
25th European Workshop on Computational Geometry

March 16 { 18, 2009 Brussels, Belgium

EuroCG’09 - Brussels, Belgium

Contents

Introduction 8

Invited speaker 1 - Monday 9:15 – 10:15 11

Probabilistic Analysis of Algorithms
Luc Devroye, McGill University 11

Session 1A - Monday 10:45 – 12:00 12

Witness Gabriel graphs
Boris Aronov, Muriel Dulieu and Ferran Hurtado 13

Measuring the Similarity of Geometric Graphs
Otfried Cheong, Joachim Gudmundsson, Hyo-Sil Kim, Daria Schymura and Fabian Stehn 17

Spanner Properties of π/2-Angle Yao Graphs
Mirela Damian, Nawar Molla and Val Pinciu 21

Wiener Index and Diameter of a Planar Graph in Subquadratic Time
Christian Wulff-Nilsen 25

Tailored Bregman Ball Trees for Effective Nearest Neighbors
Frank Nielsen, Paolo Piro and Michel Barlaud 29

Session 1B - Monday 10:45 – 12:00 33

Maintaining Exactly the Convex Hull of Points Moving along Circles
Paul-Georg Becker, Elvir Büyükbayrak and Nicola Wolpert 33

k-Means Motion Clustering
Frank Hellweg and Christian Sohler 37

The Maximum Box Problem for Moving Points on the Plane
Pablo Pérez-Lantero, Sergey Bereg, José-Miguel Díaz-Báñez and Inmaculada Ventura 41

Minimizing the weighted directed Hausdorff distance between colored point sets under rigid motions
Fabian Stehn, Christian Knauer and Klaus Kriegel 45

Computing Push Plans for Disk-Shaped Robots
Dirk H.P. Gerrits and Mark de Berg 49

Session 2A - Monday 14:00 – 15:15 53

Complexity of pleats folding
Tsuyoshi Ito, Masashi Kiyomi, Shinji Imahori and Ryuhei Uehara 53

Modelling rigid origami with Quaternions
Weina Wu and Zhong You 57

Source Unfoldings of Convex Polyhedra with respect to Certain Closed Polygonal Curves
Jin-ichi Itoh, Joseph O’Rourke and Costin Vilcu 61

Locked Thick Chains
Erik D. Demaine, Martin L. Demaine, Stefan Langerman and Jérôme Vervier 65

Fitting a Point Set by Small Monotone Orthogonal Chains
José-Miguel Díaz-Báñez, Mario A. López, Carlos Seara and Inmaculada Ventura 69

2

Contents

Session 2B - Monday 14:00 – 15:15 73

Point Distance Problems with Dependent Uncertainties
Yonatan Myers and Leo Joskowicz 73

An Improved Algorithm for Inserting a Highway in a City Metric
Matias Korman and Takeshi Tokuyama 77

Frechet Distance in Weighted Regions
Yam Ki Cheung and Ovidiu Daescu 81

Safe Routes on a Street Graph with Minimum Power Transmission Range
Manuel Abellanas, Antonio Leslie Bajuelos and Ines Matos 85

Line Segment Facility Location in Weighted Regions
Yam Ki Cheung and Ovidiu Daescu 89

Session 3A - Monday 15:45 – 17:15 93

Improvement of the Method for Making Quad Meshes through Temperature Contours
Minori Okabe, Shinji Imahori and Kokichi Sugihara 93

From Mesh Parameterization to Geodesic Distance Estimation
Joachim Giard and Benoît Macq 97

Certified Meshing of RBF-based Isosurfaces
Gert Vegter, Simon Plantinga and Amit Chattopadhyay 101

Low-resolution Surface Mapping: a Topological and Geometrical Approach
Jean-Marie Favreau and Vincent Barra 105

Matching Terrains under a Linear Transformation
Pankaj Agarwal, Boris Aronov, Marc van Kreveld, Maarten Löffler and Rodrigo Silveira 109

Cutting an Organic Surface
Jean-Marie Favreau and Vincent Barra 113

Session 3B - Monday 15:45 – 17:00 117

Two-Convex Polygons
Oswin Aichholzer, Franz Aurenhammer, Ferran Hurtado, Pedro Ramos and Jorge Urrutia 117

Geometric Measures on Imprecise Points in Higher Dimensions
Heinrich Kruger and Maarten Löffler 121

Some Regularity Measures for Convex Polygons
Ferran Hurtado, Vera Sacristán and Maria Saumell 125

Inducing n-gon of an arrangement of lines
Ludmila Scharf and Marc Scherfenberg 129

Large bichromatic point sets admit empty monochromatic 4-gons
Oswin Aichholzer, Thomas Hackl, Clemens Huemer, Ferran Hurtado and Birgit Vogtenhuber 133

Invited speaker 2 - Tuesday 9:15 – 10:15 137

On Plane Geometric Spanners
Prosenjit K. Bose, Carleton University 137

3

EuroCG’09 - Brussels, Belgium

Session 4A - Tuesday 10:45 – 12:00 138

Lower and upper bounds on the number of empty cylinders and ellipsoids
Oswin Aichholzer, Franz Aurenhammer, Olivier Devillers, Thomas Hackl, Monique Teillaud
and Birgit Vogtenhuber 139

Efficient Enumeration of All Pseudoline Arrangements
Katsuhisa Yamanaka, Shin-ichi Nakano, Yasuko Matsui, Ryuhei Uehara and Kento Nakada 143

On the Number of Crossing-Free Partitions in the Plane
Andreas Razen and Emo Welzl 147

Counting the Number of Embeddings of Minimally Rigid Graphs
Ioannis Z. Emiris and Antonios Varvitsiotis 151

Reconstructing Points on a Circle from Labeled Distances
David Bremner, Erik D. Demaine, Perouz Taslakian and Godfried Toussaint 155

Session 4B - Tuesday 10:45 – 12:00 159

Guarding Orthogonal Art Galleries with Sliding Cameras
Matthew J. Katz and Gila Morgenstern 159

Inspecting a Set of Strips Optimally
Elmar Langetepe and Tom Kamphans 163

Modem Illumination of Monotone Polygons
Oswin Aichholzer, Ruy Fabila-Monroy, David Flores-Peñaloza, Thomas Hackl, Clemens Huemer,
Jorge Urrutia and Birgit Vogtenhuber 167

Low-Cost Tours for Nearsighted Watchmen with Discrete Vision
Sandor Fekete and Christiane Schmidt 171

Natural Wireless Localization is NP-hard
Tobias Christ, Michael Hoffmann and Yoshio Okamoto 175

Session 5A - Tuesday 14:00 – 15:15 179

Shortest Path Problems on a Polyhedral Surface
Atlas F. Cook IV and Carola Wenk 179

Conflict-Free Coloring Made Stronger
Shakhar Smorodinsky, Roi Krakovski and Elad Horev 183

Two Applications of Point Matching
Günter Rote 187

Distance k-Sectors and Zone Diagrams
Keiko Imai, Akitoshi Kawamura, Jirí Matousek, Yu Muramatsu and Takeshi Tokuyama 191

Finding a Minimum Stretch of a Function
Kevin Buchin, Maike Buchin, Marc van Kreveld and Jun Luo 195

Session 5B - Tuesday 14:00 – 15:15 199

Visibility Maps of Realistic Terrains have Linear Smoothed Complexity
Mark de Berg, Herman Haverkort and Constantinos P. Tsirogiannis 199

Planar Visibility Counting
Matthias Fischer, Matthias Hilbig, Claudius Jähn, Friedhelm Meyer auf der Heide and Martin Ziegler 203

4

Contents

On the Limitations of Combinatorial Visibilities
Yann Disser, Davide Bilò, Matus Mihalak, Subhash Suri, Elias Vicari and Peter Widmayer 207

Dynamic Segment Visibility
Mojtaba Nouri Bygi and Mohammad Ghodsi 211

Computing Direct Shadows Cast by Convex Polyhedra
Julien Demouth and Xavier Goaoc 215

Session 6A - Tuesday 15:45 – 17:15 219

Straight Walk Algorithm Modification for Point Location in a Triangulation
Roman Soukal and Ivana Kolingerová 219

Every 4-connected Mbius triangulation is geometrically realizable
Atsuhiro Nakamoto and Shoichi Tsuchiya 223

Multi-pseudotriangulations
Vincent Pilaud and Michel Pocchiola 227

Fast Delaunay Triangulation for Converging Point Relocation Sequences
Pedro M. M. de Castro and Olivier Devillers 231

Linear-Time Delaunay Triangulations Simplified
Kevin Buchin and Wolfgang Mulzer 235

2D Delaunay mesh generation with area/aspect-ratio constraints
Narcís Coll, Marité Guerrieri and J. Antoni Sellarès 239

Session 6B - Tuesday 15:45 – 17:00 243

Homotopic Rectilinear Routing with Few Links and Thick Edges
Kevin Verbeek and Bettina Speckmann 243

Area-Universal Rectangular Layouts
David Eppstein, Elena Mumford, Bettina Speckmann and Kevin Verbeek 247

Constructability of Trip-lets
Jeroen Keiren, Freek van Walderveen and Alexander Wolff 251

Finding Perfect Auto-partition is NP-hard
Mark de Berg and AmirAli Khosravi 255

Tight Spans and Coarsest Subdivisions of Convex Polytopes
Sven Herrmann 259

Invited speaker 3 - Wednesday 9:15 – 10:15 263

Practical Algorithms for Path Planning and Crowd Simulation
Mark H. Overmars, Utrecht University 263

Session 7A - Wednesday 10:45 – 12:00 264

Stabbers of line segments in the plane
Merce Claverol, Delia Garijo, Clara Grima, Alberto Marquez and Carlos Seara 265

Online Square Packing
Sandor Fekete, Nils Schweer and Tom Kamphans 269

5

EuroCG’09 - Brussels, Belgium

Square and Rectangle Covering with Outliers
Hee-Kap Ahn, Sang Won Bae, Matias Korman, Iris Reinbacher, Wanbin Son and Sang-Sub Kim 273

Identifying Well-Covered Minimal Bounding Rectangles in 2D Point Data
Marc van Kreveld, Thijs van Lankveld and Remco Veltkamp 277

Fixed-parameter tractability and lower bounds for stabbing problems
Panos Giannopoulos, Christian Knauer, Günter Rote and Daniel Werner 281

Session 7B - Wednesday 10:45 – 12:00 285

Robust Voronoi-based Curvature and Feature estimation
Quentin Merigot, Maks Ovsjanikov and Leonidas Guibas 285

Inverted Ball as Boundary-constraint for Voronoi Diagrams of 3D Spheres
Martin Manák and Ivana Kolingerová 289

Divide-and-Conquer for Voronoi Diagrams Revisited
Oswin Aichholzer, Wolfgang Aigner, Franz Aurenhammer, Thomas Hackl, Bert Juettler,
Elisabeth Pilgerstorfer and Margot Rabl 293

The Voronoi diagram of three arbitrary lines in R3

Hazel Everett, Christian Gillot, Daniel Lazard, Sylvain Lazard and Marc Pouget 297

Voronoi Diagram in the Klein model using Finsler Geometry
Abolghasem Laleh, Ali Mohades, Zahra Nilforoushan and Morteza Mir Mohammad Rezaii 301

Session 8A - Wednesday 14:00 – 15:30 305

A Practice-Minded Approach to Computing Motorcycle Graphs
Martin Held and Stefan Huber 305

Robust Extraction of the Medial Axes of 3D Objects
Kazutoshi Kan and Kokichi Sugihara 309

Continued Work on the Computation of an Exact Arrangement of Quadrics
Michael Hemmer, Sebastian Limbach and Elmar Schömer 313

Exact Construction of Minimum-Width Annulus of Disks in the Plane
Ophir Setter and Dan Halperin 317

Generic implementation of a modular GCD over Algebraic Extension Fields
Michael Hemmer and Dominik Hülse 321

Exact Delaunay graph of smooth convex pseudo-circles
Ioannis Z. Emiris, Elias Tsigaridas and George M. Tzoumas 325

Session 8B - Wednesday 14:00 – 15:15 329

On the Optimality of Spiral Search
Elmar Langetepe 329

Computing Maximal Islands
Crevel Bautista-Santiago, José-Miguel Díaz-Báñez, Dolores Lara, Pablo Pérez-Lantero, Jorge Urrutia
and Inmaculada Ventura 333

On complexity of the mixed volume of parallelograms
Leonid Gurvits 337

6

Contents

Cache-Oblivious Construction of a Well-Separated Pair Decomposition
Fabian Gieseke and Jan Vahrenhold 341

Computer Aided Design System for Escher-Like Tilings
Hiroshi Koizumi and Kokichi Sugihara 345

7

EuroCG’09 - Brussels, Belgium

Introduction

The 25th European Workshop on Computational Geometry (EuroCG’09) was organized on March 16 – 18 at the
Université Libre de Bruxelles (ULB), in Brussels, Belgium. EuroCG is renowned as a friendly conference, where
researchers from across Europe and the world can meet and exchange ideas in a stimulating atmosphere.

A record number of 83 papers were presented. The organizers thank all authors and invited speakers for their
participation, as well as the 51 reviewers for their insightful comments. We also wish to thank the sponsors, the
Fonds National de la Recherche Scientifique (F.R.S.-FNRS) and Emakina.

More information about this conference and about previous and future editions is available online at

http://eurocg.org

Invited Speakers

• Prosenjit Bose, Carleton U.

• Luc Devroye, McGill U.

• Mark Overmars, Utrecht U.

Organizing Committee

• Greg Aloupis, ULB

• Jean Cardinal, ULB

• Sébastien Collette, ULB

• Gwenaël Joret, ULB

• Stefan Langerman, ULB (chair)

• Benoit Macq, UCL

Program Committee

• Greg Aloupis, ULB

• Jean Cardinal, ULB

• Sébastien Collette, ULB

• Erik Demaine, MIT

• Marcin Kaminski, ULB

• Stefan Langerman, ULB (chair)

• Pat Morin, Carleton U.

• Perouz Taslakian, McGill U.

• Stefanie Wuhrer, Carleton U.

8

Introduction

Other Reviewers

• Luca Castelli Aleardi

• Zouhour Ben Azouz

• Eric Berberich

• Alan Brunton

• Paz Carmi

• Gail Carmichael

• Daniele Catanzaro

• Jean-Paul Doignon

• Karim Douïeb

• Vida Dujmović

• Céline Engelbeen

• Mohammad Farshi

• Rosa Maria Videira de Figueiredo

• Samuel Fiorini

• Delia Garijo

• John Goldak

• Meng He

• Pim van ’t Hof

• Raphaël Jungers

• Matias Korman

• Adrian Kosowski

• Hugo Ledoux

• Martin Milanič

• Dieter Mitsche

• Yonatan Myers

• Catharina Olsen

• Belén Palop

• Michel Paquette

• Daniel Paulusma

• Vincent Pilaud

• Daniel Raible

• Pedro Ramos

• Daria Schymura

• Rodrigo Silveira

• Michiel Smid

• Shakhar Smorodinsky

• Costas Tsirogiannis

• George Tzoumas

• Alper Ungor

• Eric Colin de Verdière

• Pengcheng Xi

• Pawel Zylinski

9

EuroCG’09 - Brussels, Belgium

10

Probabilistic Analysis of Algorithms

Luc Devroye∗

Abstract

The theme of this expository talk is the interaction between classical probability the-
ory and the analysis of algorithms. What are the researchers in the area of ”probabilistic
analysis of algorithms” studying nowadays? What are the main tools that have driven
progress? For example, one of the oldest randomized algorithms, Quicksort, has been
asymptotically cracked by the clever use of stochastic fixed-point equations. The corre-
sponding search structure, the random binary search tree, and many related random trees,
are best approached via branching processes. Random structures of many genetic origins
can be understood by showing their closeness to well-understood (often continuous) random
processes. The talk will revisit several of the success stories in the field.

∗School of Computer Science, McGill University, Montreal, Canada, lucdevroye@gmail.com

1

Probabilistic Analysis of Algorithms

11

EuroCG’09 - Brussels, Belgium

12

Witness Gabriel Graphs∗

Boris Aronov† Muriel Dulieu† Ferran Hurtado‡

Abstract

We consider a generalization of the Gabriel graph,
the witness Gabriel graph, and study several of its
properties, both as a proximity graph and as a new
tool in graph drawing.

1 Introduction

Originally defined to capture some concept of neigh-
borliness, proximity graphs [7,10,13] can be intuitively
defined as follows: given a set P of points in the plane,
the vertices of the graph, there is an edge between
a pair of vertices p, q ∈ P if some specified region in
which they interact contains no point from P , besides
possibly p and q.

Proximity graphs have proved to be a very useful
tool in shape analysis and in data mining [7, 14]. In
graph drawing, a problem that has been attracting sub-
stantial research is to explore which classes of graphs
admit a proximity drawing, for some notion of proxim-
ity, and when it is possible to efficiently decide, for a
given graph, whether such a drawing is possible [2,10].
For all these reasons, several variations and extensions
have been considered, from higher-order proximity
graphs to the so called weak proximity drawings [3, 7].

Figure 1: Gabriel graph. The vertices defining the
shaded disk are adjacent because their disk doesn’t
contain any other vertex, in contrast to the vertices
defining the white disk.

In the case of the Gabriel graph, GG(P), the region
of influence of a pair of vertices a, b is the closed disk
with diameter ab, Dab. An edge ab is in the Gabriel

∗Part of this research was done while the third author was
visiting Brooklyn Polytechnic supported by Grant AGAUR-
Generalitat de Catalunya 2007 BE-1 00033.
†Polytechnic Institute of NYU. Partially supported by a grant

from the U.S.-Israel Binational Science Foundation, by NSA
MSP Grant H98230-06-1-0016, and NSF Grant CCF-08-30691.
‡Universitat Politècnica de Catalunya. Partially supported

by projects MEC MTM2006-01267 and DURSI 2005SGR00692.

Figure 2: GG(P,Q). Black points are the vertices of
the graph, white points are the witnesses. Each pair
of vertices defining a grey disk are adjacent as opposed
to pair of points defining a white disk.

graph of a point set P if and only if P ∩Dab = {a, b}
(see figure 1). Gabriel graphs were introduced by
Gabriel and Sokal [6] in the context of geographic
variation analysis.

We consider in this work a generalization of the
Gabriel graph, the witness Gabriel graph, GG(P,Q).
It is defined by two sets of points P and Q; P is the set
of vertices of the graph and Q is the set of witnesses.
There is an edge ab in GG(P,Q) if, and only if, there
is no point of Q in Dab \ {a, b} (see figure 2).

Notice that witness Gabriel graphs are a proper
generalization of Gabriel graphs, because when the
set Q of witnesses coincides with the set P of ver-
tices, we clearly obtain GG(P, P) = GG(P). This was
the main underlying idea of the generic concept of
witness graphs, which were introduced as a general
framework in [1] to provide a generalization of prox-
imity graphs, allowing witnesses to play a negative
role as in this paper or the opposite as well. Several
examples were described in [1], including in particular
Delaunay graphs and rectangle-of-influence drawings.
A systematic study is developed in [5].

In this paper we prove several fundamental proper-
ties of witness Gabriel graphs, describe algorithms for
their computation, and present results on the realiz-
ability of some combinatorial graphs.

We assume throughout the paper that the points
in P ∪Q are in general position, that is, there are no
three points on a line in P ∪Q and no four on a circle.

2 Some Properties of Witness Gabriel Graphs

It is known that that MST(P) ⊆ GG(P) ⊆ DT(P) [8],
where MST(P) is the minimum spanning tree and
DT(P) is the Delaunay triangulation. As a con-

1

Witness Gabriel graphs

13

sequence, |MST(P)| ≤ |GG(P)| ≤ |DT(P)|. Ex-
pressing this in terms of n = |P |, we have that
n − 1 ≤ |GG(P)| ≤ 3n − 6. In [12], a more detailed
analysis gives a tighter upper bound of 3n− 8.

For witness Gabriel graphs GG(P,Q), the situation
is quite different, as for any fixed set P of n points, by
varying the size of Q and the location of the witnesses,
the number of edges in GG(P,Q) can attain any value
from 0 to

(
n
2

)
.

For example, when Q = ∅, we obviously obtain
GG(P,∅) = Kn. The reverse problem is more in-
teresting: as the witness points can be thought as
interferences that prevent the points in P from in-
teracting, one may wonder how many witnesses are
required to completely eliminate the interactions in P .
Trivially, if there is a witness inside each disk Dab, for
all a, b ∈ P , then GG(P,Q) has no edge, and this can
be achieved by putting a witness close to the midpoint
of every pair a, b of points from P , which would give
|Q| ≤ (n2). In the following theorem we present a much
better bound for the number of witnesses necessary to
eliminate all edges of GG(P,Q).

Theorem 1 n− 1 witnesses are always sufficient to
eliminate all edges of an n-vertex witness Gabriel
graph, while 3

4n− o(n) witnesses are sometimes nec-
essary.

According to the preceding result, n−1 suitable wit-
nesses can always destroy all the edges. Interestingly,
realizing some witness Gabriel graphs may require
strictly more witnesses:

Theorem 2 There exist witness Gabriel graphs on
n vertices, for which at least 3

2n − 8 witnesses are
necessary.

3 Witness Gabriel Drawings

Given a combinatorial graph G(V,E), a witness
Gabriel drawing of G is a mapping of its vertex set
V to a set P of distinct points in the plane, together
with a set of witnesses Q, such that the mapping in-
duces an isomorphism between G(V,E) and GG(P,Q).
The fundamental question concerning witness Gabriel
drawability is the following: Given a graph G, is it
possible to construct a witness Gabriel drawing of G?
That question has been studied for (standard) Gabriel
graphs. In [4] Bose et al. present a complete character-
ization of those trees that are drawable as a Gabriel
graph. They proved that such trees cannot have ver-
tices of degree greater than four and cannot have two
adjacent vertices of degree four. They also character-
ized Gabriel-drawable trees by exhibiting families of
forbidden subtrees and by showing that they don’t
contain members of these families.

Lubiw and Sleumer [11] showed that all maximal
outerplanar graphs admit a Gabriel drawing in the

b

ca

d

Figure 3: All the vertices inside the triangle 4abc will
be connected to d.

plane. They also conjectured that any biconnected
outerplanar graph has a Gabriel drawing. This was
settled in the affirmative by Lenhart and Liotta [9].

As every Gabriel graph is also a witness Gabriel
graph, since GG(P) = GG(P, P), one may expect
more power of representation with the use of the wit-
nesses. This is the case for tress, a class of graphs we
have studied with witness Gabriel graphs, for which
we have found the following:

Theorem 3 For all trees, a witness Gabriel drawing
exists.

We first observe some properties of witness Gabriel
drawings, before deducing that some graphs have no
such drawings.

Lemma 4 In a witness Gabriel graph, for any pair of
incident edges ab and bc, all the points p ∈ P in the
triangle 4abc are connected to the common vertex b,
and there is no witness in 4abc.

Proposition 1 If a witness Gabriel graph has as a
subgraph a triangle 4abc, the vertices a, b, c and the
vertices inside this triangle form a complete subgraph
(see figure 3).

We denote by Ki,i,i the complete 3-partite graph in
which each part contains i vertices; we associate a color
to each part; similarly, Ki,i,i,i denotes the complete
4-partite graph.

Lemma 5 It is impossible, in a witness Gabriel draw-
ing of K2,2,2 or K2,2,2,2, for a line containing two
vertices of one color, to divide the plane in two half-
planes, each of them containing two points of a second
and third color respectively (see figure 4). The second
and the third color may be the same.

Lemma 6 Any witness Gabriel drawing of K2,2,2,2

must have vertices in convex position.

Lemma 7 There is no witness Gabriel drawing of
K2,2,2,2 in which all the vertices of the same color are
consecutive (see figure 5).

2

EuroCG’09 - Brussels, Belgium

14

Figure 4: The line containing the white-star points
separates two black-dot points from two black-star
points.

v4

v3

v2

v1v8

v7

v6

v5

Figure 5: K2,2,2,2 in which all the vertices of the same
kind are consecutive.

The constraints described in the preceding results
lead to a graph that is not drawable:

Theorem 8 There is no witness Gabriel drawing of
K3,3,3,3.

From the preceding result we immediately obtain the
following:

Corollary 9 No graph containing K3,3,3,3 as an in-
duced subgraph can be drawn as a witness Gabriel
graph. In particular, there is no witness Gabriel draw-
ing of Kp,q,r,s for p, q, r, s ≥ 3.

4 Construction Algorithms

In this section we describe two algorithms to compute
the witness Gabriel graph GG(P,Q) from two given
sets of points P and Q.

Theorem 10 Given two point sets P,Q with |P | +
|Q| = n, the graph GG(P,Q) can be computed in
O(n2) time, which is worst-case optimal.

First algorithm: For each point p ∈ P , do the fol-
lowing: For each point q ∈ Q, draw a line lq through q,
perpendicular to the line pq. Consider the intersection
Ip of the half-planes containing p bounded by the lines
lq, ∀q ∈ Q. Then, the edge pr, r ∈ P \ {p}, is in
GG(P,Q) if and only if r ∈ Ip (see figure 6). Once

Figure 6: The first algorithm to build GG(P,Q). Black
points are in P and white points in Q.

we have computed the circular ordering of points in
P ∪Q around p, we can compute Ip and identify all
edges pr in linear time.

Second algorithm: Build the Voronoi diagram
Vor(Q) of the points in Q. For each p ∈ P , add
the point p to Vor(Q) and consider all segments of
the form pr with r ∈ P \ {p}. For each edge pr take
the midpoint m(p, r). Observe that m(p, r) is in the
Voronoi cell of p in Vor(Q∪{p}) if and only if the edge
pr is in GG(P,Q). The algorithm can be implemented
to run in quadratic time using standard tools. Again,
it is useful to have the circular ordering of all points
in P ∪Q around each point in P .

5 Verification Algorithm

In this section we present an algorithm to verify
whether a graph G(V,E) embedded in the plane can be
a witness Gabriel graph GG(V,Q), for some suitable
set of witnesses Q.

Theorem 11 Given a straight-line graph G =
G(V,E) embedded in the plane, checking if there exists
a set of witnesses Q so that G coincides with GG(V,Q)
can be done in O(|V |2 log |E|) time; if the answer is
positive, such a set of witnesses Q can be computed
within the same time.

Algorithm For each edge pq in G, draw a disk Dpq

with diameter pq. Take the union U =
⋃

p,q∈GDpq of
these disks. Draw the Voronoi Diagram of the arcs
and vertices of the boundary of U . For each pair of
vertices r and s such that there is no edge between
them in G, draw a disk Drs with diameter rs. Check if
the center c of Drs lies in U . If it does, find which cell
C of the Voronoi diagram contains c and check if the
site of C intersects Drs, if it doesn’t, Drs ⊂ U , it is
impossible to place a witness to eliminate rs without
also eliminating a legitimate edge of G. Therefore G
is not a witness Gabriel drawing GG(V,Q), for any Q
(see figure 7).

3

Witness Gabriel graphs

15

Figure 7: The algorithm to check if a geometric graph
is a witness Gabriel drawing. Black points are in P .

6 Final Remarks

There are some obvious open problems left in this
paper, like closing the gaps between some bounds.

On the other hand in this version we have omitted
the description of some extensions. For example, the
same way that standard Gabriel graphs are extended
to higher order, this can be done for the witness gen-
eralization: In a witness k-Gabriel graph, an edge ab,
a, b ∈ P , is in the graph if there are fewer than k
witnesses in Dab \{a, b}. Most of the preceding results
can be easily modified to provide the corresponding
conclusions about witness k-Gabriel graphs.

Finally, let us also mention that some natural long
term goals, such as a complete characterization of
the class of witness Gabriel graphs or the design of
efficient algorithms testing graphs for membership,
remain elusive to date, which, on the other hand,
is a common situation for most classes of standard
proximity graphs

References

[1] B. Aronov, M. Dulieu, and F. Hurtado. Witness
graphs. Manuscript, 2008.

[2] G. Di Battista, Peter Eades, and R. Tamassia
an I. G. Tollis. Graph Drawing. Algorithms for
the Visualization of Graphs. Prentice Hall, 1999.

[3] G. Di Battista, G. Liotta, and S. Whitesides:. The
strength of weak proximity. Journal of Discrete
Algorithms, 4(3):384–400, 1992.

[4] P. Bose, W. Lenhart, and G. Liotta. Characteriz-
ing proximity trees. In G. Di Battista, P. Eades,

H. de Fraysseix, P. Rosenstiehl, and R. Tamassia,
editors, Proc. ALCOM Int. Work. Graph Draw-
ing, GD, pages 9–11. Centre D’Analyse et de
Mathématique Sociales, Paris Sorbonne, 1993.

[5] M. Dulieu. Ph d thesis, in preparation.

[6] K.R. Gabriel and R.R. Sokal. A new statistical
approach to geographic variation analysis. Sys-
tematic Zoology, 18:259–278, 1969.

[7] J.W. Jaromczyk and G.T. Toussaint. Relative
neighborhood graphs and their relatives. P-IEEE,
80:1502–1517, 1992.

[8] D.J. Kirkpatrick and J.D. Radke. A framework
for computational morphology. Computational
Geometry, 85:217–248, 1985.

[9] W. Lenhart and G. Liotta. Proximity drawings
of outerplanar graphs. In Graph Drawing, pages
286–302, 1996.

[10] G. Liotta. Proximity drawings. In R. Tamassia,
editor, Handbook of Graph Drawing and Visual-
ization. CRC Press, to appear.

[11] A. Lubiw and N. Sleumer. Maximal outerplanar
graphs are relative neighborhood graphs. Proc.
5th Canad. Conf. Comput. Geom., pages 198–203,
1993.

[12] D.W. Matula and R.R. Sokal. Properties of
Gabriel graphs relevant to geographical variation
research and the clustering of points in the plane.
Geographical analysis, 12:205–222, 1980.

[13] G. Toussaint. Some unsolved problems on prox-
imity graphs, 1991.

[14] G.T. Toussaint. Geometric proximity graphs for
improving nearest neighbor methods in instance-
based learning and data mining. International
Journal of Comput. Geom. and Applications,
15(2):101–150, 2005.

4

EuroCG’09 - Brussels, Belgium

16

Measuring the Similarity of Geometric Graphs∗

Otfried Cheong† Joachim Gudmundsson‡ Hyo-Sil Kim† Daria Schymura§ Fabian Stehn§

Abstract

What does it mean for two geometric graphs to be
similar? We propose a distance for geometric graphs
that we show to be a metric, and that can be com-
puted by solving an integer linear program. We also
present experiments using a heuristic distance func-
tion.

1 Introduction

Computational geometry has studied the matching
and analysis of geometric shapes from a theoretical
perspective, and developed efficient algorithms mea-
suring the similarity of geometric objects. Two ob-
jects are similar if they do not differ much geometri-
cally. A survey by Alt and Guibas [1] describes the
significant body of results obtained by researchers in
computational geometry in this area.

This paradigm fits a number of practical shape
matching problems quite well, such as the recognition
of symmetries in molecules, or the self-alignment of a
satellite based on star patterns. Other pattern recog-
nition problems, however, seem to require a different
definition of “matching.” For instance, recognizing
logos, Egyptian hieroglyphics, Chinese characters, or
electronic components in a circuit diagram are typical
examples where this is the case. The same “pattern”
can appear in a variety of shapes that differ geometri-
cally. What remains invariant, however, is the “com-
binatorial” structure of the pattern.

We propose to consider such patterns as geomet-
ric graphs, that is, planar graphs embedded into the
plane with straight edges. Two geometric graphs can
be considered similar if both the underlying graph and
the geometry of the planar embedding are “similar.”
The distance measures considered in computational
geometry, such as the Hausdorff distance, Fréchet dis-
tance, or the symmetric difference, do not seem to
apply to geometric graphs.

Pattern recognition systems that combine a combi-
natorial component with a geometric component are
already used in practice—in fact, syntactic or struc-
tural pattern recognition is based on exactly this idea:
∗This work was supported by Korea Science & Engineering

Foundation through the Joint Research Program (F01-2006-
000-10257-0).
†KAIST, Korea. {otfried,hyosil}@tclab.kaist.ac.kr
‡NICTA, Australia. joachim.gudmundsson@nicta.com.au
§FU Berlin, Germany. {schymura,stehn}@inf.fu-berlin.de

A syntactic recognizer decomposes the pattern into
geometric primitives and makes conclusions based on
the appearance and relative position of these primi-
tives [2, 6]. While attractive from a theoretical point
of view, syntactic recognizers have not been able to
compete with numerical or AI techniques for charac-
ter recognition [5]. In general, the pattern recognition
community may be said to consider graph representa-
tions as expressive, but too time-consuming, as sub-
graph isomorphism in general is intractable.

An established measure of similarity between (la-
beled) graphs is the edit distance. The idea of an edit
distance is very intuitive: To measure the difference
between two objects, measure how much one object
has to be changed to be transformed into the other
object. To define an edit distance, one therefore de-
fines a set of allowed operations, each associated with
a cost. An edit sequence from object A to object B
is a finite sequence of allowed operations that trans-
forms A into B. The distance between A and B is the
minimal cost of an edit sequence from A to B.

The edit distance originally stems from string
matching where the allowed operations are insertion,
deletion and substitution of characters. The edit dis-
tance of strings can be computed efficiently, and the
string edit distance is used widely, for instance in com-
putational biology.

Justice and Hero [4] give a definition of an edit dis-
tance for vertex-labeled graphs that additionally al-
lows relabeling of vertices, and give an integer linear
programming formulation. The edit operations are in-
sertion and deletion of vertices, insertion and deletion
of edges, and a change of a vertex label.

It is natural to try to define an edit distance for geo-
metric graphs as well. Simply considering a geometric
graph as a graph whose vertices are labeled with their
coordinates is not sufficient, as the cost of inserting
and deleting an edge should also be dependent on the
length of the edge. This leads to the following op-
erations: Insertions and deletions of vertices, transla-
tions of vertices, and insertions and deletions of edges.
However, it is difficult to give bounds on the length
of an edit sequence: vertices can move several times
to make insertions and deletions cheaper.

This leads us to define another graph distance func-
tion, given in the next section. It is not an edit dis-
tance, and so we need to prove explicitly that it is a
metric. We also give an integer linear programming
formulation that allows us to compute our distance for

1

Measuring the Similarity of Geometric Graphs

17

small graphs with an ILP solver. Unfortunately, we
do not know how to compute or even approximate our
graph distance for larger graphs. In fact, we give two
reductions from NP-hard problems, but both result in
non-“practical” instances of the problem.

We therefore turn our attention to a heuristic.
We define the landmark distance of two geometric
graphs, and present pattern retrieval experiments on a
database of 25056 graphs created from glyphs of Chi-
nese characters. The idea of the landmark distance is
to represent a geometric graph on n vertices as a set of
n points in R6. The landmark distance between two
geometric graphs is then the Earth Mover’s Distance
between the point sets representing the graphs.

2 Geometric graph distance

Our distance is inspired by the graph edit distance:
it is based on primitive operations, namely insertion
and deletion of vertices and edges, and the transla-
tion of vertices. However, we do not allow arbitrary
sequences of these operations. Instead the edit oper-
ations must be performed in this order:

1. Edge deletions
2. Vertex deletions
3. Vertex translations
4. Vertex insertions
5. Edge insertions

Vertex insertions and deletions are free, insertion or
deletion of an edge e of length `(e) have cost CE ·
`(e), and translating a vertex has cost CV times the
distance of the translation plus CE times the change
in the length of the incident edges. Note that we
measure the change in edge length from graph A to
graph B, and not for the individual operations.

Taking into account the change in edge length is
necessary, as otherwise the distance would not satisfy
the triangle inequality, see Figure 1.

(a) (b) (c) (d)

Figure 1: If the change in edge lengths are not taken
into consideration then it is cheaper to go from graph
(a) to graph (d) via graphs (b) and (c).

We can now show:

Theorem 1 The geometric graph distance defined
above is a metric on the set of geometric graphs with-
out isolated vertices.

The geometric graph distance can be formulated
as an ILP as follows. Let A = (V (A), E(A)) and
B = (V (B), E(B)) be the two geometric graphs. For
each vertex vi of V (A) and vj in V (B), we have a

binary variable Vij which is 1 if vi is moved to vj ,
otherwise 0. Similarly, for each edge ei of E(A) and
ej in E(B), we have a binary variable Eij which is 1 if
the two endpoints of ei are moved to the endpoints of
ej , otherwise 0. Furthermore, each vertex can only be
moved once, hence, ∀i∑j Vij ≤ 1 and ∀j∑i Vij ≤ 1.

An edge can only be matched if the endpoints are
the same, i.e., if ei = (va, vb) and ej = (vp, vq) then
Eij ≤ 1

2 · (Vap + Vbq + Vaq + Vbp).
These are all the constraints. The distance is the

minimum of the function:
CV ·

∑
i,j(|vivj | · Vij) + CE ·

(∑
i `(ei) +

∑
j `(ej)

)
−CE · Eij ·

∑
i,j

(
`(ei) + `(ej)− ∣∣`(ei)− `(ej)

∣∣).
The first term is the cost of moving all vertices (the

remaining vertices are deleted and inserted, which is
for free). The second and third terms are the total
cost of first deleting all edges of A and then inserting
all edges of B. The only way to avoid deleting and
inserting an edge is by moving it from A to B. In that
case, Eij is 1, and the cost is the difference in edge
length, which is modeled by the fourth term.

Theorem 2 The problem of computing the geomet-
ric graph distance as defined above is NP-hard.

The theorem can be proven by using a reduction from
the 3D-matching problem or the Hamiltonian path
problem. However, we can only prove the theorem in
the case when the two graphs are highly non-planar or
for planar graphs when CV � CE . Thus, both results
are for non-“practical” instances of the problem

3 Landmark Distance

The idea of the landmark distance is to designate a
few vertices as landmarks and to represent the vertices
of the graph by their distances to the landmarks.

Formally, let G = (V,E) be a geometric graph, and
let C(G) be the complete graph on the set V . An edge
(u, v) of C(G) is given a weight as follows: if (u, v) ∈
E, then its weight is |uv|, otherwise its weight is p·|uv|,
where p > 1 is a fixed penalty value. The distance
dG(u,w) between a vertex u ∈ V and a landmark
w ∈ V is then defined as the length of the shortest
path between u and w in C(G). After testing different
values for p we chose p = 1.6 for our experiments.

Let L = w1, . . . , wk be k vertices of G called land-
marks. For a vertex v ∈ V with coordinates (x, y), we
define the L-vector Lv of v as the (k+ 2)-dimensional
vector containing the distances of v to the k land-
marks as well as the coordinates of v:

Lv = (dG(v, w1), . . . , dG(v, wk), x, y).
The landmark representation R(G) of a graph G

is now simply the set of L-vectors of all vertices:
R(G) := {Lv | v ∈ V (G)}.

We define the landmark distance dL(G0, G1) be-
tween two geometric graphs G0 and G1 (both with

2

EuroCG’09 - Brussels, Belgium

18

given landmarks) as the normalized Earth Mover’s
Distance between the point sets R(G0) and R(G1).

The normalized Earth Mover’s Distance (nEMD)
is a distance measure defined on weighted point
sets [7]. Let P and Q be two weighted point sets
with

∑
p∈P w(p) =

∑
q∈Q w(q) = 1, where w(u) ≥ 0

is the weight of a point u.
Intuitively, the set P can be seen as a set of earth

piles and the set Q can be seen as holes in the ground,
where the weight of each point stands for the amount
of earth at that position or the size of the hole, respec-
tively. The Earth Mover’s Distance is then defined as
the cheapest way to move the earth into the holes,
where piles can be split and the cost of transporting
s units of earth from a pile to a hole is equal to s times
the distance between the pile and the hole.

The nEMD can be formalized by the following lin-
ear program. Let dpq denote the Euclidean distance
of p ∈ P to q ∈ Q and let fpq denote the flow from p
to q. Then the nEMD(P,Q) is defined as the minimal
total cost that establish a maximum flow of 1:

nEMD(P,Q) = min
∑
p∈P

∑
q∈Q

fpqdpq

subject to the following constraints

∀p ∈ P ∀q ∈ Q fpq ≥ 0

∀p ∈ P
∑
q∈Q

fpq = w(p)

∀q ∈ Q
∑
p∈P

fpq = w(q)

In the definition of the landmark distance, we give
all vertices equal weight and use the `1-metric in Rk+2

as the underlying distance for the nEMD.

Theorem 3 The landmark distance on graphs with
given landmarks has the following properties:
(i) dL(G0, G1) ≥ 0,
(ii) dL(G0, G1) = dL(G1, G0),
(iii) dL(G0, G2) ≤ dL(G0, G1) + dL(G1, G2).

All the properties in the theorem follow directly from
the fact that the normalized EMD is a metric [7]. Note
that dL(G0, G1) = 0 does not imply G0 = G1.

4 Experimental results

We performed pattern retrieval experiments on a
database of graphs generated from Chinese character
glyphs using the landmark distance. The motivation
here was not to build a Chinese character recognition
system—a lot of research has been done in this area,
and it is not our intention to compete with these finely
tuned results of years of research. We turned to Chi-
nese characters because we found them to be a source
of large number of graphs with known semantics.

We selected six different fonts, including two Ko-
rean, two Japanese, and two Chinese fonts. We picked

a set of 4176 Chinese characters (or, more precisely,
Unicode code points) that exist in all six fonts, and
generated graphs for each of these 6 × 4176 = 25056
glyphs as follows: We draw the glyph and compute
its medial axis. We prune away small features, and
then simplify each chain of degree-two vertices using
the Imai-Iri algorithm [3]. Figure 2 shows three exam-
ples of glyphs and the corresponding graphs. For the
distance computations, all graphs were then linearly
scaled to fill a unit square (not shown in the figure).

Figure 2: Three glyphs and generated graphs for
U+6f11 “slowly flowing water”.

As explained, our database consists of 4176 sets of
six graphs that represent the same abstract Chinese
character. In principle, the graphs representing the
same character should be similar, and we have as-
sumed this as the ground truth of our database. In
reality, there can be considerable variation between
graphs with the same semantics, due to a different
glyph style, or actual variations in character shape.

The experiment We selected one of the six fonts
(the Korean “dotum” font) as our reference font, and
built a database of 4176 “model” graphs from this.

We then considered each of the remaining 20880
“pattern” graphs, and computed its distance to each
model, using the EMD implementation by Rubner et
al. [7]. The models were then sorted in order of dis-
tance from the pattern. Ideally, the nearest model
should be a graph for the same Chinese character, so
we determined the index of the occurrence of the same
Chinese character in the ranked list of models.

As a control experiment, we first tried this exper-
iment using the Hausdorff distance of the graph ver-
tices. The results are given in the first line of Table 1:
For 31.8% of the 20880 patterns the best (most sim-
ilar) model belonged to the same Chinese character,
for 50.9% of the patterns, one of the first (most simi-
lar) ten models belongs to the same character.

It is clear that the Hausdorff distance does not cap-
ture the problem well enough (even though we ignore
edge information here, we do not believe that using
the edge information would actually help).

The Earth Mover’s Distance, however, does much

3

Measuring the Similarity of Geometric Graphs

19

Index in ranked model list
Graph distance 1 2 3 4 5 6–10 11–20 21–200

Hausdorff distance # patterns 6647 1272 705 496 387 1115 1257 4283
of vertices accum % 31.8 37.9 41.3 43.7 45.5 50.9 56.9 77.4

EMD # patterns 16844 1646 519 258 184 286 193 200
of vertices accum % 80.7 88.6 91.0 92.3 93.2 94.5 95.4 96.4
Landmark # patterns 17814 1298 454 260 152 317 195 221

distance accum % 85.3 91.5 93.7 95.0 95.7 97.2 98.1 99.2

Table 1: A summary of our experimental studies of Chinese character retrieval.

better, even when we ignore all information about
the edges of the graph. The second line of our table
shows this experiment, where we ranked the models
by nEMD of the graph vertices only. The results are
surprisingly good considering that the edge informa-
tion is not used at all: for 94.5% of the patterns, the
correct Chinese character is found in the top ten.

Landmark selection Selecting the right landmarks
in each graph is critical to the success of the landmark
distance. We fixed four landmarks in each model
graph, by choosing the four vertices that are extreme
in the four diagonal directions. For a pattern, we ac-
tually try all plausible choices of landmarks, and use
the landmarks that result in the smallest distance to
a given model (so the choice of landmarks could be
different for each model).

Speeding up the computation It turned out that
computing the EMD is rather expensive, and comput-
ing 4176× 20880 EMD distances in every experiment
is very time-consuming.

We therefore used a heuristic to speed up the com-
putation: Instead of using the EMD, we compute a
simplified landmark distance d′L(G0, G1) which is de-
fined as follows: For each point u in R(G0), find the
nearest point nn(u) ∈ R(G1). Then

d′L(G0, G1) :=
∑

u∈R(G0)

||u− nn(u)||1.

We first rank all models using this simplified landmark
distance. We then look at the nearest 200 models,
and recompute the distance from the pattern to these
200 models using the landmark distance.

The heuristic greatly speeds up the computation
while having little effect on the quality of the recogni-
tion. As an example of the speed-up we compared one
character (6f01s) against the entire database which
required 31 seconds using the EMD while the above
heuristic only required 1.8 seconds, which is a speed-
up of approximately 17. However, it should be noted
that the exact timings depend very much on the char-
acter.

For 85.3% of the patterns this approach finds the
same Chinese character and in 97.2% of the cases it

is in the top ten.

5 Conclusions and open problems

We believe that we have only scratched the surface of
this problem. We gave some evidence that our geo-
metric graph distance is hard to compute, but we lack
a formal proof that it is NP-hard for planar graphs
with realistic values of CE and CV .

Is there a PTAS for our distance, or at least a
constant-factor approximation?

If we do not want insertions and deletions of vertices
to be free, can we incorporate that into our distance?

Finally, a major problem of our metric is that it
does not allow us to cheaply “bend” an edge, that is,
to insert a degree-two vertex into an edge and then
to move that vertex slightly. Can we define a metric
that allows this while still being computable at least
through integer linear programming?

References

[1] H. Alt and L.J. Guibas. Discrete Geometric Shapes:
Matching, Interpolation, and Approximation, pages
121–153. Elsevier B.V., 2000.

[2] K. S. Fu. Syntactic Pattern Recognition and Applica-
tions. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[3] H. Imai and M. Iri. Polygonal approximations of a
curve - formulations and algorithms. In Computa-
tional Morphology, pages 71–86. Elsevier B.V., 1988.

[4] D. Justice and A. Hero. A binary linear program-
ming formulation of the graph edit distance. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 28(8):1200–1214, 2006.

[5] S. Lucas, E. Vidal, A. Amiri, S. Hanlon, and J. C.
Amengual. A comparison of syntactic and statisti-
cal techniques for off-line OCR. In 2nd International
Colloquium Grammatical Inference and Applications,
pages 168–179. Springer-Verlag, 1994.

[6] T. Pavlidis. Structural Pattern Recognition. Springer-
Verlag, New York, 1977.

[7] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth
movers distance as a metric for image retrieval. In-
ternational Journal of Computer Vision, 40(2), 2000.
http://robotics.stanford.edu/~rubner.

4

EuroCG’09 - Brussels, Belgium

20

Spanner Properties of π/2-Angle Yao Graphs ∗

Mirela Damian † Nawar Molla ‡ Val Pinciu§

Abstract

We show that the YaoYao graph Y Y4 is not a spanner.
We conjecture that the Yao graph Y4 is a spanner, and
prove this conjecture for the special case of points in
convex position.

1 Introduction

Let V be a set of n points in the plane and let G =
(V,E) be the complete Euclidean graph on V . For any
pair of vertices u, v ∈ V , we use δG(u, v) to denote the
length of a shortest path from u to v in G. For fixed
t ≥ 1, H is called a t-spanner for G if, for any two
vertices u, v ∈ V , δH(u, v) ≤ t · |uv|. The value t is
called the stretch factor of H. If t is constant, then
H is called a length spanner, or simply a spanner.

The Yao graph [3] with an integer parameter k > 0,
denoted Yk, is defined as follows. At each node u ∈ V ,
any k equal-separated rays originated at u define k
cones. In each cone, pick a shortest edge uv, if there
is one, and add to Yk the directed edge −→uv. Ties are
broken arbitrarily. It was shown that, for k > 6, the
Yao graph is a spanner with stretch factor 1

1−2 sinπ/k ,
but it can have degree as high as n − 1. To bound
the degree, Li et al. [2] proposed another structure
called YaoYao Y Yk, which is constructed by applying
a reverse Yao structure on Yk: at each node u in Yk,
discard all directed edges −→vu from each cone centered
at u, except for a shortest one (again, ties can be
broken arbitrarily). Y Yk has maximum node degree
2k, a constant. However, the tradeoff between degree
and spanner property is unclear in that the question
of whether Y Yk is a spanner or not remains open.

The class of graphs Yk, for k < 6, has not been
much studied. As far as we know, the only existing
result shows that Y4 is a weak spanner with stretch
factor t′ =

√
3 +
√

5 (Thm. 2.2, [1]), which means
the following: for any two points u, v ∈ V , there is a
directed path P from u to v in Y4 such that, for each
point w ∈ P , |wv| ≤ t′ ·|uv|. In other words, the entire

∗The first two authors have been supported by NSF grant
CCF-0728909.
†Dept. Comput. Sci., Villanova Univ., Villanova, PA, USA.

mirela.damian@villanova.edu.
‡Dept. Comput. Sci., Villanova Univ., Villanova, PA, USA.

nawar.molla@villanova.edu.
§Dept. Math., Southern Connecticut State University, CT,

USA. pinciuv1@southernct.edu.

path P lies inside a ball of radius t′ · |uv| centered at
v. For any path P and any pair of vertices u and v on
P , let P [u, v] denote the subpath of P that extends
between u and v.

In this paper we study the class of graphs Y4 and
Y Y4. We show that Y Y4 is not a spanner, and Y4 is a
spanner for points in convex position. We conjecture
that Y4 is a spanner for arbitrary point sets.

2 Y Y4 is not a Spanner

We prove that Y Y4 is not a spanner with the help of
a simple counterexample. For a fixed small angular
value θ > 0, let a0b0 be an arbitrary line segment with
slope θ. Let b0, b1, . . . , bk be points equally distributed
along a line of slope π/2−θ, at intervals equal to |a0b0|
(so |bibi+1| = |a0b0|, for each i = 1, . . . , k − 1). See
Fig. 1. Let a0, a1, . . . , ak be points equally distributed
along a line of slope π/2 + θ, such that aibi and ajbj
are parallel, for each 0 ≤ i, j ≤ k. Note that, for fixed

−2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

a0
b0

b1

b2

b3

a1

a2

a3

θ

θ

θ

Figure 1: The Yao graph H induced by the point set
V .

θ, a0 and b0, the point set V = {a0, a1, . . . , ak} ∪
{b0, b1, . . . , bk}, is uniquely defined. For a fixed k,
we select the angle θ small enough so that two lines
including a0a1 and b0b1 are almost vertical.

Now note that in the Yao step, each node ai selects
the edges

−−→
aibi, −−−−→aiai+1 (if i < k) and −−−−→aiai−1 (if i > 0).

Similarly, each node bi selects
−−−→
bibi+1 and

−−−→
biai+1 (if

i < k),
−−−→
bibi−1 (if i > 0), and

−−→
biai (if i = 0). The result

is the Yao graph H shown in Fig. 1.
In the reverse Yao step, since edges −−−−→aiai+1 and−−−→

biai+1 lie in the same quadrant for ai+1 (for i < k),

1

Spanner Properties of π/2-Angle Yao Graphs

21

and since |aiai+1| < |biai+1|, the node ai+1 will elimi-
nate

−−−→
biai+1 from H. Similarly, since

−−→
aibi and

−−−→
bi−1bi lie

in the same quadrant for bi, and since |bi−1bi| < |aibi|,
the node bi will eliminate

−−→
aibi from H. The result is

the YaoYao graph H illustrated in Fig. 2. As θ → 0,

−2 −1 0 1 2 3 4
0

1

2

3

4

5

6

7

a0
b0

b1

b2

b3

a1

a2

a3

θ

θ

θ

Figure 2: The graph H is not a spanner:

we have that |akbk| → |a0b0|. However, a shortest
path between ak and bk in the YaoYao graph H has
length

δH(ak, bk) =
k∑
i=1

|aiai−1|+ |a0b0|+
k−1∑
i=0

|bibi+1|

> (k + 1) · |a0b0| = Ω(n) · |akbk|
Here n = |V | = 2(k+ 1). The inequality above shows
that there is no constant c such that δH(ak, bk) ≤
c · |akbk|. It follows that H is not a spanner for the
graph induced by the point set V .

3 Y4 is a Spanner for Convex Position

We conjecture that Y4 is a spanner for arbitrary point
sets, however we only prove this conjecture for sets of
points in convex position.

Let u, v ∈ V be arbitrary. Let Q(u, v) denote the
cone (quadrant) with origin at u that contains v, and
let SQ(u, v) denote a smallest square centered at v
whose boundary contains u. Note that Q(u, v) and
SQ(u, v) are uniquely defined for a given pair of ver-
tices u and v (see Fig. 3a). Let R(u, v) denote the
rectangle with diagonal uv.

For a fixed pair of vertices u, v ∈ V , we define re-
cursively a directed path P(u v) from u to v in Y4

as follows. Let u0 = u, and let −−−−→uiui+1 ∈ Y4 be the
edge that lies in Q(ui, v), for each i. Then

P(ui v) =

{
⊥, if ui = v
−−−−→uiui+1 ⊕ P(ui+1 v), otherwise.

(1)
Here ⊥ represents the null path and ⊕ represents the
concatenation operator. This definition is illustrated

y

u

vui+1

y

u

v

u5

u1

u6

u2

u3

u4

(b)(a)

x x

SQ(u ,v)

Q(u ,v)

i

ui+2

i

i

Figure 3: Constructing P(u v). (a) The outer
square is SQ(ui, v) = SQ(ui+1, v), and the inner
square is SQ(ui+2, v); shaded area is Q(ui, v); (b)
P(u v) lies inside SQ(u, v).

in Fig. 3a. Fischer et al. [1] show the following prop-
erties of P(u v):

Property 1 Let P(u v) = u0, u1, . . . be as defined
in (1). Then, for each i ≥ 0,

(a) SQ(ui+1, v) ⊆ SQ(ui, v).

(b) SQ(ui+2, v) ⊂ SQ(ui, v).

(c) P(ui v) lies entirely inside SQ(ui, v).

In the example from Fig. 3a for instance,
SQ(ui+1, v) = SQ(ui, v), however SQ(ui+2, v) ⊂
SQ(ui, v). This latter property is critical to ensure
that progress is made towards v and that the path
P(u v) is well defined. We now prove another
important property of P(u v).

Lemma 2 P(u v) does not self-intersect1.

Proof. The proof is by contradiction. Assume to the
contrary that Puv = P(u v) is a self-intersecting
path. Let (u = u0), u1, u2, . . . be the vertices of Puv
in the order in which they appear from u to v along
Puv. Let k > 0 be the smallest index such Puv[u, uk]
does not self-intersect, but Puv[u, uk+1] self-intersects
(so Puv[u, uk+1] contains at least three edges, meaning
that k > 1). Then it must be that ukuk+1 intersects
one of the edges on the subpath Puv[u, uk]. Let i < k
be such that uiui+1 intersects ukuk+1 (see Fig. 4).
Since uiui+1 and ukuk+1 are non-adjacent, it must be
that k > i+ 1. This along with Property 1(b) implies
that SQ(uk+1, v) ⊂ SQ(ui+1, v). By Property 1(a),
SQ(ui+1, v) ⊆ SQ(ui, v). These together show that
uk+1 cannot coincide with ui or ui+1, and therefore
ukuk+1 and uiui+1 do not share an endpoint. Thus, if
uiui+1 and ukuk+1 intersect, they must share a point
interior to each of them. This along with the fact
that uk+1 lies strictly inside SQ(ui+1, v) implies that
uk+1 ∈ R(ui, ui+1). This in turn implies that uk+1 ∈

1A path self-intersects if two non-adjacent edges share a
point.

2

EuroCG’09 - Brussels, Belgium

22

v
ui

y

x

ui+1
ukuk+1

Figure 4: Edges uiuj , uku` ∈ P(u v) can not cross.

Q(ui, v) and |uiuk+1| < |uiui+1|, contradicting the
fact that uiui+1 is a shortest edge in Q(ui, v) (i.e, a
Yao edge). This completes the proof. �

An immediate consequence of Lem. 2 is the following:

Corollary 3 Let P(u v) = (u = u0), u1, . . .
. . . , uk−1, (uk = v). Then for any j, 0 ≤ j < k, ujuj+1

is on the convex hull of uj , uj+1, . . . , uk−1, uk.

The path P(u v) can have an interesting oscillating
behavior, as shown in Fig. 5. This is due to the fact

u1

u2

u3

u4

u = vm
u=u0

ui uj

Figure 5: P(u v) is arbitrarily long compared to
|uv|.

that, at each intermediate point ui, the path contin-
ues towards v along the Yao edge incident to ui that
lies in Q(ui, v), ignoring the incident (and potentially
shorter) edges from adjacent quadrants. As a result,
a vertex uj ∈ P(u v) that does not lie in Q(ui, v),
but lies very close to ui, might end up separated from
ui by a long subpath in P(u v) (see Puv[ui, uj]
from Fig. 5). We compensate for this shortcoming by
refining P(u v) in a second step, as described in
the Y4Path algorithm below. The refinement step
replaces longer subpaths of Puv by shorter paths from
Y4, if possible.

For the example shown in Fig. 6 for instance,
the Y4Path algorithm would replace the subpath
(−−→u2u3,

−−→u3u4,
−−→u4u5) by P(u5 u2). We will show

that P(u5 u2) has a nice behavior and does not
interfere with the existing path Puv. In particular,
P(u5 u2) lies exterior to H(Puv), in the region
shaded in Fig. 6. This property is shown formally in
the following lemma.

Algorithm Y4Path(Y4, u, v)

1. Compute Puv = P(u v).
Let H(Puv) be the convex hull of Puv.
Let ∂H(Puv) be the boundary of H(Puv).

2. For each edge uiuj ∈ ∂H(Puv) \ Puv, with j > i > 0
If |uiuj | < |uiui+1|/2

Recompute P(uj ui) as in (1).
Replace Puv[ui, uj] in Puv by P(uj ui).

Output Puv (undirected).

Table 1: The Y4Path algorithm.

u1

u2
u5 u6 u7

u3
u4

u8

u9

u = v10

u=u0

P(u u)5 2

Figure 6: P(u5 u2) lies in the shaded area.

Lemma 4 Let uiuj be an edge processed in Step 2 of
the Y4Path algorithm, with i > 0. Then P(uj ui)
lies in the closed rectangle R = R(uj , ui).

Proof. Let Q0 = Q(ui, ui+1), and assume without
loss of generality that Q1 = Q(ui, uj) lies counter-
clockwise from Q0 (see Fig. 7). Let Q2 and Q3 be the
other two quadrants with origin ui, in counterclock-
wise order around ui.

The proof is by contradiction. Let −−−−−→wkwk+1 ∈
Q(wk, ui) be the first edge along P(uj ui) that
crosses the boundary of R. Thus wk ∈ R and
wk+1 6∈ R. Since wk ∈ R, we have that

|wkui| < |ujui| (2)

Since wk+1 ∈ Q(wk, ui) and −−−−−→wkwk+1 is a Yao edge, it
must be that

|wkwk+1| ≤ |wkui| (3)

This implies that wk+1 6∈ Q3. Substituting (3) in
the triangle inequality |uiwk+1| < |uiwk| + |wkwk+1|
yields |uiwk+1| < 2|wkui|. Substituting (2) in this
latter inequality yields

|uiwk+1| < 2|ujui| (4)

Recall that Step 2 of the Y4Path algorithm processes
edges uiuj of length |uiuj | < |uiui+1|/2. This to-
gether with (4) yields

|uiwk+1| < |uiui+1| (5)

3

Spanner Properties of π/2-Angle Yao Graphs

23

Inequality (5) along with the fact that −−−−→uiui+1 is a
Yao edge, implies that wk+1 6∈ Q0. It also holds that
wk+1 6∈ Q1, since Q1 ∩ Q(wk, ui) ⊆ R and wk+1 ∈
Q(wk, ui) \R.

uj

v ui

ui+1

wkwk+1Q2 Q1

Q3

ui-1

Q0

Figure 7: If ui−1 ∈ Q0, then ui+1 6∈ Q(ui, v).

It remains to discuss the case wk+1 ∈ Q2 (see
Fig. 7). Recall that uiuj ∈ ∂H(Puv). Also, by Cor. 3,
ui−1ui is a hull edge of Puv[ui−1, v], so ui+1 is in
the interior of the convex angle ∠ujuiui−1. Since
uj ∈ Q1 and ui+1 ∈ Q0, then either ui−1 ∈ Q3

or ui−1 ∈ Q0. If ui−1 ∈ Q3, the quadrilateral
ui−1ui+1ujwk+1 would contain ui in its interior, con-
tradicting the fact that V is in convex position. If
ui−1 ∈ Q0, since−−−−→ui−1ui is a Yao edge, v ∈ Q(ui−1, ui).
Since −−−−→uiui+1 is a Yao edge, v ∈ Q(ui, ui+1). It follows
that v ∈ Q(ui−1, ui)

⋂
Q(ui, ui+1) = R(ui−1, ui), con-

tradicting the fact that −−−−→ui−1ui is a Yao edge. Having
exhausted all cases, we conclude that wkwk+1 cannot
cross the boundary of R. �

The following corollary follows immediately from
Lem. 4 and the fact that V is in convex position.

Corollary 5 Let uiuj be an edge processed in Step 2
of the Y4Path algorithm, with i > 0. Then P(ui
uj) ⊂ ∂H(Puv).

Lemma 6 If P is a convex polygon containing u and
v that lies inside SQ(u, v), then the perimeter of P is
no more than 2(2 +

√
2) · |uv|.

Proof. Let ab be a side of P containing v. Extend
ab beyond each endpoint until it meets the boundary
of SQ(u, v) at two points, call them w1 and w2 (see
Fig. 8). Then w1w2 splits SQ(u, v) into two congruent
trapezoids (when w1w2 is a diagonal of SQ(u, v), the
two trapezoids degenerate into two right triangles).
Since P is convex, all points of P are on the same side
of w1w2, so P has to lie inside one of these trapezoids
– call it T . The fact that P ⊆ T along with the
convexity property of P implies that the perimeter of
P does not exceed the perimeter of T .

u v

w1

w2

a

b

l

T

Figure 8: The perimeter of T does not exceed (2 +√
2)`.

Next we calculate the perimeter of T . Let ` be the
side length of SQ(u, v). Since w1 and w2 are symmet-
ric with respect to v, the lengths of the two bases of
T sum up to `. The third side of T other than w1w2

also has length `. So the perimeter of T is

2`+ |w1w2| ≤ (2 +
√

2)`

Since u is on the boundary of SQ(u, v), |uv| ≥ `/2.
This along with the inequality above shows that the
perimeter of P is no more than 2(2 +

√
2)|uv|. �

Theorem 7 For any set V of points in convex po-
sition, the Yao graph Y4 on V is a t-spanner, for
t = 4(2 +

√
2).

Proof. Cor. 5 implies that the only edges on Puv
crossing the interior of H(Puv) are those edges not
processed in Step 2 of the Y4Path algorithm. These
are diagonals uiui+1 of H(Puv) adjacent to uiuj ∈
∂H(Puv) \ Puv, with the property that |uiui+1| ≤
2|uiuj |. It follows that Puv is no longer than twice
the perimeter of ∂H(Puv). This along with Lem. 6
concludes the proof. �

Concluding Remarks. We have shown that Y Y4

is not a spanner, and that Y4 is a spanner for points
in convex position. Proving that Y4 is a spanner for
arbitrary point sets remains open.

