalent to P is non-trivial. We can compute such a
portalgon in O(n+ log(1 + k)) time, or in O(n) time if we can use the floor operation. The
essential part of the computation is finding the last time a ray intersects the portal; refer to
Figure 8. Explicitly computing all intersection points would lead to an additive O(k) term.
Instead, we can perform exponential search by noting that the horizontal distance between
each pair of consecutive intersection points is the same.

4 Beyond Parallel Portals

In the full version, we also prove the Universal Happiness Conjecture for portalgons that
consist of one fragment with two non-parallel portal edges; see Figure 9. Computing an
equivalent happy portalgon in this case is more involved; using ideas from [6] we may still
obtain the same running time. When portalgons have more than one fragment, we may
consider the fragment graph (Figure 10), which is a multigraph with one vertex per fragment
and an edge for every portal. For some fragment graphs we can also prove the conjecture.
For instance, if the fragment graph is acyclic, the portalgon is already happy. If it is almost
acyclic but has a single fragment with a single self-loop, we can still apply the techniques

Löffler, Silveira, Staals 31:7

≡

Figure 9 A fragment with non-parallel portal edges, and an equivalent happy one.

1 2 3 4 1

2

3

4

Figure 10 The fragment graph of a portalgon.

described above. However, we do not know how to approach a proof of the Universal
Happiness Conjecture in general. Even the behavior of shortest paths in a single fragment
with two self-loops is non-trivial; see for instance Figure 11.

References
1 Jindong Chen and Yijie Han. Shortest paths on a polyhedron. In Proceedings of the

Sixth Annual Symposium on Computational Geometry, SCG ’90, page 360–369, New York,
NY, USA, 1990. Association for Computing Machinery. URL: https://doi.org/10.1145/
98524.98601, doi:10.1145/98524.98601.

2 Jindong Chen and Yijie Han. Shortest paths on a polyhedron. Int. J. Comput. Geom.
Appl., 6(2):127–144, 1996. URL: https://doi.org/10.1142/S0218195996000095, doi:
10.1142/S0218195996000095.

3 Valve Corporation. Portal, 2007. Video game.
4 Alon Efrat. The complexity of the union of (alpha, beta)-covered objects. SIAM J.

Comput., 34(4):775–787, 2005. URL: https://doi.org/10.1137/S0097539702407515,
doi:10.1137/S0097539702407515.

5 H Ellison. The city on the edge of forever, 1967. Star Trek, season 1, episode 28.
6 Jeff Erickson and Amir Nayyeri. Tracing compressed curves in triangulated sur-

faces. Discret. Comput. Geom., 49(4):823–863, 2013. URL: https://doi.org/10.1007/
s00454-013-9515-z, doi:10.1007/s00454-013-9515-z.

7 Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple poly-
gon. Journal of Computer and System Sciences, 39(2):126 – 152, 1989. URL: http://www.
sciencedirect.com/science/article/pii/002200008990041X, doi:https://doi.org/
10.1016/0022-0000(89)90041-X.

Figure 11 Even in a portalgon with only one fragment and two portals, shortest paths may have
nontrivial structure. The example passes through blue-blue-blue-red-blue-blue-blue-red-blue-blue.

EuroCG’21

31:8 Shortest Paths in Portalgons

8 John Hershberger and Subhash Suri. An Optimal Algorithm for Euclidean Shortest Paths
in the Plane. SIAM Journal on Computing, 28(6):2215–2256, 1999.

9 J. Lee. Introduction to Topological Manifolds. Graduate Texts in Mathematics. Springer
New York, 2nd edition, 2010.

10 Joseph S. B. Mitchell. Shortest paths and networks. In Jacob E. Goodman, Joseph
O’Rourke, and Csaba D. Toth, editors, Handbook of Discrete and Computational Geometry,
Third Edition, pages 811–848. Chapman and Hall/CRC, 2017.

11 A. Wachowski and L. Wachowski. Matrix revolutions, 2003. Warner Bros. Motion picture.

Coordinating Programmable Matter via
Shortest Path Trees
Irina Kostitsyna1, Tom Peters1, and Bettina Speckmann1

1 TU Eindhoven, the Netherlands
[i.kostitsyna|t.peters1|b.speckmann]@tue.nl

1 Introduction

Programmable matter is a smart material composed of a large quantity of robot particles
capable of communicating locally, performing simple computation, and, based on the outcome
of this computation, changing their physical properties. Particles are able to move through a
programmable matter system by changing their geometry and attaching to (and detaching
from) neighboring particles. Thus, a particle system can be programmed to reconfigure its
global shape by changing local adjacencies between particles. Shape assembly and reconfigu-
ration of particle systems have attracted a lot of interest in the algorithmic community in
the past decade and a variety of specific models have been proposed [1, 2, 8, 10, 12, 14, 16].
We focus on the Amoebot model [7], which we briefly introduce below, refer to Daymude et
al. [5] for additional details. The Amoebot model is highly distributed and hence a number
of algorithmic primitives have been developed to coordinate actions of particles [4, 9, 15].

The Amoebot model. Particles occupy nodes of a triangular grid G embedded in the plane.
A particle can occupy one (contracted particle) or two (expanded particle) adjacent nodes
of the grid, and can communicate with its neighboring particles (see Figure 1 (left)). The
particles have limited computational power due to constant memory space, they have no
common notion of orientation (disoriented), and no common notion of clockwise (cw) or
counter-clockwise (ccw) order (no consensus on chirality). They are identical (no IDs and
they all execute the same algorithm), but can locally distinguish between their neighbors
using six (for contracted particles) or ten (for expanded particles) port identifiers. Ports are
labeled in order (either cw or ccw) modulo six or ten, respectively. Particles communicate by
writing into a register of their neighbors using the ports.

Particles can move in two different ways: a contracted particle can expand into an adjacent
empty node of the grid, and an expanded particle can contract into one of the nodes it
currently occupies. Each node of G can be occupied by at most one particle, and we require
that the particle system stays connected at all times. To preserve connectivity more easily,
we allow a handover variant of both move types, a simultaneous expansion and contraction
of two neighboring particles using the same node (see Figure 1 (right)). The handover move

01
2
3 4

5 0
12

3
4
5

9
8

76

Figure 1 Left: particles with ports labeled, in contracted and expanded state. Right: handover
operation for preserving system connectivity. A particle can expand while pushing an expanded
neighbor, and an expanded particle can contract while pulling a contracted neighbor.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

32:2 Coordinating Programmable Matter via Shortest Path Trees

can be initiated by any of the two particles; if it is initiated by the expanded particle, we say
it pulls its contracted neighbor, otherwise we say that it pushes its expanded neighbor.

Particles operate in activation cycles: when activated, they can read from the memory of
their immediate neighbors, compute, write into the memory of their neighbors, and perform
a move operation. For simplicity of presentation, we assume that particles are activated one
by one in an order given by an adversarial but fair scheduler (at any moment in time t, for
any particle, it must be activated at some time in the future t′ > t). Analysis of algorithms
for such sequential scheduler can be easily extended to arbitrary asynchronous activation
of particles under some assumptions [5]. We perform running time analysis in terms of the
number of rounds, time intervals in which all particles have been activated at least once.

We call the set of particles and their internal states a particle configuration P . Let GP be the
subgrid of G induced by the nodes occupied by particles in P. We say that P is connected
if there is a path in GP between any two particles in P. A hole in P is an interior face of
GP with more than three vertices. A particle configuration P is simply connected if it is
connected and has no holes. We say that a particle q ∈ P is P-visible from a particle p ∈ P
if there exists a shortest path from p to q in G that is contained in GP . This definition of
visibility is closely related to staircase visibility (or s-visibility) in rectilinear polygons [3, 11].
Finally, we say that P is convex if for every pair of particles p, q ∈ P, p is P-visible from q.

Contribution We propose a new primitive for programmable matter, a shortest path tree (SP-
tree), to facilitate and optimize shape reconfiguration in the Amoebot model. Furthermore,
we present an efficient algorithm for constructing an SP-tree in a simply connected particle
system, using a version of shortest path maps [13] on the grid.

2 Shortest path trees

Among the previously proposed primitives for Amoebot coordination is the spanning forest
primitive [9] which organizes all particles in a connected component into a tree to facilitate
movement of all particles while staying connected. The root initiates the movement, all other
particles follow via handovers between parents and children. This primitive does not impose
any additional structure on the resulting spanning tree. To facilitate effective movement we
propose to construct shortest path trees, which are special spanning trees where the shortest
path from a particle to the root within the tree equals the unrestricted shortest path in GP .

To ensure that all paths in the tree are shortest, we need to control the growth of the
tree. One way to do so, is to use breadth-first search together with a token passing scheme,
which ensures synchronization between growing layers of the tree (see Figure 2). Here a

Figure 2 A step in the breadth first search.

Irina Kostitsyna, Tom Peters, and Bettina Speckmann 32:3

token is a constant amount of information which is written into the memory of each particle,
possibly by its neighbors, to propagate information. The root (green) sends a growth token
(white) to all branches; these tokens propagate to the current leaves of the tree. If a leaf p
receives a token, then it includes all neighboring particles, which are not part of the tree
yet, into the tree with p as their parent, by writing into their memory. Afterwards the leaf
creates a finished growth token (dark gray) and sends it back to its parent. Once a particle
receives finished growth tokens from all of its children it passes one of them up the tree and
discards the others. Once the root receives a finished growth token from all its children, it
initiates the growth of the next layer by sending a new growth token to all its children. The
process terminates once no leaf can grow any further; this information can be encoded in the
finished growth token. Breadth first search takes O(n2) rounds to complete the tree for a
connected particle configuration P with n particles, since every growth step requires a token
to be passed along the complete depth of the tree.

I Lemma 1. Given a connected particle configuration P with n particles, we can create an
SP-tree using at most O(n2) rounds.

To create SP-trees efficiently for simply connected particle systems, we describe a version of
the shortest path map (SPM) [13] on the grid. Let P be simply connected, and let R0 ⊆ P be
the subconfiguration of all particles P-visible from some root particle r. By analogy with the
geometric SPM, we refer to R0 as a region. If R0 = P then SPM(r) is simply R0. Otherwise,
consider the connected components {R1,R2, . . . } of P \ R0. A window of Ri is a line of
particles in R0 each of which is adjacent to one or more particles in Ri. Let ri be the closest
particle to r of the window Wi of Ri. Then SPM(r) is the union of R0 and the shortest
path maps of all ri in Ri ∪Wi for all i. The set of particles Ri ⊆ Ri ∪Wi is the visibility
region of ri, and ri is the root of the region Ri (see Figure 3). Note that by our definition
the particles of a window between two adjacent regions of a shortest path map belong to
both regions. Observe that any shortest path from a particle q ∈Wi to r passes through ri,
and thus any window forms a subpath of some path from r to some leaf in any SP-tree.

I Lemma 2. Let ri be the root of a visibility region Ri. For every particle p in Ri, the
shortest path from r to p passes through ri.

Proof. Assume that there exists a shortest path π in GP from r to p that does not pass
through ri. Assume further that Ri is adjacent to R0 (see Figure 4). Path π must cross
windowWi (ri, w) at some particle q 6= ri. The extension of window (ri, w), (ri, w

′), partitions
R0 into two parts. Since R0 is a visibility region, π must cross (ri, w

′) at some particle q′.

r

p

u

w

Figure 3 Shortest path map of node r. Any shortest path between r and p must pass through
nodes u and w. The region R0 (in purple) consists of the particles P-visible to r. The two red and
the blue particle are the roots of the corresponding SPM regions.

EuroCG’21

32:4 Coordinating Programmable Matter via Shortest Path Trees

r

ri

q
w

q′

w′

p
Ri

Figure 4 A shortest path from r to a particle in Ri.

Now there exists a shorter path from r to p: from r to q′ to q to p. Contradiction. The same
argument applies recursively to regions Ri further removed from R0. J

I Corollary 3. Any shortest path π between r and any other particle p in P must pass through
the roots of the SPM regions that π crosses.

If a particle p is P-visible from r then there is a 60◦-angle monotone path from r to p in GP .
That is, there exists a 60◦-cone in a fixed orientation, such that for each particle q along the
path the remainder of the path lies completely inside this cone translated to q (see Figure 5).
Although not named explicitly, angle monotone paths were introduced in [6].

We use a version of such cones to grow an SP-tree efficiently. Each node that is already
included in the tree carries a cone of valid growth directions (see Figure 6). When a leaf of
the tree is activated it includes any neighbors into the tree which are not part of the tree yet
and lie within the cone. A cone is defined as an interval of ports. The cone of the root r
contains all six ports. When a new particle q is included in the tree, then its parent p assigns
a particular cone of directions to q. Assume parent p has cone c and that q is connected to p
via port i of p. By definition i ∈ c, since otherwise p would not include q into the tree. We
intersect c with the 120◦-cone [i− 1, i+ 1] and pass the resulting cone c′ on to q. (Recall
that the arithmetic operations on the ports are performed modulo 6.) When doing so we
translate c′ into the local coordinate system of q such that the cone always includes the same
global directions. This simple rule for cone assignments grows an SP-tree in the visibility
region of the root r and it does so in a linear number of rounds.

I Lemma 4. Given a particle configuration P with n particles which is P-visible from a
particle r ∈ P, we can grow an SP-tree in P from r using O(n) rounds.

Figure 5 Angle monotone path: for every par-
ticle, the remainder of the path lies in a 60◦-cone.

Figure 6 Growing an SP-tree using cones
of directions.

Irina Kostitsyna, Tom Peters, and Bettina Speckmann 32:5

Figure 7 SP-trees with cone extensions. Left: The leftmost particle just extended its cone to
180◦. Right: A couple of activations further.

Proof. We are growing the SP-tree from r using the algorithm described above. First of
all, observe that any path in G which uses only two adjacent directions from the possible
six, is a shortest path. Moreover, every shortest path between two particles p and q uses
the same at most two directions. Consider the path π in the SP-tree from r to a particle p.
By construction, all particles on π, except for r, have cones of at most 120◦ (which equals
three adjacent directions). Assume that π leaves r in the global direction d1. As soon as
π deviates from d1 in direction d2 adjacent to d1, the cone of available directions shrinks
to 60◦ and contains only the two directions d1 and d2. Hence π uses at most two adjacent
directions and is therefore a shortest path.

It remains to show that for any particle q in P there is a path in the SP-tree from r to q.
Suppose that q is not part of the SP-tree. Consider a shortest path σ from r to q in P, let
p be the last particle on this path that belongs to the SP-tree, and q′ be the next particle
along σ. We argue that q′ lies in one of the directions of the cone of particle p. Indeed, as
observed above, path σ consists of at most two adjacent directions. The path π from r to
p in the SP-tree uses the same or a subset of the directions of σ, and thus the cone of p
contains the direction towards q′. Contradiction. J

We now extend our basic algorithm to arbitrary simply-connected particle systems using the
shortest-path map SPM(r). The SP-tree constructed by the basic algorithm contains exactly
the particles of the visibility region R0 of SPM(r). As any shortest path from a window
particle to r passes through the root of the window, any window incident to R0 forms a
single branch of the SP-tree. To continue the growth of the tree in the other regions of the
SPM(r), we extend the cone of valid directions for the root particles of the regions of SPM(r)
by 120◦. A particle p can detect whether it is a root of an SPM(r)-region by checking its
local neighborhood. Specifically, let the parent of p lie in the direction of the port i+ 3. If
the cone assigned to p by its parent is [i− 1, i] (or [i, i+ 1]), the neighboring node of p in
the direction i+ 2 (or i− 2) is empty, and the node in the direction i+ 1 (or i− 1) is not
empty, then p is the root of an SPM(r)-region, and thus p extends its cone to [i− 1, i+ 2]
(or [i− 2, i+ 1]) (see Figure 7). Note that if a cone is extended then it becomes a 180◦-cone.

I Lemma 5. Given a simply-connected particle system P and a particle r ∈ P, let SPM(r)
be the shortest-path map of r in P. A particle u ∈ P extends its cone during the construction
of an SP-tree if and only if it is the root of a region in SPM(r).

Proof. Let w be a root of an SPM(r)-region. We first argue that w will extend its cone,
when it is a leaf of a growing SP-tree and is activated. Let w lie in an SPM(r)-region with
root u (as in Figure 3). Any shortest path from u to w in P uses exactly two adjacent

EuroCG’21

32:6 Coordinating Programmable Matter via Shortest Path Trees

directions, one of which is directed along the window of w. Otherwise either w and the
particles of the window would not be P-visible to u, or all neighbors of w would be P-visible
to u. W.l.o.g., let these two directions be i and i− 1 in the local coordinate system of w, and
let i be the direction along the window. All shortest paths from w to u must go in direction
i + 3, otherwise again all neighbors of w would be P-visible to u. Then, w must have a
neighboring particle in the direction of i+ 1, and the neighboring node in the direction i+ 2
must be empty. Otherwise, w would not be part of a window, or it would not be a root of
the window. Thus, w will extend its cone.

Let u be a leaf of a growing SP-tree which extends its cone. We now argue that u must
be a root of an SPM(r)-region. Let R0 be the visibility region of r in P. We first assume
that u ∈ R0. Let the parent p of u lie in the direction of port i+ 3. W.l.o.g., assume that
u extends its cone [i− 1, i] to [i− 1, i+ 2], and thus the neighboring node at port i+ 1 is
non-empty, and the neighboring node at port i+ 2 is empty. Let v be the neighbor of u in
the direction i+ 1. Consider a maximal chain of particles W ′ in P from u in the direction
of port i. Particles W ′ are P-visible from r as a shortest path from r to any q ∈ W ′ uses
only two directions i − 1 and i. Particle v is not P-visible from r, as any path from r to
v must cross W ′, and thus use an extra direction i + 1 or i + 2. Consider the connected
component Rv of P \R0 containing v. Since u is adjacent to v it is part of some window W

of Rv. The parent p of u is not adjacent to Rv. Since all shortest paths from r to a particle
in W pass through u, u must be the root of W . Since u lies on the boundary of Rv, growing
the SP-tree further from u is equivalent to growing a new SP-tree only in Rv with u as the
root. Hence the same argument applies recursively. J

Lemmas 4 and 5 together imply Theorem 6.

I Theorem 6. Given a simply-connected particle configuration P with n particles and a
particle r ∈ P we can grow an SP-tree in P from r using O(n) rounds.

3 Conclusion

We introduced SP-trees as a new primitive for the Amoebot model and showed how to
construct SP-trees in simply-connected particle configurations efficiently. SP-trees can be
used to solve the shape reconfiguration problem more efficiently. The shape of a particle
configuration P is the set of all nodes in GP . An instance of the shape reconfiguration problem
requires a particle configuration P with shape S to form a target shape T . In ongoing work-
in-progress we use multiple SP-trees to organize “supply” particles and “demand” locations,
and route supply particles to demand locations efficiently.

References
1 Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W. Richa. A Markov

Chain Algorithm for Compression in Self-Organizing Particle Systems. In Proc. ACM
Symposium on Principles of Distributed Computing (PODC), pages 279–288, 2016. doi:
10.1145/2933057.2933107.

2 Kenneth C. Cheung, Erik D. Demaine, Jonathan R. Bachrach, and Saul Griffith. Pro-
grammable Assembly With Universally Foldable Strings (Moteins). IEEE Transactions on
Robotics, 27(4):718–729, 2011. doi:10.1109/TRO.2011.2132951.

3 Joseph C. Culberson and Robert A. Reckhow. Dent Diagrams: A Unified Approach to
Polygon Covering Problems. Technical report, University of Alberta, 1987. TR 87–14.

Irina Kostitsyna, Tom Peters, and Bettina Speckmann 32:7

4 Joshua J. Daymude, Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Christian Schei-
deler, and Andréa W. Richa. Convex Hull Formation for Programmable Matter. In Proc.
21st International Conference on Distributed Computing and Networking, pages 1–10, 2020.
doi:10.1145/3369740.3372916.

5 Joshua J. Daymude, Kristian Hinnenthal, Andréa W. Richa, and Christian Scheideler. Com-
puting by Programmable Particles. In Paola Flocchini, Giuseppe Prencipe, and Nicola San-
toro, editors, Distributed Computing by Mobile Entities, LNCS 11340, chapter 22, pages
615–681. Springer, 2019. doi:10.1007/978-3-030-11072-7_22.

6 Hooman R. Dehkordi, Fabrizio Frati, and Joachim Gudmundsson. Increasing-Chord Graphs
On Point Sets. In Proc. International Symposium on Graph Drawing (GD), LNCS 8871,
pages 464–475, 2014. doi:10.1007/978-3-662-45803-7_39.

7 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, AndréaW. Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: Amoebot—A New Model for Programmable
Matter. In Proc. 26th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 220–222, 2014. doi:10.1145/2612669.2612712.

8 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal Shape Formation for Programmable Matter. In Proc. 28th Annual
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 289–299,
2016. doi:10.1145/2935764.2935784.

9 Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W. Richa,
and Christian Scheideler. Leader Election and Shape Formation with Self-organizing Pro-
grammable Matter. In Proc. International Workshop on DNA-Based Computing (DNA),
LNCS 9211, pages 117–132, 2015. doi:10.1007/978-3-319-21999-8_8.

10 Giuseppe A. Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape formation by programmable particles. Distributed Computing, 33:69–101,
2020. doi:10.1007/s00446-019-00350-6.

11 Subir Kumar Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, 2007.
doi:10.1017/CBO9780511543340.

12 Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, Chris-
tian Scheideler, and Thim Strothmann. Forming Tile Shapes with Simple Robots. In Proc.
International Conference on DNA Computing and Molecular Programming (DNA), pages
122–138, 2018. doi:10.1007/978-3-030-00030-1_8.

13 Joseph S. B. Mitchell. A new algorithm for shortest paths among obstacles in the
plane. Annals of Mathematics and Artificial Intelligence, 3(1):83–105, 1991. doi:10.1007/
BF01530888.

14 Matthew J. Patitz. An introduction to tile-based self-assembly and a survey of recent
results. Natural Computing, 13(2):195–224, 2014. doi:10.1007/s11047-013-9379-4.

15 Alexandra Porter and Andrea Richa. Collaborative Computation in Self-organizing
Particle Systems. In Proc. International Conference on Unconventional Computation
and Natural Computation (UCNC), LNCS 10867, pages 188–203, 2018. doi:10.1007/
978-3-319-92435-9_14.

16 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng
Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In
Proc. 4th Conference on Innovations in Theoretical Computer Science (ITCS), pages 353–
354, 2013. doi:10.1145/2422436.2422476.

EuroCG’21

Long plane trees∗

Sergio Cabello†1,2, Michael Hoffmann‡3, Katharina Klost4,
Wolfgang Mulzer§4, and Josef Tkadlec5

1 Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
sergio.cabello@fmf.uni-lj.si

2 Institute of Mathematics, Physics and Mechanics, Slovenia
3 Department of Computer Science, ETH Zürich, Switzerland

hoffmann@inf.ethz.ch
4 Institut für Informatik, Freie Universität Berlin, Germany

{kathklost,mulzer}@inf.fu-berlin.de
5 Harvard University, USA

pepa_tkadlec@fas.harvard.edu

Abstract
Let P be a finite point set in the plane in general position. For any spanning tree T on P,
we denote by |T | the Euclidean length of T . Let TOPT be a plane (noncrossing) spanning tree
of maximum length for P. It is not known whether such a tree can be found in polynomial
time. Thus, past research has focused on designing polynomial-time approximation algorithms,
typically based on trees of small (unweighted) diameter. We extend this line of research and
show how to construct in polynomial time a plane tree TALG on P such that TALG has diameter at
most four and |TALG| > 0.546 · |TOPT|. This improves substantially over the currently best known
approximation factor. Furthermore, we consider the special case of a long plane spanning tree
with diameter at most three, and we show that it can be found in polynomial time.

Related Version: A full version is available at https://arxiv.org/abs/2101.00445.

1 Introduction

Geometric network design is a common and well-studied task in computational geometry
and combinatorial optimization [6–9]. In this family of problems, we are given a set P of
points in general position, and our task is to connect P into a (geometric) graph that has
certain favorable properties. There are many possible objective functions and many different
constraints that might be imposed on the resulting graph.

Here, we focus on graphs that achieve a large total edge length while at the same time
ensuring that the edges do not cross. In many cases, the objective of maximization and the
noncrossing constraint are in conflict. If the goal is to minimize the total edge length, like,
e.g., in Euclidean minimum spanning trees or the Euclidean TSP, the noncrossing property
is often implied by the triangle inequality. In contrast, when maximizing, say, the total edge
length of a spanning tree, the resulting graph will most likely contain many crossings. In this

∗ This research was started at the 3rd DACH Workshop on Arrangements and Drawings, August 19–
23, 2019, in Wergenstein (GR), Switzerland, and continued at the 16th European Research Week
on Geometric Graphs, November 18–22, 2019, in Strobl, Austria. We thank all participants of the
workshops for valuable discussions and for creating a conducive research atmosphere.

† Supported by the Slovenian Research Agency (P1-0297, J1-9109, J1-8130, J1-8155, J1-1693, J1-2452).
‡ Supported by the Swiss National Science Foundation within the collaborative DACH project Arrange-

ments and Drawings as SNSF Project 200021E-171681.
§ Supported in part by ERC StG 757609 and by the German Research Foundation within the collaborative
DACH project Arrangements and Drawings as DFG Project MU 3501/3-1.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

33:2 Long plane trees

sense, balancing the noncrossing constraint and the maximization objective is an interesting
challenge.

We will consider long plane spanning trees: given a point set P in general position (i.e.,
no three points are on a common line), we want to find a longest spanning tree on P such
that no two edges cross. The precise complexity for this problem is unknown, but it is
conjectured to be NP-hard. This stands in contrast to the greedy polynomial time algorithms
for short (necessarily plane) spanning trees and long (possibly not plane) spanning trees.

As a polynomial-time algorithm for the long plane case has eluded researchers for many
years, the focus has shifted to approximation algorithms. The first such algorithm, giving a
0.5-approximation, is due to Alon et al. [1]. This approximation factor was then improved to
0.502 by Dumitrescu and Tóth [5]. This result led to a series of improvements from 0.503 [3]
over 0.512 [4] to the most recent result of a 0.519-approximation [2].

We substantially increase the approximation factor to a fixed f > 0.5467, and we give a
polynomial time algorithm for finding a longest tree of unweighted diameter at most 3.

2 Approximation Algorithm

We describe an algorithm to find a plane spanning tree on a given point set P , and we show
that the resulting tree is a good approximation for a longest plane spanning tree on P. The
algorithm considers two families of trees. The first family consists of stars: for a point a ∈ P ,
the star Sa rooted at a is the tree that connects all points p ∈ P \ {a} to a.

The second family of trees Ta,b is parameterized by two distinct points a, b ∈ P. The
trees Ta,b are defined as follows: let Pa be the points of P that are closer to a than to b,
and let Pb = P \ Pa. We connect a to every point in Pb, and then we connect each point of
Pa \ {a} to some point of Pb without introducing crossings. We will not go into the details
of the second step here, but it is possible to make these connections in a simple deterministic
way. See Figure 1 for an example.

a

Sa Ta,b

a b

Figure 1 A star Sa and a tree Ta,b.

The algorithm computes all stars Sa, for a ∈ P, and all trees Ta,b, for ordered pairs
(a, b) ∈ P2 with a 6= b. The algorithm returns a longest among all those trees. This process
can be implemented in polynomial time, and we call the resulting tree TALG.

I Theorem 2.1. For any finite planar point set P in general position, the tree TALG has
Euclidean length at least f · |TOPT|, where |TOPT| denotes the length of a longest plane tree on
P and f > 0.5467 is the fourth smallest real root of the polynomial

P (x) = −80 + 128x+ 504x2 − 768x3 − 845x4 + 1096x5 + 256x6.

Proof sketch. Particularly towards the end of this proof sketch, we omit some details due to
space constraints. The detailed calculations can be found in the full version.

We fix some assumptions on P. First, we assume that P has diameter exactly 2. Next,
fix some optimal tree TOPT on P and a longest edge ab of TOPT. Write the Euclidean length

S. Cabello et al. 33:3

of ab as ‖ab‖ = 2d. Let D(a, 2) and D(b, 2) be the disks with radius 2 and centers a and b,
respectively. As P has diameter 2, all points lie inside the lens D(a, 2) ∩D(b, 2). Without
loss of generality, we assume that a = (−d, 0) and b = (d, 0).

From arguments established in earlier research [4, Lemma 2.1], we can conclude that if
2d ≤ 1/f , the result follows. Hence, from now on, we focus on the case 2d > 1/f .

Let s, s′ be the points on the y-axis with ‖sa‖ = ‖sb‖ = ‖s′a‖ = ‖s′b‖ = 2df , where s is
the one with the positive y-coordinate. Since 2df > 1, the circles ∂D(s, 2df) and ∂D(s′, 2df)
intersect the boundary of the lens. We call the region that is inside the lens but above or
below both circles the far region (shaded green in Figure 2), and the remaining part of the
lens is referred to as the truncated lens (shaded yellow in Figure 2).

d d

2df
s

ba

s′

Far region

Truncated lens

Figure 2 The lens is split into the far region (green) and the truncated lens (yellow).

Suppose that there is a point c ∈ P in the far region. Then, we argue that a longest
of the stars Sa, Sb, and Sc is a good approximation. Denote by R the circumradius of the
triangle 4abc, and let g be the center of mass of P \ {a, b, c}. Then, as 4abc is acute-angled,
there is one point q among a, b, c such that ‖gq‖ ≥ R. Having fixed q, the triangle inequality
gives

∑
p∈P\{a,b,c} ‖pq‖ ≥ (n − 3) · R. Together with ‖qa‖+ ‖qb‖+ ‖qc‖ ≥ 2R, this yields

|Sq| =
∑

p∈P ‖pq‖ ≥ (n− 1) ·R ≥ f · (n− 1) · 2d ≥ f · |TOPT|.
Hence, from now on, we can assume that 2d > 1/f and that the far region contains no

point from P . Consider the five trees Ta,b, Tb,a, Sa, Sb, and TOPT. They all contain the edge
ab. We conceptually direct the other edges towards ab and, given a point p ∈ P and a tree
T , denote the length of the outgoing edge from p in T by `T (p). Given a real parameter
β ∈ (0, 1/2) we define the weighted average of the lengths of the edges assigned to a point p
over the first four trees as:

avg(p, β) = (1/2− β) · `Sa
(p) + β · `Ta,b

(p) + β · `Tb,a
(p) + (1/2− β) · `Sb

(p)

Summing up over all p ∈ P \ {a, b} and adding the length of the edge ab yields the weighted
average of the length of all four trees. Note that a longest of the four trees is guaranteed to
be longer than the weighted average. This reduces our problem to that of finding β such
that for each point in P \ {a, b} we have:

avg(p, β) ≥ f · `TOPT(p). (1)

In the following we assume without loss of generality that p = (x, y) with x, y ≥ 0. Let
pa be the point with x-coordinate −(2− d) on the ray pa. Furthermore, if the x-coordinate

EuroCG’21

33:4 Long plane trees

of p is less than d, let pb be the point with x-coordinate 2 − d on the ray pb. When the
x-coordinate of p is at least d, then the ray pb does not intersect the vertical line with
x-coordinate 2− d and we set pb = b. Additionally, define pu to be the furthest point from p

on the portion of the boundary of the far region that is contained in the circle k = ∂D(s, 2df).
See Figure 3 for a visualization. We claim that

`TOPT(p) ≤ min{2d,max{‖ppa‖, ‖ppu‖}}. (2)

d d

c

2df

k

pa pb

pu

p = [x, y]

a b

s

vu

O
︸ ︷︷ ︸ ︸ ︷︷ ︸

Figure 3 The definition of the special points

To show (2), first note that if ‖ppa‖ ≥ 2d then we are done as the right-hand side becomes
2d and the left-hand side is at most 2d by assumption. Next, tedious algebra shows that
if ‖ppa‖ ≤ 2d then ‖ppb‖ ≤ ‖ppa‖. The rest follows by denoting by pf the point in the
truncated lens furthest from p and doing a case distinction over the quadrant containing pf :
1. If pf lies in the third or fourth quadrant then ‖ppa‖ is larger than ‖ppf‖.
2. If pf lies in the first quadrant, mirroring pf along the y-axis gives a point further away

from p than pf .
3. If pf lies in the second quadrant then it lies on the boundary of the truncated lens. Let t

be the topmost point in the truncated lens and let u be the to higher intersection point
of ∂D(s, 2df) and ∂D(b, 2), see Figure 4 for an illustration. If pf lies on the arc tu and
p ∈ N we are done, as pu = u. If p ∈ S we are done by triangle inequality. Finally if pf

lies on the arc ul we have ‖ppf‖ ≤ max{‖pl‖, ‖pu‖} and are again done, as ‖pl‖ ≤ ‖ppa‖
and ‖pu‖ ≤ ‖ppu‖.
Combining (1) and (2), it suffices to find β ∈ [0, 1/2] such that both avg(p, β) ≥

f ·min{2d, ‖ppa‖} and avg(p, β) ≥ f ·min{2d, ‖ppu‖}. To find such β, our main technical
insight is the following lower bound on avg(p, β) that holds for any β ∈ [0, 1/2]:

avg(p, β) ≥ d · (1− β) + x · 2β
d+ x

. (3)

To prove (3), we start with unpacking the definition:

avg(p, β) ≥ (1/2− β) · ‖pa‖+ β · ‖pa‖+ β · x+ (1/2− β) · ‖pb‖.

S. Cabello et al. 33:5

s

a b
l

O

u

2df

d d

t

D
(l, 2d)

k

r

v

EN

S

pu

pa pb

Figure 4 For p ∈ E we have `TOPT (p) ≤ 2d, for p ∈ N we have `TOPT (p) ≤ max{‖ppa‖, ‖pu‖}
and for p ∈ S we have `TOPT (p) ≤ max{‖ppa‖, ‖ppu‖}.

Let p′ = (−x, y) be the reflection of p about the y axis (see Figure 5). Triangle inequality
‖p′p‖+ ‖pb‖ ≥ ‖p′b‖ = ‖pa‖ yields β · x = 1

2β · ‖p′p‖ ≥ 1
2β · (‖pa‖ − ‖pb‖) and we get

avg(p, β) ≥ 1
2 · ‖pa‖+ 1

2β · ‖pa‖+
(

1
2 −

3
2β
)
· ‖pb‖.

O

`

d d− xx

p = (x, y)

a b

p′

Figure 5 Mirroring p along the y-axis.

Next we claim that ‖pb‖ ≥ d−x
d+x · ‖pa‖: Indeed, upon squaring, using the Pythagorean

theorem and clearing the denominators this becomes y2 · 4dx ≥ 0 which is true. Using this
bound on the term containing ‖pb‖, the inequality (3) is proved as follows:

avg(p, β) ≥ (1 + β)(d+ x) + (1− 3β)(d− x)
2(d+ x) · ‖pa‖ = (1− β) · d+ 2β · x

d+ x
· ‖pa‖.

Using (3) and some elementary geometric considerations (briefly sketched below) we can
prove the following claims for any point p = (x, y) with x, y ≥ 0:

EuroCG’21

33:6 Long plane trees

1. We have avg(p, β) ≥ f ·min{2d, ‖ppa‖}, provided that

2f − 1
5− 8f ≤ β ≤

1
2 · f. (4)

2. We have avg(p, β) ≥ f ·min{2d, ‖ppu‖}, provided that β < 151
304 · f and 1

2 ≤ f ≤ 19
32 and

2f − 1
2
√

5− 8f − 1
≤ β ≤ 1− f

√
4f2 − 1− 2f2. (5)

To prove 1., we distinguish the cases x ≥ 3d− 2 and x < 3d− 2 and show avg(p, β) ≥ f · 2d
and avg(p, β) ≥ f‖ppa‖, respectively. To prove 2., we distinguish the cases y ≤ y(u) and
y > y(u). In the first case we use that the left-hand side of (3) is increasing in y, while ‖ppu‖
is decreasing. The second case essentially follows from basic algebra and the Pythagorean
theorem.

Finally, it is straightforward (although again tedious) to check that for our definition of f
the left-hand side and the right-hand side of the constraint (5) are equal. To be precise, after
setting the left-hand side and the right-hand site equal and applying some algebra, which
includes two times the squaring of both sites, yields the polynomial given in the statement of
the theorem. Our choice of f is not only a solution to the origin polynomial but also yields a
value value β? .= 0.1604 such that setting β = β? satisfies also (4) and the other constraints
in 2. Note that for any f ′ > f , the two constraints on β from (5) are contradictory, except
for f ′ = 5

8 when they reduce to − 1
4 ≤ β ≤ − 1

4 which is not a permissible value of β. J

3 Polynomial-time algorithm for diameter 3

In this section we describe a polynomial time algorithm for finding a longest plane spanning
tree of diameter at most 3 for a given set of points in general position. Note that all trees of
diameter at most 3 have a cut edge ab whose removal decomposes the tree into at most 2
stars, one rooted at a and one rooted at b. We also call such trees bistars rooted at a and b.

I Theorem 3.1. We can find a longest bistar on a point set P in polynomial time.

Proof. We argue how to find the best bistar with fixed roots a, b in polynomial time. The
statement of the theorem then follows by iterating over all possible pairs of roots.

Without loss of generality we assume that ab is a horizontal edge and that all points lie
above ab. We use dynamic programming. We call a pair p, q ∈ P a valid pair, if ap and bq
do not cross. Let Q(p, q) be the quadrilateral defined by ab, ap, bq and the horizontal line
through min{y(p), y(q)} as shown in Figure 6.

a b

Q(p, q)

a b

p

q

Q(p, q)

p

q

Figure 6 Two examples of valid pairs p, q with their quadrilaterals Q(p, q) shaded.

S. Cabello et al. 33:7

We denote by Z(p, q) the length of the best bistar rooted at a and b on the points in
the interior of Q(p, q). Let kp,q be the highest point in Q(p, q) and let Lp,q and Rp,q be the
regions in Q(p, q) to the left of akp,q and to the right of bkp,q, respectively (see Figure 7).

a b a

qq

kp,q

p p

b

Lp,q Lp,q
Rp,q Rp,qkp,q

Figure 7 Fixing kp,k gives two possible triangular regions where edges are fixed.

As we aim to compute a bistar, kp,q is either connected to a or to b. In the first case,
all points in Lp,q have to be connected to a in order to prevent crossings. The points in
Q(kp,q, q) can now be connected to either a or b, so the best bistar can be found recursively
in this region. A symmetric argument holds if kp,q is connected to b. The resulting tree is a
bistar rooted at a and b by induction. Formally, for each valid pair p, q we have the following
recurrence:

Z(p, q) =

0 if no point of P is in Q(p, q),

max
{
Z(kp,q, q) + ‖akp,q‖+

∑
l∈Lp,q

‖al‖
Z(p, kp,q) + ‖bkp,q‖+

∑
r∈Rp,q

‖br‖
otherwise.

Let p, q be a valid pair, let Lp be all points to the left of the line through ap and let Rq

be all points to the right of the line through bq. Then all values of the form

∑

l∈Lp

‖al‖

+

∑

r∈Rq

‖br‖

+ ‖ap‖+ ‖bq‖+ ‖ab‖+ Z(p, q), (6)

describe the length of a plane, not necessarily spanning, bistar rooted at a and b.
Now assume that a is connected to the point with maximum y-coordinate. Furthermore

let q∗ be the highest point connected to b and p∗ be the point with smallest angle at a above
q∗. Then p∗, q∗ is a valid pair and the length of the optimal bistar is obtained by plugging
p∗ and q∗ into (6). Now by taking the maximum of (6) for all valid pairs, together with the
maximum of Sa and Sb, we obtain a longest bistar rooted at a and b.

The recurrence can be implemented in polynomial time using a standard dynamic
programming approach. J

In the full version of the paper, we give details on the implementation and show that the
dynamic program can be implemented in O(n2) time.

4 Conclusion

We showed an f ≥ 0.5467-approximation algorithm for the longest plane spanning tree
problem. Furthermore we gave a polynomial time algorithm to solve the problem for fixed
diameter at most 3.

EuroCG’21

33:8 Long plane trees

There are some related open questions. First, is the factor f we obtained tight for our
algorithm? While all the steps in the analysis are tight, the overall analysis might not
be. Second, how well does the optimal tree of diameter 3 approximate the optimal tree of
arbitrary diameter? This is especially interesting, as we know of point sets with longest trees
of diameter Θ(n). Finally, there are the broader questions of finding a PTAS and settling
the complexity.

References
1 Noga Alon, Sridhar Rajagopalan, and Subhash Suri. Long non-crossing configurations in

the plane. Fundam. Inform., 22(4):385–394, 1995. doi:10.3233/FI-1995-2245.
2 Ahmad Biniaz. Euclidean bottleneck bounded-degree spanning tree ratios. In Proceedings of

the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 826–836. SIAM, 2020. doi:10.1137/1.9781611975994.50.

3 Ahmad Biniaz, Prosenjit Bose, Kimberly Crosbie, Jean-Lou De Carufel, David Eppstein,
Anil Maheshwari, and Michiel Smid. Maximum plane trees in multipartite geometric graphs.
Algorithmica, 81(4):1512–1534, 2019. doi:10.1007/s00453-018-0482-x.

4 Sergio Cabello, Aruni Choudhary, Michael Hoffmann, Katharina Klost, Meghana M Reddy,
Wolfgang Mulzer, Felix Schröder, and Josef Tkadlec. A better approximation for longest
noncrossing spanning trees. In 36th European Workshop on Computational Geometry (Eu-
roCG), 2020.

5 Adrian Dumitrescu and Csaba D. Tóth. Long non-crossing configurations in the plane.
Discrete Comput. Geom., 44(4):727–752, 2010. doi:10.1007/s00454-010-9277-9.

6 David Eppstein. Spanning trees and spanners. In Jörg-Rüdiger Sack and Jorge Urrutia,
editors, Handbook of Computational Geometry, pages 425–461. North Holland / Elsevier,
2000. doi:10.1016/b978-044482537-7/50010-3.

7 Sariel Har-Peled. Geometric approximation algorithms, volume 173 ofMathematical Surveys
and Monographs. American Mathematical Society, Providence, RI, 2011. doi:10.1090/
surv/173.

8 Joseph S. B. Mitchell. Shortest paths and networks. In Jacob E. Goodman, Joseph
O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational Ge-
ometry, chapter 31, pages 811–848. CRC Press, Boca Raton, 3rd edition, 2017. doi:
10.1201/9781315119601.

9 Joseph S. B. Mitchell and Wolfgang Mulzer. Proximity algorithms. In Jacob E. Goodman,
Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational
Geometry, chapter 32, pages 849–874. CRC Press, Boca Raton, 3rd edition, 2017. doi:
10.1201/9781315119601.

Terrain prickliness:
theoretical grounds for low complexity viewsheds
Ankush Acharyya1, Ramesh K. Jallu1, Maarten Löffler2, Gert G.T.
Meijer2, Maria Saumell1,3, Rodrigo I. Silveira4, Frank Staals2, and
Hans Raj Tiwary5

1 The Czech Academy of Sciences, Institute of Computer Science, Czech
Republic
{acharyya,jallu,saumell}@cs.cas.cz

2 Department of Information and Computing Sciences, Utrecht University,
Netherlands
m.loffler@uu.nl, g.t.meijer@students.uu.nl

3 Department of Theoretical Computer Science, Faculty of Information
Technology, Czech Technical University in Prague, Czech Republic

4 Department de Matemàtiques, Universitat Politècnica de Catalunya, Spain
rodrigo.silveira@upc.edu

5 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Czech Republic
hansraj@kam.mff.cuni.cz

1 Introduction

Two points on a triangulated terrain are mutually visible if the straight line segment connecting
them does not intersect the interior of the terrain; the set of all points visible from a given
point p is the viewshed of p. Viewsheds are useful, for example, in evaluating the visual
impact of potential constructions [2], analyzing the coverage of an area by fire watchtowers [8],
or measuring the scenic beauty of a landscape [14]. In a 1.5D terrain, the viewshed of one
viewpoint can have a complexity that is linear on the number of vertices, and can be
computed in linear time [7]. In contrast, in 2.5D terrains the complexity of the viewshed of
one viewpoint can be quadratic in the number of vertices [11], which makes its computation
too slow for most practical uses when terrains are large. A typical quadratic construction
is shown schematically in Fig. 1. Viewsheds with quadratic complexity are uncommon in
real terrains, and there have been attempts to define theoretical conditions for a terrain to
be “realistic” that guarantee, among others, that viewsheds cannot be that large [3, 13]. In
this paper we introduce a new terrain measure, based on the idea that viewsheds are more
complex in “rugged” terrains [9], and study its relation to viewshed complexity.

Figure 1 If a viewpoint is placed in front of the visible triangles and very far from them, its
viewshed has quadratic complexity.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

34:2 Terrain prickliness: theoretical grounds for low complexity viewsheds

0

8

5◦
10◦

15◦
20◦

Figure 2 (left) A polyhedral terrain T . Height (z-coordinates) are indicated using colors.
(right) A visualization of the prickliness π~v(T) as a function of ~v, in degrees from vertical (0, 0, 1).
The maximum prickliness is 8, attained at a direction about 13◦ north-east from the origin.

Let T be a polyhedral surface and let ~v be a vector. We define π~v(T) to be the number of
internal vertices of T that are extremal in direction ~v. Then we define the prickliness of T ,
π(T), to be the maximum number of local maxima over all directions; that is,

π(T) = max
~v

π~v(T).

We say that T is a terrain if any vertical line intersects T at most once. If T is a terrain,
for any ~v with a negative z-coordinate we set π~v(T) = 0 by definition. Fig. 2 shows a small
terrain and the resulting prickliness, shown as a function of the direction of ~v.

In Section 2, we investigate the correlation between the prickliness of a terrain and the
maximum viewshed complexity. In Section 3 we investigate the computational problem of
calculating the prickliness of a terrain. Finally, in Section 4, we report on experiments that
measure the prickliness of real terrains, and confirm the correlation between prickliness and
viewshed complexity in practice. Omitted proofs can be found in the full version of this
paper [1].

2 Prickliness and viewshed complexity

We first consider 1.5D terrains. In this case, prickliness is not related to viewshed complexity.

p

vi

vi+1

wiwi−1

wi+1

Figure 3 A 1.5D terrain with constant prickliness but linear viewshed complexity.

I Theorem 2.1. There exists a 1.5D terrain T with n vertices and constant prickliness, and
a viewpoint on T with viewshed complexity Θ(n). (Refer to Fig. 3.)

Surprisingly, and in contrast to Theorem 2.1, we will show in Theorem 2.4 that in 2.5D
there is a provable relation between prickliness and viewshed complexity. We recall some
terminology introduced in [6]. Let v be a vertex of T , and let p be a viewpoint. We denote

Acharyya, Jallu, Löffler, Meijer, Saumell, Silveira, Staals, and Tiwary 34:3

p

e

v

u
↑up

↑vp

↑ep

Figure 4 A vase.

p

e1
q

t

r

↑e2p

↑e1p

e2

Figure 5 The situation in the proof of Lemma 2.3; q is a vertex of type 3.

by ↑v
p the half-line with origin at p in the direction of vector −→pv. Now, let e = uv be an edge

of T . The vase of p and e, denoted ↑e
p, is the region bounded by e, ↑u

p , and ↑v
p (see Fig. 4).

Vertices of the viewshed of p can have three types [6]. A vertex of type 1 is a vertex of T , of
which there are clearly only n. A vertex of type 2 is the intersection of an edge of T and a
vase. A vertex of type 3 is the intersection of a triangle of T and two vases (see Fig. 5 for an
example). With the following two lemmas we will be able to prove Theorem 2.4.

I Lemma 2.2. There are at most O(n · π(T)) vertices of type 2.

Proof. Consider an edge e of T and let H be the plane spanned by e and p. Consider the
viewshed of p on e. Let qr be a maximal invisible portion of e surrounded by two visible
ones. Since q and r are vertices of type 2, the open segments pq and pr pass through a point
of T . On the other hand, for any point x in the open segment qr, there exist points of T
above the segment px. This implies that there is a continuous portion of T above H such
that the vertical projection onto H of this portion lies on the triangle pqr. Such portion
has a local maximum in the direction perpendicular to H which is a convex and internal
vertex of T . In consequence, each invisible portion of e surrounded by two visible ones can
be assigned to a distinct point of T that is a local maximum in the direction perpendicular
to H. Hence, in the viewshed of p, e is partitioned into at most 2π(T) + 3 parts.1 J

I Lemma 2.3. There are at most O(n · π(T)) vertices of type 3.

Proof. Let q be a vertex of type 3 in the viewshed of p. Point q is the intersection between
a triangle t of T and two vases, say, ↑e1

p and ↑e2
p ; see Fig. 5. Let r be the ray with origin at

p and passing through q. Ray r intersects edges e1 and e2. First, we suppose that e1 and
e2 do not share any vertex and, without loss of generality, we assume that r ∩ e1 is closer
to p than r ∩ e2. Notice that r ∩ e2 is a vertex of type 2 because it is the intersection of e2

1 We obtain 2π(T) + 3 parts when the first and last portion of e are invisible; otherwise, we obtain fewer
parts.

EuroCG’21

34:4 Terrain prickliness: theoretical grounds for low complexity viewsheds

Figure 6 Schematic top-down view of the classic quadratic construction (left), and the same
adapted to have small prickliness (right). The camera with quadratic behaviour is at (0,−∞) (see
Fig. 1 for the resulting view). Blue vertices/edges are low, red are medium hight, and green are high.
The right construction introduces a new height (yellow) between medium and high, and changes the
triangulation slightly, to ensure that all convex vertices in the construction are green.

and ↑e1
p , and ↑e1

p partitions e2 into a visible and an invisible portion. Thus, we charge q to
r ∩ e2. If another vertex of type 3 was charged to r ∩ e2, then such a vertex would also lie
on r. However, no point on r after q is visible from p because the visibility is blocked by t.
Hence, no other vertex of type 3 is charged to r ∩ e2.

If e1 and e2 are both incident to a vertex v, since t∩ ↑e1
p ∩ ↑e2

p is a type 3 vertex, we have
that r passes through v. Therefore, q is the first intersection point between r (which can be
seen as the ray with origin at p and passing through v) and the interior of some triangle in
T . Therefore, any vertex v of T creates at most a unique vertex of type 3 in this way. J

I Theorem 2.4. The complexity of a viewshed in a 2.5D terrain is O(n · π(T)).

Next we describe a construction showing that the theorem is best possible.

I Theorem 2.5. There exists a 2.5D terrain T with n vertices and prickliness π(T), and a
viewpoint on T with viewshed complexity Θ(n · π(T)).

Proof. Consider the standard quadratic viewshed construction, composed of a set of front
mountains and back triangles (Fig. 6, left). Notice that there can be at most π(T) mountains
“at the front”. We add a surrounding box around the construction, see Fig. 6 (right), such
that each vertex of the back triangles is connected to at least one vertex on this box. We set
the elevation of the box so that it is higher than all the vertices of the back triangles, but
lower than those of the front mountains. In this way, no vertex of the back triangles is a
local maximum in any direction, and all local maxima come from the front. J

3 Prickliness computation

In 1.5D, for every internal and convex vertex v in T we consider the set of feasible unit
vectors se(v), such that ~w ∈ se(v) if v is a local maximum of T in direction ~w. Note that
these feasible vectors ~w can be represented as unit vectors, and then the feasible set becomes
a region of the unit circle S1. To find se(v), for each edge e of T incident to v we consider
the line ` through v which is perpendicular to e. Then we take the half-plane bounded by `
and opposite to e, and we translate it so that its boundary contains the origin. Finally, we
intersect this half-plane with S1, which yields a half-circle. We intersect the two half-circles
associated to the two edges of T incident to v, and obtain a sector of S1. For each direction
~w contained in the sector, the two corresponding edges do not extend further than v in
direction ~w. Thus, v is a local maxima in direction ~w and this sector indeed represents se(v).
See Fig. 7 for an example.

Acharyya, Jallu, Löffler, Meijer, Saumell, Silveira, Staals, and Tiwary 34:5

Clearly, se(v) can be computed in constant time. The prickliness of T is the maximum
number of sectors with non-empty intersection. This can be computed in O(n logn) time by
sorting the bounding angles of the sectors.

Figure 7 In shaded, se(v) for the corresponding vertices.

I Theorem 3.1. In 1.5D, the prickliness can be computed in O(n logn) time.

In 2.5D we proceed similarly. For each convex terrain vertex v, consider the cone co(v) of
the unit sphere S2 containing all vectors ~w such that v is a local maximum of T in direction
~w. To compute co(v), we consider all edges of T incident to v. Let e = vu be such an edge,
and consider the plane orthogonal to e through v. Let H be the half-space which is bounded
by this plane and does not contain u. We translate H so that the plane bounding it contains
the origin; let He be the intersection of the obtained half-space with the unit sphere S2.
Then, for any unit vector ~w in He, the edge e does not extend further than v in direction
~w. We repeat this for all edges incident to v, and consider the intersection co(v) of all the
obtained half-spheres He. For any unit vector ~w in co(v), no edge incident to v extends
further than v in direction ~w. Since v is convex, v is a local maximum in direction ~w.

To compute the prickliness we find a unit vector that lies in the maximum number of cones
of type co(v). To simplify, rather than considering the cones on the sphere, we extend them
until they intersect the boundary of a unit cube Q centered at the origin. The conic regions
of type co(v) intersect the faces of Q in (overlapping) convex regions. Note that finding a
unit vector that lies in the maximum number of regions of type co(v) on S is equivalent to
finding a point on the surface of Q that lies in the maximum number of extended regions of
type co(v). The second problem can be solved by computing the maximum overlap of convex
regions using a topological sweep [4], for each face of the cube. Computing the intersection
between the extended regions of type co(v) (for all convex vertices v) and the boundary of Q
takes O(n logn) time, and topological sweep to find the maximum overlap takes O(n2) time.

I Theorem 3.2. In 2.5D, the prickliness can be computed in O(n2) time.

3.1 Lower bounds
We begin by showing that Ω(n logn) is a lower bound for computing prickliness in 1.5D.
The reduction is from element distinctness, which has an Ω(n logn) lower bound in the
bounded-degree algebraic decision tree model [10]. Let S = {x1, x2, . . . , xn} be n positive
integer elements. We multiply all elements of S by 180/(max S + 1) and obtain a new set S ′.
For each x′

i ∈ S ′, we create a convex vertex vi with se(vi) = [x′
i − ε, x′

i + ε]; refer to Fig. 8.2

2 We sometimes write se(v) = [α, β], where α and β are the angles bounding the sector.

EuroCG’21

34:6 Terrain prickliness: theoretical grounds for low complexity viewsheds

vi+1

ui ui+1

vi vi+1

wl
i

wr
i

wl
i+1

wr
i+1

(b) (c)

0

90

180

45135

225 315

0

90

180

270

45135

225 315
270

(a)

vi

Figure 8 (a) Sectors associated to the element set {160, 25}. (b) The corresponding convex
vertices. (c) Construction of the terrain.

Figure 9 Instance of the problem of coverage with strips (left), and the equivalent problem of
coverage with rectangles (right).

We place all vi at the same height, place two neighbors next to each vi to satisfy its set
of feasible vectors, and separate the resulting mini-chains with additional vertices that are
high enough to make the neighbors of vi concave, and such that their own feasible set covers
all sets se(vi). Then the prickliness of T is n if and only if all elements in S are distinct.

I Theorem 3.3. The problem of computing the prickliness of a 1.5D terrain has an Ω(n logn)
lower bound in the bounded-degree algebraic decision tree model.

In 2.5D we show that computing prickliness is 3SUM-hard. The reduction is from covering
a square by strips [5]: Given a square Q and m strips of infinite length, does there exist a
point in Q not covered by any of these m strips? The complement of each strip is given
by two half-planes. Consider the 2m half-planes obtained in this way; the question above
is equivalent to whether there is a point in Q covered by m of the half-planes. We now
replace each half-plane by the smallest rectangle that contains the intersection of Q with the
half-plane; see Fig. 9. Let A be the arrangement containing Q and the rectangles.

I Observation 3.4. Any point is covered by at most m+ 1 objects of A. If a point is covered
by m+ 1 objects of A, it lies inside Q.

Similar to the 1.5D case, we now proceed to construct a terrain that has one convex
vertex for each object of A, and whose set of feasible vectors is exactly that object. The full
details of the construction are given in [1].

Acharyya, Jallu, Löffler, Meijer, Saumell, Silveira, Staals, and Tiwary 34:7

Figure 10 Projection of T onto the XY -plane.

500 1,000 1,500 2,000

20

40

60

80

100

120

140

Vertices

P
ri
ck
li
n
es
s

Terrain vertices vs. prickliness

0 20 40 60 80 100 120 140

1,000

2,000

3,000

Prickliness

V
ie
w
sh
ed

C
o
m
p
le
x
it
y

TIN Prickliness vs. highest

Figure 11 (left) The prickliness values for the terrains we considered. (right) The relation between
the (median) viewshed complextity of the high viewpoints in a terrain and its prickliness.

We construct a terrain T with red, green and blue vertices; refer to Fig. 10. We assign
one red vertex to Q and one to each of the rectangles intersecting it. The red vertices are
placed at height two, and the distance between any pair of them is at least three. Each red
vertex has four green vertices as neighbors, placed such that the extended cone of the red
vertex intersected by the horizontal plane z = 2 is exactly the desired rectangle: the plane
perpendicular to each red-green edge creates a line in the plane z = 2, and these lines can
be chosen freely and independently. We then triangulate the resulting graph, and inside
each completely green triangle we place a blue vertex u that is high enough so that (i) the
three neighboring green vertices become non-convex vertices of T , and (ii) the cone of u
intersected by the horizontal plane z = 2 contains Q. Then if the number of blue vertices is
k, it is not difficult to see that the prickliness of T is m+ k + 1 if and only if there is a point
in Q covered by m rectangles. We obtain:

I Theorem 3.5. The problem of computing the prickliness of a 2.5D terrain is 3SUM-hard.

4 Experiments

We briefly report on some experiments relating the prickliness to the viewshed complexity in
real world 2.5D terrains (see [12] for details). We considered 52 real-world terrains around
the world. They varied in ruggedness, including mountainous regions (Rocky mountains,

EuroCG’21

34:8 Terrain prickliness: theoretical grounds for low complexity viewsheds

5◦
10◦

15◦
20◦

0

62

Figure 12 A real-world terrain with 583 vertices from the neighborhood of California Hot Springs
whose prickliness is only 62. On the right the value π~v for vectors near (0, 0, 1).

Himalaya), flat areas (farmlands in the Netherlands), and rolling hills (Sahara), and in
number of vertices. For each of these terrains we computed the prickliness, and the viewsheds
of nine “sufficiently separated” high points on the terrain. We refer to [12] on how we pick
these points exactly. Fig. 11 (left) shows the number of vertices in each of the terrains and
their prickliness. We see that the prickliness is generally much smaller than the number of
vertices. See also Fig. 12. Fig. 11 (right) then shows the relation between the prickliness
and the viewshed complexities. The viewshed complexities seem to scale nicely with the
prickliness. This suggests that the prickliness may indeed be a valuable terrain descriptor.

Acknowledgments

The authors would like to thank Jeff Phillips for a stimulating discussion that, years later,
led to the notion of prickliness.

A. A., R. J., and M. S. were supported by the Czech Science Foundation, grant number
GJ19-06792Y, and by institutional support RVO: 67985807. M.L. was partially supported by
the Netherlands Organization for Scientific Research (NWO) under project no. 614.001.504.
R. S. was supported by projects MINECO PID2019-104129GB-I00 and Gen. Cat. DGR
2017SGR1640.

References

1 Ankush Acharyya, Ramesh K. Jallu, Maarten Löffler, Gert G.T. Meijer, Maria Saumell,
Rodrigo I. Silveira, Frank Staals, and Hans Raj Tiwary. Terrain prickliness: theoretical
grounds for low complexity viewsheds, 2021. arXiv:2103.06696 [cs.CG].

2 Maria Danese, Gabriele Nolè, and Beniamino Murgante. Identifying viewshed: New ap-
proaches to visual impact assessment. In Geocomputation, Sustainability and Environmen-
tal Planning, pages 73–89. Springer Berlin Heidelberg, 2011.

3 Mark de Berg, Herman J. Haverkort, and Constantinos P. Tsirogiannis. Visibility maps
of realistic terrains have linear smoothed complexity. In Proc. SoCG’09, pages 163–168.
ACM, 2009.

4 Herbert Edelsbrunner and Leonidas J Guibas. Topologically sweeping an arrangement. J.
Comput. System Sci., 38(1):165–194, 1989.

5 Anka Gajentaan and Mark H Overmars. On a class of O(n2) problems in computational
geometry. Comput. Geom., 5(3):165–185, 1995.

Acharyya, Jallu, Löffler, Meijer, Saumell, Silveira, Staals, and Tiwary 34:9

6 Ferran Hurtado, Maarten Löffler, Inês Matos, Vera Sacristán, Maria Saumell, Rodrigo I.
Silveira, and Frank Staals. Terrain visibility with multiple viewpoints. Internat. J. Comput.
Geom. Appl., 24(04):275–306, 2014.

7 B. Joe and R. B. Simpson. Corrections to Lee’s visibility polygon algorithm. BIT, 27(4):458–
473, 1987.

8 Frank Kammer, Maarten Löffler, Paul Mutser, and Frank Staals. Practical approaches
to partially guarding a polyhedral terrain. In Proc. 8th International Conference on Geo-
graphic Information Science, LNCS 8728, pages 318–332, 2014.

9 Young-Hoon Kim, Sanjay Rana, and Steve Wise. Exploring multiple viewshed analysis
using terrain features and optimisation techniques. Computers & Geosciences, 30(9):1019–
1032, 2004.

10 Anna Lubiw and András Rácz. A lower bound for the integer element distinctness problem.
Inf. Comput., 94(1):83–92, 1991.

11 Michael McKenna. Worst-case optimal hidden-surface removal. ACM Trans. Graph.,
6(1):19–28, 1987.

12 Gert Meijer. Realistic terrain features and the complexity of joint viewsheds. Master’s
thesis, 2020. URL: https://dspace.library.uu.nl/handle/1874/399714.

13 Esther Moet, Marc J. van Kreveld, and A. Frank van der Stappen. On realistic terrains.
Comput. Geom., 41(1-2):48–67, 2008.

14 Uta Schirpke, Erich Tasser, and Ulrike Tappeiner. Predicting scenic beauty of mountain
regions. Landscape Urban Plan., 111:1–12, 2013.

EuroCG’21

Tight Degree Bounds for Path-Greedy
5.19-Spanner on Convex Point Sets
William Evans1 and Lucca Siaudzionis2

1 University of British Columbia
will@cs.ubc.ca

2 University of British Columbia
lsiau@cs.ubc.ca

Abstract
A t-spanner G for a set S of points in the plane is a weighted graph on the vertex set S, where
the weight of an edge is the Euclidean distance between its endpoints, such that the shortest path
between two points in G is at most t times their Euclidean distance. There has been an increasing
interest in designing algorithms for constructing spanners of low degree. Bakhshesh and Fahri [1]
asked whether the well-known path-greedy spanner algorithm can be used to find plane 5.19-spanners
with maximum degree 3 on convex point sets. In this paper, we prove that path-greedy has a tight
bound of 4 for the maximum degree of 5.19-spanners.

1 Introduction

Let S be a set of points in the plane. We say a graph G with vertex set S is geometric
if each edge has weight equal to the Euclidean distance between its endpoints. For a real
number t > 1, we say that geometric graph G is a t-spanner of S if the shortest path in G
between each pair of vertices is at most t times the Euclidean distance between the vertices.
A spanner is plane if the straight line segments between adjacent vertices of G do not cross
each other, and the degree of a graph is the maximum degree of its vertices. There are several
algorithms and problems related to geometric spanners [4, 6].

One classic example is the path-greedy spanner algorithm. It greedily builds a t-spanner
from a point set S, using t as an input. Path-greedy is well known due to its simplicity.
Algorithm 1 contains its implementation, and Figure 1 contains example outputs of path-
greedy on two different convex point sets.

Algorithm 1: PathGreedy(S, t)
input :A set of S of N points in Rd and a real number t > 1.
output :G(S,E), a t-spanner for S.

1 Sort all
(
n
2
)
pairs of points from S in non-decreasing order of their distances, breaking

ties arbitrarily, and store them in list L;
2 E ← ∅;
3 G← (S,E);
4 for each {p, q} ∈ L do
5 δ ← length of shortest path between p and q in G;
6 if δ > t|pq| then
7 E ← E ∪ {(p, q)};

8 return G(S,E)

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7“9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

35:2 Tight Degree Bounds for Path-Greedy 5.19-Spanner on Convex Point Sets

Figure 1 Two spanner graphs outputted by path-greedy on convex point sets, with t = 2.

1.1 Spanners of Low Degree
There has been a growing interest in plane spanners of low degree, since they can be used
to design network topologies. Wireless networks can be modeled as geometric graphs, with
their point set being related to the geographical location of the nodes. In that case, spanners
can be used to design efficient communication amongst the nodes, and having those spanners
be plane and of low degree is helpful for routing [5, 7].

Kanj et al. [5] proved that the lower bound for the maximum degree of t-spanners
for points in convex position is 3. They also proved the bound is tight by providing an
algorithm that finds a plane 20-spanner for convex point sets with maximum degree 3. Their
algorithm guarantees maximum degree of 4 for general point sets. Biniaz et al. [3] designed
another algorithm that constructs a plane

(3+4π
3
)
-spanner for points in convex position, and

Bakhshesh and Farshi [1] proposed a modified version of path-greedy that also guarantees a(3+4π
3
)
-spanner of maximum degree 3 for convex point sets.

1.2 Problem and Contribution
The work by Bakhshesh and Farshi lead to a natural question that they posed as an open
problem: Does PathGreedy(S, 3+4π

3) construct a plane spanner of maximum degree 3 for
points in convex position?

The answer is no. Here, we show that the maximum degree of PathGreedy(S, 3+4π
3)

is 4, and that the bound is tight. In Section 2.1, we prove that for all convex point sets
S and all real numbers t ≥ 4.27, the algorithm PathGreedy(S, t) outputs a graph with
maximum degree 4. In Section 2.2, we provide an example point set S∗ such that the degree
of PathGreedy(S∗, 3+4π

3) is exactly 4.

2 A Tight Bound for the Maximum Degree of PathGreedy(S, 5.19)

In this section, we first prove that the maximum degree of a t-spanner for t ≥ 4.27 generated
by path-greedy for convex point sets is at most 4. Afterwards we show a convex point set S∗
such that PathGreedy(S∗, 3+4π

3) returns a graph with degree 4, alongside its construction.
The construction can be generalized for all spanning ratios greater than or equal to 4.27.

We start with two technical lemmas, the first of which is an exercise in calculus.

I Lemma 2.1. Given two angles α and β such that β ≥ α > 0 and π > α+ β ≥ 3π/4, we
have cosα+ cosβ ≤

√
2−
√

2 J

I Lemma 2.2. Let t ≥
√

2 cos(π/8)√
2 cos(π/8)−1 = 1

1−
√

2−
√

2
≈ 4.262. Given two angles α and β such

that β ≥ α > 0 and π > α+ β ≥ 3π/4:

t sin(α+ β) + sinα− t sin β ≤ 0

W. Evans and L. Siaudzionis 35:3

Proof. By the angle-sum identity for sin,

t sin(α+ β) + sinα− t sin β = t sinα cosβ + t sin β cosα+ sinα− t sin β
= (t cosβ + 1) sinα− (t− t cosα) sin β

=
(
t cosβ + 1− sin β

sinαt(1− cosα)
)

sinα

≤ (t cosβ + 1− t(1− cosα)) sinα
(sin β

sinα ≥ 1 since π − α > β ≥ α)
= (cosβ + cosα+ 1/t− 1)t sinα

≤
(√

2−
√

2 + 1/t− 1
)
t

(by Lemma 2.1 and 0 < sinα < 1 since 0 < α < π/2)

≤
(√

2−
√

2 + 1−
√

2−
√

2− 1
)
t = 0

since t ≥ 1
1−
√

2−
√

2
. J

2.1 The Upper Bound
I Theorem 2.3. Given a convex point set S and a spanning ratio t ≥ 4.27, the spanner
graph generated by PathGreedy(S, t) has degree at most 4.

Proof. Assume for a contradiction that vertex v has degree at least 5 in the spanner generated
by PathGreedy(S, t). Let a, b, c, d, and e be five of the vertices that v is connected to.
Assume without loss of generality that they are in clockwise order. Since the point set is
convex, one of the angles ∠avb, ∠bvc, ∠cvd, and ∠dve must be at most π/4. Assume without
loss of generality that ∠avb ≤ π/4.

Let α = ∠vab and β = ∠vba. Assume without loss of generality that |va| ≥ |vb| and thus
that β ≥ α. If |va| = |vb|, assume the edge (v, b) gets processed by path-greedy before edge
(v, a). Since ∠avb ≤ π/4, we have β ≥ α > 0 and π > α+ β ≥ 3π/4 and |va| > |ab|.

v
a

b

P
α

β

Figure 2 Illustration of Theorem 2.3’s proof.

Note that, since |va| > |ab|, path-greedy will scan the edges (a, b) and (v, b) before the
edge (v, a). However, it is not possible for path-greedy to add all three edges (a, b), (v, a),
and (v, b), since |ab|+ |vb| < 2|va|. Thus, since (v, a) and (v, b) are both added, path-greedy
must skip the edge (a, b), which means that the vertices a and b must be connected by some
path P such that:

|P | ≤ t|ab| (1)

By the time path-greedy scans edge (v, a), the vertices v and a will be connected by the
path P + (v, b). Since path-greedy still adds the edge, this means that:

EuroCG’21

35:4 Tight Degree Bounds for Path-Greedy 5.19-Spanner on Convex Point Sets

t|va| < |P |+ |vb| (2)

Combining inequalities (1) and (2):

t|ab|+ |vb| − t|va| > 0. (3)

The sine law for ∆abv, |va|sin β = |vb|
sinα = |ab|

sin(α+β) , implies

|va| = sin β
sin(α+ β) |ab| and (4)

|vb| = sinα
sin(α+ β) |ab| (5)

Substituting (4) and (5) into (3):

t|ab|+ sinα
sin(α+ β) |ab| − t

sin β
sin(α+ β) |ab| > 0 =⇒

t+ sinα
sin(α+ β) − t

sin β
sin(α+ β) > 0 =⇒

t sin(α+ β) + sinα− t sin β > 0 (6)

which contradicts Lemma 2.2. Thus, it is not possible for a vertex v to be connected to five
or more vertices, making the degree of the spanner graph at most 4. J

2.2 The Lower Bound
I Theorem 2.4. There exists a spanner generated by PathGreedy(S, 3+4π

3) with degree 4.

Proof. We prove by example. We constructed a convex point set S∗ with no three collinear
points such that the spanner generated by path-greedy has degree 4. The spanner is the
same regardless of how ties are broken. The points in S∗ are shown in Table 1.

Table 1 Coordinates and labels of point set S∗.

a = (9.992,−0.399) a1 = (16.983,−0.749) a2 = (23.970,−1.169) a3 = (27.861,−2.099)
b = (5.258,−8.506) b1 = (12.253,−8.261) b2 = (19.246,−7.946) b3 = (26.235,−7.561)

v = (0, 0) c = (−4.825,−8.758) d = (−10, 0)

c

d

a3

b3

a2

b2

a1

b1

a

b

v

Figure 3 Spanner generated by PathGreedy(S∗, 3+4π
3).

We can confirm that PathGreedy(S∗, 3+4π
3) has degree 4 by running the algorithm.

Figure 3 shows the spanner generated in this process. J

W. Evans and L. Siaudzionis 35:5

2.2.1 Construction of S∗

The points were not chosen at random, of course. First, point v was fixed at the origin.
Then, points a, b, c, d were chosen such that |va| ≈ |vb| ≈ |vc| ≈ |vd| ≈ 10. Angles ∠cvd
and ∠bvc are both slightly above π/3, and ∠avb is slightly below π/3, such that ∠dva < π.
To maintain convexity and non-collinearity, all the angles ∠vaa1, ∠aa1a2, ∠a1a2a3, ∠b3b2b1,
and ∠b2b1b are below π.

The edges (a, a1), (a1, a2), (a2, a3), (a3, b3), (b3, b2), (b2, b1), and (b1, b) have length less
than |ab|, so that the path P consisting of them is entirely added by path-greedy. It is crucial
that |P | ≤ (3+4π

3)|ab|, so the edge (a, b) is not added, and |P | + |vb| > (3+4π
3)|va|, so the

edges (v, b) and (v, a) are both added. This is a scenario similar to the one explored in the
proof of Theorem 2.3.

3 Conclusion

In this paper, we addressed the maximum degree of the path-greedy spanner algorithm’s
output for convex point sets. We proved that, for a convex point set S and a real number
t ≥ 4.27, the t-spanner generated by PathGreedy(S, t) will have its degree upper bounded
by 4. Further, we showed an example point set S∗ such that PathGreedy(S∗, 3+4π

3) has
degree 4, proving the bound for the maximum degree of path-greedy 3+4π

3 -spanner of 4 is
tight. This solved part of an open problem suggested in [1].

Discovering whether the graph output of PathGreedy(S, 3+4π
3) for convex point sets

S is plane remains an open problem, which we intend to explore.

References
1 Davood Bakhshesh and Mohammad Farshi. A degree 3 plane 5.19-spanner for points

in convex position. In Proceedings of the 32nd Canadian Conference on Computational
Geometry (CCCG2020), pages 226–232, 2020. URL: https://vga.usask.ca/cccg2020/
papers/Proceedings.pdf.

2 Ahmad Biniaz, Mahdi Amani, Anil Maheshwari, Michiel H. M. Smid, Prosenjit Bose, and
Jean-Lou De Carufel. A plane 1.88-spanner for points in convex position. Journal of
Computational Geometry, 7(1):520–539, 2016.

3 Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Cyril Gavoille, Anil Maheshwari,
and Michiel H. M. Smid. Towards plane spanners of degree 3. Journal of Computational
Geometry, 8(1):11–31, 2017.

4 Prosenjit Bose and Michiel Smid. On plane geometric spanners: A survey and open prob-
lems. Computational Geometry, 46(7):818 – 830, 2013. EuroCG 2009. URL: http:
//www.sciencedirect.com/science/article/pii/S0925772113000357, doi:https://
doi.org/10.1016/j.comgeo.2013.04.002.

5 Iyad Kanj, Ljubomir Perkovic, and Duru Turkoglu. Degree four plane spanners: Simpler
and better. Journal of Computational Geometry, 8(2):3–31, 2017.

6 Giri Narasimhan and Michiel Smid. Geometric spanner networks. Cambridge University
Press, Cambridge; New York, 2007.

7 Yu Wang and Xiang-Yang Li. Localized construction of bounded degree and planar spanner
for wireless ad hoc networks. Mobile Networks and Applications, 11(2):161–175, 2006.

EuroCG’21

Crossing Numbers of Beyond-Planar Graphs
Revisited
Nathan van Beusekom1, Irene Parada1, and Bettina Speckmann1

1 TU Eindhoven, the Netherlands
[n.a.c.v.beusekom|i.m.de.parada.munoz|b.speckmann]@tue.nl

1 Introduction

A central topic in graph drawing are high quality drawings which are not necessarily planar.
A natural criterion for the quality of a drawing is the number of edge crossings. However, it
is NP-hard to compute the minimum number of crossings of a graph G across all possible
drawings of G, also referred to as the crossing number of G, cr(G) [7]. Meaningful upper
and lower bounds, as well as heuristic, approximation, and parameterized algorithms, have
hence been a major focus [3].

Drawing edges as straight-line segments arguably simplifies any drawing. One classic
variant is hence the rectilinear crossing number cr(G) of a graph G, that is, the minimum
number of crossings across all straight-line drawings of G. Clearly cr(G) ≤ cr(G) for any
graph G. The straight-line restriction can increase the crossing number arbitrarily: Bienstock
and Dean [2] showed that for every k there exists a graph G such that cr(G) = 4 and
cr(G) = k.

In recent years there has been particular interest in drawings of beyond-planar graphs,
which are characterized by certain forbidden crossing configurations of the edges; see the
recent survey by Didimo et al. [6]. In this paper we study the relation between the crossing
number restricted to beyond-planar drawings, and the (unrestricted) crossing number. The
restricted crossing number crF (G) of a graph G is the minimum number of crossings required
to draw G such that the drawing belongs to the beyond-planar family F . For a beyond-
planar family F , the crossing ratio %F is defined as %F = supG∈F crF (G)/cr(G), that is, the
supremum over all graphs in F of the ratio between the restricted crossing number and the
(unrestricted) crossing number.

Results Chimani et al. [5] gave bounds on the crossing ratio for the 1-planar, quasi-planar,
and fan-planar families. These results show that there exist graphs that have significantly
larger crossing numbers when drawn with the beyond-planar restrictions. Their 1-planarity
bound also applies to k-planarity when allowing parallel edges. We show that parallel edges
are not needed when extending their proof to k-planarity. To do so, we introduce the concept
of k-planar compound edges, which exhibit essentially the same behavior as k parallel edges.
See the full paper for details. In Section 2 and the full paper we show how to extend their
proof constructions to four additional classes of beyond-planar graphs. In Section 3 we
introduce the concept of `-bundles which allow us to prove tight bounds on the crossing ratio
for families of graphs where these bounds are quadratic in the number n of vertices.

All bounds are summarized in Table 1. Bounds that are tight for a fixed k are indicated
in boldface. In the full paper we show that all bounds also apply to straight-line drawings.

2 (k, l)-Grid-Free and k-Gap-Planar

Chimani et al. [5] use the notion of extended edges, which we refer to as `-compound edges: an `-
compound edge xy is a combination of the edge xy and a set Πxy of `−1 paths of length two all

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

36:2 Crossing Numbers of Beyond-Planar Graphs Revisited

Table 1 Bounds for the supremum % of the ratio between crossing numbers, for our upper bounds
we assume the drawings to be simple, that is, two edges share at most one point.

Family Forbidden Configurations Lower Upper

k-planar An edge crossed more
than k times

k = 2
Ω(n/k)
(full paper)

O(k
√

kn)
(full paper)

k-quasi-planar k pairwise crossing edges
k = 3

Ω(n/k3)
[5]

f(k)n2 log2 n

[5]

Fan-planar

Two independent edges
crossing a third or two
adjacent edges crossing

another edge from
different "sides"

Ω(n) [5] O(n2) [5]

(k, l)-grid-free

Set of k edges such that
each edge crosses each
edge from a set of l

edges.

k, l = 2
Ω

(
n

kl(k + l)

)

(Section 2.1)
g(k, l)n2

(Section 2.1)

k-gap-planar
More than k crossings

mapped to an edge in an
optimal mapping

k = 1
Ω(n/k3)
(Section 2.2)

O(k
√

kn)
(Section 2.2)

Skewness-k
Set of crossings not
covered by at most k

edges

k = 1
Ω(n/k)
(full paper)

O(kn + k2)
(full paper)

k-apex
Set of crossings not
covered by at most k

vertices

k = 1
Ω(n/k)
(full paper)

O(k2n2 + k4)
(full paper)

Planarly
connected

Two crossing edges that
do not have two of their
endpoint connected by a

crossing-free edge

Ω(n2)
(Section 3.1)

O(n2)
(Section 3.1)

k-fan-crossing-
free

An edge that crosses k

adjacent edges

k = 2

Ω(n2/k3)
(Section 3.2)

O(k2n2)
(Section 3.2)

Straight-
line RAC

Two edges crossing at an
angle < π

2

Ω(n2)
(full paper)

O(n2)
(full paper)

`

x

y

Figure 1 An `-
compound edge.

connecting x and y (see Figure 1). We indicate `-compound edges with
thick blue lines. In their Lemma 5, Chimani et al. show that if two `-
compound edges cross in a drawing Γ, then Γ contains at least ` crossings.
They then use closed curves to separate the endpoints of an `-compound
edge to prove that a drawing contains at least ` crossings. They use this
technique to prove bounds on the crossing ratio for k-quasi-planarity
and fan-planarity and conjectured that similar constructions could be
used on additional families of beyond-planar graphs. Using similar proof
structures, in this section we extend their results to two more classes

Nathan van Beusekom, Irene Parada, and Bettina Speckmann 36:3

of beyond-planar graphs: (k, l)-grid-free graphs and k-gap-planar graphs. For both of the
classes we achieve lower bounds on the crossing ratio which are linear in the number of
vertices n. For the (k, l)-grid-free crossing ratio we provide a general bound for all k > 1
and l > 1. For the k-gap-planar crossing ratio, we first provide a tight lower bound for
1-gap-planarity and then show how to extend it to a bound for k-gap-planarity.

2.1 (k, l)-Grid-Free Graphs

In a (k, l)-grid-free drawing it is forbidden to have a k × l grid, that is, a set of k edges
that cross a set of l edges. We show that %k,l−grid−free ∈ Ω

(n

kl(k + l)

)
by creating a graph

where a (k, l)-grid occurs when we draw all grid edges (drawn in black) in the same face of a
cycle of `-compound edges (see Figure 2). By Lemma 5 of [5] if two edges in the cycle cross
there would be at least ` crossings. In an (k, l)-grid-free drawing, one grid edge has to be
drawn in the same face (with respect to the cycle) as the vertex x and must hence cross an
`-compound edge (drawn in blue), incurring ` crossings.

u1

u3

u4

u5

u6u7

u8

u9

u10

x x

u1

u3

u4

u5

u6u7

u8

u9

u10

Figure 2 Left: drawing of G` with cr(G`) ≤ 6; Right: (2, 3)-grid-free drawing of G` with
cr2,3−grid−free(G`) ≥ `, `-compound edges drawn with thick blue lines.

2.2 k-Gap-Planar Graphs

In a k-gap-planar drawing every crossing is assigned to one of the two edges involved. No
more than k crossings can be assigned to a single edge. We first describe our lower bound
construction for k = 1 and then show how to extend it to larger k. As before we create
a cycle C of length eight of `-compound edges and connect each vertex of the cycle to an
additional vertex x using a further eight `-compound edges. Again by Lemma 5 of [5] none
of the `-compound edges can cross. We add four single edges which connect diametrically
opposite vertices of C. See Figure 3 (left): `-compound edges are indicated in blue, single
edges in black. In a 1-gap-planar drawing one single edge has to be drawn in the same
face (with respect to the cycle) as the vertex x and must hence cross an `-compound edge,
incurring ` crossings.

To prove a lower bound for k-gap-planarity, we can use exactly the same construction as
above starting with a cycle of length 8k. Our lower bound %k−gap ∈ Ω(n/k3) is cubic in 1/k

and hence in general does not match the upper bound.

EuroCG’21

36:4 Crossing Numbers of Beyond-Planar Graphs Revisited

x

u1 u2
u3

u4

u5u6

u7

u8

x

u2u1
u3

u4

u5u6

u7

u8

Figure 3 Left: drawing of G` with cr(G`) ≤ 6; Right: 1-gap-planar drawing of G` with
cr1−gap(G`) ≥ `, `-compound edges are drawn with thick blue lines.

3 Planarly Connected Graphs and k-Fan-Crossing-Free Graphs

In this section we introduce the concept of `2-bundles and `3-bundles, which are sets of `

paths of length two or three, respectively, all connecting the same two vertices (see Figure 4).
We indicate `2-bundles and `3-bundles with thick red and green lines, respectively. The
vertices that are interior to a bundle have degree two. Two crossing bundles result in a
quadratic number of crossings. We show how to enforce such crossings to prove tight bounds
on the crossing ratio. Lemma 1, proven in the full paper, argues that there is a planarly
connected drawing that is crossing minimal in which `2-bundles do not cross themselves and
no vertex lies between two consecutive paths of the same `2-bundle.

` `

Figure 4 Left: an `2-bundle; Right: an `3-bundle; drawn as a thick red or green line, respecitvely.

3.1 Planarly Connected Graphs
In a planarly connected drawing two edges can cross only if their endpoints are connected by
another edge which has no crossings. We show that %pl−con ∈ Ω(n2) using `2-bundles.

I Lemma 1. If a planarly connected graph G contains `2-bundles, then there is a planarly
connected crossing-minimal drawing Γ of G in which paths from the same `2-bundle do not
cross each other, all paths of the same `2-bundle cross the same edges, and no vertex lies
between two consecutive paths of the same `2-bundle.

I Theorem 2. For every ` ≥ 2 there exists a planarly connected graph G` with n = 7` + 6
vertices such that crpl−con(G`) ≥ `2 and cr(G`) ≤ 1. Thus, %pl−con ∈ Θ(n2).

Proof. The upper bound %pl−con ∈ O(n2) follows directly from the fact that a planarly
connected graph with n vertices has at most cn edges, where c is a constant [1].

Nathan van Beusekom, Irene Parada, and Bettina Speckmann 36:5

u1

u2 u3

u4

u5u6

u1

u2 u5

u4

u3u6

Figure 5 Left: drawing of G` with cr(G`) = 1; Right: planarly connected drawing of G` with
crpl−con(G`) = `2, `2-bundles are drawn with thick red lines.

For the lower bound, we construct a graph G`. Start with an 6-cycle 〈u1, u2, . . . , u6〉, and
an edge u1u4, resulting in the graph G′. Replace each edge in G′ with an `2-bundle. The
graph G` has n = 7` + 6 vertices and admits a drawing with only one crossing (see Figure 5,
left).

By Lemma 1 there is a planarly connected crossing-minimal drawing Γ of G` in which for
every `2-bundle its edges do not cross each other, all paths cross the same edges, and no vertex
lies between two consecutive paths. Let C be the cycle of `2-bundles C = 〈u1, u4, u5, u6〉. If
C crosses itself in Γ, then there are `2 crossings. Otherwise C is drawn without crossings in Γ
and defines two faces of size 8. The other faces do not contain vertices of Γ in their interior.
Thus, u2 and u3 can either be drawn in the same face defined by C, or in different faces. If
they are drawn in the same face, Γ cannot be planarly connected: a simple case distinction
shows that there has to be a crossing between two edges whose endpoints are not connected
by any other edge. Specifically, there is a crossing between either u1u2 and u3u4, u1u2 and
u3u6, u2u5 and u3u6 or u2u5 and u3u4. These are all not allowed, as each time there is
no edge connecting the two edges. If u2 and u3 are drawn in different faces defined by C,
then the `2-bundle u2u3 has to cross C. As C is composed of `2-bundles, there are ` cycles,
distinct in edges, all separating u3 and u4. All the ` distinct paths in the `2-bundle u2u3
have to cross the ` distinct (in edges) cycles in C. Therefore, Γ has at least `2 crossings. J

3.2 k-Fan-Crossing-Free Graphs
In a k-fan-crossing-free drawing it is forbidden for an edge to cross k edges which
are adjacent to the same vertex. While it is possible for an edge to “weave”
through an `2-bundle with ` ≤ 2k − 2 (see right), no edge can cross an `2-bundle
with ` ≥ 2k − 1. In contrast, `3 bundles can be crossed for any `. We show that
%fan−free ∈ Ω(n2) and %k−fan−free ∈ Ω(n2/k3) using `2-bundles to force `3-bundles
to cross.

I Lemma 3. Let G be a k-fan-crossing-free graph and let p be the length of the
longest simple path in G. If G contains `2-bundles with ` ≥ 2p(k− 1) + 1, then in
any crossing-minimal k-fan-crossing-free drawing of G the edges in the `2-bundles
have no crossings.

I Theorem 4. For every ` ≥ 95 there exists a fan-crossing-free graph G` with n = 75` + 16
vertices such that crfan−free(G`) ≥ `2/2 and cr(G`) ≤ 2. Thus, %fan−free ∈ Θ(n2).

Proof. The upper bound %pl−con ∈ O(n2) follows directly from the fact that a fan-crossing-
free graph with n vertices can have at most 4n− 8 edges [4].

EuroCG’21

36:6 Crossing Numbers of Beyond-Planar Graphs Revisited

f1

u6

f3f4

u2

u4u8

x

u10

f5 f2

u1

u3

u5u7

u9

f1

u6

f3f4

u2

u4u8

x

u10

f5 f2

u1

u3

u5u7

u9

Figure 6 Left: drawing of G` with cr(G`) ≤ 2; Right: fan-crossing-free drawing of G` with
crfan−free(G`) ≥ `2. Thick thick red (green) lines represent `2-bundles (`3-bundles).

For the lower bound we construct a graph G`, see Figure 6. We start with a 10-cycle C =
〈u1, u2 . . . , u10〉. We add five vertices f1, f2, . . . , f5 and add the edges fiu2i−2, fiu2i−1, fiu2i

for i = 1, 2, . . . , 5. We add a new vertex x and connect it to each fi for i = 1, 2, . . . , 5.
We then replace each edge fiuj by an `2-bundle and replace each edge xfi and uiuj by an
`3-bundle. Finally, we add the regular edges u1u5, u1u7, and u3u9. The resulting graph G`

has n = 75` + 16 vertices and admits a drawing with only two crossings (see Figure 6, left).
In G` there is a cycle F = 〈f1, u2, f2, u4, f3, u6, f4, u8, f5, u10〉 of `2-bundles. There are

10+5+1 = 16 vertices which are not interior to bundles. The longest path can use at most two
vertices inside each bundle and has length at most 48−1 = 47. Since ` ≥ 95 = 2·47·(2−1)+1,
by Lemma 3, all `2-bundles must be drawn without crossings and F must be drawn plane. If
u1, u3, u5, u7, and u9 all lie in the same face of F then we are effectively in the situation
depicted in Figure 6 (left) and the drawing is not fan-crossing-free. Hence u1, u3, u5, u7, and
u9 must distribute over the two faces of F . Specifically, we can assume that there a vertex
ui, i ∈ {1, 3, 5, 7, 9}, such that ui lies in the same face of F as x.

We consider the cycle Z consisting of the two `2-bundles between ui and f(i+1)/2 and
between f(i+1)/2 and ui−1, and the `3-bundle between ui and ui−1. Symmetrically, we can
consider the cycle Z ′ involving ui+1 instead of ui−1. The vertex x can lie within any face
of the `3-bundle. Consider the cycles formed by each path of the `3-bundle together with
the two `2-bundles. These cycles divide the plan into two faces. We say that the exterior
face of each cycle is the face that contains F . We say that x lies in the exterior of Z (Z ′,
respectively), if it lies in the exterior face of `/2 of these cycles. Otherwise, x lies in the
interior of Z (Z ′, respectively). Observe that x lies either in the interior of Z, or in the
interior of Z ′, or in the exterior of both.

If x lies in the exterior face of both Z and Z ′, then the `3-bundle connecting x and
f(i+1)/2 crosses at least `/2 paths in either Z or Z ′ (see Figure 6, right, with ui = u3 and
f(i+1)/2 = f2). If x lies in the interior face of Z, then (by definition of the faces of Z) there
is an fj 6= f(i+1)/2 which lies in the exterior face of Z. The `3-bundle connecting x and fj

crosses at least `/2 paths in Z. The argument for Z ′ is symmetric. J

Nathan van Beusekom, Irene Parada, and Bettina Speckmann 36:7

The proof can be extended to k-fan-crossing-free graphs by creating a cycle C of length
6 + 2k which results in a graph with 3/2 · (6 + 2k) + 1 = 10 + 3k vertices not interior to
bundles and a longest path of length at most 29 + 9k. Since no path should be able to cross
the `2-bundles, we require that ` ≥ 2 · (29 + 9k) · (k − 1) + 1 = 18k2 + 40k − 57.

I Corollary 5. For every ` ≥ 18k2 + 40k − 57 there exists a k-fan-crossing-free graph Gk
`

with n = 15k` + 45` + 3k + 10 vertices such that crk−fan−free(Gk
`) ≥ `2 and cr(Gk

`) ≤ k. Thus,
%k−fan−free ∈ Ω(n2/k3).

References
1 Eyal Ackerman, Balázs Keszegh, and Mate Vizer. On the size of planarly connected crossing

graphs. Journal of Graph Algorithms and Applications, 22(1):11–22, 2018. doi:10.7155/
jgaa.00453.

2 Daniel Bienstock and Nathaniel Dean. Bounds for rectilinear crossing numbers. Journal
of Graph Theory, 17(3):333–348, 1993. doi:10.1002/jgt.3190170308.

3 Christoph Buchheim, Markus Chimani, Carsten Gutwenger, Michael Jünger, and Petra
Mutzel. Crossings and planarization. In Roberto Tamassia, editor, Handbook on Graph
Drawing and Visualization, pages 43–85. CRC Press, 2013. doi:10.1201/b15385-5.

4 Otfried Cheong, Sariel Har-Peled, Heuna Kim, and Hyo-Sil Kim. On the number of
edges of fan-crossing free graphs. Algorithmica, 73(4):673–695, 2014. doi:10.1007/
s00453-014-9935-z.

5 Markus Chimani, Philipp Kindermann, Fabrizio Montecchiani, and Pavel Valtr. Cross-
ing numbers of beyond-planar graphs. In Proceedings of the 27th International Sympo-
sium on Graph Drawing (GD 2019), LNCS 11904, pages 78–86, 2019. doi:10.1007/
978-3-030-35802-0_6.

6 Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing
beyond planarity. ACM Computing Surveys, 52(1):1–37, 2019. doi:10.1145/3301281.

7 Michael Garey and David S. Johnson. Crossing number is NP-complete. SIAM Journal on
Algebraic and Discrete Methods, 4(3):312–316, 1983. doi:10.1137/0604033.

EuroCG’21

Reducing Moser’s Square Packing Problem to a
Bounded Number of Squares
Meike Neuwohner1

1 Research Institute for Discrete Mathematics, Universität Bonn
neuwohner@or.uni-bonn.de

Abstract
The problem widely known as Moser’s Square Packing Problem asks for the smallest area A such
that for any set S of squares of total area 1, there exists a rectangle R of area A into which the
squares in S permit an internally-disjoint, axis-parallel packing. It was formulated by Moser [7] in
1966 and remains unsolved so far. The best known lower bound of 2+

√
3

3 ≤ A is due to Novotný [8]
and has been shown to be sufficient for up to 11 squares by Platz [11], while Hougardy [1] and
Ilhan [2] have established that A < 1.37.
In this paper, we reduce Moser’s Square Packing Problem to a problem on a finite set of squares
in the following sense: We show how to compute a natural number N such that it is enough to
determine the value of A for sets containing at most N squares with total area 1.

Related Version arXiv:2103.06597

1 Introduction

In 1966, Leo Moser [7] asked for the minimum area A such that for any (possibly infinite)
set S of squares of total area 1, there exists a rectangle R of area A and an axis-parallel,
internally disjoint packing of S into R. The first bounds of 1.2 < A ≤ 2 were provided by
Moon and Moser [6] in 1967. Their idea was generalized by Meir and Moser [5] to prove the
following theorem:

I Theorem 1. For k ∈ N>0, any (possibly infinite) set of k-dimensional hypercubes with
edge lengths given by x1 ≥ x2 ≥ . . . and finite total volume V permits an axis-parallel,
internally disjoint packing into any rectangular parallelepiped with edge lengths a1, . . . , ak
satisfying aj ≥ x1 for all j = 1 . . . , k as well as xk1 + Πk

j=1(aj − x1) ≥ V.

The special case k = 2 has found several applications in subsequent works [9], [1].
In 1970, Kleitman and Krieger [3] proved an upper bound of A ≤

√
3 < 1.733, which they

could improve to 4√
6 < 1.633 for finite sets of squares [4]. Their argument was generalized

to the case of possibly infinite families of squares by Zernisch [12] in 2012.
The best known lower bound of 2+

√
3

3 , which is actually believed to be the correct answer
to the problem, was provided by Novotný [8] in 1995 (see Figure 1). For packing up to 5
squares, he proved that an area of 2+

√
3

3 indeed suffices [10], which was extended to up to
11 squares by Platz [11]. Moreover, using the results from [5] and [4], Novotný [9] proved
an upper bound of A < 1.53 for the general case of possibly infinitely many squares.
The best known upper bound of A < 1.37 is due to Hougardy [1] and Ilhan [2].
In this paper, we present a general approach that allows us to reduce the task of showing that
any set of squares of total area 1 can be packed into a rectangle of area 2+

√
3

3 ≤ F ≤ 1.37 to
the problem of proving this statement for finite sets containing at most N squares, where
N is a natural number that can be easily computed.
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

37:2 Reducing Moser’s Square Packing Problem to a Bounded Number of Squares

2√
6

1√
2 + 2√

6

s2 = s3 = s4 = 1√
6

s1 = 1√
2

Figure 1 The lower bound example provided by Novotný.

