
EuroCG 2012
Assisi, Perugia, Italy
March 19-21, 2012

Booklet of Abstracts

28th European Workshop
on Computational Geometry



 



EuroCG 2012, Assisi, Italy, March 19–21, 2012

Preface

The 28th European Workshop on Computational Geometry (EuroCG 12) was held on March 19-21 in Assisi
(Perugia), Italy. EuroCG is an annual, informal workshop whose goal is to provide a forum for scientists to
meet, present their work, interact, and establish collaborations, in order to promote research in the field of
Computational Geometry, within Europe and beyond.
We received 88 submissions, which underwent a limited refereeing process in order to ensure some minimal

standards and to check for plausibility. We selected 73 submissions for presentation at the workshop, one of which
was withdrawn later. Apart from abstracts of the 72 contributed talks, this booklet also contains abstracts of the
three invited lectures, given by Olivier Devillers, Jan Kratochv́ıl, and Günter Rote. The content of this booklet,
just like the pdf-files of abstracts available on the EuroCG website http://eurocg.org, must be regarded as
a collection of preprints. Therefore, we expect most of the results presented here to be also submitted to
peer-reviewed conferences and/or journals.
Many thanks to all authors and invited speakers for their participation, and to the members of the program

committee and all external reviewers for their insightful comments. We also thank the organizing committee
members: Carla Binucci, Emilio Di Giacomo, Luca Grilli, Fabrizio Montecchiani, and Salvatore A. Romeo.
Finally, we are very grateful for the generous support of our sponsors: Camera di Commercio Perugia, EATCS
Italian Chapter, Ordine degli Ingegneri Provincia di Perugia, Perugina, Vis4 s.r.l.

March 2012,

Walter Didimo and Giuseppe Liotta
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Dujmović, Vida

Dupont, Laurent

Giannopoulos, Panos

Glisse, Marc

Goaoc, Xavier

Grilli, Luca

Haverkort, Herman

Hornus, Samuel

Korman, Matias

Kusters, Vincent

Lenhart, William

Levy, Bruno

Lieutier, Andre
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Ramı́rez-Vigueras, Thosinori Sakai, Jorge Urrutia and Inmaculada Ventura

One-to-one Point Set Matchings for Grid Map Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

David Eppstein, Marc van Kreveld, Bettina Speckmann and Frank Staals



28th European Workshop on Computational Geometry, 2012

Coloring Dynamic Point Sets on a Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Jean Cardinal, Nathann Cohen, Sébastien Collette, Michael Hoffmann, Stefan Langerman and Günter

Rote

Order type invariant labeling and comparison of point sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Greg Aloupis, Muriel Dulieu, John Iacono, Stefan Langerman, Özgür Özkan, Suneeta Ramaswami and
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Delaunay triangulations,

theory vs practice.

Olivier Devillers

INRIA Sophia Antipolis - Méditerranée

Thirty years ago, at the early ages of computational
geometry, the game of computational geometers was
to design fancy algorithms with optimal theoretical
complexities. The result was usually an algorithmic
journal article, but not an implementation.
In the same period, some people were actually cod-

ing geometric algorithms, but without regard for the
asymptotic complexities, and without proof of cor-
rectness of the result. They were not using the algo-
rithms designed by theoreticians for two reasons [14]:
- these algorithms were too intricate and
- they rely on the arithmetic of real numbers, which
differs from the floating-point arithmetic of comput-
ers.
These drawbacks of old computational geometry al-

gorithms have been addressed in various ways to ob-
tain algorithms that reconcile robustness, practical ef-
ficiency, and theoretical guarantees.
The aim of this talk is to illustrate some steps of

this transition from theoretical stuff to efficient algo-
rithms actually used in industrial applications. I will
do this using my favorite problem: the construction of
the Delaunay triangulation of a set of points and the
dynamic maintenance of such a triangulation under
point insertions and deletions.

Code used for the benchmarks is available at :
http://www.inria.fr/sophia/members/Olivier.

Devillers/EuroCG2012/.

CGAL benchmarks

To give an idea of the current performance of software
computing Delaunay triangulation, we give the follow-
ing timings obtained on a 16GByte, 2.3GHz worksta-
tion with CGAL 3.9 (compiled in release mode) using
“Exact predicates inexact constructions kernel”.
In the following table, “static insert” uses spatial

sorting, “dynamic insert” uses the Delaunay hierar-
chy, and “deletion” removes all points in a random
order.
Although theory claims that the deletion time does

not depend on the triangulation size, we observe the
contrary, especially in two dimensions. By profiling
the code, we can observe that this phenomenon is due
the load of the cache memory.

static dynamic maximal
♯ points insert insert delete ♯ points

µs per point before swap
2D

100K 0.90 2.8 1.7
1M 0.92 5.8 2.5
10M 1.06 9.0 3.0
100M 1.15 13 3.2
230M 1.2
swap 230M

3D
100K 7.8 18 102
1M 8 25 106
10M 8.2 33 109
swap 60M

To evaluate the cost of a correct treatment of ro-
bustness issues, we compute the Delaunay triangula-
tion of 10 millons points using two different kernels.
The “Exact predicates inexact constructions kernel”
correctly handles rounding errors and degenerate
configurations while the Simple_cartesian<double>
kernel runs a little bit faster but may fail to terminate,
especially on degenerate or near degenerate input.

2D 3D
Exact predicates inexact

constructions kernel 10.6 s 82 s
Simple cartesian

<double> kernel 9.7 s 75 s

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

http://www.inria.fr/sophia/members/Olivier.Devillers/EuroCG2012/
http://www.inria.fr/sophia/members/Olivier.Devillers/EuroCG2012/
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Bibliographical notes

First algorithms for Delaunay triangulation ap-
peared in the seventies.1 The gift wrapping algorithm
was proposed in 1970 to compute 2D Delaunay trian-
gulation by Frederick, Wong, and Edge [31] and by
Chand and Kapur for convex hull in 3D [12]. Incre-
mental algorithms were introduced by Lawson in 2D
in 1977 [37] and in 3D by Bowyer and Watson in 1981
[10, 44]. A gift wrapping 3D triangulation algorithm
was proposed by Nguyen [40].

Regarding worst-case optimal algorithms, a
divide-and-conquer approach was developed by Lee in
2D in 1978 [38] and Fortune proposed his plane sweep
algorithm in 1986 [30]. For higher dimensions, the fi-
nal solution appeared in 1993 with Chazelle’s optimal
algorithm for convex hull [13].

On the way to make algorithms easier to code, ran-
domization was a very useful ingredient. Random-
ization was introduced in computational geometry by
Clakson and Shor paper in 1989 [16]; from then, ran-
domized incremental constructions (RIC) were widely
used in the domain. In fact a RIC is actually a de-
terministic incremental algorithm but analyzed under
the hypothesis of a random order for data insertion.
Previously, Boissonnat and Teillaud had introduced
an algorithm in this spirit for Delaunay triangula-
tion: the Delaunay tree [9] but its correct analysis
[8] was actually deduced few years later, by an appli-
cation of Clarkson and Shor’s techniques. A variant
of the Delaunay tree was also proposed by Guibas,
Knuth, and Sharir [35]. In 1992, Boissonnat, Dev-
illers, Schott, Teillaud and Yvinec proposed the his-
tory graph (or influence graph) to allow insertions and
deletions within RIC [7]. In 2002, Devillers used the
Delaunay hierarchy [18] to reconcile a proven random-
ized complexity with good constants for both time and
space.

One of the obstacles to the use of computational
geometry algorithms by practitioners was their lack
of robustness when using floating point arithmetic,
since their proofs of correctness rely on the arithmetic
of real numbers. One way to cope with the problem,
as proposed by Sugihara and Iri [43], is to perform
additional combinatorial and topological tests to en-
force this correctness; this approach is used in Held’s
software vroni [36]. With the exact computation
paradigm [45] Yap proposed another solution that al-
lows the use of algorithms developed with real arith-
metic in mind: the basic geometric tests, called predi-

cates, are carefully isolated in the algorithm and their
evaluation is done exactly; efficient predicates for De-
launay triangulations were proposed by Shewchuk [42]

1thanks to Jonathan Shewchuk for his summary on this topic

in the compgeom mailing list.

and Devillers and Pion [22]. The use of the exact com-
putation paradigm can be used only in the sensitive
call to the predicate: this is the idea of structural
filtering [32].

Close to robustness issues are the treatment of de-
generacies. Symbolic perturbations are the generic
answer to that problem [27, 28, 41] and exist in several
variations in the literature, including special versions
for Delaunay triangulations [2, 24].

Beyond the global algorithmic choices such as RIC,
working on details of the algorithm design have an
influence on the constant factors of the complexity.
Many point location algorithms are implemented by
walking in the triangulation, which can be done in
several ways [23, 17]. Depending on the size of the
point set, the location strategy can be adapted from
a brute force search for very small point sets, to a
walk, or jump & walk [39, 25], or Delaunay hierarchy
[18] when the size increases. If the points are known in
advance, a true random order have some disadvantage
and spatial sort can be used for preprocessing [4, 11].

Deleting one point of degree d from a 2D Delau-
nay triangulation can be done in O(d) time, by using
a quite complicated algorithm originally designed for
the Delaunay triangulation of a convex polygon by
Aggarwal, Guibas, Saxe, and Shor [1]. A much sim-
pler randomized O(d) solution has been proposed by
Chew [15]. In practice, various non-optimal solutions
of complexity O(d log d) or O(d2) are often preferred
since d is usually a small number [19]. A special-
ized implementation for small value of d, optimizing
the number of incircle tests and the memory manage-
ment can yield substantial improvement [20]. In 3D
or higher dimensions, a way of managing point dele-
tion is to compute from scratch the (small) Delaunay
triangulation of the neighbors of the removed point,
and to plug the relevant simplices inside the hole cre-
ated in the whole triangulation by the removal of the
simplices incident to the deleted point.

In dimension 3 or higher, the size of the Delau-

nay triangulation is not constrained by the number
of points as it is in 2D. There are several results
about that size under various hypotheses. For ran-
dom points in a ball in any fixed dimension, Dwyer
proved that the expected size is Θ(n) [26]. For ran-
dom points in 3D on the boundary of a polyhedron,
the expected size was proved to be Θ(n) [34] in the
convex case and between Ω(n) and O(n log n) [33] in
the non convex case by Golin and Na. If the prob-
abilistic hypothesis is replaced by some hypotheses
controlling the point distribution on the boundary of
the polyhedron (called (ǫ, κ)-sampling) then the size
of the triangulation has been proved to be Θ(n) [5] by
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Attali and Boissonnat. The same authors with Lieu-
tier proved that, applying this sampling hypotheses
to a generic smooth surface, yields an O(n log n) com-
plexity [6]. If the smooth surface is non generic (e.g. a
cylinder) and sampled with the same hypotheses, the
complexity can be Ω(n

√
n) [29] as proved by a con-

struction of Erickson. Erickson, Devillers, and Goaoc
proved that the triangulation of randomly distributed
points on a cylinder has complexity Θ(n log n) [21].
In higher dimensions, Amenta, Attali, and Devillers
proved that a good-sampling of a p-dimensional poly-
hedron embedded in dimension d has O(nk) size with

k =
d+1−⌈ d+1

p+1⌉
p

[3].
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Geometric Intersection Graphs:
Old Problems, New Approaches (and Vice Versa)

Jan Kratochv́ıl

Charles University Prague

Abstract

Intersection graphs of geometrical objects have been in the focus of interest of graph theorists and computer

scientists for quite a while. Many of such classes of graphs arise from real world applications, they allow elegant

characterizations, as well as fast algorithms for optimization problems NP-hard on general graphs. At the

same time this area is still a rich source of interesting and challenging open problems, though many of such

problems have been recently solved.

We will survey the progress and recent results, comment on the few remaining old open problems and

present new approaches, ideas and problems that have emerged in the last years.

The topics covered will include sizes of representations, a concept closely related to the NP-membership

versus PSPACE-hardness question for some of the classes under consideration, the newly developing approach

of extending partial representations, and more.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Motion Planning for a Rigid Robot in the Plane

Günter Rote

Freie Universität Berlin

Abstract

We consider the motion of a rigid polygonal robot among polygonal obstacles. After introducing the
standard configuration space approach, we will see that the contact surfaces in configuration space are patches
of helicoids and cylinders. We then consider various precise and approximate approaches for approaching the
problem. This includes techniques based on precise algebraic computation with rational functions of a single
variable, which are combined with various sampling-based approaches and approaches that approximate the
contact surfaces geometrically. These approximations provide error guarantees.

This talk is based on work by and with Oren Salzman, Michael Hemmer, Barak Raveh, Dan Halperin (Tel
Aviv University), and Dror Atariah and Sunayana Ghosh (Freie Universität Berlin) within the EU-funded
project Computational Geometric Learning (CGL) (2010-2013).

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Covering spaces and Delaunay triangulations of the 2D flat torus

Mikhail Bogdanov∗ Monique Teillaud† Gert Vegter‡

Abstract

A previous algorithm was computing the Delaunay
triangulation of the flat torus, by using a 9-sheeted
covering space [5]. We propose a modification of
the algorithm using only a 8-sheeted covering space,
which allows to work with 8 periodic copies of the
input points instead of 9. The main interest of our
contribution is not only this result, but most of all
the method itself: this new construction of covering
spaces generalizes to Delaunay triangulations of sur-
faces of higher genus.

1 Introduction

The Delaunay triangulation is a widely used structure
in Computational Geometry. Delaunay triangulations
of the flat torus [13] are used in different domains of
science, like astronomy [10, 11, 14]. More references
can be found in [5, 6, 3].

The Delaunay triangulation of points on a 2D flat
torus was previously obtained from a triangulation of
the convex hull of nine periodic copies of the points
in the plane E

2, laid in a 3x3 pattern [9, 8]. A more
recent algorithm directly computes the Delaunay tri-
angulation in a flat torus [5, 4], thus providing all
adjacency relations between triangles. The algorithm
is incremental, it resorts to a 9-sheeted covering space
of the torus, and switches to computing in the initial
torus as soon as possible.

After recalling some background on orbit spaces in
Section 2, we propose in Section 3 a construction of a
family of 2k sheeted-covering spaces of the flat torus,
k > 0. In Section 4 we show that the Delaunay tri-
angulation of any finite set of n > 1 points in the
8-sheeted covering space of this family is well defined,
we give conditions ensuring that the Delaunay trian-
gulation can be defined in the 2- and 4-sheeted cov-
ering spaces of the family, and we propose a modi-
fied incremental algorithm computing with covering
spaces of no more than eight sheets. Section 5 finally
gives hints about the extension of the construction to
surfaces of higher genus.

∗INRIA Sophia Antipolis - Méditerranée, France,

Mikhail.Bogdanov@inria.fr
†INRIA Sophia Antipolis - Méditerranée, France,

Monique.Teillaud@inria.fr
‡Department of Mathematics and Computing Science, Uni-

versity of Groningen, The Netherlands, G.Vegter@rug.nl

2 Background

The flat torus. The unit sphere S1 can be mapped
into E

2 by the map c : E → E
2, defined by

c(s) = (cos s, sin s). Similarly, the torus T
2, be-

ing homeomorphic to the Cartesian product S1 ×
S1, can be mapped into E

4 by the map (s, t) 7→
(cos s, sin s, cos t, sin t). The corestriction of this map
to its image yields a map π : E2 → T

2. Since this
torus, endowed with the ambient metric of E

4, has
zero Gaussian curvature, it is called the flat torus (as
opposed to the ’standard’ torus of revolution in E

3,
which has regions of positive and negative Gaussian
curvature). The periodicity of the maps c and π cor-
responds to an action of the groups Z and Z

2, respec-
tively. Such group actions are crucial in our approach,
so we first provide the necessary background.

Covering Spaces. In this paper, all topological
spaces are assumed to be connected. A covering map

is a continuous surjective map ρ : Y → X from a topo-
logical space Y to a topological space X, such that
each point x ∈ X is evenly covered, i.e., there is a an
open neighborhood V of x such that ρ−1(V ) is the
disjoint union of a family {Uα} of open subsets of Y
such that ρ|Uα

is a homeomorphism for each α. One of
our key examples is the map π : E2 → T

2 introduced
in the previous paragraph. If a point in X has a finite
number k of pre-images under the covering map ρ,
then the connectedness of X implies that each point of
X has k pre-images. In this case Y is called a k-sheeted
cover of X. Taking X = T

2 and Y = T
2, the map σ :

Y → X, mapping the point (cos s, sin s, cos t, sin t) ∈ Y

to the point (cos 3s, sin 3s, cos 3t, sin 3t) ∈ X, is an ex-
ample of a nine-sheeted covering map of the torus
(by another torus). If, moreover, Y is simply con-
nected, i.e., if every closed curve in Y can be con-
tracted to a point, then Y is called the universal

cover of X. It covers all (connected) covers of X in
the sense that for every covering map σ : M → X

there is a map f : Y → M such that π = σ ◦ f .
In our earlier example of the nine-sheeted covering
map σ : T2 → T

2 the map f : E2 → T
2 is given by

f(s, t) = (cos 1
3s, sin

1
3s, cos

1
3 t, sin

1
3 t).

Group Actions and Orbit Spaces. If u and v are
orthogonal vectors in E

2 of equal length, then the map
Z
2 × E

2 → E
2, given by (m,n) ∗ p 7→ p + mu + nv,

defines an action of the group Z
2 on E

2. In general,
an action of a group G on a topological space X is a
map G × X → X : (g, x) 7→ g ∗ x such that

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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(i) for g ∈ G, the map X → X : x 7→ g ∗ x, is a home-
omorphism on X;
(ii) the identity element e ∈ G corresponds to the
identity on X, i.e., e ∗ x = x, for x ∈ X;
(iii) (hg) ∗ x = h ∗ (g ∗ x), for g, h ∈ G and x ∈ X.
Each element g ∈ G correponds to a homeomorphism
x 7→ g ∗x, and this correspondence is an isomorphism
according to (ii) and (iii). In our case, (m,n) ∈ Z

2

corresponds to the translation amu bnv , where au and bv
are the translations over u and v, respectively.
The orbit of a point x ∈ X under the action of a group
G is the set Gx = {g ∗ x | g ∈ G}. Properties (ii) and
(iii) imply that the orbits form a partition of X. In
other words, the group action induces an equivalence
relation on X, given by x ∼ y if x = g ∗ y for some
g ∈ G. The orbit space X/G is the set of all orbits of
X under the action of G. A fundamental region is a
subset of X which contains at least one point of each
G-orbit with at most one point of each orbit in its in-
terior.
The orbit space of the Z

2-action introduced at the
beginning of this paragraph is the torus. Each or-
bit forms a lattice in E

2. The minimal distance
by which G = Z

2 moves a point of E
2 is δ(G) =

‖u ‖=‖ v ‖, where ‖ · ‖ denotes the Euclidean norm.
Any closed square of edge length δ(G) whose edges
are parallel to u and v is a fundamental domain
of G. For a point p ∈ E

2, the half-open square
D(p) =

{

p+ tuu+ tvv | tu, tv ∈ [− 1
2 ,

1
2 )
}

contains ex-
actly one representative of each element of T2. We
call D(O) the original domain, where O denotes the
origin.
Group Actions and Covering Spaces. In all our
examples, the group actions have the property that
each x ∈ X has a neighborhood in which each point
belongs to a different G-orbit. (Technically, this fol-
lows from the fact that the action is discontinuous

and fixed point free; See [12] for details.) If, more-
over, X is a metric space with metric d, as in our
examples, then the orbit space M := X/G can also
be endowed with a metric dM given by dM(Gx,Gy) =
min{d(x′, y′) | x′ ∈ Gx, y′ ∈ Gy}. The orbit space is
locally isometric to the space X. In this case, the quo-
tient map ̺ : X → X/G is a covering map, which is
a local isometry. In particular, if X = E

2, as in our
examples, orbit spaces are flat.
A normal subgroup H of G has index k if it has k
distinct right cosets in G, i.e., there are k elements
e = g1, g2, . . . , gk of G such that G is the disjoint union
of g1H, g2H, . . . , gkH. The H-action on X induced by
the G-action gives rise to an orbit space X/H. This
space is a k-sheeted cover of the orbit space X/G, since
the natural map ρ : X/H → X/G : Hx 7→ Gx is k-to-
1. Indeed, each G-orbit is partitioned into k orbits of
H: Gx = g1Hx ∪ g2Hx ∪ · · · ∪ gkHx. This is the key
construction of covering spaces with finite covering
degree.

3 Some finitely-sheeted covering spaces of the flat

torus

Let a, b denote translations of the same length along
the x- and y-axis in E

2, respectively. We denote as G1

the group < a, b > generated by a and b. Since G1 is
Abelian, any x ∈ G1 can be uniquely written as x =
aαbβ , where α, β ∈ Z. The length λ1(x) of x can thus
be defined as the sum |α|+ |β|. We are going to study
some covering spaces of the flat torus T

2
1 := E

2/G1.
The original domain of G1 is denoted by D1. The edge
length of D1 is denoted by l = δ(G1) =‖a‖=‖b‖.

In the sequel, the inverse x−1 of an element x of G1

will alternatively be denoted by x.
All subgroups are normal, since G1 is Abelian. Let

us consider the subgroup G2 consisting of elements of
G1 of even length. It is easy to see that G2 = 〈ab, ab〉 .

Lemma 1 G2 is a subgroup of index 2 in G1.

Proof. Let ϕ : G1 → Z2 be the group homomorphism
defined by ϕ(x) = λ1(x) mod 2. The subgroup G2 is
the kernel of ϕ. According to the First Isomorphism
Theorem (see, e.g., [1]) kerϕ is a normal subgroup of
G1, and G/ kerϕ ∼= φ(G). Therefore, G1/G2

∼= Z2. �

In an inductive way, for k > 1, if G2k−1 is a subgroup
of index 2k−1 of G1 generated by two elements, i.e.,
G2k−1 = 〈g, h〉 , g, h ∈ G1, we construct the subgroup
G2k of G2k−1 as follows: G2k = 〈gh, gh〉 . The proof of
the following lemma is similar to that of Lemma 1.

Lemma 2 For any k > 0, G2k is a subgroup of index

2k in G1.

By construction, for any k ≥ 0, the generators of
G2k are two translations whose vectors are orthogonal

and of equal length δ(G2k) =
√
2
k
l. Following Sec-

tion 2, the orbits of G2k are isomorphic to Z
2 and the

original domain D2k of G2k is a half-open square of
edge length δ(G2k) (See Figure 1). For simplicity, x
both denotes an element x of G1 and the image xO of
the origin O by x.

a

b

b̄

ā

D1

abāb

b̄ab̄ā

D2

l

√
2l

O

Figure 1: The original domains D1 and D2 of G1 and
G2 respectively.

For any k > 0, T2
2k = E

2/G2k is a flat torus, with the
corresponding projection map π2k : E2 → T

2
2k . T

2
2k
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is a covering space of T2
1 together with the covering

map ρk := π1 ◦ π−1
2k

. Since the index of G2k in G1 is

2k, we get the following result:

Proposition 3 For any k > 0, T2
2k is a 2k-sheeted

covering space of T2
1.

4 Delaunay triangulations via 2k-sheeted covering

spaces, k > 0

As in [5, 6], we stick to the definition of a triangula-

tion of a topological space Y as a geometric simplicial
complex K such that K = ∪σ∈Kσ is homeomorphic
to Y. A triangulation defined by a point set P is a
triangulation whose set of vertices is identical to P.

The Delaunay triangulation of a point set S in E
2

is a triangulation of the convex hull of S such that
the circumscribing disk of any triangle does not con-
tain any point of P in its interior. It can be defined
uniquely even in denegerate cases [7].

We use the following definition of a Delaunay tri-
angulation of a flat torus T2 = E

2/G defined by a set
of points S ∈ E

2.

Definition 1 ([5]) (Delaunay triangulation of T
2).

Let DT (GS) be the Delaunay triangulation of GS in

E
2. If π(DT (GS)) is a simplicial complex in T

2, then

we call it the Delaunay triangulation of T2 defined by

S and we denote it by DTT(S).

As shown in [5] this Delaunay triangulation is not
always defined. However, there are always some cov-
ering spaces of the torus in which the Delaunay tri-
angulation can be defined and computed.

Let ∆(S) denote the diameter of the largest disk in
E
2 that does not contain any point of a set S in its

interior. Note that for any p ∈ E
2,∆(G2kp) =

√
2
k+1

l.

Proposition 4 ([5]) If ∆(GS) < δ(G)
2 , then

π(DT (GS ′)) is a triangulation of T
2 for any finite

S ′ ⊇ S.

Proposition 5 If ∆(G1S) < 1
2δ(G2k), then

π2k(DT (G1S ∪ G2kT )) is a triangulation of T
2
2k

for any finite point set T in E
2. In particular, then

π2k(DT (G1S ′)) is a triangulation of T2
2k for any finite

S ′ ⊇ S, S ′ ∈ E
2.

Proof. Let S2k denote the set G1S ∩ D2k . By
Proposition 4, if ∆(G2kS2k) < 1

2δ(G2k), then
π2k(DT (G2kS2k ∪ G2kT )) is a triangulation. Let us
note that G2kS2k = G1S.
For S ′ ⊇ S, G1S ′ = G1S ∪ G1(S ′ \ S) = G1S ∪

G2k(G1(S ′ \S)∩D2k). It remains to take T := G((S ′ \
S) ∩ D2k). �

By Proposition 5, if the maximum empty disk di-
ameter ∆(G1S) is smaller than 1

2δ(G4) = l, then
π4(DT (G1S ∪ G4T ))) is a simplicial complex for any

finite T in E
2. If it is smaller than 1

2δ(G2) =
√
2
2 l,

then π2(DT (G1S ∪ G2T ))) is a simplicial complex.

Note that, for k > 3, 1
2δ(G2k) = 1

2

√
2
k
l >

√
2l =

∆(G1p), for any p ∈ S. Therefore, by Proposition 5,
π2k(DT (G1S)) is a simplicial complex. Let us now
consider the case k = 3.

Corollary 6 For any finite set P ⊂ D1 of n > 1
points, π8(DT (G1P)) is a simplicial complex.

Proof. The maximum empty disk diameter ∆(G1p),
for any p ∈ P, is

√
2l, that is equal to 1

2δ(G8) (See Fig-
ure 2). We are going to show that ∆(G1P) is strictly
less than

√
2l.

b

b̄

ā
D1

abāb

ab̄āb̄

D2

D4

D8

a
2

b
2

b̄
2

ā
2

a
2
b
2

a
2
b̄
2ā

2
b̄
2

ā
2
b
2

2
√
2l

√
2l

O

c

a

B

Figure 2: The original domain D8. Maximum empty
disk with diameter ∆(G1O).

Let us suppose that B is a disk with diameter
√
2l

centered at some point c ∈ E
2 and containing no

point of G1P in its interior (See Figure 2). B con-
tains D1(c). Since D1(c) is a half-open square, there
is only one point of D1(c) on the boundary of B. For
p and q 6= p, q ∈ P, there is a representative of G1p
and a representative of G1q in D1(c). At least one of
these representatives lies in the interior of B. This
contradicts that the interior of B is empty.

If we add more points, the diameter of the largest
empty disk cannot become larger. By Proposition 5,
π8(DT (G1P)) is a simplicial complex. �

Algorithm. For a finite set of points P ⊂ D1, the
algorithm of [5], inspired by the standard incremen-
tal algorithm [2], computes DTT(G1P) via a 9-sheeted
covering space. As soon as the condition of Proposi-
tion 4 is fulfilled upon insertion of a point, it switches
to computing in T

2.
Assuming that P contains at least two points, we

modify this algorithm and use the covering spaces
T
2
8,T

2
4, and T

2
2 using Proposition 5 and Corollary 6.
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• The algorithm starts by precomputing
π8(DT (G1{p, q})), for any {p, q} ⊂ P. Then it
adds points one by one in the Delaunay triangulation
of the 8-sheeted covering space T

2
8.

• If after insertion of some set of points S ⊆ P , the
maximum empty disk diameter becomes less than l,
then π4(DT (G1S ′)) is guaranteed to be a triangula-
tion for any finite S ′ ⊇ S. So, we can discard all re-
dundant periodic copies of simplices of π8(DT (G1S))
and switch to incrementally computing π4(DT (G1S ′))
in the 4-sheeted covering space T

2
4 for S ⊆ S ′ ⊆ P.

• Similarly, if after some more insertions the max-

imum empty disk diameter becomes less than
√
2
2 l,

then we switch to incrementally computing triangu-
lations in the 2-sheeted covering space T

2
2.

• If it becomes less than 1
2 l, then we switch to com-

puting π(DT (G1P)) in T
2.

For any S ⊂ P, π2k(DT (G1S)) contains 2k peri-
odic copies of each point of S. Hence, using covering
spaces whose number of sheets is as small as possible
improves the efficiency of the algorithm, even though
the asymptotic complexity is unchanged: it stays ran-
domized worst-case time and space optimal [5].

5 Future work. Covering spaces and Delaunay tri-

angulations of the double torus.

Whereas flat tori studied above, which have one han-
dle, are a Euclidean surfaces, 2-tori, i.e., tori with
two handles, are hyperbolic surfaces. A 2-torus can
be constructed as the orbit space under action on the
hyperbolic plane H

2 of a discrete group generated by
four hyperbolic translations. Due to lack of space, we
only give here a few hints on how to extend the ap-
proach above to this case. Details and proofs will be
given in a forthcoming paper.

A major difference with the Euclidean case is that
hyperbolic translations do not commute.

Let a, b, c, and d denote four hyperbolic trans-
lations and a, b, c, and d their respective inverse
translations. The group denoted as GH

1 :=
〈

a, b, c, d | ababcdcd
〉

is defined as the quotient group
of 〈a, b, c, d〉 by its smallest normal subgroup contain-
ing the element ababcdcd. For any p ∈ H

2, GH

1 p is a
lattice. The fundamental domain of GH

1 is a regular
octagon in H

2.

As in the Euclidean case, we can define the sub-
group GH

2 of GH

1 consisting of the elements of even
length. GH

2 is a normal subgroup of index 2 of GH

1 ,
and H

2/GH

2 is a two-sheeted covering space of the 2-
torus H

2/GH

1 . The surface H
2/GH

2 does not have the
same genus: it is a 3-torus.

In an inductive way, we define the normal subgroup
GH

2k , k > 1 of index 2k in GH

1 as the subgroup of ele-
ments of even length in GH

2k−1 (the length is defined
in terms of the generators of GH

2k−1). The orbit space

H
2/GH

2k , k > 0 is a 2k-sheeted covering space of the
2-torus.
We expect that there exists k > 1, such that the

Delaunay triangulation of H2/GH

2k be well defined for
any set of points in H

2.
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Delaunay triangulations on the word RAM:

Towards a practical worst-case optimal algorithm∗

Okke Schrijvers Frits van Bommel Kevin Buchin

Abstract

The Delaunay triangulation of n points in the plane
can be constructed in o(n log n) time when the coordi-
nates of the points are integers from a restricted range.
However, algorithms that are known to achieve such
running times had not been implemented so far. We
explore ways to obtain a practical algorithm for De-
launay triangulations in the plane that runs in linear
time for small integers. For this, we first implement
and evaluate variants of an algorithm, BrioDC, that is
known to achieve this bound. We find that our imple-
mentations of these algorithms are competitive with
fast existing algorithms. Secondly, we implement and
evaluate variants of an algorithm, BRIO, that runs
fast in experiments. Our variants aim to avoid bad
worst-case behavior and our squarified orders indeed
provide faster point location.

1 Introduction

In general, constructing the Delaunay triangulation
(DT) of n points in the plane takes Ω(n log n) time.
However, if the coordinates of the points are integers
from a restricted range [0, U) this bound no longer
holds. Nonetheless, for a long time no algorithms that
beat this bound were known. The breakthrough came
in 2006, when Chan and Pǎtraşcu [8] presented an
algorithm running in O(n log n/ log log n) time, and

later improved this bound to n2O(
√
log logn) [9]. The

best asymptotic running time to hope for is the time
for sorting integers in the range [0, U). A randomized
and a deterministic algorithm achieving this running
time in a suitable model were given by Buchin and
Mulzer [5] and Löffler and Mulzer [14], respectively.

For small integers the latter two algorithms run in
linear time, since we can sort integers with U = nO(1)

in this time using radix sort. Radix sort is not only
fast in theory but also runs fast in experiments. In
contrast, all of the above algorithms for DTs have
been only of theoretical interest so far and none of
them had been implemented. Many incremental al-
gorithms for DTs like the algorithm by Su and Drys-
dale [17] use an orthogonal data structure for point lo-
cation and concepts related to integer sorting to com-

∗Department of Mathematics and Computer Science, TU
Eindhoven, The Netherlands.

pute these data structures fast. Such algorithms typ-
ically run fast in experiments and on random points
but have a quadratic worst-case performance.

The goal of our work is to explore ways to obtain
a practical algorithm for DTs in the plane that runs
in linear time for small integers. Our approach to
this is two-fold. First, we implement and evaluate
variants of one of the DT algorithms that has the same
asymptotic running time as sorting, namely from [5].
Secondly, we consider an algorithm (namely from [1])
and implement and evaluate variants of it, which aim
to avoid typical reasons for bad worst-case behavior.

We focus on incremental constructions, more specif-
ically, incremental constructions con BRIO [1], where
BRIO stands for biased randomized insertion order.
The points are inserted in random rounds of increas-
ing size and within each round the order of the points
can be chosen freely. Amenta, Choi and Rote [1]
prove that the expected running time of an incremen-
tal construction using such an order is asymptotically
bounded by the expected running time of a random-
ized incremental construction, that is, O(n log n) if an
optimal point location data structure is used1.

There are various implementations of variants of
this algorithm [1, 3, 10, 13, 18]. Most of these vari-
ants actually do not use an additional point location
data structure and most sort the points of a round
along a space-filling curve (SFC). Such variants run
in O(n logU) expected time [4]2, which for small inte-
gers is again O(n log n). In experiments these variants
mostly seem to run in linear time, but unfortunately
there are point sets for which this bound is tight [4].
Thus if we want an algorithm with a better worst-case
performance, we will need to choose a different order.

One weakness of orders based on SFCs seems to be
that the construction process does not adapt to the
point distribution. In contrast, the CGAL Hilbert
curve order [10]3 does. However, this order is likely
to introduce some large jumps, that is, large distances
between consecutive points in the order. We propose
several new orders that overcome this problem and
still adapt well to the point distribution. For the

1They actually prove a corresponding result in 3d, but their
analysis can be extended to two-dimensional DTs (and other
configuration spaces) as shown in [3].

2In [4] this bound is formulated in terms of the spread of
the point set.

3CGAL now also provides a regular Hilbert curve order.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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purpose of comparison we also implemented various
traditional SFC orders.
The algorithm by Buchin and Mulzer [5] uses an ex-

tension of BRIOs that uses nearest neighbor graphs
(NNGs) to find a suitable order. While this algo-
rithm does run in linear time in our experiments, the
constant factor in the running time is large. The
large constant is due to the worst-case optimal NNG
construction. Therefore, we implement an additional
variant of this algorithm, where we use several steps
that are non-optimal but simpler.

2 Algorithms

In this section we discuss several variants of BRIO
and BrioDC algorithms that we implemented.

2.1 BRIO

The difference between a regular random incremental
construction (RIC) algorithm and BRIO, is that with
BRIO the points are inserted in log2 n rounds. First,
points are added to the final round with independent
probability 1/2. Then the remaining points are added
with probability 1/2 to the second-to-last round and
this process continues until we reach the first round
and all remaining points are added. Within a round
the insertion order can be chosen freely, and often is
chosen as an SFC order. By sorting points in this way,
the next point to be inserted is likely to be close to
the previous point, hopefully resulting in faster point
location.

2.1.1 Existing SFCs

There is a plethora of SFCs in the literature and in our
experiments, we have used the Peano, Sierpiński and
Hilbert curves. In addition, CGAL provides an SFC
that is similar to the Hilbert order, but first creates a
vertical split on the horizontal median, and then for
each half a horizontal split on their vertical medians.
The quadrants are handled in Hilbert order, see Fig-
ure 1a. Note that if the two vertical medians differ
substantially, the jump from the upper left to upper
right quadrant can be large.

2.1.2 New SFCs

We propose several new SFCs that aim at provid-
ing a good mapping between 1-dimensional and d-
dimensional space, i.e. no jumps should occur and the
total summed distance between consecutive points in
the order should be small.

Adaptive Hilbert order. We split the point set by
the horizontal and vertical median, as a compromise
between the original and CGAL Hilbert orders. This
should distribute the points over all quadrants better

(a) CGAL (b) Adaptive (c) HilbertYX

Figure 1: Variants of the Hilbert SFC.

(a) Wide (b) Tall

Figure 2: Squarified Hilbert SFC.

than the original Hilbert order, and remove the jump
that was seen in CGAL Hilbert, see Figure 1b.

Hilbert YX. As a variant on the CGAL Hilbert order,
if we first split on the vertical median, and then on the
two horizonal medians, no jump occurs when going
from one quadrant to another, see Figure 1c.

Squarified Hilbert and Peano orders. If the smallest
enclosing bounding box of the point set has large as-
pect ratio, fitting an SFC will either leave part of the
domain unused, or stretch one axis. We prevent this
from happening by splitting the point set into subsets
that have a well-fitting square bounding box, and join-
ing the SFCs over these point sets. This is achieved
by either placing multiple curves next to each other,
as in Figure 2a, or using more than four subproblems,
as in Figure 2b. The bounding box is recomputed for
each subproblem, so the individual subproblems may
end up being split in a similar way. Squarifying can
also be combined with the adaptive orders.

2.1.3 Implementation

BRIO was implemented in C++ and uses CGAL 3.6.1
to generate the DT after the rounds have been de-
termined. It provides a means to sort a point set
according to the SFCs defined in Section 2.1.2. We
use CGAL for this part of the experiments to ob-
tain a direct comparison to the CGAL Hilbert or-
der, for which we use the original implementation:
hilbert_sort_2. The code of CGAL was slightly
modified in order to gather metrics.

2.2 BrioDC

BrioDC [5], or BRIO with Dependent Choices, re-
duces the problem of constructing the DT of a
point set P to constructing nearest-neighbor graphs
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(NNGs). Let NNG≤r be the NNG of the points from
the first r rounds. Where BRIO assigns points to
a round with equal probabilities, BrioDC makes sure
that for every point p that is allocated to round r > 1,
at least one point q in the connected component of
NNG≤r is added in an earlier round. We can use the
location of q to quickly locate the triangle in which
point p should be inserted.

2.2.1 Variations

We use two different algorithms for constructing near-
est neighbor graphs.

Linear-time algorithm. In order to find the NNG of
a point set, we use a series of intermediate data struc-
tures. We start by sorting the point in z-order [15]
using radix sort, and from this we generate a com-
pressed quadtree using the approach of Chan [7]. The
compressed quadtree can be used to find the well-
separated pair decomposition (WSPD) from which we
can compute the NNG using the linear time algorithm
of Callahan and Kosaraju [6].

O(n logU)-time algorithm. Although each of the
steps in the previous paragraph are done in linear
time, the constants in the computation are quite high,
so alternatively we have used straightforward imple-
mentations that run in near-linear time. The com-
pressed quadtree can be constructed top-down and
compressed in O(n logU) time. For computing the
NNG from the WSPD, we use the simpler approach
by Har-Peled [12] that runs in O(n(log n + logU)).
Since log n is bounded by logU , this can be simplified
to O(n logU).

2.2.2 Implementation

We have implemented the BrioDC algorithm in C++.
For the base case of the DT and for the incremental in-
sertion of points into the triangulation we use the Tri-
angle library4 [16] version 1.6. In Triangles implemen-
tation of an incremental construction of DTs, when-
ever a point is inserted into the triangulation, Triangle
searches for the triangle containing that point. It is
possible to supply a guiding triangle, which serves as
a start point for the point location query. In each
round we use the NNG to supply an appropriate tri-
angle. Other than the modifications to gather the
metrics, we have made no changes to the library.

3 Results

We have tested all algorithms on point sets with dif-
ferent distributions; namely uniform (in a square),
checkers, bivariate normal with independent coor-
dinates, Kuzmin and line singularity distributions.
Checkers is a distribution on a checkers board where

4http://www.cs.cmu.edu/~quake/triangle.html
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Figure 3: The runtime per point for the different al-
gorithms over all distributions.

the 1/8 of the points are distributed uniformly on
white squares and 7/8 of the points are distributed
uniformly on black squares. The Kuzmin and line sin-
gularity distributions are described by Blelloch et al.
[2]. For each distribution and n we run 10 tests on dif-
ferent datasets and report the average of the results.
We focus on the running time for the comparison of
the algorithms.

The experiments were performed on a 64-bit 16 core
Intel Xeon L5520 server running Linux (2.6.35) oper-
ating system with 11.7 gigabytes of RAM. Only 1 core
was used for the experiments.

We first compare the various insertion orders for in-
cremental constructions con BRIO using the running
time per point in microseconds for n = 222 over all dis-
tributions. The squarified and original Hilbert orders
perform best. In general, the squarified orders (Squar-
ified Hilbert 1.57, Squarified Peano 1.58) are slightly
slower than the original orders (Hilbert 1.51, Peano
1.57, Sierpiński 1.52). This can be attributed to
the higher construction time. Most remaining orders
are slower by 25-80% (Adaptive Hilbert 2.01, Adap-
tive Peano 2.17, HilbertYX 1.95, CGAL Hilbert 1.89,
Squarified Adaptive Hilbert 2.71, Squarified Adaptive
Peano 2.78), but this drops to 13-25% if we exclude
the line distribution (for which all adaptive curves
perform poorly).

Next, we compare our algorithms with existing
ones. The BRIO orders fall into two categories and
the orders in a category have similar running time.
Therefore, from the original and squarified orders we
only show Squarified Hilbert and from the Adaptive
orders we show CGAL Hilbert. Figure 3 shows the
running time per point of the algorithms over all dis-
tributions on a log-log-scale. Table 1 shows the run-
ning times for the different distributions and input
size 220, 221 and 222. For all algorithms based on
con BRIO (including BrioDC) we would expect a con-
stant, or nearly constant running time per point. This
seems to be indeed the case, although it increases
very slightly with the input size. The running time of
the near-linear O(n logU) implementation of BrioDC
is lower than the linear time implementation, but it



16

28th European Workshop on Computational Geometry, 2012

Input Size DCLin DCLog TrInc D&C CHil SqHil Hil

Uniform

2
20

25.56 21.70 35.73 3.06 1.58 1.51 1.46

2
21

26.71 24.43 50.46 3.39 1.61 1.53 1.48

2
22

28.36 26.01 74.79 3.98 1.64 1.56 1.50

Normal

2
20

25.57 22.96 30.66 3.06 1.60 1.52 1.47

2
21

27.33 25.49 41.30 3.34 1.65 1.55 1.49

2
22

27.95 27.02 68.21 3.97 1.65 1.55 1.49

Kuzmin

2
20

25.25 23.81 34.27 3.17 1.63 1.55 1.48

2
21

29.02 28.09 49.14 3.53 1.67 1.58 1.51

2
22

28.75 27.69 70.31 3.98 1.68 1.59 1.51

Checkers

2
20

25.39 22.25 43.65 3.23 1.57 1.50 1.44

2
21

27.58 26.45 59.91 3.58 1.61 1.51 1.46

2
22

27.07 25.14 74.19 3.94 1.62 1.53 1.47

Line

2
20

26.85 24.86 59.75 4.22 2.76 1.56 1.51

2
21

27.13 23.83 76.19 4.49 2.82 1.59 1.53

2
22

27.19 25.65 97.93 4.86 2.87 1.60 1.54

Table 1: The runtime per point in microseconds
for BrioDC linear (DCLin) and O(n logU) (DCLog),
Triangle incremental (TrInc) and divide-and-conquer
(D&C), CGAL Hilbert (CHil), Squarified Hilbert
(SqHil) and Hilbert (Hil).

grows faster. For 219 and more points, BrioDC is
faster than the incremental construction algorithm of
Triangle. For 222 points BrioDC is only a factor 5.5-7
slower than the divide-and-conquer algorithm of Tri-
angle. Other commonly used O(n log n)-time algo-
rithms come within a factor of 1.5 to 10 of this run-
ning time [11]. BrioDC is competitive with these al-
gorithms, and the 5.5-7 factor will decrease further
with increasing input sizes. The fastest algorithms
in our experiments are the algorithms using a BRIO.
The Hilbert order, the squarified Hilbert order and
BrioDC show little dependency on the input distribu-
tion. Triangle’s incremental and divide-and-conquer
algorithms, and CGAL Hilbert show a large depen-
dency and considerably slow down for the line distri-
bution.

We have also measured the cost of point location,
updating the triangulation and the running time of
the individual parts of BrioDC. Point location cost
is reduced by approximately 3% by using squarified
orders compared to the original Hilbert order. The
cost for updating the triangulation is similar for all
approaches. For BrioDC, about 84% of the running
time is spent on computing the NNGs (18% for the
quadtree, 29% for the WSPD, and 37% for the NNG
from the WSPD).

Summarizing, we have successfully shown the prac-
ticality of an O(n)-time algorithm for computing the
Delaunay triangulation of points with bounded in-
teger coordinates, as well as improved heuristics on
non-optimal but faster algorithms. While currently
BrioDC is still outperformed by O(n log n)-time algo-
rithms, our implementation is competitive and could
be improved upon with a faster NNG algorithm.
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n2O(
√
lg lgn) time. In Proc. 39th Annu. ACM Sym.

Theory Comput. (STOC), pages 31–39. ACM, 2007.

[10] C. Delage. Spatial sorting. In CGAL Editorial Board,
editor, CGAL User and Reference Manual. 2007.

[11] O. Devillers. The Delaunay hierarchy. Int. J. Found.
CS, 13(2):163–180, 2002.

[12] S. Har-Peled. Geometric Approximation Algorithms.
Mathematical Surveys and Monographs. AMS, 2011.

[13] Y. Liu and J. Snoeyink. A comparison of five im-
plementations of 3d Delaunay tesselation. In Comb.
and Comp. Geom., volume 52 of MSRI Publications,
pages 439–458. Cambridge University Press, 2005.
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Equating the witness and restricted Delaunay complexes

Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh, and Steve Y. Oudot

Abstract

It is a well-known fact that the restricted Delaunay
and witness complexes may differ when the landmark
and witness sets are located on submanifolds of Rd

of dimension 3 or more. Currently, the only known
way of overcoming this issue consists of building some
crude superset of the witness complex, and applying
a greedy sliver exudation technique on this superset.
Unfortunately, the construction time of the super-
set depends exponentially on the ambient dimension,
which makes the witness complex based approach to
manifold reconstruction impractical. This work pro-
vides an analysis of the reasons why the restricted
Delaunay and witness complexes fail to include each
other. From this a new set of conditions naturally
arises under which the two complexes are equal.

1 Introduction

Various subcomplexes of the Delaunay triangulation
have been used with success for approximating k-
submanifolds of Rd from finite collections of sample
points. Perhaps the most popular one in small di-
mensions (k ∈ {1, 2} and d ∈ {2, 3}) is the so-called
restricted Delaunay complex, defined as the subcom-
plex spanned by those Delaunay simplices whose dual
Voronoi faces intersect the manifold. Its main attrac-
tion is that it can be shown to be a faithful approx-
imation to the manifold underlying the data points,
in terms of topology (ambient isotopy), of geometry
(Hausdorff proximity), and of differential quantities
(normals, curvatures, etc), all this under sampling
assumptions which only constrain the sampling den-
sity [1]. These qualities explain its success in the con-
text of curve and surface meshing or reconstruction,
where it is used either as a data structure for the al-
gorithms, or as a mathematical tool for their analysis,
or both — see [6] for a survey.

The story becomes quite different when the data is
sitting in higher dimensions, where two major bottle-
necks appear: (i) The nice structural properties men-
tioned above no longer hold when the dimension k of
the submanifold is 3 or more. In particular, normals
may become arbitrarily wrong [7], and more impor-
tantly the topological type of the complex may devi-
ate significantly from the one of the manifold [5]. (ii)

It is not known how to compute the restricted Delau-
nay complex without computing the full-dimensional
Delaunay triangulation or at least its restriction to
some local d-dimensional neighborhood. The result-
ing construction time incurs an exponential depen-
dence on the ambient dimension d, which makes the
complex a prohibitively costly data structure in prac-
tice. Another issue is the high degree of the algebraic
operations involved in the construction of Delaunay
triangulations. Specifically, we need to evaluate signs
of polynomials of degree d+ 2 in the input variables,
which is prohibitive for large d.

To address problem (i), Cheng et al. [7] suggested
to use weighted Delaunay triangulations. The intu-
ition underlying their approach is simple: when the
restricted Delaunay complex contains badly shaped
simplices, called slivers, its behavior in their vicinity
may be arbitrarily bad: wrong normals, wrong local
homology, and so on. By carefully assigning weights
to the data points, one can remove all the slivers from
the restricted Delaunay complex and thus have it re-
cover its good structural properties. This idea was
carried on in subsequent work [5, 4], and it is now
considered a fairly common technique in Delaunay-
based manifold reconstruction.

Yet, the question of computing a good set of weights
given the input point cloud remains. This question is
closely connected to problem (ii) above, since deter-
mining which simplices are the slivers to be removed
requires that the restricted Delaunay complex be com-
puted first. To address this issue, it has been proposed
to build some superset of the restricted Delaunay com-
plex, from which the slivers are removed [5, 7]. After
the operation the superset becomes equal to the re-
stricted Delaunay complex, and thus it shares its nice
properties. Unfortunately, the supersets proposed so
far were pretty crude, and their construction times
depended exponentially on the ambient dimension d,
which made the approach intractable in practice.

To circumvent the building time issue, Boissonnat and
Ghosh [4] proposed to use a different subcomplex of
the Delaunay triangulation, called the tangential com-

plex, whose construction reduces to computing local
Delaunay triangulations in (approximations of) the
k-dimensional tangent spaces of the manifold at the
sample points. Once these local triangulations have
been computed, the tangential complex is assembled
by gluing them together. Consistency issues between

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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the local triangulations may appear, which are solved
once again by a careful weight assignment over the
set of data points to remove slivers. The benefit is
that the slivers to be removed are determined directly
from the complex, not from some superset, so the
complexity of the sliver removal phase reduces to a
linear dependence on the ambient dimension d, while
keeping an exponential dependence on the intrinsic
dimension k. This makes the approach tractable un-
der the common assumption that the data points live
on a manifold with small intrinsic dimension, embed-
ded in some potentially very high-dimensional space.
The obtained complex is not the restricted Delaunay
complex in general, and the question of whether the
latter can be effectively retrieved remains open. Also,
the algebraic degree of the polynomials involved in the
construction of the tangential complex is k+2, which
is a neat improvement over d + 2 but still limits the
practical use of the tangential complex to manifolds
of small dimensions.

Enter the witness complex. In light of the apparent
hardness of manifold reconstruction, researchers have
turned their focus to the somewhat easier problem of
inferring some topological invariants of the manifold
without explicitly reconstructing it. Their belief was
that more lightweight data structures would be appro-
priate for this simpler task, and it is in this context
that Vin de Silva introduced the witness complex [8].
Given a point cloud W , his idea was to carefully select
a subset L of landmarks on top of which the complex
would be built, and to use the remaining data points
to drive the complex construction. More precisely, a
point w ∈ W is called a witness for a simplex σ ∈ 2L if
no point of L is closer to w than w is to the vertices of
σ, i.e. if there is a ball centered at w that includes the
vertices of σ, but no other points from L. The wit-
ness complex is then the largest abstract simplicial
complex that can be assembled using only witnessed
simplices. The geometric test for being a witness can
be viewed as a simplified version of the classical De-
launay predicate, and its great advantage is to require
a mere comparison of (squared) distances (hence the
evaluation of the signs of polynomials of degree 2 in
the input variables). As a result, witness complexes
can be built in arbitrary metric spaces, and the con-
struction time is bound to the size of the input point
cloud rather than to the dimension d of the ambient
space.

Since its introduction, the witness complex has at-
tracted interest [2, 5, 9, 10], which can be explained
by its close connection to the Delaunay triangulation
and restricted Delaunay complex. In his seminal pa-
per [8], de Silva showed that the witness complex is
always a subcomplex of the Delaunay triangulation
Del(L), provided that the data points lie in some Eu-

clidean space or more generally in some Riemannian
manifold of constant sectional curvature. With ap-
plications to reconstruction in mind, Attali et al. [2]
and Guibas and Oudot [10] considered the case where
the data points lie on or close to some k-submanifold
of Rd, and they showed that the witness complex is
equal to the restricted Delaunay complex when k = 1,
and a subset of it when k = 2. Unfortunately, the
case of 3-manifolds is once again problematic, and it
is now a well-known fact that the restricted Delau-
nay and witness complexes may differ significantly (no
respective inclusion, different topological types, etc)
when k ≥ 3 [11]. To overcome this issue, Boissonnat,
Guibas and Oudot [5] resorted to the sliver removal
technique described above on some superset of the
witness complex, whose construction incurs an expo-
nential dependence on d. The state of affairs as of now
is that the complexity of witness complex based man-
ifold reconstruction is exponential in d, and whether
it can be made only polynomial in d (while still expo-
nential in k) remains an open question.

2 Terminology and notation

We write τ ≤ σ to indicate that τ is a (not necessarily
proper) face of simplex σ. Let L ⊂ R

d be a finite set
and let X ⊂ R

d be an arbitrary set.

Definition 2.1 A point x ∈ X is a witness for σ ⊂ L

if

‖p− x‖ ≤ ‖q − x‖ ∀p ∈ σ and q ∈ L \ σ.

A Delaunay centre for σ is a point x that satisfies

‖p− x‖ ≤ ‖q − x‖ ∀p ∈ σ and q ∈ L. (1)

If a simplex σ has a witness, we say that it is wit-
nessed.

Note that a Delaunay centre is also a witness; the re-
laxed qualification on q in Equation (1) simply serves
to demand that ‖p− x‖ = ‖p′ − x‖ for all p, p′ ∈ σ.
The formulation in terms of an inequality is conve-
nient in the subsequent developments.

Definition 2.2 The witness complex of L ⊂ R
d

with respect to X is the abstract simplicial complex,

Wit(L,X), on L defined by

σ ∈ Wit(L,X) ⇐⇒ every subsimplex

τ ≤ σ has a witness in X.

The Delaunay complex of L restricted to X is the

abstract simplicial complex, Del(L,X), on L defined

by

σ ∈ Del(L,X) ⇐⇒ every subsimplex

τ ≤ σ has a Delaunay centre in X.
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We will also use the relaxed notion of the witness
complex, which was also introduced by de Silva [8].

Definition 2.3 Assume ρ ≥ 0. A point x ∈ X is a

ρ-witness for σ ⊂ L if

‖p− x‖ ≤ ‖q − x‖+ ρ ∀p ∈ σ, and q ∈ L \ σ.

A ρ-Delaunay centre for σ is a point x that satisfies

‖p− x‖ ≤ ‖q − x‖+ ρ ∀p ∈ σ, and q ∈ L.

Using ρ-witnesses we obtain a superset of the witness
complex

Definition 2.4 The ρ-witness complex, Witρ(L,X),
is the abstract simplicial complex on L defined by

σ ∈ Witρ(L,X) ⇐⇒ every subsimplex

τ ≤ σ has a ρ-witness in X.

The ρ-Delaunay complex of L restricted to X is the

abstract simplicial complex, Delρ(L,X), on L defined

by

σ ∈ Delρ(L,X) ⇐⇒ every subsimplex

τ ≤ σ has a ρ-Delaunay centre in X.

de Silva [8] also showed that Witρ(L,Rd) =
Delρ(L,Rd). Our motivation for introducing
Witρ(L,W ) is that we want a discrete set of witnesses
W representing an embedded manifold M. We would
like to be able to relax the Delaunay condition with-
out changing the Delaunay complex. For this we in-
troduce the protection idea:

Definition 2.5 A point x ∈ X is a δ-protected wit-
ness for σ ⊂ L if

‖p− x‖ < ‖q − x‖ − δ ∀p ∈ σ, and q ∈ L \ σ.

If, in addition, x is a ρ-Delaunay centre for σ, then

we say x is a (δ, ρ)-Delaunay centre for σ.

Protection is the opposite of relaxation, but a (δ, ρ)-
Delaunay centre combines both notions.

A (δ, ρ)-Delaunay centre for σ is the centre of a closed
ball B which contains all the vertices of σ and these lie
within a distance ρ from ∂B, and furthermore there
are no points in L \σ within a distance of δ from ∂B.
Observe in particular that a (δ, ρ)-Delaunay centre for
σ is a witness for σ, but it is not a Delaunay centre
for σ. We will require δ > ρ.

For p a vertex of simplex σ, we denote by σp the face
opposite p. For a geometric simplex σ ⊂ R

d, the al-

titude of p in σ is D(p, σ) = dRd(p, aff(σp)). Poorly

shaped simplices are problematic for our purposes; we
need to avoid them. Such simplices can be character-
ized by the existence of a relatively small altitude.
The thickness of a j-simplex σ is the dimensionless
quantity

Υ(σ) =

{

1 if j = 0

minp∈σ
D(p,σ)
j∆(σ) otherwise.

We say that σ is Υ0-thick, if Υ(σ) ≥ Υ0. The constant
Υ0 that bounds the thickness of the simplices plays
an important role in our analysis.

We will require some terminology related to sampling
of manifolds. Given two subsets W and X of R

d,
the symmetric Hausdorff distance between them is
defined by

dH(W,X) = max{ sup
w∈W

dRd(w,X), sup
x∈X

dRd(x,W )}.

If W is a finite set, we say it is an ǫ-sample of X if
dH(W,X) < ǫ. We say that ǫ is the sampling radius ,
because any ball of radius ǫ centred onX must contain
a point of W . Note that W is not required to be a
subset of X. We say that W is β-sparse if for all
w,w′ ∈ W , dRd(w,w′) ≥ β.

Let M ⊂ R
d be a compact manifold. An open ball

B = BRd(c; r) is a medial ball at p ∈ M if it is tangent
to M at p, and B ∩ M = ∅, and it is maximal in
the sense that any ball which is centred on the line
through p and c, and contains B, either coincides with
B or intersects M. The local reach at p is the infimum
of the radii of the medial balls at p, and the reach of
M, denoted rch(M), is the infimum of the local reach
over all points of M. In order to approximate the
geometry and topology with a mesh, manifolds with
small reach require a higher sampling density than
those with a larger reach. As is typical, an upper
bound on our sampling radius will be proportional to
rch(M). We require M to have positive reach.

3 Equating the restricted Delaunay and witness

complexes

Given a smooth compact k-manifold, M ⊂ R
d,

we establish conditions on the finite set W ⊂ R
d

of witnesses, and the set L ⊂ W of landmarks,
which will guarantee the equivalence of Del(L,M) and
Wit(L,W ). These conditions are specified in terms of
rch(M) and three additional parameters by which the
sampling radius ǫ of W with respect to M, and the
sampling radius λ of L with respect to W are con-
trolled. These parameters are δ, which specifies the
protection of the simplices, ρ, which is a relaxation
parameter, closely tied to ǫ, and Υ0, which is a con-
stant that places a lower bound on the thickness of
the simplices.
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The sampling density of L reflects the resolution of the
final simplicial representation of M. It is governed by
λ, which is constrained only by Υ0 and rch(M). The
choice of λ constrains the sampling density of W .

Hypotheses 3.1 The sampling conditions de-

manded of L and W are as follows:

HL L ⊂ W is a λ-sparse λ-sample of W with λ ≤
Υ0rch(M)

32 , ρ ≤
(

Υ2

0

130

)

λ, δ ≥
(

644
Υ2

0

)

ρ, and every

simplex σ ∈ Witρ(L,W ) is Υ0-thick and has a

(δ, ρ)-Delaunay centre in W .

HW W ⊂ R
d is an ǫ-sample of M with

ǫ ≤ min{
ρ

2
,

2λ2

rch(M)
}.

Looking past the parameters and equations, the es-
sential demand of HL is that every σ ∈ Witρ(L,W )
is thick and has a (δ, ρ)-Delaunay centre x ∈ R

d.
As mentioned above, de Silva [8] has demonstrated
that every simplex in Witρ(L,W ) already has a ρ-
Delaunay centre. Also a thickness or equivalent qual-
ity constraint on the simplices is standard and is
known to be a requirement [7, 11] for the restricted
Delaunay triangulation to be an accurate representa-
tion of M. Thus the principal novelty in our criteria is
the protection demand, and it yields our main struc-
tural result [3]:

Theorem 3.2 If HW and HL are satisfied, then

Wit(L,W ) = Del(L,M).

The protection requirement is not an unreasonable
demand: As we demonstrate [3], our criteria imply
that each Delaunay simplex has a Delaunay centre
that has some amount of protection. It is not difficult
to verify that if there is a simplex in Del(L,Rd) that
does not have a protected Delaunay centre, then there
is a (d + 1)-simplex in Del(L,Rd). In other words,
a Delaunay simplex without any protected Delaunay
centre only occurs in a point set that is not in “gen-
eral position”. Although de Silva [8] makes no such
demand, it is customary, when dealing with Delau-
nay triangulations, to assume that the vertex set is
in general position. Thus this standard assumption
is already demanding that there is some δ > 0 such
that the Delaunay simplices each have a δ-protected
centre. The difference is that the general position
assumption allows δ to be arbitrarily small, but we
demand that δ be bounded below by ρ, which is in
turn bounded below by ǫ. However, we may let ǫ be
arbitrarily small.

Thus if ǫ is small enough we should expect that if we
generate a λ-sparse λ-sample L of W , then (once non-
thick simplices are exuded) it will probably meet our

criteria. In this sense our sampling criteria are not
unreasonable, yet when they are met we guarantee
that the witness complex coincides with the restricted
Delaunay complex.
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Probabilistic Lower Bounds on the Length of a Longest Edge in Delaunay

Graphs of Random Points in a d-Ball ∗

Miguel A. Mosteiro†

1 Introduction

In this paper, we complete the study of the length
of a longest Delaunay edge for points randomly dis-
tributed in multidimensional Euclidean spaces carried
out in [2]. The Delaunay graph is defined over a set
of n points distributed uniformly at random in a d-
dimensional body of unit volume, assuming that the
probability that those points are not in general po-
sition is negligible [7]. The motivation to study this
problem comes from its application in energy-efficient
geometric routing and flooding in wireless sensor net-
works (see, e.g., [6, 8, 9, 10]).

Given that the length of the longest Delaunay edge
is strongly influenced by the boundary of the enclosing
region, in [2] we study the problem for the surface of a
d-sphere and the volume of a d-ball. The results pre-
sented in that work include upper and lower bounds
for d-dimensional bodies with and without bound-
aries, that hold for a parametric error probability ε.
Lower bounds for a d-ball were proved only for d ≤ 3
leaving open the question for higher dimensions. We
answer this question in the present work presenting a
lower bound that holds in general for any d > 1, and
we also compute the particular cases d = 2 and d = 3
to obtain the precise bound on the euclidean distance.
These lower bounds are proved showing that a con-
figuration that yields a Delaunay edge of a certain
length occurs with probability at least a parameter
ε. These lower bounds are computed up to constants
and are asymptotically tight for e−cn ≤ ε ≤ n−c, for
any constant c > 0, and d ∈ O(1). To the best of
our knowledge, the present work and [2] are the first
comprehensive study of this problem.

In the following section, we overview some previ-
ous work. In Section 3 we introduce some necessary
notation. The analysis is left to Section 4.

2 Related Work.

The present work completes the study of the length
of a longest Delaunay edge for points randomly dis-

∗This research was partially supported by Spanish MICINN
grant TIN2008-06735-C02-01, Comunidad de Madrid grant
S2009TIC-1692, and the National Science Foundation (CCF-
0937829, CCF-1018388).

†Computer Science Department, Rutgers University, USA,
and LADyR, GSyC, Universidad Rey Juan Carlos, Spain,
mosteiro@cs.rutgers.edu

tributed in multidimensional Euclidean spaces in [2].
Matching (asymptotically) upper and lower bounds
for points distributed over bodies with and without
boundaries were proved there. For bodies with bound-
aries, only d ≤ 3 was considered leaving the question
for higher dimensions open until the present work.

Kozma, Lotker, Sharir, and Stupp [8] show that
the asymptotic length of a longest Delaunay edge de-
pends on the sum, σ, of the distances to the boundary
of its endpoints. More specifically, their bounds are
O( 3

√

(log n)/n) if σ ≤ ((log n)/n)2/3, O(
√

(log n)/n)

if σ ≥
√

(log n)/n, and O((log n)/(nσ)) otherwise.
Kozma et al. also show, in the same setting, that
the expected sum of the squares of all Delaunay edge
lengths is O(1). In [4] the authors consider the
Delaunay triangulation of an infinite random (Pois-
son) point set in d dimensional space. In particu-
lar, they study different properties of the subset of
those Delaunay edges completely included in a cube
[0, n1/d] × · · · × [0, n1/d]. For the maximum length of
a Delaunay edge in this setting, they observe that in
expectation is in Θ(log1/d n).

Interest in bounding the length of a longest Delau-
nay edge in two-dimensional spaces has grown out of
extensive algorithmic work [5, 3, 1] aimed at reduc-
ing the energy consumption of geographically routing
messages in Radio Networks. Multidimensional De-
launay graphs are well studied in computational ge-
ometry from the point of view of efficient algorithms
to construct them (see [7] and references therein), but
only limited results are known regarding probabilistic
analysis of Delaunay graphs in higher dimensions [11].

3 Preliminaries

The following notation will be used throughout. We
restrict attention to Euclidean (L2) spaces. A d-ball of
radius r is the set of all points in a d-dimensional space
that are located at distance at most r (the radius)
from a given point c (the center). The volume of a
d-ball (in d-space) is its d-dimensional volume. We
refer to a unit ball as a ball of unit volume1.

An spherical cap of U is the intersection of a d-ball
U with a closed halfspace, bounded by a hyperplane

1This is in contrast with some definitions of a “unit”
ball/sphere as a unit-radius ball/sphere; we find it convenient
to standardize the volume/area to be 1 in all dimensions.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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h, in d-space; the base of U is the (d − 1)-ball B that
is the intersection of h with the ball U . Let Vd(x)
be the d-volume of a ball cap of base diameter x, of
a d-ball of volume 1. For any pair of points a, b, let
d(a, b) be the Euclidean distance between a and b, i.e.

d(a, b) = ||−→ab||2. Let D(P ) be the Delaunay graph of
a set of points P defined as follows [7, 2].

Definition 1 Let P be a generic set of points in a
d-ball B.

(i) A set F ⊆ P of d+1 points define the vertices of a
Delaunay face of D(P ) if and only if there is a d-
ball B′ such that F is contained in the boundary,
∂B′, of B′ and no points of P lie in the interior
of B′.

(ii) Two points a, b ∈ P form a Delaunay edge, an
arc of D(P ), if and only if there is a d-ball B′

such that a, b ∈ ∂B′ and no points of P lie in the
interior of B′.

4 Lower Bounds

Theorem 1 For any d > 1, let

α =
(

1 − e−κ1(d)/κ2(d)
)(

1 − e−κ1(d)/(2κ2(d)(2d−2))
)

κ1(d) =
1

d − 1

d−2
∑

i=0

(

(

d√
d2 − 1

)i

−
√

d2 − 1

d

)

κ2(d) =

(

1 +

(

2d − 1

d − 1

)d−1
d

d − 1

)

.

For any n > 1 and 0 < ε ≤ α/e, given the Delaunay
graph D(P ) of a set P of n points distributed uni-
formly and independently at random in a unit d-ball,
with probability at least ε, there is an edge (a, b) ∈
D(P ), a, b ∈ P , such that d(a, b) ≥ ρ1/

√
d − 1, where

Vd(ρ1) =
ln (α/ε)

κ2(d) (n − 2 + ln (α/ε))
.

Proof. Throughout the proof, we refer to a body and
its set of space points with the same name indistinctly.
Let V (X) be the volume of a body (or a set of space
points) X. Let the unit ball where points are sampled
be called U . Consider two spherical caps of U , con-
centric on a line ℓ, called S1 and S2, with bases B1

and B2 of diameters ρ1 and ρ2, and heights h1 and
h2 respectively. Inside S2 \ S1, consider the following
d-dimensional bodies of height h2 − h1: a cylinder C
with base B1; a cone K of base B2; and a frustum F
of bases B2 and B1.

Consider the body F \(C∪K) evenly divided by d−
1 planes (of d− 1 dimensions) containing ℓ. Consider
two of the bodies defined by those hyperplanes that
are opposite with respect to ℓ, call them Ba and Bb.

Then, for any pair of points a ∈ Ba and b ∈ Bb: (i)
the points a and b are separated a distance at least
ρ1/

√
d − 1; and (ii) there exists an spherical cap S

that contains the points a and b in its base of diame-
ter ρ such that Vd(ρ) ≤ Vd(ρ2). Property (i) holds be-
cause ρ1/

√
d − 1 is the side of a (d−1)-cube inscribed

in B1. To see why property (ii) holds, consider the
following. Without loss of generality assume that the
point a is closer to B2 than b. Then, consider a d− 1
hyperplane h containing the line ℓ and the point a and
the projection of b on h. On h, the point closest to
B2 is located above the projection of K. Hence, the
property follows.

If S is void of points, the configuration described
implies the existence of an empty d-ball of infinite
radius with a and b in its surface which proves that
(a, b) ∈ D(P ). In the following, we show that such
configuration occurs with big enough probability.

Let ρ1 be such that Vd(ρ1) is as defined in the state-
ment of the theorem. Let h2 be such that V (C) =
dVd(ρ1)/(d − 1). Let q = ρ2/ρ1. First, we prove up-
per and lower bounds on q to be used later.

Claim 1 d/
√

d2 − 1 ≤ q ≤ (2d − 1)/(d − 1).

Proof. From the volume of C, we know that h2/h1 =
1 + V (C)/(h1V (B1)). Consider a cone with the same
volume and base as S1. The height of such cone,
which is bigger than h1, is dVd(ρ1)/V (B1). That is,
h1 < dVd(ρ1)/V (B1). Consider also a cylinder with
the same volume and base as S1. The height of such
cylinder, which is smaller than h1, is Vd(ρ1)/V (B1).
That is, h1 > Vd(ρ1)/V (B1). Replacing those bounds
and using that V (C) = dVd(ρ1)/(d − 1), we get

d

d − 1
≤ h2

h1
≤ 2d − 1

d − 1
. (1)

Consider a 2-dimensional projection of the con-
figuration described, on a plane orthogonal to B1

(hence, B2). Let R be the radius of U . Then, us-
ing Pythagoras’ theorem, R2 = (ρ2/2)2 +(R−h2)

2 =
(ρ1/2)2 + (R − h1)

2. Subtracting,

q2 = 1 +
(R − h1)

2 − (R − h2)
2

(ρ1/2)2

≥ 1 +

(

h2

h1
− 1

)(

1 − 1

2 − h1/h2

)

=
h2

h1(2 − h1/h2)
.

Using Inequality 1,

q2 ≥ d

d − 1
· 1

2 − (d − 1)/d
=

d2

d2 − 1
.

Which proves the lower bound. For the upper
bound, consider the cones K1 and K2 inscribed in
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S1 and S2 respectively. It can be seen that

V (K1 ∪ F ) > V (K2). (2)

The volumes of K1 and K2 are

V (K1) =
h1V (B1)

d
=

h1C(d − 1)ρd−1
1

d2d−1

V (K2) =
h2V (B2)

d
=

h1C(d − 1)ρd−1
1

d2d−1
.

Replacing in 2, the following inequality holds,

ρd−1
2

(

ρ2 −
h2

h1
ρ1

)

< ρd−1
1

(

ρ2 −
h2

h1
ρ1

)

.

Given that ρd−1
2 > ρd−1

1 it must be ρ2 < ρ1h2/h1.
Using Inequality 1, it is, q < (2d − 1)/(d − 1).

�

For any d > 1, let C(d) = πd/2/Γ(1 + d/2), where
Γ(·) is the Gamma function. We compute the volume
of F \ (C ∪ K) as V (F ) − V (C ∪ K).

V (F ) = C(d − 1)

∫ h2−h1

0

(

ρ1/2 +
ρ2/2 − ρ1/2

h2 − h1
z

)d−1

dz

=
V (C)

d
· qd − 1

q − 1
.

V (C ∪ K) = C(d − 1)

(

(ρ1/2)d−1

∫ ρ1(h2−h1)/ρ2

0

dz

+

∫ (h2−h1)

ρ1(h2−h1)/ρ2

rK(z)d−1dz

)

= C(d − 1)

(

(ρ1/2)d−1

∫ ρ1(h2−h1)/ρ2

0

dz

+

(

ρ2/2

h2 − h1

)d−1 ∫ (h2−h1)

ρ1(h2−h1)/ρ2

zd−1dz

)

= V (C)
1

q

(

1 +
1

d

(

qd − 1
)

)

.

Replacing,

V (F \ (C ∪ K)) =
V (C)

d

d−2
∑

i=0

(

qi − 1

q

)

. (3)

Using Claim 1 and that V (C) = dVd(ρ1)/(d − 1)
in Equation 3, V (F \ (C ∪ K)) ≥ κ1(d)Vd(ρ1). Given
that ε ≤ α/e, we know that Vd(ρ1) ≥ 1/(κ2(d)n),
then V (F \ (C ∪ K)) ≥ κ1(d)/(κ2(d)n). Then, the
probability that F \ (C ∪ K) is void of points of P is
at least 1− (1 − κ1(d)/(κ2(d)n))

n ≥ 1− e−κ1(d)/κ2(d).
Consider the body F \(C∪K) evenly divided by d−1
planes (of d − 1 dimensions) containing ℓ. For any of
these sections of F \ (C ∪ K), the probability that
it is void of points of P \ {a}, for some a ∈ P , is

at least 1 − (1 − κ1(d)/(κ2(d)n(2d − 2)))
n−1 ≥ 1 −

e−κ1(d)/(2κ2(d)(2d−2)), because the intersecting hyper-
planes define 2d − 2 sections on F \ (C ∪ K). Condi-
tioned on the existence of two points a, b ∈ P located
in opposite sections of F \(C∪K), let S be a spherical
cap of base B (of diameter ρ) such that B contains
a and b and S ⊂ S2. Such cap exists as shown be-
fore. The probability that S is void of points of P
is lower bounded by upper bounding its volume. We
know that V (S) ≤ V (S2), and V (S2) can be upper
bounded considering S1 and S2 \S1 separately, which
we do as follows.

V (S2) − V (S1) ≤ C(d − 1)(ρ2/2)d−1(h2 − h1)

≤ C(d − 1)

(

2d − 1

2(d − 1)
ρ1

)d−1

(h2 − h1)

=

(

2d − 1

d − 1

)d−1
d

d − 1
Vd(ρ1).

Then V (S) ≤ κ2(d)Vd(ρ1). Thus, the probability
that S is empty is at least

(1 − κ2(d)Vd(ρ1))
n−2 ≥ exp

(

−κ2(d)Vd(ρ1)(n − 2)

1 − κ2(d)Vd(ρ1)

)

.

Replacing, we get

Pr ((a, b) ∈ D(P )) ≥

α exp

(

−κ2(d)Vd(ρ1)(n − 2)

1 − κ2(d)Vd(ρ1)

)

= ε.

�

Corollary 1 For any n > 1 and 0 < ε ≤ α/e, where

α =
(

1 − e−(2−
√

3)/14
)(

1 − e−(2−
√

3)/56
)

, given the

Delaunay graph D(P ) of a set P of n points dis-
tributed uniformly and independently at random in
a unit circle, with probability at least ε, there is an
edge (a, b) ∈ D(P ), a, b ∈ P , such that

d(a, b) ≥ 2 3

√

ln (α/ε)

14
√

π (n − 2 + ln (α/ε))
.

Proof. Instantiating Theorem 1 in d = 2, we know
that with probability at least ε there is an edge (a, b) ∈
D(P ), such that d(a, b) ≥ ρ1, where

V2(ρ1) =
ln (α/ε)

7 (n − 2 + ln (α/ε))
.

We upper bound the area of the circular segment of
chord ρ1 with the area of the rectangle circumscribing
it.

V2(ρ1) ≤ ρ1

(

1√
π
−
√

1

π
− ρ2

1

4

)

.
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Hence,
√

ρ2
1

π
− ρ4

1

4
≤ ρ1√

π
− V2(ρ1).

Given that ρ1/
√

π ≥ V2(ρ1), we can square both sides
getting

ρ4
1 ≥ 4

(

2
ρ1√
π
− V2(ρ1)

)

V2(ρ1)

≥ 4
ρ1√
π

V2(ρ1), because V2(ρ1) ≤ ρ1/
√

π.

Then we get ρ1/2 ≥ 3

√

V2(ρ1)/(2
√

π) and replacing
V2(ρ1) the claim follows.

�

Corollary 2 For any n > 1 and 0 < ε ≤ α/e,
where α =

(

1 − e−κ1(3)/κ2(3)
) (

1 − e−κ1(3)/(8κ2(3))
)

,

κ1(3) = 1/2 − 7/(6
√

8), and κ2(3) = 10 + 3/8, given
the Delaunay graph D(P ) of a set P of n points dis-
tributed uniformly and independently at random in a
unit ball in R

3, with probability at least ε, there is an
edge (a, b) ∈ D(P ), a, b ∈ P , such that

d(a, b) ≥
√

2
4

√

3

√

48/π4 ln (α/ε)

κ2(3) (n − 2 + ln (α/ε))
.

Proof. Instantiating Theorem 1 in d = 3, we know
that with probability at least ε there is an edge (a, b) ∈
D(P ), a, b ∈ P , such that d(a, b) ≥ ρ1/

√
2, where

V3(ρ1) =
ln (α/ε)

κ2(3) (n − 2 + ln (α/ε))
.

We upper bound the volume of the spherical cap
of base diameter ρ1 with the volume of the cylinder
circumscribing it.

V3(ρ1) ≤
πρ2

1

4





3

√

3

4π
−

√

(

3

4π

)2/3

− ρ2
1

4



 .

Hence,
√

√

√

√

(

π

4
3

√

3

4π

)2

ρ4
1 −

π2

64
ρ6
1 ≤ πρ2

1

4
3

√

3

4π
− V3(ρ1).

Given that πρ2
1/4 3

√

3/(4π) ≥ V3(ρ1), we can square
both sides getting

π2

64
ρ6
1 ≥

(

2
πρ2

1

4
3

√

3

4π
− V3(ρ1)

)

V3(ρ1)

≥ πρ2
1

4
3

√

3

4π
V3(ρ1), because V3(ρ1) ≤ πρ2

1/4 3

√

3/(4π).

Then we get ρ1/2 ≥ 4

√

3

√

48/π4V3(ρ1) and replacing

V3(ρ1) the claim follows.
�
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Tighter Bounds on the Size of Optimal Meshes

Donald R. Sheehy

Abstract

The theory of optimal size meshes gives a method for
analyzing the output size of a Delaunay refinement
mesh in terms of the integral of a sizing function over
the space. The input points define a maximal such
sizing function called the feature size. Integrating the
feature size function over input domain is not easy,
and historically, was not deemed necessary. Match-
ing upper and lower bounds in terms of this inte-
gral seemed sufficient. However, a new analysis of
the feature size integral [9] led to linear-size Delau-
nay meshes [9], the Scaffold Theorem relating surface
and volume meshes [8], and a time-optimal output-
sensitive point meshing algorithm [10]. The key idea
is to consider the pacing of an ordered point set, a
measure of the rate of change in the feature size as
points are added one at a time. In previous work,
Miller et al. showed that if an ordered point set has
pacing φ, then the number of vertices in an optimal
mesh will be O(φdn), where d is the input dimension.
We give a new analysis of this integral showing that
the output size is only O(n log φ). The new analysis
tightens all of the previous results mentioned above
and provides matching lower bounds.

1 Introduction

Delaunay refinement is the adding of new vertices to
an initial starting set, so that the Delaunay simplices
all have a bounded circumradius-to-shortest-edge ra-
tio (see Figure 1). A celebrated result of Ruppert [13]
showed how to construct such meshes with an optimal
number of vertices. The straightforward generaliza-
tion of Ruppert’s work to R

d says that the number
of vertices in an optimal mesh of a domain Ω ⊂ R

d

starting with a point set P is bounded by the feature
size integral:

Θ

(∫

Ω

dx

fP (x)d
.

)

The function fP : Rd → R≥0 is the feature size
induced by the input set P and is defined as

fP (x) = min{r : |P ∩ ball(x, r)| ≥ 2}.

Clearly, fP is 1-Lipschitz. Here and throughout, the
asymptotic bounds suppress constants that are singly
exponential in d.

Such high dimensional meshes are ideal for geomet-
ric and topological inference as they provide a nice
basis for a space of smooth functions graded accord-
ing to the density of the input points [7, 14]. Such
functions, such as the distance function to the input
or the distance to the empirical measure, can be used
to recover the homology of the underlying space from
which the input was sampled [3, 2].

r r r

e e e

Figure 1: Three examples of triangles with different
circumradius to shortest edge ratios. Delaunay refine-
ment attempts to produce a mesh in which all sim-
plices have this ratio bounded by a constant.

The tight bounds on mesh sizing from the Ruppert
bounds are nice, but they are not very informative be-
cause they depend on the feature size integral. They
do not, for example, tell when the output size will
be O(n2) or O(n) or any other tidy function of n.
Moreover, they do not give an easy way to evaluate
the amortized change in the output size as a result of
adding a single new point.
In this paper, we give a new analysis of the fea-

ture size integral that provides tight upper and lower
bounds. Our analysis makes it clear exactly when an
input will yield an optimal mesh of O(n) size. More-
over, the analysis, gives a tight bound on the influence
of a single new point, which may have implications for
future algorithms, particularly in dynamic meshing.
If we order the input set P = {p1, . . . , pn}, we

can define the ith prefix of the ordering to be Pi =
{p1, . . . , pi}. For any point pi in the ordering (i ≥ 3),
the pacing is defined as the ratio φi of the feature
sizes at pi induced by Pi−1 and Pi:

φi =
fPi−1(pi)

fPi(pi)
.

Let φP = maxi φi denote the pacing of the order-
ing.

In previous work, it was shown that the feature
size integral is at most O(nφd

P ) [9]. Theorem 1 (be-
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low) implies a bound of O(n log φP ), eliminating the
exponential dependence on d. This tightens the pre-
vious results using this method, moving them from
theoretically novel to practically useful.
We need a few definitions in order to state the main

result. We will use | · | to denote the Euclidean norm
for points and cardinality for sets. Let ball(c, r) de-
note the closed Euclidean ball of radius r centered
at c. Let Vd denote the volume of the unit ball
B = ball(0, 1), so dVd is the (d− 1)-dimensional vol-
ume of the sphere bounding B.

Theorem 1 Let P = {p1, . . . , pn} be a set of n points

in R
d such that p1 and p2 are the farthest pair. Let

Ω be a subset of Rd such that

ball(p1, 2|p1 − p2|) ⊆ Ω ⊆ ball(p1, c|p1 − p2|),

for some constant c ≥ 2. Then,

∫

Ω

dx

fP (x)d
= VdΘ

(

n+

n
∑

i=3

log φi

)

.

The proof will be broken up into two parts: the
upper bound in Theorem 4 and the lower bound in
Theorem 6.1

2 Related Work

The spread ∆P of a point set P is the ratio of the
largest to smallest interpoint distances. A standard
bad case for meshing illustrated on the left in Fig-
ure 2 occurs when there is high spread and a large
empty annulus around the close points. On the right
of Figure 2, the point set has been refined. Approxi-
mately a constant number of points appear in each of
the geometrically growing annuli. Thus the number
of points added is roughly the log of the ratio of the
inner and outer radius. Observe that other than the
inner most annuli, the number of points added is not
heavily affected by the number of points on the inside.
As a result, previous methods to characterize the fea-
ture size locally such as the gap ratio introduced by
Talmor [15] can dramatically overestimate the feature
size integral because each interior point pays for all of
the refinement. In the worst case, such an analyses
lead to an O(n log∆P ) upper bound when the true
answer is Θ(n).
Erickson also used the spread to bound the com-

plexity of Delaunay triangulations in the absence of
refinement [5, 6]. However, even point sets with ex-
ponentially large spread can yield linear size meshes.
Figure 3 illustrates a point set with geometrically
growing spread, but the pacing is small, thus the mesh
size will be linear.

1The asymptotic version of the lower bound as stated in
Theorem 1 also depends on the trivial Ω(n) lower bound from
the Ruppert bounds.

Figure 2: On the left is a typical bad example for
meshing, a small set of points inside a large empty
annulus. On the right shows a similar example after
refinement.
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Figure 3: Point sets with bounded pacing can still
have high spread, i.e. the ratio of largest to smallest
interpoint distances can be 2O(n). In the figure, each
point has arrows directed at its two nearest predeces-
sors.

The use of feature size integrals can also be used in
the anisotropic setting [1]. Pav also gave anisotropic
bounds on mesh size in terms of the smallest angles
allowed[12].
There is a strong connection between the present

work and the linear cost of balancing a quadtree [11].
The corners of quadtree may be viewed as a well-paced
set of points (with pacing = 1). The balancing of the
quadtree refines it, adding only a linear number of
points.

3 Upper Bound

The proof of the upper bound on the feature size in-
tegral will follow a simple pattern. First, we prove
a bound for inputs consisting of only two points
(Lemma 2). Then, we bound the change in the in-
tegral upon adding a single new point (Lemma 3).
Finally, we apply this Lemma inductively to get the
final bound (Theorem 4).
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Lemma 2 (Just two points) If P = {p, q} and

Ω ⊆ ball(p, c|p− q|) for some constant c > 2, then

∫

Ω

dx

fP (x)d
≤ Vd(1 + d ln(2c)).

Proof. For all x ∈ R
d, fP (x) ≥ max{ 1

2 |p−q|, |x−p|}.
So, we can rewrite the integral in polar coordinates
(centered at p) and bound it as follows.

∫

Ω

dx

fP (x)d
≤ dVd







1

2
|p−q|
∫

0

rd−1dr

( 12 |p− q|)d
+

c|p−q|
∫

1

2
|p−q|

rd−1dr

rd







≤ dVd

(

1

d
+ ln

(

2c|p− q|

|p− q|

))

= Vd(1 + d ln(2c)).

�

We now bound the change in the feature size integral
induced by the addition of a single point.

Lemma 3 (One more point upper bound) Let

P be a point set and let P ′ = P ∪ {q}. If φ = fP (q)
fP ′ (q)

then
∫

Ω

(

1

fP ′(x)d
−

1

fP (x)d

)

dx ≤ Vd (1 + d ln(3dφ)) .

Proof. Let U be the subset of Rd where fP 6= fP ′ .
Clearly, the integral is 0 outside U , so we can re-
strict our attention to U . Let R = fP ′(q); this is
the distance from q to the nearest point of P . This
implies that Rφ = fP (q). For all points x in the ball
B = ball(q, R

2 ), fP ′(x) ≥ R
2 , so

∫

B

(

1

fP ′(x)d
−

1

fP (x)d

)

dx ≤

∫

B

(

2

R

)d

dx = Vd.

The definitions imply the following bounds for any
x ∈ U :

fP (x) ≤ |x− q|+Rφ,

fP ′(x) ≥ |x− q|.

The upper bound follows because fP is 1-Lipschitz.
The lower bound follows because q must be one of
the two nearest neighbors of x if fP (x) 6= fP ′(x). We
apply these bounds as follows.

∫

U\B

(

1

fP ′(x)d
−

1

fP (x)d

)

dx

≤

∫

U\B

(

1

|x− q|d
−

1

(|x− q|+Rφ)d

)

dx

≤ dVd

∫ ∞

R/2

(

1

rd
−

1

(r +Rφ)d

)

rd−1dr

< dVd ln(3dφ).

We have extended the integral over all of Rd \B (the
function is nonnegative) and rewrote it in polar coor-
dinates. The final inequality follows from a straight-
forward calculus exercise (the full proof may be found
in Lemma 7 below). To bound the integral over all of
Ω, we simply add the bounds on the integral over B

and U \B. �

Theorem 4 (Upper bound) Let P = {p1 . . . , pn}
be an ordered set of points such that |p1 − p2| =
diameter(P ). Let Ω ⊆ ball(p1, cdiameter(P )) for

some constant c > 1 be the bounding region. Then,

∫

Ω

dx

fP (x)d
< Vd

(

1 + d ln(2c) +

n
∑

i=3

(1 + d ln(3dφi))

)

.

Proof. We rewrite the integral as a telescoping sum:

∫

Ω

dx

fP (x)d
=

∫

Ω

dx

fP2
(x)d

+
n
∑

i=3

(∫

Ω

dx

fPi
(x)d

−

∫

Ω

dx

fPi−1
(x)d

)

.

The bounds from Lemmas 2 and 3 complete the
proof. �

4 Lower Bound

The proof of the lower bound will be similar to the
proof of the upper bound in that we will use the pac-
ing of a single new point to bound the change in the
feature size integral.

Lemma 5 (One more point lower bound) Let

P be a set of at least 2 points and let P ′ = P ∪ {q}
for some q ∈ R

d. Let Ω ⊂ R
d be a set containing

ball(q,diameter(P ′)). If φ = fP (q)
fP ′ (q)

then

∫

Ω

(

1

fP ′(x)d
−

1

fP (x)d

)

dx ≥
Vd

2d

(

d ln
φ

3
− 1

)

Proof. The bound is trivial if φ ≤ 3, so we may as-
sume that φ > 3. Let R = fP ′(q). Since fP ≥ fP ′ , it
will suffice to prove a lower bound on the change in
the feature size integral over the subset U = {x : R ≤
|x− q| ≤ Rφ

3 } ⊆ Ω. For all x ∈ U ,

fP (x) ≥
2Rφ

3
, and

fP ′(x) ≤ R+ |x− q| ≤ 2|x− q|.

The lower bound follows because there is at most one
point of P in the interior of ball(q,Rφ). The upper
bound follows because fP ′(x) is 1-Lipschitz. We apply
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these bounds and convert to polar coordinates:

∫

U

(

1

fP ′(x)d
−

1

fP (x)d

)

dx

≥

∫

U

(

1

(2|x− q|)d
−

(

3

2Rφ

)d
)

dx

>

(

dVd

∫
Rφ

3

R

rd−1

(2r)d
dr

)

−
Vd

2d

=
Vd

2d

(

d ln
φ

3
− 1

)

�

When we apply the preceding lemma to a set of n
points, we get the following lower bound.

Theorem 6 (Lower bound) Let P = {p1 . . . , pn}
be an ordered set of points. If Ω ⊂ R

d is a set con-

taining ball(p, 2diameter(P )) for some p ∈ P , then

∫

Ω

dx

fP (x)d
>

Vd

2d

n
∑

i=3

(

d ln
φi

3
− 1

)

.

5 Some directions for future work

The work of Ruppert on optimal meshing has been
extended to feature size functions that also take into
account input features beyond just point sets, includ-
ing piecewise linear or even piecewise smooth com-
plexes [4]. One direction for future work is to extend
these methods for bounding the feature size to these
settings as well.
It would also be interesting to extend this approach

to anisotropic case, such as in [1]. In that setting, it
is not known how to relax the quality constraints to
guarantee a linear size mesh.
Moreover, since Theorem 1 describes the cost of

adding a single point, it makes sense to apply these
analytic techniques to dynamic meshing problems.
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A A bit of calculus

Lemma 7 Given positive constants φ ≥ 1 and R,
∫ ∞

R/2

(

1

rd
−

1

(r +Rφ)d

)

rd−1dr < ln(3dφ).

Proof. We bound this integral using the change of
variables u = Rφ

r + 1 as follows.
∫ ∞

R/2

(

1

rd
−

1

(r +Rφ)d

)

rd−1dr =

∫ 1+2φ

1

(

ud − 1

ud(u− 1)

)

du

=

d−1
∑

i=0

∫ 1+2φ

1

ui−ddu

< ln(1 + 2φ) +

d−2
∑

i=0

1

d− i− 1

< ln(1 + 2φ) + ln d

≤ ln(3dφ). �
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Augmentability to Cubic Graphs

Alexander Pilz∗

Abstract

We consider the problem of adding edges to a given
graph in order to make it cubic (i.e., all vertices have
degree 3). As a first result, we show that the prob-
lem is NP-complete if the resulting graph is required
to be simple and planar. In the reduction, we rely
on edges whose combinatorial embedding is not de-
termined by the graph. Further, we show that the
problem of deciding whether additional edges can be
drawn on a given (embedded) plane geometric graph,
in a way that the resulting plane geometric graph
is cubic, is NP-complete. The problem remains NP-
complete even if the initial graph is connected.

1 Introduction

Given a graph G = (V,E), a second graph G′ =
(V,E ∪E′) is called an (edge) augmentation of G [2].
Classical augmentation problems involve, e.g., im-
proving the resulting graph’s connectivity, minimizing
the number of edges added. A recent survey, focus-
ing on augmentation of plane geometric (i.e., straight-
line) graphs, is given by Hurtado and Tóth [2].
An extremal variant of augmentation problems on

geometric graphs is the one where the initial edge set
is empty. Garćıa et al. [1] give a partial characteri-
zation of point sets in the plane that allow drawing a
plane geometric cubic graph (in a cubic graph, all ver-
tices have degree 3). Schmidt and Valtr [5] extend this
characterization and give an O(n3) time algorithm to
compute a cubic graph on a given point set, if there
exists one.
In this work, we address the problem of adding

edges in order to make a graph cubic, both in the
general planar and the plane geometric setting. Of
course, to obtain a cubic graph, the number of edges
that have to be added is already predefined by the
initial graph. We ask whether such an augmentation
is possible at all, either when requiring the resulting
graph to be planar or when a predefined straight-line
embedding of the initial graph is given.
Augmentability in plane geometric graphs is con-

strained by the visibility in the embedding. Deciding

∗Recipient of a DOC-fellowship of the Austrian Academy of

Sciences at the Institute for Software Technology, Graz Uni-

versity of Technology, Austria. apilz@ist.tugraz.at. Part

of this work was done while the author was visiting the Work

Group Theoretical Computer Science at the Institute of Com-

puter Science, Freie Universität Berlin, Germany.

augmentability to a planar cubic graph is a different
problem since there are no visibility constraints and
the combinatorial embedding (i.e., the order of the
edges around a vertex, or, equivalently, the incidence
of the edges to faces) might not be determined.
In Section 2, the problem of augmenting a graph to

a planar cubic graph is shown to be NP-complete. In
that setting, the combinatorial embedding of the ini-
tial graph is not given. In Section 3, we show that the
problem of deciding whether additional edges can be
drawn on a given (embedded) plane geometric graph,
in a way that the resulting graph is plane geomet-
ric and cubic, is NP-complete. The problem remains
NP-complete even if the initial graph is connected.

Definition 1 A vertex of degree 3 is called full.

2 The General Setting

In this section, we prove NP-completeness of deciding
whether a given planar graph can be augmented to
a planar cubic graph. The problem is obviously in
NP. We show a reduction from Restricted Planar

3-Sat.

Definition 2 (Restricted Planar 3-Sat [3])
Given a Boolean formula φ in Conjunctive Normal
Form let G(φ) be the graph whose vertices are the
variables and the clauses of φ, and whose edges are
defined by the occurrence of a variable in a clause.
Given that G(φ) is planar, that every variable occurs
at least twice and at most three times (negated or
unnegated), and that every clause contains at least
two and at most three literals, the Restricted

Planar 3-Sat problem asks whether φ is satisfiable.

We use the standard approach of representing the
graph defining the problem instance by another graph
constructed using gadgets (however, we do not di-
rectly use gadgets representing the edges of G(φ)).
Note throughout the construction that we rely on the
fact that the combinatorial embedding of the initial
graph is not fixed. (It is an open problem to de-
cide augmentability for input graphs having a fixed
combinatorial embedding.) A valid augmentation of
the graph will, however, be 3-connected and there-
fore have a fixed combinatorial embedding [6]. The
different possibilities to embed the initial graph are
well-defined by the gadgets. Contrary to similar re-
ductions, the crucial decision for a possible algorithm

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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a

b

c

a ∨ ¬b

a ∨ b ∨ c

¬a ∨ b ∨ ¬c

negation

variable

clause

anchor vertex

literal edge

Figure 1: A formula embedded as a graph using the
gadgets. An augmentation is, e.g., a = T, b = c = F .

is not where to place the additional edges, but how
to embed the graph to allow an augmentation. An
example for a construction is shown in Figure 1. Full
vertices are depicted as the common point of segments
only. White and black dots indicate vertices of de-
gree 1 and 2 of the initial graph, respectively. We start
with a plane embedding ofG(φ) and draw a new graph
G1 along with G(φ) by “thickening” the drawing of
G(φ) to a connected bounded region with holes, s.t. it
contains the embedding of G(φ). G1 is used as “jig”
for the whole construction. We separate the variables
from the clauses by drawing edges, one for unnegated
and two for negated literals. This replaces each face
and each node of G(φ) by a face in G1, and adds
one face for each negation. Now, each variable face
is neighbored to clause faces, possibly via a negation
face; these incidences reflect which variables occur in
which clauses. We continue by replacing the faces
of G1 by gadgets defined later. We give the construc-
tion in terms of variants of the graph’s embedding.
Each edge separating a clause face and a variable face
in G1 is subdivided by a so-called anchor vertex. Each
anchor vertex is connected to a degree 1 vertex by a
literal edge. The combinatorial embedding of G2 is
fixed except for literal edges, which can be drawn ei-
ther in the clause face or the variable face (of G1).
A valid augmentation to a cubic graph (if there ex-
ists one) determines the radial order of the neighbors
of each anchor vertex. Our construction uses literal
edges to transport the truth value of a variable. From
a planar cubic augmentation of the graph, one can
directly derive the truth assignment of the variables
satisfying the formula. Otherwise, such an augmen-
tation is not possible.

A clause gadget (see Figure 2) consists of a face
that is incident to the two or three anchors of the cor-
responding literal edges. A literal is true if its edge
is drawn inside the clause face. Two neighbored ver-
tices v and w of degree 2 are also incident to the clause

T F F F T T

v w v w

Figure 2: The gadget for a clause and two possible
embeddings with augmentation (dashed). The clause
face is gray.

TF

Figure 3: The gadget for a variable with three occu-
rances. The variable face is striped.

F T ¬

Figure 4: The gadget for a variable occurring twice.
The same construction is used to negate a literal.

face. If no literal edge is inside the clause face, there
exists no augmentation for the face. Hence, at least
one literal has to be set to true. A path between v

and w through all end vertices of literal edges inside
the clause gives a locally cubic graph. Note that the
construction drawn on the outside of the clause face
prevents a combinatorially different embedding of the
gadget.
For variables of φ we distinguish between variables

that occur three times (see Figure 3) and twice (see
Figure 4). A variable with three occurrences is repre-
sented by a variable face incident to the three anchors
of its three literal edges. The variable is set to false if
all literal edges are inside that face, and true if none
of them is. If all literal edges are in the face, a circle
through their non-full end vertices makes them full. If
only one or two literal edges are inside that face, there
is obviously no valid simple augmentation. The con-
struction is different for two-literal variables. Either
both the literal edges have to be drawn in a clause
face, or they are in the two other faces incident to the
anchor vertices. There are two pairs of neighbored
vertices of degree 2. Each pair is incident to the face
where one could also draw the literal edge, and the two
pairs are incident to a common third face. If both lit-
eral edges are in their corresponding clause face, two
edges in the third face can make the vertices full. If
they are not in the clause face, two paths through
the literal edges’ non-full vertices allow a locally cu-
bic graph. If only one of the literal edges would not be
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in the clause face, there exists no valid augmentation.
Finally, note that the gadget for two variables shown
in Figure 4 can also be used to negate the Boolean
value transported by a literal edge if it is placed be-
tween a variable and a clause face. This completes
the reduction.

Theorem 1 The problem of deciding whether a
graph can be augmented to a simple planar cubic
graph is NP-complete.

3 The Geometric Setting

Requiring the added edges to be drawn as line seg-
ments on a given straight-line embedding of the ini-
tial graph imposes further constraints to the problem
when the resulting drawing should be crossing-free.
We reduce Positive Planar 1-in-3-Sat, which

has been proven to be NP-complete in [4], to the prob-
lem of augmenting to a plane geometric cubic graph.

Definition 3 (Positive Planar 1-in-3-Sat [4])
Given a Boolean formula φ in Conjunctive Normal
Form let G(φ) be the graph whose vertices are the
variables and the clauses of φ, and whose edges are
defined by the occurrence of a variable in a clause.
Given that G(φ) is planar, that every variable occurs
only positively (i.e., each literal in every clause is
unnegated), and that every clause has exactly three
variables, the Positive Planar 1-in-3-Sat prob-
lem asks whether there exists a variable assignment
such that exactly one variable in each clause is true.

Mulzer and Rote [4] use this problem to show NP-
hardness of the Minimum Weight Triangulation

problem. Their reduction from Planar 3-Sat to
Positive Planar 1-in-3-Sat maintains the prop-
erty that G(φ) can be embedded having all variable
vertices on a line, and all edges can be embedded in
a rectilinear fashion (i.e., using orthogonal segments
and 90◦ bends). We use the standard technique of
replacing such an embedding of G(φ) by geometric
gadgets. We show that the resulting geometric graph
can be augmented to a plane geometric cubic graph
if and only if the Positive Planar 1-in-3-Sat in-
stance modeled is 1-in-3-satisfiable.

There are three types of gadgets: wires that trans-
port the truth assignment of a Boolean variable, split-
ters that replace the variable node in G(φ) and make
sure that the truth assignment of a variable is the
same for all its instances, and clauses that can be
drawn if and only if exactly one of the three literals
of the corresponding CNF-clause is true. For all these
gadgets, we need a construction element called pin to
reduce visibility among the vertices and to make ver-
tices full without further effects. Although the gad-
gets are drawn with many collinear points, none of the

Figure 5: Two basic gadgets and their schematic rep-
resentation. The pin gadget to the left has exactly one
vertex of degree 1, the other vertices are full. The wire
gadget to the right transports the truth assignment of
a variable by the different directions of the diagonals.
The dotted strokes indicate these.

TF

Figure 6: Splitters replace variable nodes and ensure
that all the wires of a variable carry the same truth
assignment to the different clauses.

TF

Figure 7: Bends of the edges of the original graph can
be modeled as shown to the left. If a variable occurs
only once, it can be represented by the gadget to the
right.

constructions depend on collinearity and therefore the
result is also applicable for graphs with vertices em-
bedded as a point set in general position.

A pin gadget is shown in Figure 5 (left). This sub-
graph has exactly one vertex of degree 1, all others
are full. In further illustrations, this gadget will be
indicated by a line segment and a box. The wire gad-
get, as shown in Figure 5 (right), transports the state
of a variable. In each face of the wire gadget, we can
only draw a single diagonal, making full two of the
four vertices that have degree 2. Therefore, the only
possible augmentation of the graph is by diagonals
with a common orientation along a wire. This leaves
one of the vertices at the end of each wire non-full.
Which of these two vertices is full and which is not
after drawing the wire diagonals will be used in com-
bination with the clause gadgets.

A splitter allows having multiple wires carrying the
same truth assignment, see Figure 6. It therefore is a
representation of a variable, where the corresponding
wire ends represent the literals of the variable at the
clauses. Several splitters can be used one after the
other. The pin construction where the three wires
meet reduces the visibility between the non-full ver-
tices and only allows the depicted augmentations.

Bends are constructed in a straight-forward manner
(see Figure 7, left). They work the same way as wires.
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f1 f2

g1 g2
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f1 f2

g1 g2
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f1 f2

g1 g2

T T T

Figure 8: Clause gadgets and their three possible aug-
mentations (dashed segments). Note the special con-
struction of the end part of the middle wire gadget
which allows the graph to be connected.

If a literal occurs only once in the formula, we do not
need any bends or splitters. The variable can have
any truth assignment, we end the wire of the literal
with the gadget shown in Figure 7 (right).

Clauses (see Figure 8) are entered by the ends of
three wire gadgets. Note the small modification of the
end of the middle wire; it allows reducing the visibility
by pins while keeping the graph connected. In each
clause gadget, there is one designated vertex t of de-
gree 2 that sees exactly three non-full vertices at wire
ends. Any of these three vertices being full would de-
termine the diagonal orientation in the corresponding
wire. The edge added to t therefore indicates which
variable is set to true. The non-full vertices f1, f2, g1,
and g2 allow the construction to be completed if and
only if the other two wires carry false.

In Figure 8 (left), the first wire is set to true. We
have to draw edges from f1 to the only two non-full
vertices visible to it, i.e., g1 and g2, and therefore f2
becomes a neighbor of the other two wire end vertices,
indicating false for these.

In Figure 8 (center), setting the second wire to true
leaves f1 with three visible non-full points. One edge
has to go to the end vertex of the first wire as oth-
erwise there is one non-full vertex in that wire. Sub-
sequently, g1 is the only choice for the second edge
since an edge f1g2 would keep g1 from getting full,
the edges for f2 directly follow.

In Figure 8 (right), the third wire is set to true,
leaving g1 and g2 as the only possible new neighbors
for f2. Since they are now full, f1 has to set the first
and second wire to false.

All gadgets only use a constant number of edges
per element of G(φ) (the wires can be “stretched”).
Again, from a plane geometric cubic augmentation
of the construction, one can directly derive the truth
assignment for φ.

Theorem 2 The problem of deciding whether a
plane geometric graph can be augmented to a plane
geometric cubic graph is NP-complete. The problem
remains NP-complete if the initial graph is connected.

4 Conclusion

In this work we considered two variants of the prob-
lem of adding edges to given graphs in order to make
them cubic. We showed that the problem is NP-
complete if the resulting graph is required to be pla-
nar. In the context of geometric graphs, we showed
NP-completeness of the problem in which the result-
ing graph is required to be a plane geometric (straight-
line) graph, with the embedding of the vertices as a
point set in the plane given beforehand.
In the non-geometric setting, we relied on the lit-

eral edges to transport the truth value of a variable.
Our reduction does not work for fixed face-edge inci-
dence. Of course, all these incidences are given for
the initial graph in the geometric setting. There,
the reduction relies on the constraint that edges need
to be straight line segments. It would be interest-
ing whether the problem remains NP-complete if this
constraint is dropped. In that setting, only the re-
quirement of simplicity constrains the position of the
edges inside a face of the initial graph.

Open Problem 1 What is the complexity of decid-
ing augmentability of a planar graph having a deter-
mined combinatorial embedding?
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Abstract

■♥ t❤✐s ♣❛♣❡r ✇❡ ❞❡❛❧ ✇✐t❤ t❤❡ ♣❛❣❡ ♥✉♠❜❡r ♣r♦❜✲
❧❡♠ ❢♦r ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ s❡ts ✭♣♦s❡ts✮ r❡str✐❝t❡❞ t♦
t❤❡ ❢❛♠✐❧② ♦❢ N ✲❢r❡❡ ♣♦s❡ts✳ ❲❡ ❝❛❧❝✉❧❛t❡ t❤✐s ♥✉♠✲
❜❡r ❡①❛❝t❧② ❢♦r tr❡❡✲str✉❝t✉r❡❞ N ✲❢r❡❡ ♣♦s❡ts ❛♥❞ ❢♦r
tr❡❡✲str✉❝t✉r❡❞ N ✲❢r❡❡ ♣❧❛♥❛r ♣♦s❡ts✳ ❙♦♠❡ ♦t❤❡r r❡✲
s✉❧ts ❛r❡ ❛❧s♦ ♠❡♥t✐♦♥❡❞✳ ❋♦r ❞❡t❛✐❧s✱ s❡❡ ❬✶✵❪✳

1 Introduction

❚❤❡ ❜♦♦❦ ❡♠❜❡❞❞✐♥❣ ♦❢ ❣r❛♣❤s ✇❛s ✐♥tr♦❞✉❝❡❞ ❜②
❇❡r♥❤❛rt ❛♥❞ ❑❛✐♥❡♥ ✐♥ ❬✸❪ ❛♥❞ t❤❡ st✉❞② ♦❢ s✉❝❤
❣r❛♣❤ ❡♠❜❡❞❞✐♥❣s ❤❛s ❜❡❡♥ st✐♠✉❧❛t❡❞ ❜② t❤❡ ❝♦♥❥❡❝✲
t✉r❡✱ t❤❛t t❤❡ ♣❛❣❡ ♥✉♠❜❡r ✐s ✉♥❜♦✉♥❞❡❞ ✐♥ t❤❡ ❢❛♠✐❧②
♦❢ ♣❧❛♥❛r ❣r❛♣❤s✳
■♥ s♦♠❡ ❛♣♣❧✐❝❛t✐♦♥s✱ t❤❡ ❜♦♦❦ ❡♠❜❡❞❞✐♥❣ ♣r♦❜✲

❧❡♠ ❢♦r ❣r❛♣❤s r❡❞✉❝❡s t♦ t❤❛t ❢♦r ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤s
♦❢ ♣♦s❡ts ♦✈❡r t❤❡ s❡t ♦❢ ❛❧❧ t❤❡✐r ❧✐♥❡❛r ❡①t❡♥s✐♦♥s✳
❚❤❡ r❡s❡❛r❝❤ ✐♥ t❤✐s ❞✐r❡❝t✐♦♥ ❤❛s ❜❡❡♥ ✐♥✐t✐❛t❡❞ ❜②
◆♦✇❛❦♦✇s❦✐ ❬✶✹❪✱ t❤❡♥ ❝♦♥t✐♥✉❡❞ ✐♥❞❡♣❡♥❞❡♥t❧② ✐♥ ❬✶✺❪
❛♥❞ ✐♥ ❬✷✵❪ ✭s❡❡ ❛❧s♦ ❬✶✷❪✱ ❬✶✸❪✱ ❛♥❞ ❬✾❪✮✳
❆ ❜♦♦❦ ❡♠❜❡❞❞✐♥❣ ♦❢ ❛ ♣❧❛♥❛r ♣♦s❡t ❝❛♥ ❜❡ r❡✲

❣❛r❞❡❞ ❛s t❤❡ ✉♣✇❛r❞ ♣❧❛♥❛r ❞r❛✇✐♥❣ ♦❢ t❤❡ ❝♦✈❡r✐♥❣
❞✐❣r❛♣❤ ♦❢ t❤❡ ♣♦s❡t✱ st✉❞✐❡❞ ✐♥ ❝♦♠♣✉t❛t✐♦♥❛❧ ❣❡♦♠✲
❡tr②✱ s❡❡ ❡✳❣✳ ❬✹❪✱ ❬✺❪✳
■♥ t❤✐s ♣❛♣❡r ✇❡ ✐♥✈❡st✐❣❛t❡ t❤❡ ❜♦♦❦ ❡♠❜❡❞❞✐♥❣

♣r♦❜❧❡♠ ❢♦r ◆ ✲❢r❡❡ ♣♦s❡ts✳ ❖✉r ❛♣♣r♦❛❝❤ ✐s ❜❛s❡❞
♦♥ ❝❤❛r❛❝t❡r✐③❛t✐♦♥s ♦❢ N ✲❢r❡❡ ♣♦s❡ts ❛s t❤♦s❡ ✇❤♦s❡
❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤s ❛r❡ ❧✐♥❡ ❞✐❣r❛♣❤s✳ ❯s✐♥❣ ❣r❛♣❤✲
t❤❡♦r❡t✐❝ r❡s✉❧ts ✇❡ ❛tt❡♠♣t t♦ ✜♥❞ ✇❤✐❝❤ ♣♦s❡ts ❛❞✲
♠✐t ✷✲♣❛❣❡ ❜♦♦❦ ❡♠❜❡❞❞✐♥❣ ❛♥❞ ✇❤❛t ✐s t❤❡ ♣❛❣❡
♥✉♠❜❡r ♦❢ s♦♠❡ ♣❧❛♥❛r ♣♦s❡ts✳
❚❤✐s ♣❛♣❡r ✐s ❜❛s❡❞ ♦♥ t❤❡ P❤✳❉✳ ❚❤❡s✐s ♦❢ t❤❡ ✜rst

❛✉t❤♦r ❬✶✵❪✳

2 The book embedding of graphs

❆ ❜♦♦❦ ❡♠❜❡❞❞✐♥❣ ♦❢ ❛ ❣r❛♣❤ G = (V,E) ❝♦♥s✐sts ♦❢
t✇♦ ❛ss✐❣♥♠❡♥ts✿ t❤❡ ✈❡rt✐❝❡s ♦❢ G t♦ t❤❡ s♣✐♥❡ ♦❢ ❛
❜♦♦❦ ✐♥ s♦♠❡ ♦r❞❡r ❛♥❞ t❤❡ ❡❞❣❡s ♦❢ G t♦ t❤❡ ♣❛❣❡s
✭✐♥✜♥✐t❡ ❤❛❧❢✲♣❧❛♥❡s✮ ♦❢ t❤❡ ❜♦♦❦ s♦ t❤❛t ❡❛❝❤ ❡❞❣❡ ❧✐❡s
♦♥ ♦♥❧② ♦♥❡ ♣❛❣❡ ❛♥❞ t❤❡ ❡❞❣❡s ❛ss✐❣♥❡❞ t♦ t❤❡ s❛♠❡
♣❛❣❡ ❞♦ ♥♦t ✐♥t❡rs❡❝t✳ ❚❤❡ ♦❜❥❡❝t✐✈❡ ✐s t♦ ♠✐♥✐♠✐③❡

∗❋❛❝✉❧t② ♦❢ ▼❛t❤❡♠❛t✐❝s ❛♥❞ ❈♦♠♣✉t❡r ❙❝✐❡♥❝❡✱ ◆✐❝♦❧❛✉s

❈♦♣❡r♥✐❝✉s ❯♥✐✈❡rs✐t②✱ ❈❤♦♣✐♥ ✶✷✲✶✽✱ ✽✼✲✶✵✵ ❚♦r✉➠✱ P♦❧❛♥❞✱

❛❜❛❅♠❛t✳✉♥✐✳t♦r✉♥✳♣❧
†❋❛❝✉❧t② ♦❢ ▼❛t❤❡♠❛t✐❝s ❛♥❞ ❈♦♠♣✉t❡r ❙❝✐❡♥❝❡✱ ◆✐❝♦❧❛✉s

❈♦♣❡r♥✐❝✉s ❯♥✐✈❡rs✐t②✱ ❈❤♦♣✐♥ ✶✷✲✶✽✱ ✽✼✲✶✵✵ ❚♦r✉➠✱ P♦❧❛♥❞✱

s②s❧♦❅✐✐✳✉♥✐✳✇r♦❝✳♣❧

t❤❡ ♥✉♠❜❡r ♦❢ ♣❛❣❡s ✉s❡❞✳ ❚❤❡ ♣❛❣❡ ♥✉♠❜❡r ♦❢ ❛

❣r❛♣❤ G✱ ❞❡♥♦t❡❞ ❜② p(G)✱ ✐s t❤❡ s♠❛❧❧❡st ♥✉♠❜❡r k

s✉❝❤ t❤❛t G ❤❛s ❛ ❜♦♦❦ ❡♠❜❡❞❞✐♥❣ ♦♥ k ♣❛❣❡s ♦✈❡r
❛❧❧ ♣♦ss✐❜❧❡ ♣❡r♠✉t❛t✐♦♥s ♦❢ t❤❡ ✈❡rt❡① s❡t V ♦♥ t❤❡
s♣✐♥❡✳ ■t ✐s ❦♥♦✇♥ ❬✸❪ t❤❛t✿

• p(G) = 1 ✐❢ ❛♥❞ ♦♥❧② ✐❢ G ✐s ♦✉t❡r♣❧❛♥❛r✱

• p(G) ≤ 2 ✐❢ ❛♥❞ ♦♥❧② ✐❢ G ✐s ❛ s✉❜❣r❛♣❤ ♦❢ ❛ ♣❧❛✲

♥❛r ❍❛♠✐❧t♦♥✐❛♥ ❣r❛♣❤❀ ❤❡♥❝❡ ❞❡❝✐❞✐♥❣ ✇❤❡t❤❡r
❛ ✭♣❧❛♥❛r✮ ❣r❛♣❤ G ❤❛s ♣❛❣❡ ♥✉♠❜❡r ✷ ✐s ❛♥ ◆P✲
❝♦♠♣❧❡t❡ ♣r♦❜❧❡♠✳

❇❡r♥❤❛rt ❛♥❞ ❑❛✐♥❡♥ ❝♦♥❥❡❝t✉r❡❞ t❤❛t t❤❡ ♣❛❣❡
♥✉♠❜❡r ♦❢ ♣❧❛♥❛r ❣r❛♣❤s ✐s ✉♥❜♦✉❞❡❞✱ ❤♦✇❡✈❡r ❨❛♥✲
♥❛❦❛❦✐s ❬✷✶❪ ♣r♦✈❡❞ t❤❛t p(G) ≤ 4 ❢♦r ❡✈❡r② ♣❧❛♥❛r
❣r❛♣❤ G✳

3 The book embedding of posets

▲❡t (P,≤) ❜❡ ❛ ♣❛rt✐❛❧❧② ♦r❞❡r❡❞ s❡t✱ s✐♠♣❧② ❝❛❧❧❡❞ ❛
♣♦s❡t ❛♥❞ ❞❡♥♦t❡❞ ❜② P ✳ ▲❡t H(P ) ❞❡♥♦t❡ t❤❡ ❝♦✈❡r✲

✐♥❣ ❞✐❣r❛♣❤ ♦❢ P ✱ ❦♥♦✇♥ ❛❧s♦ ❛s t❤❡ ❍❛ss❡ ❞✐❛❣r❛♠ ♦❢
P ❛♥❞ ❧❡t G(P ) ❞❡♥♦t❡ t❤❡ ✉♥❞✐r❡❝t❡❞ ❝♦♣② ♦❢ H(P )✱
❦♥♦✇♥ ❛s t❤❡ ❝♦✈❡r✐♥❣ ❣r❛♣❤ ♦❢ P
❆ ❜♦♦❦ ❡♠❜❡❞❞✐♥❣ ♦❢ ❛ ♣♦s❡t P ❝♦♥s✐sts ❛❧s♦ ♦❢ t✇♦

❛ss✐❣♥♠❡♥ts✿ t❤❡ ❡❧❡♠❡♥ts ♦❢ P t♦ t❤❡ s♣✐♥❡ ♦❢ t❤❡
❜♦♦❦ ❛❝❝♦r❞✐♥❣ t♦ ❛ ❧✐♥❡❛r ❡①t❡♥s✐♦♥ L ♦❢ P ❛♥❞ t❤❡
❛r❝s ♦❢ H(P ) t♦ t❤❡ ♣❛❣❡s ♦❢ t❤❡ ❜♦♦❦ s♦ t❤❛t ❡❛❝❤
❛r❝ ❧✐❡s ♦♥ ♦♥❧② ♦♥❡ ♣❛❣❡ ❛♥❞ t❤❡ ❛r❝s ❛ss✐❣♥❡❞ t♦ t❤❡
s❛♠❡ ♣❛❣❡ ❞♦ ♥♦t ✐♥t❡rs❡❝t✳ ❚❤❡ ♦❜❥❡❝t✐✈❡ ✐s t♦ ♠✐♥✲
✐♠✐③❡ t❤❡ ♥✉♠❜❡r ♦❢ ♣❛❣❡s ✉s❡❞✳ ▲❡t p(P,L) ❞❡♥♦t❡
t❤❡ s♠❛❧❧❡st ♥✉♠❜❡r k s✉❝❤ t❤❛t ♣♦s❡t P ❤❛s ❛ ❜♦♦❦
❡♠❜❡❞❞✐♥❣ ♦♥ k ♣❛❣❡s ✇✐t❤ t❤❡ ❡❧❡♠❡♥ts ♦❢ P ♣❧❛❝❡❞
♦♥ t❤❡ s♣✐♥❡ ❛❝❝♦r❞✐♥❣ t♦ ❛ ❧✐♥❡❛r ❡①t❡♥s✐♦♥ L ♦❢ P ✳
❚❤❡ ♣❛❣❡ ♥✉♠❜❡r ♦❢ ❛ ♣♦s❡t P ✱ ❞❡♥♦t❡❞ ❜② p(P )✱ ✐s
t❤❡ ♠✐♥✉♠✉♠ p(P,L) ♦✈❡r ❛❧❧ ❧✐♥❡❛r ❡①t❡s✐♦♥s L ♦❢ P ✳
❚❤❡ ♣❛❣❡ ♥✉♠❜❡r ❢♦r ♣♦s❡ts ❤❛s ❜❡❡♥ ✐♥tr♦❞✉❝❡❞ ❜②

◆♦✇❛❦♦✇s❦✐ ❬✶✹❪✳ ❚❤❡♥ ◆♦✇❛❦♦✇s❦✐ ❛♥❞ P❛r❦❡r ❬✶✺❪
❤❛✈❡ ❞❡✈❡❧♦♣❡❞ s♦♠❡ ❜♦✉♥❞s ❢♦r t❤❡ ♣❛❣❡ ♥✉♠❜❡r ✐♥
❣❡♥❡r❛❧ ❛♥❞ ❛❧s♦ ❢♦r ♣❧❛♥❛r ♣♦s❡ts✳ ❙②s❧♦ ❬✷✵❪ ❤❛s ♣r♦✲
✈✐❞❡❞ s♦♠❡ ♦t❤❡r ❜♦✉♥❞s✱ ✐♥ ♣❛rt✐❝✉❧❛r ✐♥✈❡st✐❣❛t✐♥❣
t❤❡ r❡❧❛t✐♦♥ ❜❡t✇❡❡♥ t❤❡ ♣❛❣❡ ♥✉♠❜❡r ❛♥❞ t❤❡ ❥✉♠♣
♥✉♠❜❡r ♦❢ ❛ ♣♦s❡t ✭✇❤✐❝❤ ✐s t❤❡ ♠✐♥✐♠✉♠ ♥✉♠❜❡r ♦❢
❜r❡❛❦s ❜❡t✇❡❡♥ ❝♦♥s❡❝✉t✐✈❡ ❝❤❛✐♥s ✐♥ ❛ ❧✐♥❡❛r ❡①t❡♥✲
s✐♦♥ ♦❢ ❛ ♣♦s❡t✮✳ ■t ✐s ❦♥♦✇♥ ✭❬✶✺❪✱ ❬✷✵❪✮ t❤❛t✿

• p(P ) = 1 ✐❢ ❛♥❞ ♦♥❧② ✐❢ G(P ) ❤❛s ♥♦ ❝②❝❧❡✳

◆♦ ❝❤❛r❛❝t❡r✐③❛t✐♦♥ ♦❢ t✇♦ ♣❛❣❡ ♣♦s❡ts ✐s ❦♥♦✇♥✳
P❧❛♥❛r ♣♦st❡s ✇❤✐❝❤ r❡q✉✐r❡ ♠♦r❡ t❤❛♥ t✇♦ ♣❛❣❡s ❝❛♥

❚❤✐s ✐s ❛♥ ❡①t❡♥❞❡❞ ❛❜str❛❝t ♦❢ ❛ ♣r❡s❡♥t❛t✐♦♥ ❣✐✈❡♥ ❛t ❊✉r♦❈● ✷✵✶✷✳ ■t ❤❛s ❜❡❡♥ ♠❛❞❡ ♣✉❜❧✐❝ ❢♦r t❤❡ ❜❡♥❡✜t ♦❢ t❤❡ ❝♦♠♠✉♥✐t② ❛♥❞ s❤♦✉❧❞ ❜❡
❝♦♥s✐❞❡r❡❞ ❛ ♣r❡♣r✐♥t r❛t❤❡r t❤❛♥ ❛ ❢♦r♠❛❧❧② r❡✈✐❡✇❡❞ ♣❛♣❡r✳ ❚❤✉s✱ t❤✐s ✇♦r❦ ✐s ❡①♣❡❝t❡❞ t♦ ❛♣♣❡❛r ✐♥ ❛ ❝♦♥❢❡r❡♥❝❡ ✇✐t❤ ❢♦r♠❛❧ ♣r♦❝❡❡❞✐♥❣s ❛♥❞✴♦r ✐♥ ❛
❥♦✉r♥❛❧✳
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✷✽t❤ ❊✉r♦♣❡❛♥ ❲♦r❦s❤♦♣ ♦♥ ❈♦♠♣✉t❛t✐♦♥❛❧ ●❡♦♠❡tr②✱ ✷✵✶✷

❜❡ ❢♦✉♥❞ ✐♥ ❬✶✺❪ ❛♥❞ ❬✷✵❪✳ ■t ✇❛s ❝♦♥❥❡❝t✉r❡❞ t❤❛t t❤❡
♣❛❣❡ ♥✉♠❜❡r ✐s ✉♥❜♦✉♥❞❡❞ ❢♦r ♣❧❛♥❛r ♣♦s❡ts✳ ❖♥❡
s✉❝❤ ❝♦♥❥❡❝t✉r❡ ❤❛s ❜❡❡♥ ❞✐s♣r♦✈❡❞ ❜② ▲❡ ❚✉ ❬✶✷❪ ✇❤♦
❤❛s ❛❧s♦ ❝♦♥str✉❝t❡❞ ❛ ♣❧❛♥❛r ♣♦s❡t ✇❤✐❝❤ r❡q✉✐r❡s
❢♦✉r ♣❛❣❡s✳ ❆♥♦t❤❡r s✉❝❤ ❝♦♥❥❡❝t✉r❡ ❛♣♣❡❛r❡❞ ✐♥ ❬✶❪✳
■❢ p(P ) = 2 t❤❡♥ ✐t ✐s ❝❧❡❛r t❤❛t t❤❡ ❝♦✈❡r✐♥❣ ❞✐✲

❣r❛♣❤ ♦❢ P ❝♦♥t❛✐♥s ❛ ❝②❝❧❡✳ ■♥ ❬✾❪ ✇❡ st✉❞② ❛ ❢❛♠✐❧②
♦❢ ♣♦s❡ts ✇❤✐❝❤ ❛r❡ ❝♦♠❜✐♥❛t✐♦♥s ♦❢ ❡❞❣❡✲❞✐s❥♦✐♥t ❝②✲
❝❧❡s ❛♥❞ ❝❧❛ss✐❢② s✉❝❤ ♣♦s❡ts ❛❝❝♦r❞✐♥❣ t♦ t❤❡✐r ♣❛❣❡
♥✉♠❜❡r ✇❤✐❝❤ ✐s ❡✐t❤❡r ✷ ♦r ✸✳

4 N-free posets

❆♥ N ✐s ❛ ♣♦s❡t ❝♦♥s✐st✐♥❣ ♦❢ ❢♦✉r ❡❧❡♠❡♥ts a✱ b✱ c✱ d
s✉❝❤ t❤❛t a < c✱ b < c✱ b < d✱ b 6< a✱ a 6< d✱ d 6< c✱
s❡❡ ❋✐❣✉r❡ ✶✳ ❚❤✐s ♣♦s❡t ♣❧❛②s ❛♥ ✐♠♣♦rt❛♥t r♦❧❡ ✐♥
st✉❞②✐♥❣ s❡✈❡r❛❧ ❛❧❣♦r✐t❤♠✐❝ ♣r♦❜❧❡♠s ♦♥ ♣♦s❡ts ❬✶✻❪✱
s❡❡ ❛❧s♦ ❬✶✾❪✳
❆ ♣♦s❡t P ✐s N ✲❢r❡❡ ✐❢ ✐ts ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤ H(P )

❝♦♥t❛✐♥s ♥♦ s✉❜❞✐❣r❛❤ ✐s♦♠♦r♣❤✐❝ t♦ H(N)✱ t❤❡ ❝♦✈❡r✲
✐♥❣ ❞✐❣r❛♣❤ ♦❢ N ✳ N ✲❢r❡❡ ♣♦s❡ts ❤❛✈❡ ❜❡❡♥ ✐♥tr♦❞✉❝❡❞
❜② ●r✐❧❧❡t ❬✻❪✱ s❡❡ ❛❧s♦ ❬✶✶❪✳

b

c

a

d

❋✐❣✉r❡ ✶✿ ❆♥ N ♣♦s❡t✳

❆♥ N ✲❢r❡❡ ♣♦s❡t P ✭✐♥ ❣❡♥❡r❛❧✱ ❛♥ N ✲❢r❡❡ ❞✐❣r❛♣❤✮
❝❛♥ ❜❡ ❛❧s♦ ❞❡✜♥❡❞ ❛s ❛ ❧✐♥❡ ❞✐❣r❛♣❤✳ ❚❤❡ ❧✐♥❡ ❞✐❣r❛♣❤

♦❢ ❛ ♠✉❧t✐❞✐❣r❛♣❤ E ✐s t❤❡ ❞✐❣r❛♣❤ L(E) ❤❛✈✐♥❣ ❛ ✈❡r✲
t❡① l(a) ❢♦r ❡❛❝❤ ❛r❝ a ♦❢ E ❛♥❞ ❛♥ ❛r❝ (l(a1), l(a2))
❢♦r ❡❛❝❤ ♣❛✐r ♦❢ ❛r❝s a1 ❛♥❞ a2 ✐♥ E ✇❤✐❝❤ ❛r❡ ♦❢ t❤❡
❢♦r♠ a1 = (u, v) ❛♥❞ a2 = (v, w)✳ ❆ ❞✐❣r❛♣❤ D ✐s ❛
❧✐♥❡ ❞✐❣r❛♣❤ ✐❢ t❤❡r❡ ❡①✐sts ❛ ♠✉❧t✐❞✐❣r❛♣❤ E s✉❝❤ t❤❛t
D = L(E)❀ E ✐s ❝❛❧❧❡❞ ❛ r♦♦t ❞✐❣r❛♣❤ ♦❢ D✳
❚❤❡r❡ ❡①✐st ♠❛♥② ❝❤❛r❛❝t❡r✐③❛t✐♦♥s ♦❢ N ✲❢r❡❡ ♣♦s❡ts

✭s❡❡ ❬✼❪✱ ❬✶✵❪✮✳ ❲❡ ♠❛❦❡ ✉s❡ ❤❡r❡ ♠❛✐♥❧② ♦❢ ♣r♦♣❡rt②
✹ ❜❡❧♦✇✳

❚❤❡♦r❡♠ ✶ ▲❡t D = (P,A) ❞❡♥♦t❡ t❤❡ ❝♦✈❡r✐♥❣ ❞✐✲
❣r❛♣❤ ♦❢ ❛ ♣♦s❡t✳ ❚❤❡ ❢♦❧❧♦✇✐♥❣ st❛t❡♠❡♥ts ❛r❡ ❡q✉✐✈✲
❛❧❡♥t✿

✶✳ P ❤❛s t❤❡ ❈✳ ❆✳ ❈✳ ♣r♦♣❡rt②✱ ✐✳❡✳ ❡❛❝❤ ♠❛①✐♠❛❧
❝❤❛✐♥ ♠❡❡ts ❡❛❝❤ ♠❛①✐♠❛❧ ❛♥t✐❝❤❛✐♥✱ ❬✻❪✱ ❬✶✶❪✳

✷✳ P ✐s N ✲❢r❡❡

✸✳ D ✐s ❛ ❧✐♥❡ ❞✐❣r❛♣❤✳

✹✳ ❚❤❡r❡ ❡①✐st t✇♦ ✐♠♣r♦♣❡r ♣❛rt✐t✐♦♥s {Pi}I ❛♥❞
{Qi}I ♦❢ P ✭✐♠♣r♦♣❡r ♠❡❛♥s t❤❛t s♦♠❡ Pi ❛♥❞
Qi ♠❛② ❜❡ ❡♠♣t②✮ s✉❝❤ t❤❛t A =

⋃
i∈I Pi × Qi✱

✇❤❡r❡ × ❞❡♥♦t❡s t❤❡ ❈❛rt❡s✐❛♥ ♣r♦❞✉❝t ♦❢ s❡ts✳

✺✳ ❋♦r ❡✈❡r② t✇♦ ❡❧❡♠❡♥ts p, q ∈ P ✱ ✐❢ N(p)∩N(q) 6=
∅ t❤❡♥ N(p) = N(q)✱ ✇❤❡r❡ N(p) ❞❡♥♦t❡s t❤❡ s❡t
♦❢ ❛❧❧ ❡❧❡♠❡♥ts ♦❢ P ✇❤✐❝❤ ❝♦✈❡r p ✐♥ P ✳

❆ ❧✐♥❡❛r t✐♠❡ ❛❧❣♦r✐t❤♠ t♦ r❡❝♦❣♥✐③❡ ❛ ❧✐♥❡ ❞✐❣r❛♣❤
❛♥❞ ♦✉t♣✉t ✐ts r♦♦t ❞✐❣r❛♣❤ ❤❛s ❜❡❡♥ ♣r❡s❡♥t❡❞ ✐♥
❬✶✼❪✳ ❚❤❡r❡❢♦r❡✱ N ✲❢r❡❡ ♣♦s❡ts ❝❛♥ ❜❡ ❛❧s♦ r❡❝♦❣♥✐③❡❞
✐♥ t✐♠❡ ❧✐♥❡❛r ✐♥ t❤❡ ♥✉♠❜❡r ♦❢ ♣♦s❡t ❡❧❡♠❡♥ts ❛♥❞
t❤❡ ♥✉♠❜❡r ♦❢ ♣♦s❡t ❝♦♠♣❛r❛❜✐❧✐t✐❡s✳

▲❡t ✉s ❛ss✉♠❡ t❤❛t ❢♦r ❛ ❣✐✈❡♥ N ✲❢r❡❡ ♣♦s❡t P ✱ r❡♣✲
r❡s❡♥t❡❞ ❜② ✐ts ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤ D = (P,A)✱ ✇❡ ❤❛✈❡
t✇♦ ✐♠♣r♦♣❡r ♣❛rt✐t✐♦♥s {Pi}I ❛♥❞ {Qi}I ♦❢ P s✉❝❤
t❤❛t A =

⋃
i∈I Pi×Qi✳ ■❢ ❜♦t❤ s❡ts Pi ❛♥❞ Qi ❛r❡ ♥♦♥✲

❡♠♣t② t❤❡♥ Pi×Qi ✐s ❛ ❝♦♠♣❧❡t❡ ❜✐♣❛rt✐t❡ s✉❜❞✐❣r❛♣❤
♦❢ D✳ ❚❤❡r❡❢♦r❡ t❤❡ ❛r❝ s❡t A ♦❢ D ❝❛♥ ❜❡ ♣❛rt✐t✐♦♥❡❞
✐♥t♦ ❝♦♠♣❧❡t❡ ❜✐♣❛rt✐t❡ s✉❜❞✐❣r❛♣❤s Bi = Pi × Qi

✭i ∈ I✮ ♦❢ D ✕ ✇❡ ❝❛❧❧ Pi ❛ ❧♦✇❡r s❡t ♦❢ Bi ❛♥❞ Qi

❛♥ ✉♣♣❡r s❡t ♦❢ Bi✳ ❋♦r t✇♦ s✉❜❞✐❣r❛♣❤s Bi ❛♥❞ Bj ✱
i 6= j✱ t❤❡② ❧♦✇❡r s❡ts ❛r❡ ❞✐s❥♦✐♥t ❛♥❞ ❛❧s♦ t❤❡② ✉♣♣❡r
s❡ts ❛r❡ ❞✐s❥♦✐♥t✱ ❤♦✇❡✈❡r t❤❡② ❧♦✇❡r ❛♥❞ ✉♣♣❡r s❡ts
♠❛② ❤❛✈❡ s♦♠❡ ❡❧❡♠❡♥ts ✐♥ ❝♦♠♠♦♥✳ ❲❡ ❤❛✈❡✿

❚❤❡♦r❡♠ ✷ ▲❡tD ❜❡ ❛ ❧✐♥❡ ❞✐❣r❛♣❤ ❛♥❞ ❧❡t E ❞❡♥♦t❡
✐ts r♦♦t ❞✐❣r❛♣❤✳ ❲❡ ❤❛✈❡ t❤❡ ❢♦❧❧♦✇✐♥❣ ♣r♦♣❡rt✐❡s ♦❢
D ❛♥❞ E✿

✶✳ ❆ ❞✐❣r❛♣❤ D ❤❛s ♥♦ ❧♦♦♣s ✐❢ ❛♥❞ ♦♥❧② ✐❢ ✐ts r♦♦t
❞✐❣r❛♣❤ E ❤❛s ♥♦ ❧♦♦♣s✳

✷✳ ■❢ E ✐s ❛❝②❝❧✐❝ ✭✐✳❡✳ ❤❛s ♥♦ ❞✐r❡❝t❡❞ ❝②❝❧❡s✮ ❛♥❞
E ❤❛s ♥♦ ❧♦♦♣s✱ t❤❡♥ t❤❡ ❞✐❣r❛♣❤ D ✐s ❛❝②❝❧✐❝✱
❝♦♥t❛✐♥s ♥♦ ❧♦♦♣s ❛♥❞ ❤❛s ♥♦ tr❛♥s✐t✐✈❡ ❛r❝s✳

✸✳ ■❢ E ❤❛s ♥♦ ♠✉❧t✐♣❧❡ ✭♣❛r❛❧❧❡❧✮ ❛r❝s t❤❡♥

| Qi ∩ Pj |≤ 1

❢♦r ❡❛❝❤ ♣❛✐r i ❛♥❞ j✱ s✉❝❤ t❤❛t i 6= j✳

❚❤❡r❡❢♦r❡✱ ✐❢ ❛ ♣♦s❡t P ✐s N ✲❢r❡❡✱ t❤❡♥ t❤❡ r♦♦t ❞✐✲
❣r❛♣❤ ♦❢ t❤❡ ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤ ♦❢ P ❝♦♥t❛✐♥s ♥♦ ❧♦♦♣s
❛♥❞ ♥♦ ❝②❝❧❡s✳ ▼♦r❡♦✈❡r✱ ✐♥ ✇❤❛t ❢♦❧❧♦✇s ✇❡ ❛s✲
s✉♠❡ t❤❛t ✐t ❝♦♥t❛✐♥s ❛❧s♦ ♥♦ ♠✉❧t✐♣❧❡ ❛r❝s✱ t❤❡r❡❢♦r❡
| Qi ∩ Pj |≤ 1 ❢♦r ❡❛❝❤ ♣❛✐r i ❛♥❞ j✱ s✉❝❤ t❤❛t i 6= j✳

5 Page number of N-free posets

❲❡ ♣r❡s❡♥t ❤❡r❡ s♦♠❡ r❡s✉❧ts ♦♥ t❤❡ ♣❛❣❡ ♥✉♠✲
❜❡r ♣r♦❜❧❡♠ ❢♦r N ✲❢r❡❡ ♣♦s❡ts ❛♥❞ ❢♦r N ✲❢r❡❡ ♣❧❛♥❛r
♣♦s❡ts✳ ❚❡ ❞❡t❛✐❧s ❛r❡ ✐♥❝❧✉❞❡❞ ✐♥ ❬✶✵❪✳

5.1 Arbitrary N-free posets

▲❡t P ❜❡ ❛ ♣♦s❡t ❛♥❞ (pi, qi)✱ i = 1, 2, ..., k ❜❡ ❛ s❡t
♦❢ k ❛r❝s ✐♥ ✐ts ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤ H(P )✳ ■❢ p1 < p2 <

... < pk < q1 < q2 < ... < qk ✐♥ ❛ ❧✐♥❡❛r ❡①t❡♥s✐♦♥ L

♦❢ P ✱ t❤❡♥ ❡✈✐❞❡♥t❧② ✇❡ ❤❛✈❡ k ≤ p(P,L)✳ ❍❡♥❝❡✿
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❚❤❡♦r❡♠ ✸ ✭❙②s❧♦ ❬✷✵❪✮ ❋♦r ❛ ❝♦♠♣❧❡t❡ ❜✐♣❛rt✐t❡
♣♦s❡t Pk,l ✇✐t❤ k ❡❧❡♠❡♥ts ✐♥ ✐ts ❧♦✇❡r s❡t ❛♥❞ l ❡❧✲
❡♠❡♥ts ✐♥ ✐ts ✉♣♣❡r s❡t✱ ✇❡ ❤❛✈❡ p(Pk,l) = min{k, l}✳

❲❡ ❣❡♥❡r❛❧✐③❡ t❤✐s ♦❜s❡r✈❛t✐♦♥ t♦ ❛ tr❡❡✲❧✐❦❡ ❝♦♠❜✐✲
♥❛t✐♦♥ ♦❢ ❝♦♠♣❧❡t❡ ❜✐♣❛rt✐t❡ ♣♦s❡ts✳ ❆♥ N ✲❢r❡❡ ♣♦s❡t
P ❤❛s ❛ tr❡❡✲❧✐❦❡ str✉❝t✉r❡✱ ✐❢ ❢♦r ❡✈❡r② ❡❧❡♠❡♥t p ∈ P ✱
✇❤✐❝❤ ✐s ♥❡✐t❤❡r ♠✐♥✐♠❛❧ ♥♦r ♠❛①✐♠❛❧ ✐♥ P ✱ t❤❡ ❞✐✲
❣r❛♣❢ H(P ) − {p} ✐s ♥♦t ❝♦♥♥❡❝t❡❞✳ ❊q✉✐✈❛❧❡♥t❧②✱ ❛♥
N ✲❢r❡❡ ♣♦s❡t P ❤❛s ❛ tr❡❡✲❧✐❦❡ str✉❝t✉r❡ ✐❢ ❛ r♦♦t ❞✐✲
❣r❛♣❤ ♦❢ ✐ts ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤ ✐s ❛ tr❡❡✳ ❲❡ ❤❛✈❡ t❤❡
❢♦❧❧♦✇✐♥❣ t❤❡♦r❡♠✿

❚❤❡♦r❡♠ ✹ ■❢ ❛ ♣♦s❡t P ✐s N ✲❢r❡❡ ❛♥❞ ❤❛s ❛ tr❡❡✲❧✐❦❡
str✉❝t✉r❡✱ t❤❡♥ ✇❡ ❤❛✈❡

p(P ) = maxi∈Imin{| Pi |, | Qi |}

✳

a)
b)

❋✐❣✉r❡ ✷✿ ❛✮ ❚❤❡ ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤ ♦❢ N ✲❢r❡❡ tr❡❡✲❧✐❦❡
str✉❝t✉r❡❞ ♣♦s❡t ❛♥❞ ❜✮ ✐ts r♦♦t ❞✐❣r❛♣❤

❚❤❡ ♣r♦♦❢ ♦❢ t❤✐s t❤❡♦r❡♠ ✐s ❝♦♥str✉❝t✐✈❡ ✕ ❛♥ ❡✣✲
❝✐❡♥t r❡❝✉rs✐✈❡ ❛❧❣♦r✐t❤♠ ✜♥❞s ❛ ❜♦♦❦ ❡♠❜❡❞❞✐♥❣ ❢♦r
❛ ♣♦s❡t P ✇❤✐❝❤ ✐s N ✲❢r❡❡ ❛♥❞ ❤❛s ❛ tr❡❡✲❧✐❦❡ str✉❝t✉r❡
✇✐t❤ t❤❡ ♦♣t✐♠❛❧ ♥✉♠❜❡r ♦❢ ♣❛❣❡s✳
❋♦r ❛♥ ❛r❜✐tr❛r② N ✲❢r❡❡ ♣♦s❡t P ✇❡ ♣r♦✈✐❞❡ ❛♥ ✉♣✲

♣❡r ❜♦✉♥❞ t♦ ✐ts ♣❛❣❡ ♥✉♠❜❡r✳ ■t ❢♦❧❧♦✇s ❢r♦♠ t❤❡
❢❛❝t t❤❛t t♦ ❞❡str♦② ❛❧❧ ❝②❝❧❡s ✐♥ t❤❡ r♦♦t ❞✐❣r❛♣❤ T

♦❢ t❤❡ ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤ H(P ) ♦❢ P ✇❡ ❤❛✈❡ t♦ r❡♠♦✈❡
c(T ) ❛r❝ ❢r♦♠ T ✱ ✇❤❡r❡ c(T ) ❞❡♥♦t❡s t❤❡ ❝②❝❧♦♠❛t✐❝

♥✉♠❜❡r ♦❢ T ✱ ✐✳❡✳ t❤❡ ♥✉♠❜❡r ♦❢ ✐♥❞❡♣❡♥❞❡♥t ❝②❝❧❡s ✐♥
T ✳ ❚❤❡ ❝②❝❧♦♠❛t✐❝ ♥✉♠❜❡r ♦❢ ❛ ❝♦♥♥❡❝t❡❞ ❞✐❣r❛♣❤ ✐s
❡q✉❛❧ t♦ t❤❡ ♥✉♠❜❡r ♦❢ ✐ts ❛r❝s ♠✐♥✉s t❤❡ ♥✉♠❜❡r ♦❢
✐ts ✈❡rt✐❝❡s ♣❧✉s ✶✳

❚❤❡♦r❡♠ ✺ ▲❡t P ❜❡ ❛♥ N ✲❢r❡❡ ♣♦s❡t ❛♥❞ T ❞❡♥♦t❡s
t❤❡ r♦♦t ❞✐❣r❛♣❤ ♦❢ ✐ts ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤s✳ ❚❤❡♥ ✇❡
❤❛✈❡✿

p(P ) ≤ maxi∈Imin{| Pi |, | Qi |}+m(T )− n(T ) + 1,

✇❤❡r❡ m(T ) ✐s t❤❡ ♥✉♠❜❡r ♦❢ ❛r❝s ✐♥ T ❛♥❞ n(T ) ✐s
t❤❡ ♥✉♠❜❡r ♦❢ ✈❡rt✐❝❡s ✐♥ T ✳ ❊q✉✐✈❛❧❡♥t❧②

p(P ) ≤ maxi∈Imin{| Pi |, | Qi |}+ | P | − | I | +1.

