EuroCG'O9

25th European Workshop on Computational Geometry

March 16 — 18, 2009 Brussels, Belgium

EuroCG’09 - Brussels, Belgium

Contents

Introduction

Invited speaker 1 - Monday 9:15 — 10:15

Probabilistic Analysis of Algorithms
Luc Devroye, McGill University

Session 1A - Monday 10:45 - 12:00

Witness Gabriel graphs
Boris Aronov, Muriel Dulieu and Ferran Hurtado

Measuring the Similarity of Geometric Graphs
Otfried Cheong, Joachim Gudmundsson, Hyo-Sil Kim, Daria Schymura and Fabian Stehn

Spanner Properties of 71/2-Angle Yao Graphs
Mirela Damian, Nawar Molla and Val Pinciu

Wiener Index and Diameter of a Planar Graph in Subquadratic Time
Christian Wulff-Nilsen

Tailored Bregman Ball Trees for Effective Nearest Neighbors
Frank Nielsen, Paolo Piro and Michel Barlaud

Session 1B - Monday 10:45 — 12:00

Maintaining Exactly the Convex Hull of Points Moving along Circles
Paul-Georg Becker, Elvir Biiyiikbayrak and Nicola Wolpert

k-Means Motion Clustering
Frank Hellweg and Christian Sohler

The Maximum Box Problem for Moving Points on the Plane
Pablo Pérez-Lantero, Sergey Bereg, José-Miguel Diaz-Bdiiez and Inmaculada Ventura

Minimizing the weighted directed Hausdorff distance between colored point sets under rigid motions

Fabian Stehn, Christian Knauer and Klaus Kriegel

Computing Push Plans for Disk-Shaped Robots
Dirk H.P. Gerrits and Mark de Berg

Session 2A - Monday 14:00 - 15:15

Complexity of pleats folding
Tsuyoshi Ito, Masashi Kiyomi, Shinji Imahori and Ryuhei Uehara

Modelling rigid origami with Quaternions
Weina Wu and Zhong You

Source Unfoldings of Convex Polyhedra with respect to Certain Closed Polygonal Curves

Jin-ichi Itoh, Joseph O’Rourke and Costin Vilcu

Locked Thick Chains
Erik D. Demaine, Martin L. Demaine, Stefan Langerman and Jérome Vervier

Fitting a Point Set by Small Monotone Orthogonal Chains
José-Miguel Diaz-Bdfiez, Mario A. Lopez, Carlos Seara and Inmaculada Ventura

11

11

12

13

17

21

25

29

33

33

37

41

45

49

53

53

57

61

65

69

Contents

Session 2B - Monday 14:00 — 15:15 73

Point Distance Problems with Dependent Uncertainties
Yonatan Myers and Leo Joskowicz 73

An Improved Algorithm for Inserting a Highway in a City Metric
Matias Korman and Takeshi Tokuyama 77

Frechet Distance in Weighted Regions
Yam Ki Cheung and Ovidiu Daescu 81

Safe Routes on a Street Graph with Minimum Power Transmission Range
Manuel Abellanas, Antonio Leslie Bajuelos and Ines Matos 85

Line Segment Facility Location in Weighted Regions
Yam Ki Cheung and Ovidiu Daescu 89

Session 3A - Monday 15:45 — 17:15 93

Improvement of the Method for Making Quad Meshes through Temperature Contours
Minori Okabe, Shinji Imahori and Kokichi Sugihara 93

From Mesh Parameterization to Geodesic Distance Estimation
Joachim Giard and Benoit Macq 97

Certified Meshing of RBF-based Isosurfaces
Gert Vegter, Simon Plantinga and Amit Chattopadhyay 101

Low-resolution Surface Mapping: a Topological and Geometrical Approach
Jean-Marie Favreau and Vincent Barra 105

Matching Terrains under a Linear Transformation

Pankaj Agarwal, Boris Aronov, Marc van Kreveld, Maarten Loffler and Rodrigo Silveira 109

Cutting an Organic Surface

Jean-Marie Favreau and Vincent Barra 113
Session 3B - Monday 15:45 — 17:00 117

Two-Convex Polygons
Oswin Aichholzer, Franz Aurenhammer, Ferran Hurtado, Pedro Ramos and Jorge Urrutia 117

Geometric Measures on Imprecise Points in Higher Dimensions
Heinrich Kruger and Maarten Loffler 121

Some Regularity Measures for Convex Polygons
Ferran Hurtado, Vera Sacristdn and Maria Saumell 125

Inducing n-gon of an arrangement of lines

Ludmila Scharf and Marc Scherfenberg 129

Large bichromatic point sets admit empty monochromatic 4-gons

Oswin Aichholzer, Thomas Hackl, Clemens Huemer, Ferran Hurtado and Birgit Vogtenhuber 133
Invited speaker 2 - Tuesday 9:15 — 10:15 137

On Plane Geometric Spanners
Prosenjit K. Bose, Carleton University 137

EuroCG’09 - Brussels, Belgium

Session 4A - Tuesday 10:45 — 12:00 138

Lower and upper bounds on the number of empty cylinders and ellipsoids
Oswin Aichholzer, Franz Aurenhammer, Olivier Devillers, Thomas Hackl, Monique Teillaud
and Birgit Vogtenhuber 139

Efficient Enumeration of All Pseudoline Arrangements
Katsuhisa Yamanaka, Shin-ichi Nakano, Yasuko Matsui, Ryuhei Uehara and Kento Nakada 143

On the Number of Crossing-Free Partitions in the Plane
Andreas Razen and Emo Welzl 147

Counting the Number of Embeddings of Minimally Rigid Graphs
Ioannis Z. Emiris and Antonios Varvitsiotis 151

Reconstructing Points on a Circle from Labeled Distances
David Bremmner, Erik D. Demaine, Perouz Taslakian and Godfried Toussaint 155

Session 4B - Tuesday 10:45 — 12:00 159

Guarding Orthogonal Art Galleries with Sliding Cameras
Matthew]. Katz and Gila Morgenstern 159

Inspecting a Set of Strips Optimally
Elmar Langetepe and Tom Kamphans 163

Modem lllumination of Monotone Polygons
Oswin Aichholzer, Ruy Fabila-Monroy, David Flores-Pefialoza, Thomas Hackl, Clemens Huemer,

Jorge Urrutia and Birgit Vogtenhuber 167

Low-Cost Tours for Nearsighted Watchmen with Discrete Vision

Sandor Fekete and Christiane Schmidt 171

Natural Wireless Localization is NP-hard

Tobias Christ, Michael Hoffmann and Yoshio Okamoto 175
Session 5A - Tuesday 14:00 — 15:15 179

Shortest Path Problems on a Polyhedral Surface
Atlas F. Cook IV and Carola Wenk 179

Conflict-Free Coloring Made Stronger
Shakhar Smorodinsky, Roi Krakovski and Elad Horev 183

Two Applications of Point Matching
Giinter Rote 187

Distance k-Sectors and Zone Diagrams
Keiko Imai, Akitoshi Kawamura, Jiri Matousek, Yu Muramatsu and Takeshi Tokuyama 191

Finding a Minimum Stretch of a Function
Kevin Buchin, Maike Buchin, Marc van Kreveld and Jun Luo 195

Session 5B - Tuesday 14:00 — 15:15 199

Visibility Maps of Realistic Terrains have Linear Smoothed Complexity
Mark de Berg, Herman Haverkort and Constantinos P. Tsirogiannis 199

Planar Visibility Counting
Matthias Fischer, Matthias Hilbig, Claudius Jihn, Friedhelm Meyer auf der Heide and Martin Ziegler 203

Contents

On the Limitations of Combinatorial Visibilities

Yann Disser, Davide Bilo, Matus Mihalak, Subhash Suri, Elias Vicari and Peter Widmayer 207

Dynamic Segment Visibility

Mojtaba Nouri Bygi and Mohammad Ghodsi 211

Computing Direct Shadows Cast by Convex Polyhedra

Julien Demouth and Xavier Goaoc 215
Session 6A - Tuesday 15:45 — 17:15 219

Straight Walk Algorithm Modification for Point Location in a Triangulation
Roman Soukal and Ivana Kolingerovd 219

Every 4-connected Mbius triangulation is geometrically realizable

Atsuhiro Nakamoto and Shoichi Tsuchiya 223

Multi-pseudotriangulations

Vincent Pilaud and Michel Pocchiola 227

Fast Delaunay Triangulation for Converging Point Relocation Sequences

Pedro M. M. de Castro and Olivier Devillers 231

Linear-Time Delaunay Triangulations Simplified

Kevin Buchin and Wolfgang Mulzer 235

2D Delaunay mesh generation with area/aspect-ratio constraints

Narcis Coll, Marité Guerrieri and . Antoni Sellares 239
Session 6B - Tuesday 15:45 — 17:00 243

Homotopic Rectilinear Routing with Few Links and Thick Edges

Kevin Verbeek and Bettina Speckmann 243

Area-Universal Rectangular Layouts

David Eppstein, Elena Mumford, Bettina Speckmann and Kevin Verbeek 247

Constructability of Trip-lets

Jeroen Keiren, Freek van Walderveen and Alexander Wolff 251

Finding Perfect Auto-partition is NP-hard

Mark de Berg and AmirAli Khosravi 255

Tight Spans and Coarsest Subdivisions of Convex Polytopes

Sven Herrmann 259
Invited speaker 3 - Wednesday 9:15 — 10:15 263

Practical Algorithms for Path Planning and Crowd Simulation

Mark H. Overmars, Utrecht University 263
Session 7A - Wednesday 10:45 — 12:00 264

Stabbers of line segments in the plane
Merce Claverol, Delia Garijo, Clara Grima, Alberto Marquez and Carlos Seara 265

Online Square Packing
Sandor Fekete, Nils Schweer and Tom Kamphans 269

EuroCG’09 - Brussels, Belgium

Square and Rectangle Covering with Outliers

Hee-Kap Ahn, Sang Won Bae, Matias Korman, Iris Reinbacher, Wanbin Son and Sang-Sub Kim 273

Identifying Well-Covered Minimal Bounding Rectangles in 2D Point Data

Marc van Kreveld, Thijs van Lankveld and Remco Veltkamp 277

Fixed-parameter tractability and lower bounds for stabbing problems

Panos Giannopoulos, Christian Knauer, Giinter Rote and Daniel Werner 281
Session 7B - Wednesday 10:45 — 12:00 285

Robust Voronoi-based Curvature and Feature estimation
Quentin Merigot, Maks Ovsjanikov and Leonidas Guibas 285

Inverted Ball as Boundary-constraint for Voronoi Diagrams of 3D Spheres
Martin Mandk and Ivana Kolingerovd 289

Divide-and-Conquer for Voronoi Diagrams Revisited
Oswin Aichholzer, Wolfgang Aigner, Franz Aurenhammer, Thomas Hackl, Bert Juettler,

Elisabeth Pilgerstorfer and Margot Rabl 293

The Voronoi diagram of three arbitrary lines in R®

Hazel Everett, Christian Gillot, Daniel Lazard, Sylvain Lazard and Marc Pouget 297

Voronoi Diagram in the Klein model using Finsler Geometry

Abolghasem Laleh, Ali Mohades, Zahra Nilforoushan and Morteza Mir Mohammad Rezaii 301
Session 8A - Wednesday 14:00 — 15:30 305

A Practice-Minded Approach to Computing Motorcycle Graphs
Martin Held and Stefan Huber 305

Robust Extraction of the Medial Axes of 3D Objects
Kazutoshi Kan and Kokichi Sugihara 309

Continued Work on the Computation of an Exact Arrangement of Quadrics
Michael Hemmer, Sebastian Limbach and Elmar Schomer 313

Exact Construction of Minimum-Width Annulus of Disks in the Plane

Opbhir Setter and Dan Halperin 317

Generic implementation of a modular GCD over Algebraic Extension Fields

Michael Hemmer and Dominik Hiilse 321

Exact Delaunay graph of smooth convex pseudo-circles

loannis Z. Emiris, Elias Tsigaridas and George M. Tzoumas 325
Session 8B - Wednesday 14:00 — 15:15 329

On the Optimality of Spiral Search
Elmar Langetepe 329

Computing Maximal Islands
Crevel Bautista-Santiago, José-Miguel Diaz-Bdfiez, Dolores Lara, Pablo Pérez-Lantero, Jorge Urrutia
and Inmaculada Ventura 333

On complexity of the mixed volume of parallelograms
Leonid Guruvits 337

Contents

Cache-Oblivious Construction of a Well-Separated Pair Decomposition
Fabian Gieseke and Jan Vahrenhold 341

Computer Aided Design System for Escher-Like Tilings
Hiroshi Koizumi and Kokichi Sugihara 345

EuroCG’09 - Brussels, Belgium

Introduction

The 25th European Workshop on Computational Geometry (EuroCG’09) was organized on March 16 - 18 at the
Université Libre de Bruxelles (ULB), in Brussels, Belgium. EuroCG is renowned as a friendly conference, where
researchers from across Europe and the world can meet and exchange ideas in a stimulating atmosphere.

A record number of 83 papers were presented. The organizers thank all authors and invited speakers for their
participation, as well as the 51 reviewers for their insightful comments. We also wish to thank the sponsors, the
Fonds National de la Recherche Scientifique (ER.S.-FNRS) and Emakina.

nteractive solutions

' EMAKINA

More information about this conference and about previous and future editions is available online at

http://eurocg.org

Invited Speakers Program Committee

e Prosenjit Bose, Carleton U. e Greg Aloupis, ULB
e Luc Devroye, McGill U.
e Mark Overmars, Utrecht U.

e Jean Cardinal, ULB

e Sébastien Collette, ULB

Organizing Committee e Erik Demaine. MIT
* Greg Aloupis, ULB e Marcin Kaminski, ULB
e Jean Cardinal, ULB
e Stefan Langerman, ULB (chair)
e Sébastien Collette, ULB
e Gwenaél Joret, ULB e Pat Morin, Carleton U.
o Stefan Langerman, ULB (chair) e Perouz Taslakian, McGill U.
* Benoit Macq, UCL e Stefanie Wuhrer, Carleton U.

Introduction

Other Reviewers

e Luca Castelli Aleardi
e Zouhour Ben Azouz
e Eric Berberich

e Alan Brunton

e Paz Carmi

e Gail Carmichael

e Daniele Catanzaro

e Jean-Paul Doignon

e Karim Douieb

e Vida Dujmovi¢

e Céline Engelbeen

e Mohammad Farshi
e Rosa Maria Videira de Figueiredo
o Samuel Fiorini

o Delia Garijo

e John Goldak

e Meng He

e Pim van 't Hof

e Raphaél Jungers

e Matias Korman

o Adrian Kosowski

Hugo Ledoux
Martin Milani¢
Dieter Mitsche
Yonatan Myers
Catharina Olsen
Belén Palop

Michel Paquette
Daniel Paulusma
Vincent Pilaud
Daniel Raible
Pedro Ramos
Daria Schymura
Rodrigo Silveira
Michiel Smid
Shakhar Smorodinsky
Costas Tsirogiannis
George Tzoumas
Alper Ungor

Eric Colin de Verdiere
Pengcheng Xi
Pawel Zylinski

EuroCG’09 - Brussels, Belgium

10

Probabilistic Analysis of Algorithms

Probabilistic Analysis of Algorithms

Luc Devroye*

Abstract

The theme of this expository talk is the interaction between classical probability the-
ory and the analysis of algorithms. What are the researchers in the area of ”probabilistic
analysis of algorithms” studying nowadays? What are the main tools that have driven
progress? For example, one of the oldest randomized algorithms, Quicksort, has been
asymptotically cracked by the clever use of stochastic fixed-point equations. The corre-
sponding search structure, the random binary search tree, and many related random trees,
are best approached via branching processes. Random structures of many genetic origins
can be understood by showing their closeness to well-understood (often continuous) random
processes. The talk will revisit several of the success stories in the field.

*School of Computer Science, McGill University, Montreal, Canada, lucdevroye@gmail . com

11

EuroCG’09 - Brussels, Belgium

12

Witness Gabriel graphs

Witness Gabriel Graphs*

Boris Aronov'

Abstract

We consider a generalization of the Gabriel graph,
the witness Gabriel graph, and study several of its
properties, both as a proximity graph and as a new
tool in graph drawing.

1 Introduction

Originally defined to capture some concept of neigh-
borliness, prozimity graphs [7,10,13] can be intuitively
defined as follows: given a set P of points in the plane,
the vertices of the graph, there is an edge between
a pair of vertices p,q € P if some specified region in
which they interact contains no point from P, besides
possibly p and gq.

Proximity graphs have proved to be a very useful
tool in shape analysis and in data mining [7,14]. In
graph drawing, a problem that has been attracting sub-
stantial research is to explore which classes of graphs
admit a proximity drawing, for some notion of proxim-
ity, and when it is possible to efficiently decide, for a
given graph, whether such a drawing is possible [2,10].
For all these reasons, several variations and extensions
have been considered, from higher-order proximity
graphs to the so called weak proximity drawings [3,7].

Figure 1: Gabriel graph. The vertices defining the
shaded disk are adjacent because their disk doesn’t
contain any other vertex, in contrast to the vertices
defining the white disk.

In the case of the Gabriel graph, GG(P), the region
of influence of a pair of vertices a, b is the closed disk
with diameter ab, Dg,. An edge ab is in the Gabriel

*Part of this research was done while the third author was
visiting Brooklyn Polytechnic supported by Grant AGAUR-
Generalitat de Catalunya 2007 BE-1 00033.

TPolytechnic Institute of NYU. Partially supported by a grant
from the U.S.-Israel Binational Science Foundation, by NSA
MSP Grant H98230-06-1-0016, and NSF Grant CCF-08-30691.

$Universitat Politécnica de Catalunya. Partially supported
by projects MEC MTM2006-01267 and DURSI 2005SGR00692.

Muriel Dulieut

Ferran Hurtado?

Figure 2: GG(P, Q). Black points are the vertices of
the graph, white points are the witnesses. Each pair
of vertices defining a grey disk are adjacent as opposed
to pair of points defining a white disk.

graph of a point set P if and only if P N Dy, = {a, b}
(see figure 1). Gabriel graphs were introduced by
Gabriel and Sokal [6] in the context of geographic
variation analysis.

We consider in this work a generalization of the
Gabriel graph, the witness Gabriel graph, GG(P, Q).
It is defined by two sets of points P and Q; P is the set
of vertices of the graph and @ is the set of witnesses.
There is an edge ab in GG(P, Q) if, and only if, there
is no point of @ in Dy \ {a, b} (see figure 2).

Notice that witness Gabriel graphs are a proper
generalization of Gabriel graphs, because when the
set () of witnesses coincides with the set P of ver-
tices, we clearly obtain GG(P, P) = GG(P). This was
the main underlying idea of the generic concept of
witness graphs, which were introduced as a general
framework in [1] to provide a generalization of prox-
imity graphs, allowing witnesses to play a negative
role as in this paper or the opposite as well. Several
examples were described in [1], including in particular
Delaunay graphs and rectangle-of-influence drawings.
A systematic study is developed in [5].

In this paper we prove several fundamental proper-
ties of witness Gabriel graphs, describe algorithms for
their computation, and present results on the realiz-
ability of some combinatorial graphs.

We assume throughout the paper that the points
in PU Q@ are in general position, that is, there are no
three points on a line in P U @ and no four on a circle.

2 Some Properties of Witness Gabriel Graphs

It is known that that MST(P) C GG(P) C DT(P) [g],
where MST(P) is the minimum spanning tree and
DT(P) is the Delaunay triangulation. As a con-

13

EuroCG’09 - Brussels, Belgium

sequence, | MST(P)| < |GG(P)| < |DT(P)|. Ex-
pressing this in terms of n = |P|, we have that
n—1<|GG(P)| <3n—6. In [12], a more detailed
analysis gives a tighter upper bound of 3n — 8.

For witness Gabriel graphs GG(P, @), the situation
is quite different, as for any fixed set P of n points, by
varying the size of @) and the location of the witnesses,
the number of edges in GG(P, Q) can attain any value
from 0 to (}).

For example, when (Q = @, we obviously obtain
GG(P,@) = K,. The reverse problem is more in-
teresting: as the witness points can be thought as
interferences that prevent the points in P from in-
teracting, one may wonder how many witnesses are
required to completely eliminate the interactions in P.
Trivially, if there is a witness inside each disk D, for
all a,b € P, then GG(P, Q) has no edge, and this can
be achieved by putting a witness close to the midpoint
of every pair a, b of points from P, which would give
|Q] < (%). In the following theorem we present a much
better bound for the number of witnesses necessary to
eliminate all edges of GG(P, Q).

Theorem 1 n — 1 witnesses are always sufficient to
eliminate all edges of an n-vertex witness Gabriel
graph, while %n — o(n) witnesses are sometimes nec-
essary.

According to the preceding result, n—1 suitable wit-
nesses can always destroy all the edges. Interestingly,
realizing some witness Gabriel graphs may require
strictly more witnesses:

Theorem 2 There exist witness Gabriel graphs on
n vertices, for which at least %n — 8 witnesses are
necessary.

3 Witness Gabriel Drawings

Given a combinatorial graph G(V,E), a witness
Gabriel drawing of G is a mapping of its vertex set
V to a set P of distinct points in the plane, together
with a set of witnesses (), such that the mapping in-
duces an isomorphism between G(V, E) and GG(P, Q).
The fundamental question concerning witness Gabriel
drawability is the following: Given a graph G, is it
possible to construct a witness Gabriel drawing of G?
That question has been studied for (standard) Gabriel
graphs. In [4] Bose et al. present a complete character-
ization of those trees that are drawable as a Gabriel
graph. They proved that such trees cannot have ver-
tices of degree greater than four and cannot have two
adjacent vertices of degree four. They also character-
ized Gabriel-drawable trees by exhibiting families of
forbidden subtrees and by showing that they don’t
contain members of these families.

Lubiw and Sleumer [11] showed that all maximal
outerplanar graphs admit a Gabriel drawing in the

Figure 3: All the vertices inside the triangle Aabc will
be connected to d.

plane. They also conjectured that any biconnected
outerplanar graph has a Gabriel drawing. This was
settled in the affirmative by Lenhart and Liotta [9].

As every Gabriel graph is also a witness Gabriel
graph, since GG(P) = GG(P, P), one may expect
more power of representation with the use of the wit-
nesses. This is the case for tress, a class of graphs we
have studied with witness Gabriel graphs, for which
we have found the following:

Theorem 3 For all trees, a witness Gabriel drawing
exists.

We first observe some properties of witness Gabriel
drawings, before deducing that some graphs have no
such drawings.

Lemma 4 In a witness Gabriel graph, for any pair of
incident edges ab and bc, all the points p € P in the
triangle Aabc are connected to the common vertex b,
and there is no witness in Aabc.

Proposition 1 If a witness Gabriel graph has as a
subgraph a triangle Aabc, the vertices a, b, ¢ and the
vertices inside this triangle form a complete subgraph
(see figure 3).

We denote by K ;; the complete 3-partite graph in
which each part contains ¢ vertices; we associate a color
to each part; similarly, K;;;; denotes the complete
4-partite graph.

Lemma 5 It is impossible, in a witness Gabriel draw-
ing of Ky99 or Kgoo9, for a line containing two
vertices of one color, to divide the plane in two half-
planes, each of them containing two points of a second
and third color respectively (see figure 4). The second
and the third color may be the same.

Lemma 6 Any witness Gabriel drawing of K32 22
must have vertices in convex position.

Lemma 7 There is no witness Gabriel drawing of
K5 292 in which all the vertices of the same color are
consecutive (see figure 5).

14

Witness Gabriel graphs

*
*

Figure 4: The line containing the white-star points
separates two black-dot points from two black-star
points.

v8 vl
.

V7 2

v6 £x *V3

v5© © v4

Figure 5: K32 29 in which all the vertices of the same
kind are consecutive.

The constraints described in the preceding results
lead to a graph that is not drawable:

Theorem 8 There is no witness Gabriel drawing of
K3 333.

From the preceding result we immediately obtain the
following:

Corollary 9 No graph containing K3 333 as an in-
duced subgraph can be drawn as a witness Gabriel
graph. In particular, there is no witness Gabriel draw-
ing of Kp g for p,q,r,s > 3.

4 Construction Algorithms

In this section we describe two algorithms to compute
the witness Gabriel graph GG(P, Q) from two given
sets of points P and Q.

Theorem 10 Given two point sets P, with |P| +
|Q| = n, the graph GG(P,Q) can be computed in
O(n?) time, which is worst-case optimal.

First algorithm: For each point p € P, do the fol-
lowing: For each point ¢ € @, draw a line [, through g,
perpendicular to the line pg. Consider the intersection
I,, of the half-planes containing p bounded by the lines
lg, Yg € Q. Then, the edge pr, » € P\ {p}, is in
GG(P,Q) if and only if r € I, (see figure 6). Once

Figure 6: The first algorithm to build GG(P, Q). Black
points are in P and white points in Q.

we have computed the circular ordering of points in
P U@ around p, we can compute I, and identify all
edges pr in linear time.

Second algorithm: Build the Voronoi diagram
Vor(Q) of the points in Q. For each p € P, add
the point p to Vor(Q) and consider all segments of
the form pr with r € P\ {p}. For each edge pr take
the midpoint m(p,r). Observe that m(p,r) is in the
Voronoi cell of p in Vor(QU{p}) if and only if the edge
pris in GG(P, Q). The algorithm can be implemented
to run in quadratic time using standard tools. Again,
it is useful to have the circular ordering of all points
in P U @ around each point in P.

5 Verification Algorithm

In this section we present an algorithm to verify
whether a graph G(V, E) embedded in the plane can be
a witness Gabriel graph GG(V, @), for some suitable
set of witnesses Q.

Theorem 11 Given a straight-line graph G =
G(V, E) embedded in the plane, checking if there exists
a set of witnesses @ so that G coincides with GG(V, Q)
can be done in O(|V|?log|E|) time; if the answer is
positive, such a set of witnesses () can be computed
within the same time.

Algorithm For each edge pg in G, draw a disk D),
with diameter pg. Take the union U = Up’ q4eG Dpg of
these disks. Draw the Voronoi Diagram of the arcs
and vertices of the boundary of U. For each pair of
vertices 7 and s such that there is no edge between
them in G, draw a disk D, with diameter rs. Check if
the center ¢ of D, lies in U. If it does, find which cell
C of the Voronoi diagram contains ¢ and check if the
site of C intersects D,, if it doesn’t, D,, C U, it is
impossible to place a witness to eliminate rs without
also eliminating a legitimate edge of G. Therefore G
is not a witness Gabriel drawing GG(V, Q), for any @
(see figure 7).

15

EuroCG’09 - Brussels, Belgium

Figure 7: The algorithm to check if a geometric graph
is a witness Gabriel drawing. Black points are in P.

6 Final Remarks

There are some obvious open problems left in this
paper, like closing the gaps between some bounds.

On the other hand in this version we have omitted
the description of some extensions. For example, the
same way that standard Gabriel graphs are extended
to higher order, this can be done for the witness gen-
eralization: In a witness k-Gabriel graph, an edge ab,
a,b € P, is in the graph if there are fewer than k
witnesses in Dy \ {a, b}. Most of the preceding results
can be easily modified to provide the corresponding
conclusions about witness k-Gabriel graphs.

Finally, let us also mention that some natural long
term goals, such as a complete characterization of
the class of witness Gabriel graphs or the design of
efficient algorithms testing graphs for membership,
remain elusive to date, which, on the other hand,
is a common situation for most classes of standard
proximity graphs

References

[1] B. Aronov, M. Dulieu, and F. Hurtado. Witness
graphs. Manuscript, 2008.

[2] G. Di Battista, Peter Eades, and R. Tamassia
an I. G. Tollis. Graph Drawing. Algorithms for
the Visualization of Graphs. Prentice Hall, 1999.

[3] G.Di Battista, G. Liotta, and S. Whitesides:. The
strength of weak proximity. Journal of Discrete
Algorithms, 4(3):384-400, 1992.

[4] P. Bose, W. Lenhart, and G. Liotta. Characteriz-
ing proximity trees. In G. Di Battista, P. Eades,

[12]

H. de Fraysseix, P. Rosenstiehl, and R. Tamassia,
editors, Proc. ALCOM Int. Work. Graph Draw-
ing, GD, pages 9-11. Centre D’Analyse et de
Mathématique Sociales, Paris Sorbonne, 1993.

M. Dulieu. Ph d thesis, in preparation.

K.R. Gabriel and R.R. Sokal. A new statistical
approach to geographic variation analysis. Sys-
tematic Zoology, 18:259-278, 1969.

J.W. Jaromczyk and G.T. Toussaint. Relative
neighborhood graphs and their relatives. P-IEEFE,
80:1502-1517, 1992.

D.J. Kirkpatrick and J.D. Radke. A framework
for computational morphology. Computational
Geometry, 85:217-248, 1985.

W. Lenhart and G. Liotta. Proximity drawings
of outerplanar graphs. In Graph Drawing, pages
286-302, 1996.

G. Liotta. Proximity drawings. In R. Tamassia,
editor, Handbook of Graph Drawing and Visual-
ization. CRC Press, to appear.

A. Lubiw and N. Sleumer. Maximal outerplanar
graphs are relative neighborhood graphs. Proc.
5th Canad. Conf. Comput. Geom., pages 198-203,
1993.

D.W. Matula and R.R. Sokal. Properties of
Gabriel graphs relevant to geographical variation
research and the clustering of points in the plane.
Geographical analysis, 12:205-222, 1980.

G. Toussaint. Some unsolved problems on prox-
imity graphs, 1991.

G.T. Toussaint. Geometric proximity graphs for
improving nearest neighbor methods in instance-
based learning and data mining. International
Journal of Comput. Geom. and Applications,
15(2):101-150, 2005.

16

Measuring the Similarity of Geometric Graphs

Measuring the Similarity of Geometric Graphs*

Otfried Cheong? Joachim Gudmundsson?

Abstract

What does it mean for two geometric graphs to be
similar? We propose a distance for geometric graphs
that we show to be a metric, and that can be com-
puted by solving an integer linear program. We also
present experiments using a heuristic distance func-
tion.

1 Introduction

Computational geometry has studied the matching
and analysis of geometric shapes from a theoretical
perspective, and developed efficient algorithms mea-
suring the similarity of geometric objects. Two ob-
jects are similar if they do not differ much geometri-
cally. A survey by Alt and Guibas [1] describes the
significant body of results obtained by researchers in
computational geometry in this area.

This paradigm fits a number of practical shape
matching problems quite well, such as the recognition
of symmetries in molecules, or the self-alignment of a
satellite based on star patterns. Other pattern recog-
nition problems, however, seem to require a different
definition of “matching.” For instance, recognizing
logos, Egyptian hieroglyphics, Chinese characters, or
electronic components in a circuit diagram are typical
examples where this is the case. The same “pattern”
can appear in a variety of shapes that differ geometri-
cally. What remains invariant, however, is the “com-
binatorial” structure of the pattern.

We propose to consider such patterns as geomet-
ric graphs, that is, planar graphs embedded into the
plane with straight edges. Two geometric graphs can
be considered similar if both the underlying graph and
the geometry of the planar embedding are “similar.”
The distance measures considered in computational
geometry, such as the Hausdorff distance, Fréchet dis-
tance, or the symmetric difference, do not seem to
apply to geometric graphs.

Pattern recognition systems that combine a combi-
natorial component with a geometric component are
already used in practice—in fact, syntactic or struc-
tural pattern recognition is based on exactly this idea:

*This work was supported by Korea Science & Engineering
Foundation through the Joint Research Program (F01-2006-
000-10257-0).

TKAIST, Korea. {otfried,hyosil}@tclab.kaist.ac.kr

INICTA, Australia. joachim.gudmundsson@nicta.com.au

8FU Berlin, Germany. {schymura,stehn}@inf.fu-berlin.de

Hyo-Sil Kim*

Daria Schymura® Fabian Stehn®

A syntactic recognizer decomposes the pattern into
geometric primitives and makes conclusions based on
the appearance and relative position of these primi-
tives [2, 6]. While attractive from a theoretical point
of view, syntactic recognizers have not been able to
compete with numerical or Al techniques for charac-
ter recognition [5]. In general, the pattern recognition
community may be said to consider graph representa-
tions as expressive, but too time-consuming, as sub-
graph isomorphism in general is intractable.

An established measure of similarity between (la-
beled) graphs is the edit distance. The idea of an edit
distance is very intuitive: To measure the difference
between two objects, measure how much one object
has to be changed to be transformed into the other
object. To define an edit distance, one therefore de-
fines a set of allowed operations, each associated with
a cost. An edit sequence from object A to object B
is a finite sequence of allowed operations that trans-
forms A into B. The distance between A and B is the
minimal cost of an edit sequence from A to B.

The edit distance originally stems from string
matching where the allowed operations are insertion,
deletion and substitution of characters. The edit dis-
tance of strings can be computed efficiently, and the
string edit distance is used widely, for instance in com-
putational biology.

Justice and Hero [4] give a definition of an edit dis-
tance for vertex-labeled graphs that additionally al-
lows relabeling of vertices, and give an integer linear
programming formulation. The edit operations are in-
sertion and deletion of vertices, insertion and deletion
of edges, and a change of a vertex label.

It is natural to try to define an edit distance for geo-
metric graphs as well. Simply considering a geometric
graph as a graph whose vertices are labeled with their
coordinates is not sufficient, as the cost of inserting
and deleting an edge should also be dependent on the
length of the edge. This leads to the following op-
erations: Insertions and deletions of vertices, transla-
tions of vertices, and insertions and deletions of edges.
However, it is difficult to give bounds on the length
of an edit sequence: vertices can move several times
to make insertions and deletions cheaper.

This leads us to define another graph distance func-
tion, given in the next section. It is not an edit dis-
tance, and so we need to prove explicitly that it is a
metric. We also give an integer linear programming
formulation that allows us to compute our distance for

17

EuroCG’09 - Brussels, Belgium

small graphs with an ILP solver. Unfortunately, we
do not know how to compute or even approximate our
graph distance for larger graphs. In fact, we give two
reductions from NP-hard problems, but both result in
non- “practical” instances of the problem.

We therefore turn our attention to a heuristic.
We define the landmark distance of two geometric
graphs, and present pattern retrieval experiments on a
database of 25056 graphs created from glyphs of Chi-
nese characters. The idea of the landmark distance is
to represent a geometric graph on n vertices as a set of
n points in RS. The landmark distance between two
geometric graphs is then the Earth Mover’s Distance
between the point sets representing the graphs.

2 Geometric graph distance

Our distance is inspired by the graph edit distance:
it is based on primitive operations, namely insertion
and deletion of vertices and edges, and the transla-
tion of vertices. However, we do not allow arbitrary
sequences of these operations. Instead the edit oper-
ations must be performed in this order:

1. Edge deletions

2. Vertex deletions

3. Vertex translations

4. Vertex insertions

5. Edge insertions
Vertex insertions and deletions are free, insertion or
deletion of an edge e of length ¢(e) have cost Cg -
{(e), and translating a vertex has cost Cy times the
distance of the translation plus C'g times the change
in the length of the incident edges. Note that we
measure the change in edge length from graph A to
graph B, and not for the individual operations.

Taking into account the change in edge length is
necessary, as otherwise the distance would not satisfy
the triangle inequality, see Figure 1.

(a) { (b) { (C)i (d) %

Figure 1: If the change in edge lengths are not taken
into consideration then it is cheaper to go from graph
(a) to graph (d) via graphs (b) and (c).

We can now show:

Theorem 1 The geometric graph distance defined
above is a metric on the set of geometric graphs with-
out isolated vertices.

The geometric graph distance can be formulated
as an ILP as follows. Let A = (V(A), E(A)) and
B = (V(B), E(B)) be the two geometric graphs. For
each vertex v; of V(A) and v; in V(B), we have a

binary variable V;; which is 1 if v; is moved to vy,
otherwise 0. Similarly, for each edge e; of E(A) and
e; in E(B), we have a binary variable F;; which is 1 if
the two endpoints of e; are moved to the endpoints of
ej, otherwise 0. Furthermore, each vertex can only be
moved once, hence, Vi Zj Vij<landVj) Vi <1.

An edge can only be matched if the endpoints are
the same, i.e., if e; = (vq,v) and e; = (vp,v,) then
Eij < % ' (Vap + Vbq + Vaq + pr)-

These are all the constraints. The distance is the
minimum of the function:

Cy - X (lvavg] - Vig) + C - (2, es) + X2, ey))
~Cp Eij - 5 (Ue) + eg) — |t(es) — tley)]).

The first term is the cost of moving all vertices (the
remaining vertices are deleted and inserted, which is
for free). The second and third terms are the total
cost of first deleting all edges of A and then inserting
all edges of B. The only way to avoid deleting and
inserting an edge is by moving it from A to B. In that
case, E;; is 1, and the cost is the difference in edge
length, which is modeled by the fourth term.

Theorem 2 The problem of computing the geomet-
ric graph distance as defined above is NP-hard.

The theorem can be proven by using a reduction from
the 3D-matching problem or the Hamiltonian path
problem. However, we can only prove the theorem in
the case when the two graphs are highly non-planar or
for planar graphs when Cy <« Cg. Thus, both results
are for non-“practical” instances of the problem

3 Landmark Distance

The idea of the landmark distance is to designate a
few vertices as landmarks and to represent the vertices
of the graph by their distances to the landmarks.

Formally, let G = (V, E) be a geometric graph, and
let C'(G) be the complete graph on the set V. An edge
(u,v) of C(G) is given a weight as follows: if (u,v) €
E, then its weight is |uv|, otherwise its weight is p-|uv|,
where p > 1 is a fixed penalty value. The distance
de(u,w) between a vertex u € V and a landmark
w € V is then defined as the length of the shortest
path between u and w in C(G). After testing different
values for p we chose p = 1.6 for our experiments.

Let L = wy,...,wg be k vertices of G called land-
marks. For a vertex v € V with coordinates (z,y), we
define the L-vector L, of v as the (k+ 2)-dimensional
vector containing the distances of v to the k land-
marks as well as the coordinates of v:

L, = (dg(v,w1),...,dg(v,w),x,y).

The landmark representation R(G) of a graph G
is now simply the set of L-vectors of all vertices:
R(G) :={L, |veV(G)}.

We define the landmark distance dp(Go,G1) be-
tween two geometric graphs Gog and G; (both with

18

Measuring the Similarity of Geometric Graphs

given landmarks) as the normalized Earth Mover’s
Distance between the point sets R(Go) and R(G1).

The normalized Earth Mover’s Distance (nEMD)
is a distance measure defined on weighted point
sets [7]. Let P and @ be two weighted point sets
with > cpw(p) = 30,cqw(q) = 1, where w(u) >0
is the weight of a point u.

Intuitively, the set P can be seen as a set of earth
piles and the set @ can be seen as holes in the ground,
where the weight of each point stands for the amount
of earth at that position or the size of the hole, respec-
tively. The Earth Mover’s Distance is then defined as
the cheapest way to move the earth into the holes,
where piles can be split and the cost of transporting
s units of earth from a pile to a hole is equal to s times
the distance between the pile and the hole.

The nEMD can be formalized by the following lin-
ear program. Let d,, denote the Euclidean distance
of pe P toq€ @ and let f,, denote the flow from p
to g. Then the nEMD(P, Q) is defined as the minimal
total cost that establish a maximum flow of 1:

nEMD(P, Q) =min) | > foydpg
PEP q€Q
subject to the following constraints

VpePVqeQ fpg = 0

VpEP Y frg = w(p)
q€Q

Vg e qQ prq = w(q)
peP
In the definition of the landmark distance, we give
all vertices equal weight and use the ¢;-metric in R**2
as the underlying distance for the nEMD.

Theorem 3 The landmark distance on graphs with
given landmarks has the following properties:

(i) dr(Go,G1) = 0,

(ii) dr(Go, G1) = dr(G1, Go),

(iii) d1,(Go, G2) < dp(Go,G1) + dr(G1, Ga).

All the properties in the theorem follow directly from
the fact that the normalized EMD is a metric [7]. Note
that dr(Go, G1) = 0 does not imply Gog = G;.

4 Experimental results

We performed pattern retrieval experiments on a
database of graphs generated from Chinese character
glyphs using the landmark distance. The motivation
here was not to build a Chinese character recognition
system—a lot of research has been done in this area,
and it is not our intention to compete with these finely
tuned results of years of research. We turned to Chi-
nese characters because we found them to be a source
of large number of graphs with known semantics.

We selected six different fonts, including two Ko-
rean, two Japanese, and two Chinese fonts. We picked

a set of 4176 Chinese characters (or, more precisely,
Unicode code points) that exist in all six fonts, and
generated graphs for each of these 6 x 4176 = 25056
glyphs as follows: We draw the glyph and compute
its medial axis. We prune away small features, and
then simplify each chain of degree-two vertices using
the Imai-Iri algorithm [3]. Figure 2 shows three exam-
ples of glyphs and the corresponding graphs. For the
distance computations, all graphs were then linearly
scaled to fill a unit square (not shown in the figure).

1k B 8
T Sk e

Figure 2: Three glyphs and generated graphs for
U+6f11 “slowly flowing water”.

As explained, our database consists of 4176 sets of
six graphs that represent the same abstract Chinese
character. In principle, the graphs representing the
same character should be similar, and we have as-
sumed this as the ground truth of our database. In
reality, there can be considerable variation between
graphs with the same semantics, due to a different
glyph style, or actual variations in character shape.

The experiment We selected one of the six fonts
(the Korean “dotum” font) as our reference font, and
built a database of 4176 “model” graphs from this.

We then considered each of the remaining 20880
“pattern” graphs, and computed its distance to each
model, using the EMD implementation by Rubner et
al. [7]. The models were then sorted in order of dis-
tance from the pattern. Ideally, the nearest model
should be a graph for the same Chinese character, so
we determined the index of the occurrence of the same
Chinese character in the ranked list of models.

As a control experiment, we first tried this exper-
iment using the Hausdorff distance of the graph ver-
tices. The results are given in the first line of Table 1:
For 31.8% of the 20880 patterns the best (most sim-
ilar) model belonged to the same Chinese character,
for 50.9% of the patterns, one of the first (most simi-
lar) ten models belongs to the same character.

It is clear that the Hausdorff distance does not cap-
ture the problem well enough (even though we ignore
edge information here, we do not believe that using
the edge information would actually help).

The Earth Mover’s Distance, however, does much

19

EuroCG’09 - Brussels, Belgium

Index in ranked model list
Graph distance 1 2 3 4 5 | 6-10 | 11-20 | 21-200
Hausdorff distance | # patterns 6647 | 1272 | 705 | 496 | 387 | 1115 1257 4283
of vertices accum % 31.8 | 37.9 | 41.3 | 43.7 | 45.5 | 50.9 56.9 77.4
EMD | # patterns | 16844 | 1646 | 519 | 258 | 184 286 193 200
of vertices accum % 80.7 | 88.6 | 91.0 | 92.3 | 93.2 | 94.5 95.4 96.4
Landmark | # patterns | 17814 | 1298 | 454 | 260 | 152 | 317 195 221
distance accum % 85.3 | 91.5 | 93.7 | 95.0 | 95.7 | 97.2 98.1 99.2

Table 1: A summary of our experimental studies of Chinese character retrieval.

better, even when we ignore all information about
the edges of the graph. The second line of our table
shows this experiment, where we ranked the models
by nEMD of the graph vertices only. The results are
surprisingly good considering that the edge informa-
tion is not used at all: for 94.5% of the patterns, the
correct Chinese character is found in the top ten.

Landmark selection Selecting the right landmarks
in each graph is critical to the success of the landmark
distance. We fixed four landmarks in each model
graph, by choosing the four vertices that are extreme
in the four diagonal directions. For a pattern, we ac-
tually try all plausible choices of landmarks, and use
the landmarks that result in the smallest distance to
a given model (so the choice of landmarks could be
different for each model).

Speeding up the computation It turned out that
computing the EMD is rather expensive, and comput-
ing 4176 x 20880 EMD distances in every experiment
is very time-consuming.

We therefore used a heuristic to speed up the com-
putation: Instead of using the EMD, we compute a
simplified landmark distance d} (Go, G1) which is de-
fined as follows: For each point u in R(Gyg), find the
nearest point nn(u) € R(G1). Then

di(Go,Gr) = Y [lu—nn(u)l.
u€R(Go)

We first rank all models using this simplified landmark
distance. We then look at the nearest 200 models,
and recompute the distance from the pattern to these
200 models using the landmark distance.

The heuristic greatly speeds up the computation
while having little effect on the quality of the recogni-
tion. As an example of the speed-up we compared one
character (6f01s) against the entire database which
required 31 seconds using the EMD while the above
heuristic only required 1.8 seconds, which is a speed-
up of approximately 17. However, it should be noted
that the exact timings depend very much on the char-
acter.

For 85.3% of the patterns this approach finds the
same Chinese character and in 97.2% of the cases it

is in the top ten.

5 Conclusions and open problems

We believe that we have only scratched the surface of
this problem. We gave some evidence that our geo-
metric graph distance is hard to compute, but we lack
a formal proof that it is NP-hard for planar graphs
with realistic values of Cg and Cy .

Is there a PTAS for our distance, or at least a
constant-factor approximation?

If we do not want insertions and deletions of vertices
to be free, can we incorporate that into our distance?

Finally, a major problem of our metric is that it
does not allow us to cheaply “bend” an edge, that is,
to insert a degree-two vertex into an edge and then
to move that vertex slightly. Can we define a metric
that allows this while still being computable at least
through integer linear programming?

References

[1] H. Alt and L.J. Guibas. Discrete Geometric Shapes:
Matching, Interpolation, and Approrimation, pages
121-153. Elsevier B.V., 2000.

[2] K. S. Fu. Syntactic Pattern Recognition and Applica-
tions. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[3] H. Imai and M. Iri. Polygonal approximations of a
curve - formulations and algorithms. In Computa-
tional Morphology, pages 71-86. Elsevier B.V., 1988.

[4] D. Justice and A. Hero. A binary linear program-
ming formulation of the graph edit distance. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 28(8):1200-1214, 2006.