2 Reduction to a Finite Number of Squares

Let a target area F ≥ 2+
√

3
3 be given. This section shows how to compute a natural number

N(F) with the following property: If for any set of at most N(F) squares of total area 1,
there exists a rectangle of area F into which these squares can be packed axis-parallel and
internally disjoint, then the same statement holds for any, possibly infinite set of squares of
total area 1.
From the way we computeN(F), it is not hard to see thatN := max{N(F), F ∈ [2+

√
3

3 , 1.37]}
exists and is attained by N(2+

√
3

3) > 4. Note that these properties already imply that if we
denote the correct answer to Moser’s Square Packing Problem (when restricted to finite sets
containing at most N squares) by A (A′), then A = A′.
In order to determine numbers N(F), F ∈ [2+

√
3

3 , 1.37] as promised, we first note that with-
out loss of generality, we can assume a set of squares of total area 1 to be given by a
non-increasing sequence s1 ≥ s2 ≥ . . . of non-negative edge lengths satisfying

∑∞
i=1 s

2
i = 1.

This is because for any set S of squares of total area 1, the number of squares in S with
edge lengths in [1

n+1 ,
1
n] for some fixed positive integer n must be finite, and squares of edge

length zero do not influence the packing task. For a given sequence s1 ≥ s2 ≥ . . . , we denote
the corresponding squares by S1, S2,
We further observe that if s1 is small enough, the criterion established by Meir and Moser
provides a packing of S into a rectangle of area F , so we can assume that s1 is greater than
a certain constant. Next, we show that there exists constants N0(F) and c(F) with the
following properties: If the total area of the squares with indices N0(F) + 1, N0(F) + 2, . . .
amounts to more than c(F)2, (implying that the total area of the first N0(F) largest squares
is less than 1− c2(F),) then their edge lengths must be "small" and they can, therefore, be
packed "efficiently". On the other hand, if the total area of SN0(F)+1, SN0(F)+2, . . . is at
most c(F)2, then we also know that there must be some N0(F) + 1 ≤ n ≤ be2 ·N0(F)c such
that sn ≤ c√

n
. For such n, we show that for any packing of the first n squares into a rect-

angle of area F , the remaining squares can be accommodated in the arising whitespace (see
Definition 2). This implies that it suffices to consider sets of at most N(F) := be2 ·N0(F)c
squares to find the correct answer to Moser’s Square Packing Problem. The remainder of
this section provides the omitted details. Let F ≥ 2+

√
3

3 be fixed.

I Definition 2 (whitespace). Let a closed rectangle R and a set S of closed squares be given,
such that each of the squares in S is contained within R and the interiors of two distinct
squares from S do not intersect. We define the whitespace whitespace(R,S) arising from
this packing of the squares in S into R to equal whitespace(R,S) := R\⋃S∈S S, where for
a set A of points in the Euclidean plane, Ā denotes its topological closure.

I Lemma 3. Let c :=
√(3

10
)2 + F−1

5 − 3
10 . Then for n ≥ max{(10F + 1

10)2, 100c2} and any

M. Neuwohner 37:3

a1

a2

x

x ≥ V

Figure 2 Visualization of the condition established by Meir and Moser for k = 2. The picture
does not indicate the packing strategy applied to prove the respective result.

packing of n squares of total area at most 1 into a rectangle with edge lengths 1
10 ≤W ≤ H

and area W ·H = F , any set of squares of total area at most c2 and maximum edge length
at most c√

n
permits an axis-parallel, internally disjoint packing into the arising whitespace.

Proof. Let n ≥ max{(10F + 1
10)2, 100c2} be a natural number and let n squares S1, . . . , Sn

with edge lengths s1, . . . , sn and total area at most 1 be given. Consider a packing of these
squares into an enclosing rectangle R with edge lengths 1

10 ≤W ≤ H and area F .
Moreover, let a set of squares of total area at most c2 and maximum edge length at most
c√
n
be given by a sequence c√

n
≥ sn+1 ≥ sn+2 ≥ For a finite set, we have sj = 0 from

some point on.
Let k ≥ n + 1 and assume that squares of edge lengths sn+1, . . . , sk−1 have already been
accommodated within the whitespace. Our goal is to find a lower bound on the area of the
set of points in R that serve as potential midpoints for squares of edge length sk contained
in the remaining whitespace. If we can provide a positive lower bound on the area of the
set of potential square midpoints for each k ≥ n + 1 for which sk > 0, this in particular
implies that this set will never be empty. Hence, we can inductively construct a packing
of the squares with edge length sn+1 ≥ sn+2 ≥ . . . into the whitespace by always placing
the next square at the lexicographically minimum feasible position. The latter exists as the
space of feasible positions is compact.
Let k ≥ n+1 such that sk > 0 and assume that squares (Si)k−1

i=n+1 with edge lengths (si)k−1
i=n+1

have been placed axis-parallel and internally disjoint within the whitespace. Observe that
the square of edge length sk with midpoint p ∈ R is contained within the (remaining)
whitespace if and only if the l∞-distance of p to each of the Si for i = 1, . . . , k − 1 and to
the boundary of R is at least sk

2 . For i = 1, . . . , k − 1, let S′i denote the square arising from
Si by extending it by sk

2 in positive and negative x- and y-direction and let Fi := S′i\Si
for i = 1, . . . , n. Moreover, let R′ be the rectangle with edge lengths W − sk an H − sk
lying centered within R (note that sk ≤ c√

n
≤ 1

10 ≤ W ≤ H by our choice of n) and let
further FR := R\R′. Then, for a point p openly contained in the original whitespace, the
square with midpoint p and edge length sk is contained in the remaining whitespace after
additionally packing (Si)k−1

i=n+1 if and only if p is not openly contained within any of the
frames (Fi)ni=1 around the squares (Si)ni=1, any of the squares (S′i)k−1

i=n+1, or the frame FR
inscribed into R. Figure 3 illustrates the case k = n + 1. In particular, as the area of
the (original) whitespace is at least F − 1, the area of the set M of potential midpoints of

EuroCG’21

37:4 Reducing Moser’s Square Packing Problem to a Bounded Number of Squares

×

Figure 3 The white area that is not shaded remains feasible for midpoints of whitespace squares.

whitespace squares amounts to

area(M) ≥ F − 1−
n∑

i=1
area(Fi)− area(FR)−

k−1∑

i=n+1
area(S′i).

We have area(Fi) = 4 · si ·
sk
2 + 4 ·

(sk
2

)2
= 2 · sk · si + s2

k

and area(FR) = 2 · (H +W) · sk2 − 4 ·
(sk

2

)2
= (H +W) · sk − s2

k.

By the inequality between arithmetic and quadratic mean, we know that
∑n
i=1 si
n

≤
√∑n

i=1 s
2
i

n
≤
√

1
n

⇒
n∑

i=1
si ≤

√
n.

We further have H = F
W and W ∈ [1

10 ,
√
F] since 1

10 ≤ W ≤ H, so by convexity of the
function [1

10 ,
√
F]→ R+,W 7→W + F

W , which attains its minimum at
√
F and is, therefore,

monotonically decreasing, it follows that

W +H ≤ 1
10 + F

1
10

= 10F + 1
10 ≤

√
n,

where the last inequality is implied by our choice of n. Moreover,

k−1∑

i=n+1
area(S′i) =

k−1∑

i=n+1
(si + sk)2 ≤

k−1∑

i=n+1
(2si)2 = 4

k−1∑

i=n+1
s2
i ≤ 4(c2 − s2

k),

because the sequence (si)i≥n+1 is non-increasing. Hence, we obtain

area(M) ≥ F − 1−
n∑

i=1
(2 · si · sk + s2

k)− ((W +H) · sk − s2
k)− 4(c2 − s2

k)

≥ F − 1− 2
√
n · sk − n · s2

k −
√
n · sk + s2

k − 4c2 + 4s2
k

> F − 1− 4c2 − 3
√
n · sk − n · s2

k

and we need to see that the latter term is non-negative whenever sk > 0. To this end, we

M. Neuwohner 37:5

first want to show that our choice of c implies 4 · c2 ≤ F. We have

4 · c2 ≤ F (1)

⇔ 4 ·
(√(

3
10

)2
+ F − 1

5 − 3
10

)2

≤ F

⇔ 4 ·
((

3
10

)2
+ F − 1

5

)
− 8 ·

√(
3
10

)2
+ F − 1

5 · 3
10 + 4 ·

(
3
10

)2
≤ F

⇔ 9
25 + 4

5 · F −
4
5 + 9

25 ≤ F + 12
5 ·

√(
3
10

)2
+ F − 1

5

⇔ 18
25 −

20
25 ≤ F

5 + 12
5 ·

√(
3
10

)2
+ F − 1

5

⇔ − 2
25 ≤ F

5 + 12
5 ·

√(
3
10

)2
+ F − 1

5 ,

which is true since the left hand side is negative and the right hand side is positive as F > 1.
Now, we show that 0 < sk ≤ c√

n
and our assumptions on c and n imply that

F − 1− 4c2 − 3
√
n · sk − n · s2

k ≥ 0.

As F − 1− 4c2 − 3
√
n · x− n · x2 = 0 if and only if

x = 1√
n
·
(
−3

2 −
√

9
4 + F − 1− 4c2

)
or x = 1√

n
·
(
−3

2 +
√

9
4 + F − 1− 4c2

)
,

where the discriminant is positive by (1), we know that area(M) > 0, provided that
sk ≤ 1√

n
·
(
− 3

2 +
√

9
4 + F − 1− 4c2

)
. To this end, as sk ≤ c√

n
, it suffices to see that we

have c ≤ −3
2 +

√
9
4 + F − 1− 4c2, or, equivalently, c + 3

2 ≤
√

9
4 + F − 1− 4c2 respectively

(c+ 3
2)2 ≤ 9

4 + F − 1− 4c2 since c > 0. We get
(
c+ 3

2

)2
≤ 9

4 + F − 1− 4c2

⇔ c2 + 3c+ 9
4 ≤ 9

4 + F − 1− 4c2

⇔ 5c2 + 3c− (F − 1) ≤ 0

⇔ c2 + 3
5c−

F − 1
5 ≤ 0,

which is equivalent to − 3
10 −

√(3
10
)2 + F−1

5 ≤ c ≤ − 3
10 +

√(3
10
)2 + F−1

5 and follows from
our choice of c and since the left hand term is negative.
Hence, whenever sk > 0, the set of feasible midpoint locations for the respective square is
non-empty, which concludes the proof. J

I Lemma 4. Let c be defined as in Lemma 3 and let δ := F − 1
10F
c2 + 1

10
. Then any set of squares

with total area V satisfying c2 ≤ V ≤ 1 and maximum edge length at most δ can be packed
into any rectangle of area F · V with greater edge length at most 10F .

EuroCG’21

37:6 Reducing Moser’s Square Packing Problem to a Bounded Number of Squares

rectangle R′ of area F ·
∑N0

i=1 s2
i

containing the first N0 squares

δ

δ

← Meir-Moser rectangle R′′

of area F ·∑∞i=N0+1 s
2
i

Figure 4 Gluing together R′ and R′′ provides the desired packing.

I Lemma 5. Let c be as in Lemma 3, δ as in Lemma 4 and define N0 := max{1, b 1
δ2 c}.

Assume that for any set S of at most N0 squares of total area 1, there exists a rectangle R
of area F into which the squares in S can be packed axis-parallel and internally disjoint.
Then for any non-increasing sequence of non-negative numbers (si)i∈N+ satisfying s1 ≥ 1

10 ,∑∞
i=1 s

2
i = 1 and

∑∞
i=N0+1 s

2
i ≥ c2, there is a rectangle R of area F into which the squares

with edge lengths given by (si)i∈N+ permit an axis-parallel, internally disjoint packing.

Proof. Let (si)i∈N+ be as in the lemma. Note that since s1 ≥ 1
10 , the total area of the

first N0 squares is strictly positive. Apply the assumption stated for sets of at most N0
squares to the set of squares the edge lengths of which arise from the sequence (si)N0

i=1 by
normalizing the area

∑N0
i=1 s

2
i to 1, and then scale back. We obtain a rectangle R′ of area

F ·∑N0
i=1 s

2
i ≤ F into which we can pack the squares with edge lengths s1, . . . , sN0 . Let W ′

be the smaller edge length of R′. Then

1
10 ≤ s1 ≤W ′ ≤

√
F ·

√√√√
N0∑

i=1
s2
i ≤
√
F .

Let V :=
∑∞
i=N0+1 s

2
i and let R′′ be the rectangle with edge lengths W ′ and FV

W ′ . Then
c2 ≤ V ≤ 1 and for the greater edge length H ′′ of R′′, we have

H ′′ = max
{
W ′,

FV

W ′

}
≤ max

{√
F ,

F
1

10

}
= 10F.

Additionally, s1 ≥ · · · ≥ sN0 ≥ sN0+1 and
∑∞
i=1 s

2
i = 1 yield sN0+1 ≤ 1√

N0+1 ≤ δ, so by
Lemma 4, we can pack the squares with edge lengths sN0+1, sN0+2, . . . into the rectangle
R′′. Gluing R′ and R′′ together at the edge of length W ′ yields a rectangle R of area

F ·
(
N0∑

i=1
s2
i +

∞∑

i=N0+1
s2
i

)
= F

containing all squares (see Figure 4). J

I Theorem 6. Let N0 as in Lemma 5 and c as in Lemma 3 and define
N1 := bmax{N0,

(
10F + 1

10
)2
, 100c2}c and N := be2 ·N1c.

Then any set of squares of total area 1 can be packed into some rectangle of total area F ,
provided this holds for any set of at most N squares of total area 1.

M. Neuwohner 37:7

Proof of Theorem 6. Note that for any natural number n, we have

ln(n+ 1) =
∫ n+1

1

1
x
dx ≤

n∑

i=1
(i+ 1− i) · 1

i
=

n∑

i=1

1
i

= 1 +
n∑

i=2

1
i

= 1 +
n−1∑

i=1
(i+ 1− i) · 1

i+ 1 ≤ 1 +
∫ n

1

1
x
dx = ln(n) + 1

⇒ ln(n+ 1) ≤
n∑

i=1

1
i
≤ ln(n) + 1.

By our choice of N and since N1 ≥ bN0c = N0 ≥ 1, we have

N∑

i=N1+1

1
i

=
N∑

i=1

1
i
−

N1∑

i=1

1
i
≥ ln(N + 1)− ln(N1)− 1 ≥ ln(e2N1)− ln(N1)− 1

= ln
(

e2N1
N1

)
− 1 = ln(e2)− 1 = 2− 1 = 1.

In particular,
N∑

i=N1+1

c2

i
≥ c2. (2)

Consider any set of squares of total area 1 and the corresponding non-increasing sequence
(si)i∈N+ of edge lengths. If s1 ≤ 1

10 , we are done by Theorem 1.
So assume s1 >

1
10 . If

∑∞
i=N1+1 s

2
i ≥ c2, then we are done by Lemma 5 and our assumption

since N0 ≤ N1 because N0 is integral and, therefore, also
∑∞
i=N0+1 s

2
i ≥ c2. Hence, we

can further assume that
∑∞
i=N1+1 s

2
i < c2. As

∑N
i=N1+1

c2

i ≥ c2 by (2), we cannot have
si ≥ c√

i
for all N1 + 1 ≤ i ≤ N , so there is N1 + 1 ≤ n ≤ N with sn < c√

n
. By our packing

assumption for sets of at most N ≥ n squares, we know that the squares with edge lengths
s1, . . . , sn−1,

√
1−∑n−1

i=1 s
2
i ≥ sn can be packed into some rectangle of area F , so this in

particular also holds for the squares with edge lengths s1, . . . , sn. But now, as we also have∑∞
i=n+1 s

2
i ≤

∑∞
i=N1+1 s

2
i < c2 and c√

n
≥ sn ≥ sn+1 ≥ sn+2 ≥ . . . , we can apply Lemma 3,

knowing that n ≥ N1 + 1 ≥ max{(10F + 1
10)2, 100c2}, to conclude the proof. J

For F = 2+
√

3
3 , a straightforward application of the previous arguments results in value of

N = 692, 741, 307. With a little more effort, one can improve this to N = 3, 629, 689.

References
1 Stefan Hougardy. On packing squares into a rectangle. Computational Geometry, 44:456–

463, 2011. doi:10.1016/j.comgeo.2011.05.001.
2 Aylin Ilhan. Das Packen von Quadraten in ein Rechteck. Diploma thesis, Universität Bonn,

Forschungsinstitut für Diskrete Mathematik, March 2014.
3 Daniel Kleitman and Michael Krieger. Packing squares in rectangles I. Annals of the

New York Academy of Sciences, 175:253–262, 1970. doi:10.1111/j.1749-6632.1970.
tb56476.x.

4 Daniel Kleitman and Michael Krieger. An optimal bound for two dimensional bin packing.
16th Annual Symposium on Foundations of Computer Science, pages 163–168, 1975. doi:
10.1109/SFCS.1975.6.

5 Aram Meir and Leo Moser. On packing of squares and cubes. Journal of Combinatorial
Theory, 5(2):126–134, 1968. doi:10.1016/S0021-9800(68)80047-X.

EuroCG’21

37:8 Reducing Moser’s Square Packing Problem to a Bounded Number of Squares

6 John Moon and Leo Moser. Some packing and covering theorems. In Colloquium mathe-
maticum, volume 17, pages 103–110. Institute of Mathematics Polish Academy of Sciences,
1967.

7 Leo Moser. Poorly formulated unsolved problems of combinatorial geometry. Mimeographed
list, 1966.

8 Pavel Novotný. A note on a packing of squares. Stud. Univ. Transp. Commun. Zilina
Math.-Phys. Ser., 10:35–39, 1995.

9 Pavel Novotný. On packing of squares into a rectangle. Archivum Mathematicum (BRNO),
32:75–83, 1996.

10 Pavel Novotný. On packing of four and five squares into a rectangle. Note di matematica,
19/2:199–206, 1999. doi:10.1285/i15900932v19n2p199.

11 Alexander Platz. A proof of Moser’s square packing problem for small instances. Master’s
thesis, Universität Bonn, Forschungsinstitut für Diskrete Mathematik, August 2016.

12 Jan Zernisch. A generalization of a theorem of Kleitman and Krieger. International
Journal of Computational Geometry & Applications, 22(02):167–185, 2012. doi:10.1142/
S0218195912500033.

On 4-Crossing-Families in Point Sets and an
Asymptotic Upper Bound∗

Oswin Aichholzer1, Jan Kynčl2, Manfred Scheucher1,3, and Birgit
Vogtenhuber1

1 Institute of Software Technology, Graz University of Technology, Austria
oaich@ist.tugraz.at, bvogt@ist.tugraz.at

2 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic
kyncl@kam.mff.cuni.cz

3 Institut für Mathematik, Technische Universität Berlin, Germany
scheucher@math.tu-berlin.de

Abstract
A k-crossing family in a point set S in general position is a set of k segments spanned by points of S
such that all k segments mutually cross. In this short note we present two statements on crossing
families which are based on sets of small cardinality: (1) Any set of at least 15 points contains a
crossing family of size 4. (2) There are sets of n points which do not contain a crossing family of
size larger than 4d n20e < n

5 + 4. Both results improve the previously best known bounds.

1 Introduction

Let S be a set of n points in the Euclidean plane in general position, that is, no three points
in S are collinear. A segment of S is a line segment with its two endpoints (which we will
also call vertices) being points of S.

I Definition 1.1. A k-crossing family in a point set S is a set of k segments spanned by
points of S such that all k segments mutually cross in their interior.

For a point set S, let cf(S) be the maximum size of a crossing family in S, and let cf(n)
be the minimum of cf(S) over all point sets S of cardinality n in general position.

It is easy to see that cf(n) is a monotone function. From the fact that the complete graph
with 5 vertices is not planar it follows that any set of n ≥ 5 points has a crossing family of
size at least 2. In [1] it is shown that every set with n ≥ 10 points admits a crossing family
of size 3. The result is based on analyzing the set of all order types of size 10. The bound on
n is tight, that is, there exist 12 order types of 9 points which do have a maximal crossing
family of size 2. One such set is shown in Figure 1.

Aronov et al. [3] proved in 1994 the existence of crossing families of size
√
n/12 for every

set of n points, which until recently was the best general lower bound. Their proof relies on
mutually avoiding sets, for which the given bound is asymptotically tight.

∗ Research for this article was initiated in the course of the bilateral research project “Erdős–Szekeres type
questions for point sets” between Graz and Prague, supported by the OEAD project CZ 18/2015 and
project no. 7AMB15A T023 of the Ministry of Education of the Czech Republic. J.K. was also supported
by the grant no. 21-32817S of the Czech Science Foundation (GAČR) and by Charles University project
UNCE/SCI/004. B.V. partially supported by Austrian Science Fund within the collaborative DACH
project Arrangements and Drawings as FWF project I 3340-N35.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

38:2 Small Crossing Families in Point Sets

Figure 1 A set S of 9 points which does not contain a 3-crossing family, that is, cf(S) = 2.

Only in 2019 Pach, Rubin, and Tardos [9] showed in a breakthrough result that any set
of n points in general position in the plane contains a crossing family of size n1−o(1). This
almost shows the generally accepted conjecture that cf(n) should be Θ(n).

The conjecture is also supported by the currently best upper bounds. Recently, Evans
and Saeedi [6] showed that cf(n) ≤ 5d n24e. We will improve that bound to cf(n) ≤ 4d n20e in
Section 3. In the next section we start by showing that cf(15) = 4.

2 Sets of 15 points always contain a 4-crossing family

From the mentioned result cf(10) = 3 [1] we know that also any set of 11 points contains
a 3-crossing family, and no such set can contain a crossing family of size more than 5 (as
at least 2k points are needed for a k-crossing family). The following table shows how the
maximal size of a crossing family is distributed among all combinatorially different point
sets of size 11 and was computed with the help of the database of all order types of size 11
obtained in [2].

k number of order types
3 63 978 178
4 1 783 117 647
5 487 417 082

total 2 334 512 907

Table 1 Number of realizable order types of size 11 containing at most a k-crossing family.

To obtain the largest point set containing no crossing family of size 4, we made a complete
abstract order type extension from n = 11 to n = 15. The database of all realizable order
types of cardinality 11 contains 2 334 512 907 sets [2], of which 63 978 178 (about 2.7 %)
contain no 4-crossing family; see Table 1. Since adding points to an existing set can never
decrease the size of the maximal crossing family, we need to consider only those sets.

The approach of extending order types in an abstract way as described in [2] has the
advantage that there is no need to realize the obtained sets, as we actually are interested in

O. Aichholzer, J. Kynčl, M. Scheucher, B. Vogtenhuber 38:3

coordinates:

61 66
61 0
57 5
54 9
47 40
41 37
37 44
30 53
46 61
18 55
55 65
11 60
9 61
0 66

Figure 2 A set S of 14 points which does not contain a 4-crossing family, that is, cf(S) = 3.

the smallest cardinality where no such sets exist. This avoids dealing with the notoriously
hard problem of realizing abstract order types, which is know to be ∃R-hard [8]. The
extension is done iteratively by adding one more (abstract) point in each step. Afterwards
each obtained abstract order type is checked for the maximum size of a crossing family, and
if this is larger than 4 the abstract order type is discarded.

After the first three rounds we obtained 2 727 858 abstract order types of cardinality
14 which do not contain a 4-crossing family. All these sets were extended by one further
point (in the abstract setting), but all resulting sets contained a 4-crossing family. Thus,
the largest possible set with no 4-crossing family has size at most 14. The whole process of
abstract extension took about 100 hours, computed in parallel on 40 standard CPUs.

To show that the obtained bound is best possible it is sufficient to realize at least one
generated abstract order type of size 14, and such an example is given in Figure 2. Together
with the set of 20 points with no 5-crossing family depicted in Figure 5, we conclude the
following.

I Theorem 2.1. Every set of at least 15 points in the plane in general position contains a
4-crossing family. Moreover, we have

cf(n) = 3 for 10 ≤ n ≤ 14 and cf(n) = 4 for 15 ≤ n ≤ 20.

Besides the above described computer proof, we have also developed a SAT framework
which allowed us to verify cf(15) > 3 within less than 2 CPU days using the SAT solver
CaDiCaL [5]. We have also used this framework to verify cf(10) > 2 [1]. The python program
creating the instance is available on our supplemental website [11].

The idea behind the SAT model is very similar as in [12]: We assume towards a contra-
diction that cf(15) ≤ 3, that is, there is a set of 15 points with no 4-crossing family. We have
Boolean variables Xabc to indicate whether three points a, b, c are positively or negatively
oriented. As outlined in [12], these variable have to fulfill the signotope axioms [7, 4]. Based
on the variables for triple orientations, we then assign auxiliary variables Yab,cd to indicate
whether the two segments ab, cd cross. Finally we assert that for any set of four segments
with pairwise distinct endpoints, at least one pair of them does not cross. As the SAT solver
CaDiCaL terminates with “unsatisfiable”, no such point set exists, and hence cf(15) > 3.

EuroCG’21

38:4 Small Crossing Families in Point Sets

3 Small sets and an upper bound

The following theorem was already implicitly used by Aronov et al. [3, Section 6] in their
discussion, where they stated the upper bound cf(n) ≤ n

4 . It can also be found as Lemma 3
in [6]. Since in [3] no proof is given and the proof from [6] appears to be incomplete (see
Figure 3), we include a full proof here.

replacing each point
by two imperceptibly
perturbed copies

S S ′

Figure 3 Five points in convex position have at most a 2-crossing family (left). Replacing each
point by two imperceptibly perturbed copies with no prescribed structure as in [6] may result in
a set of 10 points with a crossing family of size larger than 4 (right). The process needs to avoid
generating odd cycles of pairwise crossing edges; see the proof of Theorem 3.1 for details.

I Theorem 3.1. Let S ⊂ R2 be a set of n points in general position with cf(S) = k. Then
for any N ≥ n there exists a set S′ ⊂ R2 of N points in general position with cf(S′) ≤ kdNn e.

For our proof of Theorem 3.1, we will use a simple property of geometric thrackles.
A geometric thrackle is a geometric graph such that each pair of edges (drawn as line
segments) either meets at a common vertex or crosses properly. Woodall proved that a graph
can be drawn as a geometric thrackle if and only if it is a a subgraph of a graph obtained by
attaching leaves (vertices of degree 1) to the vertices of an odd cycle [13, Theorem 2]. We
will need only the following weaker characterization.

I Lemma 3.2. A geometric thrackle T contains no even cycles.

A strenghtening to monotone thrackles was proved by Pach and Sterling [10]. Since the
proof for geometric thrackles is substantially simpler, we include it here to keep this note
self-contained.

Proof of Lemma 3.2. Assume there exists an even cycle C = p0, p1, . . . , pn for some even
n ≥ 4 with p0 = pn and pi−1pi ∈ T for i = 1, . . . , n. We set pi = pj for i = j (mod n).
Consider a line segment ` = pipi+1 in C. The supporting line through ` divides the plane
into two half-planes. Since T is a thrackle, the previous segment pi−1pi and the next segment
pi+1pi+2 cross, and thus pi−1 and pi+2 lie in the same half-plane. Moreover, since all segments
in the path P = pi+2, pi+3, . . . , pi−1 cross the segment pipi+1, P is an alternating path with
respect to the side of the half-plane, and hence P has even length |P |, that is, an even
number of edges. Since the cycle C has length |C| = |P |+ 3 this is a contradiction, because
C was assumed to have even length. J

Proof of Theorem 3.1. Let S be a set of n points in general position in the plane and let
m = dNn e. Without loss of generality we may assume that N = mn; in case N < mn we

O. Aichholzer, J. Kynčl, M. Scheucher, B. Vogtenhuber 38:5

may later remove some points from the constructed point set. We can also assume that all
points of S have distinct x- and y-coordinates; otherwise we slightly rotate S. Our aim is to
construct a set S′ of mn points by creating m copies of each point from S, such that the
following two properties hold:

(S1) a line segment between two copies of p ∈ S only intersects line segments incident to
another copy of p,

(S2) all copies of a point are almost on a horizontal line; that is, if p ∈ S is above (below)
q ∈ S then any line through two different copies of p is above (below) any copy of q.

To this end, we place the m copies of a point p = (x, y) at pi = (x + iε, y + (iε)2) for
i = 0, . . . ,m − 1. For sufficiently small ε > 0, all points from S′ have distinct x- and
y-coordinates and the above conditions are fulfilled.

Let F ′ be a maximum crossing family in S′. We will show how to find a crossing family
F in S of size at least |F ′|/m. If |F ′| ≤ m, we are clearly done since any segment in S is a
crossing family of size 1. Hence assume that F ′ contains more than m segments. Then no
segment f ′ ∈ F ′ can be incident to two copies of the same point of S due to property (S1).
Thus every segment f ′ ∈ F ′ connects (copies of) two distinct points of S.

Let F be the set of segments (without multiplicity) on S induced by F ′ and by contracting
the m copies of pi to p, for each p ∈ S. Formally, F = {pq | ∃i, j : piqj ∈ F ′}; Figure 4 gives
an illustration. Let GF be the geometric graph induced by F , which has the set of end points
of F as (drawn) vertices and F as (drawn) edges. More formally, GF = (V,E, φ, ψ) with
V = {p ∈ S | ∃q : pq ∈ F}, E = {{p, q} | pq ∈ F}, φ : V → R2, p 7→ p, and ψ : {p, q} 7→ pq

for any {p, q} ∈ E. By construction GF is a geometric thrackle, and due to Lemma 3.2, GF
contains no even cycles. Observe that according to property (S2), the neighbors of a vertex
p in GF can either be all above p or all below p, as no segment of F connected from above
to a copy pi can cross a segment of F connected from below to a copy pj . As a consequence,
GF is bipartite and thus contains no odd cycles. Hence, GF is acyclic; equivalently, a forest.

As long as GF contains vertices of degree larger than 1, we continue as follows: Let
p ∈ V (GF) be a leaf incident to a vertex q ∈ V (GF) of degree larger than 1. We construct F ′′
by removing all segments in F ′ incident to copies of q, and by inserting segments connecting
all copies of q to copies of p in the way such that all those segments cross; Figure 4 gives an
illustration of this modification. By construction, |F ′′| ≥ |F ′| holds and thus F ′′ is another
maximal crossing family in S′. We can replace F ′ by F ′′.

We can iteratively repeat this process, and in every step the number of vertices of degree
larger than 1 strictly decreases. Therefore we can assume that GF contains no vertices of
degree greater than 1. As a consequence, F is a (not necessarily maximal) crossing family in
S with |F | ≥ |F ′|/m. Therefore, cf(S′) ≤ |F ′| ≤ m · |F | ≤ m · cf(S) = mk. J

From the point set depicted in Figure 1, it follows by Theorem 3.1 that there are sets
of n points with no crossing family larger than 2dn9 e. Evans and Saeedi [6] constructed a
set of 24 points with no crossing family of size 6 or more, which yields the upper bound
cf(n) ≤ 5d n24e presented there.

k 1 2 3 4 5 6 7 8 9 10
Currently best example 4 9 14 20 25 29 34 40 44 50

Table 2 Largest known point sets Sk containing at most a k-crossing family, that is, with
cf(Sk) = k. For k ≤ 3 the sets are best possible.

EuroCG’21

38:6 Small Crossing Families in Point Sets

S S′

S S′

modify F ′ to F ′′

q

p

q

p

contract F ′

contract F ′′

Figure 4 An illustration of the contracting process to attain F from F ′, and an illustration of
the modification of F ′ in which all copies of p and q are “connected” to each other.

To further improve this bound we searched for sets with small crossing families. For
k ≥ 5 we partially extended several smaller sets (for example by doubling the number of
points similarly to the process described in the proof of Theorem 3.1) and used heuristics
such as simulated annealing to optimize them. Table 2 summarizes the sizes of the currently
largest sets containing at most a k-crossing family for k up to 10.

Using Theorem 3.1 together with the sets of 20 points containing no 5-crossing family
(see Figure 5) we get the bound cf(n) ≤ 4d n20e. Also we have a set of 25 points containing no
6-crossing family (see Figure 6), which implies cf(n) ≤ 5d n25e and therefore gives a slightly
better upper bound for certain values of n.

I Corollary 3.3. We have cf(n) ≤ min{4d n20e, 5d n25e} < n
5 + 4.

4 Conclusion

Based on exhaustive abstract extension of order types we showed that cf(15) = 4. We
conjecture that every set of 21 or more points contains a crossing family of size 5. We plan

O. Aichholzer, J. Kynčl, M. Scheucher, B. Vogtenhuber 38:7

coordinates:

595 113
0 0
2 7
8 21

49 179
473 131
465 139
96 225

198 205
115 280
235 242
103 321
242 266
584 118
135 339
150 393
104 531
105 537
56 595
55 598

Figure 5 A set S of 20 points with no 5-crossing family.

coordinates:

209 744
670 181
651 180
623 177
597 176
574 176
231 699
244 673
213 734
383 321
333 404
391 244
301 488
365 232
211 737
287 417
229 278
219 370
178 191
151 203
31 58
18 33
16 28
6 10
0 0

Figure 6 A set S of 25 points with no 6-crossing family.

EuroCG’21

38:8 Small Crossing Families in Point Sets

to use our SAT framework to either settle the conjecture or improve the upper bound on the
size of a crossing family to 4d n21e.

Acknowledgements. This work was initiated in April 2015 during the Graz–Prague
bilateral project Erdős-Szekeres type questions for point sets. We thank all the members of
this project for the good atmosphere as well as discussions on the topic.

References
1 Oswin Aichholzer and Hannes Krasser. The Point Set Order Type Data Base: A Collection

of Applications and Results. In Proc. 13th Annual Canadian Conference on Computational
Geometry CCCG 2001, pages 17–20, 2001.

2 Oswin Aichholzer and Hannes Krasser. Abstract order type extension and new results
on the rectilinear crossing number. Comput. Geom., 36(1):2–15, 2007. doi:10.1016/
j.comgeo.2005.07.005.

3 Boris Aronov, Paul Erdős, Wayne Goddard, Daniel J. Kleitman, Michael Klugerman, János
Pach, and Leonard J. Schulman. Crossing families. Combinatorica, 14(2):127–134, 1994.
doi:10.1007/BF01215345.

4 Martin Balko, Radoslav Fulek, and Jan Kynčl. Crossing numbers and combinatorial char-
acterization of monotone drawings of Kn. Discrete Comput. Geom., 53(1):107–143, 2015.
doi:10.1007/s00454-014-9644-z.

5 Armin Biere. CaDiCaL at the SAT Race 2019. In Proc. of SAT Race
2019 – Solver and Benchmark Descriptions, volume B-2019-1 of Department
of Computer Science Series, pages 8–9. University of Helsinki, 2019. https:
//researchportal.helsinki.fi/en/publications/proceedings-of-sat-race-2019-
solver-and-benchmark-descriptions.

6 William Evans and Noushin Saeedi. On problems related to crossing families.
arXiv:1906.00191v1, 2019.

7 Stefan Felsner and Helmut Weil. Sweeps, arrangements and signotopes. Discrete Appl.
Math., 109(1-2):67–94, 2001. 14th European Workshop on Computational Geometry CG’98
(Barcelona). doi:10.1016/S0166-218X(00)00232-8.

8 Nikolai Mnëv. On manifolds of combinatorial types of projective configurations and convex
polyhedra. In Soviet Math. Doklady, volume 32, pages 335–337, 1985.

9 János Pach, Natan Rubin, and Gábor Tardos. Planar point sets determine many pair-
wise crossing segments. In STOC’19—Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pages 1158–1166. ACM, New York, 2019. doi:
10.1145/3313276.3316328.

10 János Pach and Ethan Sterling. Conway’s conjecture for monotone thrackles. Amer. Math.
Monthly, 118(6):544–548, 2011. doi:10.4169/amer.math.monthly.118.06.544.

11 Manfred Scheucher. Webpage: On 4-Crossing-Families in Point Sets and an Asymptotic
Upper Bound. http://page.math.tu-berlin.de/~scheuch/suppl/crossing_families.

12 Manfred Scheucher. Two disjoint 5-holes in point sets. Comput. Geom., 91:101670, 12,
2020. doi:10.1016/j.comgeo.2020.101670.

13 D. R. Woodall. Thrackles and deadlock. In Combinatorial Mathematics and its Applications
(Proc. Conf., Oxford, 1969), pages 335–347. Academic Press, London, 1971.

Collapses of higher order Delaunay complexes∗

Mickaël Buchet1, Bianca B. Dornelas2, and Michael Kerber3

1 Institute of Geometry, TU Graz, Austria
buchet@tugraz.at

2 Institute of Geometry, TU Graz, Austria
bdornelas@tugraz.at

3 Institute of Geometry, TU Graz, Austria
kerber@tugraz.at

Abstract
Bauer and Edelsbrunner [2] showed that the Delaunay-Čech complex collapses to the Delaunay
complex for point sets in general position. We extend this result by showing that the kth order
Delaunay-Čech complex collapses to the kth order Delaunay complex in the plane. We do this by
building a sequence of simplicial collapses from the former to the latter.

1 Introduction

The Delaunay triangulation of a finite set of sites is among the most famous concepts in
computational geometry [1, 6]. It can be used to define Alpha complexes by the removal
of “large” simplices with respect to a threshold r. Considering all these thresholds leads
to the concept of the Delaunay filtration (also known as the alpha filtration), a sequence of
nested simplicial complexes that represents the input on multiple scales. A slight variation
of the Delaunay filtrations are Delaunay-Čech filtrations, where the size of a simplex is not
determined by its circumradius, but the radius of the minimum enclosing ball of the sites.
In general, this results in a larger complex for every threshold r.

These concepts can be extended to the higher order case, where vertices are defined by
k-subsets of sites instead of a single site. Higher order Delaunay complexes have simplices
defined with spheres containing at most (k − 1) sites in their interior. The restriction to
simplices with sphere radius smaller or equal to a threshold r yields an analogue of Delaunay
filtrations for the kth order Delaunay complex. Similarly, Delaunay-Čech filtrations are
extended to order k by considering the minimum enclosing ball of all k-subsets involved in
a simplex.

Contribution. We show that, for point sets in general position in R2, the kth order
Delaunay-Čech complex with radius r collapses to the kth order Delaunay complex with
radius r through a sequence of elementary simplicial collapses [4, Sec.3.4]. To prove that, we
partition the “excess” simplices in the Delaunay-Čech complex into intervals, and collapse
these intervals in sequence.

As a consequence, the kth order Delaunay-Čech and Delaunay complexes are homotopi-
cally equivalent for every r. Moreover, the homotopy equivalence is realized by the inclusion
map, immediately implying that the kth order Delaunay-Čech and Delaunay filtrations are
weakly equivalent in the model-categoric sense (compare [3]) and, in particular, give rise
to the same persistence diagram. The filtration values for the kth order Delaunay-Čech

∗ Supported by the Austrian Science Fund (FWF): W1230.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

39:2 Collapses of higher order Delaunay complexes

complex are determined by minimal enclosing balls, which is simpler than considering both
inclusion and exclusion constraints as is needed for the kth order Delaunay complex. We
speculate that this simplicity may lead to computational advantages, even though state-
of-the-art methods to compute Delaunay filtrations use a slight variation of the mini-ball
algorithm [5].

Related Results. Our result partially generalizes the result by Bauer and Edelsbrunner [2].
They showed that, in any dimension, the 1st order Delaunay-Čech complex collapse to the
1st order Delaunay complex.

2 Background

Let V be a finite collection of elements called vertices. An (abstract) simplex σ of dimension
n is a subset of V with n+1 elements. If σ = {V0, V1, · · · , Vn}, we write σ = V0V1 · · ·Vn and
say that each Vi is a vertex of σ. A face of σ is a simplex spanned by a subset of the vertices
of σ and a coface is a simplex spanned by a set containing all the vertices of σ. An (abstract)
simplicial complex is a finite collection of simplices, K, such that for every simplex σ ∈ K,
every face of σ is in K.

Free Collapses. Given σ, τ ∈ K, if σ is a coface of τ with dim σ = dim τ + 1, τ is a facet
of σ. If in addition σ is the only coface of τ in K, τ is free. An elementary collapse in
K is the removal of a pair (τ, σ), where σ has maximal dimension inside K and τ is a
free facet of σ. We write K ↘ K \ {τ, σ}. A collapse is a sequence of elementary collapses
K0 ↘ K1 ↘ · · · ↘ Km such that Ki+1 = Ki \ {τi, σi}. We write K0 ↘ Km. The collapses
define a deformation retraction from K0 to Km hence both complexes are homotopically
equivalent [4].

An interval in the face relation of K is a subset of the form [P,R] = {Q | P ⊆ Q ⊆ R}.
Intervals with only one simplex are called singular, its simplex being a critical simplex.

The kth Order Delaunay Complex. We assume X ⊆ R2 to be a finite set in general
position: no 3 points of X lie on a common line and no 4 points lie on a common circle.
Elements of X are called sites and A ⊆ X with |A| = k is called a k-subset.

Given a circle S in R2, denote the set of sites on S as OnS and the set of sites inside
(but not on) S as InS. InclS = InS ∪ OnS is the collection of sites included by S. For a
point x ∈ R2, let S(x) denote the smallest circle centered at x that includes at least k sites.
We say that x is near to a k-subset A of X if A ⊆ InclS(x) and no other site is inside S(x),
i.e. there is no p ∈ X \A with p ∈ InS(x).

I Definition 2.1. Let V be the collection of all k-subsets with at least one near point. We
say that σ ⊆ V, σ = {A0, A1, · · · , Am}, is a k-Delaunay simplex of dimension m if there
exists x ∈ R2 such that x is near to Ai, for all 0 ≤ i ≤ m. The kth order Delaunay complex
of X, Delk(X), is the collection of all k-Delaunay simplices of X.

See Figure 1 for an example. The kth order Delaunay complex of X can also be inter-
preted as the nerve of the kth order Voronoi diagram of X, i.e. the diagram obtained by
partitioning the space into regions with same k-closest sites.

The smallest circle S(x), over all choices of points near to all of σ’s vertices, is the k-
Delaunay circle of σ. We often omit the mention of k. The Higher Order Delaunay radius
function is the function sDel associating to each simplex the radius of its Delaunay circle.

M. Buchet, B. B. Dornelas and M. Kerber 39:3

Figure 1 Examples of order 1 (left) and order 2 (right) Delaunay complexes. Dashed circles are
the k-Delaunay circles of the filled triangles.

I Definition 2.2. The kth order Delaunay complex with radius r, denoted Delkr (X), is the
collection of all k-Delaunay simplices whose k-Delaunay circle has radius smaller or equal
to r ∈ R+, that is Delkr (X) = {σ ∈ Delk(X) | sDel(σ) ≤ r}.

The kth Order Delaunay-Čech Complex. Given a simplex σ ∈ Delk(X), we define its Čech
radius as the radius of the minimal enclosing ball of all the involved sites, called the k-Čech
circle. The Čech radius function is the function sČech associating to each σ ∈ Delk(X) its
Čech radius. A Čech circle always exists and is the smallest circumcircle of its boundary
sites (see for example [4]).

I Definition 2.3. Let r ∈ R+. The kth order Delaunay-Čech complex with radius r, denoted
DelČechkr (X), is the set of all simplices of Delk(X) with Čech radius at most r, that is

DelČechkr (X) = {σ ∈ Delk(X) | sČech(σ) ≤ r}.

Delkr (X) is a subset of DelČechkr (X) because sČech(σ) ≤ sDel(σ) for any σ ∈ Delk(X).
Moreover, general position implies that there are no two different Čech or Delaunay circles
with same radii and that the highest dimensional simplices are triangles.

Front and Back. Given a subset of 2 or 3 sites, P ⊆ X, there is a unique smallest circum-
circle S for P . This circle S has the property that its center z can be expressed as an affine
combination of the points in P :

z =
∑

x∈OnS
λxx with 1 =

∑

x∈OnS
λx.

We define the front face and the back face of OnS as

FrontS = {x ∈ OnS | λx > 0} and BackS = {x ∈ OnS | λx < 0}.

General position implies that the coefficients are non-zero and |BackS| ≤ 1 in the plane.
Front sites can be interpreted as those which are visible from the center, while the back site
is hidden by some face of the convex hull conv(OnS), as depicted in Figure 2 (left).

EuroCG’21

39:4 Collapses of higher order Delaunay complexes

c

a

b

× z
Back point c c

a

b

b

× z

Figure 2 Left: circle with non-empty back set. Right: circle with empty back set.

3 Collapsing Delaunay-Čech to Delaunay

We want to collapse the simplices in DelČechkr (X) that do not exist in Delk(X), which are
precisely those simplices for which Delaunay and Čech radii differ. We define that a simplex
σ ∈ Delk(X) is a bad simplex if sDel(σ) 6= sČech(σ). It is called good otherwise. The next
lemma gives a geometric characterization of bad simplices.

I Lemma 3.1. Let S be the k-Delaunay circle of σ ∈ Delk(X). Then σ is a bad simplex if
and only if BackS 6= ∅.

Proof. ⇒ If BackS = ∅, the center of S is in the convex hull of the front points. In this
case, S is also the minimal enclosing ball of the point set, hence the k-Čech circle.
⇐ If BackS 6= ∅, the center z of S is not inside the convex hull of its boundary points

and there is an hyperplane H with z to one side and OnS to the other side. If we slightly
move z in the direction of H, reducing the radius to preserve the intersection with H, then
this is a smaller enclosing ball of OnS ∪ InS. Hence the k-Čech circle is smaller than S. J

Let σ ∈ Delk(X) be a triangle. Then, there is a unique point that is near to all three
k-subsets defining σ, the Voronoi vertex z at the intersection of the three dual k-Voronoi
regions. The smallest circle S centered at z that includes all involved sites in σ is its k-
Delaunay circle. Call the boundary sites a, b, c and P = InS. There are two cases: |P | = k−1,
in which case the vertices of σ are P ∪ {a}, P ∪ {b}, P ∪ {c} (Figure 3a), or |P | = k − 2, in
which case the vertices of σ are P ∪ {a, b}, P ∪ {a, c}, P ∪ {b, c} (Figure 3b). We call σ a
(k − 1)-triangle or a (k − 2)-triangle, respectively.

c

a

b

×
z

k − 1 sites

(a) (k − 1)-triangle

c

a

b

×
z

k − 2 sites

(b) (k − 2)-triangle

Figure 3 Possible k-Delaunay triangles and their k-Voronoi regions, delimited by the edges.

Consider σ a Delaunay simplex. Another simplex ω ∈ Delk(X) is said to be linked to
σ if ω is a face or a coface of σ, sDel(σ) = sDel(ω) and sČech(σ) = sČech(ω). We use this
concept to construct the desired intervals in Delk(X).

M. Buchet, B. B. Dornelas and M. Kerber 39:5

I Lemma 3.2. Let σ ∈ Delk(X) be a bad 2-simplex and S be its Delaunay circle, with
FrontS = {a, b}, BackS = {c} and P = InS.
1. If σ is a (k − 1)-triangle, it is linked only to the edge ω given by P ∪ {a} and P ∪ {b}.
2. If σ is a (k − 2)-triangle, it is linked to the vertex γ = P ∪ {a, b}. Moreover, it is also

linked to the edges ω1, ω2 ∈ [γ, σ] and that is all it is linked to.

Proof. A k-Delaunay triangle σ corresponds to a k-Voronoi vertex, the circumcenter of
a, b, c ∈ X. Let S· and meb(·) be the k-Delaunay circle and the minimal enclosing ball of a
set of sites. We argue geometrically to show (1.), using Figure 4 as reference. Item (2.) is
similar.

The center of Sω must be at the intersection of the k-Voronoi regions for P ∪ {a} and
P ∪ {b}, the red edge l3. Moreover, a and b must be on Sω, hence the minimum radius is
reached at the end of l3 that is exactly z, the center of Sσ. Therefore Sω = Sσ.

Let Vσ, Vω be the set of all involved sites in σ and ω. Recall that a MEB is the smallest
circumcircle of its boundary sites. Hence, if we show that meb(Vω) and meb(Vσ) have
same boundary sites, they must be the same. Furthermore, Vσ and Vω differ only by c.

Therefore, it is sufficient to show that meb(Vσ) does not contain c on its boundary. Assume
c ∈ On meb(Vσ). Then z is in the closed half-planes Hac and Hbc, where H·c is the half-plane
of all points closer to · than to c. Then the intersection of Hac and Hbc has z as the closest
point to c, meaning that z is also the center of the Delaunay circle, a contradiction to the
fact that σ is bad. Hence, sČech(σ) = sČech(ω) and ω is linked to σ.

c

a

b

k − 1 sites

l3

l1

l2

×
z

Figure 4 A bad (k − 1)-triangle. The edges are k-Voronoi edges.

Finally, any other edge that is a face of σ does not have both a and b as involved sites
and therefore has different Delaunay circle: for the edge defined by P with b and c, the
Delaunay circle must exclude a and its center is on the green line l2, translated from z in
the direction of the midpoint between b and c. The minimum radius is reached either at
the midpoint, or at some critical point before. For the edge defined by P with a and c,
the argument is the same using the blue line l1. Hence these edges and their vertices have
different Delaunay circle and are not linked to ω. J

Lemma 3.2 inspires the construction of an interval partition on Delk(X): we put every
good simplex into a singleton interval, every bad (k−1)-triangle into a pair {edge, triangle}
and every bad (k − 2)-triangle into a diamond {vertex, edge, edge, triangle} of adjacent
simplices, as in Lemma 3.2. Hence all simplices in the same interval are linked. Moreover,
every bad simplex is linked to a triangle (we omit the proof for the lack of space). Hence:

I Theorem 3.3. The above defined intervals partition Delk(X). Moreover, bad simplices are
in non-singular intervals.

EuroCG’21

39:6 Collapses of higher order Delaunay complexes

As a consequence, we have our main result.

I Theorem 3.4. Let X ⊆ R2 be finite and in general position and k ≥ 1. For every r ≥ 0,
DelČechkr (X)↘ Delkr (X).

Proof. For s ≥ r, consider the set of simplices with Čech radius at most r and Delaunay
radius at most s :

A(s) def= {σ ∈ DelČechkr (X) | sDel(σ) ≤ s}.

A(s) is a simplicial complex, because it is the intersection of DelČechkr (X) and Delks (X).
Moreover, A(r) = Delkr (X) and A(∞) = DelČechkr (X). Since X is finite, sDel has finitely
many critical values s1, s2, · · · , sm, with s1 = r, and thus there is a filtration

Delkr (X) = A1 ⊂ A2 ⊂ · · · ⊂ Am = DelČechkr (X), where Ai = A(si).

We show that Ai arises from Ai+1 via free collapses. Note that

Ai+1 \Ai = {σ ∈ Delk(X) | sDel(σ) = si+1, sČech(σ) ≤ r}

and these are bad simplices. By Theorem 3.3, these simplices must form one pair or one
diamond interval. For a diamond interval, denote the involved simplices v, e1, e2 and t. t is
maximal, as any triangle in a triangulation, and e1 and e2 are both free in Ai+1, because
removing the diamond interval yields the simplicial complex Ai. Analogously, v is only
incident to e1 and e2. Hence, we can free-collapse (e1, t) and afterwards (v, e2) to obtain Ai.

The case of a pair interval is analogous. Concatenating these free collapses for every
i = 1, · · · ,m− 1, we obtain that DelČechkr (X)↘ Delkr (X). J

4 Conclusion

We constructed, for a fixed radius, a sequence of simplicial collapses from the higher order
Delaunay-Čech to the higher order Delaunay complex of a finite set of points in general
position in the plane. Our approach does not directly generalize for higher dimensions
because we rely on the restriction that the back set has at most one site, while in Rd the
back set can have up to d − 1 sites. Another difficulty is that the kth order Delaunay
complex can have simplices of higher dimension than the ambient space when the point set
is not planar. Even so, we do hope that our methods can be adapted to not only show the
collapse for higher dimensions, but also to show the existence of a collapsing sequence from
the higher order Čech complex to the Delaunay-Čech one.

References
1 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi diagrams and Delaunay

triangulations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. doi:
10.1142/8685.

2 Ulrich Bauer and Herbert Edelsbrunner. The Morse theory of Čech and Delaunay com-
plexes. Trans. Amer. Math. Soc., 369(5):3741–3762, 2017. doi:10.1090/tran/6991.

3 Andrew J. Blumberg and Michael Lesnick. Stability of 2-parameter persistent homology.
CoRR, abs/2010.09628, 2020. URL: https://arxiv.org/abs/2010.09628, arXiv:2010.
09628.

4 Herbert Edelsbrunner and John L. Harer. Computational topology. American Mathematical
Society, Providence, RI, 2010. An introduction. doi:10.1090/mbk/069.

M. Buchet, B. B. Dornelas and M. Kerber 39:7

5 Herbert Edelsbrunner and Georg Osang. A simple algorithm for higher-order Delaunay
mosaics and alpha shapes. CoRR, abs/2011.03617, 2020. URL: https://arxiv.org/abs/
2011.03617, arXiv:2011.03617.

6 Steven Fortune. Voronoi diagrams and Delaunay triangulations. In Jacob E. Goodman
and Joseph O’Rourke, editors, Handbook of Discrete and Computational Geometry, Second
Edition, pages 513–528. Chapman and Hall/CRC, 2004. doi:10.1201/9781420035315.
ch23.

EuroCG’21

Nearest-Neighbor Decompositions of Drawings∗

Jonas Cleve†1, Nicolas Grelier‡2, Kristin Knorr§1, Maarten Löffler3,
Wolfgang Mulzer¶1, and Daniel Perz‖4

1 Freie Universität Berlin
{jonascleve, knorrkri, mulzer}@inf.fu-berlin.de

2 ETH Zürich, Department of Computer Science
nicolas.grelier@inf.ethz.ch

3 Utrecht University
m.loffler@uu.nl

4 TU Graz
daperz@ist.tugraz.at

Abstract
Let D be a straight-line drawing of a graph in the plane, and let c be a positive integer. We say
that D has a nearest-neighbor decomposition into c parts if there are point sets P1, . . . , Pc such
that D is the union of the nearest neighbor graphs on P1, . . . , Pc. We study the complexity of
deciding whether it is possible to draw D as the union of c nearest-neighbor graphs.

1 Introduction

Let P ⊂ R2 be a finite planar point set, and let C be a finite set of colors. A coloring is a
function σ : P → C that assigns a color to each point in P . For any color c ∈ C, we write
Pc = {p ∈ P | σ(p) = c} for the points in P that were colored with c.

The nearest-neighbor graph for a color c ∈ C, NNc, is the embedded graph with vertex
set Pc and a straight-line edge between p, q ∈ Pc if and only if p is the nearest neighbor of q
among all points in Pc, or vice versa.1 We will consider NNc both as a combinatorial graph,
consisting of vertices and edges, and as a subset of the plane, consisting of the points in Pc

and the line segments that represent the edges. We write NN =
⋃

c∈C NNc for the union of the
nearest-neighbor graphs of all colors. Again, we consider NN both as a graph and as a set.

We are interested in the following problem: suppose we are given a drawing D, i.e., a
graph that is embedded in the plane and whose edges are represented by (possibly crossing)
straight line segments. Our general task is to construct a point set P , a set of colors C, and
a color assignment σ, such that the union NN of the nearest-neighbor graphs for P and C
equals D, considered as subsets of the plane. We call NN an NN-decomposition of D with
vertex set P , and we call |C| the color-number of NN . See Figure 1.

∗ This research was started at the 4th DACH Workshop on Arrangements and Drawings, February 24–28,
2020, in Malchow, Germany. We thank all participants of the workshops for valuable discussions and
for creating a conducive research atmosphere.

† Supported in part by ERC StG 757609.
‡ Supported by the Swiss National Science Foundation within the collaborative DACH project Arrange-

ments and Drawings as SNSF Project 200021E-171681.
§ Supported by the German Science Foundation within the research training group ‘Facets of Complexity’
(GRK 2434).

¶ Supported in part by ERC StG 757609 and by the German Research Foundation within the collaborative
DACH project Arrangements and Drawings as DFG Project MU 3501/3-1.

‖ Partially supported by FWF within the collaborative DACH project Arrangements and Drawings as
FWF project I 3340-N35

1 We assume general position but our notion is different: Three points can be on a line but we require
that the pairwise distances between the points are all different. Note that our notion of nearest-neighbor
graph is undirected, but a directed version also exists.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

40:2 Nearest-Neighbor Decompositions of Drawings

(a) (b) (c)

Figure 1 (a) A drawing. (b) A set of points with 3 colors. (c) The 3 nearest-neighbor graphs.

Related work. Our problem is motivated from automated content generation for puzzle
games: van Kapel introduces a version of connect-the-dots puzzles in which the task is to
connect dots based on colors rather than numbers [7]. In this puzzle, points may have
multiple colors; see Figure 2. He implemented a heuristic approach for generating such
puzzles which works well for small instances, but for larger instances generates too many
colors to be practical [5].

(a) (b) (c)

Figure 2 (a) Multi-colored points with 5 colors: blue, red, green, yellow, and orange. (b) The
orange nearest-neighbor graph. (c) The union of all nearest-neighbor graphs. Picture taken from [5].

The nearest-neighbor graph of a set of points in the plane is well understood [1, 6]. It is a
subgraph of the relative neighborhood graph of the points [4, 6], which in turn is a subgraph
of the Delaunay triangulation. The problem of recognizing whether a given abstract graph
can be realized as a nearest-neighbor graph of a point set is open and conjectured to be hard.
In contrast, testing whether a given embedded graph is a (single) nearest-neighbor graph is
easy.

Results. We show that testing if a drawing can be decomposed into c nearest-neighbor
graphs so that every vertex of the drawing is a vertex of at least one of the graphs, is
polynomial for c ≤ 2, but NP-hard for c ≥ 3. If we allow edges of the nearest-neighbor graphs
to cross without requiring a vertex at the crossing, the problem is already hard for c = 2.

2 Existence of NN-Decompositions on Special Points

Let D be a straight-line drawing. The segments of D are the inclusion maximal line segments
in D. If s is a line segment with s ⊂ D such that s is not a segment of D, we say that
s is covered by D. The special points of D are the endpoints of the line segments in D
and the intersection points between two segments in D. We require a stronger general
position assumption, namely that the pairwise distances between the special points of D
are all distinct. We consider the special case of our problem where the vertex set of the
NN-decomposition must consist of the special points. We investigate the question under
which circumstances it is possible to find such a special-point NN-decomposition of D.

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 40:3

Figure 3 This drawing highlights the possible violations that make a drawing non-plane.

2.1 The Plane Case
A drawing D is called plane if its segments intersect only at their endpoints, i.e., no segment
of D contains a special point in its relative interior; see Figure 3 for an illustration.

I Lemma 2.1. Let D be a plane drawing. Suppose there is a special-point NN-decomposition
NN of D. Let σ be the underlying coloring of NN . Then, for any connected component C of D,
the coloring σ assigns the same color to all special points in C.

Proof. Suppose D has a connected component C in which σ assigns two distinct colors.
Then, C contains a segment s = uv whose endpoints are colored differently. However, the line
segment uv must be covered by NN , and thus, there exists a segment t in NN that contains u,
v, and another special point of D (since the segments in NN are derived from nearest-neighbor
relations between points of the same color). By our general position assumption, the segment
t is not in D, so NN is not an NN-decomposition of D, a contradiction. J

Let C be a connected component in a plane drawing D, p a special point in C. We denote
by a(p) the special point in C \ {p} that is closest to p. We denote by b(p) the set of special
points in D that are strictly closer to p than a(p). By definition, b(p) ⊂ D \ C. Let C1 and C2
be two distinct connected components. We say that C1 and C2 are incompatible if there is a
special point p ∈ C1 such that b(p) ∩ C2 6= ∅, or vice-versa.

We call the connected component C NN-representable if C is the nearest-neighbor graph
of its special points. By Lemma 2.1, if C is plane, then NN-representability is equivalent to
special-point NN-decomposability.

Let D be a straight-line drawing. We denote by V = {Ci}1≤i≤n the connected components
of D. We define E as the set of pairs {Ci, Cj} where Ci and Cj are incompatible. We say that
the graph G := (V,E) is the incompatibility graph of D.

I Theorem 2.2. Let C be a set of colors with |C| ≤ 2. There is a polynomial time algorithm
for the following task: given a plane drawing D, is there a special-point NN-decomposition of
D with color set C?

Proof. Let D be a plane drawing. By Lemma 2.1 each connected component is colored with
one color if there is a special-point NN-decomposition of D. This means every connected
component of D is NN-representable if there is a special-point NN-decomposition of D. This
can be checked in polynomial time, as we only need to compute the nearest-neighbor graph
of the special vertices. If the test is negative, the algorithm answers that there is no solution.

Otherwise, we construct the incompatibility graph G of D, and we check whether G can
be colored with C. This takes polynomial time since |C| ≤ 2 (for |C| = 2 check whether G is
bipartite, for |C| = 1 check that G has no edges). Note, that if G was not C-colorable, then
there exists at least one incompatible pair {Ci, Cj} which was assigned the same color. Since
by definition b(p) ∩ Cj 6= ∅ for a p ∈ Ci, such a coloring would create a non-existing edge
between Ci and Cj . If possible, we give all special points in a component C the color assigned
to the corresponding vertex in G. Since all connected components are NN-representable, this

EuroCG’21

40:4 Nearest-Neighbor Decompositions of Drawings

k − 1 k − 1 k − 1 k − 1

Figure 4 A 5-wire of length 5 and the general incompatibility graph of a k-wire of length 5.

k − 1 k − 1 k − 1 k − 1

Figure 5 A 5-chain of length 5 and the general incompatibility graph of a k-chain of length 5.

is also a special point NN-decomposition of D. If G cannot be colored with C, then there
is no special point NN-decomposition of D. Assume to the contrary that there is a special
point NN-decomposition of D. Since every point of a connected component has the same
color, we color the corresponding vertex in G with the same color. But then we would have
a coloring of G, which contradicts that G cannot be colored with C. J

I Theorem 2.3. Let C be a set of colors with |C| ≥ 3. The following task is NP-complete:
given a plane drawing D, is there a special-point NN-decomposition of D with color set C?

Proof. Gräf, Stumpf, and Weißenfels [3] showed how to reduce k-colorability to k-colorability
of unit disk graphs. Our proof is inspired by theirs. Let k = |C|. We show the NP-hardness of
coloring the special points of D with k ≥ 3 colors by means of a reduction from k-colorability.
We make use of four types of gadgets: k-wires, k-chains, k-clones, and k-crossings. They are
depicted in Figures 4 to 7, together with their incompatibility graphs. The symbol consisting
of a number x in a circle denotes a clique of size x. A vertex v connected to such a symbol
means that there is an edge between v and all the vertices of the clique. These incompatiblity
graphs are exactly the gadgets defined by Gräf, Stumpf, and Weißenfels. Note that each
connected component in these gadgets is NN-representable. The gadgets shown are for k = 5.

In Figures 4 to 6, there are several sets of four segments that are very close and nearly
vertical. For other values of k, the gadgets are analogous, but with k − 1 almost vertical
segments instead of four. Similarly, in Figure 7, there are five sets consisting of three close
segments. For other values of k, there are five sets of k − 2 segments. In Figures 4 and 5,
k-wires and k-chains are drawn as if they were on a line, but they may also bend with a
right angle. Note that in Figures 4 to 7 some vertices are specially marked with larger empty
circles. These vertices will be called extreme vertices.

In Figure 7, there seem to be points lying on a segment between two other points.
Actually, these points are shifted by a sufficiently small ε > 0, to ensure our general position
assumption.

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 40:5

k − 1 k − 1 k − 1 k − 1

Figure 6 A 5-clone of length 4 and and the general incompatibility graph of a k-clone of length 4.

k − 2 k − 2

k − 2 k − 2

k − 2

Figure 7 The 5-crossing gadget (left); the incompatibility graph of the k-crossing gadget (right).

EuroCG’21

40:6 Nearest-Neighbor Decompositions of Drawings

v1

v2 v4

v3

clone clone

v1 v2 v4

clone clone

v2 v3

+

+ +

+
+ = crossing gadget

= wire
= end of chain

Figure 8 An example graph G with four vertices (left). Converting G to an NN-graph (right).

The main property of a k-wire is that in any coloring with k colors of its incompatibility
graph, the extreme vertices are assigned the same color. In contrast, in a k-chain, the extreme
vertices are assigned different colors. In a k-clone of length `, there are ` extreme vertices.
In any coloring with colors from C, all extreme vertices have the same color. Finally, for the
k-crossing, opposite extreme vertices must have the same color; a pair of consecutive extreme
vertices (e.g., top and left extreme vertices) may or may not be assigned the same color [2].

Now we follow the proof of Gräf, Stumpf, and Weißenfels. Suppose we are given a graph
G = (V,E). We describe a drawing D whose incompatibility graph can be colored with color
set C if and only if the vertices of G can be colored with C. Refer to Figure 8. For each
vertex v of degree δ in G, we draw a k-clone of size δ. The clones are drawn so that they are
arranged on a horizontal line and such that their upper points have the same y-coordinate.
Then, for each edge {u, v} ∈ E, we draw it on the plane as two vertical segments, each
incident to one k-clone, and one horizontal segment that connects the two upper points of
the vertical segments. We do that such that for any pair of edges, their horizontal segments
have distinct y-coordinates. Then we replace each crossing between a pair of edges by a
k-crossing. Finally, let us consider one edge {u, v} ∈ E, and let us orient it arbitrarily, say
toward v. We replace each part of the edge between two k-crossings by k-wires of sufficient
length. If there are no crossings, we replace the edge by a k-chain. Otherwise, the part of
the edge between u and the first k-crossing is replaced by a k-wire, and the part between the
last k-crossing and v is replaced by a chain. As the points of distinct gadgets are sufficiently
remote (except for pairs of gadgets that are connected on purpose), the incompatibility graph
of this drawing is the union of the incompatibility graphs of the individual gadgets.

It is possible to find positions with a polynomial number of bits such that all pairwise
distances are distinct but at the same time the positions are sufficiently close to the prescribed
positions. This concludes the reduction. J

2.2 The non-plane case
We show that if drawings are not required to be plane, the problem is hard for two colors.

I Theorem 2.4. Let C be a set of colors with |C| = 2. The following task is NP-complete:
given a drawing D, is there a special-point NN-decomposition of D with color set C?

Proof. We reduce from Not-All-Equal 3SAT (NAE-3SAT). Let Φ be an NAE-3SAT formula
with variable set X and clause set Y . Let GΦ be the associated bipartite graph with vertex
set X ∪ Y , where two vertices x and y are adjacent if and only if x is a variable that appears

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 40:7

clone
x1 x2 x3 x4 x5

+

+

+

+

c1

c2

c3

clone clone

+

clau
se

clau
se

clau
se

+

= wire

+ = crossing gadget

= end of chain

Figure 9 Structure of the conversion of the NAE-3SAT formula with clauses c1 = (x1, x2, ¬x3),
c2 = (¬x1, x3, ¬x4), and c3 = (x2, x3, x5) into a 2-color NN graph.

in clause y. We draw GΦ as follows: clauses are represented by vertical segments on the
y-axis of length 3. Variables of degree δ are represented as horizontal segments on the x-axis
of length δ. Each edge {x, y} is drawn as the union of one vertical and one horizontal segment.
The vertical segment is incident to the variable gadget for x. The horizontal segment is
adjacent to a clause gadget for y. See Figure 9 for an example.

We use some gadgets from the proof of Theorem 2.3. We replace each variable by a
2-clone of length δ. We replace each clause by the gadget in Figure 10 (see Figure 11 for
assignments where all literals have the same color), and each crossing by the gadget in
Figure 12. In Figure 12, some points have been colored. Note that this does not correspond
to an assignment of truth values, but is supposed to provide visual information for the reader.
The distance between a green point and a blue point is 1− ε, for a sufficiently small ε > 0.
The distance between a blue point and the red point is 1. The distance between the red
point and an orange point is 1 + ε. The blue point on the left and the orange point on the
right are finally shifted by a suitable η > 0 with η � ε, so that no two points are at the
same distance from the red point. The points in the clause gadget that are on the vertical
connected component on the left side are arranged so that this connected component is
NN-representable. Finally, each part of an edge between two gadgets is replaced by a 2-wire
of suitable length. We have thus obtained a drawing D.

We claim that Φ is satisfiable if and only if there exists a special-point NN-decomposition
of D with two colors. First, notice a clause gadget has a special-point NN-decomposition if
and only if two of the horizontal segments on the right side are assigned different colors. In
the non-plane crossing gadget opposite segments are assigned the same color. All of them
may be assigned the same color, as in Figure 13a, or consecutive segments might be assigned
different colors, as in Figure 13b. Therefore, by associating the colors of C with truth values,
D has a special-point NN-decomposition if and only if Φ is satisfiable. J

EuroCG’21

40:8 Nearest-Neighbor Decompositions of Drawings

Figure 10 A clause gadget with a valid assignment. For the highlighted vertices the dashed circle
indicates the distance to the nearest neighbor of the same color.

(a) The top and bottom right vertices connect
to the vertices to their left.

(b) The vertical connection from the marked
vertex does not span the full height.

Figure 11 Invalid assignments on the non-plane clause gadget where all three incoming wires
have the same color.

J. Cleve, N. Grelier, K. Knorr, M. Löffler, W. Mulzer, and D. Perz 40:9

1− ε

1

1 + ε

1

> 1

> 1

Figure 12 A non-plane crossing gadget.

(a) (b)

Figure 13 Two valid assignments on the non-plane crossing gadget. (a) All extreme segments
are assigned the same color. (b) Opposite segments are assigned the same color.

EuroCG’21

40:10 Nearest-Neighbor Decompositions of Drawings

References
1 D. Eppstein, M.S. Paterson, and F.F. Yao. On nearest-neighbor graphs. Discrete Comput

Geom, 17:263–282, 1997. doi:10.1007/PL00009293.
2 Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-

complete graph problems. Theoretical Computer Science, 1:237–267. doi:10/dwvqpj.
3 Albert Gräf, Martin Stumpf, and Gerhard Weißenfels. On coloring unit disk graphs. Algo-

rithmica, 20(3):277–293, 1998.
4 J.W. Jaromczyk and G.T. Toussaint. Relative neighborhood graphs and their relatives.

Proc. of the IEEE, 80(9):1502–1517, 1992.
5 Maarten Löffler, Mira Kaiser, Tim van Kapel, Gerwin Klappe, Marc van Kreveld, and

Frank Staals. The connect-the-dots family of puzzles: Design and automatic generation.
ACM Transactions on Graphics, 33(4):72, 2014. doi:10.1145/2601097.2601224.

6 Joseph S. B. Mitchell and Wolfgang Mulzer. Proximity algorithms. In Jacob E. Goodman,
Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational
Geometry, chapter 32, pages 849–874. CRC Press, Boca Raton, 3rd edition, 2017. doi:
10.1201/9781315119601.

7 Tim van Kapel. Connect the closest dot puzzles. Master’s thesis, Utrecht University, 2014.
URL: http://dspace.library.uu.nl/handle/1874/296600.

Hardness of Recognition and 3-Coloring of
L-graphs
Petr Chmel∗1 and Vít Jelínek†2

1 Computer Science Institute, Charles University
chmel@kam.mff.cuni.cz

2 Computer Science Institute, Charles University
jelinek@iuuk.mff.cuni.cz

Abstract
This paper focuses on intersection graphs of axis-aligned L-shapes, so-called L-graphs, and a similar
class of intersection graphs of axis-aligned L-shapes and L-shapes, known as {L, L}-graphs; in both
cases, the vertices of a graph are represented by curves, with two vertices sharing an edge if and only
if their respective curves intersect. We show that recognition of both L-graphs and {L, L}-graphs is
NP-complete, answering a question of Felsner, Knauer, Mertzios and Ueckerdt. Moreover, we show
that deciding if a triangle-free L-graph is 3-colorable is also NP-complete.

1 Introduction

A problem that is NP-complete for the class of all graphs may be solvable in polynomial
time for a restricted class of graphs. However, the recognition of graphs in a restricted class
may itself be an NP-complete problem. We will focus on the restriction of decision problems
to intersection graphs of piecewise linear axis-aligned curves. Chaplick et al. [3] showed that
for each k ≥ 1, the class of intersection graphs of piecewise linear axis-aligned curves with at
most k bends is NP-complete to recognize. This class is usually denoted by Bk-VPG where
VPG stands for Vertex intersection graphs of Paths in a Grid. A similar result was obtained
by Kratochvíl [10], who showed that recognition of grid intersection graphs (intersection
graphs of horizontal and vertical line segments with the only intersections being between a
vertical and a horizontal segment) is NP-complete as well.

The class Bk-VPG has been in the spotlight since Asinowski et al. [1] showed in 2012
that the class of planar graphs is contained in B3-VPG. Chaplick and Ueckerdt [4] showed
a year later that in fact two bends suffice. Biedl and Derka [2] strengthened this result by
showing that not only are two bends sufficient, but we may also require that any two curves
intersect at most once. Finally, Gonçalves, Isenmann, and Pennarun [7] showed in 2018 that
a single bend is sufficient and, furthermore, only curves oriented as the letter L are needed.

Thus, while the class B1-VPG permits any of the four shapes L, L, L, L, only one of these
shapes is needed when representing planar graphs. The intersection graphs of just one of
these L-shapes are called L-graphs. Apart from planar graphs, L-graphs also include circle
graphs [1] (the intersection graphs of chords in a circle) and, by definition, B0-VPG.

The inclusion of planar graphs in the class of L-graphs motivates a number of complexity
questions, two of which we shall focus on in this paper. First, it has long been known [6]
that the decision problem of 3-coloring planar graphs is NP-complete, while the decision
problem of 3-coloring triangle-free planar graphs is in P by Grötzsch’s theorem [8]. However,

∗ Supported by the grant no. 21-32817S of the Czech Science Foundation (GAČR).
† Supported by the grant no. 18-19158S of the Czech Science Foundation (GAČR).

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

41:2 Hardness of Recognition and 3-Coloring of L-graphs

the complexity of 3-coloring triangle-free L-graphs is unknown. Second, while planar graphs
are recognizable in polynomial time, the complexity of recognition of L-graphs has not yet
been established.

We show that both problems – 3-coloring of triangle-free L-graphs and recognition of
L-graphs – are NP-complete. Furthermore, we show that the recognition of {L, L}-graphs is
NP-complete as well, answering an open problem of Felsner et al. [5].

1.1 Basic definitions
A representation R of a finite graph G = (V, E) is a family of piecewise linear curves in the
plane, R = {R(v) : v ∈ V }, such that R(v) ∩R(u) is non-empty if and only if {u, v} ∈ E. A
representation is proper if every curve is simple, there are finitely many intersection points
and finitely many bends, and in every point of the plane, at most two curves intersect and
every such intersection is a crossing. An L-shape is the union of a horizontal line segment
and a vertical line segment such that the only common point of the two line segments is the
lowest point of the vertical line segment and the leftmost point of the horizontal line segment.
It may also happen that the line segments consist of a single point. An L-representation is
a representation such that every curve is an L-shape. An L-graph is a graph that admits a
proper L-representation.

2 Recognition

To show that the recognition of L-graphs is NP-complete, we adapt the method used by
Chaplick et al. [3] to show that recognition of graphs in B1-VPG is NP-complete.

As our main tool, we use the Noodle-Forcing Lemma of Chaplick et al. [3]. When special-
ized to our situation, the Noodle-Forcing Lemma shows that for any proper L-representation
R of a graph G, there is a graph G′ containing G as an induced subgraph, such that in any
proper {L, L}-representation R′ of G′, the curves representing the vertices of G have the
same order of intersection points as in R, up to possible reversal. The representation R′ is
obtained by overlaying the representation R by a sufficiently dense grid-like configuration of
axis-aligned segments, as illustrated in Figures 1 and 2.

We apply the Noodle-Forcing Lemma to the L-representation of K5 from Figure 2. This
forces the order of intersection points on the L-shapes, which in turn by Lemma 1 below
forces a bend for the middle L-shape. The forced bend then allows us to create a gadget that
behaves similarly to a line segment. This allows us to reduce from the recognition of grid
intersection graphs which Kratochvíl showed to be NP-complete [10].

I Lemma 1. For a proper {L, L}-representation R of K5, V (K5) = {a, b, c, d, e}, if the
intersection points of all five vertices are located in either alphabetical or reverse alphabetical
order on each curve, then the vertex c cannot be represented just as a horizontal or a vertical
line segment.

The proof of the lemma is omitted.
We can now state and prove the main result.

I Theorem 2. The recognition of L-graphs and the recognition of {L, L}-graphs are both
NP-complete.

Proof. It is easy to see that the two problems are in NP. We show that they are NP-hard.
We reduce from the recognition problem of grid intersection graphs. The argument is

similar to the proof of the NP-completeness of Bk-VPG recognition by Chaplick et al. [3],

P. Chmel and V. Jelínek 41:3

Figure 1 The L-represented graph K5 with the outline of the grid overlay

Figure 2 A detail of the grid overlaid on top of the representation of K5

and we also use the same terminology. Namely, we first construct a pin, which we then
enhance into a clothespin.

In order to construct the pin, we first take a K5 with vertices a, b, c, d, e, and create its
L-representation R so that the intersection points on all five curves are located in alphabetical
order. We then apply the Noodle-Forcing Lemma to the representation R, overlaying it with
the grid configuration, to obtain a representation R′. We refer to the graph represented by
R′ as the pin P (c), where c is the middle vertex of the L-representation of K5. We will say
that c is the exposed vertex of the pin P (c).

As the Noodle-Forcing Lemma forces the order of intersections, we know that in any
{L, L}-representation R′′ of P (c), the curve R′′(c) is intersected in alphabetic order by R′′(a),
R′′(b), R′′(d) and R′′(e). Let X be the endpoint of R′′(c) that is closer to the intersection
with R′′(e) than with R′′(a). The tip of the pin P (c) is the subcurve of R′′(c) starting in X

and ending with the nearest intersection of R′′(c) with another curve of R′′.
Lemma 1 guarantees that c has a bend in any {L, L}-representation of P (c). This means

that the tip of P (c) must be a straight line segment, otherwise we could truncate the tip
when it reaches the bend, to obtain a representation of K5 contradicting Lemma 1.

We will now modify the representation R′ slightly, so that the tip is in the unbounded
face of R′, and it may be extended arbitrarily far without crossing any other part of R′;

EuroCG’21

41:4 Hardness of Recognition and 3-Coloring of L-graphs

Figure 3 The pin construction

Figure 4 The issue with using pins only

see Figure 3. Note that by flipping the representation R′ diagonally, we may create an
L-representation of P (c) with a horizontal tip as well as a representation with a vertical tip.

We would like to use the tips of the pins to simulate the behavior of axis-aligned segments
in grid intersection graphs. Unfortunately, it may happen that an adjacency of two exposed
vertices is not represented by the crossing of the tip of their pins, but by an intersection in
another part of the L-shapes, as in Figure 4.

To resolve the issue, we apply an idea of Chaplick et al. [3] and construct a gadget called a
clothespin. A clothespin CP (v1, v2) is the graph whose representation is depicted in Figure 5.
It contains two pins P (v1) and P (v2). Its key feature is that in any {L, L}-representation
R′′ of CP (v1, v2), there is only one face of R′′ that is adjacent to both R′′(v1) and R′′(v2),
and this face is only adjacent to the tips of the two curves. In particular, any curve added
into R′′ that crosses both R′′(v1) and R′′(v2) without crossing any other curve of R′′ must
cross the tips of the two pins. Moreover, as shown in Figure 5, a clothespin CP (v1, v2) has
an L-representation in which the tips of the two pins P (v1) and P (v2) are parallel segments
that can be extended arbitrarily far without crossing the rest of the clothespin. The union
of the tips of P (v1) and P (v2) is the tip of the clothespin CP (v1, v2), while the rest of the
clothespin is the head.

Now, we may describe our reduction. Given a graph G as the input for grid intersection
graph recognition, we create a graph GL by replacing every vertex v ∈ V (G) by a copy
CP (v1, v2) of the clothespin. If two vertices u, v share an edge of G, then we add to GL four
new edges {uivj : i, j ∈ {1, 2}}, where CP (u1, u2) and CP (v1, v2) are the two clothespins
representing u and v.

We now show that if G is a grid intersection graph then GL is an L-graph, while if G is not
a grid intersection graph, then GL is not even an {L, L}-graph. This implies the NP-hardness

P. Chmel and V. Jelínek 41:5

P (v1)

P (v2)

Figure 5 The clothespin construction

of recognition both for L-graphs and for {L, L}-graphs.
If G has a grid intersection representation, we replace the line segments with clothespins

that are thin enough so that their heads are pairwise disjoint and only the tips intersect, thus
obtaining an L-representation of GL. Conversely, if GL has an {L, L}-representation, we take
the tip of v1 in each clothespin as the representation of v, which yields a grid intersection
representation of G. J

We may show that the recognition of grid intersection graphs remains NP-complete even
when an L-representation of the graph is given as part of the input. This is similar to a result
of Chaplick et al. [3] who showed, for all k ∈ N0, that the recognition of Bk-VPG graphs is
still NP-complete even when given a Bk+1-VPG representation.

I Theorem 3. The recognition of grid intersection graphs is NP-complete even when an
L-representation of the graph is part of the input.

Proof. The proof is based on a reduction used by Kratochvíl [10] to show that the recognition
of grid intersection graphs is NP-complete. The reduction transforms a 3-SAT formula Φ
into a graph G(Φ) which has a grid intersection representation if and only if Φ is satisfiable.

We only need to argue that for any Φ, the graph G(Φ) has an L-representation, which can
be determined in polynomial time. This also largely follows from Kratochvíl’s construction [10],
which shows that G(Φ) has a representation where all vertices are represented by horizontal
and vertical segments, except for certain fixed-sized subgraphs, called clause gadgets. However,
it can be routinely checked that the clause gadgets all have an L-representation (see Figure 6
for an example), yielding an L-representation of G(Φ). We omit the technical details. J

3 3-Coloring

Deciding 3-colorability of planar graphs has long been known to be NP-complete [6], and
since all planar graphs are L-graphs [7], 3-colorability of L-graphs is NP-complete as well.
However, this argument does not extend to triangle-free graphs, since all planar triangle-free
graphs are 3-colorable [8].

Nevertheless, we show that 3-coloring is hard even for triangle-free L-graphs. The first
step of our argument is showing that 3-coloring of arbitrary L-graphs is hard, even when an
L-representation is given as part of the input. We omit the proof of this result. We remark
that the result does not directly follow from the hardness of 3-coloring of planar graphs,
because the proof that planar graphs are L-graphs from [7] does not explicitly present a
polynomial algorithm to construct an L-representation of a given planar graph.

We now present our second main result.

EuroCG’21

41:6 Hardness of Recognition and 3-Coloring of L-graphs

c

a

b

w

u2

v2

v3 u3

d

u1 v1

Figure 6 The L-representation of a clause gadget

n

m m

n

Figure 7 A not 3-colorable circle graph H and its 3-colorable circle subgraph H ′ created by
removing the edge {m, n}

I Theorem 4. The problem of 3-coloring a triangle-free L-graph is NP-complete even when
the graph’s L-representation is part of the input.

Proof. Given an instance of 3-coloring of an arbitrary L-graph G with a given L-representation,
we will transform it into an equivalent 3-coloring instance G′ of a triangle-free L-graph.

To construct G′, we replace every vertex of G with a copy of a triangle-free circle graph H ′

which we construct in two steps. First, we take a triangle-free circle graph H to be the graph
whose circle representation is in the left part of Figure 7. The graph H is not 3-colorable,
as shown by Gyárfás and Lehel [9]. We then remove the edge {m, n} to create the graph
H ′ that is still a circle graph and is 3-colorable, as shown in the right part of Figure 7. We
observe that vertices m and n must have the same color in every 3-coloring of the graph H ′ –
if there existed a 3-coloring c of H ′ so that c(m) 6= c(n), c would also be a 3-coloring of the
graph H, which is a contradiction.

As the graph H ′ has two vertices m, n which have the same color in every 3-coloring of
H ′, we set all vertices that intersect the original L-shape’s horizontal line segment to be the
neighbors of the vertex m and similarly, we set all vertices intersecting the original L-shape’s
vertical line segment to be the neighbors of the vertex n. Since H ′ is a circle graph, it has an
L-representation using only L-shapes with both of their endpoints on a circle [1]. Therefore
we can arbitrarily extend the horizontal line segment of m and the vertical line segment of n

as shown in Figure 8.
We easily observe that G is 3-colorable if and only if G′ is. The reduction is obviously

P. Chmel and V. Jelínek 41:7

n

m

Figure 8 Replacing the vertex in the L-graph by the circle subgraph

polynomial, as every vertex is replaced by 18 vertices. J

References
1 Andrei Asinowski, Elad Cohen, Martin Charles Golumbic, Vincent Limouzy, Marina Lip-

shteyn, and Michal Stern. Vertex intersection graphs of paths on a grid. Journal of Graph
Algorithms and Applications, 16(2):129–150, 2012.

2 Therese Biedl and Martin Derka. 1-String B2-VPG Representation of Planar Graphs. In
31st International Symposium on Computational Geometry (SoCG 2015), volume 34 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 141–155. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2015.

3 Steven Chaplick, Vít Jelínek, Jan Kratochvíl, and Tomáš Vyskočil. Bend-bounded path
intersection graphs: Sausages, noodles, and waffles on a grill. In Graph-Theoretic Concepts
in Computer Science, pages 274–285. Springer, 2012.

4 Steven Chaplick and Torsten Ueckerdt. Planar graphs as VPG-graphs. In Graph Drawing,
pages 174–186. Springer, 2013.

5 Stefan Felsner, Kolja Knauer, George B. Mertzios, and Torsten Ueckerdt. Intersection
graphs of L-shapes and segments in the plane. Discrete Applied Mathematics, 206:48–55,
2016.

6 Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1(3):237–267, 1976.

7 Daniel Gonçalves, Lucas Isenmann, and Claire Pennarun. Planar graphs as L-intersection
or L-contact graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’18, pages 172–184. Society for Industrial and Applied Math-
ematics, 2018.

8 Herbert Grötzsch. Zur Theorie der diskreten Gebilde, VII: Ein Dreifarbensatz für dreikre-
isfreie Netze auf der Kugel. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur.
Reihe, 8:109–120, 1959.

9 András Gyárfás and Jenő Lehel. Covering and coloring problems for relatives of intervals.
Discrete Math., 55(2):167–180, 1985.

10 Jan Kratochvíl. A special planar satisfiability problem and a consequence of its NP-
completeness. Discrete Applied Mathematics, 52(3):233–252, 1994.

EuroCG’21

Coloring Circle Arrangements:
New 4-Chromatic Planar Graphs∗

Man-Kwun Chiu1, Stefan Felsner2, Manfred Scheucher2,
Felix Schröder2, Raphael Steiner2, and Birgit Vogtenhuber3

1 Institut für Informatik,
Freie Universität Berlin, Germany
chiumk@zedat.fu-berlin.de

2 Institut für Mathematik,
Technische Universität Berlin, Germany
{felsner,scheucher,fschroed,steiner}@math.tu-berlin.de

3 Institute of Software Technology,
Graz University of Technology, Austria
bvogt@ist.tugraz.at

Abstract
Felsner, Hurtado, Noy and Streinu (2000) conjectured that arrangement graphs of simple great-

circle arrangements have chromatic number at most 3. This paper is motivated by the conjecture.
We show that the conjecture holds in the special case when the arrangement is 4-saturated, i.e.,

arrangements where one color class of the 2-coloring of faces consists of triangles only. Moreover,
we extend 4-saturated arrangements with certain properties to a family of arrangements which are
4-chromatic. The construction has similarities with Koester’s (1985) crowning construction.

We also investigate fractional colorings. We show that every arrangement A of pairwise in-
tersecting pseudocircles is “close” to being 3-colorable; more precisely χf (A) ≤ 3 + O(1

n
) where

n is the number of pseudocircles. Furthermore, we construct an infinite family of 4-edge-critical
4-regular planar graphs which are fractionally 3-colorable. This disproves the conjecture of Gimbel,
Kündgen, Li and Thomassen (2019) that every 4-chromatic planar graph has fractional chromatic
number strictly greater than 3.

1 Introduction

An arrangement of pseudocircles is a family of simple closed curves on the sphere or in
the plane such that each pair of curves intersects at most twice. Similarly, an arrangement
of pseudolines is a family of x-monotone curves such that every pair of curves intersects
exactly once. An arrangement is simple if no three pseudolines/pseudocircles intersect in a
common point and intersecting if every pair of pseudolines/pseudocircles intersects. Given
an arrangement of pseudolines/pseudocircles, the arrangement graph is the planar graph
obtained by placing vertices at the intersection points of the arrangement and thereby sub-
dividing the pseudolines/pseudocircles into edges.

A (proper) coloring of a graph assigns a color to each vertex such that no two adjacent
vertices have the same color. The chromatic number χ is the smallest number of colors

∗ M.-K. Chiu was supported by ERC StG 757609. S. Felsner was supported by DFG Grant FE 340/13-1.
M. Scheucher was supported by the internal research funding “Post-Doc-Funding” from Technische
Universität Berlin. R. Steiner was supported by DFG-GRK 2434. B. Vogtenhuber was supported by
the FWF project I 3340-N35. This work was initiated at a workshop of the collaborative DACH project
Arrangements and Drawings in Malchow, Mecklenburg-Vorpommern. We thank the organizers and all
the participants for the inspiring atmosphere.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

42:2 Coloring Circle Arrangements: New 4-Chromatic Planar Graphs

needed for a proper coloring. The famous 4-color theorem and also Brook’s theorem imply
the 4-colorability of planar graphs with maximum degree 4. This motivates the question:
which arrangement graphs need 4 colors in any proper coloring?

There exist arbitrarily large non-simple line arrangements that require 4 colors. For
example, the construction depicted in Figure 1(a) contains the Moser spindle as subgraph
and hence cannot be 3-colored. Using an inverse central (gnomonic) projection, which
maps lines to great-circles, one gets non-simple arrangements of great-circles with χ = 4.
Koester [12] presented a simple arrangement of 7 circles with χ = 4 in which all but one pair
of circles intersect, see Figure 3(b). Moreover, there are simple intersecting arrangements
that require 4 colors. We invite the reader to verify this property for the example depicted
in Figure 1(b).

(a) (b)

Figure 1 (a) A 4-chromatic non-simple line arrangement. The red subarrangement not inter-
secting the Moser spindle (highlighted blue) can be chosen arbitrarly. (b) A simple intersecting
arrangement of 5 pseudocircles with χ = 4 and χf = 3.

In 2000, Felsner, Hurtado, Noy and Streinu [3] (cf. [4]) studied arrangement graphs
of pseudoline and pseudocircle arrangements. They have results regarding connectivity,
Hamiltonicity, and colorability of those graphs. In this work, they also stated the following
conjecture:

I Conjecture 1 (Felsner et al. [3, 4]). The arrangement graph of every simple arrangement
of great-circles is 3-colorable.

While the conjecture is fairly well known (cf. [15, 10, 19] and [20, Chapter 17.7]) there has
been little progress in the last 20 years. Aichholzer, Aurenhammer, and Krasser verified the
conjecture for up to 11 great-circles [13, Chapter 4.6.4].

Results and outline

In Section 2 we show that Conjecture 1 holds for 4-saturated arrangements of pseudocircles,
i.e., arrangements where one color class of the 2-coloring of faces consists of triangles only.
In Section 3 we extend our study of4-saturated arrangements and present an infinite family
of arrangements which require 4 colors. The construction generalizes Koester’s [12] arrange-
ment of 7 circles which requires 4 colors; see Figure 3(b). Moreover, we believe that the

M.-K. Chiu et al. 42:3

construction results in infinitely many 4-vertex-critical1 arrangement graphs. Koester [12]
obtained his example using a “crowning” operation, which actually yields infinite families
of 4-edge-critical 4-regular planar graphs. However, except for the 7 circles example these
graphs are not arrangement graphs.

In Section 4 we investigate the fractional chromatic number χf of arrangement graphs.
This variant of the chromatic number is the objective value of the linear relaxation of the
ILP formulation for the chromatic number. We show that intersecting arrangements of
pseudocircles are “close” to being 3-colorable by proving that χf (A) ≤ 3 +O(1

n) where n is
the number of pseudocircles of A. In Section 5, we present an example of a 4-edge-critical
arrangement graph which is fractionally 3-colorable. The example is the basis for construct-
ing an infinite family of 4-regular planar graphs which are 4-edge-critical and fractionally
3-colorable. This disproves Conjecture 3.2 from Gimbel, Kündgen, Li and Thomassen [7]
that every 4-chromatic planar graph has fractional chromatic number strictly greater than 3.
In Section 6 we report on our computational data, mention some some new observations
related to Conjecture 1, and present strengthened versions of the conjecture.

2 4-saturated arrangements are 3-colorable

The maximum number of triangles in arrangements of pseudolines and pseudocircles has
been studied intensively, see e.g. [8, 16, 2] and [6]. By recursively applying the “dou-
bling method”, Harborth [9] and also [16, 2] proved the existence of infinite families of
4-saturated arrangements of pseudolines. Similarly, a doubling construction for arrange-
ments of (great-)pseudocircles yields infinitely many 4-saturated arrangements of (great-)
pseudocircles. Figure 2 illustrates the doubling method applied to an arrangement of great-
pseudocircles. It will be relevant later that arrangements obtained via doubling contain
pentagonal cells. Note that for n ≡ 2 (mod 3) there is no 4-saturated intersecting pseudo-
circle arrangement because the number of edges of the arrangement graph is not divisible
by 3.

(a) (b)

Figure 2 The doubling method applied to an arrangements of 6 great-pseudocircle. The red
pseudocircle is replaced by a cyclic arrangement. Triangular cells are shaded gray.

1 A k-chromatic graph is k-vertex-critical if the removal of every vertex decreases the chromatic number.
It is k-edge-critical if the removal of every edge decreases the chromatic number.

EuroCG’21

42:4 Coloring Circle Arrangements: New 4-Chromatic Planar Graphs

I Theorem 2. Every 4-saturated arrangement A of pseudocircles is 3-colorable.

Proof. Let H be a graph whose vertices correspond to the triangles of A and whose edges
correspond to pairs of triangles sharing a vertex of A. This graph H is planar and 3-regular.
Moreover, since the arrangement graph of A is 2-connected, H is bridgeless. Now Tait’s
theorem, a well known equivalent of the 4-color theorem, asserts that H is 3-edge-colorable,
see e.g. [1] or [18]. The edges ofH correspond bijectively to the vertices of the arrangement A
and, since adjacent vertices of A are incident to a common triangle, the corresponding edges
of H share a vertex. This shows that the graph of A is 3-colorable. J

3 Constructing 4-chromatic arrangement graphs

In this section, we describe an operation that extends any 4-saturated intersecting ar-
rangement of pseudocircles with a pentagonal cell (which is 3-colorable by Theorem 2) to a
4-chromatic arrangement of pseudocircles by inserting one additional pseudocircle.

The corona extension: We start with a 4-saturated arrangement of pseudocircles which
contains a pentagonal cell D. By definition, in the 2-coloring of the faces one of the two
color classes consists of triangles only; see e.g. the arrangement from Figure 3(a). Since the
arrangement is 4-saturated, the pentagonal cell D is surrounded by triangular cells. As
illustrated in Figure 3(b) we can now insert an additional pseudocircle close to D. This
newly inserted pseudocircle intersects only the 5 pseudocircles which bound D, and in the
so-obtained arrangement one of the two dual color classes consists of triangles plus the
pentagon D. It is interesting to note that the arrangement depicted in Figure 3(b) is precisely
Koester’s arrangement [11, 12].