References

[1] M. Fischer, T. Lukovszki, and M. Ziegler. Geometric
searching in walkthrough animations with weak span-
ners in real time. In ESA ’98: Proc. of the 6th Annual
European Symposium on Algorithms, pages 163–174,
1998.

[2] X. Li, P. Wan, Y. Wang, and O. Frieder. Sparse power
efficient topology for wireless networks. In HICSS’02:
Proc. of the 35th Annual Hawaii Int. Conference on
System Sciences, volume 9, page 296.2, 2002.

[3] A.C.-C. Yao. On constructing minimum spanning
trees in k-dimensional spaces and related problems.
SIAM Journal on Computing, 11(4):721–736, 1982.

4

EuroCG’09 - Brussels, Belgium

24

Wiener Index and Diameter of a Planar Graph in Subquadratic Time

Christian Wulff-Nilsen∗

Abstract

We solve two open problems by proving the existence
of subquadratic time algorithms for computing the
Wiener index, defined as the sum of all-pairs short-
est path distances, and the diameter, defined as the
maximum distance between any vertex pair, of an un-
weighted planar graph. We do this by exhibiting al-
gorithms with O(n2 log log n/ logn) running time and
O(n) space requirement where n is the number of ver-
tices of the graph.

1 Introduction

A molecular topological index is a value obtained from
the graph structure of a molecule such that this value
(hopefully) correlates with physical and/or chemical
properties of the molecule. Perhaps the most studied
molecular topological index is the so called Wiener in-
dex, a generalization of a definition given by Wiener
in 1947 [8]. The Wiener index of a graph (weighted
or unweighted) is defined as the sum of distances be-
tween all pairs of vertices of the graph. Computing
the Wiener index is essentially equivalent to comput-
ing the average distance between vertex pairs.

The Wiener index can clearly be computed in the
amount of time it takes to compute APSP distances.
For special types of graphs, faster algorithms are
known. Linear time algorithms are known for cac-
tii [9] and benzenoid systems [2] and recently Cabello
and Knauer [1] gave near-linear time algorithms for
graphs of bounded treewidth. More specifically, they
showed that the Wiener index of an n-vertex graph
of treewidth k ≥ 3 can be found in O(n logk−1 n)
time. All bounds hold for graphs with arbitrary non-
negative edge weights.

For planar graphs, the Wiener index can be found in
quadratic time using the algorithm of Frederickson [4].
One of the main open problems in this context con-
cerns the existence of a subquadratic time algorithm
for such graphs.

Another important quantity is the diameter of a
graph, defined as the maximum distance between any
vertex pair. With Frederickson’s algorithm, the diam-
eter of a planar graph can be found in quadratic time
but it is open whether a subquadratic time algorithm
exists (Problem 6.2 in [3]).

∗Department of Computer Science, University of Copen-
hagen, koolooz@diku.dk

In this paper, we solve both of these open
problems for planar unweighted graphs. We do
this by exhibiting algorithms with running time
O(n2 log log n/ logn) and space requirement O(n)
where n is the number of vertices.

The organization of the paper is as follows. In Sec-
tion 2, we give various definitions and introduce some
notation. We mention a result by Frederickson [4]
in Section 3, a result that allows us to divide a pla-
nar graph into regions with some nice properties. In
Section 4, we rely on this result to obtain our sub-
quadratic time algorithm for computing the Wiener
index of a planar graph. In Section 5, we show how a
simple modification gives an algorithm with the same
time bound for computing the diameter of a planar
graph. Finally, we make some concluding remarks in
Section 6.

2 Definitions and Notation

In all the following, G = (V, E) is an unweighted
planar graph with n vertices. For u, v ∈ V , we let
dG(u, v) denote the length of a shortest path in G
between u and v.

Given a subgraph H of G, we let VH denote its
vertex set.

Given subsets U1, U2 ⊆ V , we define∑
(U1, U2) =

∑
u∈U1

∑
v∈U2

dG(u, v).

We omit G in the notation but this should not cause
any confusion. For a vertex u and a subset U of V ,
we write

∑
(U, u) as a shorthand for

∑
(U, {u}).

We let
∑

G denote the sum of all-pairs shortest
path distances in G, i.e.

∑
G = 1

2

∑
(V, V), and we

refer to it as the Wiener index of G.
A region of G is a subset R of vertices of G. A

boundary vertex of R is a vertex in R which is adjacent
in G to a vertex in V \ R. Vertices of R that are not
boundary vertices are called interior vertices (of R).

We let log denote the base 2 logarithm.

3 r-division of a Planar Graph

By applying the separator theorem of Lipton and Tar-
jan [6] recursively to a given planar graph, Frederick-
son [4] obtained the following result which we state as
a lemma.

1

Wiener Index and Diameter of a Planar Graph in Subquadratic Time

25

Lemma 1 Given a parameter r ∈ (0, n) (which may
depend on n), an n-vertex planar graph can be di-
vided into Θ(n/r) regions each of which contains at
most r vertices and O(

√
r) boundary vertices. Fur-

thermore, each interior vertex is contained in exactly
one region. Finding such a division can be done in
O(n log n) time.

For parameter r, we refer to the division in Lemma 1
as an r-division (of the graph). If R1, . . . , Rk ⊆ V are
the regions obtained, we denote the r-division by the
tuple (R1, . . . , Rk).

Finding an r-division for a suitable value of r is
essential in our algorithms.

4 Wiener Index of a Planar Graph

In this section, we show how to compute the Wiener
index

∑
G of G in O(n2 log log n/ logn) time. We

will assume that G is connected since otherwise the
problem is trivial.

The first step of our algorithm is to compute an r-
division (R1, . . . , Rk) of G for some parameter r which
we specify later. For now, just regard r as some
function of n. We will show how to compute

∑
G

in O(n2/
√

r + nrO(
√

r)) time. From this and from a
suitable choice of r, the first result of the paper will
follow.

In the following, let B be the set of boundary ver-
tices over all regions R1, . . . , Rk. We precompute
shortest path distances from each vertex in B to all
vertices in V . Since |B| = O(n/

√
r), this can be done

in O(n2/
√

r) time using the linear time SSSP algo-
rithm in [5] for each vertex in B. From these dis-
tances, we obtain values

∑
(B, V) and

∑
(B, B) in

O(n2/
√

r) time.
Observe that

∑
(B, V) − 1

2

∑
(B, B) is the sum of

all shortest path distances in G between vertex pairs
(u, v) for which either u or v (or both) is a boundary
vertex. Since, by Lemma 1, each interior vertex be-
longs to exactly one region, we can thus obtain

∑
G

as the sum∑
(B, V)− 1

2

∑
(B, B)+

1
2

k∑
i=1

∑
(Ri \ B, V \ (Ri ∪B)) +

∑
(Ri \ B, Ri \ B).

Let R be one of the regions R1, . . . , Rk. In the
following, we focus on the problem of computing∑

(R \ B, V \ (R ∪ B)) and
∑

(R \ B, R \ B). If
we can show that these two quantities can be com-
puted in O(n

√
r + rO(

√
r)) time, it will follow that∑

G can be computed in O(n2/
√

r + nrO(
√

r)) time
since k = Θ(n/r).

Let us start with the easy part, that of computing∑
(R \ B, R \ B). We do this by computing shortest

path distances in G between each pair of vertices in
R. To do this efficiently, we take the subgraph of G
induced by R and add to it an edge between each pair
of boundary vertices of R; the length of this edge is
equal to the distance in G between those two vertices
(we do not add an edge between a pair of boundary
vertices already connected by an edge). We then run
an APSP algorithm like Floyd-Warshall on the result-
ing graph.

Since shortest path distances from boundary ver-
tices of R to all vertices in G (and in particular to all
boundary vertices in R) have been precomputed, it
follows that we can compute shortest path distances
in G between each pair of vertices in R in O(r3) time.
Hence, we can compute

∑
(R\B, R\B) in O(r3) time.

Now, to compute
∑

(R \ B, V \ (R ∪ B)), let
C1, . . . , Cs be the connected components of the sub-
graph of G induced by R. Then∑

(R \ B, V \ (R ∪B)) =
s∑

i=1

∑
(VCi \ B, V \ (R ∪B)). (1)

Let C be one of these connected components, let
nC = |VC |, and let p1, . . . , pt be the boundary vertices
of R belonging to C. In the following, we show how to
compute

∑
(VC \B, V \(R∪B)) in O(nt+n

O(t)
C) time.

It will then follow that the left-hand side of (1) can
be computed in O(n

√
r + rO(

√
r)) time since each of

the O(
√

r) boundary vertices of R belongs to exactly
one connected component.

To compute
∑

(VC \B, V \ (R∪B)), the basic idea
is the following. Given some vertex u ∈ V \ (R ∪
B), suppose we have precomputed, for each boundary
vertex pi, i = 1, . . . , t,

1. the number ni,u of vertices v in VC \B for which i
is the smallest j such that dG(u, v) = dG(u, pj)+
dC(pj , v),

2. the sum Di,u of distances in C from pi to each of
these vertices in VC \ B.

Then∑
(VC \ B, u) =

t∑
i=1

ni,udG(u, pi) + Di,u, (2)

see Figure 1.
Given these precomputations, we can thus obtain∑
(VC \ B, u) in O(t) time and from this it follows

that
∑

(VC \B, V \(R∪B)) can be computed in O(nt)
time.

In order to perform the above precomputations ef-
ficiently we need the following key observation.

Lemma 2 Let u ∈ V \ (R ∪B) and let i ∈ {1, . . . , t}
be given. Then ni,u and Di,u are completely deter-
mined by shortest path distances in C and values
dG(u, pj)− dG(u, p1) for j = 1, . . . , t.

2

EuroCG’09 - Brussels, Belgium

26

p2

R
C

p3

p1

u

Figure 1: Graph instance for which component C
has t = 3 boundary vertices p1, p2, and p3 of R
and where (n1,u, D1,u) = (4, 7), (n2,u, D2,u) = (4, 6),
and (n3,u, D3,u) = (1, 1). Also

∑
(VC \ B, u) =∑t

i=1 ni,udG(u, pi) + Di,u = 43.

Proof. Let v ∈ VC \ B. Any path from u to v in
G must contain at least one of the boundary vertices
p1, . . . , pt. Hence, the following two conditions are
equivalent:

1. i is the smallest j such that dG(u, v) =
dG(u, pj) + dC(pj , v),

2. dG(u, pi)−dG(u, pj) ≤ dC(v, pj)−dC(v, pi) holds
for 1 ≤ j ≤ t with strict inequality for 1 ≤ j < i.

Since dG(u, pi)−dG(u, pj) = (dG(u, pi)−dG(u, p1))−
(dG(u, pj)− dG(u, p1)), the above shows that ni,u de-
pends only on shortest path distances in C and values
dG(u, pj) − dG(u, p1), j = 1, . . . , t. Clearly, this also
holds for Di,u. !

Before proceeding, let us define a map φ : V \ (R ∪
B)→ Zt by

φ(u)[j] = dG(u, pj)− dG(u, p1),

for j = 1, . . . , t. Let p be a point in φ(V \ (R ∪ B))
and let u be a vertex in V \ (R∪B) such that φ(u) =
p. Associate with p values np(i) and Dp(i) for i =
1, . . . , t, defined by

np(i) = ni,u,

Dp(i) = Di,u.

By Lemma 2, this is well-defined since np(i) and Dp(i)
do not depend on the choice of u ∈ φ−1({p}).

The strategy now is to precompute np- and Dp-
values for each p ∈ φ(V \ (R ∪B)) and then, for each
u ∈ V \ (R ∪ B), compute p = φ(u) and obtain, for

i = 1, . . . , t, nu,i and Du,i as the precomputed values
np(i) and Dp(i), respectively. Function φ will act in
a way similar to a hash function in that it maps a
key (a vertex u) into a hash (the point p = φ(u)) to
obtain a value (np(i) and Dp(i) for i = 1, . . . , t).

For this strategy to work well, we need the following
lemma which shows that the number of points in φ(V \
(R∪B)) is small compared to V \ (R ∪B) and hence
that we only need to compute a small number of np-
and Dp-values.

Lemma 3 φ(V \(R∪B)) ⊆ {−(nC−1), . . . , nC−1}t.

Proof. Let u ∈ V \ (R ∪ B) and let j ∈ {1, . . . , t}
be given. Since C is connected there is a simple path
in C from p1 to pj and this path consists of at most
nC − 1 edges. Thus, dG(p1, pj) ≤ dC(p1, pj) ≤ nC − 1
and the triangle inequality implies

−(nC − 1) ≤ dG(u, pj)− dG(u, p1) ≤ nC − 1.

This shows the lemma since φ(u)[j] = dG(u, pj) −
dG(u, p1). !

We are now ready to describe how to compute∑
(VC \ B, V \ (R ∪ B)). We first initialize a t-

dimensional table T with an entry T [p] for each point
p ∈ {−(nC − 1), . . . , nC − 1}t. Associated with
T [p] are two t-dimensional vectors to hold values
(np(1), . . . , np(t)) and (Dp(1), . . . , Dp(t)). Initially,
all entries of T are unmarked. The initialization step
takes a total of O(t(2nC − 1)t) = O(nO(t)

C) time.
For each u ∈ V \(R∪B), we compute point p = φ(u)

in O(t) time (this is possible since SSSP distances
in G have been precomputed for each boundary ver-
tex). Assume first that entry T [p] is unmarked. Then
we mark it and compute the np- and Dp-values and
store them in the vectors associated with T [p]. By
Lemma 2, computing and storing these values can
clearly be done in time polynomial in nC (a weak
analysis but it suffices). From these values, we com-
pute

∑
(VC \ B, u) in O(t) time.

If T [p] is already marked then we do not compute
np- and Dp-values. Instead we perform a lookup in T
at entry T [p] to obtain

∑
(VC \ B, u) in O(t) time.

Clearly, we compute np- and Dp-values at most
once for each p ∈ {−(nC −1), . . . , nC −1}t. It follows
that the above algorithm computes

∑
(VC \B, V \(R∪

B)) in O(nt + n
O(t)
C) time.

From the above and from (1), we get the following
result.

Lemma 4 For each region R, values
∑

(R\B, V \(R∪
B)) and

∑
(R\B, R\B) can be computed in O(n

√
r+

rO(
√

r)) time assuming shortest path distances from
each boundary vertex of R to each vertex in G have
been precomputed.

3

Wiener Index and Diameter of a Planar Graph in Subquadratic Time

27

We are now ready for our first result.

Theorem 5 The Wiener index
∑

G of an un-
weighted planar n-vertex graph G can be computed
in O(n2 log log n/ logn) time and O(n) space.

Proof. Computing shortest path distances from each
boundary vertex to each vertex in G can be done in
O(n2/

√
r) time.

Applying Lemma 4 to each of the Θ(n/r) regions in
the r-division of G gives us

∑
G in O(n2/

√
r+nrc′√r)

time for some constant c′.
We pick r = (c log n/ log log n)2 where c > 0 is some

constant (to be specified). For n > 2c we have log n >
c, and for n > 4 we have log log n > 1. Thus, for
n > max{2c, 4},

rc′√r < (c log n)2c′c log n/ log log n

< (log n)4c′c log n/ log log n

= n4c′c,

since (log n)log n/ log log n = n. It follows that if we
choose c < 1/(4c′), we have rc′√r = O(nε), where
ε < 1. With this choice of r, the total running time
of the algorithm is

O(n2/
√

r + nrc′√r) = O(n2 log log n/ logn + n1+ε)

= O(n2 log log n/ logn),

as requested.
Simple modifications of the algorithm described

above allows us to obtain linear space requirement
without affecting running time. Due to space con-
straints, we omit the details. !

5 Diameter of a Planar Graph

The following theorem shows that we can obtain a
similar time bound for computing the diameter of an
unweighted planar graph.

Theorem 6 The diameter of an n-vertex planar
graph with non-negative edge weights can be com-
puted in O(n2 log log n/ logn) time and O(n) space.

Proof. We can apply ideas similar to those above for
the Wiener index problem. The only essential differ-
ence is that instead of variables ni,u and Di,u (see
Section 4) we introduce variables Li,u for each i and
u that keep track of the longest distance in C from pi

to the set of vertices specified in the definition of ni,u.
We can then use the identity

max(VC \ B, u) = max
1≤i≤t

{dG(u, pi) + Li,u}

instead of (2). !

Note that our two algorithms do not rely on planarity
except when computing an r-division and SSSP dis-
tances in linear time. Our results can therefore be
extended to the larger class of unweighted subgraph-
closed

√
n-separable graphs for which separators can

be found efficiently [5].

6 Conclusion

We solved two open problems, the existence of sub-
quadratic time algorithms for computing the Wiener
index and diameter of an unweighted planar graph.
We did this by exhibiting O(n2 log log n/ logn) time
algorithms where n is the number of vertices. Both
algorithms have linear space requirement.

It remains open whether “truly” subquadratic time
algorithms exist, i.e. algorithms with O(nc) running
time for constant c < 2.

In a forthcoming paper, we extend our results
to planar graphs with arbitrary non-negative edge
weights. The new ideas we introduce in that paper
allow us to solve also the stretch factor problem for
planar graphs in subquadratic time. In another paper,
we show how similar ideas give a faster algorithm for
computing shortest path distances between k = O(n2)
pairs of vertices in a planar graph for large k.

References

[1] S. Cabello and C. Knauer. Algorithms for graphs
of bounded treewidth via orthogonal range searching.
Manuscript, Berlin, 2007.

[2] V. Chepoi and S. Klavžar. The Wiener index and the
Szeged index of benzenoid systems in linear time. J.
Chem. Inf. Comput. Sci., 37:752–755, 1997.

[3] F. R. K. Chung. Diameters of Graphs: Old Problems
and New Results. Congressus Numerantium, 60:295–
317, 1987.

[4] G. N. Frederickson. Fast algorithms for shortest paths
in planar graphs, with applications. SIAM J. Com-
put., 16 (1987), pp. 1004–1022.

[5] M. R. Henzinger, P. Klein, S. Rao, and S. Subra-
manian. Faster Shortest-Path Algorithms for Planar
Graphs. Journal of Computer and System Sciences
volume 55, issue 1, August 1997, pages 3–23.

[6] R. J. Lipton and R. E. Tarjan. A Separator Theorem
for Planar Graphs. STAN-CS-77-627, October 1977.

[7] B. Mohar and T. Pisanski. How to compute the
Wiener index of a graph. J. Math. Chem., pages 267–
277, 1988.

[8] H. Wiener. Structural determination of paraffin boil-
ing points. J. Amer. Chem. Sot., 69:17–20, 1947.

[9] B. Zmazek and J. Žerovnik. Computing the weighted
Wiener and Szeged number on weighted cactus graphs
in linear time. Croatica Chemica Acta, 76:137–143,
2003.

4

EuroCG’09 - Brussels, Belgium

28

Tailored Bregman Ball Trees for Effective Nearest Neighbors∗

Frank Nielsen† Paolo Piro, Michel Barlaud‡

Abstract

Nearest Neighbor (NN) search is a crucial tool that
remains critical in many challenging applications of
computational geometry (e.g., surface reconstruction,
clustering) and computer vision (e.g., image and in-
formation retrieval, classification, data mining). We
present an effective Bregman ball tree [5] (Bb-tree)
construction algorithm that adapts locally its internal
node degrees to the inner geometric characteristics of
the data-sets. Since symmetric measures are usually
preferred for applications in content-based informa-
tion retrieval, we furthermore extend the Bb-tree to
the case of symmetrized Bregman divergences. Ex-
act and approximate NN search experiments using
high-dimensional real-world data-sets illustrate that
our method improves significantly over the state of
the art [5], sometimes by an order of magnitude.

1 Introduction and prior work

Finding nearest neighbors (NNs) is a very common
task occurring in many applications ranging from
computer vision to machine learning and data min-
ing. Let S = {p1, ..., pn} be a set of n d-dimensional
points (with d typically ranging up to a few thou-
sand dimensions). Given a query point q, the near-
est neighbor NN(q) is defined to be the “closest”
point of S with respect to a dissimilarity measure
D: NN(q) = argmini D(q, pi). Instead of consider-
ing the closest neighbor, queries can be enlarged to
report the first k “closest” points (useful for k-NN
classification rule in machine learning). It is usually
enough to get a good neighbor [6] by relaxing the ex-
act search to get near and fast neighbors. Besides the
theoretical puzzling questions related to the dreaded
curse of dimensionality [6], practitioners make every
endeavor to speed up applications by designing tai-
lored schemes for improving over the näıve linear-time
O(dn) brute-force method. Among the flourishing
literature of nearest neighbor techniques, we distin-
guish two main sets of methods: (1) those relying
on tree-like space partitions with branch-and-bound

∗Financially supported by ANR-07-BLAN-0328-01 GAIA
(Computational Information Geometry and Applications) and
DIGITEO GAS 2008-16D (Geometric Algorithms & Statistics)

†École Polytechnique, LIX, Palaiseau, France,
nielsen@lix.polytechnique.fr

‡CNRS I3S, Sophia-Antipolis, France,
{piro,barlaud}@i3s.unice.fr

queries, such as kD-trees, metric ball and vantage
point trees [5, 8], and (2) those based on mapping
techniques [3] (e.g., locality-sensitive hashing, ran-
dom projections). The former tree-based methods
improve over the brute force algorithm by pruning
sub-trees whenever traversing the trees with queries
(exact NN) or stopping after visiting a given “bud-
get” of leaves (approximate NN). The latter meth-
ods concentrate on reducing dimensions while pre-
serving as much as possible distances and control-
ling geometrically collisions of hash functions (only
work for approximate NN). Since the Euclidean dis-
tance is often inappropriate for meaningfully mea-
suring the proximity of feature points arising from,
say, image applications, a wide range of distortion
measures has been proposed and NN data-structures
have been first extended to arbitrary metrics (e.g.,
vantage point trees [8]). However, these NN search
methods rely fundamentally on the triangle inequal-
ity property, which is not satisfied by information-
theoretic statistical distances such as the Kullback-
Leibler divergence. Cayton [5] recently proposed the
analogous of metric ball trees for the broad class of
Bregman divergences. Bregman divergences DF on
vector set X ⊂ Rd are defined for a strictly convex
and differentiable generator F (x) : X ⊂ Rd 7→ R as
DF (p||q) = F (p)− F (q)− (p− q)T∇F (q), where ∇F
denotes the gradient of F . Those divergences (param-
eterized by a generator F) include all quadratic dis-
tances (also known as Mahalanobis squared distances,
which are the only symmetric Bregman divergences
and are obtained for F (x) = Σ−1x, where Σ ≻ 0 is the
positive-definite variance-covariance matrix) and the
asymmetric KL divergence (F (x) =

∑d
j=1 xj log xj ,

the negative Shannon entropy), for which DF (p||q) 6=
DF (q||p). Many fundamental algorithms (e.g., k-
means [4], PCA) and data-structures (e.g., Voronoi
diagrams [10]) have been generalized to that class of
divergences, thus offering meta-algorithms that can
work for any Bregman divergence. For example,
Banerjee et al. [4] showed that the celebrated Lloyd
k-means algorithm extends to (and only to) the class
of Bregman divergences unifying various algorithms.
Since Bregman divergences are typically non-metric
asymmetric distortion measures, we consider both
left/right-sided and symmetrized NN searches de-
fined as follows: NNr

F (q) = arg mini DF (pi||q) (right-
sided), NNl

F (q) = arg mini DF (q||pi) (left-sided) and
NNF (q) = argmini(DF (pi||q) + DF (q||pi))/2 (sym-

1

Tailored Bregman Ball Trees for Effective Nearest Neighbors

29

metrized).

2 Bregman ball trees (Bb-trees)

Without loss of generality, we consider only right-
sided NN queries, as left-sided NN queries can be
handled similarly by considering the dual divergence
DF∗(∇F (q)||∇F (p)) = DF (p||q) arising from the
Legendre-Fenchel conjugate F ∗ of F (with ∇F ∗ the
functional inverse of ∇F−1). See [10, 5] for de-
tails. Bregman generators come by pairs (F, F ∗),
e.g. the dual Legendre conjugates F (x) = x log x and
F ∗(y) = exp y (with F ′(x) = (F ∗′(y))−1), see [10].

2.1 Outline of Bregman ball trees (Bb-trees) [5]

Similar to metric ball trees, a Bb-tree is built in a top-
down fashion by applying recursively a partitioning
scheme. First, the root is created to handle the source
data-set S. A 2-means (k-means [4] with k = 2) is
computed, splitting S according to the two centroid
points, say cl and cr, with respect to DF . These two
centroids defines a partition S = Sl ∪ Sr that can
be covered geometrically with corresponding Bregman
balls B(cl, Rl) and B(cr, Rr) (possibly overlapping).
This hierarchical decomposition of S is carried out
recursively on Sl and Sr until a stopping criterion is
eventually met. Two such typical termination criteria
are: (1) a predefined maximum number of points l0
(stored at leaves), or (2) a prescribed maximum radius
(r0, comes in handy for approximate NN). Note that
the source points are stored only at leaves of the Bb-
tree, and the sub-sets Sl and Sr may be theoretically
unbalanced. Internal nodes store only two left/right
Bregman balls covering the point sets stored at their
left/right sub-trees.

In both exact and approximate NN queries, we per-
form a branch-and-bound search to answer queries.
For a given query q, the tree is traversed in depth-
first-search order from the root to the leaves. At
an internal node, we choose to branch first on the
sub-tree whose corresponding ball is “closer” to the
query q (the sibling is temporarily ignored). Once
a leaf node is reached, the closest point to q among
the points stored at the leaf is computed using the
brute-force method. This first visited leaf yields the
very first NN point candidate p′, thus giving an up-
per bound DF (p′||q) to the NN distance. In exact
search, the tree traversal goes on through all formerly
ignored subtrees. To decide whether a subtree must
be explored or not, we check whether DF (p′||q) >
minx∈B(c,R) DF (x||q), where p′ is the current NN can-
didate. This test is performed by projecting q onto
the Bregman ball B(c, R). The projection of a point
q onto a Bregman ball B is the unique minimizer
qB = argminx∈B DF (x||q) [10]. Instead of projecting
exactly the query point onto the ball, we rather make

use of a Bregman annulus B(c, R, R′) = {x | R ≤
DF (x||c) ≤ R′} that encloses the exact projection by
construction: qB ∈ B(c, R, R′). If DF (p′||q) < R then
the node can be pruned; If DF (p′||q) > R′ then the
node must be explored. These lower/upper bounds
are computed during the geodesic bisection search of
the projection [5] (see Section 2.4). Overall, observe
that the less the number of pairwise intersecting balls
stored at nodes, the better the Bb-tree performance.
Although exact NN retrieval on Bb-trees can often
be achieved with much smaller computational cost
than the brute-force search, the practical interest of
Bb-trees is to get significant speed-up search when
performing approximate NN queries. The approxi-
mate search allows one for large speed-up as it does
not perform exhaustive branch-and-bound search. A
common criterion to perform approximate search is to
stop the branch-and-bound algorithm after exploring
a prescribed number of leaves [5].

2.2 Speeding up construction time: Bb-tree++

In order to preprocess datasets efficiently by means of
Bregman ball trees, instead of running the full regu-
lar Bregman k-means algorithm [4], we just perform
a careful light initialization of the two cluster cen-
ters (seeds). Initialization turns out to be the cru-
cial stage of k-means. That is, k-means locally op-
timizes the potential P (C) =

∑
p∈S minc∈C DF (p||c),

where C denotes the set of k centers. Each round
assignment/cluster adjustment decreases this poten-
tial function so that monotonous convergence is guar-
anteed. It is striking to know that the worst-case
running-time of k-means is theoretically exponential
with the dimension although a recent smooth analysis
yields polynomial amortized time [9]. A bad initializa-
tion may trap k-means into a local optimum. Initial-
ization is thus all the more important, as k-means is
called at each internal node of the Bb-tree to partition
the data-sets into two sub-sets. Therefore, the idea is
to replace the k-means local iterative algorithm by a
well-chosen initialization that provides a guaranteed
upper-bound on the optimal partition. This quantum
leap for k-means was discovered by Arthur and Vassil-
vitskii [2] and later extended to Bregman divergences
by Nock et al. [12]. We describe the initialization
procedure of Bregman 2-means++ for a set S. First,
draw uniformly at random the seed cl (cluster “cen-
ter”) among the points of the data-set. Then compute
the Bregman divergence of this point to all points of
S, and draw the second seed cr according to the di-
vergence distribution: πi = DF (pi||cl)∑

pj∈S DF (pj ||cl)
. Thus cr

can never be cl, since DF (cl||cl) = 0 (the probabil-
ity of drawing cl is zero). This careful initialization
yields an extremely fast tree construction, which sta-
tistically provides nice splitting and tends to balance
sub-sets stored at leaves. Arthur and Vassilvitskii [2]

2

EuroCG’09 - Brussels, Belgium

30

proved that this initialization yields a k-means score
P (C) at most 8(2+log k) of the optimal value. Similar
bounds in O(log k) for generic Bregman divergences
were later reported by Nock et al. [12]. Note that
the two left/right Bregman balls stored at internal
nodes tend to minimize the Bregman information [4]
(i.e., variance for the square potential F (x) = x2,
mutual information for the negative Shannon entropy
F (x) = x log x, etc). Next, we improve the partition
at each internal node by learning its degree (number
of siblings) from the local data-sets.

2.3 Learning the tree branching factor

Answering queries may range from optimal logarith-
mic time (i.e., the shortest path to a leaf) up to linear
time for a complete tree traversal. Therefore, it is im-
portant to partition the source data-sets into as many
as possible non-overlapping Bregman balls. However,
consider a data-set consisting of three separated Gaus-
sian point samples. Forcing this set to be split into
two will likely create overlapping balls. Thus we bet-
ter learn the number of sub-sets when partitioning
the data so that the induced Bregman balls better
fit the intrinsic geometric characteristics of the set.1

We adapt the branching factor bfi (up to a maximum
branching factor BF) of each internal node of the Bb-
tree to the underlying distribution of the points by
using the G-means strategy [7]. The underlying idea
is to assume Gaussian distribution of each group of
points (hence the name G-means).2 Our use of G-
means [7] algorithm starts by setting k = 2 and then
test for Gaussian distribution of the points using the
Anderson-Darling statistical test. Given a confidence
level α, if the Anderson-Darling normality test returns
true, we keep the center, otherwise we split it into
two. Between two rounds, we simply run Bregman
k-means++ initialization on the data-set and get all
the new centers that hopefully refine the partitioning.
We enforce a maximum degree to each internal node
in order to strike a balance between the average tree
depth and the overall ball tree shape. The initializa-
tion to k clusters follows the same principle: Namely,
we draw the l-th seed from the data-set uniformly
according to the distribution πi = DF (pi||Cl−1)∑

pj∈S DF (pj ||Cl−1)
,

where Cl−1 denotes the formerly chosen (l−1)-th seed
and DF (p||S) = minx∈S DF (p||x).

When visiting the Bb-tree for answering nearest
neighbor queries, we use a priority queue. To relax
the exact NN to approximate NN queries, the crite-
rion of stopping the search once a few leaves have been
visited was proposed and successfully demonstrated
by Cayton [5]. However, there was no guarantee to

1Refer to Figure 1 of [7] for examples.
2This is not restrictive as any smooth density function may

be arbitrarily well approximated using a Gaussian mixture
model.

get a good approximation to the exact NN because
leaves containing sub-sets that are close to the exact
NN are not necessarily close in the tree. We improve
this point by a careful non-recursive implementa-
tion of the tree traversal, which allows us to order the
nodes to be explored by their divergence to the query
point (i.e., the divergence of the query to the ball cen-
ters). Using a priority queue guarantees that nearest
nodes are always explored first when traversing back
the tree, by jumping appropriately to the most likely
not yet visited sub-tree.

2.4 Bregman projection onto balls

The geodesic Γpq linking p to q is defined
as Γpq = {LERP(λ, p, q) | λ ∈ R}, with
LERP(λ, p, q) = ∇F−1((1 − λ)∇F (p) + λ∇F (q));
see [10, 5, 11]. To find the Bregman projection
qB = argminx∈B(c,R) DF (x||c) of a query point q onto
a Bregman ball B(c, R), we first check whether q
is outside the ball or not: DF (q||c) > R. If not,
DF (q||c) ≤ R and the projection is simply the point
itself: qB = q. Now consider the geodesic segment
Γcq, the projection point qB belongs necessarily to
the geodesic Γcq: qB = LERP(λq, c, q) for some λq ∈
[0, 1]. The value λq is approximated by a bisection
search as follows. Initially, let λ

(0)
m = 0 and λ

(0)
M = 1

and consider a midpoint m = LERP(λ(0), c, q) ob-

tained for λ(0) = λ(0)
m +λ

(0)
M

2 . If DF (m||c) > R then
recurse on [λ(1)

m , λ
(1)
M] = [λ(0)

m , λ(0)], otherwise recurse
on [λ(1)

m , λ
(1)
M] = [λ(0), λ

(0)
M] and so on until the range

size λ
(i)
M − λ

(i)
m goes below a threshold ǫ (typically

ǫ ∈ [10−10, 10−5]). This yields a fine approximation
of qB ∼ LERP(λ(i), c, q) by splitting the “λ” intervals
a dozen of times. (Recall that the algorithm keeps a
Bregman annulus, and refine the inner/outer radii to
decide whether to prune or explore a sub-tree.)

2.5 Handling symmetrized Bregman divergences

Many content-based information retrieval sys-
tems (CBIRs) need symmetrical distortions
measures. Except for generalized quadratic
distances (Mahalanobis), the symmetrized Breg-
man divergence is technically not a Bregman
divergence [10]. The symmetric KL divergence
(SKL) goes by the name of Jensen-Shannon
JS(p; q) = 1

2KL(p||p+q
2) + 1

2KL(q||p+q
2). It turns

out that these symmetrized Bregman diver-
gences [11] are all generalizations of the Jensen
remainder obtained for convex generators F :
JSF (p; q) = 1

2 (F (p) + F (q)) − F (p+q
2). (Besides

the Jensen-Shannon divergence for F (x) = x log x,
these so-called Burbea-Rao divergences also includes
the important COSH distance used in speech/sound
processing for the Burg entropy F (x) = − logx.)

3

Tailored Bregman Ball Trees for Effective Nearest Neighbors

31

Bb-tree construction (bs = 50)

method iter depth depthavg Leav. speed-up

2-m. 10 53 28.57 594 1
2-m.++ 10 58.33 31.18 647 1.03
2-m.++ 0 20 10.76 362 19.71

Table 1: Construction time of Bregman ball trees.

−1 0 1 2

0

1

2

Number Closer

S
pe

ed
−

up

SIFT dataset (KL)

bb−tree++ (BF=4, bs=100)

bb−tree Cayton

*

*

Figure 1: BB-tree versus BB-tree++ (log-log plot
scale). The axis denotes the error rate expressed as
the number of closer points to the approximated NN.

The symmetrized Bregman centroid can be explicitly
computed following the geodesic-walk algorithm
of [11].

3 Experiments

Table 1 compares different partitioning methods when
building a Bb-tree on the SIFT dataset [13] (10, 000
visual feature points extracted from images, encoded
in dimension 1111). Bregman 2-means++ with iter =
0 means that only the initialization step is carried
out. The speed-up is by comparison with the most
computationally expensive k-means method.

We used the maximum number of explored leaves
as a parameter for stopping the branch-and-bound
search. In each experiment of approximate search,
we fixed a value of this parameter (from near-exact
search to visiting only a single leaf), then we evalu-
ated error rate and computational cost. Namely, the
error rate is expressed as the number of closer points
to the approximated NN (a quantity called Number
Closer), while the speed-up is given by the ratio be-
tween the number of divergence computations in Bb-
tree over the brute-force search. Figure 1 displays a
comparison of Cayton’s Bb-tree with our Bb-tree++
in approximate search on SIFT dataset (log-log plot).

Figure 2 presents the results of approximate search
queries on SIFT dataset wrt. SKL divergence (sym-
metrized Bregman). The marked point shows a speed-
up of 60.3 (101.78) when the Number Closer equals 14
(101.15), i.e. 0.14% of database points (log-log plot).

−3 −2 −1 0 1

−1

0

1

Number Closer

S
pe

ed
−

up

SIFT dataset (SKL)

bb−tree++ (BF=4, bs=50)
bb−tree++ (BF=4, bs=100)
bb−tree++ (BF=4, bs=200)

*

Figure 2: NN queries with respect to Jensen-Shannon
divergence (symmetric Kullback-Leibler, SKL).

Acknowledgments
We thank L. Cayton for sharing with us his code and
SIFT high-dimensional datasets.

References

[1] S.-I. Amari and N. Nagaoka. Methods of Information
Geometry. Oxford University Press, 2000.

[2] D. Arthur and S. Vassilvitskii. k-means++: the ad-
vantages of careful seeding. In SODA, pages 1027–
1035, 2007.

[3] V. Athitsos, M. Potamias, P. Papapetrou, and
G. Kollios. Nearest neighbor retrieval using distance-
based hashing. In ICDE, pages 327–336, 2008.

[4] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh.
Clustering with Bregman divergences. Journal of Ma-
chine Learning Research (JMLR), 6:1705–1749, 2005.

[5] L. Cayton. Fast nearest neighbor retrieval for Breg-
man divergences. In ICML, pp. 112–119, 2008.

[6] B. Chazelle. Technical perspective: finding a good
neighbor, near and fast. Commun. ACM, 51(1):115,
2008.

[7] G. Hamerly and C. Elkan. Learning the k in k-means.
In NIPS, 2003.

[8] N. Kumar, L. Zhang, and S. K. Nayar. What is a
good nearest neighbors algorithm for finding similar
patches in images? In ECCV, pp. 364–378, 2008.

[9] B. Manthey and H. Röglin. Improved Smoothed
Analysis of the k-Means Method. In SODA
(arXiv:0809.1715), 2009.

[10] F. Nielsen, J.-D. Boissonnat, and R. Nock. On Breg-
man Voronoi diagrams. In SODA, pp. 746–755, 2007.

[11] F. Nielsen and R. Nock. Bregman sided and sym-
metrized centroids. In M. Ejiri, R. Kasturi, edi-
tor, International Conference on Pattern Recognition
(ICPR). IEEE CS Press, 2008. (arXiv:0711.3242)

[12] R. Nock, P. Luosto, and J. Kivinen. Mixed Breg-
man clustering with approximation guarantees. In
ECML/PKDD (2), pages 154–169, 2008.

[13] D. Lowe. Distinctive image features from scale-
invariant keypoints. In International Journal of Com-
puter Vision, pages 91–111, Vol. 60, 2005.

4

EuroCG’09 - Brussels, Belgium

32

Maintaining Exactly the Convex Hull of Points Moving along Circles

Paul-Georg Becker ∗ Elvir Büyükbayrak † Nicola Wolpert ‡

Abstract

In this work we consider the problem of maintaining
geometrically exact the convex hull of points moving
along circles in the plane. The points are allowed to
start with an arbitrary rational angle (in the radian
system) on the circle. The main difficulty with re-
spect to the aim of exact geometric computing in this
setting is that we have to deal with transcendental
numbers. The points in time where the convex hull
change are not algebraic but transcendental. We show
that, even in this non-algebraic setting, all certificates
in the underlying kinetic convex hull algorithm [1] can
be evaluated mathematically exact. Our approach has
been implemented prototypically.

1 Introduction

In this work we consider n points moving along cir-
cles in the Euclidean plane. The points are allowed to
start with an arbitrary rational angle (in the radian
system) on the circle.The motion of point Pi, depend-
ing on the time t, is described by its parameterization

Pi(t) =
(

xi(t)
yi(t)

)
=

(
ri · cos(t− ti) + ai

ri · sin(t− ti) + bi

)
.

We assume that all ri, ai, bi and ti are rational num-
bers. Due to the parameterization, point Pi moves
along the circle with center (ai, bi) and radius ri. At
time t = 0 it starts its movement at the point(

x(0)
y(0)

)
=

(
ri · cos(ti) + ai

−ri · sin(ti) + bi

)
.

In this work we only consider the case that all points
move with the same speed in the sense that they all
need the same time to circle once.

For the n moving points we want to compute and
maintain their convex hull. The aim is to do this in
the sense of the paradigm of exact geometric comput-
ing (EGC). Every change in the convex hull should
be determined mathematically exact without any nu-
merical errors. The main difficulty with respect to
the goal of exact geometric computing in our setting

∗University of Applied Sciences Stuttgart,
paul-georg.becker@hft-stuttgart.de

†University of Applied Sciences Stuttgart,
elvir.bb@gmx.net

‡University of Applied Sciences Stuttgart,
nicola.wolpert@hft-stuttgart.de

is that we have to deal with transcendental numbers.
The points in time t where the convex hull change
are not algebraic but transcendental. We will derive
that every t is the root of a degree-two polynomial
at2 + bt + c. In this polynomial all three coefficients
a, b and c are of the form

∑n
j=1 qj sin(αj)+pj cos(αj)

with pj, qj , αj ∈ Q. We show that, even in this non-
algebraic setting where the coefficients a, b, c are tran-
scendental numbers, all certificates in the kinetic con-
vex hull algorithm of Razazzi and Sajedi [1] can be
evaluated mathematically exact.

In the last years a lot of effort was undertaken to
advance EGC. Most of the problems considered so far
in this context are static ones, like for example com-
puting arrangements of algebraic curves and surfaces
[5] or Voronoi-diagrams of line segments [7], just to
mention a few. All these problems have in common
that one main task is to compute exactly with alge-
braic numbers, i.e. roots of rational polynomials. Re-
cently, Russel et al [6] presented a work on extending
the results made in EGC for static geometric algo-
rithms to algorithms involving motion. Also here, on
the numerical side, the main task is to perform the
arithmetic with algebraic numbers exactly and effi-
ciently. The only work we know which deals with a
geometric problem involving transcendental numbers
is the one by Chang et al [4]. They show that the
shortest path amidst disc obstacles is computable.

2 The Underlying Kinetic Algorithm

The underlying kinetic algorithm we use for maintain-
ing the convex hull of a set S of n moving points is
the one proposed by Razazzi and Sajedi [1]. In an
initialization step at time t = 0 a sequence C1, C2, . . .
of nested convex hulls is computed. The outermost
convex hull C1 = ch(S1) is just the convex hull of the
points in S1 := S. The i-th convex hull Ci = ch(Si) is
the one of the remaining points Si := Si−1\ch(Si−1),
if Si is not empty. For every point p on every convex
hull Ci two references are stored: one to the previous
and one to the next point on the same convex hull
Ci. Two consecutive hulls Ci+1 and Ci are also con-
nected: Every point p of Ci+1 stores one reference to
the first point of Ci which is visible from p and one
reference to the last visible point. Consider point B3

in Figure 1. B3 lies on the convex hull B and it is
B3.previous = B2 and B3.next = B4. B3 can see the
part of the convex hull C between the points C2 and

1

Maintaining Exactly the Convex Hull of Points Moving along Circles

33

C4 and therefore B3.f irst = C2 and B3.last = C4.

A

A

A A
A

A

B

B

B

B

C

C

C

C

C

1

1

1

2

2

2

3

3

3

4

4

4

5

5

6

Figure 1: Three nested convex hulls A, B, and C

Now the points start moving and at some points
in time the hulls Ci will change. These are called
the events. Changes in the outermost convex hull C1

of course change our result. In order to notice every
event, a set of certificates is computed for every point.
The arrival of such a certificate indicates an event
and will cause some recomputation. We explain all
necessary certificates with respect to the point B3 in
Figure 1:

• GoIn(B3): B3 moves towards C and leaves B
⇔ B3, B2 and B4 are collinear.

• GoOut(B3): B3 moves towards A and leaves B
⇔ there exists a point Ax with Ax.f irst = B3

and B3, Ax and Ax−1 are collinear.

• NotFirstChild(B3): C2 is no longer visible
from B3 ⇔ C3, B3 and C2 are collinear.

• BeFirstChild(B3): C1 becomes visible from B3

⇔ C1, B3 and C2 are collinear.

• NotLastChild(B3): C4 is no longer visible from
B3 ⇔ C3, B3 and C4 are collinear.

• BeLastChild(B3): C5 becomes visible from B3

⇔ C5, B3 and C4 are collinear.

The arrival times for every certificate are stored in
a priority queue. Our aim is to design an exact kinetic
algorithm. This means that we want to compute cor-
rectly the arrival times of the events and we do not
want to miss any event due to numerical errors. We
also want to sort the arrival times correctly in the pri-
ority queue so that the events can be executed in the
right chronological order. From the certificates above
one can derive that the two main task to be solved
are to

a) determine exactly the point in time, when three
points become collinear (called collinearity-test)
and to

b) compare exactly two such points in time in order
to sort the events in the right order in the priority
queue (called comparison-operation).

Regarding the recomputation of the nested convex
hulls we will not give the details here but refer to
the paper of Razazzi and Sajedi [1]. Numerically,
the main task is to recompute the first- and last-
pointers. This can be realized at rational points in
time again with the help of the collinearity-test and
the comparison-operation.

3 Collinearity-Test

We have seen that one main computation in the un-
derlying kinetic algorithm is the test whether three
points become collinear. It is well known that
collinearity of three points Pi(t), Pj(t), and Pk(t) in
the plane can be determined by evaluating the deter-
minant

det(Pi(t), Pj(t), Pk(t)) = det

 1 xi(t) yi(t)
1 xj(t) yj(t)
1 xk(t) yk(t)

 .

Computing the determinant leads to an expression in
the variable t. In order to find the time where the
three points become collinear, we have to look for the
roots of this expression. Unfortunately, due to our
parameterization, we have terms of the form sin(t−ti)
and cos(t − ti) in the expression. To eliminate them
we first apply the addition-theorems

sin(t− ti) = sin(t) cos(ti)− sin(t) cos(ti)
cos(t− ti) = cos(t) cos(ti) + sin(t) sin(ti)

and then do the substitution

cos(t) :=
1− t′2

1 + t′2
and sin(t) :=

2t′

1 + t′2
.

To ease readability we will again write t instead of t′

in the following. We define the set

T := {
n∑

j=1

qj sin(αj) + pj cos(αj) | n ∈ N,

qj , pj , αj ∈ Q, αj > 0, αi 6= αj for i 6= j}.
Applying the addition-theorems, substituting the
cosine- and sine-terms and then doing some calcula-
tions (which we omit in this presentation) lead to the
result that the determinant always has the form

at2 + bt + c

1 + t2

with a, b, c ∈ T . We are interested in the roots of this
expressions, that means we are interested in the roots
of the polynomial p(t) = at2 + bt + c of degree 2 in t

2

EuroCG’09 - Brussels, Belgium

34

with coefficients a, b, c ∈ T . If a 6= 0, the two roots of
p are

−b +
√

b2 − 4ac

2a
and

−b−√
b2 − 4ac

2a
.

The discriminant b2 − 4ac is again an element of T :

Lemma 1 If a, b ∈ T then a · b ∈ T .

Proof. The lemma follows directly from the rules for
the sine- and cosine-functions:

sin x sin y = 1/2 · (cos(x− y)− cos(x + y))
cosx cos y = 1/2 · (cos(x− y) + cos(x + y))
sinx cos y = 1/2 · (sin(x− y) + sin(x + y))

�

How can we decide whether a is equal to zero or
not? To answer this question we need a definition
and the Theorem of Hermite-Lindemann, which are
both well known from number theory:

Definition 1 Let α1, . . . , αn be real numbers. They
are called Q-linearly independent iff there exist no
rational numbers q1, . . . , qn, not all equal to zero, with
α1q1 + · · ·+ αnqn = 0.

Theorem 2 (Hermite-Lindemann) If α is a non-zero
algebraic number (i.e. a number, which is the root of
a rational polynomial), then eα is transcendental (i.e.
not algebraic).

We can proof the following

Corollary 3 If α1, . . . , αn are pairwise distinct pos-
itive rational numbers, then the 2n real num-
bers sin(α1), . . . , sin(αn), cos(α1), . . . , cos(αn) are Q-
linearly independent.

Proof. Assume, there exist q1, . . . , qn, p1, . . . , pn ∈ Q
with

∑n
j=1 qj sin(αj) + pj cos(αj) = 0. Substituting

sin(αj) = 1
2i(e

iαj − e−iαj), cos(αj) = 1
2 (eiαj + e−iαj)

leads to
n∑

j=1

(pj − iqj)eiαj +
n∑

j=1

(pj + iqj)e−iαj = 0.

Let A ∈ N be the common denominator of α1, . . . , αn

(i.e. Aαj ∈ Z) and let M := max{Aα1, . . . , Aαn}.
Now consider the polynomial

P (X) =
n∑

j=1

(pj−iqj)XM+Aαj +
n∑

j=1

(pj+iqj)XM−Aαj .

The coefficients of P are numbers from the field Q(i).
We know that P (ei/A) = 0. Due to the Theorem

of Hermite-Lindemann, ei/A is transcendental over Q
and therefore also transcendental over Q(i). It follows
that P has to be the zero-polynomial. Since all the
αj are pairwise distinct, all the exponents M + Aαj

and M − Aαj are pairwise distinct, and therefore all
coefficients pj − iqj and pj + iqj of P have to be zero.
It follows directly that all the pj and qj have to be
zero, proving the corollary. �

From Corollary 3 one can derive directly a criterion
for testing whether an element a ∈ T is equal to zero:

Corollary 4 An element a =
∑n

j=1 qj sin(αj) +
pj cos(αj) ∈ T is equal to zero iff qj = pj = 0 for
all 1 ≤ j ≤ n.

4 Comparison-Operation

The second main task is to compare two of the degree-
two roots in order to sort them in the correct order
into the priority queue. More formally: Given

x1 =
−b1 ±

√
b2
1 − 4a1c1

2a1
, x2 =

−b2 ±
√

b2
2 − 4a2c2

2a2

with a1, a2, b1, b2, c1, c2 ∈ T , decide whether x1 < x2.
We assume for the moment that we have a black-box
sign which computes the sign of an arbitrary number
a ∈ T . We will explain in the next section how to real-
ize this black-box. For simplicity we set pi = b2

i−4aici

for i = 1, 2 and assume that a1, a2 > 0 (otherwise
multiply by −1). To exclude complex roots we test
sign(pi) > 0. If we have two real roots x1 and x2 this
leads to

x1 < x2 ⇔ −b1 ±
√

p1
2a1

<
−b2 ±

√
p2

2a2

⇔ a2(−b1 ±√
p1) < a1(−b2 ±√

p2)
⇔ a1b2 − a2b1 < ±a1

√
p2 ∓ a2

√
p1.

Since, due to Lemma 1, a1b2 − a2b1 ∈ T , we can use
the black-box and compute sign(a1b2−a2b1). Next we
determine the sign of the right side. For readability we
substitute q := ±a1 and p := ∓a2. We are interested
in the sign of p

√
p1 + q

√
p2 with p, q, p1, p2 ∈ T . If

sign(p) and sign(q) are equal, we directly know the
sign of p

√
p1 +q

√
p2. If the two signs are different, we

have to work a bit more: Assume that p is positive
and q is negative (the other case works analogously).
Then

p
√

p1 + q
√

p2 has a positive sign
⇔ |p|√p1 > |q|√p2

⇔ p2 · p1 > q2 · p2

⇔ sign(p2 · p1 − q2 · p2) > 0.

Now we know the signs of both sides of the inequality
a1b2 − a2b1 < p

√
p1 + q

√
p2. If they are different,

3

Maintaining Exactly the Convex Hull of Points Moving along Circles

35

we can decide whether the inequality is true or not.
Otherwise we compare |a1b2−a2b1| and |p√p1+q

√
p2|:

|a1b2 − a2b1| < |p√p1 + q
√

p2|
⇔ (a1b2 − a2b1)2 < (p

√
p1 + q

√
p2)2

⇔ (a1b2 − a2b1)2 < p2p1 + q2p2 + 2pq
√

p1
√

p2

⇔ (a1b2 − a2b1)2 − p2p1 − q2p2 < 2pq
√

p1
√

p2.

Again, if sign((a1b2 − a2b1)2 − p2p1 − q2p2) and
sign(pq) are different, we are done. Otherwise
we compare |(a1b2 − a2b1)2 − p2p1 − q2p2| and
|2pq

√
p1
√

p2|:

|(a1b2 − a2b1)2 − p2p1 − q2p2| < |2pq
√

p1
√

p2|
⇔ ((a1b2 − a2b1)2 − p2p1 − q2p2)2

< 4p2q2p1 · p2

⇔ ((a1b2 − a2b1)2 − p2p1 − q2p2)2

− 4p2q2p1 · p2 < 0.

Now, due to Lemma 1, the left side of the inequality
is an element of T and we can finally compute its sign.

5 Black-Box

What remains to do is to implement the black-box.
Given an element a =

∑n
j=1 qj sin(αj) + pj cos(αj) ∈

T we want to determine sign(a). From Corollary 4
we know that a = 0 iff pj = qj = 0 for all 1 ≤ j ≤ n.
Assume a 6= 0. We propose a method that starts with
a given precision ǫ and adaptively increases the pre-
cision until the sign of a can be determined precisely.
For the given precision ǫ we compute for all 1 ≤ j ≤ n,
e.g. using the Apfloat-library [2] or the Core-Library
[3], approximations sj for sin(αj) and cj for cos(αj)
such that |sj − sin(αj)| < ǫ and |cj − cos(αj)| < ǫ.
Based on these approximations we compute the ap-
proximation ã =

∑n
j=1 qjsj + pjcj of a. It is

|a− ã| = |
n∑

j=1

qj(sin(αj)− sj) + pj(cos(αj)− cj)|

≤
n∑

j=1

|qj | · | sin(αj)− sj |+ |pj | · | cos(αj)− cj |

< ǫ ·
n∑

j=1

|qj |+ |pj | =: δǫ.

If |ã| > δǫ, we can read off the sign of a by looking
at the sign of ã. Otherwise we start the computation
again with a smaller ǫ. The procedure terminates be-
cause a 6= 0 and ã converges towards a.

6 Implementation

We have a prototypical implementation of the kinetic
algorithm including the exact mathematical evalua-

tion of the certificates described before. The imple-
mentation is done in Java. The black-box is imple-
mented using the Apfloat-Library [2]. As an input
one can interactively define circles. During the execu-
tion, the program renews the output, i.e. the nested
convex hulls, regularly every 50 milliseconds. All the
events which occurred during two such time-slots are
computed exactly in the right order and reported. See
below a screenshot taken during the execution of the
program.

References

[1] M. R. Razzazi, A. Sajedi. Kinetic Convex Hull Main-
tenance Using Nested Convex Hulls. EuroCG 2003.

[2] M. Tommila. Apfloat. http://www.apfloat.org/.

[3] C. Yap. CORE.
http://cs.nyu.edu/exact/core pages/index.html.

[4] E. Chang, S.W. Choi, D. Kwon, H. Park, C.
Yap. Shortest Path amidst Disc Obstacles is Com-
putable Special Issue on Geometric Constraints,
Intl.J.Comp.Geom. & Applic., 16:5-6(2006)567–590 .

[5] J.-D. Boissonat, M. Teillaud (editors). Effective
Computational Geometry for Curves and Surfaces
Springer, 2006.

[6] D. Russel, M. I. Karavelas and L. J. Guibas. A pack-
age for Exact Kinetic Data Structures and Sweepline
Algorithms. Computational Geometry: Theory and
Applications, Special Issue on CGAL, 38(1-2):111-
127, September 2007.

[7] H. Everett, D. Lazard, S. Lazard, M. S. El Din. The
Voronoi Diagram of Three Lines. 23th ACM Sympo-
sium on Computational Geometry, 2007.

4

EuroCG’09 - Brussels, Belgium

36

k-Means Motion Clustering

Frank Hellweg∗ Christian Sohler†

Abstract

We present algorithms for k-Means Motion Cluster-
ing, where the problem of motion clustering is formal-
ized as follows: The objects to cluster are n points in
the d-dimensional real space, and their motion is given
by functions that are polynomials of the time whose
degree is bounded by some constant µ. The objective
is to compute a clustering that guarantees a (bicrite-
ria) O(1)-approximation to the optimal k-clustering
at any time, without recalculating it at certain points
of time. Our result extends previous work by Har-
Peled [9] for the k-center objective function to the
k-means objective function.

1 Introduction

Clustering is the process of partitioning a given point
set into subsets such that the points within a subset
are close to each other and objects in different sub-
sets are distant. In this paper we consider clustering
of moving points. A clustering of moving points can,
for example, be used to maintain a hierarchical struc-
ture in mobile networks. Such a hierarchical structure
can then be used for routing, data management, etc.
We will assume that the motion of the points is known
in advance and we attempt to compute a clustering
that is good for the whole motion.
We will measure the quality of the clustering in terms
of the k-means objective function, i.e. we compute k
moving points (the cluster centers) and , at any fixed
point of time, the quality of the clustering induced by
these points is the sum of the squared distances to the
nearest center. In the context of mobile networks this
quality measure can be viewed as the average energy
needed to connect to the cluster center. Notice, how-
ever, that the cluster center is not necessarily part of
the moving point set.
Our result extends previous work by Har-Peled [9] for
the k-center objective function to the k-means objec-
tive function. Technical details that are left out here
can be found in [6].

Related Work For motion clustering with the ob-
jective to only compute a clustering once for all time

∗Department of Computer Science, University of Bonn,
hellweg@informatik.uni-bonn.de
†Department of Computer Science, University of Bonn,

sohler@informatik.uni-bonn.de

points, there are mainly two results, the first being a
result of Bespamyatnikh et al. [3], who, among other
things, analyze the 1-median clustering problem in
the euclidean plane for arbitrary motion functions,
considering Euclidean distances. By reducing to the
Manhattan distances version, they get a

√
2(2−2/n)-

approximation algorithm for this problem.
The second main result is the mentioned result of Har-
Peled [9]: He consideres k-center motion clustering of
points whose motion is described by polynomials in
the time, with a degree bounded by some constant
µ, and one of his results is an algorithm that com-
putes a motion clustering in running timeO(nk) using
(15k)µ+1 cluster centers and guaranteeing an approx-
imation factor of 3µ+1 − 1 at any point of time. He
also proves that one needs at least kµ+1 cluster centers
to guarantee an O(1)-approximation for any point of
time. His worst-case example family also holds for k-
means clustering.
His basic idea is to solve a subproblem he calls stab-
bing, which is essentially a clustering problem which
relaxes the restriction that all clusters have to be at
the same point of time. By solving this problem, he
gets k clusters that are good for some point of time
each, and he uses this for decreasing the degree of
the motion functions by one and recursively calculat-
ing motion clusterings for the k subproblems defined
by the k clusters and the new motion functions. For
µ = 0, it suffices to compute an approximate standard
k-center clustering, and Har-Peled shows that one can
maintain an approximation factor throughout all the
recursions back to the original problem.
There are also some results for motion clustering and
related problems, e.g. facility location, that use Ki-
netic Data Structures to maintain an approximate
clustering instead of calculating it once and using it
for all points of time; see [4, 5, 7, 8, 10].

Preliminaries In this section we will define the k-
means motion clustering problem formally. A (poly-
nomially) moving point is a mapping p : R → Rd,
whereas p is polynomial in the time parameter t with
a maximum degree of µ. Let p(t)i denote the i-th
coordinate of p at the point of time t. For a set
P = {p1, . . . , pn} of polynomially moving points let
P [t] :=

⋃
p∈P {p(t)} denote the set of static points at

time t.
A k-clustering of such a set P is a partition C =
{C1, . . . Ck} of P such that

⊎
1≤i≤k Ci = P . The cost

1

k-Means Motion Clustering

37

of such a clustering C for P at the point of time t
are defined as γ(C,P, t) =

∑
1≤i≤k

∑
pj∈Ci ||pj [t] −

ĉi(t)||2, whereas ĉi(t) denotes the centroid of the clus-
ter Ci at the point of time t; it is well-known that the
centroid of a point set is the optimum solution for the
1-means problem for that point set.
The cost of an optimal k-clustering of P at the
point of time t are denoted as γopt(P, k, t) =
minĈ={Ĉ1,...,Ĉk}:

U
i Ĉi=P

γ(Ĉ, P, t) and the cost of
an optimum k-clustering for any point of time as
γopt(P, k) = mint γopt(P, k, t). For static point sets
we define the cost functions in the same way, ommit-
ting the parameter t. We will, slightly abusing the
notation, speak of a clustering C for P [t] if we mean
the clustering C for P at the point of time t.
We call a clustering C of a set P of polynomially mov-
ing points a (c,m, k)-static clustering if it consists of
at most m clusters and for each point of time t yields a
c-approximation to the optimum k-clustering of that
point of time, i.e. γ(C,P, t) ≤ c · γopt(P, k, t)∀t.
We need to solve an auxilliary problem that we call
k-means stabbing, following Har-Peled’s notation. A
k-stabbing (S, t∗) of a moving point set P consists
of a partition S = {S1, . . . Sk} of P into k disjoint
sets, which we call stabbing clusters, and a function
t∗ : S → R that assigns a point of time to each stab-
bing cluster. The cost for a stabbing (S, t∗) are de-
fined as γstab(S, t∗, P) :=

∑
T∈S γ({T}, T, t∗(T)). A

stabbing (S, t∗) of a set P of moving points is called
(c,m, k)-Stabbing if it consists of at most m stabbing
clusters and satisfies γstab(S, t∗) ≤ c · γopt(P, k), i.e.
has at most the cost of the optimal clustering of any
point of time.

2 An Algorithm for k-Means-Stabbing

In this section we describe how to compute a k-means
motion clustering by solving several stabbing prob-
lems; after that we will present an algorithm for these
stabbing problems. The basic idea is the same as Har-
Peled’s, which we described in Section 1; for a moving
point set P with a degree of motion of at most µ and
k ∈ N, the algorithm works as follows: Compute a
(c, l, k)-stabbing (S, t∗) of P , whereas l ≥ k and c is
a constant, and look at each stabbing cluster seper-
ately. For each stabbing cluster T ∈ S, move the
curves of the moving points in T , such that they in-
tersect in the centroid of T [t∗(T)], getting the point
set T ′. Now consider the centroid of T [t∗(T)] being
the center of the coordinate system: The motion func-
tions of all the points in T ′ are now polynomials with-
out a constant summand, so we can divide them by
their parameter t, getting a set of points with a de-
gree of motion of at most µ − 1. Now we recursively
cluster this set of moving points. After we have done
this for all stabbing clusters T ∈ S, each recursive

call retrieving a motion clustering CT ′ , we return the
motion clustering C =

⋃
T∈S CT , whereas CT is the

clustering corresponding to CT ′ for all T ∈ S.
It remains to show that an approximation factor can
be maintained while reversing these steps. First we
will show that an approximation factor can be main-
tained when moving the points’ curves back to their
original positions.

Lemma 1 Let P = {p1, . . . , pn} and P ′ =
{p′1, . . . , p′n} be sets of n static points, whereas for i ∈
{1, . . . , n} p′i is created from pi by moving pi by a Eu-
clidean distance of vi. Let

∑
1≤i≤n v

2
i ≤ ρ · γopt(P, k)

for a constant ρ ∈ R+. Then, for all k ∈ N holds
γopt(P ′, k) ≤ (1 +

√
ρ)2γopt(P, k).