[5] S. Lucas, E. Vidal, A. Amiri, S. Hanlon, and J. C.
Amengual. A comparison of syntactic and statisti-
cal techniques for off-line OCR. In 2nd International
Colloquium Grammatical Inference and Applications,
pages 168—179. Springer-Verlag, 1994.

[6] T.Pavlidis. Structural Pattern Recognition. Springer-
Verlag, New York, 1977.

[7] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth
movers distance as a metric for image retrieval. In-
ternational Journal of Computer Vision, 40(2), 2000.
http://robotics.stanford.edu/~rubner.

20

Spanner Properties of 1i/2-Angle Yao Graphs

Spanner Properties of 7/2-Angle Yao Graphs *

Mirela Damian

Abstract

We show that the YaoYao graph Y'Y} is not a spanner.
We conjecture that the Yao graph Y is a spanner, and
prove this conjecture for the special case of points in
convex position.

1 Introduction

Let V be a set of n points in the plane and let G =
(V, E) be the complete Euclidean graph on V. For any
pair of vertices u,v € V, we use dg(u,v) to denote the
length of a shortest path from u to v in G. For fixed
t > 1, H is called a t-spanner for G if, for any two
vertices u,v € V, dg(u,v) < t-|uv|. The value t is
called the stretch factor of H. If t is constant, then
H is called a length spanner, or simply a spanner.
The Yao graph [3] with an integer parameter k > 0,
denoted Yy, is defined as follows. At each nodeu € V,
any k equal-separated rays originated at u define k
cones. In each cone, pick a shortest edge uv, if there
is one, and add to Y}, the directed edge ut. Ties are
broken arbitrarily. It was shown that, for & > 6, the
Yao graph is a spanner with stretch factor m,
but it can have degree as high as n — 1. To bound
the degree, Li et al. [2] proposed another structure
called YaoYao YY), which is constructed by applying
a reverse Yao structure on Yj: at each node w in Y,
discard all directed edges vt from each cone centered
at u, except for a shortest one (again, ties can be
broken arbitrarily). YY) has maximum node degree
2k, a constant. However, the tradeoff between degree
and spanner property is unclear in that the question
of whether Y'Y} is a spanner or not remains open.
The class of graphs Yy, for k& < 6, has not been
much studied. As far as we know, the only existing
result shows that Yy is a weak spanner with stretch
factor ' = v/3++/5 (Thm. 2.2, [1]), which means
the following: for any two points u,v € V, there is a
directed path P from u to v in Y, such that, for each
point w € P, |wv| < t'-|uv|. In other words, the entire

*The first two authors have been supported by NSF grant
CCF-0728909.

TDept. Comput. Sci., Villanova Univ., Villanova, PA, USA.
mirela.damian@villanova.edu.

tDept. Comput. Sci., Villanova Univ., Villanova, PA, USA.
nawar.molla@villanova.edu.

§Dept. Math., Southern Connecticut State University, CT,
USA. pinciuvi@southernct.edu.

Nawar Molla ¥

Val Pinciu®

path P lies inside a ball of radius ¢’ - |uv| centered at
v. For any path P and any pair of vertices u and v on
P, let Plu,v] denote the subpath of P that extends
between u and v.

In this paper we study the class of graphs Y, and
YY;. We show that Y'Y, is not a spanner, and Y} is a
spanner for points in convex position. We conjecture
that Yy is a spanner for arbitrary point sets.

2 YY) is not a Spanner

We prove that Y'Y, is not a spanner with the help of
a simple counterexample. For a fixed small angular
value 6§ > 0, let agby be an arbitrary line segment with
slope 6. Let by, by, . .., bi be points equally distributed
along a line of slope m/2—6, at intervals equal to |agbg|
(so |bibiy1| = |aobo|, for each ¢ = 1,...,k —1). See
Fig. 1. Let ag, a1, ..., a; be points equally distributed
along a line of slope 7/2 + 0, such that a;b; and a;b;
are parallel, for each 0 <4, j < k. Note that, for fixed

Figure 1: The Yao graph H induced by the point set
V.

0, ag and by, the point set V = {ap,a1,...,ar} U
{bo,b1,...,bx}, is uniquely defined. For a fixed k,
we select the angle 6 small enough so that two lines
including aga;, and byb; are almost vertical.

Now note that in the Yao step, each node a; selects

—
the edges a;b;, a;a;+1 (if i < k) and a;a;—1 (if i > 0).
—_—
Similarly, each node b; selects b;b;+1 and b;a;4q (if
B —

i < k), bib;—y (ifi > 0), and b;a; (if i = 0). The result
is the Yao graph H shown in Fig. 1.

In the reverse Yao step, since edges a;a;yi and
P . . .
bia;+1 lie in the same quadrant for a;; (for i < k),

21

EuroCG’09 - Brussels, Belgium

and since |a;a;+1| < |b;ai+1], the node a;11 will elimi-
P . . . - e .
nate b;a; 1 from H. Similarly, since a;b; and b;_1b; lie
in the same quadrant for b;, and since |b;_1b;| < |a;b;,
—
the node b; will eliminate a;b; from H. The result is
the YaoYao graph H illustrated in Fig. 2. As 6 — 0,

Figure 2: The graph H is not a spanner:

we have that |agbx| — |aobo|- However, a shortest
path between aj and b in the YaoYao graph H has
length

k k-1
Smlar,be) = > _laiai_1|+|aobo| + > |bibisi]
im1 i=0

> (k+41)-Jagbo| = Q(n) - |apby|

Here n = |V| = 2(k+1). The inequality above shows
that there is no constant ¢ such that dgy(ag,br) <
¢+ lagbg|. It follows that H is not a spanner for the
graph induced by the point set V.

3 Y, is a Spanner for Convex Position

We conjecture that Y} is a spanner for arbitrary point
sets, however we only prove this conjecture for sets of
points in convex position.

Let u,v € V be arbitrary. Let Q(u,v) denote the
cone (quadrant) with origin at w that contains v, and
let SQ(u,v) denote a smallest square centered at v
whose boundary contains uw. Note that Q(u,v) and
SQ(u,v) are uniquely defined for a given pair of ver-
tices u and v (see Fig. 3a). Let R(u,v) denote the
rectangle with diagonal uwv.

For a fixed pair of vertices u,v € V, we define re-
cursively a directed path P(u ~» v) from u to v in ¥y
as follows. Let ug = u, and let wyu;4; € Yy be the
edge that lies in Q(u;,v), for each i. Then

1, ifu; =wv
Uit D Puipq ~ v), otherwise.

(1)
Here L represents the null path and @ represents the
concatenation operator. This definition is illustrated

Pu; ~ v) :{

Uy u,

) R I T u vt us
Uiy ¢ X T LA X

b O
|
Uip i

O(u,,v)
(a) (b)

Figure 3: Constructing P(u ~» v). (a) The outer
square is SQ(u;,v) = SQ(uiy1,v), and the inner
square is SQ(ui4+2,v); shaded area is Q(u;,v); (b)
P(u ~» v) lies inside SQ(u,v).

in Fig. 3a. Fischer et al. [1] show the following prop-
erties of P(u ~ v):

Property 1 Let P(u ~» v) = ug,u1,... be as defined
in (1). Then, for each i > 0,

(a) SQ(uit1,v) C SQ(u;,v).
(b) SQ(uis2,v) C SQ(ui,v).
(c) P(u; ~ v) lies entirely inside SQ(u;,v).

In the example from Fig. 3a for instance,
SQ(uit1,v) = SQ(ui,v), however SQ(u;i2,v) C
SQ(u;,v). This latter property is critical to ensure
that progress is made towards v and that the path
P(u ~» v) is well defined. We now prove another
important property of P(u ~ v).

Lemma 2 P(u ~ v) does not self-intersect®.

Proof. The proof is by contradiction. Assume to the
contrary that P,, = P(u ~ v) is a self-intersecting
path. Let (u = wg), u1,ua,... be the vertices of Py,
in the order in which they appear from u to v along
P,,. Let k > 0 be the smallest index such P, [u, ug]
does not self-intersect, but P, [u, ugy1] self-intersects
(80 Pyy[u, ugy1] contains at least three edges, meaning
that & > 1). Then it must be that uiug41 intersects
one of the edges on the subpath P,,[u,ux]. Let i < k
be such that w;u;+q intersects ugugy; (see Fig. 4).
Since u;u;41 and uguky1 are non-adjacent, it must be
that k£ > ¢+ 1. This along with Property 1(b) implies
that SQ(ug+1,v) C SQ(uit1,v). By Property 1(a),
SQ(uir1,v) € SQ(us,v). These together show that
Uk4+1 cannot coincide with u; or w;41, and therefore
Upug4+1 and u;u; 41 do not share an endpoint. Thus, if
u;u;y+1 and ugugyq intersect, they must share a point
interior to each of them. This along with the fact
that w1 lies strictly inside SQ(u;11,v) implies that
g1 € R(ui,uiq1). This in turn implies that ug4q €

1A path self-intersects if two non-adjacent edges share a
point.

22

Spanner Properties of 1i/2-Angle Yao Graphs

Ay

y=

N ‘ v
)
\\
gk o Ui

u
Uiy

Figure 4: Edges u;uj, upue € P(u ~» v) can not cross.

Q(us,v) and |uugy1| < |ujuipi|, contradicting the
fact that w;u;11 is a shortest edge in Q(u;,v) (ie, a
Yao edge). This completes the proof. (I

An immediate consequence of Lem. 2 is the following:

Corollary 3 Let P(u ~ v) = (u = ug),us,...
oy Uk—1, (ugp =v). Then for any j, 0 < j < k, uju;q1
is on the convex hull of uj,ujq1,...,Uk—1,Uk.

The path P(u ~» v) can have an interesting oscillating
behavior, as shown in Fig. 5. This is due to the fact

Figure 5: P(u ~» v) is arbitrarily long compared to
|uv].

that, at each intermediate point u;, the path contin-
ues towards v along the Yao edge incident to w; that
lies in Q(u;,v), ignoring the incident (and potentially
shorter) edges from adjacent quadrants. As a result,
a vertex uj € P(u ~ v) that does not lie in Q(u;,v),
but lies very close to u;, might end up separated from
u; by a long subpath in P(u ~» v) (see Pyylu;, u;]
from Fig. 5). We compensate for this shortcoming by
refining P(u ~ v) in a second step, as described in
the Y4PATH algorithm below. The refinement step
replaces longer subpaths of P, by shorter paths from
Yy, if possible.

For the example shown in Fig. 6 for instance,
the Y4PATH algorithm would replace the subpath
(uguz, uzug, ugus) by P(us ~ uz). We will show
that P(us ~» uz) has a nice behavior and does not
interfere with the existing path P,,. In particular,
P(us ~> ug) lies exterior to H(Pyy), in the region
shaded in Fig. 6. This property is shown formally in
the following lemma.

Algorithm Y4PATH(YY, u, v)

1. Compute Py, = P(u ~ v).
Let H(Pyuv) be the convex hull of Py,.
Let OH(Pyv) be the boundary of H(Pyy).

2. For each edge u;u; € OH(Pyv) \ Puv, with j > >0
If |uiu]-\ < |Uiui+1|/2
Recompute P(u; ~ u;) as in (1).
Replace Pyy[ui, uj] in Py, by P(uj ~ u;).

Output Py, (undirected).

Table 1: The Y4PATH algorithm.

Plug~u,) "

Figure 6: P(us ~ u2) lies in the shaded area.

Lemma 4 Let u;u; be an edge processed in Step 2 of
the Y4PATH algorithm, with i > 0. Then P(u; ~ u;)
lies in the closed rectangle R = R(u;, u;).

Proof. Let Qo = Q(u;,ui+1), and assume without
loss of generality that Q1 = Q(u;,u;) lies counter-
clockwise from Qg (see Fig. 7). Let Q2 and Q3 be the
other two quadrants with origin wu;, in counterclock-
wise order around u,.

The proof is by contradiction. Let wpwry: €
Q(wgk, u;) be the first edge along P(u; ~» u;) that
crosses the boundary of R. Thus wy € R and
wit1 € R. Since wy, € R, we have that

lwrwi| < [ujug (2)

Since wi41 € Q(wy, u;) and wrwgs1 is a Yao edge, it
must be that

|wpwg1| < Jwiu;] (3)

This implies that wgy1 € Q3. Substituting (3) in
the triangle inequality |u;wgi1| < |wjwi| + |wrwgi1]
yields |uswgy1| < 2|wpu;]. Substituting (2) in this
latter inequality yields

ugwpia| < 2fujul (4)
Recall that Step 2 of the Y4PATH algorithm processes
edges w;u; of length |u;uj| < |u;u;41]/2. This to-
gether with (4) yields

|uiwk+1| < |UﬂLi+1| (5)

23

EuroCG’09 - Brussels, Belgium

Inequality (5) along with the fact that w;u;11 is a
Yao edge, implies that w41 € Qp. It also holds that
wit1 € Q1, since Q1 N Q(wy, ;) € R and wgiy €

Q(wi,u;) \ R.

,,,,,,,,,,,,,

Figure 7: If u;—1 € Qo, then u; 1 & Q(u;,v).

It remains to discuss the case wii1 € Q2 (see
Fig. 7). Recall that u;u; € OH(Pyy). Also, by Cor. 3,
u;—1u; is a hull edge of Pyy[ui—1,v], 80 wjyq is in
the interior of the convex angle Zuju;u;—1. Since
u; € @1 and u;41 € @, then either u;—; € Q3
or u;—1 € Q. If u;—; € Qs, the quadrilateral
U;—1Ui+1U;Wr41 Would contain u; in its interior, con-
tradicting the fact that V is in convex position. If
u;—1 € Qo, since u; _1u; is a Yao edge, v € Q(u;_1, u;).
Since w;u;41 is a Yao edge, v € Q(ui,uitq1). It follows
that v € Q(ui—1,u;) Qs uit1) = R(ui—1,u;), con-
tradicting the fact that w;_1u, is a Yao edge. Having
exhausted all cases, we conclude that wpwy1 cannot
cross the boundary of R. O

The following corollary follows immediately from
Lem. 4 and the fact that V' is in convex position.

Corollary 5 Let u;u; be an edge processed in Step 2
of the YAPATH algorithm, with i > 0. Then P(u; ~
Uj) C 3H(P1w)

Lemma 6 If P is a convex polygon containing u and
v that lies inside SQ(u,v), then the perimeter of P is
no more than 2(2 + v/2) - |uv|.

Proof. Let ab be a side of P containing v. Extend
ab beyond each endpoint until it meets the boundary
of SQ(u,v) at two points, call them w; and wy (see
Fig. 8). Then wyws splits SQ(u, v) into two congruent
trapezoids (when wyws is a diagonal of SQ(u,v), the
two trapezoids degenerate into two right triangles).
Since P is convex, all points of P are on the same side
of wiws, so P has to lie inside one of these trapezoids
— call it T. The fact that P C T along with the
convexity property of P implies that the perimeter of
P does not exceed the perimeter of T'.

Figure 8: The perimeter of T does not exceed (2 +

V2)L.

Next we calculate the perimeter of T'. Let £ be the
side length of SQ(u,v). Since w; and wy are symmet-
ric with respect to v, the lengths of the two bases of
T sum up to £. The third side of T other than wjws
also has length ¢. So the perimeter of T is

20 + |wiws| < (24 V2)0

Since u is on the boundary of SQ(u,v), |uv| > £¢/2.
This along with the inequality above shows that the
perimeter of P is no more than 2(2 + v/2)|uv|. O

Theorem 7 For any set V of points in convex po-
sition, the Yao graph Yj on V is a t-spanner, for

t=4(2+2).

Proof. Cor. 5 implies that the only edges on P,
crossing the interior of H(P,,) are those edges not
processed in Step 2 of the Y4PATH algorithm. These
are diagonals w;u;41 of H(Py) adjacent to w;u; €
OH(Pyuy) \ Puy, with the property that |uju;i1]| <
2|u;uj;|. It follows that P,, is no longer than twice
the perimeter of OH(P,,). This along with Lem. 6
concludes the proof. O

Concluding Remarks. We have shown that YY)
is not a spanner, and that Y, is a spanner for points
in convex position. Proving that Y} is a spanner for
arbitrary point sets remains open.

References

[1] M. Fischer, T. Lukovszki, and M. Ziegler. Geometric
searching in walkthrough animations with weak span-
ners in real time. In ESA ’98: Proc. of the 6th Annual
European Symposium on Algorithms, pages 163-174,
1998.

[2] X.Li, P. Wan, Y. Wang, and O. Frieder. Sparse power
efficient topology for wireless networks. In HICSS’02:
Proc. of the 35th Annual Hawaii Int. Conference on
System Sciences, volume 9, page 296.2, 2002.

[3] A.C.-C. Yao. On constructing minimum spanning
trees in k-dimensional spaces and related problems.
SIAM Journal on Computing, 11(4):721-736, 1982.

24

Wiener Index and Diameter of a Planar Graph in Subquadratic Time

Wiener Index and Diameter of a Planar Graph in Subquadratic Time

Christian Wulff-Nilsen*

Abstract

We solve two open problems by proving the existence
of subquadratic time algorithms for computing the
Wiener index, defined as the sum of all-pairs short-
est path distances, and the diameter, defined as the
maximum distance between any vertex pair, of an un-
weighted planar graph. We do this by exhibiting al-
gorithms with O(n? loglogn/logn) running time and
O(n) space requirement where n is the number of ver-
tices of the graph.

1 Introduction

A molecular topological indezx is a value obtained from
the graph structure of a molecule such that this value
(hopefully) correlates with physical and/or chemical
properties of the molecule. Perhaps the most studied
molecular topological index is the so called Wiener in-
dez, a generalization of a definition given by Wiener
in 1947 [8]. The Wiener index of a graph (weighted
or unweighted) is defined as the sum of distances be-
tween all pairs of vertices of the graph. Computing
the Wiener index is essentially equivalent to comput-
ing the average distance between vertex pairs.

The Wiener index can clearly be computed in the
amount of time it takes to compute APSP distances.
For special types of graphs, faster algorithms are
known. Linear time algorithms are known for cac-
tii [9] and benzenoid systems [2] and recently Cabello
and Knauer [1] gave near-linear time algorithms for
graphs of bounded treewidth. More specifically, they
showed that the Wiener index of an n-vertex graph
of treewidth k& > 3 can be found in O(nlog" ' n)
time. All bounds hold for graphs with arbitrary non-
negative edge weights.

For planar graphs, the Wiener index can be found in
quadratic time using the algorithm of Frederickson [4].
One of the main open problems in this context con-
cerns the existence of a subquadratic time algorithm
for such graphs.

Another important quantity is the diameter of a
graph, defined as the maximum distance between any
vertex pair. With Frederickson’s algorithm, the diam-
eter of a planar graph can be found in quadratic time
but it is open whether a subquadratic time algorithm
exists (Problem 6.2 in [3]).

*Department of Computer Science, University of Copen-
hagen, koolooz@diku.dk

In this paper, we solve both of these open
problems for planar unweighted graphs. We do
this by exhibiting algorithms with running time
O(n?loglogn/logn) and space requirement O(n)
where n is the number of vertices.

The organization of the paper is as follows. In Sec-
tion 2, we give various definitions and introduce some
notation. We mention a result by Frederickson [4]
in Section 3, a result that allows us to divide a pla-
nar graph into regions with some nice properties. In
Section 4, we rely on this result to obtain our sub-
quadratic time algorithm for computing the Wiener
index of a planar graph. In Section 5, we show how a
simple modification gives an algorithm with the same
time bound for computing the diameter of a planar
graph. Finally, we make some concluding remarks in
Section 6.

2 Definitions and Notation

In all the following, G = (V,E) is an unweighted
planar graph with n vertices. For u,v € V, we let
dg(u,v) denote the length of a shortest path in G
between u and v.

Given a subgraph H of G, we let Vg denote its
vertex set.

Given subsets Uy, Us; C V', we define

Z(U17U2) = Z Z da(u,v).

ueU; velUsz

We omit G in the notation but this should not cause
any confusion. For a vertex u and a subset U of V,
we write > (U, u) as a shorthand for > (U, {u}).

We let >° G denote the sum of all-pairs shortest
path distances in G, i.e. 3. G = £ > (V,V), and we
refer to it as the Wiener index of G.

A region of G is a subset R of vertices of G. A
boundary vertex of R is a vertex in R which is adjacent
in G to a vertex in V' \ R. Vertices of R that are not
boundary vertices are called interior vertices (of R).

We let log denote the base 2 logarithm.

3 r-division of a Planar Graph

By applying the separator theorem of Lipton and Tar-
jan [6] recursively to a given planar graph, Frederick-
son [4] obtained the following result which we state as
a lemma.

25

EuroCG’09 - Brussels, Belgium

Lemma 1 Given a parameter r € (0,n) (which may
depend on n), an n-vertex planar graph can be di-
vided into ©(n/r) regions each of which contains at
most r vertices and O(+/r) boundary vertices. Fur-
thermore, each interior vertex is contained in exactly
one region. Finding such a division can be done in
O(nlogn) time.

For parameter r, we refer to the division in Lemma 1
as an r-division (of the graph). If Ry,..., R, CV are
the regions obtained, we denote the r-division by the
tuple (Rq,..., Rg).

Finding an r-division for a suitable value of r is
essential in our algorithms.

4 Wiener Index of a Planar Graph

In this section, we show how to compute the Wiener
index Y G of G in O(n?loglogn/logn) time. We
will assume that G is connected since otherwise the
problem is trivial.

The first step of our algorithm is to compute an -
division (Ry, ..., Ri) of G for some parameter r which
we specify later. For now, just regard r as some
function of n. We will show how to compute » G
in O(n?//r + nr®W) time. From this and from a
suitable choice of r, the first result of the paper will
follow.

In the following, let B be the set of boundary ver-
tices over all regions Ri,...,Rx. We precompute
shortest path distances from each vertex in B to all
vertices in V. Since |B| = O(n/+/T), this can be done
in O(n?/y/r) time using the linear time SSSP algo-
rithm in [5] for each vertex in B. From these dis-
tances, we obtain values > (B,V) and (B, B) in
O(n%//r) time.

Observe that Y (B,V) — 5> (B, B) is the sum of
all shortest path distances in G between vertex pairs
(u,v) for which either w or v (or both) is a boundary
vertex. Since, by Lemma 1, each interior vertex be-
longs to exactly one region, we can thus obtain Y G
as the sum

Z(B, V) - EZ(B,BH—
3 ZZ

Let R be one of the regions Rj,...,R;. In the
following, we focus on the problem of computing
>R\ B,V\(RUB)) and > (R\ B,R\ B). It
we can show that these two quantities can be com-
puted in O(ny/r + r°V7) time, it will follow that
S G can be computed in O(n?//r + nr®W)) time
since k = O(n/r).

Let us start with the easy part, that of computing
>(R\ B,R\ B). We do this by computing shortest

i\B,V\(RiUB))+ > (R;\ B,R;\ B).

path distances in G between each pair of vertices in
R. To do this efficiently, we take the subgraph of G
induced by R and add to it an edge between each pair
of boundary vertices of R; the length of this edge is
equal to the distance in G between those two vertices
(we do not add an edge between a pair of boundary
vertices already connected by an edge). We then run
an APSP algorithm like Floyd-Warshall on the result-
ing graph.

Since shortest path distances from boundary ver-
tices of R to all vertices in G (and in particular to all
boundary vertices in R) have been precomputed, it
follows that we can compute shortest path distances
in G between each pair of vertices in R in O(r3) time.
Hence, we can compute Y (R\ B, R\ B) in O(r?®) time.

Now, to compute > (R \ B,V \ (R U B)), let
C4,...,Cs be the connected components of the sub-
graph of G induced by R. Then

S (B\B,V\(RUB)) =
> (Ve \ B,V\ (RUB)). (1)

Let C be one of these connected components, let
ne = |Ve|, and let py, . .., p: be the boundary vertices
of R belonging to C. In the following, we show how to
compute Y (Ve \B,V\ (RUB)) in O(nt+ns ot)) time.
It will then follow that the left-hand side of (1) can
be computed in O(n/r + r°V7)) time since each of
the O(y/r) boundary vertices of R belongs to exactly
one connected component.

To compute Y. (Ve \ B,V \ (RU B)), the basic idea
is the following. Given some vertex v € V \ (R U
B), suppose we have precomputed, for each boundary
vertex p;, 1 =1,...,¢,

1. the number n; ,, of vertices v in Vi \ B for which ¢
is the smallest j such that dg(u,v) = da(u, pj)+
de(ps,v),

2. the sum D, ,, of distances in C from p; to each of
these vertices in Ve \ B.

Then

> (Ve \ Bu) Zm wda(u,pi) + Di, (2)
see Figure 1.

Given these precomputations, we can thus obtain
(Ve \ B,u) in O(¢) time and from this it follows
that > (Ve \ B, V\(RUB)) can be computed in O(nt)
time.

In order to perform the above precomputations ef-
ficiently we need the following key observation.

Lemma 2 Let u € V\ (RUB) and leti € {1,...,t}
be given. Then n;, and D;, are completely deter-
mined by shortest path distances in C' and values

dG(U,p]) - dg(U,p1) fOI'j = 1a s 7t'

26

Wiener Index and Diameter of a Planar Graph in Subquadratic Time

Figure 1: Graph instance for which component C'
has t = 3 boundary vertices pi, p2, and p3 of R
and where (1,4, D14) = (4,7), (n2,4, D2.u) = (4,6),
and (ngu,D3w) = (1,1). Also Y (Ve \ B,u) =
Z;:l ni,udg(u,pi) + Di,u = 43

Proof. Let v € Vo \ B. Any path from u to v in
G must contain at least one of the boundary vertices
p1,...,p:. Hence, the following two conditions are
equivalent:

1. 4 is the smallest j such that dg(u,v) =
dG(Uapj)+dC(pj7U)7

2. dG(uapl)_dG(uap]) S dc(vapj)_dC(’vai) holds
for 1 < j <t with strict inequality for 1 < j < 3.

Since dg (u, p;) — dg (u, p;) = (da(u, p;) — da(u, p1)) —
(da(u,pj) —da(u, p1)), the above shows that n;,, de-
pends only on shortest path distances in C and values
da(u,p;) — da(u,p1), j = 1,...,t. Clearly, this also
holds for D; ,,. O

Before proceeding, let us define a map ¢ : V' \ (R U
B) — Z! by

P(uw)j] = da(u, pj) — da(u, pr),

for j = 1,...,t. Let p be a point in ¢(V \ (RU B))
and let u be a vertex in V'\ (RU B) such that ¢(u) =
p. Associate with p values n,(i) and D,(i) for i =
1,...,t, defined by

np(1) = Niu,
D, (i) = Dj .

By Lemma 2, this is well-defined since n, (i) and D, (4)
do not depend on the choice of u € ¢~ 1({p}).

The strategy now is to precompute n,- and D,-
values for each p € (V' \ (RU B)) and then, for each
u € V\ (RU B), compute p = ¢(u) and obtain, for

t=1,...,t, ny,; and D, ; as the precomputed values
ny(i) and Dy (i), respectively. Function ¢ will act in
a way similar to a hash function in that it maps a
key (a vertex w) into a hash (the point p = ¢(u)) to
obtain a value (n,(i) and D,(i) fori =1,...,1).

For this strategy to work well, we need the following
lemma which shows that the number of points in ¢(V'\
(RU B)) is small compared to V'\ (RU B) and hence
that we only need to compute a small number of n,-
and D,-values.

Lemma 3 ¢(V\(RUB)) C {—(nc—1),...,nc—1}"

Proof. Let w € V\ (RUB) and let j € {1,...,t}
be given. Since C' is connected there is a simple path
in C from p; to p; and this path consists of at most
nc — 1 edges. Thus, dg(p1,p;) < dc(p1,pj) <nc—1
and the triangle inequality implies

—(nc — 1) <dg(u,pj) — dg(u,p1) <nc — 1.

This shows the lemma since ¢(u)[j] = da(u,p;) —
dG(uvpl)' U

We are now ready to describe how to compute
S>(Ve \ B,V \ (RU B)). We first initialize a ¢-
dimensional table T with an entry T'[p] for each point
p € {—(nc —1),...,nc — 1}*. Associated with
T[p] are two t-dimensional vectors to hold values
(np(1),...,np(t)) and (Dp(1),...,Dp(t)). Initially,
all entries of T" are unmarked. The initialization step
takes a total of O(t(2n¢ —1)') = O(ng(t)) time.

For each u € V\(RUB), we compute point p = ¢(u)
in O(t) time (this is possible since SSSP distances
in G have been precomputed for each boundary ver-
tex). Assume first that entry T'[p] is unmarked. Then
we mark it and compute the n,- and D,-values and
store them in the vectors associated with T'[p]. By
Lemma 2, computing and storing these values can
clearly be done in time polynomial in ne (a weak
analysis but it suffices). From these values, we com-
pute > (Ve \ B,u) in O(t) time.

If T[p] is already marked then we do not compute
np- and Dp-values. Instead we perform a lookup in T’
at entry T'[p] to obtain Y (Vo \ B,u) in O(t) time.

Clearly, we compute n,- and Dp-values at most
once for each p € {—(n¢c —1),...,nc— 1} It follows
that the above algorithm computes > (Ve \ B, V\ (RU
B)) in O(nt + ng(t)) time.

From the above and from (1), we get the following
result.

Lemma 4 For each region R, values » ,(R\B, V\(RU
B)) and Y (R\ B, R\ B) can be computed in O(n+/r+
7"0(‘/;)) time assuming shortest path distances from
each boundary vertex of R to each vertex in G have
been precomputed.

27

EuroCG’09 - Brussels, Belgium

We are now ready for our first result.

Theorem 5 The Wiener index .G of an un-
weighted planar n-vertex graph G can be computed
in O(n?loglogn/logn) time and O(n) space.

Proof. Computing shortest path distances from each
boundary vertex to each vertex in G can be done in
O(n?/+/r) time.

Applying Lemma 4 to each of the ©(n/r) regions in
the r-division of G gives us 3° G in O(n2//r4+nr¢ V)
time for some constant ¢’.

We pick r = (clogn/loglogn)? where ¢ > 0 is some
constant (to be specified). For n > 2¢ we have logn >
¢, and for n > 4 we have loglogn > 1. Thus, for
n > max{2°,4},

’ !’
e VT < (clogn)2c clogn/loglogn

,/,
< log n)4(, clogn/loglogn

’
n4c c’

since (logn)leen/loglogn — Tt follows that if we
choose ¢ < 1/(4¢), we have rV7 = O(n¢), where
€ < 1. With this choice of r, the total running time
of the algorithm is

O(n?//r +nr€ V") = O(n?loglogn/logn + n' ™)
= O(n*loglogn/logn),

as requested.

Simple modifications of the algorithm described
above allows us to obtain linear space requirement
without affecting running time. Due to space con-
straints, we omit the details. (I

5 Diameter of a Planar Graph

The following theorem shows that we can obtain a
similar time bound for computing the diameter of an
unweighted planar graph.

Theorem 6 The diameter of an n-vertex planar
graph with non-negative edge weights can be com-
puted in O(n?loglogn/logn) time and O(n) space.

Proof. We can apply ideas similar to those above for
the Wiener index problem. The only essential differ-
ence is that instead of variables n;, and D, (see
Section 4) we introduce variables L; ,, for each i and
u that keep track of the longest distance in C' from p;
to the set of vertices specified in the definition of n; .
We can then use the identity

max(Ve \ B,u) = max {dg(u, pi) + Liu}

instead of (2). O

Note that our two algorithms do not rely on planarity
except when computing an r-division and SSSP dis-
tances in linear time. Our results can therefore be
extended to the larger class of unweighted subgraph-
closed y/n-separable graphs for which separators can
be found efficiently [5].

6 Conclusion

We solved two open problems, the existence of sub-
quadratic time algorithms for computing the Wiener
index and diameter of an unweighted planar graph.
We did this by exhibiting O(n?loglogn/logn) time
algorithms where n is the number of vertices. Both
algorithms have linear space requirement.

It remains open whether “truly” subquadratic time
algorithms exist, i.e. algorithms with O(n®) running
time for constant ¢ < 2.

In a forthcoming paper, we extend our results
to planar graphs with arbitrary non-negative edge
weights. The new ideas we introduce in that paper
allow us to solve also the stretch factor problem for
planar graphs in subquadratic time. In another paper,
we show how similar ideas give a faster algorithm for
computing shortest path distances between k = O(n?)
pairs of vertices in a planar graph for large k.

References

[1] S. Cabello and C. Knauer. Algorithms for graphs
of bounded treewidth via orthogonal range searching.
Manuscript, Berlin, 2007.

[2] V. Chepoi and S. Klavzar. The Wiener index and the
Szeged index of benzenoid systems in linear time. J.
Chem. Inf. Comput. Sci., 37:752-755, 1997.

[3] F.R. K. Chung. Diameters of Graphs: Old Problems
and New Results. Congressus Numerantium, 60:295—
317, 1987.

[4] G. N. Frederickson. Fast algorithms for shortest paths
in planar graphs, with applications. SIAM J. Com-
put., 16 (1987), pp. 1004-1022.

[5] M. R. Henzinger, P. Klein, S. Rao, and S. Subra-
manian. Faster Shortest-Path Algorithms for Planar
Graphs. Journal of Computer and System Sciences
volume 55, issue 1, August 1997, pages 3-23.

[6] R. J. Lipton and R. E. Tarjan. A Separator Theorem
for Planar Graphs. STAN-CS-77-627, October 1977.

[7] B. Mohar and T. Pisanski. How to compute the
Wiener index of a graph. J. Math. Chem., pages 267—
277, 1988.

[8] H. Wiener. Structural determination of paraffin boil-
ing points. J. Amer. Chem. Sot., 69:17-20, 1947.

[9] B. Zmazek and J. Zerovnik. Computing the weighted
Wiener and Szeged number on weighted cactus graphs
in linear time. Croatica Chemica Acta, 76:137-143,
2003.

28

Tailored Bregman Ball Trees for Effective Nearest Neighbors

Tailored Bregman Ball Trees for Effective Nearest Neighbors*

Frank Nielsen'

Abstract

Nearest Neighbor (NN) search is a crucial tool that
remains critical in many challenging applications of
computational geometry (e.g., surface reconstruction,
clustering) and computer vision (e.g., image and in-
formation retrieval, classification, data mining). We
present an effective Bregman ball tree [5] (Bb-tree)
construction algorithm that adapts locally its internal
node degrees to the inner geometric characteristics of
the data-sets. Since symmetric measures are usually
preferred for applications in content-based informa-
tion retrieval, we furthermore extend the Bb-tree to
the case of symmetrized Bregman divergences. Ex-
act and approximate NN search experiments using
high-dimensional real-world data-sets illustrate that
our method improves significantly over the state of
the art [5], sometimes by an order of magnitude.

1 Introduction and prior work

Finding nearest neighbors (NNs) is a very common
task occurring in many applications ranging from
computer vision to machine learning and data min-
ing. Let S = {p1,...,pn} be a set of n d-dimensional
points (with d typically ranging up to a few thou-
sand dimensions). Given a query point ¢, the near-
est neighbor NN(q) is defined to be the “closest”
point of § with respect to a dissimilarity measure
D: NN(q) = argmin; D(q,p;). Instead of consider-
ing the closest neighbor, queries can be enlarged to
report the first k “closest” points (useful for k-NN
classification rule in machine learning). It is usually
enough to get a good neighbor [6] by relaxing the ex-
act search to get near and fast neighbors. Besides the
theoretical puzzling questions related to the dreaded
curse of dimensionality [6], practitioners make every
endeavor to speed up applications by designing tai-
lored schemes for improving over the naive linear-time
O(dn) brute-force method. Among the flourishing
literature of nearest neighbor techniques, we distin-
guish two main sets of methods: (1) those relying
on tree-like space partitions with branch-and-bound

*Financially supported by ANR-07-BLAN-0328-01 GAIA
(Computational Information Geometry and Applications) and
DIGITEO GAS 2008-16D (Geometric Algorithms & Statistics)

TEcole Polytechnique, LIX, Palaiseau, France,
nielsen@lix.polytechnique.fr
fCNRS 13S, Sophia-Antipolis, France,

{piro,barlaud}@i3s.unice.fr

Paolo Piro, Michel Barlaud*

queries, such as kD-trees, metric ball and vantage
point trees [5, 8], and (2) those based on mapping
techniques [3] (e.g., locality-sensitive hashing, ran-
dom projections). The former tree-based methods
improve over the brute force algorithm by pruning
sub-trees whenever traversing the trees with queries
(exact NN) or stopping after visiting a given “bud-
get” of leaves (approximate NN). The latter meth-
ods concentrate on reducing dimensions while pre-
serving as much as possible distances and control-
ling geometrically collisions of hash functions (only
work for approximate NN). Since the Euclidean dis-
tance is often inappropriate for meaningfully mea-
suring the proximity of feature points arising from,
say, image applications, a wide range of distortion
measures has been proposed and NN data-structures
have been first extended to arbitrary metrics (e.g.,
vantage point trees [8]). However, these NN search
methods rely fundamentally on the triangle inequal-
ity property, which is not satisfied by information-
theoretic statistical distances such as the Kullback-
Leibler divergence. Cayton [5] recently proposed the
analogous of metric ball trees for the broad class of
Bregman divergences. Bregman divergences Dp on
vector set X C R? are defined for a strictly conver
and differentiable generator F(z):X C R?+— R as
Dr(pllg) = F(p) — F(q) — (p —)" VF(q), where VF
denotes the gradient of F.. Those divergences (param-
eterized by a generator F') include all quadratic dis-
tances (also known as Mahalanobis squared distances,
which are the only symmetric Bregman divergences
and are obtained for F(z) = X!z, where ¥ > 0 is the
positive-definite variance-covariance matrix) and the
asymmetric KL divergence (F(z)= Z?Zl zjlogx;,
the negative Shannon entropy), for which Dg(p||q) #
Dr(qllp). Many fundamental algorithms (e.g., k-
means [4], PCA) and data-structures (e.g., Voronoi
diagrams [10]) have been generalized to that class of
divergences, thus offering meta-algorithms that can
work for any Bregman divergence. For example,
Banerjee et al. [4] showed that the celebrated Lloyd
k-means algorithm extends to (and only to) the class
of Bregman divergences unifying various algorithms.
Since Bregman divergences are typically non-metric
asymmetric distortion measures, we consider both
left /right-sided and symmetrized NN searches de-
fined as follows: NN (q) = argmin; Dp(p;||q) (right-
sided), NN%(¢q) = argmin; Dg(q||p;) (left-sided) and
NNr(q) = argmin;(Dr(pillg) + Dr(qllpi))/2 (sym-

29

EuroCG’09 - Brussels, Belgium

metrized).

2 Bregman ball trees (Bb-trees)

Without loss of generality, we consider only right-
sided NN queries, as left-sided NN queries can be
handled similarly by considering the dual divergence
Dp-(VF(q)|IVF(p)) = Dr(p|lg) arising from the
Legendre-Fenchel conjugate F* of F' (with VF* the
functional inverse of VF~1). See [10, 5] for de-
tails. Bregman generators come by pairs (F, F™),
e.g. the dual Legendre conjugates F(x) = zlogx and
F*(y) = expy (with F'(z) = (F*'(y))~"), see [10].

2.1 Outline of Bregman ball trees (Bb-trees) [5]

Similar to metric ball trees, a Bb-tree is built in a top-
down fashion by applying recursively a partitioning
scheme. First, the root is created to handle the source
data-set S. A 2-means (k-means [4] with k& = 2) is
computed, splitting S according to the two centroid
points, say ¢; and c¢,., with respect to Dp. These two
centroids defines a partition S = S U S, that can
be covered geometrically with corresponding Bregman
balls B(c;, R;) and B(c,, R,) (possibly overlapping).
This hierarchical decomposition of S is carried out
recursively on &; and S, until a stopping criterion is
eventually met. Two such typical termination criteria
are: (1) a predefined maximum number of points Iy
(stored at leaves), or (2) a prescribed maximum radius
(ro, comes in handy for approximate NN). Note that
the source points are stored only at leaves of the Bb-
tree, and the sub-sets S; and S, may be theoretically
unbalanced. Internal nodes store only two left/right
Bregman balls covering the point sets stored at their
left /right sub-trees.

In both ezxact and approrimate NN queries, we per-
form a branch-and-bound search to answer queries.
For a given query ¢, the tree is traversed in depth-
first-search order from the root to the leaves. At
an internal node, we choose to branch first on the
sub-tree whose corresponding ball is “closer” to the
query ¢ (the sibling is temporarily ignored). Once
a leaf node is reached, the closest point to ¢ among
the points stored at the leaf is computed using the
brute-force method. This first visited leaf yields the
very first NN point candidate p’, thus giving an up-
per bound Dg(p'||g) to the NN distance. In exact
search, the tree traversal goes on through all formerly
ignored subtrees. To decide whether a subtree must
be explored or not, we check whether Dp(p'||lq) >
mingep(c,r) Dr(z[|q), where p’ is the current NN can-
didate. This test is performed by projecting g onto
the Bregman ball B(c, R). The projection of a point
q onto a Bregman ball B is the unique minimizer
gp = argmingep Dp(x||q) [10]. Instead of projecting
exactly the query point onto the ball, we rather make

use of a Bregman annulus B(c,R,R') = {z | R <
Dp(z||c) < R'} that encloses the exact projection by
construction: ¢g € B(c, R, R'). If Dp(p'||q) < R then
the node can be pruned; If Dp(p'||lq) > R’ then the
node must be explored. These lower/upper bounds
are computed during the geodesic bisection search of
the projection [5] (see Section 2.4). Overall, observe
that the less the number of pairwise intersecting balls
stored at nodes, the better the Bb-tree performance.
Although exact NN retrieval on Bb-trees can often
be achieved with much smaller computational cost
than the brute-force search, the practical interest of
Bb-trees is to get significant speed-up search when
performing approximate NN queries. The approxi-
mate search allows one for large speed-up as it does
not perform exhaustive branch-and-bound search. A
common criterion to perform approximate search is to
stop the branch-and-bound algorithm after exploring
a prescribed number of leaves [5].

2.2 Speeding up construction time: Bb-tree++

In order to preprocess datasets efficiently by means of
Bregman ball trees, instead of running the full regu-
lar Bregman k-means algorithm [4], we just perform
a careful light initialization of the two cluster cen-
ters (seeds). Imitialization turns out to be the cru-
cial stage of k-means. That is, k-means locally op-
timizes the potential P(C) =) s mincec Dr(pllc),
where C denotes the set of k£ centers. Each round
assignment /cluster adjustment decreases this poten-
tial function so that monotonous convergence is guar-
anteed. It is striking to know that the worst-case
running-time of k-means is theoretically exponential
with the dimension although a recent smooth analysis
yields polynomial amortized time [9]. A bad initializa-
tion may trap k-means into a local optimum. Initial-
ization is thus all the more important, as k-means is
called at each internal node of the Bb-tree to partition
the data-sets into two sub-sets. Therefore, the idea is
to replace the k-means local iterative algorithm by a
well-chosen initialization that provides a guaranteed
upper-bound on the optimal partition. This quantum
leap for k-means was discovered by Arthur and Vassil-
vitskii [2] and later extended to Bregman divergences
by Nock et al. [12]. We describe the initialization
procedure of Bregman 2-means++ for a set S. First,
draw uniformly at random the seed ¢; (cluster “cen-
ter”) among the points of the data-set. Then compute
the Bregman divergence of this point to all points of
S, and draw the second seed ¢, according to the di-

Dr (pille) Thus ¢
p;ES Dr(pjller)” r

can never be ¢, since Dp(ci||¢;) = 0 (the probabil-
ity of drawing ¢; is zero). This careful initialization
yields an extremely fast tree construction, which sta-
tistically provides nice splitting and tends to balance
sub-sets stored at leaves. Arthur and Vassilvitskii [2]

vergence distribution: m; = 5

30

Tailored Bregman Ball Trees for Effective Nearest Neighbors

proved that this initialization yields a k-means score
P(C) at most 8(2+log k) of the optimal value. Similar
bounds in O(log k) for generic Bregman divergences
were later reported by Nock et al. [12]. Note that
the two left/right Bregman balls stored at internal
nodes tend to minimize the Bregman information [4]
(i.e., variance for the square potential F(x) = 2,
mutual information for the negative Shannon entropy
F(z) = zlogz, etc). Next, we improve the partition
at each internal node by learning its degree (number
of siblings) from the local data-sets.

2.3 Learning the tree branching factor

Answering queries may range from optimal logarith-
mic time (i.e., the shortest path to a leaf) up to linear
time for a complete tree traversal. Therefore, it is im-
portant to partition the source data-sets into as many
as possible non-overlapping Bregman balls. However,
consider a data-set consisting of three separated Gaus-
sian point samples. Forcing this set to be split into
two will likely create overlapping balls. Thus we bet-
ter learn the number of sub-sets when partitioning
the data so that the induced Bregman balls better
fit the intrinsic geometric characteristics of the set.!
We adapt the branching factor bf; (up to a maximum
branching factor BF') of each internal node of the Bb-
tree to the underlying distribution of the points by
using the G-means strategy [7]. The underlying idea
is to assume Gaussian distribution of each group of
points (hence the name G-means).? Our use of G-
means [7] algorithm starts by setting k = 2 and then
test for Gaussian distribution of the points using the
Anderson-Darling statistical test. Given a confidence
level a, if the Anderson-Darling normality test returns
true, we keep the center, otherwise we split it into
two. Between two rounds, we simply run Bregman
k-means++ initialization on the data-set and get all
the new centers that hopefully refine the partitioning.
We enforce a maximum degree to each internal node
in order to strike a balance between the average tree
depth and the overall ball tree shape. The initializa-
tion to k clusters follows the same principle: Namely,
we draw the [-th seed from the data-set uniformly

. . . o Dr(pillCi—1)
according to the distribution m; = s DTG 1)

where C;_1 denotes the formerly chosen (I —1)-th seed
and Dr(p||S) = minges Dr(p||z).