■♥ ❣❡♥❡r❛❧ t❤✐s ❜♦✉♥❞ ❝❛♥ ♥♦t ❜❡ ✐♠♣r♦✈❡❞ ❛♥❞ ♦♥
t❤❡ ♦t❤❡r ❤❛♥❞ ✐t ❝❛♥ ❜❡ ❛r❜✐tr❛r✐❧② ❜❛❞✳

❲❤❡♥ ❛ ♣♦s❡t P ✐s ♥♦t N ✲❢r❡❡✱ ✇❡ ❝❛♥ tr❛♥s❢♦r♠ P

t♦ ❛♥♦t❤❡r ♣♦s❡t P ′ ✇❤✐❝❤ ✐s N ✲❢r❡❡ ❛♥❞ t❤❡ r❡❧❛t✐♦♥s
❛♠♦♥❣ t❤❡ ♦r✐❣✐♥❛❧ ❡❧❡♠❡♥ts ♦❢ P ❛r❡ ♣r❡s❡r✈❡❞✳ ❙✉❝❤
❛ tr❛♥s❢♦r♠❛t✐♦♥ ♠❛② ❞❡♣❡♥❞ ♦♥ s✉❜❞✐✈✐❞✐♥❣ s♦♠❡
❛r❝s ✐♥ t❤❡ ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤ ♦❢ P ✕ t❤✐s tr❛♥s❢♦r♠❛✲
t✐♦♥ r❡s✉✉❧ts ✐♥ t♦♣♦❧♦❣✐❝❛❧ ❡♠❜❡❞❞✐♥❣ ♦❢ P ✳ ❆♥♦t❤❡r
s✉❝❤ tr❛♥s❢♦r♠❛t✐♦♥ ✕ ❛ ❣❡♥❡r❛❧ s✉❜❞✐✈✐s✐♦♥ ✕ ❤❛s ❜❡❡♥
♣r♦♣♦s❡❞ ✐♥ ❬✶✽❪✳ ❖♥❝❡ ❛ ♣♦s❡t P ✐s tr❛♥s❢♦r♠❡❞ t♦ ❛♥
N ✲❢r❡❡ ♣♦s❡t✱ ✇❡ ❝❛♥ ❛♣♣❧② ❚❤❡♦r❡♠ ✺✳ ❍♦✇❡✈❡r t❤✐s
r❡s✉❧t ✐s ♦♥❧② ♦❢ ❛❧❣♦r✐t❤♠✐❝ ♥❛t✉r❡ s✐♥❝❡ t❤❡r❡ ✐s ♥♦
❜♦✉♥❞ t♦ t❤❡ ♥✉♠❜❡r ♦❢ s✉❜❞✐✈✐s✐♦♥s ♦r ❣❡♥❡r❛❧ s✉❜✲
❞✐✈✐s✐♦♥s ✇❤✐❝❤ tr❛♥s❢♦r♠ ❛ ♣♦s❡t t♦ ❛♥ N ✲❢r❡❡ ♣♦s❡t
✇✐t❤ t❤❡ s❛♠❡ ❝♦♠♣❛r❛❜✐❧✐t✐❡s ❛♠♦♥❣ ❡❧❡♠❡♥ts ♦❢ P ✳

5.2 Planar N-free posets

❆ ♣♦s❡t ✐s ♣❧❛♥❛r ✐❢ ✐ts ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤ ✐s ✉♣✇❛r❞

♣❧❛♥❛r✱ ✐✳❡✳ ✐t ❛❞♠✐ts ❛♥ ✉♣✇❛r❞ ♣❧❛♥❛r ❞r❛✇✐♥❣✳ ❚❤❡
st✉❞② ♦❢ ✉♣✇❛r❞ ♣❧❛♥❛r✐t② ❤❛s ❜❡❡♥ ✈❡r② ❛❝t✐✈❡ ✐♥ t❤❡
❧❛st ②❡❛rs ❢r♦♠ ❜♦t❤✱ t❤❡♦r❡t✐❝❛❧ ✭s❡❡ ❬✽❪✮ ❛♥❞ ❛❧❣♦✲
r✐t❤♠✐❝ ♣♦✐♥t ♦❢ ✈✐❡✇ ✭s❡❡ ❬✹❪✱ ❬✺❪✮✳

❚❡st✐♥❣ ♣❧❛♥❛r✐t② ♦❢ ♦r❞❡r❡❞ s❡ts ✐s ❡q✉✐✈❛❧❡♥t t♦
t❡st✐♥❣ ✉♣✇❛r❞ ♣❧❛♥❛r✐t② ♦❢ ❞✐❣r❛♣❤s s✐♥❝❡ ❛ ❞✐❣r❛♣❤
D ✐s ✉♣✇❛r❞ ♣❧❛♥❛r ✐❢ ❛♥❞ ♦♥❧② ✐❢ t❤❡ ♦r❞❡r❡❞ s❡t ✇✐t❤
❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤D′ ♦❜t❛✐♥❡❞ ❢r♦♠D ❜② s✉❞✐✈✐❞✐♥❣ ❛❧❧
✐ts ❛r❝s✱ ✐s ♣❧❛♥❛r✳ ❙✐♥❝❡ t❤❡ ❞✐❣r❛♣❤ D′ ✐s N ✲❢r❡❡ ❛♥❞
t❤❡ ♣r♦❜❧❡♠ ♦❢ t❡st✐♥❣ ✉♣✇❛r❞ ♣❧❛♥❛r✐t② ♦❢ ❞✐❣r❛♣❤s
✐s ◆P✲❝♦♠♣❧❡t❡✱ ✇❡ ♦❜t❛✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ ❝♦♥❝❧✉s✐♦♥✿

❈♦r♦❧❧❛r② ✻ P❧❛♥❛r✐t② t❡st✐♥❣ ♦❢ N ✲❢r❡❡ ♣♦s❡ts ✐s
◆P✲❝♦♠♣❧❡t❡✳

■t ✐s ✐♥t❡r❡st✐♥❣ t♦ ♦❜s❡r✈❡ t❤❛t t❤❡ ❧✐♥❡ ❞✐❣r❛♣❤
♦❢ ❛♥ ✉♣✇❛r❞ ♣❧❛♥❛r ❞✐❣r❛♣❤ ♠❛② ♥♦t ❜❡ ♣❧❛♥❛r ❜✉t
❢♦r ❛♥ ✉♣✇❛r❞ ♣❧❛♥❛r ❧✐♥❡ ❞✐❣r❛♣❤ t❤❡r❡ ❡①✐sts ❛ r♦♦t
❞✐❣r❛♣❤ ✇❤✐❝❤ ✐s ♣❧❛♥❛r✱ s❡❡ ❬✶✵❪ ❢♦r ❞❡t❛✐❧s✳

❚❤❡ ✜rst r❡s✉❧t ♦♥ t❤❡ ♣❛❣❡ ♥✉♠❜❡r ♣r♦❜❧❡♠ ❢♦r
N ✲❢r❡❡ ♣♦s❡ts ❛♣♣❡❛r❡❞ ✐♥ ❬✷❪ ✭❛ ❝♦✈❡r✐♥❣ ❢♦✉r✲❝②❝❧❡ ✐s
✐s♦♠♦r♣❤✐❝ t♦ 2× 2 ❜✐♣❛rt✐t❡ ❝♦♠♣❧❡t❡ ❞✐❣r❛♣❤✮✳

❚❤❡♦r❡♠ ✼ ✭❆❧③♦❤❛✐r✐ ❬✷❪✮ ❚❤❡ ♣❛❣❡ ♥✉♠❜❡r ♦❢
❛♥ N ✲❢r❡❡ ♣❧❛♥❛r ♣♦s❡t ✇❤✐❝❤ ❝♦♥t❛✐♥s ♥♦ ❝♦✈❡r✐♥❣
❢♦✉r✲❝②❝❧❡ ✐s ❛t ♠♦st t✇♦✳

■t ❢♦❧❧♦✇s ❢r♦♠ ❛♥♦t❤❡r r❡s✉❧t ✐♥ ❬✷❪ t❤❛t t❤❡ ♣❛❣❡
♥✉♠❜❡r ♦❢ ❛♥ N ✲❢r❡❡ ♣❧❛♥❛r ❧❛tt✐❝❡ ✐s ❛t ♠♦st t✇♦✳

◆♦✇ ✇❡ ❧♦♦❦ ❛t t❤❡ str✉❝t✉r❡ ♦❢ ❛ ♣❧❛♥❛r N ✲❢r❡❡
♣♦s❡t ✉s✐♥❣ ✐ts ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤ H(P ) ❛s ❛ ❧✐♥❡ ❞✐✲
❣r❛♣❤✳ ❇② ❚❤❡♦r❡♠ ✶ t❤❡ s❡t ♦❢ ❛r❝s ♦❢ H(P ) ❝❛♥
❜❡ ❞❡❝♦♠♣♦s❡❞ ✐♥t♦ ❝♦♠♣❧❡t❡ ❜✐♣❛rt✐t❡ s✉❜❞✐r❛♣❤s
{Bi}i∈I ✳ ❙✐♥❝❡ H(P ) ✐s ♣❧❛♥❛r✱ ❡❛❝❤ Bi = (Pi, Qi)
s❛t✐s✜❡s ♦♥❡ ♦❢ t❤❡ ❝♦♥❞✐t✐♦♥s✿ s = 1 ♦r t = 1 ♦r s = 2
❛♥❞ t ≥ 2 ♦r s ≥ 2 ❛♥❞ t = 2✱ ✇❤❡r❡ s =| Pi | ❛♥❞
t =| Qi |✱ s❡❡ ❋✐❣✉r❡ ✸✳ ❲❡ ❞❡♥♦t❡ t❤❡s❡ ❜✐♣❛rt✐t❡
s✉❜❞✐❣r❛♣❤s ❜② K1,t✱ Ks,1✱ K2,t✱ Ks,2✱ r❡s♣❡❝t✐✈❡❧②✳
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✷✽t❤ ❊✉r♦♣❡❛♥ ❲♦r❦s❤♦♣ ♦♥ ❈♦♠♣✉t❛t✐♦♥❛❧ ●❡♦♠❡tr②✱ ✷✵✶✷

◆♦t✐❝❡ t❤❛t ✐♥ ❚❤❡♦r❡♠ ✼✱ s✉❜❞✐❣r❛♣❤s K2,t ❛♥❞ Ks,2

❛r❡ ♥♦t ❛❧❧♦✇❡❞ s✐♥❝❡ t❤❡② ❝♦♥t❛✐♥ ❛ ❢♦✉r✲❝②❝❧❡✳
❚❛❦✐♥❣ ✐♥t♦ ❛❝❝♦✉♥t ❛❧❧ ♣♦ss✐❜❧❡ ❡♠❡❞❞✐♥❣s ♦❢ t❤❡s❡

❝♦♠♣❧❡t❡ ❜✐♣❛rt✐t❡ s✉❜❞✐❣r❛♣❤s ✇❡ ♦❜t❛✐♥ t❤❡ ❢♦❧❧♦✇✲
✐♥❣ t❤❡♦r❡♠✳

❚❤❡♦r❡♠ ✽ ■❢ H(P ) ✐s t❤❡ ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤ ♦❢ ❛♥ N ✲
❢r❡❡ ♣❧❛♥❛r ♣♦s❡t P t❤❡♥ ❡❛❝❤ ♦❢ ✐ts ❝♦♠♣❧❡t❡ ❜✐♣❛r✲
t✐t❡ s✉❜❞✐❣r❛♣❤s ❤❛s ♦♥❡ ♦❢ t❤❡ ❡♠❜❡❞❞✐♥❣s s❤♦✇♥ ✐♥
❋✐❣✉r❡ ✸✱ ✇❤❡r❡ t❤❡ ❝✐r❝❧❡s ❛tt❛❝❤❡❞ t♦ ✈❡rt✐❝❡s ❝♦rr❡✲
s♣♦♥❞ t♦ ❝♦♠♣❧❡t❡ ❜✐♣❛rt✐t❡ s✉❜❞✐❣r❛♣❤s ❛♥❞ t❤❡ ✜❧❧❡❞
❝✐r❝❧❡s ❝♦rr❡s♣♦♥❞ t♦ ❝♦♠♣❧❡t❡ ❜✐♣❛rt✐t❡ s✉❜❞✐❣r❛♣❤s
❛tt❛❝❤❡❞ ❛t ❛ ❝✉t ✈❡rt❡①✳

❋✐♥❛❧❧② ✇❡ ❣❡t t❤❡ ❢♦❧❧♦✇✐♥❣ r❡s✉❧t✿

❚❤❡♦r❡♠ ✾ ■❢ ✐♥ t❤❡ ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤ H(P ) ♦❢ ❛♥
N ✲❢r❡❡ ♣❧❛♥❛r ♣♦s❡t P ❡❛❝❤ ✈❡rt❡① ✇❤✐❝❤ ❜❡❧♦♥❣s t♦
t✇♦ ❝♦♠♣❧❡t❡ ❜✐♣❛rt✐t❡ s✉❜❞✐❣r❛♣❤s ✐s ❛ ❝✉t ✈❡rt❡①✱
t❤❡♥

p(P ) ≤ 2

❛♥❞ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❡♠❡❜❡❞❞✐♥❣ ♦❢ P ✐♥t♦ t✇♦
♣❛❣❡s ❝❛♥ ❜❡ ❢♦✉♥❞ ✐♥ t✐♠❡ ❧✐♥❡❛r ✐♥ t❤❡ ♥✉♠❜❡r ♦❢
✈❡r✐❝❡s ❛♥❞ t❤❡ ♥✉♠❜❡r ♦❢ ❛r❝s ✐♥ H(P )✳

■t ✐s st✐❧❧ ❛♥ ♦♣❡♥ q✉❡st✐♦♥ ✇❤❡t❤❡r N ✲❢r❡❡ ♣❧❛♥❛r
♣♦s❡ts ♥❡❡❞ ♠♦r❡ t❤❛♥ t✇♦ ♣❛❣❡s ✐♥ ❛ ❜♦♦❦ ❡♠❜❡❞✲
❞✐♥❣✳

K1,t Ks,1

K2,t
*K2,t

Ks,2
*Ks,2

❋✐❣✉r❡ ✸✿ P❧❛♥❡ ❝♦♥✜❣✉r❛t✐♦♥s ♦❢ ❝♦♠♣❧❡t❡ ❜✐♣❛rt✐t❡
s✉❜❞✐❣r❛♣❤s ✐♥ t❤❡ ❝♦✈❡r✐♥❣ ❞✐❣r❛♣❤ ♦❢ ❛♥ N ✲❢r❡❡ ♣❧❛✲
♥❛r ♣♦s❡t ✭✯ ❞❡♥♦t❡s ❞✐✛❡r❡♥t ♣❧❛♥❡ ❡♠❜❡❞❞✐♥❣s✮
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Abstract

We present a linear time algorithm for computing the
queue-numbers of maximal outerplanar graphs.

1 Introduction

A k-queue layout of a graph G = (V,E) consists of a
vertex-ordering σ : V (G) → {1, 2, . . . , |V (G)|} and an
assignment ρ : E(G) → {1, 2, . . . , k} of the edges to
k queues such that no two edges in the same queue
nest, i.e., for each i ∈ {1, 2, . . . , k} and any two edges
uv, xy ∈ ρ−1(i), it does not hold that σ(u) < σ(x) <
σ(y) < σ(v). The minimum number of queues for
a queue layout of G is the queue-number qn(G) of
G. A graph is k-queue graph if qn(G) ≤ k. The
notion of queue layouts was originally introduced by
Heath, Leighton, and Rosenberg [4, 5]. Queue layouts
of graphs can be applied to fault-tolerant computing
[7] and three-dimensional graph drawing [2, 3].

The challenging open problem on queue layouts is
the conjecture posed by Heath et al. [4, 5] that ev-
ery planar graph can be laid out using O(1) queues.
Recently, Di Battista, Frati, and Pach [1] proved that
every planar graph can be laid out using O(log4 n)
queues, which improves the previously known bound
of O(

√
n). The problem of laying out planar graphs

using a constant number of queues still remains open,
while if we restrict ourselves to outerplanar graphs,
such a problem has been solved, i.e., Heath et al. [4]
proved that every outerplanar graph can be laid out
using two queues. Heath and Rosenberg [5] charac-
terized a 1-queue graph as an arched leveled planar
graph, and also proved that the problem of recogniz-
ing a 1-queue graph is NP-complete. The planarity
can be efficiently tested. Therefore, the problem of
computing the queue-numbers of planar graphs is NP-
hard. In this paper, we show that if we restrict our-
selves to maximal outerplanar graphs, such a problem
can be solved in linear time. That is, we present a lin-
ear time algorithm for computing the queue-numbers
of maximal outerplanar graphs.

∗This research was supported by JSPS KAKENHI 21500017.
†Institute of Socio-Arts and Sciences, The University of

Tokushima, hasunuma@ias.tokushima-u.ac.jp
‡Faculty of Integrated Arts and Sciences, The University of

Tokushima

2 Preliminaries

Let G = (V,E) be a graph. For S ⊆ V (G), the sub-
graph of G induced by S is denoted by 〈S〉G. For
v ∈ V (G), we denote by degG(v) the degree of v in G.
Also, let ∆(G) = maxv∈V (G) degG(v).

An outerplanar graph is a planar graph such that
every vertex can be placed on the boundary of the
unbounded face called the outer face. A maximal
outerplanar graph is an outerplanar graph to which
we cannot add a new edge while preserving the out-
erplanarity, i.e., every face except for the outer face
is a triangle. An edge on the boundary of the outer
face is a boundary edge, while an edge which is not a
boundary edge is an internal edge. The set of bound-
ary edges in a maximal outerplanar graph induces a
Hamilton cycle called the outer cycle. We denote by
C(G) the outer cycle of a maximal outerplanar graph
G. A caterpillar is a tree T such that the graph ob-
tained from T by deleting all the leaves is a path.

For a vertex-ordering σ of G and u, v ∈ V (G), we
may write u <σ v instead of σ(u) < σ(v). Let σ and
σ′ be two vertex-orderings of G. If there exists an
automorphism φ of G such that σ(v) = σ′(φ(v)) for
all v ∈ V (G), then σ and σ′ are isomorphic and we
write σ ∼= σ′.

3 Queue-Numbers of Fan Graphs

Definition 1 A fan graph Fn, where n ≥ 4, is a max-

imal outerplanar graph with n vertices such that there

exists a vertex with degree n−1. The vertex with de-

gree n− 1 in Fn is called the center vertex of Fn.

1

3 v4

v5v2

v1

v4

v5
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v2

v3

v5v4

v3 v6

v2 v7

v

v

Figure 1: F5, F6 and F7.

Figure 1 illustrates F5, F6 and F7. In Lemma 1, we
assume that V (Fn) = {vi | 1 ≤ i ≤ n} and E(Fn) =
{v1vi | 2 ≤ i ≤ n} ∪ {vivi+1 | 2 ≤ i < n}.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Definition 2 Let C(G) = (v1, v2, . . . , vn) be the
outer cycle of a maximal outerplanar graph G. A
vertex-ordering σ of G is a zig-zag ordering if there
exists i ∈ {1, 2, . . . , n} such that for each 1 ≤ t ≤ n,

σ−1(t) =







i+ k − 1 if t = 2k − 1,
i− k if t = 2k and i > k,

i− k + n if t = 2k and i ≤ k,

or for each 1 ≤ t ≤ n,

σ−1(t) =







i+ k if t = 2k,
i− k if t = 2k + 1 and i > k,

i− k + n if t = 2k + 1 and i ≤ k.

A zig-zag ordering in the first (resp. second) case is
called the [i, i−1]-zig-zag ordering (resp. [i, i+1]-zig-
zag ordering) and is denoted by σ[i,i−1] (resp. σ[i,i+1]).

Lemma 1

qn(Fn) =

{

1 if 4 ≤ n ≤ 7,
2 if n ≥ 8.

Moreover, any vertex-ordering of a 1-queue layout of
F7, F6, and F5 is isomorphic to σ[3,2], one of σ[3,2] and
σ[2,3], one of σ[3,2], σ[2,3], and σ[2,1], respectively.

Proof. It can be easily checked that qn(F4) = 1.
Suppose that n ≥ 5. Let σ be a vertex ordering of Fn

such that σ(v1) = i. Let VL = {σ−1(j) | 1 ≤ j < i}
and VR = {σ−1(j) | i < j ≤ n}. Now assume that
qn(Fn) = 1. Let Eσ,n be the set of edges uv, where
u, v ∈ V (Fn), such that uv and v1vi do not nest for
2 ≤ i ≤ n. Then, it can be shown that Eσ,n induces
the graph obtained from a star SL with |VL| vertices
and a star SR with |VR| vertices by adding an edge
joining a leaf of SL and a leaf of SR. Since Fn − v1
is a path, it follows that |VL| ≤ 3 and |VR| ≤ 3. This
indicates that n ≤ 7.
Suppose that 5 ≤ n ≤ 7. In this case, we can define

σ so that |VL| ≤ 3 and |VR| ≤ 3 and obtain a 1-
queue layout of Fn. Here, Eσ,n induces a path with
n− 1 vertices. (For example, see Figure 2 in the case
of n = 7.) By this property, vertex-orderings for 1-
queue layouts of Fn are restricted to zig-zag orderings
as follows.

• Case 1: n = 7. Since σ(v1) = 4, σ is one of the
following two vertex-ordering:

– v3 <σ v2 <σ v4 <σ v1 <σ v5 <σ v7 <σ v6.

– v6 <σ v7 <σ v5 <σ v1 <σ v4 <σ v2 <σ v3.

• Case 2: n = 6. Since 3 ≤ σ(v1) ≤ 4, σ is one of
the following four vertex-ordering:

– v3 <σ v2 <σ v4 <σ v1 <σ v5 <σ v6.

– v2 <σ v3 <σ v1 <σ v4 <σ v6 <σ v5.

1v

Figure 2: A 1-queue layout of F7.

– v5 <σ v6 <σ v4 <σ v1 <σ v3 <σ v2.

– v6 <σ v5 <σ v1 <σ v4 <σ v2 <σ v3.

• Case 3: n = 5. Since 2 ≤ σ(v1) ≤ 4, σ is one of
the following six vertex-orderings:

– v3 <σ v2 <σ v4 <σ v1 <σ v5.

– v2 <σ v3 <σ v1 <σ v4 <σ v5.

– v2 <σ v1 <σ v3 <σ v5 <σ v4.

– v4 <σ v5 <σ v3 <σ v1 <σ v2.

– v5 <σ v4 <σ v1 <σ v3 <σ v2.

– v5 <σ v1 <σ v4 <σ v2 <σ v3.

�

Let H6 be the graph shown in Figure 3. Note that
the graph obtained from H6 by deleting any vertex
with degree two is isomorphic to F5.

1

v2

v3

v4

5v

6v

v

Figure 3: H6.

The following fact has been shown in [6]. Here we
present a proof of this fact which is simpler than that
in [6].

Lemma 2 qn(H6) = 2.

Proof. Assume that qn(H6) = 1. Since H6 − v4 and
H6−v6 are isomorphic to F5, from Case 3 in the proof
Lemma 1, any vertex-ordering of H6 must be one of
the following four vertex-orderings:

• v2 <σ v3 <σ v1 <σ v4 <σ v5 <σ v6.

• v2 <σ v1 <σ v3 <σ v6 <σ v5 <σ v4.

• v4 <σ v5 <σ v6 <σ v3 <σ v1 <σ v2.

• v6 <σ v5 <σ v4 <σ v1 <σ v3 <σ v2.

However, each vertex-ordering contradicts all the six
possible zig-zag vertex-orderings for 1-queue layout of
H6 − v2. �

From Lemmas 1 and 2, the following useful obser-
vation for our algorithm is obtained.
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Lemma 3 Let T (G) be the graph obtained from a

maximal outerplanar graph G by deleting all the

boundary edges and all the vertices with degree two.

If T (G) is not a caterpillar with ∆(T (G)) ≤ 4, then
qn(G) = 2.

Proof. If there is a triangle whose all the three edges
are internal, i.e., T (G) is not a tree, then G contains
H6 as its subgraph and qn(G) = 2 from Lemma 2.
Suppose that any triangle contains at least one

boundary edge. Consider the graph D obtained from
the dual graph of G by deleting the vertex correspond-
ing to the outer face. If a triangle in G has two in-
ternal edges (resp., one internal edge), then the cor-
responding vertex in D has degree two (resp., one).
Thus, D is a path and it can be shown that T (G)
is a caterpillar. Since G contains F∆(T (G))+3, from
Lemma 1, if ∆(T (G)) ≥ 5, then qn(G) = 2. �

4 Algorithm

Suppose that T (G) is a caterpillar with ∆(T (G)) ≤ 4.
Then, G can be represented by a union of k fan graphs
Fn1

, Fn2
, . . . , Fnk

, where 5 ≤ ni ≤ 7, 1 ≤ i ≤ k, such
that two consecutive fan graphs overlap so that their
intersection graph is the fan graph with 4 vertices.
That is, G = Fn1

∪ Fn2
∪ · · · ∪ Fnk

such that Fni
∩

Fni+1
= F4 for 1 ≤ i < k. Figure 4 illustrates an

example of such a maximal outerplanar graph with
k = 9, n1 = 6, and n2 = 5.

6

F5

F

Figure 4: G = F6∪F5∪F6∪F7∪F5∪F5∪F6∪F6∪F5.

Let σ∗ be the vertex-ordering of a 1-queue layout of
G. Let σ∗

i be the restricted vertex-ordering for Fni
,

1 ≤ i ≤ k. Then, each σ∗

i is isomorphic to one of
the listed zig-zag orderings in Lemma 1. Since two
consecutive fan graphs Fni

and Fni+1
overlap at four

vertices, σ∗

i and σ∗

i+1 are related and we can show
that σ∗

i+1 is uniquely (in the sense that two isomor-
phic vertex-orderings are consider the same) deter-
mined by σ∗

i . For example, see Figure 5 which illus-
trates the case where ni = 7 and σ∗

i
∼= σ[3,2]. The

vertices v1, v5, v7, v6 are overlapped by the next fan-
graph Fdi+1

such that the vertex v6 is the center vertex
of Fdi+1

. By the ordering of these vertices, σ∗

i+1 must
be isomorphic to σ[3,2]. Similarly, we can show Con-
ditions 5–9 in the following theorem. Besides, Condi-
tions 1–3 follow from Lemma 1. Conversely, if there
exists a vertex-ordering which satisfies all such condi-
tions, then G can be laid out using one queue.

5v4

v3 v6

v2 v7

v1

v

Figure 5: The case where ni = 7 and σ∗

i
∼= σ[3,2].

Theorem 4 Let G be a maximal outerplanar graph.

Let G = Fn1
∪ Fn2

∪ · · · ∪ Fnk
such that 5 ≤ di ≤ 7

for 1 ≤ i ≤ k and Fni
∩ Fni+1

= F4 for 1 ≤ i < k.

Then, qn(G) = 1 if and only if there exists a vertex-

ordering σ∗ so that for all 1 ≤ i < k, the following

nine conditions hold:

1. If ni = 7, then σ∗

i
∼= σ[3,2].

2. If ni = 6, then σ∗

i
∼= σ ∈ {σ[3,2], σ[2,3]}.

3. If ni = 5, then σ∗

i
∼= σ ∈ {σ[3,2], σ[2,3], σ[2,1]}.

4. If ni = 7 and σ∗

i
∼= σ[3,2], then σ∗

i+1
∼= σ[3,2].

5. If ni = 6 and σ∗

i
∼= σ[3,2], then σ∗

i+1
∼= σ[2,3].

6. If ni = 6 and σ∗

i
∼= σ[2,3], then σ∗

i+1
∼= σ[3,2].

7. If ni = 5 and σ∗

i
∼= σ[3,2], then σ∗

i+1
∼= σ[2,1].

8. If ni = 5 and σ∗

i
∼= σ[2,3], then σ∗

i+1
∼= σ[2,3].

9. If ni = 5 and σ∗

i
∼= σ[2,1], then σ∗

i+1
∼= σ[3,2].

Conditions 4–9 in Theorem 4 can be represented
by a finite automaton with six states (without setting
of an initial state), which can be minimized to three
states (see Figure 6). Note that the notation in each
state indicates the pair(s) of ni and the zig-zag type
of σ∗

i .

5

(7,[3,2])

(6,[2,3])

(5,[2,1])

(5,[3,2])

(6,[3,2])

(5,[2,3])

7

6

6

5

5

Figure 6: A finite automaton for Conditions 4–9.

Based on Lemma 3 and Theorem 4, we can de-
scribe an algorithm for deciding whether the queue-
number of a maximal outerplanar graph is one or
not as Algorithm Queue-Number with Procedure
Queue-Number-Check. Queue-Number-Check

corresponds to the finite automaton shown in Figure
6. Note that the procedure uses the degree sequence
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Algorithm 1 Queue-Number

Require: A maximal outerplanar graph G.
Ensure: The queue-number qn(G) of G.
1: Let T be the graph obtained from G by deleting

all the boundary edges and all the vertices with
degree two.

2: if T is not a caterpillar with ∆(T ) ≤ 4 then

3: qn(G) := 2.
4: else

5: Let P = (v1, v2, . . . , vk) be the path obtained
from T by deleting all the leaves of T .

6: Let (d1, d2, . . . , dk) be the degree sequence of P ,
where di = degT (vi) for 1 ≤ i ≤ k.

7: if d1 = 4 then

8: Queue-Number-Check(1)
9: else if d1 = 3 then

10: Queue-Number-Check(1)
11: if qncheck = 2 then

12: Queue-Number-Check(2)
13: end if

14: else if d1 = 2 then

15: Queue-Number-Check(1)
16: if qncheck = 2 then

17: Queue-Number-Check(2)
18: end if

19: if qncheck = 2 then

20: Queue-Number-Check(3)
21: end if

22: end if

23: qn(G) := qncheck.
24: end if

instead of the sequence of fan graphs, i.e., di = ni − 3
for each 1 ≤ i ≤ k. Queue-Number first checks
whether T (G) is a caterpillar with ∆(T (G)) ≤ 4,
and then callsQueue-Number-Check at most three
times since there are at most three possible initial
states in the automaton shown in Figure 6. It can be
checked in linear time whether T (G) is a tree (which
is indeed a caterpillar) with ∆(T (G)) ≤ 4. Besides,
Queue-Number-Check clearly runs in linear time.
Therefore, we have the following theorem.

Theorem 5 The problem of computing the queue-

numbers of maximal outerplanar graphs can be solved

in linear time.

5 Conclusion

In this paper, we have presented a linear time al-
gorithm for computing the queue-numbers of maxi-
mal outerplanar graphs. It remains unknown whether
there exists a polynomial time algorithm for comput-
ing the queue-numbers of (non-maximal) outerplanar
graphs. Besides, it would be interesting to investigate
such a problem for k-trees.

Procedure 2 Queue-Number-Check(state)

1: qncheck := 1.
2: i := 2.
3: while qncheck = 1 and i ≤ k do

4: if state = 1 then

5: if di = 4 then

6: state := 1.
7: else if di = 3 then

8: state := 2.
9: else if di = 2 then

10: state := 3.
11: end if

12: else if state = 2 then

13: if di = 4 then

14: qncheck := 2.
15: else if di = 3 then

16: state := 1.
17: else if di = 2 then

18: state := 2.
19: end if

20: else if state = 3 then

21: if di = 4 or di = 3 then

22: qncheck := 2.
23: else if di = 2 then

24: state := 1.
25: end if

26: end if

27: i := i+ 1.
28: end while
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Canonical ordering for triangulations on the cylinder, with applications to

periodic straight-line drawings

Luca Castelli Aleardi∗ Éric Fusy†

Abstract

We extend the notion of canonical orderings (and un-
derlying Schnyder woods) to cylindric triangulations.
This allows us to extend the incremental straight-line
drawing algorithm of de Fraysseix et al. to this set-
ting. Our algorithm yields in linear time a crossing-
free straight-line drawing of a cylindric triangulation
T with n vertices on a regular grid Z/wZ× [0, h], with
w ≤ 2n and h ≤ n(n− 3)/2. As a by-product, we can
also obtain in linear time a crossing-free straight-line
drawing of a toroidal triangulation with n vertices on
a periodic regular grid Z/wZ × Z/hZ, with w ≤ 2n
and h ≤ n(n + 3)/2.

1 Introduction

The problem of efficiently computing straight-line
drawings of planar graphs has attracted a lot of at-
tention over the last two decades. Two combinato-
rial concepts for planar triangulations turn out to be
the basis of many classical straight-line drawing al-
gorithms: the canonical ordering (a special ordering
of the vertices obtained by a shelling procedure) and
the closely related Schnyder wood (a partition of the
inner edges of a triangulations into 3 spanning trees
with specific incidence conditions). Algorithms based
on canonical ordering [6, 8] are typically incremental,
adding vertices one by one while keeping the draw-
ing planar. Algorithms based on Schnyder woods [11]
are more global, the (barycentric) coordinates of each
vertex have a clear combinatorial meaning (typically
the number of faces in certain regions associated to
the vertex). Algorithms of both types make it possi-
ble to draw in linear time a planar triangulation with
n vertices on a grid of size O(n× n). The problem of
obtaining planar drawings of higher genus graphs has
been addressed less frequently [9, 10, 3, 5, 12], from
both the theoretical and algorithmic point of view.
Recently some efficient methods for the straight-line
planar drawing of genus g graphs have been described
in [3, 5] (to apply these methods the graph needs to be
unfolded planarly along a cut-graph). However it does
not yield (at least easily) periodic representations: for
example, in the case of a torus, the boundary vertices

∗LIX,École Polytechnique,amturing@lix.polytechnique.fr
†LIX, École Polytechnique, fusy@lix.polytechnique.fr

(on the boundary of the rectangular polygon) might
not be aligned, so that the drawing does not give rise
to a periodic tiling.

Our main contribution is to generalize the notion
of canonical ordering and the incremental straight-
line drawing algorithm of de Fraysseix et al [6] to tri-
angulations on the cylinder. The obtained straight-
line drawing of a cylindric triangulation T with n
vertices is x-periodic, on a regular grid of the form
Z/wZ× [0, h], with w ≤ 2n and h ≤ n(n− 3)/2. By a
reduction to the cylindric case (the reduction is done
with the help of a so-called tambourine [1]), we can
also obtain a straight-line drawing of a toroidal trian-
gulation T with n vertices on a grid Z/wZ × Z/hZ,
with w ≤ 2n and h ≤ n(n + 3)/2. For the toroidal
case we mention that a notion of canonical ordering
has been introduced in [4] (this actually works in any
genus and yields an efficient encoding procedure) but
we do not use it here. We also mention that, inde-
pendently, an elegant periodic straight-line drawing
algorithm for toroidal triangulations has been very
recently described in [7], based on so-called toroidal

Schnyder woods and face-counting operations; in their
case the area of the periodic grid is in O(n4).

2 Preliminaries

Graphs embedded on surfaces A map of genus g
is a graph (cellularly) embedded on the closed sur-
face of genus g. The map is called planar for g = 0
(embedding on the sphere) and toroidal for g = 1
(embedding on the torus). A triangulation is a map
with no loops nor multiple edges and with only trian-
gular faces. A cylindric map is a planar map with two
marked faces B1 and B2 whose boundaries C(B1) and
C(B2) are simple cycles (possibly C(B1) and C(B2)
share vertices and edges). The faces B1 and B2 are
called the boundary-faces. Boundary edges and ver-
tices (black circles in Fig. 1) are those belonging to
C(B1) or C(B2); the other ones are called inner ver-
tices (white circles in Fig. 1) and edges.

Periodic drawings Here we consider the problem of
drawing a cylindric (resp. toroidal) triangulation on
the flat cylinder (resp. flat torus). The flat cylinder
is a rectangle with a pair of opposite sides identified;
the flat torus is a rectangle with both pairs of op-

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: Left: a cylindric triangulation G, with
boundary-faces {v0, v1, v2, v3} and {w0, w1, w2, w3}.
Right: an x-periodic drawing of G.

posite sides identified. We classically require coordi-
nates to be integers. So for a cylindric triangulation
we aim at a crossing-free straight-line drawing on a
regular (x-periodic) grid of the form Z/wZ × [0, h],
and for a toroidal triangulation we aim at a crossing-
free straight-line drawing on a regular (x-periodic and
y-periodic) grid of the form Z/wZ× Z/hZ.

3 Canonical ordering for cylindric triangulations

At first we recall the definition of canonical or-
dering for a planar triangulation G with n ver-
tices, with outer face {a, b, c}. An ordering π =
{v1, v2, . . . , vn−2} of the vertices of G\{a, b} is called
a canonical ordering if, with Gk the graph induced by
vertices {a, b, v1, . . . , vk} and Ck the outer face con-
tour of Gk, we have the following conditions:

• The cycle Ck is simple for each k ≥ 1.

• The vertex vk belongs to Ck, and all its neighbors
in Gk−1 appear consecutively on Ck−1.

Such an ordering is classically computed in decreasing
order; at each step k from n − 2 to 1, one chooses a
vertex v /∈ {a, b} in the current outer contour C such
that v is incident to no chord of C (such a vertex v
is called free), one assigns vk ← v, and update the
figure by deleting v together with its incident edges
(note that one must have vn−2 = c). On the way
one can compute the underlying Schnyder wood. Pre-
cisely, when removing a free vertex v, having neigh-
bors vℓ, vℓ+1, . . . , vr−1, vr on C, perform the following
operations:
• assign color 0 to edge (v, vℓ), direct it toward vℓ;
• assign color 1 to edge (v, vr), direct it toward vr;
• assign color 2 to all remaining incident edges, direct
them toward v.

We now consider the concept of canonical ordering
(and underlying Schnyder wood) in the cylindric case.

Definition 1 Let G be a cylindric triangulation
with boundary-faces B1 and B2, and such that the
cycle C(B1) has no chords. An ordering π =
{v1, v2, . . . , vn} of the vertices of G\C(B1) is called
a (cylindric) canonical ordering if it satisfies:

• For each k ≥ 0 the map Gk induced by C(B1)
and by the vertices {v1, . . . , vk} is a cylindric tri-
angulation such that the boundary-face different
from B1 contains B2 in its interior. The contour
of this boundary-face is denoted by Ck.

• The vertex vk lies on Ck, and all its neighbors in
Gk−1 appear consecutively on Ck−1.

We now describe a shelling procedure to compute
any canonical ordering of a cylindric triangulation G
with boundary-faces B1, B2. At each step the graph
formed by the remaining vertices is a cylindric trian-
gulation, one boundary face remains B1 all the way,
while the other boundary-face (initially B2) has its
contour, denoted by Ct, getting closer to C(B1). A
vertex v ∈ Ct is free if v is incident to no chord of
Ct and if v /∈ C(B1). The shelling procedure goes as
follows (n is the number of vertices in G\C(B1)): for
k from n to 1, choose a free vertex v on Ct, assign
vk ← v, and then delete v together with all its inci-
dent edges. The existence of a free vertex at each step
follows from a simple planarity argument.

Similarly as in the planar case [2], this algorithm
can be extended in order to assign colors and orienta-
tions to the edges of G\C(B1). When removing a free
vertex v = vk, having neighbors vℓ, vℓ+1, . . . , vr−1, vr

on Ck−1, we perform the following operations:
• assign color 0 to edge (v, vℓ), direct it toward vℓ;
• assign color 1 to edge (v, vr), direct it toward vr;
• assign color 2 to all edges of Gk−1 incident to v,
direct them toward v.

The obtained coloring and orientation of the edges
of G\C(B1) is called the underlying Schnyder wood

of the canonical ordering. For i ∈ {0, 1, 2}, the graph
formed by the edges of color i is denoted Ti. It is easy
to show that the underlying Schnyder wood S satisfies
the following conditions:
• The graph T2 is an oriented forest spanning all ver-
tices in G\C(B2), and with all sinks on C(B2).
• For i ∈ {0, 1}, Ti is an oriented forest spanning all
vertices in G\C(B1), and with all sinks on C(B1).
• Every inner vertex satisfies the local Schnyder wood
properties (as in the plane), having exactly 3 outgoing
edges (one for each color).
• The edges in cw order around every vertex v lying
on B2 are of the form 1:

(Seq(In 0), Out 1, Seq(In 2), Out 0, Seq(In 1)).
• The edges in cw order around every vertex lying on
B1 are of the form (e,Seq(In 1), Out 2, Seq(In 0),e′),
with e and e′ on C(B1).

Recall that the dual of a map G is the map G∗ rep-
resenting the adjacencies of the faces of G, i.e., there
is a vertex vf of G∗ in each face f of G, and each edge
e of G gives rise to an edge e∗ in G∗ (if f and f ′ are

1Where Seq(In i) denotes a sequence (possibly emtpy) of
ingoing edges of color i, and Out i denotes an outgoing edge of
color i.
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the faces on each side of e then e∗ connects vf to vf ′).
Given a cylindric triangulation G with boundary-faces
B1, B2, the augmented map Ĝ is obtained from G by
adding a vertex b2 inside B2 and connecting b2 to all
vertices around B2 (thus triangulating the interior of
B2). If G is endowed with a canonical ordering π (and

the underlying Schnyder wood), let Ĝ∗ be the dual of

Ĝ. Then the dual tree T ∗

2 for π is the submap of Ĝ∗

formed by the edges dual to edges that are not in T2

nor incident to b2. It can be shown incrementally that
T ∗

2 is a spanning tree of Ĝ∗ (naturally rooted at b1 the
dual vertex of B1).

4 Drawing cylindric triangulations

Given a cylindric triangulation G with no chordal edge
incident to B1, we first compute a canonical ordering
of G, and then draw G in an incremental way. We
start with a cylinder of width 2|C(B1)| and height 0
(i.e., a circle of length 2|C(B1)|) and draw the vertices
of C(B1) equally spaced on the circle (space 2 between
two consecutive vertices).

Then, we add vertices incrementally as follows: at
the k-th step, vertex vk is added to Gk at position
µ(P (zℓ), P (zr)), where P (zℓ) and P (zr) are respec-
tively the positions of the two neighbors, zℓ and zr,
of vk on the cycle C(Gk), and µ(P0, P1) is the inter-
secting point of the two half lines, with slopes +1 and
−1, passing through P0 and P1 respectively.

To keep the drawing crossing-free we actually have
to stretch the cylinder —increasing its width by 2—
just before inserting vk (this stretching operation is
not necessary if all neighbours of vk are on C(B1)).
More precisely, with zℓ, zℓ+1, . . . , zr the neighbours of
vk on Ck−1, consider the underlying Schnyder wood
restricted to Gk−1, and let T ∗

2 be the dual tree for
this Schnyder wood. Let eℓ = {zℓ, zℓ+1} and er =
{zr−1, zr}. Let Pℓ (resp. Pr) be the path in T ∗

2 from
e∗ℓ (resp. e∗r) to the root of T ∗

2 (which is the vertex
b1 dual to B1), see Fig. 2 (bottom-left). We stretch
the cylinder by inserting a vertical strip of length 1
along Pℓ and another along Pr. This means that for
each edge dual to an edge in Pℓ the “x-stretch” of e
is increased by 1 and similarly for each edge dual to
an edge in Pr (so the x-stretch of an edge dual to an
edge in Pℓ ∩ Pr is increased by 2).

Fig. 2 shows the execution of the algorithm on an
example. The fact that the drawing remains crossing-
free relies on an inductive argument similar to the one
in the planar case [6].

Proposition 1 For each cylindric triangulation with
n vertices and no chordal edges incident to C(B1), one
can compute in linear time a crossing-free straight-
line drawing of G on an x-periodic regular grid
Z/wZ × [0, h] where w ≤ 2n and h ≤ n(n − 3)/2,
such that: every v ∈ C(B1) has y(v) = 0 (so every

v2v1v0 v3 v0

v4

v2v1v0v3

v4

v3

v5

v4

v5

v2v1 v3 v0 v1

v5

v6

v4

v2v1 v3 v0 v1

v5

v6

v7

v4

v2v3 v0 v1

v5

v6

v7

v8

v3

v4

v2v0 v1

v5

v6

v7

v8

v3 v0

v9

v4

v2v1

v5

v8

v3v0

v9

v8

v6

v7

v10

Pℓ

Pr

b1

Figure 2: Some steps of the algorithm (Prop. 1) for
the x-periodic drawing of a cylindric triangulation (no
chordal edges incident to C1).

edge in C(B1) has slope 0), and every edge belonging
to C(B2)\C(B1) has slope ±1.

We finally explain how to draw a cylindric triangu-
lation allowing chordal edges incident to C1 = C(B1);
it is good to view B2 as the top boundary-face and B1

as the bottom-boundary face (and imagine a standing
cylinder). For each chordal edge e of C1, the compo-

nent under e is the face-connected part of G that lies
below e; such a component is a quasi-triangulation
(polygonal outer face, triangular inner faces) rooted
at the edge e. A chordal edge e of C1 is maximal

if the component Q under e is not strictly included
in the component under another chordal edge. The
size of e is defined as |e| = |V (Q)| − 2. If we delete
the component under each maximal chordal edge (i.e.,
delete everything from the component except for the
chordal edge itself) we get a new bottom cycle C′

1 that
is chordless, so we can draw the reduced cylindric tri-
angulation G′ using the algorithm of Proposition 1.
The only difference when drawing G′ is in the initial
spacing of the vertices of C′

1: we space them so that
each edge e of C′

1 ∩ C1 has intial length 2 while each
edge e of C′

1\C1 (e is a maximal chordal edge of C1)
has initial length 2|e|. We denote by ℓ(e) the length of
e at the end of the execution (the length of e increases
during the execution due to stretching operations, so
ℓ(e) ≥ 2|e|). Then for each maximal chord e of C1,
we draw the component Qe under e using the classi-
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Figure 3: Periodic grid drawing (Theorem 3) of a
toroidal triangulation : gray faces represent the so-
called tambourine.

cal algorithm by de Fraysseix et al [6]; this drawing
has width 2(V (Qe) − 2), with e as horizontal bottom
edge of length 2(V (Qe)−2) = 2|e| and with the other
outer edges of slopes ±1. We shift the left-extremity
of e so that the drawing of Qe gets width ℓ(e), then
we rotate the drawing of Qe by 180 degrees and plug
it into the drawing of G′. We obtain:

Theorem 2 For each cylindric triangulation G with

n vertices, one can compute in linear time a crossing-

free straight-line drawing of G on an x-periodic regu-

lar grid Z/wZ×[0, h], with w ≤ 2n and h ≤ n(n−3)/2.

The edges of C(B1) have slope of absolute value at

most 1, the ones not below a chordal edge of C(B1)
having slope 0. The edges of C(B2) with at least one

extremity not on C(B1) have slope ±1, the ones with

two extremities on C(B1) have slope 0.

5 Drawing toroidal triangulations

In order to draw a toroidal triangulation G, we first
cut G along a so-called tambourine (see [1]), which is
a pair of non-contractible oriented cycles C1 and C2

such that the edges arriving to C1 from the right de-
part at C2 and the edges arriving to C2 from the left
depart at C1. Doing this we obtain a cylindric tri-
angulation G′ with C1 and C2 as the contours of the
boundary-faces. We now apply the algorithm of The-
orem 2 to G′. If we extend the height h of the drawing
by at least 3w/2, and then wrap the x-periodic grid
Z/wZ × [0, h] into a periodic grid Z/wZ ×Z/hZ, and
finally insert the edges inside the tambourine as seg-
ments, then the slope properties (edges on C1 and C2

have slope at most 1 in absolute value while edges
inside the tambourine have slope greater than 1 in
absolute value) ensure that the resulting drawing is
crossing-free (see Fig. 3). We obtain:

Theorem 3 For each toroidal triangulation G with

n vertices, one can compute in linear time a crossing-

free straight-line drawing of G on a periodic regular

grid Z/wZ×Z/hZ, with w ≤ 2n and h ≤ n(n + 3)/2.
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Grid Representations and the Chromatic Number

Martin Balko∗

Abstract

A grid drawing of a graph maps vertices to grid points
and edges to line segments that avoid grid points rep-
resenting other vertices. First, we show there is a
number of grid points that some line segment of an
arbitrary grid drawing of a given graph must inter-
sect. This number is closely connected to the chro-
matic number. Second, we study how many columns
we need to draw a graph in the grid, introducing some
new NP-complete problems. Finally, we show that
any planar graph has a planar grid drawing where
every line segment contains exactly two grid points.
This result proves conjectures asked by David Flores-
Peñaloza and Francisco Javier Zaragoza Martinez.

1 Introduction

Let G = (V,E) be a simple, undirected and finite
graph. A k-coloring of G is a function f : V → C
for some set C of k colors such that f (u) 6= f (v) for
every edge uv ∈ E. If such k-coloring of G exists,
then G is k-colorable. The chromatic number χ (G)
of G is the least k such that G is k-colorable.
For integer d ≥ 2, a column in the grid

Z
d with rank (x1, . . . , xd−1) ∈ Z

d−1 is the set
{(x1, . . . , xd−1, x) | x ∈ Z}. Let xy denote the closed
line segment joining two grid points x, y ∈ Z

d. The
line segment xy is primitive if xy ∩ Z

d = {x, y} .

Definition 1 A grid drawing φ (G) of G in Z
d is an

injective mapping φ : V → Z
d such that, for every

edge uv ∈ E and vertex w ∈ V , φ (w) ∈ φ (u)φ (v)
implies that w = u or w = v.

2 Complexity of the Grid Drawings

A graph G is said to be (grid) locatable in Z
d if there

exists a grid drawing of G in Z
d where every edge

is represented by primitive line segment (such draw-
ing is also called primitive). Finding a primitive grid
drawing of G is called locating the graph G. David
Flores-Peñaloza and Francisco Javier Zaragoza Mar-
tinez showed [7] the following characterization:

Theorem 1 ([7]) A graphG is locatable in the plane
if and only if G is 4-colorable.

∗Department of Applied Mathematics, Faculty of

Mathematics and Physics, Charles University in Prague,

martin.balko@seznam.cz

Therefore not all graphs are locatable and every
(two-dimensional) grid drawing of any k-colorable
graph, where k > 4, contains a line segment which
intersects at least three grid points. This led us to
a generalization of the concept of locatability. Let
the number gp (φ (G)) denote the maximal number of
grid points any line segment of a grid drawing φ (G)
intersects.

Definition 2 A graph G is (grid) q- locatable in Z
d,

for some positive integer q ≥ 2, if there exists a grid
drawing φ (G) in Z

d such that gp (φ (G)) ≤ q.

Figure 1: Grid drawing of K5

The complexity of grid drawings of a graph G is
understood as the minimum of gp (φ (G)) among all
grid drawings φ (G). For example, the graph K5 is
five-colorable, thus it is not (two-)locatable. How-
ever the grid drawing in Figure 1 shows that K5 is
three-locatable (the third grid point on line segment
is denoted by an empty circle). The main result of
this section is a much stronger version of Theorem 1.

Theorem 2 For integers d, q ≥ 2, a graph G is qd-
colorable if and only if G is q-locatable in Z

d.

Proof. A trivial but useful observation is that the
line segment ab between the grid points a, b ∈
Z
d intersects exactly the grid points of the form

(

a1 + i b1−a1

α
, . . . , ad + i bd−ad

α

)

where 0 ≤ i ≤ α and
α = gcd (|a1 − b1|, . . . , |ad − bd|).

Using this fact, it is not difficult to prove one im-
plication of Theorem 2. Let φ (G) be a grid drawing
of the graph G = (V,E) in Z

d having gp (φ (G)) ≤
q. Consider the function f : Zd → Z

d
q denoted as

f (x1, . . . , xd) = (x1 (modq) , . . . , xd (modq)). We use

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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f as coloring of the grid with qd colors and we show
that it is also a proper vertex coloring of G. Assume
to the contrary that f (φ (u)) = f (φ (v)) for some
uv ∈ E. Then u1 ≡ v1, . . . , ud ≡ vd (modq) which
implies gcd (|u1 − v1|, . . . , |ud − vd|) ≥ q. According
to our observation, there are at least q+1 grid points
lying on the line segment φ (u)φ (v). This contradicts
the fact that G is q-locatable via the drawing φ (G).

The proof of the reversed implication is more dif-
ficult, but it is constructive and for given coloring of
G we can find an appropriate grid drawing in time
O (|V |). �

Corollary 3 A graph is 2d-colorable if and only if is
locatable in Z

d, for d ≥ 2.

Corollary 4 For given d, q ≥ 2, it is NP-complete to
decide whether or not the graph G is q-locatable in
Z
d.

Proof. Clearly, the problem belongs to NP. The-
orem 2 shows a reduction of the coloring problem,
which asks “Does G admit a proper vertex coloring
with qd colors?”, to our problem. We can also ensure
that the reduction is polynomial. �

3 Compactness

Another criterion in studying the grid drawings is the
minimum number of columns we need to use (see,
for example, [9]). We would like to know the grid
drawings for a given graph which do not take up too
much space. Let φ (G) be a grid drawing of the graph
G = (V,E) in Z

d such that φ (v) = (v1, . . . , vd) for
every vertex v ∈ V .

Definition 3 If there exist some c1, . . . , cl ∈ Z
d−1

such that, for every vertex v ∈ V , there is i ∈ [l] and
(v1, . . . , vd−1) = ci, then we say that G is embeddable
on l columns in Z

d.

If we can find a grid drawing φ (G) in Z
d, d > 2,

on l columns, then we can transfer this drawing on
l columns in Z

2. We just take each column of the
original grid drawing and transfer its points to an ar-
bitrary free column in the plane. Then we may have
to shift some columns higher so that no point repre-
senting vertex lies on nonadjacent line segment. This
is always possible as the number of vertices in G is
finite. Therefore we can assume that the grid is two-
dimensional.
By the same trick, we can also assume that there is

no unused column between two columns in our draw-
ing. If l is the minimum number of columns on which
G can be drawn, then we say this grid drawing of G
is compact.
Even though we do not care about locatability in

this case, some trivial upper bounds hold. A graph

embeddable on l columns is l-locatable and every q-
locatable graph can be drawn, according to Theo-
rem 2, on q2 columns. However none of these bound is
tight, because, for example, there is a locatable graph
with a compact grid drawing on three columns (see
Figure 2).

Figure 2: A locatable graph with a compact grid
drawing on three columns

The following simple observation characterizes
which graphs are embeddable on l lines in the terms
of the graph theory.

Observation 1 A graph G = (V,E) is embeddable
on l lines if and only if V can be partitioned into
V1, V2, . . . , Vl such that each induced subgraph G [Vi]
is isomorphic to a disjoint union of paths.

Proof. In the grid drawing of G on l columns, the
vertices represented by points of a single column de-
fine a set Vi. On the other hand, if we have a partition
V1, V2, . . . , Vl of V , then each G [Vi] can be drawn on
a single column and we can always shift the vertices
in such way that the visibility of representing points
is guaranteed. �

This observation helps us to show that drawing
graphs on the minimal number of columns is NP-
complete.

Theorem 5 For fixed integer l ≥ 2, it is NP-complete
to decide whether or not a graph G = (V,E) is em-
beddable on l columns of a grid.

Proof. To prove this theorem, we first use a reduc-
tion of Not-All-Equal 3SAT to a problem whether the
set V can be partitioned into V1, V2 such that G [V1]
and G [V2] induce disjoint unions of paths (this is a
similar method as Hoòng-Oanh Le, Van Bang Lea
and Haiko Müller [5] used for a problem of deciding
whether V can be partitioned into two induced paths).
Then we reduce this new NP-complete problem to the
same task with general l. �

If we restrict our attention to only primitive grid
drawings, then the situation changes rapidly. Ac-
cording to Theorem 2, only four-colorable graphs have
primitive grid drawings in the plane. Also we know,
accroding to Corollary 3, that we have to proceed
to grid drawings in higher dimensions if we want to
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obtain primitive grid drawings of graphs with larger
chromatic number.
We also cannot modify a primitive grid drawing by

the same trick as before, because shifted line segments
could intersect more grid points. Does that mean that
some compact primitive grid drawings are necessarily
vast and sparse? No, because the proof of the fol-
lowing theorem shows that there are primitive grid
drawings with minimal number of columns which take
up little space. Also it gives us a characterization of
locating similar to Observation 1.

Theorem 6 For a graph G = (V,E) and integers
d ≥ 2 and l, 2d−1 < l ≤ 2d, the following statements
are equivalent:

1. G can be located on l columns in Z
d,

2. V can be partitioned into V1, V2, . . . , Vl such that
2d − l induced subgraphs G [Vi] induce a disjoint
union of paths and the rest induces independent
sets.

Proof. For a graph located on l columns, the desired
partition of V can be found by induction on l. On
the other hand, if we have such vertex partition, then
we can locate G on columns with ranks from the set
{

(r1, . . . , rd−1) ∈ Z
d−1 | r1 = 0, 1, 2, 3, ri = 0, 1

}

. �

Note that if we locate the graph in the smallest
possible dimension, according to Corollary 3, then we
obtain a grid drawing from this theorem.
We can also characterize graphs which can be lo-

cated on at most 2d−1 columns:

Observation 2 For a graph G = (V,E) and integers
d ≥ 2 and l, 1 ≤ l ≤ 2d−1, the following statements
are equivalent:

1. G can be located on l columns in Z
d,

2. G is embeddable on l columns (in Z
2).

This observation is somehow intuitive as every grid
drawing on two columns is primitive. However we
know, according to Theorem 6, that for a larger num-
ber of columns this does not hold and locating be-
comes more restrictive than drawing. Together with
Theorem 5, this observation implies the following
corollary.

Corollary 7 For a given d ∈ N, it is NP-complete to
decide whether or not a graph G can be located on at
most 2d columns in Z

d+1.

Using this fact we can also prove that locating a
graph on minimal number of columns is also a difficult
task for general l.

Theorem 8 For a fixed integer l ≥ 2, it is NP-
complete to decide whether or not a graph G can be
located on l columns of a grid.

Proof. Now it suffices to show NP-completeness of
this problem only for 2d−1 < l ≤ 2d where d is the
dimension of grid on which we locate G. To do this,
we use the characterization of such graphs obtained
in Theorem 6 and use the reduction of the coloring
problem. �

This result gives an affirmative answer on a ques-
tion in [4], where the authors ask whether is, in gen-
eral, the problem of deciding the number of columns
needed to locate a graph an NP-hard problem.

Next we show some upper bounds on the mini-
mal number of columns in primitive grid drawings of
graphs with known maximal degree, generalizing some
known statements about situations in the plane.

In order to prove the next theorem, we need an
auxiliary lemma proven by László Lovász.

Lemma 9 ([6]) Let G = (V,E) be a graph and let
k1, k2, . . . , km be nonnegative integers with k1 + k2 +
· · ·+km ≥ ∆(G)−m+1. Then V can be partitioned
into V1, V2, . . . , Vm so that ∆(G [Vi]) ≤ ki, for all i ∈
[m].

Theorem 10 Let G = (V,E) be a graph with
∆(G) ≤ 2d+1 − 1, for d ∈ N. Then G can be located
on 2d columns in Z

d+1.

Proof. According to Observation 2, it suffices to
prove that G is embeddable on 2d columns in the
plane. To prove this, we apply Observation 1. So
eventually, we show by induction on d that the as-
sumption in our theorem implies that V can be par-
titioned into V1, V2, . . . , V2d such that every induced
subgraph G [Vi] is isomorphic to a disjoint union of
paths. As the basis of the induction we use the proof
of a weaker theorem proven in [4] for d = 1.

Now we do the inductive step. Let the maximal
degree of G be at most 2d+1 − 1. Then, accroding
to Lemma 9, V can be partitioned into V1 and V2

such that G [V1] ≤ 2d − 1 and G [V2] ≤ 2d − 1, if
we set m = 2 and k1 = k2 = 2d − 1. It follows
from the inductive assumption that the vertices of
each of the graphs G [V1], G [V2] can be partitioned
into 2d−1 required sets. Together these partitions give
the partiton of V into 2d−1 + 2d−1 = 2d sets. �

Note that the reversed implication does not hold,
as every star graph can be located on two columns in
the plane and its maximal degree does not have to be
bounded.
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4 Planar Grid Drawings

Although Theorem 2 and the Four Color Theorem
imply that every planar graph is locatable, the draw-
ings obtained by this approach do not have to be
planar. On the other hand, De Fraysseix, Pach,
and Pollack [2], Schnyder [8], and Chrobak and
Nakano [1] proved that any planar graph on n ver-
tices has a planar grid drawing which can be real-
ized in grids of sizes (2n− 4) × (n− 2), (n− 2) ×
(n− 2) and ⌊2 (n− 1) /3⌋ × (4 ⌊2 (n− 1) /3⌋ − 1), re-
spectively. Unfortunately, these drawings are not
primitive.

Definition 4 A primitive planar grid drawing is said
to be proper.

In this section we show that the Four Color Theo-
rem together with Fáry’s theorem imply the existence
of a proper grid drawing for every planar graph.

Theorem 11 There exists a proper grid drawing of
G for every planar graph G.

Proof. The main idea is to map a drawing obtained
from Fáry’s theorem to a grid such that no line seg-
ment contains more than two grid points. To find
convenient coordinates we use the Four Color Theo-
rem. �

This result gives an affirmative answer to the con-
jecture asked by Pen̋aloza and Martinez [7]. The au-
thors point out that proof of this statement would
yield an alternate proof of the Four Color Theorem.
However we used this theorem as one of the assump-
tions in the proof. If we use the Five Color Theorem
instead, then we get three-locatable planar grid draw-
ings.
In the proof we can choose coordinates of the

points in such way that the function g (a1, a2) =
(a1 (mod2) , a2 (mod2)) is a vertex coloring of G with
χ (G) colors. Hence we also proved a stronger conjec-
ture from [7], namely the following:

Corollary 12 Any planar graph has a proper grid
drawing such that the function g is a coloring of G
that uses exactly χ (G) colors.

5 Conclusion

We studied grid drawings from three points of views.
First, we showed a connection between the chromatic
number of the graph G and the maximal number of
grid points that must appear on a line segment of a
grid drawing of G. This led to a new classification of
graphs according to so called locatability.
Second, we showed that it is NP-complete to find

the minimal number of columns on which a graph can

be drawn. If we consider only primitive grid draw-
ings, then we have to move to higher dimensions as
the chromatic number grows. We also characterized
the graphs which can be located on l columns in d-
dimensional grid and showed that locating graphs is
also NP-complete. Natural question is what happens
if we consider grid drawings with both width and
height bounded. Such problem is also connected to
”No-three-in-line problem” [3].
In the last section we proved that there exist primi-

tive planar grid drawings of an arbitrary planar graph.
However the proof of this statement uses a strong re-
sult, namely the Four Color Theorem. Perhaps the
most intriguing question left open is whether there is
a proof of this statement without using the Four Color
Theorem. Such proof would yield an alternate proof
of this classical result in graph theory.
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Memory-Constrained Algorithms for Simple Polygons∗

Tetsuo Asano† Kevin Buchin‡ Maike Buchin‡ Matias Korman§ Wolfgang Mulzer¶

Günter Rote¶ André Schulz‖

Abstract

A constant-work-space algorithm has read-only access
to an input array and may use only O(1) additional
words of O(log n) bits, where n is the input size. We
show how to triangulate a plane straight-line graph
with n vertices in O(n2) time and constant work-
space. We also consider the problem of preprocessing
a simple n-gon P for shortest path queries, where P
is given by the ordered sequence of its vertices. For
this, we relax the space constraint to allow s words of
work-space. After quadratic preprocessing, the short-
est path between any two points inside P can be found
in O(n2/s) time.

1 Introduction

In algorithm development and computer technology,
we observe two opposing trends: On the one hand,
there are vast amounts of computational resources at
our fingertips. On the other hand, more and more
specialized tiny devices with limited memory or power
supply become available. The first trend leads to soft-
ware that is written without regard to resources; with
this approach, today’s latest equipment, be it work-
stations or hand-held devices, will soon appear unac-
ceptably slow. It is the second trend on which we will
focus here: we want to process data with a limited
amount of memory. In particular, we consider the
setting where the input data is given in a read-only
data structure and we have only s words of memory
at our disposal, for a parameter s = o(n).
The input of our problem is a polygon P of n ver-

tices in a read-only data structure. We assume that
we can access the x- and y-coordinates of any poly-
gon vertex in constant time. We also assume that
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de

we can obtain the (clockwise and counterclockwise)
neighbor vertex in constant time. We count the stor-
age in terms of the additional number s of cells or
words that an algorithm uses. As usual, a word is
large enough to contain either an input item (such as
a point coordinate) or an index into the data (of log n
bits). We also assume that basic operations on the
input (such as determining if a point is above a given
line) take constant time.

Our Results. First, we show how to triangulate a
plane straight-line graph (and hence a simple poly-
gon) with constant work-space in O(n2) time (Sec-
tion 3). Then, in Section 4, we apply this result to the
construction of memory-adjustable data structures for
shortest path queries. That is, given a polygon P and
a parameter s, we construct a data structure of size
O(s) for P . We then use this structure to compute
the shortest path between any two points inside P in
O(n2/s) time using O(s) work-space.

Related Work. Given their many applications, a sig-
nificant amount of research has been dedicated to
memory-constrained algorithms, even as early as in
the 1980s [6]. A classic example with a geometric fla-
vor is the well-known gift-wrapping algorithm (also
known as Jarvis march [7]). It computes the con-
vex hull of a planar n-point set in O(nh) time and
O(1) work-space, where h is the number of convex hull
vertices. The systematic study of constrained mem-
ory in a geometric context was initiated by Asano
et al. [2]. Among other results, they describe how to
construct well-known geometric structures (such as
Delaunay triangulations, the Voronoi diagrams and
minimum spanning trees) with a constant number of
variables. Recently, Barba et al. [3] gave a constant-
work-space algorithm for computing the visibility re-
gion of a point inside a simple polygon.

Although we know of no algorithm that triangulates
a simple polygon with o(n) work-space, it is known
how to find an ear of a given simple polygon P in
linear time and with constantly many variables [5].
However, since the input cannot be modified, there
seems to be no easy way to extend this method in
order to obtain a complete triangulation of P . We
also note that there exists a method for triangulating
planar point sets [2]. The same paper also contains an

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: The shortest path tree SPT from a1 to all
other vertices (in purple). Additional triangulation
edges generated in our algorithm are dotted. The fig-
ure illustrates a forward step (right shaded area) and
a backward step (middle area).

algorithm for finding the shortest path between any
two points inside a simple polygon. This algorithm
uses constant work-space and runs in quadratic time.
For space reasons, we can only give a sketchy idea

of the algorithms here. A more complete description
is available in the full version [1].

2 Triangulating a Mountain

A monotone mountain (or mountain for short) is a
polygon H whose vertices a1, a2, . . . , ak have increas-
ing x-coordinates. The edge a1ak is called the base of
H. In this section, we describe how to triangulate an
explicitly given mountain, while using only one scan
over the boundary of H. This will allow us to extend
the algorithm in the next section in order to triangu-
late a mountain that is provided implicitly as part of
a decomposition of a plane straight-line graph.
For the algorithm, we need the shortest path tree

SPT from a1 to all other vertices of H. We make the
following observations, see Figure 1.

Proposition 1 SPT has the following properties:
(i) SPT makes only upward bends.
(ii) Each face f of SPT is bounded by the shortest
paths from a1 to two consecutive vertices ai and ai+1.
(This holds in any simple polygon.)
(iii) Each face f of SPT is a pseudotriangle, bounded
from below by an SPT edge uai+1, from the right by
an edge aiai+1 of H, and from above by a concave
chain of SPT edges (as seen from inside).
(iv) The face f can be triangulated uniquely by con-
necting the rightmost vertex ai+1 with the reflex ver-
tices on the upper boundary.

The algorithm traverses SPT in depth-first order,
visiting the children of each vertex in counterclock-
wise order. Since there is no space for a stack, this
must be done in a “stateless” manner. As in an Euler
tour, we visit each non-leaf edge twice, once in forward
and once in backward direction. However, a backward
step immediately followed by a forward step is con-
sidered as a single sideways step (this corresponds to

the case where the tour moves from a node to its sib-
ling in SPT). We call a vertex finished if it has been
visited by the traversal and will not be visited again.
Otherwise, the vertex is unfinished. In an Eulerian
traversal of SPT, the vertices of H become finished in
order from right to left.

Our algorithm maintains two edges: (i) the cur-
rent edge of the tour uv, with v lying to the right
of u; and (ii) the edge e = aiai+1 of H such that
{ai+1, ai+2 . . . , ak} are the finished vertices of the
tour. In each step we distinguish three different cases,
and we accordingly perform a step as follows.

Case 1: v is not incident to e. We perform a
forward step into the subtree rooted at v.

Case 2: v = ai, but uv is a chord of H. We per-
form a sideways step to the next child of u that follows
v in counterclockwise order.

Case 3: v = ai, and uv is an edge ai−1ai of H.
We do a backward step and return to the parent of u.
We start the algorithm with a sideways step from

uv := e := a1ak (as an exception to the above rules).
The algorithm continues until all vertices are finished
and it tries to make a backward step from e = a1a2.
The implementation of the three steps is straightfor-
ward. The only information about H that is required
by the algorithm is one sequential scan of the se-
quence of vertices a1, ak, ak−1, . . . , a2, a1. Thus, the
algorithm can also be applied if H is given implicitly
and if it takes O(n) time to advance from one edge to
the next, as in the next section.

Theorem 2 Let H be a mountain with k vertices
given as part of a larger plane straight-line graph with
n vertices. Then we can output the triangles of a
triangulation of H in time O(nk) and with constant
work-space.

For an explicitly given mountain of k vertices, we get
a running time of O(k2) as a special case.

3 Triangulating a Plane Straight-Line Graph

Let G be a plane straight-line graph. In order to ap-
ply Theorem 2 to the problem at hand, we decom-
pose the convex hull of G into mountains by com-
puting the vertical decomposition (or trapezoidation)
of G and by inserting a chord between any two non-
adjacent vertices of G contained in the same trapezoid
(cf. Chazelle and Incerpi [4]). These edges partition
the convex hull into mountains: Since every vertex
(except for the left- and the rightmost ones) has at
least one incident edge to either side, the faces must
be monotone polygons f . By definition of the de-
composition, if there were a face f with vertices on
both the upper and the lower boundary, there would
be a trapezoid with a vertex at the upper and at the
lower boundary. In this case, however, we would have
inserted a diagonal.
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An edge e of G or of the convex hull is a lower base
of a mountain if and only if it is incident to more
than one trapezoid above it. This can be checked in
linear time. (An inserted chord is never the base of
a mountain.) Once the base of a mountain H is at
hand, we can visit the edges of H in counterclockwise
order by enumerating the trapezoids incident to each
vertex of H. This takes linear time per trapezoid.
Now, in order to triangulate G, we consider each edge
ofG and each convex hull edge and determine whether
it is a base of a mountain H. If so, we triangulate
H using Theorem 2. The convex hull edges can be
found in linear time per edge through Jarvis march [7].
Thus, our algorithm needs O(n2) time plus the time
for triangulating the mountains. Since the total size
of all mountains is O(n), we get the following result.

Theorem 3 Given a plane straight-line graphG with
n vertices, we can output all triangles in a triangula-
tion of G in O(n2) time with constant work-space.

4 Memory-Adjustable Data Structures

Generally, the purpose of a data structure D for some
set S of n objects is to answer certain types of queries
on the set S efficiently. For this, D stores some useful
information about S. Ideally, D has linear size, and
the query algorithm searches within D with only O(1)
work-space (more precisely, a work-space of O(log n)
bits). In the classical setting, the whole input data is
contained in the data structure, so the storage must
be at least as large as the input.

Here, we take a different approach: recall that our
input is read-only and cannot be modified. Thus, our
approach is to preprocess the data and to store some
additional information in a data structure of size s (for
some parameter s = o(n)). The objective is to design
an algorithm that uses this additional information in
a way that allows for efficient query processing.

In the following, we use this model for computing
the shortest path between two points inside a simple
polygon P . In our allotted space, we store a par-
tition of P with O(s) chords into O(s) subpolygons
with Θ(n/s) vertices each. The boundary of each
subpolygon is given by subsequences of the original
polygon boundary and some chords (hereafter called
cut edges) associated with it. Additionally, we store
the adjacencies between the subpolygons across the
cut edges. The total space to represent these sub-
polygons is O(s).

Theorem 4 Let P be an n-gon, and let s ∈
{1, . . . , n}. There are O(s) pairwise non-intersecting
chords that partition P into O(s) subpolygons, each
having Θ(n/s) vertices. The chords can be found in
O(n2) time using constant work-space.

We now describe the query algorithm. Given two
points p, q ∈ P , we would like to compute the geodesic
πpq between them—putting to use the precomputed
polygon decomposition. The general idea is to apply
the constant work-space method of Asano et al. [2]
and to concatenate the resulting paths. Let us thus
first give a quick overview of this method.

The algorithm of [2] uses the following invariant: we
have partially reported the shortest path from p up to
an intermediate point v (where either v = p or v is a
reflex vertex of P ). Furthermore, we store a visibility
cone (i.e., a search direction) in which we know that
πpq must go. The visibility cone is represented by a
wedge emanating from v. The algorithm then shoots
a ray inside the wedge that partitions the polygon into
two parts. Depending on which part the target q is
in, we might obtain a new intermediate point, or a
portion of the polygon will be discarded.

Our algorithm uses a similar strategy, but it re-
stricts itself to a subpolygon whenever possible. We
start by locating the subpolygons Pp, Pq containing p
and q. If Pp = Pq, we apply the constant work-space
method within that subpolygon. Otherwise, consider
the tree associated with the polygon partition and
find the path between Pp and Pq. Every edge on that
path corresponds to a polygon chord that πpq must
cross, in the same order. On the other hand, edges of
the tree that were not on the path will not be crossed
by πpq, so the corresponding cut edges are treated as
obstacles.

We first introduce some notation: let Pcurr be the
polygon containing the current vertex v. For any sub-
polygon Pi that is traversed by πpq, we define the en-
trance as the cut edge that πpq must cross to enter
Pi. Analogously, we define the exit of Pi.

In the standard situation, everything is confined
within one subpolygon Pcurr. In this case, we can
apply the search strategy of the constant-work-space
algorithm almost without change: pick a search direc-
tion, according to the same rules as in [2], and shoot
a ray R′ partitioning the subpolygon into two.1 We
use the exit chord of Pcurr to determine which half
contains the target. The only problem arises when R′

hits the boundary in the exit chord.

In this case, we switch to the long-jump situation.
We must first complete the ray shooting operation:
we continue the ray R′ into the adjacent subpolygon.
If R′ again hits the exit chord of this subpolygon, we
continue into the third subpolygon, and so on, until R′

hits a point p′ on the boundary of P . The ray R′ splits
the wedge into two parts, and we update the wedge to
the part that contains the target. The running time
is O(n/s) times the number of subpolygons visited.

1We treat the case that v is outside Pcurr and the two rays
bounding the visibility cone hit the boundary of P in Pcurr as
in the standard situation. This extension does not affect the
algorithm.
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In the general long-jump situation we have a cur-
rent start vertex v and two shortest paths SP+ from v
to a point p+ and SP− from v to a point p−, forming
a funnel with apex v. As an invariant, we know that
the target lies between p+ and p−, and so the shortest
path must go into the funnel. Note that p+ and p−

may lie in different subpolygons P+ and P−. In this
case, w.l.o.g., we assume that P+ is more advanced
than P−. Then, our first goal is to incrementally ex-
tend the shortest path SP− to the lower endpoint of
entrance gate of P+ (Procedure Catch-up). Whenever
P− = P+, we shoot a ray R′ and extend one of the
SP edges (Procedure Extend), and proceed depending
on which side of the ray R′ the exit of P+ lies. From
the funnel boundaries SP+ and SP−, we only store
the O(s) SP edges that cross some cut edge. We now
give the details of the two procedures.

Procedure Catch-up. Since our goal is to proceed
towards the exit of P−, we make an angular clock-
wise sweep inside P− from the endpoint p− of the
current path SP−, starting from the direction oppo-
site to the last edge of SP− and only considering the
O(n/s) points of P− on the lower boundary between
the entrance and the exit cut. After determining the
first point that is hit, we may remove some of the last
vertices from SP− (possibly also from the beginning
of SP+). Finally, we add a new edge to SP−.
Since we do not explicitly store SP− and SP+, we

may have to look for the predecessor or successor edge
by a counter-clockwise angular sweep, as in the back-
ward step of Section 2. These operations are only
needed if the point that we look for lies in the same
subpolygon, hence we will need at most O(n/s) time
(which we charge to the removed vertex). The short-
est path SP− will eventually reach the lower endpoint
of the exit gate of P−. Then we advance to the next
subpolygon, and iterate until we reach P+.

Procedure Extend. Assume that one of the two fun-
nel boundaries, say SP−, has more than one edge. We
take the last-but-one edge of SP− and extend it into
P−. If this ray R′ does not hit the exit cut of P+, we
determine, in O(n/s) time, on which side of R′ the
target lies. If it lies above R′ we pop the last edge of
the funnel, as in Procedure Catch-up, and proceed. If
it lies below R′ we can throw away everything above
R′. The ray R′ and the last SP edge start at the same
vertex and end in P+, forming a new funnel. We can
thus consider P+ with these two extra edges as our
current polygon Pcurr, and proceed.

There is also the situation that R′ exits through the
exit gate. In this case, we extend R′ until it hits the
boundary of P , in some subpolygon P ′. Again, we
determine on which side the target lies. If the target
lies above R′, R′ forms the new last edge of SP−,
P− is advanced to P ′. If the target lies below R′, we

have a simple funnel consisting only of R′ and the last
edge of SP−. We advance P+ to P ′. In either case
we continue with procedure Catch-Up.

Theorem 5 Let P be an n-gon, and 1 ≤ s ≤ n. We
can build a data structure of size O(s) in O(n2) time
and O(1) variables such that shortest path queries
in P can be computed in O(n2/s) time using O(s)
variables.

5 Open Problems

Obvious topics for future research are improvements
of the results. For example, it would be interesting
to construct a memory-adjustable data structure for
triangulating a plane straight-line graph. Also, The-
orem 4 describes how to find a good cut edge for a
simple polygon by essentially triangulating the whole
polygon and giving the most balanced cut. A natural
question is if we can obtain a balanced cut in sub-
quadratic time. Moreover, the cut would not neces-
sarily have to be a diagonal connecting two vertices.
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Abstract

We present an efficient method for collision detection
in the black-box KDS model for a set S of n objects in
the plane. In this model we receive the object loca-
tions at regular time steps and we know a bound dmax

on the maximum displacement of any object within
one time step. Our method maintains, in O((λ+k)n)
time per time step, a compressed quadtree on the
bounding-box vertices of the objects; here λ denotes
the density of S and k denotes the maximum number
of objects that can intersect any disk of radius dmax.
Collisions can then be detected by testingO((λ+k)2n)
pairs of objects for intersection.

1 Introduction

Collision detection [12, 13] is an important problem in
computer graphics, robotics, andN -body simulations.
One is given a set S of n objects, some or all of which
are moving, and the task is to detect the collisions
which occur. In practice collision detection is often
performed in two phases: a broad phase that serves
as a filter and reports a (small) set of potentially col-
liding pairs of objects, and a narrow phase that tests
each of these pairs to determine if there is indeed a col-
lision. Here we are concerned only with broad-phase
collision detection; more information on the narrow
phase can be found in a survey by Kockara et al. [11].

Related work. The most common way to perform
collision detection is to test for collisions at regular
time steps; for graphics applications this is typically
every frame. This approach can be wasteful, in partic-
ular if computations are performed from scratch every
time: if the objects moved only a little, then much of
the computation may be unnecessary. In addition,
even with small time steps, collisions can be missed.

An alternative is to use the kinetic-data-structure
(KDS) framework introduced by Basch et al. [3]. A
KDS for collision detection maintains a collection
of certificates (elementary geometric tests) such that
there is no collision as long as the certificates re-
main true. The failure times of the certificates—these

∗Department of Computer Science, TU Eindhoven,
the Netherlands, {mdberg,mroeloff,speckman}@win.tue.nl.
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can be computed from the motion equations of the
objects—are stored in an event queue. When the next
event happens, it is checked whether there is a real col-
lision and the set of certificates and the event queue
are updated. (In addition, if there is a collision the
motion equations of the objects involved are changed
based on the collision response.) KDSs for collision
detection have been proposed for 2D collision detec-
tion among polygonal objects [2, 10], for 3D collision
detection among spheres [9], and for 3D collision de-
tection among fat convex objects [1].

The KDS framework is elegant and can lead to effi-
cient algorithms, but it has its drawbacks. One is that
it requires knowledge of the exact trajectories (motion
equations) to compute when certificates fail. Such
knowledge is not always available. Another disad-
vantage is that some KDSs are complicated and may
not be efficient in practice—the collision-detection
KDS for fat objects [1] is an example. We therefore
study collision detection in the more practical black-
box model [5, 7]: We receive, for each object Ai ∈ S,
its location Ai(t), at regular time steps t = 1, 2, . . .
and we know an upper bound on the maximum dis-
placement dmax of any object within one time step.
Our main goal is to obtain provable bounds for broad-
phase collision detection in the black-box model.

Results. We present an algorithm for maintaining
a compressed quadtree on the set S of objects, and
we prove that our algorithm runs in O((λ+k)n) time
per time step; here λ denotes the density [6] of S, and
k denotes the maximum number of objects intersect-
ing any disk of radius dmax. The compressed quadtree
can be used to report the at most O((λ+k)2n) poten-
tially colliding pairs of objects to the narrow phase.
The basis of our algorithm is a technique to efficiently
maintain a compressed quadtree for a set of moving
points, which is of independent interest. We describe
our results for the planar case, but they generalize
to 3- or higher-dimensional space in a straightforward
manner.

2 Preliminaries

Assumptions on distribution and displace-

ment. Let S be the set of constant complexity ob-
jects in the plane—e.g. a set of triangles or disks—,
let Aj(t) be the object Aj ∈ S at time t, and let
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S(t) = {A1(t), . . . , An(t)}. To use temporal coher-
ence in our algorithm, we need bounds on the max-
imum distance the objects can move in relation to
their inter-distances—otherwise the locations at time
t have no relation to those at time t + 1 and we can
do nothing but compute T (t) from scratch. Following
De Berg et al. [5] we make the following assumption.

Displacement Assumption: There is a maximum
displacement dmax such that dist(A(t), A(t + 1)) 6

dmax for each object A ∈ S and any time step t.

For simplicity we assume the objects only translate,
and we define dist(A(t), A(t+1)) as the length of the
translation vector between A(t) and A(t + 1). How-
ever, our algorithm also works in more general cases,
as long as the boundaries of the objects do not move
too much. As mentioned, we need to relate the max-
imum displacement to the inter-object distances:

Distribution Assumption: Any disk of radius dmax

intersects at most k objects from S(t), at any time
step t.

Our algorithms do not know the value of k; it is used
only in the analysis. We also use the concept of den-
sity [6]. A set S of objects has density λ if, for any
disk D, the number of objects Aj ∈ S intersecting D

having diam(Aj) > diam(D) is at most λ. We assume
that the density of S(t) is λ at every time step t.

The compressed quadtree. A quadtree for a set of
points inside a square is a tree representing a subdi-
vision of that square into four equal-sized subsquares
(quadrants) that continues recursively until a stop-
ping criterion is met. There can be splits where only
one of the four resulting quadrants contains points. In
the quadtree this corresponds to a path of nodes with
only one non-empty child. A compressed quadtree re-
places such paths by compressed nodes, which have
two children: a child for the hole representing the
smallest quadtree square containing all points, and a
child for the donut representing the rest of the square.
A compressed quadtree for a set of points has lin-
ear size. Our main data structure is a compressed
quadtree T on the set P of bounding-box vertices of
the objects in S, with the following stopping criterion.

Stopping Criterion: A square σ becomes a leaf
when (i) σ contains at most one point from P , or
(ii) σ has edge length at most dmax.

We use region(v) to denote the region associated with
a node v of T and assume that region(root(T )) is a
fixed, large square that always contains all objects.

Observation 1 Under our Stopping Criterion,

region(v) intersects O(λ + k) objects from S for any

leaf v.

The leaf regions of T intersect only few objects: re-

gions with edge length larger than dmax contain at
most one bounding-box vertex and, hence, intersect
O(λ) objects [4], and regions with edge length at most
dmax intersect at most O(k) objects by definition of k.
For each leaf v in T we maintain a list of objects

intersecting region(v). Broad-phase collision detec-
tion is then performed by reporting for each leaf v

all O((λ+ k)2) pairs of objects intersecting region(v).
Since the tree T contains O(n) nodes we report at
most O((λ+ k)2n) pairs.

A compressed quadtree for a set of n points can be
constructed in O(n log n) time [8]. This holds in an
appropriate model of computation, where we can find
the smallest canonical square—a canonical square is
any square that results from recursive subdivision of
the given initial square—containing two given points
in O(1) time. Our goal is to show that, in this model
of computation, we can efficiently maintain our com-
pressed quadtree as the objects move. We use T (t) to
denote the compressed quadtree on the bounding-box
vertices of S(t). In the remainder of this abstract we
sketch how to create T (t+1) from T (t) in O((λ+k)n)
time, resulting in the following theorem.

Theorem 1 Let S be a set of n moving objects in

the plane that adheres to the Displacement and Dis-

tribution Assumption and with maximum density λ.

We can maintain a compressed quadtree for S in

O((λ + k)n) time per time step, which allows us to

perform broad-phase collision detection resulting in

O((λ+ k)2) pairs of potentially colliding objects.

3 Maintaining the compressed quadtree

Our compressed quadtree is built on the points in P

(the bounding-box vertices). The main problem in
updating T is that a leaf region can border many other
leaf regions and many points may move into it. Con-
structing the subtree replacing that leaf from scratch
is therefore too expensive. We solve this by first re-
fining T (t) into an intermediary tree T1(t). We then
insert the (moved) points into T1(t) to obtain T2(t).
We insert the (moved) objects into T2(t) to obtain
T3(t) which we prune into T (t+1) (see Fig 1). Below
we describe these steps in more detail. Note that T (t)
remains unchanged, whereas T1(t) is first constructed
and then changed into T2(t), T3(t) and T (t+ 1).

Refine. The intermediary tree T1(t) has the property

T (t)

T1(t) T2(t) T3(t)

T (t+ 1)

move
points

move
objects

prune
refine

Figure 1: Constructing T (t+ 1) from T (t).
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v2

v3u

v1

(a) (b)

ud

Figure 2: Subdivision defined by T (t) and its refine-
ment (dashed lines), ud and u are nodes of T (t), v1, v2,
and v3 are nodes of T1(t), region(ud) is a donut (gray),
its right boundary consists of two segments (fat).

that each region in T1(t) has O(1) neighbor regions in
T (t). To make this precise we define for a node v in
T1(t) some related internal or leaf nodes in T (t):

• original(v): The lowest node u in T (t) such that
region(v) ⊆ region(u) and region(u) is a square.

• nbrn(v), nbre(v), nbrs(v), nbrw(v): We call these
the horizontal and vertical neighbors of v in T (t).
We define the west neighbor nbrw(v) as the low-
est node u in T (t) such that the left boundary
of region(v) is included in the right boundary of
region(u) (in Fig. 2(b) nbrw(v3) = ud). The other
vertical and horizontal neighbors are defined sim-
ilarly. (Not all neighbors need to exist.)
• nbrnw(v), nbrne(v), nbrse(v), nbrsw(v): These are
the diagonal neighbors of v in T (t). We define
nbrnw(v) as the lowest node u in T (t) such that
the north-west corner of region(v) is the south-
east corner—or a corner of a donut cell created by
the corresponding hole—of region(u) (in Fig. 2(a)
nbrnw(v1) = u and in Fig. 2(b) nbrnw(v2) = ud).
• nbrh1(v), nbrh2(v): These neighbors exist only for
donut cells with a hole along the boundary and
are the diagonal neighbors of the corner points
along the boundary that are created by the hole.

For ease of notation we define the following sets:

Nhv(v) = {nbrn(v), nbre(v), nbrs(v), nbrw(v)}

Nd(v) = {nbrnw(v), nbrne(v), nbrse(v),

nbrsw(v), nbrh1(v), nbrh2(v)}

We can now express the conditions on T1(t):

(i) For every node u in T (t) such that region(u)
is a square, there is a node v in T1(t) with
region(v) = region(u). Thus, the subdivision in-
duced by T1(t) is a refinement of the subdivision
induced by T (t).

(ii) For each leaf v in T1(t) every node u ∈ Nhv(v) is
a leaf of T (t).

We construct T1(t) top-down. Whenever we create a
new node v of T1(t), it receives a pointer to original(v)

and pointers to its horizontal and vertical neighbors
in T (t) (the nodes in Nhv(v)). These are obtained
from the parent of v and the original and neighbors
of that parent. How we refine each node v in T1(t)
depends on original(v) and the neighbors in Nhv(v)
and is described in more detail in Algorithm 1.

We can prove that each of the cases occurs at
most O(n) times and, hence, T1(t) also contains O(n)
nodes. Besides the pointers to the nodes in Nhv(v),
we also need pointers to the set Nd(v) of diagonal
neighbors of each node v in T1(t). The details of this
are not difficult and omitted due to space limitations.

Moving the bounding-box vertices. We first cre-
ate for each leaf v in T1(t) a list of all points in P

contained in region(v) at time t+1. We traverse T1(t)
and for each leaf v we encounter we inspect original(v)
and all its neighbors in Nhv(v) ∪ Nd(v)—recall that
these neighbors are leaves of T (t). The points con-
tained in these at most eleven leaves—ten neighbors
and one original—are the only ones that can be in
region(v) at time t + 1 as points in other cells have
more than distance dmax to region(v).

For each of the points in these eleven nodes we check
if they are inside region(v) and if so we add them to v.
This takes constant time assuming each of these nodes
contains only one point. Due to the definition of our
quadtree there can be nodes containing more than one
point, corresponding to squares that were not refined
because their edge length is dmax. Fortunately, these
nodes can only be neighbor or original to at most nine
nodes in T1(t). Each point in these cells is inspected
at most nine times and hence points from these cells
only require O(n) time in total.

After moving points into v there may be more than
one point in v. To ensure that the tree still adheres to
the Stopping Criterion we refine v. Since the points
come from a constant number of nodes they occupy a
constant number of cells of size dmax. Building a com-
pressed quadtree on these cells takes constant time.
The result is the second intermediary tree T2(t).

Moving the objects. The objects are moved in the
same way as the points. We traverse T2(t) and for
each node v we test each object from S(t) intersect-
ing a neighbor or original of v for intersection with
region(v). Since T (t) adheres to the Stopping Crite-
rion at time t, it follows from Observation 1 that we
test only O(λ+k) objects for each node in T2(t). This
results in the intermediary tree T3(t).

Pruning the tree. We finally prune T3(t) to re-
move any unnecessary compressed nodes or splits.
Splits that put all vertices into one child are re-
placed by compressed nodes and nested compressed
nodes—where the hole of one compressed node is an-
other compressed node—are reduced to a single com-
pressed node. This results in T (t+1), the compressed
quadtree for the objects at time t+ 1.
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Algorithm 1: Refine(T (t))

1 Create root(T1(t)). Set Nhv(root(T1(t))) = ∅ and
original(root(T1(t))) = root(T (t));

2 Add root(T1(t)) to empty queue Q;
3 while Q is not empty do

4 v ← pop(Q);
5 Case 1: original(v) is split OR a neighbor

in Nhv(v) is split: (see figure) v becomes a
split node and we create four children
vnw, vne, vse, vsw which we add to Q;

6 Case 2: original(v) is a compressed node

OR a neighbor in Nhv(v) has a hole on

shared boundary:

7 mirror the top level square of each adjacent
hole into region(v) and mirror the hole of
original(v) along its top, left, bottom and
right boundary;

8 scs← the smallest canonical square of the
mirrored squares in region(v);

9 Case 2a: scs is empty: v remains a leaf;
10 Case 2b: scs = region(v): v becomes a

split node and we create four children
vnw, vne, vse, vsw which we add to Q;

11 Case 2c: scs ⊂ region(v): v becomes a
compressed node and we create vd and vh
such that region(vd) = region(v)\scs and
region(vh) = scs. Add vh to Q;

12 Case 3: otherwise: v remains a leaf;

Case 2c

vh

vh

Case 2b

Case 1

v

v
vd

vd

v

vnw vne

vsw vse

vnw vne vsw vse

v

v

v

Figure 3: Algorithm 1 (left) to construct T1(t) and an illustration (right) of several consecutive steps of the
algorithm showing the Cases 1, 2b and 2c. The top tree is the input tree T (t).
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Abstract

We revisit the randomized internal-memory algorithm
of Abam and Har-Peled [2] for constructing a semi-
separated pair decomposition (SSPD) of N points in
IRd in the context of the cache-oblivious model of com-
putation. Their algorithm spends O

(

ε−dN log
2
N

)

time (assuming that the floor function can be evalu-
ated in constant time, O

(

ε−dN log2

2
N

)

time other-
wise) in expectation and produces a linear-sized SSPD
in which each point participates in only a logarithmic
number of pairs with high probability.

Using a modified analysis of their algorithm and
several cache-oblivious techniques for tree construc-
tion, labeling, and traversal, we obtain a cache-
oblivious algorithm that spends an expected number
of O

(

sort(ε−dN) log
2
N

)

memory transfers.

1 Introduction

Given two point sets A,B ⊂ R
d and a real constant

s > 0, we say that A and B are well-separated with
respect to s if the distance between A and B is at
least s · max{diameter(A),diameter(B)}. Callahan
and Kosaraju [4] defined an s-well-separated pair de-

composition (s-WSPD) for a point set P and s > 0 as
a set {{A1, B1}, . . . , {Am, Bm}} of pairs of non-empty
subsets of P such that

1. Ai ∩ Bi = ∅ for all i = 1, . . . ,m,
2. for each pair {p, q} of distinct points of P , there

is exactly one pair {Ai, Bi} in the set, such that
p ∈ Ai and q ∈ Bi or vice versa,

3. Ai and Bi are well-separated with respect to s
for all i = 1, . . . ,m.

The integer m is called the size of the s-WSPD, its
weight is

∑m
i=0

(|Ai| + |Bi|).
In this paper, we are interested in efficiently com-

puting an s-semi-separated pair decomposition (s-

∗Part of this work has been supported by Deutsche
Forschungsgemeinschaft (DFG) within the Collaborative Re-
search Center SFB 876 “Providing Information by Resource-
Constrained Analysis” (http://sfb876.tu-dortmund.de),
project A2.

SSPD). In an s-SSPD the pairs only have to be semi-
separated, i.e., the distance between the two point
sets is at least s ·min{diameter(A),diameter(B)} [9].

For the analysis in this paper we use the cache-

oblivious model [6], which is a variant of the standard
two-level I/O-model. This model defines N to de-
note the number of objects in the problem instance,
M ≪ N to denote the number of objects fitting
into internal memory, and 2 ≤ B ≤ M/2 to denote
the number of objects per disk block. In the cache-

oblivious model of Frigo et al. [6], we also have the
parameters N , M , and B for the analysis of an algo-
rithm, but in the design-phase of an algorithm, the
parameters M and B must not be used. This allows
us to model a multi-level hierarchical memory, where
data is transferred in blocks between any two adjacent
layers of memory.Frigo et al. [6] showed that sorting N
items requires Θ (sort(N)) = Θ(N

B logM/B
N
B ) mem-

ory transfers while scanning N items can obviously be
done in Θ (scan(N)) = Θ(N

B ) memory transfers; both
bounds match the I/O-bounds in the I/O-model.

Our starting point for the analysis in the cache-
oblivious model is a modified version of the analysis
of Abam and Har-Peled [2], as their analysis was miss-
ing some critical details and in places was incorrect.
Following our interaction with the authors, they had
fixed their paper, available as [1]. Our starting point
is thus very similar to their fixed analysis.

2 The Algorithm of Abam and Har-Peled

The algorithm of Abam and Har-Peled [2] is a ran-
domized, recursive algorithm that efficiently con-
structs a linear-size semi-separated pair decomposi-
tion in which each point participates in a small num-
ber of pairs and which thus is of small weight.

Theorem 1 ([1], Theorem 4.10) Given a point
set P in IRd, and a parameter ε > 0, one can compute,
in O

(

ε−dN log
2
N

)

expected time, an ε−1-SSPD S of
P , such that: (A) The total expected weight of the
pairs of S is O

(

ε−dN log
2
N

)

. (B) Every point of P

participates in O
(

ε−d log
2
N

)

pairs, with high proba-

bility. (C) The total number of pairs in S is O
(

ε−dN
)

.
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The algorithm proceeds by partitioning the input
point set P into three sets, Pin, Pout, and Pouter, in-
duced by two properly chosen concentric balls – see
Figure 1(a). Intuitively, the points in Pouter are suf-
ficiently far away from the points in Pin such that
semi-separated pairs can be constructed directly from
the unordered Cartesian product Pin ⊗ Pouter; these
pairs are called long pairs. In a separate process, the
so-called short pairs partitioning Pin ⊗ Pout are con-
structed on the basis of a quadtree. Computing pairs
involving either pairs from Pin or from Pout ∪ Pouter

is handled recursively – see Figure 1(b) (by construc-
tion, each point is passed to only one recursive call).

Pin

Pout

Pouter

(a) Partition of P . (b) Pairs handled recursively.

Figure 1: Partitioning scheme and recursive calls.

3 Cache-Oblivious Construction of an SSPD

In this section, we discuss how the algorithm of Abam
and Har-Peled needs to be adjusted to be efficient in
the cache-oblivious model of computation.

3.1 Partitioning the point set

The first step on each level of the recursion is to par-
tition the current working set set P into three sets,
Pin, Pout, and Pouter. Abam and Har-Peled give an
algorithm that is based on median-finding (or, more
precisely, k-selection) and prove that this algorithm
constructs a proper partition using, in expectation,
no more than a constant number of iterations. Since
selecting the element with rank k can be achieved
spending O (scan(N)) memory transfers, we have:

Lemma 2 For a set P of N points in IRd and a con-
stant c (depending on d), one can select a point p ∈ P
and compute a radius r > 0 such that the ball Br(p)
contains at least N

c points and such that at least N
2

points lie outside B20r(p) using O (scan(N)) memory
transfers in expectation.

Based upon the point p and the radius r constructed
by the algorithm implied by the above lemma, Abam
and Har-Peled define Pin := P ∩ BX(p), Pout := P ∩
(B20r(p) \ BX(p)), and Pouter := P \ (Pin ∪ Pout) for
some randomly chosen X ∈ [5r, 6r].

Lemma 3 Using an expected number of O (scan(N))
memory transfers, we can partition the point set P
into Pin, Pout, and Pouter such that the sizes of the
point sets handled in recursive calls decrease geomet-
rically.

3.2 Constructing long pairs

The ring containing Pout separates
Pouter from Pin, and thus the points in
Pouter are sufficiently far away from any
point in Pin. Abam and Har-Peled capi-
talize on this and prove that the follow-
ing construction yields semi-separated pairs that par-
tition the unordered Cartesian product Pin ⊗ Pouter:
Subdivide the d-dimensional minimal bounding box
of Pin into cubes of diameter εr/20. For each cube
that contains at least one point of Pin, construct a
pair whose first component consists of all points in
this cube and whose second component is Pouter.

For the analysis of this step, we observe that the cru-
cial step in either model of computation is to group
the points by cubes. In the analysis of their internal-
memory algorithm, Abam and Har-Peled assume that
the floor-function can be evaluated in constant time
and that thus all points can be hashed into their re-
spective cubes in linear time. While we are allowed
to spend more time on assigning points to cubes in
the cache-oblivious model of computing (since all we
are interested in are memory transfers), we need to
spend O (sort(N)) memory transfers in a postprocess-
ing step on sorting the points by the index of their con-
taining cube to ensure that points in the same cube
are stored consecutively in memory.

Lemma 4 Computing a semi-separated pair decom-
position of Pin ⊗ Pouter with O

(

ε−d
)

pairs requires
O (sort(N)) memory transfers.

3.3 Constructing short pairs

The second set of pairs constructed
on each level of the recursion comprises
a semi-separated pair decomposition of
Pin⊗Pout. In contrast to the case of long
pairs, points in Pout are not sufficiently
far away from points in Pin, and thus Abam and Har-
Peled proceed by first constructing a O

(

ε−1
)

-well -

separated pair decomposition of Pin ∪ Pout using a
(regular) quadtree and then clean up the output to
obtain the desired pair decomposition of Pin ⊗ Pout.

The algorithm and the original analysis of Abam and
Har-Peled [2] intermixes the construction of the reg-
ular quadtree and the construction of the short pairs
by constructing the quadtree top-down and report-
ing pairs of nodes (corresponding to pairs of sets of
points) as soon as they are found to be well-separated.
The algorithm maintains the invariant to only report
pairs whose nodes are on the same level of the tree.

To make this step of the algorithm efficient in the
cache-oblivious model of computation, we observe two
important points: First, the original algorithm ex-
pands the quadtree nodes top-down in a fashion that
depends on the distribution of the points and thus
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is unpredictable and leads to a spatially incoherent
memory access pattern. Second, traversing an N -
element tree (in fact, even a linked list) has a lower
bound of Ω(min{N, sort(N)}) memory transfers in
the cache-oblivious model [5], and thus the best we
can hope for is an algorithm with O (sort(N)) mem-
ory transfers that constructs the quadtree.

Building the quadtree The main conceptual change
to the algorithm and its original analysis we perform is
that we separate the construction of the quadtree from
the construction of the well-separated pairs. While
this seems only a minor change to the algorithm, it
enables us to avoid the unpredictable and spatially
incoherent expansion of the quadtree nodes that oc-
curs in the original algorithm. On the other hand, we
need to predict the maximal depth of the tree to be
constructed if we wish to reuse the analysis of Abam
and Har-Peled regarding the properties of their con-
struction and the resulting decomposition.

Lemma 5 Let P be a set of N points in IRd and let
0 < ε < 1 be a constant. Assume that the sets Pin and
Pout have been constructed according to Lemma 3,
and let Q denote the quadtree for Pin ∪Pout of depth
⌊log

2
ε−1 + 13 + log

2
(r/ min{|‖p − q‖ − X| | q ∈ Pin ∪

Pout})⌋. Then Q contains the quadtree T for Pin∪Pout

constructed by the algorithm of Abam and Har-Peled.

Proof. Abam and Har-Peled prove that their algo-
rithm does not construct any node on a level deeper
than ⌊log

2
ε−1 + β + log

2
(r/ min{|‖p − q‖ − X| | q ∈

Pin ∪ Pout})⌋ for “some constant β” [1, Claim 4.1].
We can augment the original proof by using exact con-
stants and obtain β = log

2
(40c) for some c ≥ 2cR +2ε

where cR is a constant that can be shown to be lower
bounded by 72ε. This yields β = log

2
5840 < 13. �

To construct the quadtree efficiently in the cache-
oblivious model of computation, we first use the above
lemma to compute the depth of the tree. Since, in
expectation, we have log(r/ min{|‖p − q‖ − X| | q ∈
Pin∪Pout}) ∈ O (1) [1, Claim 4.2], the expected depth
of both the quadtree constructed by Abam and Har-
Peled and by our construction is O

(

log
2
ε−1

)

. We
then construct the tree bottom-up by first sorting the
points according to the Q-order [8, Ch. 2], creating all
non-empty leaves of the tree, assigning the points to
their containing leaves, and finally creating the next
higher level by aggregating the at most 2d leaves that
lie inside a cube of twice the side length. No nodes
corresponding to empty cubes are created; this is es-
sential for ensuring the complexity of the algorithm.
This process continues upwards while we maintain the
invariant that each node v stores a flag inOutSta-

tus indicating whether the points in the leaves of the
subtree rooted at v belong to Pin, to Pout, or to both.

Lemma 6 A quadtree containing the quadtree con-
structed by Abam and Har-Peled’s algorithm can be
constructed spending O (sort(N)) memory transfers.

Extracting short pairs To extract short pairs, i.e.,
pairs for which one component belongs to Pin while
the other belongs to Pout, the algorithm of Abam and
Har-Peled incrementally expands pairs of nodes of the
quadtree until the nodes and thus the point sets in the
two subtrees are well-separated. The algorithm starts
with the pair (root, root) and expands the children of
a non-well-separated pair of nodes unless both nodes
contain points from either Pin or Pout, exclusively.

Depending on the distribution of the points, the al-
gorithm of Abam and Har-Peled might access children
of a node more than once since they may be involved
in multiple pairs. To avoid such spatially incoherent
accesses each of which may cause a memory transfer,
we modify the algorithm of Abam and Har-Peled to
process the quadtree in breadth-first manner. While
processing the current level, we maintain a queue that
contains the pairs of nodes to be processed sorted first
by level (recall that only pairs of nodes on the same
level are considered) and then according to the Q-
order with respect to the pair’s first node.

We then traverse the queue and, just as in the algo-
rithm of Abam and Har-Peled, for each pair of nodes,
generate all pairs of indices of children that warrant
further inspection. The entries in the resulting queue
do not contain, however, the status flags or the num-
ber and indices of the node’s children (recall that no
nodes corresponding to empty cubes are generated,
thus a node may have less than 2d children). This in-
formation can be obtained, however, by first sorting
the newly created pairs according to the Q-order with
respect to the first component followed by a synchro-
nized scan over the Q’s next level and then by repeat-
ing the same process according to the Q-order with
respect to the second component.

To ensure that the resulting pairs indeed induce a
partition of Pin ⊗ Pout, a linear postprocessing scan
checks each generated pair and ensures that pairs for
which the inAndOutStatus of one or both compo-
nents indicates that they contain points from Pin as
well as from Pout are split into two pairs.

Abam and Har-Peled show [1, Lemma 4.3] that the
total number of pairs generated on all quadtree levels
is O

(

ε−dN
)

in expectation. Since each pair partic-
ipates in a constant number of scanning and sorting
steps, we have the following:

Lemma 7 Computing a cR

ε -well-separated pair de-
composition of Pin ⊗ Pout with an expected number
of O

(

ε−dN
)

pairs requires O
(

sort(ε−dN)
)

memory
transfers in expectation.
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3.4 Reducing the number of pairs

The algorithm described in the previous section con-
structs O

(

ε−dN
)

semi-separated pairs in each recur-

sive step resulting in O
(

ε−dN log
2
N

)

pairs in total.
Abam and Har-Peled observe that the short pairs
are well -separated by construction and use this to
merge certain pairs such that the resulting pair still
is semi -separated. To this end, they first construct
a linear-size c

ε -well-separated pair decomposition W

of the point set P . To merge short pairs, they then
select an arbitrary representative of each component
of a short pair and find the unique pair in W separat-
ing these two points. All short pairs that are mapped
to the same pair in W are then merged into what is
proved to be an ε−1-semi-separated pair. Assuming
again that the floor-function can be evaluated in con-
stant time and using a hashing scheme, the mapping
can be accomplished in constant time per pair.

While we have shown how to efficiently compute
the well-separated pair decomposition W in the cache-
oblivious model of computation [7], there are no ef-
ficient building blocks for mapping and merging the
pairs. It turns out, however, that we can replace the
step by a technique originally used for pruning dense
spanner graphs [7]: We first use Euler tours and time-
forward processing to label the fair split tree S rep-
resenting W such that the points stored in the leaves
of S are numbered in left-to-right order and such that
each internal node stores the minimal bounding inter-
val of the indices of all points in its subtree.

Using synchronized sorting and scanning we then
transfer these point labels to the points in P and we
observe that each pair of points
representing a short pair in the
mapping phase now corresponds
to a point (i, j) ∈ [0, N − 1]2.
Similarly, we observe that each
pair of W corresponds to the
cross-product of the intervals
stored at the nodes associated 0 1 2 3

0

1

2

3

...

. . .

with the components of the pair. This implies that
we can use (batched) range searching [3] to map
(representatives of) short pairs to pairs in W.

As a result of the above mapping process, we ob-
tain, for each pair in W a (possibly empty) set of short
pairs that need to be merged into one pair. This merg-
ing process, which is trivial to implement in internal
memory, again uses batched range searching. Using
a careful implementation, we can organize the mem-
ory layout such that all points stored in the leaves
of all quadtrees generated during the recursive algo-
rithm are stored and indexed consecutively in one ar-
ray A (note that each point may occur in O (log

2
N)

quadtrees). We use intervals corresponding to each
of the short pairs mapped to the same pair of W as
query ranges over the indices of A and label each of the

points reported, i.e., each of the points in the original
short pair, with the name of the newly constructed
pair. Using scanning and sorting, we can aggregate
these points and store them consecutively. All steps
take O

(

sort(ε−dN log
2
N)

)

= O
(

sort(ε−dN) log
2
N

)

memory transfers. Due to Lemma 5, all properties re-
garding the size and weight of the SSPD constructed
carry over from Abam and Har-Peled’s analysis:

Theorem 8 Given a point set P in IRd, and
a parameter ε > 0, one can compute, using
O

(

sort(ε−dN) log
2
N

)

expected memory transfers,
an ε−1-SSPD S of P , such that: (A) The total ex-
pected weight of the pairs of S is O

(

ε−dN log
2
N

)

.

(B) Every point of P participates in O
(

ε−d log
2
N

)

pairs, with high probability. (C) The total number of
pairs in S is O

(

ε−dN
)

.
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Erdős-Szekeres is NP-hard in 3 dimensions - and what now?

Christian Knauer∗ Daniel Werner†‡

Abstract

The Erdős-Szekeres theorem states that, for every k,
there is a number nk such that every set of nk points
in general position in the plane contains a subset of k
points in convex position. If we ask the same question
for subsets whose convex hull does not contain any
other point from the set, this is not true: as shown
by Horton, there are sets of arbitrary size that do not
contain an empty 7-gon.
These questions have also been studied extensively

from a computational point of view, and polynomial
time algorithms for finding the largest (empty) con-
vex set have been given for the planar case. In higher
dimension, it is not known how to compute such a
set efficiently. In this paper, we show that already
in 3 dimensions no polynomial time algorithm exists
for determining the largest (empty) convex set (un-
less P=NP), by proving that the corresponding deci-
sion problem is NP-hard. This answers a question by
Dobkin, Edelsbrunner and Overmars from 1990.
As a corollary, we derive a similar result for the

closely related problem of testing weak ε-nets in R
3.

Answering a question by Chazelle et al. from 1995,
our reduction shows that the problem is co-NP-hard.
Finally, we make several suggestions for further re-

search on the subject.

1 Preliminaries

The Erdős-Szekeres theorem [8] is one of the major
theorems from combinatorial geometry and one of the
earliest results in geometric Ramsey theory.

Theorem 1 (Erdős and Szekeres, 1935) For every k
there is a number nk such that every planar set of nk

points in general position contains k points in convex

position.

Exact values of nk are known only for very few cases
and subject to extensive research, also for the higher
dimensional cases.
A closely related question is the following: is the

theorem still true if we ask for sets whose convex
∗Institut für Informatik, Universität Bayreuth, Germany

christian.knauer@uni-bayreuth.de
†Institut für Informatik, Freie Universität Berlin, Germany,

daniel.werner@fu-berlin.de
‡This research was funded by Deutsche Forschungsgemein-

schaft within the Research Training Group (Graduiertenkolleg)
“Methods for Discrete Structures”.

hull is empty, i.e., does not contain any other point
from the set? That this is not the case was shown
by Horton [11]: in the plane there are arbitrary large
sets which do not contain empty 7-gons. Nicolás [15]
and Gerken [9] independently solved the long stand-
ing open problem whether or not there is always an
empty 6-gon. See Matoušek [12, Chapter 3] for fur-
ther details and references.
Both these questions generalize to dimension larger

than 2 in the obvious way, and clearly the numbers
nk do not increase when the dimension gets larger
(proof: project to R

2). See the surveys by Bárány
and Károlyi [2] or Morris and Soltan [14] for further
references and (more or less) recent progress on the
subject.
The corresponding computational problems have

also received a lot of attention in the past (e.g., [1],
[6], [7], [13]). Polynomial time algorithms are known
for both problems in the plane. The fastest algorithm
is given in [7], and the question is stated whether a
polynomial time algorithm for determining the largest
empty convex set also exists in R

3.

1.1 Our results

In this paper, we will consider the following decision
problems:

Definition 1 (Erdős-Szekeres) Let P be a set of

points in R
d and k ∈ N. Is there a set Q ⊆ P of k

points in convex position?

and

Definition 2 (Largest-Empty-Convex-Set) Let

P be a set of points in R
d and k ∈ N. Is there a set

Q ⊆ P of k points in convex position whose convex

hull does not contain any other point from P?

Using the reduction technique from Giannopoulos
et al. [10], it is an easy exercise to show that both
problems are NP-hard if the dimension is not fixed.
For people familiar with parameterized complexity:
the problem is even W[1]-hard with respect to the
dimension d. This means that it is very unlikely to
admit an algorithm with running time O (f(d)nc) for
any computable function f and constant c.

Still, this does not exclude the possibility that in
every fixed dimension, the problem can be solved with
a running time of, say, O(nd+1). In this paper, we

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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show that this cannot be the case (under standard
complexity theoretic assumptions):

Theorem 2 The problems Largest-Empty-
Convex-Set and Erdős-Szekeres are NP-hard in

R
3.

The first part of the theorem, hardness of LECS, is
shown in Sec. 2. In Sec. 3, the proof is adapted to ES.
In Sec. 4, we derive a similar result for testing weak
ε-nets and red-blue discrepancy. Finally, in Sec. 5, we
make several suggestions for further research on the
subject.

2 The reduction

We will show that the problems is NP-hard by a re-
duction from the following problem:

Definition 3 (ISNUD) Given a set of pairwise non-

overlapping unit disks in R
2, decide whether there are

k disks such that no two of them touch.

Here, non-overlapping means that the interiors of the
disks are pairwise disjoint. As shown by Cerioli et al.
[3], the problem ISNUD is NP-hard. The reduction
has the additional property that there is no K3 in the
underlying geometric graph, which we will use in the
proof of Lemma 3.
We will now reduce this problem to LECS and show

how to adapt it to ES in the next section.
For a given instance D of unit disks in the plane,

we will create a set of points in R
3. These points will

almost lie on the elliptic paraboloid, in a sense to be
made precise later.
For a point x = (x1, x2) ∈ R

2, let

lift : (x1, x2) → (x1, x2, x
2
1 + x2

2)

denote the standard lifting transform to the
paraboloid.
Let Dc denote the n centers of the disks in D. Let

L denote the set of all points x̂ = lift(x), for x ∈ Dc.
We now want to forbid certain pairs of points to

lie in empty convex positions, namely those for which
the corresponding disks intersect. Thus, for a pair of
intersecting disks d, d′ and their centers cd, cd′ , we add
a blocking point

bdd′ =
1

2
(lift(cd′) + lift(cd)) .

The set B then consist of all the points

{bdd′ | d ∩ d′ 6= ∅},

and we set P = L ⊎B.
Thus, we have created O(|D|) points and the reduc-

tion is linear in the input size. The main property of
the reduction is captured in the folowing lemma.

(a) Two intersecting disks and the pro-
jected blocking point

(b) Because the dashed circles do not ap-
pear in the construction, all projected
blocking points lie on the bold arcs.

Figure 1: Finding an empty circle

Proposition 1 Let Q be a set of points and h be a

hyperplane through p such that hx ≥ 0 for all x ∈ Q.

Then p is in ch(Q) if and only if it is in ch(Q ∩ h).

Lemma 3 A blocking point bdd′ is contained in the

convex hull of a set Q ⊆ L if and only if ĉd and ĉd′

are contained in Q.

Proof. ⇐: by definition
⇒: We show that there is a hyperplane that contains
bdd′ , ĉd, and ĉd′ and has all other points strictly on the
positive side. Here we will make use of the fact that
our instance consists of non-overlapping unit disks —
otherwise, the claim would not hold.
Let C be the circle with center proj(bdd′) through

cd and cd′ . Because all disks are non-overlapping unit
disks, this circle does not contain any other points
from Dc. Further, because the underlying graph does
not contain a K3, the circle does not contain any (pro-
jection of) a blocking point. See Fig. 1. We then take
as h the unique hyperplane whose intersection with
the paraboloid projects to the circle C. This hyper-
plane contains all three points, and because C does
not contain any points, all other points from L and
thus B lie strictly above h. The claim then follows
from Proposition 1.

�
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The following states that whether or not a set is
in empty convex position will depend only on which
points we choose from L. The set B can always be
added without destroying this property.

Proposition 2 The sets L and B each are in empty

convex position, and ch(L) = ch(L ∪B).

Proof. By construction, all points of L lie on the
paraboloid. The points from B can be separated from
each other by the hyperplane defined in the previ-
ous proof. As all of them are convex combinations of
points in L, we have ch(B) ⊆ ch(L). �

Corollary 4 A set L′ ⊎Q′ ⊆ P is in convex position

if and only if no point of Q′ ⊆ Q is contained in the

convex hull of L′ ⊆ L.

The main lemma then reads as follows:

Lemma 5 There is an independent set of size m
among the unit disks if and only if there are m+ |B|
points in empty convex position.

Proof. ⇒: Let I, |I| = m, be an independent set
among the set of disks. Let Î ⊂ L denote the cor-
responding lifted centers. We claim that S = Î ∪ B
is in empty convex position. Indeed, by Corollary 4,
no point of L− Î is in the convex hull of S. Further,
by Lemma 3, if some point b ∈ B was in ch(S), this
would mean that there are two points in Î that con-
tained b. Thus, the corresponding disks would touch,
and I would not be an independent set. This means
that there are m + |B| points in empty convex posi-
tion.
⇐: Now assume that there is no independent set of
size m. This means that for any choice of m disks,
two of them touch. Now take any set S of m + |B|
points. As there are only |L|+ |B| points in total, this
must contain at least m points from L. Thus, some
two of them belong to disks that intersect. By Lemma
3, their convex hull contains a point of B. Thus, S is
not in empty convex position. �

3 Adaption to Erdős-Szekeres

We now show how this exact reduction can be applied
to Erdős-Szekeres. One direction of Lemma 5 is
clear, since we have shown how an independent set of
size m results in an empty convex set of size m+ |B|.
For the other direction, we need to show that if there
is any (not necessarily empty) convex set of m + |B|
points, then there is also an independent set of size m
among the disks.

Lemma 6 There is an independent set of size m
among the unit disks if and only if there are m+ |B|
points in convex position.

Proof. ⇒: An empty convex set is convex.
⇐: Let S be a set of m+ |B| points in convex position
with |S ∩ B| < |B|. We show how to construct a
set S′ in convex position of the same size such that
|S′ ∩B| = |S ∩B|+ 1.

Let I = S ∩ L, and let DI be the corresponding
set of disks. Observe that, if |S ∩ B| < |B|, then
|I| > m. If all disks from DI are independent, we are
done. Otherwise, let d and d′ be two disks from DI

that intersect. The point bdd′ cannot be part of S, for
otherwise S would not be in convex position. If we
thus set S′ = I−{d̂}∪B∪{bdd′}, by Corollary 4 the set
is still in convex position and we have |S′| = |S| and
|S′ ∩B| > |S ∩B|. Thus, after finitely many steps we
end up with a set of m+ |B| points which contains all
points from B. In particular, the set contains no point
from B in the convex hull. By Lemma 5, this means
that the disks corresponding to the m points from L
do not intersect. Thus, we have an independent set
of size m. �

This finishes the proof of Thm. 2.

4 Testing weak ε-nets and red-blue discrepancy

Here we shortly mention that the hardness proofs also
show hardness for two closely related problems. Re-
call that a range space is a pair (X,R), whereR ⊂ 2X .
If X is a set of points in R

d and R is the set of all con-
vex sets determined by them, a weak ε-net for (X,R)
is a set of points S such that |S ∩ R| 6= ∅ whenever
|R ∩ X| ≥ ε|X|, for all R ∈ R. See Matoušek [12,
Chapter 10] for further details.

This leads to the following decision problem as fol-
lows:

Definition 4 (ε-Net-Verification) Given a set of

points P ⊂ R
d, another set S ⊂ R

d and an ε > 0. Is

S an ε-net for P with respect to all convex sets?

Chazelle et al. [4] give a polynomial time algorithm
for the problem in the plane and ask whether it is
solvable in polynomial time in R

3.
A closely related concept is that of red-blue discrep-

ancy: Given a set R of red and a set B of blue points,
the discrepancy of a set C is defined as

D(C) = ||R ∩ C| − |B ∩ C|| .

The discrepancy of the set P = R∪B is then defined
as D(P ) = maxC D(C). The corresponding decision
problem Red-Blue-Discrepancy asks whether the
discrepancy of a given set is at least some value k ∈ N.
Now observe that the set of blocking points B de-

termines an (m/n)-net1 for the set of lifted points L
if and only if there is no empty convex set of size

1Recall that n was the number of unit disks.
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m + |B| among the points of L ⊎ B. A similar ar-
gument holds for Red-Blue-Discrepancy. Our re-
duction thus also shows the following:

Theorem 7 The problem ε-Net-Verification is

co-NP-hard in R
3 and Red-Blue-Discrepancy is

NP-hard in R
3.

5 Conclusion and open problems

The major open question is to find an approxima-
tion algorithm for the problems Erdős-Szekeres
and Largest-Empty-Convex-Set. The obvious
approach (projecting to R

2 and solving the prob-
lem there) does not work very well: as shown by
Chazelle et al. [5], there are polytopes whose projec-
tion in any direction has Θ(log n) vertices on the con-
vex hull. This leads to a polynomial time (log n)/n-
approximation, which only very few people will be
happy about. Thus, the question for a more intelli-
gent (probably constant-factor) approximation algo-
rithm remains and seems to be very challenging.
In addition to this, the most interesting question

is the following: Is Largest-Empty-Convex-Set
in R

3 fixed parameter tractable with respect to the
size of the solution? That is, can we decide whether
there are k points in empty convex position in time
O (f(k) · nc) for some computable function f and con-
stant c? More generally, given a point set P in R

d,
can we decide whether there is an empty convex set
of size k in time O

(

f(k)nO(d)
)

?
Observe that due to the Erdős-Szekeres theorem

itself, the problem Erdős-Szekeres is trivially fixed-
parameter tractable: Given a point set P and a k ∈ N,
if n := |P | ≤ 2k, we use a brute force algorithm,
i.e., simply try all subsets of size k. This takes time
(

n

k

)

≈ nk ≤ (2k)k. If n > 2k, we simply answer
yes. In any case, the running time is bounded by
2k

2

, and thus we have an algorithm with running time
O (f(k)n). Here, the question for a polynomial size
problem kernel is of interest.

Acknowledgements We thank Günter Rote and
Nabil Mustafa for pointing us out to [5] and [4], re-
spectively.
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Unsolvability of the Weighted Region Shortest Path Problem∗

Jean-Lou De Carufel† Carsten U. Grimm‡† Anil Maheshwari† Megan Owen§ Michiel Smid†

Abstract

Let S be a subdivision of the plane into polygonal
regions, where each region has an associated positive
weight. The weighted region shortest path problem is
to determine a shortest path in S between two points
s, t ∈ S, where the distances are measured according to
the weighted Euclidean metric - the length of a path is
defined to be the weighted sum of (Euclidean) lengths
of the subpaths within each region. We show that
this problem cannot be solved in the Algebraic Com-

putation Model over the Rational Numbers (ACMQ).
The ACMQ can compute exactly any number that can
be obtained from the rationals Q by applying a finite
number of operations from +, −, ×, ÷, k

√
, for any

integer k ≥ 2. Our proof uses Gröbner bases and
Galois theory, and is based on Bajaj’s technique.

1 Introduction

The weighted region shortest path problem is one of the
classical path problems in Computational Geometry
and has been studied over the last two decades. It
was originally introduced in [11] as a generalization
of the two-dimensional shortest path problem with
obstacles. There are several well known approximation
algorithms for this problem; see, e.g., [1, 5, 11]. In this
paper, we show that determining the exact shortest
path distance in this setting is an unsolvable problem
in an algebraic model of computation, confirming the
suspicion expressed in [11, Section 4].

The algebraic complexity of geometric optimization
problems was first studied by Bajaj, who showed that
Euclidean shortest paths among polyhedral obstacles
in three dimensions [3] and solutions to the Weber
problem and its variations [4] cannot be expressed
as finite algebraic expressions. More recently, the
algebraic complexity of semi-definite programming [12]
and shortest paths through certain cube complexes [2]
were investigated. We employ Bajaj’s technique [4] to
show that the weighted region shortest path problem
is unsolvable. In a nutshell, the technique is as follows.

∗This work has been partially funded by NSERC and FQRNT
†School of Computer Science, Carleton University, Ottawa,

Canada
‡Faculty of Mathematics, Otto-von-Guericke University,

Magdeburg, Germany
§School of Computer Science, University of Waterloo, Wa-

terloo, Canada

As a consequence of the fundamental theorem of
Galois [9], we know that there are no general formu-
las to solve a polynomial equation of degree d ≥ 5
using radicals. However, there are some polynomial
equations of degree d ≥ 5 that can be solved by rad-
icals. It is the Galois group Gal(p) of an irreducible
polynomial p over Q that determines the solvability
of p by radicals. The criterion is the following one: A
polynomial equation p(x) = 0 is solvable by radicals
if and only if Gal(p) is solvable (refer to [9]). We will
present an instance of the weighted region shortest
path problem such that solving this instance exactly
within ACMQ is equivalent to the statement that the
polynomial equation p12(x) = 0 in (11) is solvable.
However, we will show that the Galois group of p12 is
S12 (i.e., the symmetric group over 12 elements) up
to isomorphism. This is proved using the following
theorem.1

Theorem 1 (Bajaj [4]) Let p be a polynomial of
even degree d ≥ 6. Suppose that there are three
prime numbers q1, q2 and q3 that do not divide the
discriminant ∆(p) of p and such that

p(x) ≡ pd(x) (mod q1) , (1)

p(x) ≡ p1(x)pd−1(x) (mod q2) , (2)

p(x) ≡ p′1(x)p2(x)pd−3(x) (mod q3) , (3)

where pd(x) is an irreducible polynomial of degree
d modulo q1; pd−1(x) (respectively p1(x)) is an irre-
ducible polynomial of degree d − 1 (respectively of
degree 1) modulo q2; pd−3(x) (respectively p′1(x) and
p2(x)) is an irreducible polynomial of degree d − 3
(respectively of degree 1 and of degree 2) modulo q3.
Then Gal(p) ∼= Sd.

If d ≥ 5 is odd, the same result holds if we replace
(3) by

p(x) ≡ p2(x)pd−2(x) (mod q4) , (4)

where q4 is a prime number such that q4 ∤ ∆(p) and
pd−2(x) (respectively p2(x)) is an irreducible polyno-
mial of degree d− 2 (respectively of degree 2) modulo
q4.

1Alternatively, it can be verified using symbolic computation
software. For example, GAP uses the algorithm from [8] to
test the solvability of polynomials up to degree 15 via the
command isSolvable, and MAGMA implements an extension
of the algorithm in [10], that works for polynomials of arbitrary
degree, limited only by time and space constraints.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: The weighted region shortest path problem
with two bends.

Observe that (1) implies that p(x) is irreducible over Q,
which implies that Gal(p) is a transitive group. (2) and
(3) guarantee the existence of a (d− 1)-cycle and of an
element with cycle decomposition (2, d− 3) in Gal(p).
These two elements, together with the transitivity of
Gal(p), imply that Gal(p) ∼= Sd.

Lemma 2 (Chapter 4 [9]) A symmetric group Sn

over n elements is solvable if and only if n ≤ 4.

If a problem is considered solvable with respect to
the ACMQ, we can express its solution as a finite
sequence of the allowed operations on the rational
input data. For practical applications however, we
may need to rely on approximations of such an explicit
representation, due to the occurrence of roots. The
latter can hardly be avoided for the weighted region
shortest path problem, as the length of a path is the
weighted sum of Euclidean distances. A problem may
be unsolvable in ACMQ even though its solution can
be approximated with sufficient precision in practice.
Nonetheless, we use the ACMQ as a viewpoint to gain
insights about algebraic complexity and the applica-
bility of symbolic computation. One advantage of the
latter is the reusability of a result without cascaded
approximation error. Unsolvability on the other hand
concludes any search for a closed formula for solutions
and provides further justification for the employment
of approximation approaches.

2 Unsolvability

Consider the situation depicted in Fig. 1, where s =
(0, 0) is the source and d = (5, 0) is the target. The
three regions r1, r2 and r3 have weights w1 = 1, w2 = 2
and w3 = 3, respectively. Region r2 is the triangle
△abc where a = (−1,−2), b = (2, 2) and c2 = (5,−1).
The shortest path (identified by a dashed line) goes
through the two edges ba and bc. The equations of
the line segments ba and bc are

ba : (x, y) = (2, 2) + λ1(−3,−4),

bc : (x, y) = (2, 2) + λ2(3,−3),

where λ1, λ2 ∈ [0, 1]. The function to optimize is
therefore

φ(λ1, λ2) =
√

25λ2
1 − 28λ1 + 8

+ 2
√

18λ2
2 − 6λ2λ1 + 25λ2

1

+ 3
√

18λ2
2 − 30λ2 + 13.

The candidates (λ1, λ2) to minimize φ(λ1, λ2) are
(0, 0), (1, 1) and the solutions of the following system
of equations

∂

∂λ1

φ(λ1, λ2) = 0,
∂

∂λ2

φ(λ1, λ2) = 0, (5)

where λ1, λ2 ∈ [0, 1]. Computing (5), we get

25λ1 − 14
√

25λ2

1
− 28λ1 + 8

+
50λ1 − 6λ2

√

18λ2

2
− 6λ2λ1 + 25λ2

1

= 0, (6)

36λ2 − 6λ1
√

18λ2

2
− 6λ2λ1 + 25λ2

1

+
54λ2 − 45

√

18λ2

2
− 30λ2 + 13

= 0, (7)

and this system of equations leads to the following
one:

15100λ2
1 − 52500λ3

1 + 46875λ4
1

−3624λ1λ2 + 12600λ2
1λ2 − 11250λ3

1λ2

−3240λ2
2 + 11592λ1λ

2
2 − 10350λ2

1λ
2
2 = 0,

(8)

5573λ2
1 − 726λ1λ2 − 13380λ2

1λ2

+2178λ2
2 + 1800λ1λ

2
2 + 8028λ2

1λ
2
2

−5400λ3
2 − 1080λ1λ

3
2 + 3240λ4

2 = 0.

(9)

The standard technique to isolate λ1 and λ2 in
this system is to use Buchberger’s algorithm [6] from
Gröbner bases theory. Gröbner bases theory is a gener-
alization of the ideas from linear algebra for solving a
system of linear equations, namely bases and Gaussian
elimination, to systems of multivariate polynomials.
Just as the solution set to a system of linear equations
forms a vector space, the solution set to a system of
polynomials forms what is called a variety. The goal
is to find a set of polynomials whose solution set is the
variety of the original polynomials, but which have
good computational properties. This is analogous to
finding a basis for the nullspace of a system of linear
equations. A Gröbner basis is such a set, and can be
found by running Buchberger’s algorithm, which is
a generalization of Gaussian elimination. The algo-
rithm has different outcomes depending on the choice
of monomial ordering used, i.e., ordering first by total
degree of monomial versus degree of first variable. If
a lexicographic ordering is used, then the Gröbner
basis has the property that it contains a polynomial
in only the last variable, a polynomial in only the last
two variables, etc., and thus can be used to solve the
original system of polynomial equations. This algo-
rithm is implemented in many symbolic computation
software such as Mathematica and Singular. Using
the command

eqn1 = 15100*lambda1^2

-52500*lambda1^3
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+46875*lambda1^4

-3624*lambda1*lambda2

+12600*lambda1^2*lambda2

-11250*lambda1^3*lambda2

-3240*lambda2^2

+11592*lambda1*lambda2^2

-10350*lambda1^2*lambda2^2;

eqn2 = 5573*lambda1^2

-726*lambda1*lambda2

-13380*lambda1^2*lambda2

+2178*lambda2^2

+1800*lambda1*lambda2^2

+8028*lambda1^2*lambda2^2

-5400*lambda2^3

-1080*lambda1*lambda2^3

+3240*lambda2^4;

GB = GroebnerBasis[{eqn1,eqn2},

{lambda1,lambda2}];

p15 = GB[[1]]

p14 = GB[[2]]

pp14 = GB[[3]]

in Mathematica, we obtain the following equivalent
system of three equations2:

p15(λ2) = 0,

p14 (λ1, λ2) = 0,

p′14 (λ1, λ2) = 0,

(10)

where p15 is a polynomial of degree 15 in λ2, and p14
and p′14 are polynomials of total degree 14 in λ1 and
λ2. In (10), p15(λ2) factors into λ3

2 ·p12(λ2), where p12
is the degree-12 polynomial

p12(x) = −745794461011616 (11)

+ 7579514247189376x

− 35835761266110832x2

+ 106594990715823828x3

− 227453553923353605x4

+ 372947142859928208x5

− 484843926044252448x6

+ 504065307805559136x7

− 416814671916200304x8

+ 267526211688938880x9

− 125338196832117120x10

+ 37669520655360000x11

− 5350784184000000x12.

2The corresponding calculations will appear in the full version
and will be provided upon request.

Theorem 3 The weighted region shortest path prob-
lem cannot be solved exactly within the ACMQ.

Proof. Following the notation of Theorem 1, and the
above example, we have p(x) = p12(x), d = 12 and
∆(p) = 2117 · 3144 · 549 · 716 · 47 · 532 · 241 · 55732 · 9067 ·
134172 · 359932 · 5242801 · q96, where q96 is a prime
number with 96 digits. With q1 = 61, q2 = 89 and
q3 = 139, one finds

p(x) ≡ 33 + 19x+ 40x2 + 15x3 + 23x4 + 33x5 + 56x6

+39x7 + 57x8 + 26x9 + 49x10 + 56x11

+17x12 (mod 61),

p(x) ≡ 38(x+ 32)(1 + 84x+ 57x2 + 16x3 + 71x4

+86x5 + 12x6 + 54x7 + 12x8 + 22x9

+82x10 + x
11) (mod 89),

p(x) ≡ 95(x+ 35)(58 + 41x+ x
2)(61 + 62x+ 42x2

+3x3 + 106x4 + 57x5 + 28x6 + 29x7

+106x8 + x
9) (mod 139),

so that Gal(p) ∼= S12. Theorem 2 tells us that S12 is
non-solvable.

