
27th European Workshop
on Computational Geometry

Abstracts from
EuroCG 2011

Morschach, Switzerland
March 28-30, 2011

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Preface

The 27th European Workshop on Computational Geometry (EuroCG 11) was held on March 28–30 at Anto-
niushaus Mattli in Morschach, Switzerland.

EuroCG is an annual, informal workshop whose goal is to provide a forum for scientists to meet, present their
work, interact, and establish collaborations, in order to promote research in the field of Computational Geometry,
within Europe and beyond.

We received 67 submissions, which underwent a limited refereeing process in order to ensure some minimal
standards and to check for plausibility. We selected 56 submissions for presentation at the workshop, two of
which were withdrawn later.

Apart from abstracts of the 54 contributed talks this booklet also contains abstracts of the three invited lectures,
given by Mark de Berg, Friedrich Eisenbrand, and Jǐŕı Matoušek. The content of this booklet—just like the
pdf-files of abstracts available on the EuroCG website http://eurocg.org—should be regarded as a collection
of preprints. Therefore, we expect most of the results presented here to be also submitted to peer-reviewed
conferences and/or journals.

Many thanks to all authors and invited speakers for their participation, and to the members of the program
committee and all external reviewers for their insightful comments. The nice coin on the title page (In CG we
trust. . .) was designed by Yves Brise and he also deserves credit for borrowing me his camera to shoot the
photos for the webpage. Finally, we are very grateful for the generous support of our sponsors: Choco Mundo
GmbH, Sportbahnen Schwyz-Stoos-Fronalpstock AG, Disney Research Zürich, and ETH Zürich.

March 2011 Michael Hoffmann

Program Committee

• Bernd Gärtner, ETH Zürich

• Michael Hoffmann, ETH Zürich (chair)

• Gabriel Nivasch, ETH Zürich

• Shakhar Smorodinsky, Ben-Gurion University

• Bettina Speckmann, TU Eindhoven

• Marc van Kreveld, Utrecht University

• Emo Welzl, ETH Zürich

Organization

• Michael Hoffmann, ETH Zürich

• Andrea Salow, ETH Zürich

• Emo Welzl, ETH Zürich

External Reviewers

• Karim Abu-Afash

• Dominique Attali

• Gill Barequet

• Panagiotis Cheilaris

• Efi Fogel

• Stefan Funke

• Maarten Löffler

• Evanthia Papadopoulou

• Guodong Rong

• Oded Schwartz

• Tan Tiow Seng

• Tung Cao Thanh

• Xinyu Zhang

• Afra Zomorodian

27th European Workshop on Computational Geometry, 2011

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Table of Contents

Invited Talks

Computational Geometry for Fat Objects and Low-Density Scenes . 1
Mark de Berg

Recent Trends in Algorithmic Geometry of Numbers . 3
Friedrich Eisenbrand

The Dawn of an Algebraic Era in Discrete Geometry? . 5
Jiř́ı Matoušek

Session 1 (Monday 10:45–12:15)

Constructing Optimal Shortcuts in Directed Weighted Paths . 11
Rolf Klein, Marcus Krug, Elmar Langetepe, D.T. Lee, Dorothea Wagner

Probabilistic Matching of Solids in Arbitrary Dimension . 15
Daria Schymura

Minimum-Link Paths Revisited . 19
Joseph Mitchell, Valentin Polishchuk, Mikko Sysikaski

Reconstruction of Flows of Mass under the L1 Metric . 23
Jörg Bernhardt, Stefan Funke, Sabine Storandt

On Some Connection Problems in Straight-Line Segment Arrangements .27
Helmut Alt, Sergio Cabello, Panos Giannopoulos, Christian Knauer

A Conjecture about an Upper Bound of the RMSD between Linear Chains . 31
Christian L. Müller, Ivo F. Sbalzarini

Angle-Restricted Steiner Arborescences for Flow Map Layout . 35
Kevin Buchin, Bettina Speckmann, Kevin Verbeek

Distance between Folded Objects . 39
Chen Gu, Leonidas Guibas

Improving Shortest Paths in the Delaunay Triangulation . 43
Manuel Abellanas, Mercè Claverol, Gregorio Hernández, Ferran Hurtado, Vera Sacristán,
Maria Saumell, Rodrigo I. Silveira

Construct of Common Development of Regular Tetrahedron and Cube . 47
Toshihiro Shirakawa, Takashi Horiyama, Ryuhei Uehara

The Traveling Salesman Problem with Differential Neighborhoods . 51
Lauri Häme, Esa Hyytiä, Harri Hakula

Design of Antigravity Slopes for Visual Illusion . 55
Kokichi Sugihara

Session 2 (Monday 14:00–15:30)

Two-Site Voronoi Diagrams under Geometric Distance Functions . 59
Gill Barequet, Matthew T. Dickerson, David Eppstein, David Hodorkovsky, Kira Vyatkina

Covering and Piercing Disks with Two Centers . 63
Hee-Kap Ahn, Christian Knauer, Sang-Sub Kim, Lena Schlipf, Hyeon-Suk Na,
Chan-Su Shin, Antoine Vigneron

The L∞ Hausdorff Voronoi Diagram Revisited . 67
Evanthia Papadopoulou, Jinhui Xu

27th European Workshop on Computational Geometry, 2011

Convex Treemaps with Bounded Aspect Ratio . 71
Mark de Berg, Bettina Speckmann, Vincent van der Weele

A Parallel GPU-based Algorithm for Delaunay Edge-Flips . 75
Cristobal Navarro, Nancy Hitschfeld, Eliana Scheihing

A Competitive Strategy for Distance-Aware Online Shape Allocation . 79
Sandor Fekete, Nils Schweer, Jan-Marc Reinhardt

Computing Popularity Maps with Graphics Hardware . 83
Marta Fort, J. Antoni Sellarès, Nacho Valladares

Wireless Localization with Vertex Guards. .87
Tobias Christ, Aurosish Mishra

Exact Medial Axis of Quadratic NURBS Curves . 91
George M. Tzoumas

Online Hitting Sets in a Geometric Setting Via Vertex Ranking . 95
Guy Even, Shakhar Smorodinsky

Connecting a Set of Circles with Minimum Sum of Radii .99
Erin W. Chambers, Sandor Fekete, Hella-Franziska Hoffmann, Dimitri Marinakis,
Venkatesh Srinivasan, Ulrike Stege, Sue Whitesides

A 3-Approximation Algorithm for Computing Partitions
with Minimum Stabbing number of Rectilinear Simple Polygons . 103

Mohammad Ali Abam, Boris Aronov, Mark de Berg, Amirali Khosravi

Session 3 (Tuesday 09:00–10:15)

Coloring Planar Homothets and Three-Dimensional Hypergraphs . 107
Jean Cardinal, Matias Korman

Flow on Noisy Terrains: An Experimental Evaluation. .111
Mark de Berg, Herman Haverkort, Constantinos Tsirogiannis

4-Holes in Point Sets . 115
Birgit Vogtenhuber, Oswin Aichholzer, Thomas Hackl, Ruy Fabila-Monroy, Clemens Huemer,
Jorge Urrutia, Hernán González-Aguilar, Marco A. Heredia

Flow Computations on Imprecise Terrains . 119
Anne Driemel, Herman Haverkort, Maarten Löffler, Rodrigo I. Silveira

The Number of k-Point Subsets Separable by Convex Pseudo-Circles . 123
Dominique Schmitt, Jean-Claude Spehner

Delaunay Topological Stability and Convex Hull of Point Sets with Coupled Uncertainties 127
Yonatan Myers, Leo Joskowicz

Cannibal Animal Games: A New Variant of Tic-Tac-Toe . 131
Jean Cardinal, Sebastien Collette, Hito Iro, Matias Korman, Stefan Langerman,
Hikaru Sakaidani, Perouz Taslakian

Data Imprecision under λ-Geometry: Finding the Largest Axis-Aligned Bounding Box . 135
Mansoor Davoodi Monfared, Payam Khanteimouri, Farnaz Sheikhi, Ali Mohades

A Proof of the Oja-depth Conjecture in the Plane . 139
Nabil Mustafa, Hans Raj Tiwary, Daniel Werner

High Quality Surface Mesh Generation for Swept Volumes . 143
Andreas von Dziegielewski, Michael Hemmer

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Session 4 (Wednesday 10:30–12:00)

Switch-regular Upward Planar Drawings with Low-degree Faces . 147
Walter Didimo

Implicit Flow Routing on Triangulated Terrains . 151
Mark de Berg, Herman Haverkort, Constantinos Tsirogiannis

Right Angle Crossing Graphs and 1-planarity .155
Peter Eades, Giuseppe Liotta

Searching for Radio Beacons with Mobile Agents that Perceive Discrete Signal Intensities 159
Henning Hasemann, Tom Kamphans, Alexander Kröller

Area-Preserving C-Oriented Schematization . 163
Kevin Buchin, Wouter Meulemans, Bettina Speckmann

New Bivariate System Solver and Topology of Algebraic Curves . 167
Marc Pouget, Sylvain Lazard, Fabrice Rouillier, Yacine Bouzidi

Consistent Labeling of Rotating Maps . 171
Andreas Gemsa, Martin Nöllenburg, Ignaz Rutter

Angular Convergence during Bezier Curve Approximation . 175
Ji Li, Thomas Peters, John Roulier

On Disjoint Crossing Families in Geometric Graphs. .179
Radoslav Fulek, Andrew Suk

Long Monotone Paths in Convex Subdivisions . 183
Günter Rote

Computing Strongly Homotopic Line Simplification in the Plane . 185
Shervin Daneshpajouh, Mohammad Ali Abam, Lasse Deleuran, Mohammad Ghodsi

Geometric Motion Planning: Finding Intersections. .189
Sandor Fekete, Henning Hasemann, Tom Kamphans, Christiane Schmidt

Session 5 (Wednesday 13:30–14:30)

Kinetic Red-blue Minimum Separating Circle . 193
Yam Ki Cheung, Ovidiu Daescu, Marko Zivanic

Persistent Homology Computation with a Twist . 197
Chao Chen, Michael Kerber

Kinetic Convex Hulls in the Black-Box Model . 201
Mark de Berg, Marcel Roeloffzen, Bettina Speckmann

Boundary of a Non-Uniform Point Cloud for Reconstruction . 205
Nicolas Chevallier, Yvan Maillot

Convex Hull of Imprecise Points in o(n log n) Time after Preprocessing . 209
Esther Ezra, Wolfgang Mulzer

Learning a 2-Manifold with a Boundary in R3 . 213
Christian Scheffer, Jan Vahrenhold

Approximate Polytope Membership Queries . 217
Sunil Arya, Guilherme D. da Fonseca, David M. Mount

Certified Computation of Morse-Smale Complexes on Implicit Surfaces . 221
Amit Chattopadhyay, Gert Vegter

27th European Workshop on Computational Geometry, 2011

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Computational Geometry for Fat Objects and Low-Density Scenes

Mark de Berg

Department of Computer Science, TU Eindhoven
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

In a traditional efficiency analysis in algorithms research, one studies the worst-case running time (or storage
usage) of an algorithm as a function of the input size. In many cases such an analysis gives a good indication
of the algorithm’s efficiency in practice, because the worst-case behavior and the “normal” behavior are fairly
similar. For geometric algorithms, however, this is often not the case: the worst-case behavior of a geometric
algorithm may have little relation to its efficiency in practice. The main reason is that the worst-case behavior
typically arises only for inputs with objects whose shapes or distribution over the space are quite extreme—much
more extreme than occurs in practice. The conclusion is that expressing the efficiency of a geometric algorithm
as a function of input size only is insufficient. What we need is a geometry-sensitive analysis, which also takes
the shape and/or distribution of the input objects into account. In other words, we need to express the efficiency
as a function of not only the input size, but also of certain parameters that capture the shape or distribution of
the input.

This insight not only influences the way in which we should analyze geometric algorithms, it also has an
impact on the design of algorithms: we need to design algorithms that become more efficient when the geometry-
describing parameters have favorable values. Over the past 15 years or so, many such algorithms have been
developed. Most of these either use the fatness of the input objects as a parameter, or their density. The former
parameter says something about the shape of the individual objects, while the latter is concerned with their
distribution over the space. In this talk I will give an overview of the results that have been obtained in this
area.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

1

27th European Workshop on Computational Geometry, 2011

2

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Recent Trends in Algorithmic Geometry of Numbers

Friedrich Eisenbrand∗

Abstract

The algorithmic geometry of numbers is a classical
field of mathematics that was pioneered by Lagrange
and Gauss with their work on binary quadratic forms
more than 200 years ago. Questions concerning the
representability of integers by quadratic forms and ge-
ometric techniques to answer them have fascinated
mathematicians since then.

At least since the development of the LLL-
algorithm more than 25 years ago, the algorithmic
geometry of numbers has played an important role in
the fields of computational complexity, cryptography,
and optimization. Here, in particular, fundamental
lattice problems like closest and shortest vectors of a
lattice play a prominent role.

In this tutorial I will survey some results from the
algorithmic geometry of numbers and its relation to
algorithmic research. I plan to start with exemplary
results from the origins of the field and build a bridge
to recent algorithmic breakthroughs and intriguing
open problems.

∗EPFL, Station 8, 1015 Lausanne,
friedrich.eisenbrand@epfl.ch

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

3

27th European Workshop on Computational Geometry, 2011

4

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

The Dawn of an Algebraic Era in Discrete Geometry?

Jǐŕı Matoušek∗

Section One, Where the Author Is Browsing the
2010 ArXiv

To me, 2010 looks as annus mirabilis, a miracu-
lous year, in several areas of my mathematical inter-
ests. Below I list seven highlights and breakthroughs,
mostly in discrete geometry, hoping to share some of
my wonder and pleasure with the readers.

Of course, hardly any of these great results have
come out of the blue: usually the paper I refer to
adds the last step to earlier ideas. Since this is an
extended abstract (of a nonexistent paper), I will be
rather brief, or sometimes completely silent, about the
history, with apologies to the unmentioned giants on
whose shoulders the authors I do mention have been
standing.1 A careful reader may notice that together
with these great results, I will also advertise some
smaller results of mine.

• Larry Guth and Nets Hawk Katz [16] completed
a bold project of György Elekes (whose previous
stage is reported in [10]) and obtained a near-
tight bound for the Erdős distinct distances
problem: they proved that every n points in
the plane determine at least Ω(n/ log n) distinct
distances. This almost matches the best known
upper bound of O(n/

√
log n), attained for the√

n ×
√
n grid. Their proof and some related

results and methods constitute the main topic of
this note, and will be discussed later.

• János Pach and Gábor Tardos [27] found tight
lower bounds for the size of ε-nets for geometric
set systems.2 It has been known for a long time

∗Department of Applied Mathematics and Institute of Theo-
retical Computer Science (ITI), Charles University, Malostran-
ské nám. 25, 118 00 Praha 1, Czech Republic, and Institute
of Theoretical Computer Science, ETH Zurich, 8092 Zurich,
Switzerland

1I should also add that my selection is entirely personal and
subjective, shall not indicate or imply any ranking of the results
listed, any judgment of results not mentioned, or any compar-
ison thereof, and shall not encompass any warranty of sound
and safe conditions of the cited papers or any liability on my
side, in particular, no rights of readers or third parties to be
indemnified in case of loss or damage directly or indirectly re-
lated to the aforementioned papers. But I do not want this
abstract to look like a car rental contract.

2Let F be some system of subsets of Rd, say all closed half-
spaces or all axis-parallel boxes, and let X be a finite set in Rd.
A subset N ⊆ X is called an ε-net for X with respect to F ,
where ε ∈ [0, 1] is a given real number, if N intersects every
“large” set, i.e., every F ∈ F for which |F ∩X| ≥ ε|X|.

that for systems such as halfspaces, balls, sim-
plices in Rd, for d fixed, ε-nets of size O(1

ε log 1
ε)

exist, for every finite set X and every ε. The
proof was based on a very general combinato-
rial property of the considered set system, called
bounded VC-dimension, and there was hope that
simple geometrically defined systems might ad-
mit even smaller ε-nets, perhaps of size O(1

ε). In-
deed, there were some reasons for optimism, since
O(1

ε) was known for halfspaces in R3, and more
recently, Aronov, Ezra, and Sharir [2] proved
an O(1

ε log log 1
ε) upper bound for axis-parallel

rectangles in R2. However, Alon [1] established
the first superlinear lower bound in a geomet-
ric setting (for lines in the plane), and Pach and
Tardos got the tight lower bound of Ω(1

ε log 1
ε)

for halfspaces in R4, as well as Ω(1
ε log log 1

ε) for
axis-parallel rectangles in R2. These results may
perhaps not look as significant to others, but
for me, they close a long open and tantalizing
problem, which for myself I considered almost
hopeless. Moreover, I think that the proofs con-
tain (reinforce?) a general lesson: in order to
prove an “irregularity” result, in the sense that
something cannot be very uniform, it may of-
ten be good to strive for a Ramsey-type result,
showing that there has to be a completely non-
uniform, “monochromatic” spot—in the case of
ε-nets, this way even gives a tight quantitative
bound!

• Mikhail Gromov [14] invented a new topologi-
cal proof of the first selection lemma. The
lemma states that for every n-point set P ⊂ Rd
there exists a point a (not necessarily in P) con-
tained in at least cd

(
n
d+1

)
of the d-dimensional

simplices with vertices in P , where cd is a pos-
itive constant depending only on d. (There are(
n
d+1

)
d-simplices spanned by P in total, so a is

in a positive fraction of them.) Gromov’s proof
yields significantly better value of cd than all pre-
vious ones, provides a far-reaching generalization,
and hopefully opens a way towards deeper under-
standing of many related problems. By including
Gromov’s paper in my 2010 list I am cheating
slightly, since a preprint was circulated one or
two years earlier. But a completely honest 2010
item was supplied by Karasev [21], who found a
greatly simplified and fairly elementary version
of the argument. Readers interested in the com-

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

5

27th European Workshop on Computational Geometry, 2011

binatorial issues involved and in attempts at ex-
plaining Gromov’s method may also reach for a
paper of Wagner and mine [25].

• Francisco Santos [28] disproved the 1957 Hirsch
conjecture, which states that the graph of a d-
dimensional convex polytope with n facets has
diameter at most n−d. The conjecture was moti-
vated by linear programming, more precisely, by
the analysis of simplex-type algorithms. Santos’
ingenious examples have diameter (1 + ε)(n− d)
for a small positive ε, and the fascinating ques-
tion of maximum diameter of a d-polytope with
n facets has become even more interesting (and
the subject of Gil Kalai’s polymath project), the
best upper bound being nO(log d) [18].

• Oliver Friedmann, Thomas Dueholm Hansen,
and Uri Zwick [13] proved very strong lower
bounds for various randomized simplex al-
gorithms.

The simplex method from the late 1940s remains
one of the best linear programming algorithms in
practice, but a construction known as the Klee–
Minty cube showed in the 1970s that some of the
widely used variants are exponential in the worst
case. This started a quest for a polynomial-time
version, and on the optimistic side, a subexpo-
nential upper bound, of roughly exp(O(

√
n)),

was proved in 1992 for an algorithm known as
RANDOM FACET. There was hope that the
analysis might be further improved, or that some
other randomized variant could be shown to be
polynomial.

Friedmann et al. shattered these great expecta-
tions almost completely, by proving an almost
matching lower bound for RANDOM FACET,
as well as a similar lower bound for another
promising-looking algorithm known as RAN-
DOM EDGE (lower bounds of this kind were
known before, but only for the performance of
these algorithms on certain “generalized linear
programs”, while the possibility of polynomial
bounds for actual linear programs was still open).
They use a powerful new way of constructing
“difficult” linear programs, based on randomized
parity games. The potential of this approach ap-
parently has not yet been exhausted.

• Nikhil Bansal [3] found a polynomial-time algo-
rithm for computing low-discrepancy col-
orings,3 using semidefinite programming and in-
genious rounding via a high-dimensional random

3The input to the algorithm is a set system F on a finite
set X, and the output is a coloring χ of X by +1s and −1s.
The discrepancy disc(χ,F) of χ is the maximum, over all sets
F ∈ F , of the “imbalance” of F , i.e., of

∣∣∑
x∈F χ(x)

∣∣. The
discrepancy of F is minχ disc(χ,F), where the minimum is over
all possible ±1 colorings of X.

walk. The algorithm is not an approximation al-
gorithm for discrepancy in general (indeed, ap-
proximating discrepancy is pretty much hopeless
[5]), but it makes several existential bounds for
the discrepancy of certain set systems, such as
all arithmetic progressions on {1, 2, . . . , n}, con-
structive, which has been a major open problem
in discrepancy theory. It also has structural con-
sequences; one of the quick spinoffs is a near-tight
answer [24] to an old questions of Sós concern-
ing the discrepancy of a union of two set sys-
tems on the same ground set (besides Bansal’s
algorithm, the answer also relies on a beautiful
linear-algebraic lower bound for discrepancy of
Lovász, Spencer, and Vesztergombi [22]).

• June Huh [17] proved log-concavity of the
sequence of coefficients of the chromatic
polynomial.4 More precisely, for the chromatic
polynomial written as a0+a1x+· · ·+anxn, Huh’s
result asserts that ai−1ai+1 ≤ a2i for every i (and
for an arbitrary graph G, of course). This im-
plies that the sequence (|a0|, |a1|, . . . , |an|) is uni-
modal, a 1968 conjecture of Read.

The proof relies on connections of the problem
to singularities of local analytic functions and ul-
timately to mixed multiplicities of certain ide-
als. This result does not entirely fit my list since
it cannot be passed for discrete geometry even
with considerable indulgence, but it looks beau-
tiful and it does rest on geometric ideas. I do not
understand much of it, but perhaps some day I
will have enough time and energy to learn the
necessary background or someone will explain it
to me—at least it does not look as intimidating
as some other papers.

Section Two, On Distinct Distances and Other Al-
gebraic Magic

The following three problems were raised by Erdős
[12] in 1946:

• Estimate the maximum possible number of inci-
dences between a set P of m points and a set L
of n lines in the plane (where an incidence is a
pair (p, `) with p ∈ P , ` ∈ L, and p ∈ `).

• Estimate the maximum number of unit dis-
tances among n points in the plane. This can
also be reformulated using incidences; up to a
multiplicative factor of at most 2, one wants to
estimate the maximum number of incidences be-
tween n unit circles and n points in the plane.

4The chromatic polynomial of a graph G is a polynomial
whose value at a natural number k equals the number of proper
coloring of G with k colors. It can be shown that such a poly-
nomial indeed exists, and is determined uniquely, for every G.

6

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

• Estimate the minimum number of distinct dis-
tances determined by n points in the plane.

The first two of these problems, incidences and unit
distances, look quite similar at first sight. For point-
line incidences the order of magnitude was determined
precisely by Szemerédi and Trotter [31] in 1983; in
particular, for n points and n lines the bound is of
order n4/3. Two other, much simpler proofs were dis-
covered later, by Clarkson et al. [6] and by Székely
[30]. These proofs are “combinatorial”, in the sense
that they do not use the straightness of the lines (and
thus they also work for incidences of points with pseu-
dolines, i.e., with systems of curves satisfying certain
simple combinatorial axioms).

For unit distances, or incidences of unit circles with
points, a modification of these proofs also yields an
O(n4/3) upper bound, but here a matching lower
bound is lacking—the best known example, a suitable
grid, yields only a near-linear bound, smaller than
n1+δ for every fixed δ > 0. Erdős conjectured this
lower bound to be essentially optimal.

Many ingenious techniques have been developed for
bounding the number of incidences in various settings;
see, e.g., a recent survey by Pach and Sharir [26].
However, none of them seems capable of breaking the
n4/3 barrier. Moreover, the unit distance problem can
be considered not only for the Euclidean norm, but
also for other norms in the plane, and Valtr [32] con-
structed a norm for which n-point sets actually exist
with Ω(n4/3) unit distances. This indicates that lim-
its of combinatorial approaches to the unit distance
problem, powerful as they are, have been reached.

It seems that for further progress on unit distances
(in the upper bound, which should be the way to go
according to Erdős and general belief) one has to use
some algebraic properties of the circle.

Indeed, while the unit distances problem still
stands, the distinct distances problem was essen-
tially settled by Guth and Katz, as was already
mentioned—and their proof combines ingenious alge-
braic arguments (using tools from algebraic geometry,
mostly dating back to the 19th century) with geo-
metric, or perhaps topological, considerations similar
to those appearing in earlier higher-dimensional inci-
dence proofs.

The Guth–Katz proof is somewhat complicated
(and I am sure simpler variants will be found sooner
or later), and I will not attempt to even sketch it here.
I will just mention two of its main ingredients.

One of them is a simple but surprisingly powerful
trick invented by Dvir [7], which can be illustrated on
another remarkable recent achievement in incidence
problems, the joints problem (solved in another paper
of Guth and Katz [15], with further simplifications
and extensions by Elekes, Kaplan, Sharir, Shustin,
and Quillodrán; the following outline mostly follows

[19]). We consider a set L of n lines in R3, and call a
point a ∈ R3 a joint if there are at least three lines of
L, not all coplanar, passing through a. The question
is, what is the maximum possible number of joints for
n lines, and the answer is O(n3/2) (with a matching
lower bound example provided by a suitable grid of
lines). The proof goes as follows.

For contradiction, we suppose that a set L of n
lines has at least Cn3/2 joints, with C very large (and
n even much larger). Let J be the set of all joints of
L, and let m := |J |.

We first need to prune L and J so that all of the
remaining lines contain many joints. By a simple
pruning procedure (repeatedly discarding lines with
a small number of joints and all the joints incident to
them) we can select L′ ⊆ L and J ′ ⊆ J so that every
` ∈ L′ contains at least k := m/2n points of J ′, and
each point of J ′ is a joint of the lines in L′.

Next, a simple argument shows that there exists a
nonzero polynomial in three variables that vanishes
on all points of J ′ and has degree at most 4m1/3 (the
condition of vanishing on J ′ is expressed by a sys-
tem of homogeneous linear equations with the coef-
ficients of the desired polynomial as unknowns, and
when the number of unknowns exceeds the number
of equations, a nonzero solution exists). Among all
nonzero polynomials vanishing on J ′ we choose one
of the smallest possible degree and call it f ; we thus
have D := deg(f) ≤ 4m1/3.

Let us consider the restriction f` of f to a line
` ∈ L′. It vanishes at each of the at least k points
of J ′ incident to `. Since f` can be regarded as a uni-
variate polynomial of degree at most D, either it is 0
everywhere on `, or it has at most D zeros there. But
for large C we have D < k, and so we get that f` ≡ 0.
Thus f vanishes on all lines of L′.

Now we let ~g := ∇f = (∂f∂x ,
∂f
∂y ,

∂f
∂z) be the gradient

of f (this is a polynomial mapping R3 → R3). Since
f vanishes along every ` ∈ L′, the projection of ~g(p)
onto ` also vanishes for all p ∈ `. In other words, ~g(p)
is perpendicular to `. In particular, if we look at a
joint a ∈ J ′, we obtain that ~g(a) is perpendicular to
three non-coplanar lines, and hence ~g(a) = (0, 0, 0).

Since taking a partial derivative decreases the de-
gree of a polynomial, each of the three components of
~g is a polynomial of degree smaller than D, and we
have just proved that it vanishes on J ′. Since f was
the smallest-degree nonzero polynomial vanishing on
J ′, ~g must be identically 0. This means than f is con-
stant, and this is a contradiction (since we assumed it
to be nonzero and to vanish on J ′), which concludes
the proof.

This was Dvir’s trick in action, and now, what is
the trick? An idea turned into a recipe often loses
much of its usefulness, but a vague general formu-
lation might perhaps be this: one constructs a low-

7

27th European Workshop on Computational Geometry, 2011

degree polynomial vanishing on the considered points,
or other “low-dimensional” objects, infers that it has
to vanish on some other objects of higher dimension as
well, and derives a global conclusion about the poly-
nomial, such as vanishing of the gradient.

Another ingredient of the distinct distances proof,
which was invented by Guth and Katz for this pur-
pose, are space partitions using polynomials. Given a
finite set P ⊂ Rd and a parameter r, 1 < r ≤ |P |,
they apply the polynomial ham-sandwich theorem of
Stone and Tukey to obtain a partition of Rd. Namely,
they construct a nonzero polynomial f so that no con-
nected component of Rd \ Z(f) contains more than
|P |/r points of P (where Z(f) is the zero set of f). A
key feature of the construction is that deg(f) need not
be too high, only O(r1/d), and thus the interaction
of other objects, such as lines or hyperplanes, with
Z(f) is under control in some sense. This method
provides an alternative to previous space partitioning
techniques, such as cuttings or simplicial partitions,
and in some respects it is apparently more powerful
than these earlier tools.

A simple example of using these polynomial parti-
tions is a new simple proof of the Szemerédi–Trotter
upper bound on point-line incidences. Together with
some other applications, we have described this in de-
tail in a recent preprint with Kaplan and Sharir [20],
and so it will not be discussed here.

There are several other encouraging examples of
“enriching discrete geometry with algebra” besides
those mentioned above, a major share of them due
to Elekes and his co-authors.

One of the major directions are sum-product the-
orems, originally a number-theoretic issue. The ear-
lier stages, dealing with real numbers, are nicely sur-
veyed in Elekes [8]. Then, after Bourgain, Katz,
and Tao [4] obtained a sum-product theorem in fi-
nite fields, there has been a great surge of activity,
and the sum-product business has been extended far
beyond the borders of discrete geometry (and far be-
yond the intended scope of the present note). It has
found many diverse applications, including in num-
ber theory, group theory, and the explicit construc-
tions of extractors and Ramsey graphs. An acces-
sible initial picture and references can be gained,
e.g., from a talk of Wigderson as recorded in the
lecture notes at http://www.math.cmu.edu/~af1p/

Teaching/AdditiveCombinatorics/allnotes.pdf.

Another interesting (and related) direction can be
represented, e.g., by the papers of Elekes and Rónyai
[9] and of Elekes, Simonovits, and Szabó [11]. I will
mention only a rather concrete consequence of the
results of [9], known as Purdy’s conjecture. Let C
be a constant, let a and b be lines in the plane, let
p1, . . . , pn be distinct points on a, and let q1, . . . , qn
be distinct points on b. Purdy’s conjecture, now a the-

orem, states that if the set of the Euclidean distances
{‖pi− qj‖ : i, j = 1, 2, . . . , n} has at most Cn distinct
elements, and if n is sufficiently large, then a and b
must be either parallel or perpendicular. Actually, it
seems that it should be sufficient to assume at most
n2−ε distinct distances, for some fixed ε > 0, and the
conclusion should still hold, but this is wide open at
present.

The last two “algebraic” contributions mentioned
here concern the unit distances problem, or rather,
they deal with variants of it. Schwartz et al. [29]
proved that if we count only unit distances with ratio-
nal angles (i.e., attained for pairs of points p, q such
that the angle of the line pq with the x-axis is a ra-
tional multiple of π), then the number of these spe-
cial unit distances is bounded by O(n1+ε), for every
fixed ε > 0. In [23], I proved that there exist norms
in the plane for which the number of unit distances
obeys the upper bound O(n log n log log n) (while ev-
ery norm admits sets with Ω(n log n) unit distances,
and, according to Valtr [32], some norms allow for as
many as Ω(n4/3) unit distances). The proof combines
a linear-algebraic argument, a graph-theoretic lemma
we proved earlier for another purpose with Př́ıvětivý
and Škovroň, and a Baire category argument.

The above short survey certainly does not exhaust
all significant examples of algebraic methods used in
discrete geometry. Moreover, I have no doubts that,
while I am writing this, bright mathematicians are
working hard on extending the Guth–Katz break-
through and on other amazing algebraic methods and
applications.

So, does this signify the beginning of an algebraic
era in discrete geometry? My list at the beginning
of this note shows a more balanced picture, with
topology, probability, optimization, and ingenuity in
a friendly competition with algebra, but it indicates
that the best results have usually been achieved not
only by cleverness and new ideas, but also by applying
more and more advanced tools from various branches
of mathematics. So I am not sure about an algebraic
era, but, just in case, recently I have ordered five text-
books on algebraic geometry and such things for my
PhD students and myself.

Acknowledgment. I would like to thank Micha
Sharir, Imre Bárány, and Uli Wagner for valuable
comments to a draft of this note.

References

[1] N. Alon: A non-linear lower bound for planar
epsilon-nets, in Proc. 51st Annu. IEEE Sympos.
Found. Comput. Sci. (FOCS) 2010, pages 341–
346.

8

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

[2] B. Aronov, E. Ezra and M. Sharir: Small-
size epsilon-nets for axis-parallel rectangles and
boxes, SIAM J. Comput. 39(2010), 3248–3282.

[3] N. Bansal: Constructive algorithms for discrep-
ancy minimization, in Proc. 51st IEEE Sym-
posium on Foundations of Computer Science
(FOCS), 2010. Full version arXiv:1002.2259.

[4] J. Bourgain, N. H. Katz and T. C. Tao: A sum-
product estimate in finite fields, and applications,
Geom. Funct. Anal. 14(2004) 27–57.

[5] M. Charikar, A. Newman, and A. Nikolov: Tight
hardness results for minimizing discrepancy. In
Proc. 22nd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2011.

[6] K. Clarkson, H. Edelsbrunner, L. Guibas, M.
Sharir and E. Welzl, Combinatorial complexity
bounds for arrangements of curves and spheres,
Discrete Comput. Geom. 5 (1990), 99–160.

[7] Z. Dvir: On the size of Kakeya sets in finite fields,
J. Amer. Math. Soc. 22(2009) 1093–1097.

[8] Gy. Elekes, Sums versus products in number the-
ory, algebra and Erdős geometry, in G. Halász et
al. editors, Paul Erdős and His Mathematics, J.
Bolyai Math. Soc., Budapest, 2002, pages 241–
290.

[9] Gy. Elekes, L. Rónyai: A combinatorial problem
on polynomials and rational functions, J. Comb.
Theory, Ser. A 89(2000) 1–20.

[10] Gy. Elekes and M. Sharir, Incidences in three di-
mensions and distinct distances in the plane, in
Proc. 26th Annu. ACM Sympos. Comput. Geom.,
pages 413–422, 2010.

[11] Gy. Elekes, M. Simonovits, E. Szabó: A com-
binatorial distinction between unit circles and
straight lines: How many coincidences can they
have? Combinat. Probab. Comput. 18(2009) 691–
705.

[12] P. Erdős, On a set of distances of n points, Amer.
Math. Monthly 53 (1946), 248–250.

[13] O. Friedmann, T. Hansen, U. Zwick: Subex-
ponential lower bounds for randomized pivot-
ing rules for the simplex algorithm. In Proc.
43rd ACM Symposium on Theory of Computing
(STOC), 2011, to appear.

[14] M. Gromov: Singularities, expanders and topol-
ogy of maps. Part 2: From combinatorics to
topology via algebraic isoperimetry. Geom.
Funct. Anal., 20(2010) 416–526.

[15] L. Guth and N. H. Katz: Algebraic methods
in discrete analogs of the Kakeya problem, Adv.
Math. 225(2010) 2828–2839.

[16] L. Guth and N. H. Katz, On the Erdős dis-
tinct distances problem in the plane, preprint,
arXiv:1011.4105.

[17] J. Huh: Milnor numbers of projective hypersur-
faces and the chromatic polynomial of graphs,
preprint, arXiv:1008.4749.

[18] G. Kalai and D. J. Kleitman: A quasi-polynomial
bound for the diameter of graphs of polyhedra,
Bull. Amer. Math. Soc. 26(1992) 315–316.

[19] H. Kaplan, M. Sharir, and E. Shustin: On lines
and joints, Discrete Comput. Geom. 44(2010)
838–843.

[20] H. Kaplan, J. Matoušek, and M. Sharir: Simple
proofs of classical theorems in discrete geometry
via the Guth–Katz polynomial partitioning tech-
nique, preprint, arXiv (number not yet available
at the time of writing).

[21] R. Karasev: A simpler proof of the Boros–Fü-
redi–Bárány–Pach–Gromov theorem, preprint,
arXiv:1012.5890, 2010.

[22] L. Lovász, J. Spencer, and K. Vesztergombi: Dis-
crepancy of set-systems and matrices, European
J. Combinat., 7(1986) 151–160.

[23] J. Matoušek: The number of unit distances
is almost linear for most norms, Adv. Math.
226(2011) 2618–2628. Preprint arXiv:1007.1095.

[24] J. Matoušek: The determinant bound
for discrepancy is almost tight, preprint,
arXiv:1101.0767.

[25] J. Matoušek, U. Wagner: On Gromov’s method
of selecting heavily covered points, preprint,
arXiv:1102.3515.

[26] J. Pach and M. Sharir: Geometric incidences,
in Towards a Theory of Geometric Graphs (J.
Pach, ed.), Contemporary Mathematics, Vol. 342,
Amer. Math. Soc., Providence, RI, 2004, pages
185–223.

[27] J. Pach, G. Tardos: Tight lower bounds for
the size of epsilon-nets, In Proc. 27th ACM
Sympos. Comput. Geom., 2011, to appear; also
arXiv:1012.1240.

[28] F. Santos: A counterexample to the Hirsch con-
jecture, preprint, arXiv:1006.2814.

[29] R. Schwartz, J. Solymosi, and F. de Zeeuw: Ra-
tional distances with rational angles, preprint,
arXiv:1008.3671.

9

27th European Workshop on Computational Geometry, 2011

[30] L. Székely: Crossing numbers and hard
Erdős problems in discrete geometry, Combinat.
Probab. Comput. 6(1997) 353–358.

[31] E. Szemerédi and W. T. Trotter: Extremal
problems in discrete geometry, Combinatorica
3(1983) 381–392.

[32] P. Valtr, Strictly convex norms allowing many
unit distances and related touching questions,
manuscript, Charles University, Prague 2005.

10

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Constructing Optimal Shortcuts in Directed Weighted Paths

R. Klein∗ M. Krug† E. Langetepe∗ D. T. Lee‡ D. Wagner†

Abstract

We show that the optimum shortcut, with respect to
routing cost, in a directed path with weighted vertices
can be found in linear time. To this end, we construct
in linear time the lower envelope of an arrangement
of pseudo-lines whose order at infinity is given. The
algorithm can also be applied to star-shaped directed
networks.

Keywords: Arrangements, computational geom-
etry, lower envelope, network optimization, pseudo-
line, routing cost, shortcut edge.

1 Introduction

Transportation networks can be modelled by graphs
in a number of different ways. Quite frequently, ver-
tices represent cities, and edges stand for highway or
railroad connections between them. In the routing
cost model, the overall quality of a network is mea-
sured by the sum of the lenghts of all shortest paths
between all pairs of vertices; see Wu and Chao [6].
Here the length of a path equals the sum of the lengths
of its edges.

We are interested in augmenting a given network,
by adding an extra edge to it in such a way that its
routing cost is reduced as much as possible. In our
model each edge is of unit length, reflecting a situa-
tion where long distance traffic is fast, while changing
between highways or railways requires time consum-
ing inner-city travel.

This augmenting problem has been studied by
Farshi et al. [2] with respect to the dilation (or:
stretch factor, spanning ratio) of a network. Their
problem differs considerably from ours. For example,
the geometric path P over n vertices shown in Fig-
ure 1 is of dilation 2/ε, attained by vertices v1 and v3,
while its routing cost

2
∑

1≤i<j≤n

(j − i) =
(n − 1)n(n + 1)

6

does not depend on the geometric embedding of P .
With one extra edge available, we would minimize
the dilation of P by inserting it between v1 and v3,
whereas the routing cost of P is minimized by adding

∗Department of Computer Science I, University of Bonn
†Karlsruhe Institute of Technology (KIT), Institute for The-

oretical Informatics
‡Institute of Information Science, Academia Sinica

an edge connecting v := vn/5 to v′ := v4n/5; the proof
of optimality requires lenghty calculations. Not only
the paths between vertices to the left of v and to the
right of v′ become shorter; vertices between v and
v′ also benefit from the shortcut edge, as Figure 1
indicates.

v1

v2

v3 vn

e
e′

P
v v′

1 1

ε

Figure 1: Inserting edge e minimizes the dilation,
while e′ minimizes the routing cost of path P .

In this note we consider the following problem. We
are given a path P = (v1, v2, . . . , vn) all of whose edges
(vi, vi+1) are directed from left to right. Each vertex
vi is assigned a weight wi > 0, reflecting the number
of residents of city vi. We want to decrease the routing
cost

r :=
∑

1≤i<j≤n

wi(j − i)wj

of P by adding one more edge (vk, vl) directed from vk

to vl, choosing k < l such that the decrease in routing
cost is as large as possible; compare Figure 2.

As compared to the undirected case shown in Fig-
ure 1, the situation has become simpler in that only
vertex pairs on opposite sides of the shortcut edge
can benefit from the extra edge. Thus, the decrease
in routing cost effected by adding a directed edge from
vk to vl equals

ρ(k, l) :=

 ∑
1≤i≤k

wi

 (l − k − 1)

 ∑
l≤i≤n

wi

 , (1)

because l− k edges between vk and vl can be avoided
by using edge (vk, vl).

On the other hand, introducing weights has made
the minimization problem non-trivial. In fact, the
decrease function ρ(k, l) can have multiple local max-
ima. (An example is given by the path with weights
(90, 10, 100, 1, 100, 1, 1, 1, 100, 1, 100, 10, 90) for which
the shortcut edges (v3, v11) and (v5, v9) are locally op-
timal.) Quite obviously, the optimum shortcut edge
could be determined by inspecting the O(n2) many
candidates (vk, vl) where 1 ≤ k < l ≤ n.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

11

27th European Workshop on Computational Geometry, 2011

w1 w2 wk wnwl

vk vl

Figure 2: Weights wi represent the population size of
city vi.

In this note, we are going to prove a sharper result.

Theorem 1 The optimum shortcut edge for a di-
rected, weighted path of n vertices can be determined
in time O(n).

2 Reduction to Pseudo-Line Arrangements

Let P denote a directed path of n vertices v1, . . . vn

with positive weights w1, . . . , wn. Considering For-
mula 1 we define

Ak :=
k∑

i=1

wi and Bl :=
n∑

i=l

wi

for k = 1, . . . , n. Moreover, let

fl(k) := Abkc(l − k − 1)Bl

be a function of a real variable k. In our optimization
problem, only values k < l are meaningful, but there is
no harm in ignoring this constraint. Function fl(k) is
piecewise linear, with discontinuities at integer values
of k. Here, fl(k) = ρ(k, l) holds.

Lemma 2 Let 1 ≤ l1 < l2 ≤ n be fixed.
(i) There exists at most one real value k ∈ [1, n] where
fl1(k) = fl2(k) holds. If so, we have fl1(k) < fl2(k)
to the right of k.
(ii) If no such value exist, fl1(k) < fl2(k) holds over
the whole interval [1, n],

Proof. Let us consider

fl2(k) − fl1(k) =
Abkc · ((l2 − 1)Bl2 − (l1 − 1)Bl1 + k(Bl1 − Bl2)). (2)

Because of l1 < l2 we have Bl1 > Bl2 . Moreover,
Abkc ≤ Abk′c holds if k < k′. Thus, Expression 2 is
strictly monotonically increasing in k, which proves
Claim (i). If Expression 2 never attains the value 0,
then the order relation between fl1(k) and fl2(k) is
the same all over [1, n]. If we set k := l2 − 1 ∈ [1, n]
we obtain fl1(k) < 0 = fl2(k), which completes the
proof of Claim (ii). �

The set of graphs of functions fl(k), where 1 ≤ l ≤
n, is called a family of pseudo-lines over the interval
[1, n] because any two of them have at most one point

of intersection, just as proper lines would. Arrange-
ments of pseudo-lines have been extensively studied;
see Goodman [4], for example. We can solve our opti-
mization problem by constructing the upper envelope
of this pseudo-line arrangement, that is, the graph G
of the maximum function

f(k) := max{fl(k); 1 ≤ l ≤ n}. (3)

Each function fl(k) contributes at most one segment
to G. Indeed, let us assume that some fl(k) con-
tributed two segments to G. Then a segment of some
fl′(k), where l′ 6= l, must occur in between. But for
this to happen, fl(k) and fl′(k) must intersect twice—
in contradiction to Lemma 2.

This is a special, and in fact the most simple, case
of a Davenport-Schinzel sequence. In general, if any
two of n function graphs over some interval inter-
sect at most s times, their envelope is of complex-
ity O(λs(n)), with a non-trivial, slightly super-linear
function λs; see the monograph by Sharir and Agar-
wal [5]. There is a simple algorithm that allows the
lower (or upper) envelope to be constructed in time
O(λs(n) log n), by divide-and-conquer. Here one as-
sumes that elementary operations, like computing an
intersection of two functions, can be carried out in
constant time. In our case, this is true. Moreover,
s = 1 and λ1(n) = n hold.

These facts give us a first improvement over the
trivial O(n2) algorithm mentioned in Section 1.
We can construct the upper envelope, G, in time
O(n log n). Then we perform one pass over G and
evaluate f(k) at all integer values of k; this takes
time O(n). If the maximum of these values is attained
within a segment of fl(k) in G, then the shortcut edge
from vk to vl yields a maximum reduction in routing
cost.

3 Computing the Envelope in Linear Time

To improve on the O(n log n) upper time bound just
mentioned, we will make use of the fact that the order-
ing of the functions fl(k) “far to the right” is known
to us. Indeed, for each l ≤ n − 1, Expression 2 yields

fl+1(n) − fl(n) = An(Bl+1 + (n + 1 − l)wl) > 0,

so that we obtain

f1(n) < f2(n) < . . . < fn(n).

We prove a general result covering this situation.

Theorem 3 Let f1, . . . , fn form an arrangement A
of pseudo-lines over interval I = [a, b]. If the order of
values fi(b) is known, the upper envelope of A can be
computed in time O(n).

12

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Proof. We proceed from right to left and process the
curves fj in order of decreasing indices. In a stack,
S, we store the part of the upper envelope that would
result if no further curves existed; see Figure 3. Ini-
tially, S contains only fn.

When processing fj , we compute the intersection,
w, of fj with the top element, fk, of S. If w does not
exist, or lies to the left of interval I = [a, b], we ignore
fj , and start processing fj−1.

Otherwise, let v be the intersection of the two top-
most curves in S. If w lies to the left of v, or if no
v exists because the stack contains only one element,
fk = fn, we push fj on the stack, and start process-
ing fj−1. But if w lies to the right of v, we pop fk

from the stack and continue processing fj . This pop

v

w

w

fn

fn−1

fl

fk

fj

a b

S

top(S)

Figure 3: Constructing the upper envelope.

operation is justified because to the left of w, curve
fk is dominated by fj and can, therefore, not con-
tribute to the upper envelope. With this observation,
the correctness of our algorithm is evident.

The linear run time bound can be shown as follows.
During each pass through the loop described above,
we (i) ignore fj , or (ii) push fj , or (iii) we pop fk.
Whenever (i) or (ii) occurs, we decrease the index j
of the function currently processed; thus, (i) and (ii)
happen at most n times. If there are only n push op-
erations, there can be no more than n pop operations
either, because each pop is sucessful. Thus, the loop
is carried out at most O(n) times, which proves the
linear time bound. Upon termination, stack S con-
tains the segments of the upper envelope, with the
leftmost segment on top. �

This completes the proof of Theorem 1. Finally, we
construct the upper envelope in linear time and find
its maximum among all integer arguments in [1, n], as
explained at the end of Section 2.

Applied to strict lines there is an interesting re-
lation to a variant of Graham’s scan algorithm for
computing the convex hull of a set of sorted points.
If Andrew’s monotone chain method [1] is translated
into the dual space, we obtain the above algorithm for
a set of strict lines sorted by slope.

4 Extensions

The most simple extension of a one-way path might
be a star-shaped directed network as depicted in Fig-
ure 4. For a center vertex v we have s incoming path
of complexity (number of nodes) mi for i = 1, . . . , s
and r outgoing paths of complexity nj for j = 1, . . . , r,
as depicted in Figure 4. There are three possible lo-
cations for a shortut. The shortcut might be placed
fully inside an incoming path, fully inside an outgo-
ing path or it might connect an incoming path with
an outgoing path. For the first two cases we can ap-

Figure 4: A directed star network with center v, 2
incoming and 4 outgoing paths of different length.

ply the same idea as presented above. We only have
to sum up all weights of the incoming paths and all
weights of the outgoing paths at v in order to adapt
the functions fl(k) properly. Then we let our algo-
rithm run on every path and obtain a total running
time of

∑s
i=1 mi +

∑r
j=1 nj which is optimal.

So the remaining task is to compute the best short-
cut connecting an incoming with an outgoing path.
In a direct way we could apply our algorithm to
all s × r alternatives which results in running time∑

i,j(mi + nj), obviously this is quadratic. We can
improve on this.

First, let us assume that there is only a single in-
coming path with complexity m. Applying the algo-
rithm for all r outgoing paths using the same incoming
path r times gives overall running time

∑r
j=1 nj+r·m.

For a set of s incoming paths we intuitively will collect
all incoming paths in a single incoming path of length
max mi. Then the running time for computing the
best shortcut between an incoming and an outgoing
path is given by

∑r
j=1 nj + r · max mi.

The idea depends on the special nature of the
functions fl(k). Within the algorithm of Section 3
we have to compute intersections in order to com-
pute the upper envelope. In our special case we
rather have computed intersection indices. Comput-
ing an intersection index means that we have to find
out where fl1(k) − fl2(k) changes its sign for some
1 ≤ k < l1 < l2 ≤ n. From Equation (2) we ob-
tain that fl1(k) − fl2(k) for some index k is given by
Ak ·((l2−1+k)Bl2−(l1−1+k)Bl1). Fortunately, the
sign of this expression is independent from Ak since

13

27th European Workshop on Computational Geometry, 2011

Ak is always positive. Furthermore (l2 − 1 + k) and
(l2 − 1 + k) are only path distances from vl1 and vl2

to vertex vk, respectively. This means that knowing
the exact value of the indices l1 and l2 and k with
respect to n is not necessary for computing intersec-
tions. Therefore we can apply the above algorithm for
an outgoing path (starting from the end and ending
at v) without knowing the exact path length n of the
path in the beginning and without knowing the exact
values Ak to the left. Intersection indices are com-
puted as path distances relative to the given position
in the path. In principle we rather compute functions
fvl

(k) instead of functions fl(k) where k is the path
distance of a directed path from some vertex w to vl.
The intersection indices computed for a single outgo-
ing path are the same for all incoming paths.

Of course, at the end we have to compute the en-
velopes to obtain the maximum. At this point we have
to make use of the values Ak. A collected incoming
path will simply represent the maximum values Ak

for a given path distance from v. The construction
of the single incoming path works as follows. Since
we have to compare all incoming paths, we have to be
independent from indices. Let vk be a vertex of an in-
coming path. Instead of Ak we will denote the sum of
weights arriving at vk by Avk

. For any path distance
d we compute the vertex w(d) of an incoming path
with path distance d to v that has maximum weight
Aw(d) among all such vertices of the same path dis-
tance d from v on all incoming paths. It is easy to see
that we can compute these vertices in overall running
time

∑s
i=1 mi. Now the collected incoming path is

given by vertices w(max mi), w(max mi−1), . . . , w(1)
in this order with corresponding weight sums Aw(k).

Theorem 4 Given a star-shaped directed network
with s incoming paths of complexity ni for i =
1, . . . , s and r outgoing paths of complexity mj for
j = 1, . . . , r. The optimal shortcut can be computed
in

∑s
i=1 mi +

∑r
j=1 nj + r · max mi time.

Finally, we consider the undirected case of a single
path. As already depicted in Figure 1 there are differ-
ent parts of the path that might profit from the short-
cut between v and v′ or vk and vl. A corresponding
function φ(k, l) for indices l < k becomes more com-
plicated. Two vertices profit, if the path length along
the shortcut is smaller than the original path length.
We collect the benefit of a shortcut in the following
functions due to the vertices that benefit.

First formula (from left to right as before):(∑k
i=1 wi

)
×

(∑n
j=l wj

)
× (l − k − 1) (4)

Second formula (from left to inner right):(∑k
i=1 wi

)
×

(∑l−1

j=d l+k
2 +1e wj × (2j − l − k − 1)

)
(5)

Third formula (from right to inner left):

(
∑n

i=l wi) ×
(∑b l+k

2 −1c
j=k+1 wj × (l + k − 2j − 1)

)
(6)

Fourth formula (from inner right to inner left):

l−1∑
i=d l+k

2 +1e+1

wi ×

(∑i−d l+k
2 +1e+k

j=k+1 wj × (k − l + 2i − 2j − 1)
)

(7)

Now let φ(k, l) be the sum of the function (4),(5),(6)
and (7). It can be shown that one can choose weights
so that two functions φ(k, l1) and φ(k, l2) will have
more than one intersection. This means that the key
idea of Theorem 1 does not apply directly to undi-
rected paths. Note, that the best shortcut can be
easily computed in O(n2) time anyway.

5 Conclusion

We have shown how to find an optimum shortcut in
an oriented path with weighted vertices, by efficiently
constructing upper envelopes of pseudo-lines. In case
of a star-shaped directed network the algorithm can
be applied also. Natural questions are if one can find
efficient algorithms for more general graph classes;
even the case of undirected paths is open.

Acknowledgements: We would like to thank an
anonymous referee for pointing out some interrelation
to a variant of Graham’s scan; see Section 3.

References

[1] A. M. Andrew. Another efficient algorithm for convex
hulls in two dimensions. Inform. Process. Lett. 9(5),
pp 216–219, 1979

[2] M. Farshi, P. Giannopoulos, and J. Gudmundsson.
Improving the stretch factor of a geometric graph by
edge augmentation. SIAM Journal on Computing,
38(1), pp. 226–240, 2008.

[3] M. Fischetti, G. Lancia, and P. Serafini. Exact Algo-
rithms for Minimum Routing Cost Trees. Networks
39(3), pp. 161–173, 2002.

[4] J. E. Goodman. Pseudoline Arrangements. In J. E.
Goodman and J. ORourke (eds.) Handbook of Comb.
and Computat. Geometry, CRC Press, 1997.

[5] M. Sharir and P. Agarwal. Davenport-Schinzel Se-
quences and Their Geometric Applications. Cam-
bridge University Press, 1995.

[6] B. Ye Wu and K.-M. Chao. Spanning trees and op-
timization problems. Chapman & Hall/CRC, 2004.

[7] Wu, Bang Ye and Lancia. A Polynomial-Time
Approximation Scheme for Minimum Routing Cost
Spanning Trees. SIAM J. Comput. 29(3), pp. 761–
778, 2000.

14

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Probabilistic matching of solids in arbitrary dimension

Daria Schymura∗

Abstract

We give simple probabilistic algorithms that approx-
imately maximize the volume of overlap of two solid
shapes under translations and rigid motions. The
shapes are subsets of Rd, d ≥ 2. The algorithms
approximate w.r.t. an prespecified additive error and
succeed with high probability. Apart from measura-
bility assumptions, we only require from the shapes
that uniformly distributed random points can be gen-
erated. An important example are finite unions of
simplices that have pairwise disjoint interiors.

1 Introduction

We design and analyze simple probabilistic algorithms
for matching solid shapes in Rd under translations and
rigid motions. An important example of solid shapes
are finite unions of simplices that have pairwise dis-
joint interiors. On the input of two shapes A and B,
the algorithms compute a transformation t∗ such that
the volume of overlap of t∗(A) and B is approximately
maximal.

First, we explain the algorithm and its analysis for
the case of translations. In Section 4, we show how to
generalize the results to rigid motions.

For translations, the idea of the algorithm is as fol-
lows. Given two shapes A and B, a point a ∈ A
and a point b ∈ B are picked uniformly at random.
This tells us that the translation t that is given by the
vector b − a maps some part of A onto some part of
B. We record this as a “vote” for t and repeat this
procedure very often. Then we determine the dens-
est cluster of the resulting point cloud of translation
vectors, and output the center of this cluster. This
translation maps a large part of A onto B. The de-
tails of the algorithm are explained in Section 2.

We show that this algorithm approximates the max-
imal volume of overlap under translations. More pre-
cisely, let topt be a translation that maximizes the
volume of overlap of A and B, and let t∗ be a transla-
tion that is computed by the algorithm. Given an er-
ror bound ε and an allowable probability of failure p,
both between 0 and 1, we show bounds on the re-
quired number of random experiments, guaranteeing
that the difference between approximation and opti-
mum |topt(A)∩B|−|t∗(A)∩B| ≤ ε|A| with probability

∗Institute of Computer Science, Freie Universität Berlin,
schymura@inf.fu-berlin.de

at least 1− p. Here | · | denotes the volume (Lebesgue
measure) of a set. We use ε|A| and not just ε as er-
ror bound because the inequality should be invariant
under scaling of both shapes with the same factor.

In a previous publication [1] we considered the 2-
dimensional case. Here we not only generalize the re-
sults to higher dimensions, but we also give new proofs
that improve the bounds on the number of random
samples.

Furthermore we considerably improve the time
complexity of the algorithm by showing that a simpler
definition of a cluster suffices to guarantee approxi-
mation. In [1], a translation whose neighborhood con-
tained the maximal number of “votes” was computed,
which boiled down to computing a deepest cell of an
arrangement of boxes. For N boxes, the best known
time bound is O(Nd/2/(logN)d/2−1 polyloglogN) [2].
Here we show that it is sufficient to output the “vote”
whose neighborhood contains the maximal number of
“votes”, which can be computed by brute force in
time O(N2) in any dimension. The time bound can
be further improved to O(N(logN)d−1) by using or-
thogonal range counting queries [4].

Cheong et al. [3] introduce a general probabilis-
tic framework, which they use for approximating the
maximal area of overlap of two unions of n and m tri-
angles in the plane, with prespecified absolute error ε,
in time O(m+(n2/ε4)(log n)2) for translations and in
time O(m + (n3/ε8)(log n)5) for rigid motions. The
latter time bound is smaller in their paper, due to
a calculation error in the final derivation of the time
bound, as was noted in [11]. Their algorithm works
with high probability.

For two simple polygons with n and m vertices in
the plane, Mount et al. [8] show that a translation
that maximizes the area of overlap can be computed
in time O(n2m2).

For maximizing the volume of overlap of two unions
of simplices under rigid motions, no exact algorithm
that runs in polynomial time is known, not even in
the plane. Vigneron gives an FPTAS with relative
error ε for dimension d ≥ 2 [11]. For two polyhedra
P and Q in Rd, given as the union of m and n sim-
plices, respectively, the algorithm for approximating
the maximal volume of overlap has time complexity
O
(
(nmε)d

2/2+d/2+1(log nm
ε)d

2/2+d/2+1
)
, which can be

improved to O
(
(n6/ε3) log4(n/ε)β(n/ε)

)
in the plane

where β is a very slowly growing function related to
the inverse Ackermann function.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

15

27th European Workshop on Computational Geometry, 2011

2 A probabilistic algorithm for matching under
translations

Before stating the main result for translations, we
introduce some definitions. The boundary ∂A of a
set A ⊆ Rd is the set of points that are contained
in its closure, but not in its interior. We measure
the boundary of d-dimensional sets by the (d − 1)-
dimensional Hausdorff measure, and denote it slightly
sloppy by |∂A|. For a definition of the Hausdorff mea-
sure and related definitions, we refer the reader to [7].
The isoperimetric quotient of A ⊂ Rd is defined to be
|∂A|d/|A|d−1. The isoperimetric quotient can be consid-
ered as a certain measure of the fatness of a figure A.

We always assume shapes to be Lebesgue measur-
able subsets of Rd that have positive, finite volume
and whose boundary is measurable by the (d − 1)-
dimensional Hausdorff measure and has positive, fi-
nite (d− 1)-dimensional volume.

Our algorithm can be applied to all shapes from
which we can generate random sample points. For
unions of simplices, the runtime of our method de-
pends only linearly on the number of vertices, but it
depends more significantly on fatness parameters as
the isoperimetric quotient of one of the shapes and,
in the case of rigid motions, on the ratio diam(A)d

/|A|.

Theorem 1 (Runtime for translations) Let A
and B be shapes in constant dimension d, and let
ε, p ∈ (0, 1) be parameters. Assume that we are
given a lower bound on |A| and an upper bound
on |B|, which differ only by a constant, and an
upper bound KA on the isoperimetric quotient of A.
Assume further that N uniformly distributed random
points can be generated from a shape in time T (N).

Then a translation that maximizes the volume
of overlap of A and B up to an additive error
of ε|A| with probability ≥ 1 − p can be com-
puted in time O

(
T (N) + N(logN)d−1

)
where N =

O
(
ε−(2d+2)K2

A log 2
p

)
.

If A and B are finite unions of at most n simplices
that have pairwise disjoint interiors, then T (N) =
O(n+N log n).

To prove this theorem, we describe an algorithm, Al-
gorithm 1, and then prove that it is correct and has
the runtime claimed in the theorem.

The following theorem gives bounds on the output
of ClusteringSize(ε,A) and SampleSize(B, ε, δ, p) in
Algorithm 1 that guarantee that the output of Al-
gorithm 1 approximates the maximal volume of over-
lap of A and B up to an additive error of ε|A| with
probability at least 1− p.

Of course, the roles of A and B can be swapped,
which may result in better bounds. For the short-
ness of presentation, we do not reflect this fact in the
following.

Algorithm 1: ProbMatchT
Input: shapes A,B ⊂ Rd, error bound ε ∈ (0, 1),

allowed probability of failure p ∈ (0, 1)
real δ ← ClusteringSize(ε,A);
integer N ← SampleSize(B, ε, δ, p);
collection Q← ∅;
for i = 1 . . . N do

point a← randomPoint(A);
point b← randomPoint(B);
add(Q, b− a);

end
return FindDensestClusterT(Q, δ);

Function FindDensestClusterT(Q, δ)

Input: collection Q of points in Rd, positive
number δ

Output: point t in Q such that the cube of side
length 2δ that is centered at t contains
a maximal number of points from Q

Theorem 2 (Correctness of Algorithm 1)
Let A and B be shapes in constant dimen-
sion d, and let ε, p ∈ (0, 1) be parameters. If
ClusteringSize(ε,A) returns a positive number

δ ≤ d
d−1 ·

√
2

3
√
d
· ε · |A||∂A| and SampleSize(B, ε, δ, p)

returns an integer N ≥ Cε−2 δ−2d |B|2 log 2
p for some

universal constant C > 0, then Algorithm 1 computes
on the input (A,B, ε, p) a translation that maximizes
the volume of overlap of A and B up to an additive
error of ε|A| with probability at least 1− p.

The universal constant C can be deduced from the
proofs. Note that, when both shapes are scaled with
the same factor, the sample size N does not change.
In other words, it is homogeneous. The clustering size
scales with the shapes. This is reasonable because
blowing up the shapes coarsens fine features.

3 Proof idea of Theorem 2

Let µ be the probability distribution on the transla-
tion space that is induced by the random experiment
in the algorithm, and let µN be the empirical measure.
Recall that µ has a density function f if the proba-
bility µ(E) of any event E ⊆ Ω can be computed as
the integral over the density function

∫
E
f(x)dx.

The main idea is to prove that the density function
of µ is proportional to the objective function, that is
the function that maps a translation vector t ∈ Rd to
the volume of the intersection of t(A) and B. Thus
the goal is to find a translation at which the density
function is approximately maximal.

Conceptually, the density function is approximated
in a two step process. Let B(t, δ) be a ball of ra-

16

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

dius δ, centered at t, w.r.t. the metric that is induced
by the maximum norm. First, f(t)·|B(t, δ)| is close to
µ(B(t, δ)) if f is nice enough and δ is sufficiently small.
Second, the probability of a small cube µ(B(t, δ)) is
close to µN (B(t, δ)) if N is sufficiently large.

The analysis of the algorithm is based on these sim-
ple ideas whose details are not that easy. They are
hidden in the following longish theorem that follows
from theorems in Chapters 3 and 4 of [5].

Theorem 3 (Probabilistic toolbox) Let Ω ⊆ Rk
be a metric space, and let B be the set of balls of some
fixed radius δ > 0 in Ω. Let vol be a measure on Ω
such that, for all x ∈ Ω, the volume vol(B(x, δ)) = vδ
for some vδ > 0. Assume further that B has finite VC
dimension V .

Let µ be a probability measure on Ω that has a
Lipschitz continuous density function f with Lipschitz
constant L. Let X1, . . . , XN be i.i.d. random variables
taking values in Ω with common distribution µ and
empirical measure µN .

Let j ∈ {1, . . . , N} be such that µN (B(Xj , δ)) =
max1≤i≤N µN (B(Xi, δ)). Then, for all τ > 0 and for

all x ∈ Ω, with probability ≥ 1 − 2e−2Nτ2
, we have

f(Xj) ≥ f(x)− 2(c
√
V/N + τ)/vδ − 3Lδ.

In this inequality, c is a universal constant.

The key lemma to apply Theorem 3 states that the
density function of µ is proportional to the objective
function. It follows from a transformation rule for
density functions.

Lemma 4 (Key lemma) Let X be the random vec-
tor on Rd that draws translations t = b − a where
(a, b) ∈ A × B ⊂ R2d is drawn uniformly at random.

The density function of X is given by f(t) = |t(A)∩B|
|A|·|B| .

Furthermore we have to show that the density
function f is Lipschitz continuous. In the following
theorem, let Hk denote the k-dimensional Hausdorff
measure. For Lebesgue measurable sets in Rd, the
d-dimensional Hausdorff measure and the Lebesgue
measure coincide. The symmetric difference is de-
noted by 4.

Theorem 5 [9] Let A ⊂ Rd be bounded. Let t ∈ Rd
be a translation vector.

Then Hd(A4 (A+ t)) ≤ |t|Hd−1(∂A).

This implies that the density function f is Lipschitz
continuous. Applying the Cauchy-Schwarz inequality
yields ||t− s||2 ≤

√
d||t− s||∞, which is best possible.

Corollary 6 The function f on Rd that is given by

f(t) = |t(A)∩B|
|A|·|B| is Lipschitz continuous with constant

L =
√
d |∂A|

2|A|·|B| w.r.t. the metric that is induced by the
maximum norm.

With these results, the proof of Theorem 2 is an ap-
plication of Theorem 3. Note that the VC dimension
of the class of rectangles in Rd equals 2d [5].

4 Rigid motions

A rigid motion r on Rd is given by r(x) = Mx + t
where M ∈ Rd×d is a rotation matrix and t ∈ Rd
is a translation vector. A matrix M is contained in
the group of rotation matrices SO(d) ⊂ Rd×d if it is
orthogonal, meaningMT = M−1, and detM = 1. We
identify each rigid motion with the pair of its rotation
matrix and translation vector. Thus the space of rigid
motions equals SO(d)× Rd.

The algorithm for rigid motions works similarly as
the algorithm for translations. We draw a rotation
matrix M ∈ SO(d), a point a ∈ A and a point b ∈ B
uniformly at random. Then we register the unique
rigid motion that has M as rotation matrix and maps
a onto b as a “vote” in the transformation space. After
many rounds, say N , we determine the best cluster in
the space of rigid motions.

There are many different methods to compute a
random rotation matrix described in the literature;
see for example [6, 10]. To define the uniform dis-
tribution formally, a volume has to be defined. The
group SO(d) is

(
d
2

)
-dimensional. The volume | · | in

SO(d) is measured by the
(
d
2

)
-dimensional Haar mea-

sure.
For a matrix M = (mij)1≤i,j≤d, let ||M ||2 =√∑

1≤i,j≤d(mij)2 be the Frobenius norm. Denote the

Euclidean norm on Rd also by || · ||2. Define B2(M, δ)
and B2(t, δ) to be the closed balls of radius δ w.r.t. the
metrics induced by the Frobenius and the Euclidean
norm.

We define a δ-neighborhood of a rigid motion (M, t)
by B((M, t), δ) = B2(M, δ/diam(A))× B2(t, δ). The
radius of the rotational part of the neighborhood de-
pends on the diameter of A because it should not
change if A is scaled. The “rotational distance” of
shapes does not depend on their absolute size. A best
cluster is the random rigid motion whose neighbor-
hood contains the maximal number of other random
rigid motions. We give a pseudocode description of
the algorithm for rigid motions, Algorithm 2.

Theorem 7 (Correctness of Algorithm 2) Let
A and B be shapes in constant dimension d, and
let ε, p ∈ (0, 1) be parameters.

There are constants C,C ′ > 0 such that, if

ClusteringSize(ε,A) returns a positive δ ≤ Cε |A||∂A|
and SampleSize(B, ε, δ, p) returns an integer N ≥
C ′ε−2 δ−d

2−d diam(A)−d
2+d |B|2 log 2

p , then Algo-

rithm 2 computes on the input (A,B, ε, p) a rigid mo-
tion that maximizes the volume of overlap of A and B
up to an additive error of ε|A| with probability≥ 1−p.

17

27th European Workshop on Computational Geometry, 2011

Algorithm 2: ProbMatchRM
Input: shapes A,B ⊂ Rd, error bound ε ∈ (0, 1),

allowed probability of failure p ∈ (0, 1)
real δ ← ClusteringSize(ε,A);
integer N ← SampleSize(B, ε, δ, p);
collection Q← ∅;
for i = 1 . . . N do

rotation matrix M ← randomRotation();
point a← randomPoint(A);
point b← randomPoint(B);
add(Q, (M, b−Ma));

end
return FindDensestClusterRM(Q, δ,diam(A));

Function FindDensestClusterRM(Q, δ,∆)

Input: collection Q of points in Rd×d × Rd,
positive numbers δ and ∆

Output: point (M, t) in Q such that the
neighborhood B2(M, δ/∆)×B2(t, δ) of
(M, t) contains a maximal number of
points from Q

Theorem 8 (Runtime for rigid motions) Let A,
B, ε, and p be given under the same assumptions
as in Theorem 1. Additionally, let DA be given

such that diam(A)d

|A| ≤ DA. Then a rigid motion that

maximizes the volume of overlap of A and B up to
an additive error of ε|A| with probability ≥ 1 − p
can be computed in time O

(
T (N) + N2

)
where

N = O
(
ε−(d2+d+2)Kd+1

A Dd−1
A log 2

p

)
.

As in the case of translations, the density function
on the transformation space is proportional to the ob-
jective function, and it is Lipschitz continuous:

Lemma 9 Let Z be the random vector that draws
rigid motions (M, b − Ma) ∈ SO(d) × Rd where
(M,a, b) ∈ SO(d)×A×B is drawn u.a.r. The density

function of Z is given by g(r) = |r(A)∩B|
|SO(d)|·|A|·|B| .

The function g is Lipschitz continuous with con-

stant L = |∂A|
|SO(d)|·|A|·|B| w.r.t. the metric d(r, s) =

max{diam(A) · ||M − N ||2 , ||p − q||2 } for rigid mo-
tions r = (M,p) and s = (N, q).

Observe that a δ-neighborhood of a rigid motion, as
defined above, equals the closed ball of radius δ w.r.t.
the metric d. In order to apply Theorem 3, one has to
prove that all neighborhoods have the same volume,
which follows from the fact that the

(
d
2

)
-dimensional

Hausdorff measure is a Haar measure on SO(d). Ad-
ditionally, one has to compute a lower bound on the
volume of such a neighborhood.

The Lipschitz continuity of g can be deduced us-
ing Theorems 5, 10 and the fact that the volume of

the symmetric difference fulfills the triangle inequal-
ity. We assume that A and B have (Hd−1, d − 1)-
rectifiable boundaries.

Theorem 10 [9] Let A ⊂ Rd be bounded. Let
M ∈ Rd×d be a rotation matrix and let w =
maxa∈∂A ||a−Ma||2.

Then Hd(A4MA) ≤ (2d/d+1)
d−1
2 · w · Hd−1(∂A).

The constant (2d/d+1)
d−1
2 can be replaced by 1 for

sets that have an (Hd−1, d− 1)-rectifiable boundary.

In the 2-dimensional case, the results can be signifi-
cantly improved by representing a rigid motion by the
pair of its rotation angle (instead of the rotation ma-
trix) and the translation vector, as it was done in [1].

References

[1] H. Alt, L. Scharf, and D. Schymura. Probabilistic
matching of planar regions. Computational Geom-
etry, Theory and Applications (CGTA), 43:99–114,
2010. Special Issue on the 24th European Workshop
on Computational Geometry (EuroCG’08).

[2] T.M. Chan. A (slightly) faster algorithm for
Klee’s measure problem. Computational Geometry,
43(3):243 – 250, 2010.

[3] O. Cheong, A. Efrat, and S. Har-Peled. Finding a
guard that sees most and a shop that sells most.
Discrete and Computational Geometry, 37:545–563,
2007.

[4] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars. Computational Geometry. Springer,
third edition, 2008.

[5] L. Devroye and G. Lugosi. Combinatorial Methods in
Density Estimation. Springer, 2001.

[6] R.M. Heiberger. Generation of random orthogonal
matrices. Applied Statistics, 27:199–206, 1978.

[7] H. Federer. Geometric Measure Theory. Springer,
1969.

[8] D.M. Mount, R. Silverman, and A.Y. Wu. On the
area of overlap of translated polygons. Computer
Vision and Image Understanding: CVIU, 64:53–61,
1996.

[9] D. Schymura. An upper bound on the volume of the
symmetric difference of a body and a congruent copy.
ArXiv e-prints, 2010. http://arxiv.org/abs/1010.

2446.

[10] M.A. Tanner and R.A. Thisted. A remark on AS127.
Generation of random orthogonal matrices. Applied
Statistics, 31:190–192, 1982.

[11] A. Vigneron. Geometric optimization and sums of
algebraic functions. In Proceedings of the 21st ACM-
SIAM Symposium on Discrete Algorithms (SODA
2010), pages 906–917, 2010.

18

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Minimum-Link Paths Revisited∗.

Joseph S. B. Mitchell† Valentin Polishchuk‡ Mikko Sysikaski†

Abstract

A path or a polygonal domain is C-oriented if the
orientations of its edges belong to a set of C given
orientations; this is a generalization of the notable
rectilinear case (C = 2). We study exact and ap-
proximation algorithms for minimum-link C-oriented
paths and paths with unrestricted orientations, both
in C-oriented and in general domains. We obtain the
following results:

• An optimal algorithm for finding a minimum-link
rectilinear path in a rectilinear domain; using
only elementary data structures, our algorithm
and its analysis are simpler than the earlier ones
of [Sato, Sakanaka and Ohtsuki, 1987], [Das and
Narasimhan, 1991].

• An algorithm to find a minimum-link C-oriented
path in a C-oriented domain; our algorithm is
simpler and more time-space efficient than the
earlier one of [Adegeest, Overmars and Snoeyink,
1994].

• An extension of our techniques to find a C-
oriented minimum-link path in a general (not
necessarily C-oriented) domain.

• 3SUM-hardness of finding a minimum-link path
with unrestricted orientations (even in a C-
oriented domain). This answers a question from
the survey of Mitchell [Goodman and O’Rourke,
eds., 1997, 2004] and Problem 22 in The Open
Problems Project.

We also present approximation methods for link dis-
tance, including the following:

• A more time-space efficient algorithm to find a
2-approximate C-oriented minimum-link path.

• A notion of “robust” paths. We show how
minimum-link C-oriented paths approximate the
robust paths with unrestricted orientations to
within an additive error of 1.

• A subquadratic-time algorithm with a non-
trivial approximation guarantee for the general
(unrestricted-orientation) minimum-link paths in
general domains.

∗Longer version is available online at: http://hiit.fi/

valentin.polishchuk/ml.pdf
†Stony Brook University, jsbm@ams.stonybrook.edu
‡University of Helsinki, polishch@cs.helsinki.fi

All of our algorithms not only find minimum-link
paths but also build, within the same time and space
bounds, the corresponding link distance maps—exact
or approximate. For instance, using our algorithms,
one can construct in subquadratic time linear-size ap-
proximate (additive or multiplicative) maps for gen-
eral minimum-link paths in general domains; this is in
contrast with the exact link distance maps, which may
have quartic complexity [Suri and O’Rourke, 1986].

1 Introduction

Minimum-link problems arise in motion planning do-
mains were turning is expensive, in line simplification,
guarding applications, VLSI, wireless communication,
and other areas. An instance of the problem is speci-
fied by an n-vertex polygonal domain P with h holes,
and two points s, t ∈ P ; the goal is to find an s-t
path with fewest edges (links). In the query version
of the problem, the goal is to build a data structure
(link distance map) to answer efficiently link distance
queries to s.

We give algorithms for computing exact and ap-
proximate C-oriented minlink paths and show how
they approximate “robust” paths with unrestricted
orientations; we also give approximation algorithms
for the general minlink problem.

1.1 Previous work

If P is a simple polygon, a minlink path can be found
in linear time [7, 9, 21]. The general idea is to do the
“staged illumination” of P [8, Sections 26.4, 27.3] that
starts from illuminating the visibility polygon of s. At
the beginning of any stage the boundary between the
lit and the dark parts of P is a set of “windows”; each
window w is a chord cutting out a dark part Pw ⊂ P .
The crux of the linear-time algorithm is that Pw is
“unique” to w: the part of Pw illuminated at the next
stage is exactly what is seen from w (even if a point
p ∈ Pw is seen from another window w′ 6= w, we do
not care about shining light from w′ into Pw). At
any stage, the illumination is guided by DFS in the
dual of a triangulation of P ; since the dual is a tree,
any triangle is lit only once (triangles intersected by
windows are first lit only partially, and are fully lit at
the next stage).

In polygonal domains with holes, the algorithm of
Mitchell, Rote and Woeginger [16] computes a minlink

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

19

http://hiit.fi/valentin.polishchuk/ml.pdf
http://hiit.fi/valentin.polishchuk/ml.pdf

27th European Workshop on Computational Geometry, 2011

path in O(n2α2(n) log n) time. It was believed that a
faster algorithm is possible (e.g., in [6, p. 263] the re-
sult of [16] is called “suboptimal”). Nevertheless, the
only previously known lower bound, also due to [16],
was Ω(n log n); the same bounds for the rectilinear
case are given in [6, 14]. Also, no subquadratic-time
approximation algorithm is known.

Robustness of paths was previously addressed
in terms of distance tolerance by employing high-
clearance [18, 24, 25] or thick-paths [2, 5, 13, 17] mod-
els. Similar, distance-based robustness was consid-
ered in the context of curvature-constrained paths in
[3, 12, 23].

Minimum-link C-oriented paths in C-oriented do-
mains were studied by Adegeest, Overmars and
Snoyeink [1]. Two algorithms are presented in [1]: one
running in O(C2n log n) time and space, the other—
in O(C2n log2 n) time and O(C2n) space. Both algo-
rithms build C trapezoidations of the domain and la-
bel the trapezoids with link distance from s; this way
an O(Cn)-space structure is created that answers link
distance queries in O(C log n) time. The labeling of
the trapezoids proceeds in n steps, with label-k trape-
zoids receiving their label at step k. By induction on
k, any such trapezoid must be intersected by a label-
(k−1) trapezoid of a different orientation; hence, step
k boils down to detecting all unlabeled trapezoids in-
tersected by label-(k − 1) trapezoids. In terms of the
intersection graph of trapezoids (which has nodes cor-
responding to trapezoids and edges corresponding to
intersecting pairs of trapezoids), the labeling is the
BFS starting from the C-oriented segments through s.

The idea of performing an efficient BFS in the
intersection graph without building the (potentially
quadratic-size) graph explicitly, dates back to the
work on minimum-link rectilinear paths [6, 10, 11,
14, 15, 19, 20, 26, 27]. Imai and Asano’s [10, 11]
data structure allows one to do the BFS—and hence
find a minlink rectilinear path—in O(n log n) time
and space. Still, it was not until the work of Das
and Narasimhan [6] (and the lesser known work of
Sato, Sakanaka and Ohtsuki [20]) that an optimal,
O(n log n)-time O(n)-space BFS implementation was
developed. In the implementation, one step of the
BFS is reduced to a pair of sweeps—the UpSweep
and the DownSweep.

2 Overview of the results

Rectilinear paths in rectilinear domains The data
structures employed in [6, 20] are simpler than
the (much more general-purpose) structure of Imai–
Asano [10, 11], but they are still more complicated
than one would hope for the basic problem of find-
ing rectilinear paths amidst rectilinear obstacles. We
present a simplified implementation of the BFS step
in the intersection graph; our modification does not

affect the asymptotic time and space optimality of
the algorithm. The crux of the simplification is the
use of a single tree for storing the intersection of the
sweepline with the trapezoids that were lit at the pre-
vious step.

Another, minor modification present in our algo-
rithm comes from performing only one, upward sweep,
at any step of the BFS. The sweep starts from what
we call the “pot” trapezoids—those into which the
different-orientation trapezoids lit at the previous step
are “planted”. The planting is nothing but a means
to initialize the sweep (without the planting, it is not
clear how to discover efficiently even a single edge in
the intersection graph). While our modification saves
only a factor of 2 in running time, it serves as the basis
of our improvements for the general case of C-oriented
paths with C > 2.

C-oriented paths in C-oriented domains As noted
in [1], the efficient methods developed to perform BFS
in the trapezoids intersection graph for the rectilin-
ear version do not extend to C-oriented paths when
C > 2. We look closely at why this is the case.
One reason is that for C > 2 some trapezoids may
get labeled only partially during a BFS step; this
complicates the BFS because the intersection graph
changes from step to step, and, in the final link dis-
tance map, trapezoids may get split into subtrape-
zoids. The partial labeling and splitting are due to the
possibility that two different-orientation trapezoids do
not “straddle” each other; instead they both may be
“flush” with an obstacle edge whose orientation is dif-
ferent from the orientations of both trapezoids (this
was not the case in the rectilinear version since there
were only 2 orientations). However, such flushness
can be read off easily from lists of incident trapezoids
stored with every edge of P ; thus, discovering par-
tially labeled trapezoids becomes the easy part of the
algorithm.

After the partially labeled trapezoids are processed,
we are left with discovering unlabeled trapezoids
“fully straddled” by trapezoids labeled at the previous
step. As with the rectilinear case, it is the straddling
that leads to a superlinear-size intersection graph and
makes a subquadratic algorithm less trivial. It is
tempting to reuse here the sweeping techniques devel-
oped for the rectilinear version; the stumbling block,
though, is choosing the direction of the sweep. Indeed,
no matter in which direction the sweep proceeds, the
intersection of the sweepline with a trapezoid does not
change only at discrete “events”: while the sweepline
intersects a non-parallel side of the trapezoid, the in-
tersection changes continuously. The good news is
that this is the only reason for a continuous change
of the intersection. This prompts to get rid of the
non-parallel sides of the trapezoids by clipping them
into parallelograms, with the new sides parallel to the

20

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

sweepline; after the clipping (and planting the paral-
lelograms appropriately) is done, we are able to reuse
the rectilinear-case machinery and finish the BFS step
with C(C − 1) sweeps—one per pair of orientations.
Overall we obtain an O(C2n log n)-time O(Cn)-space
algorithm.

C-oriented paths in general domains We general-
ize our techniques to compute the C-oriented link
distance map also in domains with unrestricted ori-
entations of edges. We observe that the algorithm
for C-oriented path in a C-oriented domain uses C-
orientedness of the domain only to bound the com-
plexity of the final map (without the C-orientedness,
the complexity may blow up). However, the blowup
happens only “deep inside” of certain trapezoids.
Thus, we declare the deep parts of such trapezoids
as a separate cell. The path to a query point q in-
side the cell consists of 2 parts: path from s to enter
the trapezoid, and a “zigzag” of extreme orientations
to q. The number of links in the first part is given
by the usual map, the number of links in the second
part can be determined in constant time (assuming
constant-time floor function) because of the regular
pattern of the path—it bounces off the sides of the
trapezoid until reaching the query point.

Unrestricted paths Our focus on C-oriented path is
partially justified by observing that the general min-
link path problem is 3SUM-hard—even in C-oriented
domains.

2.1 Approximations

2-approximate C-oriented paths The C-oriented
link distance may be approximated by requiring that
every second link of the path is horizontal. To find
a minlink C-oriented path with this requirement one
can do the BFS in the trapezoids intersection graph
with one modification: instead of checking for inter-
section between trapezoids for all pairs of orienta-
tions, only check for intersections between the hori-
zontal trapezoids and the other ones. Such a modi-
fication decreases the running time of our algorithm
to O(Cn log n), but the space remains O(Cn) because
the C trapezoidations of P are still constructed.

To reduce the space to O(n) we only do the hori-
zontal trapezoidation, and go back to the rectilinear-
case ideas of Das and Narasimhan [6] who label the
horizontal trapezoids without using the vertical ones
(in our case, we label the horizontal trapezoids with-
out using any other ones). In particular, without
the other trapezoidations we cannot use our planting
(there is simply nothing to plant!) to initialize the
sweep; thus we do both the UpSweep and the Down-
Sweep à la [6] starting from trapezoids labeled on the
previous step.

Approximating robust paths with C-oriented paths
We define robust paths as those whose edges may
be “wiggled” without intersecting the obstacles. We
prove that C-oriented paths can approximate a ro-
bust minlink path to within a one-sided additive error
of 1: we show how to build a data structure to an-
swer efficiently the approximate robust link distance
queries; to output the approximating C-oriented path
itself takes additional time proportional to the link
distance. We emphasize that we compute the data
structure for approximate link distance queries in sub-
quadratic time, which compares favorably with the
Θ(n4) worst-case complexity of the exact map [22].

O(
√
h)-approximation for unrestricted paths We

show that in O(n
√
h + n log n + h3/2 log h) time one

can find an O(
√
h)-approximate minlink path with

arbitrary orientations; this is the first subquadratic-
time approximation algorithm with a non-trivial ap-
proximation guarantee for the general case. In fact,
our algorithm builds a linear-size O(

√
h)-approximate

link distance map (which again compares well to the
Θ(n4)-size exact map).

The two ingredients of our approximation are
low-stabbing-number bridges and staged illumination
(window partition) in simple polygons. We bridge
the holes to the outer boundary of P , thereby obtain-
ing a simple polygon. We do not make the bridges
fully opaque; rather, they are “semi-transparent”: we
triangulate the simple polygon and do the staged il-
lumination from s, but as we go, each time a bridge
is illuminated on one of its sides, at the next step we
consider it to be illuminated also on its other side,
and continue the staged illumination. In comparison
to opt, we are delayed by 1 link every time an edge of
opt crosses a bridge; i.e., on every edge of opt we have
as many additional vertices as there are bridges that
the edge crosses. Using a low-stabbing-number tree
for the bridging [4], we ensure that each edge of opt
crosses O(

√
h) bridges, and thus we obtain an O(

√
h)

multiplicative approximation.
As described above, the illumination takes O(nh)

time, since a triangle can be discovered by light em-
anating from h bridges. To address this inefficiency,
we declare a triangle opaque as soon as it is lit m ≤ h
times. We prove that with the right choice of m this
does not delay the illumination by too much, while
decreasing the runtime of the illumination to O(nm).

References

[1] J. Adegeest, M. H. Overmars, and J. Snoeyink.
Minimum-link c-oriented paths: Single-source
queries. Int. J. Comput. Geometry Appl.,
4(1):39–51, 1994.

[2] E. M. Arkin, J. S. B. Mitchell, and V. Polishchuk.

21

27th European Workshop on Computational Geometry, 2011

Maximum thick paths in static and dynamic en-
vironments. Computational Geometry Theory
and Applications, 43(3):279–294, 2010.

[3] J. Barraquand and J.-C. Latombe. Nonholo-
nomic multi-body mobile robots: controllability
and motion planning in the presence of obstacles.
Algorithmica, 10:121–155, 1993.

[4] B. Chazelle, H. Edelsbrunner, M. Grigni,
L. J. Guibas, J. Hershberger, M. Sharir, and
J. Snoeyink. Ray shooting in polygons using
geodesic triangulations. Algorithmica, 12(1):54–
68, 1994.

[5] L. P. Chew. Planning the shortest path for a
disc in O(n2 log n) time. In Proceedings of the 1st
Annual Symposium on Computational Geometry,
pages 214–220, 1985.

[6] G. Das and G. Narasimhan. Geometric searching
and link distance. Algorithms and Data Struc-
tures, pages 261–272, 1991.

[7] S. K. Ghosh. Computing the visibility polygon
from a convex set and related problems. J. Algo-
rithms, 12(1):75–95, 1991.

[8] J. E. Goodman and J. O’Rourke. Handbook of
discrete and computational geometry. CRC Press
series on discrete mathematics and its applica-
tions. Chapman & Hall/CRC, 2004.

[9] J. Hershberger and J. Snoeyink. Computing min-
imum length paths of a given homotopy class.
Comput. Geom., 4:63–97, 1994.

[10] H. Imai and T. Asano. Efficient algorithms for
geometric graph search problems. SIAM J. Com-
put., 15(2):478–494, 1986.

[11] H. Imai and T. Asano. Dynamic orthogonal seg-
ment intersection search. J. Algorithms, 8(1):1–
18, 1987.

[12] P. Jacobs and J. Canny. Planning smooth paths
for mobile robots. In Z. Li and J. F. Canny,
editors, Nonholonomic Motion Planning, pages
271–342. Kluwer Academic Pubishers, Norwell,
MA, 1992.

[13] I. Kostitsyna and V. Polishchuk. Simple wrig-
gling is hard unless you are a fat hippo. In Fifth
International Conference on Fun with Algorithms
(FUN), 2010.

[14] D. T. Lee, C. D. Yang, and C. K. Wong. Recti-
linear paths among rectilinear obstacles. Discrete
Appl. Math., 70:185–215, 1996.

[15] A. Maheshwari, J.-R. Sack, and D. Djidjev. Link
distance problems. In J.-R. Sack and J. Urru-
tia, editors, Handbook of Computational Geome-
try, Chapter 12, pages 519–558. Elsevier Science,
Amsterdam, 2000.

[16] J. Mitchell, G. Rote, and G. Woeginger.
Minimum-link paths among obstacles in the
plane. Algorithmica, 8(1):431–459, 1992.

[17] J. S. B. Mitchell and V. Polishchuk. Thick non-
crossing paths and minimum-cost flows in polyg-
onal domains. In J. Erickson, editor, Symposium
on Computational Geometry, pages 56–65. ACM,
2007.

[18] C. Ó’Dúnlaing and C.-K. Yap. A ”retraction”
method for planning the motion of a disc. J.
Algorithms, 6(1):104–111, 1985.

[19] T. Ohtsuki. Gridless routers - new wire routing
algorithm based on computational geometry. In
Internat. Conf. on Circuits and Systems, China,
1985.

[20] M. Sato, J. Sakanaka, and T. Ohtsuki. A fast
line-search method based on a tile plane. In Proc.
IEE ISCAS, pages 588–591, 1987.

[21] S. Suri. A linear time algorithm with minimum
link paths inside a simple polygon. Comput. Vi-
sion Graph. Image Process., 35(1):99–110, 1986.

[22] S. Suri and J. O’Rourke. Worst-case optimal al-
gorithms for constructing visibility polygons with
holes. In Proceedings of the second annual sym-
posium on Computational geometry, SCG ’86,
pages 14–23, New York, NY, USA, 1986. ACM.

[23] H. Wang and P. K. Agarwal. Approximation
algorithms for curvature constrained shortest
paths. In Proc. 7th ACM-SIAM Sympos. Dis-
crete Algorithms, pages 409–418, 1996.

[24] R. Wein, J. P. van den Berg, and D. Halperin.
The visibility-voronoi complex and its applica-
tions. Comput. Geom., 36(1):66–87, 2007.

[25] R. Wein, J. P. van den Berg, and D. Halperin.
Planning high-quality paths and corridors amidst
obstacles. I. J. Robotic Res., 27(11-12):1213–
1231, 2008.

[26] C. D. Yang, D. T. Lee, and C. K. Wong. On
bends and lengths of rectilinear paths: a graph
theoretic approach. Internat. J. Comput. Geom.
Appl., 2(1):61–74, 1992.

[27] C. D. Yang, D. T. Lee, and C. K. Wong. Recti-
linear paths problems among rectilinear obstacles
revisited. SIAM J. Comput., 24:457–472, 1995.

22

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Reconstruction of Flows of Mass under the L1 Metric

Jörg Bernhardt∗ Stefan Funke† Sabine Storandt†

Abstract

We consider the problem of ’moving mass’ under the
L1 metric. In contrast to the well-known Earth-
Mover’s-Distance (EMD, [5]) we are not only inter-
ested in the amount of work (aka EM distance) that
is necessary to transfer the mass but also in recon-
structing (local) translations that lead to this move-
ment of mass. This problem is motivated by an image
matching application for analysis of electrophorese gel
experiments in biology.

1 Introduction

Figure 1: Gel scans for Bacillus Subtilis where we are
interested in corresponding spots in both scans.

In the last decade proteomics – a branch of molec-
ular biology – has been established as an important
area of research. The goal is to detect the totality
of proteines – the proteome – inside a cell and iden-
tify and quantify single proteins in order to relate
them to their functions. For that purpose compar-
ing the proteome of different samples is the method
of choice. For example bacteria that suffer from star-
vation are expected to produce less proteines which
are not essential (e.g. for cell division), but instead
more proteines that work as enzymes for alternative
food sources. In order to detect which protein be-
longs to which group we have to compare the sam-
ple of the starving bacteria to the one of a control
group. To that end electrophoresis is a common and
cheap method to separate the up to several thousands
of proteins that might occur in a cell. Here, in the
first dimension isoelectric focusing is used, essentially

∗Decodon GmbH, D-17489 Greifswald,
bernhardt@decodon.com
†Institut für Formale Methoden der Informatik, Uni-

versität Stuttgart, D-70569 Stuttgart,{stefan.funke,
sabine.storandt}@fmi.uni-stuttgart.de

ordering the proteins according to their pH values.
In the second dimension the proteins are then sepa-
rated according to their masses. The result is a two-
dimensional separation of the proteins visualized in a
gel scan, where proteins can be seen as dark accumu-
lations – so called spots (depicted in Figure 1). The
size and the color depth of a spot is proportional to
the produced amount of protein. The main difficulty
is to identify corresponding protein spots in both gel
scans. Ideally, if the separation in both dimensions
was perfect, each protein would end up at the same
position in both scans. Unfortunately, the separation
steps are physical processes which are easily disturbed
resulting in global and local distortions. Hence the
identification of those correspondences is highly non-
trivial.
To make this problem accessible for mathematical
methods, we make the following assumptions:

1. The two separation steps of the gel electrophore-
sis are independent. Therefore the distance be-
tween spots and hence pixels should reflect this
characteristic. This makes the L1 metric most
appropriate in our application

2. Very long distances between corresponding spots
in the two images are unlikely. So a first ap-
proach should be to find a solution there the sum
of distances of corresponding spots is minimized.

3. During the protein separation no inversions
should occur in the first or the second dimen-
sion. In practice this is typically true in the first
dimension but sometimes might be violated in
the second dimension due to local irregularities in
the gel substance which causes proteins to travel
at different speeds at different places of the gel.
Therefore a second optimization goal should be
to find a solution with a low number of inversions,
especially on a local scale.

The well-known Earth Mover’s Distance is able to
capture the conditions 1. and 2., while for the third
assumption further algorithmic care is needed.

Related Work

The earth mover’s distance was proposed in [5], but
there and in the subsequent papers it was employed
as a pure distance measure. The actual transforma-
tions that lead to the distance were not really used

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

23

27th European Workshop on Computational Geometry, 2011

a)
a1

a2

b1

b2

b)

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

Figure 2: Shortcomings of simple EMD formulations.

or even derived. For the gel matching problem there
are several approaches like [3] or [1] which fundamet-
ally differ from ours, though, as they first perform a
spot detection and then a try to match correspond-
ing spots. Hence they are more susceptible to the
employed mathematical spot model.

2 Computation and Reconstruction of EMD Flows

2.1 Naive EMD Computation

EMD We are given two sets of points A,B ⊂ R2 and
a weight function w : A,B → R. The term Earth
Mover’s Distance as coined by Rubner et al. [5] al-
ready captures its intuitive meaning. We consider the
weight of points in set A ⊂ R2 as mass that needs
to be moved to the locations given by set B ⊂ R2.
We can compute the EMD via the following linear
program:

min
∑

a∈A,b∈B

fabd(a, b) (1)

∀a ∈ A
∑

b′∈B fab′ = w(a)

∀b ∈ B
∑

a′∈A fa′b = w(b)

∀a ∈ A, b ∈ B fab ≥ 0∑
a∈A,b∈B

fab = min(
∑

a∈A w(a),
∑

b∈B w(b))

Here, fab = c denotes that c units of mass are moved
from a ∈ A to the location b ∈ B. From now on we
refer to them as ’flows’. Moreover d(a, b) describes the
’cost’ of moving one unit of mass from a to b, in our
case d(a, b) = ||a − b||1 =

∑n
i=1 |ai − bi|. w(a)/w(b)

denotes the amount of supply/demand of mass at lo-
cation a ∈ A, b ∈ B, respectively.

In general there are several optimal solutions of
the EMD-LP. Note, that this is not specific for the
L1 metric but can also occur then using other dis-
tances like the euclidean metric, as depicted in fig-
ure 2 a). Here, the bold assignment would be
the most reasonable one in our scenario, but the
dashed correspondences lead to the same objec-
tive value under the L1 as well as the L2 metric.
To get the EMD value, defined as EMD(A,B) =
(
∑

a∈A
∑

b∈B fabd(a, b))/(
∑

a∈A,b∈B fab), this is not
of any interest. But our goal now is to identify the
solution that fits best to for our envisioned application
scenario.

For sake of simplicity we restrict in the following
to the case of binary images. Our proposed algo-
rithm also generalizes in a straightforward manner to
grayscale images (with mass > 1 at a single pixel),
the proof for the running time gets more involved,
though, introducing a dependency on the total mass.

We define the Earth Mover’s Corresponding Prob-
lem (EMCP) as follows:

Definition 1 EMCP: Given two sets A,B ⊂ R2.
Compute the/a function φ : A → B that minimizes
the number of local inversions while maintaining an
optimal solution for the corresponding EMD-LP.

Essentially the EMCP is the problem of computing a
specific matching in a geometric bipartite graph.

2.2 A Compact EMD Formulation for L1

The size of the naive EMD formulation is essentially
Θ(|A| · |B|) which makes this formulation rather use-
less for real world instances from our application do-
main, e.g. for gel scans of around 1 Megapixel each
with around 15% ’mass’ we would already deal with
more than 22 billion variables. In case of the L1

metric, there is a simple and considerably more com-
pact formulation1. Let us assume that our points in
sets A and B have integer coordinates (like the pixel
coordinates of two images). The idea is to decom-
pose a flow from (x, y) to (x′, y′) with x ≤ x′, y ≤
y′ into a sequence of |x − x′| horizontal ’miniflows’
(x, y) → (x + 1, y) → (x + 2, y) → · · · → (x′, y)
followed by a sequence of |y − y′| vertical miniflows
(x′, y) → (x′, y + 1) The respective LP formula-
tion now has the following structure:

min
∑

fxyx′y′

axy + fh
(x−1)yxy − fh

xy(x+1)y − fh
xy(x−1)y + fh

(x+1)yxy = Exy

Exy + fv
x(y−1)xy − fv

xyx(y+1) − fv
xyx(y−1) + fv

x(y+1)xy = bxy

Exy ≥ 0

fxyx′y′ ≥ 0

Here, axy denotes the mass of point set A at po-

sition (x, y), the same for bxy, respectively. f
h/v
xyx′y′

denotes the horizontal/vertical flow from pixel (x, y)
to a (neighboring) pixel (x′, y′) (which now can take
any positive value). Exy can be interpreted as the
intermediate distribution of mass after the horizontal
shifts. Any feasible solution to the original formula-
tion can be translated into this more compact formu-
lation and vice versa as we will see in the following.
The size of this formulation is linear in the size of the
gel scan and its solution can be found using some stan-
dard LP solver like CPLEX [2] or specialized network

1This formulation has probably been used before but we
could not come up with a reference.

24

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

simplex implementations like mcf [4]. Note that it is
easy to handle sets/images with different masses by
always requiring A to be the smaller set and replacing
the second equality by an inequality.

2.3 Preliminary Flow Reconstruction

Having computed an optimal solution to the compact
LP, our first goal is to construct actual flows of mass
from set A to set B. We will proceed in two steps:
first the horizontal miniflows are turned into horizon-
tal flows, then, in a second step vertical flows are con-
structed from the intermediate mass distribution and
the miniflows. Finally, in a last step, the horizontal
and vertical flows are combined to flows for the origi-
nal problem formulation.
1-dimensional Reconstruction: Essentially we
first solve a 1-dimensional EMCP in each row of the
image. All horizontal flows, the intermediate mass
distributions and hence the excesses and deficits are
known. We then sweep from left to right, balancing
excesses and deficits in a first-in-first-out fashion. It
is easy to see that this procedure balances the deficits
and excesses at minimal cost, solving a 1-dimensional
EMCP. Exactly the same procedure is applied verti-
cally in each column to distribute the mass particles
from the intermediate mass distribution to their final
locations according to set B. It remains to combine
the horizontal and vertical flows to obtain an actual
matching between pixels in the source and the target
image.
Gluing together Horizontal and Vertical Flows:
At this point we can arbitrarily combine horizontal
and vertical flows to obtain a cost optimal match-
ing. In our implementation we employ a simple greedy
strategy which combines incoming horizontal and out-
going vertical flows to diagonal flows.
While the resulting matching always yields flows
which are optimal wrt the Earth Mover’s distance,
often this reconstruction does not lead to the ’cor-
rect’ flows in our application. The problem is that the
miniflows we get from a solution to LP (2.2) might not
even allow for a reconstruction of the correct flows, see
Figure 2 b).

2.4 Local Search on Preliminary Flows

Now we want to solve the EMCP based on our EMD
solution. For real instances of our application we can
not expect that a completely inversion-free solution
exists. Nevertheless as a sanity check and for the-
oretical soundness it is desirable that our algorithm
recovers a inversion free matching if such exists. We
refer to sets allowing an inversion free matching from
now on as well-sorted.

Definition 2 (well-sortedness) We call two sets of
points A,B ⊂ R2 with |A| = |B| well-sorted if there

exists a bijective function/transformation/matching
φ : A→ B with ∪a∈Aφ(a) = B and ∀a, a′ ∈ A

a1 S a′1 ⇒ φ(a)1 S φ(a′)1 and

a2 S a′2 ⇒ φ(a)2 S φ(a′)2

We note that for well-sorted sets A and B, the
transformation φ that we want to recover and which
witnesses the well-sortedness has optimal cost, i.e. has
cost equal to the Earth Mover’s distance (this actually
requires proof).

After glueing together the miniflows we obtain a
set of flows which are typically not well-sorted. Our
idea now is to consider flows pairwise and exchange
targets in case this improves ’well-sortedness’. Inter-
estingly we can show that if the two sets A and B are
well-sorted this leads to a well-sorted matching after
O(n2) iterations. But even if A and B were not well-
sorted, this procedure terminates and yields a drasti-
cally improved assignment. We denote by y(f) for a
flow f = (a, b) its extent in y direction.

Definition 3 (Switch) Let f1 = (a, b) and f2 =
(a′, b′) be a pair of flows and fs1 = (a, b′), fs2 = (a′, b)
their equivalents after switching the targets. A switch
is feasible if

1.) cost(f1) + cost(f2) = cost(fs1) + cost(fs2)

2.a) max(y(f1), y(f2)) > max(y(fs1), y(fs2)) or

2.b) max(y(f1), y(f2)) = max(y(fs1), y(fs2)) and

max(x(f1), x(f2)) > max(x(fs1), x(fs2))

We call case 2.a) a height decreasing, case 2.b) a width
decreasing switch.

Figure 3: Reconstruction of a global translation: LP-
solution in miniflows, 1-dimensional flows, greedy diagonal
flows, after local search.

2.4.1 Algorithm

It is convenient to ensure that all y-coordinates are
different and in particular, all heights of flows are pair-
wise different. We ensure this by standard techniques
for symbolic perturbation on the y-coordinates. Our
basic two-phase local search algorithm is then simple
to state:

25

27th European Workshop on Computational Geometry, 2011

1. perform height decreasing switches between flows
fa and fb as long as possible

2. perform width decreasing switches between flows
fa and fb as long as possible

2.4.2 Runtime and Correctness

The running time of our switching algorithm crucially
depends on the order in which we perform switches.
For the height decreasing switches, we order the flows
according to the y-coordinate of their sources and al-
ways check for the ’smallest’ flow according to this
order and switch it with the next smallest switchable
flow. In the same manner we perform the width de-
creasing switches (ordered by x-coordinate).

Lemma 1 For any a, a′, flows associated with a and
a′ get switched at most once in phase 1 and at most
once in phase 2 if we always use above criterion for
selecting the next switch pair.

This Lemma immediately yields a bound of O(n2)
on the number of switches. A naive implementation
can process one switch in time O(n). For correctness,
two core Lemmas have to be proven:

Lemma 2 Let φ∗ be a transformation witnessing the
well-sortedness of sets A and B. Then φ∗ does not
allow any height or width decreasing switches.

Lemma 3 Let φ be the current set of flows, φ not
witnessing well-sortedness of well-sorted sets A and B,
then there exists a height or width decreasing switch.

Particularly proving the latter Lemma is involved
and requires a a closer examination of the structure
of flows not witnessing well-sortedness. Using these
Lemmas we obtain the our main theorem:

Theorem 4 For well-sorted sets A and B our algo-
rithm which starts with a cost-optimal solution ter-
minates after O(n3) time and recovers a matching φ
which witnesses well-sortedness of A and B.

For not perfectly well-sorted instances correctness
seems hard to formalize. From a biological point of
view the solution of the EMCP is meaningful if we
can assure well-sortedness at least for flows that are
close to each other. It is not clear whether a further
exploration of formal models for the ’correct’ solution
is worthwhile; as usual, the precise formalization of
real-world problems seems challenging.

3 Experiments

In Figure 3 we have depicted the main steps of our
approach. We compared the results of our algorithm

to other approaches (like weighted bipartite match-
ing) on model data. We always achieved the solution
with the minimal number of inversions as well as the
highest rate of correct correspondencies. Furthermore
we checked on real data if our solution comes close to
the so called manual edits (see figure 4), that could
be seen as ground truth. Although we worked only
on the binary versions of the image scans, we recon-
structed about 84% (average) of the flows correctly.

Figure 4: Comparison of a manual edit (left) and the
flows resulting from our algorithm (middle, subsampled).
Green: Image A, Yellow: Image B, Red:Overlap.

4 Conclusion

We presented an algorithm which faithfully deter-
mines correspondencies between protein spots in our
concrete application from computational biology. Due
to the nature of the physical process, those problem
instances are typically not well-sorted but somewhat
’close’ to being well-sorted. While truly well-sorted
instances could be trivially solved by a simple sorting
procedure, our algorithm also works for those real-
world instances – the sorting approach does not. For
well-sorted instances, we can prove our algorithm to
be correct. Other application domains where this kind
of matching could be of interest are in the field of vi-
sion or video compression.

References

[1] M. Berth, F. Moser, M. Kolbe, and J. Bernhardt. The
state of the art in the analysis of 2-dimensional gel elec-
trophoresis images. Appl Microbiol Biotechnol, 2007.

[2] R. E. Bixby. Implementing the simplex method:
The initial basis. INFORMS Journal on Computing,
4(3):267–284, 1992.

[3] A. Efrat, F. Hoffmann, K. Kriegel, C. Schultz, and
C. Wenk. Geometric algorithms for the analysis of
2d-electrophoresis gels. Journal of Computational Bi-
ology, 9(2):299–315, 2002.

[4] A. Loebel. Mcf version 1.3 - a network simplex imple-
mentation. available for academic use free of charge.
http://www.zib.de, 2004.

[5] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth
mover’s distance as a metric for image retrieval. Int.
J. Comput. Vision, 40(2):99–121, 2000.

26

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

On some connection problems in straight-line segment arrangements∗

Helmut Alt†‡ Sergio Cabello§ Panos Giannopoulos†‡ Christian Knauer¶†

Abstract

We study the complexity of some problems of the fol-
lowing type: Given a set of straight-line segments in
the plane and a set of cells in the induced arrange-
ment, compute the minimum number of segments one
needs to remove so that the cells become connected.
We show that the problems of connecting two cells and
connecting all cells are both NP-hard. We also discuss
several polynomial-time solvable and fixed-parameter
tractable cases.

1 Introduction

Let S be a set of straight-line segments in R2 and
A(S) be the arrangement induced by S.

In the 2-Cells-Connection problem we are given
two points s, t ∈ R2 and we want to compute a set
S′ ⊆ S of minimum possible size, with the property
that s and t belong to the same cell of A(S \ S′).
In other words, we want to compute an s-t path
that crosses the minimum number of segments of S
counted without multiplicities. The cost of a path is
the total number of segments crossed by it.

In the All-Cells-Connection problem we want
to compute a set S′ ⊆ S of minimum possible size
such that A(S \ S′) consists of one cell only.

Without loss of generality, we assume that every
segment in S intersects at least two other segments
and that both endpoints of a segment are intersection
points. We say that two segments cross if and only if
they intersect at a common interior point (a segment
crossing).
Results. We show that 2-Cells-Connection is
NP-hard even when no three segments intersect at a
point. When any three segments may intersect only at
a common endpoint, the problem is fixed-parameter
tractable with respect to the number of segment cross-

∗Part of this research was conducted at the 9th McGill -
INRIA Barbados Workshop on Computational Geometry, 2010.
†Institut für Informatik, Freie Universität Berlin,

Takustraße 9, D-14195 Berlin, Germany, {alt,
panos}@mi.fu-berlin.de
‡This research was supported by the German Science Foun-

dation (DFG) under grant Kn 591/3-1.
§Department of Mathematics, IMFM and FMF, Univer-

sity of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia,
sergio.cabello@fmf.uni-lj.si
¶Institut für Informatik, Universität Bayreuth

Universitätsstraße 30 D-95447 Bayreuth Germany,
christian.knauer@uni-bayreuth.de

ings. We also consider an application variant of the
problem where the segments lie inside a polygon with
holes P and have their endpoints on its boundary and
the s-t path must also stay inside P , and show it to
be fixed-parameter tractable with respect to the num-
ber of holes of P . On the other hand, we show that
All-Cells-Connection is NP-hard even if no three
segments intersect at a point and there are no segment
crossings.
Related work. Bereg and Kirkpatrick [1] studied the
problem of computing the so called barrier resilience
in wireless sensor networks, i.e., the minimum number
of disks whose removal connects two given cells in
an arrangement of unit disks (sensors), and gave a
3-approximation algorithm based on a shortest path
computation in the dual of the arrangement. The
complexity of the problem though remains open.

2 Connecting two cells

We show that 2-Cells-Connection is NP-hard by
a reduction from MAX-2-SAT, a well studied NP-
complete problem [6]: Given a propositional CNF for-
mula Φ with m clauses on n variables and at most
two variables per clause, decide whether there exists
a truth assignment that satisfies at least k clauses,
for some given k ∈ N, k ≤ m. Let ` be the maximum
number of occurrences of a variable in Φ. For sim-
plicity we can assume that ` ≤ 3 since the restricted
version of MAX-2-SAT where any variable occurs in
at most 3 clauses is still NP-complete [9].

Using Φ we construct an instance consisting of a set
of segments S and two points s and t as follows.

Abusing the terminology slightly, by a segment
we actually mean a set of identical single segments
stacked on top of each other. The cardinality of the
set is the weight of the segment. Either all or none
of the single segments in the set can by crossed by a
path.

There are three different types of segments, T1, T2,
and T3, according to their weight, see Fig. 1. Seg-
ments of type T1 have weight 1 (single or light seg-
ments), while segments of type T2, T3 have weight
(m+1) and 18n(m+1) respectively (heavy segments).

First, we construct a polygon, called the tunnel,
with heavy boundary segments of type T3, see Fig. 1.
There are 21 boundary segments in total. The tunnel
has a ‘zig-zag’ shape and can be seen as having 8 cor-
ridors, C1, . . . , C8. It starts with C1, the main corri-

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

27

27th European Workshop on Computational Geometry, 2011

t
f

xi

x̄i

xi

s

xi

main
corridor

tunnel
boundary (T3)

chain
boundary (T2)

single
segment (T1)

t

end
corridor

s′

C2

C3
C6

C7

C4 C5

obstacle (T3)

P r
i

P l
i

N l
i

N r
i

Figure 1: Variable chain and a possible path from s to
s′; a shaded area represents a set of ` single segments.

dor (at the center of the figure), which contains point
s, then it turns left to C2, then right, etc., gradually
turning around to C7 and then to the end corridor C8

(at the top). The latter contains point t. The total
size of the tunnel is 21 · 18n(m + 1) = O(nm).

The rest of the construction will force any s-t path
of some particular cost (to be given shortly) to stay
always in the interior of the tunnel.

Each variable of Φ is represented by a chain of seg-
ments, see Fig.1. The chain has 12 pieces and each
piece is separated from its neighbors by (or ends at,
when it is the last one) a ‘short’ heavy segment of
type T3, referred to as an obstacle; with the exception
of the two ends of the chain, all obstacles lie in the
interior of the tunnel. Each piece consists of:

(i) 2 chain boundary segments of type T2; every end-
point of such a segment lies on an obstacle.

(ii) ` single segments (type T1).

It has 2(m + 1) + ` segments in total and it is said to
be crossed by a path if and only if all of its segments
are crossed.

Consider the example of the variable chain xi in
Fig. 1, and its part in the main corridor. From the
obstacle, the chain extends to the left towards corri-
dor C2 and to the right towards corridor C7. Consider
the right half of the chain. In the first piece all ` sin-
gle segments lie between the two boundary segments:
they start at the obstacle in the main corridor and
end at the obstacle in C7. In the second piece, de-
noted by P r

i (positive-right), all single segments start
at this latter obstacle. Some (in the example just
one) end inside the end corridor at intersection points
that represent clauses with a positive occurrence of
xi; in Fig. 1, these segments are drawn by dashed
lines, which can be made straight by stretching the

N r
i N l

i P r
i P l

it f

middle
pieces

Figure 2: All possible combinations of six pieces of a
variable chain crossed by a minimum-cost s-s′ path.

end corridor sufficiently. The rest continue down to
C6, always lying between the boundary segments of
the piece, and end at an obstacle inside. The third,
fourth, and fifth piece are similar to the first one: all
single segments of a piece (represented by a shaded
area) lie between its respective boundary segments.
The chain makes three consecutive right turns, from
C6 to C5, then to C4, and then to C3. In the last
piece, P l

i (positive-left), all single segments start at
an obstacle in C3. Again, some go up to the end cor-
ridor, to clauses with a positive occurrence of xi, while
the rest end at an obstacle outside the tunnel. Note
that any single segment may intersect a chain bound-
ary segment only outside the tunnel. The left half of
the chain is constructed in an analogous fashion. Its
second and sixth piece are denoted by N l

i (negative-
left) and Nr

i (negative-right) respectively; some single
segments coming from these pieces go to clauses with
a negative occurrence of xi.

Each clause of Φ is represented by an intersection of
two single segments inside the end corridor; see Fig. 3
for an example of the overall construction. Each seg-
ment corresponds to some literal xi or x̄i in the clause:
in the first case the segment comes from either P r

i or
P l
i , while in the second one it comes from either Nr

i

or N l
i . For the construction, these choices for a each

clause can be made arbitrarily, provided that one seg-
ment intersects the tunnel from the left side and the
other one from the right. In this way, the end corridor
is obstructed by m pairs of intersecting segments such
that any path from the intermediate point s′ to point
t staying inside the tunnel must intersect at least one
segment from each pair.

Observe that any minimum-cost path from s to s′

that stays in the interior of the tunnel crosses only
6 pieces from each variable chain (and no obstacles),
where at least one piece from every two consecutive
ones is crossed; see Fig. 1 for an example of such a
path. There are 7 such possible sets of pieces, see
Fig. 2, and the choice is made independently for each
chain. Consider the two middle pieces, parts of which
lie in the main corridor. When only the left one is
crossed (first three sets), P r

i is crossed as well, while
none of N l

i , N
r
i is crossed: effectively, xi is set to true.

28

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

t f
x1

x2

xn

(x̄n ∨ x̄1)

(x̄n ∨ x2)

(x̄1 ∨ x̄2)

(x2 ∨ xn)

x̄2
x̄1

x2

s

t

x̄n

xn

x2

x̄1

s′

Figure 3: Example of overall construction.

Symmetrically, when only the right piece is crossed
(next three sets), xi is set to false. The last set does
not correspond to a valid truth assignment. The total
cost for such a path is 6n(2(m + 1) + `).

Thus, for an s-t path to cost 6n(2(m + 1) + `) + k,
for some 0 ≤ k < m, its subpath from s′ to t in
the end corridor must cross at most k single segments
that have not been crossed before. This implies that
there are at least (m− k) clauses from each of which
at least one segment has been already crossed by the
s-s′ subpath. For such a clause, let ui ∈ {xi, x̄i} be
the literal that the crossed segment corresponds to.
By construction, if ui = xi, at least one of P r

i , P l
i has

been crossed, while if ui = x̄i, at least one of Nr
i , N l

i

has been crossed. From the discussion above, xi is set
to true in the first case and to false in the second one,
and, hence, the clause is satisfied.

Lemma 1 There exists an s-t path with a cost of at
most 6n(2(m+ 1) + `) + k if and only if there exists a
truth assignment that satisfies at least (m−k) clauses
of Φ.

We can modify our construction by replacing every
heavy segment with a set of distinct parallel single
segments in a way such that every single segment in S
intersecting the original heavy segment now intersects
all the segments in the new set and making sure that
no three segments have a point in common.

Theorem 2 2-Cells-Connection is NP-hard even
when no three segments intersect at a point.

We can reduce 2-Cells-Connection to the min-
imum color path problem (MCP): Given a graph G
with colored (or labeled) edges and two of its vertices,
find a path between the vertices that uses the mini-
mum possible number of colors. We color the edges of

the dual graph G of A(S) as follows: two edges of G
get the same color if and only if their corresponding
edges in A(S) lie on the same segment of S. Then,
finding an s-t path of cost k in A(S) amounts to find-
ing a k-color path in G between its two vertices that
correspond to the cells which s, t lie in.

However, MCP is NP-hard [2] and W[1]-hard [5]
(with respect to the number of colors in the path) even
for planar graphs, it has a polynomial-time O(

√
n)-

approximation algorithm and is non-approximable
within any polylogarithmic factor [8].

2.1 Tractable cases

Consider the colored dual graph G of A(S) as defined
above. A face of G (except the outer one) corresponds
to a point of intersection of some r ≥ 2 segments and
has r colors and, depending on the type of intersec-
tion, from r to 2r edges. For example, for r = 2 we
can get two multiple edges, a triangle, or a quadrilat-
eral, with two distinct colors.

When any three segments may intersect only at a
common endpoint and no two segments cross, G can
only have multiple edges, bi-chromatic triangles, and
arbitrary large faces where all edges have different col-
ors. In this case, since two segments can intersect only
at one point, each color induces a connected subgraph
of G, in fact a tree for there can be no monochromatic
cycle in G. Then, 2-Cells-Connection reduces to
a shortest path problem in an uncolored modification
of G, where each monochromatic tree is contracted
into a star.

Generalizing this, if we allow k segment crossings,
i.e., bi-chromatic quadrilaterals in G, we can easily
find a minimum-cost s-t path as follows. Let C ⊆ S
be the set of the (at most 2k) segments participating
in these crossings. For every possible subset C ′ of
C, first contract every edge of G corresponding to a
segment in C ′, and then assign an infinite weight to
every edge corresponding to a segment in C \C ′. For
a fixed subset, a solution can be found by computing
a shortest path in an uncolored weighted graph.

Theorem 3 2-Cells-Connection is fixed-
parameter tractable with respect to the number
of segment crossings if any three segments may
intersect only at a common endpoint.

2.2 An application

Let P be a polygon with h holes and S be a set of
n segments lying inside P with their endpoints on its
boundary; see Fig. 4, where, for clarity, the boundary
of P is drawn by a set of simple closed curves. We
consider the restricted 2-Cells-Connection prob-
lem on P ∪ S where the s-t path may not cross the
boundary. This version is also NP-hard by a simple
reduction from the general one.

29

27th European Workshop on Computational Geometry, 2011

s

t

o

Figure 4: Some segment clusters in a polygon with
holes and a minimum-cost s-t path.

We partition S into clusters using homotopies as
follows: two segments belong in the same cluster if
and only if there is a continuous transformation from
one to the other, during which the endpoints stay on
the boundary of P ; for this, s and t are treated as
special holes. In Fig. 4 for example, the segments
that touch hole o give four clusters. Using simple
topological arguments we prove the following:

Lemma 4 S can be partitioned into O(h4) clusters
with the property that either all or none of the seg-
ments in a cluster are crossed by a minimum-cost s-t
path.

A minimum-cost s-t path can now be easily found
by testing all possible subsets of clusters.

Theorem 5 The restricted 2-Cells-Connection
problem in a polygon with holes is fixed-parameter
tractable with respect to the number of holes.

3 Connecting all cells

We prove that All-Cells-Connection is NP-hard
by a reduction from the well-known NP-hard prob-
lem of feedback vertex set (FVS) in planar graphs [6]:
Given a planar graph G, find a minimum-size set of
vertices X such that G−X is acyclic.

First, we subdivide every edge of G obtaining a
planar bipartite graph G′. It is clear that G′ has a
feedback vertex set of size k if and only if G has one.
Next, we use the result by de Fraysseix et al. [4] (see
also Hartman et al. [7]), which states that every planar
bipartite graph is the intersection graph of horizontal
and vertical segments, where no two of them cross.
Let S be the set of segments whose intersection graph
is G′; it can be constructed in polynomial time. Since
G′ has no triangles, no three segments of S intersect at
a point. Finally, observe that all cells in A(S) become
connected by removing k segments if and only if G′

has a feedback vertex set of size k.

Theorem 6 All-Cells-Connection in NP-hard
even if no three segments intersect at a point and
there are no segment crossings.

It is also easy to see that a k-size solution to All-
Cells-Connection corresponds to a k-size solution
of FVS in the intersection graph of the input seg-
ments. For general graphs, FVS is fixed-parameter
tractable when parameterized with the size of the so-
lution [3], and has a polynomial-time 2-approximation
algorithm [10].

Corollary 7 All-Cells-Connection is fixed-
parameter tractable with respect to the size of the
solution and has a polynomial-time 2-approximation
algorithm.

Acknowledgments

We would like to thank Primož Škraba for bringing
to our attention some of the problems studied in this
abstract.

References

[1] S. Bereg and D. G. Kirkpatrick. Approximating bar-
rier resilience in wireless sensor networks. In Proc.
of the 5th ALGOSENSORS, volume 5804 of LNCS,
pages 29–40. Springer, 2009.

[2] H. Broersma, X. Li, G. Woeginger, and S. Zhang.
Paths and cycles in colored graphs, p.299. Aus-
tralasian J. Combin., 31:299–312, 2005.

[3] J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Vil-
langer. Improved algorithms for feedback vertex set
problems. J. Comput. Syst. Sci., 74:1188–1198, 2008.

[4] H. de Fraysseix, P. O. de Mendez, and J. Pach. Rep-
resentation of planar graphs by segments. Intuitive
Geometry, 63:109–117, 1991.

[5] M. R. Fellows, J. Guo, and I. Iyad. The parameter-
ized complexity of some minimum label problems. J.
Comput. Syst. Sci., 76:727–740, 2010.

[6] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., 1979.

[7] I. B. Hartman, I. Newman, and R. Ziv. On grid in-
tersection graphs. Discrete Mathematics, 87:41–52,
1991.

[8] R. Hassin, J. Monnot, and D. Segev. Approximation
algorithms and hardness results for labeled connectiv-
ity problems. J. Comb. Optim., 14(4):437–453, 2007.

[9] V. Raman, B. Ravikumar, and S. S. Rao. A simpli-
fied NP-complete MAXSAT problem. IPL, 65(1):1–6,
1998.

[10] V. V. Vazirani. Approximation Algorithms. Springer,
2001.

30

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

A conjecture about an upper bound of the RMSD between linear chains

Christian L. Müller, Ivo F. Sbalzarini ∗

Abstract

We combine stochastic global optimization and an-
alytical geometry in order to conjecture an upper
bound for the Root Mean Square Deviation (RMSD)
between linear chains of N beads with link length b af-
ter optimal roto-translational fitting. We report pairs
of putative extremal configurations and an analytical
expression for the RMSD between them, asymptoti-

cally approaching 1
4

√
5
3bN for large N .

1 Introduction

Since the pioneering works of Flory [3] chain models
have been instrumental for theoretical studies of poly-
mers. The simplest models are linear chains such as
the freely jointed (or ideal) Random Walk (RW) or the
Self-Avoiding Walk (SAW). These models provide the
theoretical basis for more complex (bio-)polymer and
protein models [2]. A linear chain is a configuration
of ordered points (beads, atoms) in three-dimensional
space, where the Euclidean distance between consec-
utive beads is constrained to an arbitrary but fixed
constant b, the bond or link length.