Proof. Let U be an optimal k-clustering for P and di
the Euclidean distance from pi to his cluster center in
U for all i. Let U ′ be the clustering of P ′ correspond-
ing to U ; note that U ′ is not necessarily optimal. We
can bound the cost of an optimal k-clustering of P ′ by
γopt(P ′, k) ≤ γ(U ′, P ′) ≤∑C∈U ′

∑
pi∈C(di+vi)2, the

last inequality following from the fact that choosing
the optimal center for each cluster in U ′ yields at most
the cost as choosing the optimal center of the accord-
ing cluster in U ; the later is at most

∑
pi∈C(di + vi)2

for each cluster C ∈ U ′ by the triangle inequality. We
conclude

γopt(P ′, k) ≤
∑
C∈U ′

∑
pi∈C

d2
i + 2divi + v2

i

≤
∑
pi∈P

d2
i +

∑
pi∈P

v2
i + 2

√∑
pi∈P

d2
i

√∑
pi∈P

v2
i

≤ γopt(P, k) + ρ · γopt(P, k) + 2
√
ρ · γopt(P, k)

= (1 +
√
ρ)2γopt(P, k),

whereas the second inequality follows from the
Cauchy-Schwarz Inequality. �

Lemma 2 Let P = {p1, . . . , pn} and P ′ =
{p′1, . . . , p′n} be sets of n moving points, whereas
for i ∈ {1, . . . , n} p′i is created from pi by moving
the curve of pi by an euclidean distance of vi. Let∑

1≤i≤n v
2
i ≤ ρ · γopt(P, k) for a constant ρ ∈ R+. For

any (c,m, k)-static clustering T ′ of P ′ the correspond-
ing clustering T of P is a ((

√
c(1 +

√
ρ) +
√
ρ)2,m, k)-

static clustering.

Proof. Let t be a fixed but arbitrary point of time.
For pi ∈ P ′ let di be the Euclidean Distance from p′i[t]
to its cluster center in T ′ at time t. We can bound
the cost of T by γ(T, P, t) ≤ ∑C∈T

∑
pi∈C(di + vi)2

using a similar argument as in the proof of Lemma 1.
We conclude

γ(T, P, t) ≤
∑
pi∈P

d2
i +

∑
pi∈P

v2
i +

√∑
pi∈P

d2
i

√∑
pi∈P

v2
i

≤ (
√
c(1 +

√
ρ) +

√
ρ)2 · γopt(P, k, t)

2

EuroCG’09 - Brussels, Belgium

38

due to Lemma 1, and so T is a ((
√
c(1 +

√
ρ) +√

ρ)2,m, k)-static clustering of P . �

The next Lemma shows that if we compute an approx-
imate motion clustering on a set of moving points and
then multiply all motion functions by their parameter
t, the corresponding clustering on the resulting point
set will guarantee the same approximation factor:

Lemma 3 Let P = {p1, . . . , pn} be a set of n poly-
nomially moving points with a degree of motion of at
most µ and pi[0] = ~0 for 1 ≤ i ≤ n. Then, for the
mapping f(p(t)) := p(t)/t and P ′ = {p′1, . . . , p′n} with
p′i = f(pi) for 1 ≤ i ≤ n, for each (c,m, k)-static clus-
tering U ′ of P ′ the corresponding clustering U on P
is a (c,m, k)-static clustering.

Proof. Let t be a fixed but arbitrary point of time.

Proposition 4 Let V ′ = {D′1, . . . , D′m} be an arbi-
trary clustering of P ′ and let V = {D1, . . . , Dm} be
the corresponding clustering of P . Let d′i[t] be an
optimal cluster center for D′i[t] for 1 ≤ i ≤ n. Then,

1. di := f(d′i) is an optimal cluster center for Di for
all i.

2. γ(V, P, t) = t2 · γ(V ′, P ′, t)

3. if V ′ is an optimal clustering of P ′[t], V is an
optimal clustering of P [t].

Proof. Because of the properties of 1-means cluster-
ing, d′i is the centroid of D′i for all i, and therefore

di[t] = t · d′i[t] = t
1
|D′i|

∑
p′
j [t]∈D′

i[t]

p′j [t]

= t
1
|D′i|

∑
pj [t]∈Di[t]

pj [t]
t

=
1
|D′i|

∑
pj [t]∈Di[t]

pj [t]

is the centroid ofDi[t] and of course an optimal cluster
center for Di[t]. Furthermore,

γ(V, P, t) =
∑
Di∈V

∑
pj∈Di

‖pj [t]− di[t]‖2

= t2 ·
∑
Di∈V

∑
pj∈Di

∑
1≤k≤d

(p′j [t]k − d′i[t]k)2,

which equals t2 ·γ(V ′, P ′, t). This also implies that V
is an optimal clustering for P [t], if V ′ is optimal for
P ′[t]. �

Let U ′ be a (c,m, k)-static clustering of P ′ and let U
be the corresponding clustering of P . We conclude

γ(U,P, t) = t2 · γ(U ′, P ′, t) ≤ t2 · c · γopt(P ′, k, t)

= t2 · c ·
(

1
t2
· γopt(P, k, t)

)
= c · γopt(P, k, t),

using Proposition 4 and completing the proof. �

We will now use the preceeding lemmas for showing
that one step of the recursion of the above algorithm
maintains an approximation factor, if the stabbing
guarantees an approximation and the recursive calls of
the algorithm return approximate motion clusterings
for the subproblems. One can easily use this to prove
Theorem 5 by induction:

Theorem 5 Let P = {p1, . . . , pn} be a set of n poly-
nomially moving points with a degree of motion of
at most µ and let A be an algorithm that com-
putes a (c,m, k)-stabbing for a given set of moving
points, whereas m ≥ k. Then one can compute a
(((1 +

√
c)µ+1− 1)2,mµ+1, k)-static clustering of P in

running time O(n) plus the time for the calls of A and
considering µ and the dimension d to be constant.

Let us consider a step of the recursion. We are given
a set of polynomially moving points P = {p1, . . . , pn}
with a degree of motion of at most µ ≥ 1. Now
we compute an (a,m, k)-stabbing (C, t∗), whereas
C = {C1, . . . Cm}, on these points using an algorithm
A as defined in Theorem 5. We move all point curves
to the centroids of their corresponding stabbing clus-
ters at the point of time defined by t∗, getting the
point set C ′i for Ci for i = 1, . . . ,m. Now, for all i, we
divide all points in C ′i by their parameter t and get
Ĉi, on which we compute a (c, l, k)-static clustering
Êi recursively for constants a > 0 and l ≥ k. Because
of Lemma 3, the corresponding clustering E′i of C ′i is
a (c, l, k)-static clustering.
Now consider the clustering E′ =

⋃
1≤i≤mE

′
i of the

moving point set P ′ =
⋃

1≤i≤m C
′
i. We fix an arbi-

trary point of time t. The cost of E′ at this point of
time can be bounded by

γ(E′, P ′, t) =
∑

1≤i≤m
γ(E′i, C

′
i, t) ≤ c

∑
1≤i≤m

γopt(C ′i, k, t),

since all E′i guarantee a c-approximate clustering for
C ′i. Let V ′ = {V ′1 , . . . , V ′k} be an optimal k-Clustering
for P ′[t]. We intersect each cluster V ′j with every stab-
bing cluster C ′i[t], getting a set of points V ′ji. Let us
now consider the set D′i := {Vji}1≤j≤k. Clearly, D′i is
a k-clustering of C ′i[t], and hence has at most the cost
of the optimal k-clustering of C ′i[t]. Furthermore, all
clusters of D′i are subsets of clusters of V ′, so that the
cost of each cluster V ′j of V ′ are at least the sum of the
cost of the corresponding subclusters in D1, . . . , Dm.
We conclude

γ(E′, P ′, t) ≤ c
∑

1≤i≤m
γ(D′i, C

′
i, t) ≤ c · γ(V ′, P ′[t]),

which equals c · γopt(P ′, k, t). Now we can apply
Lemma 2 on E′ and bound the cost of the corre-
sponding clustering E of P , which has lm clusters,
by γ(E,P, t) ≤ (

√
c(1 +

√
a) +

√
a)2 · γopt(P, k, t).

3

k-Means Motion Clustering

39

For computing a k-means motion clustering it remains
to show that one can compute a k-means stabbing
which yields an O(1)-approximation to the best clus-
tering of any point of time for a moving point set P .
Our algorithm computes an (1 + ε)-approximate k-
stabbing in running time Õ

(
n1+k/ε

(k−2)!

)
. For the sake of

brevity, we will only outline this algorithm.
The algorithm gets a set P of n polynomially moving
points, the number of clusters k and a proximity pa-
rameter ε as input. It enumerates all n

k/ε

k! possibilities
for choosing (with replacement) k subsets of P , each
having a size of 1/ε. Consider the point of time t that
yields the minimum-cost k-clustering. It is known by
[1] that one of the subset combinations we check yields
an approximation to the optimal clustering at time t
arbitrarily near to (1 + ε).
Now we fix the k centroids of the considered subsets
of P and assign the moving points in P to the near-
est cluster center. Since for each point the optimal
assignment can change at most λ2µ(k) = Õ(k) times,
i.e. the maximum length of a Davenport-Schinzel Se-
quence with a degree of 2µ for k elements [1], we only
have to consider Õ(nk) time intervals. Inside these in-
tervals the assignment to the cluster centers is fixed,
and we can compute the optimal point of time for
each cluster by minimizing the sum of the distances
of the points inside the cluster to the cluster center,
which is a polynomial; we assume that, once we have
computed all these polynomials in O(n), the mini-
mization can be done in running time O(1) for each
of them. We return the optimal stabbing of the best
time interval of all possibilities to enumerate k subsets
of size of 1/ε of P , which, by the above discussion, is
an (1 + ε, k, k)-stabbing of P .
Combining this with theorem 5, we conclude:

Theorem 6 For a set P ⊆ Rd of n polynomially
moving points with a degree of motion of at most
µ, a proximity parameter ε > 0 and k ∈ N, one can
compute a ((1+

√
1 + ε)µ+1−1)2, kµ+1, k)-static clus-

tering in running time Õ
(
nk/ε+1

(k−2)!

)
, whereas d and µ

are considered to be constants.

Coresets for k-Means Motion Clustering In this
Paragraph we outline the construction of coresets for
k-means motion clustering. Let us at first define core-
sets for static point sets.
A weighted set of moving points is a set Q of mov-
ing points in Rd together with a weight function w :
Q→ R+

0 . When calculating the cost of a clustering C
of such a point set at a point of time t, we multiply
the distance of each point to its cluster center by its
weight, i.e. γw(C,P) =

∑
Ci∈C

∑
p∈Ci w(p) ·‖p− ĉi‖2.

Let T be a weighted set of moving points and P be
a set of moving points. At an arbitrary point of
time t, we call T [t] a (k, ε)-coreset of P [t], if for all

sets D ∈ Rd of k points and the clustering C on
P [t] and C ′ on T [t] that are defined by D by as-
signing each point to the nearest point in D, it holds
(1− ε)γ(C,P, t) ≤ γw(C ′, T, t) ≤ (1− ε)γ(C,P, t). We
call T a static (k, ε)-coreset of P , if it is a (k, ε)-coreset
for all points of time simultanously.
Our result is the following theorem. It is based on a
coreset result for static point sets of Har-Peled and
Mazumdar [2]; we ommit the proof for the sake of
brevity.

Theorem 7 Let P be a set of n polynomially moving
points with a degree of motion bounded by µ and let
A be an algorithm that retrieves a (c, am,m)-stabbing
for any such set of points and for all m, for constants
a ∈ N and c ≥ 1. Then, one can compute a static

(k, ε)-coreset T of size O
(

(k logn)µ+1

εd

)
of P , whereas

any point in T is a polynomial with a degree of motion
of at most µ. The running time is O(n) plus the time
needed for the execution of A.

References

[1] P. Agarwal, M. Sharir: Davenport-Schinzel Se-
quences and Their Geometric Applications; Cam-
bridge University Press, 1995

[2] S. Arora. P. Raghavan, S. Rao: Approximation
Schemes for Euclidean k-Medians and Related Prob-
lems; 30th annual ACM Symposium on Theory of
Computing, 1998

[3] S. Bespamyatnikh, B. Bhattacharya, D. Kirkpatrick
und M. Segal: Mobile facility location; Proc. of the
4th International Workshop on Discrete Algorithms
and Methods for Mobile Computing and Communi-
cations, p. 46, 2000

[4] A. Czumaj, G. Frahling, C. Sohler: Efficient kinetic
data structures for MaxCut. In: Proceedings of the
19th Canadian Conference on Computional Geome-
try (CCCG), p. 157, 2007

[5] B. Degener, J. Gehweiler, C. Lammersen: Kinetic
Facility Location, Algorithmica, special issue on se-
lected papers from SWAT’08, 2008

[6] F. Hellweg: Clustering unter Bewegung für k-Means-
und k-Median-Zielfunktionen, Master Thesis, 2008

[7] J. Gao, L. Guibas, J. Hershberger, L. Zhang, A. Zhu:
Discrete mobile centers. Discrete Comput. Geom.
30(1), p. 45, 2003

[8] J. Gao, L. Guibas, A. Nguyen: Deformable spanners
and applications. Comput. Geom. 35(12), p. 2, 2006

[9] S. Har-Peled: Clustering Motion, Discrete & Com-
put. Geom. 31(4), 2004

[10] J. Hershberger: Smooth kinetic maintenance of clus-
ters. Comput. Geom. Theory Appl. 31(12), p. 45,
2005

[11] M. Inaba, N. Katoh, H. Imai: Applications of
weighted Voronoi diagrams and randomization to
variance-based k-clustering (ext. abstract); Proc. of
the 10th annual Symposium on Comp. Geom., 1994

4

EuroCG’09 - Brussels, Belgium

40

The Maximum Box Problem for Moving Points on the Plane

S. Bereg ∗ J.M. Dı́az-Báñez † P. Pérez-Lantero ‡ I. Ventura §

Abstract

Given a set R of r red points and a set B of b blue
points on the plane, the static version of the Maxi-
mum Box Problem is to find an isothetic box H such
that H ∩R = ∅ and the cardinality of H ∩B is maxi-
mized. In this paper, we consider a kinetic version of
the problem where the points in R∪B move according
to algebraic functions. We design a compact and lo-
cal quadratic-space kinetic data structure (KDS) for
maintaining the optimal solution in O(r log r+r log b)
time per each event. We also consider a more general
static problem where the maximum box can be ar-
bitrarily oriented. This is an open problem in [1].
We show that our approach can be used to solve this
problem in O((r + b)2(r log r + r log b)) time.

1 Introduction

In Pattern Recognition and Classification problems,
a natural method for selecting prototypes that rep-
resent a class is to perform cluster analysis on the
training data [6]. Typically, two sets of points X+

and X− are given, and one would like to find patterns
which intersect exactly one of these sets. The cluster-
ing can be obtained by using simple geometric shapes
such as circles or boxes. Recent papers deal with the
Maximum Box Problem, where the clustering is due
by considering maximum boxes, i.e., boxes containing
the maximum number of points in the given data set.
See [8, 9]. The basic problem is the following: given a
finite set of blue points B = X+ and a finite set of red
points R = X− on the plane, compute a box (axis-
aligned rectangle) containing the maximum number of
points of B but avoiding points of R. In many appli-
cations, the data are given in a dynamic scenario. For
instance, in fixed wireless telephony access and driv-
ing assistance, detection and recognition of patterns
for moving objects are key functions [2]. In fact, with
the continued proliferation of wireless communication
and advances in positioning technologies, algorithms
to efficiently solve optimization problems about large
populations of moving data are gaining interest. New

∗University of Texas, besp@utdallas.edu
†Universidad de Sevilla, dbanez@us.es, partially supported

by grant FEDER-MTM2006-03909.
‡Universidad de la Habana, pablo@matcom.uh.cu, supported

by MAEC-AECI.
§Universidad de Sevilla, iventura@us.es, partially sup-

ported by grant FEDER-MTM2006-03909.

devices offer to the companies an opportunity of pro-
viding a diverse range of e-services, many of which
will exploit knowledge of the users changing location.
This results in new challenges to database and classi-
fication technology [3].

In this paper, we introduce and investigate the dy-
namic version of the Maximum Box Problem where
the dataset is modeled by points moving according
to specified algebraic functions. We present a Kinetic
Data Structure (KDS) to efficiently maintain the max-
imum box for a bi-colored set of moving points. A
KDS is used for keeping track the attributes of inter-
est in a system of moving objects [7]. The plan of
the paper is as follows: In section 2 we give an al-
gorithm for the static case that will be useful for the
dynamic version. A new data structure for maintain-
ing the maximum box in a kinetic setting is proposed
in section 3. Finally, in section 4 we give an algorithm
for the Maximum Box Problem in a static setting for
which the box can be arbitrarily oriented.

2 The Static Version

The static version of the maximum box problem in the
plane has been already studied. In [8], an O(b2 log b+
br+r log r)-time algorithm has been presented, where
r = |R| and b = |B|. We propose here a similar
algorithm which is used in the dynamic case for the
designment of our data structure. First, we observe
that a maximum box for B and R can be enlarged
until each of its sides either touches a red point or
reaches the infinity. Thus, the maximum box can be
transformed to one of the following isothetic objects
with red points on its boundary and no red points
inside: a rectangle, a half-strip, a strip, a quadrant or
a half-plane (see Fig. 1).

We show how to compute the maximum box of type
1), 2) or 3). The cases of a quadrant 4) and a half-
plane 5) are even easier and can be addressed by ap-
plying the techniques based on the Dynamic Bent-
ley’s Maximum Subsequence Sum Problem that were
presented in [5]. Both cases can be solved in time
O(n log n).

1)1) 2) 3) 4) 5)

Figure 1: Configurations of the maximum box.

1

The Maximum Box Problem for Moving Points on the Plane

41

We proceed as follows. For every red point pr, we
compute a rectangle H(pr) such that: (i) the top side
contains pr, (ii) the interior contains the maximum
number of blue points, and (iii) the boundary has
only red points. Then, we take the best of all H(pr).
To do this for each red point pr, we draw a horizontal
line l passing through pr and sweep the points below
l by moving l downwards.

Let hr be the horizontal line that passes through pr.
During the sweeping we maintain two balanced binary
search trees TR and TB such that TR (resp. TB) con-
tains all the red (resp. blue) points that lie between hr

and l sorted by x-coordinate. In the tree TB , for each
node v we also maintain a counter of the number of
blue points on the subtree rooted at v. When l passes
through a point p we do the following. Let left(p)
(resp. right(p)) be the rightmost (resp. leftmost) red
point in TR located to the left (resp. right) of the ver-
tical line that passes through p, and let xleft (resp.
xright) be its x coordinate. If left(p) (resp. right(p))
does not exist then xleft (resp. xright) is −∞ (resp.
+∞). We only process p if the x coordinate of pr

lies in the interval (xleft, xright). In that case, p is
inserted in TR or TB according to its color and if p is
a red point, we consider a candidate H(pr) as the iso-
thetic rectangle (half-strip or strip) whose sides pass
through left(p), right(p), pr and p. The count of
blue points inside H(pr) is equal to the count of blue
points in TB whose x coordinate lies in (xleft, xright).

In the above procedure left(p), right(p) and the
count of blue points inside H(pr) are obtained in log-
arithmic time each, thus the top-down sweeping from
pr is done in O(r log r + r log b + b log b) time, giv-
ing then an overall O(r2 log r+r2 log b+rb log b)-time
and O(r + b)-space process. Within the same time
we can find the smallest axis-parallel rectangle (box)
that maximizes the number of covered points from B
and does not contain any point from R, improving the
O(n3 log4 n)-time algorithm given by [9].

3 The Maximum Box Problem for moving points

In this section we introduce a new kinetic data struc-
ture (KDS), for maintaining the maximum box. A
KDS is a structure that maintains an attribute of a
set of continuously moving objects [7]. It consists of
two parts: a combinatorial description of the attribute
and a set of certificates. The certificates are elemen-
tary tests on the input objects with the property that
as long as their outcomes do not change, the attribute
does not.

Lemma 1 Let X (resp. Y) be the elements of R∪B
sorted by abscissa (resp. ordinate). The maximum
box for R and B is univocally determined by X and
Y , and it does not change combinatorially over time
as long as X and Y do not.

Our KDS is named as Maximum Box Kinetic Data
Structure (MBKDS) and we will proceed now with
its ingredients. In our problem, the set of moving ob-
jects is R ∪B and the attribute is its maximum box.
According to the previous lemma, we consider as a
certificate the condition that two consecutive points
in X (resp. Y) satisfy the x-order (resp. y-order). An
event is the failure of a certificate at some instant of
time t and it implies an update of the MBKDS. We
denote each event as a pair 〈c, t〉 where c is the certifi-
cate and t is the instant of time where c is violated.
We name an event as flip.

A KDS is compact if it has few certificates and lo-
cal if no object participates in too many certificates.
With this it can be updated easily when the flight
plan of an object changes (see [7]). It is easy to prove
that the MBKDS is compact and local.

The MBKDS is composed by the event queue E and
the structure D = {D(pr) : pr ∈ R} where D(pr) is a
data structure for each red point pr. When an event
corresponding to the certificate of two consecutive el-
ements of X, say [Xi, Xi+1], occurs it is removed from
E . Then, we remove from E the events corresponding
to [Xi−1, Xi] and [Xi+1, Xi+2]. After that, we swap
Xi and Xi+1 and insert in E new events for [Xi−1, Xi],
[Xi, Xi+1] and [Xi+1, Xi+2]. The event time is com-
puted based on our knowledge of the motions of Xi−1,
Xi, Xi+1 and Xi+2. E is designed as a priority queue
with its basic operations in O(logn) time. The cer-
tificates [Yi, Yi+1] are treated similarly.

The definition and details of D(pr) are as follows.
Consider first the horizontal line hr passing through
the red point pr and let Red(hr) be the set of red
points lying below hr (see Fig. 2). Denote as x(p)
(resp. y(p)) the abscissa (resp. ordinate) of p. For
each p ∈ Red(hr) we define:

• V(p) as the vertical half-line for which p is its
top-most point.

• I(p) as the maximum-length horizontal segment
that contains p and does not intersect any other
V(q) for q in Red(hr) \ {p}.

• Blue(s) as the set of blue points that lie on the
rectangle whose bottom side is the horizontal seg-
ment s and its top side lies on hr.

• left(p) (resp. right(p)) as the rightmost (resp.
leftmost) point in Red(hr) located to the left
(resp. right) of the vertical line that passes
through p and whose y coordinate is greater than
y(p) (see Fig. 2). Notice that the end points of
I(p) lie on V(left(p)) and V(right(p)).

• the set candidates(pr) of the points p ∈ Red(hr)
such that I(p) intersects the vertical line that
passes through pr. Observe that, according to the

2

EuroCG’09 - Brussels, Belgium

42

previous section, H(pr) is the box whose top side
lies on hr and its bottom side is the interval I(p)
such that p ∈ candidates(pr) and |Blue(I(p))| is
maximized.

pr

p

right(p)

left(p)

hr

I(p)

V(p)

Figure 2: D(pr). Candidate points are those whose
I(p) is drawn with a continuous line.

The key idea for D(pr) is to dynamically compute
H(pr) when two points that lie below hr make a flip.
D(pr) is designed as follows:

• The elements of candidates(pr) are stored in the
leaves of a dynamic balanced binary search treeQ
in decreasing order of ordinate. Every node v is
labeled with a such that |Blue(I(p))| is equal to
the sum of the a labels of the nodes in the unique
simple path from the leaf that represents p to
the root. In addition, every internal node v is la-
beled with b whose value is the candidate p in the
subtree rooted at v that maximizes |Blue(I(p))|.
With this, the label b of the root is the candidate
red point that determines H(pr).

• A balanced binary search tree TR whose elements
are the elements of Red(hr) in increasing order of
abscissa. Every node v is labeled with ymax that
is the element that has the maximum ordinate on
the subtree rooted at v. It permits us to obtain
in logarithmic time left(p) and right(p) for any
p ∈ Red(hr).

• For each p ∈ Red(hr) we divide I(p) at p obtain-
ing the horizontal segments Ileft(p) and Iright(p)
(see Fig. 3). Let Tleft(p) = {Iright(q) : q ∈
Red(hr) \ {p} ∧ right(q) = p} and Tright(p) =
{Ileft(q) : q ∈ Red(hr) \ {p} ∧ left(q) = p}. The
set Tleft(p) is represented in a dynamic balanced
binary search tree where its elements Iright(q) are
stored at the leaves in decreasing order of y(q).
Every node v is labeled with a in a similar way
as we did for Q. In this case |Blue(Iright(q))| is
the sum of the a labels of the nodes in the path
from the leaf that represents Iright(q) to the root.
Also, every node v is labeled with the boolean c
indicating if all the elements Iright(q) in the sub-
tree rooted at v satisfy that q is a candidate red
point. Tleft(p) is designed to support the opera-
tors join and split both in logarithmic time [4].

The set Tright(p) is represented in the same man-
ner.

• The set {I(p) : p ∈ Red(hr)} ∪ {V(p) : p ∈
Red(hr)} determines a partition P of the lower
half-plane of hr. For each cell C of P we store in
a balanced binary search tree TB(C) (supporting
operators join and split) the elements of B ∩ C
in decreasing order of ordinate. Each node v is
labeled with the count of blue points on the sub-
tree rooted at v in such a way the label of the
root is |B ∩C|. Each blue point p below hr has a
reference TC(p) to the tree TB(C) where C is the
cell that contains p. Also, we associate to each
p ∈ Red(hr) the tree TB(p), which is the tree of
blue points that corresponds to the cell of P that
is bounded below by I(p), and the tree TBright

(p)
that corresponds to the cell of P bounded by V(p)
and V(q) and has no bottom boundary, where q
is the element that follows p on TR. (see Fig. 3).

p

right(p)

left(p)

Ileft(p) Iright(p)

TB(p)

TBright
(p)

Figure 3: Details of D(pr).

Because of the similarity between the structure of
D(pr) and the operations of the algorithm of section
2, a similar algorithm to build D(pr) can be designed.
We establish the following result,

Theorem 2 Given R, B and pr such that |R| = r,
|B| = b and pr ∈ R, D(pr) requires O(r + b) space
and it can be built in O(r log r+r log b+ b log b) time.

Corollary 3 Given R and B such that |R| = r and
|B| = b, the data structure D has space complexity
O(r2 +rb) and it can be built in O(r2 log r+r2 log b+
rb log b) time.

In the following we show all the possible types of
flips that can occur when the elements of R∪B move.
The details on how to process any of them depend on
its type and are given in the full version. We say
that a flip is horizontal (resp. vertical) when the two
involved points change their y-order (resp. x-order).

Flip type (A): Two blue points make a vertical
flip. Nothing to do.

Flip type (B): Two blue points b1 and b2 make a
horizontal flip. Exchange b1 and b2 in every tree of
blue points TB(.) or TBright

(.) that contains both.

3

The Maximum Box Problem for Moving Points on the Plane

43

Flip type (C): A red point r1 and a blue point b2
make a horizontal flip. Consider five cases as depicted
in Figure 4.

r1

b2 r2

r1
b2

r2

r1

b2

r2

r1
b2

r2

3) 4)1) 2)

r1

b2

5)

D(r1)

Figure 4: Horizontal flip cases between a red point r1
and a blue point b2.

Flip type (D): A red point r1 and a blue point b2
make a vertical flip. Consider two cases as depicted
in Figure 5, and their symmetric cases.

r1

b2

1) 2)

r1

b2

r2
r3

Figure 5: Vertical flip cases between a red point r1
and a blue point b2.

Flip type (E): Two red points r1 and r2 make
any flip: we have to consider two cases as depicted in
Figure 6, and their symmetric cases. When the flip is
vertical the operators join and split [4] are useful.

r1

1) 2)

r1

r2

r2

rx

rzry

T1

T2

Ty1

Ty2

Figure 6: Flip cases between two red points r1 and
r2. 1) Horizontal 2) Vertical.

Theorem 4 Given a set of moving red points R and
a set of moving blue points B such that |R| = r and
|B| = b, whenever two points in R∪B make a flip, the
data structure MBKDS can be updated in O(r log r+
r log b) time.

4 The Arbitrarily Oriented Maximum Box Prob-
lem

In this section we consider, as an application of our
method for the dynamic case, the problem of find-
ing the Maximum Box for a static set R ∪ B on the
plane, when the box can be oriented according with
any angle (direction) in [0, π].

It is easy to see that there are O((r + b)2) crit-
ical directions and the method of section 2 can be

applied for each of them. With this we obtain an
O((r+b)2(r2 log r+r2 log b+rb log b))-time algorithm.
However, we can do it better by iterating all the crit-
ical directions and computing dynamically the Max-
imum Box per each. Start with the direction given
by the angle θ = 0. Compute the isothetic Maximum
Box and the data structure D. Then make a rota-
tional sweeping of the coordinate axis maintaining the
x-order and the y-order of the elements of R∪B. The
x-order (resp. y-order) changes whenever two points
are at the same distance to the y-axis (resp. x-axis),
implying the swap (flip) of two consecutive elements
and the appearance of a new critical orientation θ.
Thus, the Maximum Box that is oriented according
to θ is computed by making the O(r log r + r log b)-
time update in D. The overall rotation angle is at
most π radians and we establish the following result.

Theorem 5 Given a set of red points R and a set
of blue points B on the plane such that |R| = r
and |B| = b, the Arbitrarily Oriented Maximum Box
Problem can be solved in O((r+ b)2(r log r+ r log b))
time and O(r2 + rb) space.

References

[1] B. Aronov and S. Har-Peled. On approximating the
depth and related problems. SIAM J. Comput. Vol.
38, 899–921, 2008.

[2] P. Bonnet, J. Gehrke, P. Seshadri. Towards Sen-
sor Database Systems. In Proc. of the Second Inter-
national Conf. on Mobile Data Management, Hong
Kong. Lecture Notes Comp. Sci., vol. 1987, 3 – 14,
2001.

[3] A. Civilis, C. S. Jensen, S. Pakalnis. Techniques
for Efficient Road-Network-Based Tracking of Mov-
ing Objects. IEEE Transactions On Knowledge And
Data Engineering, Vol. 17, No. 5, 698–712, 2005.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Intro-
duction to Algorithms, Second Edition. MIT Press,
McGraw-Hill, 2001.

[5] C. Cortés, J. M. Dı́az-Báñez, P. Pérez-Lantero, C.
Seara, J. Urrutia, I. Ventura. Bichromatic separabil-
ity with two boxes: a general approach. To appear in
Journal of Algorithms.

[6] R. Duda, P. Hart, D. Stork. Pattern Classification.
John Wiley and Sons, Inc., New York, 2001.

[7] L.J. Guibas. Kinetic Data Structures: A State of the
Art Report. In Robotics: The Algorithmic Perspec-
tive. A. K. Peters, Ltd 191–209, 1998.

[8] Y. Liu, M. Nediak. Planar Case of the Maximum Box
and Related Problems. In Proc. Canad. Conf. Comp.
Geom., Halifax, Nova Scotia, August 11–13, 2003.

[9] M. Segal. Planar Maximum Box Problem. Journal
of Mathematical Modeling and Algortihms. 3, 31–38,
2004.

4

EuroCG’09 - Brussels, Belgium

44

Minimizing the weighted directed Hausdorff distance between
colored point sets under translations and rigid motions∗

Christian Knauer † Klaus Kriegel † Fabian Stehn †

Abstract

Matching geometric objects with respect to their
Hausdorff distance is a well investigated problem in
Computational Geometry with various application ar-
eas. The variant investigated in this paper is moti-
vated by the problem of determining a matching (in
this context also called registration) for neurosurgi-
cal operations. The task is, given a sequence P of
weighted point sets (anatomic landmarks measured
from a patient) and a second sequence Q of corre-
sponding point sets (defined in a 3D model of the
patient), to compute the transformation that mini-
mizes the weighted directed Hausdorff distance of P
to Q. The weighted Hausdorff distance, as introduced
in this paper, takes the weights of the point sets into
account, which in this application reflect the precision
with which landmarks can be measured.
We present an exact solution for translations in the
plane, a simple 2-approximation as well as a FPTAS
for translations in arbitrary dimension and a constant
factor approximation for rigid motions in the plane or
in R3, the relevant cases for the mentioned applica-
tion.

1 Introduction

A central aspect in pattern recognition and matching
applications is the measure which is used to compare
two objects. It defines which features of the objects
are relevant for deciding about their similarity. An es-
tablished measure to compare two geometric objects
A and B is the (directed) Hausdorff distance h(A,B),
defined as h(A,B) := maxa∈A minb∈B ‖a − b‖, where
‖ · ‖ denotes the Euclidean norm.
We present an extension of the directed Hausdorff dis-
tance which is motivated by a registration application
for neurosurgical operations. The task is to compute
the transformation that matches a patient in an oper-
ation theatre to a 3D model of the patient, generated
from CT/MRT scans. A matching is computed based
on point sets, so-called anatomic landmarks, that are
defined by the surgeon in the model during the op-
eration planning phase, and measurements of these

∗supported by the German Research Foundation (DFG),
grant KN 591/2-2
†Institut für Informatik, Freie Universität Berlin,

{knauer|kriegel|stehn}@inf.fu-berlin.de

landmarks (by touching the appropriate spots of the
patient with a traceable device) in the first phase of
the operation. Landmarks from different anatomic re-
gions can be measured with different precision. The
differences in the accuracy are taken into account by
assigning corresponding weights to each landmark.
The magnitude of a weight that is assigned to an
anatomic landmark is based on an empirical study
about the precision of measuring landmarks, which
will be published elsewhere.

Various distance measures based on the Hausdorff
distance have been introduced and extensively studied
by the Computer Graphics community. Standard ap-
plications in this line of research are comparing pixel
images, e.g., for detecting [5] or recognizing faces in
them.

1.1 Problem Definition

Given two sequences of finite point sets P =
(P1, . . . , Pk) and Q = (Q1, . . . , Qk) with Pi, Qi ⊂ Rd
and a sequence of weights w = (w1, . . . , wk) with
wi ∈ R+ and w1 ≥ w2 ≥ · · · ≥ wk. For ni := |Pi|
and mi := |Qi| let n =

∑k
i=1 ni and m =

∑k
i=1mi.

For the purpose of illustration one can think of P and
Q being colored in k different colors, where all points
in Pi and Qi are colored with the ith color.

Definition 1 The weighted directed Hausdorff dis-
tance h(P,Q, w) for P, Q and w is defined as:

h(P,Q, w) = max
1≤i≤k

wi h(Pi, Qi).

For points in the plane, h(P,Q, w) can be computed
in O ((n+m) logm) time using Voronoi diagrams to
compute the directed Hausdorff distance for every
color; for higher dimensions it trivially can be com-
puted in O (mn) time.

In this paper we discuss the problem of match-
ing two sequences of weighted point sets under the
weighted Hausdorff distance. Formally, given P, Q
and w as before and a transformation class T , find
the transformations t ∈ T that minimize the function

f(t) = h(t(P),Q, w), (1)

where t(P) := ({t(p) | p ∈ Pi})1≤i≤k. For the remain-
der of this paper, let µopt denote the minimum of f .

1

Minimizing the weighted directed Hausdorff distance between colored point sets under rigid motions

45

In section two we present a 2-approximation for col-
ored point sets in arbitrary dimension under transla-
tions, which is extended to a FPTAS in section three.
In section four a constant-factor approximation for
rigid motions is presented. An exact algorithm opti-
mizing the Hausdorff distance under translations for
points in the plane is presented in section five.

2 A 2-Approximation for Translations in Rd

Theorem 1 A 2-approximation for translations can
be computed in O (m1(m+ n) logm) time in 2-space
and in O (m1mn) time for point sets in higher dimen-
sions.

Proof. Choose a point p ∈ P1 and let T be the set
of all translation vectors that move p upon a point of
Q1:

T := {q − p | q ∈ Q1}.
Then, the translations t2app of T that realize the
smallest Hausdorff distance are 2-approximations of
µopt:

f(t2app) = min
t∈T

h(t(P),Q, w) ≤ 2µopt.

To show this, assume P to be in optimal position and
let nn (p′, Qi) ⊆ Qi be the set of nearest neighbors of
p′ ∈ Pi in Qi and let ni(p′) be one representative of
this set. In optimal position, all weighted distances
are bounded by µopt:

∀1 ≤ i ≤ k ∀p′ ∈ Pi wi‖p′ − ni(p′)‖ ≤ µopt,

where ‖ · ‖ denotes the Euclidean norm. Consider
the translation tq ∈ T that moves the chosen point
p upon one of its nearest neighbors q ∈ nn (p,Q1).
By applying tq to P, all points in any Pi are moved
away from their optimal position by ‖p−q‖. The new
weighted distance l of any p̃ ∈ Pi to one of its closest
neighbors after applying tq is at most:

l = wi h(tq(p̃), Qi)
≤ wi (‖p̃− ni(p̃)‖+ ‖p− n1(p)‖)
≤ µopt + wi ‖p− n1(p)‖
≤ µopt + w1 ‖p− n1(p)‖
≤ 2µopt.

For a fixed p ∈ P1 all translations that move p upon
a point q ∈ Q1 have to be tested, which yields the
stated runtime. �

The key argument that guarantees an approximation
factor of 2 is that w1 is at least as large as any
other weight. Choosing a p′ ∈ Pi for any color i
and testing all translation vectors that move p′ onto
a point q′ ∈ Qi yields in a 1 + w1/wi-approximation

that can be computed in O (mi(m+ n) logm) respec-
tively O (mimn) time. Together with the the pigeon-
hole principle, this implies that there is a 1 + (w1/wk)-
approximation that can be computed in O

(
m2
/k n

)
time for general d and in O (m/k (m+ n) logm) time
in the plane.

3 A FPTAS

Theorem 2 For every ε > 0 a (1 + ε)-
approximation for translations can be computed
in O (1/ε2m1(m+ n) logm) time in 2-space and in

O
((√

d/ε
)d
m1mn

)
time for higher dimensions.

Proof. Let µ2app = f(t2app) where t2app is a solution
of the 2-approximation as described in Section 2. For
the given ε, choose any p ∈ P1 and for every q ∈ Q1

build a regular squared grid Gεq centered in q with side
length µ2app/w1 where each cell has a side length of
(ε µ2app)/(

√
dw1). Let T be the set of all translations,

that move a p ∈ P1 onto a grid point of a grid Gεq for
any q ∈ Q1. The translations tapp of T that realize
the smallest weighted Hausdorff distance satisfy

f(tapp) = min
t∈T

h(t(P),Q, w) ≤ (1 + ε)µopt.

Assume P to be in optimal position and let q = n1(p)
be one of the nearest neighbors of the chosen p ∈ P1.
By construction, the point p lies within the bound-
aries of the grid Gεq. Due the choice of the cell
length, the furthest distance l of p to one of its closest
grid points is at most l ≤ (ε µ2app)/(2

√
dw1) and as

µopt ≥ µ2app/2 we have that l ≤ (ε µopt)/(
√
dw1). As

all wi for 1 < i ≤ k are at most as large as w1, the
weighted distance of all other points increases by at
most ε · µopt when translated along the distance l.

There are
(√

d
ε

)d
grid points for each Gεq that need to

be tested, which implies the stated runtime. �

Using the same arguments as for the 2-approximation,
its easy to show that a (1 + ε) approximation can be
computed in O

((√
d c/ε
)d
m2 n/k

)
time for point sets

in dimension d ≥ 3 or in O
(

(c/ε)2 m/k(m+ n) logm
)

time in 2-space with c = w1/wk.

4 A Constant Factor Approximation for Rigid Mo-
tions in the Plane

Due to limited space, we briefly describe how to ex-
tend the results for the constant factor approxima-
tion for translations in Section 2 to the transformation
class of rigid motions, i.e., translations plus rotations.

Theorem 3 A 2(1+
√

2)-approximation for rigid mo-
tions can be computed in O (m1mi (m+ n) logm)
time for point sets in the plane.

2

EuroCG’09 - Brussels, Belgium

46

Sketch of the algorithm. Choose any p ∈ P1. Let
P :=

⋃
1≤i≤k Pi and let ω : P → R be the function

that maps a point x ∈ P to its weight ω(x) = wi for
x ∈ Pi. Let p′ be a point that maximizes the weighted
distance to p:

p′ ∈ arg max
x∈P

ω(x)‖x− p‖,

w.l.o.g. let ω(p′) = wi. This choice of p′ ensures that
the change of the Hausdorff distance of any point p̃ ∈
P when rotated around p is bounded by the change
of the weighted Hausdorff distance of p′.
For any q ∈ Q1 and any q′ ∈ Qi let t be defined as
t := tq,q′ ◦ tq, where tq is the translation that moves
p upon q and tq,q′ is the rotation around q by the
smallest angle such that q, q′ and tq,q′ ◦ tq(p′) are
aligned, see Figure 1.

a) b) c)

q

p

q′

p′

q′
q′

l
tq(p′) tq(p′)

tq

tq,q′

q = tq(p)

tq,q′ ◦ tq(p′)

tq,q′ ◦ tq(p)

Figure 1: a) The translational part tq, b) the rota-
tional part tq,q′ , c) the aligned configuration.

For p ∈ P1 and p′ ∈ Pi as chosen before let T be
the set of all transformations that align p ∈ P1 and
p′ ∈ Pi with some q ∈ Q1 and q′ ∈ Qi in the just
described manner.

The transformations trapp of T that realize the
smallest Hausdorff distance satisfy the stated approx-
imation factor:

f(trapp) = min
t∈T

h(t(P),Q, w) ≤ 2(1 +
√

2)µopt.

4.1 Extending the Result to R3

In R3 one additional degree of freedom has to be fixed.
Based on the registration in the previous section, this
freedom is a rotation around the axis pp′. Choose
p and p′ as before and let p′′ ∈ Pj be a point that
maximizes the weighted distance to the line through
p and p′. For any q′′ ∈ Qj consider additionally the
rotation tq,q′,q′′ around the axis qq′ such that tq,q′,q′′ ◦
tq,q′ ◦ tq(p′′), q, q′ and q′′′ are coplanar. It is easy
to see, that the additional rotation results in a 6 +
2
√

2-approximation of the optimum and the runtime
increases to O (m1mimjmn).

5 An Exact Algorithm for Computing a Registra-
tion in the Plane under Translations

The minima of the objective function f(t) (Equa-
tion 1) under translations in the plane can be
computed similar to the approach from Huttenlocher
et. al. [3] by partitioning the translation space into
cells such that for all translations of one cell the
weighted Hausdorff distance is realized by the same
point pair.

Recall, that the function f is given as:

f(t) := max
1≤i≤k

wi h(t(Pi), Qi)

= max
1≤i≤k

wi max
p∈Pi

min
q∈Qi

‖(p+ t)− q‖
= max

1≤i≤k
wi max

p∈Pi

min
q∈Qi

‖(q − p)− t)‖

So, computing the distance of the point p + t to q is
equivalent to computing the distance of the transla-
tion vector t to the point q − p. By introducing the
sets Si(p) := {q − p|q ∈ Qi} we can formulate f(t) as

f(t) = max
1≤i≤k

wi max
p∈Pi

min
c∈Si(p)

‖c− t‖.

To compute the minima of f , we compute the de-
composition of the translation space into (potentially
empty) cells C(p, q) ⊆ R2 with p ∈ Pi and q ∈ Qi,
such that C(p, q) := {t | f(t) = wi ‖(p+ t)− q‖}.

Theorem 4 The decomposition of the translation
space into cells C(p, q) and with it the trans-
formations minimizing f(t) can be computed in
O
(
m2n2 α(m2n2) logmn

)
time, where α(·) is the in-

verse Ackermann function.

Proof. To characterize C(p, q) we fist observe, that
f(t) = wi ‖(p + t) − q‖ implies t ∈ Vor (q − p, Si(p)),
where Vor (a,A) is the Voronoi cell of the side a ∈ A
of the set A. Otherwise, another point q′ of color i
would be closer to p than q, implying that f(t) would
not by realized by p and q. There are two possible
reasons why for a translation t ∈ Vor (q − p, Si(p)) the
value of f(t) might not be realized by p and q. This
is either because another point p′ ∈ Pi of the same
color has a larger distance to its nearest neighbor for
this translation, or because the weighted distance of
a closest point pair of another color j 6= i exceeds
wi‖(p+ t)− q‖, that is, f(t) = wi‖(p+ t)− q‖ implies

∀1≤j≤k∀p′∈Pj
min
q′∈Qj

wj‖(p′+ t)− q′‖ ≤ wi‖(p+ t)− q‖.

We define B(p, q) as the blocked area for the pair p
and q, i.e., all translations t ∈ Vor (q − p, Si(p)) for
which the value of f(t) is not realized by p and q due
to either of the just mentioned reasons.
The characterization of the shape ofB(p, q) for a point

3

Minimizing the weighted directed Hausdorff distance between colored point sets under rigid motions

47

pair of the ith color follows directly from the previous
observation and is given as

B(p, q) :=
⋃

p̃∈Pi\{p}
Vor (q − p, Si(p̃) ∪ Si(p)) ∪

⋃
1≤j≤k
i 6=j

⋃
p̂∈Pj

MWVor (q − p, Si(p), Sj(p̂), wi, wj) ,

where MWVor (a,A,B,w,w′) is the Voronoi cell of a
point a ∈ A in the multiplicatively weighted Voronoi
diagram of the set A ∪ B where all points in A have
weight w and all points in B have weight w′. Note,
that the Voronoi cells that are united in the charac-
terization of B(p, q) correspond to the portions of the
translation space for which wi‖(p+ t)− q‖ is not the
maximal distance shortest pair. A cell C(p, q) of a
point pair of the ith color is then fully characterized
by

C(p, q) = Vor (q − p, Si(p)) \B(p, q).

For a non empty cell that has an empty blocking area
the value of f(t) is minimal at the site that defined
the cell and increases linear to the distance to this
site. Therefore, the minimal value of f(t) is either
realized at a site or at the boundary of a blocking
area. This means that the minima of f(t) can be
computed while computing the decomposition of the
translation space into cells.

Let bp,q denote the number of Voronoi edges that
contribute to B(p, q).

Lemma 5 The combinatorial complexity of B(p, q)
is O

(
bp,q 2α(bp,q)

)
.

Proof. By introducing polar coordinates (r, θ) with
q−p as the origin, the boundary of B(p, q) can be seen
as the upper envelope of the partially-defined, contin-
uous, univariate functions given as the edges of the
Voronoi diagrams parametrized by θ. Two Voronoi
edges can intersect in at most two points. Applying
the theory of Davenport-Schinzel sequences [4], this
results in a complexity of O

(
bp,q 2α(bp,q)

)
. �

Let b =
∑

1≤i≤k
∑
p∈Pi

∑
q∈Qi

bp,q be the total num-
ber of edges that contribute to the boundary of any
blocking region.

Lemma 6 b = O
(
m2n2

)
Proof. First fix a color i and a point p ∈ Pi. The
edges e that contribute to the boundaries of any block-
ing area of a facet of Vor (Si(p)) result from the edges
of the Voronoi diagrams

e ∈
⋃

p̃∈Pi\p
Vor (Si(p) ∪ Si(p̃)) ∪

⋃
1≤j≤k
i6=j

⋃
p̂∈Pj

MWVor (Si(p), Sj(p̂), wi, wj) .

Let bi,p be the number of edges contributing to the
blocking areas for the facets of Vor (Si(p)). The com-
binatorial complexity of a standard Voronoi diagram
of n sites is O (n) due to Euler’s formula, the com-
plexity of an multiplicatively weighted Voronoi dia-
gram for the same number of sites however is Θ(n2)
as shown by Aurenhammer et al. [1], even if just
two different weights are involved. This is the main
reason, why the runtime for colored points increases
compared to the monochromatic variant discussed by
Huttenlocher et al. [3].
This leads to a combinatorial complexity for bi,p of

bi,p = O
(∑

1≤j≤k nj(mi +mj)2
)

. Summing over all

colors i and all points p ∈ Pi gives b = O
(
m2n2

)
. �

Lemma 5 and Lemma 6 together imply that the
combinatorial complexity of the whole decomposition
is O

(
m2n2 2α(m2n2)

)
.

The algorithm to compute the translations that
minimize the directed Hausdorff distance involves two
steps: First, all (multiplicatively weighted) Voronoi
Diagrams have to be computed. Aurenhammer et
al. [1] presented an algorithm to compute weighted
Voronoi diagrams of n sites in O

(
n2
)
. It takes

O
(
m2n2

)
time to compute all diagrams, as argued

for Lemma 6.
In the second step, the blocking areas of all facets of
all Voronoi diagrams have to be computed. As shown
by Hershberger [2] the upper envelope of n partially
defined functions that mutually intersect in at most
s points can be computed in O (λs+1(n) log n) time,
which leads to runtime of O

(
m2n2 α(m2n2) logmn

)
,

as stated in the theorem. �

References

[1] F. Aurenhammer and H. Edelsbrunner. An optimal
algorithm for constructing the weighted voronoi dia-
gram in the plane. Pattern Recognition, 17(2):251 –
257, 1984.

[2] J. Hershberger. Finding the upper envelope of n
line segments in o(n log n) time. Inf. Process. Lett.,
33(4):169–174, 1989.

[3] D. P. Huttenlocher, K. Kedem, and M. Sharir. The
upper envelope of voronoi surfaces and its applica-
tions. In SCG ’91: Proceedings of the seventh annual
symposium on Computational geometry, pages 194–
203, New York, NY, USA, 1991. ACM.

[4] M. Sharir and P. K. Agarwal. Davenport-Schinzel se-
quences and their geometric applications. Cambridge
University Press, New York, NY, USA, 1996.

[5] H. Tan and Y.-J. Zhang. A novel weighted haus-
dorff distance for face localization. Image and Vision
Computing, 24(7):656 – 662, 2006.

4

EuroCG’09 - Brussels, Belgium

48

Computing Push Plans for Disk-Shaped Robots

Mark de Berg∗ Dirk H.P. Gerrits∗

Abstract

Suppose we want to move a passive object along a
given path, among obstacles in the plane, by pushing
it with an active robot. We present two algorithms to
compute a push plan for the case that the obstacles
are non-intersecting line segments, and the object and
robot are disks. The first algorithm assumes that the
robot must maintain contact with the object at all
times, and produces a shortest path. There are also
situations, however, where the robot has no choice but
to let go of the object occasionally. Our second algo-
rithm handles such cases, but no longer guarantees
that the produced path is the shortest possible.

1 Introduction

A fundamental problem in robotics is path plan-
ning [9], in which a robot has to find ways to navigate
through its environment from its initial configuration
to a certain destination configuration, without bump-
ing into obstacles. Many variants of this problem have
been studied, involving widely differing models for the
environment, and for the robot and its movement. In
manipulation path planning [7] the robot’s goal is to
make a passive object, rather than the robot itself,
reach a certain destination. Several different kinds
of manipulation have been studied, including grasp-
ing [7], squeezing [5], rolling [2], and even throwing [8].

The manipulation path planning problem studied
here involves pushing [7]. In particular, we want a
disk-shaped robot to push a disk-shaped object to a
given destination in the plane among polygonal ob-
stacles. Nieuwenhuisen et al. [9, 11, 12] developed a
probabilistically complete algorithm for this based on
the Rapidly-exploring Random Trees path-planning
algorithm [6]. This builds a tree of reachable posi-
tions by repeatedly generating object paths and try-
ing whether the pusher can make the object follow
such a path. Thus a subroutine is needed to push the
object along a given path.

Problem statement. In the plane, let P be a disk-
shaped robot (of radius rp) called the pusher, let O
be a disk-shaped object (of radius ro > rp), and let
Γ = {γ1, . . . , γn} be a set of non-intersecting line seg-
ments called the obstacles. We’re given a collision-

∗Dept. of Computer Science, TU Eindhoven, the Nether-
lands, mdberg@win.tue.nl, dirk@dirkgerrits.com

free path τ for O consisting of k constant-complexity
curves τ1, . . . , τk called the path sections. We then
want to compute a collision-free path σ for P such
that P pushes O along τ when P moves along σ.
We allow P and O to slide along obstacles, which
is called a compliant motion. The computed path σ
will be called a push plan. We distinguish two kinds
of push plans: contact-preserving push plans in which
the pusher maintains contact with the object at all
times, and unrestricted push plans in which the pusher
can occasionally let go of the object.

Related work. Along with the algorithm described
above, Nieuwenhuisen et al. [9, 10] also developed a
subroutine needed by the algorithm that solves the
problem just described. They assume the object path
consists of line segments and circular arcs only, and
after preprocessing the n obstacles in O(n2 log n) time
into an O(n2)-space data structure, they can compute
a contact-preserving push plan in O(kn log n) time. It
is not guaranteed that the constructed push plan is
optimal in any way.

Agarwal et al. [1] considered the problem where
only the final destination of the object is given, and
not its path τ . For this they give an algorithm for
finding a contact-preserving push plan for a point-size
pusher and a unit-disk object. The algorithm dis-
cretizes the problem in two ways: the angle at which
the pusher can push is constrained to 1/ε different
values, and the combined boundary of the obstacles
is sampled at m locations to give potential intermedi-
ate positions for the object. The algorithm then runs
in O((1/ε)m(m + n) log n) time, but is only guaran-
teed to find a solution if 1/ε and m are large enough.
The algorithm assumes the pusher can get to any po-
sition around the object at all times, which is true for
their point-sized pusher but not for our disk-shaped
pusher: there may be obstacles in the way.

Our results. We present a new algorithm for com-
puting contact-preserving push plans for a given ob-
ject path. It matches the O(kn log n) time needed
by Nieuwenhuisen’s approach, while handling path
sections other than line segments and circular arcs,
and without needing a O(n2 log n)-time and O(n2)-
space preprocessing step. We also present the first
algorithms to compute shortest contact-preserving
push plans, in O(k2n2 log(kn)) time and O(k2n2)
space, and to to compute unrestricted push plans, in
O(kn log(kn) + kn2 log n) time and O(kn2) space.

1

Computing Push Plans for Disk-Shaped Robots

49

If we assume the obstacles aren’t too densely
packed, these time and space bounds can be greatly
improved. Both Nieuwenhuisen’s and our approach
for computing contact-preserving push plans then
take O((k + n) log(k + n)) time and O(k + n) space,
but the former still needs its expensive preprocessing
step. For shortest contact-preserving push plans our
approach takes O((k + n) log(k + n) + k2 log k) time
and O(k+n) space, and for unrestricted push plans it
takes O((k+n) log(k+n)+kn) time and O(kn) space.
For lack of space we only present the high-obstacle-
density results here, and omit some proofs. Details
can be found in Gerrits’s MSc thesis [4].

2 Preliminaries

In the problem statement we’ve been deliberately
vague about what pushing the object along a path
entails. Before discussing our algorithms we fill in
some of the details.

The push range. As mentioned before, compliant
motions are motions where the object slides along an
obstacle. Such motions are more robust in the pres-
ence of sensor inaccuracies, because the obstacle will
act as a guide for the object. More importantly, this
allows the pusher to achieve the same motion for the
object from a continuous range of different pushing
positions, called the push range. The pusher can then
swerve around the object to avoid obstacles while still
pushing the object in the desired direction. (See Fig-
ure 1(a).) With a non-compliant motion, the push
range is a single pushing position depending only on
the desired direction of motion for the object. If any
obstacles are in the way, there simply exists no push
plan for that object motion. (See Figure 1(b).)

P
O P O

(a) (b)

Figure 1: The push range for (a) a compliant motion,
and (b) a non-compliant motion.

Friction. The exact size of the push range for com-
pliant motions depends on the friction characteristics
of the two disks and the obstacles. Nieuwenhuisen [9]
describes how to compute the push range, given the
friction coefficients between the disks and between
the object and obstacles. Friction also affects how
pushing works for non-compliant motions. Agarwal
et al. [1] studied the motion of the object resulting
from pushing in a straight line under simple friction
assumptions.

We abstract away from compliance and friction by
assuming that we can compute the push range for any
position of the object along its path. We assume (as
do Nieuwenhuisen and Agarwal et al.) that pushing
is quasi-static [13], i.e. when pushing stops, the object
also stops instantly. (This will never be the case in
reality, but it can be closely approximated by pushing
slowly, or having very high friction between the disks
and the floor.)

Assumptions about the input path. We assume the
given path τ : [0, 1] → R2 for the object does not
take it through any of the obstacles. Furthermore, we
assume that τ is made up of k constant-complexity
curves τ1, . . . , τk. We further assume that the path
sections are “well-behaved” (in a technical sense ex-
plained in Gerrits’s MSc thesis [4]). The line segments
and circular arcs used as path sections by Nieuwen-
huisen are all well-behaved.

3 Pushing while maintaining contact

A general-purpose technique for path-planning is to
translate the problem from the work space into the
configuration space. The work space is the environ-
ment in which the robot has to find a path, and a
configuration is one specific placement of the robot in
this space. Each point in the configuration space cor-
responds to a configuration in the work space. Some
configurations are invalid because the robot would in-
tersect an obstacle and these form the forbidden (con-
figuration) space. The remainder is the free (configu-
ration) space, and a path through it translates back
to a solution to the original path-planning problem in
the work space.

To apply this technique to our problem, we first
discuss what our configuration space looks like, then
how to compute it and how to find a path through it.

Shape of the configuration space. In our case, a
configuration is a placement of both the pusher and
the object in the work space. Since the object is
restricted to the path τ , and we assume that the
pusher and object can maintain contact at all times
(for now; we will lift this restriction in Section 4),
the configuration space is two-dimensional. The point
(s, θ) ∈ [0, 1]×S1 in the configuration space will rep-
resent the configuration with the object’s center at
τ(s) and with θ being the pushing angle: the angle
that the line from the pusher’s center to the object’s
center makes with the positive x-axis. (Note that the
configuration space is cylindrical, but for clarity we
will depict it “flattened” as a rectangle.)

We assume that path τ does not take the object
through any obstacles, so a configuration can be in-
valid for only two reasons: either the pusher intersects
an obstacle, or the pusher is outside of the push range.

2

EuroCG’09 - Brussels, Belgium

50

We therefore consider the forbidden space to be the
union of two kinds of shapes. A configuration-space
obstacle Cγ consists of the configurations where the
pusher intersects obstacle γ. A forbidden push range
FPRi consists of the configurations where the object
is on the interior of path section τi and the pusher is
outside the push range. By Cγ,i we’ll mean the restric-
tion of Cγ to configurations with the object on path
section τi. The forbidden space is then the union of
these k(n + 1) shapes (n obstacles and 1 forbidden
push range per path section). An example is shown
in Figure 2.

P O

0

0 1

+π

−π

Figure 2: An example work space and its configura-
tion space. The s-axis is horizontal, the θ-axis is verti-
cal. Configuration-space obstacles are drawn dashed
in light gray, the forbidden push range is drawn in
dark gray.

Theorem 1 The configuration space has complexity
O(kn), i.e. the boundary of the forbidden space con-
sists of O(kn) vertices and constant-complexity curves
between them.

Proof. Since a path section τi has constant complex-
ity, so do FPRi and Cγ,i for all γ ∈ Γ. We will
prove that

⋃
γ∈Γ Cγ,i has complexity O(n). It then

follows that FPRi ∪
⋃
γ∈Γ Cγ,i, the forbidden space

for one path section, also has complexity O(n), yield-
ing O(kn) in total.

The boundary of Cγ corresponds to configurations
where the pusher is compliant with γ. Such pusher
positions all lie at distance rp from γ and thus form
a “capsule.” A point of intersection of Cγ1,i and Cγ2,i
corresponds to a configuration where the pusher is
compliant with both γ1 and γ2, and that pusher posi-
tion must thus be the intersection of the correspond-
ing capsules. These capsules form a collection of pseu-
dodisks [3, Chapter 13], and therefore have a union
complexity of O(n). Thus there can only be O(n)
positions where the pusher would be compliant with
more than one obstacle. Each of these pusher posi-
tions could show up in the configuration space more
than once, since path τi could take the object past
this point multiple times. However, this cannot hap-
pen more than O(1) times, since τi is well-behaved.
Thus

⋃
γ∈Γ Cγ,i has complexity O(n). �

Computing the configuration space. To compute
the configuration space in a form that allows us to
easily compute a push plan we perform the following
steps:

1. Compute Cγ,i for all γ ∈ Γ, and all τi ∈ τ .
2. Compute FPRi for all τi ∈ τ .
3. Take the union of these shapes to get the forbid-

den space.
4. Divide the free space into cells by a vertical de-

composition.
5. Create the cell graph by directing an edge from

cell c1 to c2 iff c1’s right boundary touches c2’s
left boundary.

The running time of this approach is expressed by the
following theorem:

Theorem 2 The configuration space can be com-
puted in O(kn log2 n) time worst-case, or O(kn log n)
expected time, both using O(kn) space.

Computing a shortest contact-preserving push plan.
Not every path through the free space actually yields
a push plan. If a path through the configuration space
is not s-monotone then the pusher would have to pull
the object on occasion. To prevent this we remove
from the cell graph all cells that are not reachable
from the starting configuration by a valid contact-
preserving push plan. It’s then fairly simple to find an
arbitrary s-monotone path in linear time, resulting in
a contact-preserving push plan in the time and space
bounds of Theorem 2.

It is tempting to instead compute a Euclidean
shortest path through the reachable cells. The
cells themselves are s-monotone, so a shortest path
through the remaining cells must yield a push plan.
Unfortunately, a shortest path in configuration space
does not necessarily minimize the pusher’s movement
in the work space. We can circumvent this problem by
performing our computations in the work space. Each
cell of the free space decomposition corresponds to a
contiguous subset of the valid configurations. The
pusher positions of these configurations also form a
contiguous region in the work space. We could call
this region the corresponding work-space cell. All
work-space cells together form the region that P may
move in to accomplish O’s desired motion. Comput-
ing a shortest path [14] through this region then yields
a shortest contact-preserving push plan.

Theorem 3 Given the configuration space a short-
est contact-preserving push plan can be computed in
O(k2n2 log(kn)) time and O(k2n2) space.

3

Computing Push Plans for Disk-Shaped Robots

51

4 Pushing and releasing

Until now we’ve assumed the pusher can maintain
contact with the object at all times. However, the sit-
uation that was depicted in Figure 2 does not admit
such contact-preserving push plans. (In fact, we’ve
proven [4] that this is the case for any object path
with the same start and end point.) It does admit an
unrestricted push plan, as can be seen in Figure 3.

r

0

0 1

+π

−π
r

Figure 3: An unrestricted push plan for the example
of Figure 2, doing one release at position r.

Canonical releasing positions. Whenever the push
range is split into multiple contiguous ranges by ob-
stacles, it may make sense for P to let go of O and
try to reach one of these other positions. In the con-
figuration space this situation corresponds to a ver-
tical line intersecting multiple cells. In general there
are infinitely many such potential releasing positions,
thus it’s infeasible to try them all. Instead we consider
only vertical lines that go through a vertex of a cell or
configuration-space obstacle. We call the resulting set
of O(kn) positions the canonical releasing positions.
We’ve proved that if an unrestricted push plan exists,
then there is also an unrestricted push plan where P
only releases O at canonical releasing positions [4].

Computing an unrestricted push plan. Restricting
ourselves to canonical releasing positions, we cannot
guarantee a shortest push plan anymore. Thus we
can abandon the work-space-cell approach and in-
stead proceed as follows:

1. Compute a road map [3, Chapter 13] S for P
among the obstacles.

2. At each canonical releasing point r, determine
the set of cells intersected by the vertical line
through r. Add O as an extra obstacle in S to
get S ′, and determine for each intersected cell in
which component of S ′ its pusher positions lie.
Add edges in the cell graph between cells sharing
a component of S ′.

3. Compute a path through this extended cell
graph.

4. Convert the path into a push plan. For edges of
the original cell graph this is straightforward, for
the extra edges use S ′ to find a path for P .

The running time of this approach is expressed by the
following theorem:

Theorem 4 Given the configuration space an unre-
stricted push plan can be computed in O(kn log(kn)+
kn2 log n) time and O(kn2) space.