When visiting the Bb-tree for answering nearest
neighbor queries, we use a priority queue. To relax
the exact NN to approximate NN queries, the crite-
rion of stopping the search once a few leaves have been
visited was proposed and successfully demonstrated
by Cayton [5]. However, there was no guarantee to

IRefer to Figure 1 of [7] for examples.

2This is not restrictive as any smooth density function may
be arbitrarily well approximated using a Gaussian mixture
model.

get a good approximation to the exact NN because
leaves containing sub-sets that are close to the exact
NN are not necessarily close in the tree. We improve
this point by a careful non-recursive implementa-
tion of the tree traversal, which allows us to order the
nodes to be explored by their divergence to the query
point (i.e., the divergence of the query to the ball cen-
ters). Using a priority queue guarantees that nearest
nodes are always explored first when traversing back
the tree, by jumping appropriately to the most likely
not yet visited sub-tree.

2.4 Bregman projection onto balls

The geodesic I'p, linking p to ¢ is defined
as T'pg = {LERP(\,p,¢) | A € R}, with
LERP(\,p,q) = VF (1 — \\VF(p) + \VF(q));
see [10, 5, 11]. To find the Bregman projection
qp = argmingc g(c,r) Dr(z||c) of a query point g onto
a Bregman ball B(c, R), we first check whether ¢
is outside the ball or not: Dg(q|lc) > R. If not,
Dr(q|lc) < R and the projection is simply the point
itself: g = ¢. Now consider the geodesic segment
T'cy, the projection point gp belongs necessarily to
the geodesic I'cq: gg = LERP(), ¢, q) for some A, €
[0,1]. The value A, is approximated by a bisection
search as follows. Initially, let)\5,3) =0 and)‘5\(/)1) =1

and consider a midpoint m = LERP(A® ¢, q) ob-

(0) 4 (0)
tained for A\(0) = % If Dp(mllc) > R then

recurse on [)\5711),)\%}[)] =
on AN AW = @A) and so on until the range
size)\s\z/[) —)\s,? goes below a threshold e (typically
€ € [10719,107°]). This yields a fine approximation
of gg ~ LERP(A, ¢, q) by splitting the “\” intervals
a dozen of times. (Recall that the algorithm keeps a
Bregman annulus, and refine the inner/outer radii to
decide whether to prune or explore a sub-tree.)

[,\$2>,)\(0)], otherwise recurse

2.5 Handling symmetrized Bregman divergences

Many content-based information retrieval sys-
tems (CBIRs) need symmetrical distortions
measures. Except for generalized quadratic
distances (Mahalanobis), the symmetrized Breg-
man divergence is technically not a Bregman
divergence [10]. The symmetric KL divergence
(SKL) goes by the name of Jensen-Shannon
JS(piq) = $KL(p||Z%) + JKL(g/[Z5%). It turns
out that these symmetrized Bregman diver-
gences [11] are all generalizations of the Jensen
remainder obtained for convex generators F:
ISk(pia) = 3(F(p) + F(q)) — F(25%). (Besides
the Jensen-Shannon divergence for F(z) = zlogwz,
these so-called Burbea-Rao divergences also includes
the important COSH distance used in speech/sound
processing for the Burg entropy F(x) = —logz.)

31

EuroCG’09 - Brussels, Belgium

Bb-tree construction (bs = 50)

method iter | depth | depthavy | Leav. | speed-up
2-m. 10 53 28.57 594 1
2-m.++ 10 | 58.33 31.18 647 1.03
2-m.+-+ 0 20 10.76 362 19.71

Table 1: Construction time of Bregman ball trees.

SIFT dataset (KL)

£-bb-tree++ (BF=4, bs=100)
-©bb-tree Cayton

Speed-up

0 1
Number Closer

Figure 1: BB-tree versus BB-tree++ (log-log plot
scale). The axis denotes the error rate expressed as
the number of closer points to the approximated NN.

The symmetrized Bregman centroid can be explicitly
computed following the geodesic-walk algorithm
of [11].

3 Experiments

Table 1 compares different partitioning methods when
building a Bb-tree on the SIFT dataset [13] (10,000
visual feature points extracted from images, encoded
in dimension 1111). Bregman 2-means++ with iter =
0 means that only the initialization step is carried
out. The speed-up is by comparison with the most
computationally expensive k-means method.

We used the maximum number of explored leaves
as a parameter for stopping the branch-and-bound
search. In each experiment of approximate search,
we fixed a value of this parameter (from near-ezact
search to visiting only a single leaf), then we evalu-
ated error rate and computational cost. Namely, the
error rate is expressed as the number of closer points
to the approximated NN (a quantity called Number
Closer), while the speed-up is given by the ratio be-
tween the number of divergence computations in Bb-
tree over the brute-force search. Figure 1 displays a
comparison of Cayton’s Bb-tree with our Bb-tree++
in approximate search on SIFT dataset (log-log plot).

Figure 2 presents the results of approximate search
queries on SIFT dataset wrt. SKL divergence (sym-
metrized Bregman). The marked point shows a speed-
up of 60.3 (10*"®) when the Number Closer equals 14
(10*1), i.e. 0.14% of database points (log-log plot).

SIFT dataset (SKL)

£-bb-tree++ (BF=4, bs=50)
=-bb-tree++ (BF=4, bs=100)
% bb-tree++ (BF=4, bs=200)

.
-2 -1
Number Closer

Figure 2: NN queries with respect to Jensen-Shannon
divergence (symmetric Kullback-Leibler, SKL).

Acknowledgments
We thank L. Cayton for sharing with us his code and
SIFT high-dimensional datasets.

References

[1] S.-I. Amari and N. Nagaoka. Methods of Information
Geometry. Oxford University Press, 2000.

[2] D. Arthur and S. Vassilvitskii. k-means-++: the ad-
vantages of careful seeding. In SODA, pages 1027—
1035, 2007.

[3] V. Athitsos, M. Potamias, P. Papapetrou, and
G. Kollios. Nearest neighbor retrieval using distance-
based hashing. In ICDE, pages 327-336, 2008.

[4] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh.
Clustering with Bregman divergences. Journal of Ma-
chine Learning Research (JMLR), 6:1705-1749, 2005.

[6] L. Cayton. Fast nearest neighbor retrieval for Breg-
man divergences. In ICML, pp. 112-119, 2008.

[6] B. Chazelle. Technical perspective: finding a good
neighbor, near and fast. Commun. ACM, 51(1):115,
2008.

[7] G.Hamerly and C. Elkan. Learning the k in k-means.
In NIPS, 2003.

[8] N. Kumar, L. Zhang, and S. K. Nayar. What is a
good nearest neighbors algorithm for finding similar
patches in images? In ECCYV, pp. 364-378, 2008.

[9] B. Manthey and H. Roglin. Improved Smoothed
Analysis of the k-Means Method. In SODA
(arXiv:0809.1715), 2009.

[10] F. Nielsen, J.-D. Boissonnat, and R. Nock. On Breg-
man Voronoi diagrams. In SODA, pp. 746-755, 2007.

[11] F. Nielsen and R. Nock. Bregman sided and sym-
metrized centroids. In M. Ejiri, R. Kasturi, edi-
tor, International Conference on Pattern Recognition
(ICPR). IEEE CS Press, 2008. (arXiv:0711.3242)

[12] R. Nock, P. Luosto, and J. Kivinen. Mixed Breg-
man clustering with approximation guarantees. In
ECML/PKDD (2), pages 154-169, 2008.

[13] D. Lowe. Distinctive image features from scale-
invariant keypoints. In International Journal of Com-
puter Vision, pages 91-111, Vol. 60, 2005.

32

Maintaining Exactly the Convex Hull of Points Moving along Circles

Maintaining Exactly the Convex Hull of Points Moving along Circles

Paul-Georg Becker *

Abstract

In this work we consider the problem of maintaining
geometrically exact the convex hull of points moving
along circles in the plane. The points are allowed to
start with an arbitrary rational angle (in the radian
system) on the circle. The main difficulty with re-
spect to the aim of exact geometric computing in this
setting is that we have to deal with transcendental
numbers. The points in time where the convex hull
change are not algebraic but transcendental. We show
that, even in this non-algebraic setting, all certificates
in the underlying kinetic convex hull algorithm [1] can
be evaluated mathematically exact. Our approach has
been implemented prototypically.

1 Introduction

In this work we consider n points moving along cir-
cles in the Fuclidean plane. The points are allowed to
start with an arbitrary rational angle (in the radian
system) on the circle.The motion of point P;, depend-
ing on the time ¢, is described by its parameterization

x;(t) ri-cos(t —t;) + a;

Pi(t) = ! = . .

5 (1) (i (1)) (ri-sin(t —t;) + b;

We assume that all ;, a;, b; and t; are rational num-
bers. Due to the parameterization, point P; moves

along the circle with center (a;,b;) and radius r;. At
time ¢ = 0 it starts its movement at the point

(z(0) > _ (ri - cos(t;) + a;)

y(O) o -7 - sin(ti) +b; ’

In this work we only consider the case that all points
move with the same speed in the sense that they all
need the same time to circle once.

For the n moving points we want to compute and
maintain their convex hull. The aim is to do this in
the sense of the paradigm of exact geometric comput-
ing (EGC). Every change in the convex hull should
be determined mathematically exact without any nu-
merical errors. The main difficulty with respect to
the goal of exact geometric computing in our setting

*University of Applied Sciences Stuttgart,
paul-georg.becker@hft-stuttgart.de

T University of Applied Sciences Stuttgart,
elvir.bb@gmx.net

fUniversity of Applied Sciences Stuttgart,

nicola.wolpert@hft-stuttgart.de

Elvir Biiyiikbayrak f

Nicola Wolpert *

is that we have to deal with transcendental numbers.
The points in time ¢ where the convex hull change
are not algebraic but transcendental. We will derive
that every t is the root of a degree-two polynomial
at® 4+ bt + c. In this polynomial all three coefficients
a, b and c are of the form »>7_, g;sin(;) +p; cos(cy;)
with pj,q;,a; € Q. We show that, even in this non-
algebraic setting where the coefficients a, b, ¢ are tran-
scendental numbers, all certificates in the kinetic con-
vex hull algorithm of Razazzi and Sajedi [1] can be
evaluated mathematically exact.

In the last years a lot of effort was undertaken to
advance EGC. Most of the problems considered so far
in this context are static ones, like for example com-
puting arrangements of algebraic curves and surfaces
[5] or Voronoi-diagrams of line segments [7], just to
mention a few. All these problems have in common
that one main task is to compute exactly with alge-
braic numbers, i.e. roots of rational polynomials. Re-
cently, Russel et al [6] presented a work on extending
the results made in EGC for static geometric algo-
rithms to algorithms involving motion. Also here, on
the numerical side, the main task is to perform the
arithmetic with algebraic numbers exactly and effi-
ciently. The only work we know which deals with a
geometric problem involving transcendental numbers
is the one by Chang et al [4]. They show that the
shortest path amidst disc obstacles is computable.

2 The Underlying Kinetic Algorithm

The underlying kinetic algorithm we use for maintain-
ing the convex hull of a set S of n moving points is
the one proposed by Razazzi and Sajedi [1]. In an
initialization step at time ¢ = 0 a sequence C1,Co, . ..
of nested convex hulls is computed. The outermost
convex hull Cy = ¢h(S7) is just the convex hull of the
points in S7 := S. The i-th convex hull C; = ch(S;) is
the one of the remaining points S; := S;_1\ch(Si—1),
if S; is not empty. For every point p on every convex
hull C; two references are stored: one to the previous
and one to the next point on the same convex hull
C;. Two consecutive hulls C;;1 and C; are also con-
nected: Every point p of C; ;1 stores one reference to
the first point of C; which is visible from p and one
reference to the last visible point. Consider point Bs
in Figure 1. Bj lies on the convex hull B and it is
Bs.previous = By and Bs.next = B4. B3 can see the
part of the convex hull C' between the points Cy and

33

EuroCG’09 - Brussels, Belgium

Cy and therefore Bs. first = Co and Bs.last = Cy.

Cs

[oX

Figure 1: Three nested convex hulls A, B, and C

Now the points start moving and at some points
in time the hulls C; will change. These are called
the events. Changes in the outermost convex hull C;
of course change our result. In order to notice every
event, a set of certificates is computed for every point.
The arrival of such a certificate indicates an event
and will cause some recomputation. We explain all
necessary certificates with respect to the point Bs in
Figure 1:

e GolIn(Bs): Bs moves towards C' and leaves B
< Bs, By and By are collinear.

e GoOut(B3): B3 moves towards A and leaves B
& there exists a point A, with A,.first = Bs
and B3, A, and A,_; are collinear.

e NotFirstChild(B;3): Cs is no longer visible
from B3 < (3, B3 and Cy are collinear.

e BeFirstChild(B3): Cy becomes visible from Bj
& (4, B3 and Oy are collinear.

e NotLastChild(B3): Cy is no longer visible from
B3 & (3, B3 and (4 are collinear.

e BeLastChild(Bs): C5 becomes visible from Bs
& (5, B3 and Cy are collinear.

The arrival times for every certificate are stored in
a priority queue. Our aim is to design an exact kinetic
algorithm. This means that we want to compute cor-
rectly the arrival times of the events and we do not
want to miss any event due to numerical errors. We
also want to sort the arrival times correctly in the pri-
ority queue so that the events can be executed in the
right chronological order. From the certificates above
one can derive that the two main task to be solved
are to

a) determine exactly the point in time, when three
points become collinear (called collinearity-test)
and to

b) compare exactly two such points in time in order
to sort the events in the right order in the priority
queue (called comparison-operation).

Regarding the recomputation of the nested convex
hulls we will not give the details here but refer to
the paper of Razazzi and Sajedi [1]. Numerically,
the main task is to recompute the first- and last-
pointers. This can be realized at rational points in
time again with the help of the collinearity-test and
the comparison-operation.

3 Collinearity-Test

We have seen that one main computation in the un-
derlying kinetic algorithm is the test whether three
points become collinear. It is well known that
collinearity of three points P;(t), P;(t), and Py(t) in
the plane can be determined by evaluating the deter-
minant

det(Py(t), Py(t), Pu(t) = det | 1 a(t) y(t

Computing the determinant leads to an expression in
the variable t. In order to find the time where the
three points become collinear, we have to look for the
roots of this expression. Unfortunately, due to our
parameterization, we have terms of the form sin(t—t;)
and cos(t — t;) in the expression. To eliminate them
we first apply the addition-theorems

sin(t —t;) = sin(t) cos(t;) — sin(t) cos(t;)
cos(t —t;) = cos(t)cos(t;) + sin(t) sin(;)

and then do the substitution

1—¢? 2t
= m and sm(t) :

t) =
cos(t) 147

To ease readability we will again write ¢ instead of ¢/
in the following. We define the set

T :={)_q;sin(e;) + p; cos(a;) | n €N,

j=1

4;:Pj, 05 € Q05 > 0,5 # o for i # j}.
Applying the addition-theorems, substituting the
cosine- and sine-terms and then doing some calcula-

tions (which we omit in this presentation) lead to the
result that the determinant always has the form

at?> + bt + ¢
14 ¢2

with a,b,c € T. We are interested in the roots of this
expressions, that means we are interested in the roots
of the polynomial p(t) = at? + bt + c of degree 2 in t

34

Maintaining Exactly the Convex Hull of Points Moving along Circles

with coefficients a,b,c € T. If a # 0, the two roots of
p are

—b+ Vb2 — dac and —b— Vb% — dac

2a 2a
The discriminant b? — 4ac is again an element of T':
Lemma 1 Ifa,be T thena-beT.

Proof. The lemma follows directly from the rules for
the sine- and cosine-functions:

sinzsiny = 1/2-(cos(z —y) — cos(z +¥))
cosxcosy = 1/2-(cos(x —y)+ cos(z+y))
sinzcosy = 1/2-(sin(x —y) +sin(z + y))

O

How can we decide whether a is equal to zero or
not? To answer this question we need a definition
and the Theorem of Hermite-Lindemann, which are
both well known from number theory:

Definition 1 Let aq,...,a, be real numbers. They
are called QQ-linearly independent iff there exist no
rational numbers q1, . . . , ¢n, not all equal to zero, with
ai1qr + -+ angn = 0.

Theorem 2 (Hermite-Lindemann) If « is a non-zero
algebraic number (i.e. a number, which is the root of
a rational polynomial), then e® is transcendental (i.e.
not algebraic).

We can proof the following

Corollary 3 If a, ..., «a, are pairwise distinct pos-
itive rational numbers, then the 2n real num-
bers sin(a1), ..., sin(ay,), cos(az), . .., cos(ay,) are Q-
linearly independent.

Proof. Assume, there exist q1,...,¢n,P1,...,pn € Q
with >0, g;sin(a;) + pjcos(a;) = 0. Substituting
sin(aj) = %(eio‘j —e™), cos(aj) = %(ew‘f +e~id)
leads to

n

D (pj —igy)e™ + > (pj +igs)e " = 0.

j=1 j=1

Let A € N be the common denominator of aq, ..., oy,
(i.e. Aa; € Z) and let M := max{Aa,..., Aa,}.
Now consider the polynomial

n
P(X)= Z(pj_iqj)XM+Aaj +Z(pj+iqj)XM*Aaf.
Jj=1 j=1

The coefficients of P are numbers from the field Q(7).
We know that P(e*/4) = 0. Due to the Theorem

of Hermite-Lindemann, /4 is transcendental over Q
and therefore also transcendental over Q(4). It follows
that P has to be the zero-polynomial. Since all the
o are pairwise distinct, all the exponents M + Aq;
and M — Aa; are pairwise distinct, and therefore all
coefficients p; — ig; and p; + ig; of P have to be zero.
It follows directly that all the p; and g; have to be
zero, proving the corollary. O

From Corollary 3 one can derive directly a criterion
for testing whether an element a € T is equal to zero:

Corollary 4 An element a = Z?Zl gjsin(a;) +
pjcos(a;) € T is equal to zero iff g = p; = 0 for
all1 <j<n.

4 Comparison-Operation

The second main task is to compare two of the degree-
two roots in order to sort them in the correct order
into the priority queue. More formally: Given

b £

b% — 40,101 b% — 4a202

—by £+
X1 To =

)

2&1 2a2

with a1, as,b1,b2,c1,c0 € T, decide whether x1 < x5.
We assume for the moment that we have a black-box
stgn which computes the sign of an arbitrary number
a € T. We will explain in the next section how to real-
ize this black-box. For simplicity we set p; = b7 —4a;c;
for ¢ = 1,2 and assume that aj,as > 0 (otherwise
multiply by —1). To exclude complex roots we test
sign(p;) > 0. If we have two real roots 21 and x5 this
leads to

—bl + \/pl < —bg + \/p2

2a1 2(12

& az(=by £ /p1) <ai(—bz £ \/p2)
= a1b2 — a2b1 < :I:al\/p—QZF ag\/p—l.

1 < To <<=

Since, due to Lemma 1, a1bs — asby € T, we can use
the black-box and compute sign(aibs—agb1). Next we
determine the sign of the right side. For readability we
substitute q := +ay and p := Fas. We are interested
in the sign of p\/p1 + ¢\/p2 with p,q,p1,p2 € T. If
sign(p) and sign(q) are equal, we directly know the
sign of p,/p1+¢q,/p2. If the two signs are different, we
have to work a bit more: Assume that p is positive
and ¢ is negative (the other case works analogously).
Then

P/P1 + ¢+/p2 has a positive sign
< plvpr > lalvp2
& pPpi>qpe
& sign(p® - p1— ¢ - p2) > 0.

Now we know the signs of both sides of the inequality
a1bs — asby < py/pP1 + qy/p2. If they are different,

35

EuroCG’09 - Brussels, Belgium

we can decide whether the inequality is true or not.
Otherwise we compare |a1ba—a2b1| and |p/p1+q/D2|:

la1ba — a2b1| < [py/p1 + ¢v/p2]
& (a1by — azb1)® < (pv/P1 + av/p2)”
& (arbs — azb1)® < p*p1 + ¢°p2 + 20qy/P1 /D2
& (a1b — az2b1)® — p*p1 — ¢*p2 < 2pg/P1v/P2-

Again, if sign((a1by — asb1)? — p?p1 — ¢®p2) and
sign(pq) are different, we are done. Otherwise
we compare |(aiba — azb1)? — p?p1 — ¢*p2| and

12pq\/P1\/P2]:

[(a1bs — az2b1)® — p*p1 — ¢°p2| < |2pa+/P1v/P2]
& ((arby — agb1)* — p’p1 — ¢*p2)?
< 4p*¢’p1 - p2
< ((a1be — Clzbl)2 - p2p1 - q2p2)2
—4p°¢*p1 - p2 < 0.

Now, due to Lemma 1, the left side of the inequality
is an element of T and we can finally compute its sign.

5 Black-Box

What remains to do is to implement the black-box.
Given an element a = >77_, g;sin(o;) + p; cos(ay;) €
T we want to determine sign(a). From Corollary 4
we know that a =0 iff p; =¢; =0forall 1 < j < n.
Assume a # 0. We propose a method that starts with
a given precision € and adaptively increases the pre-
cision until the sign of a can be determined precisely.
For the given precision € we compute for all 1 < j < n,
e.g. using the Apfloat-library [2] or the Core-Library
[3], approximations s; for sin(e;) and ¢; for cos(a;)
such that |s; — sin(a;)| < € and |¢; — cos(a;)| < e.
Based on these approximations we compute the ap-
proximation a = Z;;l gjsj +pjcj of a. It is

n

la —al = | Z%‘(Sin(%‘) — 85) + pj(cos(ay) — ¢

n
< > gl - Isin(ay) = s5] 4 |ps| - [cos(ay) — ¢
j=1

n
< €'Z|Qj|+|pj| =: 0.
j=1

If |a| > 0., we can read off the sign of a by looking
at the sign of a. Otherwise we start the computation
again with a smaller . The procedure terminates be-
cause a # 0 and a converges towards a.

6 Implementation

We have a prototypical implementation of the kinetic
algorithm including the exact mathematical evalua-

tion of the certificates described before. The imple-
mentation is done in Java. The black-box is imple-
mented using the Apfloat-Library [2]. As an input
one can interactively define circles. During the execu-
tion, the program renews the output, i.e. the nested
convex hulls, regularly every 50 milliseconds. All the
events which occurred during two such time-slots are
computed exactly in the right order and reported. See
below a screenshot taken during the execution of the
program.

B «DSTestApp - ch20kkdsmr i o] S
Datei Ansicht Animation
gla [» [v|a] [@] [koschmraas [~]

(35,251 5,45)

References

[1] M. R. Razzazi, A. Sajedi. Kinetic Convex Hull Main-
tenance Using Nested Convex Hulls. EuroCG 2003.

[2] M. Tommila. Apfloat.

[3] C. Yap. CORE.
http://cs.nyu.edu/exact/core_pages/index.html.

[4] E. Chang, S.W. Choi, D. Kwon, H. Park, C.
Yap. Shortest Path amidst Disc Obstacles is Com-
putable Special Issue on Geometric Constraints,
Intl.J.Comp.Geom. & Applic., 16:5-6(2006)567-590 .

[5] J.-D. Boissonat, M. Teillaud (editors). Effective
Computational Geometry for Curves and Surfaces
Springer, 2006.

[6] D. Russel, M. 1. Karavelas and L. J. Guibas. A pack-
age for Ezact Kinetic Data Structures and Sweepline
Algorithms. Computational Geometry: Theory and
Applications, Special Issue on CGAL, 38(1-2):111-
127, September 2007.

[7] H. Everett, D. Lazard, S. Lazard, M. S. El Din. The
Voronoi Diagram of Three Lines. 23th ACM Sympo-
sium on Computational Geometry, 2007.

http://www.apfloat.org/.

36

k-Means Motion Clustering

k-Means Motion Clustering

Frank Hellweg*

Abstract

We present algorithms for k-Means Motion Cluster-
ing, where the problem of motion clustering is formal-
ized as follows: The objects to cluster are n points in
the d-dimensional real space, and their motion is given
by functions that are polynomials of the time whose
degree is bounded by some constant u. The objective
is to compute a clustering that guarantees a (bicrite-
ria) O(1)-approximation to the optimal k-clustering
at any time, without recalculating it at certain points
of time. Our result extends previous work by Har-
Peled [9] for the k-center objective function to the
k-means objective function.

1 Introduction

Clustering is the process of partitioning a given point
set into subsets such that the points within a subset
are close to each other and objects in different sub-
sets are distant. In this paper we consider clustering
of moving points. A clustering of moving points can,
for example, be used to maintain a hierarchical struc-
ture in mobile networks. Such a hierarchical structure
can then be used for routing, data management, etc.
We will assume that the motion of the points is known
in advance and we attempt to compute a clustering
that is good for the whole motion.

We will measure the quality of the clustering in terms
of the k-means objective function, i.e. we compute k
moving points (the cluster centers) and , at any fixed
point of time, the quality of the clustering induced by
these points is the sum of the squared distances to the
nearest center. In the context of mobile networks this
quality measure can be viewed as the average energy
needed to connect to the cluster center. Notice, how-
ever, that the cluster center is not necessarily part of
the moving point set.

Our result extends previous work by Har-Peled [9] for
the k-center objective function to the k-means objec-
tive function. Technical details that are left out here
can be found in [6].

Related Work For motion clustering with the ob-
jective to only compute a clustering once for all time

*Department of Computer Science, University of Bonn,
hellweg@informatik.uni-bonn.de

TDepartment of Computer Science, University of Bonn,
sohler@informatik.uni-bonn.de

Christian Sohlert

points, there are mainly two results, the first being a
result of Bespamyatnikh et al. [3], who, among other
things, analyze the 1-median clustering problem in
the euclidean plane for arbitrary motion functions,
considering Euclidean distances. By reducing to the
Manhattan distances version, they get a v/2(2 —2/n)-
approximation algorithm for this problem.

The second main result is the mentioned result of Har-
Peled [9]: He consideres k-center motion clustering of
points whose motion is described by polynomials in
the time, with a degree bounded by some constant
1, and one of his results is an algorithm that com-
putes a motion clustering in running time O(nk) using
(15k)#*1 cluster centers and guaranteeing an approx-
imation factor of 3#*! — 1 at any point of time. He
also proves that one needs at least k#*! cluster centers
to guarantee an O(1)-approximation for any point of
time. His worst-case example family also holds for k-
means clustering.

His basic idea is to solve a subproblem he calls stab-
bing, which is essentially a clustering problem which
relaxes the restriction that all clusters have to be at
the same point of time. By solving this problem, he
gets k clusters that are good for some point of time
each, and he uses this for decreasing the degree of
the motion functions by one and recursively calculat-
ing motion clusterings for the k subproblems defined
by the k clusters and the new motion functions. For
u =0, it suffices to compute an approximate standard
k-center clustering, and Har-Peled shows that one can
maintain an approximation factor throughout all the
recursions back to the original problem.

There are also some results for motion clustering and
related problems, e.g. facility location, that use Ki-
netic Data Structures to maintain an approximate
clustering instead of calculating it once and using it
for all points of time; see [4, 5, 7, 8, 10].

Preliminaries In this section we will define the k-
means motion clustering problem formally. A (poly-
nomially) moving point is a mapping p : R — R?
whereas p is polynomial in the time parameter ¢ with
a maximum degree of u. Let p(t); denote the i-th
coordinate of p at the point of time t. For a set
P = {p1,...,pn} of polynomially moving points let
Pt] == U,ep{p(t)} denote the set of static points at
time .

A k-clustering of such a set P is a partition C =
{C4,...Cy} of P such that |§,.,., Ci = P. The cost

37

EuroCG’09 - Brussels, Belgium

of such a clustering C' for P at the point of time ¢
are defined as v(C,P,t) = 3, D2, it] —
¢;(t)||?, whereas ¢;(t) denotes the centroid of the clus-
ter C; at the point of time ¢; it is well-known that the
centroid of a point set is the optimum solution for the
1-means problem for that point set.

The cost of an optimal k-clustering of P at the
point of time ¢ are denoted as ou (P k,t) =

MINE_(é, . C0 i, Oi:P'y(CA’,P, t) and the cost of
an optimum k-clustering for any point of time as
Yopt (P, k) = ming vope (P, k,t). For static point sets
we define the cost functions in the same way, ommit-
ting the parameter t. We will, slightly abusing the
notation, speak of a clustering C' for P[t] if we mean
the clustering C' for P at the point of time t.

We call a clustering C of a set P of polynomially mov-
ing points a (¢, m, k)-static clustering if it consists of
at most m clusters and for each point of time ¢ yields a
c-approximation to the optimum k-clustering of that
point of time, i.e. Y(C, P,t) < ¢ Yopt (P, k, t)Vt.

We need to solve an auxilliary problem that we call
k-means stabbing, following Har-Peled’s notation. A
k-stabbing (S,t*) of a moving point set P consists
of a partition S = {S,...Sk} of P into k disjoint
sets, which we call stabbing clusters, and a function
*: 5§ — R that assigns a point of time to each stab-
bing cluster. The cost for a stabbing (S,t*) are de-
fined as ystap(S, %, P) := > e g Y{T}T,t5(T)). A
stabbing (.5,t*) of a set P of moving points is called
(¢, m, k)-Stabbing if it consists of at most m stabbing
clusters and satisfies Ysa5(S,t*) < ¢ - Yopt (P, k), i€
has at most the cost of the optimal clustering of any
point of time.

2 An Algorithm for k-Means-Stabbing

In this section we describe how to compute a k-means
motion clustering by solving several stabbing prob-
lems; after that we will present an algorithm for these
stabbing problems. The basic idea is the same as Har-
Peled’s, which we described in Section 1; for a moving
point set P with a degree of motion of at most p and
k € N, the algorithm works as follows: Compute a
(¢, 1, k)-stabbing (S,t*) of P, whereas [> k and c is
a constant, and look at each stabbing cluster seper-
ately. For each stabbing cluster T' € S, move the
curves of the moving points in 7', such that they in-
tersect in the centroid of T'[t*(T)], getting the point
set T'. Now consider the centroid of T'[t*(T)] being
the center of the coordinate system: The motion func-
tions of all the points in 7" are now polynomials with-
out a constant summand, so we can divide them by
their parameter t, getting a set of points with a de-
gree of motion of at most u — 1. Now we recursively
cluster this set of moving points. After we have done
this for all stabbing clusters T' € S, each recursive

call retrieving a motion clustering C7/, we return the
motion clustering C' = UTe s Cr, whereas Cr is the
clustering corresponding to C'pv for all T € S.

It remains to show that an approximation factor can
be maintained while reversing these steps. First we
will show that an approximation factor can be main-
tained when moving the points’ curves back to their
original positions.

Lemma 1 Let P = {pi,...,pn} and P =
{p},...,p,,} be sets of n static points, whereas for i €
{1,...,n} p} is created from p; by moving p; by a Eu-
clidean distance of v;. Let >, ., v? < p - Yopt(P, k)
for a constant p € RT. Then, for all k € N holds
Yopt (P’ k) < (1+ /p)*Yopt (P, F).

Proof. Let U be an optimal k-clustering for P and d;
the Euclidean distance from p; to his cluster center in
U for all i. Let U’ be the clustering of P’ correspond-
ing to U; note that U’ is not necessarily optimal. We
can bound the cost of an optimal k-clustering of P’ by
Vopt(Pla k) § 7(U/a P,) S ZCEU’ Zpiec(di‘i’vi)Qa the
last inequality following from the fact that choosing
the optimal center for each cluster in U’ yields at most
the cost as choosing the optimal center of the accord-
ing cluster in U; the later is at most Y- o (d; +v;)?
for each cluster C' € U’ by the triangle inequality. We

conclude
Yopt (P, k) Z Zd2+2dvz—|—v
CeU’ p;eC
<> Y vit2 [d? [y
pi€EP pi€EP pi€EP piEP

S FYopt(P7 k) + p : 'yopt(P’ k) + 2\/5 ryOPt(P7 k)

= (]_ + \/5)270pt(P7 k)V

whereas the second inequality follows from the
Cauchy-Schwarz Inequality. O

Lemma 2 Let P = {pi,...,pp} and P =
{p},...,p,} be sets of n moving points, whereas
for i € {1,...,n} p; is created from p; by moving
the curve of p; by an euclidean distance of v;. Let
Y cicn V< p-Yopt(P, k) for a constant p € RT. For
any (c, m, k)-static clustering T" of P’ the correspond-
ing clustering T of P is a ((v/c(1+ /p) +/p)?, m, k)-
static clustering.

Proof. Let t be a fixed but arbitrary point of time.
For p; € P’ let d; be the Euclidean Distance from pf[t]
to its cluster center in 7" at time t. We can bound
the cost of T' by ¥(T, P,t) < Y cer dp,ec(di + v;)?
using a similar argument as in the proof of Lemma 1.

‘We conclude
Zd2+2v+ Zd2 va
pi€EP pi€EP pi€EP p;€P
< (Ve(l+ /D) +v/P)* - Yopt (P K 1)

~(T, P, t)

38

k-Means Motion Clustering

due to Lemma 1, and so T is a ((v/c(1 4+ /p) +
Vp)?,m, k)-static clustering of P. O
The next Lemma shows that if we compute an approx-
imate motion clustering on a set of moving points and
then multiply all motion functions by their parameter
t, the corresponding clustering on the resulting point
set will guarantee the same approximation factor:

Lemma 3 Let P = {p1,...,pn} be a set of n poly-
nomially moving points with a degree of motion of at
most u and p;[0] = 0 for 1 < i < n. Then, for the
mapping f(p(t)) := p(t)/t and P" = {py,...,p;, } with
ph = f(p;) for 1 < i < n, for each (c,m, k)-static clus-
tering U' of P’ the corresponding clustering U on P
is a (¢, m, k)-static clustering.

Proof. Let t be a fixed but arbitrary point of time.

Proposition 4 Let V' = {Dj},...,D,,} be an arbi-
trary clustering of P’ and let V. = {D;,..., Dy} be
the corresponding clustering of P. Let dj[t] be an
optimal cluster center for Dj[t] for 1 < i < mn. Then,

1. d; == f(d}) is an optimal cluster center for D; for
all i.

2. y(V,Pt)y=t>-~(V', P, t)

3. if V' is an optimal clustering of P'[t], V is an
optimal clustering of P|[t].

Proof. Because of the properties of 1-means cluster-
ing, d; is the centroid of D} for all i, and therefore

aff)=t-df] =t 3 Al

D p;[t]e Dift]
B PP P PR
' pi[ED;[t] ' p;[HlED;[t]

is the centroid of D;[t] and of course an optimal cluster
center for D;[t]. Furthermore,

YR =D > llplt] - il

D;eV p;eD;

=23 S Wl - il

D;eV p;jeD; 1<k<d

which equals t2-~y(V’, P’,t). This also implies that V'
is an optimal clustering for PJt], if V' is optimal for
P'[t]. O

Let U’ be a (¢, m, k)-static clustering of P’ and let U
be the corresponding clustering of P. We conclude

YU, Pit) =2 -~y(U', P, t) <t ¢ yopt(P', ki, 1)
1
=t?.c- (752 ~’yopt(P,k,t)> = ¢ Yopt (P, k, 1),

using Proposition 4 and completing the proof. O

We will now use the preceeding lemmas for showing
that one step of the recursion of the above algorithm
maintains an approximation factor, if the stabbing
guarantees an approximation and the recursive calls of
the algorithm return approximate motion clusterings
for the subproblems. One can easily use this to prove
Theorem 5 by induction:

Theorem 5 Let P = {pi,...,pn} be a set of n poly-
nomially moving points with a degree of motion of
at most p and let A be an algorithm that com-
putes a (¢, m, k)-stabbing for a given set of moving
points, whereas m > k. Then one can compute a
(14 /e)rTt —1)2, mrTL k)-static clustering of P in
running time O(n) plus the time for the calls of A and
considering p and the dimension d to be constant.

Let us consider a step of the recursion. We are given
a set of polynomially moving points P = {p1,...,pn}
with a degree of motion of at most u > 1. Now
we compute an (a,m,k)-stabbing (C,t*), whereas
C ={Cy,... Cp}, on these points using an algorithm
A as defined in Theorem 5. We move all point curves
to the centroids of their corresponding stabbing clus-
ters at the point of time defined by t*, getting the
point set C/ for C; for i = 1,...,m. Now, for all i, we
divide all points in C! by their parameter ¢ and get
C;, on which we compute a (¢, 1, k)-static clustering
Ei recursively for constants a > 0 and [> k. Because
of Lemma 3, the corresponding clustering E! of C/ is
a (¢, 1, k)-static clustering.

Now consider the clustering £/ = (J,-,;<,, E; of the
moving point set P’ = |J,.,,, Ci. We fix an arbi-
trary point of time ¢. The cost of E’ at this point of
time can be bounded by

YE P t)= Y yE.,CLt)<c > qopl(C k),

1<i<m 1<i<m

since all E! guarantee a c-approximate clustering for
Cl. Let V' ={V/,...,V/} be an optimal k-Clustering
for P'[t]. We intersect each cluster V} with every stab-
bing cluster C;[t], getting a set of points V};. Let us
now consider the set D} := {V}; }1<j<k. Clearly, D} is
a k-clustering of C/[t], and hence has at most the cost
of the optimal k-clustering of C/[t]. Furthermore, all
clusters of D} are subsets of clusters of V', so that the
cost of each cluster V] of V' are at least the sum of the
cost of the corresponding subclusters in Dy, ..., Dy,.
We conclude

Y(E Pty <e Y ADLCLt) < ey (V! P,

1<i<m

which equals ¢ - Yopt (P, k,t). Now we can apply
Lemma 2 on E’ and bound the cost of the corre-
sponding clustering F of P, which has Im clusters,

by W(Evpat) < (\/E(l + \/a) + \/6)2 : ’YOpt(kaat)'

39

EuroCG’09 - Brussels, Belgium

For computing a k-means motion clustering it remains
to show that one can compute a k-means stabbing
which yields an O(1)-approximation to the best clus-
tering of any point of time for a moving point set P.

Our algorithm computes an (1 + €)-approximate k-

stabbing in running time O (%) For the sake of

brevity, we will only outline this algorithm.

The algorithm gets a set P of n polynomially moving
points, the number of clusters k£ and a proximity pa-
rameter € as input. It enumerates all ”Z,/e possibilities
for choosing (with replacement) k subsets of P, each
having a size of 1/e. Consider the point of time ¢ that
yields the minimum-cost k-clustering. It is known by
[1] that one of the subset combinations we check yields
an approximation to the optimal clustering at time ¢
arbitrarily near to (1 + ¢).

Now we fix the k centroids of the considered subsets
of P and assign the moving points in P to the near-
est cluster center. Since for each point the optimal
assignment can change at most Ao, (k) = O(k) times,
i.e. the maximum length of a Davenport-Schinzel Se-
quence with a degree of 2y for k elements [1], we only
have to consider O(nk) time intervals. Inside these in-
tervals the assignment to the cluster centers is fixed,
and we can compute the optimal point of time for
each cluster by minimizing the sum of the distances
of the points inside the cluster to the cluster center,
which is a polynomial; we assume that, once we have
computed all these polynomials in O(n), the mini-
mization can be done in running time O(1) for each
of them. We return the optimal stabbing of the best
time interval of all possibilities to enumerate k subsets
of size of 1/¢ of P, which, by the above discussion, is
an (1 + ¢, k, k)-stabbing of P.

Combining this with theorem 5, we conclude:

Theorem 6 For a set P C R% of n polynomially
moving points with a degree of motion of at most
1, a proximity parameter ¢ > 0 and k € N, one can
compute a ((14++/1 + e)# Tt —1)2 kr+L k)-static clus-

tering in running time O (%), whereas d and p

are considered to be constants.

Coresets for k-Means Motion Clustering In this
Paragraph we outline the construction of coresets for
k-means motion clustering. Let us at first define core-
sets for static point sets.

A weighted set of moving points is a set @) of mov-
ing points in R? together with a weight function w :
Q— Ra' . When calculating the cost of a clustering C
of such a point set at a point of time ¢, we multiply
the distance of each point to its cluster center by its
weight, i.e. 7, (C, P) = Zo,;ec Zpeci w(p)-[lp—cil*.
Let T be a weighted set of moving points and P be
a set of moving points. At an arbitrary point of
time ¢, we call T[t] a (k,¢€)-coreset of P[t], if for all

sets D € R? of k points and the clustering C' on
Plt] and C’ on TJt] that are defined by D by as-
signing each point to the nearest point in D, it holds
(1 - 6)7(07 Pv t) < wa(C/’ T, t) < (1 - 6)7(07 Pa t)' We
call T a static (k, €)-coreset of P, if it is a (k, €)-coreset
for all points of time simultanously.

Our result is the following theorem. It is based on a
coreset result for static point sets of Har-Peled and
Mazumdar [2]; we ommit the proof for the sake of
brevity.

Theorem 7 Let P be a set of n polynomially moving
points with a degree of motion bounded by p and let
A be an algorithm that retrieves a (¢, am, m)-stabbing
for any such set of points and for all m, for constants
a € N and ¢ > 1. Then, one can compute a static

klog ?)“Jrl
—a

(k,€)-coreset T' of size O ((
any point in T is a polynomial with a degree of motion
of at most u. The running time is O(n) plus the time
needed for the execution of A.

of P, whereas

References

[1] P. Agarwal, M. Sharir: Davenport-Schinzel Se-
quences and Their Geometric Applications; Cam-
bridge University Press, 1995

[2] S. Arora. P. Raghavan, S. Rao: Approximation
Schemes for Euclidean k-Medians and Related Prob-
lems; 30th annual ACM Symposium on Theory of
Computing, 1998

[3] S. Bespamyatnikh, B. Bhattacharya, D. Kirkpatrick
und M. Segal: Mobile facility location; Proc. of the
4th International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communi-
cations, p. 46, 2000

[4] A. Czumaj, G. Frahling, C. Sohler: Efficient kinetic
data structures for MaxCut. In: Proceedings of the
19th Canadian Conference on Computional Geome-
try (CCCG), p. 157, 2007

[5] B. Degener, J. Gehweiler, C. Lammersen: Kinetic
Facility Location, Algorithmica, special issue on se-
lected papers from SWAT’08, 2008

[6] F.Hellweg: Clustering unter Bewegung fiir k-Means-
und k-Median-Zielfunktionen, Master Thesis, 2008

[7] J. Gao, L. Guibas, J. Hershberger, L. Zhang, A. Zhu:
Discrete mobile centers. Discrete Comput. Geom.
30(1), p. 45, 2003

[8] J. Gao, L. Guibas, A. Nguyen: Deformable spanners
and applications. Comput. Geom. 35(12), p. 2, 2006

[9] S. Har-Peled: Clustering Motion, Discrete & Com-
put. Geom. 31(4), 2004

[10] J. Hershberger: Smooth kinetic maintenance of clus-
ters. Comput. Geom. Theory Appl. 31(12), p. 45,
2005

[11] M. Inaba, N. Katoh, H. Imai: Applications of
weighted Voronoi diagrams and randomization to
variance-based k-clustering (ext. abstract); Proc. of
the 10th annual Symposium on Comp. Geom., 1994

40

The Maximum Box Problem for Moving Points on the Plane

The Maximum Box Problem for Moving Points on the Plane

S. Bereg * J.M. Diaz-Baiiez

Abstract

Given a set R of r red points and a set B of b blue
points on the plane, the static version of the Maxi-
mum Box Problem is to find an isothetic box H such
that H N R = () and the cardinality of H N B is maxi-
mized. In this paper, we consider a kinetic version of
the problem where the points in RUB move according
to algebraic functions. We design a compact and lo-
cal quadratic-space kinetic data structure (KDS) for
maintaining the optimal solution in O(rlog r+7rlogb)
time per each event. We also consider a more general
static problem where the maximum box can be ar-
bitrarily oriented. This is an open problem in [1].
We show that our approach can be used to solve this
problem in O((r + b)?(rlogr + rlogb)) time.

1 Introduction

In Pattern Recognition and Classification problems,
a natural method for selecting prototypes that rep-
resent a class is to perform cluster analysis on the
training data [6]. Typically, two sets of points XT
and X~ are given, and one would like to find patterns
which intersect exactly one of these sets. The cluster-
ing can be obtained by using simple geometric shapes
such as circles or boxes. Recent papers deal with the
Mazximum Box Problem, where the clustering is due
by considering maximum boxes, i.e., boxes containing
the maximum number of points in the given data set.
See [8, 9]. The basic problem is the following: given a
finite set of blue points B = X+ and a finite set of red
points R = X~ on the plane, compute a box (axis-
aligned rectangle) containing the maximum number of
points of B but avoiding points of R. In many appli-
cations, the data are given in a dynamic scenario. For
instance, in fixed wireless telephony access and driv-
ing assistance, detection and recognition of patterns
for moving objects are key functions [2]. In fact, with
the continued proliferation of wireless communication
and advances in positioning technologies, algorithms
to efficiently solve optimization problems about large
populations of moving data are gaining interest. New

*University of Texas, besp@utdallas.edu

TUniversidad de Sevilla, dbanez@us.es, partially supported
by grant FEDER-MTM2006-03909.

#Universidad de la Habana, pablo@matcom.uh. cu, supported
by MAEC-AECI.

8Universidad de Sevilla, iventuraQus.es, partially sup-
ported by grant FEDER-MTM2006-03909.

P. Pérez-Lantero * 1. Ventura &

devices offer to the companies an opportunity of pro-
viding a diverse range of e-services, many of which
will exploit knowledge of the users changing location.
This results in new challenges to database and classi-
fication technology [3].

In this paper, we introduce and investigate the dy-
namic version of the Maximum Box Problem where
the dataset is modeled by points moving according
to specified algebraic functions. We present a Kinetic
Data Structure (KDS) to efficiently maintain the max-
imum box for a bi-colored set of moving points. A
KDS is used for keeping track the attributes of inter-
est in a system of moving objects [7]. The plan of
the paper is as follows: In section 2 we give an al-
gorithm for the static case that will be useful for the
dynamic version. A new data structure for maintain-
ing the maximum box in a kinetic setting is proposed
in section 3. Finally, in section 4 we give an algorithm
for the Maximum Box Problem in a static setting for
which the box can be arbitrarily oriented.