With numerical methods, one easily finds that the
minimum of φ(λ1, λ2) for λ1, λ2 ∈ [0, 1] is at (λ1, λ2) ≈
(0.39398, 0.72450), which is a solution of the system
of equations (8) and (9). Hence, λ2 ≈ 0.72450... is
a solution of p12(λ2) = 0. But we showed above
that p12(λ2) = 0 cannot be solved exactly within the
ACMQ. Therefore, in general, the weighted region
shortest path problem cannot be solved exactly within
the ACMQ. �

Observation 1 Theorem 1 cannot be used if the Ga-
lois group Gal(p) of a polynomial p of degree d is such
that Gal(p) 6∼= Sd. Therefore, it is not an appropriate
tool to compute the Galois group of a polynomial p
in general. It is rather meant for the following: Let
P be a problem that can be translated into a (sys-
tem of) polynomial equation(s). Theorem 1 is a good
tool to prove that P cannot be solved exactly within
the ACMQ, when it is the case. Usually, P admits
infinitely many different instances leading to infinitely
many different polynomial equations. Our experience
shows that most of the time, Theorem 1 applies on
the first instance of P we can think of. Otherwise,
one can use a symbolic computation software as a
black box and compute Gal(p). To use Theorem 1,
we need to find three prime numbers that satisfy the
constraining properties. Bajaj [4] explains why trying
d + 1 prime numbers that do not divide ∆(p) will
most likely be sufficient. As for the factorisation of a
polynomial modulo a prime number, refer to [7] for
standard algorithms that perform this task.
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3 Generalization of the counter-example to other

instances of the problem

We have shown that one instance of the weighted re-
gion shortest path problem is unsolvable, which shows
this problem is unsolvable in general. However, it
would be useful to know how often an instance of the
weighted region shortest path problem is unsolvable.
If we know the sequence of regions that the shortest
path goes through, then we know that the path itself is
made up of a sequence of straight lines passing through
the interiors of the prescribed regions and that it bends
only on the boundaries of the regions. Furthermore,
the shortest path is locally optimal in between any two
bendpoints. That is, if we treat the bendpoints ui and
ui+3 as fixed, then the intermediate bendpoints ui+1

and ui+2 must be optimal with respect to ui and ui+3.
This implies that any instance of the weighted region
shortest path problem in which the shortest path goes
through at least three regions, will contain a general-
ization of the given counter-example. In particular,
the equations to optimize will have the same form,
but different coefficients. Now a polynomial of degree
5 or higher is unsolvable if its coefficients are alge-
braically independent, i. e. not related by an algebraic
expression. This will be true in the general instance of
the problem, except in very specific cases, and thus a
generic instance of the weighted region shortest path
problem in which the path passes through at least
three regions is usually unsolvable.

4 Conclusions & Future Work

We demonstrated that even a toy example of the
weighted region shortest path problem cannot be
solved in ACMQ. Thus, we cannot expect this to
be the case for inputs of realistic size or for instances
of more general versions, such as the flow path [13]
or the anisotropic shortest path problem [14]. The
method we employed, Bajaj’s technique, will be a use-
ful tool-kit to prove similar unsolvability results in the
future and guide more realistic analysis of problems in
computational geometry with algebraic components.
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The expected number of points in circles

Ruy Fabila-Monroy∗ Clemens Huemer† Eulàlia Tramuns‡

Abstract

Let S be a plane point set of n points with no three
of them collinear and no four cocircular. Consider
the circle passing through three points of S chosen
uniformly at random and let X be the random vari-
able that counts the number of points of S inside
this circle. Urrutia (2004) showed that the expec-
tation ES(X) of X only depends on the rectilinear
crossing number cr(S) of S. We prove that this
also holds for the variance VS(X). More precisely,

ES(X) = cr(S)

(n3)
+ n−3

4 and

VS(X) = (n−3)2

(

cr(S)

8
(

n

4

) −
cr(S)2

16
(

n

4

)2 −
1

80
+

1

5(n− 3)

)

.

Then, consider the smallest circle containing two
points of S chosen uniformly at random, and let Y be
the random variable that counts the number of points
of S inside this circle. We show an upper bound on
the expectation ES(Y ) ≤ n−2

3 , and there are point
sets S attaining this bound.

1 Introduction

A point set S in the plane is in general position if no
three points of the set lie on a common line, and no
four points of the set lie on a common circle. Through-
out, all considered point sets will be in general po-
sition in the plane and |S| = n. We denote circles
defined by three points of a set S as circumcircles.
It is well known that circumcircles that do not con-
tain points of S in the interior define the Delaunay
triangulation of S. The number of empty circumcir-
cles is known to be 2n − 2 − h where h is the num-
ber of extreme points of S. Also relations for the
numbers of circumcircles containing more points are
known [6]. Denote with ck the number of circumcir-
cles containing exactly k points of S in its interior.
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Then, ck + cn−k−3 = 2(k + 1)(n − 2 − k), see [4, 9].
Note that this expression only depends on n but not
on the positions of the points of S. However, the
value ck does depend on the positions of the points of
S.We study how many points of S lie in the interior of
a random circumcircle. More formally, given a set S
of n points, let X be the random variable that counts
the number of points of S inside the circle defined by
three points chosen uniformly at random from S. Let
ES(X) denote the expectation of X and denote by
VS(X) the variance.

Urrutia [11] proved that ES(X) ≥ (n − 3)/3.33..
and if S is in convex position then ES(X) = n−3

2 .
We show in Section 2 that ES(X) and VS(X) depend
only on the rectilinear crossing number cr(S) of S, a
well studied parameter that is equal to the number of
convex quadrilaterals with vertices in S. In particu-

lar, we rediscover the equality ES(X) = cr(S)

(n3)
+ n−3

4

from [11]. Using the current best lower bound on
cr(S) [2], this implies 0.344993n − O(1) ≤ ES(X) ≤
n−3
2 for every set S. The current best examples

of point sets S with small crossing number [1] have
ES(X) = 0.345122n−O(1).

We further express the variance VS(X) of X in
terms of cr(S) and obtain 0.0259729n2 − O(n) ≤

VS(X) ≤ (n−3)2

20 + n−3
5 for every set S. The upper

bound on VS(X) is obtained for point sets in convex
position and its lower bound for point sets that min-
imize the rectilinear crossing number. The point sets
from [1] have VS(X) = 0.0260128n2 −O(n).

We then consider this problem for circles defined by
only two points, in which case the center of the cir-
cle is the midpoint of the segment connecting them.
We call these circles Gabriel circles. In this setting,
circles containing no points of S in the interior con-
stitute the so-called Gabriel graph. It is well known
that the Gabriel graph is a subgraph of the Delaunay
triangulation. The number of Gabriel circles not con-
taining points of S in the interior is between n−1 and
3n − 8. Also higher order Gabriel graphs have been
studied, where two vertices are connected by an edge
in this graph if the Gabriel circle defined by the two
points hast at most k points of S in its interior. The
number of edges in this graph is known to be between
(k + 1)n/2 and 3(k + 1)(n − 2 − k). We refer to the
recent thesis [10] for more results and references.

Our problem can also be formulated in terms of
angles. A point p lies inside the Gabriel circle defined

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
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by two points a and b if and only if the angle apb at p is
obtuse, that is, greater than π/2. Thus we are asking
for the number of obtuse triangles in S. See [7] for
some prominent problems and results on obtuse and
acute angles in point sets.
Let Y denote the random variable that counts the

number of points inside a Gabriel circle defined by two
points chosen uniformly at random from S. Denote by
ES(Y ) the expectation of Y . Simple examples show
that ES(Y ) is not determined by the rectilinear cross-
ing number cr(S). We show in Section 3 that ES(Y )
is at most n−2

3 and there are sets S where ES(Y ) is
exactly n−2

3 . Concerning lower bounds, Conway et
al. [5] proved that each set S of n points contains at

least
⌈

n2(n−3)
18

⌉

obtuse and right triangles. This im-

plies that ES(Y ) ≥ n
9 −O(1) for every set S. Conway

et al. also provide point sets S for which ES(Y ) is no
more than 4

27n+O(1).

2 The expected number of points in a circumcircle

Lemma 1 Let S be a set of n points in general po-

sition in the plane. Then,

n−3
∑

k=0

k · ck =

(

n

4

)

+ cr(S),

where ck is the number of circumcircles containing

exactly k points in the interior.

Proof. In the following, the rectilinear crossing num-
ber cr(S) is also denoted by �, representing the num-
ber of four-tuples of S which are in convex position.
Let△ denote the number of four-tuples of S which are
not in convex position. We have � + △ =

(

n

4

)

. Four
points define four circumcircles. If the four points are
in convex position then exactly two of the four circles
contain the remaining point in the interior. If the four
points are not in convex position, then exactly one of
the four circumcircles contains the remaining point in
the interior. Let ⊙ =

∑

p∈S (number of circumcircles
containing p in its interior). We have ⊙ = ⊙� +⊙△,
where in ⊙� and ⊙△ we distinguish whether the con-
sidered four points are in convex position or not. Then
⊙� = 2� and ⊙△ = △. We get

n−3
∑

k=0

k · ck = ⊙ = ⊙� +⊙△ = 2�+△ =

(

n

4

)

+�.

�

Theorem 2 Let S be a set of n points in general

position in the plane. Then, ES(X) = cr(S)

(n3)
+ n−3

4 .

Proof. The probability that X = k, for 0 ≤ k ≤
n − 3, is the probability that the circle defined by

three randomly chosen points from S contains exactly
k points in its interior. Since there are ck circles con-
taining k points in its interior, this probability is ck

(n3)
.

Hence,

ES(X) =

n−3
∑

k=0

k ·
ck
(

n

3

) =
1
(

n

3

)

n−3
∑

k=0

k · ck =

1
(

n

3

)

((

n

4

)

+ cr(S)

)

=
cr(S)
(

n

3

) +
n− 3

4
.

�

A B C

Figure 1: Three point sets representing the three dif-
ferent order types for 5 points.

Lemma 3 Let S be a set of n points in general po-

sition in the plane. Then,

n−3
∑

k=0

k2 · ck =

(

n

5

)

+

(

n

4

)

+ (n− 3)cr(S).

Proof. We consider sets of five points. Figure 1
shows the three possible configurations correspond-
ing to different order types [3, 8]: Configuration A is
a convex five-gon, B is a convex quadrilateral with
one interior point, and C is a triangle with two in-
terior points. We first express the rectilinear cross-
ing number of S in terms of |A|, |B| and |C|, which
denote the number of times the corresponding con-
figuration appears in S. Configuration A defines five
crossings, configuration B three crossings, and config-
uration C defines one crossing. When counting cr(S)
in this way by considering five-tuples, each crossing is
counted n− 4 times. We thus have

(n− 4)cr(S) = 5|A|+ 3|B|+ |C|.

Since |A| + |B| + |C| =
(

n

5

)

, we get (n − 4)cr(S) =
(

n

5

)

+4|A|+2|B|. We then calculate ck, the number of
circumcircles containing exactly k points, 0 ≤ k ≤ 2,
for each of the three configurations. Note that for
sets of five points, c0, c1 and c2 are determined by the
number of extreme points; c0 is the number of trian-
gles of the Delaunay triangulation, c0 + c2 = 6 [4, 9],
and c0 + c1 + c2 =

(

5
3

)

. For configuration A we get
c0(A) = 3, c1(A) = 4 and c2(A) = 3. Configuration B
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has c0(B) = 4, c1(B) = 4 and c2(B) = 2. And config-
uration C has c0(C) = 5, c1(C) = 4 and c2(C) = 1.
We count

∑
(

k

2

)

· ck by considering for each circum-
circle all pairs of points in the interior of the circle.
This sum also equals

n−3
∑

k=0

(

k

2

)

· ck = c2(A) + c2(B) + c2(C) =

3|A|+ 2|B|+ |C| =

(

n

5

)

+ 2|A|+ |B|.

Multiplying by two, we obtain

n−3
∑

k=0

k · (k − 1) · ck =

(

n

5

)

+

(

n

5

)

+ 4|A|+ 2|B|

and replacing the last terms using (n − 4)cr(S) =
(

n

5

)

+ 4|A|+ 2|B| we get

n−3
∑

k=0

k · (k − 1) · ck =

(

n

5

)

+ (n− 4)cr(S).

Using Lemma 1 we obtain

n−3
∑

k=0

k2 · ck −

(

n

4

)

− cr(S) =

(

n

5

)

+ (n− 4)cr(S).

The result follows. �

Theorem 4 Let S be a set of n points in general

position in the plane. Then,

VS(X) = (n−3)2

(

cr(S)

8
(

n

4

) −
cr(S)2

16
(

n

4

)2 −
1

80
+

1

5(n− 3)

)

.

Proof. The probability that X2 = k2, for 0 ≤ k ≤
n − 3, is the probability that X = k, which is ck

(n3)
.

Hence, by Lemma 3, ES(X
2) =

∑n−3
k=0 k

2 · ck

(n3)
=

1
(

n

3

)

((

n

5

)

+

(

n

4

)

+ (n− 3) · cr(S)

)

.

From Theorem 2 we get

ES(X)2 =

(

cr(S)
(

n

3

) +
n− 3

4

)2

We then use VS(X) = ES(X
2)−ES(X)2 and simplify

to obtain the claimed expression.

�

3 The expected number of points in a Gabriel cir-

cle

Theorem 5 For every set S of n points in general

position in the plane, ES(Y ) ≤ n−2
3 and there are

point sets attaining this bound.

Proof. The probability that Y = k, for 0 ≤ k ≤ n−2,
is the probability that exactly k points lie in the
Gabriel circle of two points chosen uniformly at ran-
dom from S. Let ek denote the number of segments of
S for which the Gabriel circle defined by the endpoints
of the segment contains exactly k points in the inte-
rior. Then, ES(Y ) =

∑n−2
k=0 k ·

ek

(n2)
. A point p ∈ S lies

in the interior of the Gabriel circle of two points a and
b of S if and only if the angle apb at p is greater than
π
2 . We assign an obtuse angle apb at p to the edge ab.
Since the interior angles of the triangle apb sum up to
π, at most one of these three angles is greater than π

2 .
In total S spans

(

n

3

)

triangles and thus at most this

many obtuse angles. Hence,
∑n−2

k=0 k · ek ≤
(

n

3

)

and

ES(Y ) = 1

(n2)

∑n−2
k=0 k · ek ≤ n−2

3 .

For an example where this bound is obtained, con-
sider the set S of points i = (i, 0), 1 ≤ i ≤ n, and
perturb them slightly such that no three points are
collinear and no four points are cocircular. Then each
triangle abc with a < b < c has an obtuse angle at b.
In total we count

(

n

3

)

obtuse triangles and the above
reasoning gives ES(Y ) = n−2

3 .
�

4 Concluding remarks and further research

Almost tight bounds on the minimum rectilinear
crossing number allowed us to also obtain almost
tight bounds on the mimimum value of ES(X) and
of VS(X) among all sets S of n points. But also the
other direction looks appealing: Can we derive a good
bound on the rectilinear crossing number from the
first moments of X? Then, we think it is interesting
to express further problems in terms of crossing num-
bers. Concerning Gabriel circles, an open problem is
to bound the variance VS(Y ). Another challenging
question is to reduce the gap on the lower bound on
ES(Y ).
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Many collinear k-tuples with no k + 1 collinear points

József Solymosi∗ Miloš Stojaković†

Abstract

For every k > 3, we give a construction of planar point
sets with many collinear k-tuples and no collinear (k+
1)-tuples.

1 Introduction

In the early 60’s Paul Erdős asked the following ques-
tion about point-line incidences in the plane: Is it pos-
sible that a planar point set contains many collinear

four-tuples, but it contains no five points on a line?

There are various constructions for n-element point
sets with n2/6 − O(n) collinear triples with no four
on a line (see [3] or [10]). However, no similar con-
struction is known for larger numbers.
Let us formulate Erdős’ problem more precisely.

For a finite set P of points in the plane and k ≥ 2, let
tk(P ) be the number of lines meeting P in exactly k
points, and let Tk(P ) :=

∑
k′≥k tk′(P ) be the number

of lines meeting P in at least k points. For r > k and
n, we define

t
(r)
k (n) := max

|P |=n

Tr(P )=0

tk(P ).

In plain words, t
(r)
k (n) is the number of lines con-

taining exactly k points from P , maximized over
all n point sets P that do not contain r collinear
points. In this paper we are concerned about bound-

ing t
(k+1)
k (n) from below for k > 3. Erdős conjectured

that t
(k+1)
k (n) = o(n2) for k > 3 and offered $100 for

a proof or disproof [8] (the conjecture is listed as Con-
jecture 12 in the problem collection of Brass, Moser,
and Pach [2]).

1.1 Earlier Results

This problem was one of Erdős’ favorite geometric
problems, he frequently talked about it and listed it
among the open problems in geometry, see [8, 7, 5, 6,
9]. It is not just a simple puzzle which might be hard
to solve, it is related to some deep and difficult prob-
lems in other fields. It seems that the key to attack
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†Department of Mathematics and Informatics, University of

Novi Sad, Serbia. milos.stojakovic@dmi.uns.ac.rs. Partly
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this question would be to understand the group struc-
ture behind point sets with many collinear triples. We
will not investigate this direction in the present paper,
our goal is to give a construction showing that Erdős
conjecture, if true, is sharp – for k > 3, one can not
replace the exponent 2 by 2− c, for any c > 0.

The first result was due to Kárteszi [13] who proved

that t
(k+1)
k (n) ≥ ckn log n for all k > 3. In 1976

Grünbaum [11] showed that t
(k+1)
k (n) ≥ ckn

1+1/(k−2).
For some 30 years this was the best bound when Is-
mailescu [12], Brass [1], and Elkies [4] consecutively
improved Grünbaum’s bound for k ≥ 5. However,
similarly to Grünbaum’s bound, the exponent was go-
ing to 1 as k went to infinity.

In what follows we are going to give a construc-
tion to show that for any k > 3 and δ > 0 there is
a threshold n0 = n0(k, δ) such that if n ≥ n0 then

t
(k+1)
k (n) ≥ n2−δ. On top of that, we note that each
of the collinear k-tuples that we count in our con-
struction has an additional property – the distance
between every two consecutive points is the same.

1.2 Notation

For r > 0, a positive integer d and x ∈ R
d, by Bd(x, r)

we denote the closed ball in R
d of radius r centered at

x, and by Sd(x, r) we denote the sphere in R
d of radius

r centered at x. When x = 0, we will occasionally
write just Bd(r) and Sd(r).

For a set S ⊆ R
d, let N(S) denote the number of

points from the integer lattice Z
d that belong to S,

i.e., N(S) := Z
d ∩ S.

2 A lower bound for t
(k+1)
k (n)

We will prove bounds for even and odd value of k
separately, as the odd case needs a bit more attention.

2.1 k is even

Theorem 1 For k ≥ 4 even and ε > 0, there is

a positive integer n0 such that for n > n0 we have

t
(k+1)
k (n) > n2−ε.

Proof. We will give a construction of a point set P
containing no k+1 collinear points, with a high value
of tk(P ).

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: Line s with k points, for k even.

Let d be a positive integer, and let r0 > 0. It is
known, see, e.g., [15], that for large enough r0 we have

N(Bd(r0)) = (1 + o(1))V (Bd(r0))

= (1 + o(1))Cdr
d
0

≥ c1r
d
0 ,

where Cd = πd/2

Γ((n+2)/2) , and c1 = c1(d) is a constant

depending only on d.
For each integer point from Bd(r0), the square of

its distance to the origin is at most r20. As the square
of that distance is an integer, we can apply pigeonhole
principle to conclude that there exists r, with 0 < r ≤
r0, such that the sphere Sd(r) contains at least 1/r20
fraction of points from Bd(r0), i.e.,

N(Sd(r)) ≥
1

r20
N(Bd(r0)) ≥

1

r20
c1r

d
0 = c1r

d−2
0 .

We now look at unordered pairs of different points
from Z

d ∩Sd(r). The total number of such pairs is at
least

(

N(Sd(r))

2

)

≥

(

c1r
d−2
0

2

)

≥ c2r
2d−4
0 ,

for some constant c2 = c2(d). On the other hand,
for every p, q ∈ Z

d ∩ Sd(r) we know that the Eu-
clidean distance d(p, q) between p and q is at most
2r, and that the square of that distance is an integer.
Hence, there are at most 4r2 different possible values
for d(p, q). Applying pigeonhole principle again, we
get that there are at least

c2r
2d−4
0

4r2
≥

c2
4
r2d−6
0

pairs of points from Z
d ∩Sd(r) that all have the same

distance. We denote that distance by ℓ.
Let p1, q1 ∈ Z

d ∩ Sd(r) with d(p1, q1) = ℓ, and let s
be the line going through p1 and q1. We define k − 2
points p2, . . . , pk/2, q2, . . . , qk/2 on the line s such that
d(pi, pi+1) = ℓ and d(qi, qi+1) = ℓ, for all 1 ≤ i < k/2,
and such that all k points p1, . . . , pk/2, q1, . . . , qk/2 are
different, see Figure 1.
Knowing that p1 and q1 are points

from Z
d, the way we defined points

p2, . . . , pk/2, q2, . . . , qk/2 implies that they have

to be in Z
d as well. If we set ri :=

√

r2 + i(i− 1)ℓ2,
for all i = 1, . . . , k/2, then the points pi and qi belong

to the sphere Sd(ri), and hence, pi, qi ∈ Z
d ∩ Sd(ri),

for all i = 1, . . . , k/2, see Figure 2.
We define the point set P to be the set of all integer

points on spheres Sd(ri), for all i = 1, . . . , k/2, i.e.,

P := Z
d ∩

(

∪
k/2
i=1Sd(ri)

)

.

Let n := |P |. Obviously, P ⊆ Bd(rk/2), so we have

n ≤ N
(

Bd(rk/2)
)

= (1 + o(1))V (Bd(rk/2)) = c1r
d
k/2.

Plugging in the value of rk/2 and having in mind that
ℓ < 2r, we obtain

n ≤ c1

(

√

r2 + k/2(k/2− 1)4r2
)d

≤ c1
√

k2 + 1
d
rd

≤ c3r
d

≤ c3r
d
0 ,

where c3 = c3(d, k) is a constant depending only on d
and k.
As the point set P is contained in the union of k/2

spheres, there are obviously no k + 1 collinear points
in P . On the other hand, every pair of points p1, q1 ∈
Z
d ∩ Sd(r) with d(p1, q1) = ℓ defines one line that

contains k points from P . Hence, the number of lines
containing exactly k points from P is

tk(P ) ≥
c2
4
r2d−6
0 ≥

c2
4

1

c
2d−6

d
3

n
2d−6

d ≥ c4n
2d−6

d ,

where c4 = c4(d, k) is a constant depending only on d
and k.
To obtain a point set in two dimensions, we can

project our d dimensional point set to an arbitrary
(two dimensional) plane in R

d. The vector v along
which we project should be chosen so that every two
points from our point set are mapped to different
points, and every three points that are not collinear
are mapped to points that are still not collinear. Ob-
viously, such vector can be found.
For ε given, we can pick d such that 2d−6

d > 2 −
ε. As we increase r0, we obtain constructions with
n growing to infinity. When n is large enough, the
statement of the theorem will hold. �

2.2 k is odd

Theorem 2 For k ≥ 4 odd and ε > 0, there is a

positive integer n0 such that for n > n0 we have

t
(k+1)
k (n) > n2−ε.
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Figure 2: The position of the k points related to the origin, for k even.

The proof for k odd follows the lines of the proof for
k even, but requires an additional twist, as we cannot
obtain all the points in pairs as before. What we
do, roughly speaking, is find the k-tuple of collinear
points on k+1

2
selected spheres, where the inner most

sphere will contain just one point of the k-tuple and
each of the other spheres will contain two. Then we
make an additional restriction on the point set on the
inner most sphere to prevent k + 1 collinear points
from appearing in our construction.
As due to space restrictions we cannot present this

proof in full detail, we omit it altogether. It can be
found in [14].
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[7] Paul Erdős. On some problems of elementary and
combinatorial geometry. Ann. Mat. Pura Appl. (4),
103:99–108, 1975.
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Topology-Preserving Watermarking of Vector Data

Stefan Huber∗ Martin Held∗ Roland Kwitt† Peter Meerwald∗

Abstract

The embedding of a digital watermark in vector data
results in a perturbation of the vertices which needs to
be constrained in order to maintain geometric prop-
erties of the data. In this paper we investigate the
problem of computing so-called perturbation regions
in which the vertices of a planar straight-line graph
may be dislocated while still preserving the topology
of the input. We propose two different algorithms to
solve this problem and discuss how they can form the
geometric part of a watermarking framework.

1 Introduction

A standard way for watermarking digital data is to
embed imperceptible, yet detectable, information into
a digital signal. Since the watermark is only known to
the embedder, copyright holders can use this technol-
ogy to mark their content in order to prove ownership
by being able to detect the embedded signal.

Most watermarking research has been directed to-
wards techniques applicable to raster data and audio
content. However, complex vector data in computer-
aided design as well as maps and infrastructure data
in geographic information systems, for instance, con-
stitute equally valuable digital assets. When wa-
termarking vector data statistical features are im-
posed by dislocating vertices. Hence, novel geomet-
ric requirements are introduced, while still demand-
ing imperceptibility of the watermark and robustness
against different kinds of attacks. For example, one
needs to guarantee that watermarking does not intro-
duce overlaps among rivers and streets in a map.

Surprisingly, copyright protection of vector data
with distortion constraints has not received much at-
tention. Doncel et al. [2] consider multiple polygonal
chains sharing common vertices, such as the border
of neighboring countries, and discuss how to preserve
connectivity after watermarking. In [6, 7], methods
are proposed that avoid perturbing certain vertices to
preserve the visual appearance of the original data.

In [4] we presented a watermarking framework for
planar straight-line graphs which consists of a geomet-
ric part, a watermarking part and a final correction

∗Universität Salzburg, FB Computerwissenschaften, A-5020

Salzburg, {shuber,held,pmeerw}@cosy.sbg.ac.at. Work was

supported by Austrian FWF Grant L367-N15.
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step, cf. Fig. 1. In this paper we focus on the preser-
vation of the input topology, i.e., on ensuring that
[T1] the numbers of vertices and edges
[T2] all containment relations
[T3] all incidence orders at vertices

remain unchanged, and that
[T4] no intersections are introduced.

We discuss two algorithms for computing a so-called
maximum perturbation region (MPR) for every vertex
such that T1–T4 can be guaranteed: If all vertices
stay within their MPRs after watermarking then the
input topology is guaranteed to be preserved. Once
the MPRs are known, we embed the watermark into
the input data. Since this process need not respect
T2–T4, in a final correction step we use the MPRs
to correct the output of the watermarking step in or-
der to guarantee T1–T4. While the basic idea for
preserving the input topology is simple, the computa-
tional challenge is to efficiently compute MPRs that
are large enough such that the correction step does
not destroy the watermark embedding. Our approach
is general enough to work with any watermarking
method that does not insert or remove vertices or
edges of the input.

2 Maximum perturbation regions

Consider a planar straight-line graph G = (V,E) with
vertex set V := {v1, . . . , vn} and edge set E. The
process of embedding a watermark in G can be in-
terpreted as a transformation of the vertex set V to
a perturbed vertex set V ′ = {v′

1
, . . . , v′n}. We de-

note the graph given by the perturbed vertex set
by G′ = (V ′, E′) and by E′ the corresponding edge
set of G′. We seek maximum perturbation regions

(MPRs) as regions R1, . . . , Rn, with vi ∈ Ri ⊂ R
2,

such that the following property holds: If v′i ∈ Ri

for all 1 ≤ i ≤ n then T1–T4 hold for G′. Thus,
R1, . . . , Rn are regions in which it is safe to perform
perturbations without violating the input topology.

MPR
computation

WM
embedding

Correction
OutputInput

Figure 1: Our watermarking framework.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2.1 Computing MPRs using Voronoi diagrams

For the Voronoi-based computation of MPRs we con-
sider the vertices of V and the straight-line segments
of E as the set S of input sites. The Voronoi diagram
VD(S) of S decomposes the plane into Voronoi cells
VC(s, S), with s ∈ S. Our MPR algorithm relies on
the following observation: If the perturbed counter-
part e′ ∈ E′ of an edge e ∈ E does not intersect the
Voronoi cells of edges non-adjacent to e, then G′ is
planar as the Voronoi cells of different sites do not
overlap.
We denote by |e| the length of the line segment e

and define for any r > 0 and any line segment e the
set B(e, r) ⊂ R

2 as the rectangle with width 2r and
length |e| that has e as its center-line. Next, we denote
by Dv(r) the open disk with center v and radius r.
Our MPR-algorithm consists of two phases:

Phase 1: For each vertex vi ∈ V , we consider the
incident edges ei

1
, . . . , eidi

and we denote by êij the half

of eij that is incident to vi. Then we compute for each

vertex vi ∈ V the largest ti ≤ min1≤j≤di
|êij | such that

Dvi(ti)∪

di⋃

j=1

B(êij , ti) ⊆ VC(vi, S)∪

di⋃

j=1

VC(eij , S). (1)

Let T (vi) := Dvi
(ti) ∪

⋃di

j=1
B(êij , ti), cf. Fig. 2. In

order to compute t1, . . . , tn we first cut the Voronoi
cell VC(e, S) of every edge e ∈ E, with e = vivj , into
two halves along the bisector of vi and vj and insert
the two points of intersection as Voronoi nodes. Every
parabolic Voronoi edge is also split by a node at its
apex. Then we traverse all halved Voronoi cells and
compute the (non-zero) distances of the nodes of the
halved Voronoi cells to their input sites.

Lemma 1 The interiors of T (vi) and T (vj) do not
overlap for different vi and vj .

Phase 2: For every vertex vi we consider its adjacent
vertices vi

1
, . . . , vidi

and compute the value

ri := min{tvi , tvi

1

, . . . , tvi

di

}. (2)

Then we define the maximum perturbation region Ri

of the vertex vi as

Ri := Dvi(ri). (3)

In Fig. 3, we illustrate all MPRs as dashed circles.
For an edge e ∈ E we call the area that is bounded
by the MPRs of the incident vertices vi, vj of e and
their bitangents the hose He around e. In fact, He

represents the valid area in which the perturbed edge
v′iv

′
j may lie. All hoses are shown as shaded areas

in Fig. 3. In order to avoid hoses that touch we can
simply multiply all radii ri by 1−ǫ, for a small positive
constant ǫ < 1.

Figure 2: Phase 1: The regions T (vi) for vertices
vi are shaded in gray levels. The circles Dvi(ti) are
shown dashed.

Figure 3: Phase 2: The MPRs are shown dashed. The
union

⋃
e∈E H(e) of all hoses is shaded.

Lemma 2 A hose H(e) of an edge e = vivj is con-
tained in T (vi) ∪ T (vj).

Corollary 3 H(ei) and H(ej) do not overlap if ei
and ej have no common vertex.

Theorem 4 If the perturbation v′i of the vertex vi ∈
V is constrained to Ri as defined in (3), for 1 ≤ i ≤ n,
then T1–T4 are guaranteed for G′.

Proof. Since no vertices or edges are added or re-
moved, T1 is met. The hoses of one connected com-
ponent of G are separated from all other hoses by the
Voronoi diagram, thus enforcing T2. Similarly, due
to the Voronoi diagram, the cyclic order of the hoses
of edges incident upon a vertex is identical to the or-
der of those edges and, therefore, T3 is guaranteed.
Finally, Cor. 3 ensures T4. �

The Voronoi-based approach assigns the MPRs in a
fair manner in the following sense: If two hoses touch
each other then they touch at the apex of a parabolic
Voronoi edge. Hence, both hoses are equally wide.
This approach does not necessarily determine the

largest possible MPRs, though: Phase 2 is easy to
implement but rather conservative. (For example, the
MPR of the vertex in the upper left-hand corner of
Fig. 3 could be chosen larger.) In general, we could
increase individual MPRs in an additional third phase
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vi

Figure 4: The triangulation-based approach: Ri is
defined by triangles incident to vi.

as long as Lemma 2 remains valid. We did not study
this strategy in more detail, though.
We can compute all t1, . . . , tn in O(n) time as the

Voronoi diagram VD(S) is of linear size. The compu-
tation of the Voronoi diagram itself takes O(n log n),
which leads to a total runtime of O(n log n) for the
Voronoi-based MPR-algorithm. We implemented this
approach in C++, based on the Voronoi package
Vroni [3] to compute the Voronoi diagram. Comput-
ing all MPRs on a dataset with 60 000 vertices takes
about a second on a mid-range personal computer.
The Voronoi-based approach also permits generali-

sations to input elements more general than straight-
line segments. For example, one could consider circu-
lar arcs, which can also be processed by Vroni.

2.2 Computing MPRs using triangulations

Our second approach to compute MPRs is based on
triangulations. The algorithm starts with a con-
strained triangulation T of the convex hull of G, with
E forming the line segments of the constraints. Hence,
G can be interpreted as a subgraph of T , see Fig. 4.

Let us denote by T ′ the graph that results from T

by replacing V by V ′. The key observation in the
triangulation-based approach is the following: If dis-
locating the vertices violates T2–T4 then at least one
triangle in the triangulation has changed its orienta-
tion. Hence, the objective is to restrict the perturba-
tions of the vertices to MPRs such that no orientation
of a triangle changes.
Consider a triangle ∆ of T and denote by I(∆) the

radius of its incircle. If the vertices of ∆ are dislocated
by a distance of less than I(∆), then the orientation
of ∆ remains the same. Hence, we compute the MPR
Ri of the vertex vi ∈ V as

Ri := Dvi(ri), (4)

where ri := min1≤j≤Di
I(∆i

j), with ∆i
1
, . . . ,∆i

Di
de-

noting all triangles incident to vi. Since for each tri-
angle ∆ in T it holds that the MPRs of its vertices are
disks with radii at most I(∆), we get that all triangles
in T preserve their orientations.

Theorem 5 If the perturbation v′i of the vertex vi ∈
V is constrained to Ri as defined in (4), for 1 ≤ i ≤ n,
then T1–T4 are guaranteed for G′.

Proof. Consider the Voronoi diagram of T : all
Voronoi nodes coincide with the centers of the incir-
cles of the triangles of T , and every Voronoi cell of
an interior edge e = vivj is given by two triangles
formed by vi, vj and one of the incircle centers of the
two triangles of T that have e as an edge. Hence,
the triangulation-based approach can be interpreted
as a slightly modified variant of the Voronoi-based ap-
proach applied to the edges of T , allowing us to confer
the correctness result of Thm. 4. �

We note that this algorithm works with any con-
strained triangulation T of G. However, in order
to permit perturbations to robustly embed the wa-
termark, we seek MPRs that are as large as possi-
ble. Hence, the question arises which triangulations of
G have large incircles and subsequently large MPRs.
Obviously, among all triangles with fixed circumcircle,
the equilateral triangle has the largest incircle. This
observation motivated us to employ the (constrained)
Delaunay triangulation for our actual implementation
of the above algorithm.

Guaranteed-quality triangulations that use Steiner
vertices in order to guarantee a lower bound for the
smallest angle in a triangulation are known, see, e.g.,
[8]. However, maximizing the smallest incircle and
maximizing the smallest inner angle of a triangle are
not the same objectives. For example, a skinny trian-
gle may be fine for us if it is just large enough and, in
further consequence, contains still a large incircle.

To the best of our knowledge, maximizing the
smallest incircle did not attract attention so far. Note
that successively adding Steiner vertices may increase
the smallest angle, but, at some point, certainly does
not enlarge the smallest incircle any further.

We implemented the following heuristic approach
in order to enlarge the incircles: After computing the
triangulation of G, we determine a list of triangles
∆, where I(∆) is by a factor of f > 1 larger when
compared to its three neighboring triangles and in-
sert Steiner points at the centers of their incircles. In
practice, we observed that using f = 1.5 increases the
average incircle radius by a few percent. However,
applying this refinement step multiple times did not
lead to a further improvement in our experiments.

The constrained Delaunay triangulation can be
computed in O(n log n) time. Computing r1, . . . , rn
can be done in O(n) time as a triangulation contains
O(n) triangles. Hence, we end up with a total time
complexity of O(n log n). For our C++ implementa-
tion of the triangulation-based algorithm we used the
GNU Triangulated Surface (GTS) library [5], which
implements a semi-dynamic algorithm. Computing
all MPRs on a dataset with 60 000 vertices and run-
ning one refinement step with f = 1.5 takes about a
second on a mid-range computer.

The triangulation-based method can also be ex-
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tended to R
3, if we want to embed a watermark on

a polyhedron P with n vertices. Chazelle and Palios
[1] showed that there exists a tetrahedralization of P
that employs up to O(n+ r2) Steiner vertices, where
r denotes the number of reflex edges of P , and that it
can be computed in O(nr+ r2 log r) time. The radius
of the MPR of a vertex v of P is then defined as the
minimum of the radii among the inscribed spheres of
the tetrahedra incident to v.

3 Application to watermarking

We conclude with an outline of a watermarking
scheme that was proposed in the context of vector
data, cf. [2, 4]. The common basis of many water-
marking approaches is to transform the input in a way
such that conventional strategies can be applied. For
this purpose, we regard all vertices V of G as points
in the complex plane C. To foster embedding a long,
and consequently more robust, watermark sequence
we only consider chains of G of a certain length as
our input data and then perform a Discete Fourier
Transform (DFT). This gives us a frequency-domain
representation of the chains in the form of a set of
Fourier coefficients. A scaled bipolar {+1,-1} random
sequence (generated using the secret seed K belong-
ing to the copyright holder) is then added to the DFT
magnitudes and the inverse DFT is computed to fi-
nally reclaim the points in C and, consequently, the
perturbed vertex set V ′.
If all vertices perturbed by the watermarking stay

within their MPRs then nothing needs to be done.
Otherwise, if a vertex is outside of its pre-computed
MPR, we can choose between two correction methods
which both aim at preserving most of the watermark
signal: (i) project each vertex onto the boundary of
its corresponding MPR disk, and (ii) only perform the
correction for the vertices of edges that actually inter-
sect. Method (i) runs in O(n) time, while the condi-
tional correction (ii) can be done in O(kn) time, where
k ∈ O(n) denotes the number of edges of G which
have at least one vertex not in its MPR. (Very recent
results suggest that O(n log n+m) time is achievable
for (ii), where m denotes the number of intersections
among E ∪ E′.)

This trade-off between time and strength of the
watermark needs to be evaluated in the context of
the desired application. Imposing the topology con-
straints T2–T4 on the watermarked data dampens the
watermark. To get an impression of detection perfor-
mance for both strategies, we embedded a watermark
in a vector graphic of roughly 24000 vertices and only
considered chains of length > 200. With a modest
watermark embedding strength, this led to ≈ 1600
vertices subject to MPR correction. Using correction
strategy (i), the probability of missing the watermark
is ≈ 10−20, while strategy (ii) yields ≈ 10−60.

4 Discussion

Our experiments with both MPR computations allow
the following conclusions: First, using a Voronoi tes-
sellation yields larger MPR regions and consequently
gives more freedom for the watermarking process.
Further, it can be extended to more general input,
such as circular arcs for instance. Using triangula-
tions, on the other hand, leads to potentially smaller
MPRs and less freedom for watermarking. However,
in consideration of a potential 3-D extension, one
might favor this approach due to the simpler imple-
mentation.

Our work also reveals two interesting problems for
future research: How can we compute a triangulation
such that the radii of the incircles are maximized?
And, more generally, how can me make the water-
marking respect other important geometric properties
of vector data, such as right angles or parallelism?
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Locally Correct Fréchet Matchings
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Abstract

The Fréchet distance is a metric to compare two
curves, which is based on monotonous matchings be-
tween these curves. We call a matching that results
in the Fréchet distance a Fréchet matching. There are
often many different Fréchet matchings and not all of
these capture the similarity between the curves well.
We propose to restrict the set of Fréchet matchings to
“natural” matchings and to this end introduce locally
correct Fréchet matchings. We prove that at least one
such a matching exists for two polygonal curves and
give an algorithm to compute it.

1 Introduction

Many problems ask for the comparison of two curves.
Consequently, several distance measures have been
proposed for the similarity of two curves P and Q,
for example, the Hausdorff and the Fréchet distance.
Such a distance measure simply returns a number in-
dicating the (dis)similarity. However, the Hausdorff
and the Fréchet distance are both based on matchings
of the points on the curves. The distance returned
is the maximum distance between any two matched
points. The Fréchet distance uses monotonous match-
ings (and limits hereof): if point p on P and q on Q

are matched, then any point on P after p must be
matched to q or a point on Q after q. The Fréchet dis-
tance is the maximal distance between two matched
points minimized over all monotonous matchings of
the curves. We call a matching resulting in the
Fréchet distance a Fréchet matching.

There are often many different Fréchet matchings
for two curves. However, as the Fréchet distance is
determined only by the maximal distance, not all of
these matchings capture the similarity between the
curves well (see Fig. 1). There are applications that
directly use a matching, for example, to compute
the average distance [5] or to morph between the
curves [3]. In such situations it is particularly im-
portant to be able to compute a “good” matching.
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Figure 1: Two Fréchet matchings for curves P and Q.

Results. We propose to restrict the set of Fréchet
matchings to “natural” matchings and to this end in-
troduce locally correct Fréchet matchings: matchings
that are Fréchet matchings for any two matched sub-
curves. We prove the following theorem.

Theorem 1 For any two polygonal curves P and Q,

there exists a locally correct Fréchet matching.

This theorem follows directly from Lemma 3 in Sec-
tion 3. The proof of this lemma results in a recursive
algorithm to compute a locally correct matching.

Related work. The first algorithm to compute the
Fréchet distance was given by Alt and Godau [1].
Since then, the Fréchet distance has received sig-
nificant attention. Here we focus on approaches
that restrict the allowed matchings. Efrat et al. [3]
introduced Fréchet-like metrics, the geodesic width
and link width, to restrict to matchings suitable for
curve morphing. Their method is suitable only for
non-intersecting polylines. Moreover, geodesic width
and link width do not resolve the problem illus-
trated in Fig. 1: both matchings also have minimal
geodesic width and minimal link width. Mahesh-
wari et al. [4] studied a restriction by “speed limits”,
which may exclude all Fréchet matchings and may
cause undesirable effects near “outliers” (see Fig. 2).
Buchin et al. [2] describe a framework for restricting
Fréchet matchings, which they illustrate by restrict-
ing slope and path length. The former corresponds to
speed limits. We briefly discuss the latter in Section 3.

P

Q

P

Q

Figure 2: Two Fréchet matchings. The right one re-
sults from speed limits and is not locally correct.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Preliminaries

Curves. Let C be a polygonal curve with n edges,
defined by vertices c0, . . . , cn. We treat a curve as a
continuous map C : [0, n] → R

2. In this map, C(i)
equals ci for integer i. Furthermore, C(i + λ) equals
(1−λ) · ci+λ · ci+1, for integer i and 0 < λ < 1. As a
reparametrization σ : [0, 1] → [0, n] of a curve C, we
allow any continuous, non-decreasing function such
that σ(0) = 0 and σ(1) = n. We denote by Cσ(t)
the actual location according to reparametrization σ:
Cσ(t) = C(σ(t)). By Cσ[a, b] we denote the subcurve
of C in between Cσ(a) and Cσ(b).

Fréchet matchings. We are given two polygo-
nal curves P and Q with m and n edges. A
(monotonous) matching µ between P and Q is a
pair of reparametrizations (σ, θ), such that Pσ(t)
matches to Qθ(t). The Euclidean distance between
two matched points is denoted by dµ(t) = |Pσ(t) −
Qθ(t)|. The maximum distance over a range of val-
ues is denoted by dµ[a, b] = maxa≤t≤b dµ(t). The
Fréchet distance between two curves is defined as
δF(P,Q) = infµ dµ[0, 1]. A Fréchet matching is a
matching µ that realizes the Fréchet distance, that
is, dµ[0, 1] = δF(P,Q) holds.

Free space diagrams. Alt and Godau [1] describe
an algorithm to compute the Fréchet distance based
on the decision variant (that is, solving δF(P,Q) ≤ ε

for some given ε). Their algorithm uses a free space

diagram, a two-dimensional diagram on the range
[0,m] × [0, n]. Every point (x, y) in this diagram
is either “free” (white) or not (indicating whether
|P (x)−Q(y)| ≤ ε). The diagram has m columns and
n rows; every cell (c, r) (1 ≤ c ≤ m and 1 ≤ r ≤ n)
corresponds to the edges pc−1pc and qr−1qr. To com-
pute the Fréchet distance, one finds the smallest ε

such that there exists an x- and y-monotone path from
point (0, 0) to (m,n) in free space. For this, only cer-
tain critical values have to be checked. These values
correspond to emergence of potentially new allowed
paths, so-called critical events. The three event types
are illustrated in Fig. 3. We scale every row and col-
umn in the diagram to correspond to the (relative)
length of the actual edge of the curve instead of using
unit squares for cells.

B CA

Figure 3: Three event types. (A) Endpoints come
within range of each other. (B) Passage opens on cell
boundary. (C) Passage opens in row (or column).

3 Locally correct matchings

We introduce locally correct matchings, which are a
Fréchet matching for any two matched subcurves.

Definition 1 (Local correctness) Given two poly-

gonal curves P and Q, a matching µ = (σ, θ) is locally
correct if for all a, b with 0 ≤ a ≤ b ≤ 1

dµ[a, b] = δF(Pσ[a, b], Qθ[a, b]).

Note that not every Fréchet matching is locally cor-
rect. The question arises whether a locally correct
matching always exists and if so, how to compute it.

Existence. We prove that there always exists a locally
correct matching for any two curves by induction on
the number of edges in the curves. First, we present
two simple observations for the two base cases.

Observation 1 (P is a point) For two polygonal

curves P and Q with m = 0, a locally correct match-

ing is (σ, θ), where σ(t) = 0 and θ(t) = t · n.

Observation 2 (Line segments) For two polygo-

nal curves P and Q with m = n = 1, a locally correct

matching is (σ, θ), where σ(t) = θ(t) = t.

For induction, we split the two curves based on
events (see Fig. 4). Since each split must reduce the
problem size, we ignore any events on the left or bot-
tom boundary of cell (1, 1) or on the right or top
boundary of cell (m,n). This excludes both events of
type A. A free space diagram is connected at value ε,
if a monotonous path exists from the boundary of cell
(1, 1) to the boundary of cell (m,n). A realizing event

is a critical event at the minimal value ε such that the
corresponding free space diagram is connected.

Let E denote the set of concurrent realizing events
for two curves. A realizing set Er is a subset of E
such that the free space admits a monotonous path
from cell (1, 1) to cell (m,n) without using an event

Q

P(a)

Q1

P1
(b)

P2

Q2

P

Q

P1

Q1

P2

Q2

Figure 4: (a) Curves with the free space diagram for
ε = δF(P,Q) and the realizing event. (b) The event
splits each curve into two subcurves. The hatched
areas indicate parts that disappear after the split.
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in E\Er. Note that a realizing set cannot be empty.
When E contains more than one realizing event, some
may be “insignificant”: they are never required to
actually make a path in the free space diagram. A
realizing set is minimal if it does not contain a strict
subset that is a realizing set. Such a minimal realizing
set contains only “significant” events. We omit the
(straightforward) proof of the following lemma.

Lemma 2 For two polygonal curves P and Q with

m > 1 and n ≥ 1, there exists a minimal realizing set.

In the remainder, we use realizing set to indicate
a minimal realizing set, unless indicated otherwise.
To prove the existence of a locally correct Fréchet
matching, we prove the following, stronger lemma.
Informally, it states that curves have a locally cor-
rect matching that is “closer” (except in cell (1, 1) or
(m,n)) than the distance of their realizing set. In
addition, this matching is linear inside every cell.

Lemma 3 If the free space diagram of two polygonal

curves P and Q is connected at value ε, then there

exists a locally correct Fréchet matching µ = (σ, θ)
such that dµ(t) ≤ ε for all t with σ(t) ≥ 1 or θ(t) ≥ 1,
and σ(t) ≤ m − 1 or θ(t) ≤ n − 1. Furthermore, µ is

linear in every cell.

Proof. We prove this by induction on m + n. The
base cases (m = 0, n = 0, and m = n = 1) follow
from Observation 1 and Observation 2.
For the induction, we assume that m ≥ 1, n ≥ 1,

and m+ n > 2. By Lemma 2, there exists a realizing
set Er for P and Q, say at value εr. The set con-
tains realizing events e1, . . . , ek (k ≥ 1), numbered in
lexicographic order. By definition, εr ≤ ε must hold.
Suppose that Er splits curve P into P1, . . . , Pk+1 and
curve Q into Q1, . . . , Qk+1. By definition of a real-
izing event, none of the events in Er occur on the
right or top boundary of cell (m,n). Therefore, the
following holds for any i (1 ≤ i ≤ k + 1): mi ≤ m,
ni ≤ n, and mi < m or ni < n. Since there is a path
in the free space diagram at εr through all events in
Er, the induction hypothesis implies that, for any i

(1 ≤ i ≤ k + 1), there exists a locally correct match-
ing µi = (σi, θi) for Pi and Qi such that µi is linear
in every cell and dµi

(t) ≤ εr for all t with σi(t) ≥ 1 or
θi(t) ≥ 1, and σi(t) ≤ mi − 1 or θi(t) ≤ ni − 1. Com-
bining these matchings with the events in Er yields
a matching µ = (σ, θ) for (P,Q). As we argue be-
low, this matching is locally correct and satisfies the
additional properties. The matching of an event cor-
responds to a single point (type B) or a horizontal or
vertical line (type C). By induction, µi is linear in ev-
ery cell. Since all events occur on cell boundaries, the
cells of the matchings and events are disjoint. There-
fore, the matching µ is also linear inside every cell.

For i < k + 1, dµi
is at most εr at the point where

µi enters cell (mi, ni) in the free space diagram of Pi

and Qi. We also know that dµi
equals εr at the top

right corner of cell (mi, ni). Since µi is linear inside
the cell, dµi

(t) ≤ εr also holds for t with σi(t) > mi−1
and θi(t) > ni − 1. Analogously, for i > 0, dµi

(t) is
at most εr for t with σi(t) < 1 and θi(t) < 1. Hence,
dµ(t) ≤ εr ≤ ε holds for t with σ(t) ≥ 1 or θ(t) ≥ 1,
and σ(t) ≤ m− 1 or θ(t) ≤ n− 1.
To show that µ is locally correct, suppose for con-

tradiction that we have values for a, b such that
δF(Pσ[a, b], Qθ[a, b]) < dµ[a, b]. If a, b are in between
two consecutive events, then we know that the sub-
matching corresponds to one of the matchings µi.
However, we know that these are locally correct and
thus δF(Pσ[a, b], Qθ[a, b]) = dµ[a, b] holds.

Hence, assume that there is at least one event of Er

in between a and b. There are two possibilities: either
dµ[a, b] = εr or dµ[a, b] > εr. dµ[a, b] < εr cannot hold,
since dµ[a, b] includes a realizing event. First, assume
dµ[a, b] = εr holds. If δF(Pσ[a, b], Qθ[a, b]) < εr holds,
then there is a matching that does not use the events
in between a and b and has a lower maximum. There-
fore, the free space connects point (σ(a), θ(a)) with
point (σ(b), θ(b)) at a lower value than εr. This im-
plies that all events between a and b can be omitted,
contradicting that Er is a minimal realizing set.
Now, assume dµ[a, b] > εr. Let t

′ denote the highest
t for which σ(t) ≤ 1 and θ(t) ≤ 1 holds, that is, the
point at which the matching exits cell (1, 1). Similarly,
let t′′ denote the lowest t for which σ(t) ≥ m− 1 and
θ(t) ≥ n − 1 holds. We know that dµ(t) ≤ εr holds
for any t′ ≤ t ≤ t′′. Hence, dµ(t) > εr can only hold
for t < t′ or t > t′′. Suppose that dµ(a) > εr holds.
Thus, we have that a < t′ and µ is linear between a

and t′. Therefore, dµ(a) > dµ(t) holds for any t with
a < t < t′. Analogously, if dµ(b) > εr holds, then
dµ(b) > dµ(t) holds for any t with t′′ < t < b . Hence,
we conclude that dµ[a, b] = max {dµ(a), dµ(b)}. Since
this gives a lower bound on the Fréchet distance, we
conclude that the matching µ is locally correct. �

Further restrictions. We considered restricting the
matchings to the “shortest” locally correct matching,
where “shortest” refers to the length of the path in
the free space diagram. However, Fig. 5 shows that
such a restriction does not necessarily improve the

P

Q

P

Q

Figure 5: Two locally correct Fréchet matchings for
curves P and Q. The right matching is the shortest.
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quality of the matching. Another potential constraint
we are currently investigating is “local optimality”.
Intuitively, a matching is locally optimal if no small
change decreases the matched distance locally.

4 Algorithm

The existence proof results in a recursive algorithm
with execution time O((m + n) · m · n · log(m · n)).
Fig. 1 (left), Fig. 2 (left), Fig. 5 (left), and Fig. 6
illustrate matchings computed with our algorithm.

Algorithm 1 FindLocallyCorrectMatching(P,Q)

Require: P and Q are curves with m and n edges
Ensure: A locally correct matching for P and Q

1: if m = 0 or n = 0 then
2: return (σ, θ) where σ(t) = t ·m, θ(t) = t · n
3: else if m = n = 1 then
4: return (σ, θ) where σ(t) = θ(t) = t

5: else
6: Find event er of a minimal realizing set
7: Split P into P1 and P2 according to er
8: Split Q into Q1 and Q2 according to er
9: µ1 → FindMatching(P1, Q1)

10: µ2 → FindMatching(P2, Q2)
11: return concatenation of µ1, er, and µ2

Using the notation of Alt and Godau [1], LF
i,j de-

notes the interval of free space on the left boundary of
cell (i, j); LR

i,j denotes the subset of L
F
i,j that is reach-

able from point (0, 0) of the free space diagram with a
monotonous path in the free space. Analogously, BF

i,j

and BR
i,j are defined for the bottom boundary.

With a slight modification to the decision algo-
rithm, we can compute the minimal value of ε such
that a path is available from cell (1, 1) to cell (m,n).
This requires only two changes: BR

1,2 should be initial-

ized with BF
1,2 and LR

2,1 with LF
2,1; the answer should

be “yes” if and only if BR
m,n or LR

m,n is non-empty.

Realizing set. By computing the Fréchet distance
using the modified Alt and Godau algorithm, we ob-
tain an ordered, potentially non-minimal realizing set
E = {e1, . . . , el}. Let Ek denote the first k events
of E . The algorithm must find an event that is con-
tained in a realizing set. We use a binary search on
E to find the r such that Er contains a realizing set,
but Er−1 does not. This implies that event er must
be contained in a realizing set. We use er to split the
curves. Note that r is unique due to monotonicity.
For correctness, the order of events in E must be

consistent in different iterations, for example, by using
a lexicographic order. Set Er contains only realizing
sets that use er. Therefore, Er−1 contains a realizing
set to connect cell (1, 1) to er and er to cell (m,n).
Thus any event found in subsequent iterations is part
of Er−1 and is part of a realizing set with er.

PQ

P

Q

Figure 6: Locally correct matching produced by the
algorithm. Free space diagram drawn at ε = δF(P,Q).

To determine whether some Ek contains a realizing
set, we check whether cells (1, 1) and (m,n) are con-
nected without “using” the events of E\Ek. To do this
efficiently, we further modify the Alt and Godau al-
gorithm. We require only a method to prevent events
in E\Ek from being used. After LR

i,j is computed, we
check whether the event e (if any) that ends at the
left boundary of cell (i, j) is part of E\Ek and neces-
sary to obtain LR

i,j . If this is the case, we replace LR
i,j

with an empty interval. Event e is necessary if and
only if LR

i,j is a singleton. To obtain an algorithm that
is numerically more stable, we introduce entry points.
The entry point of the left boundary of cell (i, j) is the
maximal i′ < i such that BR

i′,j is non-empty. These
values are easily computed during the decision algo-
rithm. Assume e starts on the left boundary of cell
(is, j). Event e is necessary if and only if i′ < is.
Therefore, we use the entry point instead of checking
whether LR

i,j is a singleton. This process is analogous
for horizontal boundaries of cells.
We silently assumed that each event in E ends at

a different cell boundary. If multiple events end at
the same cell boundary, then these events occur in
the same row (or column) and it suffices to consider
only the event that starts at the rightmost column
(or highest row). This justifies the assumption and
ensures that E contains O(m ·n) events. Hence, com-
puting er (line 6) takes O(m · n · log(m · n)) time.
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Zadeh. Fréchet distance with speed limits. Comp.

Geometry: Theory and Appl., 44(2):110–120, 2011.

[5] C. Wenk, R. Salas, and D. Pfoser. Addressing the
need for map-matching speed: Localizing global curve-
matching algorithms. In Proc. 18th Int. Conf. on Sci.

and Stat. Database Management, pages 379–388, 2006.



85

EuroCG 2012, Assisi, Italy, March 19–21, 2012

Selection of Extreme Points and Halving Edges of a Set by its Chirotope

T. Miltzow∗ A. Pilz†

Abstract

Many properties of finite point sets only depend on
the relative position of the points, e.g., on the order
type of the set. However, many fundamental algo-
rithms in computational geometry rely on coordinate
representations. This includes the straightforward al-
gorithms for finding a halving line for a given planar
point set, as well as finding a point on the convex
hull, both in linear time. In his monograph Axioms

and Hulls, Knuth asks whether these problems can
be solved in linear time in a more abstract setting,
given only the orientation of each point triple, i.e.,
the set’s chirotope, as a source of information. We
answer this question in the affirmative for sets realiz-
able in the Euclidean plane. More precisely, we can
find a halving line through any given point, as well
as the vertices of the convex hull edges that are inter-
sected by the supporting line of any two given points
of the set in linear time.

1 Introduction

In computational geometry, many fundamental prop-
erties of finite point sets do not depend on the actual
coordinates of each point in real space, but rather on
the relative position of the points among each other.
In their landmark paper, Goodman and Pollack [5]
define the order type of a point set. In the plane, two
point sets have the same order type if there is a bijec-
tion π between the sets s.t. for every triple p, q, r of
the first set, the corresponding points π(p), π(q), and
π(r) have the same orientation (i.e., are both oriented
clockwise or counterclockwise).1 This orientation can
be tested by the inequality

det





px py 1
qx qy 1
rx ry 1



 > 0,

which indicates whether r is to the left of the directed
line through p and q, i.e., whether the triple is ori-
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1It is common to also consider sets to be of the same order

type if the orientation of all triples is inverted in the second set.

ented counterclockwise. The sign of the determinant
therefore gives a predicate ∇(p, q, r) that is true iff
the triple is oriented counterclockwise. Many com-
binatorial properties of a set of points only depend
on its order type, like its convex hull, the set of its
crossing-free graphs, etc. Note that we implicitly as-
sume throughout this paper that all sets are in general
position, i.e., do not contain collinear triples.

There are properties of point sets that are more
“metric”, like the set’s Delaunay triangulation. It is
straightforward to construct two sets of the same or-
der type whose Delaunay triangulations are different.
Guibas and Stolfi [6] separate topological from geo-
metric aspects, using a predicate InCircle(p, q, r, s)
that is true iff the triple (p, q, r) is oriented counter-
clockwise and the point s lies inside the circle defined
by the first three points. Their Delaunay triangula-
tion algorithm depends almost entirely on this pred-
icate, making it a robust approach, that is intended
to be easy to implement and to prove.

Motivated by this approach, Knuth [9] develops ax-
iomatic systems following these two tests. He defines
five axioms over a ternary predicate P and calls sets of
triples obeying them CC Systems. These are fulfilled
by all point sets in the Euclidean plane, with P = ∇
defined as point triple orientation. For these sets,
the CC Systems are equivalent to the point set order
types. However, there exist CC Systems that can not
be constructed as point sets in R

2. These are called
non-realizable. CC Systems are equivalent to abstract

order types. These are used in so-called abstract order

type extension [1].

The concept of the convex hull of a point set gener-
alizes to all CC Systems. The axiomatic approach can
also be extended to cover Delaunay triangulations.
In the axiomatic settings, Knuth provides O(n log n)
time algorithms for both problems, where the time
bound for the latter holds in the average case. He
points out that the algorithm of Guibas and Stolfi
uses the coordinate representation to find a line that
partitions the point set into two equally sized subsets
(cf. [6, pp. 110–111]). Open Problem 1 in [9, pp. 97–
98] therefore asks for an algorithm to find such a par-
tition of a CC System in linear time. The problem is
straightforward when given an extreme point of the
set (i.e., an element of the convex hull boundary).
Proving the existence of a linear-time algorithm for
finding a single extreme point is also explicitly part
of the open problem.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: Rotating the line ℓ around c starting at p1
induces an order on the set.

In this work, we answer both parts of the open prob-
lem in the affirmative. We first give a simple algo-
rithm that, given a point c of a set S of size n, finds
a halving edge through c; more specifically, a second
point c′ ∈ S s.t. not more than

⌈

n−2
2

⌉

points are on
each side of the supporting line of c and c′ in O(n)
time. We then describe an algorithm that, given two
points p and q, returns the edge of the convex hull
that is crossed by the ray from p through q. We show
that the algorithm runs in O(n) time for realizable
sets. Our algorithms are correct for general CC Sys-
tems. In this extended abstract, we prove the time
bound only for realizable sets. The linear time bound
for all abstract order types will be considered in [2].

Our main motivation is to show that the asymp-
totic running time of these problems does not depend
on the representation by coordinates. While an ar-
bitrary halving edge can easily be found by picking
a point with median, say, x-coordinate, the problem
is more sophisticated when the halving line should
pass through a predefined point. E.g., the linear time
Ham-Sandwich-Cut algorithm of Lo, Matoušek and
Steiger [10] can be adapted to find a halving line
through a point. The straightforward way of find-
ing an extreme point of a set given by coordinates is
selecting the one with, say, lowest x-coordinate. Find-
ing a convex hull edge that is traversed by a given line
in linear time is a subroutine of the Ultimate Convex
Hull Algorithm [8]. There, the median of the slopes
of an arbitrary matching of the points is used for the
search and prune approach. Recent algorithms that
operate only on triple orientations involve computing
the convex hull of disks [7].

2 Computing a halving edge in linear time

In this section, we describe an algorithm to compute
a halving edge through a given point c of a finite point
set S of size n in the plane. The idea is to split the
point set evenly by two double wedges centered at c.
We identify the double wedge that must contain a
halving edge, and continue with the points therein.

We start by picking a point p1 ∈ S \{c} arbitrarily.
Imagine a directed line ℓ rotated by 180◦ clockwise
around c, starting at p1. Let p2, . . . , pn−1 be the re-

maining points in the order ℓ passes through them.
We denote this order by ≺. This order is actually the
one described in [9, p. 16]. By ℓ1, . . . , ℓn we denote
the “snapshots” of ℓ at the points p1, . . . , pn−1, p1 re-
spectively. Thus, ℓ1 and ℓn have opposite directions.
See Figure 1 for an illustration.

Since for each pair of S \ {c}, we can compute the
relative order in which ℓ passes through them in con-
stant time, the median m = p⌊n

2
⌋ with respect to ≺

can be computed in O(n) time [3]. (Note that the
number of points to the right of ℓ may not change
monotonically while rotating.) The supporting lines
of cp1 and cm define two double wedges, containing
S1 = {p ∈ S : p ≺ m} and S2 = {p ∈ S : m ≺ p},
respectively, each having not more than

⌈

n−2
2

⌉

points
(see Figure 2). We use the following standard argu-
ment. If ℓ1 is not a halving line, we have w.l.o.g.
more than

⌈

n−2
2

⌉

points to the right of ℓ1 and thus

less than
⌊

n−2
2

⌋

points to the right of ℓn. Due to our
general position assumption, only one point changes
sides at the same time. Thus, ℓ must be a halving
line at some point during the rotation. If less than
n−2
2 points are right of ℓ⌊n

2
⌋, then one of the points

in S1 forms a halving edge with c (recall that there
are w.l.o.g. more points right of ℓ1). Otherwise one of
the points in S2 does.

p1 c

m

+ +

+ −

−−

S1

S1S2

S2

ℓ1

+ −

c

+

+ −

−

S1

S1

S2

S2

+ −

+
−

m

+
−

+
−

Figure 2: The sign + marks the half plane which con-
tains more than n−2

2 points. S1 and S2 are indicated
by the gray tiling patterns. The figure shows the first
(left) and a later iteration (right).

This way we can decide which part contains a halv-
ing edge, exclude the other subset and iterate. Ob-
serve that all the points we exclude belong to two
(open) wedges starting at c, one entirely to the left
and one entirely to the right of the non-removed lines
of ℓ2, · · · , ℓn−1. The closure of each wedge contains
a ray of ℓ1. We remember how many points each of
these wedges contained. Now if we want to compute
the number of points to the right of some line ℓi in
subsequent iterations, then we only need to consider
the remaining points and add the number of points
belonging to the excluded wedge to the right of ℓi.
The algorithm has linear running time, as we exclude
approximately half of the points in each linear-time
iteration.
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pr

m

Figure 3: An arbitrary matching of edges that parti-
tion S, and m, the result of BasicMin.

Theorem 1 Given a point set S ⊂ R
2 of size n in

general position and a point c ∈ S, one can find a

halving edge of S incident to c in linear time.

The algorithm can directly be extended to higher
dimensions. Order types in R

d are defined analo-
gously as in the plane, see [5]. The orientation of a
(d+1)-simplex can be computed by the corresponding
determinant. Let (p1, . . . , pd+1) be an ordered tuple of
points in R

d. For the oriented hyperplane H through
the points (p1, . . . , pd), ∇(p1, . . . , pd+1) indicates on
which side of H the point pd+1 lies.

Corollary 2 Given a point set S ⊂ R
d in general po-

sition, d constant, and distinct points c1, . . . , cd−1 ∈
S, one can find a halving hyperplane through

c1, . . . , cd−1 in linear time.

3 Computing a Convex Hull Edge in Linear Time

As a first step we describe an algorithm called Ba-

sicMin, which plays a crucial role as a subroutine.
Suppose we are given two points p, r ∈ S. We assume
that pr is a halving edge of S and that n = |S| is
even. W.l.o.g. let r be the coordinate origin and let p
be on the positive part of the x-axis. Let M be an
arbitrary perfect matching between the points above
and below the x-axis, i.e., for any edge s = ab ∈ M

we have ∇(p, r, a) and ¬∇(p, r, b). See Figure 3 for an
illustration.
Let ⋉ be the binary operator that accepts two edges

s, s′ ∈ M as input and returns the edge on the con-
vex hull boundary of s ∪ s′ that crosses the x-axis at
the smallest x-coordinate, i.e., the pair of endpoints
whose upward-directed supporting line has all other
points of s and s′ to the right. The relevant property
of the operator is that the crossing of ⋉(s, s′) with
the x-axis is not right of the crossings of s and s′ with
the x-axis.
BasicMin takes a point set S and two points

p and r as input, partitions S arbitrarily into the
matching M = {s1, . . . , s(n−2

2 )}, and computes a spe-

cial edge m = m(n−2

2 ) iteratively via

m1 = s1
m(i+1) = ⋉(mi, s(i+1))

Note that m does not need to be on the convex hull
of the whole set. Also, m may depend on the (unde-
fined) order in which the elements of M are processed
by BasicMin. However, it has the following useful
property.

Lemma 3 Let ℓ be a line directed upwards, crossing

the x-axis left of the crossing of m. Then at least n−2
2

points of S are to the right of ℓ.

Proof. Note that the crossing of ℓ with the x-axis is
further to the left than any other such crossing of M .
Assume, for the purpose of contradiction, that there
is an edge in M for which both points lie to the left
of ℓ. Then also the crossing with the x-axis is to the
left of the crossing of m, a contradiction. �

Note that, even though the argumentation of
Lemma 3 involves relative positions of crossings, the
constant-time operation ⋉ only needs to use ∇. Now
we are ready to give the main algorithm.

Theorem 4 Given two points p, q of a point set S ⊂
R

2 of size n in general position, one can find the edge

e of the set’s convex hull that passes through the ray

pq in O(n) time.

Proof. W.l.o.g. let pq be horizontal with q left of p.
Note first that the case where q is a vertex of the con-
vex hull can be identified in linear time. We therefore
concentrate on the setting where one endpoint of e

is below pq and the other one is above. Let U be
the set strictly above pq, whereas L is the set strictly
below pq. W.l.o.g. let |U | ≥ n−2

2 .
Consider the endpoint u1 ∈ U of e. If we remove u1,

the ray pq crosses the convex hull at a new edge e′

with an endpoint u2 ∈ U . Note that the other end-
point of e′ might now be q. In any case, iteratively
removing points from U of the intersected convex hull
edge induces an order on U (see Figure 4). Note that
this corresponds to the order in which the points of U
are traversed by a tangent t of CH(L∪{p, q}) that is
rotated clockwise around that hull, starting at e and
ending at pq. The main observation is that, given a
point ui and the tangent t passing through ui, we can
discard all points of U to the right of ui with respect
to the point l where t touches CH(L ∪ {p, q}), since
none of these points can be u1. The support l of t
can be found in linear time, since the radial order of
L ∪ {p, q} around any ui is linear.
Note that these observations already imply the fol-

lowing randomized approach. Select any element ui

of U at random. The other support l of the tangent
(recall that this might as well be q) can be found in
linear time. We discard the points of U right of lui

and iterate. However, consecutive “bad” choices of ui

result in overall quadratic worst-case behavior. We
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q p
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U

u1
u2

u3
u4

u5 u6

u7

Figure 4: The order on U defined by removing vertices
of the intersected convex hull edge.

q p

ur

ua
ub

ℓ

uaub

pq

ℓ

ur

Figure 5: The edge uaub allows to prune half of the
upper points.

therefore have to make a “good” choice of ui in order
to discard a linear number of points per iteration.
The points of U are ordered linearly around p.

Let ur be the median of this order, which we select in
linear time. Let M be an arbitrary perfect matching
between the points of U to the left and to the right
of pur (maybe omitting one point). Now we apply
BasicMin on M resulting in an edge m = uaub. By
construction, all edges of M as well as uaub cross the
ray pur. Now, find the upward-directed tangents ta
and tb of CH(L ∪ {p, q}) through ua and ub, respec-
tively. Let ℓ = ta if ub is to the right of ta, otherwise
let ℓ = tb. Note that p is right of ℓ since q is included
in the set that we place the tangent on. There are two
cases to consider. If ℓ crosses the ray pur, the cross-
ing of uaub is on the ray between p and its crossing
with ℓ. Due to Lemma 3, at least half of the points
of M are right of ℓ. Otherwise, if ℓ does not cross the
ray pur, then all points of U to the right of the ray are
also right of ℓ. In both cases, we can discard at least
half of the points, which is at least a quarter of the
overall set S. We can therefore in linear time reduce
this problem to constant size such that it then can be
solved by a brute-force approach. �

Note that the parts of the so-called Ultimate Con-
vex Hull Algorithm by Kirkpatrick and Seidel [8] that
depend on coordinates are essentially the one that find
the convex hull edge on the ray that separates a sub-
problem into two parts. Also, Chan’s output sensitive
algorithm [4] can be implemented in our setting using

Theorem 4. Both allow to improve the time bound
given in [9] for realizable point sets regarding output-
sensitivity to O(n log h) for h extreme points.

4 Conclusion

We showed two algorithms that only use the infor-
mation whether a point triple is oriented clockwise
or counterclockwise. Both a halving edge at a given
point and a convex hull edge crossing a specified ray
can be found in linear time, even without being given
the coordinate representation. Our proofs used geo-
metric arguments. While it is rather straightforward
to generalize the proof of Theorem 1 to abstract or-
der types, generalization is more sophisticated for the
second result, especially concerning Lemma 3. There,
our proof relies on the relative position of crossings
among supporting lines of the set. The general set-
ting will be addressed in [2].
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Prosenjit Bose† Jean Cardinal‡ Sébastien Collette‡ § Ferran Hurtado¶ Matias Korman‡

Stefan Langerman‡ ‖ Perouz Taslakian‡

Abstract

Given an arrangement of lines in the plane, what is the
minimum number c of colors required to color the lines
so that no cell of the arrangement is monochromatic?
In this paper we give bounds on the number c, as
well as some of its variations. We cast these problems
as characterizing the chromatic and the independence
numbers of a new family of geometric hypergraphs.

1 Introduction

While dual transformations may allow converting a
combinatorial geometry problem about a configura-

tion of points into a problem about an arrangement

of lines, or reversely, the truth is that most math-
ematical questions appear to be much cleaner and
natural in only one of the settings. In many cases,
the dual version is considered solely when, besides
making sense, it is additionally useful. Both kinds of
geometric objects have inspired many problems and
attracted much attention. Concerning arrangements
of lines, possibly the most prevalent problems consist
of studying the number of cells of each size, say tri-
angles, that appear in every arrangement, but many
other issues have been considered (see [3,6,7]). There
are also problems that combine both kinds of objects,
like counting incidences between points and lines, or
studying the arrangements of lines spanned by point
sets, which includes the celebrated Sylvester-Gallai

problem on ordinary lines [2].
Many other natural questions can be asked when

considering arrangements of colored lines. For ex-
ample, is it true that every bicolored arrangement of
lines has a monochromatic cell? We prove in this pa-
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per that the generic answer is no, but that it is yes
when the colors are slightly unbalanced. This leads
immediately to another simple question: How many
colors are always sufficient, and occasionally neces-
sary, to color any set of n lines in such a way that
the induced arrangement contains no monochromatic
cell? This last question brings manifestly the flavor of
Art Gallery Problems. While coloring and guarding
arrangements of lines may appear at first glance as
unrelated problems, there is a clean unifying frame-
work provided by considering appropriate geometric
hypergraphs. For example, minimally coloring an ar-
rangement while avoiding monochromatic cells can be
reformulated as follows: Let Hline−cell be the geo-
metric hypergraph where vertices are lines and edges
represent cells of the arrangement; what is its chro-
matic number? (Here a proper coloring is one where
no hyperedge is monochromatic.)
In this work we consider several questions as the

ones described above, which arise as fundamental in
terms of coloring and guarding arrangements of lines,
and translate consistently into problems on geomet-
ric hypergraphs, like maximum independent set, min-
imum vertex cover, or some coloring parameter.
The terminology for hypergraphs on arrangements

is introduced in Section 2, where we also provide a
table summarizing our results. Coloring problems are
then discussed in Section 3 and guarding problems in
Section 4. Due to lack of space, proofs of the results
in this paper have been omitted. Details will be given
in an upcoming extended version.

2 Definitions and Summary of Results

Let A be an arrangement of a set of lines L in R
2.

This arrangement decomposes the plane into different
cells, where a cell is a maximal connected component
of R2 \ L.

We define Hline−cell = (L,C) as the geometric hy-
pergraph corresponding to the arrangement, where C
is the set containing all cells defined by L. Similarly,
Hvertex−cell = (V,C) is the hypergraph defined by
the vertices of the arrangements and its cells, where
V =

(

L

2

)

is the set of intersection of lines in A. Fi-
nally, Hcell−zone = (C,Z) is the hypergraph defined
by the cells of the arrangement and its zones. The
zone of a line ℓ in A is the set of cells bounded by ℓ.
The set Z is defined as the set of subsets of C induced

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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by the zones of A. Note that this hypergraph is the
dual hypergraph of Hline−cell.

An independent set of a hypergraph H = (V,E) is
a set S ⊆ V such that ∀e ∈ E : e 6⊆ S. This definition
is the natural extension from the graph variant, and
requires that no hyperedge is completely contained in
S. Analogously, a vertex cover of H is a set S ⊆ V
such that ∀e ∈ E : e ∩ S 6= ∅. The chromatic number

χ(H) of H is the minimum number of colors that can
be assigned to the vertices v ∈ V so that ∀e ∈ E :
∃v1, v2 ∈ e : col(v1) 6= col(v2); that is, no hyperedge
is monochromatic.

In the forthcoming sections we give upper and lower
bounds on the worst-case values for these quantities
on the three hypergraphs defined from a line arrange-
ment. Our results are summarized in Table 1. Note
that the maximum independent set and minimum ver-
tex cover are complementary problems. As a result,
any lower bound on one gives an upper bound on the
other and vice versa. This property, along with the

facts that |L| = n, |V | =
(

n

2

)

, and |C| = n(n+1)
2 + 1,

are used to complement many entries of the table.

The definitions of an independent set and a proper
coloring of the Hline−cell hypergraph of an arrange-
ment are illustrated in Figures 1(a) and 1(b), respec-
tively. Similarly, the definition of a vertex cover of
the Hvertex−cell and Hcell−zone hypergraphs are illus-
trated in Figures 1(c), and 1(d), respectively.

3 Coloring Lines, and Related Results

We first consider the chromatic number of the line-cell
hypergraph of an arrangement, that is, the number of
colors required for coloring the lines so that no cell
has a monochromatic boundary. At the end of the
section we include some similar results.

3.1 Two-colorability

We say that a set of lines L is k-colorable if we can
color L with k-colors such that no cell is monochro-
matic (in other words, the corresponding Hline−cell

hyper graph has chromatic number k). Any coloring
c : L → {0, . . . , k} that satisfies such a property is said
to be proper. We first tackle the (simple) question
of whether the two-colorable Hline−cell hypergraphs
have bounded size:

Theorem 1 There are arbitrarily large two-colorable

sets of lines.

An infinite family of such examples are provided
by a set of 2q + 1 lines in convex position (for any
q ∈ N). It is easy to check that, if we color the lines
alternatively red and blue by order of slope, no cell
will be monochromatic.

(a) The thick lines form an independent set in the Hline−cell hy-
pergraph: no cell is bounded by those lines only.

(b) A proper 3-coloring of the Hline−cell hypergraph: no cell is
monochromatic.

(c) The marked intersections form a vertex cover of the
Hvertex−cell hypergraph: every cell has at least one such inter-
section on its boundary.

(d) The two marked cells form a vertex cover of the Hcell−zone

hypergraph: every line has a segment that lies on the boundary of
one of those cells.

Figure 1: Illustrations of the definitions.
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Hypergraph Max. Ind. Set Vertex Cover Chromatic number

Hline−cell ≥
√
n

2
(Th. 3) ≥ n

3
(Cor. 14) Ω(log n/ log log n) (Th. 6)

≤ 2n

3
(Th. 4) ≤ n−

√
n

2
(Cor. 14) ≤ 2

√
n+O(1) (Th. 5)

Hvertex−cell ≥ n
2

3
− 5n

2
(Cor. 10) ≥ n

2

6
(Th. 9) 2 (Th. 7)

≤ n
2

3
− n

2
(Cor. 10) ≤ n

2

6
+ 2n (Th. 9)

Hcell−zone ≥ n
2

2
+ 5n

48
− o(1) (Cor. 13) ≥ n

4
(Th. 12) 2 (Th. 8)

≤ n
2

2
+ 5n

4
+ 1 (Cor. 13) ≤ 19n

48
+ o(n) (Th. 12)

Table 1: Worst-case bounds for the different problems studied in this paper.

The coloring used in Theorem 1 uses essentially the
same number of lines of each color. This actually
holds in general, up to a lower order term.

Theorem 2 Each color class of a proper 2-coloring

c : L → {0, 1} of a set L of n lines has size at most
n

2 +
√
n−1−1

2 .

3.2 Independent lines in Hline−cell

Recall that an independent set of lines in an arrange-
ment is defined as a subset of lines S so that no cell
of the arrangement is only adjacent to lines in S.

Theorem 3 For any set L of n lines, the correspond-

ing Hline−cell hypergraph has an independent set of

size
√
n/2.

Theorem 4 Given a set L of n lines, an indepen-

dent set of the corresponding Hline−cell hypergraph

has size at most 2n/3.

3.3 Chromatic number of Hline−cell

In this section, we study the problem of coloring the
Hline−cell hypergraph. That is, we want to color the
set L so that no cell is monochromatic. We start
by giving an upper bound on the required number of
colors. This result is proved by iteratively picking a
maximal independent set of size

√
n/2.

Theorem 5 Any arrangement of n lines can be col-

ored with at most 2
√
n+O(1) colors so that no edge

of the associated Hline−cell hypergraph is monochro-

matic.

We were also able to prove a slightly sublogarithmic
lower bound for the chromatic number of Hline−cell:

Theorem 6 There exists an arrangement of n lines

whose corresponding hypergraph Hline−cell has chro-

matic number Ω(log n/ log log n).

Proof. (Sketch) In order to show the claim, we con-
struct a set of (roughly) kk lines in which any k-
coloring will contain a monochromatic cell (for any
k > 0). The basic idea behind our construction is

the following: consider any coloring with k colors of
a set of k+1 lines. By the pigeonhole principle there
will be two lines with the same assigned color. More-
over, since the two lines must cross, these two lines
must be consecutive in the vertical ordering of the
lines at some given x coordinate. Our approach is
to cross these two lines with a second pair of lines
that have the same color assigned, hence obtaining a
monochromatic quadrilateral. The main difficulty of
the proof is that the line set must satisfy this property
for any k-coloring of L. In particular, we do not know
neither which color will be repeated, nor at which x-
coordinate. �

3.4 Other coloring results

For the sake of completeness, we end this section by
stating two easy results on coloring vertices or cells
instead of lines.

Theorem 7 The chromatic number of Hvertex−cell is

2.

(Remark that cells of size two only have one vertex,
hence cannot be polychromatic. Therefore, we only
consider cells of size at least 3.)

The following claim is equivalent to the fact that
the dual graph of the arrangement is bipartite

Theorem 8 (Folk.) The chromatic number of

Hcell−zone is 2.

4 Guarding Arrangements

We now consider the vertex cover problem of the
above hypergraphs. That is, we would like to select
the minimum number of vertices so that any hyper-
edge is adjacent to the selected subset. Geometrically
speaking, we would like to select the minimum num-
ber of vertices (or cells or lines), so that each cell (or
line or cell, respectively) contains at least one of the
selected items.

4.1 Guarding cells with vertices

We first consider the following problem: given an ar-
rangement of lines A, how many vertices do we need
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to pick in order to guard the whole arrangement when
lines act as obstacles blocking visibility? This can be
rephrased as finding the smallest subset of vertices V
so that each cell contains a vertex in V , and thus we
are looking for bounds on the size of a vertex cover
for Hvertex−cell.

Theorem 9 For any set L of n lines, a vertex cover

of the corresponding Hvertex−cell hypergraph has size

at most n2/6+ 2n. Furthermore, n2/6 vertices might

be necessary.

Recall that the hypergraph Hvertex−cell has
(

n

2

)

=
n
2

2 − n

2 vertices. Combining this fact with the previous
bounds on the size of a vertex cover allow us to get
similar bounds for the independent set problem.

Corollary 10 For any set L of n lines, a maximum

independent set of the corresponding Hvertex−cell hy-

pergraph has size at least n2/3−O(n). Furthermore,

there exists sets of lines whose largest independent set

has size at most n
2

3 − n

2 .

4.2 Guarding lines with cells

We now consider the problem of touching all lines of L
with a smallest subset of cells, i.e., we look for bounds
on the size of a vertex cover for Hcell−zone.

Theorem 11 Given a set L of n lines, a minimal ver-

tex cover of the corresponding Hcell−zone hypergraph

has size at most ⌈n

2 ⌉.

We next provide a lower bound, and improve as well
on the upper bound, for large values of n.

Theorem 12 Given any set L of n lines, a minimal

vertex cover of the corresponding Hcell−zone hyper-

graph has size at most 19n
48 + o(n). Moreover, there

exists a set L of n lines, such that every vertex cover

of the corresponding Hcell−zone hypergraph has size

at least n

4 .

Corollary 13 For any set L of n lines, a maximum

independent set of the corresponding Hcell−zone hy-

pergraph has size at least n
2

2 + 5n
48 − o(1) and at most

n
2

2 + n

4 + 1.

4.3 Guarding cells with lines

For the sake of completeness, we also give bounds on
the number of lines needed to guard (touch) all cells.

Corollary 14 For any set L of n lines, its minimal

vertex cover of the corresponding Hline−cell hyper-

graph has size at least n/3 and at most n−
√
n

2 .

5 Concluding Remarks

Clearly, the main open problems arising from our
work consist of closing gaps (when they exist) between
lower and upper bounds; this is especially interesting
in our opinion for the problem of coloring lines with-
out producing any monochromatic cell.
However, it is worth noticing that there are several

computational issues that are interesting as well. For
example, it is unclear to us which is the complexity of
deciding whether a given arrangement of lines admits
a two-coloring in which no cell is monochromatic.
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Energy-Aware Art Gallery Illumination
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Abstract

We consider a variant of the Art Gallery Problem,
where a polygonal region is to be covered with light
sources that emit light fading with distance. We
describe a practical approximation algorithm based
on the simplex method and primal-dual LP separa-
tion. For the case where the light positions are given,
we describe a fully polynomial-time approximation
scheme.

1 Introduction

The classical Art Gallery Problem asks for the mini-
mum number of guards placed in a polygon that allow
for complete coverage of the polygon. This is one of
the best-known problems in computational geometry,
see the excellent book by O’Rourke [5] for an intro-
duction into the subject.
In this paper, we consider a variant of the problem,

motivated from discussions with practitioners in 3D
laser scanning. When planning where to place scan-
ners, they solve an Art Gallery type problem. As
scanning quality diminishes over distance, they face
additional constraints. In our problem variant, we
model this as fading light: The guards are seen as
light sources that can be operated at different bright-
ness levels. The emitted light fades over distance.
A restricted case of this problem has been addressed

by Eisenbrand et al. [2]; they assume fixed positions
for the light sources and only consider illuminating
a 1D line. In this model, they describe exact and
approximative solution based on mathematical pro-
gramming.

2 Problem Definition and Notations

We consider a given polygon P , possibly with holes.
We denote by D := diamP the diameter of P . For
a point p ∈ P the visibility polygon V(p) is the (star-
shaped) set of all points of P visible from p.

The original Art Gallery Problem (AGP) is defined
as follows: We say a guard set G ⊆ P covers P iff
∪g∈GV(g) = P . We ask for a covering G of minimum
cardinality.
In this paper, we consider a variant of this problem:

We assume the guards g ∈ G to be, say, light sources

∗Braunschweig University of Technology, Germany,

{a.kroeller, c.schmidt}@tu-bs.de

whose intensity, and therefore energy consumption,
can be controlled. We denote the intensity of g ∈ G
by xg > 0. Furthermore, light suffers from fading over
distance. A point w ∈ V(g) receives only ̺(g, w)xg

from g, where

̺(g, w) :=

{

‖g − w‖−α : ‖g − w‖ > 1
1 : otherwise

. (1)

Here ‖ · ‖ denotes the Euclidean norm in R
2. The

parameter α > 0 defines the fading rate of the emitted
light. We limit ̺ to be at most 1 to avoid strange
effects close to g—otherwise the light intensity would
be unbounded, no matter how intense the light itself
is.
We say a guard set G ⊆ P with intensities (xg)g∈G

illuminates P iff every point in P is sufficiently lit,
which we normalize to mean receiving a total light
intensity of at least one, i.e.,

∑

g∈P : w∈V(g)

̺(g, w)xg > 1 ∀w ∈ P (2)

Our objective is to find an illuminating guard set G
of minimum total energy

∑

g∈G xg.
It should be noted that the case α = 0 corresponds

to the original Art Gallery problem with fractional
guards. A falloff of α = 2 models the physical behav-
ior of light, which has quadratic fading.
Our actual main interest is the case α = 1, which

models the falloff of a laser scanner rotating around
an axis at constant angular speed. The intensity xg

then describes the scanning time, and the light inten-
sity received at a point w ∈ G equals the scan point
density of a surface located at w.

3 The Original Art Gallery Problem

In previous work [1, 4], we have presented an LP-
based procedure for the original art gallery problem.
AGP can be formulated as an integer linear program
with infinitely (actually uncountably) many binary
variables and inequalities:

min
∑

g∈P

xg (3)

s.t.
∑

g∈V(w)

xg > 1 ∀w ∈ P (4)

xg ∈ {0, 1} ∀g ∈ P (5)

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



94

28th European Workshop on Computational Geometry, 2012

1 s

Figure 1: An optimal solution with fading is not an optimal solution to the original Art Gallery Problem.

The infinite size of the above formulation makes
it impossible to solve it directly. Instead, we con-
sider the LP-relaxation obtained relaxing the integral-
ity constraint (5). Furthermore we restrict the guard
positions to be from a finite set G ⊂ P , and only re-
quire a finite set W ⊂ P of “witnesses” to be covered.
We denote this problem by AGR(G,W ).

min
∑

g∈G

xg (6)

s.t.
∑

g∈G∩V(w)

xg > 1 ∀w ∈ W (7)

xg > 0 ∀g ∈ G (8)

We have shown that AGR(P, P ), the LP-relaxation
of AGP itself, can be solved efficiently for many prob-
lem instances, provided one can solve the associated
separation problems. These are:

1. Given a solution (xg)g∈P , decide if it is feasi-
ble for AGR(G,P ), i.e., covers the polygon com-
pletely, or prove infeasibility by presenting an in-
sufficently covered point.

2. Given a solution for the dual LP of (6)–(8),
decide whether it is feasible for the dual of
AGR(P,W ), or prove infeasibility by presenting
a violated dual constraint. This is equivalent to
presenting an additional guard point that will im-
prove the solution.

Our procedure starts with restricted sets G and W
and solves AGR(G,W ) using the simplex method,
obtaining optimal (for AGR(G,W )) primal and dual
solutions. It then solves the two separation prob-
lems, and thereby either finds additional points for
G and/or W , or proves that the current solution is
optimal for AGR(P, P ). In the latter case, the algo-
rithm terminates.

4 Art Gallery with Fading Illumination

Introducing fading constraints (2) to the Art Gallery
Problem results in a new problem. We call it Art

Gallery with Fading (AGPF).
It is tempting to solve AGPF by reducing it to

AGP; unfortunately, this suffers from a bound on ap-
proximation:

Lemma 1 AGPF cannot be approximated better
than 2α by first solving the Art Gallery Problem and
computing intensities afterwards.

Proof. Consider the polygon shown in Figure 1 with
a long spike of length s. The optimal covering guard

set consists of one guard in the lower left corner (⋆).
Illuminating the polygon with it requires an intensity
of sα. An optimal illumination uses two lights (⋆ and
•) with intensities 1 and about ( 12s)

α. The approxi-
mation factor of the first solution is therefore at least

sα

1 + ( 12s)
α
, (9)

which is about 2α for large s. �

Our goal is to find (1 + ε)-approximative solutions
for arbitrary ε > 0, by extending the algorithm de-
scribed in Section 3. Again we restrict the possible
guard locations to a set G ⊆ P , and only require a set
W ⊆ P of witnesses to be sufficiently lit. We denote
this problem by AGPF(G,W ); therefore AGPF(P, P )
is the problem of actual interest.
AGPF(G,W ) is modelled by the following LP:

min
∑

g∈G

xg (10)

s.t.
∑

g∈G∩V(w)

̺(g, w)xg > 1 ∀w ∈ W (11)

xg > 0 ∀g ∈ G (12)

whose associated dual (10)–(12) reads as follows:

max
∑

w∈W

yw (13)

s.t.
∑

w∈W∩V(g)

̺(g, w)yw 6 1 ∀g ∈ G (14)

yw > 0 ∀w ∈ W (15)

As in the general case we are interested in the pri-
mal and dual separation problem. Given an optimal
solution x∗ to (10)–(12) with associated dual solution
y∗, the primal separation problem asks for a witness
w ∈ W such that

∑

g∈G∩V(w) ̺(g, w)xg < 1. The
dual separation problem asks for a guard g ∈ G with
∑

w∈W∩V(g) ̺(g, w)yw > 1. Hence, the primal prob-
lem is a minimization, the dual problem a maximiza-
tion problem.
Note, in contrast to the original Art Gallery prob-

lem, we do not seek integer solutions here.
In the following Section 5 we will give an algorithm

that for a given ε yields a (1 + ε)-approximation to
this problem, in case of convergence.

5 Approximation

Instead of using the function ̺ defined in Section 1,
we round ̺ down, and use a step function τ . For a
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Figure 2: The visibility Arrangement A({g}) induced by T{g},x for a point g with value xg, assuming α = 1.

given ε, the function τ is defined as follows:

τ(g, w) := ⌊⌊̺(g, w)⌋⌋1+ε , (16)

where ⌊⌊·⌋⌋b denotes the hyperfloor with base b, i.e.,

⌊⌊x⌋⌋b := max{bz : bz 6 x, z ∈ Z} . (17)

Therefore τ is piecewise constant and fulfills

1

1 + ε
̺ < τ 6 ̺ . (18)

Instead of solving (10)–(12) directly, we solve the
system AGPFτ(G,W ) defined as

min
∑

g∈G

xg (19)

s.t.
∑

g∈G∩V(w)

τ(g, w)xg > 1 ∀w ∈ W (20)

xg > 0 ∀g ∈ G (21)

with associated dual LP

max
∑

w∈W

yw (22)

s.t.
∑

w∈W∩V(g)

τ(g, w)yw 6 1 ∀g ∈ G (23)

yw > 0 ∀w ∈ W (24)

Lemma 2 A solution x for AGPFτ(G,W ) is also a
solution for AGPF(G,W ).

Proof. This follows directly from (18): As x fulfills
all inequalities of type (20), it also fulfills those of
type (11). �

Lemma 3 Let x∗ be an optimal solution for
AGPF(G,W ) with value OPT. Then (1 + ε)x∗ is
feasible for AGPFτ(G,W ) and has objective value
(1 + ε)OPT.

Proof. Again this follows directly from (18): As x∗

fulfills all inequalities of type (11), (1 + ε)x∗ fulfills
those of type (20). �

Corollary 4 An optimal solution for AGPFτ(P, P )
is an (1 + ε)-approximation for AGPF(P, P ).

Proof. An optimal solution x∗τ for AGPFτ(P, P )
has no larger objective value than the feasible solu-
tion (1 + ε)x∗, i.e., the objective value is bounded by
(1 + ε)OPT (Lemma 3). Lemma 2 yields feasibility
and we obtain the approximation factor. �

5.1 Algorithm

We can use our LP-based AGP procedure, as de-
scribed in Section 3, to find (1 + ε)-approximative
solutions for the Art Gallery Problem with Fading
Illumination—assuming there are algorithms to solve
the two separation problems. These are:

1. Given a solution x for (19)–(21), find a point w ∈
P with

∑

g∈G:w∈V(g)

τ(g, w)xg < 1

or decide no such point exists.

2. Given a solution y for (22)–(24), find a point g ∈
P with

∑

w∈W∩V(g)

τ(g, w)yw > 1

or decide no such point exists.

By the symmetry of visibility, and using the illumina-
tion function

TG,x(p) :=
∑

g∈G∩V(p)

τ(g, p)xg , (25)

we see that the primal (resp. dual) separation can be
solved if we can solve

min
p∈P

TG,x(p) (resp. max
p∈P

TW,y(p) ). (26)

It is easy to see that, for a single point g, T{g},x is a
piecewise constant function over P , as shown in Fig-
ure 2. It induces an arrangement A({g}) within P
with faces of constant value. P is split into two parts:
The first is P \ V(g), where T{g},x is constant 0. For
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the second part, notice that τ is a monotically de-
creasing step function taking the values (1 + ε)−z for
z = 0, 1, 2, . . ., each at distances ((1 + ε)z−1, (1 + ε)z]
from g (exception: [0, 1] for z = 0). This introduces
O(logε+1 D) concentric bands of equal coverage value
around g. The second part of the arrangement is
therefore the intersection of concentric circles with
V(g).
Now consider the arrangement A(G) defined by

overlaying the individual arrangements for all g ∈ G.
Then, TG,x is constant over each face, edge, and ver-
tex of this arrangement.
Therefore, problem (26) can be solved by comput-

ing A(G), and then iterating over all faces, edges, and
vertices of it to find a point minimizing (resp. maxi-
mizing) TG,x. In fact, it is easy to see that the min-
imum is always attained inside a face, and the maxi-
mum either on a vertex or a point in G. This can be
used to speed up the search; however the asymptotic
runtime does not improve.

5.2 Runtime Complexity

As the algorithm simply enumerates all elements of
A(G), the complexity of this arrangement dominates
the runtime. It is constructed from

• n straight line segments defining P ,

• O(n) straight line segments defining V(g) per g ∈
G, and

• O(logε+1 D) circles per g ∈ G,

therefore O((n+ logε+1 D)|G|) straight line segments
and circles in total. Therefore the complexity of A(G)
is O((n+ logε+1 D)2|G|2).

Lemma 5 The separation problems for
AGPFτ(G,W ) can be solved in time
O((n + logε+1(diamP ))2|G|2) resp. O((n +
logε+1(diamP ))2|W |2).

5.3 Limitations

We should mention again that the aforementioned ap-
proach is not an approximation scheme, as it is not
guaranteed that the procedure converges to a final
solution. In fact, it might simply not terminate at
all. However, if the procedure terminates, then it will
have found a (1+ε)-approximative solution. We have
conducted exhaustive experiments [1] without fading,
and found that this happens most of the time.

6 Art Gallery with Fixed Guards and Fading

Finally we consider the case where the lights can only
be placed on a fixed set of positions, that is, G ⊂ P
is given as part of the input and we seek to optimize

AGPF(G,P ). This includes the case of vertex guards,
where guards can only be placed on polygon vertices.

Theorem 6 AGPF(G,P ) admits a fully polynomial-
time approximation scheme (FPTAS).

Proof. With fixed G, the LP formulation of
AGPFτ(G,P ) has a fixed number of columns, but in-
finitely many rows. It is well-known that the ellipsoid
method [3] can be used to find an optimal solution to
such an LP, provided there is an oracle to solve the
primal separation problem in polynomial time.
In Section 5, we have shown how to implement such

an oracle with complexity O((n + logε+1 D)2|G|2),
which is polynomial in the encoded size of the prob-
lem input (logD is polynomial in the encoded coor-
dinates of P ’s vertices) and in 1/ε. Therefore we can
find an optimal solution to AGPFτ(G,P ) in polyno-
mial time, which in turn is a (1 + ε)-approximation
for AGPF(G,P ). �

7 Conclusion

We have introduced the Art Gallery Problem with
Fading, which is a generalization of both the Art
Gallery Problem and the Stage Illumation Problem
by Eisenbrand et al.[2]. We presented an efficient al-
gorithm to approximate the primal and dual sepa-
ration problems stemming from a doubly-infinite LP
formulation of the problem. It can be used for prac-
tical algorithm implementations, and gives rise to an
FPTAS for the case with restricted guard positions.
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A fixed-parameter Algorithm for Guarding 1.5D Terrains

Farnoosh Khodakarami∗ Farzad Didehvar† Ali Mohades‡

Abstract

In the 1.5D terrain guarding problem we are given
a polygonal region in the plane determined by an x-
monotone polygonal chain, and the objective is to find
the minimum number of guards for the given input
terrain. The only previous theoretical results about
this problem are about approximation. We turn to
fixed-parameter tractability. We study ”depth of ter-
rain onion peeling” as parameter and show that 1.5D
terrain guarding problem is fixed-parameter tractable
with respect to this parameter.

1 Introduction

A 1.5D terrain is a polygonal chain in the plane that
is an x-monotone polygonal chain. An x-monotone
chain in R2 is a chain that intersects any vertical
line at most once. A terrain T consists of a set of
n vertices v1, v2, . . . vn, where vi = (xi, yi). The ver-
tices are ordered in increasing order with respect to
their x-coordinates. There is an edge connecting each
(vi, vi+1) pair where i = 1, 2, . . . n− 1. For two points
p and q in T, we say that p and q are visible, if the
line segment connecting p and q lies entirely above or
on the terrain. We write vp < vq if vp is to the left
of vq (i.e., xp < xq). For any two vertices vp, vq ∈ T

with vp < vq, the subterrain T[p,q] of T is simply the
portion of T between vp and vq (including vp and vq).

A set G of points on the terrain is called a guard-
ing set if every point on the terrain is seen by some
point in G. The optimization version of the terrain
guarding problem is the problem of finding a mini-
mum guarding set for a given terrain. There are two
standard versions of the terrain guarding problem:

1. The discrete version: The goal is to select a min-
imum set of vertices of terrain as guards.

2. The continuous version: The goal is to select a
smallest set of guards on terrain T. This means
that guards can be placed anywhere on the ter-
rain.
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†Department of Mathematics and Computer Science,

Amirkabir University, Didehvar@aut.ac.ir
‡Laboratory of Algorithms and Computational Geometry,

Department of Mathematics and Computer Science, Amirkabir

University of Technology, mohades@aut.ac.ir

A terrain guarding problem is motivated from
guarding or covering a road with either security cam-
eras or lights, and also other applications include find-
ing a configuration for line-of-sight transmission net-
works for radio broadcasting, cellular telephony and
other communication technologies [2, 3].

1.1 Previous Work on Terrain Guarding

Chen et al. [1] claimed that 1.5D-terrain guarding
problem is NP-hard, but the proof was never com-
pleted formally [8]. King and Krohn [2] proved that
the decision version of this problem is NP-hard.

Most of the past research has gone into developing
approximation algorithms. Ben-Moshe et al. [3] gave
the first constant-factor approximation algorithm for
the 1.5D-terrain guarding problem. Clarkson and
Varadarajan gave another constant factor approxi-
mation for the problem based on solving a linear
programming relaxation and rounding in [4]. A 4-
approximation was proposed by King in [6] but fur-
ther analysis increased the approximation factor to
5. Elbassioni et al. [5] gave a 4-approximation that
also works for the weighted and partial versions of
the problem. Gibson et al. obtain a polynomial time
approximation scheme for the standard 1.5D terrain
guarding problem by using a local search technique.

1.2 Our Result

The visibility graph of T has a node for every ver-
tex of T and an edge for every pair of visible vertices
in T. Dominating set is a well-studied NP-complete
optimization problem. The minimum dominating set
problem in visibility graphs corresponds to the guard-
ing problem in polygons [16]. So to find the 1.5D
terrain guarding problem, we can use minimum dom-
inating set of visibility graph of that terrain.

In this paper, we consider the discrete terrain
guarding problem. We propose ”depth of terrain
onion peeling” as parameter and show that the 1.5D
terrain guarding problem is fixed-parameter tractable
when parameterized by this parameter. To do so,
we define terrain onion peeling structure and use this
structure to prove the treewidth of 1.5D terrain visi-
bility graph is bounded by linear function of ”depth
of terrain onion peeling”. Then, by using treewidth-
based algorithm for minimum dominating set as de-
veloped in [9] on terrain visibility graph show that

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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terrain guarding problem is fixed-parameter tractable
respect to the ”depth of terrain onion peeling”.
This paper is organized as follows. Section 2 con-

tains the formal definitions of the fixed-parameter al-
gorithm and tree decomposition which are used in the
paper. In Section 3 we introduce the characterization
of terrain onion peeling. The main results of the pa-
per are presented in section 4. Finally, Section 5 offers
a discussion of our results.

2 Fixed-Parameter Algorithms

A problem with input size n and a positive integer
parameter k is fixed-parameter tractable if it can be
solved by an algorithm that runs in O(f(k).nc) time,
where f is a computable function depending only on
k, and c is a constant independent of k; such an al-
gorithm is (informally) said to run in fpt-time. The
class of all fixed-parameter tractable problems is de-
noted by FPT. We refer to [13, 15, 14] for more in-
formation on fixed-parameter algorithms and param-
eterized complexity.
There are many graph problems that can be solved

in linear or polynomial time with a dynamic program-
ming algorithm when the input graph has bounded
treewidth. Typically, treewidth-based algorithms pro-
ceed in two stages: The first stage finds a tree decom-
position of bounded width of the input graph, and the
second stage solves the problem using dynamic pro-
gramming approaches on the tree decomposition. For
combinatorial optimization problems, this is a useful
approach for obtaining fixed-parameter tractable al-
gorithms.

Definition 1 A tree decomposition of a graph G =
(V,E), is a pair TD = ({Xi|i ∈ I}, T = (I, F )) where
each node i ∈ I has associated to it a subset of vertices

Xi ⊆ V , called the bag of i, such that

1. Each vertex belongs to at least one bag.

2. For all edges, there is a bag containing both its

endpoints, i.e. for all {v, w} ∈ E: there is an

i ∈ I with v, w ∈ Xi.

3. For all vertices v ∈ V , the set of nodes {i ∈ I|v ∈
Xi} induces a subtree of T.

The width of a tree decomposition ({Xi ∈ I}, T =
(I, F )) is maxi∈I |Xi| − 1. The treewidth of a graph
G is the minimum width over all tree decompositions
of G.

3 Terrain onion peeling

The convex hull of a set S of points is the smallest
convex polygon P for which each point in S is either
on the boundary of P or in its interior. We denote
the convex hull of S by CH(Q).

Figure 1: convex onion peeling, the depth of onion is
4.

The convex onion peeling of a set of points is a
structure that consists of a sequence of nested convex
hulls of points [11, 12]. This structure on a set S

of n points is obtained by the following procedure:
Compute the CH(S), and let S′ be the set of points
remaining in the interior of the hull. Compute the
CH(S′) and recursively repeat this process until no
more points remain. One ends up with a sequence of
nested convex hulls, called the convex onion peeling
of S. The number of layers is called the depth of
onion, which is equal to the number of iterations of
the convex hull computation process. Figure 1 shows
the onion layers and depth of onion.
We used the idea of onion peeling in order to define

m-layered terrain. First of all we need to define ter-
rain onion peeling, which is similar to convex onion
peeling and obtain by the following procedure: com-
pute CH(S), Let a (resp. b) denote the point of the
convex layer of convex hull with minimum (resp. max-
imum) x-coordinate. The upper chain of CH(S) runs
clockwise from a to b. We denote the upper chain
of CH(S) by UCH(S). Let S′ be the set of points
S minus the points on the UCH(S). Compute the
UCH(S′) and recursively repeat this process until no
more points remain. The depth of terrain onion peel-
ing is equal to the number of layers in convex hull
computation process, See Figure 2.
Points are divided into several groups (nested lay-

ers), using the terrain onion peeling technique. Fig-
ure 2 illustrates an example of constructing a terrain
onion peeling, which consists of sequence of upper
convex hull chains (layers) and each vertex assign to
one layer. As you can see in this figure the vertices of
terrain are divided into 3 layers. If vertex vi is assigne
to layer m then it is presented by vmi .

Lemma 1 Let vbi , v
a
j , v

c
l be vertices of terrain T such

that b, c ≥ a and i < j < l then vcl and vbi are invisible

pair in a visibility graph.

Proof. Assume, for the purpose of contradiction,
that vbi and vcl are visible pair, so line segment (vbi , v

c
l )

lies entirely above or on the terrain. Under the as-
sumption that i < j < l, we can conclude (vbi , v

c
l ) lies

above vaj .
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Figure 2: terrain onion peeling: layers are as fol-
low layer1 = {a, c, k,m}, layer2 = {b, e, g, i, j, l} and
layer3 = {d, f, h}, depth of 1.5D terrain onion peeling
is 3

Since vaj is in layer a, vaj is vertex of
UCH(

⋃
i≥a layeri), which is upper chain of convex

hull for the points with layer labels greater than a.
Also, vaj lies between vbi and vcl on the terrain T and
vaj is on the UCH(

⋃
i≥a layeri) where b, c ≥ a. There-

fore, vaj is above vbi and vcl , which is a contradiction.

�

4 tree decomposition of 1.5D terrain visibility

graph

Now that we have presented structural characteriza-
tion terrain onion peeling, we are ready to see an algo-
rithm for construct tree decomposition of 1.5D terrain
visibility graph.

Our Algorithm consists of three main steps:

Step1 Construct the terrain onion peeling and di-
vide vertices into nested layers.

Step2 Construct initial tree decomposition TD0 =
({Xi ∈ I}, T = (I, F )) where T consists of just one
node i which Xi = V .

Step3 Transform initial tree decomposition into a
tree decomposition with width at most 2k, which is
TDk.

In order to construct TDk from TD0, we should
perform the following iterative operation:

In iteration l, computes the TDl based on TDl−1

and layer l of onion peeling. In order to construct tree
decomposition TDl from TDl−1, replace each node
i ∈ I of tree decomposition TDl−1 with a path of mi

vertices, mi is number of upper convex hull edges of
layer l in bag i. The new bags are decomposed from
bag Xi, consider e = (vlp, v

l
q) be an edge in convex hull

of layer l, then Xipq = {vjt |v
j
t ∈ Xi&j < l} ∪ {vjt |v

j
t ∈

Xi&v
j
t ∈ Tpq}. Figure 3 illustrates an example of

constructing tree decomposition based on sequence of
upper convex hull chains (layers) for the terrain in
figure 2.

we need to prove that our final result is preserv-
ing the tree decomposition properties. The proof is
by induction on l which is level of iteration in step3.

For each property, the basis is one node tree decom-
position TD0, which is construct in step2. Verifying
that each property holds for TD0 is trivial. For the
inductive step, we assume that the lemma holds for
TDl−1:

1. In Step3, the bags of TDl−1 are decomposed into
subbags, that contain the vertices from previous
layer (lable <= l) and the vertices of subterrain
corresponding to convex hull of level l. So, the
union of bags in TDl−1 is equal to TDl.

2. In iteration l of step3, Based on convex hull edges
in layerl, vertices which are present into differ-
ent subterrain are separated into different bags.
By lemma 1, these vertices are not visible. This
implies that, property 2 holds for TDl.

3. Let vp be a vertex in our terrain, we have two
cases to consider, depending on whether vp is in
a bag in TDl−1 or path of more than one node.
In the first case, if the node is in the convex hull
of layer l then the set of nodes {i ∈ I|v ∈ Xi} in-
duces a path of nodes and otherwise it is present
only in one node. In the second case, if vp
present in path of more than one nodes, this
means that this vertex is in convex hull of pre-
vious layers(lable <= l). So, this vertex will be
shown in all nodes of path which are replaced by
any nodes in TD[l−1]. Thus property 3 of tree
decomposition holds for TDl.

Theorem 2 Let T be 1.5D terrain and depth of ter-

rain onion peeling is bounded by k then, the treewidth

of the 1.5D terrain visibility graph is bounded by 2k.

Proof. We must now show that the width of tree
decomposition, which we construct, is bounded by
2k. The bags contains 2 types, vertices from previ-
ous layers(lable ≤ l) and the vertices of subterrain
corresponding to convex hull of level l.
In the step k of the algorithm the length of vertices

in each subterrain is at most 2 because we process
the inner convex hull. In order to complete the proof,
we need to show that the number of vertices from
previous layers(lable ≤ k) is less than 2(k − 1). We
prove this claim by induction on the depth of layers.
The basis is easy, since there is no previous layer for
layer1. For the inductive step, consider TDl−1 has
2(l − 2) vertices from previous layers. Since in step
l of our algorithm the subterrain is contain at most
2 vertices of this layer, we can apply the inductive
hypothesis to conclude that each bag of TDl has at
most 2(l−2)+2 = 2(l−1) nodes from previous layers.
Thus, treewidth of the terrain is 2k.

�

Concept of treewidth provides a powerful tool for
determining the fixed-parameter tractability of NP-
hard combinatorial optimization problems.
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Figure 3: The operation of tree decomposition con-
struction for terrain in Figure 2. Part (a) shows TD0,
which is expanded TD1 (b) and TD2 (c) by the iter-
ations of the step3. In the first iteration the node in
TD0 is replaced by the path of 3 nodes in TD1 based
on the convex hull of the layer1 = (a, c, k). In the
next iteration the nodes of TD1 are replace by paths
based on the convex hull of the layer2 = (b, e, i, j, l),
the new bags contains the vertices from the previ-
ous layer as well as vertices of subterrain convex hull
edges, for example (2-5) in TD2 contains (c, k), which
are in layer2 and present in node 2 of TD1, and also
vertices of subterrains.

The concept of tree decompositions can be used to
solve various graph problems. Alber et al. [9] de-
scribing fixed-parameter algorithm to solve the min-
imum dominating set problem constructively in time
O(4kn), for a graph that is given together with a tree
decomposition having width k and n nodes.

By theorem 1 and the treewidth-based algorithm
for minimum dominating set, we can conclude, 1.5D
guarding problem is fixed-parameter tractable with
respect to ”depth of terrain onion peeling” as param-
eter.

5 Conclusion

In this paper we show that treewidth of 1.5D terrain
onion peeling is bounded by the depth of the terrain
onion peeling and present an algorithm for construct-
ing tree decomposition. From this, we derive that
1.5D guarding problem is fixed-parameter tractable
respect to ”depth of terrain onion peeling” as param-
eter.
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Partial Searchlight Scheduling is Strongly PSPACE-complete

Giovanni Viglietta∗

Abstract

The problem of searching a polygonal region for an
unpredictably moving intruder by a set of stationary
guards, each carrying an orientable laser, is known
as the Searchlight Scheduling Problem. Determin-
ing the complexity of deciding if the entire area can
be searched is a long-standing open problem. Re-
cently, the author introduced the Partial Searchlight
Scheduling Problem, in which only a given subregion
of the environment has to be searched, and proved
that its 3-dimensional decision version is PSPACE-
hard, even when restricted to orthogonal polyhedra.
Here we extend and refine this result, by proving

that 2-dimensional Partial Searchlight Scheduling is
strongly PSPACE-complete, both in general and re-
stricted to orthogonal polygons in which the region to
be searched is a rectangle.

1 Introduction

The Searchlight Scheduling Problem (SSP), first stud-
ied in [3], is a pursuit-evasion problem in which a
polygon has to be searched for a moving intruder by
a set of stationary guards. The intruder moves un-
predictably and continuously with unbounded speed,
and each guard carries an orientable searchlight, em-
anating a 1-dimensional ray that can be continuously
rotated about the guard itself. The polygon’s exterior
cannot be traversed by the intruder, nor penetrated
by searchlights. The intruder is caught whenever it
is hit by a searchlight. Because the intruder’s loca-
tion is unknown until it is actually caught, each guard
has to sway its searchlight according to a predefined
schedule. If the guards always catch the intruder, re-
gardless of its path, by following their schedules in
concert, they are said to have a search schedule.

SSP is the problem of deciding if a given set of
guards has a search schedule for a given polygon (with
holes). The computational complexity of this decision
problem has been only marginally addressed in [3],
but has later gained more attention, until in [2] the
space of all possible schedules has been shown to be
discretizable and reducible to a finite graph, which
can be explored exhaustively in order to find a search
schedule, if one exists. Since the graph may have dou-
ble exponential size, this technique easily places SSP

∗Department of Computer Science, University of Pisa,

viglietta@gmail.com

in 2-EXP. Whether SSP is NP-hard or even in NP

is left in [2] as an open problem.
More recently, in [4], the author introduced the

Partial Searchlight Scheduling Problem (PSSP), in
which the guards content themselves with searching
a smaller subregion given as input. That is, a search
schedule should only guarantee that the given target

region is eventually cleared, either by catching the in-
truder or by confining it outside. A 3-dimensional
variation of PSSP is studied in [4], in which the
input polygonal environment is replaced by an or-
thogonal polyhedron, and the 1-dimensional rays be-
come 2-dimensional half-planes, which rotate about
their boundary lines. Such a problem is shown to be
strongly PSPACE-hard.
In the present paper we take a further step along

this line of research, by proving that 2-dimensional
PSSP is strongly PSPACE-complete, both in general
and restricted to orthogonal polygons in which the
region to be searched is a rectangle.

2 Asynchronous NCL machines

Our reduction is based on a model of computation
described in [1] and [4], called Nondeterministic Con-

straint Logic (NCL).
An asynchronous NCL machine is a 3-regular

graph, each of whose vertices is either an AND ver-

tex or an OR vertex. Of the three edges incident to
an AND vertex, one is called its output edge, and the
other two are its input edges. Each edge of an asyn-
chronous NCL machine can be oriented toward either
one of its incident vertices (or none), and a configu-
ration of edge orientations is legal if

• for each AND vertex, either its output edge is
directed inward, or both its input edges are di-
rected inward;

• for each OR vertex, at least one of its three inci-
dent edges is directed inward.

Accordingly, a legal move consists in the reversal of an
edge’s orientation that preserves legality of the config-
uration. Moves can occur at any time independently
(i.e., asynchronously), and each reversal of an edge
can take an arbitrarily long but finite time, during
which that edge is not oriented toward any vertex.

Given an asynchronous NCL machine with two dis-

tinguished edges ea and eb, and a target orientation

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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for each, we call EE-ANCL the problem of deciding if
there exist legal configurations A and B such that ea
has its target orientation in A, eb has its target ori-
entation in B, and there is an asynchronous sequence
of legal moves from A to B. EE-ANCL is shown to
be PSPACE-complete in [4], by a reduction from its
synchronous version, thoroughly studied in [1].

3 PSPACE-completeness of PSSP

To prove that PSSP belongs to PSPACE we use
the discretization technique of [2], and to prove that
PSSP is PSPACE-hard we give a reduction from EE-
ANCL.

Lemma 1 PSSP ∈ PSPACE.

Proof. As explained in [2], a technique known as ex-
act cell decomposition allows to reduce the space of all
possible schedules to a finite graph G. Each search-
light has a linear number of critical angles, which yield
an overall partition of the polygon into a polynomial
number of cells. Searchlights take turns moving, and
can stop or change direction only at critical angles.
Thus, a vertex of G encodes the status of each cell
(either contaminated or clear) and the critical angle
at which each searchlight is oriented.

As a consequence, G can be navigated nondeter-
ministically by just storing one vertex at a time, which
requires polynomial space. Notice that deciding if two
vertices of G are adjacent can be done in polynomial
time: An edge in G represents a move of a single
searchlight between two consecutive critical angles,
and the updated status of each cell can be easily eval-
uated. Indeed, cells’ vertices are intersections of lines
through input points, hence their coordinates can also
be efficiently stored and handled as rational expres-
sions involving the input coordinates.

Now, in order to verify that a path in G is a wit-
ness for SSP, one checks if the last vertex encodes a
status in which every cell is clear. But the very same
cell decomposition works also for PSSP: The analysis
in [2] applies even if just a subregion of the polygon
has to be searched, and a path in G is a witness for
PSSP if and only if its last vertex encodes a status
in which every cell that has a non-empty intersection
with the target subregion is clear.

Since PSPACE = NPSPACE, due to Savitch’s
theorem, our claim follows. �

For the PSPACE-hardness part, we first give a
reduction in which the target region to be cleared is an
orthogonal hexagon. Then, Section 4 will explain how
we would have to modify our construction, should we
insist on having a rectangular (hence convex) target
region.

Lemma 2 EE-ANCL �P PSSP restricted to orthog-

onal polygons.

Proof. We show how to transform a given asyn-
chronous NCL machine G with two distinguished
edges ea and eb into an instance of PSSP.

A rough sketch of our construction is presented in
Figure 1. All the vertices of G are placed in a row (a),
and are connected together by a network of thin cor-

ridors (b), turning at right angles, representing edges
of G. Each subsegment of a corridor is a thin rectan-
gle, containing a subsegment guard in the middle (not
shown in Figure 1). Two subsegments from different
corridors may indeed cross each other like in (c), but
in such a way that the crossing point is far enough
from the ends of the two subsegments and from the
two subsegment guards (so that no subsegment guard
can see all the way through another subsegment). All
the vertices of G and all the joints between consecu-
tive subsegments (i.e., the turning points of each cor-
ridor) are connected via extremely thin pipes (d) to
the upper area (e), which contains the target region
(shaded in Figure 1).

ANDANDAND OROR

(a)

(b)
(c)

(d)

(e)

(g)(f)

(d)

Figure 1: Construction overview.

Two corridors (f) and (g) also reach the upper area,
and they correspond to the distinguished edges of G,
ea and eb, respectively. That is, if ea = {u, v}, and the
target orientation of ea is toward v, then the corridor
corresponding to ea connects vertex u in our construc-
tion to the upper area (e), rather than to v. The same
holds for eb. Indeed, observe that we may assume that
ea and eb are reversed only once (respectively, on the
first and last move) in a sequence of moves that solves
EE-ANCL on G. As a consequence, contributions to
vertex constraints given by distinguished edges ori-
ented in their target direction may be ignored.
Each pipe turns at most once, and contains one pipe

guard in the middle, lying on the boundary. Notice
that straight pipes never intersect corridors, but some
turning pipes do. Figure 2 shows a turning pipe, with
its pipe guard (a) and an intersection with a corri-
dor (b) (proportions are inaccurate). The intersec-

tion guards (c) separate the pipe from the corridor
with their lasers (dotted lines in Figure 2), without
“disconnecting” the pipe itself. Although a pipe nar-
rows every time it crosses a corridor, its pipe guard
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can always see all the way through it, because it is
located in the middle. The small nook (d) is unclear-
able because no guard can see its bottom, hence it
is a constant source of recontamination for the target
region (e), unless the pipe guard is covering it with
its laser. (Each straight pipe also has a similar nook.)

In our construction, corridor guards implement
edge orientations in G: Whenever all the subsegment
guards in a corridor connecting vertices u and v have
their lasers oriented in the same “direction” from ver-
tex u to vertex v, it means that the corresponding
edge {u, v} in G is oriented toward v.

(a)

(b)

(c)

(d)

(e)

(c)

(c)

(c)

Figure 2: Intersection between a pipe and a corridor.

Figure 3 shows an OR vertex. The three subseg-
ment guards from incoming corridors (a) can all “cap”
pipe (b) with their lasers, and nook (c) guarantees
that the pipe is recontaminated whenever all three
guards turn their lasers away.

AND vertices are implemented as in Figure 4.
The two subsegment guards (a) correspond to input
edges, and are able to cap one pipe (e) each, whereas
guard (c) can cover them both simultaneously. But
that leaves pipe (d) uncovered, unless it is capped by
guard (b), which belongs to the corridor correspond-
ing to the output edge. Again, uncovered pipes are
recontaminated by unclearable nooks (f).

(a)

(b)
(c)

(a)

(a)

Figure 3: OR vertex.

Joints between consecutive subsegments of a corri-
dor may be viewed as OR vertices with two inputs,
shaped like in Figure 3, but without the corridor com-
ing from the left.

(e)

(a)(a)

(e) (d)

(b)

(c)

(f)

(f)

Figure 4: AND vertex.

Finally, Figure 5 shows the upper area of the con-
struction, reached by the distinguished edges ea and
eb (respectively, (a) and (b)), and by all the pipes (c).
The guard in (d) can cap all the pipes, one at a time,
and its purpose is to clear the left part of the target
region, while the small rectangle (e) on the right will
be cleared by the guard in (f). The two pipes (g) im-
plement additional OR vertices with two inputs, and
prevent (d) and (f) from acting, unless the respective
distinguished edges are in their target orientations.
Nook (h) will contaminate part of the target region,
unless (d) is aiming down. Nooks (i) prevent area (e)
from staying clear whenever guard (f) is not aiming
up. The guard in (j) separates the two parts of the
target region with its laser, so that they can be cleared
in two different moments.

(a) (b)

(c)(c)

(d) (e)

(f)

(h)

(g) (g)

(j)

(i)

Figure 5: Target region.

Suppose G is a solvable instance of EE-ANCL.
Then we can “mimic” the transition from configura-
tion A to configuration B (see Section 2) by turning
subsegment guards. Specifically, if edge e = {u, v}
in G changes its orientation from u to v, then all the
subsegment guards in the corridor corresponding to e

turn their lasers around, one at a time, starting from
the guard closest to u. Before this process starts, each
pipe has one end capped by some subsegment guard,
and in particular pipe (g) on the left of Figure 5 is
capped by the guard in (a). Hence, guard (d) is free
to turn and cap all the pipes one by one, stopping
for a moment to let each pipe’s internal guard clear
the pipe itself (which now has both ends capped) and
cover its nook (see Figure 2). As a result, the left part
of the target region can be cleared by rotating (d)
clockwise, from right to down. Then the subsegment
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guards start rotating as explained above, until config-
uration B is reached. If done properly, this keeps all
the pipes capped and clear, thus preventing the left
part of the target region from being recontaminated.
When B is reached, guard (f) can turn up to clear (e)
and finally solve our PSSP instance.
Conversely, suppose that G is not solvable. Ob-

serve that rectangle (e) in Figure 5 has to be cleared
by guard (f) as a last thing, because it will be recon-
taminated by nooks (i) as soon as (f) turns away. On
the other hand, as soon as a pipe has both ends un-
capped by external guards, some portion of the target
region necessarily gets recontaminated by some nook,
regardless of where the pipe guard is aiming its laser.
But guard (d) can cap just one pipe at a time and,
while it does so, nook (h) keeps some portion of the
target region contaminated. Thus, the entire process
must start from a configuration A in which all the
pipes are simultaneously capped and guard (d) is free
to turn right (i.e., ea is in its target orientation), then
proceed without ever uncapping any pipe (i.e., pre-
serving legality), and finally reach a configuration B

in which guard (f) is free to turn up (i.e., eb is in its
target orientation). By assumption this is impossible,
hence our PSSP instance is unsolvable. �

By putting together Lemma 1 and Lemma 2, we
immediately obtain the following:

Theorem 3 Both PSSP and its restriction to orthog-

onal polygons are strongly PSPACE-complete. �

The term “strongly” is implied by the fact that all
the vertex coordinates generated in the PSPACE-
hardness reduction of Lemma 2 are numbers with
polynomially many digits (or can be made so through
negligible adjustments).

4 Convexifying the target region

We can further improve our Theorem 3 by making the
target region in Lemma 2 rectangular.

Our new target region has the same width as the
previous one, and the height of rectangle (e) in Fig-
ure 5. In order for this to work, we have to make
sure that some portion of the target region is “af-
fected” by each contaminated pipe that is not capped
by guard (d), no matter where all the pipe guards are
oriented. To achieve this, we make pipes reach the
upper area of our construction at increasing heights,
from left to right, in a staircase-like fashion.

Assume we already placed pipe (a) in Figure 6, and
we need to find the correct height at which it is safe
to connect pipe (b). First we find the rightmost inter-
section (c) between a laser emanating from the pipe
guard of (a) and the lower border of the target region.
Then we set the height of pipe (b) so that it is capped
by guard (d) when it aims slightly to the right of (c).

(a)

(b)

(d)

(c)

Figure 6: Rectangular target region.

This is always feasible, provided that pipes are thin
enough, which is not an issue.
After we have set all pipes’ heights from left to

right, the construction is complete and the proof of
Lemma 2 can be repeated verbatim, yielding:

Theorem 4 Both PSSP and its restriction to or-

thogonal polygons with rectangular target regions are

strongly PSPACE-complete. �

5 Further research

Observe that the target region constructed in [4] for 3-
dimensional PSSP is an arbitrarily small ball centered
at a given point. We could even modify PSSP by ask-
ing if any neighborhood of a given point is clearable
at all (as opposed to a well-defined polygonal target
region), and this problem would stay PSPACE-hard
for polyhedral environments. Our question is whether
this holds true for 2-dimensional polygons, as well.
Similarly, we may investigate the complexity of

PSSP on other restricted inputs, such as simply con-
nected polygons, or target regions coinciding with the
whole environment. The latter is in fact SSP, which
has been mentioned in Section 1 as an interesting
long-standing open problem. In [4], the author proved
that the 3-dimensional version of SSP isNP-hard, but
determining the true complexity of either version still
seems a deep problem and a possibly laborious task.
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Triangle-Triangle Tolerance Tests
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Abstract

The motivation for this work comes from the digital
mock-up process in car industry where constructions
and motions in the design of a car are evaluated. One
important task is to verify that moving components
keep a given distance to other (stationary) compo-
nents in their environment. The geometry of a com-
ponent is described by a high-quality triangle mesh
and its trajectory is specified by a discrete sequence
of positions and orientations. Solving this task, the
basic operation is a triangle-triangle tolerance test:
Given two triangles, determine whether their shortest
Euclidean distance is greater than a given tolerance
value ε. A special case is the triangle-triangle inter-
section test choosing ε = 0. For the latter a lot of
work has been done to solve it efficiently [2, 3, 4, 5].
We present efficient solutions for the generalized ques-
tion. Our solutions are optimized for the treatment of
millions of triangle-triangle tolerance tests in parallel
on multi-core CPUs and on the GPU.

1 Introduction and previous work

In the digital mock-up, early in the construction phase
of a car, constructions and motions of component
parts have to be evaluated. For example it has to be
checked that in the moving car the vibrating engine al-
ways keeps a given safety distance to its circumjacent
parts. An example for a wide motion is the engine
marriage. It has to be verified that the assembly of
the engine into the car body is possible in compliance
with a safety distance. In our work we consider two
objects, a static and a dynamic one. The boundary
of an object is given by a list of triangles, the motion
by a sequence of affine transformations. For a vibrat-
ing motion we are interested in all triangles of both
objects that violate a given ε-distance to the other
part during motion. For a wide motion we want this
information for every time step separately.

Every solution to this tolerance query will mainly
consist of two parts: In a ”broad phase” those pairs
of triangles are identified, with the help of data struc-
tures like a bounding volume hierarchy or a grid,
which are candidates to fall below the tolerance. In
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the ”narrow phase” every candidate pair then has to
pass the triangle-triangle tolerance test: Determine
whether the shortest Euclidean distance of two trian-
gles is greater than the tolerance value ε.
A special case is the triangle-triangle intersection

test choosing ε = 0. For the intersection query a lot
of work has been done to solve it efficiently [2, 3, 4, 5].
In the literature very little can be found about the

generalized question. Geometrically, testing two tri-
angles T1 and T2 for distance greater ε is much more
involved than testing them for intersection. Consider
triangle T1. Inflate every vertex of T1 to a sphere of
radius ε and take the convex hull H1 of the three
spheres. For ε > 0 the boundary of H1 consists
of parts of planes, spheres and cylinders, see also
Figure 1. The triangles T1 and T2 have a distance
greater ε iff H1 and T2 do not intersect.

Figure 1: A triangle and the ε-offset of a second tri-
angle intersect. ⇔ The tolerance value ε between the
two triangles is violated.

The proximity query package PQP [8] provides, be-
sides collision detection and distance calculation al-
gorithms, a tolerance verification algorithm. It calcu-
lates whether the distance between two complex ob-
jects falls below a given tolerance value. The broad
phase is realized by using bounding volume hierachies
of oriented bounding boxes as well as by rectangu-
lar swept spheres. Details are given by Gottschalk et
al. [7] and by Larsen at al. [6]. For the narrow phase
the minimal distance between the triangles is calcu-
lated and compared with ε. PQP stops computation
as soon as one pair of triangles is closer than ε. This is
different to our problem, because we are interested in
all triangles (for all motion steps) that violate the tol-
erance value. Since this causes much more computing
effort, our solutions are optimized for the treatment of
millions of triangle-triangle tolerance tests in parallel
on multi-core CPUs and on the GPU.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Ratio between broad and narrow phase

We have implemented two algorithms for the broad
phase. One is designed for a vibrating motion and
works on the GPU. It uses so called ”speed boxes” as
proposed by Busold [1]. We are given one static and
one moving object. We enclose every static triangle
in its AABB and then enlarge the AABB by the tol-
erance value ε. For every dynamic triangle an AABB
is constructed that bounds the triangle for all steps of
the motion sequence. Finally, all pairs of static and
dynamic intersecting AABBs are determined. The in-
put of the narrow phase is a list of pairs of static and
dynamic triangles. Each triangle pair has to be tested
for tolerance violation during the vibrating motion.
The second broad phase algorithm is based on a

spatial subdivision and works on the multi-core CPU.
Both objects are stored in a spatial grid. For every
motion step the grid cells are determined which are
closer than ε. The input of the narrow phase is a list
of pairs of triangles together with an affine transfor-
mation. Every transformed triangle pair has to be
tested for tolerance violation.
In a first experiment we use the CPU code of the

triangle-triangle distance test provided by PQP on the
multi-core CPU to execute the tolerance test in the
narrow phase for both implementations.
We analyze the ratio between the broad and the

narrow phase. In order to have a clean test scenario,
we determine in the broad phase the lists of triangle-
pairs to be tested for several specific ε. We then write
every list into a file and remove double entries. We
read the list from the file and start the narrow phase.
The grid algorithm and the tolerance test are per-
formed on the multi-core CPU (Intel Core i7-980X,
3.33GHz, 6 Cores + hyper-threading), the speed box
algorithm on the GPU (NVIDIA GeForce GTX 480).

Figure 2: Ratio between narrow and broad phase for
a wide (left) and a vibrating motion (right).

The benchmark scenario consists of an engine
mount with 24,000 triangles, an exhaust system with
224,000 triangles, and a respective motion track. The
left diagram in Figure 2 shows the results for a wide
motion with 2,000 discrete motion steps. On the x-
axis we vary the tolerance value ε. Both, the grid-
based broad and the narrow phase, are calculated on
the multi-core CPU. The grid cells have size 5 because
this value leads to the best overall running time. It

can be seen that a great amount of the running time
is spent on the triangle-triangle tolerance test. For a
vibrating motion with 14,000 discrete motion steps,
the fraction of the narrow phase is even larger (right
diagram). This is due to the fact that we calculate the
broad phase using speed boxes on the GPU whereas
the triangle-triangle test still runs on the multi-core
CPU.
It has to be mentioned again that the aim of the

PQP tolerance test, which uses a triangle-triangle dis-
tance test, is to decide tolerance violations between
two objects, not to compute all involved triangles.
Our conclusion is that it is inevitable to look for a
specialized efficient triangle-triangle tolerance test to
process millions of tests in parallel.

3 The narrow phase

In the following we will investigate several triangle-
triangle tolerance tests and compare them. Each test
deals with one pair of triangles for a specific trans-
formation. The tests we present differ by the kind of
”early out” they use. They apply different strategies
to shorten computation, either if for sure there is a
tolerance violation or if for sure there is none.

3.1 Feature distance

Our first basic tolerance test is to calculate the dis-
tance between two triangles and then compare it with
the tolerance value. We compute the minimal dis-
tance between two triangles by checking all feature
distances. Every triangle has 7 features: 3 vertices, 3
edges, and 1 face. For the two triangles we compute
all 9 vertex-vertex distances, 18 vertex-edge distances,
9 edge-edge distances, 6 point-face distances, and 6
edge-face intersections. The 48 feature distances are
computed one by one and each intermediate result is
compared with the tolerance value ε. As soon as one
distance is smaller or equal to ε, computing the re-
maining feature distances can be omitted. Thus, we
have an early out as soon as we know that the trian-
gles violate the tolerance.

3.2 Separating plane

Another approach is based on the separating axis the-
orem. It relies on the fact that two convex objects are
disjoint iff there is a plane that separates the objects.
Gottschalk et al. [7] use a separating axis test to
check two oriented bounding boxes for intersection.
They limit the number of planes to be investigated to
only 15. This comes from the fact that for two dis-
joint convex polytopes there exists a separating plane
parallel to one of the polytopes’ faces or parallel to a
pair of edges, one edge from each polytope.
We cannot apply this technique to our triangle-

triangle tolerance test in the same manner because
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in order to test triangles T1 and T2 for tolerance vio-
lation we have to test T2 and the ε-offset H1 of T1 for
intersection. As seen before, H1 is not a polytope.
We limit the number of planes by considering all

the directions where possibly the shortest distance
between the triangles can occur. If H1 and T2 are
disjoint, the shortest distance between T1 and T2 is
greater than ε and there exists a separating plane or-
thogonal to the shortest connection of the two clos-
est features. Thus, we test the planes orthogonal to
the 9 vertex-vertex connections, the planes orthogo-
nal to the 2x9 vertex-edge connections and the planes
orthogonal to the 9 edge-edge connections. Addition-
ally, we test the two supporting planes of the triangles.
This covers the case that a closest feature is the face of
one triangle. So we limit the number of contemplable
planes to 38. A single separating plane test projects
the two triangles onto the normal of the plane and
tests if the resulting intervals have a distance greater
than ε. As soon as a separating plane is found, the
remaining planes do not have to be tested any more.
Thus, we have an early out as soon as we know that
the triangles do not violate the tolerance.

3.3 Combined

We have seen two approaches with different early outs.
Next we combine the separating plane approach with
some ideas from the feature distance approach to have
both kinds of early outs. Before trying to construct
the separating plane orthogonal to a vertex-vertex
connection, we first evaluate the distance between the
two vertices. Thus, we have an early out in case the
vertex-vertex connection already violates the toler-
ance and we have an early out if there is a separating
plane perpendicular to the vertex-vertex connection.
In the edge-vertex case, we first evaluate the length of
the edge-vertex connection (provided its endpoint is
inside the edge) for the test on tolerance violation and
then use the direction of the edge-vertex connection
for the separating plane test.

3.4 Dual Test

Our next approach works in dual space. It performs
several separating plane tests at a time.
Remember that H1 is the convex hull of three

spheres. W.l.o.g. we assume the center point of one
sphere to be the origin. Then the dual of H1 is the
intersection of a sphere and two quadrics containing
the origin, denoted as HD

1
, see also [9]. Dualizing the

vertices of the triangle T2 leads to three planes. Con-
sider a separating plane p in primal space between
H1 and T2 and let Po be the halfspace of p containing
the origin. Due to our construction, H1 is inside Po.
T2 and therefore all its three vertices are outside Po.
Dualizing p leads to a point pD inside HD

1
. Looking

at the three planes of the dualized vertices of T2, the

point pD is outside all three halfspaces containing the
origin and therefore inside the intersection TD

2
of all

three halfspaces not containing the origin. We can
conclude that there exists a separating plane between
H1 and T2 iff HD

1
intersects TD

2
.

Our test is organized as follows: First, for the
vertex-vertex test a separating plane and tolerance
violation test is performed as described in 3.3. Then
we test whether there is a separating plane between
H1 and T2 which is parallel to one of the edges of T2.
A separating plane parallel to an edge of T2 exists iff
one of the edges (all of them are half-lines) of TD

2
in-

tersects HD

1
. Analogously we look whether there is a

separating plane between H2 and T1 parallel to one
of the edges of T1 and test the half-lines of TD

1
for

intersection with HD

2
.

This summarizes the separating plane tests for the
2x9 vertex-edge connections, the 9 edge-edge connec-
tions, and the 2 normal directions to 2x3 intersection
tests of a half-line with three quadrics. For an inter-
section test of a half-line with three quadrics we use
interval calculation and Sturm sequences.

4 Experimental Results

We have implemented our triangle-triangle tolerance
tests and developed different optimized versions for
the multi-core CPU and for the GPU. We use the
same test scenarios as described in Section 2.
Wide motion: For each motion step we are inter-

ested in all tolerance violating triangles. Because of
this task, a tolerance test for two triangles is super-
fluous and not executed if both triangles have been
detected as tolerance violating for the same motion
step before. We call this a ”logic ε-violation”. Fig-
ure 3 (a) presents our performance results for the wide
motion path with 2000 motion steps. On the path 400
successive steps cause a collision of the two objects.
We zoom into this part of the path, again sample 2000
motion steps, and show the results in (b).
Due to the construction of the two paths, the broad

phase in (b) collects more triangle pairs. In both
cases a high percentage of the triangle pairs have a
logic ε-violation and almost all remaining ones (and
only their tolerance tests are measured for the run-
ning time) have no violation and therefore a separat-
ing plane. The difference in the running time beween
the combined and the dual approach on the one hand
and the separating plane approach on the other hand
is caused by the different order in which they con-
sider the feature connections. The first two start with
vertex-vertex, the latter with the triangle planes.
Vibrating motion: We are interested in all trian-

gles which violate tolerance during the motion. Dia-
gram 4 (a) shows the number of triangle pairs to be
checked in the narrow phase. Each pair has to pass
14,000 triangle-triangle tolerance tests, one for each
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(a) (b)

Figure 3: Number of triangle pairs after the broad phase and performance of different tolerance tests on the
multi-core CPU for (a) the complete wide motion, (b) a part of the motion where the two objects intersect

(a) (b) (c)

Figure 4: Performance result vibrating motion: (a) Number of triangle-triangle tolerance tests, (b) Performance
of different tolerance tests on the multi-core CPU and (c) the GPU

motion step, but we stop computation as soon as we
find the first tolerance violation. With increasing ε

also the percentage of triangle pairs with tolerance
violation increases. The next two diagrams show the
performance of the algorithms on the multi-core CPU
(b) and the GPU (c). For small ε, and therefore for
a small number of ε-violations, the separating plane
approach is the best. The more violations we have,
the better becomes the combined approach.