(a) (b)

Figure 3 (a) A 4-saturated arrangement of 6 great-circles and (b) the corona extension at
its central pentagonal face. The arrangement in (b) is Koester’s [11] example of a 4-edge-critical
4-regular planar graph.

The following proposition plays a central role in this section.

I Proposition 3. The corona extension of a 4-saturated arrangement of pseudocircles with
a pentagonal cell D is 4-chromatic.

The proof is based on the observation that after the corona extension the inequality
3α < |V | holds.

M.-K. Chiu et al. 42:5

By applying the corona extension to members of the infinite family of 4-saturated ar-
rangements with pentagonal cells (cf. Section 2), we obtain an infinite family of arrangements
that are not 3-colorable.

I Theorem 4. There exists an infinite family of 4-chromatic arrangements of pseudocircles.

Koester [12] defines a related construction which he calls crowning and constructs his ex-
ample by two-fold crowning of a graph on 10 vertices. He also uses crowning to generate an
infinite family of 4-edge-critical 4-regular graphs. In the full version of our paper, we present
sufficient conditions to obtain a 4-vertex-critical arrangement via the corona extension. We
conclude this section with the following conjecture:

I Conjecture 5. There exists an infinite family of arrangement graphs of arrangements of
pseudocircles that are 4-vertex-critical.

4 Fractional colorings

In this section, we investigate fractional colorings of arrangements. A b-fold coloring of a
graph G with m colors is an assignment of a set of b colors from {1, . . . ,m} to each vertex
of G such that the color sets of any two adjacent vertices are disjoint. The b-fold chromatic
number χb(G) is the minimum m such that G admits a b-fold coloring with m colors. The
fractional chromatic number of G is χf (G) := lim

b→∞
χb(G)
b = inf

b

χb(G)
b . With α being the

independence number and ω being the clique number, the following inequalities hold:

max
{ |V |
α(G) , ω(G)

}
≤ χf (G) ≤ χb(G)

b
≤ χ(G). (1)

I Theorem 6. Let G be the arrangement graph of an intersecting arrangement A of n
pseudocircles, then χf (G) ≤ 3 + 6

n−2 .

Sketch of the proof. Let C be a pseudocircle of A. After removing all vertices along C
from the arrangement graph G we obtain a graph which has two connected components A
(vertices in the interior of C) and B (vertices in the exterior). Let C ′ be a small circle
contained in one of the faces of A, the Sweeping Lemma of Snoeyink and Hershberger [17]
asserts that there is a continuous transformation of C ′ into C which traverses each vertex
of A precisely once. In particular, when a vertex is traversed, at most two of its neighbors
have been traversed before. Hence, we obtain a 3-coloring of the vertices of A by greedily
coloring vertices in the order in which they occur during the sweep. An analogous argument
applies to B. Taking such a partial 3-coloring of G for each of the n pseudocircles of A, we
obtain for each vertex a set of n − 2 colors, i.e., an (n − 2)-fold coloring of G. The total
number of colors used is 3n. The statement now follows from inequality (1). J

5 Fractionally 3-colorable 4-edge-critical planar graphs

From our computational data (cf. [5]), we observed that some of the arrangements such as
the 20 vertex graph depicted in Figure 1(b) have χ = 4 and χf = 3, and therefore disprove
Conjecture 3.2 by Gimbel et al. [7]2. Moreover, we determined that there are precisely

2 Computing the fractional chromatic number of a graph is NP-hard in general [14]. For our computations
we formulated a linear program which we then solved using the MIP solver Gurobi.

EuroCG’21

42:6 Coloring Circle Arrangements: New 4-Chromatic Planar Graphs

17 4-regular 18-vertex planar graphs with χ = 4 and χf = 3, which are minimal in the
sense that there are no 4-regular graphs on n ≤ 17 vertices with χ = 4 and χf = 3. Each of
these 17 graphs is 4-vertex-critical and the one depicted in Figure 4(a) is even 4-edge-critical.

(a) (b)

Figure 4 (a) A 4-edge-critical 4-regular 18-vertex planar graph with χ = 4 and χf = 3 and
(b) the crowning extension at its center triangular face.

Starting with a triangular face in the 4-edge-critical 4-regular graph depicted in Fig-
ure 4(a) and repeatedly applying the Koester’s crowning operation [12] as illustrated in
Figure 4(b) (which by definition preserves the existence of a facial triangle), we deduce the
following theorem.

I Theorem 7. There exists an infinite family of 4-edge-critical 4-regular planar graphs G
with fractional chromatic number χf (G) = 3.

6 Discussion

With Theorem 2 we gave a proof of Conjecture 1 for 4-saturated great-pseudocircle ar-
rangements. While this is a very small subclass of great-pseudocircle arrangements, it is
reasonable to think of it as a “hard” class for 3-coloring. The rationale for such thoughts is
that triangles restrict the freedom of extending partial colorings. Our computational data in-
dicates that sufficiently large intersecting pseudocircle arrangements that are diamond-free,
i.e., no two triangles of the arrangement share an edge, are also 3-colorable. Computations
also suggest that sufficiently large great-pseudocircle arrangements have antipodal colorings,
i.e., 3-colorings where antipodal points have the same color. Based on the experimental data
we propose the following strengthened variants of Conjecture 1.

I Conjecture 8. The following three statements hold.

(a) Every diamond-free intersecting arrangement of n ≥ 6 pseudocircles is 3-colorable.
(b) Every intersecting arrangement of sufficiently many pseudocircles is 3-colorable.
(c) Every arrangement of n ≥ 7 great-pseudocircles has an antipodal 3-coloring.

References
1 M. Aigner. Graph theory. A development from the 4-color problem. BCS Assoc, 1987.
2 J. Blanc. The best polynomial bounds for the number of triangles in a simple arrangement

of n pseudo-lines. Geombinatorics, 21:5–17, 2011.

M.-K. Chiu et al. 42:7

3 S. Felsner, F. Hurtado, M. Noy, and I. Streinu. Hamiltonicity and colorings of arrangement
graphs. In Proceedings of the 11th annual ACM-SIAM symposium on Discrete algorithms
(SODA’00), pages 155–164, 2000.

4 S. Felsner, F. Hurtado, M. Noy, and I. Streinu. Hamiltonicity and colorings of arrangement
graphs. Discrete Applied Mathematics, 154(17):2470–2483, 2006.

5 S. Felsner and M. Scheucher. Webpage: Homepage of pseudocircles.
http://www3.math.tu-berlin.de/pseudocircles.

6 S. Felsner and M. Scheucher. Arrangements of Pseudocircles: Triangles and Drawings.
Discrete & Computational Geometry, 65:261–278, 2021.

7 J. Gimbel, A. Kündgen, B. Li, and C. Thomassen. Fractional coloring methods with
applications to degenerate graphs and graphs on surfaces. SIAM Journal on Discrete
Mathematics, 33(3):1415–1430, 2019.

8 B. Grünbaum. Arrangements and Spreads, volume 10 of CBMS Regional Conference Series
in Mathematics. American Mathematical Society, 1972 (reprinted 1980).

9 H. Harborth. Some simple arrangements of pseudolines with a maximum number of trian-
gles. Annals of the New York Academy of Sciences, 440(1):31–33, 1985.

10 G. Kalai. Coloring problems for arrangements of circles (and pseudocircles): Eight problems
on coloring circles, 2018. http://gilkalai.wordpress.com/2018/04/13/
coloring-problems-for-arrangements-of-circles-and-pseudocircles/.

11 G. Koester. Note to a problem of T. Gallai and G. A. Dirac. Combinatorica, 5:227–228,
1985.

12 G. Koester. 4-critical 4-valent planar graphs constructed with crowns. Math. Scand., 67:15–
22, 1990.

13 H. Krasser. Order Types of Point Sets in the Plane. PhD thesis, Institute for Theoretical
Computer Science, Graz University of Technology, Austria, 2003.

14 C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.
Journal of the ACM, 41(5):960–981, 1994.

15 Open Problem Garden. 3-colourability of arrangements of great circles, 2009. http://www.
openproblemgarden.org/op/3_colourability_of_arrangements_of_great_circles.

16 J.-P. Roudneff. On the number of triangles in simple arrangements of pseudolines in the
real projective plane. Discrete Mathematics, 60:243–251, 1986.

17 J. Snoeyink and J. Hershberger. Sweeping arrangements of curves. In Discrete & Compu-
tational Geometry: Papers from the DIMACS Special Year, volume 6 of Series in Discrete
Mathematics and Theoretical Computer Science, pages 309–349. American Mathematical
Society, 1991.

18 R. Thomas. An update on the four-color theorem. Notices of the American Mathematical
Society, 45:848–859, 1998.

19 S. Wagon. A machine resolution of a four-color hoax. In Abstracts for the 14th Canadian
Conference on Computational Geometry (CCCG’02), pages 181–192, 2002.

20 S. Wagon. Mathematica in Action: Problem Solving Through Visualization and Computa-
tion. Springer, 2010.

EuroCG’21

Minimum-Error Triangulation is NP-hard
Anna Arutyunova∗1, Anne Driemel†2, Jan-Henrik Haunert3,
Herman Haverkort4, Petra Mutzel†5, and Heiko Röglin∗†6

1 Institute of Computer Science, University of Bonn, Germany
arutyunova@informatik.uni-bonn.de

2 Hausdorff Center for Mathematics, University of Bonn, Germany
driemel@cs.uni-bonn.de

3 Institute of Geodesy and Geoinformation, University of Bonn, Germany
haunert@igg.uni-bonn.de

4 Institute of Computer Science, University of Bonn, Germany
cs.herman@haverkort.net

5 Institute of Computer Science, University of Bonn, Germany
petra.mutzel@cs.uni-bonn.de

6 Institute of Computer Science, University of Bonn, Germany
roeglin@cs.uni-bonn.de

Abstract
Given two sets of points in the plane, P and R, with a real-valued function defined on P ∪ R, we
define for any triangulation defined on P the vertical error at the points of R and wish to find a
triangulation that minimizes this error. We show that this problem is NP-hard to approximate
within any approximation factor.

1 Introduction

Let P ⊂ R2 be a set of n points and f : P → R. We call P the set of triangulation points
and f(p) the measurement value of p ∈ P . Additionally we are given a set R ⊂ conv(P) of
m points and a function h : R→ R. We refer to R as the set of reference points and to h(r)
as the reference value of r ∈ R.
A triangulation of P is a maximal set of non-crossing edges between points in P . Such a
triangulation D defines an extension of f on points in conv(P) by linearly interpolating f
in every triangle. This way we obtain a piece-wise linear function sD : conv(P)→ R.

The min-error triangulation problem asks for a triangulation D of P such that the
Lp-error (ErrD(R))

1
p between the reference values and the interpolation is minimized, where

ErrD(M) =
∑

r∈M

|sD(r)− h(r)|p

is the error of D on M ⊆ R. The zero-error triangulation problem asks whether there
is a triangulation with zero Lp-error. We prove that this problem is NP-hard.

I Theorem 1. The zero-error triangulation problem is NP-hard for any value of p ≥ 1.
Thus the min-error triangulation problem cannot be approximated within any multiplicative
factor in polynomial time unless P = NP .

∗ Supported by DFG grant RO 5439/1-1
† Supported by the Hausdorff Center for Mathematics at the University of Bonn (DFG GZ 2047/1,
project ID 390685813)

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

43:2 Minimum-Error Triangulation is NP-hard

v1 v2 v3 v4

v1 ∨ v2 ∨ v4

v1 ∨ v2 ∨ v3

v1 ∨ v3 ∨ v4

Figure 1 Embedding of the 3SAT formula (v1 ∨ v2 ∨ v4) ∧ (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v3 ∨ v4).

2 Related Work

Triangulating sets of points in the plane is a fundamental task of computational geometry. It
is of high relevance for data interpolation and surface modelling tasks, where for every data
point a data value (or height) is given in addition to the point’s two plane coordinates x and y.
The Delaunay triangulation is most often applied as it optimizes several relevant criteria and
can be computed efficiently. In particular, it maximizes the minimum angle among all the
angles of all the triangles, measured in the xy-plane [7]. In the context of surface modelling,
one of the most interesting properties of the Delaunay triangulation is that it minimizes the
Dirichlet energy (and thus the mean squared slope) of the piece-wise linear surface defined
from the data points, their data values as heights, and the triangulation [11]. This result is
surprising, since computing the Delaunay triangulation does not require knowledge of the
data values. Data dependent triangulations, on the other hand, have been defined in [4] as
triangulations that are computed under consideration of the data values. As optimization
criteria the authors have considered (1) smoothness criteria such as minimizing the jump in
normal derivatives in the edges of the triangulation, (2) criteria based on three-dimensional
properties of the triangles such as maximizing the minimum angle of the triangles in the
three-dimensional space, (3) variational criteria based on a function generalizing the Dirichlet
energy, and (4) min-error criteria measuring the quality of the triangulation by comparison
with a reference surface or reference point set. Data dependent triangulations of the latter
type, in the following referred to as min-error triangulations, are the subject of this paper.

There are many heuristics for computing data-dependent triangulations [2, 3, 4, 12],
which are usually based on Lawson’s edge flip algorithm [7]. The problem can be solved
based on integer linear programming [10]. Using established techniques, exact polynomial-
time algorithms can be obtained for some special or restricted cases [5]. However, prior to
our work, little was known about the complexity of computing or approximating min-error
triangulations in the general case. For related problems some hardness results exist [1, 9].

3 Reduction

We prove that the zero-error triangulation problem is NP-hard by a reduction from the
planar 3SAT problem, which was proven to be NP-complete by Lichtenstein [8]. An instance
of this problem can be embedded into the plane, where every clause is represented by a vertex
and every variable by a box placed on the horizontal axis. A box is connected to a vertex
via a rectilinear edge if the respective variable is contained in the clause. For an example,
see Figure 1. Such an embedding is for example also used in [6].

A. Arutyunova, A. Driemel, J.-H. Haunert, H. Haverkort, P. Mutzel, and H. Röglin 43:3

Figure 2 Example of a reference point r with coupled circle Cr and its positive/negative edges
crossing at r. Lifting the red and blue points to R3, with their measurement values as third
coordinate, we see that these points lie on both the paraboloid and the plane containing (r, hCr (r)).

For every instance of the planar 3SAT problem we construct an instance for the zero-error
triangulation problem by replacing the boxes, vertices and edges of its rectilinear embedding
in the plane by a set of triangulation points and reference points. For this purpose we handle
each component of the 3SAT embedding individually. We construct the variable gadgets
which replace the boxes, the wire gadgets, which replace the rectilinear edges and finally the
clause gadgets and the negation gadgets, where the first replace the vertices and the second
can be attached to variable gadgets to handle negated variables in a clause. The combination
of these gadgets then constitute an instance to the zero-error triangulation problem.

We ensure that there are two possible zero-error triangulations on the reference points
belonging to a variable gadget and the attached negation gadgets and wire gadgets as follows.
Points from P together with their measurement value can be seen as points in R3. We
ensure that they lie on a paraboloid in R3 and exploit the properties of the paraboloid (its
convexity and the correspondence of planes in R3 to circles in R2) to limit possible zero-
error triangulations. Any such triangulation then corresponds to the assignment of value 0
(negative) or 1 (positive) to any variable. We claim that the instance can be triangulated
with zero error if and only if the 3SAT instance is solvable. The usage of the paraboloid
differentiates our reduction from previous work in this area.

4 Preliminaries

Our triangulation instance consists of a set of triangulation points with integral coordintes
P ⊂ Z2 and a set R ⊂ conv(P) of reference points. The measurement value of a triangulation
point p = (p1, p2) ∈ P is given by f(p) = p2

1 + p2
2. On the other hand reference values are

not determined by one single function. Instead we define a set of functions, one for every
circle in R2, and choose for every reference point one of these functions which determines
the reference value of this point. Concretely let C be a circle around a point x = (x1, x2)
with radius ρ. We denote with IC = {y ∈ R2 | ‖x − y‖ < ρ} the interior of C and with
OC = R2\(C ∪ IC) the exterior of C. For a reference point r = (r1, r2) ∈ R we define the
function

hC(r) = 2x1r1 + 2x2r2 − x2
1 − x2

2 + ρ2.

EuroCG’21

43:4 Minimum-Error Triangulation is NP-hard

The function graph of f is the unit paraboloid {(p1, p2, p
2
1 + p2

2) | (p1, p2) ∈ R2} and the
function graph of hC is the plane containing the lifting of C onto the paraboloid (Figure 2).

Every point r ∈ R is then coupled to a circle, which we denote by Cr. It will be defined
during the construction of the gadgets and determines the reference value h(r) = hCr (r).
Let an edge denote a set of two points in R2. For each r we define a positive edge e+

r and
a negative edge e−r both consisting of triangulation points lying on Cr and intersecting each
other at r (i.e., conv(e+

r)∩ conv(e−r) = {r}). Figure 2 shows the whole construction. We say
for a triangulation D that the signal at r ∈ R is positive if D contains edge e+

r and negative
if it contains e−r , otherwise we call it ambiguous. Similarly we call D positive on M ⊂ R if
the signal at all r ∈M is positive and negative if the signal at all r ∈M is negative.

We interpret a triangle as the set of its vertices and say that a triangle T = {s, t, u} ⊂ P is
in D if all of {s, t}, {t, u}, {u, s} are in D and conv(T) does not contain further triangulation
points, i.e., conv(T) ∩ P = T . We say that r ∈ R is represented with zero error by T if
r ∈ conv(T) and the value at r of the linear interpolation of f on conv(T) equals h(r).

I Lemma 2. Let r be a point of R and let T ⊂ R2 be a triangle with r ∈ conv(T ∩ Cr).
Then r is represented with zero error by T .

If the 3SAT instance is satisfiable, we argue that there is a triangulation containing one
of e±r for every reference point r. Lemma 2 states that such a triangulation has in fact zero
error (see also Figure 2). To represent r with zero error in any other way, we need at least
one triangulation point inside and one outside Cr. This follows from the convexity of f .

I Lemma 3. Let T ⊂ R2 be a triangle representing r ∈ R with zero error. If r /∈ conv(T ∩
Cr), then T has a non-empty intersection with ICr

and OCr
.

This ensures that every zero-error triangulation yields a solution to the 3SAT instance.
In particular, we guarantee during the construction that only few triangulation points lie
inside Cr for each reference point r. With a concise case analysis we rule out that any of
them can be used together with a point outside Cr to form a triangle that represents r with
zero error, which limits the choice to triangles containing one of e±r .

Finally, our instance contains a set of mandatory edges that must be part of any feasible
triangulation of P . Mandatory edges are not part of the zero-error triangulation problem,
but they can be replaced afterwards by an additional construction.

5 The Gadgets

At the core of our reduction lies the design of the gadgets which constitute the triangulation
instance. Before we dedicate ourselves to the more complicated gadgets we construct smaller
elements called bits and segments which then are combined into the larger gadgets.

A bit occupies a small construction around a central point in Z2 and can be oriented
either horizontally or vertically. We describe the horizontal bit at a reference point r ∈ R,
which is also the only reference point of this bit. It is coupled to a circle Cr which is
centered on r and has radius

√
2. The integer grid points on this circle, that is, the points

r+ (±1,±1), are triangulation points. Moreover r+ (0, 1) and r+ (0,−1) are triangulation
points, whereas r + (−2, 0), r + (−1, 0), r + (1, 0) and r + (2, 0) are not. Therefore, we call
the latter points forbidden. Furthermore we define the positive and negative edge as

e+
r = {r + (−1,−1), r + (1, 1)}, e−r = {r + (−1, 1), r + (1,−1)}.

As r + (±1,±1) ∈ Cr, any triangle containing either e+
r or e−r represents r with zero error

by Lemma 2. The vertical bit is defined similarly. Figure 3 illustrates both constructions.

A. Arutyunova, A. Driemel, J.-H. Haunert, H. Haverkort, P. Mutzel, and H. Röglin 43:5

r

Cr

r

Cr

Figure 3 The (horizontal/vertical) bit at r with the positive edge in red and the negative edge
in blue. The black points are triangulation points and the white points are forbidden.

Figure 4 Example of a horizontal wire segment on the left and a multiplier segment with
mandatory edges on the right. The red or blue edges indicate the positive or negative edges of
the crossing points, respectively. All white points and all reference points are forbidden. The green
points are anchor points.

I Lemma 4. Suppose the instance contains a bit at r. If P ⊂ Z2 and P does not contain
forbidden points of the bit, any triangulation D of P with ErrD(r) = 0 contains one of e±r .

The next larger components are the wire segment and the multiplier segment, which we
build from bits. They can be combined at specified reference points, which we call anchor
points. These points are always reference points of bits.

A wire segment connects two points x, y ∈ Z2 lying on the same horizontal or vertical
line. We place a horizontal or vertical bit on x, y and all integral points lying between these
on the line connecting x and y. The anchor points of this segment are x, y.

A multiplier segment at a point x ∈ Z2 consist of two horizontal bits at x±(2, 0) and two
vertical bits at x± (0, 2). These four points are simultaneously anchor points. Furthermore
we add four inner reference points x ± (0, 1), x ± (1, 0) whose coupled circle is of radius√

5 and centered around x. Figure 4 shows the wire segment and the multiplier segment
including mandatory edges and the positive/negative edges of the inner reference points.

To obtain the larger variable gadget and wire gadget we combine wire segments with

EuroCG’21

43:6 Minimum-Error Triangulation is NP-hard

rc

a1

a3

T3

T1

T2

a2

Figure 5 The clause gadget, where the red/blue edges indicate the positive/negative edges of
the crossing points. The triangles T1, T2, T3 are orange and the anchor points a1, a2, a3 green.

multiplier segments. Two segments can be combined if they share a common anchor point.
By the combination of two segments we mean the union of their reference points and
triangulation points. A point is forbidden in the combination if it is forbidden in at least
one of the segments. Thus it is not allowed to combine two segments if a triangulation point
of one is forbidden in the other. The set of anchor points of the combination is defined as
the symmetric difference of anchor point sets of both segments. This way we can combine
arbitrarily many segments.

Remember that the wire gadget replaces the rectilinear edges of the 3SAT embedding,
so it has to connect two points x = (x1, x2), y = (y1, y2) ∈ Z2. It consists of a multiplier
segment placed on either (x1, y2) or (y1, x2), which is connected on two of its anchor points
via two wire segments to both x and y. A variable gadget at v ∈ Z2 consists of m multiplier
segments at sufficiently large distance α ∈ Z, which we do not specify further. Here m
denotes the number of clauses. Concretely, we place a multiplier segment on each of the
points v + (kα, 0) with 0 ≤ k ≤ m − 1 and connect them via horizontal wire segments at
their anchor points. The multiplier segments ensure that the gadget can later be connected
at its anchor points to multiple clause gadgets. We observe that the described combinations
of segments for both gadgets are allowed and that they have the following crucial property.

I Lemma 5. Suppose the instance contains a wire/variable gadget and let R̃ be the reference
points of this gadget. If P ⊂ Z2 and P does not contain forbidden points of the gadget, any
triangulation D of P with ErrD(R̃) = 0 is either positive or negative on R̃.

The clause gadget at a point c ∈ Z2 must combine three signals. To this end we add a
reference point rc. Instead of a positive/negative edge it comes with three triangles T1, T2, T3
lying on Crc , each triangulating rc with zero error. The clause gadget can be connected to
other gadgets at three anchor points a1, a2, a3. We add an additional construction that
blocks the triangle Ti if the signal at ai is positive for i = 1, 2 and T3 if the signal at a3 is
negative. For the whole clause gadget we refer to Figure 5.

A. Arutyunova, A. Driemel, J.-H. Haunert, H. Haverkort, P. Mutzel, and H. Röglin 43:7

a′

a

Figure 6 The negation gadget. If the signal at anchor point a is negative it is negated in the left
segment. If the signal at a is positive it is negated in the right segment. Since the top wire carries
a consistent signal, negation is ensured at a′.

I Lemma 6. Suppose the instance contains a clause gadget and let R̃ be its reference points.
If P ⊂ Z2 and P does not contain forbidden points of the gadget, any triangulation D of P
with ErrD(R̃) = 0 must be negative on one of the anchor points a1, a2 or positive on a3.

The last part of our construction is the negation gadget. It consist of some wire gadgets
and two functional segments. Both functional segments are variations of the clause gadget,
which combine two instead of three signals. The whole negation gadget is depicted in Figure
6. The next lemma shows that the signal at a′ is indeed the negation of the signal at a.

I Lemma 7. Suppose the instance contains a negation gadget and let R̃ be the reference
points of this gadget. Let P ⊂ Z2 and assume P does not contain forbidden points of the
gadget. Any triangulation D of P with ErrD(R̃) = 0 is positive at a iff it is negative at a′.

6 Reduction of Planar 3SAT

I Theorem 1. The zero-error triangulation problem is NP-hard for any value of p ≥ 1.
Thus the min-error triangulation problem cannot be approximated within any multiplicative
factor in polynomial time unless P = NP .

For an instance of the planar 3SAT problem we construct the corresponding zero-error
triangulation instance from the gadgets presented above. With an additional construction
we are able to delete all mandatory edges from the instance and argue that Lemmas 5-7 still
hold after the deletion. Then Lemmas 5-7 guarantee that the 3SAT formula is satisfiable if
and only if there is a zero-error triangulation of the corresponding triangulation instance.

References
1 Pankaj K. Agarwal and Subhash Suri. Surface approximation and geometric partitions.

In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’94, page 24–33, USA, 1994. Society for Industrial and Applied Mathematics.

EuroCG’21

43:8 Minimum-Error Triangulation is NP-hard

2 Lyuba Alboul, Gertjan Kloosterman, Cornelis Traas, and Ruud van Damme. Best data-
dependent triangulations. Journal of Computational and Applied Mathematics, 119(1):1–12,
2000.

3 Jeffrey L. Brown. Vertex based data dependent triangulations. Computer Aided Geometric
Design, 8(3):239–251, 1991.

4 Nira Dyn, David Levin, and Samuel Rippa. Data dependent triangulations for piecewise
linear interpolation. IMA Journal of Numerical Analysis, 10(1):137–154, 1990.

5 Joachim Gudmundsson, Mikael Hammar, and Marc van Kreveld. Higher order Delaunay
triangulations. Computational Geometry, 23(1):85–98, 2002.

6 Donald E. Knuth and Arvind Raghunathan. The problem of compatible representatives.
SIAM Journal on Discrete Mathematics, 5(3):422–427, 1992.

7 Charles L. Lawson. Software for C1 surface interpolation. In John R. Rice, editor,
Mathematical Software, pages 161–194. Academic Press, 1977.

8 David Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11:329–
343, 1982.

9 Wolfgang Mulzer and Günter Rote. Minimum-weight triangulation is NP-hard. Journal of
the ACM, 55(2):11:1–11:29, 2008.

10 Alina Nitzke, Benjamin Niedermann, Luciana Fenoglio-Marc, Jürgen Kusche, and Jan-
Henrik Haunert. Reconstructing the dynamic sea surface from tide gauge records using
optimal data-dependent triangulations. ARXIVCS, abs/2009.01012v2, 2020.

11 Samuel Rippa. Minimal roughness property of the delaunay triangulation. Computer Aided
Geometric Design, 7(6):489–497, 1990.

12 Kai Wang, Chor-Pang Lo, George A. Brook, and Hamid R. Arabnia. Comparison of existing
triangulation methods for regularly and irregularly spaced height fields. International
Journal of Geographical Information Science, 15(8):743–762, 2001.

On the Queue-Number of Partial Orders∗

Stefan Felsner1, Torsten Ueckerdt2, and Kaja Wille1

1 Institut für Mathematik,
Technische Universität Berlin, Germany
felsner@math.tu-berlin.de, wille@campus.tu-berlin.de

2 Institute of Theoretical Informatics
Karlsruhe Institute of Technology
torsten.ueckerdt@kit.edu

Abstract
The queue-number of a poset is the queue-number of its cover graph viewed as a directed acyclic
graph, i.e., the vertex order must be a linear extension of the poset. Heath and Pemmaraju conjec-
tured that every poset of width w has queue-number at most w. Recently, Alam et al. constructed
posets of width w with queue-number w + 1. Our contribution is a construction of posets with
width w with queue-number Ω(w2). This (asymptotically) matches the known upper bound.

1 Introduction

A queue layout of a graph consists of a total ordering on its vertices and a partition of its
edge set into queues, i.e., no two edges in a single block of the partition are nested. The
minimum number of queues needed in a queue layout of a graph G is its queue-number and
denoted by qn(G).

To be more precise, let G be a graph and let L be a linear order of the vertices. A
k-rainbow is a set of k edges {aibi : 1 ≤ i ≤ k} such that a1 < a2 < · · · < ak < bk < · · · <
b2 < b1 in L. A pair of edges forming a 2-rainbow is said to be nested. A queue is a set of
edges without nesting. Given G and L, the edges of G can be partitioned into k queues if
and only if there is no rainbow of size k + 1 in L. The queue-number of G is the minimum
number of queues needed to partition the edges of G over all linear orders L.

The queue-number was introduced by Heath and Rosenberg in 1992 [5] as a counterpart of
book embeddings. Queue layouts were implicitly used before and have applications in fault-
tolerant processing, sorting with parallel queues, matrix computations, scheduling parallel
processes, and in communication management in distributed algorithm (see [3,5,7]). There is
a rich literature exploring bounds on the queue-number of different classes of graphs [2,3,5,8].

In this note we study the queue-number of posets. This parameter was introduced in
1997 by Heath and Pemmaraju [4]. In the spirit of the older concept of the queue-number
of directed acyclic graphs, it is required that a precedes b in a queue layout whenever there
is a directed edge a → b, i.e., the queue layout of a directed acyclic graph is a topological
ordering and in the case of a poset, it is a linear extension.

A poset P is uniquely characterized by any digraph whose edge set is between the directed
cover graph and the directed comparability graph of P . These two digraphs are respectively
the transitive reduction and the transitive closure of any digraph representing P . In the
context of drawings, embeddings and layouts, it is natural to work with the sparse cover
graphs. For example a diagram of P is an upward drawing of the directed cover graph.

∗ S. Felsner was supported by DFG Grant FE 340/13-1.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

XX:2 On the Queue-Number of Partial Orders

The queue-number of P , denoted by qn(P), is the smallest k such that there is a linear
extension L of P for which the resulting linear layout of the cover graph GP contains no
(k + 1)-rainbow. Figure 1 shows an example.

2 3 4 11657 10 9811

32

5 6

1110

7 8 9

4

Figure 1 A poset of width 5 and a queue layout with 2 queues indicated by colors.

Clearly qn(GP) ≤ qn(P), i.e., the queue-number of a poset is at least as large as the
queue-number of its (undirected) cover graph. It was shown by Heath and Pemmaraju [4]
that even for planar posets P there is no function f such that qn(P) ≤ f(qn(GP)). They
also investigated the maximum queue-number of several classes of posets, in particular with
respect to bounded width (the maximum number of pairwise incomparable elements) and
height (the maximum number of pairwise comparable elements). In particular they gave
a nice argument showing that qn(P) ≤ width(P)2 (see Proposition 1 below). The poset P

of height 2 and width w whose cover graph is the complete bipartite graph Kw,w attains
qn(P) = width(P). Actually, Heath and Pemmaraju conjectured that qn(P) ≤ width(P) for
every poset P .

Knauer, Micek, and Ueckerdt [6] showed that the inequality qn(P) ≤ width(P) holds for
all posets of width 2. Last year Alam et al. [1] constructed a non-planar poset of width 3
whose queue number is 4. They generalized the example and constructed for every w > 3 a
poset P with width(P) = w and qn(P) = w+1. A second contribution of Alam et al. consists
in a slight improvement of the upper bound: They show qn(P) ≤ (w−1)2 +1 for all posets P

of width at most w.
Our contribution is the following theorem.

I Theorem 1.1. For every w > 3 there is a poset Pw of width w with

qn(Pw) ≥ w2/8.

These examples (asymptotically) match the upper bound. Besides yielding a strong
improvement of the lower bound, we also believe that our construction is conceptually sim-
pler than the examples provided by Alam et al. to disprove the conjecture of Heath and
Pemmaraju.

As an open problem we promote the question whether the original conjecture holds for
planar posets. In [6] it was shown that the queue-number of planar posets of width w is upper
bounded by 3w − 2 and that there are such planar posets P with qn(P) = width(P) = w.

2 Preliminaries

Before getting serious with our construction, we revisit the nice upper bound argument of
Heath and Pemmaraju. Let P = (X, <) be a poset of width w. Dilworth’s Theorem asserts
that X can be decomposed into w chains of P .

I Proposition 1 (Heath and Pemmaraju). For every poset P we have qn(P) ≤ width(P)2.

Stefan Felsner, Torsten Ueckerdt, and Kaja Wille XX:3

Proof. Let w = width(P), let C1, . . . , Cw be a chain partition, and let L be any linear
extension of P . Partition the edges of the cover graph into w2 sets Qi,j with i, j ∈ [w] such
that (u, v) ∈ Qi,j if u ∈ Ci and v ∈ Cj . We claim that each Qi,j is a queue.

Let a < b < c < d in L support a pair of nesting cover edges and suppose that both edges
(a, d) and (b, c) belong to Qi,j . By definition a, b ∈ Ci and c, d ∈ Cj and from the ordering
in L we get a < b and c < d in P . Now we have a < b and b < c and c < d in P whence the
relation a < d is implied by transitivity. This contradicts that (a, d) is a cover edge. J

In fact we have shown a much stronger statement: If P and a chain partition C1, . . . , Cw

are given, then there is a partition of the edges of the cover graph of P into parts Qi,j with
i, j ∈ [w] such that each Qi,j is a queue for every linear extension L of P .

2.1 Concepts needed for the construction
Let P be a poset. The dual of P , denoted P̄ , is the poset on the same ground set such that:
x < y in P ⇐⇒ y < x in P̄ .

A poset P is 2-dimensional if and only if there are two linear extensions L1 and L2 such
that: x < y in P ⇐⇒ x < y in L1 and L2. Such a pair L1, L2 is called a realizer of P .

When drawing 2-dimensional posets, it is common to represent each element x by a point
with coordinates (x1, x2) where x1 is the position of x in L1 and x2 is the position of x in L2.

P̄

1 2 3 4 5 6 7 8 9

7
2
6
8
1
4
9
5
3

P

1 2

3 4

5

6 7

8

9

Figure 2 A poset P , its dual P̄ , and a 2-dimensional drawing of P .

3 Proof of Theorem 1.1

We define Pw recursively. For w = 1, 2 we let Pw be a w-chain, for w ≥ 3, the construction
of Pw is based on a copy of Pw−2, a reinforcement poset Rw−2 of width w−2 with two linear
extensions Lx and Ly, the duals P̄w−2 and R̄w−2 of Pw−2 and Rw−2, and two additional
points a and b. Due to space limitations, we refrain from giving a full formal description
of the construction. Instead, we invite the reader to take a look at Figure 3, which shows
a sketch of Pw. Note that the number p(w) of vertices of Pw is given by the recursion
p(w) = 2p(w − 2) + 6r(w − 2) + 2, where r(w) is the number of vertices of Rw. The edges
between X and Rw−2 are given by Lx such that for each i the i-th element of the chain X

is connected to the element of Rw−2 which is at position i in Lx. The edges between Y and
Rw−2 are given by Ly in the same way.

It can be seen from the sketch that Pw is self-dual, the reflection Pw ↔ P̄w has two fixed
points a and b. This shows that when analyzing qn(Pw), we can restrict the attention to

EuroCG’21

XX:4 On the Queue-Number of Partial Orders

b a

R̄w−2

P̄w−2

Pw−2

Rw−2

X Y

Figure 3 Recursive construction of Pw.

linear extensions of Pw which have a before b. With this assumption, a rainbow between
Rw−2 and either X or Y nests above each rainbow of Pw−2. If we let qw−2 be the size of a
rainbow between Rw−2 and either X or Y , then we have the recursion:

qn(Pw) ≥ qn(Pw−2) + qw−2 (1)

We think of this use of a self-dual construction as the symmetry trick. Constructions given
in [6] (Proof of Prop. 2) and [1] (Proof of Thm. 4) also use a recursion based on two copies of
the poset from the previous level of the recursion. This allows them to add an edge nesting
over the rainbow from the previous level of the recursion.

Now suppose that for each width u < w, we choose the poset Ru to be an antichain
of size u and the linear extensions Lx and Ly to be a realizer (think of Lx as the identity
permutation and of Ly as its reverse). The Lemma of Erdős-Szekeres asserts that in every
linear extension of Ru there is an increasing or a decreasing sequence of size at least d√ue,
i.e., qu = d√ue.

This value of qu together with inequality (1) yields

qn(Pw) ≥
∑

u<w; u≡w(2)

⌈√
u
⌉
∈ Θ(w3/2).

Stefan Felsner, Torsten Ueckerdt, and Kaja Wille XX:5

For the proof of the theorem we need a better construction for the reinforcement posets Ru.
Such a construction will be provided in the proof of the following lemma1.

I Lemma 3.1. For each u ≥ 1, there is a 2-dimensional poset Ru of width u with a realizer
Lx, Ly, such that if L is a linear extension of Ru and dx and dy denote the maximum
lengths of an increasing sequence of L which is decreasing in Lx and Ly respectively, then
dx + dy ≥ u + 1.

The lemma says that we can assume the value qu = du+1
2 e. With inequality (1) we get:

qn(Pw) ≥
∑

u<w; u≡w(2)

⌈u + 1
2

⌉

In the case w odd, w = 2s + 1, we get qn(Pw) ≥ ∑s
k=1 k =

(
s+1

2
)
. In the case w even,

w = 2s, we get qn(Pw) ≥∑s
k=2 k =

(
s+1

2
)
− 1. A simple computation shows that for w ≥ 4

we get qn(Pw) ≥ w2/8, independent of the parity of w. This completes the proof.

3.1 The construction of Ru for Lemma 3.1
The construction of Ru is again recursive. Let R1 be a single point. Then clearly dx+dy = 2.
For the construction of Ru for u ≥ 2 we again use the symmetry trick. We take a series
composition of Q1 + a + Q2 where Q1 and Q2 are two copies of Ru−1 and compose it in
parallel with a single element b. We remark that element a is here only for the sake of the
exposition. The choice of the realizer Lx, Ly is depicted in Figure 4. Clearly width(Ru) =
width(Ru−1) + 1 = u.

a

Lx

b
Ly

Q1
x

y

Q2
x

y

Figure 4 The recursive construction of Ru with its realizer Lx, Ly.

Let L be any linear extension of Ru. First suppose that a < b in L. Let L′ be the
restriction of L to Q1. By induction the lengths d′x and d′y of increasing sequences of L′

which are decreasing in the two linear extensions of the realizer of Q1 satisfy d′x + d′y ≥ u.
Since b precedes Q1 in Lx and comes after Q1 in L, we have dx ≥ d′x + 1. Together with the
trivial dy ≥ d′y, we get dx + dy ≥ u + 1.

1 The lemma with a different proof was originally discovered by the first and the second author in joint
research with Francois Dross, Piotr Micek, and Michał Pilipczuk.

EuroCG’21

XX:6 On the Queue-Number of Partial Orders

If b < a we consider Q2. As before we get the two values d′x and d′y for the restriction L′

of L to Q2 and know by induction that d′x + d′y ≥ u. The position of b relative to Q2 in L

and Ly shows that dy ≥ d′y + 1, whence again dx + dy ≥ u + 1. This completes the proof of
the lemma.

4 Conclusion

We have made substantial progress in the understanding of queue-numbers of partial ordered
sets. We take the opportunity to list and comment on open questions in the field.

An obvious question is to ask for improved upper and lower bounds. More precisely, we
now know that the growth rate of the queue-number of posets of width w is (C +o(1))w2

for some constant C between 1/8 and 1. What is the precise value of constant C?
What is the maximum queue-number of planer posets of width w? Knauer, Micek, and
Ueckerdt [6] proved the lower bound w and the upper bound 3w − 2.
Heath and Pemmaraju [4] conjectured that planar posets on n elements have queue-
number at most

√
n. The k antichain together with a matching up to a chain X and a

matching down to a chain Y such that the chains represent a dual pair of linear extensions
is a planar poset P with width n = 3k elements and qn(P) =

√
dn/3e.

In [6] is was shown that posets P of width 2 have qn(P) ≤ 2. In [1] it was shown that
posets P of width 3 may have qn(P) ≥ 4 and satisfy qn(P) ≤ 5. Is 4 or 5 the best upper
bound in this case?

References
1 J. M. Alam, M. A. Bekos, M. Gronemann, M. Kaufmann, and S. Pupyrev, Lazy

queue layouts of posets, arXiv, 2008.10336 (2020). To appear in Proc. GD 2020.
2 V. Dujmović, G. Joret, P. Micek, P. Morin, T. Ueckerdt, and D. R. Wood,

Planar graphs have bounded queue-number, Journal of the ACM, 67 (2020), 22:1–22:38.
3 L. S. Heath, F. T. Leighton, and A. L. Rosenberg, Comparing queues and stacks as

machines for laying out graphs, SIAM Journal on Discrete Mathematics, 5 (1992), 398–412.
4 L. S. Heath and S. V. Pemmaraju, Stack and queue layouts of posets, SIAM Journal

on Discrete Mathematics, 10 (1997), 599–625.
5 L. S. Heath and A. L. Rosenberg, Laying out graphs using queues, SIAM Journal on

Computing, 21 (1992), 927–958.
6 K. Knauer, P. Micek, and T. Ueckerdt, The queue-number of posets of bounded width

or height, in Proc. GD 2018, vol. 11282 of LNCS, Springer, 2018, pp. 200–212.
7 J. Nešetřil, P. Ossona de Mendez, and D. R. Wood, Characterisations and examples

of graph classes with bounded expansion, European J. Combin., 33 (2012), 350–373.
8 V. Wiechert, On the queue-number of graphs with bounded tree-width, The Electronic

Journal of Combinatorics, 24 (2017), 1–65.

Uncertainty-Region Lower Bounds
for the Preprocessing Model of Uncertainty
Ivor van der Hoog1, Maarten Löffler1, Irina Kostitsyna2, and
Bettina Speckmann2

1 Department of Information and Computing Sciences, Utrecht University, the
Netherlands

2 Department of Mathematics and Computer Science, TU Eindhoven, the
Netherlands

Abstract
In the preprocessing model for uncertain data we are given a set of regions R which model the
uncertainty associated with an unknown set of points P . In this model there are two phases: a
preprocessing phase, in which we have access only to R, followed by a reconstruction phase, in
which we have access to points in P at a certain retrieval cost per point. We study the following
algorithmic question: how fast can we construct the Pareto front of P in the preprocessing model?

We introduce a new concept for algorithmic efficiency in the preprocessing model by introducing
the uncertainty region lower bound. We then apply this lower bound to the Pareto front.

Related Version https://arxiv.org/abs/2101.06079

1 Introduction

In many applications of geometric algorithms the input is inherently imprecise. A classic
example are GPS samples, which have a significant error. Geometric imprecision can be
caused by other factors as well. For example, when measuring a moving object, its location
may have an error dependent on its speed. Another example comes from I/O-sensitive com-
putations: exact locations may be too costly to store in local memory [3]. Algorithms that
can handle imprecise input have received considerable attention in computational geometry.

Preprocessing model. Held and Mitchell [14] introduced the preprocessing model of un-
certainty as a model to study the amount of geometric information contained in uncer-
tain points. In this model, the input is a set of geometric (uncertainty) regions R =
(R1, R2, . . . , Rn) with an associated “true” planar point set P = (p1, p2, . . . , pn). For any
pair (R, P), we say that P respects R if each pi lies inside its associated region Ri; we as-
sume throughout the paper that P respectsR. The preprocessing model has two consecutive
phases: a preprocessing phase where we have access only to the set of uncertainty regions
R and a reconstruction phase where we can for each Ri ∈ R, retrieve the true location pi.
We want to preprocess R to create some linear-size auxiliary datastructure Ξ. Afterwards,
we want to reconstruct the desired output on P using Ξ faster than without preprocessing.

Löffler and Snoeyink [16] were the first to interpretR as a collection of imprecise measure-
ments of a true point set P . The size of Ξ and the running time of the reconstruction phase,
together quantify the information about (the Delaunay triangulation of) P contained in R.
This interpretation was widely adopted within computational geometry and motivated re-
cent results for constructing Delaunay triangulations [4, 5, 9, 20], convex hulls [12, 13, 17, 18]
and other planar decompositions [15, 19] for imprecise points. Bruce et al. [3] study a prob-
lem related to the prepreocessing model where they attach a fixed cost C to each retrieval.
We adopt their approach, but remove their assumption that C is a constant.
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

45:2 Uncertainty-region Lower Bounds

p1 p2 p3 p4 p1 p2 p4(a) (b)

Figure 1 The Pareto front of P can be implied by the geometry of R (left) or not (right).

Output format. Classical work in the preprocessing model ultimately aims to preprocess
the data in such a way that one can achieve a (near-)linear-time reconstruction phase.
Indeed, if the final output structure has linear complexity and must explicitly contain the
coordinates of each value in P , then returning the result takes trivially at least Ω(n) time.
However, this point of view is limiting in two ways. First, certain geometric problems, such
as the convex hull or the Pareto front, may have sub-linear output complexity. Second, even
if the output has linear complexity, it may be possible to find its combinatorial structure
without inspecting the true locations of all points. Consider the example in Figure 1: on the
left, we do not need to retrieve any point; on the right, we do not need to retrieve p3 after
we retrieve p4. Van der Hoog et al. [19] propose an addition to the preprocessing model
to enable a more fine-grained analysis in these situations: instead of returning the desired
structure on P explicitly, they instead return an indirect representation of the output. This
indirect representation can take the form of a pointer structure which is isomorphic to the
desired output on P , but where each value is a pointer to either a certain (retrieved) point,
or to an uncertain (unretrieved) point.

Contribution. We define a new concept for algorithmic efficiency for constructing an indi-
rect representation in the preprocessing model. Specifically, in Section 2 we introduce the
idea of an uncertainty-region lower bound. We show in Section 3 how to use this idea to
obtain a non-trivial lower bound for the construction of the Pareto front of imprecise points.
In the full version, we also present an algorithm which matches the lower bound.

2 Algorithmic lower bounds

To assess the efficiency of any algorithm we generally want to compare its performance to
a suitable lower bound. To lower bound the running time of an algorithmic problem, one
must first reason about the computational model in which the problem is studied. In the
full version, we elaborately discuss each well-studied computational model and reason about
how each of these apply. Henceforth, we make the most general assumption: which is that
we run our algorithm on a real-valued, comparison-based pointer machine. Two common
types of lower bounds are worst-case and instance lower bounds. The classical worst-case
lower bound takes the minimum over all algorithms A, of the maximal running time of A

for any pair (R, P). The instance lower bound [1, 11] is the minimum over all A, for a fixed
instance (R, P), of the running time of A on (R, P). For the Pareto front the worst-case
lower bound is trivially Ω(n); worst-case optimal performance (for us, in the reconstruction
phase) is hence easily obtainable. Instance-optimality, on the other hand, is unobtainable
in classical computational geometry [1]. Consider, for example, the searching problem for a
value q amongst a set X of sorted numbers. For each instance (X, q), there exists a naive
algorithm that guesses the correct answer in constant time. Thus the instance lower bound
for binary search is constant, even though there is no algorithm that can perform binary
search in constant time in a comparison-based RAM model [10]. Hence we introduce a new

Ivor van der Hoog, Maarten Löffler, Irina Kostitsyna, and Bettina Speckmann 45:3

lower bound for the preprocessing model, whose granularity falls in between the instance
and worst-case lower bound. Our uncertainty-region lower bound is the minimum over all A,
for a fixed input R, of the maximal running time of A on (R, P) for any P that respects R.
The full version extensively reviews lower bound definitions.

We briefly revisit the definitions of worst-case and instance lower bounds in the prepro-
cessing model and then formally introduce our new uncertainty-region lower bound.

Worst-case lower bounds. The worst-case comparison-based lower bound of an algorithmic
problem P considers each algorithm1 plus datastructure pair (A, Ξ) which solves P in a
competitive setting with respect to their maximal running time:

Worst-case lower bound(P) := min
(A,Ξ)

max
(R,P)

Runtime(A, Ξ,R, P) .

At this point, we wish to note that in classical algorithms, the worst-case lower bound is
the minimum runtime over all algorithms. In the reconstruction phase of the preprocessing
model, we take the minimum over all pairs of algorithms A and auxiliary datastructures Ξ;
since we want to include the preprocessing done in the preprocessing phase. Let L be the
number of distinct outcomes for all instances (R, P) implies a lower bound on the maximal
running time for any algorithm A: regardless of preprocessing, auxiliary datastructures and
memory used, any comparison-based pointer machine algorithm A can be represented as a
decision tree where at each algorithmic step, a binary decision is taken [2, 7, 10]. Since there
are at least L different outcomes, there must exists a pair (R, P) for which A takes log L

steps before A terminates (this lower bound is often referred to as the information theoretic
lower bound or sometimes the entropy of the problem [1, 6, 7], full version).

Instance lower bounds. A stronger lower bound, is an instance lower bound [1]. For a
given instance (R, P), the instance lower bound of the reconstruction phase is:

Instance lower bound(P,R, P) = min
(A,Ξ)

Runtime(A, Ξ,R, P) .

Note that, just as with the worst-case lower bound, classical instance lower bounds ([1])
minimize over all algorithms A. We minimize over all pairs (AΞ) to translate their definition
to the preprocessing model. An algorithm A is instance optimal, if for every instance (R, P)
the runtime of A matches the instance lower bound. Löffler et al. [15] define proximity
structures that include quadtrees, Delaunay triangulations, convex hulls, Pareto fronts and
Euclidean minimum spanning trees.

1 We refer to comparison-based algorithms algorithms on an intuitive level: as RAM computations that
do not make use of flooring. For a more formal definition we refer to any of [1, 2, 8, 10].

(c)(b)(a) p1 p2 p3 p4 p5 p6

p7 pn

pn

Figure 2 Thrice a collection of grey uncertainty regions where the Pareto front, EMST or
Delaunay triangulation of the grey points is implied by the regions; plus an orange region Rn.
Depending on the placement of pn, it can neighbor any grey point in the final structure.

EuroCG’21

45:4 Uncertainty-region Lower Bounds

I Theorem 1. [Illustrated by Figure 2.] Let the unspecified retrieval cost C not dominate
O(log n) RAM instructions and R be any set of pairwise disjoint uncertainty rectangles.
Then there exists no algorithm A in the preprocessing model with indirect representation
that can construct a proximity data structure on the true points which is instance optimal.

Uncertainty-region lower bounds. Worst-case optimality is easily attainable and we proved
that instance optimality is not attainable in the preprocessing model. Yet the examples in
Figure 1 and 2 intuitively have a lower bound of Θ(1) and Θ(log n + C), which is trivial to
match. We capture this intuition for an algorithmic problem P with input R:

Uncertainty-region lower bound(P,R) := min
(A,Ξ)

max
(P respects R)

Runtime(A, Ξ,R, P) ,

and say an algorithm A is uncertainty-region optimal if for every R, A has a running time
that matches the uncertainty-region lower bound. Denote by L(R) the number of distinct
outcomes for all P that respect R. Via the information theoretic lower bound we know:

∀R, log |L(R)| ≤ Uncertainty-region lower bound(P,R) .

For constructing proximity structures in the preprocessing model with indirect representa-
tions, the value of log L(R) can range from anywhere between 0 and n log n. Consequently,
an optimal algorithm cannot necessarily afford to explicitly retrieve the entire point set P .

3 The Pareto front

LetR = (R1, R2, . . . , Rn) be a sequence of n pairwise disjoint closed axis-aligned uncertainty
rectangles, with underlying point set P . For ease of exposition, we assume R and P lie in
general position (no points or region vertices share a coordinate). We denote by [Ri, Rj] :=
(Ri, Ri+1, . . . , Rj) a subsequence of j − i + 1 regions and similarly by [pi, pj] a subsequence
of points. For two points p and q, we say that p (Pareto) dominates q if both its x- and
y-coordinates are greater than or equal to the respective coordinates of q. We say a point p

dominates a region R if it dominates the top right vertex. We define the Pareto front of P

as the boundary of the set of points that are dominated by a point in P . That is, the Pareto
front is the set of points in P that are not dominated by any other point in P , connected
by a rectilinear staircase. For any region or point R, we define its horizontal halfslab as the
union of all horizontal halflines that are directed leftward, whose apex lies in or on R. We
define the vertical halfslab symmetrically using downward vertical halflines.

In this section, we construct a function CP (R, P) that for any pair (R, P) outputs a
value. Given R, for each P we might obtain a different value CP (R, P). However we show
that all of these values lower bound log |L(R)| and thus Uncertainty-region lower bound(P,R).

R4

R5 R2
R1R3

R1

R3 R4
R2

BR BTrunc(R)

(a) (b)

Figure 3 Left: a collection of uncertainty regions. Green is positive, red is negative and yellow
is potential. The horizontal halfslab of a green region is shown. Right: A collection of uncertainty
regions before and after truncation, note that we re-indexed the regions and flagged one.

Ivor van der Hoog, Maarten Löffler, Irina Kostitsyna, and Bettina Speckmann 45:5

(a) (b)

Figure 4 A truncated set and its horizontal and vertical arrows.

We define a procedure Trunc. Given an original set R of n pairwise disjoint axis-aligned
rectangles, Trunc(R) returns a truncated set R′ where some regions may be flagged (marked
with a boolean). Refer to Figure 3. Specifically, all area from R, that is dominated by any
bottom left vertex in R gets removed. The remaining set of rectangular regions is the set
R′ = Trunc(R). Each region in R′ that is not empty, but different from its corresponding
region in R gets flagged. Observe that the Pareto front of the bottom left vertices of R
induce a well-defined order Trunc re-indexes the remaining regions according to top left to
bottom right ordering of their bottom left vertices.

Dependency graphs. Given a truncated set R, we define a (directed) dependency graph
denoted by G(R) as follows. The nodes of the graph correspond to regions in R. We
have two types of directed edges (horizontal and vertical arrows). A region Ri has a vertical
arrow to Rj if Rj succeeds Ri and is vertically visible from Ri (there exists a vertical segment
connecting Ri and Rj that does not intersect any other region in R). A region Ri has a
horizontal arrow to Rj if Rj precedes Ri and is horizontally visible from Ri. Refer to Figure 4.

The Pareto cost function. Now we are almost ready to define the function CP(R, P)
for truncated sets R. Before we can define the Pareto cost function, we define additional
concepts (Figure 5). By C we denote the unspecified cost for a retrieval. For all regions
Ri ∈ R, we denote by Vi the subset of [Ri, Rn] that is vertically visible from Ri (including
Ri itself) and by Hi the subset of [R1, Ri] that is horizontally visible from Ri (including Ri

itself). Given P , we denote by Vi(P) ⊆ Vi: the union of {Ri} with the subset of Vi of regions
that are dominated by a point pj with j ≤ i. The set Hi(P) is defined symmetrically.

Ri

(a) (b) (c)

Figure 5 A region Ri and the set Vi in orange. Middle: for a given set of points, the set Vi(P)
is shown in red. Right: the set Vi(P) changes for different P , but always includes Ri.

Intuitively, the truncation operator represents the foresight about the Pareto front of P .
Now, given a truncated set R and P we construct a set R̃(P) ⊂ R that intuitively represents
which regions ofR were geometrically interesting in hindsight. R̃(P) is the subset ofR where
each Ri ∈ R̃(P) is intersected by the Pareto front of P and one of three conditions holds:
1. Ri is flagged;
2. Ri intersects and edge e with endpoint pj ∈ P and i 6= j; and/or

EuroCG’21

45:6 Uncertainty-region Lower Bounds

3. Ri is not a sink in G(R).
We define the Pareto cost function as: CP(R, P) =

∑
Ri∈R̃(P) C + log |Vi(P)|+ log |Hi(P)|.

Reconstruction. In the reconstruction phase an algorithm can use any auxiliary structure Ξ
to aid its computation. In the remainder of this section we consider any truncated set R of n

elements, together with any auxiliary datastructure. We provide an information-theoretical
lower bound, which depends on R and P , for both the number of RAM instructions and
disk retrievals required to construct an indirect output representation Ξ∗ regardless of Ξ.

3.1 A lower bound for disk retrievals
In the full version we revisit the instance-based lower bound proof by Bruce et al. [3] to
obtain the lemma below. The prior result by Bruce et al. enables one to identify for
each set of regions, a triple of uncertainty regions for which at least one point needs to be
retrieved (at cost unknown C). The authors then retrieve all three points, remove all areas
dominated by a point, and recurse. The novelty in our argument lies in the fact that for
each pair (R, P) we can immediately, non-recursively characterize the regions which require
a disk retrieval using R̃(P) which is a prerequisite for creating a data structure that will
return these regions.

I Lemma 2. Let R be a truncated set and let P be any point set that respects R. Any
algorithm that constructs Ξ∗ of P must perform at least 1

3 |R̃(P)| retrievals at cost C each.

3.2 A lower bound on RAM instructions
In Section 2 we defined the uncertainty-region lower bound. By an information-theoretical
lower bound (algebraic decision tree or entropy [1, 7]), we have, for any R, that the
Uncertainty-region lower bound is at least log L(R), where L(R) is the number of com-
binatorially different Pareto fronts of point sets that respect R. We prove the following:

I Lemma 3. Let R be a truncated set and P be any point set that respects R. Then
∑

Ri∈R̃(P)

log |Vi(P)|+ log |Hi(P)| ≤ 2 · log L(R) .

Given Lemma 2 and Lemma 3 we can immediately conclude:

I Theorem 4. Let R be a truncated set and P be any set that respects R. Then CP(R, P)
is fewer than three times the uncertainty-region lower bound of R.

In the full version, we show that for each pair (R, P) this lower bound can be matched.

References
1 Peyman Afshani, Jérémy Barbay, and Timothy M. Chan. Instance-optimal Geometric

Algorithms. Journal of the ACM (JACM), 64(1):1–38, 2017.
2 Michael Ben-Or. Lower Bounds for Algebraic Computation Trees. In Proceedings ACM

Symposium on Theory of Computing, pages 80–86, 1983.
3 Richard Bruce, Michael Hoffmann, Danny Krizanc, and Rajeev Raman. Efficient Update

Strategies for Geometric Computing with Uncertainty. Theory of Computing Systems,
38(4):411–423, 2005.

4 Kevin Buchin, Maarten Löffler, Pat Morin, and Wolfgang Mulzer. Delaunay Triangulation
of Imprecise Points Simplified and Extended. Algorithmica, 61:674–693, 2011.

Ivor van der Hoog, Maarten Löffler, Irina Kostitsyna, and Bettina Speckmann 45:7

5 Kevin Buchin and Wolfgang Mulzer. Delaunay Triangulations in O(sort(n)) ime and more.
Journal of the ACM (JACM), 58(2):6, 2011.

6 Jean Cardinal, Samuel Fiorini, and Gwenaël Joret. Minimum Entropy Coloring. In Inter-
national Symposium on Algorithms and Computation (ISAAC), pages 819–828, 2005.

7 Jean Cardinal, Gwenaël Joret, and Jérémie Roland. Information-theoretic Lower Bounds
for Quantum Sorting. arXiv preprint:1902.06473, 2019.

8 Erik D Demaine, Adam C Hesterberg, and Jason S Ku. Finding Closed Quasigeodesics on
Convex Polyhedra. In Symposium on Computational Geometry (SoCG). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

9 Olivier Devillers. Delaunay Triangulation of Imprecise Points: Preprocess and Actually get
a Fast Query Time. Journal of Computational Geometry (JoCG), 2(1):30–45, 2011.

10 Jeff Erickson, Ivor van der Hoog, and Tillmann Miltzow. Smoothing the Gap between NP

and ER. In IEEE Symposium on Foundations of Computer Science (FOCS), 2020.
11 William Evans, David Kirkpatrick, Maarten Löffler, and Frank Staals. Competitive Query

Strategies for Minimising the Ply of the Potential Locations of Moving Points. In Interna-
tional Symposium on Computational Geometry (SoCG), pages 155–164. ACM, 2013.

12 William Evans and Jeff Sember. The Possible Hull of Imprecise Points. In Canadian
Conference on Computational Geometry (CCCG), 2011.

13 Esther Ezra and Wolfgang Mulzer. Convex Hull of Points Lying on Lines in o(n log n) Time
after Preprocessing. Computational Geometry, 46(4):417–434, 2013.

14 Martin Held and Joseph SB Mitchell. Triangulating Input-constrained Planar Point Sets.
Information Processing Letters, 109(1):54–56, 2008.

15 Maarten Löffler and Wolfgang Mulzer. Unions of Onions: Preprocessing Imprecise Points
for Fast Onion Decomposition. Journal of Computational Geometry (JoCG), 5:1–13, 2014.

16 Maarten Löffler and Jack Snoeyink. Delaunay Triangulation of Imprecise Points in Linear
Time after Preprocessing. Computational Geometry, 43(3):234–242, 2010.

17 Maarten Löffler and Marc van Kreveld. Largest and Smallest Convex Hulls for Imprecise
Points. Algorithmica, 56(2):235, 2010.

18 Takayuki Nagai, Seigo Yasutome, and Nobuki Tokura. Convex Hull Problem with Imprecise
Input and its Solution . Systems and Computers in Japan, 30(3):31–42, 1999.

19 Ivor van der Hoog, Irina Kostitsyna, Maarten Löffler, and Bettina Speckmann. Preprocess-
ing Ambiguous Imprecise Points. In International Symposium on Computational Geometry
(SoCG). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2019.

20 Marc van Kreveld, Maarten Löffler, and Joseph SB Mitchell. Preprocessing Imprecise
Points and Splitting Triangulations. SIAM Journal on Computing, 39(7):2990–3000, 2010.

EuroCG’21

Approximating Independent Set and Dominating
Set on VPG graphs
Esther Galby1 and Andrea Munaro2

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
galby@cispa.saarland

2 School of Mathematics and Physics, Queen’s University Belfast, UK
a.munaro@qub.ac.uk

Abstract
We consider Independent Set and Dominating Set restricted to VPG graphs. Combining the
well-known Baker’s shifting technique with bounded mim-width arguments, we provide simple
PTASes for these two problems on VPG graphs admitting a representation such that each grid-
edge belongs to at most t paths and the length of the horizontal part of each path is at most c,
for some c ≥ 1.

1 Introduction

Given a family O of geometric objects in the plane, the intersection graph of O has the
objects in O as its vertices and two vertices oi, oj ∈ O are adjacent in the graph if and
only if oi ∩ oj 6= ∅. If O is a set of curves in the plane, where a curve is a subset of
R2 homeomorphic to the unit interval [0, 1], then the intersection graph of O is a string
graph. Many important graph classes like planar graphs and chordal graphs are subclasses
of string graphs [16, 20] and so it is natural to study classic optimization problems such as
Independent Set and Dominating Set on string graphs.

Asinowski et al. [1] introduced the class of Vertex intersection graphs of Paths on a Grid
(VPG graphs for short). A graph is a VPG graph if one can associate a path on a grid
with each vertex such that two vertices are adjacent if and only if the corresponding paths
intersect on at least one grid-point. It is not difficult to see that the class of VPG graphs
coincides with that of string graphs [1]. For a VPG graph G, the pair R = (G,P) consisting
of a rectangular grid G and a family of paths P on G satisfying the property above is a VPG
representation of G. If a VPG graph admits a representation R such that each path in P
has at most k bends i.e., 90 degrees turns at a grid-point, the graph is a Bk-VPG graph.
The length of a path P ∈ P is the number of grid-edges used and a segment of P is either a
vertical or horizontal line segment in the polygonal curve constituting P .

Independent Set is known to be NP-complete on Bk-VPG graphs even for k = 0
[23]. Therefore, there has been a focus on providing approximation algorithms for restricted
subclasses of string graphs. Fox and Pach [14] gave, for every ε > 0, a nε-approximation
algorithm for k-string graphs i.e., string graphs in which every two curves intersect each
other at most k times. Lahiri et al. [24] provided a O(log2 n)-approximation algorithm for
B1-VPG graphs and a O(log d)-approximation algorithm for equilateral B1-VPG graphs (a
B1-VPG graph is equilateral if, for each path, its horizontal and vertical segment have the
same length), where d denotes the ratio between the maximum and minimum length of
segments of paths. Finally, they showed that Independent Set on equilateral B1-VPG
graphs where each horizontal and vertical segment have length 1 is NP-complete. Improving
on [24], Biedl and Derka [5] provided a 4 log n-approximation algorithm for the weighted
version of Independent Set on B2-VPG graphs. In the case of B1-VPG, this result
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

46:2 Approximating Independent Set and Dominating Set on VPG graphs

was further improved by Bose et al. [6], who provided a 4 max{1, log OPT}-approximation
algori-thm for the weighted version of Independent Set.

Dominating Set is APX-hard on 1-string B1-VPG graphs (see, e.g., [26]). Mehrabi [26]
considered the subclass of 1-string B1-VPG graphs in which no endpoint of a path belong
to any other path and provided a O(1)-approximation algorithm. Bandyapadhyay et al.
[3] considered intersection graphs of L-frames, where an L-frame is a path on a grid with
exactly one bend, and provided a (2 + ε)-approximation algorithm in the case the bend of
each path belongs to a diagonal line with slope −1. They also showed that the problem
is APX-hard if each L-frame intersects a diagonal line and that the same holds if instead
all the frames intersect a vertical line. Chakraborty et al. [8] provided an 8-approximation
algorithm on intersection graphs of L-frames intersecting a common vertical line. They also
showed that there is a O(k4)-approximation algorithm on unit Bk-VPG graphs1 and, on the
negative side, that the problem is NP-hard on unit B1-VPG graphs.

To the best of our knowledge, it is not known whether there exist constant-factor approxi-
mation algorithms for Independent Set and Dominating Set even on B1-VPG graphs.

2 Our results

As we have just mentioned, three natural constraints on VPG graphs have been considered
in the search for efficient algorithms for Independent Set and Dominating Set: bound
the number of bends on each path, bound the number of intersections between any two paths
and bound the lengths of segments of paths. Unfortunately, combining these constraints is
not enough to guarantee polynomial-time solvability:

I Theorem 2.1. Independent Set and Dominating Set remain NP-complete when
restricted to VPG graphs admitting a 1-string B0-VPG representation such that each horizon-
tal path has length at most 2, even if such representation is part of the input.

But what about approximation algorithms? Perhaps surprisingly, it turns out that the
problems admit PTASes when those constraints are in place. More precisely, we show the
following:

I Theorem 2.2. Let t ≥ 0 and c ≥ 1 be integers. Independent Set and Dominating
Set admit a PTAS when restricted to VPG graphs with a representation R = (G,P) such
that:

1. each path in P has a polynomial (in |P|) number of bends;
2. each grid-edge in G belongs to at most t paths in P;
3. the horizontal part of each path in P has length at most c.

Here the horizontal part of a path is the interval corresponding to the projection of the
path onto the horizontal axis. Clearly, for fixed k ≥ 0, Bk-VPG graphs satisfy condition
1. The class of VPG graphs satisfying condition 2 is rich as well: it contains k-string VPG
graphs, for any fixed k, VPG graphs with maximum degree at most t− 1 and VPG graphs
with maximum clique size at most t. Notice that recognizing string graphs (and so VPG
graphs) is NP-complete [19, 29]. Similarly, for each fixed k ≥ 0, recognizing Bk-VPG graphs
is NP-complete [9, 21]. Since our PTASes require a VPG representation, we then assume this

1 A Bk-VPG graph is unit if each path consists only of segments with unit length. Notice that every
Bk-VPG graph is a unit Bk′ -VPG graph for some finite k′ ≥ k.

E. Galby and A. Munaro 46:3

Figure 1: A VPG representation on a bounded number of columns of a split graph whose vertices are
partitioned into an independent set I (red paths) and a clique C (black paths).

is always given as part of the input. For each path in the input representation, we maintain
a list consisting of its endpoints and bend-points and so the reason behind condition 1 is to
avoid the following pathological behavior: there exist string graphs on n vertices requiring
paths with 2Ω(n) bends in any representation (this follows from [22]).

I Remark. The result for Dominating Set in Theorem 2.2 is best possible in the sense
that, if we remove one of conditions 2 and 3, Dominating Set does not admit a PTAS,
unless P = NP. Indeed, every split graph admits a VPG representation R = (G,P) such
that each path in P has O(|P|) bends and horizontal part of length at most 3 (see Figure 1).
On the other hand, Dominating Set restricted to split graphs cannot be approximated
within a factor of (1 − ε) lnn, for any constant ε > 0, unless NP ⊆ DTIME(nO(log log n))
[10]. Moreover, every circle graph is a 1-string B1-VPG graph [1] and Dominating Set
is APX-hard on circle graphs [12]. The situation is more subtle for Independent Set, as
it has been asked several times whether the problem is APX-hard on Bk-VPG graphs (see,
e.g., [5, 25]) and this remains open.

As observed above, the study of these two problems on VPG graphs has focused mostly
on Bk-VPG graphs with k ≤ 2 and, to the best of our knowledge, ours are the first PTASes
on a non-trivial subclass of VPG graphs. The PTAS for Dominating Set shows that
the constant-factor approximation algorithm on unit Bk-VPG graphs in [8] can in fact be
improved if input graphs satisfy also condition 2.

3 Techniques

Our PTASes are obtained by adapting Baker’s shifting technique [2] to the string graph
setting and showing boundedness of an appropriate width parameter. Baker’s technique has
already been applied to Independent Set in B1-EPG graphs [7] and our main contribution
is to pair it with powerful mim-width arguments. Our key observation is that if a VPG
graph admits a VPG representation with a bounded number of columns and such that each
grid-edge belongs to a bounded number of paths, then the graph has bounded mim-width
(Theorem 3.3). We then use Baker’s shifting technique by solving the problems optimally
on each slice with bounded number of columns.

Maximum induced matching width (mim-width for short) is a graph parameter, intro-
duced by Vatshelle [31], measuring how easy it is to decompose a graph along vertex cuts
inducing a bipartite graph with small maximum induced matching size. Replacing induced
matchings with matchings, one obtains the related parameter called maximum matching
width (mm-width for short) [31]. The modelling power of mim-width is stronger than that
of treewidth, in the sense that graphs of bounded treewidth have bounded mim-width but
there exist graph classes (interval graphs and permutation graphs) with mim-width 1 [31]
and unbounded treewidth [15]. On the other hand, mm-width and treewidth are equivalent

E u r o C G ’ 2 1

46:4 Approximating Independent Set and Dominating Set on VPG graphs

parameters, in the sense that one is bounded if and only if the other is [31].
We now properly define mim-width and mm-width. A branch decomposition for a graph

G is a pair (T, δ), where T is a subcubic tree and δ is a bijection between the vertices of G
and the leaves of T . Each edge e ∈ E(T) naturally splits the leaves of the tree in two groups
depending on their component when e is removed. In this way, each edge e ∈ E(T) represents
a partition of V (G) into two partition classes Ae and Ae, denoted (Ae, Ae). Denoting by
G[X,Y] the bipartite subgraph of G induced by the edges with one endpoint in X and the
other in Y , mim-width and mm-width are defined as follows:

I Definition 3.1. Let G be a graph and let (T, δ) be a branch decomposition for G.
For each edge e ∈ E(T) and the corresponding partition (Ae, Ae) of V (G), we denote by
cutmimG(Ae, Ae) and cutmmG(Ae, Ae) the size of a maximum induced matching and maxi-
mum matching inG[Ae, Ae], respectively. The mim-width of the branch decomposition (T, δ)
is the quantity mimwG(T, δ) = maxe∈E(T) cutmimG(Ae, Ae). The mim-width mimw(G) of
the graph G is the minimum value of mimwG(T, δ) over all possible branch decompositions
(T, δ) forG. The mm-width of the branch decomposition (T, δ) is the quantity mmwG(T, δ) =
maxe∈E(T) cutmmG(Ae, Ae) and the mm-width mmw(G) of the graph G is the minimum
value of mmwG(T, δ) over all possible branch decompositions (T, δ) for G.

Notice that, for any branch decomposition (T, δ) for G, mimwG(T, δ) ≤ mmwG(T, δ)
and so mimw(G) ≤ mmw(G). It is well-known that boundedness of treewidth allows
polynomial-time solvability of several otherwise NP-hard graph problems. Boundedness
of mim-width has important algorithmic consequences as well, in particular for the so-called
(σ, ρ)-domination problems, a subclass of graph problems expressible in MSO1 introduced
by Telle and Proskurowski [30] and including Independent Set and Dominating Set:

I Theorem 3.2 (see, e.g., [17]). There is an algorithm that, given a graph G and a branch
decomposition (T, δ) for G with w = mimwG(T, δ), solves Independent Set and Domina-
ting Set in O(n4+3w) time.

It should be remarked that, in contrast to treewidth, deciding the mim-width of a graph
is W[1]-hard [28]. However, it is possible to find branch decompositions of constant mim-
width in polynomial time for several classes of graphs such as permutation graphs, convex
graphs [4], H-graphs [13], leaf powers [17].

I Theorem 3.3. Let G be a VPG graph with a representation R = (G,P) such that each
grid-edge in G belongs to at most t paths in P and G contains at most ` columns, for
some integers t, ` ≥ 0. Then mimw(G) ≤ mmw(G) ≤ 3t · (` + 1). Moreover, if we are
given a VPG graph G on n vertices together with a representation R = (G,P) as above
and such that in addition each path in P has a number of bends polynomial in n, then
it is possible to compute in O(n logn) time a branch decomposition (T, δ) for G such that
mimwG(T, δ) ≤ mmwG(T, δ) ≤ 3t · (`+ 1).

I Remark. Theorem 3.3 is best possible in the following strong sense: both conditions on
the VPG graph are necessary to guarantee boundedness of mim-width. As for the first,
consider split graphs. They admit a VPG representation (G,P) such that G contains at
most 4 columns (see Figure 1) but they do not have bounded mim-width [27]. As for the
second, consider grid graphs. Since any grid graph is planar and bipartite, it is a contact
graph of a family P of interiorly disjoint segments on a rectangular grid G [11] and hence
admits a VPG representation (G,P) such that each grid-edge in G belongs to at most one
path in P. On the other hand, grid graphs do not have bounded mim-width [31].

E. Galby and A. Munaro 46:5

Recalling that for any graph G, tw(G) ≤ 3·mmw(G)−1 [18, 31], the graphs satisfying the
assumptions in Theorem 3.3 have treewidth at most 9t · (`+ 1)− 1. However, in bounding
treewidth for these graphs, it seems more natural to work with branch decompositions
rather than directly using tree decompositions as in the classical definition of treewidth. We
conclude with a sketch of the proof of Theorem 2.2:

Sketch of proof. We provide the PTAS for Dominating Set. Let G be an input graph on
n vertices with grid representationR = (G,P). We assume that G is connected. This implies
that no column in G is unused and so the number of columns m is at most (c+1)n. Without
loss of generality, the paths in P contain only grid-points with x-coordinates between 0 and
m − 1 and y-coordinates at least 0. Given 0 < ε < 1, we fix k = dc(2

ε − 1)e. Clearly,
k > c. We finally assume that m > k + 2c − 1, or else we can compute an exact solution
by Theorems 3.2 and 3.3. We then proceed as follows. For a fixed s ∈ {0, . . . , k + c − 1},
we let r = dm−s−c

k+c e. For any i ∈ {0, . . . ,m − 2}, we compute in time polynomial in n the
set Xi of vertices whose corresponding path contains a grid-edge [(i, j), (i + 1, j)] for some
j ∈ N (we also set X−1 = ∅ and Xm−1 = ∅). For any j ∈ {0, . . . ,m − 1}, we compute in
time polynomial in n the set Vj of vertices whose corresponding path intersects column j.
We then partition G into slices as follows. For any i ∈ {0, . . . , r}, we define V (i, s) and the
set E(i, s) of exterior vertices of V (i, s) as follows (see Figure 2):

V (0, s) =
⋃s+c−1

`=0 V` and E(0, s) = Xs+c−1;
For 0 < i < r, V (i, s) =

⋃k+2c−1
`=0 V(i−1)·(k+c)+s+` and E(i, s) is the union of EL(i, s) =

X(i−1)·(k+c)+s−1 and ER(i, s) = Xi·(k+c)+s+c−1;
V (r, s) =

⋃m−1
`=(r−1)·(k+c)+s V` and E(r, s) = X(r−1)·(k+c)+s−1.

Moreover, for any i ∈ {0, . . . , r}, the set I(i, s) of interior vertices of V (i, s) is defined as
V (i, s)\E(i, s). For i ∈ {0, r}, we now let GI(i, s) = G[I(i, s)] and let GLR(i, s) be the graph
with vertex set V (i, s) and edge set E(G[V (i, s)]) ∪ {uv : u, v ∈ E(i, s)}. Moreover, for 0 <
i < r: GI(i, s) = G[I(i, s)]; GL(i, s) is the graph with vertex set IL(i, s) = I(i, s) ∪ EL(i, s)
and edge set E(G[IL(i, s)]) ∪ {uv : u, v ∈ EL(i, s)}; GR(i, s) is the graph with vertex set
IR(i, s) = I(i, s) ∪ ER(i, s) and edge set E(G[IR(i, s)]) ∪ {uv : u, v ∈ ER(i, s)}; GLR(i, s) is
the graph with vertex set V (i, s) and edge set E(G[V (i, s)]) ∪ {uv : u, v ∈ EL(i, s)} ∪ {uv :
u, v ∈ ER(i, s)}.

V (i, s)

(i− 1)(k + c) + s− 1
(i− 1)(k + c) + s + c− 1

∈ EL(i, s)

V (i − 1, s)

i(k + c) + s + c

∈ ER(i, s)

∈ ER(i− 1, s)

Figure 2: The partition of the input graph G into slices.

E u r o C G ’ 2 1

46:6 REFERENCES

We then observe that, for each i such that the corresponding graphs are defined, the
VPG representations of GI(i, s), G[V (i, s)], G[IL(i, s)] and G[IR(i, s)] induced by R contain
a bounded number of columns. Using Theorems 3.2 and 3.3, we then compute minimum
dominating sets SI(i, s), SL(i, s), SR(i, s) and SLR(i, s) of GI(i, s), GL(i, s), GR(i, s) and
GLR(i, s), respectively, in time polynomial in n. Now, for 0 < i < r, let S(i, s) be a
set of minimum cardinality among SI(i, s), SL(i, s), SR(i, s) and SLR(i, s). Similarly, for
i ∈ {0, r}, let S(i, s) be a set of minimum cardinality among SI(i, s) and SLR(i, s). We then
repeat the procedure above for each fixed s ∈ {0, . . . , k+ c− 1} in order to compute the sets
Ss =

⋃r
i=0 S(i, s) and return the smallest set S among the Ss’s in time polynomial in n. It

can be shown that S is a dominating set of G such that |S| ≤ (1 + ε)|OPT|. J

References

1 A. Asinowski, E. Cohen, M. C. Golumbic, V. Limouzy, M. Lipshteyn, and M. Stern.
Vertex intersection graphs of paths on a grid. Journal of Graph Algorithms and
Applications, 16(2):129–150, 2012.

2 B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J.
ACM, 41(1):153–180, 1994.

3 S. Bandyapadhyay, A. Maheshwari, S. Mehrabi, and S. Suri. Approximating dominating
set on intersection graphs of rectangles and L-frames. Computational Geometry, 82:32
44, 2019.

4 R. Belmonte and M. Vatshelle. Graph classes with structured neighborhoods and
algorithmic applications. Theoretical Computer Science, 511:54–65, 2013.

5 T. Biedl and M. Derka. Splitting B2-VPG graphs into outer-string and co-comparability
graphs. In F. Ellen, A. Kolokolova, and J.-R. Sack, editors, Algorithms and Data
Structures, pages 157–168. Springer International Publishing, 2017.

6 P. Bose, P. Carmi, J. M. Keil, A. Maheshwari, S. Mehrabi, D. Mondal, and M. Smid.
Computing maximum independent set on outerstring graphs and their relatives. In
Z. Friggstad, J.-R. Sack, and M. R. Salavatipour, editors, Algorithms and Data
Structures, pages 211–224. Springer International Publishing, 2019.

7 M. Bougeret, S. Bessy, D. Gonçalves, and C. Paul. On Independent Set on B1-EPG
graphs. In L. Sanità and M. Skutella, editors, Approximation and Online Algorithms,
pages 158–169. Springer International Publishing, 2015.

8 D. Chakraborty, S. Das, and J. Mukherjee. Approximating Minimum Dominating Set
on string graphs. In I. Sau and D. M. Thilikos, editors, Graph-Theoretic Concepts in
Computer Science, pages 232–243. Springer International Publishing, 2019.

9 S. Chaplick, V. Jeĺınek, J. Kratochv́ıl, and T. Vyskočil. Bend-bounded path intersection
graphs: Sausages, noodles, and waffles on a grill. In M. C. Golumbic, M. Stern, A. Levy,
and G. Morgenstern, editors, Graph-Theoretic Concepts in Computer Science, pages
274–285. Springer Berlin Heidelberg, 2012.

10 M. Chleb́ık and J. Chleb́ıková. Approximation hardness of dominating set problems in
bounded degree graphs. Information and Computation, 206(11):1264–1275, 2008.

11 J. Czyzowicz, E. Kranakis, and J. Urrutia. A simple proof of the representation of
bipartite planar graphs as the contact graphs of orthogonal straight line segments.
Information Processing Letters, 66(3):125–126, 1998.

12 M. Damian and S. V. Pemmaraju. APX-hardness of domination problems in circle
graphs. Information Processing Letters, 97(6):231–237, 2006.

REFERENCES 46:7

13 F. V. Fomin, P. A. Golovach, and J.-F. Raymond. On the tractability of optimization
problems on h-graphs. Algorithmica, 82(9):2432–2473, 2020.

14 J. Fox and J. Pach. Computing the independence number of intersection
graphs. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’11, pages 1161–1165. Society for Industrial and Applied
Mathematics, 2011.

15 M. C. Golumbic and U. Rotics. On the clique-width of some perfect graph classes.
International Journal of Foundations of Computer Science, 11(03):423–443, 2000.

16 D. Gonçalves, L. Isenmann, and C. Pennarun. Planar graphs as L-intersection or L-
contact graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’18, pages 172–184. Society for Industrial and Applied
Mathematics, 2018.

17 L. Jaffke, O. Kwon, T. J. F. Strømme, and J. A. Telle. Mim-width III. Graph powers and
generalized distance domination problems. Theoretical Computer Science, 796:216–236,
2019.

18 J. Jeong, S. H. Sæther, and J. A. Telle. Maximum matching width: New characterizations
and a fast algorithm for dominating set. Discrete Applied Mathematics, 248:114–124,
2018.

19 J. Kratochv́ıl. String graphs. II. Recognizing string graphs is NP-hard. Journal of
Combinatorial Theory, Series B, 52(1):67–78, 1991.

20 J. Kratochv́ıl. String graphs. I. The number of critical nonstring graphs is infinite.
Journal of Combinatorial Theory, Series B, 52(1):53–66, 1991.

21 J. Kratochv́ıl. A special planar satisfiability problem and a consequence of its NP-
completeness. Discrete Applied Mathematics, 52(3):233–252, 1994.

22 J. Kratochv́ıl and J. Matoušek. String graphs requiring exponential representations.
Journal of Combinatorial Theory, Series B, 53(1):1–4, 1991.

23 J. Kratochv́ıl and J. Nešetřil. INDEPENDENT SET and CLIQUE problems in
intersection-defined classes of graphs. Commentationes Mathematicae Universitatis
Carolinae, 31(1):85–93, 1990.

24 A. Lahiri, J. Mukherjee, and C. R. Subramanian. Maximum Independent Set on B1-
VPG graphs. In Z. Lu, D. Kim, W. Wu, W. Li, and D.-Z. Du, editors, Combinatorial
Optimization and Applications, pages 633–646. Springer International Publishing, 2015.

25 S. Mehrabi. Approximation algorithms for independence and domination on B1-VPG
and B1-EPG graphs. CoRR, abs/1702.05633, 2017. URL https://arxiv.org/abs/
1702.05633.

26 S. Mehrabi. Approximating domination on intersection graphs of paths on a grid. In
R. Solis-Oba and R. Fleischer, editors, Approximation and Online Algorithms, pages
76–89. Springer International Publishing, 2018.

27 S. Mengel. Lower bounds on the mim-width of some graph classes. Discrete Applied
Mathematics, 248:28–32, 2018.

28 S. H. Sæther and M. Vatshelle. Hardness of computing width parameters based on
branch decompositions over the vertex set. Theoretical Computer Science, 615:120–125,
2016.

29 M. Schaefer, E. Sedgwick, and Daniel Štefankovič. Recognizing string graphs in NP.
Journal of Computer and System Sciences, 67(2):365–380, 2003.

30 J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on partial
k-trees. SIAM Journal on Discrete Mathematics, 10(4):529–550, 1997.

31 M. Vatshelle. New Width Parameters of Graphs. PhD thesis, University of Bergen, 2012.

E u r o C G ’ 2 1

Covering a Curve with Subtrajectories∗

Hugo A. Akitaya1, Frederik Brüning2, Erin Chambers3, and Anne
Driemel4

1 School of Computer Science, Carleton University, Canada
2 Department of Computer Science, University of Bonn, Germany
3 Department of Computer Science, Saint Louis University, USA
4 Hausdorff Center for Mathematics, University of Bonn, Germany

Abstract
We study subtrajectory clustering under the Fréchet distance. Given a polygonal curve P with
n vertices, and parameters k and `, the goal is to find k center curves of complexity at most
` such that every point on P is covered by a subtrajectory that has small Fréchet distance to
one of the k center curves. We suggest a new approach to solving this problem based on a set
cover formulation leading to polynomial-time approximation algorithms. Our solutions rely on
carefully designed set system oracles for systems of subtrajectories.

1 Introduction

Many applications use recorded sequences of positions of moving objects, such as migrating
animals, sports players, traffic. Other types of movement are also possible, such as in gesture
analysis or eye tracking. Given the nature of the data aquisition, we usually model such
trajectory data as piecewise linear curves in Rd. One particular question which has gotten
much attention relates to clustering trajectory data; typically, one wishes to extract good
representative curves that summarize the data well. This necessitates a notion of similarity
to compare and evaluate simplified representations of curves. The Fréchet distance is one
such measure, which in addition to geometric closeness also takes the flow of the curve
into account; see the next section for the precise definition. In this paper, we consider the
problem of covering an input curve with a small set of representative curves, where every
portion of the input curve is similar to some representative under the Fréchet distance. Our
main focus is to recast this problem in a set system framework and to study approximation
algorithms for the corresponding set cover problem.

2 Related work

There are a number of heuristic approaches for clustering trajectories [19] as well as more
theoretical approaches based on similarity measures [18] and relative homology [17]. The
problem is often studied in a setting where each of the trajectories to be clustered is given
as an immutable element of a specific metric space.

In subtrajectory clustering, however, the goal is to find self-similarities within one long
trajectory (see Figure 1 for an example). To this end, we ask to find a suitable decomposition
that splits the input trajectory into smaller subsections (subtrajectories) that can be clustered.

∗ This research was initiated at the Eighth Annual Workshop on Geometry and Graphs, held at the
Bellairs Research Institute in Barbados, January 31 – February 7, 2020. The authors are grateful to
the organizers and to the participants of this workshop. Anne Driemel acknowledges funding from the
DFG (project nr. 313421352). Hugo Akitaya is supported by NSERC. Erin Chambers acknowledges
funding from the National Science Foundation through grants CCF-1614562, CCF-1907612 and DBI-
1759807. A full version of this article is available on arXiv [2].

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

47:2 Covering a Curve with Subtrajectories

Anne Driemel, TU Dortmund

1 - 3

Figure 1 Left: Example of a possible subtrajectory cluster within the trajectory of a soccer
player; Right: Example (k, `)-clustering [8].

Alternatively, we may ask for a covering instead of a decomposition by allowing subtrajectories
to overlap. There are many different variants of subtrajectory clustering studied and heuristics
for finding subtrajectory clusters have been proposed [14, 15]. One of the earlier theoretical
results for subtrajectory clustering under the Fréchet distance [6, 13] focuses on finding one
cluster of long subtrajectories that are similar to each other, optimizing different parameters.
They also show that finding an optimal cluster is NP-complete. In subsequent work, the
algorithmic techniques were shown to be useful for map construction [4, 5]. Recently, the
authors of [1] proposed to study facility location for subtrajectory clustering under the
discrete Fréchet distance. They present O(logm)-approximation algorithms, where m is the
number of points on the input curve. The main algorithm runs in Õ(|B|m3) if B is a set
of candidate center curves given with the input. They show how to generate a suitable
set B of size O(m2), and how to reduce the size to O(m) at the expense of an additional
O(logm)-factor in the approximation quality. Our work is different from [1] in many ways.
We restrict the complexity of admissible center curves and we use the continuous Fréchet
distance. The authors of [1] also consider a set cover problem as an intermediate step of their
algorithm, but their formulation leads to a set system of exponential size. Our approach
instead puts a set system at the center of the problem definition, and our main contribution
is a careful formulation of suitable set systems of much smaller size that lend themselves to
efficient approximation. Our work draws from ideas and techniques developed in works on
the (k, `)-clustering variant for trajectories [12, 7, 16, 9] (see Figure 1 for an exmaple), as
well as fundamental work on computing hitting sets of set systems for low VC-dimension [3],
which have previously not been applied to subtrajectory clustering. Given a polygonal curve
P with n vertices, and parameters k and `, the goal is to find k center curves of complexity
at most ` such that every point on P is covered by a subtrajectory, that has small Fréchet
distance to one of the k center curves.

3 Preliminaries

A sequence of n points p1, . . . , pn ∈ Rd defines a polygonal curve P by linearly interpolating
consecutive points, that is, for each i, we obtain the edge {tpi+(1−t)pi+1|t ∈ [0, 1]}. We may
think of P resulting from the concatenation of the edges in the given order as a parametrized
curve, that is, a function P : [0, 1] 7→ Rd. Note that for any such parametrized curve we
can find real values s1 ≤ · · · ≤ sn, such that P (si) = pi. We call the ordered set of the
pi the vertices of P and we denote it with V (P). We call the number of vertices n the

Akitaya, Brüning, Chambers, and Driemel 47:3

complexity of the curve. For any two a, b ∈ [0, 1] we denote with P [a, b] the subcurve of
P that starts at P (a) and ends at P (b). Let Xd` = (Rd)`. We think of the elements of this
set as sequences of ` points in Rd, the set of all polygonal curves of ` vertices in Rd.

For two parametrized curves P and Q, we define their Fréchet distance as

dF (P,Q) = inf
γ:[0,1] 7→[0,1]

sup
t∈[0,1]

‖P (γ(t))−Q(t)‖,

where γ ranges over all strictly monotone increasing functions. A curve Q ∈ Xd` is an `-
simplification of a curve P if its Fréchet distance is minimum among all curves in Xd` . Let
X be a set. We call a set R, where any r ∈ R is of the form r ⊆ X a set system with
ground set X. Let R be a set system with ground set X. A set cover of R is a subset
S ⊂ R such that the ground set is covered by the union of the sets in S. The set cover
problem asks to find a set cover for a given R of minimum size.

4 Problem definition

Let P be a polygonal curve given by a sequence of points p1, . . . , pn ∈ Rd and endowed with
a set of m real values 0 = t1 < t2 < · · · < tm = 1 which define a set of subcurves of the form
Sij = P [ti, tj]. Consider set of values ti, we refer to the respective points on the curve P (ti)
for 1 ≤ i ≤ m as breakpoints. Let ` ∈ N and ∆ ∈ R be fixed parameters.

Consider the set system R with ground set Z = {1, . . . ,m − 1} where each set rQ ∈ R
is defined by a polygonal curve Q ∈ Xd` as follows

rQ = {z ∈ Z | ∃i ≤ z < j with dF (Q,P [ti, tj]) ≤ ∆} (1)

The main problem we are studying in this paper is to compute minimum-size set covers
for set systems defined as above; the set system framework allows us to draw from a rich
background of techniques in computing set covers. Our motivation is the related clustering
problem, where we think of Q as a candidate for a cluster center and the curves P [ti, tj]
as subcurves that are to be clustered. The goal is to cover the entire curve P with a small
set of metric balls centered at polygonal curves of low complexity. More precisely, we want
to find a minimum-size set of polygonal curves C ⊂ Xd` , such that the cost of clustering P
under the Fréchet distance is at most ∆; here, we break P into subcurves determined by
the breakpoints, each of which must match to some curve of C. We define the cost function

φ(P,C) = min
I⊆S

max
(i,j)∈I

min
q∈C

dF (P [ti, tj], q),

where S = {(i, j) ∈ N2 | 1 ≤ i < j ≤ m}, and we require that I satisfies

[0, 1] =
⋃

(i,j)∈I
[ti, tj].

I represents a set of intervals starting and ending at breakpoints that together cover the
parametrization interval of P . The problem we study in this paper is to find a set of cluster
centers C ⊂ Xd` of size k, such that φ(P,C) ≤ ∆. It is important to note that we do not
compute a clustering of the set of subcurves of P . Instead, we want to find a covering of the
curve P with subcurves that allows for a good clustering.

EuroCG’21

47:4 Covering a Curve with Subtrajectories

5 Results

Using the techniques described further below, we can show results of the following form.
Let P : [0, 1] → Rd be a polygonal curve of complexity n with breakpoints 0 ≤

t1, . . . , tm ≤ 1. Assume there exists a set C ⊂ Xd` of size k, such that φ(P,C) ≤ ∆. We
prove that there exists an algorithm that computes an approximation to the exact solution:
a set C ′ ⊂ Xd`′ of size k′ such that φ(P,C ′) ≤ ∆′, for several possible target approximations
k′, `′, and ∆′ that depend upon k, `, and ∆. Table 1 gives an overview of our running times
and approximation quality. Details are in the full version [2], and below we sketch the main
ideas. In addition, we show in the full version that, even when fixing ` = 1 and minimizing
k, this problem is NP-Hard, via a reduction from Planar-Monotone-3SAT.

k′ `′ ∆′ running time

O(k logm) ` 3∆ O(m3n`+m4 +m2TS(n, `)))

O(k logm) ` O(∆) Õ(m4`2 + n+m2TS(n, `))

O(k log k logm loglogm) 2` O(∆) Õ
(
m2k2`2 +mn

)

Table 1 Overview of results. We use Õ(·) to denote asymptotic running times omitting
logarithmic factors. TS(n, `) is the running time to compute an `-simplification of a curve of P [ti, tj]
for any 0 ≤ i < j ≤ 1.

6 A set system for approximation

We modify the set system in a way that preserves the initial structure but allows for
more efficient approximations of the clustering problem. Starting from the center curve
problem [7], let P ⊆ XdN be a set of curves. Assume ` ∈ N is fixed. For q ∈ P let µ`(q) be a
`-simplification of q. By the triangle inequality, it holds for any q ∈ P, and for any c ∈ Xd` ,

max
p∈P

dF (p, µ`(q)) ≤ max
p∈P

(dF (p, c) + dF (c, q) + dF (q, µ`(q))) ≤ 3 max
p∈P

dF (p, c)

In particular, this holds for c being the optimal 1-center curve which minimizes the maximum
Fréchet distance to the curves in P. At the same time, the simplification µ`(q) is a valid
solution to the center curve problem. This implies that µ`(q) is a 3-approximation to the
optimal 1-center. Therefore, this yields a 3-approximation to the center curve problem, as
long as an optimal simplification can be computed exactly.

Consider a set system R̃0 defined on the ground set Z = {1, . . . ,m− 1}, where each set
ri,j ∈ R̃0 is of the form

ri,j = {z ∈ Z | ∃i′ ≤ z < j′ with dF (P [ti′ , tj′], µ`(P [ti, tj])) ≤ 3∆}.
I Lemma 1. For any rQ ∈ R, there is a ri,j ∈ R̃0 such that rQ ⊆ ri,j.
Proof. We can rewrite the definition of rQ as follows. Let Y be the set of tuples (i, j) ∈ N2

with 1 ≤ i < j ≤ m and dF (Q,P [ti, tj]) ≤ ∆. We have that rQ =
⋃

(i,j)∈Y [i, j) ∩ N. Let
(i, j), (i′, j′) ∈ Y . Using the triangle inequality, we can bound dF (P [ti′ , tj′], µ`(P [ti, tj])) by

dF (P [ti′ , tj′], Q) + dF (Q,P [ti, tj]) + dF (P [ti, tj], µ`(P [ti, tj])) ≤ 3∆.