The advent of efficient algorithms for determining
the minimum Root Mean Square Deviation (RMSD)
[10, 7] between two linear chains has triggered re-
search in characterizing the configuration space of
chain ensembles using RMSD as the standard distance
metric in the field. Starting from ideal RW ensembles
[11] the analysis has been extended to more complex
polymer and protein models [14].

While the minimum RMSD between two configura-
tions reaches a trivial lower bound of 0 for identical
chains, a tight upper bound – or the two configura-
tions of linear chains that are most dissimilar from
each other – is still unknown.

We address this problem using a combination of
global optimization and analytical geometry. We
numerically determine the maximum RMSD of RW
chains for several N and deduce from these results a
general formula for odd N . We conjecture that the
asymptotic limit of this formula is valid for all N and
that it is an upper bound for the maximum RMSD
between general linear chains.

∗Institute of Theoretical Computer Science, Department of
Computer Science, ETH Zürich, and Swiss Institute of Bioin-
formatics, christian.mueller@inf.ethz.ch, ivos@ethz.ch

2 Definitions and Methods

2.1 The minimum RMSD

We represent two configurations of N beads each by
the matrices X, Y ∈ R3×N . Each column in X, Y is
denoted x(i),y(i) and contains the three-dimensional
Cartesian coordinates of the ith bead of the config-
uration. In a linear chain model, consecutive beads
are connected by links of fixed length b. Calculating
the minimum RMSD D(X,Y) between X and Y com-
prises two steps: (i) translating the centers of mass
xcm and ycm of both configurations to the origin, lead-
ing to repositioned chains X0 and Y0 with columns

x
(i)
0 ,y

(i)
0 ; (ii) determining the optimal rotation ma-

trix R ∈ R3×3, such that:

D2(X,Y)
.
= min

R

1

N
‖RX0 − Y0‖22 . (1)

The optimal rotation matrix R can be determined
using Singular Value Decomposition (SVD) [6, 7] or
quaternions [8]. It is a special case of the orthogonal
Procrustes problem ([4], pp. 601) where RTR = I3
(the 3× 3 identity matrix) and detR = 1.
D2(X,Y) can be expressed in terms of the radii of

gyration of X and Y , RG(X) and RG(Y), as [10, 11]:

D2(X,Y) = R2
G(X)+R2

G(Y)−2
1

N

N∑
i=1

x̃
(i)
0 ·y

(i)
0 (2)

with x̃
(i)
0 = Rx

(i)
0 and R2

G(X) = tr(XTX). The term
1
N

∑N
i=1 x̃

(i)
0 · y

(i)
0 describes the structural correlation

between X and Y after optimal superposition and can
be re-written as [1]:

1

N

N∑
i=1

x̃
(i)
0 · y

(i)
0 =

N∑
i=1

x̃
(i)
0 · y

(i)
0√

N∑
i=1

x
(i)2
0

N∑
i=1

y
(i)2
0

RG(X)RG(Y) .

(3)
Betancourt and Skolnick [1] refer to the fraction
in Eq. (3) as the aligned correlation coefficient
ACC(X,Y). The radius of gyration RG of a chain
X is roto-translation invariant and can be written as:

R2
G(X) =

1

N

N∑
i=1

‖x(i) − xcm‖22 (4)

= −xcm · xcm +
1

N

N∑
i=1

‖x(i)‖2 .

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

31

27th European Workshop on Computational Geometry, 2011

From Eq. (2), McLachlan derived relative lower and
upper bounds for D2(X,Y) of two given chains X and
Y [11]:

0 ≤ D2(X,Y) ≤ R2
G(X) +R2

G(Y) . (5)

2.2 The linear chain RW model

A linear chain X is represented in internal coordi-
nates. We denote by θi the angle between three con-
secutive beads x(i), x(i+1), x(i+2). The dihedral be-
tween the two consecutive planes spanned by (x(i),
x(i+1), x(i+2)) and (x(i+1), x(i+2), x(i+3)) is ωi (see
Fig. 1a). A chain of N beads with fixed bond length

!

"

#
!

"!

! !

" "

!!

#!
#!

"!

!" !

"

!"

!"

""

""

#

!"!"#$%&'
(!)"#$%&*+,- ('# *+,-

#!"./$'0#102%&'
(!)"#$%&*+,-

#!

! "

#

i

i

i

i

i

i

Figure 1: a. Definition of the angles θi and dihedrals
ωi characterizing an anchored walk of length N . b.
Illustration of the trigonometric map qX → X from
internal coordinates qX to Cartesian coordinates X.

b has N − 2 angles and N − 3 dihedrals, result-
ing in M = 2N − 5 degrees of freedom. It is de-
scribed by the internal coordinate vector qX

.
= {θi|i =

1 . . . N−2, ωi|i = 1 . . . N−3}. For an ideal RW chain,
the direction of each link is chosen uniformly random
on the unit sphere by sampling the cos(θi) uniformly
from [0, 1] and the ωi uniformly from [0, π] [2]. The
link length between consecutive beads is fixed to b,
the mass of each bead is m = 1

N .

In order to avoid redundant chains that can be su-
perimposed by rigid-body translation and rotation,
we use “anchored” walks where x(1) is placed at the
origin, x(2) along the x-axis at (b, 0, 0)T, and the link
between x(2) and x(3) is contained in the xy-plane.
This uniquely defines the overall position and orien-
tation of the walk [13].

A pair of anchored RW chains (X,Y) of N beads
each is represented by qS = (qX ,qY). The transfor-
mation from internal coordinates to three-dimensional
Cartesian coordinates is denoted by J(qS) = (X,Y)
(see Fig. 1b).

2.3 The maximum RMSD problem

The maximum RMSD problem (MAX-RMSD) is
stated as a continuous, non-convex max–min op-
timization problem. We seek the specific pair of
chains (XN

max, Y N
max) of N beads each that maximizes

D2(X,Y) over all possible X and Y , hence:

(XN
max, Y

N
max) = arg max

X,Y
D2(X,Y) (6)

= arg max
X,Y

min
R

1

N
‖RX0 − Y0‖22 .

We refer to the pair (XN
max, Y

N
max) as the extremal

configurations of the chain ensemble in the RMSD
sense. If both X and Y are anchored linear RW
chains, we call the problem RW-MAX-RMSD. Its
Dmax(N) =

√
D2(XN

max, Y
N
max) is an upper bound for

the maximum RMSD of all linear chain ensembles.
The inner minimization problem can be solved ana-

lytically by constructing the optimal rotation matrix
R from SVD [6, 7, 4] or using quaternions [8, 9]. The
distance constraints on the positions of consecutive
beads ‖xi − xi+1‖2 = b, i = 1, . . . , N − 1, are satis-
fied by using internal coordinates q.

The outer maximization problem can be formulated
as a constrained, non-convex black-box optimization
problem in n = 2(2N − 5) = 4N − 10 dimensions.
For convenience we consider the unit hypercube as
feasible domain, i.e., candidate solution vectors q̂S

are in [0, 1]n. The unique map T : q̂S ∈ [0, 1]n →
qS ∈ ([0, 1]2(N−2), [0, π]2(N−3)) transforms any candi-
date solution vector to internal coordinates of a chain.
The black-box objective function f to be maximized
then reads:

f(q̂S) ≡ D2 (J(T (q̂S))) = D2(X,Y) (7)

= min
R

1

N
‖RX0 − Y0‖2 .

Note that this formulation is known a priori to be-
come two-fold degenerate if two consecutive links in
a trial configuration are co-linear. First, the corre-
sponding dihedral angles are then undefined, i.e., the
configuration remains the same regardless of their val-
ues. Second, the optimal rotation matrix has only
rank 1, permitting infinitely many rotations that min-
imize D2(X,Y) [8].

3 Numerical optimization results

We numerically solve the RW-MAX-RMSD prob-
lem for pairs of configurations with N = 3, . . . , 16
beads. The dimensionality of the problem is thus
ranging from n = 2, . . . , 50. We use two optimiza-
tion algorithms: (i) Sequential Quadratic Program-
ming (SQP) and (ii) Best Local Restart Covariance
Matrix Adaptation Evolution Strategy (BLR-CMA-
ES). For SQP, the MATLAB implementation fmin-
con is used. For box-constrained black-box optimiza-
tion problems, this implementation uses an active-
set SQP algorithm with approximate BFGS and line
search. BLR-CMA-ES is a local restart variant of
the variable-metric optimizer CMA-ES [5]. Details of

32

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

BLR-CMA-ES and the set-up of the numerical exper-
iments have been described elsewhere [12].

The putative optimal solutions (XN
max, Y

N
max) found

by SQP and BLR-CMA-ES agree for N = 3, 5, 7, 11.
For all other instances, BLR-CMA-ES consistently
outperforms SQP, finding configurations with larger
minimum RMSD than those found by SQP. These
extremal configuration are shown in Fig. 2. For odd

N = 3 N = 4 N = 5 N = 6

N = 7 N = 8 N = 9 N = 10 N = 11 N = 12 N = 13 N = 14 N = 15 N = 16

1 3

2

51

3

1 1 1 1 1

4

5

6

7

8

7 9 11 13 15

1 N

XN
max

Y N
max

Figure 2: Extremal configurations (XN
max, Y

N
max) of

linear RW chains with N = 3, . . . , 16 found by BLR-
CMA-ES. The upper box shows the extended configu-
rations XN

max. The lower box shows the corresponding
configurations Y N

max. For odd N , Y N
max is a linear rod

of half the length with beads N+3
2 to N folded back

onto beads N−1
2 to 1. For even N , Y N

max is a planar

hairpin where the links from beads N+2
2 to N cross

the links from beads N
2 to 1.

N , they follow a regular geometric pattern: one con-
figuration always is the fully extended linear rod, the
other is a linear rod of half the length with beads
N+3
2 to N folded back onto beads N−1

2 to 1. For
even N , the first extremal configuration is again the
fully extended linear rod, whereas the other is a
planar hairpin with crossed ends. For odd N , the
ACC of the extremal configurations is virtually 0
(< 10−15), for even N it is < 10−3. These optima
found by BLR-CMA-ES suggest a near-linear depen-
dence of Dmax(N) on N with a best linear fit of
Dmax(N) ≈ 0.3251bN − 0.04013.

4 The MAX-RMSD conjecture

The above results suggest that the extremal configu-
rations for odd N follow a simple geometric pattern:
one configuration is the fully extended linear rod, the
other one a linear fold-back of half the length.

Conjecture 1 The fully extended linear rod and its
linear fold-back configuration are the optimal solution
of the RW-MAX-RMSD problem for all odd N.

Under this assumption we derive a general formula
for Dmax(N) for odd N . Combining Eqs. (2) and (3)
we find:

D2
max(N) = D2(XN

max, Y
N
max) = R2

G(XN
max) + R2

G(Y N
max)

− 2ACC(XN
max, Y

N
max)RG(XN

max)RG(Y N
max)

= R2
G(XN

max) + R2
G(Y N

max) , (8)

provided that ACC(XN
max, Y

N
max) = 0 for all odd N .

Lemma 1 The ACC(XN
max, Y

N
max) for odd N is 0.

Proof. Without loss of generality we assume that
XN

max is the fully extended rod and Y N
max the back-

folded one, and that their centers of mass are at
(0, 0, 0). For odd N , the problem of optimal super-
position then reduces to a rotation in the xy-plane.
We define the x-axis to be aligned with XN

max after
optimal superposition. Y N

max forms a certain rotation
angle α with XN

max as shown in Fig. 3. We show that

α

N + 1

2

−N − 1

2

0

x[b]

y[b]
N − i + 1 N

N

1

1 i

i
N − i + 1

N − 1

2

XN
max

Y N
max

N − 1

2
0

Figure 3: Calculation of the RMSD between XN
max

and Y N
max for odd N after optimal superposition.

XN
max is the extended configuration and Y N

max the
folded one. Open circles (◦) represent positions that
are occupied by single beads, filled circles (•) indicate
positions occupied by two beads. The two configura-
tions enclose a planar angle α.

for the specific pair of configurations (XN
max, Y

N
max) the

ACC(XN
max, Y

N
max) is 0 for any rotation angle α and

any odd N by recalling the definition of ACC for two
optimally aligned chains X, Y :

ACC(X,Y) =

∑N
i=1 x

(i) · y(i)√∑N
i=1 x

(i)2
∑N

i=1 y
(i)2

. (9)

The denominator of this expression is always positive
since the two factors under the square root are sums
over squared bead coordinates.

33

27th European Workshop on Computational Geometry, 2011

From Fig. 3 we see that the coordinate vectors x
(i)
max

only have non-zero entries in x-direction. Further-
more, the x coordinate of the ith bead in XN

max is the
negative of the x coordinate of the (N − i+1)th bead.

The central bead (i.e., the
(
N+1
2

)th
bead) in XN

max is
at (0, 0, 0), so the scalar product with its correspond-
ing bead in Y N

max is 0. The positions of the ith and
(N − i+ 1)th beads in Y N

max are identical (filled circles
in Fig. 3) for all α. The numerator in Eq. (9) hence
becomes:

N∑
i=1

xN,(i)
max · yN,(i)

max =

N+1
2

−1∑
i=1

xN,(i)
max · yN,(i)

max + 0

+

N∑
i=N+1

2
−1

xN,(i)
max · yN,(i)

max = −
N∑

i=N+1
2

−1

xN,(i)
max · yN,(i)

max +

N∑
i=N+1

2
−1

xN,(i)
max · yN,(i)

max = 0 (10)

and, therefore, ACC(XN
max, Y

N
max) = 0 for all odd N

and all rotation angles α. �

Observation 1 The radii of gyration of XN
max and

Y N
max for odd N are

R2
G(XN

max) =
2

N
b2

M−∑
i=1

(i)2 (11)

R2
G(Y N

max) = −b2
(
M−M−

N

)2

+
1

N
b2

(M−)2 + 2

M̂−∑
i=1

(i)2


(12)

with M− = N−1
2 and M̂− = N−3

2 .

A derivation of these expressions can be found in
Ref. [12]. Combining Eqs. (8), (11), and (12) yields
an analytic formula for Dmax(N) for odd N , asymp-
totically approaching [12]:

D̂max(N) = lim
N→∞

Dmax(N) =
1

4

√
5

3
bN . (13)

We conjecture that this asymptotic limit is valid also
for even N and, since the maximum RMSD of RW
chains is always larger than that of any other chain
ensemble, formulate:

Conjecture 2 D̂max(N) is an asymptotic upper
bound on the RMSD between any two linear chains.

5 Conclusion

We combined stochastic global optimization and ana-
lytic geometry in order to conjecture an upper bound
for the RMSD between linear chains of N beads with
link length b after optimal roto-translational fitting.
We reported pairs of putative extremal configurations
of RW chains and an analytical expression for the

maximum RMSD between these extremal configura-
tions for odd N . This expression asymptotically ap-

proaches 1
4

√
5
3bN for large N , which is the conjec-

tured upper bound for any two linear chains for all
N . Future research will try proving this conjecture.

Acknowledgments

We thank Dr. Bojan Žagrović and Dr. Philippe

Hünenberger for many insightful discussions.

References

[1] M. R. Betancourt and J. Skolnick. Universal sim-
ilarity measure for comparing protein structures.
Biopolymers, 59(5):305–309, Oct 2001.

[2] C. R. Cantor and R. Schimmel, Paul. Biophysical
chemistry Part III: The behavior of biological macro-
molecules. W. H. Freeman, New York, 1980.

[3] P. J. Flory. Statistical Mechanics of Chain Molecules.
Wiley-Interscience, New York, 1969.

[4] G. H. Golub and C. F. Van Loan. Matrix Computa-
tions. Johns Hopkins University Press, 3rd edition,
1996.

[5] N. Hansen. The CMA Evolution Strategy: A Tutorial,
Nov 2007.

[6] W. Kabsch. A solution for the best rotation to
relate two sets of vectors. Acta Crystallogr. A.,
32(SEP1):922–923, 1976.

[7] W. Kabsch. A discussion of the solution for the best
rotation to relate two sets of vectors. Acta Crystal-
logr. A., 34(SEP):827–828, 1978.

[8] G. R. Kneller. Superposition of Molecular Struc-
tures using Quaternions. Mol. Simulat., 7(1):113–
119, 1991.

[9] G. R. Kneller. Comment on ”Using quaternions to
calculate RMSD” - [J. Comp. Chem. 25, 1849 (2004)].
J. Comp. Chem., 26(15):1660–1662, Nov 2005.

[10] A. D. McLachlan. Mathematical procedure for super-
impsoing atomic coordinates of proteins. Acta Crys-
tallogr. A., A 28(NOV1):656–657, 1972.

[11] A. D. McLachlan. How alike are the Shapes of
Two Random Chains. Biopolymers, 23(7):1325–1331,
1984.

[12] C. L. Müller. Black-box Landscapes: Characteriza-
tion, Optimization, Sampling, and Application to Ge-
ometric Configuration Problems. PhD thesis, Insti-
tute of Theoretical Computer Science, Department
of Computer Science, ETH Zürich, 2010.

[13] C. L. Müller, I. F. Sbalzarini, W. F. van Gunsteren,
B. Zagrovic, and P. H. Huenenberger. In the eye of
the beholder: Inhomogeneous distribution of high-
resolution shapes within the random-walk ensemble.
J. Chem. Phys., 130(21), Jun 7 2009.

[14] D. C. Sullivan and I. D. Kuntz. Distributions in pro-
tein conformation space: Implications for structure
prediction and entropy. Biophys. J., 87(1):113–120,
Jul 2004.

34

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Angle-Restricted Steiner Arborescences for Flow Map Layout∗

Kevin Buchin† Bettina Speckmann† Kevin Verbeek†

Abstract

Flow maps visualize the movement of objects between
places. One or more sources are connected to several
targets by arcs whose thickness corresponds to the
amount of flow between a source and a target. Flow
maps reduce visual clutter by merging (bundling)
lines smoothly and by avoiding self-intersections.
We present algorithms that compute crossing-free

flows of high visual quality. To this end we intro-
duce a new variant of the geometric Steiner arbores-
cence problem. The goal is to connect the targets to a
source with a tree of minimal length whose arcs obey
a certain restriction on the angle they form with the
source. Such an angle-restricted Steiner arborescence,
or simply flow tree, naturally induces a clustering on
the targets and smoothly bundles arcs.
We study the properties of optimal flow trees and

show that they consist of logarithmic spirals and
straight lines. Computing optimal flow trees is NP-
hard. Hence we consider a variant of flow trees which
uses only logarithmic spirals, so called spiral trees.
Spiral trees approximate flow trees within a factor
depending on the angle restriction. Computing op-
timal spiral trees remains NP-hard. We present an
efficient 2-approximation for spiral trees, which can
be extended to avoid certain types of obstacles.

1 Introduction

Flow maps are a cartographic method for the visual-
ization of the movement of objects between places [9].
One or more sources are connected to several targets
by arcs whose thickness corresponds to the amount of
flow between a source and a target. Most flow maps
are drawn by hand and few automated methods exist.
Good flow maps share some common properties.

They reduce visual clutter by merging (bundling) lines
as smoothly and frequently as possible. Furthermore,
they strive to avoid crossings between lines. Specif-
ically, single-source flows are drawn entirely without
crossings. Flow maps that depict trade often route
edges along actual shipping routes. In that case a
moderate distortion of the underlying geography is

∗B. Speckmann and K. Verbeek are supported by the
Netherlands Organisation for Scientific Research (NWO) un-
der project no. 639.022.707.

†Department of Mathematics and Computer Science,
TU Eindhoven, The Netherlands, k.a.buchin@tue.nl,
speckman@win.tue.nl, and k.a.b.verbeek@tue.nl

Figure 1: Two maps based on the same data set:
migration from California 1995–2000. Phan et al. [4]
(top), and the output of our algorithm (bottom).

admissible. In contrast, flow maps that depict more
abstract data, such as migration or internet traffic, do
not distort the geography of the underlying map. In
addition, flow maps often try to avoid covering impor-
tant map features with flows to aid recognizability.

Modeling and formal problem description. We study
the problem of computing crossing-free single-source
flows of high visual quality. Our input consists of a
point r, the root or source, and n points t1, . . . , tn, the
terminals or targets. For every target ti, we are also
given a weight wi, representing the amount of flow
from the source to target ti. Visually appealing flows
merge quickly, but smoothly. Disregarding weights, a
geometric minimal Steiner arborescence on our input
results in the shortest possible tree, which naturally
merges quickly. A Steiner arborescence for a given
root and a set of terminals is a rooted directed Steiner
tree, which contains all terminals and where all edges
are directed away from the root. Without additional
restrictions on the edge directions (as in the rectilin-
ear case or in the variant proposed below), a geomet-
ric Steiner arborescence is simply a geometric Steiner
tree with directed edges. Steiner arborescences have
angles of 2π/3 at every internal node and hence do
not have the smooth appearance of hand-drawn flow
maps. This motivates us to introduce a new variant of
the geometric minimal Steiner arborescence problem.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

35

27th European Workshop on Computational Geometry, 2011

r
β

p

e

Figure 2: The angle restriction.

The goal is to connect the terminals to the root with
a tree of minimal length whose arcs obey a certain
restriction on the angle they form with the root.

Specifically, we use a restricting angle α < π/2 to
control the direction of the arcs of a Steiner arbores-
cence T . Consider a point p on an arc e from a ter-
minal to the root (see Fig. 2). Let β be the angle
between the vector from p to the root r and the tan-
gent vector of e at p. We require that β ≤ α for all
points p on T . We call a Steiner arborescence which
obeys this angle restriction an angle-restricted Steiner
arborescence, or simply flow tree. Note, that this def-
inition is not taking weights into account. Hence an
optimal flow tree is simply an angle-restricted Steiner
arborescence of minimal length. Here and in the re-
mainder of the paper it is convenient to direct flow
trees from the terminals to the root. Also, to simplify
descriptions, we often identify the nodes of a flow tree
T with their locations in the plane.

In the context of flow maps it is important that
flow trees can avoid obstacles, which model important
features of the underlying geographic map. It is also
undesirable that terminals become internal nodes of a
flow tree. We can avoid this by covering each terminal
with an obstacle. Hence our input also includes a
set of m obstacles B1, . . . , Bm. We denote the total
complexity of all obstacles by M . In the presence
of obstacles our goal is to find the shortest flow tree
T that is planar and avoids the obstacles. Finally,
most flow maps use thick edges to indicate the amount
of flow. To this end we consider weighted flow trees.
The arcs of a weighted flow tree T must satisfy the
following conditions [9]. If an arc e starts at a terminal
ti then the thickness of e must be proportional to wi.
If an arc e starts at an internal node u of T then
its thickness must be proportional to the sum of the
thicknesses of the arcs terminating in u. We require,
of course, that thick arcs do not overlap obstacles.

Related work. One of the first systems for the auto-
mated creation of flow maps was developed by Tobler
in the 1980s [10, 11]. His system does not use edge
bundling and hence the resulting maps suffer from vi-
sual clutter. A couple of years ago Phan et al. [4]
presented an algorithm, based on hierarchical cluster-
ing of the terminals, which creates single-source flow
maps with bundled edges. This algorithm uses an it-
erative ad-hoc method to route edges and hence is
often unable to avoid crossings.

There are many variations on the classic Steiner

tree problem which use metrics that are related to
their specific applications. Of particular relevance is
the rectilinear Steiner arborescence (RSA) problem.
Here we are given a root at the origin and a set of
terminals t1, . . . , tn in the northeast quadrant of the
plane. The goal is to find the shortest rooted rectilin-
ear tree T with all edges directed away from the root,
such that T contains all points t1, . . . , tn. For any
edge T from p = (xp, yp) to q = (xq, yq) it must hold
that xp ≤ xq and yp ≤ yq. If we drop the condition of
rectilinearity then we arrive at the Euclidean Steiner
arborescence (ESA) problem. In both cases it is NP-
hard [7, 8] to compute a tree of minimum length. Rao
et al. [6] give a simple 2-approximation algorithm for
minimum rectilinear Steiner arborescences. Córdova
and Lee [1] describe an efficient heuristic which works
for terminals located anywhere in the plane. Ram-
nath [5] presents a more involved 2-approximation
that can also deal with rectangular obstacles. Finally,
Lu and Ruan [2] developed a PTAS for minimum rec-
tilinear Steiner arborescences.

Results and organization. Section 2 gives properties
of optimal flow trees. In particular, the arcs of op-
timal flow trees consist of (segments of) logarithmic
spirals and straight lines. Flow trees naturally induce
a clustering on the terminals and smoothly bundle
lines. In the full paper we show that it is NP-hard
to compute optimal flow trees. Hence, Section 3 in-
troduces a variant of flow trees, so called spiral trees.
The arcs of spiral trees consist only of logarithmic spi-
ral segments. We prove that spiral trees approximate
flow trees within a factor depending on the restricting
angle α. Computing optimal spiral trees remains NP-
hard. But we can establish a connection between spi-
ral trees and rectilinear Steiner arborescences. Based
on that in Section 4 we develop a 2-approximation al-
gorithm for spiral trees which runs in O(n log n) time.
In the full paper we extend our approximation algo-
rithm to include certain types of obstacles. Finally, in
Section 5 we briefly comment on weighted flow trees.

2 Optimal flow trees

Recall that our input consists of a root r, terminals
t1, . . . , tn, and a restricting angle α < π/2. We can
assume that the root lies at the origin. Recall fur-
ther that an optimal flow tree is a geometric Steiner
arborescence, whose arcs are directed from the termi-
nals to the root and that satisfies the angle restriction.

Spiral regions. For a point p in the plane, we con-
sider the region Rp of all points that are reachable
from p with an angle-restricted path, that is, with a
path that satisfies the angle restriction. Clearly, the
root r is always in Rp. The boundaries of Rp consist
of curves that follow one of the two directions that
form exactly an angle α with the direction towards

36

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

r

r

p

p
Rp

S−

p

S+
pS+

p

Figure 3: Spirals and spiral regions.

the root. Curves with this property are known as log-
arithmic spirals (see Fig. 3). Logarithmic spirals are
self-similar; scaling a logarithmic spiral results in an-
other logarithmic spiral. As all spirals in this paper
are logarithmic, we simply refer to them as spirals.
For α < π/2 there are two spirals through a point.
The right spiral S+

p is given by the following paramet-
ric equation in polar coordinates, where p = (R,ϕ):
R(t) = Re−t and ϕ(t) = ϕ+ tan(α)t. The parametric
equation of the left spiral S−

p is the same with α re-
placed by −α. Note that a right spiral S+

p can never
cross another right spiral S+

q (the same holds for left
spirals). The spirals S+

p and S−
p cross infinitely often.

The reachable region Rp is bounded by the parts of
S+
p and S−

p with 0 ≤ t ≤ π cot(α). We therefore call
Rp the spiral region of p. It follows directly from the
definition that for all q ∈ Rp we have that Rq ⊆ Rp.

Lemma 1 The shortest angle-restricted path be-
tween a point p and a point q ∈ Rp consists of a
straight segment followed by a spiral segment. Either
segment can have length zero.

Using Lemma 1 we establish the following properties.

Property 1 An optimal flow tree consists of straight
segments and spiral segments (see Fig. 4).

Property 2 Every node in an optimal flow tree, other
than the root, has at most two incoming edges.

Property 3 Every optimal flow tree is planar.

Figure 4: An optimal flow tree (α = π/6).

3 Spiral trees

In this section we introduce spiral trees and prove that
they approximate flow trees. The arcs of a spiral tree
consist only of spiral segments of a given α. An opti-
mal spiral tree is hence the shortest flow tree that uses
only spiral segments. Any particular arc of a spiral
tree can consist of arbitrarily many spiral segments;
it can switch between following its right spiral and
following its left spiral an arbitrary number of times.
The length of a spiral segment can be expressed in
polar coordinates. Let p = (R1, ϕ1) and q = (R2, ϕ2)

be two points on a spiral, then the distance D(p, q)
between p and q on the spiral is

D(p, q) = sec(α)|R1 −R2| . (1)

Consider now the shortest spiral path—using only spi-
ral segments—between a point p and a point q reach-
able from p. The reachable region for p is still its
spiral region Rp, so necessarily q ∈ Rp. The length
of a shortest spiral path is given by Equation 1. The
shortest spiral path is not unique, in particular, any
sequence of spiral segments from p to q is shortest, as
long as we keep moving towards the root.

Theorem 2 The optimal spiral tree T ′ is a sec(α)-
approximation of the optimal flow tree T .

Proof. Let CR be a circle of radius R with the root r
as center. A lower bound for the length of T is given
by L(T) ≥

∫∞
0

|T ∩ CR|dR, where |T ∩ CR| counts
the number of intersections between the tree T and
the circle CR. Using Equation 1, the length of T ′

is L(T ′) = sec(α)
∫∞
0

|T ′ ∩ CR|dR. Now consider the
spiral tree T ′′ with the same nodes as T , but where all
arcs between the nodes are replaced by a sequence of
spiral segments (see Fig. 5). For a given circle CR, this
operation does not change the number of intersections
of the tree with CR, i.e. |T ∩ CR| = |T ′′ ∩ CR|. So we
have that L(T ′) ≤ L(T ′′) ≤ sec(α)L(T). �

CR CR

T T
′′

Figure 5: T and T ′′.

Observation 1 An optimal spiral tree is planar and
every node u ̸= r has at most two incoming edges.

Relation with rectilinear Steiner arborescences.
Both rectilinear Steiner arborescences and spiral trees
contain directed paths, from the root to the terminals
or vice versa. The edges of a rectilinear Steiner ar-
borescence are restricted to point right or up, which
is similar to the angle restriction of spiral trees. The
relation between the concepts cannot be used directly,
but some of the techniques developed for rectilinear
Steiner arborescences can be adapted to spiral trees.

4 Computing spiral trees

In the special case that the spiral regions of the termi-
nals are empty, i.e., if ti /∈ Rtj for all i ̸= j, we can use
dynamic programming to compute an optimal spiral
tree in O(n3) time, based on the following lemma.

Lemma 3 If the spiral regions of all terminals are
empty, then the leaf order of any planar spiral tree
follows the radial order of the terminals.

37

27th European Workshop on Computational Geometry, 2011

C

Figure 6: The wavefront W.

We now describe an approximation algorithm that is
based on a greedy algorithm for rectilinear Steiner
arborescences [6]. We iteratively join nodes, possibly
with Steiner nodes, until all terminals are connected
in a single tree T , the greedy spiral tree. Initially, T
is a forest. A node (or terminal) is active if it does
not have a parent in T . In every step, we join the
two active nodes for which the join point is farthest
from r. The join point puv of two nodes u and v is
the farthest point p from r such that p ∈ Ru ∩ Rv.
This point is unique if u, v, and r are not collinear.
The algorithms sweeps a circle C, centered at r,

inwards over all terminals. All active nodes that lie
outside of C form the wavefront W (the black nodes
in Fig. 6). W is implemented as a balanced binary
search tree, where nodes are sorted according to the
radial order around r. We join two active nodes u and
v as soon as C passes over puv. For any two nodes
u, v ∈ W it holds that u /∈ Rv. Hence, when C passes
over puv and both nodes u and v are still active, then,
by Lemma 3, u and v must be neighbors in W. We
process the following events.

Terminal. When C reaches a terminal t, we add t to
W. We need to check if there exists a neighbor
v of t in W such that t ∈ Rv. If such a node v
exists, then we remove v from W and connect v
to t. Finally we compute new join point events
for t and its neighbors in W.

Join point. When C reaches a join point puv (and u
and v are still active), we connect u and v to puv.
Next, we remove u and v from W and we add puv
to W as a Steiner node. Finally we compute new
join point events for puv and its neighbors in W.

We store the events in a priority queue Q, ordered by
decreasing distance to r. It is easy to verify that the
total number of events is O(n), and that each event
can be handled in O(log n) time, so the total running
time is O(n log n). The greedy spiral tree is planar by
construction. We can prove the following results.

Lemma 4 Let C be any circle centered at r and let
T and T ′ be the optimal spiral tree and the greedy
spiral tree, respectively. Then |C ∩ T ′| ≤ 2|C ∩ T |.

Theorem 5 The greedy spiral tree is a 2-
approximation of the optimal spiral tree and
can be computed in O(n log n) time.

5 Weighted flow trees

When creating flow maps we need to consider
weighted flow trees, that is, flow trees with thick arcs.
To facilitate easy comparisons between flows these
arcs should be drawn as thickly as possible. How-
ever, increasing the thickness can increase the length
of the optimal flow tree substantially. This tradeoff
between arc thickness and tree length makes it very
difficult to produce theoretically interesting results re-
garding weighted flow trees. Hence we implemented a
heuristic approach based on our approximation algo-
rithm for (thin) spiral trees. We thicken the edges of
the greedy spiral tree, pushing arcs away from termi-
nals and obstacles, and apply local changes to the tree
topology to facilitate thicker flows. The resulting flow
maps are still guaranteed to be crossing free. First
results look very promising (see Fig. 1); our maps
are less cluttered than those produced by other auto-
mated methods, and we can observe that spiral trees
naturally cluster terminals well.

References

[1] J. Córdova and Y. Lee. A Heuristic Algorithm for the
Rectilinear Steiner Arborescence Problem. Technical
Report, Engineering Optimization, 1994.

[2] B. Lu and L. Ruan. Polynomial Time Approxima-
tion Scheme for the Rectilinear Steiner Arborescence
Problem. Journal of Combinatorial Optimization,
4(3):357–363, 2000.

[3] J. Mitchell. L1 shortest paths among polygonal ob-
stacles in the plane. Algorithmica, 8(1):55–88, 1992.

[4] D. Phan, L. Xiao, R. Yeh, P. Hanrahan and T. Wino-
grad. Flow map layout. In Proc. IEEE Symposium
on Information Visualization, pp. 219–224, 2005.

[5] S. Ramnath. New approximations for the rectilin-
ear Steiner arborescence problem. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 22(7):859–869, 2003.

[6] S.K. Rao, P. Sadayappan, F.K. Hwang and
P.W. Shor. The rectilinear Steiner arborescence prob-
lem. Algorithmica, 7(1):277–288, 1992.

[7] W. Shi and C. Su. The Rectilinear Steiner Arbores-
cence Problem Is NP-Complete. In Proc. 11th ACM-
SIAM Symposium on Discrete Algorithms, pp. 780–
787, 2000.

[8] W. Shi and C. Su. The Rectilinear Steiner Arbores-
cence Problem Is NP-Complete. SIAM Journal on
Computing, 35(3):729–740, 2005.

[9] T.A. Slocum, R.B. McMaster, F.C. Kessler and
H.H. Howard. Thematic Cartography and Geovisu-
alization. Pearson, New Jersey, 2010.

[10] CSISS - Spatial Tools: Tobler’s Flow Mapper.
http://www.csiss.org/clearinghouse/FlowMapper/.

[11] W. Tobler. Experiments in Migration Mapping by
Computer. The American Cartographer, 14(2):155–
163, 1987.

38

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Distance between Folded Objects

Chen Gu∗ Leonidas Guibas†

Abstract

Geometric folding problems have recently attracted
much attention in both mathematics and theoretical
computer science. In this paper, we study the fol-
lowing basic problem: given a set of folded conforma-
tions of a unit-length rope in 1D, how do we decide
which are more similar or less similar to each other?
We first define a distance function between flat folded
states that incorporates both the geometry and the
overlap order. Then we do some computational ex-
periments clustering random folded ropes with this
distance metric. Finally, we generalize our results for
1D folded ropes to flat folded papers (origami) in 2D.

1 Introduction

We start by introducing the folding model and rele-
vant definitions from [3]. The notion of folding ropes
is very intuitive. Mathematically, we imagine the rope
as a one-dimensional line segment that has zero thick-
ness. A folding motion is a continuous motion of the
rope from one configuration to another that does not
cause the rope to stretch, tear, or self-penetrate. A
snapshot of this motion at a particular time is called
a folded state.

Since ropes are not rigid, all folded conformations
(final folded states) are flat foldings. A flat folding
has the property that it lies in the same space as the
unfolded line segment. However, there can be multiple
layers of the segment at a point, so the folding really
occupies a finite number of infinitesimally close copies
of the one-dimensional space. Formally, a flat folded
state can be specified by a function mapping all points
to their folded positions, together with a partial order
that specifies their overlap order. For every pair of
distinct noncrease points that are mapped into the
same position, this partial order should specify which
one lies above the other.

In this paper, we consider a new folding problem:
determine which folded conformations are more simi-
lar or less similar to each other. This problem is very
fundamental in the area of geometric folding and fairly
natural from a practical point of view. Traditionally,
there are many distance functions that can measure
the similarity between different geometric shapes [5].
However, the difficulty of comparing folded confor-
mations is that we cannot extract from the geometry

∗Institute for Computational and Mathematical Engineer-
ing, Stanford University, guc@stanford.edu
†Department of Computer Science, Stanford University,

guibas@cs.stanford.edu

the relative stacking order of portions of the line seg-
ment that come into contact as multiple overlapping
layers. This lack of information makes it impossible
to identify different folded states. Thus, we need to
define a distance function that incorporates both the
geometry and the ordering.

There have been several related studies on fold-
ing one-dimensional strings in recent years. For ex-
ample, Arkin et al. solved the 1D flat-foldability
problem that characterize which crease patterns
and mountain-valley assignments have flat folded
states [1], and Cardinal et al. investigated the folding
complexity about how to quickly fold a paper strip to
obtain a desired mountain-valley pattern of equidis-
tant creases [2]. In particular, we will use the results
of the 1D flat-foldability problem to design a sam-
pling algorithm in our experiment of clustering ran-
dom folded ropes with this distance metric.

2 Distance between folded ropes in 1D

In this section, we define a distance function to mea-
sure the similarity between different folded conforma-
tions of a unit-length rope, and develop an efficient
algorithm for the distance computation.

2.1 Distance function

In order to compare flat foldings, we discretize the
rope into 2n points, uniformly distributed on both
sides of the rope (see Figure 1). We use a plus sign
superscript to denote the points on the top side, and
a minus sign superscript to denote the points on the
bottom side. Now, consider the two conformations
shown in Figure 2: suppose we fold the rope at posi-
tion 3, but in two different directions. In 2(a), point
4 is connected to point 2−, but not point 2+; In 2(b),
point 4 is connected to point 2+, but not point 2−.
Therefore, although the geometric positions of the
two discretized point sets are identical, we could dis-
tinguish these two conformations from their different
topological connections.

Figure 1: Discretization

Figure 2: Mountain/Valley fold at position 3

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

39

27th European Workshop on Computational Geometry, 2011

Figure 3: Two conformations with different overlap orders

We define the distance function using the distance
root mean squared error (dRMS). dRMS is a met-
ric of distance between two point sets with known
correspondence, which is computed by comparing all
internal pairwise distances of the two point sets:

dRMS2(P,Q) = 1
N2

N∑
i=1

N∑
j=1

(||pi − pj || − ||qi − qj ||)2

For simplicity, we assume that n is large enough
so that we only fold the rope at integer sam-
ple points {1, 2, ..., n − 2, n − 1} (or we can ap-
proximate all folding operations at these posi-
tions). Given two folded conformations, we com-
pute their distance using dRMS, where pi, pj , qi, qj ∈
{0, (1/2)±, 1±, (3/2)±, 2±, ..., (n−1)±, (n−1/2)±, n}.
(We define (i + 1/2)± as the midpoint of i± and
(i + 1)±.) The internal distance ||pi − pj || is defined
as the geodesic distance d(pi, pj) from pi to pj along
the rope. For two points that come in contact in
the folded conformation, we consider them to be con-
nected, so that the distance between two contacted
points is 0. For example, consider the two conforma-
tions shown in Figure 3: we denote h = 1/n as the
length between two consecutive integer sample points
along the rope. In 3(a), since 0 and 6− are connected,
we have d(0, 6−) = 0; However, in 3(b), d(0, 6−) = 2h
since the shortest path from 0 to 6− along the rope
is 0 → 1−(7) → 6−. Intuitively, the two conforma-
tions in Figure 3 have very similar geometric shapes,
however, it might follow a long trajectory if we want
to deform from one shape to another since they have
different overlap orders. Using this distance function,
we can check that the distance increases monotoni-
cally as we increase the overlap of the top two layers.

2.2 Algorithm

To compute internal pairwise distances, we build a
graph of 4n nodes corresponding to all sample points
{0, (1/2)±, 1±, (3/2)±, 2±, ..., (n−1)±, (n−1/2)±, n}.
For any two consecutive sample points along the rope,
we connect them by an edge with weight h/2. Thus,
the graph of an unfolded rope is simply a cycle of 4n
nodes. For two sample points that come in contact
by a folding operation, we add an edge between them
with weight 0. Then, the internal distance between
any two sample points along the rope is the same as
the shortest path distance between their correspond-
ing nodes in this graph.

This graph has a property that it is very sparse. In
fact, each node has exactly 2 incident edges of weight
h/2 and at most 2 incident edges of weight 0: for any
sample point, it belongs to at most 2 unit segments
on the rope (a unit segment has length h with two
endpoints at integer positions). For each segment,
there can only be one new segment lying immediately
above/below (depending on its side) it in the folded

conformation. Therefore, each sample point is con-
nected to at most 2 other sample points with edges of
weight 0 from these new segments. As a result, the
degree of each node in this graph is at most 4, which
means the total number of edges m = O(n).

For shortest paths computation, since there are
only two types of different weights in the graph (0 and
h/2), the shortest paths distances between all pairs of
nodes are multiples of h/2 between 0 and 1. From
this observation, when we implement the Dijkstra’s
algorithm from a single source, we can simply build
an array of 2n+2 cells, with cell i pointing to a linked
list of nodes that have current upper bound on dis-
tance equal to ih/2. Initially, the source is linked to
cell 0, while all other nodes are linked to cell 2n + 1
(which serves as infinity). Each time we update the
upper bound on distance of some node by relaxing an
edge, this node moves left to a linked list of nodes
that have smaller distance. Using this data struc-
ture, the total amount of time is bounded by O(m)
for time we spent on relaxing edges plus O(n) time
we spent moving right in the array, looking for the
next non-empty cell. Thus, the total running time
of Dijkstra’s shortest path algorithm is O(m) in this
case [4], instead of O(m + n log n) using Fibonacci
heaps. Finally, since m = O(n), we can implement a
single source Dijkstra’s algorithm in O(n) time, and
compute all internal pairwise distances in O(n2) time.

2.3 Symmetries

There are eight types of symmetries for folding ropes
(see Figure 4). The two conformations in each column
are identical, which only differ by a rotation of 180
degrees. Type (a) and type (b) differ by a horizontal
reflection: if we can swap the top/bottom sides of
the rope, these two types become identical. Type (a)
and type (c) differ by a vertical reflection: if we can
number the sample points in a reverse order from right
to left, these two types become identical. Finally, type
(d) contains both a horizontal and a vertical reflection
from type (a).

When we do not distinguish the two ends of the
rope, the conformations in type (a) and type (d) are
considered as the same state. In this case, we can de-
fine the distance between two conformations C1 and
C2 as min{d(C1, C2), d(C1, C

rot
2)}, where Crot

2 corre-
sponds to a type (d) rotation on C2. Then the new
distance function would be invariant under rotations.
Furthermore, if we also want to include the symme-
try of reflections, we can define the distance between
two conformations as the minimum of four distances
under all possible rotations/reflections.

Figure 4: Symmetries

40

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

3 Experiment: clustering folded ropes

In this section, we test the performance of the dis-
tance function we defined in Section 2. We first de-
sign a sampling algorithm to generate random folded
conformations of a rope, and then use this distance
metric to cluster similar conformations together.

3.1 Generating random folded conformations

In our experiment, we generate random folded confor-
mations of a rope from 1D crease patterns. The char-
acterization of flat-foldable crease patterns has been
studied extensively in origami science [3]. In 1D, a
crease pattern is a set of prescribed crease points la-
beled with mountain or valley directions on a line seg-
ment. In the model of simple foldings, a flat folding
is made by a sequence of simple folds, each of which
folds one or more layers of the line segment. In [1],
Arkin et al. showed that a 1D mountain-valley pat-
tern is flat foldable if and only if it can be folded by
a sequence of crimps and end folds.

Formally, let c1,...,cn denote the creases on a line
segment, oriented from left to right. In addition,
let c0 denote the left end and cn+1 denote the right
end. First, a pair (ci, ci+1) of consecutive creases is
crimpable if ci and ci+1 have opposite directions and
|ci−1 − ci| ≥ |ci − ci+1| ≤ |ci+1 − ci+2|. Crimping
such a pair corresponds to fold ci and then fold ci+1,
using one-layer simple folds. Second, c0 is a foldable
end if |c0 − c1| ≤ |c1 − c2|, and cn+1 is a foldable
end if |cn−1 − cn| ≥ |cn − cn+1|. Folding such an end
corresponds to perform a one-layer simple fold at its
nearest crease. In the 1D flat-foldability test, we only
need to search for one of these two local operations to
perform. Moreover, the sequence can be found in any
greedy way.

Using this result, we can generate random folded
conformations as follow: we first randomly gener-
ate a crease pattern by sampling folding positions
and mountain/valley directions uniformly on the rope,
and then run the flat-foldability test to check whether
this crease pattern can be folded flat. We repeatedly
search for a local minimum segment and test whether
we can fold it using crimp or end fold, until we reach
the final flat folding or we know it cannot be folded
flat. When the flat-foldability test fails, we simply
generate a new crease pattern and test it again.

Notice that some crease patterns may have multiple
flat folded states (for example, see Figure 3). The rea-
son is that their sequences of crimps and end folds are
different so that they have different overlap orders in
the fold states. From this observation, we randomly
select an allowable crimp or end fold operation in each
step during the flat-foldability test. Using this sam-
pling technique, we would be able to generate all valid
crease patterns and folded conformations. Finally, if
we want to avoid duplicated folded conformations, we
can use our distance function to check whether the
distance between the new folded conformation and
any previous conformation is equal to 0.

3.2 Clustering result

Using the dRMS metric, each conformation maps to a
point in dimension N2 whose coordinates are its pair-
wise internal distances. Thus, we can apply standard
clustering algorithms to group similar conformations
together. Notice that when we allow rotations or re-
flections in the distance computation, each conforma-
tion may correspond to multiple points in the dRMS
space. In this case, we can use clustering algorithms
which do not require coordinate representations.

In our implementation, we set n = 20 and gener-
ate 40 random conformations by at most 5 folds. We
do not distinguish the two ends of the rope so that
two conformations are considered as the same state
if they only differ by a type (d) rotation (see Fig-
ure 4). For clustering, we select cluster centers using
the farthest-first traversal algorithm, which gives a 2-
approximation solution for the k-center problem by
repeatedly picking a new center with maximum dis-
tance to its nearest center in the last iteration.

Figure 5 shows the experiment result with 10 clus-
ters. We see that it works fairly well for cluster-
ing similar folded conformations. Generally, our dis-
tance function will ignore small crimps and end folds,
and compare the folding structures of long segments.
If two conformations have the same overlap order
with similar lengths on corresponding long segments,
or different overlap orders but the overlap length is
small, then their distance should be small; Otherwise,
they are more likely to be in different clusters.

4 Extension to flat folded papers in 2D

In this section, we generalize our results for 1D simple
folding to orthogonal folding in 2D. In the orthogonal
folding model, we only fold along horizontal or vertical
directions on a square (or rectangular) piece of paper,
where horizontal and vertical are defined by the sides
of the paper. In origami science, this model is also
called the map folding.

Given a square paper in 2D, we discretize it by using
a uniform grid on both sides of the paper (see Figure
6(a)). Similarly, we can define the distance between
two flat folded papers using the dRMS distance func-
tion (under rotations/reflections if necessary). In par-
ticular, we define the internal distance between two
sample points by their geodesic Manhattan distance
along the paper. For example, the distance between
p+ and q+ is 2h (h = 1/n), however, the distance
between p+ and q− is 4h since we need to go across
the boundary of the paper. Again, for two points
that come in contact in the folded conformation, we
consider them to be connected, so that their internal
distance along the paper is 0.

To compute internal pairwise distances, we build a
graph consists of all sample points at (ih/2, jh/2)±

(n + 1 integer positions and n midpoints along each
axis) on both sides of the paper. Each sample point
is connected to its 4 neighbors in the grid by edges of
weight h/2, and at most 4 contacted points by edges

41

27th European Workshop on Computational Geometry, 2011

Figure 5: Experiment result: in each cluster, the first conformation represents the cluster center computed by the farthest-
first traversal algorithm, and all other conformations are sorted in ascending order by their distances to this cluster center.
(Conformations marked with a ‘*’ are rotated by 180 degrees when compared with the cluster centers.)

of weight 0. (we check the 4 unit squares around a
sample point to see if there are any unit squares lying
immediately above/below (depending on their sides)
them in the folded conformation, see the shaded ar-
eas around p in Figure 6(a)). Therefore, the degree of
each node in this graph is O(1), and the total number
of edges m = O(n2). Using a similar data structure
from the 1D algorithm, we can implement a single
source Dijkstra’s algorithm in O(n2) time, and com-
pute all internal pairwise distances in O(n4) time.

In addition, we can also allow folding operations to
be axis-parallel plus at a 45-degrees angle (see Figure
6(b)). In this case, we can still use the geodesic Man-
hattan distance for internal distances computation.
The only difference is that we may need to check at
most 8 unit triangles around a sample point to build
edges for connected points in the folded conformation.

When we allow folding operations at arbitrary di-
rections, the geodesic Manhattan distance does not
work because the grid may not be aligned after a sim-
ple fold. In this case, we may define the internal dis-
tance between two sample points as their geodesic Eu-

Figure 6: 2D folding (a) orthogonal (b) diagonal

clidean distance along the paper. However, since the
shortest path connecting two points along the paper
might be at any direction, we need to build a com-
plete graph of all sample points, and the computation
for their geodesic Euclidean distance might be very
complex in a complicated folded conformation. The
case of arbitrary folding in 2D might be a topic for
our future research.

Acknowledgments

This research was supported by NSF grant IIS-0914833.

References

[1] E. Arkin, M. Bender, E. Demaine, M. Demaine,
J. Mitchell, S. Sethia, and S. Skiena. When can you
fold a map? Computational Geometry: Theory and
Applications, 29(1): 23-46, 2004.

[2] J. Cardinal, E. Demaine, M. Demaine, S. Imahori,
S. Langerman, and R. Uehara. Algorithmic folding
complexity. In Proceedings of the 20th Annual In-
ternational Symposium on Algorithms and Compu-
tation, Lecture notes in Computer Science, volume
5878, pages 452-461, 2009.

[3] E. Demaine and J. O’Rourke. Geometric Folding Al-
gorithms: Linkages, Origami, Polyhedra. Cambridge
University Press, 2007.

[4] H. Gabow. Scaling algorithms for network problems.
Journal of Computer and System Sciences, 31:148-
168, 1985.

[5] L. Kavraki. Molecular distance measures. Connex-
ions, http://cnx.org/content/m11608/1.23/, 2007.

42

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Improving shortest paths in the Delaunay triangulation ∗

Manuel Abellanas† Mercè Claverol‡ Gregorio Hernández† Ferran Hurtado§ Vera Sacristán§

Maria Saumell§ Rodrigo I. Silveira§

Abstract

We study a problem about shortest paths in Delau-
nay triangulations. Given two nodes s, t in the De-
launay triangulation of a point set P , we look for a
new point p that can be added, such that the short-
est path from s to t, in the Delaunay triangulation
of P ∪ {p}, improves as much as possible. We study
several properties of the problem, and give efficient al-
gorithms to find such point when the graph-distance
used is Euclidean and for the link-distance. Several
other variations of the problem are also discussed.

1 Introduction

There are many applications involving communica-
tion networks where the underlying physical network
topology is not known, too expensive to compute, or
there are reasons to prefer to use a logical network
instead. An example of an area where this occurs
is ad-hoc networks, where nodes can communicate
with each other when their distance is below some
threshold. Even though the routing is done locally,
to avoid broadcasting to all neighbors every time a
packet needs to be sent, some logical network topol-
ogy and routing algorithm must be used.
Similar situations arise in application-layer rout-

ing, where sometimes a logical network is used on top
of the actual, physical network (see for example [5]).
This logical network is assumed to have some overlay
topology, whose choice can have an important impact
on the overall performance of the network.
The Delaunay triangulation is often used to model

the overlay topology [3, 5] due to several advan-
tages: it provides locality, scales well, and in general
avoids high-degree vertices, which can create serious

∗This research was initiated during the 6th Iberian Work-
shop on Computational Geometry, held in Aveiro, Portugal.
M.A. and G.H. were partially supported by projects MTM2008-
05043 and HP2008-0060. M.C., F.H., V.S. and M.S. were par-
tially supported by projects MTM2009-07242 and Gen. Cat.
DGR 2009SGR1040. R.I.S. was supported by the Netherlands
Organisation for Scientific Research (NWO).

†Facultad de Informática, Universidad Politécnica de
Madrid, {mabellanas, gregorio}@fi.upm.es.

‡Departament de Matemàtica Aplicada IV, Universitat
Politècnica de Catalunya, merce@ma4.upc.edu

§Departament de Matemàtica Aplicada II, Universitat
Politècnica de Catalunya, {ferran.hurtado, vera.sacristan,

maria.saumell, rodrigo.silveira}@upc.edu

s
t

s
tp

G G′

Figure 1: Shortest path between s and t before (left)
and after (right) adding p, resulting in a shorter path.

bottlenecks. In addition, several widely-used local-
ized routing protocols guarantee to deliver the pack-
ets when the underlying network topology is the De-
launay triangulation [2]. Furthermore, there are lo-
calized routing protocols based on the Delaunay tri-
angulation where the total distance traveled by any
packet is never more than a small constant factor
times the network distance between source and des-
tination (e.g. [2]). Since the Delaunay triangulation
is known to be a spanner [4], in the case of geomet-
ric networks this guarantees that all packets travel at
most a constant times the minimum travel time.
In this paper we consider the problem of improving

a geometric network, with a Delaunay triangulation
topology, by augmenting it with additional nodes. In
particular, we aim at improving the shortest path on
the Delaunay network between two given nodes s and
t. Adding new nodes to a Delaunay network produces
changes in the network topology that can result in
equal, shorter, or longer shortest paths between s and
t (see Figure 1).
We restrict ourselves to the scenario where at most

one node can be added to the network, which can be
placed anywhere on the plane. The goal is to find a
location for the new node that improves the shortest
path between s and t as much as possible. We are not
aware of any previous work on this problem.

Notation The input to the problem is a set of n
points P = {p1, · · · , pn}, and two points s, t ∈ P . The
points represent the locations of the network nodes.
We will use G to denote the Delaunay graph of P :

G has the points in P as vertices, and an edge be-
tween two vertices (pi, pj) if and only if there is a
circle through pi, pj that does not contain any point

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

43

27th European Workshop on Computational Geometry, 2011

s
t

s
tp p

G G′

Figure 2: Adding a new point p to the Delaunay tri-
angulation.

from P in its interior. We assume the points in P are
in general position: no three points are collinear and
no four points are cocircular. Thus G represents the
Delaunay triangulation of P . Moreover, we also as-
sume that the edge (s, t) /∈ G, otherwise the distance
between s and t in G would be optimal. Note that we
use G to refer to both the graph and the triangulation.
The shortest path on G between s and t will be

denoted by SPG(s, t). The length of such path, de-
fined as the sum of the Euclidean lengths of its edges,
will be denoted by |SPG(s, t)|, although we will omit
G if possible. The straight line segment between two
points x and y will be denoted by xy, and its Eu-
clidean length by |xy|, whereas the Euclidean length
of an edge (x, y) will be denoted by |(x, y)|.
Finally, we will use G′

p to denote the Delaunay
graph of P ∪ {p}, for some p /∈ P (we will omit p
when clear from the context).

2 Properties and observations

We begin the paper by analyzing some geometric
properties of the problem.
When a new point p is inserted in P , some edges

of the Delaunay triangulation might disappear and
new edges, all incident to p, appear (see Figure 2).
The edges of G that are affected by the insertion of
p belong to Delaunay triangles whose circumcircles
contain p. In particular, all triangles in G whose cir-
cumcircle contains p get new edges in G′, connecting
their vertices to p. If p is outside the convex hull of
P, some additional edges might appear.
A first question that one may ask is whether it is

always possible to improve a shortest path by adding
one point to G. There are situations in which it is
easy to obtain some improvement:

Lemma 1 Let e1 and e2 be two consecutive edges
of SPG(s, t). Let C1 and C2 be two Delaunay circles
through the extremes of e1 and e2, respectively. If C1

and C2 are not tangent and C1 ∩ C2 is on the side
in which the edges form the smallest angle, then the
length of SPG(s, t) can always be reduced by inserting
one point.

e1 e2

s t
p

x y

Figure 3: Any point inserted in the shaded region,
like p, improves SP (s, t), shown in green.

Even though we omit the proof of the previous
lemma, the basic idea can be seen in Figure 3. If
we insert p in the shaded region, then (x, p) and (p, y)
will be Delaunay edges in G′, shortening the part of
SP (s, t) between x and y.
However, some shortest paths cannot be improved

at all by adding a single point:

Lemma 2 It is sometimes impossible to improve
SPG(s, t) by inserting only one point.

Proof. An example is shown in Figure 4. Notice that
e1, e2, C1, and C2 do not satisfy the hypothesis of
Lemma 1. Moreover, ∀x ∈ P \ {s, t}, |xs| + |xt| ≥
|e1| + |e2|, so a shorter path between s and t must
be of the form {s, p, t}. More precisely, p must be in-
serted so that |sp|+ |pt| < |e1|+ |e2|, (s, p) ∈ G′

p, and
(t, p) ∈ G′

p. It is easy to verify that these conditions
cannot be simultaneously satisfied. �

The example in Figure 4 can be extended to a path
with a linear number of vertices, and even to one
where SP (s, t) zigzags.
On the other hand, two points always suffice to im-

prove the shortest path between s and t.

Lemma 3 It is always possible to reduce the length
of SPG(s, t) by inserting two points, if SPG(s, t) is not
optimal.

Proof. Let e1 = (a, b), e2 = (b, c), C1 and C2 be two
consecutive edges of SP (s, t), and two Delaunay cir-

s
t

C1

C2

e1
e2

Figure 4: Example where SP (s, t) cannot be im-
proved by adding one point.

44

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

cles circumscribing them. If Lemma 1 cannot be ap-
plied, it is easy to see that we can place two points p1
and p2 close enough to b so that {a, p1, p2, c} is a path
in the new triangulation, shorter than {a, b, c}. �

3 Finding a point that gives the maximum im-
provement

In this section we present an algorithm that computes
a point p such that |SPG′

p
(s, t)| is minimum. The

correctness of the algorithm is based on the following
lemmas. First we prove that we only need to look at
O(I) possible candidate points, where I is the number
of pairs of Delaunay circles that intersect—I ∈ Θ(n2)
in the worst case. Then we show that the shortest
paths from s and t need to be computed only once.

Lemma 4 Let p be an optimal point, and let x, y be
the points in G such that SPG′

p
(s, t) includes (x, p)

and (p, y) as consecutive edges. Then p lies on the
segment xy, or on the intersection of a circumcircle
through x, and a circumcircle through y.

Proof. Suppose that p does not lie on the straight
line segment xy. Assume w.l.o.g. that xy is horizon-
tal, and p is above xy. Since p is optimal but moving
p down reduces |xp|+ |py|, any movement toward xy
must result in crossing a circle C that causes a flip re-
moving (x, p), (p, y) or some other edge in SPG′(s, t).
This can be because p either enters or leaves C.
If p enters a circle, an edge e connecting two neigh-

bors of p disappears, and is replaced by an edge e′ inci-
dent to p. Such a change cannot affect the combinato-
rial structure of the current shortest path SPG′(s, t).
Hence we are only interested in the event of leaving

a circle C. In this case an edge e, until now incident
to p, disappears, and is replaced by another edge e′

(see Figure 5). This can be a problem only if e =
(x, p) or e = (p, y). Assume that e = (x, p). Notice
that x lies on C. Even though moving p down would
make it cross C, the length of SPG′(s, t) could also
be reduced by moving p on the circle C toward xy.
If such a movement cannot be done without affecting
the combinatorial structure of SPG′(s, t), we conclude
that there is a second circle C ′ through p and y. �

Lemma 5 Let p be a point, and let x ∈ P such
that (x, p) ∈ G′

p. If SPG′
p
(s, p) includes (x, p),

then |SPG′
p
(s, p)| = |SPG(s, x)| + |xp|. Otherwise,

|SPG′
p
(s, p)| ≤ |SPG(s, x)|+ |xp|.

Algorithm The previous lemmas imply that to find
an optimal point p it is enough to analyze each pair
of Delaunay circles that intersect.
We first precompute the shortest path trees from

s and from t. Then we use an output-sensitive algo-
rithm to compute all pairs of circles that intersect.

C

x

e

C ′

y

p st(p)

Figure 5: Situation in proof of Lemma 4.

x
y

x y

p
p

C1

C2

Figure 6: Two optimal ways to connect x and y: by
a point on xy (left), and by a point on the boundary
of C1 ∩ C2 (right).

For each pair of intersecting circles (C1, C2), we pro-
ceed as follows. Each circle corresponds to a Delaunay
triangle from G. Let the two triangles be t1, t2. For
each pair of vertices x ∈ t1 and y ∈ t2, we first check if
xy intersects C1∩C2. If it does, we take p as any point
on (xy∩C1∩C2). Otherwise, we check the two points
where C1 and C2 intersect, and use the one that gives
the shortest path from x to y. See Figure 6.

If the length of SP (s, t) improves by using p, we
update this information. In the end we output the
point that gave the shortest path, if it improves over
SPG(s, t), or report that no point can improve it.

The running time of the algorithm is dominated
by the time needed to find all pairs of circles that
intersect. Therefore by using an algorithm like Bal-
aban’s [1] we obtain an O(n log n + I) running time,
with O(n) space.

Theorem 6 Given the Delaunay triangulation of n
points, and two vertices s and t, a point whose inser-
tion gives the maximum improvement in SP (s, t) can
be found in O(n logn+I) time, where I is the number
of pairs of Delaunay circles that intersect.

3.1 Related problems

Based on the previous lemmas, some other related
problems can also be solved more efficiently.

Finding an optimal point for every t If only s is
fixed, one may want to compute for each t ∈ P a

45

27th European Workshop on Computational Geometry, 2011

point pt whose insertion gives the optimal improve-
ment in SP (s, t). This can be done efficiently in two
steps. First we augment G by adding some edges as
follows: we add an edge (x, y) of weight w if there
exists a circumcircle through x intersecting a circum-
circle through y, such that the best point p in the
intersection satisfies |xp|+ |py| = w. These new edges
can be found in O(n log n + I) time, and the result-
ing graph H has O(n + I) edges and n vertices. In
the second step, we use Dijkstra’s algorithm imple-
mented with Fibonacci heaps to compute the single-
source shortest paths from s in H, modified to ensure
that no path uses more than one of the new edges.
This yields a running time of O(n log n+ I). This ap-
proach can also be used to compute, for each s and
each t, the point pst that gives the optimal improve-
ment for s and t, in O(n2 log n+ nI) time.

Other network graphs If instead of the Delaunay
graph a different proximity graph is used (e.g. Gabriel
or nearest neighbor graph), one can apply the general
approach of partitioning the plane into regions such
that inserting a point anywhere inside the region pro-
duces the same topological change to the structure.
Then the exact optimal location within a region can
be computed. Several proximity graphs related to the
Delaunay graph can use such technique, including the
minimum spanning tree (the corresponding subdivi-
sion has been studied in [6]).

4 Finding a point that gives the maximum im-
provement, using the link-distance

Next we consider the variant of the problem where
the metric used to measure distances on G is the link-
distance: the length of a path is defined by its number
of edges. This metric is also interesting in networking
applications, since it measures the number of hops.

We use dl(s, t) to denote the link-distance between
s and t. As before, we are interested in adding one
new point to G such that the link-distance between s
and t is minimized as much as possible.

Data structure We use a data structure D that al-
lows to answer the following type of query in O(log2 n)
time: given a circle C, find a Delaunay circle C∗

that (i) intersects C, and (ii) has minimum link-
distance to t. The link-distance from a circumcircle
C—corresponding to a triangle △(a, b, c)—to t is de-
fined as min{dl(a, t), dl(b, t), dl(c, t)}. The data struc-
ture consists of a balanced binary tree where each
node represents the union of a subset of the circum-
circles. The unions are represented by additively-
weighted Voronoi diagrams of the circle centers. It
takes O(n log n) space and can be built in O(n log2 n)
time. We omit the details due to the space limit.

Algorithm The algorithm proceeds as follows. First
the shortest paths from s and t to each other node
are precomputed. Then we go over all points in P .
For each possible point x we query the data structure
D with each circumcircle that goes through x. We
simply keep track of the lowest value returned by each
query, for each point. After doing this for all points
in P , we return a point in the intersection associated
with the circles that gave the minimum distance. The
correctness of the algorithm follows from the previous
lemmas, which also hold for the link-distance. The
total running time of the algorithm is O(n log2 n).

Theorem 7 Given the Delaunay triangulation of n
points, and two vertices s and t, a point whose in-
sertion gives the maximum improvement in SP (s, t),
under the link-distance, can be found in O(n log2 n)
time.

5 Discussion

We studied the problem of adding a point to a De-
launay triangulation, such that it improves a short-
est path as much as possible. As already mentioned,
the methods and observations used can be adapted
to solve other related problems, like when other prox-
imity graphs are used. It is also possible to solve
efficiently the somewhat dual problem of finding a
node whose removal gives the best improvement to
the shortest path between s and t. We omit details
due to space constraints.
Several improvements to our algorithms are pos-

sible. A particularly intriguing question is whether
the decision problem (Is there a point that improves
SP (s, t)?) can be solved faster than the optimization
version.

References

[1] I. J. Balaban. An optimal algorithm for finding seg-
ments intersections. In Proc. SoCG’95, pages 211–219,
1995.

[2] P. Bose and P. Morin. Online routing in triangulations.
SIAM J. Comput., 33(4):937–951, 2004.

[3] E. Buyukkaya and M. Abdallah. Efficient triangula-
tion for P2P networked virtual environments. In Proc.
NetGames’08, pages 34–39, 2008.

[4] D. P. Dobkin, S. J. Friedman, and K. J. Supowit. De-
launay graphs are almost as good as complete graphs.
Discrete Comput. Geom., 5:399–407, 1990.

[5] J. Liebeherr, M. Nahas, and W. Si. Application-
layer multicasting with Delaunay triangulation over-
lays. IEEE J. Sel. Areas Comm., 20:1472 – 1488, 2002.

[6] C. L. Monma and S. Suri. Transitions in geometric
minimum spanning trees. Discrete Comput. Geom.,
8:265–293, 1992.

46

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Construction of Common Unfolding of a Regular Tetrahedron and a Cube

Toshihiro Shirakawa∗ Takashi Horiyama† Ryuhei Uehara‡

Abstract

A procedure that produces a common unfolding of a
regular tetrahedron and a cube is given. It is adapt-
able to the length of an edge. If we allow a small error
of the length of an edge of the tetrahedron, the proce-
dure certainly halts and generates a common unfold-
ing of a cube and an almost regular tetramonohedron.
If we wish to generate the common unfolding of them
with accuracy, we conjecture that the procedure does
not halt and we obtain the common unfolding in the
limit as a set of infinitely many points. The procedure
has a potential to design a fractal structure given in
a continued fraction form.

1 Introduction

Recently, several polygons that can fold to two differ-
ent polyhedra have been developed (Table 1). Such a
polygon is called a common unfolding of the polyhe-
dra1. Observing these impressive unfoldings, it is nat-
ural to ask that whether there is a common unfolding
of two (or more) different Platonic solids. This ques-
tion has arisen several times independently, and it is
still open (see [3, Section 25.8.3]).

In this paper, we give a procedure that generates
a common unfolding of a regular tetrahedron and a
cube2. The procedure is adaptable to the length of
an edge of the tetrahedron. More precisely, the proce-
dure generates the common unfolding of a cube and an
almost regular tetramonohedron. If we wish to gen-
erate the common unfolding of a cube and a regular
tetrahedron, the procedure produces a set of an infi-
nite number of points, and we obtain the common un-
folding in the limit. In a sense, this procedure gives an
affirmative answer to the open problem; there exists a
common unfolding of two Platonic solids (if our con-
jecture based on experiments is true). When we admit
some error, say ε > 0, then the procedure always halts
and it certainly generates a common unfolding of a
cube and an almost regular tetramonohedron whose

∗G-mode Co. Ltd., Japan, ZVB03747@nifty.ne.jp
†Graduate School of Science and Engineering, Saitama Uni-

versity, Japan, horiyama@al.ics.saitama-u.ac.jp
‡School of Information Science, JAIST, Japan,

uehara@jaist.ac.jp
1Note that an edge of an unfolding can pass through a flat

face of the polyhedra. See an unfolding of a cube in Figure 1.
2In this paper, a cube always means a unit cube that is a

box of size 1 × 1 × 1.

edge lengths are within the interval [`−ε, `+ε], where
` =

√
2
√

3 is the length of an edge of the regular tetra-
hedron of surface area 6. Experimentally, we obtain
a common unfolding of a cube and an almost regular
tetramonohedron with ε < 2.89200 × 10−1796.

Although we obtain an unfolding close to the ideal
one, the connectivity of the unfolding generated by
the procedure is not guaranteed in general. From the
experimental results, we conjecture some useful prop-
erties of the unfolding. Based on it, we can take ar-
bitrarily small ε > 0 to obtain such an unfolding of a
cube and an almost regular tetramonohedron.

The behavior of the procedure seems to rely on
the continued fraction form of the length of an edge.
On the other hand, it is well known that some real
numbers have simple (but infinite) continued fraction
forms. The conjecture would imply that our proce-
dure is also useful to generate so called fractal curves
based on these forms; see Figures 6 and 7 in Appendix.

2 Preliminaries

We first show some basic results about unfolding of a
convex polyhedron.

Lemma 1 ([3, Sec. 22.1.3]) All vertices of a poly-
hedron X are on the edges of any unfolding of X.

Let P be a polygon on the plane, and R be a set of
three points (called rotation centers) on the boundary
of P . Then P has a tiling called symmetry group p2
if P fills the plane by the repetition of 2-fold rotations
around the points in R. The filling should contain no
gaps nor overlaps. The rotation defines an equivalence
relation on the points in the plane. Two points p1 and
p2 are mutually equivalent if p1 can be moved to p2

by the 2-fold rotations. More on the properties of p2
tiling can be seen, e.g., in [5]. Based on the notion
of p2 tiling, any unfolding of a tetramonohedron3 can
be characterized as follows:

Theorem 2 ([1, 2]) P is an unfolding of a tetra-
monohedron if and only if (1) P has a p2 tiling, (2)
four of the rotation centers consist in the triangular
lattice formed by the triangle faces of the tetramono-
hedron, (3) the four rotation centers are the lattice
points, and (4) no two of the four rotation centers
belong to the same equivalent class on the tiling.

3A tetramonohedron is a tetrahedron that consists of four
congruent triangles.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

47

27th European Workshop on Computational Geometry, 2011

A regular octahedron and a tetramonohedron [3, Figure 25.50]
A regular tetrahedron and a box of size 1 × 1 ×

√
3 − 1/2 = 1.232 [3, Figure 25.51]

A cube and a tetramonohedron of size 1 :
√

34/6 :
√

34/6 = 0.9718 [6]
A regular octahedron and a tetramonohedron of size 1.0072 : 0.9965 : 0.9965 [6]
A regular icosahedron and a tetramonohedron of size 1 : 1.145 : 1.25 [4]

Table 1: Known common unfoldings of a regular polyhedron and another (nonregular) polyhedron.

c
1

c2

c
3

c
4

a

b

a’

b’

p

p’

L1 L2

Figure 1: An initial unfolding P1 of a cube.

We start from an unfolding P1 of a cube in Figure 1.
(The points c1, c2, p, p′ are the centers of correspond-
ing edges.) The thick lines in the figure gives an un-
folding of a cube. Also, P1 satisfies the conditions
of Theorem 2 with four points c1, c2, c3, c4; that is,
P1 is an unfolding of a tetramonohedron. We here
note that c1c2 is in parallel to the lines L1 and L2,
and the tiling is split by lines L1 and L2 into “paral-
lel ribbons.” Thus we obtain infinitely many tilings
by shifting these ribbons into any position along the
lines. This fact implies that we can move the rotation
centers c3 and c4 to any positions along L1 and L2,
respectively, as long as |c1c3| = |c2c4| (and hence
|c1c4| = |c2c3|) without changing the surface area of
the tetramonohedron. That is, P1 is a common un-
folding of a cube and an infinitely many tetramono-
hedra. (In the context of [3, Section 25], L1 and L2

make a rolling belt that is zipped to the edge c3c4.)
Here we have |c1c2| =

√
13/2 = 1.80278, and each

area of four congruent triangles is 3/2. Thus taking
|c3c1| = |c3c2| = |c4c1| = |c4c2| in Figure 1, we
have the following lemma:

Lemma 3 There exists a common unfolding of a
cube and a tetramonohedron with edge lengths√

13/2 :
√

745/208 :
√

745/208 = 1.80278 : 1.89255 :
1.89255.

The tetramonohedron in Lemma 3 is close to a regular
tetrahedron. Our goal is to modify the edge lengths
to the equal length

√
2
√

3 = 1.86121.

Figure 2: Fixed points on an unfolding.

3 Procedure for a common unfolding

Our procedure transforms P1. More precisely, it
moves c1 to the right and c2 to the left, respectively.
Through these transformations, we keep two invari-
ants for the polygon P1 that P1 is an unfolding of a
cube, and P1 is an unfolding of a tetramonohedron
with |c1c3| = |c1c4| = |c2c3| = |c2c4| . Hence, when
|c1c2| becomes

√
2
√

3, we obtain a common unfolding
of a cube and a regular tetrahedron. When we move
c1 and c2, a series of discrete processes occurs. It will
not terminate if we try to change from |c1c2| =

√
13/2

to |c1c2| =
√

2
√

3 as shown later. Thus we have two
choices; the common unfolding of a cube and the reg-
ular tetrahedron in the limit as the set of infinitely
many points, or a common unfolding of a cube and
an almost regular tetramonohedron for any given error
ε > 0. Here we define the almost regular tetramono-
hedron with error ε > 0 by a tetramonohedron with
|c1c2| ∈ [

√
2
√

3 − ε,
√

2
√

3 + ε].
Now we show how to stretch the distance between

c1 and c2 and change |c1c2| from
√

13/2 = 1.80278 to√
2
√

3 = 1.86121. Intuitively, we will slightly move
the points c1 and c2 horizontally farther.

We here observe that, white circles in Figure 2 come
to two “center points” in the top and bottom squares
in the cube. If we remove these points, the squares
have holes. On the other hand, if the unfolding con-
tains these points inside, the squares have overlaps.
Hence these points should be on the edge of P1. More-
over, by Lemma 1, the vertices of the cube (black
points in Figure 2) also should be on an edge of P1.
We call these immovable points fixed points of the un-
folding.

Here we focus on the top edges of P1. There are
eight fixed points, and we have a rotation center c1

48

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

c1

c1’l1

f0

f1

f2f3

x

y

f4

f2

Figure 3: The construction of the points on edges of
the unfolding of a cube and a tetramonohedron.

on it. To describe exactly, we define xy-coordinate on
the edges; let one of the fixed points, or the vertex of
the (unit) cube closest to c1 be f0 = (0, 0) (Figure 3).
Then the initial position of c1 is (1/4, 1/4). Now,
we assume that the rotation center c1 = (1/4, 1/4) is
moved to c′1 = (1/4+`1, 1/4) for small `1. Since f0 is a
fixed point and c′1 should be the rotation center, f1 =
(1/2 + 2`1, 1/2) has to be a point on the edge of the
unfolding. Moreover, when this unfolding folds up to
a cube, f1 will be put on the point f2 = (1+1/2, 1/2−
2`1). Hence f2 is also a point on the edge of the
unfolding4. Since they form a symmetrical unfolding,
when the point f2 = (1+1/2, 1/2−2`1) is placed, the
equivalent point (1/2, 1/2 − 2`1) is also placed. That
is, the equivalent relation (x, y) ≡ (x− 1, y) is always
applied. We can repeat this process and obtain a set
of points which should be on edges of the unfolding
with the new rotation center c′1 = (1/4 + `1, 1/4). In
other words, we have a set of points that should be on
edges of the unfolding with respect to the shift value
`1. For this procedure, we have the following lemma:

Lemma 4 The procedure of mapping the fixed
points halts if and only if `1 is a rational number.

Proof. If `1 = p
q with 0 < p < q for some positive

integers p and q, all the mapped points from the fixed
points are onto a lattice of size O(pq). Hence the
procedure can be terminated when the mapping visits
some point again. On the other hand, if `1 is not a
rational number, the same coordinate never appears
and the procedure will not terminate. �

Using the procedure, we can slightly move c1 and c2

horizontally, and stretch |c1c2| to the desired length.
We now combine the construction in Figure 1; we also

4Precisely, before computing this “rotation” of the point
f1 to f2, we have to determine if f1 is on the left side or on
the right side of the unfolding. Depending on the side, we
have to choose the direction of the rotation from clockwise and
counterclockwise. When the point fi is just on the boundary,
or when fi = (0, j) or fi = (0.5, j) with j > 0, we need some
“clue;” to decide that, we also maintain which side is “inside”
of the unfolding for each point fi. But the details are omitted
in this draft.

Figure 4: An example of an unfolding of a cube and
a tetramonohedron.

tilt the lines L1 and L2 in parallel with c1c2 consistent
to the surface area, and obtain the desired unfolding.
For example, Figure 4 is a common unfolding of a
cube and a tetramonohedron such that `1 = 4/21 and
`2 = 5/24, where `2 is the distance that c2 is moved
to the left.

In general, this procedure does not always gener-
ates a connected unfolding. More precisely, two lines
L1 and L2 may cut the unfolding into disconnected
pieces. To guarantee that these lines does not divide
the unfolding, we have to investigate the generated
edges by the procedure. We experimentally gener-
ated many unfoldings, and obtain the following ob-
servation, but we have no proof and no formal char-
acterization of this sets of points up to now:

Observation 1 We let `1 = (1 − φ1)/4 and `2 =
(1 − φ2)/4, where φ1 and φ2 are given in contin-
ued fraction forms5 φ1 = 1

a1±
1

a2±
1

a3± · · · 1
ak

, and

φ2 = 1
b1±

1
b2±

1
b3± · · · 1

bh
. Then, each upper edge of the

unfolding is given by the waves recursively defined by
ai as follows. We first replace a line segment of the
original P1 by a curve with a1 “waves;” it is a trian-
gular wave or a square wave depending on the parity
of a1. Then, each edge is again replaced by the waves
decided by a2, and so on. The signal determines the
first direction of the wave.

For example, in Figure 4, `2 = (1 − 1/6)/4 = 5/24,
or φ2 = 1/6. Hence the lower edges consist of a
square wave of 6 peeks. On the other hand, since
φ1 = 5/21 = 1/(4 + 1/5), each upper edge consists of
a square wave of four peeks of which each edge of the
square consists of a triangular wave of five peeks.

We conjecture that the observation certainly holds,
but no proof and no exact characterization of the
“wave” are given. However, we can construct an ac-
curate connected unfolding based on the observation.
Precisely, we obtain several values by a brute force
algorithm that alternately chooses a1, b1, a2, b2, . . . to

5This “continued fraction form” is slightly different from the
standard one. In the standard form, ai ≥ 1 and all signs are
“+.” In our continued fraction form, we use “−” and avoid the
case ai = 1 for i > 1. The details are omitted in this draft.

49

27th European Workshop on Computational Geometry, 2011

Figure 5: A common unfolding of a cube and a (non-
regular) octahedron.

be closer `1 + `2 =
√

2
√

3 − 9/4 − 1: a1 = 4, b1 =
6, a2 = 6, b2 = −34, a3 = −42, b3 = −14, a4 =
−116, b4 = −2146, a5 = 4010, b5 = −3316, a6 =
−4958, b6 = 8684, a7 = −7820, b7 = 7082, a8 =
2668, b8 = −3684, a9 = 4564, b9 = 1662, a10 =
560, b10 = −158, We have obtained a connected
unfolding for each i. When we use up to a10 and b10,
we obtain ε < 4.63451 × 10−56, and the values up to
a50 and b50 give us ε < 2.89200 × 10−1796:

Theorem 5 There exists a common unfolding of a
cube and an almost regular tetramonohedron with an
error ε < 2.89200 × 10−1796.

We conjecture that this process can be repeated in
arbitrary large, and we obtain a connected common
unfolding of a cube and a regular tetrahedron in the
limit:

Conjecture 1 There exists a series of points that
converges to a connected common unfolding of a cube
and a regular tetrahedron in the limit.

4 Concluding Remarks

We give a procedure that generates a common un-
folding of a cube and a regular tetrahedron. But this
is not completed: the procedure does not halt, and it
might produce a disconnected unfolding. The proof of
the observation, or the characterization of the curve
generated by the procedure is a future work. We also
conjecture that a similar construction of a common
unfolding of a regular octahedron and a tetramono-
hedron works.

It is a challenging problem to try to the other pair
of Platonic solids rather than a regular tetrahedron;
in the case, we cannot use tiling as a tool any more.
However, recently, the first author finds a common un-
folding of a cube and a (nonregular) octahedron (Fig-
ure 5; note that this octahedron consists of two regular

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-0.4 -0.2 0 0.2 0.4

Golden Ratio

Figure 6: The set of the first 5000 points given by the
golden ratio φ = 1+

√
5

2 = 1 + 1
1+

1
1+

1
1+ · · · .

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-0.4 -0.2 0 0.2 0.4

Silver Ratio

Figure 7: The set of the first 10000 points given by
the silver ratio φ =

√
2 − 1 = 1

2+
1

2+
1

2+ · · · .

triangles of edge length
√

2, and six triangles of edge
lengths

√
2,
√

24 − 6
√

3/3,
√

24 − 6
√

3/3). Hence it
is not so easy to give some negative results, and we
might have a common unfolding of the other solids.

Appendix

Based on the observation, we can design and gener-
ate some fractal pattern for a certain real number φ.
Some experimental results are given in Figures 6 and
7.

References

[1] J. Akiyama. Tile-Makers and Semi-Tile-Makers.
American Mathematical Monthly, 114:602–609, 2007.

[2] J. Akiyama and C. Nara. Developments of Poly-
hedra Using Oblique Coordinates. J. Indone-
sia. Math. Soc. , 13(1):99–114, 2007.

[3] E. D. Demaine and J. O’Rourke. Geometric Fold-
ing Algorithms: Linkages, Origami, Polyhedra. Cam-
bridge University Press, 2007.

[4] T. Horiyama and R. Uehara. Nonexistence of Com-
mon Edge Developments of Regular Tetrahedron and
Other Platonic Solids. In China-Japan Joint Confer-
ence on Computational Geometry, Graphs and Appli-
cations (CGGA 2010), 2010.

[5] D. Schattschneider. The plane symmetry groups:
their recognition and notation. American Mathemat-
ical Monthly, 85:439–450, 1978.

[6] T. Shirakawa. Unpublished. 2010.

50

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

The Traveling Salesman Problem with Differential Neighborhoods

Lauri Häme∗ Esa Hyytiä∗ Harri Hakula∗

Abstract

We introduce a novel differential approach to the Traveling
Salesman Problem with Disk Neighborhoods (TSPDN), in
which each node may be relocated within radius r from
the original location in order to decrease the length of the
shortest tour visiting all nodes. When r is small com-
pared to the distance between the nodes, the optimal so-
lution to the TSPDN is achieved by shortening the cycle
corresponding to the optimal TSP tour without reordering
the nodes. Looking at the shortening rate of a cycle, de-
fined as the ratio of the decrease in tour length to r when
r tends to zero, gives us an insight on how the movement
of nodes can be converted into savings in tour length. We
study the optimal direction for shortening and show how
the shortening rate relates to the tightness of turns, number
of U-turns and the distance from the origin in Euclidean,
Manhattan and hyperbolic metrics, respectively.

1 Introduction

A natural generalization of the Traveling Salesman Prob-
lem (TSP) is the TSP with neighborhoods (TSPN): given
a collection of n regions (disks, rectangles, lines, . . .), the
goal is to find a shortest tour that visits all of them [2, 5].

In this work, neighborhoods are defined as disks cen-
tered at the initial locations of nodes to be visited by the
salesman and the radius r of the disks denotes the max-
imum distance each node can be shifted in order to de-
crease the total tour length. We may equivalently think
that there are n customers and r denotes the maximum dis-
tance each customer can walk to meet the salesman. We
are interested in studying the effect of relocating nodes on
total tour length, by comparing the optimal TSP tour to the
solution of the TSP with disk neighborhoods (TSPDN).

While the absolute difference between the solutions to
TSP and TSPDN is clearly increased with r, the most ef-
ficient “steps” are taken when r is small. This is seen to
be true also for arbitrary cycles, consisting of a finite num-
ber of nodes, that are shortened by shifting each node a
distance r in the optimal direction. We examine the short-
ening rate of a cycle, defined as the ratio of the decrease
in the length of the cycle to r when r → 0. This approach
is in fact similar to discrete curve shortening flow models
presented in [3, 12, 16, 18]. Most of these works focus on
the asymptotic behavior of polygons that evolve according
to a specific shortening flow (see section 1.1). In contrast

∗Aalto University School of Science, Finland. E-mail:
lauri.hame@tkk.fi, esa.hyytia@tkk.fi, harri.hakula@tkk.fi

to these models, we assume that all nodes move at equal
“speed”, that is, r is equal for each node, and focus on
the optimal direction for shortening and the correspond-
ing maximum shortening rate. By shifting the nodes in an
optimal TSP tour a differential distance dr in the optimal
direction, we achieve an optimal solution to the TSP with
differential neighborhoods.

The main contributions are Theorems 3, 4 and 5, which
characterize the optimal direction for shortening and the
shortening rate in arbitrary cycles in different metrics: The
shortening rate is dependent on the sharpness of turns in
the Euclidean metric, number of U-turns in the Manhat-
tan metric and the distance from the origin in the hyper-
bolic metric. Furthermore, we derive global bounds for
the shortening rate in arbitrary cycles and upper bounds
for the shortening rate in optimal TSP tours.

This work is partially motivated by different types
of vehicle routing problems, where the shortening rate
translates to the available savings in mileage given the
nodes (goods, passengers, customers of a mobile service
provider) are shifted in optimal directions.

Proofs are omitted due to space limitations. However,
we give a short description of each proof.

1.1 Related work

In the Group-TSP [7], also known as the One-of-a-Set-
TSP [14] and the Errand Scheduling problem [17], a sales-
man has to meet n customers, to each of which is asso-
ciated a set of at most k possible meeting places. If the
weights are symmetric, the optimal solution can be poly-
nomially approximated with ratio 3k/2 [17].

The Group-TSP in which the neighborhoods are con-
nected regions in the plane is referred to as TSP with
neighborhoods (TSPN). In [11], a polynomial time algo-
rithm with approximation ratio O(n2 log n) for the general
TSPN is provided, where n is the number of neighbor-
hoods. In [2], constant factor approximation algorithms
are presented for special cases in which the neighborhoods
are defined as parallel unit segments, translations of con-
vex polygonal neighborhoods and circles. These results
are extended in [6] to neighborhoods with comparable di-
ameter, unit disks, and infinite lines. In [11], a polynomial
time approximation scheme (PTAS) is introduced for the
special case where the tour is short compared to the size
of the neighborhoods. In [15], a PTAS for the TSPN with
disjoint fat regions in the plane is presented.

In addition to the TSPN, our approach is closely related
to curve shortening flow [8, 9, 4], in the Euclidean version

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

51

27th European Workshop on Computational Geometry, 2011

of which the length of a closed continuous curve is de-
creased by shifting each point on the curve along the nor-
mal vector at a rate proportional to curvature. This method
shrinks the length of a curve as fast as possible using only
local information [10].

The results obtained in the curve shortening literature
have motivated research in creating discrete analogues of
the flows [18]. Reference [3] introduces a linear poly-
gon shortening flow where each vertex chases the cen-
troid of its two neighboring vertices, which shrinks poly-
gons to elliptical points. In addition, [3] proposes a Eu-
clidean polygon shortening scheme based on the Menger-
Melnikov curvature [13]. In [12] it is shown that in this
case most quadrilaterals shrink to circular points. In [16], a
discrete curve shortening equation is formulated such that
the perimeter of the polygon is monotonically decreasing.

For the linear polygon shortening flow, proposed in [3],
it is shown in [18] that 1) polygons shrink to elliptical
points, 2) convex polygons remain convex, 3) if vertices
are arranged in a star formation about their centroid, they
will remain in a star formation for all time and 4) the
perimeter of the polygon is a monotonically decreasing
function of time. In addition, the authors derive the op-
timal direction for perimeter shortening.

2 Preliminaries

In the following, S = (s1, . . . , sn) denotes a cycle of
n distinct nodes in a metric space (X, d) and |S | =∑n

i=1 d(si−1, si) (mod n) denotes the length of the cycle
with respect to metric d. S (P) denotes the cycle corre-
sponding to the optimal solution to the classical travel-
ing salesman problem with the node set P = {p1, . . . , pn}.
Moreover, LS (r) denotes the minimum length of all cycles
(q1, . . . , qn) for which d(qi, si) ≤ r for all i.

If the nodes of the problem are relatively far apart from
each other compared to r, the TSPDN may be solved up to
optimality by improving the optimal center tour (the solu-
tion to the TSP) without reordering nodes. In this case, we
say that the set of nodes is r-stable.

It is easy to see that any fixed node set for which the
minimum distance between two nodes is ε > 0, will be-
come r-stable when r is decreased (see Figure 1).

2

31

5 4
a) b)

3

2

1

5 4

Figure 1: Stability of TSPDN. The solid lines represent
the optimal solution to the classical TSP (center tour) and
the dashed lines represent the optimal solution to the r-
TSPDN. As r is decreased, the two solutions converge.

In this work, we focus on the difference between TSP
and TSPDN when r tends to zero. Thus, the optimal or-
dering of the TSP is preserved.

3 Analysis

The shortening rate in a cycle S is defined by −L′S (0) =

limr→0
LS (0)−LS (r)

r , which is equal to the decrease in the
length of the cycle, relative to the differential radius of the
neighborhoods. L′S (0) corresponds to the change in the
length of S when each customer takes a differential step
dr in the optimal direction. Note that −L′S (0) ≥ 0, since
LS (r) ≤ LS (0) due to the fact that the nodes of the cen-
ter tour LS (0) are always included in the neighborhoods
of radius r ≥ 0. A large absolute value of L′S (0) means
that the shortening rate is significant. In the following, we
will study the shortening rate in arbitrary cycles with Eu-
clidean, Manhattan and hyperbolic metrics.

3.1 Global bounds

Theorem 1 Let S = (s1, . . . , sn) be a cycle in a metric
space (X, d). Then, LS (0) − LS (r) ≤ 2nr for all r ≥ 0.

Theorem 1 states that no cycle can be shortened by more
than than twice the total walking distance of customers.
This is proved by adding a detour of at most 2r from each
optimal meeting location to the original location. For the
case studied in [6], in which the neighborhoods are defined
as unit disks, the theorem can be applied as follows: For
disjoint unit disks, Theorem 1 implies LS (0) − LS (1) ≤
2n ≤ LS (0). By looking at the corresponding inequality
derived from [6], namely LS (0)−LS (1) ≤ |LS (0)| 8+8π/LS (0)

π+8 ,
it can be seen that our result improves this bound whenever
the length LS (0) of the center tour satisfies LS (0) < 8.
For arbitrary unit disks, we derive from [6] the inequality
LS (0) − LS (1) ≤ |LS (0)| π+7+10π/LS (0)

π+8 . Our upper bound 2n
improves this result whenever 2n < LS (0) < 10π.

Consider next the corresponding lower bound for
LS (0) − LS (r). For all cycles visiting n ≥ 2 disks centered
on a straight line, of which at least two are disjoint, we
have LS (0) − LS (r) = 4r. For the general case, we obtain
the following result by considering a minimum bounding
circle of radius R and scaling it down by (1 − r

R).

Theorem 2 Let S = (s1, . . . , sn) be a cycle in R2 satisfy-
ing maxi, j∈{1,...,n} ‖si − s j‖ ≥ 2r ≥ 0. The minimum length
LS (r) satisfies LS (0) − LS (r) ≥ 4r in the Euclidean (L2)
and Manhattan (L1) metrics.

3.2 Euclidean metric

In [18], it has been shown that for a planar Euclidean cy-
cle, the optimal direction for differential perimeter short-
ening is towards the bisector of the angle between two sub-
sequent legs of the cycle. In the following, we examine
the corresponding shortening rate assuming that all nodes
move at equal speed in the optimal direction.

52

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Theorem 3 Let S = (s1, . . . , sn) be a cycle in R2 with an-
gles αi at corner si. In the Euclidean metric, the shortening
rate of S is given by the formula −L′S (0) = 2

∑n
i=1 cos αi

2 .

This result, which is proved by considering a sequence
of intermediate cycles, states that the shortening rate de-
pends only on the angles between subsequent legs of a cy-
cle. Assuming that the angles in a cycle S are uniformly
distributed between 0 and π, the expected shortening rate
in the cycle is given by E(−L′S (0)) = 2n

∫ π

0
1
π

cos α
2 dα ≈

1.273n. Furthermore, since 2 cos 60◦ = 1, it can be stated
that if the angle corresponding to a node i in a cycle is less
than 120◦, then the improvement in the length of the cycle
achieved by relocating i is asymptotically greater than the
walking distance r.

3.3 Manhattan metric (L1-norm)

Definition 1 A sequence of nodes (sh, sh+1, . . . , sk) in a
cycle S = (s1, . . . , sn) = ((x1, y1), . . . , (xn, yn)) (mod n) in
R2 is a U-turn with respect to x if xh = xh+1 = . . . = xk and
sgn(xh − xh−1) = sgn(xk − xk+1) , 0.

A U-turn with respect to y is defined similarly. Two U-
turns X and Y are called disjoint, if X ∩ Y = ∅. The fol-
lowing theorem establishes a relation between the number
of U-turns and the shortening rate.

Theorem 4 Let S = (s1, . . . , sn) be a cycle in R2 and let
M denote the minimum depth of U-turns in S . If r < M/2,
the length of the cycle in the Manhattan metric satisfies
LS (0) − LS (r) = 2U(S)r, where U(S) is the maximum
number of disjoint U-turns in S .

This result is proved similarly as Theorem 3. For disjoint
disk neighborhoods of radius r, the contribution of each
U-turn on the decrease of the length of a cycle is 2r. If all
nodes are U-turns, a cycle can be shortened by 2nr, which
is an upper bound for all cycles. Differentiating the result
yields the shortening rate −L′S (0) = 2U(S). For example,
the expected shortening rate for a random cycle S in R2

equals E(−L′S (0)) = 2 · 3
4 = 3

2 n.
Clearly, the shortening rate is invariant to linear trans-

formations since the number of U-turns depends only on
the signs of the differences between subsequent nodes.
More precisely, applying a linear function f (x, y) = (ax +

bxx, ay + byy), where bx, by , 0, on the points of any cycle
will not affect the number of U-turns.

Example 1 The expected number of U-turns in a random
cycle S in [0, a]× [0, b] ∈ R2, consisting of n nodes equals
E (U(S)) = n

ab

∫ b
0

∫ a
0 P(U | x, y) dxdy = 8

9 n. The expected
shortening rate thus equals E(−L′S (0)) = 16

9 n ≈ 1.78n,
independent of the ratio of a to b.

For a random cycle S in an ellipse with half axes a
and b, we get E(−L′S (0)) = n

6

(
11 − 2

π2

)
≈ 1.80n. Again,

E(−L′S (0)) is independent of the eccentricity of the ellipse.

(x, y)
A1 A2

A4A3

a

b

(x, y)A1 A2

A4A3

a

b

Figure 2: Illustration of Example 1. The probability that
a node located in (x, y) is a U-turn in a random cycle is
given by P(U | x, y) = 1 − 2

(A1+A2+A3+A4)2 (A1A4 + A2A3).

3.4 Hyperbolic metric

Figure 3: The TSPDN in the Poincaré disk model. The
solid and dashed lines represent the optimal center tour
and a solution to the TSPDN, respectively.

In hyperbolic geometry, all postulates of Euclidean ge-
ometry are satisfied except the parallel postulate. In the
Poincaré hyperbolic disk [1], the hyperbolic distance be-
tween two points u, v in the unit disk is defined by the for-
mula d(u, v) = arccosh

(
1 +

2‖u−v‖2

(1−‖u‖2)(1−‖v‖2)

)
, where ‖ · ‖ de-

notes the Euclidean norm. If ‖u‖ and ‖v‖ are small, d(u, v)
can be approximated by 2 ‖u − v‖. The hyperbolic disk
neighborhood with hyperbolic radius ρ ≥ 0 of a node u
consists of points v for which d(u, v) ≤ ρ. Note that the hy-
perbolic disk corresponds to a disk in the Euclidean plane,
but the Euclidean center of the disk is different from the
hyperbolic center u unless u = (0, 0) (see reference [1]).
Let us consider a solution to the hyperbolic TSPDN ob-
tained by shifting each node in the optimal center tour an
equal hyperbolic distance ρ towards the origin (see Figure
3), which gives us a lower bound for the shortening rate.

Theorem 5 Let S = (s1, . . . , sn) be a cycle in the unit disk
and ri = ‖si‖ for i ∈ {1, . . . , n}, where ‖ · ‖ denotes the
Euclidean metric. The shortening rate of S in the hyper-
bolic metric satisfies −L′S (0) ≥

∑n
i=1(ri+ri+1)

(
1 − |ri−ri+1 |

‖si−si+1‖

)
,

where sn+1 = s1 and rn+1 = r1.

This result is proved by differentiating the hyperbolic
length of leg (si, si+1) with respect to r. If all nodes are
located at an equal Euclidean distance x from the origin,
we have −L′S (0) ≥

∑n
i=1 2x = 2xn. Since by Theorem

1, the shortening rate always satisfies −L′S (0) ≤ 2n, our
approximate solution is asymptotically optimal when the
nodes approach the border of the unit disk.

53

27th European Workshop on Computational Geometry, 2011

Corollary 6 Let S 2, S 3, . . . be a sequence of cycles of n
nodes, where S j = ((1 − 1/ j, θ1), . . . , (1 − 1/ j, θn)) in po-
lar coordinates for all j ≥ 2. Then, lim j→∞ −L′S j

(0) = 2n.

3.5 Bounds for TSP tours

The shortening rate is generally governed by the tightness
and number of turns in a cycle. In some cases, even the
optimal TSP tour includes relatively tight turns. We state
the following for Euclidean TSP tours in the plane.

Conjecture 1 Let P be a node set in R2 involving n > 2
customers. The length of the shortest tour S (P) satisfies
LS (P)(0) − LS (P)(r) ≤

√
3nr in the Euclidean metric.

While the inequality in Conjecture 1 has not been proven
to be valid, there exist no known problems P for which
−L′S (P)(0) >

√
3n. The equality is achieved for n = 3 with

an equilateral triangle. In addition, it is possible to con-
struct a sequence of problems that asymptotically satisfies
the equality. For Manhattan TSP tours in the plane, the
upper bound is equal to that of arbitrary cycles.

Theorem 7 There exists (i) a sequence of problems
P4, P6, P8, . . . such that limk→∞

1
2k (−L′S (P2k)(0)) =

√
3 in

the Euclidean metric and (ii) for any r ≥ 0 a sequence of
problems P4, P12, P20, . . . such that LS (Pn)(0) − LS (Pn)(r) =

2nr for all n = 4(2k − 1), k ∈ N in the Manhattan metric,
where |P j| = j for all j ∈ N.

π
3

π
3 + 2π

k
a

a

a cos θ1

a sin θ1a

Figure 4: Theorem 7. The left figure shows a structure
in which the shortening rate per node in the optimal Eu-
clidean solution approaches

√
3 as n → ∞. The right

figure shows an optimal Manhattan TSP tour where each
node is a U-turn and the cycle can be shortened by 2nr.

Theorem 7 suggests that optimal Manhattan TSP tours
may be shortened more efficiently than Euclidean TSP
tours. In the hyperbolic metric, we know by Corollary 6
that for any sequence of cycles where the nodes approach
the border of the unit disk, the shortening rate converges
to 2n. In this case, our solution approach to the hyperbolic
TSPDN converges to the optimal solution.

4 Conclusions

In this work we study the difference between the length of
an optimal TSP tour and the length of the optimal solution
to the TSP with disk neighborhoods, in which each node
can be redirected to a new location within a certain radius

r from the original location. We show that the shortening
rate is characterized by the tightness of turns in the Eu-
clidean metric and it is equal to two times the number of
U-turns with respect to the coordinate axes in the Manhat-
tan metric. In the hyperbolic metric, the shortening rate
increases with the distance of nodes from the origin.

References

[1] J. W. Anderson. Hyperbolic Geometry. Springer, 2005.

[2] E. M. Arkin and R. Hassin. Approximation algorithms for
the geometric covering salesman problem. Discrete Ap-
plied Mathematics, 55:197–218, 1994.

[3] A. M. Bruckstein, G. Sapiro, and D. Shaked. Evolution of
planar polygons. International Journal of Pattern Recogni-
tion and Artificial Intelligence, 9(6):991 – 1014, 1995.

[4] K.-S. Chou and X.-P. Zhu. The Curve Shortening Problem.
Chapman and Hall/CRC, 2001.

[5] M. de Berg, J. Gudmundsson, M. J. Katz, C. Levcopou-
los, M. H. Overmars, and A. F. van der Stappen. TSP
with neighborhoods of varying size. Journal of Algorithms,
57(1):22–36, 2005.

[6] A. Dumitrescu and J. S. B. Mitchell. Approximation al-
gorithms for TSP with neighborhoods in the plane. In
Proc. 12th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 38–46, 2001.

[7] K. Elbassioni, A. V. Fishkin, N. H. Mustafa, and R. Sit-
ters. Approximation algorithms for euclidean group TSP.
In Lecture Notes in Comp. Sci. Springer Berlin, 2005.

[8] M. E. Gage. Curve shortening makes convex curves circu-
lar. Inventiones Mathematicae, 76:357 – 364, 1984.

[9] M. A. Grayson. The heat equation shrinks embedded plane
curves to round points. J. Diff. Geom., 26:285 – 314, 1987.

[10] M. A. Grayson. Shortening embedded curves. Annals of
Mathematics, 129:71 – 111, 1989.

[11] J. Gudmundsson and C. Levcopoulos. A fast approximation
algorithm for TSP with neighborhoods. Nordic Journal of
Computing, 6(4):469–488, 1999.

[12] T. Jecko and J.-C. Leger. Polygon shortening makes
(most) quadrilaterals circular. Bull. Korean Math. Society,
39(1):97 – 111, 2002.

[13] M. S. Melnikov. Analytic capacity: discrete approach and
curvature of measure. SB MATH, 186(6):827 – 846, 1995.

[14] J. Mitchell. Geometric shortest paths and network opti-
mization. In J.-R. Sack, J. Urrutia (Eds.), Handbook of
Computational Geometry. Elsevier, Amsterdam, 2000.

[15] J. S. B. Mitchell. A PTAS for TSP with neighborhoods
among fat regions in the plane. In SODA ’07, pages 11–18.
Society for Industrial and Applied Mathematics, 2007.

[16] K. Nakayama, H. Segur, and M. Wadati. A discrete curve-
shortening equation. Methods and Applications of Analysis,
4(2):162 – 172, 1997.

[17] P. Slavik. The errand scheduling problem. Tech. report 97-
02, Dept. of Comp. Sci. and Engin., SUNY Buffalo, 1997.

[18] S. L. Smith, M. E. Broucke, and B. A. Francis. Curve short-
ening and its application to multi-agent systems. In CDC-
ECC ’05, Seville, Spain, pages 2817 – 2822, 2005.

54

������ ��		
 ����
��
�
 �����������
 ���
� �����
 ��		

������ �� 	�
����
�
� ������ ��� ������ ��������

������� ��	��
�
��

��������

���
 �
��� ���
���

 ������ ��� ��
�	���	
����

�
��
 ����
����	
����
 ����� ��� ������
����
��
��
�
 ����
��� �� ���
���
� ������
���� ���� ��
���
��� ����
 ������ �
��
	� ������ ��� ��
�����	
��
���
 	����
��
 ��� ���� �� ��
�
� ����
���� ����� ��
�
�� �����

���� �������� �� ����� �
��
 ��
��� �� ���

����

���
� �� ���� ������� ������� ������	 ��� �
�
�� 	�
����� ���
 �
 ��

����� ���
�
�

��	�� �����
�
��
	� �
��
 ����� ������
����
�� ���
� ��
�
� ����
������� ����
 �� ��������� ��
	�

 ��� ��
� �
����
�

�
��� ���� ����	� �����
�� �� ������ �
�� ��

��
��� ���������
����
� !�
������ ���
�� ��
�� ��

����

����
 �����
����� ��

��	�� �������

 ���
�� ��

�
��� �� ���
����

�� �����
�����
�
�� ���� ���
�
" ��� ���
��
���
 ��
���
 �
� ��
� ���
���	�
����

����
 �
� �� �����
�������� !� ���
��� ���
 ��
�	�
��������� ���� �"
����
�

� 	
����
����

���
 �
��� ���
���

 ������
����
�
����
�� �� ���
��
�	� ��
 ��� ��
�
� ����
���� #�
�
� ����
��� �

��������
� ���
���� ����� ��
� �� �
��� ��$��
 ����
��� ���
��
� ��
����� ���
 ���������� �
 ������
��
�� ��
���
������ ���
�
� �� ����
 �
 �� �����
�
��
��� �

�
 �� ���
� ���������� %&� '(�)������
 ��
�
������
� ��
�
� ����
���

�� ������ ��
� �� �����
��
	����
��� �� ���������
���
� �������

�� �����

�

���
���
�
��
� �
�����
����
 %*� +,(�

-������� ���� ��� ��
�
� ����
���

�� ����� ��
�
�
�� �
� �� �����������
���
�
����
�
��
� .� �
���
�"
���� �

 ��� .��
 ����� �����
 ���
��
���
�

�� ������ �
���� ���� �����	 ���� ��� ������ �� ���
���� ��
������ %/(� 0���� �"
����
 ������� ����

��
���
����
 �������� �
��	
 �������	
� ����� %1(�
��
�����
 ������� ������ 	
�
 %2(� ���
 �
���� ��

� �
�
���� �

 �"������ �� �������
 ��� ���� �� ����
���
�
���� �����

���� ������� %3(�

4�
�	� �� ����
���
 �
��	
����
 �������
 ���
�����
�
���� �� �
����
���
� ���
�
� ���
 �����

 �
� ��
�����������������

���
 �
��� ��������
��
 �� ��� ��

 ��
���
����

�
���� �
���	�
����
����
�� �� ����� �
��

���
� ��

������ ������	��
��
������� ��	�� �
 ������������ ������

���� ����� ����������� �������������	
��������

����� �����

���� ������
	
��
� ��� �
� �� 	�
����
�� ������� ���

���
�
��� �� �����

���� ��������

5� ������� 1� ��
������ ���
�� ��
�� ��

����
����

�����
����� ��
 ��������
�� �� ������� / ��
���
��
�
���	�
����
����
 �
���� �� ���
������� �
��	
��
� ������
����� 5� ������� *� �� ������
��� �� ���
���
��
���
�
� ��
�	� ��
���	�
����
����
 ������

��

����� !�
���
��� �"
����
 �� ������� &�
��
������� ���������	 ���
��
 �� ������� '�

� ����
���
����
 �� � ����� ���� � ����
��

5� ���
 �
��� �� ���
���� ����������
� �����
��
��
���
 ������� �� ��
�
� �
��
� !� �� ��� ���
����

����
 ���� ������
���
��
� .

���� �� 6�	� +� ��

��� ��
�
 ��������� �
 "��
� ��� ���	�� ��
�
��� �������
��
�
����
�� ��
�
 ������� ��

����
�
 "��
� ��� ��
�� � 7 +�

iP
iP′

x

y

z

O

j
f

kf

6�	��� +8 9����
� ���:������ ��

�����

�����
� ��
� ��
�� �������� ���� ��� ���
���� ���
�
����

���	 ��� �������

�� ��� �
��
 �� ���
�����
;�� � 7 ���� ��� � � � � ���
�� � 7 �	�� 	�� � � � � 	��
�� ���
�� �� �������

�� ��
� �� �
��
 �� ���
��
���� ��
���������� ;�� 0)<��� 	�= �����
���
 ������
��

�
���	 ��
� ��� �����" �� �
 �� ��� �
�� 	� � �����
�
���� ���)>.?>?<��� 	�= �����
�� ��
� ��� �
 ��
���
�� ��� ��������� ��
� ��� ��
�� ����
����	 	��� �����
6.?�->?<��� 	�= �����
��
 ��
� ��� �
 �
�����
�
�
��
� ��� ��
�� ����
����	 	���

!�

��� ��
�� ��
������� �� ��� �������� ��
��
	����
�� ������
��

��
 �� �� ���
����
�
��
��

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

55

���� �������� �������� �� �� ���������� ��� ���!
 ��		

��
� ��
�� ������
��� �� ����������	 ��� �����
�����
�
������ ��

���� ���� ��� ��������
;�� <��� ��� += �� ��� �������
��
 �� ���
��� �����"

�� ��� ������� ��
��� ��� ���	��
� �����" �� ���
����

����� �� �� ��� �
������� ��
�
���	 ���� ��� ����
	�� ��
� �

�
 �����	� ���

���
��� �����" �� ���
������� ��
���
� �� �
� �"���

 ��� �������
��
 ��
��� ���	��
� �����" �� ���
�
��

 <������ ������ +���=�
����� �� �

� ������� �
�
����� �����
�����	 ���
�����
� �� ��� ����� �� ��� �����" ���� ��� ���������
��

����
���	 ��� �
"�
�
;��

��@ ��� @ ��� @ + 7 , <+=

�� ��� ��
�� ����
����	 ��� ���� �
��� �����
� � ��
��
��
�� ��������
�����
� ��
� 0)<��� 	�= �
 ����� !� �
�
��
������

��� �������
��
 �� �� ���� ��� ���
���� �� 	� �
�� ��
 ��

��� @ ���� @ �� @ �� 7 ,� <1=

����� �
 ����
� ��� ��� �������
� �����
���� ��
)>.?>?<��� 	�= �
 ����� �� ��

��� @ ���� @ �� @ �� � ,� </=

�� �� 6.?�->?<��� 	�= �
 ����� �� ��

��� @ ���� @ �� @ �� � ,� <*=

!� �������
�� ���
����
 �� ��� ���� <1= ��� �
��
0) ������
���
�� ������ ��� ��
�����	
�
��� ��
���
����

�� 7 ,� <&=

����� � 7 <��� � � � � ���
�� ��� ��� � � � �
�� ��� ��=
� �

��� ������ �� ������� �
��
���
 <� �����
���
 ���
��
�
��
�=
�� � �

 ���
�
�� �
���"� �����
���� ��
�������
�� �����
�����
 �� ��� ����
 </=
�� <*=�
��
������ ��� ��
�����	
�
��� �� �����
�����

�� � ,� <'=

����� � �

 ���
�
�� �
���"�
�� ��� �����
����
���
��� ��� �����
���
 �����������
� �����
�����
� �
��
�� ����� �
 ������ ��� �� ����
!� �
� ����� ��
� ��� ������� �����
���

 ������

�����
���
�
���� ��
�� ���� �� ���
�
��� ���
�
���	
�� <&=
�� <'= �

�������
 %A(� 6����������� ���
��

��� �� <&=
�� <'= �

��
����� �� �����
 �� �����"
��
�����
 �� ��� �������� ���
 ����
� ������ ��� ���
���
�������	 ���
���� ���� ��� ������� �

�
� �
�
�
���
��� %A(�

� 	������������ �� �
��������� ������

!� ��������
�� ��
���	�
����
����

 �����
� ��

�� ����

���� ������
� ;�� �
 ���
���� ��� ������� ��

�����
����
���� �� 6�	� 1� �� �����

���� �

�������� �� ��� ������

�
����	 ��
 �

� ��
���

1f

4f

3f

2f

1e
2e

3e

4e

6�	��� 18 �����
�������� �� ��� ������
�

��� ������ ����
 �����
��� ��� ������ �
��
� -�������
��
���� ������

�� ������"����
��� ������ �
��

�� ���
�����

;�� 	� ������ ��� ��� �
�� �� ��� �

� ��
���
�� 	�
������ ���
���� ��
��� 6�� �
�� �� ��� ��� ������
�
��

��� ��
�
�� ���� ����� �������

�� �� 	�
��
��
�
�����
�
� ��
� 	�� �����
�� ���� ����� �������

��
�� 	�
��
�� ��
��� ��
� 	�� !�
�
�

��� ��
� 	�
�
 ����B���
�� ���
� �� �"���� ��
� ���
���� 	� ����

�� ��� ����� ��
� �
� ��� ��	�� ��� �� 	� �
 ��	��� ��
�
��� ���� ���� 5������ ���
�
��� �� ���
����
 <&=
��
�����
�����
 <'=
�����

���

����

 ��

��������

)�� ��

� ������� ���
�� �� ���
�������
 ����
�
��

���� ��
� ����
 �� ��� ��	��� ���
�
��� �

����� 5� �����
���� ���
� ���:������ �
����
 ��
� ��
��� �������
���� �� 6�	� 1� ���
���� 	� ����
 �� ���
����� ���
 �
� �� �����
���� �� ��� ��������	 �
�� .

���� �� 6�	� 1� ��� 	�
�� 	� �� ��� ��	�� ����� �
��

�� ��� ����
�� ��	�� ������
� ��
�� �� ��� ����� ���
	�
 �� 	�
�� 	��
�� ��
�� �� ��� ����� ��	�
 �� 	�

�� 	�� ��
���������� C��
�
� ��� ��	�
 ��
�� ��
��
�������
� �� ��� ������� ��
���
�� ����
�� �� 	�� ����
���� ��
�
�
� �� �������
� �� �����������
���
�
�
���
;�� �� ��
 ���� �� ���
�
�� ����
����	 ��
�� ��� ��

�� ��
�� �������
� �� ��� ������� ��
��
�� ����
��
�� 	��
� ����
�� �������
� �� �����������
���
�
�
���
;�� �� �� ��� ���� ����
����	 ��
�� ���)��� ��
� ��

�� ��
�� ����
�
� ���
�
� ����
�� �� 	�D ���
� ��

�� ��
�� ����
�
�� ����� ������
 ��
� 	�
�� 	�
��
����
�
�� ��
�� �� ���� �� ��� ���� �� ���
�����
� ���

���� 	� ����
 �� ��� �����

���
 �������� ����
 ���
��
������� �� ���
�
���
�� <&=
�� <'=

���
��� ���� ��� �������
���� ��
6�	� 1� ���������� �� �
 ����

���� �� ���
�����

����
��
� ����
 �� ��� ��	�� ���� ��� �������
���� �� 6�	� 1�

56

������ ��		
 ����
��
�
 �����������
 ���
� �����
 ��		

� ��
���
����
 �� �
 �
��������� �����

0�� 	�
� �
 �� ���
�����

���� ��
� ����
 �� ��� ��	���
���� ����	�
���

���� �
 ��� ����
���� �� ���
��
������
 �� <&=
�� <'=� ���
� �� ��
� ������ ���
������� ��
���
 �
� ��
� ��� ��
���� �
�� �� ���
����
���
 ��� ��
�	� �� ��� ������� ��
��
�� ���
������
��
 �� <&=
�� <'= ����
��

���� ������	 �� ��� ��	���
��
������ ���
� �� �
� ������ ��� �������
�����
��� ����� �
��
 �� ��� ��� ������
 ���
�
� ����
��
������ �� ���
����� ��� �������

� ��� ��� �� ���
������
 �
� �� �����
��	����
���	 ���

���
���
������
� ��	�
 �� ��� ������
� -��� �
��	����� ��
�

��
� ��� ��������
 �� ��� �������

�� ��
������� ��
���
��
 ������� �� 	� �� ��� ������� ��
���
;�� �� �� ��� �� ��� ���� ��� �������
 �� ��� ����

�� ��	�� �������
�� ��� �� �� ��� ������
� ��	� ��
��� ������ �������� �� ��� ;�� <�� � �� � ,= �� ��� ����
������ �
�
���� �� �� �� ��� ������� ��
��� !� ����
��
��� �������
��
 <��� ��� += �� ��� �����" �� ����

<�� @ ���� � �� @ ���� � +=� <A=

����� �� �

 ��� ������� �
�
������ ����� ��
��
�
�� ��� ���
���� <1=� ��� ������
�� 0)<��� 	�= �
 ������

����� ��

�<�� @ ����= @ ��<�� @ ����= @ �� @ �� 7 ,� <2=

��� �����
�����
 �� ��� ����
 </=
�� <*=
��
�
�
���� �� �� ����
���	 ��
�� �� ���� �� @ ����
��
�� @ ���� � ��
���������� !� ��
�	� ��� ���
����

��
�����
�����

���
��� ����
�� ��� ����� �������
 ��
��� ������
�
�� ������ ��� ��
�����	 ���
����

��
�����
�����

E�<�=� 7 ,� <3=

E�<�=� � ,� <+,=

����� � 7 <��� ��� � � � � ��= �
 ��� ������ �� ������� �
�
�
�����
 ���������� �� ��� �������� �� ��� ������
�������
 <� ������
 ��� ������ �� ������ �������
 ��
�� �����=�
�� E�<�=
�� E�<�=
�� ��� ��
�����	 ���Æ�
����� �
�����
 �����
������	 �� ��� ���
����
 <&=
��
��� �����
�����
 <'=�
��� ���
�
��� �� ���
����
 <3=
�� <+,=
����

������� �����
������	 ��

���� ������	 �� ��� ��	���
��
� �
�
�
���	�
����
�����
-������� <3=
�� <+,=
�� �������
� ���
�
� ���

�
�����
 E�<�=
�� E�<�= ����
�� ������� �
��
���
�
���
� ������ ���
�
��� �� <&=
�� <'=� �� �
 ���
��
�	�
������
�� ��
������ ���
�� ��
��
�������
� �� �����
���� ���
 ��Æ������ �� ������ ��� ��������	 �������
���� ��
��
� ��
�����	 <3=
�� <+,= ���������
0��
������� �
 �"��
���� �
��	 ��� �"
����
����

�� 6�	� 1� ;�� ��� ��� ��� �� �� ��� ��� �������
 �� ���
���� �������
�� ��� ��� ��� �	 �� ��� ��� �������
 �� ���
��	�� ������� ���
� �� �
��

0)<��� 	�=�
 7 +� 1� � � � � 2 <++=

���� ��� ���	��
�
����
��������� 6��� ���
� ��

����� ��� ������
��
�

0)<��� 	�=
�� 0)<��� 	�=� <+1=

��� �	���� ��� �����
�"�
�� �����
����� ��� ���
�
����
 <&=
�� ��� �����
�����
 <'=� .
 ���

�
���
�������

�������
 �� �����
����
 ���� �� ��� ��	���
�� ����
� ��� �� ���
�
����
� 5� ���

����� ���
�"
�������
 ��� ��� ��� ��� ��� �	
�� ��� ����

���� �� 	��
���
�
� ���

���
��� ���
����
 ���� �	������ !�
���� ���
� �������
 �� ��� �����������
���
�
�
��
��
��	 �����

���
��� ��	�

��� ��
� ����
�� �� 	��
����� �� ���
��

���� �� �����
�� ��� ���	��
� ���
������� ���
����

��

��
 ��� 5� ���

�����
��� ��
��� �������
 ���� ���� ����� ���	��
� ��
�����
� ���
����
�� ������ �� ���
����
�� ��������

�� ���

������� �� ��� �"������ �
�� �� ��� ��
���� ��	�
�
���
� ��� ��
���� �
�� �� ���
���� ���
��
 ���

��

 ��
�
���� �� ��� ���	��
� �������� ���
 ��
�����

��� ������ ��� ���
�������	
���	�
����
����
�

� � ������

6�	
 /� *
�� &
��� �"
����
 ��
���	�
����
����

���
������� �� ���
 ������� 5� �
�� 	���� <
=
���

���� ��
� ����
 ���

��

 ��
� �����
����� �� ���
���	��
� �������� ��� ��� ������
����
 �� ���
����

��
���������

 ����
��� �� ���
���
� ������
�����
��
<�=
���
 ���

��
����
��� ����
������
�	���

<
=

<�=

6�	��� /8 �.���	�
���� �
�
����
����
��

���
� �"
����
 	����
�� ����

���� ������
 ��
��
� ���� �� ��
�� �
��
 �� ���
����
 ����
���
�
�� ���� ������
	
��
� ���
����� ������� ������	 ���
�
� �� 	�
����� ��� ����

���� ������ 	����
��� ��

57

���� �������� �������� �� �� ���������� ��� ���!
 ��		

<
=

<�=

6�	��� *8 �.���	�
���� �

�
�� �� �����
����
��

<
=

<�=

6�	��� &8 �F
	��������
����
��

���
����
���� �� 6�	� & �

�
���� �
� ���B� �� ���
1,+, C�
� 5���
��� �� ��� G�
� 9����
� ���� �� 6�����

�� F
� 1,+, %+(�

! ��
��
��
� �����"�

!� ��
������ ��� �

�� ������ ��� ���
�������	
��
��	�
����
����
� !��� �� ��
����
���	�
����
����

����

���� � ���������� ��� ������
����
 �� ���
���
��

���
� ����
��� �� ���
���
� ������
����
� �����
	����
��

 ��
�
� ����
��� �� ��� ����

���� ������ ��

������	 �
��
� ���
 �

 ��� ������
����
�
����
��
�� ��������	 ��
�
� ����
���
� 6����� �

�
 �������
�����

��	 ��� ������ ��
���	�
����
���� �
��
��
�
�"���
��� �� ����� ����
 �� ����

���� ������
�� ���
�"���
��� �� ��� ������ ��
����
 ���� ������ �
��
�
!� ������ ��
���� ���
� ��
�
� ���������� �����	�
��
�
� ����
���
 �� ����

���� ������� !� ����
����

���
� �

�� ��
�
��� ���
����
 �� ������
�����
�
!�
�
�
�� �� �����

� ��

����
�����
����
 ���

���	�
����
����
� �� ���������	 ������
 ��� �����
�

��	 ���
����	�� �� ��� ����
���� 5� �
 ����� ��
� ���
�� ��� ��

��
 ��� �
���
� ���	�
���� �� ��
Æ� H��
 ��
��	��
�
 �
 ������ ��
���������� ��
���� ������
�����
5� �� �
� �����
�
�� ��� ����
��
�
 �� ���
� �����

��� ��
���� ����������� �� ��	�� ������ ���
�
�� ��
��� ��	��
�
 �� ����� ��� ���� ������
���� ��
����

�
� �� �

��� ���������� !� ��	��
�
�
�		�
� ��

��
��� ������
 ��� �
�����
���	 ��� �����������
�����
�"�
���	 ��	��
�

��� ��
� ��� ����
��� ��
���� �
 ����
�������

��"
�#������
��

���� ���� �� 	
���
��
 ��		����� �
 ��� ��
��������� ���

��������� ����
��� ��� ��� !"#!!$$ �� %&'��

������
���

()* ���	+,,��������������������
�������
�����-, .��
	
/� �� ��� ���� 0������� �� ��� 1�
� 2������ !)!�

(* �� &����� ��� &
� ��/�����+ 3	���
� 0�������� �����
���� �
�����4)56#�

("* �� 7� ���/��
� ��� �������	���
��� .��������� 8
��������4 7�����4)59!�

($* :� ������ ���
������ �� ���������� 2�-����� ;��� ���
����4 ��� 1���4 !!)�

(<* :� 3� ��������� ��� ��������	� �� ������ ���������
=�>�� ;�����
�����4 ��� 1���4)556�

(#* �� ������� ������� ���������� ���
������ �� ������
����������� ?���@
 ����� 7���4 ��� 1���4 !!5�

(9* A� ��/��
�
� ������� �������������� �� ���� ����
���	�� %0� ;����4 2
-����/�4)56#�

(6* A� ��/��
�
� �������� �������� �����!����� �� ����
 ����� ��������" #� ����������� �� ������� ������

��������� ������ �� ��� ����	�� ;
����� ����/������4
>��� "! �)559�4 		�)!#)B)!#9�

(5* A� ��/��
�
� # ����������!����� �� � ����� �� ��� ��
���� ������� 0���������	���
�
 0����-
���� ��������4
>���)) � !!<�4 		�)$5B)<#�

()!* :� ��-���
 C����� � �����$�� �$%����� # �!��	 ���
����� ��������� �� &������� ��� #������� �������/ ;��
�������/ 2��4 0���4 ��� 1���4 !!)�

58

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Two-Site Voronoi Diagrams under Geometric Distance Functions

Gill Barequet∗ Matthew T. Dickerson† David Eppstein‡ David Hodorkovsky§ Kira Vyatkina¶

Abstract

We revisit a new type of a Voronoi diagram, in which
distance is measured from a point to a pair of points.
We consider a few more such distance functions, and
analyze the structure and complexity of the nearest-
and furthest-neighbor Voronoi diagrams of a point set
with respect to these distance functions.