2 The Static Version

The static version of the maximum box problem in the
plane has been already studied. In [8], an O(b?log b+
br+rlog r)-time algorithm has been presented, where
r = |R| and b = |B|. We propose here a similar
algorithm which is used in the dynamic case for the
designment of our data structure. First, we observe
that a maximum box for B and R can be enlarged
until each of its sides either touches a red point or
reaches the infinity. Thus, the maximum box can be
transformed to one of the following isothetic objects
with red points on its boundary and no red points
inside: a rectangle, a half-strip, a strip, a quadrant or
a half-plane (see Fig. 1).

We show how to compute the maximum box of type
1), 2) or 3). The cases of a quadrant 4) and a half-
plane 5) are even easier and can be addressed by ap-
plying the techniques based on the Dynamic Bent-
ley’s Maximum Subsequence Sum Problem that were
presented in [5]. Both cases can be solved in time
O(nlogn).

1) 2) 3) 1) 5)

Figure 1: Configurations of the maximum box.

41

EuroCG’09 - Brussels, Belgium

We proceed as follows. For every red point p,., we
compute a rectangle H(p,) such that: (i) the top side
contains p,, (i7) the interior contains the maximum
number of blue points, and (ii4) the boundary has
only red points. Then, we take the best of all H(p;).
To do this for each red point p,., we draw a horizontal
line ! passing through p, and sweep the points below
[by moving | downwards.

Let h, be the horizontal line that passes through p,..
During the sweeping we maintain two balanced binary
search trees T and T such that T (resp. Tp) con-
tains all the red (resp. blue) points that lie between h,.
and [sorted by x-coordinate. In the tree Ty, for each
node v we also maintain a counter of the number of
blue points on the subtree rooted at v. When [passes
through a point p we do the following. Let left(p)
(resp. right(p)) be the rightmost (resp. leftmost) red
point in T located to the left (resp. right) of the ver-
tical line that passes through p, and let xj.f (resp.
Zright) be its « coordinate. If le ft(p) (resp. right(p))
does not exist then zcfs (resp. Tyight) is —oo (resp.
+00). We only process p if the x coordinate of p,
lies in the interval (Zjefs, Trighe). In that case, p is
inserted in Tr or T according to its color and if p is
a red point, we consider a candidate H(p,) as the iso-
thetic rectangle (half-strip or strip) whose sides pass
through left(p), right(p), p» and p. The count of
blue points inside H(p,) is equal to the count of blue
points in T whose x coordinate lies in (zje ¢, Tright)-

In the above procedure left(p), right(p) and the
count of blue points inside H(p,) are obtained in log-
arithmic time each, thus the top-down sweeping from
pr is done in O(rlogr + rlogb + blogd) time, giv-
ing then an overall O(r? logr +72 log b+ rblog b)-time
and O(r + b)-space process. Within the same time
we can find the smallest axis-parallel rectangle (box)
that maximizes the number of covered points from B
and does not contain any point from R, improving the
O(n?log* n)-time algorithm given by [9].

3 The Maximum Box Problem for moving points

In this section we introduce a new kinetic data struc-
ture (KDS), for maintaining the maximum box. A
KDS is a structure that maintains an attribute of a
set of continuously moving objects [7]. It consists of
two parts: a combinatorial description of the attribute
and a set of certificates. The certificates are elemen-
tary tests on the input objects with the property that
as long as their outcomes do not change, the attribute
does not.

Lemma 1 Let X (resp. Y') be the elements of RU B
sorted by abscissa (resp. ordinate). The maximum
box for R and B is univocally determined by X and
Y, and it does not change combinatorially over time
as long as X and Y do not.

Our KDS is named as Mazimum Boz Kinetic Data
Structure (MBKDS) and we will proceed now with
its ingredients. In our problem, the set of moving ob-
jects is R U B and the attribute is its maximum box.
According to the previous lemma, we consider as a
certificate the condition that two consecutive points
in X (resp. Y) satisfy the z-order (resp. y-order). An
event is the failure of a certificate at some instant of
time ¢ and it implies an update of the MBKDS. We
denote each event as a pair (c,t) where c is the certifi-
cate and t is the instant of time where ¢ is violated.
We name an event as flip.

A KDS is compact if it has few certificates and lo-
cal if no object participates in too many certificates.
With this it can be updated easily when the flight
plan of an object changes (see [7]). It is easy to prove
that the MBKDS is compact and local.

The MBKDS is composed by the event queue £ and
the structure D = {D(p,) : p» € R} where D(p,) is a
data structure for each red point p,. When an event
corresponding to the certificate of two consecutive el-
ements of X, say [X;, X; 1], occurs it is removed from
E. Then, we remove from £ the events corresponding
to [X;-1,X;] and [X;41, Xit2]. After that, we swap
X; and X; 1 and insert in £ new events for [X;_1, X;],
[Xi, Xiy1] and [X;41, Xit2]. The event time is com-
puted based on our knowledge of the motions of X;_1,
X, X1 and X;yo. € is designed as a priority queue
with its basic operations in O(logn) time. The cer-
tificates [Y, Yi41] are treated similarly.

The definition and details of D(p,) are as follows.
Consider first the horizontal line &, passing through
the red point p, and let Red(h,) be the set of red
points lying below h, (see Fig. 2). Denote as z(p)
(resp. y(p)) the abscissa (resp. ordinate) of p. For
each p € Red(h,) we define:

e V(p) as the vertical half-line for which p is its
top-most point.

e Z(p) as the maximum-length horizontal segment
that contains p and does not intersect any other

V(q) for q in Red(h,) \ {p}.

e Blue(s) as the set of blue points that lie on the
rectangle whose bottom side is the horizontal seg-
ment s and its top side lies on h,..

e left(p) (resp. right(p)) as the rightmost (resp.
leftmost) point in Red(h,) located to the left
(resp. right) of the vertical line that passes
through p and whose y coordinate is greater than
y(p) (see Fig. 2). Notice that the end points of
Z(p) lie on V(left(p)) and V(right(p)).

e the set candidates(p,.) of the points p € Red(h.,.)
such that Z(p) intersects the vertical line that
passes through p,.. Observe that, according to the

42

The Maximum Box Problem for Moving Points on the Plane

previous section, H(p,) is the box whose top side
lies on h,. and its bottom side is the interval Z(p)
such that p € candidates(p,) and |Blue(Z(p))| is
maximized.

br

right(p)

Figure 2: D(p,). Candidate points are those whose
Z(p) is drawn with a continuous line.

The key idea for D(p,.) is to dynamically compute
H (p,) when two points that lie below h, make a flip.
D(p,) is designed as follows:

e The elements of candidates(p,) are stored in the
leaves of a dynamic balanced binary search tree Q
in decreasing order of ordinate. Every node v is
labeled with a such that |Blue(Z(p))| is equal to
the sum of the a labels of the nodes in the unique
simple path from the leaf that represents p to
the root. In addition, every internal node v is la-
beled with b whose value is the candidate p in the
subtree rooted at v that maximizes |Blue(Z(p))|.
With this, the label b of the root is the candidate
red point that determines H (p,).

e A balanced binary search tree 7z whose elements
are the elements of Red(h,) in increasing order of
abscissa. Every node v is labeled with 4, that
is the element that has the maximum ordinate on
the subtree rooted at v. It permits us to obtain
in logarithmic time left(p) and right(p) for any
p € Red(h,).

e For each p € Red(h,) we divide Z(p) at p obtain-
ing the horizontal segments Z;. ¢ (p) and Z,.;gn+(p)
(see Fig. 3). Let Tiept(p) = {Zrignt(q) : q €
Red(hy) \ {p} A right(q) = p} and Tigni(p) =
{Zice(q) = q € Red(hy) \ {p} Aleft(q) = p}. The
set i ¢(p) is represented in a dynamic balanced
binary search tree where its elements 7,41+ (q) are
stored at the leaves in decreasing order of y(q).
Every node v is labeled with a in a similar way
as we did for Q. In this case |Blue(Z,ignt(q))| is
the sum of the a labels of the nodes in the path
from the leaf that represents Z,;5:(g) to the root.
Also, every node v is labeled with the boolean ¢
indicating if all the elements Iright(q) in the sub-
tree rooted at v satisfy that ¢ is a candidate red
point. 7 s (p) is designed to support the opera-
tors join and split both in logarithmic time [4].

The set T,ignt (p) is represented in the same man-
ner.

e The set {Z(p) : p € Red(h,)} U{V(p) : p €
Red(h,)} determines a partition P of the lower
half-plane of h,.. For each cell C of P we store in
a balanced binary search tree 75(C) (supporting
operators join and split) the elements of BN C
in decreasing order of ordinate. Each node v is
labeled with the count of blue points on the sub-
tree rooted at v in such a way the label of the
root is |[BNC|. Each blue point p below A, has a
reference 7¢(p) to the tree 7p(C) where C is the
cell that contains p. Also, we associate to each
p € Red(h,) the tree Tp(p), which is the tree of
blue points that corresponds to the cell of P that
is bounded below by Z(p), and the tree 7p,,,,, (p)
that corresponds to the cell of P bounded by V(p)
and V(gq) and has no bottom boundary, where ¢
is the element that follows p on Tg. (see Fig. 3).

left(p) T5(p) \

Tiepi(p) p Tyigni(p)

right(p)

I LI» T5,100: (D)

Figure 3: Details of D(p,).

Because of the similarity between the structure of
D(p,) and the operations of the algorithm of section
2, a similar algorithm to build D(p,) can be designed.
We establish the following result,

Theorem 2 Given R, B and p, such that |R| = r,
|B| = b and p. € R, D(p,) requires O(r + b) space
and it can be built in O(rlogr +rlogb+blogb) time.

Corollary 3 Given R and B such that |R| = r and
|B| = b, the data structure D has space complexity
O(r? +rb) and it can be built in O(r?logr +r?logb+
rblogb) time.

In the following we show all the possible types of
flips that can occur when the elements of RU B move.
The details on how to process any of them depend on
its type and are given in the full version. We say
that a flip is horizontal (resp. vertical) when the two
involved points change their y-order (resp. z-order).

Flip type (A): Two blue points make a vertical
flip. Nothing to do.

Flip type (B): Two blue points b; and by make a
horizontal flip. Exchange b; and by in every tree of
blue points 7(.) or 7p,,,,,(.) that contains both.

43

EuroCG’09 - Brussels, Belgium

Flip type (C): A red point r; and a blue point by
make a horizontal flip. Consider five cases as depicted
in Figure 4.

7 \ 1 o\bz <(° T b20> T](: 1
by 2

P

3) 1) 5)

Figure 4: Horizontal flip cases between a red point rq
and a blue point bs.

Flip type (D): A red point r; and a blue point bo
make a vertical flip. Consider two cases as depicted
in Figure 5, and their symmetric cases.

Figure 5: Vertical flip cases between a red point r;
and a blue point bs.

Flip type (E): Two red points r; and ro make
any flip: we have to consider two cases as depicted in
Figure 6, and their symmetric cases. When the flip is
vertical the operators join and split [4] are useful.

Ty

r * T {7r7 |

Ty 1 7.2
| Tz

T2 f**fT;K
Tz{ ryr —

Figure 6: Flip cases between two red points r; and

r9. 1) Horizontal 2) Vertical.

1) 2)

Theorem 4 Given a set of moving red points R and
a set of moving blue points B such that |R| = r and
| B| = b, whenever two points in RU B make a flip, the
data structure MBKDS can be updated in O(rlogr+
rlogb) time.

4 The Arbitrarily Oriented Maximum Box Prob-
lem

In this section we consider, as an application of our
method for the dynamic case, the problem of find-
ing the Maximum Box for a static set R U B on the
plane, when the box can be oriented according with
any angle (direction) in [0, 7].

It is easy to see that there are O((r + b)?) crit-
ical directions and the method of section 2 can be

applied for each of them. With this we obtain an
O((r+b)?(r? logr+r?log b+rblogb))-time algorithm.
However, we can do it better by iterating all the crit-
ical directions and computing dynamically the Max-
imum Box per each. Start with the direction given
by the angle 8 = 0. Compute the isothetic Maximum
Box and the data structure D. Then make a rota-
tional sweeping of the coordinate axis maintaining the
z-order and the y-order of the elements of RUB. The
x-order (resp. y-order) changes whenever two points
are at the same distance to the y-axis (resp. z-axis),
implying the swap (flip) of two consecutive elements
and the appearance of a new critical orientation 6.
Thus, the Maximum Box that is oriented according
to 6 is computed by making the O(rlogr + rlogb)-
time update in D. The overall rotation angle is at
most 7 radians and we establish the following result.

Theorem 5 Given a set of red points R and a set
of blue points B on the plane such that |R| = r
and |B| = b, the Arbitrarily Oriented Maximum Box
Problem can be solved in O((r + b)?(rlogr +rlogb))
time and O(r? + rb) space.

References

[1] B. Aronov and S. Har-Peled. On approximating the
depth and related problems. STAM J. Comput. Vol.
38, 899-921, 2008.

[2] P. Bonnet, J. Gehrke, P. Seshadri. Towards Sen-
sor Database Systems. In Proc. of the Second Inter-
national Conf. on Mobile Data Management, Hong
Kong. Lecture Notes Comp. Sci., vol. 1987, 3 — 14,
2001.

[3] A. Civilis, C. S. Jensen, S. Pakalnis. Techniques
for Efficient Road-Network-Based Tracking of Mov-
ing Objects. IEEE Transactions On Knowledge And
Data Engineering, Vol. 17, No. 5, 698-712, 2005.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Intro-
duction to Algorithms, Second Edition. MIT Press,
McGraw-Hill, 2001.

[5] C. Cortés, J. M. Diaz-Bafiez, P. Pérez-Lantero, C.
Seara, J. Urrutia, I. Ventura. Bichromatic separabil-
ity with two boxes: a general approach. To appear in
Journal of Algorithms.

[6] R. Duda, P. Hart, D. Stork. Pattern Classification.
John Wiley and Sons, Inc., New York, 2001.

[7] L.J. Guibas. Kinetic Data Structures: A State of the
Art Report. In Robotics: The Algorithmic Perspec-
tive. A. K. Peters, Ltd 191-209, 1998.

[8] Y. Liu, M. Nediak. Planar Case of the Maximum Box
and Related Problems. In Proc. Canad. Conf. Comp.
Geom., Halifax, Nova Scotia, August 11-13, 2003.

[9] M. Segal. Planar Maximum Box Problem. Journal
of Mathematical Modeling and Algortihms. 3, 31-38,
2004.

44

Minimizing the weighted directed Hausdorff distance between colored point sets under rigid motions

Minimizing the weighted directed Hausdorff distance between
colored point sets under translations and rigid motions*

Christian Knauer T

Abstract

Matching geometric objects with respect to their
Hausdorff distance is a well investigated problem in
Computational Geometry with various application ar-
eas. The variant investigated in this paper is moti-
vated by the problem of determining a matching (in
this context also called registration) for neurosurgi-
cal operations. The task is, given a sequence P of
weighted point sets (anatomic landmarks measured
from a patient) and a second sequence Q of corre-
sponding point sets (defined in a 3D model of the
patient), to compute the transformation that mini-
mizes the weighted directed Hausdorff distance of P
to Q. The weighted Hausdorff distance, as introduced
in this paper, takes the weights of the point sets into
account, which in this application reflect the precision
with which landmarks can be measured.

We present an exact solution for translations in the
plane, a simple 2-approximation as well as a FPTAS
for translations in arbitrary dimension and a constant
factor approximation for rigid motions in the plane or
in R3, the relevant cases for the mentioned applica-
tion.

1 Introduction

A central aspect in pattern recognition and matching
applications is the measure which is used to compare
two objects. It defines which features of the objects
are relevant for deciding about their similarity. An es-
tablished measure to compare two geometric objects
A and B is the (directed) Hausdorff distance h(A, B),
defined as h(A4, B) := max,c4 minye g ||a — b||, where
I - || denotes the Euclidean norm.

We present an extension of the directed Hausdorff dis-
tance which is motivated by a registration application
for neurosurgical operations. The task is to compute
the transformation that matches a patient in an oper-
ation theatre to a 3D model of the patient, generated
from CT/MRT scans. A matching is computed based
on point sets, so-called anatomic landmarks, that are
defined by the surgeon in the model during the op-
eration planning phase, and measurements of these

*supported by the German Research Foundation (DFG),
grant KN 591/2-2

TInstitut fiir Informatik, Freie Universitit Berlin,
{knauer |kriegel|stehn}@inf.fu-berlin.de

Klaus Kriegel

Fabian Stehn T

landmarks (by touching the appropriate spots of the
patient with a traceable device) in the first phase of
the operation. Landmarks from different anatomic re-
gions can be measured with different precision. The
differences in the accuracy are taken into account by
assigning corresponding weights to each landmark.
The magnitude of a weight that is assigned to an
anatomic landmark is based on an empirical study
about the precision of measuring landmarks, which
will be published elsewhere.

Various distance measures based on the Hausdorff
distance have been introduced and extensively studied
by the Computer Graphics community. Standard ap-
plications in this line of research are comparing pixel
images, e.g., for detecting [5] or recognizing faces in
them.

1.1 Problem Definition

Given two sequences of finite point sets P =
(Pl,...7pk) and Q = (Ql,...,Qk) with]D“Qz - R¢

and a sequence of weights w = (wy,...,wy) with
w; € RT and wy > wy > -+ > wy. For n; = | B
and m; := |Q;] let n = Zle n; and m = Zle m.

For the purpose of illustration one can think of P and
Q being colored in k different colors, where all points
in P; and Q; are colored with the " color.

Definition 1 The weighted directed Hausdorff dis-
tance h(P, Q,w) for P, Q and w is defined as:

h(P,Q,w) = oax w; h(P;, Q;).

For points in the plane, h(P, Q,w) can be computed
in O ((n+ m)logm) time using Voronoi diagrams to
compute the directed Hausdorff distance for every
color; for higher dimensions it trivially can be com-
puted in O (mn) time.

In this paper we discuss the problem of match-
ing two sequences of weighted point sets under the
weighted Hausdorff distance. Formally, given P, Q
and w as before and a transformation class 7, find
the transformations ¢ € 7 that minimize the function

f(t) = h(t(P), Q w), (1)

where t(P) := ({t(p) |p € Pi});<;<)- For the remain-
der of this paper, let p,,+ denote the minimum of f.

45

EuroCG’09 - Brussels, Belgium

In section two we present a 2-approximation for col-
ored point sets in arbitrary dimension under transla-
tions, which is extended to a FPTAS in section three.
In section four a constant-factor approximation for
rigid motions is presented. An exact algorithm opti-
mizing the Hausdorff distance under translations for
points in the plane is presented in section five.

2 A 2-Approximation for Translations in R¢

Theorem 1 A 2-approximation for translations can
be computed in O (m1(m + n)logm) time in 2-space
and in O (mymn) time for point sets in higher dimen-
sions.

Proof. Choose a point p € P; and let T be the set
of all translation vectors that move p upon a point of
Qr1:

T:={q—plqec}

Then, the translations t4,, of T' that realize the
smallest Hausdorff distance are 2-approximations of

,uopt:

f(tQGPP) = Itréljl}h(t(,])% Qa w) S 2,Ufopt~

To show this, assume P to be in optimal position and
let nn (p’, Q;) € Q; be the set of nearest neighbors of
p' € P; in Q; and let n;(p’) be one representative of

this set. In optimal position, all weighted distances
are bounded by piope:

V1<i<kVp € P wi|lp—ni@)| < topts

where || - || denotes the Euclidean norm. Consider
the translation ¢, € T that moves the chosen point
p upon one of its nearest neighbors ¢ € nn (p, Q1).
By applying ¢, to P, all points in any P; are moved
away from their optimal position by ||[p—ql||. The new
weighted distance [of any p € P; to one of its closest
neighbors after applying ¢, is at most:

wj h(tq(ﬁ)in)

w; ([[p—ni®) + llp — na(®)I))
fopt +w; [[p — n1(p)]|

fopt + w1 [[p — 11 (p)]|

2fhopt -

l

VAN VAN VAN VA

For a fixed p € P; all translations that move p upon
a point ¢ € @1 have to be tested, which yields the
stated runtime. [

The key argument that guarantees an approximation
factor of 2 is that w; is at least as large as any
other weight. Choosing a p’ € P; for any color ¢
and testing all translation vectors that move p’ onto
a point ¢’ € @Q; yields in a 1 + w1/w,-~approximation

that can be computed in O (m;(m + n)log m) respec-
tively O (m; mn) time. Together with the the pigeon-
hole principle, this implies that there is a 1+ (w1/w;,)-
approximation that can be computed in O ("”2/ k n)
time for general d and in O (m/k (m + n)logm) time
in the plane.

3 AFPTAS

Theorem 2 For every ¢ > 0 a (1 + ¢)-
approximation for translations can be computed
in O (Y my(m+n)logm) time in 2-space and in
@) ((\/E/E)d my mn) time for higher dimensions.

Proof. Let pia4pp = f(t2app) Where toqp, is a solution
of the 2-approximation as described in Section 2. For
the given €, choose any p € P; and for every ¢ € ()1
build a regular squared grid G, centered in ¢ with side
length pogpp /w1 where each cell has a side length of
(e /A2app)/(\/a wy). Let T be the set of all translations,
that move a p € Py onto a grid point of a grid G for
any ¢ € Q1. The translations t,p, of T' that realize
the smallest weighted Hausdorff distance satisfy

f(tapp) = Itrél,lI} h(t(P)7 Q7 ’LU) S (1 + €>,U/opt-

Assume P to be in optimal position and let ¢ = n1(p)
be one of the nearest neighbors of the chosen p € P;.
By construction, the point p lies within the bound-
aries of the grid Gj. Due the choice of the cell
length, the furthest distance [of p to one of its closest
grid points is at most | < (e ftaapp)/(2Vdw) and as
Hopt > H2app/2 we have that | < (e ,uopt)/(\/ﬁwl). As
all w; for 1 < i < k are at most as large as wy, the
weighted distance of all other points increases by at
most € - ftope When translated along the distance .

d
There are (@) grid points for each G7 that need to
be tested, which implies the stated runtime. O

Using the same arguments as for the 2-approximation,
its easy to show that a (1 + €) approximation can be

computed in O ((\/3 C/e)d m? n/k;) time for point sets
in dimension d > 3 or in O ((C/e)2 m/k(m + n)log m)

time in 2-space with ¢ = w1/w,.

4 A Constant Factor Approximation for Rigid Mo-
tions in the Plane

Due to limited space, we briefly describe how to ex-
tend the results for the constant factor approxima-
tion for translations in Section 2 to the transformation
class of rigid motions, i.e., translations plus rotations.

Theorem 3 A 2(1+4+/2)-approximation for rigid mo-
tions can be computed in O (mqm; (m + n)logm)
time for point sets in the plane.

46

Minimizing the weighted directed Hausdorff distance between colored point sets under rigid motions

Sketch of the algorithm. Choose any p € P;. Let
P :=Jy<;<; P and let w : P — R be the function
that maps a point z € P to its weight w(x) = w; for
x € P;. Let p’ be a point that maximizes the weighted
distance to p:

/
p € argmaxw(z)llz —pll,

w.l.o.g. let w(p’) = w;. This choice of p’ ensures that
the change of the Hausdorff distance of any point p €
P when rotated around p is bounded by the change
of the weighted Hausdorff distance of p’.

For any ¢ € Q1 and any ¢’ € Q; let ¢ be defined as
t:= 14,4 014, where ¢, is the translation that moves
p upon ¢ and t, . is the rotation around ¢ by the
smallest angle such that ¢, ¢’ and tg 4 o t,(p') are
aligned, see Figure 1.

Figure 1: a) The translational part ¢,, b) the rota-
tional part ¢4 4, c) the aligned configuration.

For p € P, and p’ € P; as chosen before let T be
the set of all transformations that align p € P; and
p' € P; with some ¢ € Q1 and ¢’ € Q; in the just
described manner.

The transformations ¢,qp, of T that realize the
smallest Hausdorff distance satisfy the stated approx-
imation factor:

= minh(t(P)’ Q, w) <21+ \/E)Mopt-

teT

f(trapp)

4.1 Extending the Result to R?

In R3 one additional degree of freedom has to be fixed.
Based on the registration in the previous section, this
freedom is a rotation around the axis pp’. Choose
p and p’ as before and let p” € P; be a point that
maximizes the weighted distance to the line through
p and p’. For any ¢’ € Q; consider additionally the
rotation ¢, 4 o around the axis g¢’ such that tg ¢ 4 0
tg.q 0 tqe(P"), ¢, ¢’ and ¢’ are coplanar. It is easy
to see, that the additional rotation results in a 6 +
2v/2-approximation of the optimum and the runtime
increases to O (mq m; m; mn).

5 An Exact Algorithm for Computing a Registra-
tion in the Plane under Translations

The minima of the objective function f(t) (Equa-
tion 1) under translations in the plane can be
computed similar to the approach from Huttenlocher
et. al. [3] by partitioning the translation space into
cells such that for all translations of one cell the
weighted Hausdorff distance is realized by the same
point pair.

Recall, that the function f is given as:

max w; h(t(P;), Q;)

1<i<k

= e R e

= max w; max min (g —p) —)|

So, computing the distance of the point p + ¢ to g is
equivalent to computing the distance of the transla-
tion vector ¢ to the point ¢ — p. By introducing the
sets S;(p) := {q — plg € Qi} we can formulate f(t) as

[ty =

max w; max min |jc—t.
1<i<k ' peP; ceS;(p)

To compute the minima of f, we compute the de-
composition of the translation space into (potentially
empty) cells C(p,q) € R? with p € P; and q € Q;,
such that C(p, q) := {t[f(t) = wi|(p+1t) —qll}.

Theorem 4 The decomposition of the translation
space into cells C(p,q) and with it the trans-
formations minjmizjng f(t) can be computed in
O (m?*n? a(m?n?)logmn) time, where a(:) is the in-
verse Ackermann function.

Proof. To characterize C(p,q) we fist observe, that
F(t) = wil[(p + t) — qll implies ¢ € Vor (q — p, Si(p)),
where Vor (a, A) is the Voronoi cell of the side a € A
of the set A. Otherwise, another point ¢’ of color 1
would be closer to p than ¢, implying that f(t) would
not by realized by p and g. There are two possible
reasons why for a translation ¢t € Vor (¢ — p, S;(p)) the
value of f(t) might not be realized by p and ¢g. This
is either because another point p’ € P; of the same
color has a larger distance to its nearest neighbor for
this translation, or because the weighted distance of
a closest point pair of another color j # i exceeds
will(p-+1) — qll, that is, £(£) = wil|(p+1) — ql| implies
Vi<j<kVprer; Min w;l|(p" +1) = d'l| < will(p+1) —ql.-
J

We define B(p,q) as the blocked area for the pair p
and ¢, i.e., all translations ¢ € Vor (¢ — p, S;(p)) for
which the value of f(t) is not realized by p and g due
to either of the just mentioned reasons.

The characterization of the shape of B(p, ¢) for a point

47

EuroCG’09 - Brussels, Belgium

pair of the i*" color follows directly from the previous

observation and is given as

B(p,g):= |J Vor(g—p,Si(p)USi(p) U
pEPi\{p}
U U MWVor (g —p, Si(p), S;(0), wi, w;) ,
129 PEP;
17

where MWVor (a, A, B, w,w’) is the Voronoi cell of a
point a € A in the multiplicatively weighted Voronoi
diagram of the set AU B where all points in A have
weight w and all points in B have weight w’. Note,
that the Voronoi cells that are united in the charac-
terization of B(p,q) correspond to the portions of the
translation space for which w;||(p +t) — ¢|| is not the
maximal distance shortest pair. A cell C(p,q) of a
point pair of the i*" color is then fully characterized
by
C(p,q) = Vor (¢ — p, Si(p)) \ B(p, q)-

For a non empty cell that has an empty blocking area
the value of f(¢) is minimal at the site that defined
the cell and increases linear to the distance to this
site. Therefore, the minimal value of f(t) is either
realized at a site or at the boundary of a blocking
area. This means that the minima of f(¢) can be
computed while computing the decomposition of the
translation space into cells.

Let b, 4 denote the number of Voronoi edges that
contribute to B(p, q).

Lemma 5 The combinatorial complexity of B(p,q)
is O (by,q 200ra)).

Proof. By introducing polar coordinates (r,6) with
q—p as the origin, the boundary of B(p, q) can be seen
as the upper envelope of the partially-defined, contin-
uous, univariate functions given as the edges of the
Voronoi diagrams parametrized by 6. Two Voronoi
edges can intersect in at most two points. Applying
the theory of Davenport-Schinzel sequences [4], this
results in a complexity of O (bp_’q 20‘(17?&)). (]

Let b=)1k 2pep, 2_qe0, bpg De the total num-
ber of edges that contribute to the boundary of any

blocking region.

Lemma 6 b=0 (m2n2)

Proof. First fix a color ¢ and a point p € P;. The
edges e that contribute to the boundaries of any block-
ing area of a facet of Vor (S;(p)) result from the edges
of the Voronoi diagrams

e € |J Vor(Si(p)uSi(p) U

PEP;\p

U U MWVor (S;(p), 5;(p), wi, w;) -
1<j<k peP;

i

Let b; , be the number of edges contributing to the
blocking areas for the facets of Vor (S;(p)). The com-
binatorial complexity of a standard Voronoi diagram
of n sites is O (n) due to Euler’s formula, the com-
plexity of an multiplicatively weighted Voronoi dia-
gram for the same number of sites however is ©(n?)
as shown by Aurenhammer et al. [1], even if just
two different weights are involved. This is the main
reason, why the runtime for colored points increases
compared to the monochromatic variant discussed by
Huttenlocher et al. [3].

This leads to a combinatorial complexity for b; , of

bip=0 (Zlgg‘gk n;(m; + mj)z). Summing over all

colors i and all points p € P; gives b= O (m2n2). g

Lemma 5 and Lemma 6 together imply that the
combinatorial complexity of the whole decomposition

is O (m2n2 20‘(’”2”2)).

The algorithm to compute the translations that
minimize the directed Hausdorff distance involves two
steps: First, all (multiplicatively weighted) Voronoi
Diagrams have to be computed. Aurenhammer et
al. [1] presented an algorithm to compute weighted
Voronoi diagrams of n sites in O(n2). It takes
0] (m2n2) time to compute all diagrams, as argued
for Lemma 6.

In the second step, the blocking areas of all facets of
all Voronoi diagrams have to be computed. As shown
by Hershberger [2] the upper envelope of n partially
defined functions that mutually intersect in at most
s points can be computed in O (Asy1(n)logn) time,

which leads to runtime of O (m?n? a(m?n?)logmn),
as stated in the theorem. O
References

[1] F. Aurenhammer and H. Edelsbrunner. An optimal
algorithm for constructing the weighted voronoi dia-
gram in the plane. Pattern Recognition, 17(2):251 —
257, 1984.

[2] J. Hershberger. Finding the upper envelope of n
line segments in o(n log n) time. Inf. Process. Lett.,
33(4):169-174, 1989.

[3] D. P. Huttenlocher, K. Kedem, and M. Sharir. The
upper envelope of voronoi surfaces and its applica-
tions. In SCG ’91: Proceedings of the seventh annual
symposium on Computational geometry, pages 194—
203, New York, NY, USA, 1991. ACM.

[4] M. Sharir and P. K. Agarwal. Davenport-Schinzel se-
quences and their geometric applications. Cambridge
University Press, New York, NY, USA, 1996.

[5] H. Tan and Y.-J. Zhang. A novel weighted haus-
dorff distance for face localization. Image and Vision
Computing, 24(7):656 — 662, 2006.

48

Computing Push Plans for Disk-Shaped Robots

Computing Push Plans for Disk-Shaped Robots

Mark de Berg*

Abstract

Suppose we want to move a passive object along a
given path, among obstacles in the plane, by pushing
it with an active robot. We present two algorithms to
compute a push plan for the case that the obstacles
are non-intersecting line segments, and the object and
robot are disks. The first algorithm assumes that the
robot must maintain contact with the object at all
times, and produces a shortest path. There are also
situations, however, where the robot has no choice but
to let go of the object occasionally. Our second algo-
rithm handles such cases, but no longer guarantees
that the produced path is the shortest possible.

1 Introduction

A fundamental problem in robotics is path plan-
ning [9], in which a robot has to find ways to navigate
through its environment from its initial configuration
to a certain destination configuration, without bump-
ing into obstacles. Many variants of this problem have
been studied, involving widely differing models for the
environment, and for the robot and its movement. In
manipulation path planning [7] the robot’s goal is to
make a passive object, rather than the robot itself,
reach a certain destination. Several different kinds
of manipulation have been studied, including grasp-
ing [7], squeezing [5], rolling [2], and even throwing [8].

The manipulation path planning problem studied
here involves pushing [7]. In particular, we want a
disk-shaped robot to push a disk-shaped object to a
given destination in the plane among polygonal ob-
stacles. Nieuwenhuisen et al. [9, 11, 12] developed a
probabilistically complete algorithm for this based on
the Rapidly-exploring Random Trees path-planning
algorithm [6]. This builds a tree of reachable posi-
tions by repeatedly generating object paths and try-
ing whether the pusher can make the object follow
such a path. Thus a subroutine is needed to push the
object along a given path.

Problem statement. In the plane, let P be a disk-
shaped robot (of radius r,) called the pusher, let O
be a disk-shaped object (of radius r, > r,), and let
T'={71,...,7va} be a set of non-intersecting line seg-
ments called the obstacles. We're given a collision-

*Dept. of Computer Science, TU Eindhoven, the Nether-
lands, mdberg@win.tue.nl, dirk@dirkgerrits.com

Dirk H.P. Gerrits*

free path 7 for O consisting of k constant-complexity
curves 7i,...,7t called the path sections. We then
want to compute a collision-free path o for P such
that P pushes O along 7 when P moves along o.
We allow P and O to slide along obstacles, which
is called a compliant motion. The computed path o
will be called a push plan. We distinguish two kinds
of push plans: contact-preserving push plans in which
the pusher maintains contact with the object at all
times, and unrestricted push plans in which the pusher
can occasionally let go of the object.

Related work. Along with the algorithm described
above, Nieuwenhuisen et al. [9, 10] also developed a
subroutine needed by the algorithm that solves the
problem just described. They assume the object path
consists of line segments and circular arcs only, and
after preprocessing the n obstacles in O(n? logn) time
into an O(ng)-space data structure, they can compute
a contact-preserving push plan in O(knlogn) time. It
is not guaranteed that the constructed push plan is
optimal in any way.

Agarwal et al. [1] considered the problem where
only the final destination of the object is given, and
not its path 7. For this they give an algorithm for
finding a contact-preserving push plan for a point-size
pusher and a unit-disk object. The algorithm dis-
cretizes the problem in two ways: the angle at which
the pusher can push is constrained to 1/e different
values, and the combined boundary of the obstacles
is sampled at m locations to give potential intermedi-
ate positions for the object. The algorithm then runs
in O((1/e)m(m + n)logn) time, but is only guaran-
teed to find a solution if 1/¢ and m are large enough.
The algorithm assumes the pusher can get to any po-
sition around the object at all times, which is true for
their point-sized pusher but not for our disk-shaped
pusher: there may be obstacles in the way.

Our results. We present a new algorithm for com-
puting contact-preserving push plans for a given ob-
ject path. It matches the O(knlogn) time needed
by Nieuwenhuisen’s approach, while handling path
sections other than line segments and circular arcs,
and without needing a O(n?logn)-time and O(n?)-
space preprocessing step. We also present the first
algorithms to compute shortest contact-preserving
push plans, in O(k?n?log(kn)) time and O(k?n?)
space, and to to compute unrestricted push plans, in
O(knlog(kn) + kn?logn) time and O(kn?) space.

49

EuroCG’09 - Brussels, Belgium

If we assume the obstacles aren’t too densely
packed, these time and space bounds can be greatly
improved. Both Nieuwenhuisen’s and our approach
for computing contact-preserving push plans then
take O((k + n)log(k + n)) time and O(k + n) space,
but the former still needs its expensive preprocessing
step. For shortest contact-preserving push plans our
approach takes O((k + n)log(k +n) + k?logk) time
and O(k+n) space, and for unrestricted push plans it
takes O((k+n)log(k+n)+kn) time and O(kn) space.
For lack of space we only present the high-obstacle-
density results here, and omit some proofs. Details
can be found in Gerrits’s MSc thesis [4].

2 Preliminaries

In the problem statement we’ve been deliberately
vague about what pushing the object along a path
entails. Before discussing our algorithms we fill in
some of the details.

The push range. As mentioned before, compliant
motions are motions where the object slides along an
obstacle. Such motions are more robust in the pres-
ence of sensor inaccuracies, because the obstacle will
act as a guide for the object. More importantly, this
allows the pusher to achieve the same motion for the
object from a continuous range of different pushing
positions, called the push range. The pusher can then
swerve around the object to avoid obstacles while still
pushing the object in the desired direction. (See Fig-
ure 1(a).) With a non-compliant motion, the push
range is a single pushing position depending only on
the desired direction of motion for the object. If any
obstacles are in the way, there simply exists no push
plan for that object motion. (See Figure 1(b).)

Figure 1: The push range for (a) a compliant motion,
and (b) a non-compliant motion.

Friction. The exact size of the push range for com-
pliant motions depends on the friction characteristics
of the two disks and the obstacles. Nieuwenhuisen [9]
describes how to compute the push range, given the
friction coefficients between the disks and between
the object and obstacles. Friction also affects how
pushing works for non-compliant motions. Agarwal
et al. [1] studied the motion of the object resulting
from pushing in a straight line under simple friction
assumptions.

We abstract away from compliance and friction by
assuming that we can compute the push range for any
position of the object along its path. We assume (as
do Nieuwenhuisen and Agarwal et al.) that pushing
is quasi-static [13], i.e. when pushing stops, the object
also stops instantly. (This will never be the case in
reality, but it can be closely approximated by pushing
slowly, or having very high friction between the disks
and the floor.)

Assumptions about the input path. We assume the
given path 7 : [0,1] — R? for the object does not
take it through any of the obstacles. Furthermore, we
assume that 7 is made up of k constant-complexity
curves Tq,...,Tk. We further assume that the path
sections are “well-behaved” (in a technical sense ex-
plained in Gerrits’s MSc thesis [4]). The line segments
and circular arcs used as path sections by Nieuwen-
huisen are all well-behaved.

3 Pushing while maintaining contact

A general-purpose technique for path-planning is to
translate the problem from the work space into the
configuration space. The work space is the environ-
ment in which the robot has to find a path, and a
configuration is one specific placement of the robot in
this space. Each point in the configuration space cor-
responds to a configuration in the work space. Some
configurations are invalid because the robot would in-
tersect an obstacle and these form the forbidden (con-
figuration) space. The remainder is the free (configu-
ration) space, and a path through it translates back
to a solution to the original path-planning problem in
the work space.

To apply this technique to our problem, we first
discuss what our configuration space looks like, then
how to compute it and how to find a path through it.

Shape of the configuration space. In our case, a
configuration is a placement of both the pusher and
the object in the work space. Since the object is
restricted to the path 7, and we assume that the
pusher and object can maintain contact at all times
(for now; we will lift this restriction in Section 4),
the configuration space is two-dimensional. The point
(5,0) € [0,1] x 8! in the configuration space will rep-
resent the configuration with the object’s center at
7(s) and with 6 being the pushing angle: the angle
that the line from the pusher’s center to the object’s
center makes with the positive xz-axis. (Note that the
configuration space is cylindrical, but for clarity we
will depict it “flattened” as a rectangle.)

We assume that path 7 does not take the object
through any obstacles, so a configuration can be in-
valid for only two reasons: either the pusher intersects
an obstacle, or the pusher is outside of the push range.

50

Computing Push Plans for Disk-Shaped Robots

We therefore consider the forbidden space to be the
union of two kinds of shapes. A configuration-space
obstacle C, consists of the configurations where the
pusher intersects obstacle 7. A forbidden push range
FPR; consists of the configurations where the object
is on the interior of path section 7; and the pusher is
outside the push range. By C,; we’ll mean the restric-
tion of C, to configurations with the object on path
section 7;. The forbidden space is then the union of
these k(n 4 1) shapes (n obstacles and 1 forbidden
push range per path section). An example is shown
in Figure 2.

Figure 2: An example work space and its configura-
tion space. The s-axis is horizontal, the #-axis is verti-
cal. Configuration-space obstacles are drawn dashed
in light gray, the forbidden push range is drawn in
dark gray.

Theorem 1 The configuration space has complexity
O(kn), i.e. the boundary of the forbidden space con-
sists of O(kn) vertices and constant-complexity curves
between them.

Proof. Since a path section 7; has constant complex-
ity, so do FPR; and C,; for all v € I We will
prove that |J,cpCy,; has complexity O(n). It then
follows that FPR; U Uvef‘ C,,i, the forbidden space
for one path section, also has complexity O(n), yield-
ing O(kn) in total.

The boundary of C, corresponds to configurations
where the pusher is compliant with . Such pusher
positions all lie at distance r, from v and thus form
a “capsule.” A point of intersection of C,, ; and C,, ;
corresponds to a configuration where the pusher is
compliant with both v; and 72, and that pusher posi-
tion must thus be the intersection of the correspond-
ing capsules. These capsules form a collection of pseu-
dodisks [3, Chapter 13], and therefore have a union
complexity of O(n). Thus there can only be O(n)
positions where the pusher would be compliant with
more than one obstacle. Each of these pusher posi-
tions could show up in the configuration space more
than once, since path 7; could take the object past
this point multiple times. However, this cannot hap-
pen more than O(1) times, since 7; is well-behaved.
Thus U, Cy,; has complexity O(n). O

Computing the configuration space. To compute
the configuration space in a form that allows us to
easily compute a push plan we perform the following
steps:

1. Compute C,; for all y € I', and all 7 € 7.

2. Compute FPR; for all 7; € 7.

3. Take the union of these shapes to get the forbid-
den space.

4. Divide the free space into cells by a vertical de-
composition.

5. Create the cell graph by directing an edge from
cell ¢ to ¢y iff ¢1’s right boundary touches co’s
left boundary.

The running time of this approach is expressed by the
following theorem:

Theorem 2 The configuration space can be com-
puted in O(knlog®n) time worst-case, or O(knlogn)
expected time, both using O(kn) space.

Computing a shortest contact-preserving push plan.
Not every path through the free space actually yields
a push plan. If a path through the configuration space
is not s-monotone then the pusher would have to pull
the object on occasion. To prevent this we remove
from the cell graph all cells that are not reachable
from the starting configuration by a valid contact-
preserving push plan. It’s then fairly simple to find an
arbitrary s-monotone path in linear time, resulting in
a contact-preserving push plan in the time and space
bounds of Theorem 2.

It is tempting to instead compute a FEuclidean
shortest path through the reachable cells. The
cells themselves are s-monotone, so a shortest path
through the remaining cells must yield a push plan.
Unfortunately, a shortest path in configuration space
does not necessarily minimize the pusher’s movement
in the work space. We can circumvent this problem by
performing our computations in the work space. Each
cell of the free space decomposition corresponds to a
contiguous subset of the valid configurations. The
pusher positions of these configurations also form a
contiguous region in the work space. We could call
this region the corresponding work-space cell. All
work-space cells together form the region that P may
move in to accomplish O’s desired motion. Comput-
ing a shortest path [14] through this region then yields
a shortest contact-preserving push plan.

Theorem 3 Given the configuration space a short-
est contact-preserving push plan can be computed in
O(k*n?log(kn)) time and O(k?n?) space.

51

EuroCG’09 - Brussels, Belgium

4 Pushing and releasing

Until now we’'ve assumed the pusher can maintain
contact with the object at all times. However, the sit-
uation that was depicted in Figure 2 does not admit
such contact-preserving push plans. (In fact, we've
proven [4] that this is the case for any object path
with the same start and end point.) It does admit an
unrestricted push plan, as can be seen in Figure 3.

+7 E

o

r 1

Figure 3: An unrestricted push plan for the example
of Figure 2, doing one release at position r.

Canonical releasing positions. Whenever the push
range is split into multiple contiguous ranges by ob-
stacles, it may make sense for P to let go of O and
try to reach one of these other positions. In the con-
figuration space this situation corresponds to a ver-
tical line intersecting multiple cells. In general there
are infinitely many such potential releasing positions,
thus it’s infeasible to try them all. Instead we consider
only vertical lines that go through a vertex of a cell or
configuration-space obstacle. We call the resulting set
of O(kn) positions the canonical releasing positions.
We’ve proved that if an unrestricted push plan exists,
then there is also an unrestricted push plan where P
only releases O at canonical releasing positions [4].

Computing an unrestricted push plan. Restricting
ourselves to canonical releasing positions, we cannot
guarantee a shortest push plan anymore. Thus we
can abandon the work-space-cell approach and in-
stead proceed as follows:

1. Compute a road map [3, Chapter 13] S for P
among the obstacles.

2. At each canonical releasing point r, determine
the set of cells intersected by the vertical line
through r. Add O as an extra obstacle in S to
get &', and determine for each intersected cell in
which component of &’ its pusher positions lie.
Add edges in the cell graph between cells sharing
a component of §’.

3. Compute a path through this extended cell
graph.

4. Convert the path into a push plan. For edges of
the original cell graph this is straightforward, for
the extra edges use &’ to find a path for P.

The running time of this approach is expressed by the
following theorem:

Theorem 4 Given the configuration space an unre-
stricted push plan can be computed in O(knlog(kn)-+
kn?logn) time and O(kn?) space.

References

[1] P. Agarwal, J. Latombe, R. Motwani, and P. Ragha-
van. Nonholonomic path planning for pushing a disk
among obstacles. In Proc. IEEFE Int. Conf. Robotics
& Automation, volume 4, pages 3124-3129, 1997.

[2] H. Arai and O. Khatib. Experiments with dynamic
skills. In Proc. Japan-USA Symp. Flexible Automa-
tion, pages 81-84, 1994.

[3] M. de Berg, M. van Kreveld, M. Overmars, and
O. Cheong. Computational Geometry: Algorithms
and Applications. Springer-Verlag, 3rd edition, 2008.