By the definition of ri,j , we have [i′, j′)∩N ⊆ ri,j and therefore rQ ⊆ ri,j . In other words,
we can choose any maximal set of covered intervals within rQ and use the simplification of
the corresponding subcurve of P to find a set of R̃0 that includes rQ. J

Akitaya, Brüning, Chambers, and Driemel 47:5

The well-known greedy set cover algorithm yields an O(log(m)) approximation for a
ground set of size m [10]. The algorithm works as follows: It incrementally builds a set
cover by taking the set with the largest number of uncovered elements in each step. We
apply this algorithm to the set system R̃0. From the resulting set cover we obtain a set C
consisting of `-simplifications µ`(P [ti, tj])) for each ri,j , such that φ(P,C) ≤ 3∆. Then, it
remains to show that efficient set system oracles can be built for R̃0. This can be done by
employing data structures for Fréchet queries, such as the one by Driemel and Har-Peled [11].
From this we obtain the first two results in Table 1.

7 A faster algorithm

Our main result is an adaptation of the set cover algorithm by Brönniman and Goodrich [3]
that improves upon the greedy set cover in terms of running time. The result is stated in
the bottom line of Table 1. A crucial element is the formulation of a suitable set system for
approximation. Here, we describe such a set system for ` = 2. We define the set system
R̃2 with ground set Z = {1, . . . ,m − 1}. Denote τi,j = P (ti)P (tj). For a subsequence
S = s1, . . . , sr of 1, . . . ,m, denote

π(S) = τs1,s2 ⊕ τs2,s3 ⊕ · · · ⊕ τsr−1,sr .

A tuple (i, j) with 1 ≤ i ≤ j ≤ m defines a set ri,j ∈ R̃2 as follows

ri,j = {z ∈ Z | ∃x ∈ [xz, z], y ∈ [z + 1, yz] with dF (π(x, z, z + 1, y), τi,j)) ≤ 2∆},

where xz ≤ z < yz are indices which we obtain as follows. We scan breakpoints starting
from z in the backwards order along the curve and to test for each breakpoint x, whether

dF (τx,z, P [tx, tz]) ≤ 4∆. (2)

If x satisfies (2), then we decrement x and continue the scan. If x = 0 or if x does not
satisfy (2), then we set xz = x+ 1 and stop the scan. To set yz we use a similar approach:
We scan forwards from z+1 along the curve and test for each breakpoint y the same property
with τz+1,y and P [tz+1, ty]. If y satisfies the property, we increment y and continue the scan.
If y = m+1 or if y does not satisfy the property we set yz = y−1 and stop the scan. Figure 2
shows an example of z, xz and yz, and Figure 3 illustrates the idea of the query algorithm.

τi,j

Q

z
z + 1

x

y

j

i

P xz

yz

π(x, z, z + 1, y)

Figure 2 Example of a curve P and index z, such that z ∈ ri,j for some ri,j ∈ R̃2. Also shown
is a line segment Q, such that z ∈ rQ of the initial set system R. After preprocessing, we can test
z ∈ ri,j in constant time while using space in O(m2 + n).

EuroCG’21

47:6 Covering a Curve with Subtrajectories

τi,j

π(x, z, z + 1, y)

z + 1

z

x
y

i
j

2∆
2∆

λ λ′

λ
λ′

0

1

Figure 3 Illustration of the query z ∈ ri,j . The query checks if a monotone path is feasible in the
2∆-free-space diagram (right) of a subcurve of the proxy curve π(x, z, z+ 1, y) of z and a query τi,j

(left) for any x ∈ [xz, z] and y ∈ [z + 1, yz]. We can show that the query z ∈ ri,j can be answered
in O(1) time (after preprocessing).

7.1 The set system oracle

We describe a set system oracle for R̃2. In particular, we show how to build a data structure
that answers a query, given indices i, j and z, for the predicate z ∈ ri,j in O(1) time.

To build the data structure for the oracle, we first compute the indices xz and yz for
each 1 ≤ z ≤ m − 1, as specified in the definition of the set system. Next, we construct
a data structure that can answer for a pair of breakpoints i and z if there is a breakpoint
x with xz ≤ x ≤ z such that ‖P (tx) − P (ti)‖ ≤ 2∆ in O(1) time. For this we build an
m×m matrix M in the following way. For each breakpoint i we go through the sorted list
of breakpoints and check if ‖P (ti)−P (tj)‖ ≤ 2∆ for each 1 ≤ j ≤ m. While doing that, we
determine for each j which is the first breakpoint zi,j ≥ j with ‖P (ti)−P (tzi,j)‖ ≤ 2∆. The
entries zi,j are then stored in the matrix M at position M(i, j). Given the Matrix M the
oracle can answer if there is a breakpoint x with xz ≤ x ≤ z such that ‖P (tx)−P (ti)‖ ≤ 2∆
by checking if M(i, xz) ≤ z. The data structure can also answer if there is a breakpoint y
with z + 1 ≤ y ≤ yz such that ‖P (ty)− P (tj)‖ ≤ 2∆ by checking if M(j, z + 1) ≤ yz. The
final data structure stores the matrix M only.

We answer queries as follows. Given z, i and j, we want to determine if z ∈ ri,j . We return
“yes”, if the following three conditions are satisfied: (i) M(i, xz) ≤ z (ii) M(j, z + 1) ≤ yz
(iii) ‖s− P (tz)‖ ≤ 2∆, where s is the intersection of the bisector between the points P (tz)
and P (tz+1) and the line segment τi,j . Otherwise, the algorithm returns “no”.

Correctness is implied by the following lemma.

I Lemma 2. dF (π(x, z, z + 1, y), τi,j) ≤ 2∆ if and only if the following three conditions are
satisfied: (i) ‖P (tx) − u‖ ≤ 2∆ (ii) ‖P (ty) − v‖ ≤ 2∆ (iii) min λ,λ′∈[0,1]

λ≤λ′
(‖a − (λv + (1 −

λ)u)‖, ‖b−(λ′v+(1−λ′)u)‖) ≤ 2∆ where a = P (tz), b = P (tz+1), u = P (ti), and v = P (tj).

7.2 The general case

For the general case, where ` ≥ 2, we replace the edges of the proxy curve π in the above
set system by simplifications of the corresponding subcurves. We show that it is possible to
ensure that these simplifications are nested in a certain way. This in turn allows us to build
efficient data structures for this set system, leading to the third result in Table 1.

Akitaya, Brüning, Chambers, and Driemel 47:7

References
1 Pankaj K. Agarwal, Kyle Fox, Kamesh Munagala, Abhinandan Nath, Jiangwei Pan,

and Erin Taylor. Subtrajectory clustering: Models and algorithms. In Proceedings of
the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
SIGMOD/PODS ’18, page 75–87, New York, NY, USA, 2018. Association for Computing
Machinery.

2 Hugo A. Akitaya, Frederik Brüning, Erin Chambers, and Anne Driemel. Covering a curve
with subtrajectories. CoRR, arXiv:2103.06040, 2021.

3 Hervé Brönnimann and Michael T Goodrich. Almost optimal set covers in finite vc-
dimension. Discrete & Computational Geometry, 14(4):463–479, 1995.

4 Kevin Buchin, Maike Buchin, David Duran, Brittany Terese Fasy, Roel Jacobs, Vera
Sacristan, Rodrigo I. Silveira, Frank Staals, and Carola Wenk. Clustering trajectories for
map construction. In Proceedings of the 25th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, SIGSPATIAL ’17, New York, NY, USA,
2017. Association for Computing Machinery.

5 Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Jorren Hendriks, Erfan Hosseini
Sereshgi, Vera Sacristán, Rodrigo I. Silveira, Jorrick Sleijster, Frank Staals, and Carola
Wenk. Improved map construction using subtrajectory clustering. In Proceedings of the 4th
ACM SIGSPATIAL Workshop on Location-Based Recommendations, Geosocial Networks,
and Geoadvertising, LocalRec’20, New York, NY, USA, 2020. Association for Computing
Machinery.

6 Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Maarten Löffler, and Jun Luo.
Detecting commuting patterns by clustering subtrajectories. In Seok-Hee Hong, Hiroshi
Nagamochi, and Takuro Fukunaga, editors, Algorithms and Computation, pages 644–655,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

7 Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina Kostitsyna,
Maarten Löffler, and Martijn Struijs. Approximating (k, l)-center clustering for curves. In
Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
2922–2938. SIAM, 2019.

8 Kevin Buchin, Anne Driemel, Natasja van de L’Isle, and André Nusser. Klcluster: Center-
based clustering of trajectories. In Proceedings of the 27th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPATIAL ’19, page
496–499, New York, NY, USA, 2019. Association for Computing Machinery.

9 Maike Buchin, Anne Driemel, and Dennis Rohde. Approximating (k, l)-median clustering
for polygonal curves. In SODA 2021. SIAM, 2021. (To appear).

10 V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4(3):233–235, 1979.

11 Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the Fréchet distance
with shortcuts. SIAM J. Comput., 42(5):1830–1866, 2013.

12 Anne Driemel, Amer Krivosija, and Christian Sohler. Clustering time series under the
Fréchet distance. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages
766–785, 2016.

13 J. Gudmundsson and N. Valladares. A GPU approach to subtrajectory clustering using the
Fréchet distance. IEEE Transactions on Parallel and Distributed Systems, 26(4):924–937,
April 2015.

14 Joachim Gudmundsson, Andreas Thom, and Jan Vahrenhold. Of motifs and goals: Mining
trajectory data. In Proceedings of the 20th International Conference on Advances in

EuroCG’21

47:8 Covering a Curve with Subtrajectories

Geographic Information Systems, SIGSPATIAL ’12, page 129–138, New York, NY, USA,
2012. Association for Computing Machinery.

15 Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: a partition-
and-group framework. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Beijing, China, June 12-14, 2007, pages 593–604, 2007.

16 Abhinandan Nath and Erin Taylor. k-median clustering under discrete Fréchet and
Hausdorff distances. In 36th International Symposium on Computational Geometry (SoCG
2020), volume 164, page 58, 2020.

17 F. T. Pokorny, K. Goldberg, and D. Kragic. Topological trajectory clustering with relative
persistent homology. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 16–23, 2016.

18 C. Sung, D. Feldman, and D. Rus. Trajectory clustering for motion prediction. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1547–1552,
Oct 2012.

19 Guan Yuan, Penghui Sun, Jie Zhao, Daxing Li, and Canwei Wang. A review of moving
object trajectory clustering algorithms. Artificial Intelligence Review, 47(1):123–144, March
2016.

Radial Level Planarity with Fixed Embedding∗

Guido Brückner1 and Ignaz Rutter2

1 Karlsruhe Institute of Technology
brueckner@kit.edu

2 University of Passau
rutter@fim.uni-passau.de

Abstract
We study level planarity testing of graphs with a fixed combinatorial embedding for three different
notions of combinatorial embeddings, namely the level embedding, the upward embedding and the
planar embedding, which allow for increasing degrees of freedom in the corresponding drawings.

For the fixed level embedding there are known, easy to test level planarity criteria. We use these
to prove an untangling lemma that plays a key role in a simple level planarity test with fixed upward
embedding. This test is then adapted to the case where only the planar embedding is fixed. Further,
we characterize radial upward planar embeddings, which lets us extend our results to radial level
planarity. No algorithms were previously known for these problems.

1 Introduction

Level planarity and upward planarity are planarity variants for directed graphs that enrich the
notion of planarity by imposing additional requirements based on the directions of the edges. A
drawing of a directed graph is upward if all edges are drawn as y-monotone curves. In the level
planar setting the y-coordinates of the vertices are fixed. Both planarity variants also exist in a
radial form, which we view as upward drawings on the surface of an infinite standing cylinder.

There is a natural definition of topological equivalence for such drawings. Two planar
drawings Γ1,Γ2 of a graph G are equivalent if there exists an isotopy between them, i.e.,
they can be continuously transformed into each other such that each intermediate image
is planar. For upward planar (level planar) drawings it is required that the intermediate
drawings are also upward planar (level planar). Equivalence classes of such drawings can be
combinatorially described by so-called embeddings (which give the circular order of edges
around each vertex), upward embeddings (which give the linear orders of incoming and
outgoing edges around each vertex), and level embeddings (specifying for each level the order
of its vertices and the edges that cross it), respectively. These notions also apply to the radial
setting, except that there level embeddings specify circular orderings rather than linear ones.

Not every embedding (upward embedding, level embedding) corresponds to a planar
drawing (upward planar drawing, level planar drawing). If such a drawing exists, we call the
embedding a planar embedding (upward planar embedding, level planar embedding). Given a
fixed combinatorial embedding of one of the above types, it therefore makes sense to ask
for which planarity notions there exists a planar drawing that induces the given embedding.
In this way, combinations of a planarity variant and combinatorial embedding type give
instantiations of the planarity testing with fixed embedding problem; see Table 1 for an
overview.

∗ Work partially supported by DFG grant Ru-1903/3-1.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

48:2 Radial Level Planarity with Fixed Embedding

type of fixed embedding
planarity notion none embedding upward level

planar O(n) O(n) n.a. n.a.[14] (Euler)

upward NPC O(n3/2) O(n) n.a.[11] [10, 5] [5]

radial upward NPC O(n log3 n) O(n) n.a.[13] Thm. 3.2 Lem. 3.1

level O(n) O(n) O(n) O(n)
[15] Thm. 4.6 Thm. 4.4 Lem. 4.1

radial level O(n) O(n) O(n) O(n)
[4] Thm. 4.6 Thm. 4.4 Lem. 4.1

Table 1 Overview of known results and our contribution (blue cells).

f

ee′
v

(b)(a)

Figure 1 Embedding with a source/sink assignment (a) and face sources/sinks in blue/red (b).

2 Preliminaries

We assume familiarity with basic graph-theoretic concepts. A planar embedding defines
faces bounded by facial walks v1, v2, . . . , vn, vn+1 = v1 where for each i with 1 ≤ i ≤ n the
edge {vi−1, vi} immediately precedes the edge {vi, vi+1} in the counter-clockwise cyclic order
of edges incident to vi. Let G = (V,E) be a directed graph with a planar embedding; see Fig. 1
for an illustration. A vertex v of G is a source (sink) if all edges incident to v originate from
(end at) v. A source/sink assignment ψ of G assigns to each source or sink v of G an ordered
pair (e, e′) of edges where e immediately precedes e′ in the counter-clockwise order of edges in-
cident to v [5]. There exists a unique face f on whose facial walk e immediately precedes e′, we
also say that ψ assigns v to f ; see Fig. 1a. An upward planar embedding induces a source/sink
assignment by assigning each source v to (e, e′), where e and e′ are the leftmost and rightmost
outgoing edge incident to v, respectively, and by assigning each sink v to (e, e′), where e
and e′ are the rightmost and leftmost outgoing edge incident to xv, respectively. Conversely, a
planar embedding together with a source/sink assignment induces an upward embedding. We
therefore use these concepts interchangeably. Let f be a face and let v1, v2, . . . , vn, vn+1 = v1
denote the facial walk that bounds f . For 1 ≤ i ≤ n the vertex vi is a face source of f if both
edges {vi−1, vi} and {vi, vi+1} originate from vi. Symmetrically, vi is a face sink of f if both
edges {vi−1, vi} and {vi, vi+1} have vi as their endpoint; see Fig. 1b. For each face f let nf
denote the number of face sources of f (cutvertices of G may be counted multiple times).

I Lemma 2.1 ([5],[7, Lemma 1]). Let G be a connected directed acyclic graph. An upward
embedding of G with source/sink assignment ψ is upward planar if and only if there exists a
face h (namely, the outer face) such that ψ assigns to each (inner) face f 6= h exactly nf − 1

G. Brückner and I. Rutter 48:3

s x

s′

g1 g2

h2

h1

t′

t

s g

h

t

(a) (b)

p p

(c)

t′

t

s

s′
x

pp

s

th1

g1

Figure 2 Proof of Lem. 3.1. Extend the radial upward drawing Γ (a) to a radial upward
drawing Γ′ (b), then unwrap it from the cylinder into the plane by cutting along the path p (c).

sources/sinks, and to h exactly nh + 1 sources/sinks.

When the planar embedding of G is fixed, Bertolazzi et al. provide a quadratic-time
algorithm to test whether a source/sink assignment subject to the conditions stated in
Lem. 2.1 exists and if so, compute one. This can be improved to O(n3/2) [10]. A level graph
is a directed graph G = (V,E) together with a level assignment ` : V → N. A level drawing
is an upward drawing of G where each vertex v has y-coordinate `(v). Each level graph G
has a proper form in which for each edge (u, v) ∈ E it is `(u) + 1 = `(v) and whose level
embeddings correspond bijectively to the level embeddings of G. It also has a star form in
which every level hosts exactly one vertex and whose upward planar embeddings correspond
bijectively to the upward planar embeddings of G [9, 8]. The following is common knowledge.

I Lemma 2.2. A radial level embedding of a level graph G in proper form is radial level planar
if for all choices of three independent edges (u, u′), (v, v′), (w,w′) of G with `(u) = `(v) = `(w)
where u, v, w appear in that cyclic order the vertices u′, v′, w′ appear in that cyclic order.

3 Radial Upward Planarity

We generalize the upward planarity criterion stated in Lem. 2.1 to radial upward planarity.

I Lemma 3.1. Let G be a connected directed acyclic graph. An upward embedding of G
is radial upward planar if and only if there exist two faces g, h such that the source/sink
assignment ψ assigns to each face f exactly nf − 1 sources/sinks, plus one source if f = g,
and plus one sink if f = h.

Proof Sketch. “⇒”: Let Γ be a radial upward planar drawing G; see Fig. 2(a). Augment Γ
as illustrated in Fig. 2 (b). Then cut the drawing at a path p from the new source s′ to the
new sink t′ and unwrap it from the cylinder into the plane; see Fig. 2 (c). Apply Lem. 2.1
on the unwrapped drawing to show the claimed properties. “⇐”: Use the source/sink
assignment ψ and a result of Bertolazzi et al. (see the if-part of the proof of Thm. 3 in [5])
to augment G to a planar acyclic graph with a single source and a single sink. Such graphs
are radial upward planar [12, 3]. J

A given upward embedding of G can be tested for radial upward planarity in linear time
using the criterion provided by Lem. 3.1. For a planar embedding, the criterion from Lem. 3.1
can be formulated as a maximum flow problem in a 2-apex graph, which can then be solved
in O(n log3 n) time [6, Cor. 5.1].

EuroCG’21

48:4 Radial Level Planarity with Fixed Embedding

y

x t

s
s

t

(a) (b)

O3

O3O1

O2 O3

O3

O2

O1

x

y

γ

Figure 3 Eliminating the turns x and y in the proof of Lem. 4.2.

I Theorem 3.2. It can be tested in O(n log3 n) time whether a given n-vertex graph G admits
a radial upward planar embedding with a given planar embedding E.

4 Level Planarity with Fixed Embedding

In this section, we investigate (radial) level planarity testing with fixed embedding. We start
with version, where the (radial) level embedding is fixed; it is based on Lemma 2.2.

I Lemma 4.1. It can be tested in linear time whether a (radial) level embedding of a level
graph in proper from is (radial) level planar.

Next, consider the slightly more relaxed version where we seek to decide whether a given
radial upward planar embedding is radial level planar. The following “untangling” lemma is
partially known [2, Lemma 3.4], [1, Claim 2], but only for non-radial level planar drawings.

I Lemma 4.2. Let G = (V,E) be a level graph, let Γ be a (radial) level planar drawing of G
with (radial) upward embedding E. Let a, b ∈ V with `(a) < `(b) be incident to a face f
such that embedding (a, b) inside f yields a (radial) upward embedding E ′ of G+ (a, b). If
there exists a curve γ inside the face f of Γ that connects a and b and does not intersect the
levels `(a) and `(b), there exists a (radial) level planar drawing Γ′ of G+ (a, b) with (radial)
upward embedding E ′.

Proof Sketch. Subdivide γ so that it crosses all levels at vertices. A vertex of γ is a turn if
its two neighbors lie on the same level. If γ has no turns, it is an upward drawing of (a, b).
Otherwise, there exist consecutive turns x, y, `(x) > `(y) that minimize `(x)− `(y). Modify
the drawing to eliminate these two turns. Let s be the last vertex before x with `(s) = `(y)
and let t be the first vertex after y with `(t) = `(x) on γ; see Fig. 3 (a). Between levels `(s)
and `(t), γ separates Γ into three regions O1, O2, O3. Exchange O1 and O2 without changing
the upward embedding, and remove the turns x and y from γ; see Fig. 3 (b). Use Lem. 2.2
to show that this preserves radial upward planarity. The proof follows by induction. J

We can use Lem. 4.2 to insert edges into a graph while maintaining (radial) upward
planarity such that all faces end up having size at most 4.

I Lemma 4.3. Let G = (V,E) be a level graph together with a (radial) upward planar
embedding E. We can compute in linear time a level graph G′ with (radial) upward planar
embedding E ′ whose faces have size at most 4 so that G has a (radial) level planar drawing
with embedding E if and only if G′ has a (radial) level planar drawing with embedding E ′.

Proof Sketch. Assume w.l.o.g. that G is in star form. Insert edges into G and E until all
faces have size at most 4 while maintaining (radial) level planarity. Let f be a face of E with

G. Brückner and I. Rutter 48:5

(a) (b) (c) (d) (e)
x

w

v

u

γ

f f ′′

f ′
x

w

v

u u

v

w

x

x

u = w

v

u = w

v

x

Figure 4 Inserting the edge (u, x) by defining the red curve γ (a) and using Lem. 4.2 to move
the blue obstruction (b). The upward embedding and obstruction may look different (c). If w is a
cutvertex, insert the edge (v, x) instead (e, d).

u v

w

x
v w

x

u
u

x w

vx

v

u
w

u

w
v

x

u
v

w

x(a) (b) (c) (d) (e) (f)

Figure 5 Inserting the red augmentation edges into inner faces (a–d) and the outer face (e, f).

at least five vertices incident to f . If there exist successive edges (u, v), (v, w) or (v, w), (u, v)
on the facial walk of f , insert the edge (u,w) by closely following the successive edges within f .
Otherwise each vertex incident to f is a face source or a face sink of f . Let (w, v) be an edge
incident to f that minimizes `(v)− `(w). Let (u, v) and (w, x) denote the edges that precede
and succeed (w, v). Because (w, v) minimizes `(v)− `(w) and because G is in star form, it
is `(u) ≤ `(w) < `(v) ≤ `(x). See Fig. 4. If u 6= w and v 6= x, then `(u) < `(w) < `(v) < `(x)
and there is a curve γ from u to x such that by Lem. 4.2 (u, x) can be inserted into G and E
while maintaining level planarity; see Fig. 4 (a–c). If u = w or v = x, insert (v, x) or (u,w)
instead; see Fig. 4 (d, e). J

I Theorem 4.4. Let G = (V,E) be a level graph together with a (radial) upward planar
embedding E. It can be tested in linear time whether G admits a (radial) level planar drawing
with (radial) upward planar embedding E.

Proof Sketch. Lem. 4.3 lets us assume that each face has size at most 4. No source/sink is
assigned to faces of size at most 3. Let f be an inner face of size 4 and let u, v, w, x denote the
facial walk of f . Let u,w be face sources and let v, x be face sinks. See Fig. 5 (a–d). Exactly
one of u, v, w, x is assigned to f . Bertolazzi et al. [5] show that if u is assigned to f , then the
edge (w, u) can be inserted into f in any upward planar drawing. For level planarity, this
requires `(w) < `(u); see Fig. 5 (a). Thus, if `(w) ≥ `(u), then G is not (radial) level planar
with (radial) upward embedding E . The cases when v, w or x are assigned to f are symmetric;
see Fig. 5 (b–d). The outer face can be handled similarly; see Fig. 5 (e, f). Inserting these
edges gives a level graph G′ with a single source u and a single sink x together with an
embedding E ′. This implies that G is (radial) level planar with upward embedding E . J

Finally, consider the least restricted version of level planarity testing, where only a planar
embedding E of G is fixed. Our result relies on a translation of Lem. 4.3 to this setting.

I Lemma 4.5. Let G be a level graph with a planar embedding E. We can compute in linear
time a level graph G′ with planar embedding E ′ whose faces have size at most 4 so that G
has a (radial) level planar drawing with embedding E if and only if G′ has a (radial) level
planar drawing with embedding E ′.

EuroCG’21

48:6 Radial Level Planarity with Fixed Embedding

I Theorem 4.6. Let G be a level graph together with a planar embedding E. It can be tested
in linear time whether G admits a (radial) level planar drawing with planar embedding E.

Proof Sketch. Lem. 4.5 lets us assume that each face has size at most 4. Check whether there
exists a (radial) upward planar embedding with planar embedding E using Lemmas 2.1 and 3.1.
Exactly one source/sink is assigned to each inner face of size 4. From the assignment of a
source or sink to an inner face f , we know which edge must be inserted in the augmentation
procedure of Bertolazzi et al., and we can test beforehand, whether this respects the given
level assignment. This leaves at most two vertices that can be assigned to f . Such an
assignment can then be computed in linear time. J

References

1 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Strip
planarity testing for embedded planar graphs. Algorithmica, 77(4):1022–1059, 2017. doi:
10.1007/s00453-016-0128-9.

2 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Martin L. Demaine, Joseph S. B.
Mitchell, Saurabh Sethia, and Steven Skiena. When can you fold a map? Comput. Geom.,
29(1):23–46, 2004. doi:10.1016/j.comgeo.2004.03.012.

3 Christopher Auer, Christian Bachmaier, Franz-Josef Brandenburg, and Andreas Gleißner.
Classification of planar upward embedding. In Marc J. van Kreveld and Bettina Speckmann,
editors, Proceedings of the 19th International Symposium on Graph Drawing (GD’11), vol-
ume 7034 of Lecture Notes in Computer Science, pages 415–426. Springer, 2011. doi:
10.1007/978-3-642-25878-7_39.

4 Christian Bachmaier, Franz-Josef Brandenburg, and Michael Forster. Radial level planarity
testing and embedding in linear time. J. Graph Algorithms Appl., 9(1):53–97, 2005. doi:
10.7155/jgaa.00100.

5 Paola Bertolazzi, Giuseppe Di Battista, Giuseppe Liotta, and Carlo Mannino. Upward
drawings of triconnected digraphs. Algorithmica, 12(6):476–497, 1994. doi:10.1007/
BF01188716.

6 Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-
Nilsen. Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear
time. SIAM J. Comput., 46(4):1280–1303, 2017. doi:10.1137/15M1042929.

7 Guido Brückner and Vera Chekan. Drawing two posets. CoRR, abs/2010.12928, 2020.
arXiv:2010.12928.

8 Guido Brückner, Ignaz Rutter, and Peter Stumpf. Level planarity: Transitivity vs. even
crossings. In Therese C. Biedl and Andreas Kerren, editors, Proceedings of the 26th
International Symposium on Graph Drawing and Network Visualization (GD’18), vol-
ume 11282 of Lecture Notes in Computer Science, pages 39–52. Springer, 2018. doi:
10.1007/978-3-030-04414-5_3.

9 Radoslav Fulek, Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič. Hanani-
Tutte, Monotone Drawings, and Level-Planarity, pages 263–287. Springer New York, New
York, NY, 2013. doi:10/dxxr.

10 Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In David S. Johnson, Ronald Fagin, Michael L. Fredman,
David Harel, Richard M. Karp, Nancy A. Lynch, Christos H. Papadimitriou, Ronald L.
Rivest, Walter L. Ruzzo, and Joel I. Seiferas, editors, Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, pages 448–456. ACM, 1983. doi:10.1145/800061.
808776.

G. Brückner and I. Rutter 48:7

11 Ashim Garg and Roberto Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM J. Comput., 31(2):601–625, 2001. doi:10.1137/
S0097539794277123.

12 S. Mehdi Hashemi. Digraph embedding. Discret. Math., 233(1-3):321–328, 2001. doi:
10.1016/S0012-365X(00)00249-1.

13 S. Mehdi Hashemi, Ivan Rival, and Andrzej Kisielewicz. The complexity of upward drawings
on spheres. Order, 14:327–363, 1997. doi:10.1023/A:1006095702164.

14 John E. Hopcroft and Robert Endre Tarjan. Efficient planarity testing. J. ACM, 21(4):549–
568, 1974. doi:10.1145/321850.321852.

15 Michael Jünger, Sebastian Leipert, and Petra Mutzel. Level planarity testing in linear
time. In Sue Whitesides, editor, Graph Drawing, 6th International Symposium, GD’98,
Montréal, Canada, August 1998, Proceedings, volume 1547 of Lecture Notes in Computer
Science, pages 224–237. Springer, 1998. doi:10.1007/3-540-37623-2_17.

EuroCG’21

Row-based Rectangle Contact Representations of
Triangular Grid Graphs∗

Martin Nöllenburg, Anaïs Villedieu, and Jules Wulms

Algorithms and Complexity Group, TU Wien, Vienna, Austria
{noellenburg, avilledieu, jwulms}@ac.tuwien.ac.at

Abstract
Semantic word or tag clouds are popular visualizations summarizing texts by displaying their most
relevant keywords while also optimizing which keywords are placed next to each other so as to
communicate some semantic information. When modeling words as their bounding boxes and
semantic proximity as touching boxes, this type of problem translates into a rectangle contact
graph optimization problem, where as many of the desired contacts should be realized while no
undesired contacts occur. In this paper we study this contact optimization problem with rectangles
of prescribed width and unit height (modeling words in a single font size), which are to be placed in
multiple rows of a word cloud. We present algorithms and an ILP model to maximize the number of
realized adjacencies or to minimize the total size of any gaps between words for the special case of a
triangular grid graph representing the desired contacts.

1 Introduction

Contact representations of planar graphs are a well-studied topic in graph theory, graph
drawing, and computational geometry [7,8,10]. Vertices are represented by geometric objects,
e.g., disks or polygons, and two objects touch if and only if they are connected by an edge.
They find many applications, for instance in VLSI design [18], cartograms [12], or semantic
word clouds [1, 17], the latter of which motivate this paper.

Figure 1 A word cloud generated from the apnews.com frontpage using worditout.com on the
day of the certification of Joe Biden’s victory.

Word or tag clouds are popular visualizations that summarize textual information in an
aesthetically pleasing way. They show the main themes of a text by displaying the most
important keywords obtained from text analysis and scale the word size to their frequency in
the text. Word clouds became widespread after the first automated generation tool “Wordle”

∗ We acknowledge funding by the Austrian Science Fund (FWF) under grant P31119.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

49:2 Row-based Rectangle Contact Representations of Triangular Grid Graphs

v0,0 v0,1 v0,2

v1,0 v1,1 v1,2

v2,0 v2,1 v2,2

R0,0 R0,1 R0,2

R1,0 R1,1 R1,2

R2,0 R2,1 R2,2

Figure 2 A 3 × 3 triangular grid and the associated representation

was published in 2009 [14]. Word clouds with their different font sizes and words packed
without semantic context, such as the one shown in Figure 1, have also received some criticism
as their audience sometimes fails at understanding the underlying data (while enjoying their
playful nature) [9]. For example, neighboring words that are not semantically related can be
misleading (see marked words in Figure 1). As a way to improve readability, semantic word
clouds have been introduced [1, 6, 17]. In semantic word clouds, an underlying edge-weighted
graph indicates the semantic relatedness of two words, whose positions are chosen such that
semantically related words are next to each other while unrelated words are kept far apart.

Classic word clouds are often generated using forced-based approaches, alongside with a
spiral placement heuristic [14–16] that allows for a very compact final layout. This method
is powerful even when the general position of a word is dictated by an underlying map [4,11].
Semantic word clouds on the other hand have been approached with many different techniques,
e.g., force directed [6], seam-carving [17], and multi dimensional scaling [2]. The problem
has also been studied from a theoretical point of view, where an edge of the semantic word
graph is realized if the bounding boxes of two related words properly touch; the realized
edge weight is gained as profit. Then the semantic word cloud problem can be phrased as
the optimization problem to maximize the total profit. Barth et al. [1] and later Bekos et
al. [3] gave several hardness and approximation results for this problem (and some variations)
on certain graph classes. The underlying geometric problem also has links to more general
contact graph representation problems, like rectangular layouts [5] or cartograms [13].

Grid graphs are missing from the current literature on rectangle contact graphs, yet
they have some interesting properties in the context of word clouds. For instance, they
are compact, have an even distribution of words and our eye naturally understands words
grouped in lines or tables. In this paper we study grid-like and row-based contact graphs of
unit-height but arbitrary-width rectangles, which may represent the bounding boxes of words
with fixed font size, as a first step towards more complex settings. For example, our setting
can easily be generalized to row-based layouts in which each vertex can have a different
number of neighbors on the layers above and below itself. For grid-like and row-based layouts,
we consider the area minimization and the contact maximization problems.

2 Preliminaries

Let G = (V, E) be a triangular grid graph with L layers and K vertices per layer. Each vertex
v = vi,j ∈ V is indexed by its position in the grid: vi,j with i ∈ [0, L− 1] and j ∈ [0, K − 1]
is the jth vertex on the ith layer. We associate to each vertex an axis-aligned unit-height
rectangle Ri,j with width wi,j , x-position xi,j given by the x-coordinate of its bottom left
corner, and y-coordinate i (see Figure 2). Let wmax := max{wi,j | vi,j ∈ V }.

The rectangles are laid out in the plane, such that they do not overlap except on their
boundaries. Such a layout R is called a representation of G. An edge (u, v) ∈ E is realized

M. Nöllenburg, A. Villedieu, and J. Wulms 49:3

t

R0,0 R0,1 R0,2 R0,3

R1,0 R1,1 R1,2 R1,3

R2,0 R2,1 R2,2 R2,3

R3,0 R3,1 R3,2 R3,3

G0,0 G0,1 G0,2

G1,0 G1,1 G1,2

G2,2G2,1G2,0

G3,0 G3,1 G3,2

l0

l1

l2

l3

r0

r1

r2

r3

s

Figure 3 A sketch of the flow network on a 3 × 4 grid, edges incident to gaps are omitted.

in a representation R if rectangles Ru and Rv, representing vertices u and v, intersect along
their boundaries for a positive length ε > 0, which we will denote by (Ru, Rv) ∈ R. If Ru

and Rv are on the same layer this happens along a vertical boundary and these contacts are
called horizontal contact. Otherwise, the intersection is located along a horizontal boundary
if Ru and Rv are on adjacent layers and these are vertical contact. Contacts between boxes
whose vertices are not adjacent in G are forbidden adjacencies. If such adjacencies exist,
then the representation R is invalid, as it could let a user infer that unrelated words are
related. Within this model we study two problem variations, area minimization and contact
maximization. Forbidden adjacencies are important considerations in both versions.

3 Area minimization

To a given vertex-weighted triangular grid graph G = (V, E), we associate a flow network
N = (D = (V ′, E′); l; c; b; cost), with edge capacity lower bound l : E′ → R+

0 , edge capacity
c : E′ → R+

0 , vertex production/consumption b : V ′ → R and cost function cost : E′ → R+
0 .

Each unit of cost will represent a unit length gap and each unit of flow on an edge will
represent a unit length contact. To create the network we create two vertices for each rectangle
and one for each potential gap. Every edge that ends on a gap vertex has cost = 1. We also
add an edge e between any two vertices of the same rectangle Ri,j with l(e) = c(e) = wi,j

and no cost to ensure that rectangle nodes receive exactly as much flow as they are wide.
The global structure of the network is sketched in Figure 3; Figure 4 shows the complete
local network around a pair of rectangle vertices.

The intuition behind the network is that it represents a stack of layers consisting of
rectangles and gaps, with a width of wmax ·K. Each rectangle is as wide as the amount of
flow its representative vertex receives, and has contacts with its upper and lower neighbors
as wide as the flow on the edges representing these contacts. Every vertex has edges to
the layer above as far as their rectangle is allowed to reach: for example in an even layer,
rectangle Ri,j cannot have contact with Ri+1,j−1, so if Ri,j is very wide, the flow might push
Ri+1,j−1 to the left and widen the gap to the right of Ri+1,j−1. Every gap vertex has edges
to the layer above as far as their left and right rectangle neighbors can reach: if these edges
would reach farther, then the neighboring rectangles on the same layer could be pushed into
forbidden adjacencies.

I Theorem 3.1. Given a graph G = (V, E), the minimum cost of flow f = wmax · K in
N equals the minimum total gap length of any grid contact representation of G. We can
construct the corresponding area-minimal representation of G from f .

EuroCG’21

49:4 Row-based Rectangle Contact Representations of Triangular Grid Graphs

gi+1,j−1

vbi−1,j−1 vbi−1,j

vai,j

vai+1,j−1 vai+1,j

gi−1,j−2 gi−1,j−1 gi−1,j

gi+1,jgi+1,j−2

vbi,j Gi+1,j−1

Ri−1,j−1 Ri−1,j

Ri,j

Ri+1,j−1 Ri+1,j

wi,j = 8l = c = 8

2

flow = 2

flow = 0

Figure 4 The network structure around rectangle Ri,j on an odd layer.

From this network we can easily deduce that the minimum cost flow corresponds to
the solution that minimizes total gap length: only gap vertices have a cost, hence the flow
avoids these vertices whenever possible. In the solution to the network, the flow values found
on each edge give us the length of the overlap between these elements, which allow us to
construct the corresponding representation. On each graph layer with K nodes the network
layer has 2 ·K + 1 node, and each vertex has at most degree 6 (except 2K + 1 for s), so we
can construct the network and then solve minimum flow problem in polynomial time.

4 Contact Maximization

In this section we propose algorithms that maximize the number of realized contacts in the
representation, while preventing forbidden adjacencies. We start with a linear-time algorithm
for L = 2, followed by an integer linear programming (ILP) model for L > 2. The complexity
for L > 2 remains open. Finally, we experimentally compare the flow network from Section 3
and the ILP on runtime, gapwidth and failed contacts.

4.1 Linear-time algorithm for L = 2
Before we describe our algorithm for a grid consisting of two layers, we first introduce a block:
a maximal sequence of consecutive rectangles in a layer i, for which each horizontal contact
is realized. A block from the jth until the lth vertex of row i is the sequence (Ri,j , . . . , Ri,l),
where for each k ∈ [j, l − 1] holds that (Ri,k, Ri,k+1) ∈ R.

We propose the following greedy algorithm A to maximize the number of contacts for
instances with two layers (L = 2). Algorithm A adds rectangles to representation R from left
to right, starting with R1,0 and alternating between the two layers: after a rectangle R1,a is
added, it is followed by R0,a, which in turn is followed by R1,a+1. We call this ordering ≺.

Let rectangle Ri,j be a new rectangle that is added to the representation, then we can
make the following greedy choice. Initially, Ri,j is placed as far left as possible, such that
it realizes the (horizontal) contact with Ri,j−1. If Ri,j does not extend at least ε past its
predecessor in ≺ on the other layer, then slide the block containing Ri,j rightwards until
it does (see Fig. 5 top). If this sliding requires a previously established vertical contact to
break, then we no longer insist on the horizontal contact (Ri,j−1, Ri,j). Instead, Ri,j will
start a new block, and it is placed such that it extends exactly ε past the last rectangle on
the other layer (see Fig. 5 bottom). We then proceed to the next rectangle in ≺.

We show that A finds an optimal representation in linear time.

M. Nöllenburg, A. Villedieu, and J. Wulms 49:5

Ri,jRi,j−1

Ri+1,j

Ri,jRi,j−1

Ri+1,j

Ri,jRi,j−1

Ri+1,j

Figure 5 Greedy placement of Ri,j with i = 0. At the top the block containing Ri,j can slide to
the right without breaking vertical contacts, while at the bottom Ri,j starts a new block.

I Lemma 4.1. There exists an optimal solution to the contact maximization problem, that
realizes all vertical contacts.

Proof sketch. We show that every optimal solution can be adapted to realize all vertical
contacts, while not decreasing the number of realized contacts. Figure 6 gives an overview
of interesting cases in the case distinction that shows how a solution should be adapted to
ensure that rectangle R0,j realizes its vertical contacts. Note that the number of lost contacts
(in red) never exceeds the number of gained contacts (in green/blue). J

To prove the next lemma, we use the sliding range of a block of rectangles. The sliding
range is defined as the range in which the rectangles can move without changing the realized
contacts. Since we have only two rows, the sliding range of a block is determined by how far
a block can move left or right, before vertical contacts of the individual rectangles change.

I Lemma 4.2. For representations R1 and R2, that have an optimal number of contacts
and realize all vertical contacts, assume R1 contains a maximal block B1 = (Ri,j , . . . , Ri,k),
while R2 contains maximal block B2 = (Ri,l, . . . , Ri,m). If j ≤ l, then k ≤ m.

Proof. Assume that k > m, and consider both blocks B1 and B2 up to Ri,m, which we call
B′1 and B′2 respectively. Since j ≤ l, we know that the sliding range of B′2 is larger than
the sliding range of B′1, as the rectangles in B′1 \B′2 can only put more constraints on the
sliding range. Therefore, B2 can include all rectangles from Ri,m+1 to Ri,k without breaking
vertical contacts, contradicting the maximality of B2. J

We can now argue that the greedy choice of A is optimal and A runs in linear time.

R0,j

R1,j

R0,j−1

R0,j

R1,j R1,j R1,j+1

R0,j+1

R1,j+1

R0,j+1 R0,j

R0,j

R1,j R1,j R1,j+1R1,j+1

R0,j+1

(a)

(b)

(c)

37
R0,j

R1,j

R0,j−1

R0,j R0,j+1

< ε

Figure 6 Three configurations where R0,j can realize vertical contacts with R1,j and R1,j+1
without reducing the total number of contacts. New and lost contacts are shown in green and red
respectively. In blue we show contacts that can be realized, if R0,j and R0,j+1 extend equally far.

EuroCG’21

49:6 Row-based Rectangle Contact Representations of Triangular Grid Graphs

2 3 4 5 6 7 8 9 10 11
Number of rectangles per row (K)

2

3

4

5

6

7

8

9

10

11

Nu
m

be
r o

f r
ow

s (
L)

6 6 7 8 10 12 13 13 14 19

6 7 8 11 15 21 34 33 42 44

6 9 10 19 24 32 48 74 83 109

6 10 14 20 31 52 77 134 177 274

6 8 15 30 47 89 142 359 473 731

6 12 16 44 79 141 219 459 819 1528

6 11 20 35 82 254 360 795 1635 2173

6 11 26 63 113 256 543 1437 2881 4183

7 11 25 61 113 408 893 1364 4117 4813

7 14 32 94 246 630 919 2402 4223 7536

Figure 7 Average runtimes in ms for 30 runs of the ILP. Rectangle widths are randomly generated.

I Theorem 4.3. Algorithm A maximizes the number of realized contacts in O(n) time.

Proof sketch. By Lemma 4.1, we know that there always exists an optimal representation
that realizes all vertical contacts. Our greedy choice ensures that all vertical contacts are
realized, and hence would lead to an optimal solution, if the number of blocks is minimal.
We prove by induction that A finds the minimum number of blocks, and the smallest number
of rectangles in the rightmost block of each row. The base case of a single block is trivial.

In the step case we apply Lemma 4.2, concluding that the rightmost blocks constructed
by A can be extended with at least as many rectangles as in any optimal representation that
realizes all vertical contacts. Furthermore, A always tries to extend the rightmost block and
creates a new block only when this is unavoidable. Thus the number of blocks and number
of rectangles in the rightmost blocks is minimal, and A computes an optimal solution.

Every rectangle R is considered only once when placed by A. After placement, the
constraints of R are stored in the sliding range of its block. Updating or initializing a sliding
range takes constant time, hence we spend O(1) time for each of the n rectangles. J

4.2 An Integer-Linear Program for L > 2
For the case of L > 2, we construct an ILP model. The intuition behind it is the following.
We create a binary contact variable c for each desired rectangle contact. If a contact is lost by
the position of the two involved rectangles, we must set c = 1 to satisfy all constraints; if the
rectangles satisfy their contact constraints, we can set c = 0. Forbidden adjacencies are dealt
with using hard constraints on the rectangle coordinates. The objective is to minimize the
sum over all contact variables to maximumize the number of realized contacts in a solution.

The ILP computes solutions for instances with high K much slower than instances with
high L, and solves 10 × 10 instances in a few seconds using Gurobi (see Figure 7). The
network flow solves 10 × 10 instance on average in 168ms. Most word clouds should not

M. Nöllenburg, A. Villedieu, and J. Wulms 49:7

2 3 4 5 6 7 8 9 10 11 12
Number of rectangles per row (K)

0

200

400

600

800

1000

1200

1400

Su
m

 o
f t

he
 w

id
th

 o
f t

he
 g

ap
s

(a) Total width of gaps in solution

2 3 4 5 6 7 8 9 10 11 12
Number of rectangles per row (K)

0

50

100

150

200

Nu
m

be
r o

r f
ai

le
d

co
nt

ac
ts

(b) Number of failed contacts in solution

Figure 8 Comparison of average gapwidth and failed contacts between the flow network (orange)
and the ILP (blue), for 10-layer representations. Vertical lines show standard deviation over 20 runs.

have too many words so higher K and L values are not needed in practice. As expected we
find that the flow network produces more compact drawings (see Figure 8a). Since the flow
network only minimizes the overall gap area, it does not try to prevent horizontal contact
loss. Similarly the flow network does not prioritize sending flow to both upward neighbors,
over sending flow to just one neighbor, resulting in significant contact loss (see Figure 8b).

5 Conclusion

In this paper we studied rectangle contact layout optimization problems for restricted input
graphs as a step towards more general row-based rectangle contact representations. Open
problems include extensions to more irregular grid graphs as well as the complexity for
contact maximization on three or more layers.

References

1 Lukas Barth, Sara Irina Fabrikant, Stephen G. Kobourov, Anna Lubiw, Martin Nöllenburg,
Yoshio Okamoto, Sergey Pupyrev, Claudio Squarcella, Torsten Ueckerdt, and Alexander
Wolff. Semantic word cloud representations: Hardness and approximation algorithms. In
Alberto Pardo and Alfredo Viola, editors, Proceedings of the 11th Latin American Theoret-
ical Informatics Symposium (LATIN2014), volume 8392 of LNCS, pages 514–525. Springer,
2014. doi:10.1007/978-3-642-54423-1_45.

2 Lukas Barth, Stephen G. Kobourov, and Sergey Pupyrev. Experimental comparison of
semantic word clouds. In Joachim Gudmundsson and Jyrki Katajainen, editors, Proceedings
of the 13th International Symposium on Experimental Algorithms (SEA 2014), LNCS, pages
247–258. Springer International Publishing, 2014. doi:10.1007/978-3-319-07959-2_21.

3 Michael A. Bekos, Thomas C. van Dijk, Martin Fink, Philipp Kindermann, Stephen
Kobourov, Sergey Pupyrev, Joachim Spoerhase, and Alexander Wolff. Improved approx-
imation algorithms for box contact representations. Algorithmica, 77(3):902–920, 2017.
doi:10.1007/s00453-016-0121-3.

4 Kevin Buchin, Daan Creemers, Andrea Lazzarotto, Bettina Speckmann, and Jules Wulms.
Geo word clouds. In Proceedings of the 9th IEEE Pacific Visualization Symposium (Paci-
ficVis 2016), pages 144–151, 2016. doi:10.1109/PACIFICVIS.2016.7465262.

EuroCG’21

49:8 Row-based Rectangle Contact Representations of Triangular Grid Graphs

5 Adam L. Buchsbaum, Emden R. Gansner, Cecilia M. Procopiuc, and Suresh Venkatasub-
ramanian. Rectangular layouts and contact graphs. ACM Transactions on Algorithms,
4(1):8:1–8:28, 2008. doi:10.1145/1328911.1328919.

6 Weiwei Cui, Yingcai Wu, Shixia Liu, Furu Wei, Michelle X. Zhou, and Huamin Qu. Context
preserving dynamic word cloud visualization. In Proceedings of the 3rd IEEE Pacific Visu-
alization Symposium (PacificVis 2010), pages 121–128, 2010. doi:10.1109/PACIFICVIS.
2010.5429600.

7 Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl. On triangle
contact graphs. Combinatorics, Probability and Computing, 3:233–246, 1994. doi:10.
1017/S0963548300001139.

8 Stefan Felsner. Rectangle and square representations of planar graphs. In János Pach,
editor, Thirty Essays on Geometric Graph Theory, pages 213–248. Springer, 2013. doi:
10.1007/978-1-4614-0110-0_12.

9 Marti A. Hearst, Emily Pedersen, Lekha Patil, Elsie Lee, Paul Laskowski, and Steven
Franconeri. An evaluation of semantically grouped word cloud designs. IEEE Transactions
on Visualization and Computer Graphics, 26(9):2748–2761, 2020. doi:10.1109/TVCG.2019.
2904683.

10 Paul Koebe. Kontaktprobleme der konformen abbildung. Ber. Sächs. Akad. Wiss. Leipzig,
Math.-Phys. Klasse, 88:141–164, 1936.

11 Chenlu Li, Xiaoju Dong, and Xiaoru Yuan. Metro-wordle: An interactive visualization
for urban text distributions based on wordle. Visual Informatics, 2(1):50–59, 2018. doi:
10.1016/j.visinf.2018.04.006.

12 Sabrina Nusrat and Stephen Kobourov. The state of the art in cartograms. Computer
Graphics Forum, 35(3):619–642, 2016. doi:10.1111/cgf.12932.

13 Marc van Kreveld and Bettina Speckmann. On rectangular cartograms. Computational
Geometry, 37(3):175–187, 2007. doi:10.1016/j.comgeo.2006.06.002.

14 Fernanda B. Viegas, Martin Wattenberg, and Jonathan Feinberg. Participatory visualiza-
tion with wordle. IEEE Transactions on Visualization and Computer Graphics, 15(6):1137–
1144, 2009. doi:10.1109/TVCG.2009.171.

15 Yunhai Wang, Xiaowei Chu, Chen Bao, Lifeng Zhu, Oliver Deussen, Baoquan Chen, and
Michael Sedlmair. Edwordle: Consistency-preserving word cloud editing. IEEE Transac-
tions on Visualization and Computer Graphics, 24(1):647–656, 2018. doi:10.1109/TVCG.
2017.2745859.

16 Yunhai Wang, Xiaowei Chu, Kaiyi Zhang, Chen Bao, Xiaotong Li, Jian Zhang, Chi-Wing
Fu, Christophe Hurter, Oliver Deussen, and Bongshin Lee. Shapewordle: Tailoring wordles
using shape-aware archimedean spirals. IEEE Transactions on Visualization and Computer
Graphics, 26(1):991–1000, 2020. doi:10.1109/TVCG.2019.2934783.

17 Yingcai Wu, Thomas Provan, FuruWei, Shixia Liu, and Kwan-Liu Ma. Semantic-preserving
word clouds by seam carving. Computer Graphics Forum, 30(3):741–750, 2011. doi:10.
1111/j.1467-8659.2011.01923.x.

18 Kok-Hoo Yeap and Majid Sarrafzadeh. Floor-planning by graph dualization: 2-concave
rectilinear modules. SIAM J. Comput., 22(3):500–526, 1993. doi:10.1137/0222035.

Recognition of Unit Disk Graphs for Caterpillars,
Embedded Trees, and Outerplanar Graphs∗

Sujoy Bhore1, Soeren Nickel2, and Martin Nöllenburg2

1 Université Libre de Bruxelles
sujoy.bhore@gmail.com

2 TU Wien
[soeren.nickel|noellenburg]@ac.tuwien.ac.at

Abstract
Unit disk graphs are graphs that have a unit disk intersection representation (UDR). In the recogni-
tion problem the objective is to decide whether a given graph is a unit disk graph, which is known
to be NP-hard, even for planar graphs. In this work, we show that the recognition of unit disk
graphs remains NP-hard for outerplanar graphs and for embedded trees.

1 Introduction

The representation of graphs as contacts or intersections of unit disks has been a major topic
of investigation in geometric graph theory. A set of unit disks in R2 is a unit disk intersection
representation (UDR) of a graph G = (V,E), if there is a bijection between V and the set
of unit disks such that two disks intersect if and only if they are adjacent in G. Unit disk
graphs are graphs that admit UDR. Unit disk contact graphs (also known as penny graphs)
are the subfamily of unit disk graphs that have a UDR with interior-disjoint disks, also
called a unit disk contact representation (UDC). The famous circle packing theorem states
that every planar graph has a contact representation by touching disks and vice versa [15].
Since then, a large body of research has been devoted to the representation of planar graphs
as a contacts or intersections of geometric objects [5, 6, 10, 11].

The recognition problem, where the objective is to decide whether a given graph admits
a UDR, has a rich history [2, 3, 12, 13]. Breu and Kirpatrick [4] proved that it is NP-hard to
decide whether a graph G admits a UDR or a UDC. Klemz et al. [14] showed that recognizing
outerplanar unit disk contact graphs is already NP-hard, but decidable in linear time for
caterpillars, i.e., trees whose internal nodes form a path. Eades and Wormald [9] showed
that it is NP-hard to decide whether a given tree is a subgraph of a unit disk contact graph.

Recognition with a fixed embedding is an important variant of the recognition problem.
Given a plane graphG, the objective in this problem is to decide whetherG is a contact graph
of interior-disjoint unit disks in the plane with the same cyclic order of neighbors at each
vertex. Some recent works investigated the recognition problem of UDC with/without fixed
embedding, and narrowed down the precise boundary between hardness and tractability;
see [2, 7, 8].

Most of the existing hardness results either rely on graphs with a large number of cycles,
as also noted by Bowen et al. [2], or uses the fixed embedding to enforce certain represen-
tations [2, 7]. Therefore, an important open question in this area is to show the complexity
of the recognition problem for non-embedded trees.

∗ The authors want to thank Maarten Löffler, Jonas Cleve, and Man-Kwun Chiu for fruitful discussions
about the project during their research visits in Vienna.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

50:2 Recognition of Unit Disk Graphs

x1
x2 x3

x4 x5

C1

C2 C3

C5

C4

(a) Auxiliary hexagonal grid structure (b) True state of variable cycle

(c) Unsatisfied (left) and one possible sat-
isfied state (right) of clause gadget

(d) False state of variable cycle. Dotted hexagon indicates
overlap

Figure 1 Auxiliary structure used by Bowen et al. [2], recreated. The incidence graph is embed-
ded on a hexagonal grid (a). The edges are short corridors in which the blue hexagons are fitted,
hinged at white vertices. Hexagons in the variable cycle (red line, grey backdrop) have two states
(b) and (d). The clause gadget (c) requires one hexagon, which does not enter the junction.

Our Contribution. We show that recognizing unit disk graphs is NP-hard for outerplanar
graphs and for embedded trees (Section 2), but decidable in linear time for caterpillars
(Section 3). Note that due to space constraints, these results are only sketched here. We
refer to the extended version [1] for a complete description of the results.

2 Hardness Results

Bowen et al. [2] proved that recognizing unit disk contact graphs is NP-hard for embedded
trees, via a reduction from planar 3-SAT, which uses an auxiliary construction formulated
as a realization of a polygonal linkage. A polygonal linkage is a set of polygons, which
are realizable if they can be placed in the plane, s.t., predefined sets of points on the
boundary of these points are identified. Bowen et al. define a set of hexagons in a hexagonal
tiling (Fig. 1a) with small gaps between them, which form a hexagonal grid, in which
a representation of the incidence graph of the planar 3-SAT instance is fitted. Smaller
hexagons are fitted into cycles in this grid, s.t., they admit only two different realizations,
see Fig. 1b, and determine the state of neighboring small hexagons, see Fig. 1d. The cycles
represent variables in a true or false state. The states of the cycles are transmitted via chains
of smaller hexagons in the gaps. The vertex, where three such chains meet, contains a small
hexagon on a thin connection, which can only be realized if at least one transmitted state is
true, see Fig. 1c. The polygonal linkage is realizable only if the planar 3-SAT instance was
satisfiable. For a detailed description, we refer to Bowen et al. [2].

The building blocks of this reduction are hexagons of variable sizes and short segments,
which are approximated with UDCs by Bowen et al. [2] by creating graphs, whose UDC must
be within a constant Hausdorff distance of hexagons and long thin rhombi. We extend their
notion of λ-stable approximations to UDRs.

S. Bhore, S. Nickel, M. Nöllenburg 50:3

v1 v2 v3

v′1 v′2 v′3

v15 v16 v17

v′15 v′16 v′17

(a) Augmented L17

u1
j u2

1

v1j v21vc

(b) Corner connector

(c) Disk representation of (a) (d) Disk representation of (b)

Figure 2 Graph (a), (b) and disk (c), (d) representations of the ladder and corner connector,
used to create the outline of the λ-stable approximations GHk and GRk . The bends in the UDRs are
required but exaggerated.

I Definition 2.1. A graph G is a λ-stable approximation of a polygonal shape P if, in every
UDR of G, a congruent copy of P and the union of all unit disks in the UDR have at most
a Hausdorff distance of λ.

2.1 Outerplanar Graphs
I Theorem 2.2. Recognizing unit disk graphs is NP-hard for outerplanar graphs.

We will prove Theorem 2.2 by providing outerplanar graphs GHk and GRk , which are O(1)-
stable approximations of a hexagon and a rhombus, respectively. Then the NP-hardness
follows immediately from the construction of Bowen et al. [2] sketched above. To obtain the
O(1)-stable approximations we will first present two graphs, which enforce local bends in
one direction of at least π and 4π

3 in their UDR.
First a ladder Lk (see Figs. 2a and 2c) is a chain of pairwise connected vertices vi and

v′
i, also called the outer and inner vertices, respectively. Additionally so-called extension

neighbors, which are connected to only one outer vertex each, are added on one side of the
ladder, s.t., the outer vertices have alternating degrees of four and five. Since the ladder
consists of a chain of C4’s, these neighbors are forced to be placed all on the outside. The
minimal height of such a ladder is 2

√
3 + 2− ε, which is the height of the smallest bounding

box of a tight packing of three rows of unit circles minus a small constant ε.
The permission of overlap between adjacent neighbors allows for a placement of one

neighbor almost on top of its adjacent outside vertex, which leads to an ever so slight
inwards bend and, more importantly, any outwards bend is impossible. In order to force an
inward bend of at least 4π

3 , we connect last inner vertex u1
j of one ladder with the first inner

vertex u2
1 of a second ladder and the last and first outer vertex v1

j /v2
1 of the first and second

ladder respectively both with a vertex vc, which has three attached extension neighbors,
see Fig. 2b. This construction is called a corner connector. Since it is impossible to place
the disk of any extension neighbor of vc inside the 5-cycle d(v1

j), d(u1
j), d(u2

1), d(v2
1), d(vc),

without overlapping at least two disks in the UDR, all extension neighbors are still forced
to the outside and therefore]v1

j vcv
2
1 >

4π
3 , see Fig. 2d.

By placing two ladders opposite of each other and connecting them on one end with

EuroCG’21

50:4 Recognition of Unit Disk Graphs

l0v0

v1 v3 v5 v7

v91 v93 v95 v97

a1 a′1 a3 a′3 a5 a′5 a7 a′7

a91 a′91 a95 a′95 a97 a′97

c0

c1

c2

c91

c92

a93 a′93

v′3v′2 v′4 v′5 v′6 v′7 v′8

v′92 v′93 v′94 v′95 v′96 v′97 v′98

(a) Widest possible position

l0

(b) Narrowest possible position

Figure 3 A 7-stable approximation GR7 of a rhombus (dashed green line) superimposed on its
UDR in its widest (a) and narrowest (b) configuration. Both UDRs require a small inward bend to
be valid and hatched disks indicate almost overlapping placement of a red disk on a blue disk, with
a small shift to the outside. Both inward bends and outward shifts are omitted.

three corner connectors as shown in Fig. 3, we create a 12-stable approximation GRk of a
thin rhombus.

I Lemma 2.3. For every integer k the outerplanar graph GRk in Fig. 3 is a 7-stable approx-
imation of a rhombus of width 2k + 6 and height 6

√
3 + 2.

Proof Sketch. The graph GRk is made up of components, which make any bend to the
outside impossible, see Fig. 3a. Since two ladders need to be overlap free, the minimum
height of the ladders guarantees that part of the boundary of the union over all disks in the
UDR of GRk lies above and below the line c0l0, even in its narrowest position, see Fig. 3b.
The biggest vertical distance of the rhombus to this line is 3

√
3 + 1 ≈ 6.196 < 7. J

The construction of a 5-stable approximation GHk of a hexagon of side length 2k−1 uses
again ladders and corner connectors to trace the outline of the hexagon. Then the inside of
this construction is filled with a set of ladders until no additional ladders can be added, see
Fig. 4a. Outwards bends are impossible by construction of the ladders and corner connectors
and inwards bends are strongly limited since the interior of the hexagon is almost completely
filled with ladders. Since the amount of compression in a ladder is very limited, this leaves
only a constant amount of space on the inside of a UDR of GHk . The result follows.

2.2 Trees with Embeddings
By slightly adapting the construction of the previous section, we can prove that recognizing
unit disk graphs is NP-hard for embedded trees. The corresponding constructions are shown
in Figs. 5 and 6.

I Theorem 2.4. Recognizing unit disk graphs is NP-hard for embedded trees.

3 Recognition Algorithm for Caterpillars

We propose a linear-time algorithm using similar ideas to Klemz et al. [14], that recognizes if
an input caterpillar graph G = (V,E) admits a UDR or not, and provides the representation
if one exists. However, we need to address several issues as a larger class of graphs admits
a UDR compared to a UDC. Note, the input graph G = (V,E) is essentially a tree whose

S. Bhore, S. Nickel, M. Nöllenburg 50:5

l0

(a) A 5-stable approximation GHk of a hexagon (dashed green line) superimposed on its UDR. Necessary
infinitesimal bends are omitted. The direction of these bends of the inner components is indicated with
the grey arrow.

2
√ 3 +

1

(b) In the narrowest position, the UDR of a GHk can – similar to the rhombus – fold all inner arms to one
side (here to the lower side), and theoretically, there is space to fold the outer arms inward as depicted.
The UDR of the arms are however again pairwise overlap free and the largest reachable distance any point
on the boundary of the union of disks can have from the approximated regular hexagon is 2

√
3 + 1. Note

further that the folding of the rightmost arm is not possible as depicted, indicated by the red crossings,
which mark areas of forced overlap and connections in the graph, which cannot be realized in a UDR.
However in a setting with an extremely long arm, the small inward bend could lead to almost parallel
arms, which run very close to each other, hence we analyze the (unreachable) worst case.

Figure 4 Construction and analysis of GHk
EuroCG’21

50:6 Recognition of Unit Disk Graphs

l0v0

v1 v3 v5 v4

v91 v93 v95 v97

a1 a′1 a3 a′3 a5 a′5 a7 a′7

a91 a′91 a95 a′95 a97 a′97

c1

c2

c91

c92

a93

c0

a′93

(a) TRk in widest position.

l0

3
√
3
+

1

(b) TRk in narrowest position.

Figure 5 A 7-stable approximation TRk of a long thin rhombus superimposed on its UDR in its
widest (a) and narrowest (b) possible position. In both cases at any point along c0l0 at least one
point on the boundary of the union of all disks in a UDR of TRk lies on or above c0l0 and on or
below c0l0.

internal nodes form a backbone path BP = {v1, . . . , vk} for some k ∈ N. Observe that, if
G contains a vertex of degree 6, then due to the disk packing property, it does not admit a
UDR. Therefore, we know that every realizable caterpillar must have the maximum degree
∆ ≤ 5. Moreover, it is easy to observe that all caterpillars with ∆ ≤ 4 admit a UDC (and
thus a UDR), as also noted by Klemz et al. [14]. However, not every caterpillar with ∆ = 5 is
realizable as UDR. We show that two consecutive degree-5 vertices on BP cannot be realized.
The following lemma characterizes a “No” instance for the algorithm presented in Section 3.

I Lemma 3.1. If BP contains two adjacent degree 5 vertices u, v, then it does not admit a
unit disk intersection representation.

3.1 The Algorithm.
As a preprocessing step we augment all spine vertices of degree 3 or lower with additional
degree 1 neighbors, s.t., they have degree 4. Now, consider a chain of vertices vi, . . . , vk, all
of degree 4. We place their disks on a horizontal line. The two neighboring leaf disks of a
disk d(vj), i ≤ j ≤ k are placed one at the top and one at the bottom, respectively, s.t., the
connection of their centers and the center d(vj) have an angle of π

3 plus a very small but
continuously increasing value with the x-axis, see Fig. 7a. This way the angle between the
center of the two neighbors and the center of d(vj) stays just slightly larger than 2π

3 at all
times. When we encounter a vertex u = vk+1 of degree 5, we place the center of d(u) also
on the horizontal line and two leaf neighbors are placed on opposite sides. The third leaf
is placed w.l.o.g. at the top, with an angle of π

3 plus a very small value to the previously
placed leaf, see Fig. 7b.

If the following vertex x = vk+2 has also degree 5, then the graph is not representable
(see Lemma 3.1). Otherwise, we place the center of d(x) again with an offset of π

3 plus a
very small value to the last placed leaf neighbor (i.e, the third leaf of u). The direction
of ux is now considered to be the new extension direction. The lower leaf is placed as
planned, however the upper leaf of x is placed almost on top of d(x), with a very small offset
orthogonal to ux, see Fig. 7b. Finally, the next disk d(vk+3) is placed in the new extension
direction touching d(x) and two of its leaf neighbors can be placed with an angle just over
π
3 relative to the new extension direction, i.e., an angle of just over 2π

3 between them, see
Figs. 7c and 7d. Note that at this point, if vk+3 has degree 5, we can immediately repeat
this procedure.

S. Bhore, S. Nickel, M. Nöllenburg 50:7

(a) A 5-stable approximation THk of a hexagon superimposed on its UDR. Note that THk is a tree.
Visualization is analogue to Fig. 4a.

2
√ 3 +

1

(b) The narrowest position of a THk . The arguments for the distance to the approximated hexagon are
very similar to Fig. 4b.

Figure 6 Construction and analysis of GHk

EuroCG’21

50:8 Recognition of Unit Disk Graphs

v1 v2 vkρ1 ρ2 ρk

+ε

+ε

(a) ε-offsets from dense packing. ρk = 4π
3 − 2kε

vk

vbk

vtk ut

u

ub

ut′

xb

x
xt

′

(b) Placement of v4 after encountering v5

η

η′

vk

vbk

vtk ut

u

ub

ut′

xb

x
xt

′

vtk+3

vbk+3

vk+3

(c) η = η′ and η + η′ = 4π
3 − (2k + 6)ε

τ
τ ′

vk

vbk

vtk ut

u

ub

ut′

xb

x
xt

′

vtk+3

vbk+3
vb

′
k+3

vk+3

(d) τ = τ ′ and τ + τ ′ = π − (2k + 7)ε

Figure 7 Chains of degree 4 are placed in a dense packing formation with small offsets (a). A
degree five vertex places an additional leaf on one side (b). The following vertex of degree at most
4 places its leaf on the same side almost on top of itself. The next disk d(x) can again be placed
with the desired angle of just over 2π

3 between two neighbors. Placement of d(x) is possible if its
degree 4 (c) or 5 (d).

As a final postprocessing step, we remove all degree 1 vertices that were added in the
preprocessing step. Note that by placing the third neighbor of the first spine vertex of degree
5 at the top, and then alternatingly placing the next two at the bottom, then again two
at the top and so on, the new extension direction returns to being horizontal after every
second spine vertex of degree 5. In between it has alternatingly only a slight positive or
negative angle offset relative to the x-axis. From the above description of the algorithm and
the correctness analysis (refer to section 4 in [1]) we conclude the following theorem.

I Theorem 3.2. Given a caterpillar graph G = (V,E), it can be decided in linear time
whether G is a unit disk graph. Moreover, if an unit disk intersection representation exists
then it can be constructed in linear time.

From Lemma 3.1 and Theorem 3.2, we get the following corollary.

I Corollary 3.3. Let G = (V,E) be a caterpillar graph. G admits a unit disk intersection
representation if and only if G does not contain any two adjacent degree 5 vertices.

References
1 Sujoy Bhore, Soeren Nickel, and Martin Nöllenburg. Recognition of unit disk graphs for

caterpillars, embedded trees, and outerplanar graphs, 2021. arXiv:2103.08416.
2 Clinton Bowen, Stephane Durocher, Maarten Löffler, Anika Rounds, André Schulz, and

Csaba D. Tóth. Realization of simply connected polygonal linkages and recognition of
unit disk contact trees. In Graph Drawing and Network Visualization (GD’15), volume
9411 of LNCS, pages 447–459. Springer International Publishing, 2015. doi:10.1007/
978-3-319-27261-0_37.

S. Bhore, S. Nickel, M. Nöllenburg 50:9

3 Heinz Breu and David G. Kirkpatrick. On the complexity of recognizing intersection and
touching graphs of disks. In Franz J. Brandenburg, editor, Graph Drawing (GD’95), volume
1027 of LNCS, pages 88–98. Springer, 1996. doi:10.1007/BFb0021793.

4 Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is NP-hard. Comput.
Geom. Theory Appl., 9(1–2):3–24, 1998. doi:10.1016/S0925-7721(97)00014-X.

5 Jérémie Chalopin, Daniel Gonçalves, and Pascal Ochem. Planar graphs have 1-string
representations. Discrete & Computational Geometry, 43(3):626–647, 2010. doi:10.1007/
s00454-009-9196-9.

6 Steven Chaplick and Torsten Ueckerdt. Planar graphs as VPG-graphs. In Walter Didimo
and Maurizio Patrignani, editors, Graph Drawing (GD’12), volume 7704 of LNCS, pages
174–186. Springer, 2013. doi:10.1007/978-3-642-36763-2_16.

7 Man-Kwun Chiu, Jonas Cleve, and Martin Nöllenburg. Recognizing embedded caterpillars
with weak unit disk contact representations is NP-hard, 2020. arXiv:2010.01881.

8 Jonas Cleve. Weak unit disk contact representations for graphs without embedding, 2020.
arXiv:2010.01886.

9 Peter Eades and Nicholas C. Wormald. Fixed edge-length graph drawing is np-hard. Dis-
crete Applied Mathematics, 28(2):111–134, 1990. doi:10.1016/0166-218X(90)90110-X.

10 Stefan Felsner. Rectangle and square representations of planar graphs. In János Pach,
editor, Thirty Essays on Geometric Graph Theory, pages 213–248. Springer, 2013. doi:
10.1007/978-1-4614-0110-0_12.

11 Daniel Gonçalves, Lucas Isenmann, and Claire Pennarun. Planar graphs as L-intersection
or L-contact graphs. In Discrete Algorithms (SODA’18), pages 172–184. SIAM, 2018.
doi:10.1137/1.9781611975031.12.

12 Petr Hliněný. Classes and recognition of curve contact graphs. Journal of Combinatorial
Theory, Series B, 74(1):87–103, 1998. doi:10.1006/jctb.1998.1846.

13 Petr Hliněný and Jan Kratochvíl. Representing graphs by disks and balls (a survey of
recognition-complexity results). Discrete Mathematics, 229(1):101–124, 2001. doi:10.
1016/S0012-365X(00)00204-1.

14 Boris Klemz, Martin Nöllenburg, and Roman Prutkin. Recognizing weighted disk contact
graphs. In Graph Drawing and Network Visualization (GD’15), volume 9411 of LNCS, pages
433–446. Springer International Publishing, 2015. doi:10.1007/978-3-319-27261-0_36.

15 Paul Koebe. Kontaktprobleme der konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig,
Math.-Phys. Klasse, 88:141–164, 1936.

EuroCG’21

On the Realizability of Free Space Diagrams∗

Maike Buchin1, Leonie Ryvkin2, and Carola Wenk†3

1 Department of Mathematics, Ruhr University Bochum, Germany
maike.buchin@rub.de

2 Department of Mathematics, Ruhr University Bochum, Germany
leonie.ryvkin@rub.de

3 Department of Computer Science, Tulane University, Louisiana, USA
cwenk@tulane.edu

Abstract
The free space diagram is a popular tool to compute the well-known Fréchet distance. Here we ask,
whether given patterns in the free space diagram can be realized by two polygonal curves in the
plane. We show how to compute realizing curves for certain input instances. However, for arbitrary
instances we show that maximizing the number of realizing cells is NP-hard.

1 Introduction

The Fréchet distance is an important distance measure for curves that is considered in
many applications. For two curves, P,Q : I → R2, where I ⊆ R2, their Fréchet distance is
δF(P,Q) = infσ maxt∈0,1 ‖P (t)−Q(σ(t))‖, where the reparameterization σ ranges over all
orientation-preserving homeomorphisms. Intuitively, suppose a woman is walking her dog,
each traversing one of the curves. Then the Fréchet distance is the length of the shortest leash
allowing both to traverse their entire curves continuously, choosing their speed independently.

A popular tool for computing, and deciding, the δF(P,Q) is the free space diagram
Dε(P,Q), which is the cross-product I × I of the parameter spaces of the curves partitioned
into free space and its complement. For a given ε > 0, free space is defined as Fε(P,Q) =
{(r, t) : ‖P (r) − Q(t)‖ ≤ ε}. Then δF(P,Q) ≤ ε iff there exists a non-decreasing path in
Fε(P,Q) that covers the parameter spaces of both curves. For polygonal curves P,Q of n,m
segments, Dε(P,Q) can be subdivided into an n×m grid, where each cell Cij corresponds
to a pair of segments sPi ⊆ P , sQj ⊆ Q, for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then it takes O(mn) time
using dynamic programming to find a path in free space to decide whether δF(P,Q) ≤ ε [2].

For different applications, many variants of the Fréchet distance have been developed.
These are typically computed using the free space diagram, and thus its complexity impacts
the runtimes. While the Fréchet distance cannot be computed in subquadratic time unless
SETH fails [4], there are faster algorithms for computing the free space diagram for special
curve classes [3, 6], which exploit a special structure of free space. These bounds consider the
worst-case complexity of the free space diagram, but not every diagram can be realized by a
pair of curves, see Figure 1. A few variants of the Fréchet distance have been proven to be
NP-hard to decide [1, 5], some of which build certain free space diagrams for the reduction.

Problem statement. Given a free space diagram Dε, do there exist curves P,Q such
that Dε = Dε(P,Q)? And if so, can we construct P,Q? Understanding this free space
realizability problem will give structural insights into free space and the computation of the
Fréchet distance, in particular for special curve classes.

∗ We thank Majid Mirzanezhad for fruitful discussions.
† Partially supported by NSF grant CCF 1637576.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

51:2 On the Realizability of Free Space Diagrams

ε

Q

P

Dε Dε(P,Q)

Figure 1 A given free space diagram Dε which cannot be realized by two curves in R2. But
Dε(P, Q) has all but one cell in common with Dε.

More notation. If a polygonal curve P : I → R2 is defined by points p0, . . . , pn ∈ R2,
then let ti ∈ I such that P (ti) = pi, and sPi = pi−1pi be the line segment connecting pi and
pj . The arclength parameterization of P linearly interpolates between consecutive points, i.e.,
P (i+ λ) = (1− λ)pi + λpi+1 for ti = i/` and λ ∈ [0, 1], for i = 0, . . . , n− 1, where ` is the
arclength of P , and I = [0, `]. A free space component is cij = Cij ∩ Fε = Fε(sPi , s

Q
j). Points

(r, t) ∈ Fε are called white, and points (r′, t′) /∈ Fε black. A cell Cij is empty (or black) if
Cij ∩ Fε = ∅, full (or white) if Cij ∩ Fε = Cij , and partially full if ∅ 6= Cij ∩ Fε 6= Cij . An
empty cell results from two segments that do not intersect each others’ ε-neighborhoods; a
full cell stems from segments that are completely contained in each others’ ε-neighborhoods.
In the partially full case, the free space Fε(sPi , s

Q
j) is an ellipse cropped at the cell boundaries.

A free space strip denotes a number of cells that form a connected portion of a single row or
column in the free space diagram.

Our contributions. We study the free space realizability problem, assuming arc-length
parameterizations of the curves, which means that cell boundaries, i.e., segment lengths, are
not uniform. We assume we are provided with a detailed description of Dε, including ε, the
lengths of cell boundaries, and exact locations of sufficiently many points on the boundary
curves of all cij . In Section 2 we observe several patterns for which we can easily compute
realizing curves. In Section 3 we compute realizing curves for certain input instances. In
Section 4 we show that maximizing the number of realizing cells for arbitrary instances is
NP-hard. We continue to work on realizing more general free space diagrams.

2 Observations

The following proposition characterizes the shape and position of a free space component
within a cell. Its proof and further descriptions will be given in [9].

I Proposition 2.1. A component cij equals the intersection of an ellipse with the cell Cij , as
shown in [2]. The major axis of the ellipse forms a ±45◦ angle with the cell boundaries [8].

We briefly sketch the proof of the following

I Lemma 2.2. Given ε, a partially full free space cell Cij, and the equation of the ellipse’s
boundary curve within the cell, we can compute the corresponding segments’ relative placement.

Consider cell Cij . From the boundary curve of the ellipse Eij , where cij = Eij ∩ Cij is
the component within our cell, we can easily derive its center and extremal points. Assuming

M. Buchin and L. Ryvkin and C. Wenk 51:3

ε

P+

Q

Q

P

Figure 2 A free space diagram consisting of one cell with marked extremal points and center,
and one corresponding realization. We fix Q and place P choosing a positive enclosed angle.

that the cell’s boundaries coincide with x- and y-axis of R2, and that the bottom left corner
has coordinates (0, 0), the ellipse’s center (ri, tj) holds the intersection point of the two
segments sPi , s

Q
j . The length of sPi from its starting point to the intersection with sQj equals

ri, analogously for sQj and tj . Extremal points encode intersections of one segment with the
ε-neighborhood of the other segment, as shown in Figure 2.

Free space strips. Recall that a strip is a (partial) row or column in the free space
diagram, hence it corresponds to one segment of curve P , and a number of connected segments
of the second curve Q, or vice versa. Given the strip, we want to either give the positions
of all segments, or decide that the strip is not realizable. A completely full or completely
empty strip does not provide enough information to place the corresponding segments, in
contrast to partially full cells. We call the consecutive empty or full cells in between two
partially full cells within a strip a gap. If the cells in a gap are empty (resp., full), we call
this a black (resp., white) gap. The size of a gap is the number of cells.

I Lemma 2.3. For a given free space strip with maximum gap size 2, we can determine
realizability and compute valid placements of the corresponding segments.

For larger gaps, i.e., more than two empty/full cells in between two partially full ones,
the number of possible placements for a segment is not discrete in general, thus constructing
curves from such strips becomes computationally harder. The following lemma and figure
illustrate cases in which we are able to compute placement options for empty or full cells
using placement options of cells in their vicinity.

I Lemma 2.4. It is possible to derive the pairwise distances between endpoints of two
segments for full or empty cells in these cases:
1. If we know the placements of segments sP` , . . . , sPr with respect to sQj (horizontal strip

C`j , . . . , Crj), as well as the placements of sQb , . . . , s
Q
t with respect to sPi (vertical strip

Cib, . . . , Cit), where ` ≤ i ≤ r, we can compute the placements for sP` , . . . , sPr with respect
to each segment sQb , . . . , s

Q
t .

2. If we know the placements of segments sPi , . . . , sPk with respect to sQb , and of sP` , . . . , sPr
with respect to sQt , where ` ≤ k (two strips within parallel rows/columns Cib, . . . , Ckb and
C`t, . . . , Crt with overlapping projections), we can compute the placements of sPk+1, . . . , s

P
r

with respect to sQb , and of sPi , . . . , sP`−1 with respect to sQt .
3. If we know the placements corresponding to cells sharing a boundary vertex, Cij and

Ci+1j+1, we can also compute the placement of the segments corresponding to their
neighboring cells Cij+1 and Ci+1j.

EuroCG’21

51:4 On the Realizability of Free Space Diagrams

4. If we know the placements of segments sPi with respect to sQj , as well as sPi+2 with respect
to sQj+1 (cells Cij and Ci+2j+1), we can also compute the placements of sPi and sPi+1 with
respect to sQj+1, as well as of sPi+1 and sPi+2 with respect to sQj .

Case 1 Case 2 Case 3 Case 4

Figure 3 The grid represents a free space diagram, light blue areas depict partially full cells, and
cells with blue stripes correspond to segments whose relative positions have been computed. We
extend the computed information to the orange cells.

3 Polynomial Time Realizability Algorithm

Given a free space diagram, we decide realizability and compute realizing curves as follows.
First, we compute the placement graph containing information on the relative placements of
segments. Recall that the numbers and lengths of segments are part of the input.

We define the placement graph as follows. Let G = (V,E) be a graph, where the
vertices V =

{
vP1 , . . . , v

P
n , v

Q
1 , . . . , v

Q
m

}
correspond to segments of P and Q. We initialize

E = ∅. An edge
{
vPi , v

Q
j

}
is later inserted for every cell Cij we compute information on, i.e.,

where we obtain the relative position of sPi with respect to sQj (or vice versa) by applying
Lemmas 2.2, 2.3 and 2.4. We also add edges

{
vPi , v

P
i+1
}
or
{
vQj , v

Q
j+1

}
as soon as we know

the enclosed angle between consecutive segments (and hence their relative positions). This
occurs, e.g., for neighboring partially full cells. We store these relative positions (enclosed
angle for consecutive segments, distances between all pairs of endpoints for segments of
different curves) with each edge.

To ensure polynomial runtime, we need that sufficiently many cells are partially full
and that they are “well-distributed” throughout the free space diagram. That is, we ask to
compute the relative placement of each segment with respect to one fixed segment, without
having to deal with gaps of size two or larger. Smaller gaps as well as partially full cells
that share a common corner (Case 3 of Figure 3) result in at most two symmetric placement
options, which we can handle efficiently. However, note that we can handle cases with such
gaps as long as a sufficient amount of information is provided, see Figure 4.

The overall idea is as follows: as described above, we initialize the placement graph
G = Gpoly with vertices for each segment of the two curves. Whenever we obtain information
on the relative placement of one segment with respect to another one, we add an edge between
their corresponding vertices and store the placement of the segments with it. This way, we
can later access the relative position of a segment and place it accordingly. More detailed
descriptions and pseudocode will be presented in [9]. Then we visit all cells “outside-in”,
i.e., we first consider cells C1j , Cnj , Ci1 and Cim for i = 1, . . . , n, j = 1, . . . ,m, then cells
C2j , Cn−1j , Ci2 and Cim−1, and so on. We proceed cell per cell, marking each cell we are able

M. Buchin and L. Ryvkin and C. Wenk 51:5

PQ

ε

Figure 4 A free space providing sufficiently many well-distributed partially full cells (blue striped)
to piece together curves P and Q, even though there is a gap of size 2 (marked in red).

to compute information on as “visited”. We start by adding edges for partially full cells and
compute relative placements for these (using Lemma 2.2). We mark the considered cell as
visited and examine its surrounding cells: First, we check whether a neighboring cell (a cell
sharing a boundary edge) is also visited and add an edge between the consecutive segments’
vertices; then, we check for visited diagonal cells, i.e., cells that share a boundary vertex,
and add the corresponding edges, as well. Finally, we consider gaps of size one: for each cell,
we check whether it has an empty or full neighboring cell, which borders another visited cell
within the same strip. In that case we compute the position of the “missing” segment using
Lemma 2.3 and add the corresponding edges.

When after processing the free space diagram and adding edges to Gpoly in this way, there
are two vertices vPi , v

Q
j ∈ Gpoly (i.e., segments sPi , s

Q
j), that are connected to all vertices

(and thus in particular Gpoly is connected), we can build realizing curves for the free space
diagram, or decide that it is not realizable. A formal proof of this claim will be given in [9],
and pseudocode of our algorithmic approaches will also be presented in [9]. We obtain

I Theorem 3.1. For a free space diagram Dε with sufficiently many well-distributed partially
full cells, our algorithm decides whether it is realizable through curves and outputs such
curves if possible. The algorithm runs in time O((n + m)2 + nm log(nm)), for Dε of size
O(nm), provided only a constant number k of endpoints pi, qj coincide.

As stated, our algorithm only works in case sufficiently many partially full cells are
well-distributed throughout the given diagram. This is, e.g., the case if all cells are either
partially full themselves, or border at least two partially full cells. In Figure 3, however, we
show more situations in which we are able to derive placement options. These cases lead to
an exponential runtime algorithm. This algorithmic extension will be presented in [9].

Note that characterizing whether the realizability of a given diagram is decidable in
polynomial or exponential time (or not at all, for our algorithms) requires analyzing the
diagram and all possibilities to compute information on empty or full cells, which seems to
be as computationally expensive as running our algorthims in the first place.

4 Maximizing the Number of Realized Cells is NP-Hard

Our algorithm can only decide realizability in polynomial time for certain instances. Next, we
show that in fact maximizing the number of realized cells is NP-hard for arbitrary instances.
For this we reduce from (the decision version of) Monotone MAX-1-in-2-SAT, i.e., given
a 2-SAT formula without negations, the goal is to maximize the number of clauses where
exactly one variable is set to true. For completeness, we prove the NP-hardness for this
problem by a reduction from the MAX-CUT problem [7] in [9].

EuroCG’21

51:6 On the Realizability of Free Space Diagrams

sc

si

sp

sj

ε

α
−α

si sp sj

sc

Figure 5 A strip representing a monotone 1-in-2-clause and the curves realizing them. The
segment si has a positive and sj has a negative angle, indicating that the i-th variable should be
assigned to true and the j-th variable to false to fulfill the corresponding 1-in-2-clause.

I Theorem 4.1. Deciding if two polygonal curves exist that realize at least k cells of a given
free space diagram is NP-hard.

ε

si

sc

Q

Figure 6 A strip corresponding to segment si ∈ P , the (prolonged) clause-segment, and control
gadget (in dashed ellipse). To the right, realizing curves are shown with the control gadget (in
dashed circle) consisting of multiple segments drawn on top of each other (shown perturbed below).

Proof. This is a rough sketch of proof, the detailed proof will be given in [9]. We reduce
from monotone MAX 1-in-2-SAT: for a given 2-SAT formula of n variables and m clauses,
we construct a free space diagram. In this diagram, a maximizing variable assignment
corresponds to placing curves that realize the maximum number of free space cells.

First recall that for a given fixed segment, placing another segment at angle α results in
the same free space cell as placing the segment at angle −α. We use this to model setting a
variable to true or false. Based on this, we construct a clause-gadget and a control-gadget,
the latter of which ensures that segments representing variables are placed consistently.

The clause gadget is shown in Figure 5. It consists of 5 cells; the outer two correspond to
the two variables, and the inner three can be realized exactly if exactly one of the variables
is set to true, i.e., the two segments are placed one at positive and one at a negative angle.

To ensure that variable segments are placed consistently, we place control gadgets over
each copy of a variable segment, see Figure 6. The control gadgets are sufficiently large, which
enforces realizing these cells, and hence assigning variables consistently. By placing different
variables slightly differently, their control gadgets do not interfere with other variables.

M. Buchin and L. Ryvkin and C. Wenk 51:7

Figure 7 shows a (tiny) complete construction. In the second from bottom row the clause
gadgets are placed next to each other. In between two clause gadgets we add a partially full
cell in the bottom row, which corresponds to visiting a “neutralizing” segment inbetween.
And control gadgets are added above each occurrence of a variable (here only two). J

ε

s0

sc

control
gadget
for v1

s1 s2

control
gadget
for v2

sp

s1 s2

s`

s`

s0 sc

sp

Figure 7 The free space diagram for the clause (v1 ∨ v2) with clause and both control gadgets,
each featuring three spikes. On the right hand side a perturbed drawing of realizing curves, where
s1 has a positive and s2 a negative angle to sc, i.e., we would set v1 to true and v2 to false.

References
1 Hugo Alves Akitaya, Maike Buchin, Leonie Ryvkin, and Jérôme Urhausen. The k-Fréchet

distance: How to walk your dog while teleporting. In 30th International Symposium on
Algorithms and Computation, pages 50:1–50:15, 2019.

2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. Internat. J. Comput. Geom. Appl., 5(1-2):75–91, 1995.

3 Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for
planar curves. Algorithmica, 38(1):45–58, 2004.

4 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly
subquadratic algorithms unless SETH fails. In 55th Annual Symposium on Foundations of
Computer Science, pages 661–670, 2014.

5 Maike Buchin, Anne Driemel, and Bettina Speckmann. Computing the Fréchet distance
with shortcuts is NP-hard. In Proceedings of the Thirtieth Annual Symposium on Compu-
tational Geometry, page 367–376, 2014.

6 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance
for realistic curves in near linear time. Discrete Comput. Geom., 48(1):94–127, 2012.

7 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43(3):425 – 440, 1991.

8 Günter Rote. Lexicographic Fréchet matchings. In 30th European Workshop on Computa-
tional Geometry, 2014.

9 Leonie Ryvkin. Novel Distance Measures for Polygonal Curves : Bridging Between Haus-
dorff and Fréchet Distance. PhD thesis, Ruhr University Bochum, (to appear) May 2021.

EuroCG’21

Accelerating Amoebots via Reconfigurable
Circuits∗

Michael Feldmann1, Andreas Padalkin2, Christian Scheideler3, and
Shlomi Dolev4

1 Paderborn University
michael.feldmann@upb.de

2 Paderborn University
andreas.padalkin@upb.de

3 Paderborn University
scheideler@upb.de

4 Ben-Gurion University of the Negev
dolev@cs.bgu.ac.il

Abstract
We consider an extension to the geometric amoebot model that allow particles to form a constant

amount of circuits. Given a connected particle structure, a circuit is a subgraph formed by the
particles that permits the instant transmission of signals. We show that such an extension allows
for significant faster solutions to a variety of problems related to programmable matter. More
specifically, we provide algorithms for leader election and compass alignment. Leader election can be
solved in Θ(log n) rounds, w.h.p., and compass alignment can be solved in O(log n) rounds, w.h.p.

1 Introduction

Programmable matter is a physical substance consisting of tiny, homogeneous robots (also
called particles) that is able to dynamically change its physical properties like shape or density.
Such a substance can be deployed, for example, to build any objects imaginable or for the
detection of cancer cells through injection into the human body. Programmable matter has
been envisioned for 30 years [23] and is yet still to be realized in practice. However, theoretical
investigation on various models (such as the self-assembly model [21], the nubot model [24]
or the geometric amoebot model [8]) have already been started and is still continuing in the
distributed computing community.

Our investigation on programmable matter is made in the geometric amoebot model where
the locomotions of the particles are inspired by amoeba. However, the model only supports
movements by single particles at a time. We aim to accelerate algorithms for this model
by synchronizing the locomotions of several particles, which leads to a faster reorganization
of whole parts of particle structures. For this purpose, we introduce an extension to the
geometric amoebot model. Each particle is allowed to create a constant amount of circuits
with a subset of particles from the network. A circuit formed by particles allows for the
instantaneous transmission of primitive signals.

In spite of our prime goal, we start our investigation of the new possibilities on fundamental
algorithms in a stationary setting. More precisely, we study algorithms for leader election and
compass alignment. Leader election has turned out as a crucial primitive to break symmetries

∗ This work has been supported by the DFG Project SFB 901 (On-The-Fly Computing) and the DFG
Project SCHE 1592/6-1 (PROGMATTER).

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

52:2 Accelerating Amoebots via Reconfigurable Circuits

in various geometric problems, e.g., shape formation (see for example [10, 17]). Compass
alignment ensures that the synchronized movements of particles are coordinated into the
same direction. We show that we are able to achieve a significant improvement on previous
results with the help of the circuits. Altogether, this paper will lay the foundation for an
upcoming examination of problems requiring locomotion, e.g., shape formation and object
coating.

The full version of this paper will contain solutions for the shape recognition problem.

1.1 Model
We introduce the extension of the geometric amoebot model from [8], which we describe in the
following. In this model, a set of n uniform particles is placed on the infinite regular triangular
grid graph Geqt = (V,E) (see Figure 1a). The particles are anonymous, randomized finite
state machines. Each particle occupies a single node1 and each node is occupied by at most
one particle.

(a) (b)

Figure 1 (a) A section of Geqt. (b) A connected particle structure. The nodes are the particles
and the edges are the bonds. A small arrow indicates the orientation of each particle.

A bond is formed between particles occupying adjacent nodes. These particles are said
to be neighbors. Neighbors are able to communicate through a locally shared constant-size
memory. Furthermore, particles assign a locally unique label to each edge incident to their
occupied nodes. We assume that all particles share a common chirality. However, the
particles do not have to agree on a common orientation.

Let the particle structure S ⊆ V be the set of nodes occupied by the particles (see
Figure 1b). It is connected iff GS is connected where GS = Geqt|S is the graph induced by S.
We expect that the structure is connected2.

In our model extension, pins are added to each bond between two particles. The number
of pins per bond is bounded by a constant c. A unique identifier is assigned to each pin of a
bond. These are known to both particles such that the pins can be distinguished. Particles
can connect the pins of their bonds arbitrarily.

Let P be the set of all pins and let C be the set of all connections between pins. Then, we
define a circuit as a connected component of graph GC = (P,C) (see Figure 2). A particle is
part of a circuit iff the circuit contains at least one pin on one of its bonds.

1 Actually, particles are allowed to occupy either a single node or a pair of adjacent nodes. W.l.o.g., we
can assume the former for all particles. Otherwise, we let the latter simulate 2 individual particles.

2 Particles have the ability to move by expansions and contractions. Since the presented algorithms work
entirely stationary, we omit further details and refer to [8]. The particles have to maintain a connected
structure at all times.

M. Feldmann, A. Padalkin, C. Scheideler and S. Dolev 52:3

Figure 2 The inner perspective of an particle structure for c = 2. The hexagons represent the
particles. Each side is a bond. The pins P are indicated by nodes. The connections C are indicated
by solid and dashed edges. Both the solid and dashed edges indicate a circuit. The particles
connected by the solid circuit are highlighted in gray.

Each particle can send a primitive signal (a beep) through its circuits that is received by
all particles of the same circuit. The particles receive a beep if at least one particle sends a
beep on the circuit but the particles do neither know the origin of the signal nor the number
of origins.

Particles operate in look-compute-act cycles: In the look phase the particle gathers
information. It reads its local and shared memories. Moreover, it may receive beeps on its
circuits. In the compute phase it performs some calculations and may update its local and
shared memory. In the act phase it may reconfigure the connections of its pins and send a
signal through an arbitrary number of its circuits. The signals are received during the next
look phase. Note that we assume a constant transmission time on the circuits, regardless
of the size of the circuit. This assumption is adopted from related reconfigurable network
models (see Section 1.3).

We assume that initially, all particles are connected to a single circuit, which we call the
global circuit, i.e., each particle connects a predefined pin of each bond together. Furthermore,
we assume that the particle structure progresses in synchronized rounds. Initially, the
particles may not be synchronized. But we do assume that they have a common sense of
a time unit, so they will synchronize each other at the first activation of the global circuit.
We measure the complexity of an algorithm by the number of synchronized rounds required
after the first activation of the global circuit.

1.2 Problem Statement and Our Contribution
We consider the following two fundamental problems, given a connected particle structure S.

First, we study the leader election problem. The particles have to agree on exactly one
single particle, which becomes the leader. Since particles only have constant storage capacity
and due to the absence of node identifiers, leader election is a non-trivial problem. We
propose a protocol, which requires Θ(logn) rounds, w.h.p.3 This is a significant improvement
on the runtime of previous algorithms (see Section 1.3), which have at least linear complexity.

Second, we examine the compass alignment problem. The particles do not agree on a
common orientation. Thus, the goal of the problem is to align the compasses of all particles

3 An event holds with high probability (w.h.p.) if it holds with probability at least 1 − 1/nc where the
constant c can be made arbitrarily large.

EuroCG’21

52:4 Accelerating Amoebots via Reconfigurable Circuits

globally. A compass alignment is essential to coordinate synchronized movements. Our
algorithm requires O(logn) rounds, w.h.p.