1 Introduction

The Voronoi diagram is a beautiful geometric struc-
ture, which has a wide variety of applications in the
most diverse areas. Detailed surveys of its history, ap-
plications, and variants are given by Aurenhammer [4]
and by Okabe, Boots, and Sugihara [11]. One of the
recent generalizations of this concept is a family of so-
called 2-site Voronoi diagrams [5], which are based on
distance functions that define a distance from a point
in the plane to a pair of sites from a given set S.
Consequently, each Voronoi region corresponds to an
(unordered) pair of sites from S.

For S being a set of points, Voronoi diagrams under
a number of 2-site distance functions have been in-
vestigated, which include arithmetic combinations of
point-to-point distances [5, 13] and certain geometric
distance functions [5, 7, 8]. In this work, we develop
further the latter direction.

Let S ⊂ R2, and consider p, q ∈ S and a point v
in the plane. We shall focus our attention on a few
circle-based distance functions:

• radius of circumscribing circle:
C(v, (p, q)) = Rad(◦(v, p, q)), where ◦(v, p, q) is
the circle defined by v, p, q,

• radius of containing circle:
K(v, (p, q)) = Rad(C(v, p, q)), where C(v, p, q) is
the minimum circle containing v, p, q,

∗Dept. of Computer Science, The Technion—Israel In-
stitute of Technology, Haifa 32000, Israel. E-mail:
barequet@cs.technion.ac.il

†Dept. of Mathematics and Computer Science, Mid-
dlebury College, Middlebury, VT 05753. E-mail:
dickerso@middlebury.edu

‡Dept. of Information and Computer Science, University of
California, Irvine, CA 92717. E-mail: eppstein@ics.uci.edu

§Dept. of Applied Mathematics, The Technion—Israel
Institute of Technology, Haifa 32000, Israel. Currently
affiliated with Imagine Communications, Ltd. E-mail:
david@imagine-com.com
¶Dept. of Mathematics and Mechanics, Saint Petersburg

State University, 28 Universitetsky pr., Stary Peterhof, St.
Petersburg 198504, Russia, E-mail: kira@math.spbu.ru, and
Dept. of Natural Sciences, Saint Petersburg State University of
Information Technologies, Mechanics and Optics, 49 Kronverk-
skiy pr., St. Petersburg 197101, Russia.

• view angle:
V(v, (p, q)) =]pvq, or, equivalently, half of the
angular measure of the arc of ◦(v, p, q) that the
angle]pvq subtends,

and on a parameterized perimeter distance function:

• parameterized perimeter :
Pc(v, (p, q)) = |vp|+ |vq|+ c · |pq|, where c ≥ −1.

The first and the third circle-based distance functions
were first mentioned in [9]. The last function gener-
alizes the perimeter distance function P(v, (p, q)) =
Per(4(v, p, q) introduced in [5], and later addressed
in [7, 8].

Since two points define a segment, any 2-point
site distance function d(v, (p, q)) provides a distance
between the point v and the segment pq, and vice
versa. Consequently, geometric structures akin to 2-
site Voronoi diagrams can arise as Voronoi diagrams
of segments. This alternative approach was indepen-
dently undertaken by Asano et al., and the “view
angle” and the “radius of circumscribing circle” dis-
tance functions reappeared in their works [2, 3] on
Voronoi diagrams for segments soon after they had
been proposed by Hodorkovsky [9] in the context of
2-site Voronoi diagrams. However, as Asano’s et al.
research was originally motivated by mesh generation
and improvement tasks, they were mostly interested
in sets of segments representing edges of a simple poly-
gon, and thus, non-intersecting (except, possibly, at
the endpoints), what significantly alters the essence
of the problem.

In this paper, we analyze the structure and com-
plexity of 2-site Voronoi diagrams under the dis-
tance functions listed above. Our obtained results are
mostly of theoretical interest. The method used to de-
rive an upper bound on the complexity of the 2-site
Voronoi diagram under the “parameterized perime-
ter” distance function is first developed for the case of
c = 1, yielding a much simpler proof for the “perime-
ter” function than the one developed in [8], and then
generalized to any c ≥ 0.

Throughout the paper we use the notation V
(n)
F (S)

(resp., V
(f)
F (S)) for denoting the nearest- (resp.,

furthest-) 2-site Voronoi diagram, under the distance
function F , of a point set S. The set S is always
assumed to contain n points.

2 Circumscribing Circle

Let ◦(p, q, r) denote the unique circle defined by three
distinct points p, q, and r in the plane.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

59

27th European Workshop on Computational Geometry, 2011

Definition 1 Given two points p, q, the “circumcir-
cle distance” C from a point v to the unordered pair
(p, q) is defined as C(v, (p, q)) = Rad(◦(v, p, q)).

For a fixed pair of points p, q, the curve C(v, (p, q)) =
∞ is the line pq. This implies that all the points on
pq belong to the region of (p, q) in V

(f)
C (S). In this

section we assume that the points in S are in gen-
eral position, i.e., there are no three collinear points,
and no three pairs of points define three distinct lines
that intersect at one point. The given sites are sin-
gular points, i.e., for any two sites p, q, the function
C(v, (p, q)) is not defined at v = p or v = q.

Theorem 1 Let S be a set of n points. The com-

plexity of V
(f)
C (S) is Ω(n4).

Proof. The n points define Θ(n2) lines with Θ(n4)
intersection points. All these intersection points are
features of V

(f)
C (S), and hence the lower bound. ¤

Theorem 2 Let S be a set of n points. The com-

plexity of both V
(n)
C (S) and V

(f)
C (S) is O(n4+ε) (for

any ε > 0).

Proof. The complexity of V
(n|f)
C (S) is identical to

that of the respective diagram of C2(v, (p, q)) =
Rad2(◦(v, p, q)). It is known that Rad2(◦(v, p, q)) =
((|vp||vq||pq|)/(4|4vpq|))2 = (((vx − px)2 + (vy −
py)2)((vx − qx)2 + (vy − qy)2)((px − qx)2 + (py −
qy)2))/(4(vx(py − qy) − px(vy − qy) + qx(vy − py))2).
The respective collection of Θ(n2) Voronoi surfaces
fulfills Assumptions 7.1 of [12, p. 188]: (1) Each sur-
face is an algebraic surface of maximum constant de-
gree; (2) Each surface is totally defined (stronger than
needed); and (3) Each triple of surfaces intersects
in O(1) points. Hence, we may apply Theorem 7.7
of [ibid., p. 191] and obtain the claimed bound. ¤

3 Containing Circle

Let C(p, q, r) denote the minimum-radius circle con-
taining three points p, q, r.

Definition 2 Given two points p, q, the “containing-
circle distance” K from a point v to the unordered
pair (p, q) is defined as K(v, (p, q)) = Rad(C(v, p, q)).

In our context p 6= q. Assume first that v 6= p, q.
Observe that if all angles of 4pqr are acute (or
4pqr is right-angled), then C(p, q, r) is identical to
◦(p, q, r). Otherwise, if one of the angles of 4pqr is
obtuse, then C(p, q, r) is the circle whose diameter is
the longest edge of 4pqr. If v coincides with either
p or q, C(v, p, q) is the circle whose diameter is the
segment pq.

Theorem 3 Let S be a set of n points. The com-

plexity of V
(n)
K (S) is Ω(n).

p

q

v

x

p

x

q

v

p

x

q

v

(a) Acute triangle (b) Obtuse v (c) Obtuse q

Figure 1: If p, q have a non-empty region in V
(n)
K (S),

then pq is an edge in DT(S)

Proof. For simplicity assume that each point from S
has a unique closest neighbor in S. For each p ∈ S,
consider its closest neighbor q. Then, the points of
pq lying sufficiently close to p belong to the region
of (p, q) in V

(n)
K (S), which is thus non-empty. Since

no region is thereby encountered more than twice,
V

(n)
K (S) has at least dn/2e non-empty regions. ¤

Theorem 4 Let S be a set of n points. The com-

plexity of V
(n)
K (S) is O(n2+ε) (for any ε > 0).

Proof. Let a point v belong to a non-empty region of
(p, q). No matter if 4vpq is acute (Fig. 1(a)), 4vpq is
obtuse with v the obtuse vertex (Fig. 1(b)), or 4vpq
is obtuse with p or q the obtuse vertex (Fig. 1(c)),
C(v, p, q) cannot contain any other point x ∈ S. Oth-
erwise, regardless of the location of x in C(v, p, q), we
will always have K(v, (p, q)) > K(v, (x, q)), a contra-
diction. This follows from the fact [6, Lemma 4.14]
that given a point set K and its minimum enclosing
circle C, removing from K one of the (two or three)
points defining C will reduce the radius of the min-
imum enclosing circle. Thus, there is a circle con-
taining p, q that is empty of any other point of S.
Therefore, pq is a Delaunay edge of S. Thus, there
are O(n) pairs of sites in S that have non-empty re-
gions in V

(n)
K (S). Furthermore, the Voronoi surface of

(p, q) is made of a constant number of patches, each of
which is “well-behaved” in the sense discussed above.
Again, the complexity of the lower envelope of these
O(n) surfaces is O(n2+ε) (for any ε > 0). ¤

Theorem 5 Let S be a set of n points. The com-

plexity of V
(f)
K (S) is O(n4+ε) (for any ε > 0).

Proof. Again, we prove the claim via the upper en-
velope of Θ(n2) “well-behaved” Voronoi surfaces. ¤

4 View Angle

Definition 3 Given two points p, q, the “view-angle
distance” V from a point v to the unordered pair (p, q)
is defined as V(v, (p, q)) =]pvq.

Similarly to C, the view-angle function is undefined
at the given points. For fixed points p, q, the curve
V(v, (p, q)) = π is the open segment pq, while the
curve V(v, (p, q)) = 0 is the line pq excluding the
closed segment pq. The curve V(v, (p, q)) = π/2 is
the circle with diameter pq (excluding p and q).

60

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

feature

2

3

4

1

5

(a) Intersection point (b) Graph

Figure 2: The graph of V
(n)
V (S)

Theorem 6 Let S be a set of n points. The com-

plexity of V
(n)
V (S) is Ω(n4).

Proof. Let S be a set of n points. Intersections of
the complements of two segments defined by two pairs
of points (w.r.t. the supporting lines, Fig. 2(a)) are
features of V

(n)
V (S). Create a geometric graph G on

the given points, in which each segment’s complement
defines two edges. Add one additional point far away
from the convex hull of S, and connect it (without in-
tersections) to all the rays (Fig. 2(b)). We can now use
the crossing-number lemma for bounding the number
of intersections. The lemma tells us that every draw-
ing of a graph with n vertices and m ≥ 4n edges
(without self or parallel edges) has Ω(m3/n2) cross-
ing points [1, 10]. In our case m = n(n − 1), so the
number of intersection points in G is Ω(n4). ¤

Theorem 7 Let S be a set of n points. The com-

plexity of both V
(n|f)
V (S) is O(n4+ε) (for any ε > 0).

Proof. For analyzing V
(n|f)
V (S) consider the function

(− cos]pvq) instead of]pvq. This is allowable since
cos(·) is strictly decreasing in [0, π]. By the cosine law,
− cos]pvq = (|pq|2−|vp|2−|vq|2)/(2|vp||vq|). Hence,
the Θ(n2) Voronoi surfaces fulfill Assumptions 7.1
of [12, p. 188]. As above, apply Theorem 7.7 of [ibid.,
p. 191] to obtain the claimed bound. ¤

Theorem 8 Let S be a set of n points. The com-

plexity of V
(f)
V (S) is Ω(n4).

Proof. Given a set S of n points, we count the inter-
sections of pairs of line segments defined by pairs of
points of S (Fig. 3(a)). Create a geometric graph on
the points of S, in which edges are the line segments
connecting pairs of points (Fig. 3(b)). The intersec-
tions of segments defined by all pairs of points define
features of V

(f)
V (S), since along these segments the

view-angle function assumes its maximum possible
value, π. We can now use the crossing-number lemma
for counting these intersections. The graph with n
vertices and m ≥ 4n edges (without self or parallel
edges) has Ω(m3/n2) crossing points [1, 10]. In this
case m = n(n− 1)/2, hence the claimed bound. ¤

Results by Asano et al. [2] imply that the edges of
V

(n|f)
V (S) are pieces of polynomial curves of degree at

feature

1

2

4

5

3
68

7

(a) Intersection point (b) Graph

Figure 3: The graph of V
(f)
V (S)

most 3. However, the structure of the part of V
(f)
V (S)

that lies outside the convex hull CH(S) of S is fairly
simple: it is given by the arrangement of lines sup-
porting the edges of CH(S). This arrangement can
be computed by a standard incremental algorithm in
optimal Θ(k2) time and space, where k is the number
of vertices of CH(S). Each cell of the arrangement
should then be labeled with a pair of sites from S, to
the Voronoi region of which it belongs; this extra task
can be completed within the same complexity bounds.

5 Parameterized Perimeter

Definition 4 Given two points p, q and a real con-
stant c ≥ −1, the “parameterized perimeter distance”
Pc from a point v to the unordered pair (p, q) is de-
fined as Pc(v, (p, q)) = |vp|+ |vq|+ c · |pq|.

We require that c ≥ −1, since allowing c < −1
would result in negative distances. Letting c = −1
results in a distance function that equals 0 for all
the points on the segment pq. If c = 0, we deal
with a “sum of distances” distance function intro-
duced in [5] and recently revisited in [13]. For c = 1,
the above definition yields the “perimeter” distance
function P(v, (p, q)) = Per(4vpq).

It was proven [8] that the complexity of the 2-site
perimeter Voronoi diagram of n points is O(n2+ε).
The key observation was that any pair of sites that has
a non-empty region in the perimeter diagram also has
a non-empty region in the sum-of-distances diagram.
Consequently, the number of such pairs is linear in n.
Again, one applies the Davenport-Schinzel machinery
and conclude the claimed upper bound on the com-
plexity of the diagram. We provide here an alterna-
tive and much simpler proof of the same bound, which
generalizes to the case of “parameterized perimeter”
distance function for any c ≥ 0.

Theorem 9 Let S be a set of n points. The com-

plexity of V
(n)
P (S) is O(n2+ε) (for any ε > 0).

Proof. Refer to Fig. 4. Let p, q ∈ S be two sites
which have a non-empty region in V

(n)
P (S), and let v

be a point in this region. In addition, let ` be the
perpendicular bisector of the segment pq. Assume,
w.l.o.g., that |vp| ≤ |vq|.

Consider the ellipse Ovpq passing through q with v
and p as foci. By definition, for any point s inside this

61

27th European Workshop on Computational Geometry, 2011

v
`

p

o

~r
`′

q

Figure 4: An empty circle containing sites in P

ellipse we have |vs|+ |ps| < |vq|+ |pq|. Therefore,

P(v, (p, s)) = |vs|+ |ps|+ |vp| (1)
< |vq|+ |pq|+ |vp| = P(v, (p, q)).

Hence, s 6∈ S, otherwise v would belong to the region
of (p, s) instead of that of (p, q). Therefore, Ovpq is
empty of any sites other than p and q.

Now consider the line `′ that is tangent to Ovpq at q,
and the ray ~r perpendicular to `′ at q and passing
through Ovpq. It is a known property of ellipses that
this ray bisects the angle]vqp, thus, it intersects the
segment vp, say, at point o. The circle C centered at o
and passing through q is tangent to Ovpq at q (as well
as at another point), and is entirely contained in Ovpq.
Since |vp| ≤ |vq|, it follows that C also contains p. (If
p were on the extension of vp in the shaded area, a
contradiction would easily be obtained by using the
triangle inequality: |op| > |oq|, hence |vp| = |ov| +
|op| > |ov|+|oq| > |vq|, a contradiction to |vp| ≤ |vq|.)
Since Ovpq is empty of sites (except p, q), so is C.
Therefore, pq is an edge of the Delaunay triangulation
of S. The number of such edges is linear in n. Hence,
there are Θ(n) respective surfaces of these pairs of
sites. One can now apply the standard Davenport-
Schinzel machinery, and the claim follows. ¤

Finally, we state the following theorem.

Theorem 10 Let S be a set of n points.

(a) The complexity of V
(n)
P−1

(S) is Ω(n4) and O(n4+ε)
(for any ε > 0).
(b) If there is a unique closest pair p, q ∈ S, then when

c →∞, the complexity of V
(n)
Pc

(S) is asymptotically 1.

(c) For c ≥ 0, the complexity of V
(n)
Pc

(S) is O(n2+ε)
(for any ε > 0).

The easy proofs of Theorems 10(a,b), as well as the
proof of Theorem 10(c) (which is a nontrivial gener-
alization of the proof of the special case c = 1), are
provided in the full version of the paper.

6 Conclusion

In this paper, we have investigated 2-site Voronoi di-
agrams of point sets with respect to a few geometric
distance functions. The Voronoi structures obtained

in this way cannot be explained in terms of the previ-
ously known kinds of Voronoi diagrams (which is the
case for the 2-site distance functions thoroughly ana-
lyzed in [5]), what makes them particularly interest-
ing. On the other hand, our results can be exploited
to advance research on Voronoi diagram for segments.
Potential directions for future work include consider-
ation of other distance functions, and generalizations
to higher dimensions and to k-site Voronoi diagrams.

Acknowledgments

Work on this paper by the first author was performed
while he was visiting Tufts University, Medford, MA.
Work of the last author was partially supported by
Russian Foundation for Basic Research (grant 10-07-
00156-a).

References

[1] M. Ajtai, V. Chvátal, M. Newborn, and E. Sze-
merédi, Crossing-free subgraphs, Annals of Discrete
Mathematics, 12 (1982), 9–12.

[2] T. Asano, N. Katoh, H. Tamaki, and T. Tokuyama,
Angular Voronoi diagram with applications, Proc. 3rd
Int. Symp. on Voronoi Diagrams in Science and Engi-
neering, Banff, Canada, 32–39, 2006.

[3] T. Asano, N. Katoh, H. Tamaki, and T. Tokuyama,
Voronoi diagrams with respect to criteria on vision in-
formation, Proc. 4th Int. Symp. on Voronoi Diagrams in
Science and Engineering, Pontypridd, Wales, UK, 25–32,
2007.

[4] F. Aurenhammer, Voronoi diagram—A survey of a fun-
damental geometric data structure, ACM Computing
Surveys, 23 (1991), 345–405.

[5] G. Barequet, M.T. Dickerson, and R.L.S. Drysdale,
2-point site Voronoi diagrams, Discrete Applied Mathe-
matics, 122 (2002), 37–54.

[6] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf, Computational Geometry, Algorithms,
and Applications (3rd ed.), Springer-Verlag, Berlin, 2008.

[7] M.T. Dickerson and D. Eppstein, Animating a contin-
uous family of two-site Voronoi diagrams (and a proof
of a bound on the number of regions), Proc. 25th ACM
Symp. on Computational Geometry, Aarhus, Denmark,
92–93, 2009.

[8] I. Hanniel and G. Barequet, On the triangle-perimeter
two-site Voronoi diagram, Proc. 6th Int. Symp. on
Voronoi Diagrams, Copenhagen, Denmark, 129–136,
2009.

[9] D. Hodorkovsky, 2-Point Site Voronoi Diagrams, M.Sc.
Thesis, The Technion—Israel Inst. of Technology, Haifa,
Israel, 2005.

[10] F.T. Leighton, Complexity Issues in VLSI, MIT Press,
Cambridge, MA, 1983.

[11] A. Okabe, A. Boots, B. Sugihara, and S.N. Chui, Spa-
tial Tesselations, 2nd ed., Wiley, 2000.

[12] M. Sharir and P.K. Agarwal, Davenport-Schinzel Se-
quences and Their Geometric Application, Cambridge
University Press, 1995.

[13] K. Vyatkina and G. Barequet, On 2-site Voronoi di-
agrams under arithmetic combinations of point-to-point
distances, Proc. 7th Int. Symp. on Voronoi Diagrams,
Québec City, Québec, Canada, 33–41, 2010.

62

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Covering and Piercing Disks with Two Centers∗

Hee-Kap Ahn† Christian Knauer‡ Sang-Sub Kim† Lena Schlipf§ Hyeon-Suk Na¶

Chan-Su Shin‖ Antoine Vigneron ∗∗

Abstract

We consider some variations of the two center prob-
lem. Let D denote a set of disks in the plane. We first
study the problem of finding two smallest congruent
disks such that each disk in D is intersected by one of
these disks. Then we study the problem of covering
the set D by two smallest congruent disks.

1 Introduction

There has been a fair amount of works on the two
center problem for points: Given a set P of n points in
the plane, find two smallest congruent disks that cover
all points in P . So far, the best known algorithms
run in O(n log2 n log2 log n) worst-case time [1] and in
O(n log2 n) expected time [4].

In this paper we consider two versions of the prob-
lem where the input consists of disks instead of points,
so called intersecting and covering problems: Given
a set D of n disks, compute two smallest congruent
disks C1 and C2 such that each D ∈ D is intersected
by C1 or C2 for the intersecting problem or is con-
tained by the union of C1 and C2 for the covering
problem.

The intersecting problem can be also formulated
as a piercing problem: Compute the smallest value δ
such that increasing the radius of every disk in D by δ
makes the set pierceable by two points, meaning that

∗Work by Ahn and Kim was supported by the National IT
Industry Promotion Agency (NIPA) under the program of Soft-
ware Engineering Technology Development. Work by Schlipf
was supported by the German Science Foundation (DFG)
within the research training group ’Methods for Discrete Struc-
tures’(GRK 1408).
†Department of Computer Science and Engi-

neering, POSTECH, Pohang, Korea. {heekap,
helmet1981}@postech.ac.kr
‡Institute of Computer Science, Universität Bayreuth, 95440

Bayreuth, Germany. christian.knauer@uni-bayreuth.de
§Institute of Computer Science, Freie Universität Berlin,

14195 Berlin, Germany. schlipf@mi.fu-berlin.de
¶School of Computing, Soongsil University, Seoul, Korea.

hsnaa@ssu.ac.kr
‖Department of Digital and Information Engineering,

Hankuk University of Foreign Studies, Yongin, Korea.
cssin@hufs.ac.kr
∗∗Division of Mathematical and Computer Sciences

and Engineering, KAUST, Thuwal, Saudi Arabia.
antoine.vigneron@kaust.edu.sa

there exist two points such that each disk contains at
least one of the points. We present a simple O(n3) al-
gorithm for this problem and algorithms which run in
O(n2 log3 n) expected time and O(n2 log4 n log logn)
time in the worst case.

The covering problems has also two different cases:
In the restricted case each disk D ∈ D has to be fully
covered by one of the disks C1 or C2. In the general
case a disk D ∈ D can be covered by the union of
C1 and C2. We show how the algorithms for the in-
tersecting problem can be used to solve the restricted
covering case. We complement these results by giving
efficient approximation algorithms for the restricted
and the general covering cases.

2 Preliminaries

The radius of a disks D is denoted by r(D) and its
center by c(D). The distance between two disks D1

and D2 is denoted by d(D1, D2) and is defined as
d(D1, D2) = d(c(D1), c(D2)) + r(D1) + r(D2).

3 Intersecting Disks with Two Disks

Given a set of disks D = {D1, . . . , Dn}, we want to
find two smallest congruent disks C1 and C2 such that
for every disk Di ∈ D, Di has a nonempty intersec-
tion with C1 or C2. Based on the observation below,
we can design an algorithm that finds the optimal so-
lution in O(n3) time.

Observation 1 Let ` be the bisector of an optimal
solution C1 and C2. Then, Ci ∩D 6= ∅ for any D ∈ D
whose center lies in the same side of the center of Ci,
for i = {1, 2}.

For every bipartition of the centers of the disks in D,
we solve the 1-center problem for the disks in each
partition. Then the center with larger radius is the
solution for the 2-center problem restricted to the bi-
partition. We return the best one over all bipartitions.
Since there are O(n2) such bipartitions and each 1-
center problem can be solved in linear time [7], this
algorithm runs in time O(n3).

To improve the time complexity, we formulate the
problem in a different way as follows. For a real num-
ber δ, a δ-inflated disk of a disk Di, denoted by Di(δ),

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

63

27th European Workshop on Computational Geometry, 2011

is a disk concentric to Di with radius r(Di) + δ. Con-
sider the following decision problem:

Given a value δ, do there exist two points,
p1 and p2, in the plane such that Di(δ) ∩
{p1, p2} 6= ∅ for every Di ∈ D.

We let δ∗ be the minimum value for which the decision
problem answers “yes”. To ensure that the radius of
δ-inflated disks is nonnegative, we require that δ ≥
−rmin, where rmin be the minimum of radii of all disks
in D. Without loss of generality, we also assume that
no disk contains another disk in its closure, and that
at most three δ-inflated disks intersect at a point (on
their boundaries) for all disks in D.

3.1 A decision algorithm

Given a value δ, we construct the arrangement of n δ-
inflated disks in the plane. The arrangement consists
of O(n2) cells. We traverse cells in the arrangement
in depth-first manner and do the followings: We place
one center point, say p1, in a cell. The algorithm
returns “yes” if all the disks that do not contain p1
have a nonempty common intersection. Otherwise,
we move p1 to a neighboring cell, and repeat the test
until we visit every cell. To test all cells in a naive
way leads to a running time of O(n3).

To do the test efficiently, we partition the disks into
O(
√
n) subsets with respect to their indices such that

the first subset D1 consists of the first d
√
ne disks

D1, · · · , Dd√ne and D2 consists of the following d
√
ne

disks, and so on. For each subset Di, we maintain a
data structure representing the common intersection
Ii =

⋂
p6∈D,D∈Di

D, of the disks in the set that do not
contain p in its closure.

When we move p to a neighboring cell, at most
one disk changes its status - therefore we update the
common intersection of the corresponding group only,
and this can be done in O(

√
n log n) time. If ev-

ery Ii is nonempty, we decide whether they have a
nonempty common intersection or not in O(

√
n log n)

expected time using the randomized convex program-
ming [3, 10] or in O(

√
n log2 n) time using the de-

terministic convex programming [2]. Therefore the
algorithm takes O(n2.5 log2 n) time in total.

We can improve the time complexity further to
O(n2 log2 n log log n) time or O(n2 log2 n) expected
time by representing a traversal of cells as a set of
intervals along a time line of the traversal, storing the
set in segment trees, and checking the emptiness of
the disk intersection in each cell with a help of the
segment trees in O(log2 n) expected time [3, 10] or
O(log2 n log logn) worst-case time [2]. Details will be
found in the full version of the paper.

Lemma 1 Given a value δ, we can decide in
O(n2 log2 n log log n) time or in O(n2 log2 n) expected
time whether there exist two points such that every
δ-inflated disk is intersected by at least one of them.

Note that the decision algorithm returns two solu-
tion points if the answer is “yes”.

3.2 Finding δ∗

Lemma 2 When δ = δ∗, either p1 or p2 is a common
boundary point of three δ∗-inflated disks, a tangent
point of two δ∗-inflated disks or a δ∗-inflated disk with
radius zero.

Thus, we consider only discrete values of δ for which
one of the events defined in Lemma 2 occurs. If p1
or p2 is a δ-inflated disk with zero radius, that is,
δ = −rmin, we can test whether the common intersec-
tion of the remaining δ-inflated disks is empty or not
in O(n) time. If p1 or p2 is a tangent point of two
inflated disks, then we can collect such O(n2) tangent
points (also associated radii) from all pairs of disks,
and perform the binary search over the sorted radii
by decision algorithm in Lemma 1 in O(n2 log3 n) ex-
pected time or O(n2 log3 n log logn) worst-case time.
So from now on, we assume without loss of general-
ity that p1 is an intersection point of three δ-inflated
disks.

For this case, we construct a frustum fi ∈ R3 for
each disk Di ∈ D. The bottom base of the frustum
fi is Di(−rmin) lying in the plane z = −rmin. The
intersection of fi and the plane z = δ is Di(δ). The
top base of fi is Di(δmax), where δmax is the radius of
the smallest disk intersecting all disks in D. Clearly,
the optimal value of δ is in [−rmin, δmax].

Let p = (x, y) be the intersection point of the disks
Di(δ), Dj(δ), and Dk(δ). Then the point p′ = (x, y, δ)
is the intersection point of three frustums fi, fj , and
fk. Thus, p1 is the projection of a point p′ which is
an intersection point of three frustums, i.e., a vertex
of the arrangement A of the n frustums f1, . . . fn; the
complexity of A is O(n3). Note that for each can-
didate for p1, the corresponding value for δ is easily
obtained, namely the height of p′1. Since A contains
O(n3) vertices, we need to compute them implicity.

Implicit binary search We now describe how to
perform the binary search over the vertices of A in
an implicitly way:

Binary search on a coarse list of vertices. We
first randomly select O(n2 log n) vertices from A
by picking O(n2 log n) triples of frustums, and sort
the radii associated with them in O(n2 log2 n) time.
By a binary search with the decision algorithm in
Lemma 1, we determine two consecutive radii δi
and δi+1 such that δ∗ is between δi and δi+1. This
takes O(n2 log3 n) time. Since the vertices were
picked randomly, the strip W [δi, δi+1] bounded by
the two planes z := δi and z := δi+1 contains only
O(n) vertices of A with high probability [9, Section 5].

64

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Zooming into the interval. We compute all the k
vertices in W [δi, δi+1] by a standard sweep-plane al-
gorithm in O(k log n+n2 log n) time as follows: First,
we compute the intersection of the sweeping plane at
z := δi with the frustums f1, . . . fn. This intersection
forms a two-dimensional arrangement of O(n) circles
with O(n2) total complexity, and we can compute it in
O(n2 log n) time. We next construct the portion of the
arrangement A in W [δi, δi+1] incrementally by sweep-
ing a vertical plane from the intersection at z := δi
towards z := δi+1. As a result, we can compute the
k = O(n) vertices (and the corresponding O(n) radii)
in W [δi, δi+1] in O(n log n) time. We abort the sweep
if the number k of vertices inside the strip becomes
too large and restart the algorithm with a new ran-
dom sample. This happens only with small proba-
bility. In order to find the minimum value δ∗, we
perform a binary search on these O(n) radii we just
computed, using the decision algorithm in Lemma 1.
This takes O(n2 log3 n) expected time. The solution
pair of points p1 and p2 can also be found by the de-
cision algorithm.

To get a deterministic algorithm, we use the para-
metric search technique with deterministic decision
algorithm in Lemma 1, but the running time in-
creases by one (log n)-factor, so the total time be-
comes O(n2 log4 n log logn) time. Details can be
found in the full version of this paper.

Theorem 3 Given a set D of n disks in the plane,
we can compute two smallest congruent disks whose
union intersects every disk in D in O(n2 log3 n) ex-
pected time or in O(n2 log4 n log log n) worst-case
time.

4 Covering Disks with Two Disks

Given a set of disks D = {D1, . . . , Dn} in the plane,
we want to find two smallest congruent disks C1 and
C2, such that every disk Di ∈ D is covered by C1 or
C2. As mentioned in the introduction, we distinguish
between two cases: The restricted case where each
disk Di has to be fully covered by C1 or C2 and the
general case where a disk Di can be covered by C1 ∪
C2.

4.1 The Restricted Case

Observation 2 Let ` be the bisector of an optimal
solution C1 and C2. Then, D ⊂ Ci for every D ∈ D
whose center lies in the same side of the center of Ci,
for i = {1, 2}.

Hence, the restricted covering case can be solved in
O(n3) time, since the smallest disk covering a set of
disks can be computed in linear time [8] and there are
O(n2) bipartitions of the centers of the disks.

The algorithm from Section 3 can be also be used to
solve this problem. For this we consider the decision
problem: Given a set of n disks D and a value δ, do
there exist two disks C1, C2 with radius δ, such that
each disk Di ∈ D is covered by either C1 or C2. This
implies that for each disk Dj ∈ D covered by Ci holds:
d(c(Dj), c(Ci)) + r(Dj) ≤ δ, for i = {1, 2}. It clearly
holds that δ ≥ rmax, where rmax is the maximum of
radii of all disks in D. We can formulated the problem
in a different way.

Given a value δ, do there exist two points, p1
and p2, such that D∗i (δ)∩{p1, p2} 6= ∅ for ev-
ery Di ∈ D, where D∗i (δ) is a disk concentric
to Di and whose radius is δ − r(Di) ≥ 0.

Since δ ≥ rmax, we add an initialization step, in which
every disk Di is replaced by a disk concentric to Di

with radius rmax − r(Di). Then we can use the algo-
rithm from Section 3 in order to solve the restricted
covering problem.

Theorem 4 Given a set of n disks D in the plane,
we can compute two smallest congruent disks such
that each disk in D is covered by one of the disks in
O(n2 log3 n) expected time or in O(n2 log4 n log logn)
worst-case time.

Constant factor approximation Algorithm 1 com-
putes a 2/

√
3-approximation in O(n log n) time.

OneCover(U), which is used as a subroutine, com-
putes the smallest disk covering a set of disks U .
Algorithm 1 runs in O(n log n) time, since the di-

Algorithm 1

1: U1 = ∅ and U2 = ∅.
2: Compute the diametral pair D1 and D2, that is,

d(D1, D2) is the diameter of D.
3: U1 = U1 ∪ {D1} and U2 = U2 ∪ {D2}.
4: for all Di ∈ D do
5: if d(Di, D1) < d(Di, D2) then
6: U1 = U1 ∪ {Di}
7: else
8: U2 = U2 ∪ {Di}
9: Compute C1 =OneCover(U1) and C2 =OneCover(U2)

10: return C1 and C2

ameter of D can be computed in O(n log n) [7] and
OneCover(U) in linear time [8]. The approximation
factor of 2/

√
3 can be proven by making a case dis-

tinction whether D1 and D2 are covered by the same
disk in the optimal solution or by different disks, and
by using Jung’s theorem [5].

At the expense of increasing the approximation fac-
tor by a factor of

√
2, we can improve the running

time to O(n) by replacing the computation of the di-
ameter of D in Algorithm 1 by computing a 1/

√
2-

approximation of the diameter in O(n) time.

65

27th European Workshop on Computational Geometry, 2011

Theorem 5 Given a set of n disks D. For the
restricted covering case a 2/

√
3-approximation can

be computed in O(n log n) time and a 2
√

2/
√

3-
approximation in O(n) time.

(1 + ε)-approximation Recall Observation 2.
We show how to compute an optimal solution in
O(n log n) time if the orientation of the bisector is
given and explain how this algorithm is used in order
to obtain a (1 + ε) approximation.

Fixed Orientation. W.l.o.g, assume that the
bisector is vertical. After sorting the centers of all
Di ∈ D by their x-values, we sweep a vertical line
` from left to right, and maintain two sets D1 and
D2: D1 contains all disks whose centers lie to the left
of ` and D2 = D \ D1. Let C1 be the smallest disk
covering D1 and C2 the smallest disk covering D2.
While sweeping ` from left to right, the radius of C1

is nondecreasing and the radius of C2 nonincreasing
and we want to compute min max(r(C1), r(C2)).
Hence, we can perform a binary search on the list
of all centers. Each step takes O(n) time, thus we
achieve a total running time of O(n log n).

Sampling. We use 2π/ε sample orientations chosen
regularly over 2π, and compute for each orientation
the solution in O(n log n) time. The approximation
factor can be proven by showing that there is a sam-
ple orientation that makes angle at most ε with the
optimal bisector. The solution for this line is at most
(1 + ε) times the optimal solution.

Theorem 6 Given a set D of n disks in the plane,
a (1 + ε) approximation for the restricted covering
problem for D can be computed in O(n log n/ε) time.

4.2 The General Case

Lemma 7 A solution for the restricted case is a
(
√

2 + 1)/2-approximation for the general case.

Theorem 8 Given a set D of n disks, a (
√

2+1)/
√

3-
approximation for the general covering problem for
D can be computed in O(n log n) time and a (2 +√

2)/
√

3-approximation in O(n) time.

(1 + ε)-Approximation First, we compute a (2 +√
2)/
√

3-approximation for the general covering case
in O(n) time as explained before. Let Capx

1 ,
Capx

2 be the solution disks. We can assume that
d(c(Capx

1), c(Capx
2)) ≤ (2 + 2(2 +

√
2)/
√

3)r(Capx
1) <

6r(Capx
1), otherwise Capx

1 , Capx
2 are already an opti-

mal solution. We compute a smallest bounding box B
of Capx

1 ∪Capx
2 and an O(1/ε)×O(1/ε) grid on B. The

length of each grid cell is < 6εr(Capx
1) < 12εr∗, where

r∗ is the radius of the optimal solution disks. Each

disk is replaced in O(n/ε) time by the grid points
which are closest to its boundary and lie inside the
disk. If a disk has no grid point lying inside, it is re-
placed by the grid point which is closest to this disk.
In total we have a set of O(1/ε2) points for which we
solve the two center problem, meaning we compute
the smallest two disks E1, E2 that cover this point
set in O(1

ε2 log2 1
ε log2 log 1

ε) time [1]. It holds that
r(E1) = r(E2) ≤ r∗ and if the radii of E1, E2 are
increased by the length of the diagonal of a grid cell,
which is < 6ε

√
2r(Capx

1), these disks cover D and their
radii are < r∗(1 + 12

√
2ε). The total running time is

O(1
ε2 log2 1

ε log2 log 1
ε + n

ε).
In order to improve the running time for very small

ε, i.e., ε ≤ 1/ log n, we compute the set of grid points
from the union of the disks in D. The union can
be computed in O(n log n) time and its complexity is
O(n) [6]. Hence, the replacement of the disks by grid
points takes O(n log n+ 1/ε2) time.

Theorem 9 Given a set D of n disks in the plane,
a (1 + ε)-approximation for D in the general cover-
ing case can be computed in O(1

ε2 log2 1
ε log2 log 1

ε +
min{nε , n log n}) time.

References

[1] T. M. Chan. More planar two-center algorithms.
Comput. Geom. Theory Appl., 13:189–198, 1997.

[2] T. M. Chan. Deterministic algorithms for 2-d convex
programming and 3-d online linear programming. J.
Algorithms, 27(1):147–166, 1998.

[3] K. L. Clarkson. Las vegas algorithms for linear and
integer programming when the dimension is small. J.
ACM, 42:488–499, 1995.

[4] D. Eppstein. Faster construction of planar two-
centers. In Proc. SODA’97, pages 131–138. ACM and
SIAM, 1997.

[5] H. Jung. Über den kleinsten Kreis, der eine ebene
Figur einschließt. J. Reine Angew. Math., 137:310–
313, 1910.

[6] K. Kedem, R. Livne, J. Pach, and M. Sharir. On
the union of jordan regions and collision-free trans-
lational motion amidst polygonal obstacles. Discrete
Comput. Geom., 1:59–71, 1986.

[7] M. Löffler and M. van Kreveld. Largest bounding
box, smallest diameter, and related problems on im-
precise points. Comput. Geom. Theory Appl., 43:419–
433, 2010.

[8] N. Megiddo. On the ball spanned by balls. Discrete
Comput. Geom., 4:605–610, 1989.

[9] K. Mulmuley. Computational Geometry - An Intro-
duction Through Randomized Algorithms. Prentice
Hall, 1994.

[10] M. Sharir and E. Welzl. A Combinatorial Bound for
Linear Programming and Related Problems. In Proc.
STACS’92, pages 569–579. Springer-Verlag, 1992.

66

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

The L∞ Hausdorff Voronoi diagram revisited

Evanthia Papadopoulou∗ Jinhui Xu†

Abstract

We revisit the L∞ Hausdorff Voronoi diagram of clus-
ters of points, equivalently, the L∞ Hausdorff Voronoi
diagram of rectangles, and present a plane sweep al-
gorithm for its construction, generalizing and improv-
ing upon previous results. We show that its struc-
tural complexity is Θ(n + m), where n is the num-
ber of given clusters and m is the number of essen-
tial pairs of crossing clusters. The algorithm runs in
O((n + M) log n) time and O(n + M) space, after an
O((n+V) log n)-time preprocessing step, where M,V
reflect special crossings that are potentially essential ;
m,M, V are O(n2), m 6 M , but m = M,m > V ,
in the worst case. In practice, m,M, V << n2, as
the total number of crossings in the motivating ap-
plication is typically small, even compared to n. For
non-crossing rectangles the algorithm runs in optimal
O(n log n)-time and O(n)-space.

1 Introduction

Given a set S of point clusters in the plane, the
Hausdorff Voronoi diagram of S, denoted HVD(S),
is a subdivision of the plane into regions such that
the Hausdorff Voronoi region of a cluster P , denoted
hreg(P), is the locus of points closer to P than to
any other cluster in S, where distance between a
point t and a cluster P is measured as the farthest
distance between t and any point in P , df (t, P) =
max{d(t, p), p ∈ P}.

hreg(P) = {x | df (x, P) < df (x,Q),∀Q ∈ S}

hreg(P) is subdivided into finer regions by the far-
thest Voronoi diagram of P , FVD(P). The farthest
distance df (t, P) is equivalent to the Hausdorff dis-
tance1 between t and P . In the L∞ metric2, df (t, P)
is equivalent to df (t, P ′), where P ′ is the minimum
enclosing axis-aligned rectangle of P . Thus, the L∞

∗Faculty of Informatics, Università della Svizzera italiana,
evanthia.papadopoulou@usi.ch. Supported in part by SNSF
project 200021 127137.
†Department of Computer Science and Engineering, State

University of New York at Buffalo, {jinhui}@buffalo.edu
1The (directed) Hausdorff distance from a set A to a

set B is h(A,B) = maxa∈A minb∈B{d(a, b)}. The (undi-
rected) Hausdorff distance between A and B is dh(A,B) =
max{h(A,B), h(B,A)}.

2The L∞ distance between two points p, q is d(p, q) =
max {|xp − xq |, |yx − yp|}.

Hausdorff Voronoi diagram of S is equivalent to the
L∞ Hausdorff Voronoi diagram of the set S′ of the
minimum enclosing rectangles of all clusters in S. In
this abstract the terms cluster and rectangle are used
interchangeably. Once the cluster minimum enclosing
rectangles are available, individual cluster points have
no further influence.

The Hausdorff Voronoi diagram has appeared in
the literature under different names having been mo-
tivated by different problems [6, 1, 9, 13, 10, 5, 15]. It
first appeared in [6] as the cluster Voronoi diagram,
where several combinatorial bounds were derived. A
tight combinatorial bound on its structural complex-
ity in the Euclidean plane was given in [10]. The L∞
version of the problem was introduced in [9] as a solu-
tion to the VLSI critical area extraction problem for a
defect mechanism on contact layers, called a via-block.
A related, reverse type, of Voronoi diagram has been
considered in [14, 2, 3].

In this paper we revisit the Hausdorff Voronoi di-
agram in the L∞ metric. We provide a tight bound
on its structural complexity and a plane sweep algo-
rithm for its construction, generalizing and improving
upon [9]. In particular, we show that the structural
complexity of the L∞ Hausdorff Voronoi diagram is
Θ(n + m), where n is the number of input clusters
and m is the number of essential pairs of crossing
clusters (see Def. 1). The algorithm consists of an
O((n+ V) log n)-time preprocessing step, followed by
the main algorithm that runs in O((n + M) log n)-
time and O(n + M)-space, where M,V reflect num-
bers of special crossings that are potentially essen-
tial (see Def. 2); m,M, V are O(n2), m 6 M , but
m = M,m > V , in the worst case. In practice, typ-
ically, m,M, V << n2, as the total number of pos-
sible crossings in our application is small, even com-
pared to n. For non-crossing rectangles the algorithm
simplifies to optimal O(n log n)-time and O(n)-space;
no previous algorithm achieves an optimal bound in
case of non-crossing clusters. An output sensitive ver-
sion of the plane sweep construction, at the expense,
however, of advanced data structures that require in-
creased space consumption, is given in [15].

The L∞ Hausdorff Voronoi diagram finds appli-
cations in VLSI design for manufacturability as ex-
plained in [9, 11] and it has been integrated in [16].
Due to its simplicity and the absence, in L∞, of nu-
merical issues, the approach is very well suited for use
in applications.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

67

27th European Workshop on Computational Geometry, 2011

s

Q

P

Figure 1: The L∞ Hausdorff bisector of crossing rect-
angles.

2 Structural complexity and Definitions

Let S be a set of n rectangles, or a set of n point
clusters in the plane, where each cluster has been
substituted by its minimum enclosing rectangle. A
pair of rectangles (P,Q) is called crossing if P and
Q intersect in the shape of a cross. Given a crossing
pair (P,Q), P is assumed to be at least as long as
Q. For a rectangle P , let Pn, P s, P e, and Pw denote
the north, south, east, and west edge of P respec-
tively. P is called a horizontal (resp. vertical) if Pn is
longer (resp. shorter) then P e. The axis parallel line
through edge P i, i = n, s, e, w, is denoted as l(P i).
The term P i is also used to denote the main coordi-
nate of edge P i. The core segment of P is the locus
of centers of all minimum enclosing squares of P , and
it is given by the axis-parallel line segment of the L∞
farthest Voronoi diagram of P . It can be viewed as
an ordinary line segment s additively weighted with
w(s) = df (s, P). In Fig. 1, FVD(P) is illustrated in
dashed lines and the core segment is indicated by s.

The Hausdorff bisector between two clusters P,Q
is bh(P,Q) = {y | df (y, P) = df (y,Q)} and it is a
subgraph of FVD(P ∪ Q) [13]. For a rectangle Q
strictly enclosed in the interior of a minimum enclos-
ing square of P , bh(P,Q) consists of either one (if
P and Q are non-crossing) or two (if P and Q are
crossing) chains, each one forming a V -shape out of
the ±1-slope rays of FVD(P ∪ Q); the apex of each
chain is called a V-vertex. A V-vertex v is incident
to the core segment of P and its 90◦ angle faces the
portion of the plane closer to P . It is characterized
as up, down, right, or left, depending on whether its
90◦ angle is facing north, south, east, or west respec-
tively. In addition, it is characterized as crossing, if Q
is crossing P , and non-crossing, otherwise. The min-
imum enclosing square of P centered at V-vertex v
is also enclosing Q and it is denoted as square(P, v).
It is also denoted as square(P,Qi), where Qi, is the
non-crossing edge of Q that delimits one of its edges.
Fig. 1 illustrates bh(P,Q) consisting of two crossing
V-vertices, one right and one left; square(P,Qw) is
illustrated dashed. square(P,Qi) is referred to as an
extremal minimum enclosing square of P and Q. The
V-vertices of HVD(S) are referred to as Voronoi V-
vertices.

Definition 1 A pair of crossing rectangles (P,Q) is
called essential if there is an extremal minimum en-

Figure 2: Collection of essential crossings.

closing square of P and Q, square(P,Qi), that is
empty of any other rectangle.

Lemma 1 A pair of crossing rectangles (P,Q) in-
duces a Voronoi V-vertex in HVD(S) if and only if
(P,Q) is an essential crossing.

Combining Lemma 1 with the structural complex-
ity results of [13] we derive the following bound.

Theorem 2 The structural complexity of the L∞
Hausdorff Voronoi diagram of a set S of n point clus-
ters, equivalently n rectangles, is Θ(n + m), where m
is the total number of essential crossings.

Definition 2 A collection of crossings for a vertical
rectangle P , (P,Qi), i = 1, . . . , k, is called a stair-
case, if Qw

i < Qw
i+1 and Qe

i < Qe
i+1, i = 1, . . . , k. If

in addition, square(P,Qw
i) is empty of Qj 6= Qi, the

staircase and its crossings are called potentially es-
sential. The maximum size of a potentially essential
staircase for P is the number of potentially essential
crossings for P . Let M denote the total number of po-
tentially essential crossings for all vertical rectangles
in S, plus the number of essential crossings for all hori-
zontal rectangles. Let V =

∑
V (P) ∀ vertical P ∈ S,

where V (P) is the maximum number of pairwise non-
crossing vertical rectangles that cross P .

Fig.2 shows a collection of potentially essential
crossings that are essential i.e., they all induce
Voronoi V-vertices.

3 A refined plane sweep construction

In this section we revisit the plane sweep construc-
tion of the L∞ Hausdorff Voronoi diagram [9], gen-
eralize it to crossing rectangles, and improve its time
complexity to optimal in the non-crossing case. It
is based on the standard plane sweep paradigm for
Voronoi diagrams [7, 4] and its adaptation for line
segments in L∞ [12]. Assume a vertical sweep-line
lt sweeping the entire plane from left to right. At
any instant t of the sweeping process we compute
HVD(St ∪ lt), for St = {P ∈ S | l(P e) < t}. The
boundary of the Voronoi region of lt is the wavefront
at time t. Voronoi edges and core segments inci-
dent to the wavefront are called spike bisectors and

68

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

spike core segments respectively. The combinatorial
structure of the wavefront changes at specific events
organized in a priority queue. We have four types
of site events: start-vertical-rectangle, end-vertical-
rectangle, V-vertex events (for brevity V-events), and
horizontal-rectangle events. Site events are partially
similar to those for ordinary line segments [12] en-
hanced with additional functions to handle V-vertices
and disconnected Voronoi regions. Spike events are
caused by the intersection of incident spike bisectors,
and they remain the same as in the ordinary plane
sweep paradigm.

The wave-curve of a rectangle R is the bisector be-
tween R and the sweep line lt, at time t, b(R, lt) =
{y | df (y,R) = d(y, lt)}, where d(y, lt) is the ordinary
distance between y and lt. In L∞, it consists of two
or three waves: a ray of slope −1, corresponding to
b(Rs, lt), a ray of slope +1, corresponding to b(Rn, lt),
and possibly a vertical line segment corresponding to
b(Rw, lt), if appropriate. The wavefront, at time t,
is the lower envelope, with respect to the sweep line,
of the wave-curves of all rectangles in St. In L∞,
the wavefront is monotone with respect to any line of
slope ±1.

The wavefront is typically maintained as a height
balanced binary tree, T , ordered from bottom to top.
Leaf nodes correspond to waves, while internal nodes
correspond to spike bisectors and spike core segments
revealing breakpoints between incident waves. In or-
der to answer queries regarding V-vertices efficiently,
we augment T with additional information. Each
node x is augmented with a w-max value representing
the rightmost west edge of all rectangles contribut-
ing a wave to the portion of the wavefront rooted at
x, and an x-min value representing the minimum x-
coordinate of the portion of the wavefront rooted at
x. In particular, for a leaf node representing a wave
of rectangle R, the w-max value is Rw and the x-min
value is +∞. For an internal node x, w-max is the
maximum between the w-max values of its children;
the x-min value points to the breakpoint of minimum
x-coordinate among its own breakpoint and the x-min
values of its children. These values remain the same
unless a combinatorial change in the wavefront (i.e.,
an event) takes place.

Any Voronoi point in HVD(S) enters the wavefront
at the time of its priority. The priority of a point v
is the rightmost x-coordinate of the smallest square
centered at v that is entirely enclosing the rectan-
gle P that induces v. The priority of a rectangle P
is denoted as priority(P) and corresponds to the x-
coordinate of P e.

Let us now discuss the handling of various types of
events of a rectangle P of core segment s. At time
t, let r1(t) and r2(t) be the rays of slope +1 and −1
respectively, emanating from l(Pn)∩ lt, and l(P s)∩ lt
respectively, extending towards the left of lt. Let a(t)

and b(t) be the intersection points of r1(t) and r2(t)
with the wavefront, respectively, at time t. In case
of a wave collinear with r1(t) or r2(t), the rightmost
endpoint is assigned to a(t), b(t).

Consider time t = priority(P). If the wavefront
has not reached s yet, then the handling of the
corresponding event (a start-vertical-rectangle or a
horizontal-rectangle event) is similar to processing an
ordinary line segment event [12, 9]: The portion of
the wavefront between a(t) and b(t) is finalized and
gets substituted by the wave-curve of P . There is one
new action to take: For any crossing V-vertex on the
finalized portion of the wavefront, induced by a rect-
angle Q, generate a V-event for the right V-vertex of
bh(P,Q). If the wavefront has already covered portion
of s, and P is vertical (start-vertical rectangle event) a
V-event is generated to predict the first right V-vertex
along s (if any). For this purpose, perform a binary
search in the augmented wavefront to determine the
wave between a(t) and b(t) with the rightmost w-max
value as induced by a rectangle Q, and generate a
V-event for the right V-vertex of bh(P,Q).

A V-event v is processed similarly. If at time
t = priority(v) the event is invalid i.e., the wavefront
has already covered v, generate a new V-event. End-
rectangle events are similar to right-events of [9].

A horizontal-rectangle event is processed at time
t = priority(P). The problem is to identify the inter-
sections (V-vertices) of the wavefront with the vertical
core segment s. To identify V-vertices efficiently we
use the x -min value of the augmentation. Let r be the
breakpoint of minimum x-min value between a(t) and
b(t). If r is to the right of s then s must be entirely
covered by the wavefront and there can be no inter-
sections; reg(P) = ∅. Otherwise, trace the wavefront
sequentially, starting at r, until the first intersections
above and below r are determined. The intersection
above (resp. below) corresponds to a down (resp. up)
V-vertex v (resp. u). Repeat the process for the por-
tions of the wavefront above v and below u until all
intersections are determined.

The time complexity of the plane sweep algorithm,
as presented, is O(n + m + E) log n), where E is the
number of invalid V -events. There are two reasons
for invalid V-events: 1. Potentially essential staircases
of vertical rectangles whose crossings are not all es-
sential. 2. Sequences of strongly dominating vertical
rectangles, even in the case of non-crossing rectangles.
Given a pair of vertical rectangles (P,Q), P is said to
dominate Q if Qw < Pw and Qn < Pn, Qs > P s. If
in addition, there is a minimum enclosing square of Q
that is crossing P , P is said to strongly dominate Q.

To eliminate source-2 of invalid V-vertex events, a
preprocessing step may be added to the algorithm,
which computes for every vertical rectangle P its
rightmost non-crossing rectangle Q (if any) and a po-
tentially essential staircase R to the right of Qe (if

69

27th European Workshop on Computational Geometry, 2011

any). Q is the vertical rectangle, non-crossing with P ,
with the rightmost Qw among all rectangles strongly
dominated by P . This problem can be transformed
into a point dominance problem in R3 and it can be
solved by plane sweep in O((n + V) logn)-time, as
sketched in the following section. Thus, we conclude.

Theorem 3 HVD(S) can be computed by plane
sweep in O((n+M) logn) time, O(n+M)-space after
a preprocessing step of ((n+V) logn)-time, O(n+M)-
space. In the case of non-crossing rectangles this re-
sults in optimal O(n log n)-time and O(n)-space.

4 Preprocessing step – Point dominance

For any vertical rectangle P , map Pw into point p =
(Pn,−P s, Pw) in R3. A point p = (p1, p2, p3) is said
to dominate a point q = (q1, q2, q3) if pi > qi for all
i, 1 6 i 6 3.

In the non-crossing case, the problem is to deter-
mine, for every point p, the topmost point q domi-
nated by p. For this purpose, we can sweep points in
decreasing z-coordinate, while maintaining their min-
ima, M(t), i.e., the set of points above the sweeping
plane at time t that do not dominate anything so far,
projected on the xy-plane. M(t) can be organized in
a priority search tree TM(t) [8]. Let p = (p1, p2, p3)
be the point to be considered at time t = p3. Per-
form a range query on TM(t) for the NE quadrant of
(p1, p2), i.e., range J(p) = [p1,∞] × [p2,∞]. For any
point r within J(p), report (r, p). Delete all points in
M(t) ∩ J(p) from TM(t) and insert (p1, p2). p can be
deleted from TM(t) when the west edge of its leftmost
minimum enclosing rectangle is reached. Since prior-
ity search trees are fully dynamic this is an O(n log n)-
time O(n)-space algorithm.

In the general case of crossing rectangles, in addi-
tion to TM(t), we also maintain a secondary priority
search tree T ′t with all points that have already been
matched with a point representing a crossing rectan-
gle. Range queries in TM(t) remain the same, however,
additional range queries are performed in T ′t as deter-
mined by points in J(p). A point p gets deleted from
T ′t when p is matched with a non-crossing rectangle or
when its expiration time is reached. Details are given
in the full paper.

References

[1] M. Abellanas, G. Hernandez, R. Klein,
V. Neumann-Lara, and J. Urrutia. A com-
binatorial property of convex sets. Discrete
Computat. Geometry, 17:307–318, 1997.

[2] M. Abellanas, F. Hurtado, C. Icking, R. Klein,
E. Langetepe, L. Ma, B. Palop, and V. Sacristán.
The farthest color Voronoi diagram and related

problems. In Abstracts 17th European Workshop
Comput. Geom. 2001, 113–116.

[3] O. Cheong, H. Everett, M Glisse, J Gudmunds-
son, S. Hornus, S. Lazard, M. Lee, and H.-
S. Na. Farthest-Polygon Voronoi Diagrams.
arXiv:1001.3593v1 [cs.CG], 2010.

[4] F. Dehne and R. Klein. The big sweep”: On
the power of the wavefront approach to Voronoi
diagrams. Algorithmica, 17:19–32, 1997.

[5] F. Dehne, A. Maheshwari, and R. Taylor. A
coarse grained parallel algorithm for Hausdorff
Voronoi diagrams. In Proc. 2006 Int. Conf. on
Parallel Processing, 497–504, 2006.

[6] H. Edelsbrunner, L. Guibas, and M. Sharir. The
upper envelope of piecewise linear functions: Al-
gorithms and applications. Discrete Computat.
Geometry, 4:311–336, 1989.

[7] S. J. Fortune. A sweepline algorithm for Voronoi
diagrams. Algorithmica, 2:153–174, 1987.

[8] E. M. McCreight. Priority Search Trees. SIAM
J. Comput., 14:257–276, 1985.

[9] E. Papadopoulou. Critical area computation
for missing material defects in VLSI circuits.
IEEE Trans. Comp.-Aided Design, 20(5):583–
597, 2001.

[10] E. Papadopoulou. The Hausdorff Voronoi dia-
gram of point clusters in the plane. Algorithmica,
40:63–82, 2004.

[11] E. Papadopoulou. Net-aware critical area extrac-
tion for opens in VLSI circuits via higher-order
Voronoi diagrams. IEEE Trans. on Comp.-Aided
Design, to appear. Preliminary version in LNCS
vol 4835, 716–727, 2007.

[12] E. Papadopoulou and D. T. Lee. The L∞ Voronoi
diagram of segments and VLSI applications. Int.
Journal of Computat. Geometry and Applica-
tions, 11(5):503–528, 2001.

[13] E. Papadopoulou and D. T. Lee. The Hausdorff
Voronoi diagram of polygonal objects: A divide
and conquer approach. Int. J. of Computational
Geometry and Applications, 14(6):421–452, 2004.

[14] D. P.Huttenlocher, K. Kedem, and M. Sharir.
The upper envelope of Voronoi surfaces and
its applications. Discrete Computat. Geometry,
267–291, 1993.

[15] J. Xu, L. Xu, and E. Papadopoulou. Computing
the map of geometric minimal cuts. In Proc. 20th
Int. Symp. on Algorithms and Computation, vol
5878 of LNCS, 244–254, 2009.

[16] “Voronoi CAA: Voronoi Critical Area Analy-
sis”, IBM CAD Tool, Dept. Electronic Design
Automation, IBM Microelectronics, Burlington,
VT. Initial patents: US6178539, US6317859. Dis-
tributed by Cadence.

70

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Convex Treemaps with Bounded Aspect Ratio

Mark de Berg∗ Bettina Speckmann∗ Vincent van der Weele†

Abstract

Treemaps are a popular technique to visualize hier-
archical data. The input is a weighted tree T where
the weight of each node is the sum of the weights of
its children. A treemap for T is a hierarchical par-
tition of a rectangle into simply connected regions,
usually rectangles. Each region represents a node of
T and the area of each region is proportional to the
weight of the corresponding node. An important qual-
ity criterium for treemaps is the aspect ratio of its re-
gions. Unfortunately, one cannot bound the aspect
ratio if the regions are restricted to be rectangles.
Hence Onak and Sidiropoulos introduced polygonal
partitions, which use convex polygons. We are the
first to obtain convex partitions with optimal aspect
ratio O(depth(T)). We also consider the important
special case that depth(T) = 1, that is, single-level
treemaps. We show how to construct convex single-
level treemaps that use only four simple shapes for
the regions and have aspect ratio at most 34/7.

1 Introduction

Treemaps are a popular technique to visualize hierar-
chical data [10]. The input is a weighted tree T where
the weight of each node is the sum of the weights of its
children. A treemap for T is a hierarchical partition
of a rectangle into simply connected regions, usually
rectangles. Each region represents a node of T and
the area of each region is proportional to the weight of
the corresponding node. To visualize the hierarchical
structure the region associated with a node must con-
tain the regions associated with its children. Shnei-
derman [11] first presented an algorithm for the au-
tomatic creation of rectangular treemaps. Treemaps
are since used to visualize hierarchical data from a
variety of application areas, for example, stock mar-
ket portfolios [7], tennis competitions trees [6], large
photo collections [3], and business data [13].
One of the most important quality criteria for

treemaps is the aspect ratio of its regions [8]. Hence
several approaches [3, 4] try to “squarify” the re-
gions of a rectangular treemap. However, one cannot

∗Department of Mathematics and Computer Science, TU
Eindhoven, mdberg@win.tue.nl and speckman@win.tue.nl. B.
Speckmann was supported by the Netherlands’ Organisation
for Scientific Research (NWO) under project no. 639.022.707.

†Max-Planck-Institut für Informatik, Saarbrücken,
vdweele@mpi-inf.mpg.de.

Figure 1: Treemaps constructed by our drawing algo-
rithms: single-level convex, hierarchical convex.

bound the aspect ratio if the regions are restricted
to be rectangles. Hence, several types of treemaps
using region shapes other than rectangles have been
proposed. Balzer and Deussen [1, 2] use centroidal
Voronoi tessellations. Their algorithm is iterative and
can give no guarantees on the aspect ratio of the re-
gions produced. Wattenberg [14] developed treemaps
whose regions follow a space filling curve on a grid,
so called Jigsaw maps. Jigsaw maps assume integer
weights, which must add up to a square number. The
regions of the maps are rectilinear, but highly non-
(ortho)convex. However, they do have aspect ratio 4.
Onak and Sidiropoulos [9] introduced polygonal

partitions, which use convex polygons. They proved
an aspect ratio of O((depth(T) · log n)17) for a tree
T with n leaves. In cooperation with De Berg, this
bound has since been improved to O(depth(T) +
logn) [5]. The latter paper also gives a lower bound
construction of Ω(depth(T)).

Results and organization. We are the first to
obtain convex partitions with optimal aspect ratio
O(depth(T)). Our recursive drawing procedure is de-
scribed in Section 2. In Section 3 we also consider
the important special case that depth(T) = 1, that
is, single-level treemaps. We show how to construct
convex single-level treemaps that use only four shapes
and have aspect ratio at most 34/7. Figure 1 shows
two treemaps constructed by our drawing algorithms.
In the treemap on the right the hierarchical structure
is emphasized by line thickness and color: thicker,
darker lines delimit nodes higher in the hierarchy.
Specifically, there are four nodes on the top-level.

Preliminaries. Our input is a rooted tree T . Follow-
ing [5] we say that T is properly weighted if each node
ν of T has a positive weight weight(ν) that equals
the sum of the weights of the children of ν. We as-

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

71

27th European Workshop on Computational Geometry, 2011

sume that weight(root(T)) = 1. A treemap for T
associates a region R(ν) with each node ν ∈ T such
that (i) R(root(T)) is the unit square, (ii) for every
node we have area(R(ν)) = weight(ν), and (iii) for
any node ν, the regions associated with the children
of ν form a partition of R(ν). We denote the set of
children of a node ν by children(ν).
The aspect ratio of a treemap is the maximum as-

pect ratio of any of its regions. For a single region, we
use the following definition from [5]: the aspect ratio
of a convex region R is diam(R)2/ area(R).

Lemma 1 Suppose all children of node ν have weight
at most 2/3 · weight(ν). Then we can partition
children(ν) into two subsets S1 and S2, such that
weight(S2) 6 weight(S1) 6 2/3 · weight(ν).

2 Hierarchical treemaps

We describe a recursive algorithm for computing a
polygonal partition (convex treemap) of aspect ratio
O(depth(T)) for a properly weighted tree T . Our
algorithm has two phases. We first convert T into a
binary tree T ∗ and then construct a partition for T ∗.
This approach is similar to the one taken by De Berg
et al. [5], but we implement both phases differently.

Converting to a binary tree. We recursively convert
T into a binary tree T ∗, replacing each node with
k > 2 children in T by a binary subtree with k − 1
nodes. During this process we assign a label d(ν) to
each node ν, corresponding to the depth of ν in T .
At every step, we treat a node ν with label d(ν) and

convert the subtree rooted at ν. (Initially ν = root(T)
with d(root(T)) = 0.) If ν is a leaf there is nothing to
do. If ν has two children we recurse on these children
and assign them label d(ν) + 1. Otherwise ν has k
children, children(ν) = {ν1, . . . , νk}, for some k > 2.
We then distinguish two cases.
If there is a “heavy” child, say ν1, with weight(ν1) >

weight(ν)/2, then we turn ν into a binary node whose
children are ν1 and a new node µ1; the children of µ1

are ν2, . . . , νk. We recurse on ν1 and µ1, with d(ν1) =
d(ν) + 1 and d(µ1) = d(ν). Otherwise all children
have weight less than weight(ν)/2, and hence there is
a partition of children(ν) into two subsets S1 and S2

such that weight(Si) 6 2/3 · weight(ν) for i ∈ {1, 2}.
We turn ν into a binary node with children µ1 and
µ2, with children from S1 and S2, respectively, and
we recurse on µ1 and µ2 with d(µ1) = d(µ2) = d(ν).

Drawing a binary tree. Generalizing ϕ-separated
polygons [5], we define a (k, ϕ)-polygon to be a convex
polygon P such that

(i) P does not have parallel edges, except possi-
bly two horizontal edges and two vertical edges.
Moreover, each non-axis-parallel edge e makes an
angle of at least ϕ with any other edge and also
with the x-axis and the y-axis.

(ii) If P has two horizontal edges, then
diam(P)/ height(P) 6 k.

(iii) If P has two vertical edges, then
diam(P)/width(P) 6 k.

It follows from the definition of ϕ-separated polygons
that a (k, ϕ)-polygon P is a ϕ-separated polygon, if it
respects the following:

• if P has two horizontal edges, then height(P) >
width(P);

• if P has two vertical edges, then width(P) >
height(P).

Note that a (k, ϕ)-polygon P is ϕ-separated if its
bounding box is square.

Lemma 2 Any (k, ϕ)-polygon has aspect ratio
O(max(k, 1/ϕ)).

w

h

x

e1

e2

X

Proof. Let P be a (k, ϕ)-polygon
with w = width(P) and h =
height(P). Assume that w > h.
Let e1 and e2 be the horizontal
edges (possibly of length 0), let
x = min(|e1|, |e2|), and let X be
a parallellogram of width x. We distinguish two cases.

Case 1: x > w/2. P has two horizontal edges, so h >
diam(P)/k. Clearly, the area of P is at least the area
of X which is xh > w ·diam(P)/(2k). The diameter of
P is at most the diameter of the enclosing rectangle,
hence diam(P) 6

√
w2 + h2 6 w

√
2. Combined:

asp(P) =
diam(P)2

area(P)
6 2k · diam(P)

w
6 2

√
2k = O(k).

Case 2: x 6 w/2. We obtain polygon P ′ from P
by reducing the length of e1 and e2 with min(x,w −
h). Clearly, area(P ′) 6 area(P). Observe that P ′

is a ϕ-separated polygon since either it has at most
1 horizontal edge (and w − x > h), or the bounding
box of P ′ is square. Therefore, asp(P ′) = O(1/ϕ) [5].
Using diam(P) 6

√
2w and

diam(P ′) > w −min(x,w − h) > w − x > w/2 ,

we calculate

asp(P) =
diam(P)2

area(P)
6 2w2

area(P)

6 8 · diam(P ′)2

area(P ′)
= 8 · asp(P ′) = O(1/ϕ).

�

We construct the partition for T ∗ in a top-down man-
ner. Each node ν in T ∗ has an associated region R(ν);
initially ν = root(T ∗) and R(ν) is the unit square. We
write n(ν) for the number of non-axis-parallel edges
in R(ν). We maintain the following invariants:

72

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

(Inv-1) n(ν) 6 d(ν) + 4;

(Inv-2) R(ν) is a (k, ϕ(ν))-separated poly-
gon for k =

√
17 and ϕ(ν) = π/(2(d(ν)+6)).

The invariants are satisfied for ν = root(T ∗). Now
consider a node ν that is not root(T ∗). If ν is a
leaf, there is nothing to do. Otherwise, let ν1 and ν2
be the two children of ν. Assume that weight(ν1) >
weight(ν2). We distinguish two cases.

Case 1: d(ν1) = d(ν) + 1. Since R(ν) uses at most
d(ν) + 4 non-axis-parallel edges, there is a line ℓ that
makes an angle of at least π/(2(d(ν) + 6)) with each
of the edges of R(ν) and with the x- and the y-axis.
Imagine placing ℓ such that it splits R(ν) into two
halves of equal area, and let R′ be the half with the
smallest number of non-axis-parallel edges. Now par-
tition R(ν) into subpolygons R(ν1) and R(ν2) of the
appropriate area with a cut c that is parallel to ℓ such
that R(ν2) ⊂ R′. (Thus c lies inside R′.) We claim
that both R(ν1) and R(ν2) satisfy the invariants.
Clearly R(ν1) uses at most one edge more than

R(ν). Since d(ν1) = d(ν)+1, this implies that (Inv-1)
is satisfied for R(ν1). Now consider the number of
non-axis-parallel edges of R(ν2). This is no more
than the number of non-axis-parallel edges of R′. At
most two non-axis-parallel edges are on both sides of
ℓ, hence this number is bounded by

n(ν2) 6
⌊
n(ν) + 2

2

⌋
+ 1 6

⌊
d(ν) + 6

2

⌋
+ 1

=

⌊
d(ν)

2

⌋
+ 4 6 d(ν) + 4 6 d(ν2) + 4.

Given the choice of ℓ, and because d(νi) > d(ν) and
R(ν) satisfies (Inv-2), we know that the minimum
angle between any two non-parallel edges of R(νi)
(i ∈ {1, 2}) is at least π/(2(d(νi) + 6)). The following
lemma, that we prove in the full version, suffices to
show that R(ν1) and R(ν2) satisfy (Inv-2).

Lemma 3 If R(νi) has two horizontal edges, then
diam(R(νi))/height(R(νi)) 6 k and if R(νi) has two
vertical edges, then diam(R(νi))/width(R(νi)) 6 k,
for i ∈ {1, 2}.

Case 2: d(ν1) = d(ν). By construction of T ∗,
1/3 · weight(ν) 6 weight(ν1) 6 2/3 · weight(ν). We
now partition R(ν) into two subpolygons of the ap-
propriate area with an axis-parallel cut orthogonal to
the longest side of the axis-parallel bounding box of
R(ν). The possible positions of this cut are limited
by convexity, as specified in the following lemma.

Lemma 4 Let P be a convex polygon with
width(P) > height(P). We can partition P with
a vertical cut into two subpolygons P1, P2, where
area(P)/3 6 area(Pi) 6 2/3 · area(P) (for i ∈ {1, 2}),
such that width(P)/4 6 width(Pi) 6 3/4 · width(P).

The number of non-axis-parallel edges of R(ν1) and
R(ν2) is no more than the number of non-axis-parallel
edges of R(ν). Since d(νi) > d(ν), this implies R(ν1)
and R(ν2) satisfy (Inv-1). As for (Inv-2), note that
the cut does not introduce any new non-axis-parallel
edges. It is thus met by the following lemma.

Lemma 5 If R(νi) has two horizontal edges (for
i ∈ {1, 2}), diam(R(νi))/height(R(νi)) 6

√
17.

Similarly, if R(νi) has two vertical edges,
diam(R(νi))/width(R(νi)) 6

√
17.

Lemma 2, together with the fact that maxν∈T ∗ d(ν) =
depth(T) and Inv-2, implies the result.

Theorem 6 Every properly weighted tree of depth d
can be represented by a polygonal partition (convex
treemap) which has aspect ratio O(d).

3 Single-level treemaps

Rectangle:

Triangle:

Chisel:

Pentagon:

We now consider the special
case that depth(T) = 1. Our
input is hence a set of posi-
tive weights. We describe a re-
cursive drawing procedure that
creates a treemap of aspect ra-
tio at most 34/7 and uses only the four shapes de-
picted on the right. We do not recurse on pentagons,
these are used only for single high weights.
We denote the bounding rectangle of a region R

by ρ(R). The aspect ratio of a rectangle ρ is de-
fined as long(ρ)/short(ρ), where long(ρ) is the maxi-
mum of width(ρ) and height(ρ) and short(ρ) is the
minimum. This is equivalent to long(ρ)2/ area(ρ).
We write short(R) for short(ρ(R)) and long(R) for
long(ρ(R)). We frequently use the aspect ratio of the
bounding rectangle of a region and write aspρ(R) for
long(R)/short(R). Our drawing procedure keeps the
following invariant:

(Inv) aspρ(R) 6 4 for all regions R.

We convert T into a binary tree T ∗ as before and
create a drawing for T ∗ in a top-down manner. Each
node ν has again an associated region R(ν); initially
ν = root(T ∗) and R(ν) is the unit square. If ν is a
leaf, we are done. Otherwise, let ν1 and ν2 be the
children of ν and let ν1 be the heavier child. We
distinguish three cases according to the shape of R(ν).

Case 1: Rectangle. If weight(ν1) and weight(ν2) are
roughly equal, weight(ν)/(aspρ(R(ν)) · weight(ν2)) 6
4, we cut R(ν) through its longer side into two rect-
angles and have short(R(ν))2/ area(R(ν2)) 6 4 and
hence aspρ(R(νi)) 6 4. Otherwise we draw R(ν2) as
a equilateral right-angled triangle in a corner of R(ν).
Since we use only equilateral right-angled triangles the

73

27th European Workshop on Computational Geometry, 2011

bounding rectangle of any triangle is a square. Fur-
thermore, since ρ(R(ν1)) equals ρ(R(ν) we also have
aspρ(R(ν1)) 6 4.

Case 2: Triangle. We cut a triangle into a chisel
and a triangle. The bounding rectangle of the chisel
has aspect ratio at most 4 if its width is at least 1/4
times the width of the triangle. This is the case if
weight(ν1)/weight(ν) > 7/16. Since ν1 is the heavier
child, this always holds.

tip
base

lower
higher

Case 3: Chisel. Cutting the longer
side of a chisel, by an orthogonal cut,
yields two regions base and tip. Cut-
ting the shorter side of a chisel, by a
parallel cut, yields regions higher and
lower. We first give two lemmas for
analyzing the two types of cuts. For brevity, we write
rel(νi) = weight(νi)/weight(ν), i ∈ {1, 2}.

Lemma 7 For an orthogonal cut, the regions meet
the invariant if short(R(ν))2/ area(base) 6 4.

Lemma 8 For a parallel cut, with higher = R(ν1),
we have aspρ(lower) 6 aspρ(higher) iff rel(ν1) 6
aspρ(R(ν))/(2 · aspρ(R(ν))− 1).

We distinguish three cases.

Case 1: ν1 is a leaf. We let R(ν1) be the
base and R(ν2) be the tip of an orthogonal cut.
Since rel(ν1) > 1/2, we can easily show that
short(R(ν))2/ area(base) 6 4. By Lemma 7, the sub-
regions meet the invariant.

Case 2: ν1 is not a leaf and aspρ(R(ν)) > 3/2.
We let R(ν1) be the tip and R(ν2) be the base of
an orthogonal cut. The base is certainly a rectan-
gle, since the rectangular part of the chisel is at least
half of its total area and ν2 is the lighter child. Us-
ing rel(ν2) > 1/3 (Lemma 1), we can show that
short(R(ν))2/ area(base) 6 4. Then, the subregions
meet the invariant by Lemma 7.

Case 3: ν1 is not a leaf and aspρ(R(ν)) < 3/2. We let
R(ν1) be the higher and R(ν2) be the lower of a par-
allel cut. It is not hard to see that aspρ(higher) meets
the invariant if short(higher) > 3/8 · short(R(ν)),
which follows from ν1 being the heavier child. More-
over, since rel(ν1) 6 2/3 by Lemma 1, it follows from
Lemma 8 that lower meets the invariant as well.

The aspect ratio of a region R, compared to aspρ(R),
is maximal if R is a chisel. Together with the invari-
ant, this implies the following result.

Theorem 9 Every properly weighted single-level
tree can be represented by a convex treemap which
uses only four simple shapes and has aspect ratio at
most 34/7.

References

[1] M. Balzer and O. Deussen. Voronoi treemaps. In
Proc. IEEE Symposium on Information Visualiza-
tion, pages 7–14, 2005.

[2] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi
treemaps for the visualization of software metrics.
In Proc. ACM Symposium on Software Visualization,
pages 165–172, 2005.

[3] B. B. Bederson, B. Shneiderman, and M. Watten-
berg. Ordered and quantum treemaps: Making ef-
fective use of 2d space to display hierarchies. ACM
Transactions on Graphics, 21(4):833–854, 2002.

[4] M. Bruls, K. Huizing, and J. van Wijk. Squarified
treemaps. In Proc. Joint Eurographics and IEEE
TCVG Symposium on Visualization, pages 33–42.
Springer, 2000.

[5] M. de Berg, K. Onak, and A. Sidiropoulos. Fat
polygonal partitions with applications to visualiza-
tion and embeddings. In preparation. http://arxiv.
org/abs/1009.1866v1, 2010.

[6] L. Jin and D. C. Banks. Tennisviewer: A browser
for competition trees. IEEE Computer Graphics and
Applications, 17(4):63–65, 1997.

[7] W. Jungmeister and D. Turo. Adapting treemaps
to stock portfolio visualization. Technical report
UMCP-CSD CS-TR-2996, University of Maryland,
1992.

[8] N. Kong, J. Heer, and M. Agrawala. Perceptual
guidelines for creating rectangular treemaps. IEEE
Transactions on Visualization and Computer Graph-
ics, 16(6):990–998, 2010.

[9] K. Onak and A. Sidiropoulos. Circular partitions
with applications to visualization and embeddings. In
Proc. 24th Symposium on Computational Geometry,
pages 28–37, 2008.

[10] B. Shneiderman. Treemaps for space-constrained vi-
sualization of hierarchies. http://www.cs.umd.edu

/hcil/treemap-history/index.shtml.

[11] B. Shneiderman. Tree visualization with tree-maps:
2-d space-filling approach. ACM Transactions on
Graphics, 11(1):92–99, 1992.

[12] E. Tufte. The Visual Display of Quantitative Infor-
mation. Graphics Press, 2001.

[13] R. Vliegen, J. J. van Wijk, and E.-J. van der Linden.
Visualizing business data with generalized treemaps.
IEEE Transactions on Visualization and Computer
Graphics, 12(5):789–796, 2006.

[14] M. Wattenberg. A note on space-filling visualizations
and space-filling curves. In Proc. IEEE Symposium
on Information Visualization, pages 181–185, 2005.

74

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

A parallel GPU-based algorithm for Delaunay edge-flips

Cristobal A. Navarro∗ Nancy Hitschfeld-Kahler† Eliana Scheihing*

Abstract

The edge-flip technique can be used for transform-

ing any existing triangular mesh into one that satis-

fies the Delaunay condition. Although several imple-

mentations for generating Delaunay triangulations are

known, to the best of our knowledge no full parallel

GPU-based implementation just dedicated to trans-

form any existent triangulation into a Delaunay trian-

gulation has been reported yet. In the present work,

we propose a two-phase iterative GPU-based algo-

rithm, that transforms any 2D planar triangulations

and 3D triangular surface meshes into their respective

Delaunay form. We tested our method with meshes

of different size, and compared it with a sequential

CPU-implementation. Based on these results, our al-

gorithm strongly improves the performance with re-

spect to a classic CPU-implementation, thus making

it a good candidate for interactive/real-time applica-

tions.

1 Introduction

Delaunay triangulations are widely used in several ap-

plications because they present good properties that

make them useful in 2D and 3D numerical simula-

tions. In the last two decades there has been a consid-

erable amount of work done on computing Delaunay

triangulations, from different sequential implementa-

tions [9] to recently parallel ones [1], and in partic-

ular, GPU-based methods [8, 2]. These works be-

long to the case when a Delaunay triangulation needs

to be computed from a given set of points or from

an initial geometry and not from an existing triangu-

lation. On the other hand, transformation methods

for existing triangulations have relied on the edge-flip

technique first introduced by Lawson [7]. Though the

edge-flip technique is simple and the implementation

is straightforward, the order of the algorithm is O(n2)

in the worst case [6, 5] (where n refer the number of

points of the triangulation) making its performance

potentially slow for millions of triangles. The algo-

rithm of Rong et al. [8] uses the edge-flip operation,

but it is implemented on the CPU. Very recently, they

improved their method by implementing all the opera-

∗Informatics Institute, Austral University, Chile,

axischire@gmail.com, escheihi@inf.uach.cl
†Department of Computer Science, FCFM, University of

Chile, Chile, nancy@dcc.uchile.cl

tions in parallel [2]. The main differences with our ap-

proach are that our algorithm is more straightforward

and simple since it is only dedicated to transform any

triangulation into a Delaunay triangulation. In ad-

dition, Cao’s algorithm uses one thread per triangle

and needs to update more complex data structures.

Our algorithm uses on thread per-edge and the used

data structures are oriented for real-time rendering.

There is also another interesting article that describes

a parallel GPU-based algorithm designed to generate

triangulations for image reconstruction [3]. This al-

gorithm performs edge-flips in parallel according to a

function cost that depends on the treated image. If

the function is the Delaunay condition, then their al-

gorithm could be used for the purpose of our paper.

Their approach is also iterative and uses one thread

per edge, but uses different data structures which are

oriented to store regions of influence of each edge e

and the implementation is done with shaders.

The application that motivates our work is the

simulation of stem deformations. At each time, the

geometry of the triangulation changes and we want

to restore the Delaunay condition. Then we want

a restoration method capable to perform close to

interactive/real-time levels, executing on a desktop

workstation. The contribution of this work is a GPU-

based method that improves 2D and 3D triangula-

tions. This short paper is organized as follows: Sec-

tion 2 describes the data structures and Section 3 cov-

ers the algorithm and some implementation details.

In Section 4 we present results from different tests, to

finally discuss and conclude our work in Section 5 .

2 Involved data structures

Proper data structures have been defined to represent

a triangulation in order to use as efficiently as possi-

ble the GPU’s architecture. This representation is

inspired on the Dynamic Render Mesh [10]. Figure 1

illustrates the three main components: Vertices, Tri-

angles and Edges.

Vertices are handled via the Vertex array where each

element contains a position (x, y) or (x, y, z) depend-

ing on the dimension used. The Triangles array is a

set of indices to the vertex array where each three con-

secutive indices corresponds to a triangle. Each edge

contains a pair of vertex indices v1, v2 and two refer-

ences ta, tb to the triangles that share it (for bound-

ary edges, tb remains unused). Both ta and tb contain

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

75

27th European Workshop on Computational Geometry, 2011

t0

Surface Mesh S

Edges

Triangles

Vertices

p-2...

t1

A

0

n-2

0 2 4

A C B C

0

ta tb

tm-1

3m-3 3m-2 3m-1

A B C

...

n-1

...

...

A B C

tbta

1 2

B

v1 v2

v1 v2

1

ta tb

v1 v2

2

ta tb

v1 v2

p-3

ta tb

v1 v2

p-1

ta tb

v1 v2

51 3

Figure 1: Data structures for mesh render-

ing/processing.

a pair of indices that point to the exact indices on

the Triangles array where this edge can be found. In

other words, every edge can access its vertex data

directly through v1, v2 or indirectly via ta, tb. This

redundant information becomes useful for consistency

checking after an edge flip is performed nearby. The

data model was designed so that it could be naturally

implemented and integrated with the OpenGL API

and at the same time implementable on the CUDA

[4] architecture.

3 Algorithm Overview

Each iteration of the proposed algorithm is divided

in two phases: (1) Exclusion & Processing and (2)

Repair. The algorithm finishes when all edges fulfill

the Delaunay condition.

3.1 Exclusion & Processing

This phase is in charge of a double work: selecting

and flipping edges in parallel. It begins by testing

each edge against the Delaunay condition. If the con-

dition is fulfilled, then e is Delaunay and the execution

thread ends (d = 1), otherwise the thread continues

alive (d = 0). Figure 2 shows an example of a small

mesh (Se), where edge e does not satisfy Delaunay

condition. In this figure, edge e is the unique internal

edge of the mesh, thus the only one to be analyzed

(boundary edges are never flipped). This part of the

phase adjusts perfectly to the GPU architecture be-

cause each edge is an independent problem that can

be assigned to a unique thread.

Because of neighbor dependency problems, it is not

always possible to flip the complete set of d = 0 edges

in one iteration because the flip of a given edge e pro-

duces a transformation on the triangles (ti, tj) where

this edge belongs to. This transformation affects

directly the neighborhood information of the other

edges of the triangles that share e, making impossible

to flip those while e is being flipped. However, it is

d=1d=1d=0d=1d=1

T

Triangles

Edges

Vertices

T

1

0

0 3 2

a

ta

3

1 2

0

b

ta

0

d

ta

2

e

1 3

c

ta

1 23
13

0

2

3

1

T

T

1

tb

3

0 1 2 3 4 5

ta

1

0

10

a

d

e

b

c

Figure 2: On this mesh, e is the only one to flip.

T

0

T

1

T

2

T

5

T

4

T

3

a

b

c

Figure 3: The edge subset can either a,c or b,c.

possible to process a subset of edges A that fulfill the

following condition:

∀ e1, e2 ∈ A Te1
∩Te2

= ∅ where Te = {t ∈ T : e ∈ t}
(1)

In order to get a proper subset, we propose a parallel

exclusion mechanism in which each thread managing a

non-Delaunay edge (non-Delaunay edge thread), will

be allowed to flip its edge if it is the first one to make

a state transition from ”free” to ”taken” (binary flag)

on the two triangles that share it. Non-Delaunay edge

threads that could not catch their two triangles will

find the opportunity to flip their edge on future iter-

ations. Atomic operations are used in this exclusion

mechanism in order to avoid any race condition. Fig-

ure 3 shows a mesh, where edges a, b, and c need to be

flipped but they cannot be processed at the same time.

After applying condition 1, the resulting subset can

be either {a, c} or {b, c} but a and b will never be se-

lected together, because they share T2. We design the

per thread edge-flip method as an index exchange be-

tween the two triangles related to the processed edge

e. This transformation can be seen as a rotation of

the involved triangles fully independent from the rest

of the mesh. The transformation is done on the Tri-

angles array using the information ta and tb stored in

the Edges array by following the next steps:

76

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

• Find the opposite vertex indices u1 and u2 of e

in the Triangles array going through ta and tb

(Edges array).

• Locate the position of the first common vertex

index c1 in the Triangles array going through ta.

• Locate the position of the second common vertex

index c2 in the Triangles array going through tb.

• Exchange data, by copying u1 into Triangles[c2],

and u2 into Triangles[c1].

• Update the values of ta, tb and v1, v2 related to

e in the Edges array.

Figure 4 illustrates the case of flipping the edge e from

the simple mesh Se (Figure 2) and how the rotation

transformation is achieved.

T ´'

4

T

e

T

10 31

0

2

3

u1

1

3

u2

0

2

3

1

0 21 3 5

0 32

0 21

T ´'

1 02

3 54

c1 c2

ta

0 2

tb

2

e

ta

1 3

tb

T

0

T

1

0

1

0

1

T

0

T

1

0

2

3

1

T

0

T

1

before

after

rotation / flip

e

e

e

Figure 4: The edge-flip as a rotation of triangles.

3.2 Repair

After the parallel edge-flips, consistency problems

might appear on the edges nearby a flipped edge.

More specifically, some neighbor edges can now store

references to triangles whom they do not belong any-

more (obsolete ta, tb indices). We say that an edge is

inconsistent when its vertex indices obtained through

ta, tb differ from the ones stored in v1 and v2 which

will always be the correct values. Therefore the edges

remain in the same original place but might belong

to different triangles ta, tb. In the following simple

mesh Se, inconsistent information appears at edges b

and d right after flipping e (Figure 5). The detection

and fixing of inconsistent edges can also be achieved

in parallel; Given an edge e, just compare the vertex

indices accessed via ta and tb against v1 and v2. If the

values are different, then search the correct values in

the indices of the triangle that were rotated together

with ta and tb. The information of the triangles that

were rotated together can be stored in the ”Exclusion

& Processing” phase as an array R[] where R[ti] = tj

and vice-versa.

0

Triangles

Vertexes

1

1

0

0 3 2 0

31 2

2

Edges

a

ta

0

b

ta

0

d

ta

2

e

0 2

c

ta

1 23
13

tb

0 1 2 3 4 5

ta

0

2

3

1

T

0

T

1

T T

e

Figure 5: Edges marked with a cross are inconsistent.

3.3 Handling problematic cases

During the first phase, there are two cases that we

should explain in more detail: (1) the handling of co-

circular configurations and (2) if it is possible that a

dead-lock might occur for some special cases.

We solve the case (1) using an ǫ value. For each

edge e, our algorithm uses the simple Delaunay rou-

tine that computes the angles λ and γ opposite to e

from the triangles that share e and checks the follow-

ing condition:

λ + γ ≤ π + ǫ (2)

If the condition is true, the edge e fulfills the Delau-

nay condition. Otherwise is a candidate to be flipped.

Since our algorithm does not flip edges whose triangles

are defined by co-circular or almost co-circular ver-

tices, each chain of edge-adjacent triangles forming a

cycle must have an edge that fulfill the Delaunay con-

dition. This is the smallest edge of the chain. Then,

in a chain like this there will be at least one edge than

can be flipped: one of the edges that belongs to one

of the two triangles that share the smallest edge. We

are working on a formal demonstration for this case.

4 Evaluation and results

The hardware used for testing our algorithm consists

of an AMD Phenom Quad 2.7GHZ CPU, and two

GPUs: Geforce 9800GTX+ and GTX 580. In the

following, we call our method MDT (Massive Delau-

nay Transformations). Tests were done with both 2D

and 3D surface triangulations. Figure 6 shows the

performance of the algorithm for 2D random gen-

erated triangulations of a quad but with different

number of triangles. These random triangulations

were generated using Blender (subdivision and noise).

We also added interactive and real-time time thresh-

olds as good performance reference values. On the

77

27th European Workshop on Computational Geometry, 2011

9800GTX+, the performance is good for meshes of

less than one million triangles but not so good for

larger meshes. On the other hand, the GTX 580 per-

forms considerably better as expected, making possi-

ble real-time Delaunay transformations on very large

triangulations. We have also evaluated MDT with 3D

Figure 6: Performance on different architectures.

surface triangulations such as the dragon (Stanford

Computer Graphics Laboratory), the horse (Cyber-

ware Inc), a moai (Geomview) and the infinite built

with our custom tools. Table 1 compares the MDT

running on the GTX 580 with a locally built sequen-

tial CPU-implementation.

Table 1: Performance comparison of 3D surface

meshes.

Mesh # edges CPU-Method [s] MDT [s]

Moai 30,000 0.867 0.001

Horse 337,920 15.942 0.012

Dragon 1,309,256 0.387 0.046

Infinite 4,758,912 274.1 0.157

5 Discussion and Conclusions

Our preliminary results show that MDT can become

a practical and useful algorithm for modern dynamic

and interactive/real-time applications that need to

handle all time a Delaunay mesh. Our GPU-based

solution scales very well on newer GPU architectures.

The algorithm has also no deep complexity and the

data structures are 100% compatible with modern

Graphics APIs. MDT is best suited for large meshes

composed by at least thousands of edges and most of

the times the transformation is achieved with few it-

erations. We have also tested MDT with one of the

worst case meshes for the sequential algorithm [5]. In

this case, MDT presents a particular behavior maxi-

mizing the number of parallel edge-flips in the middle

iterations instead of in the first ones as with the other

tests. In the near future, we want to analyze precisely

the behavior of our algorithm and to compare its per-

formance with the approaches mentioned above.

6 Acknowledgments

We would like to thank to the anonymous reviewers of

the ACM ToG journal and EuroCG2011 for the very

useful comments on how to improve our work.

References

[1] C. Antonopoulos, X. Ding, A. Chernikov,

F. Flagojevic, D. Nikolopoulos, and N. Chriso-

coides. Multigrain parallel delaunay mesh gen-

eration: challenges and opportunities for multi-

threaded architectures. In ICS ’05 proceedings,

pages 367–376, New York, NY, USA, 2005. ACM.

[2] T. T. Cao. Computing 2d delaunay triangulation

using gpu. Manuscript in preparation, 2010.

http://www.comp.nus.edu.sg/ tants/delaunay2D

Download.html.

[3] M. Cervenanský, Z. Tóth, J. Starinský, A. Ferko,

and M. Srámek. Parallel gpu-based data-

dependent triangulations. Computers & Graph-

ics, 34(2):125–135, 2010.

[4] N. Corporation. NVIDIA CUDA Compute Uni-

fied Device Architecture - Programming Guide,

2007.

[5] H. Edelsbrunner. Geometry and topology for

mesh generation (cambridge monographs on ap-

plied and computational mathematics), 2001.

[6] S. Fortune. A note on delaunay diagonal flips.

Pattern Recognition Letters, 14(9):723 – 726,

1993.

[7] C. L. Lawson. Transforming triangulations. Dis-

crete Mathematics, 3(4):365 – 372, 1972.

[8] G. Rong, T.-S. Tan, T.-T. Cao, and Stephanus.

Computing two-dimensional delaunay triangula-

tion using graphics hardware. In I3D ’08 proceed-

ings, pages 89–97, New York, USA, 2008. ACM.

[9] J. R. Shewchuk. Triangle: Engineering a 2d qual-

ity mesh generator and delaunay triangulator. In

First Workshop on Applied Computational Ge-

ometry, pages 124–133. ACM, 1996.

[10] R. F. Tobler and S. Maierhofer. A Mesh Data

Structure for Rendering and Subdivision. Plzen,

Czech Republic, 2006.

78

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

A Competitive Strategy for Distance-Aware
Online Shape Allocation

Sándor P. Fekete∗ Nils Schweer∗ Jan-Marc Reinhardt∗

Abstract

We consider the following online problem, motivated
by grid computing: Given an N ×N square S, and a
sequence of numbers ni with

∑i
j=0 nj ≤ N2; at each

step i, select a region Ci of previously unassigned area
ni in S. The objective is to minimize the maximum
average Manhattan distance between points from the
same set Ci. We present a competitive online strategy,
based on a thorough analysis of space-filling curves;
for continuous shapes, we prove a factor of 1.8092,
and 1.7849 for discrete shapes.

1 Introduction

Many optimization problems deal with allocating
point sets to a given environment. Frequently, the
problem is to find compact allocations, such that
points from the same set are closely together. One
natural measure is to consider the average distance
between points. A practical example occurs in the
context of grid computing, where one needs to assign
a sequence of jobs i, each requiring ni processors, to
a subset Ci of nodes of a square grid, such that the
average communication delay between nodes of the
same job is minimized; as this delay corresponds to
the number of grid hops [6], this motivates the ge-
ometric task of finding subsets with a small average
Manhattan distance.

Even in an offline setting without any occupied
nodes, finding an optimal allocation for a single set
of size ni is not an easy task; the results are typically
“round” shapes. If a whole sequence of sets have to be
allocated, packing such shapes onto the grid will pro-
duce gaps, causing later sets to become scattered, and
thus lead to extremely bad average distances. Even
packing rectangular shapes is not a remedy, as the
resulting packing problem is NP-hard, and scattered
allocations may still occur.

In this paper, we give a first algorithmic analysis
for the online problem. Using an allocation scheme
based on a space-filling curve, we establish competi-
tive factors of 1.8092 and 1.7849 for minimizing the
maximum average Manhattan distance within an al-
located set.

∗Algorithms Group, Braunschweig Institute of Technology,
Germany, {s.fekete,n.schweer,j-m.reinhardt}@tu-bs.de

Related Work The problem of finding the “opti-
mal shape of a city”, i.e., a shape of unit area that
minimizes the average distance, was first considered
by Karp, McKellar, and Wong [4]; independently,
Bender, Bender, Demaine, and Fekete [1] showed that
this shape can be characterized by a differential equa-
tion for which no closed form is known. For the case
of a finite set of n points that needs to be allocated
to a grid, Demaine et al. [3] showed that there is an
O(n7.5) dynamic-programming algorithm. In an of-
fline setting in the presence of occupied points, Bender
et al. [2] gave some simple 1.75-approximation algo-
rithms, and a polynomial-time approximation scheme.
Space-filling curves for processor allocation have been
used before [6]; in particular, Wattenberg [10] has pro-
posed an allocation scheme similar to ours, for pur-
poses of minimizing the maximum diameter of an al-
located shape. However, neither paper has yielded
algorithmic results for our problem, and no constant
competitive factor was proven.

2 Preliminaries

We examine the problem of selecting shapes from a
square, such that the maximum average L1-distance
of the shapes is minimized. We first formulate the
problem more precisely.

Definition 1 A city is a shape in the plane with fixed
size. For a city C of size n we call

c(C) =
1
2

∫∫∫∫
(x,y),(u,v)∈C

|x−u|+ |y−v|dv dudy dx

the Manhattan distance between all pairs of points in
C and

φ(C) =
2 c(C)
n5/2

the φ-value or average distance of C.

We divide by n2.5 to get a dimensionless measure
for the average distance, see [1].

The problem For a sequence n1, n2, . . . , nk ∈ R+

with
∑k

i=1 ni ≤ 1, cities C1, C2, . . . , Ck are to be cho-
sen from the unit square, such that max1≤i≤k φ(Ci)
is minimized.

Although it has not been proven, the problem is as-
sumed to be NP-hard, see [8]; if we restrict city shapes
to be rectangles, there is an immediate reduction from

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

79

27th European Workshop on Computational Geometry, 2011

deciding whether a set of squares can be packed into
a larger square [5]. (A special case arises from con-
sidering integers, which corresponds to choosing grid
locations.) On the one hand, to make things a lit-
tle easier, we only consider sizes ni which are larger
than a known lower bound ε. On the other hand,
our approximation works online, i.e., we choose the
cities in a specified order, and no changes are made
to previously allocated cities.

There are lower bounds for max1≤i≤kφ(Ci) that
generally cannot be achieved by any algorithm. One
important result is the following theorem.

Theorem 1 Let C be any city. Then φ(C) ≥
0.650245.

A proof can be found in [1]. For n1 = 1 any algo-
rithm must select the whole unit square, thus 2/3, the
φ-value of a square, is a lower bound. We will discuss
approaches for a better bound in the end.

3 An Algorithm

While long and narrow shapes tend to have large φ-
values, shapes that fill large parts of an enclosing rect-
angle with similar width and height usually have bet-
ter average distances. Our approach uses the space-
filling Hilbert curve to yield a provably constant com-
petitive factor.

First, we divide the unit square into a grid consist-
ing of 2r × 2r cells, such that the size of each cell of
the grid is equal to or less than the lower bound of
the ni. The Hilbert curve is based on a recursive con-
struction scheme and becomes space-filling for infinite
repetition of said scheme [7]. For a finite number r
of repetitions, the curve traverses the used grid. For
1 ≤ r ≤ 3, the curve is shown in figure 1. Thus, the
Hilbert curve provides an order for the cells of the
grid.

Figure 1: Hilbert curve with 1 ≤ r ≤ 3

Furthermore, we denote the size of each cell by
c = 4−r, and the cell in row j and column k after r
iterations by E2

r [j][k] = [2−r(j − 1), 2−rj]× [2−r(k −
1), 2−rk]. For the sake of concise presentation of our
analysis within this short abstract, we assume that
every input ni is an integral multiple of c; in general,
we can proceed to make the grid self-refining. The
description of the algorithm is simple: for every in-
put ni we choose the next ni/c cells traversed by the
Hilbert curve as the city Ci, starting in the upper left
corner of the grid.

A formal implementation of the curve can be done
using text-rewriting rules, such as the ones in [9].

4 Analysis

Our analysis of the algorithm focuses on two points:
describing a way to systematically find worst cases of
a specified size and finding a competitive factor.

Definition 2 We denote by Wi a city with i cells (or
i whole E2

l [j][k] for l 6= r) that is a worst-case output
of our strategy for cities of size i.

As all cities generated by our strategy consist of an
integral number of cells, the φ-value of a produced
city can be calculated considering only the distances
and count of the cells occupied in the grid. Thus, the
Wi can be found by simply comparing the distances of
all i-tuples of cells on the grid, which are successively
traversed by the Hilbert curve. This leaves the ques-
tion of how large the grid has to be chosen to contain
a city Wi traversed by the curve.

Lemma 2 For r = dlog2(di/4e + 1)e + 2 the Hilbert
curve traverses a city Wi.

We do not give a proof here. It can be done using
the text-rewriting rules from [9] to construct a formal
grammar and show via induction that after a certain
number of substitutions, every possible sequence of
symbols of a particular length has been generated,
i.e., the sequence corresponding to the city with the
greatest φ-value must have been produced as well. We
used this approach to determine the shapes and φ-
values of the Wi for i ≤ 65. The average distances
for 16 ≤ i ≤ 63 can be seen in the fourth column of
table 1; the worst cases among the examined ones are
W56 and W14, which have the same shape, shown in
figure 2.

Figure 2: W14

The worst cases can also be used to find an upper
bound for the maximum average distance and ulti-
mately give a competitive factor.

Lemma 3 For every 0 ≤ l ≤ r the E2
l [j][k] are tra-

versed by the Hilbert Curve in a specific order, i.e.,
the curve does not only pose an order on the cells of
the grid, but on each set of the E2

l [j][k].

Again, we do not give a formal proof here; the claim
follows directly from the definition of the Hilbert
curve, as its construction scheme is invoked recur-
sively for sub-squares of the unit square.

80

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

i c∗(Wi) ccity(i) φ(Wi) Φ(Wi+2)

16 434 2/3 338 2/3 0.8490 1.1764

17 512 2/3 396 1/3 0.8605 1.1497

18 602 1/3 457 1/3 0.8764 1.1174

19 685 522 1/3 0.8706 1.1058

20 768 591 2/3 0.8587 1.1098

21 870 663 0.8610 1.0903

22 992 2/3 749 1/3 0.8745 1.0713

23 1101 2/3 839 1/3 0.8685 1.0424

24 1216 933 0.8619 1.0150

25 1322 1/3 1032 1/3 0.8463 0.9777

26 1432 1134 0.8309 0.9701

27 1527 2/3 1249 0.8066 0.9785

28 1672 1365 1/3 0.8061 0.9864

29 1853 1/3 1492 0.8184 0.9773

30 2046 1622 2/3 0.8301 0.9710

31 2213 1759 2/3 0.8272 0.9726

32 2393 1/3 1898 2/3 0.8263 0.9791

33 2602 2057 0.8319 0.9735

34 2835 2/3 2216 2/3 0.8414 0.9691

35 3045 2384 0.8403 0.9712

36 3266 2554 2/3 0.8400 0.9772

37 3519 1/3 2727 2/3 0.8453 0.9726

38 3799 1/3 2921 2/3 0.8536 0.9682

39 4049 2/3 3117 2/3 0.8527 0.9570

40 4309 1/3 3322 0.8517 0.9463

41 4545 3530 1/3 0.8445 0.9307

42 4788 3749 0.8376 0.9214

43 5009 3976 0.8262 0.9306

44 5266 2/3 4205 1/3 0.8202 0.9393

45 5641 1/3 4456 2/3 0.8306 0.9393

46 6031 1/3 4712 0.8405 0.9395

47 6379 2/3 4970 1/3 0.8425 0.9439

48 6741 1/3 5234 0.8446 0.9505

49 7147 1/3 5507 1/3 0.8505 0.9512

50 7586 1/3 5788 0.8583 0.9516

51 7993 6076 1/3 0.8606 0.9559

52 8411 1/3 6368 0.8628 0.9620

53 8878 6691 2/3 0.8683 0.9619

54 9379 1/3 7017 1/3 0.8754 0.9617

55 9835 7352 1/3 0.8768 0.9569

56 10304 7690 0.8781 0.9522

57 10733 8033 2/3 0.8751 0.9445

58 11173 1/3 8384 2/3 0.8723 0.9372

59 11583 2/3 8749 1/3 0.8665 0.9268

60 12005 1/3 9117 1/3 0.8610 0.9225

61 12391 9506 1/3 0.8527 0.9232

62 12862 9904 2/3 0.8499 0.9201

63 13415 10305 1/3 0.8517 0.9175

Table 1: Total and average distances for cities Wn

allocated according to our strategy, as well as the op-
timal values ccity(n) according to [3].

Lemma 4 Let C be a city generated by our strategy
with size n ≤ k 4j c for j ∈ {0, 1, . . . , r}, k ∈ N. Fur-
thermore, let W be a city Wk+1 of size (k + 1) 4j c.
Then c(C) ≤ c(W) holds.

Proof. C cannot contain parts of more than k+ 1 of
the sub-squares E2

r−j [p][q]. Otherwise we would have
a contradiction to Lemma 3, as it would contain fewer
than k − 1 complete sub-squares, thus implying that
they are not traversed in order.

Consequently, C can be bounded by a city X con-
sisting of k + 1 sub-squares of size 4j c, and c(C) ≤
c(X) holds. As there is no city consisting of k+1 sub-
squares with a greater φ-value than Wk+1, c(X) ≤
c(W) holds as well. Combining both inequalities
yields c(C) ≤ c(W). �

Theorem 5 Our strategy guarantees
max1≤i≤k φ(Ci) ≤ 1.1764.

Proof. For r ≤ 2 the only possible inputs n are
c ≤ n ≤ 16c. In this case, φ(C) can be bounded
by max1≤i≤16 φ(Wi) = φ(W14) ≈ 0.8781.

In the following consider r > 2 and 4jc < n ≤ 4j+1c
for j ∈ {2, . . . , r − 1}.

For each of the cases l 4j−2c < n ≤ (l + 1) 4j−2c
with l ∈ {16, 17, . . . , 63} we can use Lemma 4 to get
a city W of size (l + 2) 4j−2 c and shape Wl+2, such
that c(C) is less than or equal to c(W).

Thus, we get the following inequality:

φ(C) ≤ 2 c(W)
(l 4j−2c)5/2

Because of the definition of the φ-value, this yields

φ(Wl+2)((l + 2) 4j−2c)5/2

(l 4j−2c)5/2
= φ(Wl+2)

(
1 +

2
l

)5/2

We denote φ(Wl+2)
(
1 + 2

l

)5/2 by Φ(Wl) and list
the values of Φ(Wl) for 16 ≤ l ≤ 63 in the fifth column
of table 1. Therefore, φ(C) ≤ 1.1764 holds. �

Corollary 6 Our strategy achieves a competitive
factor of 1.8092.

Proof. According to Theorem 1, no algorithm can
guarantee a better φ-value than 0.650245. Our strat-
egy yields an upper bound of 1.1764. This results in
a factor of 1.1764/0.650245 ≈ 1.8092. �

5 Discrete Point Sets

Our above analysis relies on continuous weight dis-
tributions, which imply the lower bound on φ-values
stated in Theorem 1. This does include the case of
integer values ni. However, as discussed in [3], con-
sidering discrete weight distributions may allow lower
average distances; e.g., a single point has an average
distance of 0. As a consequence, towns (subsets of
the integer grid) have lower average distances than
cities of the same total weight. However, we still get
a competitive ratio for the case of online towns.

81

27th European Workshop on Computational Geometry, 2011

Definition 3 ([3]) An n-town T is a subset of n
points in the integer grid. Its normalized average
Manhattan distance is

φ(T) =
2c(T)
n5/2

=
∑

s∈T

∑
t∈T ‖s− t‖1
n5/2

Theorem 7 For n-towns, our strategy guarantees a
competitive factor of at most 1.7849 for the φ-value.

Proof. Analogous to Theorem 5, we consider the val-
ues up to n = 64, and show that the worst case is
attained for i = 16, which yields an upper bound of
1.123. (The analog to Table 1 is omitted for lack
of space.) For a lower bound, the general value of
0.650245 for φ-values cannot be applied, as discrete
point sets may have lower average distance. Instead,
we verify that the ratio of achieved φ to optimal φ
for n ≤ 64 is less than 1.7849; for 65 ≤ n ≤ 80, Ta-
ble 1 in [3] allows us to verify that φ ≥ 0.629171.
For n ≥ 81, we make use of equation (5), p. 89 of
[3] to show the same lower bound of 0.629171; details
are slightly involved and omitted for lack of space.
Overall, we get a competitive ratio bounded by upper
divdided by lower bound, i.e., 1.7849. �

6 Lower Bounds

We demonstrate that there are non-trivial lower
bounds for a competitive factor by considering the
online scenario for towns.

Theorem 8 No online strategy can guarantee a com-
petitive factor below 64√

5
5 = 1.144866....

Proof. Consider a 3x3 square, and let n1 = 4. If the
strategy allocates a 2x2 square (for a total distance of
8), then n2 = 5, and the resulting L-shape has a total
distance of 20 and a φ-value of 40/52.5 = 0.715541...
Allocating the first town with an L-shape of total dis-
tance 10 results in φ = 20/32 = 0.625, and the sec-
ond with a total distance of 16, or φ = 32/52.5 =
0.572433...

If instead, the first town is allocated different from
a square, the total distance is at least 10, and φ ≥
20/32; then n2 = n3 = n4 = n5 = n6 = 1, and an
optimal strategy can allocate the first town as a 2x2
square, with φ = 0.5. This bounds the competitive
ratio, as claimed. �

7 Conclusions

The offline problem (where all ni are given in advance)
is interesting in itself. A simple lower bound for a
guaranteed maximum is 2/3, as that is the average
distance of the whole square. For the case n1 = n2 =
1/2 we conjecture an optimum of

√
2/2, which we

could prove for the special case of divisions using a

straight line across the center. We believe the global
worst case is attained for n1 = n2 = n3 = 1/3.

Our description of the competitive factor of 1.8092
uses the assumption that there is a lower bound ε for
the input and a smallest common denominator c ≤ ε
for all input numbers. Discarding this assumption is
possible, but requires some more tedious analysis.

In principle, further improvement of the established
factors could be achieved by replacing the anlysis from
n = 16, . . . , 64 by n = 65, . . . , 256. However, the
highest known optimal φ-values are for n = 80 using
the O(n7.5) algorithm of [3], so the involved compu-
tational effort promises to be large.

Acknowledgments

We thank Bettina Speckmann for helpful comments and

pointing out reference [10].

References

[1] C. M. Bender, M. A. Bender, E. D. Demaine, and
S. P. Fekete. What is the optimal shape of a city? J.
Physics A: Math. Gen., 37(1):147–159, 2004.

[2] M. A. Bender, D. P. Bunde, E. D. Demaine, S. P.
Fekete, V. J. Leung, H. Meijer, and C. A. Phillips.
Communication-Aware Processor Allocation for Su-
percomputers: Finding Point Sets of Small Average
Distance. Algorithmica, 50(2):279–298, 2008.

[3] E. D. Demaine, S. P. Fekete, G. Rote, N. Schweer,
D. Schymura, and M. Zelke. Integer point sets min-
imizing average pairwise L1 distance: What is the
optimal shape of a town? Computational Geometry:
Theory and Applications, 40:82–94, 2011.

[4] R. M. Karp, A. C. McKellar, and C. K. Wong.
Near-Optimal Solutions to a 2-Dimensional Place-
ment Problem. SIAM J. Comp., 4(3):271–286, 1975.

[5] J. Y.-T. Leung, T. W. Tam, C. S. Wing, G. H. Young,
and F. Y. Chin. Packing squares into a square. J.
Parallel Distrib. Comput., 10(3):271–275, 1990.

[6] V. J. Leung, E. M. Arkin, M. A. Bender, D. P.
Bunde, J. Johnston, A. Lal, J. S. B. Mitchell, C. A.
Phillips, and S. S. Seiden. Processor Allocation on
Cplant: Achieving General Processor Locality Us-
ing One-Dimensional Allocation Strategies. In Proc.
IEEE Int. Conf. Cluster Comp., pages 296–304. 2002.

[7] H. Sagan. Space-Filling Curves. Springer, 1994.

[8] N. Schweer. Algorithms for Packing Problems. PhD
thesis, TU Braunschweig, 2010.

[9] R. Siromoney and K. Subramanian. Space-filling
curves and infinite graphs. In Graph-Grammars and
Their Application to Computer Science, volume 153
of LNCS, pages 380–391, Berlin, 1983. Springer.

[10] M. Wattenberg. A note on space-filling visualizations
and space-filling curves. In Proc. IEEE Symp. Infor-
mation Visualization, pages 181–186, 2005.

82

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Computing Popularity Maps with Graphics Hardware

Marta Fort∗ J. Antoni Sellarès∗ Nacho Valladares∗

Abstract

The popularity of a point is a measure of how many of a set
of moving objects have visited the point. The popularity
map is the subdivision of the plane into regions where all
points have the same popularity. In this paper we propose
an algorithm to efficiently compute popularity maps that
takes benefit of the Graphics Processing Unit parallelism
capabilities. We also present experimental results obtained
with the implementation of our algorithm.

1 Introduction

Mobile devices are able to generate trajectories of moving
objects (for example vehicles, people or animals), called
entities, available as points representing a position in space
in a certain instant of time. Trajectory databases, in many
cases rather large in volume, contain valuable and implicit
knowledge that needs to be extracted. Several exact and
approximate algorithms, based on computational geom-
etry techniques, to detect group movement patterns have
been proposed [8, 6, 3, 1, 7].

We are interested in the problem of detecting popular
regions among trajectories, they are places that are vis-
ited by many entities. The localization of popular regions
has multiple applications in real life. In traffic planning,
we are interested in the most congested places. In tourism
management, we want to know the locations of a historical
town which are more visited by tourist. In marketing, we
want to ensure the effectiveness of an advertisement in a
mall determining how many people have seen it. Depend-
ing on the application it is convenient to know the exact
number of times that an entity has visited the place or only
to know if it has visited the place or not. In the traffic plan-
ning example it is necessary to count the number of times
that a car has been in a place. In the tourism management
example it does not matter whether a tourist has been in
the place once or more than once, we are just interested in
how many different tourists have been there. In the mar-
keting example, both criteria could be applied.

Popular regions were first studied in [2]. The authors
present a continuous model where entire trajectories, de-
scribed by polylines whose vertices are the positions of
entities at consecutive time steps, are taken into account.
Given a setT of n trajectories withτ time steps each,r > 0
a real value andk > 0 an integer, a pointp is a (r,k)-

∗Email: {mfort,sellares,ivalladares}@ima.udg.edu. Univ.
de Girona, Spain. Partially supported by the Ministerio de Ciencia y
Innovación under grant TIN2010-20590-C02-02.

popular point if there are at leastk different trajectories of
T that intersect the squareS(p,r). The parameterr mod-
els the proximity between the point and the trajectories and
parameterk measures the point popularity. Note that the
entities do not have to be is the square simultaneously. A
(r,k)-popular region is defined as a maximal connected set
of (r,k)-popular points. It is not difficult to see that popu-
lar regions are polygons. DenotePr,k(T) the collection of
(r,k)-popular regions. In [2] an algorithm, rather difficult
to implement, to computePr,k(T) that takesO(τ2n2) time
and requiresO(τn +V) space, whereV denotes the total
number of vertexes ofPr,k(T), is presented. No results
of the implementation are reported. Finally, the paper re-
marks that another natural way of defining a popular place
is by using a disk instead of a square and that more sophis-
ticated techniques are needed to handle this new problem.

In [5] authors presented algorithms, that take benefit of
the Graphics Processing Unit (GPU) parallelism capabil-
ities, to detect popular regions in the continuous model
when a diskD(p,r) of centerp and radiusr is used to de-
termine proximity instead of a square. The paper uses a
weak criterion to count intersections: a trajectory inter-
secting the diskD(p,r) multiple times counts only once.

In this paper we use astrong criterion for counting the
number of intersections: the number of intersections be-
tween a trajectoryt and the diskD(p,r) is the number of
maximal sub-trajectories oft contained inD(p,r).

t0

t1
t2

p

D(p, r)

Figure 1:The number of intersections is three for the weak cri-
terion and five for the strong criterion.

The GPU inherent parallelism and the ability to work
independently alongside the CPU as a co-processor make
it a compelling platform for computationally demanding
tasks.

In this paper, by working towards practical solutions,
we use Computational Geometry techniques together with
the GPU capabilities to detect and visualize popular re-
gions with good running times. Although our proposed
approach makes reported solutions approximated, it is ac-
ceptable since data of moving entities are also approxi-
mated. We also present and discuss experimental results
obtained with the implementation of our algorithm.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

83

27th European Workshop on Computational Geometry, 2011

1.1 Graphics pipeline and Cg

TheOpenGL graphics pipeline [9] is divided into several
stages. The input is a list of 3D geometric primitives ex-
pressed as vertexes defining points, lines, etc. with at-
tributes associated. The output is a buffer (also called
image) corresponding to a two dimensionalH ×W grid
whose cells are called pixels,H andW are the height and
width screen resolution, respectively. In the first stage of
the pipeline, per-vertex operations take place. Each in-
put vertex is transformed from 3D coordinates to window
coordinates obtaining 2D primitives. The following stage
(rasterization) rasterizes every obtained primitive accord-
ing to the screen resolution, and fragments, with their at-
tributes, are obtained. Different primitives can be pro-
jected in the same 2D space and several fragments can
belong to the same pixel position. The last stage, the
fragment stage, computes the color, alpha and depth value
of each fragment, these values determine the final output.
The color of each pixel is obtained by taking into account
all fragments corresponding to the given pixel. Finally,
the depth and stencil tests, among other tests, take place to
determine whether a fragment is painted or not. They are
executed in order and only when are enabled. Depth test
uses an internal GPU buffer called depth buffer. It is used
to discard fragments based on the comparison between the
already stored value in the(x,y) buffer position and the
incoming one, storing, on its per defect configuration, the
closest fragment.

The operations performed in the graphics pipeline con-
form a sequence of non user controlled consecutive opera-
tions. Shader languages like Cg provide the user the abil-
ity of modifying some pre-established operations, to adapt
the pipeline to the user needs by using ’shaders’, small
programs which modify the stage behavior.

2 Popularity maps

Let T be a set ofn trajectoriesT = {t0, . . . ,tn−1}. Each
trajectory ti is a sequence ofτ points in the plane,ti :
pi

0, . . . , pi
τ−1, wherepi

j denotes the position of entityei at
time j with 0≤ j ≤ τ −1. We assume a continuous model
in which the movement of an entityei from its positionpi

j

to its positionpi
j+1 is described by the straight-line seg-

ment joiningpi
j and pi

j+1, this movement is supposed to
be done in a constant speed. The trajectoryti is described
by the polyline, which may self-intersect, whose vertices
are the trajectory pointsti : pi

0, . . . , pi
τ−1.

For a given parameterr > 0, thepopularity of a point p
is the total number of intersections between the trajectories
of T and the diskD(p,r) of centerp and radiusr. The
popularity map, Mr(T), is the partition of the plane in
maximal connected regions so that all points of a region
have the same popularity. Notice that the set of points of a
given popularity may be composed of several independent
connected regions bounded by straight-line segments and
circular arcs.

For each edgeei
j = pi

j p
i
j+1 of the polyline representing

trajectoryti we consider the offset regionOr(ei
j) obtained

sweeping alongei
j a disk of radiusr such that the center

moves onei
j. Then we definePr(ei

j) asPr(ei
j) = Or(ei

j) if
j = 0 andPr(ei

j) = Or(ei
j) \D(pi

j,r) otherwise. The pop-
ularity mapMr(T) can be obtained from the arrangement
of regionsPr(ei

j), 0≤ j ≤ τ −1, 0≤ i ≤ n−1 (Figure 2.a).
Notice that the intersection between the regionsPr(ei

j) and
Pr(ei

j+1) determined by two consecutive edgesei
j, ei

j+1 of
trajectoryti, defines a region such that a disk centered in
any of their points and radiusr intersectsti in two maximal
subtrajectories, one contained inei

j and the other inei
j+1,

and therefore the number of intersections betweenti and
the disk is two.

To computeMr(T) we will discretize the plane into
H ×W points such that each point corresponds to a pixel
in the graphics pipeline. The idea is to send regionsPr(ei

j)
to the GPU as a set of rectangles and disks. Inside the
pipeline all primitives will be rasterized into fragments ac-
cording to the screen resolutionH ×W . Then, we will
store the number of fragments corresponding to each pixel.
In this way we obtain the popularity of each pixel and con-
sequently a popularity map discretizationMr(T) (Figure
2.b).

a)

H

W b)

Figure 2:a) Popularity map. b) Discretized popularity map.

The diskD(pi
j,r) is painted as a square centered atpi

j
of side 2r. Then a fragment shader is activated such that
fragments whose Euclidean distance topi

j is bigger thanr
are discarded.

2.1 Computing popularity maps

Given a value of parameterr, we could compute the pop-
ularity map under the strong criterion with a similar al-
gorithm to the one used in [5]. There, each trajectory is
painted at a different depth and the stencil buffer is used
to count the number of fragments with different depth that
correspond to each pixel. To handle the strong criterion we
should paint each trajectory edge, instead of the whole tra-
jectory, at a different depth. To avoid overflows, the stencil
buffer has to be read to CPU every 255 time steps which
is too much often. Thus we propose an alternative method
which avoids this read backs to CPU.

The idea is to paint eachPr(ei
j) with a different depth

value and via fragment shader increment, for each frag-
ment, the color value of its pixels. When allPr(ei

j) are
painted we can determine how many fragments correspond

84

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

to each pixel depending on its final color.
Thealgorithm needs to add color to each pixel for each

fragment. Since we can not read from a texture and at
the same time write on it, we use two textures. Texture
A with the previous color of each pixel, and textureB to
store the new accumulated color. At each rendering pass
the accumulated colors ofB are copied to textureA to be
recovered for the next time step as the last color stored.

Since we have 3 channels of color (RGB) with 8 bits per
channel[0. . .255] we add 1 to the first channel for each
fragment until the red channel is overflowed. Then we in-
crement the green channel with 1 and we set the red chan-
nel to 0, adding again to red channel until it is overflowed
again. The same process is applied to the blue channel
when the green channel is overflowed. We can store up to
224 values which is more than enough in most applications.

The algorithm proceeds as follows. We paint each offset
regionOr(ei

j) at a different depth valuez = zi
j from further

(z = 1) to closer (z = 0) (Figure 3). The fragment shader
is activated during all the process not just for adding the
color values for all fragments but also to paint a disk when
needed as explained in Section 2. Since we have a depth
precision of 32 bits we can paint up to 232 time steps at
different depth levels.

t1

t0

z
1
2 = 0

z
1
1

z
1
0

z
0
2

z
0
1

z
0
0 = 1

Figure 3:Offset regions rendered from z=1 to z=0.

Notice that the disk corresponding topi
j, 1≤ j ≤ τ −2,

is painted twice, one for each trajectory edge it defines,
with different depth values. This causes the color value
to be incremented twice where it should count only once.
In addition the overlapped regions between rectangles and
disks must be avoided too. To solve this problem we add
a parameter to the shader to inform of whether the disk
fragments have to increment the color or only modify the
depth value. The shader updates the depth value but does
not increment the color when painting the first disk. When
the rectangle and the second disk are painted, both, color
and depth values are updated. This way the overlapped
fragments between the two disks and the rectangle will be
discarded by the depth test and the disks painted twice are
counted just once.

While the number of time steps is smaller than 232 and
the popularity of a point is smaller than 224 not read backs
to CPU have to be done. This turns to 0 the number of read
back from GPU in most applications.

2.2 Complexity analysis

We will use the following notation. We denote byPx the
time needed to render and colorx fragments,Ax the time
spent to makex accesses to a texture,Cx the one needed to
copyx pixels from texture to texture.

The number of painted disks for each trajectory is
O(2τ), from which,τ make accesses to texture values to
update the color. They represent 8τr2nHW painted pixels
andτ4πr2HW texture accesses. Concerning the rectan-
gles, both, the number of accesses to a texture and pix-
els painted is 2LrHW , whereL is the sum of all the tra-
jectories length. Finally the information of textureB is
copied to textureA a total ofτ times per trajectory, pro-
viding HWτn copied values. Thus, the time complexity is
O(P(8τr2n+2Lr)HW + A(n4πr2τ+2Lr)HW +CnτHW) and no ex-
tra space is needed.

3 Popular regions

Let T be a set ofn trajectories,r > 0 be a real value and
k > 0 an integer. A pointp is a(r,k)-popular point if the
total number of intersections between the diskD(p,r) of
centerp and radiusr and the trajectories ofT is at least
k. We define a(r,k)-popular region as a maximal con-
nected set of(r,k)-popular points. A(r,k)-popular region
is bounded by straight-line segments and circular arcs. It
is not difficult to see that a(r,k)-popular region is a max-
imal connected region conformed by regions of the popu-
larity mapMr(T) whose points have popularity at leastk.
We denotePr,k(T) the collection of(r,k)-popular regions
(Figure 4).