[4] D. Gerrits. Designing push plans for disk-shaped
robots. Master’s thesis, Technische Universiteit Eind-
hoven, The Netherlands, 2008.

[5] K. Goldberg. Orienting polygonal parts without sen-
sors. Algorithmica, 10(2-4):210-225, 1993.

[6] S. LaValle and J. Kuffner. Rapidly-exploring random
trees. In B. Donald, K. Lynch, and D. Rus, editors,
Algorithmic and Computational Robotics: New Di-
rections, pages 293-308, 2001.

[7] M. Mason. Mechanics of Robotic Manipulation. In-
telligent Robots & Autonomous Agents. MIT Press,
2001.

[8] M. Mason and K. Lynch. Dynamic manipulation.
In Proc. IEEE/RSJ Int. Conf. Intelligent Robots &
Systems, pages 152—-159, 1993.

[9] D. Nieuwenhuisen. Path Planning in Changeable En-
vironments. PhD thesis, Universiteit Utrecht, The
Netherlands, 2007.

[10] D. Nieuwenhuisen, A. van der Stappen, and M. Over-
mars. Path planning for pushing a disk using com-
pliance. In Proc. IEEE/RSJ Int. Conf. Intelligent
Robots & Systems, pages 4061-4067, 2005.

[11] D. Nieuwenhuisen, A. van der Stappen, and M. Over-
mars. Pushing using compliance. In Proc. IEEE
Int. Conf. Robotics & Automation, pages 2010-2016,
2006.

[12] D. Nieuwenhuisen, A. van der Stappen, and M. Over-
mars. Pushing a disk using compliance. IEEFE Trans-
actions on Robotics, 23(3):431-442, 2007.

[13] M. Peshkin and A. Sanderson. Minimization of en-
ergy in quasi-static manipulation. IEEE Transactions
on Robotics & Automation, 5(1):53-60, 1989.

[14] M. Pocchiola and G. Vegter. Computing the visibility
graph via pseudo-triangulations. In Proc. 12th ACM
Symp. Comput. Geom., pages 248257, 1995.

52

Complexity of pleats folding

Complexity of pleat folding

Tsuyoshi Ito* Masashi Kiyomi

Abstract

We introduce a new origami problem about pleat fold-
ings. For a given assignment of n creases of mountains
and valleys, we make a strip of paper well-creased ac-
cording to the assignment at regular intervals. We use
simple folding as a basic operation. More precisely,
we assume that (1) paper has 0 thickness and some
layers beneath a crease can be folded simultaneously,
(2) each folded state is flat, and (3) the paper is rigid
except at the n given creases. We also assume that
each crease remembers its last folded state made at
the crease. We aim to find efficient ways of folding a
given mountain-valley assignment in this model. We
call this problem unit folding problem for general pat-
terns, and pleat folding problem when the mountain-
valley assignment is “MV MV ---.” The complexity
is measured by the number of foldings and the cost
of unfoldings is ignored. Trivially, we have an upper
bound n and a lower bound log(n + 1). We give some
nontrivial upper bounds: (a) any mountain-valley as-
signment can be made by | % | + [log(n + 1)] foldings,
and (b) a pleat folding can be made by O(n¢) fold-
ings for any € > 0. We also give a nontrivial lower
bound: (c) almost all mountain-valley assignments

foldings. The results (b) and (c)

imply that a pleat folding is easy in the unit folding
problem.

require €2 (@)

1 Introduction

Origami has recently attracted much attention as
mathematics and as theoretical computer science [3].
In the computational origami, the best studied prob-
lem is the characterization of flat foldable crease pat-
terns. When the paper and crease pattern are or-
thogonal, the problem is called the map folding prob-
lem, which has been well studied by Arkin et al. [2].
Roughly speaking, (1) the problem in 1D can be
solved in linear time; it can be determined in O(n)
time whether or not a given strip of paper with n
creases is flat foldable, and (2) the problem in 2D is
N P-complete; to determine whether or not a given

*School of Computer Science,
tsuyoshi@cs.mcgill.ca

tSchool of Information
{mkiyomi,uehara}@jaist.ac.jp

fGraduate School of Information Science and Technology,
The University of Tokyo, imahori@mist.i.u-tokyo.ac.jp

McGill University,

Science, JAIST,

Shinji Imahorit Ryuhei Ueharal

zig-zag form paper with n creases is flat foldable is
N P-complete (see [2] for the details).

We deal with a simpler problem. The input of our
problem is a strip of paper of length n + 1 with n
creases placed at regular intervals on the paper. That
is, we assume that the paper corresponds to an inter-
val [0..n+1], n creases are placed at each integer point
1 with 1 <14 < n, and each integer point is assigned to
M (mountain) or V' (valley) which is the target folded
state. We call it MV assignment for short. We aim
to fold the paper and make it “well-creased” accord-
ing to the assignment. Precisely, each integer point
memorizes its last folded state (M or V) made at the
point, and we have to make the creases’ folded states
fit the given assignment.

A typical example is pleat folding that is one of ba-
sic tools for origami design (Figure 1; the angel is
made from just one square paper without any cut-
ting). The MV assignment for the pleat folding is in
the form “MV MV ---.” From the industrial point of
view, pleat folding has many applications including
clothes, curtains, etc.

We employ simple folding defined in [2] (see also [3,
Section 14.1]). More precisely, our origami is as fol-
lows; the paper has 0 thickness, some layers beneath a
crease can be folded simultaneously, each folded state
is flat, and the paper is rigid except at given n creases.
Clearly, this folding problem has a trivial solution (or
upper bound of the number of foldings); we can fold
any MV assignment by just folding n creases inde-
pendently. On the other hand, we have a trivial lower
bound of the number of foldings; we have to fold at
least [logy(n 4 1)] times to make n creases (by folding
repeatedly at the center).

For a given string s of length n in {M, V'}", the unit
folding problem is to obtain the well-creased paper
following s. We call it pleat folding problem if the
MYV assignment is “MV MV ---.” The complexity is
measured by the number of foldings, and the number
of unfoldings is ignored. We first show the following
nontrivial upper bound of the number of foldings to
solve any unit folding problem:

Theorem 1 The unit folding problem of n creases
can be solved by | 4n| + [log(n + 1)] foldings for any
MV assignment’.

Hn this paper, we assume the base of logarithm is two unless
specified otherwise.

53

EuroCG’09 - Brussels, Belgium

TANTEIDAHN

N E

za635n

[20-27 57 csess]
FORAF VIS T
EfEE~OGH

o
<A ppiscation wn u Wedbeal irplarr Duvice

Husibseyaan St

e -
33-:-?‘?9":
R TU=-FTY

=l

SEULKRE wwas

Figure 1: An “angel” designed and folded by Takashi
Hojyo on the cover of [1]. (http://www.origami.gr.
jp/Magazine/Index/103-108.html)

One may think that the pleat folding problem is the
most difficult in the unit folding problems. However,
this is not the case. We show an efficient way to obtain
the pleat foldings.

Theorem 2 For any positive real number € > 0, the
pleat folding problem of n creases can be solved by
O(n®) foldings for sufficiently large n.

On the other hand, we can show a lower bound of the
general unit folding problem.

Theorem 3 For the unit folding problem, almost

all MV assignments with n creases require 2 (%)

foldings.

Theorems 2 and 3 imply that the pleat folding prob-
lem is not the most difficult unit folding problem.

In origami, “unfolding” is much easier than “fold-
ing.” Hence we ignore the cost of unfoldings. How-
ever, even if we count the number of unfoldings in
addition to foldings, all the results hold with small
changes within constant factors.

2 Models of foldings and unfoldings

The input to a unit folding problem consists of a string
of length n over an alphabet {M,V}. The ith letter
(M or V) corresponds to the ith assignment at the

1th crease which is placed at the integer point ¢ in the
interval [0..n + 1]. In general, we have several ways
when we fold the paper at the point i. The following
simple fold models are proposed by Arkin et al. [2]
(see also [3, p. 225]):

One-layer simple fold model: We always fold the
top layer of paper.

All-layers simple fold model: We simultaneously
fold all layers of paper under the crease point.

Some-layers simple fold model: We fold some
layers beneath the crease point.

We measure the complexity of a folding algorithm by
the number of simple foldings made by it, and ig-
nore the cost of unfoldings. In the one-layer simple
fold model, we always fold exactly one crease. Thus,
we cannot improve the trivial upper bound n for the
unit folding problem. Therefore, hereafter, we only
consider the all-layers simple folding and some-layers
simple folding. We additionally introduce the follow-
ing three unfolding models, which define the allowable
unfolding operations.

All-unfold model: Once we decide to unfold, the
paper is unfolded completely.

Reverse-unfold model: We can rewind any num-
ber of the last foldings as far as we can. This is
useful to consider some upper and lower bounds.

General-unfold model: For a folded state s, we
can obtain another folded state ¢ by the one gen-
eral unfolding operation if s can be obtained from
t by consecutive some-layers simple foldings.

Of course, the general-unfold model is the most natu-
ral and the strongest model. This paper mainly stud-
ies the first two unfold models, which are natural re-
strictions of the general-unfold model.

A folding algorithm will be called end-free if it can
be applied on the paper with n creases even if we
extend both endpoints of the paper to infinity.

3 Upper bounds

We first prove Theorem 1, which is the basic tool of
this paper.

Proof. (of Theorem 1) To simplify the proof, we first
suppose that n = 2% — 1. The strategy is simple; (1)
fold the paper in half k times, (2) unfold all, and (3)
fix each crease if it is not folded correctly.

On step (1), the folding direction is determined by
the majority at the point. That is, we see the point i,
which is the center of the current paper, check the all
directions of the desired creases on the point i, and
take majority. (We note that half creases are turned

54

Complexity of pleats folding

over from the original direction, but fixing this is easy;
the creases are alternately turned over and that can
be checked from 1 to n.) Hence step (1) makes at
least half of creases to be folded correctly. Thus in
step (3), the number of foldings is bounded above by
L%J (the rounding comes from the first folding that
always succeeds). Therefore we have the theorem.
When n # 2% — 1, we just add an imaginary paper
to make the length of the paper n’ = 2¥ — 1 with
mingn < 2F — 1, and apply the algorithm on this

paper of length n'. O

We note that (a) the algorithm in the proof is end-
free, (b) it works in the all-layers simple fold model
and hence some-layers simple fold model, and (c) it
works in all the unfold models since all unfoldings in
steps (2) and (3) can be done by all-unfoldings.

We call a unit folding problem mountain folding
problem if the MV assignment is “MMM ---.” We
next show a simple proposition which gives us a strong
intuition to consider the pleat folding.

Proposition 4 Let A’ be any algorithm for the
mountain folding problem in any model, and fo(n)
be the number of foldings by A’ to make n mountain
foldings. Then we can solve the pleat folding problem
in the model with fo(|n/2]) + fo([n/2]) foldings.

Proof. For the MV assignment “MVMV --.” we
first fold all fo([n/2]) mountains by A’. Next we
reverse the paper and fold all fo(|n/2]) valleys by A’
again. 0

Now we turn to the upper bounds of the number of
foldings for solving the pleat folding problem. First,
we focus on the all-layers simple fold and reverse-
unfold (or all-unfold) model. In this weak model, we
show a weaker upper bound. By Proposition 4, we
can focus on the mountain folding problem instead of
the pleat folding problem. This will help us to have
an intuition.

Lemma 5 The mountain folding problem of n
creases can be solved by O(n'°8?) ~ O(n%%) fold-
ings in the all-layers simple fold and all-unfold model,
where ¢ = 1+2—‘/5

Proof. To simplify the proof, we suppose that n =
2%, The basic strategy is similar to the algorithm in
the proof of Theorem 1. In step (0), we fold the paper
at point 1 and make the length of the paper 2¥. The
next two steps (1) and (2) are the same; we fold the
paper in half k£ times and unfold completely. Now we
focus on the MV pattern made by the two steps (1)
and (2). First, we fold the paper in half, and obtain
the correct crease at the center point. Second, we
fold the paper in half, and obtain one correct crease,
and one incorrect crease. Third, we fold the paper in

&) | | | | | | @) %

M \ M \ M \
Atk A— () T ==

M v M v M \ M

Figure 2: Mountain folding by zig-zag method

half, and obtain two correct creases, and two incorrect
creases. In ith folding with 4 > 1, we obtain 2¢—2
correct creases and 272 incorrect creases that appear
on the paper alternately. The 22 incorrect creases
are placed at regular intervals. Thus, we can use our
end-free algorithm recursively on these 2°~2 creases in
step (3). Let fi(n) be the number of the foldings of
this recursive algorithm. It is easy to see that f1(1) =
1, f1(2) =2, f1(3) = 3, and f1(4) = 4. By the above
observation, we have

F1(2%) = 1+k+ A2+ A2+ -+ f1(2)+f1(1).

By the fact that f(2%)— f1(2F71) equals f;(272)+1,
we have the following relationship.

(A +1) = (L") + D)+ (L2 +1).

Thus (f1(2%) + 1) gives the Fibonacci numbers for
k. (We define the Fibonacci numbers F; by Fy = 0,
Fi=1land F; = F;_1+F;_5 fori > 1. It is well known
that F; = % = O(¢"), where ¢ = %g)
Using initial conditions f1(2°) = 1, f1(2}) = 2, and
f1(22) = 4, we have f1(2F)+1 = F}.43. Hence we have
filn) = f1(2F) = O(¢%) = O (¢'#") = O (n'8?),
which completes the proof. O

Next, we show that the number of foldings can be
reduced by using the stronger model.

Lemma 6 For any fixed € > 0, the mountain folding
problem of n creases can be solved by O(n¢) foldings
for sufficiently large n in the some-layers simple fold
and reverse-unfold models.

Proof. In the algorithm of the proof of Lemma 5,
“folding in half” is the basic operation. We change
this to “folding in zig-zag form of p segments” (Fig-
ure 2). Roughly speaking, the algorithm first folds
the paper into zig-zag form of p segments of the same
length by making p — 1 alternating foldings at regu-
lar intervals (in Figure 2(1) and (2) for p = 7). It
recursively calls itself with the folded paper of length
n/p. After the recursive call, it unfolds at the folded
p — 1 crease points. Then around p/2 segments have
been mountain folded, and p/2 segments have been
valley folded (in Figure 2(3), thick lines and dashed
lines indicate the segments of the mountain and val-
ley foldings, respectively). The algorithm then piles
up the valley segments exactly by folding at the cen-
ter points of the mountain segments (see Figure 2(4)).

55

EuroCG’09 - Brussels, Belgium

The algorithm again calls itself recursively with the
local area of length n/p that consists of all and only
the valley segments. By the recursive call, half of the
valley segments are corrected, and still half of them
are not corrected. (The creases of the center points
of the mountain segments are fixed here.) Hence the
algorithm again piles up the valley segments and re-
cursively calls itself again. The algorithm repeats this
process and finally obtain the desired mountain folded
state.

The algorithm runs in the some-layers simple fold
and reverse-unfold model, and the correctness of the
algorithm is easy. Hence we analyze its complexity.
To simplify the proof, we suppose that n = p* — 1
and p = 29 — 1. (We let ¢ be an arbitrary positive
integer, and hence p is odd and n is even.) Let fa(n)
be the number of foldings made by the algorithm. By
a careful analysis, we have f2(0) =0, f2(z) < z and

n+1 il

fo(n)=q f <

£=2
By a simple calculation, we obtain

fa(n) < q-f<nTTl—1>+5p;11

< (Bp+11)¢" 2 +p—1=0(p-¢"?).

Since ¢ = logy(p + 1) and k = log,(n + 1), we have

log lo
k—2 g log p

p-q"“ ~p-n lesr . Hence, letting p be a sufficiently
large constant, we have loigolﬂ <eand p-¢2 =
3P

O(n®), which completes the proof. O

By Proposition 4 and Lemma 6, we have Theorem
2.

4 Lower bounds

We have to clarify the unfold model to state a lower
bound. In fact, Theorem 3 holds for both of the all-
unfold model and the reverse-unfold model, but we
have no results about general-unfold model.

Lemma 7 All but o(2") MV assignments of n
creases require §2 (%) foldings in all of the three

folding models and both of the all-unfold model and
the reverse-unfold model.

Proof. The lemma is obtained by a simple counting
argument. Since the some-layers simple fold model
is at least as powerful as the one-layer and the all-
layers simple fold models, we only consider the some-
layers simple fold model. Similarly, we only discuss
the reverse-unfold model. Suppose that we make
at most k foldings. At each folding, there are two
choices for the direction of folding (mountain or val-
ley). There are at most n choices for the set of po-
sitions of the folding by considering the bottom-most

- 1>+p—2(q—2)+3(p; D 3y 251_1.

layer of a valley folding or the top-most layer of a
mountain folding. There are at most n+ 1 choices for
how many unfolding steps we rewind just after the
last folding. In total, the number of the possible MV
assignments made by at most k foldings is bounded by
SF o@n(n+1)) < 2n(n+1)+1)% < (2(n+1)2)k. If
welet k = | qoatgrry s then (2(n+1)%)* < /2 =
0(2™). Therefore all but o(2") MV assignments re-

quire at least Lmj =Q (&) foldings in
the reverse-unfold model (hence also in the all-unfold

model). O

Lemma 7 implies Theorem 3. Lemma 7 also implies
that if we choose an MV assignment of n creases uni-
formly at random, the expected number of foldings re-

quired to make it is Q (%) in the all-unfold model

and the reverse-unfold model.

5 Conclusion

There are several open problems.
By Theorem 3, a random MV assignment requires

0 () foldings with high probability. Finding a
n) foldings

logn

specific assignment which requires €2 (

will give some new insight on which assignments are
easy to fold and which are not. Is there any MV
assignment that requires 2(n) foldings?

Lemma 7 deals with general MV assignments.
When we focus on the pleat folding problem, is there a
nontrivial lower bound for this specific problem? Es-
pecially, can we make pleat foldings in poly-log fold-
ings?

From the practical point of view, developing better
algorithm for the pleat folding problem is interesting,
especially, in general-unfold model. Up to now, we
have no idea for dealing with general-unfold model.

Acknowledgments

The authors thank to Takashi Hojyo who gives a permis-
sion to use his “angel” for our presentation of this re-
search. The authors are grateful to Erik Demaine, Joseph
O’Rourke, and Ron Graham for their helpful comment
and suggestion at CCCG 2008.

References

[1] Origami Tanteidan, Number 107. Japan Origami Aca-
demic Society, 2008.

[2] E. Arkin, M. Bender, E. Demaine, M. Demaine,
J. Mitchell, S. Sethia, and S. Skiena. When Can You
Fold a Map? Computational Geometry: Theory and
Applications, 29(1):23-46, 2004.

[3] E. D. Demaine and J. O’Rourke. Geometric Fold-
ing Algorithms: Linkages, Origami, Polyhedra. Cam-
bridge University Press, 2007.

56

Modelling rigid origami with Quaternions

Modelling rigid origami with Quaternions

Weina Wu *

Abstract

This paper presents a new tool, namely the quater-
nion rotation sequence (QRS) method, for modeling
rigid origami. An origami pattern can be described
by a rotation vector model consisting of a group of
characteristic vectors. A sequential rotation of these
vectors leads to a system of the closure equations rep-
resented by quaternions. The solutions of the equa-
tions provide configuration information of a pattern.
The method has been successfully applied to several
types of single vertex and multi-vertex patterns. We
have shown that it can be used to effectively track
the entire rigid folding process of initially flat or non-
flat patterns, and thereby provide judgment of rigid-
foldability and flat-foldability of the pattern.

1 Introduction

Rigid origami is a restrictive type of origami where all
panels of a crease pattern are not allowed to stretch or
bend during folding. The creases are therefore com-
parable to rotational hinges of a mechanism. The
concept of rigid origami has great potentials in en-
gineering. A well-known example is the Mirua-ori,
which has been used for deployable solar panels and
for manufacturing folded cores for sandwiched com-
posites. It is known that essentially everything can
be folded by a continuous folding procedure [1], yet
the folding is not necessarily rigid. Only those geo-
metrically compatible patterns can be folded rigidly.

A number of mathematical methods have been de-
veloped to study rigid origami, including a method
based on spherical trigonometry and Kawasaki’s The-
orem, which examines whether a flat-foldable pattern
can be folded rigidly [2]; the method employing Gaus-
sian curvature theory originally proposed by Huffman
[3], which judges a pattern as rigid if Gaussian curva-
ture at any point of the pattern is zero; and the ma-
trix model method proposed by Belcastro and Hull [4],
where a certain configuration of a pattern is modelled
as a particular successive transformation procedure of
creases and panels, and a loop closure equation sys-
tem is thereby established as the necessary condition
for rigidity of the configuration. In spite of validity
of those methods, they still bear some limitations in
application. For instance, the first method is not ap-

*Department of Engineering Science, Oxford University,
UK, weina.wu@eng.ox.ac.uk, zhong.you@eng.ox.ac.uk

Zhong You *

plicable to non-flat-foldable patterns. The second is
suitable for rigidity judgment at a particular configu-
ration but inconvenient for configuration calculations.
The third one can deal with more situations, yet is
hardly employed on those non-flat-foldable 3D pat-
terns. In fact, the third method bears similarity to
the matrix method in loop mechanism analysis using
the Denavit and Hartenberg notation [5].

In this paper, a rotation vector model consisting of
a group of characteristic vectors is introduced. Then
the quaternion rotation sequence (QRS) method,
which represents the model via quaternions, is pro-
posed and applied to three different types of patterns
to verify its effectivity. It shows that the QRS method
can effectively track the entire rigid folding procedure
of an initially flat or non-flat pattern, as well as pro-
vide judgment of its rigid foldability and flat fold-
ability. Moreover, the QRS method is applicable to
not only the single-vertex pattern but also the multi-
vertex pattern.

2 The rotation vector model

Consider a typical single-vertex pattern SV1, which
is flat before folding as in Figure 1(a). In this paper,
use solid lines for mountain creases and dashed lines
for valley creases in the plot of pattern layout. Its
creases, or called edges, are enumerated from E; to
E4 anticlockwise, and panels from Py to P4. Denote
by «; ; the layout angle subtended by edge E; and
E;(i=1,2,3,4, j=2,3,4,1). For pattern SV1, it has
Qaq2 = 900, Q23 = 1350, Q34 = 90° and Q41 = 45°.
Figure 1(b) shows an arbitrary 3D configuration of the
pattern after certain extent of rigid folding, where its
characteristic vectors are established. They include
edge vectors €; along edges E; (i=1, 2, 3,4) and normal
vectors 7; perpendicular to panels P; (i=1,2,3,4). As
shown in Figure 2, these vectors are related in a ro-
tation sequence, which can be decomposed into eight
sequential steps, where alternately, an 7i; or €; de-
rived from the previous step acts as the rotation axis,
around which €; rotates to €;11, or ©;—1 to 7;. The
corresponding rotation angles are alternately «; ; or
v;. Denote by ~; the folding angle between normal
vectors of adjacent panels which intersect at edge E;,
and it follows the right-handed screw rule. Note that
the last two steps lead to the initial vectors €; and
71, respectively, indicating that these vectors form
a closed-loop rotation sequence. To get a more vis-

57

EuroCG’09 - Brussels, Belgium

Figure 1: Crease pattern SV1, (a) the initial flat state,
(b) its characteristic vectors at an assumed configu-
ration after rigid folding

ible mathematical description of the 3D configura-
tion, we use dihedral angles §; = m — ~; to replace
v;. For convenience, let us stipulate that dihedral an-
gles are independent of the rotational direction, and
all dihedral angles of a pattern are measured from
the same side throughout folding. Actually by only
observing from one side of the pattern, all creases
fall into two categories, i.e. mountain and valley.
Therefore if assuming a pattern is initially flat and
finally folded flat, the maximum attainable range of
0; around each type of creases is 0 < Oyqjiey < 180°
and 180° < Orrountain < 360°.

The rotation vector model associates the pattern
information, i.e. the layout angles, with the con-
figuration information, i.e. the folding or the dihe-
dral angles. It is essentially identical to a closed-loop
spherical linkage model [6]; thus its degree of freedom
(DOF) can be determined on the same rule as that
for the linkage.

DOF:3(m—j—1)+zjjfi (1)

=1

where m is the number of edge vectors, j the num-
ber of normal vectors, and f; the DOF of edge E;(i=
1,2,...) as a rotation axis. For example, for the pat-
tern SV1, with m = j = 4 and f; = 1 (i=1,2,3,4),
its freedom is 1.

3 The quaternion
method

rotation sequence (QRS)

Quaternions were originally proposed by William
Rowan Hamilton in 1843. The basic quaternion alge-
bra can be found in [7] and [8]. Compared with ordi-
nary algebra, the most special part is that quaternion
multiplication doesn’t obey the law of commutativity,
which actually facilitates its ability to represent arbi-
trary 3D rotations. The proposed quaternion rotation
sequence (QRS) method employs quaternions to rep-
resent the rotation vector model, and solves for the

z a8 ~
ﬁl? }’2!:: M % X “ & My
. | | 23 = bl
‘ . e\
x ¥ Q2 € 1 ~ & g, T
(® (b) (© (d)
& g M, & n, i !
o /3 & . ’1_.' 02?—/' lt\’ﬁ
é'4 . '\7@— ﬁ4 éf ef / 4
O] ® () Q)

Figure 2: The closed-loop rotation sequence of the
characteristic vectors decomposed into eight steps

unknown configuration angles through optimization.

Consider pattern SV1 at a configuration shown in
Figure 1(b). In a 3D Cartesian coordinate frame
shown in Figure 2(a), we can write &; = {1,0,0} and
7iy = {0,0, 1}, which are the initial vectors to start the
rotation sequence. The rotation around 7 in Figure
2(a) can be represented by a quaternion rotation op-
erator

G = {cos(a1,2/2), sin(aq,2/2)71} (2)

The resultant vector €3 is the vector part of the
quaternion és,

o =q"é1(q™) (3)

When €5 is known, the rotation around it in Figure
2(b) can be expressed by

G = {cos((m — 0)/2),

The resultant vector 715 is the vector part of the
quaternion ns,

sin(r — 0/2)&) (4)

iz = % 7y (¢%) (5)

The following rotations and resultant vectors at sub-
sequent steps in Figure 2 can be represented likewise,
until two initial vectors €1 and 7i; are reconstructed,
which are denoted by é€; and 7i¢, respectively. The fol-
lowing loop closure equation system can therefore be

obtained. . .
ng = M
{ & = & (©)
where a total of siz simultaneous equations are in-
cluded, all expressed in terms of «;; and 6;. Nor-
mally «; ; are known for a given pattern. Considering
the DOF of the system according to Equation 1, the
same number of dihedral angles is required as the in-
put; whereas the remaining unknown dihedral angles
can be solved.
Here a constrained nonlinear optimization algo-
rithm, the sequential quadratic programming (SQP)

58

Modelling rigid origami with Quaternions

method, is employed as the solver, where the opti-
mization goal is to minimize the difference between
two sides of each equation, and the range constraint
imposed on each variable comes from whether it is
around a mountain or a valley crease. Despite severe
nonlinearity of the equation, it has shown that for
most patterns the proper initial estimates of its un-
knowns can be easily picked up from a preliminary op-
timization which just uses arbitrary initial estimates.
Actually piecewise initial estimates can be defined for
different input ranges, which further eases giving the
initial estimations. Given the input a sequence of val-
ues, changing configurations during a folding proce-
dure can be described. The verification rule for those
optimization results is that the successive values of
each output angle must not be fluctuating. Fluctuat-
ing angle values physically correspond to a discontin-
uous folding procedure, thus incorrect.

Case 1: for an initially flat (2D) pattern

For pattern SV1 with a single DOF, assume the input
as 7 decreasing monotonically from 180° to 0 at the
step of 1° during the entire folding. The final opti-
mization results of the other three dihedral angles 65,
03 and @4 are are shown in Figure 3(a). These smooth
angle values describe all configurations reached by the
pattern throughout folding in the given input range,
which indicate that such rigid folding procedure is
continuous and thus physically meaningful. Therefore
it can be concluded that the pattern is rigid foldable
for 0 < #; < 180° and also flat foldable.

360° 360°
270° 9, 270°
180° 6, 180°
90° A 90°
0 0 ‘ ‘
0 45 90° 135 180° 6 0 30° 60° 90° 4
(@ (b)

Figure 3: Output angles for (a) pattern SV1 and (b)
pattern SV2 throughout folding via the QRS method

Case 2: for an initially non-flat (3D) pattern

The 3D pattern SV2 in Figure 4(a) has ay2 = 90°,
o3 = 45°, az g = 45° and ay; = 90°. Its dihedral
angles measured from the inward side of the pattern
are 61 = 0y = 6, = 90° and A3 = 180°. If taking the
given configuration as the initial and assuming SV2 is
finally folded flat, to track its folding procedure, the
required input for the this single DOF system can be
selected as 6 (0 < 0; < 90°) changing at the step of
1°. Correspondingly, the maximum attainable ranges
of the other three dihedral angles are 0 < 6y < 90°,

Figure 4: Pattern SV2, (a) the initial 3D state, (b)
its characteristic vectors at an assumed configuration
after rigid folding

180° < A3 < 360° and 0 < A, < 90°. Assume an arbi-
trary configuration of the pattern during rigid folding
as in Figure 4(b) to establish the loop closure equation
system. The final verified optimization results of the
output angles 61, 62 and 03 are shown in Figure 3(b).
They again confirm the rigid foldability of the pattern
in the given input range by showing that rigid folding
of the pattern is a continuous process. 6 with values
greater than 90° has also been tried, yet the derived
results are found all fluctuating and thus physically
unrealistic. Therefore SV2 cannot be folded rigidly
when 67 > 90°.

Case 3: for a multi-vertex pattern

The QRS method is applicable to the multi-vertex
pattern via a decomposition strategy. At first select
a loop of creases connecting multiple vertices, around
each of which the multi-vertex system is decomposed
into multiple single-vertex subsystems. Then these
subsystems are analyzed sequentially along the loop
in one direction, each as an independent single-vertex
system with the input transferred from its previous
subsystem, i.e. as their common dihedral angle. Af-
ter all subsystems along the loop are analyzed, check
whether the dihedral angle common in the first and
the last subsystems has the same values. If so, global
compatibility of the entire system can be confirmed.
With this strategy, the real complexity of the multi-
vertex system is actually averted. For example, if
each subsystem has the single DOF, the whole sys-
tem needs only one input as well.

Consider two multi-vertex crease patterns MV1 and
MV2 in Figure 5, where all edges and vertices are enu-
merated and a crease loop through four vertices is en-
circled for each pattern. For simplicity, here take the
crease layout around all vertices in MV1 or MV2 as
the same. One set of layout angles for each pattern
are marked in Figure 5. Assume that the input 6y for
both patterns changes in the range of 0 < #; < 180°
at the step of 1°. Along the crease loop anticlockwise,
all single-vertex subsystems at Vi, Va, V3 and V4 are
analyzed sequentially, and the results from all subsys-

59

EuroCG’09 - Brussels, Belgium

Figure 5: Multi-vertex patterns (a) MV1 and (b)
MV2. A loop enclosing multiple vertices is drawn on
each pattern in the bold line.

tems are summarized. Some typical results from pat-
tern MV1 are displayed in Table 1, and from pattern
MV2 in Table 2. As shown in Table 1, throughout
folding the values of 65 are the same in the first and
the last subsystems around vertex V; and V4, respec-
tively; while in Table 2, the values of 84 in the first
and the last subsystems are quite different. Since the
the crease loop must be closed, it can be concluded
that pattern MV1 is globally compatible, able to be
folded rigidly as a whole for 0 < 8; < 180° and be
completely folded flat given the right crease lengths;
while pattern MV2 cannot be folded rigidly at all.

Table 1: Dihedral angles of pattern MV1 at some con-
figurations during folding (°)

02 23.9 | 46.1 | 141.7 | 171.6 | 175.8
Vi 03 10.0 20.0 100.0 160.0 170.0
04 336.1 | 313.9 | 218.3 188.4 184.2
01 10.0 20.0 100.0 | 160.0 170.0
01 10.0 20.0 100.0 | 160.0 170.0
Vs 05 336.1 | 313.9 | 218.3 188.4 184.2
06 10.0 20.0 100.0 160.0 170.0
07 23.9 46.1 141.7 171.6 175.8
07 23.9 46.1 141.7 171.6 175.8
Vs 0g 54.0 91.6 163.6 176.5 178.3
09 23.9 46.1 141.7 171.6 175.8
010 | 306.0 | 268.4 | 196.4 183.5 181.7
010 | 306.0 | 268.4 | 196.4 183.5 181.7
Vs 011 23.9 46.1 141.7 171.6 175.8
012 54.0 91.6 163.6 176.5 178.3
02 23.9 | 46.1 | 141.7 | 171.6 | 175.8

4 Summary

So far we have presented a QRS method for model-
ing rigid origami. The pattern and configuration in-
formation of an origami pattern are described using
a group of characteristic vectors. Through a closed-
loop rotation sequence of the identified characteristic
vectors, represented by quaternions, we are able to
establish a system of closure equations. Full angular
descriptions of attainable configurations of a pattern

Table 2: Dihedral angles of pattern MV2 at some con-
figurations during folding (°)

04 7.0 44.0 101.0 151.7 172.9
Vi 012 350.0 300.0 240.0 200.0 185.0
05 7.0 44.0 101.0 151.7 172.9
01 10.0 60.0 120.0 160.0 175.0
01 10.0 60.0 120.0 160.0 175.0
06 345.8 281.0 224.0 194.1 183.5

Vz 07 10.0 60.0 120.0 160.0 175.0
02 14.2 79.0 136.0 165.9 176.5
02 14.2 79.0 136.0 165.9 176.5
Vs 03 339.8 | 260.7 211.6 189.9 182.5
09 14.2 79.0 136.0 165.9 176.5
03 20.2 99.3 148.4 170.1 177.5
03 20.2 99.3 148.4 170.1 177.5
Va4 010 | 331.4 | 241.5 202.4 186.9 181.7

011 20.2 99.3 148.4 170.1 177.5
04 28.6 | 118.5 | 157.6 | 173.1 | 178.3

during folding can be derived by solving these equa-
tions. Using single vertex and multi-vertex origami
patterns, we demonstrate that the QRS method can
effectively track the entire rigid folding process of ini-
tially flat or non-flat patterns, and thereby provide
judgment for rigid-foldability and flat-foldability. As
to the multi-vertex patterns, we also attempted using
dual quaternions and found that it is also effective.
However, this is not to be presented here because of
the page limit. The presented method can be used in
engineering applications such as designing space panel
structures and some packaging where rigid folding is
required or preferable.

References

[1] Demaine, E.D., Devadoss, S. L., Mitchell, J. S. B,
and O’Rourke, J. Continuous foldability of polygonal
paper. Proceeding of 16th Canadian Conference on
Computational Geometry, Montreal, Quebec, 2004:
64-67.

[2] Hull, T. Project origami. A K Peters, Ltd, Wellesley,
Massachusetts, 2006: Activity 22, 229-235.

[3] Huffman, D. Curvature and crease: a primer on pa-
per. IEEE Transactions on Computers, C-25, No. 10,
1976: 1010-1019.

[4] Belcastro, S., and Hull, T. C. Modeling the folding of
paper into three dimensions using affine transforma-
tions. Linear Algebra and its Applciations, Vol. 348,
2002: 273-282.

[5] Beggs, J S. Advanced Mechanism, Macmillan Com-
pany, New York, 1966.

[6] Waldron, K. J., and Kinzel, G. L. Kinematics, dy-
namics, and design of machinery. New York, Chich-
ester: Wiley, 1999: Chapter 2.

[7] Kuipers, J. B. Quaternions and Rotation Sequences:
A Primer With Applications to Orbits, Aerospace,
and Virtual Reality. Princetion University Press,
USA, 2002.

[8] http://www.euclideanspace.com/maths/algebra/.

60

Source Unfoldings of Convex Polyhedra with respect to Certain Closed Polygonal Curves

Source Unfoldings of Convex Polyhedra
with respect to Certain Closed Polygonal Curves

Jin-ichi Itoh*

Abstract

We extend the notion of a source unfolding of a con-
vex polyhedron P to be based on a closed polygonal
curve @ in a particular class rather than based on a
point. The class requires that Q) “lives on a cone” and
therefore has a simple development in the plane. The
class includes simple closed convex curves and curves
that are the intersection of P with a plane. Cutting a
particular subset of the cut locus of @ (in P) leads to
a non-overlapping unfolding of the polyhedron. This
gives a new general method to unfold the surface of
any convex polyhedron to a simple, planar polygon.

1 Introduction

Two general methods were known to unfold the sur-
face P of any convex polyhedron to a simple polygon
in the plane: the source unfolding and the star un-
folding [DOO07], both with respect to a point x € P.
In [IOV08] we defined a third general method, the
star unfolding with respect to a simple closed “quasi-
geodesic loop” @ on P. Here we extend the source un-
folding to a class of closed polygonal curves @) that in-
cludes quasigeodesic loops but is considerably wider.
Q@ divides P into two closed “halves,” P; and Ps.
(We sometimes use P to represent either half.) We
establish that the source unfolding w.r.t. @ for each
half P; unfolds without overlap, and that cutting a
subset of the cut locus of @ in one half, and some ad-
ditional cuts in the other half, leads to a single piece.
Because @ in the class exist (in abundance) for any
P, this leads to another general method to unfold any
convex polyhedron to a simple, planar polygon.

Cut Locus. The point source unfolding cuts the cut
locus of the point x: the closure of set of all those
points y to which there is more than one shortest path
on P from x. Our method also relies on the cut locus,
but now the cut locus Cp(Q) on the half-surface P
with respect to its boundary OP=@. As cut loci in
this paper will always be with respect to @, we will

*Dept. Math., Faculty Educ., Kumamoto Univ., Kumamoto
860-8555, Japan. j-itoh@kumamoto-u.ac.jp

TDept. Comput. Sci., Smith College, Northampton, MA
01063, USA. orourke@cs.smith.edu.

Inst. Math. ‘Simion Stoilow’ Romanian Acad., P.O. Box 1-
764, RO-014700 Bucharest, Romania. Costin.Vilcu@imar.ro.

Joseph O’Rourke!

Costin Vileut

simplify the notation to C'p. To obtain the unfolding
of P, we cut most edges of the cut loci, and some
additional cuts that will be explained shortly.

V1o

(d)

Figure 1: (a) Truncated cube and quasigeodesic Q =
(vo, v1,v7,v10). (b) View of Py and Cp,. (c) View of
P, and Cp,. (d) Unfolding to a simple polygon.

Convex Curves, Slice Curves, and Quasigeodesics.
Let p € @Q be a point on an oriented, simple closed
polygonal curve @ on P. Let L(p) be the total face
angle incident to the left side of p, and R(p) the angle
to the right side. Q is a convex curve if L(p) < 7 for
all points of Q. @ is a quasigeodesic if L(p) < =«
and R(p) < = for all p, ie., it is convex to both

61

EuroCG’09 - Brussels, Belgium

sides. A quasigeodesic loop has a single exceptional
point at which the angle conditions may not hold. We
have the inclusions: (convex) D (quasigeodesic loop)
D (quasigeodesic). @ is a slice curve if it is the in-
tersection of P with a plane. It was known that both
convex curves [0S89] and slice curves [O’R03] are sim-
ply developable: they “develop” on the plane without
self-intersections. We establish elsewhere [OV09] that
both convex and slice curves “live on a cone,” which
both explains why they are simply developable and
ensures that the source unfoldings we describe here
applies.

Example. Throughout we will use an example poly-
hedron P to illustrate concepts: a cube twice trun-
cated, with @ the particular closed quasigeodesic
shown in Fig. 1(a). The angles at the vertices

of @ = (vg,v1,v7,v19) within P; are, respectively,
(%7?, %7‘(‘,%77,%71’), and the angles at those vertices

within P, are, (%’/T,TF, %71’77'(). Because all of these
angles are <, () is convex to both sides and so a
quasigeodesic. For @ a simple closed quasigeodesic,
the cut loci Cp, are each a single tree with each edge
a (geodesic) segment. For more general @, edges of
the cut locus can also be parabolic arcs, and the cut

locus consists of a forest on one of the two sides.
2 Overview of Method

We first provide an overview of the method, illustrat-
ing the steps through the example in Fig. 1.

Step 1. We show that, for @ in the class identified,
a small neighborhood of @ within one of the halves
P lives on a cone P*, which then may be flattened to
a doubly-covered cone in the plane. Figures 2 and 3
show natural flattening choices for Pj" and Pj among
the many available. In these figures, both @) and the
faces of P; incident to @) are shown. Let Cp; be the
cut locus of Q) on P}, also shown in the figure.

V7

z
vy '\

V10 Vo V7 Yo

V1

Figure 2: Doubly-covered cone P;* and the cut locus
Cps. (a) Cone opened, showing front and back side-
by-side. (b) Both sides overlaid, creased through wvy.
Dashed edges are on the back. Angle at z is v = %7‘(.

Vio Vio - Vio /

v , V7
7 Vi Yo Vo V1

Figure 3: Doubly-covered cone P; and the cut locus
Cp;. (a) Cone opened, showing front and back side-
by-side. (b) Both sides overlaid, creased through v;.
Angle at z is v = %ﬂ'.

Step 2. Next we define a notion of peels and sub-
peels, both for P and for P*, for each half P. The
surface is partitioned into peels bounded by @ and
the cut locus, and each peel is partitioned into sub-
peels. We defer the technical definition to Section 5,
and for now rely on Fig. 4, which displays the peels
and subpeels of P;.

e o]

V7

Yo

Figure 4: Cut locus Cp, (red); peels between marked
points on @, either leaves of Cp, or projections of
leaves (green paths); and subpeels (yellow paths).

A key result (Lemma 2) establishes that the peels
of P are nested inside peels of P*.

Step 3. For each half P, cut Cp along its edges not
incident to). By our peel nesting lemma, this per-
mits embedding the cut version of P into cone P*.
Now we cut an edge of the flattened P*, and open it,
as illustrated in Fig. 6(a,b). This leads to our first
main result (Theorem 4): the curve source unfolding
of each half P unfolds without overlap.

Step 4. Knowing that each half unfolds without
overlap, we now join the two halves together. How
this is accomplished depends on the type of curve Q.
Here we only illustrate a method that applies to all
convex curves. For the convex side (say, P> in our

62

Source Unfoldings of Convex Polyhedra with respect to Certain Closed Polygonal Curves

example), we cut as described above: all edges of Cp,
not incident to @, plus a generator of the doubly-
covered cone to slit it open: v19z in our example. For
the nonconvex side (P, but in fact both sides are con-
vex in the example), we cut the entire cut locus Cp,,
except those edges incident to vertices of () that are
not vertices of P, and some additional cuts. For our
example, those additional cuts are empty, and we ob-
tain the unfolding shown in Fig. 1(d). For more gen-
eral convex @, for all vertices v of P in) that are not
incident to Cp,, we make one cut orthogonally from
v to Cp,. And finally we cut a corresponding genera-
tor of P;. These cuts partition P; into domains that
project orthogonally onto @, and so avoid overlap.

The halves determined by slice curves are joined
differently, not described in this abstract.

3 Doubly-Covered Cone

Let F' be the set of faces of P, and Fg the subset of
F that touches Q: Fo ={f € F: fnQ # @}. Cut
all the edges of Fiy that are not incident to). The
result is a surface Bg that is topologically a “band”
or “ring” bounded by two topological circles: @, and
the cut edges. B is locally flat.

Yio Yo

V-
.
Vi

(d

Figure 5: (a) Q is developed from z counterclockwise
around to its image @’. (b) 0 = Zzza' = ir leads
to v = 27 (c) Cutting Bg along zy. (d) Reflect-
ing/creasing over L. The x choice here leads to a
different embedding than in Fig. 2(b).

Next we describe a procedure for flattening a small
neighborhood of @) in Bg to a subset of a doubly-
covered planar cone P*. P* will have apex z and two
straight sides incident to z. Select a point x € @ that
will ultimately lie on one of these straight sides xz.
Develop @ in the plane according to the incident face
angles of By from z counterclockwise around () until
the second image z’ of x is encountered again. See
Fig. 5(a). The apex z is computed by requiring that

the curvature at z be 27 — 7, where 7¢ is the total

turn of Q. This forces v = 37¢ in Fig. 5(b,c,d).
Although not every simply developable @ lies on

this cone, we can prove that it does for certain classes:

Lemma 1 If Q is a simple closed convex curve, or a
slice curve, it lives on a cone, and the development of
Q lives on the flattened double-cone P*.

4 Cut Locus of @

Fix P, and let qo,q1,...,qr be the vertices of @) in
some circular order. A wverter of @ is a point g with
a nonzero angle gap in P at g. The cut locus Cp is
a tree whose leaves span the vertices of P, including
the vertices of @, which must be leaves of Cp. See
Figures 1(b,c). On the unbounded side of the cone,
the cut locus may be a forest with branches to infinity;
but we set this aside in this abstract.

Any point p € Cp has one or more projections to
Q@: endpoints of shortest paths from p to Q. Non-leaf
points p of Cp have at least two distinct projections.

The cone P* and surface P from which it derives
share the same boundary @, and by construction, the
same angle gaps occur along). Therefore, @) has
the same vertices in both P* and P. Thus Cp and
Cp~ both have the same set of leaves touching @, but
of course in general they differ in the interior of the
surfaces.

V7 Vi Vo

Figure 6: (a) Nesting of cut P; within the unfolded
Py of Fig. 2(a). (b) Similar nesting of P, within Pj
of Fig. 3(a).

Cp+ is determined by any small neighborhood of @
in Bg, because P* is so determined. Because every
leaf of Cp- is also a leaf of Cp, the bisecting property
of cut loci (each edge of the cut locus incident to a
vertex v € @ bisects the angle of P at v) implies that
small neighborhoods of the leaves of C'p« are included

63

EuroCG’09 - Brussels, Belgium

in Cp. In other words, the edges of Cp and Cp«
issuing from vertices of) coincide until they hit a
vertex of Cp or of P. We use this property in the
proof of Lemma 2 below.