Figure 5 proves that the performance of the toler-
ance query between two complex objects can be im-
proved significantly by using an optimized triangle-
triangle tolerance test. The only difference to Fig-
ure 2 is that we now use our implementations of the
separating plane approach to execute the triangle-
triangle tolerance tests. This causes a reduction of
the time spend on the tolerance tests and a decrease of
the overall running time: For the wide motion (left),
which is completely computed on the multi-core CPU,
we are in average 2.5 times faster. For the vibrating
motion the broad phase is computed on the GPU.
Here we are in average 6 times faster if we use our op-

Figure 5: Ratio between narrow and broad phase for
a wide (left) and a vibrating motion (right) with op-
timized triangle-triangle tolerance tests.

timized tolerance test on the CPU and even 103 times
faster if we let both phases run on the GPU (right).
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Optimizing the computation of sequences of determinantal predicates

Ioannis Z. Emiris∗ Vissarion Fisikopoulos∗ Luis Peñaranda∗

Abstract

Orientation is the core predicate in many important
geometric algorithms, such as convex hull and tri-
angulation computations. This operation reduces to
compute the sign of a determinant. We propose a
method that improves the amortized complexity of
the determinants involved in a convex hull computa-
tion. Moreover, we study how can we use the compu-
tation done in a convex hull construction to improve
the construction of subsequent convex hulls. Our two
main tools are the dynamic determinant computation
and the reuse of determinantal minors. We finally val-
idate our approach by implementing and testing one
of our methods.

Keywords Orientation, determinant, convex hull, tri-
angulation, CGAL implementation.

1 Introduction

In general dimension d, the orientation of d+1 points
is computed as the determinant of a matrix contain-
ing the coordinates of the points as columns, plus
one last row full of ones. As the dimension grows,
a higher percentage of the computation time is con-
sumed by these predicates. In this paper we study
the computation of sequences of determinantal pred-
icates in a single, or in a sequence of, exact convex
hull computations. A typical example of the latter
is the computation of many regular triangulations of
the same pointset, which arise in algorithms that com-
pute secondary [16] and resultant polytopes [8]. Our
study can be extended to other determinantal predi-
cates such as inCircle/inSphere and Volume.

Our contribution is twofold. First, we propose a
method that improves the amortized complexity of
the determinants involved in a convex hull computa-
tion (Sect. 2). This method uses the dynamic determi-
nant evaluation procedure introduced in [18] to solve
problems in graphs. Moreover, we study sequences
of convex hull computations and propose a method
that uses the computation done in a convex hull con-
struction to improve the construction of subsequent

∗National and Kapodistrian University of Athens, Depart-
ment of Informatics and Telecommunications, Athens, Greece.
{emiris,vissarion,lpenaranda}@di.uoa.gr. Partial support from
project “Computational Geometric Learning”, which acknowl-
edges the financial support of the Future and Emerging Tech-
nologies (FET) programme within the Seventh Framework Pro-
gramme for Research of the European Commission, under FET-
Open grant number: 255827.

convex hulls (Sect. 3). Second, we implement a simple
method that optimizes the computation of subsequent
determinantal predicates in both single and sequence
of convex hull computations. The experiments show
in the first scenario a speedup up to dimension 5 and
in the second a speedup of 100 times when the dimen-
sion is 6 (Sect. 4).

Let us review previous work. There is a variety
of algorithms and implementations for computing the
determinant of a d × d matrix. Denoting their com-
plexity by O(dω), the best known ω is 2.697263 [13].
However good asymptotic complexity does not imply
good behavior in practice for small and medium di-
mensions. For instance, LinBox [6] implements al-
gorithms with state-of-the-art asymptotic complexity,
but introduces a significant overhead in medium di-
mensions, and seems most suitable in very high di-
mensions (typically> 100). There exists also a variety
of algorithms for determinant sign computation [1, 4]
with good asymptotic complexity. Eigen [11] seems to
be suitable for medium to high dimensions, whereas
CGAL [5] determinants proved to be efficient in low
to medium dimensions. Decomposition methods have
complexity O(d3), but they require the construction
of intermediate objects, which adds a constant cost
in computations and makes them slow in practice.
There exist other simple methods such as [17] with
complexity O(d4) and [2] with complexity O(dM(d))
where M(d) is the complexity of matrix multiplica-
tion. Albeit simpler to implement, they also construct
intermediate objects and thus suffer the same practi-
cal problem as decomposition methods. Laplace ex-
pansion, the simplest determinant method, does not
need intermediate matrices and has complexity O(d!)
(note however that d! < d3 for d < 6).

Concerning of sequences of determinants, the refer-
ence software for computing triangulations of a set of
points, TOPCOM [16], computes all Orientation de-
terminants that will be needed and stores their signs.

2 Convex Hull Computation

This section discusses the problem of dynamic com-
putation of determinants produced in geometric com-
putations such as convex hull and triangulation algo-
rithms. These algorithms rely on the signs of deter-
minantal Orientation predicates. The orientation of
d+ 1 d-dimensional points is the sign of the determi-
nant of a (d+1)× (d+1) matrix, where each column
contains the d coordinates of each point, plus a 1 on

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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the last place.
In the dynamic determinant problem, a d×d matrix

A is given. Then, allowing some preprocessing, we
should be able to handle updates of elements of A

and queries for the current value of the determinant.

Lemma 1 [18, Thm.2] The dynamic determinant

problem can be solved in O(dω) time for preprocess-

ing, O(d2) time for one column updates and O(1) time

for queries.

We want to apply this result to incremental con-
vex hull algorithms. Let A ⊂ R

d be a pointset with
CH(A) of dimension d, where CH(·) denote the con-
vex hull. In particular, we focus on the Beneath-
and-Beyond (BB) algorithm [7, Sect. 8.4], where the
construction of CH(A) is essentially the construction
of a placing triangulation of CH(A) [15, Sect. 4.3].
Given A, the algorithm at the first step computes a
d-simplex and at every step it adds points by keeping
a triangulated convex hull of the inserted points. At
each step, a new point p is connected with all its visi-
ble facets. In order to determine if a facet f is visible
from p we have to compute an Orientation predicate
that involves p and the points of f . For each visible
facet f a new full dimensional face (cell) σ is created,
by connecting p to the points of f . Every cell σ has
a vertex v that is not a vertex of f . At every step
if we know the value of the Orientation determinant
involves the vertices of cell σ we only need to compute
the new value if we change v with p in this determi-
nant. We can use Lem. 1 to compute this determinant
in O(d2).
The idea is to store the value of Orientation in its

corresponding cell together with an inverse d× d ma-
trix that is used for updates [18, Sect. 4]. Denote t the
number of cells of the resulting placing triangulation
of CH(A) that stores the determinantal values and the
inverse matrices. Note that every cell constructed by
the algorithm corresponds to an Orientation predicate
involving its points. The total number of predicates
computed is thus t. The first predicate, corresponding
to the initial d-simplex, is computed in O(dω). Then,
the following holds.

Theorem 2 The Orientation predicates of the BB

algorithm can be computed in O(d2) amortized time

and O(d2t) space, where d is the dimension of the

points and t is the number of cells of the resulting

placing triangulation of the convex hull.

This result improves the amortized computational
complexity of the determinants involved in convex
hull computation using the BB from O(dω) to O(d2).

The method presented in this section can be
adapted to other algorithms which compute deter-
minants of matrix updates. For instance, walk al-
gorithms for point location in triangulations compute
orientations involving vertices of neighboring cells.

3 Sequences of Convex Hull Computations

In this section we study the problem of computing a
sequence of regular triangulations of a d-dimensional
pointset A for given lifting vectors w. This can be
done by computing the convex hull of the lifted A ac-
cording to w and project its upper hull. This idea
has already appeared in [9] where, given a system of
n + 1 polynomials in n variables, the proposed algo-
rithm computes the Newton polytope (or a projection
of it) of the resultant of this system. Given the input
polynomials, it first defines a pointset A in dimension
2n (i.e., d = 2n) and it needs to compute the regular
triangulations of A given some lifting vectors. Similar
problems often appear in combinatorial geometry, as
in computations of secondary polytopes [16] or in the
computation of volumes (i.e., the Volume predicate)
of the cells of a triangulation. Again motivated by [9],
we want to compute the volume of the cells of regular
triangulations of A given some lifting vectors.
The basic observation is that in every convex hull

computation the input points differ only in their last
coordinate, which comes from different lifting vec-
tors. Thus, we expect many Orientation predicates
that appear in this computation to be similar. Con-
sider now the d × |A| matrix with the points of A
as columns. Define P as the extension of this matrix
by adding a lifting vector ~w as the last row. We use
the Laplace expansion along the last row for comput-
ing the determinant of the square submatrix formed
by any d + 1 columns of P ; wlog these are the first
d + 1 columns a1, . . . , ad+1. Let 〈a1, . . . , ad+1〉 \ i

be the vector 〈a1, . . . , ad+1〉 without its i-th element;
P〈a1,...,ad+1〉\i is the d × d matrix obtained from the
d first elements of the columns whose indices are in
〈a1, . . . , ad+1〉 \ i.
Orientation is the sign of the determinant of

Phom
〈a1,...,ad+2〉

, constructed by columns a1, . . . , ad+2

when we add ~1 ∈ R
d+2 as a last row. Com-

puting a regular triangulation is a long sequence
of such predicates with different ai’s. We expand
along the last two rows and compute the determi-
nants |P〈a1,...,ad+2〉\{i,j}| for

(

d+2

2

)

combinations of
i, j ∈ {1, . . . , d+2}. The Volume predicate equals the
determinant of Phom

〈a1,...,ad+1〉
, constructed by columns

a1, . . . , ad+1 when we replace its last row by ~1 ∈ R
d+1.

Example 1 Consider the following matrix, corre-

sponding to a poinset A, given the lifting vector

~w = {w1, . . . , w9}.

P =













0 0 0 1 1 2 0 0 0
0 0 0 1 2 0 1 2 1
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
w1 w2 w3 w4 w5 w6 w7 w8 w9













Consider the computation of Orientation as a compu-
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tation of
(

6

4

)

= 15 (4×4) minors using the Laplace ex-

pansion. If we have computed |Phom
〈1,2,3,4,5,6〉| then the

computation of |Phom
〈1,2,3,4,5,7〉| needs only

(

6

4

)

−
(

5

4

)

= 10
new minors. More interestingly, by giving a new lift-

ing vector ~w′ we can compute |P ′ hom
〈1,2,3,4,5,6〉| without

computing any new minors.

Our contribution consists in maintaining a data
structure with the computed minors which are inde-
pendent of ~w. Once computed, they can be reused
at subsequent steps of the algorithm. The main ad-
vantage of our scheme is that, for a new ~w, the only
change in P is its last row, hence computing the new
determinants is done by reusing stored minors.

Lemma 3 The complexity of Orientation and Vol-

ume predicates is O(d) when all minors have been

already computed.

Proof. In Volume predicate, we expand along the
row w, performing O(d) arithmetic operations. For
Orientation, we reduce the computation of the ex-
pansion of the last two rows to O(d) by hashing the
minors of the matrix with the row ~1. �

4 Experiments on Hashing Determinants

We implemented in C++ the hashing determinants

scheme, which consists in computing determinants us-
ing the Laplace expansion as in Sect. 3, storing all the
computed minors in a hash table.
To avoid constructing a new matrix each time we

compute a determinant, we keep a table T with all the
points. The evaluation of the determinant using the
Laplace expansion is performed recursively by using
only the indices on T .
For the hash table implementation, we looked for

a hashing function that takes as input a vector of in-
tegers (i.e., the indices in T of the points that form
the matrix) and returns a hash value that minimizes
collisions. We considered many different hash func-
tions, including some variations of the well-known
FNV hash [10]. We obtained the best results with the
implementation of Boost Hash [12], which has con-
stant lookup cost in practice. For convex hull compu-
tation in general dimension we rely on CGAL’s pack-
age triangulation, under development [3].
All the experiments that follow ran on an Intel Core

i5-2400 3.1GHz, with 6MB L2 cache and 8GB RAM,
under 64-bit Debian GNU/Linux. We performed ex-
perimental tests of our implementation in the scenario
analysed in Sect. 3: we computed a sequence of con-
vex hulls in the context of computing resultant poly-
topes [9]. Fig. 1 (left) shows a speedup of 100 times for
6 dimensional convex hulls. For 4-dimensional convex
hulls, we gain a speedup of 18 times (we refer to [9]
for graphs not shown here). An interesting point is
that, with our technique, we computed in < 2min an

instance where |A| = 37, that would take > 1hr to
compute otherwise. Thus, when the dimension and
|A| becomes larger, this method allows us to compute
instances that would be intractable otherwise.

The computation of one convex hull can also bene-
fit from the hashing determinants scheme when using
Laplace expansion. Even if a determinant is never
computed twice, minors of size < d can be reused.
Based on this observation, we performed tests on
the computation of one convex hull (Fig. 1, right).
We generated random rational points uniformly dis-
tributed in the cube [−100, 100]d, where the dimen-
sion d ranges between 2 and 6. Experiments show that
our method performs better up to dimension 5, as ex-
pected. In dimension 6, hashing of minors does not
help because Laplace expansion becomes very slow.
We expect much better results for higher dimensions
by implementing the algorithm of Sect. 2.

The drawback of our approach is the storage com-
plexity, which is in O(nd). The hash table can be
cleared at any moment to limit memory consumption,
at the cost of dropping all previously computed mi-
nors. In our experiments, we obtained a good trade-
off between efficiency and memory consumption by
clearing the hash table when it reaches 106 minors.

A more sophisticated approach, inspired from the
paging problem in computer systems, consists in re-
placing a determinant in the data structure with the
newly computed one when the data structure has
reached a threshold size. A replacement strategy spec-
ifies the choice of which determinant to evict (for in-
stance, the less used determinant or the less recently
used determinant). However, the hash table data
structure is not the most suitable for this. A good
candidate to replace it are tries [14], which permit to
index the stored values using a tree of depth d (the
size of the matrices), thus yielding a O(d) lookup and
insertion time (since d is small, this is comparable
to the cost of our hashing function). Tries are more
suitable to implement replacement strategies. For in-
stance, a trie permits us to store, on each node, the
number of lookups on its successors. This informa-
tion would permit to prune the less used subtrees at
a given depth.

5 Future Work

We expect to quantify the gain of the BB algorithm
when using dynamic determinants as suggested in
Sect. 2 by performing a complexity analysis in which
the dimension is not treated as a constant (to our
knowledge, this analysis was not performed before).

For the computation of a sequence of convex hulls,
we should consider implementing other determinant
algorithms, to be more competitive dimensions > 5,
and tries, to improve memory handling. For the com-
putation of one single convex hull, we may implement
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Figure 1: To the left, time (in seconds) for computing many 6-dimensional convex hulls of a set of points changing
their lifting, hashing and non-hashing minors; the number of input points range from 10 to 45. To the right, time
(in seconds) for computing one convex hull of a point set A as function of the number of input points. Graphs
correspond to different ambient dimensions of the input points, i.e., from bottom to top dim(A) = 2, . . . , 6.

the algorithm presented in Sect. 2. Finally, it would
be interesting to develop an interface that permits
using the hashed determinants scheme transparently
(i.e., without knowledge of points’ indices), to permit
its use in any algorithm that uses determinants. This
would also allow us to submit all our implementations
to CGAL.
Finally, we should consider the extension of our ap-

proach to the 1-skeleton representation of a triangula-
tion [3] which reduces the memory consumption with
a penalty of slower running times.
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Lines Through Segments in

Three Dimensional Space∗

Efi Fogel† Michael Hemmer† Asaf Porat†

Dan Halperin†

Abstract

We present an efficient output-sensitive algorithm and
its exact implementation to solve the following prob-
lem: Given a set S of n line segments in three-
dimensional space, find all the lines that simultane-
ously intersect quadruples of line segments in S. We
refer to this problem as the lines-through-segments

problem, or LTS for short. The algorithm properly
handles all degenerate cases. Since we do not assume
general position, we compute all lines that intersect
at least four segments in S. The algorithm runs in
O((n3 + I) log n) time, and requires O(n + I) work-
ing space, where I is the output size; I is bounded
by O(n4). We use Cgal arrangements and in par-
ticular its support for two-dimensional arrangements
in the plane and on the sphere to efficiently compute
the intersecting lines in an exact manner. We also
report on the performance of our algorithm and its
implementation compared to others. The source code
of the LTS program as well as the input examples for
the experiments can be obtained from http://acg.
cs.tau.ac.il/projects/lts.

1 Introduction

LTS is a fundamental problem that arises in a variety
of domains. For instance, solving the LTS problem
can be used as the first step towards solving the more
general problem of finding all lines tangent to four
polyhedral objects taken from a set of polyhedral ob-
jects. The latter is ubiquitous in many fields of com-
putation such as computer graphics (visibility compu-
tations), computational geometry (line transversal),
robotics and automation (assembly planning), and
computer vision.

∗This work has been supported in part by the 7th Frame-
work Programme for Research of the European Commission,
under FET-Open grant number 255827 (CGL—Computational
Geometry Learning), by the Israel Science Foundation (grant
no. 1102/11), by the German-Israeli Foundation (grant no.
969/07), and by the Hermann Minkowski–Minerva Center for
Geometry at Tel Aviv University.

†School of Computer Science, Tel-Aviv University,
69978, Israel. efifogel@gmail.com, mhsaar@gmail.com,
asafpor@gmail.com, danha@post.tau.ac.il.

The number of lines that intersect four lines in R
3 is

0, 1, 2, or infinite. Brönnimann et al. [3] showed that
the number of lines that intersect four arbitrary line
segments in R

3 is 0, 1, 2, 3, 4, or infinite. In addition,
they showed that the lines lie in at most four maximal
connected components.1

Figure 1: Four lines
(drawn in green) that
intersect four line seg-
ments (drawn in blue
with a halftone pattern).

A straightforward
method to find all the
lines that intersect four
lines, given a set of n lines,
examines each quadruplet
of lines using the Plücker
coordinate representation.
Hohmeyer and Teller [7]
and Redburn [6] exploited
this method. It was later
used by Everett et al. [4]
as a building block for
the problem of finding
line transversals (the set
of lines that intersect all
given line segments). Nat-
urally, the running time of
this method is O(n4).

The combinatorial complexity of all the lines that
intersect four line segments of a set of n line segments
is Θ(n4). The lower bound can be easily established
by placing two grids of line segments in two paral-
lel planes, respectively. However, in many cases the
number of output lines is considerably smaller. The
size of the output tends to be even smaller, when the
input consists of line segments (as opposed to lines),
which is typically the case in practical problems.

We present an efficient output-sensitive algorithm,
and its complete and robust implementation that
solves the LTS problem in three-dimensional Eu-
clidean space. The implementation is complete in the
sense that it handles all degenerate cases and guaran-
tees exact results. Examples of degenerate cases are:
A line segment may degenerate to a point, several
segments may intersect, be coplanar, parallel, concur-
rent, lie on the same supporting line, or even overlap.
To the best of our knowledge, this is the first algo-
rithm (and implementation) for the LTS problem that
is (i) output sensitive and (ii) handles all degenerate
cases. The algorithm utilizes the idea of McKenna
and O’Rouke [5] to represent the set of lines that in-
tersect three lines as a rectangular hyperbola with
vertical and horizontal asymptotes in R

2. However,
as opposed to their algorithm, which takes O(n4α(n))
time, our algorithm is output sensitive and its asymp-
totic time and space complexities are O((n3+I) log n)
and O(n + I), respectively, where n is the input size

1Two lines tangent to the same four line segments are in
the same connected component iff one of the lines can be con-
tinuously moved into the other while remaining tangent to the
same four line-segments.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.

http://acg.cs.tau.ac.il/projects/lts
http://acg.cs.tau.ac.il/projects/lts
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and I is the output size; I is bounded by O(n4).
Our algorithm is implemented on top of the Com-

putational Geometry Algorithm Library (Cgal) [8].
The implementation is mainly based on the 2D Ar-

rangements package of the library [10]. This pack-
age supports the robust and efficient construction and
maintenance of arrangements induced by curves em-
bedded on certain orientable two-dimensional para-
metric surfaces in three-dimensional space [2, 9], and
robust operations on them.2 The implementation uses
in particular 2D arrangements of rectangular hyper-
bolas with vertical and horizontal asymptotes in the
plane and 2D arrangements of geodesic arcs on the
sphere [1].

2 Representation

In this section we discuss the encoding of all lines
that intersect two fixed line segments, S1 and S2, and
a third line segment S3. However, due to space lim-
itation, we only discuss the generic case, where the
lines underlying the input line segments are pairwise
disjoint and their direction vectors are linearly inde-
pendent. Then, we give one simple non-generic case.

We represent a line L ⊂ R
3 by a point p ∈ R

3 and
a direction d ∈ R

3 \ {O} as L(t) = p + t · d, where
O denotes the origin and t ∈ R. Clearly, this repre-
sentation is not unique. A segment S ⊂ L ⊂ R

3 is
represented by restricting t to the interval [a, b] ⊂ R.
We refer to S(a) and S(b) as the source and target
points, respectively, and set a = 0 and b = 1. We de-
note the underlying line of a line segment S by L(S).
Two lines are skew if they are not coplanar. Three
or more lines are concurrent if they all intersect at a
common point.

Given two lines L1 and L2 we define a map
ΨL1L2

as follows: ΨL1L2
(p) = {(t1, t2) ∈

R
2 |L1(t1), L2(t2), and p are collinear} . That is,

ΨL1L2
maps a point in R

3 to a set in R
2. This set,

which might be empty, corresponds to all lines that
contain p and intersect L1 and L2. Now consider the
pair (t1, t2) ∈ R

2. If L1(t1) 6= L2(t2), then this pair
uniquely defines the line that intersects L1 and L2 at
L1(t1) and L2(t2), respectively. Thus, for skew lines
L1 and L2 there is a canonical bijective map between
R

2 and all lines that intersect L1 and L2.
The characterization of ΨS1S2

(S3) =
ΨL(S1)L(S2)(S3) ∩ [0, 1]2 serves as the theoretical
foundation of the algorithm that solves the LTS
problem presented in Section 3. In the generic case,
which we sketch in the next subsection, ΨS1S2

(S3)
consists of at most three arcs lying on a rectangular
hyperbola with a vertical and a horizontal asymptote.
In degenerate cases, which we omit here, the base
curve may be a single line, or a pair of a horizontal

2Arrangements on surfaces are supported as of Cgal ver-

sion 3.4, albeit not documented yet.

(a) (b)

Figure 2: (a) Three surface patches the lines of which
intersect three pairwise skew line segments, S1, S2, and
S3, in R

3. These surface patches are contained in a
hyperboloid of one sheet. (b) The point set ΨS1S2

(S3).

and a vertical line. In some cases, e.g., S1, S2, and S2

are coplanar, ΨS1S2
(S3), is a two-dimensional region

that is bounded by curves of the above kind.
If S1 and S2 intersect, it is impossible to encode

the lines that go through the intersection point by
ΨS1S2

(S3). This case requires a special representation
as discussed in Section 2.2.

2.1 Generic Case

We assume that the direction vectors of the underly-
ing lines of the input line segments are linearly inde-
pendent. Thus, we can apply a rational affine trans-
formation, such that the three segments are given by
Si(ti) = pi + ti · di, i ∈ {1, 2, 3}, where p1 = (a, b, c),
p2 = (d, e, f), p3 = O and di = ei (where ei denotes
the unit vector along the ith axis).

We further assume that the underlying lines are
pairwise disjoint, which implies that b 6= 0, d 6= 0, and
c 6= f . Consider the points L1(t1), L2(t2), and L3(t3).
These points are collinear iff |(L1(t1) − L2(t2)) ×
(L3(t3) − L2(t2))| = 0. These are three dependent
equations in three unknowns. Eliminating t3 we ob-
tain the following expression for t2 in terms of t1:

t2(t1) =
e · t1 + (a · e− d · b)

t1 + a
. (1)

It implies that ΨL1L2
(L3) is a rectangular hyperbola

with a vertical asymptote and a horizontal asymptote.
Nonetheless, we are interested in ΨS1S2

(S3). Recall
that all ti, 1 ≤ i ≤ 3, are restricted to [0, 1]. Similar
to Equation 1, we can eliminate t2 and solve for t1 in
terms of t3. It is then easy to show that ΨS1S2

(S3)
consists of at most three maximal connected compo-
nents, where each component represents a patch of a
ruled surface as depicted in Figure 2.

2.2 S1 and S2 Intersect

Assume L1 and L2 intersect, and let q = L1(t̃1) =
L2(t̃2) be the intersection point. The point (t̃1, t̃2)
represents all lines that contain q. We represent
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(a) (b)

Figure 3: (a) Three line segments, S1, S2, and S3, such
that S1 and S2 intersect at q (and S3 does not). (b)
The mapping Ξq(S3), where Ξq(S3) = {Ξq(p) | p ∈ S3},
which consists of two geodesic arcs on H

2.

these lines by points on a semi open upper hemi-
sphere centered at q. We define the additional map
Ξq : R3\{q} → H

2 and Ξq(p) 7−→ d = s(p−q)/|p−q|,
with s ∈ {±1}, such that d ∈ H

2 = {p | p ∈
S
2 and p is lexicographically larger than O}. In the

generic case a segment S maps to one or two geodesic
arcs on H

2. If S3 is a point, or L(S3) contains q and
S3 does not, Ξq(S) consists of a single point. If q ∈ S3,
we define Ξq(S3) = H

2; see Figure 3.

3 The Algorithm

We describe the algorithm that handles only a reduced
set of cases due to space limitation. Henceforth, we
assume that none of the input line segments degen-
erates to a single point and no three line segments
are concurrent or coplanar. The complete algorithm,
which is omitted here, handles all cases.

The input is a set S = {S1, . . . , Sn} of n line seg-
ments in R

3. The output is a set of at most O(n4)
lines in R

3, such that each line intersects four line
segments in S. The intersected line segments are pro-
vided as part of the output.

The idea is to process each pair, (Si, Sj) with i <
j − 2, and construct the planar arrangement, Aij , in-
duced by the set {ΨSiSj

(Sk) | i < k < j}. As we limit
ourself to the generic case here, Aij is induced only by
hyperbolic arcs. Each intersection point of two such
arcs represents a line that intersects Si and Sj as well
as the two segments that are mapped through ΨSiSj

to the hyperbolic arcs. Considering only pairs of seg-
ments Si and Sj with i < j − 2 and constructing the
corresponding arrangement using only the line seg-
ments of the set {Sk | i < k < j}, ensures that every
output line is reported exactly once.

If Si and Sj intersect, we also construct an arrange-
ment of geodesic arcs on the half-sphere H

2 centered
at their intersection point. The arrangement is in-
duced by the central projections of the other segments
on the sphere. Again, an intersection of two geodesic
arcs encode lines that intersect four segments.

Using the sweep line algorithm, each arrangement,
Aij , is constructed in O(n log n+ Iij) time, where Iij
in the number of intersections in Aij . Since there are

O(n2) arrangements, the total runtime is O(n3 log n+
I). As only one arrangement must be retained at
a time, the required storage space is O(n log n + J),
where J is the maximum number of intersections in a
single arrangement. J is bounded by O(n2).

We remark that the complete algorithm, which is
implemented, is necessarily more involved. In partic-
ular, in some degenerate cases Ψ(Si, Sj)(Sk) is a two
dimensional patch that is bounded by hyperbolic arcs
and line segements. In these cases we use the over-
lay algorithm of CGAL to add the two dimensional
patches to the arrangement generated by the sweep.

4 Experimental Results

We have conducted several experiments on three types
of data sets. The first comprises random input. The
second produces the worst-case combinatorial out-
put and has many degeneracies. The third consists
of transformed versions of the former and has many
near-degeneracies. We report on the time consump-
tion of our implementation, and compare it to the im-
plementation of J. Redburn [6]. All experiments were
performed on a Pentium PC clocked at 2.40 GHz.

4.1 Random Input

Input
Time

Lines
LTS Red

Short 1.06 300.4 0
Medium 2.82 314.0 20,742
Long 5.15 327.0 64,151

The Random
data set con-
sists of 50 line
segments drawn
uniformly at
random. In
particular, the endpoints are selected uniformly at
random within a sphere. We experimented with
three different radii, namely, Short, Medium, and
Long listed in increasing lengths. We verified that
the line segments are in general position. The table
above shows the number of output lines and the time
in seconds it took to perform the computation using
our implementation, referred to as LTS, and an
instance of a program developed by J. Redburn [6]
that relies on unlimited precision, referred to as Red.
One can clearly observe how the time consumption
of our implementation decreases with the decrease
of the output size, which in turn decreases with
the decrease in the line-segment lengths. Adversely,
the time consumption of Redburn’s implementation
hardly changes.

4.2 Grid

The Grid data set, which attains the maximal number
of output lines, comprises 40 line segments arranged
in two grids of 20 lines segments each lying in two
planes parallel to the yz plane. Each grid consists of
ten vertical and ten horizontal line segments. Thus,
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each plane contains 100 intersection points, which im-
plies that the output includes exactly 1002 = 10, 000
lines, each containing one intersection point of each
plane. Due to the degenerate nature of the input, the
output also includes several planar patches each ly-
ing in one of the two planes that contain the input
grids, which we also compute but not elaborate on
any further here. Using our implementation it took
20.74 seconds to compute the output. Unfortunately,
Redburn’s implementation could not handle this case.

We remark that every
output line is represented
by a vertex of an arrange-
ment on the sphere. The
figure to the right depicts
one sample arrangement on the sphere centered at the
intersection point of two line segments, S1 and S40, ly-
ing in the same plane. The arrangement is induced by
the set of geodesic arcs {ΞS1∩S40

(Si) | i = 2, . . . , 39}.

4.3 Transformed Grid

We conducted three additional experiments using a
transformed version of the Grid data set. First, we
slightly perturbed the input line segments, such that
every two line segments became skew and the direc-
tions of every three line segments became linearly in-
dependent (input I). Secondly, we translated the (per-
turbed) horizontal line segments of one grid along the
plane that contains this grid (input II), increasing the
distance between the (perturbed) vertical and hori-
zontal line segments of the grid. This drastically re-
duced the number of output lines. We then applied a
similar translation to the other plane (input III), fur-
ther reducing the size of the output. Table 1 shows
the number of output lines and the time it took to
perform the computation using our implementation.
The output sensitivity of our algorithm is prominent.
The table also shows the time it took to perform the
computation using two instances of the program de-
veloped by Redburn. One instance, relies on a num-
ber type with unlimited precision, while the other re-
sorts to double-precision floating-point numbers. As
expected, when limited precision numbers were used,
the output was only an approximation. Notice that
the influence of the output size on the time consump-
tion of Redburn’s implementation is negligible.

Table 1: Perturbed Grid. Time is measured in seconds.

Input

Unlimited Prec. Double Prec.

Time
Lines

Time
Lines

LTS Red Red

I 23.72 140.17 12,139 0.70 12,009
II 11.83 132.80 5,923 0.69 5,927
III 6.90 128.80 1,350 0.70 1,253
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Analysis of the Incircle predicate for the Euclidean

Voronoi diagram of axes-aligned line segments∗
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Abstract

In this paper we study the most-demanding predicate

for computing the Euclidean Voronoi diagram of axes-

aligned line segments, namely the Incircle predicate.

In particular, we show that the Incircle predicate can

be answered by evaluating the signs of algebraic ex-

pressions of degree at most 6; this is half the algebraic

degree we get when we evaluate the Incircle predicate

using the current state-of-the-art approach.

1 Introduction

The Euclidean Voronoi diagrams of a set of line seg-
ments is one of the most well studied structures in
computational geometry. There are numerous algo-
rithms for its computation [5, 14, 16, 21, 7, 1, 15].
There are implementations that assume that numeri-
cal computations are performed exactly [19, 13], i.e.,
they follow the Exact Geometric Computation (EGC)
paradigm [22], as well as algorithms that use floating-
point arithmetic [10, 20, 9]; the latter class of algo-
rithms does not guarantee exactness, but rather topo-
logical correctness.

Efficient and exact predicate evaluation in geomet-
ric algorithms is of vital importance. It has to be
fast for the algorithm to be efficient. It has to be
complete in the sense that it has to cover all degener-
ate cases, which, despite that fact that they are “de-
generate” from the theoretical/analysis point-of-view,
they are commonplace in real world input. In the
EGC paradigm context, exactness is the bare mini-
mum that is required in order to guarantee the cor-
rectness of the algorithm. The efficiency of predicates
is typically measured in terms of the algebraic degree
of the expressions (in the input parameters) that are
computed during the predicate evaluation, as well as
the number (and possibly type) of arithmetic oper-
ations involved. Degree-driven approaches for either
the evaluation of predicates, or the design of the algo-
rithm as a whole, has become an important question
in algorithm/predicate design over the past few years
[3, 17, 2, 4, 6, 18].

∗The full version of the paper may be found in [11].
†Department of Applied Mathematics, University of Crete,

manos@tem.uoc.gr
‡Department of Applied Mathematics, University of Crete,
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In this paper we are interested in the most demand-
ing predicate of the Euclidean Voronoi diagram of
axes-aligned line segments, namely the Incircle pred-
icate. Axes-aligned segments are typical input in-
stances in applications such as VLSI design [8]. Given
three sites S1, S2, and S3 we denote their Voronoi cir-
cle by V (S1, S2, S3) (if it exists). There are at most
two Voronoi circles defined by the triplet (S1, S2, S3);
the notation V (S1, S2, S3) refers to the Voronoi cir-
cle that “discovers” the sites S1, S2 and S3 in that
(cyclic) order, when we walk on the circle’s bound-
ary in the counterclockwise sense. Given a fourth
object O, which we call the query object, the Incir-

cle predicate Incircle(S1, S2, S3, O) determines the rel-
ative position O with respect to the disk D bounded
by V (S1, S2, S3). The predicate is positive if O does
not intersect D, zero if O touches the boundary but
not the interior of D, and negative if the intersection
of O with the interior of D is non-empty.

The Voronoi circle of three sites does not always
exist. In this paper, however, we assume that the In-

circle predicate is called during the execution of an
incremental algorithm for computing the Euclidean
Voronoi diagram of line segments, and thus the first
three sites are always related to a Voronoi vertex in
the diagram. Since we can circularly rotate the first
three arguments of the Incircle predicate, there are
only eight possible distinct configurations for the In-

circle predicate: PPPX, PPSX, PSSX and SSSX,
where P stands for point, S stands for segment, and
X stands for either P or S.

The predicates for the Euclidean Voronoi diagram
of line segments, in the context of an incremental con-
struction of the diagram, have already been studied
by Burnikel [3]. Assuming that the input is either
rational points, or segments described by their end-
points as rational points, Burnikel shows that the In-

circle predicate can be evaluated using polynomial ex-
pressions of degree 40 in the input quantities (see the
line dubbed “General [3]” in Table 1). Considering
Burnikel’s approach for the case of axes-aligned line
segments, and performing the appropriate simplifica-
tions in his calculations, we arrive at a new set of
algebraic degrees for the various configurations of the
Incircle predicate (see line dubbed “Axes-aligned [3]” in
Table 1); now the most demanding case the is PPSX
case, which gives algebraic degree 8 and 12, when the
query object is a point and a segment, respectively.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.
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PPPP PPSP PSSP SSSP

General [3] 4 12 16 32
Axes-aligned [3] 4 8 4 2

Axes-aligned [this paper] 4 6 4 2

PPPS PPSS PSSS SSSS

General [3] 8 24 32 40
Axes-aligned [3] 6 12 4 2

Axes-aligned [this paper] 6 6 4 2

Table 1: Maximum algebraic degrees for the eight
types of the Incircle predicate according to: [3] for
the general and the axes-aligned segments case, and
this paper. Top/Bottom table: the query object is a
point/segment.

In Section 3 we analyze the PPSX configurations
for the Incircle predicate, and show how we can reduce
the algebraic degrees for this case from 8 and 12, to
6. This is done by means of three key ingredients:
(1) we reduce the PPSP case to the PPPS case,
(2) we express the Incircle predicate as a difference
of distances, instead of as a difference of squares of
distances, and (3) we formulate the Incircle predicate
as an algebraic problem of the following form: we
compute a linear polynomial L(x) = l1x + l0 and a
quadratic polynomial Q(x) = q2x

2 + q1x + q0, such
that the result of the Incircle predicate is the sign of
L(x) evaluated at a specific root of Q(x).

2 Evaluation of the sign of L(x) = l1x + l0 at a

specific root of Q(x) = q2x
2 + q1x+ q0

Let L(x) = l1x + l0 and Q(x) = q2x
2 + q1x + q0

be a linear and a quadratic polynomial, respectively,
such that Q(x) has non-negative discriminant. Let
the algebraic degrees of l1, l2, q2, q1 and q0 be δl,
δl + 1, δq, δq + 1, and δq + 2, respectively. We are
interested in the sign of L(r), where r is one of the
two roots x1 ≤ x2 of Q(x). Below we assume, without
loss of generality, that l1, q2 > 0.

The obvious approach is to solve for r and substi-
tute into the equation of L(x). Let ∆Q = q2

1
− 4q2q0

be the discriminant of Q(x). Then r = (−q1 ±
√

∆Q)/(2q2), which, in turn, yields L(r) = (l1q1 +

2l0q2 ±
√

∆Q)/(2q2). Computing sign(L(r)) is dom-
inated by the computation of sign(l1q1 + 2l0q2 ±
l1
√

∆Q). This ammounts to evaluating expressions
of algebraic degree at most 2(δl + δq + 1).

Observe now that evaluating the sign of L(r) is
equivalent to evaluating sign(Q(x⋆)), and possibly
sign(Q′(x⋆)), where x⋆ = − l0

l1
stands for the unique

root of L(x). Since Q(x⋆) = (l2
1
q0 − l1q1l0 + q2l

2

0
)/l2

1

and Q′(x⋆) = (l1q1 − 2q2l0)/l1, we conclude that, in
order to evaluate sign(L(r)), we need to consider ex-
pressions of algebraic degree at most 2δl+δq+2, which
is smaller than the algebraic degree of the approach
described early in this section, when δq > 0.

3 The PPSX case

Let A and B be the two points and CD be the seg-
ment defining the Voronoi circle. Without loss of gen-
erality, we may assume that CD is x-axis parallel,
since otherwise we can reduce Incircle(A,B,CD,Q)
to Incircle(R(B),R(A),R(CD),R(Q)), where R :
E
2 → E

2 denotes the reflection transformation about
the line y = x. Notice that R preserves cir-
cles and line segments, reverses orientations, and
is inclusion preserving. Finally, R maps an x-
axis parallel segment to a y-axis parallel segment,
and vice versa. Hence, Incircle(A,B,CD,QS) =
Incircle(R(B),R(A),R(CD),R(QS)).

The query object is a point. Let Q be the query
point. For the Voronoi circle V (A,B,CD) to be de-
fined, both A and B must be on the same side with
respect to ℓCD. Consider now Q: if Q does not
lie on the side of ℓCD that A and B lie, we have
Incircle(A,B,CD,Q) > 0. Testing the sideness of Q
against ℓCD simply means testing the sign of yQ−yC ,
which is a quantity of algebraic degree 1.

Suppose now that Q lies on the same side of ℓCD as
A and B, and let σ = Orientation(B,A,Q). In the spe-
cial case σ = 0 (i.e., Q lies on the line ℓBA), we observe
that Q lies inside the Voronoi circle V (A,B,CD) if
and only if Q lies on ℓBA and between A and B. This
can be determined by evaluating the signs of the dif-
ferences xA − xB , xQ − xA and xQ − xB , if xA 6= xB ,
or the signs of the differences yA − yB , yQ − yA and
yQ − yB , if xA = xB , which are all quantities of alge-
braic degree 1.

If σ 6= 0, we are going to reduce Incircle(A,B,CD,
Q) to Incircle(A,B,Q,CD) (see also Fig. 1). Sup-
pose first that σ < 0, i.e., Q lies to the right of the
oriented line ℓBA. Since A, B and CD appear on
V (A,B,CD) in that order when we traverse it in the
counterclockwise sense, we conclude that Q lies inside
V (A,B,CD) (resp., lies on V (A,B,CD)) if and only
if the circle defined by A, B and Q, does not inter-
sect with (resp., touches) the segment CD. Hence,
Incircle(A,B,CD,Q) = −Incircle(A,B,Q,CD). In a
similar manner, if σ > 0, i.e., Q lies to the left of the
oriented line ℓBA, Q lies inside V (A,B,CD) (resp.,
lies on V (A,B,CD)) if and only if the circle defined
by B, A and Q intersects the line segment CD. Hence,
Incircle(A,B,CD,Q) = Incircle(B,A,Q,CD).

Since the Incircle predicate, in the PPPS case, is
of degree 6 (cf. Table 1), while Orientation(B,A,Q) is
of degree 2, we deduce that Incircle(A,B,CD,Q) can
also be answered using quantities of algebraic degree
at most 6.

The query object is a segment. Let K be the cen-
ter of V (A,B,CD). K is an intersection point of
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Figure 1: Reducing Incircle(A,B,CD,Q) to Incircle(A,B,Q,CD). Left/Right two: Q lies to the left/right of the
oriented line ℓBA.

the bisector of A and B and the parabola with fo-
cal point A and directrix the supporting line ℓCD of
CD. Solving the corresponding system of equations
we deduce that, in the general case where A and B
are not equidistant from ℓCD (i.e., if yA 6= yB), the
x-coordinate of the Voronoi center xK , is a root of a
quadratic polynomial P (x) = p2x

2 + p1x + p0, while
the y-coordinate of the Voronoi center yK , is a root
of a quadratic polynomial T (y) = t2y

2 + t1y + t0.
Moreover, yK and xK are linearly dependent, i.e.,
yK = α1

β
xK + α0

β
. The algebraic degrees of p2, p1,

p0, t2, t1 and t0 are 1, 2, 3, 2, 3 and 4, respectively.
Furthermore, the degrees of α1, α0 and β are 1, 2 and
1, respectively. The roots x1 ≤ x2 of the polynomial
P (x) (resp., y1 ≤ y2 of T (y)) correspond to the centers
of the two possible Voronoi circles V (A,B,CD) and
V (B,A,CD). The roots of P (x) and T (y) of interest
are shown in the following two tables.

Relative positions of A, B and CD Root of P (x) of interest

yC < yA < yB or yA < yB < yC x1

yC < yB < yA or yB < yA < yC x2

Relative positions of A, B Root of T (y) of interest

xA < xB y2
xA > xB y1

Let QS be the query segment. The first step
is to compute Incircle(A,B,CD,Q) and, if needed,
Incircle(A,B,CD, S). If at least one of Q and S lies in-
side V (A,B,CD), we get Incircle(A,B,CD,QS) < 0.
Otherwise, we need to determine if the line ℓQS in-
tersects V (A,B,CD). If ℓQS does not intersect the
Voronoi circle, we have Incircle(A,B,CD,QS) > 0. If
ℓQS intersects the Voronoi circle we have to check if
Q and S lie on the same or opposite sides of the line
ℓ⊥QS(K) that goes through the Voronoi center K and
is perpendicular to ℓQS . Notice that since QS is axes-
aligned, the line ℓ⊥QS(K) is either the line x = xK or
the line y = yK . Answering the Incircle predicate is
equivalent to comparing the distance of K from the
line ℓQS to the segment CD:

Incircle(A,B,CD, ℓQS) = d(K, ℓQS)−d(K,CD). (1)

Let us now examine and analyze the right-hand
side difference of (1). Since the segment CD is x-
axis parallel, d(K,CD) = |yK − yC |. Recall that yK
is a specific root of the quadratic polynomial T (y).

Therefore, determining the sign of yK − yC reduces
to evaluating the signs of T (yC) and T ′(yC). Assume
first that the segment QS is x-axis parallel. In this
case, the equation of ℓQS is y = yQ, and, hence,
d(K, ℓQS) = |yK − yQ|. As before, we can deter-
mine the sign of yK − yQ by evaluating the signs of
T (yQ) and T ′(yQ). Hence, Incircle(A,B,CD, ℓQS) =
|yK − yQ| − |yK − yC | = J1yK + J0, where J1 and J0
are given in the following table.

yK − yQ yK − yC J1 J0

≥ 0
≥ 0 0 yC − yQ
< 0 2 −yQ − yC

< 0
≥ 0 −2 yQ + yC
< 0 0 −yC + yQ

Clearly, if J1 = 0 we have Incircle(A,B,CD, ℓQS) =
sign(J0). Otherwise, evaluating Incircle(A,B,CD,
ℓQS) can be done as in Subsection 2. Since the al-
gebraic degrees of J1 and J0 are 0 and 1, respectively,
we can resolve the Incircle predicate using expressions
of algebraic degree at most 4.

Consider now the case where QS is y-axis paral-
lel. The equation of ℓQS is x = xQ, and, thus,
d(K, ℓQS) = |xK − xQ|. As in the x-axis parallel
case, xK is a specific known root of the quadratic
polynomial P (x), i.e., determining the sign of xK −
xQ amounts to evaluating the signs of P (xQ) and
P ′(xQ). Using the fact that yK = α1

β
xK + α0

β
, we

get Incircle(S1, S2, S3, ℓQS) = |xK −xQ|− |yK −yC | =
1

β
(L1xK + L0), where L1 and L0 are given in the fol-

lowing table.

xK − xQ yK − yC L1 L0

≥ 0
≥ 0 −α1 + β β(yC − xQ)− α0

< 0 α1 + β β(−yC − xQ) + α0

< 0
≥ 0 −α1 − β β(yC + xQ)− α0

< 0 α1 − β β(−yC + xQ) + α0

If L1 = 0, Incircle(S1, S2, S3, ℓQS) = sign(L0)sign(β).
Otherwise, given that xK is a known root of P (x),
determining the sign of L1xK + L0 can be done as in
Subsection 2. Since the algebraic degrees of L1 and L0

are 1 and 2, respectively, evaluating the sign L1xK +
L0 reduces to computing the signs of expressions of
algebraic degree at most 5.

As we mentioned at the beginning of this subsec-
tion, if Incircle(A,B,CD, ℓQS) ≤ 0, we need to check
the position of Q and S with respect to the either line
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x = xK (if QS is x-axis parallel), or the line y = yK
(if QS is y-axis parallel). To check the position of I,
I ∈ {Q,S}, against the line x = xK , we simply have
to compute the signs of P (xI) and P ′(xI). The alge-
braic degrees of these quantities are 3 and 2, respec-
tively. In a symmetric manner, to check the position
of I, I ∈ {Q,S}, against the line y = yK , we simply
have to compute the signs of T (yI) and T ′(yI); their
algebraic degrees are 4 and 3, respectively.

For the special case yA = yB , we easily get xK =
1

2
(xA+xB) and yK = U2

U1

, where the algebraic degrees
of U2 and U1 are 2 and 1, respectively. If QS is x-axis
parallel, we need to determine the sign of the quantity
d(K, ℓQS) − d(K,CD) = |yK − yQ| − |yK − yC |, or,
equivalently, the signs of U1 and |U2 − U1yQ| − |U2 −
U1yC |, which are of algebraic degree 1 and 2, respec-
tively. If QS is y-axis parallel, we need to evaluate the
sign of d(K, ℓQS)−d(K,CD) = |xK−xQ|−|yK−yC |,
or, equivalently, the signs of U1 and |U1(xA + xB −
2xQ)| − 2|U2 − U1yQ|, which are also of algebraic de-
gree 1 and 2, respectively.

Recalling that, in order to evaluate Incircle(A,
B,CD,QS), the first step is to evaluate Incircle(A,
B,CD,Q), and, if needed, Incircle(A,B,CD, S), we
conclude that in order to evaluate the Incircle predi-
cate in the PPSS case, we need to compute the sign
of expressions of algebraic degree at most 6.

4 Future work

Our analysis is so far theoretical. We would like
to implement the approach presented in this paper
and compare it against the generic implementation
in CGAL [12]. Finally, we would like to study and
implement the rest of the predicates involved in the
computation of the Voronoi diagram, when the line
segment are axes-aligned.
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Maxmin Length Triangulation in Polygons

Christiane Schmidt∗

Abstract

We consider the maxmin length triangulation prob-
lem in polygons. We give an NP-hardness proof for
the case of polygons with holes and interior points.
For simple polygons we present an optimal algorithm
using dynamic programming.

1 Introduction

A triangulation T of a point set V in the Euclidean
plane is a maximal set of noncrossing straight-line seg-
ments, where the line segments’ endpoints are in V .
The maximality ensures that all faces of the graph, ex-
cept for the unbounded face, are triangles. The prob-
lem of computing a triangulation for a given point set
has long been considered; for an overview we refer to
the textbooks [1, 2].
If a subset S of all edges is given, Lloyd [8] showed

that it is NP-complete to decide whether a triangula-
tion T ⊆ S exists.
Often we are interested in computing not just an ar-

bitrary triangulation of the given point set, but to find
an optimal triangulation for a certain optimality cri-
terion. The Delaunay triangulation gives the optimal
triangulation for a couple of criteria: maxmin angle,
minmax smallest enclosing circle and minmax circum-
scribed circle. Mulzer and Rote [9] proved the min-

imum weight triangulation (MWT) to be NP-hard.
The MWT problem asks for a triangulation that min-
imizes the sum of the Euclidean lengths of all edges.
For polygonal domains, in which all edges on the poly-
gon’s boundary are enforced and only edges in the in-
terior are allowed, Klincsek [6] presented a dynamic
programming approach for the MWT with cubic run-
time.
The minmax length triangulation is a triangulation

of V , such that the longest edge is minimized. Edels-
brunner and Tan [3] presented an O(n2) algorithm for
this problem.
Another length criterion is considered for the

maxmin length triangulation: we look for a triangula-
tion, such that the shortest edge is maximized. Hu [5]
presented a linear-time algorithm for convex polygons
(or points in convex positions as the enforced edges
on the convex hull result in a convex polygon). The
author also proved the graph version of this problem

∗Braunschweig University of Technology, Germany,
c.schmidt@tu-bs.de

(a) (b)

Figure 1: Neither a greedy approach nor edge flipping
can lead to an optimal solution. (a) Greedy starts with
the longest green edge and is not optimal (short red edge
is enforced). (b) Edge flips to the optimal (blue) triangu-
lation include the insertion of the shortest, green edges at
some point. The starting triangulations includes the or-
ange edge and the pink edges. Black edges occur in both
triangulations.

(with some positive edge weights) to be NP-complete.
Unfortunately, not much is known for the triangula-
tion of point sets in the plane. Intuitive solutions do
not result in an optimal triangulation: the greedy ap-
proach would start with the longest edge; Figure 1(a)
shows that this is not optimal. In addition, the use of
edge flips, starting with some triangulation and aim-
ing for increasing the shortest edge length, will not
result in an optimal solution, as we may have to use
edges that actually decrease the shortest edge length
to obtain the optimal solution, see Figure 1(b).

In this paper we prove the maxmin length triangu-
lation for polygons with holes and interior points to
be NP-hard. Hence, in contrast to a given point set in
the Euclidean plane, for which only the edges on the
convex hull are enforced, and arbitrarily many points
are located in its interior, we are given a polygon P as
well as points in the polygon’s interior. In addition,
we consider the restricted case of simple polygons,
without points in the interior.

This leaves open the cases of polygons with holes
without interior points and, more importantly, the
case of simple, or even convex polygons with interior
points, as this equals the point set case.

2 Notations

We are given a polygon P . The vertices of P are
denoted by v1, . . . , vn. Let the vertices be ordered
clockwise. A triangulation T of P is defined to be a
decomposition of P into triangles, using a maximal

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 2: Overview of the construction.

set of noncrossing diagonals, see, for example, [2].
In Section 3 we consider polygons with additional

interior points in the polygon’s interior.
For a triangulation T we define wmin(T ) to be the

length of a shortest edge in T .

Definition 1 The maxmin length triangulation

problem in a polygon P asks for a triangulation T ∗

of P , such that for all triangulations T 6= T ∗ :
wmin(T

∗) ≥ wmin(T ).

For two points p1, p2 let d(p1, p2) denote the Eu-
clidean distance of the points.

3 Polygons with Holes and Interior Points

Theorem 1 Maxmin length triangulation is NP-

hard for polygons with holes and interior points.

Proof. The proof is based on a reduction of the NP-
hard problem Planar 3SAT, a special case of 3SAT in
which the variable-clause incidence graph H is planar.
In particular, there is a rectilinear embedding of H for
which variables v1, . . . , vn lie on a straight line and
the clauses are arranged above and below them; see
Knuth and Raghunathan [7].
We turn this embedding into a polygon: We rep-

resent the variables, clauses and edges by polygonal
pieces. Moreover, we introduce interior points. A
sketch of this transformation can be seen in Figure 2.
We will give the details of the gadgets in the following.
The basic idea for the reduction is the use of very

short edges (indicated in green in the following),
that need to be crossed by other triangulation edges,
as their occurrence in a triangulation would reduce
wmin(T ). In particular, those very short edges are
shorter than all polygon edges. In addition, inte-
rior points (depicted as violet stars)—sometimes also
with very short edges in between—are inserted, which
makes it impossible to switch from one triangulation
to the other. The basic idea of cutting short edges
(diagonals) is based on the following lemma:

Lemma 2 Let S be a point set, d a diagonal and T
a triangulation of S with edges ti i ∈ I: d /∈ T ⇔
∃i ∈ I : d ∩ ti 6= ∅.

In the following, black edges are polygon edges. We
give a grid for better orientation; the real grid is the

Figure 3: Basic idea for the variable gadget.

integer grid induced if any edge of the shown grid
has side length 5. For clarity, we will not depict all
edges of a triangulation, but the edges necessary for
our argumentation, only.

The general concept for a variable gadget is given
in Figure 3: all 4 green short edges need to be cut
(Lemma 2). The possible ways to cut the green edges
intersect in turn. Thus, we either use blue or red edges
(red edges may end at a vertex incident to the green
edges, the intersection property is kept). As we have
to be able to branch off polygonal corridors and we
need to stick together various of these square-shaped
constructions, in order to branch off sufficiently many
corridors the slightly varied construction of Figure 4
results. The square-shaped variable patterns are con-
nected to the sides, corridors can branch off to the
top and bottom (as we will see later). Again, we need
either the red or blue edges to cross all green edges
from the left square. Then, the interior points (violet
stars) with short distance are introduced to ensure
that a blue triangulation in the left square remains
a blue triangulation in the right square: Only the
possible blue edge to the right square and the short
red edge intersect the violet edge. As the short red

Figure 4: Example for the variable gadget. The yellow
highlighted area indicates the area from Figure 5.
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(a) (b)

Figure 5: Examples for corridor construction. The gray
shaded area indicates the area from Figure 6.

edge intersects with the given blue edge around the
square’s hole, the blue edge is enforced.

The corridor connections are shown in Figure 5.
There are two possible ways to connect a corridor:
the blue and red triangulation represent two possi-
ble truth settings. One triangulation corresponds to
a truth setting that satisfies the clause (i.e., a setting
of “true” if vi is in the clause, a setting of “false” if
¬vi appears in the clause), and we need to be able
to give both the same role in the clause. In case the
blue triangulation corresponds to a truth setting that
satisfies the clause, we use the construction of Fig-
ure 5(a); If the red triangulation corresponds to a
truth setting that satisfies the clause, we use the con-
struction of Figure 5(b). In both cases the arrows
indicate that this polygonal part can have arbitrary
height, which allows us to connect to the clause gad-
get on the “right” level. The dashed polygonal parts
indicate that this takes the form of one of the three
possible pieces shown in Figure 6, depending on the
position in the clause gadget (left, center, right).

a b

c

y

x

Figure 6: Example for the clause gadget.

Again, we use very short green edges that need to
be cut. Only the topmost green edge can be cut by
crossing edges with an incident vertex in the variable
gadget. The spearheaded triangular shape of the cor-
ridors enforces all other green edges (except for the
bottommost green edge) to be cut by an edge that is
incident to one vertex incident to the topmost green
edge and one vertex incident to the bottommost green
edge. No straight lines inside of the polygon from a
vertex in the spearheaded triangle structure end in a
vertex in the clause gadget. Hence, the bottommost
green edges need to be treated in the clause gadget.
All other green edges cannot be cut in another way.

In the following, we depict the range of possible
edge connections by light blue and red cones.

In Figure 5(a) the additional interior points (vio-
let stars) enforce again that one triangulation cannot
switch to the other. Note that the two points cannot
be used to cut the green edges due to the other trian-
gulation edges for both settings. In Figure 5(b), the
pair of interior points serves the same purpose as in
(a). The single interior point is added to enforce the
mirrored connections inside of the corridor.

An example for a clause gadget is shown in Figure 6.
Here we use blue to denote the triangulation that
corresponds to a truth setting satisfying the clause
(and red for the other setting). The clause gadget
features another even shorter (green) edge (bottom-
left). In case one variable satisfies the clause we may
use the corresponding blue dashed-dotted edge to cut
this edge. For a variable not satisfying the clause,
edges from a, b and c to either y or the two interior
(violet) points are necessary. Edges from an interior
point or the lower left corner of the corridor cannot
cross the short bottom-left edge. Thus, in case at
least one variable has a truth setting satisfying the
clause, we are able to cut all short edges, in partic-
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ular the lower bottom-left edge in the clause gadget.
If all variables have a truth setting not satisfying the
clause we cannot cut all green edges in the polygon
plus the lower bottom-left edge in the clause gadget.

�

4 Simple Polygons

We use straightforward dynamic programming for
computing the maxmin length triangulation in a sim-
ple polygon: in each step we establish the maxmin tri-
angulation of the polygon induced by vertices being k
apart (vi, vi+1, . . . , vi+k) including the edge {vi, vi+k}.
Possible triangulations include the edge {vi, vi+k} and
the maxmin triangulations from polygons induced by
the vertices vi, vi+m and vi+m, vi+k, where m runs
from 1 to k− 1. Hence, the value of each of these tri-
angulations is given by the minimum of d(vi, vi+k)
and the longest shortest edge of triangulations of
the polygons induced by the vertices {vi, vi+m} and
{vi+m, vi+k}. We then determine the maximum of all
these values over all possible values of m.
A minor modification of this procedure is necessary:

in case we simply consider the distance between two
vertices we do not account for the possibility that this
diagonal may not run through P ’s interior. Conse-
quently, we need to adapt our distance function. We
define

dI(vi, vj) =

{

d(vi, vj) : j = i+ 1, or {vi, vj} ∈ P
−∞ : otherwise

This rules out any triangulation that includes a
non-valid edge, as we will in the end determine the
maximum over all possible values. Note that the tri-
angulations of a subpolygon may actually obtain the
value −∞.
Algorithm 1 summarizes this approach: Let E(i, j)

(i < j) be longest edge of all shortest edges of possible
triangulations of the subpolygon involving the nodes
vi, vi+1, . . . , vj .

Lemma 3 Algorithm 1 is correct and solves the

maxmin length triangulation problem in simple poly-

gons in time O(n3).

Note that this also allows for a polynomial time
algorithm (O(nh)) for a constant number of holes, h .

5 Conclusion

We proved the maxmin length triangulation to be NP-
hard for polygons with holes and interior points. We
are confident that variations of the gadgets given in
Section 3 show that this problem cannot be approx-
imated within a constant factor. On the other hand
there is a simple dynamic programming approach for
simple polygons. As it turns out, the intermediate

Algorithm 1: Maxmin length triangulation for Simple
Polygons

1.:

For k = 1, i = 1, 2, . . . , n and j = i + k let
E(i, j) = dI(vi, vj).

2.:

k = k + 1. For i = 1, 2, . . . , n and j = i + k let

E(i, j) = max
i<m<j

[

min
{

d
I
(vi, vj), E(i,m), E(m, j)

}]

(1)

The index where the maximum in Equation(1) is
achieved is denoted by q(i, j) ∀(i, j).

3.:

If k < n − 1 go to 2. Otherwise wmin(T
∗) = E(1, n).

4.:

In order to find the edges in the maxmin length
triangulation T∗, we backtrace: {v1, vn} ∈ T∗.
∀ {vi, vj} ∈ T∗, j < i + 1 : q = q(i, j). Then:
{vi, vq} ∈ T∗ and {vq, vj} ∈ T∗.

and most important case of point sets is still NP-
complete [4].
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On Triangulation Axes of Polygons∗

Wolfgang Aigner† Franz Aurenhammer† Bert Jüttler‡

Abstract

We define the triangulation axis of a simple polygon P

as an anisotropic medial axis of P whose ‘unit disks’
are line segments or triangles. The underlying trian-
gulation that specifies the anisotropy can be varied,
to adapt the axis so as to reflect predominant geo-
metrical and topological features of P . Triangulation
axes are piecewise linear skeletons, and typically have
much fewer edges and branchings than the Euclidean
medial axis or the straight skeleton of P (between n−2
and 2n − 6 edges, compared to 2n − 3). Still, they
retain important properties, as for example the re-
constructability of P from its skeleton. Triangulation
axes can be easily computed from their defining tri-
angulations in O(n) time. We investigate the effect of
using several optimal triangulations for P . In particu-
lar, careful edge flipping in the constrained Delaunay
triangulation leads, in O(n log n) overall time, to an
axis competitive to high quality axes requiring O(n3)
time for optimization via dynamic programming.

1 Introduction

Let P be a simple polygon in the plane. A diskD ⊂ P

is called maximal (for P ) if there is no other disk
D′ ⊂ P with D′ ⊃ D. The (Euclidean) medial axis

of P is the union of centers of all maximal disks for P .
This tree-like skeletal structure has proved a very use-
ful descriptor of shape. Applications in diverse areas
exist, and various construction algorithms have been
proposed; see e.g., [2, 4] and references therein.
The medial axis is uniquely defined by the given

input polygon P . The same is true for the straight
skeleton [3] of P , which can serve as a piecewise-linear
alternative to the medial axis. In certain applications,
however, it is desirable to have some flexibility in de-
signing a skeletal structure, be it for keeping its size
small so as to reflect only the essential parts of P , or
for the sake of stability with respect to slight bound-
ary changes of P . Several attempts have been made to
adapt and prune the medial axis accordingly; Attali
et al. [4] is a good survey.
In the present note, we propose a different idea,

namely, of putting some anisotropy on the polygon P .

∗Supported by ESF Programme EuroGIGA-Voronoi
†Institute for Theoretical Computer Science, Graz Univer-

sity of Technology, Austria, {waigner,auren}@igi.tugraz.at
‡Institute of Applied Geometry, Johannes Kepler University

Linz, Austria, Bert.Juettler@jku.at

Figure 1: A triangulation axis of a polygonal shape

Distances are measured differently at different lo-
cations within P , by varying the shape of the in-
scribed disks. (Anisotropic Voronoi diagrams where
distances are measured individually from each defin-
ing point site have been introduced in Labelle and
Shewchuk [8].) We divide the polygon P into trian-
gles, and allott to each triangle a continuous family of
unit disks, resulting from appropriately defined con-
vex distance functions. (Voronoi diagrams for convex
distance functions have been considered first in Chew
and Drysdale [6].) The resulting skeleton is a tree
similar to the dual of the chosen triangulation of P ,
which is piecewise linear, and always consists of fewer
edges than the medial axis or the straight skeleton.
When using the various known types of triangulation
(e.g., constrained Delaunay, minimum weight), and
also other triangulations optimal in different respects,
we gain the needed flexibility, with the ultimate goal
of defining a simple, stable, and characteristic skeletal
axis structure for P .

2 Triangulation axis

A triangulation, T , of a simple polygon P is a parti-
tion of P into triangles whose vertices are all from P .
Let P have n ≥ 4 vertices. To define what we call the
triangulation axis, MT (P ), of P and T , the triangles
which constitute T are categorized into three types:
ear triangles, link triangles, and branch triangles—
having one, two, or three sides that are diagonals of P ,
respectively. Depending on its type, a triangle ∆ con-
tributes a specific part to MT (P ). If ∆ is an ear trian-
gle, then its axis part is the line segment that connects
the midpoint of its unique bounding diagonal d of P
to the vertex of ∆ opposite to d. If ∆ is a link tri-

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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(a) (b) (c)

Figure 2: Triangle types: (a) ear triangle, (b) link
triangle, and (c) branch triangle

angle, then it contributes to MT (P ) the line segment
connecting the midpoints of the two bounding diag-
onals of P . Finally, if ∆ is a branch triangle, then
the three line segments connecting its side midpoints
to a distinguished point (for example, the centroid
of ∆) is taken. See Figure 2, where axis parts are
drawn in bold lines. A particular triangulation axis
of a polygon is depicted in Figure 1. Observe that
link triangles (which typically constitute the majority
in T ) give rise to homothetic copies of P ’s boundary
parts in the axis.
MT (P ) can be interpreted as an anisotropic me-

dial axis of P . Using suitable convex unit disks, the
centers of maximal inscribed disks will delineate the
triangulation axis. This is made explicit in Figure 2.
Unit disks for ear triangles and link triangles are just
line segments of varying slopes, whereas unit disks for
branch triangles are of triangular shape.
We found out recent mention of a triangulation axis

in Wang [9] for GIS applications, who refer to Ai and
van Oosterom [1] for earlier use. However, no sys-
tematic study of MT (P ) is provided, and only the
constrained Delaunay triangulation [5] of P is used
for T .
A nice feature of triangulation axes is their small

combinatorial size.

Lemma 1 Any triangulation axis of a simple poly-

gon P with n vertices has between n − 2 and 2n − 6
edges.

Proof. Each triangulation T of P has the same num-
ber of triangles, n−2. Ear triangles and link triangles
yield 1 edge of MT (P ) each, whereas branch triangles
contribute 3 edges. The number of edges of MT (P )
thus is n−2+2b, with b counting the branch triangles
of T . Moreover, we have 0 ≤ b ≤

n

2
− 2, the upper

bound stemming from the fact that T has b + 2 ear
triangles, so that (b + 2) + b ≤ n − 2. The claimed
bounds follow. �

In comparison, the medial axis of P has 2n− 3
edges, r of which are parabolically curved (one for
each reflex vertex of P ), and the straight skeleton of P
has 2n− 3 straight edges.
A desired property of skeletal axes is the ability

of restoring the polygon P from its axis. Both the

medial axis and the straight skeleton share this prop-
erty. However, distances from the axis edges to the
boundary of P have to be stored, in addition. (This
is commonly called the medial axis transform for the
former structure.) Triangulation axes are even more
well-behaved in this respect: Storing an additional bit
for certain edges is sufficient to guarantee a unique re-
construction of P .

Lemma 2 Given any of its triangulation axes, a sim-

ple polygon P can be reconstructed in O(n) time.

Proof. We reconstruct P triangle by triangle. Note
first that triangle types can be recognized from the
axis part they yield. Actually, any branch triangle ∆
is reconstructable uniquely, as ∆ is just a rotated copy
of its edge midpoints’ triangle, in doubled size; cf.
Figure 2(c). If the next triangle is an ear triangle,
its reconstruction is trivial, too. In the case of a link
triangle, we have two choices of following P ’s bound-
ary in a way parallel to the respective axis edge; see
Figure 3. Storing a ‘left/right’ bit is necessary in that
case. Finally, if the axis does not branch at all (is
just a path) then the coordinates of a single (non-ear)
vertex of P have to be remembered. �

x

x

y

y

fixed

Figure 3: Two possible link triangles to continue

At most n− 4 bits have to be stored, as any trian-
gulation of P has at least 2 ear triangles. In contrast,
the medial axis of P has n+ r − 2 inner vertices, for
each we need to store the radius of the maximal disk
centered there.
Without extra information, the polygon reconstruc-

tion is ambiguous, even when the triangulation is
known to be constrained Delaunay. That is, the
empty-circle property does not help; Figure 4 gives
an example.

fixed

Figure 4: P cannot be restored from its Delaunay axis
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(a)

(d)

(b)

(c)

Figure 5: Comparison of optimal triangulation axes: (a) constrained Delaunay, (b) minimal weight, (c) minimal
axis length, (d) minimal weight with expensive branch triangles

The next lemma indicates that triangulation axes
tend to describe the topology of a polygon more com-
pactly than does the medial axis.

Lemma 3 For no triangulation T , MT (P ) has more

branchings than the medial axis of P .

Proof. Each convex vertex v of P is a leaf of the
medial axis, whereas v is a leaf of MT (P ) only if T
contains an ear triangle at v. Reflex vertices of P

cannot be leaves in either structure, and the number
of branchings in any tree is exactly 2 less than the
number of leaves. �

3 Choice of triangulation

The geometry and topology of the triangulation axis
MT (P ) strongly depend on the choice of the underly-
ing triangulation T .
The constrained Delaunay triangulation of P seems

a good choice at first glance, as it tends to avoid edges
at flat convex vertices of P , by its empty circle prop-
erty. However (and similar to the notorious problem
with the medial axis of P ), still various small and
unimportant features are reflected by this ‘Delaunay
axis’ of P ; see Figure 5(a).1 Also, it lacks optimiza-
tion properties like maximizing angles or minimizing
lengths, as can be shown by examples. An advantage
is the low construction time, O(n log n); see e.g., [5].
The minimum-weight triangulation of P appears a

promising candidate, too, as a triangulation of short
total length might have edges nicely aligned within P .

1For branch triangles ∆, we used the Steiner point of ∆’s

edge midpoints, rather than the centroid of ∆, in this running

example. This choice gives slightly better results.

Unfortunately, small length implies many branch tri-
angles, as these triangles are capable of covering much
polygon area, leaving less area (and thus edge length)
for the most frequent type of axis edges, the link
edges; see Figure 5(b). On the other hand, weight-
ing each branch triangle by k times its perimeter, for
some large constant k (rather than using k = 1 for
all triangles) gives quite satisfactory results; see Fig-
ure 5(d). Note that the type of each triangle can be
read of from the vertices of P it uses. The runtime of
O(n3) that results from dynamic programming [7] is
a clear disadvantage, though.
The weight of a triangle can also be chosen as the

length of the axis part it yields. This minimum length

triangulation axis, see Figure 5(c), looks comparable
to the axis in Figure 5(d), which was slightly better,
however, as no inadequate paths close to leaves do oc-
cur that stem from keeping the axis shortest possible.
Another possibility is to minimizing the number of
branch triangles (weight 1, remaining triangles weight
0). The resulting axis also minimizes the number of
leaves, hence maximizes the number of links. The
optimal solution is highly ambiguous, and its abil-
ity of describing the polygon is inferior to the former
choices for most instances. (In fact, a good choice is
given by the modified minimum-weight triangulation
above, for sufficiently large k.)
The axes in examples (c) and (d) nicely resemble

the predominant features of the polygon’s medial axis.
Clearly, if P is poorly sampled, MT (P ) can be geo-
metrically far apart from the latter structure, for any
choice of T ; see Figure 6. Still, MT (P ) behaves better
than an approximation by the Voronoi diagram of P ’s
vertices, as such skeletons may exit and re-enter the
polygon at several places (as in Figure 7).
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Figure 6: Medial axis deviation within a link triangle

Figure 7: Triangulation axis (bold edges) and Voronoi
axis (dashed edges)

4 Edge flipping

Triangulation axes can be modified (and improved)
gradually by flipping edges in their defining triangula-
tion. Our goal is to start with the constrained Delau-
nay triangulation (with low construction time), and
to prune away unwanted branches of the Delaunay
axis by controlled edge flips. A different pruning ap-
proach, based on removing certain axis parts without
adapting its remaining edges is proposed in Wang [9].
Consult Figure 8. If the bottommost branch of the

axis is considered unimportant (e.g., because of its
short length) then it can be possibly removed, by flip-
ping in visibility edges to the opposite vertex of the
respective branch triangle.
This ‘clean up’ step can be applied recursively, by

establishing a partial order among the branch trian-
gles, starting from the axis’ leaves. Each level in this
hierarchy takes O(n) flips, because each created edge
stays permanent in its level, and there are O(logn)
levels. An overall runtime of O(n logn) is achieved,
including the construction of the initial triangulation.
This simple heuristic is surprisingly effective; Figure 1
shows that an axis of quality comparable to the O(n3)
time optimal triangulation approaches in Section 3 is
obtained.

Figure 8: Pruning by flipping

5 Discussion

We have introduced the triangulation axis of a poly-
gon to computational geometry, and we believe in its
potential of being a simple, stable, and characteristic
skeletal structure.
Several questions are raised by the investigations

in the present note. The main issue, of course, is to
find a fast and provably good method of adapting the
underlying triangulation to the shape of the polygon.
We have undertaken first steps towards this goal in
Section 4. A convergence result with respect to the
medial axis would be desirable, if extraneaous ver-
tices on P ’s boundary are allowed. Also, is there any
notable optimization property of the Delaunay axis
of a polygon? Finally, let us mention that the con-
cept of triangulation axis is not restricted to simple
polygons, but straightforwardly extends to polygonal
regions with holes.
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A Lower Bound for Shallow Partitions

Wolfgang Mulzer∗ Daniel Werner†

Abstract

We give a lower bound of Ω(log(n/k)/ log log(n/k))
for the crossing number of shallow partitions in the
plane.

1 Introduction

Range searching is a fundamental problem in com-
putational geometry that has long driven innovation
in the field [3]: given a set of n points in d dimen-
sions, find a data structure such that all points inside
a given query range can be found efficiently. Depend-
ing on the precise nature of the query range and on
the dimension, many different versions of the problem
can be studied. Consequently, a wide variety of tech-
niques have been developed to address them. Among
these tools we can find such classics as range trees and
kd-trees [5, Chapter 5], ε-nets and cuttings [7], span-
ning trees with small crossing number [13], geometric
partitions [9], and many more. For several problems,
almost matching lower bounds are known (in certain
models of computation) [7].
Geometric partitions provide the most effective

means for solving the simplex range searching prob-
lem, where the query range is given by a d-dimensional
simplex [6, 9]. They provide a way to subdivide a
point set into parts of roughly equal size, such that
(i) each part is contained in a simplex; and (ii) any
given hyperplane intersects only few of these sim-
plices. This makes it possible to construct a tree-like
data structure in which each node corresponds to a
simplex in an appropriate geometric partition. With
a careful implementation, one can achieve query time
O(n1−1/d + z) with linear space [6] (here z is the out-
put size, i.e., the number of reported points).
If the query simplex degenerates to a half-space,

we can do better [10]. For this, we need a more spe-
cialized version of geometric partitions, called shallow

partitions. Again, these partitions provide a way for
subdividing a d-dimensional point set into parts of
roughly equal size, such that each part is contained in
a simplex and such that a hyperplane intersects only
few of these simplices. This time, however, we restrict
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†Institut für Informatik, Freie Universität Berlin, 14195
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ourselves to shallow hyperplanes. Such hyperplanes
have only few points to one side. Thus, we only have
the guarantee that any shallow hyperplane will in-
tersect few simplices of the partition (see below for
details). This makes it possible to decrease the num-
ber of simplices that are intersected and to achieve
better bounds for halfspace range searching. Namely,
one can obtain for d ≥ 4 a linear-space data structure
that answers a query in time O(n1−1/⌊d/2⌋+z), where
z is the output size [6] (for d = 2, 3, one can achieve
query time O(log n+ z) and linear space [2]).

Shallow partitions (as well as their cousins—shallow
cuttings) have proved invaluable tools in computa-
tional geometry and have found numerous further ap-
plications. Nonetheless, there still remain some open
questions. As mentioned above, we would like ev-
ery shallow hyperplane to intersect as few simplices
of the shallow partition as possible. But what ex-
actly is possible? For dimension d ≥ 4, the original
bound by Matoušek [9] is known to be asymptotically
tight. For lower dimensions, however, Matoušek asked
whether his result could be improved. It took almost
20 years until Afshani and Chan [2] provided the first
lower bound in three dimensions, almost matching the
upper bound. For the plane, however, so far no non-
trivial lower bounds appear in the literature.

Here, we will give a construction that provides such
a lower bound for shallow partitions in two dimen-
sions. Our result almost matches the upper bound
and also gives an alternative proof for the bound of
Afshani and Chan [2]. A similar construction has been
discovered independently by Afshani [1].

2 Shallow partitions

We begin by providing the details of Matoušek’s shal-
low partition theorem in two dimensions. Let P ⊆ R

2

be a planar n-point set in general position. Let
k ∈ {1, . . . , n} be a parameter. A k-partition P for P
consists of two parts: (i) a sequence P1, P2, . . ., P⌈n/k⌉

of pairwise disjoint subsets of P such that
⋃

i Pi = P
and |Pi| = k for i = 1, . . . , ⌊n/k⌋; and (ii) a sequence
∆1, ∆2, . . ., ∆⌈n/k⌉ of triangles such that Pi ⊆ ∆i for
all i.

Now let ℓ be a line that does not contain any point
in P , and let ℓ+ denote the open halfplane above ℓ.
We say that ℓ is k-shallow if |ℓ+ ∩P | ≤ k. Given a k-
partition P of P , the crossing number of P is the max-
imum number of triangles in P that are intersected by
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any k-shallow line. For any given k, the goal is to find
a k-partition of P whose crossing number is as small
as possible. Matoušek [10, Theorem 3.1] proved the
following theorem.

Theorem 1 Let P be a planar n-point set in general
position and let k ∈ {1, . . . , n}. Then there exists a
k-partition of P with crossing number O(log(n/k)).
�

Matoušek’s original proof uses cuttings and a vari-
ant of the iterative reweighting technique (also known
as the multiplicative weights update method [4]), and
it readily generalizes to higher dimensions. More
recently, Har-Peled and Sharir [8, Lemma 3.3] give
an approach for proving Theorem 1 with elementary
means, but it is not clear whether their technique can
be applied to higher dimensions. As mentioned in the
introduction, Matoušek [10] asked whether the cross-
ing number in Theorem 1 can be improved to O(1).
He conjectured that the answer is no. Afshani and
Chan [2] proved that for any k there are arbitrarily
large point sets in R

3 such that the crossing number

of any k-partition for them is Ω
( log(n/k)
log log(n/k)

)

. How-

ever, their construction does not apply for two di-
mensions. Hence, we will describe here a different—
and arguably simpler—construction that yields the
same lower bound for the plane. Independently, Af-
shani [1] used very similar ideas to obtain the same
lower bound.

3 The Lower Bound

Let a(n, k) be the minimum crossing number that a
k-partition can achieve for any planar n-point set in
general position. For the lower bound, we shall con-
sider the dual setting. We use the standard duality
transform along the unit paraboloid that maps the
point p : (px, py) to the line p∗ : y = 2pxx − py and
vice versa [11].

A point set P dualizes to a set P ∗ of planar lines.
We now define the k-level of P ∗, levk(P

∗) [12]. It is
the closure of the set of all points that lie on a line
of P ∗ and that have exactly k lines of P ∗ beneath
them. We observe that levk(P

∗) is an x-monotone
polygonal curve whose edges and vertices come from
the arrangement of P ∗. Let C be the upper convex hull
of levk(P

∗). For each vertex v of C, we let P ∗
v ⊆ P ∗

denote the set of lines beneath it. We call P ∗
v the

conflict set of v. We have |P ∗
v | = k,1 hence v is dual

to a k-shallow line v∗ in the primal plane.

Now we can interpret shallow partitions in the dual
plane:

1Note that levk(P
∗) may also contain vertices with only k−1

lines of P ∗ beneath them, but these vertices cannot appear on
C, since they correspond to a concave bend in levk(P

∗).

Proposition 2 Let C be an x-monotone downward
convex chain, and let L be a set of n lines such that for
each vertex v of C the conflict set Lv has cardinality
k. Then there exists a coloring of L such that (i) each
color class has size at most k; and (ii) each conflict
set Lv contains at most a(n, k) + 1 different colors.

Proof. Consider the primal plane, where L = P ∗ cor-
responds to a point set P . By assumption, there ex-
ists a k-partition P of P with crossing number a(n, k).
Each vertex v of C corresponds to a k-shallow line v∗,
and at most one triangle of P can be wholly contained
in v∗+. Thus, the claim follows from the properties of
the duality transform. �

We are now ready to describe the construction. Let
m = 2β be a power of 2 and let C be an x-monotone
convex chain with m vertices. We denote these ver-
tices by v1, . . ., vm, from left to right. Now, for
j = 0, . . . , β, let Lj be a set ofm/2j lines such that the
first line in Lj lies exactly below the vertices v1 to v2j ,
the second line lies below v2j+1 to v2·2j , the third line

lies below v2·2j+1 to v3·2j , etc. We set L′ :=
⋃β

j=0 Lj .
See Fig. 1.

L1

C

v1

v2

vm

L2

C

v1

v2

vm

Llogm

C

v1

v2

vm

Figure 1: Sets of lines Lj .

Assume for now that k is a multiple of β + 1, and
let L consist of k/(β+1) copies of L′. We perturb the
lines in L such that they are all distinct while their
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relationship with the vertices of C remains unchanged.
It follows that L has exactly n := (2m − 1)k/(β +
1) lines, with exactly k lines in each conflict set Lvi

(recall that by definition β = logm).
By Proposition 2, there is a coloring of L such that

each color class has size at most k and such that each
conflict set contains at most a(n, k) + 1 colors. The
structure of L lets us interpret this coloring as follows:
let T be a complete binary tree with 2m−1 nodes and
height β. We label the leaves of T with the vertices
v1, . . ., vm, from left to right. Thus, every node w of
T corresponds to an interval of consecutive vertices
of C, namely the leaves of the subtree rooted in w.
By assigning to w the lines that lie exactly below the
vertices in this interval, we obtain a partition of L into
sets of size k/(β + 1). This leads to an interpretation
of shallow partitions as multi-colorings of trees.

Llogm

L2

L1
v1 v2 vm

Figure 2: A tree with height β = log n. The leaves
correspond to the vertices vi, and the level of height i
corresponds to the lines in Li. A line ℓ is stored in the
node whose subtree corresponds to the vertices that
have ℓ below them.

Proposition 3 Let T be a complete binary tree with
height β = logm and 2m−1 nodes, and let k be a mul-
tiple of logm+ 1. Then there exists a multi-coloring
of the nodes of T with the following properties: (i)
every node is associated with a multiset of k/(β + 1)
colors; (ii) each color class has at most k elements; (iii)
along each root-leaf path there are at most a(n, k)+1
distinct colors, where n = (2m− 1)k/(β + 1).

Proof. Properties (i) and (ii) follow immediately
from Proposition 2 and the construction. For Prop-
erty (iii), observe that the lines encountered along a
root-leaf path are exactly the lines below the vertex
of C corresponding to the leaf. �

We can now prove the desired lower bound.

Lemma 4 Let T be a complete binary tree with
height β = logm and 2m − 1 nodes, and let k be
a multiple of logm + 1. Consider a multi-coloring of
T such that (i) every node is associated with a multi-
set of k/(β+1) colors; and (ii) each color class has at
most 2k elements. Then there exists a root leaf-path
with Ω(logm/ log logm) distinct colors.

Proof. We subdivide the nodes of T into slices. The
first slice consists of the first ⌈log(3β)⌉ levels of T , the

second slice consists of the following ⌈log(6β)⌉ levels,
the third slice has the next ⌈log(9β)⌉ levels, and so
on. In general, the ith slice consists of ⌈log(3iβ)⌉
consecutive levels of T .
We claim that there exists a root-leaf path that has

at least one distinct color for each slice that it crosses,
except for the last one. To see this, we first consider
a complete subtree T ′ of T that is has its root in the
first level of a slice i and its leaves in the last level
of the same slice. As a complete binary tree with
⌈log(3iβ)⌉ levels, T ′ has at least 3iβ − 1 ≥ 2iβ + 2i
nodes. Therefore, our multi-coloring needs to assign
at least 2(iβ + i)k/(β + 1) colors in T ′. Since each
color class has size at most 2k, this requires at least i
distinct colors.
We now construct the required root-leaf path slice

by slice. Throughout, we maintain the invariant that
after i slices have been considered, the path contains
at least i distinct colors. This is certainly true at the
root. Now suppose that we have constructed a partial
path Qi−1 that ends at a node z in the last level of
the (i− 1)th slice. If Qi−1 contains at least i distinct
colors, we arbitrarily extend it to a path Qi that ends
at the bottom of the ith slice. Otherwise, we pick an
arbitrary child z′ of z. As noted above, the complete
subtree that is rooted at z′ and restricted to the ith
slice contains at least i distinct colors. Thus, we can
extend Qi−1 through z′ to a path Qi that goes to
the bottom of the ith slice and that meets at least i
distinct colors. The claim follows.
It remains to calculate a lower bound for the num-

ber of slices b. By construction, we must have

b
∑

i=1

⌈log(3iβ)⌉ ≥ β + 1.

Now,

b
∑

i=1

⌈log(3iβ)⌉ ≤

b
∑

i=1

log(4iβ)

≤ b(2 + log b+ log β)

≤ 3b log β,

since clearly b ≤ β. Hence,

b ≥
β + 1

3 log β
= Ω

( logm

log logm

)

,

as desired. �

We now indicate how to drop the assumption that k
is a multiple of β+1. Indeed, suppose that this is not
the case, but k ≥ β + 1. We first perform the above
construction with k′ := ⌊k/(β + 1)⌋(β + 1) instead of
k. Note that since k ≥ β + 1, we have k ≥ k′. Then
we add k − k′ suitably perturbed copies of Lβ (the
set containing a line in conflict with all vertices of C).
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Let L be the resulting set of lines. By Proposition 2,
there exists a coloring of L such that each color class
has at most k ≤ 2k′ elements and such that each
conflict set has at most a(|L|, k) + 1 distinct colors.
The tree T corresponding to L has the same structure
as before, but now each non-leaf node except the leaf
is associated with k′/(β + 1) colors, while the leaves
have k − k′ additional colors. This suffices for the
argument of Lemma 4 to go through.

Theorem 5 There is a constant c > 0 such that the
following holds. For every n and k ∈ {log n, . . . , n/4},
there exists a planar n-point set P such that the
crossing number for any k-partition of P is at least
c log(n/k)/ log log(n/k). Thus,

a(n, k) = Ω

(

log(n/k)

log log(n/k)

)

.

Proof. Let β ∈ N be maximum with (2β+1−1)/(β+
1) ≤ n/2k. Set m := 2β and k′ := ⌊k/(β+1)⌋(β+1).
From Propositions 2 and 3 and Lemma 4, it fol-

lows that by taking the dual we obtain a set P ′ of
n′ := (2m − 1)k′/(β + 1) + k − k′ points such that
any k-partition of P ′ has crossing number at least
c′ logm/ log logm, for some constant c′ > 0.
First note that β < log n and k ≥ β + 1. Hence,

k′ ≤ k ≤ 2k′ and k − k′ ≤ log n. Thus, we can
conclude that

n′ =
2m− 1

logm+ 1
k′ + k − k′ ≤

n

2
+ log n ≤ n.

and

n′ =
2m− 1

logm+ 1
k′ + k − k′ ≥

n

4k
·
k

2
=

n

8
.

Thus, by adding at most 7n/8 points that are con-
tained in no k-shallow halfplane, we can obtain from
P ′ a point set P with n points and crossing number
at least c logm/ log logm. Finally, observe that

m ≥
n′

k′
− k ≥

n

9k
,

so P also has crossing number at least c · log(n/k)
log log(n/k) ,

for some c > 0. The result follows. �

Note that our construction also implies a similar
lower bound in R

3 by embedding the plane into three-
dimensional space and perturbing the points slightly.
This provides an alternative proof of the result by
Afshani and Chan [2].

4 Conclusion and Open Problems

We have given a simple construction that give a lower

bound of Ω
(

log(n/k)
log log(n/k)

)

for the crossing number of

any shallow partition of a planar point set. Ma-
toušek’s result gives an upper bound of O(log(n/k)).
Thus, there still remains a factor of log log(n/k) to
be settled. Can we show that Matoušek’s analy-
sis is tight? Or, perhaps more interestingly, can
we construct shallow partitions with crossing number

O
(

log(n/k)
log log(n/k)

)

?
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An extension of a Theorem of Yao & Yao

Edgardo Roldán-Pensado∗ Pablo Soberón†

Abstract

In this paper we study Nd(k), the smallest positive
integer such that any nice measure µ in R

d can be
partitioned in Nd(k) parts of equal measure so that
every hyperplane avoids at least k of them. A theorem
of Yao and Yao [10] states that Nd(1) ≤ 2d. Among
other results, we obtain the bounds Nd(2) ≤ 3 · 2d−1

and Nd(1) ≥ C · 2d/2 for some constant C. We apply
these results to a problem on the separation of points
and hyperplanes.

1 Introduction

A convex partition of Rd into n parts is a covering
P = {C1, . . . , Cn} of Rd consisting of closed convex
bodies with pairwise disjoint interiors. We say that
a hyperplane H ⊂ R

d avoids a set C if it does not
intersect its interior.
The classical Yao-Yao Theorem [10] states the fol-

lowing.

Theorem 1 (Yao and Yao, 1985) Let µ be a nice

measure in R
d, then there is a convex partition P of

R
d into 2d parts of equal µ-measure such that every

hyperplane in R
d avoids at least one element of P.

In the original proof of this theorem the measure has
to have a continuous density function bounded away
from 0. Later, in [5], this was weakened to the con-
dition that the measure of every hyperplane be 0. In
this paper, we ask µ to satisfy the original conditions,
as in [10].
We extend this theorem to the case when every hy-

perplane is required to avoid 2 pieces.

Theorem 2 Let µ be a nice measure in R
d, then

there is a convex partition P of Rd into 3 · 2d−1 parts

of equal µ-measure such that every hyperplane in R
d

avoids at least two elements of P.

For d = 2 this follows from a theorem by Buck and
Buck [3] which states that R2 can be divided into six
parts of equal measure by three concurrent lines. Our
method gives in this case a partition by three lines,
two of which are parallel. The proof of this theorem

∗Department of Mathematics, University College London,

e.roldan@math.ucl.ac.uk
†Department of Mathematics, University College London,

pablo.soberon@ciencias.unam.mx

is given in section 4. Some details of Yao and Yao’s
original proof of their results are needed, so a sketch
of this proof is given in section 3.
Let Nd(k) be the smallest positive integer such that

the following holds: For every nice measure µ on R
d

there exists a partition of Rd into Nd(k) convex parts

of equal measure such that every hyperplane avoids the

interior of at least k parts. We call such a partition a
k-equipartition. Yao-Yao’s Theorem and Theorem 2
are equivalent to the bounds Nd(1) ≤ 2d and Nd(2) ≤
3 · 2d−1.
Let Md(k, α) be the smallest positive integer such

that for every nice measure µ on R
d there is a family

of Md(k, α) convex sets such that every hyperplane
avoids the interior of at least k of them and they all
have measure at least α. Clearly we have

Nd(k) ≥ Md

(

k,
1

Nd(k)

)

.

Proposition 3 Let p ≤ q be non-negative integers,

then M2(q − p, p
2q ) ≤ 2q.

From the proof of this proposition we also obtain a
bound for N2.

Corollary 4 N2(k) ≤ 2k + 2.

This improves the bounds that can be obtained by
using Yao-Yao’s Theorem and Theorem 2.
For a fixed d, we can determine the asymptotic be-

haviour of Nd(k).

Theorem 5 lim
k→∞

Nd(k)

k
= 1.

These results are proven in section 5. In section 2,
they are applied to obtain new bounds on the follow-
ing problem.

Problem: Determine all pairs (α, β) ∈ R
2
+ such that

for any finite set X of points in R
d and any finite set

Y of hyperplanes in R
d, there are sets A ⊂ X and

B ⊂ Y such that |A| ≥ α|X|, |B| ≥ β|Y | and no two
points in A are separated by a hyperplane in B.
Trying to solve this question we obtained a lower

bound for Nd(1) in terms of the regularised incom-
plete beta function I (see [6] for a definition).

Theorem 6 If 1 ≥ α ·Md(1, α), then

1

α
≥ I−1

sin2(t)

(

d

2
,
1

2

)

≈ C · 2
d

2

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



134

28th European Workshop on Computational Geometry, 2012

for some constant C > 0.

Corollary 7 Nd(1) ≥ C · 2
d

2 .

These results follow from Theorems 8 and 11 below.
This kind of bound can be obtained for Nd(k) for any
k in terms of the regularised incomplete beta function.

Remark. The Yao-Yao Theorem can be generalised
in the following way: Given a1, a2, . . . , a2d > 0 such
that

∑

ai = µ(Rd), there is a partition of Rd into 2d

convex parts {C1, C2, . . . , C2d} such that µ(Ci) = ai
for all i and every hyperplane avoids the interior of
at least one Ci. A similar generalization exists for
Theorem 2 as well.

2 The (α, β) problem

The (α, β) problem deals with how well behaved
points and hyperplanes are with each other in terms
of separation. This problem was told to us by Imre
Bárány in its first version, but it has the difficulty
that it is not self-dual. We work with a second ver-
sion which does have this property.

Problem: Find all pairs (α, β) ∈ R
2
+ such that for

any nice probability measures µ1, µ2 in Sd there are
sets A,B ⊂ Sd with µ1(A) ≥ α, µ2(B) ≥ β such that
either a · b ≥ 0 for all a ∈ A, b ∈ B or a · b ≤ 0 for all
a ∈ A, b ∈ B.
Here we may assume without loss of generality that

the measures µ1 and µ2 are centrally symmetric.
Let C′

d be the set of pairs (α, β) that satisfy the
conditions of the original problem and Cd be the set of
pairs that satisfy the conditions of the second version
of the problem. It can be shown that (α, β) ∈ C′

d if

and only if (α2 ,
β
2 ) ∈ Cd.

We shall denote by Md usual probability measure
on Sd. Given 0 ≤ t ≤ π

2 and x ∈ Sd, let C(d, x, t)
be the spherical cap of Sd with centre x and central
angle t, define hd(t) as its M

d-measure.
Given A ⊂ Sd, let A⊥ be the set of points x ∈ Sd

such that there exists a ∈ A with a · x = 0.
Fix a closed subset A of Sd and set t > 0 so that

Md(A) = hd(t). Define Aε as the set of points x ∈ Sd

for which there exists a ∈ A with arccos(a · x) < ε.
Theorem 2.1 in [4] states the following: For every

ε > 0, µd(Aε) ≥ hd(t + ε). If ε = π
4 then Sd \ Aε

is one of the two connected components of Sd \ A⊥.
This gives the following theorem.

Theorem 8 All points in Cd lie on or below the curve
{(

hd(t), hd

(π

2
− t

))

: 0 ≤ t ≤
π

2

}

.

The function hd(t) can be described using the reg-
ularised incomplete beta function (see [6]) as

hd(t) =
1

2
Isin2(t)

(

d

2
,
1

2

)

.

Theorem 9 C1 =
{

(α, β) : α+ β ≤ 1
2

}

.

Proof. Take α, β with α + β ≤ 1
2 . Suppose that for

every arc segment A with µ1(A) = α we have that
µ2(A

⊥) > α. Note that each of the two components
of A⊥ is obtained by rotating A by an angle of ±π

2 .
This implies that µ1(S

1) < µ2(S
1), which is a contra-

diction. Therefore there exists an arc segment A that
satisfies µ2(A

⊥) ≤ α. If B is any of the two compo-
nents of S1 \A⊥, then µ2(B) ≥ β. This proves one of
the inclusions, Theorem 8 gives us the other. �

Lemma 10 Let 0 ≤ ρ ≤ 1. Suppose that for any nice

measure µ1 on Sd there exists a family F of subsets

of Sd and a probability measure µF on F such that

• µ1(A) ≥ α for all A ∈ F ,

• For every b ∈ Sd, the set Fb = {A ∈ F : A ∩
{b}⊥ 6= ∅} is µF -measurable and µF (Fb) ≤ ρ.

Then (α, 1−ρ
2 ) ∈ Cd.

Proof. Let µ1 and µ2 be nice measures. Suppose that
we can find µF as above, then using Fubini’s Theorem

∫

F

µ2(A
⊥)dµF =

∫

Sd

µF (Fb)dµ2 ≤ ρ.

Thus, we can find A0 such that µ2(A
⊥
0 ) ≤ ρ. This

means that there is a set B such that µ2(B) ≥ 1−ρ
2

and the sign of a · b is constant for all a ∈ A0 and
b ∈ B. �

Using this with Nd(k) and Md(k, α) and a projec-
tion from a hyperplane in R

d+1 to Sd, we obtain the
following.

Theorem 11 For any two positive integers k and

d,
(

1
2Nd(k)

, k
2Nd(k)

)

∈ Cd. More generally, if α > 0,
(

α
2 ,

k
2Md(k,α)

)

∈ Cd.

With this Theorem and Theorem 8 we obtain the
lower bounds in Theorem 6. It should be noted that
this also implies lower bounds for Nd(k) for any k.
Applying the results known for Nd(k), we obtain

the following.

Corollary 12 For any two non-negative integers k1
and k2, not both equal to 0, let α =

(

1
2d

)k1
(

1
3·2d−1

)k2

and β = 1−
(

1− 1
2d

)k1
(

1− 1
3·2d−2

)k2
. Then 1

2 (α, β) ∈
Cd.

This gives in particular that
(

1
2d+1 ,

1
2d+1

)

∈ Cd, which
was also obtained in [1] with similar methods.
We can get better bounds if further conditions are

imposed on one of the measures. Let Cd(∆) be the
set of pairs (α, β) such that for any two measures µ1,
µ2 on Sd such that µ1 is the integral of a Lipschitz
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function f with Lip(f) ≤ ∆, there are sets A,B in Sd

satisfying µ1(A) = α, µ2(B) = β and either a · b ≥ 0
for all a ∈ A, b ∈ B or a · b ≤ 0 for all a ∈ B, b ∈ B.

Theorem 13 For every 0 < λ ≤ 1 and 0 <
r < 1−λ

∆ , let α = λhd(r) and β = hd−1(
π
2 −

2 arcsin(sin(r) sin−1( 1−λ
∆ −r))). Then (α, β) ∈ Cd(∆).

The idea for the proof is to use a small caps cen-
tred in a small (d − 1)-sphere contained in Sd and
the Lipschitz condition to have sets as in the proof of
Lemma 10. If r is close to 0, then the pairs obtained
are close to

(

λhd(r), hd−1

[

π
2 − c2r

])

for a constant c2
depending on λ and ∆. If instead of this we use a
hypercube (of dimension d) in Sd, we obtain bounds
of the type ( c1

md−1 ,
1
2 −

c2d
m ). These are worse than the

ones in Theorem 13 but are easier to grasp.

3 Yao-Yao’s original proof

Let O(d) be the space consisting of d × d matrices u
such that uTu = I, the space SO(d) ⊂ O(d) consists
of matrices with determinant 1. A matrix u ∈ O(d)
can be expressed as u = (u1, . . . , ud) where ui is the i-
th row vector of u, in this way every u can be identified
with an ordered orthonormal base of Rd.
Fix a base u = (u1, . . . , ud) of R

d. If H is a hyper-
plane orthogonal to u1, define the open half-spaces
H+ = {x + tu1 : x ∈ H, t > 0}, H− = {x − tu1 : x ∈
H, t > 0}.
Let v be a unit vector in R

d not orthogonal to u1

and let pv : R
d → H be the projection such that

pv(x + tv) = x for all x ∈ H and t ∈ R. We can
identify H with R

d−1 by means of the base u2, . . . , ud.
There is a natural way to define measures µ+

v and
µ−
v in H: For any measurable S ⊂ H, set µ±(S) =

µ(p−1
v (S) ∩H±).
In [10] a centre c ∈ R

d for µ relative to the base
u1, . . . , ud is defined as follows:

• If d = 1 then c is the point that splits R into two
parts of equal µ-measure.

• If d > 1, letH be the hyperplane orthogonal to u1

that splits Rd into two parts of equal µ-measure.
Then c lies on H and there exists a unit vector v
(with u1 · v > 0) such that c is a centre for both
µ+
v and µ−

v relative to the base (u2, . . . , ud).

This induces a partition into 2d parts, if a hyper-
plane intersects the line through c parallel to v in H+

then it avoids one of the elements of the partition
contained in H− and vice versa.

Then it is proved that c is exists and is unique. It is
easy to see that the projection vector v is also unique
and that v and c vary continuously with u.
If we want each element of the partition to have

a pre-described value, then the same proof works by
changing the choice of H appropriately.

4 Proof of Theorem 2

Problems involving partitions of measures are topo-
logical in nature. A common method to approach
them is the test map scheme (e.g. [7], [9]). We follow
this scheme and reduce the problem to showing that
some equivariant functions always have a zero.

Given x = (x1, . . . , xn) ∈ R
d1 × · · · × R

dn , we de-
fine gi(x) as the result of changing the sign of the i-th
coordinate of x. We always use gi to denote this func-
tion independently of the target space, since it causes
no confusion. The j-th coordinate of xi ∈ R

di will be

denoted by x
(j)
i .

We start with the geometrical part of the proof of
Theorem 2 and continue with the topological part.

Proof. Let u = (u1, . . . , ud) be an orthonormal base
of R

d, we think of u1 as the upwards direction. If
H is a hyperplane orthogonal to u1, define the open
half-spaces H+ = {x + tu1 : x ∈ H, t > 0}, H− =
{x− tu1 : x ∈ H, t > 0}.

Let H1 and H2 be the hyperplanes orthogonal to
u1 such that the sets A = H+

1 , B = H−
1 ∩ H+

2 and
C = H−

2 have equal µ-measure. Let µ1 = µ|A ∪B
and µ2 = µ|B ∪ C.

Yao-Yao’s Theorem applied to µ1 gives a unique
centre O1 ∈ H1 and a unique projection vector v1
pointing downwards (i.e. u1 · v1 < 0).
Let J1 ⊂ H1 be the (d−2)-dimensional flat through

O1 orthogonal to u2. Note that the hyperplane K1 =
{J1 + tv1 : t ∈ R} splits B into two parts of equal
µ1-measure.

Define analogously O2 ∈ H2, v2 pointing upwards,
J2 and K2. Since K1 and K2 each divide B into two
parts of equal µ-measure, they intersect in a d − 2-
dimensional flat J ⊂ B parallel to J1 and J2.

The centres O1 and O2 as well as the vectors v1 and
v2 vary continuously with u.

Our aim is to find u such that the vectors v1 and v2
are parallel to the line O1O2. Once this is done, let
P1 and P2 be the correspondings Yao-Yao partition
to µ1 and µ2.

Then we can use the partition P consisting of the
elements of P1 contained in A, the elements of P2

contained in C and the non-empty elements K ∩ B
such that K ∈ P1. Every hyperplane avoids at least
two elements of P.

Let r : R
d → R

d−1 be the projection such that
r(O1) = r(O2) = O and {r(u2), . . . , r(ud)} is the
canonical basis.

The affine hyperplane r(J) is orthogonal to u2, so it
is of the form {v : v ·u2 = λ} for some λ ∈ R. Let x ∈
R

d−2 and y ∈ R
d−2 be the vectors consisting of the

last d− 2 coordinates of r(v1) and r(v2), respectively.
Let f : O(d) → R

d−1 × · · · × R
1 be defined by

f(u) = ((x+ y, λ), x− y) ∈ R
d−1 × R

d−2.
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Note that if h(u) = 0 for some u, then the vectors v1
and v2 are parallel to the line O1O2 and we are done.
We prove something more general.

For v ∈ R
d−1 × · · · × R

1, let v(j) = (v
(j)
1 , . . . , v

(j)
d−j)

and vT = (v(1), . . . , v(d−1)).
Claim. Assume f : O(d) → R

d−1 × · · · × R
1 is a

function such that whenever f(u) = v, then

• f(g1(u)) = g2(v),

• f(g2(u)) = gd−1(v
T )T ,

• f(gi+2(u)) = gi(v
T )T for i = 1, . . . , d− 3.

Then there exists u ∈ O(d) such that f(u) = 0.
Consider the restriction f∗ = f |SO(d). Together

with composition, we can think of {g1 ◦ gd, . . . , gd−1 ◦
gd} as a set of generators of the group Z

d−1
2 . Given

the conditions on f , there are natural group actions
of Zd−1

2 on SO(d) and R
d−1 × · · · × R

1 such that f∗

is equivariant.
From here we use a similar proof method to the one

Bárány used to prove the Borsuk-Ulam Theorem in
[2]. This method is thoroughly explained in Chapter
2.2 of [7] and a generalization is given in [8]. For
this we need a continuous and equivariant function
f0 : SO(d) → R

d−1 × . . . ,R1 that is generic enough
and has exactly 2d−1 zeros . Such a function is the
one given by f0(u) = (v1, . . . , vd−1), where

• v1 = (u
(1)
3 , . . . , u

(1)
d , u

(1)
2 ),

• v2 = u
(1)
1 · (u

(2)
3 , . . . , u

(2)
d ),

• vi+2 = (u
(i+2)
3 , . . . , u

(i+2)
d−i ) for i = 1, . . . , d− 3.

If f0(u) = 0 then ui is the i-th element of the canonical
basis or its negative. Therefore f0 has exactly 2d−1

zeros in SO(d).
We leave the rest of the present proof to the inter-

ested reader. �

5 Other proofs

Proof. [Proof of Theorem 3] Set a parameter t ≥ 0,
we proceed inductively. Let ℓ1 be a oriented halving
line. Once that ℓk has been constructed, let ℓk+1 be
the oriented halving line such that the sets

Ak ={x ∈ R
2 : x is right of ℓk+1 and left of ℓk},

Aq+k ={x ∈ R
2 : x is left of ℓk+1 and right of ℓk}

have µ-measure p
2q + t, for k = 1, . . . , q. If t = 0 then

the sum of the measures of these sets up to k = q
is p, but they may not cover p times every point of
R

2. There is a smallest t such that each point of R2

is covered at least p times. In this case ℓ1 and ℓq+1

are equal as sets, so in total we have q lines and the

boundary of every Ak is contained in the union of two
of them. If ℓ ⊂ R

2 is a typical line then it intersects
each of the lines ℓ1, . . . , ℓq once, therefore it intersects
exactly p+ q elements of F . �

Proof. [Proof of Corollary 4] In the previous proof
put p = 1 and q = k + 1, then the resulting sets form
a partition. �

Proof. [Proof of Theorem 5] Clearly Nd(k) ≥ d+ k,
as there is a hyperplane through any d given points.
The function Nd also satisfies

Nd(k1 + k2) ≤ Nd(k1) +Nd(k2). (1)

To see this, partition R
d by a hyperplane that divides

its measure in proportionsNd(k1) : Nd(k2). Then find
a k1-equipartition of one side and a k2-equipartition
of the other side. We also have the asymptotically
stronger equation

Nd(k1Nd(k2) + k2Nd(k1)− k1k2) ≤ Nd(k1)Nd(k2).
(2)

This can be shown by finding a k1-equipartition of
R

d and further partition each of its pieces by k2-
equipartitions. Starting with Yao-Yao’s Theorem and
iterating (2), a sequence of partitions can be found
such that Nd(ki)/ki tends to 1. This together with
(1) implies the desired limit. �
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What makes a Tree a Straight Skeleton?∗

O. Aichholzer† H. Cheng‡ S.L. Devadoss§ T. Hackl† S. Huber¶ B. Li§ A. Risteski‖

Abstract

Let G be a cycle-free connected straight-line graph
with predefined edge lengths and fixed order of inci-
dent edges around each vertex. We address the prob-
lem of deciding whether there exists a simple polygon
P such that G is the straight skeleton of P . We show
that for given G such a polygon P might not exist,
and if it exists it might not be unique. For small star
graphs and caterpillars we give necessary and suffi-
cient conditions for constructing P .

1 Introduction

The straight skeleton S(P ) of a simple polygon P is a
skeleton structure like Voronoi diagrams, but consists
of straight-line segments only. Its definition is based
on a so-called wavefront propagation process that cor-
responds to mitered offset curves. Each edge e of P
emits a wavefront that moves with unit speed to the
interior of P . Initially, the wavefront of P consists
of parallel copies of edges of P . However, during the
wavefront propagation, topological changes occur: An
edge event happens if a wavefront edge shrinks to zero
length. A split event happens if a reflex wavefront ver-
tex meets a wavefront edge and splits the wavefront
into pieces, see Figure 1 (right). The straight skele-

ton S(P ) is defined as the set of loci that are traced
out by the wavefront vertices and it partitions P into
polygonal faces. Each face f(e) belongs to a unique
edge e of P . Each straight skeleton edge belongs to
two faces, say f(e1) and f(e2), and lies on the bisec-
tor of e1 and e2. Straight skeletons have many appli-
cations, like automated roof construction, computa-
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Figure 1: Example of a feasible cycle-free connected
abstract geometric graph G (leaves of G are shown
as white dots). Left: Arbitrary embedding E(G) and
(non-simple) polygon PE(G) (dotted). Right: Suit-
able polygon PE′(G) for a different embedding E′(G),
which is equal to S(PE′(G)). A set of wavefronts of
PE′(G) at different points in time are depicted in gray.

tion of mitered offset curves, and solving fold-and-cut
problems. See [4] and Chapter 5.2 in [3] for further
information and detailed definitions.

Although straight skeletons were introduced to
computational geometry in 1995 by Aichholzer et
al. [1], their roots actually go back to the 19th cen-
tury. In textbooks about the construction of roofs
(see e.g. [6], pages 86–122) using the angle bisectors
(of the polygon defined by the ground walls) was sug-
gested to design roofs where rainwater can run off in a
controlled way. This construction is called Dachaus-

mittlung and became rather popular. See [5] for re-
lated and partially more involved methods to obtain
roofs from the ground plan of a house.

Maybe not surprisingly, none of this early works
mentions the ambiguity of the non-algorithmic defini-
tion of the construction. Using solely bisector graphs
does not necessarily lead to a unique roof construc-
tion, and actually not even guarantees a plane parti-
tion of the interior of the defining boundary [1].

An interesting inverse problem was motivated to
us by Lior Pachter and investigations started in [2]:
Which graphs are the straight skeleton of some poly-
gon? To give a more formal problem definition we
denote with abstract geometric graphs the set of com-
binatorial graphs, where the length of each edge and
the cyclic order of incident edges around every vertex
is predefined (and cannot be altered). Let G be the
set of cycle-free connected abstract geometric graphs.
Denote with E(G) an embedding of G ∈ G in the
plane, that is, the vertices of G are points in R

2 and
the edges of G are straight-line segments of the pre-
defined length, connecting the corresponding points

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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and respecting the predefined cyclic order of incident
edges around each vertex. Further, denote with PE(G)

the polygon resulting from connecting the leaves of G
(with straight-line segments) in cyclic order for the
embedding E(G). We call a simple polygon PE(G)

suitable if its straight skeleton S(PE(G)) = E(G), for
the embedding E(G). If there exists a suitable poly-
gon for a graph G ∈ G, we call G feasible, see Figure 1.

The obvious questions which arise from these defi-
nitions are: Which graphs of G are feasible? Are the
suitable polygons for feasible graphs unique? How can
one construct a suitable polygon for a feasible graph?

2 Star graphs

All polygon edges whose straight-skeleton faces con-
tain a common vertex u (of the straight skeleton) have
equal orthogonal distance t to u, because their wave-
front edges reach u at the same time t. That is, the
supporting lines of those polygon edges are tangen-
tial to the circle with center u and radius t. Thus, in
this section we consider a subset of G, the so called
star graphs. A star graph Sn ∈ G, for n ≥ 3 has
(n + 1) vertices, one vertex u with degree n and n
leaves v1, . . . , vn ordered counter clockwise around u.
The length of each edge uvi, with 1 ≤ i ≤ n, is de-
noted by li. W.l.o.g. let l1 = maxi li. Observe that
the polygon PE(Sn) is star shaped and vivi+1 (with
vn+k := v1+(k−1) mod n) are its edges.

Observation 1 If Sn ∈ G is a feasible star graph
and PE(Sn) is a suitable polygon of Sn, then (1)
all straight-skeleton faces are triangles, (2) two con-
secutive vertices vi, vi+1 can not be both reflex, (3)
li < li±1 for each reflex vertex vi of PE(Sn), and (4)
all edges of PE(Sn) have equal orthogonal distance t
to u, with t ∈ (0,mini li].

As a given Sn ∈ G is possibly not feasible and a suit-
able polygon may not be known or does not exist, we
define a polyline LSn

(t, A): The vertices v1, . . . , vn+1

of LSn
(t, A) are the leaves, v1, . . . , vn, of Sn, in

the same order as for Sn, and one additional ver-
tex vn+1 succeeding vn. The vertices v1, . . . , vn, vn+1

have the corresponding distances (predefined in Sn)
l1, . . . , ln, l1 to u. A is an assignment for each ver-
tex whether it should be convex or reflex, as seen
from u. As l1 = maxi li, v1 and vn+1 are always con-
vex (fact (3) in Observation 1). For the remaining ver-
tices any convex/reflex assignment, which respects the
facts (2) and (3) in Observation 1, can be considered.
The edges of LSn

(t, A) have equal orthogonal distance
t to u. Of course, not all possible combinations of t
and an arbitrary embedding E(Sn) allow such a poly-
line. But it is possible to construct LSn

(t, A) and
E(Sn) simultaneously for a fixed t ∈ (0,mini li].

For a fixed assignment A and a fixed t ∈ (0,mini li]
we construct LSn

(t, A) (and E(Sn)) in the following

v1 ≡ vn+1

v2 = vi−1vi

t

u

vn

li
αi

gi−1

Figure 2: Construction of LSn
(t, A) (and E(Sn)) for

a given Sn and a fixed distance t and assignment A.

way. Consider the circle C with center u and radius t.
Start with v1 at polar coordinate (l1, 0), with u as
origin. For each vi, i = 2 . . . (n+1), consider a tangent
gi−1 to C (such that the vertices will be placed counter
clockwise around the circle) through vi−1. If vi−1 is
convex, then there exist two points with distance li
(l1 for vn+1) on gi−1. If vi is assigned to be reflex,
then vi is placed on the point closer to vi−1, and if
vi is assigned to be convex, then vi is placed on the
other point. If vi−1 is reflex, then there exists only one
applicable point for placing vi on gi−1. See Figure 2.
The LSn

(t, A) constructed this way is unique (for
fixed t and A), and may be not simple (e.g. when cir-
cling C many times), simple but not closed (vn+1 6≡
v1), or simple and closed (vn+1 ≡ v1). In the lat-
ter case, the construction reveals a witness pair (t, A)
for the existence of some E(Sn), a suitable polygon
PE(Sn), and thus the feasibility of Sn.
It is easy to see, that for each suitable polygon

PE(Sn), there exists a polyline LSn
(t, A) (just dupli-

cate the vertex v1). Hence, deciding feasibility of
Sn is equivalent to finding an assignment A and a
t ∈ (0,mini li] such that LSn

(t, A) is closed and sim-
ple. For a polyline LSn

(t, A) and a corresponding
embedding E(Sn), we denote with αi, i = 1 . . . n,
the counter clockwise angle at u, spanned by uvi and
uvi+1. (Note that for a suitable polygon PE(Sn) αi

can be defined the same way, with vn+1 ≡ v1.) It is
easy to see that the sum of all αi is 2π if and only if
LSn

(t, A) is closed and simple.

Lemma 1 Let Sn∈G, distance t ∈ (0,mini li] and as-
signment A be fixed, and let LSn

(t, A) be the resulting
polyline. Then αA(t) :=

∑n

i=1 αi can be expressed as

αA(t) = 2

n
∑

i=1
vi convex

arccos
t

li
− 2

n
∑

i=1
vi reflex

arccos
t

li
. (1)

Proof. Omitted in this version. �

For the following result we use the first derivative
of αA:

α′
A(t) = 2

n
∑

i=1
vi reflex

1
√

l2i − t2
−2

n
∑

i=1
vi convex

1
√

l2i − t2
. (2)
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Lemma 2 A suitable convex polygon for a star graph
Sn exists if and only if

∑

i arccos
mini li

li
≤ π. If a

suitable convex polygon exists then it is unique.

Proof. As all vertices are assumed to be convex, we
obtain αA(0) = nπ > 2π. Furthermore, we ob-
serve that αA(t) is monotonically decreasing since
α′
A(t) < 0 for all t ∈ (0,mini li]. Hence, there

is a t ∈ (0,mini li] with α(t) = 2π if and only if
αA(mini li) ≤ 2π which is

∑

i arccos
mini li

li
≤ π. If

this is the case the solution is unique as α(t) is mono-
tonic. �

For n = 3, αA(0) = 3π and αA(mini li) < 2π, and
thus we immediately get the following corollary.

Corollary 3 For every S3 there exists a unique suit-
able convex polygon.

Considering star graphs with n = 5, we show in the
following lemma that they are not always feasible, and
that suitable polygons (if they exist) are not always
unique.

Lemma 4 There exist infeasible star graphs, Sn ∈
G. Further, there exist feasible star graphs for which
multiple suitable polygons exist.

Proof. To prove the first claim consider a star graph
with n = 5, l1 = l2 = l3 = l4 = 1, and l5 = 0.25.
There exist only two possible assignments: either all
vertices convex or all but v5 convex. It is easy to
check that for both assignments

∑

i αi > 2π, for every
t ∈ (0,mini li]. To prove the second claim consider a
star graph with n = 5, l1 = l3 = 1, l2 = 0.6, l4 = 0.79,
and l5 = 0.75. Assign all vertices convex, except for
v2. Then

∑

i αi evaluates to 2π for t ≈ 0.537 and
t ≈ 0.598. Hence, there exist (at least) two different
suitable polygons for this star graph. �

In the following we discuss sufficient and necessary
conditions for the feasibility of a star graph S4. By
Lemma 2 we know in which cases suitable convex
polygons exist. The remaining cases are solved by
the following lemma.

Lemma 5 Consider an S4 for which no suitable con-
vex polygon exists. A suitable non-convex polygon
exists if and only if 1

mini li
<

∑

j=1,lj 6=mini li
1
lj
.

Proof. First of all, if a polyline has two or more reflex
vertices assigned then αA(t) < 2π, as each positive
summand in Equation (1) is bound by π/2. Hence, we
only need to consider polylines with exactly one reflex
vertex, which implies αA(0) = 2π.

For simplicity, we may reorder vi and li such that
l4 = mini li. We show that for suitable non-convex
polygons v4 needs to be reflex. Assume to the con-
trary that some vk, with 1 ≤ k ≤ 3, is reflex. In this

case we obtain that α′
A(t) < 0 as 1/

√
l2
4
−t2 dominates

1/
√

l2
k
−t2 for all t ∈ [0, l4). But since αA(0) = 2π we

see that αA(t) < 2π for all t ∈ (0,mini li].

Observe that the assumption in the lemma, that
no suitable convex polygon exists, is equivalent to
αA(l4) > 2π. Recall that αA(0) = 2π. Hence, if
α′
A(0) < 0 then there exists a t ∈ (0, l4) such that

αA(t) = 2π, as αA is continuously differentiable.

Finally, we show that if α′
A(0) ≥ 0 then α′

A(t) > 0
for all t ∈ (0, l4). Hence, there is no t ∈ (0, l4] such
that αA(t) = 2π. From Equation (2) we get that
α′
A(t) > 0 is equivalent to

1
√

l24 − t2
>

3
∑

i=1

1
√

l2i − t2
⇔ 1 >

3
∑

i=1

√

1− l2i − l24
l2i − t2

The right side of this equivalence is true since

1 ≥
3

∑

i=1

√

1− l2i − l24
l2i

>

3
∑

i=1

√

1− l2i − l24
l2i − t2

, (3)

where the first inequality is given by α′
A(0) ≥ 0 and

the second inequality holds for all t ∈ (0, l4).

To conclude, we have shown that if no suitable con-
vex polygon exists for some S4, then a suitable non-
convex polygon exists for this S4 if and only if α′(0) <
0, which is equivalent to 1

mini li
<

∑

j=1,lj 6=mini li
1
lj
,

as claimed in the lemma. �

3 Caterpillar graphs

The techniques developed in the previous section can
be generalized to so-called caterpillar graphs. A cater-

pillar graph G ∈ G is a graph that becomes a path if
all its leaves (and their incident edges) are removed.
We call this path the backbone of G. Figure 1 shows
a caterpillar graph whose backbone comprises three
backbone edges.

In general, a caterpillar graph has m backbone ver-
tices, consecutively denoted by v10 , . . . , v

m
0 . We denote

the adjacent vertices of a backbone vertex vi0, with ki
incident edges, by vi1, . . . , v

i
ki
, such that viki

= vi+1
0

for 1 ≤ i < m. Furthermore, we denote by lij the

length of the edge vi0v
i
j , see Figure 3. Let us consider

a polygon P whose straight skeleton S(P ) forms a
caterpillar graph.

Observation 2 All edges of P whose straight-
skeleton faces contain the same backbone vertex vi0
have identical orthogonal distance to vi0.

We denote this orthogonal distance by ri. Hence,
the supporting lines of the corresponding polygon
edges are tangents to the circle of radius ri centered
at vi0, see Figure 3.
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vi
0

vi+1

0
li
ki

li
1

li
2

li
3

li
ki

ri
ri+1

βi

ri+1 − ri

vi
1

vi
3

π
2
− βi

arcsin
ri
li
j

vi
j

π
2
+ βi

e

P ′
i

Figure 3: A section of a polygon P for which S(P ) is
a caterpillar graph.

Lemma 6 The radii r2, . . . , rm of a suitable polygon
PE(G) for some given caterpillar graph G are deter-
mined by r1 and the predefined edge lengths of G
according to the following recursions, for 1 ≤ i < m:

ri+1 = ri + liki
sinβi

βi = βi−1 + (1− ki/2)π+

ki−1
∑

j=1

vi
j 6=v

i−1

0







arcsin ri
li
j

vij is convex

π − arcsin ri
li
j

vij is reflex

For i = 1 we define that β0 = 0 and v1j 6= v00 being
true for all 1 ≤ j < k1.

Proof. Denote with e one of the two edges of PE(G)

whose faces of S(PE(G)) contain the edge vi0v
i+1
0 . The

supporting line of e is tangential to the circles at vi0
and vi+1

0 . Considering the shaded right-angled trian-
gle in Figure 3, we obtain ri+1 − ri = liki

· sinβi.
Consider the polygon P ′

i (bold in Figure 3) which
comprises the edges of PE(G) whose faces of S(PE(G))
contain vi0, trimmed by two additional edges orthog-
onal to vi−1

0 vi0 and vi0v
i+1
0 , respectively. P ′

i comprises
ki+2 vertices (k1+1 for P ′

1) and hence, the sum of in-
ner angles equals kiπ ((k1−1)π for P ′

1). On the other
hand, we can express this sum as follows (also for P ′

1),
which implies the second recursion:

kiπ = 2π + 2βi−1 − 2βi+

2

ki−1
∑

j=1

vi
j 6=v

i−1

0







arcsin ri
li
j

vij is convex

π − arcsin ri
li
j

vij is reflex

�

Corollary 7 The sum of the inner angles of PE(G)

with convexity assignment A is a function

αA(r1) = 2
n
∑

j=1

{

arcsin
rvj
lj

vj is convex

π − arcsin
rvj
lj

vj is reflex
, (4)

where rvj
denotes the radius of the circle at the back-

bone vertex that is adjacent to vj and lj denotes the
length of the incident edge of G.

The previous corollary provides us with a tool in
order to find suitable polygons PE(G) for caterpil-
lar graphs G. We know that for any suitable poly-
gon PE(G) the identity αA(r1)=(n−2)π must hold.
Hence, we can determine all suitable polygons PE(G)

as follows: for all 2n possible assignments A we deter-
mine all r1 such that αA(r1)=(n−2)π.
For any such pair (A, r1) we construct a polyline

v1, . . . , vn, vn+1 by a similar method as outlined for
star graphs: shooting rays tangential to circles cen-
tered at the backbone vertices vi0. In order to switch
over from vi0 to vi+1

0 , we consider the previously con-
structed ray, which needs to be tangential to the two
circles centered at both, vi0 and vi+1

0 , respectively.
As the length of the edge vi0v

i+1
0 is given, the center

vi+1
0 of the next circle is uniquely determined, cf. Fig-
ure 3. If there is any non-backbone edge with length
lij < ri then there is no suitable polygon for that par-
ticular pair (A, r1). For each candidate polyline we
check whether it is closed, simple and forms a suit-
able polygon. Note that all suitable polygons can be
constructed by the above method.

Lemma 8 There is at most a finite number of suit-
able polygons PE(G) for a caterpillar graph G.

Proof. As αA is analytic, there are no accumulation
points in the set {r1 : αA(r1) = (n−2)π}. Otherwise,
αA would be identical to (n − 2)π. In other words,
there is only a finite number of possible pairs (A, r1)
that correspond to a suitable polygon. �
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Upward planar embedding of a n-vertex oriented path into O(n2) points

Tamara Mchedlidze∗

Abstract

We prove that every n-vertex oriented path admits
an upward planar embedding into every general set of
n2 − n points on the plane.

1 Introduction

A planar straight-line embedding of a graph G into
a point set S is a mapping of each node of G to
a distinct point of S and of each edge of G to the
straight-line segment between the corresponding end-
points so that no two edges cross each other. Planar
straight-line embeddings of graphs have been studied
since 1991 ([5]) and a large body of literature has been
accumulated.
Planar straight-line embeddings have also been

studied for directed graphs (digraphs, for short). The
hierarchy expressed by relations of a digraph can be
emphasized by drawing it so that its arcs are repre-
sented by curves monotonically increasing in a com-
mon direction. Thus, upward point-set embeddings
were defined. An upward straight-line point-set em-
bedding (UPSE, for short) of a digraph G = (V,E)
into a point-set S (|S| = |V |), is a mapping of each
vertex of G to a distinct point of S and of each arc to a
straight-line segment between its end-points such that
no two arcs cross and each arc (u, v) has y(u) < y(v).
Upward point-set embeddings recently became an ac-
tive field of research and various results have already
been obtained ([1, 3, 4, 8]). Among them are the
following results: (i) Every oriented path admits an
UPSE into every convex point set [3], (ii) It is NP-
complete to decide whether an upward planar digraph
admits an UPSE into a given general point set [4].
In this paper we concentrate on the family of ori-

ented paths and on general point sets. An oriented
path is a digraph the underlying undirected structure
of which is a simple path. Despite the simplicity of
the structure of oriented paths, the freedom of em-
bedding that is provided by a general point set makes
the problem very complicated. Thus, we only know
that the following families of oriented paths always
have an UPSE into any general point set:

(i) An oriented path with at most 5 switches1 and

∗Faculty of Informatics, Karlsruhe Institute of Technology
(KIT), Germany, mched@iti.uka.de

1A switch is a vertex of a digraph with either no incoming
or no outgoing edge.

at least two of its monotone paths having length
two [1].

(ii) An oriented path P with 3 switches (trivial).

(iii) Every oriented path P = (v1, . . . , vn), so that if
its vertex vi is a sink, then its vertex vi+1 is a
source [3].

Note that while the above positive results are avail-
able, it is still not known whether there exists an ori-
ented path P and a point set S, with |P | = |S|, so
that P does not admit an UPSE into S.
The variant of the problem when the point set is

larger than the oriented path, was considered in [1].
The authors proved that every oriented path P with
n vertices and k switches admits an UPSE into every
general point set with n2k−2 points. Note that this
bound is exponential on the number of switches of the
given path.
In this paper we reduce the upper bound of n2k−2

points, by showing that every oriented path with n

vertices admits an UPSE into every set of n2−n points
in general position.

2 Definitions

We say that a point set is general position, or is a
general point set, if no three of its points lie on the
same line and no two of its points have the same y-
coordinate. The convex hull H(S) of a point set S is
the point set that can be obtained as a convex com-
bination of the points of S. We say that a point set
is in convex position, or is a convex point set, if none
of its point lie in the convex hull of the others. Given
a general point set S, we denote by b(S) and by t(S)
the lowest and the highest point of S, respectively. In
a convex point set S, the subset of points that lie to
the left (resp. right) of the line through b(S) and t(S)
including b(S) and t(S) is called the left (resp. right)
side of S. A subset of points of a convex point set S
is called consecutive if its points appear consecutive
as we traverse the convex hull of S. Consider a point
set S and its convex hull H(S). Let L1 = S \H(S),
. . . , Lm = Lm−1 \H(Lm−1), Lm+1 = Lm \H(Lm). If
m is the smallest integer such that Lm+1 = ∅, we say
that S has m layers L1, . . . , Lm. Two layers Li and
Li+1, ∀i ∈ {1, . . . ,m}, are called consecutive layers of
S. Let p and q be points of Li and Li+1, respectively.
We say that p is visible from q (or vice versa) if the

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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straight-line segment p, q does not cross the polygon
defined by the points of Li+1, otherwise we say that
p is invisible from q (see Figure 1).

q

Li+1

Li

p1

p2

p3
p4

Figure 1: Points p1, p2, p3 are invisible from q, while
point p4 is visible from q.

The graphs we study are directed and the directed
edge from a vertex u to a vertex v is denoted by (u, v).
A monotone path (v1, v2, . . . , vk) is an oriented path
containing edges (vi, vi+1), 1 ≤ i ≤ k− 1. A vertex of
a digraph with in-degree (resp. out-degree) equal to
zero is called a source (resp. sink). Thus, a vertex of
a digraph which is either a source or a sink represents
its switch.
If r is a point on the plane, by y(r) we denote its

y-coordinate. If v is a vertex of a graph, by p(v) we
denote the point to which vertex v has been mapped
during the execution of an algorithm. A free point of
a point set is a point to which no vertex of a graph
has been mapped yet.

3 Main result

The following simple proposition represents the key
idea for the proof of the main theorem.

Proposition 1 Let S be a set of n2 − n points in

general position. If S does not contain a convex subset

of n points then S has at least n layers.

The following lemma represents a tool for the proof
of the main theorem.

Lemma 1 Let S be a point set in general position

that has m layers L1, . . . , Lm. Let pi, qi be two con-

secutive points of the right side of the layer Li and

pi+1, qi+1 be two consecutive points of the right side

of layer Li+1, such that y(qi) < y(qi+1) < y(pi+1) <
y(pi). At least one of the following statements holds:

(a) pi is visible from qi+1, (b) qi is visible from pi+1.

Proof. For the illustration of the statement of the
lemma see Figure 2. Assume for the sake of contra-
diction that both statements (a) and (b) are false, i.e.
neither pi is visible from qi+1 nor qi is visible from
pi+1. Rotate line l clockwise through pi+1 starting

Li

Li+1

qi+1

pi+1

pi

qi

Figure 2: Point pi is visible from qi+1, but point qi is
invisible from pi+1.

from the horizontal position, see Figure 3. Line l en-
counters point qi+1 before point qi, since qi is not
visible from pi+1. Similarly, rotate line f counter-
clockwise though qi+1, starting from the horizontal
position. Line f encounters pi after pi+1. This means
that both point qi+1 and pi+1 are in convex position
with points of Li, a clear contradiction. �

Li

Li+1

qi+1

pi+1

pi

qi

f

l

Figure 3: Illustration of the proof of Lemma 1. Points
qi+1 and pi+1 are in convex position with points of Li.

Theorem 2 Let S be a set of n2−n points in general

position and let P be a n-vertex oriented path. P

admits an UPSE into S.

Proof. If S contains n points in convex position, say
S′, then by Theorem 7 of Binucci et. al. [3], P admits
an UPSE into S′ and thus into S. Assume that none
of n points of S are in convex position. Then by
Proposition 1, S contains at least n layers. Denote
n of these layers by L1, L2, . . . , Ln, so that L1 is the
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external layer and Li, Li+1 are two consecutive layers,
i = 1, . . . , n − 1. Let V (P ) = {v1, . . . , vn} be the
vertex set of P , where the vertices are present in the
order they appear in the path P .
We prove the statement of the theorem by induction

on the edges of P .
If the first edge of P is (v1, v2), we place vertex v1

on point t(Ln) and vertex v2 on point t(Ln−1). Note
that t(Ln−1) is always visible from t(Ln). Case when
edge (v2, v1) is present in the path P is symmetrical,
i.e. we place vertex v1 on point b(Ln) and vertex v2
on point b(Ln−1).
The main concept of the remaining proof is as fol-

lows: if vertex vi is placed on a point of layer Lj , we
try to place vertex vi+1 to a point of layer Lj−1. We
only use a point of Lj for vertex vi+1, if it is impossible
to place vi+1 to Lj−1 without creating a crossing with
the polygon defined by Lj . We also note that only the
points of the right sides of the layers are used for the
embedding.
Assume that after i steps we have placed vertex vi

on the layer j, j ≤ n− i+1 and assume also that the
following three conditions hold:
(R 1) For any k < i, if edge (vk−1, vk) is present

and both vertices vk−1, vk are placed on the same
layer Lf , then all of the points of Lf−1 which are
higher than point p(vk−1) are invisible from p(vk−1).
(R 2) For any k < i, if edge (vk, vk−1) is present

and both vertices vk−1, vk are placed on the same
layer Lf , then all of the points of Lf−1 which are
lower than point p(vk−1) are invisible from p(vk−1).
(R 3) The drawing of the path induced by the ver-

tices v1, . . . , vi is upward and planar.

vi−1

vi

vi+1

Lj+1

Lj

Lj−1

q

Figure 4: Proof of Theorem 2, Case 1.

Now we place vertex vi+1. Assume that edge
(vi, vi+1) is present, the case when edge (vi+1, vi) is
present in the path P is symmetrical. Recall that ver-
tex vi was mapped to layer Lj and more specifically,
to a point of the right side of layer Lj .
Case 1: Vertex vi−1 was mapped to a point of layer

Lj+1 (Figure 4 and Figure 5). Recall that vertex vi−1

was mapped to the right side of Lj+1. Let q be a

vi−1

vi

vi+1

Lj+1

Lj

Lj−1

q

Figure 5: Proof of Theorem 2, Case 1.

vi−1

vi

vi+1

Lj

Lj−1

Figure 6: Proof of Theorem 2, Case 2.

point of the right side of Lj−1 which is next higher
than point p(vi). If q is visible from p(vi), we map
there vi+1 (Figure 4). If q is invisible from p(vi), we
place vi+1 into the point of Lj , that is consecutive
higher point of p(vi) (Figure 5). We know that such
a point exists, because otherwise p(vi) is t(Lj) and
then t(Lj−1) is visible from t(Lj). We also know that
this point is free because vertex vi−1 was mapped to a
point of layer Lj+1. Note also that if q is invisible from
p(vi), then all the points of Lj−1 which are higher
than p(vi) are also invisible from p(vi). Thus in both
cases conditions R 1,R 2 hold and the drawing is

vi−1

vi

vi+1

Lj

g

q

Lj−1

Figure 7: Proof of Theorem 2, Case 2.
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upward and planar, since the newly introduced edge
can not cross any previously drawn edge (condition
R 3 holds).

Case 2: Vertex vi−1 was mapped to a point of layer
Lj (Figure 6 and Figure 7).

Case 2.a: Edge (vi−1, vi) is present, see Figure 6.
Then we proceed exactly as in Case 1.

Case 2.b: Edge (vi, vi−1) is present, see Figure 7.
By induction hypothesis and rule R 2, the point g
of Lj−1 which is next lower than point p(vi−1), is
invisible from p(vi−1). Let q be the consecutive higher
than g point of Lj−1. Point q is higher than point
p(vi−1). By Lemma 1, point q is visible from p(vi).
So, we map vertex vi+1 to point q. Conditions R 1−
R 3 hold. �

4 Conclusion

In this paper we showed that every n-vertex oriented
path admits an upward planar embedding into every
set of n2 − n points in general position. This im-
proves the previously known bound of n2k−2 points,
which is exponential on the number of switches k of
the path. Two possible research direction are: (1) to
provide a counterexample, proving that not every ori-
ented path admits an UPSE into every general point
set of the same size and (2) to reduce the bound of
n2−n points. In the next paragraphs we formulate an
equivalent statement of studied problem and present
relevant literature which enforces our belief that the
bound presented here can be improved.

Let P be an oriented path and S be a general point
set, so that |P | = |S|. We construct a geometric tour-
nament T (S) from our point-set S as follows. Geo-
metric tournament T (S) contains |S| vertices, which
are represented by points of S and n(n− 1)/2 edges,
that connect every pair of its vertices. The direction
of the edges is the one which corresponds to the up-
ward orientation. An existence of an UPSE of P into
S can be now formulated as the following question:
“Does geometric tournament T (S) contain a planar
copy of oriented path P?”.

The undirected and non-planar versions of this
problem are well-studied problems in graph theory.
Thus, Hayward [7] showed that every drawing of
a complete graph Kn contains at least c3.2684n

crossing-free Hamiltonian circuits, where c is a con-
stant. A non-planar but directed counterpart of our
problem is as follows: given a tournament T and
an oriented path P , determine whether T contains
a copy of P . This problem is known as M.Rosenfeld’s
conjecture, i.e. M.Rosenfeld conjectured that any n-
vertex oriented tournament T contains a copy of any
n-vertex oriented path P . This conjecture was finally
positively resolved by Thomason [9] for the large val-
ues of n. Recently, Havet and Thomasse [6] presented
three specific exceptions for n = 3, 5, 7, for which the

Rosenfeld’s conjecture does not hold and proved that
it holds in the rest cases. See also [2] for a survey on
this problem.
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Aligned Matched Drawability of Some Graph Triples
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Abstract

In this paper we extend the concept of matched
drawability to aligned matched drawability of triples
and quadruples of graphs and develop algorithms for
constructing such drawings for quadruples and triples
of wheels. We also introduce a new class of graphs
called double-rim wheel and develop algorithms for
constructing aligned matched drawing for triples con-
sisting of two wheels and a tree or a double-rim
wheel.

1 Introduction

The concept of matched drawing of a pair of pla-
nar graphs was first introduced by Di Giacomo et al.
in [3]. Matched drawings are a relaxation of simul-
taneous geometric embedding with mapping that was
introduced by Brass et al. [1].