References

[1] P. Agarwal, J. Latombe, R. Motwani, and P. Ragha-
van. Nonholonomic path planning for pushing a disk
among obstacles. In Proc. IEEE Int. Conf. Robotics
& Automation, volume 4, pages 3124–3129, 1997.

[2] H. Arai and O. Khatib. Experiments with dynamic
skills. In Proc. Japan-USA Symp. Flexible Automa-
tion, pages 81–84, 1994.

[3] M. de Berg, M. van Kreveld, M. Overmars, and
O. Cheong. Computational Geometry: Algorithms
and Applications. Springer-Verlag, 3rd edition, 2008.

[4] D. Gerrits. Designing push plans for disk-shaped
robots. Master’s thesis, Technische Universiteit Eind-
hoven, The Netherlands, 2008.

[5] K. Goldberg. Orienting polygonal parts without sen-
sors. Algorithmica, 10(2–4):210–225, 1993.

[6] S. LaValle and J. Kuffner. Rapidly-exploring random
trees. In B. Donald, K. Lynch, and D. Rus, editors,
Algorithmic and Computational Robotics: New Di-
rections, pages 293–308, 2001.

[7] M. Mason. Mechanics of Robotic Manipulation. In-
telligent Robots & Autonomous Agents. MIT Press,
2001.

[8] M. Mason and K. Lynch. Dynamic manipulation.
In Proc. IEEE/RSJ Int. Conf. Intelligent Robots &
Systems, pages 152–159, 1993.

[9] D. Nieuwenhuisen. Path Planning in Changeable En-
vironments. PhD thesis, Universiteit Utrecht, The
Netherlands, 2007.

[10] D. Nieuwenhuisen, A. van der Stappen, and M. Over-
mars. Path planning for pushing a disk using com-
pliance. In Proc. IEEE/RSJ Int. Conf. Intelligent
Robots & Systems, pages 4061–4067, 2005.

[11] D. Nieuwenhuisen, A. van der Stappen, and M. Over-
mars. Pushing using compliance. In Proc. IEEE
Int. Conf. Robotics & Automation, pages 2010–2016,
2006.

[12] D. Nieuwenhuisen, A. van der Stappen, and M. Over-
mars. Pushing a disk using compliance. IEEE Trans-
actions on Robotics, 23(3):431–442, 2007.

[13] M. Peshkin and A. Sanderson. Minimization of en-
ergy in quasi-static manipulation. IEEE Transactions
on Robotics & Automation, 5(1):53–60, 1989.

[14] M. Pocchiola and G. Vegter. Computing the visibility
graph via pseudo-triangulations. In Proc. 12th ACM
Symp. Comput. Geom., pages 248–257, 1995.

4

EuroCG’09 - Brussels, Belgium

52

Complexity of pleat folding

Tsuyoshi Ito∗ Masashi Kiyomi† Shinji Imahori‡ Ryuhei Uehara†

Abstract

We introduce a new origami problem about pleat fold-
ings. For a given assignment of n creases of mountains
and valleys, we make a strip of paper well-creased ac-
cording to the assignment at regular intervals. We use
simple folding as a basic operation. More precisely,
we assume that (1) paper has 0 thickness and some
layers beneath a crease can be folded simultaneously,
(2) each folded state is flat, and (3) the paper is rigid
except at the n given creases. We also assume that
each crease remembers its last folded state made at
the crease. We aim to find efficient ways of folding a
given mountain-valley assignment in this model. We
call this problem unit folding problem for general pat-
terns, and pleat folding problem when the mountain-
valley assignment is “MV MV · · · .” The complexity
is measured by the number of foldings and the cost
of unfoldings is ignored. Trivially, we have an upper
bound n and a lower bound log(n + 1). We give some
nontrivial upper bounds: (a) any mountain-valley as-
signment can be made by

⌊
n
2

⌋
+ �log(n + 1)� foldings,

and (b) a pleat folding can be made by O(nε) fold-
ings for any ε > 0. We also give a nontrivial lower
bound: (c) almost all mountain-valley assignments
require Ω

(
n

log n

)
foldings. The results (b) and (c)

imply that a pleat folding is easy in the unit folding
problem.

1 Introduction

Origami has recently attracted much attention as
mathematics and as theoretical computer science [3].
In the computational origami, the best studied prob-
lem is the characterization of flat foldable crease pat-
terns. When the paper and crease pattern are or-
thogonal, the problem is called the map folding prob-
lem, which has been well studied by Arkin et al. [2].
Roughly speaking, (1) the problem in 1D can be
solved in linear time; it can be determined in O(n)
time whether or not a given strip of paper with n
creases is flat foldable, and (2) the problem in 2D is
NP -complete; to determine whether or not a given

∗School of Computer Science, McGill University,
tsuyoshi@cs.mcgill.ca

†School of Information Science, JAIST,
{mkiyomi,uehara}@jaist.ac.jp

‡Graduate School of Information Science and Technology,
The University of Tokyo, imahori@mist.i.u-tokyo.ac.jp

zig-zag form paper with n creases is flat foldable is
NP -complete (see [2] for the details).

We deal with a simpler problem. The input of our
problem is a strip of paper of length n + 1 with n
creases placed at regular intervals on the paper. That
is, we assume that the paper corresponds to an inter-
val [0..n+1], n creases are placed at each integer point
i with 1 ≤ i ≤ n, and each integer point is assigned to
M (mountain) or V (valley) which is the target folded
state. We call it MV assignment for short. We aim
to fold the paper and make it “well-creased” accord-
ing to the assignment. Precisely, each integer point
memorizes its last folded state (M or V) made at the
point, and we have to make the creases’ folded states
fit the given assignment.

A typical example is pleat folding that is one of ba-
sic tools for origami design (Figure 1; the angel is
made from just one square paper without any cut-
ting). The MV assignment for the pleat folding is in
the form “MV MV · · · .” From the industrial point of
view, pleat folding has many applications including
clothes, curtains, etc.

We employ simple folding defined in [2] (see also [3,
Section 14.1]). More precisely, our origami is as fol-
lows; the paper has 0 thickness, some layers beneath a
crease can be folded simultaneously, each folded state
is flat, and the paper is rigid except at given n creases.
Clearly, this folding problem has a trivial solution (or
upper bound of the number of foldings); we can fold
any MV assignment by just folding n creases inde-
pendently. On the other hand, we have a trivial lower
bound of the number of foldings; we have to fold at
least �log2(n + 1)� times to make n creases (by folding
repeatedly at the center).

For a given string s of length n in {M, V }n, the unit
folding problem is to obtain the well-creased paper
following s. We call it pleat folding problem if the
MV assignment is “MV MV · · · .” The complexity is
measured by the number of foldings, and the number
of unfoldings is ignored. We first show the following
nontrivial upper bound of the number of foldings to
solve any unit folding problem:

Theorem 1 The unit folding problem of n creases
can be solved by

⌊
1
2n

⌋
+ �log(n + 1)� foldings for any

MV assignment1.

1In this paper, we assume the base of logarithm is two unless
specified otherwise.

1

Complexity of pleats folding

53

Figure 1: An “angel” designed and folded by Takashi
Hojyo on the cover of [1]. (http://www.origami.gr.
jp/Magazine/Index/103-108.html)

One may think that the pleat folding problem is the
most difficult in the unit folding problems. However,
this is not the case. We show an efficient way to obtain
the pleat foldings.

Theorem 2 For any positive real number ε > 0, the
pleat folding problem of n creases can be solved by
O(nε) foldings for sufficiently large n.

On the other hand, we can show a lower bound of the
general unit folding problem.

Theorem 3 For the unit folding problem, almost

all MV assignments with n creases require Ω
(

n
log n

)
foldings.

Theorems 2 and 3 imply that the pleat folding prob-
lem is not the most difficult unit folding problem.

In origami, “unfolding” is much easier than “fold-
ing.” Hence we ignore the cost of unfoldings. How-
ever, even if we count the number of unfoldings in
addition to foldings, all the results hold with small
changes within constant factors.

2 Models of foldings and unfoldings

The input to a unit folding problem consists of a string
of length n over an alphabet {M, V }. The ith letter
(M or V) corresponds to the ith assignment at the

ith crease which is placed at the integer point i in the
interval [0..n + 1]. In general, we have several ways
when we fold the paper at the point i. The following
simple fold models are proposed by Arkin et al. [2]
(see also [3, p. 225]):

One-layer simple fold model: We always fold the
top layer of paper.

All-layers simple fold model: We simultaneously
fold all layers of paper under the crease point.

Some-layers simple fold model: We fold some
layers beneath the crease point.

We measure the complexity of a folding algorithm by
the number of simple foldings made by it, and ig-
nore the cost of unfoldings. In the one-layer simple
fold model, we always fold exactly one crease. Thus,
we cannot improve the trivial upper bound n for the
unit folding problem. Therefore, hereafter, we only
consider the all-layers simple folding and some-layers
simple folding. We additionally introduce the follow-
ing three unfolding models, which define the allowable
unfolding operations.

All-unfold model: Once we decide to unfold, the
paper is unfolded completely.

Reverse-unfold model: We can rewind any num-
ber of the last foldings as far as we can. This is
useful to consider some upper and lower bounds.

General-unfold model: For a folded state s, we
can obtain another folded state t by the one gen-
eral unfolding operation if s can be obtained from
t by consecutive some-layers simple foldings.

Of course, the general-unfold model is the most natu-
ral and the strongest model. This paper mainly stud-
ies the first two unfold models, which are natural re-
strictions of the general-unfold model.

A folding algorithm will be called end-free if it can
be applied on the paper with n creases even if we
extend both endpoints of the paper to infinity.

3 Upper bounds

We first prove Theorem 1, which is the basic tool of
this paper.

Proof. (of Theorem 1) To simplify the proof, we first
suppose that n = 2k − 1. The strategy is simple; (1)
fold the paper in half k times, (2) unfold all, and (3)
fix each crease if it is not folded correctly.

On step (1), the folding direction is determined by
the majority at the point. That is, we see the point i,
which is the center of the current paper, check the all
directions of the desired creases on the point i, and
take majority. (We note that half creases are turned

2

EuroCG’09 - Brussels, Belgium

54

over from the original direction, but fixing this is easy;
the creases are alternately turned over and that can
be checked from 1 to n.) Hence step (1) makes at
least half of creases to be folded correctly. Thus in
step (3), the number of foldings is bounded above by⌊

n
2

⌋
(the rounding comes from the first folding that

always succeeds). Therefore we have the theorem.
When n �= 2k − 1, we just add an imaginary paper

to make the length of the paper n′ = 2k − 1 with
mink n < 2k − 1, and apply the algorithm on this
paper of length n′. �

We note that (a) the algorithm in the proof is end-
free, (b) it works in the all-layers simple fold model
and hence some-layers simple fold model, and (c) it
works in all the unfold models since all unfoldings in
steps (2) and (3) can be done by all-unfoldings.

We call a unit folding problem mountain folding
problem if the MV assignment is “MMM · · · .” We
next show a simple proposition which gives us a strong
intuition to consider the pleat folding.

Proposition 4 Let A′ be any algorithm for the
mountain folding problem in any model, and f0(n)
be the number of foldings by A′ to make n mountain
foldings. Then we can solve the pleat folding problem
in the model with f0(�n/2�) + f0(�n/2�) foldings.

Proof. For the MV assignment “MV MV · · · ,” we
first fold all f0(�n/2�) mountains by A′. Next we
reverse the paper and fold all f0(�n/2�) valleys by A′

again. �

Now we turn to the upper bounds of the number of
foldings for solving the pleat folding problem. First,
we focus on the all-layers simple fold and reverse-
unfold (or all-unfold) model. In this weak model, we
show a weaker upper bound. By Proposition 4, we
can focus on the mountain folding problem instead of
the pleat folding problem. This will help us to have
an intuition.

Lemma 5 The mountain folding problem of n
creases can be solved by O(nlog φ) ∼ O(n0.69) fold-
ings in the all-layers simple fold and all-unfold model,

where φ = 1+
√

5
2 .

Proof. To simplify the proof, we suppose that n =
2k. The basic strategy is similar to the algorithm in
the proof of Theorem 1. In step (0), we fold the paper
at point 1 and make the length of the paper 2k. The
next two steps (1) and (2) are the same; we fold the
paper in half k times and unfold completely. Now we
focus on the MV pattern made by the two steps (1)
and (2). First, we fold the paper in half, and obtain
the correct crease at the center point. Second, we
fold the paper in half, and obtain one correct crease,
and one incorrect crease. Third, we fold the paper in

M M M VVV

M M M MVVV

(1) (2)

(3) (4)

Figure 2: Mountain folding by zig-zag method

half, and obtain two correct creases, and two incorrect
creases. In ith folding with i > 1, we obtain 2i−2

correct creases and 2i−2 incorrect creases that appear
on the paper alternately. The 2i−2 incorrect creases
are placed at regular intervals. Thus, we can use our
end-free algorithm recursively on these 2i−2 creases in
step (3). Let f1(n) be the number of the foldings of
this recursive algorithm. It is easy to see that f1(1) =
1, f1(2) = 2, f1(3) = 3, and f1(4) = 4. By the above
observation, we have

f1(2k) = 1+k+f1(2k−2)+f1(2k−3)+· · ·+f1(2)+f1(1).

By the fact that f1(2k)−f1(2k−1) equals f1(2k−2)+1,
we have the following relationship.

(f1(2k) + 1) = (f1(2k−1) + 1) + (f1(2k−2) + 1).

Thus (f1(2k) + 1) gives the Fibonacci numbers for
k. (We define the Fibonacci numbers Fi by F0 = 0,
F1 = 1 and Fi = Fi−1+Fi−2 for i > 1. It is well known
that Fi = φn−(−φ)−n

√
5

= O(φn), where φ = 1+
√

5
2 .)

Using initial conditions f1(20) = 1, f1(21) = 2, and
f1(22) = 4, we have f1(2k)+1 = Fk+3. Hence we have
f1(n) = f1(2k) = O(φk) = O

(
φlog n

)
= O

(
nlog φ

)
,

which completes the proof. �

Next, we show that the number of foldings can be
reduced by using the stronger model.

Lemma 6 For any fixed ε > 0, the mountain folding
problem of n creases can be solved by O(nε) foldings
for sufficiently large n in the some-layers simple fold
and reverse-unfold models.

Proof. In the algorithm of the proof of Lemma 5,
“folding in half” is the basic operation. We change
this to “folding in zig-zag form of p segments” (Fig-
ure 2). Roughly speaking, the algorithm first folds
the paper into zig-zag form of p segments of the same
length by making p − 1 alternating foldings at regu-
lar intervals (in Figure 2(1) and (2) for p = 7). It
recursively calls itself with the folded paper of length
n/p. After the recursive call, it unfolds at the folded
p − 1 crease points. Then around p/2 segments have
been mountain folded, and p/2 segments have been
valley folded (in Figure 2(3), thick lines and dashed
lines indicate the segments of the mountain and val-
ley foldings, respectively). The algorithm then piles
up the valley segments exactly by folding at the cen-
ter points of the mountain segments (see Figure 2(4)).

3

Complexity of pleats folding

55

The algorithm again calls itself recursively with the
local area of length n/p that consists of all and only
the valley segments. By the recursive call, half of the
valley segments are corrected, and still half of them
are not corrected. (The creases of the center points
of the mountain segments are fixed here.) Hence the
algorithm again piles up the valley segments and re-
cursively calls itself again. The algorithm repeats this
process and finally obtain the desired mountain folded
state.

The algorithm runs in the some-layers simple fold
and reverse-unfold model, and the correctness of the
algorithm is easy. Hence we analyze its complexity.
To simplify the proof, we suppose that n = pk − 1
and p = 2q − 1. (We let q be an arbitrary positive
integer, and hence p is odd and n is even.) Let f2(n)
be the number of foldings made by the algorithm. By
a careful analysis, we have f2(0) = 0, f2(x) ≤ x and

f2(n) = q·f
(

n + 1
p

− 1
)

+p−2(q−2)+
3(p + 1)

2

q−1∑
�=2

1
2�−1

.

By a simple calculation, we obtain

f2(n) < q · f
(

n + 1
p

− 1
)

+
5p + 11

2

< (5p + 11)qk−2 + p − 1 = O(p · qk−2).

Since q = log2(p + 1) and k = logp(n + 1), we have

p ·qk−2 ∼ p ·n log log p
log p . Hence, letting p be a sufficiently

large constant, we have log log p
log p < ε and p · qk−2 =

O(nε), which completes the proof. �

By Proposition 4 and Lemma 6, we have Theorem
2.

4 Lower bounds

We have to clarify the unfold model to state a lower
bound. In fact, Theorem 3 holds for both of the all-
unfold model and the reverse-unfold model, but we
have no results about general-unfold model.

Lemma 7 All but o(2n) MV assignments of n

creases require Ω
(

n
log n

)
foldings in all of the three

folding models and both of the all-unfold model and
the reverse-unfold model.

Proof. The lemma is obtained by a simple counting
argument. Since the some-layers simple fold model
is at least as powerful as the one-layer and the all-
layers simple fold models, we only consider the some-
layers simple fold model. Similarly, we only discuss
the reverse-unfold model. Suppose that we make
at most k foldings. At each folding, there are two
choices for the direction of folding (mountain or val-
ley). There are at most n choices for the set of po-
sitions of the folding by considering the bottom-most

layer of a valley folding or the top-most layer of a
mountain folding. There are at most n+1 choices for
how many unfolding steps we rewind just after the
last folding. In total, the number of the possible MV
assignments made by at most k foldings is bounded by∑k

i=0(2n(n+1))i ≤ (2n(n+1)+1)k < (2(n+1)2)k. If
we let k = � n

4(1+log2(n+1))�, then (2(n+1)2)k < 2n/2 =
o(2n). Therefore all but o(2n) MV assignments re-
quire at least � n

4(1+log2(n+1))� = Ω
(

n
log n

)
foldings in

the reverse-unfold model (hence also in the all-unfold
model). �

Lemma 7 implies Theorem 3. Lemma 7 also implies
that if we choose an MV assignment of n creases uni-
formly at random, the expected number of foldings re-
quired to make it is Ω

(
n

log n

)
in the all-unfold model

and the reverse-unfold model.

5 Conclusion

There are several open problems.
By Theorem 3, a random MV assignment requires

Ω
(

n
log n

)
foldings with high probability. Finding a

specific assignment which requires Ω
(

n
log n

)
foldings

will give some new insight on which assignments are
easy to fold and which are not. Is there any MV
assignment that requires Ω(n) foldings?

Lemma 7 deals with general MV assignments.
When we focus on the pleat folding problem, is there a
nontrivial lower bound for this specific problem? Es-
pecially, can we make pleat foldings in poly-log fold-
ings?

From the practical point of view, developing better
algorithm for the pleat folding problem is interesting,
especially, in general-unfold model. Up to now, we
have no idea for dealing with general-unfold model.

Acknowledgments

The authors thank to Takashi Hojyo who gives a permis-

sion to use his “angel” for our presentation of this re-

search. The authors are grateful to Erik Demaine, Joseph

O’Rourke, and Ron Graham for their helpful comment

and suggestion at CCCG 2008.

References

[1] Origami Tanteidan, Number 107. Japan Origami Aca-
demic Society, 2008.

[2] E. Arkin, M. Bender, E. Demaine, M. Demaine,
J. Mitchell, S. Sethia, and S. Skiena. When Can You
Fold a Map? Computational Geometry: Theory and
Applications, 29(1):23–46, 2004.

[3] E. D. Demaine and J. O’Rourke. Geometric Fold-
ing Algorithms: Linkages, Origami, Polyhedra. Cam-
bridge University Press, 2007.

4

EuroCG’09 - Brussels, Belgium

56

Modelling rigid origami with Quaternions

Weina Wu ∗ Zhong You ∗

Abstract

This paper presents a new tool, namely the quater-
nion rotation sequence (QRS) method, for modeling
rigid origami. An origami pattern can be described
by a rotation vector model consisting of a group of
characteristic vectors. A sequential rotation of these
vectors leads to a system of the closure equations rep-
resented by quaternions. The solutions of the equa-
tions provide configuration information of a pattern.
The method has been successfully applied to several
types of single vertex and multi-vertex patterns. We
have shown that it can be used to effectively track
the entire rigid folding process of initially flat or non-
flat patterns, and thereby provide judgment of rigid-
foldability and flat-foldability of the pattern.

1 Introduction

Rigid origami is a restrictive type of origami where all
panels of a crease pattern are not allowed to stretch or
bend during folding. The creases are therefore com-
parable to rotational hinges of a mechanism. The
concept of rigid origami has great potentials in en-
gineering. A well-known example is the Mirua-ori,
which has been used for deployable solar panels and
for manufacturing folded cores for sandwiched com-
posites. It is known that essentially everything can
be folded by a continuous folding procedure [1], yet
the folding is not necessarily rigid. Only those geo-
metrically compatible patterns can be folded rigidly.

A number of mathematical methods have been de-
veloped to study rigid origami, including a method
based on spherical trigonometry and Kawasaki’s The-
orem, which examines whether a flat-foldable pattern
can be folded rigidly [2]; the method employing Gaus-
sian curvature theory originally proposed by Huffman
[3], which judges a pattern as rigid if Gaussian curva-
ture at any point of the pattern is zero; and the ma-
trix model method proposed by Belcastro and Hull [4],
where a certain configuration of a pattern is modelled
as a particular successive transformation procedure of
creases and panels, and a loop closure equation sys-
tem is thereby established as the necessary condition
for rigidity of the configuration. In spite of validity
of those methods, they still bear some limitations in
application. For instance, the first method is not ap-

∗Department of Engineering Science, Oxford University,
UK, weina.wu@eng.ox.ac.uk, zhong.you@eng.ox.ac.uk

plicable to non-flat-foldable patterns. The second is
suitable for rigidity judgment at a particular configu-
ration but inconvenient for configuration calculations.
The third one can deal with more situations, yet is
hardly employed on those non-flat-foldable 3D pat-
terns. In fact, the third method bears similarity to
the matrix method in loop mechanism analysis using
the Denavit and Hartenberg notation [5].

In this paper, a rotation vector model consisting of
a group of characteristic vectors is introduced. Then
the quaternion rotation sequence (QRS) method,
which represents the model via quaternions, is pro-
posed and applied to three different types of patterns
to verify its effectivity. It shows that the QRS method
can effectively track the entire rigid folding procedure
of an initially flat or non-flat pattern, as well as pro-
vide judgment of its rigid foldability and flat fold-
ability. Moreover, the QRS method is applicable to
not only the single-vertex pattern but also the multi-
vertex pattern.

2 The rotation vector model

Consider a typical single-vertex pattern SV1, which
is flat before folding as in Figure 1(a). In this paper,
use solid lines for mountain creases and dashed lines
for valley creases in the plot of pattern layout. Its
creases, or called edges, are enumerated from E1 to
E4 anticlockwise, and panels from P1 to P4. Denote
by αi,j the layout angle subtended by edge Ei and
Ej(i=1, 2, 3, 4, j=2, 3, 4, 1). For pattern SV1, it has
α1,2 = 90◦, α2,3 = 135◦, α3,4 = 90◦ and α4,1 = 45◦.
Figure 1(b) shows an arbitrary 3D configuration of the
pattern after certain extent of rigid folding, where its
characteristic vectors are established. They include
edge vectors ~ei along edges Ei (i=1, 2, 3, 4) and normal
vectors ~ni perpendicular to panels Pi (i=1, 2, 3, 4). As
shown in Figure 2, these vectors are related in a ro-
tation sequence, which can be decomposed into eight
sequential steps, where alternately, an ~ni or ~ei de-
rived from the previous step acts as the rotation axis,
around which ~ei rotates to ~ei+1, or ~ni−1 to ~ni. The
corresponding rotation angles are alternately αi,j or
γi. Denote by γi the folding angle between normal
vectors of adjacent panels which intersect at edge Ei,
and it follows the right-handed screw rule. Note that
the last two steps lead to the initial vectors ~e1 and
~n1, respectively, indicating that these vectors form
a closed-loop rotation sequence. To get a more vis-

1

Modelling rigid origami with Quaternions

57

1e

1n

 P2

 P1

2e

3n

4n E4

E3

2n
 P4

3e

4e

 P3

E2
E1

 E3

E4 E1

E2α3,4

α4,1
α1,2

α2,3

 P2

 P1

 P4

 P3

(b)(a)

Figure 1: Crease pattern SV1, (a) the initial flat state,
(b) its characteristic vectors at an assumed configu-
ration after rigid folding

ible mathematical description of the 3D configura-
tion, we use dihedral angles θi = π − γi to replace
γi. For convenience, let us stipulate that dihedral an-
gles are independent of the rotational direction, and
all dihedral angles of a pattern are measured from
the same side throughout folding. Actually by only
observing from one side of the pattern, all creases
fall into two categories, i.e. mountain and valley.
Therefore if assuming a pattern is initially flat and
finally folded flat, the maximum attainable range of
θi around each type of creases is 0 ≤ θV alley ≤ 180◦

and 180◦ ≤ θMountain ≤ 360◦.
The rotation vector model associates the pattern

information, i.e. the layout angles, with the con-
figuration information, i.e. the folding or the dihe-
dral angles. It is essentially identical to a closed-loop
spherical linkage model [6]; thus its degree of freedom
(DOF) can be determined on the same rule as that
for the linkage.

DOF = 3(m− j − 1) +
j∑

i=1

fi (1)

where m is the number of edge vectors, j the num-
ber of normal vectors, and fi the DOF of edge Ei(i=
1, 2, . . . j) as a rotation axis. For example, for the pat-
tern SV1, with m = j = 4 and fi = 1 (i=1, 2, 3, 4),
its freedom is 1.

3 The quaternion rotation sequence (QRS)
method

Quaternions were originally proposed by William
Rowan Hamilton in 1843. The basic quaternion alge-
bra can be found in [7] and [8]. Compared with ordi-
nary algebra, the most special part is that quaternion
multiplication doesn’t obey the law of commutativity,
which actually facilitates its ability to represent arbi-
trary 3D rotations. The proposed quaternion rotation
sequence (QRS) method employs quaternions to rep-
resent the rotation vector model, and solves for the

x
(a)

1n
z

1e

2e
2e

1n

2n 2n
2e

3e

2n
3e 3n

(b) (c) (d)

4e

3e
3n

4e
3n

4n

4e 4n

fe

fn

fe 4n

(e) (f) (g) (h)

1,2α

2,3α

3,4α

4,1α
1γ

4γ

2γ

3γ

Figure 2: The closed-loop rotation sequence of the
characteristic vectors decomposed into eight steps

unknown configuration angles through optimization.
Consider pattern SV1 at a configuration shown in

Figure 1(b). In a 3D Cartesian coordinate frame
shown in Figure 2(a), we can write ~e1 = {1, 0, 0} and
~n1 = {0, 0, 1}, which are the initial vectors to start the
rotation sequence. The rotation around ~n1 in Figure
2(a) can be represented by a quaternion rotation op-
erator

q̃~n1 = {cos(α1,2/2), sin(α1,2/2)~n1} (2)

The resultant vector ~e2 is the vector part of the
quaternion ẽ2,

ẽ2 = q̃~n1 ẽ1 (q̃~n1)′ (3)

When ~e2 is known, the rotation around it in Figure
2(b) can be expressed by

q̃~e2 = {cos((π − θ)/2), sin(π − θ/2)~e2} (4)

The resultant vector ~n2 is the vector part of the
quaternion ñ2,

ñ2 = q̃~e2 ñ1 (q̃~e2)′ (5)

The following rotations and resultant vectors at sub-
sequent steps in Figure 2 can be represented likewise,
until two initial vectors ~e1 and ~n1 are reconstructed,
which are denoted by ~ef and ~nf, respectively. The fol-
lowing loop closure equation system can therefore be
obtained. {

~nf = ~n1

~ef = ~e1
(6)

where a total of six simultaneous equations are in-
cluded, all expressed in terms of αi,j and θi. Nor-
mally αi,j are known for a given pattern. Considering
the DOF of the system according to Equation 1, the
same number of dihedral angles is required as the in-
put; whereas the remaining unknown dihedral angles
can be solved.

Here a constrained nonlinear optimization algo-
rithm, the sequential quadratic programming (SQP)

2

EuroCG’09 - Brussels, Belgium

58

method, is employed as the solver, where the opti-
mization goal is to minimize the difference between
two sides of each equation, and the range constraint
imposed on each variable comes from whether it is
around a mountain or a valley crease. Despite severe
nonlinearity of the equation, it has shown that for
most patterns the proper initial estimates of its un-
knowns can be easily picked up from a preliminary op-
timization which just uses arbitrary initial estimates.
Actually piecewise initial estimates can be defined for
different input ranges, which further eases giving the
initial estimations. Given the input a sequence of val-
ues, changing configurations during a folding proce-
dure can be described. The verification rule for those
optimization results is that the successive values of
each output angle must not be fluctuating. Fluctuat-
ing angle values physically correspond to a discontin-
uous folding procedure, thus incorrect.
a
Case 1: for an initially flat (2D) pattern
For pattern SV1 with a single DOF, assume the input
as θ1 decreasing monotonically from 180◦ to 0 at the
step of 1◦ during the entire folding. The final opti-
mization results of the other three dihedral angles θ2,
θ3 and θ4 are are shown in Figure 3(a). These smooth
angle values describe all configurations reached by the
pattern throughout folding in the given input range,
which indicate that such rigid folding procedure is
continuous and thus physically meaningful. Therefore
it can be concluded that the pattern is rigid foldable
for 0 ≤ θ1 ≤ 180◦ and also flat foldable.

Figure 1: Output angles for (a) pattern SV1 and (b) pattern SV2 throughout folding via the QRS
method

360˚ 360˚
3θ

270˚ 270˚

4θ

180˚ 180˚
2θ

 90˚ 90˚3θ 2 4θ θ

0 0
1θ0 45˚ 90˚ 135˚ 180˚ 0 30˚ 60˚ 90˚ 1θ

(a) (b)

Figure 3: Output angles for (a) pattern SV1 and (b)
pattern SV2 throughout folding via the QRS method

Case 2: for an initially non-flat (3D) pattern
The 3D pattern SV2 in Figure 4(a) has α1,2 = 90◦,
α2,3 = 45◦, α3,4 = 45◦ and α4,1 = 90◦. Its dihedral
angles measured from the inward side of the pattern
are θ1 = θ2 = θ4 = 90◦ and θ3 = 180◦. If taking the
given configuration as the initial and assuming SV2 is
finally folded flat, to track its folding procedure, the
required input for the this single DOF system can be
selected as θ1 (0 ≤ θ1 ≤ 90◦) changing at the step of
1◦. Correspondingly, the maximum attainable ranges
of the other three dihedral angles are 0 ≤ θ2 ≤ 90◦,

3θ

E1

E4 E3

E2

α3,4
α4,1

2θ1θ
2n

1e 2e
3e

4e

3n
1n

4n

4θ

α1,2

α2,3

(a) (b)

Figure 1: Pattern SV2, (a) the initial 3D state, (b) its characteristic vectors at a certain
configuration after rigid folding

Figure 4: Pattern SV2, (a) the initial 3D state, (b)
its characteristic vectors at an assumed configuration
after rigid folding

180◦ ≤ θ3 ≤ 360◦ and 0 ≤ θ4 ≤ 90◦. Assume an arbi-
trary configuration of the pattern during rigid folding
as in Figure 4(b) to establish the loop closure equation
system. The final verified optimization results of the
output angles θ1, θ2 and θ3 are shown in Figure 3(b).
They again confirm the rigid foldability of the pattern
in the given input range by showing that rigid folding
of the pattern is a continuous process. θ1 with values
greater than 90◦ has also been tried, yet the derived
results are found all fluctuating and thus physically
unrealistic. Therefore SV2 cannot be folded rigidly
when θ1 > 90◦.
a
Case 3: for a multi-vertex pattern
The QRS method is applicable to the multi-vertex
pattern via a decomposition strategy. At first select
a loop of creases connecting multiple vertices, around
each of which the multi-vertex system is decomposed
into multiple single-vertex subsystems. Then these
subsystems are analyzed sequentially along the loop
in one direction, each as an independent single-vertex
system with the input transferred from its previous
subsystem, i.e. as their common dihedral angle. Af-
ter all subsystems along the loop are analyzed, check
whether the dihedral angle common in the first and
the last subsystems has the same values. If so, global
compatibility of the entire system can be confirmed.
With this strategy, the real complexity of the multi-
vertex system is actually averted. For example, if
each subsystem has the single DOF, the whole sys-
tem needs only one input as well.

Consider two multi-vertex crease patterns MV1 and
MV2 in Figure 5, where all edges and vertices are enu-
merated and a crease loop through four vertices is en-
circled for each pattern. For simplicity, here take the
crease layout around all vertices in MV1 or MV2 as
the same. One set of layout angles for each pattern
are marked in Figure 5. Assume that the input θ1 for
both patterns changes in the range of 0 ≤ θ1 ≤ 180◦

at the step of 1◦. Along the crease loop anticlockwise,
all single-vertex subsystems at V1, V2, V3 and V4 are
analyzed sequentially, and the results from all subsys-

3

Modelling rigid origami with Quaternions

59

20°

E6

E10E11

E5

E12
E9

V1 V2

V3

E2

E1

E3

E8

E7

V4
E4

45°

E1

 E2 E7

E10

V1 V2

V4

E6
E3

E8

E9

V3

E11

E12

E5E4

(a)

(b)

Figure 1: Multi-vertex patterns (a) MV1 and (b) MV2, where all vertices (V) and edges (E) are
enumerated. Edge layout at all vertices in the same pattern is the same. A loop enclosing multiple
vertices is drawn on each pattern in bold.
Figure 5: Multi-vertex patterns (a) MV1 and (b)
MV2. A loop enclosing multiple vertices is drawn on
each pattern in the bold line.

tems are summarized. Some typical results from pat-
tern MV1 are displayed in Table 1, and from pattern
MV2 in Table 2. As shown in Table 1, throughout
folding the values of θ2 are the same in the first and
the last subsystems around vertex V1 and V4, respec-
tively; while in Table 2, the values of θ4 in the first
and the last subsystems are quite different. Since the
the crease loop must be closed, it can be concluded
that pattern MV1 is globally compatible, able to be
folded rigidly as a whole for 0 ≤ θ1 ≤ 180◦ and be
completely folded flat given the right crease lengths;
while pattern MV2 cannot be folded rigidly at all.

Table 1: Dihedral angles of pattern MV1 at some con-
figurations during folding (◦)

V1

θ2 23.9 46.1 141.7 171.6 175.8
θ3 10.0 20.0 100.0 160.0 170.0
θ4 336.1 313.9 218.3 188.4 184.2
θ1 10.0 20.0 100.0 160.0 170.0

V2

θ1 10.0 20.0 100.0 160.0 170.0
θ5 336.1 313.9 218.3 188.4 184.2
θ6 10.0 20.0 100.0 160.0 170.0
θ7 23.9 46.1 141.7 171.6 175.8

V3

θ7 23.9 46.1 141.7 171.6 175.8
θ8 54.0 91.6 163.6 176.5 178.3
θ9 23.9 46.1 141.7 171.6 175.8
θ10 306.0 268.4 196.4 183.5 181.7

V4

θ10 306.0 268.4 196.4 183.5 181.7
θ11 23.9 46.1 141.7 171.6 175.8
θ12 54.0 91.6 163.6 176.5 178.3
θ2 23.9 46.1 141.7 171.6 175.8

4 Summary

So far we have presented a QRS method for model-
ing rigid origami. The pattern and configuration in-
formation of an origami pattern are described using
a group of characteristic vectors. Through a closed-
loop rotation sequence of the identified characteristic
vectors, represented by quaternions, we are able to
establish a system of closure equations. Full angular
descriptions of attainable configurations of a pattern

Table 2: Dihedral angles of pattern MV2 at some con-
figurations during folding (◦)

V1

θ4 7.0 44.0 101.0 151.7 172.9
θ12 350.0 300.0 240.0 200.0 185.0
θ5 7.0 44.0 101.0 151.7 172.9
θ1 10.0 60.0 120.0 160.0 175.0

V2

θ1 10.0 60.0 120.0 160.0 175.0
θ6 345.8 281.0 224.0 194.1 183.5
θ7 10.0 60.0 120.0 160.0 175.0
θ2 14.2 79.0 136.0 165.9 176.5

V3

θ2 14.2 79.0 136.0 165.9 176.5
θ8 339.8 260.7 211.6 189.9 182.5
θ9 14.2 79.0 136.0 165.9 176.5
θ3 20.2 99.3 148.4 170.1 177.5

V4

θ3 20.2 99.3 148.4 170.1 177.5
θ10 331.4 241.5 202.4 186.9 181.7
θ11 20.2 99.3 148.4 170.1 177.5
θ4 28.6 118.5 157.6 173.1 178.3

during folding can be derived by solving these equa-
tions. Using single vertex and multi-vertex origami
patterns, we demonstrate that the QRS method can
effectively track the entire rigid folding process of ini-
tially flat or non-flat patterns, and thereby provide
judgment for rigid-foldability and flat-foldability. As
to the multi-vertex patterns, we also attempted using
dual quaternions and found that it is also effective.
However, this is not to be presented here because of
the page limit. The presented method can be used in
engineering applications such as designing space panel
structures and some packaging where rigid folding is
required or preferable.

References

[1] Demaine, E.D., Devadoss, S. L., Mitchell, J. S. B.,
and O’Rourke, J. Continuous foldability of polygonal
paper. Proceeding of 16th Canadian Conference on
Computational Geometry, Montreal, Quebec, 2004:
64-67.

[2] Hull, T. Project origami. A K Peters, Ltd, Wellesley,
Massachusetts, 2006: Activity 22, 229-235.

[3] Huffman, D. Curvature and crease: a primer on pa-
per. IEEE Transactions on Computers, C-25, No. 10,
1976: 1010-1019.

[4] Belcastro, S., and Hull, T. C. Modeling the folding of
paper into three dimensions using affine transforma-
tions. Linear Algebra and its Applciations, Vol. 348,
2002: 273-282.

[5] Beggs, J S. Advanced Mechanism, Macmillan Com-
pany, New York, 1966.

[6] Waldron, K. J., and Kinzel, G. L. Kinematics, dy-
namics, and design of machinery. New York, Chich-
ester: Wiley, 1999: Chapter 2.

[7] Kuipers, J. B. Quaternions and Rotation Sequences:
A Primer With Applications to Orbits, Aerospace,
and Virtual Reality. Princetion University Press,
USA, 2002.

[8] http://www.euclideanspace.com/maths/algebra/.

4

EuroCG’09 - Brussels, Belgium

60

Source Unfoldings of Convex Polyhedra
with respect to Certain Closed Polygonal Curves

Jin-ichi Itoh∗ Joseph O’Rourke† Costin Vı̂lcu‡

Abstract

We extend the notion of a source unfolding of a con-
vex polyhedron P to be based on a closed polygonal
curve Q in a particular class rather than based on a
point. The class requires that Q “lives on a cone” and
therefore has a simple development in the plane. The
class includes simple closed convex curves and curves
that are the intersection of P with a plane. Cutting a
particular subset of the cut locus of Q (in P) leads to
a non-overlapping unfolding of the polyhedron. This
gives a new general method to unfold the surface of
any convex polyhedron to a simple, planar polygon.

1 Introduction

Two general methods were known to unfold the sur-
face P of any convex polyhedron to a simple polygon
in the plane: the source unfolding and the star un-
folding [DO07], both with respect to a point x ∈ P.
In [IOV08] we defined a third general method, the
star unfolding with respect to a simple closed “quasi-
geodesic loop” Q on P. Here we extend the source un-
folding to a class of closed polygonal curves Q that in-
cludes quasigeodesic loops but is considerably wider.
Q divides P into two closed “halves,” P1 and P2.

(We sometimes use P to represent either half.) We
establish that the source unfolding w.r.t. Q for each
half Pi unfolds without overlap, and that cutting a
subset of the cut locus of Q in one half, and some ad-
ditional cuts in the other half, leads to a single piece.
Because Q in the class exist (in abundance) for any
P, this leads to another general method to unfold any
convex polyhedron to a simple, planar polygon.

Cut Locus. The point source unfolding cuts the cut
locus of the point x: the closure of set of all those
points y to which there is more than one shortest path
on P from x. Our method also relies on the cut locus,
but now the cut locus CP (Q) on the half-surface P
with respect to its boundary ∂P=Q. As cut loci in
this paper will always be with respect to Q, we will

∗Dept. Math., Faculty Educ., Kumamoto Univ., Kumamoto
860-8555, Japan. j-itoh@kumamoto-u.ac.jp
†Dept. Comput. Sci., Smith College, Northampton, MA

01063, USA. orourke@cs.smith.edu.
‡Inst. Math. ‘Simion Stoilow’ Romanian Acad., P.O. Box 1-

764, RO-014700 Bucharest, Romania. Costin.Vilcu@imar.ro.

simplify the notation to CP . To obtain the unfolding
of P, we cut most edges of the cut loci, and some
additional cuts that will be explained shortly.

v0

v4

v10
v11

v3

v2

v1

Q
v5

v6

v9

v8

v7

7

v0

v4

v3

v2

v1

v1

v10

v10v11

v5

v6

v7

v4

v7

v9

v8

p

a

e

d

c

b

(a)

(b) (c)

P1

P2

v0

v10

v2v8

v7

v9

v10
b

b

b

a

a

c c

v4

c

d

e

e

d

v3

v1
p

p

p

p

p p(d)

P1

P2

v11 v11

v5v6

v0

P1

P2

Q

Figure 1: (a) Truncated cube and quasigeodesic Q =
(v0, v1, v7, v10). (b) View of P1 and CP1 . (c) View of
P2 and CP2 . (d) Unfolding to a simple polygon.

Convex Curves, Slice Curves, and Quasigeodesics.
Let p ∈ Q be a point on an oriented, simple closed
polygonal curve Q on P. Let L(p) be the total face
angle incident to the left side of p, and R(p) the angle
to the right side. Q is a convex curve if L(p) ≤ π for
all points of Q. Q is a quasigeodesic if L(p) ≤ π
and R(p) ≤ π for all p, i.e., it is convex to both

1

Source Unfoldings of Convex Polyhedra with respect to Certain Closed Polygonal Curves

61

sides. A quasigeodesic loop has a single exceptional
point at which the angle conditions may not hold. We
have the inclusions: (convex) ⊃ (quasigeodesic loop)
⊃ (quasigeodesic). Q is a slice curve if it is the in-
tersection of P with a plane. It was known that both
convex curves [OS89] and slice curves [O’R03] are sim-
ply developable: they “develop” on the plane without
self-intersections. We establish elsewhere [OV09] that
both convex and slice curves “live on a cone,” which
both explains why they are simply developable and
ensures that the source unfoldings we describe here
applies.

Example. Throughout we will use an example poly-
hedron P to illustrate concepts: a cube twice trun-
cated, with Q the particular closed quasigeodesic
shown in Fig. 1(a). The angles at the vertices
of Q = (v0, v1, v7, v10) within P1 are, respectively,
(3
4π,

1
2π,

3
4π,

1
2π), and the angles at those vertices

within P2 are, (3
4π, π,

3
4π, π). Because all of these

angles are ≤π, Q is convex to both sides and so a
quasigeodesic. For Q a simple closed quasigeodesic,
the cut loci CPi

are each a single tree with each edge
a (geodesic) segment. For more general Q, edges of
the cut locus can also be parabolic arcs, and the cut
locus consists of a forest on one of the two sides.

2 Overview of Method

We first provide an overview of the method, illustrat-
ing the steps through the example in Fig. 1.

Step 1. We show that, for Q in the class identified,
a small neighborhood of Q within one of the halves
P lives on a cone P ∗, which then may be flattened to
a doubly-covered cone in the plane. Figures 2 and 3
show natural flattening choices for P ∗1 and P ∗2 among
the many available. In these figures, both Q and the
faces of Pi incident to Q are shown. Let CP∗

i
be the

cut locus of Q on P ∗i , also shown in the figure.

v1

v7

z

v10

v1

v7

z

v0 v0v10

Figure 2: Doubly-covered cone P ∗1 and the cut locus
CP∗

1
. (a) Cone opened, showing front and back side-

by-side. (b) Both sides overlaid, creased through v0.
Dashed edges are on the back. Angle at z is γ = 3

4π.

z

v0
v0

v10

v1
v7

z

v10v10

v1

v7

Figure 3: Doubly-covered cone P ∗2 and the cut locus
CP∗

2
. (a) Cone opened, showing front and back side-

by-side. (b) Both sides overlaid, creased through v1.
Angle at z is γ = 1

4π.

Step 2. Next we define a notion of peels and sub-
peels, both for P and for P ∗, for each half P . The
surface is partitioned into peels bounded by Q and
the cut locus, and each peel is partitioned into sub-
peels. We defer the technical definition to Section 5,
and for now rely on Fig. 4, which displays the peels
and subpeels of P1.

v0

v4

v1

v10

v5

v7

p

peel

subpeelsubpeel

v11 v6

Figure 4: Cut locus CP1 (red); peels between marked
points on Q, either leaves of CP1 or projections of
leaves (green paths); and subpeels (yellow paths).

A key result (Lemma 2) establishes that the peels
of P are nested inside peels of P ∗.

Step 3. For each half P , cut CP along its edges not
incident to Q. By our peel nesting lemma, this per-
mits embedding the cut version of P into cone P ∗.
Now we cut an edge of the flattened P ∗, and open it,
as illustrated in Fig. 6(a,b). This leads to our first
main result (Theorem 4): the curve source unfolding
of each half P unfolds without overlap.

Step 4. Knowing that each half unfolds without
overlap, we now join the two halves together. How
this is accomplished depends on the type of curve Q.
Here we only illustrate a method that applies to all
convex curves. For the convex side (say, P2 in our

2

EuroCG’09 - Brussels, Belgium

62

example), we cut as described above: all edges of CP2

not incident to Q, plus a generator of the doubly-
covered cone to slit it open: v10z in our example. For
the nonconvex side (P1, but in fact both sides are con-
vex in the example), we cut the entire cut locus CP1 ,
except those edges incident to vertices of Q that are
not vertices of P, and some additional cuts. For our
example, those additional cuts are empty, and we ob-
tain the unfolding shown in Fig. 1(d). For more gen-
eral convex Q, for all vertices v of P in Q that are not
incident to CP1 , we make one cut orthogonally from
v to CP1 . And finally we cut a corresponding genera-
tor of P ∗1 . These cuts partition P1 into domains that
project orthogonally onto Q, and so avoid overlap.

The halves determined by slice curves are joined
differently, not described in this abstract.

3 Doubly-Covered Cone

Let F be the set of faces of P , and FQ the subset of
F that touches Q: FQ = {f ∈ F : f ∩ Q 6= ∅}. Cut
all the edges of FQ that are not incident to Q. The
result is a surface BQ that is topologically a “band”
or “ring” bounded by two topological circles: Q, and
the cut edges. BQ is locally flat.

v0v10 v0v10

v7

x

x'

x

z

z

z

x'

L L

v1
θ

θ
γ

γ

v0
v7

v7

v1

v7

v0v10

L

v1
γ

γ

v7

y

y'

x

x'

y

y'

v0v10

v1

γx
y

v7

(a) (b)

(c) (d)

p

p

v10 v10

Q

Figure 5: (a) Q is developed from x counterclockwise
around to its image x′. (b) θ = ∠zxx′ = 1

4π leads
to γ = 3

4π. (c) Cutting BQ along xy. (d) Reflect-
ing/creasing over L. The x choice here leads to a
different embedding than in Fig. 2(b).

Next we describe a procedure for flattening a small
neighborhood of Q in BQ to a subset of a doubly-
covered planar cone P ∗. P ∗ will have apex z and two
straight sides incident to z. Select a point x ∈ Q that
will ultimately lie on one of these straight sides xz.
Develop Q in the plane according to the incident face
angles of BQ from x counterclockwise around Q until
the second image x′ of x is encountered again. See
Fig. 5(a). The apex z is computed by requiring that

the curvature at z be 2π − τQ, where τQ is the total
turn of Q. This forces γ = 1

2τQ in Fig. 5(b,c,d).
Although not every simply developable Q lies on

this cone, we can prove that it does for certain classes:

Lemma 1 If Q is a simple closed convex curve, or a
slice curve, it lives on a cone, and the development of
Q lives on the flattened double-cone P ∗.

4 Cut Locus of Q

Fix P , and let q0, q1, . . . , qk be the vertices of Q in
some circular order. A vertex of Q is a point q with
a nonzero angle gap in P at q. The cut locus CP is
a tree whose leaves span the vertices of P , including
the vertices of Q, which must be leaves of CP . See
Figures 1(b,c). On the unbounded side of the cone,
the cut locus may be a forest with branches to infinity;
but we set this aside in this abstract.

Any point p ∈ CP has one or more projections to
Q: endpoints of shortest paths from p to Q. Non-leaf
points p of CP have at least two distinct projections.

The cone P ∗ and surface P from which it derives
share the same boundary Q, and by construction, the
same angle gaps occur along Q. Therefore, Q has
the same vertices in both P ∗ and P . Thus CP and
CP∗ both have the same set of leaves touching Q, but
of course in general they differ in the interior of the
surfaces.

P1

P2

v1

v7

z

v0v10

p
p

p

v0

v10

v1

v2

v7

v8

v9

z

v10

b

b

b

a

a

c c

v4

c

d

e

e

d

v3

(a)

(b)

Figure 6: (a) Nesting of cut P1 within the unfolded
P ∗1 of Fig. 2(a). (b) Similar nesting of P2 within P ∗2
of Fig. 3(a).

CP∗ is determined by any small neighborhood of Q
in BQ, because P ∗ is so determined. Because every
leaf of CP∗ is also a leaf of CP , the bisecting property
of cut loci (each edge of the cut locus incident to a
vertex v ∈ Q bisects the angle of P at v) implies that
small neighborhoods of the leaves of CP∗ are included

3

Source Unfoldings of Convex Polyhedra with respect to Certain Closed Polygonal Curves

63

in CP . In other words, the edges of CP and CP∗

issuing from vertices of Q coincide until they hit a
vertex of CP or of P . We use this property in the
proof of Lemma 2 below.

5 Peels & Subpeels

Let u0, u1, . . . , um be the vertices (leaves and junc-
tion points) of CP , following a circular ordering of
their projections to Q. Let (uj , uk) be two consecutive
leaves of CP , and (u′j , u

′
k) corresponding consecutive

projections onto Q. The peel αP (uj , uk) is the closed
flat region of P bounded by the two projection paths
uju
′
j , uku

′
k, the subpath of Q from u′j to u′k, and the

unique path in CP connecting uj to uk. Each peel is
isometric to a planar convex polygon.

Between two consecutive leaves uj and uk are the
vertices along the tree path, uj , uj+1, . . . , uk−1, uk.
Each of these delimits a subpeel of αP (uj , uk), par-
titioning the peel along the projection segments ulu

′
l,

j < l < k. See Fig. 4.
The notion of peel and subpeel can be defined ex-

actly analogously for P ∗. We will use α for peels and
β for subpeels.

Lemma 2 (Peel Nesting) Each subpeel βP of P is
isometric to a region of a subpeel βP∗ of P ∗. The
union of the subpeels in one peel αP of P is non-
overlapping, and thus each peel αP is nested inside a
peel αP∗ of P ∗.

Proof. Idea. Let Γ be the directed curve that traces
on P ∗ a maximal subtree of CP disjoint from Q. We
let x0 ∈ Γ be any point in the interior of a peel αP∗ .
Now we move a point xt along Γ continuously from x0.
As long as xt remains inside the peel αP∗ , the subpeel
βP to which xt belongs remains included in peel αP∗ .
Now assume that xt reaches a point of xt=y ∈ CP∗

and crosses C∗P there, as it does at y=a in Fig. 7.
This is exactly when the claim of the lemma might be
false, for the subpeel βP bounded by Γ then extends
beyond the peel αP∗ . Using a comparison theorem
of Alexandrov, we show that y must be a junction
point of CP . This means that the subpeel βP ends
at y, and Γ enters a new subpeel β′P of a new peel
α′P∗ of P ∗. Thus the nesting claim of the lemma is
established. �

6 Source Unfolding

The half-polyhedron source unfolding of Q is obtained
by cutting the edges of CP not incident to Q, embed-
ding the peels within P ∗ via Lemma 2, and cutting a
generator xz of the doubly-covered cone and opening.

Theorem 3 (Half-Polyhedron Source Unfolding)
For any Q for which the conclusion of Lemma 1
holds, the source unfolding of each half P of P is
non-overlapping.

v 7

z

v9

v0

v1

v10
q1=v7

y2

y1

b
b

y=aa

c

v2Γ

Γ

subpeel

y3

v8

Figure 7: Γ is the dashed curve, directed from v9 to v8.
xt crosses CP∗ at y, which coincides with the junction
point a of CP . Γ enters the new subpeel βP∗(v7, y2)
and the new peel is αP∗(v7, v0).

Several strategies are available for joining the two
halves, one of which is illustrated in Fig. 1(d).

Theorem 4 (Full Source Unfolding) For Q a
convex curve, or a slice curve containing at most one
vertex, additional cuts permit joining the halves to
one, simple polygon.

Finally, we note that for a convex curve Q shrink-
ing to a point x, the full source unfolding w.r.t. Q
approaches the point source unfolding w.r.t x.

References

[DO07] Erik D. Demaine and Joseph O’Rourke. Geo-
metric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge University Press, July
2007. http://www.gfalop.org.

[IOV08] Jin-ichi Itoh, Joseph O’Rourke, and Costin
Vı̂lcu. Unfolding convex polyhedra via quasi-
geodesic star unfoldings. Technical Re-
port 091, Smith College, December 2008.
arXiv:0821.2257v1 [cs.CG].

[O’R03] Joseph O’Rourke. On the development of the
intersection of a plane with a polytope. Comput.
Geom. Theory Appl., 24(1):3–10, 2003.

[OS89] Joseph O’Rourke and Catherine Schevon. On
the development of closed convex curves on 3-
polytopes. J. Geom., 13:152–157, 1989.

[OV09] Joseph O’Rourke and Costin Vı̂lcu. Conical ex-
istence of certain closed curves on polyhedra.
Manuscript in preparation, 2009.

4

EuroCG’09 - Brussels, Belgium

64

Locked Thick Chains

Erik D. Demaine∗ Martin L. Demaine∗ Stefan Langerman†‡ Jérôme Vervier‡

Abstract

We investigate when thick 3D polygonal chains are locked,
i.e., have a disconnected configuration space. In particular,
we show that thick 4-chains are never locked, and we ex-
hibit a class of locked thick 5-chains whose ratio of max-
imum edge length to minimum edge length is strictly less
than 3 (the best known ratio for nonthick chains).

1 Introduction

In the study of linkage folding (see, e.g., [5, Part I]),
the typical mathematical model of a mechanical linkage
is a collection of rigid line segments (bars) permanently
attached at certain endpoints (joints). Although there
are many types of joints, the most common mathemati-
cal model is a universal joint, which can flex arbitrarily.
Bars are usually considered physical objects that cannot
intersect each other (usually in 3D). Thus a linkage can
move according to any continuous motion such that the
bar lengths remain preserved, the bars remain attached ac-
cording to the joints, and the bars do not intersect each
other.

In this paper, we consider changing this model to al-
low the bars to have positive thickness. Our motivation is
that such a model is physically more realistic, in partic-
ular when modeling physical objects such as mechanical
linkages or protein backbones. O’Rourke [5, Sect. 6.3.3,
p. 91] introduced one model of thick 3D linkages, where
the chain is a Minkowski sum of a regular nonthick 3D
linkage and a ball, turning edges into cylinders and ver-
tices into identical spheres. We distinguish the thick edges
and thick joints of the resulting shape from the original
nonthick bars and nonthick joints. The linkage is consid-
ered non-self-intersecting if the only thick bars that inter-
sect each other are those whose underlying nonthick edges
share a nonthick vertex. A slight variation is easier to build
in practice, and even exists in many magnetic ball/rod con-
struction kits: if two thick edges intersect, they should be
from incident nonthick bars and the thick edges should
intersect only within their shared thick joint. So far no
nontrivial theorems have been established in either model.

This paper considers thick “locked chains” in
O’Rourke’s model and our variation thereof. A chain
is a linkage in which the bars form a polygonal chain,
connected in a path configuration. A linkage is locked
if its configuration is disconnected, that is, there are two
configurations that cannot reach each other by continuous
(non-self-intersecting) motions.

∗MIT Computer Science and Artificial Intelligence Laboratory, 32
Vassar Street, Cambridge, MA 02139, USA. {edemaine,mdemaine}
@mit.edu

†Maı̂tre de recherches du F.R.S.-FNRS
‡Computer Science Department, Université Libre de Bruxelles, CP

212, Bvd. du Triomphe, 1050 Brussels, Belgium. stefan.langerman@
ulb.ac.be, j.vervier@gmail.com

O’Rourke originally introduced thick linkages with the
following open problem: is there a locked thick chain
whose underlying nonthick bars have unit length? [5,
Open Prob. 6.1, p. 91] This problem remains open. It is
motivated by the analogous problem for nonthick chains
[1, 5, Open Prob. 9.19, p. 151], which also remains open.
A more general version of the problem was posed by De-
maine and O’Rourke [5, Open Prob. 9.20, p. 152]: what
is the smallest possible length ratio between the longest
bar and the shortest bar that admits a locked nonthick
chain? The smallest ratio known is the original five-bar
chain which achieves a ratio of 3 + ε [2, 1, 5, Thm. 6.3.1,
p. 89]. The case of unit-length bars is the smallest possible
ratio of 1. But so far nothing better than 3 is known, for
nonthick or thick chains.

We analyze a family of locked thick chains that achieve
a length ratio of strictly less than 3. In fact, the family is
parameterized by the bar thickness as a multiple λ of the
minimum bar length. Whenever a chain with the neces-
sary structural properties exists, we prove that the chain is
locked when its bar-length ratio is at least√

9− 8 ·
(

λ

1− λ
)2

which is strictly less than 3 for all λ > 0.
Our locked thick chain has five bars, the same as the

classic example of a locked nonthick chain. Indeed, it is
known that all locked nonthick chains have at least five
bars [2]. As a complementary result, we prove that all
locked thick chains have at least five bars as well.

2 Preliminaries

For both thick and nonthick chains, we distinguish the
chain (sequence of bars moving in space) from its con-
figuration (a chain in a particular position). A polygonal
chain P in Rd is a sequence of fixed length bars con-
nected at their successive endpoints and moving freely
in a d-dimensional space. The chain has n + 1 vertices
V = 〈v0, . . . , vn〉, and is specified by the fixed edge
lengths di between vi and vi+1, i = 0, . . . , n − 1. We
write P [i, j], i ≤ j, for the polygonal subchain composed
of vertices vi, . . . , vj . The joints correspond to the internal
vertices v1, . . . , vn−1.

A configuration Q = 〈q0, . . . , qn〉 of the chain P is an
embedding of P into Rd, i.e., a mapping of each vertex
vi to a point qi ∈ Rd, satisfying the constraints that the
distance between qi and qi+1 is di. The points qi and qi+1

are connected by a straight line segment ei.
Let Bd

λ be the ball in Rd of radius λ centered at the
origin, and let e be a straight line segment in Rd. The thick
bar of thickness λ and of skeleton e is the Minkowski sum
e ⊕ Bd

λ between e and Bd
λ. A thick chain Pλ in Rd is

1

Locked Thick Chains

65

specified by its skeleton P and its thickness λ. It can be
seen as a sequence of thick bars whose end balls coincide.
A configuration Qλ of a thick chain Pλ is the Minkowski
sum between a configuration Q of P and the ball Bd

λ. The
corresponding configuration Q of P is called the skeleton
of configuration Qλ. Note that adjacent thick bars of a
thick chain always intersect. We however impose that a
configuration be simple, that is, nonadjacent bars do not
intersect. Furthermore, we require that the thick bar ei−1⊕
Bd

λ does not intersect the ball qi+1 ⊕ Bd
λ. A motion of a

chain is simple if every configuration during the motion is
simple.

An expansive motion of a chain P is a motion with the
property that the distance between any pair of points on the
chain monotonically increases with time [3]. We say that
the motion of a thick chain is expansive if the motion of its
skeleton is expansive. We can then show the following:

Lemma 1 An expansive motion of a thick chain starting
from a simple configuration, is simple.

3 Thick 4-Chains Cannot Lock

It is known that a nonthick 4-chain cannot be locked [2].
Following an idea similar to that in [4], we use a linear
transformation as a first step toward bringing the skeleton
of the thick chain in 2D. Define the parameterized linear
transformation fτ : R3 → R3 by fτ (x, y, z) := (τx, y, z)
with parameter τ ≥ 1. For a set S ⊆ R3, write fτ (S) =
{fτ (p) : p ∈ S}. Note that linear functions are distributive
over the Minkowski sum: that is, for all sets A and B,

fτ (A⊕B) = fτ (A)⊕ fτ (B). (1)

Further, because τ ≥ 1, we have

B3
λ ⊆ fτ (B3

λ). (2)

Theorem 2 Every simple thick 4-chain can be straight-
ened in 3D.

Proof. Let Cλ = C ⊕ B3
λ be a thick 4-chain of thickness

λ of skeleton C whose vertices are (v0, v1, v2, v3, v4).
Consider the plane K formed by the two middle non-

thick bars of the skeleton, e1 = (v1, v2) and e2 = (v2, v3).
We may choose the coordinate system so that K is the yz
plane. We can also apply small perturbations to v0 and v4
to ensure that they are not in K. Let k1 and k2 be the first
and last (nonthick) bars of C, that is, k1 = (v0, v1) and
k2 = (v3, v4).

Definition the parameterized linear transformation fτ as
above. The two middle bars, e1 and e2, have the same
length in fτ (C) as in C, but the transformation increases
the length of the two end bars, k1 and k2. So we have to
truncate the length of k1 and k2 to preserve their length.
Also, the thick bars of Cλ, which are cylinders with a
sphere at each end, become cylinders with a ellipsoid basis
in fτ (Cλ). In order to obtain a thick chain again, the basis
of this cylinder has to be changed to a disk.

By truncating the length of the end bars, we obtain a
new 4-chain Cτ from fτ (C). Clearly, Cτ ⊆ fτ (C). By
equation (2), B3

λ ⊆ f(B3
λ). So,

Cτ
λ = Cτ⊕B3

λ ⊆ fτ (C)⊕fτ (B3
λ) = fτ (C⊕B3

λ) = fτ (Cλ).

We want to apply the linear motion fτ for τ ranging
from 1 to ∞. To achieve this motion in finite time, we
define another motion parameterized by t from 0 to 1 that
applies fτ where τ = 1/(1 − t). Throughout the mo-
tion, we truncate the length of the two exterior segments
and the basis of the ellipsoid cylinder. Because the linear
transformations preserve intersection among regions, two
thick bars that do not intersect before the motion do not
intersect during the motion. As t approaches 1, τ grows to
infinity and the exterior thick bars become perpendicular
to the yz plane. Let C ′ be that skeleton of the chain at that
point in time.

Two possible situations arise: either the vertices v0 and
v4 are on the same side of the yz plane or they lie on oppo-
site sides of the yz plane; see Fig. 1 (a–c) for top and side
views. Let Π1 be the plane containing v0, v1, and v2, and
Π2 be the plane containing v2, v3, and v4. Let ` be the line
at the intersection of Π1 and Π2. Notice that ` intersects
C ′ only at vertex v2. Thus the subchain v0v1v2 is con-
tained in a halfplane of Π1 bounded by ` and the subchain
v2v3v4 is contained in a halfplane of Π2 bounded by `. By
hinging those two halfplanes about `, we obtain an expan-
sive motion of C ′ that makes it planar. By Lemma 1, this
motion is simple for the thick chain.

v0
v1

v2

v3
v4

y

xz

v1

v2

v3

v0

v4

y

xz

90°

90°

90°

90°

x

z

y

v3

v2

v1 v0
v4

(a) (b)

(c)

v1

v2

v3

v4

v0

(d)

Figure 1: 4-chain: Example where we bring back the two
exterior thick bars in the plan yz.