R1
R2

r

R3

R4

R5

R6

R7

R8 R10

R9

r

Figure 4: Example with 3 trajectories. Points marked
with crosses are(r,2)-popular points. We havePr,2(T) =
{R1,R2, . . . ,R10}.

A discretization ofPr,k(T) can be easily obtained from
the discretizedMr(T). We assign to a pixel ofPr,k(T)
value 1 if its corresponding pixel inMr(T) has popularity
at leastk and value 0 otherwise.

3.1 Popular regions visualization

We could visualizePr,k(T) as a binary image painting in
black, pixels whosePr,k(T) value is 0 an in white those
with value 1. Alternatively, in order to obtain a better vi-
sual information, we can visualizePr,k(T) from the dis-
cretizedMr(T): pixels of Mr(T) with value less thank

85

27th European Workshop on Computational Geometry, 2011

are painted white and the rest of pixels are painted accord-
ing to its popularity. Then, instead of having just two col-
ors, we uniformly distribute the popularity range values
among the whole RGB range (red, green and blue) (See
Figure 5.b). In particular, whenk = 1 we obtain the visu-
alization of the popularity mapMr(T).

4 Results

Tests have been computed in a Intel Core 2 CPU 2.13GHz,
2GB RAM and a GPU NVidia GeForce GTX 480. Each
running time reported in Table 1 is the average of 10 exe-
cutions with the same parametrization.

The algorithm has been tested under different data sets.
’Animals Sim.’ is a synthetic data sets generated with Net-
logo [11] where 10.000 animals move on a terrain with no
movement restrictions interacting each other to get closer.
A total of 200,000 time steps are tracked. ’Buses’ is a set
of school buses moving in Athens metropolitan area ex-
tracted from [10] with 145 buses registered during 66,096
time steps. Finally ’State Fair’ is a daily GPS track col-
lected from the human movement in NC State Fair held in
North Carolina [4], 19 persons are tracked with a total of
5,861 time steps. Table 1 shows the running times needed
to computeMr(T) plusPr,k(T) and to visualizePr,k(T)
at resolutions 512×512 and 1024×1024.

Computation (s) Visualization (ms)

T r k 5122 10242 5122 10242

S
ta

te
fa

ir

2 5 0.344 0.440 3.836 12.609
5 5 0.351 0.439 3.293 10.564
10 5 0.346 0.437 2.604 8.764
5 2 0.346 0.437 2.506 8.938
5 10 0.347 0.437 4.053 12.589
5 50 0.346 0.450 6.445 21.304

B
us

es

2 5 3.401 4.469 2.507 9.241
5 5 3.399 4.470 2.315 8.864
10 5 3.400 4.408 2.249 8.716
5 2 3.402 4.465 2.217 8.588
5 10 3.398 4.474 2.457 9.179
5 50 3.401 4.585 3.078 10.661

A
ni

m
al

s
S

im
. 2 5 10.148 12.808 12.824 57.552

5 5 10.164 12.812 12.744 55.121
10 5 10.168 12.805 12.435 50.165
5 2 10.114 12.788 12.126 47.694
5 10 10.166 12.755 12.842 57.822
5 50 10.125 13.138 12.692 58.314

Table 1:Computational (in seconds) and visualization (in mil-
li seconds) times for different data sets of trajectories.

From the table we conclude that the computation and
visualization times are fairly affected byr or k. Note that
the bigger the number of time steps, the bigger the run-
ning times. This is what we expect since the number of
renders and fragment processing is directly proportional
to the number of time steps. The provided inputs, from
5,861 to 200,000 time steps, show a good scalability of
our algorithm. We can not compare our execution times
against others because, from the best of our knowledge,
no other implementations exist.

It is easy to see that the error produced by our algorithm
due to space discretization into pixels is inversely propor-
tional to the discretization size and directly proportional to
the covered area of the input data. For instance if the input
data covers a squared area of 16 Km2 the error produced
is of 3.9 meters per pixel. This is a reasonable error be-
cause GPS signals also produce similar errors. To decrease
the error we can increment the discretization size, this has
GPU hardware limitations. A possible solution is to sub-
divide the area into sub-areas and apply the algorithm for
each one increasing the discretization size.

a) b)

Figure 5: a) Buses dataset. b)Pr,k(T) visualization. Yellow,
grey/blue and red regions means low, median and high popularity
respectively.

References

[1] M. Andersson, J. Gudmundsson, P. Laube, and T. Wolle.
Reporting Leaders and Followers among Trajectories of
Moving Point Objects. GeoInformatica, 12(4):497–528,
2008.

[2] M. Benkert, B. Djordjevic, J. Gudmundsson, and T. Wolle.
Finding popular places.Int. Journal of Computational Ge-
ometry and Applications (IJCGA), 20(1):19–42, 2010.

[3] M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle.
Reporting flock patterns. Computational Geometry,
41(3):111–125, 2008.

[4] C. Dartmouth. CRAWDAD. http://crawdad.cs.

dartmouth.edu/index.php.

[5] M. Fort, J. A. Sellarès, and N. Valladres. Computing pop-
ular places using graphics processors. InProc. SSTDM-10
in cooperation with IEEE ICDM-10, pp 233-240, 2010.

[6] J. Gudmundsson, M. J. van Kreveld, and B. Speckmann.
Efficient Detection of Patterns in 2D Trajectories of Mov-
ing Points.GeoInformatica, 11(2):195–215, 2007.

[7] J. Gudmundsson, and M. J. van Kreveld. Computing
longest duration flocks in trajectory data. In R. A. de By
and S. Nittel, editors,GIS, pages 35–42. ACM, 2006.

[8] P. Laube, M. van Kreveld, and S. Imfield. Finding REMO -
Detecting Relative Motion Patterns in Geospatial Lifelines.
Developments in Spatial Data Handling: 11th Int. Sympos.
on Spatial Data Handling, pp 201–215, 2004.

[9] M. Segal and K. Akeley. The design of the opengl graph-
ics interface. Technical report, Silicon Graphics Computer
Systems, 1994.

[10] Y. Theodoridis. R-Tree portal. http://www.

rtreeportal.org.

[11] U. Wilensky. NetLogo. http://ccl.northwestern.
edu/netlogo.

86

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Wireless Localization with Vertex Guards

Aurosish Mishra∗ Tobias Christ†

Abstract

We consider the wireless localization problem. Given
a simple polygon P , place and orient guards each of
which broadcasts a unique key within a fixed angular
range. At any point in the plane one must be able
to tell whether or not one is located inside P only by
looking at the set of keys received. In other words, the
interior of the polygon must be described by a mono-
tone Boolean formula composed from the guards. We
improve the upper bound for the vertex guard prob-
lem where guards may be placed on vertices of P only
and show that the maximum number of vertex guards
needed to describe any simple polygon on n vertices
is at most 8

9n.

1 Wireless Localization

Art gallery problems are a classic topic in discrete and
computational geometry. A new direction has been
introduced by Eppstein, Goodrich, and Sitchinava [4].
They propose to modify the concept of visibility by
not considering the edges of the polygon/gallery as
blocking. This changes the problem drastically. The
motivation for this model stems from communication
in wireless networks where the signals are not blocked
by walls, either. For illustration, suppose you run a
café (modeled as a simple polygon P) and you want to
provide wireless internet access. But you do not want
the whole neighborhood to use your infrastructure.
Instead, Internet access should be limited to those
people who are located within the café. To achieve
this, you can install a certain number of devices, let
us call them guards, each of which broadcasts a unique
(secret) key in an arbitrary but fixed angular range.
The goal is to place guards and adjust their angles in
such a way that everybody who is inside the café can
prove this fact just by naming the keys received and
nobody who is outside the café can provide such a
proof. Formally this means that P must be described
by a monotone Boolean formula over the keys, that
is, a formula using the operators And and Or only,
negation is not allowed. It is convenient to model a
guard as a subset of the plane, namely the area where
the broadcast from this guard can be received. This

∗Dept. of Computer Science and Engineering, IIT Kharag-
pur, aurosish007@gmail.com

†Institute of Theoretical Computer Science, ETH Zurich
tobias.christ@inf.ethz.ch

a b

cd
P =

∩ (a ∪ b)
d ∩ c

area can be described as an intersection or union of
at most two halfplanes. Using this notation, the poly-
gon P is to be described by a combination of the op-
erations union and intersection over the guards. For
example, the polygon P above can be described by
(a ∪ b) ∩ c ∩ d.

Natural guards. Natural locations for guards are the
vertices and edges of P . A guard which is placed at
a vertex of P is called a vertex guard. A vertex guard
is natural if it covers exactly the interior angle of its
vertex. Natural vertex guards alone do not always
suffice [4]. A guard placed anywhere on the line given
by an edge of P and broadcasting within an angle
of π to the inner side of the edge is called a nat-
ural edge guard. Dobkin, Guibas, Hershberger, and
Snoeyink [3] showed that n natural edge guards are
sufficient for any simple polygon with n edges. Using
both natural vertex guards and natural edge guards,
n− 2 guards are sufficient and can be necessary [1].

Vertex guards. Using a different approach, Eppstein
et al. [4] proved that any simple polygon with n edges
can be guarded using at most n− 2 (general, that is,
not necessarily natural) vertex guards. In this work,
we improve the upper bound to b 8n−6

9 c for n ≥ 4.
This bound is still not known to be tight. Damian,
Flatland, O’Rourke, and Ramaswami [2] describe a
family of simple polygons with n edges which require
at least b2n/3c − 1 vertex guards.

General guards. In the most general setting, we do
not have any restriction on the placement and the
angles of guards. At the moment, the best known
upper bound is b 4n−2

5 c, which is not known to be
tight, the best lower bound being d 3n−4

5 e [1].

The different problems and results are summarized
in the following table. The mark ∗ indicates the result
of this paper.

guards lower bound upper bound
natural n− 2 [1] n− 2 [3]
vertex b2n/3c − 1 [2] b(8n− 6)/9c [∗]
general d(3n− 4)/5e [1] b(4n− 2)/5c [1]

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

87

27th European Workshop on Computational Geometry, 2011

2 Upper Bound for Vertex Guards

We use the notion of a polygonal halfplane H which is
a topological halfplane bounded by a simple bi-infinite
polygonal chain C = (e1, . . . , en), for a positive integer
n. For n = 1, the only edge e1 is a line and the
polygonal halfplane is a halfplane. For n = 2, e1 and
e2 are rays which share a common source but are not
collinear. For n ≥ 3, e1 and en are rays, ei is a line
segment, for 1 < i < n, and ei and ej , for 1 ≤ i < j ≤
n, do not intersect unless j = i+1 in which case they
share an endpoint. For brevity we use the term chain
in place of simple bi-infinite polygonal chain. Let vi,
for 1 ≤ i < n, denote the vertex of C incident to ei

and ei+1, V (C) := {v1, . . . , vn−1}. For 2 ≤ i ≤ n− 1,
let e+

i be the ray obtained from ei by extending the
segment linearly beyond vi. Similarly e−i refers to
the ray obtained from ei by extending the segment
linearly beyond vi−1. For a polygonal halfplane H
define γ(H) to be the minimum integer k such that
there exists a guarding G(H) for H using k vertex
guards. Similarly, for a natural number n, denote
by γ(n) the maximum number γ(H) such that H is
bounded by a chain with n edges. Obviously, γ(1) =
γ(2) = 1. Observe that any guarding for H can be
transformed into a guarding for the complement H
using the same number of guards: Use de Morgan’s
rules and invert all guards (keep their location but
flip the angle to the complement with respect to 2π).
Therefore, we can define γ(C) = γ(H) = γ(H).

Theorem 1 For any n ≥ 2, γ(n) ≤ b 8n−3
9 c.

Proof. The base cases γ(1) = γ(2) = 1, γ(3) = 2,
γ(4) = 3, γ(5) = 4 and γ(6) = 5 follow from the
observation that a chain can always be guarded with
n − 1 natural guards [1]. Now let H be a polygonal
halfplane bounded by an oriented polygonal chain C
with n ≥ 7 edges such that the interior of H lies to the
right of C. Let S := V (conv(V (C))) be the vertices
of the convex hull of V (C), that is, the vertices of C
that are extremal. The basic idea is to split C at a
vertex vi ∈ S into two chains C1 = (e1, . . . , ei−1, e

+
i)

and C2 = (e−i+1, ei+2, . . . , en). If the “new” rays e+
i

and e−i+1 do not intersect the “old” rays e1 and en,
we can express H as the intersection or union of the
two polygonal halfplanes H1 and H2 bounded by C1

and C2 depending on whether vi is convex or reflex.
Assume that the angle between e1 and en is convex
(else, consider H instead of H) and think of C as
going from the left to the right (thus H being below
C). In other words, e1 and en are assumed to go from
left to right, e1 having positive slope and en having
smaller slope than e1. Now look at the convex hull
conv(H) of H. There must be at least one vertex vi

in S which lies on the boundary ∂conv(H). Such a
vertex is for sure a good splitting vertex in the above
sense. If 2 ≤ i ≤ n − 2, we split C at vi as explained

into two chains C1 := (e1, . . . , ei−1, e
+
i) and C2 :=

(e−i+1, ei+2, . . . , en) and get a guarding G(C1)∩G(C2),
where G(Ci) denotes the guarding of Ci we get by
induction, see Figure 1. Therefore γ(C) ≤ γ(i) +
γ(n− i) ≤ b 8i−3

9 c+ b 8(n−i)−3
9 c ≤ b 8n−6

9 c ≤ b 8n−3
9 c.

C1

C2

vi

e+
ie−i+1

conv(H)

H

Figure 1: Splitting at a convex hull vertex.

If there is no vertex on ∂conv(H) with index 2 ≤ i ≤
n− 2, we first consider the case that S ∩ ∂conv(H) =
{v1, vn−1}. If there is a vertex vi ∈ S with 3 ≤ i ≤ n−
3, split C at v1, vi and vn−1: Put a natural edge guard
g1 onto e1, a natural edge guard g2 onto en and define
C1 := (e−2 , . . . , e+

i), C2 := (e−i+1, . . . , e
+
n−1). (We can

place the natural edge guards on the incident vertices,
hence the natural edge guards can be realized as (non-
natural) vertex guards.) Then, a guarding for C can
be obtained as g1∩g2∩ (G(C1)∪G(C2)), see Figure 2.
This implies γ(C) ≤ 2 + γ(i − 1) + γ(n − i − 1) ≤
2 + b 8i−11

9 c+ b 8(n−i)−11
9 c ≤ b 8n−6

9 c.

vi

v1

vn−1

g1

g2
C1

C2

Figure 2: v1 and vn−1 are the only vertices on h(C).

If S = {v1, v2, vn−2, vn−1}, consider S′ :=
V (conv{v2, . . . , vn−2}). Beside v2 and vn−2, there
must be a third vertex vj ∈ S′, without loss of general-
ity 4 ≤ j ≤ n−3 (if j = 3, reflect C). If e−3 does not in-
tersect en, put a natural edge guard g1 onto e1, a ver-
tex guard g2 onto v2 with the right ray covering e2 and
its other ray parallel to en and a natural vertex guard
g3 onto vn−1 and define C1 := (e−3 , . . . , e+

j) and C2 :=
(e−j+1, ej+2, . . . , en−2, r) where r is the ray starting at
vn−2 in the direction of en. See Figure 3. Then we
get a guarding as g1 ∩ (g2 ∪ (G(C1) ∩ G(C2)) ∪ g3)
and conclude γ(C) ≤ 3 + γ(j − 2) + γ(n − j − 1) ≤
3 + b 8(j−2)−3

9 c+ b 8(n−j−1)−3
9 c ≤ b 8n−3

9 c. If e−3 inter-
sects en, put a natural vertex guard g1 onto v1, and an
edge guard g2 onto en and define C ′ := (e−3 , . . . , e+

n−1).
See Figure 3. We obtain a guarding (g1 ∪G(C ′))∩ g2.

If S consists of 3 vertices only and there is no vi ∈ S
with 3 ≤ i ≤ n− 3, assume without loss of generality
that v2 ∈ S (if vn−2 is the only vertex in S beside

88

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

v1

C1

C2

vn−2

vn−1

g1

g3

rg2

g1

g2

e−3

e−3

vj vj

C′

en en

Figure 3: S = {v1, v2, vn−2, vn−1}

v1 and vn−1, reflect C). In this case, define S′ :=
V (conv({v2, . . . , vn−1})). For sure, v2, vn−1 ∈ S′ but
there must be a third vertex vj ∈ S′, see Figure 4.

v2

v1

vn−1vj

C1

C2

Figure 4: v1, v2, and vn−1 are the only vertices in S.

If 4 ≤ j ≤ n − 3, put a edge guards onto e1, e2,
and en, and split the remaining chain at vj . If v3 is
the only new vertex in S′, put a natural vertex guard
g1 onto v1, and a non-natural vertex guard g2 onto
v2 covering e3 with its left ray and with the right
ray parallel to e1, and an edge guard g3 onto en: A
guarding can be obtained as g3 ∩ (g1 ∪ (g2 ∩ G(C ′)))
where C ′ = (e−4 , . . . , e+

n−1). See Figure 5.

v3

e1

vn−1

g1

g2

g3C′

v1

v2 en

Figure 5: S′ = {vn−1, v3, v2}.

If vn−2 is the only new vertex, define C ′ =
(e−3 , . . . , e+

n−2), put a natural vertex guard g3 onto
vn−1. If e−3 does not intersects en, put an edge guard
g1 onto e1 and a vertex guard g2 onto v2 covering
e2 with its right ray and with its left ray parallel
to en. We get a guarding g1 ∩ (g2 ∪ (G(C ′) ∩ g3)).
If e−3 intersects en, put a natural vertex guard g1

onto v1 and an edge guard g2 onto en and observe
H = g2 ∩ (g1 ∪ (G(C ′) ∩ g3)). We conclude γ(C) ≤
3 + γ(n− 4) ≤ 3 + b 8n−32−3

9 c ≤ b 8n−8
9 c, see Figure 6.

Finally, assume there is only one vertex on
∂conv(H), which is either v1 or vn−1. We assume
without loss of generality that it is v1. Beside v1,
which for sure belongs to S, there must be at least
two more vertices in S. Let vi be the vertex of S
which is extremal to the right of en. If 3 ≤ i ≤ n− 2,
split C into three parts cutting it at v1 and vi. Then,
we get a guarding for C as g∩ (G(C1)∪G(C2)), where

e−3

en

e−3

g1
g2

g3

en

g1

g2

g3

vn−2 vn−2

vn−1 vn−1

v2

Figure 6: S′ = {vn−1, vn−2, v2}.

g is a natural edge guard on e1, C1 = (e−2 , . . . , e+
i),

and C2 = (ei+1−, . . . , en), see Figure 7.

v1

vi

g

C1

C2e1

Figure 7: Split at the extremal vertex below en.

If i = 2, define S′ := V (conv({v2, . . . , vn−1})). Let
vj be the vertex of S′ which is extremal in the opposite
direction, that is, to the left of en. If 4 ≤ j ≤ n − 2,
we put natural edge guards g1 and g2 onto e1 and e2

and split the rest at vj into two chains C1 and C2, see
Figure 8. Then H = g1 ∩ (g2 ∪ (G(C1) ∩ G(C2))).

v1

v2

vj

C2
C1

g1 g2

Figure 8: The extremal vertex in S below en is v2.

If j = 3, we put a natural vertex guard onto v1,
a guard onto v2 with its left ray covering e3 and the
right parallel to e1. Then, we get γ(C) ≤ 2 + γ(n −
3) ≤ 2 + b 8n−27

9 c ≤ b 8n−9
9 c. If j = n − 1, that is, if

there is no vertex above en except v1, take any vertex
vs ∈ S′, 3 ≤ s ≤ n − 2. If 4 ≤ s ≤ n − 3, put
an edge guard g1 onto e1 and an edge guard g2 onto
e2 and an edge guard g3 onto en and define C1 =
(e−3 , . . . , e+

s), C2 := (e−s+1, . . . , en−1), then we get a
guarding g1 ∩ (g2 ∪ (g3 ∩ (G(C1) ∪ G(C2)))) (or g1 ∩
(g2∪(g3∩G(C1)∩G(C2))) if vs is convex), see Figure 9.
If s = 3, put 3 guards explicitly depending on whether
v3 is reflex or convex and cover the remaining chain
C ′ = (e−4 , . . . , e+

n−1) recursively, see Figure 10. If s =
n − 2, we are in a situation similar to one of those
shown in Figure 3 or 6 and proceed accordingly.

If i = n − 1, that is, if there is no vertex of S
below en, distinguish two cases: Either there is a con-
vex vertex in S between vn−1 and v1, or there is no
such vertex. If there is a convex vertex vj ∈ S, with

89

27th European Workshop on Computational Geometry, 2011

vs

en vs
en

g1
g2

g1

g2

g3

C1

C2

C1

C2

Figure 9: There is no vertex in S′ above en.
v1

v3

g1

g2

g3

v1

v2

v3
vn−1

g2

g1

g3

Figure 10: S′ = {v2, v3, vn−1}.

2 ≤ j ≤ n − 3, put an edge guard onto en and split
at vj , see Figure 11. If j = 2 or j = n − 1 pro-
ceed as above but now removing v1 or vn−1, respec-
tively, defining S′ := V (conv({v2, . . . , vn−1})) (S′ :=
V (conv({v1, . . . , vn−3})), respectively), see Figure 12.

e1

vn−1

vj

en

C1

C2

Figure 11: There is a convex vertex vj ∈ S.

If S = {v1, v2, vn−1} and v2 is reflex, let S′ =
V (conv{v2, ..., vn−1}) and look for a splitting vertex in
S′. If there is vj ∈ S′, 4 ≤ j ≤ n− 3, put edge guards
onto e1, e2 and en and split the rest at j, see Fig-
ure 13. If S′ = {v2, vn−1, v3} or S′ = {v2, vn−1, v3},
proceed as shown in Figure 14. �

Lemma 2 (Lemma 4 in [1]) A simple polygon P
on n ≥ 4 vertices is the intersection of two polygonal
halfplanes both having at least two edges.

Corollary 3 A simple polygon P on n ≥ 4 edges can
be guarded with at most b(8n− 6)/9c vertex guards.

References

[1] T. Christ, M. Hoffmann, Y. Okamoto, and T. Uno.
Improved bounds for wireless localization. Algorith-
mica, 57:499–516, July 2010.

[2] M. Damian, R. Flatland, J. O’Rourke, and S. Ra-
maswami. A new lower bound on guard placement for
wireless localization. http://arxiv.org/pdf/0709.

3554v1.

v1

vn−1

C2

C1

vn−2vs

v1

vn−1

vn−2

g1

g2

g3

g1 ∩ g3 ∩ (G(C1) ∪ G(C2))

g1

g2

g3

r

vt

C2

C1

r′

g2

(g1 ∪ (G(C1) ∩ G(C2))) ∩ g2

r

v1

v2

vn−1

vs

C1

C2

v1

C′

g1

g2
g3

vn−2
v2

(g1 ∩ (G(C′) ∪ g2)) ∪ g3

v1

v2

vn−1

v3

vsC1

C2

r

v1

v2

g3

v3

vn−2

g4

g1

g2

g1 ∩ (g2 ∪ (G(C′) ∩ g3)) ∪ g4

C′

g1 ∩ (g2 ∪ G(C1) ∩ G(C2)) ∪ g3)

g1

g2

g3

g2

g1

g2

g3

g1 ∩ (g2 ∩ (G(C1) ∪ G(C1)) ∪ g3)

Figure 12: S = {v1, v2, vn−1} or S = {v1, vn−2, vn−1}.
v1

v2
vn−1

e1
en

vj

Figure 13: S = {v1, v2, vn−1}.

C′

g1

g2

g3

vn−1

v1

C1

C2

r

g1 ∪ (g2 ∩ G(C′)) ∪ g3 g1 ∩ (g2 ∪ (g3 ∩ (G(C1) ∪ G(C2))))

g1
g2

g3

Figure 14: The only new vertex is v3 or vn−1.

[3] D. P. Dobkin, L. Guibas, J. Hershberger, and
J. Snoeyink. An efficient algorithm for finding the
CSG representation of a simple polygon. Algorith-
mica, 10:1–23, 1993.

[4] D. Eppstein, M. T. Goodrich, and N. Sitchi-
nava. Guard placement for efficient point-in-polygon
proofs. In Proc. 23rd Annu. Sympos. Comput. Geom.,
pages 27–36, 2007.

90

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Exact medial axis of quadratic NURBS curves

George M. Tzoumas∗

Abstract

We study the problem of the exact computation of the
medial axis of planar shapes the boundary of which is
defined by piecewise conic arcs. The algorithm used
is a tracing algorithm, similar to existing numeric al-
gorithms. We trace the medial axis edge by edge.
Instead of keeping track of points on the medial axis,
we are keeping track of the corresponding footpoints
on the boundary curves, thus dealing with bisector
curves in parametric space. We exploit some alge-
braic and geometric properties of the bisector curves
that allow for efficient trimming and we represent bi-
furcation points via their associated footpoints on the
boundary, as algebraic numbers. The algorithm com-
putes the correct topology of the medial axis identi-
fying bifurcation points of arbitrary degree.

1 Introduction

The medial axis (MA) of an object can be defined as
the locus of the centres of maximal bitangent disks
and was originally introduced by [1]. The medial axis
of a simple closed shape has a tree-like structure that
provides an efficient shape representation. Along with
a radius function, the MA allows for restoration of
the original object, an operation called medial axis
transform (MAT).

Due to its wide range of applications in biology,
path planning and pattern analysis it has been stud-
ied extensively [4, 3, 11]. However most efforts consist
of numerical algorithms to trace the bisector curves.
Another approach is to approximate the boundary of
the shape with simpler curves or line segments. How-
ever the resulting MA may require expensive post-
processing, or be incorrect, as it is very sensitive to
perturbations of the boundary of the shape.

Recently, with the availability of algebraic libraries
and faster CPUs, there has been interest in exact al-
gorithms following the exact computation paradigm.
Successful examples of this approach are the exact and
efficient arrangement of conic arcs and the Voronoi di-
agrams of circles and ellipses [7].

Following this trend, we apply exact computation
techniques to the problem of medial axis computa-
tion. In theory, one can study some algebraic system
and map the problem to the study of an arrangement
of algebraic curves, parts of which are the medial axis

∗INRIA Nancy Grand-Est

edges. However, this can lead to highly inefficient
computations due to the degree and bitsize explosion
of the computed quantities. Therefore, we focus on
the parametric representation of the shape, trying to
understand the deeper relation between simple geo-
metric constructions (like the tangent line and the cir-
cle of curvature) and the parametric bisector curves.

We chose to use a simple O(N2) algorithm that
also works with objects with holes. The algorithm
includes a tracing step which we substitute with an
exact one. Therefore, no tracing is included and all
critical points are guaranteed to be identified. The
idea is to start tracing the medial axis, always com-
puting the next branching or terminal point in one
step. The algorithm used is adapted from [12]. The
branching point is the center of a maximal disk that
is tangent to at least three distinct footpoints, while a
terminal point corresponds to a local curvarture max-
imum ([4]). We work in the parametric space, in a
manner similar to [13], however for efficient trimming
of the bisector curves we exploit some algebraic and
geometric properties.

2 Representation

The input is a simply connected closed shape consist-
ing of a sequence of NURBS curves of degree 2, that
is, conic arcs. The shape may contain holes, that are
also piecewise conic arcs themselves. We follow the
notation of [10]. The reason we focus on degree 2
NURBS curves is that they are powerful enough to
express a wide variety of curves (elliptic, circular, hy-
perbolic, parabolic arcs) while keeping the algebraic
complexity within reasonable bounds at the same time
(comparison of algebraic numbers of degree 184 in the
worst case). Given three control points P0, P1, P2

and a shape factor s (cf. Fig. 1), we represent a conic
arc, parametrized by t, from P0 to P2 through P1 as

C(t) =
(1− t)2P0 + 2t(1− t) s

1−sP1 + t2P2

(1− t)2 + 2t(1− t) s
1−s + t2

, t ∈ [0, 1].

As parameter t traces the arc, we assume that the
interior of the shape lies always on the left. Therefore,
convex boundary arcs have positive or CCW orienta-
tion, while concave boundary curves have negative or
CW orientation. The control points have the prop-
erty that the segments P0P1 and P1P2 are tangent
to P0 and P2 respectively. Note that C(0) = P0 and
C(1) = P2. When s < 1/2 we have an ellipse, when

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

91

27th European Workshop on Computational Geometry, 2011

s = 1/2 we have a parabola, and 1/2 < s < 1 yields a
hyperbola, as shown in Fig. 1.

P0

P1

P2

s < 1/2

s = 1/2

s > 1/2

Figure 1: Definition of a quadratic NURBS arc.

3 Bisector curves

Each point on the medial axis is the center of a disk
tangent to at least two points of the boundary of the
shape. Therefore, the points of the medial axis lie
on bisector curves of planar rational curves, or on bi-
sector curves of a point and a curve. They may also
lie on the self-bisector of a single curve. The bisector
curve of planar rational curves is an algebraic curve
and can be defined implicitly in the parametric space
as the common intersection of the normal lines at the
footpoints and the segment bisector of the footpoints
themselves [5]. It is of lower degree than the implicit
equation in the cartesian space. We can verify that for
conics, the bisector equation in the parametric space
is of total degree 12 in the worst case, 6 in each pa-
rameter. See [6] for the case of ellipses and [9, 5] for a
study of point-curve or curve-curve bisectors. We rep-
resent a point on the medial axis by the corresponding
footpoints on the boundary curves, therefore we can
represent parts of the medial axis by properly trim-
ming the bisector curves. In [13] the bisector curves
are split in monotone pieces by using a subdivision
technique. In the section that follows we improve
this technique by proving and exploiting some alge-
braic and geometric properties of the bisector curves
themselves. This is a generalization of the properties
observed and exploited in [6].

4 Maximal bitangent disk

The boundary of the shape consists of two types of
arcs. Convex and concave ones. We consider the gen-
eral case where the tangency points of a maximal bi-
tangent disk are not a concave joint. Let a1 and a2
be two arcs and P1 and P2 the corresponding foot-
points of a maximal bitangent disk B (Fig. 2). Given
P1, since the bisector curve is of degree 6 in each pa-
rameter, there may be up to 6 candidate points for
P2. We can select the proper solution by applying
the following lemmas.

Lemma 1 If a1 is concave, then the tangent line T

of a1 at P1 separates P2 and a1 (Fig. 2 cases (i) and
(ii)). If a1 is convex, then the circle of curvature of a1
at P1 contains P2 (Fig. 2 cases (iii) and (iv)).

Proof. If a1 is concave, then a1 and the maximal disk
B have opposite curvatures. Therefore all points of a1
(except P1) and B are separated by T . (In this case,
T can be seen as a circle with an infinite radius.) If
a1 is convex, then the circle of curvature of a1 at P1

is the circle of maximum radius that lies locally inside
a1. Therefore its radius bounds from above the radius
of B. �

Applying the above lemma for P2 yields the following.

Lemma 2 If a2 is concave (Fig. 2 cases (i) and (iii)),
we consider the tangent lines of a2 along the arc. At
some point Q, the tangent line may pass through P1

and this will be a boundary condition, that is before
Q, P1 will be on the correct side (left) of the tangent
line, while after Q, P1 will be on the right of the
tangent line, thus points after Q on a2 are rejected.
If a2 is convex (Fig. 2 cases (ii) and (iv)), we consider
the cirles of curvature of a2 along the arc. At some
point Q, the circle of curvature may pass through P1

and this will be a boundary condition, that is before
Q, P1 will be inside the circle of curvature, while after
Q, P1 will be outside the circle of curvature, therefore
points after Q on a2 are rejected.

Algebraically, the tangent line of a1 evaluated at a
point of a2 is a bivariate polynomial of total degree
4, 2 in each parameter. The circle of curvature of a1,
evaluated at a point of a2 is a bivariate polynomial of
total degree 10, 6 in t1 and 4 in t2. Fig. 3 (i) shows
an instance of Fig. 2, case (iii), where a1 is a convex
arc and a2 is a concave one. The graph of Fig. 3
(ii) shows a plot of the parametric bisector (solid line
graph). The dashed line graph is a plot of the circle of
curvature of a1 evaluated at a point of a2. Note that
the bisector critical points are separated by the graph
of the circle of curvature, providing automatically a
subdivision in monotone pieces. This is because at
those critical points, the circle of curvature is also a
maximal bitangent disk. Similar properties hold for
all cases of Fig. 2. Location of the bisector extrema
via the circle of curvature is more efficient, because
purely algebraic techniques study the bisector curve
itself via a discriminant, which has some spurious fac-
tors [2]. The reason is that the bisector is not an
arbitrary curve but it is computed as some resultant
of an algebraic system [5, 6, 7].

5 Critical points

Three-prong points (Fig. 4). A three-prong point on
the medial axis is a point where the associated maxi-
mal disk is tangent to three points of the boundary of

92

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

P1

P2

a1

a2

Q

a1

a2

P1

P2 Q

(i) (ii)

a2

a1

P2

P1

Q P1

P2

a2

a1
Q

(iii) (iv)

Figure 2: Isolating the proper footpoint.

(i) (ii)

Figure 3: (i) A convex and a concave arc with the
circles of curvature corresponding to parametric bi-
sector extrema. (ii) Parametric bisector and circle of
curvature evaluated.

the shape. The points of tangency can be described by
an algebraic system. The system can be formulated
and solved in a way similar to [7].

Terminal points. They are associated with the cir-
cle of curvature at points where the curvature attains
a local maximum. These can be considered as degen-
erate cases of (iii), (iv) and (v) in Fig. 4.

Arc joints. These points are in fact artifacts, due
to the fact that a single curve is considered as two
or more subcurves. Thus, combinatorially, one has to
take into account the MA points corresponding to the
arc joints.

Let a1, a2, a3 be three conic arcs on the boundary
of the shape, with parameters t1, t2, t3 respectively.
We express a tritangent circle to a1, a2, a3 by an alge-
braic system. Footpoint parameter value t1 can be ex-
pressed as a resultant polynomial the degree of which
is shown in table 1. The most difficult case is for three
conic arcs, where the degree of the polynomial is 184,
as in the case for the Voronoi diagram of ellipses [6].
Table 1 also summarizes the simpler cases, when the
second footpoint lies on the same arc, or when one
footpoint corresponds to an arc endpoint and there-

fore it is a fixed rational point. The equations used to
describe each algebraic system are i) the normal lines
Ni at the footpoint of arc ai, ii) the segment bisector
Mij which is perpendicular to the segment joining the
footpoints of ai (or endpoint pi) and aj (or pj), iii) the
bisector curve Bij of arcs ai and aj or the self-bisector
curve Bii of arc ai.

Computing the footpoint as an algebraic number
allows for detection of n-prong points, that is bifurca-
tion points of degree ≥ 3, simply by comparing such
algebraic numbers. For example, if there exist a max-
imal disk tangent to a1, a2, a3, a4 then the footpoints
of the tritangent disks of a1, a2, a3 and a1, a2, a4 on
arc a1 are identical.

Finally, the solution of the algebraic systems of ta-
ble 1 can be accelerated by incorporating the subdivi-
sion technique of [8], because after applying lemmas
1 and 2, the bisectors are split in monotone parts.

t2 t3 deg. equations

(i) a2 a3 184 N1 N2 N3 M12 M13

(ii) p2 a3 36 N1 N3 M12 M23

(iii) a1 a2 32 N1 N2 M12 B11

(iv) a2 a2 16 N1 N2 M12 M22 B22

(v) a1 p2 8 B12 B22

(vi) p2 p3 6 N1 M12 M13

Table 1: Degree of footpoints for 3-prong MA points
(Fig. 4.)

6 Computing the medial axis

The MA is constructed in a way similar to [12]. In-
stead of tracing the MA via the boundary of the shape
with a predefined precision, we check explicitly each
critical point, expressed with an algebraic system, as
discussed in the previous section. Thus, we trace the
MA in a constant number of steps, depending only on
the number of input arcs (and not on some precision
threshold).

We conclude with an example applying the
above techniques. Consider the 9 control points
P0 . . .P7,P8 ≡ P0 with coordinates (1, 5), (−5, 3),
(2,−1), (0,−1), (1,−6), (3, 0), (10, 0), (3, 3), (1, 5)
defining 4 arcs with shape factors 2/3, 1/4, 4/5,
3/5 respectively, where arc ai+1 has control points
(P2i,P2i+1,P2i+2), i = 0 . . . 3, as shown in Fig. 5.
We may start from a convex vertex (i.e., P8) and
trace the boundary of the shape, checking for critical
points of the medial axis. This way the medial axis
is traced edge by edge. Note that there exist two tri-
tangent disks of a1,a3,a4. However, the dashed one
is rejected, as its associated footpoint on a4 lies after
the footpoint of the other tritangent disk, as we move
from P8 to P0.

93

27th European Workshop on Computational Geometry, 2011

a1

a2 a3

a1

p2 a3

(i) (ii)
a1

a2
a2

a1

(iii) (iv)
a1

p2

a1

p2 p3

(v) (vi)

Figure 4: Various types of three-prong points

P0

P2

P4

P6

a1

a2

a3

a4
P1

P3

P5

P7

Figure 5: Medial axis of a shape and the maximal
disks at its critical points.

References

[1] Harry Blum. A Transformation for Extracting
New Descriptors of Shape. In Weiant Wathen-
Dunn, editor, Models for the Perception of Speech
and Visual Form, pages 362–380. MIT Press,
Cambridge, 1967.

[2] L. Busé and B. Mourrain. Explicit factors of some
iterated resultants and discriminants. Mathemat-

ics of Computations, 78:345–386, 2009.

[3] Hyeong In Choi, Sung Woo Choi, and Hwan Pyo
Moon. Mathematical theory of medial axis trans-
form. Pacific Journal of Mathematics, 181(1):57–
88, 1997.

[4] J. J. Chou. Voronoi diagrams for planar shapes.
IEEE Comput. Graph. Appl., 15(2):52–59, 1995.

[5] G. Elber and Myung-Soo Kim. Bisector curves
of planar rational curves. Comp.-Aid. Des.,
30:1089–1096, 1998.

[6] I. Z. Emiris, E. P. Tsigaridas, and G. M.
Tzoumas. Predicates for the exact Voronoi di-
agram of ellipses under the euclidean metric. In-
tern. J. Comp. Geom. & Appl., 18(6):567–597,
2008.

[7] I.Z. Emiris, E.P. Tsigaridas, and G.M. Tzoumas.
Exact Delaunay graph of smooth convex pseudo-
circles: general predicates, and implementation
for ellipses. In SPM ’09: 2009 SIAM/ACM Joint
Conf. on Geom. & Phys. Model., pages 211–222,
San Francisco, CA, USA, 2009.

[8] I.Z. Emiris and G.M. Tzoumas. Exact and ef-
ficient evaluation of the InCircle predicate for
parametric ellipses and smooth convex objects.
Comp.-Aid. Des., 40(6):691–700, 2008.

[9] R.T. Farouki and R. Ramamurthy. Degener-
ate point/curve and curve/curve bisectors arising
in medial axis computations for planar domains
with curved boundaries. Computer Aided Geo-
metric Design, 15:615–635, 1998.

[10] Les Piegl and Wayne Tiller. The NURBS book
(2nd ed.). Springer-Verlag New York, Inc., New
York, NY, USA, 1997.

[11] R. Ramamurthy and R. T. Farouki. Voronoi di-
agram and medial axis algorithm for planar do-
mains with curved boundaries - II: Detailed al-
gorithm description. J. Comput. Appl. Math.,
102(2):253–277, 1999.

[12] M. Ramanathan and B. Gurumoorthy. Con-
structing medial axis transform of planar do-
mains with curved boundaries. Comp.-Aid. Des.,
35(7):619–632, 2003.

[13] J.-K. Seong, E. Cohen, and G. Elber. Voronoi di-
agram computations for planar NURBS curves.
In Proc. 2008 ACM Symp. Solid and Phys. Mod-
eling, pages 67–77, New York, NY, USA, 2008.
ACM.

94

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Online Hitting Sets In A Geometric Setting Via Vertex Ranking

Guy Even∗ Shakhar Smorodinsky†

Abstract

We consider the problem of hitting sets online. The

hypergraph (i.e., range-space consisting of points and

ranges) is known in advance. However, the ranges to

be stabbed are input one-by-one in an online fash-

ion. The online algorithm must stab each range upon

arrival. An online algorithm may add points to the

hitting set but may not remove already chosen points.

The goal is to use the smallest number of points. The

best known competitive ratio for online hitting sets

by Alon et al. [1] is O(log n · logm) for general hyper-

graphs, where n and m denote the number of points

and the number of ranges, respectively. We consider

three special classes of hypergraphs.

The first setting consists of subsets of nodes of a

given graph that induce connected subgraphs. We

show how vertex ranking can be employed to design

a simple online algorithm, the competitive ratio of

which equals the number of colors used by the ver-

tex ranking. When the underlying graph is a planar

graph (e.g., a Delaunay triangulation) with n vertices,

we obtain an optimal O(
√

n)-competitive ratio. We

remark that the analysis of the competitive ratio of

the algorithm of [1] only proves an O(n)-competitive

ratio for this case.

In the second setting, we consider subsets of a given

set of n points in the Euclidean plane that are induced

by half-planes. We apply the first setting to obtain an

O(log n)-competitive ratio. We also prove an Ω(log n)

lower bound for the competitive ratio in this setting.

In the third setting, we consider subsets of a given

set of n points in the plane induced by unit discs.

Since the number of subsets in this setting is O(n2),

the competitive ratio obtained by Alon et al. is

O(log2
n). We introduce an algorithm with O(log n)-

competitive ratio. We also show that any online al-

gorithm for this problem has a competitive ratio of

Ω(log n), and hence our algorithm is optimal.

1 Introduction

In the minimum hitting set problem, we are given

a hypergraph (X, R), where X is the ground set of

points and R is a set of hyperedges. The goal is

∗School of Electrical Engineering, Tel-Aviv Univ., Tel-Aviv

69978, Israel. guy@eng.tau.ac.il
†Mathematics Department, Ben-Gurion Univ., Be’er Sheva

84105, Israel. shakhar@math.bgu.ac.il

to find a finite set S ⊆ X such that every hyper-

edge is stabbed by S, namely, every hyperedge has a

nonempty intersection with S.

The minimum hitting set problem is a classical NP-

hard problem [15], and remains hard even for geomet-

rically induced hypergraphs (see [12] for several ref-

erences). A sharp logarithmic threshold for hardness

of approximation was proved by Feige [11]. On the

other hand, the greedy algorithm achieves a logarith-

mic approximation ratio [14, 7]. Better approxima-

tion ratios have been obtained for several geometri-

cally induced hypergraphs using specific properties of

the induced hypergraphs [12, 17, 2]. Other improved

approximation ratios are obtained using the theory

of VC-dimension and ε-nets [4, 10, 8]. Much less is

known about online versions of the hitting set prob-

lem.

In this paper, we consider an online setting in which

the set of points X is given in the beginning, and the

ranges are introduced one by one. Upon arrival of

a new range, the online algorithm may add points

(from X) to the hitting set so that the hitting set also

stabs the new range. However, the online algorithm

may not remove points from the hitting set. We use

the competitive ratio, a classical measure for the per-

formance of online algorithms [19, 3], to analyze the

performance of online algorithms.

Alon et al. [1] considered the online set-cover prob-

lem for arbitrary hypergraphs. In their setting, the

ranges are known in advance, and the points are intro-

duced one by one. Upon arrival of an uncovered point,

the online algorithm must choose a range that covers

the point. Hence, by replacing the roles of ranges and

points, their setting is equivalent to our setting. The

online set cover algorithm presented by Alon et al. [1]

achieves a competitive ratio of O(log n log m) where n

and m are the number of points and the number of hy-

peredges respectively. Note that if m ≥ 2n/ log n, the

analysis of the online algorithm only guarantees that

the competitive ratio is O(n); a trivial bound if one

range is chosen for each point. On the other hand, in

many geometric settings the underlying hypergraph

has a bounded VC-dimension which implies that the

number of hyperedges is polynomial in the number of

points (see, e.g., [18]). If m is polynomial in n, their

algorithm achieves a competitive ratio of O(log2
n).

Since there is no matching lower bound of Ω(log2
n)

for the competitive ratio, it might be the case that

there is an algorithm with an O(log n)-competitive

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

95

27th European Workshop on Computational Geometry, 2011

ratio for such hypergraphs.

We present online hitting set algorithms for spe-

cial classes of hypergraphs, some with bounded VC-

dimension and some with linear VC-dimension. These

algorithms are based on a novel relation between ver-

tex ranking [16] and hitting sets.

The first class of hypergraphs that we consider, is

induced by connected components of a given graph.

The input of the algorithm is a graph G = (V, E), and

the adversary chooses subsets V
′ ⊆ V such that the

induced subgraph G[V ′] is connected. An application

for such a setting is the placement of servers in vir-

tual private networks (VPNs). Each VPN is a subset

of vertices that induce a connected subgraph, and re-

quests for VPNs arrive online. The algorithm selects

a location for each VPN, and the goal is to select as

few servers as possible.

For the case of hypergraphs induced by connected

components of graph, we show that one can use vertex

ranking to design an efficient online algorithm where

the competitive ratio equals the number of colors used

by a vertex ranking. In particular, for forests on n

vertices, our algorithm achieves an optimal O(log n)-

competitive ratio, and for planar graphs our algorithm

achieves O(
√

n)-competitive ratio. This class is of

particular interest since the VC-dimension of such a

hypergraph is not bounded. For example, if G is a star

(i.e., a vertex v with n− 1 neighbors), the number of

subsets of vertices that induce a connected graph is

2n−1. However, the star has a vertex ranking that

uses just two colors, hence, the competitive ratio of

our algorithm in this case is 2. This is easily seen to

be the best competitive ratio that can be achieved. If

G is a planar graph, then G admits a vertex ranking

that uses O(
√

n) colors, and the competitive ratio of

our algorithm is O(
√

n). This is an improvement over

the analysis of the algorithm of Alon et al. [1] which

only proves a competitive ratio of O(n). Thus, our

algorithm is useful even in hypergraphs whose VC-

dimension is unbounded.

Two more classes of hypergraphs are obtained ge-

ometrically as follows. In both settings we are given

a set X of n points in the plane. In one hypergraph,

the hyperedges are intersections of X with half planes.

In the other hypergraph, the hyperedges are intersec-

tions of X with unit discs. Our main result is an on-

line algorithm for the hitting set problem for points

in the plane and unit discs (or half-planes) with an

optimal competitive ratio of O(log n). The compet-

itive ratio of this algorithm improves the O(log
2
n)-

competitive ratio of Alon et al. by a logarithmic fac-

tor. An application for points and unit discs is the

selection of access points or base stations in a wire-

less network. The points model base stations and the

disc centers model clients. The reception range of

each client is a disc, and the algorithm has to select a

base station that serves a new uncovered client. The

goal is to select as few base stations as possible.

2 Preliminaries

Let (X, R) denote a hypergraph, where R is a set

of nonempty subsets of the ground set X . Members

in X are referred to as points, and members in R are

referred to as ranges (or hyperedges). A subset S ⊆ X

stabs a range r if S ∩ r 6= ∅. A hitting set is a subset

S ⊆ X that stabs every range in R. In the minimum

hitting set problem, the goal is to find a hitting set

with the smallest cardinality.

In this paper, we consider the following on-

line setting. The adversary introduces a sequence

σ , {ri}
s
i=1

of ranges. Let σi denote the prefix

{r1, . . . , ri}. The online algorithm computes a chain

of hitting sets C1 ⊆ C2 ⊆ · · · such that Ci is a hitting

set with respect to the ranges in σi.

The competitive ratio of the algorithm is defined as

follows. Let opt(σ) ⊆ X denote a minimum cardinal-

ity hitting set for the ranges in σ. Let alg(σ) ⊆ X

denote the hitting set computed by an online algo-

rithm alg when the input sequence is σ. Note that

the sequence of minimum hitting sets {opt(σi)}i is

not necessarily a chain of inclusions. The competitive

ratio of an online hitting set algorithm alg is defined

as the supremum, over all sequences σ of ranges, of

the ratio |alg(σ)|/|opt(σ)|.

3 Summary of Our Results

Connected Subgraphs. We consider the following

setting of a hypergraph induced by connected sub-

graphs of a given graph. Formally, let G = (V, E) be

a graph. Let H = (V, R) denote the hypergraph over

the same set of vertices V . A subset r ⊆ V is a hy-

peredge in R if and only if the subgraph G[r] induced

by r is connected.

We need the notion of a vertex ranking of a

graph[16]. A vertex ranking is a function c : V → N

that satisfies the following property: For any pair of

vertices u, v ∈ V , if c(u) = c(v), then, for any simple

path P in G connecting u and v, there is a vertex w in

P such that c(w) > c(u). Notice that, in particular, a

vertex ranking of a graph G is also a proper coloring of

G since adjacent vertices must get distinct colors. For

a subset X
′ ⊂ X , let cmax(X

′) , max{c(v) | v ∈ X
′}.

It is easy to see that if c is a vertex ranking, then

|{v ∈ r | c(v) = cmax(r)}| = 1, for every r ∈ R. Thus,

let vmax(r) denote the (unique) vertex v in r such that

c(v) = cmax(r).

Our first result is an online hitting set algorithm for

connected subgraphs.

Theorem 1 Let c : V → N denote a vertex ranking
of a graph G = (V, E). Then there exists an online

96

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

hitting set algorithm for the connected subgraphs of
G with a competitive ratio of cmax(V).

By [16], planar graphs admit vertex rankings with

cmax(V) = O(
√

|V |). Therefore, Theorem 1 implies

that the competitive ratio of our algorithm for con-

nected subgraphs of planar graphs is O(
√

n). We also

prove that this competitive is optimal.

Theorem 2 The competitive ratio of every online
hitting set algorithm for connected subgraphs of pla-
nar graphs is Ω(

√
n).

Points and Half-Planes. We prove the following re-

sults for hypergraphs in which the ground set X is a

finite set of n points in R
2 and the ranges are all sub-

sets of X that can be cut off by a half-plane. Namely,

each range r is induced by a line Lr such that r is

the set of points of X in the half-plane below (respec-

tively, above) the line Lr.

Theorem 3 The competitive ratio of every online
hitting set algorithm for points and half-planes is
Ω(log n).

Theorem 4 There exists an online hitting set algo-
rithm for points and half-planes that achieves a com-
petitive ratio of O(log n).

Points and Congruent Discs. We prove the follow-

ing results for hypergraphs in which the ground set

X is a finite subset of n points in R
2 and the ranges

are intersections of X with unit discs. Namely, a unit

disc d induces a range r = r(d) defined by r = d ∩X .

Theorem 5 The competitive ratio of every online
hitting set algorithm for points and unit discs is
Ω(log n).

Theorem 6 There exists an online hitting set algo-
rithm for points and unit discs that achieves a com-
petitive ratio of O(log n).

4 Vertices and Connected Subgraphs

4.1 Algorithm Description

A listing of Algorithm hs appears as Algorithm 1.

The algorithm is input a graph G = (V, E) and a

vertex ranking c : V → N. The sequence σ = {ri}i of

subsets of vertices that induce connected subgraphs is

input online.

Algorithm 1 hs(G, c) - an online hitting set for con-

nected subgraphs, given a vertex ranking c.

Require: G = (V, E) is a graph and c : V → N is a

vertex ranking.

1: C0 ← ∅
2: for i = 1 to ∞ do {arrival of a range ri}
3: if ri is not stabbed by Ci−1 then

4: Ci ← Ci−1∪{vmax(ri)} {add the vertex with

the max color in ri}
5: else

6: Ci ← Ci−1

7: end if

8: end for

4.2 Analysis of The Competitive Ratio

Definition 1 For a color a, let σ(a) denote the subse-
quence of σ that consists of ranges that satisfy: (i) ri

is not stabbed by Ci−1, and (ii) cmax(ri) = a.

The following lemma implies a lower bound on the

(offline) minimum hitting set of the ranges in σ(a).

Lemma 7 If ri, rj ∈ σ(a), then the subgraph G[ri ∪
rj] induced by ri ∪ rj is not connected. Hence, the
ranges in σ(a) are pairwise disjoint.

Proof. Clearly, cmax(ri ∪ rj) =

max{cmax(ri), cmax(rj)} = a. Assume that ri ∪ rj

induces a connected subgraph. Since c is a ver-

tex ranking, we conclude that ri ∪ rj contains

exactly one vertex colored a. This implies that

vmax(ri) = vmax(rj). If j > i, then the range rj

is stabbed by Cj−1 since it is stabbed by Ci, a

contradiction. �

Proof. [Proof of Theorem 1] Algorithm hs satisfies

|hs(σ)| =
∑

a∈N
|σ(a)|. But

∑

a∈N
|σ(a)| ≤ cmax(V) ·

maxa∈N |σ(a)|. By Lemma 7, each range in σ(a) must

be stabbed by a distinct vertex, thus |opt(σ)| ≥
maxa∈N |σ(a)|, and the theorem follows. �

Corollary 8 Let G = (V, E) be a planar graph and
let H be the hypergraph consisting of V together
with all subsets of vertices inducing connected sub-
graphs. Then there is an online hitting set for H with
competitive ratio of O(

√
n).

Proof. The proof uses the fact that there exists a

vertex ranking for G with a total of O(
√

n) colors [16].

Combining such a vertex ranking with Algorithm hs

and using Theorem 1 completes the proof. �

Remark 1 The above corollary applies to arbitrary
graphs with small balanced separators. Let G =

(V, E) be a graph such that every subgraph with m

vertices has a balanced separator with O(mα) ver-
tices, for some fixed 0 < α ≤ 1. Then there is an

97

27th European Workshop on Computational Geometry, 2011

online hitting set algorithm for the connected sub-
graphs with competitive ratio of O(nα). The proof
uses all of the above mentioned ingredients, replacing√

n with n
α.

For the special case of trees, since there is always
a balanced separator with 1 vertex, it is easily seen
that trees admit vertex ranking with O(log n) colors
and hence, Algorithm hs achieves competitive ratio of
O(log n). This bound is optimal as it holds as a lower
bound even when the tree is a simple path.

5 Open Problems

The main challenge left in this paper is to extend the

result for unit discs to arbitrary discs. We conjecture

that there exists an online hitting set algorithm for

hitting arbitrary discs with a subset of a given set of

n points in the plane, which has competitive ratio of

O(log n). A more difficult problem is to design an

online hitting set algorithm with a logarithmic com-

petitive ratio for any hypergraph with bounded VC-

dimension. To the best of our knowledge, there is no

better lower bound except for Ω(log n) for this prob-

lem.

References

[1] N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and
J. Naor. The Online Set Cover Problem. SIAM Jour-
nal on Computing, 39:361, 2009.

[2] B. Ben-Moshe, M. Katz, and J. Mitchell. A
constant-factor approximation algorithm for optimal
terrain guarding. In Proceedings of the sixteenth an-
nual ACM-SIAM symposium on Discrete algorithms,
pages 515–524. Society for Industrial and Applied
Mathematics, 2005.

[3] A. Borodin and R. El-Yaniv. Online computation and
competitive analysis, volume 2. Cambridge University
Press Cambridge, 1998.

[4] H. Brönnimann and M. Goodrich. Almost optimal set
covers in finite VC-dimension. Discrete and Compu-
tational Geometry, 14(1):463–479, 1995.

[5] P. Cheilaris and S. Smorodinsky. Choosability in geo-
metric hypergraphs. Arxiv preprint arXiv:1005.5520,
2010.

[6] K. Chen, H. Kaplan, and M. Sharir. Online conflict-
free coloring for halfplanes, congruent disks, and axis-
parallel rectangles. ACM Transactions on Algorithms
(TALG), 5(2):1–24, 2009.

[7] V. Chvatal. A greedy heuristic for the set-
covering problem. Mathematics of operations re-
search, 4(3):233–235, 1979.

[8] K. Clarkson and K. Varadarajan. Improved approx-
imation algorithms for geometric set cover. Discrete
and Computational Geometry, 37(1):43–58, 2007.

[9] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky.
Conflict-Free Colorings of Simple Geometric Regions

with Applications to Frequency Assignment in Cel-
lular Networks. SIAM Journal on Computing, 33:94,
2003.

[10] G. Even, D. Rawitz, and S. Shahar. Hitting sets when
the VC-dimension is small. Information Processing
Letters, 95(2):358–362, 2005.

[11] U. Feige. A threshold of ln n for approximating set
cover. Journal of the ACM (JACM), 45(4):634–652,
1998.

[12] D. Hochbaum and W. Maass. Approximation
schemes for covering and packing problems in image
processing and VLSI. Journal of the ACM (JACM),
32(1):136, 1985.

[13] A. Iyer, H. Ratliff, and G. Vijayan. Optimal node
ranking of trees. Information Processing Letters,
28(5):225–229, 1988.

[14] D. Johnson. Approximation algorithms for combina-
torial problems*. Journal of Computer and System
Sciences, 9(3):256–278, 1974.

[15] R. Karp. Reducibility among combinatorial prob-
lems, 85–103. In Proc. Sympos., IBM Thomas J.
Watson Res. Center, Yorktown Heights, NY, 1972.

[16] M. Katchalski, W. McCuaig, and S. Seager. Ordered
colourings. Discrete Mathematics, 142(1-3):141–154,
1995.

[17] V. Kumar and H. Ramesh. Covering rectilinear poly-
gons with axis-parallel rectangles. In Proceedings of
the thirty-first annual ACM symposium on Theory of
computing, pages 445–454. ACM, 1999.

[18] J. Matoušek. Lectures on Discrete Geometry.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2002.

[19] D. Sleator and R. Tarjan. Amortized efficiency of
list update and paging rules. Communications of the
ACM, 28(2):202–208, 1985.

98

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Connecting a Set of Circles with Minimum Sum of Radii

Erin Wolf Chambers∗ Sándor P. Fekete † Hella-Franziska Hoffmann† Dimitri Marinakis‡§

Venkatesh Srinivasan§ Ulrike Stege§ Sue Whitesides§

Abstract

We consider the problem of assigning radii to given
points in the plane, such that the resulting set of cir-
cles is connected, and the sum of radii is minimized.
We show that the problem is polynomially solvable
if a connectivity tree is given, but NP-hard if there
are upper bounds on the radii; the case of unbounded
radii is an open problem. We also give approximation
guarantees for a variety of heuristics, describe upper
and lower bounds (which are matching in some of the
cases), and conclude with experimental results.

1 Introduction

We consider a natural geometric connectivity prob-
lem, arising from the context of assigning ranges to
a set of center points. More formally, given a set of
points P = {p1, . . . , pn} in the plane and their respec-
tive radii ri, in the connectivity graph G = {V,E}, V
corresponds to P , and edges eij ∈ E to intersecting
circles, i.e., ri+rj ≥ dist(pi, pj) for the Euclidean dis-
tance dist(pi, pj) between pi and pj . (A natural gen-
eralization arises from considering distances in a given
weighted graph, instead of geometric distances.) The
Connected Range Assignment Problem (CRA)
requires assignment of radii r to P , such that the ob-
jective function Q =

∑
n
i=1r

α
i , α = 1 is minimized,

subject to the constraint that G is connected.

Problems of this type have been considered before
and have natural motivations from fields including
networks, robotics, and data analysis. Common to
most is an objective function that considers the sum
of the radii of circles to some exponent α.

Alt et al. [1] consider the closely related problem
of selecting circle centers and radii such that a given
set of points in the plane are covered by the circles.
Like our work, they focus on minimizing an objective
function based on

∑
ir
α
i and produce results specific

to various values of α. The minimum sum of radii

∗Department of Computer Science, Saint Louis University,
USA. echambe5@slu.edu.
†Algorithms Group, TU Braunschweig, Braunschweig, Ger-

many. {s.fekete,h-f.hoffmann}@tu-bs.de.
‡Kinsol Research Inc., Duncan, BC, Canada.

dmarinak@kinsolresearch.com.
§Department of Computer Science, University of Victoria,

Victoria, BC, Canada. {sue,stege,venkat}@uvic.ca.

circle coverage problem (with α = 1) is also consid-
ered by Lev-Tov and Peleg [6] in the context of radio
networks. Related work has also been done in the
area of data clustering. Gibson et al. [5], consider
partitioning data into k clusters to minimize the sum
of the cluster radii, and authors consider the problem
for specific numbers of dimensions. Since we are given
the circle centers, the problem can be also considered
a range assignment problem [3]; see [4] for hardness
results of different (typically directed) communication
graphs.

In this paper we present a variety of algorithmic
aspects of the problem. In Section 2 we show that
for a given connectivity tree, an optimal solution can
be computed efficiently. Section 3 sketches a proof of
NP-hardness for the problem when there is an upper
bound on the radii. Section 4 provides a number of
approximation results for the case of unbounded radii,
complemented by experiments in Section 5.

2 CRA for a Given Connectivity Tree

For a given connectivity tree, our problem is polyno-
mially solvable, based on the following observation.

Lemma 1 Given a connectivity tree T with at least
three nodes. There exists an optimal range assign-
ment for T with ri = 0 for all leaves pi of T .

Proof. Assume an optimal range assignment for T
has a leaf pi ∈ P with radius ri > 0. The circle Ci
around pi intersects circle Cj around pi’s parent pj
with radius rj . Extending Cj to rj := dist(pi, pj)
while setting ri := 0 does not increase

∑
pi∈P

ri. �

Direct consequences of Lemma 1 are the following.

Corollary 2 There is an optimal range assignment
satisfying Lemma 1 and further rj > 0 for all pj ∈ P
of height 1 in T (i.e., each pj is parent of leaves only).

Corollary 3 Consider an optimal range assignment
for T satisfying Lemma 1. Further let pj ∈ P be of
height 1 in T . Then rj ≥ max

pi is child of pj
{dist(pi, pj)}.

These observations allow us to solve the problem via
dynamic programming; details are omitted.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

99

27th European Workshop on Computational Geometry, 2011

Figure 1: Two variable gadgets connected to the same
clause gadget. “True” and “False” vertices marked in
bold white or black; auxiliary vertices are indicated by
small dots; the clause vertex is indicated by a triangle.
Connectivity edges are not shown.

...

Figure 2: A class of CRA instances that need k + 1
circles in an optimal solution.

Theorem 4 For a given connectivity tree, CRA can
be solved in polynomial time.

3 Range Assignment for Bounded Radii

Without a connectivity tree, and assuming an upper
bound of ρ on the radii, the problem becomes NP-
hard; in this short abstract, we focus on the graph
version of the problem.

Theorem 5 With radii bounded by some constant ρ,
the problem CRA is NP-hard in weighted graphs.

See Figure 1 for the basic construction. The proof
uses a reduction from 3Sat. Variable are represented
by closed “loops” at distance ρ that have two feasible
connected solutions: auxiliary points ensure that ei-
ther the odd or the even points in a loop get radius ρ.
Additional “connectivity” edges ensure that all vari-
able gadgets are connected. Each clause is represented
by a star-shaped set of four points that is covered by
one circle of radius ρ from the center point. This cir-
cle is connected to the rest of the circles, if and only
if one of the variable loop circles intersects it, which
is the case if and only if there is a satisfying variable.

4 Solutions with a Bounded Number of Circles

In this section we show that using only a small number
of circles already yields good approximations; we start
by a class of lower bounds.

Theorem 6 Even for a set of collinear points, a best
k-circle solution may be off by a factor of (1 + 1

2k+1).

Figure 3: A lower bound of 3
2 for 1-circle solutions.

Proof. Consider the example in Fig. 2. The provided

solution is optimal, as
∑
ri = dist(p0,pn)

2 . Further, for

any integer k ≥ 2 we have d1 = 2
∑k−2
i=0 2i+2k−1 < 2 ·

2k+2k−1 = d2. So the radius rk+1 cannot be changed
in an optimal solution. Inductively, we conclude that
exactly k + 1 circles are needed. Because we only
consider integer distances, a best k-circle solution has
cost Rk ≥ R+ 1, i.e., Rk

R ≥ 1 + 1
2k+1 . �

In the following we give some good approximation
guarantees for CRA using one or two circles.

Lemma 7 Let P a longest path in an optimal con-
nectivity graph, and let em be an edge in P containing
the midpoint of P. Then

∑
ri ≥ max{ 1

2 |P|, |em|}.

Theorem 8 A best 1-circle solution for CRA is a 3
2 -

approximation.

Proof. Consider a longest path P = (p0, . . . , pk) of
length |P| in an optimal connectivity graph. Let
R =

∑
ri be the cost of the optimal solution, and

em = pipi+1 as in Lemma 7. Let d̄i := dist(pi, pk)
and d̄i+1 := dist(p0, pi+1). Then min{d̄i, d̄i+1} ≤
d̄i+d̄i+1

2 = dist(p0,pi)+2|em|+dist(pi+1,k)
2 = |P|

2 + |em|
2 ≤

R+ R
2 = 3

2R. So one circle with radius 3
2R around the

point in P that is nearest to the middle of path P cov-
ers P , as otherwise there would be a longer path. �

Fig. 3 shows that this bound is tight. Using two
circles yields an even better approximation factor.

Theorem 9 A best 2-circle solution for CRA is a 4
3 -

approximation.

Proof. Let P = (p0, . . . , pk) be a longest path in an
optimal connectivity graph. Then

∑
ri ≥ 1

2 |P|. We
distinguish two cases; see Fig. 4.

Case 1. There is a point x on P at a distance
of at least 1

3 |P| from both endpoints. Then there is
a 1-circle solution that is a 4

3 -approximation, and no
2-circle solution of such quality is needed.

Case 2. There is no such point x. Let em =
pipi+1 be defined as in Lemma 7. Further, let
di := dist(p0, pi) and di+1 := dist(pi+1, pk). Then
|em| = |P| − di − di+1 and di, di+1 <

1
3 |P|.

Case 2a. If |em| < 1
2 |P| then di + di+1 = |P| −

|em| > 1
2 |P| > |em|. Set ri := di and ri+1 = di+1,

100

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

... ...

... ...

Figure 4: A best 2-circle solution is a 4
3 -approximate

solution: Case 2a (Top); Case 2b (Bottom).

Figure 5: A non-overlapping optimal solution.

then the path is covered. Since di, di+1 < 1
3 |P| we

have ri + ri+1 = di + di+1 <
2
3 |P| ≤

4
3

∑
ri and the

claim holds.
Case 2b. Otherwise, if |em| ≥ 1

2 |P| then di +
di+1 ≤ 1

2 |P| ≤ |em|. Assume di ≥ di+1. Choose
ri := di and ri+1 := |em| − di. Then P is covered and
ri + ri+1 = di + (|em| − di) = |em|, which is the lower
bound and thus the range assignment is optimal. �

If all points of P lie on a straight line, the approxi-
mation ratio for two circles can further be improved.

Lemma 10 Let P be a subset of a straight line.
Then there is a non-overlapping optimal solution, i.e.,
one in which all circles have disjoint interior.

Proof. An arbitrary optimal solution is modified as
follows. For every two overlapping circles Ci and Ci+1

with centers pi and pi+1, we decrease ri+1, such that
ri + ri+1 = dist(pi, pi+1), and increase the radius of
Ci+2 by the same amount. This can be iterated, until
there is at most one overlap at the outermost circle Cj
(with Cj−1). Then there must be a point pj+1 on the
boundary of Cj : otherwise we could shrink Cj contra-
dicting optimality. Decreasing Cj ’s radius rj by the
overlap l and adding a new circle with radius l around
pj+1 creates an optimal solution without overlap. �

Theorem 11 Let P a subset of a straight line
g. Then a best 2-circle solution for CRA is a 5

4 -
approximation.

Proof. According to Lemma 10 we are, w.l.o.g., given
an optimal solution with non-overlapping circles. Let

Figure 6: A 5
4 -approximate solution with di <

3
4R.

The cross marks the position of the optimal counter-
part p∗i to pi and the grey area sketches Ai.

p0 and pn be the outermost intersection points of the
optimal solution circles and g. W.l.o.g., we may fur-

ther assume p0, pn ∈ P,R =
∑
ri = dist(p0,pn)

2 (oth-
erwise, we can add the outermost intersection point
of the outermost circle and g to P , which may only
improve the approximation ratio). Let pi denote the
rightmost point in P left to the middle of p0pn and
let pi+1 its neighbor on the other half. Further, let
di := dist(p0, pi), di+1 := dist(pi+1, pn) (See Fig. 5).
Assume, di ≥ di+1. We now give 5

4 -approximate so-
lutions using one or two circles that cover p0pn.
Case 1. If 3

4R ≤ di then 5
4R ≥ 2R − di =

dist(pi, pn). Thus, a one-circle solution around pi is
sufficient.

Case 2. If 3
4R > di ≥ di+1 we need two circles to

cover p0pn with 5
4R.

Case 2a. The point pi could be a center point of
an optimal two-circle solution if there was a point p∗i
with dist(Ci, p

∗
i) = dist(p∗i , pn) = R − di. So in case

there is a p′i ∈ P that lies in a 1
4R-neighborhood of

such an optimal p∗i we get dist(Ci, p
′
i), dist(p′i, pn) ≤

R − di + 1
4R (see Fig. 6). Thus, r(pi) := di, r(p

′
i) :=

R− di + 1
4R provides a 5

4 -approximate solution.
Case 2b. Analogously to Case 2a, there is a point

p′i+1 ∈ P within a 1
4R-range of an optimal counterpart

to pi+1. Then we can take r(pi+1) := di+1, r(p′i+1) :=
R− di+1 + 1

4R as a 5
4 -approximate solution.

Case 2c. Assume that there is neither such a p′i
nor such a p′i+1. Because di, di+1 are in (1

4R,
3
4R),

we have 1
4R < R − dj < 3

4R for j = i, i + 1, which
implies that there are two disjoint areasAi, Ai+1, each
with diameter equal to 1

2R and excluding all points
of P . Because pi, the rightmost point on the left half
of p0pn, has a greater distance to Ai than to p0, any
circle around a point on the left could only cover parts
of both Ai and Ai+1 if it has a greater radius than
its distance to p0. This contradicts the assumption
that p0 is a leftmost point of a circle in an optimal
solution. The same applies to the right-hand side.
Thus, Ai ∪ Ai+1 must contain at least one point of
P , and therefore one of the previous cases leads to a
5
4 -approximation. �

Fig. 7 shows that the bound is tight. We believe
that this is also the worst case when points are not on

101

27th European Workshop on Computational Geometry, 2011

Figure 7: A lower bound of 5
4 for 2-circle solutions.

Figure 8: Ratios of the average over all enumerated
trees and of the best 1-circle tree to the optimal

∑
ri.

Results were averaged over 100 trials for each number.

a line. Indeed, the solutions constructed in the proof
of Theorem 11 cover a longest path P in an optimal
solution for a general P . If this longest path consists
of at most three edges, pi(=: p′i+1) and pi+1(=: p′i) can
be chosen as circle centers, covering all of P . How-
ever, if P consists of at least four edges, a solution for
the diameter may produce two internal non-adjacent
center points that do not necessarily cover all of P .

5 Experimental Results

It is curious that even in the worst case, a one-circle
solution is close to being optimal. This is supported
by experimental evidence. For different numbers of
uniformly distributed points, we enumerated all pos-
sible spanning trees using the method described in [2],
and recorded the optimal value with the algorithm
mentioned in Section 2. This we compared with the
best one-circle solution; as shown in Fig. 8, the latter
seems to be an excellent heuristic choice.

6 Conclusion

A number of open problems remain. One of the most
puzzling is the issue of complexity in the absence of
upper bounds on the radii. The strong performance
of the one-circle solution (and even better of solutions
with higher, but limited numbers of circles), and the
difficulty of constructing solutions for which the one-
circle solution is not optimal strongly hint at the pos-
sibility of the problem being polynomially solvable.
One possible way may be to use methods from linear
programming: modeling the objective function and

the variables by linear methods is straightforward;
describing the connectivity of a spanning tree by lin-
ear cut constraints is also well know. However, even
though separating over the exponentially many cut
constraints is polynomially solvable (and hence opti-
mizing over the resulting polytope), the overall poly-
tope is not necessarily integral. On the other hand, we
have been unable to prove NP-hardness without up-
per bounds on the radii, even in the more controlled
context of graph-induced distances.

Other open problems are concerned with the worst-
case performance of heuristics using a bounded num-
ber of circles. We showed that two circles suffice for
a 4

3 -approximation in general, and a 5
4 -approximation

on a line; we conjecture that the general performance
guarantee can be improved to 5

4 , matching the exist-
ing lower bound. Obviously, the same can be studied
for k circles, for any fixed k; at this point, the best
lower bounds we have are 7

6 for k = 3 and 1 + 1
2k+1

for general k. We also conjecture that the worst-
case ratio f(k) of a best k-circle solution approxi-
mates the optimal value arbitrarily well for large k,
i.e., lim

k→∞
f(k) = 1.

Acknowledgments

This work was started during the 2009 Bellairs Workshop

on Computational Geometry. We thank all other partici-

pants for contributing to the great atmosphere.

References

[1] H. Alt, E. M. Arkin, H. Brönnimann, J. Erick-
son, S. P. Fekete, C. Knauer, J. Lenchner, J. S. B.
Mitchell, and K. Whittlesey. Minimum-cost cover-
age of point sets by disks. In Proc. 22nd Annu.
ACM Sympos. Comput. Geom. (SoCG), pages 449–
458, 2006.

[2] D. Avis and K. Fukuda. Reverse search for enumer-
ation. Disc. Appl. Math., 65(1-3):21–46, 1996.

[3] A. E. Clementi, P. Penna, and R. Silvestri. On the
power assignment problem in radio networks. Mobile
Networks and Applications, 9(2):125–140, 2004.

[4] B. Fuchs. On the hardness of range assignment prob-
lems. Networks, 52(4):183–195, 2008.

[5] M. Gibson, G. Kanade, E. Krohn, I. A. Pirwani, and
K. Varadarajan. On clustering to minimize the sum
of radii. In Proc. 19th ACM-SIAM Symp. Disc. Alg.
(SODA), pages 819–825, 2008.

[6] N. Lev-Tov and D. Peleg. Polynomial time approxi-
mation schemes for base station coverage with mini-
mum total radii. Computer Networks, 47(4):489–501,
2005.

102

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

A 3-Approximation Algorithm for Computing Partitions with Minimum
Stabbing number of Rectilinear Simple Polygons

Mohammad Ali Abam∗ Boris Aronov† Mark de Berg‡ Amirali Khosravi‡

Abstract

Let P be a rectilinear simple polygon. The stabbing
number of a partition of P into rectangles is the maxi-
mum number of rectangles stabbed by any axis-parallel
segment inside P . We present a 3-approximation algo-
rithm for finding a partition with minimum stabbing
number. It is based on an algorithm that finds an
optimal partition for histograms.

1 Introduction

Computing decompositions of simple polygons is one of
the fundamental problems in computational geometry.
When the polygon at hand is arbitrary then one typi-
cally wants a decomposition into triangles, and when
the polygon is rectilinear one wants a decomposition
into rectangles. Sometimes any such decomposition
will do; then one can compute an arbitrary triangula-
tion or, for rectilinear polygons, a vertical decomposi-
tion. In other cases one would like the decomposition
to have certain properties. The property we are inter-
ested in is the so-called stabbing number—see below
for a definition—of the decomposition.

Let P be a rectilinear simple polygon with n ver-
tices. We call a decomposition of P into rectangles
a rectangular partition. The stabbing number of a
segment s with respect to a rectangular partition R
is the number of rectangles intersected by s, and the
(rectilinear) stabbing number of R is the maximum
stabbing number of any axis-parallel segment s in the
interior of P . De Berg and Van Kreveld [2] showed
that any rectilinear polygon admits a rectangular par-
tition with stabbing number O(log n). This bound is
asymptotically tight in the worst case: any rectangular
partition of a staircase polygon with n vertices has
stabbing number Ω(logn).

∗Department of Computer Science, TU Dortmund, 44221
Dortmund, Germany, mohammad-ali.abam@tu-dortmund.de
†Department of Computer Science and Engineering, Poly-

technic Institute of NYU, Brooklyn, NY 11201-3840, USA,
aronov@poly.edu. Work by Boris Aronov has been supported
by grant No. 2006/194 from the U.S.-Israel Binational Science
Foundation, by NSF Grant CCF-08-30691, and by NSA MSP
Grant H98230-10-1-0210.
‡Department of Computing Science, TU Eindhoven,

PO Box 513, 5600 MB Eindhoven, the Netherlands,
{mdberg,akhosrav}@win.tue.nl. Work by Amirali Khosravi
has been supported by the Netherlands’ Organisation for Scien-
tific Research (NWO) under project no. 612.000.631.

The algorithm of De Berg and Van Kreveld [2] guar-
antees partitions which are tight in the worst case.
However, some rectilinear polygons admit partitions
with stabbing number O(1). This leads to the topic
of our paper: finding an optimal rectangular partition
of a rectilinear polygon P whose stabbing number is
minimum over all such partitions.

The problem is not known to be np-complete. We
present a 3-approximation algorithm for it. It is based
on an algorithm that finds optimal rectangular par-
titions for histograms. Due to lack of space all the
proofs are omitted in this version, and can be found
in the full version of the paper.

Related work. Chazelle et al. [3] studied the stabbing
number of convex decompositions of polytopes. Tóth
showed that any partition of d-dimensional space (d >
2) into n axis-aligned boxes has rectilinear stabbing

number Ω(log1/(d−1) n), and he presented partitioning
scheme achieving this bound [6]. Hershberger and
Suri [4] gave an algorithm for triangulating a simple
polygon with stabbing number O(log n) which is worst-
case tight. Considering triangulations of point sets,
Agarwal, Aronov and Suri [1] proved that one can
triangulate n points in R2 and R3 (using Steiner points)
with stabbing number O(

√
n · log n).

2 Optimal rectangular partitions

Let P be a rectilinear simple polygon with n vertices.
We denote the interior of P by int(P) and its bound-
ary by ∂P . In the remainder of paper, whenever we
speak of partitions and stabbing numbers, we mean
rectangular partitions and rectilinear stabbing num-
bers. We denote the stabbing number of a partition
R by σ(R). The horizontal stabbing number of R,
denoted σhor(R), is defined as the maximum stabbing
number of any horizontal segment s ⊂ P . The vertical
stabbing number, denoted σvert(R), is defined similarly.
Note that σ(R) = max(σhor(R), σvert(R)).

We start by studying the properties of optimal par-
titions. Consider a partition R of P . The partition
is induced by a set E(R) of maximal edges, that is,
segments of maximal length that are the union of one
or more rectangle edges that are not part of ∂P . A
maximal edge is anchored if at least one of its end-
points is a vertex of P . We first show that there exists
an optimal partition with only anchored edges.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

103

27th European Workshop on Computational Geometry, 2011

Lemma 1 Any rectilinear simple polygon P has an
optimal partition Ropt in which all maximal edges are
anchored.

A binary space partition, or bsp for short, of a
rectilinear polygon P is a rectangular partitioning
obtained by the following recursive process. First,
the polygon is cut into two subpolygons with an axis-
parallel segment contained in int(P), and then the two
subpolygons are partitioned recursively in the same
way. A bsp is anchored if each of its cuts is anchored.

For so-called histograms we can show that there
is always an optimal partition that is an anchored
bsp. In fact, we show that any anchored partition
of a histogram is a bsp. A (vertical) histogram is a
rectilinear polygon H that has a horizontal edge seeing
every point q ∈ int(H). Here we say that an edge e
sees a point q ∈ P if there is an axis-parallel segment
s connecting e to q that is completely inside int(P)
except possibly its endpoints. We call the horizontal
edge that sees all points in the histogram the base of
the histogram and denote it by base(H).

Lemma 2 Any anchored partition of a histogram is
a bsp.

2.1 A 3-approximation algorithm

We present a 3-approximation algorithm for the prob-
lem of finding an optimal rectangular partition. First
we split P into a set of histograms such that any
axis-parallel segment inside P stabs at most three his-
tograms. This can be done in O(n) time [5]. Then,
we compute an optimal rectangular partition for each
resulting histogram. By proving that this can be done
in polynomial time we will have the following result.

Theorem 3 Let P be a rectilinear simple polygon
with n vertices. Then we can compute a rectangular
partition of P with stabbing number at most 3 ·opt in
polynomial time, where opt is the minimum stabbing
number of any rectangular partition of P .

Let H be a histogram. With a slight abuse of no-
tation, we use n to denote the number of vertices
of H. We assume without loss of generality that H
is a vertical histogram lying above its base. By Lem-
mas 1 and 2, H admits an optimal partition that is
an anchored bsp. We need the following properties.

Lemma 4 There is an optimal partition Ropt for H
that is an anchored bsp and such that for every rect-
angle r ∈ Ropt we have

(i) the bottom edge of r is contained in either the top
edge of a single rectangle r′ ∈ Ropt or in base(H),
and

(ii) the top edge of r contains an edge of H.

(a) (b)

s
si

sj s`

1
2

31 1

41

11

2

1

2 1

3

Figure 1: (a) Partitioning a histogram using canonical
chords. (b) A partition with a unimodal labeling. The
label sequence of the chord s is 4, 3 and the label
sequence of the base is 1, 4, 3.

In the sequel all partitions have properties (i) and (ii)
from Lemma 4 (but not all are anchored).

Our algorithm will do a binary search for the small-
est value k such that H admits a partition with stab-
bing number k. Since there is always a partition with
stabbing number at most 2 log2 n [2], the binary search
needs O(log logn) steps. It remains to describe our de-
cision algorithm HistogramPartition(H, k), which
decides whether H has a partition with stabbing num-
ber at most k.

Canonical chords. A chord of H is a maximal hori-
zontal segment contained in the interior of H except
for its endpoints. A chord s partitions H into two
parts. The part above s is a histogram, denoted by
H(s). Any partition R of H induces a partition of
H(s), denoted by R(s). Now consider a partition of
H obtained by adding a chord from each vertex of H
for which this is possible. We call the resulting set
of chords the canonical chords of H (see Figure 1(a)).
We treat base(H) as a canonical chord.

The basic idea behind the algorithm is to treat the
chords from top to bottom. Now consider a chord
si with, say, two chords sj and s` immediately above
it. Here we say that a chord si is immediately above
another chord sj , if we can connect si to sj with a
vertical segment that does not cross any other chord.
One may hope that if we have optimal partitions for
H(sj) and H(s`) then we can somehow “extend” these
to an optimal partition for H(si). Unfortunately this
is not the case, since an optimal partition need not
be composed of optimal subpartitions. The next idea
is to compute all possible partitions for H(si). These
can be obtained by considering all combinations of a
possible partition for H(sj) and a possible partition
for H(s`). Implementing this idea naively would lead
to an exponential-time algorithm, however. Next we
show how to compute a subset of all possible partitions
that has only polynomial size and is still guaranteed
to contain an optimal partition.

Labeled partitions and label sequences. We first
introduce some notation and terminology. Let R be
any partition of H (having the properties (i) and (ii)
in Lemma 4). We say that a rectangle r ∈ R is on

104

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

top of a rectangle r′ ∈ R if the bottom edge of r is
contained in the top edge of r′. When the bottom
edge of r is contained in base(H) then r is on top of
the base. A labeling of R assigns a positive integer
label λ(r) to each rectangle r ∈ R. We say that a
labeled partition is valid (with respect to the stabbing
number k) if it satisfies these conditions:

• if r is on top of r′ then λ(r) < λ(r′);
• the vertical stabbing number of R equals the max-

imum label of any rectangle r ∈ R;
• the stabbing number of R is at most k.

Observe that the first two conditions together imply
that the stabbing number of R is equal to the maxi-
mum label assigned to any rectangle on top of base(H).
Also note that any partition with stabbing number
k has a valid labeling: for example, one can set λ(r)
to be equal to the maximum number of rectangles
that can be stabbed by a vertical segment whose lower
endpoint lies inside r. We will use the labelings to
decide which partitions can be ignored and which ones
we need to keep.

For a chord s of H, we define the label sequence of s
with respect to a labeled partition R as the sequence
of labels of the rectangles crossed by s, ordered from
left to right; here we say that s crosses a rectangle r if
s intersects int(r) or the bottom edge of r. We denote
this sequence by Σ(s,R); see Figure 1(b). A label
sequence is valid if it consists of at most k labels and
the maximum label is at most k. Note that a labeled
partition is valid if and only if the label sequence of
each of its canonical chords is valid. A label sequence
λ1, . . . , λt is called unimodal if there is an index i such
that λ1 6 · · · 6 λi and λi > · · · > λt. A labeling of a
partition is unimodal if the label sequence of any chord
is unimodal. A label sequence can be made unimodal
using the following procedure.

MakeUnimodal(Σ)
Let Σ = λ1, . . . , λt, and let λi∗ be a maxi-
mum label in the sequence. For each i < i∗

set λi := maxj6i λj , and for each i > i∗ set
λi := maxj>i λj .

The next lemma states that we can make the label
sequences of all canonical chords unimodal, and still
keep a valid sequence.

Lemma 5 Any anchored partition of H of stabbing
number at most k admits a valid unimodal labeling.

Dominated and non-dominated sequences. Next
we explain how the labelings help us decide which
partitions can safely be discarded. Consider an algo-
rithm that handles the chords from top to bottom,
and suppose that the algorithm reaches a chord s. Let
R1 and R2 be two labeled partitions of H(s). Suppose
that Σ(s,R1) is a subsequence of Σ(s,R2). Then there
is no need to keep R2: both partitions have stabbing

s s
3 111

1 1
2 3 1

r1 r2 r3 r4 =⇒

Figure 2: Merging two rectangles.

number at most k so far, and if we can complete R2

to a partition with stabbing number k of the full his-
togram H then we can do so with R1 as well. As
another example in which we can disregard one of
the two partitions, suppose that Σ(s,R1) = 1, 1, 3, 1
and Σ(s,R2) = 1, 2, 3, 1, and let r1, . . . , r4 be the four
rectangle in R1 reaching the chord s. Then we could
have merged r1 and r2 just before reaching s, that
is, we could have terminated r1 and r2 and start a
new rectangle with label “2”—see Figure 2. The new
subsequence is then 2,3,1. This is a subsequence of
Σ(s,R2), so we can disregard R2.

To make this idea formal, we say that Σ(s,R1) dom-
inates Σ(s,R2) if we can obtain a sequence Σ(s,R∗)
that is a subsequence of Σ(s,R2) by applying the fol-
lowing operation zero or more times to Σ(s,R1):

• Replace a subsequence λi, . . . , λj of Σ(s,R1) by
the single label “max(λi, . . . , λj) + 1”. Note that
we can have i = j; in this case the operation just
adds 1 to the label λi.

Intuitively, if a label sequence dominates another la-
bel sequence, then the first sequence has postponed
some merging operations that we can still do later
on. Thus there is no need to maintain partitions with
dominated label sequences. (Note that postponing a
merging operation implies that the resulting partition
may not be anchored. This means that in the algo-
rithm presented below, we do not restrict ourselves to
anchored partitions.) The next lemma gives a bound
on the number of label sequences in the worst case.

Lemma 6 Let S be any collection of valid unimodal
sequences such that no sequence in S dominates any
other sequence in S. Then |S| = O(23k/2/

√
k).

The algorithm. Our decision algorithm is as follows.

HistogramPartition(H, k)

1. Compute the set of canonical chords of H and
sort the chords by decreasing y-coordinate.

2. For each chord s in order, compute a collection
R(s) of labeled partitions of H(s), as follows.

(i) If H(s) is a rectangle then set R(s) := {H(s)}.
(ii) Otherwise s has one or more chords s1, . . . , st
immediately above it—see Figure 3. Find all
valid unimodal partitions of H(s) that can be
obtained from any combination of partitions in
R(s1), . . . ,R(st) and whose label sequence is not
dominated by the label sequence of any other
such partition. (This will be explained below.)

105

27th European Workshop on Computational Geometry, 2011

s1

s

s4

1 3 3 2 1 1 5 45 41

Σ = [1, 3, 3] 1 [2, 1] 1 [1, 5, 5, 4] 1 [1, 4] 1

s2 s3

making the sequence unimodal: 1,3,3,3,5,5,4,4,4,1
merging from the sides to

reduce the length of the sequence: 4,5,5,5

Figure 3: A chord s, the chords immediately above it,
and the label sequence Σ defined by the label sequences
of the chords.

Let R(s) be the set of all computed partitions. If
R(s) is empty, then report that no partition with
stabbing number k exists for H, and exit.

3. Return any partition in R(base(H)).

Next we explain how Step 2(ii) is performed. We as-
sume that t > 1, that is, that s has several chords
immediately above it; the case t = 1 can be handled
in a similar (but much simpler) way. In the sequel,
we identify each partition with its label sequence and
only talk about label sequences. Note that the op-
erations we perform on the label sequences can be
easily converted into the corresponding operations
on the partitions. For every pair of label partitions
R1 ∈ R(s1), Rt ∈ R(st) we proceed as follows.

(a) For each 1 < i < t, consider the set R(si). Note
that the label sequences in R(si) all have the
same maximum value, Mi. This is because a la-
bel sequence dominates any sequence with larger
maximum value. (The number of times the maxi-
mum label occurs can differ by at most one.) We
pick an arbitrary label sequence Σi ∈ R(si) for
which Mi occurs the minimum number of times.

(b) We now have, besides the partitions Σ1 ∈ R(s1)
and Σt ∈ R(st), picked a partition Σi from each
R(si) with 1 < i < t. Let Σ be the label sequence
obtained by concatenating the sequences Σi in
order, inserting a label “1” for any horizontal
histogram edge incident to a chord si, see Figure 3.
The labels “1” correspond to new rectangles whose
top edge is the given histogram edge. We then
make Σ unimodal. This is done using a variant of
the procedure MakeUnimodal explained earlier:
the difference is that if we give several consecutive
labels the same value, then we merge them into a
single new label—see Figure 3.

(c) If the number of labels in Σ is at most k, then we
put Σ into R(s). Otherwise Σ is invalid because
it contains too many labels, and we have to merge
some rectangles. This is done as follows.
Suppose that Σ contains k+x labels λ1, . . . , λk+x.
Then we have to get rid of x labels by merging.
Let xleft, xright be integers such that xleft+xright =

x+ 2 and both xleft, xright are non-zero, or xleft +
xright = x+ 1 and one of xleft, xright is zero. We
merge xleft labels from the left into one new label,
and xright labels from the right into one, as in
Figure 3. In other words, on the left side we
replace λ1, . . . , λxleft

by a single new label λxleft
+1

(and similarly on the right). If there are some
labels immediately to the right of λxleft

with the
same value as λxleft

, then we include them into
the merging process. (We can do this for free,
since it reduces the number of labels, without
increasing the value of the new label.) If this
merging process yields a new label whose value
is more than the previous maximum label value,
then we simply merge the entire sequence into a
single new label. If the value of this label is k+ 1,
then we discard the sequence.

After applying the above steps to every pair R1 ∈
R(s1), Rt ∈ R(st), we remove from R(s) all parti-
tions with a label sequence that is dominated by the
sequence of some other partition. We do this by com-
paring every pair of partitions, and checking in O(k)
time whether one dominates the other one. After
handling s, and for any partition of H(s) denoted by
R∗(s), the following lemma shows that the set R(s)
contains at least a partition dominating Σ(s,R∗).

Lemma 7 HistogramPartition(H, k) returns a
partition of H with stabbing number at most k if
exists.

The next lemma follows from Lemma 6, and the
fact that k 6 2 log2 n.

Lemma 8 HistogramPartition runs in polyno-
mial time.

References

[1] P.K. Agarwal, B. Aronov, and S. Suri. Stabbing
triangulations by lines in 3D. Proc. of 11th Symp. on
Comp. Geom. 267–276 (1995).

[2] M. de Berg and M. van Kreveld. Rectilinear decompo-
sitions with low stabbing number. Inf. Process. Lett.
4:215–221 (1994).

[3] B. Chazelle, H. Edelsbrunner, and L. J. Guibas, The
complexity of cutting complexes. Discr. Comput.
Geom. 6:139–181 (1989).

[4] J. Hershberger and S. Suri. A pedestrian approach
to ray shooting: shoot a ray, take a walk. J. Alg.
18:403-431 (1995).

[5] C. Levcopoulos. Heuristics for minimum decomposi-
tions of polygons. Linkoping Studies in Science and
Technology, Dissertations, No. 55, 1987.

[6] C.D. Tóth. Axis-aligned subdivisions with low stab-
bing numbers. SIAM J. Discrete Math. 22:1187–1204
(2008).

106

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Coloring Planar Homothets and Three-Dimensional Hypergraphs

Jean Cardinal∗ Matias Korman∗

Abstract

We prove that every set of homothetic copies of a
given convex body in the plane can be colored with
four colors so that any point covered by at least two
copies is covered by two copies with distinct colors.
This generalizes a previous result from Smorodin-
sky [8]. We also show a relation between our proof
and Schnyder’s characterization of planar graphs. Us-
ing this characterization we generalize the first result
and show that k ≥ 2, every three-dimensional hyper-
graph can be colored with 6(k−1) colors so that every
hyperedge e contains min{|e|, k} vertices with mutu-
ally distinct colors. Furthermore, we also show that
at least 2k colors might be necessary. This refines a
previous result from Aloupis et al. [1].

1 Introduction

The well-known graph coloring problem has sev-
eral natural generalizations to set systems, or hyper-
graphs. A proper coloring of a hypergraph can be
defined such that no hyperedge is monochromatic, or
such that every hyperedge contains some minimum
number of distinct colors, for instance. A rich liter-
ature exists on these topics; in particular, the two-
colorability of hypergraphs (also known as property
B), has been well-studied since the sixties [4].

In this paper, we concentrate on coloring geometric
hypergraphs, defined by simple objects in the plane.
Those hypergraphs serve as models for wireless sen-
sor networks, and associated coloring problems have
been investigated recently. Smorodinsky [8] investi-
gated the chromatic number of such geometric hyper-
graphs, defined as the minimum number of colors re-
quired to make every hyperedge non-monochromatic.
He considered hypergraphs induced by a collection S
of regions in the plane, whose vertex set is S, and the
hyperedges are all subsets S′ ⊆ S for which there ex-
ists a point p such that S′ = {R ∈ S : p ∈ R} (i.e.,
the regions that contain p). He proved the following
result.

Theorem 1 • Any hypergraph that is induced
by a family of n simple Jordan regions such
that the union complexity of any m of them is
given by u(m) and u(m)/m is non-decreasing

∗Department of Computer Science, Université Libre de
Bruxelles (ULB), {jcardin,mkormanc}@ulb.ac.be

is O(u(n)/n)-colorable. In particular, any finite
family of pseudodisks can be colored with a con-
stant number of colors.

• Any hypergraph induced by a finite family of
disks is four-colorable

Later, Aloupis, et. al. [1] considered parameterized
chromatic numbers. In particular, they studied the
quantity c(k), defined as the minimum number of col-
ors required to color a given hypergraph, such that
every (sufficiently large) hyperedge has at least k ver-
tices with k distinct colors. This generalizes the pre-
vious notion of chromatic number, which corresponds
to the case k = 2. They proved the following.

Theorem 2 Any finite family of pseudo-disks in the
plane can be colored with O(k) colors in such a way
that any point covered by r pseudo-disks is covered by
min{r, k} pseudo-disks with distinct colors. For the
special case of disks, the number of colors is at most
24k + 1.

Our results First, we show in section 3 that
Smorodinsky’s result for disks holds for every con-
vex body. The proof is similar to that of Smorodin-
sky, but the graph is constructed in a different way,
reminiscent from Schnyder’s characterization of pla-
nar graphs. This characterization is closely related
to the concept of dimension of graphs and hyper-
graphs. Thus, in section 4 we will show the connec-
tion between both results and study the chromatic
number for three-dimensional hypergraphs. Among
other results, we will show that this number is at most
6(k−1). This improves the constant of Theorem 2 for
this class of hypergraphs, which includes in particular
hypergraphs induced by homothets of a triangle. In
section 5, we will show a lower bound for all the above
problems.

Due to length constraints, some of the proofs have
been omitted and/or simplified. A longer version of
this paper can be found in [2].

Definitions and notations We consider hypergraphs
defined by ranges, which are open convex bodies of the
form Q ⊂ R2 containing the origin. The scaling of Q
by a factor λ ∈ R+ is the set {λx : x ∈ Q}. The
translate of Q by a vector t ∈ R2 is the set {x + t :
x ∈ Q}. The homothet of Q of center t and scaling λ
is the set {λx+ t : x ∈ Q}.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

107

27th European Workshop on Computational Geometry, 2011

Given a collection S of points in the plane, the pri-
mal hypergraph defined by these points and a range Q
has S as vertex set, and {S ∩Q′ : Q′ homothet of Q}
as hyperedge set. Similarly, the dual hypergraph de-
fined by a set S of homothets of Q has S as ver-
tex set, and the hyperedges are all subsets S′ ⊆ S
for which there exists a point p ∈ R2 such that
S′ = {R ∈ S : p ∈ R} (i.e., the set of ranges that
contain p).

For a given range Q, the chromatic number cQ(k)
is the minimum number c such that every primal hy-
pergraph (induced by a set of points) can be colored
with c colors, so that every hyperedge of size r con-
tains min{r, k} vertices with mutually distinct colors.
Similarly, the chromatic number c̄Q(k) is the smallest
number c such that every dual hypergraph (induced
by a set of homothets of Q) can be c-colored so that
every hyperedge of size r contains min{r, k} vertices
with mutually distinct colors.

2 Primal Problem

As a warm-up, we consider the primal version of the
problem for k = 2. We are interested in giving a
coloring of the points of S such that any homothet of
Q that contains two or more points of S contains two
points of different colors.

Given a set of points S and range Q, the general-
ized Delaunay graph of S induced by Q is a graph
G = (S,E) with S as vertex set. For any two
points p, q ∈ S, their edge pq is in E if and only
there exists a homothet Q′ of Q such that Q′ con-
tains p, q and no other point of S (in other words
pq ∈ E ⇔ Q′ ∩ S = {p, q}). Note that the Delau-
nay graph induced by disks corresponds to the classic
Delaunay triangulation.

Lemma 3 [6] For any convex range Q and set of
points S, the Delaunay graph of S induced by Q is
planar

The above result has been rediscovered many times
along the literature for different types of ranges. See
the extended version of this paper [2] for more details.

Theorem 4 For any convex range Q we have
cQ(2) ≤ 4.

Proof. Consider the Delaunay graph of S induced by
Q. By Lemma 3, this graph is planar and thus can be
four colored. In the following we will show that this
coloring is also a valid coloring for our purpose. LetQ′

be any homothet of Q containing two or more points
of S. Note that if Q′ contains exactly two points p
and q we have pq ∈ E by definition of generalized De-
launay graph. In particular, the colors of p and q are
different, hence Q′ cannot be monochromatic. If Q′

(x, y)

ρ(Q′)

p

Figure 1: Mapping of a range Q′ (in grey) to a point
in ρ(Q′) ∈ R3 and mapping of a point p to a cone.
The main property of the mapping is that inclusions
are reversed (i.e., a point p is inside Q′ if and only if
the cone π(p) contains ρ(Q′)).

has strictly more than two points of S, we continu-
ously shrink it until it contains exactly two points p, q
of S (more details of this process can be seen in [2]).
As before we have that both p, q ∈ Q′ and pq ∈ E,
hence Q′ cannot be monochromatic. �

3 Dual Problem

We now consider the dual version of the problem.
That is, we are given a set S of homothets of Q. We
say a point is k-deep whenever it is covered by at least
k elements of S. We apply the same technique as in
the primal case: given S, we construct a planar graph
G(S) = (S,E(S)). The main property of G is that
any two-deep point will be covered by two adjacent
vertices of G(S).

Let Q′ be a homothet of Q with center (x, y) and
scaling d. We denote by ρ(Q′) the point (x, y, d) ∈ R3.
Given a set S of homothets of Q, we define ρ(S) =
{ρ(Q′) : Q′ ∈ S}.

Similarly, we associate with every point p =
(x, y, d) ∈ R3 the cone π(p) defined as follows. Let
Q∗ be the reflexion of Q about its center. The in-
tersection of π(p) with the horizontal plane of height
z ≥ d is the homothet of Q∗ with center (x, y) and
scaling z−d. The intersection of π(p) with a horizon-
tal plane of height z < d is empty. Note that the cone
π(p) so defined is convex.

We now proceed to define the graph G(S). Its ver-
tex set is S, and two elements Q′, Q′′ of S are adja-
cent if and only if there exists a point p ∈ R3 such
that π(p) ∩ ρ(S) = {ρ(Q′), ρ(Q′′)}. Thus G(S) is a
Delaunay graph in R3, with cones π(p) as ranges.

For any point p ∈ R2, let Sp be the set of ranges
containing p (i.e., Sp = {Q′ ∈ S : p ∈ Q′}). As in the
primal case, a valid coloring of G will suffice for our
problem:

108

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Lemma 5 For any p ∈ R2 such that |Sp| ≥ 2, there
exist Q′, Q′′ ∈ Sp such that Q′Q′′ ∈ E(S).

Proof. For every point p = (x, y) ∈ R2 we con-
sider its cone π((x, y, 0)). The number of points of
ρ(S) contained in this cone is the number of elements
of S containing p. We translate vertically upwards
π((x, y, 0)) until it contains exactly two points ρ(Q′)
and ρ(Q′′) (more details of this process can be seen
in [2]). These two form an edge in G(S). Since, the
translated cone is contained in π(p) both Q′ and Q′′

belong to Sp. �

Lemma 6 The graph G(S) is planar.

Proof. By definition of E(S), we know that for ev-
ery edge Q′Q′′ ∈ E there exists p ∈ R3 such that
π(p) ∩ ρ(S) = {ρ(Q′), ρ(Q′′)}. We draw the edge
QQ′′ as the projection on a horizontal plane of the
two line segments connecting respectively ρ(Q′) and
ρ(Q′′) with p.

Note that crossings involving two edges with a com-
mon endpoint can be eliminated, so we can simply
show that the proposed embedding has no crossing
involving vertex-disjoint edges. Consider two such
edges uu′ and vv′, and their corresponding witness
cones π1 3 u, u′ and π2 3 v, v′. We must have u 6∈ π2

and v 6∈ π1.
Suppose that the projections of the segments con-

necting u with the apex of π1 and v with the apex
of π2 cross at an interior point x. Consider the ver-
tical line ` that passes through x: by construction,
this line must intersect with both segments at points
a and b, respectively. Without loss of generality we
assume that a has lower z coordinate than b. From
the convexity of π1, we have a ∈ π1. However, this
yields a contradiction, since v ⊆ π(b) ⊆ π(a) ⊆ π1

and we assumed v 6∈ π1. �

Theorem 7 For any convex range Q we have
c̄Q(2) ≤ 4.

4 Coloring Three Dimensional Hypergraphs

The proof of Lemma 6 actually generalizes the “easy”
direction of Schnyder’s characterization of planar
graphs. We first give a brief overview of this fun-
damental result.

4.1 Poset dimension and Schnyder’s theorem

The vertex-edge incidence poset of a graph G = (V,E)
is a bipartite poset P = (V ∪E,�P), such that e �P v
if and only if e ∈ E, v ∈ V , and v ∈ e. The dimension
of a poset P = (S,�P) is the smallest d such that
there exists a injective mapping f : S → Rd, such that
u �P v if and only if f(u) ≤ f(v), where the order ≤
is the componentwise partial order on d-dimensional
vectors.

Theorem 8 ([7]) A graph is planar if and only if
its vertex-edge incidence poset has dimension at most
three.

The easy direction of Schnyder’s theorem consists
of showing that every graph with vertex-edge inci-
dence poset of dimension at most three is planar. The
non-crossing drawing that is considered in the proof
is similar to ours, and simply consists, for every edge
e = uv, of projecting the two line segments f(e)f(u),
and f(e)f(v) onto the plane x+ y + z = 0. This can
be identified as a special case of our proof, in which
Q is an (equilateral) triangle.

In fact, Lemma 5 directly yields the following corol-
lary.

Corollary 9 Every hypergraph with vertex-edge in-
cidence poset of dimension at most three is four-
colorable.

4.2 Polychromatic coloring of three-dimensional
hypergraphs

We now adapt the above corollary for higher values of
k. That is, we are given a three-dimensional hyper-
graph G = (V,H) and a constant k ≥ 2. We would
like to color the vertices of G such that any hyperedge
e ∈ H contains at least min{|e|, k} vertices with dif-
ferent colors. We will denote by c3(k) to the minimum
number of colors necessary so that any three dimen-
sional hypergraph can be colored. We note that the
problem is self-dual: any instance of the dual problem
can be transformed into a primal coloring problem by
symmetry with respect to the point (1, 1, 1) (assum-
ing that all points are mapped to the interior of the
unit cube). Hence, any result for the primal coloring
problem will apply to the dual and vice-versa.

In order to avoid degeneracies we assume that no
two vertices of G in the mapping share an x, y or z
coordinate. For any hyperededge e ∈ H, we define the
x-extreme of e as the point x(e) ∈ e whose mapping
has smallest x-coordinate. Analogously we define the
y and z-extremes and denote them y(e) and z(e), re-
spectively. For any hyperedgeedge e ∈ H, there exist
many points in R3 that dominate the points of e. We
will assume that e is mapped to the point qe ∈ R3

whose x coordinate is equal to the x coordinate of
x(e) (analogously for the y and z coordinates). We
say that a hyperedge e is degenerate if two extremes
of e are equal.

Lemma 10 For any k ≥ 3, the graph G has at most
3n degenerate hyperedges of size exactly k

For any 2 ≤ k ≤ n, we define the graph Gk(S) =
(S,Ek) , where for any u, v ∈ S we have uv ∈ Ek if
and only if there exists a point a point q ∈ R3 that
dominates u, v and at most k − 2 other points of S

109

27th European Workshop on Computational Geometry, 2011

(that is, we replace hyperedges of size k or less by
cliques). The main property of this graph is that any
coloring of Gk(S) (in the classic graph coloring sense)
induces a polychromatic coloring of G.

We now bound the total number of edges of Gk(S):

Lemma 11 For any set S of points and 2 ≤ k ≤ n,
graph Gk(S) has at most 3(k − 1)n− 6 edges

The bound on the number combined with the mini-
mum degree coloring technique [3] allows us to obtain
a coloring of G:

Theorem 12 For any k ≥ 2, and three-dimensional
hypergraph G = (V,H), the vertices of G can be col-
ored with 6(k−1) colors so that any hyperedge e ∈ H
contains min{|e|, k} points with distinct colors. In
other words c3(k) ≤ 6k − 6

4.3 Coloring triangles

In this section we will give a very simple application
of the previous result. It is easy to show that triangle
containment posets (that is, posets of inclusion of ho-
mothets of a given triangle) have dimension at most
3. Thus the dual hypergraphs induced by collections
of triangles have dimension at most 3, and our result
applies.

Theorem 13 Triangle containment posets have di-
mension at most 3.

Corollary 14 For any k ≥ 3, any set S of homothets
of a triangle can be colored with 6(k−1) colors so that
any point p ∈ R2 covered by r homothets is covered
by min{r, k} homothets with distinct colors.

Note that this result extends the result of Theorem
7 (for the case in which Q is a triangle) to larger values
of k. Other than being more general, this proof shows
some interesting properties.

Consider the primal variant of Corollary 14: we
would like to show that a set S of points can be col-
ored with few colors such that any homothet ∆ of a
fixed triangle will contain min{|∆∩S|, k} points with
different colors. Although the problems are clearly
similar, it is not easy to see that they are equivalent.
However, by Theorem 13, we know that any instance
of the dual problem will generate a three-dimensional
hypergraph. Since the dual of a three dimensional
hypergraph is another three dimensional hypergraph
(as mentioned in Section 4.2), we can apply Theorem
12 to both problems.

In the following Section we will show lower bounds
for cQ(k) and c̄Q(k) for many different ranges (among
them the triangle). Since triangle containment posets
have dimension at most 3, this will directly give the
same lower bounds for c3(k). That is, c3(k) ≥ c∆(k),
where ∆ is any triangular range.

5 Lower Bound

In this section we will give a lower bound for cQ(k).
For that we will use the well known concept of nor-
mal direction of Q in a point p (that is, the normal
of Q at the boundary point p is the unit vector that
is orthogonal to the halfplane that passes through p
and supports Q, pointing outwards from Q). We say
that a range has m distinct normal directions if there
exist m different points such that for any two points,
their normals are linearly independent. Note that any
affine transformation of a square has two normal di-
rections, a triangle three and a circle has infinitely
many.

Lemma 15 Any range Q with at least three dis-
tinct normal directions satisfies cQ(k) ≥ 4bk/2c and
c̄Q(k) ≥ 4bk/2c.

The Lemma shows that the upper bounds of Sec-
tions 2 and 3 are tight for any range with at three dis-
tinct normal directions. Notice that the only bounded
shape that does not have three distinct normal direc-
tions is the square (and any affine transformation).
The above reasonings can be adapted for this case,
but for a weaker cQ(k) ≥ 3bk/2c lower bound.

Acknowledgments

The authors would like to thank Prosenjit Bose,
Sébastien Collette, Samuel Fiorini and Gwenaël Joret
for interesting discussions on the topic.

References

[1] G. Aloupis, J. Cardinal, S. Collette, S. Langerman,
and S. Smorodinsky. Coloring geometric range spaces.
Discrete & Computational Geometry, 41(2):348–362,
2009.

[2] J. Cardinal and M. Korman. Coloring planar ho-
mothets and three-dimensional hypergraphs. CoRR,
abs/1101.0565, 2010.

[3] R. Diestel. Graph Theory, volume 173 of Graduate
Texts in Mathematics. Springer-Verlag, Heidelberg,
third edition, 2005.

[4] P. Erdős. On a combinatorial problem. Nordisk Mat.
Tidskr., 11:5–10, 1963.

[5] E. Horev, R. Krakovski, and S. Smorodinsky. Conflict-
free coloring made stronger. In SWAT, pages 105–117,
2010.

[6] D. Sarioz. Generalized delaunay graphs with re-
spect to any convex set are plane graphs. CoRR,
abs/1012.4881, 2010.

[7] W. Schnyder. Planar graphs and poset dimension. Or-
der, 5:323–343, 1989.

[8] S. Smorodinsky. On the chromatic number of some
geometric hypergraphs. SIAM Journal on Discrete
Mathematics, 21(3):676–687, 2007.

110

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Flow on Noisy Terrains: An Experimental Evaluation

Mark de Berg Herman Haverkort Constantinos P. Tsirogiannis∗

Abstract

We investigate experimentally the changes of drainage
structures on triangulated terrains when noise is ap-
plied. Given real world data sets, we examine two
techniques for identifying watersheds on terrains cre-
ated using the same data set yet under multiple noise
instances. For the needs of our experiments we have
developed a robust implementation of an algorithm
that computes drainage structures on triangulated
terrains under the assumption that water always fol-
lows the direction of steepest descent. We provide
here also a description of our implementation which
is based on CGAL.

1 Introduction

Analysing the flow of water on drainage basins is im-
portant for flood prediction, understanding landscape
erosion, and other forms of hydrological analysis. To
be able to automate such analyses, one needs a com-
puter model of the terrain forming the drainage basin
under study and a model for the way in which water
flows on the terrain. There are two main terrain mod-
els: the digital elevation model (dem), which is based
on a regular grid, and the triangulated irregular net-
work (tin), which is a 2D triangulation where every
vertex is associated with a height value.

The most natural model for water flow is that wa-
ter follows the direction of steepest descent (dsd) on
a surface. As water flows on the surface of a terrain T
following the dsd it accumulates on the local minima
of T . For a local minimum p on T , the watershed
of p is the set of all points on T from which water
flows down to p as it follows the dsd. Since a dem
is a discrete, non-continuous surface, it is not com-
pletely clear how to translate the dsd model to dems.
For tins, on the other hand, the dsd model can be
directly applied (although here one also has to de-
cide how to define flow on flat areas). Nevertheless,
existing software for flow modeling often makes use
of dems, because of the ease of implementing algo-
rithms on dems. Implementing the dsd model on a
tin is non-trivial because of robustness problems; in-
deed, existing software packages for flow computation
on tins do not follow the exact dsd model, but dis-

∗Dept. of Mathematics and Computer Science, Eind-
hoven University of Technology, mdberg@win.tue.nl,

cs.herman@haverkort.net, ctsirogi@win.tue.nl

cretise the flow (e.g. by only allowing water to move
between a fixed set of points like the vertices of the
tin or the barycenters of the triangles). This poses
the question of how reliable the output of such soft-
ware packages is since they approximate water flow
in a coarse way. The only exception is the imple-
mentation of Liu et al. [8]. However, their software
uses fixed precision arithmetic which leads to round-
off errors during computation. As they conclude, this
eventually produces inconsistencies in the output.

Moreover, an important factor that affects the out-
put of a flow model is the noise that appears in the
coordinates of the point set used by a terrain model.
Noise comes as a result of sampling with limited ac-
curacy equipment, data conversion between different
terrain representation models and calculations under
fixed precision arithmetic. For a given tin, noise can
be practically represented at each vertex as an interval
of possible height values while the xy-coordinates of
the vertex are considered to be fixed. It is therefore
interesting to evaluate to what extent the structure
of the watersheds of a tin change if we perturb the
height values of its vertices.

Our results. In the current paper, we present a
robust C++ software package to compute drainage
structures on TINs. Our implementation follows the
formal flow model described by de Berg et al. [2] and
Yu et al. [10] , which is based on the exact dsd model.
Our package is based on the Computational Geometry
Algorithms Library (CGAL), an open source software
library for geometric computations that supports the
use of exact arithmetic [4]. Thus it is the first ever
implementation of a flow model on tins that follows
strictly the dsd assumption and at the same time uses
exact arithmetic.

We have used our implementation on tins that rep-
resent real world geographical areas to perform exper-
iments involving perturbations on the height values
of their vertex set. We assess which percentage of
the area of such a tin is covered by watersheds of
shallow local minima and we test how this percentage
changes as the size of the perturbation interval grows.
We also investigate how much of the area of indvid-
ual watersheds is preserved between different noise in-
stances. For this reason, we examine two techniques
for matching watersheds between tins that are cre-
ated when different noise instances are applied to the
same terrain data set. Such techniques can be as well

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

111

27th European Workshop on Computational Geometry, 2011

useful for applications of data conflation; that is for
identifying the same watershed(s) between tins that
were generated from different data sources yet repre-
senting the same geographical area.

2 Experiments

2.1 Software Implementation

To conduct our experiments we have developed a soft-
ware package that computes drainage structures on
triangulated terrains. In particular, we have imple-
mented algorithms for computing paths of steepest
descent/ascent, river networks [2], watershed maps
and strip maps [10] on tins. Our software was im-
plemented in C++ using CGAL which provided ba-
sic geometric objects, predicates and number types as
building blocks for our needs.

The implemented algorithms that compute
watershed maps and strip maps take as an in-
put argument an object that is a model of the
CGAL::Triangulation_euclidean_traits_xy_3;
this is the appropriate triangulation type in CGAL
to represent a terrain. The triangulation object is
then converted to an object of an augmented version
of the CGAL::Polyhedron_3 type. This is because
boundaries between watersheds and strips may not
always coincide with the triangulation edges and can
as well extend through triangle interiors. The output
of the watershed map algorithm is an object of the
augmented CGAL::Polyhedron_3 type where each
facet, edge and vertex on the surface is tagged with
the watershed that it belongs to. Also each of the
watersheds in the output is provided as a model of
the graph concept of the boost Graph Library [6].

We have also designed a traits class with the
name Drainage_traits_2 that provides all the
predicates and geometric object types that are
essential for the main algorithms. This traits class is
a template class with two parameters; a version of
the CGAL::Triangulation_euclidean_traits_xy_3
model and a model of a CGAL linear geometric
kernel [3]. The linear kernel type parameter may be
instatiated with any number type, yet in practice the
algorithms of this package will not execute properly
unless an arbitrary precision number type is used
such as gmpq. This is due to the fact that fixed
precision arithmetic is not enough to represent the
coordinates of the intersection points between a
path of steepest descent/ascent and terrain edge
interiors [8]. Because of this, we have run our exper-
iments using exclusively as a kernel parameter the
CGAL::Exact_predicates_exact_constructions_kernel

. We intend to show in our future work how the
bit-size of the computed structures affects in practice
the applicability of the described flow model.

We have ran our implementation in a Linux Ubuntu

operating system version 9.10 using the GNU g++
version 4.4 compiler and CGAL version 3.6.1.

2.2 Input Data Specifications and Noise Model

The tins that we have used for our experiments are
constructed from dem data sets that are publicly
available from the U.S. Geological Survey (USGS)
server [9]. The data files hosted in this server are
of the USGS DEM digital format. Each file stores a
grid terrain of 1201 × 1201 cells where the dimension
of each cell is 90 meters and the elevation values of
the cells are integers.

We have created three tins, each derived from a
different dem data set. Each of these tins consists
of 50000 vertices and roughly 100000 triangles. The
vertex set of each tin was created by sampling a set
of points on the surface of one of the dems. A De-
launay triangulation was then constructed on the xy-
projection of the selected point set. Thus the final
tin can be seen as the result of lifting the vertices of
this triangulation up to their original elevation val-
ues. The names of the tin data sets and the range of
elevations among the vertices of each tin are listed in
Table 1.

Name Elevation Range (in meters)
aztec [1704, 3523]
marion [213, 457]
carlsbad [861,2256]

Table 1: The names and the elevations ranges of the
tin data sets that we use in our experiments.

Perturbations on the elevations of the tin vertices
were conducted in the following way. To the elevation
of each tin vertex we added a value picked uniformly
at random from an interval of the form [−η, η]. The
value of η used in each experiment is explicitly stated
in the description of the experiment.

3 Experiments

3.1 Area covered by small watersheds

In the first experiment we examine how large is the
part of the terrain covered by watersheds of spurious
minima and how this changes as noise is added to the
elevations of the vertices. There exist several criteria
in the GIS literature to define whether a local mini-
mum is a spurious minimum or not e.g. topological
persistence [5]. In our experiment we consider a lo-
cal minimum to be spurious if the xy-projection of
its watershed covers less than one thousandth of the
xy-projection of the total terrain area. We consider
all watersheds that are larger than this threshold as
sufficiently large. Deciding which threshold value is

112

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

appropriate to distinguish which watersheds are suffi-
ciently large is a debatable issue and depends on the
scale that is used in the analysis.

We have conducted the experiment in the follow-
ing way; for each of the original tin data sets we
have constructed six new tins by perturbing the el-
evation values of their vertices. We use a perturba-
tion interval [−η, η] of different size for each new tin
instance by choosing the value of η from the range
{0.5m, 1.0m, . . . , 3.0m}. We compute the watershed
map for each new tin and we measure:

◦ the number of watersheds that belong to spurious
minima.

◦ the percentage of the total area that is covered
by those watersheds on the xy-projection of the
terrain.

The results of this experiment are summarized in
Table 2. For the aztec data set we see that roughly
50% of the terrain is covered by relatively small water-
sheds and this percentage reaches approximately 55%
as the max size of the absolute perturbation increases
to 3 meters. For the carlsbad data set this percent-
age reaches up to 72% . Worse than that, the area
covered by small watersheds on the marion data set
rises dramatically even when the max absolute noise
is half a meter. This is due to the fact that the ele-
vation range of this data set is quite small, about 200
meters. Thus the original tin consists of large flat ar-
eas that break into small watersheds even with small
perturbations. The number of small watersheds rises
substantially for all of the data sets with respect to the
maximum noise and in the marion more than doubles
when the max absolute noise reaches 3 meters.

3.2 Watershed area maintained among different
noise instances

Next we investigate to what extent large watersheds
on a tin occupy the same area after perturbations of
the terrain vertices. We proceed with the following
definition.

Consider a tin T1 and let v1 ∈ T1 be a vertex that
is also a local minimum. Let T = {T2, T3, . . . , Tm} be
a set of tins such that each Ti ∈ T can be induced
by modifying the height values of the vertices of T1.
Assume that for every Ti ∈ T the vertex vi that corre-
sponds to (has the same xy-coordinates as) v1 is also
a local minimum of Ti. Let wi

xy be the xy-projection
of the watershed of vi for every 1 ≤ i ≤ m. We call
the core watershed of v1 the intersection ∩1≤i≤mw

i
xy.

Based on this definition of core watersheds we per-
form our next experiment as follows. Given one of
our tin data sets we construct three new instances
by perturbing the vertices of the original tin on the
z-coordinate. The noise interval that we use to derive

each of the three new instances is [−1.0m, 1.0m]. We
compute the watershed map on the three new tins as
well as on the original tin. We then distinguish on
the original tin all local minima whose watersheds
cover individually more than one thousandth of the
terrain xy-area. We then compute the core water-
sheds of these minima and calculate the percentage of
the terrain xy-area that these core watersheds cover.

The results of this experiment (not displayed in this
version of the paper) show that only roughly 5% of
the total terrain xy-area is indeed covered by the core
watersheds. This is partly due to the fact that not
all vertices that constitute local minima on the orig-
inal terrain appear as local minima also on the new
terrain instances. Consider a vertex v of locally min-
imum elevation that has a very small height differ-
ence from its neighbours on the triangulation. Then
even a slight perturbation among all terrain vertices
may cause another nearby vertex to become a local
minimum instead of v while no large changes may be
induced in the structure of the surrounding drainage
area.

Being aware of this issue we revise our experi-
ment by adopting the following approach. Let T =
{T1, T2, T3, T4} be the four tins that we have created,
that is the original tin data set and the three new
instances acquired by applying noise on the original
tin. Let Wi be the set of all sufficiently large water-
sheds on the surface of Ti ∈ T. Let w be a watershed
in Wi. Our intention is to match w with exactly one
large watershed from each other instance Wj , j 6= i
such that the matched watersheds have the largest
possible intersection on the xy-plane.

More formally, we consider a hypergraph where
each graph-node corresponds to a watershed in
∪1≤i≤4Wi. Each hyperedge is incident to four nodes,
each node corresponding to a watershed from a differ-
ent tin instance. Also every hyperedge has a positive
weight, equal to the area of the intersection of (the
xy-projections of) the watersheds corresponding to
the incident nodes. Our goal is to compute the max-
imum weight 4D-matching on the described hyper-
graph. This graph problem is known to be NP-hard,
yet there exists a 3-approximation algorithm based
on local search [1]. We have implemented this local
search algorithm for the needs of our experiments and
tested it on the described tins. The results obtained
from the local search matching algorithm are listed
on Table 3.

Data set # of Matched Watersheds Area %
aztec 203 22.11
marion 77 5.26
carlsbad 174 15.24

Table 3: Results of matching watersheds using the 4D
matching approximation algorithm.

113

27th European Workshop on Computational Geometry, 2011

Data set: Aztec
Noise Interval (in meters) # of Small Watersheds # of All Watersheds Total Area of Small Watersheds %
[0, 0] 2032 2348 48.02
[−0.5, 0.5] 1735 2061 48.67
[−1.0, 1.0] 1797 2119 49.20
[−1.5, 1.5] 1919 2230 52.85
[−2.0, 2.0] 1984 2292 53.54
[−2.5, 2.5] 2071 2372 56.45
[−3.0, 3.0] 2089 2395 55.62

Data set: Marion
Noise Interval (in meters) # of Small Watersheds # of All Watersheds Total Area of Small Watersheds %
[0, 0] 2041 2233 38.80
[−0.5, 0.5] 2972 3176 68.23
[−1.0, 1.0] 3301 3509 71.60
[−1.5, 1.5] 3570 3755 75.82
[−2.0, 2.0] 3805 3972 79.34
[−2.5, 2.5] 4069 4206 83.37
[−3.0, 3.0] 4350 4458 86.95

Data set: Carlsbad
Noise Interval (in meters) # of Small Watersheds # of All Watersheds Total Area of Small Watersheds %
[0, 0] 2032 2787 59.38
[−0.5, 0.5] 1915 2212 52.72
[−1.0, 1.0] 2085 2374 56.43
[−1.5, 1.5] 2315 2594 59.86
[−2.0, 2.0] 2444 2843 64.21
[−2.5, 2.5] 2862 3096 68.17
[−3.0, 3.0] 3058 3267 72.83

Table 2: The number of small watersheds and percentage of xy-area they cover on the tin data sets

4 Conclusions and Future work

As expected, a large part of the area in the acquired
data sets is covered by small watersheds. We fur-
ther show that the application of small perturbations
magnifies substantially this phenomenon especially on
terrains with relatively small elevation range. Suffi-
ciently large watersheds maintain only a small part
of their total area when applying small perturbations
on the tin vertices. We intend to evaluate how much
these results can improve with the use of a technique
that floods spurious local minima. We also opt to con-
duct experiments with data sets of different resolution
and compare the output with the current results.

References

[1] E.M. Arkin and R. Hassin On Local Search for
Weighted k-Set Packing. Mathematics of Operations
Research, 23:640–648, 1998.