5 Peels & Subpeels

Let wg,u1,...,u, be the vertices (leaves and junc-
tion points) of Cp, following a circular ordering of
their projections to Q. Let (u;, uy) be two consecutive
leaves of Cp, and (u;,uﬁc) corresponding consecutive
projections onto Q. The peel ap(uj,uy) is the closed
flat region of P bounded by the two projection paths
ujuf, uguy, the subpath of @ from uj to uj, and the
unique path in Cp connecting u; to u. Each peel is
isometric to a planar convex polygon.

Between two consecutive leaves u; and uy are the
vertices along the tree path, wuj;,ujiq,...,ur—1,us.
Each of these delimits a subpeel of ap(u;,uy), par-
titioning the peel along the projection segments wu;u;,
Jj <l<k. See Fig. 4.

The notion of peel and subpeel can be defined ex-
actly analogously for P*. We will use « for peels and
[for subpeels.

Lemma 2 (Peel Nesting) Each subpeel Gp of P is
isometric to a region of a subpeel Bp« of P*. The
union of the subpeels in one peel ap of P is non-
overlapping, and thus each peel ap is nested inside a
peel ap« of P*.

Proof. Idea. Let T be the directed curve that traces
on P* a maximal subtree of C'p disjoint from Q. We
let o € T' be any point in the interior of a peel ap-.
Now we move a point x; along I" continuously from x.
As long as x; remains inside the peel ap«, the subpeel
Bp to which z; belongs remains included in peel ap«.
Now assume that x; reaches a point of x;=y € Cp«
and crosses C} there, as it does at y=a in Fig. 7.
This is exactly when the claim of the lemma might be
FALSE, for the subpeel Sp bounded by I' then extends
beyond the peel ap«. Using a comparison theorem
of Alexandrov, we show that y must be a junction
point of Cp. This means that the subpeel Gp ends
at y, and ' enters a new subpeel 85 of a new peel
a/p. of P*. Thus the nesting claim of the lemma is
established. O

6 Source Unfolding

The half-polyhedron source unfolding of @ is obtained
by cutting the edges of Cp not incident to @), embed-
ding the peels within P* via Lemma 2, and cutting a
generator xz of the doubly-covered cone and opening.

Theorem 3 (Half-Polyhedron Source Unfolding)
For any @ for which the conclusion of Lemma 1
holds, the source unfolding of each half P of P is
non-overlapping.

vio 3 /y1

subpeel

Figure 7: I is the dashed curve, directed from vg to vg.
x; crosses Cp« at y, which coincides with the junction
point a of Cp. I enters the new subpeel Bp+(v7,y2)
and the new peel is ap-(v7, vg).

Several strategies are available for joining the two
halves, one of which is illustrated in Fig. 1(d).

Theorem 4 (Full Source Unfolding) For Q a
convex curve, or a slice curve containing at most one
vertex, additional cuts permit joining the halves to
one, simple polygon.

Finally, we note that for a convex curve) shrink-
ing to a point x, the full source unfolding w.r.t. @
approaches the point source unfolding w.r.t x.

References

[DO07] Erik D. Demaine and Joseph O’Rourke. Geo-
metric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, July

2007. http://wuw.gfalop.org.

[IOV08] Jin-ichi Itoh, Joseph O’Rourke, and Costin

Vilcu. Unfolding convex polyhedra via quasi-
geodesic star unfoldings. Technical Re-
port 091, Smith College, December 2008.

arXiv:0821.2257v1 [cs.CG].

[O’R0O3] Joseph O’Rourke. On the development of the
intersection of a plane with a polytope. Comput.
Geom. Theory Appl., 24(1):3-10, 2003.

[0S89] Joseph O’Rourke and Catherine Schevon. On
the development of closed convex curves on 3-
polytopes. J. Geom., 13:152-157, 1989.

[OV09] Joseph O’Rourke and Costin Vilcu. Conical ex-

istence of certain closed curves on polyhedra.
Manuscript in preparation, 2009.

64

Locked Thick Chains

Locked Thick Chains

Erik D. Demaine* Martin L. Demaine*

Abstract

We investigate when thick 3D polygonal chains are locked,
i.e., have a disconnected configuration space. In particular,
we show that thick 4-chains are never locked, and we ex-
hibit a class of locked thick 5-chains whose ratio of max-
imum edge length to minimum edge length is strictly less
than 3 (the best known ratio for nonthick chains).

1 Introduction

In the study of linkage folding (see, e.g., [5, Part I]),
the typical mathematical model of a mechanical linkage
is a collection of rigid line segments (bars) permanently
attached at certain endpoints (joints). Although there
are many types of joints, the most common mathemati-
cal model is a universal joint, which can flex arbitrarily.
Bars are usually considered physical objects that cannot
intersect each other (usually in 3D). Thus a linkage can
move according to any continuous motion such that the
bar lengths remain preserved, the bars remain attached ac-
cording to the joints, and the bars do not intersect each
other.

In this paper, we consider changing this model to al-
low the bars to have positive thickness. Our motivation is
that such a model is physically more realistic, in partic-
ular when modeling physical objects such as mechanical
linkages or protein backbones. O’Rourke [5, Sect. 6.3.3,
p- 91] introduced one model of thick 3D linkages, where
the chain is a Minkowski sum of a regular nonthick 3D
linkage and a ball, turning edges into cylinders and ver-
tices into identical spheres. We distinguish the thick edges
and thick joints of the resulting shape from the original
nonthick bars and nonthick joints. The linkage is consid-
ered non-self-intersecting if the only thick bars that inter-
sect each other are those whose underlying nonthick edges
share a nonthick vertex. A slight variation is easier to build
in practice, and even exists in many magnetic ball/rod con-
struction kits: if two thick edges intersect, they should be
from incident nonthick bars and the thick edges should
intersect only within their shared thick joint. So far no
nontrivial theorems have been established in either model.

This paper considers thick “locked chains” in
O’Rourke’s model and our variation thereof. A chain
is a linkage in which the bars form a polygonal chain,
connected in a path configuration. A linkage is locked
if its configuration is disconnected, that is, there are two
configurations that cannot reach each other by continuous
(non-self-intersecting) motions.

*MIT Computer Science and Artificial Intelligence Laboratory, 32
Vassar Street, Cambridge, MA 02139, USA. {edemaine,mdemaine}
@mit.edu

TMaitre de recherches du ER.S.-FNRS

iCornputer Science Department, Université Libre de Bruxelles, CP
212, Bvd. du Triomphe, 1050 Brussels, Belgium. stefan.langerman@
ulb.ac.be, j.vervier@gmail.com

Stefan Langerman Jérdome Verviert

O’Rourke originally introduced thick linkages with the
following open problem: is there a locked thick chain
whose underlying nonthick bars have unit length? [5,
Open Prob. 6.1, p. 91] This problem remains open. It is
motivated by the analogous problem for nonthick chains
[1, 5, Open Prob. 9.19, p. 151], which also remains open.
A more general version of the problem was posed by De-
maine and O’Rourke [5, Open Prob. 9.20, p. 152]: what
is the smallest possible length ratio between the longest
bar and the shortest bar that admits a locked nonthick
chain? The smallest ratio known is the original five-bar
chain which achieves a ratio of 3 + £ [2, 1, 5, Thm. 6.3.1,
p- 89]. The case of unit-length bars is the smallest possible
ratio of 1. But so far nothing better than 3 is known, for
nonthick or thick chains.

We analyze a family of locked thick chains that achieve
a length ratio of strictly less than 3. In fact, the family is
parameterized by the bar thickness as a multiple A\ of the
minimum bar length. Whenever a chain with the neces-
sary structural properties exists, we prove that the chain is
locked when its bar-length ratio is at least

\ 2
9—-8- | ——
o= ()
which is strictly less than 3 for all A > 0.
Our locked thick chain has five bars, the same as the
classic example of a locked nonthick chain. Indeed, it is
known that all locked nonthick chains have at least five

bars [2]. As a complementary result, we prove that all
locked thick chains have at least five bars as well.

2 Preliminaries

For both thick and nonthick chains, we distinguish the
chain (sequence of bars moving in space) from its con-
figuration (a chain in a particular position). A polygonal
chain P in R? is a sequence of fixed length bars con-
nected at their successive endpoints and moving freely
in a d-dimensional space. The chain has n 4 1 vertices
V = (vg,...,v,), and is specified by the fixed edge
lengths d; between v; and v; 1, ¢ = 0,...,n — 1. We
write P[i, j|, i < j, for the polygonal subchain composed
of vertices v;, . . ., v;. The joints correspond to the internal
vertices v1, ..., Up_1.

A configuration Q = {(qo, . - ., qn) of the chain P is an
embedding of P into R?, i.e., a mapping of each vertex
v; to a point ¢; € R?, satisfying the constraints that the
distance between ¢; and ¢; 1 is d;. The points ¢; and ;41
are connected by a straight line segment e;.

Let B¢ be the ball in R? of radius A centered at the
origin, and let e be a straight line segment in R%. The thick
bar of thickness A and of skeleton e is the Minkowski sum
e @ BY between e and B{. A thick chain Py in R? is

65

EuroCG’09 - Brussels, Belgium

specified by its skeleton P and its thickness A. It can be
seen as a sequence of thick bars whose end balls coincide.
A configuration @) of a thick chain P, is the Minkowski
sum between a configuration () of P and the ball B;l. The
corresponding configuration) of P is called the skeleton
of configuration 5. Note that adjacent thick bars of a
thick chain always intersect. We however impose that a
configuration be simple, that is, nonadjacent bars do not
intersect. Furthermore, we require that the thick bar e; 1 &
B¢ does not intersect the ball ¢;+1 ® B{. A motion of a
chain is simple if every configuration during the motion is
simple.

An expansive motion of a chain P is a motion with the
property that the distance between any pair of points on the
chain monotonically increases with time [3]. We say that
the motion of a thick chain is expansive if the motion of its
skeleton is expansive. We can then show the following:

Lemma 1 An expansive motion of a thick chain starting
from a simple configuration, is simple.

3 Thick 4-Chains Cannot Lock

It is known that a nonthick 4-chain cannot be locked [2].
Following an idea similar to that in [4], we use a linear
transformation as a first step toward bringing the skeleton
of the thick chain in 2D. Define the parameterized linear
transformation f, : R3 — R3 by f.(z,v, 2) := (71,9, 2)
with parameter 7 > 1. For a set S C R3, write f,(S) =
{f-(p) : p € S}. Note that linear functions are distributive
over the Minkowski sum: that is, for all sets A and B,

f-(A® B) = f.(A) @ f-(B). (1)
Further, because 7 > 1, we have
B} C f-(BY).)

Theorem 2 Every simple thick 4-chain can be straight-
ened in 3D.

Proof. Let C\, = C' @ B3 be a thick 4-chain of thickness
A of skeleton C whose vertices are (vg, v1, V2, U3, V4).

Consider the plane K formed by the two middle non-
thick bars of the skeleton, e; = (v, v2) and es = (v, v3).
We may choose the coordinate system so that K is the yz
plane. We can also apply small perturbations to vy and vy
to ensure that they are not in K. Let k; and k5 be the first
and last (nonthick) bars of C, that is, k1 = (vg,v1) and
ko = (vs,v4).

Definition the parameterized linear transformation f. as
above. The two middle bars, e; and es, have the same
length in f,(C) as in C, but the transformation increases
the length of the two end bars, k1 and k2. So we have to
truncate the length of k; and ks to preserve their length.
Also, the thick bars of C, which are cylinders with a
sphere at each end, become cylinders with a ellipsoid basis
in f,(Cy). In order to obtain a thick chain again, the basis
of this cylinder has to be changed to a disk.

By truncating the length of the end bars, we obtain a
new 4-chain C7 from f.(C). Clearly, C™ C f.(C). By
equation (2), B§ - f(Bi). So,

C =C"®B3 C f-(C)@f-(BY) = f-(CeBY) = f-(Ch).

We want to apply the linear motion f, for 7 ranging
from 1 to co. To achieve this motion in finite time, we
define another motion parameterized by ¢ from O to 1 that
applies f, where 7 = 1/(1 — t). Throughout the mo-
tion, we truncate the length of the two exterior segments
and the basis of the ellipsoid cylinder. Because the linear
transformations preserve intersection among regions, two
thick bars that do not intersect before the motion do not
intersect during the motion. As ¢ approaches 1, 7 grows to
infinity and the exterior thick bars become perpendicular
to the yz plane. Let C’ be that skeleton of the chain at that
point in time.

Two possible situations arise: either the vertices vy and
vy are on the same side of the yz plane or they lie on oppo-
site sides of the yz plane; see Fig. 1 (a—c) for top and side
views. Let II; be the plane containing vg, v, and vy, and
II, be the plane containing vs, vs, and v4. Let £ be the line
at the intersection of II; and II,. Notice that ¢ intersects
C’ only at vertex vy. Thus the subchain vgvyvs is con-
tained in a halfplane of II; bounded by ¢ and the subchain
VU3V s contained in a halfplane of II, bounded by ¢. By
hinging those two halfplanes about ¢, we obtain an expan-
sive motion of C’ that makes it planar. By Lemma 1, this
motion is simple for the thick chain.

Figure 1: 4-chain: Example where we bring back the two
exterior thick bars in the plan yz.

Finally, we straighten the resulting planar 4-chain using
an expansive motion [3]. Again, by Lemma 1, this motion
is simple for the thick chain. 0

4 Locked Thick 5-Chains

4.1 Introduction

Consider a 5-chain of thickness A with end bars (vg, v1)
and (v4,vs) of length s > 1 and middle-bars (vq, va),
(vg,v3) and (vs,v4) of length 1. Because the chain is sim-
ple, A < 1/2. We will determine bounds on s so that the
chain can be locked.

Fig. 2 shows the orthogonal projection of two adjacent
thick bars (thickness \) and one more thick bar perpendic-
ular to the other two. The projection is over to the plane

66

Locked Thick Chains

formed by the skeleton of the two adjacent thick bars. We
first bound the distance between the points C' and v, de-
pending on the angle o between the two adjacent thick
bars and on the thickness A.

Lemma 3 Consider in 2D two adjacent thick bars (vy, v1)
and (vg,v2) of thickness A, consider a circle of radius A
centered at the point C' which is in the interior of the angle
« formed by the two adjacent thick bars and which does
not intersect any of these two thick bars (see Fig. 2). Let d
be the distance between vg and C. Then

2-A
~ sin(a/2)°

Figure 2: Lemma 3.

Lemma4 Let Py be a 5-chain of thickness A (see Fig.
3) which is the Minkowski Sum of a nonthick 5-chain P
of vertices (vo, v1,v2, V3, V4, vs) with the ball By. If the
three middle bars are of length one, and the central pro-
jection from v4 on the plane vivqvs is as in Fig. 4, then
the distance s between the middle point of the three mid-
dle thick bars of P and the vertex vy (or the vertex vy) is

smaller than
1 A\

Proof. Consider the central projection of Py from vy on
plane K containing v1, v, and v3 (see Fig. 4). The thick
bar v4v5 intersects K in an ellipsoid centered at the point
D. This ellipsoid contains a circle of radius A centered at
D. Thus replacing the ellipsoid by a circle centered at D
is a weaker constraint on the motion. Applying Lemma 3,
we bound the distance d between v and D:

2.
~ sin(a/2)

v G

| \)
vg / 2

Figure 3: Thick 5-chain.

Figure 4: Central projection of the thick 5-chain from vy
on the plane K containing v1, v2, and vs. The thick bars
V1V, V203 and vovi are shown, as well as the ellipsoid
formed by the thick bar v4v5 as it intersects plane K.

Because the projection is on K, the length of thick bars
v1v9 and vov3 are preserved and their thickness can only
be larger. Let v{, be the projection of vy on K and C be the
intersection in the projection between vjv; and vavz. By
assumption, this intersection always exists. Consider the
triangle v1v2C'. Since |vaus| = 1, [v2C| < 1 — 2A. Also
|viva] = 1 and by the triangle inequality, d = |v;C| <
2 -2\

Because the central projection is from vy over K,
lvgvi| > |vova].

2.

We have to bound the angle « by the equation (3):

2-92.)\ > A
sin(a/2)
sin(a/2) > A
1-—A
(07 .
5 > arcsin -
o > 2arcsin A
1-A

Because, in every triangle, the sum of angles is equal to
m,we have fto B <7 — a.

With the angles o lower-bounded and 3 upper-bounded,
we have enough information to bound the distance be-
tween the middle point of the three middle thick bars of
P and the point A (the vertex v1).

Let be L = I3 + I3 + 4 = 3 the total length of the
three middle thick bars and E' the middle point of the three
middle thick bars: the distance between F and the vertices
vy and v1 is equal to 3/2. By the length attributed to the
three middle thick bars, the point F is at the center of the
thick bar vovs (see Fig. 4).

Consider the triangle FBA (obtained by considering
the point E in Fig. 4) to find the distance between the
points £ and A.

In this new triangle, we know : the angle 3 (6 < m— «),
the length | AB| (by the definition of P, |AB| = 1) and the
length |E B| (by the definition of P and the middle point
E,|EB|=3).

67

EuroCG’09 - Brussels, Belgium

By Al-Kashi’s theorem, we have
VIAB2 + |[EBJ2 — 2 |AB| - |[EB]| cos §3.

[EAl =

|EA

corresponds to the distance between the middle point
E of the three thick bars of P and the vertex v; so

|EA| = \/1 +1—-2.1-1cosB. This distance is the

same if we consider the vertex v4 instead of the vertex v
because the three middle thick bars have length one.

Sos=|FA|l=+/1.25—cosf:
As b <m—a
So cos(f8) > cos(m — a) = —cosa
And so s < V/1.25 4 cosa
As o > 2arcemﬁ
Then cosa < cos(2arcsin 25)
But cos(2 arcsin ﬁ = cos? arcsin ﬁ — sin? arcsin 2+
2 e A
= 1 — 2sin” arcsin =5
A

=1-2 (1 pY

Then cosa < 1—2(:25)?
2

And so s <1254+ 1-2(2)

< /225 — 2(125)?
O

This lemma bounds distances from the middle point £ of
the three middle bars of the thick 5-chain. We will re-use
the demonstration of [5] but with this distances as radius
of the centered sphere.

Theorem 5 Let K be a 5-chain of thickness X (see Fig. 3),
result of the Minkowski Sum between a nonthick 5-chain
of vertices (vg,v1, v2,vs,v4,v5) and the ball By. If the
length of each of the three middle thick bars is set to one

and the end bars are of length greater than /9 — S(ﬁ)2

then K is locked.

Proof. Let D = 3,/9 -8 (25

on the distance between the middle point F of the three
middle thick bars of K and the vertex v; (or v4) given by
the lemma4. Letr = D+e¢, fore > 0 small and the sphere
F of radius r centered at E. By construction, the vertices
{v1, v, v3,v4} are in F for all reconfiguration of K.

We fix [y and s toatleast2 -7 +e=2-D 4+ 3 -¢e.

Because /; and 5 are greater than the diameter of F, the
vertices vg et vs are not in I for all reconfiguration of K.

We first claim that unless vy or vs enter F', the projec-
tion from v4 on the plane through vivovs is as in Fig. 4,
that is, the projection of vgv; intersects vovs. Symmetri-
cally, we claim that in the projection from v; on the plane
containing vov3vy, the projection of vyvs intersects vovs.
Suppose that the former claim gets violated first during the
motion. In that case, the projection of vg has to lie on vovs
but in that case, v is inside the triangle vovsv4 which itself
is inside F', a contradiction.

Assume by contradiction that there is an unlocking mo-
tion for K.

If we close K by adding a string along the surface of F’
between its two free ends, then we obtain a trefoil knot.

5)2 be the upper-bound

1

©
J

|

|

~ ~ ~

kN @ @
T T T
L L L

~

o
T
L

Bound on minimal length of the two end fat-bars to lock the 5-chain
A e @ o
T T T
I I I I

o
T
T

.
0.05 0.1 0.15 0 2 0.25 0.3 0.35 0.4 0.45 0.5
Thickness (lambda)

o

A
X
Figure 5: Bounds from Theorem 5

Because F' separates (by its boundary) the two sets
{vo, vs} and {v1,v2,v3,v4}, we can attach a sufficiently
long unknotted string s from v to vs exterior to F'. We
obtain a trefoil knot.

By our assumption, we can, by an existing motion, un-
lock K (note that the topology of a knot does not change
during a motion), at the end of this motion, we obtain a
unlocked knot (the trivial knot). This result is in contra-
diction with the fact that K U s is a trefoil knot when we
add to it a string s, then K cannot be unlock by any mo-
tion. U

We have first bound on the minimal length of the two end
bars needed to lock a thick 5-chain of thickness A. A first
plot may be drawn using this formula (see Fig. 5). In this
plot, the x axis represent the thickness (\) and the y axis
our bound on the minimal length to assign to the two end
bars of the thick 5-chain.

Interestingly, if we put the thickness parameter A to zero
(we are so in the case of a nonthick 5-chain) then we obtain
the same result than [5].

References

[1] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw,
J. O’Rourke, M. Overmars, S. Robbins, 1. Streinu, G. Tou-
ssaint, and S. Whitesides. Locked and unlocked polygo-
nal chains in three dimensions. Discrete & Computational
Geometry, 26(3):269-281, October 2001. Full version is
arXiv:cs.CG/9910009.

J. Cantarella and H. Johnston. Nontrivial embeddings of
polygonal intervals and unknots in 3-space. Journal of Knot
Theory and Its Ramifications, 7(8):1027-1039, 1998.

R. Connelly, E. D. Demaine, and G. Rote. Straightening
polygonal arcs and convexifying polygonal cycles. Dis-
crete & Computational Geometry, 30(2):205-239, Septem-
ber 2003.

E.D. Demaine, S. Langerman, J. O’Rourke, and J. Snoeyink.
Interlocked open linkages with few joints. In Proceedings
of the 18th Annual Symposium on Computational Geometry,
pages 189-198, 2002.

E. D. Demaine and J. O’Rourke. Geometric Folding Algo-
rithms: Linkages, Origami, Polyhedra. Cambridge Univer-
sity Press, July 2007.

(2]

(3]

(4]

(5]

68

Fitting a Point Set by Small Monotone Orthogonal Chains

Fitting a Point Set by Small Monotone Orthogonal Chains

J.M. Diaz-Banez*

Abstract

We study the problem of fitting a monotone orthog-
onal chain with a small number of links to a set S of
n points in the plane. The objective function is the
maximum orthogonal distance from S to the chain.
We show that the problem of fitting a chain with 2
links can be solved in O(n) time if the orientation is
fixed and O(nlogn) time when the orientation is not
a priori known. Both algorithms are optimal.

1 Introduction and preliminaries

Fitting a curve of a certain type to a given point set in
the plane is a fundamental problem with applications
in many fields. In the Min-Mazx problem a polygonal
chain with k corners or joints is fitted to a data set
with the goal of minimizing the maximum vertical
distance from the input points to the chain (the so
called Chebyshev error). This problem was first posed
in [6] and solved in O(n?logn) time. The complexity
has since been improved, first to O(n?) time [11] and
then to O(nlogn) time [5].

We consider the case in which the points are fit-
ted by a monotone orthogonal polygonal chain, i.e., a
chain of consecutive orthogonal line segments where
the extreme segments are half-lines with the same
slope. The case in which the slope is given was first
solved in O(n?logn) time [3], and subsequently in
O(n?) [10], and min{n? nklogn} time [8]. Very re-
cently, Fournier and Vigneron [4] give an O(n) time
algorithm if the points are sorted according to their
z-coordinates, and an O(nlogn) time algorithm for
the unsorted case. For the unsorted case the authors
prove the optimality for k = n, and give an Q(nlog k)
lower bound for the decision problem. Thus it may be
possible to find an algorithm with improved running
time depending on k. See Chen and Wang [2] for re-
cent results on some variants of this problem including
NP-hard results in 3D.

We focus here on the case where k is small, k = 2,

*Dept. Matematica Aplicada II, Universidad de Sevilla,
Spain, dbanez@us.es. Supported by grant MTM2006-03909.

TDepartament of Mathematics, University of Denver, USA,
mlopez@du.edu. Supported by grant 90YD0251/01.

tDept. de Matematica Aplicada II, Universitat Politécnica,
de Catalunya, Spain, carlos.seara@upc.edu. Supported by
projects MEC MTM2006-01267 and DURSI 2005SGR00692.

8Dept. Matemética Aplicada II, Universidad de Sevilla,
iventura@us.es. Supported by grant MEC MTM2006-03909.

M. A. Lopez!

C. Searal I. Ventura®

and also on the problem of finding the best direction
for fitting a monotone orthogonal polygonal chain.

Let S = {p1,...,pn} be a point set in the plane in
general position, where p; = (x;,9;). A k-orthogonal
chain O, k > 1, is a chain with 2k — 1 consecutive
orthogonal segments (links) where the extreme seg-
ments are half-lines with the same slope. The orien-
tation 6 of the chain O is the angle formed by their
extreme half-lines with the x-axis. Thus, O consists
of k segments of slope tan(f) and k — 1 segments of
slope tan(f 4 7). O is monotone with respect to an
orientation « if every line with slope tan(a+ 75) inter-
sects the chain either in a point or in a segment with
slope tan(a + 5) (Figure 1).

Figure 1: A 6-orthogonal chain.

In this paper we deal with the problem of fitting a
monotone k-orthogonal chain O to a set S of n points
in the plane. The chain O with orientation 6 divides
the plane into k strips with orientation (6+7). Fitting
O to S is to locate k G-oriented segments s;(0), i €
{1...,k} according to a given optimization criterion.

Let [;(0) be the line passing through p; € S with
orientation § + 7. The fitting distance from p; to O
is given by dy(ps, O) = min,ey, 9)no d(ps,p). Notice
that dy is not the Euclidean distance. However, d¢
is the Euclidean distance between p; and a point on
a segment with orientation 6. The error tolerance
of O with respect to S, denoted by u(0,S), is the
maximum fitting distance between the points of S and
0, ie., p(0,S) = maxy,,cgds(p;,0). The k-fitting
problem can now be stated as follows:

Definition 1 Let S be a set of n points in the plane.
The k-fitting problem consists on finding a monotone
k-orthogonal chain such that its error tolerance with
respect to S is minimized.

69

EuroCG’09 - Brussels, Belgium

2 The oriented fitting problem

We consider the problem of fitting a k-orthogonal
monotone chain with orientation . We assume that
0 = 0. Thus, we are looking for an z-monotone
rectilinear path consisting of an alternating sequence
of k horizontal and k — 1 vertical segments. If the
points are unsorted, Fournier and Vigneron [4] give
an O(nlogn) time algorithm for this problem which
is optimal if k¥ = n. The algorithm from Lopez and
Mayster is also O(nlogn) if k is a constant. For the
sorted case Fournier and Vigneron [4] present an op-
timal O(n) time algorithm and an Q(nlogk) lower
bound for the decision problem. Thus, here we con-
sider the problem for small values of k, (in fact k = 2),
for the unsorted case.

For simplicity we assume that no two points lie
on the same vertical or horizontal line. The values
Ymax = Max{Y1,...,Yn} and Ymin = min{y1,...,yn}
(similarly @ax and ;) can be computed in linear
time. We assume that the points lie in the first quad-
rant and that Tmin = 0, Ymin = 0, Tmax = ¢, and
Ymax = d.

The oriented 2-fitting problem consists of finding
two horizontal half-lines joined by a segment con-
tained in a vertical line ¢. In an optimal solution,
¢ produces a bipartition of S into two subsets: S
(S2) are the points of S to the left (right) of £. The
following lemma is straightforward:

Lemma 1 Line ¢ separates the two points in S with
y-coordinates Ymin and Ymax-

2.1 Linear time algorithm for the 2-fitting problem

In O(n) time compute the median of the z-coordinates
of S. Let £ be the vertical line at this median. In O(n)
time compute the subset Sp (resp. S2) of S to the left
(resp. right) of ¢, where |S1| = |S2| = n/2. In O(n)
time compute the tolerances e; of S; and €5 of So,
and store the two pairs of points giving both toler-
ances. If e = €y, stop the algorithm. If ¢; < €3 in
O(n/2) time compute the median of Sa, reset ¢ as the
vertical line at this median value, compute the sub-
sets S} and S of the bipartition of Sy produced by
the new median, compute the tolerances €5 and €4 of
S} and SY. Compute max{e}, €5} to decide the next
move of ¢ (left or right). Store the tolerance values
and the corresponding witness pairs as a temporary
values. Next compute and update the tolerances once
we know the next move of £. (If ¢; > €2 we proceed in
a symmetric way). Compare the new tolerance values
and continue recursively translating the line ¢ left or
right by computing the new median of a subset with
half of the points and updating the new tolerance val-
ues (left and right) from the old ones. At all times
we have two unions at the extremes and an unknown
zone in between containing at most two strips.

Clearly, the time complexity of the algorithm is
T(n) =0(n/2)+0(n/4)+O0(n/8) +--- = O(n). By
Lemma 1 the optimal line ¢ will be located between
the two points in S with y-coordinates ymin and Ymax-
The algorithm stops when either the tolerance values
€1 and ey are equal, or when translating ¢ left and
right the bigger tolerance changes from €; to €5 and
viceversa. In the last case the solution will be the
best of the two. Since the algorithm performs a bi-
nary search on a unimodal function, the method is
correct. Notice that the solution (position of line £ or
bipartition of S) is not unique because in an optimal
solution some points can belong to S; or Sy without
changing the solution. We have the following result.

Theorem 2 The oriented 2-fitting problem can be
solved in ©(n) time and space.

By the Q(nlog k) lower bound for the decision prob-
lem [4], it is clear that if & = o(logn) there is no linear
time algorithm for the unsorted case. Thus, we raise
the open question: for which range of values of k does
there exist a linear time algorithm?

2.2 An O(nlogn)-time algorithm

We now show a slower O(nlogn) time algorithm for
the same problem which has the advantage that it
can be used later in the algorithm for the un-oriented
2-fitting problem.

Given two points p;, p; € S, a dominance relation
is established: p; dominates p; (p; < pi), if z; < x;
and y; < ;. The relation < is a partial order in S. A
point p; € S is mazimal if there does not exists p; € S
such that ¢ # j and p; < p;. The maxima problem
consists of finding all the maximal points of S under
dominance and can be solved optimally in ©(nlogn)
time [9]. The solution can be extended with respect
to any orientation. We are interested in the maxima
for any of the four quadrants.

We compute Ymax, Ymins Tmax, Lmin, and translate
the points in S to the first quadrant of the coordinate
system. We assume that p1 = (0,41), pn = (¢, yn),
Pi = (%4, Ymax), and p; = (z;,0) (Figure 2). Suppose
that p; is to the left of p;. By Lemma 1, the vertical
line ¢ lies between p; and p;. We do the following:

.....................

pP1= (0,2/1)
y=b -
R,
: spn:(c71n)
(070) by

Figure 2: Staircaises formed by maxima points.

70

Fitting a Point Set by Small Monotone Orthogonal Chains

1. In linear time classify the points of S as follows:
S1 is the point subset with z-coordinate less than
x;, So is the point subset with x-coordinate in
between x; and x;, and S3 is the point subset
with z-coordinate greater than x;. Let n; be the
number of points in S;, ¢ = 1,2, 3.

2. In O(nlogn) time we can compute the sets of
maxima points of S with respect to each of the
four quadrants and join them, respectively, form-
ing the staircases structure as in Figure 2.

3. By Lemma 1, the line ¢ := (x = a) is in between
x; and x;, and, in order to find its right location,
we can do a binary search over the points in the
staircase structure (first and third quadrant) in
at most O(logny) time such that we get the best
balance between the error tolerance on the left
and on the right side of £.

It is easy to see that the above staircases structure
can be used both for solving the 3-fitting and 4-fitting
problems with the same time complexity.

3 The un-oriented 2-fitting problem

The un-oriented 2-fitting problem has the orientation
0 as an additional parameter. The goal is to de-
termine an oriented line ¢y with slope tan(w/2 + 6)
which splits S into two subsets S;, and S,, where
(e, e}) and (e, eb,) are the pairs of points giv-
ing the error tolerance of S;, and S,,, respectively,
and such that its corresponding 2-orthogonal polyg-
onal chain Oy minimizes the error tolerance of S for
any value of #. The error tolerance is given by the for-
mula 11(Oy, S) = max{dg(e}‘e,e?a), dg(et . €l)}, where
do(p,q) denotes the distance between parallel lines
through p and ¢ with orientation 6.

Let Ymin,o and Ymax,e be the minimum and maxi-
mum y-coordinates of the points in S when the coor-
dinate system is rotated by an angle 6. The following
lemma is a generalization of Lemma 1.

Lemma 3 An optimal fitting for S by an un-oriented
2-orthogonal polygonal chain with orientation 6 is de-
termined by a line ¢y through a point of S separating
the points with y-coordinates Ymin,g and Ymax,0-

In our approach we adapt the O(nlogn)-time algo-
rithm for the oriented 2-fitting case as follows. First,
we identify the four quadrants of the coordinate sys-
tem by its oriented bisectors, i.e., by the four oriented
lines with slopes tan(6+445), tan(6+135), tan(8+225),
tan(f + 315). Next, we will use the results from Avis
et al. [1] about the computation of the so-called un-
oriented ©-maxima.

Definition 2 A point p € S is an un-oriented O-
maximum with respect to S iff there exist rays, C

and D, emanating from p with an angle at least ©
between them so that the points of S lie outside the
(©-angle) cone defined by p, C and D.

Theorem 4 [1] Let S be a set of n points in the
plane. All un-oriented ©-maxima points of S for © >
m/2 can be computed in O(nlogn) time and O(n)
space. The algorithm is optimal for fixed values of ©.

The main idea of the algorithm is to rotate the co-
ordinate system by an angle 6, 0 < 6 < x/2, and
update the four staircase structure by inserting or
deleting points to each of the four staircases accord-
ing to the changes of the orientation . We can main-
tain four ordered lists of the current un-oriented 7 /2-
maxima points of .S with respect to the four current
quadrants which bisectors have orientations 6 + 45,
0 + 135, 0 + 225, 6 4+ 315. The lists correspond to
the points in the four staircases of the staircase struc-
ture. Precisely, this staircase structure will be main-
tained (with insertions and deletions) according to the
changes of the value 6.

As 0 changes, the four staircases can be modified
because a new point of S become 7/2-maxima or some
current 7/2-maxima point of S has to be deleted. In
order to know the sequence of these events according
to the variation of €, we use Theorem 4 to compute
the set of all un-oriented 7/2-maxima points of S in
O(nlogn) time together with their respective orien-
tation intervals. These orientation intervals are the
intervals where each point is un-oriented 7/2-maxima
for S. Because we are looking for 7/2-maxima points,
we know that a point can be 7/2-maxima for at most 3
(disjoint) orientation intervals. Then, the total num-
ber of changes in the staircase structure is linear.

In order to know the sequences of events (insertion
and/or deletion of points in the staircase structure as
we rotate the coordinate system) we proceed as fol-
lows: suppose that we have computed the orientation
intervals for each point p; € S, being 7/2-maxima in
some orientation in [0,27]. A point p € S can have
0, 1, 2 or 3 disjoint orientation intervals. We can
sweep the set of these intervals from 0 to 27 with a
vertical line, knowing for a particular orientation «
which are the set of 7/2-maxima points for that ori-
entation. Analogously, for the orientations a + 90,
a + 180, and a + 270. Thus, with the sweeping we
can know which is the sequence of the points to be
inserted or deleted in the four staircase structure ac-
cording to the changes of orientation.

Once we have computed the orientation intervals of
the 7 /2-maxima points of .S, the algorithm does a ver-
tical sweep of these intervals (from 8 = 0 to 6 = 90)
with four vertical lines corresponding to the orienta-
tions 6, 6 + 90, 6 + 180, and 6 + 270, stoping at each
event (endpoint interval), updating the four staircase
structures. Since the points are in general position,

71

EuroCG’09 - Brussels, Belgium

only a constant number of updates can occur at some
event. We compute the optimal solution correspond-
ing to the staircase structure in between two consec-
utive events 6; and 65, by computing a line £ with
slope tan(f + 90). By Lemma 3, for § € [0y, 65], the
line ¢ giving the optimal solution for # has to sepa-
rate the points with y-coordinates Ymin,g and Ymax,o-
In this way, the optimal solution is determined by two
pairs of points, either (i) (Ymax.0, e?g) and (e;!, Ymin,0)
if Ymax,¢ is on the left side of ymin ¢, or (ii) (€}, Ymin,6)
and (Ymax,0, €y,) if Ymax,o is on the right side of ymin g,
giving the error tolerance in S;, and S,,. Now, in or-
der to compute the optimal solution in between two
consecutive events, we use the next lemma.

Lemma 5 As we rotate counterclockwise the coor-
dinate system, the vertical distances giving the error
tolerance for the staircases of the first and third quad-
rants is monotone.

As a consequence of Lemma 5, the optimal solution
for an interval of orientations 6 € [0y, 605] has to be
in the extreme of the interval, so either in #; or in
0. Since a point p € S can become un-oriented 7/2-
maximum for at most three disjoint oriented inter-
val, this imply that the number of updates (insertions
and deletions) for the entire staircase structure as 6
changes from 0 to 7/2 is linear. Any update can be
done in O(log n) time and for a fixed value of § we can
compute in O(logn) time by binary search the opti-
mal location of the line ¢ with its corresponding error
tolerance (maintaining the minimum). We conclude
the following result.

Theorem 6 The un-oriented 2-fitting problem can
be solved in ©(nlogn) time and O(n) space.

Notice that the un-oriented 1-fitting problem is
equivalent to the problem of computing the width of a
point set [7]. The Q(nlogn) time lower bound for the
un-oriented 1-fitting problem implies the same bound
for the un-oriented 2-fitting problem. Nevertheless
we have constructed specific reductions to MAX-GAP
problem for any given k.

4 Extensions to 3D

We have considered the oriented 2-fitting problem in
3D where a polygonal chain is a configuration of or-
thogonal planes. For the oriented 2-fitting problem
we have algorithms which time complexities are in
between O(n) and O(n?) depending of which infor-
mation is fixed: (1) fixing the orientation of both the
separating plane and the supported planes of the sub-
sets of the bipartition, O(n) time; (2) fixing the ori-
entation of the separating plane, O(n?) time; and (3)
fixing the orientation of the supporting planes, O(n?)

time. See [2] for NP-hard results for the 3D fitting
problem.

Acknowledgements. These problems were posed
and partially solved during the Third Spanish Work-
shop on Geometric Optimization, July 4-8, 2006, El
Rocio, Huelva, Spain.

References

[1] D. Avis, B. Beresford-Smith, L. Devroye, H. El-
gindy, E. Guvremont, F. Hurtado, and B. Zhu.
Unoriented ©-maxima in the plane: complexity
and algorithms. SIAM Journal of Computing, 28
(1999) 278-296.

[2] D. Z. Chen and H. Wang. Approximating points
by piecewise linear functions. 18th Fall Workshop
on Computational Geometry, 2008, Rensselaer
Polytechnic Institute, NY, USA.

[3] J. M. Diaz-Banez and J. A. Mesa. Fitting recti-
linear polygonal curves to a set of points in the

plane. Furopean Journal of Oper. Research, 130
(2001), 214-222.

[4] H. Fournier and A. Vigneron. Fitting a step func-
tion to a point set. LNCS 5193, 2008, 442-453.

[5] M. T. Goodrich. Efficient piecewise-linear func-
tion approximation using uniform metric. Dis-
crete and Computational Geometry, 14, (1995),
445-462.

[6] S. L. Hakimi and E. F. Schmeichel. Fitting
polygonal functions to a set of points in the
plane. Graphical Models and Image Processing,
53, (1991), 132-136.

[7] D.T.Lee and Y. F. Wu. Geometric complexity of
some location problems. Algorithmica, 1 (1986)
193-211.

[8] M. A. Lopez and Y. Mayster. Approximating a
set of points by a step function. Journal of Vi-
sual Communication and Image Representation,
17 (2006) 1178-1189.

[9] F. P. Preparata and M. I. Shamos. Computa-
cional Geometry, an Introduction, Springer-
Verlag, 1988.

[10] D. P. Wang. A new algorithm for fitting a rec-
tilinear xz-monotone curve to a set of points in
the plane. Pattern Recognition Letters, 23 (2006)
329-334.

[11] D. P. Wang, N. F. Huang, H. S. Chao, and R. C.
T. Lee. Plane sweep algorithms for polygonal ap-
proximation problems with applications. Lecture
Notes in Computer Science, 762 (1993) 515-522.

72

Point Distance Problems with Dependent Uncertainties

Point Distance Problems with Dependent Uncertainties

Yonatan Myers and Leo Joskowicz *

Abstract

We address distance problems for planar points whose
location is uncertain and possibly coupled. Point co-
ordinate uncertainties are modeled with the Linear
Parametric Geometric Uncertainty Model (LPGUM).
The model is a general and computationally efficient
worst-case first-order linear approximation of geomet-
ric uncertainty that allows for dependencies among
uncertainties. We formulate closest pair, diameter,
width, and bounding box problems in LPGUM, sum-
marize and extend known results for independent
point uncertainties, and describe new algorithms for
dependent ones.

1 Introduction

Geometric uncertainty is ubiquitous in mechanical
CAD/CAM, robotics, computer vision, and many
other fields. Sensing, measurement, and manufactur-
ing processes are intrinsically imprecise, and thus re-
quire realistic geometric uncertainty models and com-
putationally efficient algorithms. Recent research has
focused on modeling and computing with geometric
imprecision [1, 3, 7, 9].

We address distance problems for planar points
whose location is uncertain and possibly coupled.
Point distance problems include closest/farthest point
pair, minimum /maximum diameter, and many more.
In the nominal case (no uncertainty) these problems
are well understood and have optimal solutions. How-
ever, when points locations are imprecise, distance
problems may be ill-defined and harder to solve de-
pending on the uncertainty model.

Most geometric uncertainty models represent the
point location uncertainty as a simple, iso-centric, and
independent region of the plane containing the nom-
inal point. Point uncertainty regions can be circles
[2, 5], squares [7] or convex polygons [4]. In most
cases, point distance problems are efficiently solved
with existing algorithms because the regions are sim-
ple and the uncertainties are independent of each
other [7]. In other cases, the problems are NP-hard
[6]. Robust, finite precision, and epsilon geometry
techniques are only applicable for very small uncer-
tainties. Sampling-based methods, widely used in en-

*School of Engineering and Computer Science, The
Hebrew University of Jerusalem, ISRAEL. FEmails:
yoni_m@cs.huji.ac.il, josko@cs.huji.ac.il

gineering, are general but only provide approximate
answers and are computationally intensive.

A key drawback of existing geometric uncertainty
models is that they cannot model mutually depen-
dent uncertainties, which are very common in prac-
tice [10]. For example, part measuring and machining
processes rely on reference geometric features such as
planes and axes to define other part features and di-
mensional chains. Thus, feature variations are cou-
pled to variations in the reference and chain features.
Assuming independent errors often overestimates the
actual error and leads to suboptimal solutions.

We have recently introduced the Linear Paramet-
ric Geometric Uncertainty Model (LPGUM) [9]. The
model is a general, expressive, and computationally
efficient worst-case first-order linear approximation of
geometric uncertainty that allows for coupling be-
tween uncertainties. Points are defined by common
parameters with uncertainty intervals. The uncer-
tainty zones around nominal point locations are de-
fined by uncertainty sensitivity matrices whose entries
indicate the point coordinates sensitivity to parame-
ters variations and their dependencies. We have de-
veloped efficient algorithms for computing uncertainty
zones of points and lines in the plane and for answer-
ing relative point and line positioning queries.

In this paper we formulate closest pair, diameter,
and bounding box problems in LPGUM, summarize
and extend known results for independent uncertain-
ties, and describe new algorithms for dependent ones.

2 LPGUM of a point

The LPGUM of a point in the plane is defined as
follows [9]. Let ¢ = [q1,q2,...,qx]" be a vector of
k parameters over an uncertainty domain A. Each
parameter has an uncertainty interval A; = [qi_ ,qj']
from which it can take a value. The parameters’ un-
certainty domain A = Ay X As ... x Ay is the product
of the parameters uncertainty intervals. The nominal
parameters vector ¢ = (qu,...,qx) is the parameters
vector values with no uncertainty. WLOG, we as-
sume that the uncertainty intervals are zero-centered
symmetric, e.g., —q; = q;“ and ¢ = 0 (asymmetric
domains are made symmetric by adjusting the nomi-
nal parameter value and its interval).

Every point is associated with a 2 X k uncertainty
sensitiwity matriz A,. The matrix entries are con-
stants that quantify the sensitivity of the point coor-

73

EuroCG’09 - Brussels, Belgium

dinates to the parameters. Entry A,[i,j] determines
the first-order linear dependence of coordinate ¢ to g;
(i =1 for x, i = 2 for y). It is zero when coordinate ¢
is independent of parameter g;.

The LPGUM of point v(q) is defined by (7, A, q, A)
where v is the nominal point location, A, is the uncer-
tainty sensitivity matrix, ¢ is the parameters vector,
and A is the parameters uncertainty domain.

The point LPGUM defines the set of possible points
locations for instances of parameters vector ¢:

U(q):@"_Avq

In the nominal case, § = 0 and v(0) = 7.
The uncertainty zone of v is the region of R?:

Z(v(g)) ={v|v=v+A4qg, g€ A}

Its boundary is a zonotope (a centrally symmetric
polygon) BZ(v(q)) = {z1, 22, ..., 21} with at most 2k
vertices, 2 < [< 2k . The vertices are point instances
of extremal parameters values, q; or g+. The zono-
tope can be computed in optimal O(klogk) time [9].