1.3 Related Work
Reconfigurable circuits have proven their value in various reconfigurable network models,
e.g., polymorphic-torus networks [15, 16], meshes with reconfigurable bus [16, 18] and bus
automata [19, 22]. Further examples can be found in [2, 16]. We will discuss the generalized
model stated in [2]. Usually, a square mesh is utilized as network topology. A processor
with a switch is placed on each node. For the particular model, the computational power of
the processors may vary. The switches control the connectivity of the incident edges. The
possible connections may be restricted in different variants. A connected component is called
a bus.

Each processor connected to a bus may transmit a message on the bus, which is received
by all other processors of the same bus. Contrary to our model, non-primitive messages are
possible. Depending on the specific model, collisions either are detected or go undetected
if more than one processor has transmitted a message on a bus. In the former case the
massages are assumed to be destroyed. In the latter case, for example, a logical OR may be
applied to the messages. Our model corresponds to the latter.

The leader election problem is an extensively researched problem within the geometric
amoebot model [1, 4, 7, 12, 13, 14, 17]. To our knowledge there are no publications
regarding compass alignment within the amoebot model. Further publications include shape
formation [6, 9, 10, 12, 17], gathering [3], and object coating [5, 11].

2 Leader Election

In this section we give an efficient solution for the leader election problem. The underlying
idea has been analyzed before, for example in [20]. Our protocol works in two phases. First,
we reduce the number of particles that are being considered for the leader from n to O(logn).
The second phase then elects a leader among the remaining O(logn) candidates, w.h.p.

Throughout the protocol, we maintain a set C1 ⊆ S of particles that are considered as
candidates for the leader. In the first phase we perform a tournament on the particles that
are still candidates to become the leader. Initially, each particle is a candidate, i.e., C1 = S.

A single iteration of the tournament works as follows. Each candidate u ∈ C1 tosses a
coin that is either HEADS or TAILS and stores the result in a variable u.c1. Now consider
two subsequent rounds r1, r2. In round r1 all candidates u ∈ C1 with u.c1 = HEADS send a
signal through the global circuit and in r2 all candidates u ∈ C1 with u.c1 = TAILS send
a signal through the global circuit. As signals are received instantly by all particles, each
particle is able to check if there is a candidate that beeped in r1 and one that beeped in r2.
If at least one candidate beeped in r1, all candidates that beeped in r2 are out of contention
for being the leader (therefore, the set C1 gets updated). We continue performing iterations
of the tournament until we reach an iteration where in either round r1 or in r2 no candidate
beeped. This finishes the first phase of our protocol and takes Θ(logn) rounds, w.h.p.

In the second phase we continue the tournament from the first phase on the remaining
O(logn) candidates in C1 until there is only one single candidate left. Unfortunately, we
cannot check efficiently when this is the case because we cannot count the number of particles
that have sent a signal in a single round through the global circuit. Therefore, we aim to
continue the tournament from the first phase for another Θ(logn) rounds. As particles cannot
count to Θ(logn) due to their constant-sized storage, we just perform a second tournament

M. Feldmann, A. Padalkin, C. Scheideler and S. Dolev 52:5

on the set C2, initially set to S, in parallel to the tournament on the set C1. One iteration
of the second phase therefore consists of 4 rounds – 2 rounds for the tournament on C1 and
2 rounds for the tournament on C2. The second tournament terminates once the tournament
on C2 has finished. By repeating the second tournament κ times for a constant κ ≥ 3, we
can guarantee that w.h.p., only one single node remains as a candidate.

I Theorem 2.1. A particle structure elects a leader within Θ(logn) rounds, w.h.p.

3 Compass Alignment

In this section, we consider another basic task: the alignment of the compasses of all particles.
Our protocol divides the particle structure into regions of homogeneous compass alignments
and fuses these iteratively into a single region by adjusting the alignments of regions.

The regions are defined by the connected components of graph GR = (S,A) where
A = {{u, v} ∈ E | u, v aligned}. Let Rt denote the set of all regions after the t-th loop and
R0 denote the set of all regions at the beginning. Moreover, we call region R′ a neighbor
of region R if there exists u ∈ R and v ∈ R′ such that these are adjacent in GS . The
neighborhood of R is given by N(R).

In a nutshell, loop t proceeds as follows: First, we determine set Rt−1 and connect the
particles of each region by a regional circuit. Each region R ∈ Rt−1 attempts to toss a coin.
Thereupon, each region that has tossed TAILS fuses into a neighbor region that has not
tossed TAILS by adjusting its compass. The new regions are determined at the beginning of
the next loop. Further fusions may occur beyond these adjustments (see Figure 3).

R1

R2
R3

R4

Figure 3 Region R1 and R4 have the same orientation. Region R2 adjusts its compass to region
R1. Region R3 adjusts its compass to region R4. All 4 regions fuse together.

In order to toss a coin, we use a similar approach as for the leader election. Each region
contains a non-empty set of candidates. Exactly like the candidates in the leader election
protocol, each of these tosses a coin and beeps in the respective round. A coin toss is
successful if all coin tosses of the candidates coincide. Otherwise, the candidacies of all
candidates that have tossed TAILS are revoked.

Suppose that region R has tossed TAILS . We now describe how region R fuses into
another region. Let N′(R) denote all neighbors of R that have not tossed TAILS . These
regions do not change their orientation in the current loop. We define offset(R,R′) as the
minimal number of clockwise rotations (by 60◦) necessary to adjust the particles of R to the
compass of R′. Note that offset(R,R′) ∈ [1, 5].

Particles adjacent to a neighboring region can obtain information from these neighboring
regions (by reading from the shared memory). In particular, they know about the result of
the coin tosses and about the offset. Consider the particles in region R that are adjacent to

EuroCG’21

52:6 Accelerating Amoebots via Reconfigurable Circuits

a region that has not tossed TAILS . We divide these particles into 5 subsets accordingly to
the offsets. Note that the subsets are not necessarily disjoint. In more detail, let

∀i ∈ [1, 5] : Bi = {u ∈ R | ∃R′ ∈ N′(R) : offset(R,R′) = i ∧ ∃v ∈ R′ : u, v adjacent in GS}.

Note that Bi 6= ∅ implies that region R can fuse into another region by rotating its particles
i times in clockwise direction. Similar to the coin tosses, we consider 5 subsequent rounds
r1, . . . , r5. Each particle u ∈ Bi beeps on the regional circuit in round ri. The region R may
pick the first possible offset.

Finally, we have to check if there is still more than one region left. Any particle that has
an unaligned neighbor beeps continuously on the global circuit. The algorithm terminates
once a round is reached where the global circuit has not been activated.

I Theorem 3.1. The compasses of all particles are aligned after O(logn) rounds, w.h.p.

References
1 Rida A. Bazzi and Joseph L. Briones. Stationary and deterministic leader election in self-

organizing particle systems. In Mohsen Ghaffari, Mikhail Nesterenko, Sébastien Tixeuil,
Sara Tucci, and Yukiko Yamauchi, editors, Stabilization, Safety, and Security of Distributed
Systems - 21st International Symposium, SSS 2019, Pisa, Italy, October 22-25, 2019, Pro-
ceedings, volume 11914 of Lecture Notes in Computer Science, pages 22–37. Springer, 2019.
doi:10.1007/978-3-030-34992-9_3.

2 Yosi Ben-Asher, Klaus-Jörn Lange, David Peleg, and Assaf Schuster. The complexity of
reconfiguring network models. Inf. Comput., 121(1):41–58, 1995. doi:10.1006/inco.1995.
1122.

3 Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W. Richa. A markov chain
algorithm for compression in self-organizing particle systems. In George Giakkoupis, editor,
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC
2016, Chicago, IL, USA, July 25-28, 2016, pages 279–288. ACM, 2016. doi:10.1145/
2933057.2933107.

4 Gianlorenzo D’Angelo, Mattia D’Emidio, Shantanu Das, Alfredo Navarra, and Giuseppe
Prencipe. Asynchronous silent programmable matter achieves leader election and com-
paction. IEEE Access, 8:207619–207634, 2020. doi:10.1109/ACCESS.2020.3038174.

5 Joshua J. Daymude, Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W.
Richa, Christian Scheideler, and Thim Strothmann. On the runtime of universal
coating for programmable matter. Nat. Comput., 17(1):81–96, 2018. doi:10.1007/
s11047-017-9658-6.

6 Joshua J. Daymude, Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Christian Schei-
deler, and Andréa W. Richa. Convex hull formation for programmable matter. In Nandini
Mukherjee and Sriram V. Pemmaraju, editors, ICDCN 2020: 21st International Confer-
ence on Distributed Computing and Networking, Kolkata, India, January 4-7, 2020, pages
2:1–2:10. ACM, 2020. doi:10.1145/3369740.3372916.

7 Joshua J. Daymude, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Improved leader election for self-organizing programmable matter. In Anto-
nio Fernández Anta, Tomasz Jurdzinski, Miguel A. Mosteiro, and Yanyong Zhang, editors,
Algorithms for Sensor Systems - 13th International Symposium on Algorithms and Experi-
ments for Wireless Sensor Networks, ALGOSENSORS 2017, Vienna, Austria, September
7-8, 2017, Revised Selected Papers, volume 10718 of Lecture Notes in Computer Science,
pages 127–140. Springer, 2017. doi:10.1007/978-3-319-72751-6_10.

M. Feldmann, A. Padalkin, C. Scheideler and S. Dolev 52:7

8 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, AndréaW. Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: amoebot - a new model for programmable
matter. In Guy E. Blelloch and Peter Sanders, editors, 26th ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA ’14, Prague, Czech Republic - June 23 - 25,
2014, pages 220–222. ACM, 2014. doi:10.1145/2612669.2612712.

9 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. An algorithmic framework for shape formation problems in self-organizing par-
ticle systems. In Faramarz Fekri, Sasitharan Balasubramaniam, Tommaso Melodia, Ahmad
Beirami, and Albert Cabellos, editors, Proceedings of the Second Annual International Con-
ference on Nanoscale Computing and Communication, NANOCOM’ 15, Boston, MA, USA,
September 21-22, 2015, pages 21:1–21:2. ACM, 2015. doi:10.1145/2800795.2800829.

10 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal shape formation for programmable matter. In Christian Scheideler
and Seth Gilbert, editors, Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA,
July 11-13, 2016, pages 289–299. ACM, 2016. doi:10.1145/2935764.2935784.

11 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal coating for programmable matter. Theor. Comput. Sci., 671:56–68,
2017. doi:10.1016/j.tcs.2016.02.039.

12 Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida A. Bazzi, Andréa W. Richa,
and Christian Scheideler. Leader election and shape formation with self-organizing pro-
grammable matter. In Andrew Phillips and Peng Yin, editors, DNA Computing and Molec-
ular Programming - 21st International Conference, DNA 21, Boston and Cambridge, MA,
USA, August 17-21, 2015. Proceedings, volume 9211 of Lecture Notes in Computer Science,
pages 117–132. Springer, 2015. doi:10.1007/978-3-319-21999-8_8.

13 Yuval Emek, Shay Kutten, Ron Lavi, and William K. Moses Jr. Deterministic leader
election in programmable matter. In Christel Baier, Ioannis Chatzigiannakis, Paola Floc-
chini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132
of LIPIcs, pages 140:1–140:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ICALP.2019.140.

14 Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier Togni. Distributed leader
election and computation of local identifiers for programmable matter. In Seth Gilbert,
Danny Hughes, and Bhaskar Krishnamachari, editors, Algorithms for Sensor Systems - 14th
International Symposium on Algorithms and Experiments for Wireless Sensor Networks,
ALGOSENSORS 2018, Helsinki, Finland, August 23-24, 2018, Revised Selected Papers,
volume 11410 of Lecture Notes in Computer Science, pages 159–179. Springer, 2018. doi:
10.1007/978-3-030-14094-6_11.

15 Hungwen Li and Massimo Maresca. Polymorphic-torus network. IEEE Trans. Computers,
38(9):1345–1351, 1989. doi:10.1109/12.29479.

16 Hungwen Li and Quentin F. Stout. Reconfigurable simd massively parallel computers.
Proceedings of the IEEE, 79(4):429–443, 1991.

17 Giuseppe Antonio Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape formation by programmable particles. In James Aspnes, Alysson Bessani,
Pascal Felber, and João Leitão, editors, 21st International Conference on Principles of
Distributed Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017, volume 95 of
LIPIcs, pages 31:1–31:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.OPODIS.2017.31.

EuroCG’21

52:8 Accelerating Amoebots via Reconfigurable Circuits

18 Russ Miller, Viktor K. Prasanna-Kumar, Dionisios Reisis, and Quentin F. Stout. Meshes
with reconfigurable buses. In Proceedings of the fifth MIT conference on Advanced research
in VLSI, pages 163–178, 1988.

19 J. Michael Moshell and Jerome Rothstein. Bus automata and immediate languages. Inf.
Control., 40(1):88–121, 1979. doi:10.1016/S0019-9958(79)90361-9.

20 Helmut Prodinger. How to select a loser. Discret. Math., 120(1-3):149–159, 1993. doi:
10.1016/0012-365X(93)90572-B.

21 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares (extended abstract). In F. Frances Yao and Eugene M. Luks, editors, Proceedings
of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000,
Portland, OR, USA, pages 459–468. ACM, 2000. doi:10.1145/335305.335358.

22 Jerome Rothstein. Bus automata, brains, and mental models. IEEE Trans. Syst. Man
Cybern., 18(4):522–531, 1988. doi:10.1109/21.17370.

23 Tommaso Toffoli and Norman Margolus. Programmable matter: Concepts and realization.
Int. J. High Speed Comput., 5(2):155–170, 1993. doi:10.1142/S0129053393000086.

24 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng
Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In
Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS
’13, page 353–354, New York, NY, USA, 2013. Association for Computing Machinery. doi:
10.1145/2422436.2422476.

Coloring Drawings Of Graphs∗

Christoph Hertrich1, Felix Schröder1, and Raphael Steiner1

1 Institute of Mathematics, Technische Universität Berlin
{hertrich,fschroed,steiner}@math.tu-berlin.de

Abstract
We consider face-colorings of drawings of graphs in the plane. Given a multi-graph G together with
a drawing Γ(G) in the plane with only finitely many crossings, we define a face-k-coloring of Γ(G)
to be a coloring of the maximal connected regions of the drawing, the faces, with k colors such
that adjacent faces have different colors. By the 4-color theorem, every drawing of a bridgeless
graph has a face-4-coloring. A drawing of a graph is facially 2-colorable if and only if the underlying
graph is Eulerian. We show that every graph without degree 1 vertices admits a 3-colorable drawing.
This leads to the natural question which graphs G have the property that each of its drawings
has a 3-coloring. We say that such a graph G is facially 3-colorable. We derive several sufficient
and necessary conditions for this property: we show that every 4-edge-connected graph and every
graph admitting a nowhere-zero 3-flow is facially 3-colorable. We also discuss circumstances under
which facial 3-colorability guarantees the existence of a nowhere-zero 3-flow. On the negative side,
we present an infinite family of facially 3-colorable graphs without a nowhere-zero 3-flow. On the
positive side, we formulate a conjecture which has a surprising relation to a famous open problem by
Tutte known as the 3-flow-conjecture. We prove our conjecture for subcubic and for K3,3-minor-free
graphs.

Related Version A full version of the paper is available at https://arxiv.org/abs/2008.09692

1 Introduction

Graph coloring is one of the earliest and most influential branches of graph theory, whose
first occurences date back more than 150 years. Maybe the most celebrated problem in
graph theory is the 4-color-problem, asking whether the bounded regions of every planar map
can be colored using 4 colors such that regions sharing a common border receive different
colors. This problem was finally resolved in the positive in 1972 when Appel and Haken [1, 2]
presented a computer-assisted proof of the famous 4-Color-Theorem, which formally states
that the chromatic number of every planar graph is at most four.

In this paper we combine the topics of graph coloring and graph drawing by studying
colorings of planar maps arising from drawings of possibly non-planar graphs. Formally,
a face-k-coloring of a drawing Γ is a proper coloring of the dual graph G>(Γ) of Γ, i.e., a
coloring c : F(Γ)→ {0, . . . , k − 1} of the faces such that for any two faces f1, f2 which are
adjacent in Γ (i.e., they share a common segment of an edge), we have c(f1) 6= c(f2) (see
Figure 1 for an example). Note that in a drawing Γ it might occur that a face f is adjacent
to itself, in which case no face-coloring can exist, compare Figure 2.

However, in this case the edge involved in the self-touching must be a bridge of the
underlying abstract graph, hence, self-touchings do not occur in drawings of bridgeless graphs.
This justifies that most of our results are formulated only for the setting of bridgeless graphs.
Using the Four-Color-Theorem, we directly see that four colors are sufficient to face-color
bridgeless graphs.

∗ All three authors were supported by DFG-GRK 2434 Facets of Complexity.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

53:2 Coloring Drawings Of Graphs

0

1

2
1

2

0

2

1
1

0

2

0
0

0

2

Figure 1 A face-3-colored drawing of a graph.

Figure 2 A drawing of a graph with a self-touching outer face, caused by the existence of a
bridge (edge marked fat) in the underlying graph.

I Proposition 1.1. Every drawing of a bridgeless graph admits a face-4-coloring.

2 Notation and Basics

The graphs considered in this paper are finite multi-graphs. We say that G′ is a minor of G,
if G′ is obtained from G via a sequence of finitely many edge contractions, edge deletions
and vertex deletions. We say that G′ is a subcontraction of G if it is obtained from G by a
sequence of vertex contractions.

By a drawing Γ of a graph G we mean an immersion of G in the plane such that vertices
are mapped to distinct points and edges are represented by continuous curves connecting the
images of their endpoints (closed curves in the case of loops), but which do not contain any
other vertices. Edges may intersect each other and themselves, but there are only finitely
many points of intersection. For e ∈ E(G), γ(e) indicates the set of points on the curve
representing e, and γ◦(e) the set of interior points of γ(e). A more restricted class of drawings
are the good drawings, satisfying the following additional properties:

no point is contained in the interiors of more than two edges,
edges do not self-intersect (except loops may self-intersect at the endpoint)
every two adjacent edges intersect only in their common endpoints,
non-adjacent edges intersect in at most one point, which is a proper crossing, and
loops do not intersect other edges.

C. Hertrich, F. Schröder, R. Steiner 53:3

Good drawings of simple graphs have been studied extensively in the literature, mainly
because the crossing number of a graph is attained by good drawings, see also [8] for a survey
on this topic. More precisely, a well-known fact in crossing number theory is that every
drawing of a graph can be reduced by a set of local uncrossing-operations to a good drawing.
The proof is standard, but lengthy, so we defer it to the full version. A similar proof (which
however only deals with simple graphs) can be found in [8], Lemma 1.3.

In case Γ is a drawing of G, we also say that G is the underlying graph of Γ.

0

1

2
1

2

0

2

1
1

0

2

0
0

0

2

(a) Drawing Γ of G colored by c (b) The planarization Gisc(Γ) (c) G>(Γ), planar dual to Gisc(Γ)

Figure 3 Face-3-coloring c of a drawing of a multigraph G and associated graphs Gisc and G>.

By F(Γ) we denote the set of the faces of Γ, i.e., the connected components of R2 − Γ.
Placing an additional vertex at every inner intersection of at least two edges in a drawing
Γ and making two such vertices adjacent whenever they appear consecutively on the same
edge of the drawing, we obtain an embedded planar graph Gisc(Γ), which we refer to as the
planarization of Γ. See Figure 3(b) for an example. Note that Gisc(Γ) captures the most
relevant combinatorial properties of the drawing Γ. In particular, the cell decompositions of
R2 − Γ and R2 −Gisc(Γ) are isomorphic. By G>(Γ) we will denote the planar dual graph of
Gisc(Γ), embedded in the natural way, see Figure 3(c) for an example.

Wherever the proof of any result is not given in this extended abstract or not given to its
full extent, it can be found in the full version.

3 Existence of 2- and 3-Colorable Drawings

We start our investigation of face-colorings of graphs by characterising the drawings whose
faces can be properly colored using only two colors. A graph is called Eulerian if all its
vertices have even degree.

I Proposition 3.1. A drawing Γ of a graph G has a face-2-coloring if and only if G is
Eulerian.

Proof Sketch. If G is Eulerian, the planarization of Γ is as well, and the dual of a planar,
Eulerian graph is bipartite. Therefore, Γ has a face-2-coloring. On the other hand, the
regions around any vertex of odd degree form an odd cycle which cannot be 2-colored. J

For every face-coloring of a drawing of a non-Eulerian graph, at least 3 colors are required.
However, we show that this is the worst case: every graph without degree one vertices (in
particular, any bridgeless graph) has numerous drawings that are 3-colorable.

I Proposition 3.2. A graph G has a drawing with a face-3-coloring if and only if it has no
vertex of degree 1.

EuroCG’21

53:4 Coloring Drawings Of Graphs

Propositions 1.1, 3.1, and 3.2 motivate the problem of understanding the structure of
graphs all whose drawings are 3-colorable. This leads to the following notion: If G is an
abstract graph, we say that G is facially 3-colorable if every drawing of G in the plane admits
a face-3-coloring.

4 Sufficient Conditions for Facial 3-Colorability

We derive several sufficient conditions for a graph to be facially 3-colorable, and thereby
draw a link between facially 3-colorable graphs and so-called 3-flowable graphs, which are
intensively studied in the theory of nowhere-zero flows on graphs. For k ∈ N, a nowhere-zero
k-flow on a graph G consists of a pair (D, f), where D = (V (D), A(D)) is an orientation of
the edges of G, and where f : A(D)→ Zk \ {0} is a group-valued flow on the digraph D, i.e.,
a weighting of the arcs with non-zero group elements from Zk satisfying Kirchhoff’s law of
flow conservation:

∀v ∈ V (D) :
∑

e=(w,v)∈A(D)

f(e) =
∑

e=(v,w)∈A(D)

f(e)

If a graph G admits a nowhere-zero k-flow, we also say that G is k-flowable. The interest
in nowhere-zero-flows stems from the following intimate connection to colorings of planar
graphs. For a comprehensive introduction to the topic of nowhere-zero flows, we refer to the
textbook [13] by Zhang. Particularly relevant to the topics addressed here are the sections
‘Face Colorings’ and ‘Nowhere-Zero 3-Flows’.

I Theorem 4.1 (Folklore, see also [13], Theorem 1.4.5). Let G be a planar graph and let Γ be
a crossing-free embedding of G in the plane. Then for any k ∈ N, G admits a nowhere-zero
k-flow if and only if Γ has a face-k-coloring.

Similar to the situation for face-colorings, only bridgeless graphs can have nowhere-
zero flows, as the flow value of a bridging edge must be 0. Conversely, a famous result
by Seymour [9] states that every bridgeless graph admits a nowhere-zero 6-flow. The
following result relates the existence of nowhere-zero 3-flows in graphs with the existence of
face-3-colorings for all their drawings.

I Theorem 4.2. Let G be a graph admitting a nowhere-zero 3-flow. Then G is facially
3-colorable.

Grötzsch’s theorem states that loopless triangle-free planar graphs are 3-colorable, thus
we obtain another interesting positive result.

I Theorem 4.3. Every 4-edge-connected graph is facially 3-colorable.

Proof idea. Let G be a 4-edge-connected graph. We first prove that the planarization of any
drawing of G is 4-edge-connected as well. Note that this means that its planar dual graph is
simple and triangle-free. Hence, Grötzsch’s Theorem implies that the dual graph admits a
proper 3-vertex-coloring, and therefore the faces can be properly colored with 3 colors. J

5 An Infinite Family of Counterexamples

Looking at Theorem 4.2 and 4.3, it is natural to ask whether there are facially 3-colorable
graphs that are not 3-flowable. We answer this question in the positive by providing an

C. Hertrich, F. Schröder, R. Steiner 53:5

infinite family of graphs with this property. For every n ∈ N, K+
3,n denotes the graph obtained

from the complete bipartite graph K3,n by joining two vertices in the partite set of size 3 by
an edge.

I Theorem 5.1. For every n ≥ 4, the graph K+
3,n is facially 3-colorable but does not admit

a nowhere-zero 3-flow.

However, examples of graphs as given by Theorem 5.1 are rarely spread. In fact,
Sudakov [10] proved that random graphs expected to have minimum degree at least 2 are
expected to have a nowhere-zero 3-flow, thereby establishing in a strong sense that almost
all graphs admit a nowhere-zero 3-flow.

6 Towards Characterizing Facially 3-Colorable Graphs

The following two results show that an equivalence between facial 3-colorability and the
existence of nowhere-zero 3-flows holds at least for sparse graph classes beyond planar
graphs. The proofs rely on the fact that facial 3-colorability is hereditary with respect to
subcontractions, that is, contractions of arbitrary subsets of vertices (not only connected
subgraphs).

I Theorem 6.1. A graph with maximum degree at most 3 is facially 3-colorable if and only
if it is 3-flowable.

I Theorem 6.2. A K3,3-minor-free graph is facially 3-colorable if and only if it is 3-flowable.

We have not been able to find graphs which are facially 3-colorable but not 3-flowable
except for graphs arising by simple operations from the examples given by Theorem 5.1. To
be more precise, we believe that excluding the graphs K+

3,n, n ≥ 4, as subcontractions could
already be sufficient to yield an equivalence between facial 3-colorability and 3-flowability.

I Conjecture 6.3. If G is a facially 3-colorable graph which does not have a subcontraction
isomorphic to K+

3,n for some n ≥ 4, then G is 3-flowable.

Interestingly, a positive answer to Conjecture 6.3 would also imply a positive answer to
the following long-standing Conjecture by Tutte.

I Conjecture 6.4 (Tutte’s 3-Flow-Conjecture, Conjecture 1.1.8 in [13]). Every 4-edge-connected
graph admits a nowhere-zero 3-flow.

To see this, suppose Conjecture 6.3 holds true, and let G be a given 4-edge-connected
graph. By Theorem 4.3, G is facially 3-colorable. Since G is 4-edge-connected, so is each
of its subcontractions. Since each K+

3,n has a vertex of degree 3, this means that G has no
subcontraction isomorphic to a K+

3,n with n ≥ 4. Hence, Conjecture 6.3 yields that G is
3-flowable, as claimed in Tutte’s conjecture.

7 Conclusive Remarks

Apart from the obvious challenges to decide Conjecture 6.3 and to obtain a better under-
standing of the class of facially 3-colorable graphs, we have an interesting open question
towards the computational complexity of recognizing facially 3-colorable graphs. For planar
graphs, NP-completeness can be deduced as follows.

EuroCG’21

53:6 Coloring Drawings Of Graphs

I Corollary 7.1. Deciding whether a given planar graph is facially 3-colorable is NP-complete.

Proof. Testing whether a planar graph is facially 3-colorable by Theorem 6.2 is equivalent
to testing whether a given planar graph is 3-flowable. This problem is clearly contained in
the class NP (we can verify a nowhere-zero 3-flow in polynomial time). By Theorem 4.1 and
planar duality, we can furthermore reduce the problem of deciding whether a given planar
graph is properly 3-vertex-colorable to this problem. Since this problem is NP-complete (see
[4]), we deduce the claim. J

While this clearly suggests hardness for general graphs as well, containment in NP remains
unclear, since facial 3-colorability cannot be verified via 3-flowability in this case.

I Question 7.2. Is deciding whether an input graph is facially 3-colorable contained in NP?

Acknowledgements We are indebted to Andrew Newman, Günter Rote, and László Kozma,
who have been involved in fruitful discussions during the Problem Solving Workshop of the
Research Training Group ‘Facets of Complexity’ at Kloster Chorin in December 2019.

References
1 K. Appel and W. Haken. Every Planar Map is Four Colorable. I. Discharging. Illinois

Journal of Mathematics, 21(3):429–490, 1976.
2 K. Appel, W. Haken, and J.Koch. Every Planar Map is Four Colorable. II. Reducibility.

Illinois Journal of Mathematics, 21(3):491–567, 1977.
3 C. N. da Silva and C. L. Lucchesi. Flow-Critical Graphs. Electronic Notes in Discrete

Mathematics, 30:165–170, 2008.
4 M. R. Garey and M. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-completeness. W. H. Freeman and Co., 1990. doi:10.5555/574848.
5 H. Grötzsch. Zur Theorie der diskreten Gebilde, VII: Ein Dreifarbensatz für dreikreisfreie

Netze auf der Kugel. Wiss. Z. Martin-Luther-U., Halle-Wittenberg, Math.-Nat. Reihe,
8:109–120, 1959.

6 C. Hertrich, F. Schröder, and R. Steiner. Coloring drawings Of Graphs, 2020. arXiv:
2008.09692.

7 J. Li, Y. Ma, Y. Shi, W. Wang, and Y. Wu. 3-flow critical graphs, 2020. arXiv:2003.09162.
8 M. Schäfer. Crossing numbers of graphs. Discrete Mathematics and Its Applications. CRC

Press, 2017.
9 P. D. Seymour. Nowhere-zero 6-flows. Journal of Combinatorial Theory, Series B,

30(2):130–135, 1981.
10 B. Sudakov. Nowhere-Zero Flows in Random Graphs. Journal of Combinatorial Theory,

Series B, 81(2):209–223, 2001.
11 K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen, 114:570–

590, 1937.
12 D. J. A. Welsh. Euler and bipartite matroids. Journal of Combinatorial Theory, 6(4):375–

377, 1969.
13 C.-Q. Zhang. Integer Flows and Cycle Covers of Graphs. Pure and Applied Mathematics.

CRC Press, 1997.

Local Complexity of Polygons
Fabian Klute∗1, Meghana M. Reddy†‡2, and Tillmann Miltzow§1

1 Utrecht University, Information and Computing Science Department
f.m.klute@uu.nl, t.miltzow@googlemail.com

2 ETH Zürich, Department of Computer Science
meghana.mreddy@inf.ethz.ch

Abstract
Many problems in Discrete and Computational Geometry deal with simple polygons or polygonal
regions. Many algorithms and data-structures perform considerably faster if the underlying polygonal
region has low local complexity. One obstacle to make this intuition rigorous, is the lack of a formal
definition of local complexity. Here, we give two possible definitions and show how they are related
in a combinatorial sense. We say that a polygon P has point visibility width pvw(P) (or pvw in
short), if there is no point in P that sees more than pvw reflex vertices. We say that a polygon P

has chord visibility width cvw(P) (or cvw in short) if there is no chord (maximal segment) in P that
sees more than cvw reflex vertices. We show that

cvw ≤ pvwO(pvw),

for any simple polygon. Furthermore, we show that there exists a family of simple polygons with

cvw ≥ 2Ω(pvw).

Related Version arxiv.org/abs/2101.07554

1 Introduction

In Discrete and Computational Geometry we study many problems with respect to the input
size n and other natural parameters that capture some properties of the problem. One
famous example is the computation of the convex hull of a set of points in the plane. While
Θ(n log n) time is worst case possible, this can be improved to Θ(n log h), where h is the
number of vertices on the convex hull [4]. Here, the number of vertices on the convex hull is
a natural parameter to study this problem. We also say sometimes that the algorithm is
output-sensitive. Another famous example, is the spread ∆ of a set of points in the plane.
That is the ratio between the largest and the smallest distance, between any two points.
Efrat and Har-Peled were the first to find an approximation algorithm for the art gallery
problem under the assumption that the underlying set of vertices has bounded spread [2]. A
third example is the number of reflex vertices of a polygon. This parameter gave raise to
some FPT algorithms for the art gallery problem [1].

In this work, we introduce two new parameters that are meant to capture rigorously the
idea of local complexity. Consider the polygons shown in Figure 1. Most researchers would
probably agree that the polygon on the left has lower local complexity than the polygon on
the right. Yet, it is not straightforward how to define this rigorously in a mathematical sense.

∗ Supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 612.001.651.
† Supported by the Swiss National Science Foundation within the collaborative DACH project Arrange-

ments and Drawings as SNSF Project 200021E-171681.
‡ The second author’s full last name consists of two words and is Mallik Reddy. However, she consistently

refers to herself with the first word of her last name being abbreviated.
§ Supported by the NWO Veni project EAGER.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

54:2 Local Complexity of Polygons

Figure 1 The polygon on the left has intuitively lower local complexity than on the right. Note
that with respect to other measures the left figure might appear more complex.

Here, we give two possible definitions and show how they are related in a combinatorial
sense. We say that a polygon P has point visibility width pvw(P) (or pvw if P is clear from
the context), if pvw is the smallest number such that every point in P sees at most pvw reflex
vertices. We say that a polygon P has chord visibility width cvw(P) (or cvw if P is clear
from the context), if cvw is the smallest number such that every chord (maximal segment) in
P sees at most cvw reflex vertices.

We show the following theorem.

I Theorem 1.1. For every polygon with chord visibility width cvw and point visibility
width pvw, it holds that

pvw ≤ cvw ≤ pvwO(pvw).

Moreover, there are polygons such that

cvw ≥ 2Ω(pvw).

Note that Hengeveld and Miltzow already defined the notion of chord visibility width
in a very similar way [3]. Their definition counts the total number of seen vertices instead
of the total number of reflex vertices. They showed that the art gallery problem admits an
FPT algorithm with respect to chord visibility width. Note that their FPT algorithm also
works verbatim also with our definition. Now, Theorem 1.1 implies that there is also an
FPT algorithm for the art gallery problem with respect to the point visibility width. Note
however, that the running time becomes double exponential.

For a parameter to be interesting to study, we usually have three criteria.

naturalness: Although there is no definition of what it means to be mathematically natural,
many researchers seem to have a common understanding of this notion.

relevance: The parameter is at least for some fraction of instances reasonably low.
profitable: Using the parameter, we should be able to design better algorithms and prove

useful run time upper bounds.

We believe that both parameters are mathematically natural. Theorem 1.1 indicates that
the chord visibility width can be exponentially larger than the point visibility width. Thus we
would expect that chord visibility width is potentially more profitable. The aforementioned
FPT results indicate that chord visibility width is indeed profitable. Having a double
exponential time FPT algorithm can barely be called a useful algorithm. We would expect
that both parameters are equally relevant as the example that we give is fairly contrived.
The remainder of this paper is dedicated to proving Theorem 1.1.

F. Klute, and M. M. Reddy, T. Miltzow 54:3

2 Chord visibility width vs Point visibility width

We prove Theorem 1.1 in two parts. First, we show the second half of the theorem in
Section 2.1 by constructing a polygon for which it holds that cvw ≥ 2Ω(pvw). Second, we
show the first half of Theorem 1.1 in Section 2.2 by analysing how the reflex vertices visible
from a chord in a simple polygon P restrict each others vision and relating this to the point
visibility width of the polygon.

2.1 Lower bound

k − 1 layers

k − 2 layers

bridgec

Figure 2 Construction of the Iterated Comb.

We construct a polygon P , called the Iterated Comb, see Figure 2. In the following, let
k ∈ N. The Iterated Comb consists of k layers, each layer consists of two spikes and each
spike further splits into two more spikes in the subsequent layer. Observe, that the entire
polygon is visible from the chord connecting the two left-most points of the polygon. The
distance between consecutive spikes in a layer, referred to as the bridge, is adjusted such
that if at least one vertex in the interior of a spike is visible from a point p on c, then p

cannot see any interior vertex of any other spike. This property is achieved by stretching the
bridges vertically. More specifically, for 1 < i ≤ k, the length of the bridge of the ith layer is
increased such that the property holds for layer i and then the bridge of the previous layer is
adjusted accordingly. By iteratively stretching the bridges from the last layer to the first
layer, it can be ensured that the property holds for every layer. This property is illustrated
in Figure 3 for k = 2. In the first layer, the point p sees an interior vertex of the first spike
and no interior vertex of the second spike. Similarly, in the second layer point p sees an
interior vertex of the second spike and no interior vertex of the first spike.

Chord visibility width of the Iterated Comb

Clearly, the chord which sees the highest number of reflex vertices is the chord defined by
the two left-most vertices. Let this chord be c. The number of reflex vertices of the first
layer visible from c is two. Similarly, the number of reflex vertices of the ith layer visible
from c is 2i. Summing up over all k layers, the number of reflex vertices visible from c is
Θ(2k+1), and hence cvw = Θ(2k+1).

EuroCG’21

54:4 Local Complexity of Polygons

p

Figure 3 Point p sees interior points of at most one spike of any layer

Point visibility width of the Iterated Comb

I Claim 1. Chord c contains at least one of the points in P which see the highest number of
reflex vertices of P .

Proof. Let q be a point in polygon P which sees the highest number of reflex vertices of P .
Let p be a point on chord c which has the same y-coordinate as q. Assume p 6= q. Let r be
a reflex vertex visible from q. Since P is monotone with respect to y-axis, the triangle pqr

must be empty. This implies that r is visible from p as well. Hence, the point p also sees the
highest number of reflex vertices in P since p sees at least as much as q. Refer to Figure 4
for an illustration. J

qp

r

Figure 4 Point p sees all the reflex vertices visible from q

Let p be any point on c. Both the reflex vertices in layer one are visible from p. In each
subsequent layer, p can see the reflex vertices that are in the interior of at most one spike,
which is two reflex vertices, p cannot see any of the other reflex vertices in the other spikes
by construction. Summing it up, we can conclude that 2k reflex vertices are visible from p,
and thus pvw = 2k. Hence the Iterated Comb has cvw ≥ 2Ω(pvw).

2.2 Upper bound
Next, we show that we can upper bound the chord visibility width in terms of the point
visibility width.

To this end, we prove the following lemma.

F. Klute, and M. M. Reddy, T. Miltzow 54:5

u

v

I(v)

a

b

Figure 5 The vertex v sees a subinterval I(v) ⊆ s which is restricted by a and u.

I Lemma 2.1. For every simple polygon, it holds that

cvw ≤ pvwO(pvw).

The rest of this paragraph is dedicated to the proof of Lemma 2.1.
For that purpose assume, we are given a simple polygon P together with a chord s ⊂ P .

Furthermore, we assume that no point in P sees more than k = pvw reflex vertices of P .
Let us denote by R the set of all reflex vertices that see at least one point of s = seg(a, b).
Furthermore, we also include the two endpoints of s in the set R. As P is a simple polygon
it holds that every reflex vertex r ∈ R \ {a, b} sees a subsegment I(r) ⊆ s. For convenience,
we also call I(r) an interval.

Note that every interval is restricted by exactly two points in R, see Figure 5. In case
of ambiguity, due to collinearities, we say the point in R closer to s is the restricting point.
Those vertices can be either the endpoints of s (a and b) or a different reflex vertex in R.
We show the following claim.

I Claim 2. If u is a reflex vertex that restricts the reflex vertex v then it holds that

I(v) ⊆ I(u).

Proof. The triangle T formed by I(v) and v is trivially convex and fully contained inside P .
The reflex vertex u is on the boundary of the triangle and thus sees every point of T . In
particular also I(v). J

Given the previous claim, we construct the visibility restriction graph G as follows. The
vertices are formed by the points in R. We say that uv forms a directed edge, if u is restricted
by v. We summarize a few useful properties of G in the following claim.

I Claim 3. The visibility restriction graph of a polygon with point visibility width at most k

has the following properties.

1. The segment endpoints a, b are the only two sinks.
2. The out-degree is two for every vertex v ∈ R \ {a, b}.
3. The in-degree is at most k − 1 for every vertex v ∈ R.
4. The longest path has at most k + 1 vertices.

EuroCG’21

54:6 Local Complexity of Polygons

Proof. By definition, every reflex vertex is restricted by exactly two vertices in R. This
implies Item 1 and 2.

Any reflex vertex v can see itself and all its neighbors. Its in-degree neighbors are also
reflex vertices. As no point can see more than k reflex vertices v has at most k − 1 in-degree
neighbors. This concludes the proof of Item 3.

Finally, to prove Item 4, let p = u1u2 . . . ul be a directed path. Then it holds that there
is a point

q ∈ I(ul) ⊆ . . . ⊆ I(u2) ⊆ I(u1) = s.

The point q sees all reflex vertices of the path p. As no point sees more than k reflex vertices,
it holds that p has at most k reflex vertices. As all but potentially the first vertex is a reflex
vertex, we have l ≤ k + 1. J

The properties of the last claim enable us to give an upper bound on the size of G and
thus also on the size of R.
I Claim 4. The visibility restriction graph G of a polygon with point visibility width pvw = k

has at most kO(k) vertices.

Proof. We organize G into layers depending on the distance from a and b. Note that if
layer i has t vertices then layer (i + 1) has at most t · k vertices. As there are at most k + 1
layers and the first layer has size two we get that G has at most

2 + 2k + 2k2 + 2k3 + . . . + 2kk = kO(k)

vertices. J

3 Conclusion

We believe that local complexity has the potential to be a useful parameter. We gave two
ways to define local complexity in a rigorous way and showed how those two ways relate to
one another. We want to end with a few open questions.

1. Can we find algorithms and data structures that can make use of low local complexity?
2. Can we compute or approximate the point visibility width and chord visibility width in

an efficient manner? Note that this is more a theoretical question. We do not necessarily
need to know the chord visibility width of a polygon to use the concept in the design and
analysis of an algorithm.

3. Are there other ways to formalize the idea of local complexity within a polygonal region?

References
1 Akanksha Agrawal and Meirav Zehavi. Parameterized analysis of art gallery and terrain

guarding. In International Computer Science Symposium in Russia, volume 12159 of LNCS,
pages 16–29. Springer, 2020. doi:10.1007/978-3-030-50026-9_2.

2 Alon Efrat and Sariel Har-Peled. Guarding galleries and terrains. Information Processing
Letters, 100(6):238–245, 2006. doi:https://doi.org/10.1016/j.ipl.2006.05.014.

3 Simon Hengeveld and Tillmann Miltzow. A practical algorithm with performance guaran-
tees for the art gallery problem. In SoCG, 2021. https://arxiv.org/abs/2007.06920.

4 David G. Kirkpatrick and Raimund Seidel. The ultimate planar convex hull algorithm?
SIAM Journal on Computing, 15(1):287–299, 1986. doi:10.1137/0215021.

Minimum Link Fencing∗

Sujoy Bhore1, Fabian Klute2, Maarten Löffler2, Soeren Nickel3,
Martin Nöllenburg3, and Anaïs Villedieu3

1 Université Libre de Bruxelles
sujoy.bhore@gmail.com

2 Utrecht University
[f.m.klute|m.loffler]@uu.nl

3 TU Wien
[soeren.nickel|noellenburg|avilledieu]@ac.tuwien.ac.at

Abstract
We study a variant of the geometric multicut problem, where we are given n colored and pairwise
interior-disjoint polygons P in the plane. The objective is to compute a set of simple closed polygon
boundaries (fences) that separate the polygons in such a way that any two polygons which are
enclosed by the same fence have the same color, and the total number of links in the fencing is
minimized. We call this the minimum link fencing (MLF) problem. In this work we primarily
consider a special case of MLF, called bounded minimum link fencing (BMLF), where P contains a
polygon Q that is not bounded in any direction, and behaves as an outer polygon. We show that
BMLF is NP-hard in general, however, it is polynomial-time solvable when the convex hull of the
input polygons except Q does not intersect Q.

1 Introduction

In the geometric multicut problem [2], one is given k disjoint sets in the plane, each with a
different color, and asks for a subdivision of the plane such that no cell of the subdivision
contains multiple colors. The goal is to minimize the total length of the subdivision edges.

∗ FK was supported by the Netherlands Organisation for Scientific Research (NWO) under project no.
612.001.651; SB, MN, and AV were supported by the Austrian Science Fund (FWF) under grant P31119.

Figure 1 Two sets of polygons in the plane (left) with different colors (green and yellow). The
yellow set effectively acts as an outer polygon with holes. Separating the two sets with individual
fences (middle) can lead to significantly more links in the fences (here 16) than grouping same-colored
polygons (right), which manages this in just 8 links.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

55:2 Minimum Link Fencing

(a) MLF (b) BMLF (c) SMLF (d) CMLF

Figure 2 Different problem inputs corresponding to (a) MLF, (b) BMLF, (c) SMLF and (d)
CMLF. In (c) and (d) the convex hull of all inner polygons is indicated in grey.

A different kind of separation is achieved in the polygon nesting problem [4], where for
two polygons P and Q with P ⊂ Q one asks for the polygon P ′ with the smallest number of
links, s.t. P ⊂ P ′ ⊂ Q. There exists a series of work that adressed the algorithmic complexity
of nesting problems for various polygon families; see [4, 5, 7, 9, 10].

We consider a variant of geometric multicut inspired by polygon nesting, where we
separate the subsets from each other, with a set of closed polygons (fences), which enclose
only polygons of one color and have the smallest possible number of links. If one or more sets
are not connected, we need to solve the combinatorial problem of choosing which polygons
should be grouped in each fence polygon. Figure 1 illustrates the problem. Some variants of
the fencing problem already become NP-hard for point objects with two colors, e.g., if we
require the fence to be a single closed curve [6].

In this paper we assume the input sets are collections of polygons, one color covers the
plane minus a single polygonal hole (the outer polygon, a parallel to polygon nesting) and
we will focus on the case k = 2. We use n to denote the total number of corners of the input
polygons. Even in this simple setting the problem is non-trivial. If both sets are connected,
then the problem is equivalent to finding a minimal nested polygon, which can be solved
in O(n logn) time [3]. If both sets are not connected we show this problem to be NP-hard
in Section 2. Note the contrast to the geometric multicut problem, which is polynomially
solvable for k = 2 [1] but becomes NP-hard when k = 3 [2]. Finally, in Section 3, we show
that the problem is polynomial-time solvable when the convex hull of the second color (the
inner polygons) is contained in the outer polygon and the first color is connected.

1.1 Definitions and Notation
I Definition 1.1 (Minimum Link Fencing (MLF)). We are given n pairwise interior-disjoint
polygons P = {P1, . . . , Pn} in the plane, with a coloring function f : P → {1, . . . , k}, which
assigns a color to every input polygon. We write Pi = {P | f(P) = i}. We want to find a
set of simple closed polygon boundaries F = {F1, . . . , Fm} such that the total number of
links |F | on the boundary of F =

⋃k
i=1 Fi is minimized and if two polygons Pa and Pb are

enclosed by the same fence or are both in R2 \⋃k
i=1 Fi, where Fi is the polygon bounded by

Fi, then f(Pa) = f(Pb). We will call Fi a fence and F a minimum link fencing.

We refer to P, which contains polygons of k different colors, as k-colored and to the
problem setting as the k-colored problem. We consider several problem variations.

If there exists a polygon Q ∈ P , which is unbounded in every direction, i.e., R2\Q is finite,

S. Bhore, F. Klute, M. Löffler, S. Nickel, M. Nöllenburg and A. Villedieu 55:3

Figure 3 On this input allowing overlapping fences (left) achieves six links, while non-overlapping
fences require at least seven links, whether grouping the inner polygons (middle) or not (right).

this subset effectively acts as an outer boundary. In this case we call the problem Bounded
Minimum Link Fencing (BMLF). We denote the polygon Q as the outer polygon. If Q is the
only polygon of its color f(Q) we call this setting Simply Bounded Minimum Link Fencing
(SMLF). Moreover, if in an instance of SMLF we have CH(

⋃k
i=1 Pi \Q) ⊂ R2 \Q, i.e., the

convex hull of all input polygons except Q does not intersect Q, we speak of Convex Bounded
Minimum Link Fencing (CMLF). The differences between these settings are illustrated in
Fig. 2.

If F is required to be a set of pairwise crossing-free boundaries, we will prepend disjoint
to the problem name, i.e, disjoint *MLF rather than just *MLF, where *MLF stands for
MLF, BMLF, SMLF, CMLF or any other variant of the problem. Any solution for disjoint
*MLF is also a solution for *MLF, however as shown in Fig. 3 a solution for *MLF can
achieve fewer links than for disjoint *MLF on the same input. A version of disjoint MLF,
which restricts every fence Fi to enclose exactly one polygon Pi ∈ P , was proven NP-hard by
Das in his doctoral thesis [5].

2 Two-colored BMLF is NP-hard

In this section we will call polygons of color one boundary polygons and polygons of color
two inner polygons. An instance of planar 3,4-SAT, which is NP-complete [8], consists of a
Boolean CNF-formula φ with a set of variables V = {v1, . . . , vn} and a set of clauses C ⊂ 2V ,
s.t. every clause is a disjunction of three literals and every variable occurs at most four
times as a literal in a clause. Additionally, we are given the embedded plane incidence graph
Gφ = (V ∪ C, E). The edge vc is contained in E if v occurs in c as a literal.

We create an instance of 2-colored BMLF, emulating the shape of the embedding of Gφ
with one unbounded outer polygon Q and multiple boundary polygons of the same color
f(Q) = 1, s.t., φ is satisfiable if and only if the instance has a minimum link fencing with a
fixed number of links. This is shown in Fig. 4a, where the unbounded polygon and inner
polygons of color 1 are depicted in grey. To ease depiction, we will resort to describing the
construction of the free space, rather than the actual polygons. At the end of the reduction
all grey polygons need to be subtracted from the plane, to obtain the actual polygons of
color 1. Note how the white area in Fig. 4a corresponds to the grey area in Fig. 4b.

I Theorem 2.1. Two-colored BMLF is NP-hard, even if every fence in F encloses at most
three inner polygons.

EuroCG’21

55:4 Minimum Link Fencing

v1 v2 v3 v4

c1

c2

(a) Schematized reduction construction

v1 v2 v3 v4

c1

c2

(b) Schematized construction, with a valid fencing

Figure 4 A (schematized) construction (a) and valid fencing of this construction (b) for a small
instance (v1 ∨ v3 ∨ v4) ∧ (v1 ∨ v2 ∨ ¬v3). The gray area in (a) indicates the unbounded outer polygon
as well as inner polygons of the same color (holes). Inner polygons of the second color are placed
in the white area. In (b) fences are highlighted in green and the spikes of the variable gadgets are
highlighted as true (blue) of false (red) spikes. Note that the wire G(v3, c2) is in a false state, since
c2 is already fulfilled by v1 and false state wires save one link over true state wires. The grey area in
(b) correspond to the free space of the construction.

S. Bhore, F. Klute, M. Löffler, S. Nickel, M. Nöllenburg and A. Villedieu 55:5

ε ε

ε

(a) Overlapping T-polygons.

p2 p5

p3 p4

p9 p7

p8

p6p1

(b) Labeling of chocke points of inner polygons (triangles).

Figure 5 Variable gadget construction. The inner triangles create ε-sized choke points with the
outer polygon, highlighted in (a).

Variable gadget. For every variable v ∈ V , we construct a variable gadget G(v) as a circular
arrangement of eight overlapping T-shaped polygons, see Fig. 5a. The boundary of the union
of these polygons defines a boundary polygon in the middle of the variable gadget and the
unbounded outer polygon outside of it. Every such T-polygon has an isosceles triangle as
the arm (the horizontal stroke at the top) of the T and a spike protruding from the arm
and two consecutive polygons overlap at the end of their arms. We place a small triangular
inner polygon completely contained in each overlap area of two such T-polygons. A variable
gadget has exactly two minimum link fencings, which group the four pairs of consecutive
inner polygons, either starting at an even or an odd position (see Fig. 6a and 6b). Each
fence is actually a triangle and we spend 3/2 fence segments per inner variable polygon.

Wire gadget. A wire gadget G(v, c) is constructed for each occurrence of a variable v in
a clause c. Its outer polygon is the union of a chain of an even number 2γ of overlapping
triangles, as shown in Fig. 6d. An odd number of 2γ− 1 inner triangles are placed in the area
of the overlap between two consecutive outer triangles. The first triangle of G(v, c) overlaps
with a true spike of G(v) if v occurs as a positive literal in c and with a false spike of G(v)
otherwise (see Fig. 6c). We place one more inner triangle in this overlap area, yielding a
total of 2γ inner triangles for G(v, c).

As for the variable gadget we can show that enclosing pairs of consecutive inner polygons
of the wire gadget by triangular fences yields, locally, a minimum link fencing. If P v,c1 — the
inner polygon in the overlap with G(v) — is fenced together with the next inner polygon P v,c2
of G(v, c) then the fencing of G(v, c) transmits false. The total number of fence segments
is 3γ. Otherwise, if we fence P v,c2 together with P v,c3 , the fencing transmits true. In this
case, P v,c2γ is fenced alone for a total of again 3γ fence links. It remains to fence P v,c1 . If the
state of G(v) corresponds to the true state of our literal, we can enclose P v,c1 in a fence of
G(v) with two additional links, which will be charged to the clause c. If the state of G(v)
corresponds to the false state of our literal, then fencing P v,c1 requires at least 3 additional
links. Note that if the wire has state false, then there is no charge to c.

Clause gadget. For a clause c = {v1, v2, v3} the clause gadget G(c) is formed by an overlap
of the last triangles of the three wires G(v1, c), G(v2c), and G(v3, c), see Fig. 8. This overlap

EuroCG’21

55:6 Minimum Link Fencing

(a) G(v) in true state (b) G(v) in false state (c) Connection to G(v, c)

p1
p2

p3
p3k−1 p3k−2

p3k

p3k/2

p3k/2+1
p3k/2+2

p3k/2+3

p3k/2−2
p3k/2−1p4

p5

p6
p3k−4 p3k−5

p3k−3

(d) Wire gadget G(v, c) with inner polygons

Figure 6 The two optimal fences of G(v) induce the true (a) and false (b) configuration of G(v).
A connection between G(v) and G(v, c) is shown in (c).

(a) G(v) in true state (b) G(v) in false state

Figure 7 If G(v) is in the correct truth state (a) inclusion of the first inner polygon of G(v, c)
induces an additional cost of two links , otherwise (b) the additional cost would clearly be higher.

S. Bhore, F. Klute, M. Löffler, S. Nickel, M. Nöllenburg and A. Villedieu 55:7

(a) Clause gadget (b) Extra fence (c) Inclusion in wire fence

(d) Satisfied clause gadget (e) Two true wires (f) All wires true

Figure 8 The construction of a clause gadget G(c) (a) is such that three wires transmitting false
would force the inner polygon of G(c) to be either enclosed by its own fence (b), or sub-optimally
included in a fence of the wire gadget (c), both creating the need for additional links. If one wire
transmits true, no additional links are needed. If more than one wire transmits true (e-f), the same
number of links is required even if we include more than one last inner polygon in the fence of G(c).

area of the three triangles is filled with one inner polygon Pc, which forms the actual clause
gadget. If one of the wires transmits true, then its last inner polygon P ′ is fenced by an
individual fence and Pc can be included in the fence without additional cost, as they are
contained in a bounding triangle. However, recall that we had to charge two fence segments
to c in order to put this wire in its correct true state; otherwise the charge would even be
three segments. If none of the three wires is in state true, then we must again spend at least
three additional fence segments to enclose Pc, which we charge to such an unsatisfied clause
c. Notice that if a variable assignment satisfies more than one literal of c, a minimum-link
solution would still select only a single literal whose wire is put to the true state at a charge
of two fence segments. If the assignment satisfies none of the three literals, then the resulting
charge of c is at least three fence segments.

Correctness. It remains to show that φ is satisfiable if and only if the instance constructed
above admits a fencing with at most t = t(φ) links. The value t is obtained from fencing all
polygons in the variable and wire gadgets by triangular fences as desired and adding two
more links for each satisfied clause. By construction this number of links is achievable if
and only if each clause can be assigned one satisfying literal that is consistent with all other
occurrences of the variable, the correctness of the (polynomial) reduction follows.

3 An algorithm for two-colored CMLF

In this section we present an algorithm for solving CMLF. Computing a minimum-link fence
in this setting can be done by computing a fence for the convex hull of the contained polygons

EuroCG’21

55:8 Minimum Link Fencing

with the algorithm by Wang [10] which runs in time O(n logn) with n being the number of
corners of the contained polygons. Throughout this section an instance of CMLF is given as
(P, Q) where Q is the outer polygon and P is the set of polygons contained in Q.

I Lemma 3.1. Given an instance (P, Q) of CMLF, let F be a solution for (P, Q). There
exists a solution F ′ for the CMLF instance (CH(P), Q) with |F | = |F ′|.
Proof. As F is a minimum-link fencing of (P, Q), it suffices to consider the case that for
some minimum-link fencing F ′ of (CH(P), Q) we find |F ′| > |F |. We will construct a new
fence F ◦ from this instance. Let (p1, . . . , pz) be the intersection points between F and
CH(P) ordered as they appear in a clockwise traversal of the convex hull, and observe that
z is even. Let pi, pi+1 be pairs of intersection points between F and CH(P) such that the
straight-line segment si connecting pi and pi+1 lies on CH(P) and completely outside of F
(see Fig. 9). Consider the supporting line `i of si. If the fence lies completely in one of the
closed half-planes bounded by `i we add si to F ◦.

Assume this is not the case. As si is on CH(P) we get that `i does not intersect any
polygon in P. Moreover, as F consists of closed simple polygons we find two intersection
points p′i and p′i+1 that lie on `i, s.t., the parts of F appearing in a counterclockwise traversal
from pi to p′i, as well as the ones in a clockwise traversal from pi+1 to p′i+1 lie outside of
CH(P). We add the segment s′i between p′i and p′i+1 to F ◦. Doing this for every pair of
intersections we obtain a set of segments F ◦, where all segments are on the convex-hull of P .
Note that it is possible for these segments to intersect; if that is the case we only keep the
parts until their intersection point. Finally, the start and end-points of connected chains of
segments in F ◦ lie on segments of polygons in F . We can convert F ◦ into a fence of CH(P)
by connecting these endpoints along the polygons in F and that fence will be disjoint from
P (except possibly touching P in corner points).

It remains to argue that indeed |F ◦| ≤ |F |. We partition F ◦ into two categories, segments
that coincide with segments in F and segments that do not. Each of them is either a full
segment of F or originates from the intersection of at most two different s′i’s and a segment
of F . Furthermore, we add z/2 segments s′i that are not sub-segments of segments in F . For
each such s′i we find at least one segment of F for which we did not add any sub-segment to
F ◦. These are the segments of F on which pi and pi+1 lie or that are fully outside of F ◦. J

I Theorem 3.2. CMLF can be solved in time O(n logn) where n is the number of corners
of polygons in P.

pi
p′i

pi+1 p′i+1si

`i

pi+2

p′i+2

pi−1

p′i−1

Figure 9 Computing a new fence (orange) from the old fences (purple) and the convex hull (blue).

S. Bhore, F. Klute, M. Löffler, S. Nickel, M. Nöllenburg and A. Villedieu 55:9

References
1 Mikkel Abrahamsen, Anna Adamaszek, Karl Bringmann, Vincent Cohen-Addad, Mehran

Mehr, Eva Rotenberg, Alan Roytman, and Mikkel Thorup. Fast fencing. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2018), pages
564–573, 2018. doi:10.1145/3188745.3188878.

2 Mikkel Abrahamsen, Panos Giannopoulos, Maarten Löffler, and Günter Rote. Geometric
multicut. In Proceedings of the 46th International Colloquium on Automata, Languages,
and Programming (ICALP 2019), volume 132 of LIPIcs, pages 9:1–9:15. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.9.

3 Alok Aggarwal, Heather Booth, Joseph O’Rourke, Subhash Suri, and Chee K. Yap. Finding
minimal convex nested polygons. Information and Computation, 83(1):98 – 110, 1989.
doi:10.1016/0890-5401(89)90049-7.

4 Alok Aggarwal, Heather Booth, Joseph O’Rourke, Subhash Suri, and Chee-Keng Yap.
Finding minimal convex nested polygons. Information and Computation, 83(1):98–110,
1989. doi:10.1016/0890-5401(89)90049-7.

5 Gautam Das. Approximation schemes in computational geometry. PhD thesis, University
of Wisconsin, Madison, 1991.

6 Peter Eades and David Rappaport. The complexity of computing minimum separating
polygons. Pattern Recognition Letters, 14(9):715–718, 1993. doi:10.1016/0167-8655(93)
90140-9.

7 Subir Kumar Ghosh. Computing the visibility polygon from a convex set and related prob-
lems. Journal of Algorithms, 12(1):75–95, 1991. doi:10.1016/0196-6774(91)90024-S.

8 Klaus Jansen and Haiko Müller. The minimum broadcast time problem for several pro-
cessor networks. Theoretical Computer Science, 147(1-2):69–85, 1995. doi:10.1016/
0304-3975(94)00230-G.

9 Joseph SB Mitchell and Subhash Suri. Separation and approximation of polyhedral
objects. Computational Geometry: Theory and Applications, 5(2):95–114, 1995. doi:
10.1016/0925-7721(95)00006-U.

10 Cao AnWang. Finding minimal nested polygons. BIT Computer Science section, 31(2):230–
236, 1991. doi:10.1007/BF01931283.

EuroCG’21

Characterizing Universal Reconfigurability of
Modular Pivoting Robots∗

Hugo A. Akitaya1, Erik D. Demaine2, Andrei Gonczi3, Dylan H.
Hendrickson2, Adam Hesterberg4, Matias Korman5, Oliver
Korten6, Jayson Lynch7, Irene Parada8, and Vera Sacristán†9

1 University of Massachusetts Lowell, USA
hugo_akitaya@uml.edu

2 Massachusetts Institute of Technology, USA
{edemaine,dylanhen}@mit.edu

3 Tufts University, USA
andrei.gonczi@tufts.edu

4 Harvard University, USA
achesterberg@gmail.com

5 Siemens Electronic Design Automation, USA
matias_korman@mentor.com

6 Columbia University, USA
oliver.korten@columbia.edu

7 University of Waterloo, Canada
jayson.lynch@uwaterloo.ca

8 TU Eindhoven, The Netherlands
i.m.de.parada.munoz@tue.nl

9 Universitat Politècnica de Catalunya, Spain
vera.sacristan@upc.edu

Abstract
We give both efficient algorithms and hardness results for reconfiguring between two connected
configurations of modules in the hexagonal grid. The reconfiguration moves that we consider are
“pivots”, where a hexagonal module rotates around a vertex shared with another module. Following
prior work on modular robots, we define two natural sets of hexagon pivoting moves of increasing
power: restricted and monkey moves. When we allow both moves, we present the first universal
reconfiguration algorithm, which transforms between any two connected configurations using O(n3)
monkey moves. On the other hand, if we only allow restricted moves or modules have a square
shape, we prove that the reconfiguration problem becomes PSPACE-complete.

Related Version A full version of the paper is available on arXiv [2].

1 Introduction

Reconfiguration problems encompass a large family of problems in which we need to provide
a sequence of steps to transform one object into another. In this paper we consider the
problem of reconfiguring a collection of modules in a lattice using some prespecified moves.
In particular, we study the reconfiguration problem for edge-connected configurations of
pivoting hexagons and squares. We require that edge-connectivity is maintained at all times
(fulfilling the so-called single backbone condition [7]). The moves allowed are pivots: a

∗ This research started at the 34th Bellairs Winter Workshop on Computational Geometry in 2019. We
want to thank all participants for the fruitful discussions and a stimulating environment.

† Partially supported by MTM2015-63791-R (MINECO/FEDER) and Gen. Cat. DGR 2017SGR1640.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

56:2 Characterizing Universal Reconfigurability of Modular Pivoting Robots

module can rotate around vertices shared with other modules and at the end of a move the
pivoting module must lie in a lattice cell. The interior of two modules can never intersect.

An hexagon can perform only two types of pivoting moves, illustrated in Figure 1. In
a restricted move a module a adjacent to a module s pivots around a vertex v shared
by a and s and ends the pivoting move in the other cell that has v on the boundary.
The restricted model of pivoting only allows this move. In a monkey move a module
a adjacent to a module s starts pivoting around a vertex v shared by a and s as in the
restricted move, but halfway through the rotation another vertex w of a coincides with the
vertex of a module s′. Then a continues the move pivoting around w in the same direction
(clockwise or counterclockwise) as before until reaching a cell adjacent to s′. The monkey
model of pivoting includes both the restricted move and the monkey move. Informally, the
monkey move allows a module to keep pivoting in the same direction when a restricted move
is not possible. Corners may only pivot on corners of other modules.

a s
as
a

s

(a) Restricted move

a
s s sa a

s′ s′ s′

(b) Monkey move

Figure 1 Pivoting moves for hexagonal modules and the free cells required.

In the square grid two modules that share a vertex might not share an edge. Thus, for
square modules there is a greater variety of pivoting moves. The restricted, leapfrog, and
monkey moves are illustrated in Figure 2. The restricted model includes only restricted
moves, the leapfrog model includes both restricted and leapfrog moves, and the monkey
model includes all moves.

s s

a a a

as ss′ s′ s

a

(a) Restricted moves

s s

s′s′a a

(b) Leapfrog move

s′s′s′

s′ s′ s′ s s ss s s

a a a a a

a

(c) Monkey moves

Figure 2 Pivoting moves for square modules and the free cells required.

Related work and contribution.

One of the most natural questions for modular robots is whether universal reconfiguration
is possible. That is, is there an algorithm to transform any (connected) configuration of n
modules into another configuration with the same number of modules?

Efficient algorithms are known for universal reconfiguration of modular robots using
moves that have significantly lighter free-space requirements (fewer cells need to be empty
to perform a move) [3, 6, 7, 8]. Relaxing the connectivity requirement has also lead to
reconfigurability results [5].

H. A. Akitaya et al. 56:3

The setting of this paper (pivoting modular robots) has proven to be more challenging.
Instead, previous work has revolved around providing sufficient conditions for reconfigu-
ration. Nguyen, Guibas and Kim [11] showed that reconfiguration of hexagonal modules
using only restricted moves is always possible between configurations without the forbidden
pattern illustrated in Figure 3 (left). Similarly, for pivoting squares, Sung et al. [12] pre-
sented an algorithm for reconfiguring between configurations without the patterns shown
in Figure 3 (right). These algorithms fail to provide reconfiguration guarantees as soon as
the configuration contains a single copy of the forbidden pattern. In an attempt to remove
global requirements, a recent result [1] introduced a different type of necessary condition:
they provide an efficient algorithm for reconfiguring between any two configurations that
have 5 modules on the external boundary that can freely move (for pivoting squares in
the monkey model). Other algorithms to reconfigure pivoting squares and hexagons are
heuristics that do not provide termination guarantees [4, 10].

Figure 3 Forbidden patterns in previous algorithms for hexagonal and square pivoting modules

Despite many attempts, universal reconfiguration remains unsolved in the setting of
edge-connected pivoting modules. In our work we answer this question for all five pivoting
models for hexagons and squares. Specifically, we answer it positively for the hexagonal
monkey model by giving a universal reconfiguration algorithm in Section 2. For all other
models we show that it is PSPACE-hard to determine whether we can reconfigure from one
configuration of modules into another one. A summarizing table of our results is shown in
Table 1. Due to lack of space only a sketch of our algorithm is presented. Missing arguments
can be found in the full version of this paper [2].

Model Restricted Leapfrog Monkey

Hexagons PSPACE-hard N/A O(n3) universal

Squares PSPACE-hard PSPACE-hard PSPACE-hard
O(n2) if +5 modules [1]

Table 1 Summary of results. The leapfrog moves do not make sense for hexagonal modules.

2 Polynomial algorithm for the hexagonal monkey model

Our approach uses a canonical configuration defined as the configuration with n modules
whose contact graph is a path and each module is only adjacent to modules above and/or
below it. Since each move is reversible, an algorithm that takes a configuration and trans-
forms it into the canonical configuration within O(n3) moves can be used to compute O(n3)
moves between any pair of configurations. The main strategy is to increase the connectivity
of the contact graph1. Note that if the contact graph is 2-connected, every convex corner

1 Increasing connectivity of the contact graph of the configuration is a concept that has recently proven
useful in the different setting of reconfiguring sliding squares [9].

EuroCG’21

56:4 Characterizing Universal Reconfigurability of Modular Pivoting Robots

of the configuration is movable. Then, there is a module that can move to become the new
topmost module by attaching itself to a previous topmost module. We then inductively
building the canonical configuration.

Definitions and Preliminaries. The contact graph G is the adjacency graph of the
modules in a configuration. Since connectivity is important for the problem, we use the
block tree B of the contact graph G. See [2] for a definition. A graph is 2-connected
if it contains no cut vertices. A block (also 2-connected component) of G is a maximal
subgraph of G that is 2-connected. The deletion of a cut vertex v of a connected graph
G splits it into two or more components. A subgraph induced by such a component union
with {v} is called a split component of v. Similarly, a 2-cut is a pair of vertices {v1, v2}
whose deletion increases the number of components of G. Its 2-split components are the
subgraphs induced by each of the components obtained by the deletion of {v1, v2} union
with {v1, v2}.

Let a 2-free module be a module that is not in a 2-cut. A crew c = (m1, . . . ,mk)
is a sequence of modules that induce a connected component of G such that m1 is 2-free,
and mi, i ∈ {2, . . . , k} is 2-free after the deletion of all mj , j ∈ {1, . . . , i − 1}. For given
2-connected subgraph ` of G, let ` be the induced subgraph of G given by V (G) \ V (`). A
bridge from ` is a crew that moved to create a path between ` and `. One of the goals of
the algorithm is to get a crew of size 3 in a group of grid positions called a flower that is
otherwise empty. That allows us to maneuver the modules in the crew to create a bridge
while not creating new blocks. Let a flower be a set of grid positions defined by a center
cell and the six adjacent positions. A flower is valid for a 2-connected configuration ` and
a disjoint crew c if it contains exactly the modules in c, and is adjacent to a module in `.

A row containing a position p is the set of all positions p+ (−
√

3
2 ,

1
2)i for some integer i.

An extreme path is a path induced by modules that are in the convex hull. Due to the
geometry of the grid, extreme paths can only have six possible directions. A SW extreme
path of a configuration ` is an ascending or descending path in the lower hull of `.

Main algorithm. Here we give the general descriptions of our algorithm and the procedures
it uses. The full description and analysis can be found in the full version [2]. We split the
contact graph into two parts: the canonical path P which is a canonical configuration, and
the remainder of the graph G. We initialize G to be the entire contact graph and P to be
empty. Let B be the block tree of G rooted at the block containing the topmost rightmost
module. We divide our algorithm into three phases.
Phase 1: Removing trivial leaves. This phase reconfigures a connected configuration
into one without vertices of degree 1 (which are trivial leaves) in G. There are configura-
tions in which it is not enough to just pivot the degree-1 modules, i.e., this task requires
coordination with other modules. See Figure 4. From now, assume that every leaf of B
contains at least 3 modules and no further procedure will change that.

I Lemma 2.1. A connected configuration of n > 2 hexagons can be transformed in O(n2)
moves into a configuration without trivial leaves in the contact graph without breaking con-
nectivity.

Phase 2: Merging leaves. The goal of this phase is to take a connected configuration
with no degree 1 vertices, and transform it into a 2-connected configuration in O(n3) moves.
The main technical tool of this phase is the procedure Merge which allows us to reduce the
number of 2-connected components by merging them. Its input is a child (2-)split component
of a cut vertex v (adjacent 2-cut {v1, v2}). We first apply the necessary rotations so that v

H. A. Akitaya et al. 56:5

m

Figure 4 Configuration with one trivial leaf (m) that cannot be removed by pivoting it.

({v1, v2}) is farthest from the row ρ0 containing the extreme SW path of `. We then assume
that ρ0 does not include v ({v1, v2}) and neither does the row above it except for the base
case when |V (`)| = 3 and ` is a split component, or when |V (`)| = 5 and ` is a 2-split
component. The output is a set of modules that, after O(|V (`)|2) moves, bridges from `.

We first identify a module m called the ascending module, defined as the topmost
module in ρ0. Note that m is movable. The overall strategy is to try to move m to its
highest possible position in ρ0 before it leaves `. If m is 2-free, this can be done without
affecting 2-connectivity; else, we make it 2-free using sub-procedures that either reduce the
area enclosed by `, or apply induction on a child 2-split component. We then make a bridge
using m while it ascends in ρ0 if it gets blocks by a vertex m∗ /∈ `, or accumulate 2-free
modules at the top of the configuration where a valid flower will form. Then, a sub-procedure
moves the valid flower around ` until it hits ` where we create a bridge with the crew.

I Lemma 2.2. If ` 6= G is a leaf block of B, Merge(`) performs O(|V (`)|2) moves merging
` and a subset of nodes of B into a single block while not creating any other new blocks.

I Corollary 2.3. G can be made 2-connected in O(n3) moves.

Phase 3: Building the canonical path P . Once the configuration is 2-connected, we
can start moving modules onto the end of our path P at a cost of O(n2) moves per module.
We use a slightly modified version of Merge to produce a crew that can move to P without
breaking the 2-connectivity of G.

I Lemma 2.4. If G is 2-connected, in O(n2) moves we can produce a 2-free module on an
extreme path of G while maintaining the 2-connectivity of G.

Our main theorem is a direct consequence of Lemma 2.1, Corollary 2.3 and Lemma 2.4.

I Theorem 2.5. Any connected configuration of n hexagonal modular robots can be recon-
figured to any other with O(n3) pivoting moves in the monkey model, while maintaining
connectivity.

3 Conclusions

Although this paper settles the question of whether universal reconfiguration is possible for
all models, it also spans several interesting problems. First, for hexagonal modules under
the monkey model (where universal reconfiguration is possible), there is a gap between the
upper bound of our algorithm (Theorem 2.5) and the naive Ω(n2) lower bound (number of
moves needed to transform a horizontal strip into a compact hexagon). Even if the gap is
closed (possibly with a completely different algorithm), then the interest would be to design
a distributed algorithm and/or to consider a strategy that does many moves in parallel.

EuroCG’21

56:6 Characterizing Universal Reconfigurability of Modular Pivoting Robots

For the other models universal reconfiguration is not possible, but it would be nice to
find a local property that would allow reconfiguration between many configurations. For
example, if we allow monkey moves with square modules, reconfiguration is possible as long
as both configurations have five modules on the outer shell that can move [1]. We wonder
if the concept of musketeers or crew can be extended to other models. We remark that for
the hexagonal monkey model this technique cannot be directly applied. Indeed, a key step
of that approach was that whenever there is no module that can freely pivot on the external
boundary, we bridge such that a well-defined module m (extremal for a potential function
defined on the coordinates of the modules) can pivot along the external boundary without
disconnecting the configuration. Moreover, as many modules as helpers used for bridging can
be liberated locally around m. However, this is not always possible for hexagonal modules,
as shown in Figure 5: Three helper modules are necessary for bridging, but only two can be
liberated locally around m.

a3

a2a1

m

Figure 5 The strategy in [1] cannot be directly translated to pivoting hexagons in the monkey
model.

References
1 Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmovićc,

Robin Flatland, Matias Korman, Belén Palop, Irene Parada, André van Renssen, and Vera
Sacristán. Universal reconfiguration of facet-connected modular robots by pivots: The O(1)
musketeers. In Proc. 27th Annual European Symposium on Algorithms (ESA), volume 144,
pages 3:1–3:14, 2019. doi:10.4230/LIPIcs.ESA.2019.3.

2 Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dylan H. Hendrickson, Adam Hes-
terberg, Matias Korman, Oliver Korten, Jayson Lynch, Irene Parada, and Vera Sac-
ristán. Characterizing universal reconfigurability of modular pivoting robots. CoRR,
abs/2012.07556, 2020. arXiv:2012.07556.

3 Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D. Demaine, Robin Flatland, Ste-
fan Langerman, Joseph O’Rourke, Val Pinciu, Suneeta Ramaswami, Vera Sacristán, and
Stefanie Wuhrer. Efficient constant-velocity reconfiguration of crystalline robots. Robotica,
29(1):59–71, 2011. doi:10.1017/S026357471000072X.

4 Nora Ayanian, Paul J. White, Ádám Hálász, Mark Yim, and Vijay Kumar. Stochastic con-
trol for self-assembly of XBots. In Proc. ASME International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference (IDETC-CIE),
pages 1169–1176, 2008. doi:10.1115/DETC2008-49535.

5 Nadia M. Benbernou. Geometric Algorithms for Reconfigurable Structures. PhD thesis,
Massachusetts Institute of Technology, 2011.

H. A. Akitaya et al. 56:7

6 Adrian Dumitrescu and János Pach. Pushing squares around. Graphs and Combinatorics,
22(1):37–50, 2006. doi:10.1007/s00373-005-0640-1.

7 Adrian Dumitrescu, Ichiro Suzuki, and Masafumi Yamashita. Motion planning for meta-
morphic systems: feasibility, decidability, and distributed reconfiguration. IEEE Transac-
tions on Robotics, 20(3):409–418, 2004. doi:10.1109/TRA.2004.824936.

8 Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for heterogeneous
self-reconfiguring robots. In Proc. 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), volume 3, pages 2460–2467, 2003. doi:10.1109/IROS.2003.
1249239.

9 Irina Kostitsyna, Irene Parada, Willem Sonke, Bettina Speckmann, and Jules Wulms. Com-
pacting squares. Manuscript, 2020.

10 Tom Larkworthy and Subramanian Ramamoorthy. A characterization of the reconfig-
uration space of self-reconfiguring robotic systems. Robotica, 29(1):73–85, 2011. doi:
10.1017/S0263574710000718.

11 An Nguyen, Leonidas J. Guibas, and Mark Yim. Controlled module density helps recon-
figuration planning. In Algorithmic and Computational Robotics: New Dimensions (2000
WAFR), pages 23–36. 2001.

12 Cynthia Sung, James Bern, John Romanishin, and Daniela Rus. Reconfiguration planning
for pivoting cube modular robots. In Proc. 2015 IEEE International Conference on Robotics
and Automation (ICRA), pages 1933–1940, 2015. doi:10.1109/ICRA.2015.7139451.

EuroCG’21

Rectangular Spiral Galaxies are Still Hard∗

Erik D. Demaine1, Maarten Löffler2, and Christiane Schmidt2

1 Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology
edemaine@mit.edu

2 Department of Information and Computing Sciences, Universiteit Utrecht
m.loffler@uu.nl

3 Communications and Transport Systems, ITN, Linköping University
christiane.schmidt@liu.se

Abstract
Spiral Galaxies is a pencil-and-paper puzzle played on a grid of unit squares with a given set of
points, referred to as centers. The grid needs to be partitioned into polyominoes such that each
polyomino contains exactly one center and is 180◦ rotationally symmetric about its center. We
show that the puzzle is NP-complete even if the polyominoes are restricted to be (a) rectangles of
arbitrary size or (b) 1×1, 1×3, and 3×1 rectangles. The proof for the latter variant also implies
that finding a non-crossing matching in modified grid graphs where edges connect vertices of
distance 2 is NP-complete. Moreover, we prove that minimizing the number of centers, such that
there exist a set of Spiral Galaxies that exactly cover a given shape, is NP-complete.

1 Introduction

(a) (b) (c)

Figure 1 Spiral Galaxies puzzles in several styles; solutions in the bottom row. (a) Classic Spiral
Galaxies puzzle. (b) Rectangular Galaxies puzzle. (c) Spiral Galaxies puzzle with black and white
centers such that the polyominoes containing the black centers in the solution yield a picture.

Spiral Galaxies is a pencil-and-paper puzzle published by Nikoli in 2001 [5] under the
name “Tentai Show” [6]. It is played on a grid of unit squares with given centers: points

∗ This research was performed in part at the 30th and the 33rd Bellairs Winter Workshop on Computational
Geometry. We thank all other participants for a fruitful atmosphere.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

57:2 Rectangular Spiral Galaxies are Still Hard

that are located at grid vertices, square centers or edge midpoints. The goal is to decompose
the grid into polyominoes, such that each polyomino contains exactly one center and is 180◦

rotationally symmetric about its center; see Figure 1 (a). The solution for a Spiral Galaxies
puzzle may not be unique, but generally puzzles are designed to have a unique solution.

Friedman [4] showed Spiral Galaxies to be NP-complete for general polyomino shapes, and
Fertin et al. [3] showed NP-hardness for Spiral Galaxies of size at most seven. In this paper
we consider Rectangular Galaxies; a variant of Spiral Galaxies in which all polyominoes are
required to be rectangles; see Figure 1 (b). We consider the general case and a special case in
which we allow only 1×1, 1×3, and 3×1 rectangles. We show that both puzzle variants are
(still) NP-complete. The proof for the latter puzzle also implies that finding a non-crossing
matching in squared grid graphs (that is, modified grid graphs where edges connect vertices
at distance 2) is NP-complete.

In another variant of the puzzle, a subset of the centers is colored black, and the
polyominoes that contain these centers yield a picture as a solution [6]; see Figure 1 (c).
Logic puzzles which yield pictures when solved are a popular genre; one famous example
is the nonogram [7]. Such puzzles can also be used to construct fonts [1]. Constructing an
interesting puzzle such that its solution is a given target shape is non-trivial: while a valid
puzzle trivially exists, by simply placing a center in every grid cell, the resulting puzzle is
clearly not interesting. We are, hence, also interested in finding the minimum number of
centers, such that there exist spiral galaxies that exactly cover a given shape. We also prove
this problem to be NP-complete.

1.1 Notation and Preliminaries
The game is played on an m×n grid. Centers are placed on the grid (on square centers, edge
midpoints, or grid vertices), either all of them have the same color, or a subset of the centers
may be colored black. To solve each puzzle, the solver is required to partition the board
with polyominoes, such that each polyomino contains a single center and is 180◦ rotationally
symmetric about its center. The grid and the centers form a Spiral Galaxies board B.

For our reductions, we use the PLANAR 1-IN-3-SAT PROBLEM, a well known NP-
complete and #P -complete problem [2].

2 Rectangular Galaxies

In this section, we show that the problem of solving Sprial Galaxies boards is NP-complete
when all galaxies are restricted to be rectangles.

I Theorem 1. Determining if a Spiral Galaxies board is solvable with only rectangular
galaxies is NP-complete.

Proof. We give a reduction from PLANAR 1-IN-3-SAT. Given an instance F of PLANAR
1-IN-3-SAT with incidence graph G, we show how to turn a rectilinear planar embedding of
G into a Spiral Galaxies board B such that a solution to B yields a solution to F .

We begin by constructing a representation of variables, we then show how to propagate
and bend the variable values using ‘wires’/‘corridors’ and combine the wires to form clauses.

The grid regions not incorporated into our gadgets will not affect the gadget solutions, as
for any open region we use a face gadget, shown in Figure 2, to force the region to contain
single square galaxies, which disallow any other Spiral Galaxies to occupy these grid squares.
Therefore, there can be no interference between our gadgets and the grid regions surrounding

E. Demaine, M. Löffler and C. Schmidt 57:3

(a) (b)

Figure 2 Face gadget to fill in the space inbetween all other gadgets.

(a)

(b)

(c)

Figure 3 (a) Variable loop with two possible states (b) and (c) corresponding to a truth assignment
of “true” and “false” of the corresponding variable.

them. Note that our face gadget forces us to not use open regions of width 1, as these would
not enforce single square galaxies.

We construct variable loops as shown in Figure 3. They are constructed with centers
located at edge centers within distance of 3 of each other, the loop is closed by additional
centers at edge center points. Each variable loop has two possible solutions, corresponding to
setting the variable as "true" or "false", and the rectangle placement is completely determined
by the variable assignment.

From each variable loop, we can propagate the variable value, creating a corridor gadget,
shown in Figure 4. The corridor gadgets are shown in blue and have a center distance of 5
on edge centers. Again, only two truth assignments are possible, each correspond to setting
the variable to “true” (Figure 4(b)) or “false” (Figure 4(c)). If the corridor does not pick up
the correct signal from the variable loop, the variable loop cannot be solved with rectangular

EuroCG’21

57:4 Rectangular Spiral Galaxies are Still Hard

(a) (b)

(c) (d)

Figure 4 (a) Variable loops (black centers) and connecting variable corridors (blue centers).
(b)/(c) Two possible truth assignments of the connecting corridor depending on the truth assignment
in the variable loop. (d) If the corridor does not pick up the correct signal from the variable loop
the variable loop cannot be completed.

(a) (b) (c)

Figure 5 (a) Variable corridors with bend, (b)/(c) two possible covers with rectangular galaxies.

Spiral Galaxies, see, e.g., Figure 4(d). We show the corridor bend gadget in Figure 5.
Moreover, we use a corridor shift gadget, shown in Figure 6, which allows us to shift the
location of the corridor by any number larger than 3. These are used to connect to the clause
gadgets in the appropriate places.

To combine the corridor gadgets into clauses, we use the clause gadget shown in Figure 7.
At least one of the three variables’ truth assignments is forced to be true (see Figure 7(b)-(d)),
more than one cannot be set to true (see Figure 7(e)-(h)), hence, it forces exactly 1 true
assignment, giving a solution to the instance F .

A solution to an m× n Spiral Galaxies board can be verified in polynomial time. J

3

(a)

3

(b)

3

(c)

Figure 6 (a) Variable corridors can be shifted by any number larger than 3 (here shown for a
shift of 3 as indicated in green). (b) and (c) depict the different variable assignments.

E. Demaine, M. Löffler and C. Schmidt 57:5

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7 (a) Clause gadget shown in black and the connecting variable corridors shown in
blue. (b)-(d) The clause gadget can be filled in with rectangle galaxies iff exactly one of the three
connecting variables has a truth assignment that fulfills the clause. The clause cannot be completed
if all variables do not fulfill the clause (e), or if more than one variable fulfills the clause (f)-(h).

3 Spiral Galaxies with 1×1, 1×3, and 3×1 Rectangles

In this section, we show that the problem of solving Spiral Galaxies boards is NP-complete,
even when only 1× 1, 1× 3 and 3× 1 galaxies are allowed, and that the problem of counting
the number of solutions to a Spiral Galaxies board with these galaxy types is #P -complete
and ASP-complete, see [8] Chapter 28 and [9, 10] for definitions of #P -completeness and ASP-
completeness, respectively. For our reductions, we—again—use the PLANAR 1-IN-3-SAT
PROBLEM.

I Theorem 2. Determining if a Spiral Galaxies board is solvable with only 1× 1, 1× 3 and
3 × 1 galaxies is NP-complete and counting the number of solutions is #P-complete and
ASP-complete.

Proof. The proof is by reduction from PLANAR 1-IN-3-SAT. Given an instance F of planar
1-in-3-SAT with incidence graph G, we show how to turn a rectilinear planar embedding of
G into a Spiral Galaxies board B such that a solution to B yields a solution to F , thereby
showing NP-completeness. Furthermore, there will be a one-to-one correspondence between
solutions of B and solutions of F , showing #P-completeness and ASP-completeness.

EuroCG’21

57:6 Rectangular Spiral Galaxies are Still Hard

Figure 8 We place centers (black circles) on the middle point of potential edges (light gray)
between any pair of black disks. In the remainder of this Section, we show only the black disks, but
not the centers.

(a) (b) (c)

Figure 9 (a) Variable loop with two possible states (b) and (c) corresponding to a truth assignment
of “true” and “false” of the corresponding variable.

In this proof, disks in the figures will not show centers for Spiral Galaxies. Disks with
distance 2 can be connected by an edge, centers will be located at the middle of each potential
edge, see Figure 8. Hence, any 1× 3 or 3× 1 galaxy will cover both disks, denoted by an
edge between these two disks; any 1× 1 galaxy will not extend over the disks, and is shown
by a non-existing edge between the disks.

We start with constructing variable gadgets that represent variables and their negations,
we show how we can negate the truth assignment of a variable, and construct clause gadgets
in which we combine the variable loops. Throughout the discussion, the constructed gadgets
have a single solution for any given variable assignment, which will make this reduction
parsimonious.

The board region not incorporated into our gadgets will be filled with centers at square
centers which will force the region to be filled with unit square galaxies, and will disallow
any other type of galaxies. Thus, there is no interference between our gadgets and the board
area surrouding them. Again, the face gadget forces us to not use open regions of width 1,
as these would not enforce single square galaxies.

The variable loop, shown in Figure 11, has two possible solutions (shown in Figure 11(b)
and (c)), each corresponding to one truth assignment for the variable (“true” and “false”).
We extend the size of the variable loop to connect to other gadgets—to build corridors.

Negating a variable corresponds to inserting a negation gadget into the corridor, and
to continue with another variable corridor as in Figure 10.

We combine the variable corridors into a clause gadget, see Figure 11: the variable

(a) (b)

Figure 10 Negation gadget in blue, with two black variable loops. The incoming loop on the left,
has a different truth assignment than the outgoing loop on the right, two cases shown in (a)/(b).

E. Demaine, M. Löffler and C. Schmidt 57:7

loops are shown in black, and the clause gadget in gray. There are three possible states of
the clause gadget, depicted in red, turquoise, and violet (see Figure 11(b)). Each state forces
exactly one of the variables’ truth assignments to fulfill the clause assignment (all cases are
shown in Figure 11(c)-(e)), giving a solution to the instance F .

A solution to an m× n Spiral Galaxies board can be verified in polynomial time. J

4 Non-Crossing Matching in Squared Grid Graphs

We define a squared grid graph as a modified grid graph where edges connect vertices at
distance 2. From the proof of Theorem 3.1—interpreting the disks as graph vertices—we
obtain a corollary:

I Corollary 3. Non-crossing matching in squared grid graphs is NP-complete.

5 Minimizing Centers in Spiral Galaxies for a Given Shape

In this section, we are given a (black) shape S on a Spiral Galaxies board, and we aim to
find the minimum number of centers, such that there exist spiral galaxies with these centers
that exactly covers the given shape S. We show that this problem is NP-complete by a
reduction—one more time—from PLANAR 1-IN-3-SAT.

I Theorem 4. Minimizing the number of centers on a Spiral Galaxies board, such that Spiral
Galaxies with these centers exactly cover a given shape S is NP-complete.

Proof. First, we introduce local center gadgets: thin constructions with unique shapes, which
ensure that there must be at least one center in each of them; see Figure 12. The idea will
now be to construct a shape which can be covered with exactly this set of centers if and only
if the 1-in-3-sat instance is satisfiable.

To this end, we create block gadgets: 5 × 5 rooms which are connected to local center
gadgets on two or three sides. We distinquish straight blocks, corner blocks, and clause blocks;
see Figure 13. Next, we define the fix gadget: an alternating sequence of four local center
gadgets and three block gadgets making a U-turn as in Figure 14.

We claim that in any chain of blocks that contains a fix gadget, each block must completely
belong to a single galaxy. Indeed, suppose we have a fix gadget consisting of blocks A, B, and
C, where A and C are corner blocks but B is a straight block, and suppose A is split among
multiple galaxies, say a red one at the top and a blue one at the right (refer to Figure 14
(b)). Then the bottom center pixel of B must also be red, and hence the top center pixel of
C must be red by summetry. But then C must be completely red; contradiction.

A variable chain consists of alternating local center gadgets and block gadgets starting
and ending at end gadgets; see Figure 16 for a variable chain and Figure 15 for an end gadget.
Each variable chain must include a fix gadget.

A clause is simply a single clause block where three variable chains meet: it can be solved
without using an additional center if and only if precisely one of the three chains needs to
use the block. The only missing ingredient now is a split gadget, which ensures we can make
multiple variable chains with the same state. We let several variable chains end in a common
area, which, similar to the end gadget, can be solved with one center only if all blocks are
present, or if all blocks are absent; see Figure 17. Note that the distance between adjacent
block gadgets may be adjusted as needed; this also allows us to negate variables. J

EuroCG’21

57:8 Rectangular Spiral Galaxies are Still Hard

(a)

(b)

(c)

(d)

(e)

Figure 11 (a) Clause gadget, in gray, with the three incoming variable loops, in black. (b) shows
the three possible states of the clause gadget, and (c)-(e) give each one assignment in the clause
gadget, with the corresponding assignments of the variable loops, the (only) variable with a truth
assignments that fulfills the clause is shown in the same color as the clause edges.

E. Demaine, M. Löffler and C. Schmidt 57:9

(a) (b) (c) (d)

Figure 12 The local center gadget must have at least one center. (a-d) Different shapes ensure
we cannot include them in larger galaxies.

(a) (b) (c) (d)

Figure 13 (a) The block gadget. (b) A straight block. (c) A corner block. (d) A clause block.

6 Some Spiral Galaxies Puzzles

The Spiral Galaxies board from Figure 18 solves for the black letters A, B, H, R, S, Z (and
for disconnected galaxies also for the letter E). See Figures 19 and 20 for solutions.

References

1 Walker Anderson, Erik D. Demaine, and Martin L. Demaine. Spiral Galaxies font. The
Mathematics of Various Entertaining Subjects (MOVES 2017), 3:24–30, 2019. See also
http://erikdemaine.org/fonts/spiralgalaxies/.

2 Martin E. Dyer and Alan M. Frieze. Planar 3DM is NP-complete. Journal of Algorithms,
7(2):174–184, 1986.

3 Guillaume Fertin, Shahrad Jamshidi, and Christian Komusiewicz. Towards an algorithmic
guide to Spiral Galaxies. Theoretical Computer Science, pages 26–39, 2015.

4 Erich Friedman. Spiral galaxies puzzles are NP-complete. URL: https://erich-friedman.
github.io/papers/spiral.pdf, March 2002.

5 Nikoli. Tentai Show. URL:http://nikoli.co.jp/en/puzzles/astronomical_show.
html.

(a) (b)

Figure 14 (a) The fix gadget. (b) If the left block is split among multiple galaxies: contradiction.

EuroCG’21

57:10 Rectangular Spiral Galaxies are Still Hard

(a) (b) (c)

Figure 15 An end gadget has one center, whether or not a block is used by the galaxy next to it.

(b)

(c)

(a)

Figure 16 A variable chain and its two possible truth assignments.

6 Grandmaster Puzzles. Spiral Galaxies. URL: https://www.gmpuzzles.com/blog/
spiral-galaxies-rules-info/. accessed April 4, 2018.

7 Nobuhisa Ueda and Tadaaki Nagao. NP-completeness results for NONOGRAM via
parsimonious reductions. Technical Report TR96-0008, Department of Computer Science,
Tokyo Institute of Technology, Tokyo, Japan, May 1996.

8 Vijay V. Vazirani. Approximation Algorithms. Springer Publishing Company, Incorporated,
2010.

9 Takayuki Yato. Complexity and completeness of finding another solution and its application
to puzzles, 2003.

10 Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another
solution and its application to puzzles. IEICE transactions on fundamentals of electronics,
communications and computer sciences, 86(5):1052–1060, 2003.

E. Demaine, M. Löffler and C. Schmidt 57:11

(a) (b) (c)

Figure 17 The split gadget is essentially three end gadgets, but can only be solved with a single
center if either all three blocks are used or all three are not used.

Figure 18 Puzzle that can be solved for letters A, B, H, P, R, S, Z (E for disconnected galaxies).

EuroCG’21

57:12 Rectangular Spiral Galaxies are Still Hard

(a)

(b)

(c)

(d)

Figure 19 Puzzle solutions for letters A, B, E, H.

E. Demaine, M. Löffler and C. Schmidt 57:13

(a)

(b)

(c)

Figure 20 Puzzle solutions for letters R, S, Z.

EuroCG’21

Deletion only Dynamic Connectivity for Disk
Graphs∗

Haim Kaplan1, Katharina Klost2, Kristin Knorr†2, Wolfgang
Mulzer‡2, and Liam Roditty3

1 School of Computer Science, Tel Aviv University
haimk@tau.ac.il

2 Institut für Informatik, Freie Universität Berlin
{kathklost, knorrkri, mulzer}@inf.fu-berlin.de

3 Department of Computer Science, Bar Ilan University
liamr@macs.biu.ac.il

Abstract
Let S ⊂ R2 be a set of n sites where s ∈ S has an associated radius rs defining a disk Ds. Then the
disk graph D(S) has a vertex for every site and two sites s, t are connected by an undirected edge if
and only if Ds ∩Dt 6= ∅. We present a data structure which serves a sequence of n deletions and k
connectivity queries in time O(npolylogn+ k(logn/ log logn)).

1 Introduction

The question if two vertices in a given graph are connected is crucial for many graph
algorithms. The graph might be stored in a specialized data structure if multiple queries
are given. If the graph is static, using BFS and labeling the vertices gives an optimal data
structure. However if edge insertions or deletions are allowed things get more complicated.
If both insertions and deletions are allowed, the data structure of Holm et al. [4] which can
handle edge updates in time O(n log2 n) and queries in amortized time O(logn

log logn) is the best
currently known data structure for general graphs.