[2] M. de Berg, P. Bose, K. Dobrint, M. van Kreveld,
M. Overmars, M. de Groot, T. Roos, J. Snoeyink
and S. Yu. The Complexity of Rivers in Triangu-
lated Terrains. In Proc. 8th Canadian Conference
on Computational Geometry, pages 325–330, 1996.

[3] H. Brönnimann, A. Fabri, G.J. Giezeman, S. Hert,
M. Hoffmann, L. Kettner, S. Pion and S. Schirra. 2D

and 3D Geometry Kernel. In CGAL User and Ref-
erence Manual, CGAL Editorial Board, 3.7 edition,
2010.

[4] CGAL, Computational Geometry Algorithms Li-
brary. http://www.cgal.org.

[5] H. Edelsbrunner, D. Letscher, and A. Zomorodian.
Topological Persistence and Simplification. In Proc.
41st IEEE Symposium on Foundations of Computer
Science, pages 45–463, 2000.

[6] A. Fabri, F. Cacciola and R. Wein. CGAL and the
Boost Graph Library. In CGAL User and Reference
Manual, CGAL Editorial Board, 3.7 edition, 2010.

[7] M. McAllister. A Watershed Algorithm for Triangu-
lated Terrains. In Proc. 11th Canadian Conference
on Computational Geometry, 103–106, 1999.

[8] Y. Liu and J.Snoeyink. Flooding Triangulated Ter-
rain. In Proc. 11th International Symposium on Spa-
tial Data Handling, pages 137–148, 2005.

[9] United States Geological Survey file server.
http://dds.cr.usgs.gov/pub/data/DEM/250/.

[10] S. Yu, M. van Kreveld and J. Snoeyink. Drainage
Queries in TINs: From Local to Global and Back
Again. In Proc. 7th International Symposium on
Spatial Data Handling, pages 13–1, 1996.

114

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

4-Holes in Point Sets

Oswin Aichholzer∗ Ruy Fabila-Monroy† Hernán González-Aguilar ‡ Thomas Hackl∗

Marco A. Heredia § Clemens Huemer¶ Jorge Urrutia‡ Birgit Vogtenhuber∗

Abstract

We consider a variant of a question of Erdős on the
number of empty k-gons (k-holes) in a set of n points
in the plane, where we allow the k-gons to be non-
convex. We show bounds and structural results on
maximizing and minimizing the number of general
4-holes, and maximizing the number of non-convex
4-holes.

1 Introduction

Let S be a set of n points in general position in
the plane. A k-gon is a simple polygon spanned by
k points of S. A k-hole is an empty k-gon, that is, a
k-gon which does not contain any points of S in its
interior.
In 1978 Erdős [5] raised the following question for

convex k-holes: “What is the smallest integer h(k)
such that any set of h(k) points in the plane contains
at least one convex k-hole?” As already observed by
Esther Klein, every set of 5 points determines a convex
4-hole, and 10 points always contain a convex 5-hole,
a fact proved by Harborth [8]. However, in 1983 Hor-
ton showed that there exist arbitrarily large sets of
points not containing any convex 7-hole [9]. It again
took almost a quarter of a century after Horton’s con-
struction to answer the existence question for 6-holes.
In 2007/08 Nicolás [11] and independently Gerken [7]
proved that every sufficiently large point set contains
a convex 6-hole.
Erdős also proposed the following variation of the

problem [6]. “What is the least number hk(n) of
convex k-holes determined by any set of n points in
the plane?” We know by Horton’s construction that
hk(n) = 0 for k ≥ 7. For k ≤ 6, upper and lower
bounds on hk(n) exist; see [1] for a survey.

∗Institute for Software Technology, University of Technol-
ogy, Graz, Austria, [oaich|thackl|bvogt]@ist.tugraz.at

†Departamento de Matemáticas, Cinvestav, México,
ruyfabila@math.cinvestav.edu.mx

‡Instituto de Matemáticas, Universidad Na-
cional Autónoma de México, Mexico City, Mexico,
[hernan|urrutia]@matem.unam.mx

§Posgrado en Ciencia e Ingenieŕıa de la Computación,
Universidad Nacional Autónoma de México, D.F. México,
marco@ciencias.unam.mx

¶Departament de Matemàtica Aplicada IV, Uni-
versitat Politècnica de Catalunya, Barcelona, Spain,
clemens.huemer@upc.edu

In this paper we generalize the latter problem by
allowing a k-hole to be non-convex. Thus, whenever
we refer to a k-hole, it might be convex or non-convex,
and we will explicitly state it when we restrict inves-
tigations to one of these two classes.
Note that a set of four points in non-convex position

might span up to three 4-holes; that is, the number of
k-holes can be larger than

(

n

k

)

, the maximum number
of convex k-holes.
We first investigate sets of small cardinality (Sec-

tion 2), and then consider the following tasks: maxi-
mizing the number of 4-holes (Section 3), maximizing
the number of non-convex 4-holes (Section 4), and
minimizing the number of 4-holes (Section 5). In ad-
dition to the best possible lower and upper bounds
on their number, we also show which families of point
sets obtain these bounds.

2 Small Sets

Even to determine the number of small holes is sur-
prisingly intriguing. For n ≤ 11, Table 1 shows
the minimum number of convex 4-holes, the max-
imum number of non-convex 4-holes, the minimum
and maximum number of (general) 4-holes, and, for
easy comparison, the number of 4-tuples.

convex non-convex general
n

min max min max

(

n

4

)

4 0 3 1 3 1
5 1 8 5 9 5
6 3 18 15 22 15
7 6 36 35 43 35
8 10 64 66 77 70
9 15 100 102 126 126

10 23 150 147 210 210
11 32 216 203 330 330

Table 1: Number of 4-holes for n = 4, . . . , 11
points [1].

Obviously, the maximum number of con-
vex 4-holes is

(

n

4

)

, obtained by sets in convex
position. For minimizing the number of convex
4-holes, the currently best known bounds are
n2

2 −O(n) ≤ h4(n) ≤ 1.9397n2 + o(n2), see [3, 4, 12].
For n = 4, . . . , 7 it can be seen from Table 1 that the

minimum number of 4-holes is
(

n
4

)

. In contrast,
(

n
4

)

is
the maximum number of 4-holes for n = 9, . . . , 11, so
the structure of extremal sets seems to switch.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

115

27th European Workshop on Computational Geometry, 2011

n=5: 1 / 8 / 9 n=6: 4 / 18 / 22

n=7: 7 / 36 / 43 n=8: 20 / 57 / 77

n=4: 0 / 3 / 3

Figure 1: Point sets maximizing the number of 4-holes
for n = 4, . . . , 8. Shown are the number of convex,
non-convex, and general 4-holes.

Figure 1 shows point sets maximizing the number
of 4-holes for n = 4, . . . , 8. The results for n > 8
suggest that sets in convex position might maximize
the number of 4-holes for n ≥ 9. Indeed, this will be
the first result we prove for general 4-holes (Section 3).

(a) (b)

Figure 2: Two unique extremal sets for n = 11 points:
(a) maximizes the number of non-convex 4-holes, and
(b) minimizes the number of 4-holes.

Figure 2 shows two extremal sets for n = 11
points. Each set represents the unique order type
which reaches the extreme value. The left set maxi-
mizes the number of non-convex 4-holes, namely 216,
and consists of a convex 5-hole inside a convex 6-gon.
The total number of 4-holes in this set is 267; i.e., it
contains in addition 51 convex 4-holes. The set on the
right side minimizes the number of general 4-holes. It
contains 51 convex and 152 non-convex 4-holes, thus
in total the minimum of 203 4-holes.

3 Maximizing the Number of (General) 4-Holes

Lemma 1 Let ∆ be a non-empty triangle in S.

There are at most three non-convex 4-holes spanned

by the three vertices of ∆ plus a point of S in the

interior of ∆.

Proof. Let p1, p2, and p3 be the vertices of ∆. Ob-
serve that any non-convex 4-hole has to use two edges
of ∆. Thus there are three choices for the unused edge
of ∆, and for each choice there is at most one way to
complete the two used edges of ∆ to a 4-hole. As-
sume to the contrary that two different 4-holes avoid
the edge p2p3 and use points q1 and q2, respectively,

in the interior. Then q2 lies outside the two trian-
gles formed by p1q1p2 and p1q1p3. Thus q2 lies in the
triangle formed by p2q1p3. But then q1 must lie in
one of the triangles spanned by p1q2p2 and p1q2p3, a
contradiction. �

Theorem 2 For n ≥ 9 the number of 4-holes is max-

imized by a set of n points in convex position.

Proof. In the following we assign every non-convex
4-tuple of points to the three vertices of its convex hull
and call this the representing triangle of the potential
non-convex 4-holes. By Lemma 1, any non-empty tri-
angle represents at most three 4-holes, and any convex
4-tuple gives at most one 4-hole.
Let T be the number of non-empty triangles. As

any non-empty triangle induces at least one 4-tuple
in non-convex position, we get

(

n

4

)

+ 2T (1)

as a first upper bound on the number of 4-holes of a
point set.
Note that a triangle ∆ with k ≥ 1 interior points is

counted k+2 times in (1), namely k times in the
(

n

4

)

4-tuples plus the extra 2 as ∆ is non-empty. Thus for
k > 1 we have over-counted the number of non-convex
4-holes assigned to ∆; cf. Lemma 1. Moreover, many
of the convex 4-gons might not be empty and thus no
4-holes. Therefore we now analyze how many of the
counted potential 4-holes can be reduced from (1). We
will do this by assigning (possibly multiple) markers
for over-counted 4-holes to convex 4-tuples and non-
empty triangles.
As above, let ∆ be a triangle with k ≥ 1 interior

points, and consider all 4-tuples consisting of the three
vertices of ∆ plus an extra point p. We distinguish
two cases.
First let p be one of the n−k−3 points outside ∆. If

the resulting 4-tuple is convex, we mark this 4-tuple,
as it is not empty and thus no 4-hole. If the 4-tuple
is non-convex, we mark the triangle which represents
the potential non-convex 4-hole, as at least one of the
three possible 4-holes of this 4-tuple is non-empty.
In the second case we consider the k points inside ∆.

As argued above, ∆ was counted k+2 times. But
by Lemma 1, there are at most three 4-holes using
one interior point of ∆ and thus represented by ∆.
Therefore we assign k−1 markers to ∆.
Altogether we have distributed n−4 markers while

considering ∆. Repeating this for all non-empty tri-
angles, we obtain a total of (n−4) · T markers.
A non-empty convex 4-tuple might have received

up to 4 markers in this way, one from each of its sub-
triangles. That is, we have at most 4 times as many
markers as convex 4-tuples which we can reduce from
the upper bound (1).

116

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

A non-empty triangle ∆ with k ≥ 1 interior points
might have got 4 · (k− 1) markers: For its interior
points, ∆ received k − 1 markers from the second
case, and for each non-empty triangle formed by two
vertices of ∆ and one point inside ∆, we received
one marker from the first case. As at least three
of the considered inner triangles are empty (the ones
spanned by an edge e of ∆ and the interior point clos-
est to e), the first case gives at most 3 · (k − 1) addi-
tional markers, resulting in a total of at most 4 ·(k−1)
markers for ∆. As ∆ was counted k+2 times, but rep-
resents at most three 4-holes (Lemma 1), we have at
most 4 · (k−1) markers for at least (k+2)−3 = k−1
over-counted objects. Thus, in both cases we over-
counted reducible terms at most by a factor of 4. We
therefore can reduce the number of potential 4-holes
by one quarter of the distributed markers, namely by
n−4
4 · T . This leads to the improved upper bound

(

n

4

)

+ 2T −
n− 4

4
· T

for the number of 4-holes. For n ≥ 12 this is at most
(

n
4

)

, the number of 4-holes for a set of points in convex
position. Together with the results from Table 1 for
n = 9, . . . , 11, this proves the theorem. �

4 Maximizing the Number of Non-Convex
4-Holes

Lemma 3 The number of non-convex 4-holes of any

set of n points is at most
n(n−1)(n−2)

2 = n3

2 −O(n2).

Proof. By Lemma 1, any non-empty triangle gener-
ates at most three non-convex 4-holes, and there are
at most

(

n

3

)

such triangles in a set of n points. �

Theorem 4 For every n′ > 0 there exist sets of

n points for some n ∈ {n′, . . . , 2n′}, with at least
n3

2 −O(n2 logn) non-convex 4-holes.

Proof. We consider the special point sets Xm, m ≥ 1,
with |Xm| = n = 2m+1−2 points, introduced in [10].
The point sets are defined recursively in layers, start-
ing with two points X1 := R1 in the first layer. An
additional layerRi is added to Xi−1 := R1∪· · ·∪Ri−1

by placing two new points close to any point in Ri−1

outside the convex hull of Xi−1, such that the follow-
ing conditions hold: (1) Xi = R1∪· · ·∪Ri is in general
position, (2) Ri are the extremal points of Xi, and (3)
any triangle determined by Ri contains precisely one
point of Xi in its interior. See Figure 3 for an example
and [10] for a detailed description of the construction.
Furthermore, in [10] it is shown that every triangle
spanned by Xm contains at most one interior point
of Xm; i.e., every non-empty triangle of Xm contains
exactly one point. Using Lemma 1, the number of

Ap

Bp

p

q

Bq

Aq

Figure 3: Example for m = 4 of the special point set
defined in [10].

non-convex 4-holes of Xm is three times the number
of non-empty triangles.
For each point of the set Xm, we count the num-

ber of triangles that contain it. First, fix a point
in the first layer R1, say p in Figure 3. Any tri-
angle containing p is formed by one point of Ap,
one point of Bp, and one point of the remaining set
Cp = Xm\{Ap∪Bp∪{p}}. We say that Ap and Bp are
the induced subsets of p, and that Cp is the remain-

der (of Xm) for p. As a1 := |Ap| = |Bp| =
n−2
4 and

c1 := |Cp| = n − 2 · a1 − 1 = n
2 , this gives a21 · c1 tri-

angles containing p, and thus the number of triangles
containing a point of R1 is 2 · a21 · c1 = 2 · (n−2

4)2 · n
2 .

Now consider a point q in the second layer R2. Its
induced subsets Aq and Bq have size a2 = n−6

8 , and
the remainder Cq has c2 = n−2 ·a2−1 = 3n+2

4 points.
In combination with r2 := |R2| = 4 this gives a total
of 4 · (n−6

8)2 · 3n+2
4 triangles containing a point of R2.

In general, |Ri| = ri = 2i, and the size of the two
induced subsets of any point pi in Ri is

ai =
1

ri+1
(n− |Xi|) =

n− (2i+1 − 2)

2i+1
.

Thus, with the size of the corresponding remainder
Cpi

of

ci = n− 2 · ai − 1 =
(2i − 1)n+ 2i − 2

2i
,

we get ri · a
2
i · ci triangles containing one point of Ri.

Using that every non-empty triangle of Xm gives
three non-convex 4-holes, and summing up over all
layers Ri, we obtain

3·

m
∑

i=1

ri·a
2
i ·ci =

3·

m
∑

i=1

2i
(

n− (2i+1 − 2)

2i+1

)2
(2i − 1)n+ 2i − 2

2i
=

1

2
n3+

(

39

4
− 3 log2(n+ 2)

)

n2−O(n log n)

for the total number of non-convex 4-holes of Xm. �

117

27th European Workshop on Computational Geometry, 2011

5 Minimizing the Number of (General) 4-Holes

We obtained the following observation for general
4-holes by checking all corresponding point sets from
the order type data base [2].

Observation 1 Let S be a set of n = 8 points in the

plane in general position, and p1, p2 ∈ S two arbitrary

points of S. Then S contains at least five 4-holes

having p1 and p2 among their vertices.

Based on this simple observation, we derive the fol-
lowing lower bound for the number of 4-holes.

Theorem 5 Let S be a set of n ≥ 8 points in the

plane in general position. Then S contains at least
5
2n

2 −O(n) 4-holes.

Proof. We consider the point set S in x-sorted order,
S = {p1, . . . , pn}, and sets Si,j = {pi, . . . , pj} ⊆ S.
The number of sets Si,j having at least 8 points is

n−7
∑

i=1

n
∑

j=i+7

1 =
n−7
∑

i=1

n− i− 6 =
n2

2
−

13

2
n+ 21.

By Observation 1, each set Si,j contains at least five
4-holes having pi and pj among their vertices (take
the six points of Si,j which are nearest to the seg-
ment pipj). Moreover, as pi and pj are the left- and
rightmost points of Si,j , they are also the left- and
rightmost points for each of these 4-holes. This im-
plies that any 4-hole of S counts for at most one set
Si,j , which gives a lower bound of 5

2n
2 −O(n) for the

number of 4-holes in S. �

Note that there exist sets which contain fewer than
1.94n2 convex 4-holes, while by the above result any
set contains at least 2.5n2 (general) 4-holes.

6 Conclusion

We have shown lower and upper bounds on the num-
bers of (general) and non-convex 4-holes in point sets.

A natural generalization of this work is to consider
similar questions for k > 4. For example, we have
been able to show that for every constant k ≥ 3, the
maximum number of non-convex k-holes is asymp-
totically smaller than the maximum number of convex
k-holes. This gives rise to the following conjecture,
which is a general version of Theorem 2, and part of
our ongoing research on this topic.

Conjecture 1 For any constant k ≥ 5 and suffi-

ciently large n, the number of k-holes is maximized

by a set of n points in convex position.

Acknowledgments

Research on this topic was initiated during the Third

Workshop on Discrete Geometry and its Applications in

Morelia (Michoacán, Mexico). We thank Edgar Leonel

Chávez González and Feliu Sagols for helpful discussions.

Research of Oswin Aichholzer, Thomas Hackl, and Birgit

Vogtenhuber supported by the FWF [Austrian Fonds

zur Förderung der Wissenschaftlichen Forschung] under

grant S9205-N12, NFN Industrial Geometry. Research of

Clemens Huemer partially supported by projects MEC

MTM2009-07242 and Gen. Cat. DGR 2009SGR1040.

Research of Marco Antonio Heredia Velasco, Hernán

González-Aguilar, and Jorge Urrutia partially supported

by CONACyT (Mexico) grant CB-2007/80268.

References

[1] O. Aichholzer. [Empty] [colored] k-gons - Recent re-
sults on some Erdös-Szekeres type problems. In Proc.

XIII Encuentros de Geometŕıa Computacional, pages
43–52, Zaragoza, Spain, 2009.

[2] O. Aichholzer and H. Krasser. The point set order
type data base: A collection of applications and re-
sults. In Proc. 13th Canadian Conference on Com-

putational Geometry CCCG’01, pages 17–20, 2001.

[3] I. Bárány and P. Valtr. Planar point sets with a small
number of empty convex polygons. Studia Sci. Math.

Hungar., 41(2):243–266, 2004.

[4] A. Dumitrescu. Planar sets with few empty convex
polygons. Studia. Sci. Math. Hungar., 36(1–2):93–
109, 2000.

[5] P. Erdős. Some more problems on elementary geom-
etry. Austral. Math. Soc. Gaz., 5:52–54, 1978.

[6] P. Erdős. Some old and new problems in combinato-
rial geometry. In Convexity and Graph Theory, M.

Rosenfeld et al., eds., Annals Discrete Math., 20:129–
136, 1984.

[7] T. Gerken. Empty convex hexagons in planar point
sets. Discrete and Computational Geometry, 39(1–
3):239–272, 2008.

[8] H. Harborth. Konvexe fünfecke in ebenen punktmen-
gen. Elemente Math., 33:116–118, 1978.

[9] J. Horton. Sets with no empty convex 7-gons. Canad.
Math. Bull., 26(4):482–484, 1983.

[10] G. Károlyi, J. Pach, and G. Tóth. A modular version
of the Erdős-Szekeres theorem. Studia. Sci. Math.

Hungar., 38(1–4):245–260, 2001.

[11] C. Nicolás. The empty hexagon theorem. Discrete

and Computational Geometry, 38(2):389–397, 2007.

[12] P. Valtr. On the minimum number of empty poly-
gons in planar point sets. Studia. Sci. Math. Hungar.,
30:155–163, 1995.

118

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Flow Computations on Imprecise Terrains

Anne Driemel∗ Herman Haverkort† Maarten Löffler‡ Rodrigo I. Silveira§

Abstract

We study the computation of the flow of water on
imprecise terrains. We consider two approaches to
modeling flow on a terrain: one where water can only
flow along the edges of a predefined graph (for ex-
ample a grid, a triangulation, or its dual), possibly
non-planar, and one where water flows across the sur-
face of a polyhedral terrain in the direction of steepest
descent. In both cases each vertex has an imprecise
height, given by an interval of possible values, while
its (x, y)-coordinates are fixed. For the first model,
we give a simple O(n log n) time algorithm to com-
pute the maximal watershed of a vertex, where n is
the number of edges of the graph. We show that, in
contrast, in the second model the problem of deciding
whether one vertex may be contained in the watershed
of another is NP-hard.

1 Introduction

Simulating the flow of water on a terrain is a prob-
lem that has long been studied in geographic infor-
mation science (GIS). It is common practice to derive
drainage networks, channel lines, and catchment areas
directly from a digital elevation model.

Naturally, these computations are affected by mea-
surement errors of the elevations. A frequent way to
deal with this imprecision is to model the elevation at
a point of the terrain using stochastic methods [3, 7],
leading to results that are not fully reliable. An ap-
proach taken in computational geometry [1, 2, 4] is to
replace the exact elevation of each surface point by
an imprecision interval, and computing the outcome
of the most optimistic and pessimistic scenarios ex-
actly. This is the approach we take in this paper.

When simulating water flow on terrain surfaces, it
is assumed that water flows downward, in the direc-
tion of steepest descent. Most hydrological research in
GIS uses a grid elevation model, in which each grid cell
can drain to one or more of its eight neighbors, such
∗Utrecht University, The Netherlands, anne@cs.uu.nl. This

work has been supported by the Netherlands Organisation for
Scientific Research (NWO) under RIMGA.
†Dept. of Computer Sc., TU Eindhoven, the Netherlands
‡Computer Science Department, University of California,

Irvine, USA, mloffler@uci.edu. Funded by the U.S. Office
of Naval Research under grant N00014-08-1-1015.
§Departament de Matemàtica Aplicada II, Universitat

Politècnica de Catalunya, Spain, rodrigo.silveira@upc.edu.
Supported by NWO.

as in the D-8 model [5]. For a discussion about the
most common flow direction models see Tarboton [6].
When the surface is represented by a polyhedral ter-
rain, the flow of water can be traced across the surface
of a triangle, as discussed by Yu et al. [8].

Definitions. We define an imprecise terrain T as
a possibly non-planar geometric graph in IR2 in which
each vertex v ∈ IR2 has an imprecise third coordi-
nate, which represents its elevation . We denote the
bounds of the elevation of v with low(v) and high(v).
A realization R of an imprecise terrain T consists of
the given graph together with an assignment of eleva-
tions to vertices such that for each vertex v its eleva-
tion elevR(v) is at least low(v) and at most high(v).
We denote the set of all realizations of an imprecise
terrain T with RT . We study the flow of water on
imprecise terrains in two different models.

In the network model we assume that water only
flows along the edges of the realization. The steepness
of descent along an edge (p, q) in a realization R is
defined as σR(p, q) = (elevR(p)− elevR(q))/|pq|. The
water that arrives at a particular vertex p, flows to the
neighbor q, such that σR(p, q) is positive and maximal
over all edges incident to p. For simplicity of exposi-
tion, we assume that this steepest descent neighbor is
always unique and that edges are never horizontal in
the realizations considered. If water flows from p to q
in a realization R we write p→

R
q. If a vertex does not

have a lower neighbor we call it a local minimum .
The watershed of a vertex q in a realization R

is defined as the set W(R, q) = {p : p→
R
q}. The

potential watershed of a vertex q in a terrain T
is W∪(q) =

⋃
R∈RT

W(R, q), that is, it is the set of
points p for which there exists a realization R, such
that water flows from p to q.

If the graph in the (x, y)-domain is a planar tri-
angulation, then we can also consider the case that
water flows across the polyhedral terrain represented
by a realization. We call this the surface model .
The water that arrives at a particular point on this
surface now flows in the true direction of the steepest
descent, possibly across the interior of a triangle.

Results. In Section 2 we give a simple O(n log n)
time algorithm to compute the potential watershed of
a vertex in the network model, where n is the number
of edges of the graph. The analysis also shows that
for every vertex p, there is a realization of the terrain

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

119

27th European Workshop on Computational Geometry, 2011

in which the watershed of p is its complete potential
watershed, i.e., W∪(p) is realizable. In contrast, we
show in Section 3 that in the surface model the prob-
lem of deciding whether water can possibly flow from
a given point p to a given point q is NP-hard.

2 Computing watersheds in the network model

Canonical realization. We first show that the poten-
tial watershed of a vertex q is realizable.

Definition 1 The watershed-overlay of a set of
watersheds W(R1, q1), ...,W(Rk, qk) is the realiza-
tion R∗ such that for every vertex v, we have
that elevR∗(v) = high(v) if v /∈ ⋃

W(Ri, qi) and
elevR∗(v) = mini:v∈W(Ri,qi) elevRi

(v) otherwise.

Lemma 1 Let R∗ be the watershed-overlay of
W(R1, q), . . . ,W(Rk, q), then it holds that W(R∗, q)
contains W(Ri, q), for any i ∈ {1, . . . , k}.

Proof. Let u be a vertex of the terrain, which is con-
tained in one of the given watersheds. Let Ri be
a realization from R1, ..., Rk such that elevR∗(u) =
elevRi

(u). To prove the lemma, we show that u is
contained in W(R∗, q) by induction on increasing ele-
vation of u in R∗. The base case is that u is equal to
q, and in this case the claim holds trivially.

Now, consider the vertex v which is reached from
u by taking the steepest descent edge in Ri. Since
elevR∗(v) ≤ elevRi

(v) ≤ elevRi
(u) = elevR∗(u), it

holds that v lies lower than u in R∗.
If v is still the steepest descent neighbor of u in

R∗, then, by induction, v ∈ W(R∗, q) and therefore
u ∈ W(R∗, q). Otherwise, there is a vertex v̂ such
that σR∗(u, v̂) > σR∗(u, v). There must be an Rj

such that v̂ ∈W(Rj , q), since otherwise, by construc-
tion of the watershed-overlay, we have elevR∗(v̂) =
high(v̂) ≥ elevRi(v̂) and thus, σRi(u, v̂) ≥ σR∗(u, v̂) >
σR∗(u, v) ≥ σRi(u, v) and v would not be the steepest
descent neighbor of u in Ri. Therefore, by induction,
also v̂ ∈W(R∗, q) and, again, u ∈W(R∗, q). �

The above lemma implies that for any vertex q,
the watershed-overlay R∗ of all possible realizations
in RT , realizes the potential watershed of q, i.e.,
W∪(q) = W(R∗, q). Therefore, we call R∗ the canon-
ical realization of the potential watershed W∪(q).

Algorithm. Next, we describe how to compute the
canonical realization of W∪(q) for a given vertex q.
The idea of the algorithm is to compute the vertices of
W∪(q) and their canonical elevations in increasing or-
der of elevation, similar to the way in which Dijkstra’s
shortest path algorithm computes distances from the
source. Refer to Algorithm 1 for the general outline.

The algorithm uses a subroutine Expand(q′, z′),
which returns for a vertex q′ and an elevation z′ ∈

Algorithm 1 ComputePWS(q)
1: Enqueue (q, z) with key z = low(q)
2: while the Queue is not empty do
3: (q′, z′) = DequeueMin()
4: if q′ is not already in the output set then
5: Output q′ and set elevR∗(q′) = z′

6: Enqueue each (p, z) ∈ Expand(q′, z′)
7: end if
8: end while

[low(q′), high(q′)] the set of neighbors P of q′, such
that for each p ∈ P , there exists a realization R with
elevR(q′) ∈ [z′, high(q′)], such that p→

R
q′. In partic-

ular, it returns tuples of the form (p, z), where z is
the minimum elevation of p over all such realizations
R. We will now explain the preprocessing step that
allows an efficient computation of Expand(q′, z′).

We define the slope diagram of a vertex p as the
set of points q̂i = (di, high(qi)), such that qi is a
neighbor of p and di is its distance to p in the (x, y)-
projection. Let q1, q2, ..., be the neighbors of p in-
dexed such that q̂1, q̂2, ... appear in counter-clockwise
order along the boundary of the convex hull in the
slope diagram, starting from the leftmost point and
continuing to the lowest point (for simplicity of ex-
position we ignore the remaining neighbors). Let zi

be the value where the supporting line of the edge
q̂i, q̂i+1 intersects the vertical axis of the slope dia-
gram, see Figure 1. We denote with Z(p) the result-
ing decomposition of [low(p), high(p)] into intervals
that is given by the zi and annotated by the corre-
sponding points qi. We can precompute Z(p) in time
O(d log d) and space O(d), where d is the vertex de-
gree of p. Since the sum of vertex degrees is O(n),
this takes O(n log dmax) time and O(n) space over-
all, where dmax is the maximum vertex degree in the
terrain.

Now, for a neighbor p of q′, we can compute its
elevation as it should be returned by Expand(q′, z′)
by computing the lower tangent to the convex hull
in the slope diagram, which passes through the point
q̂′ = (d′, z′), where d′ is the distance to p in the (x, y)-

q̂i+1

high(qi)

di

zi

zi−1

q̂i

q̂i−1

z

q̂′

Figure 1: Slope diagram of the neighbors of p.

120

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

projection, see Figure 1. This can be done via a binary
search on Z(p) in time in O(log dmax). Intuitively, we
annotated each interval of Z(p), with the neighbor of
p that the vertex q′ has to compete with for being the
steepest-descent neighbor if the elevation of p is in this
interval. Doing this for all neighbors of q′, we find that
Expand(q′, z′) runs in O(d log dmax) time, where d is
the vertex degree of q′. We get the following lemma.
We omit the full proof due to space limitations.

Lemma 2 After precomputations in O(n log dmax)
time and O(n) space, Expand(q, z) can be imple-
mented to run in O(d log dmax) time.

To prove the correctness of Algorithm 1 we use
induction on the vertices extracted from the prior-
ity queue in the order of their extraction. The in-
duction hypothesis says that for each extracted tuple
(q′, z′), it holds that there exists a realization R with
elevR(q′) = z′ and q′→

R
q, such that this elevation is

minimal. By Lemma 1, this implies that the algo-
rithm outputs the canonical realization of W∪(q). As
for the running time, it is easy to see that each vertex
is expanded at most once. Using Lemma 2, we get
the following theorem. We omit the full proof due to
space limitations.

Theorem 3 The algorithm ComputePWS(q) com-
putes the canonical realization of the potential water-
shed W∪(q) in time O(n log n), where n is the number
of edges of the graph.

3 NP-hardness in the surface model

In this section we sketch how to prove that decid-
ing whether water potentially flows from a point s to
another point t on an imprecise triangulated terrain,
under the surface model, is NP-hard. The reduction is
from 3-SAT; the input is an instance with n variables
and m clauses. Globally, the construction consists of
a grid with O(m) × O(n) squares, where each clause
corresponds to a column and each variable to a row of
the grid; the construction also contains some columns
and rows that do not directly correspond to clauses
and variables. The grid is placed across the slope of a
“mountain” with shape similar to that of a pyramidal
frustum. Figure 2 illustrates the construction. (The
vertical faces in the illustration can easily be replaced
by non-vertical triangulated slopes without affecting
the construction.) A key element in the construction
is the divider gadget (Figure 3, left), which is placed
at every intersection of a clause column and a vari-
able row. It consists of two imprecise vertices with
a long edge between them and ensures that only if
the two imprecise vertices are both at opposite ex-
treme heights, can any water pass the divider gadget,
otherwise it will flow to a local minimum. This way

it carries over the (inverted) state of each imprecise
vertex from left to right.

Across each divider gadget, water may flow in sev-
eral courses, that may each veer off to the left or to
the right, depending on the elevations of the impre-
cise vertices. We assume that the water takes the left
courses if the variable is true, and the right courses
if it is false. Now, to encode each clause, we let the
water flow to a local minimum if and only if the clause
is not satisfied. Figure 2 (right) shows an example.

In order to link the values of the imprecise vertices
of the heights in the divider gadgets that belong to
the same variable, we need to make sure that neigh-
boring vertices have opposite extremal heights, just
like in divider gadgets. For this, we use a connector
gadget, which is basically the same construction as the
divider gadget, see Figure 3 (right). As in the divider
gadget, we only let the water escape if the heights of
the imprecise vertices are at opposite extremes.

With this construction water can flow from s to t
if and only if the 3-SAT formula can be satisfied.

4 Further Work

There are many related problems in the network
model that cannot be discussed due to space limi-
tations. We want to mention at least some of them.

Similar to the potential watershed of q, we can de-
fine the set of points that potentially receive water
from q. Naturally, there is not always a canonical re-
alization for this set, however, it can be computed in
the same way as described in Section 2 using a pri-
ority queue that processes vertices in decreasing or-
der of their maximal elevation, such that they would
still receive water from q. Our definitions and algo-
rithms naturally extend to sets of nodes. Therefore,
we can also compute potential watersheds with re-
spect to lakes or river beds.

Secondly, besides the potential flow paths, one may
be interested in the question of whether water always
flows between two vertices. We can define the set

W∩(q) =
⋂

R∈RT

W(R, q),

which is the set of points from which water flows to q
in any realization. Observe that a vertex is contained
in W∩(q) if and only if it does not have a potential
flow path to a potential local minimum or a point
outside W∪(q), which does not go through q. We can
compute this set using the techniques described here.
However, this definition may be very sensitive to flow
paths being interrupted by overlapping imprecision
intervals of neighboring vertices in relative flat terrain.
Therefore, it is not clear if this is the right definition
of persistent water flow.

Thirdly, note that for two given vertices p and
q, such that p ∈ W∪(q), it is not necessarily true

121

27th European Workshop on Computational Geometry, 2011

s

t

s

t

x1

x2

x3

x1 ∨ ¬x3 ∨ x4

x4

Figure 2: Left: Global view of the construction, showing the grid on the mountain slope. The fixed parts are
shown in gray, the variable parts are shown yellow (for divider gadgets) and orange (for connector gadgets).
Center: Top down view showing the locations of the gadgets, and the n× 2m green vertices, the only ones with
imprecise heights. Right: Detail of a clause, which forms one of the columns of the grid in the center.

Figure 3: Left: A divider gadget consists of two imprecise vertices with an edge between them. Right: A
connector gadget. The triangle needs to be much narrower, and the water streams need to be much closer to the
center of the construction than in the picture.

that W∪(p) ⊆ W∪(q). Therefore the potential wa-
tersheds of a terrain do not form a proper hierarchy.
This makes it challenging to design a data structure
that stores imprecise watersheds and answers queries
about the flow of water between vertices efficiently.

Finally, the contrast between the results in Sec-
tion 2 and Section 3 leaves room for further research
questions, i.e., would it be possible to apply realistic
input assumptions to make the potential flow compu-
tation in the surface model tractable? Another ques-
tion is whether there exists a model of approximation
for water flow and how it relates to the network model.

Acknowledgments. We are grateful to Chris Gray for

many interesting and useful discussions.

References

[1] C. Gray and W. Evans. Optimistic shortest paths
on uncertain terrains. In Proc. 16th Canad. Conf. on
Comput. Geom., pages 68–71, 2004.

[2] C. Gray, M. Löffler, and R. I. Silveira. Smoothing im-
precise 1.5D terrains. In Proc. 6th International Work-
shop on Approximation and Online Algorithms, pages
214–226, 2009.

[3] F. Hebeler and R. Purves. The influence of elevation
uncertainty on derivation of topographic indices. Ge-
omorphology, 111(1-2):4 – 16, 2009.

[4] Y. Kholondyrev and W. Evans. Optimistic and pes-
simistic shortest paths on uncertain terrains. In Proc.
19th Canad. Conf. on Comput. Geom., pages 197–200,
2007.

[5] J. O’Callaghan and D. Mark. The extraction
of drainage networks from digital elevation data.
Computer vision, graphics, and image processing,
28(3):323–344, 1984.

[6] D. Tarboton. A new method for the determination of
flow directions and upslope areas in grid digital ele-
vation models. Water Resources Research, 33(2):309–
319, 1997.

[7] S. P. Wechsler. Uncertainties associated with digital
elevation models for hydrologic applications: a review.
Hydrology and Earth System Sciences, 11(4):1481–
1500, 2007.

[8] S. Yu, M. van Kreveld, and J. Snoeyink. Drainage
queries in TINs: from local to global and back again.
In Proc. 7th Int. Symp. on Spatial Data Handling,
pages 13A.1–13A.14, 1996.

122

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

The Number of k-Point Subsets Separable by Convex Pseudo-Circles

Dominique Schmitt∗ Jean-Claude Spehner∗

Abstract

We show that any set S of n points in the plane con-
tains 2kn−n−k2+1−

∑

k−1

i=1
a(i)(S) subsets of k points

that can be separated from the rest of S by convex
pseudo-circles (where a(i)(S) denotes the number of
i-sets of S). This value does not depend on the set of
pseudo-circles.

1 Introduction

Given a finite set S of n points in the plane (no three of
them being collinear) and an integer k ∈ {1, ..., n−1},
a classical geometric problem consists in searching
subsets of k points of S that can be separated from
the remaining points by different types of lines. Sepa-
ration by a straight line has been extensively studied.
In this case, the separable subsets are called k-sets.
Dey [4] has shown that the number of k-sets of S (de-

noted by a(k)(S)) is bounded by O(nk
1

3) and Tóth

[10] has constructed sets with n2Ω(
√

log k) k-sets. In
fact, Dey’s bound also holds when the separation lines
form a family of pseudo-lines, that is x-monotone un-
bounded curves that pairwise intersect at most once.
If the curves are x-monotone and if any two of them
may have up to s intersection points (with s even),
Buzaglo, Holzman, and Pinchasi [3] have shown that
the number of separable k-point subsets is O(n

s

2 k
s

2)
and that the bound is tight.

When the separation lines are circles and no four
points of S are cocircular, Lee [5] proved that S ad-

mits 2kn−n−k2+1−
∑

k−1

i=1
a(i)(S) separable k-point

subsets (those inside the circles). When the separa-
tion lines are pseudo-circles, i.e., simple closed curves
that pairwise intersect at most twice, and if all these
pseudo-circles either pairwise intersect or enclose a
same point of the plane, then the number of separa-
ble k-point subsets is O(nk) [3]. The bound is tight.

In this paper we show that Lee’s result holds true
when the separation lines are convex pseudo-circles.
This means that the number of subsets of k points of
S that can be separated from the rest of S by convex
pseudo-circles is an invariant of S: It does not depend
on the set of pseudo-circles.

∗Laboratoire LMIA, Université de Haute-Alsace, Mulhouse,

France, {Dominique.Schmitt, Jean-Claude.Spehner}@uha.fr

2 Order-k Centroid Triangulations

A k-edge is a couple (P, {s, t}) of subsets of S such
that |P | = k and the straight line (st) separates P

from S\(P∪{s, t}). Relations between k-edges and k-
sets can be observed through the so-called k-set poly-
gon of S (denoted by gk(S)), which is the convex hull
of the centroids of all k-point subsets of S. Indeed [1]:

Proposition 1 (i) The centroid g(T) of T is a vertex
of gk(S) if and only if T is a k-set of S.
(ii) The line segment g(T)g(T ′) is an edge of gk(S)

if and only if there exists a (k − 1)-edge (P, {s, t}) of
S such that T = P ∪ {s} and T ′ = P ∪ {t}.

In the same way, circularly separable k-point sub-
sets of S correspond to the regions of the order-k
Voronoi diagram of S. The edges and vertices of this
diagram are characterized by couples (P,Q) of sub-
sets of S such that Q lies on a circle and P is inside
the circle: For edges |Q| = 2 and |P | = k− 1, and for
vertices |Q| = 3 and either |P | = k− 1 or |P | = k− 2
(when no four points of S are cocircular) [5]. Taking
the centroids of all circularly separable k-point sub-
sets of S and connecting those corresponding to neigh-
bor order-k Voronoi regions, we get a triangulation of
the k-set polygon of S called the order-k (centroid)
Delaunay triangulation of S [2, 8]. Its edges and tri-
angles are characterized by the above defined couples
(P,Q). Here we define the same kind of triangulation,
but with convex pseudo-circles instead of circles.

Definition 1 A couple (P,Q) of disjoint subsets of
S is called a (convex) k-couple of S, if there exists
a simple closed strictly convex (Jordan) curve γ such
that Q lies on γ, P and S \ (P ∪ Q) lie respectively
in the bounded and in the unbounded open region of
the plane delimited by γ, and

• either Q = ∅ and |P | = k,
• or |P | < k < |P ∪Q| and 2 ≤ |Q| ≤ 3.

The second item corresponds to three kinds of k-
couples: |Q| = 2 and |P | = k − 1, |Q| = 3 and |P | =
k − 1, |Q| = 3 and |P | = k − 2.

The curve γ is said to define the k-couple (P,Q).

Definition 2 Two distinct k-couples (P,Q) and
(P ′, Q′) of S are said to be compatible (with each
other) if they admit two defining curves that inter-
sect in at most two points (here a tangent point is
considered as a double intersection point).

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

123

27th European Workshop on Computational Geometry, 2011

Denoting, for every subset E of the plane, E̊ the
relative interior of E and conv(E) the convex hull of
E, it is easy to see that:

Proposition 2 (i) (P,Q) is a k-couple of S if and
only if P and Q are two disjoint subsets of S such
that conv(P ∪Q) ∩ S = P ∪Q and

• either Q = ∅ and |P | = k,

• or the points of Q are extremal points of P ∪Q,
|P | < k < |P ∪Q|, and 2 ≤ |Q| ≤ 3.

(ii) Two distinct k-couples (P,Q) and (P ′, Q′) are
compatible if and only if

˚conv((P ∪Q) \ P ′) ∩ ˚conv((P ′ ∪Q′) \ P) = ∅.

Definition 3 For every k-couple (P,Q) of S, let be
the set of centroids of all k-point subsets of P ∪Q that
contain P . The convex hull of this set of centroids is
called the k-set polygon of (P,Q) and is denoted by
gk(P,Q).

Let us describe the shape of the k-set polygon for
every kind of k-couple (P,Q) of Definition 1:

• when Q = ∅, gk(P,Q) is the centroid of P ,

• when Q = {s, t}, gk(P,Q) is the line segment
g(P ∪ {s})g(P ∪ {t}),

• when Q = {r, s, t} and |P | = k − 1, gk(P,Q) is
the triangle g(P ∪{r})g(P ∪{s})g(P ∪{t}); such
a triangle is said of type 1,

• when Q = {r, s, t} and |P | = k − 2, gk(P,Q) is
the triangle g(P ∪{r, s})g(P ∪{s, t})g(P ∪{t, r});
such a triangle is said of type 2.

When k = 1, the 1-set polygons of the 1-couples
of S are the points of S, the segments connecting the
points of S, and the triangles with vertices in S and
with no point of S inside. Notice that in this case
all triangles are type-1. Furthermore, if the 1-couples
are pairwise compatible, their corresponding points,
open segments and open triangles are pairwise dis-
joint. The 1-set polygons of any maximal set of com-
patible 1-couples are then the set of vertices, edges,
and faces of a triangulation of S. Conversely, every
triangulation of S can be obtained in that way. We
extend this to higher values of k.

Using basic centroid properties it is not hard to
prove that:

Theorem 3 If (P,Q) and (P ′, Q′) are two distinct
compatible k-couples, g̊k(P,Q) and g̊k(P ′, Q′) are dis-
joint.

The converse of Theorem 3 is generally wrong. It
holds notably when P = P ′ or when P ∪Q = P ′∪Q′.

Proposition 4 The boundary of the k-set polygon
of any k-couple (P,Q) with |Q| ≥ 2 is composed of
k-set polygons of k-couples that are compatible with
(P,Q), compatible with each others, and compatible
with every k-couple that is compatible with (P,Q).

Observing precisely the boundary of each type of
k-set polygon we can see that:
• the endpoints of a segment k-set polygon

gk(P, {s, t}) are the k-set polygons of the k-
couples (P ∪ {s}, ∅) and (P ∪ {t}, ∅),

• the vertices of a type-1 triangle gk(P, {r, s, t}) are
the k-set polygons of the k-couples (P ∪ {r}, ∅),
(P ∪ {s}, ∅), and (P ∪ {t}, ∅). Its edges are
the k-set polygons of the k-couples (P, {r, s}),
(P, {s, t}), and (P, {t, r}),

• the vertices of a type-2 triangle gk(P, {r, s, t}) are
the k-set polygons of (P ∪{r, s}, ∅), (P ∪{s, t}, ∅),
and (P ∪ {t, r}, ∅). Its edges are the k-set poly-
gons of (P ∪ {r}, {s, t}), (P ∪ {s}, {t, r}) and
(P ∪ {t}, {r, s}).

Proposition 5 states the same kind of properties for
the boundary of the k-set polygon gk(S) of the whole
set S (they can be deduced from Proposition 1).

Proposition 5 The edges and vertices of the k-set
polygon of S are k-set polygons of k-couples that are
compatible with each others and with every other k-
couple of S.

The next result is a kind of reciprocal of Proposition
4.

Proposition 6 If k ≥ 2 and if (P1, {s1, t1}),
(P2, {s2, t2}), and (P3, {s3, t3}) are distinct pairwise
compatible k-couples whose k-set polygons form a tri-
angle t then

(i) t is the k-set polygon of a k-couple,
(ii) this k-couple is compatible with every k-couple

that is compatible with (P1, {s1, t1}), (P2, {s2, t2}),
and (P3, {s3, t3}).

Proposition 6 is a strong property of k-set polygons
of k-couples when k ≥ 2. Transposed to the case
where k = 1, it would mean that a triangle with ver-
tices in S cannot contain any point of S inside, which
is obviously wrong.

Statement (ii) is a consequence of the following
lemma:

Lemma 7 Let k ≥ 2 and let (P, {r, s, t}),
(P1, {s1, t1}), and (P2, ∅) be three compatible k-
couples such that gk(P1, {s1, t1}) is an edge of
gk(P, {r, s, t}) and g(P2) is its opposite vertex.

If |P | = k − 1 (resp. |P | = k − 2), every k-couple
(P ′, Q′) with P ′ 6= P (resp. P ′ ∪Q′ 6= P ∪Q) that is
compatible with (P1, {s1, t1}) and with (P2, ∅) is also
compatible with (P, {r, s, t}).

This lemma is also the basis of the proof of the
following fundamental result:

Theorem 8 The k-set polygons of any maximal set
of distinct compatible k-couples partition the k-set
polygon of S in vertices, edges, and triangular faces.

124

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

The triangulation obtained in this way is called an
order-k centroid triangulation of S (see Figure 1).

1

g4({1,6,7},{2,5}) g4({4,6,7},{2,3,5})

g4({2,7},{3,4,6})
g({2,5,6,7})

5

6

7

4

3

2

Figure 1: An order-4 centroid triangulation. Type-1
triangles are white and type-2 triangles grey.

An important consequence of Theorem 8, of Propo-
sitions 4 and 6, and of Lemma 7 is that:

Corollary 9 If C is a maximal set of distinct com-
patible k-couples then the subset of all k-couples of C
of the form (P,Q) with Q = ∅ (resp. |Q| = 2, resp.
|Q| = 3 and |P | = k−1, resp. |Q| = 3 and |P | = k−2)
is a maximal set of compatible k-couples of S of this
form.

3 Enumeration formulas

Let T k be an order-k centroid triangulation of S

(k ≥ 2) and let τ be the set of k-couples (P,Q) whose
k-set polygons are the type-2 triangles of T k (i.e.
|Q| = 3 and |P | = k− 2). The k-couples of τ are also
pairwise compatible (k − 1)-couples. The (k − 1)-set
polygons of these (k − 1)-couples are type-1 triangles
and, from Theorem 8, they belong to a same order-
(k−1) centroid triangulation T k−1 of S. These trian-
gles are the only type-1 triangles of T k−1: Otherwise
there would exist a (k − 1)-couple (P ′, Q′) /∈ τ with
|P ′| = k−2 and |Q′| = 3 compatible with the elements
of τ . Since (P ′, Q′) is also a k-couple compatible with
the elements of τ , this would be in contradiction with
Corollary 9. Hence:

Lemma 10 The number of type-2 triangles of T k is
equal to the number of type-1 triangles of T k−1.

There is also a relation between the vertices of T k

and the edges of T k−1.

Lemma 11 g(T) is a vertex of T k if and only if there
exists an edge gk−1(P, {s, t}) in T k−1 with P∪{s, t} =
T .

Proof. One can show that every vertex g(T) of T k is
adjacent to at least one type-2 triangle. This triangle
is then of the form gk(P, {r, s, t}) with T = P ∪{s, t}.

Thus, gk−1(P, {r, s, t}) is a type-1 triangle of T k−1

and gk−1(P, {s, t}) is one of its edges.
Conversely, if gk−1(P ′, {s′, t′}) is an edge of T k−1

with (P ′, {s′, t′}) 6= (P, {s, t}), it is easy to see that
(P ′ ∪ {s′, t′}, ∅) is a k-couple compatible with (P ∪
{s, t}, ∅) = (T, ∅) and, from Corollary 9, g(P ′∪{s′, t′})
is a vertex of T k. �

If, for a k-point subset T of S, the union of the
edges and triangles of T k−1 of the form gk(P,Q) with
P ∪Q = T is not empty, then this union is called the
domain of T in T k−1.
Clearly, every edge and every type-2 triangle of

T k−1 belongs to one and only one domain. The edges
of a type-2 triangle belong to the same domain as the
triangle. The type-1 triangles belong to no domain.
From Lemma 11, we then have:

Lemma 12 The number of vertices of T k is equal to
the number of domains of T k−1.

The right knowledge of the domains’ shape will be
needed to enumerate the vertices of T k.

Proposition 13 (i) The vertices of T k−1 that be-
long to a same domain are the extremal points of this
domain.

(ii) Every domain is convex.

Proof. (i) Every vertex in the domain of T is of the
form g(T \ {s}) since it is an endpoint of an edge of
the form gk−1(T \ {s, t}, {s, t}). Therefore, s is an
extremal point of T and, by an homothety centered
in g(T), g(T \{s}) is an extremal point of the domain.

(ii) We show that the line segment connecting any
two vertices g(T \ {r}) and g(T \ {s}) of the do-
main of T also belongs to this domain. Let gk−1(T \
{s, t}, {s, t}) be an edge of the domain of T with end-
point g(T \ {s}). If t = r we are done. Otherwise,
since conv(T) ∩ S = T , since |T | = k, and since r, s, t

are extremal points of T , (T \ {r, s, t}, {r, s, t}) is a
(k − 1)-couple of S. Now, gk−1(T \ {s, t}, {s, t}) and
g(T \ {r}) are respectively an edge and a vertex of
the type-2 triangle gk−1(T \ {r, s, t}, {r, s, t}). From
Lemma 7, Proposition 4, and Theorem 3, only (k−1)-
set polygons gk(P,Q) with P ∪ Q = T may cut the
edge g(T \{r})g(T \{s}) of gk−1(T \{r, s, t}, {r, s, t}).
Hence, this edge belongs to the domain of T . �

Theorem 14 The number of vertices of any order-k
centroid triangulation of S (k ∈ {1, . . . , n− 1}) is

2kn− n− k2 + 1−
∑

k−1

i=1
a(i)(S).

Proof. Consider a sequence (T 1, . . . , T k) of order-1,
. . . , order-k centroid triangulations of S such that, for
all i ∈ {2, . . . , k}, the type-1 triangles of T i−1 corre-

spond to the type-2 triangles of T i. Set v(k), e(k), t
(k)

1
,

125

27th European Workshop on Computational Geometry, 2011

t
(k)

2
the respective numbers of vertices, edges, type-1

and type-2 triangles of T k. Since T k is a triangula-
tion of gk(S) and since the number of vertices of gk(S)
equals the number a(k)(S) of k-sets of S, we get

e(k) = 3v(k) − a(k)(S)− 3, (1)

t
(k)

1
+ t

(k)

2
= 2v(k) − a(k)(S)− 2. (2)

Denoting by e
(k−1)

T
and t

(k−1)

T
the numbers of edges

and of triangles of the domain of T in T k−1, Propo-
sition 13 implies

e
(k−1)

T
= 2t

(k−1)

T
+ 1.

Since every edge and every type-2 triangle of T k−1

belongs to one and only one domain, it then follows
from Lemma 12,

e(k−1) = 2t
(k−1)

2
+ v(k).

Thus, from Lemma 10,

e(k−1) + e(k−2) = 2(t
(k−2)

1
+ t

(k−2)

2
) + v(k) + v(k−1)

and, using equations (1) and (2),

v(k) − 2v(k−1) + v(k−2) = a(k−2)(S)− a(k−1)(S)− 2.

The result follows by induction on k and by the fact
that v(1) = n (the vertices of T 1 are the points of S)
and that v(2) = 3n − a(1)(S) − 3 (the domains of T 1

are the edges of T 1). �

4 Discussion

Theorems 8 and 14 show that the number of subsets of
k points of S that can be separated from the rest of S
by convex pseudo-circles is equal to 2kn−n−k2+1−
∑

k−1

i=1
a(i)(S), and is an invariant of S. Furthermore,

the couples (P,Q) such that P is a k-point subset
separable by a convex pseudo-circle passing through
Q correspond to the edges (when |Q| = 2) and to the
type-1 triangles (when |Q| = 3) of an order-(k + 1)
centroid triangulation. Their numbers can be deduced
from proof of Theorem 14.

The convex pseudo-circles considered in this paper
are closed curves. The results also hold for curves
closing at infinity (as parabolas) if we consider the
separable subset as the one belonging to the convex
region of the plane delimited by the curve.

The separable subsets treated in this paper are
closely related to the following ones: Let F be a fam-
ily of subsets of S such that each member of F is
the intersection of S with a convex set and, for any
two members A and B of F , A 6⊆ B, B 6⊆ A, and
both conv(A) \ conv(B) and conv(B) \ conv(A) are
connected (or empty). Pinchasi and Rote [7] proved
that F contains at most 4

(

n

2

)

+ 1 members and that

the bound is tight (within a constant multiplicative
factor). Notice however that the constraints on the
convex hulls in this definition are stronger than our
compatibility condition.

In [5], Lee proposed an algorithm to construct the
order-k Voronoi diagram by deducing it from the
order-(k − 1) Voronoi diagram. This algorithm can
be dualized to iteratively construct the order-k cen-
troid Delaunay triangulation, starting with the clas-
sical (order-1) Delaunay triangulation [8]. In order
to generate suitable bases for multivariate B-spline
spaces, Liu and Snoeyink [6] proposed to extend this
algorithm, starting with any (order-1) triangulation.
When their algorithm succeeds in constructing a tri-
angulation, then this triangulation is called a centroid
triangulation. They proved that their algorithm actu-
ally works for k ≤ 3 and conjectured that it works for
all k. We can prove that our order-k centroid trian-
gulations can be generated by such an algorithm and,
conversely, that every execution of the algorithm gen-
erates such a triangulation [9]. This proves Liu and
Snoeyink’s conjecture.

References

[1] A. Andrzejak and E. Welzl. In between k-sets, j-
facets, and i-faces: (i, j)-partitions. Discrete Comput.

Geom., 29:105–131, 2003.

[2] F. Aurenhammer and O. Schwarzkopf. A simple on-
line randomized incremental algorithm for computing
higher order Voronoi diagrams. Internat. J. Comput.

Geom. Appl., 2:363–381, 1992.

[3] S. Buzaglo, R. Holzman, and, R. Pinchasi. On s-
intersecting curves and related problems. In Symp.

Comp. Geom., pages 79–84, 2008.

[4] T. K. Dey. Improved bounds on planar k-sets and
related problems. Discrete Comput. Geom., 19:373–
382, 1998.

[5] D. T. Lee. On k-nearest neighbor Voronoi diagrams
in the plane. IEEE Trans. Comput., C-31:478–487,
1982.

[6] Y. Liu and J. Snoeyink. Quadratic and cubic b-
splines by generalizing higher-order Voronoi dia-
grams. In Symp. Comp. Geom., pages 150–157, 2007.

[7] R. Pinchasi and G. Rote On the maximum size of
an anti-chain of linearly separable sets and convex
pseudo-discs. Israel J. Math., 172:337–348, 2009.

[8] D. Schmitt and J.-C. Spehner. On Delaunay and
Voronoi diagrams of order k in the plane. In Proc.

3rd Canad. Conf. Comput. Geom., pages 29–32, 1991.

[9] D. Schmitt and J.-C. Spehner. Generation of k-point
subsets separable by convex pseudo-circles. In prepa-
ration.

[10] G. Tóth. Point sets with many k-sets. Discrete Com-

put. Geom., 26(2):187–194, 2001.

126

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Delaunay Topological Stability and Convex Hull
of Point Sets with Coupled Uncertainties

Yonatan Myers and Leo Joskowicz ∗

Abstract

We address the topological stability and convex hull
computation of a set of uncertain points with de-
pendencies in the plane. Points are modeled with
the Linear Parametric Geometric Uncertainty Model
(LPGUM), a general and computationally efficient
worst-case, first-order linear approximation of geo-
metric uncertainty that supports dependence among
uncertainties, described in previous papers. We de-
fine the Delaunay Topological Stability (DTS) of a
set of n LPGUM points, modeled with k uncertainty
parameters. We describe two efficient algorithms
for testing DTS, which require O(n log n + nk) and
O(n log n + nP4(k)) time for points with indepen-
dent and dependent uncertainties, respectively, where
P4(k) is the time for solving a quartic k-variable opti-
mization. The convex hull of a set of DTS uncertain
points, defined as the region enclosed by the bound-
aries of the union and intersection of all convex hull in-
stances, is computed in O(n log r+nP4(k)+rk2 log k),
where r is the number of vertices of the convex hull.

1 Introduction

Geometric uncertainty is ubiquitous in many fields,
such as mechanical engineering and wireless localiza-
tion. Manufacturing, measurement, sensing and lo-
calization processes are intrinsically imprecise, and
thereby introduce error and uncertainty. In contrast,
their geometric models are usually exact and do not
account for these inaccuracies. Modeling and com-
puting geometric variability and its consequences is
of scientific, technical, and economic importance.
Geometric uncertainty has been addressed in a va-

riety of fields, from mechanical engineering [1, 3, 12]
to computational geometry. A common approach to
modeling geometric uncertainty is to use simple geo-
metric entities, such as rectangles [7], circles [1, 3], or
convex polygons [2] to bound point coordinate varia-
tions. Efficient algorithms for common problems, such
as finding the smallest/largest enclosing circle/convex
hull of independent uncertain points have been devel-
oped [8]. Recent papers study combinatorial proper-
ties using simple shapes to model point location un-
certainties [4]. A key drawback of these models is that

∗School of Engineering and Computer Science, The

Hebrew University of Jerusalem, ISRAEL. Emails:

yoni m@cs.huji.ac.il, josko@cs.huji.ac.il

they cannot model mutually dependent uncertainties.
Assuming error variations are independent often leads
to an overestimation of the actual uncertainty [12].

We have recently developed the Linear Parametric
Geometric Uncertainty Model (LPGUM) [6], a gen-
eral, expressive, and computationally efficient worst-
case, first-order, linear approximation of geometric
uncertainty that handles coupled uncertainties.
We have developed efficient algorithms for comput-
ing uncertainty zones of points and lines in the plane
[6, 11], for relative points orientation, for point set dis-
tance problems, and for uncertain range queries [10].

In this paper we address the topological stability
and convex hull computation of a set of uncertain
points with dependencies in the plane. Both prob-
lems are of theoretical and practical interest in many
fields. When point locations are uncertain, the rela-
tive order of points may change, thus giving rise to
undesired point configuration changes.

We illustrate the importance of topological stabil-
ity with a simple example. Fig. 1a shows a part de-
fined by six vertices in their exact (nominal) loca-
tions. Fig. 1b shows the uncertainty zone of each
vertex as a shaded rectangle, each representing the
union of all possible vertex locations. Specific vertex
instances give rise to a family of shapes. Fig. 1c shows
an infeasible instance of the part, which results from a
particular combination of vertex instances. Note that
the instance is impossible, because the edges, v1v6
and v2v3, intersect: the orientation of the triangle,
∆(v2, v6, v3), in this instance of the part is different
from that in the nominal part, thus indicating a topo-
logical instability. The inconsistency results from the
independent selection of extremal points of the ver-
tices’ uncertainty zones. Fig. 1d shows that when the
point location uncertainties are dependent, e.g., with
a global shearing error to the right, the inconsistency
may not appear.

Topological stability of point sets has been widely
studied [5]. Most papers define mappings of point sets
or graphs between spaces of different dimensions that
preserve properties such as connectivity, distances,
and relative angles. We introduce Delaunay Topo-
logical Stability (DTS), a restricted and more practi-
cal notion of topological stability based on, point set
nominal Delaunay triangulation. We show that DTS
testing and convex hull computation of a set of DTS
points can be performed efficiently in LPGUM.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

127

27th European Workshop on Computational Geometry, 2011

v1

v2 v3

v4v5

v6
v1

v2 v3

v4v5

v6

(a) (b)

v1

v2 v3

v4v5

v6

(c) (d)

v1

v2 v3

v4v5

v6

Figure 1: (a) Nominal polygonal part shape; (b) un-
certainty envelopes of the vertices; (c) inconsistent
part shape instance for independent point location un-
certainties, and; (d) part shape instance for dependent
point location uncertainties.

2 Geometric Uncertainty Model

To make the paper self-contained, we briefly intro-
duce the basic LPGUM concepts. A parametric un-
certainty model (q, q̄,∆) is defined as follows: Let
q = [q1, q2, . . . , qk]

T be a vector of k parameters over
an uncertainty domain ∆. Each parameter qj ∈ ℜ
takes a value from a bounded uncertainty interval

∆j = [q−j , q
+

j], where q−j < q+j is associated with a
nominal value q̄j . The parameters’ uncertainty do-
main ∆ = ∆1 × ∆2 . . . × ∆k is the product of the
parameters’ uncertainty intervals – a hypercube in
k-dimensional space. The nominal parameter vector

q̄ = (q̄1, . . . , q̄k) is the parameter vector values with
no uncertainty. Without loss of generality, we as-
sume that the uncertainty intervals are zero-centered
symmetric, i.e., −q−j = q+j and q̄j = 0. Geomet-
ric objects with shared uncertainties are modeled by
defining them over a common parametric uncertainty
model (q, q̄,∆). The relation to each parameter de-
termines the dependence between uncertainties. In
mechanical engineering, k would be large for a com-
plex part, and long chains of dimensions would lead
to many points having many parameters in common.

An uncertain dimension d(q) is defined by a nom-
inal value d̄ and a k-dimensional uncertainty sensi-

tivity vector Ad over a parametric uncertainty model
(q, q̄,∆). Entry (Ad)j is a constant that quantifies the
sensitivity of the dimension to parameter qj ; it is zero
when the dimension is independent of parameter qj .

The LPGUM of dimension, d(q), is d(q) =
d̄ + Adq. Its uncertainty zone is the interval,
[minq∈∆ d(q),maxq∈∆ d(q)] ⊂ ℜ, whose endpoints are
computed in O(k) time [11]. Two dimensions, d(q),
e(q) defined over a parametric uncertainty model
(q, q̄,∆), are said to be dependent, iff there exists an
index 0 < i ≤ k, for which (Ad)i 6= 0 and (Ae)i 6= 0,
where Ad, Ae are their respective uncertainty sensi-

tivity vectors, i.e.,when both dimension uncertainties
depend on at least one common parameter.
An uncertain point, v(q), is defined by a nominal

location, v̄, and a 2×k uncertainty sensitivity matrix,
Av, over a parametric uncertainty model, (q, q̄,∆).
The uncertain point location is v(q) = (vx(q), vy(q))

T ,
where vx(q) and vy(q) are uncertain dimensions; the
nominal point location is v̄ = (v̄x, v̄y)

T , where v̄x and
v̄y are nominal values. Entry, (Av)i,j , is a constant
that quantifies the sensitivity of coordinate, i, to pa-
rameter, qj (i = 1 for x, i = 2 for y); it is zero if
coordinate, i, is independent of parameter qj . When
the entire column, (Av)j , is zero, point v(q) is inde-
pendent of qj .
The LPGUM of point, v(q), is v(q) = v̄ +

Avq. Its uncertainty zone is the set of all loca-
tions for instances of parameter vector, q, Z(v) =
{v | v = v̄ +Avq, q ∈ ∆}. The point uncertainty zone
envelope is a zonotope with at most 2k vertices com-
puted in optimal O(k log k) time and O(k) space [12].
Two LPGUM points are dependent when they both
depend on at least one common parameter.

3 In-Circle Test

We define uncertain point set stability with respect
to the nominal points Delaunay triangulation. In a
Delaunay triangulation, the circles defined by the De-
launay triangles do not contain any other point of the
set. We therefore first describe how to efficiently per-
form the in-circle test for LPGUM points.
Let u(q), v(q), w(q) and a(q) be four LPGUM points

defined over a parametric uncertainty model, (q, q̄,∆),
and let C(q) be the circle defined by u(q), v(q) and
w(q). The in-circle test determines whether there ex-
ists a parameter instance, q∗ ∈ ∆, such that a(q∗) lies
in the circle, C(q∗) = (u(q∗), v(q∗), w(q∗)).
When the LPGUM points are independent, the

outer envelope of C(q) is the union of three nominal
circles, each tangential to the envelopes of the three
LPGUM points [9]. Every circle has two points in its
interior and one to its exterior. Thus, the in-circle test
determines if the uncertainty envelope of a(q) inter-
sects the uncertainty envelope of C(q), in O(k) time,
by testing for intersection of each of the point envelope
vertices and edges versus the circle outer envelope.
For dependent LPGUM points, we use an algebraic

approach. For nominal points, the in-circle test is
solved by determining the sign of the determinant:

∣

∣

∣

∣

∣

∣

∣

∣

ūx ūy ū2

x + ū2

y 1
v̄x v̄y v̄2x + v̄2y 1
w̄x w̄y w̄2

x + w̄2

y 1
āx āy ā2x + ā2y 1

∣

∣

∣

∣

∣

∣

∣

∣

where ū, v̄ and w̄ are in counter-clockwise order. A
negative value indicates that ā is outside the circle.
Replacing the nominal points by LPGUM points, sub-
ject to the parameter’s interval constraints, q ∈ ∆,
produces a quartic (fourth-degree) k-variable opti-
mization problem, which can be solved in P4(k) time.

128

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

4 Point Set Delaunay Topological Stability

Let S = {s1(q), . . . , sn(q)} be a set of n LPGUM
points in the plane, defined over a parametric uncer-
tainty model, (q, q̄,∆). Let S̄ be the corresponding
nominal points set, and Sq the set of point instances
of a particular parameter’s instance, q. Let DT (·)
denote the Delaunay triangulation.

Definition 1 The set S of LPGUM points is Delau-
nay Topologically Stable (DTS) iff, for every triangle,

△(s̄a, s̄b, s̄c) ∈ DT (S̄), there is a corresponding trian-

gle, △(sa(q), sb(q), sc(q)) ∈ DT (Sq) for all q ∈ ∆.

We now show how the nominal Delaunay triangu-
lation and the in-circle tests are used to determine
whether a point set is DTS.

Theorem 1 Let S be a set of n LPGUM points. Let

Tabc = △(s̄a, s̄b, s̄c) be a triangle in DT (S̄). Let s̄d
be a neighbor of Tabc, such that the triangle Tadb =
△(s̄a, s̄d, s̄b) is a triangle of DT (S̄). The set S is DTS,

iff, sd(q) lies outside the circle defined by sa(q), sb(q)
and sc(q), for all q ∈ ∆.

Proof. ⇒: By contradiction, suppose that S is DTS
but there exists a q∗ ∈ ∆ such that d(q) lies in
C(q). Thus the triangle △(sa(q

∗), sb(q
∗), sc(q

∗)) /∈
DT (Sq∗). This means that S is not DTS.
⇐: By contradiction, suppose that d(q) does not lie
in C(q) for any q ∈ ∆ but that S is not DTS. The
latter implies one of two possibilities: The first is
that there exists a parameter instance, q∗ ∈ ∆, such
that connecting the points of Sq∗ in the same order
as in DT (S̄) yields a legal triangulation that is not
DT (Sq∗). But this implies that d(q∗) lies in the cir-
cle C(q∗) – a contradiction. The second possibility is
that there exists a parameter instance, q∗∗, such that
connecting the points of Sq∗∗ in the same order as
in DT (S̄) does not yield a legal triangulation. Since
the LPGUM point locations are defined by continu-
ous functions, there must be a parameter instance,
q∗ ∈ ∆, such that connecting the points of Sq∗ in the
same order as in DT (S̄) yields a legal triangulation,
which amounts to the first scenario.
We conclude that, if sd(q) is outside C(q) for all

q ∈ ∆, then connecting the vertices of Sq in the same
order as in DT (S̄) yields the Delaunay triangulation
DT (Sq). Thus, S is DTS. �

Definition 2 The set of LPGUM points, S, is

Strongly Delaunay Topologically Stable (SDTS) iff,

for every triangle △(s̄a, s̄b, s̄c) ∈ DT (S̄), and every

one of its neighbors, s̄d, sd(q), lies outside the circle,

C(q) = (sa(q), sb(q), sc(q)), when all four points are

considered to be independent.

In SDTS, the dependencies between the point uncer-
tainties are not taken into account. Thus, by defi-
nition, SDTS is stronger and implies DTS, since the
dependencies between the point location uncertainties
restrict uncertainty zone extremal point selection.

In many cases, requiring DTS of the entire point set
S is too strong, as topological stability may only be
necessary with respect to a subset, S′, of the points,
e.g., those in the outer contour of a part, or on the
convex hull of a region. The subset, S′, can be inter-
preted as the anchor or stable subset of S.

Definition 3 The set, S, of LPGUM points is Par-

tially Delaunay Topologically Stable (PDTS) with re-

spect to a subset of S′ iff, S′ is DTS and ∀ si(q) ∈
S\S′, the set S′ ∪ {si(q)} is DTS.

5 Delaunay Topological Stability Testing

Theorem 1 directly implies that a linear number of
in-circle tests suffice to determine if a set is DTS, as a
Delaunay triangulation is a planar subdivision whose
complexity is linear in the number of points.
To determine if S is SDTS, we first compute

DT (S̄). Then, for every triplet (sa(q), sb(q), sc(q)) of
triangle △(s̄a, s̄b, s̄c) ∈ DT (S̄) and for every point
sd(q) for which s̄d is a neighbor of △(s̄a, s̄b, s̄c),
we do an independent in-circle test, i.e., we check
whether sd(q) is outside the uncertain circle, C(q) =
(sa(q), sb(q), sc(q)), when the points are considered to
be independent.

Theorem 2 Let S be a set of n LPGUM points. De-

termining if S is SDTS requires O(n logn+nk) time.
To test whether S is DTS, we first check whether it

is SDTS with independent points in-circle tests whose
complexity is O(k). If S is not SDTS, we record the
m ≤ n independent in-circle tests failed, and perform
the dependent in-circle tests on them, each in P4(k)
time.

Theorem 3 Let S be a set of LPGUM points. Deter-

mining if S is DTS requires O(n log n+nk+mP4(k))
time; m is the number of failed independent point,

in-circle tests, and P4(k) is the time required to solve

a single dependent point in-circle test.
From this theorem, we derive a method to compute
the Delaunay triangulation of a DTS set of uncertain
points, S. First, we compute the nominal Delaunay
triangulation DT (S̄). Then, for every s̄is̄j ∈ DT (S̄),
we connect si(q) and sj(q) with the LPGUM segment
λsi(q) + (1 − λ)sj(q), λ ∈ [0, 1], whose uncertainty
envelope is computed in O(k2 log k) time [11]. Since
there are O(n) edges, this takes O(nk2 log k) time, in
addition to the time for testing that S is DTS.

Theorem 4 Let S be a set of LPGUM points in the

plane, and let S′ be a subset of S of size r. Testing

if S is Partially Delaunay Topologically Stable with

respect to S′ takes, on average, a time of O(n log r +
nP4(k)), and O(n log r + (n− r)rP4(k)), in the worst

case.
To test if S is PDTS with respect to S′, we test if S′

is DTS, and then for every si(q) ∈ S\S′, if S′∪{si(q)}
is DTS, by adding s̄i to DT (S̄′), and performing in-
circle tests for its neighboring triangles. The aver-
age cardinality of Delaunay triangulation vertices is
6, which leads to the stated run time.

129

27th European Workshop on Computational Geometry, 2011

6 Convex Hull of DTS Uncertain Points

We now consider the problem of computing the convex
hull of a set of uncertain points with dependencies.
The problem has been investigated for independent
uncertain points [7], but not for points with depen-
dent uncertainties. Note that, without restrictions,
there can be exponentially many topologically differ-
ent convex hulls, for a set of uncertain points, S, as all
points subsets of S can form the convex hull, depend-
ing on each point uncertainty. Consequently, it is of
practical interest to define the convex hull of uncer-
tain points that are topologically stable, with respect
to the convex hull of the nominal points, CH(S̄).
The convex hull of a set of uncertain points is de-

fined as the region enclosed by the boundaries of the
union and intersection of all convex hull instances.
Points outside (inside) the outer (inner) convex hull
boundary are always outside (inside) any convex hull
instance of points in S. Other points are uncertain.

Definition 4 The union and intersection convex

hulls of a set S of n LPGUM points are:

UCH(S) =
⋃

q∈∆

CH(Sq) ICH(S) =
⋂

q∈∆

CH(Sq)

The union convex hull is a tight boundary on the
set of all points that lie in CH(Sq) for q ∈ ∆. The
intersection convex hull is the set of all points that
are in CH(Sq) for any q ∈ ∆.
We compute the union/intersection convex hull of a

set S of DTS LPGUM points as follows. We compute
the nominal convex hull H = CH(S̄) and its vertices,
SH ⊆ S inO(n log r) time. Then, we test if S is PDTS
with respect to SH . If so, we connect the points of SH

with LPGUM segments in their order of appearance
in H . We construct each segment uncertainty enve-
lope in O(k2 log k) time [11]. The union (intersection)
convex hull is the outer (inner) boundary.

Theorem 5 The union/intersection convex hull of

a set, S, of n dependent LPGUM points takes, on

average, O(n log r + nP4(k) + rk2 log k) time and

O(n log r + (n − r)rP4(k) + rk2 log k), in the worst

case, where r is the number of points on CH(S̄).

7 Conclusion

Determining the topological stability of a set of points
whose locations are uncertain and interdependent is
of theoretical interest, and has applications in many
fields. Most existing point location uncertainty and
point set topological stability models are either too
restrictive or are computationally expensive.
We have introduced the Delaunay Topological Sta-

bility (DTS) and its variants, Partial and Strong DTS,
for points in the Linear Parametric Geometric Uncer-
tainty Model (LPGUM). We described efficient algo-
rithms for testing if a set of LPGUM points is DTS,
and for computing the uncertain Delaunay triangula-
tion and uncertain convex hull of DTS point sets.

A key property of a DTS set of LPGUM points
is that the point set retains its inner structure and
relative points positions (or part of it) despite the in-
terdependent point location uncertainties. This is a
realistic assumption for many applications, as it does
not restrict the magnitude of nominal values and their
variations, and supports efficient computation. It may
prove useful for other hard/unsolved problems, e.g.,
the minimum diameter and the maximum closest un-
certain point set problems [10]. Future work includes
computing the convex hull of non-PDTS point sets,
and the uncertain Voronoi diagram of DTS point sets.

References

[1] S. Akella and M. Mason. Orienting toleranced
polygonal parts. Int. J. of Robotics Research

19(12):1147–1170, 2000.

[2] R.C. Brost and R.R. Peters. Automatic design
of 3D fixtures and assembly pallets. Proc. IEEE
Int. Conf. Robotics and Automation, USA 1996.

[3] J. Chen, K. Y. Goldberg, et al. Computing tol-
erance parameters for fixturing and feeding. The
Assembly Automation Journal 22:163–172, 2002.

[4] M. de Berg, E. Mumford, and M. Roeloffzen.
Finding structures on imprecise points. Proc.

26th European Workshop on Computational Ge-

ometry, pp 85–88, Dortmund, Germany, 2010.

[5] A. du Plessis, T. Wall. The Geometry of Topolog-

ical Stability. London Math. Society Monographs
New Series. Oxford Univ. Press, 1996.

[6] L. Joskowicz, Y. Ostrovsky-Berman, and Y. My-
ers. Efficient representation and computation
of geometric uncertainty: The linear parametric
model. Precision Engineering 34(1):2–6, 2010.

[7] M. Löffler and M. van Kreveld. Largest and
smallest convex hulls for imprecise points. Al-

gorithmica 56(2):235–269, 2010.

[8] M. Löffler and M. van Kreveld. Largest bound-
ing box, smallest diameter, and related problems
on imprecise points. Computational Geometry:

Theory and Applications 43(4):419–433, 2010.

[9] Y. Myers and L. Joskowicz. Circles with inde-
pendent and dependent uncertainties. Proc. 26th
European Workshop on Computational Geome-

try, pp 229–232, Dormuth, Germany, 2010.

[10] Y. Myers and L. Joskowicz. Point distance and
orthogonal range problems with dependent geo-
metric uncertainties. Proc. 14th ACM Symp. on

Solid and Physical Modeling, NY, USA, 2010.

[11] Y. Myers and L. Joskowicz. Uncertain geometry
with dependencies. Proc. 14th ACM Symp. on

Solid and Physical Modeling, NY, USA, 2010.

[12] Y. Ostrovsky-Berman and L. Joskowicz. Toler-
ance envelopes of planar mechanical parts with
parametric tolerances. Computer-Aided Design

37(5):531–544, 2005.

130

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Cannibal Animal Games:
a new variant of Tic-Tac-Toe

Jean Cardinal¤ Sébastien Collette¤ Hiro Ito† Matias Korman¤ Stefan Langerman¤

Hikaru Sakaidani† Perouz Taslakian¤

Abstract

This paper presents a new partial two-player game,
called the cannibal animal game, which is a variant of
Tic-Tac-Toe. The game is played on the infinite grid,
where in each round a player chooses and occupies free
cells. The first player Alice, who can occupy a cell in
each turn, wins if she occupies a set of cells, the union
of a subset of which is a translated or rotated copy
of a previously agreed upon polyomino P (called an
animal). The objective of the second player Bob is to
prevent Alice from creating her animal by occupying
in each round a translated or rotated copy of P . An
animal is a cannibal if Bob has a winning strategy,
and a non-cannibal otherwise. This paper presents
some new tools, such as the bounding strategy and the
punching lemma, to classify animals into cannibals
or non-cannibals. It is also shown that the pairing
strategy also works for this problem.

1 Introduction

Studying variants of the Tic-Tac-Toe game are in-
teresting problems in the area of recreational math-
ematics [1, 2, 3, 5, 6, 7, 8, 9]. Probably the most
studied among these games is an achievement game,
a somewhat generalized Tic-Tac-Toe, presented by
Harary [3, 5]. A polyomino or an animal is a set of con-
nected cells (sharing an edge) of the infinite grid. In
such games, two players Alice and Bob alternatively
occupy one cell of the infinite grid in each round of
the game, and the player who is the first to occupy
a translated copy of the given animal is a winner (we
will always assume that Alice is the first player). In
these games Bob cannot win, hence his objective is to
obstruct Alice’s achievement.

Here we present a new achievement game called the
cannibal animal game. As with Harary’s achievement
game, it is played on the infinite grid whereby players
alternate turns to occupy free cells of the grid. This
means that in each round the player must choose grid

∗Department of Computer Science, Université
Libre de Bruxelles (ULB), Belgium, {jcardin,
sebastien.collette, mkormanc, stefan.langerman,

perouz.taslakian}@ulb.ac.be
†School of Informatics, Kyoto University, Japan,

{itohiro@, sakaidan@lab2.}kuis.kyoto-u.ac.jp

(a) (b)

1

23

2

1

Figure 1: (a) The animal El (an L-shaped triomino),
(b) An example of the progress of the game: cells
depicted in black are occupied by Alice, and animals
depicted in gray correspond to Bob’s moves. In both
cases, the numbers on the cells represent the order in
which the cells are occupied. In the example, Alice
wins.

cells that are not yet occupied; hence, occupied re-
gions do not intersect. Moreover, once a cell is oc-
cupied, it remains so until the end of the game. In
contrast to the generalized Tic-Tac-Toe, the cannibal
animal game is a partial game: the roles and legal
moves of Alice and Bob are different. Alice’s legal
move is to occupy one cell of the infinite grid in each
round, and she wins if she occupies a translated copy
of an animal given beforehand (this move is the same
as that of the first player of Harary’s generalized Tic-
Tac-Toe). Bob’s role and allowed moves, however, are
different: in each round he must occupy a copy of the
given animal (hence occupy a subset of the grid cells),
and his objective is to prevent Alice from achieving
the animal. The animal achieved or that Bob occu-
pies may be a translation, a mirror image and/or a
90, 180, or 270-degree rotation of the given animal.
Each such translation/rotation is called a copy of the
animal and n-cell-animal is an animal consisting of n
cells. Figure 1 shows an example of the progress of the
game where the animal is El, an L-shaped triomino.

We call an animal a cannibal or a loser if Bob has
a winning strategy (Bob’s animal eats Alice’s animal)
and a non-cannibal or a winner otherwise. And hence
the game is called the cannibal animal game.

Our Results. In this paper we study the following
animals (see Figure 2 for examples): R(n,m) is an

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

131

27th European Workshop on Computational Geometry, 2011

Figure 2: Examples of animals: R(4, 6), S(4),
O(7, 8, 2), U(6, 5, 1), and X(3) (from left to right).

nm-cell-animal of an n £ m rectangle. R(n, n) is
sometimes expressed as S(n) (or an n £ n square).
O(n,m, k) (for k < min{n/2,m/2}) is a 2k(n + m ¡
2k)-cell-animal having the shape of R(n,m) but with
a hole of (n ¡ 2k) £ (m ¡ 2k) rectangle in the center
(that is, an O-shaped polyomino whose thickness is k).
U(h,w, k) (for k < min{h,w/2}) is a k(2h + w + 2k)-
cell-animal having a U -shape with height h, width w,
and thickness k. X(n) (or n-cross) is a (2n ¡ 1)-cell-
animal consisting of vertical and horizontal cells, each
of length n, that cross each other at the center cells.

1. The following animals are cannibals:

(a) S(n) with holes if at least one of the holes is
at least bn/4c cells away from the boundary
for n ≥ 4 (and no hole is on the boundary),

(b) O(n, m, k) for n,m, k ∈ N,

(c) U(h,w, 1) for h,w ∈ N, except U(2, 4, 1).

2. The following animals are non-cannibals:

(a) Animals with at most three cells,

(b) R(n,m) for any n,m ∈ N,

(c) X(3).

2 Cannibal animals (losers) and pairing strategy

In this section we demonstrate a strategy for Bob that
prevents Alice winning for a few families of animals.
To do this, we will use the idea of pairing strategy that
is used in many other combinatorial games. In what
follows we will show that this approach also works
for our cannibal animal game. We start with a simple
strategy for Bob that works for the O(n, m, k) animal:

Theorem 1 O(n,m, k) is a cannibal for any n,m ≥ 3
and k < min{n/2, m/2}.

Proof. Bob virtually partitions the playing-board
into blocks of size (n + k) £ (m + k). That is, we
define the block Bij as the rectangle [i(n + k), (i +
1)(n + k) ¡ 1] £ [j(m + k), (j + 1)(m + k) ¡ 1] (as
shown in Figure 3). The strategy for Bob is to place
his animal inside the block where Alice played her
last move. After Alice plays, Bob checks which block
her last move belongs to; if he has already played an

1
2

3

45

2 3

5

4
1

Figure 3: Winning strategy for Bob for O(n,m, k)
(in this example, for O(4, 6, 1)). Alice’s moves are
marked in black and Bob’s in gray. The numbers on
the cells represent the order in which the cells are
occupied. Since the block inside which Alice’s 4th
move is played already includes Bob’s animal, Bob’s
4th move is played in another arbitrary block.

animal in that same block, he simply plays in an arbi-
trary empty block (e.g., Bob’s 4th move in Figure 3).
Note that since the playing board is infinite, Bob can
always play these moves. With this strategy, Alice
clearly cannot construct a copy of O(n,m, k). ¤

This strategy is also useful for other animals. Recall
that by Theorem 6 squares are non-cannibals. Sur-
prisingly, the removal of a single interior cell from a
square animal can transform it into a cannibal.

Lemma 2 For any integer n ≥ 4, let A be an n £ n
square animal in which a single cell whose distance to
the boundary is at least bn/4c units has been removed.
Then A is a cannibal.

Proof. The proof is analogous to the proof of theo-
rem 1. This time we partition the board into blocks
of size (n+b(n¡1)/2c)£(n+b(n¡1)/2c). If the hole
(removed cell) is at least bn/4c units away from the
boundary, then Bob can always play his animal inside
the same block as Alice’s last move (details omitted
in this version).

Assume that Alice is able to construct a copy of the
animal on the board. By the porthole principle, there
would be a block in which Alice’s pieces form a square
of size at least dn/2e £ dn/2e (possibly with one cell
removed). However, this cannot occur since Bob also
occupies the same block with an n £ n square. ¤

In some cases, we might also need a more careful
partitioning of the grid into blocks:

Theorem 3 For any h,w ∈ N (other than (h,w) =
(2, 4)), the U(h,w, 1) animal is cannibal.

Proof. In this case, Bob virtually partitions the play-
ing board into blocks of size (w + k) £ h. But if he
arranges these blocks naively, there might be “cracks”
between Bob’s animals in which Alice could construct

132

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

(a)

(b)

Figure 4: Examples of failed partitions.

h

t

w+1

Figure 5: Tiling and shift size t.

her animal (see Figure 4). To avoid such cracks,
Bob must slant his partition, thus tiling the grid
with blocks with a shift of size (distance) t (Fig-
ure 5). We define the block Bi,j as the rectangle
[i(w +1)+ jt, i(w +1)+w + jt]£ [jh, jh+h¡1]. The
exact value of the slant depends on the parameters w
and h:

h = 2 (and w 6= 4): t = 2.

h ≥ 3 and 2h ¡ 2 ≥ w ≥ h ¡ 2: t = b(w + 1)/2c.

Otherwise: No slant is necessary (i.e., t = 0).

It is easy to show that with such a partition, Alice
will be unable to construct her animal (details omitted
in this version). ¤

We now introduce another idea to generate new
cannibal animals from known cannibal animals. Let
A be an animal and let C be a subset of cells of A.
Then A \C is an animal created by removing C from
A. We say that C is an outer piece if we can locate
a second copy of A \ C that covers a part of the re-
moved piece C of the first copy; we call C an inner
piece otherwise. See Figure 6.

Notice that even if C and C ′ are both inner pieces,
C ∪ C ′ may be outer. If C is an outer piece, then for
any superset C ′ of C is also outer.

Lemma 4 (Punching Lemma) Let A be a canni-
bal and let C be an inner piece of A. The animal A\C
is also a cannibal.

AC

B

D

Figure 6: A and B are inner pieces. C and D are
outer pieces since a second copy covers a part of the
piece as seen in the right examples.

Proof. Assume otherwise that A \ C is a non-
cannibal; then Alice would have a winning strategy,
i.e., she will be able to construct a copy of A\C with-
out Bob preventing it. Consider now the removed
piece C of the animal Alice constructed. Because C is
inner, this position cannot be occupied by Bob. More-
over, Alice can occupy this position in another round
to form animal A. Thus, a contradiction. ¤

Note that the reciprocal is not always true (see for
example Theorem 6 and Lemma 2). As a simple ap-
plication of this lemma, we have the following result:

Theorem 5 For any integer n ≥ 4, let S′ be an an-
imal S(n) in which any number of interior cells have
been removed. If at least one of the removed cells has
distance bn/4c or more to the boundary, then S′ is a
cannibal.

3 Non-cannibal animals (winners) and the bound-
ing strategy

In this section we give a few families of non-cannibal
animals. We first introduce a concept on common
intersection:

Definition 1 An animal P is called 2-Helly [4] if for
any family A of copies of P such that A ∩ A′ 6= ∅ for
any A,A′ ∈ A, the intersection

∩
A∈A A is nonempty.

It is easy to see that R(n,m) for any n and m is
2-Helly, while none of the other animals that we study
are.

Theorem 6 Any 2-Helly animal is a non-cannibal.

For proving this theorem, we first prove a restricted
version as follows:

Lemma 7 In any finite board, any 2-Helly animal P
is a non-cannibal provided that at least one copy P
can be occupied on the board.

Proof. At the beginning of each round we define S =
{s1, . . . , sk} as the set of copies of P not occupied by
Bob that fit in the board (note that some of these
positions may be occupied by Alice’s previous moves).
The set S will be treated as a set of potential positions
in which Alice may form her animal. Note that Bob’s

133

27th European Workshop on Computational Geometry, 2011

moves must be at some s ∈ S. Also, let S ′ ⊆ S be
the set of animals that stab all elements of S (that is,
s′ ∈ S ′ ⇔ s′ ∩ s 6= ∅, ∀s ∈ S).

Note that the set S initially is nonempty at the
beginning of the game, and whenever Bob plays, the
size of S is reduced. However, notice that S will only
become empty if Bob can place his copy occupying
the cells of some s′ ∈ S ′. Hence, Alice’s strategy is
as follows: if the set S ′ is empty, Alice occupies any
empty cell of some s ∈ S. Otherwise, S ′ is a nonempty
set of animals where any two intersect. Hence, by 2-
Hellyness, there exists a cell c that intersects all the
animals of S ′. Alice will occupy c, preventing Bob
from occupying any cell of S ′.

With this strategy, Alice makes sure that the set
S never becomes empty (since Bob can never occupy
s′ ∈ S ′) and the number of Bob’s possible moves only
decreases after each of Alice’s moves. Hence after a
finite number of turns, Bob will be unable to play
inside the square and Alice will be able to complete a
copy of the animal. ¤

The result of Lemma 7 can be extended to an infi-
nite board, whereby Alice’s strategy is to construct
a bounded region big enough so that the set S is
nonempty. If she can construct such a region, she
can apply the strategy of Lemma 7 by playing only
inside this bounded region: From this idea we have
the proof of Theorem 6 as follows:

Proof of Theorem 6 (Bounding strategy). Given
P , let n and m be the smallest integers such that P
is included in R(n,m) (that is R(n,m) is the smallest
rectangle that can enclose P). We will construct an
N £ N square region on the board large enough that
at least one copy of R(n,m) can be constructed inside
(hence so will P). Alice can surround the boundary
of the (N + 2) £ (N + 2) square with at most 4N
moves (note that the four corners don’t need to be
occupied). Let I be the interior of the square. Notice
that at least 2(N ¡ (n ¡ 1))(N ¡ (m ¡ 1)) copies of
R(n,m). can fit inside I. Each of Bob’s animals stabs
at most (2n¡1)(2m¡1)+(n+m¡1)2 ≤ n2+m2+6nm
copies of R(n,m).

During the (at most) 4N rounds during which Alice
surrounds the boundary of the square, Bob can stab
at most 4N(n2 + m2 + 6nm) animals of S. Thus, if
2(N¡n+1)(N¡m+1) > 4N(n2+m2+6nm), the set
S will be non-empty even after Alice has completed
surrounding the boundary of the square. Because the
first term is quadratic in N and the second is linear,
for a sufficiently large N the inequality holds. ¤

Corollary 8 R(n, m) is a non-cannibal (for any
n,m ∈ N).

For some simple animals, we can construct concrete
winning strategies for Alice as follows (For space lim-

itation, their proofs are omitted.):

Lemma 9 For S(n) and X(3), Alice can win by at
most n2 + 3 and 8 moves, respectively.

4 Concluding remarks

In Harary’s generalized tic-tac-toe, some monotone
properties hold; these properties include “increasing
the size of the board helps Alice” and “increasing the
animal helps Bob.” However, such properties do not
hold for the cannibal animal game, making it deeper
and more interesting. We also note that the cannibal
property of many other animals is still left unsolved.
Among them is the U(2, 4, 1) animal, which we conjec-
ture to be a cannibal, and the squares S(n) in which
a cell less than bn/4c units away from the boundary
has been removed. On the other hand, it is easy to
see that any animal consisting of at most 3 cells is
a non-cannibal. We conjecture that all 4-cell-animals
are also non-cannibals, and consequently, the 5-cell-
animal U(2, 3, 1) would be the smallest cannibal.

Acknowledgments

We are deeply grateful to Professor Ferran Hurtado of
Universitat Politècnica de Catalunya for his valuable com-
ments during discussions.

References

[1] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Win-
ning Ways for Your Mathematical Plays, Vol. 3, Sec-
ond Edition, A K Peters, Massachusetts, 2003.

[2] E. Fisher and N. Seiben, Rectangular polyomino set
weak (1, 2)-achievement games, Theoretical Com-
puter Science, 409, 2008, pp. 333–340.

[3] M. Gardner, Generalized Ticktacktoe, in: Fractal
Music, Hypercards and More..., W. H. Freeman and
Company, NY, 1992, pp. 202–213.

[4] J.E. Goodman and J. O’Rourke, Handbook of Dis-
crete and Computational Geometry, CRC Press,
1997.

[5] F. Harary, Achieving the skinny animal, Eureka, 42,
1982, pp. 8–14. Errata in Edition Number 42, 43,
1983, pp. 5–6.

[6] F. Harary and H. Harborth, Achievemt and avoid-
ance games with triangular animals, J. Recreational
Mathematics, 18(2), 1985–86, pp. 110–115.

[7] H. Harborth and M. Seemann, Handicap achievement
for squares, J. Combin. Math. Combin. Comput., 46,
2003, pp. 47–52.

[8] H. Ito and H. Miyagawa, Snaky is a winner with one
handicap, Abstracts of HERCMA 2007, Sept. 20–22,
Athens Univ. of Economics and Business, Athens,
Greece, 2007, pp. 25–26.

[9] J. Beck, Combinatorial Games — Tic-Tac-Toe The-
ory, Cambridge Univ. Press, 2008.

134

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Data Imprecision under λ -Geometry: Finding the Largest Axis-Aligned
Bounding Box

Mansoor Davoodi∗ Payam Khanteimouri∗ Farnaz Sheikhi∗ Ali Mohades∗

Abstract

In this paper we introduce a new model for handling
imprecision in the input data of a geometric problem.
The proposed model, which is called λ-geometry, is a
generalization of region based models to handle dy-
namic imprecision. Further, we study the problem
of finding the largest area axis-aligned bounding box
of a set of n imprecise points under the model. We
propose an O

(
n(log n+ log k+m)

)
time algorithm to

solve this problem, where k is the maximum complex-
ity of the regions representing imprecise points, and
m is the maximum number of corner defining func-
tions when the largest axis-aligned bounding box is
defined by points on its corners.

1 Introduction

Classical computational geometry focuses mainly on
problems whose input data has precise location. Al-
though these problems have their own interest, they
are not very close to what we face in the real world. In
the real world, input data is collected by using devices
with limited precision. Therefore, imprecision in the
location of input data is inevitable. In order to take
imprecision into account, several models have been
proposed. Region based models are the most com-
mon types [5]. Once a model can represent imprecise
points, it can be generalized to represent imprecise
lines and polygons as well. So, the initial matter is
how to model an imprecise point. In a region based
model, location of each imprecise point is assumed
to be anywhere in a predefined region. The model of
ε-geometry [3] is of the earliest models of this type. In
this model each point can have an imprecision up to ε
in any direction, and as a result regions are assumed
to be disks. Other regions such as segments, rectan-
gles, and convex polygons have also been proposed to
represent imprecision. Further, several computational
geometry problems have been studied under region
based models, such as finding the largest/smallest
area axis-aligned bounding box [6], and convex hull
[5]. A thorough study is presented in [5].

∗Laboratory of Algorithms and Computational
Geometry, Department of Mathematics and Com-
puter Science, Amirkabir University of Technology,
{mdmonfared,p.khanteimouri,f.sheikhi,mohades}@aut.ac.ir

Besides solving computational geometry problems
under a specific model of imprecision, developing more
general and practical models for imprecision is of great
importance. Proposing a practical model that deals
with dependencies among imprecise input data is of
the recent work done in this field [4].

As reviewed above, region based models have a
static view on the level of imprecision. That is once
the regions that represent imprecision are known; they
stay unchanged throughout the algorithm. However,
level of imprecision can vary continuously according to
circumstances such as changes in the precision of mea-
surement. So, in this paper we introduce a new model
that can handle dynamic level of imprecision. Let λ
represent the level of imprecision, where λ ∈ [0, 1].
Our proposed model which is called λ-geometry is a
generalization of region based models that allows re-
gions to be growing or shrinking according to increase
or decrease in λ in a monotone continuous manner.
This model also provides an inherent dependency in
the level of imprecision of the input data.

The paper is organized as follows. In Section 2, we
define λ-geometry more precisely. Later, in section
3 we show how the problem of finding the maximum
area axis-aligned bounding box of a set of imprecise
points can be solved under the model of λ-geometry.

2 The model of λ-Geometry

We begin introducing the model of λ-geometry by
defining an imprecise point in it. An imprecise point
p in this model is defined as p =

(
p,M, λ

)
, where

p is the exact value of the imprecise point p, M =
[v1, v2, ..., vk]2×k is the imprecision matrix in which
each vector vi defines the maximum imprecision in its
direction, and the parameter λ shows the imprecision
level for each vi. So, for any λ ∈ [0, 1], a region is
considered for modeling an imprecise point. This re-
gion, which includes all possible instances of a point
p, is the convex hull of points defined by the sum of
the vectors λvi and p. Fig.1(a) illustrates a sample
imprecise point p for two different λs, λ1 = 2/3 and

λ2 = 1, where p =
[

4
1

]
and M =

[
2 −2 −3
0 3 −2

]
.

It is obvious that for λ = 1 an imprecise point p is
the convex hull of the points inducing by the vectors of
imprecision matrix M , while for λ = 0 this imprecise

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

135

27th European Workshop on Computational Geometry, 2011

Figure 1: (a) An imprecise point p for λ1 = 2/3 and λ2 = 1. (b)
The AABB constructed with extreme imprecise points in each of
the four axis-aligned directions. For λ = 1, p1 is the rightmost,
while for λ = 0.5, p3 is the rightmost imprecise point.

point is just the exact point p 1.
Now, we focus on algebraic definition of an instance

of an imprecise point, p(λ, γ):

p(λ, γ)
def
= p+ λ.Mγ ; γ = [γ1, γ2, · · · , γk]

T
,

, 0 ≤ γi ≤ 1,
∑k

i=1
γi ≤ 1.

In this definition γ is an arbitrary vector that de-
fines an instance p(λ, γ) to be anywhere in the convex
hull mentioned earlier. So, an imprecise point, p(λ),
is a region defined by

p(λ)
def
=
{
p(λ, γ) | ∀γ ; 0 ≤ γi ≤ 1,

∑k

i=1
γi ≤ 1

}
.

In many models of imprecise data, a line defined by
two imprecise points is the union of lines that passes
through the both corresponding regions [5]. Similarly,
a line in the model of λ-geometry is defined as follows:

Lp,q(λ)
def
=
{
L(p′, q′) | p′, q′ are instances of p(λ), q(λ)

}
.

This definition can be generalized for defining im-
precise polygons.

3 Largest Axis-Aligned Bounding Box

Given a set P of n points in the plane, the axis-
aligned bounding box (AABB) of P is the smallest
axis-aligned rectangle that contains P . The key step
to find the AABB of P is to find the extreme point
of P in each of the four axis-aligned directions. In an
imprecise context when imprecise points are modeled
by regions, choosing an instance from each imprecise
point results in an AABB. So in this case, the problem
is where to choose an instance from each imprecise
point to make the area of AABB of these instances
maximized for example, (the largest AABB problem).
From now on we use AABB to refer to the largest
AABB.

In the model of λ-geometry, since regions are grow-
ing (or shrinking) with the rate of λ, it is possible
for each region to be extreme in an axis-aligned di-
rection for a specific λ ∈ [0, 1], see Fig.1(b). So,

1Note that since we define p by the concept of convex hull,
it is possible for a vector to be ineffective. But without loss of
generality, we assume that all vectors are effective.

to find the AABB in the model of λ-geometry, the
first step is to break the interval of [0, 1] in some
subintervals for which the four extreme regions stay
unchanged. Thus, the output will be as follows:
(λi−1, λi, fRi, fLi, fTi, fBi), such that 1 ≤ i ≤ n′,
λi ∈ [0, 1], λi < λi+1, and fRi, fLi, fTi and fBi are
functions defining respectively the right, left, top and
bottom side of the AABB in the interval of [λi−1, λi].
Next we explain how to find these values.

Consider the imprecise point pi(λ) = (pi,Mi, λ),
where pi = (xi, yi). The rightmost point of pi(λ) is
defined by the vector of viR = (aiR, biR) which is the
rightmost vector of Mi. Thus, the rightmost point of
pi(λ) can be defined by a linear function Ri(λ) = xi+
λaiR. We call Ri(λ) the rightmost defining function
of pi(λ). Since pi(λ) is a convex polygon, aiR can be
found in O(log ki) time, where ki = |Mi| and |Mi|
denotes the number of columns in the matrix Mi.

Given a set of imprecise points, let R =
{R1, R2, · · · , Rn} be the set of all rightmost defining
functions. So, the right side of the AABB can be de-
termined by the upper envelope of R. Functions of
R are totally defined in [0, 1], and each pair of these
functions intersects in at most one point. Thus, the
upper envelope of R has at most n breakpoints, and
it can be computed in O(n log n) time [7]. The upper
envelopes of the left, top, and bottommost defining
functions can be computed similarly. So after com-
puting these four upper envelopes, the union of their
breakpoints constructs the critical λs of this step.
Let k = max

1≤i≤n
ki. Then the algorithm proposed to

find these critical λs runs in O(n log k+n log n) time.
When k is polynomial in n, we prove this algorithm
is optimal.

Lemma 1 Given a set of n imprecise points in the
model of λ-geometry, finding all the rightmost defin-
ing functions for the largest AABB problem requires
Ω(n log n) computations in the worst case.

Proof. The proof is by a reduction from the sorting
problem. Let S = {s1, s2, · · · , sn} be a set of n posi-
tive real numbers, and let d be a number greater than
the biggest difference of numbers in S. We convert
each number si to an imprecise point pi = (pi,Mi, λ)
with a symmetric rhomboid as its region. We define
the rightmost vector of pi to be Ri = miλ − misi,
where mi = si/(d− si). Based on the formula of
the rightmost defining function, Ri can be seen as

the vector of ViR =
[
mi

0

]
which starts at the point

pi = (−misi, 0). Similarly, we define the left, top and
bottom vectors and finally we obtain the imprecision

matrix M =
[
mi 0 −mi 0
0 mi 0 −mi

]
. We claim that

the order in which the rightmost defining functions of
the constructed imprecise points appear on the upper
envelope is the same as the order of sorted numbers.

136

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

To prove this it is sufficient to show that for any three
positive numbers si, sj , sk, where si < sj < sk, Ri(λ)
appears before Rj(λ) on the upper envelope, and if
xij (resp. xik) is the intersection point of Ri(λ) and
Rj(λ)

(
resp. Ri(λ) and Rk(λ)

)
, then xij < xik. This

is a straightforward result. �

In finding critical λs and the corresponding right,
left, top and bottommost defining functions there is
still one issue left to handle, and that is we can not
choose more than one instance from each imprecise
point. For a fixed value of λ, Fig.1(b) illustrates a
situation where the right and the bottom side of the
AABB is defined by two different instances of an im-
precise point p1(λ). To handle this situation either
we should take just the rightmost or just the bottom-
most instance of p1(λ), or we should take an instance
of p1(λ) that plays these roles together that is the in-
stance taken should be the lower-right corner of the
AABB. The final choice is the one that leads to a
larger area of AABB. Next we explain how to handle
this issue in the model of λ-geometry.

For a fixed value of λ, the AABB of a set of n im-
precise points modeled by regions can be determined
by testing only the four farthest imprecise points in
each of the four axis-aligned directions [6]. Further,
let F = {f1, f2, · · · , fn} be an arrangement of n lines
in the plane and let c be a constant. It is known that
the cth-upper level of F , denoted by EcF , has O(n)
breakpoints and it can be computed in O(n log n)
time [2]. So, in the model of λ-geometry to find the
AABB determined by four instances of different im-
precise points we do the following. First we compute
the set of rightmost, the set of leftmost, the set of
topmost and the set of bottommost defining func-
tions. Let R,L, T, and B denote these sets respec-
tively. Then, for each of these sets we find cth-upper
level for c = 1, 2, 3, 4. Let EcR, E

c
L, E

c
T and EcB denote

these upper levels for the sets R,L, T, and B respec-
tively. Now, we define the set of critical λs as:

Λ =
{
λ|λ is a break point for EcR or EcL or EcT or EcB

for c = 1, 2, 3, 4
}

Any two consecutive members of the ordered set Λ
construct an interval in which none of the four up-
per levels changes. So, in each interval constructed if
the first upper level of each set is different from the
first upper levels of the other sets, we report this in-
terval and its corresponding upper levels (in this case
we are sure that four different imprecise points have
constructed the AABB). Otherwise, if the first upper
levels of some sets are equal, we take the first upper
level of a set and test the second, the third, and fi-
nally in the worst case the forth upper levels of the
remaining sets, and we select the one that leads to a
larger area of AABB. So, by the approach explained
we can find the AABB that is determined by four in-
stances of different imprecise points. Further, when

one or two instances play the role of corners of the
AABB, three or two instances of different imprecise
points can also determine the AABB. So, we should
compute the AABB of these situations as well, and
at the end report the largest AABB we have found
over all situations. The case of three instances oc-
curs when one corner of the AABB is constructed by
two equal upper levels (for example when E1

L 6= E1
T

and E1
R = E1

B). Further, the case of two instances
occurs when two opposite corners of the AABB are
constructed by equal upper levels (for example when
E1
L = E1

T and E1
R = E1

B). So, the final step of the
algorithm is how to find the AABB of these two cases.
Next we show how to handle this.

Let p(λ) be an imprecise point whose instance is a
corner of the AABB. Obviously this instance should
be taken from the boundary of p(λ). Thus, the bound-
ary of p(λ), and more precisely, a specific part of this
boundary called a chain is important to us. Assume
that vertices of the boundaries of the imprecise points
are in a clockwise order. We call a chain convex (resp.
concave) if it is xy-monotone and it lies above (resp.
below) any line that passes through its segments.

Lemma 2 Let Cp = {p1, p2, · · · , pk} be a concave
chain in the second quadrant of the coordinate system,
while Cq = {q1, q2, · · · , qk} is a convex chain in the
forth quadrant. Then the AABB whose corners lie on
Cp and Cq can be computed in O(log k) time.

Proof. It is known that the largest inscribed isothetic
rectangle inside a k-sided polygon can be computed
by an O(log k) time algorithm [1]. We can treat the
two chains’ problem as a special case of this algorithm.
Thus, the AABB whose corners lie on Cp and Cq can
be computed in O(log k) time as well. �

Lemma 3 Let Cor(λ) = (λa + a′, λb + b′) repre-
sent the upper-left corner of the AABB and let q =
(q,Mq, λ) be the rightmost and bottommost impre-
cise point. Then, the AABB can be computed in
O(log k+m) time, where k = |Mq| and m is the num-
ber of functions defining the lower-right corner of the
AABB, while λ decreases from 1 to 0.

The proof is omitted due to space limitations. Since
lemma 3 is a special case of lemma 4, we refer readers
to see the proof of lemma 4.

So far we have shown how to find the AABB con-
structed by four instances, and the AABB constructed
by three instances of imprecise points. The following
lemma shows how to find the AABB constructed by
two instances of imprecise points.

Lemma 4 Let p = (p,Mp, λ) be the leftmost and
topmost, and let q = (q,Mq, λ) be the rightmost
and bottommost imprecise points. Then the AABB
can be computed in O(log k + m) time, where k =

137

27th European Workshop on Computational Geometry, 2011

max
(
|Mp|, |Mq|

)
and m is the number of functions

defining corners, while λ decreases from 1 to 0.

Proof. It is known that in the case of two segments,
at least one corner of the AABB lies on endpoints of
these segments [1]. So, for any fixed value of λ, at least
one vector of Mp and one edge of Mq (or vice versa)
define the AABB. This is still true while points are
growing or shrinking in the model of λ-geometry. This
fact helps us to find the optimal path for each of two
corners of the AABB. To do so, it is sufficient to find
critical λs for which the vector or the segment that
defines the AABB changes. Let l′

(
a(λ), s(λ)

)
denote

the optimal path for the point a(λ) and the segment
s(λ). The parametric equation of l′

(
a(λ), s(λ)

)
can be

obtained by computing the area function and its first
derivative 2. First for λ = 1 we compute two corners
of the AABB by using lemma 2. These corners are
taken from p and q, and are denoted by cp and cq
respectively. Set λc = 1. According to the position of
these corners two cases arise:

Case1: The corner cp lies on a vertex of p(λ), while
the corner cq lies on a segment of q(λ)(or vice versa).
We denote this vertex of p(λ) by pi, and this segment
of q(λ) by sqj = qjqj+1 (see Fig.2 for 0.7 ≤ λ ≤ 1
and 0.2 ≤ λ ≤ 0.3). In this case, we take vectors
vj and vj+1 of Mq, and find their intersection with
line l′(cp, s

q
j). Note that only one of these vectors in-

tersects l′(cp, s
q
j). Then we compute the value of λ

corresponding to this intersection, and denote it by
λq. Further, we take the vector vi of Mp and find its
intersection with l′(vj , s

p
i) and l′(vj , s

p
i+1) (just one of

these lines intersects vi). Let λp be the value of λ cor-
responding to this intersection. Set λn = max(λp, λq)
and report two functions vi and l′(cp, s

q
j) as two cor-

ners’ paths in [λn, λc]. If λn ≤ 0 the algorithm is
finished. Otherwise, set λc = λn and go to case 2.

Case2: Both corners cp and cq lie on vertices of
p(λ) and q(λ). Let pi denote the corresponding vertex
of p(λ), and let qj denote the corresponding vertex of
q(λ) (see Fig. 2 for 0.3 ≤ λ ≤ 0.7 or 0 ≤ λ ≤ 0.2). In
this case, we take vector vj of Mq, and find its inter-
section with l′(vi, s

q
j) and l′(vi, s

q
j+1). Let λq denote

the value of λ corresponding to this intersection. Fur-
ther, we take vector vi of Mp, and compute its inter-
section with l′(vj , s

p
i) and l′(vj , s

p
i+1). Let λp denote

the value of corresponding λ. Set λn = max(λp, λq)
and report two functions vi and vi as two corners’
paths in [λn, λc]. If λn ≤ 0 the algorithm is finished.
Otherwise, set λc = λn and go to case 1.

In each iteration, the algorithm reports an interval
and two functions defining the optimal paths of the
upper left and lower right corners within this interval.
Letm denote the total number of corner defining func-
tions in [0, 1]. Then the algorithm iterates m times.

2Note that while λ decreses from 1 to 0, a(λ) is a segment
while s(λ) is a triangle.

Figure 2: Concepts used in finding corner defining functions. Short
dashes show the optimal paths for the corners.

Finding the first optimal corners (for λ = 1) takes
O(log k) time by using lemma 2, but since we have
these corners in the following iterations, each of the
following iterations takes constant time. Therefore,
the total time complexity is O(log k +m). Note that
m = O(k). �

Thus, in the model of λ-geometry we have obtained
the following results:

Theorem 5 Given a set of n imprecise points under
the model of λ-geometry, the largest AABB problem
can be solved in O

(
n(log n+ log k +m)

)
time, where

k is the maximum complexity of regions representing
imprecision, and m is the maximum number of corner
defining functions.

Note that when k = O(log n), the largest AABB prob-
lem under the model of λ-geometry can be solved in
the optimal time Θ(n log n).

References

[1] H. Alt, D. Hsu, J. Snoeyink. Computing the largest in-
scribed isothetic rectangle. In Proc. 7th Canadian Conf.
Comput. Geom., pp. 67-72, 1995.

[2] H. Everett, J. M. Robert, M. van Kreveld. An Optimal
Algorithm for Computing (≤ k)-Levels, with Appli-
cation to Separation and Transversal Problems. In-
ternat. J. Comput. Geom. Appl., 6, pp. 247-261, 1996.

[3] L. Guibas, D. Salesin, J. Stolfi. Epsilon geometry: Build-
ing robust algorithms for imprecise computations. In Proc.
5th ACM Annual Symposium on Comput. Geom., pp.
208-217, 1989.

[4] Y. Myers, L. Joskowicz. Uncertain geometry with de-
pendencies. In Proc. 14th ACM Symposium on Solid and
Physical Modeling, pp. 159-164, 2010.

[5] M. Löffler. Data Imprecision in Computational Geometry.
PhD Thesis, Utrecht University, 2009.

[6] M. Löffler, M. van Kreveld. Largest Bounding Box, Small-
est Diameter, and Related Problems on Imprecise Points.
In Proc. WADS, pp. 446-457, 2007.

[7] M. Sharir, P.K. Agarwal. Davenport-Schinzel Sequences
and their Geometric Applications. Cambridge University
Press, 1995.

138

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

A Proof of the Oja-depth Conjecture in the Plane

Nabil H. Mustafa∗ Hans Raj Tiwary† Daniel Werner‡

Abstract

Given a set P of n points in the plane, the Oja-depth
of a point x ∈ R2 is defined to be the sum of the areas
of all triangles defined by x and two points from P ,
normalized by the area of convex-hull of P . The Oja-
depth of P is the minimum Oja-depth of any point in
R2. The Oja-depth conjecture states that any set P
of n points in the plane has Oja-depth at most n2/9
(this would be optimal as there are examples where
it is not possible to do better). We present a proof of
this conjecture.

We also improve the previously best bounds for all
Rd, d ≥ 3, via a different, more combinatorial tech-
nique.

1 Introduction

We first present some examples of the several different
versions of data-depth that have been studied.

The location-depth of a point x is the minimum
number of points of P lying in any halfspace con-
taining x [11, 20, 19]. The Center-point Theorem [9]
asserts that there is always a point of location-depth
at least n/(d + 1), and that this is the best possible.
The point with the highest location-depth w.r.t. to
a point-set P is called the Tukey-median of P . The
corresponding computational question of finding the
Tukey-median of a point-set has been studied exten-
sively, and an optimal algorithm with running time
O(n log n) is known in R2 [7].

The simplicial-depth [13] of a point x and a set P
is the number of simplices spanned by P that contain
x. The First Selection Lemma [14] asserts that there
always exists a point with simplicial-depth at least
cd · nd+1, where c > 0 is a constant depending only
d. The optimal value of cd is known only for d = 2,
where c2 = 1/27 [5]. For c3 is still open, though it has
been the subject of a flurry of work recently [3, 6, 10].
The current-best algorithm computes the point with
maximum simplicial-depth in time O(n4 log n) [1].

∗Dept. of Computer Science, LUMS, Pakistan.
nabil@lums.edu.pk
†Département de Mathématique, Université Libre de Brux-

elles, Belgium, hans.raj.tiwary@ulb.ac.be
‡Institut für Informatik, Freie Univ. Berlin, Germany.

daniel.werner@fu-berlin.de - This research was funded by
Deutsche Forschungsgemeinschaft within the Research Training
Group (Graduiertenkolleg) “Methods for Discrete Structures”

The L1 depth, proposed by Weber in 1909, is de-
fined to be the sum of the distances of x to the n input
points. It is known that the point with the lowest such
depth is unique in R2.

Oja-depth. In this paper, we study another well-
known measure called the Oja depth of a point-set.
Given a set P of n points in Rd, the Oja-depth (first
proposed by Oja [16] in 1983) of a point x ∈ Rd

w.r.t. P is defined to be the sum of the volumes of
all d-simplices spanned by x and d other points of
P . Formally, given a set Q ⊂ Rd, let conv(Q) de-
note the convex-hull of Q, and let vol(Q) denote its
d-dimensional volume. Then,

Oja-depth(x) =
∑

y1,...,yd∈(P
d)

vol(conv(x, y1, . . . , yd))

vol(conv(P))

The Oja-depth of P is the minimum Oja-depth over
all x ∈ Rd. From now onwards, w.l.o.g., assume that
vol(conv(P)) = 1.

Known bounds. First we note that(
n

d + 1

)d

≤ Oja-depth(P) ≤
(
n

d

)
.

For the upper-bound, observe that any d-simplex
spanned by points inside the convex-hull of P can
have volume at most 1, and so a trivial upper-bound
for Oja-depth of any P ⊂ Rd is

(
n
d

)
, achieved by pick-

ing any x ∈ conv(P). For the lower-bound, construct
P by placing n/(d + 1) points at each of the d + 1
vertices of a unit-volume simplex in Rd.

The conjecture [8] states that this lower bound is
tight:

Conjecture 1 Oja-depth(P) ≤ (n
d+1)d for any P ⊂

Rd of n points.

The current-best upper-bound [8] is that the Oja-
depth of any set of n points is at most

(
n
d

)
/(d+ 1). In

particular, for d = 2, this gives n2/6.
The Oja-depth conjecture states the existence of a

low-depth point, but given P , computing the lowest-
depth point is also an interesting problem. In R2,
Rousseeuw and Ruts [18] presented a straightforward
O(n5 log n) time algorithm for computing the lowest-
depth point, which was improved to the current-best

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

139

27th European Workshop on Computational Geometry, 2011

algorithm with running time O(n log3 n) [1]. An
approximate algorithm utilizing fast rendering sys-
tems on current graphics hardware was presented
in [12, 15]. For general d, various heuristics for
computing points with low Oja-depth were given by
Ronkainen, Oja and Orponen [17].

Our results. In Section 2, we present our main theo-
rem, which completely resolves the conjecture for the
planar case.

Theorem 1 Every set P of n points in R2 has Oja-

depth at most n2

9 . Furthermore, such a point can be
computed in O(n log n) time.

In Section 3, using completely different (and more
combinatorial) techniques for higher dimensions, we
also prove the following:

Theorem 2 Every set P of n points in Rd, d ≥ 3, has

Oja-depth at most 2nd

2dd!
− 2d

(d+1)2(d+1)!

(
n
d

)
+ O(nd−1).

This improves the previously best bounds by an order
of magnitude.

2 The optimal bound for the plane

We now come to prove the optimal bound for R2.
First, let us give some basic definitions. The center
of mass or centroid of a convex set X is defined as

c(X) =

∫
x∈X x dx

area (X)
.

For a discrete point set P , the center of mass is sim-
ply defined as the center of mass of the convex hull of
P . When we talk about the centroid of P , we refer
to the center of mass of the convex hull and hope the
reader does not confuse this with the discrete cen-
troid

∑
p/|P |. In what follows, we will bound the

Oja-depth of the centroid of a set, and show that it is
worst-case optimal. Our proof will rely on the follow-
ing two Lemmas.

Lemma 3 [Winternitz [4]] Every line through the
centroid of a convex object has at most 5

9 of the total
area on either side.

Lemma 4 [8] Let P be a convex object with unit area
and let c be its center of mass. Then every simplex
inside P which has c as a vertex has area at most 1

3 .

To simplify matters, we will use the following
proposition.

Proposition 5 If we project an interior point p ∈ P
radially outwards from the centroid c to the boundary
of the convex hull, the Oja-depth of the point c does
not decrease.

Proof. First, observe that the center of mass does
not change. It suffices to show that every triangle
that has p as one of its vertices increases its area.
Let T := ∆(c, p, q) be any triangle. The area of T is
1
2‖c − p‖ · h, where h is the height of T with respect
to p− c. If we move p radially outwards to a point p′,
h does not change, but ‖c− p′‖ > ‖c− p‖. �

This implies that in order to prove an upper bound,
we can assume that all points lie on the convex hull.

From now on, let P be a set of points, and let
c := c(conv(P)) denote its center of mass as defined
above. Further, let p1, . . . , pn denote the points sorted
clockwise by angle from c. We define the distance of
two points as the difference of their position in this
order (modulo n). A triangle that is formed by c and
two points at distance i is called an i-triangle, or tri-
angle of type i. Observe that for each i, 1 ≤ i < bn/2c,
there are exactly n triangles of type i. Further, if n
is even, then there are n/2 triangles of type bn/2c,
otherwise there are n. These constitute all possible
triangles.

Let C ⊆ P , and let C be they boundary of the
convex hull of C. This will be called a cycle. The
length of a cycle is simply the number of elements in
C. A cycle C of length i induces i triangles that arise
by taking all the triangle formed by an edge in C and
the center of mass c (of conv(P)). The area induced
by C is the sum of areas of these i triangles.

The triangles induced by the entire set P form a
partition of conv(P). Thus, Lemma 5 implies the fol-
lowing:

Corollary 6 The total area of all triangles of type 1
is exactly 1.

The following shows that we can generalize this
Lemma, i.e., that we can bound the total area induced
by any cycle.

Lemma 7 Let C be a cycle. Then C induces a total
area of at most 1.

Proof. We distinguish two cases.
Case 1 : The centroid lies in the convex hull of C.

In this case, all triangles are disjoint, so the area is at
most 1. See Fig. 1(a).

Case 2 : The centroid does not lie in the convex hull
of C. By the Separation Theorem [14], there is a line
through c that contains all the triangles. Then we
can remove one triangle to get a set of disjoint trian-
gles, namely the one induced by the pair {pij , pij+1

}
that has c on the left side. By Lemma 3, the area
of the remaining triangles can thus be at most 5/9.
By Lemma 4, the removed triangle has an area of at
most 1/3. Thus, the total area is at most 8/9. See
Fig. 1(b). Here, the gray triangle can be removed to
get a set of disjoint triangles.

�

140

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

c

(a) Case 1

c

(b) Case 2

Figure 1: The two cases

We now prove the crucial lemma, which is a general
version of Corollary 6.

Lemma 8 The total area of all triangles of type i is
at most i.

Proof. We will proceed as follows: For fixed i, we will
create n cycles. Each cycle will consist of one triangle
of type i, and n − i triangles of type 1, multiplicities
counted. We then determine the total area of these
cycles and subtract the area of all 1-triangles. This
will give the desired result.

Let p1, . . . , pn be the points ordered by angles from
the centroid c. Let Cj be the cycle consisting of the
n − i + 1 points P − {pi+1 mod n, . . . , pi+j−1 mod n}.
This is a cycle that consists of one triangle of type i,
namely the one starting a pj , and n − i triangles of
type 1.

By Lemma 7, every cycle Cj induces an area of at
most 1. If we sum up the areas of all n cycles Cj ,
1 ≤ j ≤ n, we thus get an area of at most n.

We now determine how often we have counted each
triangle. Each i-triangle is counted exactly once. Fur-
ther, for every cycle we count n − i triangles of type
1. For reasons of symmetry, each 1-triangle is counted
equally often. Thus, each is counted exactly n−i times
over all the cycles. By Corollary 6, their area is ex-
actly n − i, which we can subtract from n to get the
total area of the i-triangles:

∑
i−∆ T

area(T) ≤ n−

(∑
1−∆ T

(n− i) area(T)

)
= n− (n− i) = i.

This completes the proof. �

Theorem 9 Let P be any set of points in the plane
and c be the centroid of its convex hull. Then the
Oja-depth of c is at most n2

9 .

Proof. We will bound the area of the triangles de-
pending on their type. For i-triangles with 1 ≤ i ≤
bn/3c, we will use Lemma 8. For i-triangles with

bn/3c < i ≤ bn/2c, this would give us a bound worse
than n/3, so we will use Lemma 4 for each of these.

By Lemma 8, the sum of the areas of all triangles
of type at most bn/3c is at most

bn/3c∑
i=1

i =
bn/3c (bn/3c+ 1)

2
≤ n2

18
+

1

2
bn/3c .

For the remaining triangles, we use Lemma 4 to bound
the size of each by 1/3. Thus, in total we get

Oja-depth(P) ≤ n2

18
+

n (bn/2c − bn/3c)
3

+
n

6
.

By a simple case distinction, it is easy to see that the
lower order term disappears. This finishes the proof.

�

3 Higher Dimensions

We now present improved bounds for the Oja-depth
problem in dimensions greater than two. Before the
main theorem, we need the following two lemmas.

Lemma 10 Let P be a set of n points in Rd. Let
q ∈ Rd. Then any line l through q intersects at
most f(n, d) (d − 1)-simplices spanned by P , where

f(n, d) = 2nd

2dd!
+ O(nd−1).

Proof. Project P onto the hyperplane H orthogonal
to l to get the point-set P ′ in Rd−1. The line l becomes
a point on H, say point pl. Then l intersects the
(d − 1)-simplex spanned by {p1, . . . , pd} if and only
if the convex hull of the corresponding points in P ′

contain the point pl.
By a result of Barany [2], any point in Rd is con-

tained in at most

2(n− d)

n + d + 2

(
(n + d + 2)/2

d + 1

)
+ O(nd)

simplices induced by a point set.
Applying this lemma to P ′ in Rd−1 and simplifying

the expression, we get the desired result. �

Lemma 11 Given any set P of n points in Rd, there
exists a point q such that any half-infinite ray from
q intersects at least 2d

(d+1)2(d+1)!