Let G1 = (V1, E1) and G2 = (V2, E2) be two pla-
nar graphs with |V1| = |V2| and ϕ be a one-to-one
mapping from V1 to V2. A matched drawing of G1

and G2 with respect to ϕ is a pair of straight-line pla-
nar drawings Γ1 and Γ2 of G1 and G2, respectively,
such that any pair of matched vertices have the same
unique y-coordinate in both drawings. Figure 1 shows
a matched drawing of G1 and G2.

v1

w7

w4

w1

w3

w2

v4

v5

v7
v3

v6

v2 w2
w6

Figure 1: A matched drawing of G1 and G2 with one-
to-one mapping ϕ(vi) = wi

If a pair of planar graphs have matched drawings
with respect to any given one-to-one mapping, then
they are matched drawable. Di Giacomo et al. [3] de-
velop algorithms to construct a matched drawing for
different classes of graphs and proved that there ex-
ist two pairs of planar graphs that are not matched
drawable. They also constructed these pairs. Grilli
et al. [4] presented a new approach for computing
matched drawings of planar graphs. This approach

∗Department of Computer Science, Shahid Beheshti Univer-

sity, m−tahmasbi@sbu.ac.ir
†Department of Computer Science, Shahid Beheshti Univer-

sity, zarha67@gmail.com

consists of the three following phases: In the labeling

phase vertices of the two graphs are labeled with ”B”
or ”T” such that matched vertices have the same la-
bel. Such a labeling depends on the topology of G2

and it specifies that vertices labeled as B (”bottom”)
will be drawn ”below” those labeled as T (”top”). In
the leveling phase a straight-line planar drawing of G1

is constructed such that the vertices have disjoint non-
negative integer y-coordinates and every B-labeled
vertex is given an y-coordinate strictly smaller than
any T-label vertex. In the matching phase a straight-
line planar drawing of G2 is computed such that the
y-coordinates of the vertices are those defined in the
leveling phase. Based on this approach they pro-
vided four algorithms for computing matched draw-
ings of four different graph pairs. They also intro-
duced matched drawings of triples of planar graphs.
Let G1, G2 and G3 be three planar graphs with the
same number of vertices and for i, j ∈ {1, 2, 3}, ϕij be
a one to one mapping between vertices of Gi and Gj

such that ϕ13 = (ϕ12 ◦ϕ23)
−1. The three graphs have

a matched drawing with respect to the given map-
pings if there exist three straight-line planar draw-
ings Γ1, Γ2and Γ3 of G1 and G2 and G3, respectively,
such that each pair of drawings is a matched draw-
ing of corresponding pair of graphs with respect to
given mapping and the parallel lines of any pairs of
drawings do not intersect with the drawing of the
remaining graph. Figure 2 shows an example of a
matched drawing of three graphs each having five ver-
tices where ϕ12(vi) = wi and ϕ23(wi) = zi on three
sets of lines. They introduced two triples of graphs
that always admit a matched drawing [4].

v1

z1

w1
v2

v4

v3

v5
w3

w2

z3z4

w5

w4

z2

z5

L2

L3

L1

Figure 2: A matched drawing of three graphs.
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In this paper we introduce the concept of aligned

matched drawing. Let G1, G2 and G3 be three planar
graphs with three one to one mappings ϕ12, ϕ13 and
ϕ23 defined as before. We can rename the vertices of
G2 and G3 such that the three functions be identity.
In the rest of the paper, for simplicity of notations,
we suppose that V (G1) = V (G2) = V (G3) and all
mappings are identity. An aligned matched drawing

of <G1, G2, G3> is a triple <Γ1, Γ2, Γ3> such that Γi

is a straight line drawing of Gi, 1 ≤ i ≤ 3 and every
vertex has the same y-coordinate in all drawings. In
other words, every triple of matched vertices lie on
one of n parallel lines and each line contains exactly
three vertices. Figure 3 shows an aligned matched
drawing. Aligned matched drawing is a relaxation of
the matched drawings of graph triples introduced by
Grilli et al. [4]. In algorithms presented for computing
matched drawing of triples of graphs, there are restric-
tions that force both coordinates of one of the three
graphs to be fixed, but in aligned matched drawing,
we always restrict y-coordinate of vertices.

v5

v4

v1

v2

v6

v3 v3

v4

v5
v1

v6

v2

v5
v1

v6
v4

v3

v2

Figure 3: An aligned matched drawing.

A triple of planar graphs is aligned matched draw-

able if it admits an aligned matched drawing with
respect to any given one-to-one mapping with men-
tioned property. We can extend the concept to four
graphs in a natural way.

The rest of the paper is organized as follows: in sec-
tion 2 we show that triples and quadruplets of wheels
are aligned matched drawable. In section 3, we ex-
tend these results to triples consisting of two wheels
and tree or a double-rim wheel. We present conclu-
sions and further works in section 4.

2 Triples and quadruples of wheels

A wheel with n vertices, Wn, consists of a cycle
w1 − w2 − . . . − wn−1 and a vertex w0, called cen-

ter, that is adjacent to all vertices of the cycle. In
the rest of the paper we suppose that wheels are not
unlabeled level planar [5]. In the case that they be
unlabeled level planar these results follow the paper
Di Giacomo et al. [3]. A y-assignment of vertices of
a graph G with n vertices is a one to one function
λ : V (G) → {1, . . . , n} [3]. A straight-line drawing
of a graph with respect to a given y-assignment is
a straight line drawing where each vertex v has y-
coordinate λ(v). Grilli et al.proved that every pair
of wheels is matched drawable [4]. They also showed
that there always exists a straight-line planar drawing

of Wn for any y-assignment λ, if the center of Wn has
the smallest y-coordinate. With similar approach we
prove the following result.

Theorem 1 For a wheel Wn and an y-assignment λ,

there exists a straight line drawing with respect to λ

if λ(w0) ∈ {0,1,n − 2,n − 1}.

Proof. Let L = {li : y = i, i = 0, . . . , n−1} be a set of
n lines. Suppose that λ(w0) = n−2 and λ(w1) = n−1.
Now let w1, w2, . . . , wn−1 be the counterclockwise or-
der of vertices on the cycle of Wn. Place w0 on l0
and w1 one unit to the left of it on l1. Now em-
anate a ray −−−→w0wi and rotate it counterclockwise until
is crosses lλ(w2) in an integer coordinate. Place w2 at
this point and continue to wn−1. Now you need to
draw the edge w1wn−1. In case that it is not possible
to draw it in a planar way, shift wn−1 to right until
the edge do not cross any other edge of the drawing.
Figure 4-(a) shows the drawing. Similar approach can

(a) (b)

w1

w2

w3

w4

w5

w6

w0

w0

w1

w2

w5

w6

w3

w4

Figure 4: A straight-line planar drawing of W7

be used when λ(w0) = 1, starting with a vertex w1

with λ(w1) = 0. Now suppose that λ(w0) = 0 and
w1 be a vertex with λ(w1) = n − 1. We repeat the
proof of [4]. Let w1, w2, . . . , wn−1 be the counterclock-
wise order of vertices on the cycle of Wn. We place
w0 on l0 and w1 one unit to the right of w0 on ln−1.
Then for i = 1 we emanate a ray −−−→w0wi rotate it clock-
wise until it crosses horizontal line y = y(wi+1) in
first an integer x-coordinate, and then increase i one
unit. Repeat this until i = n − 2. Figure 4-(b) shows
this case. Similar approach can be used for the case
λ(w0) = n − 1. ¤

In the rest of the paper, we call the algorithm in the
proof of theorem 1, Wheel Draw algorithm.

Theorem 2 The pair <G,Wn> is matched drawable

for every planar n-vertex graph G.

Proof. Let w0 be the center of the wheel. First we
compute an embedding of G with w0 on the external
face. We can compute a planar straight-line drawing
of G such that all vertices have different y-coordinates
and w0 has the greatest y-coordinate [2]. Then we
draw Wn using Wheel Draw algorithm. ¤
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Theorem 2 proves that a planar graph and a wheel
are always matched drawable, on the other hand, it
has been proven that two wheels are always matched
drawable [4]. In the rest of the paper we prove aligned
matched drawability of some classes of planar graphs
in a triple consisting of two wheels.

Theorem 3 The triple <Wn,W ′
n,W ′′

n > of wheels is

aligned matched drawable.

Proof. Using theorem 1 it is enough to construct an
y-assignment that assigns values in the set {0, 1, n −
2, n − 1} to the centers of the wheels. Then we can
construct a straight line drawing of each wheel using
Wheel Draw algorithm. ¤

Corollary 4 A quadruples <Wn,W ′
n,W ′′

n ,W ′′′
n > of

four wheels is aligned matched drawable.

Proof. With the same approach as theorem 3, it is
enough to define an y-assignment that assigns values
in the set {0, 1, n − 2, n − 1} to the centers of the
wheels. ¤

3 Aligned matched drawing of other triples

In this section, we describe an algorithm for
computing an aligned matched drawing of triple
<wheel, wheel, tree>. Then we introduce a pla-
nar graph called double-rim wheel and show that a
triple <wheel, wheel, double − rimwheel> is aligned
matched drawable.

Theorem 5 Let Tn be a tree with n vertices and

Wn and W ′
n be two wheels. Then <Wn,W ′

n, Tn> is

aligned matched drawable.

Proof. If Wn and W ′
n have the same centers, w0, we

assign λ(w0) = 0. Then we construct a planar straight
line drawing of Tn where w0 has y-coordinate 0 [2].

Otherwise suppose that the centers of Wn and W ′
n

are w0 and w1, respectively. For any y-assignment λ

where λ(w0) = 0 and λ(w1) = n − 1, Wn and W ′
n are

matched drawable. Now we compute the y-coordinate
of all other vertices as follows: We remove an edge
e = uv from Tn to construct two trees T ′ (containing
w0 and u) and T ′′ (containing w1 and v). We then use
the BFS algorithm starting from w0 (and w1) to label
vertices of T ′ (and T ′′). Then we construct straight
line drawings of T ′ and T ′′ such that u has the greatest
x-coordinate of vertices of T ′ and v has smallest x-
coordinate of vertices of T ′′. Figure 5 shows a drawing
of T13. ¤

A double-rim wheel, R2n+1 is a planar graph con-
sisting of a vertex v0, called center, and two cycles
C1 = v1 − v2 − . . . − vn and C2 = u1 − u2 − . . . − un

together with all edges uivi and v0vi for i = 1, . . . n.
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(a)

(b)
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w2
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w1

w4

Figure 5: (a)T13, subtrees T ′ and T ′′ and y-coordinate
of vertices (b) A straight line drawing of T13 as in the
proof of 5.

The cycle C1 is called the inner cycle and C2 is called
the outer cycle. Figure 6-(a) shows a double-rim
wheel. In the following theorem we show that a triple
consisting of two wheels and a double-rim wheel is
aligned matched drawable.

Theorem 6 The triple <W2n+1,W
′
2n+1, R2n+1> is

aligned matched drawable.

Proof. First suppose that W2n+1, W ′
2n+1 and R2n+1

have the same center, v0. We start with drawing
R2n+1. We place v0 at (1,1), an arbitrary vertex v1

at (0,0), any vertex vi at (2i, n− i+2) and any vertex
ui at (2i + 1, i + n − 1) except u1 that is placed at
(2, 2n). Figure 6-(b) shows vertex placement. Since
v0 has y-coordinate 1, using Wheel Draw algorithm,
we can construct straight line drawings for W2n+1 and
W ′

2n+1.
Now suppose that only the centers of the two wheels

are the same. If it is on the inner cycle, let v1 be the
center, otherwise, let u1 be the center. Then construct
the drawing of R2n+1 as the former case. In the case
that the center of one of the wheels are the same with
the center of R2n+1, let v0, we construct the drawing
of R2n+1 as the former case such that the center of
the other wheel is v1 or u1.

In the remaining case, suppose that none of the
centers are the same. We start with drawing R2n+1.
Recall that λ is the y-assignment of the vertices.

1. If the centers of the wheels lie on C1, let v1

and vj be the centers of the wheels. Then we let
λ(uk) = 2n − k for 1 ≤ k ≤ n and λ(vi) = n − i + 1,
for i 6= 1, j and λ(v1) = 2n and λ(vj) = 1. For each
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Figure 6: (a) A double-rim wheel, R11 (b) A straight-
line drawing of R11

vi, i = 2, 3, . . . n we assign an arbitrary integer x-
coordinate except 1 so that the slope of edges v0vi be
strictly smaller than the slope of v0vi−1. We assign
the same x-coordinate to ui and vi except for u1 that
receives x-coordinate 1. v0 v1 have the x-coordinate
0. We can shift vn and un to the right in case any
crossing happened between v1vn or u1un and the rest
of the edges. Figure 7 shows an example.

v0

v1

v2

v3

v4 v5

u1

u2

u3

u4

u5

Figure 7: drawing of R11 when the centers of W11 and
W ′

11 lie on C1 and j = 3.

2. If the centers of the wheels lie on C2, let u1 and
uj be the centers of the wheels. We place v0 at (1, 1)
any vertex vi at (2i, n−i+2) for 1 ≤ i ≤ n and any uk

at (2k+1, k+n+1) for k 6= 1, j and u1 at (2n, 1) and
uj at (2j +1, 2n−1). And in order to avoid crossings,
we shift un to right.

3. If the centers of the wheels lie on different cycles,
we study two cases: if they are adjacent, we label the
centers v1 and u1 and continue as the case where all
the centers are the same. If they are not adjacent we
call the centers v1 and uj that v1 has y-coordinate
0 and uj has y-coordinate n − 1. Then we draw the
double-rim wheel in the same way as case 2. Figure 8
shows an example.

¤

v1

v2

v3

v4

v5

u4

u3

u2

u1

v0

u
5

Figure 8: Drawing of R11 when the centers of W11

and W ′
11 lie on different cycles and j = 3.

4 Conclusion

In this paper we defined aligned matched drawing and
aligned matched drawability of triples and quadru-
plets of graphs consisting of two or three wheels. The
main tool in this paper is the algorithm Wheel Draw
that finds a straight line drawing for Wn if the center
has y-coordinate in the set {0, 1, n − 2, n − 1}.

A interesting problem in this field is to find triples
<G1, G2, G3> such that every pair of them is matched
drawable but they are not aligned matched drawable.
An open problem is to find new classes of aligned
matched drawable graphs.
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Outerplanar graph drawings with few slopes

Kolja Knauer∗ Piotr Micek† Bartosz Walczak‡

Abstract

We prove that every outerplanar graph with maxi-
mum degree ∆ > 4 has a straight-line outerplanar
drawing with at most ∆−1 distinct edge slopes. This
bound is tight: for every ∆ > 4 there is an outer-
planar graph of maximum degree ∆ which requires
at least ∆− 1 distinct edge slopes for its outerplanar
straight-line drawing.

1 Introduction

A straight-line drawing of a graph G is a mapping
of the vertices of G to distinct points in the plane
and of the edges of G to straight-line segments con-
necting the points representing their end-vertices and
passing through no other points representing vertices.
If it leads to no confusion, in notation and terminol-
ogy, we make no distinction between a vertex and the
corresponding point, and between an edge and the
corresponding segment. The slope of an edge in a
straight-line drawing is the family of all straight lines
parallel to the segment representing this edge. The
slope number of a graph G, introduced by Wade and
Chu [8], is the smallest number s such that there is a
straight-line drawing of G using s slopes.

Since at most two edges at each vertex can use the
same slope, ⌈∆

2
⌉ is a lower bound for the slope num-

ber of a graph with maximum degree ∆. In general,
graphs with maximum degree ∆ > 5 may have arbi-
trarily large slope number, see [1, 7]. If the maximum
degree of a graph is at most 3 then the slope number
is at most 4 as shown by Mukkamala and Szegedy [6],
improving a result of Keszegh et al. [4]. The question
whether the slope number of graphs with maximum
degree 4 is bounded by a constant remains open.

The situation is different for planar straight-line
drawings. It is well known that every planar graph
admits a planar straight-line drawing [5]. The planar

slope number of a planar graph G is the smallest num-
ber s such that there is a planar straight-line drawing

∗Technical University Berlin, knauer@math.tu-berlin.de,
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of G using s slopes. In [3] Keszegh et al. show that
the planar slope number is bounded by a function of
maximum degree. Their bound is exponential and
their proof is non-constructive. Jeĺınek et al. [2] give
an upper bound for the planar slope number of planar
graphs of treewidth at most 3, which is O(∆5).

In the present paper we consider drawings of outer-
planar graphs. As outerplanar graphs have treewidth
at most 2, they admit a planar drawings with O(∆5)
slopes. A straight-line drawing of a graph G is out-

erplanar if it is planar and all vertices of G lie on
the outer face. The outerplanar slope number of an
outerplanar graph G is the smallest number s such
that there is an outerplanar straight-line drawing of
G using s slopes. We provide a tight bound for the
outerplanar slope number in terms of the maximum
degree.

Theorem 1 The outerplanar slope number of every

outerplanar graph with maximum degree ∆ > 4 is at

most ∆− 1.

This result is sharp, as witnessed by a long cycle
where each vertex is made adjacent to ∆ − 2 addi-
tional independent vertices. The tight bounds for the
outerplanar slope number with respect to the max-
imum degree ∆ are therefore: 1 for ∆ = 1, 3 for
∆ ∈ {2, 3}, and ∆− 1 for ∆ > 4.

The proofs of Theorem 1 are somewhat different
for ∆ = 4 and ∆ > 5. In the following we sketch the
ideas of the proof for ∆ > 5.

2 Bubbles

Suppose we are given an outerplanar drawing of a
connected graph G with maximum degree ∆ > 5.
This drawing determines the cyclic ordering of edges
around every vertex. We produce an outerplanar
straight-line drawing of G with few edge slopes which
preserves this ordering at every vertex. Our construc-
tion is inductive: it composes the entire drawing of G
from drawings of subgraphs of G that we call bubbles.

We distinguish the outer face of G (the one that is
unbounded in the given drawing of G and contains all
vertices on the boundary) from the inner faces. The
edges on the boundary of the former are outer edges,
while all remaining ones are inner edges. A snip is a
simple closed counterclockwise-oriented curve γ which

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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• passes through some pair of vertices u and v of
G (possibly being the same vertex) and through
no other vertex of G,

• on the way from v to u goes entirely through the
outer face of G,

• on the way from u to v (considered only if u 6= v)
goes through inner faces of G possibly crossing
some inner edges of G, each at most once.

Every snip γ defines a bubble H in G as the subgraph
of G induced on the vertices lying on or inside γ. Note
that H is a connected subgraph of G as γ crosses no
outer edges. The oriented simple path P from u to
v in H going counterclockwise along the boundary
of the outer face of H is called the root-path of H . If
u = v then the root-path consists of that single vertex
only. The roots of H are the vertices u and v together
with all vertices of H incident to the edges crossed by
γ. Note that vertices of H not being roots cannot
have edges to G − H . Note also that the root-path
and the roots of H do not depend on the particular
snip γ used to define H . The order of roots along
the root-path gives the root-sequence of H . A bubble
with k roots is called a k-bubble. A special role in our
proof is played by 1- and 2-bubbles.
Bubbles admit a natural decomposition, which is

the base of our recursive drawing.

Lemma 2 Let H be a bubble with root-path P =
v1 . . . vk. Every component of H − {v1, . . . , vk} is ad-

jacent to either one vertex among v1, . . . , vk or two

consecutive vertices from v1, . . . , vk. Moreover, there

is at most one component adjacent to vi and vi+1 for

all 1 6 i < k.

H1

H2

H3 H4

H5

H6

H7 H8

H9

v1

v2

v3

P

Figure 1: A 3-bubble H with root path P (drawn
thick), root-sequence (v1, v2, v3) (connected to the re-
maining graph by dotted edges), and splitting se-
quence into v- and e-bubbles (H1, . . . , H9). For ex-
ample, (H2, H3, H4) is a 2-bubble.

Lemma 2 allows us to assign each component of
H − {v1, . . . , vk} to a vertex of P or an edge of P so
that every edge is assigned at most one component.

For a component C assigned to a vertex vi, the graph
induced on C ∪ {vi} is called a v-bubble. If P consists
of a single vertex with no component assigned to it,
we consider that vertex alone to be a v-bubble. For
a component C assigned to an edge vivi+1, the graph
induced on C ∪ {vi, vi+1} is called an e-bubble. If no
component is assigned to an edge of P then we con-
sider that edge alone an e-bubble. All v-bubbles of
vi in H are naturally ordered by their clockwise ar-
rangement around vi in the drawing. All this leads
to a decomposition of the bubble H into a sequence
(H1, . . . , Hb) of v- and e-bubbles such that the natu-
rally ordered v-bubbles of v1 precede the e-bubble of
v1v2, which precedes the naturally ordered v-bubbles
of v2, and so on. We call this sequence the splitting

sequence of H and write H = (H1, . . . , Hb). Note
that v- and e-bubbles are special kinds of 1- and 2-
bubbles respectively. Every 1-bubble is a bouquet of
v-bubbles. The splitting sequence of a 2-bubble may
consist of several v- and e-bubbles. For an illustration
see Figure 1.

Figure 2: Three ways of obtaining smaller bubbles
from v- and e-bubbles. The new root-path is drawn
thick.

The general structure of the induction in our proof
is covered by the following (see Figure 2):

Lemma 3

3.1. LetH be a v-bubble rooted at v and let v1, . . . , vk
be the neighbors of v in H in clockwise order.

Then H − v is a k-bubble with root-sequence

v1, . . . , vk.

3.2. Let H be a v-bubble rooted at v. Let P be an in-

duced path going from v counterclockwise along

the outer face of H to a vertex w of H , such that

the internal vertices of P are not cut-vertices of

H . Let H ′ be the component of H − P adjacent

to both v and w. Then H ′ is a bubble with roots

being the neighbors of P in H ′.

3.3. LetH be an e-bubble with root-edge uv. Suppose

that u1, . . . , uk, v are the neighbors of u in H in

clockwise order and u, v1, . . . , vℓ are the neigh-

bors of v in H in clockwise order. Then H −
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{u, v} is a bubble with root-sequence u1, . . . , uk,

v1, . . . , vℓ, where uk and v1 may coincide.

3 Bounding regions

Depending on the maximum degree ∆ of G we define
the set S of ∆− 1 slopes to consist of the horizontal
slope and the slopes of vectors f1, . . . , f∆−2 where

fi = (− 1

2
+ i−1

∆−3
, 1) for i = 1, . . . ,∆− 2.

An important property of S is that it cuts the horizon-
tal segment from (− 1

2
, 1) to (1

2
, 1) into ∆−3 segments

of equal length 1

∆−3
. We construct an outerplanar

straight-line drawing of G using only slopes from S

and preserving the given cyclic ordering of edges at
each vertex of G.
The essential tool in proving that our construc-

tion does not make bubbles overlap are bounding re-
gions. Their role is to bound the regions occupied
by bubbles. The bounding region for a bubble is
parametrized by ℓ and r which depend on the degrees
of the roots in the bubble. Let v be a point in the
plane. For a vector x let R(v;x) = {v + αx : α > 0}.
We define LB(v; ℓ) to be the set consisting of v and
of all points p such that py > vy. If ℓ > 0 then we
furthermore require that p lies

• to the right of R(v; f∆−2) if ℓ = ∆− 1,

• to the right of R(v; fℓ +
1

∆−4
f1) if 2 6 ℓ 6 ∆− 2,

• on or to right of R(v; f1) if ℓ = 1.

ℓ = 0

ℓ = 1 2 3 4 5

v

Figure 3: Boundaries of LB(v; ℓ) for ∆ = 6. Vectors
fi at v are indicated by thick arrows. Vectors 1

2
f1 at

v + fi are indicated by thin arrows. Note that f3 lies
on the boundary of LB(v; 4).

See Figure 3 for an illustration. Similarly, RB(v; r)
consists of v and of all points p such that py > vy. If
r < ∆− 1 we furthermore require that p lies

• to the left of R(v; f1) if r = 0,

• to the left of R(v; fr +
1

∆−4
f∆−2) if 1 6 r 6 ∆− 3,

• on or to the left of R(v; f∆−2) if r = ∆− 2.

Now, for points u, v in the plane such that uy = vy
and ux 6 vx we define bounding regions as follows: if
0 6 ℓ, r 6 ∆−1 then B(uv; ℓ, r) = LB(u; ℓ)∩RB(v; r)
and if additionally a height h > 0 is specified then
B̄(uv; ℓ, r;h) = B(uv; ℓ, r) ∩ {p : py < uy + h}.
We denote B(vv; ℓ, r) simply by B(v; ℓ, r) and

B̄(vv; ℓ, r;h) simply by B̄(v; ℓ, r;h). We use B(v; ℓ, r)
and B̄(v; ℓ, r;h) to bound drawings of 1-bubbles H

with root v such that r − ℓ + 1 = dH(v). Note
that every 1-bubble drawn inside B(v; ℓ, r) may be
scaled to fit inside B̄(v; ℓ, r;h) for any h > 0 with-
out changing slopes. We use B̄(uv; ℓ, r;h) with u 6= v

to bound drawings of 2-bubbles H whose root-path
starts at u and ends at v, such that ℓ = ∆ − dH(u)
and r = dH(v)−1. HereH cannot be scaled as the po-
sitions of two of its vertices are fixed, so the value of h
matters. We also use B̄(uv; 1,∆− 2;h) with u 6= v to
bound drawings of bubbles with any number of roots
and with root-path starting at u and ending at v.

4 The drawing

The following lemma does the main job in the proof
of Theorem 1 for ∆ > 5.

Lemma 4 Suppose ∆ > 5.

4.1. Let H be a 1-bubble with root v. Suppose that

the position of v is fixed. Let ℓ and r be such

that 0 6 ℓ, r 6 ∆ − 1 and r − ℓ + 1 = dH(v).
Then there is a straight-line drawing of H inside

B(v; ℓ, r).

4.2. Let H be a 2-bubble with first root u and last

root v. Suppose that the positions of u and v

are fixed on a horizontal line so that u lies to the

left of v. Let ℓ = ∆− dH(u) and r = dH(v) − 1.
Then there is a straight-line drawing of H inside

B̄(uv; ℓ, r; ∆−3

∆−4
|uv|) such that the root-path of H

is drawn as the segment uv.

4.3. Let H be a k-bubble with roots v1, . . . , vk in

this order along the root-path. If k = 1 then

suppose dH(v1) 6 ∆ − 2, otherwise suppose

dH(v1), dH(vk) 6 ∆ − 1. Suppose that for some

λ > 0 the positions of v1, . . . , vk are fixed in this

order on a horizontal line so that |v1v2| = . . . =
|vk−1vk| = λ. Then there is a straight-line draw-

ing of H inside B̄(v1vk; 1,∆−2; ∆−3

∆−4
λ) such that

the root-path of H is drawn as the segment v1vk.

The drawings claimed above use only slopes from S

and preserve the order of edges around each vertex

w of H under the assumption that if there are edges

connecting w to G − H then they are drawn in the

correct order outside the considered bounding region.

Proof. The proof of all three statements goes by one
induction on the size of the bubbleH . In the following
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we only show the induction step for 4.2 in a special
case where the root-path of H consists of the single
edge uv. This already uses a big part of the ideas for
the full proof.
In the considered case the splitting sequence of H

consists of some v-bubblesX1, . . . , Xp rooted at u, fol-
lowed by an e-bubble Y , followed by some v-bubbles
Z1, . . . , Zq rooted at v. We start by drawing Y . De-
fine ℓ′ = ∆ − dY (u) and r′ = dY (v) − 1. Suppose
that Y is not the single edge uv as otherwise there
is nothing more from Y to draw. Let uℓ′ , . . . , u∆−2, v

be the neighbors of u in Y in the clockwise order.
Let u, v1, . . . , vr′ be the neighbors of v in Y in the
clockwise order. It follows from 3.3 that Y −{u, v} is
a bubble with roots uℓ′ , . . . , u∆−2, v1, . . . , vr′ , where
u∆−2 and v1 may coincide. Define

α =

{

|uv| if u∆−2 = v1,
∆−3

∆−2
|uv| if u∆−2 6= v1.

Put each vertex ui at point u + αfi and each vertex
vi at point v+αfi. Note that if u∆−2 and v1 coincide
then they are correctly put to the same point. The
points ui and vi split the horizontal segment uℓ′vr′

into segments of length α
∆−3

. Induction hypothesis
4.3 applied to the bubble Y −{u, v} yields its drawing
inside B̄(uℓ′vr′ ; 1,∆ − 2; α

∆−4
) having all additional

properties stated in 4.3. It follows easily from the
definition of bounding regions that

B̄(uℓ′vr′ ; 1,∆− 2; α
∆−4

) ⊂ B̄(uv; ℓ, r; ∆−3

∆−4
|uv|).

This already completes the proof ifH = Y . Now, sup-
pose there are some v-bubbles X1, . . . , Xp starting the
splitting sequence of H . By induction hypothesis 4.1
the 1-bubble X = (X1, . . . , Xp) can be drawn prop-
erly inside B(u; ℓ, ℓ′ − 1). We scale this drawing so
that it fits inside B̄(u; ℓ, ℓ′ − 1;α). The latter bound-
ing region is contained in B̄(uv; ℓ, r; ∆−3

∆−4
|uv|). More-

over, it lies entirely below the horizontal line going
through the points ui and vi, and entirely to the left
of the edge uuℓ′. Therefore, it does not overlap with
the drawing of Y . The 1-bubble Z = (Z1, . . . , Zq)
is drawn similarly on the other side. The resulting
drawing of H clearly fulfills all the requirements. If
Y is the single edge uv then we draw X and Z as
above choosing α = |uv|, which makes their bounding
regions disjoint. �

To prove Theorem 1 for ∆ > 5, fix the position
of any vertex v of G and apply 4.1 to the graph G

considered as a 1-bubble with root v.

5 Further comments

The set of slopes used to prove Theorem 1 is rather
special. A natural question arises: Depending on ∆,
what is the smallest number s, such that any set S of

s slopes allows for an outerplanar drawing using only
slopes from S? We can only provide the following
upper bound.

Theorem 5 Every set S of 2∆ − 4 slopes may be

used to draw any outerplanar graphG with maximum

degree ∆ using only slopes from S.

Another problem we would like to mention is the
following: Are there a function f and a polynomial p
such that every outerplanar graph with maximum de-
gree ∆ and n vertices admits an outerplanar straight-
line drawing on integer coordinates inside a p(n)×p(n)
grid while using at most f(∆) slopes?
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Abstract

We provide a precise description of the class of graphs
that admit a one-bend drawing, i.e., an orthogonal
drawing with at most one bend per edge. The main
tools for the proof are Eulerian orientations of graphs
and discrete harmonic functions.

1 Introduction

The term d-dimensional orthogonal drawing tradition-
ally denotes a drawing of a graph in which vertices are
placed at distinct points of the d-dimensional integer
lattice and edges are represented by chains of axis-
parallel segments. Orthogonal drawings and varia-
tions are classical topics in graph drawing. The dis-
crete nature of the model makes orthogonal drawings
accessible for tools from combinatorial optimization.
Orthogonal drawings are also related to various ap-
plications ranging from circuit layout to information
visualization.
Planar graphs with ∆ ≤ 4 admit crossing-free 2-

dimensional orthogonal drawings. Tamassia’s sem-
inal paper [17] is about the minimization of bends
of such a drawing. For non-planar graphs, authors
mainly worked on area minimization allowing a con-
stant number of bends per edge [12]. Generaliza-
tions have been made in various directions, e.g. for
higher degree graphs by representing vertices as boxes
[1, 2, 7], incremental drawings [11, 6] and simple faces
[8, 14, 13]. On 3-dimensional orthogonal drawings,
there is a less extensive literature, most prominent
are [4, 3].
Here we are interested in 2-dimensional orthogonal

drawings of graphs with maximal degree ∆ ≤ 4 and
vertices represented as points. We only deal with 2-
dimensional orthogonal drawings. For simplicity we
refer to them as orthogonal drawings.

Every graph with ∆ ≤ 4 has an orthogonal draw-
ing. A good drawing, however, should be compact
and readable. Therefore drawing algorithms are usu-
ally compared with respect to the drawing area and

Partially supported by DFG grant FE-340/7-2 and ESF
EuroGIGA project GraDR.

the number of bends. Optimizing either of these two
parameters is NP-hard. This was shown for the area
in [9, 5] and for the bend number in [16]. Several
constructions of orthogonal drawings have been pro-
posed e.g. by Schäffter [15] or by Eades, et al. [4].
From work of Biedl and Kant [1] and Papakostas and
Tollis [12] it follows that graphs with n vertices and
∆ ≤ 4 admit orthogonal drawings with area 0.76n2,
at most two bends per edge and a total of at most
2n+ 2 bends.
We investigate which graphs admit an orthogonal

drawing with at most one bend per edge, for the sake
of brevity we call such drawings one-bend drawings.
The paper by Biedl and Kaufmann [2] provides a gen-
eral framework for such one-bend drawings but it fo-
cuses on the more general case of higher degrees where
the vertices are represented by boxes. In [18], their al-
gorithm has been analyzed more closely and extended
by several heuristics. Here we focus on the case of ver-
tices represented as points, which restricts the graphs
to be of maximal degree 4. Theorem 4 gives a full
characterization of maximal graphs admitting a one-
bend drawing. The construction of the embedding is
based on discrete harmonic functions, a tool that has
not been used before in this area. Theorem 6 extends
the characterization so that it includes non-maximal
graphs.
Let G = (V,E) be a graph with maximum degree

∆ = 4. Suppose that there is an orthogonal drawing
of G such that every edge has at most one bend. If
v is a vertex and edge (v, w) is leaving v towards the
north, i.e., constant x-coordinate and increasing y-
coordinate, then w is further to the north than v, i.e.,
vy < wy. Corresponding statements hold for edges
leaving a vertex towards the other directions.
Let S ⊂ V be a set of vertices. Consider the sub-

graph G[S] = (V,E[S]) of G induced by this set and
its induced one-bend drawing. From the above we see
that in G[S] the northernmost vertex of S has no edge
towards the north. With the respective statements for
the south, east and west extreme vertices we obtain
that the sum of degrees of vertices in G[S] can be
at most 4|S| − 4. This yields the following necessary
condition for the existence of one-bend drawings:

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Proposition 1 If G = (V,E) has a one-bend draw-
ing and S ⊆ V , then |E[S]| ≤ 2|S| − 2.

The assertion of Theorem 6 will be that the degree
condition ∆ ≤ 4 together with the condition on edge
densities given in Proposition 1 yields a sufficient set
of conditions for the existence of a one-bend drawing.

2 The four-regular case

LetG = (V,E) be a connected four-regular graph. We
even allow multiple edges but Proposition 1 implies
that in interesting cases the multiplicity of edges is at
most two.
From Proposition 1 we know that there is no one-

bend drawing for G. However if we specify any vertex
v∞ let G′ = G[V \ v∞], then G′ may have a one-bend
drawing. Such a drawing of G′ can also be interpreted
as a one-bend drawing of G with v∞ placed at ∞. We
refer to such a drawing of G as an extended one-bend

drawing. Figure 1 shows an example.

Figure 1: An extended one-bend representation of the
four dimensional cube.

We can use an extended one-bend drawing ofG that
has the extra property that every edge has exactly one
bend to define an orientation DG of G according to
the rule:

• edge vw is oriented as v → w iff in the drawing
the edge is leaving v horizontally, i.e., to the east
or to the west.

Every edge has a unique orientation in DG because
by assumption every edge has exactly one bend in
the drawing. Moreover, the same orientation can be
defined in terms of vertical segments as: edge vw is
oriented as v → w iff in the drawing the edge is leav-
ing w vertically. Together the rules imply a unique
orientation for the edges incident to v∞.

The orientation DG has the property that
in-deg(v) = 2 and out-deg(v) = 2 for every vertex
v of G, hence it is an Eulerian orientation.

Our construction of extended one-bend drawings
starts with an Eulerian orientation OG of a four-
regular graph G with a special vertex v∞. We then
aim at constructing a one-bend drawing such that the
orientation DG defined on G according to the above
rule equals the Eulerian orientation OG.
Given an Eulerian orientation OG we identify

• vL and vR, these are the two vertices with edges
vL → v∞ and vR → v∞, the indices L and R

are assigned arbitrarily. We call vL and vR the
horizontal poles.

• For v ∈ V \ {vL, vR, v∞} we let Bv be the set of
vertices w such that in OG there is an edge v → w.
Clearly |Bv| = 2 and in a one-bend drawing cor-
responding to OG vertex v has to be horizontally
between the elements of Bv, i.e., if Bv = {w′, w′′}
the either w′

x < vx < w′′

x or w′

x > vx > w′′

x . This
is the horizontal betweenness condition for v.

The Eulerian orientation also provides two vertical
poles vT and vB and a vertical betweenness condition
for all v ∈ V \ {vT , vB , v∞}. We now focus on solving
the horizontal betweenness problem.

Although the adequate representation of a solution
of a betweenness problem is a permutation of the ver-
tices we model the problem as a continuous one. The
advantage is that in the continuous formulation we
can use ideas from spring-embedding and solve the
problem with the aid of discrete harmonic functions
(cf. [10]). Consider the following system of linear
equations in the variables xv:

(H) xv = 1

2
(xw′ +xw′′) whenever Bv = {w′, w′′} and

xvL = 0, and xvR = 1.

Lemma 2 The system (H) has a unique solution.

Proof. The system has as many equations as it has
variables. We claim that the corresponding homoge-
neous system only has the trivial solution. From the
claim it follows that there exists a unique solution for
any right hand side.
Suppose that (zv) is a non-trivial solution of the

homogeneous system. Consider a variable of maxi-
mal absolute value |zu| 6= 0 and let A = {v ∈ V :
|zv| = |zu|}. Since G is connected there is some
edge connecting A to V \ A ⊇ {vL}. Since OG is
Eulerian there is an edge v → w′ with v ∈ A and
w′ ∈ V \A. If v → w′′ is the other out-edge of v, then
|zv| >

1

2
(|zw′ | + |zw′′ |) ≥ | 1

2
(zw′ + zw′′)|, a contradic-

tion.

The solution of system (H) does not necessarily give
a solution of the betweenness problem. Indeed a solu-
tion of the system may clump a set of vertices at a sin-
gle point. Such a clumping can be accidental (resolv-
able by a perturbation xv = 1

2
((1+ε)xw′+(1−ε)xw′′)

of the equations) or the clumping can be essential
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(this happens e.g. if vL is a cut vertex and one com-
ponent is fixed at 0). To exclude essential clumpings
we need a little more than mere connectivity.
Let S ⊂ V be a set of vertices. A pole of S is a

vertex v ∈ S such that in OG there is an edge v → w

with w 6∈ S. Note that vL, vR are the poles of V ′ =
V \ {v∞}.

Proposition 3 The betweenness problem has a so-
lution ⇐⇒ every subset S ⊂ V ′ with |S| > 1 has at
least two poles.

Proof. Suppose a permutation π of V is a solution to
the betweenness problem. It follows immediately from
the definitions that the leftmost and the rightmost
vertex of S with respect to π are poles of S.
Now suppose that every subset S ⊂ V ′ with |S| > 1

has at least two poles. We consider solutions of per-
turbed systems (Hǫ) were the equations of the vertices
perturbed by independent parameters ε. Consider a
solution zv of a perturbed problem where the number
of pairs of vertices sharing a position is minimized.
Suppose that this solution has a clump A at a, i.e.,
A = {v : zv = a} and |A| ≥ 2. Since A has at
least two poles and at least one of vL, vR is not in A

there is an edge v → w leaving A. If for all edges
v → w leaving A we have zv > zw we get a contra-
diction because if v → w′′ is the other out-edge of v,
then 1

2
((1 + ε)zw + (1 − ε)zw′′) > a = zv. Basically

the same argument shows that if v ∈ A has an edge
v → w with zv > zw, then the other out-edge v → w′′

has zv < zw′′ . Increasing the parameter ε of the equa-
tion of v by a small δ > 0 will move v slightly to the
left. This resolves the clump A. By choosing δ small
enough we can make sure that the effect of moving
v on other vertices will not form new clumps. The
contradiction shows that there is a system (Hǫ) such
that the solution has no clumps.

Theorem 4 A four-regular graph G = (V,E) with a
designated vertex v∞ ∈ V admits an extended one-
bend drawing iff |E[S]| ≤ 2|S| − 2 for all S ⊂ V .

Proof. The necessity of the density condition was
shown in Proposition 1.
To prove sufficiency we choose an Eulerian orien-

tation OG of G such that with respect to OG every
S ⊂ V ′ with |S| > 1 has at least two poles. In fact
we want that the two poles condition also holds for
the reverse orientation OG. In Proposition 5 below
we show that such an Eulerian orientation OG of G
exists.
Proposition 3 implies that the horizontal between-

ness problem associated with OG has a solution. Let
πx : V ′ → {1, .., |V ′|} be the ordering of the vertices
obtained by sorting them according to the xv values.

The two poles condition for OG allows us to use
Proposition 3 again and infer the existence of a so-
lution yv of the vertical betweenness associated with

OG. Let πy be the ordering of the vertices obtained
by sorting them according to the yv values.
Let n = |V ′|. We now can safely place the ver-

tices of G′ on integral points of the n × n grid v →
(πx(v), πy(v)) and draw the edges with one bend. The
horizontal and vertical betweenness conditions guar-
antee that there is no conflict of direction.

Proposition 5 A four-regular multi-graph G with
|E[S]| ≤ 2|S| − 2 for all S ⊂ V has an Eulerian orien-
tation OG such that with respect to OG and OG every
S ⊂ V with |S| > 1 has at least two poles.

Proof.Note that the condition implies thatG is 4-edge
connected. Hence, if O is an Eulerian orientation and
S ⊂ V , then there are at least two edges leaving S. If
there are two such edges with different tail-vertices,
then there are two poles in S. Conversely, if S with
|S| > 1 has only one pole in O, then there are only
four edges in the cut E[S, S] and the two edges in O

pointing from S to S have the same tail v ∈ S. Note
that in this case the other two edges incident to v

belong to E[S].
We call a vertex v dangerous if v has four different

neighbors w1, w2, w3, w4 and there exists some S ⊂ V

with |E[S, S]| = 4, v, w1, w2 ∈ S, and w3, w2 ∈ S. In
the first step of the construction of an Eulerian orien-
tation with the desired properties we take dangerous
vertices and duplicate them, i.e., if v is dangerous with
neighbor set w1, w2, w3, w4 as above, then we replace
v and its four edges by vertices v′ and v′′ and edges
(w1, v

′), (w2, v
′), (w3, v

′′), (w4, v
′′) and a double-edge

connecting v′ and v′′, see Figure 2.

w1
w3

v′ v′′

w1
w3

v

w2 w4 w2 w4

Figure 2: The replacement of a dangerous vertex.

The replacement of a dangerous vertex reduces the
number of vertices with four different neighbors the
step ends with a four-regular graph G+

1 that has no
dangerous vertex. Remove all double edges from G+

1 ,
this yields G+

2 . Since all vertices of G
+

2 are of degree 4
or 2 or 0 there is an Eulerian orientation O+ of G+

2 .
Merging pairs of vertices v′, v′′ that were created by
the replacement of a dangerous vertex we recover the
original graph G. Let OG be the orientation of G

inherited from O+. The orientation OG is Eulerian.
Moreover, it has the property that every S ⊂ V with
|S| > 1 has at least two poles with respect to OG

as well as with respect to OG. For the proof of this
property note that whether u 6= v is dangerous is not
effected by the replacement of v by v′ and v′′. Also if v
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is dangerous because of two sets S and T then either
(N(v)∩S) = (N(v)∩T ) or (N(v)∩S)∩(N(v)∩T ) = ∅.

3 The general case

Theorem 6 If G = (V,E) is a graph with ∆ ≤ 4 and
with |E[S]| ≤ 2|S| − 2 for all S ⊆ V then there is an
extended one-bend drawing of G with respect to any
designated vertex v∞ ∈ V .

Proof. We aim at using Theorem 4. To this end we
define a 4-regular graph G+ that has G as a subgraph.
Let X be a set of 4|V | − 2|E| new vertices, i.e., X is
disjoint from V . Let EC be the set of edges of a
bipartite graph with color classes X and V such that
every vertex in X has degree 1 and a vertex v ∈ V

has degree 4 − degG(v) in EC . Finally, let EX be
the edge set of a 3-connected 3-regular graph on the
vertex set X. Since |X| is even and |X| ≥ 4 we can
e.g. take the dual of a plane triangulation as (X,EX).
Let G+ = (V ∪X,E∪EC∪EX). This graph is clearly
4-regular. It remains to verify the density condition of
Theorem 4. For S ⊂ V this is part of the assumption.
If ∅ 6= S ∩X 6= X, then there are at least three edges
in E[S, S] ∩ EX but since G+ is 4-regular the size of
the cut is even, hence at least four.

The proof does not cover the case |E| = 2|V | − 1.
However, the density condition is also sufficient for
this case. This can be shown by reduction to the
situation of Theorem 4.

4 Additional Problems

(i) Improvements in the area requirement and in the
total number of bends can be achieved through an ob-
vious compaction that can be applied in a post pro-
cessing phase. Is it possible to guide the algorithm so
that the gain of this compaction can be controlled?

(ii) The technique of this paper clearly yields a poly-
nomial algorithm for one-bend drawings. It might be
worth investigating whether the technique can be used
for a linear or near linear time algorithm.

(iii) 2-Bends Problem (c.f. Wood [19]): Does every
simple graph with maximum degree 6 have a 3-D or-
thogonal graph drawing with at most 2 bends per
edge?

(iv) Extend the new technique using Eulerian orien-
tation to graphs with higher degree and box repre-
sentation for the vertices. Improve the unbalanced
orientations used in Biedl/Kaufmann and prove bet-
ter bounds for vertices with bounded aspect ratio.

Acknowledgment

The problem was presented by Ignaz Rutter at the
Homonolo Workshop in Nova Louka, December 2011.
We thank Ignaz and the organizers of the workshop.

References

[1] T. C. Biedl and G. Kant, A better heuristic for

orthogonal graph drawings, Comput. Geom., 9 (1998),
pp. 159–180.

[2] T. C. Biedl and M. Kaufmann, Area-efficient

static and incremental graph drawings, in ESA, LNCS
1284, 1997, pp. 37–52.

[3] T. C. Biedl, T. Thiele, and D. R. Wood, Three-
dimensional orthogonal graph drawing with optimal

volume, Algorithmica, 44 (2006), pp. 233–255.

[4] P. Eades, A. Symvonis, and S. Whitesides,
Three-dimensional orthogonal graph drawing algo-

rithms, Disc. Appl. Math., 103 (2000), pp. 55–87.

[5] M. Formann and F. Wagner, The vlsi layout in

various embedding models, in WG, LNCS 484, 1991,
pp. 130–139.

[6] U. Fößmeier, Interactive orthogonal graph drawing:

Algorithms and bounds, in GD, LNCS 1353, 1997,
pp. 111–123.
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Non-Crossing Connectors in the Plane

Jan Kratochv́ıl∗ Torsten Ueckerdt∗

Abstract

We consider the non-crossing connectors problem,
which is stated as follows: Given n simply connected
regions R1, . . . , Rn in the plane and finite point sets
Pi ⊂ Ri for i = 1, . . . , n, are there non-crossing
connectors γi for (Ri, Pi), i.e., arc-connected sets γi
with Pi ⊂ γi ⊂ Ri for every i = 1, . . . , n such that
γi ∩ γj = ∅ for all i 6= j?
We prove that non-crossing connectors do always

exist if the regions form a collection of pseudo-disks,
i.e., the boundaries of every pair of regions intersect
at most twice. We provide a simple polynomial-time
algorithm if the regions are axis-aligned rectangles.
Finally we prove that the general problem is NP-
complete, even if the regions are convex, the bound-
aries of every pair of regions intersect at most four
times and Pi consists of only two points on the bound-
ary of Ri for i = 1, . . . , n.

1 Introduction

Connecting points in the plane by straight lines in a
non-crossing way is a natural problem in computa-
tional geometry. For example, a bunch of research
has been done for connecting n red and n blue points
in the plane by a matching, a non-crossing path that
alternates between red and blue vertices, or two non-
crossing spanning trees, one on each color. We refer
to the survey article of Kaneko and Kano [10]. Recent
investigations consider the problem of finding a non-
crossing matching between n ordered pairs of points
sets, e.g., between a single point and a vertical line [1],
or between two vertical line segments [21].
In this paper, we investigate what happens if we

allow general curves instead of just straight line seg-
ments. Moreover, we want to connect not only n pairs
of points, but n finite sets of points. Of course, we can
always find such non-crossing curves, unless two point
sets intersect. But if we impose for every point set
a region that the corresponding curve must be con-
tained in, then determining whether or not such non-
crossing curves exist is a non-trivial problem, which
is formally stated as follows.

Given: Collection R1, . . . , Rn of simply connected

∗Department of Applied Mathematics, Charles University in
Prague, honza@kam.mff.cuni.cz, torsten@kam.mff.cuni.cz,
Research was supported by GraDR EUROGIGA project No.
GIG/11/E023.

subsets of the plane, called regions, and a finite
point set Pi ⊂ Ri, for i = 1, . . . , n with Pi∩Pj = ∅
for i 6= j.

Question: Is there a collection γ1, . . . , γn of curves,
called connectors such that Pi ⊂ γi ⊂ Ri for i =
1, . . . , n and γi ∩ γj = ∅ for i 6= j?

Related work. A lot of research has been done for
connecting points in the plane with straight line seg-
ments in a non-crossing way. For instance, a point
set P is universal for a class G of planar graphs if
the vertices of every graph G ∈ G can be embedded
onto the points P such that straight edges do not
cross. It has been shown [17, 3] that every set of n
points in general position is universal for the class of
n-vertex outer-planar graphs. The smallest point set
that is universal for the class Gn of all n-vertex pla-
nar graphs consists of at least 1.235n [4, 14] and at
most O(n2) [9, 19] points. Deciding whether a given
graph embeds on a given point set, is known to be
NP-complete [2].

In many variants edges are allowed to be more
flexible than straight line segments. Kaufmann and
Wiese [11] show that every n-element point set is
universal for Gn if every edge is a polyline with at
most 2 bends. Moreover, some n-element point sets
are universal for Gn if edges bend at most once [7].
If the bending points have to be embedded onto P
as well, then universal sets of size O(n2/ logn) for
1 bend, O(n logn) for 2 bends, and O(n) for 3 bends
are known [6]. A variant with so-called ortho-geodesic
edges was studied especially for trees of maximum de-
gree 3 and 4 [5].

Variants where every vertex v has an associated
subset Pv of P of its possible positions has been stud-
ied for much simpler graphs like matchings and cycles,
however for straight edges only. For cycles, deciding
whether a set of non-crossing edges exists is known
to be NP-complete, even if every Pv is a vertical line
segment or every Pv is a disk [16]. For matchings,
NP-completeness has been shown if |Pv| ≤ 3 [1], or
Pv is a vertical line segment of unit length [21]. The
latter result still holds if every edge {u, v} may be a
monotone curve within the convex hull of Pu∪Pv [20].

Our results. We mainly consider the computational
complexity of the non-crossing connectors problem.
In Section 2 we prove that the problem lies in NP,
which is non-trivial. Moreover we show that non-
crossing connectors do always exist if the given regions

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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form a collection of pseudo-disks, i.e., the boundaries
of every pair of regions intersect at most twice. In Sec-
tion 3 we show that the problem is polynomial if the
regions are axis-aligned rectangles, while the general
problem is NP-complete, even if the regions are con-
vex, the boundaries of every pair of regions intersect
at most four times, and |Pi| = 2 for every i = 1, . . . , n.

2 NP-Membership and Pseudo-Disks

The boundary of every region Ri is a simple closed
curve, denoted by ∂Ri. We assume here and for the
rest of the paper that ∂Ri ∩ ∂Rj is a finite point
set. We may think of

⋃n

i=1
∂Ri as an embedded pla-

nar graph G = (V,E) with vertex set V = {p ∈
R

2 | p ∈ ∂Ri ∩ ∂Rj, i 6= j} and edge set E = {e ⊂
R

2 | e is a connected component of
⋃
∂Ri \ V }. A

point p ∈ ∂Ri ∩ ∂Rj is either a crossing point or a
touching point, depending on whether the cyclic or-
der of edges in ∂Ri and ∂Rj around p is alternating or
not. We say that two regions Ri, Rj are k-intersecting
for k ≥ 0 if |∂Ri ∩ ∂Rj | ≤ k and all these points
are crossing points, i.e., w.l.o.g. k is even. A set
R1, . . . , Rn of regions is k-intersecting if this is the
case for any two of them. For example, R1, . . . , Rn

are 0-intersecting if and only if1 they form a nesting
family, i.e., Ri ∩Rj ∈ {∅, Ri, Rj} for i 6= j.
Regions R1, . . . , Rn are a called a collection of

pseudo-disks if and only if they are 2-intersecting.
Usually two pseudo-disks may have one touching
point. However, this can be locally modified into
two crossing points without affecting the existence of
non-crossing connectors. A collection of axis-aligned
rectangles is always 4-intersecting, but not necessarily
2-intersecting. We close this section by showing that
the non-crossing connectors problem belongs to NP.

Proposition 1 Non-crossing connectors is in NP.

Proofsketch. We reduce our problem to Weak Re-
alizability of Abstract Topological Graphs. Abstract
topological graphs (AT-graphs, for short) have been
introduced in [13] as triples (V,E,R) where (V,E) is
a graph and R is a set of pairs of edges of E. The
AT-graph (V,E,R) is weakly realizable if (V,E) has
a drawing (not necessarily non-crossing) in the plane
such that ef ∈ R whenever the edges e, f cross in
the drawing. Weak realizability of AT-graphs is NP-
complete. The NP-hardness was shown in [12], and
the NP-membership was shown in [18].
We assume the input of the problem be described

as the plane graph G (the boundaries of the regions)
described above. First, we augment G to a planar
triangulation G′ and then, for every i, add edges that
connect the points of Pi by a path. Call the resulting

1To be precise, we always require for the “if”-part that

∂Ri ∩ ∂Rj is a finite set of crossing points for i 6= j.

graph G̃. Now define an AT-graph with underlying
graph G̃ by allowing the connecting edges of points
Pi to cross anything but other connecting edges and
the edges resulting from the boundary of Ri. No other
edges are allowed to cross, in particular, no edges of
G′′ may cross each other. It is straightforward to see
that a weak realization of this AT-graph is a collection
of non-crossing connectors, and vice versa. Thus the
NP-membership follows by the result of Schaefer et
al. [18] and the fact that our construction of G̃ is
polynomial. �

Theorem 2 If R1, . . . , Rn is a collection of pseudo-
disks, then non-crossing connectors exist for any point
sets Pi ⊂ Ri (i = 1, . . . , n).

Proofsketch. The proof is constructive. Let the
regions R1, . . . , Rn be labeled such that for every
i = 2, . . . , n the set Ri\(R1∪· · ·∪Ri−1) contains some
point pi (not necessarily in Pi). We start by defining a
connector γ1 for (R1, P1) arbitrarily. For i = 2, . . . , n
we defined connectors γ1, . . . , γi−1, which partition Ri

into connected components in some way. Let C0 be
the component containing pi. We reroute some of the
existing connectors until Pi is completely contained
in C0, and then define γi within C0 arbitrarily.

C0

C

pi
q
C ′′

γj

δ

C ∩ Pi

Ri

C0

piC ′′

γj

Ri

C

Figure 1: Rerouting connector γj around δ.

The adjacency graph between the components of
Ri is a tree T , which we consider to be rooted at C0.
Let C 6= C0 be a component such that C ∩Pi 6= ∅ but
C′ ∩ Pi = ∅ for every descendant C′ of C in T . Let
γj be the connector that forms the border between C
and its father C′′ in T , i.e., j < i. Let q be a point
on γj ∩Ri and δ be any curve with (C ∩ Pi) ∪ {q} ⊂
δ ⊂ C ∪ {q}. See Figure 1 for an example. Next,
γj is opened at q and rerouted within a very small
tube around δ. That this operation is feasible, which
means that δ lies within Rj , follows from the fact that
Ri and Rj are pseudo-disks and pi /∈ Rj .
The rerouting does only affect the subtree of T un-

der C′′. Moreover, C′′ now contains all points in
Pi ∩ C. After finitely many steps we have Pi ⊂ C0

and thus can define the connector γi for (Ri, Pi). �

3 Computational Complexity

In this section we consider the computational com-
plexity of the non-crossing connectors problem. First
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we show that the problem is polynomial if the re-
gions R1, . . . , Rn are axis-aligned rectangles. We say
that two rectangles Ri, Rj form a cross if they are
4-intersecting, and form a filled cross if additionally
both connected components of Ri\Rj contain a point
from Pi, and both connected components of Rj\Ri
contain a point from Rj . Obviously, non-crossing con-
nectors do not exist if some pair of rectangles is a filled
cross. It turns out that the absence of filled crosses is
a necessary and sufficient condition for the existence
of non-crossing connectors.

Theorem 3 A set of axis-aligned rectangles admits

a set of non-crossing connectors if and only if it does

not contain a filled cross.

Proofsketch. For the “if”-part consider axis-aligned
rectangles R1, . . . , Rn such that no two of them form a
filled cross. If there is no cross at all, then the rectan-
gles are pseudo-disks and non-crossing connectors ex-
ist by Theorem 2. So let RiRj be a cross where Ri∩Rj
is inclusion-minimal among all crosses. W.l.o.g. let C
be a connected component of Rj \ Ri that contains
no point from Pj . We chop off a slight superset of C
from Rj and replace Rj by the truncated axis-aligned
rectangle. See Figure 2 for an example.

C

Rj

Ri

Rj

Ri

 

Figure 2: Chopping off C from rectangle Rj .

From the inclusion-minimality of Ri ∩ Rj follows
that every rectangle Rk crosses the new rectangle Rj
only if it crosses the former Rj , too. Hence no (filled)
cross is created by the chopping operation. Since the
pair RiRj is no longer a cross, the number of crosses
has decreased. Repeating the procedure at most

(

n
2

)

times results in a collection of pseudo-disks, which by
Theorem 2 admit non-crossing connectors. �

Corollary 4 It can be tested in O(n2) whether or

not a set of n axis-aligned rectangles admits a set of

non-crossing connectors.

Finally, we prove NP-completeness of the non-
crossing connectors problem. By Proposition 1 the
problem is in NP. We prove NP-hardness, even if the
regions and their point sets are very restricted.

Theorem 5 The non-crossing connectors problem is

NP-complete, even if the regions are 4-intersecting
convex polygons and for every i = 1, . . . , n the set

Pi consists of two points on the boundary of Ri.

The proof of Theorem 5 is rather technical and
pretty long. We sketch here the ideas with non-
convex, but still 4-intersecting, regions. We do a
polynomial reduction from planar 3-SAT, i.e., we are
given a formula ψ in conjunctive normal form where
each clause has at most 3 literals, that is positive
or negated variables. Moreover, the formula graph

Gψ, namely the bipartite graph whose vertices are
the clauses and variables of ψ, and whose edges are
given by {x, c} with variable x contained in clause c,
is planar. It is known [15] that planar 3-SAT is NP-
complete, even if every variable appears in at most 3
clauses, i.e., Gψ has maximum degree 3 [8].

For every clause c we define five regions together
with two points per region as illustrated in Figure 3.
The three red regions are associated with the literals
contained in c. Each red region contains a small part
outside the black region. Given non-crossing connec-
tors for these five regions, we say a literal x satisfies

the clause c if the corresponding connector is com-
pletely contained in the black region. The clause gad-
get is defined so that at least one literal satisfies the
clause, and any literal may do so. See Figure 3 for an
illustration. If c consists of only two literals, then the
red point of the third red region that is contained in
the blue region is put outside the black region, which
implies that this artificial variable may not satisfy c.

x satisfies cclause gadget z satisfies c

x

y
z

Figure 3: Clause gadget for clause c consisting of lit-
erals x, y, z.

W.l.o.g. every variable x appears in three clauses,
positive in c1 and negated in c2, c3, or vice versa. Now
x is associated with a red region in the clause gad-
gets for c1, c2 and c3, each containing a part outside
the corresponding black region. We bring together
these three parts (together with the corresponding
black and blue regions) and overlap them as shown
in Figure 4. It follows that if non-crossing connectors
exist, then x satisfies only c1, or c2 and c3 but not c1.

4 Conclusion

In this paper we investigated the computational com-
plexity of the non-crossing connectors problem. We
proved that it is polynomial if the regions are pseudo-
disks or axis-aligned rectangles. It might be worth-
while to derive from our proofs polynomial-time al-
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c1

c2 c3

c1

c2 c3

x satisfies c2 and c3x satisfies c1

Figure 4: Variable gadget for variable x contained in
clauses c1, c2, c3.

gorithms to actually compute non-crossing connec-
tors. Moreover, we have shown that the non-crossing
connectors problem is NP-complete for 4-intersecting
convex regions, even if every Pi consists of 2 elements.
However, the complexity in case each Ri is the con-
vex hull of the corresponding Pi remains open. It is as
well interesting to consider other sets of regions, like
ellipsoids or isosceles triangles with horizontal bases.
Instead of fixing the position of the points in Pi one

may consider a set of possible positions for every such
point. From previous results [1] it follows that this
variant is NP-complete if every point has at most 3
possible positions, but this proof again does not work
if Ri = conv(Pi) for i = 1, . . . , n. What if we want
to connect pairs of vertical straight segments by non-
crossing curves, each within the convex hull of the
corresponding segments?
Furthermore, we could allow Pi ∩ Pj 6= ∅ for i 6= j

and allow connectors γi, γj to intersect in Pi ∩ Pj .
If |Pi| = 2 for every i, this corresponds to drawing
a given planar graph with fixed vertex positions and
curved edges, each lying within a prescribed region.
In this variant non-crossing connectors sometimes do
not exist even when regions are pseudo-disks.
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Abstract

We present an algorithm that approximates the me-
dial axis of a manifold in IR3 given by a sufficiently
dense point sample. The resulting, non-discrete ap-
proximation converges to the medial axis as the sam-
pling density approaches infinity and we establish a
homotopy between the canonical parameterizations of
both structures. While there is no subquadratic up-
per bound on the output complexity of previous al-
gorithms for non-discrete medial axis approximation,
the output of our algorithm is guaranteed to be of
linear size. The algorithm is (arguably) simpler than
previous approaches and practically efficient.

1 Introduction

The medial axis of a geometric shape Γ in Euclidean
space is the closure of the set of all points for which
there exists more than one closest point on the shape.
Using medial axes to represent geometric shapes has
a variety of applications as surveyed by, e.g., Dey and
Zhao [5]. In this paper, we consider the case that Γ is
a manifold in IR3 that is given by a sufficiently dense,
discrete point sample S. It has been shown by Amenta
et al. [4] that the medial axis can be approximated by
a well-defined, discrete subset of the Voronoi diagram
of S, and Dey and Zhao [5] proved that it is also
possible to derive a non-discrete approximation of the
medial axis from the Voronoi diagram. As in previous
approaches [4], we avoid points at infinity by assuming
that Γ is contained inside an open, bounded region Q.

Definition 1 ([4, p. 132]) A ball B ✏ Bc,ρ ⑨ Q

with center c and radius ρ is empty (with respect to Γ)
if the interior of B contains no point of Γ. A medial
ball is a maximal empty ball. The set of centers of
the medial balls, the so-called medial points form the
medial axis MΓ of Γ.

Since Q is bounded, the medial axis as defined in
Definition 1 is a compact set.

✝Part of this work has been supported by Deutsche
Forschungsgemeinschaft (DFG) within the Collaborative Re-
search Center SFB 876 “Providing Information by Resource-
Constrained Analysis” (http://sfb876.tu-dortmund.de),
project A2.

Since the medial axis captures the shape of the
manifold Γ, the local feature size, lfs♣xq, of a point
x P Γ, defined as the distance from a point on the
manifold to the closest point on the medial axis [2, 8]
locally captures the curvature and folding of Γ. To be
able to guarantee that a point sample S of a mani-
fold Γ is dense enough to capture Γ, Amenta et al. [2]
introduced the notion of an ε-sample, i.e., a point
sample S such that for every point x P Γ there is a
sample point s P S with ⑤xs⑤ ↕ ε ☎ lfs♣xq. The analysis
usually assumes that S is dense enough, that is that
ε is less than some small constant, e.g., ε ↕ 0.06 [3].
For technical reasons, we require ε ↕ 1

22
➔ 0.06.

2 Related Work

The two results most relevant for our work are the
construction of the PowerShape in the context of
the PowerCrust algorithm developed by Amenta et

al. [4] and the Voronoi-based algorithm by Dey and
Zhao [5]. Both algorithms define a subset of the object
to be approximated which is parameterized (directly
or indirectly) by the unknown sampling parameter ε
and show that these objects converge to the medial
axis as the sampling density approaches infinity

Definition 2 Let x be an arbitrary point on the
manifold Γ. The inner medial radius of x is defined
to be the radius ρ of the inner medial ball Bc,ρ, i.e.,
the medial ball that touches Γ in x and at least one
other point such that c lies in the interior of Γ. Then,
the inner medial axis M�

Γ
is the (closure of the) set

of the centers of all inner medial balls (for all x P Γ).
Similarly, define the outer medial radius, the outer
medial ball, and the outer medial axis M✁

Γ
.

Amenta et al. [4] define a parameterized subset of
the object to be approximated:

Definition 3 ([4, p. 132]) For γ ➙ 0, the inner γ-
medial axis γ-M�

Γ
❸ M�

Γ
is defined to be the set

of all inner medial points c such that there are at
least two points u1, u2 P Γ on the boundary of the
medial ball centered at c that form a medial angle
❂♣u1, c, u2q → 2γ. Similarly, define the outer γ-medial
axis γ-M✁

Γ
❸M✁

Γ
.
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In their PowerCrust approach, Amenta et al. [4]
first approximate the medial axis by so-called poles.

Definition 4 ([1, 4]) The poles of some s P S are
the two vertices of Vor♣sq farthest from s, one on
either side of Γ. A pole p is called an outer pole if it
lies outside Γ, and an inner pole otherwise.

The main lemma of Amenta et al. [4] (which is also
of crucial importance to Dey and Zhao’s algorithm)
that guarantees the quality of the approximation of
the medial axis using a subset of the set of poles states
that the distance between a point on the γ-medial axis
and a well-defined pole, that is no point at infinity,
converges to zero as ε approaches zero:

Lemma 1 ([4, Lemma 34]) Let Bm,ρ be a medial
ball such that m belongs to the inner (outer) γ-medial
axis, for some fixed γ, with γ P Ω♣ε1④3q. Let s P S be
the nearest sample to m. Then the distance from m

to the inner (outer) pole p of s is in O
�
ρε2④3

✟
.

The authors of [4] establish the pointwise conver-
gence of the poles to the medial axis. They prove that
they can construct the PowerShape, the dual shape

of the PowerCrust, which has the set of poles as its
vertices. There is no (explicit) proof, however, that
each non-vertex point on the PowerShape converges
to a point on the medial axis.

Dey and Zhao [5] observe that approximating the
medial axis by the set of poles alone does not yield
a non-discrete approximation of the medial axis as
needed in many applications. Such a non-discrete
approximation is only possible on the basis of the
power diagram, i.e., it requires computing a second
(weighted) Voronoi diagram. The authors point out
that the resulting object tends to be “noisy”.

To alleviate these shortcomings, Dey and Zhao pro-
pose to directly derive an approximation of the medial
axis from the Voronoi diagram (needed for the pole
computation in any case). In a nutshell, the algorithm
filters Delaunay edges using an “angle” or “ratio” fil-
ter and approximates the medial axis by the Voronoi
faces dual to edges that result from the filter step and
the set of all Voronoi edges and vertices incident to
these faces. While the authors prove a convergence
result, they state that proving homotopy equivalence
would be subject of “future research” [5, p. 199].

Combinatorial Complexity of the Approximations

As mentioned above, the PowerShape is defined as
the dual shape of the PowerCrust; thus, in stan-
dard computational geometry terminology, the Pow-

erShape is the graph-theoretic dual of the comple-
ment of the PowerCrust relative to the power di-
agram [4, p. 136] (or, a subset of the weighted De-
launay tetrahedrization). Amenta et al. [4, Observa-
tion 5] observe that the PowerCrust, defined as a

set of faces in the power diagram of the set of po-
lar balls, is the (possibly non-regular) boundary of a
three-dimensional solid. As the power diagram and
thus the weighted Delaunay tetrahedrization can be
of quadratic size in the number of points in the in-
put sample, the size of the PowerShape depends on
the size of the PowerCrust and can be quadratic as
well. We can, however, prove the following lemma:

Lemma 2 The approximation of the medial axis con-
structed from the Voronoi diagram by Dey and Zhao’s
algorithm has a quadratic worst-case complexity.

3 Outline of the Algorithm

From the above discussion we conclude that three is-
sues need to be addressed simultaneously: (1) Con-
struct an object that has linear complexity, (2) con-
struct an object that converges to MΓ as ε Ñ 0, and
(3) establish a homotopy between the canonical pa-
rameterizations of MΓ and the constructed object.
It turns out that we can parameterize a surprisingly
simple construction, originally proposed by Hisada et

al. [7] in the context of feature recognition, to solve
this task. In a nutshell, we start from a linear-size
object that is homeomorphic to the (unknown) man-
ifold Γ and continuously map this object to an ob-
ject which is used as an approximation of MΓ. This
mapping is parameterized by ε, and based upon this
definition, convergence and homotopy are established.

Algorithm 1 Approximate MΓ from an ε-sample S.

1: Initialize ⑨M�
Γ

and ⑨M✁
Γ

to be the empty set each.
2: Compute the Voronoi diagram Vor♣Sq.
3: Let P� be the set of all inner poles and let P✁ be

the set of all outer poles for points in S.
4: Compute a non-trivial pointwise lower bound

Φ♣sq for ε ☎ lfs♣sq for each s P S (see [6, Lem. 8.3]).
5: for all s P S do
6: pε,✁

s :✏ p✁s ✁
Φ♣sq

⑤p✁s s⑤
☎
ÝÝÑ
p✁s s, p

ε,�
s :✏ p�s ✁

Φ♣sq

⑤p�s s⑤
☎
ÝÝÑ
p�s s

➍ Move poles slightly towards samples.
7: P ε,✁ :✏ P ε,✁❨tpε,✁

s ✉, P ε,� :✏ P ε,�❨tpε,�
s ✉

8: ♣N,EN , FN q :✏CoCone(S, Vor♣Sq).
➍ Surface reconstruction with CoCone.

9: for all △♣s1, s2, s3q P FN do
➍ Iterate over all faces of N .

10: ⑨M�
Γ

:✏ ⑨M�
Γ
❨ t△♣pε,�

s1
, pε,�

s2
, pε,�

s3
q✉

➍ Add triangle for approximated inner poles.
11: if p✁s1

, p✁s2
, and p✁s3

exist then
➍ Ignore poles at infinity.

12: ⑨M✁
Γ

:✏ ⑨M✁
Γ
❨ t△♣pε,✁

s1
, pε,✁

s2
, pε,✁

s3
q✉

➍ Add triangle for approximated outer poles.

13: return ⑨MΓ :✏ ⑨M�
Γ
❨ ⑨M✁

Γ

By construction, the set ⑨MΓ of triangles returned
by Algorithm 1 is of linear size.
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4 Convergence Guarantee

Analogously to Dey and Zhao, we can prove that a
subset of the set ⑨MΓ of triangles returned by Algo-
rithm 1 converges toMΓ as εÑ 0 and that “the differ-
ence between this subset and the output is small” [5,
p. 193]. Due to space constraints, we give only a sum-
mary of our proofs. We build upon the observation
that the CoCone algorithm constructs a surface that
is homeomorphic to Γ and converges to Γ as εÑ 0:

Theorem 3 ([3, Theorem 1]) Let S be an ε-
sample for a smooth surface Γ, with ε ↕ 0.06. The
CoCone-algorithm computes a piecewise linear man-
ifold N homeomorphic to Γ, such that any point on
N is at most 1.15☎ε

1✁ε
☎ lfs♣xq from some point x P Γ.

Since Amenta et al. [4] only prove that the set of
poles converges to the medial axis, it remains to be
proved that for each point x on a triangle in ⑨MΓ there
is a pointm on the medial axisMΓ such that ⑤xm⑤ con-
verges to zero. The following technical lemma states
that if there are two sample points “close enough” to
each other, the distances to their respective medial
points are approximately the same. Furthermore, as
the sampling density approaches infinity, the distance
between these medial points converges to zero.

Lemma 4 Let s1 and s2 be two points
from arcsin

�
ε1④3

✟
-Γ such that ⑤s1s2⑤ ↕

3 ☎ ε ☎ mintlfs♣s1q, lfs♣s2q✉. Let m1 and m2 be
the two corresponding medial points on the same
side of Γ. Then ⑤simi⑤ ↕ ♣1 � 17 ☎ ε1④3q ☎ ⑤mjsj ⑤ and
⑤m1m2⑤ ↕ 16 ☎ ε1④3 ☎ ⑤mjsj ⑤, for i, j ✏ 1, 2.

Using this lemma, we then prove that the trian-
gles constructed by Algorithm 1 fulfill the “small
triangle property”: if the circumradius of a trian-
gle △♣s1, s2, s3q (for properly chosen sample points
s1, s2, s3 P S) converges to zero, so does the circum-
radius of the triangle △♣pε,✍

s1
, pε,✍

s2
, pε,✍

s3
q for ✍ P t�,✁✉.

This property is crucial for proving the convergence
of the set ⑨MΓ of triangles to MΓ.

Definition 5 ([4, p. 149]) For any x P Γ, let mx

be its corresponding inner (outer) medial point. Let
γ be the largest angle with apex mx formed by x and
a second touching point of the inner (outer) medial
ball Bρ,x. Then x belongs to the γ✶-surface γ✶-Γ of Γ
if γ ➙ γ✶. γ1 ↕ γ2 implies γ2-Γ ❸ γ1-Γ.

Let ⑨Mγ
Γ

be the set of all triangles computed by Al-
gorithm 1 whose corresponding sample points lie in
γ-Γ and let ⑨Mγ

Γ
be the underlying subspace. Since

all objects considered are compact and since the tri-
angles constructed by our algorithm fulfill the “small
triangle property” we can prove that no point in any

of the triangles in ⑨Marcsin♣ε1④3q
Γ

is too far away from
the medial axis MΓ.

Lemma 5 For each point x P ⑨Marcsin♣ε1④3q
Γ

, there ex-
ists some medial point m P MΓ such that ⑤xm⑤ ↕
O
�
ε1④3

✟
☎ ρ where ρ is the medial radius of m.

We conclude that the Hausdorff distance of⑨Marcsin♣ε1④3q
Γ

and MΓ converges to zero:

Theorem 6 limεÑ0

✂⑨Marcsin♣ε1④3q
Γ

✡
✏MΓ.

5 Topological Guarantee

In this section, we establish a homotopy between a pa-
rameterization of our approximation ⑨MΓ (the union

of all triangles in ⑨MΓ) and a parameterization of the
medial axis MΓ. More precisely, since the outer me-
dial axis may be disconnected, we establish a homo-
topy between parameterizations of ⑨M�

Γ
and M�

Γ
; the

proof for the isolated components of ⑨M✁
Γ

and corre-
sponding components of M✁

Γ
is similar. Due to space

constraints, we only sketch the proof idea.
The parameterizations f and f̃ that we show to

be homotopic are constructed as follows: we define
f : Γ ÑM�

Γ
to be the function that maps each point

x P Γ to its unique medial point on M�
Γ

; this function
is easily seen to be continuous.

For the construction of f̃ , we first observe that the
output N of the CoCone-algorithm from which we
construct ⑨MΓ is homeomorphic to Γ – see Theorem 3.
The function f̃ maps a point x P Γ to a unique point
in ⑨M�

Γ
. For this, f̃ first uses the homeomorphism

induced by Theorem 3 to map x to a unique point
nx P N and then maps nx to a unique point ñx in⑨M�

Γ
as described next.

The approximation of the medial axis is built on the
set tpε,�

s , pε,✁
s ✉sPS of approximated poles where each

approximated pole (if it exists) lies in the interior of
Vor♣sq. To establish a bijection between the sample
points and the inner approximated poles and thus also
between the set ⑨M�

Γ
of triangles in the approximation

and the set FN of triangles in the output of CoCone,
we can prove that for each sample point there exists
exactly one approximated inner pole point.

si

sj

sk

pε,⋆
si

pε,⋆
sk

pε,⋆
sj

△

(

pε,⋆
si
, pε,⋆

sj
, pε,⋆

sk

)

△ (si, sj , sk)

Ψ (x, 1)

Ψ (x, 0)

ψ (si, ·)
ψ (sj , ·)

ψ (sk, ·)

We can naturally
associate each vertex
of △♣si, sj , skq with
a unique vertex of
△♣pε,�

si
, pε,�

sj
, pε,�

sk
q by the

interpolating mapping
ψ : tsi, sj , sk✉ ✂ r0, 1s Ñ

IR3, ♣x, rq ÞÑ x� r ☎
ÝÝÝÑ
xpε,�

x .
Obviously, ψ♣x, 0q ✏ x

and ψ♣x, 1q ✏ pε,�
x . Since every point x P △♣si, sj , skq

can be represented uniquely by a convex linear com-
bination of si, sj , and sk (and since ψ is continuous
and has a continuous inverse), we can extend the
domain of ψ to △♣si, sj , skq. This mapping between
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two triangles can be extended to the sets FN and ⑨M�
Γ

of triangles and thus to a function Ψ : N Ñ ⑨M�
Γ
.

Lemma 7 The function Ψ : N Ñ ⑨M�
Γ

is continuous.

Finally, we concatenate Ψ and the homeomorphism
between Γ and N (see Theorem 3); this yields the de-

sired function f̃ : Γ Ñ ⑨M�
Γ

which, as the concatena-
tion of two continuous functions, is continuous.

Based upon this construction we define a homeo-
morphism H : r0, 1s ✂ Γ Ñ IR3 via:

♣r, xq ÞÑ

★
x� 2 ☎ ♣0.5 ✁ rq ☎

ÝÝÝÑ
xf̃♣xq r P r0, 0.5r

x� 2 ☎ r ☎
ÝÝÝÑ
xf♣xq r P r0.5, 1s

Lemma 8 H is a homotopy between the parameter-
ization f̃ of ⑨M�

Γ
as constructed by Algorithm 1 and

the parameterization f of the medial axis M�
Γ

.

Theorem 9 For a manifold Γ in IR3 given by an ε-
sample S, one can construct an object of size Θ ♣⑤S⑤q
that converges to MΓ as εÑ 0 and establish a homo-
topy between parameterizations of both structures.

We point out that our algorithm consists of one in-
vocation of the CoCone-algorithm and a linear-time
postprocessing of this algorithm’s output to approxi-
mate the tangent planes, to compute the approxima-
tions of the poles, and to construct the triangles.

6 Experimental Evaluation

To assess the quality of our approximation algorithm,
we ran an implementation of our approach on a vari-
ety of realistic point samples.

The above figure shows that the algorithm con-
structs an approximation of the medial axis but un-
fortunately introduces a non-trivial amount of noise
in some parts of the models. This noise appears to be
of the same type as in some untuned versions of the
algorithm of Dey and Zhao [5, p. 184/186].

7 Conclusions

We have presented an algorithm for approximating
the medial axis of a manifold Γ in IR3 based upon an
ε-sample taken from Γ. Our algorithm can be seen as
a postprocessing step of the CoCone-algorithm and

does not add any asymptotic complexity to this al-
gorithm’s running time. Based upon the properties
of the CoCone-algorithm, we can prove topological
and convergence guarantees for the output of our al-
gorithm. To the best of our knowledge, this algorithm
is the first algorithm that guarantees these properties
while at the same time producing an approximation
of linear size. Furthermore, our algorithm is rather
simple and – given an implementation of CoCone –
thus easy to implement.
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Approximating Tverberg Points in Linear Time for Any Fixed Dimension

Wolfgang Mulzer∗ Daniel Werner†‡

Abstract

Let P be a d-dimensional n-point set. A Tver-
berg-partition of P is a partition of P into
r sets P1, . . . , Pr such that the convex hulls
conv(P1), . . . , conv(Pr) have non-empty intersection.
A point in

⋂r
i=1 conv(Pi) is called a Tverberg point of

depth r for P . A classic result by Tverberg implies
that there always exists a Tverberg partition of size
⌈n/(d + 1)⌉, but it is not known how to find such a
partition in polynomial time. Therefore, approximate
solutions are of interest.
We describe a deterministic algorithm that finds

a Tverberg partition of size n/4(d + 1)3 in time
dO(log d)n. This means that for every fixed dimen-
sion we can compute an approximate Tverberg point
(and hence also an approximate centerpoint) in lin-
ear time. Our algorithm is obtained by combining a
novel lifting approach with a recent result by Miller
and Sheehy [8].

1 Introduction

Let P ⊆ R
d be a d-dimensional point set with n

points. In many applications (such as statistical anal-
ysis or mesh generation) we would like to have a way
to generalize the one-dimensional notion of a median
to the high-dimensional point set P . A very natural
means to accomplish this are centerpoints: a point
c ∈ R

d is a centerpoint for P if every halfspace that
contains c meets P in at least n/(d+1) points. A clas-
sic result in discrete geometry, the centerpoint theo-
rem, shows that there exists a centerpoint for every
point set [5, 9].
However, if we actually would like to compute a cen-

terpoint for a given point set, the situation becomes
more involved. Helly’s theorem implies that the set of
all centerpoints is given by the intersection of O(nd)
halfspaces [6], so we can find a centerpoint in O(nd)
time through linear programming. Chan [1] shows
how to improve this running time to O(nd−1) steps in
expectation. He actually solves the harder problem

∗Institut für Informatik, Freie Universität Berlin, Germany
mulzer@inf.fu-berlin.de

†Institut für Informatik, Freie Universität Berlin, Germany
dwerner@mi.fu-berlin.de

‡This research was funded by Deutsche Forschungsgemein-
schaft within the Research Training Group (Graduiertenkolleg)
“Methods for Discrete Structures”

of finding a point with maximum Tukey depth. The
Tukey depth of a point c′ is defined as the minimum
number of points in P that are met by any halfs-
pace containing c′. If the dimension is not fixed, Teng
shows that it is co-NP-hard to check whether a given
point is a centerpoint [10].

Since a running time of O(nd−1) is not feasible
for large d, it makes sense to look for faster ap-
proximate solutions. A classic approach uses ε-
approximations [2]: in order to obtain a point of
Tukey depth n(1/(d + 1) − ε) take a random sam-
ple A ⊆ P of size O((d/ε2) log(d/ε)) and compute
a centerpoint for A, using the linear-programming
method. This gives the desired approximation with
constant probability, and the resulting running time
after the sampling step is constant. What more could
we possibly wish for? For one, the algorithm is Monte-
Carlo: with a certain probability, the reported point
fails to be a centerpoint, and we know of no fast al-
gorithm to check its validity. This problem can be
solved by constructing the ε-approximation determin-
istically [2], at the expense of a more complicated al-
gorithm. Nonetheless, in either case the resulting run-
ning time, though constant, still grows exponentially
with d, an undesirable feature for large dimensions.

This situation motivated Clarkson et al. [3] to look
for more efficient randomized algorithms for approx-
imate centerpoints. They give a simple probabilis-
tic algorithm that computes a point of Tukey depth
O(n/(d+1)2) in time O(d2(d log n+log(1/δ))log(d+2)),
where δ is the error probability. They also describe a
more sophisticated algorithm that finds such a point
in time polynomial in n, d, and log(1/δ). Both algo-
rithms are based on a repeated algorithmic applica-
tion of Radon’s theorem (see below). Unfortunately,
there remains a probability of δ that the result is not
correct, and we do not know how to detect a failure
efficiently.

More than ten years later, Miller and Sheehy [8]
launched a new attack at the problem. Their goal is to
develop a deterministic algorithm for approximating
centerpoints whose running time is subexponential in
the dimension. The resulting algorithm is determin-
istic and runs in time nO(log d). At the same time, it
is the first algorithm that also finds an approximate
Tverberg partition of P . The running time is subex-
ponential in d, but it is still the case that n depends
exponentially on log d.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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In this paper, we show that the running time for
finding approximate Tverberg partitions (and hence
approximate centerpoints) can be improved. In par-
ticular, we show how to find a Tverberg partition for
P that contains n/4(d+1)3 sets in deterministic time
dO(log d)n. This is linear in n for any fixed dimension,
and the dependence on d is only quasipolynomial.

1.1 Some discrete geometry

We begin by recalling some basic facts and definitions
from discrete geometry [7].

Theorem 1 (Radon’s theorem) For every set

P ⊆ R
d with d + 2 points there exists a partition

(P1, P2) of P such that conv(P1) ∩ conv(P2) 6= ∅.

As mentioned above, Tverberg [11] generalized this
theorem for larger point sets.

Theorem 2 (Tverberg’s theorem) Every set

P ⊆ R
d with n = (r − 1)(d + 1) + 1 points can

be partitioned into r sets P1, . . . , Pr such that⋂r
i=1 conv(Pi) 6= ∅.

Let P be a set of n points in R
d. We say that

x ∈ R
d has Tverberg depth r (with respect to P ) if

there is a partition of P into sets P1, . . . , Pr such that
x ∈

⋂r
i=1 conv(Pi). Tverberg’s theorem thus states

that, for any set P in R
d, there is a point of Tverberg

depth at least ⌊(n − 1)/(d + 1) + 1⌋ = ⌈n/(d + 1)⌉.
Note that every point with Tverberg depth r also has
Tukey depth r. Thus, from now on we will use the
term depth as a shorthand for Tverberg depth. As
remarked above, Tverberg’s theorem immediately im-
plies the famous centerpoint theorem:

Theorem 3 (Centerpoint theorem) For any set

P of n points in R
d there is a point c such that all

half-spaces containing c contain at least ⌈n/(d + 1)⌉
points from P .

By Carathéodory’s theorem, in order to describe a
Tverberg partition of depth r, we only need r · (d+1)
points from P . This observation is also used by Miller
and Sheehy [8]. They also observe that replacing d+2
by d + 1 points can be done in O(d3) time by using
Gaussian elimination. We denote the process of re-
placing larger sets by sets of size d+ 1 as pruning. A
partition for which each set consists of d+1 points is
called a pruned partition.

1.2 Our contribution

In Section 2, we present a simple lifting argument
which leads to an easy Tverberg approximation algo-
rithm.

Theorem 4 Let P be a set of n points in R
d in gen-

eral position. One can compute a Tverberg point of

depth n/2d for P and the corresponding partition in

time O(n).

While this does not yet give a good approxima-
tion ratio (though constant for any fixed d), it is a
very natural approach to the problem: it computes a
higher dimensional Tverberg point via successive me-
dian partitions — just as a Tverberg point is a higher
dimensional generalization of the 1-dimensional me-
dian.

By collecting several low-depth points and apply-
ing the brute-force algorithm on small point sets, we
get an even higher depth in linear time for any fixed
dimension:

Theorem 5 Let P be a set of n points in R
d. Then

one can compute a Tverberg point of depth n/2(d+1)2

and a corresponding partition in time f(2d)+ dO(1)n,
where f(m) = O(m!) is the time for computing a

Tverberg point of depth m/(d+1) for m points brute

force.

Finally, by combining our approach with that of
Miller and Sheehy, we improve our algorithm to have
a running time which is quasipolynomial in d:

Theorem 6 Let P be a set of n points in R
d. Then

one can compute a Tverberg point of depth n/4(d+1)3

and a corresponding partition in time dO(log d) · n.

2 A simple fixed parameter algorithm

A natural way to compute a Tverberg point for P ⊆
R

d is to first project P to some lower-dimensional
space, then to recursively compute a good Tverberg
point for this projection, and to use this point to find
a solution in the higher-dimensional space. Surpris-
ingly, we are not aware of any argument along these
lines having appeared in the literature so far.

In what follows, we will describe how to lift a lower-
dimensional Tverberg point into some higher dimen-
sion. Unfortunately, this process will come at the cost
of a decreased depth for the lifted Tverberg point.
For clarity of presentation, we first explain the lifting
lemma in its simplest form. In Section 3, we then
state the lemma in its full generality.

Lemma 7 Let P be a set of n points in R
d, and let

h be a hyperplane in R
d. Let c′ ∈ h be a Tverberg

point of depth r for the projection of P onto h, and
suppose we know a corresponding Tverberg partition.

Then we can find a Tverberg point c ∈ R
d of depth

⌈r/2⌉ for P and a corresponding Tverberg partition

in time O(n).
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Proof. For every point p ∈ P , let pr(p) denote the
projection of p onto h. Let P1, . . . , Pr ⊆ P such that
pr(P1), . . . , pr(Pr) is a Tverberg partition for pr(P )
with Tverberg point c′. Let ℓ be the line orthogonal
to h that passes through c′.
Since our assumption implies c′ ∈ conv(pr(Pi))

for i = 1, . . . , r, it follows that ℓ intersects each
conv(Pi) at some point xi. Let Q̂i = {xi1 , xi2},
i = 1, . . . , ⌈r/2⌉, be a Tverberg partition of x1, . . . , xr.
(If r is odd, one of the sets contains only one point,
the median.) Since the points xi lie on the line ℓ, such
a Tverberg partition exists and can be computed in
time O(r) by finding the median c, i.e., the element
of rank ⌈r/2⌉, according to the order along ℓ [4].
We claim that c is a Tverberg point for P of depth

⌈r/2⌉. Indeed, we have

c ∈ conv(Q̂i) = conv({xi1 , xi2}) ⊂ conv(Pi1 ∪ Pi2),

for 1 ≤ i ≤ ⌈r/2⌉. Thus, if we set Qi := Pi1 ∪ Pi2 ,
then Q1, . . ., Q⌈r/2⌉ is a Tverberg partition for c. The
total time to find c and the Qi is O(n), as claimed.
See Figure 1 for a two-dimensional illustration of the
lifting argument. �

c
′

(a) project and find Tver-
berg point

c
′

l

(b) lift and intersect

l

c
′

x3 = c

(c) find median and combine

Figure 1: Illustrating the lifting lemma in the plane.

Proof. [of Theorem 4] We apply Lemma 7 recursively
on the dimension, pruning the partitions after each
lifting. This leads to an O(n) running time. �

2.1 Improving the approximation factor

In order to improve the approximation factor, we will
use an easy lemma to improve the Tverberg depth by
collecting and combining several lower-depth points.

Lemma 8 Let P ⊆ R
d, |P | = n. If we can

find a Tverberg point of depth n/ρ and the cor-

responding pruned partition in time f(n, d), then

we can find ρ/(d + 1) points of depth n/2ρ in

time O
(

ρ
(d+1) (p(n, d) + f(n, d))

)
, where p(n, d) is

the time for the pruning phase.

By Theorem 4 we can find a point of depth n/2d

and a corresponding pruned partition in time O(n).
Thus, by applying Lemma 8 with ρ = 2d, we can also
find 2d/(d+ 1) points of depth n/2d+1 in linear time.
In order to make use of Lemma 8, we will need

a lemma that states that sometimes by combining
Tverberg points we can multiply their depth. This
generalizes a similar lemma by Miller and Sheehy [8,
Lemma 4.1].

Lemma 9 Let P be a set of n points in R
d, and let

P =
⊎k

i=1 Pi be a partition of P . Furthermore, sup-

pose that for each Pi we have a Tverberg point ci ∈ R
d

of depth r, together with a corresponding pruned

Tverberg partition Pi. Let C := {ci | 1 ≤ i ≤ k}
and c be a point of depth r′ for C, with correspond-

ing pruned Tverberg partition C. Then c is a point of

depth r · r′ for P . Furthermore, we can find a corre-

sponding pruned Tverberg partition in time dO(1)n.

Theorem 5 then follows by combining Theorem 4
with Lemmas 8 and 9.

3 An improved algorithm

Finally we show how to improve our approach through
a more sophisticated recursion and obtain an algo-
rithm with running time dO(log d) · n for the price of
losing a depth factor of 1/2(d + 1). First, however,
we describe the more general version of Lemma 7 we
promised above.
Let P ⊆ R

d. Recall that a k-dimensional flat F ⊆
R

d (often abbreviated as k-flat) is defined as a k-
dimensional affine subspace of Rd. A k-dimensional
flat F ⊆ R

d is called a Tverberg k-flat of depth r for
P , if there is a partition of P into sets P1, . . . , Pr such
that conv(Pi) ∩ F 6= ∅ for all i = 1, . . . , r.

Lemma 10 Let P be a set of n points in R
d, and

let h ⊆ R
d be a k-flat. Suppose we have a Tverberg

point c of depth r for pr(P ), as well as a correspond-

ing Tverberg partition. Let h⊥
c be the (d − k) flat

orthogonal to h that passes through c. Then h⊥
c is a

Tverberg (d− k)-flat for P of depth r, with the same

Tverberg partition.

First of all, this shows how a good algorithm for
any fixed dimension improves the general case:

Corollary 11 Let δ ≥ 1 be a fixed integer. Suppose

we have an algorithm A with the following property:

for every point set Q ⊆ R
δ, algorithm A constructs a

Tverberg point of depth |Q|/ρ for Q as well as a cor-

responding pruned Tverberg partition in time f(|Q|).
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Then, for any n-point set P ⊆ R
d and for any d ≥ δ,

we can find a Tverberg point of depth n/ρd/δ and a

corresponding pruned partition in time ⌈d/δ⌉f(n) +
dO(1)n.

Proof. Induction on k := ⌈d/δ⌉ �

The idea of the new algorithm then is as follows:
using Corollary 11, we reduce solving a d-dimensional
instance to solving two instances of dimension d/2.
This can be done recursively. Unfortunately, applying
Corollary 11 reduces the depth of the partition. To
fix this, we apply Lemmas 8, 9 and the Miller-Sheehy
algorithm to increase the depth again. Details follow.

Proof. [of Theorem 6] We prove the theorem by in-
duction on d. For d = 1 the claim is immediate: in
this case the problem reduces to median computation.
Thus, suppose that d > 1. By induction, for any

(d/2)-dimensional point set Q ⊆ R
d/2 there exists

an algorithm that returns a Tverberg point of depth
|Q|/4(d/2 + 1)3 and a corresponding pruned Tver-
berg partition in time dα log(d/2)n, for some sufficiently
large constant α > 0.
Thus, by Corollary 11 (with δ = d/2), there exists

an algorithm that finds a Tverberg point for P of
depth n/16(d/2 + 1)6 and a corresponding Tverberg
partition in time 2dα log(d/2) + dO(1)n.
Now a more general version of Lemma 8 can be used

to show that we can find 16(d/2 + 1)6/(d+ 1) points
of depth n/32(d/2 + 1)6 and corresponding (disjoint)
pruned partitions in time dα log(d/2)+O(1) · n.
Let C be the set of these Tverberg points. Applying

the Miller-Sheehy algorithm, we can find a Tverberg
point for C of depth |C|/2(d+1)2 and a corresponding
pruned Tverberg partition in time |C|O(log d). Now,
Lemma 9 shows that in additional dO(1)n time, we
obtain a Tverberg point and a corresponding Tver-
berg partition for P of size

n

2 · 16(d/2 + 1)6
·

16(d/2 + 1)6

2(d+ 1)2 · (d+ 1)
=

n

4(d+ 1)3
,

as desired.
It remains to analyze the running time. Adding up

the various terms, we end up with a time bound of

T (n, d) = dα log(d/2)+O(1)n+ |C|O(log d) + dO(1)n.

Since |C| = dO(1), for α large enough T (n, d) ≤
dα log dn = dO(log d)n, as claimed.

�

4 Conclusion and Outlook

We have presented a very simple algorithm for finding
an approximate Tverberg point, which runs in linear
time for any fixed dimension. Using more sophisti-
cated methods and combing our approach with known

results, we managed to improve the running time to
dO(log d) ·n, while getting within a factor of 1/4(d+1)2

of the guaranteed optimum.
Unfortunately, the resulting running time is still

quasi-polynomial in d, and we still do not know
whether there exists a polynomial algorithm (in n and
d) for finding an approximate Tverberg point. How-
ever, we are hopeful that our techniques constitute a
further step in this direction and that such an algo-
rithm will eventually be discovered.
Acknowledgments. We would like to thank Nabil
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thank him and Don Sheehy for helpful discussions and
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All-maximum and all-minimum problems under some measures

Asish Mukhopadhyay ∗† Satish Ch. Panigrahi ∗

1 Introduction

In computational geometry, an oft-recurring problem
is to identify subsets of a point set having desirable
properties. The following type of proximity problems
belong to this genre: for each point pi in a planar
point-set P = {p1, p2, p3, . . . , pn}, find a pair {pj , pk},
i 6= j 6= k, such that a measure M defined on the
points {pi, pj , pk} is maximized or minimized. The
cases where M is the distance from pi to the segment
or line defined by {pj , pk} have been extensively
studied (see [6],[7],[12]). In this paper, we study
a number of other measures in two and higher
dimensions.

We summarize our 2d results in the following table.
Extensions to higher dimensions are discussed in the
relevant sections.

Measure Maximum Minimum
Sum O(n log n) O(n log n)

Product O(n log n) O(n log n)
Difference O(n log n) O(n2 log n)

Line-distance O(n2) O(n2)
△ Area O(nh) O(n2)

△ Perimeter O(nh) O(n(n log n+
maxi(φi)

2))
Circumradius O(n2 log n) O(n2 log n)

2 Sum and Product Measures

The sum S(pi, pj , pk) and product P(pi, pj , pk) mea-
sures are respectively |pipj |+ |pipk| and |pipj | ∗ |pipk|.

Claim 1 For a point pi ∈ P , S(pi, pj , pk) and
P(pi, pj , pk) is maximum (minimum) when pj , pk ∈
P − {pi}, realize the farthest (nearest) and second
farthest (second nearest) distance from the point pi.

An O(n2) algorithm for the all-minimum as well as
all-maximum in both measures is immediate. For
an O(n log n) algorithm we construct the third or-
der nearest and farthest Voronoi diagrams on P and
O(n log n) point location structures on both.

3 Difference Measure

The difference measure is D(pi, pj , pk) = ||pipj | −
|pipk||.

∗School of Computer Science, University of Windsor,
{asishm, panigra}@uwindsor.ca

†Research supported by an NSERC grant

Claim 2 For a point pi ∈ P , the pair {pj , pk} ∈ P −
{pi} realize the maximum D(pi, pj , pk) iff pj and pk

are respectively the nearest and farthest point from
pi or vice versa.

An O(n2) algorithm for the all-maximum problem is
immediate. For an O(n log n) algorithm we construct
the nearest-point Voronoi diagram for the nearest
point in P − {pi} for each pi; for the farthest point
of each pi, we construct the farthest-point Voronoi
diagram as well as a point location structure on
top of this. This is because we need to locate pi

in the farthest-point Voronoi region of a point pj

it is farthest from. The O(n2) algorithm is easily
extended to d-dimensions to run in O(dn2) time.

For a fixed pi, we can determine the minimum
D{pi, pj , pk} in O(n log n) time by solving the
closest-pair problem on the line. Thus the all-
minimum problem can be solved in O(n2 log n) time.
This extends to an O(dn2 log n) algorithm in d-
dimensions. The all-minimum problem can be solved
in expected O(n2) time, by solving the closest-pair
problem in O(n) expected time by a randomized
algorithm, assuming floor and square-root operations
can be done in constant time [11]. However, an O(n2)
deterministic algorithm remains an interesting open
question.

4 Line Distance Measure

The line-distance measure is LD(pi, pj , pk) =
d(pi, pjpk), where d(p, l) denotes the minimum
distance from a point p to a line l. For a fixed pi,
Mount at al [6] gave an optimal O(n log n) time and
O(n) space algorithm to find the minimum value of
LD(pi, pj , pk). We give an O(n2) algorithm for the
all-closest problem.

Let pi occupy cell C in the arrangement of lines
defined by all pairs of points in P − {pi}. One of the
bounding lines of this cell is closest to pi.

For if a line closest to pi is disjoint from C, the nor-
mal to this line from pi crosses the boundary of C at
a point p, say (see Fig. 1(a)). The line to which p
belongs is closer, a contradiction. The search for the
closest line is based on the following claim.

Claim 3 In the dual plane, the points corresponding
to the lines that bound the cell of pi is part of the
zone of the dual of pi.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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pi

p

(a)

pi

pj

pk

(b)

Figure 1: (a) A closest line to pi (b) A farthest line

from pj, incident on pi

As the zone is of linear size, the closest line to pi

can be found in linear time and thus in O(n2) time
for all the points in P . Following Duffy et al [7], the
problem can be shown to be n2-hard by reduction
from the problem of determining if 3 of n points
in the plane are collinear. Also, the ideas can be
extended to an O(nd) algorithm in d-dimensions.

For the all-farthest line distance problem. we follow
an idea due to Duffy et al [7]. For an anchor point
pi, we find a line incident on it that is farthest from
each pj in P − {pi}. This is updated vis-a-vis pj as
we consider the angular order about the remaining
n − 2 anchor points. Assume we know the sorted
order of the points in the set P − {pi} around pi.

Consider a circle C of radius |pipj | and center pj .
The tangent to C at pi is a farthest line if another
point pk is incident on it; otherwise, we determine
the smallest angle through which we must pivot
the tangent around pi to find a point pk incident
on it (see Fig. 1(b)). This is the farthest line from
pj that is incident on pi. Since we might have to
pivot clockwise or anti-clockwise, we do a clockwise
sweep, followed by an anti-clockwise sweep. By
careful bookkeeping, as we pivot around pi we find
the farthest line from each of the remaining points
that is incident on pi in O(n) time.

We repeat the above steps by considering the angular
order about the remaining n− 1 points. Since we can
determine the circular order of P − {pi} around each
pi in O(n2) time [13], [8], the time-complexity of the
all-farthest problem in the line-distance metric is in
O(n2).

It would be interesting to know (i) if the above algo-
rithm is optimal in the algebraic decision tree model
and (ii) if the algorithm extends to d-dimensions with
time complexity in O(nd). For d = 3, we can get an
O(n3 log2 n) algorithm using ideas from [3].

5 Triangle Area Measure

Let A(pi, pj , pk) measure the area of the triangle
formed by the points pi, pj and pk. Below, we describe

O(n2) time algorithms for both the all-maximum and
all-minimum versions in this measure.

5.1 Maximum Area Triangle

The following claim gives a structural characterization
of a maximum area triangle, anchored at pi.

Claim 4 A(pi, pj , pk) is maximum when the points
pj and pk lie on the boundary of the convex hull of P
and pj (resp. pk) is farthest from the supporting line
of pipk (resp. pipj).

pia

b

d

fa

ab bc

cd

de
ef

c = pk

e = pj

f = p′k

Figure 2: Convex hull and its corresponding ray dia-
gram

An efficient algorithm for the all-maximum problem
follows from Claim 4. In a preprocessing step, we
construct the convex hull of P and then its ray
diagram (see Fig. 2). For each pi we linearly scan
the hull boundary for pj and pk. If pk is the farthest
antipodal vertex corresponding to pipj , we tag pk

with the index j; when the scan reaches pk, we
determine its farthest antipodal vertex and use the
tag attached to pk to check if it is the same as pj . If
so, this is another candidate pair. We determine the
area of △pipjpk and update the current maximum
area triangle if necessary. Doing this for each pi, gives
an O(n(h + log h)) algorithm for the all-maximum
problem.

An O(n2) algorithm can also be got by dualization.
For fixed pi and pj , △pipjpk has maximum area
when pk is farthest from the supporting line of
pipj . Thus we find the farthest pk for each of n − 1
different line segments pipj for the maximum value
of A(pi, pj , pk). The dual version helps us solve our
problem if for each intersection point, which corre-
sponds to a point pair {pi, pj} in the dual plane, we
determine the line that is vertically farthest from this
intersection point. This line will be part of the lower
or upper envelope in the arrangement. The upper
and lower envelopes can be obtained in O(n log n)
from the convex hull of the points in the primal plane.

A topological sweep of the line-arrangement in the
dual plane discovers the intersection points on each
line in a left to right order. Thus we can determine
the intersection of a vertical line through each inter-
section point on this line with the upper and lower
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envelopes in a left to right order. We maintain an
intersection history for each. This requires O(n) time
for each line and hence O(n2) time for all the lines.
Once we have the farthest point for each line, we can
determine the maximum area triangle for an anchored
point by selecting from among the intersection points
on the dual of pi the one whose farthest line is the
farthest of all. Since topological sweep can be done
in O(n2) time, the time complexity of this alternate
algorithm is in O(n2).

This algorithm generalizes to 3-dimensions, using a
topological sweep algorithm to compute an arrange-
ment of planes in 3-dimensions [9] to find a maximum
volume tetrahedron for each pi in O(n3) time.

5.2 Minimum Area Triangle

First this claim.

Claim 5 For an anchor point pi and a fixed pj , if
A(pi, pj , pk) is minimum then pk is vertically closest
to the supporting line, ℓ, of pi and pj .

Since dualization preserves vertical distances we can
take advantage of the above characterization; in the
dual plane a fixed pi corresponds to a fixed line
pi

∗, and for each pj , the pair {pi, pj} corresponds
to an intersection on the line pi

∗. Thus for each
intersection point we find a line pk

∗ that is vertically
closest to it.

We simulate Chazelle et al’s [5] construction of a
line-arrangement with some additional book-keeping
and some reasonable data structure (e.g doubly
connected edge list) to represent the planar graph
corresponding to the arrangement. To ensure that
the addition of each new line to the current ar-
rangement takes linear time, we assume that the
arrangement lies inside a large bounding box. Since
a line intersects the boundary of this bounding box
twice, we can easily determine the entry face of the
ith line ℓi of the arrangement. The arrangement
can be updated by walking along the lower parts
of zone(ℓi) (i.e. zone of ℓi) as shown in Fig. 3. As
the combinatorial complexity of the faces of the
arrangement that intersect ℓi is at most 8i [5], the
walk along zone(ℓi) takes O(i) time. While updating
the data structure, we maintain the vertically closest
line from each vertex.

Since computing the arrangement takes O(n2) time
and O(n2) space, the same complexities hold for the
all-minimum area triangle problem. This problem is
n2-hard since we can use this to settle if 3 of n points
in the plane are collinear. The algorithm generalizes
to d-dimensions to run in O(nd) time as the size of a
zone is O(nd−1) [10].

ℓ

Figure 3: Walking the lower part of zone(ℓ)

6 Triangle Perimeter Measure

The triangle perimeter measure P(pi, pj , pk) is defined
to be |pipj | + |pjpk| + |pipk|.

6.1 Maximum perimeter

We have the following characterization.

Claim 6 For a fixed pi, if P(pi, pj , pk) is maximum
then pj and pk are vertices on the convex hull, CH(P ),
of P .

pi

Figure 4: The diameter of the convex figure is equal
to the maximum perimeter triangle rooted at pi

For all the pi’s on the hull boundary, we find the
maximum perimeter in O(h) time by using the
monotone matrix method of [1]. For an internal point
pi, we use an ingenious reduction due to Boyce et al
[4] that reduces the problem to that of computing the
diameter of a convex region bounded by circular arcs
and segments that are common external tangents to
two circles (see Fig. 4). This takes O(h) time for a
fixed pi and thus O((n − h)h) time for all the n − h
points inside the convex hull. Thus we have an O(nh)
algorithm for the all-maximum problem.

6.2 Minimum perimeter

We first discuss the problem of computing a minimum
perimeter triangle anchored at a point pi. Assign to
each pj ∈ P − {pi} a weight wj = |pipj | where |pipj |
is the Euclidean distance between pi and pj .

We have the following characterization for an an-
chored minimum perimeter triangle.

Claim 7 If Pi is the perimeter of any triangle
△pipjpk, anchored at pi, then neither pj nor pk can
be at a distance farther than Pi

2
from pi.
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pi

a

b

Pi
2

Figure 5: The perimeter of △piab > Pi

Sort all the points by their assigned weights wj . Let
Pi be the perimeter of the triangle formed by pi and
two points pj and pk closest to it. By Claim 7, all
the candidate vertices of a minimum perimeter tri-
angle anchored at pi lie on or inside the circle of ra-
dius Pi

2
centered at pi (see Fig. 5). Let S(pi, Pi/2)

be this set of points. If there exists a p′j ∈ S(pi,
Pi/2) such that perimeter of △pip

′
jpk or △pipjp

′
j is

less than Pi then set it as minimum perimeter of the
triangle found so far. This process is repeated to
get a minimum perimeter triangle anchored at pi. If
∆i be the smallest separation of a pair of adjacent
distances, an upper bound on the number of points
inside a circle of radius Pi/2 is Pi/2∆i. Thus the
running time of the above algorithm for all points is
O(n(n log n + maxi(Pi/2∆i)

2)).

7 Circumcircle radius measure

The circumcircle radius measure R(pi, pj , pk) of
{pi, pj , pk} is defined to be the radius of a circle
that circumscribes the △pipjpk. The combinatorial
complexities of the farthest and nearest 2-point site
Voronoi diagrams in this distance measure were left
open by Barequet et al [2].

In our restricted scenario, by treating each fixed pi as
a center of inversion and inverting all other points in
P − {pi} with respect to it, the problem reduces to
finding a nearest and farthest line from pi, spanned
by pairs of points in the inverted set. Daescu et al
[6] has given an O(n log n) solution for the nearest
and farthest line problem for a fixed pi. Using
these algorithms, we can solve the all-maximum and
all-minimum radius circle problems in O(n2 log n)
time.

In [3] Bespamyatnikh and Segal considered the prob-
lem of selecting a hyperplane spanned by d of n
points in d-dimensional space the rank of whose dis-
tance from the origin is k. They showed that the 3-
dimensional version of this problem is almost 3-SUM
hard and proposed an O(n2 log2 n) algorithm. Thus
using each pi as the origin of coordinates we can de-
termine the farthest and nearest planes spanned by 3
points in P − {pi} in the same time and hence solve
the all-farthest and all-nearest problems in this mea-

sure in O(n3 log2 n) time. Thus by using inversion we
can solve the all-minimum and all-maximum versions
in the same time.

8 Conclusion

We have made an exhaustive study of a restricted
kind of proximity problems, indicating possible open
problems. A particular mention ought to be made of
the minimum perimeter problem.
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Homotopic C-oriented Routing

Kevin Verbeek∗

Abstract

We study the problem of finding non-crossing
C-oriented paths that use as few links as possi-
ble and are homotopic to a set of input paths in
an environment with C-oriented obstacles. We in-
troduce a special type of C-oriented paths—smooth

paths—and present a 2-approximation algorithm that
runs in O(n2(n + log κ) + kin log n) time, where n
is the total number of paths and obstacle vertices,
kin is the total number of links in the input, and
κ = |C|. The algorithm also computes an O(κ)-
approximation for general C-oriented paths. As a re-
lated result we show that, given a set of (possibly
crossing) C-oriented paths with a total of L links,
non-crossing C-oriented paths homotopic to the input
paths can require a total of Ω(L log κ) links.

1 Introduction

Motivation. Schematic maps are an important tool
in the field of cartography; they are used to visualize
networks (like metro or road networks) in a highly
simplified form, omitting details that are not rele-
vant to the information the map is intended to convey.
Edges of a schematic map are often drawn using few
orientations (commonly rectilinear or octilinear) and
with as few links as possible. Some schematic maps
(like metro maps) can deviate significantly from the
geographic context, retaining only the relative posi-
tions and topology of the network. Other schematic
maps have to obey certain geometric restrictions im-
posed by the geographic context. For example, if a
schematic road network is used as a thematic over-
lay for a geographic map, the cities must have the
same positions in both maps. Fig. 1 illustrates what
we want to achieve: given a set of embedded vertices
(cities), edges (roads), and obstacles (landmarks), re-
draw the edges with fixed orientations and few links
while retaining the vertex positions and the topology
of the network to preserve recognizability.

Our input consists of np non-crossing polygonal
paths and a set of polygonal obstacles with a total of
nv vertices. We are also given a set C of orientations.
A path or obstacle is C-oriented if every line segment,

∗Department of Mathematics and Computer Science, TU
Eindhoven, The Netherlands, k.a.b.verbeek@tue.nl. Kevin
Verbeek is supported by the Netherlands Organisation for Sci-
entific Research (NWO) under project no. 639.022.707.

Figure 1: Input and output.

or link, is parallel to some orientation c ∈ C. Our
goal is to compute non-crossing C-oriented paths that
are homotopic to the input paths using as few links as
possible. Two paths π and π′ with the same endpoints
are homotopic (notation π ∼h π′) if π can be “con-
tinuously deformed” into π′ without passing over any
of the obstacles (see e.g. [4] for a formal definition).
We assume that the obstacles are C-oriented and that
the endpoints of the paths are considered as obstacles
as well when considering homotopy. We refer to this
problem as the C-oriented routing problem.

Related Work. Cabello et al. [2] give an algorithm
that schematizes a network using 2 or 3 links per
path, if possible. Nöllenburg and Wolff [11] use a
method based on mixed-integer programming to gen-
erate metro maps using one edge per path. Both
methods do not include obstacles and are restricted
to a small number of links per path. Neyer [10] and
Merrick and Gudmundsson [9] give algorithms for sim-
plifying paths with fixed orientations. The simplified
path can deviate at most a distance ǫ from a given
input path. Both methods consider only one path at
a time and cannot give guarantees for multiple paths.

There are several papers [1, 4] that find shortest
paths homotopic to a given collection of input paths.
However, while a set of shortest paths homotopic to
a set of non-crossing input paths is necessarily non-
crossing, the same does not hold for minimum-link
paths. Our problem is also related to wire routing

in VLSI design [3, 5, 7, 8]. None of these papers
strives to minimize the number of links. Gupta and
Wenger [6] present an approximation algorithm (with
an approximation factor larger than 120) for find-
ing non-crossing minimum-link paths inside a simple
polygon, where all endpoints lie on the boundary of
the polygon. Their paths are not C-oriented. In a
previous paper [12] we presented a 2-approximation
algorithm for the rectilinear version of our problem.

Results. In this paper we generalize our previ-
ous result [12] to C-oriented paths. To this end
we introduce a special type of C-oriented paths—

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
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smooth paths—which are a generalization of recti-
linear paths that retain several important proper-
ties of rectilinear paths. For the problem that asks
for smooth paths—the smooth routing problem—we
present a 2-approximation algorithm which runs in
O(n2(n + log κ) + kin log n) time, where n = np + nv,
kin is the total number of links in the input, and
κ = |C| ≥ 2. For the general C-oriented routing prob-
lem, this algorithm computes an O(κ)-approximation.

We also study a related problem that occurs as
a subproblem of our approach. Given a set of
C-oriented paths (with crossings) with a total of L
links, how many links are necessary to untangle the
paths, that is, how many links must a set of non-
crossing C-oriented paths have that are homotopic
to the input paths? For smooth paths, 2L links
are always enough and this bound is tight. For
C-oriented paths we show that O(Lκ) links are always
enough and Ω(L log κ) links can be necessary.

2 Preliminaries

We represent a C-oriented path by a sequence of links
〈ℓ1, . . . , ℓk〉 that are connected together at bends. We
assume that C is given as a set of vectors {c1, . . . , cκ}
ordered clockwise, where c1 points in the positive y-
direction and the other vectors lie in the right half-
plane. We define c(ℓ) as the orientation of a link ℓ.
So a path π is C-oriented iff c(ℓ) ∈ C for every ℓ ∈ π.

We define a C-oriented path to be smooth if at ev-
ery bend we do not “skip an orientation”. To de-
fine this formally, we split up every orientation into
two directions to obtain a set ~C = {~c1, . . . ,~c2κ}, with
~ci = ci and ~ci+κ = −ci for 1 ≤ i ≤ κ. If we direct a
C-oriented path from one endpoint to the other, every
link ℓ of a C-oriented path has a direction ~c(ℓ) ∈ ~C.
We can distinguish two types of bends: clockwise
(CW) bends make a right turn, and counterclockwise
(CCW) bends make a left turn. A bend between two
links ℓi and ℓi+1 is smooth if ~c(ℓi) and ~c(ℓi+1) are adja-
cent directions. A smooth C-oriented path, or smooth

path in short, has only smooth bends. Note that we do
not give lower bounds on the length of a link; for every
C-oriented path π, there is a geometrically equivalent
smooth path π′, but π′ can have more links than π.

p q

shortcut region

shortcut support

Figure 2: Supports and shortcuts.

Three consecutive links form a CW (CCW) U-turn

if both bends between the links are CW (CCW). A
CW (CCW) U-turn is tight if an obstacle is touching
the right (left) side of the middle link. The overlap-
ping part between the middle link and the obstacle
is called the support of a U-turn (see Fig. 2). The
subpaths of a smooth path between the supports of
two consecutive U-turns are called staircase chains.
Because the path is smooth, staircase chains can use
only two (adjacent) directions or orientations. Two
staircase chains have the same type if they use the
same pair of orientations. Finally, a shortcut is de-
fined by two points p and q on a smooth path π, not
on the same link, with the following properties: (i) the
orientation of pq is in C, and (ii) the region enclosed
by pq and the part of π between p and q, the shortcut

region, does not contain an obstacle. We assume that
pq does not cross π, for otherwise we can split pq up
into multiple shortcuts. We can apply a shortcut to
π, which means that we replace the subpath between
p and q by pq. It is easy to see that the resulting path
is shorter, C-oriented, and homotopic to π.

Lemma 1 A path π is shortest w.r.t. its homotopy
iff π has no shortcuts. All shortest paths π′ ∼h π have
only tight U-turns and the same sequence of supports.

Rectilinear paths allow smallest paths, paths that
minimize both the length and the number of links si-
multaneously, which is vital to the algorithm in [12].
The same property holds for smooth paths.

Lemma 2 For every path π, there is a smooth path
π′ ∼h π that minimizes both the length and the num-
ber of links for all smooth paths homotopic to π.

Proof (sketch). Let π′ be the path constructed as
follows. We start with a minimum-link smooth path
homotopic to π. Then we keep applying shortcuts to
this path until it has no more shortcuts. By Lemma 1,
π′ must be shortest. We need to show that applying a
shortcut does not increase the number of links. Con-
sider a shortcut between p and q on links ℓi and ℓj

(i < j), respectively. Assume w.l.o.g. that there are
at least as many CW bends as CCW bends between ℓi

and ℓj . Then pq must lie to the right of ℓi
1. Because

the path is smooth, all directions clockwise from ~c(ℓi)
to ~c(ℓj) must be used. After applying the shortcut,
we use each of these directions exactly once. Hence
the number of links cannot increase. In the special
case that q (or p) is an endpoint of π′, we can replace
~c(ℓj) by −→pq and the same argument works. ¤

Smallest paths are not unique and it is NP-hard to de-
cide if there exist non-crossing smallest paths [12] (the
result easily extends to smooth paths). Still, smallest
paths are a good starting point for our algorithm.

1A formal proof of this is quite tedious and hence omitted
from this version of the paper.
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3 Algorithm

Our algorithm consists of two steps. First we compute
the smallest paths, and then we untangle the paths.

Computing smallest paths. We first compute low-

est and highest paths. A staircase chain ρ between a
point p and a point q is lowest (highest) if ρ is the
lower (upper) envelope of all staircase chains homo-
topic to ρ. A smooth path π is lowest (highest) if it is
shortest and all its staircase chains are lowest (high-
est). Note that lowest and highest paths are well-
defined and unique.

Lemma 3 Lowest (Highest) paths are non-crossing.

To compute lowest and highest paths we use the algo-
rithm of [4]. Their algorithm first finds the endpoints
of x-monotone chains of Euclidean shortest paths.
Note that the endpoints of x-monotone chains of
shortest smooth paths are the same: they are exactly
at the supports of tight U-turns for which the middle
link has orientation c1. There are only O(n) homo-
topically different x-monotone chains. Next we com-
pute lowest and highest paths for each x-monotone
chain. By Lemma 1, lowest and highest paths must
have the same sequence of supports. To obtain small-
est paths, we compute minimum-link staircase chains
between every two consecutive supports, which must
be bounded by the lowest and highest paths. This
way we can compute all smallest paths in O(n2 log κ+
kin log n) time. In the following we assume that paths
are x-monotone and directed from left to right.

Untangling. We reduce the problem to rectilinear
paths so that we can invoke the algorithm of [12].

Lemma 4 Given a set of shortest smooth paths,
crossings can occur only between staircase chains of
the same type.

Proof. Assume that two staircase chains ρ and ρ′

cross. If they cross only once, then the only way to
remove the crossing is to move ρ over an endpoint of
ρ′ or vice versa. Because the paths are shortest, there
must be obstacles at the endpoints of ρ and ρ′, so
staircase chains homotopic to ρ and ρ′ always cross.
But, by Lemma 3, lowest paths are non-crossing, so

ρ

ρ′

~ci1

~cj1 ~cj2

~ci2

Figure 3: Only staircases of the same type cross.

ρ and ρ′ must cross at least twice. Let the links of ρ
and ρ′ involved in the first crossing have directions ~ci1

and ~cj1 , respectively. Assume w.l.o.g. that i1 < j1.
Similarly define i2 and j2 for the second crossing, for
which j2 < i2 (see Fig. 3). Because ρ and ρ′ can use
only two adjacent directions, we get that |i2 − i1| ≤ 1
and |j2 − j1| ≤ 1. But then i1 = j2 and i2 = j1. ¤

We can now use the following approach. Choose a
single type of staircase chains and remove staircase
chains of different types. We rotate the plane such
that one of the orientations aligns with the x-axis, and
then we apply a shearing transformation to align the
other orientation with the y-axis. Because this is an
affine transformation, straight lines (links) and cross-
ings are preserved by the transformation (see Fig. 4).
Using the incremental untangling algorithm of [12], we
untangle the staircase chains using at most twice the
number of links. We do this for all types of staircase
chains. By Lemma 4, all crossings will be removed.

Note that we do not need to explicitly compute the
transformation. We can apply the algorithm to com-
plete x-monotone chains directly. If we add the paths
from top to bottom, the algorithm adds two links per
CW bend. In the opposite order, the algorithm adds
two links per CCW bend. Choosing the right order
ensures a 2-approximation.

Theorem 5 We can compute a 2-approximation for
the smooth routing problem in O(n2(n + log κ) +
kin log n) time, which is also a (2κ−2)-approximation
for the C-oriented routing problem.

Proof. The first part follows from the discussion
above and the result in [12]. Consider a minimum-
link C-oriented path π with L links. We can make π

Figure 4: Shearing transformation to rectilinear paths.
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smooth by adding at most κ − 2 links per bend, so
a minimum-link smooth path homotopic to π has at
most (κ−1)L links. This implies the second part. ¤

We should note that the untangling algorithm is not
restricted to smallest paths. In fact, the untan-
gling algorithm just requires Lemma 4 to hold. Un-
fortunately, we have not yet been able to exploit
this fact to improve the approximation factor for the
C-oriented routing problem. As in [12], we can extend
our algorithm to thick paths, but we omit the details
from this version of the paper.

4 Untangling bounds

We have shown that a set of C-oriented paths with
a total of L links can be untangled using at most
O(Lκ) links. But how many links are necessary? For
smooth paths with L links, a similar construction as
for rectilinear paths [12] shows that 2L links can be
necessary. For general C-oriented paths, we give a
lower bound that is based on a construction from [6].

Theorem 6 There is a set of orientations C and a set
of C-oriented paths with a total of L links such that
we need Ω(L log κ) links to untangle the paths.

Proof. Consider the quadrilateral enclosed by two
paths shown in Fig. 5 (left). We can replace this
quadrilateral by two crossing quadrilaterals as shown
in the figure. We repeat this operation recursively
for each quadrilateral. After k rounds, there are 2k

quadrilaterals formed by 2k+1 paths with 2 links each.
To be able to untangle these paths, each quadrilateral
that occurred during the construction must be free of
obstacles. The rest of the plane can be filled with ob-
stacles, so we assume that this is the case. As is shown
in [6], we need at least Ω(k2k) links to untangle the
paths. Let C be the set of all orientations formed
by the 2k+2 links. Then this construction consists of
κ links and requires Ω(κ log κ) links to untangle the
paths. By copying this construction ⌊L/κ⌋ times, we
obtain the claimed bound, for L large enough. ¤

The above construction requires a specific set C to
work. Usually, the set C is uniform, that is, the angle
between two adjacent orientations is constant. The
bound of Theorem 6 also holds if C is uniform. The
idea is to find a subset of Ω(

√
κ) orientations with

which we can make the above construction. We omit
the details from this version of the paper.

Figure 5: Lower bound construction.

5 Conclusion

We presented an O(κ)-approximation algorithm for
the C-oriented routing problem. To that end, we in-
troduced smooth paths, and gave a 2-approximation
algorithm for the smooth routing problem. Although
we use smooth paths only as a tool for our algo-
rithm, smooth paths might actually be better can-
didates for our application. Unlike smooth paths,
general C-oriented paths can have sharp bends which
are hard to follow. So perhaps, for schematic maps,
smooth paths are the better choice. We also stud-
ied how many links are necessary to untangle a set of
C-oriented paths with a total of L links. We know that
O(Lκ) links are always enough and that Ω(L log κ)
links can be necessary. Finding a tight bound is an
interesting open problem.

References

[1] S. Bespamyatnikh. Computing homotopic shortest
paths in the plane. J. Alg., 49(2):284–303, 2003.

[2] S. Cabello, M. de Berg, and M. van Kreveld. Schema-
tization of networks. Comp. Geom.: Theory and

Appl., 30(3):223–238, 2005.

[3] R. Cole and A. Siegel. River routing every which way,
but loose. In Proc. 25th Symp. Found. Comp. Sci.,
pp. 65–73, 1984.

[4] A. Efrat, S. G. Kobourov, and A. Lubiw. Computing
homotopic shortest paths efficiently. Comp. Geom.:

Theory and Appl., 35(3):162–172, 2006.

[5] S. Gao, M. Jerrum, M. Kaufmanm, K. Mehlhorn,
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Exact and approximate algorithms for resultant polytopes

Ioannis Z. Emiris∗ Vissarion Fisikopoulos∗ Christos Konaxis†

Abstract

We develop an incremental algorithm to compute the
Newton polytope of the resultant, aka resultant poly-
tope, or its projection along a given direction. Our
algorithm exactly computes vertex- and halfspace-
representations of the resultant polytope using an or-
acle producing resultant vertices in a given direction.
It is output-sensitive as it uses one oracle call per
vertex. We implement our algorithm using the exper-
imental CGAL package triangulation. A variant of
the algorithm computes successively tighter inner and
outer approximations: when these polytopes have, re-
spectively, 90% and 105% of the true volume, runtime
is reduced up to 25 times. Compared to tropical ge-
ometry software, ours is faster up to dimensions 5 or
6, and competitive in higher dimensions. The resul-
tant is fundamental in algebraic elimination and in
implicitizing parametric hypersurfaces: we compute
the Newton polytope of surface equations in < 1sec,
when there are < 100 terms in the parametric poly-
nomials, which includes all common instances in geo-
metric modeling.

Keywords. general dimension, convex hull, regu-
lar triangulation, polynomial resultant, CGAL imple-
mentation, experimental complexity

1 Introduction

Given pointsets A0, . . . , An ⊂ Z
n, we define the Cay-

ley pointset

A :=
n⋃

i=0

(Ai × {ei}) ⊂ Z
2n, ei ∈ N

n, (1)

where e0, . . . , en form an affine basis of Rn: e0 is the
zero vector, ei = (0, . . . , 0, 1, 0, . . . , 0), i = 1, . . . , n.
Clearly, |A| =

∑
i |Ai|, where | · | denotes cardinality.

By Cayley’s trick ([14, sec.5]) the regular tight mixed
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axis@acmac.uoc.gr. Enjoys support from the FP7-REGPOT-
2009-1 project “Archimedes Center for Modeling, Analysis and
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subdivisions of the Minkowski sum A0 + · · ·+An are
in bijection with the regular triangulations of A; the
latter correspond to the vertices of the secondary poly-
tope Σ(A).
The Newton polytope of a polynomial is the convex

hull of the set of exponent vectors of monomials with
nonzero coefficient. Given n+1 polynomials in n vari-
ables, with fixed exponent sets Ai, i = 0, . . . , n, and
symbolic coefficients, their sparse (or toric) resultant
R is a polynomial in these coefficients which vanishes
exactly when the polynomials have a common root.
The resultant is the most fundamental tool in elimina-
tion theory, and is instrumental in system solving; it
is also important in changing representation of para-
metric hypersurfaces. Our algorithms compute the
Newton polytope of the resultant N(R), or resultant
polytope, in particular when some of the coefficients
are not symbolic, in which case we seek a projection
of the resultant polytope.
We exploit an equivalence relation defined on the

secondary vertices. The class representatives cor-
respond bijectively to the resultant vertices. This
information defines an oracle producing a resultant
vertex in a given direction, and avoids computing
Σ(A), which has much more vertices than N(R). Al-
though there exist efficient software computing Σ(A)
[13], it is useless in computing resultant polytopes.
For instance, in implicitizing parametric surfaces with
< 100 input terms, we compute the Newton poly-
tope of the equations in < 1sec, whereas Σ(A) is in-
tractable.
Moreover we compute some orthogonal projection

of N(R), denoted Π, in R
m:

π : R|A| → R
m : N(R)→ Π, m ≤ |A|.

By reindexing, this is the subspace of the first m
coordinates. It is possible that none of the coeffi-
cients is specialized, hence m = |A|, π is trivial, and
Π = N(R). Assuming the specialized coefficients
take sufficiently generic values, Π is the Newton poly-
tope of the corresponding specialization of R.

1.1 Combinatorial characterization of N(R)

Sparse (or toric) elimination theory was introduced
in [10], where N(R) is described via Cayley’s trick.
In [14, sec.6] is proven that N(R) is 1-dimensional iff
|Ai| = 2, for all i, the only planar polytope is the
triangle, whereas the only 3-dimensional ones are the

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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tetrahedron, the square-based pyramid, and the poly-
tope of two univariate trinomials.
Following these results we study the combinatorial

characterization of 4-dimensional resultant polytopes
using our implementation as a tool. These are the
4-simplex [14, rmk.6.1] which corresponds to n = 0,
|A| = 5, |A0| = 5, the polytopes of the univariate case
(n = 1,m = 7) as described in [9] and those of 3
trinomials (|A0| = |A1| = |A2| = 3).
Our experimental results shed more light in the

combinatorial structure of N(R). Their f -vectors
(f0, f1, f2, f3) have the following properties: 5 ≤
f0, f3 ≤ 21, 10 ≤ f1, f2 ≤ 63, i.e., the minimum f -
vector is (5, 10, 10, 5) (4-simplex), while the maximum
is (21, 63, 63, 21). Moreover, for maximal f -vectors
(i.e. the maximum values of f1, f2, f3 if we fix f0) it
holds f0 = f3, f1 = f2.
Confirming the general characterization of resul-

tant polytopes [14], the facets are either one of the 3-
dimensional N(R), or a triangular prism (Minkowski
sum of a segment and a triangle), or a cube
(Minkowski sum of 3 non-parallel edges). In the spe-
cial case when A0 = A1 = A2 = {(0, 0), (1, 0), (0, 1)},
N(R) is the 4-dimensional Birkhoff polytope [15]; its
f -vector is (6, 15, 18, 9).
For a more detailed presentation of the background

of this paper see [5].

2 Algorithms and complexity

This section presents our exact and approximate algo-
rithms for computing an orthogonal projection Π of
N(R) without computing N(R), and analyzes their
asymptotic complexity.
Given pointset V , reg subdivision(V,w) computes

the regular subdivision of its convex hull by project-
ing the upper hull of V lifted by the linear functional
w, and conv(V ) computes the H-representation of its
convex hull. ExtremeΠ(A, w, π) computes a point
in Π, extremal in the direction w, by refining the
output of reg subdivision(A, w) into a regular trian-
gulation T of A, then returns π(ρT ), where ρT is the
resultant vertex corresponding to T . It is clear that,
triangulation T constructed by ExtremeΠ, is regular
and corresponds to some vertex φT of Σ(A) which
maximizes inner product with ŵ = (w,~0) ∈ (R|A|)×.
The initialization algorithm computes an inner ap-

proximation of Π in both V- and H-representations
(denoted Q,QH , resp.), and triangulated. First, it
calls ExtremeΠ(A, w, π) for w ∈ W ⊂ (Rm)×; set W
is either random or contains, say, vectors in the 2m
coordinate directions. Then, it updates Q by adding
ExtremeΠ(A, w, π) and ExtremeΠ(A,−w, π), where
w is normal to hyperplane H ⊂ R

m containing Q, as
long as either of these points lies outside H. We stop
when these points do no longer increase dim(Q).

Algorithm 1: ComputeΠ (A0, . . . , An, π)

Input : A0, . . . , An ⊂ Z
n, π : R|A| → R

m,
H-, V-rep. QH , Q, triang. TQ of Q ⊆ Π

Output: H-, V-rep. QH , Q, triang. TQ of Q = Π

A ←
⋃n

0 (Ai × ei); Hillegal ← ∅
foreach H ∈ QH do Hillegal ← Hillegal ∪ {H}

while Hillegal 6= ∅ do
select H ∈ Hillegal; Hillegal ← Hillegal \ {H}
w is the outer normal vector of H
v ← ExtremeΠ(A, w, π)
if v /∈ H ∩Q then

QH
temp ← conv(Q ∪ {v})

foreach (d− 1)-face f ∈ TQ, f ⊂ ∂H do
TQ ← TQ ∪ {faces of conv(f, v)}

foreach H ′ ∈ {QH \QH
temp} do

Hillegal ← Hillegal \ {H
′}

foreach H ′ ∈ {QH
temp \Q

H} do
Hillegal ← Hillegal ∪ {H

′}

Q← Q ∪ {v}; QH ← QH
temp

return Q,QH , TQ

Lemma 1 The initialization algorithm computes

Q ⊆ Π s.t. dim(Q) = dim(Π).

Incremental Alg. 1 computes both V- and H-
representations of Π and a triangulation of Π, given
an inner approximation Q,QH of Π computed at ini-
tialization. A hyperplane H is legal if it is a sup-
porting hyperplane to a facet of Π, otherwise it is
illegal. At every step of Alg. 1, we compute v =
ExtremeΠ(A, w, π) for a supporting hyperplane H of
a facet of Q with normal w. If v /∈ H, it is a new
vertex thus yielding a tighter inner approximation of
Π by inserting it to Q, i.e. Q ⊂ CH(Q ∪ v) ⊆ Π,
where CH(·) denotes convex hull. This happens when
the preimage π−1(f) ⊂ N(R) of the facet f of Q de-
fined by H, is not a Minkowski summand of a face
of Σ(A) having normal ŵ. Otherwise, there are two
cases: either v ∈ H and v ∈ Q, thus the algorithm
simply decides hyperplane H is legal, or v ∈ H and
v /∈ Q, in which case the algorithm again decides H
is legal but also insert v to Q.

Lemma 2 Let vertex v be computed by

ExtremeΠ(A, w, π), where w is normal to a support-

ing hyperplane H of Q, then v 6∈ H ⇔ H is not a

supporting hyperplane of Π.

We now bound the complexity of our algorithm.
Beneath-beyond, given a k-dimensional polytope with
l vertices, computes its H-representation and a trian-
gulation in O(k5lt2), where t is the number of full-
dimensional faces (cells) [12]. Let |Π|, |ΠH | be the
number of vertices and facets of Π.
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Lemma 3 Alg. 1 computes at most |Π|+ |ΠH | reg-
ular triangulations of A.

Let the size of a triangulation be the number of
its cells. Let sA denote the size of the largest trian-
gulation of A computed by ExtremeΠ, and sΠ that
of Π computed by Alg. 1. In ExtremeΠ, the com-
putation of a regular triangulation reduces to a con-
vex hull, computed in O(n5|A|s2A); to compute ρT
we need to compute the volume of all cells in T ;
this is done in O(sAn

3). The overall complexity of
ExtremeΠ becomes O(n5|A|s2A). Alg. 1 calls, in ev-
ery step, ExtremeΠ to find a point on ∂Π and insert
it to Q, or conclude that a hyperplane is legal. By
Lem. 3 it executes ExtremeΠ as many as |Π|+ |ΠH |
times, in O((|Π|+ |ΠH |)n5|A|s2A), and computes the
H-representation of Π in O(m5|Π|s2Π). Now we have,
|A| ≤ (2n+1)sA and as the input |A|,m, n grows large
we can assume that |Π| ≫ |A| and thus sΠ dominates

sA. Moreover, sΠ(m+ 1) ≥ |ΠH |. Now, let Õ(·) im-
ply that polylogarithmic factors are ignored.

Theorem 4 The time complexity of Alg. 1 is

O(m5|Π|s2Π + (|Π|+ |ΠH |)n5|A|s2A), which becomes

Õ(|Π|s2Π) when |Π| ≫ |A|.

This implies our algorithm is output sensitive. The
performance of our algorithm confirms this property,
see experimental evidence in Sect. 3.

Our algorithm readily yields an approximate vari-
ant: for each supporting hyperplane, we use its nor-
mal w to compute v =ExtremeΠ(A, w, π). Instead
of computing a convex hull, now simply take the
hyperplane parallel to H through v. The set of
these hyperplanes defines a polytope Qo ⊇ Π, i.e.
an outer approximation of Π. Thus, we have an
approximation algorithm by stopping Alg. 1 when
vol(Q)/vol(Qo) achieves a user-defined threshold.
Then, vol(Q)/vol(Π) is bounded by the same thresh-
old. Of course, vol(Q) is available by our incremental
convex hull algorithm. However, vol(Qo) is the criti-
cal step; we plan to examine algorithms that update
(exactly or approximately) this volume.

3 Implementation and Experiments

We implement Alg. 1 in C++ to compute Π; our code
is available in http://respol.sourceforge.net. All
timings are on an Intel Core i5-2400 3.1GHz, with
6MB L2 cache and 8GB RAM, running 64-bit De-
bian GNU/Linux. We rely on CGAL, using mainly a
preliminary version of package triangulation under
development, working in general dimension, for both
regular triangulations as well as for the vertex and
halfspace-representation of Π.
We first compare 4 state-of-the-art exact con-

vex hull packages: triangulation (triang) [3],
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Figure 1: Comparison of respol (hashing and not
hashing determinants) and 2 algorithms of Gfan for
m = 4; y-axis in logarithmic scale.

polymake’s beneath-beyond (bb) [8]; cdd [7], and
lrs [1], to compute the H-rep. from the vertices of Π
(triang/off) actually extending the work in [2] for
the new class of polytopes Π. We also test triang

by inserting points in the order that Alg. 1 com-
putes them (triang/on). The experiments show that
triang, bb are faster than lrs, cdd and triang/on

is 2.5 times faster than triang/off (Table 1).

We perform an experimental analysis of our algo-
rithm confirming its output-sensitivity : its behaviour
is subexponential wrt to both input and output and
its output is subexponential wrt the input. Moreover,
the size of the input bounds polynomially the size of
the triangulation of the output.

The resultant is fundamental in elimination, and in
implicitizing parametric hypersurfaces: we compute
the polytope of surface equations in < 1sec, assum-
ing < 100 terms in parametric polynomials, which
includes all common instances in geometric modeling,
whereas the corresponding Σ(A) are intractable. By
using the hashing determinants scheme [6] we gain a
speedup of 18, 100 times when m = 3, 4 respectively.
For m = 4 we computed in < 2min an instance where
|A| = 37 and would take > 1hr to compute otherwise,
hence this method allows us to compute instances of
the problem that would be intractable otherwise. We
explore the limits of our implementation. By bound-
ing runtime to < 2hr, we compute instances of 5-,
6-, and 7-dimensional Π with 35K, 23K and 500 ver-
tices, resp. (Table 1). We also compare with the im-
plementation of [11], based on Gfan library. Our code
is faster up to dimensions 5, 6, and competitive in
higher dimensions.

We analyze the computation of inner and outer
approximations Q and QH

o . We test the variant of

Sect. 2 by stopping it when vol(Q)

vol(Π)
> 0.9. In the ex-

periments, the number of Q vertices is < 15% of the
Π vertices, thus the speedup is up to 25 times faster

than the exact algorithm and
vol(QH

o
)

vol(Π)
< 1.04. Next,
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dim(Π) |A|
# of Π time
vertices respol triang/on triang/off bb cdd lrs

3 2490 318 85.03 0.07 0.10 0.067 1.20 0.097
4 37 2852 97.82 2.85 3.91 2.29 335.23 39.41
5 24 35768 4610.31 238.76 577.47 339.05 > 1hr > 1hr
6 19 23066 6556.42 1191.8 2754.3 > 1hr > 1hr > 1hr
7 17 500 302.61 267.01 614.34 603.12 10495.14 358.79

Table 1: Total time of our code (respol) and comparison of online/offline version of triangulation (on/off)

and offline versions of all convex hull packages for computing the H-representation of Π.

we study procedures that compute only V-rep. of Q
by counting the random vectors uniformly distributed

on the m-sphere needed to obtain vol(Q)
vol(Π) > 0.9. This

procedure runs up to 10 times faster than the exact al-

gorithm but does not provides guarantees for vol(Q)

vol(Π)
.

4 Future work

The resultant edges are associated to certain flips on
mixed cells [14]. We have studied them algorithmi-
cally [4] and may revisit them in conjunction with
the current approach: for every computed vertex of
N(R) apply all such flips to generate its neighbors.
A theoretical question is whether there is a poly-

nomial total time incremental algorithm for Π. For
this we wish to study the structure of N(R); [10, 14],
whereas our code sheds light to this issue by comput-
ing examples.
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Maximizing k-influence regions

Marta Fort∗ J. Antoni Sellarès∗

Abstract

Let S be a finite set of points included in a bounded
polygonal domain D of the plane. The order-k near-
est influence region of a point in S is the set of points
of D having the given point between their k-nearest
neighbors in S. Let P be a weighted partition of the
domain D into polygonal regions with an associated
non-negative weight per region. We want to solve the
problem of finding a new point s of D maximizing
the weighted area of its order-k nearest influence re-
gion with respect to S ∪ {s}, which is the sum of the
weighted areas of the regions obtained intersecting the
order-k nearest influence region with the regions of
P. We present a GPU parallel approach, designed
under CUDA architecture, for approximately solving
the problem and we also provide experimental results
obtained with its implementation that show the effi-
ciency and scalability of the approach.