Finally, we straighten the resulting planar 4-chain using
an expansive motion [3]. Again, by Lemma 1, this motion
is simple for the thick chain. �

4 Locked Thick 5-Chains

4.1 Introduction

Consider a 5-chain of thickness λ with end bars (v0, v1)
and (v4, v5) of length s > 1 and middle-bars (v1, v2),
(v2, v3) and (v3, v4) of length 1. Because the chain is sim-
ple, λ < 1/2. We will determine bounds on s so that the
chain can be locked.

Fig. 2 shows the orthogonal projection of two adjacent
thick bars (thickness λ) and one more thick bar perpendic-
ular to the other two. The projection is over to the plane

2

EuroCG’09 - Brussels, Belgium

66

formed by the skeleton of the two adjacent thick bars. We
first bound the distance between the points C and v0 de-
pending on the angle α between the two adjacent thick
bars and on the thickness λ.

Lemma 3 Consider in 2D two adjacent thick bars (v0, v1)
and (v0, v2) of thickness λ, consider a circle of radius λ
centered at the point C which is in the interior of the angle
α formed by the two adjacent thick bars and which does
not intersect any of these two thick bars (see Fig. 2). Let d
be the distance between v0 and C. Then

d ≥ 2 · λ
sin(α/2)

.

Figure 2: Lemma 3.

Lemma 4 Let Pλ be a 5-chain of thickness λ (see Fig.
3) which is the Minkowski Sum of a nonthick 5-chain P
of vertices (v0, v1, v2, v3, v4, v5) with the ball B3

λ. If the
three middle bars are of length one, and the central pro-
jection from v4 on the plane v1v2v3 is as in Fig. 4, then
the distance s between the middle point of the three mid-
dle thick bars of P and the vertex v1 (or the vertex v4) is
smaller than

1
2

√
9− 8 ·

(
λ

1− λ
)2

.

Proof. Consider the central projection of Pλ from v4 on
plane K containing v1, v2, and v3 (see Fig. 4). The thick
bar v4v5 intersects K in an ellipsoid centered at the point
D. This ellipsoid contains a circle of radius λ centered at
D. Thus replacing the ellipsoid by a circle centered at D
is a weaker constraint on the motion. Applying Lemma 3,
we bound the distance d between v1 and D:

d ≥ 2 · λ
sin(α/2)

v0

v1

v2v3

v4

v5

Figure 3: Thick 5-chain.

v1

v2

v3

D
α

β
C

E
v′
0

Figure 4: Central projection of the thick 5-chain from v4
on the plane K containing v1, v2, and v3. The thick bars
v1v2, v2v3 and v0v1 are shown, as well as the ellipsoid
formed by the thick bar v4v5 as it intersects plane K.

Because the projection is on K, the length of thick bars
v1v2 and v2v3 are preserved and their thickness can only
be larger. Let v′0 be the projection of v0 onK and C be the
intersection in the projection between v′0v1 and v2v3. By
assumption, this intersection always exists. Consider the
triangle v1v2C. Since |v2v3| = 1, |v2C| ≤ 1 − 2λ. Also
|v1v2| = 1 and by the triangle inequality, d = |v1C| ≤
2− 2λ.

Because the central projection is from v4 over K,
|v′0v1| > |v0v1|.

2− 2 · λ > d ≥ 2 · λ
sin(α/2)

(3)

We have to bound the angle α by the equation (3):

2− 2 · λ >
2 · λ

sin(α/2)

sin(α/2) >
λ

1− λ
α

2
> arcsin

λ

1− λ
α > 2 arcsin

λ

1− λ

Because, in every triangle, the sum of angles is equal to
π, we have β to β < π − α.

With the angles α lower-bounded and β upper-bounded,
we have enough information to bound the distance be-
tween the middle point of the three middle thick bars of
P and the point A (the vertex v1).

Let be L = l2 + l3 + l4 = 3 the total length of the
three middle thick bars andE the middle point of the three
middle thick bars: the distance between E and the vertices
v4 and v1 is equal to 3/2. By the length attributed to the
three middle thick bars, the point E is at the center of the
thick bar v2v3 (see Fig. 4).

Consider the triangle EBA (obtained by considering
the point E in Fig. 4) to find the distance between the
points E and A.

In this new triangle, we know : the angle β (β < π−α),
the length |AB| (by the definition of P , |AB| = 1) and the
length |EB| (by the definition of P and the middle point
E, |EB| = 1

2).

3

Locked Thick Chains

67

By Al-Kashi’s theorem, we have |EA| =√|AB|2 + |EB|2 − 2 · |AB| · |EB| cosβ. |EA|
corresponds to the distance between the middle point
E of the three thick bars of P and the vertex v1 so
|EA| =

√
1 + 1

4 − 2 · 1 · 1
2 cosβ. This distance is the

same if we consider the vertex v4 instead of the vertex v1
because the three middle thick bars have length one.

So s = |EA| = √1.25− cosβ :

As β < π − α
So cos(β) > cos(π − α) = − cosα
And so s <

√
1.25 + cosα

As α > 2 arcsin λ
1−λ

Then cosα < cos(2 arcsin λ
1−λ)

But cos(2 arcsin λ
1−λ) = cos2 arcsin λ

1−λ − sin2 arcsin λ
1−λ

= 1− 2 sin2 arcsin λ
1−λ

= 1− 2
(

λ
1−λ

)2

Then cosα < 1− 2(λ
1−λ)2

And so s <

√
1.25 + 1− 2

(
λ

1−λ

)2

<
√

2.25− 2(λ
1−λ)2

�

This lemma bounds distances from the middle point E of
the three middle bars of the thick 5-chain. We will re-use
the demonstration of [5] but with this distances as radius
of the centered sphere.

Theorem 5 LetK be a 5-chain of thickness λ (see Fig. 3),
result of the Minkowski Sum between a nonthick 5-chain
of vertices (v0, v1, v2, v3, v4, v5) and the ball B3

λ. If the
length of each of the three middle thick bars is set to one

and the end bars are of length greater than
√

9− 8(λ
1−λ)2

then K is locked.

Proof. Let D = 1
2

√
9− 8 · (λ

1−λ)2 be the upper-bound
on the distance between the middle point E of the three
middle thick bars of K and the vertex v1 (or v4) given by
the lemma 4. Let r = D+ε, for ε > 0 small and the sphere
F of radius r centered at E. By construction, the vertices
{v1, v2, v3, v4} are in F for all reconfiguration of K.

We fix l1 and l5 to at least 2 · r + ε = 2 ·D + 3 · ε.
Because l1 and l5 are greater than the diameter of F , the

vertices v0 et v5 are not in F for all reconfiguration of K.
We first claim that unless v0 or v5 enter F , the projec-

tion from v4 on the plane through v1v2v3 is as in Fig. 4,
that is, the projection of v0v1 intersects v2v3. Symmetri-
cally, we claim that in the projection from v1 on the plane
containing v2v3v4, the projection of v4v5 intersects v2v3.
Suppose that the former claim gets violated first during the
motion. In that case, the projection of v0 has to lie on v2v3
but in that case, v0 is inside the triangle v2v3v4 which itself
is inside F , a contradiction.

Assume by contradiction that there is an unlocking mo-
tion for K.

If we close K by adding a string along the surface of F
between its two free ends, then we obtain a trefoil knot.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Thickness (lambda)

Bo
un

d
on

 m
in

im
al

 le
ng

th
 o

f t
he

 tw
o

en
d

fa
t−

ba
rs

 to
 lo

ck
 th

e
5−

ch
ai

n

Figure 5: Bounds from Theorem 5

Because F separates (by its boundary) the two sets
{v0, v5} and {v1, v2, v3, v4}, we can attach a sufficiently
long unknotted string s from v0 to v5 exterior to F . We
obtain a trefoil knot.

By our assumption, we can, by an existing motion, un-
lock K (note that the topology of a knot does not change
during a motion), at the end of this motion, we obtain a
unlocked knot (the trivial knot). This result is in contra-
diction with the fact that K ∪ s is a trefoil knot when we
add to it a string s, then K cannot be unlock by any mo-
tion. �

We have first bound on the minimal length of the two end
bars needed to lock a thick 5-chain of thickness λ. A first
plot may be drawn using this formula (see Fig. 5). In this
plot, the x axis represent the thickness (λ) and the y axis
our bound on the minimal length to assign to the two end
bars of the thick 5-chain.

Interestingly, if we put the thickness parameter λ to zero
(we are so in the case of a nonthick 5-chain) then we obtain
the same result than [5].

References

[1] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw,
J. O’Rourke, M. Overmars, S. Robbins, I. Streinu, G. Tou-
ssaint, and S. Whitesides. Locked and unlocked polygo-
nal chains in three dimensions. Discrete & Computational
Geometry, 26(3):269–281, October 2001. Full version is
arXiv:cs.CG/9910009.

[2] J. Cantarella and H. Johnston. Nontrivial embeddings of
polygonal intervals and unknots in 3-space. Journal of Knot
Theory and Its Ramifications, 7(8):1027–1039, 1998.

[3] R. Connelly, E. D. Demaine, and G. Rote. Straightening
polygonal arcs and convexifying polygonal cycles. Dis-
crete & Computational Geometry, 30(2):205–239, Septem-
ber 2003.

[4] E. D. Demaine, S. Langerman, J. O’Rourke, and J. Snoeyink.
Interlocked open linkages with few joints. In Proceedings
of the 18th Annual Symposium on Computational Geometry,
pages 189–198, 2002.

[5] E. D. Demaine and J. O’Rourke. Geometric Folding Algo-
rithms: Linkages, Origami, Polyhedra. Cambridge Univer-
sity Press, July 2007.

4

EuroCG’09 - Brussels, Belgium

68

Fitting a Point Set by Small Monotone Orthogonal Chains

J.M. Dı́az-Báñez∗ M. A. Lopez† C. Seara‡ I. Ventura§

Abstract

We study the problem of fitting a monotone orthog-
onal chain with a small number of links to a set S of
n points in the plane. The objective function is the
maximum orthogonal distance from S to the chain.
We show that the problem of fitting a chain with 2
links can be solved in O(n) time if the orientation is
fixed and O(n log n) time when the orientation is not
a priori known. Both algorithms are optimal.

1 Introduction and preliminaries

Fitting a curve of a certain type to a given point set in
the plane is a fundamental problem with applications
in many fields. In the Min-Max problem a polygonal
chain with k corners or joints is fitted to a data set
with the goal of minimizing the maximum vertical
distance from the input points to the chain (the so
called Chebyshev error). This problem was first posed
in [6] and solved in O(n2 log n) time. The complexity
has since been improved, first to O(n2) time [11] and
then to O(n logn) time [5].

We consider the case in which the points are fit-
ted by a monotone orthogonal polygonal chain, i.e., a
chain of consecutive orthogonal line segments where
the extreme segments are half-lines with the same
slope. The case in which the slope is given was first
solved in O(n2 logn) time [3], and subsequently in
O(n2) [10], and min{n2, nk logn} time [8]. Very re-
cently, Fournier and Vigneron [4] give an O(n) time
algorithm if the points are sorted according to their
x-coordinates, and an O(n log n) time algorithm for
the unsorted case. For the unsorted case the authors
prove the optimality for k = n, and give an Ω(n log k)
lower bound for the decision problem. Thus it may be
possible to find an algorithm with improved running
time depending on k. See Chen and Wang [2] for re-
cent results on some variants of this problem including
NP-hard results in 3D.

We focus here on the case where k is small, k = 2,

∗Dept. Matemática Aplicada II, Universidad de Sevilla,
Spain, dbanez@us.es. Supported by grant MTM2006-03909.

†Departament of Mathematics, University of Denver, USA,
mlopez@du.edu. Supported by grant 90YD0251/01.

‡Dept. de Matemàtica Aplicada II, Universitat Politècnica
de Catalunya, Spain, carlos.seara@upc.edu. Supported by
projects MEC MTM2006-01267 and DURSI 2005SGR00692.

§Dept. Matemática Aplicada II, Universidad de Sevilla,
iventura@us.es. Supported by grant MEC MTM2006-03909.

and also on the problem of finding the best direction
for fitting a monotone orthogonal polygonal chain.

Let S = {p1, . . . , pn} be a point set in the plane in
general position, where pi = (xi, yi). A k-orthogonal
chain O, k ≥ 1, is a chain with 2k − 1 consecutive
orthogonal segments (links) where the extreme seg-
ments are half-lines with the same slope. The orien-
tation θ of the chain O is the angle formed by their
extreme half-lines with the x-axis. Thus, O consists
of k segments of slope tan(θ) and k − 1 segments of
slope tan(θ + π

2). O is monotone with respect to an
orientation α if every line with slope tan(α+ π

2) inter-
sects the chain either in a point or in a segment with
slope tan(α+ π

2) (Figure 1).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

θ

U

K

Figure 1: A 6-orthogonal chain.

In this paper we deal with the problem of fitting a
monotone k-orthogonal chain O to a set S of n points
in the plane. The chain O with orientation θ divides
the plane into k strips with orientation (θ+π

2). Fitting
O to S is to locate k θ-oriented segments si(θ), i ∈
{1 . . . , k} according to a given optimization criterion.

Let li(θ) be the line passing through pi ∈ S with
orientation θ + π

2 . The fitting distance from pi to O
is given by df (pi,O) = minp∈li(θ)∩O d(pi, p). Notice
that df is not the Euclidean distance. However, df

is the Euclidean distance between pi and a point on
a segment with orientation θ. The error tolerance
of O with respect to S, denoted by µ(O, S), is the
maximum fitting distance between the points of S and
O, i.e., µ(O, S) = maxpi∈S df (pi,O). The k-fitting
problem can now be stated as follows:

Definition 1 Let S be a set of n points in the plane.
The k-fitting problem consists on finding a monotone
k-orthogonal chain such that its error tolerance with
respect to S is minimized.

1

Fitting a Point Set by Small Monotone Orthogonal Chains

69

2 The oriented fitting problem

We consider the problem of fitting a k-orthogonal
monotone chain with orientation θ. We assume that
θ = 0. Thus, we are looking for an x-monotone
rectilinear path consisting of an alternating sequence
of k horizontal and k − 1 vertical segments. If the
points are unsorted, Fournier and Vigneron [4] give
an O(n logn) time algorithm for this problem which
is optimal if k = n. The algorithm from Lopez and
Mayster is also O(n log n) if k is a constant. For the
sorted case Fournier and Vigneron [4] present an op-
timal O(n) time algorithm and an Ω(n log k) lower
bound for the decision problem. Thus, here we con-
sider the problem for small values of k, (in fact k = 2),
for the unsorted case.

For simplicity we assume that no two points lie
on the same vertical or horizontal line. The values
ymax = max{y1, . . . , yn} and ymin = min{y1, . . . , yn}
(similarly xmax and xmin) can be computed in linear
time. We assume that the points lie in the first quad-
rant and that xmin = 0, ymin = 0, xmax = c, and
ymax = d.

The oriented 2-fitting problem consists of finding
two horizontal half-lines joined by a segment con-
tained in a vertical line `. In an optimal solution,
` produces a bipartition of S into two subsets: S1

(S2) are the points of S to the left (right) of `. The
following lemma is straightforward:

Lemma 1 Line ` separates the two points in S with
y-coordinates ymin and ymax.

2.1 Linear time algorithm for the 2-fitting problem

InO(n) time compute the median of the x-coordinates
of S. Let ` be the vertical line at this median. In O(n)
time compute the subset S1 (resp. S2) of S to the left
(resp. right) of `, where |S1| = |S2| = n/2. In O(n)
time compute the tolerances ε1 of S1 and ε2 of S2,
and store the two pairs of points giving both toler-
ances. If ε1 = ε2, stop the algorithm. If ε1 < ε2 in
O(n/2) time compute the median of S2, reset ` as the
vertical line at this median value, compute the sub-
sets S′2 and S′′2 of the bipartition of S2 produced by
the new median, compute the tolerances ε′2 and ε′′2 of
S′2 and S′′2 . Compute max{ε′2, ε′′2} to decide the next
move of ` (left or right). Store the tolerance values
and the corresponding witness pairs as a temporary
values. Next compute and update the tolerances once
we know the next move of `. (If ε1 > ε2 we proceed in
a symmetric way). Compare the new tolerance values
and continue recursively translating the line ` left or
right by computing the new median of a subset with
half of the points and updating the new tolerance val-
ues (left and right) from the old ones. At all times
we have two unions at the extremes and an unknown
zone in between containing at most two strips.

Clearly, the time complexity of the algorithm is
T (n) = O(n/2) +O(n/4) +O(n/8) + · · · = O(n). By
Lemma 1 the optimal line ` will be located between
the two points in S with y-coordinates ymin and ymax.
The algorithm stops when either the tolerance values
ε1 and ε2 are equal, or when translating ` left and
right the bigger tolerance changes from ε1 to ε2 and
viceversa. In the last case the solution will be the
best of the two. Since the algorithm performs a bi-
nary search on a unimodal function, the method is
correct. Notice that the solution (position of line ` or
bipartition of S) is not unique because in an optimal
solution some points can belong to S1 or S2 without
changing the solution. We have the following result.

Theorem 2 The oriented 2-fitting problem can be
solved in Θ(n) time and space.

By the Ω(n log k) lower bound for the decision prob-
lem [4], it is clear that if k = o(logn) there is no linear
time algorithm for the unsorted case. Thus, we raise
the open question: for which range of values of k does
there exist a linear time algorithm?

2.2 An O(n logn)-time algorithm

We now show a slower O(n log n) time algorithm for
the same problem which has the advantage that it
can be used later in the algorithm for the un-oriented
2-fitting problem.

Given two points pi, pj ∈ S, a dominance relation
is established: pi dominates pj (pj ≺ pi), if xj ≤ xi

and yj ≤ yi. The relation ≺ is a partial order in S. A
point pi ∈ S is maximal if there does not exists pj ∈ S
such that i 6= j and pi ≺ pj . The maxima problem
consists of finding all the maximal points of S under
dominance and can be solved optimally in Θ(n logn)
time [9]. The solution can be extended with respect
to any orientation. We are interested in the maxima
for any of the four quadrants.

We compute ymax, ymin, xmax, xmin, and translate
the points in S to the first quadrant of the coordinate
system. We assume that p1 = (0, y1), pn = (c, yn),
pi = (xi, ymax), and pj = (xj , 0) (Figure 2). Suppose
that pi is to the left of pj . By Lemma 1, the vertical
line ` lies between pi and pj . We do the following:

..
(0, 0)

p1 = (0, y1)

pn = (c, yn)

`

y = b1

y = b2

S2

...............................

...............................

S1

S3

pi

pj

Figure 2: Staircaises formed by maxima points.

2

EuroCG’09 - Brussels, Belgium

70

1. In linear time classify the points of S as follows:
S1 is the point subset with x-coordinate less than
xi, S2 is the point subset with x-coordinate in
between xi and xj , and S3 is the point subset
with x-coordinate greater than xj . Let ni be the
number of points in Si, i = 1, 2, 3.

2. In O(n logn) time we can compute the sets of
maxima points of S with respect to each of the
four quadrants and join them, respectively, form-
ing the staircases structure as in Figure 2.

3. By Lemma 1, the line ` := (x = a) is in between
xi and xj , and, in order to find its right location,
we can do a binary search over the points in the
staircase structure (first and third quadrant) in
at most O(log n2) time such that we get the best
balance between the error tolerance on the left
and on the right side of `.

It is easy to see that the above staircases structure
can be used both for solving the 3-fitting and 4-fitting
problems with the same time complexity.

3 The un-oriented 2-fitting problem

The un-oriented 2-fitting problem has the orientation
θ as an additional parameter. The goal is to de-
termine an oriented line `θ with slope tan(π/2 + θ)
which splits S into two subsets Slθ and Srθ

where
(eu

lθ
, eb

lθ
) and (eu

rθ
, eb

rθ
) are the pairs of points giv-

ing the error tolerance of Slθ and Srθ
, respectively,

and such that its corresponding 2-orthogonal polyg-
onal chain Oθ minimizes the error tolerance of S for
any value of θ. The error tolerance is given by the for-
mula µ(Oθ, S) = max{dθ(eu

lθ
, eb

lθ
), dθ(eu

rθ
, eb

rθ
)}, where

dθ(p, q) denotes the distance between parallel lines
through p and q with orientation θ.

Let ymin,θ and ymax,θ be the minimum and maxi-
mum y-coordinates of the points in S when the coor-
dinate system is rotated by an angle θ. The following
lemma is a generalization of Lemma 1.

Lemma 3 An optimal fitting for S by an un-oriented
2-orthogonal polygonal chain with orientation θ is de-
termined by a line `θ through a point of S separating
the points with y-coordinates ymin,θ and ymax,θ.

In our approach we adapt the O(n logn)-time algo-
rithm for the oriented 2-fitting case as follows. First,
we identify the four quadrants of the coordinate sys-
tem by its oriented bisectors, i.e., by the four oriented
lines with slopes tan(θ+45), tan(θ+135), tan(θ+225),
tan(θ + 315). Next, we will use the results from Avis
et al. [1] about the computation of the so-called un-
oriented Θ-maxima.

Definition 2 A point p ∈ S is an un-oriented Θ-
maximum with respect to S iff there exist rays, C

and D, emanating from p with an angle at least Θ
between them so that the points of S lie outside the
(Θ-angle) cone defined by p, C and D.

Theorem 4 [1] Let S be a set of n points in the
plane. All un-oriented Θ-maxima points of S for Θ ≥
π/2 can be computed in O(n log n) time and O(n)
space. The algorithm is optimal for fixed values of Θ.

The main idea of the algorithm is to rotate the co-
ordinate system by an angle θ, 0 ≤ θ ≤ π/2, and
update the four staircase structure by inserting or
deleting points to each of the four staircases accord-
ing to the changes of the orientation θ. We can main-
tain four ordered lists of the current un-oriented π/2-
maxima points of S with respect to the four current
quadrants which bisectors have orientations θ + 45,
θ + 135, θ + 225, θ + 315. The lists correspond to
the points in the four staircases of the staircase struc-
ture. Precisely, this staircase structure will be main-
tained (with insertions and deletions) according to the
changes of the value θ.

As θ changes, the four staircases can be modified
because a new point of S become π/2-maxima or some
current π/2-maxima point of S has to be deleted. In
order to know the sequence of these events according
to the variation of θ, we use Theorem 4 to compute
the set of all un-oriented π/2-maxima points of S in
O(n log n) time together with their respective orien-
tation intervals. These orientation intervals are the
intervals where each point is un-oriented π/2-maxima
for S. Because we are looking for π/2-maxima points,
we know that a point can be π/2-maxima for at most 3
(disjoint) orientation intervals. Then, the total num-
ber of changes in the staircase structure is linear.

In order to know the sequences of events (insertion
and/or deletion of points in the staircase structure as
we rotate the coordinate system) we proceed as fol-
lows: suppose that we have computed the orientation
intervals for each point pi ∈ S, being π/2-maxima in
some orientation in [0, 2π]. A point p ∈ S can have
0, 1, 2 or 3 disjoint orientation intervals. We can
sweep the set of these intervals from 0 to 2π with a
vertical line, knowing for a particular orientation α
which are the set of π/2-maxima points for that ori-
entation. Analogously, for the orientations α + 90,
α + 180, and α + 270. Thus, with the sweeping we
can know which is the sequence of the points to be
inserted or deleted in the four staircase structure ac-
cording to the changes of orientation.

Once we have computed the orientation intervals of
the π/2-maxima points of S, the algorithm does a ver-
tical sweep of these intervals (from θ = 0 to θ = 90)
with four vertical lines corresponding to the orienta-
tions θ, θ + 90, θ + 180, and θ + 270, stoping at each
event (endpoint interval), updating the four staircase
structures. Since the points are in general position,

3

Fitting a Point Set by Small Monotone Orthogonal Chains

71

only a constant number of updates can occur at some
event. We compute the optimal solution correspond-
ing to the staircase structure in between two consec-
utive events θ1 and θ2, by computing a line ` with
slope tan(θ + 90). By Lemma 3, for θ ∈ [θ1, θ2], the
line ` giving the optimal solution for θ has to sepa-
rate the points with y-coordinates ymin,θ and ymax,θ.
In this way, the optimal solution is determined by two
pairs of points, either (i) (ymax,θ, e

b
lθ

) and (eu
rθ
, ymin,θ)

if ymax,θ is on the left side of ymin,θ, or (ii) (eu
lθ
, ymin,θ)

and (ymax,θ, e
u
rθ

) if ymax,θ is on the right side of ymin,θ,
giving the error tolerance in Slθ and Srθ

. Now, in or-
der to compute the optimal solution in between two
consecutive events, we use the next lemma.

Lemma 5 As we rotate counterclockwise the coor-
dinate system, the vertical distances giving the error
tolerance for the staircases of the first and third quad-
rants is monotone.

As a consequence of Lemma 5, the optimal solution
for an interval of orientations θ ∈ [θ1, θ2] has to be
in the extreme of the interval, so either in θ1 or in
θ2. Since a point p ∈ S can become un-oriented π/2-
maximum for at most three disjoint oriented inter-
val, this imply that the number of updates (insertions
and deletions) for the entire staircase structure as θ
changes from 0 to π/2 is linear. Any update can be
done in O(log n) time and for a fixed value of θ we can
compute in O(logn) time by binary search the opti-
mal location of the line ` with its corresponding error
tolerance (maintaining the minimum). We conclude
the following result.

Theorem 6 The un-oriented 2-fitting problem can
be solved in Θ(n logn) time and O(n) space.

Notice that the un-oriented 1-fitting problem is
equivalent to the problem of computing the width of a
point set [7]. The Ω(n log n) time lower bound for the
un-oriented 1-fitting problem implies the same bound
for the un-oriented 2-fitting problem. Nevertheless
we have constructed specific reductions to MAX-GAP
problem for any given k.

4 Extensions to 3D

We have considered the oriented 2-fitting problem in
3D where a polygonal chain is a configuration of or-
thogonal planes. For the oriented 2-fitting problem
we have algorithms which time complexities are in
between O(n) and O(n2) depending of which infor-
mation is fixed: (1) fixing the orientation of both the
separating plane and the supported planes of the sub-
sets of the bipartition, O(n) time; (2) fixing the ori-
entation of the separating plane, O(n2) time; and (3)
fixing the orientation of the supporting planes, O(n2)

time. See [2] for NP-hard results for the 3D fitting
problem.

Acknowledgements. These problems were posed
and partially solved during the Third Spanish Work-
shop on Geometric Optimization, July 4-8, 2006, El
Roćıo, Huelva, Spain.

References

[1] D. Avis, B. Beresford-Smith, L. Devroye, H. El-
gindy, E. Guvremont, F. Hurtado, and B. Zhu.
Unoriented Θ-maxima in the plane: complexity
and algorithms. SIAM Journal of Computing, 28
(1999) 278–296.

[2] D. Z. Chen and H. Wang. Approximating points
by piecewise linear functions. 18th Fall Workshop
on Computational Geometry, 2008, Rensselaer
Polytechnic Institute, NY, USA.

[3] J. M. Dı́az-Báñez and J. A. Mesa. Fitting recti-
linear polygonal curves to a set of points in the
plane. European Journal of Oper. Research, 130
(2001), 214–222.

[4] H. Fournier and A. Vigneron. Fitting a step func-
tion to a point set. LNCS 5193, 2008, 442–453.

[5] M. T. Goodrich. Efficient piecewise-linear func-
tion approximation using uniform metric. Dis-
crete and Computational Geometry, 14, (1995),
445–462.

[6] S. L. Hakimi and E. F. Schmeichel. Fitting
polygonal functions to a set of points in the
plane. Graphical Models and Image Processing,
53, (1991), 132–136.

[7] D. T. Lee and Y. F. Wu. Geometric complexity of
some location problems. Algorithmica, 1 (1986)
193–211.

[8] M. A. Lopez and Y. Mayster. Approximating a
set of points by a step function. Journal of Vi-
sual Communication and Image Representation,
17 (2006) 1178-1189.

[9] F. P. Preparata and M. I. Shamos. Computa-
cional Geometry, an Introduction, Springer-
Verlag, 1988.

[10] D. P. Wang. A new algorithm for fitting a rec-
tilinear x-monotone curve to a set of points in
the plane. Pattern Recognition Letters, 23 (2006)
329–334.

[11] D. P. Wang, N. F. Huang, H. S. Chao, and R. C.
T. Lee. Plane sweep algorithms for polygonal ap-
proximation problems with applications. Lecture
Notes in Computer Science, 762 (1993) 515–522.

4

EuroCG’09 - Brussels, Belgium

72

Point Distance Problems with Dependent Uncertainties

Yonatan Myers and Leo Joskowicz ∗

Abstract

We address distance problems for planar points whose
location is uncertain and possibly coupled. Point co-
ordinate uncertainties are modeled with the Linear
Parametric Geometric Uncertainty Model (LPGUM).
The model is a general and computationally efficient
worst-case first-order linear approximation of geomet-
ric uncertainty that allows for dependencies among
uncertainties. We formulate closest pair, diameter,
width, and bounding box problems in LPGUM, sum-
marize and extend known results for independent
point uncertainties, and describe new algorithms for
dependent ones.

1 Introduction

Geometric uncertainty is ubiquitous in mechanical
CAD/CAM, robotics, computer vision, and many
other fields. Sensing, measurement, and manufactur-
ing processes are intrinsically imprecise, and thus re-
quire realistic geometric uncertainty models and com-
putationally efficient algorithms. Recent research has
focused on modeling and computing with geometric
imprecision [1, 3, 7, 9].

We address distance problems for planar points
whose location is uncertain and possibly coupled.
Point distance problems include closest/farthest point
pair, minimum/maximum diameter, and many more.
In the nominal case (no uncertainty) these problems
are well understood and have optimal solutions. How-
ever, when points locations are imprecise, distance
problems may be ill-defined and harder to solve de-
pending on the uncertainty model.

Most geometric uncertainty models represent the
point location uncertainty as a simple, iso-centric, and
independent region of the plane containing the nom-
inal point. Point uncertainty regions can be circles
[2, 5], squares [7] or convex polygons [4]. In most
cases, point distance problems are efficiently solved
with existing algorithms because the regions are sim-
ple and the uncertainties are independent of each
other [7]. In other cases, the problems are NP-hard
[6]. Robust, finite precision, and epsilon geometry
techniques are only applicable for very small uncer-
tainties. Sampling-based methods, widely used in en-

∗School of Engineering and Computer Science, The
Hebrew University of Jerusalem, ISRAEL. Emails:
yoni m@cs.huji.ac.il, josko@cs.huji.ac.il

gineering, are general but only provide approximate
answers and are computationally intensive.

A key drawback of existing geometric uncertainty
models is that they cannot model mutually depen-
dent uncertainties, which are very common in prac-
tice [10]. For example, part measuring and machining
processes rely on reference geometric features such as
planes and axes to define other part features and di-
mensional chains. Thus, feature variations are cou-
pled to variations in the reference and chain features.
Assuming independent errors often overestimates the
actual error and leads to suboptimal solutions.

We have recently introduced the Linear Paramet-
ric Geometric Uncertainty Model (LPGUM) [9]. The
model is a general, expressive, and computationally
efficient worst-case first-order linear approximation of
geometric uncertainty that allows for coupling be-
tween uncertainties. Points are defined by common
parameters with uncertainty intervals. The uncer-
tainty zones around nominal point locations are de-
fined by uncertainty sensitivity matrices whose entries
indicate the point coordinates sensitivity to parame-
ters variations and their dependencies. We have de-
veloped efficient algorithms for computing uncertainty
zones of points and lines in the plane and for answer-
ing relative point and line positioning queries.

In this paper we formulate closest pair, diameter,
and bounding box problems in LPGUM, summarize
and extend known results for independent uncertain-
ties, and describe new algorithms for dependent ones.

2 LPGUM of a point

The LPGUM of a point in the plane is defined as
follows [9]. Let q = [q1, q2, ..., qk]T be a vector of
k parameters over an uncertainty domain ∆. Each
parameter has an uncertainty interval ∆i = [q−i , q+

i]
from which it can take a value. The parameters’ un-
certainty domain ∆ = ∆1×∆2 . . .×∆k is the product
of the parameters uncertainty intervals. The nominal
parameters vector q̄ = (q̄1, ..., q̄k) is the parameters
vector values with no uncertainty. WLOG, we as-
sume that the uncertainty intervals are zero-centered
symmetric, e.g., −q−i = q+

i and q̄ = 0 (asymmetric
domains are made symmetric by adjusting the nomi-
nal parameter value and its interval).

Every point is associated with a 2 × k uncertainty
sensitivity matrix Av. The matrix entries are con-
stants that quantify the sensitivity of the point coor-

1

Point Distance Problems with Dependent Uncertainties

73

dinates to the parameters. Entry Av[i, j] determines
the first-order linear dependence of coordinate i to qj

(i = 1 for x, i = 2 for y). It is zero when coordinate i
is independent of parameter qj .

The LPGUM of point v(q) is defined by (v̄, Av, q, ∆)
where v̄ is the nominal point location, Av is the uncer-
tainty sensitivity matrix, q is the parameters vector,
and ∆ is the parameters uncertainty domain.

The point LPGUM defines the set of possible points
locations for instances of parameters vector q:

v (q) = v̄ + Avq

In the nominal case, q̄ = 0 and v(0) = v̄.
The uncertainty zone of v is the region of R2:

Z(v(q)) = {v | v = v̄ + Aq, q ∈ ∆}
Its boundary is a zonotope (a centrally symmetric
polygon) BZ(v(q)) = {z1, z2, ..., zl} with at most 2k
vertices, 2 ≤ l ≤ 2k . The vertices are point instances
of extremal parameters values, q−j or q+

j . The zono-
tope can be computed in optimal O(k log k) time [9].

3 Distance between two LPGUM points

Let u(q) and v(q) be two LPGUM points defined by
(v̄, Av, q, ∆) and (ū, Au, q, ∆), respectively:

u (q) = ū + Auq

v (q) = v̄ + Avq

Note that both independent and dependent uncertain
points can be modeled. Points whose uncertainty is
independent are modeled with a parameters vector q
consisting of two vectors q = (qu, qv) of size ku and
kv, k = ku + kv. The 2 × k uncertainty sensitivity
matrices are Au, Av. The first ku columns of Au are
constants that reflect the dependence of u coordinates
on each parameter of qu; the remaining kv columns of
Au are set to zero (no dependence on qv). Similarly,
the first ku columns of Av are set to zero; the remain-
ing kv columns are set to constants that reflect the
dependence of v coordinates on each parameter of qv.
Dependent uncertain points are modeled with a joint
parameters vector q. The entries of Au, Av are set
appropriately to reflect the dependencies.

For example, let ū = (0, 0) and v̄ = (2, 1) be two
nominal points (Fig. 1). Point u has a ±1 uncer-
tainty in x and no uncertainty in y; v has no un-
certainty in x and ±1 in y. When their uncertain-
ties are independent, each point is defined by a pa-
rameter qu, qv ∈ [−1, 1]. Their parameters vector is
q = (qu, qv) and their uncertainty sensitivity matrices
are Au = [1 0|0 0] and Av = [0 0|0 1]. When the un-
certainties are dependent, the points are defined by
a common parameter q ∈ [−1, 1] and their sensitivity
matrices are Au = [1 0]T and Av = [0 1]T . Their
zonotopes are line segments (u−, u+) and (v−, v+).

3

313

v +

v −u +u − u

v

1

Figure 1: Example of pairwise distances.

The distance between two LPGUM points is the
Euclidean distance between the point instances for
the same parameters vector instance q:

dist (u (q) , v (q)) = ‖u (q)− v (q)‖
The minimum (maximum) distance between two
LPGUM points is the smallest (largest) distance be-
tween point instances for the same parameters vector:

min-dist(u(q), v(q)) = min
q∈∆

‖u (q)− v (q)‖
max-dist(u(q), v(q)) = max

q∈∆
‖u (q)− v (q)‖

The minimum and maximum distances can dif-
fer for independent and dependent point uncertain-
ties. In Fig. 1, the independent and dependent mini-
mum and maximum distances are 1 (u+, v−) and

√
3

(u+, v+), and 3 (u−, v−) and
√

13 (u−, v−) respec-
tively. Note that the dependent scenario distances are
tighter than those of the independent one. In fact, it
can be shown that the minimum and maximum dis-
tances of the independent version of a dependent sce-
nario are its conservative lower and upper bounds.

Minimum and maximum distances between two
LPGUM points are bounded quadratic optimization
problems solved with quadratic programming.

We now describe an alternative geometric opti-
mal algorithm. Let w (q) be a new LPGUM point
(w̄, Aw, q, ∆) such that w(q) = u (q)−v (q), w̄ = ū− v̄,
and Aw = Au −Av. The pairwise maximum distance
occurs when w(q) is furtherest from the origin. By
convexity, since w(q) is an LPGUM point, its furthest
point from the origin is a zonotope vertex. To find it,
we compute BZ(v(q)) in O (k log k), find its furthest
vertex from the origin in O(k), and report its param-
eters vector instance. To find the minimum pairwise
distance, we test if the origin is inside the zonotope
in O(k). If it is, the minimum distance is zero and
its parameters vector is the solution to w̄ + Awq = 0.
Otherwise we find the closest point of the zonotope to
the origin in O(k) and report its parameters vector.

4 Distance problems for n LPGUM points

Let V(q) = {v1(q), ..., vn(q)} be a set of n LPGUM
points, each defined by (v̄i, Avi , q, ∆).

2

EuroCG’09 - Brussels, Belgium

74

Problem Model Smallest Largest

Closest Pair independent O (nk log nk) [7]* NP-hard [6]
dependent O

(
n2k log k

)
Diameter independent O (nk log nk) [7]* O (nk log nk) [7]*

dependent O
(
n2k log k

)
Width independent O (nk log nk) [7]* NP-hard [7]dependent

Axis-Aligned independent O (nk) [7]* O (nk) [7]*
dependent perimeter O(n4LP (k)) O(n4LP (k))

Bounding Box dependent area O(n4QP (k)) O(n4QP (k))

Table 1: Time complexities of distance problems for n LPGUM points with independent and dependent un-
certainties, where k is the maximum number of parameters of a point (independent) or the total number of
parameters of all points (dependent) and LP (k), QP (k) are the k-variable LP and QP problem complexities.
* Extention of [7]

For a given parameters vector instance q, V(q) is the
set of points obtained by substituting q in each point
LPGUM. The minimum and maximum distances of
V(q) are the smallest and largest pairwise distance
between the corresponding point distances:

min-dist(V(q)) = min
i,j

dist (vi(q), vj(q))

max-dist(V(q)) = max
i,j

dist (vi(q), vj(q))

When parameters vector q is unspecified, V(q) is a set
of uncertainty zones Z(vi(q)). Point distance prob-
lems involve finding the parameters vector instance
q and points vi(q), vj(q) that maximize or minimize
the pairwise point instances distances. This raises a
family of distance problems, which we formulate next.

Problem 1 Smallest possible distance
The smallest distance of all point pairs instances

smallest-dist(V(q)) = min
q∈∆

min-dist(V(q))

Problem 2 Largest possible distance
The largest distance of all point pairs instances

largest-dist(V(q)) = max
q∈∆

max-dist(V(q))

Problem 3 Largest smallest distance
The largest distance of closest point pairs instances

largest-smallest-dist(V(q)) = max
q∈∆

min-dist(V(q))

Problem 4 Smallest largest distance
The smallest distance of furthest point pairs instances

smallest-largest-dist(V(q)) = min
q∈∆

max-dist(V(q))

These four distances provide useful information about
the uncertain points set. The smallest and largest
possible distances indicate how close and how far two

point instances can ever get. They are the lower and
upper bounds on pairwise point distances and the di-
ameters of the minimum enclosed and maximum en-
closing circles. The corresponding point pairs are the
closest and furthest point pairs. The largest smallest
and smallest largest distances indicate how far the
closest points and how close the furthest points can
ever get. They are the upper and lower bounds on
the smallest and largest pairwise point distances and
the maximum diameter of the minimum enclosed cir-
cle and minimum diameter of the maximum enclosing
circle. Note that the parameters vector instances that
achieve these distances might all be different.

Closely related problems concern the width and the
Axis Aligned Bounding Box (AABB). The smallest
(largest) width of V(q) is the smallest (largest) dis-
tance between any pair of parallel lines each supported
by points vi(q), vj(q) that contain all points instances
(the definition of p-dist is omitted for lack of space).

Problem 5–6 Smallest and largest width
The smallest/largest parallel strip width

min-width(V(q)) = min
i,j

p-dist (vi(q), vj(q))

max-width(V(q)) = max
i,j

p-dist (vi(q), vj(q))

The smallest (largest) AABB is the smallest (largest)
perimeter/area axis-aligned rectangle that contains
all points instances vi(q). Let vix(q), viy(q) be the x, y
coordinates of vi(q). The AABB width and height are:

width(V(q)) = max
i,j

(vix(q)− vjx(q))

height(V(q)) = max
i,j

(viy(q)− vjy(q))

Problem 7–10 Smallest and largest AABB
The smallest/largest perimeter/area AABB

smallest-pb(V(q)) = min
q∈∆

(width(V(q)) + height(V(q)))

largest-pb(V(q)) = max
q∈∆

(width(V(q)) + height(V(q)))

3

Point Distance Problems with Dependent Uncertainties

75

smallest-ab(V(q)) = min
q∈∆

(width(V(q)) · height(V(q)))

largest-ab(V(q)) = max
q∈∆

(width(V(q)) · height(V(q)))

We distinguish between independent and dependent
point uncertainty models. Points with independent
uncertainties are modeled with n independent param-
eters vectors qi of size ki such that q = (q1, .., qn),∑

ki = k. Their uncertainty regions are bounded
by zonotopes BZ(vi(q)) = {zi1, . . . zil}, 1 ≤ i ≤ n,
2 ≤ li ≤ 2ki. Distance problems reduce to finding
distances between possibly overlapping convex poly-
gons whose total complexity is O(nk). Previous works
address these problems for discs and squares [7]. In
many cases the results extend directly to convex poly-
gons. Distance problems for points with dependent
uncertainties have not been studied and are often
harder to solve.

5 Solutions to LPGUM point distance problems

Table 1 summarizes known and new results [7].
The smallest/largest closest pair distance (Prob-

lems 1 and 2) are solved in O(n2k log k) by computing
the smallest/largest distance between all point pairs
min-dist(vi(q), vj(q)) and max-dist(vi(q), vj(q)). For
independent point uncertainties the problems reduce
to finding the smallest/largest pairwise distance of n
convex polygons, which can be solved in O(nk log nk)
with a direct extension of the algorithms in [7].

The largest closest pair distance (Problem 3) is
NP-hard for independent points whose uncertain-
ties are squares [6] and is thus also NP-hard for
LPGUM points. The smallest largest distance (Prob-
lem 4) for independent point uncertainties is solved
in O(nk log nk) for k = max{ki} [8]. The problem is
open for dependent point uncertainties.

The largest width (Problem 6) is NP-hard for ar-
bitrarily oriented line segments [7], so it is also NP-
hard for LPGUM points. The smallest width (Prob-
lem 5) for independent point uncertainties is solved in
in O(nk log nk) with convex hull and rotating calipers
techniques. The problem is open for dependent point
uncertainties.

The smallest/largest AABB perimeter/area (Prob-
lems 7–10) for independent point uncertainties are
solved in O(nk) by independently computing the max-
imum height and maximum width [7]. For depen-
dent point uncertainties, the smallest/largest AABB
perimeter/area optimization problems are (replace
min by max for the largest AABB):

min
q∈∆

max
i,j,k,l

((vix(q)− vjx(q)) + (vky(q)− vly(q)))

min
q∈∆

max
i,j,k,l

((vix(q)− vjx(q)) · (vky(q)− vly(q)))

A direct solution is to solve k-variable Linear Pro-
gramming (LP) and Quadratic Programming (QP)

problems for each point quadruple in O(n4LP (k) and
O(n4QP (k)), where LP (k) and O(n4QP (k)) are the
times required to solve the LP and QP problems.

It remains an open question if these problems can
be solved more efficiently with a geometric approach.

6 Conclusion

Dependent point uncertainties are common in prac-
tice and have not been systematically studied. We
formulate closest pair, diameter, width, and bound-
ing box problems in the Linear Parametric Geomet-
ric Uncertainty Model (LPGUM), summarize and ex-
tend known bounds and algorithms for independent
point uncertainties, and describe new ones for depen-
dent point uncertainties. In most cases, the added
complexity is sub-quadratic in the number of param-
eters and points, with higher complexities for depen-
dent point uncertainties. We are currently developing
algorithms to compute the width, convex hull, and
Voronoi diagram of LPGUM points.

References

[1] M. Abellanas, F. Hurtado and P. Ramos. Structural
tolerance and Delaunay triangulation. Information
Processing Letters 71:221–227, 1999.

[2] S. Akella and M. Mason. Orienting toleranced polyg-
onal parts. Int. J. Robotics Res 19(12):1147–70, 2000.

[3] I. Averbakh and S. Bereg. Facility location problems
with uncertainty on the plane. Disc. Opt.2:3-34, 2005.

[4] R. C. Brost and R. R. Peters. Automatic design of 3D
fixtures and assembly pallets. Proc. IEEE Int. Conf.
on Robotics and Automation, pp 495–502, USA , 1996.

[5] J. Chen, K. Goldberg, M. Overmars, D. Halperin, K.-
F. Böhringer, and Y. Zhuang. Computing tolerance
parameters for fixturing and feeding. The Assembly
Automation Journal 22:163–172, 2002.

[6] J. Fiala, J. Kratochv́ıl, and A. Proskurowski. Sys-
tems of distant representatives. Discrete Appl. Math.
145(2):306–316, 2005.

[7] M. Löffler and M. van Kreveld. Largest bounding box,
smallest diameter, and related problems on imprecise
points. Algorithms and Data Structures, Lecture Notes
in Computer Science 4619, pp 446–457. Springer, 2007.

[8] N. Meggido. Linear-time algorithms for linear pro-
gramming in R3 and related problems. SIAM J. Com-
puting 12(4):759–776, 1983.

[9] Y. Myers and L. Joskowicz. The linear parametric
geometric uncertainty model: points, lines and their
relative positioning. Proc. 24th European Workshop on
Computational Geometry pp 137– 140, France, 2008.

[10] Y. Ostrovsky-Berman and L. Joskowicz. Tolerance
envelopes of planar mechanical parts with parametric
tolerances. Computer-Aided Design 37(5):531-44, 2005

4

EuroCG’09 - Brussels, Belgium

76

An Improved Algorithm for Inserting a Highway in a City Metric Based on
Minimization of Quasiconvex Functions

Matias Korman∗ Takeshi Tokuyama∗

Abstract

We introduce an improved algorithm to locate a seg-
ment highway such that the maximum city distance
between a given set of n points is minimized (where
the city distance is measured with speed v > 1 on a
highway and 1 in the underlying metric elsewhere).
We consider that such highway is built in a complex
transportation system with H other highways and
obstacles. The algorithm runs in O(n3H3(log2 n +
log H)) time using O(nH) space improving the previ-
ous O(n4H4) time and space bound.

1 Introduction

We consider a city that has some kind of transporta-
tion facility (i.e., bus, train, . . .) that speeds up the
travel time of its passengers. Imagine that we travel
in such a city starting from p towards a destination
q: we normally should not go along the geometric
shortest path, which is the straight line segment pq;
instead, we may take a detour to ride a train, and we
must also avoid obstacles like buildings. We model
the transportation system by a set of highways and
obstacles. Under that environment we would like to,
given a set of points S, a set of polygonal obstacles O,
and a set of existing highways H, locate a new high-
way to reduce the diameter of S (i.e: the maximum
distance among all possible pairs of points in S).

Cardinal and Langerman considered the problem of
locating a line highway (of infinite length) to reduce
the diameter of a given set of n points without any
prelocated highways/obstacles if v =∞ in [5] . Their
algorithm has quadratic time complexity and was fur-
ther improved by Ahn et al. in [1]: Θ(n) time to locate
an axis aligned highway (of any speed) and Θ(n logn)
if the highway can be arbitrarily oriented. Further
research by Cardinal et al. [4] gave a Θ(n log n) algo-
rithm to locate an axis aligned segment highway using
LP optimization techniques.

The above algorithms can only be used if no high-
ways have been built. Thus, by applying any of those
methods we obtain a transportation system with only
one highway. Several optimization problems of insert-
ing a new highway in a city metric or generalized city

∗Graduate School of Information Sciences, Tohoku Univer-
sity, Sendai, Japan, {mati,tokuyama}@dais.is.tohoku.ac.jp

metric were considered in [7] and [8]. In particular,
an O(n4H4) time and space algorthm was proposed
in [8] to minimize the city diameter by optimally lo-
cating an axis-alighed highway of unit length in an
environment with H prelocated highways.

In this paper, we focus on the case that the under-
lying metric is L1, all highways axis parallel of equal
speed and all obstacles are nonoverlapping open poly-
gons. The induced metric is called the generalized
city metric [3] (city metric if there is no obstacle).
We note that our algorithm could work under other
metrics, allow overlapping obstacles and a constant
number of speeds and orientations for the highways
without much modification.

1.1 Notations

A highway is a facility supporting faster movement
along it, which is represented by an axis aligned seg-
ment on the plane. Given an underlying metric d,
each highway h is associated with its speed v(h) > 1.
Under the time metric, a traveler moves at speed v(h)
when moving along highway h, and at the unit speed
otherwise. We consider a highway only accessible
through its endpoints1. An obstacle is a region that
a traveler is not allowed to cross, and represented by
a simple polygon. We note that a different kind of
highway that allows access through any point (called
freeway) has also been considered. Our algorithm can
be generalized to work in a hybrid environment with
both kinds of highways, but for simplicity in the ex-
position we assume that no freeway exists. In Fig-
ure 1 we can see a sample problem with four points,
four highways and an obstacle (and the diameter as
a dashed polygonal chain). In Figure 2, a new high-
way h has been located and the diameter has been
reduced.

A feasible path is a polygonal path avoiding all ob-
stacles in O. The travel time of any feasible path π
between two points is the sum of travel time of edges
of π obtained by dividing the length of the edge in
the underlying metric by the travel speed associated
to each edge. We call a feasible path π connecting
s and t a shortest (travel time) path if π minimizes
the travel time between s and t. Let dH,O(s, t) be the

1This highway type has been named walkway or turnpike
[7, 4] in the literature.

1

An Improved Algorithm for Inserting a Highway in a City Metric

77

Figure 1: Example of generalized city metric Figure 2: Updated diameter once h is inserted

travel time of a shortest path between s and t induced
by H and O .

Without loss of generality, we consider that the new
highway to build h is vertical of unit length (since we
can rotate and scale the problem to transform the
general problem into this one). The insertion of such
highway h is parameterized by the location of its bot-
tom endpoint β. We denote the inserted highway hβ

and Hβ for the updated set of highways (i.e.: Hβ =
H⋃{hβ}). Regarding β = (x, y) as a function of its
two coordinates, we define Fs,t(x, y) = dH(x,y),O(s, t)
for any pair of points s, t ∈ S. The diameter D is
the minimum value of the upper envelope of the set
{Fs,t|s, t ∈ S}, which is a bivariate function. We will
bound the running time of our algorithms by n and
H , the number of points in S and the complexity of
the transportation network (highways and obstacles),
respectively.

2 Framework using quasiconvex optimization

Although time metric diameter minimization prob-
lems are not LP problems in general, Cardinal
et.al. [4] proposed a novel quasi-convex optimization
method to solve a diamater minimization problem
that works under the city metric. Their method is
based the randomized parametric searching method-
ology of Chan [6] . A function f is called quasi-
convex if its lower level sets are convex (i.e.: the
set {x|f(x) < t} is convex for any value of t). It
was shown in [4] that functions Fs,t are quascon-
vex if O = H = ∅. The main tool is the following
theorem obtained from a more general result given
in[4](Theorem 5):

Theorem 1 For any given S, the point p ∈ R2 that
minimizes F (p) = maxi{Fs,t(p)|s, t ∈ S} can be com-
puted in O(P (n)) time using O(n) space, provided
that we can compute F (p) for any p ∈ R2 in O(P (n))
time and P (n)/nε is monotone increasing in n for a
suitable constant ε > 0.

Our overall plan is to generalize this idea to our
problem. Unfortunately, such method is not directly
applicable, since quasiconvexity does not hold if one
or more prelocated highway or obstacle exists (see fig-
ure 3). Nevertheless, we can utilize Theorem 1 by

Figure 3: Non-quasiconvexity of Fs,t functions: loca-
tion is optimal if the new highway is inside either of
the grey rectangles.

partitioning the plane into regions such that quasi-
convexity of Fs,t restricted to each region is certified.
Having local quasiconvexity, we will apply Theorem 1
for each region independently. By iterating among all
possible regions, the global optimal is obtained.

For the purpose, Theorem 1 must be adapted to
work in a restricted region:

Lemma 2 For any given S, H and a convex
region c, the point p ∈ R2 that minimizes
F (p) = maxi{Fs,t(p)|s, t ∈ S} can be computed in
O(P (n, H)) time using O(n+H) space, provided that
we can compute F (p) for any p ∈ R2 in O(P (n, H))
time and P (n, H)/nε is monotone increasing in n for
a suitable constant ε > 0.

We apply the randomized parametric search paradigm
of Chan [6]. We omit details of the proof in this
version, since it is a direct consequence of Chan’s
method.

We say that a plane subdivision R is admissible if
for any cell c ∈ R and s, t ∈ S, function Fs,t is qua-
siconvex in c. In the following, we construct of an
admisible subdivision AH of low complexity. We can
then use an efficient algorithm (Theorem 3 given be-
low) to compute the diameter to design our algorithm
for finding the optimal location of the highway.

Theorem 3 ([3]) The city diameter of a set of points
S of n points can be computed in O(nH(log2 n +
log H)) time using O(n + H) space.

The time complexity of the algorithm in the above
theorem becomes P (n, H). Lemma 2 implies that for

2

EuroCG’09 - Brussels, Belgium

78

each cell c in AH, we can compute the optimal loca-
tion of (the lowest point of) newly inserted vertical
highway in O(P (n, H)) time, and we simply apply
the method for every cell of c. Thus, if the complex-
ity of AH is Q(n, H), we can find the optimal loca-
tion of the inserted highway in O(P (n, H)Q(n, H)) =
O(Q(n, H)nH(log2 n + log H)) time. Thus, it suffices
to construct an admissible AH and analyze Q(n, H).

3 Construction of an admissible subdivision

The shortest path map is the subdivision of a plane
into regions of points with the same combinatorial
strucure of shortest paths towards a destination (or
a source) introduced by Mitchell in [9]. In our case,
the shortest path map with the source point s ∈ R2

(SPM(s,H,O) for short) is defined as the subdivision
of the plane into cells such that all the points in one
cell have combinatorially equivalent paths to s. We
are not only interested in combinatorial equivalence of
paths, but also the exact distance functions: for any
s ∈ S we define fs(x, y) = dH,O(s, (x, y)) representing
the distance between a fixed point s and p = (x, y).
The following Theorem is given by Bae et al.:

Theorem 4 ([2]) SPM(s,H,O) has Θ(H) com-
plexity, and can be constructed in Θ(H log H) time.
Moreover, in each cell c of SPM(s,H,O)), the func-
tion fs is linear and its coefficients are {±1,±1/v}
(i.e.: fs(x, y)|c = k1x + k2y + k3 where k1, k2 ∈
{±1,±1/v} and k3 > 0).

We note that the Theorem stated in [2] consid-
ered a transportation network with freeways and ob-
stacles (no turnpikes), but it was adapted for the
generalized city metric in [3]. The computation of
SPM(s,H,O) simulates the wavefront propagation
from s: the wavefront is defined as W (δ) = {p ∈ R2 |
dH,O(p, s) = δ} for any positive δ. In particular, un-
der the L1 metric, the wavefront W (δ) is a set of line
segments, called wavelets. Subdivision SPM(s,H,O)
is computed by tracking the topological and geomet-
ric changes of W (δ), since its vertices trace the edges
of the SPM(s,H,O).

We consider the translation of a region R : let eλ =
(0, λ), we define R+eλ = {(x, y) ∈ R2|(x, y)+eλ ∈ R}.
We also define R + eλ = {R1 + eλ, . . . Rk + eλ} for a
plane subdivision R = {R1, . . . Rk}. That is: subdi-
vision R+ eλ is the result of vertically shifting down
λ units subdivision R. We also define the transla-
tion of a bivariate function f(x, y) by one unit: let
f+(x, y) = f(x, y + 1).

We define AH as the overlay the regions
SPM(s,H,O), SPM(s,H,O)+ e1, SPM(s,H,O)+
e(1/2−1/2v) and SPM(s,H,O) + e(1/2v−1/2) for every
s ∈ S. By definition, two points are in the same cell
of AH if they are in the same cell of the 4n subdi-
visions. AH can be constructed by first computing

SPM(s,H,O) for each s and then their union (to-
gether with its vertically shifted copies) by applying
the plane sweep method. Total cost of the algorithm
is O(Q(n, H) log nH) computational time. Since we
are overlaying 4n different regions each of which has
size O(H), we have Q(n, H) ∈ O(n2H2).

Before proving admissibility of AH, we need some
observations: for any fixed s, t ∈ S, let π1 = dH(s, t),
π2(β) = fs(β) + 1/v + f+

t (β) and π3(β) = f+
s (β) +

1/v + ft(β). We have:

Lemma 5 For any s, t ∈ S, β ∈ R2, we have
Fs,t(β) = min{π1, π2(β), π3(β)}. Moreover, if
π2(β) < π1, we have fs(β) + 1/v < f+

s (β) (analo-
gously, if π3(β) < π1 then f+

s (β) + 1/v < fs(β)).

Proof. The shortest path between s and t in the up-
dated configuration either does not use the new high-
way (and then Fs,t = dH(s, t)) or uses the highway
upward (Fs,t = fs(β)+1/v+f+

t (β)) or the highway is
used downward (Fs,t = f+

s (β)+1/v+ft(β)). The sec-
ond claim is proved by the fact that π1 = dH(s, t) ≤
f+

s (β)+f+
t (β) and thus π2(β) < π1 =⇒ fs(β)+1/v+

f+
t (β) < f+

s (β) + f+
t (β) ⇐⇒ fs(β) + 1/v < f+

s (β)
(analogously for π3). !

We say that two points β2, β3 ∈ R2 are opposite if
there exist s, t ∈ S such that the shortest path of s and
t uses the new highway upward in Hβ2 and downward
in Hβ3 . We have the following:

Lemma 6 There cannot be a pair of opposite points
in the same cell of AH.

Proof. Proof of the lemma is by contradiction: as-
sume that there exists s, t ∈ S, cell c ∈ AH, and two
points β2, β3 ∈ c that satisfy Fs,t(β2) = π2(β2) and
Fs,t(β3) = π3(β3). Let & be the bisector of functions
fs and f+

s : by Theorem 4 and definition of AH, both
functions are linear in c, (therefore & must also be a
line). Also, by lemma 5, points β2 and β3 must be
on different sides of &. Without loss of generality, we
assume & is parallel to line x+ y = 0 and that β3 is in
the upper halfplane of the bisector, see Figure 4.

Let β1 be any point in & and consider the creation
of SPM(s,H,O) in the neighborhood of β1: since
the distance between β1 and β1 + (0, 1) is one unit
and both points are equidistant to s, their respective
wavelets are bound to collide at δ = fs(β1)+1/2. The
collision might actually not occur if a third wavelet
collides with either wavelet earlier. In either case,
we can certify that the wavelet that contains β1 will
collide with another wavelet in at most half a unit
afterwards. That collision of wavelets will generate
an edge ν ∈ SPM(s,H,O), and thus subsequently
edge ν + (0,−1/2 + 1/2v) (or a refinement of it) will
also be present in AH. That is, all points p ∈ c that
satisfy fs > f+

s (and in particular β3) have vertical

3

An Improved Algorithm for Inserting a Highway in a City Metric

79

!

β1

β2

β3

β1 + (0, 1)1/2

1/2 − 1/2v

Figure 4: Proof of lemma 7: There cannot be a cell
in SPM(s,H,O) with a point more than 1/2 above
the bisector & : fs − f+

s = 0.

distance to the bisector smaller or equal than 1/2v to
&.

Consider now the value of fs(β3) − f+
s (β3): since

both functions are linear of coefficients in {±1,±1/v}
and its distance to & is less than 1/2v, we have
|fs(β3)− f+

s (β3)| < 2/2v < 1/v, but that contradicts
second claim of lemma 5 for β3. !

Lemma 7 Subdivision AH is admissible.

Proof. Combining the first claim of lemma 5 with
lemma 6 we obtain that Fs,t is either Fs,t(β) =
min{π1, π2(β)} or Fs,t(β) = min{π1, π3(β)} for each
c ∈ AH. By Theorem 4, both π2 and π3 are linear
(and π1 is a constant), thus the lemma follows. !

We combine all results to obtain the following:

Theorem 8 The optimal location of a new turnpike
can be computed in O(n3H3(log2 n+logH)) time us-
ing O(nH) space.

Proof. The algorithm computes and makes a trape-
zoidal subdivision of AH. We can then use lemma
2 in each generated cell c ∈ AH (where the set of
lemma 2 to find its optimal. For each cell we spend
O(nH(log2 n+ log H)) time. Space needed can be re-
duced to O(nH) since an explicit construction of AH
is not needed.

!

4 Concluding Remarks

The study of the complexity AH is an interesting
problem: we used a naive O(n2H2) bound to obtain
the upper bound of our algorithms. Under the Eu-
clidean metric, there are examples in which the bound

is tight, but the same examples lead to an Ω(n2 +H2)
lower bound in the Manhattan metric.

Also, it would be interesting to find a subdivi-
sion that preserves quasiconvexity of lower complexity
than AH. Although only quasiconvexity is needed to
use Theorem 1, we proved a much stronger property
of Fs,t functions, thus such relaxation seems possible.

Acknowledgments

The authors would like to thank J. S. B. Mitchell for help-
ful discussions on the complexity of AH.

References

[1] H.-K. Ahn, H. Alt, T. Asano, S. W. Bae, P. Brass,
O. Cheong, C. Knauer, H.-S. Na, C.-S. Shin, and
A. Wolff. Constructing optimal highways. In J. Gud-
mundsson and B. Jay, editors, Thirteenth Computing:
The Australasian Theory Symposium (CATS2007),
volume 65 of CRPIT, pages 7–14, Ballarat, Australia,
2007. ACS.

[2] S. W. Bae, J.-H. Kim, and K.-Y. Chwa. Optimal con-
struction of the city Voronoi diagram. In Proc. 17th
Annu. Internat. Sympos. Algorithms Comput., volume
4288 of LNCS, pages 183–192, 2006.

[3] S. W. Bae, M. Korman, and T. Tokuyama. All farthest
neighbors in the presence of highways and obstacles.
In Proc. 3rd Intl. Workshop on Algorithms and Com-
putation (WALCOM), to appear., 2009.

[4] J. Cardinal, S. Collette, F. Hurtado, S. Langerman,
and B. Palop. Optimal location of transportation de-
vices. Comput. Geom. Theory Appl., 41(3):219–229,
2008.