We consider the problem of constructing a deletion-only dynamic connectivity data
structure for disk graphs. Given a set S ⊆ R2 of n sites with associated radii rs, the disk
graph is the intersection graph of the disks Ds induced by the sites and their radii. While
the description of D(S) has size O(n), it might have Θ(n2) edges. So when starting with
some disk graph and subsequently deleting sites, over time up to Θ(n2) edges are deleted.
We describe a data structure whose overall running time for the sequence of n site deletion
is o(n2). For unit disk graphs, such a data structure is already known [6].

On a high level, our approach works as follows. We define a sparse proxy graph H = (V,E)
with S ⊆ V which perfectly represents the connectivity in D(S). We then store H in the
data structure of Holm et al. and describe how to update H on the deletion of a site.

2 Preliminaries

Our data structures relies on combining various data structures and techniques. We briefly
recall their definition and relevant properties here.

∗ Supported in part by grant 1367/2016 from the German-Israeli Science Foundation (GIF).
† Supported by the German Science Foundation within the research training group ‘Facets of Complexity’
(GRK 2434).

‡ Supported in part by ERC StG 757609.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

58:2 Deletion only Dynamic Connectivity for Disk Graphs

Without loss of generality we scale and translate S such that the minimum distance
between two sites is 1 + ε and that the point set fits into a square with diameter 2dlog diam(S)e.
Furthermore we set all radii to min{rs,diam(S)}. The quadtree on S is now defined in the
usual fashion as a tree of degree at most 4 with the square with diameter 2dlog diam(S)e being
the root. We will not explicitly distinguish between the cells and the vertices of the quadtree.
Each cell of diameter 2i which contains at least two sites is subdivided into up to four
non-empty cells of diameter 2i−1. By the assumptions on our point set, no cell of diameter 1
is subdivided further. As the height of the quadtree defined this way is O(log diam(S)), and
thus does not depend on n, we consider the compressed quadtree. Let σ1, . . . , σk be maximal
path of vertices with degree one in the quadtree. In the compressed quadtree Q this path
is replaced by the edge σ1σk. It is well known that such a compressed quadtree has O(n)
vertices, height O(n) and can be constructed in O(n logn) time [1, 3]. Given a cell σ ∈ Q we
denote by |σ| its diameter.

We will use a heavy path decomposition on Q. Slightly adapting the terminology of
Sleator and Tarjan [7], we call an edge uv of a tree heavy, if v is the first child of u that
maximized the total number of nodes in the subtree rooted at v and light otherwise. A heavy
path is a maximal path which consists of heavy edges. The set of all heavy paths is called
the heavy path decomposition.

I Lemma 2.1 (Sleator and Tarjan [7]). Let T be a tree with n vertices. Then, the following
properties hold: 1. Every leaf-root path in T contains O(logn) light edges; 2. every vertex of
T lies on exactly one heavy path; and 3. the heavy path decomposition of T can be constructed
in O(n) time.

Let X be a linearly ordered set. We aim to find a set X of subsets of X, such that
|X | = O(|X|) and every contiguous subsequence can be partitioned into O(log |X|) subsets
from X . Using a standard approach [2, 8] this can be achieved by building a perfect binary
search tree with the elements of X in the leaves. The interval can now be represented by
O(logn) subtrees along the search paths for its boundaries. Finally we will use the following
data structure:

I Lemma 2.2 (Reveal data structure (RDS), Kaplan et al. [5]). Let R and B be site sets with
|R|+ |B| = n. There is a data structure which after preprocessing allows to delete sites from
R and B. After deleting a site from R it reports all disks from B now disconnected from⋃
s∈RDs. Preprocessing, deleting m sites from R and an arbitrary number of sites from B

takes O((n log5 n+m log9 n)λ6(logn)) expected time and O(n log3 n) expected space, where
λs(n) is the maximum length of a Davenport-Schinzel sequence.

3 The Proxy Graph

In order to describe H we first augment the compressed quadtree Q on S by adding additional
cells. Given a site t ∈ S, let σ be the cell with t ∈ σ and |σ| ≤ rt ≤ 2|σ|. Let N(t) be the
13 × 13 neighborhood of σ. Observe that all sites s with rs ≤ rt which can form an edge
with rt lie in a disk of radius at most 2rt ≤ 4|σ|. All cells intersecting or containing that
disk are part of N(t), see Figure 1. We augment Q by adding the neighborhood N(t) of all
sites and call the resulting tree Q′.

Considering the heavy path decomposition R of Q′, we further decompose each heavy
path R ∈ R into canonical paths using the technique from section 2. The set P of all
canonical paths received this way has the following properties, which follow from those of R
and P. See Figure 2 for an illustration of the lemma.

H. Kaplan, K. Klost, K. Knorr, W. Mulzer, and L. Roditty 58:3

σ

Figure 1 The disks with center in σ and radius 4|σ| are contained in N13×13(σ).

I Lemma 3.1. Let σ be a cell of Q′ and let π be the path in Q′ from σ to the root. There
exists a set Pπ of canonical paths such that the following holds: 1. |Pπ| = O(log2 n), 2. π is
the disjoint union of the canonical paths in Pπ

Q′

R3

R2

R1

R4

R5

R1

σ1

σ2

σ3

σ4

σ5

σ1 σ2 σ3

σ5

R2

R3

R5

Pπ

σ4

R4

Figure 2 Illustration of Lemma 3.1. Left we see the decomposition of π into O(logn) heavy
paths R1, . . . Rk. On the right the vertices defining Pπ are depicted in green.

Given a constant d ∈ N, let Cd be a set of d cones with common apex in the origin, each
with opening angle 2π

d , covering the plane. Let P ∈ P be a canonical path with smallest cell
σ and largest cell τ . Then we denote the copy of the cones shifted to the center a(σ) of σ by
Cd(P). For constants d1 and d2 to be fixed later, now define d1 + d2 + 1 regions for P . These
regions are partitioned into outer regions, middle regions and the inner region. The outer
regions are obtained by considering Cd1(P) and taking the intersection of each cone with
the annulus with center a(σ), outer radius 5

2 |σ| + 2|τ | and inner radius 5
2 |σ|. The middle

regions are defined in a similar way, by taking the intersection of the cones in Cd2(P) with
the annulus with center a(σ), outer radius 5

2 |σ| and inner radius |σ|. Finally the inner region
is defined as the disk with center a(σ) and radius |σ|, see Figure 3 for an illustration. We
call the set of the regions defined this way for all canonical paths A.

EuroCG’21

58:4 Deletion only Dynamic Connectivity for Disk Graphs

σ

outer regions inner region

middle regions

|σ|

5
2 |σ|

5
2 |σ|+ 2|τ |

Figure 3 The regions defined by the smallest cell σ of a path

Based on these regions we define a sparse proxy graph H, which will be used to represent
the connectivity in D(S). The graph H has the vertex set V = S ∪ A. We will not strictly
distinguish between the vertices of H and their associated sites and regions. With each
region A we assign two sets S1(A) ⊆ S and S2(A) ⊆ S. The set S1(A) will contain all sites
contained in A whose are comparable to the size of the cells in the canonical path associated
with A. The choice of the inner and outer radii in the definition of the regions together with
our definition of comparable ensure that the disk graph induced by S1(A) is a clique. The
set S2(A) contains sites with small radius which are contained in the smallest cell of the
canonical path associated with A. These sites are chosen is such a way, that all edges in
D(S) between a site s ∈ S2(A) and S1(A) are represented with a single edge in H. As the
sites in S1(A) form a clique this will not add a connection between sites in H which is not
present in D(S). Note that a site s will be contained in multiple sets S1(A) and S2(A) as it
can lie in multiple regions and cells. Below we will give the details on the definition of S1(A)
and S2(A). In Lemma 3.2 we show that the sites in S1(A) indeed form a clique. Then, in
Lemma 3.3 we show that H accurately represents the connectivity of D(S) and finally, as
part of Lemma 4.1, we show that H is indeed sparse.

Now we give the details. The edge set of H is divided into two sets E1 and E2. The
set E1 is defined based on the sites in S1(A), whereas the set E2 is defined based on S1(A).
Let A be a region, where σ and τ are the smallest and largest cells respectively in the
corresponding canonical path. If A is an outer region, let S1(A) be the set of all sites t ∈ A
with |σ| ≤ rt ≤ 2|τ | and ‖a(σ)t‖ ≤ rt + 5

2 |σ|. On the other hand, if A is a middle or inner
region, S1(A) consists of all sites t ∈ A with |σ| ≤ rt ≤ 2|τ |. The edge set E1 now consists of
edges between A and all sites in S1(A).

Additionally we define a set S2(A) for the region. If A is an inner region, the set S2(A)
consists of all sites s in σ with rs < |σ| which intersect at least one site in S1(A). In the
other case, the set S2(A) contains all sites s in σ with rs ≤ 2|σ|, which are again intersecting
at least one site in S1(A). The set E2 now consists of edges between A and the sites in S2(A).

H. Kaplan, K. Klost, K. Knorr, W. Mulzer, and L. Roditty 58:5

t

α1

α2

t′
Zt

Figure 4 The part of the line segment a(σ)t′ in t′ intersects the boundary of Zt.

In order to show that this graph accurately represents the connectivity of the underlying
disk graph D(S) we first show that all sites within the same set S1(A) form a clique.

I Lemma 3.2. Suppose that d1 ≥ 18 and d2 ≥ 8. Then, for any region A ∈ A, the associated
sites in S1(A) form a clique in D(S).

Proof (Sketch). As before, let σ be the smallest cell on the canonical path associates with
A. If A is an inner or a middle regions this follows from considering the diameter of the
regions. In both cases the diameter is at most 2|σ|. As the sites in S1(A) have radius at least
|σ|, the claim follows.

The case where A is an outer region is a bit more complicated. For each site t ∈ S1(A)
we consider the two line segments going through t which are perpendicular to the lines
defining the cone of A, and call the convex hull of these line segments Zt, see Figure 4. Basic
trigonometry shows that Zt ⊆ Dt. Let t′ ∈ S1(A) be a site with larger distance to a(σ) than
t. It can be argued that t′ ∈ S1(A) either lies in Zt or the part of the line segment a(σ)t′
which lies in D′t intersects Zt. In both cases it follows that the edge {t, t′} exists in D(S). J

Using Lemma 3.2 we can now show that H represents the connectivity in D(S).

I Lemma 3.3. Two sites s, t ∈ S are connected in H if and only if they are connected in
D(S).

Proof. First, we show that if s and t are connected in H they are also connected in D(S).
The graph H is bipartite, thus it suffices to show that if two sites u, u′ are connected to the
same region A ∈ A, they are also connected in D(S). This follows directly from Lemma 3.2:
if u and u′ are both in S1(A) they are part of the same clique and thus adjacent. If on the
other hand u ∈ S2(A) or u′ ∈ S2(A), the definition of S2(A) implies that S1(A), and the
corresponding clique, is not empty. Thus there is a path from u through S1(A) to u′.

Now we consider two sites connected in D(S) and show that they are also connected in
H. If suffices to show that if s and t are connected by an edge in D(S), they are connected
to the same region A ∈ A. Assume without loss of generality that rs ≤ rt. Refer to Figure 5
for a depiction of the following argument. By the observation made above, there is a cell
ρ in N(t) which contains s. Consider the path π in Q′ from the root to the smallest cell γ
such that s ∈ γ and rs ≤ 2|γ|. Then ρ lies on this path π. Let Pπ be the decomposition of π

EuroCG’21

58:6 Deletion only Dynamic Connectivity for Disk Graphs

π

ρ
Q′

γ

P

σ

τ

Figure 5 The cell γ is the smallest cell such that rs ≤ 2|γ|. The canonical path P contains ρ.

into canonical paths as defined in Lemma 3.1 and let P be the path containing ρ. Again let
σ and τ be the smallest and largest cell on P respectively. By the definition of P we have
γ ⊆ σ ⊆ ρ ⊆ τ . As {s, t} is an edge in D(S), we have ‖st‖ ≤ rs + rt ≤ 2|σ|+ 2|τ | and thus
‖a(σ)t‖ ≤ 5

2 |σ|+ 2|τ |. This implies that t lies in a region A defined by P . If A is an inner
region and |σ| ≤ rs ≤ 2|σ| then s is also part of S1(A) by definition, in the other case s is
contained in S2(A). In both cases it follows that s and t are both connected to A. J

4 The Data Structure

The main idea of the data structure is to store H in a Holm et al. data structure H and use
H to answer queries. The main challenge is to maintain H and H under deletion of sites, as
well as efficiently preprocess the sites. The role of the components is shown in Figure 6.

I Lemma 4.1. The graph H has O(n) vertices, and O(n log2 n) edges. The graph and a
Holm et al. data structure H containing it can be constructed in O(n log4 n) time. Within the
same time bound we can construct the extended quadtree Q′, the heavy path decomposition R
and the binary search trees on the heavy paths.

Proof (Sketch). The augmented compressed quadtree has O(n) vertices. By adding appro-
priate virtual sites to the centers of suitable cells, it can be constructed in O(n logn) time.
Constructing the heavy path decomposition on this tree takes time O(n) by Lemma 2.1. The
binary search trees defining the canonical paths also have a total O(n) vertices and can be
constructed in O(n log2 n) overall time. As we define O(1) regions for each canonical path,
the bound on the number of vertices follows.

The number of edges follows from the total size of the sets S1(A) and S2(A). For the
total size of the sets S1(A) consider a site t and its neighborhood N(t). Each cell in N(t) is
contained in O(logn) canonical paths. In order to satisfy both the distance and the radius
constraint for the set S1(A) of a region, its associated path has to contain a cell of N(t) and
thus t is contained in O(logn) sets S1(A).

A site s is contained in the sets S2(A) along the canonical paths which decompose the
path π from the root to the smallest cell γ in Q′ with s ∈ γ and rs ≤ 2|γ|, again refer to
Figure 5. By Lemma 3.1 there are O(log2 n) such regions. Summing up over all sets S1(A)
and S2(A) this results in O(n log2 n) overall edges.

The sets S1(A) can be found by following the argument about the size and explicitly
checking the conditions for each canonical path containing a given cell of N(t). In order to
find the sets S2(A) we first have to construct an additively weighted voronoi diagram on each

H. Kaplan, K. Klost, K. Knorr, W. Mulzer, and L. Roditty 58:7

H (Holm et al.)

Auxillary graph H

stored in

BSTs for P

RDS for A

Query Preprocessing

Deletion from S1(A)

Query: O(log n/ log log n)

Update: O(log2 n)

(both amortized)

O(npolylogn)

overall

O(log2 n) BST nodes per vertex
defines

vertices
for

Updated on deletion

O(n log3 n) build time

|V |=O(n), |E| = O(n log2 n)

augmented compressed
quadtree Q′

O(n) cells
O(log n) preprocessing

via heavy path
decomp.

Construction: O(n log4 n)

Figure 6 Components of the data structure and their connections

set S1(A). Assigning each site t ∈ S1(A) the weight −rt, allows us to determine in O(logn)
time if a site s intersects some site in S1(A). Performing this query for all regions along
the path defined in the size argument yields all sets S2(A). Combining the steps for finding
S1(A) and S2(A) finds all edges in O(n log3 n) time. Inserting the edges one by one to the
Holm et al. data structure H dominates the time, leading to O(n log4 n) overall time. J

We simply perform connectivity queries on H. To handle deletions, we build one reveal
data structure (RDS) for each region A ∈ A. We set R′ = S1(A) and B′ = S2(A) for
each RDS. Let n′ be the total number of sites stored in one of the data structures, then
preprocessing, deleting some sites from B′, deleting m′ sites from R′ and retrieving the
revealed sites takes O((n′ log5 n+m′ log9 n)λ6(logn)) total time by Lemma 2.2.

When deleting a site s, we can safely delete it from all sets S2(A) containing it, together
with the associated edges in E2 and the sites stored in the RDS of A. When deleting a site
from a set S1(A) however it is possible that some other sites have to be removed from the
associated set S2(A). These sites are reported by the RDS on deleting s from R′, allowing
us to safely delete them from S2(A). Summing up we get the following result.

I Theorem 4.2. The data structure described above answers connectivity queries in amortized
time O

(
logn

log logn

)
with O((n log7 n+m log11 n)λ6(logn)) overall expected update time for m

deletions.

References

1 Kevin Buchin, Maarten Löffler, Pat Morin, and Wolfgang Mulzer. Preprocessing imprecise
points for Delaunay triangulation: Simplified and extended. Algorithmica, 61(3):674–693,
2011. doi:10.1007/s00453-010-9430-0.

EuroCG’21

58:8 Deletion only Dynamic Connectivity for Disk Graphs

2 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and applications. Springer-Verlag, Berlin, 3rd edition, 2008. doi:
10.1007/978-3-540-77974-2.

3 Sariel Har-Peled. Quadtrees–hierarchical grids. In Geometric Approximation Algorithms,
volume 173 of Mathematical Surveys and Monographs, chapter 2. American Mathematical
Society, 2011. doi:10.1090/surv/173.

4 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnec-
tivity. J. ACM, 48(4):723–760, 2001. doi:10.1145/502090.502095.

5 Haim Kaplan, Alexander Kauer, Wolfgang Mulzer, and Liam Roditty. Sampling hyper-
planes and revealing disks. Abstract submitted to EuroCG21., 2021.

6 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Dynamic connectivity for
unit disk graphs. In Proc. 32nd European Workshop on Computational Geometry (EWCG),
2016.

7 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J. Comput.
Syst. Sci., 26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

8 Dan E. Willard and George S. Lueker. Adding range restriction capability to dynamic data
structures. J. ACM, 32(3):597–617, 1985. doi:10.1145/3828.3839.

Maximum-Width Rainbow-Bisecting Empty
Annulus
Sandip Banerjee1, Arpita Baral ∗2, and Priya Ranjan Sinha
Mahapatra †2

1 The Hebrew University of Jerusalem, Jerusalem, Israel.
sandip@cs.huji.ac.il

2 Department of Computer Science and Engineering, University of Kalyani,
kalyani, India.
arpitabaral@gmail.com, priya@klyuniv.ac.in

Abstract
Given a set of n colored points with k colors in the plane, we study the problem of computing
a maximum-width rainbow-bisecting empty annulus (of objects specifically axis-parallel square
and circle) problem. We call a region rainbow if it contains at least one point of each color. The
maximum-width rainbow-bisecting empty annulus problem asks to find an annulus A of a particular
shape with maximum possible width such that A does not contain any input points and it bisects
the input point set into two parts, each of which is a rainbow. We compute a maximum-width
rainbow-bisecting empty axis-parallel square and circular annulus in O(n3 + n2k log k) time using
O(n logn) space and in O(n3) time using O(n2) space respectively.

1 Introduction

In the context of facility location most of the existing literature deals with the placement of
the facilities (e.g. pipelines) among a set of customers (represented by points in R2) but there
are scenarios where the facilities are hazardous (e.g pipelines transporting toxic materials).
In these scenarios the objective is maximizing the minimal distance between the hazardous
facility and the given customers. Considering this situation, some problems have been
studied in literature that computes a widest L-shaped empty corridor [8], a widest 1-corner
corridor [11], a largest empty annulus [12]. For empty annulus we additionally impose another
constraint that each of the two non-empty regions corresponds to two self-sustained smart
cities, meaning that each of the smart cities is comprised of essential facilities of each type
such as schools, hospitals, etc. This situation calls for the computation of two rainbow regions
separated by an empty region where empty region contains hazardous facility and each color
represents each essential facilities in each of the rainbow region. Given a set of n points in
R2, each point colored with one of the k (k ≤ n) colors, a rainbow (or color spanning) region
in R2 contains at least one point of each color. Abellenas et al. first proposed algorithms for
computing a smallest color-spanning axis-parallel rectangle [2], narrowest strip [2], circle [1] in
O(n(n−k) log2 k), O(n2α(k) log k) and O(kn logn) respectively. Later the time complexities
to compute a smallest color-spanning rectangle and a narrowest color-spanning strip were
improved to O(n(n − k) log k) and O(n2 logn) by Das et al. [9]. Kanteimouri et al. [16]
computed a smallest axis-parallel color-spanning square in O(n log2 n) time. Hasheminejad
et.al [15] proposed an O(n logn) time algorithm to compute a smallest color-spanning

∗ The author would like to thank Stefan Langerman for his insightful discussions and comments.
† Research supported in part by SERB, Govt. of India, Ref. No. MTR/2019/000792.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

59:2 Maximum-Width Rainbow-Bisecting Empty Annulus

wS ′

S

(a)

c

Cin

(b)

Cout

Figure 1 (a) A RBSA of width w with outer and inner squares S and S′. (b)A RBCA with outer
& inner disk Cout & Cin & common center c.

equilateral triangle. The shortest color-spanning interval, smallest color-spanning t squares
and smallest color-spanning t circles have been studied by Banerjee et al. [17] and they have
given some hardness and tractability results from parameterized complexity point of view.
Acharyya et al. [3] computed a minimum-width color-spanning annulus for circle, equilateral
triangle, axis-parallel square and rectangle in O(n3 logn), O(n2k), O(n3 + n2k log k) and
O(n4)- time respectively. D. Báñez et al. [12] first studied the largest empty circular annulus
problem and improved to O(n3)-time [13]. Bae et al. [7] proposed algorithms computing a
maximum-width empty axis-parallel square and rectangular annulus in O(n3) and O(n2 logn)
time respectively. Recently Erkin et al. [5] studied a variant of a covering problem where
the objective is to cover a set of points by conflict free set of objects, where an object
is conflict free if it covers at most one point from each color class. We compute here a
maximum-width rainbow-bisecting empty axis-parallel square annulus in O(n3 + n2k log k)
time using O(n logn) space. Notice on computing this, a subcase of our objective maps to
the problem of computing a largest rainbow-bisecting empty axis-parallel L corridor and solve
it in O(n log4 n)-time. This improves the time complexity of the algorithm for computing
a widest empty axis-parallel L corridor from O(n2 logn) [7] to O(n log3 n) time. We also
propose an O(n3) time algorithm for computing a maximum-width rainbow-bisecting empty
circular annulus in O(n2) space.

2 Definition and Terminologies

We are given a set P containing n points in R2 where each point is colored with one of the
given colors {1, . . . , k} and k ≤ n. For each color i ∈ [k] there exists at least two points
a, b ∈ P of color i. For any point p ∈ P , we denote its x- and y-coordinates, color by x(p),
y(p) and α(p) respectively. We borrow the definition of center, radius of an axis-parallel
square from Bae et al. [7]. For an axis-parallel square S, the (inward) offset of S by a real
number δ ≥ 0 is a smaller axis-parallel square obtained by sliding each side (top, bottom, left
and right) of S inwards by δ. An axis-parallel square annulus (Ref. Fig. 1(a)) is the region
between an axis-parallel square S and its offset S′ by some δ ≥ 0, where S, S′, and δ are the
outer square, inner square, and the width of the annulus respectively. We allow the outer
and inner squares of an axis-parallel square annulus to have one or more sides at infinity (∞)
which means the associated coordinate value of that side is infinite. A circular annulus is the
region between two concentric disks Cout (outer disk) and Cin (inner disk) where Cin ⊆ Cout,
center c, radius of outer disk raCout and radius of inner disk raCin and raCin ≤ raCout . The

S. Banerjee, A. Baral and P. R. S. Mahapatra 59:3

S

S ′

S

S ′

S

S ′

(a) (b) (c)

Figure 2 (a) C1 Configuration (b) C2 Configuration (c) C3 Configuration

width is defined as the difference of the radii, raCout − raCin (Ref. Fig.1(b)). An axis-parallel
square annulus (resp. a circular annulus) A is said to be rainbow-bisecting empty if it does
not contain any point of P in its interior and divides P into two non-empty subsets such that
each subset is a rainbow, one subset lies within or on the boundary of the inner square (resp.
inner disk) of A and the other subset lies outside or on the boundary of the outer square
(resp. outer disk) of A. From now we refer an axis-parallel square (resp. axis-parallel square
annulus) as square (resp. square annulus). Any rainbow-bisecting empty square annulus and
rainbow-bisecting empty circular annulus are denoted by RBSA and RBCA respectively.

3 Maximum-Width Rainbow-Bisecting Empty Square Annulus

In this section, we compute a maximum-width RBSA from a given point set P on R2.

I Lemma 3.1. A maximum-width RBSA A must contain at least one point of P on one
side of both S (outer square) and S′ (inner square) and all the potential configurations of A
can be mapped in the following three configurations (Ref. Fig. 2).

C1: At least one side of both S, S′ contains a point ∈ P , remaining sides of S are at ∞.
C2: One side of S′ contains a point of P and any two adjacent sides of S are defined by
points ∈ P and the other two sides of S are at ∞.
C3: One side of S′ and one pair of opposite sides of S must contain points ∈ P .

We propose different algorithms for handling above three different configurations and report
the maximum. As a part of preprocessing, we sort the points ∈ P w.r.t both the co-ordinates.

C1 configuration: A RBSA of configuration C1 maps to an empty strip such that regions
on both side of the strip are rainbow (called as rainbow-bisecting empty strip, RBES).
I Lemma 3.2. A maximum-width RBES can be computed in O(n) time using O(n) space.

C2 configuration: Observe solving this configuration corresponds to the problem of finding
a largest rainbow-bisecting empty axis-parallel L-shaped corridor (RBLC) (w.l.o.g. we
assume pointing down and right; Ref. Fig. 3(a)). Our algorithm maintains a horizontal
sweepline H (moving from bottom to top) which on encountering a point pi ∈ P calls the
following decision problem, DP as the main subroutine and it does for all the points ∈ P .

Given: A positive real w > 0
Task: Does there exist a RBLC with horizontal part right above H and of
width w ?

The DP eventually computes a maximum-width RBLC from the set of possible widths
wpi′pj′ where wpi′pj′ ∈ {[y(pi′)−h, y(pj′)−h]}, i′ < j′ ≤ n & pi′ , pj′ are any 2 consecutive

EuroCG’21

59:4 Maximum-Width Rainbow-Bisecting Empty Annulus

S1

c

d

e

H

(b)

a

b

(c)(a)

Figure 3 (a) A rainbow-bisecting empty L corridor. (b) a, . . . , e are the dominating points above
H. (c) Staircase S1 for point set P , the empty circles denote staircase points /∈ P .

points on the staircase above y(H) = h (A point pi dominates pj if both (i)x(pj) > x(pi)
& (ii)y(pj) > y(pi) hold; pi, pj are points on the staircase where any two points pi, pj
lying on the staircase satisfies x(pi) < x(pj) =⇒ y(pi) < y(pj)); Ref. Fig. 3(b)).
We maintain the following data structures for answering queries to be used by the DP.
• Store all the points ∈ P in a 2D range tree [10] T1 in order to find the dominating

points above H. The first dominating point say, pa, above y(H) = h is the point with
the smallest y-coordinate above H. We find the next dominating point, say pb by
querying arg min

j
{y(pj)|x(pj) > x(pa) && y(pj) > y(pa)} on T1. Similarly find the

rest.
• Populate a 1D range tree [10] T2 with the x-coordinate values of the points lying

below H. Also each node v ∈ T2 stores the maximum horizontal gap (difference in
x-coordinate values of 2 consecutive sorted (w.r.t. x values) points) in the canonical
subset (CS) of v. The maximum horizontal gap for a given range, say [x0,+∞] can be
found by comparing O(logn) values including every gap between 2 consecutive CS.

• Consider two staircases S1 and S2, such that any empty L-shaped corridor lying in
the region above S1 and below S2 is a RBLC. The staircase S1 is generated as follows:
We traverse the points ∈ P from bottom to top (say initially we are at x = −∞) and
maintain a counter on the number of points of each color we traversed so far. Next in
order to get the leftmost point of S1 we move towards the right until the counter of a
color (say for instance color j ∈ k) becomes zero. Next from the leftmost point of S1
we move upwards until the count for color j becomes 1. We repeat the above procedure
in order to determine the points of S1 until all the points are being traversed (Ref.
Fig. 3(c)). In a similar way we construct staircase S2 by traversing the points of P
from top to bottom. It can be easily verified from the above construction that any
empty L-shaped corridor lying below S1 as well as above S2 cannot be a RBLC.
Construct two balanced BST T (S1) and T (S2) to store the points of two staircases
S1 and S2 respectively. Insert the points ∈ P on T (S1) (resp. on T (S2)) during
traversing from bottom to top (resp. top to bottom) according to their x-coordinate
values. The points of S1 and S2 are marked on T (S1) and T (S2) respectively.
We verify a w-width empty axis-parallel L-shaped corridor is a RBLC or not by
checking if the top-left corner points (inside and outside) lies above S1 and below S2
or not. For inside top-left corner point (ci), find immediate left (a1) and right (a2)
points of x(ci) that lies on S1 from T (S1) and see if y(ci) > y(a2) or not. Similarly

S. Banerjee, A. Baral and P. R. S. Mahapatra 59:5

l(C) r(C)

pi′

pj′

R

left right

top

bottom

Figure 4 Centers of candidate outer squares in R lie in the segment [l(C), r(C)], l(C) =
(max(x(pi′), x(pj′))− r, y(l)) and r(C) = min(x(pi′), x(pj′)) + r, y(l)).

verify for outside top-left corner point from S2.
The above discussion leads to the following result.
I Theorem 3.3. Given n points in R2 where each one is colored with one of the k colors,
a maximum-width RBLC can be found in O(n log4 n) time using O(n logn) space.
Here we mention that our algorithm improves the time complexity for computing a widest
empty axis parallel L corridor from O(n2 logn) (Theorem 1 of [7]) to O(n log3 n).

C3 configuration: We start this case with the following observation.
I Observation 1. The potential locations of center of the outer square, S for a fixed pi′
and pj′ lies on the line ` (y(`) = (y(pi′) + y(pj′))/2), where pi′ and pj′ defines the top
and bottom sides of S respectively (Ref. Fig. 4).
Note that the outer square, S of a potential candidate annulus for a fixed pi′ and pj′

lies inside a rectangle R (Ref. Fig. 4) where x(left)= max{x(pi′), x(pj′)} − 2r and
x(right)= min{x(pi′), x(pj′)}+ 2r (r := (y(pi′)− y(pj′))/2).
For a fixed outer square S(c) with center c lies on C ⊂ ` we compute the radius of the
inner square S′(c) by finding the farthest point from center c lying inside S(c). We
first plot L∞ distance of each point p ∈ Pi′j′∀c ∈ C in R (denoted by fp(c), discussed
in [6]), where Pi′j′ is the set of points inside R. Next consider the distance functions
of all points of each color i followed by computing the upper envelope for each color i
from ∪α(p)=ifp(c), denoted by Φi. We get the centers of potential RBSA by projecting
the breakpoints of the lower envelopes of all Φi functions on segment C [3]. Finally we
construct the inner squares of the corresponding centers by finding the farthest points
from the breakpoints of the upper envelope F (c) := maxp∈Pi′j′ fp(c) [7]. Considering all
choices of pi′ and pj′ and the above discussion leads to the following result.
I Lemma 3.4. A potential maximum-width RBSA corresponding to C3 configuration
can be computed in O(n3 + n2k log k) time and O(n) space.

We conclude the section with the following theorem.

I Theorem 3.5. Given n points in R2 where each one is colored with one of the k colors, a
maximum-width RBSA can be computed in O(n3 + n2k log k) time using O(n logn) space.

4 Maximum-width Rainbow-Bisecting Empty Circular Annulus

In this section, we compute a maximum-width RBCA from a given point set P on R2. Here
we assume no four input points are concyclic.

I Lemma 4.1. A maximum-width RBCA A is defined by four points from P resulting one
of the following potential configurations-(i) Type 1 (resp. Type 2) - Cout (resp. Cin) has three

EuroCG’21

59:6 Maximum-Width Rainbow-Bisecting Empty Annulus

2D Point P (px, py) 3D Point P ′(px, py, p
2
x + p2y)

A disk with center (cx, cy)

& radius r1 − > C((cx, cy), r1)

Plane

z = 2cx.x+ 2cy.y−

2 concentric disks 2 parallel planes

Paraboloid

lifting

R2 R3

(c2x + c2y − r21)

Figure 5 Paraboloid transformation of the input points. Left side maps right side.

π1

π2

π1

π2

(a) (b)

Figure 6 (a) A C31 empty slab defined by 2 parallel planes π1 and π2. (b) A C22 empty slab.

points of P and Cin (resp. Cout) contains one point of P and (ii) Type 3 - Each of Cin and
Cout are defined by two points of P .

Adopting the technique of D.Báñez et al. [13], transform the points ∈ P from R2 to R3 using
paraboloid lifting (Ref. Fig. 5) resulting the problem of computing the largest empty circular
annulus problem in R2 being mapped to the largest empty slab problem (LESP) in R3.

Largest Empty Slab Problem: (LESP)
Given: A set S of n points in R3

Task: Find a widest empty slab where a slab through S is the open region of
R3 that is bounded by 2 parallel planes intersecting the convex hull of S.
The width of the slab is the distance between the bounding planes.

A candidate annulus (in R2) of Type 1 (or 2) & Type 3 is being mapped (in R3) to empty
slabs of Type C31 and C22 respectively (Ref. Fig. 6). Finally, the optimal solution is obtained
by tracking the slabs of Type C31 and C22 which span k colors on both sides of it. Generate
candidate empty slabs of Types C31, C22 using topological sweep [4, 14] on the arrangement
A(H) of dual planes (each plane has a color) corresponding to the points in primal. During
the sweep we maintain a count on the number of planes of each color ∈ [k] present above
and below for each edge of the current planar cut of each plane. Once the initial planar cut
for plane k′ ∈ A(H) is determined, we initialize arrays namely UPk′ [1 : k], LOWk′ [1 : k] and

S. Banerjee, A. Baral and P. R. S. Mahapatra 59:7

COk′ [1 : n− 1] following sequence of edges in Nk′ [1 : n− 1], where Nk′ [1 : n− 1] is a list of
pairs of indices indicating the lines delimiting each edge of the current planar cut for plane k′.
The array COk′ [i] = (a, b), indicates the number of colored planes above and below each edge
of Nk′ [i] of current planar cut for k′ where UPk′ and LOWk′ help to initialize COk′ . We get
each COk′ in O(n) time. As the sweep performs an elementary step, the incoming edges are
swapped at the corresponding vertex in each planar cut and COk′ is updated following new
Nk′ in O(1) time. The above discussion along with lemma 4 [13] leads to the following result.

I Theorem 4.2. Given a set of n points in R2, each one is colored with one of the k colors,
the maximum-width RBCA problem can be solved in O(n3) time and O(n2) space.

We extend the above idea to compute a maximum-width RBCA whose center lies on a given
line L in the plane. We have the following lemma.

I Lemma 4.3. A maximum-width RBCA A whose center lies on a given line L is defined
by three points of P where Cin (resp. Cout) contains two points of P and Cout (resp. Cin)
contains one point of P .

Proof. Similar as described in lemma 4.1. J

We conclude this section with the following corollary.

I Corollary 4.4. A maximum-width RBCA A whose center lies on a given query line L in
R2 can be computed in O(n2) time and space.

References
1 Manuel Abellanas, Ferran Hurtado, Christian Icking, Rolf Klein, Elmar Langetepe, Lihong

Ma, Belén Palop, and Vera Sacristán. The farthest color Voronoi diagram and related
problems. In Proc. 17th EuroCG 2001, pages 113–116, 2001.

2 Manuel Abellanas, Ferran Hurtado, Christian Icking, Rolf Klein, Elmar Langetepe, Lihong
Ma, Belén Palop, and Vera Sacristán. Smallest color-spanning objects. In Algorithms
- ESA 2001, 9th Annual European Symposium, Aarhus, Denmark, August 28-31, 2001,
Proceedings, pages 278–289, 2001.

3 Ankush Acharyya, Subhas C. Nandy, and Sasanka Roy. Minimum width color spanning
annulus. Theor. Comput. Sci., 725:16–30, 2018.

4 Efthymios Anagnostou, Vassilios G. Polimenis, and Leonidas J. Guibas. Topological sweep-
ing in three dimensions. In Proceedings of the International Symposium on Algorithms,
SIGAL, volume 450 of Lecture Notes in Computer Science, pages 310–317, 1990.

5 E. M. Arkin, A. Banik, P. Carmi, G. Citovsky, M. J. katz, J. S. B. Mitchell, and M. Simakov.
Selecting and covering colored points. Discrete Applied Mathematics., 250:75–86, 2020.

6 Sang Won Bae. Computing a minimum-width square annulus in arbitrary orientation.
Theoret. Comput. Sci., 718:2–13, 2018.

7 Sang Won Bae, Arpita Baral, and Priya Ranjan Sinha Mahapatra. Maximum-width empty
square and rectangular annulus. In Proc. Algorithms and Computation - 13th International
Conference, WALCOM 2019, pages 69–81, 2019.

8 Siu-Wing Cheng. Widest empty L-shaped corridor. Inform. Proc. Lett., 58(6):277 – 283,
1996.

9 Sandip Das, Partha P. Goswami, and Subhas C. Nandy. Smallest color-spanning object
revisited. Int. J. Comput. Geometry Appl., 19(5):457–478, 2009.

10 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA, USA,
3rd ed. edition, 2008.

EuroCG’21

59:8 Maximum-Width Rainbow-Bisecting Empty Annulus

11 J.M. Díaz-Báñez, M.A. López, and J.A. Sellarès. On finding a widest empty 1-corner
corridor. Inform. Proc. Lett., 98(5):199 – 205, 2006.

12 José Miguel Díaz-Báñez, Ferran Hurtado, Henk Meijer, David Rappaport, and Joan Antoni
Sellarès. The largest empty annulus problem. Int. J. Comput. Geom. Appl., 13(4):317–325,
2003.

13 José Miguel Díaz-Báñez, Mario Alberto López, and Joan Antoni Sellarès. Locating an
obnoxious plane. Eur. J. Oper. Res., 173(2):556–564, 2006. URL: https://doi.org/10.
1016/j.ejor.2005.02.048.

14 Herbert Edelsbrunner and Leonidas J. Guibas. Topologically sweeping an arrange-
ment. J. Comput. Syst. Sci., 38(1):165–194, 1989. URL: https://doi.org/10.1016/
0022-0000(89)90038-X.

15 Javad Hasheminejad, Payam Khanteimouri, and Ali Mohades. Computing the smallest
color-spanning equilateral triangle. In Proc. 31st EuroCG 2015, pages 32–35, 2015.

16 Payam Khanteimouri, Ali Mohades, Mohammad Ali Abam, and Mohammad Reza Kazemi.
Computing the smallest color-spanning axis-parallel square. In Algorithms and Computa-
tion - 24th International Symposium, ISAAC 2013, Proceedings, pages 634–643, 2013.

17 S.Banerjee, N. Misra, and S. Nandy. Color spanning objects: Algorithms and hardness
results. Discrete Applied Mathematics., 280:14–22, 2020.

Axis-Aligned Square Contact Representations
Andrew Nathenson∗1

1 California State University Northridge
andrew.nathenson.540@my.csun.edu

Abstract
We introduce a new class G of plane bipartite graphs and prove that each graph in G admits a proper
square contact representation. A contact between two squares is proper if they intersect in a line
segment of positive length. The class G is the family of quadrangulations obtained from the 4-cycle
C4 by successively inserting a single vertex or a 4-cycle of vertices into a face.

1 Introduction

Geometric representations of graphs have many applications and yield intriguing problems [9].
Koebe’s celebrated circle packing theorem [8], for example, states that every planar graph is
a contact graph of interior-disjoint disks in the plane. Shramm [11] proved that this theorem
holds even if we replace the disks with homothets of an arbitrary smooth strictly convex
body in the plane. The result extends to non-smooth convex bodies in a weaker form (where
a homothet may degenerate to a point, and three or more homothets may have a common
point of intersection), and every planar graph is only a subgraph of such a contact graph.

In this paper, we consider strong contact representations with interior-disjoint convex
bodies where no three convex bodies have a point in common. It is an open problem to
classify graphs that admit a strong contact representation with homothets of a triangle or a
square. It is known that every partial 3-tree [1] and every 4-connected planar graph admits a
strong contact representation with homothetic triangles, see [5, 6]; but there are 3-connected
planar graphs which do not admit such a representation. We note here that every planar
graph admits a strong contact representation with (non-homothetic) triangles [3]; see also [6].

Strong contact representations with homothetic squares have been considered only recently.
Da Lozzo et al. [2] proved that every K3,1,1,-free partial 2-tree admits a proper contact
representation with homothetic squares, where a contact between two squares is proper if
they intersect in a line segment of positive length (in particular, proper contacts yield a
strong contact representation). Eppstein [4] indicated that another family of graphs, defined
recursively, can also be represented as a proper contact graph of squares. We remark that
Klawitter et al. [7] proved that every triangle-free planar graph is the proper contact graph
of (non-homothetic) axis-aligned rectangles.

Contribution. Let G be a family of plane bipartite graphs defined recursively as follows.
(i) G contains the 4-cycle C4. (ii) If G ∈ G and f = (v1, v2, v3, v4) is a bounded 4-face of G,
then G also contains the graphs Ga and Gb obtained by the following two operations: (a)
insert a vertex u into f and connect it to v1 and v3; (b) insert four vertices u1, . . . , u4 into f ,
add the cycle (u1, u2, u3, u4) and the edges uivi for i = 1, . . . , 4; see Fig. 1.

Every 2-degenerate bipartite plane graph can be constructed by operation (a); and the
1-skeleton of every polycube whose dual graph is a tree [4] can be constructed by operation

∗ Research on this paper was partially supported by the NSF award DMS-1800734.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

60:2 Axis-Aligned Square Contact Representations

u

v1 v2

v3v4

(a)

u1 u2

u3u4

v1 v2

v3v4

(b)

Figure 1 The two operations used to obtain a graph in G

(b). However, the two operations jointly produce a larger class G, which belongs to the class
of 3-degenerate bipartite plane graphs. The following is main result of this paper.

I Theorem 1. Every graph in G admits a proper square contact representation.

Terminology. Let G = (V,E) be an edge-maximal plane bipartite graph. In a square
contact representation, every vertex vi corresponds to an axis-aligned square s(vi), and every
face to an axis-aligned rectangle g(fi), which is also called the gap corresponding to fi. The
aspect ratio of an axis-aligned rectangle r is height(r)/width(r). The side length of a square
s is denoted by len(s). Scaling up a square from a corner by (or to) x means to increase the
width and height of the square by x (or to x) in such a way that the position of the specified
corner remains fixed.

2 Maintaining a Square Contact Representation

In this section, we show how to maintain a square contact representation of a graph in G
under operations (a) and (b). Specifically, we show that one can insert one or four new
squares corresponding to these operations in a rectangular gap of suitable size.

I Lemma 2. For every α, β > 0, there exists an axis-aligned rectangle that can be subdivided
by two horizontal (resp., vertical) lines into three rectangles of aspect ratios α, 1, and β,
respectively.

Proof. Let R be a rectangle of aspect ratio α+ β + 1, with width x and height (α+ β + 1)x.
Two horizontal lines at distance αx and βx from the top and bottom side of R, resp.,
subdivide R into rectangles of aspect ratios α, 1, and β, as required; see Fig. 2. J

x

αx

x

βx

Figure 2 Constructing an outer rectangle given two inner rectangle aspect ratios.

To establish Theorem 1, we need a stronger version of Lemma 2 that allows the aspect
ratios to vary within a small threshold.

Andrew Nathenson 60:3

I Lemma 3. For every α, β, ε > 0, there exists a δ > 0 such that any rectangle of aspect
ratio γ with |γ − (α+ β + 1)| < δ can be subdivided by two horizontal lines into rectangles of
aspect ratios α′, 1, and β′ such that |α′ − α| < ε and |β′ − β| < ε.

Proof. Let δ = min{α, β, 1, ε}. Let R be a rectangle of aspect ratio γ, where |γ−(α+β+1)| <
δ, width x and height γx. Two horizontal lines at distance αx and (1 + α)x, resp., from the
top side of R, subdivide R into rectangles of aspect ratios α, 1, and β′ = γ − α− 1. Note
that β′ > 0 and |β′ − β| = |γ − (α+ β + 1)| < δ ≤ ε. J

I Lemma 4. For every α1, . . . , α5 > 0, there exists an axis-aligned rectangle R that can be
subdivided into four squares and five rectangular gaps of aspect ratios α1, . . . , α5 such that
(refer to Figs. 1b and 5)

the four squares are each in contact with a side of R, and their contact graph is a 4-cycle
(but the contacts along the 4-cycle are not necessarily proper);
the first four gaps are each incident to the upper-left, lower-left, lower-right, and upper-
right corner of R, respectively, and the fifth gap lies in the interior of R.

The proof of Lemma 4 requires some preparation, and is presented later in this section.
The following lemma shows that all improper contacts can be replaced by proper contacts at
the expense of allowing the five aspect ratios to vary within a given threshold. Using exact
values of the aspect ratios, Lemma 4 can only guarantee single-point contacts. Figure 3
shows an example of aspect ratios which cannot be realized with proper contacts.

1 1

11

1

Figure 3 If all the gaps have aspect ratio 1, then scaling any of the squares to changing the point
contacts into proper contacts would change the aspect ratios of the outer gaps.

I Lemma 5. For every α1, . . . , α5 > 0 and ε > 0, there exists a λ > 0 and a δ > 0 such that
every axis-aligned rectangle R of aspect ratio λ′, |λ − λ′| < δ, can be subdivided into four
squares and five gaps of aspect ratios α′i, with |α′i − αi| < ε, for i = 1, . . . , 5 such that

the four squares are each in contact with a side of R, and their contact graph is a 4-cycle,
and all contacts are proper;
the first four gaps are each incident to the upper-left, lower-left, lower-right, and upper-
right corner of R, respectively, and the fifth gap lies in the interior of R.

Omitted proofs (including the proof of Lemma 5) are in the full version of the paper [10].
For convenience, we will rename α1, . . . , α5 respectively based on the positions of the gaps

to which they correspond as αc (center), αt` (top-left), αtr (top-right), αbr (bottom-right),
αb` (bottom-left). Also, name the squares incident to the top, bottom, right, and left side of
R as st, sb, sr, and s`, respectively.

We will prove Lemma 4 by starting with an initial configuration (Fig. 4), where the aspect
ratio of the center gap is already αc, and there are improper contacts between adjacent
squares of the cycle. Then we incrementally modify the configuration, while the center gap

EuroCG’21

60:4 Axis-Aligned Square Contact Representations

αc sr

st

sb

s`

gtrgtl

gbl gbr

Figure 4 The initial configuration, with squares and gap aspect ratios labeled.

remains fixed, until all remaining gaps have the target aspect ratios αt`, αtr, αbr, and αb`.
We denote the current aspect ratios of these gaps by gt`, gtr, gbr, and gb` in the same fashion
as αt` , . . . ,αb`. In the full paper [10], we formally define four additional special configurations
(shown in Fig. 5) that play a role in the incremental construction. Lemmas 6–10 below
concern transformations of these configurations, and are used in the proof of Lemma 4.

st

sr

sb

s`

st

sr

sb

s`

st

sr

sb

s`
st

sr

sb

s`

a) Clockwise Pinwheel b) Vertical Stacked

c) Downward Arrow d) Clockwise Near-Pinwheel

with directional square sb with reversed contact between st and sr

Figure 5 Examples of four special configurations.

I Lemma 6. Assume that the top-left corner of sr is on the right side of st and the bottom-left
corner of sr is on the right side of sb, and let αtr >gtr be given. There exists a d > 0 such
that if we slide sr upward by d and scale it up by a factor of d/gbr from its bottom-left corner,
then no aspect ratio other than gtr changes, and after the transformation we have αtr = gtr,
or αtr >gtr and sr and sb have a point contact. Similar statements hold after reflections and
rotations of the configuration.

Proof. Let the bottom-right gap have height h1 and width w prior to the transformation.
Assume that we slide sr upward by some amount d > 0 and scale it up by a factor of d/gbr

from its bottom-left corner After the transformation, it has height h1 + d and width w + dw
h1

.

Andrew Nathenson 60:5

As
h1
w

= h1 + d

w + dw
h1

,

the aspect ratio of the bottom-right gap has not changed. Let the height of top-right gap be
h2 prior to the transformation, and note that its width is also w. After the transformation,
it has height h− d and width w + d

gbr
. Thus, its height monotonically decreases in d, and

its width monotonically increases in d, so gtr monotonically decreases in d. We can choose
d = min(d1, d2), where d1 ≥ 0 is the value which would reduce the contact between sr and
sb to a single point after the transformation, and d2 ≥ 0 is the value which would achieve
αtr = gtr. J

I Lemma 7. A clockwise (resp., counterclockwise) pinwheel configuration can be transformed
such that gbr or gt` (resp., gtr or gb`) increases to, or such that gtr or gb` (resp., gbr or gt`)
decreases to any amount γ > 0, while all other aspect ratios remain the same.

I Lemma 8. A vertical (resp., horizontal) stacked configuration with a point contact between
two of the squares can be transformed such that the aspect ratio of the outer gap between
those squares increases (resp., decreases) to any amount γ > 0 while all other aspect ratios
remain the same.

I Lemma 9. An upward or downward (resp., rightward or leftward) arrow configuration, with
a point contact between the directional square and one of its neighbors, can be transformed
such that the aspect ratio of the outer gap between those squares increases (resp., decreases)
to any amount γ > 0 while all other aspect ratios remain the same.

I Lemma 10. A near-pinwheel configuration can be transformed such that the aspect ratio
of the outer gap in the direction of the near-pinwheel (clockwise or counterclockwise) from
the reversed contact increases to any amount γ > 0 if its left side is the side of a square, or
decreases to any amount γ > 0 if its top side is the side of a square, while all other aspect
ratios remain the same.

Proof of Lemma 4. Let αc, αt`, αtr, αbr, and αb` be given. Start with the initial configura-
tion (cf. Fig. 4). If the target aspect ratios of all four outer gaps are α−1

c , then R can be
drawn now with aspect ratio αc. Otherwise, one or more of the outer gaps must have their
aspect ratios changed, either by increasing or decreasing them.

Rotate and reflect the initial configuration if necessary such that at least one gap needs
to be made wider (i.e., α < g), and the ratio g/α is maximal for the upper-right gap. In
order to change gtr to αtr, we can scale up sr from its lower-left corner until gtr = αtr. This
scaling will not affect gt` or gb`, but it will decrease gbr. After the scaling, the bottom-right
gap will either have the target aspect ratio already, need to be wider yet, or need to be
narrower. From now on, we will not mention the case where a gap has reached its target
aspect ratio already, because it just means that the next step can be skipped.

If the bottom-right gap needs to be wider yet, then by Lemma 6 we can scale up sr

and translate it downward until gbr = αbr without changing gtr. As g/α is assumed to be
maximal for the upper-right gap, if this transformation results in a point contact between sr

and st, it also achieves gbr = αbr (because otherwise, gbr > gtr = αtr).
If the bottom-right gap needs to be narrower, then we can scale up sb from its top-left

corner until gbr = αbr. This will increase gb`.
Now, we can assume that gtr = αtr and gbr = αbr. We distinguish between four cases:

EuroCG’21

60:6 Axis-Aligned Square Contact Representations

1. sb has not been scaled, and either αb` ≤ α−1
c or αt` ≤ α−1

c .
2. sb has been scaled up from its top-left corner, αb` ≤ αt`, and αb` ≤ α−1

c .
3. sb has been scaled up from its top-left corner, αt` ≤ αb`, and αt` ≤ α−1

c .
4. αt` > α−1

c and αb` > α−1
c .

Case 1: sb has not been scaled, and either αb` ≤ α−1
c or αt` ≤ α−1

c . Reflect the
configuration such that αb` ≤ αt`. Scale up s` from its top-right corner until gb` = αb`

(making the top-left gap wider). Then, if gt` needs to decrease further, by Lemma 6 we can
scale up and translate s` until gt` = αt` to achieve all target aspect ratios (once again, this
transformation guarantees gt` = αt` even if it results in a point contact, because we assume
αb` ≤ αt`). Otherwise, the top-left gap needs to be narrower. Since the configuration is a
horizontal stacked configuration, and by Lemma 8 we can apply a series of transformations
to achieve all target aspect ratios.

Case 2: sb has been scaled up from its top-left corner, αb` ≤ αt`, and αb` ≤ α−1
c . Scale

up s` from its top-right corner until gb` = αb`. This transformation decreases gt`. Then, if
gt` needs to decrease further, by Lemma 6 we can scale up and translate s` until gt` = αt`

to achieve all target aspect ratios (once again guaranteed because αb` ≤ αt`). Otherwise the
top-left gap needs to be narrower. Since the squares are arranged in a pinwheel configuration,
Lemma 7 completes the proof.

Case 3: sb has been scaled up from its top-left corner, αt` ≤ αb`, and αt` ≤ α−1
c . Scale

up s` from its bottom-right corner until gt` = αt`. This transformation decreases gb`. Then,
if gb` needs to decrease further, by Lemma 6 we can scale up s` and translate it downward,
maintaining all other aspect ratios, until gb` = αb` or s` and st have a point contact. If s`

and st have a point contact, then the squares are arranged in a pinwheel configuration, and
Lemma 7 completes the proof. Otherwise, gb` needs to increase. Since the squares form a
downward arrow configuration in this case, with a point contact between sb and s`, Lemma 9
completes the proof.

Case 4: αt` > α−1
c and αb` > α−1

c . We distinguish between two subcases.
Case 4.1: If the top-right corner of sb lies on the bottom side of sr, then by Lemma 6,

we can translate sb to the left while scaling it up until gb` = αb` or sb and sr have a
point-contact, while maintaining all other aspect ratios. If gb` = αb`, then the configuration
is a near-pinwheel and Lemma 10 completes the proof. Otherwise, if sb and sr have a
point-contact, then the conditions of Case 4.2 below are satisfied and we proceed as follows.

Case 4.2: If the top-right corner of sb lies on the left side of sr, then scale up st from
its bottom-right corner until gt` = αt` and scale up sb from its top-right corner until gb` =
αb`. Now, gtr and gbr (which were previously at their target values) both need to decrease.
Reflect the configuration if necessary so that the width of the bottom-right gap needs to be
increased by a larger amount than the top-right gap. Scale up sr from its lower-left corner
until gtr = αtr. Then, because the width of the lower-right gap needed to be increased by a
larger amount of the two, it still needs to be wider. The configuration is a rightward arrow,
so by Lemma 9, we can decrease gbr arbitrarily while maintaining the other aspect ratios. J

It is easy to extend Lemma 4 to Lemma 5 by changing any improper contacts among
adjacent squares in the 4-cycle into proper contacts. Theorem 1 then follows by induction.
See the full paper [10] for the proof of Lemma 5 and Theorem 1.

References
1 Melanie Badent, Carla Binucci, Emilio Di Giacomo, Walter Didimo, Stefan Felsner,

Francesco Giordano, Jan Kratochvíl, Pietro Palladino, Maurizio Patrignani, and Francesco

Andrew Nathenson 60:7

Trotta. Homothetic triangle contact representations of planar graphs. In Proc. 19th
Canadian Conference on Computational Geometry (CCCG), pages 233–236, Ottawa, ON,
Canada, 2007. Carleton University. URL: http://cccg.ca/proceedings/2007/09b4.pdf.

2 Giordano Da Lozzo, William E. Devanny, David Eppstein, and Timothy Johnson. Square-
contact representations of partial 2-trees and triconnected simply-nested graphs. In Proc.
28th Symposium on Algorithms and Computation (ISAAC), volume 92 of LIPIcs, pages
24:1–24:14. Schloss Dagstuhl, 2017. doi:10.4230/LIPIcs.ISAAC.2017.24.

3 Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl. On triangle contact
graphs. Comb. Probab. Comput., 3:233–246, 1994. doi:10.1017/S0963548300001139.

4 David Eppstein. Square contact graphs, 2017. URL: https://11011110.github.io/blog/
2017/10/03/square-contact-graphs.html.

5 Stefan Felsner and Mathew C. Francis. Contact representations of planar graphs with cubes.
In Proc. 27th Symposium on Computational Geometry (SoCG), pages 315–320. ACM Press,
2011. doi:10.1145/1998196.1998250.

6 Daniel Gonçalves, Benjamin Lévêque, and Alexandre Pinlou. Triangle contact repre-
sentations and duality. Discret. Comput. Geom., 48(1):239–254, 2012. doi:10.1007/
s00454-012-9400-1.

7 Jonathan Klawitter, Martin Nöllenburg, and Torsten Ueckerdt. Combinatorial properties
of triangle-free rectangle arrangements and the squarability problem. In Proc. 23rd Sym-
posium on Graph Drawing and Network Visualization (GD), volume 9411 of LNCS, pages
231–244. Springer, 2015. doi:10.1007/978-3-319-27261-0_20.

8 Paul Koebe. Kontaktprobleme der Konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig,
Math.-Phys. Kl., 88:141–164, 1936.

9 László Lovász. Graphs and Geometry. 2019. URL: http://web.cs.elte.hu/~lovasz/
bookxx/geomgraphbook/geombook2019.01.11.pdf.

10 Andrew Nathenson. Axis-aligned square contact representations. Preprint, 2021. arXiv:
2103.08719.

11 Oded Schramm. Existence and uniqueness of packings with specified combinatorics. Israel
Journal of Mathematics, 73:321–341, 1991. doi:10.1007/BF02773845.

EuroCG’21

The Voronoi Diagram of Rotating Rays with
applications to Floodlight Illumination
Carlos Alegría1, Ioannis Mantas2, Evanthia Papadopoulou2, Marko
Savić3, Hendrik Schrezenmaier4, Carlos Seara5, and Martin
Suderland2

1 Dipartimento di Ingegneria, Università Roma Tre, Rome, Italy
carlos.alegria@uniroma3.it

2 Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
{ioannis.mantas, evanthia.papadopoulou, martin.suderland}@usi.ch

3 Department of Mathematics and Informatics, Faculty of Sciences, University
of Novi Sad, Novi Sad, Serbia
marko.savic@dmi.uns.ac.rs

4 Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
schrezen@math.tu-berlin.de

5 Departament de Matemàtiques, Universitat Politècnica de Catalunya,
Barcelona, Spain.
carlos.seara@upc.edu

Abstract
We introduce the Rotating Rays Voronoi diagram, a Voronoi structure where the input sites are rays
and the distance function is the counterclockwise angular distance. This novel diagram can be used
to solve illumination or coverage problems where a domain has to be covered by floodlights/wedges of
uniform angle. We present structural properties, combinatorial complexity bounds, and algorithms
to construct the diagram. Moreover, we show how we can use this Voronoi diagram to compute the
Brocard angle of a convex polygon in optimal linear time.

1 Introduction

In this work, we study a Voronoi diagram where the input is a set of n rays in the plane,
and the distance from a point x to a ray r is the angular distance, i.e., the minimum angle α
such that, after counterclockwise rotating r around its apex by α, r illuminates x; see Fig. 1.

x

rα

p(r)

(a) (b)

Figure 1 (a) The angular distance α from a point x to a ray r. (b) The Voronoi diagram of four
rays in the plane. All points in a region are first illuminated by the ray with the respective color.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

61:2 Rotating Rays Voronoi Diagram

α
α∗

(a) (b)

Figure 2 (a) Illumination with edge-aligned α-floodlights. (b) The Rotating Rays Voronoi
diagram. Highlighted are the point and the three rays that realize the Brocard angle α∗.

Motivation. The distance measure is motivated by the following illumination problem: An
α-floodlight is a light source that illuminates a cone with aperture α from its apex. Given a
simple polygon P , an α-floodlight is placed on each vertex v ∈ P facing the interior of P in
such a way, that one of its rays contains the successor of v in the counterclockwise order of
the vertices of P ; see Fig. 2a. The Brocard Illumination problem [1] asks for the Brocard
angle, the smallest value of α for which a set of α-floodlights covers the interior of P .

Constructing the Voronoi diagram of rays inside a convex polygon reveals the Brocard
angle, as the latter is realized at a vertex of the diagram with maximum distance; see Fig. 2b.
Interestingly, given a set of rays, similar illumination problems can be defined in different
domains. The domain may be the entire plane or even a curve and, analogously, constructing
the Voronoi diagram in that domain yields the Brocard angle. Hence, there is an interest in
studying such diagrams, and designing construction algorithms for different domains.

Our contribution. We introduce the Rotating Rays Voronoi Diagram and prove a series of
results, paving the way for future work on similar problems. We consider the diagram in the
plane and identify structural properties which we complement with combinatorial complexity
results, a worst case Ω(n2) lower bound and an O(n2+ε) upper bound, together with an
O(n2+ε)-time construction algorithm. Finally, motivated by applications to illumination
problems, we restrict our domain to a convex polygonal region bounded by the input set of
sites, and construct the Voronoi diagram in such a domain in optimal Θ(n) time.

Related work. In the Brocard illumination problem, a polygon is called a Brocard polygon [2]
if all the α-floodlights simultaneously illuminate a point inside the polygon when α is equal
to the Brocard angle. The characterization of Brocard polygons has a long history, yet,
only harmonic polygons (which include triangles and regular polygons) are known to be
Brocard [5]. Deciding whether a polygon is Brocard can be done in O(n) time and then
the Brocard angle can be computed in O(1) time. Computing the Brocard angle of simple
polygons was first studied by Alegría et al. [1]. The authors solved the problem in O(n3 log2 n)
time, and complemented this result with an O(n logn)-time algorithm for convex polygons.

Since their introduction [4], floodlight illumination problems have been widely studied, see
e.g. [15, 20]. The case when the floodlights are of uniform angle is of particular interest, and
has been explored by several authors, see e.g. [6, 9, 10, 16, 19]. Rotating α-floodlights are
also used to model devices with limited sensing range, like surveillance cameras or directional
antennae [7, 13, 14]. The Rotating Rays Voronoi diagram seems to be novel with respect to
both the input sites and the distance function. A related diagram was defined [8] to study
dominance regions of players in the analysis of football (soccer) matches [18].

Carlos Alegría et al. 61:3

2 Preliminaries

In this section we formally define the Rotating Rays Voronoi diagram. Let S be a set of n
rays in the plane. Given a ray r, we denote its apex by p(r) and its supporting line by l(r).

I Definition 2.1. Given a ray r and a point x ∈ R2, the angular distance from x to r,
denoted d∠(x, r), is the minimum counterclockwise angle α from r to a ray with apex on
p(r) passing through x; see Fig. 1a.

I Definition 2.2. Given two rays r and s, the dominance region dr(r, s) is the set of points
with smaller angular distance to r than to s, i.e., dr(r, s) = {x ∈ R2 | d∠(x, r) < d∠(x, s)}.
The angular bisector of r and s, denoted b∠(r, s), is the curve delimiting dr(r, s) and dr(s, r).

The different types of bisectors are illustrated in Fig. 3. Given two rays r and s, let
I = l(r) ∩ l(s). The bisector b∠(r, s) is the union of r, s, and a circular arc a that connects
p(r) to p(s). The arc a belongs to the bisecting circle Cb(r, s), which we define as follows:

If I, p(r), and p(s) are pairwise different, then Cb(r, s) is the circle through I, p(r), and
p(s). The arc a contains I if, and only if, I lies either on none or on both of r and s.
If I = p(r) and I 6= p(s), then Cb(r, s) is the circle tangent to l(r) passing through p(r)
and p(s). Both a and r lie on the same side of l(s) if, and only if, p(r) lies on s. We
analogously define Cb(r, s) if I = p(s) and I 6= p(r).
If p(r) = p(s), then both Cb(r, s) and a degenerate to a single point.
If l(r) and l(s) are parallel, then Cb(r, s) degenerates to the line through p(r) and p(s),
and a degenerates either to a line segment or to two halflines.

s

rdr(r, s) dr(s, r)

Cb(r, s)

I
p(r)

p(s)

(a)

Cb(r, s)

I
p(r)

p(s)

rs dr(s, r)

(b)

I = p(r)

p(s)

Cb(r, s)s

r

dr(r, s)

(c)

s

dr(r, s)

dr(s, r)

r

p(r) = p(s)

(d)

dr(r, s)

dr(s, r)

dr(r, s)

p(r) p(s)

r s

(e)

dr(r, s)

dr(s, r)

p(r) p(s)

r

s

(f)

Figure 3 The bisector of two rays r and s which are: (a) non-intersecting, (b) intersecting, (c)
with p(r) lying on s, (d) sharing their apex, (e) parallel, and (f) anti-parallel.

I Definition 2.3. The Rotating Rays Voronoi diagram of a set S of rays is the subdivision
of R2 into nearest Voronoi regions defined as follows:

vreg(r) := {x ∈ R2 | ∀s ∈ S \ {r} : d∠(x, r) < d∠(x, s) }.

The graph structure of the diagram of S is denoted by RVD(S) :=
(
R2 \⋃r∈S vreg(r)

)
∪S.

EuroCG’21

61:4 Rotating Rays Voronoi Diagram

An example diagram is shown in Fig. 1b. A region vreg(r) can be equivalently defined as
the intersection of all the dominance regions of r, i.e., vreg(r) =

⋂
s∈S\{r} dr(r, s). Note that

a region can have more than one connected component, which we call a face of the region.

3 RVD: properties, complexity, and an algorithm

In this section we study the diagram in the plane. Assuming that no two rays of S are
parallel to each other, the following two structural properties hold.

I Lemma 3.1. RVD(S) has exactly n unbounded faces, one for each ray.

Proof sketch. Let Γ be a circle containing all the bisecting circles of S. The intersection of
Γ and the unbounded part of each dominance region of r ∈ S is a circular arc with endpoint
r ∩ Γ. The intersection of all such arcs is connected. Hence vreg(r) ∩ Γ is connected. J

I Lemma 3.2. RVD(S) is connected.

Proof sketch. If RVD(S) is not connected, then there is a region vreg(r) that either has an
unbounded face with two occurrences at infinity or it encloses a component of RVD(S), creat-
ing an “island”. The first case is excluded by Lemma 3. The second case implies that such an
island also exists in some dominance region of the site r, which leads to a contradiction. J

We now show two lower bound constructions for the worst case complexity of the RVD.

I Theorem 3.3. RVD(S) has Ω(n2) combinatorial complexity in the worst case. This holds
even if the rays are pairwise non-intersecting.

Proof sketch. The bound is achieved by creating a grid structure in which the rays have
Θ(n2) intersections, each inducing a vertex in RVD(S); see Figure 4a. A Θ(n2) construction
can also be achieved by a set of rays that are pairwise disjoint. An example is shown in
Figure 4b, where the Voronoi regions of the n/2−1 leftmost rays have n/2+1 faces each. J

I Lemma 3.4. A Voronoi region of RVD(S) has Θ(n2) complexity in the worst case.

Proof sketch. Any vertex incident to a region vreg(r), is defined by r and a pair of rays.
Further, the diagram of three rays has O(1) complexity, so the O(n2) bound follows. For the
lower bound, we create a grid structure as in Theorem 3.3. We then add a ray r so that vreg(r)
has a face inside each cell of the grid, thus vreg(r) has Θ(n2) complexity; see Fig. 5. J

(a) (b)

Figure 4 RVD(S) with Θ(n2) complexity, where the rays in S are (a) intersecting and (b) pairwise
non-intersecting.

Carlos Alegría et al. 61:5

(a) (b)

Figure 5 RVD(S) with a region having Θ(n2) complexity (a) zoomed out and (b) zoomed in.

Finally, we apply the general upper bound by Sharir [17] to yield a near quadratic upper
bound on the complexity of the RVD. This is accompanied by a construction algorithm.

I Theorem 3.5. For any ε > 0, RVD(S) has O(n2+ε) combinatorial complexity. Further,
RVD(S) can be constructed in O(n2+ε) time.

Proof sketch. Each site induces a distance function which maps each point in the plane
to its distance to that site. The RVD can be seen as a minimization diagram of these
distance functions. With a monotone increasing transformation we map these distance
functions to algebraic functions. Applying the transformations keeps the lower envelope
of the distance functions invariant. The lower envelope of these n algebraic functions has
O(n2+ε) combinatorial complexity and it can be constructed in O(n2+ε) time [17]. J

We can extend the Brocard Illumination problem to the plane as follows. We place an
α-floodlight fr on every r ∈ S such that fr is equal to r when α = 0. We want the minimum
angle α∗ for which the set {fr | r ∈ S} of α∗-floodlights illuminates the plane. The angle α∗
is realized at a point of maximum distance, which is either a vertex of RVD(S) or a point at
infinity on a ray of S. Hence, we can find α∗ by constructing RVD(S) and then traversing
the diagram in linear time in its size. Note that α∗ takes values in the interval (2π/n, 2π).

4 RVD of a convex polygon: Brocard illumination

We now turn our attention to the Brocard illumination problem. Given a convex polygon P
with n vertices, we describe an algorithm to compute the Brocard angle α∗ of P by means of
the RVD. Let SP be the set of n rays such that each ray has a vertex v ∈ P as apex, and
passes through the successor of v in the counterclockwise order of the vertices of P . Let
PRVD(SP) be the part of RVD(SP) restricted to the interior of P . Note that PRVD(SP)
has Θ(n) complexity, as opposed to RVD(SP) which can have Θ(n2). We show the following.

I Theorem 4.1. Given a convex polygon P , we can construct PRVD(SP) in Θ(n) time. The
Brocard angle of P can also be found in the same time.

Algorithm outline. We first partition SP into four sets SN ,SW ,SS and SE of consecutive
rays, such that any two rays in a subset have an angular difference at most π/2, see Fig. 6a.
For each set Sd, d ∈ {N,W,S,E}, we obtain a set Srd in which every ray of Sd is rotated by
an angle of −π/2. Then, we construct each diagram RVD(Srd) independently, see Fig. 6c.
Finally, we merge the four diagrams in two steps to obtain PRVD(SP), see Figs. 7 and 8.

EuroCG’21

61:6 Rotating Rays Voronoi Diagram

N
W

S
E

SS

SE

SN

SW

(a) (b) (c)

Figure 6 (a) Partition of SP into sets SN ,SW ,SS and SE . (b) RVD(SS). (c) RVD(Sr
S)

Constructing the diagrams. To construct the diagram of each subset Srd in optimal Θ(|Srd |)
time, we make use of the abstract Voronoi diagrams framework [11, 12]. To fall under this
framework, the underlying system of bisectors must satisfy the following three axioms:

A1 The bisector b∠(r, s), ∀r, s ∈ Srd , is an unbounded Jordan curve.
A2 The region vreg(r) in RVD(S ′), ∀S ′ ⊆ Srd and ∀r ∈ S ′, is connected.
A3 The closure of the union of all regions in RVD(S ′), ∀S ′ ⊆ Srd , covers R2.

I Lemma 4.2. The system of bisectors of Srd satisfies the axioms A1-A3.

Proof sketch. A1 is satisfied since the rays are disjoint. A2 holds due to the rotation of
−π/2: after the rotation, no ray intersects twice any bisecting circle, thus no bounded faces
appear, see e.g., Figs. 6b and 6c. A3 is satisfied as each ray induces a distance function. J

The intuition for the rotation is twofold: On PRVD(SP) only circular parts of bisectors
appear and under −π/2 rotation the circular parts of the bisectors remain the same. Note
that there does not exist a rotation angle for which the complete set SP satisfies axiom A2.

To construct RVD(Srd) we use the Θ(n)-time algorithm of [3]. Apart from satisfying
axioms A1-A3, [3] requires that the order of the regions of RVD(S ′) along a simple curve is
known, for any S ′ ⊆ Srd . Since, the rays are non-intersecting, this order coincides with the
order of the rays of S ′ along the boundary of the polygon. We obtain the following lemma.

I Lemma 4.3. RVD(Srd) is a tree of Θ(|Srd |) complexity. Further, RVD(Srd) can be con-
structed in Θ(|Srd |) time.

Merging the diagrams. We merge all four diagrams, in two steps, to obtain PRVD(SP). In
a first step we merge RVD(SrW) with RVD(SrS) to obtain RVD(SrW ∪ SrS), where the merge
curve consists of the first ray in each of SrW and SrS and the set of circular edges, which
are equidistant to both sets; see Fig. 7. We respectively obtain RVD(SrE ∪ SrN). Then, in a
second step we merge the diagrams RVD(SrW ∪ SrS) and RVD(SrE ∪ SrN), restricted to the
interior of P , to obtain PRVD(SP); see Fig. 8. Using standard tracing techniques for Voronoi
diagrams and the properties of the angular bisectors, we can prove the following result.

I Lemma 4.4. Given RVD(Srd) ∀d ∈ {N,W,S,E}, PRVD(SP) can be constructed in Θ(n) time.

Concluding this section, the Brocard angle of P , denoted by α∗, is realized at a point of
maximum distance in the interior of P which lies on a vertex of PRVD(SP). Hence, we can
solve the Brocard Illumination problem in Θ(n) time, by constructing PRVD(SP) and then
traversing it, to obtain α∗. Note that α∗ takes values in the interval (0, π/2− π/n].

Carlos Alegría et al. 61:7

(a) (b) (c)

Figure 7 Merging diagrams (a) RVD(Sr
W) and (b) RVD(Sr

S) into (c) RVD(Sr
W ∪ Sr

S).

s1

w1

(a) (b) (c)

Figure 8 Merging diagrams (a) RVD(Sr
W ∪ Sr

S) and (b) RVD(Sr
E ∪ Sr

N) into (c) PRVD(SP).

5 Concluding remarks

By means of the Rotating Rays Voronoi diagram, we showed how to find in optimal time the
Brocard angle of a convex polygon, settling an interesting geometric problem. Our method
is more general: given any domain D and a set of rays S, we can find the minimum angle
needed to illuminate D with floodlights aligned at S, by constructing RVD(S) inside D.

There are many questions to investigate. What is the worst case complexity of the diagram
in the plane? Is it Θ(n2)? Can the diagram in the plane be constructed in time o(n2+ε)?
How does our approach to compute the Brocard angle extend to other classes of polygons?

Acknowledgments. Initial discussions took place at the Intensive Research Program in
Discrete, Combinatorial and Computational Geometry in Barcelona, Spain, in 2018. We
are grateful to the Centre de Recerca Matemàtica, Universitat Autònoma de Barcelona, for
hosting the event and to the organizers for providing the platform to meet and collaborate.

C.A. was supported by MIUR Proj. “AHeAD” no 20174LF3T8. Early work of I.M. and
E.P. was supported by the DACH project Voronoi++, SNF-200021E_154387. M.S. is partly
supported by the Ministry of Education, Science and Technological Development of the
Republic of Serbia (Grant No. 451-03-68/2020-14/200125), and the Provincial Secretariat
for Higher Education and Scientific Research, Province of Vojvodina. Early work of H.S. was
partially supported by the German Research Foundation, DFG grant FE-340/11-1. C.S. was
supported by project PID2019-104129GB-I00/AEI/10.13039/501100011033. This project
has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 734922.

EuroCG’21

61:8 Rotating Rays Voronoi Diagram

References
1 Carlos Alegría-Galicia, David Orden, Carlos Seara, and Jorge Urrutia. Illuminating poly-

gons by edge-aligned floodlights of uniform angle (Brocard illumination). In Proc. European
Workshop on Computational Geometry, pages 281–284, 2017.

2 Arthur Bernhart. Polygons of pursuit. Scripta Mathematica, 24(1):23–50, 1959.
3 Cecilia Bohler, Rolf Klein, Andrzej Lingas, and Chih-Hung Liu. Forest-like abstract Voronoi

diagrams in linear time. Computational Geometry, 68:134–145, 2018.
4 Prosenjit Bose, Leonidas J. Guibas, Anna Lubiw, Mark Overmars, Diane Souvaine, and

Jorge Urrutia. The floodlight problem. International Journal of Computational Geometry
& Applications, 7(1-2):153–163, 1997.

5 John Casey. A sequel to the first six books of the elements of Euclid. Dublin University
Press., 1888.

6 Felipe Contreras, Jurek Czyzowicz, Nicolas Fraiji, and Jorge Urrutia. Illuminating triangles
and quadrilaterals with vertex floodlights. In Proc. Canadian Conference on Computational
Geometry, 1998.

7 Jurek Czyzowicz, Stefan Dobrev, Benson Joeris, Evangelos Kranakis, Danny Krizanc, Jan
Maňuch, Oscar Morales-Ponce, Jaroslav Opatrny, Ladislav Stacho, and Jorge Urrutia. Mon-
itoring the plane with rotating radars. Graphs and Combinatorics, 31(2):393–405, 2015.

8 Mark de Berg, Joachim Gudmundsson, Herman Haverkort, and Michael Horton. Voronoi
diagrams with rotational distance costs. In Computational Geometry Week: Young Re-
searchers Forum, 2017.

9 Vladimir Estivill-Castro, Joseph O’Rourke, Jorge Urrutia, and Dianna Xu. Illumination of
polygons with vertex lights. Information Processing Letters, 56(1):9–13, 1995.

10 Dan Ismailescu. Illuminating a convex polygon with vertex lights. Periodica Mathematica
Hungarica, 57(2):177–184, 2008.

11 Rolf Klein. Concrete and Abstract Voronoi diagrams, volume 400. Springer Science &
Business Media, 1989.

12 Rolf Klein, Elmar Langetepe, and Zahra Nilforoushan. Abstract Voronoi diagrams revisited.
Computational Geometry: Theory and Applications, 42(9):885–902, 2009.

13 Evangelos Kranakis, Danny Krizanc, and Oscar Morales. Maintaining connectivity in sensor
networks using directional antennae. In Theoretical Aspects of Distributed Computing in
Sensor Networks, pages 59–84. Springer, 2011.

14 Azin Neishaboori, Ahmed Saeed, Khaled A. Harras, and Amr Mohamed. On target coverage
in mobile visual sensor networks. In Proc. ACM International Symposium on Mobility
Management and Wireless Access, pages 39–46, 2014.

15 Joseph O’Rourke. Visibility. In Handbook of discrete and computational geometry, pages
875–896. CRC Press, 2017.

16 Joseph O’Rourke, Thomas Shermer, and Ileana Streinu. Illuminating convex polygons
with vertex floodlights. In Proc. Canadian Conference on Computational Geometry, pages
151–156, 1995.

17 Micha Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. Discrete
& Computational Geometry, 12(3):327–345, 1994.

18 Tsuyoshi Taki, Jun-ichi Hasegawa, and Teruo Fukumura. Development of motion analysis
system for quantitative evaluation of teamwork in soccer games. In Proc. IEEE Interna-
tional Conference on Image Processing, volume 3, pages 815–818. IEEE, 1996.

19 Csaba D. Tóth. Art galleries with guards of uniform range of vision. Computational
Geometry, 21(3):185–192, 2002.

20 Jorge Urrutia. Art gallery and illumination problems. In Handbook of Computational
Geometry, pages 973–1027. Elsevier, 2000.

The Fréchet Distance for Plane Graphs∗

Pan Fang1 and Carola Wenk†1

1 Department of Computer Science, Tulane University, Louisiana, USA
pfang@tulane.edu

2 Department of Computer Science, Tulane University, Louisiana, USA
cwenk@tulane.edu

Abstract
It is not known whether the Fréchet distance for general graphs can be efficiently computed. In
this paper we consider orientation-preserving isomorphic connected embedded graphs and provide a
polynomial-time algorithm for computing their Fréchet distance.

1 Introduction

Comparing embedded graphs has important applications and has recently gained attention
for comparing reconstructed road networks [1, 2]. See [1, 5] for an overview on different
distance measures for comparing planar embedded graphs. The Fréchet distance is a popular
distance measure that takes continuity of the shapes into account, and can be computed in
polynomial time for curves [3]. While Buchin et al. [4] have shown that Fréchet distance
is NP-hard to compute for two polygonal domains, they posed an open problem whether
the Fréchet distance between two plane graphs can be computed in polynomial time. In
this paper we answer this question in the affirmative by giving a polynomial-time algorithm
based on enumerating all orientation-preserving graph isomorphisms.

Plane graphs and isomorphisms. A plane graph is a graph G = (VG, EG) together
with a planar embedding of the vertices and edges, which maps vertices to point and edges
to curves in the plane, such that no two edges cross. For each v ∈ V let ρG(v) be the cyclic
ordering of edges incident to v in counter-clockwise order, and ρ−1

G (v) in clockwise order.
Two plane graphs G and H are planar isomorphic, G ∼= H, if there exists a mapping

f : VG → VH such that (1) f is a bijection, and for all u, v ∈ VG, (2) (u, v) ∈ EG iff
(f(u), f(v)) ∈ EH , and (3) either f(ρG(u)) = ρH(f(u)) or f(ρG(u)) = ρ−1

H (f(u)). In other
words, a planar isomorphism is an isomorphism that preserves the ordering of edges around
each vertex. If f maps ρG to ρH , then f is an orientation-preserving isomorphism of G and
H. If f maps ρG to ρ−1

H , it is an orientation-reversing isomorphism.
Fréchet distance. The Fréchet distance between homeomorphic surfaces P and Q on

R2 is defined as δF (P,Q) = infσ : P→Q supx∈P d(x, σ(x)), where σ ranges over all orientation-
preserving homeomorphisms between P and Q and d(x, y) is an underlying metric, normally
the Euclidean distance. This definition applies to two homeomorphic graphs as well. It is
well known that if two graphs are homeomorphic, from a topological point of view they
are isomorphic. Since the computation of Fréchet distance requires a bijection between
the points of two graphs, eventually we need a set of bijective edge mappings induced
by these isomorphisms. Thus the Fréchet distance between two graphs can be defined
as δF (G,H) = minα maxe∈EG

δF (e, α(e)), where α ranges over all edge mappings of all

∗ We thank Maike Buchin, Erin Chambers, Brittany Terese Fasy, Ellen Gasparovic, and Elizabeth Munch
for fruitful discussions.

† Partially supported by NSF grant CCF 1637576.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

62:2 The Fréchet Distance for Plane Graphs

isomorphisms between G and H. See also [6]. Note that if G and H are not simple, each
vertex isomorphism may have more than one different edge mappings since it primarily deals
with how vertices connect to each other, but not how vertices and edges are embedded in
the plane. For two trees, the Fréchet distance can be computed in polynomial time [4] and
for graphs of bounded tree width it is fixed-parameter tractable [6].

2 Polynomial-Time Algorithm

In this section, we present an algorithm for computing the Fréchet distance between two
connected plane graphs according to their planar isomorphisms, particularly the orientation-
preserving isomorphisms that give some information how planar graphs are embedded in
the plane. We give an algorithm with polynomial time for this case. Let G = (VG, EG) and
H = (VH , EH) be two connected plane graphs with piecewise linear embeddings, i.e., edges
are embedded by piecewise linear curves. We assume that vertices in VG and VH do not have
degree two. However, degree-two vertices may be present on the embeddings of the edges,
and we allow multiple edges (with different embeddings) between the same vertices as well
as loops. We assume |VG| = |VH | = n and |EG| = |EH | = m, and we define NG (resp., NH)
to be the total complexity of the embedded edges in EG (resp., EH). In the algorithm, we
only consider the orientation-preserving isomorphisms of two graphs since the computation
for the orientation-reversing isomorphisms is similar. One of the main tasks is to find all
edge mappings induced by the orientation-preserving isomorphisms between G and H. We
assume that G and H in the topological sense are simple graphs. If G and H are simple, it
is obvious that each isomorphism has a unique edge mapping. At the end of this section, we
discuss how to handle the case that two graphs are non-simple.

Before finding all orientation-preserving isomorphisms between G and H, we show that
there are at most 2m orientation-preserving isomorphisms. Weinberg [8] indicated that
the number of automorphisms of a triconnected plane graph is at most 4m, half from the
orientation-preserving and half from the orientation-reversing. We prove that 2m is an upper
bound of the number of orientation-preserving isomorphisms for general plane graphs.

I Lemma 2.1. Let G and H be orientation-preserving isomorphic. For any (u1, u2) ∈ EG
and any v1, v2 ∈ VH , if there is an orientation-preserving isomorphism f : VG → VH such
that f(u1) = v1 and f(u2) = v2, then f is unique.

Proof. Since G and H are orientation-preserving isomorphic, there exists an orientation-
preserving isomorphism f that maps u1 and u2 to v1 and v2 in VH , respectively. (u1, u2) ∈ EG
implies that (f(u1), f(u2)) = (v1, v2) ∈ EH .

Let {u1, u2, ..., ui, ..., un} be the set of all vertices in VG that is listed as the order of being
visited by an arbitrary graph traversal technique starting from u1 then u2. Assume that there
are two orientation-preserving isomorphisms f, g : VG → VH such that f(u1) = g(u1) = v1
and f(u2) = g(u2) = v2. We show that f = g. Let φv : ρ(v) × {1, . . . , |ρ(v)|} → ρ(v) be
a function such that φv(u,m) is the element obtained by walking around v in a clockwise
direction for m steps starting at u ∈ ρ(v). Suppose that f(ui) = g(ui) for any 1 ≤ i ≤ k,
where k ≥ 2. For uk+1, since this set is ordered by the traversal technique, there exists a
vertex ux such that x ≤ k and (ux, uk+1) ∈ EH . Consider the following cases:

Case 1: If ux = u1, then both u2 and uk+1 are neighbors of u1. Let m1 be the
number such that φu1(u2,m1) = uk+1. We know that ρ(f(u1)) = ρ(v1) = f(ρ(u1)) and
ρ(g(u1)) = ρ(v1) = g(ρ(u1)). Hence f(uk+1) = g(uk+1) = φf(u1)(f(u2),m1).

Case 2: If ux 6= u1, there exists a vertex uy such that (uy, ux) ∈ EH and 1 ≤ y < x.

P. Fang and C. Wenk 62:3

By the hypothesis, f(uy) = g(uy) and f(ux) = g(ux). Let m2 be the number such that
φux

(uy,m2) = uk+1. Then f(uk+1) = g(uk+1) = φf(ux)(f(uy),m2). J

Figure 1 In the graph G above, ρG(v2) = (v4, v5, v1a, v1b) and code(G, v5, v2) = 012303132121040.

I Theorem 2.2. There are at most 2m orientation-preserving isomorphisms between two
connected plane graphs.

Proof. The ordered pair of adjacent vertices u1, u2 ∈ VG must map to an ordered pair of
adjacent vertices v1, v2 ∈ VH . The number of ordered pairs of adjacent vertices is 2 times the
number of edges in the graph H. Based on Lemma 2.1, any such mapping c has a unique
orientation-preserving isomorphism. Thus, there are at most 2m. J

Weinberg [9] developed a simple O(n2) algorithm for testing isomorphism of 3-connected
planar graphs. This algorithm mainly depends on the fact that a 3-connected planar graph
only has two unique embeddings [10], namely two unique orders of edges around each
vertex. There is also a linear time algorithm for this problem [7]. Note that we compute
the Fréchet distance by enumerating all possible orientation-preserving isomorphisms and
this requires O(n2) by Theorem 2.2. We adopt Weinberg’s concise algorithm to find all
orientation-preserving isomorphisms of plane graphs as well as the induced edge mappings.

The main part of the algorithm can be considered as a DFS-like traversal. Given an
undirected plane graph G, we convert it into a directed graph by replacing each undirected
edge with two opposite directed edges. We slightly abuse notation to let EG denote the set
of undirected or directed edges. Then the plane graph has an Eulerian cycle since every
vertex has an even degree after this modification. We generate a unique Eulerian cycle with
respect to ρ with starting edge (s, t) as follows:

1. When an unvisited vertex v is reached on a directed edge (u, v), visit the vertex on the
edge succeeding (u, v) in ρ(v). If (u, v) has no next edge in ρ(v) (e.g. deg(v) = 1), visit u
again on the directed edge (v, u).

2. When a visited vertex v is reached on a directed edge (u, v), if the opposite directed edge
(v, u) is unused, then visit u again on the directed edge (v, u).

3. When a visited vertex v is reached on a directed edge (u, v), if the opposite directed edge
(v, u) is used, then visit the vertex on the next unused edge of (u, v) in ρ(v).

During the procedure we relabel vertices by starting with 0 and increasing the label by 1
for each unvisited vertex. We denote the label of v as N(v). We now construct a sequence of
numbers to represent the Eulerian cycle by displaying the labels of vertices in order of being
reached every time, see Figure 1. We denote this sequence of natural numbers as code(G, s, t),

EuroCG’21

62:4 The Fréchet Distance for Plane Graphs

where s is the starting vertex and t is the next vertex to visit. Obviously, in code(G, s, t), the
numbers 0 and 1 are always the first two integers that come from N(s) and N(t). The length
of code(G, s, t) is 2m+ 1 since it traverses each directed edge once and eventually returns
to the starting vertex s. Weinberg claims that two 3-connected planar graphs G and H

are isomorphic if and only if code(G, s, t) = code(H, s′, t′) for some directed (s, t) ∈ EG and
directed (s′, t′) ∈ EH . However, this is not true if they are general plane graphs. Given two
undirected plane graphs G and H, we check and find all orientation-preserving isomorphisms
by the following method:

Choose any ordered pair of adjacent vertices s, t ∈ VG and construct code(G, s, t). For
each ordered pair of adjacent vertices s′, t′ ∈ VH , if code(G, s, t) = code(H, s′, t′), define the
function f : VG → VH such that f(v) = u if N(v) = N(u). Then if f(ρG(v)) = ρH(f(v)) for
all v ∈ VG, f is an orientation-preserving isomorphism of G and H. Otherwise, they are not
orientation-preserving isomorphic.

I Theorem 2.3. For an ordered pair of adjacent vertices s, t ∈ VG, the graphs G and H
are orientation-preserving isomorphic if and only if there exists an ordered pair of adjacent
vertices s′, t′ ∈ VH such that code(G, s, t) = code(H, s′, t′) and f(ρG(v)) = ρH(f(v)) for all
v ∈ VG, where the function f : VG → VH is defined by f(v) = u if N(v) = N(u).

Proof. In the code formed by the Eulerian cycle, every vertex v has a distinct natural number
N(v). Then code(G, s, t) = code(H, s′, t′) implies G and H have the same number of vertices
and every vertex v ∈ VG corresponds to exactly one vertex u ∈ VH . Hence f is a bijection. In
the code(G, s, t) = code(H, s′, t′) = (01...ci...0), each pair of neighboring numbers represents
a directed edge in the graphs. For any ordered (x, y) ∈ EG, there exists (ci, ci+1) in the code
such that N(x) = ci and N(y) = ci+1. Since code(H, s′, t′) also contains the pair (ci, ci+1),
there exists an ordered (x′, y′) ∈ EH such that N(x′) = ci and N(y′) = ci+1. By definition of
f we have f(x) = x′ and f(y) = y′, which imply that if (x, y) ∈ EG, then (f(x), f(y)) ∈ EH .
Conversely, (f(x), f(y)) ∈ EH implies (x, y) ∈ EG. Finally, f(ρG(v)) = ρH(f(v)) for all
v ∈ VG indicates that f is an orientation-preserving isomorphism.

Suppose that G and H are orientation-preserving isomorphic. There exists an orientation-
preserving isomorphism f : VG → VH such that f(s) = s′, f(t) = t′ and (s′, t′) ∈ EH . Since
f is a vertex bijection and the ordering of edges of each vertex is preserved, |EG| = |EH |.
Let {u0, u1, ..., u2|E|} and {v0, v1, ..., v2|E|} be the Eulerian cycles starting from the ordered
pairs (s, t) and (s′, t′), where (u0, u1) = (s, t) and (v0, v1) = (s′, t′). We have that f(u0) = v0
and f(u1) = v1. Assume that f(ui) = vi for any 0 ≤ i ≤ k, where k ≥ 1. Then we have
f(ui+1) = vi+1. This is because f(ρG(ui)) = ρH(vi) and the used edges when reaching ui
are exactly corresponding to the used edges when reaching vi with respect to the orientation-
preserving isomorphism. Hence {v0, v1, ..., v2|E|} = {f(u0), f(u1), ..., f(u2|E|)}. By the rules
of assigning a vertex a natural number, code(G, s, t) = code(H, s′, t′). J

If G and H are simple, it is immediately clear that an orientation-preserving isomorphism
f can induce a unique edge mapping g : EG → EH by g((u, v)) = (f(u), f(v)). When G and
H are non-simple, i.e., contain multiple edges or loops, we can acquire all edge mappings
from their codes. This is because a code travels all edges, and any adjacent pair in the code
represents a directed edge. In this situation, the multiple edges between two vertices need to
be properly distinguished and a vertex may need two incident edges to indicate each of its
loops. The exact edge mapping can be obtained by tracing each pair of adjacent numbers
of their codes in parallel. Once we have all edge mappings between G and H, finally, the
Fréchet distance between G and H can be computed by directly following the formula. For
the Fréchet distance between two polygonal edges e1 and e2, we adopt the algorithm with

P. Fang and C. Wenk 62:5

O(Ne1Ne2 log(Ne1Ne2)) time in [3], where Ne1 and Ne2 are the complexity of e1 and e2,
respectively.

I Theorem 2.4. The Fréchet distance between two orientation-preserving isomorphic con-
nected plane graphs can be computed in O(NGNH log2(NGNH)) time.

Proof. For each edge mapping g induced by an orientation-preserving isomorphism, we
compute the Fréchet distance δF ((u, v), g(u, v)) for all edges (u, v) ∈ EG. This requires the
time for computing the Fréchet distance between each pair of polygonal edges for m pairs in
one edge mapping. By Theorem 2.2, there are O(m) orientation-preserving isomorphisms.
We enumerate all of them in total O(m2) time using Theorem 2.2. Hence, in the direct
computation, we may need to compute the Fréchet distance between two edges for O(m2)
pairs. However, the total time for computing the Fréchet distance between each pair of edges
is O(NGNH log(NGNH)) [6] if both graphs are not closed curves. The last case that has
not been covered is when a connected plane graph only has vertices of degree 2, i.e., the
graph is a closed curve, since we assume that there are no vertices of degree 2 in computing
orientation-preserving isomorphisms. It is known that the Fréchet distance of two closed
curves can be computed in O(NGNH log2(NGNH)) time [3]. J

3 Conclusion

When the orientation of edges is considered, the number of possible edge mappings is
significantly reduced. We conclude that the Fréchet distance between two orientation-
preserving isomorphic graphs can be computed in polynomial time.

References
1 M. Ahmed, S. Karagiorgou, D. Pfoser, and C. Wenk. Map Construction Algorithms.

Springer International Publishing, first edition, 2015. doi:10.1007/978-3-319-25166-0.
2 Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. A comparison

and evaluation of map construction algorithms. Geoinformatica, 19(3):601–632, 2015.
3 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal

curves. Internat. J. Comput. Geom. Appl., 5(1-2):75–91, 1995.
4 Kevin Buchin, Maike Buchin, and André Schulz. Fréchet distance of surfaces: Some simple

hard cases. In European Symposium on Algorithms, pages 63–74. Springer, 2010.
5 M. Buchin, E. Chambers, P. Fang, B.T. Fasy, E. Gasparovic, E. Munch, and C. Wenk.

Distance measures for embedded and immersed graphs, 2021. In preparation.
6 Maike Buchin, Amer Krivosija, and Alexander Neuhaus. Computing the Fréchet distance

of trees and graphs of bounded tree width. In Proc. 36th European Workshop on Compu-
tational Geometry (EuroCG), 2020.

7 John E Hopcroft and Jin-Kue Wong. Linear time algorithm for isomorphism of planar
graphs. In Proceedings of the sixth annual ACM symposium on Theory of Computing,
pages 172–184, 1974.

8 Louis Weinberg. On the maximum order of the automorphism group of a planar triply
connected graph. SIAM Journal on Applied Mathematics, 14:729–738, 1966.

9 Louis Weinberg. A simple and efficient algorithm for determining isomorphism of planar
triply connected graphs. IEEE Transactions on Circuit Theory, 13:142–148, 1966. doi:
10.1109/TCT.1966.1082573.

10 Hassler Whitney. A set of topological invariants for graphs. American Journal of Mathe-
matics, 55:231–235, 1933.

EuroCG’21

Sampling Hyperplanes and Revealing Disks∗

Haim Kaplan1, Alexander Kauer†2, Wolfgang Mulzer‡2, and Liam
Roditty3

1 School of Computer Science, Tel Aviv University
haimk@tau.ac.il

2 Institut für Informatik, Freie Universität Berlin, Berlin, Germany
[akauer, mulzer]@inf.fu-berlin.de

3 Department of Computer Science, Bar Ilan University
liamr@macs.biu.ac.il

Abstract
We present a data structure which allows detecting when disks of a set B are no longer intersected
by disks of set of disk A when deleting its disks. Preprocessing A, B and deleting n disks of
A with detecting all newly revealed disks of B requires O(|B| log4 |A| + |A| log5(|A|)λ6(log |A|) +
n log9(|A|)λ6(log |A|)) expected time, where λ6(·) is the Davenport-Schinzel bound of order 6.