1 Introduction

The main objective of single facility location problems
is to place a new facility with respect to a given set
of customers optimizing a certain objective function
[4, 9]. In the context of competitive facility location,
the new facility competes with pre-existing facilities.
Competitive location models have been studied in sev-
eral disciplines such as geography, economics, market-
ing and operations research [5, 11].
Example. Suppose that we want to find the opti-

mal location for a new opening restaurant so that it
takes over as many customers as possible from the ex-
isting competitors. If we assume that clients, that are
nor equally distributed, eat at one of their 4 nearest
restaurants, the new restaurant will be best located
at the point having the biggest number of people liv-
ing/working in the region having the new restaurant
among their 4-nearest restaurants.
In this paper we address a single competitive facility

location problem in which facilities and customers are
modelled by points continuously dispersed over a pla-
nar domain, and so that costumers can move without
barriers. The location of a facility is chosen supposing
that costumers select facilities depending on distance.
Under the assumption that customers are indifferent
when it comes to choose among their k-nearest fa-

∗Departament d’Informàtica i Matemàtica Aplicada, Uni-

versitat de Girona, Spain, {mfort,sellares}@ima.udg.edu.

cilities, we define the influence region of a facility as
the set of points of the domain having the given facil-
ity among their k-nearest neighbors. Consequently
influence regions are not disjoint regions. On the
other hand, we partition the domain into regions so
that each region has associated a non-negative weight
which represents its potentiality, for example popu-
lation density or buying capacity of people living in
the region. For any region included in the domain, we
define its weighted area as the sum of the weighted ar-
eas of the subregions obtained intersecting the given
region with the subregions of the partition of the do-
main. We want to solve the problem of locating a new
facility in the domain optimizing the weighted area of
its influence region.

Previous papers maximizing the Voronoi region of
a new facility include [3, 2, 1]. In [3] a pixel based
solution obtained by using graphics hardware is pre-
sented. Dehne et al. [2] show that the area function
has only a single local maximum inside a region where
the set of Voronoi neighbors does not change and is
in convex position. They give an algorithm for ap-
proximately finding the optimal new facility based on
Newton approximation. Cheong et al. [1] present
a near-linear time algorithm for facilities in general
position, that locates a new facility whose Voronoi re-
gion approximates the maximum area up to a (1− ϵ)
factor.

The development of GPUs (Graphics Processing
Units) hardware design, together with CUDA (Com-
pute Unified Device Architecture) and some pro-
gramming languages which use this architecture such
as OpenCL, make them attractive to solve prob-
lems which can be treated in parallel as an alterna-
tive to CPUs in different computational demanding
tasks, where a big amount of data or operations need
to be done. General-purpose computing on GPUs
(GPGPU) is capturing the attention of researchers in
many computational fields ranging from numeric com-
puting operations and physical simulations to bioin-
formatics and data mining [10].

The difficulty of optimizing, either analytically or
by a numerical optimization procedure, the function
that gives the weighted area of the nearest influence
region determined by the inclusion of a new facility
has motivated us to explore an alternative GPU par-
allel approach, designed under CUDA architecture,
for approximately solving the problem. In this paper
we describe the proposed solution and also provide

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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experimental results obtained with the implementa-
tion that show the efficiency and scalability of the
approach.

2 Preliminaries

2.1 Higher order Voronoi diagrams

Let S be a set of n points included in a bounded
polygonal domain D of the Euclidean plane R

2. We
will denote by d(p, q) the Euclidean distance between
points p, q ∈ R

2.
Given a subset Sk of k points of S, k ∈

{1, · · · , n − 1 }, the order-k Voronoi region V (Sk, S)
of Sk is the set, possibly empty, of points of D lying
closer to each point of Sk than to any other point of
S:

V (Sk, S) = {q ∈ D | d(s′, q) ≤ d(s, q), ∀s′ ∈ Sk, s ∈ S−Sk}.

The order-k Voronoi region V (Sk, S) may not con-
tain the points in Sk. Order-k Voronoi regions are
convex polygonal regions as they arise as the intersec-
tion of halfplanes bounded by perpendicular bisectors
of the points in S. The number of order-k Voronoi
regions is O(k(n− k)) [7].
The order-k Voronoi diagram of S, denoted Vk(S),

is the set of the order-k Voronoi regions V (Sk, S) of
all subsets Sk of k points:

Vk(S) = {V (Sk, S) |Sk ⊆ S, |Sk| = k} .

2.2 The weighted area of a region

Let P = {P1, · · · , Pm} be a partition of the bounded
polygonal domain D in the plane into polygonal re-
gions that do not intersect except possibly along their
boundaries.
We associate with each region Pi a non-negative

number wi, called the weight of Pi.
We define the weighted area of a subregion R ⊂ D,

denoted w(R), by:

w(R) =
∑

i=1,··· ,m

wi µ(R ∩ Pi)

where µ(R) denotes the area of the subregion R.

2.3 CUDA and GPU computing

CUDA is a parallel computing architecture that
makes GPUs accessible for computation like CPUs.
The CUDA processors, which can be executed in par-
allel, are referred as threads, and each thread exe-
cutes the instructions contained in the so called ker-
nels in parallel. Each thread computation is indepen-
dent from the others, however, there exist some read-
modify-write atomic operations called atomic func-
tions. They read and return the value stored in a

memory position, operate on it and store the result
without allowing, during the whole process, any other
access to that memory position. These operations al-
low the users to obtain global results when several
threads access to the same memory position. For in-
stance we can obtain a global sum, maximum or min-
imum in a specific position by using them.
Several types of memories can be used, data stored

in global memory are accessible by every thread and
are visible from the CPU, global memory is where
more data can be allocated, but is the slowest access
time memory. Registers are the fastest memory and
store the local variables of each thread. Since the
number of accesses to global memory are reflected in
the execution times of the algorithms, ν readed, writ-
ten or transferred values to global memory are repre-
sented by rgν , w

g
ν and tgν , in the complexity analysis.

Serial and parallel programming paradigms are fo-
cused on very different purposes making efficient se-
rial algorithms unattractive candidates for GPUs [8].
When working with serial algorithms the total num-
ber of operations have to be minimized to guarantee
time-efficiency, thus serial algorithms have to be work-
efficient. When working in parallel, work-efficiency
does not guarantee time-efficiency, and elaborated al-
gorithms using complex data structures can not be
built nor managed in parallel machines like GPUs.

3 Order-k influence regions

The order-k influence region of a point s ∈ S, denoted
Ik(s, S), is the set of points of D having s among their
k-nearest points in S (see Figure 1). For any point
q ∈ D, let dk(q, S) denote the distance to the k-th
nearest point to q in S. Clearly:

Ik(s, S) = {q ∈ D | d(s, q) ≤ dk(q, S)} =

=
∪

s∈Sk⊆S
|Sk|=k

V (Sk, S) .

Lemma 1

a) Ik(s, S) ⊂ Ik+1(s, S).

b) Given k, for any q ∈ D there exists Sk ⊆ S, |Sk| =
k, so that q ∈ Ik(s, S) for any s ∈ Sk.

c) Ik(s, S) is a star-shaped polygonal region whose
kernel contains s.

Proof.

a) This follows from influence regions definition.

b) Given q ∈ D, there exists a subset Sk ⊆
S, |Sk| = k, so that q ∈ V (Sk, S), and consequently
q ∈

∩
s∈Sk

Ik(s, S).

c) We want to prove that for each point q in Ik(s, S)
the segment sq lies entirely in Ik(s, S). Denote by
Dq(s) the disk of center q and radius d(q, s). It is easy
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to see that q ∈ Ik(s, S) if and only if |Dq(s) ∩ S| ≤ k.
Let q′ be a point of segment sq. Since Dq′(s) ⊂ Dq(s),
we have |Dq′(s) ∩ S| < |Dq(s) ∩ S| ≤ k, consequently
q′ ∈ Ik(s, S). �

Figure 1: Nearest influence regions of point s for k = 1

to k = 4.

4 Maximizing the weighted area of a new order-k

influence region

We want to solve the following problem:

Find the positions for a new point s maximizing the

weighted area w(Ik(s, S∪{s})) over all possible points

s ∈ D − S.

For a given s, the value of w(Ik(s, S ∪ {s})) can
be obtained by computing the overlay intersection of
the star-shaped polygonal region Ik(s, S ∪ {s}) and
the weighted partition P. Since each maximal con-
nected polygonal region of the resulting intersection
is contained in a region of P, it has univocally as-
sociated a weight. Consequently, the weighted area
w(Ik(s, S∪{s})) can be written as a sum of functions
that depends on the location of s.

4.1 Solving the problem on the GPU using CUDA

We approximately solve the maximization problem
discretizing the polygonal domain D by superimpos-
ing on it an axis-parallel rectangular grid of size
G = H ×W . We denote by Q the set of grid points
corresponding to the geometric center of the grid cells.
First, for each grid point q of Q we compute an es-
timation of the weighted area w(Ik(q, S ∪ {q})) from
the weight of the grid points that are contained in
Ik(q, S ∪ {q}). Next we find the points q of Q max-
imizing w(Ik(q, S ∪ {q})). All the 1D-arrays we use
in the presented algorithm are stored in GPU global
memory.
The input of the process consists on the grid dimen-

sions H, W , the coordinates of the points in S, and

the weights associated to the grid points of Q accord-
ing to the weighted partition P of D. This informa-
tion is transferred from the CPU to the GPU storing
the coordinates of the points in S and the weights
of points of Q in 1D-arrays of size n and G, respec-
tively. Notice that the grid points are not explicitly
stored but obtained when needed from the grid dimen-
sions and the domain vertices. The output contains
the maximal value together with the possible optimal
placements between the grid points of Q.

We start by computing the distance of each grid
point q to its k-th neighbor in S, considering all the
grid points in parallel and using the algorithm pre-
sented in [6]. The obtained distances are stored in a
1D-array of size G.

Next, the weighted area w(Ik(q, S ∪ {q})) of each
grid point q is estimated by using the precomputed
distances from grid points to k-th neighbors and the
weights associated to grid points. It is done by con-
sidering all the grid points q′ ∈ Q in parallel. For
each q′ ∈ Q we find all the points q ∈ Q such that
q′ ∈ Ik(q, S ∪ {q}) using the fact that in this case
d(q, q′) ≤ dk(q

′, S ∪ {q}), or equivalently d(q, q′) ≤
dk(q

′, S). Thus, for each grid point q′ we find the
points q ∈ Q contained in the disk of center q′ and
radius dk(q

′, S) by using a multiple disk range query
using the ideas presented in [6]. The k-influence val-
ues of all these points are updated by adding at the
existing value the weight w′ associated to q′ using an
atomic function. The k-influence values of each grid
point are stored in a 1D-array of size G.

Once the k-influence values of all the grid points
are known, the optimal placements, among the con-
sidered ones, are determined by using a reduction type
algorithm [12] to find the maximal k-influence value
and the number of points where this maximal value
is achieved. Then an array of the corresponding size
is allocated to store in a second step the points where
this maximal value is obtained.

4.2 Complexity analysis

We only transfer from the CPU to GPU the sites S

and the weights associated to the grid points, which
takes O(tgn+G) time. No other CPU-GPU commu-
nication is needed. We read from global memory
the weight and distance to the k-nearest neighbor
of each grid point once, thus the number of reads is
O(rg

2G). We update the k-influence values, which are
stored in global memory, by using atomic functions
I times, where I is the total number of grid points
contained in all the considered k-influence regions,
which takes O(wg

ρI) time, ρ denotes writings done us-
ing atomic functions. Thus we have a time complexity
of O(tgn+G + r

g
G + w

g
ρI). Even though atomic opera-

tions slow down the running time of the algorithm
they are necessary to guarantee correct results.

Next we analyze the work complexity. We execute
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G parallel threads, each of them finds the k-th dis-
tance to S inO(n) worst case time. Then the weighted
areas are estimated using G threads executed in par-
allel. The number of grid points explored by each
thread depends on dk(q

′, S), however, the total work
in both steps is O(Gn+I). In the worst case each grid
point will explore O(G) grid points and I = O(G2),
yielding a work complexity of O(G(G+ n)).

We use O(n+G) space to store the coordinates of
the n points of S and three arrays of size G. The
GPU memory space limits the information that can
be stored, which directly bounds the discretization
size. However, if necessary, the domain can be par-
titioned into subdomains, the problem can be par-
tially solved in each subdomain, and finally the so-
lution of the problem can be obtained analyzing the
results globally.

5 Experimental results

Table 1 provides times obtained by our implemen-
tation of the presented algorithm. We used OpenCL
and the executions are done using a Intel Core 2 CPU
2.13GHz, 2GB RAM and a GPU NVidia GeForce
GTX 480. The provided times are obtained as the
median of 10 executions and show the scalability of
our algorithm for several grid sizes and n. In order
to provide realistic inputs, we used small values of k.
However, considering n = 10000, G = 1000 × 1000
and k = 100 they run in 0.18(s). CPU-GPU transfer-
ring times involved are not included and vary between
0.005(ms) and 0.062(ms).

G 100× 100 500× 500
n / k 1 5 10 1 5 10
10 0.009 0.034 - 0.964 5.139 -
100 0.005 0.009 0.015 0.277 0.837 1.54
1000 0.003 0.005 0.007 0.072 0.159 0.257
10000 0.008 0.010 0.012 0.112 0.149 0.195

Table 1: Computational times in seconds.

Fig 2. a) presents a map colored from dark to light
green according to the increasing weight assigned to
the regions of the domain. Red points represent the 50
points of S. Fig 2. b) presents the same map colored
from dark to light violet according to the increasing
weight w(I10(q, S ∪ {q})) of each grid point q. The
white point shows the optimal placement for a new
facility.
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Properties and Algorithms for Line Location with Extensions

Robert Schieweck∗ Anita Schöbel†

Abstract

In this work we extend some well-known properties
for simple line location – namely an incidence and a
halving property – to a more general setting and use
them to develop algorithms in order to approximate a
set of n given points by one or more lines. This yields
an O(n4/3 log n) (O(n2)) algorithm for locating a sin-
gle line minimizing the sum of (weighted) distances
to the n points for point-line distances induced by
a norm. A trimmed line which minimizes the sum
of (weighted) distances to the m ≤ n closest of the
n points can be found in O(n2 log n) (O(n3)) time.
Finally, K lines minimizing the sum of distances of
each of the n points to the closest line is computed
in O(n2K+1(K + log n)) time, where the log n factor
only applies to the trimming case.

1 Introduction

Locating a line in the plane as to minimize the sum
of distances (measured in a certain way) to n given
points in the plane is a well-researched problem with
many applications for example in location theory and
statistics, when performing a linear regression. In this
case n is often very large and fast algorithms to com-
pute such a line are needed.
The classical problem

min
L

n
∑

i=1

wid(pi, L) (1)

for points P = {p1, . . . , pn} with associated weights
w1, . . . , wn > 0 and a line L has been tackled for sev-
eral distances d. Zemel [13] gave a linear time algo-
rithm for the vertical distance case and the case where
d is induced by the L1 norm by generalizing a search
technique for solving linear programs by Megiddo [7].
Later Yamamoto et al. [12] proposed algorithms for
the L2 norm case which run in O(n4/3 log n) time in
the unweighted case and inO(n2) time in the weighted
case using sweeping techniques by Edelsbrunner and
Welzl [5] and Edelsbrunner and Guibas [4], respec-
tively. Speed improvements for the former case are
due to an improved computation of dynamic convex
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sity of Göttingen, r.schieweck@math.uni-goettingen.de
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hulls by Brodal and Jacob [2] and a better upper
bound on the computation time is due to Dey [3].
The algorithms of Yamamoto et al. [12] rely on two

properties of the problem which have been observed
by Morris and Norback [9] reducing (1) to a purely
combinatorial problem:

Theorem 1 If d is induced by the L2 norm, there
is an optimal line for (1) which passes through two
of the points in P . Furthermore, any optimal line is
pseudo-halving, i. e. the two open half-spaces induced
by an optimal line cannot contain more than half of
the total weight.

In fact, these properties apply also to a larger class
of distances d due to Schöbel [11]:

Theorem 2 Theorem 1 holds true for any d induced
by some norm ‖ · ‖ (and some other distances).

It even holds that ‖ ·‖ is a smooth norm if and only
if every optimal line for any instance of (1) must pass
through two of the given points.

2 The classical case

Similar to the approach in [12] Theorem 2 can be used
to develop an efficient algorithm for the case of a dis-
tance d induced by an arbitrary norm ‖ · ‖ using a
sweeping technique by [5]. Denote by P ∗ the set of
lines dual to the points in P and by A(P ∗) the ar-
rangement of those lines. Then A(P ∗) is swept by a
vertical line and the objective function in (1) is up-
dated in constant time per vertex of A(P ∗) which cor-
responds to the intersection of two lines of P ∗ which
again corresponds to a line through two points of P
by point-line duality. Hence we can sweep the dual
arrangement to find an optimal L∗ corresponding to
an optimal line L for (1).
To this end denote by L+ and L− the two open

half-spaces induced by a line L. Further let I+L and
I−L be the subsets of {1, . . . , n} containing the indices
of the pi in L+ and L−, respectively. Finally let W+

L

and W−
L be the sums of the wi over the respective

index sets as well as

X±
L =

∑

i∈I±

wipi1

Y ±
L =

∑

i∈I±

wipi2.
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Then the objective function in (1) can be rewritten as

n
∑

i=1

wid(pi, L) =
1

‖(s,−1)‖◦

n
∑

i=1

wi|pi2 − spi1 − b|

=
1

‖(s,−1)‖◦

(

Y +
L − Y −

L

− s(X+
L −X−

L )− b(W+
L −W−

L )
)

where the first equality holds according to Plastria
and Carrizosa [10] with the dual or polar norm ‖ · ‖◦

of ‖ · ‖, s the slope of L and b its intercept. Thus the
objective can be updated in constant time by keeping
track of the variables above which also takes constant
time.
In fact, the type of sweeping depends on whether

the weights are all equal or not. In the unweighted
case w1 = . . . = wn only solutions on the k-levels of
A(P ∗) for k = n/2 and k = n/2 + 1 when n is even
and k = ⌊n/2⌋+1 when n is odd need to be considered
since the dual L∗ of a line L optimal for (1) must lie on
this k-level according to the pseudo-halving property
in Theorem 2. Evaluating the objective at vertices
suffices due to the incidence property in Theorem 2.
Therefore an algorithm for the unweighted case runs
in O(n4/3 log n) time applying a sweeping technique
by [5] with improvements by [2, 3]. For the weighted
case one cannot restrict the evaluation to only the
above mentioned k-levels, since weighting also allows
vertices on other levels closer to the 1-level or the
n-level to become candidate solutions for (1). This
causes the complexity of the sweeping to increase to
O(n2 log n) which can be outperformed by not only
sweeping certain levels of A(P ∗) but the whole ar-
rangement with the topological sweeping technique in
[4] yielding a running time of O(n2).
Note that the degenerate case of an optimal vertical

line can be treated separately without compromising
the time complexity.

3 The concept of trimming

An extension of the classical problem is the incorpora-
tion of the concept of trimming which is often needed
in robust statistics. This means, a line is sought as to
minimize the weighted distances to the m ≤ n closest
points. The remaining n − m points are called out-

liers and may have an arbitrary distance to the line
without influencing the objective function, i. e.

min
L

m
∑

i=1

w(i)d(p(i), L) (2)

where (·) is a permutation of {1, . . . , n} that sorts
point-line distances in ascending order

d(p(1), L) ≤ d(p(2), L) ≤ . . . ≤ d(p(n), L),

(i) denoting the ith index with respect to this order.
From a statistician’s point of view this ensures a re-
gression line to be unaffected by some very inaccurate
observations. Note that the permutation (·) depends
on L but we will omit an additional index for the sake
of shortness of notation.
With some additional notions Theorem 2 can be

modified to accomodate the new setting. Let I±L,m

and W±
L,m be defined similarly to the previous section

but restricted to the none-outlier points, e. g.

I±L,m = I±L ∩ IL,m

where IL,m = {(1), . . . , (m)}. Further let WL,m =
∑m

i=1 w(i). Then it holds

Corollary 3 Let d be a distance induced by a norm.
Then there is an optimal line for (2) passing through
two of the points in P and any optimal line L satisfies
W±

L,m ≤ WL,m/2.

Proof. Let L be optimal for (2). Then L is optimal
for a problem of type (1) with respect to the point
set P ′ = {pi : i ∈ IL,m} ⊆ P . Otherwise we had a
contradiction to the optimality of L for (2). Applying
Theorem 2 yields the second assertion.
Another application of Theorem 2 guarantees the

existence of an optimal line L′ for a problem of type
(1) with respect to the point set P ′ ⊆ P that passes
through two of the points in P ′ and is also optimal
for the original problem. �

By this result, (2) is also reduced to a purely com-
binatorial problem allowing a brute force approach
which requires O(n3 log n) time. This can be reduced
again using a sweeping technique by [5]. To this end
let

Xj
s,m =

j
∑

i=1

w(i)td,sp(i)td,s1 ,

Y j
s,m =

j
∑

i=1

w(i)td,sp(i)td,s2 and

W j
s,m =

j
∑

i=1

w(i)td,s

for j = 1, . . . , n, similar to X±
L in the previous section.

(·)td,s is the permutation which gives the top-down or-
der of the lines P ∗ in the arrangement A(P ∗) at the
horizontal coordinate s. These 3n variables can be
updated in constant time per vertex of A(P ∗) during
a complete sweep with a vertical line and allow for up-
dating the objective function of (2) in constant time
per vertex by rewriting

m
∑

i=1

w(i)d(p(i), L) =
1

‖(s,−1)‖◦

m
∑

i=1

w(i)|p(i)2 − sp(i)1 − b|
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=
1

‖(s,−1)‖◦

∑

i∈I
+

L,m

wi(pi2 − spi1 − b)

−
1

‖(s,−1)‖◦

∑

i∈I
−

L,m

wi(pi2 − sp1 − b)

=
1

‖(s,−1)‖◦

(

Y
k+j

L,m − Y
k
L,m − s(Xk+j

L,m −X
k
L,m)

− b(W k+j

L,m −W
k
L,m)

+ Y
k−(m−j)
L,m − Y

k
L,m − s(X

k−(m−j)
L,m −X

k
L,m)

− b(W
k−(m−j)
L,m −W

k
L,m)

)

for some j, where s is the slope of L and k the number
of lines above or through L∗ in A(P ∗) at horizontal
coordinate s. This can be evaluated in constant time
per vertex in the unweighted case since the extension
of the pseudo-halving property in Corollary 3 yields a
strong restriction on the difference of the number of
points in P below and above L and hence on the value
of j. In fact, if L∗ is a vertex of A(P ∗) and the points
P are in general position, then j must take one of the
values {m/2− 2,m/2− 1,m/2} if m is even and one
of the values {(m−5)/2, (m−3)/2, (m−1)/2} if m is
odd. This gives a total running time of O(n2 log n) to
locate a line in the unweighted case with trimming. In
the weighted case there is no such strong restriction on
j but there are obviously not more than m possible
choices of j since there are only m = O(n) points
which need to be close to L. Thus we need linear
time to evaluate at one vertex and since there are
O(n2) vertices this gives an O(n3) time algorithm for
the weighted case.
Note, that the degenerate case of an optimal verti-

cal line can again be treated separately without com-
promising the complexity.

4 Locating multiple lines

A further extension of the classical problem is to ask
for more than one, say K, lines to be located in order
to approximate n points. The distance of a point to
the set of K lines is the distance to the closest of these
lines. Again, trimming is allowed, i. e. only m ≤ n
points need to be close to the set of lines yielding

min
L={L1,...,LK}

m
∑

i=1

min
k=1,...,K

{

w(i)d(p(i), Lk)
}

(3)

where L is a set of K lines.
This has again applications in statistics, more

specifically in latent class regression: the observations
fall into a priori unknown classes, each of which has
its own linear relationship between the explanatory
and the response variables belonging to it. For ex-
ample during the test of a new pharmaceutical its
effect may differ between subjects with different and
unknown previous illnesses.

Unfortunately, this problem is NP-complete in the
strong sense according to Megiddo and Tamir [8] so we
cannot hope for fast exact algorithms for its solution.
But again we can transfer some of the properties for
problem (1) to this new setting.

Corollary 4 Let d be a distance induced by a norm
and K ∈ N. Then there is an optimal set L =
{L1, . . . , LK} of lines for (3) so that every line Lk,
k = 1, . . . ,K passes through two of the points in P .

Proof. The proof uses an argument analogous to the
proof of Corollary 3. Let L = {L1, . . . , LK} be an op-
timal set of lines. Then consider some k ∈ {1, . . . ,K}
and the line Lk with its allocated points P k ⊆ P . Ac-
cording to Theorem 2 there is an optimal line L′

k for a
problem of type (1) with respect to points P k. Then
L′ = {L1, . . . , Lk−1, L

′
k, Lk+1, . . . , LK} is also optimal

for (3). In this way all lines in L can be replaced by
lines passing through two points of P and optimality
is maintained. �

And again we are left with a purely combinatorial
problem that can be solved by enumerating and eval-
uating all possible solutions. In this case the size of
the candidate set is

(

n

2

)

·

(

n− 2

2

)

· . . . ·

(

n− 2(K − 1)

2

)

= O(n2K)

since we must choose two points out of n to determine
the first line, another two from the remaining points
to determine the second one and so on.

To evaluate the objective every point has to be
assigned to its respective closest line. To this end
the Voronoi diagram of the K lines from the candi-
date set is constructed in O(K2) time [1] and can
then be searched for a closest line to one of the given
points in O(logK) [6]. After computing all n dis-
tances from a point to its respective closest line the
mth smallest of them can be found in linear time
by a selection algorithm. This yields a total time of
O(K2 + n logK) for the evaluation and hence a to-
tal time of O(n2K(K2 + n logK)) for the brute-force
solution of the problem.

5 Conclusion and outlook

We proposed several algorithms for different line lo-
cation problems in the plane, all of which rely on two
geometric properties, namely an incidence property
and a halving property. Even though there are spe-
cialized algorithms which outperform the ones pro-
posed here in their respective special cases (e. g. the
linear programming approach for the L1 norm case),
our algorithms are general in the sense, that they al-
low for an arbitrary norm induced point-line distance
and other variants like trimming and locating multi-
ple lines. Moreover, cases are included which have not
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been considered yet, as far as the authors are aware
of.
Experiments to compare running times of different

approaches are subject of further research. Especially
the enumeration of all candidate solutions for mul-
tiple lines needs to be compared to a mixed-integer
programming approach as well as the performance
of approximate solution methods for outlier detec-
tion like RANSAC to the exact procedures. From
a statistician’s point of view, automatically determin-
ing a good choice for K would be of interest as well
as some good heuristics since the problem instances
can be very large.
Furthermore, stronger bounds on the number of k-

sets would yield stronger bounds on the complexity of
some of our algorithms.
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On the homotopy test on surfaces with boundaries

Julien Rivaud∗ Francis Lazarus†

Abstract

Let G be a graph cellularly embedded in a surface S
orientable or not, and with nonempty boundary. Given
two closed walks c and d in G, we describe linear time
algorithms to decide if c and d are homotopic in S,
either freely or with fixed basepoint. After O(|G|) time
preprocessing independent of c and d, our algorithms
answer the homotopy test in O(|c| + |d|) time, where
|G|, |c| and |d| are the respective numbers of edges of
G, c and d.

1 Introduction

Computational topology of surfaces has received much
attention in the last two decades. Among the notable
results we may mention the test of homotopy between
two cycles on a surface [2], the computation of a short-
est cycle homotopic to a given cycle [1], or the compu-
tation of optimal homotopy and homology bases [3].
In their 1999 paper, Dey and Guha announced a lin-
ear time algorithm for testing whether two curves are
freely homotopic on a triangulated surface without
boundary. In [4] we showed that their method is inval-
idated by subtle flaws and provided a new geometric
approach that confirms the linear time bound on the
free homotopy test. This technique can be extended
to handle surfaces with boundaries by gluing a punc-
tured torus to each boundary cycle. We nevertheless
present a much simpler and self-contained method for
surfaces with nonempty boundary which also answers
the free homotopy test on non-orientable surfaces with
boundary.

Let G be a graph cellularly embedded in a surface S
with at least one boundary. Each face of G in S is thus
a disk or an annulus. By extending its boundaries we
can retract S onto a subgraph G′ of G. Each homotopy
class in G′ has a canonical reduced representation
obtained by removing spurs. To know whether two
cycles of G are homotopic in S it is thus sufficient to
compute their deformation retract on G′, remove spurs
until they are reduced and check them for equality
(up to circular permutation).

An edge e of G does not necessarily retract on a
single edge of G′ but rather on a subwalk we of a

∗GIPSA-Lab, CNRS, Grenoble, France;

julien.rivaud@gipsa-lab.grenoble-inp.fr
†GIPSA-Lab, CNRS, Grenoble, France;
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boundary cycle of G′ — that is a facial cycle of its
embedding in S. To achieve the claimed time bound
we do not expand we down to edges of G′ but keep it
under the following abstract representation: a reference
to a boundary walk along with start and end indices.
In O(|G|) total time we can compute for all e ∈ G
the abstract subwalk which e retracts on. Retracting
a cycle c of G then yields a sequence of such subwalks.
The removal of a spur in the underlying expanded cycle
can be expressed as an operation on these subwalks.
These operations define a rewriting system that we
run on the sequence of subwalks until its underlying
cycle is reduced. This takes linear time in the initial
number of subwalks, that is O(|c|) time.

The contractibility test easily reduces to the (free)
homotopy test and we only consider this last test in
this abstract. Given two cycles c and d in G, we first
compute two reduced sequences s and t of abstract
subwalks whose underlying cycles c′ and d′ are freely
homotopic to c and d respectively. Even if c′ and d′

are cyclically equal, the sequences s and t may not be
literal permutations of each other. If σ is a sequence
of subwalks whose underlying reduced cycle is u, we
define its canonical (cyclic) sequence Can(σ) =
Can(u) that only depends on u. We can now decide
if c and d are homotopic by comparing Can(s) and
Can(t) up to circular permutation of their subwalks.
Since we can compute Can(s) and Can(t) in time
proportional to their number of subwalks, we obtain:

Theorem 1 (Homotopy test) Let G be a graph
cellularly embedded in a surface S with at least one
boundary. Let c and d be two cycles with a total of
k edges in G. After a O(|G|) time preprocessing of G,
independent of c and d, we can decide if c and d are
freely homotopic in O(k) time.

2 Background

We provide some definitions and properties; see [5]
or [6, chapter 3] for details on rotation systems.

Cellular embedding of graphs A graph is cellularly
embedded in a surface S without boundary if every
open face of its embedding is a disk. A cellular em-
bedding can be encoded by a rotation system, that
is a set of half-edges with two unary operations: an
involution exchanging the direction on edges, and a
cyclic permutation around vertices. Each (half)-edge is
associated a signature ∈ {−1, 1} indicating whether

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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the orientation of the cyclic permutation is the same
or not around its endpoints. The face traversal proce-
dure described in [6] allows to traverse all the facial
cycles in O(|G|) time. In particular, we can determine
whether each edge of G is incident to only one facial
cycle or to two distinct facial cycles.

Surfaces with boundaries In order to handle surfaces
with boundaries we allow every face of G in S to be
either a disk or an annulus. In other words G is a
cellular embedding in the closure Ŝ of S obtained by
attaching a disk to every boundary of S. We record
this information by storing a boolean for every facial
cycle of G indicating whether the associated face is
perforated or not. Assume that an edge e is incident to
a perforated face f and a plain face f ′. We can perform
an elementary collapse of f ′ through its free edge e,
thus extending the perforation in f . Equivalently, we
can remove e from G and merge f and f ′ into a single
(perforated) face. We obtain this way an embedding of
G − e into S that simulates a deformation retraction
of S without actually modifying S.

Homotopy in embedded graphs We consider homo-
topy of closed walks in G with respect to S. Hence two
cycles of G are homotopic if one can be continuously
transformed to the other on S. If all the facial cycles
are tagged as boundaries, then S is deform retracts
onto G and homotopy on S reduces to homotopy on G.
In particular, every cycle of G has a canonical homo-
topic cycle obtained by removing spurs until the cycle
is reduced. As usual, a spur is the concatenation of
two opposite oriented edges and a cycle is reduced if
it contains no spur.

3 Retracting S to a thick graph

We first reduce the number of vertices of G:

Lemma 2 Let G be a graph embedded on a surface S.
We can contract the edges of a spanning tree of G in
O(|G|) time. We obtain this way a graph G1 embedded
on S with a single vertex, fewer edges than G and as
many faces. Cycles in G are homotopic if and only if
their contractions in G1 are homotopic.

Proof. We assume that every edge of G points to its
incident faces. Updating and contracting each edge
of the spanning tree can be done in constant time
per edge by updating the rotation system: no face
disappears or changes of boundary status. Comput-
ing and contracting a spanning tree of G thus takes
O(|G|) time and produces an embedded graph G1. �

A retraction of S From now on we suppose that G has
a single vertex. Let us call an edge free if it is incident
to two distinct faces, exactly one of which is perforated.
We will simulate a sequence of elementary collapses in
order to retract S onto a subgraph G′ of G. We will

thus obtain an embedding of G′ into S such that all
faces are perforated. To this end we maintain a list L
of free edges. We start by putting all the free edges of
G into L. We then pick an edge e ∈ L and simulate
the collapse of its plain incident face by removing e
from G and merging its two incident faces. In practice,
we just mark e as a merging edge and tag e as well as
its plain incident face f with the name of the incident
perforated face. We next update L, removing e from L
and adding in or removing from L the other edges of f
according to the new status of their incident faces. We
repeat this procedure until L is empty. This ensures
that all the faces are perforated since otherwise the
connectivity of S would imply the existence of a free
edge. Note that the handling of a free edge always
involves an incident plain face that was not merged
before. It easily follows that the complexity of the
whole retraction is bounded, up to a multiplicative
constant, by the sum of the lengths of the facial cycles,
hence to |G|.

We call G′ the resulting embedded graph, i.e., the
graph G minus the merging edges. If b is a facial cycle
of G′ of length |b| and i ∈ Z/|b|Z we denote by b[i]

the (i + 1)-th edge of b. An abstract subwalk of b
— or just subwalk when there is no ambiguity — is
a triplet (i, j)b where i, j ∈ Z/|b|Z. The underlying
path of (i, j)b is the path b[i]b[i+1] · · · b[j]. Call Eb the
set of merging edges tagged with the facial cycle b.
Those edges are incident to a tree Tb of faces (also
tagged with b) of G whose union is bounded by b
and only one among those faces is perforated. Any
e ∈ Eb cuts b into two subpaths bp, be such that the
concatenation bp · e surrounds the perforated face.
Clearly, e retracts onto be. We can express be as an
abstract subwalk we of b as follows. When the merging
edge e is removed during the retraction phase we keep
two pointers from e to the previous and next edge
in the incident plain face f to be collapsed. Those
pointers delimitate the complementary subpath of f
onto which e retracts. We can differentiate a start and
an end between those pointers by taking into account
the orientation of the incident perforated face and
the signature of e. At the end of the whole retraction
we can obtain we by following the start and end

pointers respectively, until we hit a non-free edge. We
summarize the discussion into the following

Proposition 3 Let G be a graph embedded on a
surface S with at least one boundary. In O(|G|) time
we can compute:

• a subgraph G′ of G on which S retracts,

• a set B of boundary cycles, one per boundary
cycle of G′,

• for each oriented edge e ∈ G, an abstract sub-
walk (i, j)b whose underlying path is the defor-
mation retract of e onto G′, where b ∈ B ∪ B−1.
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4 Reducing a sequence of subwalks

The length |a| of an (abstract) subwalk a is the length
of its underlying path. The underlying cycle of a
sequence of subwalks is the cycle obtained by concate-
nation of the individual underlying paths. A sequence
of subwalks is reduced if its underlying cycle is.

Our goal is to cyclically search and remove spurs,
preserving the free homotopy class. We express these
simplifications with the following set of rules: for all
(i, j)b and (k, l)d such that b[j] = d[k]

−1:

(i, j)b · (k, l)d −→














ǫ if i = j and k = l
(i, j − 1)b if i 6= j and k = l
(k + 1, l)d if i = j and k 6= l
(i, j − 1)b · (k + 1, l)d otherwise

(1)

The following lemma ensures the correctness of our
simulation:

Lemma 4 Let s be a sequence of subwalks. If s is not
reduced then there exist two cyclically consecutive
subwalks in s on which one of the above rules apply.

Proof. Since G′ has only one vertex no boundary
cycle can contain a spur. �

Running the rewriting system until no rule can cycli-
cally apply gives us a new sequence of subwalks whose
underlying loop is cyclically reduced and remains in
the same free homotopy class. To better control the
number of rewrites needed to reach a reduced sequence,
we add a special case to the previous rule set:

(i, j)b · (−j − 1, l)b−1 −→










ǫ if |(i, j)b| = |(−j − 1, l)b−1 |

(i, l − 1)b if |(i, j)b| > |(−j − 1, l)b−1 |

(i + 1, l)b−1 if |(i, j)b| < |(−j − 1, l)b−1 |

(2)

These new rules recognize right away when the second
subwalk undoes a whole chunk of the first along the
same boundary cycle, and compute in a single step
the result of removing spurs until only one subwalk
remains. In particular lemma 4 stays true. Rules of this
second type take precedence over the rules of set (1);
if both types apply then we use a rule of set (2).

Lemma 5 A path of length 2 in G′ appears at most
once as a subwalk of boundary cycles.

Proof. If y follows an oriented edge x in both facial
walks containing x, then ρ is an involution around
the common vertex v of x and y; in particular v has
degree 2. Because G′ has only one vertex, G′ is a single
loop; but then boundary cycles have length 1. �

Lemma 6 Let s1s2 be a sequence of two subwalks
on which some rule apply. Let s′ be the resulting
sequence, with precedence taken into account. Then
no rule apply on s′.

Proof. If s′ has height 1, no rule can apply. Otherwise
a rule of set (1) was used and s′ = (i, j − 1)b·(k + 1, l)d

where s1 = (i, j)b and s2 = (k, l)d. In particular b[j] =
d[k]

−1. If a rule of set (2) applies on s′, then d = b−1

and k + 1 = −(j − 1) − 1. If a rule of type (1) applies
on s′, then b[j−1] = d[k+1]

−1 = (d−1)[−k−2] and the
subpath b[j−1]b[j] appears both in b at position j − 1
and in d−1 at position −k−2. Using lemma 5 we again
get b = d−1 and k = −j − 1. This cannot be because
no rule of type (2) applied on s. �

Lemma 7 Suppose no rule apply on the sequence
s1s2. Let s0 (resp. s3) be a subwalk such that some rule
apply on s0s1 (resp. s2s3), yielding with precedence a
sequence of two subwalks s′

0s′
1 (resp. s′

2s′
3). Then no

rule apply on s′
1s2 (resp. s1s′

2).

Proof. The conditions on s′
1s2 (resp. s1s′

2) are exactly
the same as on s1s2. �

The height of a sequence of subwalks s is the
number h(s) of subwalks composing it. The inertia
of s = s1 · · · sh, denoted i(s), is the maximum k ≤ h
such that for all 1 ≤ i ≤ k, sisi+1 triggers no rule.1

If i(s) = h(s) then s is cyclically inert.

Lemma 8 Let s = s1 · · · sh be a sequence of subwalks
of inertia i < h. Let r be the result of the rules applied
on si+1si+2. If i < h − 1 let s′ = s1 · · · si · r · si+3 · · · sh

else let s′ = s2 · · · sh−1 ·r. Then 3h(s′)−i(s′) < 3h(s)−
i(s).

Proof. We first suppose i < h − 1. If h(s′) = h(s)
then h(r) = 2; lemmas 6 and 7 ensure i(s′) ≥ i(s) + 1.
Else h(s′) ≤ h(s)−1 and of course i(s′) ≥ i(s)−1. We
now handle the case i = h − 1. We always have i(s′) ≥
i(s) − 2; if h(s′) < h(s) the result follows. Otherwise
r = r1r2. By lemma 6 r1r2 triggers no rule, and neither
do sh+1r1 nor r2s2 by lemma 7. Hence i(s′) = h. �

A direct consequence is:

Proposition 9 Given a sequence s of subwalks we
can compute in O(h(s)) time a cyclically inert se-
quence s′ of subwalks whose underlying cycle is freely
homotopic to that of s. In particular s′ is reduced.

5 The free homotopy

Let c and d be two cycles on S. Using propositions
3 and 9 we get two sequences s and t of subwalks
whose underlying loops c′ and d′ are freely homotopic
to c and d respectively. In particular c and d are freely
homotopic if and only if c′ ≡ d′ up to cyclic permuta-
tion. Explicitly comparing the underlying loops is too
costly. We thus define a canonical representation of any
reduced cycle as a sequence of subwalks, and show how
to derive this canonical representation from s and t.

1By convention sh+1 = s1.
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A boundary mapping of an edge e ∈ G′ is any
pair (b, i) where b ∈ B ∪ B−1 and i ∈ Z/|b|Z such
that b[i] = e. Every e ∈ G′ has exactly two bound-
ary mappings. We choose an arbitrary total order
on B ∪B−1. We define as follows the canonical map-
ping CM(c, e) of e ∈ c with respect to a reduced
cycle c. Let p and n be the edges respectively pre-
ceding and following e in c. If en is a subpath of
some boundary cycle then by lemma 5 there is a
unique pair (b, i) such that en occurs at position i
in b and we set CM(c, e) = (b, i). Else, if pe is a sub-
path of some boundary cycle then CM(c, e) is the
unique (b, i) such that pe occurs at position i − 1 in b.
Otherwise let CM(c, e) be the mapping of e with mini-
mal b ∈ B ∪B−1. Two consecutive edges e1 and e2 of c
are said to agree with each other if CM(c, e1) = (b, i)
and CM(c, e2) = (b, i + 1). Let c be a reduced cycle
and p = e1 · · · ek ⊂ c a subpath of agreeing edges.
Let (b, i) = CM(c, e1) and k = |b| q + r the Euclidean
division of k by |b|. The leftmost sequence of p is
[(i, i − 1)b]q if r = 0 and [(i, i − 1)b]q · (i, i + r − 1)b

otherwise. If c is not the power of a boundary cycle
then there is a unique decomposition c = p1 · · · ph

into maximal subpaths of agreeing edges, that is
where the last edge of pi does not agree with the first
edge of pi+1. The canonical sequence of c is then
the concatenation Can(c) of the leftmost sequences
of p1, . . . , ph. If c is the q-th power of a boundary cycle
then Can(c) = [(0, −1)b]q is the leftmost sequence of
the subpath of c following q times the corresponding
boundary walk b. By definition Can(c) is unique up
to circular permutation.

Lemma 10 Two reduced cycles c and d are equal if
and only if Can(c) and Can(d) are circular permuta-
tions of each other.

If s is a sequence of subwalks with underlying cycle c
then a subwalk (i, j)b ∈ s of underlying path x ⊂ c is
admissible if the l-th edge xi of x has CM(c, wl) =
(b, i + l − 1). In particular, xl agrees with xl+1. A
sequence of subwalks is admissible if all its abstract
subwalks are. Of course Can(c) is admissible.

Lemma 11 Let s is a sequence of subwalks with un-
derlying cycle c. Let w = (i, j)b ∈ s with i 6= j. Then
w = (i, j − 1)b · (j, j)b where (i, j − 1)b is admissible.

Two consecutive subwalks (i, j)b and (i′, j′)b′ in
an admissible sequence agree with each other if
(b′, i′) = (b, j+1) — in other words the last edge under-
lying (i, j)b agrees with the first underlying (i′, j′)b′ .

Lemma 12 Let s is a sequence of subwalks with un-
derlying cycle c. If s1 · · · sh ⊂ s is a sequence of agree-
ing subwalks of s then we can compute in O(h) time
the corresponding leftmost sequence.

Proof. Compute |s1|+ · · ·+ |sh| and divide by |b| �

Proposition 13 Given a reduced sequence s of sub-
walks with underlying cycle c, we can compute Can(c)
in O(|s|) time.

Proof. By computing a single canonical mapping we
can replace any subwalk of length 1 by an admissi-
ble one. Together with lemma 11 this ensures we can
compute an admissible sequence s′ = s′

1 · · · s′
h with

underlying cycle c such that h ≤ 2 |s|. We then search
for some k such that sk disagrees with sk+1. If there is
none then c is the power of a boundary cycle b: return
Can(c) = [(0, −1)b]q where q = |c|

|b| = O(|s|). Other-
wise, cut s′ into subsequences of agreeing subwalks,
computing with lemma 12 and concatenating their
respective leftmost sequences . �

Now we can prove theorem 1:

Proof. Use propositions 3, 9 and 13 to compute in
O(h) time the canonical sequences of two reduced
cycles c′ and d′ freely homotopic to c and d respec-
tively. c and d are freely homotopic if and only if
c′ and d′ are, which happens if and only if c′ and d′

are equal as cycles of G′, or equivalently if and only if
Can(c′) and Can(d′) are cyclic permutations of each
other. That last test can be answered in O(h) time
with a Knuth-Morris-Pratt string search of Can(c′)
in Can(d′)Can(d′), with the added condition that
h(Can(c′)) = h(Can(d′)). Taking the initial prepro-
cessing into account we have the claimed result. �
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On the Exploration Problem for Polygons with One Hole

Robert Georges∗ Frank Hoffmann∗ Klaus Kriegel∗

Abstract

We study online strategies for autonomous mobile
robots with vision to explore unknown polygons with
at most one hole. We prove lower bounds on the com-
petitive ratio of such strategies both for the orthogo-
nal and the general case. Furthermore, we describe a
competitive strategy for the case that the robot can
distinguish between the edges of the outer boundary
and the hole.

1 Introduction

A basic task for an autonomous mobile robot is to
explore an unknown environment modeled by a poly-
gon, possibly with holes. We assume the robot to be
point shaped and to start from a given point, s, on
the polygon’s boundary. It is equipped with an un-
limited 360◦ vision system that continuously provides
the visibility polygon of its current position. When
the robot has observed every point of the polygon it
returns to s.
Assuming that the polygon is known, an opti-

mal tour Topt through s can be computed offline.
The robot’s performance exploring the unknown poly-
gon online is evaluated through competitive analysis.
Therefore we compare the length of the tour gener-
ated by the robot with the length of Topt . If this
ratio is bounded from above by a constant C for any
problem instance, we call the strategy C–competitive.

Over the last two decades, the problem of design-
ing competitive online exploration strategies for cer-
tain polygon classes has received a lot of attention.
A simple greedy strategy is almost optimal for simple
orthogonal polygons as shown in a seminal paper by
Deng et al. [2], see also [5]. Later, Hoffmann et al.
[6] came up with a 26.5–competitive strategy for gen-
eral simple polygons (in the following called HIKK–
strategy). On the other hand, there is a lower bound
for the competitive ratio of 1.28 in this case [4]. If one
allows polygons with h holes there is a lower bound of
Ω(

√
h), even for orthogonal polygons [1]. Computing

the optimal offline tour becomes NP–hard.
Thus, one can ask about polygons with a fixed but

small number of holes, say one hole in the easiest case.
The only result in this direction we are aware of is

∗Freie Universität Berlin, Institut für Infor-

matik, 14195 Berlin, Germany, {georges, hoffmann,

kriegel}@mi.fu-berlin.de

a O(h)–competitive strategy for orthogonal polygons
with h holes [2]. This result implies a 14–competitive
strategy (L1–metric) for the case of one hole.

We make the following contributions to the prob-
lem of exploring polygons with one hole. In Section 2
we prove a rather simple lower bound of 2 for the or-
thogonal case and a lower bound of 2.618 for the com-
petitive ratio in the general case. This latter bound
also holds for a modified model, where the hole is spe-
cially colored and the robot can therefore distinguish
between outer boundary edges and edges of the hole.
Undoubtedly, this should be of great advantage for
the robot to fulfill its task. Nevertheless, it seems to
be nontrivial to come up with a competitive strategy
S1 under this assumption.

We describe such a strategy in Section 3. It pro-
ceeds in two phases. In Phase 1 it follows the HIKK–
strategy until the hole H is visible for the first time.
Then it learns, based on a doubling strategy, the rel-
ative convex hull R of the set H ∪ {s}. In contrast
to the orthogonal case, a competitive strategy can-
not always afford to circle H completely. In Phase 2
a hybrid approach is implemented to explore the re-
maining ”caves” inside and outside of R. This is based
on the knowledge of the length |R| of R. As soon as
S1 knows that |R| is less than c · |Topt|, for a suitable
universal constant c, it basically switches again to the
HIKK–strategy (Theorem 3). Otherwise, if it is not
safe to circle H, the strategy S1 will eventually rely
on a doubling approach.

Although the competitive ratio of our strategy is
huge (≈ 610), we consider the model of a colored hole
a reasonable intermediate step towards the general
case. All missing details of the strategy description
and its analysis can be found in [3].

One might ask, why should this problem be so com-
plicated after all? First of all, there is a notorious
lack of tools to evaluate online strategies, which is one
reason for the gap between lower and upper bounds
even in the case of simple polygons. For example,
the HIKK–strategy is believed to perform much bet-
ter than the proven upper bound. Additionally, we
have to cope with another difficulty. Optimal tours
in polygons with one hole are in general no longer
unique and no longer relatively convex. In contrast,
in a simple polygon one can identify vertices the op-
timal tour has to go through and use those points for
the analysis.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Lower bounds

Theorem 1 Any deterministic online strategy S1

that computes valid watchman routes in orthogonal

polygons with at most one hole has a competitive ra-

tio of at least 2.

s

L

R
R1

R2

Figure 1: Lower bound example, orthogonal case

Proof. (Sketch) We confront S1 with a polygon com-
posed of long thin winding corridors as indicated in
Fig.1. In starting point s it has two choices, it can fol-
low corridor L or R. Exploring them simultaneously,
say by using a doubling strategy, see [7], is too expen-
sive and because of the windings S1 cannot look far
ahead. After travelling a corridor, say L, a distance
d ≫ 0, S1 encounters a new branching region with
two new corridors R1 and R2 pointing back. Again,
S1 has to decide which one eventually to follow, say it
chooses R2. Notice, in that moment R1 has not been
completely explored and we make R1 a dead end cor-
ridor by cutting it off behind the next winding. S1

follows R2 (which is in fact R) until it reaches the
proximity of s again. Now S1 will notice that it has
circled the hole completely and missed the very end
of R1 only. To accomplish its task it has to return to
R1, therefore travelling additionally a distance of 2d
plus twice the length of R1. An optimal tour will first
learn R1 before it returns to s. �

Notice, that this lower bound construction does not
hold for the case of a colored hole. The strategy then
could identify the dead end and explore it first.

If the robot discovers a new reflex vertex v that has
an invisible incident edge, we call the extension of that
edge into the polygon’s interior the cut of v. The cut
of a reflex vertex on the outer boundary could either
hit the hole or pass by on the left/right side. This
leads to the following lower bound construction.

Theorem 2 Any deterministic online strategy S1

that computes valid watchman routes in general poly-

gons with at most one hole has a competitive ratio of

at least 3+
√
5

2
≈ 2.618.

Proof. (Sketch) Consider the polygon given in
Fig.2(a). After travelling a distance of 3ǫ an online
strategy S1 has learned the hole completely and has

s
2ǫ

s′1

l

s′1 s′1

(a) (b) (c)

αα

s′′

l

LL

s
2ǫ

s
2ǫ

L

l

r

Figure 2: Lower bound example, general case

discovered reflex vertex l. Now, S1 knows line L and
point s′ on L, which is the closest point (say in dis-
tance 1) on the right side of the hole where S1 could
learn the hidden edge behind vertex l. In fact, after
reaching s′ the strategy perhaps sees everything and
returns to s, Fig.2(c). But directly moving to s′ is a
fatal decision given the slightly modified situation in
Fig.2(b). Here it suffices to move distance α on the
left side of the hole to point s′′. There S1 learns both
vertex l and some reflex vertex r that is hidden be-
hind l. (Hint: r is very close to l and can be learned
only from the left side in a competitive way.)

Any competitive strategy S1 must be able to han-
dle both possibilities, the optimal strategy chooses the
correct side. Therefore, S1 must try to explore cor-
ner l on the left side first, travelling some distance α.
Because of the malicious adversary, it still misses the
cut of l by a very small distance. Then it will return
and explore the cut of l from the right side. If the
task is completed in s′, the strategy travels a total
distance of 2α+2. But close to s′, it could also learn
the existence of vertex r and S1 has to return once
again to the left side of the hole. This yields a total
path length of 4α+ 2.

In both cases the quotient of the tour length gener-
ated by S1 and the optimal tour length is a func-
tion in α. The monotonically decreasing function
f(α) = 4α+2

2α
describes the competitive ratio, if the

cut points to the left side of the hole, Fig.2(b). If the
cut of l is learned in s′ we have the monotonically
increasing function g(α) = 2α+2

2
, Fig.2(c). Compar-

ing both functions to determine the optimal value for

α results in α = 1+
√
5

2
, the golden ratio. We obtain

3+
√
5

2
≈ 2.618 as lower bound for the competitive ra-

tio. �
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In contrast to the orthogonal case a colored hole
would make no difference. The problem of learning
a reflex vertex in presence of a vision-blocking hole
turns out to be a fundamental issue for any strategy
that wants to explore the polygon.

3 A competitive strategy for polygons with one

colored hole

Since the complete description of the strategy (and
even more of the analysis) is very complex, we will fo-
cus on the presentation of the key ideas and the global
structure of the algorithm. As usual, we assume that
the starting point s is on the outer boundary of P
and Topt denotes a shortest closed watchman tour.
The design of our strategy follows the basic principle
that in each phase and subphase the generated path
should compare to Topt in a competitive way.

s

a7

a6
λ R

λ

Figure 3: Learning the relative convex hull R

3.1 Phase 1: Learning the relative convex hull

If no point of the (colored) hole is visible from s we
start the 26.5-competitive HIKK-strategy until H be-
comes visible. The next goal will be to look once
around the hole, more precisely to learn the bound-
ary R of the relative convex hull of H ∪ {s}. A
set M is relatively convex in P if for each pair of
points in M the geodesics (shortest paths) connect-
ing them are included in M . Thus, one can imag-
ine R = ∂ (RCH (H ∪ {s})) as the shape of a rubber
band spanned around H and the starting point inside
P (Fig.3).
Let a1, a2, . . . , an be the chain of line segments

that represents R in ccw–orientation starting from s.
Learning R means to see each ai (possibly by touch-
ing an extension of ai only). Any strategy that tries
to learn R circling H in a fixed orientation will fail to
be competitive. Consider e.g. the situation in Figure
2. A strategy that explores R in cw–orientation has
to walk up to the top vertex of H on the left side and
down again on the right side of H. This can exceed
c · |Topt| for any constant c. Thus, we explore R in
rounds with a doubling approach [7]: In an odd/even
round k we move in cw–/ccw–orientation going 2k−1

length units. In each round there is a last known seg-
ment of R ending at a reflex vertex that hides the next

segment. Our strategy explores this next segment on
a semicircle, see [6].
Remark that Topt might not circle H completely,

but it must visit extensions of all segments ai. Con-
sider two segments ai, ai+1 incident to a common ver-
tex of H and compute the sum of the shortest path
lengths from s to an extension of ai ccw. around H

and to an extension of ai+1 cw. around H. Minimiz-
ing this sum over all pairs (ai, ai+1), we get a lower
bound λ on |Topt|. In Figure 3 the lower bound λ for
learning R and, consequently, for the length of Topt is
realized by (a6, a7). Combining this with the factor 2
of the semicircle strategy and the factor 9 of the dou-
bling approach we can show that our strategy learns
R with total path length ≤ 36 |Topt|.

3.2 Phase 2: The hybrid approach

H is called a c-save hole (for a fixed constant c), if

|R| ≤ c |Topt| (1)

holds. Note that |R| depends on both the shape of H
and the position of s. After learning R and computing
λ ≤ |Topt| we can determine whether |R| ≤ cλ and
decide if the hole is safe.

Theorem 3 Let S0 be a C-competitive strategy for

exploring simple polygons. After Phase 1 any polygon

P with a c-safe holeH can be explored with total path

length ≤ (4c+ 2)C |Topt|.

Proof. Consider a shortest path p from s to H. If
it hits some reflex vertices of P, we translate p into
the polygon’s interior. This way we introduce an ad-
ditional barrier that transforms P into a simple poly-
gon P ′ (Fig.4). We show that the strategy S0 applied
to P ′ will fulfill the required condition. Therefore it
is sufficient to show that there is a closed watchman
tour of length ≤ (4c+ 2) |Topt| in the simple polygon
P ′.
Since the original Topt might get sliced by the bar-

rier p into several (left and right) pieces and p might
limit the visibility too, we use R plus two copies of
p (one on the left, the other one on the right side
of the barrier) to link together all pieces of Topt and
to restore full vision. Since the construction of a
closed tour is based on an Eulerian graph, we ensure
that all vertices have even degree using two copies
of our structure. Finally, the length of this tour
is at most 2 (|R|+ 2|p|+ |Topt|) ≤ 4|R| + 2 |Topt| ≤
(4c+ 2) |Topt|. �

The hole H is called c-critical as long as we don’t
know whether condition (1) holds. The hybrid ap-
proach consists in implementing the following rule: As
soon as we learn that (1) is fulfilled our strategy will
switch to the simple polygon mode using Theorem 3.
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Figure 4: Exploring a polygon with a c-save hole.

Next we discuss how to proceed if the hole is (still)
c-critical. Assume that the lower bound λ was estab-
lished by the edge pair (ai0 , ai0+1) with the common
polygon vertex pi0 . Using some trigonometric reason-
ing one can show that the angle α between ai0 and
ai0+1 is very small. Let G be the line segment per-
pendicular to the angular bisector of α through pi0 in
P. Then G subdivides P into two simple polygons P0

and P1, where P0 is the one including s and the hole.

Theorem 4 Let S0 be a C-competitive strategy for

simple polygons, P a polygon with a c-critical hole,

and W the shortest path from s to the line segment

G. Assume that S0 starts in s to explore the simple

polygon P0 until it finishes the exploration or the to-

tal path length exceeds 2 · C · |W|. If S0 stops with

completed exploration of P0, then the exploration was

C-competitive. If S0 stops with total path length

2 · C · |W|, then |Topt| ≥ 2 · |W| holds.

Proof. If Topt reaches G, then the claim is obvious.
Otherwise Topt is a tour inside of P0 and the claim
follows from the competitiveness of S0. �

We remark that in the second case the hole becomes
3.1-safe and thus we can apply Theorem 3. Only in
the first case the hole might persist critical. Then it
remains to explore the polygon P1 from remote (in
P0). Note that this is just the situation known from
the lower bound example, see Theorem 2. To accom-
plish this goal we use the procedures for exploring
groups of left and right vertices from [6]. The point
is that it is not clear from which side of the hole an
extension of a hidden polygon edge in P1 has to be
explored. Thus, we will apply a doubling approach
again. Due to space limitations we have to omit the
quite complex analysis, see [3] for details.
In summary, we get the following main result.

Theorem 5 There is a competitive strategy for ex-

ploring polygons with at most one colored hole and

given starting point on the outer boundary.

The competitive factor that follows from the proof
is huge (≈ 610) and the corresponding constant c is
chosen to be 5.

Finally, an interesting feature of our solution is the
qualitative dependency of the proven competitive ra-
tio on geometric properties of the polygon. For exam-
ple, exploiting the relation between constant c (c–save
holes) and the value of angle α leads to an improved
competitive factor for polygons without small angles.

4 Future work

We conjecture that our main result holds for the case
of an uncolored hole. Moreover, we are sure that the
competitive factor can be considerably improved. On
the other hand, one could try to generalize the result
to polygons with several differently colored holes. We
remark that for h ≥ 2 holes the task of exploring the
polygon is no longer equivalent to exploring all edges,
compare Fig.5. However, this is true for the case of
at most one hole.

s

T

Figure 5: Seeing all boundary edges does not guaran-
tee the exploration of the hole polygon
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On the Rectilinear Convex Layers of a Planar Set

C. Peláez∗ A. Ramírez-Vigueras∗ C. Seara† J. Urrutia‡

Abstract

In this paper we give an optimal O(n log n) time and
O(n) space algorithm to compute the rectilinear con-
vex layers of a set S of n points on the plane. We also
compute the rotation of S that minimizes the number
of rectilinear convex layers in O(n2 log n) time and
O(n2) space.

1 Introduction

Let S = {p1, . . . , pn} be a set of n points in the plane
in general position. A quadrant Q of the plane is the
intersection of two closed half-planes whose support-
ing lines are parallel to the x- and y-axes. We say that
a quadrant is S-free if it does not contain any point of
S in int(Q), where int(Q) denotes the interior of Q.
The rectilinear convex hull RH(S) of S is defined as:

RH(S) = R
2 −

⋃

Q is S-free

int(Q).

The rectilinear convex hull was introduced in [8] and
further studied in [1] and [2]. The rectilinear convex
layers of S are defined as follows:

1. The first rectilinear convex layer of S, denoted
L1, is RH(S). Let S1 denote the set of elements
of S that belong to RH(S).

2. The i-th rectilinear convex layer Li of S is the
rectilinear convex hull RH(Si), where Si = S \
{S1 ∪ · · · ∪ Si−1}, where Sj is the set of elements
of S in Lj . We stop when S \ {S1 ∪ · · · ∪Si} = ∅;
the first i for which S \ {S1 ∪ · · · ∪ Si} = ∅ is the
number of rectilinear convex layers of S.

Figure 1 shows a point set and its rectilinear convex
hull. Figure 2 shows an example of the rectilinear
convex layers of a point set.

∗Posgrado en Ciencia e Ingeniería de la Computación,
Universidad Nacional Autónoma de México, {canek,

adriana.rv}@ciencias.unam.mx. Partially supported by
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de México, urrutia@matem.unam.mx. Partially supported by
projects MTM2006-03909 (Spain) and SEP-CONACYT of
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Figure 1: Rectilinear convex hull and its staircases.

Figure 2: Rectilinear convex layers of a point set.

If we rotate S around the origin the rectilinear con-
vex hull of S, as well as the number of rectilinear
convex layers of S changes (Figure 3).

(a) A point set S with
O(n) rectilinear convex
layers.

(b) One rectilinear con-
vex layer of S by doing a
rotation of α = π

8
.

Figure 3: As we rotate S, the number of rectilinear con-

vex layers changes from one to n

4
.

Notice that the rectilinear convex hull of S is not
necessarily connected (Figure 4). It is not hard to
show that if S contains at least four points in general
position, there is always a rotation of S for which its
rectilinear convex hull is connected, and its interior is
nonempty.

Results. In this paper, we give an optimal
Θ(n log n) time and O(n) space algorithm to calcu-

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.



198

28th European Workshop on Computational Geometry, 2012

(a) RH(S) with α = 0. (b) RH(S) with α = π

4
.

Figure 4: Two different rectilinear convex hulls.

late the rectilinear convex layers of S. We also give an
O(n2 log n) time and O(n2) space algorithm to com-
pute the rotation of S that minimizes (or maximizes)
the number of rectilinear convex layers of S. We will
omit some proofs due to the lack of space.

Related work. The problem of finding the convex
hull of a point set S, as well as its convex layers has
been studied in [9]. An optimal algorithm to find
them in O(n log n) was obtained in [4].

The problem of finding the rotation of S that mini-
mizes the area of the rectilinear convex hull was stud-
ied in [2] and in [1] it was proved that it can be
found in Θ(n log n) time and O(n) space. The prob-
lem of finding the rectilinear convex hull of a point set
S, is closely related to that of finding elements of S
which are maximal under vector dominance. Optimal
O(n log n) algorithms to find them in two and three
dimensions were obtained in [6]. In [7] an O(n2.688)
algorithm for d = n was given. An O(n log n) algo-
rithm for computing the layers of maxima for point
sets in three dimensions was presented in [3].

1.1 Preliminaries

For a planar point set S, we define four partial orders
on S, P (S,�i) using the following binary relations on
pairs of elements pi = (xi, yi) and pj = (xj , yj) in S:

• pi �1 pj iff xi ≤ xj and yi ≤ yj .

• pi �2 pj iff xi ≥ xj and yi ≤ yj .

• pi �3 pj iff xi ≥ xj and yi ≥ yj .

• pi �4 pj iff xi ≤ xj and yi ≥ yj .

Let C = {qi = (xi, yi); i = 1, . . . , r} be an antichain
of P (S,�1) such that its elements are sorted accord-
ing to their x-coordinate. C determines a staircase

formed by the union of a set of elbows obtained as
follows: Join qi to qi+1 by an elbow passing trough
the point (xi, yi+1), i = 1, . . . , r − 1 (Figure 5a). In
a similar way, the antichains of P (S,�2), P (S,�3),
and P (S,�4) determine staircases (Figure 5b).

We will denote the staircase determined by the
maximal elements of P (S,�i) with si(S) (Figure 1).
Notice that s4(S) and s1(S), and si(S) and si+1(S)

share an element of S, i = 1, 2, 3. The boundary
of the rectilinear convex hull of S is contained in
s1(S)∪s2(S)∪s3(S)∪s4(S), and the set of elements of
S that belong to the boundary of its rectilinear con-
vex hull, is the union of the sets of maximal elements
of P (S,�1), P (S,�2), P (S,�3), and P (S,�4).

Since each of si(S) can be obtained in O(n log n),
the rectilinear convex hull of S can be obtained in the
O(n log n). We will present an algorithm to compute
the rectilinear convex layers of S in optimal Θ(n log n)
time. We will use the layers of maxima points as
defined by Buchsbaum and Goodrich [3].

2 The k-level staircases

We define the k-level staircases of P (S,�1) as follows:
The 1-level staircase of P (S,�1), denoted L1

1, is s1(S).
The i-level staircase of P (S,�1), denoted L1

i , is:

L1
i = s1



S\
i−1
⋃

j=1

L1
j



 .

The k-level staircases of P (S,�2), P (S,�3), and
P (S,�4) are defined in a similar way (Figure 5).

(a) k-level staircases of
P (S,�1).

(b) k-level staircases of
P (S,�2).

Figure 5: k-level staircases of P (S,�1) and P (S,�2).

We show now how to compute all the k-level stair-
cases of P (S,�1) in O(n log n) time. This problem
has also been solved by Buchsbaum and Goodrich [3]
with the same complexity. We present a slightly dif-
ferent solution using what we call a domination tree.
This tree will allow us to solve the problem of find-
ing the rotation of S that minimizes the number of
rectilinear convex layers.

2.1 The domination tree

The domination tree is a rooted tree T that satisfies
the following properties: The elements at depth i in T

are the elements of L1
i , ordered by the x-coordinate.

The parent of a point q ∈ L1
i+1 is a point p ∈ L1

i , with
smallest x-coordinate such that p(x) > q(x) (Fig-
ure 6). To construct the domination tree, we will
use an algorithm that we call the BuildTree. We
present only an outline of how BuildTree works.

Assume that the elements of S are labelled
p1, . . . , pn such that if i < j, then the y-coordinate
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of pi is greater than the y-coordinate of pj . We pro-
cess the elements of S in this order, that is from top to
bottom. Suppose that we have processed p1, . . . , pi−1,
and that up to this point, we have detected k layers of
Si−1 = {p1, . . . , pi−1}. Suppose that we have an aux-
iliary array A such that for any j ≤ k, A[j] contains
the rightmost element of the j-th layer of Si−1. The
following assertion is not hard to prove: If p belongs
to the r-th layer L1

r of S, then A[r− 1] dominates pi,
and A[r] does not dominate pi. Using the array A, we
can find r in logarithmic time using binary search. It
is not hard to see that the parent of pi in L1

r−1 can
be also determined in logarithmic time.

For each point pi, we will see if it is to the right
of the rightmost point in the deepest k-level we have
found: If it is so, we will add it to that k-level. Oth-
erwise, we will find the point in the deepest level with
the smallest x-coordinate greater than pi(x). If there
is no such point, then pi will go into a new k-level.
Using the auxiliary sorted array A with the rightmost
element of every k-level found, we will be able to do
this in O(log n) time for every point, which will yield
a total complexity of O(n log n) time. Thus we have
the following results:

Theorem 1 The complexity of BuildTree is

O(n log n).

Theorem 2 All of the i-level staircases of P (S,�1)
can be constructed in O(n log n) time and O(n) space.

An example of the output of BuildTree is shown
in Figure 6.

Figure 6: The tree T1 resulting of running BuildTree

on the point set shown in Figure 5.

3 Rectilinear Convex Layers

Clearly BuildTree can also be used to build all the
k-level staircases of P (S,�1), P (S,�2), P (S,�3), and
P (S,�4). We now show how to use them to build the
rectilinear convex layers of S.

Lemma 3 Let Si = S\
⋃i−1

k=1
Lk. If p ∈ sj(Si) for

some j ∈ {1, 2, 3, 4}, then p is in L
j
i .

Proof. The result is obvious for i = 1. Suppose then
that for some i > 1, p ∈ Li. Then p ∈ Si, and thus
p ∈ sj(Si) for some j ∈ {1, 2, 3, 4}. Without loss of
generality suppose that p ∈ s1(Si). Then it is easy to
see that there is a point q ∈ s1(Si−1) such that p �1 q.
Therefore, p is in the i-level staircase of P (S,�1). �

Corollary 4 If p ∈ Li, then either p ∈ L1
i , p ∈ L2

i ,

p ∈ L3
i , or p ∈ L4

i .

Lemma 5 Let p ∈ S be such that p ∈ Li
ji

for i =
1, 2, 3, 4. If j = min{j1, j2, j3, j4}, then p is in the

j-th rectilinear convex layer Lj of S.

Theorem 6 Let S a planar point set in general posi-

tion. Computing the rectilinear convex layers of S can

be done in optimal Θ(n log n) time and O(n) space.

The time optimality follows from the fact that com-
puting the rectilinear convex hull of a point set re-
quires Ω(n log n) time [1].

3.1 The rotation of S with the minimum number

of layers

The convex hull and the convex layers of a planar
point set are invariant under rotations of the point set.
This is not the case when we consider the rectilinear
convex hull and the rectilinear convex layers. Thus,
we now study the following problem: Given a planar
point set S, find a rotation of S around the origin that
minimizes (or maximizes) the number of rectilinear
convex layers of S.

By using the four domination trees obtained by
BuildTree to compute the rectilinear convex layers
of S we can produce this minimum (or maximum) in
O(n2 log n) time and O(n2) space: We only need to
find the critical directions where the k-level staircases
in our domination tree, and therefore the rectilinear
convex layers of S, may change.

These critical directions are defined when the line
joining two points in S becomes horizontal, or verti-
cal. When this happens, the partial order P (�i, S)
can change, and this can cause the rectilinear con-
vex layers and the rectilinear convex hull to change
(Figure 7).

We compute first T1, and the rectilinear convex lay-
ers of S. Next, we will generate the set D of critical
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(a) Rotation α = 0. (b) Rotation α = π

24
.

Figure 7: In the rotation α = 0, q �1 p, and p and r are

not comparable. In the rotation α = π

24
, q and p are not

comparable, and r �1 p.

directions in O(n2) time and space, and sort them
in O(n2) time using standard techniques. We do the
sorting in such a way that when we pass through a
critical direction γi ∈ D we know whether the two
points p and q defining γi ∈ D become horizontal or
vertical aligned according to the current orientation
of the axes. Let p and q be the two points defining
γi ∈ D and assume that the line joining p and q be-
comes horizontal (Figure 7). If p is not the parent of q
or the other way around, we will continue to the next
critical direction. Otherwise, q jumps from the j-level
staircase to the (j − 1)-level staircase, so we remove
q from its staircase it belongs to, and add it to that
one level above it. We repeat this recursively for all
the descendants of q.

If the line joining p to q becomes vertical, we pro-
ceed as follows: If both p and q are not in the same
j-level staircase and next to each other in that stair-
case, continue to the next critical direction. Other-
wise, suppose that p is before r in their j-level stair-
case. Then r jumps down from the j-level staircase to
the (j + 1)-level staircase: We create the (j + 1)-level
staircase if it does not exists.

Lemma 7 When going from γi to γi+1, a point p ∈ S

either preserves its depth, or it only changes by 1.

Lemma 8 When a point q jumps up from the j-level

staircase to the (j − 1)-level staircase, all its descen-

dants in the T1 tree also jump up one staircase level,

and not other point in S does.

The result is similar for the other three trees.

Theorem 9 At the end of the i-th cycle of the loop,

the Lj array will be the j-level staircase L1
j of S in

the rotation γi.

To prove the time complexity of the algorithm we
need the following non trivial lemma, given without
proof.

Lemma 10 The number of times p ∈ S changes its

rectilinear depth as S rotates is at most O(n).

Theorem 11 Let S a planar point set in general po-

sition. Computing the rotation of S that minimizes

the number of layers can be done in O(n2 log n) time

and O(n2) space.

This algorithm can be modified to solve other prob-
lems such as computing the rotation that: (1) maxi-
mizes the number of rectilinear convex layers of S, (2)
produces the rectilinear convex hull with the largest
(smallest) number of vertices.
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On balanced 4-holes in bichromatic point sets

S. Bereg ∗ J.M. Díaz-Báñez † R. Fabila-Monroy ‡ P. Pérez-Lantero § A. Ramírez-Vigueras ¶

T. Sakai ‖ J. Urrutia ∗∗ I. Ventura †

1 Introduction

Let S = R∪B be a set of n points in general position
in the plane. The elements of R and B will be called,
respectively, the red and blue elements of S. A k-hole
of S is a simple polygon with k vertices, all in S, and
containing no element of S in its interior. A 4-hole of
S is balanced if it has two blue and two red vertices. In
this paper, we characterize the set of bicolored points
S = R∪B that have balanced convex 4-holes. We also
show that if the 4-holes of S are allowed to be non-
convex, and |R| = |B|, then S always has a quadratic
number of balanced 4-holes.

The study of k-holes in colored point sets was in-
troduced by Devillers et al. [2]. They obtained a
bichromatic point set S = R ∪B with 18 points that
contains no convex monochromatic 4-hole. Recently,
Hummer and Seara obtained a bichromatic point set
with 36 points that does not contain monochromatic
4-holes [3]. This result was improved by Koshelev [4]
to 46. Devillers et al. [2] also proved that every 2-
colored Horton set with at least 64 elements contains
an empty monochromatic 4-hole. In the same paper
the following conjecture is posed: Every sufficiently
large bichromatic point set contains a monochromatic
convex 4-hole. This conjecture remains open. On the
other hand, Aichholzer et al [1] proved that any suffi-
ciently large bichromatic point set always contains a
not necessarily convex monochromatic 4-hole.
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2 Balanced Convex 4-holes

For any two points p and q on the plane, pq and ℓ(p, q)
will denote, respectively, the line segment joining p

and q, and the line determined by them. If p and q

are both blue points (resp. red points), pq and ℓ(p, q)
will be called a blue edge, and a blue line of S (resp.
red edge, and red line of S). Given a set X, CH(X)
will denote the convex hull of X. In all of our fig-
ures, blue points are represented with non-solid small
circles, whereas red points are represented with solid
small circles. Blue edges will be drawn with dotted
line segments, and red edges with solid line segments.

(c)(b)(a)

Figure 1: Point sets with no 4-balanced convex holes.

Clearly not all bicolored point sets have a balanced
convex 4-hole, see Figure 1(a), (b), and (c). The
number of blue points within the blue triangle and
hexagon in Figure 1(b), and (c) can be arbitrarily
large. We now proceed to characterize bicolored point
sets which contain balanced convex 4-holes. We as-
sume that |R|, |B| ≥ 2.

Lemma 1 If S contains red and a blue edges that

intersect, then S contains a balanced convex 4-hole.

Proof. Suppose that S has red and blue edges that
intersect. Choose a red edge ab and a blue edge cd

such that the convex quadrilateral Q with vertex set
{a, b, c, d} is of minimum area.

If Q is not a balanced 4-hole of S, then there is a
point in S contained in the interior of Q. Suppose
w.l.o.g. that Q contains a red point e ∈ S, and that
ae intersects cd. Then {a, e, c, d} is the set of vertices
of a balanced convex quadrilateral with area smaller
than that of Q, a contradiction, see Figure 2. �

Two cases arise: R and B are linearly separable, or
their are not. We analyze first the case when R and
B are not linearly separable.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.
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a b

c

d

e

Figure 2: Crossing segments. Segment ab can be re-

placed by segment ae.

2.1 R and B are not linearly separable

Suppose that R and B are not linearly separable. We
prove now the next result:

Theorem 2 Let S = R ∪ B, such that R and B are

not linearly separable. Then S has a balanced 4-hole

if and only if either of the following three conditions

holds:

1. CH(B) ⊂ CH(R), |R| ≥ 4, |B| ≥ 2,

2. CH(R) ⊂ CH(B), |B| ≥ 4, |R| ≥ 2,

3. CH(B) and CH(R) overlap.

Proof. Suppose first that CH(B) ⊂ CH(R), and R

and B have at least four and two elements, respec-
tively. Consider a triangulation T of R. By Lemma 1,
all blue points have to be in one triangle t of T , for
otherwise there would be a red and a blue edge of S
that cross each other. If B has exactly two elements,
then it is easy to see that two vertices of t, together
with the elements of B, form a balanced 4-hole. Sup-
pose then that B has at least three elements.

Since R has at least four points, T has at least
two triangles, one of which, call it t′, shares an edge
ab with t. Let Q = t ∪ t′, and suppose first that
Q is convex, see Figure 3(a). If the line determined
by two consecutive elements of CH(B), say u and v,
intersects ab, then two vertices of t′ together with u

and v form a balanced 4-hole, see Figure 3(a).
Suppose then that Q is not convex, and let c be the

third vertex of t′, see Figure 3(b). Since B has at least
three vertices, there are at least two blue vertices on
one of the half planes determined by the line ℓ(b, c).
It is easy to see that we can always choose two of
them, call them u and v, such that the quadrilateral
Q′ with vertices u, v, b, c is convex, and contains no
blue point in its interior, see Figure 3(b). It might
happen that Q′ contains a red point in its interior.
In such a case, we can always choose a red point c′

in the interior of Q′ such that the quadrilateral with
vertices u, v, b, c′ is a balanced 4-hole, see Figure 3(c).
Our result follows. It is worth pointing out that if
CH(B) ⊂ CH(R) but R has only three elements, our
result is not true. Counterexamples of this are the
point sets in Figure 1(b) and (c).

c

b

a

v
u

u
v

b

c

a

c

b

a

v
u

c′

(a) (b) (c)

Figure 3: Two possible quadrilaterals including the

blue points: convex and non-convex.

Finally observe that when the convex hulls of B and
R overlap there is a red and a blue edge that inter-
sect. By Lemma 1 we can conclude that S contains a
balance 4-hole. �

2.2 R and B are linearly separable.

Suppose that R and B are in convex position, that
they are linearly separable, and that there is a line
ℓ that separates R and B such that the elements in
R are to the left of ℓ, and the elements in B to its
right. We will assume w.l.o.g. that ℓ is vertical. As-
sume also w.l.o.g. that there is a horizontal line ℓ′

that is a supporting line of CH(B) and CH(R) that
intersects them at a single point, and that R and B

are contained in the closed half-plane determined by
ℓ′ and above it. Let r1 and b1 be the lowest elements
of R and B respectively. Label the elements of R

as r1, . . . , rm in the anti-clockwise direction around
CH(R), starting at r1. In a similar way, label the
elements of B as b1, . . . , bn in the clockwise direction
around CH(B) staring at b1.

r1

r2

r3

r4

b1

b2

b3

b4

r1

r2

r3

r4

b1

b2

b3

b4

(a) (b)

Figure 4: A funnel, and a funnel with a red tail.

We say that S = R ∪B is a funnel if the following
conditions hold: ℓ(r1, r2) intersects the segment b1b2,
or ℓ(b1, b2) intersects the segment r1r2. In the first
case, the following conditions must hold:

a) For each i such that the line ℓ(bi, bi+1) and the
segment ri+1ri+2 exist, ℓ(bi, bi+1) intersects ri+1ri+2.

b) For each i such that ℓ(ri, ri+1) and bibi+1 exist,
ℓ(ri, ri+1) intersects bibi+1.

If ℓ(b1, b2) intersects r1r2, then ℓ(ri, ri+1) intersects
bi+1bi+2, and ℓ(bi, bi+1) intersects riri+1.

The point set in Figure 4(a) is a funnel in which
each of R and B contains four elements. It is easy
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to see that if R ∪ B is a funnel, then ||R| − |B|| ≤ 1,
and that if we choose a red edge and a blue edge of S,
the convex hull of their vertices is a triangle, or it is
a convex quadrilateral that contains at least a point
of S in its interior.

Suppose that S is a funnel such that ℓ(r1, r2) inter-
sects b1b2. Let T be the unbounded region bounded
by ℓ(b1, r1), ℓ(b1, r2), and ℓ(b2, r2). A set of red points
R′ is called a red tail of S if all the elements of R′ be-
long to the interior of T , see Figure 4(b). A blue tail
is defined in a similar way when ℓ(b1, b2) intersects
r1r2.

A double funnel is defined as follows: Let R and B

be separable point sets in convex position, and let ℓ

and ℓ′ be as above. Suppose also that there is exactly
one edge in the convex hull of R or B such that the
line containing this edge separates R and B. Without
loss of generality, assume that this edge is red, and
that the blue points lie to the right of this line, see
Figure 5.

Label the elements of R as r1, . . . , rn in the anti-
clockwise direction around CH(R), starting at the
lowest element of R. Label the elements of B as
b1, . . . , bm in the clockwise direction around CH(B),
starting again at the lowest element of B. Suppose
that the edge of CH(R) such that the line containing
it that separates R and B joins ri and ri+1 for some
i.

Let bi be the closest element of B to riri+1. Con-
sider the following sets of points: R1 = {r1, . . . , ri+1},
R2 = {ri, . . . , rn}, B1 = {b1, . . . , bi}, B2 =
{bi, . . . , bm}.

We say that R ∪ B is a double funnel if the sets
B1 ∪R1 and B2 ∪R2 are funnels, see Figure 5. Note
that one of them, is an upside down funnel!

biri

ri+1

Figure 5: A double funnel.

In a similar way as we defined a tail for a funnel, we
can define a tail of a double funnel. A tail of R∪B is
a tail of B1 ∪ R1, or a tail of B2 ∪ R2. The following
result is given without proof:

Theorem 3 If R and B are linearly separable, then

S = R∪B contains no convex balanced 4-holes if and

only if S is:

• a funnel with or without tail

• a double funnel, with one or two tails such that:

1. The two tails have the same color.

2. The double funnel can be splitted into two

funnels f1 and f2 such that one of them, say

f2 has at most two points of each color.

3 Non-convex balanced 4-holes

It is not hard to see that if R and B have at least
two elements each, then S always contains 4-balanced
holes which are not necessarily convex. In fact, it
is easy to see that a double funnel contains O(n2)
balanced non-convex 4-holes. In this section we will
prove that if |R| = |B| = n, then S = R ∪ B always
contains a quadratic number of balanced, not neces-
sarily convex 4-holes. In the rest of this section, we
will assume that |R| = |B| = n.

We give our proof only for the case when R and B

are linearly separable. Our proof can be modified to
prove that for any two points sets R and B, R ∪ B

always has a quadratic number of balanced holes. We
omit these not so trivial changes.

Suppose that there is a horizontal line ℓ that sepa-
rates R from B, and that the elements in R are above
ℓ, and the elements of B below it. We further assume
that the y-coordinates of all of the elements of S are
different.

Given two points p and q, p → q will denote the
ray staring at p, and passing through q. We now color
edges joining blue and red points as follows:

An edge rb joining a red point r to a blue point
b is colored green if it is an edge, or a diagonal of a
balanced 4-hole of S. An edge rb, not colored green,
is colored red if when we rotate the ray r → b around
r in the clockwise direction, it hits a red point before
it hits a blue point. It is not hard to see that in this
case, if we rotate r → b in the anti-clockwise direction,
it also hits a red point before it hits a blue point, for
otherwise rb would be green. Moreover if we rotate
b → r in the clockwise, or anti-clockwise direction, it
will also hit red points before it hits blue points. See
Figure 6.

Figure 6: A red and a green edge.

In a similar way we color rb blue if when we rotate
r → b around b it hits a blue point before it hits a red
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point. We will prove that the number of green edges
is quadratic. Theorem 9 follows easily from this.

Let r be a red point. Sort and relabel the blue
points from left to right in the anti-clockwise direction
around r as {b1, . . . , bn}. The following lemmas, are
given without proof:

Lemma 4 There are no consecutive edges rbi and

rbi+1 such that one is blue, and the other is red.

In other words between a red and a blue edge there is
a green edge.

Let i such that rbi and rbi+1 are both red, and let
∆ be the triangle bounded by ℓ, rbi, and rbi+1.

Lemma 5 ∆ contains at least three red points of S,

see Figure 7.

r

ℓ

bi
bi+1

bi+2

Figure 7

Observe that this Lemma implies that the set
{rbi; i = 1, . . . n} contains at most n

3
consecutive red

edges.
Suppose next that we have a block B of k consec-

utive red edges rbi, . . . , rbi+k−1 incident to r, such
that rbi−1 and rbi+k are green. Then we can associate
to B at least 3k− 1 red points that lie in the triangle
bounded by ℓ, rbi, and rbi+k−1, plus the red points
hit by rbi and rbi+k−1 when we rotate them in the
clockwise, and anti-clockwise direction respectively.

It is easy to see that the sets of red points associated
to different blocks of consecutive red edges incident to
r are disjoint.

Suppose now that the red edges incident to r are
grouped into s blocks of consecutive red edges with
cardinalities t1, . . . , ts.

Label the red points r1, . . . , rn from bottom to top
according to their y-coordinate. The next result fol-
lows:

Lemma 6 The number of red edges incident to ri is

at most (3t1 − 1) + · · ·+ (3ts − 1)− 2.

The worst case is when each ti = 1, in which case
the previous Lemma yields 2s− 2. From here we get:

Lemma 7 The number of red edges incident to ri, is

at most ⌊ i−1

2
⌋+ 1.

Thus we have:

Theorem 8 There are at most 2(1+ · · · ⌊n−1

2
⌋) ∼ n

2

4

red edges.

A simmetric argument shows that the number of

blue edges is ∼ n
2

4
.

Since there are exactly n2 edges joining red and blue
points, it follows that at least approximately half of
them are green, which proves:

Theorem 9 The number of balanced bichromatic 4-
holes of S is at least t

6
, were t ∼ n

2

2
.

Our argument can be modified to prove:

Theorem 10 Let S = R∪B be a set with 2n points,

n red, and n blue. Then S always has at least a

quadratic number of balanced bichromatic 4-holes.

We observe that our bound is asymptotically tight,
as in examples as that shown in Figure 8, any bal-
anced 4-hole has to be convex, and there are only a
quadratic number of these 4-holes.

Figure 8: Any balanced 4-hole uses two consecutive

red, and two consecutive blue points.
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One-to-one Point Set Matchings for Grid Map Layout∗

David Eppstein† Marc van Kreveld‡ Bettina Speckmann§ Frank Staals‡

Abstract

We study several one-to-one point set matching prob-
lems which are motivated by layout problems for grid
maps. We are given two sets A and B of n points
in the plane, and we wish to compute an optimal
one-to-one matching between A and B. We consider
two optimisation criteria: minimising the sum of the
L1-distances between matched points, and maximis-
ing the number of pairs of points in A for which the
matching preserves the directional relation. We show
how to minimise the total L1-distance under transla-
tion or scaling in O(n6 log3 n) time, and under both
translation and scaling in O(n10 log3 n) time. We
further give a 4-approximation for preserving direc-
tional relations by computing a minimum L1-distance
matching in O(n2 log3 n) time.

1 Introduction

We study two point set matching problems motivated
by geographic information visualization, specifically
by the layout of grid maps. Grid maps are a special
type of single-level spatial treemap [11]. The input is
a set of geographic locations or regions (represented
by their centroids) which are mapped one-to-one to a
grid of equal-sized rectangles (see Fig. 1). Within the
rectangle corresponding to each region or location, ad-
ditional information can be displayed, see for example
the London BikeGrid (gicentre.org/bikegrid). To
aid the user in identifying the regions in the grid map
it is essential that the (relative) positions of the input
are preserved as much as possible.

We are now given a set of n points A (the geo-
graphic locations or region centroids) and a set of n
points B (the centers of the grid cells) and we want to
compute an optimal one-to-one matching φ between
A and B. We consider two optimisation criteria:
(i) minimising the sum of the L1-distances between
matched points under translation, scaling, and both

∗B. Speckmann and F. Staals were supported by the
Netherlands’ Organisation for Scientific Research (NWO) un-
der project no. 639.022.707 and 612.001.022, respectively.
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Figure 1: A grid map of the London boroughs.

scaling and translation of point set A, and (ii) max-
imising the number of pairs of points in A for which
the matching preserves the directional relation. That
is, if a point a2 lies northwest of point a1, then we
would like φ(a2) to lie northwest of φ(a1) as well.

Related Work. Point set matching problems have
been studied extensively. We review some of the min-
imum distance matching methods that are most re-
lated to our work. A more extensive survey of existing
methods is presented by Alt and Guibas [1], or more
recently by Veltkamp and Hagedoorn [10].
Atkinson [4] presents an algorithm for computing a

one-to-one matching in case the input point sets are
assumed to be copies the same point set, possibly with
affine transformations applied on them. His algorithm
runs in O(n log n) time.
Hong and Tan [7] present a similar approach which

can also be used when the points sets are not ex-
act copies of each other. They allow a point p to be
matched to q if q lies in the error area E(p) of p:
a convex polygon for which the distance between p
and the closest point on the boundary of E(p) and
the distance between p and the furthest point on the
boundary differs by at most a constant factor. It is
assumed that p is contained in E(p), and that for any
point q we can check if E(p) contains q in constant
time. Furthermore, all error regions are pairwise dis-
joint. Sprinzak and Werman [8] extend Hong and
Tan’s method for point sets in arbitrary dimensions.
Alt et al. [2] present algorithms for several types of

point set matching problems. Their algorithms can
handle both the L2-metric, and the L∞-metric. In
case all points have disjoint error areas with radius
ǫ (a disk with radius ǫ in the Euclidean case and a
square with side lengths 2ǫ in case of the L∞-metric)
they present an O(n log n) time algorithm to compute
the minimum distance matching, and the translation
that yields this matching.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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In case the error regions are not given, but instead
we should decide whether or not there is a translation
with corresponding matching such that the distance
between a pair of matched points is at most ǫ, Alt
et al. [2] present an O(n6) time algorithm. When we
actually want to find the smallest such ǫ the running
time increases to O(n6 log n). Finally, Alt et al. [2]
show that if we want to allow rotation and reflection as
well we can solve the decision version of the problem
in O(n8) time.

Vaidya [9] studies computing a minimum weight
complete matching in a graph G of 2n points in which
the weights are given by the distance between the
points. He shows that for the L1-, L2-, and L∞-
distance an optimal matching can be computed in
O(n2.5 log4 n) time, or O(n2.5 log n) in case G is bi-
partite. For the L1- and L∞-metrics this can be im-
proved to O(n2 log3 n). This is the algorithm we will
use to compute basic one-to-one matchings without
translation or scaling.
Efrat and Itai [6] investigate bottleneck matching.

They show how to find a one-to-one matching that
minimises the L∞-distance in O(n5 log2 n) time. This
improves the results of Alt et al. [2] by almost a fac-
tor n. For the decision version of the problem their
algorithm runs in O(n5 log n) time.

There is also a point set matching approach by Co-
hen and Guibas [5] which uses the Earth Mover’s Dis-

tance. In this setting each point has a certain weight.
The amount of work to match a point a ∈ A with a
point b ∈ B is determined by the distance between a
and b and the weight of a that is matched to b. The
earth mover’s distance expresses the minimum work
required to match A and B. When using the L2

2-
distance Cohen and Guibas [5] present an algorithm
that computes an optimal transformation of A and
a minimum distance matching. For other distances
their method yields only a locally optimal transfor-
mation and matching.
Alt et al. [3] propose a probabilistic method for

matching planar regions. Their algorithm picks a ran-
dom set of points A in one region and a random set of
points B in the other. It then computes a transforma-
tion (consisting of a translation and a rotation) such
that the area of overlap between the planar regions is
close to maximal. They argue that it may be possi-
ble to extend their approach to compute a minimum
distance matching under affine transformations.

Organisation. In the next section we consider min-
imum L1-distance matchings. We first compute an
optimal matching under translation, and then adapt
our approach to compute a minimum distance match-
ing under scaling, and both translation and scaling. In
Section 3 we then consider matchings that preserve di-
rectional relations. Interestingly, we use an algorithm
that computes a minimum L1-distance matching to
obtain a 4-approximation for this problem.

2 Minimising L1-distance

We first define some notation. For a point a = (ax, ay)
and a translation t = (tx, ty) we write a + t = (ax +
tx, ay + ty). We also use this notation for a set of
points: A + t = {a + t | a ∈ A}. Similarly, for a
scaling λ = (λx, λy) we write λa = (λx ·ax, λy ·ay). A
transformation (either translation or scaling) in which
both components have the same value c we denote by
c = (c, c).

Let φ : A → B be a one-to-one matching for the
point sets A and B, let t be a translation and let λ
be a scaling. Then we define the total distance of
matching φ with translation t and scaling λ as

D(φ, t, λ) =
∑

a∈A

d(λa+ t, φ(a))

where d(a, b) denotes the L1-distance between a and b.
We can decompose d into a horizontal and a vertical
component: d(a, b) = x(a, b) + y(a, b) with x(a, b) =
|ax − bx| and y(a, b) = |ay − by|. We generalise this
notion to D, which gives us D(φ, t, λ) = X(φ, t, λ) +
Y (φ, t, λ).

Additionally, we define DT (φ, t) = D(φ, t, 1),
DΛ(φ, λ) = D(φ, 0, λ) and DI(φ) = D(φ, 0, 1). The
functions XT , YT , XΛ, etc. are defined accordingly.

We now want to find a matching together with a
translation and/or scaling that minimises the total
distance. More formally, let Φ be the collection of all
one-to-one matchings between A and B, let T be the
collection of all translations, and let Λ be the collec-
tion of all scalings, then we try to find a matching
φ∗ ∈ Φ, a translation t∗ ∈ T , and a scaling λ∗ ∈ Λ
such that

D(φ∗, t∗, λ∗) = min
φ∈Φ,t∈T ,λ∈Λ

D(φ, t, λ).

Minimising L1 under translation. To find a
minimum distance matching under translation, i.e. a
matching that minimises DT , we identify a (finite)
set of translations T ⊂ T that contains an optimal
translation. We then use one of the existing one-to-
one matching algorithms for each translation in T to
compute an optimal matching.

We say a translation t is a horizontal translation if
and only if t = (c, 0) for some c ∈ R. Two point sets
A and B are x-aligned if (and only if) there is a point
a ∈ A and a point b ∈ B with ax = bx. We define
vertical translation and y-aligned symmetrically.

We now observe that for any matching φ between
point sets A and B that are not x-aligned we can de-
crease DT (φ) by x-aligning A and B (Fig. 2). Hence:

Lemma 1 Let A and B be two non x-aligned sets

of n points in the plane, and let φ be any one-to-one



207

EuroCG 2012, Assisi, Italy, March 19–21, 2012

Figure 2: We can improve a matching between A
(grey) and B (white) indicated by the dashed lines
by x-aligning the point sets (the dotted lines).

matching between A and B. Then there is a horizon-

tal translation t∗ 6= 0 such that A∗ = A + t∗ and B
are x-aligned and DT (φ, t

∗) ≤ DI(φ).

Due to the lack of space, we omit the details of the
proof. The crucial observation is that for a given φ,
X ′(t) = XT (φ, t) is a piecewise linear function in t
that has its minimum at a breakpoint. Such a break-
point corresponds to aligning the point sets. An anal-
ogous argument gives us that we can decrease YT by
y-aligning two non y-aligned sets of points.
Consider the set T of translations that both x-align

and y-align A and B. A translation t ∈ T x-aligns a
pair of points (a, b), and independently y-aligns a pair
of points (a′, b′). This means T contains at most n4

translations.
From Lemma 1 (and its counterpart for y-aligning

the point sets) it follows that T contains an optimal
translation t∗. Hence, we can find φ∗ by computing a
minimum distance matching for all translations in T .
If we use the algorithm of Vaidya [9] to compute these
point set matchings we obtain the following result:

Theorem 2 Given two sets A and B of n points in

the plane, a one-to-one matching φ∗ and a trans-

lation t∗ that minimise DT can be computed in

O(n4 · n2 log3 n) = O(n6 log3 n) time.

The main difficulty in improving this result is that
X∗(t) = X(φ∗

t , t), where φ∗
t denotes an optimal

matching for horizontal translation t, is not unimodal.
Therefore X∗ may have several local minima, which
means we cannot use a binary search to find an op-
timal translation t∗. Instead, we have to compute a
matching for all translations in T .

Minimising L1 under scaling. For scaling we can
use the same procedure as for translation: we prove
that there is an optimal scaling that x-aligns and y-
aligns A and B and does not increase the total dis-
tance. We again have a set of at most n4 scalings that
is guaranteed to contain an optimal scaling. Hence:

Theorem 3 Given two sets A and B of n points in

the plane, a one-to-one matching φ∗, and a scaling λ∗

that minimise DΛ can be computed in O(n6 log3 n)
time.

Minimising L1 under both translation and scal-

ing. We can use same the approach, but now we x-
align (y-align) two distinct pairs of points. We obtain:

Theorem 4 Given two sets A and B of n points in

the plane, a one-to-one matching φ∗, a translation t∗,
and a scaling λ∗ that minimise D can be computed in

O(n10 log3 n) time.

3 Preserving directional relations

The second criterion that we consider is preserving
directional relations. Let A and B be two sets of n
points in which no two points have the same x- or
y-coordinate, and let dir(p, q) denote the directional
relation of q with respect to p (see Fig. 3 (a)). The
goal is now to find a matching φ∗ : A → B that max-
imises the number of pairs (a1, a2) ∈ A×A for which
dir(a1, a2) = dir(φ∗(a1), φ

∗(a2)). Stated differently,
we are looking for a matching φ∗ that minimises the
number of out-of-order pairs W defined as

W (φ) = |{(a1, a2) | (a1, a2) ∈ A×A ∧

dir(a1, a2) 6= dir(φ(a1), φ(a2))}|.

To avoid many nested brackets we will write a′ = φ(a)
from now on. Furthermore, we observe that transla-
tions and scalings do not influence W .

a1 a′1

a2

a′2

southwest

southeast

northeast

southeast

northwest

southwest

(a) (b)

p

Figure 3: (a) The areas in the plane corresponding to
each direction. (b) The directional relation between
a1 and a2 is not preserved, (a1, a2) is an x-inversion.

A 4-approximation algorithm for minimising

W . We now describe an algorithm to compute
a matching that approximately minimises W . Let
x -rankP (p) denote the x-rank of point p ∈ P : that
is, the number of points in P to the left of p. For
points p ∈ P and q ∈ Q we write p ≺x q for
x -rankP (p) < x -rankQ(q). The y-rank and ≺y are
defined analogously.

For a given matching, (a1, a2) ∈ A × A is an x-
inversion if (and only if) a1 ≺x a2 and a′1 ≻x a′2, or
a2 ≺x a1 and a′2 ≻x a′1. See Fig. 3 (b). Similarly we
define a y-inversion. An inversion is an x-inversion,
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a y-inversion or both. We denote the number of x-
inversions and the number of y-inversions of match-
ing φ by Ix(φ) and Iy(φ), respectively. It is easy to
see that there is a one-to-one correspondence between
the number of out-of-order pairs W (φ) of matching φ
and the number of inversions I(φ), i.e. W (φ) = I(φ).
Furthermore, we have max(Ix(φ), Iy(φ)) ≤ I(φ) and
I(φ) ≤ Ix(φ) + Iy(φ).

We define a distance measure w between points a ∈
A and b ∈ B:

w(a, b) = |x -rankA(a)− x -rankB (b)| +

|y-rankA(a)− y-rankB (b)|.

We now compute a minimum distance matching φ
with w as distance measure. The distance measure w
is simply the L1-distance on the ranks of the points,
which means we can use Vaidya’s algorithm [9] to
compute φ. We again denote the total distance of φ by
D(φ), and decompose it into a separate x-component
X(φ) and a y-component Y (φ).

The intuition behind our approach is as follows.
Consider matching a point ar with x -rankA(ar) = i
to a point br with x -rankB (br) = j > i. By the pi-
geonhole principle there are at least j − i points â
with x -rankA(â) > i that are matched to a point b̂

with x -rankB (b̂) < j. Hence, matching ar to br will
result in at least j − i = |x -rankA(ar)− x -rankB (br)|
x-inversions.

To prove this we order the points a ∈ A by the
rank of φ(a). For point ar we consider the number of
points that have to “overtake” ar from left to right
when sorting them by rank in A (denoted â above).
If there are m such points, ar moves a distance of
2m + (j − i) in the sorting process. It follows that
Ix(φ) = M +X(φ)/2, where M =

∑
a∈A ma.

Additionally, we can show that there are also at
least m points that overtake ar from right to left,
which results in M ≤ X(φ)/2. Hence Ix(φ) ≤ X(φ).

An easy argument as used in the analysis of bubble-
sort gives us an upper bound of X(φ) ≤ 2Ix(φ) for the
number of inversions in terms of X. We conclude:

Lemma 5 Ix(φ) ≤ X(φ) ≤ 2Ix(φ).

A symmetric argument holds for the y-rank and the
number of y-inversions. This allows us to prove
W (φ) = I(φ) ≤ D(φ) ≤ 4I(φ) = 4W (φ). The fol-
lowing theorem follows:

Theorem 6 Given two sets A and B of n points

in the plane, a one-to-one matching φ such that

W (φ) ≤ 4 ·minφ∗∈Φ W (φ∗) can be computed in

O(n2 log3 n) time.

4 Concluding Remarks

We have seen how to compute a minimum distance
matching with respect to the total L1-distance under
translation, scaling, and both translation and scal-
ing. An implementation of our method shows that for
small values of n we can compute a minimum distance
matching under translation or scaling. However, op-
timising under both is unfeasible in practice.
Furthermore, we can use an algorithm for a mini-

mum L1-distance matching to obtain a matching that
approximately maximises the number of correct direc-
tional relations. An interesting remaining question is
whether it is possible to devise an exact algorithm for
this problem that runs in polynomial time.
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Coloring Dynamic Point Sets on a Line
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Abstract

We consider a coloring problem on dynamic, one-
dimensional point sets: points appearing and disap-
pearing on a line at given times. We wish to color
them with k colors so that at any time, any sequence
of p(k) consecutive points, for some function p, con-
tains at least one point of each color.

We prove that no such function p(k) exists in gen-
eral. However, in the restricted case in which points
appear gradually, but never disappear, we give a col-
oring algorithm guaranteeing the property at any time
with p(k) = 8k − 5.

This can be interpreted as coloring point sets in
R

2 with k colors such that any bottomless rectan-
gle containing at least 8k − 5 points contains at least
one point of each color. Chen et al. (2009) proved
that such colorings do not always exist in the case of
general axis-aligned rectangles. Our result also com-
plements recent results from Keszegh and Pálvölgyi
(2011).

1 Introduction

It is straightforward to notice that n points lying on
a line can be colored with k colors in such a way that
any set of k consecutive points receive different col-
ors: it is sufficient to color them cyclically with the
colors 1, 2, . . . , k, 1, . . . . What can we do if points can
appear and disappear on the line, and we wish a sim-
ilar property to hold at any time? More precisely, we
fix the number k of colors, and wish to maintain the
property that at any given time, any sequence of p(k)
consecutive points, for some function p, contains at
least one point of each color.

We show that in general, such a function does not
exist: there are dynamic point sets on a line that are
impossible to color with two colors so that monochro-
matic subsequences have bounded length. This holds
even if the whole schedule of appearances and disap-
pearances is known in advance. This family of point
sets is described in Section 2.

∗Université libre de Bruxelles (ULB), Belgium.
jcardin@ulb.ac.be, secollet@ulb.ac.be, slanger@ulb.ac.be,
nathann.cohen@gmail.com

†ETH Zürich, Switzerland. hoffmann@inf.ethz.ch
‡Freie Universität Berlin, Germany. rote@inf.fu-berlin.de

We prove, however, that there exists a linear func-
tion p in the case where points can appear on the line
at any time, but never disappear. Furthermore, this
is achieved in a constructive, semi-online fashion: the
coloring decision for a point can be delayed, but at
any time the currently colored points yield a suitable
coloring of the set. The algorithm is described in Sec-
tion 3.
In Section 4, we restate the result in terms of a

coloring problem in R
2: there exists a constant c such

that for any integer k ≥ 1, every point set in R
2 can be

colored with k colors so that any bottomless rectangle
containing at least ck points contains one point of each
color. Here, an axis-aligned rectangle is said to be
bottomless whenever the y-coordinate of its bottom
edge is −∞.

Motivations and previous works. The problem is
motivated by previous intriguing results in the field of
geometric hypergraph coloring. Here, a geometric hy-
pergraph is a set system defined by a set of points and
a set of geometric ranges, typically polygons, disks,
or pseudodisks. Every hyperedge of the hypergraph
is the intersection of the point set with a range.
It was shown recently [12, 1, 4] that for every convex

polygon P , there exists a constant c, such that any
point set in R

2 can be colored with k colors in such
a way that any translation of P containing at least
p(k) = ck points contains at least one point of each
color.
For the range spaces defined by translates of a given

convex polygon, this corresponds to partitioning a
given point set into k subsets, each subset being an
ε-net for ε = ck/n. More on the relation between this
coloring problem and ε-nets can be found in the recent
papers of Varadarajan [13], and Pach and Tardos [9].
The problem for translates of polygons can be cast

in its dual form as a covering decomposition problem:
given a set of translates of a polygon P , we wish to
color them with k colors so that any point covered by
at least p(k) of them is covered by at least one of each
color. The two problems can be seen to be equivalent
by replacing the points by translates of a symmetric
image of P centered on these points. The covering
decomposition problem has a long history that dates
back to conjectures by János Pach in the early 80s
(see for instance [7, 2], and references therein). The
decomposability of coverings by unit disks was con-
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sidered in a seemingly lost unpublished manuscript
by Mani and Pach in 1986. Up to recently, however,
surprisingly little was known about this problem.
For other classes of ranges, such as axis-aligned

rectangles, disks, or translates of some concave poly-
gons [3, 8, 10, 11], such a coloring does not always
exists, even when we restrict ourselves to two colors.
For instance, the following result holds: for any in-
teger p ≥ 2, there exists a set of points in R

2, every
2-coloring of which is such that there exists an open
disk containing p monochromatic points.
Keszegh [5] showed in 2007 that every point set

could be 2-colored so that any bottomless rectan-
gle containing at least 4 points contains both colors.
More recently, Keszegh and Pálvölgyi [6] proved the
cover-decomposability of octants in R

3 : every collec-
tion of translates of the first octant can be 2-colored
so that any point of R3 that is covered by at least 12
octants is covered by at least one of each color. This
result generalizes the previous one (with a loser con-
stant), as incidence systems of bottomless rectangles
in the plane can be produced by restricted systems
of octants in R

3. It also implies similar covering de-
composition results for homotopic copies of triangles.
The generalization to k-colorings, however, still seems
elusive.
Our positive result on bottomless rectangles (Corol-

lary 4) is a generalization of Keszegh’s results [5] to
k-colorings. To our knowledge, this is the first exam-
ple of a k-coloring achieving a linear bound p(k) for
ranges that are not translates of a given convex body.
We see this as a first step towards similar results for
more general range spaces, such as homothetic copies
of convex polygons.

2 Coloring dynamic point sets

A dynamic point set S in R is a collection of triples
(vi, ai, di) ∈ R

3, with di ≥ ai, that is interpreted as
follows: the point vi ∈ R appears on the real line at
time ai and disappears at time di. Hence the set S(t)
of points that are present at time t are the points vi
with t ∈ [ai, di]. A k-coloring of a dynamic point set
assigns one of k colors to each such triple.
We now show that it is not possible to find a

2-coloring of such a point set while avoiding long
monochromatic subsequences at any time.

Theorem 1 For every p ∈ N, there exists a dynamic

point set S with the following property: for every

2-coloring of S, there exists a time t such that S(t)
contains p consecutive points of the same color.

Proof. In order to prove this result, we work on an
equivalent two-dimensional version of the problem.
From a dynamic point set, we can build n horizon-
tal segments in the plane, where the ith segment goes

from (ai, vi) to (di, vi). At any time t the visible points
S(t) correspond to the intervals that intersect the line
x = t. It is therefore equivalent, in order to obtain
our result, to build a collection of horizontal segments
in the plane that cannot be 2-colored in such a way
that any set of p segments intersecting some vertical
segment contains one element of each color.
Our construction borrows a technique from Pach,

Tardos, and Tóth [10]. In this paper, the authors pro-
vide an example of a set system whose ground set can-
not be 2-colored without leaving some set monochro-
matic. This set system S is built on top of the
1 + p+ · · ·+ pp−1 = 1−pp

1−p
vertices of a p-regular tree

T p of depth p, and contains two kinds of sets :

• the 1 + p+ · · ·+ pp−2 sets of siblings: the sets of
p vertices having the same father,

• the pp−1 sets of p vertices corresponding to a path
from the root vertex to one of the leaves in T p.

It is not difficult to realize that this set system is not
2-colorable: by contradiction, if every set of siblings
is non-monochromatic, we can greedily construct a
monochromatic path from the root to a leaf.
We now build a collection of horizontal segments

corresponding to the vertices of T p, in such a way
that for any set E ∈ S there exists a time t at which
the elements of E are consecutive among those that
intersect the line x = t. For any p (see Fig. 1), the
construction starts with a building block B1

p of p hori-

zontal segments, the ith segment going from (− i
p
, i) to

(0, i). Because these p segments represent siblings in
T p, they are consecutive on the vertical line that goes
through their rightmost endpoint, and hence cannot
all receive the same color.
Block Bj+1

p is built from a copy of B1
p to which

are added p resized and translated copies of Bj
p : the

ith copy lies in the rectangle with top-right corner
(− i−1

p
, i + 1) and bottom-left corner (− i

p
, i). With

this construction, the ancestors of a segment are pre-
cisely those that are below it on the vertical line that
goes through its leftmost point. When such sets of an-
cestors are of cardinality p, which only happens when
one considers the set of ancestors of a leaf, the set is
required to be non-monochromatic.
By adding to Bp−1

p a last horizontal segment below
all others, corresponding to the root of T p, we ensure
that a feasible 2-coloring of the segments would yield
a proper 2-coloring of S, which we know does not
exist. �

The above result implies that no function p(k) ex-
ists for any k that answers the original question. If
it were the case, then we could simply merge color
classes of a k-coloring into two groups and contradict
the above statement.
Theorem 1 can also be interpreted as the indecom-

posability of coverings by a specific class of unbounded
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Figure 1: The recursive construction of theorem 1, for
p = 3.

polytopes in R
3. We omit the details of this interpre-

tation.

3 Coloring point sets under insertion

Since we cannot bound the function p(k) in the gen-
eral case, we now consider a simple restriction on our
dynamic point sets: we let the deletion times di be
infinite for every i. Hence points appear on the line,
but never disappear.

A natural idea to tackle this problem is to consider
an online coloring strategy, that would assign a color
to each point in order of their arrival times ai, without
any knowledge of the points appearing later. How-
ever, we cannot guarantee any bound on p(k) unless
we delay some of the coloring decisions. To see this,
consider the case k = 2, and call the two colors red
and blue. An online algorithm must color each new
point in red or blue as soon as it is presented. We can
design an adversary such that the following invariant
holds: at any time, the set of points is composed of
a sequence of consecutive red points, followed by a
sequence of consecutive blue points. The adversary
simply chooses the new point to lie exactly between
the two sequences at each step.

Our computation model will be semi-online: The
algorithm considers the points in their order of the
arrival time ai. At any time, a point in the sequence
either has one of the k colors, or is uncolored. Un-
colored points can be colored later, but once a point
is colored, it keeps its color for the rest of the pro-
cedure. At any time, the colors that are already as-
signed suffice to satisfy the property that any subse-
quence of p(k) points have one point of each color,
where p(k) = O(k).

Theorem 2 Every dynamic point set without dis-

appearing points can be k-colored in the semi-online

model such that at any time, every subsequence of at

least 8k − 5 consecutive points contains at least one

point of each color.

Proof. We define a gap for color i, or an i-gap, as
a maximal interval containing no point of color i,
that is, either between two successive occurrences of
color i, or before the first occurrence, or after the last
occurrence. At every step, we decide to assign a color
to some of the uncolored points, in order to maintain
the property that every gap contains at most p(k)−1
points. This implies that any subsequence of p(k)
consecutive points contains at least one point of each
color. We show that p(k) can be linear in k. For
this purpose, the algorithm will maintain another
invariant:

(a) every gap contains at most B = 4k − 2 uncol-
ored points.

At every step, we consider the new point, and leave
it uncolored. This may cause some i-gap to contain
B+1 uncolored points, and therefore violate invariant
(a). In that case, we pick one such gap and color
its (B/2 + 1)th uncolored point with color i. This
splits the i-gap into two parts, each containing B/2
uncolored points. If another gap was violating the
invariant, say for color j, two cases can occur. Either
the j-gap also contains the (B/2 + 1)th uncolored
point of the i-gap, in which case the invariant is not
violated anymore, or we can color with color j the
(B/2 + 1)th uncolored point of the j-gap. In the
latter case, note that the newly colored point cannot
belong to the i-gap, as otherwise the first case would
apply.

We now show that this algorithm also maintains
the following invariant:

(b) every gap contains at least k uncolored points.

From the above steps, we know that when a point
is colored with color i, its is separated from the two
occurrences of color i on its left and right by at least
B/2 uncolored points. Later, however, some of these
uncolored points can be colored with a color distinct
from i. Hence the number of uncolored points can
decrease below B/2. However, from the time it is
less than B/2, there cannot be more than one point
of each color distinct from i appearing, since any new
pair of colored points is separated by at least B/2
uncolored points. Hence there must still be at least
B/2 − (k − 1) = k uncolored points between two
points of color i.

Now it remains to check that the two invariants (a)
and (b) imply that any two successive points of the
same color i cannot be separated by more than O(k)
other points. First, from invariant (a), there can be at
mostB uncolored point in this i-gap. Then, every pair
of occurrences of a color distinct from i is separated
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by at least k uncolored points. This implies that there
cannot be more than 1 +

⌊

B
k

⌋

occurrences of each of
the k − 1 other colors in the i-gap. Hence the total
number of points cannot exceed

p(k)− 1 = B + (k − 1)

(

1 +

⌊

B

k

⌋)

= 4k − 2 + (k − 1)

(

1 +

⌊

4k − 2

k

⌋)

= 8k − 6.

�

The function is not tight for every k, as witnessed
by Keszegh’s result for k = 2 [5]. For k = 3, we have
the following result, the proof of which is omitted.

Theorem 3 Every dynamic point set without dis-

appearing points can be 3-colored in the semi-online

model such that at any time, every subsequence of at

least 8 consecutive points contains at least one point

of each color.

4 Coloring points with respect to bottomless rect-

angles

A bottomless rectangle is a set of the form {(x, y) ∈
R

2 : a ≤ x ≤ b, y ≤ c}, for a triple of real numbers
(a, b, c) with a ≤ b. We consider the following geo-
metric coloring problem: given a set of points in the
plane, we wish to color them with k colors so that any
bottomless rectangle containing at least p(k) points
contains at least one point of each color. It is not dif-
ficult to realize that the problem is equivalent to that
of the previous section.

Corollary 4 Every point set S ⊂ R
2 can be colored

with k colors so that any bottomless rectangle con-

taining at least 8k − 5 points of S contains at least

one point of each color.

Proof. The algorithm proceeds by sweeping S verti-
cally in increasing y-coordinate order. This defines a
dynamic point set S′ that contains at time t the x-
coordinates of the points below the horizontal line of
equation y = t. The set of points of S that are con-
tained in a bottomless rectangle {(x, y) ∈ R

2 : a ≤
x ≤ b, y ≤ t} correspond to the points in the interval
[a, b] in S′(t). Hence the two coloring problems are
equivalent, and Theorem 2 applies. �

The following is a corollary of Theorem 3.

Corollary 5 Every point set S ⊂ R
2 can be colored

with 3 colors so that any bottomless rectangle con-

taining at least 8 points of S contains at least one

point of each color.
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Abstract

We consider the problem of computing an order type in-
variant labeling for a given set of n points. In 2D, such a
labeling can be constructed in O(hn2) time, where h is the
size of the smallest convex layer. In 3D the time complex-
ity is O(n3 log n) if the point set is in general position1.

This is useful to test if two point sets have the same
order type within the same time bounds. It can also be
used as preprocessing for any order type invariant algo-
rithm, such as triangulation/tetrahedralization, or polygo-
nization.

1 Introduction

When an algorithm computes a structure such as a trian-
gulation or polygonization, and many solutions are pos-
sible, sometimes it is desirable that the same solution is
always returned for two combinatorially equivalent point
sets. With this in mind, we consider the problem of com-
puting an order type invariant labeling for a point set S.

In the plane, the order type of S is determined by as-
signing to every ordered triple of points pi, pj , pk an ori-
entation depending on their relative positions: clockwise,
counter-clockwise, or collinear. In 3D, order type labels
are assigned to ordered subsets of four points, depend-
ing on their arrangement (collinear, coplanar, left/right-
handed tetrahedra). An order type representation (OTR)
of S is any (possibly implicit) encoding of this informa-
tion.

Two unlabeled point sets S1 and S2 are combinatorially
equivalent if and only if they have the same order type,
or in other words if they have the same OTR for some la-
beling. If the point sets are labeled, then there must be a
bijection between S1 and S2, such that any triple in S1 has
the same orientation as its corresponding triple in S2. In
other words, the OTR of S1 will be identical to the OTR
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aloupis.greg@gmail.com,stefan.langerman@ulb.ac.be
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1Our original accepted submission contained claims about

higher dimensions and non-general position. After realizing that
there was a flaw in our proof, we have since needed to revoke
that portion of our work, as we work on a suitable correction.

for some permutation (or relabeling) of S2. Note that the
bijection is not necessarily unique.

Our goal is to provide an order type invariant (re)-
labeling of a given point set S (this labeling of S,
p′1, p

′
2, . . . , p

′
n is just a permutation of the given points).

This means that for any combinatorially equivalent
set S′ labeled by the algorithm as q′1, q

′
2, . . . , q

′
n, we

will have the property that OTR(p′1, p
′
2, . . . , p

′
n) =

OTR(q′1, q
′
2, . . . , q

′
n). The implication is that any algo-

rithm relying only on combinatorial structure will produce
the same output regardless of the initial labeling of S, if
our relabeling is used as preprocessing.

We show that in 2D an order type invariant labeling can
be computed in O(hn2) time, where h is the size of the
smallest convex layer of the given point set. The factor
h actually represents the size of the smallest subset of la-
belings (out of all n! labelings of S) that can be formed
“quickly” so that any labeling in the subset has a distin-
guishable OTR compared to any labeling left out. It seems
that producing such a subset is not harder than producing
a subset of “representative points” of S. So, equivalently
one could think of our first phase as finding h “special”
points among S. We first focus on how to report h label-
ings, in Section 3. These are further processed to report a
unique labeling, by comparing all OTRs, in Section 3. The
factor of O(n2) in the above term represents the smallest
known encoding of an OTR in 2D.

In 3D, for general position, we can quickly reduce S to
a subset consisting of a constant number of points (equiv-
alently, we obtain a constant number of labelings). Our
order type invariant labeling is done in O(n3 log n) time;
see Section 4.

Our labeling permits the comparison of two point sets,
to see if they have the same order type. See Section 5.

2 Related work

Goodman and Pollack [7] showed that the number of
order types on n points is at least n4n+O(n/ logn) and
at most n6n. They improved the upper bound later to(
n
2

)4n(1+O(1/ log(n/2)))
[8]. Aichholzer et al. [1] enumer-

ated all order types for up to 10 points, and thus estab-
lished that any two such point sets in general position with
the same number of hull points have isomorphic triangula-
tions. Aichholzer and Krasser [2] extended this to sets of
11 points. Goodman et al. [10] showed that the coordinate
representation of order type requires exponential storage.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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The most related work is that of Goodman and Pol-
lack [9], in which an efficient OTR was defined for any di-
mension d. Their OTR in 2D stores the number of points to
the left of the vector through every ordered pair of points.
In 3D, for each ordered triple of points, it stores the num-
ber of points in the halfspace bounded by the halfplane
through the triple, with normal vector equal to the cross
product of the triple. This extends easily to any dimen-
sion d, where the OTR has size O(nd). Note that there
is no assumption on general position. Interestingly, they
showed that this is sufficient to determine exactly which
points are in any particular halfspace. The time to com-
pute their OTR was given as O(nd log n). Note that it has
been established elsewhere that in 2D the time complexity
is quadratic [6, 4].

Goodman and Pollack also defined canonical orderings,
which are essentially a subset of all n! orderings (label-
ings) that can be checked to determine if two sets are com-
binatorially equivalent. For 2D they gave h canonical or-
derings, one for each convex hull point p. For each p,
the remaining points can be labeled by a clockwise sort
around p, starting from any direction that does not inter-
sect the convex hull. It is easy to see that if two point
sets S1,S2 have the same order type, then the OTR of S1

will match the OTR for at least one of the canonical order-
ings of S2. This was a great improvement over the n! OTR
comparisons that would have to be made using brute force.
Since two OTRs can be compared in quadratic time, two
point sets can be compared in O(hn2) time. Note that one
does not need the improvement of [6, 4] to avoid spending
Θ(n2 log n) time computing each of the h OTRs. Since
each of these OTRs represents the same point set, once
one is computed the others can be obtained by a permu-
tation, i.e. in quadratic time each. This is why quadratic
time is spent for each of the h comparisons.

In 3D the canonical orderings were based on the di-
rected edges of the convex hull (at most 6n − 12 in total,
which can be reported in O(n log n) time). For each such
edge, a labeling of S could be obtained via a clockwise
plane-sweep starting from a tangent plane containing the
edge. The OTR corresponding to one of these labelings
can be computed in O(n3 log n) time, and each of the re-
maining takes cubic time, by a permutation on the first.
So, two point sets can be compared, by in turn comparing
an OTR of one to ≤ 6n−12 OTRs of the other. Each such
OTR comparison takes cubic time. Therefore two sets can
be compared in O(n4) time.

Such sweeps can be extended to any fixed dimension d,
according to [9]. There are O(nbd/2c) canonical orderings.
Each corresponds to a “face flag”, which can be thought
of as a directed simplex. Each ordering can be computed
in O(n log n) time once its face flag is known. Finding all
face flags takes O(nd) time for general position; otherwise
in O(n(d(d+3)/2)) time.

For each ordering, an OTR is produced: the first in
O(nd log n) time, and the rest in O(nd) time. There-
fore, for general position, it takes O(nb3d/2c) time to com-

pare two point sets (comparing O(nbd/2c) orderings, all of
which are constructed in O(nb3d/2c) time, and where each
comparison takes O(nd) time). For non-general position
the comparison is dominated by the time to compute all
face flags: O(n(d(d+3)/2)).

3 Order type invariant labeling in 2D

We use “canonical” labelings, similarly to Goodman and
Pollack [9]. Instead of using the convex hull and letting h
represent its size, we set h to be the number of points on
the convex layer c∗ with smallest size. It takes O(n log n)
time to compute all convex layers [3].

Assume for now that c∗ contains more than one point.
We select the starting vector for any point p on c∗ to be the
one through its clockwise neighbor on c∗. This is an order
type invariant choice. Still, we can end up with h = O(n)
canonical labelings. For point sets with more than a con-
stant number of convex layers, h = o(n). For random
point sets, h is sub-linear as well; see [5]. Note that the
worst case is not the point set in convex position, for this
is trivial to label (there are n possible distinct sequential
labelings of a cycle, but they are all symmetric and combi-
natorially equivalent). It is worse to have a constant num-
ber of layers, each with a linear number of points.

Finally, if p is the only point on the smallest layer, then
it is defined as the first point of our order type invariant
labeling of S. We remove it from S and repeat. We will
repeat at most once because even if we end up with a sin-
gle point for a second time, the two points permit us to
uniquely sort the rest.

The convex layer idea is simply a heuristic way of nar-
rowing down the candidate labelings, from all permuta-
tions. The general idea is to apply any combinatorial test
that easily ranks points, and keep only those points that
have highest rank. If several points achieve the highest
rank, we can apply another combinatorial test, and so on.
So far, we have followed this idea by saying that the points
of highest rank are those on a particular convex hull layer.
Of course, we cannot apply an endless series of tests, for
this will eventually become computationally expensive.
The challenge is to select the most efficient tests possible.
We have tried several combinations of heuristics (see full
paper). Curiously, none so far have resulted in a worst-
case sub-linear set of labelings, within O(n3) time.

By now we have chosen O(h) = O(n) order type in-
variant labelings. We compute the OTR for each labeling
p′1, . . . , p

′
n, in quadratic time. Recall that this is a concate-

nation of n(n− 1) variables, each of which represents the
number of points to the left of the vector from one point
to another. The order of the variables is given by a lexi-
cographic description of the vector index. This implicitly
encodes any combinatorial differences missed by the sim-
ple geometric tests of the preceding section.

The rest is simple: we choose the largest lexicographic
OTR as our solution. Since each OTR is a list of quadratic
size, this takes O(hn2) time. If several lists tie for the
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highest rank, we choose arbitrarily among them. Clearly
any of these lists will provide the same combinatorial out-
put if given to a combinatorial algorithm (for instance,
for triangulation). Furthermore, if we are given two point
sets, comparing their respective lexicographically selected
OTRs will determine if they have the same order type. In
2D this is just a variant of the method of Goodman and
Pollack, described in Section 2. Instead of comparing h
OTR’s from one set to one arbitrary OTR of the other, we
compare h OTRs among themselves for each set, and then
compare the winners.

4 Labeling in R3

Recall that in 3D the order type of S depends on the spatial
relation among every quadruple of points.

In 2D we used only those points on the smallest convex
layer, to determine a subset of labelings. The nice thing
about 2D is that it is easy to obtain one labeling per point.
In 3D it still makes sense (although only heuristically) to
use only those points on the smallest convex layer, so we
begin by discarding all other points. The objective is to
obtain a labeled (ordered) triple of points, in an order type
invariant way. From these, it is possible to label all re-
maining points with a sweep.

From the smallest convex layer, we will iteratively keep
removing points, and in fact we will be satisfied if we
can reduce S to any constant number of candidate points.
However we want at least three non-collinear points, or
possibly two if they happen to be convex hull neighbors.
As in 2D, if we remove too many points, we can store
the few remaining and re-iterate on the removed set. Even
if we end up with a collinear triple after three iterations
of discarding, it is easy to ensure that the next iteration
will give a non-collinear point; simply exclude all points
collinear to the triple from that iteration. So this part of the
algorithm does not rely on general position.

Once we have our desired constant number of points,
for every ordered non-collinear triple among them, we can
carry out a uniquely directed plane sweep to relabel S.
By [9], the OTR for each such labeling can be computed
in O(n3 log n) time. Again, the overall solution will
be the lexicographically largest OTR. For a constant
number of candidate points, the number of triples, and
thus the number of OTRs to compare, is constant. Each
representation has size O(n3), so it takes cubic time to
choose lexicographically. Therefore the overall run-time
is also O(n3 log n). What remains is to show how to
remove all but a constant number of points, in an order
type invariant way.

Let L be the points of the smallest convex layer. Let
CH(L) denote the convex hull of L. The following sim-
ple procedure does just what we need; it identifies a con-
stant number of points from S. Let P = L. Repeat the
following steps until no points are removed from P in step
2.

1. Compute CH(P ). Remove all interior points from
P , including non-extreme collinear points.

2. Remove from P all points except those that have the
lowest vertex degree on CH(P ).

If more than three points survive, CH(P ) must be a
polyhedron with all vertex degrees being equal. If S
is in general position then every face of CH(P ) must
be a triangle. It can be shown, using Euler’s formula,
that CH(P ) must be combinatorially equivalent to a
tetrahedron, octahedron, or icosahedron. Each has only a
constant number of vertices.

Step 1 takes O(n log n) time. Step 2 takes linear time
since the sum of vertex degrees is linear. There are fewer
than n iterations since at least one point is removed each
time. Thus this procedure takes O(n2 log n) time, which
does not affect the time complexity dominated by OTR
computations.

5 Comparing the order type of two sets

As mentioned, the method of Goodman and Pollack [9]
compares order types of three-dimensional point sets in
general position in O(n4) time. The evaluation is done by
comparing the OTR for each canonical labeling of S1 to
one arbitrary OTR from S2.

We have ongoing research to improve OTR represen-
tation and computation. For now, in Section 4 we have
shown that the number of canonical labelings can be re-
duced to a constant. It costs O(n3 log n) time to compute
the OTR for each, and with a lexicographic sort we can
select one representative OTR for any point set. Then S1

and S2 are compared by matching their OTRs.

6 Final notes

Given an order-type invariant labeling of S, we can solve
the following problems in an order-type invariant way.
Consider any problem involving building a graph by
adding edges to S, based on combinatorial comparisons,
i.e. based on order type. Examples of such problems
include triangulation/tetrahedralization, polygonization,
finding a non-crossing matching, finding a non-crossing
spanning tree, or computing a halving line or a ham-
sandwich cut. An order type invariant labeling can be
constructed as preprocessing, so that any combinatorially
equivalent input will produce the same output.

We ask whether an OTR can be computed in o(n3 log n)
time in 3D, and whether any worst-case sub-cubic al-
gorithm exists for the planar case. For the latter, we
specifically ask whether a sub-linear number of canonical
labelings can be computed in sub-cubic time. Of course,
the other possibility also exists (if the number of labelings
remains linear): that of reporting an OTR in sub-quadratic
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time. This is unlikely, as it implies the existence of an
OTR that can be stored in sub-quadratic space. Whether
this can be done was an open problem posed in [8].

Note that without general position, in 3D it is possible
to follow the vertex-degree pruning step with another
test for each vertex. That is, we can enumerate the size
of surrounding faces, and keep only those vertices that
qualify lexicographically. This would result in a polyhe-
dron where every vertex appears identical, with respect to
degree and surrounding face sizes. A topological proof
of Archimedes’ theorem (see [11, 12]) tells us that such
a polyhedron is isomorphic to a semi-regular polyhedron
(i.e., one of the Platonic or Archimedean solids, prisms,
or antiprisms), or to the pseudorhombicuboctahedron.
Among these, only the prisms and antiprisms may have
more than constant size, and this is why general position
is assumed. Our ongoing work involves resolving the
case where pruning results in a prism of more than
constant size (and where repetition of our algorithm on
the discarded set of points recursively yields such prisms
as well).

We thank the other participants of the 2011 Mid-Winter
Workshop on Computational Geometry for providing a
stimulating research environment.
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Proximity graphs: E, δ, ∆, χ and ω
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Abstract

Graph-theoretic properties of certain proximity
graphs defined on planar point sets are investigated.
We first consider some of the most common proxim-
ity graphs of the family of the Delaunay graph, and
study their number of edges, minimum and maximum
degree, clique number, and chromatic number. Then
we focus on the higher order versions of some of these
graphs and give bounds on the same properties.

1 Introduction

Loosely speaking, a proximity graph has as its ver-
tex set a set of points in the plane, and adjacency in
the graph attempts to describe some of the proximity
relations of the point set. Proximity graphs extract
the relevant structure or shape of point sets, and thus
find applications in areas where this structure is im-
portant, which include pattern recognition, computer
vision, and cluster analysis.

This paper considers a family of proximity graphs
comprising several graphs —and some of their
variations— that are subgraphs of the Delaunay tri-
angulation. We study classical graph-theoretic prop-
erties of these graphs: number of edges, minimum and
maximum degree, chromatic number, and clique num-
ber. These parameters have been considered before
in the literature; the existing results, though, leave
some gaps and have been developed under distinct
non-degeneracy assumptions for the point sets. In
this paper we try to address these issues by fixing the
same assumptions on the point sets for all graphs, and
developing new bounds in order to close or narrow the
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existing gaps.
We first consider four order-0 proximity graphs,

namely, the union of the minimum spanning trees,
the relatively closest graph, the relative neighborhood
graph, and the modified Gabriel graph (in the full
version of this paper [3] we additionally look at the
minimum spanning tree, the Gabriel graph, and the
Delaunay graph). These graphs were quite popular
in the eighties and early nineties, and many of their
properties can be found in [5, 7, 8, 10, 11]. In this pa-
per we focus on the basic properties mentioned ear-
lier. When we study these graphs, we do not make
any non-degeneracy assumption on the set of points
on which the graphs are defined, since we believe that
the analysis is more interesting in this case.
The rest of the paper is concerned with three higher

order proximity graphs: the k-relative neighborhood
graph, the k-Gabriel graph, and the k-Delaunay graph
(in [3] we also consider the shared k-nearest neighbor
graph and the k-nearest neighbor graph). Order-k
graphs have been studied in [1, 2, 4, 9], but in general
fewer of their properties are known. Here we assume
that point sets S are in general position in an extended
sense: no three points are collinear, no four points
are concyclic and, for each p ∈ S, the kth nearest
neighbor of p in S is unique, for any k ≥ 1.

Definitions and results Let G be a graph. We de-
note by V (G) (respectively, E(G)) the set of vertices
(respectively, edges) of G. We denote by dG(v) the de-
gree of v in G, where v ∈ V (G). The minimum degree

of G is δ(G) = min{dG(v) : v ∈ V (G)}. The maxi-

mum degree of G is ∆(G) = max{dG(v) : v ∈ V (G)}.
A clique of G is a set of pairwise adjacent vertices.
The clique number of G, denoted by ω(G), is the max-
imum number of vertices in a clique of G. A k-coloring

of G is a mapping f : V (G) → {1, 2, . . . , k} such that
f(v) 6= f(w) for every edge vw of G. The chromatic

number of G, denoted by χ(G), is the minimum k

such that G is k-colorable.
We denote by S a generic set of n points in the

plane. All graphs considered in this paper are ge-
ometric graphs on S, that is, their edges consist of
straight-line segments with endpoints in S. Points in
S are usually denoted by p1, . . . , pi, . . . , pn.

Definition 1 A spanning tree of S with minimum

sum of edge lengths is a minimum spanning tree of S.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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The set of minimum spanning trees of S is denoted by

MST(S), and the graph with vertex set S consisting of

the union of all T ∈ MST(S) is denoted by U-MST(S).

We denote by O-LENS(pi, pj) the region contain-
ing all points x such that |pix| < |pipj | and |pjx| <
|pipj |, and by C-LENS(pi, pj) the regions containing
the points x such that |pix| ≤ |pipj | and |pjx| ≤ |pipj |.

Definition 2 The relative neighborhood graph, de-
noted by RNG(S), is the graph in which pi, pj are ad-

jacent if O-LENS(pi, pj) ∩ S = ∅. The relatively clos-
est graph, denoted by RCG(S), is the graph in which

pi, pj are adjacent if C-LENS(pi, pj) ∩ S = {pi, pj}.

We denote by O-DISC(pi, pj) and C-DISC(pi, pj) re-
spectively the open and closed discs centered at the
midpoint of pipj with pi and pj on their boundary.

Definition 3 The modified Gabriel graph, denoted
by MGG(S), is the graph in which pi, pj are adjacent

if O-DISC(pi, pj) ∩ S = ∅.

The graphs defined so far satisfy that, for every
point set S, U-MST(S) ⊆ RNG(S) ⊆ MGG(S) and
RCG(S) ⊆ RNG(S) (see [5, 10, 11]).
We next define some higher order proximity graphs.

Definition 4 The k-relative neighborhood graph,
denoted by k-RNG(S), is the graph in which pi, pj
are adjacent if |O-LENS(pi, pj) ∩ S| ≤ k.

Definition 5 The k-Gabriel graph, denoted by

k-GG(S), is the graph in which pi, pj are adjacent if

|C-DISC(pi, pj) ∩ S| ≤ k + 2.

Definition 6 The k-Delaunay graph, denoted by

k-DG(S), is the graph in which pi, pj are adjacent if

there exists a circle through pi and pj that contains

at most k points from S in its interior.

It is well known that, for every point set S,
k-RNG(S) ⊆ k-GG(S) ⊆ k-DG(S).
The results that were known before our work and

the ones we prove are summarized in Tables 1 and 2.
Subscripts containing a reference mean that the cor-
responding bound is proved in that reference. The
asterisks indicate results that are well-known or triv-
ial. Due to lack of space, in this extended abstract we
only prove the bounds for the modified Gabriel graph
and the k-Delaunay graph. The remaining proofs are
given in [3].

2 The modified Gabriel graph

Since U-MST(S) ⊆ MGG(S), we have that the number
of edges of MGG(S) is at least n− 1. This is attained
when S is a set of points lying on a line l, since in

Table 1: Bounds on properties of proximity graphs.
No non-degeneracy assumptions are made.

RCG U-MST / RNG MGG

min |E| 0 [5] n− 1 n− 1

max |E| ≥ 2n− 6 3n− 8 4n− 6
√
n+ 2

max |E| ≤ 2n− 5 [5] 3n− 8 4n− 2
√

n

3

max δ 3 [5] 5 ∈ {6, 7}
max∆ 5 n− 1 n− 1

maxχ 3 [5] 4 ∈ {4, . . . , 8}
maxω 2 3 [11] 4

Table 2: Bounds on properties of proximity graphs.
Several non-degeneracy assumptions are made.

k-RNG k-GG k-DG

min |E| ≥ (k+1)n
2

(k+1)n
2

(k + 1)n [1]

min |E| ≤ kn+ o(kn) kn+ o(kn) 3kn
2

+ o(kn)

max |E| ≥ 3π

4π−3
√

3
nk 2kn+ o(nk) 3kn+ o(nk)

max |E| ≤ 5(k+1)n
2

3kn+ o(nk) [1] 3kn+ o(nk) [1]

max δ ≥ 2k + 2 3k + 2 4k + 3

max δ ≤ 3k + 3 6k + 5 6k + 5

max∆ 5k + 5 n− 1 ∗ n− 1 ∗

maxχ ≥ k + 2 3k + 3 [2] 4k + 4 [2]

maxχ ≤ 3k + 4 6k + 6 [2] 6k + 6 [2]

maxω ≥ k + 2 3k + 3 4k + 4

maxω ≤ k + 2 3k + 3 4.74k + 14

this case MGG(S) only contains the edges connecting
consecutive points in l.

Our lower bound on the maximum edges ofMGG(S)
is 4n− 6

√
n+2, and corresponds to the case where S

is a square grid of size
√
n × √

n. Our upper bound
uses a technical lemma, whose proof is omitted.

Lemma 1 Let H = (S,E) be a plane geometric

graph formed by 4-cycles pipjplpmpi ∈ F4 such that

pi, pj , pl, pm ∈ S are the vertices of a closed rect-

angle which is empty of points from S, except for

pi, pj , pl, pm. Let |F4| be the number of such 4-cycles.

The number of edges of H that belong to exactly one

of these 4-cycles is at least 4
√

|F4|.

Theorem 2 Every modified Gabriel graph on n ver-

tices has at most 4n− 2
√

n

3
edges.