[5] J. Cardinal and S. Langerman. Min-max-min geo-
metric facility location problems. In Proc. 19th Euro.
Workshop on Comput. Geom., 2006.

[6] T. M. Chan. An optimal randomized algorithm for
maximum tukey depth. In SODA ’04: Proceedings of
the fifteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 430–436, Philadelphia, PA,
USA, 2004. Society for Industrial and Applied Math-
ematics.

[7] M. Korman and T. Tokuyama. Optimal insertion of a
segment highway in a city metric. In Proc. 14th Annu.
Computing and Combinatorics (COCOON), 2008.

[8] M. Korman and T. Tokuyama. Optimal insertion of a
segment highway in a city metric. In Proc. 21st Euro.
Workshop on Comput. Geom., 2008.

[9] J. S. B. Mitchell. L1 shortest paths among polygonal
obstacles in the plane. Algorithmica, 8:55–88, 1992.

4

EuroCG’09 - Brussels, Belgium

80

Fréchet Distance in Weighted Regions ∗

Yam Ki Cheung† and Ovidiu Daescu†

Abstract

We discuss the Fréchet distance problem for two
polygonal curves in weighted planar subdivisions,
where the distance between two points is the weighted
length of the line segment joining the points. We give
an algorithm that computes an approximate distance
that is within an (1 + ε)-factor from the Fréchet dis-
tance between the curves.

1 Introduction

Measuring similarity between curves is a fundamental
problem that appears in various applications, includ-
ing computer graphics and computer vision, pattern
recognition, robotics, and structural biology. One
common choice for measuring the similarity between
curves is the Fréchet distance, introduced by Fréchet
in 1906 [9].

The Fréchet distance δF for two parametric curves
P ,Q: [0, 1]→Rd is defined as

δF (P,Q) = inf
α,β:[0,1]→[0,1]

sup
r∈[0,1]

S(P (α(r)), Q(β(r))),

where α and β range over all continuous non-
decreasing functions with α(0) = β(0) = 0, α(1) =
β(1) = 1, P (α(r)) and Q(β(r)) are two points on P
and Q respectively, S is a distance metric between
points, and d > 0 is the dimension of the problem.
The Fréchet distance is described intuitively by a man
walking a dog on a leash. The man follows a curve
(path), and the dog follows another path. Both can
control their speed but backtracking is not allowed.
The Fréchet distance between the curves is the length
of the shortest leash that is sufficient for the man and
the dog to walk their paths from start to end.

We use P (s)Q(t) to denote the leash (line segment,
also called link) with end points P (s) and P (t), where
s, t ∈ [0, 1]. We call the functions α, β reparameter-
izations. We say that a pair of reparameterizations
α and β defines a matching between P and Q or α
and β define a monotone walk from leash P (0)Q(0)
to leash P (1)Q(1).

∗This work was supported in part by NSF award CCF-
0635013.

†Department of Computer Science, University of
Texas at Dallas, Richardson, TX 75080, USA, Email:
{ykcheung,daescu}@utdallas.edu.

R

R

R

R

R

R

1

2

3

4

5

6

P(0)

Q(0) Q(t)

P(s)

Q(1)

P(1)

Figure 1: An example of the Fréchet distance problem
in weighted regions.

A weighted subdivision is a partition of the plane
into polygonal regions, with each region Ri ∈ R hav-
ing associated a positive integer weight wi. Given a
line segment st in R, we define the weighted length
S(st) of st, also called the weighted distance between
s and t, as S(st) =

∑
st∩Rj 6=∅ wj ∗dj(st), where dj(st)

is the Euclidean length of st within region Rj .
In this paper, we study the Fréchet distance prob-

lem in weighted regions in the plane: Given a weighted
subdivision R = {R1, R2, . . . , Rn′} with a total of n
vertices and two parameterized polygonal chains P
and Q in R, find the (weighted) Fréchet distance be-
tween P and Q, where the length of the leash is de-
fined as the weighted distance between the end points
of the leash. That is, S(P (s), Q(t)) =

∑n′

i=1 wi ∗
di(P (s)Q(t)), where di(P (s)Q(t)) is the Euclidean
length of P (s)Q(t) within region Ri. We assume that
no edges of the polygonal curves cross boundaries of
R. That is, if a curve crosses a boundary of R, the cor-
responding intersection between the curve and R is a
vertex of the curve. Without loss of generality, we as-
sume R is triangulated and P and Q lie on boundaries
of weighted regions (see Fig. 1 as an illustration).

Results. We give an algorithm that computes
an approximate distance that is within an (1 + ε)-
factor from the Fréchet distance between the curves.
Our algorithm discretizes the problem by placing
Steiner points along the edges of R. The running
time of the algorithm is O(N4 logN), where N =
(1/ε) log(1/ε)n logn is the number of Steiner points
used.

Previous Work. Previous work on the Fréchet
distance assumes an unweighted environment and can
be divided into two categories, depending on the dis-

1

Frechet Distance in Weighted Regions

81

tance metric used.
In the first category, the distance between two

points is the Euclidean distance. In other words,
the leash is always a line segment. Fréchet distances
in this category are also referred to as non-geodesic
Fréchet distances. Alt and Godau [2] give a fun-
damental study on the computational properties of
the Fréchet distance. They present an algorithm
that computes the exact Fréchet distance between two
polygonal curves in O(pq log pq) time, where p and q
are the number of vertices of P and Q, respectively.
Either and Mannila [8] show how to find the dis-
crete Fréchet distance between two polygonal curves.
Rote [11] gives algorithms for finding the Fréchet dis-
tance between piecewise smooth curves. Buchin et
al. [4] study the Fréchet distance between polygons.
Wang [13] presents the first exact, polynomial-time al-
gorithm to compute a partial matching between two
polygonal curves via Fréchet distance.

In the second category, the distance between two
points is the geodesic distance. Fréchet distances in
this category are also referred to as geodesic Fréchet
distances. Maheshwari and Yi [10] study the case in
which the curves lie on a convex polyhedron. Cook
and Wenk [6] show how to compute the Fréchet dis-
tance between two curves when the leash is con-
strained inside a polygon or when polygonal obstacles
are present between curves. Chambers et al. [5] give
a polynomial-time algorithm to compute the homo-
topic Fréchet distance between two polygonal curves
in the presence of obstacles. The homotopic Fréchet
distance is the Fréchet distance with an additional
continuity requirement: the leash is not allowed to
switch discontinuously, e.g. jump over obstacles.

2 Discretization Using Steiner Points

To approximate δF (P,Q), we discretize the problem
by placing Steiner points along edges of R.

For each vertex v ∈ R, the vertex radius for v is de-
fined as r(v) = (εB)/(nwmax(v)), where ε is a positive
real number defining the quality of the approximation,
B is a lower bound on δF (P,Q), and wmax(v) is the
maximum weight among all weighted regions incident
to v. The disk of radius r(v) centered at v defines
the vertex vicinity of v. No Steiner points are placed
inside the vertex vicinity of v. B can be computed
in O(pq log(pq)) time using the standard (unweighted
case) continuous Fréchet distance algorithm described
in [2], where p and q are the number of vertices of P
and Q, respectively.

We apply a discretization scheme similar to that
in [1] (other schemes, extending from previous work,
are also possible) to place Steiner points along edges
forming a geometric progression. For any point v
on an edge e in R, let E(v) be the set of edges
in R not incident to v and let d(v) be the min-

imum distance between v and edges in E(v). It
follows from [1] that the number of Steiner points
placed on an edge is O(C(e)1/ε log 1/ε), where C(e) =
O(|e|

d(e) log |e|√
r(v1)r(v2)

), |e| is the Euclidean length of

e, and d(e) = sup{d(v)|v ∈ e}. Let N denote the to-
tal number of Steiner points, including the vertices of
R. We have N = O((1/ε) log(1/ε)n log n). We refer
to a line segment bounded by two consecutive Steiner
points as a Steiner edge. An hourglass is the union of
all links intersecting with the same sequence of Steiner
edges in the same order. Let H be an hourglass de-
fined by a sequence of Steiner edges {e1, e2, . . . , ek},
where e1 ∈ P and ek ∈ Q.

Lemma 1 Let l and l′ be two segments in H. Then,
S(l) ≤ (1 + 2ε)S(l′) + 2εB.

Proof. Omitted. 2

Let lH be an arbitrary segment in H, with end-
points on P andQ. Let α and β be two reparametriza-
tions that define a matching between P and Q.
Let J = {H1,H2, . . . ,Hk} be the set of hourglasses
that are traversed by the leash P (α(r))Q(β(r)).
For an hourglass H ∈ J , let IH = {e|e =
P (α(r))Q(β(r)), r ∈ [0, 1], e ∈ H}. Let H(α, β) be
the segment in IH with the largest weighted length.
That is, S(H(α, β)) = maxe∈IH

S(e). Let δ(α, β) =
supr∈[0,1] S(P (α(r)), Q(β(r))).

Lemma 2 |maxH∈J S(lH)− δ(α, β)| ≤ 4εδ(α, β).

Proof. Omitted. 2

We say that δ(J) = maxH∈J S(lH) is a 4ε-
approximation of δ(α, β). Given a sequence of hour-
glasses J = {H1,H2, . . . , Hk}, we call J legal if there
exist two reparametrizations α, β that define a leash
traversing the same sequence of hourglasses as J .

Lemma 3 There exists a legal sequence of hour-
glasses Ĵ such that δ(Ĵ) satisfies |δ(Ĵ)− δF (P,Q)| ≤
4εδF (P,Q), that is, δ(Ĵ) is a 4ε-approximation of
δF (P,Q).

Proof. (Sketch) Let α̂, β̂ be the optimal
reparametrizations that give the Fréchet distance be-
tween P and Q. Let Ĵ be the sequence of hour-
glasses traversed by the leash defined by α̂ and β̂.
Applying Lemma 2, we have, |δ(Ĵ) − δ(α̂, β̂)| =
|δ(Ĵ)− δF (P,Q)| ≤ 4εδ(α̂, β̂) = 4εδF (P,Q). 2

3 Fréchet Distance Between Two Polygonal
Chains

We attack the problem in the parameter space D =
[0, 1]2, where a leash P (s)Q(t) is associated to a point
(s, t) ∈ D. We refer to (s, t) ∈ D as the dual point of
the leash P (s)Q(t).

EuroCG’09 - Brussels, Belgium

82

Lemma 4 All leashes through a Steiner point v cor-
respond to a curve in D, with equation Cv : st+c1s+
c2t+ c3 = 0, where c1, c2, and c3 are constants.

Proof. Let v = (a, b), P (0) = (x1, y1), P (1) =
(x2, y2), Q(0) = (x3, y3), Q(1) = (x4, y4). We have

P (s) = (x1 + (x2 − x1)s, y1 + (y2 − y1)s),

Q(t) = (x3 + (x4 − x3)t, y3 + (y4 − y3)t),
and P (s)Q(t) : y − (y1 + (y2 − y1)s) =
y1+(y2−y1)s−(y3+(y4−y3)t)
x1+(x2−x1)s−(x3+(x4−x3)t)

(x− (x1 + (x2 − x1)s)).
Since P (s)Q(t) passes through v, we obtain that
(b−y1−(y2−y1)s)(x1−x3+(x2−x1)s−(x4−x3)t)) =
(a−x1− (x2−x1)s)(y1−y3 +(y2−y1)s− (y4−y3)t),
and thus we have

Cv : st+ c1s+ c2t+ c3 = 0,

where c1, c2, and c3 are constants. 2

We call the curve Cv the dual curve of Steiner
point v. Next we define the relative position of two
leashes with respect to a Steiner point v. Given two
leashes P (s)Q(t) and P (s′)Q(t′), we say they are on
the same side of v if and only if there exists two con-
tinuous functions α′, β′ : [0, 1] → [0, 1], such that
α′(0) = s, α′(1) = s′, β′(0) = t, β′(1) = t′ and
v /∈ P (α′(r)Q(β′(r)), ∀r ∈ [0, 1]. Note that α′, β′ are
not necessarily monotone. Intuitively, two leashes are
on the same side of v if there exists a walk from one
leash to the other one without crossing v, i.e. one
leash can reach the other one by sweeping its end
points on their respective curves without crossing v.

Lemma 5 Cv divides D into two partitions, each
partition corresponding to all links on the same side
of point v.

Proof. Given two links P (s)Q(t) and P (s′)Q(t′), since
there is a one-to-one correspondence between all pos-
sible walks from P (s)Q(t) to P (s′)Q(t′) and all paths
from (s, t) to (s′, t′) in D, if (s, t), (s′, t′) are on dif-
ferent sides of Cv, all paths between (s, t) and (s′, t′)
must pass Cv at least once. That is, no walk exists
between the two links without crossing v. 2

Hence, we can partition D by the dual curves of the
Steiner points, such that each cell corresponds to an
hourglass. Using the algorithm in [3], the partition
can be computed in O(N logN + k) time and O(N +
k) space, where N = 1/ε log(1/ε)n log n is the total
number of Steiner points and k is the number of cells,
which is O(N2) in the worst case. Let A denote the
partition.

The sequence of cells traversed by a monotone path
in D corresponds to a legal sequence of hourglasses
traversed by a leash following a match of P and Q,
and vice versa. The Fréchet distance between P and
Q can then be approximated as follows:

D D’

Figure 2: An example of the decomposition of D.

1. Place Steiner points as described earlier.

2. Partition D by the dual curves of the Steiner
points.

3. For each cell Z, choose an arbitrary leash l and
assign S(l) as the weight of the cell.

4. Find a monotone path T in D, from its left bot-
tom corner, (0, 0), to its top right corner, (1, 1),
such that the maximum weight of the cells tra-
versed by T is minimized.

By Lemma 3 the maximum weight of the cells tra-
versed by T is a 4ε-approximation of the Fréchet dis-
tance between P and Q.

To find an optimal path T in D, we decompose D
by extending a horizontal as well as a vertical line
from every vertex until it reaches the boundary of D.
See Fig. 2 for an illustration. Let the new subdivision
be D′.

Lemma 6 Given an edge e in D′, let p be a point
on e and let Tp be an arbitrary monotone path from
(0, 0), i.e. the bottom left corner of D′, to p. Then,
there exists a monotone path from (0, 0) to any point
on e with the same cost as Tp.

Proof. We add e to D. In D, we extend a vertical
line as well as a horizontal line from the end points of
e. Let L1, L2 be the two horizontal lines which define
a horizontal slab and let L3, L4 be the two vertical
lines which define a vertical slab. Obviously, Tp has
the same cost in D as it has in D′. If Tv enters the
horizontal slab before it enters the vertical slab, let v
be the entry point. Let S = {s1, s2, . . . , sk} be the
set of curves on edges of D, which are bounded by
the horizontal slab and traversed by Tp. Since the
horizontal slab does not contain any vertex of D in
its interior, no two curves in S intersect with each
other. Hence we can construct a monotone path from
v to any point on e that traverses S, i.e. we can
construct a monotone path from (0, 0) to any point
on e such that it has the same cost as Tp. See Fig. 3
for an illustration. The same argument holds true if
Tp enters the vertical slab first. 2

Frechet Distance in Weighted Regions

83

L

L

L L

1

2

3 4

(0,0)

v

sss1 2 3

Tp

p

e

Figure 3: There exists a monotone path from (0, 0) to
every point in e, which has the same cost as Tp.

Thus, given an optimal monotone path Tp from
(0, 0) to an arbitrary point p ∈ e, we can construct a
monotone path from (0, 0) to any point in e, which
has the same cost as Tp and is also optimal. To find
the optimal monotone path from (0, 0) to (1, 1), we
construct a directed graph having the (open) edges
as well as the vertices of D′ as vertices. In the graph,
a direct edge is added from a node v1 to a node v2
if, in D′, v1 and v2 share a common cell and there
exists a monotone path from v1 to v2. The shorst
path can be found by running Dijkstra’s algorithm
on the directed graph.

Time complexity: The complexity of D′ is N4, where
N = (1/ε) log(1/ε)n log n is the number of Steiner
points used, since each cell in D′ has O(1) edges and
vertices, and thus each cell contributes O(1) edges
to the directed graph. Then, the directed graph has
O(N4) vertices and O(N4) edges and Dijkstra’s algo-
rithm takes O(N4 logN) time.

References

[1] L. Aleksandrov, A. A. Maheshwari, and J.R. Sack.
Approximation algorithms for geometric shortest
path problems. In Proc. 32nd Annual ACM Sympo-
sium on Theory of Computing, pp. 286-295, 2000.

[2] H. Alt and M. Godau. Computation the Fréchet
distance between two polygonal curves. Interna-
tional Journal of Computational Geometry and Ap-
plications, 5:75-91, 1995.

[3] N.M. Amato, M.T. Goodrich, and E.A. Ramos.
Computing the arrangement of curve segments:
Divide-and-conquer algorithms via sampling. In
Proc. 11th Annual CAM-SIAM Symposium on Dis-
crete Algorithms, pp. 705-706, 2000.

[4] K. Buchin, M. Buchin and C. Wenk. Comput-
ing the Fréchet distance between simple polygons

in polynomial time. In Proc. 22rd Symposium on
Computational Geometry, pp. 80-87, 2006.

[5] E.W. Chambers, É. Coline De Verdière, J. Erick-
son, S. Lazard, F. Lazarus and S. Thite. Walking
your dog in the woods in polynomial time. In. Proc.
24th Annual ACM Symposium on Computational
Geometry, pp. 101-109, 2008.

[6] A.F. Cook IV and C. Wenk. Geodesic Fréchet Dis-
tance Inside A Simple polygon. In Proc. 25th In-
ternational Symposium on Theoretical Aspects of
Computer Science, pp. 193-204, 2008.

[7] O. Daescu and J. Palmer. Minimum Separation in
Weighted Subdivisions. To appear in International
Journal of Computational Geometry and Applica-
tions

[8] T. Eiter and H. Mannila. Computing discrete
Fréchet distance. Technical Report CD-TR 94/64,
Information Systems Department, Technical Uni-
versity of Vienna, 1994.

[9] M. Fréchet. Sur quelques points du calcul fonc-
tionnel. Rendiconti del Circolo Mathematico di
Palermo, 22:1-74, 1906.

[10] A. Maheshwari and J. Yi. On computing Fréchet
distance of two paths on a convex polyhedron. In
Proc. 21st European Workshop on computational
Geometry, pp. 41-44, 2005.

[11] G. Rote. Computing the Fréchet distance be-
tween piecewise smooth curves. Technical Report,
ECGTR-241108-01, 2005.

[12] G.T. Toussaint. Solving geometric problems with
the ’rotating calipers. In Proc. 2nd IEEE Mediter-
ranean Electrotechnical Conference (MELECON
’83), pp. A10.02/1-4, 1983.

[13] K. Buchin, M. Buchin, and Y. Wang. Exact Par-
tial Curve Matching under the Fréchet Distance. To
appear In Proc. ACM-SIAM Symposium on Dis-
crete Algorithms, 2009.

EuroCG’09 - Brussels, Belgium

84

Safe Routes on a Street Graph with Minimum Power Transmission
Range

Manuel Abellanas∗,† Antonio L. Bajuelos‡,§ Inês Matos‡,¶

Abstract

Let S be a set of n points in the plane (antennas).
An object is said to be 2-covered with range r if every
point of such object is interior to at least two discs
(not necessarily the same) centered at S of radius
r. The following problem is considered in this pa-
per: given a set S of n antennas and a planar geomet-
ric graph G = (N, E), calculate the minimum power
transmission range of S so that a 2-covered path be-
tween two given nodes of G exists. Is is described an
algorithm to solve this problem in two phases. In the
first phase (preprocessing phase), graph G is trans-
formed into a weighted graph Gw (using the second
order Voronoi diagram of S) and then a minimum
spanning tree of Gw, Tw, is found. This phase takes
O(|E|×n), |E| > log n, time. In the second phase (so-
lution phase), the minimum power transmission range
of S and a 2-covered path are calculated using Tw. Re-
garding time complexity, this second phase is linear on
the number of edges of Tw.

1 Introduction and Related Works

Let S be a set of n points in the plane that represent
the location of n antennas (or any device able to send
or receive some sort of signal). Suppose all antennas
have the same power transmission range r ∈ R+ that
is variable. The distance between a point q and a set
S of points is the shortest distance between q and ev-
ery point of S. The minimum range of the antennas so
that S covers q is exactly the distance between q and
S. A point covered by two or more antennas is said
to be 2-covered by S. The concept of 2-covering is
useful to assure that the points remain covered when
one antenna fails. Let D be the set of discs centered
at the antennas of S of radius r. Each nonempty in-
tersection between two discs of D is called a lens. It

∗Facultad de Informática, Universidad Politécnica de
Madrid, mabellanas@fi.upm.es

†Co-supported by Project Consolider Ingenio 2010 i-MATH
C3-0159 and MICINN Project MTM2008-05043

‡Departamento de Matemática & CEOC, Universidade de
Aveiro, {leslie,ipmatos}@ua.pt

§Supported by CEOC through Programa POCTI, FCT, co-
financed by EC fund FEDER

¶Supported by a FCT fellowship, grant
SFRH/BD/28652/2006 and by CEOC through Programa
POCTI, FCT, co-financed by EC fund FEDER

is easy to see that 2-covered regions result from the
union of these lenses. Therefore, a point is 2-covered
by S if it belongs to a lens (see Figure 1). The an-
tennas’ covering range, r, depends directly on their
transmission power which, on its turn, is responsible
for the costs associated to the service they provide.
For that reason, it is important to minimize the value
of r.

s1

s2

s3

s4

s6

s7

s8

s9

s5

r

s10

s11

Figure 1: Set S is the set {s1, s2, . . . , s11}. Graph’s
edges that are 2-covered by the antennas of S are
shown in a heavier trace.

Consider now a connected geometric planar graph
G together with set S. Suppose that the edges of G
represent streets/roads and its nodes represent reach-
able locations using those streets (see Figure 1). A
path on G using only the edges that are 2-covered by
S is called a 2-covered path or a 2-path. Given two
nodes ni and nj of G, our main goal is to compute
the minimum power transmission range so that there
is a 2-path on G connecting ni and nj .

Related Works: in [1] the authors study a
problem equivalent to the one here proposed and
other multi-parametric optimization problems for
1-covering. In [2], a subset of a given set of discs
with variable radii whose costs depend on their radii
is computed, as well as the same subset but with fixed
costs to cover a given line segment at minimum cost.

This paper is structured as follows. The next sec-
tion is divided in two subsections. In the first sub-
section, graph G is preprocessed and converted into

Safe Routes on a Street Graph with Minimum Power Transmission Range

85

a weighted graph Gw. In this subsection, a minimum
spanning tree (MST) of Gw is also found. Such MST
is later used in the second subsection to calculate the
minimum power transmission range of S to guarantee
the existence of a 2-path between two nodes of G. Fi-
nally, conclusions and some remarks are presented in
Section 3 .

2 Minimum 2-Covering of a Path between two
nodes of a Street Graph

Let S be a set of n antennas. The second order
Voronoi diagram of S, VD2(S), divides the plane into
several regions by grouping points that share the same
two closest antennas [3]. This proximity structure
is naturally related to this problem since a point is
2-covered if it is interior to the lens defined by its
two closest antennas. For this reason, a point q is
2-covered if the power transmission range of the two
closest antennas to q is enough to reach q. The mini-
mum power transmission range of S that 2-covers an
object x is denoted by MRS(x).

Let G = (N, E) be a connected geometric planar
graph whose nodes represent locations and its edges
represent roads/streets that connect such locations.
Without loss of generality, it is assumed that |E| >
log n. Given two nodes ni and nj of G, the smallest
range of S which ensures the existence of a 2-path
between ni and nj on G is denoted by MRS,G(ni, nj).
To simplify the notation, it can also be denoted by
MRS(ni, nj) if G is clear from the context.

2.1 First Phase: Preprocess

s1

s2

s3

s4

c

e1

e2

r

r

Figure 2: The minimum power transmission range r
of S to 2-cover e1e2 is r = d(c, s3) = d(c, s4). VD2(S)
is shown in a dashed trace.

Given a line segment e, MRS(e) is calculated us-
ing the intersection points between e and VD2(S),
Ie = {e} ∩ VD2(S). It is easy to see that the mini-
mum power transmission range needed to 2-cover ev-
ery point of Ie and the extreme points of e is MRS(e)
(see Figure 2).

The procedure explained in this subsection acts as
a preprocess that transforms graph G into weighted
graph Gw. To make this transformation, MRS(e) is

assigned as the weight of each edge e of G (see Figure
3).

Proposition 1 Let G = (N, E) be a graph and S a
set of n antennas. The MRS(e) for every edge e ∈ E
can be calculated in O(|E| × n) time.

Proof. Computing VD2(S) takes O(n log n) since
there are n antennas [6]. Then using VD2(S), it is pos-
sible to find the set Ie = {e}∩VD2(S) for every edge
e ∈ E in O(n log n + |E| × n) time. Next there is the
need to add the extreme points of e to the set Ie. For
each intersection point p ∈ Ie, MRS(p) is calculated
in constant time using VD2(S) as it is the distance
between p and its second closest antenna. Therefore,
calculating MRS(e) = max{MRS(p), ∀p ∈ Ie} is a lin-

n1

n2

n3

n4
n5

n6

n7
n8

n9

n10

(a)

(b)

38
n1

s8

s9

s10

n7
38

Figure 3: Set S of eleven antennas represented by
dots. VD2(S) is shown in a dashed trace. (a) Graph
G whose nodes are represented by squares. (b) The
graph’s edge connecting n1 and n7 has weight 38
which is the minimum power transmission range of
S to 2-cover such edge.

EuroCG’09 - Brussels, Belgium

86

ear procedure for each edge e. As it is supposed that
|E| > log n, MRS(e) for every edge e ∈ E can be
computed in O(|E| × n) time. �

Let us remark that a minimum spanning tree of Gw,
Tw, can be found in linear time using an algorithm by
Matsui [4] since Gw is a planar graph. As it is shown
in the next subsection, Tw eases the calculations since
it stores important information concerning the anten-
nas’ arrangement in relation to Gw. To summarize,
the algorithm can be described as follows.

Algorithm: Preprocessing Phase

In: Set S of n antennas and a street graph G
Out: Graph Gw and Tw, a MST of Gw

1. Compute VD2(S), the Second Order
Voronoi Diagram of S.

2. Convert G into weighted graph Gw:

For every e ∈ G do

(a) Calculate MRS(e)

(b) w(e)← MRS(e)

3. Find Tw, a MST of Gw.

The next result is a direct consequence of Proposi-
tion 1.

Theorem 2 Given a set S of n antennas and graph
G = (N, E), computing a weighted graph Gw and a
MST of Gw can be done in O(|E| × n) time.

2.2 Second Phase: Solution

Given two nodes ni and nj of Gw, the algo-
rithm in this subsection shows how to calculate
MRS,Gw(ni, nj) and how to find a 2-covered path on
Gw connecting ni and nj .

Let P be a 2-covered path between two nodes on
Gw. It is easy to see that the minimum power trans-
mission range that ensures the existence of P is given
by the weight of the heaviest edge of P . The next
property shows that it is only necessary to consider
the edges of a MST of Gw to find a 2-path between
two given nodes of Gw.

Proposition 3 Let Gw be an edge-weighted con-
nected graph. For any path P on Gw, let us consider
the weight of P as the weight of its heaviest edge.
Then, for every pair of nodes of Gw, the path con-
necting them on a MST of Gw is a minimum weight
path between such pair.

Proof. Let Gw be an edge-weighted connected graph
and Tw a minimum spanning tree (MST) of Gw. Sup-
pose that P is the only path on Tw connecting nodes

ni and nj and e is its heaviest edge. Consequently,
P has weight w(e). Now suppose that path P ∗ on
Gw is a minimum weight path connecting ni and nj .
Its weight is given by e∗, its heaviest edge, and so
w(e∗) < w(e). Since P is heavier than P ∗, the edge
e is not part of P ∗. If paths P and P ∗ are united,
then a cycle is created. That cycle contains e which
clearly is its heaviest edge. But that contradicts the
hypothesis that e is an edge of a MST of Gw. There-
fore, a minimum weight path between two nodes of
Gw is the path on Tw connecting those nodes. �

31

32

28

38

(a)

(b)

27

29

31

32

30

33

34
28

35

38

38

43
43

36

n1

n8

n1

n8

s8

s9

s10

Figure 4: (a) A MST of a weighted graph is shown in a
solid trace. (b) The path connecting n1 and n8 on the
tree only exists if the antennas’ power transmission
range is at least d(s8, n1) = d(s10, n1) = 38.

It is now clear that a 2-path between two nodes on
a weighted graph with minimum power transmission
range can be computed using a MST of such graph
(see Figure 4(a)). Working with a MST is easier since
a path between two nodes is unique. Follows the core
of the algorithm to find a 2-path connecting two nodes
of Gw with minimum range, taking advantage of a

Safe Routes on a Street Graph with Minimum Power Transmission Range

87

MST of Gw.

Algorithm: Solution Phase

In: Tw, a MST of Gw

Out: P , a 2-covered path and MRS,Gw(ni, nj)

1. Use the algorithm DFS [5] to find a path
P on Tw between ni and nj.

2. MRS,Gw(ni, nj)← max{w(e) : ∀e ∈ P}.

In Figure 4(b) there is an example of a path on
a MST connecting nodes n1 and n8 with minimum
power transmission range. If all the antennas have
range r = max{31, 32, 28, 38} = 38, the path is
2-covered with minimum power transmission range.
The largest range is the one needed to 2-cover n1. It
is given by the distance between n1 and s8 (or s10),
such distance is exactly MRS,Gw(n1, n8).

Theorem 4 Given a set S of n antennas, let ni and
nj be two nodes of graph Gw and Tw = (N, B) a MST
of Gw. Then a 2-covered path between ni and nj on
Gw with range MRS,Gw(ni, nj) can be computed on
Tw in O(|B|) time.

3 Concluding Remarks

The concept of 2-covering was introduced in this pa-
per, as well as a related problem: calculating the
minimum power transmission range to ensure the ex-
istence of a 2-covered path between two nodes of a
graph. Given a set S of n antennas, the solution to
this problem is divided in two phases. In the first
phase, graph G = (N, E) is converted into a weighted
graph using a O(|E|×n), |E| > log n, time algorithm.
In the second phase, a 2-path between two nodes of G
is found, as well as the minimum power transmission
range of S to guarantee the existence of such path.
This last algorithm is linear on the number of edges
of a minimum spanning tree of the weighted graph.

References

[1] M. Abellanas and G. Hernández. Optimización de
Rutas de Evacuación. Proc. of the XII Encuentros de
Geometría Computacional, 2007, Valladolid, Spain,
273–280.

[2] A. Agnetis, E. Grande, P.B. Mirchandani, P.B. and
A. Pacifici. Covering a Line Segment with Variable
Radius Discs. To appear on Computers and Opera-
tions Research, 36, 5, 2009, 1423–1436.

[3] F. Aurenhammer and R. Klein. Voronoi diagrams.
In J.-R. Sack, J. Urrutia (eds.), Handbook of Compu-
tational Geometry, Elsevier, 2000, Amsterdam, 201–
290.

[4] T. Matsui. The minimum spanning tree problem on
a planar graph. Discrete Applied Mathematicss, 58,
1, 1995, 91–94.

[5] S.W. Golomb and L.D. Baumert. Backtrack Program-
ming. Journal of ACM, 12, 4, 1965, 516–524.

[6] D.T. Lee. On k-Nearest Neighbor Voronoi Diagrams
in the Plane. IEEE Transactions on Computers, 31,
6, 1982, 478–487.

EuroCG’09 - Brussels, Belgium

88

Line Segment Facility Location in Weighted Regions ∗

Yam Ki Cheung† and Ovidiu Daescu†

1 Introduction

In this paper we consider a geometric optimization
problem that we call the line segment facility loca-
tion in weighted regions. We study the problem in
a weighted subdivision R = {R1, R2, . . . , Rn′} of the
plane with n vertices, with each region Ri ∈ R hav-
ing associated a positive integer weight wi. Without
loss of generality, we assume that R is triangulated.
The weighted length of a segment st within a region
Ri ∈ R is defined as wi|st|, where |st| is the Eu-
clidean length of st. We denote by S(st) the weighted
length of a segment st ∈ R. The weighted length of
st S(st) =

∑
st∩Rj 6=∅ wj ∗ dj(st), where dj(st) is the

Euclidean length of st within region Rj .
The problem is defined as follows: Given a set of

l points P = {s1, s2, . . . , sl} ∈ R, find a facility L,
which is a line segment, such that each point in P is
connected to L via an orthogonal link and some cost
C(L) associated with the facility location is minimized
(see Fig. 1 for an example). We consider two versions
of this problem, depending on how C(L) is defined.
For the first version (P1), C(L) = S(L). That is,
we want to minimize the weighted length of L. For
the second version (P2), C(L) =

∑l
i=1 S(Li) + S(L),

where Li is the orthogonal link from si to L. That is,
we want to minimize the sum of weighted length of
all orthogonal links and L.

The facility location problem is a well-studied prob-
lem in operations research and computer science liter-
ature [5, 6, 7, 3]. The problem has many formulations,
resulting in various definitions for the objective func-
tion. In our formulation, there is a cost for opening a
facility and also for constructing orthogonal links that
connect customers to this facility. The goal of P1 is to
minimize the cost of building the line facility, while P2

takes the cost of building the facility as well as the cost
of building orthogonal links into account. One may
imagine that the facility L is an oil pipeline and the
points in P are oil wells. The oil field is divided into
weighted regions based on its characteristics (cost of
digging, ownership rights, etc.) From each well, a spur
pipeline is to be connected directly to L, in straight
line. Given the x- and y-coordinates of the wells,
the goal is to find the optimal location for the main

∗This work was supported in part by NSF award CCF-
0635013.

†Department of Computer Science, University of
Texas at Dallas, Richardson, TX 75080, USA, Email:
{ykcheung,daescu}@utdallas.edu.

R

R

R

R

L L

L

1 1

3

2

3

4

2

s

s

s

1

2

3

L

Figure 1: A line facility L and the orthogonal links
from P = {s1, s2, s3} to L

pipeline that minimizes the total cost. In unweighted
environment, Megiddo and Tamir [7] solved the prob-
lem of minimizing the sum of the Euclidean length of
orthogonal links more than two decades ago. They
showed that the optimal line facility can be found in
O(n2 log n) time by proving that it must pass through
at least two of the points in P . Later, Imai et. al.
[5] proved that in L1-metric the optimal solution can
be computed in linear time. Cheung and Daescu [3]
showed that the weighted version of this problem, i.e.
C(L) =

∑l
i=1 S(Li), can be solved by dividing the

problem into a number (O(l2n2) in worst case) of 1-
variable subproblems. The objective function of each
subproblem has the form

l∑
i=1

S(Li) =
√

1 +m2
o(

M∑
j=1

cj
mo −mj

+
l∑

i=1

bimo + ai

m2
o + 1

+C),

for some constants ai, bi, ci, C, where l is the number
of points in P , n is the number of vertices of R and
mo is the slope of orthogonal links.

The proposed problem is also closely related to the
optimal weighted link problem, in which the goal is to
minimize the weighted length of a line segment st con-
necting two given regions, Rs and Rt, of a weighted
subdivision R. In [2], it has been proven that the
problem to minimize the cost S(st) =

∑
st∩Rj 6=∅ wj ∗

dj(st) can be reduced to O(n2) global optimization
problems, each of which asks to minimize a 2-variable
function over a convex domain. In [4], it has been
shown that to minimize the objective function S(st),
st must pass through a vertex of R.
Results: For P1, we show that the objective function
C(L) can be expressed in the form of a summation of
a number of fractional terms, that resembles those

1

Line Segment Facility Location in Weighted Regions

89

in [2, 4]. The problem can be reduced to a number of
(O(l2n2) in worst case) 1-variable optimization prob-
lems, which can be solved by either computing exact
roots of polynomials or by approximation algorithms.
Using point-line duality transforms the feasible do-
main for each subproblem is an arc or a line segment
on the dual plane. Then, we show that P2 can be
solved in a similar fashion.

2 P1: minimize the weighted length of L

In this section, we consider the problem of minimiz-
ing the weighted length of L, i.e. C(L) = S(L), such
that the points in P can access L via orthogonal links.
We first derive the general objective function. Then,
we show that this optimization problem can be re-
duced to a number of 1-variable subproblems and give
a prune-and-search approximation algorithm for solv-
ing the subproblem.

2.1 The rotating calipers

Obviously, we want to set the line facility L as short
as possible, while each point in P is able to connect to
L via orthogonal links. Let CH(P) denote the con-
vex hull of P . A line e is a line of support of CH(P)
if e is tangent to CH(P) The length of L is mini-
mized when L is a segment bounded by two parallel
lines of support enclosing CH(P) and orthogonal to
L. See Fig. 2 for an illustration. A pair of vertices of
CH(P), {pi, pj}, is an antipodal pair if it admits two
parallel lines of support enclosing CH(P). Applying
the rotating calipers procedure [8], we can generate
all possible antipodal pairs (h pairs in the worst case)
for O(h) slope intervals in O(h) time, where h is the
number of vertices of CH(P).

2.2 Optimization of S(L)

Given a slope m, let the antipodal pair that admits
the two parallel lines of support of slope −1/m be
pi = (a, b) and pj = (c, d), respectively. Also, let L be
a line segment with end points on the two parallel lines
of support and orthogonal to them. Let the sequence
of edges intersected by L be Seq(L) = (e1, e2, . . . , ek),
where k = O(n), ej : y = mjx+pj , for j = 1, 2, . . . , k,
and e1 and ek are the two parallel lines of support.
We have,
S(L) =

√
1 +m2

∑k−1
j=1 wi|xj+1 − xj |

=
√

1 +m2
∑k−1

j=1 wj(
pj+1−p

m−mj+1
− pj−p

m−mj
),

where m and p are the slope and intercept of L re-
spectively, xj is the x-coordinate of the intersection
between L and ej , and wj is the weight of the region
bounded by edges ej and ej+1. Since e1, ek are the two
parallel lines of support, we have e1 : y = −1/m(x −
a) + b and ek : y = −1/m(x − c) + d. It follows
that, S(L) =

√
1 +m2(

∑k−2
j=2 wj(

pj+1−p
m−mj+1

− pj−p
m−mj

) +

Parallel lines of support

L

CH(P)

Figure 2: L is bounded by two parallel lines of support
enclosing CH(P).

w1(p2−p
m−m2

− b+a/m−p
m+1/m) + wk−1(

d+c/m−p
m+1/m − pk−1−p

m−mk−1
))

=
√

1 +m2(
∑k−2

j=2
cj+djp
m−mj

+ Cmp+Dm+E
1+m2),

where C,D,E, cj and dj are all constants.
Next, we analyze the problem in the dual space.

We use the duality transform which maps a line
y = mx + p on the plane onto a point (m, p) in the
dual plane and maps a point (a, b) onto the line
y = −ax+ b on the dual plane. Note that there exist
a one-to-one correspondence between L and the line
supporting it. Observe that if we change the slope
m and intercept p of L, seq(L) changes, i.e. the
expression of the objective function C(L) = S(L)
changes, if
(1) L sweeps through a vertex of R, or
(2) L sweeps through an intersection between a line
of support and an edge of R, or
(3) L rotates through a slope such that the antipodal
pair changes.

We introduce three sets of curves or lines to prop-
erly partition the dual space such that each cell cor-
responds to all segments in the primal space which
have the same functional expression for the weighted
length. First, we transform all vertices of R to the
dual space. Let Av denote this arrangement, which
consists of n lines. Next, consider that L intersects a
line of support e′ at an edge e. As the line of support
e′ rotates, the intersection between L and e′ moves
along edge e. We can show that the transform of all
lines intersecting with e′ on e and orthogonal to e′

yields a curve in the dual space in the form

p = − (bi − pe)m2 + (ai −mebi)m−meai − pe

mem+ 1
,

where me and pe are the slope and intercept of e re-
spectively and ai and bi are constants. Since there
are O(h) antipodal pairs of vertices and O(n) edges
of R, we have a total of O(hn) such curves. Let A′c
denotes the arrangement of these curves. Finally, let
M = {m1,m2, . . . ,mh} be the set of slopes of edges
in CH(P) and let M ′ = {−1/m : m ∈ M}. Recall
that in the rotating calipers procedure, the antipo-

EuroCG’09 - Brussels, Belgium

90

dal pair changes only when the calipers are rotating
through the slopes in M , or equivalently when L ro-
tates through the slopes in M ′, since L is orthogonal
to the calipers. Let A′r be the arrangement of O(h)
vertical lines {x∗ = m : m ∈M ′} in the dual space.

Lemma 1 Av∪A′c∪A′r partitions the the dual space
such that each cell corresponds to all segments in the
primal space which have the same functional expres-
sion for the weighted length.

Proof. Let L and L′ be two line facilities such that
S(L) and S(L′) have different functional expressions
for the weighted length. Due to order preserving prop-
erty of the dual transform, their corresponding dual
points L∗ and L′∗ must be separated by at least one
line or curve in Av, A′c or A′r. The proof follows. ¤

Using the algorithm in [1], the arrangement Av ∪
A′c ∪ A′r can be computed in O(nh log(nh) + k) time
and O(nh + k) space, where k is the number cells,
which is O(n2h2) in worst case.

Lemma 2 The global minimum of C(L) can be
found at non-vertical boundaries of the partition, i.e.
on the lines or the curves in Av ∪A′c.

Proof. Observe that when the slope m of L is fixed,
the objective function C(L) is linear and monotonic
with respect to the intercept p of L. The minimum
of C(L) cannot be found in the interior of the parti-
tion. ¤

Lemma 3 P1 can be reduced to O(n2h2) 1-variable
subproblems. The domain for each subproblem is a
piece of non-vertical boundary on the partition Av ∪
A′c ∪A′r.

Proof. The complexity of the overall partition Av ∪
A′c∪A′r is O(n2h2). The result follows from Lemma 1
and Lemma 2. ¤

If the domain of the subproblem is on Av, L passes
through a vertex. Let v : (xi, yi) ∈ R be the vertex
passed by L. We have,
L : y − yi = m(x− xi),
p = yi −mxi,
S(L) =

√
1 +m2(

∑k−2
j=2

cj+djp
m−mj

+ Cmp+Dm+E
1+m2)

=
√

1 +m2(
∑k−2

j=2
cj+dj(yi−mxi)

m−mj
+

Cm(yi−mxi)+Dm+E
1+m2),

=
√

1 +m2(
∑k−2

j=2

c′j
m−mj

+ D′m+E′
1+m2 + C ′),

where C ′, D′, E′, c′j are all constants.

If the domain of the subproblem is on A′c, L inter-
sects with a line of support on an edge e. Let me and
pe be the slope and intercept of e, respectively. Sub-
stituting

p = − (bi−pe)m2+(ai−mebi)m−meai−pe

mem+1 into S(L), we
have
S(L) =

√
1 +m2(

∑k−2
j=2

c′jm+d′j
(m−mj)(1+mem)

+ C′m2+D′m+E′
(1+m2)(1+mem) + C ′′),

where c′j , d
′
j , C

′, D′, C ′′ are constants.

2.3 A Prune-and-Search approximation algorithm
for solving P1

We present a prune-and-search approximation algo-
rithm combined with the subdivision approach. The
general outline is as follows:
(1) Find upper and lower bounds for each subproblem
of interest.
(2) Maintain a priority queue of subproblems based
on their lower bounds.
(3) Calculate Smin, which is the minimum of upper
bounds of all subproblems in the queue.
(4) For each subproblem Ii in the queue, if the lower
bound of Ii is greater than Smin, prune Ii.
(5) Get the first candidate Ii from the priority queue
and find a coarse approximation by placing Steiner
points and sampling.
(6) A solution L is accepted, if S(L) ≤ (1 + ε)Smin

i ,
where ε is a parameter defining the quality of the ap-
proximation and Smin

i is the lower bound of Ii.
(7) If no acceptable solution has been found, we fur-
ther divide Ii into a number of smaller subproblems.
(8) Find the upper bound and lower bound of all new
subproblems and add them back to the priority queue.
Go to step (3).

Next, we give more details of the prune-and-search
algorithm. Given a subproblem Ii, all line segments
in the feasible domain Di intersect with the same set
of regions of R. Let the set of regions intersected by
segments in Di be {Rj1 , Rj2 , . . . , Rjk

}. We can set the
lower bound of Ii, Smin

i , as
∑k

q=1 wjq ∗minL∈Di(L ∩
Rjq). The value ofminL∈Di(L∩Rjq) can be computed
in O(1) time. The upper bound of Ii could be any
sample value of the objective function in the given
domain.

3 P2: minimize the sum of weighted length of
orthogonal links and L

In this section, we address the second optimization
problem P2, which asks to minimize the sum of
weighted length of orthogonal links and S(L), i.e.
C(L) =

∑l
i=1 S(Li) + S(L). Again, we solve this

optimization problem by (1) partitioning the problem
in the dual space, (2) finding the objective function
on the boundary of the partition and (3) applying the
prune-and-search algorithm to approximate the solu-
tion.

The problem of minimizing the sum of weighted
length of orthogonal links is solved in [3]. In [3], the

Line Segment Facility Location in Weighted Regions

91

dual space is partitioned by introducing three sets of
curves or lines. The first set consists of dual lines
of points in P . Let Ap denote the arrangement of
the l dual lines. Next, all lines intersecting with
some orthogonal link at some edge are transformed
to the dual space. This yields a set of O(ln) curves.
Let Ac denote the arrangement of this set of curves.
The last set of lines introduced to the dual space is
{x∗ = −1/mij : i = 1, 2, . . . , l and j = 1, 2, . . . , n},
where mij is the slope of the line passing through
point si ∈ P and vertex vj ∈ R. Let Ar denote the
arrangement of this set of lines. The optimization
problem is reduced to a number of 1-variable sub-
problems. The domain for each subproblem is a piece
of arc or segment on Ap or Ac. The objective function
for each subproblem can be expressed in the form

l∑
i=1

S(Li) =
√

1 +m2
o(

M∑
j=1

cj
mo −mj

+
l∑

i=1

bimo + ai

m2
o + 1

+C),

for some constants ai, bi, ci, C, where mo is the slope
of orthogonal links. Substituting mo = −1/m,

l∑
i=1

S(Li) =
√

1 +m2(
M∑

j=1

−cj
mjm+ 1

+
l∑

i=1

aim− bi
m2 + 1

+
C

m
).

Notice that A′c ∈ Ac, since each line of support
supports an orthogonal link from a point in P to L.
We can show that Ap ∪Ac ∪Ar ∪Av ∪A′r partitions
the the dual space such that each cell corresponds
to all segments in the primal space which have the
same functional expression for the objective function
i.e. C(L) =

∑l
i=1 S(Li) + S(L). The partition can

be computed in O(ln log(lh) + k) time and O(lh+ k)
space, where k is the number cells, which is O(l2n2)
in worst case, using the algorithm in [1].

Lemma 4 The optimal solution for P2 can be found
at the non-vertical boundary of the partition Ap∪Ac∪
Ar ∪Av ∪A′r.

Lemma 5 P2 can be divided into a number of sub-
problems (O(l2n2) in worst case) and the domain for
each subproblem is a piece of non-vertical boundary
of the partition Ap ∪Ac ∪Ar ∪Av ∪A′r, i.e. an arc or
a segment on Ap, Ac, or Av.

Next, we derive the overall expression for C(L). If
the domain of the subproblem is on Ap or Av, i.e. L
passes through a point si ∈ P or a vertex in R, we
have
C(L) =

∑l
i=1 S(Li) + S(L)

=
√

1 +m2(
∑M

j=1
−cj

mjm+1 +
∑l

i=1
aim−bi

m2+1 + C
m) +

√
1 +m2(

∑k−2
j=2

c′j
m−m′

j
+ D′m+E′

1+m2 + C ′)

=
√

1 +m2(
∑M

j=1(
c′′j

mjm+1 + c′j
m−mj

)+ D′′m+E′′
1+m2 + C

m +

C ′),
where c′j , c

′′
j , C, C ′, D′′ and E′′ are constants.

If the domain of the subproblem is on Ac, i.e. L
intersects with an orthogonal link or a line of support
on an edge, we have,
C(L) =

∑l
i=1 S(Li) + S(L)

=
√

1 +m2(
∑M

j=1
−cj

mjm+1 +
∑l

i=1
aim−bi

m2+1 + C
m) +

√
1 +m2(

∑k−2
j=2

c′jm+d′j
(m−m′

j)(1+mem) + C′m2+D′m+E′
(1+m2)(1+mem) +

C ′′′)

=
√

1 +m2(
∑M

j=1(
c′′j

mjm+1 + c′jm+d′j
(m−mj)(1+mem)) +

C′′m2+D′′m+E′′
(1+m2)(1+mem) + C

m + C ′′′),
where c′j , c

′′
j , d′j , C

′′, D′′, E′′ and C ′′′ are constants.
Once the objective functions are derived for all sub-

problems, the optimal solution can be obtained by
applying the prone-and-search algorithm described in
the previous section.

References

[1] N.M. Amato, M.T. Goodrich, and E.A. Ramos.
Computing the arrangement of curve segments:
Divide-and-conquer algorithms via sampling. In
Proc. 11th Annual CAM-SIAM Symposium on Dis-
crete Algorithms, pp. 705-706, 2000.

[2] D.Z. Chen, O. Daescu, X. Hu, X. Wu and J.
Xu. Determining an optimal penetration among
weighted regions in two and three dimensions.
Journal of Combinatorial Optimization, 5(1):59-79,
2001.

[3] Y. Cheung and O. Daescu. Line Facility Location
in Weighted Regions. In Proc. 4th International
Conference on Algorithmic Aspects in Information
and Management, pp. 109-119, 2008

[4] O. Daescu and J. Palmer. Minimum Separation
in Weighted Subdivisions. International Journal of
Computational Geometry and Applications to ap-
pear.

[5] H. Imai, K. Kato and P. Yamamoto. A linear-time
algorithm for linear L1 approximation of points. Al-
gorithmica, 4(1):77-96, 1989.

[6] M. X. Goemans, M. Skutella. Cooperative facility
location games. In Proc. 11th ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 76-85, 2000.

[7] N. Megiddo and A. Tamir. Finding Least-Distance
Lines. SIAM Journal on Algebraic and Discrete
Methods, 4(2):207-211, 1983.

[8] G.T. Toussaint. Solving geometric problems with
the ’rotating calipers’. In Proc. 2nd IEEE Mediter-
ranean Electrotechnical Conference (MELECON
’83), pp. A10.02/1-4, 1983.

EuroCG’09 - Brussels, Belgium

92

Improvement of the Method for Making Quad Meshes through
Temperature Contours

Minori Okabe∗ Shinji Imahori∗ Kokichi Sugihara∗

Abstract

There are several methods to reconstruct quad meshes
from triangular meshes. In this article, we improve
the method using temperature contours. We discuss
how to avoid boundary conditions being ill posed and
assure injectivity of the parameterization by control-
ling the weights on edges. The proposed method will
be one step toward a fully automatic system, because
the result of automatic partition of the surface into
patches can be used.

1 Introduction

Triangular meshes are often used for representing sur-
faces of objects in computer graphics and simulation.
Whereas quad meshes have the advantage of triangu-
lar meshes in many applications such as texture map-
ping in computer graphics, FEM in simulation and
NURBS in modeling.

Constructing quad meshes directly from point
clouds is difficult because we do not have efficient
tools such as Voronoi diagrams in case of creating tri-
angular meshes. Thus most of methods reconstruct
triangular meshes into quad meshes.

One major trend is following some vector fields on
the mesh. Principal directions are often chosen as
the vector fields. One approach with vector fields is
tracing them by numeric integration [1]. Another ap-
proach is defining functions on the mesh whose iso-
lines follow the vector fields [7, 6]. This approach
needs solving non-linear optimization instead of nu-
meric integration. Another trend is defining func-
tions on the given triangular mesh by parameteriza-
tion [3, 8], which only needs linear computation and
gives pure quad meshes.

We propose a new method to generate quad meshes,
which is based on and improves the method by tong
et al. [8]. In this method, quad meshes are obtained
through temperature contouring. It is simple and ef-
ficient in calculation, but not enough from a practical
viewpoint. We discuss the feasibility of an optimiza-
tion problem appearing in the algorithm and assure
injectivity of the parameterization by controlling the
weights on edges.

∗Graduate School of Information Science and Technol-
ogy, The University of Tokyo, {minori okabe, imahori,

sugihara} @mist.i.u-tokyo.ac.jp

2 Outline of the proposed method

We describe the outline of our algorithm, which is
similar to that of tong’s method [8].

To achieve quad meshes, we give each vertex of the
given triangular mesh u and v values, and draw in-
teger contour lines from them. Assigning two values
is equivalent to planar parameterization. Because the
given mesh is not homeomorphic to a disk in general,
we have to divide it into some patches homeomor-
phic to disks. However, if patches are mapped into
the plane independently, the continuity of contours is
not assured, which is a requirement for quad meshes.
For this purpose, some conditions of “jump” and “ro-
tation” on patch boundaries are necessary. In case
that the function value of a continuous contour line
changes across a patch boundary, it should jump by
a certain integer value. Moreover, in case that a con-
tour line changes its function and direction, that is,
it switches from u to v, u to −u and so on, the rotat-
ing angle of the u-v coordinates should be equal to an
integral multiple of π

2 .
Now, the outline of our method is as follows:

1. Divide the mesh into patches.

2. Decide the connectivity conditions between
patches — jump values and rotating angles.

3. Solve a linear system to obtain u and v values for
each vertex and draw contours.

Hereafter, we call the mesh derived from the di-
vision of the original mesh into patches meta-mesh,
and vertices, edges and facets of the meta-mesh meta-
vertices, meta-edges and meta-facets respectively. A
vertex meeting three or more patches corresponds to a
meta-vertex. To make pure quad meshes, whose facets
have just four vertices, u and v values of meta-vertices
should be integer in each adjacent patches. We note
that meta-vertices are the candidates of singular ver-
tices of the resulting quad meshes, where singular ver-
tices mean vertices adjacent to other than four facets.

3 Details of each procedure

3.1 Division into patches

The first procedure is to divide the original triangular
mesh into patches homeomorphic to disks. As this di-
vision may affect the resulting quad meshes, it should

1

Improvement of the Method for Making Quad Meshes through Temperature Contours

93

reflect some geometric features of the mesh. Here we
use VSA method [2], in which each divided region is
designed to approximate the plane through alternate
update of the approximate planes and the patch divi-
sion.

In VSA method, the patches tend to meet where
the curvature is relatively large. This is a desirable
property for quad meshes. Moreover, we can roughly
control the number of singular vertices by adjusting
the number of patches.

It is to be noted that some inputs from VSA method
are rejected since some patches are not homeomorphic
to disks. It is because VSA method guarantee each
patch to be connected, but not to be homeomorphic
to a disk. To resolve this problem, patches should be
cut into subpatches homeomorphic to disks.

3.2 Solving a linear system

We explain the last procedure before the second one
for understanding. Similar to the ordinary planar pa-
rameterization, u and v values of a vertex is set to the
weighted average of u and v values of the neighboring
vertices: ∑

j∈ni

wij

(
ui − uj

vi − vj

)
= 0,

where ni is the set of the neighboring vertices of vertex
i. Here, we use the mean value coordinates [5] as
weights wij (see Section 3.4).

But for vertices on boundaries between patches,
this formula is not sufficient because we admit jumps
on u and v values and rotation of the u-v coordinates.
Let vertex i be on the patch named ‘−’, and patch ‘+’
be one of adjacent patches of patch ‘−’. n+

i (resp.,
n−i) means the partial set of ni on patch ‘+’ (resp.,
‘−’).

For example, if u values differ by p1 from one patch
to another and v by p2, the condition is as follows:∑
j∈n−i

wij

(
ui − uj

vi − vj

)
+

∑
j∈n+

i

wij

(
ui − (uj + p1)
vi − (vj + p2)

)
= 0.

In case of rotation, when the contours of u switched
into contours of v and v to −u and the jump values
are r1 and r2, the condition can be written down as
follows:∑
j∈n−i

wij

(
ui − uj

vi − vj

)
+

∑
j∈n+

i

wij

(
ui + (vj − r1)
vi − (uj + r2)

)
= 0.

Conditions for other rotations (i.e., 180◦ and 270◦)
can be written down similarly.
u and v values of meta-vertices are given in ad-

vance by the second procedure. This is corresponding
to boundary conditions of planar parameterization.
Injectivity of this mapping is referred later in Sec-
tion 3.4.

3.3 Deciding parameters

We decide the jump values and rotating angles for
meta-edges and u and v values of meta-vertices. Once
the region on the u-v plane to which each patch is
mapped is assigned, the connectivity of patches is au-
tomatically derived.

When two meta-vertices are adjacent on the meta-
mesh, they should be connected by a contour line.
That is, each meta-vertex is on a lattice point of the u-
v plane and each meta-facet is mapped into a polygon
with right angles on the u-v plane. By this condition,
determining the shape results in simple calculations.
In addition to the method in [8], we restrict the shape
to a rectangle in order to avoid self intersection and
assure injectivity. Thus what should be done is to
decide the angles of meta-vertices on each patch and
the lengths of meta-edges.

The angles for each patch is set to minimize the
difference of the length of facing edges. Here, we use
the shortest path length on the original mesh instead
of the actual path length of the boundaries in order
to make quad meshes equilateral.

Next we determine the length of each meta-edge.
For each facet, the sums of the lengths of facing meta-
edges must be equal. This can be represented as a
linear condition Ax = 0, where x is the variants vec-
tor corresponding to the lengths of meta-edges. We
consider minimizing the difference from the shortest
path length of corresponding two vertices on original
mesh represented by c:

min ‖x− c‖,
s.t. Ax = 0,

x ∈ Zn
+,

where n is the number of meta-edges and Z+ is the set
of positive intergers. By using 1-norm, this problem
can be represented as a linear programming problem
with integer conditions:

min t1 + t2 + · · ·+ tn,

s.t. Ax = 0,
− ti ≤ ci − xi ≤ ti (i ∈ {1, . . . , n}), (∗)
x ∈ Zn

+,

ti ≥ 0 (i ∈ {1, . . . , n}).
The feasibility of this problem is discussed later in
Section 5.

If the shape of each patch is obtained through the
angles of meta-vertices and the lengths of meta-edges,
u and v values of meta-vertices are specified by fixing
arbitrarily u and v values for one meta-vertex and
the direction of one meta-edge. After doing this for
each patch, jump values and rotating angles between
patches are automatically obtained.

2

EuroCG’09 - Brussels, Belgium

94

3.4 Guarantee for injectivity

Since injectivity is not guaranteed, triangles may flip,
which results in no pure quad meshes. In addition, the
triangles around singular vertices have a tendency to
flip and this hurts the quality of the resulting quad
mesh.

In ordinary planar parameterization, a theorem in
[5] is known to guarantee the injectivity. From this
theorem, a mapping is guaranteed to be injective if
(1) a triangular mesh homeomorphic to a disk is 3-
connected, (2) the weights on edges have positive val-
ues, and (3) the boundary is mapped into a convex
polygon. To apply this theorem to each patch, we ex-
amine the three conditions — 3-connectedness, posi-
tivity and convexity.

3-connectedness: For a mesh homeomorphic to a
disk, the graph derived from it is 3-connected if there
exists no edge which is not on any patch boundary
but whose adjacent vertices are both on patch bound-
aries. When such an edge exists, we insert a vertex
on the edge and divide the two adjacent triangles ac-
cordingly.

Moreover we do the following procedure in advance.
We check whether edges whose two adjacent vertices
are on the same patch boundary exist or not. If there
exist, we convert the boundary to use these edges.
This modification does not change the topology of the
meta-mesh. It has some smoothing effect on the re-
sulting quad mesh because the boundaries of patches
may be the edges of the resulting quad mesh.

Positivity: The mean value coordinates [4] are cho-
sen as weights because of its positivity.

Convexity: When boundaries are mapped into con-
vex polygons, each patch is mapped into a rectangle
because convex polygons with right angles are surely
rectangles. Weights of edges on patch boundaries are
set to extremely large values. Then the vertices on
patch boundaries are placed on the line between two
meta-vertices. In result, the vertices on the bound-
aries are positioned into a convex shape.

Under these conditions injectivity of the mapping
is guaranteed. But this hurts the quality of the re-
sulting quad mesh because the seams become visible.
To avoid this, we decrease the weights of the edges
on the patch boundaries toward the original weights
unless there exist flipped triangles. If triangles are
flipped by the decreasing to the original weight, we
use a binary search to find smaller weights under the
condition that any triangle is not flipped.

4 Experimental results

In this section we show some experimental results. We
first show results along the overall process in Figure 1.
The original triangular mesh has about 7000 vertices

(Figure 1(a)). It is divided into 7 patches as shown
in Figure 1(b). Figure 1(c) shows the contour lines
of u and v values and Figure 1(d) shows the resulting
quad mesh.

Square points in Figure 1 mean meta-vertices. The
whole calculation needs a few minutes on an ordinary
personal computer.

(a) original mesh (b) patch division

(c) contours (d) quad mesh

Figure 1: Process from a triangular mesh to a quad
mesh

Next we show the effect of controlling the weights
of edges on patch boundaries. In Figure 2(a), the
mean value coordinates are used as weights. The
meta-vertex in the middle has only one contour be-
cause some of triangles around this are flipped. On
the other hand, the weights of the edges on the patch
boundaries are added by a sufficiently large value in
Figure 2(b). In this case no triangle is flipped and
all the meta-vertices have the appropriate numbers of
contours.

(a) (b)

Figure 2: The comparison of contours between origi-
nal weights and increased weights

Finally, we show how increased weights damage the
quality of the resulting quad meshes and it is refined
by adjusting weights. The weights of the edges on

3

Improvement of the Method for Making Quad Meshes through Temperature Contours

95

the patch boundaries are added by a sufficiently large
value in Figure 3(a). On the other hand, these weights
are cut down as long as there exists no flipping tri-
angle in Figure 3(b). It is found that smoothness
increases as a result of cutting the weights down.

(a) (b)

Figure 3: The comparison of quad meshes between
increased weights and adjusted weights

5 Discussion on the feasibility

In this section we discuss on the feasibility of the op-
timization problem(∗) appearing when deciding the
length of meta-edges (Section 3.3). This problem may
not have feasible solutions. See Figure 4 as an exam-
ple.

Figure 4: An example of edges with 0 length — if gray
boundaries are set to be facing on the u-v plane, the
length of the upper left boundary is inevitably equal
to 0.

One solution is to divide patches until each patch
has four meta-vertices because there is at least one
feasible solution (i.e., all meta-edges have the same
length). If a patch has even meta-vertices, it is pos-
sible by inserting meta-edges. In contrast, in case of
a patch with odd meta-vertices, it is impossible with-
out inserting meta-vertices. In this case, by inserting
meta-vertices on meta-edges derived from a path of
patches from a patch with odd meta-vertices to other
patch with odd meta-vertices, patches with odd meta-
vertices can be converted to have even meta-vertices
without changing the parity of other patches (see Fig-
ure 5). It is possible because the number of patches
with odd meta-vertices is surely even.

6 Conclusion

In this article, we improved the method for construct-
ing quad meshes using temperature contours from a

Figure 5: An example of inserting meta-vertices —
each patch at both ends has an odd number of meta-
vertices. By inserting two gray meta-vertices, all the
patches have even meta-vertices and are divided so as
to have four meta-vertices.

practical viewpoint. We discussed on the feasibility of
the optimization problem and proposed an approach
of splitting meta-facets. Moreover we assured injectiv-
ity of the mapping by adjusting the weights of edges
on patch boundaries. Increased weights assure injec-
tivity but also damage the quality of the resulting
quad meshes. In order to adjust weights, we used a
bisection algorithm which requires iterative solving of
linear systems. Working out more efficient methods
for weight adjustment is an issue in the future.