(
n
d

)
(d − 1)-simplices

spanned by P .

Proof. Gromov [10] showed that, given any set
P , there exists a point q contained in at least

2d
(d+1)(d+1)!

(
n

d+1

)
simplices spanned by P . Now any

half-infinite ray from q must intersect exactly one
(d − 1)-dimensional face (which is a (d − 1)-simplex)
of each d-simplex containing q, and each such (d−1)-
simplex can be counted at most n− d times. �

141

27th European Workshop on Computational Geometry, 2011

Theorem 12 Given any set P of n points in Rd,
there exists a point q with Oja-depth at most

B :=
2nd

2dd!
− 2d

(d + 1)2(d + 1)!

(
n

d

)
+ O(nd−1).

Proof. Let q be the point from Lemma 11. Let w(r)
denote the number of simplices spanned by q and d
points from P that contain r. In what follows, we will
give a bound on w(r), and thus on the Oja-depth of
q.

If r is contained in a simplex, then any half-infinite
ray −→qr intersects a (d−1)-facet of that simplex. There-
fore, w(r) is upper-bounded by the number of (d−1)-
simplices spanned by P that are intersected by the
ray −→qr.

To upper-bound this, note that the ray starting
from q but in the opposite direction to the ray −→qr, in-
tersects at least 2d

(d+1)2(d+1)!

(
n
d

)
(d − 1)-simplices (by

Lemma 11). On the other hand, by Lemma 10, the
entire line passing through q and r intersects at most
2nd

2dd!
+ O(nd−1) (d− 1)-simplices. These two together

imply that the ray −→qr intersects at most B (d − 1)-
simplices, and this is also an upper-bound on w(r).
Finally, we have

Oja-depth(q, P) =

∫
conv(P)

w(x) dx

≤
∫

conv(P)

B dx = B

finishing the proof. �

Acknowledgments. This research was done during
the DCG Special Semester in Lausanne. We thank
the EPFL and the organizers János Pach and Emo
Welzl.

References

[1] G. Aloupis. On computing geometric estimators
of location, 2001. M.Sc. Thesis, McGill Univer-
sity.

[2] I. Barany. A generalization of caratheodory’s the-
orem. Discrete Mathematics, 40:141–152, 1982.

[3] A. Basit, N. H. Mustafa, S. Ray, and S. Raza.
Hitting simplices with points in 3d. Discrete &
Computational Geometry, 44(3):637–644, 2010.

[4] W. Blaschke. Vorlesungen uber Differen-
tialgeometrie. II, Affine Differentialgeometrie.
Springer, 1923.

[5] E. Boros and Z. Furedi. The maximal number of
covers by the triangles of a given vertex set on
the plane. Geom. Dedicata, 17:69–77, 1984.

[6] B. Bukh, J. Matousek, and G. Nivasch. Stab-
bing simplices by points and flats. Discrete &
Computational Geometry, 43(2):321–338, 2010.

[7] T. M. Chan. An optimal randomized algorithm
for maximum tukey depth. In SODA, pages 430–
436, 2004.

[8] D. Chen, O. Devillers, J. Iacono, S. Langerman,
and P. Morin. Oja Medians and Centers of Mass.
In Proceedings of the 22nd CCCG, pages 147–
150, 2010.

[9] J. Eckhoff. Helly, Radon and Carathéodory type
theorems. In Handbook of Convex Geometry,
pages 389–448. North-Holland, 1993.

[10] M. Gromov. Singularities, expanders and topol-
ogy of maps. part 2: From combinatorics to
topology via algebraic isoperimetry. Geometric
and Functional Analysis, 20:416–526, 2010.

[11] J. Hodges. A bivariate sign test. Annals of Math-
ematical Statistics, 26:523–527, 1955.

[12] S. Krishnan, N. Mustafa, and S. Venkatasubra-
manian. Statistical data depth and the graphics
hardware. In Data Depth: Robust Multivariate
Analysis, Computational Geometry and Applica-
tions, pages 223–250. DIMACS Series, 2006.

[13] R. Liu. A notion of data depth based upon ran-
dom simplices. The Annals of Statistics, 18:405–
414, 1990.

[14] J. Matoušek. Lectures in Discrete Geometry.
Springer-Verlag, New York, NY, 2002.

[15] N. H. Mustafa. Simplification, Estimation and
Classification of Geometric Objects. PhD thesis,
Duke University, Durham, North Carolina, 2004.

[16] H. Oja. Descriptive statistics for multivariate
distributions. Statistics and Probability Letters,
1:327–332, 1983.

[17] T. Ronkainen, H. Oja, and P. Orponen. Com-
putation of the multivariate oja median. In R.
Dutter and P. Filzmoser. International Confer-
ence on Robust Statistics, 2003.

[18] P. Rousseeuw and I. Ruts. Bivariate location
depth. Applied Statistics, 45:516–526, 1996.

[19] P. J. Rousseeuw, I. Ruts, and J. W. Tukey. The
bagplot: A bivariate boxplot. The American
Statistician, 53(4):382–387, 1999.

[20] J. Tukey. Mathematics and the picturing of data.
In Proc. of the international congress of mathe-
maticians, pages 523–531, 1975.

142

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

High Quality Surface Mesh Generation for Swept Volumes

Andreas von Dziegielewski ∗ Michael Hemmer†

Abstract

We present a novel and efficient technique to gener-
ate a high quality mesh that approximates the outer
boundary of a swept volume (SV). Our approach
comes with two guarantees. First, the approxima-
tion is conservative, i.e. the swept volume is enclosed
by the output mesh. Second, the one-sided Hausdorff
distance of the generated mesh to the swept volume is
upper bounded by a user defined tolerance. Exploit-
ing this tolerance our method produces an anisotropic
mesh which nicely adapts to the local complexity of
the approximated swept volume boundary. The algo-
rithm is two phased: a initialization phase that gen-
erates a conservative voxelization of the swept vol-
ume, and the actual mesh generation which is based
on CGAL’s Delaunay refinement implementation.

1 Introduction

The swept volume is defined as the entity of all points
touched by a solid (the generator) under the transfor-
mations of either a continuous or discrete trajectory.
In the context of this paper, we assume a discrete
trajectory and define SV as the entity obtained by
linear interpolating the generator geometry between
consecutive time steps, as proposed in [2].

The swept volume plays an important role in com-
puter aided design (CAD), numerically controlled
(NC) machining verification, robot analysis and
graphical modeling. For safety reasons most applica-
tions demand for a conservative approximation of SV,
that is, the result must contain SV. At the same time,
the result should approximate SV as close as possi-
ble while keeping the complexity of the output low,
the latter becoming more and more relevant due to
increasing model complexity and high demands con-
cerning error tolerance. Moreover, a practical algo-
rithm should be tolerant to topologically inconsistent
input data and should preferably impose no restric-
tions on the input models.

1.1 Previous and related work

Mathematical formulations describing the swept vol-
ume include Jacobian rank deficiency methods, sweep
∗Institut für Informatik, Johannes Gutenberg Universität

Mainz, dziegiel@uni-mainz.de
†School for Computer Science, Tel Aviv University,

mhsaar@google.mail.com

differential equations and envelope theory, for a sur-
vey see [1].
Practical approaches, most relying on volumetric SV
representations cannot give geometrical guarantees
because sharp features can be missed ([7, 6]). In [11]
the authors claim to be able to archieve arbitrarily
tight error-bounds (although do not regard conser-
vativeness) but unfortunately no timings for a priori
error bounds are given. They all produce a highly
overtessallated mesh and do not propose any error
bound mesh simplification method. Applying error
bound simplification (e.g. [10]) to these meshes, a pos-
teriori, will always be limited by the storage needed
for the mass of triangles of the original mesh.

Recent approaches [9, 3] are able to produce a con-
servative approximation. In [3] local culling criteria
are applied to generate a superset of the SV bound-
ary that is then blended using a BSP tree. Their out-
put mesh is non-adaptive and possibly highly overtes-
sellated, and further simplification in convex regions
would violate conservativeness. The method pro-
posed in [9] relies on special conservative depth buffer
voxelization and an error bound mesh simplification
phase. The output mesh is adaptive and almost every-
where manifold. It is conservative, but error bounds
can not be given for all concave parts of the SV.

Figure 1: Bunny swept along a trajectory consisting
of 12 transformations.

1.2 Our contribution

In contrast to these previous approaches our mesh is
build top down, i.e. we start from a coarse mesh and

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

143

27th European Workshop on Computational Geometry, 2011

apply local refinement until we are guaranteed a con-
servative and error bound approximation of the outer
SV boundary. More precisely, we guarantee that the
one-sided Hausdorff distance to SV does not exceed
the user defined tolerance δ. In addition the result-
ing anisotropic mesh is of high quality while keeping
the complexity relatively low, that is: produced trian-
gles obey quality constrains such as lower bounds on
smallest angles while mesh density adapts to the local
complexity of SV as far as it is required by δ. The
algorithm is two phased: a initialization phase that
generates a conservative voxelization of the swept vol-
ume, and the actual mesh generation which is based
on CGAL’s Delaunay refinement implementation [8].

The Delaunay refiment and the general scheme of
the approach are discussed in Section 2. More details
of the initialization phase, are then discussed in Sec-
tion 3. Implementation details and some preliminary
results are presented in Section 4.

2 Overview

In order to generate the output mesh we apply De-
launay refinement which is known to be one of the
most powerful techniques in the field of mesh gener-
ation and surface approximation. More precisely, our
algorithm utilizes CGAL’s frame work for 3D mesh
generation [8] which we briefly review next.

Starting from an initial points set on the surface of
the to be meshed domain D, the process maintains a
Delaunay triangulation of this point set. Thereby, it
classifies each tetrahedron as interior or exterior ac-
cording to the position of the center of its circumscrib-
ing ball. A triangle is said to belong to the surface
if the classification of the two neighboring tetrahedra
differ. Such a surface facet f can be refined by induc-
ing the intersection point of its Voronoi edge (the dual
of f) with ∂D.1 The refinement process now succes-
sively refines those boundary facets that are classified
as bad facets, for instance, triangles that are consid-
ered two large or whose minimal angle is too small.
The latter criterion ensures well formed triangles in
the resulting mesh.

The main idea of our approach is to add another
criterion that classifies a boundary facet as bad if: (a)
the facet intersects SV or (b) the one-sided Hausdorff-
distance of the facet to SV is too large. Note that
part (a) implies that we can not place intersection
points directly on ∂SV since boundary facets would
always intersect SV in regions where SV is locally
convex. Thus the idea is to place intersections points
on some offset of SV at about half of the user defined
tolerance. This way it is guaranteed that boundary
facets eventually fulfill both conditions which in turn
guarantees termination of the generation process.

1On the duality of the Delaunay triangulation and the
Voronoi diagram see for instance [4]

Figure 2: Sweeping a triangle yields a prism with
three ruled surfaces, each of which is approximated
and tessellated by inserting the diagonal with the
lower dihedral angle.

The approach is two phased: In a initialization
phase we generate a conservative and sufficiently pre-
cise voxelization V0 of SV. In addition we compute
two offsets V1 and V2 by successively adding an ad-
ditional layer of voxels to V0. In the second phase,
the mesh generation phase, we set D = V1. Intersec-
tion points of Voronoi edges with ∂V1 are computed
using bisection. In order to classify a facet, the facet
is voxelized. The facet is considered as bad if one of
its voxels is contained in V0 (ensuring (a)) or outside
of V2 (ensuring (b)).

Thus the core of our approach is an efficient gener-
ation of V0 and its offsets, which is discussed next.

3 Initialization Phase

In order to obey the user defined tolerance δ it is
of course necessary to chose the size of each voxel ε
smaller than δ. Taking into account that the diagonal
of a voxel is 2ε, the two layers for V2 as well as an-
other layer for the conservative voxelization of V0 we
have to chose ε < δ/3

√
(3). That is, for a reasonable

scenario with an area of interest of about 1m3 and
a user defined tolerance of 1mm this would result in
about 52003 ' 140 ∗ 109 voxel, which brings memory
consumption onto the table. In order to decrease the
memory usage we store a voxelization as an octree
which we, similar to [5], internally represented by a
hash set. A node is marked as occupied by its pure
existence in the hash set. In case all 8 children of a
node are marked the node is marked and the children
can be deleted. A voxel is not covered if its leaf and
non of its ancestors exists in the hash set. Testing con-
tainment as well as insertion is in O(log 1/ε) However,
the most important property is that for a reasonable
SV one can expect a memory consumption that is
proportional to ∂SV, i.e., quadratic in 1/ε.

Assuming a linear interpolation every triangle gives
rise to a deformed prism between two trajectory po-
sitions, see also Figure 2. Thus inserting all voxels of
a conservative voxelization of each such prism would
directly yield V0. Since generating all these voxels is
to expensive we follow a culling heuristic by [3] that
tries to rule out those triangles (of the prisms) that do

144

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000

ti
m

e
[s

ec
]

resolution

total time
initialization

facet badness
point queries

Figure 3: Total time in relation to main functions.

not contribute to the boundary. This is based on local
criteria of the mesh in relation to the current direction
of the motion. Only the remaining triangles are then
voxelized. The voxelization is based on a simple sub-
division scheme. Starting from the initial cube, the
boxes that still intersect the triangle are subdivided
until the required resolution is reached. The intersec-
tion test is based on the separating axes theorem. The
result ∂Ṽ0 is a subset of V0 and contains ∂V0. In a
next step we generate ∂V1 = V1\V0 by crawling along
the outer boundary of ∂Ṽ0. We then throw away ∂Ṽ0

and generate V0 by filling ∂V1. V1 is then generated
by simply adding ∂V1 to a copy of V0. V2 is created in
a similar fashion. Since ∂Ṽ0 and ∂V1 are stored in a
plain hash set the crawling is, for reasonable volumes,
in O((1/ε)2). Note that the filling is not cubic since
it uses an hierarchic scheme, which we can no discuss
here due to limited space.

4 Preliminary Results

All benchmarks were measured on a Intel(R)
Core(TM) i5 CPU M 450 with 2.40GHz with 512 kB
cache under Ubuntu Linux and the GNU C++ com-
piler v4.4 with optimizations (-O2). However, we only
use one CPU since we did not parallelize any part of
the approach yet.

The swept Stanford Bunny, Figures 1 and 5, were
generated from an initial mesh with 8100 triangles and
trajectories of size 12/50. The resolution was set to
210 = 1024 which corresponds to δ ' 0.005. One can
see that the mesh nicely adapts to the local complex-
ity of SV, with sparse areas in well behaved regions.
The resulting mesh has only about 20k/10k bound-
ary facets. Figure 3 shows the obtained times for the
Stanford Bunny shown in Figure 1. Note that times
and resolution are given in a logarithmic scale. The
graphs show the total time in relation to three ma-
jor components: the time for the initialization phase,
time spend in point classification and facet classifica-

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000

ti
m

e
[s

ec
]

resolution

init Voxel Hull (construct vhull)
voxelization

hull generation (crawling)

Figure 4: Times for initialization phase.

tion. The sum of the later two is essentially the time
spend in the mesh generation phase. Thus already for
such a small example the initialization phase clearly
dominates the time used overall.

It turns out that most of the time of the initializa-
tion phase is currently spend in the voxelization of all
triangles that where not culled and the computation
of the hull surrounding it. All other steps such as the
hierarchical filling of V0 and the offset computation
to compute V1 and V2 from V0 are not relevant. Fig-
ure 4, shows a more detailed plot of the time spend
in the hull computation. Initially, the voxelization is
clearly the dominating part, but for high resolution
the hull computation eventually takes over. This is
due to the fact that the offset computation in this
part is more expensive since the volume is not filled
and thus the size of the octree is much larger. How-
ever, for larger models and larger trajectories the first
part would currently be the most dominating time
factor.

5 Further Work

Though our results are already very promising we
already see several, partially obvious, optimizations
that where not yet applied due to lack of time.

Using only one offset would significantly improve
memory usage but would also improve ε to δ/4. It
only requires a slightly modified point generation
function. On the other hand, the new scheme would
only leave a corridor of width about δ/2 to place tri-
angles. This would probably have a negative impact
on the size of the resulting mesh. For the current
scheme the width is about 2δ/3.

It is clear that the voxel generation can be easily
parallelized. For instance, each CPU may be ded-
icated to a certain volume in space. The resulting
octrees may be merged afterwards. That is, it is easy
to parallelize the currently most time consuming part
of the algorithm. An obvious alternative is to move

145

27th European Workshop on Computational Geometry, 2011

the voxel generation to the GPU.
So far our implementation can not handle input

meshes that are not manifolds. However, this is just
due to missing case distinction in the current code
handling the culling. In principal the approach is able
to easly handle meshes that are not watertight or have
other topological inconsistencies. For instance, the
voxelization would fill the gap if it is smaller than ε.
Note that this also means that the approach ignores
narrow tunnels to maybe rather large caves inside the
model. In case the tunnel has diameter around delta
the hull computation explores the cave, but it may
appear as a closed void since the tunnel is closed due
to the subsequent offset computations. Note that this
does not contradict our guarantees since we are only
interested in the one-sided Hausdorff-distance.

Figure 5: Bunny swept along a trajectory consisting
of 50 transformations.

6 Conclusion

To the best of our knowledge this is the first con-
servative approache for swept volume mesh geneara-
tion that also guarantees an approximation quality in
terms of the one-sided Hausdorff distance. The result-
ings meshes are of high quality and very reasonable
size, which makes them ideal for further processing
in industrial applications. Moreover, our prelimiary
benchmark results indicate that the approach should
even applicalbe for very large inputs, in particular,
once the parallization of the initialization phase is in
place.

For recent improvements, more examples and
other supplementary material we refer to our
website: http://acg.cs.tau.ac.il/projects/
internal-projects/swept-volume/project-page.

Acknowledgments

We thank R. Erbes for supplying us with the voxelization

algorithm for triangles.

References

[1] K. Abdel-Malek, D. Blackmore, and K. Joy.
Swept volumes: Foundations, perspectives, and
applications. International Journal of Shape
Modeling, 23(5):1–25, 2004.

[2] S. Abrams and P. K. Allen. Computing swept
volumes. Journal of Visualization and Computer
Animation, 11:69–82, 2000.

[3] M. Campen and L. Kobbelt. Polygonal bound-
ary evaluation of minkowski sums and swept vol-
umes. In Eurographics Symposium on Geometry
Processing (SGP 2010), 2010.

[4] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars. Computational Geometry: Algo-
rithms and Applications. Springer, 3rd edition,
2008.

[5] S. F. Frisken and R. N. Perry. Simple and ef-
ficient traversal methods for quadtrees and oc-
trees. Journal of Graphics Tools, 7(3):1–12, 2002.

[6] J. C. Himmelstein, E. Ferre, and J.-P. Laumond.
Swept volume approximation of polygon soups.
In ICRA, pages 4854–4860, 2007.

[7] Y. J. Kim, G. Varadhan, M. C. Lin, and
D. Manocha. Fast swept volume approximation
of complex polyhedral models. In SM ’03: Pro-
ceedings of the eighth ACM symposium on Solid
modeling and applications, pages 11–22, New
York, NY, USA, 2003. ACM.

[8] L. Rineau and M. Yvinec. 3D Surface Mesher,
3.2 edition, 2006. CGAL User and Reference
Manual.

[9] A. von Dziegielewski, R. Erbes, and E. Schömer.
Conservative swept volume boundary approxi-
mation. In SPM ’10: Proceedings of the 14th
ACM Symposium on Solid and Physical Model-
ing, pages 171–176, New York, NY, USA, 2010.
ACM.

[10] S. Zelinka and M. Garland. Permission grids:
Practical, error-bounded simplification. ACM
Transactions on Graphics, 21:2002, 2002.

[11] X. Zhang, Y. J. Kim, and D. Manocha. Reliable
sweeps. In SPM ’09: 2009 SIAM/ACM Joint
Conference on Geometric and Physical Modeling,
pages 373–378, New York, NY, USA, 2009. ACM.

146

http://acg.cs.tau.ac.il/projects/internal-projects/swept-volume/project-page
http://acg.cs.tau.ac.il/projects/internal-projects/swept-volume/project-page

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Switch-regular Upward Planar Drawings with Low-degree Faces∗

Walter Didimo†

Abstract

Upward planar drawings of digraphs are crossing free
drawings where the vertices are mapped to points of
the plane and all edges are simple curves that flow
in the upward direction, according to their orien-
tation. Switch-regular upward planar drawings are
upward planar drawings with additional properties.
They have both theoretical and practical interest in
graph drawing. The complexity of deciding whether
an embedded planar digraph admits a switch-regular
upward planar drawing is still unknown. A linear time
testing algorithm is known for digraphs whose under-
lying graph is a tree. In this paper we show that the
switch-regular upward planarity testing problem can
be solved in polynomial time also for planar embed-
ded digraphs with faces of degree at most six.

1 Introduction

Let G be a planar digraph. An upward planar drawing
of G is a planar drawing such that each vertex of G
is mapped to a distinct point of the plane and all the
edges of G are drawn as Jordan arcs monotonically
increasing in the upward direction, according to their
orientation. Not all planar digraphs admit an upward
planar drawing, and the problem of deciding whether
a planar digraph admits an upward planar drawing
has been widely investigated in the literature. This
problem is referred to as the upward planarity testing
problem. In the variable embedding setting Garg and
Tamassia showed that the upward planarity testing
problem is NP-complete [12]; consequently, branch-
and-bound algorithms and fixed-parameter tractable
algorithms have been described [2, 7, 13]. Also, it has
been shown that the problem can be solved in polyno-
mial time for outerplanar digraphs [15], series-parallel
digraphs [11], and single-source digraphs [4, 14]. In
the fixed embedding setting, Bertolazzi et al. showed
that the upward planarity testing can be executed in
polynomial time by reducing it to a network flow prob-
lem [3].

The topological and combinatorial properties of up-
ward planar drawings have also been investigated.
In particular, Di Battista and Liotta discovered and

∗The research behind this work started at the first Bertinoro
Workshop on Graph Drawing, in 2006.

†Dip. di Ing. Elettr. e dell’Informaz., Università degli Studi
di Perugia didimo@diei.unipg.it

characterized an interesting sub-family of upward pla-
nar drawings whose embedding has some interesting
properties of “regularity” [9]. Roughly speaking, the
upward embedding of an upward planar drawing de-
scribes the circular sequence of “small” angles (i.e.,
angles smaller than π) and “large” angles (i.e., angles
larger than π) at the switch vertices of each face; a ver-
tex v of a face f is a switch-vertex if its incident edges
in f are both leaving or both entering v. The upward
embedding of an upward planar drawing is said to
be switch-regular if: (i) the boundary of each inter-
nal face contains at most one maximal subsequence
of small angles of length greater than one; (ii) the
external boundary does not contain two consecutive
small angles. Figure 1 shows two different upward pla-
nar drawings of the same embedded planar digraph:
The first drawing has a switch-regular upward em-
bedding, while the second drawing has a non-switch
regular upward embedding. An upward planar draw-
ing with a switch-regular upward embedding is also
called a switch-regular upward planar drawing.

Finding switch-regular upward planar drawings has
practical relevance for the design of efficient graph
drawing checkers [9] and of effective compaction al-
gorithms [10]. The complexity of deciding whether a
planar digraph admits a switch-regular upward planar
drawing is still unknown, even in the fixed embedding
setting. Binucci et al. proved that this problem can be
solved in linear time in the variable embedding setting
for digraphs whose underlying graph is a tree [5, 6].

In this paper we study the switch-regular upward
planarity testing problem in the fixed embedding set-
ting. We prove that, given an embedded planar di-
graph G with n vertices and face-degree at most six,
it is possible to decide in O(n2) time whether G ad-
mits a switch-regular upward planar drawing, and to
compute one in the positive case.

The remainder of the paper is structured as follows.
In Section 2 we recall some basic definitions and re-
sults about upward planarity and switch-regular em-
beddings. In Section 3 we present our testing and
embedding algorithm. Some open problems are listed
in Section 4.

2 Basic definitions and results

We assume familiarity with the basic concepts of
graph drawing and graph planarity [8]. Let G be an
embedded planar digraph. A vertex v of G is bimodal

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

147

27th European Workshop on Computational Geometry, 2011

3

7

5

4

1

2

9 8

6

(a)

2

4

5 7

1

3

6

89

L

L

L

L

L

L
L

L

S

SS

S

L

S
S

S S S

S
SS

S

(b)

7

1

2

68

5

3
4

9

L

L

S S

S
S

S

L

L

L

L

L

L

S

S
S

S

S
S

LS
S

f

(c) (d)

Figure 1: (a) A planar embedded digraph G; source and
sink vertices are labeled with integer numbers. (b) An
upward planar drawing of G whose upward embedding
is switch-regular; S and L labels denote small and large
angles, respectively; (c) An upward planar drawing of G
whose upward embedding is not switch-regular (the ex-
ternal face and the internal face f are not switch-regular).
(d) A planar digraph that does not admit a switch-regular
upward planar drawing (the internal face of degree six is
not switch-regular in any upward planar drawing of the
digraph).

if all incoming edges of v (and hence all outgoing edges
of v) are consecutive in the circular clockwise order
around v. G is called bimodal if all its vertices are bi-
modal. Acyclicity and bimodality are necessary, but
not sufficient, conditions for the upward planar drawa-
bility of an embedded planar digraph [3].
Let f be a face of G and suppose that the boundary

of f is traversed counterclockwise. If e1 = (u1, v) and
e2 = (v, u2) are two edges encountered in this order
along the boundary of f , the triplet s = (e1, v, e2) is
called an angle of f . Observe that, e1 and e2 may
coincide if G is not biconnected. Angle s is called a
switch of f if e1 and e2 are both incoming edges or
both outgoing edges of v: In the first case s is also
called a sink-switch of f , while in the second case it
is a source-switch of f . It is immediate to see that
the number of source-switches of f equals the number
of sink-switches of f . We denote by 2nf the total
number of switches of f . The capacity of f is denoted
by cf and it is defined by cf = nf − 1 if f is an
internal face and by cf = nf + 1 if f is the external

face. For a bimodal digraph G, an assignment of its
sources and sinks to the faces of G is called an upward
consistent assignment if: (i) Each source and each
sink is assigned to exactly one of its incident faces;
(ii) for each face f exactly cf sources and sinks on
the boundary of f are assigned to f . The following
theorem characterizes the class of embedded planar
digraphs that admit an upward planar drawing.

Theorem 1 [3] An acyclic embedded planar bimodal
digraph is upward planar if and only if it admits an
upward consistent assignment.

The upward embedding corresponding to an upward
consistent assignment of G is a planar embedding of
G with labels at the switches of every face. Namely,
a switch s = (e1, v, e2) of f is labeled L when v is a
source or a sink assigned to f , while s is labeled S
otherwise. If f is a face of an upward embedding, the
circular list of labels of f is denoted by σf . Also, Sσf

and Lσf
denote the number of S and L labels of f ,

respectively. The following property holds.

Property 1 [3] If f is a face of an upward embedding
then Sσf

= Lσf
+2 if f is internal, and Sσf

= Lσf
−2

if f is external.

An upward planar drawing of a digraph G can be
constructed for a given upward embedding of G; this
drawing is such that each switch labeled L forms a ge-
ometric angle larger than π, while each switch labeled
S forms a geometric angle smaller than π.
An internal face f of an upward embedding is called

switch-regular if σf does not contain two distinct max-
imal subsequences σ1 and σ2 of S labels such that
Sσ1 > 1 and Sσ2 > 1. The external face f is switch-
regular if σf does not contain two consecutive S la-
bels. An upward embedding is switch-regular if all
its faces are switch-regular. We say that a digraph G
is switch-regular if it admits a switch-regular upward
embedding.
Figure 1 shows examples of switch-regular and non-

switch regular upward embeddings for the same di-
graph G. Both the upward embeddings preserves the
planar embedding of G. Figure 1(d) shows a non-
switch regular digraph.

3 Digraphs with face-degree at most six

Here, we present a polynomial-time testing algorithm
for embedded planar digraphs whose faces have at
most six switches. Clearly, this condition is always
true if the faces have degree at most six.
We reduce the switch-regular upward planarity

testing problem on G to the computation of an in-
teger feasible flow in a suitable network N(G) con-
structed from G. Our flow model is inspired by that
proposed by Bertolazzi et al. for the classical upward

148

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

planarity testing problem [3]. However, our network
is enhanced with extra elements (nodes and arcs), in
order to guarantee that every face is assigned a switch-
regular embedding when possible.
The flow networkN ′(G) of Bertolazzi et al. is based

on Theorem 1. It consists of a node n(u) for each
source or sink vertex u of G and of a node n(f) for
each face f of G. Vertices n(u) and n(f) are called
vertex-nodes and face-nodes, respectively. Also N ′(G)
has a directed arc a(u, f) = (n(u), n(f)) if u belongs
to f ; the arc has upper capacity one and lower capac-
ity zero. A unit of flow on an arc a(u, f) represents
a large angle formed at u inside f (i.e., a label L at
u inside f). Each vertex-node n(u) supplies flow one,
which represents the fact that u must form exactly
one large angle inside one of its incident faces. Each
face-node n(f) demands an amount of flow equal to
the capacity cf of face f , which represents the fact
that f must arrange exactly cf large angles. Hence,
there exists an upward consistent assignment describ-
ing an upward embedding of G if and only if N(G′)
admits an integer feasible flow.
We construct a flow network N(G) by enhanc-

ing N ′(G). First we want to restrict all possi-
ble upward consistent assignments to those assign-
ments whose corresponding upward embeddings have
switch-regular internal faces only. If f is an internal
face of G, we distinguish between two possible cases:

f has either 2 or 4 switch-angles. In this case cf
is either 0 or 1, and f has to arrange at most one
large angle. Hence, f is switch-regular in every
upward embedding of G. No local modification
of the network is required for this case.

f has 6 switch-angles. In this case cf = 2 and then
f has to arrange two large angles. There are three
forbidden configurations, shown in Figure 2, that
we have to avoid. To this aim, we locally modify
the network as follows (see also Figure 2(d)): If u
and v are sources or sinks incident to f , such that
there are two switch-angles along the boundary
of f between u and v (in both the two circu-
lar directions), then we remove arcs a(u, f) and
a(v, f) and add the following extra elements: (i)
A node nuv(f) that neither supplies nor demands
flow (it is a transient node); (ii) Two directed
arcs (u, nuv(f)) and (v, nuv(f)), each having up-
per capacity one and lower capacity zero. (iii) A
directed arc (nuv(f), n(f)), with upper capacity
one and lower capacity zero.

Since nuv(f) is a transient node and the upper
capacity of arc (nuv(f), n(f)) is one, such a local
modification of the network avoids that both u
and v receive an L label inside f , but leaves the
possibility that one of them has such a label.

For the external face h of G, we must avoid those

L

L

S S

SS

f

(a)

S

S

S L

SL

f

(b)

S

S

S

LS

f
L

(c)

uvn (f)

n(f)

n(v)

n(u)

(d)

Figure 2: (a)–(c) The three forbidden upward embed-
dings for an internal face with six switches. Maximal sub-
sequences of S labels are bounded by dashed closed curves.
(d) Flow network for an internal face with six switches. All
arcs have lower capacity zero and upper capacity one.

upward embeddings having two consecutive S labels
along the boundary of h. If h has less than six
switches, then h is switch-regular in any upward em-
bedding of G. If h has six switches, then ch = 4 and h
has to arrange four L labels and two S labels. Hence,
there are at most 15 possible arrangements of S and
L labels for the switches of h, 9 of which correspond
to switch-regular upward embeddings of h. For each
of these switch-regular upward embeddings, we can
locally fix in N(G) the flow associated with that up-
ward embedding, and look for an integer feasible flow
within this constraint. To fix a flow of value x on an
arc of N(G), it is sufficient to set upper and lower
capacity of that arc equal to x.
Figure 3 shows the flow network for the embedded

digraph of Figure 1(a) and a feasible flow correspond-
ing to the switch-regular upward embedding of Fig-
ure 1(b).

Theorem 2 Let G be an embedded planar digraph
with n vertices, such that every face has at most six
switches. There exists an O(n2) time algorithm that
tests whether G admits a switch-regular upward pla-
nar drawing and that computes such a drawing in the
positive case.

Proof. Construct the flow network N(G) from the
planar embedding of G. This is done in O(n) time.

149

27th European Workshop on Computational Geometry, 2011

5

1

9

6
7

8

4
3

2

Figure 3: The flow network for the embedded digraph
of Figure 1(a) (grey arcs). The flow in the network cor-
responds to the switch-regular embedding of Figure 1(b).
Thick arcs have flow one, while the others have flow zero.

For each possible switch-regular upward embedding of
the external face h of G, fix the corresponding flow on
N(G) and look for an integer feasible flow in N(G).
If at least one feasible flow is found, then the test is
positive, otherwise it is negative. Since both the size
of N(G) and the value of the flow are O(n), an inte-
ger feasible flow in N(G) can be computed in O(n2)
time with a standard algorithm [1]. Also, we need to
run such an algorithm a constant number of times,
because there are at most 9 switch-regular upward
embeddings for h. Hence, it is possible to test the ex-
istence of an integer feasible flow corresponding to a
switch-regular upward embedding of G in O(n2) time.
If such a flow exists, the label assignment associated
with its values describes a switch-regular upward em-
bedding of G, and an upward planar drawing with
this upward embedding is computed with the same
linear time procedure described in [3]. �

Corollary 1 Let G be an embedded planar digraph
with n vertices and face-degree at most six. There
exists an O(n2) time algorithm that tests whether G
admits a switch-regular upward planar drawing and
that computes such a drawing in the positive case.

4 Open Problems

The main open question is what is the complexity of
the switch-regular upward planarity testing problem
in the general case. It is also interesting to extend
the approach presented in this paper to design a fixed
parameter tractable algorithm whose time complexity
depends on the maximum face degree.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.
Network Flows. North-Holland, 1990.

[2] P. Bertolazzi, G. Di Battista, and W. Didimo.
Quasi-upward planarity. Algorithmica,
32(3):474–506, 2002.

[3] P. Bertolazzi, G. Di Battista, G. Liotta, and
C. Mannino. Upward drawings of triconnected
digraphs. Algorithmica, 6(12):476–497, 1994.

[4] P. Bertolazzi, G. Di Battista, C. Mannino, and
R. Tamassia. Optimal upward planarity test-
ing of single-source digraphs. SIAM Journal on
Computing, 27:132–169, 1998.

[5] C. Binucci, E. D. Giacomo, W. Didimo, and A. T.
Rextin. Switch-regular upward planar embed-
dings of trees. InWALCOM 2010, volume 5942 of
Lecture Notes Comput. Sci., pages 58–69, 2010.

[6] C. Binucci, E. D. Giacomo, W. Didimo, and A. T.
Rextin. Switch-regular upward planarity testing
problem of directed trees. Journal of Graph Al-
gorithms and Applications, to apper.

[7] H. Chan. A parameterized algorithm for upward
planarity testing. In Proc. ESA ’04, volume 3221
of LNCS, pages 157–168, 2004.

[8] G. Di Battista, P. Eades, R. Tamassia, and I. G.
Tollis. Graph Drawing. Prentice Hall, Upper Sad-
dle River, NJ, 1999.

[9] G. Di Battista and G. Liotta. Upward planarity
checking: “faces are more than polygon”. In
Graph Drawing (Proc. GD ’98), volume 1547 of
LNCS, pages 72–86, 1998.

[10] W. Didimo. Upward planar drawings and switch-
regularity heuristics. Journal of Graph Algo-
rithms and Applications, 10(2):259–285, 2006.

[11] W. Didimo, F. Giordano, and G. Liotta. Upward
spirality and upward planarity testing. SIAM
Journal on Discrete Mathematics, 23(4):1842–
1899, 2009.

[12] A. Garg and R. Tamassia. On the computational
complexity of upward and rectilinear planarity
testing. SIAM Journal on Computing, 31(2):601–
625, 2001.

[13] P. Healy and K. Lynch. Fixed-parameter
tractable algorithms for testing upward pla-
narity. International Journal of Foundations of
Computer Science, 17(5):1095–1114, 2006.

[14] M. D. Hutton and A. Lubiw. Upward planarity
testing of single-source acyclic digraphs. SIAM
Journal on Computing, 25(2):291–311, 1996.

[15] A. Papakostas. Upward planarity testing of out-
erplanar dags. In Proc. GD’94, volume 894 of
LNCS, pages 298–306, 1995.

150

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Implicit Flow Routing on Triangulated Terrains

Mark de Berg Herman Haverkort Constantinos P. Tsirogiannis∗

Abstract

Flow-related structures on terrains are defined in
terms of paths of steepest descent (or ascent). A
steepest descent path on a polyhedral terrain T with
n vertices can have Θ(n2) complexity, since at worst
case the path can cross Θ(n) triangles for Θ(n) times
each. We present a technique for tracing a path of
steepest descent on T in O(n log n) time implicitly,
without computing all the intersection points of the
path with the terrain triangles.

1 Introduction

Background and motivation. In many applications
it is necessary to visualize, compute, or analyze flows
on a height function defined over some 2- or higher-
dimensional domain. Often the direction of flow is
given by the gradient and the domain is a region in
R

2. The flow of water in mountainous regions is a
typical example of this. Modeling and analyzing wa-
ter flow is important for predicting floods, planning
dams, and other water-management issues. Hence,
flow modeling and analysis has received ample atten-
tion in the gis community [6, 7, 8, 9].

In gis, mountainous regions are usually modeled as
a dem or as a tin. A dem (digital elevation model)
is a uniform grid, where each grid cell is assigned an
elevation. Because of the discrete nature of dems, it is
hard to model flow in a natural and accurate way. A
tin (triangulated irregular network) is obtained by as-
signing elevations to the vertices of a two-dimensional
triangulation; it is the model we adopt in this paper.
In computational geometry, a tin is usually referred
to as a (polyhedral) terrain. One advantage of poly-
hedral terrains over dems is that one can use a non-
uniform resolution, using small triangles in rugged ar-
eas and larger triangles in flat areas. Another advan-
tage is that the surface defined by a polyhedral ter-
rain is continuous, which makes flow modeling more
natural. Indeed, the standard flow model on polyhe-
dral terrains is simply that water follows the direction
of steepest descent. To make the flow direction well
defined, it is then often assumed—and we will also
make this assumption—that the direction of steepest
descent is unique for every point on the terrain. For

∗Dept. of Mathematics and Computer Science, Eind-
hoven University of Technology, mdberg@win.tue.nl,

cs.herman@haverkort.net, ctsirogi@win.tue.nl

instance, the terrain should not contain horizontal tri-
angles.1

There are several important structures related to
the flow of water on a polyhedral terrain T . The
simplest structure is the path that water would fol-
low from a given point p on the terrain. This path is
called the trickle path and, as already mentioned, in
our model it is simply the path of steepest descent.
Another important structure is the watershed of a
point p on T , which is the set of all points on T from
which water flows to p. In other words, it is the set
of points whose trickle path contains p.

Unfortunately, the combinatorial complexity of
these structures can be quite high. For instance,
De Berg et al. [3] showed that there are terrains
of n triangles on which certain trickle paths cross
Θ(n) triangles each Θ(n) times, resulting in a path
of complexity Θ(n2). McAllister [1] and McAllister
and Snoeyink [2] showed that the total complexity of
the watershed boundaries of all local minima can be
Θ(n3). This is due to the fact that at worst case the
boundary of a watershed can consist of Θ(n) paths of
steepest gradient, each of Θ(n2) complexity.

For fat terrains, where the angles of the terrain tri-
angles are lower-bounded by a constant, the situation
is somewhat better: here the worst-case complexity
of a single path of steepest ascent/descent is Θ(n) [4].
The complexity of a watershed, however, can still be
Θ(n2).

It is not always necessary, however, to explicitly
compute the structure of interest. For example, it
may be sufficient to compute only the point where
a path of steepest descent ends, rather than all the
intersections points of the path with the terrain tri-
angles. Is it possible thus to compute for a point p
on T the point where the trickle path from p ends
without explicitly computing the path itself, thereby
avoiding a worst-case running time of Θ(n2)?

Our results. Inspired by the above, we study the
problem of implicitly tracing paths of steepest descent
or ascent on a polyhedral terrain T with n vertices.
we give an O(n log n) algorithm that finds out where
the trickle path of a given point p ends, without con-

1This can of course be ensured by a small perturbation of
the elevations of the terrain vertices, but even small perturba-
tions may have undesirable effects on the water flow. How to
deal with horizontal triangles is therefore an important research
topic in itself.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

151

27th European Workshop on Computational Geometry, 2011

structing the actual path (which would take Θ(n2)
time in the worst case). Our algorithm can also re-
port all the triangles crossed by the path in the same
amount of time.

Terminology and notation. For a terrain T we de-
note the set of its edges by E, and the set of its ver-
tices by V . Edges in E are defined to be open, that
is, they do not include their endpoints. For any point
p we denote its z-coordinate by z(p). For an edge
e ∈ E incident to a triangle t we call e an out-edge
of t if e receives water from the interior of t through
the direction of steepest descent. Otherwise we call
e an in-edge of t. We call e a valley edge if e is an
out-edge for both of its incident triangles, we call e
a transfluent edge if e is an out-edge for only one in-
cident triangle, and we call e a ridge edge if it is an
in-edge for both of its incident triangles.

2 Computing the triangles crossed by a trickle
path

Let T be a terrain with n triangles, and let p be
the point for which we want to compute the point
where trickle(p) ends. As we only want to find where
trickle(p) ends, we do not want to explicitly compute
all intersection points between trickle(p) and the ter-
rain edges. To avoid this, each time we encounter a
sequence of edges that we crossed before, we jump to
the first edge that we have not encountered so far. We
can detect features that we already crossed, because
we mark them the first time we hit them. Next we
show how to do the above.

Define an EV -sequence to be the (ordered) se-
quence of terrain edges and vertices crossed by some
path on T . For a point q ∈ trickle(p), let S(q) de-
note the EV-sequence crossed by the part of trickle(p)
from p to q. Consider a point q ∈ trickle(p) and let
S(q) = f1f2 · · · fk. Let j be the largest index such
that the feature fj occurs at least twice in S(q), and
let i be the largest index with i < j such that fi = fj .
We call fifi+1 · · · fj the last cycle of S(q), and we call
fj+1 · · · fk the last chain of S(q); see Fig. 1(i). We
need the following lemma.

Lemma 1 Let f be a feature in S(q) that only occurs
before the last cycle of S(q). Then trickle(q) cannot
cross f .

Proof. Let S(q) = f1, . . . , fk and let fi, . . . , fj be
the last cycle of S(q). Let e = fi = fj and let ri and
rj be the intersection points of trickle(p) with e that
correspond to fi and fj , respectively. Let π(p, ri) be
the part of trickle(p) from p to ri and let π(ri, rj) be
the part of trickle(p) between ri and rj . Note that
trickle(q) ⊂ trickle(rj). Define P := π(ri, rj) ∪ rirj .
Then P is the boundary of a simple polygon—see

Fig.1(i), where this polygon is depicted grey. Since
trickle-paths cannot self-intersect and e can be crossed
in only one direction by a trickle path, one of the
paths π(p, ri) and trickle(rj) lies completely inside P
while the other lies completely outside P . This im-
plies that a feature intersecting π(p, ri) can only inter-
sect trickle(q) if that feature intersects π(ri, rj) and,
hence, occurs in the last cycle.

�
Now imagine tracing trickle(p) and suppose we

reach an edge e that we already crossed before. Let
q be the point on which trickle(p) crosses e this time.
After crossing e again, we may cross many more edges
that we already encountered. Our goal is to skip these
edges and immediately jump to the next new edge on
the trickle path. By Lemma 1, the already crossed
edges are either in the last cycle or in the last chain
of S(q). In fact, since q lies on an already crossed edge,
the last chain is empty and so the edges we need to
skip are all in the last cycle. Thus we store the last
cycle in a data structure Tcycle—we call this structure
the cycle tree—that allows us to jump to the next new
edge by performing a query FindExit(Tcycle, q). More
precisely, if C = fi, . . . , fk denotes the cycle stored in
Tcycle and q is a point on fi, then FindExit(Tcycle, q)
reports a pair (fexit, qexit) such that fexit is the first
feature crossed by trickle(q) that is not one of the
features in C and qexit is the point where trickle(q)
hits fexit. The cycle tree stores the last cycle encoun-
tered so far in the trickle path, thus we have to update
this tree according to the changes in the last cycle.

Besides the cycle tree we also maintain a list L
which stores the last chain of S(q); these edges may
have to be inserted into Tcycle later on. This leads to
the following algorithm.
Algorithm ExpandTricklePath(T , p)
Input: A triangulated terrain T and a point p on the

surface of T .
Output: The point where trickle(p) ends and the edges

crossed by this path.
1. Initialize an empty cycle tree Tcycle and an empty list

L, and set q := p. If q lies on a feature f , then insert
f into L.

2. while q is not a local minimum and flow from q does
not exit the terrain

3. do � Invariant: Tcycle stores the last cycle of S(q),
� and L stores its last chain.

4. Let f be the first feature that trickle(q) crosses
after leaving from q, and let q′ be the point
where trickle(q) hits f .

5. q := q′

6. if f is not marked
7. then Mark f and append f to L.
8. else Update Tcycle and empty L.
9. Set (fexit, qexit) := FindExit(Tcycle, q),

mark fexit, and set q := qexit.
10. Append fexit to L (which is currently

empty) and update Tcycle.
11. return q.

152

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Dom(FS)

Im(FS)

q

FS(q)

(ii)(i)

f1

fi = fj

fj+1 fk

ri

rj q

p

Figure 1: (i) The last cycle of the EV-sequence S(q) is fi, . . . , fj , and the last chain is fj+1, . . . , fk.
(ii) The trickle function.

It is easy to see that the invariant holds after step 1
and that it is maintained correctly, assuming Tcycle is
updated correctly in steps 8 and 10. This implies the
correctness of the algorithm. Next we describe how
to implement the cycle tree.

Consider an EV-sequence S without cycles and as-
sume that there is some trickle path that crosses the
features in S in the given order. Let first(S) denote
the first feature of S and let last(S) denote its last fea-
ture. We define the trickle function FS : first(S) →
last(S) of the sequence S as follows. If the trickle path
of a point q ∈ first(S) follows the sequence S all the
way up to last(S), then FS(q) is the point on last(S)
where trickle(q) hits last(S). If, on the other hand,
trickle(q) exits S before reaching last(S), then FS(q)
is undefined. We denote the domain of FS (the part
of first(S) where FS is defined) by Dom(FS), and we
denote the image of FS by Im(FS). Since we assumed
there is a trickle path crossing S, both Dom(FS) and
Im(FS) are non-empty. Fig. 1(ii) illustrates these def-
initions. Note that Im(FS) is a single point when one
of the features in S is a vertex. The following lemma
follows from elementary geometry.

Lemma 2 (i) The function FS(q) is a linear function,
and Dom(FS) and Im(FS) are intervals of first(S) and
last(S), respectively. (ii) Suppose an EV-sequence S
is the concatenation of EV-sequences S1 and S2. Then
FS can be computed from FS1 and FS2 in O(1) time.

Now consider an EV-sequence S(q) = f1 · · · fk and
let C = fi, . . . , fj be the last cycle of S(q). The cycle
tree Tcycle for C is a balanced binary tree, defined as
follows.

• The leaves of Tcycle store the features fi, . . . , fj−1

in order.

• For an internal node ν, let lc[ν] and rc[ν] de-
note its left and right child, respectively. Let
S[ν] denote the subsequence of C consisting of
the features stored in the leaves below ν. Further-
more, let first[ν] and last[ν] denote the features

stored in the leftmost and rightmost leaf below
ν, respectively. Then ν stores the trickle func-
tion FS[ν], and the trickle function FS′[ν], where
S ′[ν] is the sequence fνf ′

ν with fν = last[lc[ν]]
and f ′

ν = first[rc[ν]].

Lemma 3 The function FindExit(Tcycle, q) can be
implemented to run in O(log |C|) time, where |C| is
the length of the cycle stored in Tcycle.

Proof. Imagine following trickle(q), starting at fi,
the first feature in C. We will cross a number of fea-
tures of C, until we exit the cycle. (We must exit the
cycle before returning to fi again, because a trickle
path cannot cross the same sequence twice without
encountering another feature in between [3].) Let f∗

be the feature of C that we cross just before exiting.
We can find f∗ in O(log |C|) time by descending down
Tcycle as follows.

Suppose we arrive at a node ν; initially ν is the
root of Tcycle. We will maintain the invariant that f∗

is stored in a leaf below ν. We will make sure that
we have the point qν where trickle(q) crosses first[ν]
available; initially qν = q. When ν is a leaf we have
found f∗, otherwise we have to decide in which sub-
tree to recurse. The feature f∗ is stored in the right
subtree of an internal node ν if and only if

(i) qν ∈ Dom(FS[lc[ν]]), which means trickle(qν) com-
pletely crosses S[lc[ν]], and
(ii) FS[lc[ν]](qν) ∈ Dom(FS′[ν]), meaning trickle(qν)
reaches first[rc[ν]] after crossing S[lc[ν]].

If these two conditions are met, we set ν := rc[ν] and
qν := FS′[ν] ◦ FS[ν](qν), otherwise we set ν := lc[ν].

Once we have found f∗ and the point q∗ where
trickle(q) crosses f∗, we can compute the exit edge
eexit and point qexit by inspecting the relevant trian-
gle t incident to f∗: we just have to compute where
the path of steepest descent from q∗ exits t. �

It remains to explain how to update Tcycle. First
consider step 8 of ExpandTricklePath. Suppose that,

153

27th European Workshop on Computational Geometry, 2011

just before q reaches f , we have S(q) = f1 · · · fk. Let
fi · · · fj be the last cycle of S(q) (which is stored in
Tcycle) and fj+1 · · · fk its last chain (which is stored
in L). We know that f has been crossed before. By
Lemma 1 this implies f = fm for some m � i. We
distinguish two cases.

• If m > j, then f occurs in the last chain and,
hence, in L. Now after crossing f the last cycle
becomes fm · · · fkf . So updating Tcycle amounts
to first emptying Tcycle, and then constructing a
new cycle tree on fm · · · fkf , which can be done
by a bottom-up procedure in O(|L|) time.

• If i � m � j then f occurs in the last cy-
cle. Then after crossing f the last cycle becomes
fm · · · fjfj+1 · · · fkf . (In the special case that
m = j, we in fact have fi = fj = f and the last
cycle becomes fjfj+1 · · · fkf .) We can now up-
date Tcycle by deleting the features f1 · · · fm−1,
and inserting the features fj+1 · · · fk. (Recall
that the last feature of a cycle is not stored in
the cycle tree.) Inserting and deleting elements
from an augmented balanced binary tree Tcycle

can be done in logarithmic time in a standard
manner.

Next consider the updating of Tcycle in step 10.
Let fi · · · fj be the last cycle before step 9, where we
jump to the first new feature crossed by the trickle
path. Let fm be the last feature we cross before we
exit the cycle, that is, the feature f∗ in the proof of
Lemma 3. Then after the jump, the last cycle becomes
fm · · · fj−1fi · · · fm. (Essentially, the cycle does not
change, but its starting feature changes.) Thus, to
update Tcycle we have to split Tcycle between fm−1

and fm into two cycle trees T 1
cycle and T 2

cycle, then
merge these cycles trees again but this time in the
opposite order (that is, putting T 1

cycle to the right of
T 2

cycle instead of to its left). Splitting and merging
can be done in logarithmic time, if we use a suitable
underlying tree such as a red-black tree. We obtain
the following theorem.

Theorem 4 Let T be a terrain with n triangles and
let p a point on the surface of T . Algorithm Ex-
pandTricklePath(T , p) traces the trickle path of p in
time O(n log Cmax), where Cmax is the length of the
longest cycle in the EV-sequence of trickle(p).

3 Applications to Other Drainage Structures

In the full version of this paper we show how we can
use the presented method so as to derive an efficient
mechanism that expands a collection of Θ(n) paths
simultaneously. This mechanism combines the data
structures that we describe above with a space-sweep
algorithm. Based on this we derive O(n log n) time
algorithms for:

◦ computing for each local minimum p of T the
triangles contained in the watershed of p

◦ computing the surface network graph [5] of T .

We have also designed an O(n2) time algorithm
that computes the watershed area for each local min-
imum of T .

References

[1] M. McAllister. A Watershed Algorithm for Triangu-
lated Terrains. In Proc. 11th Canadian Conference
on Computational Geometry, pages 103–106, 1999.

[2] M. McAllister and J. Snoeyink. Extracting Consis-
tent Watersheds From Digital River And Elevation
Data. Annual Conference of the American Society
for Photogrammetry and Remote Sensing, 1999.

[3] M. de Berg, P. Bose, K. Dobrint, M. van Kreveld,
M. Overmars, M. de Groot, T. Roos, J. Snoeyink
and S. Yu. The Complexity of Rivers in Triangu-
lated Terrains. In Proc. 8th Canadian Conference
on Computational Geometry, pages 325–330, 1996.

[4] M. de Berg, O. Cheong, H. Haverkort, J. Lim and
L. Toma. I/O-Efficient Flow Modeling on Fat Ter-
rains. In Proc. 10th Workshop on Algorithms and
Data Structures, pages 239–250, 2007.

[5] L. Čomić, L. De Floriani and L. Papaleo. Morse-
Smale Decompositions for Modeling Terrain Knowl-
edge. In Proc. 7th International Conference on Spa-
tial Information Theory, pages 426–444, 2005.

[6] A. Frank, B. Palmer and V. Robinson. Formal Meth-
ods for the Accurate Definition of Some Fundamental
Terms in Physical Geography. In Proc. 2nd Interna-
tional Symposium Spatial Data Handling, pages 585–
599, 1986.

[7] S. Mackay and L. Band. Extraction and Representa-
tion of Nested Catchment Areas from Digital Eleva-
tion Models in Lake-Dominated Topography. Water
Resources Research Journal, 34(4):897–901, 1998.

[8] O. Palacios-Velez and B. Cuevas-Renaud. Automated
River-Course, Ridge and Basin Delineation from Dig-
ital Elevation Data. Journal of Hydrology, 86:299–
314, 1986.

[9] D. Theobald and M. Goodchild. Artifacts of
TIN-Based Surface Flow Modeling. In Proc. of
GIS/LIS’90, pages 955–964, 1990.

[10] S. Yu, M. van Kreveld and J. Snoeyink. Drainage
Queries in TINs: From local to global and back again.
In Proc. 7th International Symposium on Spatial
Data Handling, pages 13–1, 1996.

154

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Right Angle Crossing Graphs and 1-planarity∗

Peter Eades† Giuseppe Liotta‡

Abstract

A Right Angle Crossing Graph (also called RAC
graph for short) is a graph that has a straight-line
drawing where any two crossing edges are orthogonal
to each other. A 1-planar graph is a graph that has
a drawing where every edge is crossed at most once.
We study the relationship between RAC graphs and
1-planar graphs in the extremal case that the RAC
graphs have as many edges as possible. It is known
that a maximally dense RAC graph with n > 3 ver-
tices has 4n−10 edges. We show that every maximally
dense RAC graph is 1-planar. Also, we show that for
every integer i such that i ≥ 0, there exists a 1-planar
graph with n = 8+4i vertices and 4n− 10 edges that
is not a RAC graph.

1 Introduction

Recent technological advances have generated tor-
rents of relational data sets that are often represented
and visually analyzed as graphs drawn in the plane.
The large size of these data sets poses fascinating chal-
lenges to graph drawers: while a considerable portion
of the existing graph drawing literature showcases ele-
gant algorithms and sophisticated data structures un-
der the assumption that the input graph is planar,
most graphs are in fact non-planar in practice (see,
e.g., [10, 11]).
In this context, it is worth recalling a few experi-

mental studies that are motivating some of the current
research directions about drawing non-planar graphs.
Huang et al. [8, 9] prove that crossing edges sig-
nificantly affect human understanding if they form
acute angle, while crossing edges that form angles
from about π

3 to π
2 guarantee good readability prop-

erties. Hence it makes sense to study drawings of
graphs where such “sharp angle crossings” are forbid-
den. Purchase et al. [14, 15, 18]) prove that an edge
is difficult to read if it is crossed by many other edges.
Another research direction is therefore to study draw-
ings of graphs where every edge can only be crossed
a small number of times.

∗Work supported in part by MIUR of Italy under project
AlgoDEEP prot. 2008TFBWL4 and by an IVFR Grant of the
Australian Government.

†School of Information Technologies, University of Sydney
{peter}@it.usyd.edu.au

‡Dip. di Ing. Elettr. e dell’Informaz., Università degli Studi
di Perugia {liotta}@diei.unipg.it

This paper studies the interplay between two fam-
ilies of non-planar drawings that fit into the above
mentioned research directions.

More formally, a drawing of a graph G maps each
vertex u of G to a distinct point pu in the plane, each
edge (u, v) of G a Jordan arc connecting pu and pv and
not passing through any other vertex, and is such that
any two edges have at most one point in common. A
1-planar drawing is a drawing of a graph where an
edge can be crossed by at most another edge. A 1-
planar graph is a graph that has a 1-planar drawing.
A straight-line drawing is a drawing of a graph such
that every edge is a straight-line segment. A Right
Angle Crossing drawing (or RAC drawing, for short)
is a straight-line drawing where any two crossing edges
form right angles at their intersection point. A Right
Angle Crossing graph (or RAC graph, for short) is a
graph that has a RAC drawing.

Pach and Toth prove that 1-planar graphs with n
vertices have at most 4n−8 edges, which is a tight up-
per bound [13]. Korzhik and Mohar prove that recog-
nizing 1-planar graphs is NP-hard [12]. Suzuki studies
the combinatorial properties of the so-called optimal
1-planar graphs, i.e. those n-vertex 1-planar graph
having 4n− 8 edges [16]. A limited list of additional
papers on 1-planar graphs includes [4, 7]. Didimo et
al. show that a RAC graph with n > 3 vertices has at
most 4n − 10 edges and that this bound is tight [5].
Argyriou at al. prove that recognizing RAC graphs is
NP-hard [2]. For recent references about RAC graphs
and their variants see also [1, 3, 6, 17].

We focus on the relationship between RAC graphs
and 1-planar graphs in the extremal case that the
RAC graphs are as dense as possible. A RAC graph
is maximally dense if it has n > 3 vertices and 4n−10
edges. We prove the following.

Theorem 1 Every maximally dense RAC graph is 1-
planar. Also, for every integer i such that i ≥ 0, there
exists a 1-planar graph with n = 8 + 4i vertices and
4n− 10 edges that is not a RAC graph.

Section 2 considers a three coloring of the edges of
a maximally dense RAC graph and studies the prop-
erties of the subgraphs induced by two of these three
colors. Section 3 uses these properties to prove Theo-
rem 1. For reasons of space, some proofs are sketched
or omitted.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

155

27th European Workshop on Computational Geometry, 2011

2 Red-blue-green Coloring of Maximally Dense
RAC Graphs

Let G be a maximally dense RAC graph and let D be
any RAC drawing of G. Let E be the set of the edges
of D. In [5] the following 3-coloring of the edges of D
(and hence of G) is described. Every edge is either a
red edge or a blue edge, or a green edge. An edge is red
if and only if it is not crossed by any other edge; a blue
edge is only crossed by green edges, and a green edge
is only crossed by blue edges. We call this 3-coloring
of the edges of D a red-blue-green coloring of D and
denote it as Πrbg. Let Drb = (V,Er ∪Eb) be the sub-
drawing of D consisting of the red and blue edges and
let Grb be the corresponding subgraph of G. We call
Grb the red-blue subgraph of G induced by Πrbg and
we call Drb the red-blue sub-drawing of D induced by
Πrbg. Note that, by construction, Drb has no crossing
edges and thus Grb is a planar graph. We will always
consider Grb as a planar embedded graph, where the
planar embedding is given by Drb. Analogously we
define the red-green subgraph of G induced by Πrbg,
denoted as Grg, and the red-green sub-drawing of D
induced by Πrbg, denoted as Drg. Also Grg has the
planar embedding of Drg, and thus Grg and Grb have
the same external face.
The next lemmas will particularly focus on the size

and the coloring of some specific faces of the red-blue
graph Grb. We will consider its external face, denoted
as fext, and its fence faces, defined as those internal
faces that share at least one edge with fext. In the
proofs that follow, we denote with mr the number
of red edges, with mb the number of blue edges, and
with mg the number of green edges. Without loss of
generality, we will assume from now on that our red-
blue-green coloring is such that mb ≥ mg. Also, we
denote with frb the number of faces of Grb and with
n the number of its vertices.

Lemma 2 [5] Every internal face of Grb has at least
two red edges. Also, all edges of fext are red.

Lemma 3 Face fext is a 3-cycle.

Proof sketch. By Lemma 2, every internal face of
Grb has at least two red edges and all edges of fext
are red. Hence, denoting with |fext| the number of

edges of fext, we have mr ≥ (frb − 1) + |fext|
2 . Since

Grb is a planar graph, Euler’s formula implies that

mr +mb ≤ n+ frb − 2. It follows mb ≤ n− 1− |fext|
2 .

Since also the red-green subgraph of G is planar and it
has the same external face of Grb, by Euler’s formula
we also have that mr+mg ≤ 3n−3−|fext|. It follows
that mr +mb +mg ≤ 4n − 4 − 3|fext|

2 . Observe that
|fext| ≥ 5 would imply mr+mb+mg < 4n−10, which
is impossible because G is a maximally dense RAC
graph. We now show that the external face of Grb

cannot be a 4-cycle either. By contradiction, assume
that |fext| = 4. Consider first the case that some fence
face ofGrb has more than 3 edges: Since |fext| = 4 and
a fence face has size at least 4, we havemr+mb ≤ 3n−
8. By the inequalities above, we also havemr ≥ frb+1
and mb ≤ n−3. Since G is maximally dense, we have
mr +mb +mg = 4n− 10. It follows that mr +mg ≥
3n−7 > mr+mb, which is however impossible because
we are assuming mb ≥ mg. Lastly, consider the case
that |fext| = 4 and all fence faces are 3-cycles (which
implies that there are exactly four fence faces because
|fext| = 4). In every RAC drawing of G, each fence
face is drawn as a triangle. Hence, for at least one
of these triangles the angle opposite to the edge that
belongs to fext must be larger than or equal to π

2 . This
observation, together with Lemma 2, implies that at
least one of the fence faces consists of all red edges
in any red-blue-green coloring. We therefore have the

following: mr ≥ (frb − 2) + |fext|
2 + 3

2 = frb + 3
2 .

Since mr is an integer, we have mr ≥ frb + 2. By
mr +mb ≤ n+ frb − 2 we obtain mb ≤ n− 4, and by
mr+mb+mg = 4n−10 we obtain mr+mg ≥ 3n−6.
However, Grg is a planar graph and it has the same
external face as Grb, that has size 4; so, Grg cannot be
a maximal planar graph, a contradiction. It follows
that fext must be a 3-cycle. �

Lemma 4 Graph Grb is biconnected.

Proof sketch. By Lemmas 2 and 3 the external face
of Grb is a 3-cycle consisting of red edges. With a
similar reasoning as in the proof of Lemma 3, we ob-
tain mr +mg ≥ 3n− 7. Since mb ≥ mg we also have
mr+mb ≥ 3n−7. Since Grb has at least 3n−7 edges,
it is biconnected. �

By using Lemmas 3 and 4 and a similar reasoning
as in their proofs, the following lemma can be proved.

Lemma 5 Graph Grb has three fence faces. Also,
each fence face of Grb is a 3-cycle.

We are now in the position of proving the following
result which, together with Lemma 2, will be exten-
sively used in the proof of Theorem 1.

Lemma 6 Grb and Grg are both maximal planar
graphs.

Proof sketch. By Lemmas 3 and 5, fext is a 3-cycle
consisting of red edges and the three fence faces are
all 3-cycles. By simple geometric arguments it follows
that in any red-blue-green coloring of a RAC drawing
of G, at least two of the triangles representing these
fence faces consist of red edges. We therefore have:

mr ≥ (frb − 3) + |fext|
2 + 3

2 + 3
2 , which implies mr ≥

frb+2. Bymr+mb ≤ n+frb−2, we obtainmb ≤ n−4.
By mr+mb+mg = 4n−10 we have mr+mg ≥ 3n−6.

156

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Since Grg is a planar graph, it has exactly 3n−6 edges
and so does Grb because mb ≥ mg. It follows that Grb

and Grg are are both maximal planar graphs. �

3 Proof of Theorem 1

The following lemma directly implies the first part of
Theorem 1.

Lemma 7 Every RAC drawing of a maximally dense
RAC graph is also a 1-planar drawing.

Proof. Let G be a maximally dense RAC graph, let
D be a RAC drawing of G and consider any red-blue-
green coloring of the edges of D. Let e be a blue edge
of D. By Lemma 6, every blue edge e = (u, v) of
Grb is shared by two internal triangular faces, that
we denote as f and f ′. Let u, v, w be the vertices of f
and u, v, w′ be the vertices of f ′. Since by Lemma 2
every face of Grb has two red edges, we have that
edges (u,w) and (w, v) are not crossed by any other
edge; similarly, edges (u,w′) and (w′, v) of f ′ are both
red. Since every blue edge is crossed by some green
edges, we have that there can be only one green edge
crossing e, namely edge (w,w′). It follows that the
RAC drawing D is also a 1-planar drawing. �

To show the second part of Theorem 1, we de-
scribe an infinite family of 1-planar graphs that have
the same edge density as the maximally dense RAC
graphs but are not maximally dense RAC graphs.
Consider first the graph G0 of of Figure 1 (a). Clearly
it is 1-planar; also, it has n = 8 vertices and 4n−10 =
22 edges.

G0

(b)(a)

Gi

Gi−1

Figure 1: (a) Graph G0; (b) Constructing graph Gi

from Gi−1.

Lemma 8 Graph G0 is not a RAC graph.

Proof. Observe thatG0 has the following properties:
(1) Every vertex of G0 has degree at least five and at
most six; (2) For every 3-cycle with vertices u, v, w,

there exists a fourth vertex z such that the subgraph
induced by u, v, w, z is the complete graph K4; (3)
There is a 4-cycle through the remaining four vertices,
i.e. the vertices that do not form this K4.
Suppose, for a contradiction, that G0 had a RAC

drawing D0. By Lemma 2, the external face of D0 is a
triangle; let u, v, w be the vertices of this external face.
Let z be the vertex such that the sub-drawing of D
induced by vertices u, v, w, z is a planar representation
of K4. Let f0, f1, and f2 be the three internal faces of
this sub-drawing. Let v0, v1, v2, v3 be the remaining
four vertices. They can be either all inside the same
face, or they can be in two faces, or they can be in
three faces. The three cases are illustrated in Figure 2.
Assume that v0, v1, v2, v3 are all in a same face, say

f0. Refer to Figure 2 (a). By Lemma 5, D0 has
three fence faces and these faces are triangles. As
discussed in the proof of Lemma 6, in any red-blue-
green coloring of D the edges of at least two of these
three triangles are red. Since f1 and f2 are both fence
faces, either (w, z) is a red edge or (u, z) is a red edge.
Assume, w.l.o.g. that (w, z) is red. Since vertex v has
degree at least five and (w, z) is red, there must be at
least two edges that connect v to one of the vertices
inside f0; both such edges must cross (u, z) (see the
dotted edges in Figure 2 (a)). However, by Lemma 7,
D0 is also a 1-planar drawing and (u, z) cannot be
crossed twice; a contradiction.
Assume that v0, v1, v2 are in f0 and v3 is in f2. Re-

fer to Figure 2 (b). Since there is a cycle with vertices
v0, v1, v2, v3 there are at least two edges incident to
v3 that cross the boundary of f2. If both these edges
cross edge (u, z), then the same argument as in the
previous case applies. If one of these edges crosses
(v, z), it must also cross (w, z) to reach any one of
v0, v1, v2 (see for example the dotted edge (v2, v3) in
Figure 2 (b)). But this would violate Lemma 7, a
contradiction.
Finally, assume that v0, v1 are in f0, v2 is in f1

and v3 is in f2, as depicted in Figure 2 (c). Since
there is a 4-cycle with vertices v0, v1, v2, v3, there is
an edge of this cycle crossing (u, z), one crossing (v, z),
and one crossing (w, z). Again by Lemma 7, neither
(u, z), nor (v, z), nor (w, z) can be crossed by any
other edge. In order to guarantee that every vertex
of G0 has degree at least five, we must have that v1
and v2 are adjacent to all vertices of f0, v2 is adjacent
to all vertices of f1, and v3 is adjacent to all vertices
of f3 (see the dotted edge v2, v3) in Figure 2 (c)).
This implies that z has degree seven, which is however
impossible becuase every vertex of G0 has degree at
most six.
The statement of the lemma follows. �

Lemma 8 can be generalized to prove the second
part of Theorem 1.

157

27th European Workshop on Computational Geometry, 2011

v2

v0
v1 v1

v0
v3

v0

v2
v3

v1

z

u v
(a)

f2

w

f0 f1

u v

w

f1

(c)

f2

(b)

z

u v
f2

w

f0 f1

v3

z

f0

v2

Figure 2: The three cases in the proof of Lemma 8.
(a) v0, v1, v2, b3 are all in f0, (w, z) is a red edge, and
two dotted edges cross (u, z); (b) v3 is in f2 and edge
(v2, v3) violates the 1-planarity condition; (c) v3 is in
f2, v2 in f1 and z has degree seven.

Lemma 9 For every integer i such that i ≥ 0, there
exists a 1-planar graph with n = 8 + 4i vertices and
4n− 10 edges that is not a RAC graph.

Proof. Let G be a family of graphs defined as follows.
G0 is a graph of G. Graph Gi of G is obtained from
Gi−1 by adding four vertices to the external face of
Gi−1 and 16 edges as described in Figure 1 (b). Ob-
serve that every graph in G is 1-planar and it has
n = 8 + 4i vertices and 4n − 10 edges. Suppose that
Gi had a RAC drawing Di. Since any sub-drawing of
a RAC drawing is RAC drawing too, the sub-drawing
of Di representing graph G0 should also be a RAC
drawing of G0, contradicting Lemma 8. It follows
that no graph of G is a RAC graph, which proves the
lemma. �

Lemmas 7 and 9 prove Theorem 1.

4 Open Problems

It would be interesting to establish whether recogniz-
ing maximally dense RAC graphs is computationally
as difficult as recognizing RAC graphs in the general
case. Additional studies of the combinatorial prop-
erties of maximally dense RAC graphs can help in
answering this question.

References

[1] E. Ackerman, R. Fulek, and C. D. Tóth. On the
size of graphs that admit polyline drawings with few
bends and crossing angles. In Proc. of GD 2010, vol-
ume 6502 of LNCS, pages 1–12. Springer, 2010.

[2] E. N. Argyriou, M. A. Bekos, and A. Symvonis. The
straight-line rac drawing problem is np-hard. In
WALCOM, 2011. to appear.

[3] K. Arikushi, R. Fulek, B. Keszegh, F. Moric, and
C. D. Tóth. Graphs that admit right angle crossing
drawings. In D. M. Thilikos, editor, WG, volume
6410 of Lecture Notes in Computer Science, pages
135–146, 2010.

[4] O. V. Borodin, A. V. Kostochka, A. Raspaud, and
E. Sopena. Acyclic colouring of 1-planar graphs. Dis-
crete Applied Mathematics, 114(1-3):29–41, 2001.

[5] W. Didimo, P. Eades, and G. Liotta. Drawing graphs
with right angle crossings. In F. K. H. A. Dehne,
M. L. Gavrilova, J.-R. Sack, and C. D. Tóth, editors,
WADS, volume 5664 of Lecture Notes in Computer
Science, pages 206–217. Springer, 2009.

[6] W. Didimo, P. Eades, and G. Liotta. A characteri-
zation of complete bipartite rac graphs. Inf. Process.
Lett., 110(16):687–691, 2010.

[7] I. Fabrici and T. Madaras. The structure of 1-
planar graphs. Discrete Mathematics, 307(7-8):854–
865, 2007.

[8] W. Huang. Using eye tracking to investigate graph
layout effects. In APVIS, pages 97–100, 2007.

[9] W. Huang, S.-H. Hong, and P. Eades. Effects of cross-
ing angles. In PacificVis, pages 41–46, 2008.

[10] M. Jünger and P. Mutzel, editors. Graph Drawing
Software. Springer, 2003.

[11] M. Kaufmann and D. Wagner, editors. (Eds.) Draw-
ing Graphs. Springer Verlag, 2001.

[12] V. P. Korzhik and B. Mohar. Minimal obstructions
for 1-immersions and hardness of 1-planarity testing.
In Graph Drawing, pages 302–312, 2008.

[13] J. Pach and G. Tóth. Graphs drawn with few cross-
ings per edge. Combinatorica, 17(3):427–439, 1997.

[14] H. C. Purchase. Effective information visualisation:
a study of graph drawing aesthetics and algorithms.
Interacting with Computers, 13(2):147–162, 2000.

[15] H. C. Purchase, D. A. Carrington, and J.-A. Allder.
Empirical evaluation of aesthetics-based graph lay-
out. Empirical Software Engineering, 7(3):233–255,
2002.

[16] Y. Suzuki. Optimal 1-planar graphs which triangu-
late other surfaces. Discrete Mathematics, 310(1):6–
11, 2010.

[17] M. van Kreveld. The quality ratio of RAC drawings
and planar drawings of planar graphs. In Proc. of GD
2010, volume 6502 of LNCS, pages 371–376. Springer,
2010.

[18] C. Ware, H. C. Purchase, L. Colpoys, and M. McGill.
Cognitive measurements of graph aesthetics. Infor-
mation Visualization, 1(2):103–110, 2002.

158

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Searching for Radio Beacons with Mobile Agents
that Perceive Discrete Signal Intensities

Henning Hasemann∗† Tom Kamphans∗‡ Alexander Kröller∗

Abstract

In this work, we present a number of algorithms for
an agent to find a radio source in an unknown two-
dimensional environment. We consider a model in
which a mobile agent can perceive the intensity of a
radio beacon only in discrete intervals instead of a
uniform signal distribution.

Our solution for the general case also allows mul-
tiple local intensity maxima. Moreover, we present
algorithms that behave efficiently if the width of in-
tensity layers is bounded. For the case without ge-
ometric obstacles we also provide a lower bound for
online algorithms and show that our solution operates
within a constant factor of this bound.

1 Introduction

The problem of finding a radio source with mobile
agents among geometric obstacles in an unknown en-
vironment has been studied intensively. The nature of
the solutions vary substantially with the sensor model
that is chosen for the implementing agent. A num-
ber of approaches focuses on a model in which the
agent knows its exact position relative to the source
at all times, such as the well-known bug family of al-
gorithms [8]. Some of these approaches also grant the
agent the ability to perceive parts of its environment
directly [6, 3, 7]. Others require knowledge of only the
direction of or the distance to the radio source [9, 2].

All of these approaches have in common that they
use rather abstract models of radio-signal distribu-
tions or presume an information source other than
a radio signal. However, real radio signals often do
not provide direct angular or distance-related infor-
mation, but still give enough information to find a di-
rect path to the signal source [3, 11]. The idea is that
even non-isotropic intensity landscapes may provide
a path to the source, which can be found by following
the direction of steepest signal intensity ascent.

Some real-world signal-intensity measurement sys-
tems, such as link-quality indicators (LQI, [5]), which
are commonly used in wireless sensor networks, pro-
vide only discrete signal intensities. In such a setup, a

∗Algorithms Group, Braunschweig Institute of Technology,
Germany. http://www.ibr.cs.tu-bs.de/alg
†Supp. by 7th Framework Progr. contr. 258885 (SPITFIRE)
‡Supp. by 7th Framework Progr. contr. 215270 (FRONTS)

signal intensity ascent may not be measurable without
extensive motion. Thus, the approaches mentioned
above cannot be applied. Also, there may be multiple
(local) maxima of signal intensity at locations other
than the radio source, due to reflection effects [10].
By combining covering techniques with search strate-
gies, we are able to present algorithms that deal with
some of these constraints and still guarantee to find
the signal source.

In Section 2, we give some basic definitions that
provide the groundwork for the following sections. In
Section 3, we provide an approach that imposes only
few constraints on the environments and still guar-
antees that an agent will eventually reach the signal
source. Section 4 provides a lower bound for online
algorithms in so-called nested environments without
geometric obstacles and introduces an algorithm that
operates within a constant factor of this bound. In
Section 5, we present an algorithm that provides a
maximum–path-length guarantee for the case with ge-
ometric obstacles. For a more comprehensive descrip-
tion, see Hasemann [4].

2 Preliminaries

An intensity environment (or environment for short)
is given by a triple E = (C, ptarget, ι): the finite con-

figuration space C = Cfree
•
∪ Cblocked ⊆ R2, the posi-

tion of the signal source ptarget ∈ Cfree and an inten-
sity function ι : C → {1, . . . , nι} with ι(ptarget) = nι
where, nι ∈ N is the number of different intensities
that can occur in the environment. Cblocked consists of
nO obstacles O1, . . . , OnO bounded by Jordan curves.

The set of intensity layers, L, is a disjoint dissection
of C into regions of constant value of ι. We require
that every layer, Li ∈ L, is bounded by a set of Jordan
curves and ∀j 6= i : ∂Li ∩ ∂Lj 6= ∅ ⇒ j ∈ {i + 1, i −
1}. Regions that have no neighbor with higher ι-value
are called hills. We call E a nested environment if
every layer is connected, has one hole (except the layer
containing ptarget), and every layer with higher ι-value
is fully contained inside this hole. Further, there is a
layer-width bound d ∈ R, such that for any L ∈ L
with a hole ∀pl ∈ L : ∃ph ∈ C : (ι(ph) > ι(pl))∧ (||pl−
ph|| ≤ d) holds and the layer that contains ptarget is
contained in a circle with radius d around ptarget.

For simplicity, we assume a point-shaped agent with

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

159

27th European Workshop on Computational Geometry, 2011

(i) (ii)

Figure 1: (i) Linear (lawn-mower–like) and (ii) cir-
cular covering patterns. Where the covering-motion
curve (dotted lines) ‘touches’ an obstacle or an area of
higher intensity, the configuration space is split into
cells that are covered separately.

the capability to measure all signal intensities and to
detect walls and the signal source in a radius r around
its position. We assume that the agent has knowledge
about whether or not the environment is nested and
its layer width bound d (if any). However, the agent
initially has no knowledge of the configuration space,
the position of the signal source, the number of inten-
sity layers, or the maximum intensity.

3 General Environments

We now present an algorithm that guarantees to find
the signal source in general environments, using a
simple back-and-forth covering strategy (e.g., sweep
from left to right and back; see Fig. 1) as parame-
ter. Note that such a strategy can cover only certain
simply-connected areas, but in general is not sufficient
to cover an unknown environment with obstacles and
differing signal intensities. The covering pattern has
to fulfill some criteria in order to make it usable for
our algorithm and avoid certain corner cases. See the
thesis on this subject [4] and the covering algorithm
for environments without intensities [1] for details.

Algorithm 1: Intensity-Aided Coverage Planning
(IACoP)

The agent starts in the outer layer (i.e.,
ι(current position) = 1).

Cover the current region using the given pattern,
until an obstacle or an area of higher intensity is
found. In this case, add the newly-found areas to
a list. From this list, choose one of the areas with
highest intensity and proceed with this area. If
an area is completely covered, remove it from the
list. Stop when ptarget is found.

It is easy to see that the IACoP strategy finds the
signal source, as it eventually covers Cfree completely.
Although this algorithm has the upside of being very
general in terms of constraints imposed on the en-
vironment, it can be forced to cover an area that is
arbitrarily large in comparison to the agent’s distance
to the source. In the following section, we will see that

Figure 2: Atube(a)

nested environments can be searched more efficiently.

4 Nested Environments without Obstacles

In this section, we consider nested environments with
a layer width bound d. We provide a lower bound
on the agent’s path length, and an algorithm for the
case Cblocked = ∅; the case with obstacles is discussed
in the following section.

4.1 Lower Bound

Lemma 1 Let A ⊂ R2 be an area with |A| < ∞. A
path of length lcovmin(|A|) = min{(|A| − πr2)/2r, 0}
is always necessary and sometimes sufficient for an
agent with coverage radius r to cover A completely.

Proof. Assume that there is an area A with πr2 ≤
|A| < ∞ that is coverable by a path of length l <

lcovmin(|A|) = |A|−πr2
2r . Initially (i.e., prior to any ac-

tual motion), the agent covers |Ainit| ≤ πr2. Then,
during each motion step of length ε, the agent cov-

ers an additional area Aε with |Aε| = |A|−|Ainit|
l ε on

average. We observe that |Aε| > 2rε |A|−|Ainit|
|A|−πr2 ≥ 2rε

holds. However, for a step of length ε, the agent can-
not do better than moving on a straight line into un-
covered space. Such a step cannot cover more than
2rε which is a contradiction to |Aε| > 2rε. Thus, an
agent cannot cover any area A with a path shorter
than lcovmin(|A|).

The area Atube(a), see Fig. 2, with |Atube(a)| =
2ra+πr2 can clearly be covered by an agent moving on
a straight line of length a = (2ra+ πr2 − πr2)/2r =
lcovmin(|Atube(a)|). Thus, a path of length lcovmin(|A|)
is sometimes sufficient for covering an area A. �

Theorem 2 For any online algorithm ONL that
finds the signal source in a nested environment with-
out obstacles, there exists an environment E with
layer width bound d ≥ 2r and nι ≥ 3 intensity layers,
such that an agent with a coverage radius of r execut-
ing ONL in E travels a path of length

DONL ≥ (nι − 1
2)d+ πd2

2r + (1
2 −

3π
4)r.

Proof. We construct E, such that an agent must
walk a path of length (nι − 1)d in order to reach
the hill. Let pnι be the first point of the hill that
is covered by the agent. We place the signal source
at the point in the disk of radius d around pnι that
is last to be covered by the agent. Note that the
agent must already have covered (slightly less than)

160

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Figure 3: A mobile agent covering the environment.
When detecting an area of different intensity, the
agent creates three new cells A, B and C. The one
with the highest intensity (C) will be covered first.

|Atube(d− r)| − π
2 r

2 of that disk, so the length of the
path an agent travels after it has detected pnι in E is
at least lcovmin(|Atube(d− r)| − π

2 r
2).

Altogether, the agent has to travel a distance of at

least (nι− 1
2)d+ πd2

2r + (1
2 −

3π
4)r in order to reach the

signal source. �

We conjecture that it is possible to construct a bet-
ter lower bound by exploiting the fact that the mo-
bile agent cannot know in which direction an area of
higher intensity is located. However, it is difficult to
predict a minimal path length, because an optimal
path strongly depends on the shape of the areas that
the agent has already covered.

4.2 Circular Motion Planning

Algorithm 2: Circular Motion Planning (CMoP)

c1 := current position;
i := 1;
walk an arbitrary straight line of length d− r;
repeat

walk on a circle around ci;
on intensity increase detected at some point p

i := i+ 1;
ci := p;
go to nearest point q with ‖ci− q‖ = d− r;

until circle complete;
move on concentric circles towards ci;

Theorem 3 An agent executing the CMoP algo-
rithm in a nested environment will reach the ra-
dio source with a total maximum travel distance of
DCMoP ≤ 8.192DONL.

Proof. When the agent starts executing the algo-
rithm, it travels a straight line of length d − r, fol-
lowed by at most a complete circle of length 2π(d−r)
around c1.

For the following circles around a point ck, k ∈
{2, . . . , nι − 1} a point p of intensity ι(p) > ι(ck) can
either be found during circling or not. If it is found,
a new circle is started around p = ck+1 and the way
costs for the circle around ck are d− 2r for getting to
the closest point on the circle and at most 2π(d − r)
for the actual circular motion.

If the agent has not found a point with higher signal
intensity than ι(ck) so far, such a point must be inside
the d-disk around ck. As the environment is nested,
the same holds true for all other points with higher
intensity than ι(ck), especially the radio source.

In the last step, we walk on d d2r e concentric
circles towards ck and need a total of d for the
relocation between two successive cirlces. From the
last circle, we move a distance of r towards the source:

DCMoP ≤ (2π+1)(d−r)+((2π+1)d−(2π+2)r)(nι−2)

+
∑d d2r e
i=1 2πr(2i− 1) + d+ r

≤ (2π + 1) (nι − 2) (d− r) + πd2

2r + 4πd+ 2
< (2π + 1) · nι

nι− 1
4−

3
8π
·DONL

≤ 8.192DONL �

We observe that for high values of nι, this bound
approaches 2π + 1 (≈ 7.2832).

5 Nested Environments with Obstacles

For nested environments with obstacles, we use the
Circular Coverage Planning Algorithm (CCoP), see
Alg. 3. Figure 4 shows an example of this algorithm.

Figure 4: Example run of the CCoP algorithm. The
agent starts covering area (i) with a circular pattern
until it detects an obstacle (dashed grey line). Next,
areas (ii) and (iii) are covered separately. Then the
agent follows the nearest obstacle wall (iv) and marks
the obstacle as covered. The agent follows another
obstacle wall and covers the newly found part of the
d-disk (v) starting with large circles.

Theorem 4 An agent executing the CCoP algorithm
will reach the radio source with a total maximum

161

27th European Workshop on Computational Geometry, 2011

Algorithm 3: Circular Coverage Planning Algo-
rithm (CCoP)

Let p be the agent’s starting position.
• Walk a concentric circle pattern around p.
• Whenever a wall piece is detected, store its

position in a list. Also, store the positions of the
sub-areas to both sides of the wall piece.

• When the current circle cannot be continued
(either because it is complete or because of an
obstacle), recursively cover all known but not
covered cells by extending the circular pattern
to those areas.

• When the current circle radius has reached d,
no point of higher intensity can be found, and
all known cells are covered, follow the nearest
wall piece until an area of higher intensity or an
uncovered part of the d-circle around p is found.
In the latter case, cover this part, then continue
following the wall so that it will eventually be
circled completely.

• Whenever an obstacle has been circled
completely, mark the area of the obstacle as
already covered.

• Whenever a point p′ with intensity higher than
ι(p) is detected, move to p and start the
algorithm from the beginning with p := p′.
• When the signal source is detected, move to the

source, and stop.

travel distance of
DCCoP ≤ (πd

2

2r +(2π+1)d+(2π+2)r)nι+2
∑nO
i=1 |∂Oi|.

Proof. The agent starts with a covering loop around
its starting position. The actual covering happens
in
⌈
d
2r

⌉
circles with radii r, 3r, 5r, . . .

(
2
⌈
d
2r

⌉
− 1
)
r.

Then the circular part of the covering loops is

bounded by
∑d d2r e
i=1 ((2i− 1)2πr).

For relocation between covering loops, the agent
walks a distance of at most d when there are no ob-
stacles. In addition, the agent will walk nι path seg-
ments, each of length no more than r, for getting from
one spiral to the next or to the source.

When there are obstacles that intersect the covering
loop, the relocations happen on the obstacle bound-
aries, and thus are bounded by

∑nO
i=1 |∂Oi|. The

search for an unexplored part of the covering circle
is also a path along obstacle borders, so its length is
bounded by

∑nO
i=1 |∂Oi|, too.

In total we get

DCCoP ≤
[∑d d2r e

i=1 ((2i− 1)2πr) + 2
⌈
d
2r

⌉
r

]
nι

+ 2
∑nO
i=1 |∂Oi|

≤
[
(2π + 1)d+ π

2
d2

r + (2π + 2)r
]
nι

+ 2
∑nO
i=1 |∂Oi| �

6 Conclusion

We presented approaches for three different cases of
environments with discrete signal intensities. In the
case of environments with a layer width bound and no
obstacles we could show that our algorithm is within
a constant factor of an optimal online algorithm.

Acknowledgements
We thank Sándor P. Fekete for helpful discussions and
proofreading.

References

[1] E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar, and
D. Hull. Morse decompositions for coverage tasks.
Internat. J. Robot. Res., 21(4):331–344, 2002.

[2] D. Angluin, J. Westbrook, and W. Zhu. Robot nav-
igation with distance queries. SIAM J. Comput.,
30:110–144, 2000.

[3] M. Burger, Y. Landa, N. Tanushev, and R. Tsai. Dis-
covering point sources in unknown environments. In
Proc. Workshop Algorithmic Found. Robot., 2008.

[4] H. Hasemann. Searching for radio beacons among
geometric obstacles with mobile agents. Master’s
thesis, Braunschweig Institute of Technology, 2010.
http://www.ibr.cs.tu-bs.de/users/hasemann/.

[5] IEEE. Standard 802.15.4 for local and metropolitan
area networks specific requirements part 15.4, 2006.

[6] I. Kamon and E. Rivlin. Sensory-based motion plan-
ning with global proofs. IEEE Trans. Robot. Autom.,
13:814–822, 1997.

[7] V. J. Lumelsky and T. Skewis. A paradigm for incor-
porating vision in the robot navigation function. In
Proc. IEEE Internat. Conf. Robot. Automat., pages
734–739, 1988.

[8] V. J. Lumelsky and A. A. Stepanov. Path-planning
strategies for a point mobile automaton moving
amidst unknown obstacles of arbitrary shape. Al-
gorithmica, 2:403–430, 1987.

[9] V. J. Lumelsky and S. Tiwari. An algorithm for maze
searching with azimuth input. In Proc. IEEE Inter-
nat. Conf. Robot. Automat., pages 111–116, 1994.

[10] L. Tang, K.-C. Wang, Y. Huang, and F. Gu. Chan-
nel characterization and link quality assessment of
ieee 802.15.4-compliant radio for factory environ-
ments. IEEE Trans. Industrial Informatics, 3(2):99–
110, 2007.

[11] K. Taylor and S. M. LaValle. I-bug: An intensity-
based bug algorithm. In Proc. IEEE Internat. Conf.
Robot. Automat., pages 3981–3986, 2009.

162

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Area-Preserving C-Oriented Schematization∗

Kevin Buchin† Wouter Meulemans† Bettina Speckmann†

Abstract

We define an edge-move operation for polygons and
prove that every simple non-convex polygon P has
a non-conflicting pair of complementary edge-moves
that reduces the number of edges of P while pre-
serving its area. We use this result to generate area-
preserving C-oriented schematizations of polygons.

1 Introduction

A schematic map displays a set of nodes and their
connections—for example, highway, train, or metro
networks—in a highly simplified form to communicate
the connectivity information as effectively as possible.
Connections are usually drawn as polygonal paths us-
ing few links and few orientations. The set of permis-
sible orientations often contains only the two axis-
parallel or the four main orientations. The most gen-
eral setting is C-oriented schematization where every
link has to use one of a set C of specified orientations.
A substantial part of previous efforts concentrates

on the schematization of networks, but it is also often
desirable to schematize the boundaries of regions or
even complete subdivisions. Whenever exact bound-
aries are not needed it is preferable to replace them
by schematic ones, to reduce visual clutter and to in-
dicate that the map is not a topographic map.
The schematized output should visually resemble

the input. But it is not clear how to quantify what
the most recognizable schematization of a given input
is. Optimization based on standard distance metrics
can produce undesirable output for certain input poly-
gons [8]. Hence we focus on area-preserving schema-
tization, that is, the area of the input polygon and its
schematization are equivalent. While we do not prove
any guarantees on the resulting shapes, experimental
results are quite promising and visually pleasing.

Figure 1: Complementary edge-moves.

∗W. Meulemans and B. Speckmann are supported by the

Netherlands Organisation for Scientific Research (NWO) under

project no. 639.022.707.
†Department of Mathematics and Computer Science,

TU Eindhoven, The Netherlands. k.a.buchin@tue.nl,
w.meulemans@tue.nl, and speckman@win.tue.nl.

Figure 2: Hexagonal Great Britain using 50 edges;
octagonal Vietnam using 15 edges.

Results. We introduce an edge-move operation that
moves an edge of a polygon inward or outward with-
out changing its orientation. This does change the
length of its adjacent edges and potentially itself. A
contraction is an edge-move that reduces at least one
edge to length zero, hereby reducing the number of
edges in the polygon. Since we desire area preserva-
tion, we apply this operation in non-conflicting com-
plementary pairs (Figure 1). Theorem 1, our main
result, is an immediate consequence of Lemma 6:

Theorem 1 Every simple non-convex polygon has
a non-conflicting pair of complementary edge-moves,
one of which is a contraction.

As edge-moves do not introduce new orientations, we
can also use edge-moves to create area-preserving C-
oriented schematizations of polygons. Note that a
simple polygon can be converted into a simple C-
oriented polygon of equal area based on the method
presented by Meulemans et al. [8].

Corollary 2 Given a simple C-oriented polygon P
and an integer k with 2|C| ≤ k, an area-preserving
C-oriented schematization of P with at most k edges
can be generated using only non-conflicting pairs of
complementary edge-moves.

The results in Figure 2 were obtained by repeat-
edly executing a non-conflicting pair of complemen-
tary edge-moves such that the contraction minimizes
the area change and the compensating edge-move is as
close by as possible. This method can also be used for
simple subdivisions restricted to edge-moves that do

163

27th European Workshop on Computational Geometry, 2011

not change the topology. Our algorithm then ensures
that each face preserves its area and that adjacencies
are correct. In this case we cannot give any guarantees
on the reduction in the number of edges. Preliminary
experiments suggest that the reduction is significant.

Related work. There is an ample body of work on
map schematization and metro map construction, see
the surveys by Swan et al. [10] and Wolff [11] for an
overview. Of particular interest is the work by Mer-
rick and Gudmundsson [7] who describe an algorithm
to generate C-oriented metro map layouts. Methods
for map schematization can be used to schematize
subdivisions, but they usually do not take criteria
such as shape and size preservation into account.
The generalization of urban data, specifically build-

ing generalization, is closely related to our work. In
particular, algorithms for building wall squaring [6]
and outline simplification [5] can be used for polygon
schematization and vice versa.
Line simplification has been a prominent topic in

the GIS literature for many years. Of particular rele-
vance are the work of Delling et al. [3] and Neyer [9]
dealing with C-oriented schematization of routes or
lines and the work of Bose et al. [1] on area-preserving
line simplification. However, it is generally not advis-
able to schematize each chain in a subdivision sepa-
rately. There are some approaches, developed in com-
putational geometry, that preserve the topology of the
input subdivision. For example, De Berg et al. [2] de-
scribe a method that simplifies a polygonal subdivi-
sion without introducing intersections or passing over
special input points. Unfortunately many subdivision
simplification problems that minimize the number of
edges in the output are NP-complete [4].

2 Edge-moves and configurations

Definitions and notation. We are given a simple poly-
gon P with vertices v1, . . . , vn. We treat the vertices
modulo n, e.g. vn+1 = v1. The edges are denoted
by e1, . . . , en, again treated circularly. The directed
edge ei starts at vertex vi and ends at vertex vi+1. A
vertex is called convex if the angle inside the polygon
between its two adjacent edges is at most π, and it
is called reflex otherwise. We call an edge convex or
reflex if both its vertices are convex or reflex respec-
tively. The exterior angle of a vertex is defined as
the angle between one edge and the extension of the
other. The exterior angle is sometimes also referred
to as turning angle. The angle is negative if and only
if the vertex is reflex. The sum of all exterior angles
of a simple polygon is always equal to 2π.
We define a chain S as a set of at least three consec-

utive edges of P . Its edges are denoted by s1, . . . , sm
with m ≤ n. Its vertices are denoted by u1, . . . , um+1

and edge si is directed from ui to ui+1. The edges

Figure 3: A positive and negative exterior angle.

s1 and sm are the outer edges of S, the other edges
are its inner edges. Likewise, u1 and um+1 are outer
vertices, the other vertices inner vertices. By α(S),
we denote the sum of the exterior angles of the inner
vertices of S. A lid is an open line segment between a
point on s1 and a point on sm and is fully contained
in the interior of P . If S has any lid, it is a closable
chain. If the open line segment (u1, um+1) is a lid,
S is a proper chain. For a closable chain S and a lid
l, we denote by Rl(S) the region enclosed by S and
l. For a proper chain, R(S) denotes this region us-
ing the lid (u1, um+1) implicitly. Due to the lid, we
know that for every closable chain, any point on the
boundary of P that is inside Rl(S) must be part of S.
For any closable chain, α(S) > 0 holds. A (not neces-
sarily closable) chain with exactly 3 edges is called a
configuration G, its edges denoted by g1, g2, and g3.
The outer edges of a configuration G define two

tracks, infinite lines through the edges. An edge-move
on G moves g2 such that its orientation is preserved
and its vertices are on the tracks, making the outer
edges longer or shorter. An edge-move is valid if at
least one of its vertices remains on its original outer
edge and g2 remains on the same side of or on the
intersection point of the tracks (if any). An edge-move
which causes one of the edges of G to reach length
zero, is a contraction. Contractions are extremal edge-
moves. An edge-move is positive if it adds area to P
and negative if it removes area.
A configuration supports edge-moves, either posi-

tive, negative or both. Let g+2 denote the extremal
position of g2 after any valid positive edge-move, i.e.
the position after a positive contraction. The positive
contraction region of a positive configuration, R+(G),
is the region enclosed by g2, g

+
2 , and the tracks. A fea-

sible positive configuration is a configuration for which
R+(G) is empty except for G. Similarly, we define the
negative contraction region R−(G) and a feasible neg-
ative configuration. If a positive or negative configu-
ration is feasible, then any valid positive or negative
edge-move respectively is feasible. If a positive config-
uration is infeasible, then there is some point on δP in
R+(G)\G. A point in δP ∩R+(G)\G that is closest to

R−

R+

Figure 4: A valid positive edge-move.

164

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

G G G

pp
p

Figure 5: Configurations G and blocking points p.

the line through g2 is called a positive blocking point.
Analogously, G can have a negative blocking point. If
the inner edge of an infeasible G is convex or reflex,
there is always a blocking point that is a vertex of P .

Since we desire an approach that preserves the area
of the polygon, we combine two complementary fea-
sible configurations, one positive and one negative,
executing an edge-move on both simultaneously. The
one with the smaller contraction region is contracted,
while the other is moved just far enough to compen-
sate for the area change. Two configurations conflict
when they share an edge, unless they share only outer
edges and one of these has a convex and a reflex ver-
tex. In this special case the two edge-moves both ei-
ther shorten or lengthen the shared edge. We call two
non-conflicting complementary feasible configurations
a proper configuration pair.

Completeness. We now prove that any non-convex
polygon has a proper configuration pair. First we dis-
cuss some properties of a closable or proper chain.

Lemma 3 If S is a closable chain without a convex
inner edge and s2 is reflex, then S has a feasible neg-
ative configuration G with a reflex first inner vertex,
α(G) > 0 and R−(G) ⊆ Rl(S) for any lid l of S.

Proof. As α(S) > 0 and there are no convex inner
edges, there must a configuration G� in S with a reflex
first inner vertex and α(G�) > 0 (implying that the
second inner vertex is convex). LetG� be the first such
configuration. A configuration G�� with α(G��) > 0
and a convex first inner vertex may occur multiple
times before G�, but it must always be preceded by an
edge g��0 with α({g��0}∪G��) < 0 for the chain {g��0}∪G��

as otherwise G� is not the first of its kind along S.

Figure 6: Configurations with α > 0 and a reflex first
inner vertex.

We prove this lemma by induction. Assume that
m = 3. Chain S is a configuration G� with a reflex
first inner vertex. Any lid l of S must be on one side of
the line through s1, whereas this track enforces a tri-
angular contraction region on the other side. Hence,
R−(G�) ⊆ Rl(S) holds and G� is a feasible negative

configuration. Examples 1, 3 and 5 in Figure 6 show
closable chains, the other examples do not.
For induction, assume that this lemma holds for

any closable chain with less than m edges and with
a reflex first inner vertex. Let G� = si−1sisi+1 be
the first configuration with α(G�) > 0 where ui is
reflex. If G� is feasible, we are done. If G� is not fea-
sible, let p denote the corresponding blocking point.
Note that p must be part of S as R−(G�) ⊆ Rl(S) for
any lid l. Moreover, p must come after si+1 on S as
otherwise G� cannot be the first. The closable chain
S� = si+1, . . . , p (that is, until the edge containing p if
p is not a vertex) has less edges than S and thus has
a feasible negative configuration by induction. �

Lemma 4 If a proper chain S has a convex inner
edge, then S has a feasible negative configuration G
with R−(G) ⊆ R(S) and α(G) > 0. Also, g2 is convex
or starts at a reflex vertex or g2 �= sm−1.

Proof. We prove this lemma by induction on m. If
m = 3, S is a feasible negative configuration, since S is
a proper chain and s2 is a convex edge. For induction,
assume that this lemma holds for any suitable chain
with less than m edges. Let si be a convex inner edge.
Hence, G� = si−1sisi+1 is a negative configuration. If
G� is feasible, we are done as a convex edge implies
α(G�) > 0. If G� is not feasible, then let uj denote the
blocking vertex and assume without loss of generality
that i + 1 < j. Note that uj must be a vertex of the
chain as R−(G�) ⊆ R(S). Consider the proper chain
S� = si, . . . , sj−1. If S� has a convex inner edge, it
must have a feasible negative configuration by induc-
tion. However, if it does not, S�� = si+1, . . . , sj−1 is a
closable chain in which s�2 is reflex. Note that the di-
rection of S�� is reversed when j < i−1. By Lemma 3,
S�� has a feasible negative configuration G��. By the
lemma, the first inner vertex of G�� is reflex in the di-
rection of S��. If S�� was reversed, then sm /∈ S��, thus
sm−1 cannot be the inner edge of G��. �

Lemma 5 Every simple non-convex polygon P has a
feasible positive configuration G with α(G) < 0 or all
positive configurations are feasible.

Proof. If P has a reflex edge, then let G be a config-
uration with a reflex inner edge. If G is feasible, we
are done as α(G) < 0. If it is not, we can define a
chain S that is inverted: the interior of S is in fact the
exterior of the polygon. Using Lemma 3 or Lemma 4,
we can now find a feasible negative configuration G−

with α(G−) > 0 in S. This corresponds to a feasible
positive configuration G+ in P with α(G+) < 0.

If P has no reflex edge, then let G be an infeasible
positive configuration. If none exists, all positive con-
figurations are feasible. Otherwise we can define an
inverted chain using G. Thus, by Lemma 3, P has a
feasible positive configuration G� with α(G�) < 0. �

165

27th European Workshop on Computational Geometry, 2011

Lemma 6 Every simple non-convex polygon P has a
proper configuration pair.

Proof. By Lemma 5, polygon P has a feasible posi-
tive configuration G+ = ei−1eiei+1. Assume without
loss of generality that the second inner vertex of G+,
vi+1, is reflex. Let vj denote the first convex vertex
after vi+1. Configuration G− = ej−1ejej+1 of which
vj is the first inner vertex, is negative. We distinguish
two cases.
Assume that G− is feasible. If no edge is shared or

if edge ei+1 = ej−1 is shared (having a convex and a
reflex vertex), we have a proper configuration pair. If
ei−1 = ej+1 is shared but the other outer edge is not,
then vj , vj+1 = vi−1, vi are the only convex vertices
in P and there is at least one edge in between ei and
ej−1. This edge is the inner edge of a feasible positive
configuration, one that does not conflict with G−.

ei ej ei ej ei ej

Figure 7: Three cases if G− is feasible.

Now, assume that G− is not feasible. The block-
ing point cannot be in between vi and vj+1. If G− is
blocked by a vertex vh, then, depending on the con-
vexity of vj+1 and vj+2, either Lemma 3 or Lemma 4
shows that there is a (non-conflicting) feasible nega-
tive configuration. If G− is blocked by an edge eh,
vj+1 must be reflex. We distinguish two cases on the
closable chain S = ej , . . . , eh.
If S does not have a convex inner edge, then we refer

to Lemma 3 to find a feasible negative configuration
G�. If G� does not conflict with G+, we are done. If
G� does conflict with G+, we know that eh = ei−1

holds and that eh−1 is the inner edge of G�. More-
over, it must now hold that α(G+) > 0 and thus, by
Lemma 5, we need to consider this case only when all
positive configurations are feasible. Hence, the pos-
itive configuration eiei+1ei+2 is feasible and it does
not conflict with G�.

ei
ej

G�

eh

ei
ej

eh
G�

Figure 8: Two cases if G− is not feasible and S has
no convex inner edge. G� may conflict with G+.

If S has a convex inner edge et, then let G� denote
the negative configuration et−1etet+1. If G� is feasi-
ble and not conflicting with G+, we are done. If G�

is feasible but conflicting with G+, we can argue as
above: eiei+1ei+2 is a feasible positive configuration
and it does not conflict with G�. If G� is not feasible,
then it must be blocked by some vertex vb. With-
out loss of generality, assume that the proper chain

S� = et, et+1, . . . , eb−1 does not contain edge ei. De-
pending on the convexity of vertex vt+2, Lemma 3 or
Lemma 4 shows that there is a feasible negative con-
figuration G�� in S�. We now argue why G�� cannot
conflict with G+. The only way to have a conflict is
when vb = vi. Since vi is then reflex, the only way to
obtain a conflict is when vi−1 is reflex as well and vi−2

is convex, such that ei−3ei−2ei−1 is a negative config-
uration. However, ei−2 is the before-last edge in S�

and starts at a convex vertex. Hence, Lemma 3 and
Lemma 4 guarantee to find another feasible negative
configuration instead. �

References

[1] P. Bose, S. Cabello, O. Cheong, J. Gudmundsson,
M. van Kreveld, and B. Speckmann. Area-preserving
approximations of polygonal paths. Journal of Dis-
crete Algorithms, 4(4):554–566, 2006.

[2] M. de Berg, M. van Kreveld, and S. Schirra. Topo-
logically correct subdivision simplification using the
bandwidth criterion. Cartography and Geographic In-
formation Science, 25(4):243–257, 1998.

[3] D. Delling, A. Gemsa, M. Nöllenburg, and T. Pajor.
Path schematization for route sketches. In Proc. 12th
Scandinavian Workshop on Algorithm Theory, LNCS
6139, pages 285–296, 2010.

[4] L. Guibas, J. Hershberger, J. Mitchell, and
J. Snoeyink. Approximating polygons and subdivi-
sions with minimum-link paths. International Jour-
nal of Computational Geometry and Applications,
3:383–415, 1993.

[5] J. Haunert and A. Wolff. Optimal and topologically
safe simplification of building footprints. In Proc.
18th International Conference on Advances in GIS,
pages 192–201, 2010.

[6] H. Mayer. Scale-spaces for generalization of 3d build-
ings. International Journal of Geographical Informa-
tion Science, 19:975–997, 2005.

[7] D. Merrick and J. Gudmundsson. Path simplification
for metro map layout. In Proc. 14th International
Symposium on Graph Drawing, LNCS 4372, pages
258–269, 2006.

[8] W. Meulemans, A. van Renssen, and B. Speckmann.
Area-preserving subdivision schematization. In Proc.
6th International Conference on GIScience, LNCS
6292, pages 160–174, 2010.

[9] G. Neyer. Line simplification with restricted orienta-
tions. In Proc. 6th International Workshop on Algo-
rithms and Data Structures, LNCS 1663, pages 13–
24, 1999.

[10] J. Swan, S. Anand, M. Ware, and M. Jackson. Au-
tomated schematization for web service applications.
In Web and Wireless Geographical Information Sys-
tems, LNCS 4857, pages 216–226, 2007.

[11] A. Wolff. Drawing subway maps: A survey.
Informatik-Forschung und Entwicklung, 22(1):23–44,
2007.

166

EuroCG 2011, Morschach, Switzerland, March 28�30, 2011

New bivariate system solver and topology of algebraic curves

Yacine Bouzidi∗ Sylvain Lazard∗ Marc Pouget∗ Fabrice Rouillier†

Abstract

We present a new approach for solving polynomial
systems of two bivariate polynomials with rational
coe�cients. We �rst use González-Vega and Necula
approach [3] based on sub-resultant sequences for de-
composing a system into subsystems according to the
number of roots (counted with multiplicities) in ver-
tical lines. We then show how the resulting triangu-
lar subsystems can be e�ciently solved by computing
lexicographic Gröbner basis and Rational Univariate
Representations (RURs) of these systems. We also
show how this approach can be performed using mod-
ular arithmetic, while remaining deterministic.

Finally we apply our solver to the problem of com-
puting the topology of algebraic curves using the algo-
rithm Isotop [2]. We show that our approach yields a
substantial gain of a factor between 1 to 10 on curves
of degree up to 28 compared to directly computing a
Gröbner basis and RUR of the input system, and how
it leads to a very competitive algorithm compared to
the other state-of-the-art implementations.

1 Bivariate system solving algorithm

We present in this section our new bivariate solver and
discuss in Section 2 its application to the computation
of the topology of plane algebraic curves.

The input is a system S = {P,Q} where P and Q
are two bivariate polynomials in Q[x, y]. We solve the
system, that is the output is a set of boxes isolating
the solutions of S, i.e., pairwise-disjoint axis-parallel
boxes in the xy-plane, each containing exactly one
root.

Our algorithm proceeds in two steps. First we de-
compose the system S into a set of triangular sys-
tems according to the sub-resultant sequence of P
and Q (Section 1.1). This decomposition is essentially
identical to that of González-Vega and Necula [3]; for
completeness, we describe this decomposition in Sec-
tion 1.2 together with our extension for the treatment
of solutions for which the leading coe�cient of P or
Q (seen as a polynomial in y) vanishes. In the sec-
ond step, we compute a Gröbner basis and a Rational
Univariate Representation (RUR) [4] of every system

∗INRIA Nancy Grand Est, LORIA laboratory, Nancy,
France. Firstname.Name@loria.fr
†INRIA Paris-Rocquencourt and LIP6 (Université Paris 6,

CNRS), Paris, France. Firstname.Name@lip6.fr

of the decomposition (Sections 1.3). We show how
the speci�c form of the input triangular systems per-
mits to trivially compute a Gröbner basis, and yields
improvements to the algorithm of [4] for computing
a RUR. The RUR is then used in a standard way to
solve these systems.
We show in Section 1.4 how these two steps can be

performed with modular arithmetic in a deterministic
way, yielding a very e�cient algorithm.
It should be stressed that we do not compute the

multiplicity of the roots in the input system. However,
for every root (α, β) of a system {F, ∂F∂y }, we obtain

the multiplicity of β as a root of F (α, y) (Section 2).
These multiplicities are needed in our algorithm for
computing the topology of plane curves, and this is a
key feature of our solving algorithm.

1.1 Preliminaries : sub-resultant sequences

Recall that P and Q are two polynomials in Q[x, y].
Considering P and Q as polynomials in y, let P =∑p
i=0 aiy

i, and Q =
∑q
i=0 biy

i with ai, bi in Q[x].
Assume without loss of generality that p 6 q.
The Sylvester matrix of P and Q is the (p + q) ×

(p + q) matrix where the k-th row consists, for 1 6
k 6 q, of k − 1 zeros, followed by the coe�cients
of P , ap, . . . , a0, and completed by q − k zeros, and,
for q + 1 6 k 6 p + q, of k − q − 1 zeros, followed
by the coe�cients of Q, bq, . . . , b0, and completed by
p + q − k zeros. One denotes by Sylvi, i 6 q, the
(p + q − 2i) × (p + q − i) matrix obtained from the
Sylvester matrix of P and Q by deleting the i last
rows of the coe�cients of P , the i last rows of the
coe�cients of Q, and the i last columns.

De�nition 1 ([1]) The i-th polynomial sub-
resultant of P and Q, denoted by Sresi(P,Q), is the
polynomial

det(Mp+q−2i)y
i+det(Mp+q−2i+1)y

i−1+· · ·+det(Mp+q−i)

where Mj is the square sub-matrix of Sylvi of size
p + q − 2i and consisting of the p + q − 2i − 1 �rst
columns and the j-th column of Sylvi, j ∈ {p + q −
2i, . . . , p+q−i}. The sub-resultant sequence of P and
Q is the sequence Sresi(P,Q) for i from 0 to q.

Sresi(P,Q) is a polynomial of degree at most i in
y, and the coe�cient of the monomial of degree i,
denoted by sresi(P,Q), is called the i-th principal

sub-resultant coe�cient. Note that Sres0(P,Q) =

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

167

27th European Workshop on Computational Geometry, 2011

sres0(P,Q) is the resultant of P and Q. We thus
have

Sresi(P,Q) = sresi(P,Q)yi +Ri(x, y) (1)

where the degree in y of Ri is at most i − 1, and its
degree in x is at most the product of the total degrees
of P and Q (the degree in x is generically maximal
for i = 0 which is that of the resultant).
The polynomial sub-resultants of P and Q are equal

to either 0 or to (up to a constant) polynomials in the
remainder sequence of P and Q [1, p.308]. For e�-
ciency, the computations of sub-resultant sequences
are usually performed by computing polynomial re-
mainder sequences using some variants of Euclid al-
gorithm.

1.2 Triangular decomposition

First, we project the solutions of S on the x-axis; al-
gebraically, this amounts to computing the resultant
of P and Q with respect to the variable y. The roots
of that resultant, denoted Resy(P,Q) ∈ Q[x], are the
x-coordinates of the solutions of S, and the common
roots of their leading coe�cients ap and bq ∈ Q[x].
Hence, the resultant of P and Q provides the x-
coordinates of the points where the corresponding
curves intersect or have a common vertical asymptote.
For each such x-coordinate, the di�culty is to com-
pute the y-coordinates of the corresponding intersec-
tion points. This can be done with the sub-resultant
sequence based on the following fundamental propo-
sition.

Proposition 1 ([3]) Let P,Q ∈ Q[x, y] be two
square-free polynomials and consider their sub-
resultant sequence with respect to the variable y. Let
α ∈ R be a root of Resy(P,Q) such that ap(α) 6= 0
and bq(α) 6= 0. Then{

sres0(α) = 0, · · · , sresk−1(α) = 0
sresk(α) 6= 0

⇔ Gcd(P (α, y), Q(α, y)) = Sresk(α, y).

We decompose the input system S into a set of
triangular systems with respect to the degree of
Gcd(P (α, y), Q(α, y)) according to Prop. 1. Through-
out the decomposition we consider the square-free
part of the resultant of P and Q, Resy(P,Q) =
Sres0(P,Q), and we denote it by sqrfree(Sres0(x)).
Taking the square-free part simpli�es the computa-
tion but it does not preserve the multiplicities of the
roots. However, this is actually critical in our algo-
rithm for computing the multiplicities in the �bers
needed for the topology computation, as mentioned
earlier (Section 2).
According to Prop. 1, we �rst consider only x-

coordinates on which ap and bq do not vanish. Ge-
ometrically, the roots of ap correspond to vertical

asymptotes of the curve CP de�ned by P = 0;
similarly for bq and the curve CQ. We denote by
Fres(x) the polynomial sqrfree(Sres0(x)) �without
these roots�:

Fres(x) =
sqrfree(Sres0(x))

Gcd(sqrfree(Sres0(x)), ap(x)bq(x))
. (2)

Solutions outside the vertical asymptotes. The
solutions of S that do not lie on a vertical asymp-
tote of CP or CQ have their x-coordinates solutions of
Fres(x). The idea is to factorize Fres(x) with re-
spect to the degree of the Gcd(P (α, y), Q(α, y)) for α
root of Fres(x).
Let G1(x) = Gcd(Fres(x), sres1(x)). We

split Fres(x) in two factors G1 and F1(x) =
Fres(x)
G1(x)

, and we consider the system S1 ={
F1(x)
Sres1(x, y) = sres1(x)y +R(x)

. The roots of S1

are exactly the roots (α, β) of S such that the degree
of the Gcd(P (α, y), Q(α, y)) is 1. In other words, α is
a root of Fres(x) such that S admits a unique root
(α, y) counted with multiplicity.
According to Prop. 1, we split again G1 with re-

spect, this time, to the polynomial sres2(x). Let
G2 = Gcd(G1, sres2), F2 = G1/G2, the system
S2 = {F2(x), Sres2(x, y)} encodes the solutions (α, β)
of S such that the degree of the Gcd(P (α, y), Q(α, y))
is 2. In other words, α is a root of Fres(x) such that
S admits two roots (α, y) counted with multiplicity.
We go ahead recursively until we decompose com-

pletely Fres(x) with respect to the polynomials
sres1(x), . . . , sresq(x). At the k-th step the roots
of Fk(x) are exactly the roots of Fres(x) verifying
sres1(x) = 0, . . . , sresk−1(x) = 0, and sresk(x) 6= 0.
The result is a set of triangular sys-

tems Sk = {Fk(x), Sresk(x, y)} such that
Gcd(Fk(x), sresk(x)) = 1.

Solutions on vertical asymptotes. We now con-
sider the solutions of S on an asymptote x = α, with
α a root of ap or bq. Our algorithm di�ers here from
that of [3] in which they detect when such a situation
occurs and shear the coordinate system. For sake of
brevity, we only detail the case of solutions on a com-
mon asymptote, that is x = α with α a root of D(x)
the square-free part of Gcd(ap, bq). Let P1 , Q1 be
de�ned as follows:

P1 =
∑p

i=1(aimodD(x))yi , Q1 =
∑q

i=1(bimodD(x))yi,

where U(x) mod D(x) is the remainder of the Eu-
clidean division of U(x) by D(x) in Q[x]. It is clear
that P1, Q1 coincide with P and Q above the roots
of D(x), i.e., ∀α ∈ R : D(α) = 0 =⇒ P1(α, y) =
P (α, y) and Q1(α, y) = Q(α, y). We decompose the
system {P1, Q1} as described above but keeping in
the resultant only the roots of D(x): Fres(x) =
sqrfree(Gcd(Sres0(P1, Q1), D(x))). We thus recover
in the resulting systems, solutions located on the com-
mon asymptotes.

168

EuroCG 2011, Morschach, Switzerland, March 28�30, 2011

Output. The output is a set of triangu-

lar systems Sk =

{
Fk(x) = 0
Sresk(x, y) = 0

such that

Gcd(Fk(x), sresk(x)) = 1 and all Fk are square-free.
For every k there might be several systems Sk: de-
pending on whether the solution of Sk lies on a ver-
tical asymptote or not, Sresk denotes the k-th sub-
resultant of P and Q, or of some reductions of P and
Q modulo some factors of their leading coe�cients ap
and bq in Q[x].

1.3 Groebner basis and RUR computation

A speci�c property of the decomposition obtained
above is that Gcd(Fk(x), sresk(x)) = 1. By Bé-
zout identity, there exists U, V ∈ Q[x] such that
UFk + V sresk = 1. Thus, since Sresk(x, y) =
sresk(P,Q)yk + Rk(x, y) (Eq. (1)), the system Sk is

equivalent to S̃k :

{
Fk(x) = 0

yk + R̃k(x, y) = 0
where R̃k is

the reduction of V Rk modulo Fk (that is each coe�-
cient is reduced modulo Fk(x)); hence R̃k has degree
in y strictly less than k and strictly less than that
of Fk in x. The resulting system thus is a (reduced)
lexicographic Gröbner basis [1].
At this stage, we can use a standard RUR algo-

rithm for solving each of these systems [4]. Recall
that given a bivariate system, a RUR de�nes a pa-
rameterization of its solutions with four polynomials
f, gx, gy, g ∈ Q[t] such that the solutions of the system

are (gx(ti)g(ti)
,
gy(ti)
g(ti)

) for the roots ti of f . It should be

stressed that a RUR preserves the multiplicity of the
roots of the system, that is, the multiplicity of a root

ti of f is the multiplicity of the root (gx(ti)g(ti)
,
gy(ti)
g(ti)

) in

S̃k, and thus in Sk. The fact that Fk is square-free
yields a geometric interpretation of the multiplicities
is the system Sk that will be exploited in our appli-
cation on the topology of curves.
The particular structure of the systems we obtain

yields improvements to the algorithm of Rouillier [4]
for computing a RUR. The critical properties of our
input systems Sk is that (i) they are Gröbner basis
for the lexicographic order, which implies that one of
the polynomials is univariate, and (ii) there are only
two polynomials in the basis. Most of the RUR com-
putations are performed using linear algebra in the
quotient algebra Q[x, y]/Sk (where Sk denote here
the ideal associated to the system). Property (ii) im-
plies that a basis of this algebra is simply {xiyj}, for
0 6 i < degree(Fk) and 0 6 j < k. One important
step of the algorithm is to compute the product of
all pairs of elements of that basis, reduced modulo
the system Sk; this step is substantially simpli�ed by
the structure of the basis and by using Property (i).
The complexity of this step, and actually of the whole
RUR computation, is this way reduced from O(D3) to
O(D2) where D is the size of the algebra basis.

1.4 Deterministic modular method

The bitsize of the coe�cients in the RUR is reasonable
in the sense that these coe�cients have more or less
the same size as those in the resultant [2, �4.2]. How-
ever, the size of the coe�cients of the lexicographic
Gröbner basis in the intermediate computations may
be quite large. A standard approach for avoiding such
intermediate growth is to use modular computations
and the Chinese Remainder Theorem [1]. The dif-
�culty being the design of a deterministic algorithm
(rather than a Monte-Carlo algorithm). We show how
this approach can be applied here.
Without loss of generality, we can assume that the

two input polynomials P and Q have integer coe�-
cients (rather than rational). For brevity, we only de-
scribe how to compute the roots outside the vertical
asymptotes; the roots on the vertical asymptotes are
treated similarly. Let µ be a prime number larger than
pq, Zµ = Z

µZ , and let φµ be the canonical surjection

Z[x, y]→ Zµ[x, y] that transforms the polynomial co-
e�cients modulo µ. We �rst check that (i) φµ(ap) 6=
0 and φµ(bq) 6= 0, then we compute Fres(P,Q)
and Fres(φµ(P), φµ(Q)) (Eq. (2)) and test whether
(ii) φµ(Fres(P,Q)) = Fres(φµ(P), φµ(Q)) and (iii)
degree(φµ(Fres(P,Q))) = degree(Fres(P,Q)). We
consider prime numbers in turn until all these prop-
erties are satis�ed. Then, considering polynomials in
Zµ[x, y], we solve the system {φµ(P), φµ(Q)} as de-
scribed in Sections 1.2 and 1.3.

Lemma 2 The sum of the degrees of the systems (the
degree of a system being the number of its complex
roots counted with multiplicity) in the decomposition
applied to φµ(P) and φµ(Q) and performed in Zµ[x, y]
is greater than or equal to the sum of the degrees of
the systems in the decomposition of P and Q per-
formed over the rationals.

An important remark is that since the RUR pre-
serves multiplicities, the degree of a system is the de-
gree of the �rst polynomial of its RUR, even when
considered over Zµ[x, y], as soon as µ > pq [4]. If the
sum of the degrees of the systems obtained by a com-
putation modulo µ is strictly greater than the sum of
the degrees of the systems obtained by the computa-
tion over the rationals, we say that µ is an unlucky

prime. The di�culty is of course to detect unlucky
primes.
Our algorithm selects a set of primes µ (as described

above), decomposes the system {φµ(P), φµ(Q)}, and
determines a RUR for each Sk over Zµ[x, y]. If the
sums of the degrees of Sk are not the same for all
considered primes, the primes for which this sum is
not minimal are unlucky, and we discard these primes.
Otherwise, either all primes are lucky or they are all
unlucky. We then use the Chinese Remainder Theo-
rem to lift the RURs of the systems Sk.

169

27th European Workshop on Computational Geometry, 2011

We then check whether the roots of the set of re-
sulting RURs (f, gx, gy, g) of each Sk are indeed roots
of the system {P,Q} with the correct multiplicities.
Checking whether the roots are correct is done by

substituting the rational coordinates x = gx(t)
g(t) and

y =
gy(t)
g(t) in P and Q and checking that f divides its

numerator. A root of multiplicity m corresponding to
a root t of f can be veri�ed similarly by substitut-
ing the RUR coordinates in the i-th derivatives of P
and Q with respect to y (for i from 1 to m− 1), and
checking that t is a root of their gcd with f (more pre-
cisely, let f = Πif

i
i be the decomposition with respect

to multiplicities of the �rst poly of the RUR then t
is a root of fm, and one must check that fm divides
the numerators of the derivatives of P and Q after
substitution).

Similarly, the multiplicity m of a root (α, β) of the
system (corresponding to a root t of f) can be checked
to be correct by substituting the RUR coordinates in
the i-th derivatives of P and Q with respect to y (for i
from 1 to m−1), and checking that t is a root of their
gcd with f . Checking that t is not a root of the m-
th derivative is unnecessary because m is necessarily
larger than or equal to the correct multiplicity of the
root (by the proof of Lemma 2).

If, for all Sk, all the roots of the RURs are indeed
roots of {P,Q}, and if their multiplicities are correct,
the set of roots (with multiplicities) is necessarily cor-
rect by Lemma 2. Otherwise we add some new primes
and lift again the result. (We omit here some details,
including that a prime may also be unlucky for the
computation of the RURs.)