Proof. Let G = MGG(S). Suppose that pipj
and plpm are two crossing edges of G. Since
O-DISC(pi, pj) ∩ S = ∅, we have that p̂iplpj ≤ π/2
and p̂ipmpj ≤ π/2. Analogously, p̂lpipm ≤ π/2 and



219

EuroCG 2012, Assisi, Italy, March 19–21, 2012

p̂lpjpm ≤ π/2. Thus all these inequalities are actu-
ally equalities, and O-DISC(pi, pj) = O-DISC(pl, pm).
In particular, if e1, e2, e3 ∈ E(MGG(S)) and e1 crosses
e2 and e3, then e2 and e3 also cross. If e1, e2, . . . , ek
are pairwise crossing edges then there exists a circle
c such that the endpoints of each ei are at antipodal
points on c. Furthermore, there are no points of S in
the interior of c. Add edges between points from the
set of endpoints of e1, e2, . . . , ek that are consecutive
in c. Notice that these edges do not create crossings
with the edges in G. We refer to the interior of the
resulting 2k-gon as a crossing region. If a crossing
region is bounded by a cycle of 6 or more vertices,
remove all the crossing edges and add chords of the
cycle so that the region inside the cycle is triangu-
lated (after this modification, the region is no longer
called a crossing region). Finally, add edges to the re-
gion inside CH(S) disjoint from the crossing regions
so that each interior face is a triangle. Let G′ be the
resulting graph. By construction, |E(G′)| ≥ |E(G)|.
The graph G′ subdivides the interior of CH(S)

into crossing regions and regions bounded by trian-
gles, and the boundaries of the crossing regions are
given by rectangles. We denote by |F4| the num-
ber of such rectangles, and by |F3| the number of
triangles. Let G′

pl be a graph obtained from G′ by
deleting one edge in each rectangle. Clearly, G′

pl is
a triangulation. Therefore, |E(G′

pl)| = 3n − h − 3
and |E(G′)| = 3n − h − 3 + |F4|, where h is the
size of the convex hull of S. By Euler’s formula,
|F3| + 2|F4| + n = |E(G′

pl)| + 1. Combining these
equations, we obtain that |F3| = 2n− 2|F4| − h− 2.
Suppose, for sake of contradiction, that |E(G)| ≥

4n− 2
√
n

3
. Then |F4| = |E(G′)|−3n+h+3 ≥ |E(G)|−

3n + h + 3 > n − 2
√
n

3
. Consider the subgraph G′′ of

G′ containing the edges of the rectangles bounding
the crossing regions. By Lemma 1, the number of
edges of G′′ that are edges of exactly one rectangle
of this graph is at least 4

√

|F4|. We call them red

edges. Every red edge belongs either to the boundary
of a triangle of G′ or to the boundary of the convex
hull of S. Thus the number of red edges is at most
3|F3|+h. Taking 4

√

|F4| ≤ 3|F3|+h, and substituting

|F3| = 2n − 2|F4| − h − 2, we obtain 4
√

|F4| ≤ 6n −
6|F4| − 2h− 6. Since |F4| > n− 2

√
n

3
, we get

0 < 4
√
n− 4

√

n− 2
√
n

3
− 2h− 6.

But for all n ≥ 1, we have that 4
√
n−4

√

n− 2
√
n

3
≤ 2,

which yields the contradiction. �

Since |E(MGG(S))| < 4n, the handshaking lemma
says that δ(MGG(S)) ≤ 7. An example where all ver-
tices have degree at least 6 is drawn in Fig. 1.
As for the maximum degree, MGG might contain a

vertex of degree n− 1. For example, if we place n− 1

Figure 1: MGG where all vertices have degree at least
6. The interior of each empty dodecagon in the left
figure is filled with extra points as in the right figure.

points of S on a circle centered at p ∈ S, in MGG(S)
p is adjacent to all the other vertices.

Let us next consider the chromatic number. We
have seen that the modified Gabriel graph always con-
tains a vertex of degree at most 7. Observe that, if
pipj is an edge of MGG(S), this edge is also present
in MGG(S \ {pl}) for any pl ∈ S (pl 6= pi, pj). Thus,
if MGG(S) \S′ is an induced subgraph of MGG(S) on
n′ vertices, then it is a subgraph of MGG(S \ S′) and
it contains a vertex of degree 7 or less. Therefore we
can color MGG(S) with 8 colors using the minimum
degree greedy algorithm. However, we have not been
able to find such a graph having chromatic number
larger than 4, attained by the square grid.

To end this section, we study the clique number.

Proposition 3 For every point set S, ω(MGG(S)) ≤
4. This bound is tight.

Proof. Suppose that a modified Gabriel graph con-
tains a 4-clique whose four vertices form a triangle
△pipjpk with an interior point pl. Then pl sees one
of the edges of the triangle, for example pipj , with an
angle greater than π/2. This contradicts the fact that
pipj is an edge of the graph. Consequently, in a mod-
ified Gabriel graph the four vertices of any 4-clique
are in convex position and form a crossing. As seen
in the proof of Theorem 2, in this situation the four
vertices are concyclic and form an empty rectangle.
This implies that there are not cliques of size greater
than 4. To see that this is best possible, notice that
MGG of the square grid has many 4-cliques. �

3 The k-Delaunay graph

The number of edges of k-DG(S) has been studied
in [1]. In this paper they show that |E(k-DG(S))| ≤
3(k+1)n−3(k+1)(k+2) and that, if k < n

2
−1, then

|E(k-DG(S))| ≥ (k + 1)n. In the next proposition we
describe a k-DG with small number of edges, and one
with large number of edges.
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Proposition 4 For any even values of k and n ≥ 4k+
4, there exists a point set S such that |E(k-DG(S))| ≤
3kn
2

+2k2+ 5n
2
−4k−6. For any k ≥ 0 and n ≥ 2k+3,

there exists a point set S such that |E(k-DG(S))| ≥
3nk − 9k2 + 2n− 11k − 4.

Proof. For the first construction, we place points
p1, . . . , pn/2 such that pi has coordinates (i, 5), and
points q1, . . . , qn/2 such that qi has coordinates (i, 0)
(see Fig. 2, left). Let i be such that k+2 ≤ i ≤ n−k−1
and let G = k-DG(S). It is not difficult to see
that dG(qi) ≤ 3k + 5 and dG(pi) ≤ 3k + 5. Simi-
larly, if i < k + 2 or i > n − k − 1, we have that
dG(qi) ≤ 4k+2 and dG(pi) ≤ 4k+2. This yields that
|E(k-DG(S))| ≤ 3kn

2
+ 2k2 + 5n

2
− 4k − 6. The set S

can be perturbed so that it becomes non-degenerate.
For the second construction, refer to Fig. 2 (cen-

ter). The upper and lower groups contain k + 1
points each, and the remaining points are placed in
the middle group. In k-DG(S), the points in the
upper group form a clique, and the same holds for
the points in the lower group. Each point in the
middle group is connected to all upper and lower
points, and also to its k predecessors and k succes-
sors in the middle group if it has enough points to its
left and right. Consequently, if G = k-DG(S), then∑

q∈S dG(q) ≥ 2(k+1)(n−k−2)+(n−4k−2)(4k+2).
This construction can be perturbed so that the non-
degeneracy assumptions are satisfied. �

pj

qi

Figure 2: Left and center: sets of points whose k-DG

have 3kn
2

+ o(kn) and 3kn + o(kn) edges, respec-
tively. Right: set of points whose k-DG is the com-
plete graph.

For every point set S, χ(k-DG(S)) ≤ 6k + 6, and
there exists a point set S such that χ(k-DG(S)) ≥
4k+4 [2]. This point set is made of copies of a group
of 4k + 4 points illustrated in Fig. 2 (right), whose
k-DG is the complete graph. Thus, for this particular
S, δ(k-DG(S)) ≥ 4k+3 and ω(k-DG(S)) ≥ 4k+4. In
general, the minimum degree of k-DG(S) is at most
6k + 5, by the handshaking lemma. As for the clique
number, it is known that, for every set S of points in
the plane, there exist two points pi, pj ∈ S such that
every circle (the interior and the boundary) contain-
ing pi and pj contains at least

n
4.74 points of S [6]. This

implies that, for every S, ω(k-DG(S)) ≤ 4.74k + 14.

Finally, we can show that k-DG might contain a
vertex of degree n− 1 using a slightly perturbed ver-
sion of the example where we place n− 1 points of S
on a circle centered at p ∈ S.
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The Erdős-Sós Conjecture for Geometric Graphs
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Abstract

Let f(n, k) be the minimum number of edges that
must be removed from some complete geometric graph
G on n points, so that there exists a tree on k vertices
that is no longer a planar subgraph of G. In this paper

we show that
(

1
2

)

n2

k−1 − n
2 ≤ f(n, k) ≤ 2n(n−2)

k−2 . For
the case when k = n, we show that 2 ≤ f(n, n) ≤ 3.
For the case when k = n and G is a geometric graph
on a set of points in convex position, we show that at
least three edges must be removed.

1 Introduction

One of the most notorious problems in extremal graph
theory is the Erdős-Sós Conjecture, which states that
every simple graph with average degree greater than
k− 2 contains every tree on k vertices as a subgraph.
This conjecture was recently proved true for all suf-
ficiently large k (unpublished work of Ajtai, Komlós,
Simonovits, and Szemerédi).
In this paper we investigate a variation of this con-

jecture in the setting of geometric graphs. Recall that
a geometric graph G consists of a set S of points in
the plane (these are the vertices of G), plus a set of
straight line segments, each of which joins two points
in S (these are the edges of G). In particular, any set
S of points in the plane in general position naturally
induces a complete geometric graph. For brevity, we
often refer to the edges of this graph simply as edges
of S. If S is in convex position then G is a convex

geometric graph. A geometric graph is planar if no
two of its edges cross each other. An embedding of
an abstract graph H into a geometric graph G is an
isomorphism from H to a planar geometric subgraph
of G. For r ≥ 0, an r-edge is an edge of G such that
in one of the two open semi-planes defined by the line
containing it, there are exactly r points of G.

In this paper all point sets are in general position
and G is a complete geometric graph on n points. It
is well known that G contains every tree on k vertices
as a planar subgraph [2], for every integer 1 ≤ k ≤ n.

∗Instituto de Matemáticas, UNAM
†Departamento de Matemáticas, CINVESTAV. Partially

supported by Conacyt of Mexico, Grant 153984.
‡Departamento de Sistemas, UAM Azcapotzalco
§Escuela de Matemáticas, UAZ
¶Instituto de F́ısica, UASLP

Moreover, it is possible to embed any such tree into
G, when the image of a given vertex is predefined [4].
Let F be a subset of edges of G, which we call for-

bidden edges. If T is a tree for which every embedding
into G uses an edge of F , then we say that F forbids

T . In this paper we study the question of what is the
minimum size of F so that there is a tree on k vertices
that is forbidden by F . Let f(n, k) be the minimum of
this number taken over all complete geometric graphs
on n points. As f(2, 2) = 1, f(3, 3) = 2, f(4, 4) = 2
and f(n, 2) =

(

n
2

)

, we assume through out the paper
that n ≥ 5 and k ≥ 3.
We show the following bounds on f(n, k).

Theorem 1

(

1

2

)

n2

k − 1
−

n

2
≤ f(n, k) ≤ 2

n(n− 2)

k − 2

Theorem 2

2 ≤ f(n, n) ≤ 3

In the case when G is a convex complete geometric
graph, we show that the minimum number of edges
needed to forbid a tree on n vertices is three. Some
results shown in [3] are closely related to this problem.
An equivalent formulation of the problem studied in

this paper is to ask how many edges must be removed
from G so that it no longer contains some planar sub-
tree on k vertices. A different but related problem is
to ask how many edges must be removed from G, so
that it no longer contains any planar subtree on k
vertices. For the case of k = n, in [5], it is proved
that if any n − 2 edges are removed from G, it still
contains a planar spanning subtree. Note that if the
n− 1 edges incident to any vertex of G are removed,
then G no longer contains a spanning subtree. In gen-
eral, for 2 ≤ k ≤ n− 1, in [1], it is proved that if any

set of
⌈

n(n−k+1)
2

⌉

− 1 edges are removed from G, it

still contains a planar subtree on k vertices. In the
same paper it is also shown that this bound is tight

2 Spanning Trees

In this section we consider the case when k = n. Let
T be a tree on n vertices. Consider the following
algorithm to embed T into G. Choose a vertex v of T ;
root T at v. For every vertex of T choose an arbitrary

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: An embedding of a tree using the algorithm.

Figure 2: T7 and T8.

order of its children. Suppose that the neighbors of
v are u1, . . . , um, and let n1, . . . , nm be the number
of nodes in their corresponding subtrees. Choose a
convex hull point p of G and embed v into p. Sort
the remaining points of G counter-clockwise by angle
around p. Choose m + 1 rays centered at p so that
the wedge between two consecutive rays is convex and
between the i-th ray and the (i + 1)-th ray there are
exactly ni points ofG. Let Si be this set of points. For
each ui choose a convex hull vertex of Si visible from
p and embed ui into this point. Recursively embed
the subtrees rooted at each ui into Si. Note that this
algorithm provides an embedding of T into G. We will
use this embedding frequently throughout the paper.
See Figure 1.
For every integer n ≥ 2 we define a tree Tn as fol-

lows: If n = 2, then Tn consists of only one edge; if
n is odd, then Tn is constructed by subdividing once
every edge of a star on n−1

2 vertices; if n is even and
greater than 2, then Tn is constructed by subdividing
an edge of Tn−1. These trees are particular cases of
spider trees. See Figure 2.

We prove the lower bound of f(n, n) ≥ 2 of Theo-
rem 2.

Theorem 3 If G has only one forbidden edge, then

any tree on n vertices can be embedded into G, with-

out using the forbidden edge.

Proof. Let e be the forbidden edge of G. Let T be
a tree on n vertices. Choose a root for T . Sort the

children of each node of T , by increasing size of their
corresponding subtree. Embed T into G with the em-
bedding algorithm, choosing at all times the rightmost
point as the root of the next subtree. Suppose that e
is used in this embedding. Let e := (p, q) so that u is
embedded into p and v is embedded into q (note that
u and v are vertices of T ).
Suppose that the subtree rooted at v has at least

two nodes. In the algorithm, we embedded this sub-
tree rooted at v into a set of at least two points. We
chose a convex hull point (q), of this set visible from p
to embed v. In this case we may choose another con-
vex hull point visible from p to embed v and continue
with the algorithm. Note that (p, q) is no longer used
in the final embedding.
Suppose that v is a leaf, and that v has a sibling v′

whose subtree has at least two nodes. Then we may
change the order of the children of u so that e is no
longer used in the embedding, or if it is, then v′ is
embedded into q, but then we proceed as above.
Suppose that v is a leaf, and that all its siblings are

leaves. The subtree rooted at u is a star. We choose
a point distinct from p and q in the point set where
this subtree is embedded, and embed u into this point.
Afterwards we join it to the remaining points. This
produces an embedding that avoids e.
Assume then, that v is a leaf and that it has no

siblings. We distinguish the following cases:

1. u has no siblings. In this case, the subtree
rooted at the parent of u is a path of length two.
It is always possible to embed this subtree with-
out using e. See Figure 3.

2. u has a sibling u′ whose subtree is not an

edge. We may change the order of the sib-
lings of u, with respect to their parent, so that
the subtree rooted at u′ will be embedded into
the point set containing p and q. In the initial
order—increasing by size of their corresponding
subtrees—u′ is after u. We may assume that
in the new ordering, the order of the siblings of
u before it, stays the same. Therefore p is the
rightmost point of the set into which the subtree
rooted at u′ will be embedded. Embed u′ into p.
Either we find an embedding not using e, or this
embedding falls into one of the cases considered
before.

3. u has at least one sibling, all whose corre-

sponding subtrees are edges

Suppose that u has no grandparent; then T is
equal to Tn and n is odd. Let w be the par-
ent of u. Embed w into p. Let p1, . . . , pn−1 be
the points of G different from p sorted counter-
clockwise by angle around p; choose p1 so that
the angle between two consecutive points is less
than π. Let u1, . . . , u(n−1)/2 be the neighbors of
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Figure 3: The embedding of a path of length three.
The grandparent of u is highlighted and the forbidden
edge is dashed.

Figure 4: The two sub-cases, when u has a grandpar-
ent w, and all the subtrees of its children are edges.
Odd points are painted in black and even points in
white. The forbidden edges are dashed.

w. Embed each ui into p2i−1 and its child into
p2i. If q equals p2j−1 for some j then embed uj

into p2j and its child into p2j−1. This embedding
avoids e.

Suppose that w is the grandparent of u and let
p′ be the point into which w is embedded. Let
S be the point set into which the subtree rooted
at the parent of u is embedded. Note that S
has an odd number of points. We replace the
embedding as follows. Sort S counter-clockwise
by angle around p′. Call a point even if it has an
even number of points before it in this ordering.
Call a point odd if it has an odd number of points
before it in this ordering. If e is incident to an
odd point, then we embed the parent of u into
this point. The remaining subtree rooted at u can
be embedded without using e. If the endpoints
of e are both even, between them there is an odd
point. We embed the parent of u into this point.
The remaining vertices can be embedded without
using e (see Figure 4).

�

The upper bound of f(n, n) ≤ 3 of Theorem 2
follows directly from Lemma 6. Now we prove in
Lemma 4 and Theorem 5, that if G is a convex geo-
metric graph, at least three edges are needed to forbid

some tree on n vertices. Lemma 4 can be proved eas-
ily using a previous result (Theorem 2.1 of [3]). We
provide a self-contained proof for completeness.

Lemma 4 Let T be a tree on n vertices. If G is a

convex geometric graph, then T can be embedded into

G using less than n
2 convex hull edges of G.

Proof. If T is a star, then any embedding of T into
G uses only two convex hull edges. If T is a path
then it can be embedded into G using at most two
convex hull edges. Therefore, we may assume that T
is neither a star nor a path.
Since T is not a path, it has a vertex of degree at

least three. Choose this vertex as the root. Since T
is not a star, the root has a child whose subtree has
at least two nodes. Sort the children of T so that this
node is first. Embed T into G with the embedding
algorithm.
Let u and v be vertices of T , so that u is the parent

of v. Suppose that the subtree rooted at v has at
least two nodes. Then in the embedding algorithm we
have at least two choices to embed v once the ordering
of the children of u has been chosen. At least one
of which is such that (u, v) is not embedded into a
convex hull edge. Therefore, we may assume that the
embedding is such that all the convex hull edges used
are incident to a leaf.
Since the first child of the root is not a leaf, there

is at most one convex hull edge incident to the root in
the embedding. Note that any vertex of T , other than
the root, is incident to at most one convex hull edge
in the embedding. If n/2 or more convex hull edges
are used, then there are at least n/2 non-leaf vertices,
each adjacent to a leaf. These vertices must be all
the vertices in T and there are only n/2 such pairs (n
must also be even). Therefore every non-leaf vertex
has at most one child which is a leaf. In particular
the root has at most one child which is a leaf. Since
the root was chosen of degree at least three it has a
child which is not a leaf nor the first child; we place
this vertex last in the ordering of the children of the
root. The leaf adjacent to the root can no longer be
a convex hull edge and the embedding uses less than
n/2 convex hull edges. �

Theorem 5 If G is a convex geometric graph and

has at most two forbidden edges, then any tree on

n vertices can be embedded into G, without using a

forbidden edge.

Proof. Let f0 be an embedding given by Lemma 4,
of T into G. For 0 ≤ i ≤ n, let fi be the embedding
produced by rotating f0, i places to the right. Assume
that in each of these rotations at least one forbidden
edge is used, as otherwise we are done. Let e1, . . . , em
be the edges of T that are mapped to a forbidden
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edge in some rotation. Assume that the two forbidden
edges are an l-edge and an r-edge respectively.
Suppose that l 6= r. Then, each edge of T can be

embedded into a forbidden edge at most once in all of
the n rotations. Thus m ≥ n. This is a contradiction,
since T has n− 1 edges.
Suppose that l = r. Then, each of the ei is mapped

twice to a forbidden edge. Thus m ≥ n/2. By Lemma
4, f0 uses less than n/2 convex hull edges. Therefore,
l and r must be greater than 0. But a set of n/2
or more r-edges, with r > 0, must contain a pair of
edges that cross. And we are done, since f0 is an
embedding. �

3 Bounds on f(n, k)

In this section we prove Theorem 1. First we show the
upper bound which can also be seen as a consequence
of Theorem 2.2 of [3]. However, we provide a self-
contained proof for completeness.

Lemma 6 If G is a convex geometric graph, then

forbidding three consecutive convex hull edges of G
forbids the embedding of Tn.

Proof. Recall that Tn comes from subdividing a
star, let v be the non leaf vertex of this star. Let
(p1, p2), (p2, p3), (p3, p4) be the forbidden edges, in
clockwise order around the convex hull of G. Note
that in any embedding of Tn into G, an edge incident
to a leaf of Tn, must be embedded into a convex hull
edge. Thus, the leaves of Tn nor its neighbors can
be embedded into p2 or p3, without using a forbid-
den edge. Thus, v must be embedded into p2 or p3.
Without loss of generality assume that v is embedded
into p2. But then, the embedding must use (p2, p3) or
(p3, p4) �

Lemma 7 If G is a convex geometric graph, then

forbidding any three pairs of consecutive convex hull

edges of G forbids the embedding of Tn.

Proof. Let p1, p2 and p3 be the vertices in the middle
of the three pairs of consecutive forbidden edges of
G. Note that a leaf of Tn, nor its neighbor can be
embedded into p1, p2 or p3, without using a forbidden
edge. But at most two points do not fall into this
category. �

Lemma 8 f(n, k) ≤ 2n(n−2)
k−2

Proof. Let G be a complete convex geometric
graph. We forbid every r-edge of G for r =

0, . . . ,
⌈

2n−2
k−2 − 2

⌉

. Note that, in total we are forbid-

ding at most n
(⌈

2n−2
k−2 − 2

⌉

+ 1
)

≤ 2n(n−2)
k−2 edges.

As every subset of points of G is in convex position,
it suffices to show that every induced subgraph H of

G on k vertices is in one of the two configurations of
Lemma 6 and 7.
Assume then, that H does not contain three con-

secutive forbidden edges in its convex hull nor three
pairs of consecutive forbidden edges in its convex hull.
H has at most two (non-adjacent) pairs of consecu-
tive forbidden edges in its convex hull. Therefore ev-
ery forbidden edge of H in its convex hull—with the
exception of at most two—must be preceded by an ℓ-

edge (of G), with ℓ >
⌈

2n−2
k−2 − 2

⌉

. H contains at least
k−2
2 of these edges. The points separated by these

edges amount to more than k−2
2

⌈

2n−2
k−2 − 2

⌉

≥ n − k

points of G. Together with the k points of H this is
strictly more than n—a contradiction.

�

Now, we show the lower bound of Theorem 1.

Lemma 9 f(n, k) ≥
(

1
2

)

n2

k−1 − n
2

Proof. Let F be a set of edges whose removal from
G forbids some k-tree. Let H := G \ F . Note that
H contains no complete Kk as a subgraph, other-
wise any k-tree can be embedded in this subgraph
[2]. By Turán’s Theorem [6], H cannot contain more

than
(

k−2
k−1

)

n2

2 edges. Thus F must have size at least
(

1
2

)

n2

k−1 − n
2 . �
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Planar β-skeletons via point location in monotone subdivisions of subset

of lunes

Miroslaw Kowaluk∗

Abstract

We present a new algorithm for lune-based β-
skeletons for sets of n points in the plane, for β ∈
(2,∞], the only case when optimal algorithms are
not known. The running time of the algorithm is
O(n3/2 log1/2 n), which is the best known and is an
improvement of Rao and Mukhopadhyay [10] result.
The method is based on point location in monotonic
subdivisions of arrangements of curve segments.

1 Introduction

β-skeletons [7] belong to the family of proxim-
ity graphs, geometric graphs in which two vertices
(points) produce an edge if and only if they sat-
isfy particular geometric requirements. The proxim-
ity graphs are both important and popular because
of many practical applications. They span a broad
spectrum of areas, from earlier work on mathematical
morphology on lattices and graphs, pattern recogni-
tion, geographic information systems, data mining to
more recent applications in ad hoc wireless networks
and systems biology. Requirements defining proxim-
ity graphs can be formulated in many metrics, with
the Euclidean metric being one of the most commonly
used.

Definition 1 For a given set P containing n points

in R2, distance function d and the parameter β we

define β-skeleton as a graph (P, E), in which xy ∈ E
iff no point in P \ {x, y} belongs to R(x, y, β), where

• for β = 0, R(x, y, β) is the segment xy;

• for 0 < β < 1, R(x, y, β) is the intersection of two

discs with the radius d(x, y)/2β, which bound-

aries contain the both points x and y.

For 1 ≤ β ≤ ∞ there are two ways to define the region

R(x, y, β) leading to two different families of graphs.

The lune-based definition is as follows:

• For 1 ≤ β ≤ ∞ , R(x, y, β) is a intersection of

two discs with radius βd(x, y)/2 and centered in

points (1−β/2)x+(β/2)y and (β/2)x+(1−β/2)y,

respectively.

∗Institute of Informatics, University of Warsaw,

kowaluk@mimuw.edu.pl

• For β = ∞, R(x, y, β) is an unbounded strip be-

tween two lines containing x and y, respectively,

and perpendicular to the segment xy.

The second definition defining a different family of

graphs is circle-based.

• For 1 ≤ β < ∞, R(x, y, β) is the union of two

discs, each having diameter βd(x, y) and having

the segment xy as its chord.

• For β = ∞, R(x, y, β) is the union of hyperplanes

having the segment xy on their border.

a ba b a b

Figure 1: The region R(a, b, β) for 0 < β < 1 (left),
the lune-based region R(a, b, β) for 1 ≤ β < ∞ (mid-
dle) and the circle-based region R(a, b, β) for 1 ≤ β <
∞ (right).

The open (closed, respectively) area R(x, y, β)
defines an open (closed, respectively) β-skeleton. A
Gabriel Graph (GG) [4] is a closed 1-skeleton and a
Relative Neighborhood Graph (RNG) [12] is an open
2-skeleton.

For 0 ≤ β < 1, there are in the worst case optimal
O(n2) time algorithms [5] for both lune-based and
circle-based β-skeletons. Also, any β-skeleton for 1 ≤
β ≤ 2 can be computed in the optimal O(n log n)
time ([6, 8, 9, 11]). For circle-based β-skeletons, where
1 ≤ β ≤ ∞, there also is an optimal O(n log n) time
algorithm [7].

For β > 2, the lune-based and circle-based re-
gions R(x, y, β) are very different and it has been
reflected by higher running times of the best known
algorithms for the lune-based β-skeletons. In partic-
ular, for 2 < β ≤ ∞, the fastest algorithm that has
been reported for computing lune-based β-skeletons

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
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requires O(n3/2 log n) time [10]. The algorithm uses
the sweeping-line technique.
In this paper, we will show a O(n3/2 log1/2 n) time
algorithm computing a lune-based β-skeleton for 2 <

β ≤ ∞. To this end, we will use arrangements of curve
segments [1] and data structure for point location in
monotone subdivisions [3].

2 Algorithm

It is well known, see e.g. [7], that β-skeletons for
2 < β are subgraphs of the Delaunay triangulation of
the input point sets. For a set P of n points, they
have size O(n). Thus, to construct a β-skeleton, we
can use their definition to eliminate edges that do not
belong to β-skeleton by comparing edges of Delaunay
triangulation against all of the points in the input
set. To this end, we analyze lunes (for 2 < β < ∞)
or strips (for β = ∞) defined by the edges of the DT
triangulation.
Specifically, we have to identify these lunes or strips
that contain points in P .
Let us consider m edges of the Delaunay triangulation
of P . m will be determined later to minimize the
running time.

a

b

Figure 2: A subdivision of the plane into three mono-
tone regions for one lune.

We construct arrangement of lunes defined by these
edges. Specifically, for each of the lunes, we draw
two horizontal half-lines that start at the points with
the smallest and, respectively, largest x-coordinates.
They yield three monotone regions per lune (see Fig.
2). The size of the arrangement is O(m2) and the
time complexity of its construction is the same [1].
The intersection of monotone regions is monotone.
The above construction results in a monotone sub-
division of size O(m2) for the arrangement of size
O(m2).
Then, we locate points of P in regions of the
subdivision. The construction time of an auxiliary
data structure is linear with respect to a size of the
subdivision [3]. Hence it can be done in O(m2) time

and O(m2) space. A query time is O(log m). The
results of querying are stored in respective cells of
the subdivision data structure.
We traverse the dual graph of the subdivision in
a Depth-First-Search fashion in order to identify
(and store) edges of the Delaunay triangulations
that do not belong the β-skeleton and lunes (strips,
respectively) containing currently visited region of
the subdivision.

Figure 3: The Delaunay triangulation for a set of four
points, the corresponding subdivision and its dual
graph.

The structure is a table of lunes (strips, respec-
tively) forming the subdivision with

• records storing - value true when the respective
lune contains some point of P and false otherwise
and

• pointers to a double linked list of lunes (strips,
respectively) containing currently visited region
which respective records are false.

Moving between two neighboring regions we visit or
leave the lune or our status stays unchanged.
In the first case :

• if record of the auxiliary structure of this lune
has value false we add the lune to the list in the
structure; otherwise the list stays unchanged,

• if visited region contains a point of P we change
values of records of all lunes belonging to the list
on true and erase the list.

In the second case we remove the lune form the list if
its record has value false.
In the third case all data structures stay unchanged.
Visiting all regions of the subdivision take O(m2)
time.
We repeat the above process for all the groups in the
partition of the edges into groups of size m.
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Theorem 1 For 2 < β ≤ ∞, β-skeleton of a set

P of n points in the plane can be constructed in

O(n3/2 log1/2 n) time and O(n log n) space.

Proof. The time complexity of every steps of the
algorithm is O(n log n) + n/m(O(m2) + O(m2) +
O(n log m) + O(m2)) = O(n log n) + n/m(O(m2) +
O(n log m)). The value of this function is minimal for
m = (n log n)1/2 . Hence the time complexity of the

algorithm is O(n3/2 log1/2 n). Space complexity of the
algorithm is O(n) + O(m2) = O(n log n) . �

3 Conclusion

We have presented a new algorithm for the lune based
β-skeletons, where β > 2. For circle-based skeletons
the approach would work as well, however better al-
gorithms are known in that case. Although the al-
gorithm provides only an incremental improvement
compared to the previous one, the improvement is in-
teresting due to a tantalizing jump in the algorithmic
complexity of the β-skeleton problem that occurs for
β = 2. While for β ≤ 2 optimal algorithms are known,
the optimality is open for β > 2. The presented al-
gorithm narrows the gap, however more research is
needed to better understand the reasons for this ap-
parent difficulty for β > 2.

Finally, we believe that the point location approach
can be also used for metrics other than Eucliedean.
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Some Sparse Yao Graphs are Spanners

Matthew Bauer ∗ Mirela Damian †

Abstract

We show that, for any integer k ≥ 3, the Sparse-
Yao graph (also known as a Yao-Yao graph) Y Y4k

constructed under the L∞ norm is a spanner.

1 Introduction

Let P be a set of points in the plane of cardinality
n. We will refer to the points in P as nodes, to
distinguish them from other points in the plane.
The Yao graph Yk, with vertex set P and inte-
ger parameter k > 0, is defined as follows. Fix
a coordinate system and shoot k, equally sepa-
rating rays from the origin, with the first ray in
the direction of the x-axis. These rays divide the
plane into k cones of angle 2π/k each. Translate
the cones to each node a ∈ P. In each cone with
apex a, pick a closest node b, if there is one, and

add to Yk the directed edge
−→
ab. Ties are broken

arbitrarily. The Yao construction guarantees that
the out-degree of Yk is bounded by k. However,
a node can be nearest to many other nodes. For
example, if P consists of n − 1 nodes placed on
the circumference of a circle with center node a,
then each of the n−1 nodes will have an outgoing
edge to a, because a is a nearest node in one of
their cones. In this case, node a has out-degree k,
but in-degree n− 1.
To overcome the problem of potential high in-

degree at a node, two straightforward Yao-based
graphs have been introduced. The Symmetric-
Yao graph SYk keeps only the symmetric (bidi-
rectional) Yao edges, and discards the rest: an

edge ab ∈ SYk if and only if both
−→
ab and

−→
ba are

in Yk. Thus, the degree of SYk is bounded above
by k. One issue with the Symmetric-Yao graph
is that it introduces very long detours, so it is
possible that no “short” paths can be found be-
tween two nodes in SYk. In an effort to overcome
this new issue, the Sparse-Yao graph Y Yk, also
known as Yao-Yao graph, has been defined. Both
names are suggestive, in the sense that Y Yk is a
sparse graph obtained by applying a second Yao
step to the set of incoming Yao edges: for each

∗Department of Computing Sciences, Villanova Univer-

sity, Villanova, PA, USA. mbauer03@villanova.edu.
†Department of Computing Sciences, Villanova Univer-

sity, Villanova, PA, USA. mirela.damian@villanova.edu.

node a and each cone rooted at a containing two
or more incoming edges, retain a shortest incom-
ing edge and discard the rest. (Ties are broken
arbitrarily.) Then the degree of Y Yk is bounded
above by 2k (at most k outgoing edges and at
most k incoming edges at each node). It is yet
unknown whether the Sparse-Yao graph contains
“short” paths between all pairs of nodes or not.
Here, “short” paths are quantified by the notion
of t-spanner. The length of a path is the sum of
the lengths of its constituent edges. For a fixed
constant t ≥ 1, a graph G is a t-spanner if a short-
est path between any pair of nodes a, b ∈ G is at
most t-times longer than the Euclidean distance
between a and b.

The class of Yao-based graphs has been much
studied. Table 1 summarizes the spanning prop-
erties of these graphs, to the best of our knowl-
edge. Note that it is yet unknown whether all
Sparse-Yao graphs, for large enough values of k,
are spanners.

Our focus in this paper is on the open problem
listed in the shaded cell of Table 1.

Graph Parameter k t-Spanner

Yao Yk

k ∈ {2, 3} NO [4]
k = 4 t = O(1) [1]
k = 5 Open

k = 6 t = O(1) [3]
k > 6 t = O(1) [1, 7]

Sparse
k ≤ 4 NO [5]

Yao Y Yk

k = 5 Open

k = 6 NO [4]
k > 6 Open

Symmetric
Yao SYk k ≥ 1 NO [6]

Table 1: Spanning properties of Yao graphs.

2 Preliminaries

For a fixed k, let r1, r2, . . . , rk be the rays sepa-
rating the cones at each point. We assume, with-
out loss of generality, that r1 is horizontal and
points to the right. For each node a ∈ P, we use
Ck,i(a) to denote the half-open cone delimited by
ri and ri+1, including ri but excluding ri+1. Here,
ri+1 refers to the first ray counter-clockwise from
ri and rj refers to rjmod(k+1)+1, for any j. See
Fig. 1(a). For a point a, let xa denote the x-
coordinate of a, and ya the y-coordinate of a. We
will distinguish between Euclidean L2 distances,
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|ab| =
√

(xa − xb)2 + (ya − yb)2), and supremum
L∞ distances |ab|∞ = max{|xa − xb|, |ya − yb|}.

(b)

a

(a)

r1

r2
r3

r4

r5

r6
r7

r8

C8,1

C8,2C8,3

C8,4

C8,5
C8,6 C8,7

C8,8
a

i j

C8,2

Figure 1: Definitions. (a) Cones Ck,i, for k = 8.
(b) Edges in Y ∞

8 outgoing from a.

A path p is defined as a sequence of edges. The
length of p is denoted |p| under the L2 norm and
|p|∞ under the L∞ norm. Let Y ∞

k denote the
Yao graph constructed using L∞ distances be-
tween nodes. Unlike Yk, in constructing Y ∞

k , ties
are broken by always selecting the most clockwise

edge. Fig. 1b shows the Y ∞
8 edges outgoing from

node a. (Dashed light-shaded edges are the orig-
inal Y8 edges, and the darker solid edges are the
Y ∞
8 edges.) Note that the two nodes labeled i

and j in Fig. 1b are at the same L∞ distance from

a, and Y ∞
8 selects the most clockwise edge (

−→
aj).

Similar definitions hold for Y Y ∞
k , the Sparse-Yao

graph in the L∞ metric. We now state a result
established in [1], which we will use in our proofs
in Sec. 3.

Theorem 1 [1] Y ∞
4 is a plane graph. In addi-

tion, Y ∞
4 is an 8-spanner in the L∞ metric. In

other words, for any two nodes a and b, there is
a path between a and b whose length (in the L∞-
metric) is at most 8|ab|∞.

For any two points a and b, define R(a, b) to be
the closed axis-aligned rectangle with diagonal ab
and define ∂R to be the boundary of R. For any
two nodes a, b ∈ P and fixed plane rectangle R, let
Π[Y4](a, b, R) denote the Greedy path that starts
at a and follows the directed edges in Y ∞

4 point-
ing towards b, until it exits R \ ∂R. This idea
is depicted in Fig. 2a, for k = 1 and rectangle
R = R(a, b). Although possible, a formal defi-
nition of Π[Y4] is hardly necessary. Additionally,
from here on, we will ignore the parameter R,
with the implicit assumption that Π[Y4](a, b) is
defined with respect to R(a, b). We also remind
the reader that, although we do not explicitly use
the symbol ∞ in the definition of Π[Y4], it should
be understood that all path edges are from Y ∞

4 .
We say that two segments ab and cd properly

cross (or cross, for short) if they share a point
other than an endpoint (a, b, c or d); we say that

a

b

R
c

Π    (a,b,R)[Y  ]4 

a

(b)

b

c

C4k,1

C4k,2k+1

C4k,3k+1

o

(a)

Figure 2: (a) Rectangle R = R(a, b) and path
Π[Y4](a, b, R). (b) Lemma 3, case 1: ac vertical.

ab and cd intersect if they share either an interior
point or an endpoint (so two segments that cross
also intersect, but the reverse is not necessarily
true). Most often we ignore the direction of an

edge ab; we refer to the directed version
−→
ab of ab

only when its origin (a) is important and unclear
from the context.

3 Spanning ratio under the L∞ norm

Throughout this section, lengths and distances
are measured under the L∞ norm. Our goal here
is to prove that Y Y ∞

4k is a spanner in the L∞ met-
ric. Our approach takes advantage of the plane
property of Y ∞

4 stated in Thm. 1, and seeks short
paths in Y Y ∞

4k between the endnodes of each edge
in Y ∞

4 . Combined with the result of Thm. 1, this
yields short paths between any pair of nodes in P.
Fundamental to our approach is also the immedi-
ate property stated in Lem. 2 below. (We skip the
proof of this lemma, due to space constraints.)

Lemma 2 Y ∞
4 is a subgraph of Y ∞

4k , for k ≥ 1.

Lemma 3 Fix k ≥ 3 and let θ = π
2k be the angle

between consecutive rays in Y Y ∞
4k . For each edge

ab ∈ Y ∞
4 , the graph Y Y ∞

4k contains a path pp(a, b)
between a and b of length |pp(a, b)|∞ ≤ t|ab|∞, for
any t ≥ 1

1−tan θ .

Proof. The proof is by induction on the length
of the Y ∞

4 edges. For the base case, consider an

edge
−→
ab ∈ Y ∞

4 of minimum length |ab|∞. For
simplicity, rotate the point set P so that ab lies
in the cone C4k,1(a) and |ab|∞ = |xb − xa|. By

Lem. 2,
−→
ab ∈ Y ∞

4k . We now show that
−→
ab ∈ Y Y ∞

4k .

Assume to the contrary that
−→
ab /∈ Y Y ∞

4k . Let
C = C4k,2k+1(b) be the cone with apex b contain-
ing a. (Refer to Fig. 2b.) Because C contains
at least one incoming edge from Y ∞

4k (in particu-

lar it contains
−→
ab), C must also contain one edge−→

cb ∈ Y Y ∞
4k , selected in the second Yao step. If

|cb|∞ < |ab|∞, we have an immediate contradic-
tion to |ab|∞ being minimum. If |cb|∞ = |ab|∞,
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R

(a)

a

b

cd

a

c

R=R(a,c)

(b)

d

i j

o

Figure 3: Lemma 3, case 2 (a) c right of a. (b)
Π[Y4](a, c) and Π[Y4](c, a) meeting in node d.

then cb must lie clockwise from ab with respect to
b (by the ways ties are broken). This situation is
depicted in Fig. 2b. Note that the cone C does
not include the lower boundary line (recall that
cones are half-open and half-closed), and therefore
a cannot lie on the lower boundary line of C. It
follows that |ac|∞ = |yc − ya| < |xb − xa| = |ab|∞
(because ∠abc < π

2k ≤ π/6). In this case, −→ac
would be a potential candidate for the edge out-
going from a in Y ∞

4 , thus contradicting our as-
sumption that |ab|∞ is a shortest edge in Y ∞

4 .

For the inductive step, pick an arbitrary edge−→
ab ∈ Y ∞

4 , and assume the claim of the lemma
holds for each edge in Y ∞

4 strictly shorter than
|ab|∞. (Recall that all measurements use the L∞
norm.) As in the base case, rotate the point set
P so that ab lies in the cone C4k,1(a) and |ab|∞ =

|xb − xa|. By Lem. 2,
−→
ab ∈ Y ∞

4k . We inductively
construct a short path pp(a, b) in Y Y ∞

4k between a

and b. If
−→
ab ∈ Y Y ∞

4k , then pp(a, b) = {ab}, and the

lemma holds. So assume that
−→
ab 6∈ Y Y ∞

4k . Then

there is
−→
cb ∈ Y Y ∞

4k , with |cb|∞ ≤ |ab|∞, selected
in the second Yao step for b. In this case we seek
a short path p(a, c) between a and c in Y ∞

4 , that
will enable us to use the inductive hypothesis.

Case 1. First consider the simplest scenario in
which |ab|∞ = |cb|∞, meaning that ac is a vertical

line segment. If c lies below a, then
−→
ab ∈ Y Y ∞

4k

by the way ties are broken. This is a contradic-

tion to our assumption that
−→
ab 6∈ Y Y ∞

4k , so c must
lie above a. This situation is depicted in Fig. 2b.
Note that a lies in the cone C4k,3k+1(c) apexed at
c, which by definition contains the vertical bound-
ary line. The plane property of Y ∞

4 (Thm. 1)
implies that Π[Y4](c, a) does not cross ab ∈ Y ∞

4 .
(Observe that R(c, a) is a degenerate rectangle
reduced to the line segment ac.) Furthermore,
Π[Y4](c, a) contains no nodes strictly interior to
△abc ⊂ R(a, b). This is because ab ∈ Y ∞

4 , and
consequently no points from P may lie interior to
R(a, b). It follows that Π[Y4](c, a) is a path with

endnodes c and a consisting of vertical edges only.
Let p(a, c) = Π[Y4](c, a), and let o be the top left
corner of R(a, b). Then

|p(a, c)|∞ = |ac| ≤ |ao| < |ab|∞ tan θ.

This latter inequality follows from the fact that
tan θ > tan(∠abo) = |ao|/|ab|∞. Because θ ≤
π/6, tan θ < 1 and therefore |p(a, c)|∞ < |ab|∞.
This further implies that each edge on p(a, c) is
shorter than |ab|∞, so we can apply the inductive
hypothesis to prove the existence of a path pp(a, c)
in Y Y ∞

4k of length |pp(a, c)|∞ < t|ab|∞ tan θ. This
path, concatenated with cb, yields a path pp(a, b)
of length

|pp(a, b)|∞ < t|ab|∞ tan θ + |cb|∞
= t|ab|∞ + (t tan θ − t+ 1)|ab|∞.

Here we used the fact that |cb|∞ = |ab|∞. Note
that the last term in the inequality above is non-
positive for any t ≥ 1/(1 − tan θ), so the lemma
holds for this case.

Case 2. Consider now the case in which ac is not
vertical. Then c must lie strictly to the right of a,
because |cb|∞ < |ab|∞ = |xb − xa|. As before, let
R = R(a, c). In this case, R is a non-degenerate
rectangle. We establish two properties:

(P1) No edge onΠ[Y4](a, c) intersects the right side
of R in a point other than c.

(P2) No edge on Π[Y4](c, a) intersects the upper
side of R in a point other than a.

Due to space constraints, we skip the proof of
these two properties, and discuss only their im-
plications in our main proof. In particular, we
show that these properties lead to the existence
of a path p(a, c) in Y ∞

4 , which is no longer than
|ab|∞. This will enable us to use the inductive
hypothesis on each edge of p(a, c). If Π[Y4](a, c)
ends at node c, set p(a, c) = Π[Y4](a, c). Oth-
erwise, if Π[Y4](c, a) ends at node a, then set
p(a, c) = Π[Y4](c, a). Otherwise, properties (P1)
and (P2), along with the plane property of Y ∞

4

(Thm. 1), imply that Π[Y4](a, c) and Π[Y4](c, a)
must meet in a common node d ∈ R(a, c). In this
case, we set p(a, c) to be the subpath of Π[Y4](a, c)
that extends from a to d, concatenated with the
subpath of Π[Y4](c, a) that extends from c to d
(see Fig. 3b.)

In either of these cases, the path p(a, c) is mono-
tone and lies entirely inside R(a, c). By defini-
tion, each edge xy ∈ p(a, c) is no longer than the
longer side of R(x, y) (under the L∞ norm). Sum-
ming up these inequalities for all edges on p(a, c),

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
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we obtain that |p(a, c)|∞ is smaller than half the
perimeter of R(a, c).
Let ai be the upper side of R(a, c), aj the lower

side of R(a, b), and co the left side R(c, b). Refer
to Fig. 3a. Then

|p(a, c)|∞ ≤ |ai|+ |ci| < |ai|+ |ij| = |ab|∞

In the inequality above we use the fact that
|ci| ≤ |co| < ij, which follows immediately from
the fact that 1 > tan θ > tan(∠cbo) = |co|/|ob| =
|co|/|ij|. In addition, the length of each edge on
p(a, c) is strictly smaller than |ab|∞, so we can
use the inductive hypothesis to show that Y Y ∞

4k

contains a path pp(a, c) between a and c of length
|pp(a, c)|∞ < t(|ai|+ |ic|). (Notice the use of the
stronger bound here, necessary in further calcu-
lations.) This path, concatenated with cb (with
|cb|∞ = |ij|), gives us a path pp(a, b) between a
and b of length

|pp(a, b)|∞ ≤ |ij|+ t(|ai|+ |ic|)
= t(|ai|+ |ij|) + |ij| − t|ij|+ t|ic|
< t|ab|∞ + |ij|(1− t+ t · tan θ)

In deriving the latter inequality, we used the fact
that |ic| < |ij| tan θ, which follows from tan θ >
tan(∠obc) = |oc|/|ob| = |oc|/|ij| ≥ |ic|/|ij|. Now
note that, for the values of t allowed by the
lemma, the term 1 − t + t tan θ ≤ 0 and there-
fore |pp(a, b)|∞ < t|ab|∞. So the lemma holds for
this case as well. �

Our main result is stated below, and follows im-
mediately from the result of Lem. 3, combined
with the result of Thm. 1.

Theorem 4 The Yao-Yao graph Y Y ∞
4k with pa-

rameter k ≥ 3 is a t-spanner under the L∞ norm,
for t = 8

1−tan(π/2k) .

4 Spanning ratio under the L2 norm

It can be easily verified that in the L∞ norm, all
Euclidean distances are scaled up by a factor of
at most

√
2. In other words, for any two nodes a

and b, the following relationship holds:

|ab|√
2
≤ |ab|∞ ≤ |ab|.

Recall that |ab| is the length of the segment ab
under the L2 norm, and |ab|∞ is the length of the
segment ab under the L∞ norm. This relation-
ship, combined with the result of Thm. 4, leads
to the following result:

Theorem 5 The Yao-Yao graph Y Y ∞
4k with pa-

rameter k ≥ 3 is a t-spanner under the L2 norm,

for t = 8
√
2

1−tan(π/2k) .

5 Conclusions

Our results show that the sparse Yao graph Y Y ∞
s

constructed in the L∞ metric is a spanner, for
the special case when s ≥ 12 is a multiple of 4.
We believe that our method can be extended to
prove that Y Y ∞

s is a spanner, for any s ≥ 9.
Establishing whether the sparse Yao graph Y Ys

constructed in the L2 metric is a spanner or not
remains open.
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On the order-k Voronoi diagram of line segments∗

Evanthia Papadopoulou† Maksym Zavershynskyi†

Abstract

We analyze the structural properties of the order-k
Voronoi diagram of n disjoint line-segments. We show
that order-k Voronoi regions of line-segments may be
disconnected, where a single Voronoi region may dis-
connect to Ω(n) disjoint faces. However, the over-
all structural complexity of the order-k line-segment
Voronoi diagram remains O(k(n − k)) as in the case
of points.

1 Introduction

Given a set S of n geometric objects in the plane,
called sites, the order-k Voronoi diagram of S is a
partitioning of the plane into maximal regions, such
that all points within an order-k region have the
same k nearest sites. The order-1 Voronoi diagram is
the nearest-neighbor Voronoi diagram, and the order-
(n − 1) Voronoi diagram corresponds to the farthest

Voronoi diagram.
For point sites, the order-k Voronoi diagram has

been studied in [11, 5, 7, 1, 3]. Its structural com-
plexity has been shown to be O(k(n − k)) [11]. The
order-k Voronoi diagram of line segments has been
largely ignored in the literature. Only the nearest-
neighbor line-segment Voronoi diagram has been in-
tensively studied, see e.g. [9, 12, 15, 10], and the
farthest line-segment Voronoi diagram in [4].
In this paper, we analyze the structural properties

of the order-k Voronoi diagram of segments. We show
that a single order-k Voronoi region can disconnect to
Ω(n) faces, in the worst case. However, the overall
structural complexity remains O(k(n−k)) in the case
of disjoint line segments, despite disconnected regions.
The main difficulty of proving the structural com-

plexity lies in the analysis of unbounded faces. In the
case of points, the analysis relies on results from k-
set theory [2, 5] as well as an important symmetry
property, which states that the number of unbounded
faces in an order-k diagram equals the number of un-
bounded faces in the order-(n−k) diagram. However,
results from k-set theory are not directly applicable

∗Supported in part by the Swiss National Science Foun-
dation (SNF) grant 200021-127137. Also by SNF grant
20GG21-134355 within the collaborative research project Eu-
roGIGA/VORONOI of the European Science Foundation.

†Faculty of Informatics, Università della Svizzera italiana,
Lugano, Switzerland,
{evanthia.papadopoulou, maksym.zavershynskyi}@usi.ch

to line-segments and the symmetry property does not
hold in the case of line segments. Our proof requires
different kind of analysis, which is explained in this
paper.

2 Preliminaries

Given is a set S = {s1, s2, . . . , sn} of n line segments
in R

2. The distance from a point p to a line seg-
ment s is the ordinary minimum distance d(p, s) =
minq∈s d(p, q), where d(p, q) is the Euclidean distance
between points p and q. The bisector between two
segments si, sj is the locus of points equidistant to
both, b(si, sj) = {x ∈ R

2 | d(x, si) = d(x, sj)}.

Definition 1 Given a set S of n segments and an
integer k, 1 ≤ k ≤ n − 1, the order-k Voronoi di-
agram of S, denoted as Vk(S), subdivides the plane
into maximal regions such that every point within an
order-k region has the same k nearest sites. Formally,
the Voronoi region is Vk(H,S) = {x | ∀s ∈ H ∀t ∈
S\H d(x, s) ≤ d(x, t)}, where H is a set of k segments
of S.

The distance from point x to a set of k segments
H is measured as the maximum distance df (x,H) =
maxs∈H d(x, s). An order-k Voronoi region Vk(H,S)
can be defined equivalently as the locus of points
closer to H, according to df (x,H), than to any other
subset of S of size k. The connected components of
Vk(H,S) are called faces. If a region consists of more
than one face, the region is called disconnected.
For simplicity, in this paper we assume that seg-

ments are in general position. That is, there are no
four segments touching the same circle, and there are
no three collinear endpoints. We consider disjoint line
segments, i.e., segments are not allowed to touch or
intersect.
The following lemma is a simple generalization of

[4] for 1 ≤ k ≤ n− 1.

Lemma 1 Consider a face F of region Vk(H,S). F is
unbounded (in the direction r) iff there exists an open
halfplane (normal to r) which intersects all segments
in H but no segment in S \H.

Corollary 2 There is an unbounded Voronoi edge
separating regions Vk(H∪{s1}, S) and Vk(H∪{s2}, S)
iff a line through the endpoints of s1 and s2 induces an

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
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open halfplane r(s1, s2) such that r(s1, s2) intersects
all segments in H but no segment in S \H.

3 Disconnected regions

The order-k line segment Voronoi diagram may have
disconnected regions, unlike its counterpart of points,
see e.g., Fig. 1. This phenomenon was first studied in
[4] for the farthest Voronoi diagram of line segments.
For the farthest Voronoi diagram the number of dis-
connected faces of a single region was shown to be
Θ(n), in the worst case.

s1 s2

F1 ⊂ V2({s1, s2}, S)

F2 ⊂ V2({s1, s2}, S)

Figure 1: An order-2 Voronoi diagram, with two dis-
connected faces, induced by the same pair of sites.

Lemma 3 An order-k region of Vk(S) can have Ω(n)
disconnected faces, in the worst case.

Proof.

Claim 1: An order-k Voronoi region of Vk(S) can have
Ω(n − k) disconnected bounded faces, in the worst
case.
We describe an example where an order-k Voronoi
region is disconnected in Ω(n − k) faces. Consider
k almost parallel long segments H. These segments
induce a region Vk(H,S). Consider a minimum disk,
that intersects all segments of H, and moves along
their length. We place the remaining n− k segments
of S\H in such way, that they create obstacles for the
disk. While the disk moves along the tree of Vk−1(H)
(the farthest Voronoi diagram of H) it intersects the
segments of S \H, and one by one creates Ω(n − k)
disconnectivities (see Fig. 2).

s1
s2

s3

Figure 2: While the circle moves it encounters 5 ob-
stacles, which induce Ω(n−k) disconnectivities of the
region V3(H,S).

Claim 2: An order-k Voronoi region of Vk(S) can have
Ω(k) disconnected unbounded faces, in the worst case.

We follow the example in [4] for k = n−1. Consider
n− k segments S \H degenerated into points placed
close to each other. The remaining k non-degenerate
segments H are organized in a cyclic fashion around
them (see Fig. 3). Consider a directed line g through
one of the degenerate segments s′. Rotate g around s′

and consider the open halfplane to the left of it. Dur-
ing the rotation, the positions in which the halfplane
intersects all k segments, alternate with the positions
in which it does not. The positions in which the half-
plane touches an endpoint of non-degenerate segment,
correspond to unbounded Voronoi edges. Each pair
of consecutive unbounded edges bounds a disjoint un-
bounded face, i.e. the bisectors b(s′, si) and b(s′, si+1)
bound a disjoint unbounded face of Vk(H,S), where
si and si+1 - are consecutive segments of H.

s1

s2

s3
s4s5, s6, s7g1

g2

g3

g4

Figure 3: V4({s1, s2, s3, s4}, S) has k = 4 discon-
nected unbounded faces.

Note that for small k, 0 < k ≤ n/2, Ω(n − k) =
Ω(n), while for large k, n/2 ≤ k ≤ n − 1, to Ω(k) =
Ω(n). �

Lemma 4 An order-k region Vk(H,S) has O(k) un-
bounded disconnected faces.

Proof. We prove the following claim: The endpoint
p of a segment s ∈ H may induce at most two un-
bounded Voronoi edges bordering Vk(H,S).

Consider two such unbounded Voronoi edges. By
Corollary 2 there are open halfplanes r(s, t1), r(s, t2),
for s ∈ H and t1, t2 ∈ S\H, that intersect all segments
in H but no segments in S \ H (see Fig. 4). Thus,
any halfplane r(s, t3), t3 ∈ S \H must intersect either
t1 or t2 (see Fig. 4).

t1
t2

s

r(s, t2) r(s, t1)

p

t3

r(s, t3)

Figure 4: Every endpoint of a segment s ∈ H can
induce at most 2 halfplanes.

�
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4 Structural complexity

Euler’s formula and standard properties of Voronoi
diagrams imply that the structural complexity of the
order-k line-segment Voronoi diagram is proportional
to the number of its faces.

4.1 Number of faces

The following lemma generalizes the result of Lee [11]
for the case of disjoint line segments.

Lemma 5 The number of Voronoi faces in order-k
Voronoi diagram of segments is:

Fk = 2kn− k2 − n+ 1−

k−1
∑

i=1

Si (1)

where Fk is the number of faces of the order-k Voronoi
diagram of segments, and Si is the number of un-
bounded faces of the order-i Voronoi diagram of seg-
ments.

Proof. The proof can be derived following [11] and
using the properties below. There are three crucial
properties of order-k Voronoi diagrams that remain
valid in the case of segments. We give them without
a proof.

1. Consider a face F of the region Vk(H,S). The
edges of Vk−1(S) enclosed in F form a single con-
nected component of Vk−1(H), where Vk−1(H) is
the farthest Voronoi diagram of H.

2. The farthest Voronoi diagram of line segments is
a tree [4].

3. Every Voronoi vertex of Vk(S) is either new or
old. A Voronoi vertex is called new if it is incident
to the regions induced by the sets of segments
H ∪ {a}, H ∪ {b} and H ∪ {c}, of size k each.
A Voronoi vertex called old if it is incident to
the regions induced by the sets of segments H ′ ∪
{a, b}, H ′ ∪ {b, c} and H ′ ∪ {c, a}, of size k each.
A new Voronoi vertex in Vk(S) is an old Voronoi
vertex in Vk+1(S). In addition, a new Voronoi
vertex in Vk(S) does not exist in Vk−1(S) and
an old Voronoi vertex of Vk(S) does not exist in
Vk+1(S) (assuming general position).

Further details are omitted in this abstract. �

Lemma 5 directly implies that Fk = O(k(n − k)),
for 1 ≤ k ≤ n/2. But for n/2 ≤ k ≤ n − 1, 2kn −
k2 − n + 1 = Ω(nk). To derive a good upper bound

on n/2 ≤ k ≤ n− 1, we need to analyze
∑k−1

i=1
Si.

For points, using [2] and a symmetry property stat-

ing that Si = Sn−i, it can be shown that
∑k−1

i=1
Si ≥

nk, n/2 ≤ k ≤ n − 1 [5]. Unfortunately, this ap-
proach does not generalize to line segments, because
Sk 6= Sn−k, and no k-set theory results are available
for line-segments, to the best of our knowledge.

4.2 Number of unbounded faces

It is not hard to see that
∑n−1

i=1
Si = n(n − 1). This

is because every pair of segments defines exactly two
open halfplanes, where each halfplane induces an un-
bounded Voronoi edge for some order k. Combining
it with (1) we obtain:

Fk = 1− (n− k)2 +

n−1
∑

i=k

Si (2)

We can restate our goal as finding an upper bound for
∑n−1

i=k Si.

Lemma 6 For a given set of n disjoint segments,
∑n−1

i=k Si is O(k(n− k)), where n/2 ≤ k ≤ n− 1.

Proof. Following [4], we use the well-known point-
line duality transformation T , which maps a point
p = (a, b) in the primal plane to a line T (p) : y = ax−b
in the dual plane, and vice versa. We call the set of
points below both lines T (p) and T (q) the wedge of
s. Consider a line r and a segment s = (p, q). The
segment s is below line r iff point T (r) is strictly below
lines T (p) and T (q) [4].
Consider the arrangement W of the wedges wi, i =

1, . . . , n, defined by the segments of S = {s1, . . . , sn}.
For our analysis we need the notions of k-level and
(≤k)-level (see e.g. [14]). The k-level of W is a set of
edges such that every point on it is above k wedges.
Note, that the k-level shares its vertices with the (k−
1)-level and the (k + 1)-level. The (≤k)-level of W is
a set of edges such that every point on it is above at
most k wedges. The complexity of the k-level and the
(≤k)-level is the number of their edges. We denote
the maximum complexity of the k-level and the (≤k)-
level of n wedges as gk(n) and g≤k(n), respectively.
Claim: The number of unbounded Voronoi edges of
Vk+1(S), unbounded in direction φ ∈ [0, π], is exactly
the number of vertices of the k-level of W that are
not in the (k − 1)-level of W .
Proof of claim: Consider a vertex p (see Fig. 5) of the
k-level. Let wi and wj be the wedges, that intersect at
p, and let Wp = {w1, w2, . . . , wk} be the set of wedges
strictly below p. Point p corresponds to a line T (p) in
the primal plane, such that the halfplane above it, is
the halfplane of the unbounded edge, that separates
regions Vk(Sp∪{si}, S) and Vk(Sp∪{sj}, S), where Sp

is the set of edges that define the edges Wp. Therefore
Sk+1 = O(gk(n)).

Consider the arrangement W ∗ obtained by flipping
W upside-down. The maximum complexities of the k-
level and the (≤k)-level of W ∗ are g∗k(n) and g∗≤k(n),
respectively. Clearly gk(n) = g∗n−k−1

(n). Thus,
Sk+1 = O(g∗n−k−1

(n)), and

n−1
∑

i=k

Si = O(g∗≤n−k(n)) (3)
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Since the arrangement of wedges is a special case of
the arrangement of Jordan curves, we can use the for-
mula1 from [14] to bound the complexity of the (≤k)-
level:

g∗≤k(n) = O

(

(k + 1)2g∗0

(⌊

n

k + 1

⌋))

(4)

The complexity of the lower envelope of such wedges
is g∗0(x) = O(x) [6, 4], therefore g∗≤k(n) = O(n(k+1)).

Substituting it into formula (3) we obtain
∑n−1

i=k Si =
O(n(n − k)). Since n/2 ≤ k ≤ n − 1 this also means
∑n−1

i=k Si = O(k(n− k)).

w1

w2

w3

w4

w5

pq

T (p)

T (q) s5

s1

s2
s3

s4

r(s2, s3)

Figure 5: (a) In the dual plane point p belongs to the
1-level of the arrangement W . (b) In the primal plane
the halfplane r(s2, s3) above T (p) defines the un-
bounded Voronoi edge that separates V2({s2, s4}, S)
and V2({s3, s4}, S).

�

Combining the above lemma with (2) we obtain the
following theorem.

Theorem 7 The number of Voronoi faces in order-k
Voronoi diagram of n segments is Fk = O(k(n− k)).

5 Conclusion

We presented an analysis of the structure of the
order-k Voronoi diagram of disjoint line segments.
We have proved that the structural complexity of
order-k Voronoi diagram of n disjoint line segments

1The exact formula is g∗
≤k

(n) = O
(

(k + 1)2λs

(⌊

n

k+1

⌋))

[14]. Its proof first shows g∗
≤k

(n) = O
(

(k + 1)2g∗
0

(⌊

n

k+1

⌋))

and then substitutes g∗
0
(x) = O(λs(x)), where λs(x) - is the

maximum length of (x, s) Davenport-Schinzel sequence [14].

is O(k(n−k)) as in the case of points. The structural
complexity remains the same despite the fact that
a single region can disconnect to Ω(n) faces. The
order-k Voronoi diagram of line segments can be con-
structed in O(k2n log n) time by adapting any iter-
ative approach to compute higher order Voronoi di-
agrams. We are currently considering more efficient
algorithmic techniques.
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Abstract

The farthest line-segment Voronoi diagram shows
properties surprisingly different than the farthest
point Voronoi diagram: Voronoi regions may be dis-
connected and they are not characterized by convex-
hull properties. In this paper we introduce the farthest
line-segment hull, a cyclic structure that relates to the
farthest line-segment Voronoi diagram similarly to the
way an ordinary convex hull relates to the farthest-
point Voronoi diagram and provide O(n log n)-time
algorithms for its construction. Using the farthest
line-segment hull, we derive a more tight bound on
the (linear) size of the farthest line-segment Voronoi
diagram. We also illustrate properties of the L∞ far-
thest line-segment Voronoi diagram, which finds ap-
plications in VLSI Design Automation.

1 Introduction

Let S be a set of n simple geometric objects in the
plane, such as points or line segments, called sites.
The farthest-site Voronoi diagram of S is a subdivi-
sion of the plane into regions such that the region of a
site s is the locus of points farther away from s than
from any other site. Surprisingly, the farthest-line-
segment Voronoi diagram illustrates different proper-
ties than its counterpart for points [1]. For example,
Voronoi regions are not characterized by convex-hull
properties and they may be disconnected; a Voronoi
region may consist of Θ(n) disconnected faces. Nev-
ertheless, the graph structure of the diagram remains
a tree and its structural complexity is O(n). An ab-
stract framework on the farthest-site Voronoi diagram
(which does not include the case of intersecting line-
segments) was given in [5]. Related is the farthest-
polygon Voronoi diagram, recently addressed in [3].
In this paper we further study the structural prop-

erties of the farthest line-segment Voronoi diagram.
We introduce the farthest line-segment hull, a cyclic
structure that is related to the farthest line-segment
Voronoi diagram similarly to the way an ordinary
convex hull is related to the farthest-point Voronoi

∗Supported in part by the Swiss National Science Foun-
dation (SNF), grant 200021-127137. Also by SNF grant
20GG21-134355 within the collaborative research project Eu-
roGIGA/VORONOI of the European Science Foundation.

†Faculty of Informatics, University of Lugano (Università
della Svizzera italiana), Lugano, Switzerland,
{evanthia.papadopoulou, deys}@usi.ch

diagram. Using the farthest line-segment hull, we
improve the (linear) upper bound on the structural
complexity of the diagram in [1] by a constant factor.
We provide O(n log n)-time algorithms for the con-
struction of the farthest line-segment hull by adapting
standard approaches for the construction of an ordi-
nary convex hull such as divide and conquer, Gra-
ham’s scan, etc. We also characterize the farthest
line-segment hull and the corresponding Voronoi di-
agram in the simpler L∞, L1 metrics. Once the far-
thest line-segment hull is available, the farthest line-
segment Voronoi diagram can be constructed in addi-
tional O(h log h) time, by the simple algorithm given
in [1], where h is the size of the farthest line-segment
hull (h ∈ O(n)). In the L∞ or L1 metrics the con-
struction simplifies to additional O(h)-time.
The farthest line-segment Voronoi diagram finds

applications in computing the smallest disk that over-
laps all given line-segments. It is necessary in defin-
ing and computing the Hausdorff Voronoi diagram of
clusters of line segments, which finds several applica-
tions in VLSI design automation, see e.g., [6].

2 Preliminaries and Definitions

Let S = {s1, . . . , sn} be a set of n arbitrary line-
segments in the plane. Line-segments may intersect or
touch at single points. The distance between a point
q and a line-segment si is d(q, si) = min{d(q, y), ∀y ∈
si}, where d(q, y) denotes the ordinary distance be-
tween two points, q, y, in the Lp metric, p, 1 ≤ p ≤ ∞.
The farthest Voronoi region of a line-segment si is

freg(si) = {x ∈ R
2 | d(x, si) ≥ d(x, sj), 1 ≤ j ≤ n}

The collection of all farthest Voronoi regions, to-
gether with their bounding edges and vertices, con-
stitute the farthest line-segment Voronoi diagram of
S, denoted as FVD(S) (see Fig. 1). Any maximally
connected subset of a region in FVD(S) is called a
face. Any Voronoi edge bounding two neighboring re-
gions, freg(si) and freg(sj), is portion of bisector
b(si, sj), i.e., the locus of points equidistant from si
and sj . For line-segments in general position that are
non-intersecting, b(si, sj) is an unbounded curve that
consists of a constant number of simple pieces as in-
duced by elementary bisectors between the endpoints
and open portions of si, sj . For more information on
line-segment bisectors, see e.g., [4, 8] and references
therein.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: A farthest line-segment Voronoi diagram.

3 The farthest line-segment hull

Definition 1 A line l through the endpoint p of a
line-segment s, s ∈ S, is called a supporting line of S
if and only if an open halfplane induced by l, denoted
H(l), intersects all segments in S, except s (and pos-
sibly except additional segments incident to p). Point
p is said to admit a supporting line. The unit normal
of l, pointing away from H(l), is called the unit vec-
tor of l, denoted ν(l). A line-segment s, s ∈ S, such
that the line l through s is a supporting line of S and
H(l) intersects all segments in S \ {s}, is called a hull
segment; s is said to admit a supporting line and the
unit vector of l is denoted as ν(s).

For a supporting line l, through line-segment s, that
intersects all segments in S, both open halfplanes of
l, denoted H(s) and H ′(s), intersect all segments in
S \{s}. In this case s is said to admit two supporting
lines and it results in two different hull segments.

Definition 2 The line segment pq joining the end-
points p, q, of two line segments si, sj ∈ S is called a
supporting segment of S if and only if an open half-
plane induced by the line l through pq, denotedH(pq),
intersects all segments in S, except si, sj (and possi-
bly except additional segments incident to p, q). The
unit normal of pq pointing away from H(pq) is called
the unit vector, ν(pq).

Definition 3 The closed polygonal curve obtained
by the sequence of hull segments in S (line-segments
in S that admit a supporting line), ordered according
to the angular order of their unit vectors, interleaved
by maximal chains of supporting segments, is called
the farthest line-segment hull of S (for brevity, the
farthest hull), denoted as f-hull(S).

The vertices of the farthest hull are exactly the end-
points of S that admit a supporting line. The edges
are of two types: supporting segments and hull seg-
ments. If line-segments degenerate to points, the far-
thest hull corresponds exactly to the convex hull of S.
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Figure 2: The farthest line-segment hull of Fig. 1

By definition of a supporting segment, any maximal
chain of supporting segments between two consecu-
tive hull segments must be convex. Fig. 2 illustrates
the farthest hull of Fig. 1. Clearly, the unit vector of
any supporting line of the farthest hull is unique.

Consider the circular list of the unit vectors of all
edges of the farthest hull ordered angularly around
the origin of the unit circle Ko. They induce a map-
ping of the farthest hull onto the circumference of Ko,
such that every edge e is mapped to a point on the
circumference of Ko as obtained by the unit vector
ν(e), and every vertex is mapped to arcs as delim-
ited by the unit vectors of the incident edges. This
mapping is called the Gaussian map of S, for short
Gmap(S). (For more information on the Gmap see
e.g., [2, 7]). The same notation, ν(e), is used to de-
note both the unit vector and the corresponding point
on the circumference of Ko. Gmap(S) can be viewed
as a cyclic sequence of arcs on the circumference of
Ko, where each arc corresponds to a vertex of the
farthest hull.

Lemma 1 Consider any two consecutive unit vectors
νi, νi+1, along Gmap(S) corresponding to edges e, e′ of
the farthest hull such that νi = ν(e) and νi+1 = ν(e′).
Edges e, e′ must be incident upon a common vertex v

of f-hull(S), and any point along the arc onKo from νi
to νi+1, corresponds to the unit vector of a supporting
line through v.

Corollary 2 FVD(S) has exactly one unbounded bi-
sector for every supporting segment s of f-hull(S),
which is unbounded in the direction opposite to ν(s).
Unbounded bisectors in FVD(S) are cyclically ordered
following exactly the cyclic ordering of the Gmap.

By Corollary 2, FVD(S) has exactly one face for
every pair of consecutive supporting segments on f-
hull(S). By Lemma 1, any two consecutive supporting
segments are incident to the same line-segment s (ei-
ther to the same endpoint or to one endpoint each),
which must be the owner of the face delimited by the
corresponding pair of consecutive unbounded bisec-
tors. This face is unbounded in any direction induced
by the unit vectors of points along the corresponding
arc of the Gmap.
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3.1 Properties of the farthest line-segment hull

Considering the Gmap as a cyclic sequence of arcs
on the circumference of Ko, it forms a Davenport-
Schinzel sequence of length 3 (see also [1]). Let the
upper (resp. lower) Gmap denote the portion of the
Gmap above (resp. below) the horizontal diameter
of Ko. Equivalently for the upper and lower f-hull.
In the following we always assume a traversal of the
upper Gmap from left to right and we characterize
the right and left endpoints of a segment s as a start-
vertex and an end-vertex respectively.

Let an interval [ai, ai+1] denote the portion of
the upper Gmap between two consecutive (but not
adjacent) occurrences of arcs for the same segment
sa = (a′, a), where a, a′ denote the start-vertex and
end-vertex of sa respectively. Interval [ai, ai+1] is as-
sumed to be non-trivial i.e., it contains in its interior
at least one arc other than a, a′.

Lemma 3 Let [ai, ai+1] be a (non-trivial) interval of
segment sa = (a′, a) on upper Gmap(S). We have the
following properties: 1. On the upperGmap, all occur-
rences of start-vertex a must precede all occurrences
of end-vertex a′. 2. The vertex following ai (resp. pre-
ceding ai+1) in [ai, ai+1] must be a start-vertex (resp.
end-vertex). 3. If ai is a start-vertex, i.e., ai = a,
(resp. ai+1 is end-vertex a′), no other start-vertex
(resp. end-vertex) b in the interval [ai, ai+1] can ap-
pear before ai or past ai+1 on the upper Gmap, and
no end-vertex (resp. start-vertex) e in [ai, ai+1] can
appear before ai (resp. past ai+1) on the upper Gmap.

Proof. (Sketch). The proof is easier to derive us-
ing the duality transformation given in [1] that trans-
forms a line segment to a wedge below two intersecting
lines and reduces the problem of identifying the up-
per Gmap into the problem of computing the union
of those wedges (see Fig. 3 of [1]). Here, we only
point out the equivalence between the arcs of the up-
per Gmap and edges along the union of wedges in [1].
The proof is not hard to see. �

Lemma 4 The re-appearance along the upper Gmap
of any endpoint of a segment sa can be charged to a
unique vertex u of the upper f-hull such that no other
re-appearance of a segment endpoint on the upper
Gmap can be charged to u.

Proof. (Sketch). For an interval [ai, ai+1] such that
ai = a is a start-vertex, let u be the vertex follow-
ing ai in [ai, ai+1], which must be a start-vertex by
Lemma 3; the appearance of ai+1 is charged to u.
Similarly, for an interval [ai, ai+1] such that ai+1 = a′

is an end-vertex, let u be the vertex preceding ai+1,
which must be an end-vertex; the appearance of ai is
charged to u. Using the properties of Lemma 3 it is
not hard to see that no other interval [cj , cj+1] of any
segment sc can be charged to u. �

Theorem 5 The total number of faces of the farthest
line-segment Voronoi diagram of a set S of n arbitrary
line segments is at most 6n− 2.

Proof. (Sketch). We count the number of maximal
arcs along the upper Gmap There are two types of
maximal arcs: composite arcs, corresponding to hull
segments, which consist of the segment unit vector
and the two incident arcs of the segment endpoints,
and single-vertex arcs, corresponding to single ver-
tices along convex chains of the hull, which are sin-
gle arcs bounded by the unit vectors of the two in-
cident supporting segments. Consider the sequence
of all occurrences of a single segment sa = (a′, a)
on the upper Gmap. It is a sequence of the form
. . . a . . . aa′ . . . a′ . . . or . . . a . . . a . . . a′ . . . a′ . . .. The
number of its maximal arcs is exactly one plus the
number of (non-trivial) intervals. Thus, summing
over all segments, the total number of maximal arcs
on the upper Gmap is at most n plus the total number
of vertices that may get charged for the reappearance
of a single vertex arc, which is 2n by Lemma 4. Thus,
in total 3n. Similarly for the lower Gmap. �

The above theorem improves the 8n + 4 upper
bound on the number of faces of the farthest line-
segment Voronoi diagram given in [1]. A known lower
bound is 4n − 4 [1]. For disjoint segments the cor-
responding upper bound is 2n − 2 (see [3]) as the
Gmap corresponds to a Davenport-Schinzel sequence
of length 2.

4 Algorithms for the farthest line-segment hull

Most approaches to compute an ordinary convex hull
can be adapted to compute the farthest line-segment
hull within the same time complexity. Lemma 3 gives
insight for a Graham’s scan type of approach (to be
given in a more complete version of this paper). A
standard divide and conquer approach can be de-
signed using the properties listed below. A two-pass
divide and conquer construction in the dual space (un-
der the standard point-line duality) is given in [1].
Let L,R be two subsets partitioning S. Given a

unit vector ν(e) in Gmap(L), let its neighboring sup-
porting vertex in R be the vertex m in Gmap(R) such
that ν(e) lies along an arc of m. A unit vector in
Gmap(L) is called valid iff its corresponding support-
ing line remains a supporting line in Gmap(L ∪ R).
(Respectively for Gmap(R)).

Lemma 6 Edge e of f-hull(L) remains valid iff the
neighboring supporting vertex q of ν(e) in R lies in
H(e).

Lemma 7 Vertex m ∈ f-hull(L) remains valid iff ei-
ther an incident farthest hull edge remains valid, or m
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Figure 3: L∞ FVD(S).

is the neighboring supporting vertex in L of an invalid
unit vector in f-hull(R).

Gmap(S) can be obtained by mergingGmap(L) and
Gmap(R) as follows: 1. Mark all unit vectors and
vertex arcs along Gmap(L) and Gmap(R) as valid
or invalid. 2. Merge Gmap(L) and Gmap(R) into
Gmap(L)∪Gmap(R) following the angular order of
unit vectors. 3. For any two consecutive valid vec-
tors, one in Gmap(L) and one in Gmap(R), insert a
unit vector as defined by the supporting segment join-
ing the vertices of the two incident arcs. 4. For any
valid vertex m of Gmap(L) between two consecutive
valid vectors of Gmap(R), insert new unit vectors for
the corresponding supporting segments incident to m.
5. Delete all invalid vectors.

5 The L∞ farthest line segment Voronoi diagram

In L∞, the farthest line-segment Voronoi diagram
does not maintain the O(1) structural complexity as
its counterpart for points (see Fig. 3). All its faces
are unbounded in one of the eight possible directions
as implied by rays of slope ±1, 0,∞. The L∞ farthest
line-segment hull simplifies as shown in Fig. 4. Let
four bounding lines be defined as follows: let lt (resp.
lb) be the horizontal line passing through the top-
most lower-endpoint (resp. the bottommost upper-
endpoint) of all segments in S and let ll (resp. lr) be
the vertical line passing through the leftmost right-
endpoint (resp. the rightmost left-endpoint) of all
segments in S. They partition the plane into four
quadrants, labeled 1− 4 in counterclockwise order as
shown in Fig. 4. Let Ei, i = 1, 2, (resp. Ej , j = 3, 4)
denote the upper (resp. lower) envelope of the line
segments straddling quadrant i (resp. j). (If no seg-
ments straddle quadrant i, let Ei be the corner point
Oi of quadrant i).

Definition 4 The L∞ farthest line-segment hull of
S is a closed polygonal curve as derived by a coun-
terclockwise traversal of E1, lt′ , E2, ll′ , E3, lb′ , E4, lr′ ,
where li′ denotes the portion of bounding line li be-
tween its two incident envelopes.

lt’

lb’

ll’ lr’

E1
E2

E3 E4

Quadrant2

(lt,ll)

Quadrant1

(lt,lr)

Quadrant3

(lb,ll)

Quadrant4

(lb,lr)

lt

lb

ll lr

O1O2

O3 O4

Figure 4: The L∞ farthest line-segment hull.

The L∞ farthest line-segment Voronoi diagram con-
sists of exactly one unbounded face for each edge of
the L∞ farthest hull. A Voronoi region may consist
of only a constant number of disjoint faces. Once the
L∞ farthest hull is available, the L∞ farthest Voronoi
diagram can be constructed in additional O(h) time
by adapting the simple algorithm in [1], where h is the
size of the farthest hull which may vary from O(1) to
O(n). The above results can be easily adapted for L1,
which is equivalent to L∞ under rotation.

Acknowledgment. We thank the anonymous re-
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Optimally solving a general transportation problem using Voronoi

diagrams
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Abstract

Let S be a set of n point sites in R
d. A bounded

set C ⊂ R
d is to be distributed among the sites

p ∈ S such that (i), each p receives a subset Cp of
prescribed volume and (ii), the average distance
of all points z of C from their respective sites p

is minimized. In our model, volume is quantified
by a measure µ, and the distance between a site
p and a point z is given by a function dp(z). Un-
der quite liberal technical assumptions on C and
on the functions dp(·) we show that a solution of
minimum total cost can be obtained by intersect-
ing with C the Voronoi diagram of the sites in S,
based on the functions dp(·) equipped with suit-
able additive weights. Moreover, this optimum
partition is unique, up to subsets of C of measure
zero. Unlike the the deep analytic methods of clas-
sical transportation theory, our proof is based on
direct geometric arguments.

Keywords: Monge-Kantorovich transportation
problem, earth mover’s distance, Voronoi diagram
with additive weights, Wasserstein metric.

1 Introduction

In 1781, Gaspard Monge [7] raised the following
problem. Given two sets C and S of equal mass
in R

d, transport each mass unit of C to a mass
unit of S at minimal cost. More precisely, given
two measures µ and ν, find a map f satisfying
µ(f−1(·)) = ν(·) that minimizes

∫
d(z, f(z)) dµ(z),

where d(z, z′) describes the cost of moving z to z′.
Because of its obvious relevance to economics,

and perhaps due to its mathematical challenge,
this problem has received a lot of attention. Even
with the Euclidean distance as cost function d it
is not at all clear in which cases an optimal map

∗University of Bonn, Institute of Computer Science I,
Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany. This
work was supported by the European Science Foundation
(ESF) in the EUROCORES collaborative research project
EuroGIGA/VORONOI

f exists. Progress by Appell [1] was honored with
a price by the Academy of Paris in 1887. Kan-
torovich [6] achieved a breakthrough by solving a
relaxed version of Monge’s original problem. In
1975, he received a Nobel price in Economics; see
Gangbo and McCann [4] for mathematical and
historical details.
While usually known as theMonge-Kantorovich

transportation problem, the minimum cost of a
transportation is sometimes called Wasserstein

metric or, in computer science, earth mover’s dis-

tance between the two measures µ and ν. It can
be used to measure similarity in image retrieval;
see Rubner et al. [9]. If both measures µ and ν

have finite support, Monge’s problem becomes the
minimum weight matching problem for complete
bipartite graphs, where edge weights represent
transportation cost; see Rote [8] and Vaidya [10].

We are interested in the case where only mea-
sure ν has finite support. More precisely, we as-
sume that a set S of n point sites pi is given, and
numbers λi > 0 whose sum equals 1. A body
C of volume 1 must be split into subsets Ci of
volume λi in such a way that the total cost of
transporting, for each i, all points of Ci to their
site pi becomes a minimum. In this setting, vol-
ume is measured by some (continuous) measure
µ, and transport cost d(z, z′) by some measure of
distance.

Gangbo and McCann [4] report on the cases
where either d(z, z′) = h(z − z′) with a strictly
convex function h, or d(z, z′) = l(|z − z′|) with
a non-negative, strictly concave function l of the
Euclidean norm. (Strictness seems necessary to
ensure that the cost function’s gradient has an
inverse.) As a consequence of deep results on the
general Monge-Kantorovich problem, they prove
a surprising fact. The minimum cost partition
of C is given by the additively weighted Voronoi
diagram of the sites pi, based on cost function
d and additive weights wi. In this structure, the
Voronoi region of pi contains all points z satisfying

d(pi, z)− wi < d(pj , z)− wj for all j 6= i.

Figure 1 depicts how to obtain this structure in di-
mension d = 2. For each point site p ∈ S we con-

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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struct in R
3 the cone {(z, d(p, z)− wp) | z ∈ R

2}.
The lower envelope of the cones, projected onto
the XY –plane, results in the Voronoi diagram.
Independently, Aurenhammer et al. [2] have stud-

−wp

−wq

p
q

Figure 1: An additively weighted Voronoi diagram
as the lower envelope of cones.

ied the case where d(z, z′) = |z − z′|2. Here, a
power diagram (compare [3]) gives an optimum
splitting of C. In addition to structural results,
they provide algorithms for computing the weights
wi.

In this paper we consider a rather general situ-
ation where the cost d(pi, z) of transporting point
z to site pi is given by individual distance func-
tions dpi

(z). Here, cost need no longer be invari-
ant under translation, as in [4, 2]. All we require
is that the weighted Voronoi diagram based on
the functions dpi

(·) is well-behaved, in the follow-
ing sense. Voronoi regions may be disconnected,
but together with the Voronoi diagram they form
a finite cell decomposition of R

d. Bisectors are
d−1–dimensional, and increasing weight wi causes
the bisectors of pi to sweep d–space in a continu-
ous way. These requirements are fulfilled for the
Euclidean metric, which was not covered by [4, 2]
and, at least in dimension 2, if each site is assigned
a strictly convex distance function.

We show that, under these assumptions, the
weighted Voronoi diagram based on the functions
dpi

(·) optimally solves the transportation prob-
lem. After stating some definitions in Section 2
we generalize arguments from [2] to prove, in Sec-
tion 3, that C can be split into parts of arbitrary
given volumes by a weighted Voronoi diagram, for
a suitable choice of weights. If C is connected,
these weights are uniquely determined, up to ad-
dition of a constant. Then, in Section 4, a flow
augmentation argument shows that such a parti-
tion is optimal, and unique.

2 Definitions

Let µ be a measure defined for all Lebesgue-
measurable subsets of Rd. We assume that µ van-
ishes exactly on the sets of Lebesgue measure zero.
Let S denote a set of n point sites in R

d. For
each p ∈ S we are given a continuous function

dp : Rd −→ R≥0

that assigns, to each point z of Rd, a nonnegative
value dp(z) as the “distance” from site p to z.

For p 6= q ∈ S and γ ∈ R we define

Bγ(p, q) := {z ∈ R
d | dp(z)− dq(z) = γ}

and

Rγ(p, q) := {z ∈ R
d | dp(z)− dq(z) < γ}.

The sets Rγ(p, q) are open and increase with γ.
Now let us assume that for each site p ∈ S an
additive weight wp is given, and let

w = (w1, w2, . . . , wn)

denote the vector of all weights, according to some
ordering p1, p2, . . . of S. Then, Bwi−wj

(pi, pj) is
called the additively weighted bisector of pi and pj ,
and

VRw(pi, S) :=
⋂
j 6=i

Rwi−wj
(pi, pj)

is the additively weighted Voronoi region of pi with
respect to S. It consists of all points z for which
dpi

(z)−wi is smaller than all values dpj
(z)−wj ,

by definition. As usual,

Vw(S) := R
d \

⋃
i

VRw(pi, S)

is called the additively weighted Voronoi diagram

of S; compare [3]. Clearly, VRw(pi, S) and Vw(S)
do not change if the same constant is added to
all weights in w. Therefore, we may assume that
min{wi|1 ≤ i ≤ n} = 0 holds whenever this is con-
venient. Increasing a single value wi will increase
the size of pi’s Voronoi region.

Example. Let d = 2 and dp(z) = |p− z| the Eu-
clidean distance. Given weights wp, wq, the bisec-
tor Bwp−wq

(p, q) is a line if wp = wq, and a hyper-
bola otherwise. Figure 2 (i) shows how Bγ(p, q)
sweeps across the plane as γ grows from −∞ to∞.
It forms the boundary of the set Rγ(p, q) which in-
creases with γ. Each bounded set C in the plane
will be reached at some point. From then on the
volume of C∩Rγ(p, q) is continuously growing un-
til all of C is contained in Rγ(p, q). The increase in
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Figure 2: (i) Rγ(p, q) for increasing values of γ.
(ii) An additively weighted Voronoi diagram.

volume will be strict if each point z of C is an in-
terior point, i. e., if C is open, and C is connected.
Given n points pj with additive weights wj , raising
the value of a single weight wi will cause all sets
Rwi−wj

(pi, pj) to grow until C is fully contained
in the Voronoi region Vw(pi, S) of pi.
In (ii) an additively weighted Voronoi diagram

Vw(S) based on the Euclidean distance is shown.
It partitions the plane into 5 two-dimensional cells
(Voronoi regions), and consists of 9 cells of dimen-
sion 1 (Voronoi edges without endpoints) and of 5
cells of dimension 0 (Voronoi vertices). Each cell
is homeomorphic to an open sphere of appropriate
dimension.
The next definition generalizes the above prop-

erties to the setting used in this paper.

Definition 1 A system of continuous distance

functions dp(·), where p ∈ S, is called admissible
if the following properties are fulfilled.

(A) For all p 6= q ∈ S, and for each bounded

open set C ⊂ R
d, γ 7−→ µ (C ∩Rγ(p, q)) is contin-

uously increasing from 0 to µ(C) as γ grows from

mp,q to Mp,q, where C ∩ Rγ(p, q) = ∅ if γ ≤ mp,q

and C ⊂ Rγ(p, q) if Mp,q ≤ γ.

(B) For every nonempty subset T ⊆ S of S

the Voronoi regions VRw(pi, T ), pi ∈ T, and the

Voronoi diagram Vw(T ) form a finite cell decom-

position of Rd.

In (A) we have mq,p = −Mp,q and Mq,p =
−mp,q; compare Figure 2, (i). Property (B)
ensures that Voronoi diagrams have reasonable
structural properties. While Voronoi regions are
not required to be connected, they may be split
into only finitely many cells of dimension d each.

Their boundaries consist of finitely many bisector
pieces of dimension d− 1, that are again bounded
by lower dimensional cells consisting of points
equidistant to three or more sites. The closures of
all Voronoi regions together cover the whole space
R

d.
This definition rules out phenomena known for

degenerate placement of sites in, e. g., the L1

norm, where bisectors of points in d-space may
be of dimension d. More information about cell
decompositions can be found in Hatcher [5].

3 Partitions of prescribed size

Let dpi
(·), 1 ≤ i ≤ n, where n ≥ 2, be an ad-

missible system as in Definition 1, and let C de-
note a bounded and open subset of Rd. Suppose
we are given n real numbers λi > 0 such that
λ1+λ2+. . .+λn = 1 holds. The following theorem
shows that we can use an addititively weighted
Voronoi diagram based on the functions dp to par-
tition C into subsets of size λi · µ(C).

Theorem 1 There exists a weight vector w =
(w1, w2, . . . , wn) such that

µ(C ∩VRw(pi, S)) = λi · µ(C)

holds for 1 ≤ i ≤ n. Moreover, if C is pathwise

connected then w is unique up to addition of a

constant to all wi.

Proof. W. l. o. g. let µ(C) = 1. The function

Φ(w) :=

n∑
i=1

|µ(C ∩VRw(pi, S))− λi|

measures how close w comes to fulfilling the the-
orem. A simple proof shows that function Φ(·) is
continuous.

Existence. Let D := max{Mp,q | p 6= q} with Mp,q

as in Definition 1, (A). On the compact set [0, D]n

function Φ attains its minimum value at some ar-
gument w. If Φ(w) = 0 we are done. Suppose
that 0 < Φ(w). Since the volumes of the Voronoi
regions inside C add up to 1, there must be some
sites pj whose Voronoi regions have an intersec-
tion with C of volume > λj , while other region’s
intersections with C are too small.
In the full version we show how to con-

struct from w a weight vector w′ where µ(C ∩
VRw′(s, S)) > 0 holds for all s ∈ S, and also sat-
isfying Φ(w′) ≤ Φ(w).

If 0 < Φ(w′) we do the following: We chose
some value δ > 0 and raise the weights of all sites
whose Voronoi regions currently have too small
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an intersection with C by δ, increasing the size of
at least one of those regions. Choosing δ small
enough we ensure that the size of any region in-
creased this way will stay too small, and the size
of any region previously too large will also remain
too large. Moreover, the size of the intersection of
any region with C will remain positive.
We repeat this process, each time choosing a

new value δ, until Φ(w′) decreases. If the increase
of weights does not result in a decrease of Φ(w′)
the size of at least one region which has the right
size will become too small. Thus, if Φ(w′) has not
decreased after n − 2 iterations, all regions have
non-empty intersections with C that are either too
small or too large. As we increase once more si-
multaneously the weights of all regions that are
too small, their gain in size is caused only by losses
of regions too large. For the resulting weight vec-
tor w′′ this implies Φ(w′′) < Φ(w′) ≤ Φ(w). (If
0 = Φ(w′) we have Φ(w′) < Φ(w) and continue
with w′ instead of w′′.)
Since all Voronoi regions based on w′′ have in-

tersections of positive size with C, property (A)
of Definition 1 implies that

w′′
i − w′′

j < Mpi,pj
≤ D

holds for all i 6= j. Let w′′′ result from w′′ by
subtracting the minimum weight w′′

j from all w′′
i .

Then, w′′′ ∈ [0, D]n and Φ(w′′′) = Φ(w′′) <

Φ(w)—a contradiction!

Uniqueness. The proof of uniqueness can be found
in the full version. �

It is easy to see why connectedness of C is a con-
dition necessary for the uniqueness of w. Namely,
assume that each connected component of C is
completely contained in a separate Voronoi region.
Now if the weights of the points in S are modified
by some small amount then the resulting Voronoi
diagram could still be the same inside C.

4 Optimality

Again, let dp(·), p ∈ S = {p1, p2, . . . , pn}, be an
admissible system as in Definition 1, and let C

denote a bounded and open subset of Rd. More-
over, let real numbers λi > 0 be given such that
λ1 + λ2 + . . .+ λn = 1 holds.

By the existence part of Theorem 1, there exists
a weight vector w = (w1, w2, . . . , wn) satisfying

µ(C ∩VRw(pi, S)) = λi · µ(C) for i = 1, . . . , n.

Now we prove that this subdivision of C minimizes
the transportation cost, i. e., the average distance

from each point to its site. It is convenient to
describe partitions of C by maps f : C −→ S

where, for each p ∈ S, f−1(p) denotes the region
assigned to p. Let FΛ denote the set of those maps
f satisfying µ(f−1(pi)) = λi·µ(C) for i = 1, . . . , n.

Theorem 2 The partition of C into regions

Ci := C ∩VRw(pi, S) minimizes

cost(f) :=
∑
p∈S

∫
f−1(p)

dp(z) dµ(z)

over all maps f ∈ FΛ. Any other partition of

minimal cost differs at most by sets of measure

zero from (Ci)i.

The proof of Theorem 2 combines a flow argument
used for improving non-optimal transport plans
(based on cyclical monotonicity, see e.g. [11]) with
observations based on the structural properties of
Voronoi diagrams.

Note that Theorem 2 and Theorem 1 together
imply in particular that even if C is not con-
nected, then two partitions of C into subsets of
size λi · µ(C), obtained using additively weighed
Voronoi diagrams, differ at most by sets of mea-
sure zero.
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Abstract

We investigate the higher-order Voronoi diagrams in
the L1 metric in the presence of a transportation net-
work, which is commonly referred to as city met-
ric. For the structural complexity of kth-order city
Voronoi diagrams we show a lower bound of Ω(n+kc)
and an upper bound of O(k(n − k) + kc), where c is
the complexity of the transportation network. This
is quite different from the bound O(k(n − k)) in the
Euclidean metric [8], especially for the case when k =
n−1. Furthermore, we develop an O(k2(n+ c) log n)-
time algorithm for the kth-order city Voronoi diagram
and an O(nc log2(n+ c) log n)-time algorithm for the
farthest-site city Voronoi diagram.

1 Introduction

The road network of modern, well-designed cities, like
Manhattan, resembles a grid. Pedestrians can only
move either horizontally or vertically. In larger cities
we usually require a high-speed public transportation
network (e.g. bus and rail systems) to ensure easy
and fast travel between two places.
We assume that the traveling speed on the trans-

portation network is a given parameter ν > 1; oth-
erwise the traveling speed is 1. Further, we assume
that the transportation network can be accessed at
any point. Shortest paths in the L1 metric acceler-
ated by a high-speed transportation network induce a
new metric, the so-called city metric. In this metric
the distance between two points is the minimum time
required to travel between them.
Given a set of sites, the kth-order city Voronoi di-

agram partitions the plane into regions such that all
points in a region share the same k nearest sites with
respect to the city metric. Higher-order city Voronoi
diagrams can be used to resolve the following situa-
tion: a pedestrian wants to know the k nearest stores,
facilities, or hospitals such that he can make a well-
informed decision as to which facility to go.
First-order city Voronoi diagrams have already

been well-studied [1, 3, 4, 5, 7]. Their space complex-
ity has been shown to be in O(n+c) [1], and they can
be constructed in O((n+c) log(n+c)) time [5], where
c is the complexity of the transportation network.
Although higher-order Euclidean Voronoi diagrams

have been well-studied, higher-order city Voronoi dia-

grams have not yet been investigated. One of the most
significant differences between the Euclidean metric
and the city metric that influences the computation
and complexity of Voronoi diagrams is the complexity
of a bisector of two points. In the Euclidean metric
or the L1 metric such a bisector has constant com-
plexity, while in the city metric the complexity may
be Ω(c) [1]. This makes it non-trivial to apply ex-
isting approaches for constructing ordinary Voronoi
diagrams to the city Voronoi diagrams.

Our Contribution. In this paper, we make use of
ideas presented in the iterative construction [8] and
the wavefront model [1, 5] to derive the structural
complexity of the kth-order city Voronoi diagram. We
show that it has an upper bound O(k(n−k)+kc) and
a lower bound Ω(n+kc), where c is the complexity of
the transportation network, which is quite different
from the O(k(n − k)) bound in the Euclidean met-
ric [8]. When k = n− 1, the structural complexity in
the Euclidean metric is O(n), while it is Θ(nc) in the
city metric. We also develop an iterative algorithm
to compute the kth-order city Voronoi diagram in
O(k2(n+c) log(n+c)) time and a divide-and-conquer
approach to compute the farthest-site city Voronoi di-
agram in O(nc log n log2(n+ c)) time.

2 Preliminaries

Here, we introduce definitions and explain two com-
monly used concepts, the wavefront model and short-
est path map, for the subsequent sections.

A transportation network is a plane graph C =
(VC , EC) with a fixed straight-line embedding and
only isothetic edges, i.e., edges that are either hor-
izontal or vertical. Each edge has the same travel-
ing speed ν. Throughout this paper we refer to the
number of vertices in the transportation network as c.
Since the number of edges in a transportation network
is in O(c) its complexity is also in O(c).

The distance dC between two points in the city met-
ric, which we denote with dC , is the minimum time
required to travel between those two points. Likewise,
let d1 be the distance between two points in the L1

metric. Similarly, let BC denote the bisector between
two points w.r.t. the city metric and let B1 denote
the bisector between two points w.r.t. the L1 metric.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: (a) wavefront propagation. (b) j-needles.

For a given set S of n point sites and a trans-
portation network C, the kth-order city Voronoi di-
agram Vk(S) partitions the plane into a number of
Voronoi regions Vk(H,S) where H ⊂ S and |H| =
k. All points in Vk(H,S) share the same k nearest
sites H with respect to the city metric. The com-
mon boundary between two Voronoi regions Vk(H1, S)
and Vk(H2, S) is a Voronoi edge, which is a part of
BC(p, q) [8], where |H1 ∩H2| = k − 1, H1 \H2 = {p}
and H2 \H1 = {q}. The common intersection among
more than two Voronoi regions is a Voronoi vertex.
For a point v ∈ R

2, let P (v) denote the isothetic

projection of v onto the transportation network, i.e.,
we shoot an isothetic half–ray starting at v in each
of the four directions and for each half–ray we add
its first intersection with an edge of the transporta-
tion network to P (v). For a set X ⊂ R

2 we de-
note the isothetic projection of the set X as P(X) =⋃

v∈X P (v). Finally, for a site p ∈ S we call the set

A(p) = P (p) ∪ VC ∪ P(VC) ∪ {p} activation points.
Following [2], we make the general position assump-

tion: no point in the plane is equidistant from four
sites in S in the city metric. Hence, the degree of a
Voronoi vertex is exactly three.

Wavefront Model. For a fixed site p ∈ S, let
Wp(x) = {q | q ∈ R

2, dC(p, q) = x}. This means
that for a fixed x ∈ R

+
0 the wavefront Wp(x) is the

circle centered at p with radius x. We call p the source
of Wp(x). Note that we can view Wp(x) as the wave-
front at time x of the wave that originated in p at
time 0. We refer to the wavefront as Wp if the exact
value of x is unimportant.
Initially, Wp is diamond shaped. Only if it hits a

point in A(p) it changes its shape [1]. Since the shape
of Wp can become very complex after it hits multiple
activation points, we make the following assumption:
if a wavefront Wp touches a point q ∈ A(p) we do
not change the propagation speed of Wp. Instead we
start a new wavefront at q, which, in turn, starts new
wavefronts at points in A(p) if it reaches them ear-
lier than any other wavefront. Hereafter, the prop-
agation of a new wavefront is called an event. The

q

q' q

q

p1

q1

Figure 2: (a) A 2-needle is two 1-needles. (b) Propagation
of 1-needle. (c) A bisector between ηp(p1) and ηq(q1).

shape of this new wavefront depends on the position
of q on the transportation network. It can be catego-
rized into three different shapes: 1-needle, 2-needle,
and 3-needle [1] (see Fig. 1(b)). Henceforth we treat
a 2(3)-needle as two (three) 1-needles (see Fig. 2(a)).
When a 1-needle reaches the end of a network seg-

ment, as shown in Fig. 2(b), its shape will change
[1]. In order to interpret the propagation of 1-needle,
Bae et al. [5] introduced the term needle. A nee-
dle ηp(q, q

′) is the network segment qq′ with weight
dC(p, q), where p ∈ S and q, q′ ∈ A(p). Propagating a
wavefront from ηp(q, q

′) is equivalent to propagating
a 1-needle from q on a network segment qq′ at time
dC(p, q). If q

′ is obvious or unimportant we may refer
to ηp(q, q

′) as ηp(q). Bae et al. [5] also defined the
L1 distance between a point and a needle and the L1

bisector between two needles (see Fig. 2(c)).

Shortest Path Map For a site p ∈ S its shortest
path map SPMp is a planar subdivision that can be
obtained as follows: start by propagating a wavefront
from the site p. When a point q ∈ A(p) is touched for
the first time by a wavefront, propagate an additional
wavefront from q. Eventually, each point r ∈ R

2 is
touched for the first time by a wavefront propagated
from a source q ∈ A(p) and we associate r with q.
This induces SPMp which partitions the plane into
at most |A(p)| regions SPMp(q). As proved in [5],
an edge of SPMp is part of a bisector between two
needles ηp(q) and ηp(q

′), where q, q′ ∈ A(p). For an il-
lustration of shortest path maps see Fig. 3. The black
polyline is the Voronoi edge between V1({p}, {p, q})
and V1({q}, {p, q}). Both regions are further parti-
tioned by SPMp and SPMq, respectively.

3 Structural Complexity

In this section we show an upper and a lower bound
for the complexity of kth-order city Voronoi diagrams.

For two sites p, q ∈ S and a Voronoi edge e which
is part of B(p, q), a point r on e is a mixed vertex

if there are p1, p2 ∈ A(p) and q1 ∈ A(q) such that
r ∈ SPMp(p1) ∩ SPMp(p2) ∩ SPMq(q1). This im-
plies: d1(r, ηp(p1)) = d1(r, ηp(p2)) = d1(r, ηq(q1)). A
similar concept is known for farthest-polygon Voronoi
diagrams and called mixed Voronoi vertices [6]. For
example, as shown in Fig. 3, since m2 ∈ SPMp(p1)∩
SPMp(p2) ∩ SPMq(q1), m2 is a mixed vertex.
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Figure 3: BC(p, q), where mi (1≤i≤4) is a mixed vertex.

Figure 4: Solid segments form V1(S), dashed segments
are part of V1(Q) and form V2(S) ∩ V1({p}, S), and gray
region is part of V2({p, q1}, S), where Q =

⋃
1≤i≤6

qi and
S = Q ∪ {p}.

Lemma 1 The complexity of the kth-order city

Voronoi diagram is O(M + k(n − k)), where M is

the total number of mixed vertices.

Proof. According to the definition of mixed vertices,
if a Voronoi edge ei contains mi mixed vertices, ei
consists of mi + 1 parts. We can show that each of
these parts belongs to a bisector between two needles.
Since the size of a bisector between two needles is O(1)
[4], the complexity of ei is O(mi +1). Suppose Vk(S)
contains Ne Voronoi edges, e1, e2, . . . , eNe

, and each
ei contains mi mixed vertices. Then, the complexity
of all edges is

∑Ne

i=1
O(mi + 1) = O(M +Ne). By [8],

we know that Ne = O(k(n− k)), and thus it follows:
O(M +Ne) = O(M + k(n− k)). �

In order to derive an upper bound for the complex-
ity of city Voronoi diagrams, we further categorize
the mixed vertices. Let m be a mixed vertex on the
Voronoi edge between Vk(H1, S) and Vk(H2, S), where
H1 \H2 = {p} and H2 \H1 = {q}. We call m an in-

terior mixed vertex of Vk(H1, S) if m ∈ SPMp(p1) ∩
SPMp(p2) ∩ SPMq(q1), for some p1, p2 ∈ A(p) and
q1 ∈ A(q); otherwise, we call m an exterior mixed

vertex of Vk(H1, S). In Fig.3 the vertices m2 and m4

both are interior mixed vertices of V1({p}, {p, q}) and
exterior mixed vertices of V1({q}, {p, q}).

Upper Bound. The (j+1)-th order Voronoi diagram
Vj+1(S) of a set S of point sites can be constructed
from Vj(S) [8]. The idea is as follows: consider a
Voronoi region Vj(H,S). Suppose that Vj(H,S) has
ℓ adjacent Voronoi regions Vj(Hi, S) for 1 ≤ i ≤ ℓ.
Further, let Hi \ H be {qi} and let Q be

⋃
1≤i≤ℓ qi.

It can be shown that Vj(H,S) ∩ V1(Q) = Vj(H,S) ∩
Vj+1(S) [8] which lets us determine Vj+1(S). Fig. 4
shows an example for the Euclidean metric. This tech-
nique is equivalent to propagating a wavefront from
each site qi ∈ Q into the Voronoi region Vj(H,S). A
point r ∈ R

2 is in Vj+1(H∪{qi}, S) if it is first touched
by the wavefront that propagated from qi.

We extend this wavefront approach to the city met-
ric. Suppose ei is the Voronoi edge between Vj(Hi, S)
and Vj(H,S) and ei contains m exterior mixed ver-
tices with respect to Vj(H,S), i.e., ei intersects m+1
regions in SPMqi . Further, let the m+ 1 regions be
SPMqi(vz) for 1 ≤ z ≤ m + 1. Instead of propa-
gating a wavefront from qi we propagate m+1 wave-
fronts from ηqi(v1), . . . , ηqi(vm+1). When a point r is
first touched by a wavefront from ηqi(v), v ∈ A(qi), we
propagate a new wavefront from r if (i) r ∈ P(VC)∪VC

or (ii) qi = v and r ∈ P (qi).

Lemma 2 Let Vj(S) be a j-th order city Voronoi di-

agram for a set S of point sites. If a Voronoi re-

gion Vj(H,S) containsm exterior mixed vertices, then

Vj(H,S)∩Vj+1(S) contains at mostm+2c′+2a′ mixed

vertices, where c′ = |(P(VC) ∪ VC) ∩ Vj(H,S)| and a′

is the number of events associated to points in P(S).

Proof. Let Vk(H,S) have ℓ adjacent regions and
let Q be the set as described above. Further, let
ℓ′ = |Q|. According the above discussion, we prop-
agate m + ℓ′ wavefronts into Vj(H,S). All those
wavefronts combined generate c′ new wavefronts from
points in (P(VC) ∪ VC) ∩ Vj(H,S), and a′ new wave-
fronts from points in P(S) ∩ Vj(H,S). Let W be the
set of those m + ℓ′ + c′ + a′ wavefronts. For each
point r ∈ Vj(H,S), if r is first touched by a wavefront
w ∈ W it is associated with w. This will partition
Vj(H,S) into m+ ℓ′ + c′ + a′ regions. We view those
regions as a special Voronoi diagram V1(W ). Note
that m+ ℓ′ of those regions are unbounded.

It is clear that Vj(H,S) ∩ Vj+1(S) is a subgraph of
V1(W ). Without loss of generality, we assume each
vertex of V1(W ) has degree 3. Since V1(W ) contains
m+ℓ′ unbounded regions, by using Euler’s formula we
can show that V1(W ) contains m+ ℓ′ + 2c′ + 2a′ − 2
vertices. Since Vj+1(H ∪ {qi}, S) ∩ Vj(H,S) is un-
bounded and |Q| = ℓ′, there are ℓ′−2 Voronoi vertices
in Vj(H,S)∩Vj+1(S) and thus at most (m+ℓ′+2c′+
2a′ − 2)− (ℓ′ − 2) = m+2c′ +2a′ mixed vertices. �

By Lemma 2, computing Vj+1(S) from Vj(S) cre-
ates at most mj + O(c) + 2aj new mixed vertices,
where mj is the number of mixed vertices in Vj(S)
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and aj is the number of events associated with points
in P(S). We can show that the total number of events
associated with points in P(S) to compute Vj+1(S)
for 1 ≤ j ≤ k − 1 by this approach is O(n). Since

m1 = O(n + c) and
∑k−1

j=1
aj = O(n) we can show

that
∑k

j=1
(mj+O(c)+2aj) = O(n+kc) which proves,

combined with Lemma 1, the following:

Theorem 1 Vk(S) contains O(n+kc)mixed vertices,

and its complexity is O(k(n− k) + kc).

Lower Bound. We give a worst-case example to de-
rive a lower bound for the number of mixed-Voronoi
vertices. The example consists of a left and a right
part which are placed with a sufficiently large dis-
tance between them. As shown in Fig. 5, we place
one network segment in the left part and build a stair-
like transportation network in the right part. There
are k + 1 sites in the right part and the remaining
n − k − 1 sites are in the left part. Since the dis-
tance between the left and right parts is large, the
n−k−1 sites in the left part hardly influence the for-
mation of Vk(S) in the right part. Therefore, Vk(S)
in the right part forms the farthest-site city Voronoi
diagram of the k+1 sites, where all points in Region i

share the same farthest site si. Note that sharing the
same k nearest sites among k+1 sites is equivalent to
sharing the same farthest site. The common Voronoi
edge between Region i and Region (i + 1) contains
at least c−6

2
mixed vertices, implying that the right

part has (k − 1) c−6

2
= Ω(kc) mixed vertices. The

example in Fig. 5 shows the case for k = 3. This ex-
ample can be extended to the case k > 4 by inserting
s5, s6, . . . , sk+1 vertically between s1 and s4. Since
Vk(S) has Ω(n) regions, we conclude the following:

Theorem 2 The complexity of Vk(S) is Ω(n+ kc).

4 Algorithm

In this section we describe an algorithm that com-
putes kth-order city Voronoi diagrams based on the
ideas described in Section 3 and Bae et al.’s [5]
O((n+c) log(n+c))-time algorithm for first-order city
Voronoi diagrams.
We give the description of the algorithm for a sin-

gle Voronoi region Vj(H,S). All of its four steps
have to be repeated for each Voronoi region of Vj(S).
Let Vj(H,S) have ℓ adjacent regions Vj(Hi, S) with
Hi \ H = {q} and let Q =

⋃
qi: i) For each i, let

the Voronoi edge between Vj(Hi, S) and Vj(H,S) in-
tersect m′

i regions SPMqi(vz), 1 ≤ z ≤ m′
i. Insert

ηqi(vz) into a set S′. ii) Reduce the transportation
network C to C ′: for every edge e in C insert it into
C ′ if and only if there is a point v on e that is in
(P(VC) ∪ P(Q) ∪ VC) ∩ Vj(H,S). iii) Perform Bae et

s1

s2

s3

s4

Figure 5: A worst-case example where bold solid seg-
ments composes C and dashed segments compose Vk(S).

al.’s wavefront-based approach to compute V1(S
′) un-

der C ′. iv) Determine Vj(H,S)∩Vj+1(S) from V1(S
′).

Theorem 3 Vj+1(S) can be computed from Vj(S) in
O((j(n− j) + jc) log(n+ c)) time, and Vk(S) can be

computed in O(k2(n+ c) log(n+ c)) time.

By replacing the medial axes in [6] with the SPMs,
we can modify the divide-and-conquer algorithm in [6]
for the farthest-polygon Voronoi diagram to compute
the farthest-site city Voronoi diagram.

Theorem 4 Vn−1(S) can be computed in

O(nc log n log2(n+ c)) time.
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Colored Quadrangulations with Steiner Points

Victor Alvarez∗ Atsuhiro Nakamoto†

Abstract

Let P be a k-colored set of n points in general position
on the plane, where k ≥ 2. A k-colored quadrangula-
tion of P is a maximal straight-edge plane graph with
vertex set P satisfying the property that every inte-
rior face is a properly colored quadrilateral, i.e., no
edge connects vertices of the same color. It is easy to
check that in general not every set of points admits a
k-colored quadrangulation, and hence the use of ex-
tra points, for which we can choose the color among
the k available colors, is required in order to obtain
one. The extra points are known in the literature as
Steiner points. In this paper, we show that if P sat-
isfies some condition for the colors of the points in
Conv(P), then a k-colored quadrangulation of P can

always be constructed using less than (16k−2)n+7k−2
39k−6

Steiner points. Our upper bound improves the previ-
ously known upper bound for k = 3, and represents
the first bounds for k ≥ 4.

1 Introduction

Let P be an n-point set, that is, a set of n points
in general position on the plane. We say that P is
k-colored if every point of P is colored with exactly

one of k available colors. A quadrangulation of P is
a maximal straight-edge plane graph with vertex set
P such that every interior face is a quadrilateral. For
a k-colored point set P , a quadrangulation of P is
said to be k-colored if no edge of the quadrangula-
tion connects vertices of the same color. From now
on, unless stated otherwise, we will always consider
P as being k-colored. Also, in our setting we are in-
terested in having Conv(P) as the outer cycle of the
k-colored quadrangulations of P , thus we will always
assume that any two consecutive points on Conv(P)
have distinct colors.

The study on k-colored quadrangulations of point
sets is rather new. It is easy to see that even when
Conv(P) is properly colored, k-colored quadrangula-
tions do not always exist, see [1]. Thus, if a k-colored
point set P is given, and one insists on constructing a
k-colored quadrangulation of P , then the use of extra

∗Fachrichtung Informatik, Universität des Saarlandes,

alvarez@cs.uni-saarland.de. Partially Supported by

CONACYT-DAAD of México.
†Department of Mathematics, Yokohama National Univer-

sity, nakamoto@ynu.ac.jp.

points is in general needed. These extra points are
known in the literature as Steiner points, and in our
setting, the color of each Steiner point can be cho-
sen from the k available colors. In [2] it was shown
that for any bichromatic n-point set P , one can con-
struct a bichromatic quadrangulation of P with the
use of roughly 5n

12 interior Steiner points. Those are
Steiner points introduced only inside Conv(P). There,
it was also shown that n

3 interior Steiner points are
sometimes necessary. They also considered the case
when k = 3, and showed a surprising fact, there
are 3-colored point sets that do not admit 3-colored
quadrangulations regardless of the number of interior
Steiner points used, which is definitely an unexpected
result.

The strange phenomenon of not admitting 3-
colored quadrangulations, even with the use of Steiner
points, was recently explained in [3], where the au-
thors showed an elegant characterization of the 3-
colored point sets that admit 3-colored quadrangula-
tions using a finite number of interior Steiner points.
In the same paper, the authors showed that if possible,
a 3-colored quadrangulation can be constructed with
the use of at most 7n+17m−48

18 interior Steiner points,
where |P | = n and |Conv(P)| = m. Note however that
this number depends on the size of Conv(P), and can
get larger than wished whenever m and n are compa-
rable in size. For example, if m = 3n

4 , then the bound
becomes 79n−192

72 which is larger than n already when
n ≥ 5.

In this paper, we show how one can use the al-
gorithm for the bichromatic case to obtain an algo-
rithm for a k-colored point set, for general k ≥ 3.

Our algorithm uses less than (16k−2)n+7k−2
39k−6 interior

Steiner points to construct a k-colored quadrangula-
tion of P . Our bound has the following advantages:
(1) Our algorithm fully replaces the algorithm shown
in [3], since it performs equally good when Conv(P) is
small, but it improves the worst-case behavior when
Conv(P) is large. For comparison, our bound for
k = 3, at worst, is essentially 46n

111 <
5n
12 , while the

one presented in [3] can grow larger than n if the right
conditions are met. (2) Our bound represents the first
bounds for the cases when k ≥ 4.

We will divide the paper as follows: in section 2 we
give the necessary definitions and the precise state-
ment of our result, and in section 3 we prove our main
Theorem.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Preliminaries

In order to make this paper more self-contained, we
will state the results from other papers that will be
used, and will be referred to. Let us first start with
some terminology. Let Q be an m-sided convex poly-
gon, with m ≥ 4 even, and suppose that Q is properly
k-colored, where k ≥ 2. The following are the defini-
tions taken from [3].
Let us assume that the k chromatic classes used to

color Q are 1, 2, ... , k , and allow us denote the color of
a vertex v of Q by c(v). Let us define an orientation
O for the edges of Q as follows: if e = uv is an edge
of Q, then we orient e from u to v if c(u) < c(v), and
from v to u otherwise. Let e+

O
(Q) and e

−

O
(Q) be the

number of edges in clockwise and in counter-clockwise
direction respectively.

Definition 1 (Winding number) Let O be an ori-

entation of Q as explained before. The winding num-

ber of Q, denoted by ω(Q), is defined as:

ω(Q) = |e+
O
(Q) − e

−

O
(Q)|

for k = 3, and ω(Q) = 0 for k 6= 3.

Observe that the winding number of a polygon Q

is non-trivial only when Q is 3-colored.
For a point set P , we will use ω(P) as a shorthand

for ω(Conv(P)), extending the definition of winding
number for polygons to sets of points. Finally, if P
is k-colored, with k ≥ 2, we will say that P can be
k-quadrangulated if P admits a k-colored quadrangu-
lation.
The following result is the one described in the

introduction characterizing the 3-colored point sets
which can be 3-quadrangulated with Steiner points
added [3].

Theorem 1 (S.Kato, R. Mori, A. Nakamoto)
Let P be a 3-colored n-point set in general position

on the plane such that |Conv(P)| = m. Then there

exists a set S of Steiner points such that P ∪S can be

3-quadrangulated if and only if ω(P) = 0. In such a

case, |S| ≤ 7n+17m−48
18 .

Now we can easily decide whether a 3-colored point
set admits a 3-colored quadrangulation. Nevertheless,
as we mentioned before, the number of Steiner points
required by Theorem 1 can get larger than wished
when m and n are comparable in size.
The main contribution of this paper is the following:

Theorem 2 Let k ≥ 2 be an integer, and let P

be a k-colored n-point set in general position on the

plane. If ω(P) = 0 or k ≥ 4, then there exists a

set S of Steiner points such that P ∪ S can be k-

quadrangulated, and |S| < (16k−2)n+7k−2
39k−6 .

Note that our Theorem, besides of being able to
work with more than three chromatic classes, depends
only on n and k , which is a great improvement over
the previously known bound for k = 3.

3 Main Theorem

In order to prove our Theorem, we will need some in-
termediate results, the first one is easily proven using
the well known Euler’s formula:

Lemma 3 Let P be an n-point set in general position

on the plane where m of them lie on Conv(P). Then

any quadrangulation of P has (n − 1)− m

2 quadrilat-

erals and 2(n − 2)− m

2 edges.

In [3] the following Lemma was shown:

Lemma 4 (S.Kato, R. Mori, A. Nakamoto)
Let Q be a 3-colored convex polygon colored by

three colors c1, c2, c3. Then the winding number of

Q is invariant for any bijection from {c1, c2, c3} to

{1, 2, 3}.

That is, the winding number is well-defined, and
we may assume that if Q is a 3-colored convex poly-
gon, then it is colored by {1, 2, 3}. We now have the
following Lemma:

Lemma 5 Let Q be a properly k-colored convex

polygon of m ≥ 4 sides such that ω(Q) = 0. Then

Q can be partitioned into r = m−2
2 properly colored

quadrilateralsQ1, ... ,Qr such that ω(Qi) = 0 for every
1 ≤ i ≤ r .

Proof. The most interesting case is when k = 3,
which is the one we will explain here:
By Lemma 4, we may assume that the chromatic

classes are exactly {1, 2, 3}. Observe that there is a
vertex v ∈ Q such that its two neighbors are of the
same color. For otherwise, i.e., if every vertex of Q
has two neighbors with distinct colors, then we can
easily check that Q has a periodic cyclic sequence of
colors 1, 2, 3, which is contrary to ω(Q) = 0. See the
left in Figure 1.
Now assume that all edges of Q are oriented as ex-

plained before. Let v ∈ Q be a vertex with two neigh-
bors u,w ∈ Q of the same color, where u is the right
neighbor of v , and w the left neighbor. Let x ∈ Q

be the right neighbor of u. Since Q is properly col-
ored, x has a color distinct from those of u and w ,
and hence we can add an edge wx to create the prop-
erly colored quadrilateral Q1 = xuvw . Now, let Q ′ be
the cycle on the convex hull of Q \ {u, v}. We first
observe that ω(Q1) = 0 since u and w have the same
color. Secondly observe that ω(Q ′) = 0, which can
be explained as follows. Since u and w have the same
color, the orientations of the two edges vw and uv
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are canceled in the computation of ω(Q). Moreover,
the edges ux and wx are both oriented away from x .
Hence we get ω(Q) = ω(Q ′) = 0.
We can repeat these procedures inductively on Q ′,

as shown to the right in Figure 1. That the total
number of created quadrilaterals is m−2

2 follows from
Lemma 3. �

1

1
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3

1

1

2

2

2

3

3

3

v

u

w
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Q ′

e1

e2

e3

e4

Figure 1:

The last result we need from [3] is the following:

Lemma 6 (S.Kato, R. Mori, A. Nakamoto)
Let P = c1 ∪ c2 be a 2-colored n-point set in general

position on the plane such that |Conv(P)| = m, where

c1 and c2 are the color classes of P with |c1| ≥ |c2|.
Then there exists a set S of Steiner points such that

P ∪ S can be 2-quadrangulated, and:

|S| ≤

⌊

|c1|

3

⌋

+

⌊

|c2| − (m/2)

2

⌋

≤
5n

12
− 1

The previous Lemma is essentially one of the main
results of [2], and it is proven using exactly the same
techniques as for Theorem 1 of [2], however, they are
applied differently so the constant term on the bound
of |S| is improved in the worst case from (−1/3), in [2],
to −1, in [3]. This negligible improvement of con-
stants will play a useful role when proving Theorem 2.
The next Lemma is the last one before we proceed

with the proof of Theorem 2.

Lemma 7 Let k ≥ 2 be an integer, and let P be a

k-colored (q + 4)-point set such that |Conv(P)| = 4.
Then there exist two sets of Steiner points SΓ and S∆

such that:

• P∪SΓ can be k-quadrangulated, and |SΓ| ≤
5q+8
12 .

• P ∪ S∆ can be k-quadrangulated, and

|S∆| <
(2k+1)q+16k

6k .

Proof. Let us divide the proof into two parts, one
considering SΓ and the other considering S∆. For sim-
plicity, let us denote Conv(P) by Q.

• Note that P can be regarded as a bichromatic
point set as follows: if Q is bichromatic itself,
say using colors c1, c2, then we can recolor every

interior point of color different from c2 with color
c1. We will rename the chromatic classes as cα =
c1 and cβ = c2.

If Q is 3-colored, say using colors c1, c2, c3, then
one color must appear twice on Q, say without
loss of generality c2. Proceed as before, recolor
every point of color different than c2 with a new
color cα. Rename the chromatic class c2 as cβ .

If Q is 4-colored, say using colors c1, c2, c3, c4, as-
sume that c1, c3 and c2, c4 appear in diagonally
opposite vertices of Q in clockwise order. Now
recolor P with two new colors cα and cβ as fol-
lows: every point of color c2, c4 receives color cβ .
The rest of the points receive color cα.

As we end up having a bichromatic point set,
using colors cα, cβ, say without loss of generality
that |cβ | ≤ |cα|. Thus by Lemma 6 we obtain a
quadrangulation of P ∪ SΓ such that:

|SΓ| ≤

⌊

|cα|

3

⌋

+

⌊

|cβ | − 2

2

⌋

≤
5|P |

12
− 1 =

5q + 8

12

• Let us now do the following: say without loss of
generality that c1 is the smallest chromatic class
among the k chromatic classes. Let us assume
that Q is colored with colors other than c1, we
will see later on that this assumption only wors-
ens the upper bound. Now let us introduce two
Steiner points of color c1 inside Q, very close to
two opposite vertices of Q, and in such a way
that we create a new quadrilateral Q ′ that is still
properly colored and still contains the q interior
points. Let P ′ be the point set formed by the
vertices of Q ′ and the q points in its interior, see
Figure 2.

QP ′

Figure 2: Points colored with color c1 are represented
in black. Quadrilateral Q ′ still contains the q interior
points that quadrilateral Q originally contained.

Now recolor every point of P ′ of color different
than c1 with a new color c . This leaves only
two chromatic classes, c1 and c , where c1 is still
the smallest one. We can now proceed with the
quadrangulation of a bichromatic point set again,
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this time obtaining:

|S∆| ≤

⌊

|c |

3

⌋

+

⌊

(|c1|+ 2)− 2

2

⌋

+ 2

≤
|c |

3
+

|c1|

2
+ 2 =

|c |+ |c1|

3
+

|c1|

6
+ 2

<
q + 2

3
+

q

6k
+ 2

=
q(2k + 1) + 16k

6k

where the first inequality is obtained using
Lemma 6 again. The last inequality is obtained
by |c | = q + 2 − |c1| and the assumption that c1
is the smallest chromatic class, so |c1| <

q

k
. If

|c1| =
q
k
, then we have |c1| = · · · = |ck | =

q
k
, and

hence we can take c1 so that c1 does appear on
Q. In this case, only at most one Steiner point is
required in the beginning to obtain Q ′. Hence we

would obtain |S∆| ≤
q(2k+1)+7k

6k which is slightly
smaller, but it would still play a role reducing the
bound on Theorem 2.

�

We are finally ready to prove Theorem 2:

Proof. Let P be a k-colored n-point set on the plane,
where |Conv(P)| = m and q = n −m. Then P has q
interior points. If ω(P) = 0, by Lemma 5, we know
that we can partition Conv(P) into r = m−2

2 convex
quadrilaterals Qi , 1 ≤ i ≤ r , each of which is properly
colored and has ω(Qi ) = 0. If ω(P) 6= 0, then by
Theorem 1 the only case that makes senses is k ≥ 4.
That is, P is colored with at least four colors but only
three of them appear in Conv(P), causing ω(P) 6= 0.
In this case we cannot apply Lemma 5 directly, so
we will introduce one Steiner point s inside Conv(P),
and very close to one vertex v of Conv(P) such that s
replaces v in Conv(P). If the color of s is chosen such
that the new Conv(P) is 4-colored, and observe that
this is always the case, we can proceed with Lemma 5
as before.

Let qi be the number of interior points in quadrilat-
eral Qi . Using the first case of Lemma 7 on each Qi ,
we get overall a set SΓ = S

1
Γ ∪ S

2
Γ ∪ · · · ∪ S

r
Γ of Steiner

points, where SiΓ denotes the set of Steiner points used
to k-quadrangulate Qi such that:

|SΓ| =

r
∑

i=1

|SiΓ| ≤

r
∑

i=1

5qi + 8

12
=

2r

3
+

r
∑

i=1

5qi
12

=
m − 2

3
+

5q

12

Now, if we use the second case of Lemma 7 on each

Qi we get overall:

|S∆| =

r
∑

i=1

|Si∆| <

r
∑

i=1

(2k + 1)qi + 16k

6k

=
8r

3
+

r
∑

i=1

(2k + 1)qi
6k

=
4(m − 2)

3
+

(2k + 1)q

6k

We are assuming that in each Qi all the chromatic
classes appear. If that is not the case, say there is at
least one chromatic class not appearing in some Qj ,
1 ≤ j ≤ r , then the size of the smallest chromatic class
in Qj is 0. In such a case, as the reader can verify, we

would obtain an improvement on |Sj∆|, which would
clearly improve |S∆|.
Now we would like to see which one of SΓ, S∆ per-

forms better, and under what circumstances. For the
following, we note that q = n−m. If |SΓ| ≤ |S∆|, then
we have:

m − 2

3
+

5(n −m)

12
<

4(m − 2)

3
+

(2k + 1)(n −m)

6k

and hence m >
k(n+24)−2n

13k−2 . The bound on m in turn

implies q <
12k(n−2)
13k−2 .

Let S be a set of Steiner points added
for k-quadrangulating P , and estimate |S| by

min{|SΓ|, |S∆|}. Then, if m >
k(n+24)−2n

13k−2 , we obtain:

|S| ≤ |SΓ|+ 1 =
m− 2

3
+

5q

12
+ 1 =

4n+ q + 4

12

<
(16k − 2)n + 7k − 2

39k − 6

where the second equality follows from m = n−q. On

the other hand, if m ≤ k(n+24)−2n
13k−2 , then

|S| ≤ |S∆|+ 1 <
(16k − 2)n+ 7k − 2

39k − 6

The Theorem now follows entirely. �
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Extremal problems in colored point sets in the plane

Viola Mészáros∗

Abstract

The goal of this paper is to give an overview of the
results and open questions in the area of long alternat-
ing paths and separated matchings. We include a new
proof of the construction class of Hajnal and Mészáros
showing there are at most 4

3
n+O(

√
n) points in any

separated matching and on any noncrossing alternat-
ing path, respectively, in a specific convex 2n-element
equally two-colored planar point set. This is currently
the best upper bound for alternating paths and it is
conjectured to be asymptotically tight. The survey is
written based on my Ph.D. thesis [13].

1 Introduction

One of the basic problems in geometric graph theory
is to decide if a given graph can be drawn on a given
planar point set by pairwise noncrossing straight line
edges. It is an easy observation that any planar point
set in general position admits a noncrossing Hamil-
tonian path. In a more demanding version of the
problem, the points and the vertices of the graph are
colored and each vertex has to be placed in a point
of the same color (see [8] for references). Interesting
and not so easy questions arise already if the points
are colored by two colors and we want to embed a
path where the colors are alternating. Several authors
have focused on this question recently and obtained
appealing results.

Consider an arbitrary 2n-element point set in the
plane colored by two colors in a balanced way. We
require n points to be red and n points to be blue. A
point set with this property is equicolored. We would
like to determine or estimate the number of points
on the longest noncrossing path such that edges join
points of different color and are straight line segments.
We are talking about combinatorial length here, that
is, the length of a path is determined by the number
of its points. We call a path with edges connecting
points of different color alternating.

In case our point set is in general position the fol-
lowing results were gained. Abellanas et al. showed in
1999 that if the color classes are separated by a line,
there is a noncrossing, alternating Hamiltonian path

∗Institute for Mathematics, Technical University of Berlin,
meszaros@math.tu-berlin.de. Work on this paper was par-
tially supported by ESF EuroGiga project ComPoSe (IP03),
by OTKA Grant K76099 and by OTKA Grant 102029.

on the point set [1]. The same holds if the set of ver-
tices of the convex hull coincides with one of the color
classes [1]. If the color classes are not separated by a
line, there are colored point sets with no noncrossing,
alternating Hamiltonian path for n ≥ 8, even if the
points are in convex position.
The existence of halving lines and the result on

the separated color classes in [1] together guarantee
that for any equicolored point set of 2n points the
longest noncrossing, alternating path contains at least
n points.
Erdős [6] posed the convex version of the prob-

lem already in the eighties. It inspired numerous re-
searchers. In the following we state their results.

ℓ(P) = max
U is a noncrossing alternating path

ℓ(U),

where ℓ(U) is the number of points on U .

ℓ(n) = min
P is equicolored

ℓ(P),

where P is any colored planar 2n-element convex
point set.
When the points are in convex position without loss

of generality we may assume that they are on a cir-
cle. Erdős conjectured that the following configura-
tion was asymptotically extremal. Let n be divisible
by four. Divide the circle into four intervals that con-
sist of n

2
red, n

4
blue, n

2
red and 3n

4
blue points, respec-

tively. It is not hard to check that in this configuration
there are 3n

2
+2 points on the longest noncrossing, al-

ternating path.
Kynčl, Pach and Tóth [10] disproved Erdős’ con-

jecture by constructing a single configuration in 2008
and showed the 4

3
n + O(

√
n) upper bound. In the

same paper they also proved a lower bound of n +

Ω
(

√

n/ logn
)

points. Abellanas et al. indepen-

dently of the previously mentioned researchers con-
structed a very similar configuration for the same up-
per bound [2]. The upper bound is conjectured to be
asymptotically tight.
We improved the lower bound of [10] with Hajnal.

We showed that there are at least n + Ω(
√
n) points

on the longest noncrossing alternating path [7]. The
proof of the lower bound in [10] is based on arcs which
contain significantly more points from one color class
than from the other. We do the same but using a
completely different idea that gives us a better result.
Regarding the upper bound we presented a class of

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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configurations that allows at most 4
3n+O(

√
n) points

on any noncrossing alternating path [7]. Jan Kynčl
also found this class by computer search. Our class
differs from the previous constructions for it allows
two intervals with alternating short monochromatic
arcs while the previous ones allowed only one.

The proof techniques in the research of alternating
paths introduced the notion of separated matchings.
Separated matchings are matchings that have the fol-
lowing properties: there is a line that crosses all edges
of the matching and no two edges cross geometrically
in the matching. We call the line crossing all edges
of the matching the axe. Separated matchings gained
an importance recently because they have advantages
compared to alternating paths. It is a new rising topic
with room for results. Separated matchings are sim-
pler than alternating paths but give a building ele-
ment of them. If we consider examples where the dif-
ference in cardinality of the color classes is bounded on
any interval (that is, the discrepancy of the point set
is small) that alone guarantees a long noncrossing, al-
ternating path. This is a consequence of the frequent
alternations of colors along the circle. Regarding sep-
arated matchings small discrepancy coloring is a case
that we should consider. It could lead to a deeper
understanding of the problem.

Recently several new constructions were gained al-
lowing at most 4

3n + O(
√
n) points in any separated

matching. There is a class of configurations [14] that
differs from all known previous constructions in a con-
siderable feature. It contains arbitrary many inter-
vals of alternating short monochromatic arcs while
beforehand all constructions contained at most two
of such arcs. A type of coloring was presented so
that among these colorings in the optimal one any
separated matching contains at most 4

3n + O(
√
n)

points [12, 15]. Regarding the small discrepancy col-
orings it was shown that for any coloring with discrep-
ancy d ≤ 3 there is a separated matching containing
at least 4n

3 points [14]. It would be feasible to extend
and strengthen this results with new ideas.

Finally, we mention that in case we perform a
change in the construction of [10] we can improve the
upper bound for separated matchings to 4

3n + O(1).
This contributes to the separated matching conjecture
stated in [10]: If 2k denotes the number of alternations
among the two colors in a 2n-element point set on the
circle, then for any fixed k and large n, any configu-
ration admits a separated matching that contains at
least 2k−1

3k−22n+ o(n) points. On the other hand, mak-
ing this modification in the construction of [10] does
not improve the result for alternating paths.

Returning to the general setting, Kaneko et al. [9]
considered point sets with odd cardinality in 2004.
An equitable coloring means that the sizes of the two
color classes differ by at most one. They proved that
any equitably colored set of at most 12 points or of 14

points admits a noncrossing, alternating Hamiltonian
path. On the other hand, Kaneko et al. [9] gave ex-
amples of equitably colored sets of n points allowing
no noncrossing, alternating Hamiltonian path for any
n > 12, n 6= 14.
We also considered equitably colored point sets

with Cibulka, Kynčl, Stolař and Valtr in 2009. Our
points were on a double-chain defined in the following
way. A convex or a concave chain is a finite set of
points in the plane lying on the graph of a strictly
convex or a strictly concave function, respectively. A
double-chain consists of a convex chain and a concave
chain such that any line determined by any of the
chains does not intersect the other chain. We proved
[4] if both chains of the double-chain contain at least
one fifth of all the points, then there exists a non-
crossing, alternating Hamiltonian path in the point
set. But the above property does not hold if one of
the chains contains at most ≈ 1/29 of all the points
[4]. This result is so far the strongest evidence by it
that the convex setting of our point set might be an
extremal case. Otherwise, it is not clear what role
convexity plays in the problem.

2 The new proof

Now we give an alternative proof for the construction
class described in [7]. It shows the upper bound of
4
3n+O(

√
n) points for noncrossing alternating paths.

This bound was known before (see in [10]) still the
class in [7] is a contribution to the area of long non-
crossing alternating paths for the reason that it is a
class. Previously only single constructions were pre-
sented. It also differs from the earlier configurations
significantly.
First we introduce a few definitions. Our 2n −

element equicolored point set is on the circle. There-
fore, there is a natural ordering among the points. We
call a maximal monochromatic arc a run. Let Mr×ℓ

denote r many consecutive runs alternating in color
where each run contains ℓ points. A building block
of this type Mr×ℓ is a mixed run. Note, in the fol-
lowing when we use the notion of run we do not refer
to the runs belonging to a mixed run (if not stated
otherwise) but to the other runs. Thus, we distin-
guish these two types of building elements. Let BL

and RL denote a blue run and a red run of length L,
respectively. Then we set α ∈ [−1, 1], and finally we
introduce Pα,ℓ:

B2L, R(1+α)L, Mr×ℓ, R(1+α)L, B2L,

R(1−α)L, Mr′×ℓ, R(1−α)L,

where ℓ is arbitrary, r, r′ are divisible by two and
the following equalities hold rℓ = (2−2α)L and r′ℓ =
(2 + 2α)L. Therefore, Pα,ℓ is an equicolored point
set of 2n = 12L points. We assume that αL is an
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Mr×ℓ

Mr′×ℓ

R(1+α)L R(1+α)L

R(1−α)L R(1−α)L

B2L B2L

A

A′

B′

B

C

C ′

Figure 1: The construction

integer. In case α = −1, 1 our construction coincides
with the [10] construction if we set ℓ = Θ(

√
L).

Letm(P) denote the number of points in a maximal
separated matching on the point set P . Now we are
ready to state our theorem.

Theorem 1 m(Pα,ℓ) ≤ 4n
3
+O(ℓ).

Proof. We assume that the axe of an optimal match-
ing divides the point set into an upper and a lower side
and the matched upper and lower points are ordered
from left to right. We can partition the edges of the
matching into classes in such a way that on each side
(upper, lower) the endpoints belong to one run or one
mixed run. On each side we complete the points of
a class to an arc by adding the possible intermediate
points. We call these pairs of arcs blocks. We have
constant number of blocks.
If in one of these blocks a mixed coloring is to be

matched with a run, then at most half of the mixed
coloring is going to participate in the matching. To
be precise this is the case if the block contains an even
number of alternating short runs from the mixed run.
If we throw away O(ℓ) many matched edges we can
assume that our blocks have an even number of alter-
nating short runs from the mixed runs. The resulting
separated matching we denote by M .
We consider a few different cases based on the po-

sition of the axe. If an end of the axe cuts a mixed
run or it is placed between a run and a mixed run, we
say that the end of the axe is mixed.
1st case: Both ends of the axe are mixed. We will
change the position of the axe which will modify M .
The new axe will be CC′ that halves both mixed runs.
In the new matching M ′ the two mixed runs will be
completely matched. Around C and C′ each mixed
run is matched with itself. Observe, that the edges

of M that do not involve points from any mixed run
will intersect CC′ but cannot cross any edge we in-
troduced in M ′. Therefore we add these edges to M ′.

We will now argue that we did not decrease the
size of M to get M ′. As all edges of M that do not
contain points from mixed runs are present in M ′, we
only need to take care of those edges that have an
endpoint in some mixed run.
If there is an edge going between the two mixed

runs in M , then there can be no more points covered
by M than the points of the mixed runs (see the axe)
which is at most 4L = 2n

3
points. Consequently, we

have that |M ′| ≥ |M |.
So we may assume that edges of M that have an

endpoint in a mixed run have their other endpoint in
a run or in the same mixed run. By a previous ob-
servation when a mixed coloring is matched to a run,
then half of the mixed part is not going to participate
in the matching. Therefore when in M ′ we match the
mixed run with itself, we get at least as many points
in the matching as in M .