Acknowledgments

We would like to thank CGAL library. The model in the

figures is courtesy of AIM@SHAPE. This work is sup-

ported by the Grant-in-Aid for Scientific Research(b) (No.

20360044) and for Exploratory Research (No. 19650003)

of the Japanese Society for Promotion of Science.

References

[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and
M. Desbrun. Anisotropic polygonal remeshing. ACM
Trans. Graph., 22(3):485–493, 2003.

[2] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Vari-
ational shape approximation. ACM Trans. Graph.,
23(3):905–914, 2004.

[3] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and
J. C. Hart. Spectral surface quadrangulation. ACM
Trans. Graph., 25(3):1057–1066, 2006.

[4] M. S. Floater. Mean value coordinate. Comput. Aided
Geom. Des., 20(1):19–27, 2003.

[5] M. S. Floater. One-to-one piecewise linear mappings
over triangulations. Math. Comput., 72(242):685–696,
2003.

[6] F. Kälberer, M. Nieser, and K. Polthier. Quadcover
- surface parameterization using branched coverings.
Computer Graphics Forum, 26(3):375–384, Sept. 2007.

[7] N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez.
Periodic global parameterization. ACM Trans. Graph.,
25(4):1460–1485, 2006.

[8] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Des-
brun. Designing quadrangulations with discrete har-
monic forms. In Proc. SGP (2006), 201–210, Switzer-
land, 2006. Eurographics Association.

4

EuroCG’09 - Brussels, Belgium

96

From Mesh Parameterization to Geodesic Distance Estimation

Joachim Giard ∗ † Benôıt Macq ∗

Abstract

Computing geodesic distances on a mesh can be a
time consuming, though redundant task. In this
paper, we propose a method to reuse the informa-
tion obtained during the computation of geodesic
distances from some reference vertices to estimate
distances between other vertices. First, the mesh is
parameterized, unfolding it in a plane around each
reference vertex. Then, distances between vertices
are computed using simple operations in these
parameterized planes. It quickly leads to a good
approximation of geodesic distances on the mesh.

Keywords: Geodesic distance, parameterization,
Unfolding, 3D Mesh.

1 Introduction

Computing geodesic distances on 3D meshes, i.e., dis-
tances along the surface, can be really time consum-
ing, especially in applications requiring ”all sources
to all targets” computations. Mitchell et al. [6] intro-
duced an exact ”single source to all targets” algorithm
running in O(n2 log n). This algorithm is close from
the Dijkstra algorithm [3] finding shortest paths in
graphs. In 1998, Kimmel and Sethian [4] presented
the fast marching algorithm running in O(n log n).
In methods exposed here above, ”single source to sin-
gle target” or ”single source to all targets” problems
are treated, but often ”all sources to all targets” prob-
lems have to be considered. It is the case, for instance,
when geodesic distance is used as a basis for discrete
differential-geometry operators [5] such as curvature
estimators, integrators or surface field filters. Using
”single source to all targets” algorithms to compute
such distances, without taking into account redun-
dant information, multiplies the complexity and the
effective computation time by n.
In this paper, we propose a method to quickly es-
timate geodesic distance using parameterization and
neighborhood information. The general idea of the
method is to parameterize the mesh by unfolding it
around references vertices and to compute distances

∗Communications and Teledetection Lab., Université
catholique de Louvain, Belgium.
†Communication author: joachim.giard@uclouvain.be.

J.G. is funded by Nanotic/Tsarine, project no 516248

of the Région Wallonne of Belgium.

in the plane. For source vertices which are not ref-
erences, the parameterization of the closest reference
vertex is used as if the mesh has been unfolded around
it.
Other methods were proposed in the literature to
reduce the complexity of such calculations. For in-
stance, the number of vertices on which the distance
is computed can be reduced [1]. In the method de-
scribed here, all the vertices are conserved, but the
dimension of the calculation space is reduced, keeping
a good resolution and then a good precision around
interest points.

2 Method

On a mesh, if two vertices are geodesically close, they
have a similar geodesic distances map. In particular,
if a vertex pc lies on the geodesic between two other
vertices, pa and pb, the geodesic distance from pc to
pb, Dc(b), can directly be deducted from Da(b) and
Da(c), both computed from the same vertex, pa. This
reasoning can be extended to vertices lying on differ-
ent geodesics, bringing the problem into the plane in-
stead of along a line and resolving a triangle. Then, it
is possible to reuse information extracted during the
computation of geodesics from a particular vertex for
the approximation of geodesics from other vertices.
By the way, in practise, it would be really space-
consuming to keep all the geodesics in memory. So,
in the proposed method, a few reference vertices are
selected and a geodesic distances map is computed
for each of these vertices. This distance map is com-
puted in a plane containing a parameterization of the
shape after an unfolding. The method is divided into
a preparation phase, during which a parameterization
of the mesh is computed around some reference ver-
tices, and a estimation phase, during which the pa-
rameterizations are used to estimate distance maps
for concrete applications.

2.1 Preparation Phase

During the preparation phase, some reference vertices
are selected and the mesh is parameterized around
each of them. A parameterization is a one-to-one
mapping from a surface to another one. Many ways
to map vertices of a 3D mesh on other surfaces such
as spheres or planes are found in the literature [7].
One of the major application of parameterizations is

1

From Mesh Parameterization to Geodesic Distance Estimation

97

p
1

p
0

p
-1

0

N0

p
-1 p

1

Figure 1: Unfolding of edges in the tangent plane Π0.
p0 is the current active vertex, p−1 is its parent in
the unfolded tree and p1 is a non-visited vertex. p−1

and p1 are projected in the tangent plane along the
normal vector ~N0. Given the length of [p−1p0], the
length of [p0p1], the projected angle ω1 and the pa-
rameterizations of p−1 and p0, it becomes possible to
compute the parameterization of p1.

texture mapping [8]. Generally, geodesic distance are
needed to produce the parameterization. For this
method, a new parameterization is used because it
is needed to estimate the geodesic distances and not
the opposite. The parameterization is designed to be
computationally efficient and to guarantee that close
vertices have similar parameterizations. This tech-
nique is a mix of shape unfolding [2] and of the fast
marching algorithm for geodesic distances computa-
tion [4]. It maps vertices of the mesh to a plane pa-
rameterized with a distance and an angle. Let pr be
the selected reference vertex and Dr(i), the geodesic
distance from pr to pi. At the first step, Dr(r) = 0
and Dr(i) =∞ if pr 6= pi. Then, the active vertex p0

is chosen as the non-visited vertex with the smallest
distance. At the first step p0 = pr. At each step,
vertices connected to p0 are unfolded by rotation of
edges to bring them in the tangent plane of p0 (see
Figure 1). Let p1 be one of these connected vertices
and p−1 the parent of p0 in the unfolded tree. p? is
the projection of p in the unfolding plane. The angle
ω1= ̂p?

−1p0p?
1 allows to compute the parameterization

of p1, and to update the distance from pr. At the
end of the step, Dr(1) and αr(1), the polar parame-
ters of p1 are updated, p0 is recorded to be the parent
of p1 and is labelled as visited. Then, the new p0 is
selected and so on until all vertices are visited. A sim-
ple polyhedron and an unfolded version are depicted
in Figure 2. The unfolding by successive projections
on the tangent plane does not conserve neither the an-
gles nor all the connectivity, but has some advantages
for this method. Geodesics have to be parameterized
as straight lines, so the distance between two vertices
can be computed using a simple operation. Conserv-
ing angles does not parameterize geodesics as approx-
imated straight lines, what leads to crossing risks and
obstruct the calculation of distances by simple oper-
ations.

a

a

b

b f j

c

g

dh

e

i

d e

f

j

h i

Figure 2: A simple polyhedron (left) and its unfolded
version (right) around the vertex a.

p
t

p
t

p
r

p
r

Figure 3: A distance map centered in the reference
vertex pr, and a geodesic between pr and a target
vertex pt. The distance map is first computed on
the unfolded version (right) and is mapped on the 3D
shape (left). Distances on the unfolded version are
computed as straight segment lengths in the plane.

An example of a distance map computed on a mesh
based on its unfolding is depicted in Figure 31. This
parameterization is performed for all the references
vertices and the parameters are kept in memory. A
new reference vertex is selected as the vertex of the
mesh being the geodesically furthest one from all
other reference vertices.

2.2 Estimation Phase

During the estimation phase, parameterizations com-
puted in the preparation phase are used to estimate
geodesic distances from any vertex of a mesh. Let ps

and pt be respectively the source and the target vertex
in a practical application. Let pr be the geodesically
closest reference vertex from ps. The parameters of
all the vertices based on the unfolding around pr are
stored in the vectors Dr (distance) and αr (angle).
The approximation of the geodesic distance between
ps and pt, D̃s(t), is computed using the law of cosines:

γr
s (t) = αr(t)− αr(s),

D̃s(t) =
√
D2

r(s) +D2
r(t)− 2D2

r(s)D2
r(t) cos

(
γr

s (t)
)
.

1Stanford Bunny, courtesy of Greg Turk and Marc Levoy.

2

EuroCG’09 - Brussels, Belgium

98

p
t

p
s

p
r

p
r

p
s

p
t

Figure 4: Estimation of the distance map centered in a
source vertex ps and a geodesic estimation between ps

and a target vertex pt. The geodesic distance between
ps and pt is estimated in the unfolding plane around
pr (right) based on the lengths of −−→prps and −−→prpt and
the angle between both. The estimated distance map
is mapped on the 3D shape (left).

An approximation example is shown in Figure 4. This
application is based on the parameterization around
pr, depicted in the Figure 3.

3 Results

The aim of this method is to provide quickly an esti-
mation of geodesic distances reusing information com-
puted for other source vertices. To show the time ad-
vantages, a complexity analysis and execution times
for typical tasks are presented in this section. Some
estimation error measurements are also presented in
this section.

3.1 Complexity Analysis

The time complexity for a mesh containing n ver-
tices for a ”single source to single target” estima-
tion is O(mn log n) + O(1), where m is the number
of reference vertices. The time complexity for the
parameterization around a vertex is O(n log n) and
this operation is repeated m times during the prepa-
ration phase. So the fixed cost of the algorithm is
O(mn log n). The variable cost depends directly on
the number of sources and targets. It is the cost of
the estimation phase which only contains simple op-
erations. The ”all sources to all targets” algorithm
has a complexity of O(mn log n) + O(n2) instead of
O(n2 log n) without estimation (in this case, m = n,
and no estimation phase is needed).

3.2 Execution Times

Execution times2 for ”all sources to all targets” tasks
are presented in Table 1. The algorithm was ap-
plied on three meshes: the Sphere (1522 vertices),

2The algorithm was implemented in C++ with the Visual
ToolKit. Tests were performed on an Intel Core 2 CPU @
2.00GHz, and with 2 Gb RAM.

Mesh Name Parameterization Estimation
Sphere 43s 0s
Bunny 7250s 32s
Horse 194000s 323s

Table 1: Execution times of ”all sources to all tar-
gets” tasks for the parameterization alone (left) and
for the estimation alone (right). The test were per-
formed on three meshes (Sphere, Bunny and Horse).
In the method presented here, the parameterization
does not need to be ”all sources to all targets” but
”some reference sources to all targets”, making the
total parameterization time shorter.

the Bunny (14007 vertices) and the Horse (48485 ver-
tices). Execution time for the parameterization step
around the n vertices of each mesh appears in the
left column. Execution times for the estimation of
the distances from all the vertices, based on a ref-
erence parameterization, appear in the right column.
Since both ”all targets” processes depends linearly on
the number of sources, the total execution time for
p source vertices based on m reference vertices is the
left column time weighted by m

n added to the right
column time weighted by p

n . For instance, the exe-
cution time for 1000 sources based on 100 reference
vertices on the Bunny is 100

140077250 + 1000
1400732 ' 54s.

3.3 Estimation Errors

For the geodesic distance based on the parameter-
ization, some minor errors can appear. First, the
parameterization make the geodesics ”follow” edges,
whereas sometimes, going through a face would be
shorter. This error becomes smaller if the size of the
faces becomes smaller. Second, some crossings can
appear in the unfolding, leading to discontinuities in
the distance map. However, for relatively regular sur-
faces, these crossings are generally far from the source,
where less precision is needed.
Bigger errors appear in the estimation phase. First, if
the number of reference vertices is too low, two close
vertices can be considered to be far from each other if
they are on the border of the parameterization (over-
estimation). The error rate is unbounded because two
close vertices can belong to different reference vertex
zones, so an infinitely small distance may be estimated
as a larger positive value. Second, if the surface is not
smooth and if the geodesics from reference vertices
follow valleys and crests, then, the geodesics from an-
other source vertex, could cross the ripples without
taking them into account (underestimation). The un-
derestimation rate is unbounded because the number
of ripples can be very high even close from the refer-
ence vertex. Mean error percentages for two meshes,
the Sphere (1522 vertices) and the Head (367 ver-
tices), depending on the proportion of reference ver-

3

From Mesh Parameterization to Geodesic Distance Estimation

99

1E 3 1E 2 1E 1 1E+0
0

0.2

0.4

0.6

0.8

1

1.2
Sphere
Head

Proportion of Reference Vertices

Me
an

 P
ro

po
rtio

na
l E

rro
r

Figure 5: Error graph of the estimation phase as a
function of the proportion of reference vertices. The
proportional error was calculated on two 3D shapes:
the Sphere (blue upright squares), which is simple and
convex, and the Head (red rotated squares). The scale
of the x-axis is logarithmic.

tices are depicted in Figure 5. It shows the errors
coming from the estimation, so the geodesic distances
computed from the parameterization were considered
to be exact. The mean proportional error, ε, is com-
puted as follow:

ε =
1
σ2

n∑
i=1

σi

 n∑
j=1

|Di(j)− D̃i(j)|
Di(j)

σj

,
where σ is the total area of the mesh and σj is a
proportion factor depending on faces area around the
vertex pj .

4 Conclusion

In this paper, we presented a method to quickly es-
timate geodesics distances on meshes. This method
is based on parameterizations around some reference
vertices, unfolding the mesh in a plane and comput-
ing distances using simple operations in this plane. As
showed in section 3, for ”classical” meshes, the local
errors produced by this estimation are below 5% if the
reference vertices proportion is over 10%. Since the
execution time of the estimation phase is negligible
in comparison with the parameterization time, taking
only 10% of reference vertices divides the execution
time by 10.
With the current used technique, the error is not
bounded. But in practise, with relatively smooth
meshes, the approximation works well. The error can
be theoretically bounded by using other technique to
rely application vertices to reference vertices. For in-
stance, by combining several references or by consider-
ing an angle difference instead of a distance to choose

them. In future works, we will prove some intuitive
ideas exposed here, and we will continue to improve
the efficiency of the algorithm by choosing, for in-
stance, a better parameterization, or by selecting ref-
erence vertices in a more efficient way.
The algorithm will also be used by members of the
team in molecular docking and 3D watermarking pro-
cesses.

References

[1] L. Aleksandrov, A. Maheshwari, and J. Sack. Approx-
imation algorithms for geometric shortest path prob-
lems. In Proceedings of the thirty-second annual ACM
symposium on Theory of computing, pages 286–295.
ACM New York, NY, USA, 2000.

[2] E. Demaine and J. ORourke. A survey of folding and
unfolding in computational geometry. Combinatorial
and Computational Geometry, 2005.

[3] E. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, 1959.

[4] R. Kimmel and J. Sethian. Computing geodesic paths
on manifolds. Proceedings of the National Academy of
Sciences, 95(15):8431–8435, 1998.

[5] M. Meyer, M. Desbrun, P. Schroder, and A. Barr. Dis-
crete differential-geometry operators for triangulated
2-manifolds. Visualization and Mathematics, 3:35–57,
2003.

[6] J. Mitchell, D. Mount, and C. Papadimitriou. The
Discrete Geodesic Problem. SIAM Journal on Com-
puting, 16:647, 1987.

[7] A. Sheffer, E. Praun, K. Rose, and I. NetLibrary.
Mesh Parameterization Methods and Their Applica-
tions. Foundations and Trends R© in Computer Graph-
ics and Vision, 2(2):105–171, 2006.

[8] G. Zigelman, R. Kimmel, and N. Kiryati. Texture
mapping using surface flattening via multidimensional
scaling. IEEE Transactions on Visualization and
Computer Graphics, 8(2):198–207, 2002.

4

EuroCG’09 - Brussels, Belgium

100

Certified Meshing of RBF-based Isosurfaces

Amit Chattopadhyay∗ Simon Plantinga † Gert Vegter‡

Abstract

Radial Basis Functions are widely used in scattered
data interpolation. The process consists of two steps:
(i) computing an interpolating implicit function the
zero set of which contains the points in the data
set, followed by (ii) extraction of isocurves or isosur-
faces. We focus on the second step, generalizing our
earlier work on certified meshing of implicit surfaces
based on interval arithmetic. It turns out that in-
terval arithmetic, and even the usually faster affine
arithmetic, are far too slow in the context of RBF-
based implicit surface meshing. We present optimized
strategies giving acceptable running times and bet-
ter space complexity, exploiting special properties of
RBF-interpolants. We present pictures and timing
results confirming the improved quality of these opti-
mized strategies.

1 Introduction

RBF-based interpolants. Radial Basis Functions
provide a simple meshless method for the reconstruc-
tion of smooth geometric objects in the plane or in
three-dimensional space from a finite point sample
v1, . . . , vn. The process consists of two steps: (i) com-
puting an interpolating implicit function the zero set
of which contains the sample points, followed by (ii)
extraction of the isocurve or isosurface.

The Radial Basis interpolant constructed in step (i)
is of the form

s(x) =
n∑

k=1

wk ϕ(||x− vk||) + p(x), (1)

where x ∈ Rd, for d = 2, 3, such that s is zero at the
sample points (centers) vk. Here p is a polynomial of
low degree, cf [5]. The Radial Basis Function (RBF)
ϕ is a univariate function. Some popular RBFs are
ϕ(r) = r3 (triharmonic spline in 3D), ϕ(r) = r2 log r
(thin plate spline in 2D), ϕ(r) =

√
r2 + c2 (multi-

quadric), ϕ(r) = exp(−r2) (Gaussian).
The second step, namely isosurface extraction, is

our main focus. In [9] we use interval arithmetic (IA)
to extract regular level sets of a general smooth (C1)

∗Corresponding author. University of Groningen, The
Netherlands; email: A.Chattopadhyay@rug.nl

†Email: S.Plantinga@rug.nl
‡Email: G.Vegter@rug.nl

implicit function. More precisely, the algorithm com-
putes a piecewise linear surface which is close (iso-
topic) to the actual zero set, and is guaranteed to have
the same topology. It is akin to the Marching Cubes
algorithm in the sense that it analyzes the topology
of the isosurface on boxes in the plane or in space. If
it cannot decide that the topology is correct, it subdi-
vides the box. However, interval arithmetic converges
very slowly for implicit functions like (1), i.e., sums
consisting of a large number of terms.
Our contribution. Our early experiments show that
even the straightforward use of affine arithmetic
(AA) [4], a fine tuned version of IA, does not im-
prove running times sufficiently. Therefore, we de-
veloped an improved strategy using linear upper and
lower bounds, exploiting the fact that each term in
the sum is of the same form. This strategy works
for certain RBFs, and leads to spectacular improve-
ment of the running time, since far less subdivisions
of boxes are needed before the algorithm can decide
that the topology is correct. Since such linear bounds
are not easy to obtain for all types of RBFs we also
developed a more general method based on quadratic
bounding functions, which works for commonly used
RBFs. Finally, we give pictures and performance re-
sults confirming the improved quality of the optimized
strategy in terms of time and space complexity.
Related Work. Current methods for meshing RBF-
based implicit surfaces do not come with topological
guarantees, since they are usually based on the march-
ing cubes algorithm [7]. Methods for certified meshing
of implicit surfaces are presented in [3, 10]. In [9] in-
terval arithmetic is used to extract certified meshing
of implicit surfaces. For an overview of interval arith-
metic methods and their optimizations we refer to [8].
Affine arithmetic is discussed in [4].

2 Preliminaries

Interval Arithmetic (IA). Interval arithmetic is used
to prevent rounding errors in finite precision computa-
tions. A range function �F for a function F : Rm →
Rn computes for each m-dimensional interval I (i.e.,
an m-box) an n-dimensional interval �F (I), such that
F (I) ⊂ �F (I). A range function is said to be conver-
gent if the diameter of the output interval converges
to 0 when the diameter of the input interval shrinks
to 0. Convergent range functions exist for the ba-
sic operators and functions, so all range functions are
assumed to be convergent.

1

Certified Meshing of RBF-based Isosurfaces

101

Certified Meshing Algorithm. The certified mesh-
ing algorithm [9] subdivides the domain of an im-
plicit function until it can approximate the zero set
of the function in each box with a topologically cor-
rect piecewise linear surface. The algorithm takes an
implicit function F and a box B as input, and com-
putes a piecewise linear approximation of F−1(0)∩B,
assuming that the zero set F−1(0) of F contains no
singular points of F inside B. It uses range functions
for F and its gradient ∇F .

Algorithm: ApproximateCurve(F, B)

1. Initialize quadtree T to B;
2. Subdivide T until for all leaves I:

0 /∈ �F (I) ∨ 〈�∇F (I), �∇F (I)〉 > 0;
3. Mesh(T).

Here, Mesh(T) approximates the zero level set in-
side the box T by a linear function. The first clause
in line 2 discards cells I for which 0 /∈ �F (I), i.e.,
boxes which are guaranteed not to contain part of
the zero set of F . The second clause implies that
〈∇F (x),∇F (y)〉 > 0, for all x, y ∈ I, so the direction
of the gradient (and, therefore, of the curve) does not
change by more than π/2 over this box. This im-
plies that the zero set of F is parametrizable (i.e., can
be written as a function of x or y), which is the key
property in the proof of topological correctness of the
output. We refer to [9] for details.

3 Range functions for RBFs

Unfortunately, for RBF-based implicit functions s of
the form (1) an IA-based implementation of algorithm
ApproximateCurve(s, I) has unacceptable running
times. Our goal is to improve the performance con-
siderably by optimizing the range intervals �s(I) and
�∇s(I) for such RBF-interpolants s on a box I. We
restrict our discussion to the two-dimensional case,
althought our approach works in any dimension.

Computing �s(I). Our optimization strategy deter-
mines a lower bound lk(x) and an upper bound uk(x)
for wkϕ(||x − vk||) on the box I, such that the min-
imal value L(I) of l(x) :=

∑
k lk(x) + p(x) on I and

the maximum value U(I) of u(x) :=
∑

k uk(x) + p(x)
on I are easy to compute. Moreover, taking �s(I) =
[L(I), U(I)] should yield a much better range interval
than AI, or even AA.

Our approach is based on the observation that the
summand wkϕ(||x − vk||) is radially symmetric with
respect to the center vk. We will find quadratic upper
and lower bounds for the univariate function wk ϕ(r)
for r ranging over the smallest interval Jk = [r1, r2]
for which r2

1 ≤ ||x − vk||2 ≤ r2
2 , for all x ∈ I. See

Figure 1. More precisely, the univariate upper bound

a b

I

vk

r1 r2

Figure 1: Near and far point of a square interval I. If
the center vk lies inside the box I, then r1 = 0.

of wkϕ(r) on Jk is of the form αkr2 + βk, yielding

s(x) ≤
n∑

k=1

αk||x− vk||2 +
n∑

k=1

βk + p(x),

for x ∈ I. Since, for most RBFs, the polynomial p
has degree at most two, the upper bound is a bivari-
ate quadratic function, obtained by adding the coef-
ficients of the upper bounds for each individual sum-
mand. Moreover, the maximum value U(I) of this up-
per bound on the interval I is easily computed. Due
to lack of space we just mention that for most RBFs
the coefficients αk and βk are determined in a rather
straightforward way by solving a simple optimization
problem, once for each type of RBF. A quadratic lower
bound for the RBF-interpolant s on I is determined
similarly. In view of the special shape of the quadratic
upper and lower bounds this approach is called the
bounding paraboloid strategy (BPARAB)

Computing �∇s(I). To find optimal ranges �sx(I)
and �sy(I) for the components of the gradient of the
RBF-interpolant (1), first note that sx is given by

sx(x) =
n∑

k=1

wk
ϕ′(||x− vk||)
||x− vk|| (x− vkx) + px(x), (2)

where x = (x, y) and vk = (vkx, vky). Applying
the same approximation strategy as before we find
quadratic lower bounds on the one-dimensional inter-
val Jk for each of the univariate factors wk ϕ′(r)/r,
leading to a bivariate cubic lower bound Lk(x) on the
box I for the k-th summand in (2) of the form

Lk(x) = ak x (x2 + y2) + Qk(x),

where ak is a real constant, and Qk(x) is a quadratic
polynomial. A cubic upper bound Uk(x) of this form
is found similarly. A straightforward derivation yields
the minimal value of

∑
k Lk(x) + px(x) and the max-

imal value of
∑

k Rk(x) + px(x) on I, and, hence, a
good interval �sx(I). A good interval �sy(I) is com-
puted similarly.

As we will show in Section 4, this strategy improves
the performance of the certified meshing algorithm
ApproximateCurve considerably for various RBFs.

2

EuroCG’09 - Brussels, Belgium

102

Bounding plane strategy for the cubic RBF. The
cubic RBF, given by ϕ(r) = r3, corresponds to the tri-
harmonic spline in 3D, which is used widely in recon-
struction of geometric surfaces from scattered point
samples. Therefore, for this case we tried to design
an even better strategy based on special properties,
like convexity, of the RBF. More precisely, using well-
chosen linear upper and lower bounds, we were able
to improve the running time even further in some
cases. For experiments with this bounding plane strat-
egy (BP), corroborating this improvement, we refer to
Section 4.

4 Experimental results

We present some 2D experiments with algorithm
ApproximateCurve, implementing range functions
based on IA, AA, BPARAB and, for the cubic RBF,
the BP-strategy. We extract the zero sets of various
RBF-interpolants, and compare the number of leaves
(NOL) of the subdivision tree and the CPU-time
(CPU). The RBF-interpolants are constructed using
uniform sample interpolation points extracted from
several well-known functions, cf. [6], over a bounded
domain.

Figure 2: Isocurve extraction for a cubic RBF-
interpolant (100 centers) of the function xy(x−1)(y−
1)−0.02, sampled uniformly on the square [0, 1]×[0, 1]
using strategies: (i) AA , (ii) BP and (iii) BPARAB.

Figure 3: Isocurve extraction for a cubic RBF-
interpolant (100 centers) of the function (x2 +y2)(1−√

x2 + y2) − 0.04, sampled uniformly on the square
[−1.2, 1.2]× [−1.2, 1.2] using strategies: (i) AA , (ii)
BP and (iii) BPARAB.

We used the Boost library [1] for IA, and the li-
brary [2] for AA. All experiments have been performed
on a 3GHz Intel Pentium 4 machine under Linux with
1 GB RAM using the g++ compiler, version 3.3.5.

Experiments with Cubic RBF. Our first sequence
of experiments has been performed using cubic-based
interpolants. In other words, we used the RBF given
by ϕ(r) = r3. Tables 1–3 presents the measured per-
formance for different optimization strategies. Fig-
ure 2–4 contain the corresponding isocurves, together
with the boxes corresponding to the leaf-nodes of our
subdivision tree.

Note that Table 1 shows that straigthforward use of
IA does not lead to convergence (in reasonable time),
except in trivial cases. Therefore, we discard IA from
our remaining experiments.

Figure 4: Isocurve extraction for a cubic based
RBF-interpolant (100 centers) of the function 4y2 −
(x + 1)3(1 − x), sampled uniformly on the square
[−1.1, 1.1]× [−1.1, 1.1] using strategies: (i) AA , (ii)
BP and (iii) BPARAB.

Experiments with Multiquadric RBF. Next, we
show some more experimental results using the mul-
tiquadric RBF given by ϕ(r) =

√
1 + r2. Table 4

compares the performance of the AA and BPARAB
strategies for this case. Figures 5 and 6 contain the
corresponding isocurves.

Figure 5: Isocurve extraction for a multiquadric
RBF-interpolant (49 centers) of the function 4y2 −
(x + 1)3(1 − x), sampled uniformly on the square
[−1.1, 1.1] × [−1.1, 1.1] using strategies: (i) AA and
(ii) BPARAB.

Conclusion. Our experiments show that IA has un-
acceptable performance, that AA converges in most
experiments with the cubic RBF but fails for the
multiquadric-based interpolants, that BPARAB is a
general and fast method, and that the BP-strategy for
cubic RBFs does not perform better than BPARAB.

References

[1] Boost interval arithmetic library. www.boost.org.

3

Certified Meshing of RBF-based Isosurfaces

103

IA AA BP BPARA

NOC NOL CPU NOL CPU NOL CPU NOL CPU

25 138616 6.54s 1264 1.6s 280 0.22s 154 0.15s
49 484660 39.6s 2140 5.3s 325 0.49s 274 0.49s
100 1726852 4m13s 3856 25.8s 898 2.19s 304 1.19s
225 6757600 36m47s 5848 1m56s 1156 8.74s 769 6.30s
400 - - 12880 9m11s 2008 19.1s 1081 16.5s
625 - - 16408 27m59s 3676 56.6s 1120 27.6s
900 - - 17980 629s 4237 1m46s 1636 49.5s
1156 - - 19084 98m55s 4435 2m39s 2032 1m11s

Table 1: Space and time complexity corresponding to Figure 2.

Figure 6: Isocurve extraction for a multiquadric RBF-
interpolant (25 centers) of the function (y−x2 +1)4+
(x2 + y2)4 − 1 = 0, sampled uniformly on the square
[−1.2, 1.2]×[−1.4, 1.0] using (i) AA and (ii) BPARAB.

AA BP BPARAB

NOC NOL CPU NOL CPU NOL CPU

25 2908 4.07s 640 0.51s 448 0.388s
49 6820 16.5s 1237 1.51s 580 1.10s
100 9052 55.7s 1741 4.10s 1156 3.70s
225 18808 5m36s 3580 19.8s 1528 10.5s
400 24988 17m16s 4492 41.8s 1972 29.0s
625 31492 46m57s 5338 1m9s 3652 1m10s
900 34888 108m 6565 2m6s 4120 1m46s
1156 37288 198m 7663 3m53s 4540 2m40s

Table 2: Space and time complexity corresponding to
Figure 3.

[2] C++ affine arithmetic library. savannah.nongnu.org/
projects/libaffa.

[3] J.-D. Boissonnat, D. Cohen-Steiner, and G. Vegter.
Isotopic implicit surface meshing. Discrete and Com-
putational Geometry, 39:138–157, 2008.

[4] L. H. de Figueiredo and J. Stolfi. Affine arithmetic:
Concepts and applications. Numerical Algorithms.,
00:1–13., 2003.

[5] A. Iske. Scattered data modelling using radial basis
functions. In A. Iske, E. Quak, and M. S. Floater, edi-
tors, Tutorials on Multiresolution in Geometric Mod-
elling, Mathematics and Visualization, pages 287–
315. Springer-Verlag, Heidelberg, 2002.

[6] H. Lopes, J. Oliveria, and L. Figueiredo. Robust
adaptive polygonal approximation of implicit curves.

AA BP BPARAB

NOC NOL CPU NOL CPU NOL CPU

25 934 1.29s 181 0.152s 142 0.152s
49 1810 5.96s 376 0.66s 337 0.63s
100 3592 25.9s 784 2.77s 589 2.27s
225 7072 2m39s 1483 11.7s 1183 10.1s
400 11956 2m24s 2350 32.3s 1492 23.2s
625 18766 34m 3691 1m15s 2104 51.2s
900 25252 88m 5122 2m30s 3136 1m45s
1156 27910 154m 5668 3m25s 3895 2m39s

Table 3: Space and time complexity corresponding to
Figure 4.

AA BPARA

NOC NOL CPU NOL CPU

25 1216 1.48s 52 0.068s
49 7726 20.8s 154 0.30s
100 115312 13m36s 274 1.12s
225 — — 289 2.71s
400 — — 520 8.66s
625 — — 598 15.8s
900 — — 610 22.7s
1156 — — 874 41.6s

Table 4: Complexity of Multiquadric-based meshing
corresponding to Figure 5.

Computers and Graphics, 2002.

[7] W. Lorensen and H. Cline. Marching cubes: a
high resolution 3d surface construction algorithm.
Computer Graphics (Proceedings SIGGRAPH 1987),
21(Annual Conference Series):163–169, 1987.

[8] R. Martin, H. Shou, I. Voiculescu, A. Bowyer, and
G. Wang. Comparison of interval methods for plot-
ting algebraic curves. Comput. Aided Geom. Des.,
19(7):553–587, 2002.

[9] S. Plantinga and G. Vegter. Isotopic meshing of
implicit surfaces. The Visual Computer, 23:45–58.,
2007.

[10] B. Stander and J. Hart. Guaranteeing the topology of
an implicit surface polygonizer for interactive mod-
eling. In Proceedings SIGGRAPH, pages 279–286,
1997.

4

EuroCG’09 - Brussels, Belgium

104

Low-resolution Surface Mapping: a Topological and Geometrical
Approach

Jean-Marie Favreau∗, Vincent Barra†

Abstract

In this paper we tackle the problem of mapping a
surface acquired from a real object onto a piece of
the plane, taking into account the topological and
geometrical properties of the surface, as well as
the specificity of low-resolution acquisitions. We
first describe the general background of surfaces
unfolding and cutting. We then introduce the
cutting process used to manage the topological
constraint of the one-to-one mapping, with some
speedup improvements. Specific geometrical con-
straints linked to the low resolution context are
detailed, and some experimental results on real
and synthetic data are finally presented.

1 Introduction

There are several ways to produce 3D acquisitions
from a real object. They can mainly be separated
into volumic acquisitions, e.g. in medical imag-
ing, and point clouds generated from 3D scan-
ners or cameras. Both of the data structures are
usually turned into surfaces described by trian-
gles, using isosurface reconstruction methods that
ensure a topologically correct reconstructed sur-
face [8], or a sign distance [3]. They can also be
fitted with analytical surfaces such as RBF [1].
Due to the precision and resolution, the resulting
virtual surface may not capture the full topologi-
cal and/or geometrical details of the original sur-
face, and are prone to artifacts that misrepresent
the data. These errors are common for specific
geometric configurations, producing non-existing
junctions or handles, disjunctions or hole fillings.

To solve these topological artifacts, volumic ap-
proaches can be proposed, such as the use of skele-
tons [11]. This method thus can only manipulate
volumic data, and cannot be influenced by geo-
metrical properties like local curvature. On the
other hand, surfacic approaches [10] remove small
tunnels, but do not manage geometrical properties
of surfaces, like geodesic distances or local curva-
ture. In this paper, the specificity of these sur-
faces is managed during the manipulation steps,
taking into account both topological and geomet-
rical properties of the surfaces.

∗Université Blaise Pascal / LIMOS UMR 6158 Jean-
Marie.Favreau@isima.fr
†Université Blaise Pascal / LIMOS UMR 6158 Vin-

cent.Barra@isima.fr

2 Background

2.1 Topological definitions

Let X and Y be two topological spaces. X and Y
are said to be homeomorphic if there is an home-
omorphism between these spaces, i.e. if there is
a bijective continuous function f : X → Y , with
a continuous inverse function f−1. A 2-manifold
or surface M without boundary is a topological
space locally homeomorphic to a disc. A surface
with boundary can also be locally homeomorphic
to an half disc. A non-separating curve in M is
a curve that can be drawn on the surface without
separating it. A simple closed curve in M is a
curve homeomorphic to a circle.

The genus g of a surface M is defined as the
largest number of non-intersecting non-separating
simple closed curves.

2.2 2-mesh definition

In the following, we assume that the first process
of surface reconstruction has been applied, pro-
ducing a 2-mesh M, defined as a 2-manifold sim-
plicial 2-complex (with boundaries or not), i.e.
M is an union of 0-simplices called vertices, 1-
simplices called edges and 2-simplices called tri-
angles, and locally homeomorphic to either a disc
or an half disc. We call a boundary each connected
component of the simplicial 1-complex defined by
the boundary ofM. Surfaces are usually classified
by their genus and the number of their boundaries.

In the following, we assume that the triangu-
lated surfaces are 2-meshes, i.e. without local ar-
tifacts.

2.3 Mapping a surface

An usual approach to visualize the whole surface
of a 2-mesh M is to map it to a piece of the
plane. It is also a natural approach of UV map-
ping for texture drawing on complex surfaces. We
define a mapping between a 2-meshM and a piece
of the plane as an one-to-one continous function
f :M→ R2. This definition does not allow fold-
ings, and mappings thus only exists for surfaces
homeomorphic to a piece of the plane.

Mapping algorithms can be subdivided into
fixed-border and free-border methods [7]. Fixed-
border methods allow the boundary to be con-
strained. The resulting map does not take into
account the shape of the boundary, and does not

1

Low-resolution Surface Mapping: a Topological and Geometrical Approach

105

preserve angles or distances. Free-border meth-
ods produce only locally bijective mappings: the
boundary of the unfolded surface may contain
self-crossings on the plane. However, these self-
crossings do not forbid a local use of the mapping
and if neccesary, local arrangements of the map-
ping may be applied [9].

For practical purposes, the majority of the
methods imposes that M is homeomorphic to a
disc. In section 3, this topological constraint has
been relaxed using a cutting step.

2.4 Cuttings using paths and loops

Most of the manipulated surfaces are not homeo-
morphic to a piece of the plane. Unfolding the sur-
face thus make some preprocessings mandatory,
reducing the genus and introducing boundaries.
These transformations have to be as unnoticeable
as possible. The most intuitive method to pro-
duce such a transformation is the use of cuttings
along paths. A 1-path of a 2-mesh M is defined
as a list of n oriented edges s0, ..., sn−1 where for
each i = {0, ..., n− 2}, the terminal vertex of si is
the initial vertex of si+1. A 1-cycle of a 2-mesh
M is defined as a 1-path s0, ..., sn−1 where the ini-
tial vertex of s0 is the terminal vertex of sn−1. A
cutting along a 1-path p is naturally performed by
duplicating vertices and edges of p, thus removing
junctions between triangles adjacent to p.

3 Topological constraints

Generally speaking, the mapping methods com-
pute a transformation from a surface of genus 0
with at least one boundary to a piece of the plane.
In practice, methods described in section 2.3 un-
fold surfaces homeomorphic to a disc, i.e. with
exactly one boundary. A preliminary topological
transformation step is thus needed to be able to
apply those unfolding methods.

3.1 Cutting the surface

LetM be a 2-mesh of genus g with b boundaries.
As mentioned in section 2.4, the topological trans-
formations have to be as unnoticeable as possible,
and cutting is a solution that reduces the genus
and the number of boundaries with only small
modifications. In this context, we call cutting C
of a 2-mesh M a set of edges whose complement
in M is homeomorphic to a disc.

Some algorithms have already been proposed to
produce such a cutting. Colin de Verdière et al.
described a topological algorithm [2] producing
a minimal cutting in terms of number of 1-paths.
However, this cutting only focuses on topological
properties of the 2-mesh, and does not handle the
geometry. Erickson and Har-Peled [5] computed
an almost minimal cutting in terms of cutting’s
length, using a distance d on edges. In our

application, this method seems to be the most
interesting approach, since it manages topology
without ignoring the geometry of the 2-mesh.
In [5], authors defined a o(n log(n)) algorithm
to compute the shortest non-separating 1-loop
(1-nsloop) starting from a given point b, called
basepoint. The shortest 1-path and 1-loop are
computed using the Dijkstra algorithm [4]. Al-
gorithm 1 describes the global cutting algorithm:

Data: 2-mesh M non homeomorphic to a sphere

while genus of M ! = 0 do
c = shortest 1-nsloop;
Cut M according to c;

while number of boundaries of M! = 1 do
c = shortest 1-path between 2 boundaries;
Cut M according to c;

Algorithm 1: Cutting a surface into a disc

We used an alternative method to build a bet-
ter approximation of the optimal cutting, using
Algorithm 2 to compute the shortest 1-nsloop:

Data: 2-mesh M non homeomorphic to a sphere

Result: The shortest 1-nsloop l
B = a complete set of basepoints;
foreach p ∈ B do

lp = shortest 1-nsloop containing p;
if first step or length(lp) < length(l) then

l← lp

Algorithm 2: Finding the shortest 1-nsloop
The main difference between the original method
and our approach is the set of basepoints B of
M. In [5], this set was reduced to optimize the
complexity, but with a loss of precision. In our
approach, B is a set of points such as if a 1-nsloop
exists on M it should have a point contained in
B. Basepoints can be computed using a growing
surface process: a point p is first selected on the
interior of M. Triangles of the 2-mesh are then
added as a growing surface, preserving the origi-
nal connectivity and assuming that this wavefront
is continually homeomorphic to a disc.When the
wavefront stops, some boundaries of the resulting
surface may not be boundaries of M, and the set
of their points is equal to B.

Our approach has a complexity O(gnm log n),
where m is the number of basepoints and n is
the number of points of M. Some enhancements
of this algorithm can then be considered to im-
prove the practical running time, more particu-
larly focusing on the computation of the shortest
1-nsloop.

3.2 Using a bounded Dijkstra algorithm

Algorithm 2 computes for each basepoint p the
corresponding shortest 1-loop, and compares its
length to the length of the shortest already com-
puted 1-loop l. Paths longer than l are ignored.
Moreover, the shortest 1-loop computation from
p is mainly based on a Dijkstra algorithm: points

2

EuroCG’09 - Brussels, Belgium

106

(a) (b)

Figure 1: The potential good basepoint selec-
tion using shortest paths. Fig. (a): The selected
basepoints, structured into two paths. Fig. (b):
The potential good basepoint b1 selected using the
shortest path between the two sides of p1.

are ordered according to the result of this algo-
rithm to grow the wavefront.

Using l as an additional piece of information
from a given basepoint, the computation may then
be rewritten as follows: Compute the shortest 1-
nsloop lp containing p and shortest than length(l).
This truncates the Dijkstra algorithm and the
wavefront growing stage.

The complexity of this modified 1-loop compu-
tation is less than o(m(log(n) + ll log(l))) where ll
is the higher length of the shortest 1-loop starting
from a basepoint ofB. For practical purposes, this
maximum bound is rather small and this improve-
ment clearly speeds up the 1-loop computation, as
illustrated in Table 1.

If this improvement dramatically increases the
shortest 1-nsloop computation, it often depends
on the order of the basepoints: the sooner the
shortest 1-loops are founded, the sooner next
searches are truncated, increasing their compu-
tation time. We select the first basepoint from
each path p of B using the shortest path from one
side of p on the complementary of B to the other
(Figure 1).

3.3 Using previous cuttings

Algorithm 1 uses successively several calls of Al-
gorithm 2. After each computation of the shortest
1-loop, the 2-mesh is cut according to this result.
The length of the ist 1-loop, i > 1 will thus be
greater or equal than the length of the (i − 1)st
1-loop. During the construction of the ist 1-loop,
and when a junction of the growing surface oc-
curs, the length of the 1-loop corresponding to
this junction may thus be computed before com-
puting the number of connected components of
the complement of the growing surface. If this
length is greater than the length of the (i − 1)st
1-loop, there is no need to compute the number
of connected components since this new 1-loop is
not a non separating 1-loop.

4 Geometrical constraints

The cutting method (section 3.1) considers only a
part of the geometry by the shortest geodesic dis-
tances. Much more geometrical properties of the

(a) (b) (c)

Figure 2: Fig. (a), (b): A topological error (junc-
tion between two parts of the surface) after seg-
mentation step. Fig. (c): A cutting path (drawn
in red) on the non-zero local curvature area.

surface can be handled by enhancing this original
method.

4.1 Patching the surface

Surfaces mainly originate from low resolution ac-
quisitions. In this context, some topological errors
are common for specific geometric configurations.
If partial volume effects, undersampling or inter-
polation artifacts occurs in the original data, some
junctions between parts of the surface may be ob-
served (Figure 2 (a), (b)).

To remove these errors, we used a variation of
the topological and geometrical algorithm previ-
ously described. Given a threshold length m, this
algorithm cuts all the junctions with perimeter
smaller than m and patches the corresponding
boundaries by adding small discs to close it. The
original boundaries of M with perimeter smaller
than m are also patched.

When used before Algorithm 1, this method
manages the specificity of the low resolution sur-
faces and creates some allowable unfolding, with
few overlaps (Figure 3(c)).

4.2 Using non-Euclidean distances

The cutting and patching algorithms both use Di-
jkstra algorithm to select the 1-loops. Thus the
only requirement is a non-negative cost function
on the edges, seen as a pseudo-distance d (sec-
tion 3.1). The obvious cost function is the Eu-
clidean distance dE between two vertices in R3,
but other choices, guided by application, are also
possible.

During the patching process, the algorithm
looks for surface junctions. In many applications
like medical imaging, junctions are cut along a
valley (Figure 2(c)). Each edge e of the cut-
ting path takes part in two triangles, and the
local curvature can be described by the angle
α(e) ∈ [−π, π] between their normals. The Eu-
clidean distance may then easily be modified to
address this local curvature. Let c ∈ [0, 1], we de-
fine dc(e) = dE(e)(1 − c |α(e)|

π), for each edge e of
M. The multiplicative functionm : e 7→ 1−c |α(e)|

π
has the good following property: if α(e) = 0, e
takes part in a flat area, and m(e) should reach

3

Low-resolution Surface Mapping: a Topological and Geometrical Approach

107

(a) (b) (c) (d)

Figure 3: Fig. (a): A neighbourhood of a cen-
tral sulcus extracted from the original volumic
data [6]. Fig. (b), (c), (d): Cortical maps unfolded
by Circle Packing after cutting steps (näıve, topo-
logical, and patching + topological). Dark grey
shows regions of overlappings.

Enhancements Brain (a) Synthetic (b)

none > 5 h 7 mn 7.68 s
sect. 3.2 720 s 0.84 s

all (section 3) 548 s 0.81 s

Table 1: Computation time (on a 2.6 Ghz PC)
of the first step of Algorithm 1 according to the
improvements of section 3, (a) on a cortical surface
[16,057 points, 31,705 triangles], a genus of 56 and
7 boundaries; (b) on a synthetic non-boundary
surface of genus 4 [2,202 points, 4,416 triangles].

the maximum. Otherwise, the highest is |α(e)|,
the smallest dc. dc thus grants the paths along
paths with high local curvature, in particular in
the junctions.

5 Results

A C++ implementation of these modified algo-
rithms has been performed to illustrate their per-
forming on low resoluted surfaces. The method
has also been applied on classical surfaces, no-
tably with high genus and structures similar to
the junctions of the low resolution acquisitions.

In medical imaging, an unfolding approach has
been described in a previous work [6], to produce
a flattened map of the region of interest on the
cortical surface, using T1-weigthed Magnetic Res-
onance Imaging scans. After some segmentation
steps and a surface reconstruction, a 2-mesh is op-
tained, modeling the region of interest on the cor-
tical surface. The cutting method used in [6] did
not take into account geometry, producing maps
with overlaps for high genus original surfaces (Fig-
ure 3(b)). The approach described in this paper
was applied to the 2-meshes stemming from the
original data.

The resulting surface was then unfolded using
classical unfolding tools. Figure 3(c) and 3(d) il-
lustrate the quality of the generated maps. The
cortical map generated using a patching step be-
fore the cutting step is clearly more satisfactory.

We applied the cutting method on the cortical
mesh using the various improvements of the cut-
ting algorithm (section 3). Table 1 compiles the

computation time of the first part of Algorithm 1
using these improvements. If the evaluation of
the theoretical computation time of our improve-
ments is hard, Table 1 nevertheless illustrates the
significant time-saving observed with our imple-
mentation.

6 Conclusion

We presented here a topological and geometri-
cal approach to cut the surface before mapping
it onto the plane. By improving the complexity of
the cutting algorithm, we optained a useful tool
that produces maps without coverings, allowing
the user to navigate using the 2D map on the 3D
surface thanks to the bijective mapping.

References

[1] J. C. Carr, R. K. Beatson, et al. Reconstruction
and representation of 3d objects with radial ba-
sis functions. In E. Fiume, editor, SIGGRAPH
2001, Computer Graphics Proceedings, pages 67–
76. ACM Press / ACM SIGGRAPH, 2001.

[2] É. Colin de Verdière and F. Lazarus. Optimal
system of loops on an orientable surface. Discrete
& Computational Geometry, 33:507–534, 2005.

[3] B. Curless and M. Levoy. A volumetric method
for building complex models from range images.
In SIGGRAPH, pages 303–312, 1996.

[4] E. W. Dijkstra. A note on two problems in con-
nexion with graphs. Numerische Mathematik,
1(1):269–271, 1959.

[5] J. Erickson and S. Har-Peled. Optimally cutting
a surface into a disk. In SCG ’02: Proceedings
of the eighteenth annual symposium on Compu-
tational geometry, pages 244–253, New York, NY,
USA, 2002. ACM.

[6] J.-M. Favreau, S. Hemm, C. Nuti, et al. A tool
for topographic analysis of electrode contacts in
human cortical stimulation. In MMBIA’07, Rio
de Janeiro, Brazil, October 2007. ICCV 2007.

[7] M. S. Floater and K. Hormann. Surface parame-
terization: a tutorial and survey. In N. A. Dodg-
son, M. S. Floater, and M. A. Sabin, editors,
Advances in multiresolution for geometric mod-
elling, pages 157–186. Springer Verlag, 2005.

[8] J.-O. Lachaud. Topologically defined iso-
surfaces. In DCGA ’96: Proceedings of the 6th In-
ternational Workshop on Discrete Geometry for
Computer Imagery, pages 245–256, London, UK,
1996. Springer-Verlag.

[9] A. Sheffer and E. de Sturler. Parameterization
of Faceted Surfaces for Meshing using Angle-
Based Flattening. Engineering with Computers,
17(3):326–337, 2001.

[10] Z. Wood and I. Guskov. Topological noise re-
moval. Proceedings of Graphics Interface, pages
19–26, 2001.

[11] Q.-Y. Zhou, T. Ju, and S.-M. Hu. Topology re-
pair of solid models using skeletons. IEEE Trans-
actions on Visualization and Computer Graphics,
13(4):675–685, 2007.

4

EuroCG’09 - Brussels, Belgium

108

Matching Terrains under a Linear Transformation∗

Pankaj K. Agarwal† Boris Aronov‡ Marc van Kreveld§ Maarten Löffler§ Rodrigo I. Silveira§

Abstract

We study the problem of matching two polyhedral
terrains, where one can be changed vertically by a
linear transformation of the third coordinate (scaling
and translation). We give an algorithm that mini-
mizes the maximum distance over all linear transfor-
mations in O(n4/3polylog n) expected time. We also
study matching two 1-dimensional terrains, and give
a (1+ ε)-approximation algorithm for minimizing the
area in between that runs in O(n/

√
ε) time, for any

fixed ε > 0.

1 Introduction

In GIS, many data sets are bivariate scalar functions,
for example annual precipitation, nitrate concentra-
tion, depth to groundwater, and elevation above sea
level. Such functions are either stored by a regular
square grid of values, or by a triangulation over some
domain. In the case of a triangulation, one usually
assumes linear interpolation over the values stored at
the vertices. This gives a polyhedral terrain, that is,
an xy-monotone polyhedral surface in R3.

Often, data sets for the same region but with a
different theme are not independent: if there is more
precipitation, the soil humidity will be higher, and if
hill slopes are steeper, there will be more soil loss per
year. Such relations can be analyzed by matching the
representations of two data sets.

In this paper we assume that two bivariate scalar
functions over the same domain are given as (poly-
hedral) terrains. We want to determine if there is a
linear transformation applied to one to make it match
well with the other. The linear transformation applies
only to the scalar values, not to the world coordinates.
Hence, a linear transformation has one scaling compo-
nent s and one translation component t.

∗This research has been partially funded by the Nether-
lands Organisation for Scientific Research (NWO) under FO-
CUS/BRICKS grant number 642.065.503, and also through the
project GOGO. Work by B.A. has been partially supported by
a grant from the U.S.-Israel Binational Science Foundation, by
NSA MSP Grant H98230-06-1-0016, and NSF Grant CCF-08-
30691.

†Department of Computer Science, Duke University,
pankaj@cs.duke.edu

‡Department of Computer Science and Engineering, Poly-
technic Institute of NYU, http://cis.poly.edu/~aronov

§Department of Information and Computing Sciences,
Utrecht University, {marc,loffler,rodrigo}@cs.uu.nl

Given two terrains f, g : D → R, where D is a
bounded, triangulated subset of R2, our goal is to
find a linear relation between the two terrains. That
is, we want to find values s, t ∈ R such that sf + t
matches g as well as possible. To compare the two
terrains, we use two different measures:

µ(s, t) = max
x,y
|sf(x, y) + t− g(x, y)|, and (1)

µ(s, t) =
∫

x,y

|sf(x, y) + t− g(x, y)|dxdy. (2)

With each measure, we want to minimize its value
over s and t, namely

min
s,t

µ(s, t).

In what follows we denote by n the total number of
vertices in f and g, and sometimes use the O∗ nota-
tion, which ignores polylogarithmic factors.

We say that f and g are aligned if their projections
on the (x, y)-plane are the same, that is, they have
exactly the same triangulation.

2 Minimizing the max distance of two 2-d terrains

In this section the goal is to find s, t to minimize µ(s, t)
according to Eq. (1), namely, to minimize the maxi-
mum vertical distance between g and sf + t.

We begin by observing that, when the terrains are
aligned, the maximum of µ is always obtained at a ver-
tex of the terrain. When the terrains are not aligned,
the maximum can occur either at a vertex of one of
the terrains or at the intersection of two edges in the
xy-projection. This implies that in both cases the
problem is inherently discrete.

Let v be a vertex of one of the terrains or the in-
tersection point of two terrain edges (always in the
xy-projection). Let dv(s, t) = |sf(v)+t−g(v)|, where
f(v) (resp. g(v)) gives the height of v in f (resp. g).
Thus dv(s, t) defines a surface in the (s, t, µ)-space
(here µ stands for the possible values for the objec-
tive function). This surface consists of two halfplanes
with a V-shape (due to the absolute value). The col-
lection of the halfplanes from all vertices gives an ar-
rangement of planes where µ(s, t) can be viewed as
the upper envelope of the planes. Since we are inter-
ested in the upper envelope only, we can consider the
halfplanes to be full planes.

Matching Terrains under a Linear Transformation

109

It follows that the lowest value of µ can be com-
puted using linear programming (LP) in three dimen-
sions. For the case of aligned terrains, each terrain ver-
tex generates two planes, resulting in a system with
O(n) inequalities. Standard methods for linear pro-
gramming in fixed dimension allow to solve the prob-
lem in O(n) time [4].

When the terrains are not aligned, the same ap-
proach can be used if all the intersection points be-
tween terrain edges are considered vertices. However,
their number may become Ω(n2), hence solving the
linear program would take quadratic time. Note, how-
ever, that we have O(n) running time for non-aligned
fat terrains, since the number of intersections is linear
for two such terrains [6]. In what follows we show how
to reduce the potentially quadratic running time for
arbitrary terrains by considering only a linear number
of intersection points. From now on we will refer to
both the terrain vertices and the intersection points
in the xy-projection as vertices.

We will avoid computing the quadratic set of con-
straints explicitly by applying a random sampling ap-
proach. Our method is similar to the LP algorithm
in [5], and is sketched in Algorithm 1. Recall that
each vertex defines two constraints.

Algorithm 1 MinMaxDistance
1: R← constraints induced by random subset of 3n

vertices of the projection
2: repeat
3: Solve LP problem constrained to R
4: V ← set of violated constraints
5: if |V | > 2n then
6: R ← constraints induced by a new random

subset of 3n vertices of the projection
7: else
8: R← R ∪ V
9: end if

10: until V = ∅
11: return Solution from step 3

Several parts of the algorithm are explained in more
detail below.

First a random subset of the vertices must be cho-
sen. This is done in any way that guarantees that all
subsets with r elements have the same probability of
being chosen. This can be done using the two-level
hereditary segment tree mentioned below.

Then the linear program that has the constraints
induced by the vertices in R is solved. This is a 3-
dimensional LP with O(n) constraints that can be
solved in O(n) time using standard algorithms [4].
The solution gives us concrete values of s0, t0 and
µ0. That is, after that we have two concrete terrains,
g and f0 = s0f + t0.

Computing the violated constraints. Since the so-
lution (s0, t0) from line 3 only considers the O(n) con-
straints in R, some of the O(n2) original constraints
may be violated by this solution. A violated con-
straint implies that there is some point (original ver-
tex or intersection point) in g that is at a vertical dis-
tance larger than µ0 from f0. To find the violated con-
straints we need to find the vertices at distance larger
than µ0 from the other terrain. The distances between
vertices of f0 and triangles in g, or the other way
around, can easily be computed in O(n logn) time.
More challenging is finding the pairs of edges with
vertical distance larger than µ0, since we want to re-
port these constraints only if there are at most 2n of
them, without spending more time otherwise.

To report this type of violated constraint we pro-
ceed in two steps. First we use a data structure based
on hereditary segment trees to reduce the vertical dis-
tance problem between line segments to a problem of
reporting lines in 3D that are at least µ0 apart. Then
we solve that problem by mapping the lines in space to
Plücker points and Plücker hyperplanes, and solving
a halfspace range reporting problem in 5D projective
space. By using the trade-off techniques for halfspace
range reporting we find all the violated constraints in
O∗(n4/3+ |V |) time, with the option to stop reporting
if |V | > 2n. A more detailed description follows.

For the first part, we use two-level hereditary seg-
ment trees [3]. We consider the set of segments of the
projection of the two terrains. They can be seen as a
set of red and a set of blue segments (one set from each
terrain; segments from the same terrain cannot inter-
sect). As in [3], the segment tree can be augmented to
produce a bipartite clique decomposition of the inter-
secting pairs of edges. Within each clique of segments,
we extend the line segments to lines, without adding
or missing any intersection/distance. The complete
data structure can be built in O(n log2 n) time.

Next we must find the pairs of red-blue lines that
are more than µ0 vertically apart. This second prob-
lem is transformed into a halfspace range reporting
problem as follows. Testing whether two lines `1, `2
in 3D lie at a vertical distance of more than µ0 from
each other can be formulated (after translating one
of the lines by µ0) as testing whether the Plücker
point of `1 lies in one of the halfspaces bounded by
the Plücker halfplane of `2. We map the lines from,
say, g, to Plücker points and perform a halfspace re-
porting query with each of the halfspaces bounded by
the Plücker hyperplanes of the lines induced by edges
of f0. To solve the halfspace reporting problem we ap-
ply standard trade-off techniques for geometric range
searching (see for example [1]). We build a data struc-
ture of size O∗(n4/3) that allows to answer halfspace
reporting queries in O(n1/3 + k) time, where k is the
output size. In our context, k is the number of pairs
of segments with distance more than µ0. Note that

EuroCG’09 - Brussels, Belgium

110

in line 4 of the algorithm, we do not need to report
all violated constraints, but we can stop when their
number exceeds 2n. Thus line 4 takes O(n4/3) time.

Choosing a new random sample. The standard
random-sampling argument in the Clarkson-Shor
framework (see [5]) states that if we choose a random
sample of size r among m constraints, and solve the
LP with only those constraints, the expected number
of violated constraints will be roughly dm/r, where
d is the dimension of the LP problem. In our case
we have d = 3, r = 3n and m ≈ n2. Thus the
expected number of violated constraints is approxi-
mately n, and on average the random subset of con-
straints will have to be generated twice.

Number of iterations. It can be shown that once |V |
has fewer than 2n constraints, the loop of Algorithm 1
will be executed at most four times. This is because
every time the LP problem is solved, one of the three
constraints that define the optimal solution is added
to the set of violated constraints (see [5] for a proof),
and from then on, it will be part of R. Therefore after
executing line 3 at most three times, the set of con-
straints R will contain the three vertices that define
the optimum, hence in the next (fourth) iteration the
optimum will be found.

Theorem 1 Given two terrains with n vertices, a
linear transformation minimizing the maximum dis-
tance between the terrains can be found in O∗(n4/3)
expected time.

3 Minimizing the area between two 1-d terrains

Let f, g be two 1-dimensional terrains, or, the graphs
of two piecewise linear functions. This section dis-
cusses the problem of aligning f and g in order to
minimize the area in between. For any value of s and
t, let µ(s, t) denote the area between sf + t and g
over their domain. We will study the problem in the
solution space, the (s, t)-plane.

Analytic form of µ. The bivariate function µ(s, t)
has an analytic form that depends on which edges
of sf + t and g intersect. If x1, . . . , xn is the in-
creasing order of the x-coordinates of all vertices of
f and g, then we may as well assume that both
f and g have vertices at these x-coordinates. At
worst, this doubles the number of vertices of the input.
Let (x1, a1), . . . , (xn, an) be the vertices of f and let
(x1, b1), . . . , (xn, bn) be the vertices of g.

Consider any vertical slab defined by two consecu-
tive x-coordinates of vertices xi and xi+1, see Figure 1.
Let fi, gi, and µi be the functions f , g, and µ re-
stricted to the domain [xi, xi+1]. Unless fi is constant,

ai

bi

ai+1

bi+1 sai + t

bi
sai+1 + t

bi+1

µi(s, t)

Figure 1: An edge of f and an edge of g, and the
function µi(s, t) illustrated.

there is exactly one pair s, t that makes sfi + t ≡ gi,
and µi(s, t) = 0. This happens when both sai + t = bi
and sai+1 + t = bi+1.

Lemma 2 The region in the (s, t)-plane where sfi+t
and gi intersect is a double wedge whose bounding
lines are `i : t = −ais+ bi and `i+1 : t = −ai+1s+
bi+1. These lines intersect in the apex (s̄i, t̄i), where
s̄ifi + t̄i ≡ gi and µi(s̄i, t̄i) = 0.

Above `i and `i+1 (in the direction of t), µi is linear
in s and t, and the same is true below `i and `i+1.
Below `i and above `i+1 in the (s, t)-plane, we have

µi(s, t) = (xi+1 − xi)

× (bi − sai − t)2 + (sai+1 − bi+1 + t)2

2(sai+1 − sai − bi+1 + bi)
.

A similar expression exists for the wedge in the (s, t)-
plane above `i and below `i+1.

We observe that inside the double wedge defined by
`i and `i+1, µi is a fraction that has the unknown s
in the denominator. To minimize µ, we must solve

min
s,t

n−1∑
i=1

µi(s, t) ,

which is a sum of fractions and involves solving a poly-
nomial of linear degree, if the minimum occurs where
many edges of f and g intersect. It appears that we
cannot hope to get an exact solution in this case.

Approximation for µ. We continue to derive an ap-
proximation algorithm. For any given ε > 0, we will
determine values of s and t such that the value of µ is
at most (1+ ε) times µ∗, the minimum possible value
of µ. Our approach is to linearize each function µi, so
that the sum we get is linear as well.

We first analyze the function µi closer. For a fixed
scaling factor ŝ, consider the function µi(ŝ, t). From
Lemma 2 we know that below `i and `i+1, or above
both of them, µi(ŝ, t) is linear in t with slope xi − xi+1

and xi+1 − xi. Between `i and `i+1, µi(ŝ, t) is a
quadratic function in t. In fact, µi(ŝ, t) is symmetric,
differentiable everywhere, and consists of three pieces,
see Figure 2. Since this holds for any scaling factor ŝ
except the one of the apex of the double wedge (where
it has two pieces and is not differentiable in the apex),
we obtain useful properties of the whole function µi.