2 Application to the topology of plane curves

We now consider the problem of computing e�ciently
the topology of a real plane algebraic curve Cf de-
�ned by a bivariate polynomial f in Q[x, y]. Isotop
[2] is an algorithm that uses Gröbner basis and RUR
computation as a black box for isolating the critical
points of Cf , that is the points that are solutions of

{f, fy} with fy = ∂f
∂y . Compared to other algorithms,

Isotop is particularly e�cient on non-generic curves
(i.e., curves with several critical points on some ver-
tical line) because they are treated in the original co-
ordinate system without shearing. However, Isotop
is less e�cient on some types of generic curves, in
particular for (i) �random� curves for which the mul-
tiplicity of all critical points in their �ber is 2, and (ii)
generic curves such that the multiplicity (in the �ber)
of some critical points is high. In case (i), the Gröb-
ner basis computation is expensive compared to the
sub-resultant sequence decomposition approach of [3]
because the decomposition leads to a unique system
S1. In case (ii), the RUR computation (performed as
a black box on a Gröbner basis of {f, fy}) turns out

to also be expensive compared to the decomposition
approach because multiplicities in the initial system
are kept (refer to [2] for details).
Our contribution is to change the Gröbner basis and

RUR black box by the solver presented in section 1.
The idea being to decompose the input system when
possible while keeping RUR approach for solving these
systems. This yields two main changes to the Isotop
algorithm: the way to compute critical points, and to
determine multiplicities in �bers.

Computing critical points of the curve Cf . Crit-
ical points of Cf are the solutions of the system
S = {f, fy}. We isolate these solutions by decom-
posing S in triangular systems Si and computing their
RURs according to the algorithm presented in Sect. 1.

Computing the multiplicities of critical points
in their �bers. For a point p = (α, β) on the curve
Cf , the multiplicity of p in its �ber denoted by
mult(f(α, y), β) is de�ned as the multiplicity of β in
the univariate polynomial f(α, y). Solving the sys-
tems Si with RURs enables to preserve the multiplic-
ities and, hence, to compute the multiplicities in the
�bers even if there are several critical points with the
same x-coordinate:

Proposition 3 If p is a critical point of Cf then it is
a solution of some system Si, and its multiplicity in
its �ber is its multiplicity is Si plus one.

Preliminary experiments. We have computed the
ratio of running times of the original Isotop algorithm
with its new version, Isotop2, using our solver as ex-
plained in Section 2. As expected the ratio is large for
generic curves (a ratio between 5 and 14 on curves of
degree between 10 and 20) and we also have a signif-
icant gain for non-generic curves (a ratio between 1.5
and 15 for degrees between 12 and 28). These prelim-
inary tests hence con�rm the theoretical analysis that
our approach automatically selects the best strategy
in any case.

References

[1] S. Basu, R. Pollack, and M.-R. Roy. Algorithms in

Real Algebraic Geometry, Springer-Verlag, 2nd edi-
tion, 2006.

[2] J. Cheng, S. Lazard, L. Peñaranda, M. Pouget,
F. Rouillier, and E. Tsigaridas. On the topology of
real algebraic plane curves. Mathematics in Computer

Science, 4:113�137, 2010. 10.1007/s11786-010-0044-3.

[3] L. González-Vega and I. Necula. E�cient topology
determination of implicitly de�ned algebraic plane
curves. Computer Aided Geometric Design, 19(9),
2002.

[4] F. Rouillier. Solving zero-dimensional systems through
the rational univariate representation. J. of Applicable
Algebra in Engineering, Communication and Comput-

ing, 9(5):433�461, 1999.

170

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Consistent Labeling of Rotating Maps

Andreas Gemsa∗ Martin Nöllenburg∗ Ignaz Rutter∗

Abstract

Dynamic maps that allow continuous map rotations
encounter new issues unseen in static map labeling
before. We study the following dynamic map label-
ing problem: Given a set of points P in the plane
with non-overlapping axis-aligned rectangular labels
attached to them, the goal is to find a consistent la-
beling of P under rotation that maximizes the number
of visible labels for all possible rotation angles. A la-
beling is called consistent if a single active interval of
angles is selected for each label such that no two la-
bels intersect at any rotation angle and no point in P
is ever occluded by a label.

We introduce a general model for labeling rotating
maps and derive basic geometric properties of con-
sistent solutions. We show NP-completeness of the
active interval maximization problem and present an
efficient polynomial-time approximation scheme.

1 Introduction

Dynamic maps, in which the user can navigate con-
tinuously through space, are becoming increasingly
important in scientific and commercial GIS applica-
tions as well as in personal mapping applications. In
particular GPS-equipped mobile devices offer various
new possibilities for interactive, location-aware maps.
A common principle in dynamic maps is that users
can pan, rotate, and zoom the map view—ideally in
a continuous fashion. Despite the popularity of sev-
eral commercial and free applications, relatively little
attention has been paid to provably good labeling al-
gorithms for dynamic maps.

Been et al. [2] identified a set of consistency desider-
ata for dynamic map labeling. Labels should nei-
ther “jump” (suddenly change position or size) nor
“pop” (appear and disappear more than once) during
monotonous map navigation; moreover, the labeling
should be a function of the selected map viewport and
not depend on the user’s navigation history. Previous
work on the topic has focused solely on supporting
zooming and/or panning of the map [2,3,10], whereas
consistent labeling under map rotations has not been
considered prior to this paper.

Most maps come with a natural orientation (usu-
ally the northern direction facing upward), but appli-

∗Institute of Theoretical Informatics, Karlsruhe Institute of
Technology (KIT), Germany; {firstname.lastname}@kit.edu

cations such as car or pedestrian navigation often ro-
tate the map view dynamically to be always forward
facing. Still, the labels should remain horizontally
aligned for best readability regardless of the actual
rotation angle of the map. A basic requirement in
static and dynamic label placement is that labels are
pairwise disjoint, i.e., in general not all labels can be
placed simultaneously. For labeling point features, it
is further required that each label, usually modeled as
a rectangle, touches the labeled point on its boundary.
It is often not allowed that labels occlude the input
point of another label. Figure 1 shows an example
of a map that is rotated and labeled. The objective
in map labeling is usually to place as many labels as
possible. Translating this into the context of rotating
maps means that, integrated over one full rotation
from 0 to 2π, we want to maximize the number of vis-
ible labels. The consistency requirements of Been et
al. [2] can immediately be applied for rotating maps.

Label 1

Label 3
Label 2

Label 4

(a)

Label 3

Label 2

Label 4

Label 1

(b)

Label 3

Label 2Label 4

Label 1

(c)

Figure 1: Input map with five points (a) and two
rotated views with some occluded labels (b),(c).

Related Work. Most previous algorithmic research
efforts on automated label placement cover static la-
beling models for point, line, or area features. For
static point labeling, fixed-position models and slider
models have been introduced [4, 7], in which the la-
bel, represented by its bounding box, needs to touch
the labeled point along its boundary. The label num-
ber maximization problem is NP-hard even for the
simplest labeling models, whereas there are efficient
algorithms for the decision problem whether all points
can be labeled in some of the simpler models (see the
discussion by Klau and Mutzel [6]. Approximation
results [1, 7], heuristics [12], and exact approaches [6]
are known for many variants of the static label num-
ber maximization problem.

In recent years, dynamic map labeling has emerged
as a new research topic that gives rise to many un-
solved algorithmic problems. Petzold et al. [11] com-
pute a conflict-free labeling for any fixed scale and

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

171

27th European Workshop on Computational Geometry, 2011

map region from preprocessed conflict information.
Mote [9] presents a fast heuristic method for dynamic
conflict resolution in label placement that does not
require preprocessing. The consistency desiderata of
Been et al. [2] for dynamic labeling, however, are not
satisfied by either of the methods. Been et al. [3]
showed NP-hardness of the label number maximiza-
tion problem in the consistent labeling model and pre-
sented several approximation algorithms for the prob-
lem. Nöllenburg et al. [10] recently studied a dynamic
version of the alternative boundary labeling model
and presented an algorithm that supports continous
zooming and panning. None of the existing dynamic
map labeling approaches supports map rotation.

2 Model

Let M be a labeled input map, i.e., a set of points
P = {p1, . . . , pn} in the plane together with a set of
pairwise disjoint and axis-aligned rectangular labels
L = {`1, . . . , `n}, where each point pi is a point on
the boundary ∂`i of its label `i. We say `i is anchored
at pi. As M is rotated, each label `i in L remains
horizontally aligned and anchored at pi. Thus, la-
bel intersections form and disappear during rotation
of M . We take the following alternative perspective.
Rather than rotating the points, say clockwise, and
keeping the labels fixed we may instead rotate each
label around its anchor point counterclockwise and
keep the set of points fixed. It is easy to see that
both rotations are equivalent.

A rotation of L is defined by a rotation angle
α ∈ [0, 2π); a rotation labeling of M is a function
φ : L × [0, 2π) → {0, 1} such that φ(`, α) = 1
if label ` is visible or active in the rotation of L
by α, and φ(`, α) = 0 otherwise. We call a label-
ing φ valid if for any rotation α the set of labels
L(α) = {` ∈ L | φ(`, α) = 1} consists of pairwise dis-
joint labels and no label in L(α) contains any point
in P (other than its anchor point). We note that
a valid labeling is not yet consistent in terms of the
definition of Been et al. [2, 3]: having a fixed anchor
point labels do not jump and the labeling is indepen-
dent of the rotation history, but labels may still pop
during a full rotation from 0 to 2π, i.e., appear and
disappear more than once. To avoid this, each label
must be active only in a single contiguous range of
[0, 2π), where ranges are circular ranges modulo 2π
so that they may span the input rotation α = 0. A
valid labeling φ, in which for every label ` the set
Aφ(`) = {α ∈ [0, 2π) | φ(`, α) = 1} is a contigu-
ous range modulo 2π, is called a consistent labeling.
For a consistent labeling φ the set Aφ(`) is called the
active range of `. The length |Aφ(`)| of an active
range Aφ(`) is defined as the length of the circular
arc {(cosα, sinα) | α ∈ Aφ(`)} on the unit circle.

The objective in static map labeling is usually to

find a maximum subset of pairwise disjoint labels, i.e.,
to label as many points as possible. Generalizing this
objective to rotating maps means that integrated over
all rotations α ∈ [0, 2π) we want to display as many
labels as possible. This corresponds to maximizing
the sum

∑
`∈L |Aφ(`)| over all consistent labelings φ

of M ; we call this optimization problem MaxTotal.

3 Properties of consistent labelings

If two labels ` and `′ intersect under a rotation of
α we say they have a (regular) conflict at α, i.e.,
in a consistent labeling at most one of them can
be active at α. The set C(`, `′) = {α ∈ [0, 2π) |
` and `′ are in conflict at α} is called the conflict set
of ` and `′. Since rotations are continuous movements
any C(`, `′) 6= ∅ consists of one or more contiguous
and closed angle intervals called conflict ranges. Each
border of a conflict range corresponds to a rotation
angle under which ` and `′ intersect only on their
boundaries. We call these angles conflict events.

We show the following lemma in a slightly more
general model, in which the anchor point p of a label
` can be any point within ` and not necessarily a point
on the boundary ∂`.

Lemma 1 For any two labels ` and `′ with anchor
points p ∈ ` and p′ ∈ `′ the set C(`, `′) consists of at
most four disjoint contiguous conflict ranges.

Proof. Assume throughout this proof that without
loss of generality p and p′ lie on a horizontal line and
p is to the left of p′.

First, we prove that there are at most four disjoint
contiguous conflict ranges, and then we show how to
compute the conflict events.

The first observation is that due to the simultane-
ous rotation of all initially axis-parallel labels in L, `
and `′ remain “parallel” at any rotation angle α. Let
l, r, t, b be the left, right, top, and bottom sides of `
and let l′, r′, t′, b′ be the left, right, top, and bottom
sides of `′ (defined at a rotation of 0). Since ` and
`′ are parallel, the only possible cases, in which they
intersect on their boundary but not in their interior
are t ∩ b′, b ∩ t′, l ∩ r′, and r ∩ l′. Each of these four
cases may appear twice, once for each pair of opposite
corners contained in the intersection. So there are at
most eight conflict events. Figure 2 illustrates two of
them. Each conflict event defines a unique rotation
angle and hence there are at most four disjoint conflict
ranges. This concludes the first part of the proof.

Next we determine the actual rotation angles for
which the conflict events occur by considering as an
example the intersection of the two sides t and b′. For
the label ` and its anchor point p let ht and hb be the
distances from p to t and b. Similarly, let wl and wb
be the distances from p to l and r (Fig. 3). By h′t, h

′
b,

172

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

` `′
t

l b

r

b′

r′t′

l′

(a) r ∩ l′

` `′
t

l b

r

b′

r′t′

l′

(b) b ∩ t′

Figure 2: Two labels ` and `′ and two of their eight
possible boundary intersection events. Anchor points
are marked as black dots.

`

t

l

b

rp
ht

hb

wl wr

p

`

t
`′

b′

d

ht + h′b

α
p′

Figure 3: Parameters of
label ` anchored at p.

Figure 4: Conflict event
for t ∩ b′.

w′l, and w′r we denote the corresponding distances for
label `′. Finally, let d be the distance of the two an-
chor points p and p′. If there is a rotation angle under
which t and b′ intersect then by simple trigonometric
reasoning the two rotation angles at which the conflict
events occur are 2π− arcsin((ht +h′b)/d) (Fig. 4) and
π+arcsin((ht+h

′
b)/d). Obviously, we need d ≥ ht+h′b.

Furthermore, for the two events induced by t ∩ b′ to
occur we need d2 ≤ (wr+w′l)

2+(ht+h
′
b)

2 for the case
depicted in Fig. 4 and d2 ≤ (wl + w′r)

2 + (ht + h′b)
2

for the other one. Similar reasoning yields the angles
and conditions of the three remaining pairs of conflict
events. �

One of the requirements for a valid labeling is that
no label may contain a point in P other than its an-
chor point. For each label ` this gives rise to a special
class of conflict ranges, called hard conflict ranges, in
which ` may never be active. Obviously, every hard
conflict is also a conflict but not vice versa. Similar
to conflict events we can define hard conflict events;
the union of all conflict and hard conflict events is the
set of label events. We obtain the hard conflict events
immediately from the proof of Lemma 1 by setting
the label `′ to have height and width 0.

Next we show that the MaxTotal problem can be
discretized in the sense that there exists an optimal
solution whose active ranges are defined as intervals
whose borders are label events. An active range border
of a label ` is an angle α that is characterized by the
property that the labeling φ is not constant in any
ε-neighborhood of α. We call an active range where
both borders are label events a regular active range.

Lemma 2 Given a labeled map M there is an opti-
mal rotation labeling of M consisting of only regular
active ranges.

Proof. Let φ be an optimal labeling with a mini-
mum number of active range borders that are no label
events. Assume that there is at least one active range
border β that is no label event. Let α and γ be the two
adjacent active range borders of β, i.e., α < β < γ,
where α and γ are active range borders, but not nec-
essarily label events. Then let Ll be the set of labels
whose active ranges have left border β and let Lr be
the set of labels whose active ranges have right bor-
der β. For φ to be optimal Ll and Lr must have the
same cardinality since otherwise we could increase the
active ranges of the larger set and decrease the active
ranges of the smaller set by some ε > 0 and obtain a
better labeling.

We define a new labeling φ′ that coincides with φ
except for the labels in Ll and Lr. We set the left
border of the active ranges of all labels in Ll and the
right border of the active ranges of all labels to γ in-
stead of β. Since |Ll| = |Lr| we shrink and grow an
equal number of active ranges by the same amount.
Thus the two labelings φ and φ′ have the same objec-
tive values but φ′ has fewer active range borders that
are non-label events—a contradiction. �

4 Complexity

By a reduction from planar 3-SAT [8] it can be shown
that finding an optimal solution for MaxTotal is
NP-hard even if all labels are unit squares and their
anchor points are their lower-left corners. Due to
space constraints we omit the proof.

Theorem 3 MaxTotal is NP-complete.

5 Approximation Scheme

Initially we assume that labels are congruent unit-
height rectangles with constant width w > 1 and that
the anchor points are the lower-left corners of the la-
bels and afterwards explain how to adapt it to more
general labeling models. Let d =

√
w2 + 1.

We present an efficient polynomial-time approxima-
tion scheme (EPTAS)1 that relies on four geometric
key properties; they hold for the restricted case of
congruent rectangles as well as for the general model
of Section 2, where anchor points are arbitrary points
within each label or on its boundary, and where the
ratio of the smallest and largest width and height, as
well as the aspect ratio are bounded by constants: i)
the number of anchor points contained in a square is
proportional to its area, ii) any label hasO(1) conflicts
with other labels, iii) any two conflicting labels pro-
duce only O(1) conflict regions, and finally, iv) there
is an optimal MaxTotal solution where the borders
of all active ranges are events.

1An EPTAS has a running time of O(nc) for every fixed ε,
where c is constant independent of ε.

173

27th European Workshop on Computational Geometry, 2011

Properties (i) and (ii) can be proved by a simple
packing argument. Property (iii) follows from prop-
erty (ii) and Lemma 1. Property (iv) follows immedi-
ately from Lemma 2.

Our EPTAS uses the line stabbing technique of
Hochbaum and Maass [5]. Consider a grid G where
each grid cell is a square with side length 2d. We can
address every grid cell by its row and column index.
For any integer k we can remove every k-th row and
every k-th column of grid cells, starting at two offsets
i and j (0 ≤ i, j ≤ k − 1). This yields collections of
meta cells of side length (k− 1) · 2d that are pairwise
separated by a distance of at least 2d and thus no two
labels whose anchor points lie in different meta cells
of the same subset can have a conflict. In total we
obtain k2 such collections of meta cells. We say that
a (meta) grid cell c covers a label ` if the anchor point
of ` lies inside c.

Determining an optimal solution for the set of la-
bels Lc covered by a meta cell c works as follows. We
calculate the set of label events Ec for Lc. Due to
Lemma 2 we know that there exists an optimal solu-
tion with only regular active ranges defined by events
in Ec. Thus, to compute an optimal active range as-
signment for Lc we can test all possible combinations
of regular active ranges for all labels ` ∈ Lc.

For a given ε ∈ (0, 1) we set k = d2/εe. Let c be a
meta cell for the given k. By a packing argument, we
can prove that the number of labels in Lc (and thus
also the number of events in Ec) is O(1/ε2).

Since we need to test all O(1/ε2) possible ac-
tive ranges for all O(1/ε2) labels in Lc we require

O(2O(1/ε2 log 1/ε2)) time to determine an optimal solu-
tion for the meta cell c.

With simple arithmetic operations on the coordi-
nates of the anchor points we can determine all non-
empty meta cells and store them in a binary search
tree. Since we have n anchor points there are at most
n non-empty cells in the tree, each of which holds a
list of all covered anchor points. Building this data
structure requires O(n log n) time. So for one col-
lection of meta cells the time complexity for finding
an optimal solution is O(n2O(1/ε2 log 1/ε2) + n log n).
There are k2 such collections and by the pigeon hole
principle the optimal solution for at least one of them
is a (1− ε)-approximation.

This yields the result for the simple case of congru-
ent rectangles. In fact we have only used properties
(i)–(iv), and there is nothing special about congruent
rectangles anchored at their lower-left corners. Hence
we can extend the algorithm to the more general la-
beling model, in which the ratio of the label heights,
the ratio of the label widths, and the aspect ratios
of all labels are bounded by constants. Furthermore,
the anchor points can be any point on the boundary
or in the interior of the labels. Finally, we can even
ignore the distinction between hard and soft conflicts,

i.e., allow that anchor points of non-active labels are
occluded. All properties (i)–(iv) still hold. The only
change in the EPTAS is to set the width and height
of the grid cells to twice the maximum diameter of all
labels in L.

Theorem 4 There exists an efficient polynomial-
time approximation scheme that computes a (1− ε)-
approximation of MaxTotal. Its time complexity is
O((n2O(1/ε2 log 1/ε2) + n log n)/ε2).

Acknowledgments. Andreas Gemsa and Martin
Nöllenburg received financial support by the Concept
for the Future of KIT within the framework of the
German Excellence Initiative.

References

[1] P. K. Agarwal, M. van Kreveld, and S. Suri. Label
placement by maximum independent set in rectan-
gles. Comput. Geom. Theory Appl. 11:209–218, 1998.

[2] K. Been, E. Daiches, and C. Yap. Dynamic map
labeling. IEEE Transactions on Visualization and
Computer Graphics 12(5):773–780, 2006.

[3] K. Been, M. Nöllenburg, S.-H. Poon, and A. Wolff.
Optimizing active ranges for consistent dynamic map
labeling. Comput. Geom. Theory Appl. 43(3):312–
328, 2010.

[4] M. Formann and F. Wagner. A packing problem with
applications to lettering of maps. Proc. 7th Ann.
ACM Sympos. Comput. Geom. (SoCG’91), pp. 281–
288, 1991.

[5] D. S. Hochbaum and W. Maass. Approximation
schemes for covering and packing problems in image
processing and VLSI. J. ACM 32(1):130–136, 1985.

[6] G. W. Klau and P. Mutzel. Optimal labeling of point
features in rectangular labeling models. Mathematical
Programming (Series B) pp. 435–458, 2003.

[7] M. van Kreveld, T. Strijk, and A. Wolff. Point label-
ing with sliding labels. Comput. Geom. Theory Appl.
13:21–47, 1999.

[8] D. Lichtenstein. Planar formulae and their uses.
SIAM J. Comput. 11(2):329–343, 1982.

[9] K. D. Mote. Fast point-feature label placement for
dynamic visualizations. Information Visualization
6(4):249–260, 2007.

[10] M. Nöllenburg, V. Polishchuk, and M. Sysikaski. Dy-
namic one-sided boundary labeling. Proc. 18th ACM
GIS, pp. 310–319. ACM Press, November 2010.

[11] I. Petzold, G. Gröger, and L. Plümer. Fast screen
map labeling—data-structures and algorithms. Proc.
23rd Int’l Cartogr. Conf (ICC’03), pp. 288–298, 2003.

[12] F. Wagner, A. Wolff, V. Kapoor, and T. Strijk. Three
rules suffice for good label placement. Algorithmica
30(2):334–349, 2001.

174

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Angular Convergence during Bézier Curve Approximation

J.Li∗ T.J.Peters† J.A.Roulier‡

February 17, 2011

Abstract

Properties of a parametric curve in R3 are often deter-
mined by analysis of its piecewise linear (PL) approxi-
mation. For Bézier curves, there are standard algorithms,
known as subdivision, that recursively create PL curves
that converge to the curve in distance . The exterior angles
of PL curves under subdivision are shown to converge to

0 at the rate of O(
√

1
2i), where i is the number of subdivi-

sions. This angular convergence is useful for determining
self-intersections and knot type.

Keywords: Bézier curve, subdivision, piecewise linear
approximation, angular convergence.

1 Introduction

A Bézier curve is characterized by an indexed set of points,
which form a PL approximation of the curve1. Subdivi-
sion algorithms recursively generate PL approximations
that more closely approximate the curve under Hausdorff
distance [8].

Figure 1 shows the first step of a particular subdivision
process, known as the de Casteljau algorithm. The initial
PL approximation P is used as input to generate local PL
approximations, P 1 and P 2. Their union, P 1∪P 2, is then
a PL approximation whose Hausdorff distance is closer to
the curve than that of P . In this illustrative example, the
construction relies upon generating midpoints of the seg-
ments of P , as indicated by providing 1

2 as an input value
to the subdivision algorithm2.

A brief overview is that subdivision proceeds by first
creating the midpoint of each segment of P . Then, these
midpoints are connected to create new segments. Recur-
sive creation and connecting of midpoints continues until a
final midpoint is created. The union of the segments from

∗Department of Mathematics, University of Connecticut,Storrs,
jili@math.uconn.edu
†Department of Computer Science and Engineering, Univeristy of

Connecticut, Storrs, tpeters@cse.uconn.edu
‡Department of Computer Science and Engineering, Univeristy of

Connecticut, Storrs, jrou@engr.uconn.edu
1In the literature on Bézier curves, this PL approximation is called

a control polygon. However, to avoid confusion within this community,
that terminology will be avoided here.

2Other fractional values can be used, but the analysis given here pro-
ceeds by reliance upon 1

2
and midpoints. The details to change from

midpoints are not substantive to the analysis presented here.

Figure 1: A subdivision

Figure 2: De Casteljau algorithm on P

the last step then forms a PL approximation. Termination
is guaranteed since P has only finitely many segments.

This subdivision process is purely on PL geometry so
that these techniques may be of interest to the computa-
tional geometry community. For subdivision, convergence
of the PL curves to a Bézier curve under Hausdorff dis-
tance is well known [4], but, to the best of our knowledge,
the convergence in terms of angular measure has not been
previously established. The angular convergence is used to
draw conclusions about non-self-intersection of the PL ap-
proximation3. Non-self-intersection is useful in determin-
ing more subtle topological properties, such as unknotted-
ness and isotopic equivalence between a curve and this PL
approximant [2]. This isotoptic equivalence has applica-
tions in computer graphics, computer animation and scien-
tific visualization and the results presented here were dis-
covered while extending those previous theorems [2]. Fur-
ther enhancements remain the subject of future research.

For a simple4 curve, it has been shown that the PL
approximation under subdivision will eventually also be-
come simple [6]. The proof relied upon use of the hodo-

3The authors thank J. Peters for conceptual insights offered during
some informal conversatoins about the angular convergence.

4A curve is called simple if it is non-self-intersecting.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

175

27th European Workshop on Computational Geometry, 2011

graph5 and is devoid of the constructive geometric tech-
niques used here. That previous proof did not provide a
specific rate of convergence, but the more geometric con-
struction used here easily yields that convergence rate.

2 Definitions and Notation

Exterior angles were defined [5] for closed PL curves, but
are adapted here for open curves.

Definition 1 For an open PL curve with vertices
{P0, P1, . . . , Pn} in R3, denote the measures of the ex-
terior angles formed by the oriented line segments to be:

α1, . . . , αn−1 satisfying

0 ≤ αm ≤ π for 1 ≤ m ≤ n− 1.

For example, the exterior angle with measure αm is
formed by

−−−−−−→
Pm−1Pm and

−−−−−−→
PmPm+1 and 0 ≤ αm ≤ π, as

shown in Figure 3). For these open PL curves, it is under-
stood that the exterior angles are not defined at the initial
and final vertices.

Definition 2 Denote C(t) as the parameterized Bézier
curve of degree n with control points Pm ∈ R3, defined
by

C(t) =
n∑

m=0

Bm,n(t)Pm, t ∈ [0, 1]

where Bm,n =
(
n
m

)
tm(1− t)n−m.

Denote the uniform parametrization [7] of the PL curve
P by l(P)[0,1] over [0, 1], where P = (P0, P1, · · · , Pn).
That is:

l(P)[0,1](
j

n
) = Pj for j = 0, 1, · · · , n

and l(P)[0,1] is piecewise linear.

Definition 3 Discrete derivatives [7] are first defined at
the points t′js, where l(P)[0,1](tj) = Pj for j =
0, 1, · · · , n− 1.

P ′j = l′(P)[0,1](tj) =
Pj+1 − Pj

tj+1 − tj
Denote P ′ = (P ′0, P

′
1, · · · , P ′n−1). Then define the dis-

crete derivative for l(P)[0,1] as:

l′(P)[0,1] = l(P ′)[0,1]

Intuitively, the first discrete derivatives are similar to the
tangent lines defined for univariate real-valued functions
within a standard introductory calculus course.

In order to avoid many annoying techincal considera-
tions and to simplify the exposition, the class of Bézier
curves considered will be restricted to those where the
derivative never vanishes.

5The derivative of a Bézier curve is also expressed as a Bézier curve,
known as the hodograph [3].

Figure 3: The measure αm of an exterior angle

Definition 4 A differentiable curve is said to be regular if
its derivative never vanishes.

Throughout the rest of the presentation, the notation
C will be used for a simple C1, regular6 Bézier curve of
arbitrary degree n. And i is the number of subdivi-
sions. For convenience, the de Casteljau algorithm is
assumed, with a fixed parameter 1

2 .

3 Angular Convergence

For any Bézier curve, after i iterations, the subdivision
process generates 2i open PL curves, whenever i > 0 (For
i = 0, if the original PL curve formed from the control
points is closed, then the associated Bézier curve is also
closed.) For the i-th subdivision, when i > 0 , denote each
open PL approximation generated as

P k = (P k
0 , P

k
1 , . . . , P

k
n)

for k = 1, 2, 3, . . . , 2i. We consider an arbitrary P k for the
following analysis, where, for simplicity of notation, we
repress the superscript and denote this arbitrary curve sim-
ply as P , where P has the corresponding parameters of the
indicated control points by t0, t1, · · · , tn. And let l(P, i)
be the uniform parameterization [7] of P on [k−1

2i ,
k
2i]

k ∈ {1, 2, 3, . . . , 2i}. That is

l(P, i) = l(P)[k−1
2i , k

2i] and l(P, i)(tm) = Pm

Note from the domain of l(P, i) that

tn − t0 =
1
2i

(1)

Furthermore, let

α1, α2, · · · , αn−1

be the corresponding measures of exterior angles of P
(Definition 1).

Consider the Euclidian distance between the discrete
derivatives of the two consecutive segments, that is
|l′(P, i)(tm)−l′(P, i)(tm−1)|, where | | denotes Euclidean
distance. We will show a rate ofO(1

2i) for the convergence

6The astute reader will note that some of the development does not
require that the curve be regular.

176

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

|l′(P, i)(tm)− l′(P, i)(tm−1)| → 0 as i→∞.

This will imply that cos(αm) → 1 with the same rate and

that αm → 0 at a rate of O(
√

1
2i). Analogously we may

imagine two connected segments in the x-y plane, and if
their slopes are close, then their exterior angle is small.

Lemma 1 For C, the value |l′(P, i)(tm)− l′(P, i)(tm−1)|
converges to zero at a rate of O(1

2i).

Proof.
|l′(P, i)(tm)− l′(P, i)(tm−1)|

≤ |l′(P, i)(tm)− C′(tm)|+ |C′(tm)− C′(tm−1)|+

|C′(tm−1)− l′(P, i)(tm−1)|

The first and the third terms converge to 0 at a rate of
O(1

2i), because the discrete derivative converges to the
derivative of the original curve with this rate [7].

Now consider the convergence of the second term.
Since C′ satisfies the Lipschitz condition because of it be-
ing continuously differentiable, we have

|C′(tm)− C′(tm−1)| ≤ γ|tm − tm−1| ≤
γ

2i

for some constant γ, where γ does not depend on tm or
tm−1. The second inequality holds by the Equation (1).
Therefore |l′(P, i)(tm)−l′(P, i)(tm−1)| converges to zero
at a rate of O(1

2i). �

Theorem 2 (Angular convergence) For C, each exterior
angle of the PL curves generated by subdivision converges

to 0 at a rate of O(
√

1
2i).

Proof. Since C(t) is assumed to be regular and C1, the
non-zero minimum of |C′(t)| over the compact set [0,1] is
obtained. For brevity, the notations of ui = l′(P, i)(tm)
and vi = l′(P, i)(tm−1) are introduced. The convergence
of ui to C′(tm) [7] implies that |ui| has a positive lower
bound for i sufficiently large, denoted by λ.

Lemma 1 gives that |ui− vi| → 0 as i→∞ at a rate of
O(1

2i). This implies: |ui| − |vi| → 0 as i → ∞ at a rate
of O(1

2i).
Consider the following where the multiplication be-

tween vectors is dot product:

|cos(αm)− 1| = | uivi

|ui||vi|
− 1|

= |uivi − vivi + vivi − |ui||vi|
|ui||vi|

|

≤ |ui − vi|+ ||vi| − |ui||
|ui|

≤ |ui − vi|+ ||vi| − |ui||
λ

It follows from Lemma 1 that the right hand side converges
to 0 at a rate ofO(1

2i). Consequently by the above inequal-
ity |cos(αm)− 1| → 0 with the same rate.

It follows from the continuity of arccos that αm con-
verges to 0 as i→∞.

Taking the power series expansion of cos we get

|cos(αm)− 1| ≥ (αm)2 · (1
2
− | (αm)2

4!
− (αm)4

6!
+ · · · |)

Considering the expression on the right hand side of the
previous inequality, note that for 1 > αm,

e = 1 + 1 +
1
2!

+
1
3!

+
1
4!

+ · · · > | 1
4!
− (αm)2

6!
+ · · · |.

For any 0 < τ < 1
2 , sufficiently many subdivisions will

guarantee that αm is small enough such that 1 > αm and
τ > (αm)2 · e. Then

τ > (αm)2 · e > (αm)2 · | 1
4!
− (αm)2

6!
+ · · · |.

So
|cos(αm)− 1| > (αm)2 · (1

2
− τ) > 0.

Then convergence of the left hand side implies that αm

converges to 0 at a rate of O(
√

1
2i). �

4 Non-self-intersections from Subdivision

Even though the original PL approximant might not be
simple, if the Bézier curve is simple, then subdivision
eventually produces a PL approximant that is simple
[6]. So, there must exist some value of i such that,
for the i-th subdivision each of the PL curves output as
(P k

0 , P
k
1 , . . . , P

k
n) for k = 1, 2, 3, . . . , 2i must also be sim-

ple. Consistent with the approach taken here, that result
will now be shown by a purely PL geometric construc-
tion which does not rely upon the hodograph of the Bézier
curve.

Lemma 4 is similar to one previously proven [6], where
the angles in the previous publication were defined over a
different range of values than used here.

The previous definition of exterior angles for open
curves (Definition 1) was noted as a specialization of the
original use for closed curves, where it was created to
unify the concept of total curvature for closed curves that
were PL or differentiable.

Definition 5 The curvature of C is given by

κ(t) =
||C′(t)× C′′(t)||
||C′(t)||3

, t ∈ [0, 1]

Its total curvature [1] is the integral:
∫ 1

0
|κ(t)| dt.

Definition 6 [5] For a closed PL curve P̄ in R3, formed
from points P0, P1, . . . , Pn, its total curvature κ(P̄) is de-
fined as

κ(P̄) =
n∑

m=0

αm, .

where α0 and αm are both defined in the interval [0, π],
where α0 is formed from the edges

−−−→
PnP0 and

−−−→
P0P1, while

αn is formed from the edges
−−−−−→
Pn−1Pn and

−−−→
PnP0

177

27th European Workshop on Computational Geometry, 2011

Figure 4: A self-intersecting PL curve

The following Fenchel’s Theorem [1] is applicable both
to PL curves and to differentiable curves.

Theorem 3 [5] The total curvature of any closed curve is
at least 2π, with equality holding if and only if the curve
is convex.

Lemma 4 Let P = (P0, P1, · · · , Pn) be an open PL
curve in R3. If

∑n−1
j=1 αj < π, then P is simple.

Proof. Assume to the contrary that P is self-intersecting.
Let k be the lowest index for which the segment Pk−1Pk

intersects an earlier segment Pi−1Pi for i < k. Consider
the PL curve Pi−1 . . . Pk and isolate the single closed loop
defined by the intersection as in Figure 4, where the des-
ignated intersection point is labeled as Q0. Denote this
single closed loop by Q̄ = (Q0, Q1, · · · , Qn′ , Q0), for an
appropriately chosen value of n′. Denote the measure of
the exterior angle of Q̄ at Q0 by β0, where β0 ≤ π (Def-
inition 1). Let κl denote the total curvature of this closed
loop, where κl ≥ 2π (Theorem 3). Then, faithfully index
the remaining angles by an oriented traverse of Q̄ such
that each exterior angle has, respectively, measure βj for
j = 1, . . . , n′. Note that for j ≥ 1, each βj is equal to
some αi.

Since Q̄ is a portion of P , we have

n−1∑
i=1

αj >
n′∑

j=1

βj .

Note also that
∑n′

j=0 βj ≥ 2π (Theorem 3). But, then

since β0 ≤ π, it follows that
∑n′

j=1 βj ≥ π and∑n−1
i=1 αj ≥ π, which is a contradiction.
Two subtleties of the proof are worth mentioning. First,

the assumption that each angle αi < π precludes the case
of two consecutive edges intersecting at more than a sin-
gle point. Secondly, the choice of k as the lowest index
is sufficiently general to include the case where two non-
consecutive edges are coincident. �

Theorem 5 For C, there exists a sufficiently large value
of i, such that after i-many subdivisions, each of the PL
curves generated as P k = (P k

0 , P
k
1 , . . . , P

k
n) for k =

1, 2, 3, . . . , 2i will be simple.

Proof. Since the measure of each exterior angle converges
to zero as i increases (Theorem 2) and since each open
P k = (P k

0 , P
k
1 , . . . , P

k
n) has n − 1 edges, there exists i

sufficiently large such that

n−1∑
j=1

αk
j < π,

for each k = 1, 2, 3, . . . , 2i. Use of Lemma 4 completes
the proof. �

5 Conclusions and Future Work

Total curvature is fundamental for determining knot type,
as applicable to both PL curves and differentiable curves.

Theorem 6 Fary-Milnor Theorem [5]: If the total curva-
ture of a simple closed curve is less than or equal to 4π,
then it is unknotted.

These local topological properties of the PL approxima-
tion for a Bézier curve have been instrumental to showing
isotopic equivalence between C and the polyline approx-
imation generated by subdivision for low degree Bézier
curves. Efforts are ongoing to extend that isotopic equiva-
lence to higher degree Bézier curves.

References

[1] M. P. do Carmo. Differential Geometry of Curves and Sur-
faces. Pretice-Hall, Inc., Upper Saddle River, NJ, 1976.

[2] E.L.F.Moore, T.J.Peters, and J.A.Roulier. Preserving com-
putational topology by subdivision of quadratic and cubic
Bézier curves. Computing, Springer Wien, Special issue on
Geometric Modeling, 79(2-4):317–323, 2007.

[3] G.Farin. Curves and Surfaces for Computer Aided Geomet-
ric Design. Academic Press, Inc., San Diego, CA, 1990.

[4] J.Peters and X.Wu. On the optimality of piecewise linear
max-norm enclosures based on SLEFES. International Con-
ference on Curves and Surfaces, Saint-Malo, France, 2002.

[5] J. W. Milnor. On the total curvature of knots. Ann.Math.,
52:248–257, 1950.

[6] M.Neagu, E.Calcoen, and B.Lacolle. Bézier curves: Topo-
logical convergence of the control polygon. 6th Int.Conf. on
Mathematical Methods for Curves and Surfaces, pages 347–
354, 2000.

[7] G. Morin and R. Goldman. On the smooth convergence of
subdivision and degree elevation for Bézier curves. Com-
puter Aided Geometric Design, 18:657–666, 2001.

[8] J. Munkres. Topology. Prentice Hall, 2nd edition, 1999.

178

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

On disjoint crossing families in geometric graphs

Radoslav Fulek∗† Andrew Suk∗‡

Abstract

A geometric graph is a graph drawn in the plane with
vertices represented by points and edges as straight-
line segments. A geometric graph contains a (k, l)-
crossing family if there is a pair of edge subsets E1, E2

such that |E1| = k and |E2| = l, the edges in E1 are
pairwise crossing, the edges in E2 are pairwise cross-
ing, and every edge in E1 is disjoint to every edge
in E2. We conjecture that for any fixed k, l, every
n-vertex geometric graph with no (k, l)-crossing fam-
ily has at most ck,ln edges, where ck,l is a constant
that depends only on k and l. In this note, we show
that every n-vertex geometric graph with no (k, k)-
crossing family has at most ckn log n edges, where ck
is a constant that depends only on k, by proving a
more general result which relates extremal function
of a geometric graph F with extremal function of two
completely disjoint copies of F . We also settle the
conjecture for geometric graphs with no (2, 1)-crossing
family. As a direct application, this implies that for
any circle graph F on 3 vertices, every n-vertex geo-
metric graph that does not contain a matching whose
intersection graph is F has at most O(n) edges.

1 Introduction

A topological graph is a graph drawn in the plane with
points as vertices and edges as non-self-intersecting
arcs connecting its vertices. The arcs are allowed to
intersect, but they may not pass through vertices ex-
cept for their endpoints. Furthermore, the edges are
not allowed to have tangencies, i.e., if two edges share
an interior point, then they must properly cross at
that point. We only consider graphs without parallel
edges or self-loops. A topological graph is simple if
every pair of its edges intersect at most once. If the
edges are drawn as straight-line segments, then the
graph is geometric. Two edges of a topological graph
cross if their interiors share a point, and are disjoint
if they do not have a point in common (including their
endpoints).
It follows from Euler’s Polyhedral Formula that ev-

ery simple topological graph on n vertices and no
crossing edges has at most 3n − 6 edges. It is also

∗The authors gratefully acknowledge support from the Swiss
National Science Foundation Grant No. 200021-125287/1

†EPFL, Lausanne, radoslav.fulek@epfl.ch
‡Courant Institute, New York and EPFL, Lausanne,

suk@cims.nyu.edu

known that every simple topological graph on n ver-
tices with no pair of disjoint edges has at most O(n)
edges [10],[7]. Finding the maximum number of edges
in a topological (and geometric) graph with a forbid-
den substructure has been a classic problem in ex-
tremal topological graph theory (see [1], [2], [15], [6],
[20], [14], [19], [18], [21]). Many of these problems ask
for the maximum number of edges in a topological (or
geometric) graph whose edge set does not contain a
matching that defines a particular intersection graph.
Recall that the intersection graph of objects C in the
plane is a graph with vertex set C, and two vertices
are adjacent if their corresponding objects intersect.
Much research has been devoted to understanding
the clique and independence number of intersection
graphs due to their applications in VLSI design [8],
map labeling [3], and elsewhere.
Recently, Ackerman et al. [4] defined a natural

(k, l)-grid to be a set of k pairwise disjoint edges that
all cross another set of l pairwise disjoint edges. They
conjectured

Conjecture 1 Given fixed constants k, l ≥ 1 there
exists another constant ck,l, such that any geometric
graph on n vertices with no natural (k, l)-grid has at
most ck,ln edges.

They were able to show,

Theorem 2 [4] For fixed k, an n-vertex geomet-
ric graph with no natural (k, k)-grid has at most
O(n log2 n) edges.

Theorem 3 [4] An n-vertex geometric graph with no
natural (2, 1)-grid has at most O(n) edges.

Theorem 4 [4] An n-vertex simple topological graph
with no natural (k, k)-grid has at most O(n log4k−6 n)
edges.

As a dual version of the natural (k, l)-grid, we define
a (k, l)-crossing family to be a pair of edge subsets
E1, E2 such that

1. |E1| = k and |E2| = l,

2. the edges in E1 are pairwise crossing,

3. the edges in E2 are pairwise crossing,

4. every edge in E1 is disjoint to every edge in E2.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

179

27th European Workshop on Computational Geometry, 2011

We conjecture:

Conjecture 5 Given fixed constants k, l ≥ 1 there
exists another constant ck,l, such that any geometric
graph on n vertices with no (k, l)-crossing family has
at most ck,ln edges.

It is not even known if all n-vertex geometric graphs
with no k pairwise crossing edges has O(n) edges. The
best known bound is due to Valtr [22], who showed
that this is at most O(n log n) for every fixed k. We
extend this result to (k, k)-crossing families by prov-
ing the following theorem.

Theorem 6 An n-vertex geometric graph with no
(k, k)-crossing family has at most ckn log n edges,
where ck is a constant that depends only on k.

Let F denote a geometric graph. We say that a
geometric graph G contains F as a geometric sub-
graph if G contains a subgraph F ′ isomorphic to F
such that two edges in F ′ cross if and only if the two
corresponding edges cross in F .
We define ex(F, n) to be the extremal function of

F , i.e. the maximum number of edges a geometric
graph on n vertices can have without containing F as
a geometric subgraph. Similarly, we define exL(F, n)
to be the extremal function of F , if we restrict our-
selves to the geometric graphs all of whose edges can
be hit by one line.
Let F2 denote a geometric graph, which consists of

two completely disjoint copies of a geometric graph F .
We prove Theorem 6 by a straightforward application
of the following result.

Theorem 7 ex(F2, n) = O((exL(F, 2n) + n) log n +
ex(F, n))

Furthermore, we settle Conjecture 5 in the first non-
trivial case.

Theorem 8 An n-vertex geometric graph with no
(2, 1)-crossing family has at most O(n) edges.

Note that Conjecture 5 is not true for topological
graphs since Pach and Tóth [16] showed that the com-
plete graph can be drawn such that every pair of edges
intersect once or twice.
Recall that F is a circle graph if F can be repre-

sented as the intersection graph of chords on a circle.
By combining Theorem 8 with results from [2], [4],
and [20], we have the following.

Corollary 9 For any circle graph F on 3 vertices,
every n-vertex geometric graph that does not contain
a matching whose intersection graph is F contains at
most O(n) edges.

See Figure 1. We also conjecture the following.

(a) 3 pairwise crossing. (b) 3 pairwise dis-
joint.

(c) (2,1)-grid. (d) (2,1)-crossing
family.

Figure 1: Triples of segments corresponding to all cir-
cle graphs on three vertices.

Conjecture 10 For any circle graph F on k vertices,
there exists a constant ck such that every n-vertex ge-
ometric graph that does not contain a matching whose
intersection graph is F , contains at most ckn edges.

As pointed out by Klazar and Marcus [9], it is not
hard to modify the proof of the Marcus-Tardos Theo-
rem [19] to show that Conjecture 10 is true when the
vertices are in convex position.

For simple topological graphs, we have the following

Theorem 11 An n-vertex simple topological
graph with no (k, 1)-crossing family has at most
n(log n)O(log k) edges.

2 Relating extremal functions

First, we prove a variant of Theorem 7 when all of the
edges in our geometric graph can be hit by a line. As
in the introduction let F2 denote a geometric graph,
which consists of two completely disjoint copies of a
geometric graph F . We will now show that the ex-
tremal function exL(F2, n) is not far from exL(F, n).

Theorem 12 exL(F2,n)≤O((n+exL(F,2n))logn)

Proof. Let G denote a geometric graph on n vertices
that does not contain F2 as a geometric subgraph,
and all the edges of G can be hit by a line. By a
standard perturbation argument we can assume that
the vertices of G are in general position. As in [5],
a halving edge uv is a pair of the vertices in G such
that the number of vertices on each side of the line
through u and v is the same.

180

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Lemma 13 There exists a directed line l⃗ such that
the number of edges in G that lies completely to the
left or right of l⃗ is at most 2exL(F, n/2) + 5n.

Proof. If n is odd we can discard one vertex of G,
thereby loosing at most n edges. Therefore we can
assume n is even, and it suffices to show that there
exists a directed line l⃗ such that the number of edges
in G that lies completely to the left or right of l⃗ is at
most 2exL(F, n/2) + 4n.

Let uv be a halving edge, and let l⃗ denote the di-
rected line containing vertices u and v with direction
from u to v. Let e(⃗l, L) and e(⃗l, R) denote the num-

ber of edges on the left and right side of l⃗ respec-
tively. Without loss of generality, we can assume that
e(⃗l, L) ≤ e(⃗l, R). We will rotate l⃗ such that it remains
a halving line at the end of each step, until it reaches
a position where the number of edges on both sides of
l⃗ is roughly the same.
We start by rotating l⃗ counterclockwise around u

until it meets the next vertex w of G. If initially w
lies to the right of l⃗, then in the next step we will
rotate l⃗ around u (again). See Figure 2(a). Otherwise

if w was on the left side of l⃗, then in the next step we
will rotate l⃗ around vertex w. See Figure 2(b). Clearly
after each step in the rotation, there are exactly n/2

vertices on each side of l⃗.

u

v

−→
l

w

(a) w lies to the right of l⃗.

u

v

−→
l

w

(b) w lies to the left of l⃗.

Figure 2: Halving the vertices of G

After several rotations, l⃗ will eventually contain
points u and v again, with direction from v to u. At
this point we have e(⃗l, L) ≥ e(⃗l, R). Since the number
of edges on the right side (and left side) changes by at

l

l
′

V1

V2

V11(l
′)

V21(l
′)

V12(l
′)

V22(l
′)

l
′

Figure 3: The final partition of the vertex set of G

most n after each step in the rotation, at some point
in the rotation we must have

|e(⃗l, L)− e(⃗l, R)| ≤ 2n.

Since G does not contain a F2 as a geometric sub-
graph, this implies that

e(⃗l, L) ≤ exL(F, n/2) + 2n

and

e(⃗l, R) ≤ exL(F, n/2) + 2n.

Therefore for any n, there exists a directed line l⃗ such
that the number of edges in G that lies completely to
the left or right of l⃗ is at most 2exL(F, n/2) + 5n.

�

By Lemma 13 we obtain a line l, which partition
the vertices of G into two equal (or almost equal if
n is odd) sets V1 and V2. Let E′ denote the set of
edges between V1 and V2. By the Ham-Sandwich Cut
Theorem [11], there exists a line l′ that simultaneously
bisects V1 and V2. Let V11(l

′) and V12(l
′) denote the

resulting parts of V1, and let V21(l
′) and V22(l

′) denote
the resulting parts of V2.

Observe that we can translate l′ along l into a po-
sition where the number of edges in E′ that lie com-
pletely to the left and completely to the right of l′

is roughly the same. In particular, we can trans-
late l′ along l such that the number of edges in E′

that lies completely to its left or right side is at most
exL(F, n)+exL(F, n/2+1)+n (see Figure 2). Indeed,
assume that the number of edges in E′ between, say,
V12(l

′) and V22(l
′) is more than exL(F, n/2 + 1). As

we translate l′ to the right, the number of edges that
lie completely to the right of l′ changes by at most n
as l′ crosses a single vertex in G. Therefore we can
translate l′ into the leftmost position where the num-
ber of edges in E′ between V12(l

′) and V22(l
′) drops

below exL(F, n/2 + 1) + n+ 1. Moreover, at this po-
sition the number of edges in E′ between V11(l

′) and
V21(l

′) still cannot be more than exL(F, n) since G
does not contain F2 as a geometric subgraph.

181

27th European Workshop on Computational Geometry, 2011

Thus, all but at most 3exL(F, n/2 + 1) +
exL(F, n) + 6n edges of G are the edges between
V11(l

′) and V22(l
′), and between V12(l

′) and V21(l
′).

Notice that there exists k, −1/4 ≤ k ≤ 1/4,
such that |V11(l

′)| + |V22(l
′)| = n(1/2 + k), and

|V12(l
′)| + |V21(l

′)| = n(1/2 − k). Finally, we are in
the position to state the recurrence, whose closed
form gives the statement of the theorem:

exL(F2, n) ≤ exL(F2, n(1/2 + k)) + exL(F2, n(1/2 −
k)) + 3exL(F, n/2 + 1) + exL(F, n) + 6n.

�

Finally, we show how Theorem 12 implies Theo-
rem 7.

Proof. [Proof of Theorem 7.] Let G = (V,E) denote
the geometric graph not containing F2 as a subgraph.
Similarly, as in the proof of Lemma 13 we can find a
halving line l that hits all but 2ex(F, n/2)+5n edges of
G. Now, the claim follows by using Theorem 12. �

Theorem 6 follows easily by using Theorem 7 with
a result from [22], which states that every n-vertex
geometric graph whose edges can be all hit by a line
and does not contain k pairwise crossing edges has at
most O(n) edges and at most O(n log n) edges if we
do not require a single line to hit all the edges.

References

[1] E. Ackerman, 2006. On the maximum number of
edges in topological graphs with no four pairwise
crossing edges. In Proceedings of the Twenty-Second
Annual Symposium on Computational Geometry
(Sedona, Arizona, USA, June 05 - 07, 2006). SCG
’06. ACM, New York, NY, 259-263.

[2] P.K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M.
Sharir, Quasi-Planar Graphs Have a Linear Number
of Edges. In Proceedings of the Symposium on Graph
Drawing (September 20 - 22, 1995). F. Brandenburg,
Ed. Lecture Notes In Computer Science, vol. 1027.
Springer-Verlag, London, 1-7.

[3] P.K. Agarwal, M. van Kreveld, and S. Suri, Label
placement by maximum independent set in rectan-
gles, Comput. Geom. Theory Appl. 11 (1998), 209–
218.

[4] E. Ackerman, J. Fox, J. Pach, and A. Suk, On grids in
topological graphs, Proc. 25th ACM Symp. on Com-
putational Geometry (SoCG), University of Aarhus,
Denmark, June 2009, 403-412.

[5] T. Dey, Improved Bounds on Planar k-sets and k-
levels, Discrete Comput. Geom, 1997, 19, 156–161

[6] J. Fox and J. Pach, Coloring Kk-free intersection
graphs of geometric objects in the plane. In Proceed-
ings of the Twenty-Fourth Annual Symposium on
Computational Geometry (College Park, MD, USA,
June 09 - 11, 2008). SCG ’08. ACM, New York, NY,
346-354.

[7] R. Fulek and J. Pach, A computational approach to
Conway’s thrackle conjecture, Computational Geom-
etry: Theory and Application, 2010, to appear.

[8] D. S. Hochbaum and W. Maass, Approximation
schemes for covering and packing problems in image
processing and VLSI, J. ACM 32 (1985), 130–136.

[9] M. Klazar and A. Marcus,Extensions of the linear
bound in the Fredi-Hajnal conjecture, Adv. in Appl.
Math. 38 (2006), 258–266.

[10] L. Lovász, J. Pach and M. Szegedy: On Conway’s
thrackle conjecture, Discrete. Comput. Geom. 18(4)
(1997), 369376.

[11] J. Matouśek, Lectures on Discrete Geometry.
Springer-Verlag New York, Inc. 2002.

[12] A. Marcus, G. Tardos, Excluded permutation matri-
ces and the Stanley-Wilf conjecture, Journal of Com-
binatorial Theory Series A, v.107 n.1, p.153-160, July
2004.

[13] J. Pach and J. Solymosi, Crossing patterns of seg-
ments. J. Comb. Theory Ser. A 96, 2 (Nov. 2001),
316-325.

[14] J. Pach, R. Radoicic, G. Toth. Relaxing planarity for
topological graphs, J. Akiyama, M. Kano (Eds.): Dis-
crete and Computational Geometry, Japanese Con-
ference, JCDCG 2002, Tokyo, Japan, Lecture Notes
in Computer Science, 2866, Springer, 2003, 221–232.

[15] J. Pach, F. Shahrokhi, and M. Szegedy. 1994. Appli-
cations of the crossing number. In Proceedings of the
Tenth Annual Symposium on Computational Geom-
etry (Stony Brook, New York, United States, June 06
- 08, 1994). SCG ’94. ACM, New York, NY, 198-202.

[16] J. Pach and G. Tóth, Disjoint edges in topological
graphs,in: Combinatorial Geometry and Graph The-
ory (J. Akiyama et al., eds.),Lecture Notes in Com-
puter Science 3330,Springer-Verlag, Berlin, 2005,
133–140.

[17] J. Pach and G. Tóth, Which crossing number is it
anyway?. J. Comb. Theory Ser. B 80, 2 (Nov. 2000),
225-246.

[18] J. Pach, J. Töröcsik, Some Geometric Applications of
Dilworth’s Theorem. Discrete & Computational Ge-
ometry 12: 1-7 (1994)

[19] G. Tardos, G. Tóth: Crossing stars in topological
graphs, Japan Conference on Discrete and Compu-
tational Geometry 2004, Lecture Notes in Computer
Science 3742 Springer-Verlag, Berlin, 184-197.

[20] G. Tóth, 2000. Note on geometric graphs. J. Comb.
Theory Ser. A 89, 1 (Jan. 2000), 126-132.

[21] G. Tóth and P. Valtr. 1998 Geometric Graphs with
Few Disjoint Edges. Technical Report. UMI Order
Number: 98-22., Center for Discrete Mathematics &
Theoretical Computer Science.

[22] P. Valtr, Graph drawings with no k pairwise crossing
edges, in: G. Di Battista (ed.), Graph Drawing ’97,
Rome, September 1997, pp. 205-218

182

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Long Monotone Paths in Convex Subdivisions

Günter Rote∗

Abstract

Consider a connected subdivision of the plane into
n convex regions where every vertex has degree at
most d. Then, for every vertex there is a path with
at least Ω(logd n) edges through this vertex that is
monotone in some direction. This bound is best pos-
sible.

1 Introduction

Definition 1 A direction is given by a unit vector e.
A path x(t), t ∈ I for some interval I, is monotone
in direction e if the inner product x(t) · e is a strictly
increasing function of t. A path is weakly monotone
in direction e if the inner product is a nondecreasing
function of t.

We say that a path is (weakly) monotone if it is
(weakly) monotone in some direction.

We are looking for long monotone paths in planar
subdivisions. A subdivision of the plane into n convex
regions has O(n) vertices and O(n) straight edges,
including some infinite rays. When we speak about
monotone paths, we mean paths along the vertices
and edges of this graph. To exclude some trivial cases,
we assume that the edges form a connected graph (and
we say that the subdivision is connected).

Theorem 1 Let P be a connected subdivision of the
plane into n convex faces in which every vertex has
degree at most d. Then, for every vertex v, there is a
weakly monotone path with at least Ω(logd n) edges
starting at v.

Related Results. If P is the vertical projection of
a piecewise linear convex terrain P̂ , one can apply
a polarity transform to this terrain with respect to
the paraboloid z = x2 + y2, yielding another piece-
wise linear convex terrain P̂ ∗. The projection P ∗ of
this terrain is a reciprocal diagram of P (cf. [1]): its
graph is dual to the graph of P , in the sense that ver-
tices of P ∗ correspond to faces of P and vice versa.
Each edge in P ∗ has a corresponding edge in P , and
moreover, these two edges are perpendicular. (This
last property distinguishes a reciprocal diagram from
a general drawing of the dual graph of P .)

∗Institut für Informatik, Freie Universität Berlin, Taku-
straße 9, 14195 Berlin, Germany, rote@inf.fu-berlin.de

A monotone path in P becomes a monotone face
sequence in P ∗: in such a sequence, one can go from
a face A to an adjacent face B whenever there is a ray
in the specified direction e which crosses the common
edge of A and B in the direction from A to B.

Monotone face sequences were studied by Chazelle,
Edelsbrunner and Guibas [2]. They established the
following bound:

Theorem 2 Let Q be a subdivision of the plane into
n convex faces in which every face is adjacent to at
most d neighboring faces. Then, there is a monotone
face sequence of length at least

Ω(logd n + log n/ log log n).

Chazelle et al. showed that a monotone sequence of
this length can even be achieved by the faces inter-
sected by a line. Moreover, they showed that the
bound is tight, by giving families of subdivisions that
have no long face sequences.

Thus, for subdivisions P that are projections of
a convex terrain, the question about long monotone
paths is completely answered the applying above the-
orem for Q = P ∗.

However, for general subdivisions, the problems are
not directly related, and in fact, the answers are dif-
ferent: We will see in Section 3 that one cannot add a
term Ω(log n/ log log n) (or any other term that grows
to infinity) to the bound of Theorem 1.

Motivation. We were led to the question of Theo-
rem 2 by the complexity analysis of an algorithm for
partial matching between two finite planar point sets
under translations [4]. There, we could show that
a certain subdivision Q contained no monotone face
sequence longer than some bound X which is polyno-
mial in the input parameters. If Theorem 2 were true
with some stronger lower bound of the form Ω(nα) for
α > 0, this would have implied a polynomial bound
on the number of faces of Q.

2 Proof of Theorem 1

A basic observation for convex subdivisions is that for
any vertex v and any given generic direction e, there is
always an outgoing edge from v that is weakly mono-
tone in direction e. Theorem 1 follows quite straight-
forwardly from the following lemma:

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

183

27th European Workshop on Computational Geometry, 2011

R(e)

R(e′)

R(e′′)

e′′

e′
e

v

Figure 1: The rightmost path R(e) starting from ver-
tex v in direction e

Lemma 3 Let v be a vertex in a connected convex
planar subdivision P . Then there is a spanning tree
rooted a v and containing all infinite rays, such that
all paths starting at v are weakly monotone.

A wall of bricks shows that the lemma does not hold
with (strictly) monotone paths. However, if there are
no angles of 180◦, the statement extends to strictly
monotone paths.

Proof. For a generic direction e we can define the
rightmost path R(e) starting at v as follows, see Fig-
ure 1: We start at v and always follow the rightmost
outgoing edge that is weakly monotone in direction e
until we arrive at an unbounded ray.

Now we start rotating e clockwise. At some direc-
tion e′, R(e′) will be different from R(e). R(e) is still
weakly monotone in direction e′. Now, any vertex u
(and any edge) in the region between R(e) and R(e′)
can be reached by a monotone path in direction e′:
We simply start at u and go monotonically in the di-
rection opposite to e′ until we hit R(e) or R(e′). From
there, we follow R(e) or R(e′) to v. In this way, we
can form a spanning tree of all vertices and all in-
finite rays between R(e) and R(e′) with the desired
properties.

Continuing the rotation in this way, we eventually
reach all vertices and all infinite rays. �

3 Upper Bounds

If the maximum degree d is Ω(n), Theorem 1 gives
only a trivial statement. The example of Figure 2
shows that, indeed, there is no non-constant lower
bound on the length of monotone paths in this case,
even for a triangulation.

The graph has 2k vertices arranged on two concen-
tric rings around a central vertex and connected in a
zigzag manner. Each vertex is connected to the cen-
ter and has also an infinite ray outwards. The radius

Figure 2: A subdivision with only constant-size mono-
tone paths

of the outer ring is (at least) twice as large as the
radius of the inner ring. If we disregard the central
vertex and the infinite edges, the zigzag remains. One
can easily see that a monotone path can use at most
three successive edges of the zigzag. Since a path can
go through the center at most once and can use at
most two infinite rays, a constant upper bound fol-
lows. In fact, it is easy to show that a monotone path
can have at most eight edges.

4 Open Question

The example of Figure 2 has Ω(n) infinite rays. Are
there similar examples with constantly many rays?

Acknowledgments

This work was done while I was a guest of CIB (Cen-
tre Interfacultaire Bernoulli) in Lausanne. I gratefully ac-
knowledge the support of the CIB and the NSF (National
Science Foundation). I thank János Pach for insistingly
asking the question to which Theorem 1 gives the answer.
I thank the organizers for the tasty chocolate.

References

[1] F. Aurenhammer. A criterion for the affine equality of
cell complexes in Rd and convex polyhedra in Rd+1.
Discrete Comput. Geom., 2:49–64, 1987.

[2] B. Chazelle, H. Edelsbrunner, and L. J. Guibas. The
complexity of cutting complexes. Discrete Comput.
Geom., 4:139–181, 1989.

[3] D. Grace. All theories proven with one graph. The
Journal of Irreproducible Results, 50(1):1, 2006.

[4] G. Rote. Partial least-squares point matching under
translations. In J. Vahrenhold, editor, 26th European
Workshop on Computational Geometry (EuroCG’10),
pages 249–251, Mar. 2010.

184

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Computing Strongly Homotopic Line Simplification in the Plane

Shervin Daneshpajouh∗ Mohammad Ali Abam† Lasse Deleuran‡ Mohammad Ghodsi§

Abstract

We study a variant of the line-simplification prob-
lem where we are given a polygonal path P =
p1, p2, . . . , pn and a set S of m point obstacles in a
plane, and the goal is to find the optimal strongly-
homotopic simplification, that is, a minimum subse-
quence Q = q1, q2, . . . , qk (q1 = p1 and qk = pn)
of P defining a polygonal path which approximates
P within a given error ε and every link qlql+1 cor-
responding to the shortcut pipj is homotopic to the
sub-path pi, . . . , pj of P . We present a general method
running in time O(n(m + n) log(nm)) for identifying
every shortcut pipj that is homotopic to the sub-path
pi, . . . , pj of P , called a homotopic shortcut. In the
case of x-monotone paths we propose an efficient and
simple method to compute all homotopic shortcuts in
O(m log(nm) + n log n log(nm) + k) time where k is
the number of homotopic shortcuts.

1 Introduction

Introduction

Suppose we want to visualize a large geographical map
as a collection of non-intersecting chains represent-
ing some features like rivers or country borders, and
points representing places like cities, at different levels
of details. This leads us to simplify the map. A sim-
plified map must resemble the original map, that is, it
must satisfy conditions (i) the distance between each
point on a original chain and the simplified chain is
within a given error tolerance, and (ii) each original
chain and the simplified chain must be in the same
homotopy class; roughly speaking it means that if a
point (city for instance) is below a chain (river for ex-
ample), the point must remain below the simplified
chain. We however, pay our attention to a simpler
variant of the above problem where we are given a
polygonal path P = p1, p2, . . . , pn and a set S of m
point obstacles in a plane, and we wish to simplify the
path P such that the simplified path is close enough
∗Computer Engineering Department, Sharif University of

Technology, daneshpajouh@ce.sharif.edu
†Technische Universität Dortmund,

mohammad-ali.abam@tu-dortmund.de
‡MADALGO, Center for Massive Data Algorithmics, a Cen-

ter of the Danish National Research Foundation. Computer
Science Department, Aarhus University, ld@madalgo.au.dk
§Computer Engineering Department, Sharif University of

Technology, ghodsi@sharif.edu

�
�
�
��

�
�
� �

�
�
�
����

����
��
��
��
��

�
�
�
�
����
��
��
��
��

����

��

�
�
�
�����
��������

��

��
��
��
��

��
��
��
��

pn

p1

Q′

Q

P

Figure 1: Two simplifications Q and Q′ of path P .
Only Q is strongly homotopic to P .

to stay within the given error tolerance of the original
path, while still homotopic to the original path.

In this paper we study the restricted version of the
line-simplification, in which the vertices of Q are a
subsequence of P and each qlql+1 is called a link.
Each link qlql+1 of the simplified path corresponds
to a shortcut pipj (with j > i) of the original path
P , and the error of the link is defined as the distance
between pipj and the sub-path pi, . . . , pj denoted by
P (i, j). To measure the distance between pipj and
P (i, j) the Hausdorff distance and the Fréchet dis-
tance are often used. The error of the simplification
Q denoted by error(Q,P) is now defined as the max-
imum error of any of its links. A simplification Q is
homotopic to path P if it is continuously deformable
to P without passing over any points of S while keep-
ing its end-vertices fixed. A path P and its simplifi-
cation Q are strongly homotopic if for any link qlql+1

of Q corresponding to the shortcut pipj , the sub-path
P (i, j) and pipj are homotopic. For ease of presenta-
tion, such a shortcut is called a homotopic shortcut.
Fig.1 illustrates two simplifications Q and Q′. The
simplification Q is strongly homotopic to P but Q′

is not; so only Q is of our interest. If a path P and
its simplification Q are strongly homotopic, they are
clearly homotopic as well but if P and Q are homo-
topic, they are not necessarily strongly homotopic.
However, if P is x-monotone, we can simply conclude
P and Q are strongly-homotopic if they are homo-
topic.

Related work. De Berg et al.[2, 3] were first to
study homotopic line simplification in the restricted
model for the Hausdorff distance under the Euclidean
metric. Their algorithm running in O(n(n+m) log n)
time finds the optimal simplification provided that
P is x-monotone; otherwise the simplification is not
guaranteed to be optimal. Guibas et al.[8] showed
that the optimal homotopic line-simplification prob-

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

185

27th European Workshop on Computational Geometry, 2011

lem in the unrestricted model is NP-hard when the
simplification is forced to be non-self-intersecting like
the original one. A general version, subdivision sim-
plification, was later proved to be MIN PB-complete,
that is even hard to be approximated, and some
heuristic algorithms were given by Estkowski and
Mitchell [7].

Our results. We propose general methods to effi-
ciently compute all homotopic shortcuts which com-
bined with the Imai and Iri’s general framework, give
us the optimal strongly-homotopic simplification. For
x-monotone paths P of length n, our first algorithm
computes all homotopic shortcuts in O(m log(nm) +
n log n log(nm) + k) time where k is the number of
homotopic shortcuts. In the case of general paths P
of length n, we propose an O(n(m+n) log(nm))-time
algorithm to compute all homotopic shortcuts.

2 Optimal strongly-homotopic simplification

Our approach, like almost all algorithms given in the
restricted model, is based on Imai and Iri’s general
framework in which for a given error ε, an unweighted
directed graph Gε(P) (or simply Gε) is defined as fol-
lows: Gε = (V,Eε) where V = {p1, . . . , pn} and Eε =
{(pi, pj)|dF (pipj , P (i, j)) 6 ε} where dF (pipj , P (i, j))
is the F distance of shortcut pipj and P (i, j), for some
error function F . Each simplification Q with the er-
ror of at most ε corresponds to a path in Gε from p1

to pn and therefore, the optimal simplification is the
shortest path in Gε from p1 to pn in time O(|Gε|).
Our general algorithm is as follows. We first com-
pute Gε in the absence of the obstacles, and then
test whether each edge pipj in Gε is homotopic to
P (i, j) in the presence of the obstacles. We remove
non-homotopic shortcuts from Gε and finally compute
the shortest path in Gε from p1 to pn by a breath first
search to obtain the optimal strongly-homotopic sim-
plification. The main step of our algorithm is how
to compute homotopic shortcuts; the rest exists in
the literature as already mentioned. This step can be
done in O((n3 + n2m) log(nm)) time by individually
applying the homotopy-testing algorithm given in [4]
to each edge in Gε and its corresponding sub-path.
This of course is far from being efficient. Therefore,
the challenging question is whether it is possible to
efficiently compute all homotopic shortcuts. We affir-
matively answer this question using some novel ideas
and nice observations and obtain the following results
using Lemmas 3 and 6.

Theorem 1 Suppose P is a non-self-intersecting
polygonal path with size n in a plane containing m
point obstacles. Suppose that TF (n) is the time
needed to compute Gε under the error function F
in the absence of the obstacles. Therefore (i) if P is

x-monotone, the optimal strongly-homotopic simpli-
fication can be computed in TF (n) +O(m log(nm) +
n log n log(nm)+k) time where k is the number of ho-
motopic shortcuts. (ii) if P is a general path, the op-
timal strongly-homotopic simplification can be com-
puted in TF (n) +O(n(m+ n) log(nm)) time.

2.1 Computing homotopic shortcuts for x-
monotone paths

The main idea behind our x-monotone algorithm is to
enclose P inside a simple polygon Ψ(P, S) such that
pipj is a homotopic shortcut if and only if pi can see
pj inside the simple polygon Ψ(P, S).

We define the simple polygon Ψ(P, S) as follows.
We first determine the aboveness relation of the ob-
stacles and path P in O(m log n) time by locating each
obstacle with respect to the path P in O(log n) time.
We then compute in O(n + m) time an axis-parallel
rectangle containing the path vertices and obstacles in
its interior. Let λ be a sufficiently small number less
than the x-coordinate difference of any two points of
the path vertices and obstacles—λ can simply be com-
puted in O((n+m) log(nm)) time. For each obstacle
si above P , we define two points s+i and s−i on the
upper boundary of the rectangle with x-coordinates
x(si) + λ and x(si) − λ respectively where x(si) is
the x-coordinate of si. We connect si to s+i and s−i
and remove the part of the rectangle joining s+i to
s−i . Similarly, we define s+i and s−i and the associ-
ated edges for obstacles si below P . All together, this
gives us the simple polygon Ψ(P, S).

Lemma 2 A shortcut pipj is a homotopic shortcut if
and only if pi can see pj inside Ψ(P, S).

The above lemma reduces the problem to comput-
ing the visibility graph of n points inside a simple
polygon with size 3m + 4. Thanks to Ben-Moshe et
al.[1] who presented an O(m + n log n log(mn) + k)-
time algorithm to compute all visible pairs in O(n +
m+ k) space, where k is the number of visible pairs.
Putting it all together we get the following result:

Lemma 3 Let P = p1, . . . , pn be an x-monotone
polygonal path and let S be a set of m point ob-
stacles in a plane. All homotopic shortcuts pipj can
be computed in O(m log(nm) + n log n log(nm) + k)
time and O(n+m+ k) space where k is the number
of homotopic shortcuts.

2.2 Computing homotopic shortcuts for general
paths

In this section we describe an algorithm to compute
all homotopic shortcuts pipj in O(n(m+ n) log(nm))
time. We fix i = 1 and show all homotopic shortcuts
p1pj can be together computed in O((m+n) log(nm))

186

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

(i)

p2

p11

p3

p10

p7
p8

p5

p1

p4

p9

p6

(ii)

p1p2
p3

p4
p8

p9

p11

p7

p6

p10

p5OB

(iii)

p1p2
p3

p4

p10
p9

p8

p7
p6

(iv)

p4

p8

p6

p7

p10
p9

p1

p3
p2

Figure 2: (i) The original path P = p1, . . . , p11. (ii)
The rectified path. (iii) The tree T . The nodes of
T are denoted by empty circles. (iv) The rectified
shortcuts.

time which trivially can be extended to any i obtain-
ing our main result as i changes from 1 to n.

One way of representing a path α is to write the
sequence of obstacles that it passes above (overbar)
and below (underbar). An adjacent pair of repeated
obstacles can be deleted by deforming the path with-
out changing the homotopy class. This deletion can
be continued until a canonical sequence is obtained.
A repeated obstacle with opposite bars is called a
turn obstacle of α. The path α can be represented in
the rectified form, so-called rectified path, where each
maximal x-monotone sub-path is treated as a horizon-
tal segment whose y-coordinate is its rank in the total
order. We define the canonical rectified path (denoted
by CRP(α)) to be the shortened form of the rectified
path α which represents the canonical sequence of α.

Rectifying P . Since P is non-self-intersecting, the
edges of P and the obstacles of S induce an above-
ness relation which is acyclic and computable in time
O((n + m) log(nm)) [9]. The aboveness relation in-
deed defines a partial order. This partial order can
be easily extended to a total order. Let rankp(O) be
the rank of an object O (obstacle or edge) in the to-
tal order. By letting the y-coordinate of any point
of object O be rankp(O), the path P gets rectified,
i.e, each edge is represented as a horizontal segment.
We join two horizontal segments corresponding to two
consecutive edges in P by a vertical segment in order
to maintain the original connectivity—see Fig. 2(ii).

Orthogonal-range queries. Our algorithm relies
on a three-sided orthogonal range-query data struc-
ture defined over m point obstacles in order to com-
pute the the canonical rectified path, denoted by
CRP(P (1, i)).This data structure is used to find the
closest obstacle to any given vertical segment. We use
Chazelle’s data structure [5] that preprocesses the ob-
stacles in time O(m logm) while using O(m) space in

order to answer three-sided orthogonal-range queries
in O(logm) time.

Canonical rectified paths. After rectifying P and
constructing the orthogonal-range-query data struc-
ture we are ready to compute all CRP(i) inductively,
i.e, CRP(i+ 1) is obtained from CRP(i). Since sepa-
rately maintaining CRP(i) may require O(n2) space,
we implicitly store them in a tree T (See Fig. 2(iii))
such that CRP(i) can be extracted by traversing T
from the root to either a leaf or an internal node of
T , provided that it is x-monotone and it is known
that if CRP(i) is not x-monotone, it can not be ho-
motopic with its corresponding shortcut p1pi. Due to
lack of space we omit the construction of tree T from
this version but it can be found in the full version[6].
To this end we state the final result in the following
lemma.

Lemma 4 All x-monotone CRP(i) can be encoded
into a tree T of size O(n) where each x-monotone
CRP(i) corresponds to a path from the root to a node
or leaf in the tree T .

Rectifying shortcuts. Let I be the set of indices
i such that CRP(i) is x-monotone. Indeed I presents
all shortcuts remaining candidates to be homotopic
shortcuts after computing all CRP(i). Consider all
shortcuts p1pi where i ∈ I and m obstacles in S.
They induce an aboveness relation defining a partial
order which can be simply extended to a total order.
Let ranks(O) be the rank of an object O (obstacle or
shortcut) in this total order. We set the y-coordinate
of any point of object O to be ranks(O). This rectifies
all shortcuts. Note that there is not any relation be-
tween rankp(si) and ranks(si) for obstacle si as they
are coming from two different total orders.

Testing homotopy for tree T and the rectified
shortcuts. To summarize, we have two planes: (i)
the plane H1 includes the obstacles and tree T , and
(ii) the plane H2 includes the obstacles and the recti-
fied shortcuts corresponding to x-monotone CRP(i)
encoded in T . The tree T has O(n) edges and
all its edges embedded in H1 are either horizontal
or vertical—note that T is not necessary non-self-
intersecting and therefore a partial order of paths
encoded in T may not exist. The y-coordinates of
all horizontal segments and the obstacles in H1 come
from rankp while in H2 come from ranks.To this end,
we recall that I is the set of indices i such that CRP(i)
is x-monotone. For a horizontal edge e of T , let
above(e) (below(e)) be the set of obstacles sj satis-
fying (i) rankp(sj) > rankp(e) (rankp(sj) < rankp(e))
and (ii) the x-coordinate of sj lies between the x-
coordinates of the endpoints of e.

It is easy to see the following lemma.

187

27th European Workshop on Computational Geometry, 2011

Lemma 5 For any i ∈ I, the rectified shortcut p1pi

and CRP(i) are homotopic if and only if for any hor-
izontal edge e of T appearing on CRP(i) and any
obstacle sj ∈ above(e) (sj ∈ below(e)), the con-
dition (A) ranks(p1pi) < ranks(sj) (ranks(p1pi) >
ranks(sj)) is satisfied.

This lemma simply implies that any edge e and any
object sj ∈ above(e) (sj ∈ below(e)) violating the
condition (A) removes p1pi of being a homotopic
shortcut and if there is not such a pair e and sj , the
shortcut p1pi is definitely a homotopic shortcut. How-
ever, testing condition (A) for each edge e and any
sj ∈ above(e) is costly. The following useful observa-
tion shows among all obstacles either above or below
e, at most two obstacles together with e are necessary
to be tested whether they satisfy condition (A).

Observation 1 It suffices to verify the condition
(A) for each horizontal edge e of T and the obsta-
cle sj which has the minimum (maximum) ranks in
above(e) (below(e)); let min(above(e)) = ranks(sj)
(max(below(e)) = ranks(sj)).

Now, the main question is how fast we can perform the
verification of condition (A) for any horizontal edge e
of T to remove non-homotopic shortcuts as we know
above(e) or below(e) may contain many obstacles and
I(e) may contain several indices where I(e) is the set
of all indices i ∈ I that e appears in CRP(i). From
now on, we pay our attention to above(e) as below(e)
can be handled similarly.

In order to collectively verify the condition (A) in
which an edge e is involved, we define a new ordering
of elements in I such that elements in I(e) become
consecutive. This ordering is obtained by an in-order
traversal of T—note that for any i ∈ I, there is a
node in T labeled with pi. Let σ(i) be the rank of
i ∈ I in this ordering. With each i ∈ I, we associate
the point (σ(i), ranks(p1pi)) in a new plane H. Each
edge e and its associated min(above(e)) define a three-
sided orthogonal range in H. It is easy to see every
i ∈ I whose corresponding point lies in this range,
violates the condition (A) and consequently must be
removed from I. As these three-sided ranges are avail-
able in advance, we can sweep points and ranges in H
from top to bottom and maintain a binary tree over
the points based on their x-coordinates (i.e. their σ-
coordinate). Upon processing a three-sided range, we
simply remove O(log n) subtrees from the binary tree.
Therefore the sweeping takes O(n log n) time in total.
After handling below(e) for horizontal edges e of T in
a similar manner, any remaining shortcut is a homo-
topic shortcut. Putting it all this together we get the
following result.

Lemma 6 Let P = p1, . . . , pn be a non-self-
intersecting polygonal path and let S be a set of m

point obstacles in a plane. All homotopic shortcuts
pipj can be computed in O(n(m + n) log(nm)) time
and O(n + m + k) space where k is the number of
homotopic shortcuts.

3 Conclusion

We have proposed algorithms to compute an opti-
mal line simplification Q (in the restricted model)
of a polygonal path P with size n being strongly-
homotopic to P with respect to m point obstacles
in a plane. For non-self-intersecting x-monotone
and general path P , our algorithms run in TF (n) +
O(m log(nm) + n log n log(nm) + k) and TF (n) +
O(n(m+n) log(nm)) time respectively where k is the
number of homotopic shortcuts and TF (n) is the time
needed to compute Gε under the error function F .

References

[1] Ben-Moshe, B., Hall-Holt, O., Katz, M., Mitchell,
J.: Computing the visibility graph of points within a
polygon. In Proc. Annual Symposium on Computa-
tional Geometry, 27–35, 2004.

[2] de Berg, M., van Kreveld, M., Schirra, S.: A new
approach to subdivision simplification. International
Symposium on Computer Assisted Cartography, 04,
79–88, 1995.

[3] de Berg, M., van Kreveld, M., Schirra, S.: Topo-
logically correct subdivision simplification using the
bandwidth criterion. Cartography and GIS, 25, 243–
257, 1998.

[4] Cabello, S., Liu, Y., Mantler, A., Snoeyink, J.: Test-
ing homotopy for paths in the plane. In Proc. An-
nual Symposium On Computational Geometry, 160–
169, 2002.

[5] Chazelle, B.: An algorithm for segment-dragging
and its implementation. In Algorithmica, 3, 205–221,
1988.

[6] Daneshpajouh, Sh., Abam, M. A., Deleuran, L., Gh-
odsi, M.: Computing Homotopic Line Simplification
in a Plane (Full version).
http://www.daimi.au.dk/~danesh/publications/

chls.pdf

[7] Estkowski, R., Mitchell, J. S.: Simplifying a polygo-
nal subdivision while keeping it simple. In Proc. An-
nual Symposium on Computational Geometry, 40–49,
2001.

[8] Guibas, L.J., Hershberger, J.E., Mitchell, J.S.B.,
Snoeyink, J.S.: Approximating polygons and subdi-
visions with minimum link paths. International Jour-
nal of Computatioanl Geometry and Applications, 3,
383–415, 1993.

[9] Palazzi, L., Snoeyink, J. Counting and reporting
red/blue segment intersections. In CVGIP: Graph.
Models Image Process., 56(4), Academic Press, Inc.,
Orlando, FL, USA, 1994.

188

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Geometric Motion Planning: Finding Intersections

Sándor P. Fekete∗ Henning Hasemann∗† Tom Kamphans∗‡ Christiane Schmidt∗

Abstract

We investigate a new model for mobile agents: Motion
planning with geometric primitives, similar to ruler-
and-circle constructions in classical geometry. In this
first paper on this subject, we consider finding in-
tersection points between two geometric objects us-
ing mobile agents that move on these objects. This
amounts to finding the rendezvous point of the two
agents.

1 Introduction

Algorithms for planning motions for mobile agents
have been studied thoroughly in the past decades,
both in computational geometry and in the robotics
community. Such an algorithm relies on a set of primi-
tives for motion, sensors, and communication that can
be performed directly by the agent. Usually, the set
of motion primitives models the agent’s basic capa-
bilities, most commonly are the primitives move and
turn. As these basic motions are prone to error, it is
worth investigating other models (i.e., set of motion
primitives).

In this work, we introduce a new model for mo-
bile agents. We assume that the agents are capa-
ble of performing geometric primitives, such as move
towards another agent, move on a circle, follow the
ray that is defined by agent a and agent b. That is,
the agents are able to perform constructions similar
to ruler-and-circle constructions in classical geome-
try (without marking trajectories). This model raises
two questions: What can we achieve using this model?
and How can we implement such geometric primitives
given, for example, a real robot? In this first work on
this subject, we focus on one particular aspect of the
first question: determining the intersection point of
two agents following a trajectory that is modeled by
a simple geometric object.

Related Work
Search and rendezvous problems have been considered
in many settings (e.g., [1, 5, 2]). Other models for
mobile agents have been presented by defining mini-
mal capabilities and investigating solvable tasks and

∗Algorithms Group, Braunschweig Institute of Technology,
Germany. http://www.ibr.cs.tu-bs.de/alg
†Supp. by 7th Framework Progr. contr. 258885 (SPITFIRE)
‡Supp. by 7th Framework Progr. contr. 215270 (FRONTS)

hierarchy relations among different models [8, 4, 7].
Although our search space is a torus in some cases,
we do not consider rendezvous on a torus as in [6].

Model
In general, we are given a swarm of non–point-shaped
agents. Each agent has perfect communication capa-
bilities, but only limited vision and restricted motion
abilities. Motion is limited to a set of primitives that
resemble moving on geometric objects.

In our case, we consider two agents with the motion
primitives: Move distance d on a circle and Move
distance d on a given curve.

2 Finding Intersections

We are interested in tasks that can be accomplished
using our model. A useful building block for mod-
eling complex tasks is to determine the intersection
point between two geometric object. This amounts to
finding rendezvous strategies for the agents moving
on these objects.

Let C1 and C2 be two curves in the plane of lengths
`1 and `2, respectively; A1 and A2 be the agents fol-
lowing C1 and C2, respectively. Note that we also al-
low open curves of unbounded length. As the agents
are not point shaped, we can safely assume that the
agent’s minimum travel distance is its diameter (with
one exception: In the case of closed curves when the
agent returns to its start position after driving around
the whole curve, we allow a move with smaller step
width). Thus, we have a discrete search space. Trans-
forming the possible positions of the agents into the
plane (projecting the positions of A1 along the X-
axis, those of A2 along the Y-axis) yields an integer
grid. The initial position of the agents is defined as
S := (0, 0). The topology of the grid depends on
whether the curves are closed or not: Two open curves
define a disk, one open and one closed curve define a
cylinder, and two closed curves define a torus. Now,
finding the intersection point of C1 and C2 amounts
to finding the (first) point T := (x, y) on this grid
where the agents meet.

Baeza-Yates et al. [3] considered searching on an
infinite integer grid. They showed that any online
strategy for finding a point within distance at most k
(in L1-metric) requires at least 2k2 +O(k) steps and
presented some strategies that achieve this bound. We
use the strategy NSESWSNWN, see Figure 1(ii), for

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

189

27th European Workshop on Computational Geometry, 2011

A2

A1

(i) (ii) (iii)

A1

A2

Figure 1: (i) Rendezvous space, (ii)/(iii) Search space.
Strategies for (ii) L1 (NSESWSNWN), (iii) L∞.

our search. The strategy proceeds by successively vis-
iting all points within distance k, which lie on a dia-
mond around the origin; it requires 2k2 +5k+2 steps.
Note that after visiting every point within distance
k − 1, the strategy needs just 4k + 3 additional steps
to visit every point within distance k. Although there
is a slightly better strategy, we prefer NSESWSNWN
because it produces a symmetric search path.

2.1 One-Dimensional Agents

In this section, we consider agents that move on a
given curve. For now, the agents are one dimensional;
that is, they extend only along the curve. Imagine a
snake-like robot following a trail. Further, the agents
do not move simultaneously.

2.1.1 Closed Curves of Equal Length

Theorem 1 Let C1 and C2 be two curves of length `.
Any algorithm that finds the intersection at distance
at most k needs at least
(i) 2k2 + 2k − 4 steps (for k < n = d`/2e),
(ii) 2n2+4zn+2n−2z2−2z−4 steps if n < k, k = n+z.

Proof. Any algorithm must visit every point at dis-
tance ≤ k. Visiting m points takes m − 1 steps. For
k = 0 we have one point. Each diamond of size k has
4k points; thus, we have 1 +

∑k
i=1 4i = 2k2 + 2k + 1

points for k ≤ n. Beyond n, the number of points
per diamond shrinks. Let z = k − n, then we have
4(n − z) points per diamond, which yields a total of
2n2 +2n+1+

∑z
i=1 4(n− i) = 2n2 +4zn+2n−2z2−

2z + 1 points. �

Theorem 2 Let C1 and C2 be two intersecting,
closed curves of length ` and let A1 and A2 be two
mobile agents moving on C1 and C2, respectively. Let
k be the distance to the (closest) rendezvous point, T ,
of A1 and A2. For finding T , the agents need at most
(i) 2k2 + 5k + 2 steps if k ≤ n,
(ii) 2n2+4zn+7n−2z2−3z+2 steps if n < k, k = n+z.

Proof. We use the following rendezvous strategy: We
use the NSESWSNWN strategy to explore the search
space, until we meet a point that was already explored
before. This happens when two tips of the diamond
touch each other, because the search space is a torus.

b

C

A B

D

(i)

b

a

b

a

D C

B A

(ii)

a

b

a

b

C

(iii)

b
D C

B A

(vi)
b

a

a

A B

D

b

a

a

Figure 2: (i) and (iii) searching a diamond with NS-
ESWSNWN until b is visited twice. (ii) and (iv) exploring
the remaining diamond. (i) and (ii) show the case for even
n, (iii) and (iv) for odd n. The gray dots show the end of
one round.

Now we searched a diamond-shaped area and are left
with four unsearched triangles, see Figure 2(i). As the
search space is a torus, these triangles are connected
and form, in turn, another diamond if seen from a
different viewpoint, see Figure 2(ii). Thus, we search
this diamond with a similar strategy, but starting with
the outer layer and proceeding towards the origin of
the diamond. Let n be the round when we switch
the strategy and k be the current round (that is, we
want to explore every point within distance k). When
switching the strategies, we need 2n additional steps
to move from b to the start of the next round if n
is even, one step if n is odd. Let S(k) be the total
number of steps after finishing round k.
For k ≤ n we have S(k) = 2k2 + 5k + 2.

For n < k < 2n, k = n+ z, we have 4(n− 1− z) + 3
additional steps per layer. Altogether, we have
S(k) ≤ 2k2 + 5k + 2 + 2n+

∑z
i=1 4 (n− i− 1) + 3

= 2n2 + 4zn+ 7n− 2z2 − 3z + 2
�

2.1.2 Closed Curves of Different Length

If the curves have different sizes, the search space is
no longer a square projected onto a torus. This means
that the expanding diamonds begin to overlap in one
dimension, while the other dimension is not yet ex-
plored in its total width, see Figure 3.

Let point a be the point where the expanding dia-
monds touch and let n be the layer in which we reach
a. Let m be the layer where b is met.

190

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Theorem 3 Let C1 and C2 be two curves of length
`1 and `2 (`1 < `2), respectively, n = d`1/2e,m =
d`2/2e. Any algorithm that finds the intersection at
distance at most k needs at least
(i) 2k2 + 2k − 4 steps if k ≤ n,
(ii) 2n2+2n+z′(4n+2)−4 steps if n < k = n+z′ ≤ m,
(iii) 4mn−2n2+4nz−2z2−2z+2m−4 steps if k = m+z.

Proof. Part (i) is the same as in Theo. 1. Beyond the
n-diamond, we have z′ = k− n 〈 〉-shaped layers with
4n+ 2 points each. For (iii), we have the points from
Case (ii) with z′ = (m−n) and add

∑z
i=1 4(n−i). �

Theorem 4 Let C1 and C2 be two intersecting,
closed curves of length `1 and `2, respectively. Let
A1 and A2 be two mobile agents moving on C1 and
C2, respectively. Let k be the distance to the (closest)
rendezvous point, T , of A1 and A2. For finding T , the
agents need at most
(i) 2k2 + 5k + 2 steps if k ≤ n,
(ii) 6n2 + 7n+ 2j(n+ 3) + 4nz′ + 2j − 2 steps

if n < k = n+ z′, 2j−1 < z′ ≤ 2j ,
(iii) 5mn+ n2 + 4nz − 2z2 − 2z + 4n+ 3m+

+2 log(m− n)− 2 if k = m+ z.

Proof. As above, we start with the NSESWSNWN
strategy, until we complete layer n and are located at
point b′. Now we switch the strategy. First, we return
to a. Then we alternatingly search the areas left and
right to the explored diamond, using a stairway-like
search pattern, as shown in Figure 3. To keep the
relocation costs low, we use the doubling paradigm;
that is, we double the exploration depth each time we
switch sides. We continue until we reach point b, from
where we use the inverse NSESWSNWN strategy, as
described in the preceding section.

To visit every point within distance k, n < k < m,
k = n+z, we choose j such that 2j−1 < z ≤ 2j . Up to
b′, we need 2k2+5k+2 steps as above. The move from
b′ to a costs 2n. Then we explore up to a depth of 2j

using doubling. For doubling step j, we move from
a to the point at which we ended after doubling step
j − 2 (plus one step to reach the position for the new
stairway), incurring a cost of 2j−2 +1. Then we move
on the stairways. Note that each stairway covers two
layers; thus, we explore 1

2 (2j−2j−2) stairways with 4n
steps each. Afterwards, we use 2j+1 steps to return to
a. Note that we do not need additional steps between
two stairways. Thus, we have for n < k ≤ m:
S(k) = 2n2 + 5n+ 2 + 2n+ 4n+ 4 for j = 1
S(k) = 2n2 + 5n+ 2 + 2n+ 12n+ 10 for j = 2
and for j > 2:
S(k) ≤ 2n2 + 5n+ 2 + 2n (from (i) and move to a)

+4+6+
∑j
i=3(2i+2i−2+2)+2j−1+1 (relocation

costs)

+4n
(

1 + 2 +
∑j
i=3(2i−1 − 2i−3)

)
+4n(k−2j−1)

(stairways)
= 6n2 + 7n+ 2j(n+ 3) + 4nz′ + 2j − 2

b

j=1j=2

b’ b

a

a

Figure 3: NSESWSNWN and stairways.

After visiting the stairways with the doubling tech-
nique, we use an inverse NSESWSNWN strategy as
in Case (ii) of Theorem 2. For convenience, assume
m = n+2j and let k = m+z. We add

∑z
i=1 4(n−i)−1

to the result of the preceding case and get
S(k) ≤ −2z2+4nz−4z+6n2+7n+2j(n+3)+4nz′+
2j − 2. With 2j = m− n we get S(k) ≤ 5mn+ n2 +
4nz − 2z2 − 2z + 4n+ 3m+ +2 log(m− n)− 2. �

2.2 One-Dimensional Agents Moving Simultane-
ously

In the preceding sections, we assumed that the agents
move alternatingly. How do the agents proceed, if
they are allowed to move simultaneously? The search
space remains the same. If the agents move alternat-
ingly, all points of equal distance to the start lie on a
diamond (i.e., a scaled copy of the L1-unit circle). In
this case, points of equal distance form a square (i.e.,
a scaled copy of the L∞-unit circle). We consider the
case of two curves of equal length.

Theorem 5 Even if the agents are allowed to move
simultaneously, there is an optimal strategy in which
the agents move alternatingly.

Proof. We show that an optimal strategy moves on
a rectangular spiral-like search pattern, as shown in
Figure 1(iii). Let the target be located at some un-
known finite distance, k, from the start point. If an
upper bound k′ is known to the agent, visiting points
in distance k′+ 1 (before every point of distance ≤ k′
is visited) does not make sense to the agent, because
these visits prolong the search path to the unvisited
points within distance k′. Thus, if the agent knows
no such upper bound, it has to cover each layer of
points of same distance i completely before it pro-
ceeds to the next layer with points of distance i + 1.
As connecting two successive layers costs one step,
the squared spiral is optimal. An axis-parallel move
in the search space corresponds to a move of a sin-
gle agent in the rendezvous space. Thus, the agents
move only alternatingly, even if they are allowed to
move simultaneously. �

191

27th European Workshop on Computational Geometry, 2011

(i) (ii)

Figure 4: The search space for R = 1 and r = 4 (i)
d = 3 (ii) d = 6, corner case d ≥ 2r − 2R, i.e. the
rendezvous area is connected.

2.3 Two-Dimensional Agents

Consider two mobile agents shaped as disks of radius
R, each moving on one of two intersecting circles of
radius r, r ≥ R, whose centers have distance d ≤ 2r.
We identify the position of the agent on the first circle
with the angle α between the circles center and the
line between the two circles’ centers. Analogously, we
express the position of the other agent as an angle β
and call the circles of the agents Cα and Cβ , respec-
tively. Again, the rendezvous search space is a torus.

Note that, in contrast to the preceding section,
modeling the search space as a grid is not sufficient
anymore, because now there is an infinite number of
rendezvous points, see Figure 4. We observe, how-
ever, that the set of rendezvous points for this scenario
consists of no more than two simply connected compo-
nents, one for each intersection point. For d ≥ 2r−2R
or d ≤ 2R, we have only one simply connected com-
ponent. In the rest of this section, we will assume
that none of these special cases occurs.

Searching for a point on a torus is quite involved;
thus, we want to find a convex region of a certain size.
This allows us either to inspect a finite set of points
on a grid or to move on an Archimedean spiral.

Lemma 6 In the search space, there is a square of
size at least 2R × 2R such that all points inside the
square are rendezvous points.

Proof. First, observe the line, M , through the cen-
ters of Cα and Cβ . For reasons of symmetry, in the
following we consider only one side of M . Construct
the line segment, L, of length 2R that is parallel to
M and whose end points lie on Cα and Cβ , see Fig-
ure 5. Let pα and pβ be the endpoints of L lying on
Cα and Cβ , respectively. Let qα and qβ be the inter-
section points of Cα and Cβ and the lines perpendic-
ular to L through pβ and pα, respectively. Note that
|pαqβ | = |qαpβ |. We consider two cases:

Case 1: |pαqβ | ≤ 2R. All pairs of points with α on
the arc from pα to qα and β on the arc from pβ to qβ
define a rendezvous point.

Case 2: |pαqβ | > 2R. We parallely move both pαqβ
and qαpα towards the intersection point, such that
|p′αq′β | = |q′αp′β | = 2R holds. Now, all pairs of points
with α on the arc from p′α to q′α and β on the arc from
p′β to q′β define a rendezvous point.

pβ pα

qβ

Cβ Cα

(i) (ii) q′α q
′
β

p′αp′β

Cβ Cα

L

L

qα

Figure 5: Construction of p/qα/β . The bold lines have
length 2R. (i) Case 1, (ii) Case 2.

In both cases, the arcs for α and β have length
greater than or equal to 2R. Thus, there is a 2R×2R
square of rendezvous points in the search space. �

2.4 Other Topologies

If one of the curves is open/infinite, the search space
is no longer a torus. In these cases, we search
the rendezvous point with strategies combining spi-
ral searches and doubling. In the case of finite, open
curves it may happen that one end of the search space
is fully explored, while other parts are unexplored. In
this case, we use a meandering search path. We leave
the details to the full version of this paper.

Acknowledgements
We thank Friedhelm Meyer auf der Heide, Bastian De-
gener, and Barbara Kempkes for helpful discussions.

References

[1] S. Alpern and S. Gal. The Theory of Search Games
and Rendezvous. Kluwer Academic Publications, 2003.

[2] E. J. Anderson and S. P. Fekete. Two-dimensional
rendezvous search. Oper. Res., 49:107–118, 2001.

[3] R. Baeza-Yates, J. Culberson, and G. Rawlins. Search-
ing in the plane. Inform. Comput., 106:234–252, 1993.

[4] J. Brunner, M. Mihalak, S. Suri, E. Vicari, and P. Wid-
mayer. Simple robots in polygonal environments: A
hierarchy. In Proc. Algosensors, 2008.

[5] R. Fleischer, T. Kamphans, R. Klein, E. Langetepe,
and G. Trippen. Competitive online approximation
of the optimal search ratio. Siam J. Comput., pages
881–898, 2008.

[6] E. Kranakis, D. Krizanc, and E. Markou. Mobile agent
rendezvous in a synchronous torus. In LATIN, pages
653–664, 2006.

[7] J. M. O’Kane and S. M. LaValle. Dominance and
equivalence for sensor-based agents. In Proc. 22nd Na-
tional Conf. Artif. Intell., pages 1655–1658, 2007.

[8] S. Suri, E. Vicari, and P. Widmayer. Simple robots
with minimal sensing: From local visibility to global
geometry. Int. J. Robot. Res., 27:1055–1067, 2008.

192

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Kinetic Red-blue Minimum Separating Circle

Yam Ki Cheung, Ovidiu Daescu, and Marko Zivanic
Department of Computer Science
The University of Texas at Dallas

Richardson, TX USA
Email: {ykcheung,daescu,mxz052000}@utdallas.edu

Figure 1: Minimum red enclosing circle (dashed) and
red-blue separating circle (solid).

1 Introduction

Let R and B be two finite sets of points in R2, of
size |R| = n and |B| = m, respectively. We refer
to R as the set of red points and to B as the set
of blue points. In [4] the authors define a constrained
version of the circular separability problem, called the
minimum separating circle problem, as follows: Let
S denote the set of circles such that each circle in
S encloses all points in R while having the smallest
number of points of B in its interior. The goal is
to find the smallest circle in S, called the minimum
separating circle and denoted by CB(R). See Figure 1
for an illustration.

The problem has applications in military planning.
It can be used to determine the best location to deploy
an explosive and the amount needed so that all enemy
forces, represented by red points, will be impacted
while minimizing civilian casulties (blue points). It
is also applicable in determining the best set-up of
communication devices such that all red devices stay
connected and as few blue devices as possible can in-
tercept their communication. Two algorithms for the
static version of this problem have been proposed by
Bitner et al. [4].

In practice, however, it is possible that not all
points (targets) are stationary. In this paper, we
study a kinetic version of the red-blue minimum sep-
arating circle problem, in which all points are station-

ary except one red point, which moves along a linear
trajectory with constant velocity. We want to find the
locus of the minimum separating circle over a period
of time.

For the case when the two point sets can be sep-
arated, Fisk [6] gave a quadratic time and space al-
gorithm to compute the minimum separating circle.
The result was later improved to optimal linear time
and space by O’Rourke et. al. [8].

To the best of our knowledge the kinetic version of
the minimum separating circle problem has not been
studied in the past, but there is a significant number
of publications on related topics. Atallah [1] intro-
duced the concept of kinetic computational geometry
in a seminal paper on this topic. Basch et al. [3] in-
troduced a set of kinetic data structures that can be
used to maintain the convex hull of a moving set of
points. Ross [10] gived an algorithm for maintaining
the nearest-point Voronoi diagram of a kinetic data
set. He presented an update algorithm for the topo-
logical structure of the Voronoi diagram of moving
points, using O(log n) time for each change. Demaine
et al. [5] presented a kinetic data structure that calcu-
lates the minimum spanning circle for a moving set of
points. Banik et al. [2] solved the minimum enclosing
circle problem of a fixed set of points and one mov-
ing point. Their algorithm computes the locus of the
center of the minimum enclosing circle in linear time.
Rahmati et al. [9] presented a kinetic data structure
for the maintenance of the minimum spanning tree on
a set of moving points in R2.

2 Preliminaries

We start by briefly discussing an algorithm proposed
by Bitner et al. [4] for the static version of the min-
imum separating circle problem. The algorithm is
based on a sweep procedure on the edges of the far-
thest neighbor Voronoi diagram FV D(R) of R.

Lemma 1 [4] The smallest separating circle must
pass through at least two points from R.

It follows that the minimum separating circle is
either the smallest enclosing circle of R, which can
be found in linear time [7], or a circle which passes

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

193

27th European Workshop on Computational Geometry, 2011

Figure 2: An event point on edge eij .

through two points from R and one point from B.
Thus, the center of a minimum separating circle lies
on an edge of FV D(R).

Following Lemma 1, Bitner et al. [4] proposed a
sweep algorithm for computing the minimum sepa-
rating circle.

Consider a Voronoi edge eij , defined by two red
points ri and rj . The sweep procedure on eij is ini-
tialized by constructing an enclosing circle C of R
which passes through ri and rj and has the smallest
possible radius. This happens at one endpoint of eij .
Let c ∈ eij be the center of C. C is grown by sweeping
c along eij and keeping ri and rj on the circumference
of C.

A point E ∈ eij is an event point if, when c sweeps
through E, the circle C sweeps through a blue point
(see Figure 2 for an illustration). The number of blue
points enclosed by C is updated at each event point.
The sweep procedure on eij terminates when the other
endpoint of eij is reached. To total number of event
points over FV D(R) is O(mn).

Lemma 2 [4] A point from B defines at most one exit
event point on FV D(R), and such exit event point
can be found in O(log n) time.

3 The minimum separating circle with one mobile
red point

In this section, we study the minimum separating cir-
cle problem for two point sets R and B, such that all
points are stationary except one red point p, which is
moving along a linear trajectory with constant veloc-
ity. We show how to find the locus of the center of
the minimum separating circle CR(B) over a period
of time.

Following Lemma 2, at any time instant t, we can
find the minimum separating circle by computing the
FV D(R) and checking O(m) exit event points. To
find the locus of the minimum separating circle over a
period of time, it is sufficient to keep track of the
(trajectory of) the exit event associated with each
blue point as well as the number of blue points en-

closed by the corresponding candidate separating cir-
cle. Since one red point is mobile, the topology of
FV D(R) changes continuous. In order to keep track
of the trajectory of each exit event point, we define
the following four classes of events: 1) the appear-
ance/disappearance of a vertex on FV D(R); 2) the
appearance/disappearance of a vertex on the bound-
ary of the convex hull CH(R) of R; 3) the exit event
point associated with a blue point moves to another
Voronoi edge, and 4) the candidate separating circle
associated with an exit event point encloses/excludes
a blue point.

To avoid ambiguity, we refer to these four classes of
events as instant events, distinguishing from the event
points introduced in Section 2. Notice that case 1 and
case 2 instant events indicate that the topology of the
FV D(R) need to be updated. Case 3 instant events
indicate that the trajectory of some exit event point
changes, i.e. it moves along a different line. And case
4 indicates that the number of blue points enclosed by
some candidate separating circle needs to be updated.

Lemma 3 The locus of the center of the minimum
separating circle can be discontinuous.

Lemma 4 The locus of the center of the minimum
separating circle consists of a set of halflines, line seg-
ments, or points.

3.1 Case 1 instant events

These are time instants when a Voronoi edge appears
or disappears from FV D(R).

Figure 3: Update of Delaunay triangulation of four
points by edge swapping.

Lemma 5 There are at most O(n) instant events in
case 1. For each instant event, FV D(R) can be up-
dated in constant time.

Proof. Instead of working on FV D(R) directly, we
turn our attention to the dual graph of FV D(R), the
Delaunay triangulation DT (R).

The topology of DT (R) could change when four
red points, including the mobile red point p, on the
boundary of CH(R) are cocircular, or more specifi-
cally, when p enters/leaves a circle passing through
three fixed red points, and enclosing all fixed red

194

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

points in R. See Fig. 3. Observe that the cen-
ter of each such enclosing circle defines a vertex of
FV D(R/ p), so there are O(n) such enclosing cir-
cles. DT (R) can be updated in constant time by edge
swapping. ¤

3.2 Case 2 instant events

These are time instants when a vertex of CH(R) ap-
pears or disappears.

Lemma 6 There are O(n) instant events in case 2,
and each event can be identified in constant time.

Proof. Case 2 instant events occur when p passes
through the intersection between a line supporting
some edge of CH(R/ p) and the trajectory of p.
Hence, each instant event can be identified in con-
stant time. See Fig. 4 for an illustration

Figure 4: A vertex of CH(R) appears.

¤
3.3 Case 3 instant events

These are time instants when an exit event point
moves to another edge of FV D(R).

Lemma 7 Each case 3 instant event can be identified
in constant time.

Lemma 8 There are O(nm) instant events in case 3.

3.4 Case 4 instant events

These are time instants when the candidate sepa-
rating circle centering at an exit event point en-
closes/excludes a blue point.

Lemma 9 Each case 4 instant event can be found in
linear time.

Proof. Let e be a Voronoi edge defined by a fixed red
point ri and the mobile red point p and assume the
exit event point of a blue point b lies on e. The candi-
date separating circle centering at the exit event point
of b is the circumcircle of ri, p, and b. The locus of
the exit event point is a line segment supported by the
bisector between ri and b. We can keep track of the

number of blue points enclosed by the candidate sep-
arating circle by running a sweep algorithm along the
locus of the exit event point. This sweep algorithm
resembles the one used to compute the minimum sep-
arating circle of two sets of fixed points. The only
difference is that the center of the candidate separat-
ing circle moves along the bisector between ri and b
instead of a Voronoi edge.

The case 4 instant event is the moment when the
exit event point crosses an event point defined on the
bisector between ri and b. ¤

Lemma 10 There are at most O(m2n) case 4 instant
events.

Proof. As shown in Lemma 8, one exit event point
can traverse O(n) Voronoi edges. For each edge tra-
versed by the exit event point there can be O(m) event
points on the bisector between the blue point and the
fixed red point which defines the Voronoi edge. Each
event point corresponds to one case 4 instant event.
Hence, each exit event generates at most O(mn) case
4 instant events. ¤

3.5 Finding the locus of the center of the mini-
mum separating circle

First, we need to determine the exact trajectory of
each exit event point. If in a given time interval
[t1, t2], the exit event point of a blue point b lies on
a Voronoi edge defined by two fixed red points, the
exit event point is stationary. However, if the Voronoi
edge is defined by one fixed red point a, and the mo-
bile red point p, then the corresponding exit event
point is the intersection between the bisector B(a, b)
between a and b and the bisector B(b, p) between b
and p. The trajectory of p can be expressed paramet-
rically as x = vxt and y = mpvxt + qp, where vx is
a constant and mp and qp are the slope and the in-
tercept of the trajectory of p, respectively. It is not
difficult to show that the trajectory of the intersection
between B(a, b) and B(b, p) can be expressed as:

x =
t2 + c1t + c + 2

c3t + c4
,

y =
t2 + c1t + c + 2

c3t + c4
m′ + q′,

where c1, c2, c3, c4 are constants and m′ and q′ are
the slope and intercept of B(a, b), respectively.

Once the trajectory of the exit event point is known,
the function of the square radius of the correspond-
ing candidate separating circle is a function fb(t) of
constant degree.

Following Lemma 8, each exit event point cannot
cross more than O(n) Voronoi edges. For a time inter-
val [tinit, tend], fb(t) consists of O(n) pieces of curves

195

27th European Workshop on Computational Geometry, 2011

or horizontal line segments if the exit event point is
stationary.

Plotting all functions fb(t) for t ∈ [tinit, tend] and
b ∈ B on the same coordinate system gives us an
arrangement H of curves of complexity O(nm2), since
all functions are x-monotone and two such functions
intersect no more than O(n) times. H gives us the
relative size between all candidate circles over time.

However, we also need to consider the blue points
enclosed by the candidate circles. We further decom-
pose H by dividing each function fb(t) at every case 4
instant event to generated by b by introducing a ver-
tex at (to, fb(to)). As a result, each portion of fb(t)
on the new arrangement H ′ represents the square ra-
dius of the candidate circle for a time interval during
which the blue points enclosed by the circle remain
the same. The new arrangement H ′ has complexity
O(m2n). We call each portion of fb(t) on H ′ a simple
curve.

Let the blue point count of a simple curve on H ′ be
the number of blue points enclosed by the correspond-
ing candidate circle. The last step to compute the lo-
cus of the minimum separating circle is to extract the
lower envelope of curves with the lowest blue point
count. Each curve on the lower envelope gives us the
minimum separating circle for the interval spanned
by the curve, hence, the locus of the center of the
minimum separating circle.

We use a plane sweep to extract such lower enve-
lope. We sweep H ′ by a vertical line. At any moment,
the sweep line intersects with at most m functions
fb(t), for b ∈ B. Each function is indexed by its blue
point count at the current moment. We build a hash
table for functions intersected by the sweep line. For
each entry of the hash table, all functions are main-
tained in a balanced tree by the order intersected by
the sweep line. Note that we only have to update the
hash table at vertices of H ′. If two functions with the
same blue point count intersect, we need to exchange
their position in the corresponding tree. If the sweep
line crosses a vertex introduced by a case 4 instant
event, the blue point count of a function changes. The
corresponding function will be moved to the appropri-
ate entry of the hash table. It takes O(log m) time to
update the hash table for each instance.

Theorem 11 The locus of the center of the minimum
separating circle has complexity of O(m2n) and can
be found in O(m2n log m) time.

References

[1] Mikhail J. Atallah. Dynamic computational ge-
ometry (preliminary version). In FOCS, pages
92–99, 1983.

[2] Aritra Banik, Bhaswar B. Bhattacharya, and
Sandip Das. Minimum enclosing circle of a set of

fixed points and a mobile point. In Proceedings of
the Workshop on Algorithms and Computation,
New Delhi,India, 2011.

[3] Julien Basch, Leonidas J. Guibas, Craig Silver-
stein, and Li Zhang. A practical evaluation of
kinetic data structures. In Symposium on Com-
putational Geometry, pages 388–390, 1997.

[4] Steven Bitner, Yam Ki Cheung, and Ovidiu
Daescu. Minimum separating circle for bichro-
matic points in the plane. In ISVD, pages 50–55,
2010.

[5] Erik Demain, Sarah Einsenstat, Leonidas
Guibas, and Andre Schulz. Kinetic minimum
spanning circle. In Proceedings of the Fall Work-
shop on Computational Geometry, New York,
NY, USA, 2010.

[6] S. Fisk. Separating point sets by circles, and the
recognition of digital disks. In IEEE Transac-
tions on Pattern Analysis and Machine Intelli-
gence, pages 554–556, July 1986.

[7] N. Megiddo. Linear-time algorithms for linear
programming in R3 and related problems. SIAM
Journal on Computing, 12(4):759–776, 1983.

[8] J. O’Rourke, S. Kosaraju, and N. Megiddo. Com-
puting circular separability. Discrete Computa-
tional Geometry, 1:105–113, 1986.

[9] Zahed Rahmati and Alireza Zarei. Combinatorial
changes of euclidean minimum spanning tree of
moving points in the plane. In CCCG, pages 43–
45, 2010.

[10] Thomas Roos. Voronoi diagrams over dy-
namic scenes. Discrete Applied Mathematics,
43(3):243–259, 1993.

196

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Persistent Homology Computation with a Twist

Chao Chen∗ Michael Kerber†

Abstract

The persistence diagram of a filtered simplicial com-
plex is usually computed by reducing the boundary
matrix of the complex. We introduce a simple op-
timization technique: by processing the simplices of
the complex in decreasing dimension, we can “kill”
columns (i.e., set them to zero) without reducing
them. This technique completely avoids reduction on
roughly half of the columns. We demonstrate that
this idea significantly improves the running time of
the reduction algorithm in practice. We also give an
output-sensitive complexity analysis for the new al-
gorithm which yields to sub-cubic asymptotic bounds
under certain assumptions.

1 Introduction

Persistent homology is a quickly-growing area of re-
search in the analysis of topological spaces. Substan-
tial progress, both theoretical and practical, has been
made during the last decade; we refer to [3] for a re-
cent textbook on the topic.

The classical way of computing the persistence of
a simplicial complex (or more precisely, a filtration of
it) is by reduction [4]: the boundary matrix of the
complex is transformed by column operations until
each column either turns zero, or has a unique lowest
nonzero entry. For a complex with n simplices, the
algorithm runs in cubic time in the worst case; an
example where this bound is actually achieved has
been presented in [6]. However, it has been observed
that the algorithm rather behaves linear in practical
applications [7, 1].

We present an optimization of the persistence algo-
rithm. The idea is that the reduction of a column that
corresponds to a negative simplex (one that destroys
an homology class) also reveals the simplex that cre-
ates the corresponding class. Since that column is
known to be zero after reduction, we can simply set it
to zero (“kill it”) without applying any column oper-
ation on it. We change the order of column reduction
in the algorithm to profit from this trick as much as
possible.

Our algorithm permits an output-sensitive com-
plexity analysis. Writing d for the dimension of the
complex, P for the persistence pairs of the filtration

∗IST Austria, Klosterneuburg, Austria; Vienna University
of Technology, Vienna, Austria, chao.chen@ist.ac.at

†IST Austria, Klosterneuburg, Austria, mkerber@ist.ac.at

(that is, the indices of creator/destroyer pairs), and
E for the set of homology classes of the underlying
simplicial complex, we obtain a bound of

O



d log n(#E ·
∑

(i,j)∈P

(j − i) +
∑

(i,j)∈P

(j − i)2)



 .

Although our variant does not improve the worst case
bound (and even worsens it by a factor of d log n),
the bound still shows that the algorithm can perform
sub-cubic, and even sub-quadratic if the total index
persistence, namely, the squared sum of indices differ-
ences of persistence pairs, is small.

We further investigate the case of cubical data,
which is the common format in computer vision and
visualization: the space is a cubical subset of Eu-
clidean space tiled into unit cubes; the filtration is
done with respect to a function f that assigns a value
to the center of each unit cube. Based on our com-
plexity bound above, we can prove a running time of
O(c2

n log n) for computing persistence on such data,
where c is the number of critical points of f . We also
compare the practical performance of our implemen-
tation with the classical approach as well as with the
sophisticated cohomology algorithm of the Dionysus
library and observe a better running time of our op-
timization for cubical data in R

3.

2 Background

Let K = {σ1, . . . , σn} denote a simplicial complex of
dimension d. We assume an ordering on the simplices
such that for each i ≤ n, Ki := {σ1, . . . , σi} is a sim-
plicial complex again. The chain ∅ = K0 ⊂ Ki . . . ⊂
Kn = K is called a filtration of K. Normally, such a
filtration is defined according to a function f : K → R

that orders the simplices of K by function value.
For 0 ≤ i ≤ n and 0 ≤ p ≤ d, we denote the p-

th homology group of Ki by Hp(Ki), and we write
H(Ki) for the direct sum of all homology groups of
Ki. The rank of Hp(Ki) is called the p-th Betti num-
ber βp(Ki). We obtain Ki by adding the simplex σi

into Ki−1. Denoting di as the dimension of σi, there
are two possible changes of the homology due to the
addition of σi, either a class of dimension di is created
or a class of dimension di− 1 is destroyed. In the for-
mer case, we call σi a positive simplex, or a creator ;
in the latter case, it is called negative, or a destroyer.

To each negative simplex σj , we can associate a
unique positive simplex σi with i < j such that σj

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

197

27th European Workshop on Computational Geometry, 2011

destroys the homology class that was created when
σi was added in the filtration (see [3] for a precise
definition). We call (σi, σj) a persistence pair and j−i

its index persistence. Note that there are simplices
that are not paired, namely those (positive) simplices
that create homology classes of the simplicial complex
K; we call them essential simplices. By definition,
every simplex of K either belongs to a persistence
pair or is essential.
Reduction Algorithm. The boundary of a simplex
σ in dimension dσ is the set of its faces in dimension
dσ−1. For dσ = 0, the boundary is empty, otherwise,
it consists of exactly dσ + 1 simplices. The bound-
ary matrix ∂ ∈ (Z2)

n×n of a filtered complex K is a
n × n matrix where the j-th column represents the
boundary of σj , that is ∂i.j = 1 if and only if σi be-
longs to the boundary of σj . In this case, σi must
belong to the complex before σj is added, so ∂ is an
upper-triangular matrix.

For 0 6= Mj = (m1, . . . ,mn) ∈ Z
n
2 , we set

low(Mj) := max{i = 1, . . . , n | mi = 1}. For Mj = 0,
low(Mj) is undefined. A column operation of the
form Mj ← Mj + Mk is called reducing if k < j

and low(Mj) = low(Mk). A matrix is called reduced

if no reducing column operation can be performed on
it. We call a matrix R a reduction of M if R is re-
duced and arises from a sequence of reducing column
operations from M .

A reduction R of the boundary matrix ∂ as above
yields the complete information about the persistent
homology of the complex. Define

P := {(i, j) | Rj 6= 0 ∧ i = low(Rj)}

E := {i | Ri = 0 ∧ low(Rj) 6= i∀j = 1, . . . , n}.

Then, (i, j) ∈ P if and only if (σi, σj) form a persis-
tence pair of the underlying filtrated complex. More-
over, i ∈ E if and only if σi is essential [3]. In partic-
ular, this information does not depend on the choice
of the reduction. The simplest way of reducing ∂ is to
process from left to right and to reduce a column com-
pletely by adding columns from its left (Algorithm 1).
A lookup table can be used to identify the next col-
umn to be added in constant time. It can be observed
immediately that the running time is cubic in n, and
cubic running time is indeed necessary for certain in-
put filtrations as presented in [6].

Algorithm 1 Left-to-right persistence computation

1: procedure Persistence left right(∂)
2: R← ∂; L← [0, . . . , 0] ⊲ L ∈ Z

n

3: for j = 1, . . . , n do

4: while Rj 6= 0 ∧ L[low(Rj)] 6= 0 do

5: Rj ← Rj + RL[low(j)]

6: ifRj 6= 0 then L[low(Rj)]← j

7: return R

3 Reduction by killing

Let Rj 6= 0 a column of a reduction of ∂ and i =
low(Rj). Recall that σj kills the homology class that
is created by σi. The key observation exploited in our
new algorithm is that in this case, Ri must be zero,
since σi is in particular a positive simplex. So, we
can just set the i-th column of ∂ to zero and have it
reduced, without doing any further column operation
on it. We say in this case that we kill column i.

Reconsidering Algorithm 1, the killing idea does not
save any column operations, because whenever a col-
umn is identified as positive, it is already reduced due
to the left-to-right traversal strategy. Therefore, we
change the reduction order of the columns and pro-
ceed in decreasing dimensions: setting d := dimK,
we first reduce columns that correspond to d-simplices
(from left to right), then columns that correspond to
(d − 1)-simplices, and so on. Indeed, if the reduced
j-th column has lowest entry i, the corresponding sim-
plex σi has dimension dimσj − 1, so in the moment
when ∂j (namely, the j-th column of ∂) is reduced, ∂i

has not been processed yet. Algorithm 2 summarizes
the new method. The dimension of the complex K is
passed as a second argument. We also assume that
each column stores the dimension of the simplex that
it represents in an additional data field. We call this
the simplex-dimension of a column. By an inductive
argument on the simplex dimension, one can prove
that Algorithm 2 and Algorithm 1 return the same
reduction matrix R.

Algorithm 2 Decreasing dimension persistence com-
putation

1: procedure Persistence decr dim(∂, d)
2: R← ∂; L← [0, . . . , 0] ⊲ L ∈ (Z)n

3: for δ = d, . . . , 1 do

4: for j = 1, . . . , n do

5: if Mj has simplex-dimension δ then

6: while Rj 6= 0 ∧ L[low(Rj)] 6= 0 do

7: Rj ← Rj + RL[low(j)]

8: if Rj 6= 0 then

9: i← low(Rj)
10: L[i]← j

11: R[i]← 0 ⊲ Kill column i

12: return R

4 Analysis

The same analysis as before also shows a worst-
case bound of O(n3) for Algorithm 2. The example
from [6] can be adapted to show that cubic running
time can also be achieved for this algorithm. How-
ever, we will derive a complexity bound that depends
on the index persistence of the pairs in the complex,
and the number of essential classes of the complex.

We store a matrix M ∈ (Z2)
n×n as an array of

198

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

size n, each entry representing a column. A column
is stored as a balanced binary search tree storing the
indices of nonzero entries as nodes. This way, an op-
eration of the form Mj ←Mi + Mj can be performed
with O(#Mi log(#Mi+#Mj)) = O(#Mi log n) oper-
ations, where #Mi is the number of nonzero entries in
column i. Compared to the usual list-representation
of columns, the worst case complexity worsens by a
logarithmic factor when using trees. However, the
complexity of an operation only depends logarithmi-
cally on the column to be reduced; this is advanta-
geous when a column accumulates more and more en-
tries by adding small columns during the reduction.

Lemma 1 Algorithm 2 (as well as Algorithm 1) re-

duces the j-th column in time O(
∑j−1

i=1 #Ri log n) =
O(#R log n), where #R is the total number of
nonzero entries in the final reduced matrix R.

Proof. In the reduction process for a single column,
we add only columns from the left to it, and each one
at most once. Moreover, all columns which can be
added are already reduced. �

The next goal is to bound #R. The crucial obser-
vation for that is the following:

Lemma 2 Let Rj 6= 0 be a reduced column and
i = low(Rj). Then, Rj is a linear combination
of the columns ∂i+1, . . . , ∂j . In particular, #Rj ≤
(d + 1)(j − i).

Proof. Assume that the claim is true for any non-
zero column with index smaller than j. Initially, Rj is
set to ∂j which is clearly a linear combination. During
the reduction, a column Rk is added to Rj only if
k < j and also only if ℓ := low(Rk) > i, because
otherwise low(Rj) < i at the end. It follows that
i < ℓ < k < j and so, Rk is by induction a linear
combination of ∂ℓ+1, . . . , ∂k. The number of 1’s in
any column ∂k is bounded by d + 1. Thus, only up to
(d + 1)(j − i) 1’s can appear in Rj . �

Corollary 3 #R ≤ (d + 1)
∑

(i,j)∈P (j − i)

We could simply multiply the bound from Lemma 1
by n to obtain an output sensitive bound both for
Algorithm 1 and 2. However, we can further improve
on this by exploiting that we zero out many columns
in Algorithm 2 instead of reducing them. As a first
step, we refine the argument from Lemma 2 to derive
a more adaptive bound for non-zero columns of R:

Corollary 4 Let Rj 6= 0 be a reduced column and
i = low(Rj). Algorithm 2 (as well as Algorithm 1)
reduces ∂j to Rj in O(d log n(j − i)2).

Proof. Recall from the proof of Lemma 2 that we
only add Rk to Rj if ℓ = low(Rk) satisfies i < ℓ <

k < j. So, the number of ones in Rk is bounded by
(d + 1)(k − ℓ) ≤ (d + 1)(j − i). Since at most (j − i)
column operations of that form must be performed
for Rj , the bound follows. �

Theorem 5 Algorithm 2 has a total running time of

O(d log n(
∑

(i,j)∈P

(j − i)2 + #E

∑

(i,j)∈P

(j − i))).