After the previous surgery the bound on the num-
ber of matched points is straightforward. There are
at most 2((1−α)L+(1+α)L) = 4L further points in
M ′. Hence, we get 8L = 4n

3
points altogether in M ′.

2nd case: None of the ends is mixed. Observe,
that the ends of the axe come from the set of
{A,A′, B,B′}. If the axe cuts a run to two parts P1

and P2, then one of P1 and P2 will not contain points
from M . So we can shift the axe to be between two
runs in a way that M does not change.

If there are at most 2n
3

points on one side of the axe,
then we are done. Hence, by symmetry argument we
can assume that the axe is AA′. We may assume that
at each end of the axe the shorter run is fully matched
in the most economical way (to the other neighboring
run to the axe). This gives 4L points to M .

On the lower side the mixed run of (2 + 2α)L, a
red run of (1 − α)L and a blue subrun of (1 − α)L
points remain. On the upper side a blue subrun of
(1 + α)L, a red run of (1 + α)L and a mixed run
of (2 − 2α)L points remain. We can match at most
another (2 + 2α)L + (2 − 2α)L = 4L points. Hence,
we showed the desired bound of 8L = 4n

3
points.

3rd case: One of the ends is mixed, the other is not.

By a previous observation if the axe cuts a run, we
shift the axe to be between two runs so that M is not
modified. If this end of the axe gets beside a mixed
run, we use the argument in the 1st case.

If there are at most 2n
3

points on one side of the
axe, we are done. Therefore, we claim by a symmetry
argument that if the axe is in the lower (upper) mixed
run, then the other end of the axe is at A (at B). If a
point from the upper mixed run is matched to a point
of the lower mixed run, then the size of M is at most
(2−2α)L+(2+2α)L+2(1±α)L = 6L±2αL ≤ 8L =
4n
3

points.
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If there is no edge in M with endpoints from dif-
ferent mixed runs, then the surgery as in 1st case can
be performed. The end of the axe in the mixed run
will get to the middle of the mixed run to C or C′.
Notice, that one side of the axe contains at most 2n/3
many points. Hence, the statement follows. �

If we set ℓ = Θ(
√
n), it is straightforward that there

are at most 4n
3

+ O(
√
n) points on the longest non-

crossing alternating path. Consider the following ar-
gument. Any noncrossing alternating path consists
of a separated matching and additional edges. We
call these additional edges side edges for the reason
that a line containing a side edge has the path on
one of its sides. If ℓ = Θ(

√
n), the number of side

edges is restricted to O(
√
n). Hence, together with

Theorem 1 this concludes the case of noncrossing al-
ternating paths and we get:

If ℓ = Θ(
√
n), then ℓ(Pα,ℓ) =

4n
3
+O(

√
n).

3 Conclusion

Numerous open problems remain in the area of non-
crossing alternating paths and separated matchings.
Regarding alternating paths the general case could
yield interesting results. Researchers were mostly fo-
cusing on point sets in convex position lately.

In a bit more restricted setting one could consider
two convex chains instead of the double-chain. Obvi-
ously, there would be less freedom in drawing a non-
crossing alternating path than on a double-chain. But
as there would be more freedom than in the convex
case it is of interest and would mean a case ”in be-
tween”.

The lower bound n+Ω(
√
n) for alternating paths is

also worth to consider. By new ideas there could be an
improvement. The gap is not so small till the upper
bound 4n

3
+O(

√
n) which is believed to be asymptot-

ically tight.

Separated matchings is a developing line of re-
search. It rose from the area of alternating paths and
turned out to be important. Investigating small dis-
crepancy colorings promises new results. It could be
a huge step forward in understanding the feature of
the original Erdős problem.

Conjecture. Every equicoloring of 2n points
in convex position in the plane admits a separated
matching of size 4

3
n.
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Compatible Matchings for Bichromatic Plane Straight-line Graphs

Oswin Aichholzer∗ Ferran Hurtado† Birgit Vogtenhuber∗

Abstract

Two plane graphs with the same vertex set are com-
patible if their union is again a plane graph. We
consider bichromatic plane straight-line graphs with
vertex set S consisting of the same number of red
and blue points, and (perfect) matchings which are
compatible to them. For several different classes C
of graphs, we present lower and upper bounds such
that any given graph G(S) ∈ C admits a compatible
(perfect) matching with this many disjoint edges.

1 Introduction

We consider bichromatic point sets S = R ∪B where
the red set R and the blue set B have the same cardi-
nality n. An edge spanned by two points of S is called
bichromatic, if it has one red and one blue endpoint. A
graph G(S) is called bichromatic, if all its edges are
bichromatic. Accordingly, an edge where both end-
points have the same color is called monochromatic,
and a graph is called monochromatic if all its ver-
tices have the same color. Two plane graphs with the
same vertex set S are called compatible if their union
is again a plane graph and disjoint if their intersection
does not contain any edge. Graph compatibility and
graph augmentation questions are directly related to
network design and graph drawing problems; see there
for potential applications.

In the following, we solely consider plane straight-
line graphs, and refer to them just as graphs for the
sake of brevity.

There exist several results on compatible graphs, for
bichromatic as well as for uncolored point sets. For
example, Ishaque et al. [5] recently showed that any
(uncolored) geometric matching with an even number
of edges admits a disjoint compatible matching. In
a similar direction, Abellanas et al. [2] showed upper
and lower bounds for how many edges a compatible
matching for a graph of a certain class can admit.

In a different work, Abellanas et al. [1] showed
how many edges are needed at least to augment an
(uncolored) connected graph to a 2-vertex or 2-edge
connected graph. According results on bichromatic
graphs have been obtained by Hurtado et al. [4], who

∗Institute for Software Technology, Graz University of Tech-
nology, [oaich|bvogt]@ist.tugraz.at

†Departament de Matemàtica Aplicada IV, Universitat
Politècnica de Catalunya (UPC), Ferran.Hurtado@upc.edu

also considered the question of augmenting a (discon-
nected) bichromatic graph to be connected. Among
others, they showed how to connect a bichromatic per-
fect matching to a (bichromatic) spanning tree. Hoff-
mann and Tóth [3] extended this work to spanning
trees with maximum vertex degree three.

In this work we investigate the following question.
Given a bichromatic graph G(S), we want to find
a matching M(S) (of some type) that is compatible
with G(S). Following the lines of [2], we call such a
matching G(S)-compatible. Similarly, if M(S) is dis-
joint from G(S), we also say that it is G(S)-disjoint.
We consider two classes of G(S)-compatible match-
ings: (1) bichromatic G(S)-disjoint / perfect match-
ings (Section 2) and (2) monochromatic matchings
(Section 3).

For a G(S)-compatible matching M(S), we denote
the number of edges in M(S) that are disjoint from
G(S) by d(G(S),M(S)). Similar to the work in [2],
we focus on bounds for this number for the considered
classes of matchings and the graph classes of spanning
trees (tree), spanning paths (path), spanning cycles
(cycle), and perfect matchings (match).

A preliminary version of this work can be found
in [7], Section 3.3.

2 Bichromatic matchings

We start with bichromatic (perfect) matchings which
are compatible to a given bichromatic graph. To sim-
plify reading, we mostly omit the attribute bichro-
matic in this section.

It is well known that every set S with |R| = |B|
admits a bichromatic perfect matching [6]. On the
other hand, there exists a large class of point sets
with |R| = |B|, for which there exists only one such
matching M(S). Note that for any plane graph G(S)
that is obtained by adding edges to M(S), we get
d(G(S),M(S)) = 0. Due to these observations, and
to avoid trivial bounds, we restrict considerations in
this section to point sets admitting strictly more than
one bichromatic perfect matching.

Let S be the class of point sets admitting at least
two different bichromatic perfect matchings, and let
Sn ⊂ S be the sets with |R| = |B| = n. For a given
class C of graphs, we denote by

bC(n) = min
S∈Sn

min
G(S)∈C

max
M(S)

d(G(S),M(S))

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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the maximum number such that for every point set
S ∈ Sn and every graph G(S) ∈ C, we can find
a bichromatic disjoint compatible matching M(S) of
cardinality at least bC(n). Accordingly, we denote by

b
p
C(n) = min

S∈Sn

min
G(S)∈C

max
M(S)

d(G(S),M(S))

the maximum number such that for every point set
S ∈ Sn and every graph G(S) ∈ C, there exists a
bichromatic compatible perfect matching M(S) with
(at least) bpC(n) edges disjoint from G(S).
Note that bC(n) ≥ b

p
C(n), as any compatible

perfect matching M(S) for a given graph G(S)
contains a G(S)-disjoint matching M ′(S) of size
d(G(S),M ′(S)) = d(G(S),M(S)).
We start with the class of perfect matchings, and

with disjoint compatible matchings for them.

Theorem 1 ⌈n−1
2 ⌉ ≤ bmatch(n) ≤

3n
4 .

Proof. Consider a perfect matching PM(S). Using
the result of Hoffmann and Tóth [3], we augment
PM(S) to a bichromatic spanning tree T (S) with
maximum vertex degree three; see Figure 1.

Figure 1: A perfect matching (solid edges) augmented
to a spanning tree (augmenting edges are dashed).

Now consider the graph A(S) = T (S)\PM(S) of
the augmenting edges. A(S) contains exactly n − 1
edges. Further, as every vertex is incident to exactly
one edge of PM(S), the maximum vertex degree in
A(S) is at most two. In other words, A(S) is a collec-
tion of paths P and isolated vertices. Every path P

with kP +1 vertices has kP edges, of which ⌈kP

2 ⌉ form
a matching. Thus, A(S) contains a matching with∑

P∈P⌈
kP

2 ⌉ ≥ ⌈n−1
2 ⌉ edges, yielding a lower bound

of bmatch(n) ≥ ⌈n−1
2 ⌉ for the number of edges in a

maximum PM(S)-disjoint compatible matching.
For an upper bound on bmatch(n) consider the per-

fect matching PM(S) shown in Figure 2. Every red
vertex that is incident to one of the small edges in-
side a triangle does not “see” any blue vertex except
for the one it is matched to. Thus, in any PM(S)-
disjoint compatible matching M(S) all these red ver-
tices must stay unmatched, implying an upper bound
of bmatch(n) ≤ d(PM(S),M(S)) ≤ 3n

4 . �

The upper bound for disjoint matchings (induced
by Figure 2) directly implies an according upper
bound of bpmatch(n) ≤ 3n

4 for perfect matchings that

Figure 2: An upper bound example for bmatch(n).

are compatible to a given perfect matching. But for
this case we can say even more.

Theorem 2 b
p
match(n) ≤

n
2 .

Proof. Consider the perfect matching PM(S) illus-
trated in Figure 3. Every vertex that is incident to one
of the short edges can only be compatibly matched in
two ways; either to the other vertex of the edge it
is incident to, or to the accordingly colored vertex of
the long edge next to it. As matching one vertex of
a short edge to the according vertex of the long edge
next to it would force the other vertex of the short
edge to stay unmatched, any perfect matching M(S)
that is compatible with PM(S) must contain all short
edges of PM(S). �

Figure 3: An upper bound example for bpmatch(n).

For the classes of spanning trees, spanning cycles,
and spanning paths, the examples illustrated in Fig-
ure 4 imply bounds of btree(n) = bcycle(n) = 0 and
bpath(n) ≤ 1.

Figure 4: Upper bound examples for btree(n) and
bcycle(n).

3 Monochromatic matchings

We continue with monochromatic compatible match-
ings for bichromatic graphs. In the following, we de-
note by

mC(n) = min
|S|=2n

min
G(S)∈C

max
M(S)

d(G(S),M(S))
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the maximum number such that for every graph
G(S) ∈ C there exists a monochromatic compatible

matching M(S) with (at least) mC(n) edges.
We again start with the class of bichromatic per-

fect matchings, and with monochromatic compatible
matchings for them.

Theorem 3 n
4 ≤ mmatch(n) ≤

5n
12 .

Proof. Consider a perfect matching PM(S). As-
sume w.l.o.g. that PM(S) does not contain any ver-
tical edge, and that for at least half of the edges, the
left vertex is red. We augment the matching to a
weakly simple polygon in the following way. First, we
add a bounding box around the PM(S). Next, we
extend all edges with a left red vertex to the right
until it hits the bounding box or (an extension of) an
edge. Then we extend all other edges to the right as
well, but with a slight turn. The result is a so-called
weakly simple polygon, which can be transformed to
a simple polygon by slightly “inflating” the edges; see
Figure 5 (left). In the resulting polygon, all left end-
points of edges and all red right endpoints of edges
appear as reflex vertices. All blue right endpoints of
matching edges are “hidden” in the exterior of the
polygon.

Figure 5: (left) Transforming a perfect matching to
a simple polygon. (right) A resulting compatible
matching.

Abellanas et al. [1] showed that for every simple
polygon P (V ) with vertex set V and every subset
V ′ ⊆ V containing all reflex vertices of P (V ), there
exists a perfect matching of the vertices V ′ where no
edge is outside the boundary of P (V ). Applying this
result to the set of reflex vertices of the constructed
polygon, we obtain a matching M(S) with at most
n
2 bichromatic edges and thus M(S) has at least n

4
red edges, implying mmatch(n) ≥

n
4 . Figure 5 (right)

shows a possible resulting matching.
For an upper bound on the number of edges in

a monochromatic matching, we can recycle the idea
from Figure 2. Inverting the colors of every second
triangle construction and combining them to a closed
cycle, we obtain a perfect matching PM(S) where ev-
ery sixth point of each color must remain unmatched
in any monochromatic PM(S)-compatible matching;
see Figure 6 for a schematic illustration. �

The principle of the lower bound part of the above
proof can be reused to provide a lower bound for the

Figure 6: Scheme for a bichromatic perfect matching
where any monochromatic compatible matching has
at most 5n

12 edges.

size of maximum monochromatic compatible match-
ings for trees, in dependence of the number of interior
vertices (of one color) of the tree. The basic idea
for this bound was developed during a research week
which was also the starting point for the work [2].

Theorem 4 Let T (S) be a bichromatic tree T (S)
with ir interior (non-leaf) red vertices. There exists a
red matching M(S) with d(T (S),M(S)) ≥ ⌈ ir−1

6 ⌉.

Proof. We generate a simple polygon for T (S) by
adding a bounding box, connecting T (S) to the box
and then inflating the whole construction. Every ver-
tex v of T (S) with vertex degree d(v) corresponds to
d(v) vertices in the polygon P , at most one of them
being reflex. We choose one of these d(v) vertices for
each vertex v of T (S), (if v corresponds to a reflex
vertex, we choose that one). Additionally, we choose
a second vertex for each of the ir red interior vertices;
see Figure 7 (left) for a resulting polygon.

Figure 7: (left) A simple polygon generated from a
bichromatic tree (non-selected vertices and vertices on
the bounding box are drawn gray). (right) A (nearly)
perfect matching of the selected vertex set.

Applying the result of [1] to the selected vertices,
we obtain a (nearly) perfect matching with ⌊ 2n+ir

2 ⌋

edges, at least ⌊ ir
2 ⌋ of them red. But it might happen

that both red vertices corresponding to one red vertex
in S are incident to such a red edge. Also, there might
occur cycles of such red edges; see Figure 7 (right).

In general, the translated red edges form a set of cy-
cles and paths. For such a path of length k, ⌈k

2 ⌉ edges
can simultaneously occur in a monochromatic T (S)-
compatible matching. For a red cycle of length k, ⌊k

2 ⌋
of these edges can be used. Assuming the worst case
where (nearly) all red edges form 3-cycles, we obtain
⌈ ir−1

6 ⌉ edges for a red T (S)-compatible matching. �
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Applying Theorem 4 to the class of spanning paths,
we obtain

Corollary 5 mpath ≥ ⌈n−2
6 ⌉.

Note that in a path all vertices have degree at most
two. Thus, a cycle of odd length among the red edges
(translated back to S) can only occur if the path ends
inside this cycle. As there might be a sequence of cy-
cles C1, . . . , Cl such that each Ci+1 contains Ci in its
interior, this observation does not improve the above
bound; see Figure 8.

Figure 8: Multiple red 3-cycles for a path resulting
from a matching of the according inflated polygon.

For spanning cycles, the proof of Theorem 4 can be
slightly modified, yielding the following lower bound.

Corollary 6 mcycle(n) ≥ ⌈n−1
4 ⌉.

Proof. For creating a simple polygon P for a given
spanning cycle C(S), we duplicate an extreme ver-
tex v (w.l.o.g. a blue one), and cut the cycle between v

and its duplicate v′. Then we extend one of the in-
cident edge of v′ until it hits the bounding box, and
again inflate the resulting construction, by this hiding
v′ again. Applying the above construction, we obtain
at least ⌊n

2 ⌋ red matching edges. As the “end” vertex
v of the inflated path is extreme, the red edges trans-
lated back to S cannot form any odd cycles. Thus we
can use at least half of the obtained red edges for a
C(S)-compatible monochromatic matching. �

For upper bounds, consider the examples shown in
Figure 9. In Figure 9 (left), any monochromatic com-
patible edge is incident to one of the two high degree
vertices, implying mtree(n) ≤ 1. In Figure 9 (right),
the only vertex to which an “end vertex” of a “spike”
can be matched is the next vertex on the big circle,
implying that mcycle(n), mpath(n) ≤

5n+7
12 .

Figure 9: Upper bound examples for spanning trees
(left) and spanning cycles (right).

4 Conclusion

We have shown the following bounds on the numbers
of edges mC(n) that can be reached by a monochro-
matic G(S)-compatible matching, with G(S) ∈ C and
C ∈ {tree, path, cycle,match}.

n
4 ≤ mmatch(n) ≤ 5n

12
⌈n−2

6 ⌉ ≤ mpath(n) ≤ 5n+7
12

⌈n−1
4 ⌉ ≤ mcycle(n) ≤ 5n+7

12
mtree(n) = 1

Further, we showed that every bichromatic perfect
matching admits a disjoint compatible bichromatic
matching with at least ⌈n−1

2 ⌉ edges, and that there
exist point sets with non-unique bichromatic perfect
matchings for which any compatible bichromatic (per-
fect) matching has at most 3n

4 (n2 ) disjoint edges.
We conclude with the following open problem.

Given a bichromatic perfect matching PM(S), can we
always find a bichromatic compatible perfect match-
ing M(S) with d(PM(S),M(S)) > 0, supposed that
S = R ∪ B is a point set admitting at least two dif-
ferent bichromatic perfect matchings?
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On Counting Empty Pseudo-Triangles in a Point Set

Sergey Kopeliovich∗ Kira Vyatkina†

Abstract

We address the problem of counting empty pseudo-
triangles defined by a set of points in the plane. First,
we assume that the three convex vertices are fixed,
and provide algorithms, which solve the respective
problem in O(n2) time using O(n) space, for the cases
when the pseudo-triangles can be arbitrary or must
be star-shaped. The relaxation of our assumption
increases the time complexity by factor n3 in either
case.

1 Introduction

The problem of counting empty polygons in a planar
point set has been studied in the literature for a few
decades. A polygon is contained in a set P of points
if all its vertices reside at the points from P , and is
empty if no point from P falls inside it. The goal is
usually to determine or to bound the number of empty
polygons contained in P , or to answer some related
questions.
In 1978, Erdös [7] asked for the smallest num-

ber n(k), such that any set of n(k) points in the plane
contains a convex empty k-gon. The results obtained
in this respect are surveyed in [1]. Certain bounds on
the number of convex empty polygons in a point set
can be found in [5, 6, 9].
Analogous questions can be stated for non-convex

polygons. They were first addressed by van Krev-
eld and Speckmann [8], and applied to empty pseudo-
triangles in a planar point set.
A pseudo-triangle is a planar polygon with precisely

three convex vertices, which are often referred to as
corners.
In 2007, van Kreveld and Speckmann [8] provided

tight asymptotic bounds on the minimum and maxi-
mum number of arbitrary empty pseudo-triangles in
a point set, and of star-shaped ones. Two years later,
Ahn et al. [3] examined the problem of generating
such pseudo-triangles optimal in a certain sense—and
namely, those with the minimum perimeter, the maxi-
mum area, or the minimum longest convex chain. (As
a matter of fact, Ahn et al. [3] used a more general
definition of a pseudo-triangle, allowing its corners

∗Department of Mathematics and Mechanics, Saint Peters-

burg State University, burunduk30@gmail.com
†Algorithmic Biology Laboratory, Saint Petersburg

Academic University, Russian Academy of Sciences,

kira@math.spbu.ru

to be connected by concave curves, and not neces-
sarily polygonal chains. However, the respective op-
timization problems immediately reduce to those of
finding an optimal polygonal pseudo-triangle, defined
as above.) A year ago, Aichholzer et al. [2] investi-
gated non-convex 4-holes in a point set, which essen-
tially represent non-convex quadrilaterals, and can be
viewed as a special case of pseudo-triangles. Finally,
very recently, Ahn et al. [4] have further elaborated
the results from [8] and [3] and summarized them in
a joint paper.

When looking for an empty pseudo-triangle with
the minimum perimeter or the maximum area, the
algorithms by Ahn et al. [3] actually generate all the
empty pseudo-triangles defined by P . In addition, the
asymptotic bounds by van Kreveld and Speckmann [8]
imply that those algorithms fulfil the mentioned gen-
eration task in worst-case optimal time.

The aim of the present research is to develop simple
and maximally efficient algorithms for counting empty
pseudo-triangles in a point set. Of course, the method
by Ahn et al. [3, 4] allows accomplishing this task;
however, we demonstrate that the counting problem
can be solved at a lower computational cost than the
generating one.

We shall follow the scheme suggested by van Krev-
eld and Speckmann [8] and further adopted by Ahn
et al. [3, 4], and first restrict our attention to the
case when some three points from P are selected, and
we are interested only in the empty pseudo-triangles
with the corners at those points. Then the worst-
case number of general and of star-shaped empty
pseudo-triangles is known to be Θ(n3) and Θ(n2), re-
spectively [8], and the method by Ahn et al [3, 4]
adapted for solving the corresponding counting prob-
lems will require O(n3) time and O(n) space in either
case. In this work, we propose algorithms that run in
O(n2) time and linear space in either case. Through
the arguments provided in [8, 4], our results imme-
diately extend to the general case, when the pseudo-
triangle corners are not fixed; the computational time
is thereby slowed down by a factor of n3 in each case,
while the working storage always remains linear. All
our algorithms exploit only the most common data
structures like arrays or linked lists.

In the next section, we introduce main observations
and ideas needed to develop and justify our meth-
ods. In Section 3, the algorithms for counting empty
pseudo-triangles with fixed corners are provided, for

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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the cases when the pseudo-triangles can be arbitrary
or must be star-shaped, respectively. Subsequently,
we eliminate the restrictions on the corner location.
We conclude with a few brief remarks.

2 Preliminaries

Let P be a set of n points in the plane. To simplify the
exposition, let us assume that no three points from P

are collinear. In addition, we shall first assume that
some three points a, b, c ∈ P have been selected, and
restrict our attention to empty pseudo-triangles, the
corners of which reside at a, b, and c. Clearly, only
the points from P lying inside △abc may become the
vertices of such an empty pseudo-triangle. Since we
are mainly interested in the worst-case behavior of our
algorithms, we shall suppose that a, b, and c consti-
tute the set of vertices of the convex hull of P , which
is thus the triangle △abc.
Without loss of generality, let us assume that the

segment ab is horizontal, a is its leftmost endpoint,
and c lies above ab (Fig. 1a).

a b

c

u

v

w

b)

a b

ca)

TP

Figure 1: a) The convex hull of the set P of points is
the triangle △abc. b) In the boundary of the empty
pseudotriangle T , the vertices u, v, and w follow the
corners a, b, and c, respectively, in the counterclock-
wise order of vertices.

Let T be an empty pseudo-triangle, and let u, v,
and w be its three vertices immediately following a,
b, and c, respectively, in the counterclockwise order
or vertices (Fig. 1b). Note that u, v, and w may
coincide with b, c, and a, respectively; yet all the three
coincidences occur simultaneously if and only if P =
{a, b, c}.
We shall use the following fact proved it [8].

Lemma 1 To each empty pseudo-triangle with the
corners at a, b, and c, a distinct triple of vertices
(u,v,w) corresponds.

The converse is obviously not true: for example,
if some two of the segments au, bv, and cw—which
are supposed to be pseudo-triangle edges—intersect,
then the triple (u, v, w) does not correspond to any
pseudo-triangle.
For any two points p and q in the plane, we shall

denote by lpq the line through p and q.

We shall make use of the following observation [8,
3]. Suppose that a triple (u, v, w) does define a
(unique) empty pseudo-triangle T . Then the lower
concave boundary chain of T , which connects a and
b, can be obtained as follows: compute the convex
hull of the set of points consisting of a, b, u, and all
the points from P lying below lau and lbv, take its
boundary, and remove from it the edge ab (Fig. 2).

a b

c

u
vT

Figure 2: The concave chain connecting a and b in the
boundary of T represents the boundary of the convex
hull of the black points, from which the edge ab has
been eliminated.

Since u and v fully determine the concave bound-
ary chain between a and b, we shall further denote it
by Cuv.

Our algorithms for counting empty pseudo-
triangles will examine all the (valid) candidate pairs
(u, v) of points from P , and for each of them deter-
mine the number of choices for w, which would result
in a triple (u, v, w) defining either an arbitrary or a
star-shaped empty pseudo-triangle. To obtain such a
pair (u, v), we shall first choose u, and then appropri-
ately select v.

3 Counting Problems

3.1 General Empty Pseudo-Triangles

Obviously, any point from P \ {a, c} can be selected
as u, while a and c cannot (Fig. 3a). Suppose that
u and some two points v and w form a triple defin-
ing an empty pseudo-triangle T . Since Cuv must lie
strictly below lbv, we conclude that v must lie strictly
above lbu. On the other hand, any point from P re-
siding above lbu can be chosen as v (Fig. 3b).

a b

c

u

b)

a b

ca)

P

u

v

Figure 3: a) Any point from P \ {a, c} can be chosen
as u. b) Any point lying above lbu can be chosen as v.
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It remains to select w. Since Cvw must lie strictly
to the right of lcw, w must lie strictly to the left of cv.
Moreover, Cwu must lie above lau, and share with it
a single point a; therefore, w must either be a or lie
strictly above lau (Fig. 4a). Finally, our choice of w
must ensure that the triangle bounded by the lines lau,
lbv, and lcw is empty (see Fig. 4b), since this triangle
would be contained in the pseudo-triangle having the
edges au, bv and cw, and thus, any point from P lying
inside the former would also fall inside the latter.

c)

a b

c

u

v

o

x

r

b)a)

a b

c

u

v

a b

c

u

vo

x

r

Figure 4: a) A candidate point w cannot lie in the gray
area. b) Since the interior of the light-gray triangle
bounded by the lines lau, lbv, and lcw must be empty,
w must be one of the three black points (here, w = r).
c) If v lies to the left of lcr, no point can be selected
as w.

Let o = lau ∩ lbv, and let x = lbv ∩ ac (Fig. 4b).
Moreover, let r be the point from P lying inside
△aox, which maximizes the angle ∠acr. First, sup-
pose that v lies to the right of lcr. Then the valid
candidate points to be selected as w are represented
by r and the subset P ′ of points from P lying be-
tween lcr and lcv and above lbv (in the white triangle,
according to Fig. 4b). Note that P ′ can be alterna-
tively viewed as the subset of points from P lying
strictly between lcr and lcv and above lau (due to the
fact that the interior of the light-gray triangle must
be empty, according to Fig. 4b).

Observe that v may happen to lie to the left of lcr
(Fig. 4c). If so, no point from P is a valid candidate
for w.

Now let us outline an algorithm, which allows
to efficiently compute the number of empty general
pseudo-triangles in P .

Algorithm EmptyGeneral(P , a, b, c)

Input: P – set of points with a convex hull △abc

Output: Num – the number of empty general
pseudo-triangles in P with the corners at a, b, c

1. Let Pb be a set of points composing P \ {b}
sorted in a cw order w.r.t. b.
Let Pc be a set of points composing P \ {c}
sorted in a ccw order w.r.t. c.

2. Num← 0
3. for each point u ∈ P \ {a, c}
4. Let Pu ⊂ Pc consist of the point a and

all points from Pc lying strictly above lau.
5. for each point q ∈ Pu

6. Let left[q] be the number of points from Pu

lying strictly to the left from lcq.
7. r ← a
8. for each point v ∈ Pb

9. if v lies above lbu and to the right of lcr
10. Num← Num+ left[v]− left[r]
11. if v lies above lau and ∠acv > ∠acr
12. r ← v
13. return Num

Correctness of the proposed algorithm is guaran-
teed by the discussion carried out above. The time
complexity of the preprocessing stage (Steps 1 and 2)
is O(n log n). It is easy to see that for each point u,
the respective iteration of the cycle ”for” (Steps 4–12)
is accomplished in linear time. Obviously, linear stor-
age is sufficient for any auxiliary data structures. We
conclude that the algorithm EmptyGeneral runs in
O(n2) and O(n) space.

Theorem 2 Let P be a set of n points in the plane,

such that its convex hull represents a triangle △abc,
and no three its points are collinear. The number of

empty general pseudo-triangles in P with the corners

at a, b, c can be computed in O(n2) time using O(n)
space.

3.2 Empty Star-Shaped Pseudo-Triangles

To count the empty star-shaped pseudo-triangles
in P , we follow essentially the same scheme. The only
distinction is that w now needs to be chosen more
carefully.
Suppose we have selected the points u and v as

described in Section 3.1 (see Fig. 3). Consider the
triangle △aox and the point r defined as above (see
Fig. 4b). As in the case of general empty pseudo-
triangles, if v lies to the left of lcr, no point can be
selected as w (see Fig. 4c). Otherwise, w again must
either be r or lie strictly between lcr and lcv, and
above lbv. However, if o /∈ bv, this does not yet guar-
antee that the pseudo-triangle defined by the triple
(u, v, w) would be star-shaped: to this end, we must
require w to lie strictly to the left of the line lco, which
is a stronger condition (Fig. 5a). Observe that the
set of points lying strictly inside the triangle bounded
by lcr, lco and lbv is identical to that lying strictly
inside the triangle bounded by lcr, lco and lau. Con-
sequently, in this case, w can be either r or any point
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lying strictly inside the triangle bounded by the lines
lcr, lco and lau.

b)a)

a b

c

u

v
o

x

r

a b

c

u

vo

x

r

Figure 5: The set of valid candidates for w (black
points) consists of r and the points lying strictly inside
the triangle bounded by a) lcr, lco and lau, if o /∈ bv;
b) lcr, lcv and lau, if o ∈ bv but cr ∩ bv = ∅.

If o ∈ bv but v lies to the right of lcr (that is,
cr ∩ bv = ∅), then the condition that w lies strictly
to the left of the line lcv is sufficient, and w can be
either r or any point lying strictly inside the triangle
bounded by the lines lcr, lcv and lau (Fig. 5b).
Now it should become clear that the method for

counting empty star-shaped pseudo-triangles in P is
fully similar to the one for counting general ones. The
most important distinction is that throughout the al-
gorithm, we should maintain the number of points
from P lying strictly to the left of lco. However, since
the point omoves along the lau constantly to the right,
this is easy to incorporate without affecting the com-
plexity.

Theorem 3 Let P be a set of n points in the plane,

such that its convex hull represents a triangle △abc,
and no three its points are collinear. The number

of empty star-shaped pseudo-triangles in P with the

corners at a, b, c can be computed in O(n2) time using

O(n) space.

4 Empty Pseudo-Triangles with Arbitrary Corners

To relax the assumptions that the convex hull of P is
a triangle, and the corners of the pseudo-triangles be-
ing counted reside at its three vertices, we simply note
that in a general set of points, there are O(n3) dis-
tinct triples of those. To count all the empty general
or star-shaped triangles for a given set of points, it
is sufficient to handle each triple separately using the
algorithms described in the previous section. Conse-
quently, the running time in both cases will increase
up to O(n5), while the amount of storage will remain
linear.

5 Conclusion

An open question that arises immediately is whether
it is possible to develop faster algorithms for solv-
ing the counting problems addressed in this paper.

Another potential direction for future research is
generalizing the results obtained for empty pseudo-
triangles in a point set to the case of empty pseudo-
quadrilaterals and other polygonal figures.
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Abstract

For C a collection of n objects in Rd, let the pack-
ing and piercing numbers of C, denoted by Pack(C),
and Pierce(C), respectively, be the largest number
of pairwise disjoint objects in C, and the smallest
number of points in Rd that are common to all el-
ements of C, respectively. When elements of C are fat
objects of arbitrary sizes, we derive sub-exponential
time algorithms for the NP-hard problems of com-
puting Pack(C) and Pierce(C), respectively, that run

in nOd(Pack(C)
d−1

d ) and nOd(Pierce(C)
d−1

d ) time, respec-
tively, and O(n log n) storage. Our main tool which is
interesting in its own way, is a new separation the-
orem. The algorithms readily give rise to polyno-
mial time approximation schemes (PTAS) that run in

nO(( 1

ǫ
)d−1) time and O(n log n) storage. The results

favorably compare with many related best known re-
sults. Specifically, our separation theorem signifi-
cantly improves the splitting ratio of the previous re-
sult of Chan, whereas, the sub-exponential time algo-
rithms significantly improve upon the running times
of very recent algorithms of Fox and Pach for packing
of spheres.

1 Introduction and Summary

An effective tool in the design of divide and conquer
graph algorithms is separation. The separator theo-
rem of Lipton and Tarjan [13],[14] asserts that any n
vertex planar graph can be separated into two sub-
graphs with a splitting ratio of 1/3 − 2/3, that is,
each subgraph having at most 2n/3 vertices, by re-
moving O(

√
n) vertices. Additional results for graphs

and geometric objects have been obtained by Alon et
al [3], Alber and Fiala [2], Miller et al [15], Smith and
Wormald [16], Chan [4], Fox and Pach [6] [7],[8],[10],
Fox, Pach and Toth [9], and Shahrokhi [17].

1.1 Past Related Results

Throughout this paper C denotes a finite collection of
subsets of Rd of cardinality n. Miller et al [15] proved
that given C a set of spheres in Rd, where d is fixed and
each point is common to only a constant number of

spheres, there is a sphere S in Rd, so that at most d+1
d+2

of the spheres in C are entirely inside of S, at most d+1
d+2

are entirely outside, and at most Od(n
d−1

d ) intersect
the boundary of S. Smith and Wormald [16], among
other results, derived variations of this fundamental
result, where the separator is a box, and hence, re-
duced the splitting ratio to 1/3−2/3 in any dimension
d. Nonetheless, their result required ”disjointness” as-
sumption of the spheres, which could be weakened to
the assumption that there is a very small overlapping
among the objects. Since the intersection graphs of
many geometric objects exhibit a large vertex con-
nectivity, it is impossible to separate them with the
removal of a small number of vertices. Consequently,
researchers, have focused on separating intersection
graphs of geometric objects, including spheres, with
respect to other measures.

Alber and Fiala [2] studied the separation proper-
ties of unit discs in R2 with respect to the area which
coincides with the packing number, in case of unit
discs. For a set C of unit discs in R2, they derived
a separator theorem with a constant splitting ratio,

used it to compute the Pack(C) in nO(
√

Pack(C)) time,
and also derived a PTAS for computing the packing
number.

Chan [4] studied the packing and piercing numbers
of fat objects of arbitrary sizes in Rd. He introduced
the concept of a measure on fat objects that coincides
with the packing and piercing numbers, and general-
ized the separation result of Smith and Wormald for
this measure. In simple words, Chan’s beautiful sep-
aration theorem asserts that given a set C of n fat
objects in Rd, with a sufficiently large measure µ(C),
there is a cube R so that the measure of objects inside
of R is at most (1 − α)µ(C), the measure of objects
outside of R is at most (1 − α)µ(C), and the mea-

sure of objects intersecting R is nOd(µ(C)
d−1

d ), where
α is a constant whose value is about 1

2d+1 . Chan
then used his separation theorem to design Polyno-
mial time Approximation Schemes (PTAS) for pack-

ing and piercing problems that run in nO(( 1

ǫ
)d) time

and O(n) space. Specifically, he improved the running
time of the best previous PTAS for packing problem
that was due to Erlebach et al [5].

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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In [17], we obtained a combinatorial measure sep-
aration theorem for a class of graphs containing the
intersection graphs of nearly fat objects in Rd, and
obtained sub-exponential algorithms and PTAS for
packing and piercing number of unit hight rectangles,
unit discs, and other related problems.

Fox and Pach [6], [7], [8] have developed a series
of extremely powerful separator theorems for planar
curves and string graphs. These results highly gen-
eralize the planar separator theorem and have strik-
ing applications in combinatorial geometry. Very re-
cently, Fox and Pach discovered the potential of their
methods for deriving the sub-exponential algorithms
[10]. Among other results, they announced that their
methods combined with the separation theorem of
Miller et al can be compute the packing number of

spheres in 2Od

(

n
d

d+1 polylogn
)

time, or, in nOd

(

n
d

d+1

)

time.

1.2 Our Results

We present several main results. First, we present
an improvement to Chan’s separation theorem which
is obtained by combining some of his ideas with the
original work of Smith and Wormald. Specifically,
using a box of aspect ratio ratio 2 in Rd, as the
separator, we obtain a parametric splitting ratio of
1/3 − 2/3(1 + ǫ), for any 0 < ǫ ≤ 1

2 , for separating
the measure, independent of the dimension. More-
over, we provide an explicit (constant) lower bound
for µ(C), in terms of d and ǫ, for obtaining such a suit-
able separation, contrasting the result in [4] that was
obtained for *sufficiently large values*. We use this
separation theorem to derive sub-exponential time al-
gorithms for packing and piercing problems, running

in nOd(Pack(C)
d−1

d ) and nOd(Pierce(C)
d−1

d ) time, respec-
tively, and O(n log n) storage. Finally, we convert

these algorithms to PTAS that run in nO(( 1
ǫ
)d−1) time

and O(n log n) storage.

2 Preliminaries

For a closed set B in Rd, let δB denote the boundary of
B, and note that δB ⊆ B. Let B̄ denote Rd −B, that
is, B̄ is the set of points ”outside” of B. A collection
C of objects in Rd is fat, if for every r and size r box
R, we can choose a constant number c of points such
that every object in C that intersects R and has size
at least r contains one of these points [4]. It should
be noted that the class of fat objects contains spheres,
cubes, and boxes with bounded aspect ratios.

Let C be a collection of subsets of Rd, and let µ be
a mapping that assigns non-negative values to subsets
of C. Chan [4] calls µ a measure, if for any A,B ⊆ C
the following hold.

(i) µ(A) ≤ µ(B), if A ⊆ B.
(ii) µ(A ∪ B) ≤ µ(A) + µ(B).
(iii) µ(A ∪ B) = µ(A) + µ(B), if no object in A

intersects an object in B.
(iv) Given any r > 0 and any size−r box R in Rd,

if every object in A has size at least R and intersects
R, then µ(A) ≤ c, for a constant c.

(v) A constant-factor approximation to µ(A) can

be computed in |A|O(1) time. Moreover, if µ(A) ≤ b,

then, µ(A) can be computed exactly in |A|
O(b)

time.

Note that feasible solutions to the packing and
piercing problems gives rise to measures.

Let A ⊆ C, and let B be a closed subset of Rd.
Let AB−δB

and AB̄ denote, respectively, the set of
all objects in A that are contained in B − δB, or are
completely inside of B, and the set of all objects in A
that are contained in B̄, or are completely outside of
B, respectively. Let AB , and AδB

, denote the set of
all objects in A that have their centers in B, and the
set of all objects in A that have a point in common
with δB.

Aspect ratio of a box in Rd is the ratio of its longest
side to its shortest side. Chan [4] proved the following
separation theorem.

Theorem 1 Given a measure µ satisfying (i) − (iv)
and a collection C of n objects in Rd with sufficiently

large µ(C) there is a box R with µ(CR−δR
), µ(CR̄) ≥

αµ(C), and µ(CδR) = Od(n
µ(C)

d−1
d ), where α is some

fixed constant. Moreover, if (v) is satisfied then, R can

be computed in polynomial time and linear space.

3 The Separation Theorem

Theorem 2 Let C be a set of n objects in Rd, d ≥ 2
and let µ be a measure on C satisfying (i)− (iv), and

let 0 < ǫ ≤ 1
2 . If µ(C) ≥ (3.c.d2.8d

ǫ
)
d
, then, there is a

box R so that

µ(CR−δR) ≤
2

3
(1 + ǫ)µ(C), µ(CR̄) ≤

2

3
(1 + ǫ)µ(C),

and

µ(CδR) = Od(n
µ(C)

d−1
d ).

Proof. Let B be a minimum volume box with as-
pect ratio at most 2 with µ(CB) ≥ (1+ǫ

3 )µ(C), whose
side lengths are l1 ≤ l2 ≤ .... ≤ ld, ld ≤ 2l1. Let s de-
note the center of B. For any m with 1 ≤ m < 2

1
d , let

Bm be the box that is the magnified version of B by
the magnification factor m. Thus, Bm is a box of side
lengths lm1 ≤ lm2 ≤ ... ≤ lmd , lmd ≤ 2lm1 , that has center

s, and contains B. Note that lmi ≤ mli < 2
1
d li, for

i = 1, 2, ..., d, and hence the volume of Bm is strictly
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less that 2 times the volume of B. By cutting Bm,
in the middle of its longest side, we can decompose B

into two boxes Bi
m, i = 1, 2, of aspect ratio at most

two, each having a volume strictly smaller than vol-
ume of B. Thus, µ(CBi

m
) < (1+ǫ

3 )µ(C), i = 1, 2, since
B has the minimum volume. Consequently, using (ii),
we deduce that µ(CBm) < 2

3 (1 + ǫ)µ(C). Therefore,
µ(CBm−δBm) < 2

3 (1 + ǫ)µ(C). Next, let Cm be a cube
of side length lmd having center s, and note that area

of δCm is 2.dlmd
d−1 < 2

2d−1
d .d.ld

d−1 < 4.d.ld
d−1. Now,

let l = ld

8µ(C)
1
d
, and note that δCm , and hence δBm

can be covered with at most d.8d.µ(C)
d−1

d cubes of
size l. Let C1 denote the set of all objects in C of
size at least l, and let 1 ≤ m < 2

1
d . Then, by (iv),

µ(C1
δBm

) ≤ c.d.8d.µ(C)
d−1

d . Similarly, let C2 denote
the set of all objects in C of size strictly smaller than
l. We need the following claim to finish the proof.

Claim. Let 1 ≤ m1 < m2 < 2
1
d , with m2 − m1 ≥

1

µ(C)
1
d
, let A1 ∈ C2

δBm1
, and let A2 ∈ C2

δBm2
. Then,

A1 ∩ A2 = ∅.
Justification. For any x, y ∈ Rd, let

distance(x, y) denote the distance between x and y.
Note that m2 − m1 ≥ 1

µ(C)
1
d

implies that for any

two points a ∈ δBm2 and b ∈ δBm1 , we must have
distance(a, b) ≥ l1

2µ(C)
1
d

≥ ld

4µ(C)
1
d

≥ 2.l. Assume to

the contrary that A1 ∩ A2 6= ∅, and let x ∈ A1 ∩ A2.
Let x1 ∈ A1 ∩ δBm1 , and let x2 ∈ A2 ∩ δBm2

. Note
that distance(x, x1) < l and distance(x, x2) < l, and
thus, distance(x1, x2) < 2.l which is a contradiction.
�

Now use the claim and employ (ii) to conclude that

⌊(2
1
d −1)µ(C)

1
d ⌋∑

j=0

µ(C2
δB

1+j/µ(C)
1
d

) ≤ µ(C).

It follows that there is a j so that for m∗ = 1 +

j

µ(C)
1
d
, we have µ(C2

δBm∗
) ≤ µ(C)

d−1
d

2
1
d −1

≤ d2µ(C)
d−1

d ,

since, 1

2
1
d −1

≥ 1
d2 . We conclude that µ(CδBm∗ ) ≤

c.d28d.nµ(C)
d−1

d . Now let R = Bm∗ , and to finish

the proof note that for µ(C) ≥ (3c.d2.8d

ǫ
)
d
, we have

µ(CδR) ≤ ǫµ(CR)
3 . �.

4 Sub-Exponential Time Algorithms

Our next result is the following.

Theorem 3 Let C be a set of n fat objects in Rd,

d ≥ 2, then Pack(C) and Pierce(C) can be computed

in nOd(Pack(C)
d−1

d ) and nOd(Pierce(C)
d−1

d ), respectively,

and O(n log n) storage.

Proof. We provide the details for computing packing
number; The details relevant to the computation of
piercing number are similar, but slightly different. We
use the following recursive algorithm adopted from
[14] and tailored to our needs, which we previously
utilized in [17].

Step 1. Determine an approximate solution µ to
the packing number using (iv). Choose an ǫ, let α =
2
3 (1 + ǫ) for Theorem 2, and let C = C(d) be the
Lower bound on µ(C) in Theorem 2. Test using (v)
to determine if Pack(C) ≤ C. If so, then compute a
solution in nO(C) time and return it. If not, proceed
to the recursive step.

Step 2 (Recursive Step). Find box R by applying
Theorem 2 to µ. For any independent set of objects I
in CδB compute Pack(CB −N(I)), Pack(CB̄ −N(I)),
and return

max
I

{Pack(CB − N(I) + Pack(CB̄ − N(I)) + |I|}

where the maximum is taken overall independent sets
of objects I in CδB.

It is easy to verify that the algorithm computes
Pack(C) correctly. For the running time, let T (n, p)
denote the execution time of the algorithm on an in-
stance of the problem with Pack(C) = p. Note that,

T (n, p) ≤ nO(p
d−1

d )T (n, (αp)), if p > C; Otherwise
T (n, p) ≤ nO(C). It is not difficult to verify that

T (n, p) = nOd(p
d−1

d ) as claimed. Similarly, one can
verify the claim concerning the storage. �

5 Approximation Algorithms

The algorithms in the previous section gives rise to
polynomial time approximation schemes (PTAS) for

both of stated problems with nO(( 1
ǫ )d−1) time and

O(n log n) storage. For the PTAS, one can slightly
modify the original divide and conquer approach in
[13].

Specifically, one must first obtain a constant time
approximation solution to the problem using (v), use
it to define the measure µ, and apply the separation
theorem, or Theorem 2, to this µ. In the recursive
step, the divide and conquer algorithm stops when the
value of the measure is *small*. That is, if the value

of the measure is O((1
ǫ
)
2
), then an exact solution is

computed by the application of our sub-exponential
time algorithm. The claims concerning the running
time, storage, and quality of the approximation are
not difficult to verify.
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Refold Rigidity of Convex Polyhedra
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Abstract

We show that every convex polyhedron may be un-
folded to one planar piece, and then refolded to a
different convex polyhedron. If the unfolding is re-
stricted to cut only edges of the polyhedron, then
we show that many regular and semi-regular poly-
hedra are “edge-unfold rigid” in the sense that each
of their unfoldings may only fold back to the origi-
nal. For example, all of the 43,380 edge unfoldings
of a dodecahedron may only fold back to the dodec-
ahedron. We begin the exploration of which polyhe-
dra are edge-unfold rigid, demonstrating infinite rigid
classes through perturbations, and identifying one in-
finite nonrigid class: tetrahedra.

(The full version of this paper is available.1)

1 Introduction

It has been known since [5] and [3] that there are con-
vex polyhedra, each of which may be unfolded to a
planar polygon and then refolded to different convex
polyhedra. For example, the cube may be unfolded
to a “Latin cross” polygon, which may be refolded to
22 distinct non-cube convex polyhedra [4, Figs. 25.32-
6]. But there has been only sporadic progress on un-
derstanding which pairs of convex polyhedra2 have a
common unfolding. A notable recent exception is the
discovery [7] of an unfolding of a cube that refolds to a
regular tetrahedron, partially answering Open Prob-
lem 25.6 in [4, p. 424].

Here we begin to explore a new question, which we
hope will shed light on the unfold-refold spectrum of
problems: Which polyhedra P are refold-rigid in the
sense that any unfolding of P may only be refolded
back to P? The answer we provide here is: none—
Every polyhedron P has an unfolding that refolds to
an incongruent P ′. Thus every P may be transformed

to some P ′.

∗MIT, edemaine@mit.edu
†MIT, mdemaine@mit.edu
‡Kumamoto Univ., j-itoh@kumamoto-u.ac.jp
§Univ. Waterloo, alubiw@uwaterloo.ca
¶Tokai Univ., cnara@ktmail.tokai-u.jp
‖Smith College, orourke@cs.smith.edu
1http://cs.smith.edu/~orourke/Papers/

RefoldRigidEuroCGFull.pdf.
2All polyhedra in this paper are convex, and the modifier

will henceforth be dropped.

This somewhat surprising answer leads to the next
natural question: Suppose the unfoldings are re-
stricted to edge unfoldings, those that only cut along
edges of P (rather than permitting arbitrary cuts
through the interior of faces). Say that a polyhe-
dron P whose every edge unfolding only refolds back
to P is edge-unfold rigid, and otherwise is an edge-

unfold transformer. It was known that four of the
five Platonic solids are edge-unfold transformers (e.g.,
[2] and [6]). Here we prove that the dodecahedron is
edge-unfold rigid: all of its edge unfoldings only fold
back to the dodecahedron. The proof also demon-
strates edge-unfold rigidity for 11 of the Archimedean
solids. We also establish the same rigidity for infinite
classes of slightly perturbed versions of these polyhe-
dra. In contrast to this, we show that every tetra-
hedron is an edge-unfold transformer: at least one
among a tetrahedron’s 16 edge unfoldings refolds to a
different polyhedron.

This work raises many new questions, summarized
in Section 6.

2 Notation and Definitions

We will use P for a polyhedron in R
3 and P for a

planar polygon. An unfolding of a polyhedron P is
development of its surface after cutting to a single
(possibly overlapping) polygon P in the plane. The
surface of P must be cut open by a spanning tree to
achieve this. An edge-unfolding only includes edges of
P in its spanning cut tree. Note that we do not insist
that unfoldings avoid overlap.

A folding of a polygon P is an identification of its
boundary points that satisfies the three conditions
of Alexandrov’s theorem: (1) The identifications (or
“gluings”) close up the perimeter of P without gaps;
(2) The resulting surface is homeomorphic to a sphere;
and (3) Identifications result in ≤ 2π angle glued at
every point. Under these three conditions, Alexan-
drov’s theorem guarantees that the folding produces
a convex polyhedron, unique once the gluing is spec-
ified. See [1] or [4]. Note that there is no restriction
that whole edges of P must be identified to whole
edges, even when P is produced by an edge unfolding.
We call a gluing that satisfies the above conditions an
Alexandrov gluing.

A polyhedron P is refold-rigid if every unfolding
of P may only refold back to P. Otherwise, P is

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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a transformer. A polyhedron is edge-unfold rigid if
every edge unfolding of P may only refold back to P,
and otherwise it is an edge-unfold transformer.

3 Polyhedra Are Transformers

The proof that no polyhedron P is refold rigid breaks
naturally into two cases. We first state a lemma that
provides the case partition. Let κ(v) be the curvature
at vertex v ∈ P, i.e., the “angle gap” at v: 2π minus
the total incident face angle α(v) at v. By the Gauss-
Bonnet theorem, the sum of all vertex curvatures of
P is 4π.

Lemma 1 For every polyhedron P, either there is a

pair of vertices with κ(a) + κ(b) > 2π, or there are

two vertices each with at most π curvature: κ(a) ≤ π

and κ(b) ≤ π.

Proof. Suppose there is no pair with curvature sum
more than 2π. So we have κ(v1) + κ(v2) ≤ 2π and
κ(v3) + κ(v4) ≤ 2π for four distinct vertices. Suppose
neither of these pairs have both vertices with at most
π curvature. If κ(v2) > π, then κ(v1) ≤ π; and sim-
ilarly, if κ(v4) > π, then κ(v3) ≤ π. Thus we have
identified two vertices, v1 and v3, both with at most
π curvature. �

We can extend this lemma to accommodate 3-vertex
doubly covered triangles as polyhedra, because then
every vertex has curvature greater than π.

Lemma 2 Any polyhedron P with a pair of vertices

with curvature sum more than 2π is not refold-rigid:

There is an unfolding that may be refolded to a dif-

ferent polyhedron P ′.

Proof. Let κ(a)+κ(b) > 2π, and so the incident face
angles satisfy α(a) + α(b) < 2π. Let γ be a shortest
path on P connecting a to b. Cut open P with a cut
tree T that includes γ as an edge. How T is completed
beyond the endpoints of γ = ab doesn’t matter.

Let γ1 and γ2 be the two sides of the cut γ, and
let m1 and m2 be the midpoints of γ1 and γ2. Reglue
the unfolding by folding γ1 at m1 and gluing the two
halves of γ1 together, and likewise fold γ2 at m2. All
the remaining boundary of the unfolding outside of γ

is reglued back exactly as it was cut by T .
The midpoint folds at m1 and m2 have angle π (be-

cause γ is a geodesic). The gluing draws the endpoints
a and b together, forming a point with total angle
α(a) + α(b) < 2π. Thus this gluing is an Alexandrov
gluing, producing some polyhedron P ′. Generically
P ′ has one more vertex than P: it gains two vertices
at m1 and m2, and a and b are merged to one. P ′

could only have the same number of vertices as P if
α(a) + α(b) = 2π, which is excluded in this case. �

Lemma 3 Any polyhedron P with a pair of vertices

each with curvature at most π is not refold-rigid:

There is an unfolding that may be refolded to a dif-

ferent polyhedron P ′.

Proof. Let a and b be a pair of vertices with κ(a) ≤ π

and κ(b) ≤ π, and so α(a) ≥ π and α(b) ≥ π. Let
γ = ab be a shortest path from a to b on P. Because
the curvature at each endpoint is at most π, there is
at least π surface angle incident to a and to b. This
permits identification of a rectangular neighborhood
R on P with midline ab, whose interior is vertex-free.

Now we select a cut tree T that includes ab and
otherwise does not intersect R. This is always possible
because there is at least π surface angle incident to
both a and b. So we could continue the path beyond
ab to avoid cutting into R. Let T unfold P to polygon
P . We will modify T to a new cut tree T ′.

Replace ab in T by three edges ab′, b′a′, a′b, forming
a zigzag ‘Z’-shape, Z = ab′a′b, with Z ⊂ R. We will
illustrate with an unfolding of a cube, shown in Fig. 1,
with ab the edge cut between the front (F) and top
(T) faces of the cube.

1
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Figure 1: Unfolding of a unit cube. The cut edge
ab is replaced by Z = ab′a′b. The unfolding P ′ is
illustrated. The insert shows the gluing in the vicinity
of ab in the refolding to P ′.

We select an angle ε determining the Z according
to two criteria. First, ε is smaller than either κ(a) and
κ(b). Second, ε is small enough so that the following
construction sits inside R. Let R′ ⊂ R be a rectangle
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whose diagonal is ab; refer to Fig. 2. Trisect the left

ε

ε

a

a'

b

b'
R

R'

Figure 2: Construction of zig-zag path Z.

and right sides of R′, and place a′ and b′ two-thirds
away from a and b respectively. The angle of the Z

at a′ and at b′ is ε. △ab′a′ and △ba′b′ are congruent
isosceles triangles; so |ab′| = |b′a′| = |a′b|.

The turn points a′ and b′ have curvature zero on P
(because Z ⊂ R and R is vertex-free). Let P ′ be the
polygon obtained by unfolding P by cutting T ′, and
label the pair of images of each Z corner a1, a

′
1
, . . . , b2,

as illustrated in Fig. 1. Now we refold it differently, to
obtain a different polyhedron P ′. “Zip” P ′ closed at
the reflex vertices a′

2
and b′

1
. Zipping at a′

2
glues a′

2
b′
2

to a′
2
b2, so that now b2 = b′

2
; zipping at b′

1
glues b′

1
a′
1

to b′
1
a1, so that now a1 = a′

1
. (See the insert of Fig. 1.)

Finally, the two “halves” of the new a′
1
b′
1

= a2b2 are
glued together, and the remainder of T ′ is reglued just
as it was in T .

This gluing produces new vertices near a′ and b′,
each of curvature κ(a′) = κ(b′) = ε. An extra ε of
surface angle is glued to both a and b, so their curva-
tures each decrease by ε (and so maintain the Gauss-
Bonnet sum of 4π). By the choice of ε, these curva-
tures remain positive. Alexandrov’s theorem is sat-
isfied everywhere: the curvatures at a, b, a′, b′ are all
positive, and the lengths of the two halves of the new
a′
1
b′
1

= a2b2 edge are the same (and note this length is
not the original length of ab on P, but rather the side-
length of the isosceles triangles: |ab′| = |b′a′| = |a′b|).
So this refolding corresponds to some polyhedron P ′.
It is different from P because it has two more vertices
at a′ and b′ (vertices at a and b remain with some
positive curvature by our choice of ε). �

Putting Lemmas 2 and 3 together yields the claim:

Theorem 4 Every polyhedron has an unfolding that

refolds to a different polyhedron, i.e., no polyhedron

is refold-rigid.

4 Many (Semi-)Regular Polyhedra are Edge-
Unfold Rigid

Our results on edge-unfold rigidity rely on this theo-
rem:

Theorem 5 Let θmin be the smallest angle of any

face of P, and let κmax be the largest curvature at

any vertex of P. If θmin > κmax, then P is edge-

unfold rigid.

Proof. Let T be an edge-unfold cut tree for P, and
P the resulting unfolded polygon. No angle on the
boundary of P can be smaller than θmin. Let x be
a leaf node of T and y the parent of x. The exterior
angle at x in the unfolding P is at most κmax. Because
every internal angle of P is at least θmin, which is
larger than κmax, no point of P can be glued into x,
leaving the only option to “zip” together the two cut
edges deriving from xy ∈ T . Let T ′ = T \ xy be the
cut tree remaining after this partial gluing, and P ′

the partially reglued manifold.
If T ′ is not empty, it is a tree, with at least two

leaves, one of which might be y (if x was the only
child of y). Any leaf z ∈ T ′ corresponds to some
vertex v ∈ P, with all but one incident edge already
glued. Because P ′ has not gained any new angles
beyond those available in P , we have returned to the
same situation: no angle of P ′ is small enough to fit
into the angle gap at z, which is at most κmax at any
v. Thus again the edge of T ′ incident to z must be
zipped in the gluing. Continuing in this manner, we
see that T may only be reglued by exactly identifying
every cut-edge pair, reproducing P. �

Corollary 6 The regular and semi-regular solids

that satisfy Theorem 5, listed in Table 4, are all edge-

refold rigid.

Corollary 7 Any polyhedron P that satisfies The-

orem 5, may be “perturbed” by moving its vertices

slightly to create an uncountable number of edge-

refold rigid polyhedra.

Proof. Proof omitted. �

5 Tetrahedra are edge-unfold transformers

The goal of this section is to prove this theorem:

Theorem 8 Every tetrahedron may be edge-

unfolded and refolded to a different polyhedron.

There are 16 distinct edge unfoldings of a tetrahe-
dron T . The spanning cut trees that determine these
unfoldings fall into just two combinatorial types: The
cut tree is a star, a Y-shaped “trident” with three
leaves, or the cut tree is a path of three edges. There
are 4 different tridents, and 2·

(

4

2

)

= 12 different paths.
In all these unfoldings, the polygon P that consti-
tutes the unfolded surface is a hexagon: the three cut
edges becomes three pairs of equal-length edges of the
hexagon. Our goal is to show that, for any T , at least
one of the 16 unfoldings P may be refolded to a poly-
hedron P ′ not congruent to T .
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Polyhedron Name θmin κmax θmin>κmax

Dodecahedron 3

5

1

5
✓

Trunc. Cube 1

3

1

6
✓

Rhombicuboctahedron 1

3

1

6
✓

Trunc. Cuboctahedron 1

2

1

12
✓

Snub Cube 1

3

1

6
✓

Icosidodecahedron 1

3

2

15
✓

Trunc. Dodecahedron 1

3

1

15
✓

Trunc. Icosahedron 3

5

1

15
✓

Rhomb-

icosidodecahedron 1

3

1

15
✓

Trunc.

Icosidodecahedron 1

2

1

30
✓

Snub Dodecahedron 1

3

1

15
✓

Pseudo-

rhombicuboctahedron 1

3

1

6
✓

Table 1: Inventory of minimum face angles and maxi-
mum vertex curvatures, for selected regular and semi-
regular polyhedra. All angles expressed in units of π.

Proof. (of Theorem 8). The proof classifies tetrahe-
dra by their four curvatures, and then establishes the
claim for each of the resulting four classes. A concrete
example of one of the classes, a 2r-tetrahedron with
κ1 ≥ κ2 ≥ 1 > κ3 ≥ κ4, is shown in Fig. 3. Proof
omitted. �
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156º
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Figure 3: A tetrahedron with v1, v2 “convex” and
v3, v4 “reflex,” cut open with a trident rooted at v4,
producing a hexagon with one reflex vertex with exte-
rior angle κ3. The proof shows that the convex angle
α1 derived from v1 fits within κ3.

6 Open Problems

Our work so far just scratches the surface of a po-
tentially rich topic. Here we list some questions sug-
gested by our investigations.

1. Star unfoldings (e.g., [4, Sec. 24.3]) are natural
candidates for rigidity. Is it the case that almost
every star unfolding of (almost?) every polyhe-
dron is refold-rigid?

2. Which (if either) of the following is true? (a) Al-
most all polyhedra are edge-unfold rigid. (b) Al-
most all polyhedra are edge-unfold transformers.

3. Characterize the polygons P that can fold in
two different ways (have two different Alexandrov
gluings) to produce the exact same polyhedron
P. We have only sporadic examples of this phe-
nomenon (among the foldings of the Latin cross).

4. Do our transformer results extend to the situa-
tion where the unfoldings are required to avoid
overlap? We can extend Lemma 2 to ensure
nonoverlap, but extending Lemma 3 seems more
difficult.

5. One could view an edge-unfold and refold oper-
ation as a directed edge between two polyhedra
in the space of all convex polyhedra. Thm. 5 and
Cor. 7 show neighbors of some (semi-)regular
polyhedra have no outgoing edges. What is the
connected component structure of this space?
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How Many Potatoes are in a Mesh?
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Abstract

We consider the combinatorial question of how many
convex polygons can be made at most by using the
edges taken from a fixed triangulation. For gen-
eral triangulations there can be exponentially many:
Ω(1.5028n) and O(1.62n) in the worst case. If the tri-
angulation is fat (every triangle has its angles lower-
bounded by a constant δ > 0), then there can only be

polynomially many: Ω(n
1

2
⌊ 2π

δ
⌋) and O(n⌈π

δ
⌉) in the

worst case.

1 Introduction

In combinatorial geometry, a common objective is to
search for the minimum and maximum count of some
geometric substructure within a geometric structure
of a given type. Well-known examples are the number
of vertices in the lower envelope or single face in an
arrangement of line segments, the number of triangu-
lations that have a given set of points as their vertices,
the number of unit-distance pairs in a set of points,
etc. [8]. In this paper we analyze how many con-
vex polygons (potatoes) can be constructed by tak-
ing unions of triangles taken from a fixed triangula-
tion (mesh) with n vertices. Equivalently, we analyze
how many convex polygon boundaries can be made
using the edges of a fixed triangulation, see Figure 1.
For general triangulations there can be exponentially
many. However, the lower-bound examples use many
triangles with very small angles. When n → ∞, the
smallest angles tend to zero. To understand whether
this is necessary, we also study the number of con-
vex polygons in a triangulation where all angles are
bounded from below by a fixed constant. It turns
out that the maximum number of convex polygons is
always polynomial in this case.

∗Department of Information and Computing Sciences,
Utrecht University, the Netherlands, m.j.vankreveld@uu.nl,

m.loffler@uu.nl. M.L. is supported by the Netherlands
Organisation for Scientific Research (NWO) under grant
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Figure 1: A triangulation T . Two convex polygons that
respect T are marked.

In computational geometry, realistic input models

have received considerable attention in the last
decades. By making assumptions on the input, many
computational problems can be solved provably faster
than what is possible without these assumptions. One
of the early examples concerned fat triangles: a tri-
angle is δ-fat if each of its angles is at least δ, for
some fixed constant δ > 0. Matousek et al. [6] show
that the union of n δ-fat triangles has complexity
O(n log log n), while for n general triangles this is
Ω(n2). As a consequence, the union of fat trian-
gles can be computed more efficiently as well. Sev-
eral other realistic input models have been introduced
since then.

In [1, 4, 5, 7], fat triangulations were used as a realistic
input model motivated by polyhedral terrains, some-
times with extra assumptions. Fat triangulations are
related to the meshes computed in the area of high-
quality mesh generation. The smallest angle of the el-
ements of the mesh is a common quality measure [3].
In graph drawing, the concept of angular resolution

is also directly related to fatness.

In this paper we show that the maximum number of
convex polygons in a triangulation can be as large as
Ω(1.5028n), and we give an upper bound of O(1.62n).

If the triangulation is δ-fat, there can be Ω(n
1

2
⌊ 2π

δ
⌋)

convex polygons, and we show an upper bound of
O(n⌈π

δ
⌉). It is interesting (albeit not surprising) to see

a case where fatness reduces the combinatorial com-
plexity from exponential to polynomial. This paper is
also loosely motivated by Aronov et al. [2], where the
algorithmic problem of finding a largest-area convex
polygon in a given triangulation is studied.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Preliminaries

A triangulation is a maximal plane straight-line graph
with a finite set of vertices. All bounded faces are
triangles, the interiors of all triangles are disjoint and
the intersection of any pair of triangles is either a
vertex or a shared edge. We also denote the set of
vertices of a graph G by V (G) and the set of edges
by E(G), and say that the size of G is n = |V (G)|. A
polygon P is said to respect a graph G if its boundary
uses edges from G only.

A triangulation T is called δ-fat, for some δ ∈ (0, 2
3π],

if every angle of every triangle of T is at least δ.

Let S = [0, 2π). We define cyclic addition and sub-
traction (+,−) : S × R → S in the obvious way. We
call elements of S directions and implicitly associate
an element s ∈ S with the vector (sin s, cos s).

3 Lower bound in general triangulations

We place m points evenly spaced on the upper half
of a circle. Assume m = 2k + 1 for some integer k,
and let the points be v0, . . . , vm−1, clockwise. To tri-
angulate this point set we add the convex hull edges,
then connect v0 and vm−1 to v(m−1)/2, and recursively
triangulate the subpolygons by always connecting the
furthest pair to the midpoint. The dual of the trian-
gulation is a perfectly balanced binary tree.

Let N(k) be the number of different convex paths
from v0 to vm−1. Then we have

N(k) = 1 + (N(k − 1))2, N(1) = 2

because we can combine every path from v0 to
v(m−1)/2 with every path from v(m−1)/2 to vm−1, and
the extra path is v0, vm−1 itself. Using this recurrence
we can relate the number m of vertices used to the
number P (m) of convex paths obtained: P (3) = 2;
P (5) = 5; P (9) = 26; P (17) = 677.

Now we place n points evenly spaced on the upper half
of a circle. We triangulate v0, . . . , v16 as above, and
also v16 . . . , v32, and so on. We can make n/16 groups
of 17 points where the first and last point of each
group are the same. Each group is triangulated to give
677 convex paths; the rest is triangulated arbitrarily.
In total we get 677n/16 = Ω(1.5028n) convex paths
from v0 to vn−1. We omit the one from v0 directly to
vn−1, and use this edge to complete every convex path
to a convex polygon instead. The number of convex
polygons is Ω(1.5028n).

Theorem 1 There exists a triangulation T with n
vertices such that the number of convex polygons that
respect T is Ω(1.5028n). This is true even if T is the
Delaunay triangulation of its vertices.

p

T

(a)

p

G

(b)

Figure 2: (a) We project each interior vertex of T from p

onto the next edge. (b) The graph G obtained by removing
the marked edges.

4 Upper bound for general triangulations

Let T be any triangulation with n vertices. First, fix
a point p inside some triangle of T . We will count
only the polygons that contain p for now.

For every vertex v not on the convex hull of T , let ev
be the first edge that is hit by a ray leaving v on the
line through p and v, away from p. (Assume general
position of p w.r.t. the vertices.) Let G be the graph
obtained from T by removing all such edges. Figure 2
shows an example. G now has exactly 2n − 3 edges
(because every vertex not on the convex hull causes
one edge to disappear).

A cycle in G is monotone around p if it is star-shaped
with p in its kernel.

Lemma 2 The number of convex polygons in T that
contain p is bounded from above by the number of
monotone cycles around p in G.

Proof. With each convex polygon, we associate a
monotone cycle by replacing any edges ev that were
removed by the two edges via v, recursively. This
results in a proper cycle because the convex polygon
was a monotone cycle in T , and this property is main-
tained. Each convex polygon results in a different cy-
cle because the angle from the vertices of ev via v is
always concave. �

We turn G into a directed graph by orienting every
edge such that p lies to the left of its supporting line.
We are interested in the number of simple cycles that
respect G; these are the monotone cycles around p.

Claim 1 The complement of the outer face of G is
star-shaped with p in its kernel.

Claim 2 Let e be an edge on the outer face of G
from u to v. Then either u has outdegree 1, or v has
indegree 1 (or both).
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If F ⊂ E(G) is a subset of the edges of G, we also
consider the subproblem of counting all simple cycles
in G that use all edges in F , the fixed edges. For a
tuple (T,G, F ), we define the potential ρ to be the
number of vertices of T (or G) minus the number of
edges in F , i.e., ρ(T,G, F ) = |V (G)|−|F |. Clearly, the
potential of a subproblem is an upper bound on the
number of edges that can still be used in any simple
cycle.

We will now show that the number of cycles in a sub-
problem can be expressed in terms of subproblems of
smaller potential. Let Q(k) be the maximum number
of simple cycles in any subproblem with potential k.

Lemma 3 The function Q(·) satisfies
Q(k) ≤ Q(k − 1) +Q(k − 2), Q(0) = Q(1) = 1 .

Proof. Let (T,G, F ) be a subproblem and let k =
ρ(T,G, F ). If k = 1 then |F | = |V (G)| − 1, so the
number of fixed edges on the cycle is one less than
the number of vertices available. Therefore the last
edge is also fixed, if any cycle is possible. If k = 0, all
edges are fixed.

For the general case, suppose all edges on the outer
face of G are fixed. Then there is only one possible
cycle. If any vertex on the outer face has degree 2 and
only one incident edge fixed, we fix the other incident
edge too. Suppose there is at least one edge, e =
uv, on the outer face that is not fixed. By Claim 2
one of its neighbours must have degree 1 towards e.
Assume without loss of generality that this is v. We
distinguish two cases.

(i) The degree of v is 2. Any cycle in G either uses
v or does not use v. If it does not use v we have a
subproblem of potential k − 1. If it uses v, it must
also use its two incident edges, so we can include these
edges in F to obtain a subproblem of potential k− 2.
So, the potential ρ(T,G, F ) ≤ Q(k − 1) +Q(k − 2).

(ii) The degree of v is larger than 2. Any cycle in
G either uses e or does not use e. If it uses e, we
can add e to F to obtain a subproblem of potential
k − 1. If it does not use e, then consider v and the
edge e′ = vw that leaves v on the outer face. Since v
has indegree 1 but total degree greater than 2, it must
have outdegree greater than 1. Therefore, by Claim 2,
w must have indegree 1. Therefore, also w will not be
used by any cycle in G that does not use e, and we
can remove v and w to obtain a smaller graph. Again,
we also remove all incident edges; if any of them was
fixed we have no solutions. We obtain a subproblem
of potential k − 2 in this case. Again, the potential
ρ(T,G, F ) ≤ Q(k − 1) +Q(k − 2). �

This expression grows at a rate of the root of x2−x−
1 = 0, which is approximately 1.618034.

(a) (b)

Figure 3: (a) Essential part of the construction, allowing
lk choices for a convex polygon. (b) Final triangulation.

Because every convex polygon must contain at least
one triangle of T , we just place p in each triangle and
multiply the bound multiply by 2n. Since 1.62 is a
slight overestimate (by rounding) of the root, we can
ignore the factor 2n in the bound.

Theorem 4 Any triangulation T with n vertices has
O(1.62n) convex polygons that respect T .

5 Lower bound in fat triangulations

Let k = ⌊ 2π
δ ⌋, and let l =

√

n
2k . Let Q be a regu-

lar k-gon, and for each edge e of Q consider the in-
tersection point of the supporting lines of the neigh-
bouring edges. Let Q′ be a scaled copy of Q that
goes through these points. Now, consider a sequence
Q = Q1, Q2, . . . , Ql = Q′ of l scaled copies of Q such
that the difference between the radii of consecutive
copies is always equal. We extend the edges of each
copy until they touch Q′. Figure 3(a) illustrates the
construction so far.

We claim that the graph constructed so far allows at
least lk different convex polygons.

We now add vertices and edges to turn the construc-
tion into a δ-fat triangulation. We use

(

l−1
2

)

more
vertices per sector, placing l− i vertices on each edge
of Qi to ensure all angles are bounded by δ. We need
O(lk) vertices to triangulate the interior using some
adaptive mesh generation method. The final triangu-
lation can be seen in Figure 3(b).

The construction uses 3
2kl

2+O(kl) vertices, and since

we have l =
√

n
2k , there are 3

2kl
2 + O(kl) = 3

2k
n
2k +

O(k
√

n
2k ) =

3
4n+O(

√
nk) ≤ n vertices in total.

Observe that the triangles of the outer ring are Delau-
nay triangles. The inner part can also be triangulated
with Delaunay triangles, since the Delaunay triangu-
lation maximises the smallest angle of any triangle.
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u v

δ

Figure 4: Two vertices u and v that need to be extreme
in two directions that differ by at most 2δ (indicated by red
and blue) define a unique potential convex chain since there
can be at most one edge in each sector. In this figure, the
two paths do intersect, but do not form a convex chain.

Theorem 5 There exists a δ-fat triangulation T of
size n such that the number of convex polygons that
respect T is Ω(n

1

2
⌊ 2π

δ
⌋). This is true even if T is re-

quired to be the Delaunay triangulation of its vertices.

6 Upper bound in fat triangulations

Lemma 6 Let u, v ∈ V (T ) be two vertices, and let
c, d ∈ S be two directions such that d− c ≤ 2δ. Then
there is at most one convex path in T from u to v that
uses only directions in [c, d).

Proof. Letm = c+ 1
2 (d−c) be the direction bisecting

c and d. Because T is δ-fat, for any vertex in V (T )
there is at most one incident edge with outgoing direc-
tion in [c,m), and also at most one with direction in
[m, d). Because the path needs to be convex, it must
first use only edges from [c,m) and then switch to only
edges from [m, d). We can follow the unique path of
edges with direction in [c,m) from u and the unique
path of edges with direction in [m+ π, d+ π) from v.
If these paths intersect the concatenation may be a
unique convex path from u to v as desired (clearly,
the path is not guaranteed to be convex). Figure 4
illustrates this. �

Given a convex polygon P that respects T , a vertex v
of P is extreme in direction s ∈ S if there are no other
vertices of P further in that direction, i.e. if P lies to
the left of the line through v with direction s+ 1

2π.

Let Γδ = {0, 2δ, 4δ, . . . , 2π} be a set of directions
spaced 2δ. As an easy corollary of Lemma 6, the ver-
tices of a convex polygon P respecting T that are ex-
treme in the directions of Γδ uniquely define P . There

are at most n choices for each extreme vertex, so the
number of convex polygons is at most n|Γδ|. Substi-
tuting |Γδ| = ⌈π

δ ⌉ we obtain the following theorem.

Theorem 7 Any δ-fat triangulation T of size n has
at most O(n⌈π

δ
⌉) convex polygons that respect T .

7 Discussion

We investigated the maximum number of convex poly-
gons that can be formed using the edges of a given
triangulation only. We provided a construction for
a general triangulation with Ω(1.5028n) such convex
polygons, and showed that there is an upper bound
of O(1.62n). The upper and lower bounds for fat tri-
angulations match up to a constant factor (depending
on δ) if π

δ is an integer. If not, they differ by a factor√
n if the remainder is smaller than 1

2 , or by a factor
n if the remainder is at least 1

2 .
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On the reconstruction of convex sets from random normals

measurements

Hiba Abdallah∗ Quentin Mérigot†

Abstract

We study the problem of reconstructing convex sets
using only a finite number of measurements of normal
vectors. More precisely, we suppose that the normal
vectors we are measuring come from independent ran-
dom points uniformly distributed along the boundary
of our convex sets. Given a target Hausdorff error ǫ,
we are interested in upper bounds on the number of
probes that one has to perform in order to obtain an
ǫ-approximation of this convex set with high proba-
bility. Our results make use of the stability theory
related to Minkowski’s Theorem.

1 Introduction

Surface reconstruction is now a classical and rather
well-understood topic in computational geometry.
The input of this question is a finite set of points
P measured on (or close to) an underlying unknown
surface S, and the goal is to reconstruct a Hausdorff
approximation of this surface.

In this article, we deal with a similar reconstruction
question. However, our input is not a set of points,
but a set of (unit outer) normal vectors measured
at various unknown locations on S. This question
stemmed from a collaboration with CEA-Leti. The
Leti has developed sensors that embed an accelerom-
eter and a magnetometer, and can return their own
orientation, but not their position. Since these sen-
sors are small and rather inexpensive it is possible
to use many of them to monitor the deformations of
a known surface [14]. Can such sensors be used for
surface reconstruction ?

In the case where the underlying surface is con-
vex the situation is relatively simple as Minkowski’s
Theorem asserts that given a set of normal vectors
n1, . . . ,nN in the unit sphere, and a set of posi-
tive numbers a1, . . . , aN , there exists a unique (up
to translation) convex polytope with exactly N faces
and such that the area of the face with normal ni is ai
[12]. The computational issues related to Minkowski’s
Theorem offer several aspects that are of interest in
computational geometry [11, 10, 7].

∗Laboratoire Jean Kuntzmann, Université Grenoble I,

Hiba.Abdallah@ujf-grenoble.fr
†Laboratoire Jean Kuntzmann, Université Grenoble I and

CNRS, Quentin.Merigot@imag.fr

Figure 1: Reconstruction of a unit cube using
Minkowski Theorem from 300 random normal mea-
surements to which a uniform noise of radius 0.05
has been added.

Stability theory Minkowski’s Theorem can be gener-
alized using the notion of surface area measure. Any
convex body K in R

d has a well-defined unit outer
normal nK(x) at almost every point in the bound-
ary ∂K. The surface area measure of K is the non-
negative measure µK defined by the relation:

µK(B) := Hd−1 ({x ∈ ∂K;nK(x) ∈ B}) (1)

for every (Borel) subset B of Sd−1, where Hd−1 is
the (d − 1)-Hausdorff measure. Note that by def-
inition, the total mass of the surface area measure
µK(Sd−1) coincides with the (d−1) area of the bound-
ary ∂K. The following result by Alexandrov [1] gen-
eralizes Minkowski’s Theorem:

Theorem 1 (Alexandrov) Let µ be a non-negative
measure on Sd−1 with zero mean i.e.

∫

Sd−1 udµ(u) =
0. Then there exists a convex body K, which is unique
up to translation, whose surface area measure µK co-
incides with µ.

Minkowski and Alexandrov Theorems can be in-
terpreted as reconstruction theorems, and with every
such theorem comes a corresponding stability ques-
tion. The results that are of interest in our case are
those that assert that if the surface area measures µK

and µL of two convex sets are close (in a sense that
will be made precise), then up to a translation, those
sets are also Hausdorff-close. Stability results for
the Minkowski problem have been obtained using the

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be
considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a
journal.
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theory surrounding the Brunn-Minkowski inequality,
starting from two articles by Diskant [3, 4, 5, 6, 13, 9].

Contributions In the present paper, we suppose the
existence of an underlying convex set K. Our input
data is a set made of N unit normals n1, . . . ,nN , mea-
sured at N independent random locations x1, . . . , xN

uniformly distributed on the boundary of K. The
question we consider is the following: given a positive
number ǫ, what is the minimum value of N needed
to be able to reconstruct a convex set LN which is ǫ
Hausdorff-close to K with high probability?

This problem is closely related to the question
of stability in Minkowski’s Theorem. In Section 2,
we show how the proof techniques of [9] imply a
stability result for Minkowski’s Theorem for a very
weak (pseudo-)distance between measures on the unit
sphere:

Definition 1 Recall that the support function of a
convex body K is defined by hK(u) := supx∈K〈x|u〉.
We let Convd−1

1 denote the set of support functions
of convex sets contained in the unit ball. Given two
measures µ, ν on Sd−1, one defines

dC(µ, ν) = sup
f∈Convd−1

1

∣

∣

∣

∣

∫

Sd−1

fdµ−
∫

Sd−1

fdν

∣

∣

∣

∣

. (2)

Theorem (Corollary 5) Let K,L be two convex sets
in R

d with unit volume and such that K is enclosed
between two balls of radii r < R not necessarily cen-
tered at the same points, i.e. Br ⊆ K ⊆ BR. Then,

min
x∈Rd

dH(K + x, L) ≤ const(r,R, d)dC(µK , µL)
1/d.

The main reason for using the pseudo-distance dC is
that the space of convex functions on the sphere is in
some sense “small”. This implies a bound on the dC-
approximation of µK given by the random sampling
scheme for normals described at the beginning of this
paragraph (see Theorem 6).

2 Stability in Minkowski Theorem

In this section, we modify the proof of [9] to obtain
a stability theorem with respect to the distance dC.
The techniques we employ are drawn from the theory
of mixed volumes and Brunn-Minkowski’s theory. In
this section, all convex bodies are compact and belong
to the d dimensional Euclidean space R

d.

2.1 Background and notations

We let K(r,R) denote the set of convex bodies that
contain a ball of radius r and contained in a another
ball of radius R.

We make use of the following representations for
the volume of K and the mixed volume V1(K,L) :=
V(K[d− 1], L) of K and another body L. The reader
unfamiliar with mixed volumes can consider these for-
mulas as definitions (cf [13, Chapter 5]):

V(K) =
1

d

∫

Sd−1

hK(u)dµK(u)

V1(K,L) =
1

d

∫

Sd−1

hL(u)dµK(u).

Note in particular that V1(K,B), where B is the unit
ball, is the (d−1)-area of ∂K, also denoted by A(∂K).

Minkowski’s inequality. The following isoperimetric
inequality is due to Minkowski:

Vd
1(K,L) ≥ Vd−1(K)V(L). (3)

Equality holds if and only if K and L are homoth-
etic. Inequality (3) make it interesting to study the
following isoperimetric difference

∆(K,L) = Vd
1(K,L)−Vd−1

d (K)V(L). (4)

This isoperimetric difference plays an important role
in stability results, especially in the two following the-
orems of Diskant. We denote by r(K,L) be the inra-
dius of K with respect to L, i.e.

r(K,L) = max{λ > 0; ∃x ∈ R
d, λL+ x ⊆ K}

Theorem 2 (Diskant [3]) The inradius r(K,L) of K
relative to L is lower bounded by:

[

V1(K,L)

V(L)

]
1

d−1

− [V
d

d−1

1 (K,L)−V(K)V
1

d−1 (L)]
1

d

V
1

d−1 (L)
.

Theorem 3 (Diskant [3]) There exists two constants
C, ǫ0 depending on r,R and d only such that for any
K,L ∈ K(r,R) such that if ǫ := ∆(K,L) ≤ ǫ0, then

r(K, sL) ≥ 1− Cǫ
1

d where s =

(

V(K)

V(L)

)
1

d

.

2.2 Stability in Minkowski’s theorem for dC

Theorem 4 Let K,L be two convex bodies with unit
volume, and suppose that K ∈ K(r,R). Then there
exists two constants ǫ0 and c depending on r,R and
d only such that if ǫ := dC(µK , µL) ≤ ǫ0, we have

L ∈ K((1− cǫ
1

d )r, (1 + cǫ
1

d )R).

Proof. The proof is based on the proof of Theorem 2
in [3], and the Lemma 3 in [4]. We show in two steps
that there exists c1, c2 depending only on R, d and the
surface area of the ball BR, An(R) such that

r(L,K) ≥ 1− c1ǫ
1

d and r(K,L) ≥ 1− c2ǫ
1

d (5)
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provided that ǫ is smaller than a certain ǫ0.
(a) Let hK be the support function of the convex

K. We have

|V1(L,K)| =
∣

∣

∣

∣

1

d

∫

Sd−1

hK(u)dµL(u)

∣

∣

∣

∣

≤ 4R

d
An(R)

provided that ǫ ≤ An(R), and

|V1(L,K)−V(K)|

≤
∣

∣

∣

∣

1

d

∫

Sd−1

hK(u)(dµL − dµK)

∣

∣

∣

∣

≤ 2R

d
ǫ.

The second inequality follows from dC(µL, µK) ≤ ǫ.
Since xp− yp ≤ pxp−1(x− y) for x ≥ y ≥ 0 and p ≥ 1
(see Hardy, Little-wood, Polya [8], p.39), we obtain

∆(L,K) ≤ dV1(L,K)|V1(L,K)−V(K)|

≤ 2

d
(2R)2An(R)ǫ.

On the other hand, the isoperimetric inequality (3)
gives us V1(L,K) ≥ 1, then using inequality xp−yp ≥
pxp−1(x− y) for x ≥ y ≥ 0 and p ≤ 1, we have

[V
d

d−1

1 (L,K)−V(L)V
1

d−1 (K)]
1

d

V
1

d−1 (K)
≤ [∆(L,K)]

1

d

V
1

d−1 (K)V
d−2

d−1

1 (L,K)

≤
(

2

d
(2R)2An(R)ǫ

)
1

d

.

By Theorem 2, we prove the first inequality in (5).

(b)Let q = 1− c1ǫ
1

d , then

∆(K,L) = Vd
1(
q

q
K,L)−Vd(L)

=
1

qd(d−1)
Vd

1(qK,L)−Vd(L) ≤ 1

qd(d−1)
− 1

This follows from qK ⊆ L, and consequently
Vd

1(qK,L) ≤ Vd
1(L,L) = Vd(L) = 1. Moreover,

1

qd(d−1)
− 1 ≤ c1(d

2 − d− 1)

(

1

q

)d(d−1)

ǫ
1

d ,

implies ∆(K,L) ≤ c1(d
2−d−1)

(

1
q

)d(d−1)

ǫ
1

d . Hence,

[V
d

d−1

1 (K,L)−V(L)V
1

d−1 (K)]
1

d

V
1

d−1 (L)
≤ c3ǫ

1

d2

where c3 = (c1(d
2− d− 1)q−d(d−1))

1

d . By Theorem 2,

r(K,L) ≥ 1− c3ǫ
1

d2 i.e.

|hL(u)| ≤
2R

(1− c3ǫ
1

d2 )
for all u ∈ Sd−1,

provided that ǫ ≤
(

1
c3

)d2

. It follows that

|V1(K,L)−V(L)| ≤ 1

d

2R
(

1− c3ǫ
1

d2

)ǫ. (6)

We use the same techniques as in part (a) to prove
the second inequality of (5). We finish the proof by

setting c := min{c1, c2} and ǫ0 =
(

1
2c

)
1

d . �

Remark. ǫ ≤ ǫ0 guarantees that L ∈ K( r2 ,
R
2 ).

Corollary 5 Let K,L be two convex bodies with
unit volume and suppose that K ∈ K(r,R). There
exists two constants c, ǫ0 depending on r and R only,
such that if ǫ := dC(µK , µL) ≤ ǫ0, then

min
x∈Rd

dH(K + x, L) ≤ cǫ
1

d .

Proof. This is an immediate consequence of inequal-
ities in (5) (see proof of Theorem 7.2.2 in [13]). We
also use the fact that all the function used in the in-
tegrals are support function of convex sets. �

Remark. The optimal exponent in Corollary 5, while
perhaps smaller than 1

d , cannot be lower than 1
d−1 .

This can be seen by choosing for K a right circular
cone in R

3, and for L the convex body obtained by
cutting off the apex in such a way that the height of
the removed part is ǫ.

3 Random sampling

Let K be a convex body in K(r,R), and µK its sur-
face area measure. We consider N vectors {ni}Ni=1

obtained by measuring the outer normal of K at N
random and independent points x in ∂K (note that
by definition, the distribution of each ni is µK). The

measure µN := 1
N

∑N
i=1 δni

is called the empirical
measure associated to µK . The main result in this
section is the following theorem.

Theorem 6 Let K be a convex body such that
A(∂K) = 1. The empirical measure µN constructed
from µK converges to µK as N grows to infinity with
high probability:

P [dC(µN , µK) ≥ ǫ] ≤ 2 exp
(

Cǫ
1−d

2 −Nǫ2/2
)

(7)

where C depends only on the dimension d.

In order to prove Theorem 6, we will need the fol-
lowing result due to Bronshtein. Recall that the ǫ-
covering number of a metric space X, denoted by
N (X, ǫ), is the minimal number of balls of radius ǫ
needed to cover X.

Theorem 7 (Bronshtein [2]) Let Md be the set of
closed convex subsets contained in the unit ball of Rd,
endowed with the Hausdorff distance. The following
inequality hold as soon as ǫ ≤ ǫd := 10−12/(d− 1)

log2(N (Md, ǫ)) ≤ 106d5/2 log 12(
√
ǫ)1−d.
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Proof of Theorem 6. By Theorem 7 we have

N (Md, ǫ) ≤ 2Cǫ
1−d

2 ≤ exp
(

Cǫ
1−d

2

)

as soon as ǫ ≤ ǫd, where C depends only on the
dimension d. We recall that for two convex sets,
dH(K,L) = ‖hK − hL‖∞. This implies the follow-
ing bound on the covering numbers of Convd−1

1 with
respect to the norm of uniform convergence:

N (Convd−1
1 , ǫ) ≤ exp

(

Cǫ
1−d

2

)

. (8)

Hoeffding’s inequality asserts that

P

(∣

∣

∣

∣

∣

1

N

N
∑

i=1

f(ni)−
∫

Sd−1

fdµK

∣

∣

∣

∣

∣

≥ ǫ

)

≤ 2 exp(−2Nǫ2)

(9)
for all function f ∈ Convd−1

1 . Inequalities (8), (9) and
the union bound imply inequality (7). �

Note that it is possible that the empirical measure
µN does not satisfy the equality

∫

Sd−1 udµN (u) = 0,
which is a necessary condition to the existence of a
convex polytope L such that µL = µN . The following
proposition shows that this equality can be enforced
without perturbing µN too much in the dC-sense.

Proposition 8 If dC(µK , µN ) ≤ ǫ, then there exists

another measure ν =
∑N

i=1 aiδmi
on the sphere such

that dC(µN , ν) ≤ ǫ and

∫

Sd−1

udµ(u) =
N
∑

i=1

aimi = 0.

Proof. Let v be a vector in Sd−1 and π be the func-
tion defined by π(u) := 〈u|v〉 = h{v}(u). Letting

m = 1
N

∑N
i=1 ni, we have

dC(µK , µN ) ≥
∣

∣

∣

∣

∫

Sd−1

〈u|v〉d(µK − dµN )

∣

∣

∣

∣

= |〈m|v〉| .

Since this hold for every v, the norm of m is at
most ǫ. It is then easy to see that the measure
ν = 1

N

∑N
i=1 aiδmi

, with ai = ‖ni − m‖ and mi =
(ni −m)/ai, satisfies the two requirements. �
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On Ellipsoidal Approximations of Zonotopes

Michal Černý Miroslav Rada∗

Abstract

We adapt Goffin’s Algorithm for construction of the
Löwner-John ellipsoid for a full-dimensional zonotope
given by the generator description.

1 Introduction

The aim of this paper is twofold.
First, we describe the following algorithm. Let ε >

0 be fixed. Given a full-dimensional zonotope Z ⊆
R

n, represented as a set of rational generators, the
algorithm constructs an ellipsoidal approximation of
Z satisfying

E(n−2 · E, s) ⊆ Z ⊆ E((1 + ε) · E, s) (1)

in time polynomial in the bit-size of the generator
description. Here E(E, s) is the ellipsoid {x : (x −
s)TE−1(x− s) ≤ 1}, where E is positive definite.
The approximation (1) is called ε-approximate

Löwner-John ellipsoid for Z. (The name comes from
the well-known Löwner-John Theorem: for every full-
dimensional bounded convex set A ⊆ R

n, there exists
an ellipsoid E(E, s) satisfying E(n−2 · E, s) ⊆ A ⊆
E(E, s).)
Second, we show how possible improvements of the

factor n−2 in (1) are related to the following problem:

given a zonotope centered at zero, represented

as a set of rational generators, and a rational

number γ > 0, does Kγ ⊆ Z hold?

(2)
Here, Kγ = E(γ2 · I, 0) is the euclidian ball centered
at zero with radius γ. The problem (2) is likely to be
in co-NP, but we do not have a conjecture whether
or not it is co-NP-complete.
We also construct several polynomial-time algo-

rithms for testing geometric properties of zonotopes
given by rational generators.
Remark. The well-known Goffin’s Algorithm [6, 7]

constructs the ε-approximate Löwner-John ellipsoid
for a general full-dimensional bounded polyhedron F
given by the facet description (A, b). (The facet de-

scription of F consists of a matrix A and a vector b

such that F = {x : Ax ≤ b}.) Of course, Goffin’s

∗Both authors: Department of Econometrics, Uni-

versity of Economics, Prague; Náměst́ı Winstona Chur-

chilla 4, CZ13067 Prague 3, Czech Republic, cernym@vse.cz,

miroslav.rada@vse.cz.

method can be applied to the zonotope Z as well.
The problem is that the conversion of the generator
description to the facet description can take super-
polynomial time. The reason is that there are zono-
topes with a superpolynomial number of facets com-
pared to the number of generators ([3, 11]; see also
[12] and [1, 5]). Hence, if we want to preserve poly-
nomial time in the size of input, which is the bit-size
of the generator description, we cannot use Goffin’s
method directly. We will take the advantage of the
fact that a zonotope given by the generator descrip-
tion is a kind of an implicitly defined polyhedron in
the sense of [7].
Remark. Zonotopes are centrally symmetric poly-

hedra. By Jordan’s Theorem, every centrally sym-
metric, full-dimensional bounded convex set A ⊆ R

n

can be approximated with a better factor than n−2:
we can even achieve E(n−1 ·E, s) ⊆ A ⊆ E(E, s). But
the Theorem is non-constructive and does not suggest
an algorithmic method. We show that the algorith-
mic improvement of (1) to the form E(n−1 · E, s) ⊆
Z ⊆ E((1 + ε) · E, s) is related to the complexity of
the problem (2).

2 Basic definitions and the main theorem

Let A ⊆ R
n be a set and x ∈ R

n. We define A⊕ x :=
convexhull{A∪(A+x)}, where A+x = {a+x : a ∈ A}.
The operation ⊕ can be seen as a special case of the
Minkowski sum. A zonotope Z := Z(s; g1, . . . , gm) is
the set {s}⊕ g1⊕· · ·⊕ gm. The vectors g1, . . . , gm are
called generators and the vector s is called shift. The
(m + 1)-tuple (s, g1, . . . , gm) is called generator de-

scription of Z. If the vectors s, g1, . . . , gm are rational,
we define the bit-size of (the generator description of)
the zonotope Z as size(Z) := size(s) +

∑m

i=1
size(gi),

where size(·) denotes the bit-size of a rational num-
ber/vector/matrix.
Our aim is to prove:

Theorem 1 For every ε > 0 there is a polynomial-
time algorithm that computes the ε-approximate
Löwner-John ellipsoid (1) for a given full-dimensional
zonotope represented by a rational generator descrip-
tion.

Remark. Polynomial time means ‘weak polynomial
time’ in the sense that the number of iterations of the
algorithm depends on the sizes of rational numbers
occurring in the generator description.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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3 Some properties of zonotopes

Let a full-dimensional zonotope Z = Z(s; g1, . . . , gm)
be given. Let ∂Z denote the boundary of Z.
The zonotope Z is a centrally symmetric set; its

center is Zc := s+ 1
2

∑m
i=1 gi. Without loss of gener-

ality we can assume that (a) Zc = 0, and (b) if g is

a generator, then also −g is a generator. Using (b),
the sequence g1, . . . , gm can be ordered into the form
g1, . . . , gm/2,−g1, . . . ,−gm/2. Then we can state the
following lemma.

Lemma 2 The matrix G := (g1, . . . , gm/2) satisfies

Z = {Gα : −1 ≤ α ≤ 1, α ∈ R
m/2}.

Let F be a k-dimensional face of Z and let A be
its affine hull. A set of linearly independent genera-
tors g′1, . . . , g

′
k which form a basis of A is called basis

of the face F . We write bas(F ) = {g′1, . . . , g′k}. [Re-
mark. The basis need not be unique. Whenever we
talk about bas(F ), we mean that bas(F ) is some ba-
sis from set of all bases. It will be apparent that it
is not important which particular basis is chosen if
more bases exist.] Given a point x ∈ Z, we define the
degree of x as deg(x) := min{dim(F ) : F is a face of
Z containing x}. The face F , for which the minimum
is attained, is denoted as F(x).

Theorem 3 Let Z denote a zonotope given by a ra-
tional generator description and let x denote a ratio-
nal vector.

(a) The relation x ∈ Z is polynomial-time decidable.

(b) The relation x ∈ ∂Z is polynomial-time decid-
able.

(c) The number deg(x) is polynomial-time com-
putable.

(d) The set bas(F(x)) is polynomial-time com-
putable.

Proof-sketch. Let G be the matrix from
Lemma 2. The symbol α stands for a vector in R

m/2.
(a) By Lemma 2 we have x ∈ Z iff the linear system

x = Gα,−1 ≤ α ≤ 1 is feasible. This is a linear
programming problem.
(b) We know that Z is centered at 0. Now we have

that x ∈ ∂Z iff max{δ : δx = Gα,−1 ≤ α ≤ 1} = 1,
which is a linear programming problem.
(c) Given a generator g, set δ1 = max{δ : x+ δg =

Gα, −1 ≤ α ≤ 1}, δ2 = max{δ : x− δg = Gα, −1 ≤
α ≤ 1} and δ = min{δ1, δ2}. If δ > 0 we say that the
generator g can move x in both directions.
Let H be the set of generators which can move x

in both directions. Using linear programming, H can
be computed in polynomial time. The dimension of
linearhull(H) is equal to deg(x).
(d) Let H be as above. Any basis (i.e., maximal

linearly independent subset) ofH is a basis of F(x). �

Corollary 4 Let x ∈ Z be a point of degree ≤ n−1.
Then, a point x∗ with the following property can be
found in polynomial time: there is a facet F such that
{x, x∗} ⊆ F and x∗ is in the interior of F .

Said loosely: if the point x is in a low-dimensional
face, then x can be “perturbed” into a position x∗

which is the interior of a facet.

4 Sketch of Goffin’s method

First, we sketch the important ingredients of the tra-
ditional Goffin’s method applicable for a bounded full-
dimensional polyhedron P given by the facet descrip-
tion Ax ≤ b. Then, in Section 5, we restate the algo-
rithm for zonotopes. All the propositions stated here
can be found in [7, 10].

Goffin’s Algorithm is a form of the Ellipsoid Method
with shallow cuts. It constructs a finite sequence of el-
lipsoids E(E0, s0), E(E1, s1), . . . of shrinking volumes
satisfying P ⊆ E(Ei, si).

The work in one iteration is as follows. Let the el-
lipsoid E(Ei, si) ⊇ P be available; we either terminate
or construct E(Ei+1, si+1).

By shift we can assume that si = 0. We ap-

ply the transformation Φ : ξ 7→ E
−1/2
i ξ; under this

transformation, the ellipsoid E(Ei, si = 0) is mapped
to the unit ball B = E(I, 0) and the polyhedron
P = {x : Ax ≤ b} is mapped to the polyhedron

P ′ = {x : A′x ≤ b} with A′ = AE
1/2
i . We shrink

the unit ball B slightly more than by a factor n, say
by a factor n ·

√
1 + ε, where ε > 0 is a small number:

we set B′ := E( 1
n2(1+ε)I, 0). We test whether

B′ ⊆ P ′. (3)

If the answer is positive, then we terminate — we have
found an approximate Löwner-John ellipsoid.

The test (3) can be performed easily. We know the
facet description (A′, b); say that aT1 x ≤ b1, . . . , a

T
k x ≤

bk are the inequalities of the system A′x ≤ b. As-
sume further that they are normalized in the way that
∥a1∥ = · · · = ∥ak∥ = 1. We test whether the following
condition holds:

bj ≥
1

n ·
√
1 + ε

for all j = 1, . . . , k. (4)

If (4) holds, then the test (3) is successful. If (4) does
not hold, there is an index j0 such that bj0 < 1

n·
√
1+ε

.

Then we have found a violated inequality aTj0x ≤ bj0
of P ′ which proves that the test (3) fails.

If the test (3) fails, we use the vector aj0 for a cut,
called aj0-cut : we construct the smallest-volume el-

lipsoid E ′ containing the set B ∩
{

x : aTj0x ≤ 1
n·

√
1+ε

}

and start a new iteration with E ′.
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5 The version for zonotopes given by generator

descriptions

Now we restate Goffin’s method for zonotopes given
by generator descriptions. Given a zonotope Z, we
use the symbol L for the bit-size of its generator
description. Let vol(·) denote volume. For a pos-
itive definite matrix E, vol(E) is a shorthand for
vol(E(E, 0)).
The initial ellipsoid. We need an initial ellipsoid

E(E0, 0) ⊇ Z. Using Lemma 2 we can set E(E0, 0) :=
E(m2 · GGT, 0). The expression also shows that the
matrix E0 can be computed in time polynomial in L.
And moreover:

Lemma 5 There exists a polynomial p1 such that

vol(E0) ≤ 2p1(L).

The lower bound on volume. As the zonotope
Z is full-dimensional, we can choose j1, . . . , jn such
that the generators gj1 , . . . , gjn are linearly indepen-
dent. Setting G := (gj1 , . . . , gjn) we have vol(Z) ≥
| detG| > 0. As the positive number | detG| can
be computed by a polynomial time algorithm, we
have size(| detG|) ≤ p2(L) with some polynomial p2.
Hence we have vol(Z) ≥ | detG| ≥ 2−p2(L).

Lemma 6 There exists a polynomial p2 such that

vol(Z) ≥ 2−p2(L).

Parallel cuts. We take the advantage of the fact
that a zonotope is a centrally symmetric body cen-
tered at zero. Central symmetry implies that when-
ever we know that Z ⊆ {x : cTx ≤ γ}, then also
Z ⊆ {x : cTx ≥ −γ}. It follows that we can use
parallel cuts. The following lemma on parallel cuts
comes from [2]; see also [7].

Lemma 7 Let c be a vector satisfying ∥c∥ = 1, let
B = E(I, 0) be an n-dimensional unit ball and let γ ∈
(0, 1√

n
). The smallest-volume n-dimensional ellipsoid

containing the set B ∩ {x : −γ ≤ cTx ≤ γ} is the

ellipsoid E(E, 0) with E = n(1−γ2)
n−1

(

I − 1−nγ2

1−γ2 · ccT
)

.

We say that E results from B with a cut (c, γ).

Lemma 8 Let ε > 0. Then there exists a con-

stant κε ∈ (0, 1), depending only on ε, such that

the following holds: whenever a vector c satisfying

∥c∥ = 1 is given and the ellipsoid E(E, 0) results from
the unit ball B with a cut (c, γ := 1√

n(1+ε)
), then

vol(E) ≤ κε · vol(B).

Testing whether Z contains a ball. The next
crucial step is the test (3). In Section 4 we could per-
form the test (3) in the form (4) using the fact that
the facet description of the polyhedron under consid-
eration was available. However, now we cannot lean
on that description.

At the moment we cannot design a polynomial-
time algorithm for testing whether a given zono-
tope Z, centered at zero, satisfies Kγ ⊆ Z, where
Kγ = E(γ2 · I, 0) is a ball with radius γ.
Problem. Let T be the problem “given a rational

generator description of a full-dimensional zonotope
Z centered at zero and a rational number γ, does
Kγ ⊆ Z hold?”. We conjecture that the problem T

is in co-NP but we do not have a conjecture whether
or not it is co-NP-complete.
Remark. The complement of T is likely to be in

NP: the fact Kγ ̸⊆ Z can be witnessed by a point
x satisfying xTx ≤ γ2 and x ̸∈ Z. The former fact
is verified in polynomial time easily; the latter fact
can be verified in polynomial time by Theorem 3(a).
However, a proof of T ∈ co-NP would require show-
ing that the witness x of the fact Kγ ̸⊆ Z can al-
ways be chosen in the way that it is guaranteed that
size(x) ≤ p(size(Z)+size(γ)) holds, where p is a fixed
polynomial.
If the problem T is computationally hard, it seems

to be a serious obstacle. We overcome it for a certain
price: we construct a smaller inscribed ellipsoid. With
Theorem 3(a) we can use essentially the same trick as
in [7]: instead of testing Kγ ⊆ Z we test whether

γei ∈ Z for all i = 1, . . . , n. (5)

(Here ei is the i-th column of the unit matrix.) If the
test is successful, by central symmetry we know that
all the points ±γe1, . . . ,±γen are in Z; then also

Z ⊇ convexhull{±γei : i = 1, . . . , n} ⊇ E(γ2

n
, 0). (6)

We will perform the test with γ = 1√
n(1+ε)

. Then: if

the test (5) is successful, we have E( 1
n2(1+ε)I, 0) ⊆ Z;

if the test (5) is unsuccessful, we know an index j0
such that 1√

n(1+ε)
· ej0 ̸∈ Z.

The separation procedure. If the test (5) is
unsuccessful, we know a point x0 = 1√

n(1+ε)
· ej0 sat-

isfying x0 ̸∈ Z. Then we would like to perform a
parallel a-cut of the unit ball B = E(I, 0) with some
suitable a. In Section 4 we selected a as the normal
vector of the found violated inequality — but this is
not possible here because the facet description of Z is
not available.
We will construct a separator a of x0 from Z, which

will be used for the (parallel) a-cut.
Let G be the matrix from Lemma 2. Recall that we

assume that the zonotope Z is centered at zero.

Step 1. We set β∗ := max{β ∈ R : βx0 =
Gα, −1 ≤ α ≤ 1} (using linear program-
ming). It follows that x∗ := β∗x0 ∈ ∂Z;
hence, deg(x∗) ≤ n− 1.

Step 2. If deg(x∗) < n − 1, we replace x∗ by a new
point x∗ with deg(x∗) = n − 1 using Corol-
lary 4.
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Step 3. We know that deg(x∗) = n − 1. Hence we
have |bas(F(x∗))| = n − 1. We compute
{h1, . . . , hn−1} = bas(F(x∗)). Observe that

{x∗ +
∑n−1

i=1 λihi : λ1, . . . , λn−1 ∈ R} is a
hyperplane separating x0 from Z.

Step 4. We find a vector orthogonal to h1, . . . , hn−1:
set H := (h1, . . . , hn−1) and define a :=
(I −H(HTH)−1HT)x0. The vector a is the
output of the algorithm.

By the theory of Section 3, all tests and operations
can be performed in polynomial time.
Remark. Observe that we constructed the separator

without using the Yudin-Nemirovskii Theorem (see
Sect. 4.3 of [7]).
The algorithm. Let ε > 0 be fixed. Let a rational

generator description of a full-dimensional zonotope Z
be given. We have the initial ellipsoid E(E0, 0) ⊇ Z
as described above.
Let us describe the work in one iteration. We have

E(Ei, 0) ⊇ Z from the previous iteration; we either
terminate or construct Ei+1. We apply the mapping

Φ : ξ 7→ E
−1/2
i ξ under which the ellipsoid E(Ei, 0) is

projected to the unit ball E(I, 0) and the zonotope Z
generated by g1, . . . , gm is projected to a zonotope Z ′

generated by Φ(g1), . . . ,Φ(gm).
We set γ := 1√

n(1+ε)
and we perform the test (5)

with γ and Z ′. If the test passes, we can finish —
by (6) we know that E( 1

n2(1+ε)I, 0) ⊆ Z ′ ⊆ E(I, 0),
and hence E( 1

n2(1+ε)Ei, 0) ⊆ Z ⊆ E(Ei, 0). It follows

that E( 1
1+εEi, 0) is the ε-approximate Löwner-John

ellipsoid for Z.
If the test (5) with γ and Z ′ fails, we determine the

vector a using the separation procedure and perform
a cut (c := a

∥a∥ , γ) using Lemma 7. We get a matrix

E from the Lemma. We set Ei+1 := Φ−1(E) and the
iteration is finished.
Recall that L = size(Z). It is easy to show

that the algorithm terminates after no more than
− 1

log
2
κε

· [1 + p1(L) + p2(L)] iterations, where p1 is

the polynomial of Lemma 5, p2 is the polynomial of
Lemma 6 and κε is the constant of Lemma 8. (By
Lemma 8 we know that the volumes of the ellipsoids
E(Ei, 0) are decreasing exponentially fast, and if the
algorithm does not terminate in N iterations, we get
an ellipsoid E(EN , 0) ⊇ Z with volume < 2−p2(L),
which contradicts Lemma 6.)

6 Conclusion

The basic question is whether the statement of The-
orem 1 can be improved. In (6) we have lost the
factor n−1 (or, in terms of lengths of semiaxes, a fac-
tor n−1/2) not being able to test whether a zonotope
contains a ball. If that test could be implemented,

then we could strengthen the theorem and find an el-
lipsoid satisfying E(n−1 ·E, 0) ⊆ Z ⊆ E((1+ ε) ·E, 0).
Even if the test couldn’t be implemented, it would be
challenging to try to adapt the algorithm for finding
an approximation E(n−λ ·E, 0) ⊆ Z ⊆ E((1+ε) ·E, 0)
with some λ ∈ (1, 2).
Moreover, the ellipsoids provide a lower bound and

an upper bound on volume of a zonotope; this is in-
teresting for the reason that computing the volume
exactly is a ♯P-hard problem [4].
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A Uniform Approach to Enumeration of Facets, Enumeration of Vertices
and Computation of Volume of a Zonotope

Miroslav Rada Michal Černý∗

Abstract

A uniform approach is proposed for solving three fun-
damental problems related to zonotopes given by gen-
erator descriptions—enumeration of facets, enumera-
tion of vertices and computation of volume. A com-
mon algorithmic frame is designed, allowing us to
solve all three problems simultaneously. The proposed
algorithm is compact for enumeration of facets and
computation of volume.

1 Introduction

1.1 Zonotopes

We define the Minkowski sum of a set A ⊆ R
d and

a vector b ∈ R
d as A+̇b := {a+αb : a ∈ A, 0 ≤ α ≤ 1}.

A zonotope is a polytope defined as the Minkowski
sum of a finite number of line segments. Formally:
given s, g1, . . . , gm ∈ R

d, a zonotope is the set

Z(s; g1, . . . , gm) := {s}+̇g1+̇ · · · +̇gm.

The (m + 1)-tuple (s; g1, . . . , gm) is called generator
description (of the zonotope), the vector s is called
shift and the vectors g1, . . . , gm are called generators.
The dimension of the zonotope Z(s; g1, . . . , gm),

denoted dim(Z), is the affine dimension of the set
Z(s; g1, . . . , gm).
Zonotopes have some structural properties, summa-

rized in Lemma 1, which will be useful later.

Lemma 1 (a) For every zonotope Z =
Z(s; g1, . . . , gm) ⊂ R

d there exist a matrix
G ∈ R

m×d and vectors yd, yh ∈ R
m such that

Z = {x ∈ R
d : x = Gy, yd ≤ y ≤ yh, y ∈ R

m}.

(b) A zonotope Z(s; g1, . . . , gm) is a centrally
symmetric set with center s+ 1

2

∑m

i=1 gi;

(c) Given Z = Z(s; g1, . . . , gm), let gi = αgj for
distinct i, j ∈ {1, . . . ,m} and α ∈ R. Then

Z =















Z(s; g1, . . . , gi−1, gi + gj , . . . , gj−1, gj+1,
. . . , gm) for α ≥ 0

Z(s+ gj ; g1, . . . , gi−1, gi − gj , . . . , gj−1,
gj+1, . . . , gm) for α < 0.

∗Both authors: Department of Econometrics, University of
Economics, Prague, nám. W. Churchilla, Praha 3, 130 67 Czech
Republic, miroslav.rada@vse.cz, cernym@vse.cz

The generator gj from Lemma 1(c) is called redun-
dant. The process of removal of redundant generators
can be iterated until all are removed. Then we obtain
a new representation (s′, g′1, . . . , g

′
m′) with m′ < m of

the same zonotope. It will be denoted

red(s; g1, . . . , gm) := (s′, g′1, . . . , g
′
m′). (1)

1.2 The algorithm and some of its properties

In this paper we deal with three combinatorial
problems related to zonotopes given by generator
descriptions—enumeration of facets, enumeration of
vertices and computation of volume.
There is an important result yielding a lower bound

on complexity of any algorithm enumerating facets
and vertices:

Theorem 2 ([7]) Given a zonotope in R
d with

m generators, it holds f0 ≤ 2
∑d−1

i=0

(

m−1
i

)

and

fd−1 ≤ 2
(

m

d−1

)

, where f0 and fd−1 stand for the num-
ber of vertices and the number of facets, respectively.
Furthermore, there exist zonotopes such that the in-
equalities are satisfied with equality.

It follows that it is not possible to design an algorithm
which would compute the vertex or facet representa-
tion of a zonotope given by generator representation
in time polynomial in the number of generators and
dimension.
We propose algorithms computing volume, the

facet representation and the vertex representation of
a given zonotope. Facet representation is computed
with the same effort as the volume computation in
terms of time and space complexity; both these algo-
rithms are compact. The time complexity of vertex
representation is the same as of facet representation,
but it is not compact.

Remark. Let A be an algorithm and let |X| denote the size
of an instance X for A. The algorithm A is said to be compact,
if there is a polynomial p(|X|) such that for each instance X the
space consumed in the execution of A(X) is ≤ p(|X|), where
the size of the output is disregarded. (That is, the Turing
machine for A consumes at most p(|X|) cells on the input tape
and working tapes, the space on the write-only output tape not
being taken into account.)

Our approach is useful for problems where the all
three characteristics of a zonotope are required, see [2]
for an example.

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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1.3 Remarks on known algorithms for the prob-
lems

For the vertex enumeration problem, there is a com-
pact algorithm polynomial in output size, based on
linear programming and reverse search in [1]. There
is also the worst-case optimal algorithm for this prob-
lem as shown in [4]. The optimality is based on the
fact that the computation time is asymptotically the
same as the size of output.
For the facet enumeration problem, an algorithm

polynomial in output size is known, see [6].
There is also an algorithm (see [5]) for enumeration

of all faces of a zonotope given by the list of vertices,
which is compact and polynomial in output size; hence
one can use it together with [1] for the enumeration
of all faces of a zonotope given by generators.
By [3], computation of volume of zonotope is

a #P -hard problem. Given a zonotope Z :=
Z(s; g1, . . . , gm) in R

d, a simple approach to compute
its volume is to decompose it into

(

m

d

)

“small” zono-
topes, each of which is given by d generators. The
volume of Z is then given by the formula (see [7])

vol(Z) =
∑

1≤i1<···<id≤n

|det (gi1 , . . . , gid)| . (2)

2 Reduction-and-Reconstruction Recursive algo-
rithm (RRR)

RRR is a common algorithmic frame which can be
used for solving (at least) three basic problems: vol-
ume computation, facet enumeration and vertex enu-
meration. The algorithmic frame uses unspecified
procedures BasicCase and Combine. (These proce-
dures depend on the particular problem to be solved
and will be specified later.)
Input of the algorithm. As the input we get

a d-dimensional zonotope Z given by the genera-
tor description Z := Z(s; g1, . . . , gm). Note that for
every permutation π of the set {1, . . . , n} it holds
Z(s; g1, . . . , gm) = Z(s; gπ(1), . . . , gπ(m)). Hence we
can assume that generators g1, . . . , gd are linearly in-
dependent.
The algorithmic frame. The symbol

P(γ1, γ2, H) denotes the projection function. It
computes the image of generator γ1 projected paral-
lelly with the generator γ2 into the hyperplane H.

{1} Function RRR(s̃; g̃1, . . . , g̃m̃)
{2} (s; g1, . . . , gm) := red(s̃; g̃1, . . . , g̃m̃)
{3} if m = dim(g1, . . . , gm) then
{4} Output := BasicCase(s; g1, . . . , gm)
{5} else
{6} choose j(gm) such that gm 6∈ Hj(gm)

{7} define Pm(x) := P(x, gm, Hj(gm))
{8} D1 := RRR(s; g1, . . . , gm−1)
{9} D2 := RRR(Pm(s);Pm(g1), . . . ,Pm(gm−1))

{10} Output := Combine(s; g1, . . . , gm;D1, D2)
{11} end.

To explain the symbols in {6} and {9}: j(g) is an in-
dex from the set {1, . . . ,m} (its choice, depending on
the g, was specified in {6}) and Hj(gm) is the hyper-

plane Hj(gm) := {ξ ∈ R
d : ξj(gm) = 0}.

The step {7} introduces a shorthand simplifying
notation only.

Idea of the algorithm. We process the sequence
of zonotopes Zd, . . . , Zm, where Zi = Z(s; g1, . . . , gi)
for i ∈ {d, . . . ,m}. Clearly, Zm = Z.

Zd is determined by exactly d generators (and
shift). By assumption, these generators are linearly
independent. Hence Zd is a combinatorially simple
parallelotope, for which the computation of volume,
facets and vertices is simple. Zd is processed by the
procedure BasicCase.

Construction of Zi for d < i ≤ m is based on Zi−1,
computed previously, and its image in the hyperplane
Hj(gi) under the projection P. If Zi−1 is known, we
examine how it changes when we add the generator
gi. This is formalized by the procedure Combine,
particular forms of which will be described later.

Definition 1 Given Zi, the symbol P(Zi−1) denotes
the input of recursively called RRR on row {9}, ie.
P(Zi−1) := Z(Pi(s);Pi(g1), . . . ,Pi(gi−1)).
The generator gi is the used generator for

P(Zi−1).

Definition 2 Given zonotope Z and its generator g,
the upper boundary of Z for the generator g is the
set UB(Z, g) := {x ∈ Z : maxα∈R{α : x+ αg ∈ Z} =
0}. The lower boundary of Z for the generator g is
the set LB(Z, g) := UB(Z,−g).

2.1 Application 1: Volume computation

For computation of volume we define the procedures
BasicCase and Combine as follows:

BasicCase(s; g1, . . . , gm) = |det(g1, . . . , gm)| ,

Combine(s; g1, . . . , gm, α1, α2) = α1 + α2

∣

∣gmj(gm)

∣

∣ .

(3)

The symbol gmj(gm) in (3) stands for the j(gm)-th
component of the vector gm, where j(gm) is the index
chosen in {6}.
Algebraic interpretation and complexity.

When we compute the volume of Zm using (2), we
usually multiply the entries of the main diagonal of
each of the determinants after its transformation to
the lower triangular form. The total number of deter-
minants is

(

m

d

)

. Some of them may be null.
When we compute the volume of Zm using RRR,

the volume of Zi−1 is computed in {8}. In terms
of (2) it means that we compute determinants for all
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(

m−1
d

)

d-tuples of generators (α1 in (3)). It remains to

compute the
(

m−1
d−1

)

determinants of all such d-tuples,
where one of the components is gm. Let α3 be the
sum of those determinants. The computation is done
in {9} and partly in {10}. The projection function
Pm(·) can be seen as one iteration of a transformation
of all determinants containing gm to the lower trian-
gular form. It nullifies the j(gm)-th entry in its first
argument. The projected generators form a (d − 1)-
dimensional zonotope with volume equal to the sum
of

(

m−1
d−1

)

determinants (α2 in (3)). When we multiply
α2 by j(gm)-th entry of gm, we get α3.
RRR has two advantages for the volume computa-

tion. First, assume that procedure red is not used.
Then some work in evaluation of the determinants is
saved:

Theorem 3 The time complexity of volume compu-
tation of Z(s; g1, . . . , gm) using RRR is O(md

(

m

d

)

).

This is an improvement by factor d2/m compared to
(2), assuming complexity of determinant computation
is O(d3).

Second, null determinants are implicitly excluded.
Furthermore, some determinants are evaluated to-
gether after joining generators in {2}.
Exact quantification of how much computation is

saved depends on the initial ordering of generators.
At the moment we can not state any particular result
on how the initial ordering of generators influences
the computational effort saved. This is an interesting
question for further research.

2.2 Application 2: Facet enumeration

Let Facet(s; g1, . . . , gm; k1, . . . , kd−1) be a procedure

which, for a given zonotope Z(s; g1, . . . , gm) in R
d,

computes two centrally symmetric hyperplanes con-
taining two facets of Z generated by gk1, . . . , gkd−1.
Then it is sufficient that RRR enumerates (d − 1)-
element index sets generating facets.
Formally, an index set is a set {k1, . . . , kd−1} such

that the generators gk1
, . . . , gkd−1

generate a facet.
(Observe that they must be linearly independent.)
Furthermore, no pair of index sets spanning the

same hyperplane (and hence producing the same
facet) should be output. We call two index sets con-
vertible, if they span the same hyperplane.
The idea. Let Zm be the input of RRR at the

first level of recursion. When we are evaluating RRR
for, say, Zi and recursively call RRR for P(Zi−1) in
{9}, we need to keep information which generator of
P(Zi−1) corresponds to which one in Zi (and hence
also in Zm). [We say that a generator g′ of the zono-
tope P(Zi−1) corresponds to the generator g of the
zonotope Zi if g′ is the image of g under the pro-
jection Pi.] The correspondence must be maintained
because we are using the procedure red in {2}.

All the procedures RRR, Combine, BasicCase and
also red will then have a list of indices ℓ1, . . . , ℓi as
parameter. Each index in this list determines the cor-
responding generator of original zonotope Zm. If the
procedure red reduces a generator, i.e. joins two gen-
erators into one generator, we will preserve the lower
index of the two generators joined.
The procedure BasicCase is evaluated in the

following way. Parallelotopes have no convert-
ible index sets, so we simply return all possi-
ble ones: BasicCase(s; g1, . . . , gm; ℓ1, . . . , ℓm) :=
{{ℓ1, . . . , ℓm} \ {ℓk} : 1 ≤ k ≤ m}.
The procedure Combine uses the fact that every

index set determines a facet. For the zonotope Zi

in R
d, the facet representation of Zi−1 is the subset

of a facet representation of Zi, since all index sets of
generators of Zi−1 are index sets of Zi, too.
The addition of the generator gi to Zi−1 cre-

ates some new index sets. The recursive call in
{9} in RRR computes the facet representation of
the P(Zi−1), which is the set of (d − 2)-element
index sets of Zi−1. When we add ℓi (as an in-
dex of gi) to all of these index sets, we get the
set of all index sets of Zi containing ℓi. Hence
Combine is simply the union of all computed index
sets: Combine(s; g1, . . . , gm, IS1, IS2; ℓ1, . . . , ℓm) :=
IS1 ∪ {K ∪ {ℓi} : K ∈ IS2}. At the end, we remove
convertible index sets before the facets are output.

2.3 Improvement of 2.2: Ensuring compactness

Definition 3 Let Z be a zonotope in R
d and K1,K2

be convertible index sets of Z. We say that index set
K1 is less than K2, if max(K1\K2) < max(K2\K1).
Let K be an index set of Z. Then K is minimal,

if it is less than all index sets convertible with K.

We show how to modify the algorithm of Sect. 2.2 to
make it compact. During the recursive calls of RRR,
indices of all used generators (in sense of Definition 1)
will be remembered and hence they can be utilized in
the procedure BasicCase when it is evaluated. The
basic observation is that the procedure Combine is
not longer necessary for joining used generators and
(d− 2)-element index sets.

Furthermore, if we ensure that no two convertible
(d−1)-element sets will be created by any BasicCase
call, it will be possible to output the index sets (and
hence the facets) in the moment the BasicCase is
evaluated. In that case we do not need Combine any-
more and the algorithm becomes compact.

Recall that the red procedure preserves the lower
indices when reducing generators. Hence, all the min-
imal convertible index sets will be processed by some
BasicCase call. So, when evaluating BasicCase pro-
cedure, we test for each possible index set whether is
it minimum. If so, we output it, otherwise we discard
it. This observation concludes the description.
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2.4 Application 3: Vertex enumeration

The BasicCase procedure is simple: vertices of a par-
allelotope can be enumerated as the set of all 2d com-
binations of generators of parallelotope.

Suppose we know the vertex representation V(Zi−1)
of the zonotope Zi−1. The set V(Zi−1) can be decom-
posed into three subsets according to which boundary
they belong to:

E :={v ∈ V(Zi−1) : v ∈ UB(Zi−1, gi)∩LB(Zi−1, gi)},

U :={v ∈ V(Zi−1) : v ∈ UB(Zi−1, gi) \ LB(Zi−1, gi)},

L :={v ∈ V(Zi−1) : v ∈ LB(Zi−1, gi) \ UB(Zi−1, gi)}.

Observe that if a vertex v is on the lower boundary of
the zonotope Zi−1, then v is the vertex of the zono-
tope Zi, too. If a vertex v is on the upper boundary,
then v + gi is the vertex of the zonotope Zi.

It remains how to test boundary membership effi-
ciently. Denote the vertex representation of P(Zi−1)
produced in {9} as V(P(Zi−1)). Observe that each
vertex in E is an inverse image of some vertex in
V(P(Zi−1)). Then, after computation of V(P(Zi−1))
and V(Zi−1), we know which vertices of V (Zi−1) are
in E. The remaining vertices are to be decomposed
into U and L.

Suppose we know a supporting halfspace for each
vertex in Zi−1. For each vertex v in Zi−1 \ E and its
supporting halfspace H, we claim that if for v+gi the
inequality H is valid, then v is in L, otherwise it is in
U . Hence, Combine can be defined as follows:

Combine(s; g1, . . . , gm, V S1, V S2) := L′ ∪ U ′ ∪ E′,
L′ := {v : v ∈ L}, U ′ := {v + gm : v ∈ U},
E′ := {v, v + gm : v ∈ E}.

The last question is how to get the supporting halfs-
paces for the vertices of Zi. The supporting halfspace
of each v ∈ L′ ∪ U ′ has the same normal vector as
the original vertex. The supporting halfspace of each
v ∈ E′ is determined using the supporting halfspace
of Pi(v), which may be assumed to be known by re-
cursion, and the generator gi.

3 Summary of algorithmic properties and conclu-
sions

It is interesting that the number of calls of the main
RRR procedure is independent on whether we com-
pute volume, facets or vertices. Hence the problems
can be solved simultaneously.

The number of calls is at most O(md−1) in the
worst case (each projection decreases the dimension
by one and we can terminate when d = 1). It fol-
lows that when the dimension is fixed, the algorithm
becomes polynomial as long as the BasicCase and
Combine are polynomial procedures.

The number of iterations cannot be improved in
general, because the number of facets can attain the
same order value by Theorem 2. Computation of vol-
ume also cannot be expected to be improved to poly-
nomial time as the problem is #P -hard. (In this
sense, RRR is a universal method for #P .)
The algorithm is compact for facet enumeration and

volume computation. For vertex enumeration, there is
a drawback that the procedure Combine needs to re-
member each vertex produced so far. Finding a com-
pact version of the algorithm for vertex enumeration
is an interesting problem for further research.
For volume computation, RRR is better than (2) by

the factor d2/m (see Theorem 3), which is interesting
for example when d ≈ m/2.
It is also worth mentioning that degeneration of

zonotopes is treated by the algorithm implicitly.
It would be also interesting to find further appli-

cations of the algorithmic frame in geometry of poly-
topes.
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Domain Mapping using Harmonic Functions in non-convex domains of

genus non-zero

Richard Klein∗ Hari K. Voruganti† Michael Sears†

Abstract

This paper outlines a method to perform domain map-
ping using harmonic functions, following which an ex-
tension is presented that allows it to handle 2D do-
mains containing voids. Many geometric processing
tasks can be performed efficiently on regular domains.
As complex, non-convex, real–world geometries come
into play, however, this efficiency is often lost and
sometimes there may be no method to find a solu-
tion. Domain Mapping aims to construct some map
from a complicated space to a simple, usually convex,
space. Once this map is constructed, solutions can be
found in the new target domain and transferred back
to the original domain. Some problems that bene-
fit from domain mapping include mesh construction,
robot path planning and computer animation.

1 Introduction

Many of the problems in mathematics have efficient
and well understood solutions in regular domains. As
complex, real–world geometries come into play, how-
ever, this elegance is often lost. This is particularly
the case with numerical meshes of physical problems.
Domain mapping helps to move problems from a ge-
ometrically complex source domain to a regular, easy
to use target domain.
Numerical methods usually work over some mesh

on the relevant domain. The structure and detail of
these meshes can affect the overall computational ef-
fort and accuracy significantly. Unfortunately, build-
ing a good mesh is not always a straight forward task.
Finite element analysis in 3D, for example, typically
requires 4 to 10 times the number of tetrahedral el-
ements to achieve the same accuracy as the corre-
sponding hexahedral mesh [3]. Constructing such a
hexahedral mesh, however, is a difficult task; so in
practice many people use tetrahedral meshes instead.
Once the geometrically complex domain has been

mapped to a regular domain, one can construct el-
egant meshes that bear useful properties. After the
mesh has been constructed, calculations can be per-
formed in the new domain and transferred back to the

∗School of Computer Science, University of the Witwater-
srand, South Africa, richard.klein@wits.ac.za

†School of Computer Science, University of the Witwater-
srand, South Africa

original domain later. Alternatively, the mesh can be
transferred back to the original domain where calcu-
lations can be performed.
Another application of domain mapping is found

in robot path planning, where the path between two
configurations of a robot is found by connecting two
points in the robot’s configuration space. In many
cases this configuration space is non-convex and in
spaces with high dimensionality, finding a path be-
tween two arbitrary points becomes a non-trivial task
[5].
A final example of domain mapping’s use comes

from the field of computer animation [2]. In order to
morph one object smoothly to another, one needs to
calculate some map between them. By using domain
mapping to map two topologically equivalent objects
to the same target domain, one implicitly creates a
diffeomorphism from one object to the other.
Voruganti et al. [4, 5] outline a method that al-

lows one to parametrise non-convex source domains
of genus-0 by spherical co-ordinates through the use
of Harmonic Functions. This paper outlines various
ways to extend their method to handle the 2D case
where the source domain is not of genus-0. The con-
straint that the source domain is simply connected is
relaxed so that one only requires it to be connected.
This allows the space to contain voids. This paper im-
plements a method which is applicable to remeshing,
robot path planning and video animation.

The original method for genus-0 domains is de-
scribed in Section 2 along with some examples. Sec-
tion 3 then explains the extensions to the method that
allow it to handle voids in 2D. Following that, Section
4 shows examples of the method with discussions of
the various cases. Finally, Section 5 illustrates domain
mapping’s path planning and remeshing abilities.

2 Domain Mapping

2.1 Harmonic Functions for Domain Mapping

Domain mapping aims to find some parametrisation
of the source domain to some regular target domain.
The method outlined in [4, 5] parametrises the source
domain into the relevant spherical co-ordinates. Thus
in 2D f is a map to polar co-ordinates and in 3D f

is a map to spherical co-ordinates. Source domains of
higher dimensionalities are mapped to the appropriate

This is an extended abstract of a presentation given at EuroCG 2012. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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dimensional sphere, i.e. f : (~x) → (r, ~θ).

While the method is an adaptation of the artifi-
cial potential field approach, it is novel in the way
it uses the potential field to generate the required
parametrisation. Firstly, some arbitrary centre point
within the domain, S, is chosen. This is set with some
low potential value, say 0. The boundary of the do-
main is then set with some high potential value, say 1.
Laplace’s equation (▽2φ = 0) is then solved over the
domain to generate a potential field. Once the poten-
tial field has been calculated, any point, a ∈ S, can
then be parametrised by tracking a streamline from
that point towards the centre. Once this is done, the
point a is parametrised into spherical co-ordinates; r
is set to be the potential value at the point a and ~θ

is the angle at which its streamline approaches the
centre. Rather than tracking streamlines for every
point, which is computationally expensive, one need
only track streamlines from an adequate selection of
boundary points. Every point along a single stream-
line now has the same ~θ value and some unique r

value (potential) between the boundary values [0; 1].
To map any point that does not lie on the calculated
streamlines, one can interpolate values from the clos-
est two streamlines. This decreases the computational
effort, albeit at the cost of some numerical accuracy.

The method outlined requires that all streamlines
finish at the centre and that the computational cost
of generating the potential field be relatively low.
Laplace’s equation is used so that φ will be a har-
monic function. A function, φ, is Harmonic on some
domain iff it solves Laplace’s equation over that do-
main. Harmonic functions have two useful properties
of which the method takes advantage.

Firstly, Harmonic functions satisfy the Mean Value

Theorem and conversely, if a function satisfies the
mean value property it is Harmonic. If B(~x, r) is a
closed ball with centre ~x, radius r, and B(~x, r) ⊂ S,
then the value of the harmonic function at the centre
of the ball, φ(~x), is the average value of φ over the
surface of the ball [1, 4, 5].

A useful numerical result follows from this prop-
erty. If S is discretised with some uniform mesh, then
the potential value of any point is the average of the
neighbouring potential values. These are the finite
difference equations derived for Laplace’s equation.

This indicates that the simple finite difference
method lends itself to the calculation of the poten-
tial field. Another benefit is that the finite difference
matrices are sparse, which can be leveraged during
computation to minimize memory usage.

The method requires that all of the streamlines
reach the centre. For this reason, it fails if there
are local extrema in the potential field. The maxi-
mum principle guarantees that there are none: unless
a harmonic function, φ, is constant, it only achieves
extrema on the domain boundaries [4]. This also en-

sures that all of the potential values within the domain
fall in [0; 1]; resulting in a spherical parametrisation
with a maximum radius of 1.

2.2 Example

Figure 1 illustrates how the method maps the source
domain – namely the outline of Africa – to its corre-
sponding target domain. Figure 1a shows the original
domain, Figures 1b and 1c show the contours of the
potential field and the boundary streamlines respec-
tively and Figure 1d shows each streamline once it has
been mapped to the target domain.
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Figure 1: Africa

3 Mapping Domains that Contain Voids

This research focuses on extending the above method
to handle domains containing voids in 2D. The source
domain must remain connected although it need not
be simply connected. The method remains the same
with the addition that boundary conditions are ap-
plied to the voids when calculating the potential field.
Specifically, the aim is to change the flow of the po-
tential field so that the void becomes manageable in
the target domain.
To aid understanding of these additional conditions,

the potential field can also be interpreted as a solu-
tion to the steady state heat equation. Thus, the
potential value at a point is comparable to its tem-
perature. In this framework, the centre acts as a heat
sink while the domain boundary acts as a heat source.
The streamlines now represent the flow of heat in the
domain.
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By applying a Dirichlet boundary condition to the
void one can specify the potential – or “temperature”
– along the void boundary. If the void is treated as
an infinite conductor, the temperature values on the
void boundaries are forced to be equal. This forces the
entire void boundary to the same potential value, thus
moving all these points to the same radial distance
from the centre in the target domain. Streamlines
thus flow either from the boundary directly to the
centre, or from the boundary to one side of the void.
These streamlines have then to be restarted on the
other side of the void and allowed to reach the centre.
There are then multiple streamlines approaching the
centre from the void. This results in multiple angles
but a single potential value. Therefore, the void is
reduced to a single arc in the the target domain. This
is shown in Figure 2 in the following section.
Another approach focuses on applying Neumann

boundary conditions to the void. In physical terms,
this equates to enforcing some heat flux over the
void boundary. By treating the void as an insulator,
one prohibits the flow of heat across the void. The
flow is now forced around the void. One streamline
heads from the boundary towards some fixed point
on the void boundary. This streamline is once again
restarted on the other side of the void. The boundary
of the void now has a number of associated potential
values, but there is only a single streamline originat-
ing at the void. Hence, the void is associated with a
single angle and multiple potential values. Thus, it is
reduced to a single radial line in the target domain.
This is illustrated in Figure 3 in the following section.
The two methods can be used in conjunction in

order to shrink the void to a single point in the target
domain. Note, however, that these methods do not
preserve the topology of the domain as the boundary
of the void is collapsed. This may or may not be
acceptable, depending on the application at hand.
If there is only a single void in the domain, the

boundary of the void can be used as the centre. This
method requires that the void is convex and is only
able to handle the case of a single void in the domain.

4 Results

Figures 2d and 3d show how the streamlines are trans-
formed in the target domain. The blue points cor-
respond to the blue streamlines originating at the
domain boundaries in Figures 2c and 3c. Only the
end points of the streamlines have been marked to
help emphasize the transformation of the void. The
green points correspond to the endpoints of the green
streamlines that were restarted on the other side of
the void. Figure 2d shows how the endpoints of the
void streamlines form an arc in the target domain.
Similarly, Figure 3d shows how they form a radial
line.
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If there are multiple voids in the source domain,
they can be handled in the same way as before. If a
streamline passes from one void to another, it should
be handled by restarting that streamline on the other
side of the second void. This process is continued
until the streamline reaches the centre and an angle
is assigned. If a streamline flows from one void to
another, the void through which it must pass is said
to eclipse the original one.
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Figure 4 shows how eclipsing affects each of the
aforementioned methods. The first method reduces
each void into separate arcs. The second method is
unlikely to encounter the eclipsing effect as it would
require that the single streamline that reaches the first
void also then reaches the second. If this does hap-
pen, however, there will be two separate lines in the
target domain that have the same angular position,
but different potential values.
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Figure 4: Eclipsed Voids

If streamlines are traced in the reverse direction –
from the centre to the boundary – the method be-
comes sensitive to minor changes in the angle. This
is particularly important when calculating the inverse
mapping.

5 Applications

Remeshing and path planning were discussed in Sec-
tion 1. The application of domain mapping to these
problems is discussed below.
As the configuration space of a robot may be any

arbitrary connected space, planning a path from one
configuration to another is equivalent to finding some
path between two points in this space. For example,
domain mapping can be used to solve this problem in
an arbitrary, connected, 2D space. First the points
are mapped forward to the target domain. They are
then joined in this domain with a path that avoids the
shrunken voids. Finally, this path is mapped back to
the original source domain.
In geometrically complicated domains, creating a

mesh can be a difficult task. By mapping the domain
to the a disk, the mesh can be easily constructed and
transferred back to the source domain. It is impor-
tant that the mesh is constructed around the points
representing the voids. Without voids, the map is
diffeomorphic. Thus calculations can be performed in
the polar space and later mapped back to the initial
domain. The benefit of this approach is that the sim-
ple Laplace equation is solved on the complicated do-
main, while a complicated PDE could then be solved
on the simple convex domain. Figure 5 shows the re-
sult of a rectangular mesh that was constructed in the
target domain and then transferred back to the Africa
domain from Figure 1.

6 Conclusions and Further Work

Two new developments of the domain mapping pro-
cedure developed in [4, 5] have been presented and
shown to be effective on test data. The relevance of
these new methods to several applications has been
indicated. Future work will involve the extension of
these ideas to higher dimensional non simply con-
nected regions, and the development of parallel code
to deal with real–world size problems.
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Collette, Sébastien . . . . . . . . . . . . . . . . . . . . . . . . . . 89, 209

Damian, Mirela . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

De Carufel, Jean-Lou . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Demaine, Erik D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273

Demaine, Martin L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Devadoss, Satyan L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Devillers, Olivier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Dey, Sandeep Kumar . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
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Löffler, Maarten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Lubiw, Anna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Maheshwari, Anil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Mantel, Anja . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Mazaheri, Zahra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Mchedlidze, Tamara . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Meerwald, Peter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Meijer, Henk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
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Stojaković, Miloš . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Sugihara, Kokichi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Syslo, Maciej . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Tahmasbi, Maryam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Taslakian, Perouz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

Teillaud, Monique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Temme, Sylvie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
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