To construct this data structure, we extend known dynamic lower envelope data structures
for hyperplanes and bivariate functions of constant description complexity with a linear size lower
envelope in R3, such that they allow sampling of a random element not above a given point in
O(log3 n) expected time.

1 From Graph Connectivity to Disk Sampling

Graph connectivity plays a fundamental role in algorithms and data structures. The dynamic
variant where edges can be inserted or deleted is reasonably well understood [6–8,11,14], with
data structures supporting updates and queries determining the connectivity of two vertices
in polylogarithmic time. Updating vertices seems significantly harder, as a single update can
have a large impact on the overall structure. Chan et al. [4, Theorem 1] presented a data
structure allowing vertex updates in Õ(m2/3) amortized time and queries in Õ(m1/3) time,
where m is the number of possible edges of the graph that need to be known in advance.

The vertices of geometric intersection graphs correspond to geometric objects and its
edges to intersections. As they restrict possible graphs, faster solutions may be within reach.
However, work is required to find edges affected by an update. Chan et al. [4, Theorem 5]
gave a general method for various objects with sub-linear update and query times.

In this work we present a data structure, which allows detecting when a disk is no longer
intersected by any disk of a set after deletions. We call such a disk revealed. This data
structure can be used as a component in maintaining connectivity information in deletion-only
disk intersection graphs [9].

To construct it, we first describe data structures for randomly sampling a hyperplane
or a continuous function of constant description complexity not above a given point in R3,
which might be of interest of its own.

∗ Supported in part by grant 1367/2016 from the German-Israeli Science Foundation (GIF).
† Supported in part by grant 1367/2016 from the German-Israeli Science Foundation (GIF) and by the

German Research Foundation within the collaborative DACH project Arrangements and Drawings as
DFG Project MU 3501/3-1.

‡ Supported in part by ERC StG 757609.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

63:2 Sampling Hyperplanes and Revealing Disks

Figure 1 When removing a red disk, we want to obtain all blue disks intersecting this red disk but
no other red disk. After removing the dashed red disk, the dashed blue disks need to be obtained.

2 Preliminaries

Let A, B be two sets of disks in R3, such that for each disk b ∈ B exists at least one disk
a ∈ A it intersects. We now want to remove a disk a ∈ A and obtain all disks b ∈ B which
no longer have any disk from A they intersect. We call such disks revealed. See Figure 1.

A data structure for detecting such revealed disks is constructed over the course of
Sections 4 and 5, which concludes in Theorem 5.3. Its central idea is representing intersections
sparsely via assigning each b ∈ B repeatedly to one random a ∈ A it intersects until there is
none left and b is revealed.

Obtaining such a random disk of a given semi-dynamic set which intersects a query disk
is the main problem. We will build upon the dynamic lower envelope data structures by
Kaplan et al. Those maintain a dynamic set of hyperplanes [10, Section 7] or continuous
bivariate functions of constant description complexity [10, Section 8] in R3 under insertions
and deletions. Also, they support vertical ray shooting queries into their lower envelopes.
The second variant is an extension of the first, and the first is a slight extension of a data
structure by Chan [3]. We will briefly describe the first variant in Section 3.

The data structures use vertical k-shallow (1/r)-cuttings as their most integral part. Let
A(H) be the arrangement of hyperplanes H in R3. The k-level Lk of A(H) is the closure of
all points of

⋃
H with k hyperplanes of H strictly below. Then, L≤k is the union of the levels

until Lk. A vertical k-shallow (1/r)-cutting is a set Λ of pairwise openly disjoint prisms,
such that the union of Λ covers L≤k, the interior of each τ ∈ Λ is intersected by at most
|H|/r hyperplanes of H, and each prism is vertical (i.e. it consists of a triangle and all points
below it). Some or all points of a prism’s top may lie at infinity. The number of prisms is the
size of the cutting. Using the algorithm by Chan and Tsakalidis a vertical Θ(|H|/r)-shallow
1/r-cutting of size O(r) can be created in O(|H| log r) time [5]. The conflict list CL(τ) of a
prism τ is the set of all hyperplanes crossing its interior.

This notion can also be extended to bivariate functions. Then the regions are vertical
pseudo-prisms, where the top is limited by a pseudo-trapezoid part of a function [10, Section 3].

3 Vertical Ray Shooting Queries for Hyperplanes

First, we will construct a data structure for the simpler problem of sampling a random disk
containing a given point from a dynamic set of disks. Using linearization [1, 15] we can
transform this problem in R2 into the problem of sampling a hyperplane not above a given
point in R3. This allows us to build upon the data structure for hyperplanes by Kaplan et al.

Their data structure consists ofO(logn) static substructures of exponentially decaying size,
where n is the current number of hyperplanes. Substructures are periodically rebuilt similar
to the Bentley-Saxe technique [2] and the whole data structure after Θ(n) updates. Each

H. Kaplan, A. Kauer, W. Mulzer, and L. Roditty 63:3

q

τj−1τj
≥ 2j−1k0

≤ α2jk0

Figure 2 The situation after walking up for q and the number of hyperplanes of CL(τj) intersecting.

substructure of n′ elements consists of a hierarchy of vertical shallow cuttings {Λj}0≤j≤m+1
with m ∈ O(logn′). Let kj = 2jk0, nj be the number of planes in Λj+1, and k0, α be
constants. Λm+1 consists of a single prism covering all of R3. Λj for j < m+ 1 consists of a
vertical kj-shallow (αkj/nj)-cutting of the hyperplanes of Λj+1, with hyperplanes intersecting
too many prisms removed. Thus, the prisms of Λj cover L≤kj of the planes of Λj+1 and each
conflict list contains at most αkj hyperplanes. The removed hyperplanes are reinserted into
other substructures, such that each hyperplane is in a substructure’s Λ0. A substructure
requires O(n′ logn′) space and building it requires O(n′ log2 n′) time.

Vertical ray shooting queries are done via searching the Λ0 of all O(logn) substructures
for the prism intersecting the vertical line containing the given position in O(logn) time each.
Then, all obtained prisms are searched for the lowest plane along the line in O(logn) time.

Insertions are handled with a Bentley-Saxe approach via rebuilding multiple smaller
substructures into new substructures periodically. They require O(log3 n) amortized time.

Deletions are handled differently. In all substructures hyperplanes are only marked as
deleted and ignored in queries. As described above, queries per substructure are done in their
Λ0 only. Thus, the lowest non-deleted hyperplane along a given vertical line might not be
contained in the prism of Λ0 intersecting said line. It may require the corresponding prism
of Λ1 or an even higher Λj , as prisms from higher cuttings can intersect more hyperplanes.

To handle this, when deleting a hyperplane in a substructure all prisms containing it are
identified. For each such prism an individual counter is incremented. If it reaches a fraction
of f = 1

2α of the size of its conflict list, the prism and its hyperplanes are marked as purged
in the substructure. When hyperplanes are first marked as purged, they are also reinserted
into the data structure anew. Hyperplanes marked as purged are skipped in queries as well.

Consider prisms τ1, . . . , τm+1 from Λ1, . . . , Λm+1 intersecting a vertical line. The idea
behind the purging is that |CL(τj)| ≤ αkj and Λj−1 covers L≤kj−1 of the hyperplanes of
Λj , see Figure 2. Thus, a fraction of at least kj−1

αkj
= f of CL(τj) is intersected by τj−1. A

plane first appearing in CL(τj) then can only be the lowest along the vertical line if all from
CL(τj−1) have been deleted and thus a fraction of f of CL(τj) as well. Then, τj would have
been purged and its hyperplanes reinserted into other substructures. Also, each hyperplane
is contained in at most one substructure in Λ0 without being marked as purged or deleted.

Deletions require O(log5 n) amortized time and overall O(n logn) space is needed.

4 Sampling Hyperplanes

When at least a fraction of all hyperplanes in CL(τj) is intersected by any τj−1 and is not
marked as deleted, we can sample inside CL(τj) to get a non-deleted hyperplane intersecting

EuroCG’21

63:4 Sampling Hyperplanes and Revealing Disks

τj−1 with a minimum probability. For this, we lower the purging threshold to f ′ = 1
4α .

I Lemma 4.1. The Kaplan et al. data structure for hyperplanes [10, Section 7] with f ′ = 1
4α

as purging threshold works as desired with the same asymptotic time and space bounds.

The correctness of the argument in Section 3 (and the proof by Kaplan et al. [10,
Lemma 7.6]) is unchanged, as prisms are just purged earlier. The run time analysis [10,
Lemma 7.7] requires an adjustment of constants only1, and the asymptotic space bound is
unaffected as well.

I Lemma 4.2. Given prisms τj of Λj and τj−1 of Λj−1 with j ≥ 1 from the same substructure
and intersected by the same vertical line. If τj not has been purged with threshold f ′ = 1

4α , at
least 1

4α |CL(τj)| of its hyperplanes are intersected by τj−1 and are not marked as deleted.

Proof. The prism τj−1 intersects at least kj−1 = 2j−1k0 hyperplanes of Λj in its interior, as
τj−1 is from a vertical kj−1-shallow cutting of the hyperplanes of Λj . Due to the vertical
line these hyperplanes must all be contained in CL(τj) as well. See Figure 2. Also, the prism
τj intersects at most αkj = α2jk0 hyperplanes, as it is built from a (αkj/nj)-cutting.

Thus, if τj has not been purged due to deletions, it must contain a fraction of

>
2j−1k0 − 1

4α · α2jk0

α2jk0
= 2j−2k0

α2jk0
= 1

4α (1)

non-deleted hyperplanes intersecting τj−1. J

Kaplan et al. [10] already observed the following. For each individual substructure, the
ceilings of the prisms of Λj form a polyhedral terrain Λj . Due to the removal of planes
between steps during creation the terrain Λj does not necessarily lie below Λj+1. Nevertheless,
the number of hyperplanes in Λj below any point is less or equal than the number in Λj+1.
This is in particular valid for those points in or above Λj .

To sample a hyperplane not above a given point we walk the Λj from j = 0 upwards. At
each step we locate the vertical prism which contains the point or has it above in O(logn)
time, as it is done in Λ0 in the original data structure. In case the point is located inside the
prism we stop, otherwise we continue. This allows us to apply Lemma 4.2. See Figure 2.

I Theorem 4.3. The lower envelope of hyperplanes in R3 can be maintained dynamically,
where each insertion takes O(log3 n) amortized time, each deletion takes O(log5 n) amortized
time, vertical ray shooting queries take O(log2 n) time, and sampling a random hyperplane
not above a given point takes O(log3 n) expected time, where n is the number of hyperplanes
when the operation is performed. The data structure requires O(n logn) storage.

Proof. We construct the data structure for hyperplanes by Kaplan et al. [10, Section 7]
with f ′ = 1

4α as the purging threshold and without their memory optimization (which we
omitted in Section 3). According to Lemma 4.1 the correctness and asymptotic bounds are
unchanged. We construct for all substructures for all Λj , j ≥ 1 point location data structures.
This requires O(n logn) storage and the run time can be subsumed in the respective creation
of the vertical shallow cutting.

Sampling a hyperplane not above a query point q then can be done as follows. For each
substructure the first Λj and corresponding τj are obtained where q is inside τj , as described

1 In the original proof b′ has to be chosen larger (e.g. b′ ≥ 8αb′′), as purging a prism τ releases
≥ (b′4α − b′′)|CL(τ)| logN credits now.

H. Kaplan, A. Kauer, W. Mulzer, and L. Roditty 63:5

above. In case the prism was purged or the prism is τ0 and no non-deleted hyperplane lies
not above q, this substructure is skipped. This required O(log3 n) time altogether.

All hyperplanes of a substructure’s Λ0 not above q are contained in CL(τj). Hence, if all
substructures were skipped there is no hyperplane not above q. Otherwise, hyperplanes are
sampled from all prisms obtained simultaneously, until the result is not marked as deleted, is
not marked as purged in its substructure, and is contained in the substructure’s Λ0 (i.e. was
not removed during creation).

If we stopped at j ≥ 1, the top of τj−1 lies not above q, and we can apply Lemma 4.2.
Thus, each non-skipped conflict list contains a fraction of at least min(f ′, 1/k0) non-deleted
hyperplanes not above q. Recall that each non-deleted hyperplane is contained in exactly
one substructure in Λ0 without being marked as purged. Hence, each non-deleted hyperplane
is sampled with equal probability and each sampling returns with a probability of at least
min(f ′, 1/k0) · 1/O(logn) a valid hyperplane. Thus, we expect O(logn) samplings. J

I Corollary 4.4. Sampling a random disk in R2 containing a given point from a dynamic
set can be implemented with the bounds of Theorem 4.3.

5 Sampling Disks

Sampling a random disk intersecting a given disk requires another approach, as linearization
results in hyperplanes in R4. Instead, we sample via the distance functions the disks imply.

In addition to the hyperplane lower envelope data structure, Kaplan et al. describe how to
create shallow cuttings of totally defined continuous functions R2 → R of constant description
complexity [10, Theorem 8.1, Theorem 8.2]. Afterwards, they plug it as a black box into their
hyperplane data structure [10, Theorem 8.3]. Its analysis changes in values only. We adjust
the purging threshold and sample as before, while keeping bounds and correctness intact.
λs(n) is the maximum length of a Davenport-Schinzel sequence of order s on n symbols [13].

I Theorem 5.1. The lower envelope of totally defined continuous bivariate functions of
constant description complexity in R3, where the lower envelope of any subset has linear
complexity, can be maintained dynamically, where each insertion takes O(log5(n)λs(logn))
amortized expected time, each deletion takes O(log9(n)λs(logn)) amortized expected time,
vertical ray shooting queries take O(log2 n) time, and sampling a random function not above
a given point takes O(log3 n) expected time, where n is the number of functions when the
operation is performed. The data structure requires O(n log3 n) expected space.

Using this theorem we can finally sample disks intersecting a given disk and construct a
data structure for finding newly revealed disks after deletions.

I Corollary 5.2. A set of disks can be maintained dynamically and a random disk sampled
intersecting a given disk with the bounds of Theorem 5.1 with s = 6.

Proof. Let d be a disk with center cd and radius rd. Then we can represent the distance of any
point p ∈ R2 from this disk as additively weighted Euclidean metric with δ(p, d) = |pcd| − rd,
where | · | is the Euclidean distance. The distance functions of multiple disks form a lower
envelope of linear complexity [12] and have s = 6 [10, Section 9]. Hence, we can build the data
structure of Theorem 5.1 with s = 6 to maintain the distance functions δ(p, d) of all disks d.
A disk intersecting a given disk q then can be found via sampling a random function not above
the point ((cq)x, (cq)y, rq)T , as every function not above has δ(cq, d) = |cqcd| − rd ≤ rq. J

EuroCG’21

63:6 Sampling Hyperplanes and Revealing Disks

I Theorem 5.3. Let A and B be sets of disks in R2. We can preprocess A and B, such
that elements can be inserted into or deleted from B and elements can be deleted from A

while detecting all newly revealed disks of B after each operation. Preprocessing A and B
and deleting n disks of A with detecting all newly revealed disks of B requires O(m log4 |A|+
|A| log5(|A|)λ6(log |A|)+n log9(|A|)λ6(log |A|)) expected time and O(|A| log3 |A|+m) expected
space, where m is maximum size of B. Updating B requires O(log3 |A|) expected time.

Proof. We repeatedly assign each b ∈ B randomly to an a ∈ A it intersects. New assignments
are made both initially and each time the previous assigned a ∈ A gets deleted, unless b got
revealed. Fix the deletion order a|A|, . . . a1. Each b ∈ B is reassigned after deleting ai ∈ A
with probability 1/i, assuming it intersects all ai. This results in an expected number of
≤ H|A| ∈ O(log(|A|)) reassignments per b ∈ B.

We manage A with the data structure of Corollary 5.2. Building it and assigning each
b ∈ B to an a ∈ A it intersects requires O(|A| log5(|A|)λ6(log |A|) + |B| log3 |A|) expected
amortized time. Each deletion in A requires O(log9(|A|)λ6(log |A|)) amortized time plus the
time for reassignments. These sum up to O(m log4 |A|) expected time. Updating B needs
O(log3 |A|) expected time. The space bound follows from Corollary 5.2. J

References
1 P. K. Agarwal and J. Matousek. On range searching with semialgebraic sets. Discrete

Comput. Geom., 11(4):393–418, 1994. doi:10.1007/BF02574015.
2 Jon Louis Bentley and James B Saxe. Decomposable searching problems 1. static-to-

dynamic transformation. J. Algorithms, 1:58, 1980.
3 Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor

queries. J. ACM, 57(3):16:1–16:15, 2010. doi:10.1145/1706591.1706596.
4 Timothy M. Chan, Mihai Pǎtraşcu, and Liam Roditty. Dynamic connectivity: Connecting

to networks and geometry. SIAM J. Comput., 40(2):333–349, 2011.
5 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d

and 3-d shallow cuttings. Discrete Comput. Geom., 56(4):866–881, 2016. doi:10.1007/
s00454-016-9784-4.

6 David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert Endre Tarjan, Jeffery
Westbrook, and Moti Yung. Maintenance of a minimum spanning forest in a dynamic
plane graph. J. Algorithms, 13(1):33–54, 1992.

7 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms
with polylogarithmic time per operation. J. ACM, 46:502–516, 1999.

8 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnec-
tivity. J. ACM, 48(4):723–760, 2001.

9 Haim Kaplan, Katharina Klost, Kristin Knorr, Wolfgang Mulzer, and Liam Roditty. Dele-
tion only dynamic connectivity for disk graphs. In Proceedings of the 37th European Work-
shop on Computational Geometry (EuroCG), page 58:1 ff., 2021. Extended abstract.

10 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
Discrete Comput. Geom., 64(3):838–904, 2020. doi:10.1007/s00454-020-00243-7.

11 Mihai Pǎtraşcu and Mikkel Thorup. Planning for fast connectivity updates. In Proc. 48th
Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 263–271, 2007.

12 Micha Sharir. Intersection and closest-pair problems for a set of planar discs. SIAM Journal
on Computing, 14(2):448–468, 1985.

13 Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel sequences and their geometric
applications. Cambridge University Press, 1995.

H. Kaplan, A. Kauer, W. Mulzer, and L. Roditty 63:7

14 Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proc. 32nd Annu. ACM
Sympos. Theory Comput. (STOC), pages 343–350, 2000.

15 Andrew C. Yao and F. Frances Yao. A general approach to D-dimensional geometric
queries. In Proc. 17th Annu. ACM Sympos. Theory Comput. (STOC), pages 163–168,
1985. doi:10.1145/22145.22163.

EuroCG’21

On Minimum-Complexity Graph Simplification∗

Omrit Filtser1, Majid Mirzanezhad2, and Carola Wenk2

1 Department of Applied Mathematics and Statistics, State University of New
York at Stony Brook, N.Y., U.S.
omrit.filtser@gmail.com

2 Department of Computer Science, Tulane University, L.A., U.S.,
mmirzane@tulane.edu
cwenk@tulane.edu

Abstract
Simplifying graphs is a very applicable problem in computational geometry. Given a graph G and a
threshold δ, the minimum-complexity graph simplification problem asks for computing an alternative
graph G′ of minimum number of vertices and/or edges so that the distance between G and G′ is at
most δ. In this paper we propose several NP-hardness and algorithmic results depending on the
type of input/output graphs and the type of distance measures considered between them.

1 Introduction

Unlike curve simplification, simplifying higher structural input objects such as trees and
graphs has not been extensively studied in computational geometry. This problem has many
applications in Geographic Information Systems (GIS), image processing, mesh simplification,
molecular biology, etc. [3, 4, 7, 10]. There are a few works that set out to study approximating
a planar subdivision of a map with the minimum number of links under some topological
constraints [5, 8]. Several algorithms applied to GIS data are based on map schematization
[12] in which, roughly speaking, the main topological structure of the map remains the
same and paths with vertices of degree two become simplified. A generalization of map
schematization under topological constraints such as facet preservation, non-intersecting
boundary can be found in [6, 11].

Most of the map simplification problems under some topological constraints fall into
NP-hard and/or APX-hard classes of problems [5, 8]. There are many different variants of
the (graph) simplification induced by the input parameters/constraints such as the type of
the distance measure, e.g., Fréchet, Hausdorff distances, the direction (if the distance is not
symmetric) and the way of applying it (local vs. global), topological constraints (noncrossing,
facet maintenance), etc. Note that some distances are not symmetric, therefore it matters in
which direction the distance is applied. Our systematic study provides different variants of
the problem as the input and output vary between trees and graphs.

In this paper we study different variants of the following generic problem: Let δ > 0 be
a real, D(·, ·) be a distance measure, and G = (V,E) be a graph immersed in Rd, whose
edges in E are straight-line segments between the vertices in V . We aim to compute an
alternative graph G′, with the minimum-complexity (min-edge and/or min-vertex) satisfying
D(G,G′) ≤ δ. For instance, a minimum-edge graph-to-tree simplification from output to
input refers to a variant in which a graph is simplified by a tree when the distance is applied
from the output tree to the input graph. We consider two Fréchet-like distance measures
between graphs; the graph distance proposed in [1] and traversal distance in [2]. We will

∗ This project has been supported by NSF grant (AitF: NSF-CCF 1637576)

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

64:2 On Minimum-Complexity Graph Simplification

define these distances more formally below and we emphasize that none of these distances
are metric. In general, given two graphs G1 and G2 as the input, the problem of computing
the graph distance from G1 to G2 admits polynomial-time algorithm when G1 is tree and
G2 is a graph [1]. The problem becomes NP-hard when G1 and G2 are arbitrary graphs. Alt
et al. in [2] proposed an O(nm log2 nm) time algorithm to compute the traversal distance,
from G1 to G2, where n and m are the number of vertices of the two graphs.

Notations. Let P be a polygonal curve. We treat P as a continuous map P : [1, n]→ Rd,
where the i-th edge is linearly parameterized as P (i + λ) = (1 − λ)pi + λpi+1 with the
i-th vertex pi and λ ∈ [0, 1]. We write P [s, t] for the subcurve between P (s) and P (t) and
〈P (s)P (t)〉 for the link connecting them. Let G be an immersed graph in Rd. We denote
the set of vertices of G by V (G) and the set of edges by E(G). A continuous mapping
f : [0, 1]→ G is called a traversal of G if it is surjective, and a partial traversal of G if it is
not necessarily surjective. Given two curves P : [1, n]→ Rd and Q : [1,m]→ Rd, the Fréchet
distance between P and Q is defined as: F(P,Q) = inff,g maxt∈[0,1] ‖P (f(t)) − Q(g(t))‖,
where f : [0, 1]→ [0, n] and g : [0, 1]→ [0,m] are continuous, surjective, and non-decreasing
functions. In the definition above if f and g are not required to be non-decreasing functions,
then the obtained distance is called the weak Fréchet distance denoted by wF(P,Q).

Given two graphs G1, G2 immersed in Rd, their traversal distance [2] is: −→δT(G1, G2) =
inff,g maxt∈[0,1] ‖f(t)− g(t)‖, where f : [0, 1]→ G1 is a traversal of G1, that is a continuous
surjective function, and g : [0, 1]→ G2 is a partial traversal of G2 that is a continuous function
only. A graph mapping is a function s : G1 → G2 that (1) maps each vertex v ∈ V (G1)
to a point s(v) on an edge of G2, and (2) maps each edge 〈uv〉 ∈ E(G1) to a simple path
from s(u) to s(v) in the embedding of G2. The directed (strong) graph distance between
G1 and G2 is: −→δG(G1, G2) = infs:G1→G2 maxe∈E(G1) F(e, s(e)), and the (undirected) graph
distance between G1 and G2 is δG(G1, G2) = max(−→δG(G1, G2),−→δG(G2, G1)). Correspondingly,
the directed (weak) graph distance denoted by −−→δwG is obtained by replacing the F with wF in
the definition above.
Our results: We show that the min-edge graph-to-graph simplification under the graph
distances from input to output is NP-hard (Thm. 2.2). We show that this problem for input
and output trees is NP-hard when one has to map the leaves of the input to the output under
the graph and traversal distances (Thm. 3.1). If we flip the direction of the graph distance in
the latter variant, one can give an O(kn5) time algorithm (Thm. 4.2) where k is the number
of leaves of the of the input tree mapped from the output under the graph distance.

2 Minimum-Edge Graph-Graph Simplification

We prove that computing the minimum-edge graph-to-graph simplification under graph and
traversal distances from input to output is NP-hard. Note that in this section the simplified
graph is a subgraph of the input and it selects its vertices from the vertices of the input. We
reduce from a specific variant of Max-2SAT, in which the variable graph GF is a bipartite
graph, where F is a formula on the set of variables X = {X1, X2, · · · , Xn}, and the set of
clauses is C. We call this problem Bipartite-Max-2SAT. In the variable graph, nodes are
the variables in X and two nodes are connected if both belong to the same clause in C.

I Lemma 2.1. Bipartite-Max-2SAT is NP-hard.

Proof Sketch. Replacing every clause C = (x∨y∨z) in the 3-SAT formula with the following
16 clauses results in a bipartite variable graph: FC = (x̄∨ a)∧ (x̄∨ b̄)∧ (ȳ ∨ b)∧ (ȳ ∨ c̄)∧ (z̄ ∨

O. Filtser, M. Mirzanezhad, and C. Wenk 64:3

c)∧ (z̄∨ ā)∧ (w̄∨d1)∧ (w̄∨d2)∧ (w̄∨d3)∧ (x∨ d̄1)∧ (y∨ d̄2)∧ (z∨ d̄3)∧ (x)∧ (y)∧ (z)∧ (w).
It is not hard to see that C is satisfied iff 13 clauses of FC are satisfiable. J

The reduction: Set δ = 1 and construct a graph G from GF as follows. G consists of two
types of gadgets; variable and clause gadgets. A variable gadget Xi has two vertices Ti and
Fi representing the two possible assignments to Xi. A clause gadget of (Xi ∨Xj) connects
two pairs of vertices of two variable gadgets, such that a clause can be simplified with exactly
two links if and only if it is satisfied by the corresponding assignment; see Figure 1.

Tj Fj

Ti Fi

1

1

Tj Fj

Ti Fi

1

1

(a)

(Xi ∨Xj)(b)

(X̄i ∨Xj)

1 + ε

1 + ε

Tj Fj

Ti Fi

Tj Fj

Ti Fi

ε

ε

θij

Lij

Figure 1 The clause gadgets. (a) is a clause gadget for (X̄i ∨ Xj). Note that any 2-link path
from Xi to Xj simplifies the gadget, except for the path from Ti to Fj which corresponds to an
assignment that does not satisfy the clause. In the case that the simplification uses this 2-link path,
an additional edge should be added (the red subgraph). (b) is a clause gadget for (Xi ∨Xj), and
thus using the 2-link path from Fi to Fj requires and additional link. The construction for (Xi ∨ X̄j)
and (X̄i ∨ X̄j) is symmetric.

Let GF = (X1∪̇X2, E), so X1∪̇X2 is a partition of the variables and GF is bipartite. Let
`1 and `2 be two lines parallel to the x-axis, and vertical distance L. We place the variable
gadgets belonging to X1 on `1 and those belonging to X2 on `2. Since GF is bipartite, each
clause gadget connects a variable from `1 to another variable from `2 (see Figure 2).

Now, we need to make sure that the edges of a clause gadget can be used (in the
simplification subgraph) only to “cover” the edges of that clause. For this, we choose a
sufficiently large L, and the variable gadgets are spaced apart at distance larger than 3 + ε

along `1 and `2. See the full version of the paper for further details.
I Theorem 2.2. The minimum-edge graph-graph simplification under the graph and traversal
distances is NP-hard.

3 Leaf-Restricted Tree-to-Tree Simplification from Input to Output

We now consider the case where 1-degree vertices of the input graph G are mapped to
1-degree vertices of the output simplification G′. Note that this restriction might be helpful

EuroCG’21

64:4 On Minimum-Complexity Graph Simplification

`2

`1

T1 F1

T2 F2 T3 F3 T4 F4

T5 F5

� 3 + ε

� 3 + ε

� 3 + ε

Figure 2 A schematic representation of the thickened embedded variable graph induced by
(X1 ∨X2) ∧ (X1 ∨ X̄3) ∧ (X̄2 ∨ X̄5) ∧ (X4 ∨ X̄5) ∧ (X3 ∨X5). In this embedding, the type (a) and
type (b) clause gadgets are highlighted in orange and blue strips respectively.

in capturing the structure of the graph (see e.g. [1]). We show that given a graph G embedded
in R2 and a threshold δ, it is NP-hard to find a graph G′ with minimum number of vertices
such that −→δG(G,G′) ≤ δ, and every 1-degree vertex of G is matched to a 1-degree vertex of
G′. We call such a simplification G′ a leaf-restricted simplification. The following theorem
actually proves a stronger claim: finding a leaf-restricted simplification is NP-hard even for
the case where the input is a tree T , and even if we restrict our simplification to be a tree.
In addition, with a similar proof we can show that the problem under traversal distance is
NP-hard. More details will be given in the full version of this paper.

I Theorem 3.1. Given a tree T embedded in R2 and distance δ, finding a leaf-restricted
simplification for T under graph distance with minimum number of vertices is NP-Hard.

Proof Sketch. The proof is by a reduction from the unit disk cover problem (UDC): let P
be a finite set of points in R2, the goal is to find a minimal set D of unit disks such that for
any p ∈ P there exists some D ∈ D that contains p. Given an instance P of UDC, let R(P)
be the bounding box of P . Set δ = 1, and construct a tree T as follows: V (T) = P ∪ {x} for
some point x which lies far enough from R(P), and E(T) = {〈px〉 | p ∈ P}. We will show
that there exists a solution D for P with k disks, if and only if there exists a leaf-to-leaf
simplification T ′ for T under graph distance with k + 1 vertices.
⇒: Let c1, . . . , ck be the centers of disks in D. Set V (T ′) = {x, c1, . . . , ck}, and E(T ′) =

{〈cix〉 | 1 ≤ i ≤ k}. Consider a mapping s that maps x to x and each vertex p ∈ V (T) to
some vertex ci ∈ V (T ′) such that p is contained in the unit disk centered at ci. Now each
edge (x, p) ∈ E(T) is mapped to an edge (x, ci) ∈ E(T ′), and thus the distance is at most 1.
⇐: Let s be the mapping function from T to T ′. Let C = {s(p) | p ∈ V (T) \ {x}}, then

C ⊆ V (T ′) because T ′ is a leaf-restricted simplification and thus s matches each leaf p of T
to a leaf s(p) of T ′. Also, C contains at most k vertices because x is far enough from R(P),
so there must be at least one vertex of T ′ which lies outside R(P) and such that none of
the points of P is matched to it. Consider the unit disks centered around the points in C.
Clearly, D covers P . J

4 Leaf-Restricted Tree-to-Tree Simplification from Output to Input

In this section, we consider the (strong or weak) graph distance from output to input and
for a given set l = {l1, · · · , lk} of leaves with k ≥ 2 in the input tree T , we require that the
mapping of the graph distance bijects k distinct leaves of T ′ to the leaf set l in T . In this
section T ′ selects its vertices from V (T). Without any restriction on the leaves, the problem
is trivial, as T ′ could consist of a single point.

O. Filtser, M. Mirzanezhad, and C. Wenk 64:5

Now, consider the complete graph G induced by V (T). The intersection of G with a
ball of radius δ centered at a vertex of V (T) consists of several connected components. For
a vertex u ∈ T , let Cu be the set of all edges of connected components induced by the
intersection of G with the ball centered at u. Given a leaf set l = {l1, · · · , lk} in T , observe
that the problem for k = 2 is simply the simple path from the respective leaf to the root
which is a leaf in l. Relying on this observation we first compute the path from every leaf
to the root in T . The union of these paths forms the mapping subtree MT . A vertex where
multiple paths meet in MT is called an ancestor. We associate a pointer with each leaf to
point to the lowest common ancestor obtained earlier and we repeat the same process for the
new ancestors towards the root. The ancestors connected through pointers together result in
a tree called ancestor tree AT . An ancestor u is parent of v (v is child) if it is pointed to
by v in AT . The idea is to use DP to propagate the optimal simplified tree rooted at each
edge of every connected component c′ of every child to the connected component c of the
parent. For this, we associate a cost function ψ : [0, 1]→ N with each edge e, where ψ(e) is
the number of vertices in a minimum-edge simplified subtree rooted at e. For a connected
component c w.r.t. the parent u and c′ w.r.t. child v, we have the following recursive formula:

ψ(e) = min
E

∑

e′∈E

(
ψ(e′) + γ(e′, e)

)
, (1)

where E = {E1, E2, · · · , Ek′} with each edge Ei belonging to the edge set Ci, for all
1 ≤ i ≤ k′ where k′ is the number of children of u. Here, γ(e′, e) is the number of vertices on
the vertex-restricted minimum-vertex curve simplification of the path P [u, v] ∈MT computed
in [9]. Also for every leaf u ∈ l we set ψ(e) = 1. Figure 3 elaborates on the algorithm
described above.

I Lemma 4.1. Formula (1) returns the number of vertices in an optimal simplified tree T ′.

Proof. We use proof by induction. Suppose u is a leaf where u ∈ l. Obviously T ′ rooted at
e is a single-vertex tree. Therefore ψ(e) = 1. When u is an intermediate vertex, suppose
T ∗e is an optimal simplified tree rooted at e. Observe that T ∗e passes through a set of
edges E = {E1, · · · , Ek′} with Ei ∈ Ei. Therefore we have: ψ(e) = min

T ′
e

W(T ′e) = W(T ∗e) =
∑
e′∈C

(W(T ∗e′) + W(P (e′, e))), where P is a the minimum-vertex path between e and e′. Note

that W(P (e′, e)) = γ(e′, e) by definition and W(T ∗e′) = ψ(e′) by the inductive hypothesis.
Thus we have: ψ(e) = W(T ∗e) =

∑
e′∈E

(
ψ(e′) + γ(e′, e)

)
. Realize that missing any of the

connected components in E results in −→δG(T ′, T) > δ. We therefore have: ψ(e) = W(T ∗e) =
min
E

∑
e′∈E

(
ψ(e′) + γ(e′, e)

)
. J

I Theorem 4.2. There exists an O(kn5) time algorithm for the leaf-to-leaf tree simplification
from T ′ to T under the weak and strong graph distances, where T ′ selects its vertices in Rd.

Proof. First realize that |Cu| = |E(G)| = O(n2). Also computing MT takes O(kn) time.
The only remaining part is that to compute ψ(e) for all edges e of all connected components
c ∈ u and all ancestors u ∈ MT . Since |Cu| = O(n2) and there are O(k) vertices like u in
MT , thus there are O(kn2) starting points like e to compute γ(e, e′) for. Computing γ(e, e′)
takes O(n3) for all e′ following [9]. Overall, the algorithm takes O(kn5). J

EuroCG’21

64:6 REFERENCES

l1 l2 l3

r

l1 l2 l3

r

u

l1 l2 l3

r

u

l1 l2 l3

r

u

l1 l2 l3

r

l1 l2 l3

r

u
δ

(a) (b) (c)

(d) (e) (f)

Figure 3 An illustration of the algorithm. (a) The input tree and the threshold δ. Here, k = 3.
(b) The shortcut graph (complete graph) G highlighted in pink. (c) Computing common ancestor
of the leaves, identifying the connected components of Cu highlighted in red. (d) Min-link path
simplification of P [li, u] highlighted in green, starting at li and ending at all combinations of all
edges in the connected components of Cu, for all i = 1, 2, 3. (e) The continuation of the min-link
path simplification of P [u, r] starting at edges in Cu and ending at r. (f) The resulting min-vertex
simplifiied tree in green.

References

1 H.A. Akitaya, M. Buchin, B. Kilgus, S. Sijben, and C. Wenk. Distance measures for
embedded graphs. In Proc. 30th Int. Symp. on Algorithms and Computation, pages
55:1–55:15, 2019. doi:10.4230/LIPIcs.ISAAC.2019.55.

2 H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. Journal of Algorithms,
49(2):262––283, 2003.

3 E. Bindewald and B.A. Shapiro. RNA secondary structure prediction from sequence
alignments using a network of k-nearest neighbor classifiers. RNA, 12(3):342–352, 2006.

4 P. Cignoni, C. Montani, and R. Scopigno. A comparison of mesh simplification algorithms.
Computers & Graphics, 22(1):37–54, 1998.

5 R. Estkowski and J.S.B. Mitchell. Simplifying a polygonal subdivision while keeping it
simple. In Proc. 17th Ann. ACM Symp. Computational Geometry, pages 40–49, 2001.

6 S. Funke, T. Mendel, A. Miller, S. Storandt, and M. Wiebe. Map simplification with
topology constraints: Exactly and in practice. In Proc. 19th Workshop on Algorithm
Engineering and Experiments, pages 185–196, 2017.

7 J. Gudmundsson, P. Laube, and T. Wolle. Movement patterns in spatio-temporal data.
In S. Shekhar and H. Xiong, editors, Encyclopedia of GIS. Springer-Verlag, 2007.

8 L. Guibas, J. Hershberger, J. Mitchell, and J. Snoeyink. Approximating polygons and

REFERENCES 64:7

subdivisions with minimum-link paths. International Journal of Computational Geometry
& Applications, 3(4):383–415, 1993.

9 M. van de Kerkhof, I. Kostitsyna, M. Löffler, M. Mirzanezhad, and C. Wenk. Global
curve simplification. In 27th Ann. European Symposium on Algorithms, volume 144,
pages 1–14, 2019.

10 Y. Lee. Handwritten digit recognition using k nearest-neighbor, radial-basis function,
and backpropagation neural networks. Neural Computation, 3(3):440–449, 1991.

11 T. Mendel. Area-preserving subdivision simplification with topology constraints: Exactly
and in practice. In Proc. 20th Workshop on Algorithm Engineering and Experiments,
pages 117–128, 2018.

12 W. Meulemans. Similarity Measures and Algorithms for Cartographic Schematization.
PhD thesis, Eindhoven University of Technology, 2014.

EuroCG’21

On the Geometric Red-Blue Hitting Set Problem
Raghunath Reddy Madireddy1 and Supantha Pandit2

1 Birla Institute of Technology and Science, Pilani- Hyderabad campus, India
raghunath@hyderabad.bits-pilani.ac.in

2 Dhirubhai Ambani Institute of Information and Communication Technology,
Gandhinagar, Gujarat, India
pantha.pandit@gmail.com

Abstract
We study variations of the Red-Blue Hitting Set (RBHS) problem. We first introduce a variation
of this problem in a set system, the Special-Red-Blue Hitting Set (SPECIAL-RBHS) problem.
We prove that, the SPECIAL-RBHS problem is APX-hard. Next, using this result, we show that
the RBHS problem is APX-hard for the following classes of objects in the plane: (i) rectangles
containing the origin of the plane, (ii) downward shadows of segments, (iii) axis-parallel strips, and
(iv) axis-parallel rectangles where every two rectangles intersect exactly either zero or four times.
Further, we prove that the RBHS problem is NP-hard for: (i) rectangles anchored on two parallel
lines and (ii) rectangles intersect a horizontal line. We also show that the RBHS problem can be
solved in polynomial time when the objects are axis-parallel infinite lines. On the contrary, we prove
that the RBHS problem is NP-hard when the objects are vertical lines and horizontal unit segments.
The latter result also ensures that the RBHS problem with axis-parallel unit segments is NP-hard.

1 Introduction

We study the following variation of the Hitting Set problem in a geometric setting.

Red-Blue Hitting Set (RBHS) Problem. We are given a set of points P in the
plane and two sets of objects R (red objects) and B (blue objects). The goal is to pick
a subset P ′ ⊆ P of points that hits all blue objects in B while hitting the minimum
number of red objects in R.

Researchers have studied variations of the Set Cover problem due to its numerous
applications and one of such variations is the Red-Blue Set Cover problem (RBSC). The
problem was first introduced by Carr et al. [2] in a set system and proved that, unless
P=NP, the problem cannot be approximated within 2log1−δ n factor in polynomial-time, where
δ = 1

logc logn , for any constant c ≤ 1
2 and n is the number of sets in the set system. Chan

and Hu [4] first considered RBSC problem in geometric setting and proved that the problem
is NP-hard for axis-parallel unit squares and provided a PTAS for the same. Further, it is
known that the RBSC problem is APX-hard where the objects are axis-parallel rectangles
[10]. Dom et al. [7] studied the RBHS problem (in a set system) with consecutive ones
property. Based on whether the red set or blue set, or both satisfy the consecutive ones
property, they gave either NP-hardness proof or polynomial-time algorithm. In [5], Chang et
al. considered the same problem and gave an improved polynomial-time algorithm for the
RBHS problem when both red and blue sets satisfy the consecutive one property.

1.1 Our contributions
é We define a variation of the RBHS problem on set systems, the SPECIAL-RBHS problem,

and show that it is APX-hard. Using this result, we show that the RBHS problem is
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

65:2 On the Geometric Red-Blue Hitting Set Problem

APX-hard for several classes of objects (see the list in Theorem 2.2) (Section 2).
é We prove that the RBHS problem is NP-hard when the objects are (i) rectangles anchored

on two parallel lines and (ii) rectangles intersecting a horizontal line (Section 3).
é We show that the RBHS problem with axis-parallel lines is polynomial-time solvable. We

also show that the problem is NP-hard for vertical lines and horizontal unit segments. The
reduction implies that the problem is NP-hard for axis-parallel unit segments (Section 4).

1.2 Preliminaries
Monotone 3-SAT (M3SAT) problem. In a CNF formula, a clause is said to be negative
if all its literals are negatively present in that clause. Otherwise, if all it’s literal are positively
present, then the clause is called a positive clause. In Monotone 3-SAT (M3SAT) problem,
a 3-CNF formula φ is given, where each clause is either positive or negative and contains
exactly three literals, the objective is to decide whether φ is satisfiable.

It is known that the M3SAT problem is NP-complete [8]. Consider a planar embedding of
the M3SAT problem, called the Planar Monotone Rectilinear 3-SAT (PMR3SAT) problem
that is known to be NP-hard [6].
Planar Monotone Rectilinear 3-SAT (PMR3SAT) problem [6]. In this problem, for
each variable or clause, a segment is considered. The variable segments are on a horizontal
line L ordered from left to right. The positive (resp. negative) clause segments are placed
below (resp. above) the line L and they are in different levels in the y-direction. Each clause
connects to the three literals it contains by vertical connections. Finally, the embedding is
drawn in such a way that it becomes planar. An instance of the problem is given in Figure 1.

2 APX-hardness Results for the RBHS Problem

We show that the RBHS problem is APX-hard for several classes of objects. First, we
introduce the SPECIAL-RBHS problem and show that it is APX-hard. Next, we give an
encoding for each class from an instance of the SPECIAL-RBHS problem.

Special-Red-Blue Hitting Set (SPECIAL-RBHS) Problem:
Let (U,X) be a range space, and U = S ∪ T , where S = {s1

i , s
2
i , s

3
i | i = 1, 2, . . . , n} and

T = {t1p, t2p, t3p, t4p | p = 1, 2, . . . ,m} are the sets of elements. Further, X = R ∪B, where
R and B are the collections of, red and blue, subsets of U , respectively, such that

1. Each element in U belongs to exactly one set in R and exactly one set in B.
2. For each i = 1, 2, . . . , n, the set R contains a subset {s1

i , s
2
i , s

3
i } ⊆ S.

3. For each p = 1, 2, . . . ,m, there exist two integers i and j, where 1 ≤ i < j ≤ n, such
that X contains five subsets {ski , t1p}, {t1p, t2p}, {t2p, t3p}, {t3p, t4p}, and {t4p, sk

′
j } of U for

some k, k′ ∈ {1, 2, 3}. Further, the sets {ski , t1p}, {t2p, t3p}, and {t4p, sk
′
j } are in B and

the sets {t1p, t2p} and {t3p, t4p} are in R.

The goal is to find a subset U∗ ⊆ U of elements that hits all the sets in B while
hitting the minimum number of sets in R.

I Theorem 2.1. The SPECIAL-RBHS problem is APX-hard.

Proof. We give an L-reduction [9] from an APX-hard problem, the vertex cover problem
on cubic graphs [1] to the SPECIAL-RBHS problem. Let G = (V,E) be a cubic graph

R. R. Madireddy and S. Pandit 65:3

Figure 1 An instance of the Rectilinear Planar Monotone 3-SAT problem.

where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. We generate an instance (U,X) of the
SPECIAL-RBHS problem as follows:

1. For each vertex vi ∈ V , take three elements s1
i , s

2
i , s

3
i in S. Thus, S = {s1

i , s
2
i , s

3
i | i =

1, 2, . . . , n}. Further, for each vertex vi ∈ V , place a set {s1
i , s

2
i , s

3
i } in R.

2. For each edge ep ∈ E, consider four elements t1p, t2p, t3p, and t4p in T . Thus, T =
{t1p, t2p, t3p, t4p | p = 1, 2, . . . ,m}.

3. For each edge ep = (vi, vj) ∈ E where 1 ≤ i < j ≤ n do the following:
a. Let k be a positive integer, 1 ≤ k ≤ 3, (resp. k′, 1 ≤ k′ ≤ 3) such that ep be the k-th

(resp. k′) edge incident on vi (resp. vj) in the order e1, e2, . . . , em.
b. Consider five subsets {ski , t1p}, {t1p, t2p}, {t2p, t3p}, {t3p, t4p}, {t4p, sk

′
j } of S ∪ T . Place the

sets {ski , t1p}, {t2p, t3p}, {t4p, sk
′
j } in B and place sets {t1p, t2p} and {t3p, t4p} in R.

4. Finally, we have U = S ∪ T and X = R ∪B.

Let V ∗ ⊆ V be an optimal vertex cover of G and U∗ ⊆ U be an optimal hitting set for
the instance of the SPECIAL-RBHS problem i.e., the elements in U∗ hit all sets in B but
hit the minimum number of sets in R. Let R∗ be the set of subsets of R that are hit by
elements in U∗. In the following, we first show that |R∗| = |V ∗|+ |E|. Initially, let U∗ = ∅.

Let ep = (vi, vj) be an edge in the graph G where 1 ≤ i < j ≤ n. To cover the edge ep,
at least one of vi and vj is in V ∗. There are three possible cases:

(i) Both vi, vj ∈ V ∗: Pick both ski and sk′j into U∗ and exactly one of t2p and t3p into U∗.
(ii) vi ∈ V ∗ and vj /∈ V ∗: Pick ski into U∗. Further, pick both t3p and t4p into U∗.
(iii) vi /∈ V ∗ but vj ∈ V ∗: Pick sk′j into U∗. Further, pick both t1p and t2p into U∗.

In each case above, the elements picked from T into U∗ hit exactly one set in R and
further these sets do not hit by any element picked in U∗ from set S. By following the above
procedure for all the edges in G, we can obtain an optimal solution U∗ ⊆ U for the instance
of SPECIAL-RBHS problem with |R∗| = |V ∗|+ |E|. Since G is a cubic graph, |V ∗| ≥ 1

3 |E|.
Thus, |R∗| ≤ 4|V ∗|. Hence, in the definition of L-reduction, α = 4.

Let U1 ⊆ U be a solution to the SPECIAL-RBHS problem. Let R1 ⊆ R be the set of
subsets that are hit by elements in U1. Note that one can obtain a vertex cover V1 ⊆ V of
size at most |R1| − |E|. Therefore, ||V1| − |V ∗|| ≤ ||R1| − |E| − |V ∗|| ≤ ||R1| − |R∗||, implies
β = 1 in definition of L-reduction. Therefore, SPECIAL-RBHS is APX-hard. J

I Theorem 2.2. The RBHS problem is APX-hard for (O1) Axis-parallel rectangles where
each pair of rectangles intersect exactly zero or four times, (O2) Axis-parallel strips, (O3)
Rectangles containing the origin of the plane and (O4) Downward shadows of segments.

EuroCG’21

65:4 On the Geometric Red-Blue Hitting Set Problem

Proof. O1: We place the points s1
1, s

2
1, s

3
1, s

1
2, s

2
2, s

3
2, . . . , s

1
n, s

2
n, s

3
n on a horizontal line in the

same order from left to right such that for each i = 1, 2, . . . , n, s1
i , s

2
i , and s3

i are close to each
other (Figure 2). We place a rectangle that covers only s1

i , s
2
i , and s3

i (Figure 3a). There
is a sufficient gap between the points corresponding to different i’s (Figure 2) and this gap
is used to place the points t2p and t3p, for p = 1, 2, . . . ,m. Further, for each p = 1, 2, . . . ,m,
there is a dedicated region in which we place the points t1p, t2p, t3p, and t4p (Figure 2). The
placement of t1p, t2p, t3p, and t4p and the respective rectangles is shown in Figure 3a.
O2: The encoding is similar to class O1 (Figure 3b) except the placement of s1

1, s
2
1, s

3
1, . . . ,

s1
n, s

2
n, s

3
n. For each i = 1, 2, . . . , n, the tuples of points s1

i , s
2
i , and s3

i are placed in an
increasing stair-case fashion from bottom to top. The placement of other points is the same
as in the case of O1.
The encoding for O3 and O4 is similar to the embedding in [3] (see Figure 3c and 3d). J

Figure 2 Outline of placement of points.

3 The RBHS Problem: Rectangles anchored on two parallel lines

We prove that the RBHS problem with rectangles anchored on two parallel lines (RBHS-
RATL problem) is NP-hard by giving a reduction from PMR3SAT problem. Let φ be an in-
stance of the PMR3SAT problem with n variables x1, x2, . . . , xn andm clauses C1, C2, . . . , Cm.
Below we construct an instance Hφ of the RBHS-RATL problem from φ as follows.
Variable gadget: The gadget for the variable xi is shown in Figure 4. Let L1 and L2
be two horizontal lines. There are 4m + 2 points {pi1, pi2, . . . , pi4m+2} that form a circular
structure. Also, there are 4m+2 blue rectangles {bi1, bi2, . . . , bi4m+2} and 4m+2 red rectangles
{ri1, ri2, . . . , ri4m+2}. The 2m+1 blue rectangles {bi1, bi2, . . . , bi2m+1} and 2m+1 red rectangles
{ri1, ri2, . . . , ri2m+1} are anchored on L1 and the remaining blue and red rectangles are anchored
on L2. The blue rectangle bij covers two points pij−1 and pij , for 1 ≤ j ≤ 4m+ 2 (assuming
pi0 as pi4m+2) and the red rectangle rij covers the point pij , for 1 ≤ j ≤ 4m + 2. It is clear
that there are two sets; P i1 = {pi1, pi2, . . . , pi4m+1} and P i2 = {pi2, pi4, . . . , pi4m+2}; such that
each of them hits all the blue rectangles and minimum number (2m+ 1) of red rectangles.
The set P i1 represents that the variable xi is false and the set P i2 represents that xi is true.
Clause gadget: For each clause gadget, we take a blue rectangle. If the clause is positive
(resp. negative), then the top (resp. bottom) boundary of the rectangle coincides with the
clause segment, and the bottom (resp. top) boundary coincides with L1 (resp. L2). See
Figure 5 for a schematic diagram of clause gadgets and its placement with respect to the
variable gadgets for the instance of the PMR3SAT problem in Figure 1.

R. R. Madireddy and S. Pandit 65:5

(a) (b)

(c)
(d)

Figure 3 The encoding of sets {sk
i , t1

p}, {t1
p, t2

p}, {t2
p, t3

p}, {t3
p, t4

p}, and {t4
p, sk′

j } for k = 2 and
k′ = 1 for classes, (a) Class O1, (b) Class O2, (c) Class O3, and (d) Class O4.

Figure 4 Structure of a variable gadget

Placement of clause gadgets with respect to variable gadgets: There are two lines
L1 and L2. Each variable segment is replaced with a variable gadget and each clause segment
is replaced with a rectangle. Now we describe the placement of the clause gadgets. For
variable xi, order the connections of positive clauses left to right that connect xi. Let C`
be a positive clause that connects to xi through the t-th connection according to this order,
then we say that C` is the t-th clause for xi. A similar description can be given for negative
clauses by looking at the PMR3SAT embedding (Figure 1) upside down.

Let C` be a positive clause that contains xi, xj , and xk. Further, assume that C` is
the t1-th, t2-th, and t3-th clause for variables xi, xj , and xk, respectively. Then, we shift

EuroCG’21

65:6 On the Geometric Red-Blue Hitting Set Problem

Figure 5 A schematic structure of the variable and clause gadgets and their interconnection.

the three point pi2t1 , p
j
2t2 , and p

k
2t3 vertically downwards from the variables xi, xj , and xk,

respectively, along the top boundary of b` (see Figure 6).

Figure 6 A clause gadget and its interaction with variable gadgets.

It is clear that the construction can be done in polynomial-time (in n and m).

I Theorem 3.1. The RBHS-RATL problem is NP-hard.

A modification to above construction ensures that the RBHS problem with rectangles
stabbing a horizontal line (RBHS-RSHL problem) is NP-hard.

4 The RBHS problem with Lines and Segments

We first note that the RBHS problem with infinite axis-parallel lines can be solved in
polynomial time by reducing the problem to the weighted edge cover problem in bipartite
graphs. In the below, we prove that the RBHS problem with vertical lines and horizontal
segments (RBHS-VLHS problem) is NP-hard. We give a reduction from the M3SAT prob-
lem. We generate an instance Hφ of the RBHS-VLHS problem from an instance φ of the
M3SAT problem as follows.
Variable gadget: For the variable xi, the gadget (Figure 7) consists of 4m + 4 blue
segments {bi1, bi2, . . . , bi4m+4}, 4m + 4 red segments {ri1, ri2, . . . , ri4m+4}, and 4m + 4 points
{pi1, pi2, . . . , pi4m+4}. The 2m + 1 blue segments {bi2, bi3, . . . , bi2m+2}, 2m + 2 red segments
{ri1, ri2, . . . , ri2m+2}, and 2m+2 points {pi1, pi2, . . . , pi2m+2} are on a horizontal line. The 2m+1
blue segments {bi2m+4, b

i
2m+5, . . . , b

i
4m+4} and the 2m+ 2 red segments {ri2m+3, r

i
2m+4, . . . ,

ri4m+4}, and 2m + 2 points {pi2m+3, p
i
2m+4, . . . , p

i
4m+4} are another horizontal line. There

are two blue vertical lines bi1 and bi2m+3. We place the blue and red segments, and points in
such a way that the point pij hits exactly two blue segments bij and bij+1 and exactly one red

R. R. Madireddy and S. Pandit 65:7

segment rij , for 1 ≤ j ≤ 4m+ 4 (assuming bi4m+5 = bi1) (Figure 7). Observe that, there are
exactly two sets of points; P i1 = {pi1, pi3, . . . , pi4m+3} and P i2 = {pi2, pi4, . . . , pi4m+4} such that
each of the set of points hits all the blue segments and half (i.e., 2m+ 2) of the red segments.
We assume that, the set P i1 interprets xi to be false and P i2 interprets xi to be true.

Figure 7 Schematic construction of an instance of the RBHS-VLHS problem from an instance of
the PMR3SAT problem. Here, the strip G1 is magnified at the left side of the figure. A similar
structure as G1 is there inside the strip G2.

Overall structure: The overall structure of the construction is shown in Figure 7. The
variable gadgets are placed vertically one after another in an identical way (i.e., all the j-th
point; except 1-st, (2m + 2)-th, (2m + 3)-th, and (4m + 4)-th; from n variables are on a
vertical line, and left end points of j-th segment, except 1-st and (m+ 3)-th), are also on
a vertical line. There are two regions G1 and G2 at the extreme left and extreme right of
the construction. In the region G1, m blue vertical lines {b1

1, b
2
1, . . . , b

m
1 } are arranged in a

order from left to right. Similarly, in G2, m blue vertical lines {b1
2m+3, b

2
2m+3, . . . , b

m
2m+3} are

arranged in a order from left to right. To the right of the point pi2` (resp. pi2`+1) there is a
dedicated region g`+ (resp. g`−) where the gadget of C` is placed, 1 ≤ ` ≤ m.
Clause gadgets and its placement: Let C` be a negative clause that contains variables
xi, xj , and xk. For C`, the gadget consists of a single vertical line b`. The line b` is placed
inside the region g`−. The 3 points pi2`+1, p

j
2`+1, and pk2`+1 are shifted horizontally and placed

inside g`− (see Figure 7). If C` is positive the construction is similar use the region g`+.
This completes the construction and the construction can be made in polynomial (in n

and m) time. We conclude the following theorem.

I Theorem 4.1. The RBHS-VLHS problem is NP-hard.

Axis-parallel unit segments: In the above construction the horizontal segments are unit
length. If we vertically compress the construction then vertical lines becomes unit segment.
Therefore, we conclude that the RBHS problem is NP-hard for axis-parallel unit segments.

References
1 Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic graphs. Theo-

retical Computer Science, 237(1):123 – 134, 2000.
2 Robert D. Carr, Srinivas Doddi, Goran Konjevod, and Madhav Marathe. On the Red-blue

Set Cover Problem. In SODA, pages 345–353, 2000.

EuroCG’21

65:8 On the Geometric Red-Blue Hitting Set Problem

3 Timothy M. Chan and Elyot Grant. Exact Algorithms and APX-hardness Results for
Geometric Packing and Covering Problems. Computational Geometry, 47(2):112–124, 2014.

4 Timothy M. Chan and Nan Hu. Geometric red-blue set cover for unit squares and related
problems. Comput. Geom., 48(5):380–385, 2015.

5 Maw-Shang Chang, Hsiao-Han Chung, and Chuang-Chieh Lin. An improved algorithm for
the red-blue hitting set problem with the consecutive ones property. Inf. Process. Lett.,
110(20):845–848, 2010.

6 Mark de Berg and Amirali Khosravi. Optimal binary space partitions for segments in the
plane. Int. J. Comput. Geom. Appl., 22(3):187–206, 2012.

7 Michael Dom, Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Red-blue covering
problems and the consecutive ones property. J. Discrete Algorithms, 6(3):393–407, 2008.

8 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

9 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, Approximation, and
Complexity Classes. Journal of Computer and System Sciences, 43(3):425 – 440, 1991.

10 Sima Hajiaghaei Shanjani. Hardness of approximation for red-blue covering. In CCCG,
2020.

Intersecting Disks using Two Congruent Disks∗

Byeonguk Kang1, Jongmin Choi1, and Hee-Kap Ahn2

1 Department of Computer Science and Engineering, Pohang University of
Science and Technology, Pohang, Korea.
{kbu417,icothos}@postech.ac.kr

2 Department of Computer Science and Engineering, Graduate School of
Artificial Intelligence, Pohang University of Science and Technology, Pohang,
Korea.
heekap@postech.ac.kr

Abstract
We consider the Euclidean 2-center problem for a set of n disks in the plane: find two smallest
congruent disks such that every disk in the set intersects at least one of the two congruent disks. We
present a deterministic algorithm for the problem that returns an optimal pair of congruent disks
in O(n2 log3 n/ log log n) time. We also present a randomized algorithm with O(n2 log2 n/ log log n)
expected time. These results improve the previously best deterministic and randomized algorithms,
making a step closer to the optimal algorithms for the problem.

1 Introduction

We consider a generalization of the 2-center problem [1, 4, 7, 8] in which given a set D of n
disks of nonnegative radii in the plane, find two smallest congruent disks C1 and C2 satisfying
D ∩ (C1 ∪ C2) 6= ∅ for every D ∈ D. We call this problem the 2-center problem on disks.

Ahn et al. [2] gave a deterministic algorithm for the problem with O(n2 log4 n log logn)
time and a randomized algorithm with O(n2 log3 n) expected time. They showed that their
algorithms also work for the restricted 2-cover problem on disks (every disk is contained
in one of two smallest congruent disks) and the 2-piercing problem on disks (every disk is
pierced by one of two optimal points) in the plane. See Figure 1 for an illustration.

(a) (b) (c)

C1 C2

C2

C1

p1 p2

Figure 1 (a) The disk 2-center problem on disks: every input disk intersects C1 ∪ C2. (b) The
restricted disk 2-cover problem on disks: every disk is fully contained in C1 or C2. (c) The 2-piercing
problem on disks: every disk intersects p1 or p2.

∗ This research was partly supported by the Institute of Information & communications Technology
Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No. 2017-0-00905,
Software Star Lab (Optimal Data Structure and Algorithmic Applications in Dynamic Geometric
Environment)) and (No. 2019-0-01906, Artificial Intelligence Graduate School Program(POSTECH)).

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

66:2 Intersecting Disks using Two Congruent Disks

Our results. We present a deterministic algorithm with O(n2 log3 n/ log logn) time and a
randomized algorithm with O(n2 log2 n/ log logn) expected time for the 2-center problem
and the restricted 2-cover problem on n disks in the plane. This improves the previously
best known algorithm by more than O(logn) factor. Our deterministic algorithm also works
on the 2-piercing problem with O(n2 log2 n/ log logn) time.

For a disk D, the disk inflated by real value r ≥ 0 from D, denoted by D(r), is centered
at the center of D and its radius is the radius of D plus r. We use a dual arrangement
A of the disk centers and construct a dual directed tree TE of A. Our sequential decision
algorithm traverses the tree in directions of inserting inflated disks one by one and finds the
centers. Our sequential decision algorithm works as follows.
1. Construct a point-line dual arrangement A of the disk centers such that each face of A

represents the inflated disks whose centers lie in one side of a line in primal space.
2. Construct a directed tree TE such that there is a one-to-one correspondence between the

tree nodes and the faces of A, and each edge is directed from a node to a neighboring
node of lower level in A.

3. Construct a collection Tt of t-ary search trees that, given a face f in A, returns
O(logn/ log logn) regions whose common intersection is the intersection of the inflated
disks represented by f .

4. Check for each face f while traversing TE if the inflated disks represented by f have a
nonempty intersection and the remaining inflated disks also have a nonempty intersection,
using Tt and an insertion-only convex programming.

Our deterministic algorithm uses Cole’s parametric search [5] with anO(n2 log2 n/ log logn)-
time sequential decision algorithm and an O(logn)-time parallel decision algorithm using
O(n2 log2 n/ log2 logn) processors, after O(n2 log3 n/ log logn)-time preprocessing. The im-
provement of the sequential decision algorithm comes from the insertion-only convex pro-
gramming and the data structure Tt. The parallel decision algorithm constructs Tt in the
preprocessing phase and the convex programming runs in parallel. Putting them together
using Cole’s parametric search, we get an O(n2 log3 n/ log logn)-time algorithm. A random-
ized algorithm with O(n2 log2 n/ log logn) expected time can be obtained by combining our
sequential decision algorithm and Chan’s randomized optimization technique [3].

2 Preliminaries

I Observation 2.1 (Observation 1 in [2]). Let (C1, C2) be a pair of optimal covering disks.
Let ` be the bisector of the segment connecting the centers of C1 and C2. Then, Ci ∩D 6= ∅
for every D ∈ D whose center lies on the same side of ` as the center of Ci, for i = {1, 2}.

For a line ` in the plane, let B` be a bipartition of D to D` and Dc` = D \ D`, where D` is
the set consisting of disks in D with centers lying strictly below `. Based on Observation 2.1,
B` defines a subproblem consisting of two 1-center problems such that the smallest radius
for the subproblem is the larger one of the two radii from the 1-center problems.

Given a real value r ≥ 0, the decision 2-center problem on D is to determine whether
r ≥ r∗, where r∗ is the radius of the two smallest congruent disks of the 2-center problem on
D. Let D(r) be the set of the inflated disks D(r) of disks D ∈ D. Then the decision 2-center
problem on D with radius r reduces to the 2-piercing problem on D(r).

Given compact convex subsets in the plane, each representing a constraint, and an
objective function, a point that satisfies the constraints and minimizes the objective function
value can be found using convex programming. There are two types of primitive operations:

B. Kang, J. Choi, and H.-K. Ahn 66:3

finding the leftmost feasible point of two constraints, and determining whether a given point
is contained in a constraint. Convex programming can be used to determine whether the
intersection of input convex sets is empty or not.

I Lemma 2.2. A problem with k convex constraints can be solved in O(Tc + log k) time
using convex programming, with O(k2) processors, where Tc denotes the time per primitive
operation.

I Lemma 2.3. Given a convex program with k constraints and the leftmost point v∗ of
the intersection of the constraints, the operation of adding a new constraint to the convex
programming can be handled such that the leftmost point in the intersection of the k + 1
constraints can be found in O(kTc) time, where Tc denotes the time per primitive operation.

In the following, we consider the 2-piercing problem on inflated disks in D(r).

3 The 2-piercing Problem on Disks

We present an algorithm for the 2-piercing problem on a set E = {E1, E2, . . . , En} of n disks
in the plane. For a disk set X, let I(X) denote the intersection of the disks in X. If there is
a bipartition B` such that both I(E`) and I(Ec`) are nonempty, the 2-piercing problem on E
has the solution, where E` is the set consisting of disks in E with centers lying strictly below
`, and Ec` = E \ E`. For each bipartition B`, we perform the emptiness test which determines
whether I(E`) 6= ∅ and I(Ec`) 6= ∅.

(b) (c) (d)(a)

E2

E1

E3 c̄1

c̄2 c̄3

3

2

1

1

0

2

1

E1

E1 E1

E2

E2

E2

E3

E3

E3

3

2

1

1

0

2

1

E1

E1 E1

E2

E2

E3

c2

c1 c3

Figure 2 (a) Three disks E1, E2, E3 with centers at c1, c2, c3 in the plane. (b) Three dual lines
c̄1, c̄2, c̄3 form the dual arrangement of the centers of disks in (a). (c) Dual graph GE of the dual
arrangement A. The level of a node in GE is the level of its corresponding face in A. (d) Directed
tree TE from dual graph GE .

We construct the dual arrangement A for the centers of the disks in E by the following
point-line duality transform: For a point p := (px, py) in the primal plane, its dual p̄ is the
line p̄ := (y = pxx− py) in the dual plane. Likewise, for a line ` : y = `xx+ `y in the primal
plane, its dual ¯̀ is the point ¯̀ := (`x,−`y) in the dual plane. See Fig. 2(a,b). The duality
transform preserves incidence (p ∈ ` if and only if ¯̀∈ p̄) and order (p lies above ` if and only
if ¯̀ lies above p̄) [6]. Thus, A is the arrangement induced by n lines in the dual plane, each
of which is the dual of the center of an input disk. The level of a point in A is the number of
lines in A lying on or below the point. For a face f of A, let ¯̀be a point in f but not on the
upper boundary chain of f . We define the level of f to be the level of ¯̀. Let Ef denote the
set of the disks in E such that the dual lines of their centers lie strictly above ¯̀. Observe
that Ef = E`, and let Ecf = E \ Ef . Thus, they form the bipartition of the centers of input
disks induced by ` in the primal plane.

EuroCG’21

66:4 Intersecting Disks using Two Congruent Disks

3.1 Dual Directed Tree
Let GE be a directed acyclic graph such that there is a one-to-one correspondence between the
nodes of GE and the faces in A, and two nodes u,w of GE are connected by a directed edge
(u,w) from u to w if and only if the faces fu and fw corresponding to u and w, respectively,
share a boundary edge and the level of fu is larger than the level of fw. There is a one-to-one
correspondence between the bipartitions and the nodes of GE . For a node u in GE , let
Eu = Ef for face f of A corresponding to u, and let Ecu = E \ Eu. For each edge (u,w) of
GE , Ew \ Eu consists of exactly one disk, and (u,w) corresponds to the disk in Ew \ Eu. In
Fig. 2(c), each directed edge is labeled with the disk corresponding to the edge.

Let vr be the node of GE that has no incoming edge. We construct from GE , a directed
tree TE rooted vr that spans all vertices of GE , by choosing only one incoming edge for each
node of GE . See Fig. 2(d). For two nodes u,w, let p(u,w) denote the directed path from u

to w in TE , if exists.

3.2 t-ary Search Trees
Let t be a parameter to be set later. For each leaf node v of TE , we construct a t-ary search
tree Tt(v) in bottom-up manner such that the leaf nodes are ordered from left to right, each
corresponding to an edge in p(vr, v) in order from vr to v, the leftmost t leaf nodes have the
same parent node and the next t leaf nodes have the same parent node, and so on. This
process goes recursively to higher levels, and Tt(v) has height h = O(logt n). See Fig. 3.

The path p(vr, v) represents a sequence of disks, each corresponding to an edge of the
path. The data structure Tt(v) supports queries that given a path p(vr, w) for a node w in
p(vr, v), returns h = O(logt n) subpaths that together form p(vr, w), and h intersections of
disks, each corresponding to a subpath.

We construct a collection of t-ary search trees, one for each leaf node of TE , avoiding
duplications of nodes as follows. First, we apply depth-first search (DFS) at vr of TE , which
gives us an order of the edges of TE , traversed by DFS. These edges are the leaf nodes of the
collection, ordered from left to right following the order by DFS. Then we construct t-ary
trees, in the order of the leaf nodes of TE visited by DFS. For two leaf nodes v, v′ with v
visited before v′, let vsplit denote the lowest common ancestor node of p(vr, v) and p(vr, v′).
Then the path p(vr, vsplit) is the longest common subpath of the paths. To avoid duplications,
Tt(v′) simply maintains a pointer to the part of Tt(v) corresponding to p(vr, vsplit) with
respect to t value, instead of constructing the part again. Let Tt denote the collection of all
t-ary search trees. See Fig. 3(b) for an illustration.

3.3 Intersections of Disks for Paths
For a path p(u,w), let I(u,w) denote the intersection of the disks corresponding to p(u,w).
Observe that I(vr, w) = I(Ew). For a node ν in Tt(v), let ν− be the left sibling node of
ν, ν+ the node next (right) to ν at the same level, and rc(ν) the rightmost child node
of ν in Tt(v). The leaf node ν of Tt(v) corresponding to an edge e of p(vr, v) stores the
intersection I(ν) = I(ν−) ∩De if ν− is defined, and I(ν) = De otherwise, where De is the
disk corresponding to e. A nonleaf node ν stores I(ν) if the subtree rooted at ν+ is a perfect
t-ary tree. We set I(ν) = I(ν−) ∩ I(rc(ν)) if ν− is defined, and I(ν) = I(rc(ν)) otherwise.
See Fig. 3(b) for an illustration.

For a node ν, if I(ν) is stored at ν, I(ν) = I(w,w′) for path p(w,w′) such that the edge
of p(w,w′) incident to w corresponds to the leftmost leaf node in the subtree rooted at the

B. Kang, J. Choi, and H.-K. Ahn 66:5

0

1 8

92

121073

13

6

4

(a)

5

(0, 1)
I(0, 1)

(1, 2)
I(0, 2)

(2, 3)
I(2, 3)

(3, 4)
I(2, 4)

(4, 5)
I(4, 5)

(5, 6)
I(4, 6)

(2, 7)
I(2, 7)

(0, 8)
I(0, 8)

(8, 9)
I(0, 9)

(9, 10)
I(9, 10)

(10, 11)
I(9, 11)

(9, 12)
I(9, 12)

I(0, 2)11

(12, 13)
I(9, 13)

(b)

T2(6)

T2(7) T2(11) T2(13)

I(0, 4) I(0, 9)

Figure 3 (a) Dual directed tree TE . (b) T2 for all leaf nodes in TE . T2(6) is constructed on p(0, 6)
(thick path in (a)). Blank nodes in trees store no intersection of disks.

parent node of ν, and the edge of p(w,w′) incident to w′ corresponds to the rightmost leaf
node in the subtree rooted at ν. Thus, I(ν) =

⋂
De for all edges e in p(w,w′).

I Lemma 3.1. Given a real value r ≥ 0, we can construct Tt together with the intersections
of disks stored at nodes in O(tn2 logt n) time using O(tn2 logt n) space.

I Lemma 3.2. Given a node w in TE , we can find a set W of O(logt n) nodes in Tt such
that ∩ν∈WI(ν) = I(Ew).

3.4 Algorithm
If there is a node u ∈ TE such that both I(Eu) and I(Ecu) are nonempty, then the 2-
piercing problem has a solution. Using Tt (Lemma 3.1 and Lemma 3.2), convex pro-
gramming (Lemma 2.3) and setting t = logε n, we can solve the 2-piercing problem in
O(n2 log2 n/ log logn) time using O(n2 log1+ε n) space for any constant 0 < ε ≤ 1.

I Theorem 3.3. Given a set of n disks in the plane, we can compute two points p1 and p2 such
that every input disk contains p1 or p2 in O(n2 log2 n/ log logn) time using O(n2 log1+ε n)
space for any constant 0 < ε ≤ 1.

4 The 2-center Problem on Disks

Our algorithms use parametric search which requires a sequential decision algorithm and a
parallel decision algorithm.

4.1 Sequential Decision Algorithm
By solving the 2-piercing problem on the inflated disk in D(r), we can solve the decision
2-center problem with a given value r on D.

I Theorem 4.1. Given a set of n disks in the plane and a real value r ≥ 0, we can determine
whether there are two congruent disks C1 and C2 of radius r such that every input disk
intersects C1 or C2 in O(n2 log2 n/ log logn) time using O(n2 log1+ε n) space for any constant
ε with 0 < ε ≤ 1.

EuroCG’21

66:6 Intersecting Disks using Two Congruent Disks

4.2 Parallel Decision Algorithm
We first describe a sequential preprocessing algorithm for finding an interval (r1, r2] such
that r1 < r∗ ≤ r2 and Tt has the same combinatorial structure for any r ∈ (r1, r2], that is,
for each intersection stored at nodes of Tt, the circular arcs along the boundary are in the
same order. The preprocessing consists of the construction of Tt for all r ≥ 0 and binary
search to find the interval (r1, r2]. To do this, we consider frustum Fi instead of Di(r) such
that intersection of Fi and the plane z = r is Di(r), for i = 1, ..., n.

I Lemma 4.2. Given a set of n disks in the plane, we can construct Tt for all r ≥ 0 in
O(tn2 log2

t n · log t) time. The space complexity of Tt for all r ≥ 0 is O(tn2 logt n).

I Lemma 4.3. Given a set of n disks in the plane, we can find an interval (r1, r2] in
O(n2 log3 n/ log logn) time such that r1 < r∗ ≤ r2 and Tt has the same combinatorial
structure for any r ∈ (r1, r2] and for t = O(logn).

From the sequential preprocessing, we get Tt for an interval (r1, r2] such that it has the
same combinatorial structure for any r ∈ (r1, r2] and r∗ ∈ (r1, r2]. Using Tt and Lemma 2.2,
we parallelize the process of determining I(Eu) = ∅ and I(Ecu) = ∅ for all nodes u ∈ TE .

I Theorem 4.4. Given a set of n disks in the plane and a real value r ≥ 0, we can
determine whether there are two congruent disks C1 and C2 of radius r such that every
input disk intersects C1 or C2 in O(logn) time using O(n2 log2 n/ log2 logn) processors, after
O(n2 log3 n/ log logn)-time preprocessing.

4.3 Optimization Algorithms
We apply Cole’s parametric search [5] to obtain an O((P +Ts)(Tp+logP))-time deterministic
algorithm, with our Ts-time sequential decision algorithm and our Tp-time parallel decision
algorithm using P processors. Here Ts = O(n2 log2 n/ log logn), Tp = O(logn) and P =
O(n2 log2 n/ log2 logn). Thus, our deterministic algorithm runs inO(n2 log3 n/ log logn) time.
In addition, we apply Chan’s randomized optimization [3] to obtain an O(n2 log2 n/ log logn)
expected time algorithm using our sequential decision algorithm.

I Theorem 4.5. Given a set D of n disks in the plane, we can compute two smallest congruent
disks C1 and C2 such that each disk in D intersects C1 ∪ C2 in O(n2 log3 n/ log logn) time.
A randomized algorithm takes O(n2 log2 n/ log logn) expected time.

I Corollary 4.6. Given a set of n disks in the plane, we can compute two smallest congruent
disks C1 and C2 such that every disk is contained in either C1 or C2 in O(n2 log3 n/ log logn)
time. A randomized algorithm takes O(n2 log2 n/ log logn) expected time.

References
1 P. K Agarwal and M. Sharir. Planar geometric location problems. Algorithmica, 11(2):185–

195, 1994.
2 H.-K. Ahn, S.-S. Kim, C. Knauer, L. Schlipf, C.-S. Shin, and A. Vigneron. Covering and

piercing disks with two centers. Computational Geometry, 46(3):253–262, 2013.
3 T. M Chan. Geometric applications of a randomized optimization technique. Discrete &

Computational Geometry, 22(4):547–567, 1999.
4 T. M Chan. More planar two-center algorithms. Computational Geometry, 13(3):189–198,

1999.

B. Kang, J. Choi, and H.-K. Ahn 66:7

5 R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. Journal of the
ACM (JACM), 34(1):200–208, 1987.

6 M. de Berg, O. Cheong, M. Van Kreveld, and M. Overmars. Computational geometry
algorithms and applications. Springer, 3rd edition, 2008.

7 M. Sharir. A near-linear algorithm for the planar 2-center problem. Discrete & Computa-
tional Geometry, 18(2):125–134, 1997.

8 H. Wang. On the planar two-center problem and circular hulls. In Proceedings of the 36th
International Symposium on Computational Geometry, volume 164, pages 68:1–68:14, 2020.

EuroCG’21

Online Ply Maintenance
Vikrant Ashvinkumar1, Patrick Eades2, Maarten Löffler∗3, and
Seeun William Umboh4

1 School of Computer Science, University of Sydney, Darlington, Australia
2 School of Computing and Information Systems, The University of Melbourne,

Parkville, Australia
3 Department of Computing and Information Sciences, Utrecht University, the

Netherlands
4 School of Computer Science, University of Sydney, Darlington, Australia

Abstract
We introduce the online ply maintenance problem, and provide an online algorithm, a matching
lower bound on the competitive ratio and a proof that perfect play is NP-hard, even with full
information.

1 Introduction

1.1 The Ply of a Set of Regions
Given a set of regions R = {R1, . . . , Rn} in Rd, the local ply of a point p ∈ Rd in R is defined
δp = |{Ri | p ∈ Ri}|, i.e. the number of regions containing that point. The ply of R is
δ = maxp∈Rd δp the maximum local ply of any point.

The ply of a set of imprecise points1 gives a measure of how much is unknown about the
geometry of the set of points. If the ply can be upper bounded by some constant ∆ then
many algorithms become easier, often with running times depending on ∆. For example,
Buchin et al. [1] show how a data structure can be built on a set of n disks of ply ∆, such
that given a point in each disk a Delaunay triangulation can be found in O(n log ∆).

1.2 Problem Statement
We define our problem as a game played by a player and by an adversary over continuous,
unbounded time. Let e1, . . . , en be a set of entities moving in Rd where each ei is associated
with a fixed (but unknown to the player) trajectory fi : R≥0 → Rd with a maximum speed
of 1 per unit of time. The initial location fi(0) of each trajectory is known to the player.
The adversary meanwhile has full knowledge of each fi and has unlimited computation.

At any time t the player may query an entity ei to (instantaneously) learn its exact
location fi(t). Let τ be the last time at which ei was queried, or 0 if ei has never been
queried. At time t we can infer ei must be located in a closed ball of radius t− τ centered at
fi(τ). Call this ball Bi(t) the uncertainty region of ei at time t.

We can now formulate the online ply maintenance problem. Given a ply bound ∆ and
a starting location fi(0) and location oracle fi for each entity, the online ply maintenance
problem is to determine which points the player should query at which times, such that the
ply of the uncertainty regions never exceeds ∆ and the total number of queries is minimized.
For simplicity we require that all problem instances are feasible; that is, there is never a time
when more than ∆ of the entities are present at the same point.

∗ Partially supported by the Dutch Research Council (NWO); 614.001.504.
1 Points given by a set of regions, each region contains a point but its exact position is unknown; e.g. [9]

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

100:2 Online Ply Maintenance

This is an online problem; the player may use information gained from past queries to
decide which queries to make next. There is also no finishing time for the problem, the
player must provide a strategy that works for any time and the number of queries must be
minimized at all times.

Since a large number of queries may be required regardless of strategy, the player’s
performance is evaluated against the adversary, who plays a copy of the same game except
with full knowledge of the fi. The adversary must still contend with growing uncertainty
regions and must make queries to maintain low ply, but knows the result of every query
beforehand and may plan accordingly.

Define cost(t) as the number of queries required by an algorithm for the player by time
t and cost∗(t) the number of queries required by the adversary. We say the algorithm has
competitive ratio α if cost(t) ≤ α · cost∗(t) for all t > 0.

For simplicity of exposition, we will allow the ply to exceed ∆ instantaneously, so long as
queries are made at the same instant which return the ply to ∆ or less. This allows queries
to be made at events in time rather than ε time before them. We also observe that these are
the only kinds of queries made by any efficient algorithm.

I Observation 1. Any query made on an entity at a time when it is not contributing to the
ply can be replaced with a query on the same entity at a later time when it is contributing
to the ply, without requiring that any additional queries are made.

As a corollary, any efficient algorithm will wait until the ply instantaneously exceeds ∆
and make a sequence of queries to reduce the ply, then wait until the ply exceeds ∆ again.
Thus the continuous problem is best understood as a series of events and the queries which
are made at each event, which is how we will discuss the problem from now on. It is worth
noting that two different algorithms will not necessarily have the same events.

1.3 Prior Work

This problem statement is inspired by Evans et al. [5], who study a similar problem. Their
problem has the same setting, except only one query can be made per unit of time. Instead of
minimizing the number of queries, the ply must be minimized. It is not feasible to maintain
optimal ply at all times, hence Evans et al. must fix a target time τ and minimize the ply at
that time, once or repeating every τ time interval. Evans et al. give an O(1)-approximation
for large τ , an approximation for small τ , and matching lower bounds. They also show
the adversary’s problem is NP-hard. Busto et al. [2] give an extension. Since Evans et al.
demonstrated it is not possible to be competitive at every time step, Busto et al. instead
consider minimizing the maximum over a given time interval. They provide an algorithm
which is competitive to within a constant factor.

Our result is a natural pair to Evans et al. and Busto et al.. We are able to guarantee a
maximum ply (and thus bound the performance of any subsequent ply-dependent algorithm),
and our guarantee holds at any (continuous) point in time, not just at fixed time intervals or
over an interval. On the other hand we may use many more queries.

Acknowledgement must be made to the work of Kahan [7, 8]. Kahan introduces a
model called data in motion which is similar to our own, although it is aimed at a different
application. Kahan considers the time and number of queries required to compute some
geometric property (e.g. the closest pair) of the entities at various points in time.

V. Ashvinkumar, P. Eades, M. Löffler and S. Umboh 100:3

Figure 1 Some pennies arranged along a grid and the resulting penny graph. Note the slight
divergence from the grid, which is sometimes required by Cerioli et al. for parity reasons.

2 Optimal Play is NP-hard

In this section we will show that the adversary’s problem of deciding which entities to query is
NP-hard, even given full knowledge of the trajectories beforehand. We only need to consider
the problem of deciding which queries to make at the very first time the ply exceeds ∆ = 1
to see this behaviour. We will perform a reduction from vertex cover.

I Lemma 2.1. Given a set of n equal-radius disks in the plane, possibly intersecting at
tangent points but not overlapping, the problem of determining if it is possible to remove k
disks such that the remaining disks are pairwise disjoint is NP-complete.

A penny graph, sometimes called a unit coin graph, is a graph which can be realized as
the intersection graph of a set of unit disks in the plane which only intersect at tangents.

Cerioli et al. [3] show that vertex cover is NP-hard, even on penny graphs. However our
penny graph will be specified by disk centres, not edges and vertices. A graph representation
can be easily computed from the disk centres [11], but the converse is not true [4].

Vertex cover is NP-hard even for planar graphs of degree no more than 3 [6], and such
graphs can be embedded on a polynomial-sized grid with rectilinear edges [10]. Given such a
graph G, embedded onto a grid, Cerioli et al. show how pennies can be laid out such that
solving vertex cover on the resulting penny graph solves vertex cover on G. Hence vertex
cover on penny graphs is NP-hard even if the disk centres are known.

Choosing which disks to remove such that no disks intersect is exactly the problem of
computing a vertex cover of the intersection graph, hence Lemma 2.1 follows. Given a
instance of the unit disk-removing problem we can construct an instance of ply maintenance
with a stationary entity at the center of each disk. After one unit of time the disks will
intersect at tangents, and the adversary must decide a minimum number of disks to query to
remove the intersections. By Lemma 2.1 even this first decision is NP-hard.

3 An Optimal Algorithm

We now describe a simple algorithm which achieves a competitive ratio of ∆ + 1, which we
will later show to be optimal for deterministic algorithms. Our algorithm waits until there
is a point with ply at least ∆ + 1 and then queries every entity whose uncertainty region
contains that point. If there are multiple points with ply at least ∆ + 1, say p and q, they
are resolved in sequence; if querying all the entities intersecting p reduces the ply of q to ∆
or less, then it is not necessary to query all the entities intersecting q.

EuroCG’21

100:4 Online Ply Maintenance

We will prove our algorithm has a competitive ratio of ∆ + 1 using a charging argument.
We charge every query we make to a query made by the adversary, and ensure we never
charge more than ∆ + 1 of our queries to a single query of the adversary.

Consider a time when our algorithm has ply Λ > ∆. If the adversary must make any
queries at the same time we imagine for simplicity that the adversary makes them first and
then our algorithm makes its queries second.

Consider the first point of ply Λ that our algorithm must resolve. At least Λ−∆ of the
uncertainty regions that contribute to the ply of this point must be strictly smaller for the
adversary than they are for our algorithm. Otherwise the point would have ply more than ∆
for the adversary, and since the adversary has already made its queries it cannot have any
point of ply more than ∆. We will call this set of queries made by the adversary Q.

We charge the Λ queries our algorithm makes to adversary’s queries Q. By simple algebra
Λ/(Λ−∆) ≤ ∆ + 1 and so no query in Q has more than ∆ + 1 queries charged to it.

Observe any query the adversary makes can only be charged to once. A query can only be
charged to by a later query on an entity where the adversary has a strictly larger uncertainty
region than our algorithm. When we query an entity its uncertainty region is reset to a single
point, hence it will have a smaller or equal uncertainty region to the adversary. Only when
the adversary queries that entity again will it be eligible to receive a charge, but then there
will be a new query made by the adversary to pay for the charge.

Since we can always charge our algorithm’s prior queries to an earlier query made by the
adversary, and we have ensured there is no over-charging, we can be sure that at no time has
our algorithm made more than ∆ + 1 times the number of queries made by the adversary.
Since our algorithm trivially always maintains ply, the theorem follows.

I Theorem 3.1. Our algorithm is (∆ + 1)-competitive.

4 Lower Bound

In this section we give a lower bound of 2 for ∆ = 1, matching the competitive ratio given in
the previous section. The lower bound may be extended to ∆ + 1 for ∆ ≥ 1 but this has
been omitted due to space constraints.

Consider an instance in R with two entities, p and q, initially located at −1 and 1. The
instance includes an arbitrary sequence of moves m1,m2, . . . ∈ {left, right}, known to the
adversary but not the player. Between t = i and t = i+ 1 both entities move at unit speed
in the direction mi. Because the entities are always distance 2 apart, queries will be needed
at least once per unit of time. We will show in the worst case the player must make exactly
two queries per unit of time, while the adversary must only make one.

We first consider the player. At t = 1 the uncertainty regions will intersect and the player
must make a query. By Observation 1 it is never beneficial to query an entity early, so the
player will not make any query before t = 1. Imagine both entities have moved left. The
player has no way to distinguish the entities and must query one arbitrarily, in the worst case
they will choose q. Since q started at 1 and moved left it is now at 0, inside the uncertainty
region of p, so the ply remains 2. Hence the player must also query p to reduce the ply. Now
each entity is represented by a single point, at distance 2 apart. This is the same situation
we began with (shifted sideways) and so the same argument can be repeated at t = 2 and so
on. Therefore, in the worst case, the player must make two queries per unit time.

We now show the adversary must only make one query per unit of time. The adversary
will not be querying every point each unit of time, so uncertainty regions may grow arbitrarily
large. We will say the problem has a neutral state at some time if one entity is represented

V. Ashvinkumar, P. Eades, M. Löffler and S. Umboh 100:5

ti
m
e

worst case optimal

Figure 2 In the worst case the player needs two queries per unit of time, while the adversary
never makes a wasted query and only ever needs one.

by a single point and the other uncertainty region is at distance 2. For illustration say p is
represented by a point at 1 and the uncertainty region for q extends from −1 in the negative
direction. Clearly the state at t = 0 is neutral. Unit time after a neutral state the two
uncertainty regions will now intersect at 0 and a query must be made. The entity p is now
either at 0 or at 2. If it is at 2 then the adversary queries p and reduces it to a single point
at 2, since the uncertainty region for q ends at 0 this is a neutral state. If p is at 0 then by
construction q must be at −2. The adversary queries q, since the uncertainty region for p is
[0, 2] this is a neutral state. Therefore one unit of time after a neutral state the adversary
can spend one query to return to a neutral state, and so the adversary need only make one
query per unit of time. Together these statements give a lower bound on the competitive
ratio of any algorithm of 2, for the case when ∆ = 1. See Figure 2 for an illustration.

Finally consider allowing the player to make a randomized decision of which entity
to query. By Yao’s principle [12] we may instead consider the best expected cost of any
deterministic algorithm on a random instance. We define our random instance as above,
except the sequence of left and right moves is chosen uniformly at random. As above, any
deterministic algorithm has no information to distinguish the entities and must arbitrarily
choose one to query. Half the time it will choose correctly, the other half of the time it must
immediately make a second query. Therefore on average the algorithm must make 1.5 queries
per unit of time. By Yao’s principle this is a lower bound on the competitive ratio for any
randomized algorithm. A similar argument gives a lower bound of 1

2 ∆ + 1 in the general case.

References
1 Kevin Buchin, Maarten Löffler, Pat Morin, and Wolfgang Mulzer. Preprocessing imprecise

points for delaunay triangulation: Simplified and extended. Algorithmica, 61(3):674–693,
2011. doi:10.1007/s00453-010-9430-0.

2 Daniel Busto, William S. Evans, and David G. Kirkpatrick. Minimizing interference poten-
tial among moving entities. In Timothy M. Chan, editor, Proceedings of the Thirtieth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, pages 2400–2418. SIAM, 2019. doi:10.1137/1.9781611975482.
147.

3 Márcia R Cerioli, Luerbio Faria, Talita O Ferreira, and Fábio Protti. On minimum clique
partition and maximum independent set on unit disk graphs and penny graphs: complexity
and approximation. Electronic Notes in Discrete Mathematics, 18:73–79, 2004.

4 Peter Eades and Sue Whitesides. The logic engine and the realization problem for nearest
neighbor graphs. Theor. Comput. Sci., 169(1):23–37, 1996. doi:10.1016/S0304-3975(97)
84223-5.

5 William S. Evans, David G. Kirkpatrick, Maarten Löffler, and Frank Staals. Competitive
query strategies for minimising the ply of the potential locations of moving points. In

EuroCG’21

100:6 Online Ply Maintenance

Guilherme Dias da Fonseca, Thomas Lewiner, Luis Mariano Peñaranda, Timothy M. Chan,
and Rolf Klein, editors, Symposuim on Computational Geometry 2013, SoCG ’13, Rio de
Janeiro, Brazil, June 17-20, 2013, pages 155–164. ACM, 2013. doi:10.1145/2462356.
2462395.

6 Michael R Garey and David S. Johnson. The rectilinear steiner tree problem is np-complete.
SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

7 Simon Kahan. A model for data in motion. In Cris Koutsougeras and Jeffrey Scott Vitter,
editors, Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-
8, 1991, New Orleans, Louisiana, USA, pages 267–277. ACM, 1991. doi:10.1145/103418.
103449.

8 Simon H. Kahan. Real-time processing of moving data. PhD thesis, University of Washing-
ton, 1991.

9 Maarten Löffler and Marc J. van Kreveld. Largest and smallest convex hulls for imprecise
points. Algorithmica, 56(2):235–269, 2010. doi:10.1007/s00453-008-9174-2.

10 Leslie G Valiant. Universality considerations in vlsi circuits. IEEE Transactions on Com-
puters, 100(2):135–140, 1981.

11 Remco Veltkamp. Closed object boundaries from scattered points, volume 885. Springer
Science & Business Media, 1994.

12 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In 18th Annual Symposium on Foundations of Computer Science,
Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 222–227. IEEE
Computer Society, 1977. doi:10.1109/SFCS.1977.24.

Hypergraph Representation via Axis-Aligned
Point-Subspace Cover
Oksana Firman1 and Joachim Spoerhase1

1 Universität Würzburg, Germany
firstname.lastname@uni-wuerzburg.de

Abstract
We propose a new representation of k-partite, k-uniform hypergraphs (which we call k-hypergraphs
for short) by a finite set P of points in Rd and a parameter ` ≤ d − 1. Each point in P is covered
by k =

(
d
`

)
many axis-aligned affine `-dimensional subspaces of Rd, which we call `-subspaces for

brevity. We interpret each point in P as a hyperedge that contains each of the covering `-subspaces
as a vertex. The class of (d, `)-hypergraphs is the class of k-hypergraphs that can be represented in
this way, where k =

(
d
`

)
. The resulting classes of hypergraphs are fairly rich: Every k-hypergraph is

a (k, k − 1)-hypergraph. On the other hand, (d, `)-hypergraphs form a proper subclass of the class
of all

(
d
`

)
-hypergraphs for ` < d − 1.

We are able to give a natural structural characterization of (d, `)-hypergraphs based on vertex
cuts. This characterization leads to a polynomial-time recognition algorithm that decides for a
given

(
d
`

)
-hypergraph whether or not it is a (d, `)-hypergraph and that computes a representation

if existing. We assume that the dimension d is constant and that the partitioning of the vertex
set is prescribed. For the sake of presentation, we describe in this paper our result for the case
of (d, 1)-hypergraphs, that is, for covering points with axis-parallel lines. This special case can be
naturally extended to the general case.

1 Introduction

Motivation and Related Work. Geometric representations of graphs or hypergraphs is wide
and intensively studied field of research. Well-known examples are geometric intersection or
incidence graphs with a large body of literature [12, 5, 13]. The benefit of studying geometric
graph representations is two-fold. On the one hand, knowing that a given graph can be
represented geometrically may give new insights because the geometric perspective is often
more intuitive. On the other hand, giving a graphical characterization for certain types of
geometric objects may help pin down the essential combinatorial properties that can be
exploited in the geometric setting.

One example of this interplay is the study of geometric set cover and geometric hitting
set problems in geometric optimization [2, 14, 3]. In this important branch of computational
geometry, incidence relations of two types of geometric objects are studied where one object
type is represented by vertices of a hypergraph whose hyperedges are, in turn, represented by
the other object type. In this representation a vertex is contained in a hyperedge if and only
if the corresponding geometric objects have a certain geometric relation such as containment
or intersection. The objective is to find the minimum number of nodes hitting all hyperedges1.
In this line of research, the goal is to exploit the geometry in order to improve upon the
state of the art for general hypergraphs. This is known to be surprisingly challenging even in
many seemingly elementary settings.

1 For the sake of presentation, we use here the representation as hitting set problem rather than the
equivalent and maybe more common geometric set cover interpretation.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

68:2 Hypergraph Representation via Point Subspace Cover

For example, in the well-studied point line cover problem [8, 10] we are given a set of
points in the plane and a set of lines. The goal is to identify a smallest subset of the lines to
cover all the points. This problem can be cast as a hypergraph vertex cover problem. Points
can be viewed as hyperedges containing the incident lines as vertices. The objective is to
cover all the hyperedges by the smallest number of vertices.