3 Distance between two LPGUM points

Let u(q) and v(gq) be two LPGUM points defined by
(0, Ay, q,A) and (4, Ay, q,A), respectively:

u(q):ﬂ+Auq
U(q):6+Avq

Note that both independent and dependent uncertain
points can be modeled. Points whose uncertainty is
independent are modeled with a parameters vector ¢
consisting of two vectors ¢ = (qu, qy) of size k, and
ky, k = ky + ky,. The 2 x k uncertainty sensitivity
matrices are A,, A,. The first k, columns of A, are
constants that reflect the dependence of u coordinates
on each parameter of ¢,; the remaining k, columns of
A, are set to zero (no dependence on ¢,). Similarly,
the first k£, columns of A, are set to zero; the remain-
ing k, columns are set to constants that reflect the
dependence of v coordinates on each parameter of ¢,.
Dependent uncertain points are modeled with a joint
parameters vector q. The entries of A,, A, are set
appropriately to reflect the dependencies.

For example, let 4 = (0,0) and o = (2,1) be two
nominal points (Fig. 1). Point u has a £1 uncer-
tainty in # and no uncertainty in y; v has no un-
certainty in and £1 in y. When their uncertain-
ties are independent, each point is defined by a pa-
rameter q,, ¢, € [—1,1]. Their parameters vector is
q = (qu, qv) and their uncertainty sensitivity matrices
are A, = [1 0/0 0] and A, = [0 0]0 1]. When the un-
certainties are dependent, the points are defined by
a common parameter ¢ € [—1,1] and their sensitivity
matrices are A, = [1 0]7 and 4, = [0 1]T. Their
zonotopes are line segments (u~,u™) and (v, vT).

Figure 1: Example of pairwise distances.

The distance between two LPGUM points is the
Euclidean distance between the point instances for
the same parameters vector instance ¢:

dist (u(q),v(q)) = [lu(q) —v (Pl

The minimum (maximum) distance between two
LPGUM points is the smallest (largest) distance be-
tween point instances for the same parameters vector:

min-dist(u(q),v(q)) = min lu(g) —v (gl

maz-dist(u(q),v(q)) = max lu(g) —v (gl

The minimum and maximum distances can dif-
fer for independent and dependent point uncertain-
ties. In Fig. 1, the independent and dependent mini-
mum and maximum distances are 1 (ut,v~) and /3
(ut,vt), and 3 (uv=,v~) and V13 (u~,v~) respec-
tively. Note that the dependent scenario distances are
tighter than those of the independent one. In fact, it
can be shown that the minimum and maximum dis-
tances of the independent version of a dependent sce-
nario are its conservative lower and upper bounds.

Minimum and maximum distances between two
LPGUM points are bounded quadratic optimization
problems solved with quadratic programming.

We now describe an alternative geometric opti-
mal algorithm. Let w (q) be a new LPGUM point
(0, Aw, q, A) such that w(q) =u(q)—v(q), w = a—7,
and A,, = A, — A,. The pairwise maximum distance
occurs when w(q) is furtherest from the origin. By
convexity, since w(q) is an LPGUM point, its furthest
point from the origin is a zonotope vertex. To find it,
we compute BZ(v(q)) in O (klogk), find its furthest
vertex from the origin in O(k), and report its param-
eters vector instance. To find the minimum pairwise
distance, we test if the origin is inside the zonotope
in O(k). If it is, the minimum distance is zero and
its parameters vector is the solution to w + A, q = 0.
Otherwise we find the closest point of the zonotope to
the origin in O(k) and report its parameters vector.

4 Distance problems for n LPGUM points

Let V(q) = {v1(q),...,vn(q)} be a set of n LPGUM
points, each defined by (v;, Ay, q, A).

74

Point Distance Problems with Dependent Uncertainties

| Problem | Model | Smallest | Largest |
o Dus independent O (nklognk) [7]*
Closest Pair Jependent O (nZkTog k) NP-hard [6]
. independent O (nklognk) [7]* | O (nklognk) [7]*
Diameter dependent O (n’klogk)
3 *
Width independent O (nklognk) [7] NP-hard [7]
dependent
s independent O (nk) [7]* O (nk) [7)*
Axds-Aligned dependent perimeter O(n*LP(k)) O(n*LP(k))
Bounding Box dependent area O(n*QP(k)) O(n*QP(k))

Table 1: Time complexities of distance problems for n LPGUM points with independent and dependent un-
certainties, where k is the maximum number of parameters of a point (independent) or the total number of
parameters of all points (dependent) and LP(k), QP(k) are the k-variable LP and QP problem complexities.

* Extention of [7]

For a given parameters vector instance ¢, V(q) is the
set of points obtained by substituting ¢ in each point
LPGUM. The minimum and maximum distances of
V(q) are the smallest and largest pairwise distance
between the corresponding point distances:

min-dist(V(q)) = min dist (vi(q),v;(q))

i,J
maz-dist(V(q)) = max dist (vi(q),v;(q))
i,J
When parameters vector ¢ is unspecified, V(q) is a set
of uncertainty zones Z(v;(q)). Point distance prob-
lems involve finding the parameters vector instance
g and points v;(q), v;(¢) that maximize or minimize
the pairwise point instances distances. This raises a
family of distance problems, which we formulate next.

Problem 1 Smallest possible distance
The smallest distance of all point pairs instances

smallest-dist(V(q)) = Hliél min-dist(V(q))
qe

Problem 2 Largest possible distance
The largest distance of all point pairs instances

largest-dist(V(q)) = max max-dist(V(q))

qe

Problem 3 Largest smallest distance
The largest distance of closest point pairs instances

largest-smallest-dist(V(q)) = max min-dist(V(q))
q

Problem 4 Smallest largest distance
The smallest distance of furthest point pairs instances

smallest-largest-dist(V(q)) = mig max-dist(V(q))

qe
These four distances provide useful information about
the uncertain points set. The smallest and largest
possible distances indicate how close and how far two

point instances can ever get. They are the lower and
upper bounds on pairwise point distances and the di-
ameters of the minimum enclosed and maximum en-
closing circles. The corresponding point pairs are the
closest and furthest point pairs. The largest smallest
and smallest largest distances indicate how far the
closest points and how close the furthest points can
ever get. They are the upper and lower bounds on
the smallest and largest pairwise point distances and
the maximum diameter of the minimum enclosed cir-
cle and minimum diameter of the maximum enclosing
circle. Note that the parameters vector instances that
achieve these distances might all be different.
Closely related problems concern the width and the
Axis Aligned Bounding Box (AABB). The smallest
(largest) width of V(q) is the smallest (largest) dis-
tance between any pair of parallel lines each supported
by points v;(q),v;(g) that contain all points instances
(the definition of p-dist is omitted for lack of space).

Problem 5-6 Smallest and largest width
The smallest/largest parallel strip width

min-width(V(q)) = Hllljn p-dist (vi(q),v;(q))

maz-width(V(q)) = max p-dist (vi(g), v;(q))

i
The smallest (largest) AABB is the smallest (largest)
perimeter/area axis-aligned rectangle that contains
all points instances v;(q). Let viz(q), viy(¢) be the z,y
coordinates of v;(¢q). The AABB width and height are:

width(V(q)) = max (viz (¢) — vj2(q))

height(V(q))

= max (viy(q) — vjy(q))

Problem 710 Smallest and largest AABB
The smallest/largest perimeter/arca AABB

smallest-pb(V(q)) = Eréig(width()/(q)) + height(V(q)))
largest-pb(V(q)) = r;leaz(width()/(q)) + height(V(q)))

75

EuroCG’09 - Brussels, Belgium

smallest-ab(V(q)) = min(width(V(q)) - height(V(q)))

geEA

largest-ab(V(q)) = r;lean(width(V(q)) - height(V(q)))
We distinguish between independent and dependent
point uncertainty models. Points with independent
uncertainties are modeled with n independent param-
eters vectors ¢; of size k; such that ¢ = (q1,..,qn),
> k; = k. Their uncertainty regions are bounded
by zonotopes BZ(v;(q)) = {zi1,...za}, 1 < i < n,
2 < l; < 2k;. Distance problems reduce to finding
distances between possibly overlapping convex poly-
gons whose total complexity is O(nk). Previous works
address these problems for discs and squares [7]. In
many cases the results extend directly to convex poly-
gons. Distance problems for points with dependent
uncertainties have not been studied and are often
harder to solve.

5 Solutions to LPGUM point distance problems

Table 1 summarizes known and new results [7].

The smallest/largest closest pair distance (Prob-
lems 1 and 2) are solved in O(n?k log k) by computing
the smallest/largest distance between all point pairs
min-dist(v;(q),v;(¢q)) and maz-dist(vi(g),v;(q)). For
independent point uncertainties the problems reduce
to finding the smallest/largest pairwise distance of n
convex polygons, which can be solved in O(nk lognk)
with a direct extension of the algorithms in [7].

The largest closest pair distance (Problem 3) is
NP-hard for independent points whose uncertain-
ties are squares [6] and is thus also NP-hard for
LPGUM points. The smallest largest distance (Prob-
lem 4) for independent point uncertainties is solved
in O(nklognk) for k = max{k;} [8]. The problem is
open for dependent point uncertainties.

The largest width (Problem 6) is NP-hard for ar-
bitrarily oriented line segments [7], so it is also NP-
hard for LPGUM points. The smallest width (Prob-
lem 5) for independent point uncertainties is solved in
in O(nklognk) with convex hull and rotating calipers
techniques. The problem is open for dependent point
uncertainties.

The smallest/largest AABB perimeter/area (Prob-
lems 7-10) for independent point uncertainties are
solved in O(nk) by independently computing the max-
imum height and maximum width [7]. For depen-
dent point uncertainties, the smallest/largest AABB
perimeter/area optimization problems are (replace
min by max for the largest AABB):

min max ((vie(q) = vja(9)) + (Vky (@) = viy(9)))

min max ((vie(q) = vjx(9)) - (Vky (9) — v1y(2)))

A direct solution is to solve k-variable Linear Pro-
gramming (LP) and Quadratic Programming (QP)

problems for each point quadruple in O(n*LP(k) and
O(n*QP(k)), where LP(k) and O(n*QP(k)) are the
times required to solve the LP and QP problems.

It remains an open question if these problems can
be solved more efficiently with a geometric approach.

6 Conclusion

Dependent point uncertainties are common in prac-
tice and have not been systematically studied. We
formulate closest pair, diameter, width, and bound-
ing box problems in the Linear Parametric Geomet-
ric Uncertainty Model (LPGUM), summarize and ex-
tend known bounds and algorithms for independent
point uncertainties, and describe new ones for depen-
dent point uncertainties. In most cases, the added
complexity is sub-quadratic in the number of param-
eters and points, with higher complexities for depen-
dent point uncertainties. We are currently developing
algorithms to compute the width, convex hull, and
Voronoi diagram of LPGUM points.

References

[1] M. Abellanas, F. Hurtado and P. Ramos. Structural
tolerance and Delaunay triangulation. Information
Processing Letters 71:221-227, 1999.

[2] S. Akella and M. Mason. Orienting toleranced polyg-
onal parts. Int. J. Robotics Res 19(12):1147-70, 2000.

[3] 1. Averbakh and S. Bereg. Facility location problems
with uncertainty on the plane. Disc. Opt.2:3-34, 2005.

[4] R. C. Brost and R. R. Peters. Automatic design of 3D
fixtures and assembly pallets. Proc. IEEE Int. Conf.
on Robotics and Automation, pp 495-502, USA | 1996.

[5] J. Chen, K. Goldberg, M. Overmars, D. Halperin, K.-
F. Bohringer, and Y. Zhuang. Computing tolerance
parameters for fixturing and feeding. The Assembly
Automation Journal 22:163-172, 2002.

[6] J. Fiala, J. Kratochvil, and A. Proskurowski. Sys-
tems of distant representatives. Discrete Appl. Math.
145(2):306-316, 2005.

[7] M. LofHer and M. van Kreveld. Largest bounding box,
smallest diameter, and related problems on imprecise
points. Algorithms and Data Structures, Lecture Notes
in Computer Science 4619, pp 446-457. Springer, 2007.

[8] N. Meggido. Linear-time algorithms for linear pro-
gramming in R® and related problems. SIAM J. Com-
puting 12(4):759-776, 1983.

[9] Y. Myers and L. Joskowicz. The linear parametric
geometric uncertainty model: points, lines and their
relative positioning. Proc. 24th Furopean Workshop on
Computational Geometry pp 137— 140, France, 2008.

[10] Y. Ostrovsky-Berman and L. Joskowicz. Tolerance
envelopes of planar mechanical parts with parametric
tolerances. Computer-Aided Design 37(5):531-44, 2005

76

An Improved Algorithm for Inserting a Highway in a City Metric

An Improved Algorithm for Inserting a Highway in a City Metric Based on
Minimization of Quasiconvex Functions

Matias Korman*

Abstract

We introduce an improved algorithm to locate a seg-
ment highway such that the maximum city distance
between a given set of n points is minimized (where
the city distance is measured with speed v > 1 on a
highway and 1 in the underlying metric elsewhere).
We consider that such highway is built in a complex
transportation system with H other highways and
obstacles. The algorithm runs in O(n®H?(log?n +
log H)) time using O(nH) space improving the previ-
ous O(n*H*) time and space bound.

1 Introduction

We consider a city that has some kind of transporta-
tion facility (i.e., bus, train, ...) that speeds up the
travel time of its passengers. Imagine that we travel
in such a city starting from p towards a destination
q: we normally should not go along the geometric
shortest path, which is the straight line segment pq;
instead, we may take a detour to ride a train, and we
must also avoid obstacles like buildings. We model
the transportation system by a set of highways and
obstacles. Under that environment we would like to,
given a set of points S, a set of polygonal obstacles O,
and a set of existing highways H, locate a new high-
way to reduce the diameter of S (i.e: the maximum
distance among all possible pairs of points in S).

Cardinal and Langerman considered the problem of
locating a line highway (of infinite length) to reduce
the diameter of a given set of n points without any
prelocated highways/obstacles if v = oo in [5] . Their
algorithm has quadratic time complexity and was fur-
ther improved by Ahn et al. in [1]: ©(n) time to locate
an axis aligned highway (of any speed) and ©(nlogn)
if the highway can be arbitrarily oriented. Further
research by Cardinal et al. [4] gave a ©(nlogn) algo-
rithm to locate an axis aligned segment highway using
LP optimization techniques.

The above algorithms can only be used if no high-
ways have been built. Thus, by applying any of those
methods we obtain a transportation system with only
one highway. Several optimization problems of insert-
ing a new highway in a city metric or generalized city

*Graduate School of Information Sciences, Tohoku Univer-
sity, Sendai, Japan, {mati,tokuyama}@dais.is.tohoku.ac.jp

Takeshi Tokuyama*

metric were considered in [7] and [8]. In particular,
an O(n*H*) time and space algorthm was proposed
in [8] to minimize the city diameter by optimally lo-
cating an axis-alighed highway of unit length in an
environment with H prelocated highways.

In this paper, we focus on the case that the under-
lying metric is L1, all highways axis parallel of equal
speed and all obstacles are nonoverlapping open poly-
gons. The induced metric is called the generalized
city metric [3] (city metric if there is no obstacle).
We note that our algorithm could work under other
metrics, allow overlapping obstacles and a constant
number of speeds and orientations for the highways
without much modification.

1.1 Notations

A highway is a facility supporting faster movement
along it, which is represented by an axis aligned seg-
ment on the plane. Given an underlying metric d,
each highway h is associated with its speed v(h) > 1.
Under the time metric, a traveler moves at speed v(h)
when moving along highway h, and at the unit speed
otherwise. We consider a highway only accessible
through its endpoints'. An obstacle is a region that
a traveler is not allowed to cross, and represented by
a simple polygon. We note that a different kind of
highway that allows access through any point (called
freeway) has also been considered. Our algorithm can
be generalized to work in a hybrid environment with
both kinds of highways, but for simplicity in the ex-
position we assume that no freeway exists. In Fig-
ure 1 we can see a sample problem with four points,
four highways and an obstacle (and the diameter as
a dashed polygonal chain). In Figure 2, a new high-
way h has been located and the diameter has been
reduced.

A feasible path is a polygonal path avoiding all ob-
stacles in @. The travel time of any feasible path 7
between two points is the sum of travel time of edges
of m obtained by dividing the length of the edge in
the underlying metric by the travel speed associated
to each edge. We call a feasible path 7 connecting
s and t a shortest (travel time) path if m minimizes
the travel time between s and t. Let dy 0(s,t) be the

1This highway type has been named walkway or turnpike
[7, 4] in the literature.

77

EuroCG’09 - Brussels, Belgium

Figure 1: Example of generalized city metric

travel time of a shortest path between s and ¢ induced
by H and O .

Without loss of generality, we consider that the new
highway to build A is vertical of unit length (since we
can rotate and scale the problem to transform the
general problem into this one). The insertion of such
highway h is parameterized by the location of its bot-
tom endpoint 3. We denote the inserted highway hg
and Hg for the updated set of highways (i.e.: Hg =
HU{hg}).- Regarding § = (x,y) as a function of its
two coordinates, we define Fs ((z,y) = dy, , 0(s,1)
for any pair of points s,t € S. The diameter D is
the minimum value of the upper envelope of the set
{Fs.|s,t € S}, which is a bivariate function. We will
bound the running time of our algorithms by n and
H, the number of points in § and the complexity of
the transportation network (highways and obstacles),
respectively.

2 Framework using quasiconvex optimization

Although time metric diameter minimization prob-
lems are not LP problems in general, Cardinal
et.al. [4] proposed a novel quasi-convex optimization
method to solve a diamater minimization problem
that works under the city metric. Their method is
based the randomized parametric searching method-
ology of Chan [6] . A function f is called quasi-
convex if its lower level sets are convex (i.e.: the
set {x|f(x) < t} is convex for any value of t). It
was shown in [4] that functions F,, are quascon-
vex if O = H = (. The main tool is the following
theorem obtained from a more general result given
in[4](Theorem 5):

Theorem 1 For any given S, the point p € R? that
minimizes F(p) = max;{Fs (p)|s,t € S} can be com-
puted in O(P(n)) time using O(n) space, provided
that we can compute F(p) for any p € R? in O(P(n))
time and P(n)/n® is monotone increasing in n for a
suitable constant e > 0.

Our overall plan is to generalize this idea to our
problem. Unfortunately, such method is not directly
applicable, since quasiconvexity does not hold if one
or more prelocated highway or obstacle exists (see fig-
ure 3). Nevertheless, we can utilize Theorem 1 by

Figure 2: Updated diameter once h is inserted

Figure 3: Non-quasiconvexity of Fj; functions: loca-
tion is optimal if the new highway is inside either of
the grey rectangles.

partitioning the plane into regions such that quasi-
convexity of Fj; restricted to each region is certified.
Having local quasiconvexity, we will apply Theorem 1
for each region independently. By iterating among all
possible regions, the global optimal is obtained.

For the purpose, Theorem 1 must be adapted to
work in a restricted region:

Lemma 2 For any given S, H and a convex
region ¢, the point p € R? that minimizes
F(p) = max;{Fs.(p)|s,t € S} can be computed in
O(P(n, H)) time using O(n+ H) space, provided that
we can compute F(p) for any p € R? in O(P(n, H))
time and P(n, H)/n® is monotone increasing in n for
a suitable constant e > 0.

We apply the randomized parametric search paradigm
of Chan [6]. We omit details of the proof in this
version, since it is a direct consequence of Chan’s
method.

We say that a plane subdivision R is admissible if
for any cell c € R and s,t € S, function Fj; is qua-
siconvex in c¢. In the following, we construct of an
admisible subdivision A3 of low complexity. We can
then use an efficient algorithm (Theorem 3 given be-
low) to compute the diameter to design our algorithm
for finding the optimal location of the highway.

Theorem 3 ([3]) The city diameter of a set of points
S of n points can be computed in O(nH(log®n +
log H)) time using O(n + H) space.

The time complexity of the algorithm in the above
theorem becomes P(n, H). Lemma 2 implies that for

78

An Improved Algorithm for Inserting a Highway in a City Metric

each cell ¢ in Az, we can compute the optimal loca-
tion of (the lowest point of) newly inserted vertical
highway in O(P(n,H)) time, and we simply apply
the method for every cell of c. Thus, if the complex-
ity of Ay is Q(n, H), we can find the optimal loca-
tion of the inserted highway in O(P(n, H)Q(n, H)) =
O(Q(n, H)ynH (log” n +log H)) time. Thus, it suffices
to construct an admissible Ay and analyze Q(n, H).

3 Construction of an admissible subdivision

The shortest path map is the subdivision of a plane
into regions of points with the same combinatorial
strucure of shortest paths towards a destination (or
a source) introduced by Mitchell in [9]. In our case,
the shortest path map with the source point s € R?
(SPM (s, H,O) for short) is defined as the subdivision
of the plane into cells such that all the points in one
cell have combinatorially equivalent paths to s. We
are not only interested in combinatorial equivalence of
paths, but also the exact distance functions: for any
s € S we define fs(z,y) = dn,0(s, (z,y)) representing
the distance between a fixed point s and p = (z,y).
The following Theorem is given by Bae et al.:

Theorem 4 ([2]) SPM(s,H,0) has ©(H) com-
plexity, and can be constructed in ©(H log H) time.
Moreover, in each cell ¢ of SPM (s, H,)), the func-
tion fs is linear and its coefficients are {£1,+1/v}
(e: fo(z,y)le = krx + koy + ks where ki,ky €
{£1,+1/v} and k3 > 0).

We note that the Theorem stated in [2] consid-
ered a transportation network with freeways and ob-
stacles (no turnpikes), but it was adapted for the
generalized city metric in [3]. The computation of
SPM(s,H,0) simulates the wavefront propagation
from s: the wavefront is defined as W(J) = {p € R? |
dy,0(p,s) = ¢} for any positive 6. In particular, un-
der the L; metric, the wavefront W (d) is a set of line
segments, called wavelets. Subdivision SPM (s, H, O)
is computed by tracking the topological and geomet-
ric changes of W (4), since its vertices trace the edges
of the SPM (s, H,).

We consider the translation of a region R : let ey =
(0,)), we define R+ey = {(z,y) € R?|(z,y)+ex € R}.
We also define R + ey = {R1 +ey,... R+ ey} for a
plane subdivision R = {Ry,...R;}. That is: subdi-
vision R + ey is the result of vertically shifting down
A units subdivision R. We also define the transla-
tion of a bivariate function f(x,y) by one unit: let
f+(m7y) = f(x7y+ 1).

We define Ay, as the overlay the regions
SPM(s,H,0), SPM(s,H,0)+e1, SPM (s, H,O) +
€(1/2—1/2v) and SPM(S, H, O) + €(1/2v-1/2) for every
s € §. By definition, two points are in the same cell
of Ay if they are in the same cell of the 4n subdi-
visions. Ay can be constructed by first computing

SPM(s,H,O) for each s and then their union (to-
gether with its vertically shifted copies) by applying
the plane sweep method. Total cost of the algorithm
is O(Q(n, H)lognH) computational time. Since we
are overlaying 4n different regions each of which has
size O(H), we have Q(n, H) € O(n*H?).

Before proving admissibility of Az, we need some
observations: for any fixed s,t € S, let m1 = dy(s,t),
m2(B) = fs(B) + 1/v + f;(8) and m3(8) = fF(B) +
1/v+ fi(B8). We have:

Lemma 5 For any s,t € S, 8 € R2? we have
Fs+(8) = min{m,m(5),m3(8)}. Moreover, if
mo(B) < w1, we have fs(3) + 1/v < fF(B) (analo-
gously, if m3(8) < w1 then fF(8)+ 1/v < fs(B)).

Proof. The shortest path between s and ¢ in the up-
dated configuration either does not use the new high-
way (and then Fs; = dy(s,t)) or uses the highway
upward (Fs s = fs(8)+1/v+ f;7(B)) or the highway is
used downward (Fs ¢ = fF(8)+1/v+ fi(8)). The sec-
ond claim is proved by the fact that m; = dy(s,t) <
F3(B)+ £ (B) and thus m3(8) < m = fo(8)+1/v+
FH(8) < £F(0) + £7(B) <= f:(8) + /v < £+(9)

(analogously for 73). O

We say that two points 32, 33 € R? are opposite if
there exist s,t € S such that the shortest path of s and
t uses the new highway upward in Hg, and downward
in Hg,. We have the following:

Lemma 6 There cannot be a pair of opposite points
in the same cell of Ay.

Proof. Proof of the lemma is by contradiction: as-
sume that there exists s,t € S, cell ¢ € Ay, and two
points (B2, 83 € c that satisfy Fy.(082) = m2(82) and
Fs1(83) = m3(03). Let £ be the bisector of functions
fs and f;: by Theorem 4 and definition of Ay, both
functions are linear in ¢, (therefore ¢ must also be a
line). Also, by lemma 5, points B2 and (3 must be
on different sides of £. Without loss of generality, we
assume /¢ is parallel to line z +y = 0 and that (3 is in
the upper halfplane of the bisector, see Figure 4.

Let 81 be any point in ¢ and consider the creation
of SPM(s,H,O) in the neighborhood of f§;: since
the distance between (; and (1 + (0,1) is one unit
and both points are equidistant to s, their respective
wavelets are bound to collide at § = f5(81)+1/2. The
collision might actually not occur if a third wavelet
collides with either wavelet earlier. In either case,
we can certify that the wavelet that contains 8; will
collide with another wavelet in at most half a unit
afterwards. That collision of wavelets will generate
an edge v € SPM(s,H,O), and thus subsequently
edge v + (0,—1/2+ 1/2v) (or a refinement of it) will
also be present in Ay,. That is, all points p € ¢ that
satisfy fs > f (and in particular 83) have vertical

79

EuroCG’09 - Brussels, Belgium

.ﬂl + (0> 1)

1/2/- 1/2;;\‘

Figure 4: Proof of lemma 7: There cannot be a cell
in SPM (s, H,O) with a point more than 1/2 above
the bisector ¢ : fs — ff =0.

distance to the bisector smaller or equal than 1/2v to
L.

Consider now the value of fs(33) — fF(03): since
both functions are linear of coefficients in {£1,+1/v}
and its distance to ¢ is less than 1/2v, we have
|fs(B3) — f+(B3)] < 2/2v < 1/v, but that contradicts
second claim of lemma 5 for (3. O

Lemma 7 Subdivision Ay is admissible.

Proof. Combining the first claim of lemma 5 with
lemma 6 we obtain that Fs; is either Fs.(8) =
min{m,m2(8)} or Fs.(8) = min{m,m3(8)} for each
¢ € Ay. By Theorem 4, both mo and 73 are linear
(and 7y is a constant), thus the lemma follows. (]

We combine all results to obtain the following:

Theorem 8 The optimal location of a new turnpike
can be computed in O(n®H?(log? n+log H)) time us-
ing O(nH) space.

Proof. The algorithm computes and makes a trape-
zoidal subdivision of Ax. We can then use lemma
2 in each generated cell ¢ € Ay (where the set of
lemma 2 to find its optimal. For each cell we spend
O(nH (log? n +log H)) time. Space needed can be re-
duced to O(nH) since an explicit construction of Ay
is not needed.

O

4 Concluding Remarks

The study of the complexity Ay is an interesting
problem: we used a naive O(n?H?) bound to obtain
the upper bound of our algorithms. Under the Eu-
clidean metric, there are examples in which the bound

is tight, but the same examples lead to an Q(n?+ H?)
lower bound in the Manhattan metric.

Also, it would be interesting to find a subdivi-
sion that preserves quasiconvexity of lower complexity
than A;. Although only quasiconvexity is needed to
use Theorem 1, we proved a much stronger property
of F;; functions, thus such relaxation seems possible.

Acknowledgments

The authors would like to thank J. S. B. Mitchell for help-
ful discussions on the complexity of Az .

References

[1] H.-K. Ahn, H. Alt, T. Asano, S. W. Bae, P. Brass,
O. Cheong, C. Knauer, H.-S. Na, C.-S. Shin, and
A. Wolff. Constructing optimal highways. In J. Gud-
mundsson and B. Jay, editors, Thirteenth Computing:
The Australasian Theory Symposium (CATS2007),
volume 65 of CRPIT, pages 714, Ballarat, Australia,
2007. ACS.

[2] S. W. Bae, J.-H. Kim, and K.-Y. Chwa. Optimal con-
struction of the city Voronoi diagram. In Proc. 17th
Annu. Internat. Sympos. Algorithms Comput., volume
4288 of LNCS, pages 183-192, 2006.

[3] S. W.Bae, M. Korman, and T. Tokuyama. All farthest
neighbors in the presence of highways and obstacles.
In Proc. 3rd Intl. Workshop on Algorithms and Com-
putation (WALCOM), to appear., 2009.

[4] J. Cardinal, S. Collette, F. Hurtado, S. Langerman,
and B. Palop. Optimal location of transportation de-
vices. Comput. Geom. Theory Appl., 41(3):219-229,
2008.

[6] J. Cardinal and S. Langerman. Min-max-min geo-
metric facility location problems. In Proc. 19th Euro.
Workshop on Comput. Geom., 2006.

[6] T. M. Chan. An optimal randomized algorithm for
maximum tukey depth. In SODA ’04: Proceedings of
the fifteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 430-436, Philadelphia, PA,
USA, 2004. Society for Industrial and Applied Math-
ematics.

[7] M. Korman and T. Tokuyama. Optimal insertion of a
segment highway in a city metric. In Proc. 14th Annu.
Computing and Combinatorics (COCOON), 2008.

[8] M. Korman and T. Tokuyama. Optimal insertion of a
segment highway in a city metric. In Proc. 21st Euro.
Workshop on Comput. Geom., 2008.

[9] J. S. B. Mitchell. L; shortest paths among polygonal
obstacles in the plane. Algorithmica, 8:55-88, 1992.

80

Frechet Distance in Weighted Regions

Fréchet Distance in Weighted Regions *

Yam Ki Cheung’ and Ovidiu Daescuf

Abstract

We discuss the Fréchet distance problem for two
polygonal curves in weighted planar subdivisions,
where the distance between two points is the weighted
length of the line segment joining the points. We give
an algorithm that computes an approximate distance
that is within an (1 + €)-factor from the Fréchet dis-
tance between the curves.

1 Introduction

Measuring similarity between curves is a fundamental
problem that appears in various applications, includ-
ing computer graphics and computer vision, pattern
recognition, robotics, and structural biology. One
common choice for measuring the similarity between
curves is the Fréchet distance, introduced by Fréchet
in 1906 [9].

The Fréchet distance 6z for two parametric curves
P,Q: [0,1] — R? is defined as

or(P,Q)= inf sup S(P(a(r)), Q(5(r))),

@,3:[0,1]—=[0,1] r¢[0,1)

where o« and [range over all continuous non-
decreasing functions with «(0) = 8(0) = 0, a(l) =
B(1) = 1, P(a(r)) and Q(B(r)) are two points on P
and @ respectively, S is a distance metric between
points, and d > 0 is the dimension of the problem.
The Fréchet distance is described intuitively by a man
walking a dog on a leash. The man follows a curve
(path), and the dog follows another path. Both can
control their speed but backtracking is not allowed.
The Fréchet distance between the curves is the length
of the shortest leash that is sufficient for the man and
the dog to walk their paths from start to end.

We use P(s)Q(t) to denote the leash (line segment,
also called link) with end points P(s) and P(t), where
s,t € [0,1]. We call the functions a, 8 reparameter-
izations. We say that a pair of reparameterizations
« and 3 defines a matching between P and @ or «
and [define a monotone walk from leash P(0)Q(0)
to leash P(1)Q(1).

*This work was supported in part by NSF award CCF-
0635013.

fDepartment of Computer Science, University of
Texas at Dallas, Richardson, TX 75080, USA, Email:
{ykcheung,daescu}@utdallas.edu.

PO)

P(1)

0O(0)

Figure 1: An example of the Fréchet distance problem
in weighted regions.

A weighted subdivision is a partition of the plane
into polygonal regions, with each region R; € R hav-
ing associated a positive integer weight w;. Given a
line segment st in R, we define the weighted length
S(st) of st, also called the weighted distance between
sand t, as S(st) = Zstﬁé@ w; *d;(st), where d;(st)
is the Euclidean length of st within region R;.

In this paper, we study the Fréchet distance prob-
lem in weighted regions in the plane: Given a weighted
subdivision R = {Ry, Ra,..., Ry} with a total of n
vertices and two parameterized polygonal chains P
and @ in R, find the (weighted) Fréchet distance be-
tween P and @, where the length of the leash is de-
fined as the weighted distance between the end points

/

of the leash. That is, S(P(s),Q(t)) = Y i, w; *
d;(P(s)Q(t)), where d;(P(s)Q(t)) is the Euclidean
length of P(s)Q(t) within region R;. We assume that
no edges of the polygonal curves cross boundaries of
R. That is, if a curve crosses a boundary of R, the cor-
responding intersection between the curve and R is a
vertex of the curve. Without loss of generality, we as-
sume R is triangulated and P and @ lie on boundaries
of weighted regions (see Fig. 1 as an illustration).

Results. We give an algorithm that computes
an approximate distance that is within an (1 + €)-
factor from the Fréchet distance between the curves.
Our algorithm discretizes the problem by placing
Steiner points along the edges of R. The running
time of the algorithm is O(N*log N), where N =
(1/€)log(1/e)nlogn is the number of Steiner points
used.

Previous Work. Previous work on the Fréchet
distance assumes an unweighted environment and can
be divided into two categories, depending on the dis-

81

EuroCG’09 - Brussels, Belgium

tance metric used.

In the first category, the distance between two
points is the Euclidean distance. In other words,
the leash is always a line segment. Fréchet distances
in this category are also referred to as non-geodesic
Fréchet distances. Alt and Godau [2] give a fun-
damental study on the computational properties of
the Fréchet distance. They present an algorithm
that computes the exact Fréchet distance between two
polygonal curves in O(pglogpq) time, where p and ¢
are the number of vertices of P and @), respectively.
Either and Mannila [8] show how to find the dis-
crete Fréchet distance between two polygonal curves.
Rote [11] gives algorithms for finding the Fréchet dis-
tance between piecewise smooth curves. Buchin et
al. [4] study the Fréchet distance between polygons.
Wang [13] presents the first exact, polynomial-time al-
gorithm to compute a partial matching between two
polygonal curves via Fréchet distance.

In the second category, the distance between two
points is the geodesic distance. Fréchet distances in
this category are also referred to as geodesic Fréchet
distances. Maheshwari and Yi [10] study the case in
which the curves lie on a convex polyhedron. Cook
and Wenk [6] show how to compute the Fréchet dis-
tance between two curves when the leash is con-
strained inside a polygon or when polygonal obstacles
are present between curves. Chambers et al. [5] give
a polynomial-time algorithm to compute the homo-
topic Fréchet distance between two polygonal curves
in the presence of obstacles. The homotopic Fréchet
distance is the Fréchet distance with an additional
continuity requirement: the leash is not allowed to
switch discontinuously, e.g. jump over obstacles.

2 Discretization Using Steiner Points

To approximate 0p (P, @), we discretize the problem
by placing Steiner points along edges of R.

For each vertex v € R, the vertex radius for v is de-
fined as r(v) = (eB)/(NWmaqz(v)), where € is a positive
real number defining the quality of the approximation,
B is a lower bound on §z(P,Q), and w,q.(v) is the
maximum weight among all weighted regions incident
to v. The disk of radius r(v) centered at v defines
the vertex vicinity of v. No Steiner points are placed
inside the vertex vicinity of v. B can be computed
in O(pqlog(pq)) time using the standard (unweighted
case) continuous Fréchet distance algorithm described
in [2], where p and ¢ are the number of vertices of P
and @, respectively.

We apply a discretization scheme similar to that
in [1] (other schemes, extending from previous work,
are also possible) to place Steiner points along edges
forming a geometric progression. For any point v
on an edge e in R, let E(v) be the set of edges
in R not incident to v and let d(v) be the min-

imum distance between v and edges in E(v). It
follows from [1] that the number of Steiner points
placed on an edge is O(C(e)1/elog 1/€), where C(e) =
O(dl(ee‘) log \/%)’ le| is the Euclidean length of
e, and d(e) = sup{d(v)|v € e}. Let N denote the to-
tal number of Steiner points, including the vertices of
R. We have N = O((1/e)log(1/e)nlogn). We refer
to a line segment bounded by two consecutive Steiner
points as a Steiner edge. An hourglass is the union of
all links intersecting with the same sequence of Steiner
edges in the same order. Let H be an hourglass de-
fined by a sequence of Steiner edges {e1,ea,..., ek},
where e; € P and e € Q).

Lemma 1 Let ! and I’ be two segments in H. Then,
S() < (1+2€)S(l') + 2¢B.

Proof. Omitted. |

Let Iy be an arbitrary segment in H, with end-
points on P and Q). Let « and (8 be two reparametriza-
tions that define a matching between P and Q.
Let J = {Hy,Hs,...,Hy} be the set of hourglasses
that are traversed by the leash P(a(r))Q(8(r)).
For an hourglass H € J, let Iy = {ele =
P(a(r)Q(B(r)),r € [0,1],e € H}. Let H(a,3) be
the segment in Iy with the largest weighted length.
That is, S(H(a, 8)) = maxees, S(e). Let d(a, 5) =
sup, <oy S(P(a(r)), Q(B(r)):

Lemma 2 |maxpes S(lg) — 6(a, B)| < 4ed(a, B).

Proof. Omitted. m]
We say that 0(J) = maxgesS(ly) is a 4e
approximation of d(«a, 3). Given a sequence of hour-
glasses J = {H1, Ho, ..., Hy}, we call J legal if there
exist two reparametrizations «, 3 that define a leash
traversing the same sequence of hourglasses as J.

Lemma 3 There exists a legal sequence of hour-
glasses J such that 6(.J) satisfies [6(J) — 6p (P, Q)] <

4edp(P,Q), that is, 6(J) is a 4e-approximation of
5F(P7 Q)

Proof. (Sketch) Let @&, [be the optimal
reparametrizations that give the Fréchet distance be-
tween P and (). Let J be the sequence of hour-
glasses traversed by the leash defined by & and p.
Applying Lemma 2, we have, |6(J) — d(d&,)| =
0(J) = 0r(P, Q)| < 4ed(&, B) = 4edp (P, Q). o

3 Fréchet Distance Between Two Polygonal
Chains

We attack the problem in the parameter space D =
[0,1]2, where a leash P(s)Q(t) is associated to a point
(s,t) € D. We refer to (s,t) € D as the dual point of
the leash P(s)Q(t).

82

Frechet Distance in Weighted Regions

Lemma 4 All leashes through a Steiner point v cor-
respond to a curve in D, with equation C,, : st+c1s+
cot + c3 = 0, where c¢q, co, and c3 are constants.

Proof. Let v = (a,b), P(0) = (x1,y1), P(1) =
(r2,92), Q(0) = (3,¥3), Q(1) = (24,y4). We have

P(s) = (z1 + (z2 — 71)s, 91 + (y2 — v1)5),

Q(t) = (3 + (x4 — z3)t,y3 + (ya — y3)t),

and P(s)Q(t) y — (i + (W2 — y1)s) =
1+ (y2—y1)s—(y: Ya—1ysz)t
Gt (¢ (01 (@ 21)s)

Since P(s)Q(t) passes through v, we obtain that
(b—y1—(y2—y1)s)(v1 —x3+(v2—71)s— (T2 —T3)t)) =
(a—x1—(z2—21)8)(y1 — Y3+ (y2 — y1)s — (ya — y3)1),
and thus we have

Cy:st+c1s+ cot+c3 =0,

where ¢y, co, and c3 are constants. O

We call the curve C, the dual curve of Steiner
point v. Next we define the relative position of two
leashes with respect to a Steiner point v. Given two
leashes P(s)Q(t) and P(s")Q(t'), we say they are on
the same side of v if and only if there exists two con-
tinuous functions o', 8" : [0,1] — [0,1], such that
o 0) = s, &'(1) = ¢, §(0) =t /(1) =+t and
v ¢ P(a(r)Q(F(r)),¥r € [0,1]. Note that o', 3" are
not necessarily monotone. Intuitively, two leashes are
on the same side of v if there exists a walk from one
leash to the other one without crossing v, i.e. one
leash can reach the other one by sweeping its end
points on their respective curves without crossing v.

Lemma 5 C, divides D into two partitions, each
partition corresponding to all links on the same side
of point v.

Proof. Given two links P(s)Q(t) and P(s")Q(t'), since
there is a one-to-one correspondence between all pos-
sible walks from P(s)Q(t) to P(s")Q(t') and all paths
from (s,t) to (¢',¢') in D, if (s,t), (s',t') are on dif-
ferent sides of C,, all paths between (s,t) and (s',t’)
must pass C,, at least once. That is, no walk exists
between the two links without crossing v. O

Hence, we can partition D by the dual curves of the
Steiner points, such that each cell corresponds to an
hourglass. Using the algorithm in [3], the partition
can be computed in O(N log N + k) time and O(N +
k) space, where N = 1/elog(1/e)nlogn is the total
number of Steiner points and k is the number of cells,
which is O(N?) in the worst case. Let A denote the
partition.

The sequence of cells traversed by a monotone path
in D corresponds to a legal sequence of hourglasses
traversed by a leash following a match of P and @,
and vice versa. The Fréchet distance between P and
() can then be approximated as follows:

D D’

Figure 2: An example of the decomposition of D.

1. Place Steiner points as described earlier.

2. Partition D by the dual curves of the Steiner
points.

3. For each cell Z, choose an arbitrary leash ! and
assign S(I) as the weight of the cell.

4. Find a monotone path T" in D, from its left bot-
tom corner, (0,0), to its top right corner, (1,1),
such that the maximum weight of the cells tra-
versed by T is minimized.

By Lemma 3 the maximum weight of the cells tra-
versed by T is a 4e-approximation of the Fréchet dis-
tance between P and Q.

To find an optimal path T in D, we decompose D
by extending a horizontal as well as a vertical line
from every vertex until it reaches the boundary of D.
See Fig. 2 for an illustration. Let the new subdivision
be D’.

Lemma 6 Given an edge e in D', let p be a point
on e and let T}, be an arbitrary monotone path from
(0,0), i.e. the bottom left corner of D', to p. Then,
there exists a monotone path from (0,0) to any point
on e with the same cost as T},.

Proof. We add e to D. In D, we extend a vertical
line as well as a horizontal line from the end points of
e. Let Ly, Lo be the two horizontal lines which define
a horizontal slab and let Lz, Ly be the two vertical
lines which define a vertical slab. Obviously, T}, has
the same cost in D as it has in D’. If T, enters the
horizontal slab before it enters the vertical slab, let v
be the entry point. Let S = {s1,s2,...,5,} be the
set of curves on edges of D, which are bounded by
the horizontal slab and traversed by T,. Since the
horizontal slab does not contain any vertex of D in
its interior, no two curves in S intersect with each
other. Hence we can construct a monotone path from
v to any point on e that traverses S, i.e. we can
construct a monotone path from (0,0) to any point
on e such that it has the same cost as T},. See Fig. 3
for an illustration. The same argument holds true if
T, enters the vertical slab first. O

83

EuroCG’09 - Brussels, Belgium

L3 Lg

(0.0

Figure 3: There exists a monotone path from (0,0) to
every point in e, which has the same cost as T,

Thus, given an optimal monotone path 7, from
(0,0) to an arbitrary point p € e, we can construct a
monotone path from (0,0) to any point in e, which
has the same cost as T}, and is also optimal. To find
the optimal monotone path from (0,0) to (1,1), we
construct a directed graph having the (open) edges
as well as the vertices of D’ as vertices. In the graph,
a direct edge is added from a node v; to a node wvo
if, in D’, v; and vy share a common cell and there
exists a monotone path from v; to vs. The shorst
path can be found by running Dijkstra’s algorithm
on the directed graph.

Time complexity: The complexity of D’ is N*, where
N = (1/e)log(1/€e)nlogn is the number of Steiner
points used, since each cell in D’ has O(1) edges and
vertices, and thus each cell contributes O(1) edges
to the directed graph. Then, the directed graph has
O(N*) vertices and O(N*) edges and Dijkstra’s algo-
rithm takes O(N*log N) time.

References

[1] L. Aleksandrov, A. A. Maheshwari, and J.R. Sack.
Approximation algorithms for geometric shortest
path problems. In Proc. 82nd Annual ACM Sympo-
sium on Theory of Computing, pp. 286-295, 2000.

[2] H. Alt and M. Godau. Computation the Fréchet
distance between two polygonal curves. Interna-
tional Journal of Computational Geometry and Ap-

plications, 5:75-91, 1995.

[3] N.M. Amato, M.T. Goodrich, and E.A. Ramos.
Computing the arrangement of curve segments:
Divide-and-conquer algorithms via sampling. In
Proc. 11th Annual CAM-SIAM Symposium on Dis-
crete Algorithms, pp. 705-706, 2000.

[4] K. Buchin, M. Buchin and C. Wenk. Comput-
ing the Fréchet distance between simple polygons

in polynomial time. In Proc. 22rd Symposium on
Computational Geometry, pp. 80-87, 2006.

[5] E.W. Chambers, E. Coline De Verdi¢re, J. Erick-
son, S. Lazard, F. Lazarus and S. Thite. Walking
your dog in the woods in polynomial time. In. Proc.
24th Annual ACM Symposium on Computational
Geometry, pp- 101-109, 2008.

[6] A.F. Cook IV and C. Wenk. Geodesic Fréchet Dis-
tance Inside A Simple polygon. In Proc. 25th In-

ternational Symposium on Theoretical Aspects of
Computer Science, pp. 193-204, 2008.

[7] O. Daescu and J. Palmer. Minimum Separation in
Weighted Subdivisions. To appear in International
Journal of Computational Geometry and Applica-
tions

[8] T. Eiter and H. Mannila. Computing discrete
Fréchet distance. Technical Report CD-TR 94/64,
Information Systems Department, Technical Uni-
versity of Vienna, 1994.

[9] M. Fréchet. Sur quelques points du calcul fone-
tionnel. Rendiconti del Circolo Mathematico di
Palermo, 22:1-74, 1906.

[10] A. Maheshwari and J. Yi. On computing Fréchet
distance of two paths on a convex polyhedron. In
Proc. 21st European Workshop on computational
Geometry, pp. 41-44, 2005.

[11] G. Rote. Computing the Fréchet distance be-
tween piecewise smooth curves. Technical Report,
ECGTR-241108-01, 2005.