Proof. Note that the columns of ∂ are in one-to-one
correspondence to the simplices of K. It thus makes
sense to talk about negative, positive and essential
columns of ∂. We divide the columns in three dif-
ferent classes: for negative columns, we can bound
the cost by O(d log n

∑

(i,j)∈P (j− i)2) by Corollary 4.
For essential columns, Lemma 1 yields a total cost
of O(#E log n#R) = O(d log n#E

∑

(i,j)∈P (j − i)).
The remaining columns are positive, but inessential
columns. By the killing idea, they are zeroed out be-
fore any operation is performed on them, thus, the
cost for them is zero. �

5 Cubical Complex

We give an example of how this bound leads to sub-
cubic bounds for special input types. We refer to [3,
§VI] for definitions of concepts introduced in this sec-
tion. Let d be a fixed constant from now and consider
a regular cubical grid in d dimensions. We let f denote
a function that assign a (different) real value to each
grid point. By consistently triangulating each d-cube
of the grid without introducing new vertices (e.g., as
done in [1]), we can extend f to a piecewise linear
function. Depending on its lower star, each vertex is
either regular or critical; we let c denote the number
of critical points of f . We filter the complex accord-
ing to the lower star filtration with respect to f . Due
to the cubical structure, the number of simplices in
each lower star is bounded by a constant (which is
exponential in d).

The final complex is homeomorphic to a d-ball, so
there are no essential classes except for the connected
component; hence we only have to consider the cost of
negative simplices. We distinguish two cases: for per-
sistence pairs that are created and destroyed within
the same lower star, the index persistence is bounded
by a constant, and since there are up to n/2 such
pairs, the total cost for them is O(n log n) with Corol-
lary 4 (with n being the size of the complex). Second,
we consider pairs that span over more than one lower
star. There are O(c) such pairs, and by Lemma 1
and Corollary 3, we can reduce them in O(c#R log n)
operations, where #R is the number of ones in the
boundary matrix. Note that pairs that live in only
one lower star cause at most a constant number of

199

27th European Workshop on Computational Geometry, 2011

ones in R, and pairs that span over more lower stars
cause up to n ones in R. This yields a bound of
#R = O(n + cn), and thus a total running time of
O(c2

n log n) for the reduction algorithm.
Our bound shows that when the complex is sub-

divided regularly (for instance, by a barycentric sub-
division), the running time of computing persistence
scales with a n log n factor which matches general ob-
servations in practice. However, our idealistic analysis
can only be a first step to investigate this behavior,
because introducing noise usually increases the num-
ber of critical points in the complex.

6 Experiments

We verify our optimization in practical data. In spe-
cific, we focus on cubical data, namely, when the
topological space of interest is a subset of Euclidean
space (e.g. a hypercube), and the function is sam-
pled uniformly. This class of data is common in im-
age processing and visualization. In specific, we use
3-dimensional data from the Volvis voxel data reposi-

tory1. A sample of the results are shown in Table 1.
We triangulate the domain with the Freudenthal

triangulation [5]. In this case, the lower star of each
vertex has a bounded size, which is exponential to the
dimension of the domain. Although originally given
as 256 × 256 × 256, we downsized the data to 100 ×
100 × 100, which leads to simplicial complexes with
25.4 million simplices.

We compare our method (KIL) with two other
implementations, the standard reduction algorithm
(STA), and the cohomology-reduction algorithm
(COH) in the Dionysus2 implementation by Moro-
zov [2]. We compare in terms of both execution time
and number of basic add operations. The execution
time includes both matrix reduction time and the time
for building boundary matrices based on given filtra-
tions. We use std::vector instead of a binary search
tree to represent each column because the former has
shown better practical behavior.

The testing platform of our experiments is a
six-core AMD Opteron(tm) processor 2.4GHz with
512KB L2 cache per core, and 66GB of RAM, run-
ning Linux. The code runs on a single core.

The experiments show a significant improvement of
our method over the standard algorithm and over co-
homology reduction. We also notice that the factor of
improvement highly depends on the particular input
instance. We remark that cohomology reduction is
even slower than the standard algorithm in some cu-
bical data. Although cohomology reduction appears
to have fewer add operations, it incurs more overhead
due to involved data structures in Dionysus.

We conclude by reporting the performance on two
non-cubical data by Morozov [2], namely, the alpha

1http://www.volvis.org/
2http://www.mrzv.org/software/dionysus/

Execution time (minute)
aneurism bonsai foot skull

KIL 1.02 1.10 1.16 1.45
STA 6.95 7.63 6.54 9.45
COH 1.47 19.76 59.20 95.09

Number of Add Operations (million)
aneurism bonsai foot skull

KIL 472.8 104.2 439.9 692.1
STA 24436.8 33664.6 27410.6 66693.3
COH 56.2 3276.1 7064.2 15362.3

Table 1: Performance on cubical data.

complex of uniform samples of a torus embedded in
3-dimensional Euclidean space (0.6 million simplices),
and the 4-skeleton of the rips complex of the mum-
ford data (2.4 million simplices). Although our algo-

Time(minute) Add Operations(million)
Torus Mumford Torus Mumford

KIL 0.17 0.68 1224.6 1459.8
STA 7.55 0.74 73926.3 1524.5
COH 0.04 0.26 3.8 0.004

Table 2: Performance on non-cubical data.

rithm again improves over the standard persistence
algorithm, it is slower than cohomology reduction al-
gorithm on this data. Hence, we observe that the
two methods (KIL and COH) have different behaviors
over different data; a deeper understanding of this is
needed and will be our future work.

Acknowledgement

The authors thank Dmitriy Morozov for helpful discussion and
answering our questions concerning Dionysus in depth. We
thank Herbert Edelsbrunner for helpful comments.

The first author’s work is partially supported by the Aus-
trian Science Fund under grant P20134-N13.

References

[1] P. Bendich, H. Edelsbrunner, and M. Kerber. Computing
robustness and peristence for images. IEEE Transactions

on Visualization and Computer Graphics, 16:1251–1260,
2010.

[2] V. de Silva, D. Morozov, and M. Vejdemo-Johansson. Du-
alities in persistent (co)homology. Manuscript, 2010.

[3] H. Edelsbrunner and J. Harer. Computational Topology,

An Introduction. American Mathematical Society, 2010.

[4] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topo-
logical persistence and simplification. Discrete & Compu-

tational Geometry, 28(4):511–533, 2002.

[5] H. Freudenthal. Simplizialzerlegungen von beschränkter
Flachheit. Annals of Mathematics, 43(3):580–582, 1942.

[6] D. Morozov. Persistence algorithm takes cubic time in the
worst case. In BioGeometry News. Duke Computer Science,
Durham, NC, 2005.

[7] A. Zomorodian and G. Carlsson. Computing persistent ho-
mology. Discrete & Computational Geometry, 33(2):249–
274, 2005.

200

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Kinetic Convex Hulls in the Black-Box Model∗

Mark de Berg† Marcel Roeloffzen† Bettina Speckmann†

Abstract

Over the past decade, the kinetic-data-structures
framework has become the standard in computational
geometry for dealing with moving objects. A funda-
mental assumption underlying the framework is that
the motions of the objects are known in advance. This
assumption severely limits the applicability of KDSs.
We study KDSs in the black-box model, which is a
hybrid of the KDS model and the traditional time-
slicing approach. In this more practical model we re-
ceive the position of each object at regular time steps
and we have an upper bound on dmax, the maximum
displacement of any point in one time step.

We study the maintenance of the convex hull of a
planar point set P in the black-box model, under the
following assumption on dmax: there is some constant
k such that for any point p ∈ P the disk of radius dmax

contains at most k points. We analyze our algorithms
in terms of ∆k, the so-called k-spread of P . We show
how to update the convex hull at each time step in
O(k∆k log2 n) amortized time.

1 Introduction

Motivation. Algorithms dealing with objects in mo-
tion traditionally discretize time and recompute the
structure of interest at every time step from scratch.
This can be wasteful, especially if the time steps are
small: then the objects will have moved only slightly,
and the structure may not have changed at all. Ideally
an object gets attention if and only if its new location
triggers an actual change in the structure. Kinetic
data structures (KDSs), introduced by Basch et al. [3],
try to do exactly that: they maintain not only the
structure itself, but also additional information that
helps to find out when and where the structure will
undergo a “real” (combinatorial) change. They main-
tain a collection of simple geometric tests—these are
called certificates—with the property that as long as
these certificates remain valid, the structure of inter-
est does not change combinatorially. Whenever there

∗M. Roeloffzen was supported by the Netherlands’ Or-
ganisation for Scientific Research (NWO) under project
no. 600.065.120. B. Speckmann was supported by the Nether-
lands’ Organisation for Scientific Research (NWO) under
project no. 639.022.707.
†Department of Mathematics and Com-

puter Science, TU Eindhoven, The Netherlands.
{mdberg,mroeloff,speckman}@win.tue.nl

is an event—that is, a certificate failure—the KDS is
updated. See one of the surveys by Guibas [7, 8, 9]
for more information and results on KDSs.

A basic assumption in the KDS framework is that
the object trajectories are known. This is necessary
to be able to compute the failure times of the cer-
tificates, which is essential for the event-driven ap-
proach taken in the KDS framework. This assump-
tion severely limits the applicability of the framework.
When tracking moving objects, for instance, one gets
the object locations only at (probably regular) time
steps in an online manner—no detailed knowledge of
future trajectories is available. The same is true for
physical simulations, where successive locations are
computed by a numerical integrator. The goal of our
paper is to study the kinetic maintenance of a fun-
damental geometric structure—the convex hull—in a
less restrictive setting: instead of assuming knowledge
of the trajectories, we assume only that we know up-
per bounds on the speeds of the objects and that we
get their positions at regular time steps.

Related work. We are not the first to observe that
the basic assumption in the KDS model is not always
valid. Indeed, the need for a hybrid model, which
combines ideas from the KDS model with a traditional
time-slicing approach, was already noted in the survey
by Agarwal et al. [1]. Since then there have been
several papers in this direction, as discussed next.

Gao et al. [6] study spanners for sets of n moving
points in a model where one does not know the tra-
jectories in advance but receives only the positions at
each time step. They call this the blackbox replace-
ment model—we simply call it the black-box model—
and show how to update the spanner at each time
step in O(n + k logα) time. Here α is the spread of
the point set, and k is the number of changes to the
hierarchical structure defining their spanner.

Mount et al. [11] also study the maintenance of ge-
ometric structures in a setting where the trajectories
are unknown. They separate the concerns of track-
ing the points and updating the geometric structure
into two modules: the motion processor (MP) is re-
sponsible for tracking the points, and the incremental
motion algorithm (IM) is responsible for maintaining
the geometric structure. Mount et al. describe a pro-
tocol trying to minimize the interaction between the
modules, and they prove that under certain conditions
their protocol has good competitive ratio. Their ap-
proach goes back to the work of Kahan [10] on certain

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

201

27th European Workshop on Computational Geometry, 2011

kinetic 1-dimensional problems. See also the more
recent work by Cho et al. [4]. There is also some
work on repairing a triangulation after the vertices
have moved. Agarwal et al. [2] repair arbitrary pla-
nar triangulations, whereas Shewchuk [12] looks at
d−dimensional Delaunay triangulations.

The results above typically express the running
time in terms of the number of changes to the struc-
ture at hand, without analyzing this number. This
is no surprise; without assumptions on the maxi-
mum displacements of the points one cannot say much
about the number of changes. On the one hand this
“abstract” analysis is appealing since it makes the re-
sults general, but on the other hand it becomes hard
to decide whether it is better to use these kinetic algo-
rithms or to recompute the structure from scratch at
each time step. This is the goal of our paper: to de-
velop KDSs in the black-box model that are provably
more efficient than recomputing the structure from
scratch under certain assumptions on the trajectories.

Our results. We study black-box KDSs for the con-
vex hull of a set P of n points moving in the plane. As
already mentioned, we need to make assumptions on
the point movements and time steps to obtain prov-
ably efficient solutions. In particular, the time steps
should be small enough so that there is some coher-
ence between the positions of the points in consecutive
time steps—otherwise we cannot do better than re-
computing the structure from scratch. Furthermore,
we will assume in most of our results that P is fairly
evenly distributed at each time step. We discuss these
assumptions in more detail in Section 2.

We present an algorithm that updates the convex
hull at each time step in O(k∆k log2 n) amortized
time, where ∆k is the k-spread of a point set as de-
fined by Erickson [5]—see Section 2. Note that some
proofs are omitted due to space limitations but will
be available in the full paper.

2 Preliminaries

Here we introduce some notation, and we discuss some
basic issues regarding the black-box model and the
concept of k-spread. Although some of our results
extend to higher dimensions, we will focus here on the
case where P is a set of points moving in the plane.

The black-box model. We denote the position of
a point p at time t by p(t), and we let P (t) := {p(t) :
p ∈ P} denote the point set at time t. In the black-
box model, we assume that we receive the positions
at regular time steps t0, t1, . . . and the goal is to up-
date the structure of interest—the convex hull in our
case—at each time step. The algorithm need not ask
for all new positions at each time step; it may ignore
some points if the new locations of these points can-
not change the structure. Thus a sublinear update

time is potentially feasible and indeed, we show how
to obtain sublinear update time for convex-hull main-
tenance, under certain conditions.

As stated in the introduction, we assume the sam-
pling rate is such that the points in P do not move
too much in one time step, as compared to their
inter-distances. For a point p ∈ P , let nnk(p, P)
denote the k-th nearest neighbor of p in P \ {p}.
Let dist(p, q) denote the Euclidean distance between
two points p and q, and define mindistk(P) :=
minp∈P dist(p,nnk(p, P)). We assume the sampling
rate satisfies the following assumption.

Displacement Assumption: There is a maxi-
mum displacement dmax such that

• dmax 6 minti mindistk(P (ti)), and
• dist(p(ti), p(ti+1)) 6 dmax for each p ∈
P and any time step ti.

The k-spread of a point set. The k-spread ∆k

of P , is defined as

∆k(P) := diam(P)/mindistk(P).

The k-spread of a point set can be used to bound the
number of points within a region if the diameter of
the region is not too large.

Lemma 1 Let P be a set of points in R2, and let R be
a region in R2 such that diam(R) < diam(P)/∆k(P).
Then R contains at most k points from P .

Proof. Assume for contradiction that there are k +
1 points inside R. Let p ∈ P ∩ R. Then
dist(p,nnk(p, P)) 6 diam(R). Hence,

∆k(P) >
diam(P)

diam(R)
>

diam(P)

diam(P)/∆k(P)
= ∆k(P),

a contradiction. �

3 Maintaining the convex hull

Let CH(P) denote the convex hull of a point set P ,
and let ∂CH(P) denote the boundary of CH(P). In
this section we give algorithms to maintain CH(P (t)).
From now on, we will use CH(t) as a shorthand for
CH(P (t)). Our algorithms rely on the following obser-
vation, which follows from the fact that the distance
between p and ∂CH(P) can change by only 2dmax in
a single time step.

Lemma 2 Consider a point p ∈ P , and let dp(t) :=
dist(p(t), ∂CH(t)). Then p cannot become a vertex of

CH(P) until at least
dp(t)
2dmax

time steps have passed.

Lemma 2 suggests the following simple scheme to
maintain CH(P). Compute the initial convex hull

202

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

CH(t0), and compute for each point p ∈ P its dis-
tance to ∂CH(t0). Using this distance and Lemma 2
compute a time stamp t(p) for each point p, which is
the first time step when p could become a convex-hull
vertex. Thus p can be ignored until its time stamp
expires, that is, until time t(p). In a generic time
step ti, we now determine the set Q(ti) of all points
whose time stamps expire, compute their convex hull
and compute new time stamps for the points in Q(ti).
We may use CH(ti−1) to compute the new convex hull,
but we don’t need to here.

To implement this algorithm we use an array A
where A[ti] contains the points whose time stamps
expire at time ti. To restrict the amount of storage
we use an array A[0..n − 1] with n entries, and we
let time advance through the array in a cyclic manner
(using without loss of generality that ti = i). Further-
more, we bound the time stamps to be at most n steps,
and we use an approximation of dist(p(t), ∂CH(t)) to
speed up the computations. Our approach is made ex-
plicit in Algorithm 1. Note that the algorithm needs
to know only dmax to work correctly, it does not need
to know bounds on the k-spread.

Algorithm 1: UpdateCH

1 Q(t)← set of points stored in A[t]
2 Compute CH(Q(t)) and set CH(t)← CH(Q(t)).
3 for each p ∈ Q(t) do
4 d∗p ← lower bound on dist(p(t), ∂CH(t)).

5 Set p’s time stamp:

t(p)← [t+ min(1 + b d∗
p

2dmax
c, n)] mod n.

6 Add p to A[t(p)].

7 t← (t+ 1) mod n

It remains to describe how to compute CH(Q(t)) in
Step 2 and how to compute the values d∗p in Step 5.
Computing CH(Q(t)) can be done by an optimal
convex-hull algorithm in O(|Q(t)| log |Q(t)|) time. To
compute d∗p we proceed as follows. Let qabove be the
point on ∂CH(t) directly above p, and define qbelow,
qleft, and qright similarly. These points can be found
in logarithmic time using binary search. Let qmin de-
note the minimum distance between p and any of the
points qabove, qbelow, qleft, and qright. Then we set d∗p =

qmin/
√

2 (Note that d∗p 6 dist(p, ∂CH(t)) 6
√

2 d∗p.)
We get the following result.

Lemma 3 At each time step t, UpdateCH updates
the convex hull in O(|Q(t)| log n) time.

Next we analyse |Q(t)|, the number of time stamps
that can expire in a single time step.

Analyzing the number of expiring time stamps.
We perform our analysis in terms of ∆k, which is an
upper bound on the k-spread of P at any time. We
first bound the number of convex hull vertices.

Lemma 4 The number of vertices of the convex hull
CH(P) of a point set P is O(k∆k(P)).

Proof. The length of ∂CH(P) is Θ(diam(P)), so
we can cut ∂CH(P) into Θ(diam(P)/mindistk(P)) =
Θ(∆k(P)) pieces with a length less then mindistk(P).
From Lemma 1 we know that each such piece contains
at most k points. It follows that ∂CH(P) contains
O(k∆k(P)) vertices. �

Now let us consider the number of expiring time
stamps. In the worst case it can happen that all time
stamps expire in a single time step. However, using an
amortization argument we show that on average only
O(k∆k log n) time stamps expire in each time step.

Lemma 5 The amortized number of time stamps ex-
piring in each time step is O(k∆k log n).

Proof. (Sketch) We prove the lemma using the ac-
counting method: each point has an account into
which we put a certain amount of money at each time
step, and whenever the time stamp of a point expires
it has to pay 1 euro from its account. Our scheme is
that at time step ti each point p receives

min

(
1, max

(
1

n
,

8
√

2 · dmax

dp(ti)

))
euro,

where dp(ti) = dist(p(ti), ∂CH(ti)).
To prove each point can pay 1 euro when it expires,

consider a point p whose time stamp expires at time
ti, and let tj < ti be the previous time step when p’s
time stamp expired. (If there is no such time step, we
can take j = 0.) Now define t(p) := ti − tj = i − j
to be the number of time steps from tj up to ti−1.
If t(p) = n then p certainly has enough money in its
account at time ti, so assume this is not the case.

Then we can show that t(p) > dp(tj)

2
√
2·dmax

.

The distance between p(tm) and CH(tm) for tj 6
tm 6 ti−1 is at most 4dp(tj). Hence point p gets at

least 8
√
2dmax

4·dp(tj)
euro per time step, which proves each

point has at least one euro when it expires.
Next we prove that we only spend O(k∆k log n)

euro per time step. We consider the points p such
that dp(ti) 6 8

√
2n · dmax; the remaining points get

1/n euros each, so in total at most 1 euro. We divide
these points into groups G1, . . . , G` (see Figure 1).
Each group Gj contains the points p ∈ P such that
(j−1) ·dmax 6 dp(ti) 6 j ·dmax, where ` = 8

√
2n. We

can show that each group contains O(k∆k) points, so
we pay at most O(k∆k/j) euro per group.

Summing this over all groups we see that the
amount we pay at each time step is

8
√
2n∑

j=1

O

(
k∆k

j

)
= O(k∆k log n).

�

203

27th European Workshop on Computational Geometry, 2011

G1

G2

G3

Figure 1: We divide the points into groups based on
their distance to ∂CH(ti).

From Lemma 3 and 5 we conclude the following:

Theorem 6 Under the Displacement Assumption,
the convex hull of a set P of n points moving in the
plane can be maintained in the black-box model in
O(k∆k log2 n) amortized time per time step, where
∆k is the maximum k-spread of P at any time.

4 Conclusion

We presented an algorithm to maintain the convex
hull of a planar point set in the KDS black-box model.
The algorithm is simple and does not require knowl-
edge of ∆k(P) or k: it only needs to know dmax, the
maximum displacement of any point in one time step.

We spend O(k∆k log2 n) amortized time to update
the convex hull after each time step. This is optimal
up to the logarithmic factors, because the convex hull
can undergo Ω(k∆k) changes in any time step. More-
over, we can show that our bound O(k∆k log n) on the
number of expiring time stamps is tight. However,
it may be possible to get rid of one logarithmic factor
from the time bound by a more clever algorithm. In
fact, if we are allowed to use the floor function, then
we know how to to do this. Unfortunately, the result-
ing algorithm needs to know mindistk(P (t)), which is
perhaps not very realistic. It would be interesting to
design an algorithm that needs to know only dmax and
achieves O(k∆k log n) update time. Another interest-
ing open problem is whether it is possible to make the
time bound worst-case rather than amortized.

In the full paper we also studied the convex hull
problem without a bound on the spread ∆k. In this
case it is still possible to do updates efficiently, namely
in O(n log k) time per time step. Note that when
∆k > n all points can appear as vertices on the convex
hull giving a lower bound of Ω(n) on the update time.

Another interesting problem we studied in the KDS
black-box model is the Delaunay triangulation. Using
the k-spread and displacement assumption we can up-
date the Delaunay triangulation using O(k2∆2

k) flips
in O(k2∆2

k log n) time by moving the points one by
one from their old to their new locations. We can
reduce the update time to O(k2∆2

k) by inserting p(t)
and removing p(t− 1) for each point p ∈ P .

How realistic our model is depends on the applica-
tion, of course. We expect that in many applications
the sampling rate is such that the Displacement As-
sumption is satisfied. The other question is whether
the point set can be expected to have small k-spread.
In meshing-type applications, it may be realistic to
assume that the k-spread is O(

√
n). In any case, ∆k

seems like a reasonable parameter to measure the ef-
ficiency, and we think it will be interesting to study
other structures in the KDS black-box model under
the Displacement Assumption and to analyze their
performance in terms of ∆k.

References

[1] P.K. Agarwal, L.J. Guibas, H. Edelsbrunner, J. Er-
ickson, M. Isard, S. Har-Peled, J. Hershberger, C.
Jensen, L. Kavraki, P. Koehl, M. Lin, D. Manocha, D.
Metaxas, B. Mirtich, D. Mount, S. Muthukrishnan,
D. Pai, E. Sacks, J. Snoeyink, S. Suri, and O. Wolef-
son. Algorithmic issues in modelling motion. ACM
Comput. Surv. 34:550–572 (2002).

[2] P.K. Agarwal, B. Sadri, and H. Yu. Untangling tri-
angulations through local explorations. In Proc. 24th
ACM Sympos. Comput. Geom., pages 288–297, 2008.

[3] J. Basch, L.J. Guibas, and J. Hershberger. Data
structures for mobile data. In Proc. 8th ACM-SIAM
Sympos. Discr. Algorithms, pages 747–756, 1997.

[4] M. Cho, D.M. Mount, and E. Park. Maintaining nets
and net trees under incremental motion. In Proc. 20th
Int. Sympos. Algo.Comput., pages 1134–1143, 2009.

[5] J. Erickson. Dense Point Sets Have Sparse Delaunay
Triangulations. In Discrete and Computational Ge-
ometry 30:83-115 (2005).

[6] J. Gao, L.J. Guibas, A. Nguyen. Deformable spanners
and applications. In Proc. 20th ACM ACM Sympos.
Comput. Geom., pages 190–199, 2004.

[7] L.J. Guibas. Kinetic data structures—a state-of-
the-art report. In Proc. 3rd Workshop Algorithmic
Found. Robot., pages 191–209, 1998.

[8] L.J. Guibas. Kinetic data structures. In: D. Mehta
and S. Sahni (editors), Handbook of Data Structures
and Applications, Chapman and Hall/CRC, 2004.

[9] L.J. Guibas. Motion. In: J. Goodman and J.
O’Rourke (eds.), Handbook of Discrete and Compu-
tational Geometry (2nd edition), pages 1117–1134.
CRC Press, 2004.

[10] S. Kahan. A model for data in motion. In Proc. 23rd
ACM Sympos. Theory Comput., pages 267–277, 1991.

[11] D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Sil-
verman, and A.Y. Wu. A computational framework
for incremental motion. In Proc. 20th ACM Sympos.
Comput. Geom., pages 200–209, 2004.

[12] R. Shewchuk. Star splaying: an algorithm for re-
pairing Delaunay triangulations and convex hulls. In
Proc. 21st ACM Sympos. Comput. Geom., pages 237–
246, 2005.

204

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Boundary of a non-uniform point cloud for reconstruction

Nicolas Chevallier∗ Yvan Maillot†

Abstract

This paper deals with the problem of shape recon-
struction. We define a filtration of the Delaunay com-
plex of a point cloud. This filtration allows to se-
lect points in a point cloud that should be boundary
points. Theoretical guarantees are given when the
point cloud samples a region with smooth boundary.
A simple and efficient algorithm computing the filtra-
tion is described.

1 Introduction

We will focus on the reconstruction of an open set
Ω in Rd with smooth boundary, from a set of points
non-uniformly distributed inside Ω and not just lying
on its boundary.

With our hypothesis, Ω, the closure of Ω, is a man-
ifold with boundary. In the past decade, many algo-
rithms have been proposed for the reconstruction of
manifolds [2, 3, 4]. Some of them give guarantees,
but only for surfaces without boundary. Recently, in
[7], Dey et al. have been the firsts to ensure the re-
construction of surfaces with boundary. Nevertheless,
their algorithm is limited to 2-dimensional surfaces in
R3, from a sufficiently dense sample. Besides, their
algorithm faces problems when the sample is not uni-
form and no theoretical guarantees are provided in
this case.

Given a point cloud S sampling a bounded open set
Ω in Rd with smooth boundary, our work proposes:

• To define a filtration of the Delaunay complex of
S. This filtration takes into account in a very
natural way that the local density of the cloud
may change according to the local complexity of
Ω. This filtration depending on a positive real
number α is called Locally-Density-Adaptative-α-
complex, LDA-α-complex for short.

• To select a subset in the point cloud S, called
LDA-α-boundary, that presumably constitutes a
sample of the boundary F of Ω.

• Thanks to a result of Chazal and Lieutier [6] to
prove that the LDA-α-boundary carries topolog-
ical and geometric properties of F .

∗UHA, LMIA/SD, Mulhouse, France,
nicolas.chevallier@uha.fr
†UHA, LMIA/MAGE, Mulhouse, France,

yvan.maillot@uha.fr

• To give an efficient algorithm for computing
LDA-α-complex and LDA-α-boundary.

2 Mathematical and geometric concepts

Notations. d(x, y) = ‖x− y‖ denotes the Eu-
clidean distance between to points x, y in Rd.
B(x, r) = {y ∈ Rd, d(x, y) ≤ r} denotes the closed

ball of center x and radius r ∈ [0,∞[.
Let A be a subset of Rd, AC denotes its comple-

mentary in Rd, A its closure, Ao its interior, ∂A its
boundary, conv(A) its convex hull, and diamA its di-
ameter, i.e. diamA = sup{d(x, y) : x, y ∈ A}.

Delaunay complex. Let S be a finite point set in
Rd. An empty ball is a ball containing no point of S
in its interior.

The Delaunay complex of S, Del(S), is the set of
convex polytopes K = conv(S ∩ B) where B is an
empty ball.

Maximal ball. A ball B of Rd is called a maximal
ball if B is an empty ball such that the dimension of
the convex polytope conv(B ∩ S) is d.

Restricted Delaunay complex. Let X be a
point set in Rd. A convex polytope K in the De-
launay complex Del(S) is in the Delaunay complex of
S restricted to X, denoted by Del|X(S), if there exists
an empty ball B = B(x, r) such that x ∈ X and the
vertices of K are on the boundary of B. This means
that K is a face of conv(S ∩ B). The set Del|X(S)
of all these convex polytopes K is a sub-complex of
Del(S).

We assume in the following that S is a finite point
set in Rd which is contained in no proper affine sub-
space of Rd.

3 Idea of sampling and reconstruction

We aim at reconstructing a bounded open set Ω with
smooth boundary from a sample set S included in Ω
and not only on its boundary. Moreover, the sample
does not have to be uniformly distributed, i.e., its
local density may be different in places. Nevertheless,
the information about the shape to reconstruct has to
be carried by the sample. The sample has to be dense
where a big amount of details is required and a sudden
variation of local density indicates the presence of a
hole or a hollow, as shown on figure 1 close to the
eyes of the lizard or on its fingers. Since variations
of the local density are allowed, the sample may be

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

205

27th European Workshop on Computational Geometry, 2011

less dense where the shape is simple. However, the
density must change gradually, as shown on figure 1
on the back of the lizard, to avoid the formation of
non-existent holes.

Figure 1: A shape (left), a possible sample (right)

The problem comes down to finding an efficient way
to measure the variation of local density of the sample
set S.

4 Formalization of the idea

The Delaunay complex
can be efficiently used to
measure the density varia-
tion of the sample set S.
For instance, in the figure
opposite, the maximal ball
B is much larger than some
of its neighbours. This
means there is a wide area with no point of S while
the sampling around is dense. This area is proba-
bly a hole and the polytope t included in B must be
eliminated.

4.1 Eliminating polytopes

Polytopes will be eliminated by eliminator balls. An
eliminator ball is an empty ball large enough com-
pared to the maximal balls around.

Definition 1 Let α be a real number in]0,∞[. An
empty ball B = B(c, r) is α-eliminator if for each
point p of S lying on ∂B, there exists a maximal ball
B′ = B′(c′, r′) with p lying on ∂B′ such that r ≥ αr′.

Here are some interesting observations:

• There exists an α∞ such that ∀α ≥ α∞ there is
no α-eliminator ball since the radius of a maximal
ball is strictly positive and the radius of an empty
ball is finite.

• There exists an α0 such that ∀α ≤ α0 all empty
balls containing a 1-polytope are α-eliminator
since the radius of an empty ball containing a
1-polytope is strictly positive and the radius of a
maximal ball is finite.

• A maximal ball B = B(c, r) is 1-eliminator since
the ball B′(c′, r′) with p lying on ∂B′ such that
r ≥ r′ is B itself.

Definition 2 A polytope K of Del(S) is α-
eliminated if each empty ball B such that K ⊆
conv(S ∩ ∂B) is α-eliminator.

The following observations are deduced from the
previous ones: No polytope is α∞-eliminated. All the
polytopes except the 0-polytopes are α0-eliminated.
All d-polytopes are 1-eliminated.

4.2 LDA-α-complex

Definition 3 The LDA-α-complex is the set of all
polytopes K of Del(S) that are not α-eliminated.

We can collect some easy facts: The LDA-α-
complex of S is a sub-complex of Del(S). The LDA-
α0-complex of S is S. The LDA-α∞-complex of S is
Del(S). The LDA-1-complex of S is a sub-complex of
Del(S) with no d-polytope. If α1 ≤ α2 then LDA-α1-
complex ⊆ LDA-α2-complex.

The LDA-α-complex is indeed very close to the
conformal-α-shape [5] with α−p equals to 0 and α+

p

equals to the radius of the smallest maximal ball con-
taining p.

4.3 LDA-α-boundary

Definition 4 The LDA-α-boundary is the union of
the sets of the vertices of all the α-eliminated poly-
topes and of the set of all the vertices of the convex
hull of S.

5 Algorithm

We present a very simple and efficient algorithm in
the full version of this paper. A short description is
given in what follows.

5.1 Description

There are four main steps. First, Del(S) is computed.
The second step computes for each v ∈ S, the radius
m(v) of the smallest maximal ball containing v .The
third step computes for each polytope K in Del(S),
the radius e(K) of the smallest empty ball contain-
ing K. The fourth step determines the polytopes in
Del(S) that are in the LDA-α-complex.

The fourth step selects the polytopes of Del(S) in
decreasing order of dimensions. First, for each d-
polytope K, if the inequality e(K) < αm(v) holds for
at least one vertex v of K, then K is in the LDA-
α-complex. Moreover, the LDA-α-boundary is de-
termined at the same time since the elements of the
LDA-α-boundary are the vertices of the d-polytopes
that are not selected (together with the vertices of the
convex hull of S). Next, once the polytopes of dimen-
sions ≥ k have been selected, a (k− 1)-polytope K of
Del(S) is in the LDA-α-complex if either one of the

206

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

A sample Its LDA-2 Its LDA-2

of a lizard -complexe -boundary

Figure 2: The lizard

Three balls with LDA- with

sampled (a) α-shapes (b) α-shapes (c)

Figure 3: The balls

k-polytope containing K is in the LDA-α-complex or
if e(K) < αm(v) for at least one vertex v of K.

In the full version of this paper we prove that the
time-complexity of the algorithm is O(|Del(S)|) plus
the time required to compute the Delaunay complex
Del(S).

5.2 Little examples

Thanks to CGAL [1], this algorithm has been im-
plemented in 2D and 3D. Two examples are shown
in this subsection. Figure 2 shows the sample of a
lizard, its LDA-2-complex, and its LDA-2-boundary.
The density of this sample is strong only where it is
needed. Figure 3 (a) shows 3D-balls that have been
randomly sampled according to non-constant proba-
bility densities. The reconstructions work with LDA-
α-complexes while it is well known that α-shapes may
fail in that case.

6 Well distributed subsets

Given a bounded open set Ω with smooth boundary
and a finite point set S in Ω, we will give some con-
ditions about S ensuring that with a right choice of
α, the LDA-α-boundary of S carries the topological
informations about ∂Ω.

We first define (ε, δ)-sample with a general lipschitz
function. We will specify such a function later.

Definition 5 Let f : Rd → R+ be a k-lipschitz func-
tion. Let δ and ε be two positive real numbers.

A point set S is an (ε, δ)-sample of Ω if S ⊂ Ω, and
if

Density: ∀x ∈ Ω, ∃y ∈ S, d(x, y) < εf(x),

Sparsity: ∀x, y ∈ S, x 6= y ⇒ d(x, y) ≥ δf(x).

In the two following lemmas, we assume that Ω is
(ε, δ)-sampled and that f is k-lipschitz.

7 Two technical lemmas

We want to provide theoretical guarantees that the
LDA-α-boundary is a good approximation of the
boundary F of Ω.

To do this we have to prove these two results: (1)
Any point in the LDA-α-boundary is near F . (2) Any
point in F is near a point of the LDA-α-boundary.

Next lemma shows that with a right choice of the
parameters α, ε, δ, the LDA-α-boundary is close to F .

Lemma 6 (elimination lemma). Suppose ε < 1
2k

and α > 2ε
δ(1−2kε) . If p is a vertex of a LDA-α-

eliminated polytope tp, then

d(p, F) ≤ ε

1− kε
f(p) (1)

d(c,Ω) > 0 (2)

where c is the center of any empty ball B such that
tp ⊂ conv(S ∩B).

7.1 Statements of main results about (ε, δ)-
samples

The first inequality in the elimination lemma shows
immediately that points in the LDA-α-boundary are
close to F :

Corollary 7 (α-boundary). Suppose
α > 2ε

δ(1−2kε) and ε < 1
2k . Then all p ∈ S

that are in the LDA-α-boundary of S, are at a
distance from F lower or equal to ε

1−kεf(p).

The second inequality in the elimination lemma im-
mediately leads to an information about Del|Ω(S) the
restricted Delaunay triangulation of S with respect to
Ω:

Corollary 8 Suppose α > 2ε
δ(1−2kε) and ε < 1

2k .

Then the restricted Delaunay complex Del|Ω(S) is a
subcomplex of the LDA-α-complex.

Until now, we only assume the function f to be k-
lipschitz. In order to go further, we need to specify
the function f . Let SF be the skeleton of F , that is
the set of centers of maximal open balls that do not
meet F . In the following f : Rd → R is defined by
f(x) = d(x, F) + d(x,SF). It is a 2-lipschitz function.

With this more precise assumption about the sam-
ple set S, we are not able to prove the reverse in-
clusion LDA-α-complex⊂ Del|Ω(S). Nevertheless, we
can prove that the LDA-α-complex is included in the
Delaunay complex of S restricted to a neighborhood
of Ω.

Proposition 9 (neighborhood). Suppose that ε <
1
20 and 1

4ε > α > 2. Then a maximal ball B(c,R)

such that d(c,Ω) ≥ 2εα
1−4εαf(c) is α-eliminator.

207

27th European Workshop on Computational Geometry, 2011

By the first corollary, any point in the LDA-α-
boundary is close to F . Conversely any point in F
is close to a point of the LDA-α-boundary of S:

Proposition 10 (α-boundary). Suppose that ε <
1
20 and 1

32ε > α > 2. Then for any p in F there
exists a point p0 in the LDA-α-boundary of S whose
distance to p is ≤ 8αεf(p).

8 A reconstruction result

The last step is to see that with a good choice of
α, ε, and δ, the topological information about F is
contained in the α-boundary. For this, we will use a
result of F. Chazal and A. Lieutier [6]. Their result
allows a reconstruction of a compact manifold Σ of
dimension d − 1 starting with a compact set K close
to Σ. They have proved that if K is close enough to
Σ, then the boundary of a union of balls B(p, rp) cen-
tered at the points p in K, is the union of two subsets
homeomorphic to Σ. This shows that K carries the
topological informations about Σ.

Notations. Let Σ be a compact set in Rd. For
x in Rd, denote by π(x) a point in Σ nearest to x.
This point is unique if x is not in the medial axis of
Σ. Denote by LFS(x) the distance from x to the
skeleton of Σ.

Definition 11 Let κ and ρ be positive real numbers,
and let Σ be a compact manifold in Rd. A compact
set K ⊂ Rd is a (κ, ρ)-approximation of Σ if :
i. For all p ∈ K, d(p, π(p)) ≤ κρLFS(p),
ii. For all p ∈ Σ, there exists a point q ∈ K such that
d(p, π(q)) < ρLFS(p).

Theorem 12 (Chazal, Lieutier) Let κ, ρ, and 0 <
a < b < 1

3 − κρ be such that

(1− a′)2 +

(
(b′ − a′) +

b(1 + 2b′ − a′)
1− b− κρ

)2

<

(
1− κρ(1 + 2b′ − a′)

1− b− ρ

)2

with a′ = (a− κρ)(1− ρ)− ρ and b′ = b+κρ
1−2(b+κρ) .

Let K be a (κ, ρ)-approximation of Σ. Let (rp)p∈K
be a family of real numbers such that a ≤ rp

LFS(p) ≤ b
for all p ∈ K and set

K = K((rp)p∈K) =
⋃
p∈K

B(p, rp).

Then
- Σ is a deformation retract of K.
- K is homeomorphic to any tubular neighborhood
{x ∈ Rd : d(x,Σ) ≤ s} where s < reach(Σ) =
d(Σ,MΣ).
- The boundary ∂K is an isotopic hypersurface to
Σs = {x ∈ Rd : d(x,Σ) = s}.

Remark 1. If Σ is an hypersurface, ∂K is isotopic
to 2 copies of Σ (isotopy=⇒ homeorphism).

In order to reconstruct the boundary F = ∂Ω start-
ing with the (ε, δ)-sample set S, it is enough to use
this theorem with Σ = F and K the LDA-α-boundary
of S.

Proposition 13 Choose α = 10, ε ≤ 1
2500 , and δ =

ε
4 . Then Chazal and Lieutier’s theorem works with
Σ = F and K = the LDA-α-boundary of S

All the proofs are in the full version of this paper.

References

[1] Cgal, Computational Geometry Algorithms Li-
brary. http://www.cgal.org.

[2] N. Amenta and M. Bern. Surface reconstruction
by voronoi filtering. Discrete and Computational
Geometry, 22:481–504, 1999.

[3] N. Amenta, S. Choi, T. Dey, and N. Leekha. A
simple algorithm for homeomorphic surface recon-
struction. In ACM Symposium on Computational
Geometry, pages 213–222, 2000.

[4] J.-D. Boissonnat and F. Cazals. Smooth surface
reconstruction via natural neighbour interpolation
of distance functions. In Proceedings of the six-
teenth annual symposium on Computational ge-
ometry, SCG ’00, pages 223–232, New York, NY,
USA, 2000. ACM.

[5] F. Cazals, J. Giesen, M. Pauly, and A. Zomoro-
dian. The conformal alpha shape filtration. The
Visual Computer, 22(8):531–540, 2006.

[6] F. Chazal and A. Lieutier. Smooth manifold re-
construction from noisy and non-uniform approx-
imation with guarantees. Computational Geome-
try, 40(2):156 – 170, 2008.

[7] T. K. Dey, K. Li, E. A. Ramos, and R. Wenger.
Isotopic reconstruction of surfaces with bound-
aries. Comput. Graph. Forum, 28(5):1371–1382,
2009.

208

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Convex Hull of Imprecise Points in o(n log n) Time after Preprocessing

Esther Ezra∗ Wolfgang Mulzer†

Abstract

Motivated by the desire to cope with data impreci-
sion [8], we study methods for preprocessing a set
of planar regions such that whenever we are given a
set of points, each of which lies on a distinct region,
we can compute a specified structure on these points
more efficiently than in “standard settings” (that is,
without preprocessing).

In particular, we study the following problem.
Given a set L of n lines in the plane, we wish to pre-
process L such that later, upon receiving a set P of
n points, each of which lies on a distinct line of L,
we can construct the convex hull of P efficiently. We
show that in quadratic time and space it is possible
to construct a data structure on L that enables us to
compute the convex hull of any such point set P in
O(nα(n) log∗ n) expected time. The analysis applies
almost verbatim when L is a set of line-segments, and
yields the same asymptotic bounds.

1 Introduction

Most studies in computational geometry rely on an
unspoken assumption: whenever we are given a set
of input points, their precise locations are available
to us. Nowadays, however, the input is often ob-
tained via sensors from the real world, and hence it
comes with an inherent imprecision. Accordingly, an
increasing effort is being devoted to achieving a better
understanding of data imprecision and to developing
tools to cope with it (see, e.g., [8] and the references
therein). The notion of imprecise data can be formal-
ized in numerous ways [8]. We consider a particular
setting that has recently attracted considerable at-
tention (see [2] and the references therein). We are
given a set of planar regions, each of which repre-
sents an estimate about an input point, and the exact
coordinates of the points arrive some time later and
need to be processed quickly. This situation could oc-
cur, e.g., during a two-phase measuring process: first
the sensors quickly obtain a rough estimate of the
data, and then they invest considerably more time to
find the precise locations. This raises the necessity
to preprocess the preliminary (imprecise) locations of

∗Courant Institute of Mathematical Sciences, New York
University, New York, NY 10012, USA; esther@cims.nyu.edu.
†Institut für Informatik, Freie Universität Berlin, 14195

Berlin, Germany; mulzer@inf.fu-berlin.de.

the points, and store them in an appropriate data
structure, so that when the exact measurements of
the points arrive we can efficiently compute a pre-
specified structure on them. In settings of this kind,
we assume that for each input point its corresponding
region is known (note that by this assumption we also
avoid a point-location overhead). In light of the ap-
plications, this is a reasonable assumption, and it can
be implemented by, e.g., encoding this information in
the ordering of P .
Data imprecision. Previous work has mainly fo-
cused on computing a triangulation for the input
points. Held and Mitchell [5] were the first to consider
this framework, and they obtained optimal bounds
for preprocessing disjoint unit disks for point set tri-
angulations, a result that was later generalized by
van Kreveld et al. [7] to arbitrary disjoint polygo-
nal regions. For Delaunay triangulations, Löffler and
Snoeyink [10] obtained an optimal result for disjoint
unit disks (see also [4, 9]), which was later simplified
and generalized by Buchin et al. [2] to fat1 and pos-
sibly intersecting regions. The preprocessing phase
typically takes O(n log n) time and results in a linear
size data structure; the time for finding the structure
on the exact point set is usually linear or depends on
the complexity (and the fatness) of the input regions.

Since the convex hull can be easily extracted from
the Delaunay triangulation in linear time, the same
bounds carry over. However, once the regions are
not necessarily fat, the techniques in [2, 10] do not
yield the aforementioned bounds anymore. In partic-
ular, if the regions consist of lines or line-segments,
one cannot hope (under certain computational mod-
els) to construct the Delaunay triangulation of P in
time o(n log n), regardless of preprocessing (see [10]).
Nevertheless, if we are less ambitious and just wish to
compute the convex hull of P , we can achieve better
performance, which is the main problem studied in
this paper.
Convex hull. Computing the convex hull of a planar
n-point set is perhaps the most fundamental problem
in computational geometry, and there are many al-
gorithms available [1]. All these algorithms require
Θ(n log n) steps, which is optimal in the algebraic
computation tree model. However, there are numer-
ous ways to exploit additional information to improve

1A planar region o is said to be fat if there exist two concen-
tric disks, D ⊆ o ⊆ D′, such that the ratio between the radii of
D′ and D is bounded by some constant.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

209

27th European Workshop on Computational Geometry, 2011

this bound. For example, if the points are sorted along
any fixed direction, Graham’s scan takes only linear
time [1]. If we know that there are only h points on
the hull, the running time reduces to O(n log h) [6].
Our work shows another setting in which additional
information can be used to circumvent the theoretic
lower bound.

Our results. We show that we can preprocess the
input lines L such that given any set P of points,
each of which lies on a distinct line of L, the con-
vex hull CH(P) can be computed in expected time
O(nα(n) log∗ n), where α(·) is the (slowly growing)
inverse Ackermann function [12, Chapter 2.1]. Our
data structure has quadratic preprocessing time and
storage, and the convex hull algorithm is based on a
batched randomized incremental construction similar
to Seidel’s tracing technique [11]. As part of the con-
struction, we repeatedly trace the zone of (the bound-
ary of) an intermediate hull in the arrangement of the
input lines.2 The fact that the complexity of the zone
is only O(nα(n)) [12], and that it can be computed
in the same asymptotic time bound (after having the
arrangement at hand), is a key property of our solu-
tion. The analysis applies almost verbatim when L is
a set of line-segments, and we obtain similar asymp-
totic bounds.

2 Convex Hulls

Preliminaries The input at the preprocessing stage
is a set L of n lines in the plane. A query to the
resulting data structure consists of any point set P
such that each point lies on a distinct line in L, and
for every point we are given its corresponding line.
For simplicity, and without loss of generality, we as-
sume that both L and P are in general position (see,
e.g., [1, 12]). We denote by CH(P) the convex hull of
P , and by E(P) the edges of CH(P). We represent
the vertices of CH(P) in clockwise order, and we di-
rect each edge e ∈ E(P) such that CH(P) lies to its
right. Given a subset Q ⊂ P , a point p ∈ P \Q, and
an edge e ∈ E(Q), we say that e is in conflict with p
if p lies to the left of the line supported by e. The set
of all points in P \ Q in conflict with e is called the
conflict list Ce of e, and the size of Ce is called the
conflict size ce of e.

2.1 The Construction

Preprocessing. We construct in O(n2) time (and
storage) the arrangement A(L) of L, and produce its

2The arrangement of a set of planar lines is the decompo-
sition of the plane into vertices, edges and faces (also called
cells), each being a maximal connected set contained in the
intersection of at most two lines and not meeting any other
line.

vertical decomposition, that is, we erect an upward
and a downward vertical rays through each vertex v
of A(L) until they meet some line of L (not defining
v), or else extend to ∞. The complexity of a face f
in A(L) is the number of edges incident to f . The
zone of a curve γ consists of all faces that intersect
γ, and the complexity of the zone is the sum of their
complexities.
Queries. Given an exact point set P = {p1, . . . , pn}
as described above, we obtain CH(P) through a
batched randomized incremental construction as fol-
lows: Let P1 ⊆ P2 ⊆ · · · ⊆ Plog∗ n = P be a
sequence of subsets, where Pk−1 is a random sam-

ple of Pk of size zk−1 := min{bn/ log(k−1) nc, n}, for

k = 2, . . . , log∗ n. Here, log(i) n is the ith iterated log-
arithm: log(0) n = n and log(k) n = log(log(k−1) n).
This sequence of subsets is called a gradation. The
idea is to construct CH(P1), CH(P2), . . ., CH(Plog∗ n)
one by one. First, we have |P1| = O(n/ log n), so it
takes O(n) time to find CH(P1), using, e.g., Graham’s
scan [1]. Then, for k = 2, . . . , log∗ n, we incrementally
construct CH(Pk) by updating CH(Pk−1). This ba-
sic technique was introduced by Seidel [11] and it has
later found many more applications.

To construct CH(Pk) from CH(Pk−1), we use the
data structure from the preprocessing to quickly con-
struct the conflict lists of the edges in E(Pk−1) with
respect to Pk. In the standard Clarkson-Shor random-
ized incremental construction [3] it takes O(n log n)
time to maintain the conflict lists. However, once we
have the arrangement A(L) at hand, this can be done
significantly faster. In fact, we use a refinement of
the conflict lists: we shoot an upward vertical ray
from each point on the upper hull of Pk−1, and a
downward vertical ray from each point on the lower
hull. Furthermore, we erect vertical walls through
the leftmost and the rightmost points of CH(Pk−1).
This partitions the complement of CH(Pk−1) into ver-
tical slabs S(e), for each edge e ∈ E(Pk−1), and two
boundary slabs S(vl), S(vr), associated with the re-
spective leftmost and rightmost vertices vl and vr of
CH(Pk−1). The refined conflict list of e, C∗e , is de-
fined as C∗e := (Pk \ Pk−1) ∩ S(e). We add to this
collection the sets C∗vl

:= (Pk \ Pk−1) ∩ S(vl) and
C∗vr

:= (Pk \ Pk−1) ∩ S(vr), which we call the re-
fined conflict lists of vl and vr, respectively. Note
that C∗e ⊆ Ce, for every e ∈ E(Pk−1). Moreover,
C∗vl

(resp., C∗vr
) is contained in Ce1 ∪ Ce2 , where

e1, e2 ∈ E(Pk−1) are the two respective edges emanat-
ing from vl (resp., vr); see Figure 1(a). We now state
a key property of the conflict lists Ce (this property is
fairly standard and follows from related studies [3]):

Lemma 1 Let Q be a planar m-point set, r a positive
integer satisfying 1 ≤ r ≤ m, and R ⊆ Q a random
subset of size r. Suppose that f(·) is a monotone non-
decreasing function, so that f(x)/xc is decreasing, for

210

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

some constant c > 0. Then Exp
[∑

e∈E(R) f(ce)
]

=

O
(
r · f

(
m
r

))
, where ce is the number of points p ∈

Q \R in conflict with e ∈ E(R). �

Constructing the refined conflict lists. We next
present how to construct the refined conflict lists at
the k-th round of the algorithm. We first construct,
in a preprocessing step, the refined conflict lists C∗vl

,
C∗vr

in overall O(zk) time. For the sake of the anal-
ysis, we eliminate these points from Pk for the time
being, and continue processing them only at the final
step of the construction—see below.

Let UH(Pk−1) be the upper hull of Pk−1, and let
LH(Pk−1) be its lower hull. Having these structures
at hand, we construct the zones of UH(Pk−1) and
LH(Pk−1) in A(L). This takes overall O(nα(n)) time,
using the vertical decomposition of A(L) and the fact
that the zone complexity of a convex curve in a pla-
nar arrangement of n lines is O(nα(n)); see [12, The-
orem 5.11].

As soon as we have the zones as above, we can
determine for each line ` ∈ L the edges e ∈ E(Pk−1)
that ` intersects (if any). Let L1 be the lines that
intersect CH(Pk−1), and put L2 := L \ L1. (At this
stage of the analysis, we ignore all lines corresponding
to the points in Pk that were eliminated at the time
we processed C∗vl

, C∗vr
.)

Next, we wish to find, for each point p ∈ Pk \ Pk−1
the edges in E(Pk−1) in conflict with p. If p lies in-
side CH(Pk−1), there are no conflicts. Otherwise, we
efficiently find an edge ep ∈ E(Pk−1) visible from p,
whence we search for the slab S(e∗p) containing p—see
below.

Let us first consider the points on the lines in L1.
Fix a line ` ∈ L1, let p ∈ P be the point on `, and let
q1, q2 be the intersections between ` and the bound-
ary of CH(Pk−1). The points q1, q2 subdivide ` into
two rays ρ1, ρ2, and the line segment q1q2. By con-
vexity, q1q2 ⊆ CH(Pk−1) and the rays ρ1, ρ2 lie out-
side CH(Pk−1). Hence, if p lies on q1q2, it must be
contained in CH(Pk). Otherwise, p sees an edge of
E(Pk−1) that meets one of the rays ρ1, ρ2, and we
thus set ep to be this edge (which can be determined
in constant time); see Figure 1(b).

We next process the lines in L2. Note that all points
on the lines in L2 conflict with at least one edge in
E(Pk−1), since no line in L2 meets CH(Pk−1). To find
these edges we determine for each ` ∈ L2 a vertex
p` on the boundary of CH(Pk−1) that is extreme for
`.3 This can be done in total time O(n) by ordering
E(Pk−1) and L2 according to their slopes (the lat-
ter being performed during preprocessing), and then
merging these two lists in linear time. Next, fix such
a line ` ∈ L2, and let p ∈ ` be a query point, then p

3By this we mean that p` is extremal in the direction of the
outer normal of the halfplane that is bounded by ` and contains
CH(Pk−1).

must see one of the two edges in E(Pk−1) incident to
p` (which can be determined in constant time given
p`), and we thus set ep to be the corresponding edge;
see Figure 1(c).

We are now ready to determine, for each point
p ∈ Pk outside CH(Pk−1), the slab S(e∗p) that contains
it (note that e∗p must be vertically visible from p). If
ep is vertically visible from p, we set e∗p := ep. Oth-
erwise, we walk along (the boundary of) CH(Pk−1),
starting from ep and progressing in an appropriate di-
rection (uniquely determined by p and ep), until the
appropriate slab is found. Using cross pointers be-
tween the edges and the points, we can thus easily
compute C∗e for each e ∈ E(Pk−1). By construction,
all traversed edges are in conflict with p, and thus
the overall time for this procedure is proportional to
the total size of the conflict lists Ce. Recalling that
ce = |Ce|, we obtain

Exp
[∑
e∈E(Pk−1)

ce
]

= O(zk) = O(n),

by Lemma 1 with f : m 7→ m. This concludes the
construction of the refined conflict lists.

Computing CH(Pk). We next describe how to con-
struct the upper hull of Pk, the analysis for the lower
hull is analogous. Let 〈e1, . . . , es〉 be the edges along
the upper hull of Pk−1, ordered from left to right.
For each ei, we sort the points in C∗ei according to
their x-order, using, e.g., merge sort, as well as the
points in C∗vl

, C∗vr
. We then concatenate the sorted

lists C∗vl
, C∗e1 , C

∗
e2 , . . . , C

∗
es , C

∗
vr

, and merge the result
with the vertices of the upper hull of Pk−1. Call the
resulting list Q, and use Graham’s scan to find the
upper hull of Q in time O(|Q|). This is also the up-
per hull of Pk. Applying once again Lemma 1 with
f : m 7→ m logm, and putting c∗e := |C∗e |, c∗vl

:= |C∗vl
|,

c∗vr
:= |C∗vr

|, and A > 0 an absolute constant, the
overall expected running time of this step is bounded
by

Exp
[
A · (c∗vl

log c∗vl
+ c∗vr

log c∗vr
+

∑
e∈E(Pk−1)

c∗e log c∗e)
]

≤ Exp
[
3A ·

∑
e∈E(Pk−1)

ce log ce
]

= O (zk log (zk/zk−1)) = O(n),

because by definition C∗e ⊆ Ce, so c∗e ≤ ce, and
c∗vl
≤ ce1 + ce2 for two edges e1, e2 (and similarly

for c∗vr
). In total, we obtain that the expected time to

construct CH(Pk) given CH(Pk−1) is O(nα(n)), and
since there are log∗ n iterations, the total running time
is O(nα(n) log∗ n). We have thus shown:

Theorem 2 UsingO(n2) space and time, we can pre-
process a set L of n lines in the plane, such that given

211

27th European Workshop on Computational Geometry, 2011

CH(Pk−1)

e

S(e)

(a)

CH(Pk−1)

p

p`
ep

`

−→ν

(c)

p

`

q1

CH(Pk−1)

q2

ep

(b)

Figure 1: (a) The conflict list Ce of the edge e ∈ E(Pk−1) contains all the lightly-shaded points, whereas the refined conflict
list C∗(e) has only those points in the vertical slab S(e); (b–c) The edge ep of E(Pk−1) is visible to p when (b) ` intersects
CH(Pk−1), or (c) ` does not meet CH(Pk−1). In this case p` is an extreme vertex in the direction −→ν , and the two dashed lines
depict the visibility lines between p and the two respective endpoints of ep.

any point set P with each point lying on a distinct
line in L, we can construct CH(P) in expected time
O(nα(n) log∗ n).

We note that the analysis proceeds almost verba-
tim when L is just a set of line-segments in the plane.
In this case, we preprocess the lines containing the in-
put segments, and proceed as in the original problem.
Omitting the straightforward details, we obtain:

Corollary 3 If L is a set of n line-segments, we can
preprocess L in O(n2) space and time, such that given
a point set P with each point lying on a distinct seg-
ment of L, we can construct CH(P) in expected time
O(nα(n) log∗ n).

Further results. In the full version of the paper, we
show that under the “obliviousness assumption” we
can improve the expected running time of our algo-
rithm to O(nα(n)), while leaving the preprocessing
and storage time unchanged. The obliviousness as-
sumption states that the random choices of the pre-
processing phase are unknown to the adversary and
that the inputs are chosen in a manner oblivious of the
current data structure. We also show how to modify
the algorithm to make it output sensitive, and how
to produce trade-off bounds for storage and running
time.

We can extend our result to computing k-sets,
and we achieve an improved running time as long
as k = o(log n). Finally, we provide lower bounds
in the algebraic computation tree model for related
problems, such as preprocessing lines in the plane for
sorting a point set according to its x order, where each
point in the set lies on a distinct line; and preprocess-
ing a set of planes in R3 for computing the convex
hull of a point set with each point incident to a dis-
tinct plane. In all these cases preprocessing does not
reduce the Θ(n log n) time bound.

Acknowledgments The authors wish to thank
Maarten Löffler for suggesting the problem, and Boris
Aronov and Timothy Chan for helpful discussions.
E. Ezra was supported by a PSC-CUNY Research
Award; W. Mulzer was supported in part by NSF
grant CCF-0634958, NSF CCF 083279, and a Wal-
lace Memorial Fellowship in Engineering.

References

[1] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational geometry: algorithms and applica-
tions. Springer-Verlag, Berlin, third edition, 2008.

[2] K. Buchin, M. Löffler, P. Morin, and W. Mulzer. Prepro-
cessing imprecise points for Delaunay triangulation: Sim-
plified and extended. Algorithmica. To appear.

[3] K. L. Clarkson and P. W. Shor. Applications of random
sampling in computational geometry. II. DCG, 4(5):387–
421, 1989.

[4] O. Devillers. Delaunay triangulation of imprecise points,
preprocess and actually get a fast query time. Technical
Report 7299, INRIA, 2010.

[5] M. Held and J. S. B. Mitchell. Triangulating input-
constrained planar point sets. IPL, 109(1):54–56, 2008.

[6] D. G. Kirkpatrick and R. Seidel. The ultimate planar
convex hull algorithm? SICOMP, 15(1):287–299, 1986.

[7] M. J. van Kreveld, M. Löffler, and J. S. B. Mitchell. Pre-
processing imprecise points and splitting triangulations.
In Proc. 19th ISAAC, pages 544–555, 2008.

[8] M. Löffler. Data Imprecision in Computational Geometry.
PhD thesis, Utrecht University, 2009.

[9] M. Löffler and W. Mulzer. Triangulating the square and
squaring the triangle: quadtrees and Delaunay triangula-
tions are equivalent. In Proc. 22nd SODA, pages 1759–
1777, 2011.

[10] M. Löffler and J. Snoeyink. Delaunay triangulation of
imprecise points in linear time after preprocessing. CGTA,
43(3):234–242, 2010.

[11] R. Seidel. A simple and fast incremental randomized algo-
rithm for computing trapezoidal decompositions and for
triangulating polygons. CGTA, 1(1):51–64, 1991.

[12] M. Sharir and P. K. Agarwal. Davenport-Schinzel se-
quences and their geometric applications. Cambridge Uni-
versity Press, New York, NY, USA, 1995.

212

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Learning a 2-Manifold with a Boundary in R3

Christian Scheffer and Jan Vahrenhold
Faculty of Computer Science, Technische Universität Dortmund, 44227 Dortmund, Germany

{christian.scheffer,jan.vahrenhold}@cs.tu-dortmund.de

Abstract

We present an algorithm for approximating the local
feature size of point samples used for reconstructing
a 2-manifold in R3. Our algorithm improves previ-
ous results by simultaneously achieving the following
two goals: it computes an approximation of the local
feature size as well as the number of sample points
needed for this approximation using local informa-
tion only and at the same time is able to deal with
2-manifolds with a smooth boundary.

1 Introduction

Reconstructing a manifold from point samples in R3

is a fundamental problem that has attracted con-
siderable interest both in Computer Graphics and
Computational Geometry. Most algorithms follow
the general framework introduced by Amenta and
Bern [2] and perform the reconstruction based upon
the Voronoi diagram for the sample points. Comput-
ing a Voronoi diagram in R3, however, has a quadratic
worst-case complexity, and thus Funke and Ramos [7]
present a careful analysis of their variant of the Co-
Cone algorithm to show that a reconstruction is pos-
sible in near-linear time. Building upon this, Du-
mitriu et al. [5, 6] propose to first decimate the point
set in a preprocessing step using information locally
available before computing the (graph) Voronoi dia-
gram for the reduced point set; this algorithm does
not rely on CoCone. Recently, Dey et al. [4] con-
sidered the case of reconstructing a 2-manifold in R3

that has a smooth boundary.
We demonstrate how to modify the algorithm by

Dumitriu et al. [5, 6] to be able to reconstruct a 2-
manifold in R3 that has a smooth boundary. As it
turns out, we only need to replace one single subrou-
tine, namely the approximation of the so-called local
feature size, by a variant that can handle (smooth)
boundaries. Our algorithm builds upon ideas pre-
sented by Funke and Ramos [7] and we derive suffi-
cient conditions for the correctness of the reconstruc-
tion and comment on the approximation quality of our
algorithm. Unlike the algorithm of Dey et al. [4], our
algorithm does not rely on a global sampling condition
with a sampling constant known to the algorithm but
retains the property that the density of the sampling
may be locally different.

2 Preliminaries

Amenta and Bern [2] introduced the local feature size
as central concept used for reconstructing smooth
(closed) surfaces. For any point x on the manifold Γ,
the local feature size lfs (x) is defined as the distance
of x to the medial axis of Γ. In different terms, the
local feature size in a point x ∈ Γ is the radius of
the smaller of the two largest balls touching Γ in x
from the inside resp. from the outside and not con-
taining any other point of Γ in their interior. Thus,
the local feature size captures the curvature and the
folding of Γ. It is known that the (topological) cor-
rectness of a reconstruction algorithm depends on the
density of the set S ⊂ Γ of sample points used for the
reconstruction relative to the local feature size.

Definition 1 A discrete subset S of a smooth 2-ma-
nifold Γ ⊂ R3 is an ε-sample for Γ iff for every point
x ∈ Γ there is a point s ∈ S with |xs| ≤ ε · lfs (x).

Dumitriu et al.’s algorithm [5, 6] (Algorithm 1) first
uses a subroutine from Funke and Ramos [7] to com-
pute an approximation of ε · lfs (s) for each s ∈ S
and then connects two sample points s1, s2 ∈ S by an
edge if and only if |s1s2| ≤ c ·ε ·max {lfs (s1) , lfs (s2)}
where c is a constant used for compensating for the
approximation error. Using the resulting neighbor-
hood graph, the algorithm computes a k-hop-stable
subsample, locally identifies the connectivity of the
induced subgraph, and computes a topologically cor-
rect reconstruction of the manifold. Finally, all sam-
ple points not in the subsample are reinserted to refine
the reconstruction.

Figure 1(a) shows a situation where the presence of
the boundary of Γ (drawn as a thick line) results in
an illegal edge s1s2 to be constructed. Even a higher
sampling density close to the boundary does not alle-
viate this problem–see Figure 1(b).

Γ
s1

s2

(a) Illegal edge s1s2. (b) Non-unique reconstruction.

Figure 1: Problems induced by boundaries.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

213

27th European Workshop on Computational Geometry, 2011

Algorithm 1 Learning a 2-manifold in R3 [5, 6].
1: Compute an approximation φ(s) for ε · lfs (s) for

s ∈ S using a routine by Funke and Ramos [7].
2: Construct a neighborhood graph on S by connect-

ing s1, s2 ∈ S if |s1s2| ∈ O(max{φ(s1), φ(s2)}).
3: Compute Ssub ⊆ S as a maximal k-hop stable set

in the neighborhood graph.
4: Construct the graph Voronoi diagram of S with

respect to Ssub.
5: Use the graph Voronoi diagram to identify certi-

fied adjacencies between points in Ssub.
6: Identify faces and triangulate non-triangular

faces.
7: Reinsert points from S \ Ssub using a routine by

Funke and Ramos [7].

One of the key observations by Dumitriu et al. [5],
however, is that Steps 1 and 2 guarantee that one can
reconstruct a manifold from an ε-sample using only
information locally available during the remainder of
the algorithm (Steps 3–7). The contribution of this
work is a replacement for Step 1, i.e. an approxima-
tion algorithm for the local feature size that uses only
information locally available and can handle the case
where the manifold to be reconstructed has a smooth
boundary. This, however, requires the sampling con-
dition to be modified.

3 Local feature size for 2-manifolds with boundary

In the remainder of this paper, we will assume that Γ
is a smooth 2-manifold in R3 and that ∂Γ is a smooth
1-manifold. We extend the definition of the local fea-
ture size to the case of 2-manifolds with a boundary.

Definition 2 For the medial axis M∂Γ of the bound-
ary ∂Γ and the medial axis MΓ◦ of the interior Γ◦ we
define

lfs∂Γ(x) = min {dist(x,M∂Γ)} for x ∈ ∂Γ
lfs∂Γ(x) = miny∈∂Γ {lfs∂Γ(y) + |xy|} for x ∈ Γ◦

lfsΓ◦(x) = min {dist(x,MΓ◦)} for x ∈ Γ

The local feature size of a point x ∈ Γ then is defined
as lfs (x) := min {lfs∂Γ (x) , lfsΓ◦ (x)}.

Dey et al. also define a (similar) variant of the lo-
cal feature size but then use it to define “a global
measure ρ = infx∈Γ lfs (x)” [4, p. 1373] that is know
to the algorithm and used for defining the (global)
quality of the sample. In contrast, we follow Funke
and Ramos [7] and approximate the local feature size
locally. The correctness of the algorithms of Funke
and Ramos [7] and Dumitriu et al. [5, 6] is based
upon the observation that the local feature size is a 1-
Lipschitz function, i.e., a non-negative function f with
f(x) ≤ f(x′) + |xx′| for all x, x′. Lemma 1 allows us

to reuse their (algorithm and) correctness proof for
points “far away” from ∂Γ:

Lemma 1 The local feature size as defined in Defi-
nition 2 is a 1-Lipschitz function.

Following Funke and Ramos’ approach, we con-
sider the Voronoi cell Vor (s) of a sample point s
restricted to the (unknown) manifold Γ. One then
can show that the distance from s to the furthest ver-
tex v in Vor (s) ∩ Γ is an approximate lower bound
for ε

1−ε · lfs (s). Since Γ is unknown to the algorithm,
we appoximate Vor (s) ∩ Γ by Vor (s) ∩ T̃s where T̃s

is an approximation of the plane Ts tangent to Γ in s.
Since Γ has a boundary, ∂Γ can cross Vor (s) such that
some Voronoi vertices in Vor (s) ∩ T̃s do not have a
corresponding vertex on Γ—see Figure 2.

vs

s1s2

s3

s4

s5
∂Γ

T̃s ≈ Ts

Figure 2: ∂Γ crosses Vor (s).

To avoid the lower bound for ε
1−ε · lfs (s) to be

(arbitrarily) biased by such a cut-off vertex v, the
main challenge is to restrict the “search space” for
the Voronoi vertices on Vor (s)∩ T̃s to areas certified
not to contain any part of the boundary or – if it
crosses the cell – to exclude cut-off Voronoi vertices
while computing the approximation.

4 Safeguarding Voronoi cells from ∂Γ

To simplify notation, we define what we call a bicone;
bicones will be shown to contain the locally relevant
part of the manifold (including the boundary).

Definition 3 Let x1, x2 ∈ R, x1 6= x2, r ≥ |x1x2|/2,
and let E be a plane containing both x1 and x2. Let
CE,1 and CE,2 denote the two circles in E that have
radius r and pass through x1 and x2. The bicone
Ccone

x1,x2,r of x1 and x2 with parameter r then is defined
as the union of the intersections of CE,1 and CE,2 for
all planes E containing x1 and x2 (see Figure 3):

Ccone
x1,x2,r :=

⋃
E3x1,x2

(CE,1 ∩ CE,2)

x1

x2

gx1x2

Ccone
x1,x2,|x1x2|

x2

x1
E

CE,1CE,2

CE,1 ∩ CE,2

Figure 3: Bicone Ccone
x1,x2,r of x1 and x2 w.r.t. r.

214

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

In Lemma 5, we name the conditions that guaran-
tee the existence of a smooth curve connecting two
points x1 and x2 inside a bicone Ccone

x1,x2,r for a prop-
erly defined r. For Corollary 2 and Lemmas 3 and 4,
we consider the three points x, x1, x2 ∈ Γ where
|xx1|, |xx2|, |x1x2| ≤ 1

2 · lfs(x) and where x1 and x2

realize an angle of at most 1
3 · π at apex x. Based

upon these points, we define r := max {|xx1|, |xx2|}.

Corollary 2 There exist three continuous curves
γxx1 , γxx2 , γx1x2 ⊂ Γ connecting x and x1, x and x2,
and x1 and x2 with γxx1 ⊂ Ccone

x,x1,r, γxx2 ⊂ Ccone
x,x2,r and

γx1x2 ⊂ Ccone
x1,x2,r.

Lemma 3 (see Figure 4(a)) The Voronoi region
of x with respect to x1 and x2 lies outside of Ccone

x1,x2,r.

Lemma 4 (see Figure 4(b)) The patch of Γ
bounded by γ := γxx1γx1x2γx2x does not contain any
point of ∂Γ in its interior.

π

3

x

x1

x2

Ccone

x1,x2,|xx2|

x′
2

x′
1

Ccone

x′
1
,x′

2
,|xx2|

γx1x2

V (x)

(a) γx1x2 does
not cross Vor (x).

x2
x1

x

γx1x2

γx1x
γx2x

(b) Patch
bounded by
γxx1γx1x2γx2x.

x

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

γx8x9

γx9x10

γx1x10

γx1x2

γx2x3γx3x4

γx4x5

γx5x6

γx6x7

γx7x8

Vor (x)

(c) Closed curve γ does
not cross Vor (s).

Figure 4: Configurations of Lemmas 3, 4, and 5

Combining the above results, we can show that the
Voronoi cell of some (sample) point x ∈ Γ restricted
to the intersection with Γ is guaranteed not to contain
any point from ∂Γ if there are enough (sample) points
distributed around it. More precisely, the guarantee
holds if every wedge of a ball with radius 1

2 · lfs(x)
centered at x contains at least one other sample point.

Lemma 5 (See Figure 4(c)) Let x, x0, . . . , x`−1

be points on Γ for which the following holds:

� |xxi| < 1
2 · lfs (x) for all i ∈ {0, . . . , `− 1}.

� ∀i ∈ {0, . . . , ` − 1} : ∃j, k ∈ {0, . . . , ` − 1} \ {i} :
∠(xj , x, xi) ≤ 1

3 · π ∧ ∠(xk, x, xi) ≥ 5
3 · π

Then there is no point of ∂Γ inside the intersection
of Γ and the Voronoi cell of x, i.e.

(Γ ∩Vor(x))◦ ∩ ∂Γ = ∅

5 Sampling 2-manifolds with a boundary

In Lemma 5, we considered a situation, which allows
us to account the (restricted) intersection of Vor (s)

with Ts for approximating ε · lfs(s) by the largest dis-
tance of a point v ∈ Vor (s) ∩ Ts to s. This config-
uration of points describe the distribution of “close”
sample points around s. The closeness of these sample
points is guaranteed by the following theorem:

Theorem 6 Let S be an ε-sample of Γ. Then, for
each s ∈ S, we have at least k 1

2 ,ε ∈ O(1/ε2) nearest

neighbors {s1, . . . , sk 1
2 ,ε
} ⊂ S such that dist (s, si) <

1
2 · lfs(s) for each si ∈ {s1, . . . , sk 1

2 ,ε
}.

The final property of the sample points has to de-
scribe a “good” distribution of these k 1

2 ,ε ∈ O(1/ε2)
nearest neighbors around s. Figure 1(b) illustrates
that the standard sampling condition does not guar-
antee a unique reconstruction.

Definition 4 A discrete subset S ⊂ Γ is an (ε, k)-
sample iff S is an ε-sample and the following condi-
tion holds for each s ∈ S: for any point y ∈ Γ with
|ys| ∈ [ε

1+ε · lfs(s),
2·ε
1−ε · lfs(s)], there exists a point

s′ ∈ S who is one of the k nearest neighbors of s
and for which ∠(y, s, s′) ≤ 1

6 · π hold.

For an (ε, k)-sample, we can prove that the premise
of Lemma 5 holds for every sample point which has at
least a distance of ε

1−ε ·lfs(s) to ∂Γ. Also, we can com-
pute a restriction Hs of Vor (s) ∩ Ts for all other sam-
ple points by analyzing the k ≤ k 1

2 ,ε nearest neighbors
of s, so that ∂Γ do not intersect Hs ∩Vor (s).

As mentioned in Section 3, the algorithm relies on
an approximation T̃s of the plane Ts tangent to a sam-
ple point s ∈ Γ. Whereas the Funke and Ramos’ base
algorithm works with every (in an asymptotic sense)
good approximation, our variant requires an absolute
bound on the deviation of the planes’ normals:

Lemma 7 Let S be an (ε, k)-sample with ε ≤ 1
16 and

k ≤ k 1
2 ,ε. We can compute an approximation T̃s of the

plane Ts tangent to Γ in s ∈ S with ∠(Ts, T̃s) ≤ 17◦

by inspecting k nearest neighbours.

6 Approximating the local feature size

Summarizing the results from Section 4, we obtain
the following algorithm for approximating the local
feature size for an (ε, k)-sample of a 2-manifold with
a boundary (Algorithm 2).

Substituting this algorithm for Step 1 in Algo-
rithm 1 and observing that the remaining steps work
on information locally available in the neighborhood
graph, we obtain an algorithm for reconstructing a
smooth (orientable or non-orientable) 2-manifold in
R3 with a boundary.

215

27th European Workshop on Computational Geometry, 2011

Algorithm 2 Approximating lfs(s) for s ∈ S.

Require: S ((ε, k)-sample with ε ≤ 1
16 and k ≤ k 1

2 ,ε)
1: for each s ∈ S do
2: NH s :=NN(S,s, k). . Find k NNs of s in S.
3: T̃s :=TangPlane(NH s, s). . See Lemma 7.
4: Vor T̃s

(s) := Vor (s) ∩ T̃s.
5: if s does not fulfill Lemma 5’s premise then
6: Vor T̃s

(s) := Vor T̃s
(s) ∩Hs.

7: v := Voronoi vertex of Vor T̃s
(s) furthest to s.

8: φ(s) := |vs|.
9: Return φ.

7 Analysis of the algorithm

A direct implementation of Algorithm 2 results in a
quadratic running time due to the complexity of com-
puting the Voronoi diagram in R3. For this version,
however, we can prove the following:

Theorem 8 Algorithm 2 computes φ(s) for each
s ∈ S such that φ(s) ≤ 1.135 · ε

1−ε · lfs (s).

If one is willing to trade approximation quality
for running time, one can (prove and) use that the
Voronoi cell of a sample point s with respect to its
k nearest neighbors is a “good” approximation for
the Voronoi cell used in Algorithm 2 in the sense
that the constant in Theorem 8 increases from 1.135
to no more than 1.3. In this case, the dominating
step of this algorithm is the computation of the k
nearest neighbors, which (using a well-separated pair
decomposition [3] and Theorem 6) can be done in
O(n

ε2 log n
ε2) time. With the exception of Step 2 (com-

puting the neighborhood graph), the remaining steps
of Algorithm 1 can be executed in the same time com-
plexity, since the subgraph worked with is not too
large [6] and re-inserting the excluded points can be
done in near-linear time [7]. Step 2 boils down to an-
swering n spherical range queries in R3 (i.e., n half-
space reporting queries in R4) which can be done in
O(n4/3 polylog n) time [1, 8].

8 Experimental Evaluation

Since we changed only the first step of Algorithm 1, we
were interested in its output, i.e. the approximation of
the local feature size. As it
is common practice, we first
assess the quality by visual
inspection: Figure 5 shows
a reconstruction of part of
the dragon model used in [6] Figure 5: Dragon’s head.

(the graph shows the union of all Delaunay duals for
the (restricted) Voronoi cells from Step 7 of Algo-
rithm 2.). We obtained a manifold with a boundary
by extracting a slice of the dragon’s head.

In addition to this visual assessment, we also
evaluated the approximation quality of our algorithm
for estimating the
local feature size.
To this end, we
constructed samples
S◦ and SS of two
manifolds Γ◦ and
ΓS in R3 in a way
that we were able

S
S

S
◦

Γ
◦

Γ
S

Figure 6: Manifolds and samples.

to derive the local feature size of the manifold from
the construction algorithm and thus were able to also
numerically assess the quality of our approximation
algorithm. By construction, the correct values of φ◦

(for S◦) and thus also of φS (for SS) can be shown
to be approximately 1.85. Our approximation of
ε · lfs computes in both cases values in the range
[1.83, 1.87], that is very close to the actual value.

9 Conclusions

We have presented a new sampling condition that al-
lows for approximating the local feature size of the
points on a 2-manifold with a boundary embedded
in R3. The resulting approximation algorithm builds
upon previous work but has the advantage of simul-
taneously being able to handle manifolds with bound-
aries and not having to assume a global lower bound
on the local feature size. The experimental evalua-
tion tightly supports the theoretical analysis of the
approximation quality.

References

[1] P. K. Agarwal and J. Erickson. Geometric range
searching and its relatives. In Advances in Discrete
and Computational Geometry, pages 1–56. AMS, 1999.

[2] N. Amenta and M. Bern. Surface reconstruction by
Voronoi filtering. Discrete & Computational Geome-
try, 22(4):481–504, 1999.

[3] P. B. Callahan and S. R. Kosaraju. A decomposition
of multidimensional point sets with applications to k-
nearest-neighbors and n-body potential fields. Journal
of the ACM, 42(1):67–90, 1995.

[4] T. K. Dey, K. Li, E. A. Ramos, and R. Wenger. Iso-
topic reconstruction of surfaces with boundaries. Com-
puter Graphics Forum, 28(5):1371–1382, 2009.

[5] D. Dumitriu, S. Funke, M. Kutz, and N. Milosavljević.
On the locality of extracting a 2-manifold in IR3. In
Proc. Scandinavian Workshop on Algorithm Theory,
LNCS 5124, pages 270–281, Springer, 2008.

[6] D. Dumitriu, S. Funke, M. Kutz, and N. Milosavl-
jević. How much geometry it takes to reconstruct a
2-manifold in IR3. ACM Journal on Experimental Al-
gorithmics, 14, May 2009. Article 2.2, 17 pages.

[7] S. Funke and E. A. Ramos. Smooth-surface recon-
struction in near-linear time. In Proc. Symposium on
Discrete Algorithms, pages 781–790. ACM, 2002.

[8] J. Matoušek. Reporting points in halfspaces.
Computational Geometry: Theory and Applications,
2(3):169–186, 1992.

216

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Approximate Polytope Membership Queries∗

Sunil Arya† Guilherme D. da Fonseca‡ David M. Mount§

Abstract

In this paper, we consider an approximate version
of a fundamental geometric search problem, polytope
membership queries. Given a convex polytope P in
R

d, the objective is to preprocess P so that, given a
query point q, it is possible to determine efficiently
whether q lies inside P subject to an allowed error
ε. Previous solutions were based on straightforward
applications of classic polytope approximation tech-
niques by Dudley (1974) and Bentley et al. (1982).
The former yields minimum storage, and the latter
yields constant query time. A space-time tradeoff can
be obtained by interpolating between the two. We
present a significant improvement to this tradeoff. For
example, using the same storage as Dudley, we reduce
the query time from O(1/ε(d−1)/2) to O(1/ε(d−1)/4).

To establish the relevance of our results, we in-
troduce a reduction from approximate nearest neigh-
bor searching to approximate polytope membership
queries, providing significant improvements to the
best known space-time tradeoffs for approximate
nearest neighbor searching.

1 Introduction

The problem of determining whether a query point q
lies within a convex polytope P , represented as the
intersection of halfspaces, is dually equivalent to an-
swering halfspace emptiness queries. Such queries find
applications in many geometric problems, such as lin-
ear programming queries, ray shooting, nearest neigh-
bor searching, and the computation of convex hulls.
In dimension d ≤ 3, it is possible to build a data
structure of linear size that can answer such queries in
logarithmic time. In higher dimensions, however, all
exact data structures with roughly linear space take

∗A more complete version will appear in STOC 2011.
†Department of Computer Science and Engineering, The

Hong Kong University of Science and Technology, Hong Kong,

arya@cse.ust.hk.
‡Departamento de Informática Aplicada, Universidade

Federal do Estado do Rio de Janeiro (UNIRIO), Brazil,

fonseca@uniriotec.br. Research supported by FAPERJ

grant E-26/110.091/2010 and CNPq/FAPERJ grant E-

26/110.552/2010.
§Department of Computer Science and Institute for Ad-

vanced Computer Studies, University of Maryland, USA,

mount@cs.umd.edu. Research supported by NSF grant CCR-

0635099 and ONR grant N00014-08-1-1015.

˜O(n1−1/⌊d/2⌋) query time, which, except in small di-
mensions, is little better than brute-force search.

Throughout, we assume that P is a convex polytope
lying within the hypercube [−1, 1]d, which is repre-
sented as the intersection of the set of halfspaces that
define its facets. Given ε > 0, we say that P ′ is an ε-
approximation to P if the Hausdorff distance between
P and P ′ is at most ε. (Typically, polytope approx-
imation is defined relative to P ’s diameter, but by
scaling P to lie within [−1, 1]d, there is no loss of gen-
erality in this formulation.) Dudley [6] showed that,
for any convex body, it is possible to construct an
ε-approximating polytope with O(1/ε(d−1)/2) facets.
This bound is asymptotically tight in the worst case.

Given a polytope P , a positive real ε, and a query
point q, an ε-approximate polytope membership query

determines whether q lies inside or outside of P , but
it may return either answer if q’s distance from P ’s
boundary is at most ε. Approximate polytope mem-
bership queries arise in a number of applications, such
as collision detection, training a support vector ma-
chine, and approximate nearest neighbor searching.

Dudley’s construction provides a näıve solution to
the approximate polytope membership problem. Con-
struct an ε-approximation P ′, and determine whether
q lies within all its bounding halfspaces. This ap-
proach takes O(1/ε(d−1)/2) query time and space.
An alternative simple solution was proposed in [2].
Create a d-dimensional grid with cells of diameter ε
and, for every column along the xd-axis, store the
two extreme xd values where the column intersects
P . This algorithm produces an approximation P ′

with O(1/εd−1) facets. Given a query point q, it is
easy to determine if q ∈ P ′ in constant time (assum-
ing a model of computation that supports the floor
function), but the space required by the approach is
O(1/εd−1).

These two extreme solutions raise the question of
whether a tradeoff is possible between space and query
time. Before presenting our results, it is illustrative to
consider a very simple method for generating such a
tradeoff. Given r ∈ [ε, 1], subdivide the bounding hy-
percube into a regular grid of cells of diameter r and,
for each cell that intersects the polytope’s boundary,
apply Dudley’s approximation to this portion of the
polytope. Subject to minor technical details, the re-
sult is a data structure of space O(1/(εr)(d−1)/2) and
query time O((r/ε)(d−1)/2). This interpolates nicely
between the two extremes for ε ≤ r ≤ 1.

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

217

27th European Workshop on Computational Geometry, 2011

Given the optimality of Dudley’s approximation, it
may be tempting to think that the above tradeoff is
optimal, but we will demonstrate that it is possible to
do better. We show first that it is possible to build a
data structure with storage O(1/ε(d−1)/2) (the same
as Dudley) that allows polytope membership queries
to be answered significantly faster, in O(1/ε(d−1)/4)
time. By iterating a suitable generalization of this
construction, it is possible to produce a succession of
structures of increasingly better search times.

Theorem 1 Given a polytope P in [−1, 1]d, a pa-

rameter ε > 0, and a constant α ≥ 2, it is possible to

answer ε-approximate polytope membership queries

in time t = 1/ε(d−1)/α ≥ 1 with storage space

O

(

1/ε
(d−1)

(

1− 1

2⌊log2 α⌋
−

⌊log2 α⌋−1
α

)
)

.

These space-time tradeoffs are presented visually in
Figure 1(a). The lower bound will be discussed later.

The data structure and its construction are both
extremely simple. The data structure consists of a
quadtree where each leaf cell stores a set of halfs-
paces whose intersection approximates the polytope’s
boundary within the cell. A query is answered by
performing a point location in the quadtree followed
by a brute force inspection of the halfspaces in the
node. The data structure is constructed by the fol-
lowing recursive algorithm, called SplitReduce. It is
given the polytope P , the approximation parameter
ε, and the desired query time t. The initial quadtree
box is Q = [−1, 1]d.

SplitReduce(Q):

1. Let P ′ be an ε-approximation of Q ∩ P .

2. If the number of facets |P ′| ≤ t, then Q stores
the hyperplanes bounding P ′.

3. Otherwise, split Q into 2d quadtree boxes and
invoke SplitReduce on each such box.

Although the algorithm itself is deceptively simple,
the analysis of the storage as a function of the query
time t is nontrivial. The storage efficiency depends
on the assumption that the number of facets of P ′ is
approximately minimal. This will be made precise in
Section 2. In addition to proving upper bounds on
the space complexity of the above algorithm, we will
establish a lower bound (see Figure 1(a) and Theo-
rem 6).

To establish the relevance of our results, we in-
troduce a reduction from approximate nearest neigh-
bor searching to approximate polytope membership
queries, providing significant improvements to the
best known space-time tradeoffs for approximate
nearest neighbor searching [1]. Our reduction implies
the following improved space-time tradeoffs for ANN
queries.

Theorem 2 Given set of n points in R
d, a parameter

ε > 0, and a constant α ≥ 2. There is a data struc-

ture for approximate nearest neighbor searching with

query time O(log n+ (log(1/ε))/εd/α) and storage

O

(

n/ε
d

(

1− 1

2⌊log2 α⌋
−

⌊log2 α⌋

α

)
)

.

These space-time tradeoffs together with known up-
per bounds and lower bounds [1] are illustrated in Fig-
ure 1(b). Although the connection between the poly-
tope membership problem and ANN has been noted
before by Clarkson [5], we are the first to provide a
reduction that holds for point sets with unbounded
aspect ratio. Details are omitted in this version.

2 Upper Bound for Polytope Membership

In this section, we present upper bounds for the stor-
age of the data structure obtained by the SplitReduce

algorithm for a given query time t. We may assume
that P is presented succinctly to our algorithm, for
example, as the output of Chan’s coreset construc-
tion [3]. We start by discussing the first step of the
algorithm.

Step 1 consists of obtaining a polytope P ′ that ε-
approximates Q∩ P . Some polytopes can be approx-
imated with far fewer than Θ(1/ε(d−1)/2) facets. The
problem of approximating a polytope with the min-
imum number of facets reduces to a set cover prob-
lem [7] and an O(log(1/ε)) approximation can be ob-
tained by a greedy algorithm. Clarkson [4] showed
that if c is the smallest number of facets required to
approximate P , then we can obtain an approximation
with O(c log c) facets in O(nc2 log n log c) randomized
time, where n is the number of facets of P .

For simplicity, we assume that the algorithm used
in Step 1 produces an approximation to Q∩P with a
minimum number of facets. (In the full version it will
be shown that an application of Dudley’s algorithm to
an appropriate subset of P suffices for our purposes.
An alternative is to run Clarkson’s approximation al-
gorithm on Q ∩ P . This increases the query time by
a negligible factor of O(log(1/ε)).)

For completeness, we now describe Dudley’s algo-
rithm. Let P be a polytope, and let the size σP of P
denote the side length of the smallest axis aligned box
Q that contains P . We assume that the center of Q
is the origin. Dudley’s algorithm obtains an approx-
imation polytope P ′ in the following manner. Let B
be a ball of radius σP

√
d centered at the origin. Place

a set J of Θ((σP /ε)
(d−1)/2) points on the surface of

B such that every point on the surface of B is within
distance O(

√
εσP) of some point in J . For each point

j ∈ J , determine the nearest facet of P and add the
corresponding halfspace to P ′. We consider that each
point j ∈ J generates a facet of P ′ of diameter at most

218

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

0

1/16

1/8

1/4

1/2

1/2 5/8 3/4 1

(a) Tradeoffs for Polytope Membership

Previous upper bound
New upper bound

Lower bound

x: Storage is 1/εx(d−O(1))

y
:

Q
u
er

y
ti

m
e

is
1/

ε
y
(d
−

O
(1

))

0

1/16

1/8

1/4

1/2

1/4 1/2 11/16 1

(b) Tradeoffs for ANN search

Previous upper bound
New upper bound

Lower bound

x: Storage is n/εx(d−O(1))

y
:

Q
u
er

y
ti

m
e

is
O

(l
og

n
)
+

1/
ε
y
(d
−

O
(1

))

Figure 1: The multiplicative factor in the exponent of the 1/ε term for (a) polytope membership queries and (b)
approximate nearest neighbor (ANN) queries. The O(1) term in the exponent corresponds to a constant that
does not depend on d.

√
εσP , even if these facets are coplanar. The follow-

ing lemma follows from standard results on Dudley’s
algorithm.

Lemma 3 Given a polytope P of size σP , Dud-

ley’s algorithm produces a polytope P ′ with

O((σP /ε)
(d−1)/2) facets that approximates P . Fur-

thermore, all facets of P ′ have diameter at most
√
εσP .

Recall that our algorithm takes four inputs: poly-
tope P , box Q, query time t, and approximation er-
ror ε. For simplicity, we refer to the algorithm as
SplitReduce(Q), since the parameters P , t, ε remain
unchanged throughout the recursive calls. The out-
put of our algorithm is a quadtree whose leaf cells
induce a subdivision of Q. Each leaf cell L stores an
approximation of P ∩ L with tL ≤ t facets, where tL
is the minimum number of facets required to approx-
imate P ∩ L. The storage of this quadtree is defined
as the total number of stored facets over all the leaf
cells. Before we prove the whole space-time tradeoff,
we show that the algorithm produces a data struc-
ture with query time t = Θ(1/ε(d−1)/4)) and the same
storage as Dudley’s algorithm, O(1/ε(d−1)/2).

Lemma 4 The output of SplitReduce(Q) for t ≥
(σQ/ε)

(d−1)/4 ≥ 1 is a quadtree with storage

O((σQ/ε)
(d−1)/2).

Proof. Let T denote the quadtree produced by the
algorithm. For each leaf cell L of T , let tL be the
number of facets stored in L. We will show that
∑

L
tL ≤ (σQ/ε)

(d−1)/2, which establishes the storage
bound and proves the lemma.
Towards this end, we first prove a lower bound on

the size of any leaf cell L. We assert that there ex-
ists a constant c1 such that every leaf cell L has size

σL ≥
√

εσQ/c1. The assertion follows from Lemma 3.
In particular, the standard Dudley technique applied
to a cell of size

√

εσQ/c1 produces a polytope with at

most cD(σQ/c1ε)
(d−1)/4 facets, where cD is the con-

stant arising from Dudley’s method. By choosing c1
to be a sufficiently large constant, the number of facets
is at most t and the termination condition of our al-
gorithm implies that such a cell is not subdivided.

Let PD be the polytope obtained by applying Dud-
ley’s algorithm to P ∩ Q. Combining our assertion
with Lemma 3, each facet of PD intersects O(1) leaf
cells. We assign each facet to all leaf cells that it
intersects. The correctness of Dudley’s algorithm im-
plies that the facets assigned to any cell L provides
an approximation of P ∩L. Thus, tL is no more than
the number of Dudley facets assigned to L. Since the
number of facets of PD is O((σQ/ε)

(d−1)/2), it follows
that

∑

L
tL = O((σQ/ε)

(d−1)/2), which completes the
proof. �

We now use the previous lemma as a base case in
order to extend the space-time tradeoff to other query
times.

Theorem 5 Let α ≥ 2 be a constant. The output

of SplitReduce(Q) for t = (σQ/ε)
(d−1)/α ≥ 1 is a

quadtree with storage

O

(

(σQ

ε

)(d−1)
(

1− 1

2⌊log2 α⌋
−

⌊log2 α⌋−1
α

)
)

.

Proof. Let k = ⌊log2 α⌋. Our proof proceeds by in-
duction on a constant number of steps k. The base
case case k = 1 corresponds to Lemma 4. Next, as-
sume that the theorem holds for 1, . . . , k − 1, that is,
for α < 2k. We need to prove that the theorem holds
for 2k ≤ α < 2k+1.

219

27th European Workshop on Computational Geometry, 2011

Let T denote the quadtree produced by the algo-
rithm with 2k ≤ α < 2k+1. Let T ′ denote the subtree
induced by cells of size at least

√
εσQ/2. Arguing ex-

actly as in the proof of Lemma 4, the sum
∑

L
tL over

all leaf cells of T ′ is O((σQ/ε)
(d−1)/2). The leaf cells

of T ′ that have tL ≤ t are not refined by the algorithm
and their total storage clearly satisfies the bounds of
the theorem.

We now consider the subset L of leaf cells of
T ′ such that for L ∈ L we have tL > t. By
Markov’s inequality, |L| = O((σQ/ε)

(d−1)/2)/t =

O((σQ/ε)
(d−1)(1

2−
1
α)). Also, the size of the cells in

L is between
√
εσQ/2 and

√
εσQ, since larger cells

would have been subdivided.
Recall that the induction hypothesis states that the

theorem holds for α < 2k. Since the size of the cells L
in L is σL ≤

√
εσQ, we have t = (σL/ε)

(d−1)/α′

, where
α′ ≤ α/2 for sufficiently small ε ≤ σQ/4 (if ε > σQ/4,
then the theorem holds trivially). Therefore we can
use the induction hypothesis to obtain the following
storage for each cell L ∈ L:

O

(

(σQ

ε

)(d−1)(1
2−

1

2k
−

k−2
α)
)

.

We then multiply by |L| = O((σQ/ε)
(d−1)(1

2−
1
α))

completing the induction. �

Note that the height of the quadtree obtained by
SplitReduce is O(log(1/ε), since cells of size ε are never
subdivided. Therefore, it is straightforward to lo-
cate the quadtree cell containing the query point in
O(log(1/ε)) time. Theorem 1 follows as a straightfor-
ward consequence.

3 Lower Bound for Polytope Membership

In this section, we present lower bounds on the space-
time tradeoffs obtained by our algorithm for polytope
membership. Our main result is the following.

Theorem 6 Let α ≥ 2 be a constant. There

exists a polytope P such that the output of

SplitReduce([−1, 1]d) for t = 1/ε(d−1)/α ≥ 1 is a

quadtree with storage

Ω

(

1/ε
(d−1)

(

1−2
√

2
α
+ 3

α

)

−1
)

.

Our approach is similar to the lower bound proof of
[1]. It is based on constructing a hypercylinder that
takes dimension k, 1 ≤ k ≤ d− 2 as a parameter, and
bounding the storage requirements of our data struc-
ture for it. We carry out this analysis in Lemma 7.

Lemma 7 Let k and t be integers, where 1 ≤ k ≤
d − 2, 1 ≤ t ≤ 1/ε(d−1)/2, and let 0 < ε ≤ 1.
There exists a polytope P such that the output of

SplitReduce([−1, 1]d) for P is a quadtree with storage

Ω
(

t
(

1
εt2/(d−k−1)

)k
)

.

Proof. (sketch) Consider an infinite polyhedral hy-
percylinder C whose “axis” is a k-dimensional linear
subspace K defined by k of the coordinate axes, and
whose “cross-section” is a polytope P0 that approx-
imates a (d − k)-dimensional ball of diameter ∆. If
we choose ∆ = O(εt2/(d−k−1)), then any polytope
P ′

0 that approximates P0 requires at least (2d + 1)t
facets. Define polytope P to be the truncated cylin-
der obtained by intersecting C with the hypercube
[−1, 1]d.
Consider a set X of points that are at least ∆

apart placed on the intersection of [−1, 1]d with the
k-dimensional axis of the hypercylinder C. By a sim-
ple packing argument, we can ensure that the number
of points in X is at least Ω(1/∆k). Let PX

0 denote the
set of cross-sections of C passing through the points
of X. Consider the set of leaf cells of the quadtree
that overlap any cross-section P0 ∈ PX

0 . Recall from
our construction that these cells must together con-
tain at least (2d + 1)t facets. We say that a leaf cell
is small if its size is at most ∆. By a packing ar-
gument, at least t facets are contained in the small
leaf cells intersecting P0. Noting that small leaf cells
cannot intersect two cross-sections of PX

0 , since they
are at least ∆ apart, it follows that the total space
used by all the small leaf cells together is at least
Ω(t|X|) = Ω(t/∆k) = Ω(t(1/(εt2/(d−k−1)))k), which
proves the lemma. �

Setting k appropriately, we obtain the lower bound
in Theorem 6.

References

[1] S. Arya, T. Malamatos, and D. M. Mount. Space-time
tradeoffs for approximate nearest neighbor searching.
J. ACM, 57:1–54, 2009.

[2] J. L. Bentley, F. P. Preparata, and M. G. Faust. Ap-
proximation algorithms for convex hulls. Commun.
ACM, 25(1):64–68, 1982.

[3] T. M. Chan. Faster core-set constructions and data-
stream algorithms in fixed dimensions. Comput.
Geom., 35(1):20–35, 2006.

[4] K. L. Clarkson. Algorithms for polytope covering and
approximation. In Proc. 3rd Workshop Algorithms
Data Struct. (WADS), pages 246–252, 1993.

[5] K. L. Clarkson. An algorithm for approximate closest-
point queries. In Proc. 10th ACM Symp. Comput.
Geom. (SoCG), pages 160–164, 1994.

[6] R. M. Dudley. Metric entropy of some classes of
sets with differentiable boundaries. Approx. Theory,
10(3):227–236, 1974.

[7] J. S. B. Mitchell and S. Suri. Separation and approx-
imation of polyhedral objects. Comput. Geom., 5:95–
114, 1995.

220

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Certified Computation of Morse-Smale Complexes on Implicit Surfaces

A. Chattopadhyay ∗ G. Vegter†

Abstract

The Morse-Smale complex is an important tool for

global topological analysis in various problems in com-

putational topology and data analysis. A certified

algorithm for computing the Morse-Smale complexes

has been presented for two-dimensional Morse-Smale

systems in bounded planar domains [3]. In the cur-

rent article we extend the approach in case of Morse-

Smale systems on two-dimensional manifolds (sur-

faces) which are given by regular level sets of smooth

functions. We give an outline of our method for com-

puting certified Morse-Smale complexes on the im-

plicit surfaces and present some implementation re-

sults.

1 Introduction

Extracting global topological information of an im-

plicit surface is an important problem in computa-

tional topology. One way to extract the global topo-

logical information of an implicit surface is by approx-

imating the surface with a simplicial complex followed

by a computation of its topological invariants, such

as homology groups, Betti numbers, genus etc. There

are many existing computational topology tools [4]

for doing such an analysis. A second and more direct

approach is to analyze the gradient field of a height

function on an implicit surface. However, analyzing

the gradient field of the height function can be done

via computing its Morse-Smale (MS) complex, which

is a configuration of singular points and separatrices of

the corresponding gradient system. The MS-complex

of a gradient system reveals the global topology of

the underlying shape. Since it is known that almost

all height functions are Morse functions, i.e., func-

tions having only non-degenerate critical points, and

by applying a small perturbation, a Morse function

could be transformed into a MS function (defined in

2). Therefore, computation of the topologically cor-

rect MS-complex of a height function, or more gen-

erally, of a MS-function on an implicit surface is a

worthwhile problem.

Existing algorithms for MS-complexes can compute

the complex of a piecewise linear manifold or, in other

words, of a discrete gradient-like vector field [6].

The topological correctness depends on how coarse

∗Department of Mathematics and Computing Science, Uni-

versity of Groningen, A.Chattopadhyay@rug.nl
†Department of Mathematics and Computing Science Sci-

ence, University of Groningen, G.Vegter@rug.nl

the discretization is. On the other hand, we con-

sider the problem of computing a certified approxi-

mation of the MS-complex of a smooth implicit MS-

function. In other words we compute a configura-

tion of piecewise-linear curves which is isotopic to the

MS-complex on the implicit surface. Our algorithm

uses interval arithmetic to bring the computation into

the context of Exact Geometric Computation (EGC)

paradigm [8].

Our contribution. The main difference of the cur-

rent article with the previous article [3] is that in the

current problem the MS-complex is known only im-

plicitly on an implicit surface. In particular, the al-

gorithm for computing the certified approximation of

MS-complexes determines the followings.

• isolated certified boxes each containing a unique

saddle, source or sink, and each box has the local

topological property of a saddle, source or sink;

we give a novel approach for computing certified

boxes corresponding to critical points of a MS-

function by considering intersections of a under-

lying Jacobi set with the implicit surface.

• certified initial and terminal intervals (corre-

sponding to a saddle), each of which is guaran-

teed to contain a unique point corresponding to

a saddle-source or saddle-sink connector (separa-

trix);

• disjoint certified strips, lying on the implicit sur-

face, around each separatrix, each of which con-

taining exactly one separatrix and can be made

as close to the separatrix as desired.

2 Preliminaries

Interval arithmetic (IA). Interval arithmetic is used

to cope with rounding errors in finite precision com-

putations. A range function �F for a function F :

R
m → R

n computes for each m-dimensional input

interval I (i.e., an m-box) an n-dimensional output

interval �F (I), such that F (I) ⊂ �F (I). A range

function is said to be convergent if the diameter of

the output interval converges to 0 when the diameter

of the input interval shrinks to 0.

Morse function. A function h : M ⊂ R
3 → R, de-

fined on an implicit manifold M, is called a Morse

function if all its critical points are non-degenerate.

The Morse lemma [6] states that near a non-

degenerate critical point a it is possible to choose

This is an extended abstract of a presentation given at EuroCG 2011. It has been made public for the benefit of the community and should be considered
a preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

221

27th European Workshop on Computational Geometry, 2011

local co-ordinates x, y in which h is expressed as

h(x, y) = h(a) ± x
2 ± y

2. The number of minus signs

is called the index ih(a) of h at a. Thus a two variable

Morse function has three types of non-degenerate crit-

ical points: minima (index 0), saddles (index 1) and

maxima (index 2).

Integral line. An integral line x : I ⊂ R → M pass-

ing through a point p0 on M(⊂ R
3) is the unique max-

imal curve satisfying: ẋ(t) = grad h(x(t)), x(0) = p0,

for all t ∈ I. Here the gradient is defined with respect

to the metric inherited from R
3. Integral lines cor-

responding to the gradient vector field of a smooth

function h : M → R have many interesting prop-

erties, such as: (1) any two integral lines are either

disjoint or coincide; (2) an integral line x : I → M
through a point p of h is injective and if lim

t→±∞

x(t)

exists, it is a critical point of h; (3) the function h is

strictly increasing along the integral line of a regular

point of h and integral; (4) regular integral lines are

perpendicular to regular level sets of h.

Stable and unstable manifolds. Consider the inte-

gral line x(t) passing through a point p. If the limit

lim
t→∞

x(t) exists, it is called the ω-limit of p and is

denoted by ω(p). Similarly, lim
t→−∞

x(t) is called the

α-limit of p and is denoted by α(p) – again provided

this limit exists. The stable manifold of a singular

point p is the set W
s(p) = {q ∈ M | ω(q) = p}. Sim-

ilarly, the unstable manifold of a singular point p is

the set W
u(p) = {q ∈ M | α(q) = p} [7]. Here we

note that both W
s(p) and W

u(p) contain the singu-

lar point p itself [7]. The components of W
s(p) \ {p}

(Wu(p) \ {p}) are called stable (unstable) separatri-

ces. Each saddle has two stable and two unstable

separatrices.

The Morse-Smale (MS) complex. A Morse func-

tion on M is called a MS-function if its stable and

unstable manifolds intersect transversally. Since M
is a 2-dimensional surface, this means that stable and

unstable separatrices are disjoint. In particular, there

are no saddle-saddle connections. The MS-complex

associated with a MS-function h on M is the sub-

division of M formed by the connected components

of the intersections W
s(p) ∩ W

u(q), where p, q range

over all singular points of h. According to the quad-

rangle lemma [6], each region of the MS-complex is

a quadrangle with vertices of index 0, 1, 2, 1, in this

order on the boundary of the region.

Jacobi set. Let us consider two Morse functions

f, H : R
3 → R. Let c be a regular value of f and

then by implicit function theorem Mc := f
−1(c) is a

smooth 2-manifold. Then generically, the restriction

hc of H to the regular level set Mc of f is a Morse

function [5]. The critical points of H restricted to a

level set of the function f correspond to points where

∇f is a multiple of ∇H , i.e., the points where the Ja-

cobian of the map F = (f, H) : R
3 → R

2 has rank <

2. The Jacobi set J(f, H) (or J for short) is the closure

of the set of critical points of such level set restrictions

J(f, H) = cl{x ∈ Mc : x is a critical point of hc}, for

any regular value c ∈ R. From the Smooth Embed-

ding Theorem [5] we have, generically, that the Ja-

cobi set of two Morse functions f, H : R
3 → R is a

smoothly embedded 1-manifold in R
3.

3 Method

Problem set-up. Let f : R
3 → R be a C2 function,

and let zero be a regular value of f . Then the set

M = {x ≡ (x, y, z) ∈ R
3 : f(x) = 0} is a regular

surface (Follows from the implicit function theorem).

Let H : R
3 → R be a Morse function such that H

has no critical point on M. Then, generically, the

function h : M → R, defined by h = H |
M

, is a Morse

function. We assume h is a MS-function. Then the

corresponding gradient field is a MS-system. We are

interested in computing the MS-complex of gradh.

Gradients on surfaces. First we analyze the vec-

tor field gradh by finding its singularities and their

types. We have assumptions: (1) zero is a regular

value of f and (2) H has no critical point on M =

f
−1(0). For a C2 function h on a compact manifold

M the gradient vector field grad h on M is charac-

terized as follows: for p ∈ M and gradh(p) ∈ TpM,

〈gradh(p), v〉 = dvh(p), ∀v ∈ TpM. Here, dvh is

called the directional derivative of h along v. Again

from figure 1, we note that

gradh(p) = proj
M
∇H(p) = ∇H(p) − (∇H(p).n̂)n̂

= ∇H(p) −
∇f(p) · ∇H(p)

‖∇f(p)‖2
∇f(p).

Here n̂ is the unit normal vector at point p of the

implicit surface M.

grad h

∇H

(∇H.n̂)n̂

p

Figure 1: Tangential and normal components of ∇H .

Local expression in a parametric domain. Let

fz(p) 6= 0 at p ∈ M. Then locally near p the man-

ifold M can be parametrized by a map τ : U → R
3

of the form τ(x, y) = (x, y, g(x, y)), where U is an

open subset of R
2. Let q ∈ U be the point in U corre-

sponding to p, i.e., τ(q) = p. Let us consider h̃(x, y) =

H(x, y, g(x, y)), locally in U . Then we denote the lo-

cal gradient field as ∇h̃ where h̃x = Hx − fx

fz

Hz and

222

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

h̃y = Hy − fy

fz

Hz. Similarly, one can derive local ex-

pressions of the gradient field on the yz and zx-plane,

by assuming fx 6= 0 and fy 6= 0 respectively.
Again the integral curves of grad h (on M) are

projected onto integral curves of the vector field

grad
τ
∗

G
h̃ on U ⊆ R

2 given by,

X =
1

f2
x + f2

y + f2
z

(f2

y + f2

z)Hx − fxfy Hy − fxfz Hz

−fxfy Hx + (f2

y + f2

z) Hy − fyfz Hz

!

.

In particular, the integral curves of gradh are

mapped onto those of gradτ∗Gh̃ by the projection τ
−1

of the neighborhood τ(U) of p in M onto the xy-plane.

Note that a singular point (x0, y0, z0) ∈ M of

gradh has the same type (saddle, sink or source)

as the point (x0, y0), considered as a singular point

of ∇h̃ (even though the integral curves of the latter

gradient are different from the projections of the in-

tegral curves of gradh). We use this observation in

the following analysis of saddles, sinks and sources.

To determine the type (minima, maxima or saddle)

and nature (degenerate or non-degenerate) of the crit-

ical points we consider the bordered Hessian matrix,

which is expressed as:

HL =









0 −fx −fy −fz

−fx L
xx

L
xy

L
xz

−fy L
xy

L
yy

L
yz

−fz L
xz

L
yz

L
zz









.

where L
xx = Hxx−

Hz

fz

fxx etc. Let detHL be the cor-

responding determinant. The following theorem [9]

gives a necessary and sufficient condition for h to have

a critical point.

Theorem 1 Let X be open in R
3 and let f, H : X →

R be functions of class C
2 such that 0 is a regular value

of f . Let M be the manifold {x ∈ X : f(x) = 0} and
let x0 be a point on M. Then h (the restriction of H

to M) has a critical point at x0 iff there exists some
scalar λ such that ∇H(x0) = λ∇f(x0).

Monotonicity of f on J. Finally, for certified isola-

tion of a critical point of h inside a box I we first prove

that along each component of the Jacobi set J, inside

I, function f is monotonic in the following theorem:

Theorem 2 Consider a box I, in the domain of the
function f , satisfying (i) I ∩ M 6= ∅, (ii) ∇f 6= 0,
(iii) ∇H 6= 0, (iv) detHL 6= 0. Then if I ∩ J 6=
∅, 1. J is regular, 2. J can have at most finitely
many components inside I, 3. Each component of J

is transversal to M inside I, 4. f is monotonic along
each component of I ∩ J.

Isolating and detecting critical points of h. Here

we describe the first step of our MS-complex compu-

tation method. Let us consider a three-dimensional

bounding box, say B, that contains the implicit sur-

face M. Now the subdivision algorithm subdivides

the box B until for each subinterval, I say, it is possi-

ble to determine whether h has a unique critical point

inside I or not. The subdivision process is driven by

the following set of conditions:

(i) C1 : 0 ∈ �f(I)

(ii) C2 : 0 ∈ �∇H(I) × �∇f(I)

(iii) C3 : 〈�∇f(I), �∇f(I)〉 > 0

(iv) C4 : 0 /∈ �∇H(I)

(v) C5 : 0 /∈ det �HL(I)

Figure 2: Finding Critical Boxes by domain subdivision

In the subdivision process, if ¬C1 holds for an in-

terval I then I does not contain a zero of f and we

stop further subdivision of I. In the subdivision pro-

cess, if ¬C2 holds, then we stop further subdividing

that interval I, since by Theorem 1, in that case I

is not a possible candidate for containing a critical

point of h. C3 is a small normal variaton condition

ensuring parametrizability of M∩ I. C4 ensures the

non-singularity of function H in I. Finally, C5 ensures

that the number of critical points of h in I is at most

one. The following subdivision algorithm isolates the

critical points of a MS-function h in a bounding box

B

Algorithm. SearchCritical(h, B)

1. Initialize an octree T to the bounding box B.

2. Subdivide T until for all the leaves I we have:

¬C1 ∨ ¬C2 ∨ (C3 ∧ C4 ∧ C5).

3. For each leaf Il

4. Do if C1, C2, C3, C4 and C5 hold then

5. Check if J(f, H) ∩M 6= ∅ inside Il.

6. If intersection found, the leaf contains

a critical point of h. Denote this leaf as Ic.

7. Else, the leaf does not contain a criti-

cal point of h.

Now the following corollary of theorem 2 gives a

strategy to determine whether inside Il J(f, H) ∩M
is ∅ or not.

223

27th European Workshop on Computational Geometry, 2011

M

Il

Figure 3: Components of the Jacobi set inside Il.

Corollary 3 Let Il be a leaf interval, obtained by
SearchCritical (Il can contain at most one critical
point of h). Assume that (i) the Jacobi set J(f, H)

intersects the faces of Il transversally, and (ii) there is
no critical point of h lying on a face of Il. Let npos be
the number of intersection points of J(f, H) with the
six faces of Il, where f is positive. Again let nneg be
the number of intersection points of J(f, H) with six
faces of Il, where f is negative. If both npos and nneg

are odd numbers, then there is exactly one critical
point of h inside Il. Otherwise, there is no critical
point of h inside Il.

Here we note that the assumptions in the corollary 3

ensure only the non-degenerate cases. In the full arti-

cle, cf [2], we describe how to handle degenerate cases

with small perturbation of interval I.

Refinement of intervals containing critical points.

Next we further refine the boxes Ic as in the planar

vector field situation, see [3, 2]. In the current sit-

uation we use the vector field X projected onto one

of the faces of Ic, and after refinement use the corre-

sponding pull-back vector field on M.

Figure 4: Representing a curve on the implicit surface by
the intersection of plane-segments and the surface.

Algorithm for computing separatrices. We com-

pute small rectangular plane-segments, transversal to

the implicit surface, such that the intersections of

these pieces of planes and the implicit surface together

represent a boundary curve of the strip (Figure 4)

which contains a separatrix. The gradient vector field

gradh must satisfy an orientation property which is

along the left (for the right boundary curve) and along

the right (for the left boundary curve). This will en-

sure that each separatrix lies in the corresponding

strip. The details of this method are discussed in the

full version of the article, cf [2].

Implementation results. We implemented of our al-

gorithm using Boost library [1] for IA. All experi-

ments have been performed on a 3GHz Intel Pen-

tium 4 machine under Linux with 1 GB RAM using

the g++ compiler, version 3.3.5. Figure 5 show MS-

complexes consisting of saddles (red boxes), minima

(green boxes) and maxima (blue boxes). Moreover, a

pair of blue boundary curves contains a certified un-

stable separatrix (saddle-maximum connection) and a

pair of green boundary curves contains a stable sepa-

ratrix (saddle-minimum connection).

(a) (b)

Figure 5: Certified MS-complexes on implicit functions
given by f1(x, y, z) ≡ (x2 +y2 + z2

−R2
− r2)2 −4R2(r2

−

x2) = 0 and f2(x, y, z) ≡ x4
−5x2+y4

−5y2+z4
−5z2+10 =

0 where we consider H(x, y, z) = z.

Conclusion. We give a novel approach for comput-

ing the certified MS-complex on implicit surfaces. In

the end some implementation results are given to give

a proof of concept and to justify those algorithms.

References
[1] Boost interval arithmetic library. http://www.boost.org.

[2] A. Chattopadhyay. Certified Geometric Computation: Radial Basis Function based

Isosurfaces and Morse-Smale Complexes. PhD thesis, University of Groningen,
2010. ISBN: 978-90-367-4757-8.

[3] A. Chattopadhyay, S.J. Holtman, and G. Vegter. Certified computation of
planar Morse-Smale complexes. In Abstracts of the 26th European Workshop on

Computational Geometry, pages 105–108, Dortmund, Germany, March 22-24
2010.

[4] H. Edelsbrunner and J. Harer. Computational Topology. An Introduction. Amer.
Math. Soc., Providence, Rhode Island, 2010.

[5] H. Edelsbrunner and J. Harer. Jacobi Sets of Multiple Morse Functions. In
In Foundations of Computational Mathematics, pages 37–57, Minneapolis 2002,
eds.

[6] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale
complexes for piecewise linear 2-manifolds. Discrete Comput. Geom, 30:87–
107, 2003.

[7] M. W. Hirsch and S. Smale. Differential Equations, Dynamical Systems, and

Linear Algebra. Academic Press, 1974.

[8] C. Li, S. Pion, and C. Yap. Recent progress in Exact Geometric Com-
putation. J. of Logic and Algebraic Programming, 64(1):85–111, 2004. Special
issue on “Practical Development of Exact Real Number Computation”.

[9] S. Plantinga and G. Vegter. Computing contour generators of evolving
implicit surfaces. ACM Transactions on Graphics., 25:1243–1280., 2006.

224

EuroCG 2011, Morschach, Switzerland, March 28–30, 2011

Author Index

Abam, Mohammad Ali . 103, 185
Abellanas, Manuel . 43
Ahn, Hee-Kap . 63
Aichholzer, Oswin . 115
Alt, Helmut . 27
Aronov, Boris . 103
Arya, Sunil . 217

Barequet, Gill . 59
de Berg, Mark 1, 71, 103, 111, 151, 201
Bernhardt, Jörg . 23
Bouzidi, Yacine .167
Buchin, Kevin . 35, 163

Cabello, Sergio . 27
Cardinal, Jean . 107, 131
Chambers, Erin W. 99
Chattopadhyay, Amit .221
Chen, Chao . 197
Cheung, Yam Ki . 193
Chevallier, Nicolas .205
Christ, Tobias . 87
Claverol, Mercè .43
Collette, Sebastien . 131

Daescu, Ovidiu . 193
Daneshpajouh, Shervin . 185
Davoodi Monfared, Mansoor .135
Deleuran, Lasse . 185
Dickerson, Matthew T. 59
Didimo, Walter .147
Driemel, Anne .119
von Dziegielewski, Andreas . 143

Eades, Peter .155
Eisenbrand, Friedrich . 3
Eppstein, David . 59
Even, Guy .95
Ezra, Esther .209

Fabila-Monroy, Ruy . 115
Fekete, Sandor . 79, 99, 189
da Fonseca, Guilherme D. 217
Fort, Marta . 83
Fulek, Radoslav . 179
Funke, Stefan .23

Gemsa, Andreas . 171
Ghodsi, Mohammad . 185
Giannopoulos, Panos . 27
González-Aguilar, Hernán . 115
Gu, Chen .39
Guibas, Leonidas . 39

Häme, Lauri . 51
Hackl, Thomas . 115
Hakula, Harri . 51
Hasemann, Henning . 159, 189

Haverkort, Herman 111, 119, 151
Hemmer, Michael .143
Heredia, Marco A. .115
Hernández, Gregorio .43
Hitschfeld, Nancy .75
Hodorkovsky, David . 59
Hoffmann, Hella-Franziska . 99
Horiyama, Takashi .47
Huemer, Clemens .115
Hurtado, Ferran . 43
Hyytiä, Esa . 51

Iro, Hito . 131

Joskowicz, Leo . 127

Kamphans, Tom . 159, 189
Kerber, Michael . 197
Khanteimouri, Payam . 135
Khosravi, Amirali . 103
Kim, Sang-Sub . 63
Klein, Rolf . 11
Knauer, Christian .27, 63
Korman, Matias . 107, 131
Kröller, Alexander .159
Krug, Marcus . 11

Löffler, Maarten . 119
Langerman, Stefan . 131
Langetepe, Elmar . 11
Lazard, Sylvain .167
Lee, D.T. 11
Li, Ji . 175
Liotta, Giuseppe . 155

Müller, Christian L. 31
Maillot, Yvan . 205
Marinakis, Dimitri .99
Matoušek, Jǐŕı . 5
Meulemans, Wouter . 163
Mishra, Aurosish . 87
Mitchell, Joseph . 19
Mohades, Ali . 135
Mount, David M. 217
Mulzer, Wolfgang . 209
Mustafa, Nabil . 139
Myers, Yonatan . 127

Nöllenburg, Martin . 171
Na, Hyeon-Suk . 63
Navarro, Cristobal . 75

Papadopoulou, Evanthia . 67
Peters, Thomas .175
Polishchuk, Valentin . 19
Pouget, Marc .167

Reinhardt, Jan-Marc . 79
Roeloffzen, Marcel .201
Rote, Günter . 183
Rouillier, Fabrice . 167

27th European Workshop on Computational Geometry, 2011

Roulier, John .175
Rutter, Ignaz . 171

Sacristán, Vera . 43
Sakaidani, Hikaru . 131
Saumell, Maria . 43
Sbalzarini, Ivo F. 31
Scheffer, Christian . 213
Scheihing, Eliana . 75
Schlipf, Lena . 63
Schmidt, Christiane . 189
Schmitt, Dominique . 123
Schweer, Nils . 79
Schymura, Daria .15
Sellarès, J. Antoni . 83
Sheikhi, Farnaz .135
Shin, Chan-Su . 63
Shirakawa, Toshihiro . 47
Silveira, Rodrigo I. .43, 119
Smorodinsky, Shakhar . 95
Speckmann, Bettina 35, 71, 163, 201
Spehner, Jean-Claude . 123
Srinivasan, Venkatesh .99
Stege, Ulrike . 99
Storandt, Sabine .23
Sugihara, Kokichi . 55
Suk, Andrew . 179
Sysikaski, Mikko . 19

Taslakian, Perouz . 131
Tiwary, Hans Raj . 139
Tsirogiannis, Constantinos 111, 151
Tzoumas, George M. 91

Uehara, Ryuhei .47
Urrutia, Jorge . 115

Vahrenhold, Jan . 213
Valladares, Nacho . 83
Vegter, Gert .221
Verbeek, Kevin . 35
Vigneron, Antoine . 63
Vogtenhuber, Birgit . 115
Vyatkina, Kira . 59

Wagner, Dorothea . 11
Weele, Vincent van der . 71
Werner, Daniel . 139
Whitesides, Sue . 99

Xu, Jinhui . 67

Zivanic, Marko . 193

Supported by

THE FINER WAY TO LOVE CHOCOLATE

ABSOLUTE SWISS CHOCOLATE

ABSOLUTE SWISS CHOCOLATE

Jaclulu is a registered trademark of Choco Mundo GmbH
Andreas Werner · Husmatt 27 · 6443 Morschach · Switzerland

Telephone +41 (0)41 822 08 67 · E-Mail order@chocomundo.ch · www.jaclulu.ch

Available by request and through select partners

PLEASURE TO GO
The dainty buttons by Jaclulu are made of fine Swiss chocolate. In their
elegant, re-sealable box they are perfectly protected as well as
cleanly separated by a clever wave-shaped strip – making it easy for
you to indulge in their exquisite taste whenever you feel like it.
Whether driving or flying, while visiting friends or at home on the couch:
wherever you are, you’ll always enjoy Jaclulu crumb-free.

Jaclulu_24_Lep_Lea_e.indd 1 14.9.2009 16:12:19 Uhr

Choco Mundo GmbH
Husmatt 27
CH-6443 Morschach

Sportbahnen Schwyz-Stoos-Fronalpstock AG
Bahnhofstrasse 28, 6430 Schwyz

	Title
	toc
	Papers
	inv-3
	inv-2
	inv-1
	7
	39
	43
	Introduction
	Previous work

	Overview of the results
	Approximations

	57
	65
	51
	25
	2
	12
	8
	19
	10
	14
	15
	20
	62
	35
	27
	23
	67
	52
	48
	34
	4
	13
	61
	28
	11
	33
	9
	17
	40
	29
	18
	Introduction
	Previous and related work
	Our contribution

	Overview
	Initialization Phase
	Preliminary Results
	Further Work
	Conclusion

	24
	60
	30
	36
	64
	59
	Bivariate system solving algorithm
	Preliminaries : sub-resultant sequences
	Triangular decomposition
	Groebner basis and RUR computation
	Deterministic modular method

	Application to the topology of plane curves

	6
	Introduction
	Model
	Properties of consistent labelings
	Complexity
	Approximation Scheme

	37
	41
	44
	38
	16
	66
	22
	42
	31
	Introduction
	Mathematical and geometric concepts
	Idea of sampling and reconstruction
	Formalization of the idea
	Eliminating polytopes
	LDA–complex
	LDA–boundary

	Algorithm
	Description
	Little examples

	Well distributed subsets
	Two technical lemmas
	Statements of main results about (,)-samples

	A reconstruction result

	3
	47
	1
	32

	author_index
	Back
	Blank Page
	Blank Page