It seems quite clear that point line cover instances form a heavily restricted subclass of
general hypergraph vertex cover. For example, they have the natural intersection property
that two lines can intersect in at most one point. However, somewhat surprisingly, in terms of
approximation algorithms, no worst-case result improving the ratios for general hypergraph
vertex cover [1, 7, 4] is known. In fact, it has been shown that merely exploiting the
above intersection property in the hypergraph vertex cover is not sufficient to give improved
approximations [11]. Giving a simple combinatorial characterization of the point line cover
instances seems to be an intriguing task.

In this paper, we study a representation of hypergraphs that arises from a natural variant
of point line cover where we want to cover a given set P of points in Rd by axis-parallel lines.
While the axis-parallel case of point line cover has been considered before [6] the known
algorithms do not improve upon the general case of hypergraph vertex cover [1, 4]. More
generally, we investigate the generalization where we are additionally given a parameter
` ≤ d− 1 and we would like to cover P by axis-aligned affine `-dimensional subspaces of Rd,
which we call `-subspaces. The resulting classes of hypergraphs is fairly rich as any k-partite
k-uniform hypergraph (i.e. a hypergraph with a partition of vertices into k parts such that
each hyperedge contains at most one vertex of each type and together exactly k vertices)
can be represented by a set of points in Rk to be covered by (k− 1)-subspaces. On the other
hand for ` < d− 1 we obtain proper subclasses of all k-hypergraphs.

We remark that our representation does not exploit the geometry of the Euclidean Rd.
Rather, the representation can also be considered on a hypercube Xd for some set X where
subspaces are subsets of Xd fixing certain coordinates. We feel that the usage of the geometric
language is more intuitive.

Our Contribution To the best of our knowledge, we are the first to study the representation
of k-hypergraphs via axis-aligned point subspace cover instance in this generality. Our main
insight is that the axis-aligned case of point subspace cover allows for a natural, combinatorial
characterization contrasting what is known for the non-aligned case. The characterization is
based on vertex cuts and can be leveraged to obtain a polynomial time recognition algorithm
for such hypergraphs assuming the dimension d is a constant and that we are given the
partition of the vertices (which is NP-hard to compute for k ≥ 3 [9]). We believe that it is
an interesting research direction to exploit these combinatorial properties in order to obtain
improved results for various optimization problems in (d, `)-hypergraphs such as hypergraph
vertex cover or hypergraph matching.

2 Point Line Cover and Hypergraph Representation

For the sake of an easier presentation, we describe the result for the special case of point
line covers. We give later some intuition how to generalize the results to high-dimensional
axis-aligned affine subspaces.

Let P be a finite set of points in Rd. Then we define the hypergraph GP as follows. The
vertex set of GP is the set of axis-parallel lines containing at least one point in P . The
hyperedges in GP correspond to the points in P where the hyperedge corresponding to some

O. Firman and J. Spoerhase 68:3

y1

y2

y3

y4

x1

x2

x3

`y1 `y2 `y3 `y4

`x3

`x2

`x1

(a)

`x1

`x3

`y1 `y2

`x2

`z2 `z3
`z1

`y3

X Y Z
1

2

3

(b)

Figure 1 A graph (a) and a hypergraph (b) and their representations in 2D and 3D, respectively.

p ∈ P contains the k axis-parallel lines incident on p as vertices. Note that GP is k-partite
and k-uniform (that is GP is a k-hypergraph) where the k groups of the partition correspond
to the k dimensions.

Our main task is to decide for a given hypergraph G whether there is a point line cover
instance P such that G and GP are isomorphic. We say that G is represented by P and,
thus, representable. We assume that the partition of G into k groups is given.

More formally, we want to compute for a given k-hypergraph G = (V1 ∪ V2∪, . . . ,∪Vk, E)
a point line cover instance P such that each e = (v1, . . . , vk) ∈ E corresponds to some
pe = (xe

1, . . . , xe
k) ∈ P and where vi ∈ Vi corresponds to the line lvi that is parallel to the

ith coordinate axis and contains pe, that is, for all j 6= i, we fix the coordinates xe
j , j 6= i

whereas the ith coordinate is free, see Fig. 1 for examples.
We remark that every bipartite graph is representable in R2 because any adjacency matrix

can be represented by a grid-like construction as shown in Fig. 1a. Therefore, from now on
we consider the case k ≥ 3.

3 Characterization of Representable Hypergraphs

We use the notation [k] = {1, . . . , k} for k ∈ N. Let G = (V = V1 ∪ · · · ∪ Vk, E) be a
k-hypergraph.

I Definition 3.1. Let s, t ∈ V . An s–t path is a sequence of vertices s = v1, . . . , vr = t such
that vi and vi+1 are both contained in some hyperedge e ∈ E for all i ∈ [r − 1]. Similarly, if
e, e′ ∈ E then an e–e′ path is a v–v′ path such that v ∈ e and v′ ∈ e′.

I Definition 3.2 (Vertex separability). For a given k-hypergraph G two distinct vertices v

and v′ from the same group Vi, i ∈ [k] are separable if there exists some j ∈ [k] with j 6= i

such that every v–v′ path contains a vertex in Vj . (Informally, removing Vj from the vertex
set and from the edges separates v and v′.) A hypergraph is called vertex-separable if every
two vertices from the same group are separable.

I Definition 3.3 (Edge separability). For a given k-hypergraph G two distinct hyperedges e

and e′ are separable if there exists some j ∈ [k] such that every e–e′ path contains a vertex
in Vj . A hypergraph is called edge separable if every two hyperedges are separable.

Note that any pair of hyperedges sharing two or more vertices are not separable. Therefore,
edge-separable hypergraphs do not contain such hyperedge pairs.

EuroCG’21

68:4 Hypergraph Representation via Point Subspace Cover

`u

`v

`u
′

V2V1 V3

u u′

v

v′

`v
′

`v
′

Figure 2 A hypergraph (on the left) that is edge-separable, but not vertex-separable (the vertices
from V2 are not separable). The line `v′ (on the right) must simultaneously intersect `u and `u′ and
therefore must be equal to `v. A contradiction.

I Lemma 3.4. Vertex separability implies edge separability.

Proof. Assume that a given k-hypergraph G is not edge-separable. This means that there
are two distinct hyperedges e and e′ that are not separable. Then ∀j ∈ [k] there is an e–e′

path that does not contain a vertex from Vj . Because e and e′ are distinct there are distinct
vertices v and v′ with v ∈ e and v′ ∈ e′ from the same group Vi for some i ∈ [k]. Now, for
each j ∈ [k], j 6= i there exists an e–e′ path Pj that does not contain any vertex from Vj .
But then v, Pj , v′ forms a v–v′ path not containing any vertex from Vj . This means that G

is not vertex-separable. J

The converse is not true, see Fig. 2. In the instance depicted, the two red edges, for
example, are separated by removing the orange vertex part V1 and the two black edges are
separated by removing the green vertex part V3.

I Definition 3.5. Let G be a k-hypergraph. For each i ∈ [k] we construct a graph Gi =
(E, Ei) as follows: e and e′ ∈ E are adjacent if and only if e and e′ have a common vertex in
a group Vj with j 6= i.

I Theorem 3.6. A k-hypergraph G is representable if and only if it is vertex-separable.

Proof. We construct for each hyperedge e a point pe ∈ Rk and for each vertex vi ∈ Vi with
i ∈ [k] a line lvi ⊆ Rk that is parallel to the xi-axis. We do this as follows. For G we
construct the graphs Gi, i ∈ [k]. For each graph Gi we consider the connected components
of the graph and assign to each of them a unique (integer) value.

Now, if pe
i is the value of the connected component in Gi that contains e then we let the

point pe = (pe
1, . . . , pe

k) represent the hyperedge e, see Fig. 3 for an example.
Recall that any line parallel to the xi-axis can be defined by fixing its xj-coordinate for

all j 6= i, while leaving xi free. Now, if the hyperedge e = {v1, . . . , vk} is represented by
pe = (pe

1, . . . , pe
k) then for each i ∈ [k], the line lvi that represents the vertex vi is defined

by coordinates pe
j , j 6= i while leaving the xi-coordinate free, see Fig. 3. It is important to

note, that the representation lvi is well-defined although vi may be contained in multiple
hyperedges in G. This follows from the fact that all the hyperedges containing vi belong
to the same connected component in Gj , j ∈ [k], j 6= i because each pair of them is joined
by some edge in Gj corresponding to vi and in particular these hyperedges form a clique.
Therefore, there is no disagreement in the xj-coordinate where j 6= i. Hence, we uniquely
define the coordinates that determine a line.

O. Firman and J. Spoerhase 68:5

V1 V2 V3

G1 G2 G3

1

2

2 1

1

1 1

1

2

pe1 = (1, 1, 1)

lv
1
1 = (·, 1, 1)

lv
1
2 = (1, ·, 1)

lv
1
3 = (1, 1, ·)

pe2 = (2, 1, 1)

lv
2
2 = (2, ·, 1)

lv
2
3 = (2, 1, ·)

pe3 = (2, 1, 2)

lv
3
1 = (·, 1, 2)

lv
3
2 = (2, ·, 2)

e1

e2

e3
lv

2
1 = (·, 1, 1)

lv
3
3 = (2, 1, ·)

the same line

the same line

Figure 3 The graphs G1, G2, G3 and the coordinates of the points and lines corresponding to the
hyperedges and vertices. The dots instead of coordinates mean that those coordinates are free.

(⇐) Assume that G is vertex-separable. By the construction of the point line cover
instance we have:

every point pe is in fact covered by the lines lv1 , . . . , lvk where e = {v1, . . . , vk}, because
by construction every line lvi and point pe have the same xj-coordinate with j 6= i.
∀v 6= v′ ∈ V it holds lv 6= lv′ . This is obviously true if vertices belong to different groups,
because then the free coordinate of v is fixed for v′ and vice versa. If v, v′ ∈ Vi for some
i ∈ [k] then, by vertex separability, there exists j 6= i such that v and v′ are not connected
in graph Gj and get different xj-coordinates. So they represent distinct lines.
∀e 6= e′ ∈ E it holds pe 6= pe′ . Indeed, by Lemma 3.4, G is edge-separable and by
definition of edge separability distinct hyperedges are not connected in at least one graph
Gi and get different xi-coordinates. So they represent distinct points.

By the above construction, for every incident vertex-hyperedge pair v ∈ V, e ∈ E, that is,
v ∈ e, the corresponding geometric objects lv and pe are incident as well. We claim that if v

and e are not incident, that is, v /∈ e then lv and pe are not incident as well. This is because
every point pe is already incident to precisely k lines lv by construction, because the lines lv

are pairwise distinct, and because pe cannot be incident on more than k axis-parallel lines.
Thus we constructed a point line cover instance that represents the hypergraph G and this
means that G is representable.

(⇒) Assume that G is not vertex-separable but that it has a point line cover representation.
This means that it contains at least two distinct vertices v and v′ from the same group
Vi that are not separable. Then for each group Vj with j 6= i, there exists a v–v′ path
v = v1, . . . , vr = v′ such that vt /∈ Vj for each t ∈ [r]. All lines lvt with t ∈ [r] that represent
the vertices v1, . . . , vr lie on the same hyperplane Hj perpendicular to the xj-axis. This
is because successive line pairs are joined by a common point (representing the hyperedge
containing both) and since none of these lines is parallel to the xj-axis and so the xj-
coordinate stays fixed. Since this holds for all j ∈ [k], j 6= i, the lines lv and lv′ lie in the
intersection

⋂
j 6=i

Hj . But the intersection of such hyperplanes is a single line. This contradicts

that v and v′ correspond to the distinct lines. J

4 Further Results and Open Questions.

In the full version of the paper, we also present a polynomial time algorithm to compute for
a vertex separable hypergraph a point line cover representation. The algorithm implements
the idea used in Theorem 3.6. We are also able to generalize the result from point line covers

EuroCG’21

68:6 Hypergraph Representation via Point Subspace Cover

to point subspace covers. That is, we provide a characterization of the more general case of
(d, `)-hypergraphs along with a recognition algorithm for constant d.

We conclude with some open questions. Can we leverage our combinatorial characteriza-
tions to give improved algorithms for classical optimization problems such as hypergraph
vertex cover or hypergraph matching for (d, `)-hypergraphs? What is the relation of such
graphs to other more well-studied graph classes? Is there a polynomial recognition algorithm
also for non-constant d? What about point line cover in the plane with a fixed number of
possible directions of the lines?

References
1 Ron Aharoni, Ron Holzman, and Michael Krivelevich. On a theorem of lovász on covers in

tau-partite hypergraphs. Comb., 16(2):149–174, 1996. doi:10.1007/BF01844843.
2 Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite vc-

dimension. Discret. Comput. Geom., 14(4):463–479, 1995. doi:10.1007/BF02570718.
3 Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted capac-

itated, priority, and geometric set cover via improved quasi-uniform sampling. In Yuval Ra-
bani, editor, Proc. Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’12), pages 1576–1585. SIAM, 2012. doi:10.1137/1.9781611973099.125.

4 Vasek Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4(3):233–
235, 1979. doi:10.1287/moor.4.3.233.

5 H. S. M. Coxeter. Self-dual configurations and regular graphs. Bull. Amer. Math. Soc.,
56(5):413–455, 09 1950.

6 Daya Ram Gaur and Binay Bhattacharya. Covering points by axis parallel lines. In Proc.
23rd European Workshop on Computational Geometry (EuroCG’07), pages 42–45. Citeseer,
2007.

7 Venkatesan Guruswami and Rishi Saket. On the inapproximability of vertex cover on
k-partite k-uniform hypergraphs. In Samson Abramsky, Cyril Gavoille, Claude Kirch-
ner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, Proc. 37th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP’10), volume 6198
of Lecture Notes in Computer Science, pages 360–371. Springer, 2010. doi:10.1007/
978-3-642-14165-2_31.

8 Refael Hassin and Nimrod Megiddo. Approximation algorithms for hitting objects with
straight lines. Discret. Appl. Math., 30(1):29–42, 1991. doi:10.1016/0166-218X(91)
90011-K.

9 Lucian Ilie, Roberto Solis-Oba, and Sheng Yu. Reducing the size of NFAs by using equiva-
lences and preorders. In Alberto Apostolico, Maxime Crochemore, and Kunsoo Park, edi-
tors, Combinatorial Pattern Matching, pages 310–321. SV, 2005. doi:10.1007/11496656_
27.

10 Stefan Kratsch, Geevarghese Philip, and Saurabh Ray. Point line cover: The easy ker-
nel is essentially tight. In Chandra Chekuri, editor, Proc. 25th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’14), pages 1596–1606. SIAM, 2014. doi:
10.1137/1.9781611973402.116.

11 V. S. Anil Kumar, Sunil Arya, and H. Ramesh. Hardness of set cover with intersection 1. In
Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors, Proc. International Colloquium
on Automata, Languages and Programming (ICALP’00), volume 1853 of Lecture Notes in
Computer Science, pages 624–635. Springer, 2000. doi:10.1007/3-540-45022-X_53.

12 Terry A. McKee and F. R. McMorris. Topics in Intersection Graph Theory. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, 1999.

O. Firman and J. Spoerhase 68:7

13 Tomaž Pisanski and Milan Randić. Bridges between geometry and graph theory. In in
Geometry at Work, C.A. Gorini, ed., MAA Notes 53, pages 174–194. America.

14 Kasturi R. Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In
Leonard J. Schulman, editor, Proc. 42nd ACM Symposium on Theory of Computing
(STOC’10), pages 641–648. ACM, 2010. doi:10.1145/1806689.1806777.

EuroCG’21

Minimizing the Maximum Interference in Dual
Power Sensor Networks
Aviad Baron

Department of Computer Science, Ben Gurion University, Beer-Sheva 84105, Israel
baronav@post.bgu.ac.il

Abstract
Let P be a set of n points, representing transmitters/receivers. In the dual range assignment

problem, we need to assign one of two ranges rl and rh to each point in P , such that the induced
communication graph is either connected (in the symmetric model) or strongly connected (in
the asymmetric model) and in addition some value is optimized. In this paper, we optimize the
interference, assuming the asymmetric model. More precisely, the interference of a node in the
induced directed communication graph is its indegree, and the interference of the graph is the
maximum interference of a node of the graph. We prove that this version of the dual range
assignment problem is NP-hard in the plane, and present an almost optimal solution on the line.

1 Introduction

Given a set P of n points in the plane, a dual range assignment is defined to be a function
ρ : P → {rh, rl}, where rh and rl represent high and low ranges, respectively. The
communication graph in the asymmetric model is Gρ = (P,E), where E = {(p, q) | ρ(p) ≥
|pq|}, where |pq| is the Euclidean distance between p and q. Given a communication graph
Gρ = (P,E), in the receiver-centric interference model, the interference of a point p, denoted
by RI(p), is defined as the number of points in P \ {p} whose transmission range covers
p, i.e., RI(p) = |{q ∈ P \ {p} : |pq| ≤ ρ(q)}|. The receiver interference of Gρ, denoted by
RI(Gρ), is define as maxpi∈P {RI(pi)}. In the Dual Min-Max Interference problem, the goal
is to find a range assignment ρ to the points of P such that the communication graph Gρ
induced by P and ρ is strongly connected, and RI(Gρ) is minimized.

1.1 Problem background
Limiting the interference between nodes in a sensor network is fundamental for the energy-
efficiency of the network. Let P be a set of sensors in the plane. Each sensor p ∈ P is
assigned a transmission range ρ(p). A sensor q can receive a signal from a sensor p if and
only if q lies in the transmission area of p. There are two common ways to model the
induced communication graph: symmetric and asymmetric. In the symmetric model the
communication graph contains an edge between two points p and q if and only if both p and
q lie in the transmission range of the other point; see Figure 1(b). For a valid assignment
of transmission ranges, we require that the communication graph is connected. In the
asymmetric model, the communication graph is directed, and there is an edge from p to q if
and only if q lies in the transmission range of p; see Figure 1(a). In this case, we say that
the assignment is valid if the communication graph is strongly connected.

In both the symmetric and the asymmetric case, the receiver centric interference of a
point, denoted by RI(p), is defined as the number of transmission ranges that it lies in; see
Figure 2.

In the one-dimensional case, i.e., when the points are located on a line, Von Rickenbach
et al. [10] showed that one can always construct a network with O(

√
n) interference, in

the symmetric model. Moreover, they showed that there exists an instance that requires
37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

100:2 Minimizing the Maximum Interference in Dual Power Sensor Networks

(a)

(b)

Figure 1 Illustration of asymmetric and symmetric models.

Ω(
√
n) interference, they gave an O(n1/4) approximation algorithm for this case. Tan et

al. [9] proved that the optimal network has some interesting properties and, based on these
properties, one can compute a network with minimum interference in sub-exponential time.
Brise et al. [1] extend this result for the asymmetric model.

In the two-dimensional case, the problem has been shown to be NP-hard [1, 2]. Halldórs-
son and Tokuyama [5] showed how to construct a network with O(

√
n) interference for

the symmetric model. For the asymmetric model, Fussen et al. [6] showed that one can
always construct a network with O(logn) interference they showed that this algorithm is
asymptotically optimal.
In this paper, the problem of minimizing the maximum receiver interference is considered
where the transmission range of each vertex is limited to only two power levels i.e., high and
low. Let rh and rl denote the transmission ranges of the high- and low-transmission powers,
respectively. Since assigning more wireless nodes with the high power level results in a larger
power consumption, the objective in the dual power assignment problem is equivalent to
minimizing the number of wireless nodes that are assigned high-transmission range rh and
the induced graph to be strongly connected. The dual power assignment (DPA) problem
was shown to be NP-hard[3, 8]. Rong et al [8] gave a 2-approximation algorithm, while
Carmi and Katz in [3] gave a 9/5- approximation algorithm and a faster 11/6-approximation
algorithm. Later, Chen et al. [4] proposed an O(n2) time algorithm with approximation
ratio of 7/4.

Aviad Baron 100:3

RI(a) = 2

RI(b) = 3

RI(c) = 2

RI(e) = 2

RI(d) = 1

e

d

c

b

a

Figure 2 Illustration of receiver interference

Our results: We study the Dual Min-Max Interference Problem. We show that the
problem is NP-complete for points in the plane. Then, when the points are located on a line,
we give an almost optimal solution.

2 Dual Min-Max Interference Problem in 2D

In this section, we prove that The Asymmetrical Dual Min-Max problem in 2D is NPC. Our
proof is based on [1] with a necessary modifications to the dual variant which make it much
simple and elegant.

I Theorem 2.1. The Dual Min-Max Interference Problem in 2D is NP-complete

Proof. Given a range assignment ρ, it is easy to verify in polynomial time whether the graph
induced by ρ is strongly connected and whether its maximum interference is bounded by a
given value k. This implies that our problem is in NP.

To prove hardness of Min-Max Problem in 2D, we show a polynomial time reduction
from the problem of deciding whether a grid graph G of maximum degree 3 contains a
Hamiltonian cycle, which is known to be NP-hard [7]. A grid graph is a graph whose vertex
set is a subset of the integer grid Z×Z, and two vertices are connected by an edge if and only
if the distance between them is equal to 1. Note that we may assume that G is connected,
otherwise there can be no Hamiltonian cycle.

Let G = (V,E) be a grid graph with maximum degree 3, where V = {v1, v2, . . . , vn}. We
construct in polynomial-time a set P of 8n points in the plane, and show that G contains
a Hamiltonian cycle iff there exists a range assignment ρ such that the induced graph is
strongly connected and RI(Gρ) is 5. Our reduction proceeds by replacing each vertex v of
the given grid graph G by a vertex gadget; see Figure 3.

The vertex gadget consists of 8 points, and it has three parts: (a) the main point M with
the same coordinates as v; (b) three connectors pr, pj , and pw located on the grid in distance
1/4 from M so that there is a connector for each edge in G that is incident to v (if v has
degree two, the third connector can be placed in any of the two remaining directions), and (c)
a set I, consisting of four points, the central point Ic lies at the remaining position in distance
1/4 from v, and the other three points are located in distance ε from Ic; see Figure 3(c). For
each vi we define the gadget of vi to be Pi = {Mi, pir , pij , piw , Iic , Iir , Iij , Iiw}. Finally, let
rh = 1/2, rl = 1/4, and k = 5.

EuroCG’21

100:4 Minimizing the Maximum Interference in Dual Power Sensor Networks

vi

Pi

pj

pw
1/4

1/4

1/4

1/4

M I

pr

(a) (b) (c)

Figure 3 (a) A grid graph G, (b) the resulting set P , and (c) a gadget Pi ⊆ P corresponds to
the vertex vi in G.

I Lemma 2.2. Let ρ be a range assignment of P such that Gρ is strongly connected and
RI(Gρ) is 5. Then for each vertex gadget, there exists exactly one connector p that is
assigned rh.

Proof. Since Gρ is strongly connected, there exists at least one connector that is assigned
rh to get connectivity. We notice that in case we assign rl for all points the interference of Ic
for each gadget is 4. Since there exists at least one connector that is assigned rh, we deduce
that the interference of Ic is 5. Now, because we assumed that RI(Gρ) is 5, we get that
exactly one connector p which assigned with rh. J

We now prove the correctness of the reduction. Suppose that G contains a Hamiltonian
cycle C. We compute a range assignment ρ to the points of P , such that Gρ is strongly
connected and RI(Gρ) is 5. Consider C as directed cycle, such that each vertex in C has
in-degree 1 and out-degree 1. For each vertex vi in G, we assign ranges to the points of Pi as
follows. We assign rl to the center M ,assign rh to one of the connectors (according to the
outgoing edge incident to vi in C), and assign rl to each of the other two connectors, and
to all points in set I. Since C is a Hamiltonian cycle, the graph induced by ρ is strongly
connected. Moreover, RI(Gρ) is 5.

Conversely, suppose that there exists a range assignment ρ to the points of P , such that
Gρ is strongly connected and RI(Gρ) is 5. By Lemma 2.2, exactly one connector p is assigned
rh and each of the other connectors p′ is assigned rl. We construct a Hamiltonian cycle C in
G as follows. For every two sets Pi and Pj , we add the edge (vi, vj) to C if and only if the
connector p ∈ Pi that is assigned rh covers a point in Pj . Thus, C is a subgraph of G, and,
since Gρ is strongly connected, C is connected. Moreover, since each set Pi has exactly one
point which reaches a point not in Pi, the degree of each vertex in C is exactly 2. Therefore,
C is a Hamiltonian cycle in G. J

3 Dual Min-Max Interference Problem in 1D

Let P be a set of n points located on a line and representing n transmitters-receivers. Let ρl
denote a dual range assignment in which each point p ∈ P is assigned ρ(p) = rl. Let G be the
graph induced by ρl. Let M1,M2, . . . ,M` be the strongly connected components of G sorted
from left to right. For each component Mi, we define the sets ML

i = {p ∈ Mi|∃q ∈ Mi−1
|pq| ≤ rh} and MR

i = {p ∈Mi|∃q ∈Mi+1 |pq| ≤ rh}.

Aviad Baron 100:5

We show that, if there exists a range assignment ρ : P → {rl, rh}, such that the
induced graph Gρ is strongly connected and RI(Gρ) = k, then one can compute a range
ρ′ : P → {rl, rh}, such that the induced graph Gρ′ is strongly connected and RI(Gρ′) ≤ k+2.
Thus, we can perform a binary search on the possible values of k. For each value k, we
use Algorithm 1 to decide whether there is a solution for this value. We return the range
assignment obtained by the smallest k for which the algorithm does not return FALSE.

Algorithm 1 Decision Algorithm(P, {rl, rh}, k)
1: ρl ← a dual range assignment in which each point p ∈ P is assigned ρ(p) = rl
2: Let M1,M2, . . . ,M` be the strongly connected components of G sorted from left to right
3: for i← 1 to ` do
4: if there exists a point p ∈ML

i ∩MR
i (if i = 1 then p ∈MR

i , and if i = ` then p ∈ML
i)

such that, by assigning rh to p, RI(p′) ≤ k, for each p′ ∈Mi then
5: assign rh to the leftmost point p satisfying the condition
6: update RI(p′) for each p′ ∈ P
7: else
8: if there exist two points p ∈ML

i and q ∈MR
i , such that, by assigning rh to p and

to q, RI(p′) ≤ k, for each p′ ∈Mi then
9: assign rh to the leftmost point in ML

i and to the leftmost point in MR
i that satisfy

the condition
10: update RI(p′) for each p′ ∈ P
11: else
12: return FALSE

Let ρ∗ be an optimal range assignment of P and let Gρ∗ be the graph induced by ρ∗. Let
ρ be the range assignment returned by Algorithm 1 and let Gρ be the graph induced by ρ.
In the following, we show that RI(Gρ) ≤ RI(Gρ∗) + 2.

I Observation 3.1. Let p be the rightmost point assigned ρ(p) = rh in Mi. Then, the
rightmost point in Mi that is assigned rh in ρ∗ is to the left of p.

I Observation 3.2. The number of points in Mi that are assigned rh in ρ∗ is at least as the
number of points in Mi that are assigned rh in ρ.

I Theorem 3.3. RI(Gρ) ≤ RI(Gρ∗) + 2.

Proof. Let p ∈ Mi and let q ∈ Mj , s.t. j > i, the most right point that assigned rh and
increase the receiver interference of p. The points which assigned rh in the components
between Mi and Mj in the optimal solution will also influence p, because if q reaches p then
they will reach p too; see Figure 4. From Observation 3.2 we get that for each component

p q

Mi Mj

Figure 4 The red point represent p, the blue represent q. The brown points represents our
algorithm rh assignments, and the black represent the OPT rh assignments.

between Mi and Mj the number of rh which increase the interference of the point p is less

EuroCG’21

100:6 Minimizing the Maximum Interference in Dual Power Sensor Networks

or equal to OPT. Now, let w ∈Mr, s.t. r < i, be the most left point assigned with rh and
increase p receiver interference. The rh assignments points in the components between Mp

and Mr in the optimal solution will also influence p, because if w reaches p then they will
reach p too; see Figure 5.

Mr Mi

pw

Figure 5 The red point represent p, the orange point represent r. The brown points represents
our algorithm rh assignments, and the black represent the OPT rh assignments.

From Observation 3.2 we get that for each component between Mr and Mi the number of
rh which increase the interference of the point p is less or equal to OPT. From Observations
3.1 and 3.2 we get that we have less or equal number of rh in component Mr that increase
the interference of p. Therefore, the only components which can have a points s.t. increase p
interference more them OPT is Mi and Mj . If the algorithm assign exactly one rh in Mj

or Mr then the claim that each of the components increase the interference by most one
than OPT is obvious. Now assume that our algorithm assign two rh in these components.
From Observation 3.2 we know that the number rh assignment by OPT will also be at
least two. We notice that since our Algorithm 1 assign two rh it means that do not exist a
points x ∈ML

i ∩MR
i and y ∈ML

j ∩MR
j . Therefore, in both algorithms we have one point

which assigned rh that belong to ML
i or ML

j and other that belong to MR
i or MR

j . We
conclude that any two rh assignments by our algorithm are not adjacent and at least one of
the rh assignment of the OPT algorithm was assigned to a point between the two points
assigned by our algorithm. If the two rh assignments in the algorithm increase p interference,
then at least one out of the two rh assignments by the OPT algorithm will also increase p
interference. Therefore, for each Mj and Mr rh assignments can increase the interference by
at most one more then OPT. J

References
1 Yves Brise, Kevin Buchin, Dustin Eversmann, Michael Hoffmann, and Wolfgang Mulzer.

Interference minimization in asymmetric sensor networks. In Jie Gao, Alon Efrat, Sándor P.
Fekete, and Yanyong Zhang, editors, Algorithms for Sensor Systems - 10th International
Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and
Distributed Robotics, ALGOSENSORS 2014, Wroclaw, volume 8847 of Lecture Notes in
Computer Science, pages 136–151. Springer, 2014. doi:10.1007/978-3-662-46018-4_9.

2 Kevin Buchin. Minimizing the maximum interference is hard. CoRR, abs/0802.2134, 2008.
URL: http://arxiv.org/abs/0802.2134, arXiv:0802.2134.

3 Paz Carmi and Matthew J. Katz. Power assignment in radio networks with two power
levels. Algorithmica, 47(2):183–201, 2007. doi:10.1007/s00453-006-1230-1.

4 Jian-Jia Chen, Hsueh-I Lu, Tei-Wei Kuo, Chuan-Yue Yang, and Ai-Chun Pang. Dual power
assignment for network connectivity in wireless sensor networks. In Proceedings of the
Global Telecommunications Conference, 2005. GLOBECOM ’05, St. Louis, Missouri, USA,
28 November - 2 December 2005, page 5. IEEE, 2005. doi:10.1109/GLOCOM.2005.1578450.

5 Magnús M. Halldórsson and Takeshi Tokuyama. Minimizing interference of a wireless ad-
hoc network in a plane. Theor. Comput. Sci., 402(1):29–42, 2008. doi:10.1016/j.tcs.
2008.03.003.

Aviad Baron 100:7

6 Thomas Moscibroda and Roger Wattenhofer. Minimizing interference in ad hoc and sensor
networks. In Suman Banerjee and Samrat Ganguly, editors, Proceedings of the DIALM-
POMC Joint Workshop on Foundations of Mobile Computing, Cologne, Germany, Septem-
ber 2, 2005, pages 24–33. ACM, 2005. doi:10.1145/1080810.1080816.

7 Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric problems related
to the traveling salesman problem. J. Algorithms, 5(2):231–246, 1984. doi:10.1016/
0196-6774(84)90029-4.

8 Yanxia Rong, Hongsik Choi, and Hyeong-Ah Choi. Dual power management for network
connectivity in wireless sensor networks. In 18th International Parallel and Distributed
Processing Symposium (IPDPS 2004), CD-ROM / Abstracts Proceedings, 26-30 April 2004,
Santa Fe, New Mexico, USA. IEEE Computer Society, 2004. doi:10.1109/IPDPS.2004.
1303267.

9 Haisheng Tan, Tiancheng Lou, Yuexuan Wang, Qiang-Sheng Hua, and Francis C. M. Lau.
Exact algorithms to minimize interference in wireless sensor networks. Theor. Comput. Sci.,
412(50):6913–6925, 2011. doi:10.1016/j.tcs.2011.08.041.

10 Pascal von Rickenbach, Roger Wattenhofer, and Aaron Zollinger. Algorithmic models of in-
terference in wireless ad hoc and sensor networks. IEEE/ACM Trans. Netw., 17(1):172–185,
2009. URL: http://doi.acm.org/10.1145/1514070.1514084, doi:10.1145/1514070.
1514084.

EuroCG’21

Outerstring graphs of girth at least five are
3-colorable∗

Sandip Das1, Joydeep Mukherjee2, and Uma kant Sahoo1

1 Indian Statistical Institute, Kolkata.
sandipdas@isical.ac.in, umakant.iitkgp@gmail.com

2 Ramakrishna Mission Vivekananda Educational and Research Institute, Belur.
joydeep.m1981@gmail.com

Abstract
An outerstring graph is the intersection graph of curves in a halfplane with one endpoint on the
boundary of the halfplane. In an attempt to tackle a problem of Kostochka and Nešetřil (European
J. of Comb. 19, 1998), we study coloring of outerstring graphs with girth g ≥ 5, improving upon the
latest bound. In the process, we generalize the results of Ageev (Discrete Math. 195, 1999), and
Esperet and Ochem (Discrete Math. 309, 2009) on circle graphs.

1 Overview

The intersection graph of a family of sets S is the graph with vertex set S and edge set
{XY | X,Y ∈ S, X 6= Y,X ∩ Y 6= ∅}. Here S is known as the intersection representation of
G. A string graph is the intersection graph of a finite collection of curves or strings1 in the
plane. If one restricts that two curves in a string representation intersect at most once, then
we call them 1-string (denoted S1). We assume that whenever two strings intersect they
cross each other. A well-known subclass of string graphs is the class of outerstring graphs
(denoted OS) where the strings are contained in a halfplane with exactly one point on the
boundary of the halfplane and that point is an endpoint of the string.

Many interesting problems on the vertex chromatic number (denoted χ) of intersection
graphs of geometric objects have been studied. One such problem is its dependence on
girth [1, 2, 4, 8, 7, 9].

Our motivation is to focus on a problem posed by Kostochka and Nešetřil [8] on coloring
1-string graphs of girth five. In this regard, we show that outerstring graphs of girth g at least
five and minimum degree at least two have (g − 4) vertices of degree two that induce a path.
As we shall see, a corollary of this result is a first step towards our main goal. Furthermore,
this seems to be a natural milestone as it generalizes similar results on circle graphs, by
Ageev [1], and by Esperet and Ochem [4].

Borrowing notation from Kostochka and Nešetřil [8], given a class of intersection graphs
G, let

χ(G, k) := max
G∈G

{χ(G) | girth(G) ≥ k}.

In 1970s2, Erdős (see [6, Problem 1.9]) posed whether χ(I, 4) <∞, where I is the class of
intersection graphs of line segments in the plane. Further, Kratochvíl and Nešetřil (see [7])
posed whether χ(S1, 4) < ∞. Recently, in a breakthrough paper, Pawlik et al. [9] proved

∗ Partially supported by the IFCAM project MA/IFCAM/18/39.
1 A curve or string is a homeomorphic image of the interval [0, 1] in the plane.
2 An approximate date was confirmed in a personal communication with András Gyárfás and Janós Pach

to the authors of [9] (Pawlick et al.). See footnote 2 in Pawlick et al. [9].

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

70:2 χ(OS, 5) = 3

that χ(I, 4) can be arbitrarily large, hence settling the questions of Erdős (see [6]), and of
Kratochvíl and Nešetřil (see [7]).

Earlier, motivated by the above problems, Kostochka and Nešetřil [8] studied 1-string
graphs with girth at least five. In particular they proved that χ(S1, 5) ≤ 6. They also posed
if χ(S1, 5) > 3.

As a step in improving the bound of χ(S1, 5), we study χ(OS, 5). Our main result implies
that3 χ(OS, 5) = 3, which is an immediate corollary of the following.

I Theorem 1.1. Every outerstring graph with girth at least five is 2-degenerate.

Theorem 1.1 is crucial to our approach to improve the bounds of χ(S1, 5). Given such a
1-string representation (with girth g ≥ 5), we can treat its outer envelope as the stab line.
As we shall see, the target degree two vertices in the outerstring graph induced by strings
intersecting this stab line are in some sense closest to the stab line. This would result in
finding a degree three vertex in the 1-string graph (because of the girth restriction). We
shall address this in a future work.

Thus every outerstring graph, and its subgraphs, with girth at least five has a vertex
of degree at most two, and hence is 3-colorable. This improves upon the previous best
upper-bound of five due to Gavenčiak et al. [5]. Furthermore, all odd cycles are outerstring
graphs.

I Corollary 1.2. χ(OS, 5) = 3.

Recently, Rok and Walczak [10] showed that outerstring graphs are chi-bounded. This
implies that their chromatic number is upper-bounded by their clique numbers. In particular,
the chromatic number of triangle-free outerstring graphs is upper-bounded by a constant.
Corollary 1.2 shows that if we further forbid the presence of cycles of length four in this
graph class, then the chromatic number of such graphs is upper-bounded by three.

The main result of this article, an extension of Theorem 1.1, seems to be a natural
milestone in our approach to improve the upper bound of χ(S1, 5) as it generalizes similar
results on circle graphs, first by Ageev [1], and then by Esperet and Ochem [4].

I Theorem 1.3. (Ageev [1]) Every circle graph with girth at least five is 2-degenerate.

I Theorem 1.4. (Esperet and Ochem [4]) Every circle graph with girth g at least five and
minimum degree δ at least two contains a chain of g − 4 vertices of degree two.

In this article, we prove the following extension of Theorem 1.4 to outerstring graphs.
It is not difficult to see that outerstring graphs strictly contain circle graphs. There are
2Θ(n lg n) (labeled) circle graphs whereas there are 2Θ(n2) (labeled) outerstring graphs on n
vertices4. See Figure 1 for a separating example between circle graphs and outerstring graphs
with girth five and minimum degree two. The proof is omitted for lack of space.

I Theorem 1.5. Every outerstring graph with girth g ≥ 5 and minimum degree δ at least
two contains a chain of g − 4 vertices of degree two.

Note that Theorem 1.1 directly follows from Theorem 1.5. Hence we shall only prove
Theorem 1.5. Also, it suffices to consider only connected outerstring graphs.

3 In this context, although it suffices to prove that χ(OS1, 5) = 3, we prove a more general result.
4 see the corresponding graphclasses pages at www.graphclasses.org.

S. Das, J. Mukherjee and U.K. Sahoo 70:3

v1

v2

v3

v4

v5

v9

v8

v7

v6

v10

(a) (b)

Figure 1 (a) Separating Example G5 and (b) Outerstring representation of G5.

2 Definitions and Notations

Basic Notions. For an outerstring graph OS, we denote its outerstring representation as
OS. Due to a result of Biedl, Biniaz and Derka [3], we can choose OS such that it has finite
number of intersection points. We assume the stab line in OS to be the Y-axis and the
strings lie in the halfplane x ≤ 0. For each string si in OS, its endpoint on the stab line is
its fixed end and the other endpoint is its free end. We can safely assume that all the free
ends of the strings are intersection points (see Figure 2a). We relax the crossing assumption
at these points. Since the stab line is the Y-axis, we can order all the fixed ends of strings;
so the terms above, below, topmost and bottommost are well defined.

As any two strings, say si and sj , might intersect multiple times in OS, we say all such
intersection points are of type (si, sj).

A region A ⊂ R2 is arc-connected if for any two points in A there is a curve lying
completely in A that connects them. A face in OS is a maximal arc-connected component of
R2 \⋃

si. Here the ambient space is R2 and not the halfplane x ≤ 0. Since two strings can
intersect multiple times, there are faces in OS which have just two strings in its boundary.
We call such faces as 2-faces (see Figure 2b). An arrangement induced by a set of curves in
R2 is the embedding of these curves in R2.

An n-chain in OS is a path of length n+ 1 in OS whose n internal vertices have degree
2 in OS. We shall also call the corresponding representation of this path in OS as a n-chain.

For a closed region R, its inside region (after removing its boundary) is denoted as
Int(R).

Left Envelope. Consider an outerstring representation OS of an outerstring graph OS. Let
t0 (respectively, b0) be the topmost fixed end (respectively, bottommost fixed end) of OS. Let
t0b0 be the line segment (on the stab line) from t0 to b0. Consider the arrangement induced
by the strings in OS and t0b0 in R2, and consider the unbounded face of this arrangement.
The left envelope of OS is the part of this boundary after removing t0b0 except its end points
(see Figure 2c). We say a string s belongs to the left envelope E if s ∩ E 6= ∅.

Zone. In an outerstring representation, given two intersecting strings st and sb, let the
fixed end t of st be above the fixed end b of sb. The zone of st and sb in OS is the bounded
face in R2 \ {st, sb, tb} that contains tb in its boundary (see Figure 2d). The intersecting
strings st and sb are called as the defining strings of this zone: with st as its top defining
string and sb as its bottom defining string. So every pair of intersecting strings correspond to
a zone.

EuroCG’21

70:4 χ(OS, 5) = 3

(a) (b) (c) (d)

Figure 2 (a) An Outerstring representation, (b) a 2-face, (c) left envelope, and (d) a zone.

A zone Z of st and sb is filled if there exists a string s in OS whose fixed end is in Z and
s does not intersect with st and sb. So s ∩ Z = s and s ∩ st = s ∩ sb = ∅: we say Z supports
s.

k-Face. Consider an outerstring graph OS with girth g ≥ 5. A k-face in OS is a face that
contributes to a cycle in OS (see Figure 3a). The k corresponds to the size of the cycle. The
strings corresponding to these k vertices are called the bounding strings of k-face. Note that
not all faces in OS contribute to a cycle in OS, e.g. the 2-faces. We have an algorithm to
check whether a face in OS is a k-face or not. We have the following surprising observation.
The algorithm and the proof of the observation are omitted for lack of space.

I Observation 2.1. The vertices corresponding to the bounding strings of a k-face F in OS
of an outerstring graph OS (with girth g ≥ 5) form an induced cycle in OS.

Extended Face. For an induced cycle in OS with girth five, its induced representation in
OS might not be a face but a collection of faces. Given an induced cycle C on k (≥ 5) vertices
in OS, there is at least one closed curve in OS composed of the k strings corresponding to
the vertices of C. Let C denote such a closed curve satisfying the following two conditions.
1. C is a minimal closed curve in the sense that there is no part of C that is a closed curve

composed of the k strings. (We show that C is a Jordan curve. The proof is omitted for
lack of space.)

2. Among all Jordan curves satisfying condition (1), choose C such that its inside region has
the minimum area.

We say the closed inside region of C is the extended face of C (see Figure 3b and 3c for
non-examples: see Figure 3d for an example).

3 Outline of Proof of Theorem 1.5

The proof of Theorem 1.5 consists of three parts. The proof is omitted for lack of space. Here
we give a detailed outline. The main proof is by strong induction and is done in Section 3.3.
To this end, we need to study the outerstring representations of cycles (for the base step

S. Das, J. Mukherjee and U.K. Sahoo 70:5

(a) (b) (c) (d)

Figure 3 (a) 5-face (shaded) (b,c) non-examples of extended face (violates condition 1 & 2, and
2 respectively), and (d) an example of an extended face.

in induction) in Section 3.1, and some basic properties of outerstring representations in
Section 3.2.

3.1 Representation of Cycles
Consider an outerstring representation C of a cycle C on n ≥ 5 vertices. We first prove that
if C has a filled zone Z, then every string s in C, other than the defining strings of Z, has
an intersection point in Int(Z). Then we prove the following.

I Claim 3.1. There is at least one filled zone in C. Every filled zone in C contains a
(n− 4)-chain.

We call such strings that are supported by the filled zone as intermediate strings. These
intermediate strings induce a (n− 4)-chain. While proving Claim 3.1, we found that C can
have either one or three filled zones (see Figures 4a, 4b, 4c) depending on the number of
types of intersection points in its left envelope.

(a) (b) (c)

Figure 4 Three possibilities of C with one, two and three types of intersection points in the left
envelope.

EuroCG’21

70:6 χ(OS, 5) = 3

3.2 Some Basic Properties of Outerstring Representations
Consider an outerstring graph OS with girth g ≥ 5 and minimum degree δ ≥ 2. Let Z be a
filled zone in OS. Such a filled zone always exists (see Claim 3.1). We prove the following.
I Subclaim 3.2. For every filled zone Z in OS, there exists a k-face in Z.

A key argument used in the proof of Subclaim 3.2, as well as in the main proof in the
next subsection, is called the branching argument. If a filled zone is not allowed to have a
k-face in it and δ ≥ 2, then consider the forest/tree induced by the strings supported by the
zone. The leaves (except one) of this tree has degree one in OS, else a k-face is formed in the
filled zone. This contradicts our minimum degree restriction. Hence Subclaim 3.2 follows.

In the rest of this section, we prove the following stronger version of Theorem 1.5.
I Claim 3.3. Given an outerstring graph OS with girth g ≥ 5 and δ ≥ 2, any filled zone Z in
OS completely contains a (g − 4)-chain, that is, the strings in this chain are supported by Z.

3.3 Outline of Proof of Claim 3.3
We proceed by induction on the number of vertices in OS. The base case is easy to verify,
as it is a cycle on g vertices (see Claim 3.1). Now assume the induction hypothesis: in any
outerstring graph on less than l vertices with girth g ≥ 5 and δ ≥ 2, any filled zone in its
outerstring representation completely contains a (g − 4)-chain. Let OS be an outerstring
graph on l vertices with girth g ≥ 5 and δ ≥ 2. Consider a filled zone Z in OS. Our aim is
to find a (g − 4)-chain in the filled zone Z in OS. The rest of the proof relies heavily on the
following subclaim, which repeatedly requires the Subclaim 3.2 and the branching argument.
I Subclaim 3.4. We can safely assume that every string in OS, except the defining strings of
Z, has an intersection point in Int(Z).

We can also assume that OS is not isomorphic to the cycle on l vertices. Indeed, we have
proved Claim 3.3 for cycles (see Claim 3.1). Hence there are at least two (induced) cycles in
OS. Next, we prove the following.
I Subclaim 3.5. OS has at least two filled zones.

Next, using Subclaim 3.5, we show that two filled zones are restricted to attain one of
two possible configurations. In each of these possible configurations, we exhibit a filled zone
and a string that does not have an intersection point in the interior of the filled zone, thereby
contradicting Subclaim 3.4. This completes the proof of Claim 3.3. J

4 Acknowledgements

The authors thank the reviewers for enhancing both the content and the presentation of
this paper. In particular, we thank them for the implications of the paper by Rok and
Walczak [10], and for the details on the sizes of labeled circle graphs and outerstring graphs
on n vertices. The authors are partially supported by IFCAM project Applications of graph
homomorphisms (MA/IFCAM/18/39).

References
1 A. A. Ageev. Every circle graph of girth at least 5 is 3-colourable. Discrete Mathe-

matics, 195(1):229–233, 1999. URL: http://www.sciencedirect.com/science/article/
pii/S0012365X98001927, doi:10.1016/S0012-365X(98)00192-7.

S. Das, J. Mukherjee and U.K. Sahoo 70:7

2 E. Asplund and B. Grünbaum. On a Coloring Problem. Mathematica Scandinavica,
8:181–188, 1960. URL: https://www.mscand.dk/article/view/10607, doi:10.7146/
math.scand.a-10607.

3 T. Biedl, A. Biniaz, and M. Derka. On the Size of Outer-String Representations. In
D. Eppstein, editor, 16th Scandinavian Symposium and Workshops on Algorithm Theory
(SWAT 2018), volume 101 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 10:1–10:14, Dagstuhl, Germany, 2018. URL: http://drops.dagstuhl.de/opus/
volltexte/2018/8836, doi:10.4230/LIPIcs.SWAT.2018.10.

4 L. Esperet and P. Ochem. On circle graphs with girth at least five. Discrete Mathematics,
309(8):2217–2222, 2009. URL: http://www.sciencedirect.com/science/article/pii/
S0012365X08003099, doi:10.1016/j.disc.2008.04.054.

5 T. Gavenčiak, P. Gordinowicz, V. Jelínek, P Klavík, and J. Kratochvíl. Cops and Robbers
on intersection graphs. European Journal of Combinatorics, 72:45–69, 2018. URL: http:
//www.sciencedirect.com/science/article/pii/S0195669818300817, doi:10.1016/
j.ejc.2018.04.009.

6 A. Gyárfás. Problems from the world surrounding perfect graphs. Applicationes Mathe-
maticae, 19(3-4):413–441, 1987. URL: https://eudml.org/doc/265405.

7 A. V. Kostochka and J. Nešetřil. Chromatic number of geometric intersection graphs. In
1995 Prague Midsummer Combinatorial Workshop, pages 43–45, 1995.

8 A. V. Kostochka and J. Nešetřil. Coloring Relatives of Intervals on the
Plane, I: Chromatic Number Versus Girth. European Journal of Combinatorics,
19(1):103–110, 1998. URL: http://www.sciencedirect.com/science/article/pii/
S0195669897901517, doi:10.1006/eujc.1997.0151.

9 A. Pawlik, J. Kozik, T. Krawczyk, M. Lasoń, P. Micek, W. T. Trotter, and B. Walczak.
Triangle-free intersection graphs of line segments with large chromatic number. Journal of
Combinatorial Theory, Series B, 105:6–10, 2014. URL: http://www.sciencedirect.com/
science/article/pii/S009589561300083X, doi:10.1016/j.jctb.2013.11.001.

10 A. Rok and B. Walczak. Outerstring Graphs are χ-Bounded. SIAM Journal on Discrete
Mathematics, 33(4):2181–2199, 2019. URL: https://epubs.siam.org/doi/abs/10.1137/
17M1157374, doi:10.1137/17M1157374.

EuroCG’21

Disjoint Box Covering in a Rectilinear Polygon∗

Sujoy Bhore1, Guangping Li2, Martin Nöllenburg2, and
Jules Wulms2

1 Université libre de Bruxelles, Belgium
sujoy.bhore@gmail.com

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
{guangping, noellenburg, jwulms}@ac.tuwien.ac.at

Abstract
We study a variant of the geometric covering problem, namely, Disjoint Box Covering in a Rectilinear
Polygon (DBCR). Given a rectilinear polygon R with m edges and a finite set P of n points inside
R, in the DBCR problem, the objective is to find a set S of pairwise disjoint axis-aligned rectangles,
such that S covers P , each rectangle is fully contained inside the polygon R, and S has minimum
cardinality. We show that this problem is NP-hard for points in general position. Moreover, we
design an O(n logn+m logm)-time exact algorithm for the DBCR problem if the input rectilinear
polygon is a histogram.

1 Introduction

In the geometric set cover problem, the input is a range space Σ = (X,R), where X is a
universe of points in Rd and R is a family of subsets of X called ranges. The subsets in R
are defined by the intersection of X and geometric shapes such as axis-parallel rectangles,
disks, etc. The objective is to select a minimum-size subset C ⊆ R of ranges such that every
point in the universe X is covered by some range in C. The geometric set cover problem
is known to be NP-complete even for simple geometric range spaces, e.g., when R is a set
of unit disks or unit squares in R2 [16]. However, the problem is far more tractable in the
geometric domain than the classical set cover problem. For instance, while it is known that
the set cover problem is inapproximable within factor O(logn), there exist several polynomial
time approximation schemes for the geometric variant of the problem that used underlying
geometric structures to achieve better algorithmic results; see [1, 3, 12, 13].

We study a special variant of the geometric set cover problem, namely, the Disjoint Box
Covering in a Rectilinear Polygon (DBCR) problem. Given a rectilinear polygon R, possibly
with holes, and a finite set P of n points inside R, in the DBCR problem, the objective
is to find a set S of pairwise disjoint axis-aligned rectangles, such that S covers P and
each rectangle is fully contained inside R. The DBCR problem is particularly motivated
by geographically-informed text-based visualizations, such as spatial word or tag clouds.
Imagine that we are given a set of locations, the point set P , inside a geographic region,
the polygon R, with several possible text labels per location, which may refer to different
categories of P (colored points). It is important for spatial word clouds to not only capture
the frequency or weight but additionally the spatial relevance of the words (see [9]). If we
model the words as axis-parallel rectangles, then the objective is to cover P with disjoint
rectangles such that each rectangle contains only points of the same color and stays inside R.
In this work, we address this problem under the simplifying assumption that the points are
inside a rectilinear polygon and are all of same color. Without any color restrictions, one

∗ Research supported by the Austrian Science Fund (FWF) under grant P31119.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

71:2 Disjoint Box Covering in a Rectilinear Polygon

(a) (b)

Figure 1 Comparing a solution to DBCR in (a) by a partitioning of the polygon in (b).

way to solve the problem is to compute a minimum rectangular partitioning of the input
polygon, which is solvable in polynomial time [18]. However, in a U-shaped polygon the
solution of the partitioning problem could already differ from the solution of the DBCR
problem (see Fig. 1). In fact, the DBCR problem is NP-hard if R is an arbitrary rectilinear
polygon (Section 2). However, if R is a histogram, i.e., a rectilinear polygon consisting of a
base line and a monotone path, we can give a polynomial-time algorithm (Section 3).

Related work. Many variants of the geometric covering problem have been investigated
over the years, e.g., (p, k)-box covering [2]; class cover problems [8], red-blue cover [5, 11, 10].
Moreover, geometric covering problems have been widely studied in various algorithmic
paradigms such as approximation algorithms (see [1, 13, 6, 14]) and parameterized algorithms
(see [4, 7]). However, most of these works do not consider the case where the output objects
must be disjoint. This makes the DBCR problem particularly unique, and none of these
algorithms can be directly applied in our context.

2 NP-completeness of DBCR

In this section, we show firstly that the DBCR problem is NP-complete. We do a reduction
similar to the one by Chan and Hu for red-blue set cover [11], using the following Lemmata.

I Lemma 2.1. ([19]) Every planar graph G = (V,E) of maximum degree at most 4 has an
orthogonal grid drawing on an O(|V |)×O(|V |) grid.

I Lemma 2.2. (Folklore) Given a graph G and an edge e in G, define a new graph G′

obtained from G by subdividing e through the addition of two new vertices. Then the size of
a minimum vertex cover of G′ is exactly the size of a minimum vertex cover of G plus 1.

I Theorem 2.3. Disjoint Box Covering in a Rectilinear Polygon is NP-hard.

Proof. We reduce from the vertex cover problem on 3-regular planar graphs, which is known
to be NP-hard by Garey and Johnson [17]. Given a 3-regular planar graph G with n vertices,
we create an orthogonal grid drawing δG by Lemma 2.1; see Figure 2a as an illustration. In
the following, we construct a new graph G′ by adding several dummy vertices in δG.

Firstly, we add a dummy vertex on each bend of δG, to create a straight-line drawing.
We call a vertex v in δG a corner vertex, if there exists a pair of perpendicular line segments
in δG that meet at v. Then, for each edge e connecting two corner vertices, we add a dummy
vertex in the middle of e. This results in the new graph G′, where each edge is incident to
at most one corner vertex. To apply Lemma 2.2, for each original edge e in G, we check
whether there is an even number of dummy vertices on e, including dummy corner vertices.

S. Bhore, G. Li, M. Nöllenburg, J. Wulms 71:3

(a) (c)(b)

Figure 2 The reduction on graph G = K4. (a) An orthogonal grid drawing δG of G. (b) The
dummy vertices are added in δG to the bends (red) and on the edges, both to prevent multiple
corner vertices incident to an edge (yellow), and for parity (green). (c) Cover rectangles, for black,
red, yellow and green vertices, cover all (white) points in P and are drawn on the shifted grid.

If not, we then add a dummy vertex anywhere on the edge, to ensure the vertex cover of G′
changes predictably (see Figure 2b).

To construct point set P in the DBCR instance from G′, we replace each edge in G′ by a
point. If an edge e is incident to a corner vertex v, we put a point at 1

3 of grid length from
v on e. Otherwise, we create a point in the middle of the edge. Now we shift the points
such that there are no two points on the same horizontal or vertical line. To achieve this, we
map the drawing δG′ to an orthogonal grid rotated by α. We look at each corner vertex c
in δG′ and consider each pair of orthogonal edges incident to c with lengths xc and yc. We
choose α < min

{
arctan(minc

xc

yc
)/2, arctan(minc

yc

xc
)/2

}
. For each vertex v in G′, we draw

a rectangle Bv, such that Bv is the minimum bounding box covering v and the points on
edges of v (see Figure 2c). By our choice of α these rectangles overlap only at points in P .

We say that Bv is the cover rectangle of the vertex v. For each corner vertex, we add
a margin of length 1

2ε to its cover rectangle, where ε is an infinitesimally small distance.
This ensures that the covered points are not on its boundaries and the rectangles grow by ε
both horizontally and vertically. Intuitively, there are two types of cover rectangles, small
rectangles for corner vertices and long rectangular bars otherwise. We can then make the
following observations.

I Observation 2.4. Two cover rectangles intersect if and only if its corresponding vertices
are adjacent; For each edge of G′, only the rectangles of its two incident vertices intersect
with it and the intersection contains the point on the edge.

The union of cover rectangles builds the rectilinear polygon R in our DBCR instance.

I Observation 2.5. Given an arbitrary rectangle S in R that covers a subset P ′ of point set
P , the minimum bounding box of P ′ is inside a cover rectangle.

After shifting, the points (and the corresponding cover rectangles) on a horizontal/vertical
grid line are in a monotonic order. For two points that are not covered by the same rectangle
Bv of any vertex v, there is no rectangle inside P that covers these points at the same time.

The correctness of the reduction is now straightforward. A vertex cover in G′ corresponds
to a set S of cover rectangles in R that covers all the points P . By Observation 2.4, if two
cover rectangles intersect each other, their corresponding vertices are adjacent. Due to our
construction, no two corner vertices are adjacent. Therefore, each intersection involves at

EuroCG’21

71:4 Disjoint Box Covering in a Rectilinear Polygon

(a) (b)

hi−1

hi

yi−1

yi

Figure 3 The red sweep line stores the vertical segments of the histogram (in bold) and the
rectangles in the solution (in blue) at a certain y-coordinate. (a) The status is shown between events
at yi−1 and yi. (b) The point circled in green is found by querying QP at the event of hi.

least one non-corner vertex. Consider a rectangles S ∈ S whose corresponding vertex is
not a corner vertex. If the rectangle S intersects other rectangles in S, we could eliminate
the intersection by shrinking long rectangle S, while still covering all the points. After
eliminating all the intersections in S, it is a solution to the DBCR problem for point set P
in R. In the other direction, we are given a set S of disjoint rectangles inside R that cover
all the points in P . By Observation 2.5, each rectangle in S is completely inside a cover
rectangle in the polygon R. We select all the cover rectangles that contains rectangles in
S. These rectangles cover all the points and their corresponding vertices in G′ cover all the
edges in G′, thus they would build a vertex cover in G′. J

Containment in NP is straightforward for the DBCR problem, since we have to check only
whether each point in P is covered by a rectangle in S, and each rectangle in S is contained
in R. These tasks can be done efficiently using point location data structures.

3 Covering points inside histogram

We solve the DBCR problem inside a histogram, which is defined as in [15] (see Figure 3).

Histogram: Define a (vertical) histogram with m edges as a rectilinear polygon with one
horizontal edge (the base) equal in length to the sum of all other horizontal edges.

The DBCR problem in a histogram can be solved in polynomial time using a greedy
algorithm A. We assume the base of the input histogram H is located at y = 0 and extends
only upwards, ending in m

2 − 1 horizontal edges.
Algorithm A first sorts the m

2 horizontal pieces based on their y-coordinates in descending
order, resulting in queue QH . Furthermore, the points in P are sorted by their y-coordinates,
resulting in a queue QP . Using a horizontal sweep line l, an optimal solution S is constructed
starting from the top of the histogram H. A status s stored with the sweep line maintains
the x-coordinates of vertical rectangle edges in S, as well as the x-coordinates of the vertical
segments of H, at a certain y-coordinate (see Figure 3a).

As the sweep line l moves downwards, an event occurs at every horizontal segment h of
H. At an event the status must be updated, and we query QH to find the next horizontal
segment hi of H. By querying QP , we can quickly find all points between hi and the previous
horizontal segment hi−1, at y-coordinates yi and yi−1, respectively. If there are no points,
then the solution S and status s require no change. However, if there are points, we check
whether (at least) one of the points is not covered by the rectangles stored in s. If this is

S. Bhore, G. Li, M. Nöllenburg, J. Wulms 71:5

the case for some point p, then we add a new rectangle to the solution S, starting at yi−1
and spanning the whole width between the vertical segments of H neighboring p. These
vertical segments can be found by querying s using the x-coordinate of p, and walking in
both directions through s until a vertical segment is encountered. To prevent rectangles in S
from overlapping, we settle and remove any rectangles from s that would otherwise overlap
the newly added rectangle. The settled rectangles will vertically extend down to yi−1 in the
final solution S (see Figure 3b).

Finally, depending on what type of segment hi is, the status s must be updated accordingly.
The segment hi can have one of the following two types:

Segment hi is the top of a vertical spike of H. In this case, s is updated to include the
x-coordinates of the vertical segments, pointing downwards from hi.
Segment hi connects two vertical spikes of H. Status s must then be updated to no
longer include the vertical segments that point downwards to hi.

A complete solution found by algorithm A can be found in Figure 4.

I Lemma 3.1. Algorithm A finds an optimal solution for the DBCR problem, given a set P
of points inside a histogram H.

Proof. We make a case distinction on whether an optimal solution OPT that has at least two
rectangles r1, r2 horizontally next to each other without vertical histogram segments between
them. First assume there are no such rectangles, and hence can extend each rectangle left-
and rightwards until the polygon is hit, without intersecting any other rectangle. Next, we
start from the base of the polygon and extend rectangles upwards until a horizontal edge of
H is reached. Any rectangles intersected in the process shrink by moving their bottom edge
upwards, leaving no points uncovered, since they will be covered by the rectangles that are
extending upwards. The resulting solution is equivalent to a greedy solution of algorithm A.

Now assume we have an optimal solution OPT that has at least two such rectangles
r1, r2. Note that one of these rectangles may extend further upwards than the other. Assume
w.l.o.g. that r1 extends further upwards if this is the case.

Consider the greedy solution OPT ′, which instead contains rectangles r′1, r′2, such that r′1
stops at the top of r2 and r′2 covers the whole space occupied by r1, r2 horizontally. Rectangle
r′2 can also extend as far downwards as the lowest boundary of r1, r2. This cannot lead to an
intersection with the polygon boundary, because the histogram ends in a base that stretches
the whole width horizontally. Furthermore, any intersected rectangles come in from the side
or bottom, and can be safely shrunk, such that the points no longer covered by these shrunk
rectangles are now covered by r′2.

Figure 4 A complete solution for the example in Figure 3, as found by algorithm A.

EuroCG’21

71:6 Disjoint Box Covering in a Rectilinear Polygon

Finally, we can conclude that |OPT | = |OPT ′|, since the number of rectangles stays
equal in the transformation from OPT to OPT ′. After applying this transformation for as
long as there are two rectangles in the above horizontally neighboring position, all rectangles
correspond to the greedily chosen rectangles of algorithm A. J

Finally we show that algorithm A has polynomial running time.

I Lemma 3.2. Algorithm A runs in O(n logn+m logm) time.

Proof. The m
2 horizontal segments of H and the n points in P are separately sorted and put

in queues in O(m logm) and O(n logn) time, respectively. These queues are then queried,
but no additional elements are added, again leading to O(m logm) and O(n logn) time spent.
Finally, segments of histogram H and solution S are stored in and removed from status s.
Since histogram H has m

2 vertical segments, and for each of the m
2 horizontal segments of

H, only a single rectangle can exist in the solution, status s contains at most m
2 segments.

As status s is sorted on x-coordinates, we can use a balanced binary search tree to ensure
O(logm) update time. There are m

2 events, one for each horizontal segment, and hence
maintaining the status takes O(m logm) time in total. J

I Theorem 3.3. Given a set P of n points inside a histogram H with m edges, there exists
an algorithm that solves the DBCR problem optimally in O(n logn+m logm) time.

References
1 Pankaj K. Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting

sets and set covers. Discret. Comput. Geom., 63(2):460–482, 2020. doi:10.1007/
s00454-019-00099-6.

2 Hee-Kap Ahn, SangWon Bae, Erik D. Demaine, Martin L. Demaine, Sang-Sub Kim, Matias
Korman, Iris Reinbacher, and Wanbin Son. Covering points by disjoint boxes with outliers.
Comput. Geom., 44(3):178–190, 2011. doi:10.1016/j.comgeo.2010.10.002.

3 Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ε-nets for axis-parallel rectangles
and boxes. SIAM J. Comput., 39(7):3248–3282, 2010. doi:10.1137/090762968.

4 Pradeesha Ashok, Sudeshna Kolay, Neeldhara Misra, and Saket Saurabh. Unique covering
problems with geometric sets. In Dachuan Xu, Donglei Du, and Dingzhu Du, editors, Com-
puting and Combinatorics, pages 548–558, Cham, 2015. Springer International Publishing.
doi:10.1007/978-3-319-21398-9_43.

5 Pradeesha Ashok, Sudeshna Kolay, and Saket Saurabh. Multivariate complexity analy-
sis of geometric red blue set cover. Algorithmica, 79(3):667–697, 2017. doi:10.1007/
s00453-016-0216-x.

6 Pradeesha Ashok, Aniket Basu Roy, and Sathish Govindarajan. Local search strikes again:
PTAS for variants of geometric covering and packing. J. Comb. Optim., 39(2):618–635,
2020. doi:10.1007/s10878-019-00432-y.

7 Aritra Banik, Fahad Panolan, Venkatesh Raman, Vibha Sahlot, and Saket Saurabh. Param-
eterized complexity of geometric covering problems having conflicts. Algorithmica, 82(1):1–
19, 2020. doi:10.1007/s00453-019-00600-w.

8 Sergey Bereg, Sergio Cabello, José Miguel Díaz-Báñez, Pablo Pérez-Lantero, Carlos Seara,
and Inmaculada Ventura. The class cover problem with boxes. Computational Geometry,
45(7):294–304, 2012. doi:10.1016/j.comgeo.2012.01.014.

9 Kevin Buchin, Daan Creemers, Andrea Lazzarotto, Bettina Speckmann, and Jules Wulms.
Geo word clouds. In Proc. 2016 IEEE Pacific Visualization Symposium (PacificVis), pages
144–151. IEEE Computer Society, 2016. doi:10.1109/PACIFICVIS.2016.7465262.

S. Bhore, G. Li, M. Nöllenburg, J. Wulms 71:7

10 Robert D. Carr, Srinivas Doddi, Goran Konjevod, and Madhav Marathe. On the red-blue
set cover problem. In Proc. 11th ACM-SIAM Symposium on Discrete Algorithms (SODA),
SODA ’00, page 345–353, USA, 2000. Society for Industrial and Applied Mathematics.
doi:10.5555/338219.338271.

11 Timothy M. Chan and Nan Hu. Geometric red-blue set cover for unit squares and related
problems. Comput. Geom., 48(5):380–385, 2015. doi:10.1016/j.comgeo.2014.12.005.

12 Kenneth L. Clarkson. Algorithms for polytope covering and approximation. In Proc. 3rd
Workshop on Algorithms and Data Structures (WADS), volume 709 of Lecture Notes in
Computer Science, pages 246–252. Springer, 1993. doi:10.1007/3-540-57155-8_252.

13 Kenneth L. Clarkson and Kasturi R. Varadarajan. Improved approximation algorithms
for geometric set cover. Discret. Comput. Geom., 37(1):43–58, 2007. doi:10.1007/
s00454-006-1273-8.

14 Erik D. Demaine, Uriel Feige, MohammadTaghi Hajiaghayi, and Mohammad R.
Salavatipour. Combination can be hard: Approximability of the unique coverage prob-
lem. SIAM J. Comput., 38(4):1464–1483, 2008. doi:10.1137/060656048.

15 Herbert Edelsbrunner, Joseph O’Rourke, and Emmerich Welzl. Stationing guards in rec-
tilinear art galleries. Computer Vision, Graphics, and Image Processing, 27(2):167 – 176,
1984. doi:10.1016/S0734-189X(84)80041-9.

16 Robert J. Fowler, Mike Paterson, and Steven L. Tanimoto. Optimal packing and covering
in the plane are NP-complete. Inf. Process. Lett., 12(3):133–137, 1981. doi:10.1016/
0020-0190(81)90111-3.

17 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. WH Freeman and Company, New York, USA, 1990. doi:
10.5555/574848.

18 W. T. Liou, Jimmy J. M. Tan, and Richard C. T. Lee. Minimum partitioning simple
rectilinear polygons in O(n log logn) time. In Proc. 5th Symposium on Computational
Geometry (SoCG), pages 344–353. ACM, 1989. doi:10.1145/73833.73871.

19 Leslie G Valiant. Universality considerations in VLSI circuits. IEEE Transactions on
Computers, 100(2):135–140, 1981. doi:10.1109/TC.1981.6312176.

EuroCG’21

Uncertain Curve Simplification
Kevin Buchin1, Maarten Löffler∗2, Aleksandr Popov†1, and Marcel
Roeloffzen‡1

1 Department of Mathematics and Computer Science, TU Eindhoven, Netherlands
{k.a.buchin, a.popov, m.j.m.roeloffzen}@tue.nl

2 Department of Information and Computing Sciences, Utrecht University,
Netherlands
m.loffler@uu.nl

Abstract
We study polygonal curve simplification under uncertainty, where instead of a sequence of exact
points, each uncertain point is represented by a region, which contains the (unknown) true location
of the vertex. The regions we consider are discrete sets of points, line segments, and convex polygons.
We are interested in finding the shortest subsequence of uncertain points such that no matter what
the true location of each point is, the resulting polygonal curve is a valid simplification of the original
curve under the Hausdorff distance. We present polynomial-time algorithms for this problem.

Related Version An extended version with complete proofs, in which we also discuss the uncertainty
modelled with disks and show the set of results for the Fréchet distance, is available on arXiv:
Full Version: https://arxiv.org/abs/2103.09223 [6]

1 Introduction

Curve simplification is the problem of replacing a polygonal curve by another one which has
a similar shape, but fewer vertices. Classical solutions [1], such as those by Ramer and by
Douglas and Peucker [7, 15] and by Imai and Iri [8], constrain the new curve to use a subset
of the vertices of the old curve and use the Hausdorff distance to measure similarity. Curve
simplification is still an active field of study [2, 3, 5, 16].

Typically, it is assumed that the locations of the input curve vertices are known precisely,
which is often not the case in real-life data, for instance, when locations are measured using
GPS technology. There have been some advances in the study of uncertainty in computational
geometry [9, 10, 11, 12, 13], and more recently of uncertain curves [4, 14]. However, to our
knowledge, there is no such previous work tackling curve simplification under uncertainty.

An uncertain curve consists of a sequence of uncertain points, each modelled as a convex
polygon, a line segment, or a discrete set of points that contains the true location of the
point. When faced with the task of simplifying an uncertain curve, one must consider what is
the expected output. We investigate the following practical point of view: we wish to select
a subsequence of the (uncertain) input points which is guaranteed to be a valid simplification;
see Figure 1. Our results are based on adapting the approach by Imai and Iri [8]: we construct
a shortcut graph which contains all shortcuts that are guaranteed to be valid. In this abstract,
we show that we can check a single shortcut in Section 4, using the procedure of Section 3
for several pairs of points.

∗ Partially supported by the Dutch Research Council (NWO) under project no. 614.001.504.
† Supported by the Dutch Research Council (NWO) under project no. 612.001.801.
‡ Supported by the Dutch Research Council (NWO) under project no. 628.011.005.

37th European Workshop on Computational Geometry, St. Petersburg, Russia, April 7–9, 2021.
This is an extended abstract of a presentation given at EuroCG’21. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

72:2 Uncertain Curve Simplification

(a)

(b)

(c)

ε

Figure 1 (a) An uncertain curve and a potential realisation. (b) A valid simplification: for every
realisation, the subsequence is within Hausdorff distance ε from the full sequence. (c) An invalid
simplification: there is a realisation for which the subsequence is not within Hausdorff distance ε.

I Theorem 1. We can find the shortest vertex-constrained simplification of an uncertain
curve modelled with convex polygons or discrete sets of points, such that for any realisation
the simplification is valid under the Hausdorff distance, in time O(n3k3), where k is the size
of the point sets or the complexity of the polygons and n is the length of the input curve; and
in time O(n3) for line segments.

2 Preliminaries

Denote1 [n] def= {1, 2, . . . , n} for any n ∈ N>0. Given two points p, q ∈ R2, denote their
Euclidean distance with ‖p− q‖. Denote a sequence of points in R2 with π = 〈p1, . . . , pn〉.
For only two points p, q ∈ R2, we also use pq instead of 〈p, q〉. Denote a subsequence of a
sequence π from index i to j with π[i : j] = 〈pi, pi+1, . . . , pj〉. This notation can also be
applied if we interpret π as a polygonal curve on n vertices (of length n). It is defined by
linearly interpolating between the successive points in the sequence and can be seen as a
continuous function, for i ∈ [n− 1] and α ∈ [0, 1]: π(i+ α) = (1− α)pi + αpi+1.

We introduce the notation for order along a curve. Let p := π(a) and q := π(b) for some
a, b ∈ [1, n]. Then p ≺ q iff a < b, p 4 q iff a ≤ b, and p ≡ q iff a = b.2 Finally, given points
p, q, r ∈ R2, define the distance from p to the segment qr as d(p, qr) def= mint∈qr‖p− t‖.

An uncertainty region U ⊂ R2 describes a possible location of a point: it has to be
inside the region, but we do not know where. Call a sequence of uncertainty regions an
uncertain curve: U = 〈U1, . . . , Un〉. Picking a point from each uncertainty region of U , we get
a polygonal curve π called a realisation of U , denoted π b U . That is, if for some n ∈ N>0 we
have π = 〈p1, . . . , pn〉 and U = 〈U1, . . . , Un〉, then π b U if and only if pi ∈ Ui for all i ∈ [n].

Suppose we are given a polygonal curve π = 〈p1, . . . , pn〉, a threshold ε ≥ 0, and a
curve built on the subsequence of vertices of π for some set I = {i1, . . . , i`} ⊆ [n], i.e.
σ = 〈pi1 , . . . , pi`〉 with ij < ij+1 for all j ∈ [`− 1] and ` ≤ n. We call σ an ε-simplification
of π if for each segment 〈pij , pij+1〉, we have δ(〈pij , pij+1〉, π[ij : ij+1]) ≤ ε, where δ denotes
some distance measure, e.g. the Hausdorff distance dH.

1 We use := and =: to denote assignment, def= for equivalent quantities in definitions or to point out equality
by earlier definition, and = in other contexts. We also use ≡, but its usage is always explained.

2 Note that we can have p = q for a 6= b if the curve intersects itself.

Kevin Buchin, Maarten Löffler, Aleksandr Popov, and Marcel Roeloffzen 72:3

Define a polygonal closed convex set (PCCS) as a closed convex set with bounded area
that can be described as the intersection of a finite number of closed half-spaces. Note that
this includes both convex polygons and line segments. Given a PCCS U , let V (U) denote the
set of vertices of U . An indecisive point is a discrete set of points: U = {p1, . . . , pk}, with
k ∈ N>0 and pi ∈ R2 for all i ∈ [k]. We solve the following problem to check each shortcut.

I Problem 2. Given an uncertain curve U = 〈U1, . . . , Un〉 on n ∈ N≥3 with Ui ⊂ R2

for all i ∈ [n] modelled as PCCSs or indecisive points, find the maximum possible dis-
tance between the curve and its one-segment simplification for any realisation, i.e. find
maxπbU dH(π, 〈π(1), π(n)〉).

3 Shortcut Testing: Intermediate Points

In this section, we start with the start and end points fixed, so we are given some p1 ∈ U1
and pn ∈ Un and consider realisations π b U with π(1) ≡ p1 and π(n) ≡ pn. We make use of
the following intuitive statements.

I Lemma 3. Given four points a, b, c, d ∈ R2 forming segments ab and cd, the largest distance
from one segment to the other is achieved at an endpoint:

max
p∈ab

d(p, cd) = max
{
d(a, cd), d(b, cd)

}
.

I Lemma 4. Given n ∈ N>0, for any precise curve π = 〈p1, . . . , pn〉 with pi ∈ R2 for all
i ∈ [n], we have dH(π, p1pn) = maxi∈[n] d(pi, p1pn).

We can show the following lemma, allowing us to test the shortcut with fixed realisations
of the endpoints of length n in time O(nk) for PCCSs with at most k vertices. We can obtain
the same equality for indecisive points, replacing V (Ui) with Ui.

I Lemma 5. Given n ∈ N≥3, for any uncertain curve modelled with PCCSs U = 〈U1, . . . , Un〉
with Ui ⊂ R2 for all i ∈ [n] and V (Ui) = {p1

i , . . . , p
k
i } for all i ∈ [n], k ∈ N>0, and given

some p1 ∈ U1 and pn ∈ Un, we have

max
πbU,π(1)≡p1,π(n)≡pn

dH(π, p1pn) = max
i∈{2,...,n−1}

max
v∈V (Ui)

d(v, p1pn) .

Proof. Assume the setting of the lemma. Derive maxπbU,π(1)≡p1,π(n)≡pn
dH(π, p1pn) =

maxπbU,π(1)≡p1,π(n)≡pn
maxi∈[n] d(π(i), p1pn) = maxi∈{2,...,n−1}maxp∈Ui

d(p, p1pn), where
the steps hold by Lemma 4 and the definition of b. It is trivial to show that for any PCCS
U and a line segment ab it holds that maxp∈U d(p, ab) = maxv∈V (U) d(v, ab). J

4 Shortcut Testing: All Points

In the previous section, we have covered testing a shortcut, given that the first and last points
are fixed. Here we generalise the problem: we check if maxπbU dH(π, 〈π(1), π(n)〉) ≤ ε.

First of all, for indecisive curves, we can just use the approach of the previous section for
each pair of realisations from U1 × Un. This way we test a single shortcut in time O(nk3).

4.1 Non-intersecting Polygonal Closed Convex Sets
Consider first the case where the interiors of convex polygons U1 and Un do not intersect.

EuroCG’21

72:4 Uncertain Curve Simplification

p′ q′

p q

C1 Cn

U1
Un

R

Figure 2 Left: Illustration for Observation 6. The convex hull of the disks is shown in grey. The
dotted chains are C1 and Cn. Any line segment pq with p ∈ U1 and q ∈ Un crosses C1 and Cn.
Right: Illustration for the procedure. The region R is triangulated.

ε

p1

p3

p5

p6s3

p4

s4

p2

s5
s2

Figure 3 Alignment for the Hausdorff distance, described as 〈s1 := p1, s2, s3, s4, s5, s6 := p6〉.

I Observation 6. Given an uncertain curve modelled by convex polygons U = 〈U1, . . . , Un〉
with the interiors of U1 and Un not intersecting, note:

There are two outer tangents to the polygons U1 and Un, and the convex hull of U1 ∪ Un
consists of a convex chain from U1, a convex chain from Un, and the outer tangents.
Let Ci be the convex chain from Ui that is not part of the convex hull for i ∈ {1, n}; then

max
πbU

dH(π, 〈π(1), π(n)〉) ≤ ε ⇐⇒ max
πbU,π(1)∈C1,π(n)∈Cn

dH(π, 〈π(1), π(n)〉) ≤ ε .

To see that the second observation is true, note that one direction is trivial. In the other
direction, note that any line segment pq with p ∈ U1, q ∈ Un crosses both C1 and Cn, say, at
p′ ∈ C1 and q′ ∈ Cn. We know that there is a valid alignment for p′q′, both for the Hausdorff
and the Fréchet distance; we can then use this alignment for pq. See Figure 2.

We claim that we can use the following procedure to check maxπbU dH(π, 〈π(1), π(n)〉) ≤ ε.
1. Triangulate the region R bounded by two convex chains C1 and Cn and the outer tangents.
2. Check that maxπbU,π(1)≡s,π(n)≡t dH(π, st) ≤ ε for each line segment st of the triangulation

with s ∈ C1, t ∈ Cn.

First of all, observe that we can compute a triangulation (see Figure 2), and that every
triangle has two points from one convex chain and one point from the other chain. If all three
points were from the same chain, then the triangle would lie outside of R. Now consider
some line segment pq with p ∈ C1, q ∈ Cn. To complete the argument, it remains to show
that the checks in step 2 mean that also maxπbU,π(1)≡p,π(n)≡q dH(π, pq) ≤ ε. Observe that
the triangles span across the region R, so when going from one tangent to the other within
R we cross all the triangles. Therefore, we can number the edges of the triangles that go
from C1 to Cn, in the order of occurrence on such a path, from 1 to k. We can establish a
Hausdorff alignment, as shown intuitively in Figure 3; denote the alignment established on
line j ∈ [k] with the sequence of aji , for i ∈ {2, . . . , n− 1}. We can establish polygonal curves
Ai := 〈a1

i , . . . , a
k
i 〉; they all stay within R (see Figure 4). We claim that for any line segment

pq defined above, we can establish a valid alignment from intersection points of pq and Ai.

Kevin Buchin, Maarten Löffler, Aleksandr Popov, and Marcel Roeloffzen 72:5

U1 U4

A2 A3

Figure 4 An example set of curves A = {A2, A3} discussed in Lemma 7.

I Lemma 7. Given a set of curves A := {A2, . . . , An−1} in R described above and a line
segment pq with p ∈ C1, q ∈ Cn, we have maxπbU,π(1)≡p,π(n)≡q dH(π, pq) ≤ ε.

Proof. Note that pq crosses each Ai at least once. We can take any one crossing for each
i and establish the alignment. Consider such a crossing point p′i. It falls in some triangle
bounded by a segment from either C1 or Cn and two line segments that contain points
aji and aj+1

i for some j ∈ [k − 1]. We know, using Lemma 5, that maxw∈Ui
‖aji − w‖ ≤ ε

and maxw∈Ui‖aj+1
i − w‖ ≤ ε. Consider any point w′ ∈ Ui. Then, using Lemma 3 with

c := d := w′, we find that ‖w′ − p′i‖ ≤ ε. Therefore, also maxw∈Ui
‖p′i − w‖ ≤ ε; using

Lemma 5, we conclude that indeed maxπbU,π(1)≡p,π(n)≡q dH(π, pq) ≤ ε. J

The proof of Lemma 7 shows how to solve the problem for two convex polygons with
non-intersecting interiors. We can also use it directly for the case of line segments that do
not intersect except at endpoints. Furthermore, in this particular case it is not necessary to
use a triangulation, so we can get rid of one of the three resulting line segments.

I Lemma 8. Given n ∈ N≥3, for any uncertain curve modelled with line segments U =
〈U1, . . . , Un〉 with Ui = p1

i p
2
i ⊂ R2 for all i ∈ [n], given a threshold ε ∈ R>0, and given that

U1 ∩Un ⊂ {p1
1, p

2
1}, and assuming that the triangles p1

1p
1
np

2
1 and p2

1p
1
np

2
n form a triangulation

of the convex hull of U1 ∪ Un, we have maxπbU δ(π, 〈π(1), π(n)〉) ≤ ε if and only if

max
{

max
πbU,π(1)≡p1

1,π(n)≡p1
n

δ(π, p1
1p

1
n), max

πbU,π(1)≡p2
1,π(n)≡p2

n

δ(π, p2
1p

2
n)

}
≤ ε .

4.2 Intersecting Polygonal Closed Convex Sets
We proceed to discuss the situation where the interiors of U1 and Un intersect, or where line
segments U1 and Un cross.

Line segments. Assume line segments U1
def= p1

1p
2
1 and Un

def= p1
np

2
n cross; call their intersection

point s. Then we can use Lemma 8 separately on pairs of {p1
1s, sp

2
1} × {p1

ns, sp
2
n}. Clearly,

together this will cover the entire set of realisations of pq with p ∈ U1, q ∈ Un.

I Lemma 9. Given n ∈ N≥3, for any uncertain curve modelled with line segments U =
〈U1, . . . , Un〉 with Ui = p1

i p
2
i ⊂ R2 for all i ∈ [n], given a threshold ε ∈ R>0, we can check

that maxπbU dH(π, 〈π(1), π(n)〉) ≤ ε.

Convex polygons. Convex polygons whose interiors intersect can be partitioned along
the intersection lines, so into a convex polygon R := U1 ∩ Un and two sets of polygons
P1 := {P 1

1 , . . . , P
k
1 } and Pn := {P 1

n , . . . , P
`
n} for some k, ` ∈ N>0. We can look at pairs

from P1 × Pn separately. The pairs where R is involved are treated later. Consider some
(P,Q) ∈ P1 × Pn. Note that P and Q are convex polygons with a convex cut-out, so the

EuroCG’21

72:6 Uncertain Curve Simplification

boundary forms a convex chain, followed by a concave chain. We need to compute some
convex polygons P ′ and Q′ with non-intersecting interiors that are equivalent to P and Q,
so that we can apply the approaches from Section 4.1.

We claim that we can simply take the convex hull of P and Q to obtain P ′ and Q′.
Clearly, the resulting polygons will be convex. Also, the concave chains of P are bounded by
points s and t and are replaced with the line segment st; same happens for Q with point
u and v. The points s, t, u, v are points of intersection of original polygons U1 and Un, so
they lie on the boundary of R, and their order along that boundary can only be s, t, u, v
or s, t, v, u. Thus, it cannot happen that st crosses uv, and it cannot be that uv is in the
interior of the convex hull of P , as otherwise R would not be convex. Hence, the interiors of
P ′ and Q′ cannot intersect, so they satisfy the necessary conditions.

Finally, we need to show that the solution for (P ′, Q′) is equivalent to that for (P,Q).
One direction is trivial, as P ⊆ P ′ and Q ⊆ Q′; for the other direction, consider any line
segment that leaves P through the concave chain. In our approach, we test the lines starting
in s and t; the established alignments are connected into paths. The paths Ai do not cross
st. So, any alignment in the region of CH(P ∪Q) \ (P ∪Q) can also be made in the region
CH(P ′ ∪Q′) \ (P ′ ∪Q′). So, this approach yields valid solutions for all pairs not involving R.

Now consider the pair (R,R). A curve may now consist of a single point, so all the points
of Ui need to be close enough to all the points of R. To check that, observe that the pair of
points p ∈ Ui and q ∈ R that has maximal distance has the property that p is an extreme
point of Ui in direction qp and q is an extreme point of R in direction pq. So, it suffices,
starting at the rightmost point of Ui and leftmost point of R in some coordinate system, to
then rotate clockwise around both regions keeping track of the distance between tangent
points. Note that only vertices need to be considered, as the extremal point cannot lie on an
edge. Finally, any other pair that involves R is covered by the stronger case of (R,R): for
any line we can align every intermediate object with any point in R.

I Lemma 10. Given n ∈ N≥3, for any uncertain curve modelled with convex polygons
U = 〈U1, . . . , Un〉 with Ui ⊂ R2 for all i ∈ [n] and V (Ui) = {p1

i , . . . , p
k
i } for all i ∈ [n],

k ∈ N>0, given a threshold ε ∈ R>0, we can check that maxπbU dH(π, 〈π(1), π(n)〉) ≤ ε.

5 Combining Steps

In the previous sections, we have shown how to check if a shortcut of length n ≥ 3 is valid
under the Hausdorff distance, for indecisive points and polygonal closed convex sets. It
is easy to see that a shortcut of length n = 2 is always valid. Therefore, we can use the
previously described procedures to construct a shortcut graph; any path in such a graph
from the vertex 1 to vertex n corresponds to a valid simplification, so the shortest path gives
us the result we need. The graph has O(n2) edges. These observations lead to Theorem 1.

References
1 Pankaj K. Agarwal and Kasturi R. Varadarajan. Efficient algorithms for approximating

polygonal chains. Discrete & Computational Geometry, 23(2):273–291, 2000. doi:10.1007/
PL00009500.

2 Gill Barequet, Danny Z. Chen, Ovidiu Daescu, Michael T. Goodrich, and Jack S. Snoeyink.
Efficiently approximating polygonal paths in three and higher dimensions. Algorithmica,
33(2):150–167, 2002. doi:10.1007/s00453-001-0096-5.

3 Karl Bringmann and Bhaskar Ray Chaudhury. Polyline simplification has cubic complexity.
In 35th International Symposium on Computational Geometry (SoCG 2019), volume 129

Kevin Buchin, Maarten Löffler, Aleksandr Popov, and Marcel Roeloffzen 72:7

of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:16, Dagstuhl,
Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
SoCG.2019.18.

4 Kevin Buchin, Chenglin Fan, Maarten Löffler, Aleksandr Popov, Benjamin Raichel, and
Marcel Roeloffzen. Fréchet distance for uncertain curves. In 47th International Colloquium
on Automata, Languages, and Programming (ICALP 2020), volume 168 of LIPIcs, pages
20:1–20:20, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ICALP.2020.20.

5 Kevin Buchin, Maximilian Konzack, and Wim Reddingius. Progressive simplification of
polygonal curves. Computational Geometry, 88:101620:1–101620:18, 2020. doi:10.1016/j.
comgeo.2020.101620.

6 Kevin Buchin, Maarten Löffler, Aleksandr Popov, and Marcel Roeloffzen. Uncertain curve
simplification, March 2021. arXiv:2103.09223.

7 David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and Geovisualization, 10(2):112–122, 1973.
doi:10.3138/FM57-6770-U75U-7727.

8 Hiroshi Imai and Masao Iri. Computational-geometric methods for polygonal approximations
of a curve. Computer Vision, Graphics, and Image Processing, 36(1):31–41, 1986. doi:
10.1016/S0734-189X(86)80027-5.

9 Allan Jørgensen, Jeff M. Phillips, and Maarten Löffler. Geometric computations on indecisive
points. In Algorithms and Data Structures (WADS 2011), volume 6844 of Lecture Notes
in Computer Science, pages 536–547, Berlin, Germany, 2011. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-22300-6_45.

10 Christian Knauer, Maarten Löffler, Marc Scherfenberg, and Thomas Wolle. The directed
Hausdorff distance between imprecise point sets. Theoretical Computer Science, 412(32):4173–
4186, 2011. doi:10.1016/j.tcs.2011.01.039.

11 Maarten Löffler. Data Imprecision in Computational Geometry. PhD thesis, Universiteit
Utrecht, October 2009. URL: https://dspace.library.uu.nl/bitstream/handle/1874/
36022/loffler.pdf [cited 2019-06-15].

12 Maarten Löffler and Jeff M. Phillips. Shape fitting on point sets with probability distributions:
ESA 2009. In Algorithms, number 5757 in LNCS, pages 313–324, Berlin, Germany, 2009.
Springer Berlin Heidelberg. arXiv:0812.2967v1, doi:10.1007/978-3-642-04128-0_29.

13 Maarten Löffler and Marc van Kreveld. Largest and smallest tours and convex hulls for
imprecise points. In Algorithm Theory – SWAT 2006, volume 4059 of Lecture Notes in
Computer Science, pages 375–387, Berlin, Germany, 2006. Springer Berlin Heidelberg.
doi:10.1007/11785293_35.

14 Aleksandr Popov. Similarity of uncertain trajectories. Master’s thesis, Eindhoven University
of Technology, November 2019. URL: https://research.tue.nl/en/studentTheses/
similarity-of-uncertain-trajectories [cited 2019-12-18].

15 Urs Ramer. An iterative procedure for the polygonal approximation of plane curves. Com-
puter Graphics and Image Processing, 1(3):244–256, 1972. doi:10.1016/S0146-664X(72)
80017-0.

16 Mees van de Kerkhof, Irina Kostitsyna, Maarten Löffler, Majid Mirzanezhad, and Carola
Wenk. Global curve simplification. In 27th Annual European Symposium on Algorithms
(ESA 2019), volume 144 of Leibniz International Proceedings in Informatics (LIPIcs), pages
67:1–67:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ESA.2019.67.

EuroCG’21

	Preface
	Program Committee
	Table of Contents
	Keeping your Distance: Algorithms and Hardness (Invited Talk)
	Crossing Lemmas for Multigraphs (Invited Talk)
	An universality theorem for stressable graphs in the plane (Invited Talk)
	Canonical Forms = Persistence Diagrams (Tutorial)
	Using SAT Solvers in Combinatorics, Combinatorial Geometry, and Graph Drawing (Tutorial)
	Many Order Types on Integer Grids of Polynomial Size
	Tight bounds on the expected number of holes in random point sets
	Obstructing Classification via Projection
	Route Reconstruction from Traffic Flow via Representative Trajectories
	Route-preserving Road Network Generalization
	Path-Greedy Spanner in Near-Quadratic Time: Simpler and Better
	Lions and contamination, triangular grids, and Cheeger constants
	A Geometric Approach to Inelastic Collapse
	Max-Min 3-dispersion on a Convex Polygon
	The maximal number of 3-term arithmetic progressions in finite sets in different geometries
	Notes on pivot pairings
	Improved Bounds for Half-Guarding Monotone Polygons
	Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance
	A Dynamic Data Structure for k-Nearest Neighbors Queries
	Tukey Depth Histograms
	Enclosing Depth and other Depth Measures
	Geometric Dominating Sets - A Minimum Version of the No-Three-In-Line Problem
	Polyline Bundle Simplification on Trees
	Folding Polyiamonds into Octahedra
	Computing Optimal Virtual Camera Trajectories
	Polygon-Universal Graphs
	Rectilinear Steiner Trees in Narrow Strips
	A density-based metric learning approach to geometric inference
	Bicolored Path Embedding Problems in Protein Folding Models
	On Voronoi diagrams of 1.5D terrains with multiple viewpoints
	Upward Planar Drawings with Three Slopes
	Decomposing Polygons into Fat Components
	StreamTable: An Area Proportional Visualization for Tables with Flowing Streams
	An example of a randomized order-dependent time analysis in incremental construction
	A Tail Estimate with Exponential Decay for the Randomized Incremental Construction of Search Structures
	Shortest Paths in Portalgons
	Coordinating Programmable Matter via Shortest Path Trees
	Long plane trees
	Terrain prickliness: theoretical grounds for low complexity viewsheds
	Tight Degree Bounds for Path-Greedy 5.19-Spanner on Convex Point Sets
	Crossing Numbers of Beyond-Planar Graphs Revisited
	Reducing Moser's Square Packing Problem to a Bounded Number of Squares
	On 4-Crossing-Families in Point Sets and an Asymptotic Upper Bound
	Collapses of higher order Delaunay complexes
	Nearest-Neighbor Decompositions of Drawings
	Hardness of Recognition and 3-Coloring of L-graphs
	Coloring Circle Arrangements: New 4-Chromatic Planar Graphs
	Minimum-Error Triangulation is NP-hard
	On the Queue-Number of Partial Orders
	Uncertainty-Region Lower Bounds for the Preprocessing Model of Uncertainty
	Approximating Independent Set and Dominating Set on VPG graphs
	Covering a Curve with Subtrajectories
	Radial Level Planarity with Fixed Embedding
	Row-based Rectangle Contact Representations of Triangular Grid Graphs
	Recognition of Unit Disk Graphs for Caterpillars, Trees, and Outerplanar Graphs
	On the Realizability of Free Space Diagrams
	Accelerating Amoebots via Reconfigurable Circuits
	Coloring Drawings Of Graphs
	Local Complexity of Polygons
	Minimum Link Fencing
	Characterizing Universal Reconfigurability of Modular Pivoting Robots
	Rectangular Spiral Galaxies are Still Hard
	Deletion only Dynamic Connectivity for Disk Graphs
	Maximum-Width Rainbow-Bisecting Empty Annulus
	Axis-Aligned Square Contact Representations
	The Voronoi Diagram of Rotating Rays with applications to Floodlight Illumination
	The Fréchet Distance for Plane Graphs
	Sampling Hyperplanes and Revealing Disks
	On Minimum-Complexity Graph Simplification
	On the Geometric Red-Blue Hitting Set Problem
	Intersecting Disks using Two Congruent Disks
	Online Ply Maintenance
	Hypergraph Represention via Axis-Aligned Point-Subspace Cover
	Minimizing the Maximum Interference in Dual Power Sensor Networks
	Outerstring graphs of girth at least five are3-colorable
	Disjoint Box Covering in a Rectilinear Polygon
	Uncertain Curve Simplification