[12] G.T. Toussaint. Solving geometric problems with
the 'rotating calipers. In Proc. 2nd IEEE Mediter-
ranean FElectrotechnical Conference (MELECON
'83), pp. A10.02/1-4, 1983.

[13] K. Buchin, M. Buchin, and Y. Wang. Exact Par-
tial Curve Matching under the Fréchet Distance. To
appear In Proc. ACM-SIAM Symposium on Dis-
crete Algorithms, 2009.

84

Safe Routes on a Street Graph with Minimum Power Transmission Range

Safe Routes on a Street Graph with Minimum Power Transmission
Range

Manuel Abellanas*t

Abstract

Let S be a set of n points in the plane (antennas).
An object is said to be 2-covered with range r if every
point of such object is interior to at least two discs
(not necessarily the same) centered at S of radius
r. The following problem is considered in this pa-
per: given a set S of n antennas and a planar geomet-
ric graph G = (N, E), calculate the minimum power
transmission range of S so that a 2-covered path be-
tween two given nodes of G exists. Is is described an
algorithm to solve this problem in two phases. In the
first phase (preprocessing phase), graph G is trans-
formed into a weighted graph G,, (using the second
order Voronoi diagram of S) and then a minimum
spanning tree of G, T, is found. This phase takes
O(|E|xn), |E| > logn, time. In the second phase (so-
lution phase), the minimum power transmission range
of S and a 2-covered path are calculated using T,,. Re-
garding time complexity, this second phase is linear on
the number of edges of T,.

1 Introduction and Related Works

Let S be a set of n points in the plane that represent
the location of n antennas (or any device able to send
or receive some sort of signal). Suppose all antennas
have the same power transmission range r € R™ that
is variable. The distance between a point ¢ and a set
S of points is the shortest distance between ¢ and ev-
ery point of S. The minimum range of the antennas so
that S covers ¢ is exactly the distance between ¢ and
S. A point covered by two or more antennas is said
to be 2-covered by S. The concept of 2-covering is
useful to assure that the points remain covered when
one antenna fails. Let D be the set of discs centered
at the antennas of S of radius . Each nonempty in-
tersection between two discs of D is called a lens. It

*Facultad de Informatica, Universidad Politécnica de
Madrid, mabellanas@fi.upm.es

TCo-supported by Project Consolider Ingenio 2010 i-MATH
C3-0159 and MICINN Project MTM2008-05043

fDepartamento de Mateméatica & CEOC, Universidade de
Aveiro, {leslie,ipmatos}@ua.pt

§Supported by CEOC through Programa POCTI, FCT, co-
financed by EC fund FEDER

9Supported by a FCT fellowship, grant
SFRH/BD/28652/2006 and by CEOC through Programa
POCTI, FCT, co-financed by EC fund FEDER

Antonio L. Bajuelos®$

Inés Matosh ¥

is easy to see that 2-covered regions result from the
union of these lenses. Therefore, a point is 2-covered
by S if it belongs to a lens (see Figure 1). The an-
tennas’ covering range, r, depends directly on their
transmission power which, on its turn, is responsible
for the costs associated to the service they provide.
For that reason, it is important to minimize the value
of r.

Figure 1: Set S is the set {s1,$2,...,511}. Graph’s
edges that are 2-covered by the antennas of S are
shown in a heavier trace.

Consider now a connected geometric planar graph
G together with set S. Suppose that the edges of G
represent streets/roads and its nodes represent reach-
able locations using those streets (see Figure 1). A
path on G using only the edges that are 2-covered by
S is called a 2-covered path or a 2-path. Given two
nodes n; and n; of G, our main goal is to compute
the minimum power transmission range so that there
is a 2-path on G connecting n; and n;.

RELATED WORKS: in [1] the authors study a
problem equivalent to the one here proposed and
other multi-parametric optimization problems for
1-covering. In [2], a subset of a given set of discs
with variable radii whose costs depend on their radii
is computed, as well as the same subset but with fixed
costs to cover a given line segment at minimum cost.

This paper is structured as follows. The next sec-
tion is divided in two subsections. In the first sub-
section, graph G is preprocessed and converted into

85

EuroCG’09 - Brussels, Belgium

a weighted graph GG,,. In this subsection, a minimum
spanning tree (MST) of G,, is also found. Such MST
is later used in the second subsection to calculate the
minimum power transmission range of S to guarantee
the existence of a 2-path between two nodes of G. Fi-
nally, conclusions and some remarks are presented in
Section 3 .

2 Minimum 2-Covering of a Path between two
nodes of a Street Graph

Let S be a set of n antennas. The second order
Voronoi diagram of S, VDy(.S), divides the plane into
several regions by grouping points that share the same
two closest antennas [3]. This proximity structure
is naturally related to this problem since a point is
2-covered if it is interior to the lens defined by its
two closest antennas. For this reason, a point ¢ is
2-covered if the power transmission range of the two
closest antennas to ¢ is enough to reach ¢. The mini-
mum power transmission range of S that 2-covers an
object z is denoted by MRg(x).

Let G = (N, E) be a connected geometric planar
graph whose nodes represent locations and its edges
represent roads/streets that connect such locations.
Without loss of generality, it is assumed that |E| >
logn. Given two nodes n; and n; of G, the smallest
range of S which ensures the existence of a 2-path
between n; and n; on G is denoted by MR ¢(n4, n;).
To simplify the notation, it can also be denoted by
MRg(ni, n;) if G is clear from the context.

2.1 First Phase: Preprocess

Figure 2: The minimum power transmission range r
of S to 2-cover eyez is r = d(c, s3) = d(c, s4). VD2(S5)
is shown in a dashed trace.

Given a line segment e, MRg(e) is calculated us-
ing the intersection points between e and VD3(S),
I, = {e} N VDy(S). It is easy to see that the mini-
mum power transmission range needed to 2-cover ev-
ery point of I, and the extreme points of e is MRg(e)
(see Figure 2).

The procedure explained in this subsection acts as
a preprocess that transforms graph G into weighted
graph G,,. To make this transformation, MRg(e) is

assigned as the weight of each edge e of G (see Figure
3).

Proposition 1 Let G = (N, E) be a graph and S a
set of n antennas. The MRg(e) for every edge e € F
can be calculated in O(|E| x n) time.

Proof. Computing VDy(S) takes O(nlogn) since
there are n antennas [6]. Then using VDy(S), it is pos-
sible to find the set I, = {e} N VD2(S) for every edge
e € Fin O(nlogn + |E| x n) time. Next there is the
need to add the extreme points of e to the set I.. For
each intersection point p € I., MRg(p) is calculated
in constant time using VD3 (S) as it is the distance
between p and its second closest antenna. Therefore,
calculating MRg(e) = max{MRg(p),Vp € I} is a lin-

Figure 3: Set S of eleven antennas represented by
dots. VD3(S) is shown in a dashed trace. (a) Graph
G whose nodes are represented by squares. (b) The
graph’s edge connecting n; and n; has weight 38
which is the minimum power transmission range of
S to 2-cover such edge.

86

Safe Routes on a Street Graph with Minimum Power Transmission Range

ear procedure for each edge e. As it is supposed that
|E| > logn, MRg(e) for every edge e € E can be
computed in O(|E| x n) time. O

Let us remark that a minimum spanning tree of G,
T, can be found in linear time using an algorithm by
Matsui [4] since G, is a planar graph. As it is shown
in the next subsection, T, eases the calculations since
it stores important information concerning the anten-
nas’ arrangement in relation to G,,. To summarize,
the algorithm can be described as follows.

ALGORITHM: PREPROCESSING PHASE

In: Set S of n antennas and a street graph G
Out: Graph Gy, and Ty,, a MST of G,

1. Compute VDy(S), the Second Order
Voronoi Diagram of S.

2. Convert G into weighted graph G,,:
For every e € G do

(a) Calculate MRg(e)
(b) w(e) — MRs(e)

3. Find Ty, a MST of Go.

The next result is a direct consequence of Proposi-
tion 1.

Theorem 2 Given a set S of n antennas and graph
G = (N, E), computing a weighted graph G,, and a
MST of G, can be done in O(|E| X n) time.

2.2 Second Phase: Solution

Given two nodes n; and n; of G, the algo-
rithm in this subsection shows how to calculate
MRs,a,, (ni,n;) and how to find a 2-covered path on
G, connecting n; and n;.

Let P be a 2-covered path between two nodes on
G- It is easy to see that the minimum power trans-
mission range that ensures the existence of P is given
by the weight of the heaviest edge of P. The next
property shows that it is only necessary to consider
the edges of a MST of G, to find a 2-path between
two given nodes of G.

Proposition 3 Let G,, be an edge-weighted con-
nected graph. For any path P on G, let us consider
the weight of P as the weight of its heaviest edge.
Then, for every pair of nodes of G,,, the path con-
necting them on a MST of G, is a minimum weight
path between such pair.

Proof. Let G, be an edge-weighted connected graph
and Ty, a minimum spanning tree (MST) of G,,. Sup-
pose that P is the only path on T, connecting nodes

n; and n; and e is its heaviest edge. Consequently,
P has weight w(e). Now suppose that path P* on
Gy is a minimum weight path connecting n; and n;.
Its weight is given by e*, its heaviest edge, and so
w(ex) < w(e). Since P is heavier than P*, the edge
e is not part of P*. If paths P and P* are united,
then a cycle is created. That cycle contains e which
clearly is its heaviest edge. But that contradicts the
hypothesis that e is an edge of a MST of G,,. There-
fore, a minimum weight path between two nodes of
G, is the path on T, connecting those nodes. O

Figure 4: (a) A MST of a weighted graph is shown in a
solid trace. (b) The path connecting n; and ng on the
tree only exists if the antennas’ power transmission
range is at least d(ss,n1) = d(s109,n1) = 38.

It is now clear that a 2-path between two nodes on
a weighted graph with minimum power transmission
range can be computed using a MST of such graph
(see Figure 4(a)). Working with a MST is easier since
a path between two nodes is unique. Follows the core
of the algorithm to find a 2-path connecting two nodes
of G,, with minimum range, taking advantage of a

87

EuroCG’09 - Brussels, Belgium

MST of Gy

ALGORITHM: SOLUTION PHASE
In: T, a MST of G,
Out: P, a 2-covered path and MRg ¢, (i, 75)

1. Use the algorithm DFS [5] to find a path
P on T, between n; and n;.

2. MRg. g, (ni,n;) < max{w(e) : Ve € P}.

In Figure 4(b) there is an example of a path on
a MST connecting nodes n; and ng with minimum
power transmission range. If all the antennas have
range r = max{31,32,28,38} = 38, the path is
2-covered with minimum power transmission range.
The largest range is the one needed to 2-cover ni. It
is given by the distance between n; and sg (or sig),
such distance is exactly MRgs ¢, (71, ns).

Theorem 4 Given a set S of n antennas, let n; and
n; be two nodes of graph G, and T,, = (N, B) a MST
of G. Then a 2-covered path between n; and n; on
G, with range MRg ¢, (ni,nj) can be computed on
Ty in O(|B|) time.

3 Concluding Remarks

The concept of 2-covering was introduced in this pa-
per, as well as a related problem: calculating the
minimum power transmission range to ensure the ex-
istence of a 2-covered path between two nodes of a
graph. Given a set S of n antennas, the solution to
this problem is divided in two phases. In the first
phase, graph G = (N, E) is converted into a weighted
graph using a O(|E| x n), |E| > log n, time algorithm.
In the second phase, a 2-path between two nodes of G
is found, as well as the minimum power transmission
range of S to guarantee the existence of such path.
This last algorithm is linear on the number of edges
of a minimum spanning tree of the weighted graph.

References

[1] M. Abellanas and G. Hernandez. Optimizacion de
Rutas de FEvacuacion. Proc. of the XII Encuentros de
Geometria Computacional, 2007, Valladolid, Spain,
273-280.

[2] A. Agnetis, E. Grande, P.B. Mirchandani, P.B. and
A. Pacifici. Covering a Line Segment with Variable
Radius Discs. To appear on Computers and Opera-
tions Research, 36, 5, 2009, 1423-1436.

[3] F. Aurenhammer and R. Klein. Voronoi diagrams.
In J.-R. Sack, J. Urrutia (eds.), Handbook of Compu-
tational Geometry, Elsevier, 2000, Amsterdam, 201—
290.

[4] T. Matsui. The minimum spanning tree problem on
a planar graph. Discrete Applied Mathematicss, 58,
1, 1995, 91-94.

[6] S.-W. Golomb and L.D. Baumert. Backtrack Program-
ming. Journal of ACM, 12, 4, 1965, 516-524.

[6] D.T. Lee. On k-Nearest Neighbor Voronoi Diagrams
in the Plane. IEEE Transactions on Computers, 31,
6, 1982, 478-487.

88

Line Segment Facility Location in Weighted Regions

Line Segment Facility Location in Weighted Regions *

Yam Ki Cheung’ and Ovidiu Daescuf

1 Introduction

In this paper we consider a geometric optimization
problem that we call the line segment facility loca-
tion in weighted regions. We study the problem in
a weighted subdivision R = {R1, Ra, ..., Ry} of the
plane with n vertices, with each region R; € R hav-
ing associated a positive integer weight w;. Without
loss of generality, we assume that R is triangulated.
The weighted length of a segment st within a region
R; € R is defined as wj|st|, where |st| is the Eu-
clidean length of st. We denote by S(st) the weighted
length of a segment st € R. The weighted length of
st S(st) = Zstjﬂ w; * d;j(st), where d;(st) is the
Euclidean length of st within region R;.

The problem is defined as follows: Given a set of
I points P = {s1,82,...,51} € R, find a facility L,
which is a line segment, such that each point in P is
connected to L via an orthogonal link and some cost
C(L) associated with the facility location is minimized
(see Fig. 1 for an example). We consider two versions
of this problem, depending on how C(L) is defined.
For the first version (Py), C(L) = S(L). That is,
we want to minimize the weighted length of L. For
the second version (P,), C(L) = 2221 S(L;) + S(L),
where L; is the orthogonal link from s; to L. That is,
we want to minimize the sum of weighted length of
all orthogonal links and L.

The facility location problem is a well-studied prob-
lem in operations research and computer science liter-
ature [5, 6, 7, 3]. The problem has many formulations,
resulting in various definitions for the objective func-
tion. In our formulation, there is a cost for opening a
facility and also for constructing orthogonal links that
connect customers to this facility. The goal of P, is to
minimize the cost of building the line facility, while P
takes the cost of building the facility as well as the cost
of building orthogonal links into account. One may
imagine that the facility L is an oil pipeline and the
points in P are oil wells. The oil field is divided into
weighted regions based on its characteristics (cost of
digging, ownership rights, etc.) From each well, a spur
pipeline is to be connected directly to L, in straight
line. Given the x- and y-coordinates of the wells,
the goal is to find the optimal location for the main

*This work was supported in part by NSF award CCF-
0635013.

fDepartment of Computer Science, University of
Texas at Dallas, Richardson, TX 75080, USA, Email:
{ykcheung,daescu}@utdallas.edu.

Figure 1: A line facility L and the orthogonal links
from P = {s1, $2,83} to L

pipeline that minimizes the total cost. In unweighted
environment, Megiddo and Tamir [7] solved the prob-
lem of minimizing the sum of the Euclidean length of
orthogonal links more than two decades ago. They
showed that the optimal line facility can be found in
O(n?logn) time by proving that it must pass through
at least two of the points in P. Later, Imai et. al.
[5] proved that in L;-metric the optimal solution can
be computed in linear time. Cheung and Daescu [3]
showed that the weighted version of this problem, i.e.
C(L) = Zézl S(L;), can be solved by dividing the
problem into a number (O(I?n?) in worst case) of 1-
variable subproblems. The objective function of each
subproblem has the form

l M l

SUS(L) = VIFmE(Y — L3 e b)

me —mj m2+1

i=1 j=1

for some constants a;, b;, ¢;, C, where [is the number
of points in P, n is the number of vertices of R and
m, is the slope of orthogonal links.

The proposed problem is also closely related to the
optimal weighted link problem, in which the goal is to
minimize the weighted length of a line segment st con-
necting two given regions, R, and Ry, of a weighted
subdivision R. In [2], it has been proven that the
problem to minimize the cost S(st) = Zstj#@ wj *
dj(st) can be reduced to O(n?) global optimization
problems, each of which asks to minimize a 2-variable
function over a convex domain. In [4], it has been
shown that to minimize the objective function S(st),
st must pass through a vertex of R.

Results: For P;, we show that the objective function
C(L) can be expressed in the form of a summation of
a number of fractional terms, that resembles those

89

EuroCG’09 - Brussels, Belgium

in [2, 4]. The problem can be reduced to a number of
(O(I?n?) in worst case) 1-variable optimization prob-
lems, which can be solved by either computing exact
roots of polynomials or by approximation algorithms.
Using point-line duality transforms the feasible do-
main for each subproblem is an arc or a line segment
on the dual plane. Then, we show that P, can be
solved in a similar fashion.

2 P;: minimize the weighted length of L

In this section, we consider the problem of minimiz-
ing the weighted length of L, i.e. C(L) = S(L), such
that the points in P can access L via orthogonal links.
We first derive the general objective function. Then,
we show that this optimization problem can be re-
duced to a number of 1-variable subproblems and give
a prune-and-search approximation algorithm for solv-
ing the subproblem.

2.1 The rotating calipers

Obviously, we want to set the line facility L as short
as possible, while each point in P is able to connect to
L via orthogonal links. Let CH(P) denote the con-
vex hull of P. A line e is a line of support of CH(P)
if e is tangent to CH(P) The length of L is mini-
mized when L is a segment bounded by two parallel
lines of support enclosing C'H(P) and orthogonal to
L. See Fig. 2 for an illustration. A pair of vertices of
CH(P), {pi,p;}, is an antipodal pair if it admits two
parallel lines of support enclosing C H(P). Applying
the rotating calipers procedure [8], we can generate
all possible antipodal pairs (h pairs in the worst case)
for O(h) slope intervals in O(h) time, where h is the
number of vertices of CH (P).

2.2 Optimization of S(L)

Given a slope m, let the antipodal pair that admits
the two parallel lines of support of slope —1/m be
pi = (a,b) and p; = (¢, d), respectively. Also, let L be
a line segment with end points on the two parallel lines
of support and orthogonal to them. Let the sequence
of edges intersected by L be Seq(L) = (e1,ea,...,ex),
where k = O(n), e : y = mjz+p;, for j =1,2,... k,
and e; and e are the two parallel lines of support.
We have,

S(L) = VI +m2 Y5 wilajir —

= VI+m2 Y07 wy (et — k),

where m and p are the slope and intercept of L re-
spectively, x; is the xz-coordinate of the intersection
between L and e;, and w; is the weight of the region
bounded by edges e; and e;41. Since ey, ey, are the two

parallel lines of support, we have e; : y = —1/m(x —

a)+band e : y = —1/m(x — ¢) + d. Tt follows
k— - o

that, S(L) = v1+ mQ(Ej:Q2 wj(n{zjjijl - %) +

. Parallel lines of support

Figure 2: L is bounded by two parallel lines of support
enclosing CH (P).

_ bta/m— d+c/m— —1—
i (25E = SR e (T —)

= VI T m?()2) Gl + e,
where C, D, F, c; and d; are all constants.

Next, we analyze the problem in the dual space.
We use the duality transform which maps a line
y = max + p on the plane onto a point (m,p) in the
dual plane and maps a point (a,b) onto the line
y = —ax + b on the dual plane. Note that there exist
a one-to-one correspondence between L and the line
supporting it. Observe that if we change the slope
m and intercept p of L, seq(L) changes, i.e. the
expression of the objective function C(L) = S(IL)
changes, if
(1) L sweeps through a vertex of R, or
(2) L sweeps through an intersection between a line
of support and an edge of R, or
(3) L rotates through a slope such that the antipodal
pair changes.

We introduce three sets of curves or lines to prop-
erly partition the dual space such that each cell cor-
responds to all segments in the primal space which
have the same functional expression for the weighted
length. First, we transform all vertices of R to the
dual space. Let A, denote this arrangement, which
consists of n lines. Next, consider that L intersects a
line of support €’ at an edge e. As the line of support
e’ rotates, the intersection between L and e’ moves
along edge e. We can show that the transform of all
lines intersecting with ¢’ on e and orthogonal to ¢’
yields a curve in the dual space in the form

(b = pe)m? + (a; — mebi)m — mea; — pe

mem + 1 ’

where m, and p. are the slope and intercept of e re-
spectively and a; and b; are constants. Since there
are O(h) antipodal pairs of vertices and O(n) edges
of R, we have a total of O(hn) such curves. Let Al
denotes the arrangement of these curves. Finally, let
M = {mq,ma,...,mp} be the set of slopes of edges
in CH(P) and let M’ = {—1/m : m € M}. Recall
that in the rotating calipers procedure, the antipo-

90

Line Segment Facility Location in Weighted Regions

dal pair changes only when the calipers are rotating
through the slopes in M, or equivalently when L ro-
tates through the slopes in M’, since L is orthogonal
to the calipers. Let A/ be the arrangement of O(h)
vertical lines {z* = m : m € M’} in the dual space.

Lemma 1 A,UA’UA! partitions the the dual space
such that each cell corresponds to all segments in the
primal space which have the same functional expres-
sion for the weighted length.

Proof. Let L and L’ be two line facilities such that
S(L) and S(L’) have different functional expressions
for the weighted length. Due to order preserving prop-
erty of the dual transform, their corresponding dual
points L* and L'* must be separated by at least one
line or curve in A,, A, or A!.. The proof follows. O

Using the algorithm in [1], the arrangement A, U
AU Al can be computed in O(nhlog(nh) + k) time
and O(nh + k) space, where k is the number cells,
which is O(n?h?) in worst case.

Lemma 2 The global minimum of C(L) can be
found at non-vertical boundaries of the partition, i.e.
on the lines or the curves in A, U A.

Proof. Observe that when the slope m of L is fixed,
the objective function C(L) is linear and monotonic
with respect to the intercept p of L. The minimum
of C(L) cannot be found in the interior of the parti-
tion.]

Lemma 3 P; can be reduced to O(n?h?) 1-variable
subproblems. The domain for each subproblem is a

piece of non-vertical boundary on the partition A, U
ALUAL

Proof. The complexity of the overall partition A, U
ALUAL is O(n?h?). The result follows from Lemma 1
and Lemma 2. (]

If the domain of the subproblem is on A, L passes
through a vertex. Let v : (x;,9;) € R be the vertex
passed by L. We have,

L:y—y=m(z—m),
D =Yi — My, b2 ertd Compt D

—2 cj i y
S(L) = V1+m2(3,5, e + TR
; VIEmA(atere)
Cm(y;—mz;)+Dm+FE

1+m?)7
k—2 c/. ’ ’

= VI+m? (0 s + B 1+),
where C', D', E', ¢); are all constants.

If the domain of the subproblem is on A/, L inter-
sects with a line of support on an edge e. Let m, and
pe be the slope and intercept of e, respectively. Sub-
stituting

__ (bi—pe)m®+(ai—mebi))m—mea;—pe :
p = e into S(L), we
have

k—2 cim+d;
S(L) =V1i+ m2(2j=2 (m—mj)(1+mem)
C'm?+D'm+E’
+ (1+m2)(1+mtm) + CW)?

where ¢}, d,C’, D', C" are constants.

2.3 A Prune-and-Search approximation algorithm
for solving P,

We present a prune-and-search approximation algo-
rithm combined with the subdivision approach. The
general outline is as follows:

(1) Find upper and lower bounds for each subproblem
of interest.

(2) Maintain a priority queue of subproblems based
on their lower bounds.

(3) Calculate S™™ which is the minimum of upper
bounds of all subproblems in the queue.

(4) For each subproblem I; in the queue, if the lower
bound of I; is greater than S™", prune I;.

(5) Get the first candidate I; from the priority queue
and find a coarse approximation by placing Steiner
points and sampling.

(6) A solution L is accepted, if S(L) < (1 + ¢)Smin,
where € is a parameter defining the quality of the ap-
proximation and S is the lower bound of I;.

(7) If no acceptable solution has been found, we fur-
ther divide I; into a number of smaller subproblems.
(8) Find the upper bound and lower bound of all new
subproblems and add them back to the priority queue.
Go to step (3).

Next, we give more details of the prune-and-search
algorithm. Given a subproblem I;, all line segments
in the feasible domain D; intersect with the same set
of regions of R. Let the set of regions intersected by
segments in D; be {R;,, R;,,...,R;,}. We can set the
lower bound of I;, S™" as Zl;=1 wj, *minpep, (LN
R;,). The value of minpep, (LNR;,) can be computed
in O(1) time. The upper bound of I; could be any
sample value of the objective function in the given
domain.

3 P;: minimize the sum of weighted length of
orthogonal links and L

In this section, we address the second optimization
problem P, which asks to minimize the sum of
weighted length of orthogonal links and S(L), i.e.
C(L) = Zizl S(L;) + S(L). Again, we solve this
optimization problem by (1) partitioning the problem
in the dual space, (2) finding the objective function
on the boundary of the partition and (3) applying the
prune-and-search algorithm to approximate the solu-
tion.

The problem of minimizing the sum of weighted
length of orthogonal links is solved in [3]. In [3], the

91

EuroCG’09 - Brussels, Belgium

dual space is partitioned by introducing three sets of
curves or lines. The first set consists of dual lines
of points in P. Let A, denote the arrangement of
the [dual lines. Next, all lines intersecting with
some orthogonal link at some edge are transformed
to the dual space. This yields a set of O(In) curves.
Let A. denote the arrangement of this set of curves.
The last set of lines introduced to the dual space is
{z* =—-1/my; :i=1,2,...;land j = 1,2,...,n},
where m;; is the slope of the line passing through
point s; € P and vertex v; € R. Let A, denote the
arrangement of this set of lines. The optimization
problem is reduced to a number of 1-variable sub-
problems. The domain for each subproblem is a piece
of arc or segment on A, or A.. The objective function
for each subproblem can be expressed in the form

l M l
N 5 c; b;m, + a;
;S(Lz>—¢1+m0<; pp—— 2; i1 O

for some constants a;, b;, ¢;, C, where m, is the slope
of orthogonal links. Substituting m, = —1/m,

l
aimfbi C
Jrz m2 +1 +E

i=1

l M

S oS(L) =V m (Y —3

m;m + 1
i=1 j=1"" +

Notice that A, € A., since each line of support
supports an orthogonal link from a point in P to L.
We can show that A, U A, U A, UA, U A, partitions
the the dual space such that each cell corresponds
to all segments in the primal space which have the
same functional expression for the objective function
ie. C(L) = 22:1 S(L;) + S(L). The partition can
be computed in O(Inlog(lh) + k) time and O(lh + k)
space, where k is the number cells, which is O(I?n?)
in worst case, using the algorithm in [1].

Lemma 4 The optimal solution for P, can be found
at the non-vertical boundary of the partition A,UA.U
A UA, U AL

Lemma 5 P, can be divided into a number of sub-
problems (O(I?n?) in worst case) and the domain for
each subproblem is a piece of non-vertical boundary
of the partition A, UA.UA, UA,UA,, ie. an arcor
a segment on Ay, A, or A,.

Next, we derive the overall expression for C(L). If
the domain of the subproblem is on A, or 4,, i.e. L
passes through a point s; € P or a vertex in R, we
have
C(L) = ¥izy S(Li) + 5(L)
= VITmA(CY, oty + Y, amh 4 O

7j=1 m,jm,—i-l

VI+mA(T50) ster + 2 E 4+ C)

j=2 m—m/

M c’,/ C/v 17 "
= VI+m2(Gty +)+ Pt o

c’y,
where ¢}, ¢/, C, C', D" and E" are constants.

If the domain of the subproblem is on A., i.e. L
intersects with an orthogonal link or a line of support
on an edge, we have,

C(L) = 35y S(Li) + S(L)
= V1+m2(2jﬂi1 mjncz]-H + Zé:l amrg;llj + %) +

VIFmi(yh? Gt

! 2 ’ !
C'm“+D'm+FE +

Jj=2 (m—m})(1+mem) (1+m2)(1+mem)
C///)
- 5 M < cim+td;
B ZW(ijl(mjm+l + (m—mj)(l-l-mem)) *
C”m +D”m+E” C
Tt armemy T om T ")

where ¢}, ¢, d;, C", D", E"” and C"" are constants.

Once the objective functions are derived for all sub-
problems, the optimal solution can be obtained by
applying the prone-and-search algorithm described in
the previous section.

References

[1] N.M. Amato, M.T. Goodrich, and E.A. Ramos.
Computing the arrangement of curve segments:
Divide-and-conquer algorithms via sampling. In
Proc. 11th Annual CAM-SIAM Symposium on Dis-
crete Algorithms, pp. 705-706, 2000.

[2] D.Z. Chen, O. Daescu, X. Hu, X. Wu and J.
Xu. Determining an optimal penetration among
weighted regions in two and three dimensions.
Journal of Combinatorial Optimization, 5(1):59-79,
2001.

[3] Y. Cheung and O. Daescu. Line Facility Location
in Weighted Regions. In Proc. 4th International
Conference on Algorithmic Aspects in Information
and Management, pp. 109-119, 2008

[4] O. Daescu and J. Palmer. Minimum Separation
in Weighted Subdivisions. International Journal of
Computational Geometry and Applications to ap-
pear.

[5] H.Imai, K. Kato and P. Yamamoto. A linear-time
algorithm for linear L approximation of points. Al-
gorithmica, 4(1):77-96, 1989.

[6] M. X. Goemans, M. Skutella. Cooperative facility
location games. In Proc. 11th ACM-SIAM Sympo-
stum on Discrete Algorithms, pp. 76-85, 2000.

[7] N.Megiddo and A. Tamir. Finding Least-Distance
Lines. SIAM Journal on Algebraic and Discrete
Methods, 4(2):207-211, 1983.

[8] G.T. Toussaint. Solving geometric problems with
the 'rotating calipers’. In Proc. 2nd IEEE Mediter-
ranean FElectrotechnical Conference (MELECON
’83), pp. A10.02/1-4, 1983.

92

Improvement of the Method for Making Quad Meshes through Temperature Contours

Improvement of the Method for Making Quad Meshes through
Temperature Contours

Minori Okabe*

Abstract

There are several methods to reconstruct quad meshes
from triangular meshes. In this article, we improve
the method using temperature contours. We discuss
how to avoid boundary conditions being ill posed and
assure injectivity of the parameterization by control-
ling the weights on edges. The proposed method will
be one step toward a fully automatic system, because
the result of automatic partition of the surface into
patches can be used.

1 Introduction

Triangular meshes are often used for representing sur-
faces of objects in computer graphics and simulation.
Whereas quad meshes have the advantage of triangu-
lar meshes in many applications such as texture map-
ping in computer graphics, FEM in simulation and
NURBS in modeling.

Constructing quad meshes directly from point
clouds is difficult because we do not have efficient
tools such as Voronoi diagrams in case of creating tri-
angular meshes. Thus most of methods reconstruct
triangular meshes into quad meshes.

One major trend is following some vector fields on
the mesh. Principal directions are often chosen as
the vector fields. One approach with vector fields is
tracing them by numeric integration [1]. Another ap-
proach is defining functions on the mesh whose iso-
lines follow the vector fields [7, 6]. This approach
needs solving non-linear optimization instead of nu-
meric integration. Another trend is defining func-
tions on the given triangular mesh by parameteriza-
tion [3, 8], which only needs linear computation and
gives pure quad meshes.

We propose a new method to generate quad meshes,
which is based on and improves the method by tong
et al. [8]. In this method, quad meshes are obtained
through temperature contouring. It is simple and ef-
ficient in calculation, but not enough from a practical
viewpoint. We discuss the feasibility of an optimiza-
tion problem appearing in the algorithm and assure
injectivity of the parameterization by controlling the
weights on edges.

*Graduate School of Information Science and Technol-
ogy, The University of Tokyo, {minori_okabe, imahori,
sugihara} @mist.i.u-tokyo.ac.jp

Shinji Imahori*

Kokichi Sugihara*

2 Outline of the proposed method

We describe the outline of our algorithm, which is
similar to that of tong’s method [8].

To achieve quad meshes, we give each vertex of the
given triangular mesh v and v values, and draw in-
teger contour lines from them. Assigning two values
is equivalent to planar parameterization. Because the
given mesh is not homeomorphic to a disk in general,
we have to divide it into some patches homeomor-
phic to disks. However, if patches are mapped into
the plane independently, the continuity of contours is
not assured, which is a requirement for quad meshes.
For this purpose, some conditions of “jump” and “ro-
tation” on patch boundaries are necessary. In case
that the function value of a continuous contour line
changes across a patch boundary, it should jump by
a certain integer value. Moreover, in case that a con-
tour line changes its function and direction, that is,
it switches from u to v, © to —u and so on, the rotat-
ing angle of the u-v coordinates should be equal to an
integral multiple of 7.

Now, the outline of our method is as follows:

1. Divide the mesh into patches.

2. Decide the connectivity conditions between
patches — jump values and rotating angles.

3. Solve a linear system to obtain v and v values for
each vertex and draw contours.

Hereafter, we call the mesh derived from the di-
vision of the original mesh into patches meta-mesh,
and vertices, edges and facets of the meta-mesh meta-
vertices, meta-edges and meta-facets respectively. A
vertex meeting three or more patches corresponds to a
meta-vertex. To make pure quad meshes, whose facets
have just four vertices, u and v values of meta-vertices
should be integer in each adjacent patches. We note
that meta-vertices are the candidates of singular ver-
tices of the resulting quad meshes, where singular ver-
tices mean vertices adjacent to other than four facets.

3 Details of each procedure

3.1 Division into patches

The first procedure is to divide the original triangular
mesh into patches homeomorphic to disks. As this di-
vision may affect the resulting quad meshes, it should

93

EuroCG’09 - Brussels, Belgium

reflect some geometric features of the mesh. Here we
use VSA method [2], in which each divided region is
designed to approximate the plane through alternate
update of the approximate planes and the patch divi-
sion.

In VSA method, the patches tend to meet where
the curvature is relatively large. This is a desirable
property for quad meshes. Moreover, we can roughly
control the number of singular vertices by adjusting
the number of patches.

It is to be noted that some inputs from VSA method
are rejected since some patches are not homeomorphic
to disks. It is because VSA method guarantee each
patch to be connected, but not to be homeomorphic
to a disk. To resolve this problem, patches should be
cut into subpatches homeomorphic to disks.

3.2 Solving a linear system

We explain the last procedure before the second one
for understanding. Similar to the ordinary planar pa-
rameterization, u and v values of a vertex is set to the
weighted average of u and v values of the neighboring

vertices:
U; — u]‘
E Wi =0,
Vi — Uj

JEN;

where n; is the set of the neighboring vertices of vertex
i. Here, we use the mean value coordinates [5] as
weights w;; (see Section 3.4).

But for vertices on boundaries between patches,
this formula is not sufficient because we admit jumps
on u and v values and rotation of the u-v coordinates.
Let vertex ¢ be on the patch named ‘—’, and patch ‘4’
be one of adjacent patches of patch ‘—’. nj (resp.,
n;) means the partial set of n; on patch ‘+’ (resp.,
47’).

For example, if u values differ by p; from one patch
to another and v by ps, the condition is as follows:

Wiy fuwi— (w4 p1) _
: Wij (Ul' — vj> t Z+w” (vi —(vj+p2)) 0
jenl jEni
In case of rotation, when the contours of u switched
into contours of v and v to —u and the jump values
are 1 and ro, the condition can be written down as
follows:
- Ui — Uy B Ui+(vj—T1) .
2w <Ui —Uj) ’ Z+ i (Uz' — () =
jEn; JjEN

7

Conditions for other rotations (i.e., 180° and 270°)
can be written down similarly.

u and v values of meta-vertices are given in ad-
vance by the second procedure. This is corresponding
to boundary conditions of planar parameterization.
Injectivity of this mapping is referred later in Sec-
tion 3.4.

3.3 Deciding parameters

We decide the jump values and rotating angles for
meta-edges and u and v values of meta-vertices. Once
the region on the u-v plane to which each patch is
mapped is assigned, the connectivity of patches is au-
tomatically derived.

When two meta-vertices are adjacent on the meta-
mesh, they should be connected by a contour line.
That is, each meta-vertex is on a lattice point of the u-
v plane and each meta-facet is mapped into a polygon
with right angles on the u-v plane. By this condition,
determining the shape results in simple calculations.
In addition to the method in [8], we restrict the shape
to a rectangle in order to avoid self intersection and
assure injectivity. Thus what should be done is to
decide the angles of meta-vertices on each patch and
the lengths of meta-edges.

The angles for each patch is set to minimize the
difference of the length of facing edges. Here, we use
the shortest path length on the original mesh instead
of the actual path length of the boundaries in order
to make quad meshes equilateral.

Next we determine the length of each meta-edge.
For each facet, the sums of the lengths of facing meta-
edges must be equal. This can be represented as a
linear condition Ax = 0, where «x is the variants vec-
tor corresponding to the lengths of meta-edges. We
consider minimizing the difference from the shortest
path length of corresponding two vertices on original
mesh represented by c:

min [z - e,
s.t. Ax =0,
recZl,

where n is the number of meta-edges and Z is the set
of positive intergers. By using 1-norm, this problem
can be represented as a linear programming problem
with integer conditions:

min ty +to 4+ -+ t,,

s.t. Az =0,
—t;<c—z;<t; (i €{l,....,n}), (%
x e,
t; >0 (ie{l,...,n}).

The feasibility of this problem is discussed later in
Section 5.

If the shape of each patch is obtained through the
angles of meta-vertices and the lengths of meta-edges,
u and v values of meta-vertices are specified by fixing
arbitrarily v and v values for one meta-vertex and
the direction of one meta-edge. After doing this for
each patch, jump values and rotating angles between
patches are automatically obtained.

94

Improvement of the Method for Making Quad Meshes through Temperature Contours

3.4 Guarantee for injectivity

Since injectivity is not guaranteed, triangles may flip,
which results in no pure quad meshes. In addition, the
triangles around singular vertices have a tendency to
flip and this hurts the quality of the resulting quad
mesh.

In ordinary planar parameterization, a theorem in
[5] is known to guarantee the injectivity. From this
theorem, a mapping is guaranteed to be injective if
(1) a triangular mesh homeomorphic to a disk is 3-
connected, (2) the weights on edges have positive val-
ues, and (3) the boundary is mapped into a convex
polygon. To apply this theorem to each patch, we ex-
amine the three conditions — 3-connectedness, posi-
tivity and convexity.

3-connectedness: For a mesh homeomorphic to a
disk, the graph derived from it is 3-connected if there
exists no edge which is not on any patch boundary
but whose adjacent vertices are both on patch bound-
aries. When such an edge exists, we insert a vertex
on the edge and divide the two adjacent triangles ac-
cordingly.

Moreover we do the following procedure in advance.
We check whether edges whose two adjacent vertices
are on the same patch boundary exist or not. If there
exist, we convert the boundary to use these edges.
This modification does not change the topology of the
meta-mesh. It has some smoothing effect on the re-
sulting quad mesh because the boundaries of patches
may be the edges of the resulting quad mesh.

Positivity: The mean value coordinates [4] are cho-
sen as weights because of its positivity.

Convexity: When boundaries are mapped into con-
vex polygons, each patch is mapped into a rectangle
because convex polygons with right angles are surely
rectangles. Weights of edges on patch boundaries are
set to extremely large values. Then the vertices on
patch boundaries are placed on the line between two
meta-vertices. In result, the vertices on the bound-
aries are positioned into a convex shape.

Under these conditions injectivity of the mapping
is guaranteed. But this hurts the quality of the re-
sulting quad mesh because the seams become visible.
To avoid this, we decrease the weights of the edges
on the patch boundaries toward the original weights
unless there exist flipped triangles. If triangles are
flipped by the decreasing to the original weight, we
use a binary search to find smaller weights under the
condition that any triangle is not flipped.

4 Experimental results

In this section we show some experimental results. We
first show results along the overall process in Figure 1.
The original triangular mesh has about 7000 vertices

(Figure 1(a)). It is divided into 7 patches as shown
in Figure 1(b). Figure 1(c) shows the contour lines
of u and v values and Figure 1(d) shows the resulting
quad mesh.

Square points in Figure 1 mean meta-vertices. The
whole calculation needs a few minutes on an ordinary
personal computer.

(a) original mesh (b) patch division

Sy

e

(c) contours (d) quad mesh
Figure 1: Process from a triangular mesh to a quad
mesh

Next we show the effect of controlling the weights
of edges on patch boundaries. In Figure 2(a), the
mean value coordinates are used as weights. The
meta-vertex in the middle has only one contour be-
cause some of triangles around this are flipped. On
the other hand, the weights of the edges on the patch
boundaries are added by a sufficiently large value in
Figure 2(b). In this case no triangle is flipped and
all the meta-vertices have the appropriate numbers of
contours.

W @j&aw,’
et
NN H*’iw%_
e
(b)
Figure 2: The comparison of contours between origi-
nal weights and increased weights

Finally, we show how increased weights damage the
quality of the resulting quad meshes and it is refined
by adjusting weights. The weights of the edges on

95

EuroCG’09 - Brussels, Belgium

the patch boundaries are added by a sufficiently large
value in Figure 3(a). On the other hand, these weights
are cut down as long as there exists no flipping tri-
angle in Figure 3(b). It is found that smoothness
increases as a result of cutting the weights down.

INENEAN)

(b)
Figure 3: The comparison of quad meshes between
increased weights and adjusted weights

5 Discussion on the feasibility

In this section we discuss on the feasibility of the op-
timization problem(x) appearing when deciding the
length of meta-edges (Section 3.3). This problem may
not have feasible solutions. See Figure 4 as an exam-

ple.
BN

Y

.\§§

Figure 4: An example of edges with 0 length — if gray
boundaries are set to be facing on the u-v plane, the
length of the upper left boundary is inevitably equal
to 0.

One solution is to divide patches until each patch
has four meta-vertices because there is at least one
feasible solution (i.e., all meta-edges have the same
length). If a patch has even meta-vertices, it is pos-
sible by inserting meta-edges. In contrast, in case of
a patch with odd meta-vertices, it is impossible with-
out inserting meta-vertices. In this case, by inserting
meta-vertices on meta-edges derived from a path of
patches from a patch with odd meta-vertices to other
patch with odd meta-vertices, patches with odd meta-
vertices can be converted to have even meta-vertices
without changing the parity of other patches (see Fig-
ure 5). It is possible because the number of patches
with odd meta-vertices is surely even.

6 Conclusion

In this article, we improved the method for construct-
ing quad meshes using temperature contours from a

Figure 5: An example of inserting meta-vertices —
each patch at both ends has an odd number of meta-
vertices. By inserting two gray meta-vertices, all the
patches have even meta-vertices and are divided so as
to have four meta-vertices.

practical viewpoint. We discussed on the feasibility of
the optimization problem and proposed an approach
of splitting meta-facets. Moreover we assured injectiv-
ity of the mapping by adjusting the weights of edges
on patch boundaries. Increased weights assure injec-
tivity but also damage the quality of the resulting
quad meshes. In order to adjust weights, we used a
bisection algorithm which requires iterative solving of
linear systems. Working out more efficient methods
for weight adjustment is an issue in the future.

Acknowledgments

We would like to thank CGAL library. The model in the
figures is courtesy of AIM@SHAPE. This work is sup-
ported by the Grant-in-Aid for Scientific Research(b) (No.
20360044) and for Exploratory Research (No. 19650003)
of the Japanese Society for Promotion of Science.

References

[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and
M. Desbrun. Anisotropic polygonal remeshing. ACM
Trans. Graph., 22(3):485-493, 2003.

[2] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Vari-
ational shape approximation. ACM Trans. Graph.,
23(3):905-914, 2004.

[3] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and

J. C. Hart. Spectral surface quadrangulation. ACM
Trans. Graph., 25(3):1057-1066, 2006.

[4] M. S. Floater. Mean value coordinate. Comput. Aided
Geom. Des., 20(1):19-27, 2003.

[5] M. S. Floater. One-to-one piecewise linear mappings
over triangulations. Math. Comput., 72(242):685-696,
2003.

[6] F. Kélberer, M. Nieser, and K. Polthier. Quadcover
- surface parameterization using branched coverings.
Computer Graphics Forum, 26(3):375-384, Sept. 2007.

[7] N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez.
Periodic global parameterization. ACM Trans. Graph.,
25(4):1460-1485, 2006.

[8] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Des-
brun. Designing quadrangulations with discrete har-
monic forms. In Proc. SGP (2006), 201-210, Switzer-
land, 2006. Eurographics Association.

96

From Mesh Parameterization to Geodesic Distance Estimation

From Mesh Parameterization to Geodesic Distance Estimation

Joachim Giard * T

Abstract

Computing geodesic distances on a mesh can be a
time consuming, though redundant task. In this
paper, we propose a method to reuse the informa-
tion obtained during the computation of geodesic
distances from some reference vertices to estimate
distances between other vertices. First, the mesh is
parameterized, unfolding it in a plane around each
reference vertex. Then, distances between vertices
are computed using simple operations in these
parameterized planes. It quickly leads to a good
approximation of geodesic distances on the mesh.

Keywords: Geodesic distance, parameterization,
Unfolding, 3D Mesh.

1 Introduction

Computing geodesic distances on 3D meshes, i.e., dis-
tances along the surface, can be really time consum-
ing, especially in applications requiring ”all sources
to all targets” computations. Mitchell et al. [6] intro-
duced an exact ”single source to all targets” algorithm
running in O(n?logn). This algorithm is close from
the Dijkstra algorithm [3] finding shortest paths in
graphs. In 1998, Kimmel and Sethian [4] presented
the fast marching algorithm running in O(nlogn).
In methods exposed here above, ”single source to sin-
gle target” or “single source to all targets” problems
are treated, but often ”all sources to all targets” prob-
lems have to be considered. It is the case, for instance,
when geodesic distance is used as a basis for discrete
differential-geometry operators [5] such as curvature
estimators, integrators or surface field filters. Using
7single source to all targets” algorithms to compute
such distances, without taking into account redun-
dant information, multiplies the complexity and the
effective computation time by n.

In this pap