Matching Terrains under a Linear Transformation

111

s

t

(s̄i, t̄i)

s = ŝ

t

µi(ŝ, t)

Figure 2: A double wedge in the s, t-plane, and a
vertical cross-section of it that shows µi(ŝ, t).

Lemma 3 µi is a convex function, and the restriction
of µi to a ray starting at (s̄i, t̄i) is a linear function.

Corollary 4 µ is a convex function.

To obtain a (1 + ε)-approximation, we will replace
µi by a piecewise linear function. Since µi is already
linear outside the double wedge, we only need to do
so inside it. We do so by first approximating the
quadratic part of µi(ŝ, t). We choose d2/√εe extra
points equally-spaced on µi(ŝ, t) such that the maxi-
mum distance between the polygonal line through the
chosen points and µi(ŝ, t) itself is at most εµi(ŝ, t),
see Figure 3. We can extend this 1-dimensional ap-
proximation to a 2-dimensional one by choosing lines
through the new points and (s̄i, t̄i), giving a partition
of the plane into Θ(1/

√
ε) wedges. Lemma 3 ensures

that the implied piecewise linear function—denoted
µ̃i—is a (1 + ε)-approximation of µi everywhere.

Now we are ready to consider all edges from f and g.
If we were considering the exact function µ, we would
get n−1 double wedges in the (s, t)-plane. They form
an arrangement of O(n2) cells, and in each cell we
can write down a closed expression for µ as the sum
of the µi. However, this gives us the expression that
we cannot optimize exactly. Using the piecewise linear
approximations µ̃i, we get an arrangement ofO(n/

√
ε)

lines which partition the (s, t)-plane in O(n2/ε) cells.
The sum of at most n− 1 linear functions is of course
linear, and with little extra work we can easily find
the minimum of µ̃(s, t) in O(n2/ε) time.

s

t

(s̄i, t̄i)

s = ŝ

t

µ̄i(ŝ, t)

Figure 3: The approximation µ̄i(ŝ, t) and the subdivi-
sion into double wedges in the s, t-plane.

A more efficient solution is obtained using cuttings
for a divide-and-conquer approach. This works be-
cause all µ̃i are convex functions, so µ̃ is convex as
well. Let n′ = n/

√
ε, and consider the O(n′) lines

that define the boundaries of the cells over which µ̃
is linear. We compute a (1/2)-cutting of size O(1) in
O(n′) time [2]. On each of the O(1) edges in the cut-
ting, we find the minimum in O(n′) time, which will
reveal in which triangle of the cutting the global opti-
mum of µ̃ lies. We recurse on the lines that intersect
this triangle; their number is halved by the definition
of (1/2)-cuttings.

After O(logn′) phases of divide-and-conquer, which
together take O(n′) time, we find the triangle that lies
in a single cell in the arrangement of all O(n′) lines
that contains the global optimum.

Theorem 5 Let f and g be two one-dimensional ter-
rains with n vertices. For any fixed ε > 0, a linear
transformation of the image of f that yields at most
area (1+ ε)A∗ between the images of g and the trans-
formed f can be determined in O(n/

√
ε) time, where

A∗ is the minimum area achievable.

4 Conclusions and open problems

The obvious open problem is extending the result on
one-dimensional terrains to two-dimensional terrains,
which is what we are still working on. Another ex-
tension we consider is a third measure for matching,
namely the integral of squared difference between the
functions.

References

[1] P. K. Agarwal and J. Erickson. Geometric range
searching and its relatives. In B. Chazelle, J. E. Good-
man, and R. Pollack, editors, Advances in Discrete
and Computational Geometry, volume 223 of Contem-
porary Mathematics, pages 1–56. American Mathemat-
ical Society, Providence, RI, 1999.

[2] B. Chazelle. Cutting hyperplanes for divide-and-
conquer. Discrete & Computational Geometry, 9:145–
158, 1993.

[3] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and
M. Sharir. Algorithms for bichromatic line seg-
ment problems and polyhedral terrains. Algorithmica,
11:116–132, 1994.

[4] K. L. Clarkson. Linear programming in O(n3d2
) time.

Inf. Process. Lett., 22(1):21–24, 1986.

[5] K. L. Clarkson. Las Vegas algorithms for linear and
integer programming when the dimension is small. J.
ACM, 42(2):488–499, 1995.

[6] M. de Berg, H. J. Haverkort, S. Thite, and L. Toma.
I/O-efficient map overlay and point location in low-
density subdivisions. In ISAAC, volume 4835 of Lec-
ture Notes in Computer Science, pages 500–511, 2007.

EuroCG’09 - Brussels, Belgium

112

Cutting an Organic Surface

Jean-Marie Favreau∗, Vincent Barra†

Abstract

Mapping a given surface onto a piece of the plane
is an usual problem, and conformal mappings
with border free approaches are classical as non-
distorting methods. However, algorithms of this
category are only able to produce a mapping from
a surface topologically equivalent to a disc. In the
general case, a topological cutting is thus required.

The approach we are reporting here is a method
that does not only take into account the topolog-
ical properties by cutting the original surface into
a disc [3], but also the the geometrical properties
by globally selecting the local extrema of original
arm-like surfaces (denoted organic surfaces in the
following).

1 Introduction

Various approaches has been proposed to map a
surface onto a piece of the plane. Sheffer et al. [6]
described a global framework that use a topolog-
ical cutting step and a geometrical detection of
local extrema. These points are selected using
an estimation of the curvature on a neighbour-
hood. The topological step neither care about
the globally shortest loops, nor the full geomet-
rical properties of the surface. Tierny et al. [8]
detected some extrema points during their Reeb
Graph construction. After selecting the most dis-
tant pair of points v1 and v2, a geodesic distance
from each of these points is computed. The inter-
section of the extrema for each distance is com-
puted, determining the local maxima of the whole
surface. This method seems to be restricted by
surfacic noise, and by the approximation step of
the intersection. Gu et al. [4] used a global ap-
proach to detect the extrema by using a fixed bor-
der parameterization of the surface, then selecting
the triangle with maximum geometric stretch as
the extremum of a path from the existing bound-
ary. The parameterization and cutting step are
applied until the stretch’s stabilisation of the pa-
rameterization. Beyond the multiple parameteri-
zation steps, the main limitation of this method
is the use of a fixed border parameterization. Po-
sitionning the boundary points on the plane is
thus not easy, and the positionning is not unique.

∗Université Blaise Pascal / LIMOS UMR CNRS 6158
Jean-Marie.Favreau@isima.fr
†Université Blaise Pascal / LIMOS UMR CNRS 6158

Vincent.Barra@isima.fr

Moreover, the stretch of the triangles is largely de-
pendant on the boundary shape and distribution.

We propose here a method that first uses a topo-
logical cutting step, handling the geodesic dis-
tances, and can be influenced by some other infor-
mations like visibility. Then we perform a single
free border parameterization to select the extrema
according to the global geometry of the surface.

In the following, we will detail this approach,
first describing the topological cutting step that
takes into account the geodesic distances and can
be influenced by some other information like visi-
bility. Then we will introduce the use of a free bor-
der parameterization to select the extrema, and
the final cutting process to provide a geometri-
cal and topological cutting of the original surface
onto a disc. Next some variations on the distance
method will be detailed, and some experimental
results will finally be presented.

2 Background

In the following, surfaces are described by 2-
meshes, that contain both topological information
and a practical description (as a triangulated sur-
face):

Definition 1 A 2-mesh M is a 2-manifold sim-
plicial 2-complex (with or without boundaries),
i.e. M is the union of 0-simplices called vertices,
1-simplices called edges and 2-simplices called tri-
angles, and locally homeomorphic1 to either a disc
or an half disc.

To describe a cutting on a 2-mesh, 1-paths and
1-loops are used:

Definition 2 A 1-path of a 2-mesh M is a list
of n oriented edges s0, ..., sn−1 when for each
i = {0, ..., n− 2}, the terminal vertex of si is the
initial vertex of si+1. A 1-loop of a 2-mesh M is
a 1-path s0, ..., sn−1 where the initial vertex of s0
is the terminal vertex of sn−1.

A cutting along a 1-path p is naturally per-
formed by duplicating vertices and edges of p, thus
removing junctions between triangles adjacent to
p.

Definition 3 A non-separating 1-loop in M is a
1-loop with the property that M can be cut ac-

1Two surfaces A and B are homeomorphic if there is a
bi-continuous function from A to B.

1

Cutting an Organic Surface

113

cording to this 1-loop without separating M into
more than one connected component.

3 Selecting the extrema

The selection of extrema on a 2-mesh M can be
globally applied by studying the stretch of edges
on a parameterization. In fact, a conformal pa-
rameterization like ABF [7] produces a mapping
between a surface homeomorphic to a disc and a
part of the plane. The stretch of the edges is a
direct and global consequence of the geometrical
properties of the original surface, e.g. each leg of
the horse is clustered on a small part of the plane
(Figure 1(b)).

3.1 Topological cutting

A cutting preprocess is essential to produce the
mapping where extrema will be detected. In
fact, parameterization methods are mainly able
to build the mappings from a surface homeomor-
phic to a disc. Such a preprocess should compute
a cutting:

Definition 4 A cutting C of a 2-meshM is a set
of edges whose complement in M is homeomor-
phic to a disc.

In a surface homeomorphic to a disc, an empty
set of edges is a cutting of the surface, but for
more topologically complex surfaces, a mandatory
cutting step is required.

3.1.1 Non trivial surfaces

Erickson and Har-Peled [3] showed that comput-
ing the shortest cutting of a given surface is NP-
hard in general. We used here a variation of their
algorithm to compute an approximation of this
cutting:

Data: a 2-mesh M non homeomorphic to a
sphere

while the genus of M is not 0 do
Find c the shortest non-separating 1-loop
of M;
Cut M according to c;

while the number of boundaries of M is not
1 do

Find c the shortest 1-path of M between
two different boundaries;
Cut M according to c;

Algorithm 1: Cutting a surface into a disc
Computing the shortest 1-path and 1-loop uses
the Dijkstra algorithm [1], using the 3D length
l3(v1, v2) of each edge (v1, v2) as a cost func-
tion. The shortest non-separating 1-loop is com-
puted by first building a cutting by an immedi-
ate method, then from each point b of the cutting
by looking to the shortest non-separating 1-loop
starting from b, using a growing surface.

(a) The original surface
(homeomorphic to a
sphere, 16424 trian-
gles) and the topologi-
cal cutting (in red).

(b) The unfolded surface
using ABF [7].

Figure 1: A topological cutting and the associated
conformal mapping.

However this method cannot be applied on a
surface homeomorphic to a sphere: there is no
non-separating 1-loop on such a surface.

3.1.2 Surfaces homeomorphic to a sphere

Given a 2-mesh homeomorphic to a sphere, a non-
empty 1-path (but not 1-loop) is a valid cutting.
To facilitate the parameterization step, we per-
formed this cutting using Algorithm 2, using first
Principal Components Analysis (PCA) [2] to de-
tect the direction of the main axis from the center
of mass.

Data: a 2-mesh M homeomorphic to a
sphere

Compute the main axis A using PCA;
Build the list of triangles ofM intersecting A;
Order the list according to the position on A;
Select a point in the first and last triangle;
Build the cutting 1-path using the Dijkstra
algorithm between the two selected points;

Algorithm 2: Cutting a sphere into a disc
PCA has been first applied on the points of the
2-mesh. In a regular mesh, this approach never
fails to detect the main axis and produce a cutting
allowing an efficient parameterization step (Fig-
ure 1(a)). But for surfaces with non regular trian-
gles, incoherent cuttings were observed. Rather
than remeshing the surface, a volumic approach
may be employed, by voxelizing the object de-
scribed by the surface [5], then computing PCA
axis using voxels inside the object.

3.2 Distortion

Given a 2-mesh homeomorphic to a disc, a con-
formal parameterization can be applied [7], pro-
ducing a locally one-to-one mapping with a piece
of the plane. As illustrated on Figure 1, this
mapping contains the geometrical information we
are looking for: in this figure, legs and the head
(extrema) are projected by the parameterization
on high density areas. Because of the conceiv-

2

EuroCG’09 - Brussels, Belgium

114

(a) Extrema computed
using the Dijkstra
Algorithm from the
boundary vertices,
using D(·, ·) as the cost
function (23 extrema)

(b) Selected extrema by
using the median of the
distortion (12 extrema)

Figure 2: Computation of the extrema using the
distortion D(·, ·) as edges’ distance on a parame-
terization (Figure 1).

able variation of the triangle’s size on the original
mesh, the density of the areas in the plane is not
the real information that has to be taken into ac-
count. The distortion of the original surface in-
duced by the parameterization rather provides a
more informative parameter.

Let l3(v1, v2) be the length of the edge
(v1, v2) on the original 2-mesh, and l2(v1, v2) the
length of the edge on the plane. D(v1, v2) =
l3(v1, v2) (l2(v1, v2))−1 describes for each edge the
distortion produced by the parameterization. By
applying the Dijkstra algorithm from the bound-
ary vertices of the 2-mesh, a distance Lb(v) from
the boundary for each vertex v is computed.
D(·, ·), used as the cost function, produces a par-
tial order that takes into account the geometry of
the 2-mesh described by the distortion produced
by the parameterization.

The local maxima (mi)0≤i<n of D are in
particular located on high density areas (Fig-
ure 2(a)). To select the most pertinent vertices,
we first ordered (mi)0≤i<n according to the dis-
tortion of each vertex v computed by D(v) =∑

(v,v2)∈E D(v, v2), where E is the set of the edges
of M. The selected extrema are finally chosen
using a threshold. For automatic selection, we
used the median of the distortion of the vertices
(Figure 2(b)). On a user interface, this thresh-
old should be easily choosen using a cursor on the
ordered list of selected extrema.

4 Cutting the surface

The topological cutting described in section 3.1
produces a surface homeomorphic to a disc, us-
ing topological information. Using the extrema
selected in section 3.2, we can now modify this
cutting by introducing some geometrical informa-
tion. However, the final surface also has to be

(a) Cutting of the original
surface (Figure 1(a))
using Algorithm 3
with the selected
extrema shown in
Figure 2(b).

(b) The unfolded surface
using ABF.

Figure 3: A geometrical cutting and the associ-
ated conformal mapping.

homeomorphic to a disc.

Data: a 2-mesh M non homeomorphic to a
disc and a set V of vertices of M ;

Sort V according to the geodesic distance
from the nearest of the boundary of M to the
furthest;
foreach v ∈ V do

Find c the shortest 1-path of M between
v and the boundary of M;
Cut M according to c;

Algorithm 3: Cutting a surface into a disc
Each step of the Algorithm 3 enlarges the bound-
ary without modifying the topology of the sur-
face, introduces the minimal cutting to add the
selected vertex to the boundary, and produces a
cutting that takes into account the geometry of
the original surface (Figure 3(a)).

5 Variations on distance

The computations described in the previous sec-
tions are based on the length l3(v1, v2) of the edges
(v1, v2) of the 2-mesh in R3. A basic approach is
to use the Euclidean distance |v1, v2| as the length
of the edges. Sheffer et al. [6] used a multiplier co-
efficient corresponding to the visibility of the edge.

This Eudidean distance can also be modified to
take into account the local curvature, encourag-
ing the paths to go through the acute edges. Let
α(v1, v2) be the angle defined by the normals of
the adjacents triangles. A multiplier coefficient
can be defined by (1− c |α(v1,v2)|

π), c ∈ [0, 1].

Finally, in context of texture mapping, a paint-
ing tool should be offered to the graphist to man-
ually describe the coefficient. Our method is then
not limited as an automatic cutting, but can be
driven by the user.

3

Cutting an Organic Surface

115

(a)

(b)

Figure 4: Cuttings of a surface with various scales
of details. Left: using [8] to detect the extrema
(top: with a small ε; bottom: with a larger value
of ε). Right: using our method.

Figure 5: A geometrical cutting of a surface (6,789
points and 13,510 triangles), with multiscale de-
tails.

6 Results

A C++ implementation of these cutting algorithms
has been performed to illustrate results of our ap-
proach. For the distortion step, we used an im-
plementation of [7], but a linear approach [9] can
also be used.

One of the main defaults of global approaches
of local extrema detection is the inability to ex-
tract extrema from various scale of details. Thus
[8] used a ε value for matching the extrema. Fig-
ure 4(a) illustrates the limitation of this approach,
that cannot take into account small and big de-
tails at the same time. On the contrary, our ap-
proach (Figure 4(b)) is able to detect at the same
time and without adjustment multiscale details.
Figure 5 is an illustration of the detection of mul-
tiscaling details.

Table 1 compiles the computation times of our
method for surfaces with variable genus, bound-
ary number and size (number of triangles). Each
of those variables modifies the duration of the al-
gorithm, but it seems to be tolerable for off-line
applications.

7 Conclusion

We presented here a global approach to cut a sur-
face taking into account the geometrical proper-
ties of organic surfaces. The resulting cut sur-
face thus can be unfold using a conformal map-

Surface sect. 3.1 Unfolding sect. 4
3-T 36.71 s 7.96 s 15.78 s

Rabbits 0.33 s 7.14 s 1.35 s
Horse 0 s 5.41 s 1.89 s

Table 1: The three steps of our algorithm ap-
plied on various surfaces (2.6 GHz CPU). 3-T: a 3-
genus surface of 55,296 triangles, without bound-
ary. Rabbits (Fig. 5): a 0-genus surface of 13,510
triangles with 5 boundaries. Horse: a 0-genus sur-
face of 16,424 triangles without boundary.

ping with minor surfacic distortions (Fig. 5 right),
thanks to the topological and geometrical ap-
proach.

References

[1] E. W. Dijkstra. A note on two problems in con-
nexion with graphs. Numerische Mathematik,
1(1):269–271, 1959.

[2] R. O. Duda, P. E. Hart, and D. G. Stork.
Pattern Classification (2nd Edition). Wiley-
Interscience, November 2000.

[3] J. Erickson and S. Har-Peled. Optimally Cut-
ting a Surface into a Disk. Discrete & Com-
putational Geometry, 31(1):37–59, 2004.

[4] X. Gu, S. Gortler, and H. Hoppe. Geome-
try images. ACM Transactions on Graphics,
21(3):355–361, 2002.

[5] D. Haumont and N. Warzée. Complete polyg-
onal scene voxelization. Journal of Graphics
Tools, 7(3):27–41, 2002.

[6] A. Sheffer and J. C. Hart. Seamster: incon-
spicuous low-distortion texture seam layout.
In VIS ’02: Proceedings of the conference on
Visualization ’02, pages 291–298, Washington,
DC, USA, 2002. IEEE Computer Society.

[7] A. Sheffer, B. Lévy, M. Mogilnitsky, and
A. Bogom yakov. Abf++ : Fast and robust
angle based flattening. ACM Transactions on
Graphics, Apr 2005.

[8] J. Tierny, J.-P. Vandeborre, and M. Daoudi.
Invariant High-Level Reeb Graphs of 3D
Polygonal Meshes. In 3rd IEEE International
Symposium on 3D Data Processing, Visual-
ization and Transmission (3DPVT’06), pages
105–112, Chapel Hill, North Carolina, USA,
2006.

[9] R. Zayer, B. Lévy, and H.-P. Seidel. Linear
angle based parameterization. In ACM/EG
Symposium on Geometry Processing confer-
ence proceedings, 2007.

4

EuroCG’09 - Brussels, Belgium

116

Two-Convex Polygons∗

O. Aichholzer† F. Aurenhammer‡ F. Hurtado§ P.A. Ramos¶ J. Urrutia‖

Abstract

We introduce a notion of k-convexity and explore
some properties of polygons that have this property.
In particular, 2-convex polygons can be recognized in
O(n log n) time, and k-convex polygons can be trian-
gulated in O(kn) time.

1 Introduction

The notion of convexity is central in geometry. As
such, it has been generalized in many ways and for
different reasons. In this note, we consider a simple
and intuitive generalization, which to the best of our
knowledge has not been worked on. It leads to an ap-
pealing class of polygons in the plane, with interesting
structural and algorithmic properties.

A set in Rd is convex if its intersection with ev-
ery straight line is connected or empty. This def-
inition may be relaxed to directional convexity or
D-convexity [9, 14], by considering only lines paral-
lel to one out of a (possibly infinite) set D of vectors.
A special case is ortho-convexity [16], where only hori-
zontal and vertical lines are allowed. For any fixed D,
the family of D-convex sets is closed under intersec-
tion, and thus can be treated in a systematic way
using the notion of semi-convex spaces [17], which is
sometimes appropriate for investigating visibility is-
sues. The D-convex hull of a set M is the intersection
of all D-convex sets that contain M . If D is a finite
set, this definition of a convex hull may lead to an
undesirably sparse structure—an effect which can be
remedied by using a stronger, functional (rather than
set-theoretic) concept of D-convexity [14].

k-Convex Sets We consider a different generaliza-
tion of convexity. A set M in Rd is called k-convex if

∗Partially supported by the FWF Joint Research Program
‘Industrial Geometry’ S9205-N12, Projects MEC MTM2006-
01267, DURSI 2005SGR00692, MEC MTM2008-04699-C03-02,
and the bilateral Spain-Austria program ‘Acciones Integradas’
ES 01/2008.

†Institute for Software Technology, University of Technol-
ogy, Graz, Austria, oaich@ist.tugraz.at

‡Institute for Theoretical Computer Science, University of
Technology, Graz, Austria, auren@igi.tugraz.at

§Departament de Matemàtica Aplicada II, Uni-
versitat Politècnica de Catalunya, Barcelona, Spain,
Ferran.Hurtado@upc.edu

¶Departamento de Matemáticas, Universidad de Alcalá,
Madrid, Spain, pedro.ramos@uah.es

‖Instituto de Matemáticas, Universidad Nacional Autònoma
de Mèxico, urrutia@matem.unam.mx

Figure 1: Intersecting two 2-convex sets

there exists no straight line that intersects M in more
than k connected components. Note that 1-convexity
refers to convexity in its standard meaning1. To refor-
mulate in terms of visibility, call two points x, y ∈M
to be k-visible if xy ∩M consists of at most k compo-
nents. Thus, a set is k-convex if and only if any two
of its points are mutually k-visible. Applications of
this concept may stem from placement problems for
modems that have the capacity of sending through a
fixed number of walls. Unlike directional convexity,
k-convexity fails to show the intersection property:
The intersection of k-convex sets is not k-convex, in
general (k fixed), cf. Figure 1. For k ≥ 2, a k-convex
set M may be disconnected, or if being connected,
its boundary may be disconnected. In this note, we
will restrict attention to simply connected sets in two
dimension, namely, simple polygons in the plane.

There are two notions of planar convexity that ap-
pear to be close to ours. One is k-point convex-
ity [18, 4] which requires that, for any k points in
a set M in R2, at least one of the line segments they
span is contained in M . (Thus 2-point convex sets
are precisely the convex sets.) The other is k-link
convexity [13], being fulfilled for a given polygon P if,
for any two points in P , the geodesic path connecting
them inside P consists of at most k edges. (The 1-link
convex polygons are just the convex polygons.) While
there is a relation between k-convexity and the former
concept, the latter concept is totally unrelated.

In the following we study basic properties of
k-convex polygons (Section 2), give a characterization
of 2-convex polygons (Section 3), and present efficient
algorithms for recognizing (Section 4) and triangulat-
ing (Section 5) such polygons. Finally, Section 6 offers
a discussion of our results.

1We face notational ambiguity. The term ‘k-convex’ has,
maybe not surprisingly, been used in different settings, namely,
for functions [15], for graphs [3], and for discrete point sets [11].
Also, the concept of k-point convexity [18] has later been called
k-convexity in [4].

1

Two-Convex Polygons

117

2 Two-Convex Polygons

From now on, all geometric objects we will consider
are closed sets in the Euclidean plane. Let P be a sim-
ple polygon, and denote with n the number of edges
of P . Two line segments e and e′ are said to cross
if e ∩ e′ is a point in the relative interior of both e
and e′. Clearly, a polygon P is k-convex if every line
segment with endpoints in P crosses at most 2(k − 1)
edges of P . The stabbing number [8] of a set of
(interior-disjoint) line segments is the largest number
of crossings attainable with a straight line. A poly-
gon is k-convex if and only if its stabbing number is
at most 2k. Thus, all our observations on k-convexity
could be reformulated in terms of stabbing numbers.

Figure 2: Quadratic 2-kernel construction

To see that 2-convexity is already significantly
more complex than standard convexity, consider the
k-kernel of a polygon P , i.e., the subset Mk ⊂ P
such that the entire polygon P is k-visible from each
point x ∈Mk. Note that P is k-convex if and only if
P = Mk. Whereas M1 is known to be a convex set
which is computable in O(n) time [12], M2 may have
an Ω(n2) description; see Figure 2. The shaded areas
emanating from the spikes are not part of M2, and
arranging such spikes along the boundary of a rect-
angle leads to a grid-like structure that partitions the
2-kernel into a quadratic number of components.

Figure 3: Star-shaped versus 2-convex

There is also no immediate relation to star-shaped
polygons, i.e., polygons P with M1 6= ∅. Figure 3
shows, on the lefthand side, a polygon which is star-
shaped but only n

2 -convex. On the righthand side, we
see a polygon which is 2-convex but not star-shaped.
Visually, 2-convexity seems to be closer to convexity
than is star-shapedness.

While 2-convexity clearly restricts the winding
number [19] of a polygon, its link distance [13] is un-
affected and may well be Θ(n). Conversely, a polygon
which is 2-link convex (such that any two of its points

are at link distance 2 or less) may fail to be k-convex
for sublinear k. The star-shaped polygon in Figure 3
(left) is an example.

There is, interestingly, a relation to k-point convex-
ity as defined in [18]. Every k-point convex polygon P
is (k − 1)-convex. To verify this, assume the contrary,
which implies the existence of a straight line L which
intersects P in at least k components. Select a point
in each component. Now, by the assumed k-point
convexity of P , at least one pair among the selected
points yields a line segment, S, which entirely lies
in P . As, clearly, S ⊂ L, the corresponding two com-
ponents cannot be different—a contradiction. No im-
plication exists in the other direction, however. For
example, the 2-convex polygon in Figure 3 (right) fails
to be 3-point convex. The class of k-convex polygons
also differs from the class of k-guardable polygons de-
fined in [1]. A linear number of (point) guards may
be needed already to watch a 2-convex polygon. For
further details see the full version of this paper.

3 Characterization

The definition of a k-convex polygon does not trans-
late into an algorithm for recognizing such polygons.
We give a characterization of k-convex polygons that
allows a decision in time O(n log n).

Let P be the polygon under consideration, and de-
note with ∂P its boundary. A line L is called a
j-stabber of P if L crosses ∂P at least j times. Note
that a j-stabber may totally contain edges of P ; these
are not considered to contribute to the count. An in-
flection edge of P is an edge between a convex and a
reflex vertex of P . Finally, an inner tangent of P is
a line segment T ⊂ P such that T contains two non-
adjacent reflex vertices of P in its relative interior.

Lemma 1 A simple polygon P is 2-convex if and
only if P has no inner tangent, and no 3-stabber that
contains an inflection edge.

Proof. Omitted. �

4 Recognition

Let us assume that the given polygon P is nonconvex,
as things are trivial, otherwise. The recognition algo-
rithm is based on Lemma 1. It looks for inner tangents
and 3-stabbers at inflection edges, trying to witness
that P is not 2-convex. To this end, ray shooting [5] is
performed for each reflex vertex of P , in the directions
of its two incident edges. If ∂P is intersected more
than once in a fixed direction, then a 6-stabber exists
and we report that P is not 2-convex and stop. This
covers the necessary check at each inflection edge.

The algorithm continues if all these directions yield
a unique intersection point with ∂P . Let us assume,

2

EuroCG’09 - Brussels, Belgium

118

for the remainder of this section, that P is of this
form. We store the points of intersection, and use
them to check for inner tangents. Define, for each re-
flex vertex v of P , its critical range C(v) as the set
of all points x ∈ ∂P such that xv can be prolonged
to a line segment being tangent to P at v. Note
that such a segment need not lie entirely in P . How-
ever, C(v) consists of exactly two connected intervals
on ∂P , whose endpoints are among the stored points
obtained from ray shooting. See Figure 4, where C(v)
is drawn with bold lines.

v

x

Figure 4: Critical range for vertex v

Observation 1 P admits an inner tangent if and
only if P has two reflex vertices v and v′ such that
v ∈ C(v′) and v′ ∈ C(v).

Proof. Omitted. �

The strategy for detecting inner tangents is now
clear. We first augment each reflex vertex with the
two intervals of polygon vertices that lie inside its crit-
ical range. Then, we scan around ∂P with a point x
and maintain, in some search tree, the set R(x) of
reflex vertices whose critical ranges contain x. That
is, after initialization for a fixed position of x, we up-
date R(x) whenever x scans over some hitting point
from ray shooting. Moreover, when x reaches some
reflex vertex v of P , we search the tree with the four
vertices ui, uj, uk, uℓ that delimit C(v), to check for
R(x) ∩ [ui, uj] = ∅ and R(x) ∩ [uk, uℓ] = ∅.

The number of events where R(x) undergoes some
change or is searched is O(n). This gives O(n log n)
time, as does the total time spent for the O(n) initial
ray shooting queries; see [5]. The space requirement
remains in O(n).

Theorem 2 For a simple polygon with n vertices,
2-convexity can be decided in O(n log n) time and
O(n) space.

5 Triangulation

Triangulating a polygon in O(n) time with a reason-
ably simple algorithm is still outstanding, except for
special classes of polygons described, e.g., in [7, 1]. We
will show below that 2-convex polygons add to this

list. A simple ear-cutting-type triangulation method
can be used, based on the following property.

Observation 2 If P is a 2-convex polygon then, for
each reflex vertex v of P , its critical range C(v) is
visible from v.

Proof. Let P be 2-convex. Consult Figure 4 again,
and consider any point x ∈ C(v). The line segment xv
does not cross ∂P because, otherwise, xv could be
prolonged and slightly translated to yield a 6-stabber
of P . �

Algorithm CUT-TO-PIECES
v0 ← reflex vertex of P
v ← v0

repeat
Triangulate from v to C(v)
v ← next reflex vertex along ∂P

until v = v0

Triangulating from a given vertex refers to the yet
untriangulated part of the polygon P . Figure 5 illus-
trates the effect of visiting the reflex vertices of P in
clockwise order. After the loop, each subpolygon Q
left untriangulated has a special property: Each ver-
tex w of Q sees all vertices of Q in its internal an-
gle (not just those in its critical range if w is reflex).
Assuming the contrary implies that w is endpoint of
some line segment tangent to the original polygon P
at a reflex vertex, say v. But then we have w ∈ C(v),
and Q would have been split with the edge vw by Al-
gorithm CUT-TO-PIECES. Observe that this argu-
mentation does not imply that left-over polygons are
star-shaped. Still, we can easily complete the trian-
gulation for P by adding diagonals for such polygons.

v

v

v

v

v

v

0
2

4

5

1

3

Figure 5: Ear cutting leaves two subpolygons

An alternative fast triangulation method for gen-
eral k-convex polygons results from the fact that we
can sort the vertices of a k-convex polygon P in any
given direction (say, x-direction) in O(kn) time: Sim-
ply scan around ∂P and use insertion sort, starting
each time from the place where the x-value of the
previous vertex has been inserted. Then any fixed
value xj , once being inserted, takes part in later com-
parisons at most 2k − 1 times because, otherwise, the

3

Two-Convex Polygons

119

vertical line x = xj would intersect P in more than k
components. Having x-sorted P ’s vertices, a simpli-
fied plane sweep method can be used to build a ver-
tical trapezoidation [6, 10] (and then a triangulation)
of P . Only trivial data structures are needed, as the
scenario on the sweep line is of complexity O(k), by
the k-convexity of P . Thus, each vertex of P can be
processed in O(k) time during the sweep. An O(kn)
time triangulation algorithm results.

Theorem 3 Any k-convex polygon can be triangu-
lated in O(kn) time and O(n) space.

6 Discussion

Among the open algorithmic problems raised by this
paper is the recognition of 2-convex polygons in linear
time. In general, for k ≥ 3, recognizing k-convexity of
a polygon in subquadratic time is open. Also, no com-
putational discussion of k-point convexity apparently
exists.

As a combinatorial question, is it always possible to
build, on top of a given planar point set, a 2-convex
decomposition with a sublinear number of polygons?
The problem of constructing a polygonization (a poly-
gonal cycle through the points) which has k-convexity
as low as possible seems to be hard. Is there a relation
to the reflexivity [2] of point sets? How fast can we
decide whether a point set admits a 2-convex polygo-
nization?

Let us finally show that there are point sets where
the best polygonization is at least Ω(

√
n)-convex. To

this end, let S be the n points of a
√

n × √n grid,
slightly perturbed to be in general position. Let L be
a set of

√
n − 1 horizontal and

√
n − 1 vertical lines

which can be drawn between the different rows and
columns to separate the grid points. Then any edge of
an arbitrary polygonization P of S intersects at least
one element of L. Assign each edge of P to one of
the elements in L it intersects. This way on average
each line in L gets assigned n

2
√

n−2
edges of P . Thus,

by the pigeon-hole principle, there is at least one line
in L which intersects Ω(

√
n) edges of P , that is, P

is at least Ω(
√

n)-convex. We close with the question
whether we can always find a polygonization which is
o(n)-convex.

Acknowledgments

We would like to thank Clemens Huemer, David Rappa-

port, and Vera Sacristán for fruitful discussions.

References

[1] G. Aloupis, P. Bose, V. Dujmovic, C. Gray, S.
Langerman, B. Speckmann. Triangulating and guard-
ing realistic polygons. Proc. 20th Canadian Confer-
ence on Computational Geometry, 2008.

[2] E.M. Arkin, S.P. Fekete, F. Hurtado, J.S.B. Mitchell,
M. Noy, V. Sacristán, S. Sethia. On the reflexivity
of point sets. In: B. Aronov, S. Basu, J. Pach, M.
Sharir (eds.) Discrete & Computational Geometry:
The Goodman-Pollack Festschrift, 2003, 139-156.

[3] D. Artigas, M.C. Dourado, J.L. Szwarcfiter. Con-
vex partitions of graphs. Electronic Notes in Discrete
Mathematics 29 (2007), 147-151.

[4] M. Breen, D.C. Kay. General decomposition theo-
rems for m-convex sets in the plane. Israel Journal of
Mathematics 24 (1976), 217-233.

[5] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas,
J. Hershberger, M. Sharir, J. Snoeyink. Ray shooting
in polygons using geodesic triangulations. Algorith-
mica 12 (1994), 54-68.

[6] B. Chazelle, J. Incerpi. Triangulation and shape-
complexity. ACM Transactions on Graphics 3 (1984),
135-152.

[7] H. ElGindy, G.T. Toussaint. On geodesic properties
of polygons relevant to linear time triangulation. The
Visual Computer 5 (1989), 68-74.

[8] S.P. Fekete, M.E. Lübbecke, H. Meijer. Minimizing
the stabbing number of matchings, trees, and trian-
gulations. Proc. 15th Ann. ACM-SIAM Symp. on
Discrete Algorithms, 2004, 430-439.

[9] E. Fink, D. Wood. Fundamentals of restricted-
orientation convexity. Information Sciences 92
(1996), 175-196.

[10] A. Fournier, D.Y. Montuno. Triangulating simple
polygons and equivalent problems. ACM Transactions
on Graphics 3 (1984), 153-174.

[11] G. Kun, G. Lippner. Large empty convex polygons in
k-convex sets. Periodica Mathematica Hungarica 46
(2003), 81-88.

[12] D.T. Lee, F.P. Preparata. An optimal algorithm for
finding the kernel of a polygon. Journal of the ACM
26 (1979), 415-421.

[13] A. Maheshwari, J.-R. Sack, H. Djidjev. Link distance
problems. In: Handbook of Computational Geome-
try, J.-R. Sack and J. Urrutia (eds.), Elsevier, 2000,
519-558.

[14] J. Matous̆ec, P. Plechác̆. On functional separately
convex hulls. Discrete & Computational Geometry 19
(1998), 105-130.

[15] T. Pennanen. Graph-convex mappings and K-convex
functions. Journal of Convex Analysis 6 (1999), 235-
266.

[16] G.J.E. Rawlins, D. Wood. Ortho-convexity and its
generalizations. In: Computational Morphology,
G.T. Toussaint (ed.), North-Holland Publishing Co.,
Amsterdam, 1988, 137-152.

[17] S. Schuierer, D. Wood. Visibility in semi-convex
spaces. Journal of Geometry 60 (1997), 160-187.

[18] F.A. Valentine. A three-point convexity property. Pa-
cific Journal of Mathematics 7 (1957), 1227-1235.

[19] G. Vegter. Kink-free deformations of polygons. Proc.
5th Ann. ACM Symp. Computational Geometry,
1989, 61-68.

4

EuroCG’09 - Brussels, Belgium

120

Geometric Measures on Imprecise Points in Higher Dimensions∗

Hein Kruger† Maarten Löffler†

Abstract

Imprecision in input data is an important obstacle
to the application of techiniques from computational
geometry in practical situations. Recently, a growing
amount of research acknowledges this issue. However,
the focus has mostly been on the planar case, while
many applications work on data in three or more di-
mensions. In particular, van Kreveld and Löffler [10]
study the problem of computing lower and upper
bounds on the possible values of several basic geomet-
ric measures on point sets in R2. In this work, we in-
vestigate how these results generalise to higher dimen-
sions. Interestingly, some of the algorithms and hard-
ness results go through almost unchanged, while in
other cases some distinctly different ideas are needed.

We present results for two extent measures on point
sets: the axis-aligned minimum bounding box and the
width. The results range from algorithms that run in
linear time in any dimensions, to running times of
nO(d) and NP-hardness proofs. Some problems are
left for future work.

1 Introduction

Recently, there has been a substantial amount of re-
search studying computational geometry in the pres-
ence of data imprecision [1, 3, 5, 6, 8, 9]. There is
quite some variety in the approaches, but they have
one thing in common: they focus mostly on planar
geometry. The reason is obvious: imprecision makes
geometric problems a lot harder to solve, so we start
tackling it in the easiest case. However, many real life
applications work in 3-dimensional space (and in some
cases even higher). Of the work mentioned above,
only Bandyopadhyay and Snoeyink [3] focus explic-
itly on R3, with protein folding as their application.

Several ways to model imprecision have been pro-
posed. Here we use a general model where each point
is represented by a region of possible locations. So,
the input is a set of subsets of Rd, and we know that
there is one point inside each region.

We study two basic extent measures on points sets:
the volume of the axis-aligned bounding box, and the
width. These measures give some indication on how

∗This research has been partially funded by the Nether-
lands Organisation for Scientific Research (NWO) through the
project GOGO.

†Department of Information and Computing Sciences,
Utrecht University, {hkruger,loffler}@cs.uu.nl

(a) (b)

Figure 1: (a) A set of imprecise points as discs in R2,
with points inside them such that the bounding box
is as small as possible. (b) The same set of regions,
with the points placed such that the bounding box is
as large as possible.

“large” the point set is, in a certain sense. In the pres-
ence of imprecision, these measures no longer have
a fixed value, but a range of possible values. For a
given set of imprecise points, our goal is to compute
this range. Van Kreveld and Löffler [10] study ex-
actly these questions, in the planar case. Here we in-
vestigate whether their solutions still work in higher
dimensions, and provide new, more general solutions
where they do not.

1.1 Results

Table 1 shows the results for the two measures we
studied, where we model the imprecise points either
as a balls or convex polytopes. Because of space re-
strictions, we only sketch the results here; a detailed
discussion of each result can be found in [7]. Addition-
ally, three other measures on point sets are discussed
there as well: the diameter, the closest pair, and the
smallest enclosing ball.

2 Axis-Aligned Bounding Box

The minimum volume axis-aligned bounding box of a
set of points P is the box B of minimum volume with
every edge of B parallel to one of the axes in Rd, such
that P ⊂ B. We want to find the largest and smallest
values that this volume can take. Figure 1 shows an
example for the planar case.

2.1 Smallest Axis-Aligned Bounding Box

For an imprecise point set modelled as a set of re-
gions R, the smallest axis-aligned bounding box, is

1

Geometric Measures on Imprecise Points in Higher Dimensions

121

Table 1: Summary of results.
Problem Model Smallest Largest
Axis-aligned Minimum Bounding Box Convex Polytopes open O(d2n) + 2O(d2 log d)

Balls O(n7+ε) (in R3) O(d2n) + 2O(d2 log d)

Width Convex Polytopes nO(d) NP-hard
Balls O(d2nd+2) open

-6
-4

-2
0

2
4

6

-6
-4

-2
0

2
4

6

0

2

4

6

8

10

Figure 2: The surface defined by a ball in a corner
cell.

the box B of minimum volume, that intersects every
R ∈ R. In each of the d dimensions, consider the
minimal width slab that intersects all regions. If any
of these slabs has width 0, there is a box of zero vol-
ume that intersects all regions, so assume this is not
the case. Then the intersections of these slabs forms
an axis-aligned box B0, and we know that at least
B0 ⊂ B. Therefore, we can discard any regions in R
that intersect B0, and we want to compute the small-
est box containing B0 and intersecting the remaining
regions R′. This argument follows Colley et al. [4],
and was also used in [10].

Now assume R is a set of balls in R3. The bounding
planes of B0 partition space into 27 cells. For each ball
in R′, we identify the largest subset of R3 such that if
B intersects this set, it also intersects the ball. This
set is convex and unbounded, with a monotone surface
bounding it on one side. Depending on which cell its
centre points lies in, this is a edge surface or corner
surface. (Note that the face cells and the interior of
B0 do not contribute any surfaces.) Figure 2 shows
an example of a corner surface. We can prove an
important lemma that allows us to assign each region
to a unique cell.

Lemma 1 If the center of a ball R ⊂ R′ lies in a cell
C, then we can restrict its surface to the part inside
C.

If we compute the “lower” envelope of these sur-
faces in each cell, we obtain 20 single surfaces, each of
at most quadratic complexity, and we want to com-

pute the smallest box containing B0 that intersects
all these surfaces.

The smallest box must have some of its corners on
these surfaces, since otherwise it could be shrunk. We
guess which corners lie on surfaces, and for each we
guess on which piece of the surface it lies. There can
be at most three such corners, so there are O(n6) pos-
sibilities. For each possibility, we compute the small-
est box intersecting them and test in linear time if it
intersects all other surfaces. If not, these other sur-
faces give an extra restriction on the possible boxes.
These restrictions could be of non-constant complex-
ity, but we can still compute the optimum in amor-
tised linear time.

Theorem 2 The total time required to compute the
smallest minimum volume axis-aligned bounding box
for a set of imprecise points modelled as balls in R3 is
O(n7+ε) for ε > 0.

This approach does not work when the regions are
convex polytopes, because in that case Lemma 1 is no
longer true: we can no longer assign each region to a
unique cell.

2.2 Largest Axis-Aligned Bounding Box

To compute the largest axis-aligned bounding box for
any imprecise point set modelled as a set of regions
R in Rd, it is sufficient to compute the largest axis-
aligned bounding box of a subset R′ ⊂ R of 4d2 re-
gions, specifically the 2d most extreme regions in each
of the 2d axis parallel directions. This is a simple gen-
eralisation of [10]. We can prove the following lemma.

Lemma 3 The largest axis-aligned bounding box of
R′ is also the largest axis-aligned bounding box of R.

Computing R′ takes O(d2n) time. The largest
bounding box of R′ is determined by (at most) 2d
points, each defining a bounding plane of the box.
We test each of the 2O(d2 log d) possible assignments of
regions to bounding planes explicitly.

Theorem 4 The largest axis-aligned minimum
bounding box for any set of imprecise points can be
computed in O(d2n) + 2O(d2 log d) time.

2

EuroCG’09 - Brussels, Belgium

122

(a) (b)

Figure 3: (a) A set of discs in R2, with points such
that the width is as small as possible. (b) The same,
but as large as possible.

3 Width

The width of a precise point set P ⊂ Rd is defined
as the smallest distance between two parallel hyper-
planes, such that the entire set P is contained between
the two hyperplanes. Figure 3 shows an example of
the smallest and largest width of a set of balls.

3.1 Smallest Width

For a set of regions R in Rd, the minimum width of R
is the same as the smallest slab that intersects all re-
gions. This problem is closely related to the problem
of computing a hyperplane transversal of a set of ob-
jects in Rd. It is easy to see that the minimum width
of R is zero if and only if there exists a hyperplane
that intersects all regions.

Avis and Doskas [2] give an algorithm for comput-
ing a hyperplane transversal of a set of polytopes in Rd

in O(nd) time. For each Ri in a set R = {R1, . . . , Rn}
of polytopes in Rd, they compute a subdivision Γi of
the space of normal vectors to supporting hyperplanes
of Ri. For each d-dimensional cell σ of Γi there ex-
ists a unique ordered pair of vertices of Ri such that
the hyperplanes defining the smallest width in any di-
rection v ∈ σ pass through these vertices. Clearly, a
hyperplane with normal v ∈ σ intersects Ri if and
only if it intersects the line segment between these
vertices.

To compute a hyperplane transversal of R, they
proceed by computing the subdivision Γ∗(R) obtained
by overlaying all the subdivisions Γi, . . . ,Γn and then
using linear programming to search for a hyperplane
transversal of R in each cell of Γ∗(R). A similar ap-
proach can be used to compute the minimum width
slab intersecting the regions.

For each cell σ of Γ∗(R), we want to compute the
minimum width slab with a normal vector v ∈ σ. For
each region Ri ∈ R, consider the vertices pσ,i and
qσ,i that are extreme in any direction in σ. Now let
Pσ be the convex hull of the set {pσ,i} and let Qσ be
the convex hull of the set {qσ,i}. We can show it is
sufficient to consider all antipodal feature pairs (ψ, φ)

5101520
0

5
10

15
20

250

5

10

15

20

Figure 4: The minimum width of a set of balls in R3.

where ψ is a k-dimensional feature of Pσ and φ is a
(d−1−k)-dimensional feature of Qσ, such that a pair
of parallel hyperplanes with normal vector v ∈ σ are
tangent to Pσ and Qσ at ψ and φ respectively. We
arrive at the following result for polytopes.

Theorem 5 The minimum width of an imprecise
point set modelled as a set R of polytopes in Rd can
be computed in O(n2d−2) time if d is odd or O(n2d−1)
time if d is even.

If R is a set of balls, then it is clearly not possi-
ble to construct a subdivision of the space of normal
vectors as for polytopes. Thus a completely different
approach is needed to compute the minimum width
of a set of imprecise points modelled as balls.

We can show that if the minimum width of R is
zero, then there exists a pair of disjoint sets S1, S2 ⊆
R with 1 ≤ |S1|+|S2| ≤ d such that a plane h tangent
to each ball in S1 ∪ S2 and separating S1 from S2

intersects each ball b ∈ R. Here we focus on the non-
zero case, and we can make the following observation.

For a pair of non-empty disjoint subsets S1, S2 ⊆ R,
with |S1|+ |S2| > d, define HS1,S2 to be the set of all
pairs of parallel hyperplanes (h1, h2) tangent to each
ball in S1 and S2 respectively such that both h1 and
h2 separate S1 from S2.

Lemma 6 If R is a set of balls in Rd with minimum
width W > 0, then there exists a pair of non-empty
disjoint sets S1, S2 ⊆ R with |S1|+ |S2| = d+ 1 such
that HS1,S2 is finite and the minimum width of P is
given by the distance between a pair of hyperplanes
(h1, h2) ∈ HS1,S2 .

Figure 4 shows a set of balls in R3 and the pair
of parallel planes determining the minimum width.
Note that there are two balls tangent to and above
the upper plane and two balls tangent to and below
the lower plane.

Now, if the minimum width of R is known to be
greater than zero, it can be computed by searching for
a pair of sets S1 and S2 satisfying Lemma 6. Clearly

3

Geometric Measures on Imprecise Points in Higher Dimensions

123

if S1 and S2 satisfy Lemma 6, then |HS1,S2 | ≤ 2
(assuming no degeneracies are present in the input).
Thus, to compute the minimum width, we can con-
sider all pairs of non-empty disjoint S1, S2 ⊆ R with
|S1| + |S2| = d + 1, determine whether HS1,S2 is fi-
nite, and if it is, test whether ∃(h1, h2) ∈ HS1,S2 such
that each b ∈ R has at least one point lying between
h1 and h2. The minimum distance between all such
h1 and h2 over all pairs S1, S2 will give the minimum
width of R.

To compute HS1,S2 , we need to find all hyperplanes
that are tangent to a set of balls. By representing the
set of all hyperplanes as a set of points in Rd using the
right duality mapping, the set of hyperplanes tangent
to each pair of balls becomes a hypersurface. We then
compute the intersection of these surfaces for all pairs
of balls from S1 and S2.

Testing all sets S1, S2 in a mostly brute-force man-
ner, we arrive at the following result.

Theorem 7 The minimum width of a set of impre-
cise points modelled as a set R of balls in Rd can be
computed in O(d2nd+2) time.

3.2 Largest Width

The maximum width of an imprecise point set mod-
elled as a set of regions R = {R1, . . . , Rn} in Rd is the
maximum width over all point sets P = {p1, . . . , pn}
such that pi ∈ Ri. Note that this is not the same as
the smallest distance between a pair of parallel hyper-
planes h1 and h2 such that R is contained between h1

and h2.
Computing the maximum width of R is made diffi-

cult by the fact that it is not sufficient to only consider
subsets of R: there do exist arbitrarily large sets of
imprecise points such that removing any one point
reduces the maximum width. Furthermore, it is pos-
sible that the maximum width is simultaneously de-
termined by several pairs of parallel hyperplanes [10].

In [10], a proof is given that computing the maxi-
mum width of a set of imprecise points modelled as
line segments in R2 is NP-Hard. They showed that
for any instance of SAT and some W > 0, it is pos-
sible to construct a set L of line segments such that
the maximum width of L is W if and only if the SAT
instance can be satisfied. This construction can be
modified to the present case for polytopes.

In R2 we can use the same construction and replace
each line segment with a triangle of height ε (for some
very small ε). The resulting set of convex polygons
has maximum width W if and only if the SAT in-
stance can be satisfied. We can extend this to a set of
polytopes in Rd by using the first two dimensions for
the planar construction, and extending the polytopes
by at least 2W in all other dimensions.

Theorem 8 For any instance of SAT and any W >
0, it is possible to construct a set R of convex poly-
topes in Rd such that the maximum width of R is W
if and only if the SAT instance can be satisfied.

For the case where the regions are balls, such a con-
struction does not work; thus, this problem remains
open.

4 Conclusions and Open Problems

We studied two extent measures on point sets in
higher dimensions in the presence of data imprecision.
We obtained some first results, but there is still a lot
of room for improvement: better running times may
be possible in some cases, and some variants remain
open. Apart from this, there has been very little work
on high dimensional geometric problems in an impre-
cise setting, and there are plenty of possibilities for
future work.

References

[1] M. Abellanas, F. Hurtado, and P. Ramos. Structural
tolerance and Delaunay triangulation. Information
Processing Letters, 71:221–227, 1999.

[2] D. Avis and M. Doskas. Algorithms for high dimen-
sional stabbing problems. Discrete Applied Mathe-
matics, 27:39–48, 1990.

[3] D. Bandyopadhyay and J. Snoeyink. Almost-
Delaunay Simplices: Nearest Neighbor Relations for
Imprecise Points. In PROC. 15th ACM-SIAM Sym-
posium on Discrete Algorithms, pages 410–419, 2004.

[4] P. Colley, H. Meijer, and D. Rappaport. Optimal
nearly-similar polygon stabbers of convex polygons.
In Proceedings of the 6th Canadian Conference on
Computational Geometry, pages 269–274, 1994.

[5] L. Guibas, D. Salesin, and S. J. Constructing
Strongly Convex Approximate Hulls with Inaccurate
Primitives. Algorithmica, 9:534–560, 1993.

[6] A. A. Khanban and A. Edalat. Computing Delaunay
Triangulation with Imprecise Input Data. In Proc.
15th Canadian Conference on Computational Geom-
etry, pages 94–97, 2003.

[7] H. Kruger. Basic measures for imprecise point sets in
Rd. Master’s thesis, Utrecht University, 2008.

[8] M. Löffler and J. Snoeyink. Delaunay Triangulations
of Imprecise Points in Linear Time after Preprocess-
ing. In Annual Symposium on Computational Geom-
etry, pages 298–304. ACM, 2008.

[9] T. Nagai and N. Tokura. Tight Error Bounds of Ge-
ometric Problems on Convex Objects with Imprecise
Coordinates. In Japanese Conference on Discrete and
Computational Geometry, pages 252–263, 2000.

[10] M. van Kreveld and M. Löffler. Largest bounding
box, smallest diameter, and related problems on im-
precise points. In Proc. 10th Workshop on Algo-
rithms and Data Structures, LNCS 4619, pages 447–
458, 2007.

4

EuroCG’09 - Brussels, Belgium

124

Some Regularity Measures for Convex Polygons

Ferran Hurtado∗ Vera Sacristán∗ Maria Saumell∗

Abstract

We propose new measures to evaluate to which ex-
tent the shape of a given convex polygon is close
to the shape of some regular polygon. We prove
that our parameters satisfy several reasonable require-
ments and provide algorithms for their efficient com-
putation. The properties we mostly focus on are the
facts that regular polygons are equilateral, equiangu-
lar and have radial symmetry.

1 Introduction

Regular polygons have fascinated mathematicians of
all times. As an example, let us mention that, de-
spite the numerous mathematical contributions Gauss
made throughout his life, he was so proud of his
compass and straight-edge construction of the regular
heptadecagon that he asked for one to be inscribed on
his tombstone.

In addition to the mathematical interest, a consid-
erable amount of manufactured objects are regular-
shaped, for which reason some methods to detect reg-
ular polygons in given images have been developed in
recent years (see [2] or [5]). Our approach is related
to the one in these works because we want to propose
parameters that give us some information about how
regular a convex polygon is. An antecedent of this
problem that has received substantial attention lately
is the study of convexity coefficients for polygons (see,
for example, [3, 11]).

Although one could come up with many criteria
to measure whether a convex polygon is close to be-
ing regular, we have focused on measures which, be-
sides fulfilling some natural conditions, correspond to
a computational geometry perspective. Following the
rational from [11], we require several conditions on
the parameters: i) the regularity measure is a number
from (0, 1] ; ii) the regularity measure of a given poly-
gon equals 1 if and only if it is regular; iii) there are
polygons whose regularity measure is arbitrary close
to 0; iv) the regularity measure of a polygon is invari-
ant under similarity transformations.

While our research is theoretically oriented, let us
mention that it is to some extent related to appli-

∗Departament de Matemàtica Aplicada II, Uni-
versitat Politècnica de Catalunya, Barcelona, Spain,
{Ferran.Hurtado,Vera.Sacristan,Maria.Saumell}@upc.edu.
Partially supported by projects MEC MTM2006-01267 and
DURSI GenCat 2005SGR00692.

cations in metrology, robotics and discretizations of
planar domains into suitable meshes. In the three
cases, the measurements we present can be seen as
quality control tests to check the regularity of an ob-
ject whenever that is the desired shape.

Additional problems, details, and full proofs, can
be found in [9].

2 Polygons with the same number of edges

A natural constraint for evaluating whether a given
convex n-gon P (we also assume that P has no
straight angles) is close to being regular is to com-
pare it to a regular polygon with the same number of
edges. A simple way could be to compare P to a reg-
ular n-gon with the same area or the same perimeter.
More sophisticated methods can nevertheless be put
forward as we will see.

The main parameter proposed in this section is
computed in two steps, through which P is trans-
formed into a regular polygon R. The regularity mea-
sure captures the differences between P and R.

2.1 Inscription in a circle

In the first step, we transform P into a polygon in-
scribed in a circle and we scale the two objects so that
the radius of the circle is one. In order to do that, we
give a method to compute a positive real number r(P)
and a polygon P ′ such that P ′ has the same ordered
sequence of edge lengths as P and all its vertices lie
on a circle C(P) of radius r(P). Let us denote the
ordered sequence of edge lengths of P by l1, l2, . . . , ln
and assume that l1 corresponds to the longest edge.
Theorem 1 shows that there always exists such a poly-
gon P ′ and that r(P) is the solution of an equation
depending only on P.

Theorem 1 [6] For any given convex n-gon P, the
following three statements are equivalent:

(i) the center of C(P) is contained in P ′;

(ii)
∑n

i=1 2 arcsin (li/l1) ≥ 2π;

(iii) r(P) is the unique solution of∑n
i=1 2 arcsin (li/2r) = 2π.

These three statements are also equivalent:

(i) the center of C(P) is exterior to P ′;

1

Some Regularity Measures for Convex Polygons

125

(ii)
∑n

i=1 2 arcsin (li/l1) < 2π;

(iii) r(P) is the unique solution of∑n
i=2 arcsin (li/2r) = arcsin (l1/2r) .

An approximated value of r(P) can be obtained by
numerically solving the corresponding equation. The
following bounds might also be taken into account:

Proposition 2 Given P, it holds that:

(i) The radius r(P) is so that

r(P) ≥ max
{
l1
2
,

∑n
i=1 li/2n

sin (π/n)

}
and there exist examples where these values are
achieved.

(ii) If the inscription of P ′ in C(P) is such that the
center of C(P) is contained in P ′, then

r(P) ≤
∑n

i=1 li
4

and we can construct a family of inscribed poly-
gons such that the radius of the circumscribed
circles get arbitrarily close to this bound.

The first lower bound is trivial and the second one
results from the fact that, among all n-gons inscribed
in a given circle, the maximum perimeter is achieved
by the regular one. The upper bound is a consequence
of the relation between the lengths of a chord of a
circle and its corresponding arc.

Now let α(P, P ′) be the absolute value of the max-
imum difference between one interior angle of P and
its corresponding interior angle in P ′. We define the
parameter µ1

1(P) = (π − α(P, P ′))/π, which will be
used later.

2.2 Search of regular position

Next we present the second step of the transforma-
tion of P. We will make the vertices p1, p2, . . . , pn of
P ′ slide along the circle until they get to the position
of the vertices r1, r2, . . . , rn of a regular polygon R
(see Fig. 1a for an example), minimizing the distance
covered by the vertex that travels the most. We will
assume that the vertices of all polygons are always
given in counterclockwise order. We say that pi and
rj are matched if pi travels to rj to reach the regular
position. The next lemma offers a nice characteriza-
tion of one of the solutions:

Lemma 3 There exists a solution in which pi and ri
are matched for all i.

The key idea of the proof is that two vertices of
P ′ cannot meet during their movement towards the
regular position if the movement is to be minimized.

Let us now suppose that r1, r2, . . . , rn slide coun-
terclockwise along the circle with constant speed of 1
rad/s from the position in which p1 and r1 are coinci-
dent until one complete turn has been done. If d1(t)
denotes the function that gives the distance on the
circle between p1 and r1 at time t, we have d1(t) = t,
for t ∈ [0, π] , and d1(t) = 2π − t, for t ∈ (π, 2π) .

Moreover, all the analogously defined functions
di(t), i 6= 1, are translations of d1(t) and can be
computed in θ(n) time. The optimal position that
we search is then given by the point of minimum y-
coordinate in the upper envelope of the arrangement
of the functions di(t). See Fig. 1b for an example. We
then have:

Theorem 4 Given P ′, the problem of computing the
movement from P ′ into a regular position that min-
imizes the maximum distance d(P ′, R) covered by a
vertex can be solved in O(n log n) time.

π

2π
t

a)

π

b)

Figure 1: a) A movement from P ′, into a regular po-
sition. b) Graphical representation of the functions
di(t).

Notice that d(P ′, R) < π − π/n. We define µ2
1(P) =

(π − π/n − d(P ′, R))/(π − π/n) and µ1(P) =
µ1

1(P)µ2
1(P) (other measure combinations are possi-

ble). Then µ1(P) fulfills conditions i)-iv).

Observation 1 In this context, an alternative pa-
rameter to be minimized is the sum of the distances
covered by all the vertices of P ′. It can also be com-
puted in O(n logn) time and lead to another regular-
ity measure satisfying the requirements i)-iv).

3 Inscription and circumscription

There exist convex polygons which are very similar to
regular polygons with a different number of edges. In
this section we propose suitable regularity measures
to cope with these situations.

Let R stand for a regular m-gon. We compute
the smallest similar copy RE of R enclosing P (in-
scription problem) and the largest similar copy RI of
R enclosed in P (circumscription problem), allowing
translations, rotations and scaling (see the examples
in Fig. 2). In this case, the regularity coefficients (per-
haps m-regularity coefficients would be a more ap-
propriate expression) are µ2(P) = area (P)/area (RE)

2

EuroCG’09 - Brussels, Belgium

126

and µ3(P) = area (RI)/area (P), and they both sat-
isfy i)-iv).

40 º

a) b)

Figure 2: a) Inscription of a rectangle in a regular
octagon. b) Circumscription of a rhombus to a square.

We will sketch how to solve these containment prob-
lems. For the sake of brevity, only the inscription
problem will be discussed.

It is obvious that there must be some incidences be-
tween P and RE , and that these incidences can be of
different types. Our first attempt to solve the inscrip-
tion problem has been to separately obtain the three
types of solution candidates: those having an edge in
contact with an edge of P, those having a vertex in
contact with a vertex of P and those not having any
of the previous special contacts. However, we have
obtained better results with another technique that is
related to a more general version of the problem.

If the exterior polygon Q is only required to be
convex, it has been shown in [1] that the small-
est enclosing similar copy of Q can be computed in
O(mn2 log n) time. The main idea behind it is that,
if we fix Q and look for the largest copy of P inside
it, the space of all similar placements of P enclosed
in Q is a convex polytope in R4 given by the intersec-
tion of mn halfspaces Li,j . Then, the maximum size
is achieved by a vertex of the polytope (see [1] for
details).

We have been able to prove that the complexity of
the polytope is much lower in our case when Q = RE

because it suffices to consider rotations of angles in
[0, 2π/m]. The argument is as follows: each halfspace
Li,j forces the vertex i of P to lie in the same halfplane
defined by the prolongation of the edge j of RE as RE

does. Because of the regularity of RE , P only needs to
rotate 2π/m and the number of restrictions Li,j that
must be taken into account can be proven to reduce
to n+m. Since the intersection of O(n+m) halfspaces
in R4 has O((n+m)2) vertices that can be computed
in O((n+m)2) time (see [8]), we obtain the following
result:

Theorem 5 The inscription problem can be solved
in O((n+m)2) time.

4 Radial symmetry

Radial symmetry is yet another main characteristic of
regular polygons that, in fact, has attracted attention

even very recently [7]. In this section we deal with
properties of regular polygons that are a consequence
of their symmetry and propose measures of the regu-
larity of a polygon based on them.

4.1 Equiangular distribution

Our aim is to solve the following problem: given
the convex n-gon P, the pencil of n half-lines {ti}i
with the origin at the barycenter of P and slopes
{tan 2πi/n}i splits the area of P into n pieces (see
Fig. 3a). We seek to find the rotation angle ϕ0 around
the barycenter that minimizes the area of the smallest
portion.

Let us denote the barycenter of P by G; we can
assume that G = (0, 0). We define ai(ϕ), ϕ ∈ [0, 2π) ,
as the area of the portion of P delimited by ti and ti+1

when t1 and the x-axis form angle ϕ. The following
lemma describes the functions ai(ϕ); it can be proved
by splitting each portion of P into suitable triangles.

Lemma 6 The functions ai(ϕ) are the continuous
concatenation of O(n) pieces of branches of rational
functions that are quotients of two second degree poly-
nomials whose variable is tanϕ. Each can be com-
puted in O(n) time.

The symmetry of the pencil allows us to restrict
our search to ϕ ∈ [0, 2π/n] . We are interested in the
arrangement of the functions ai(ϕ) in this interval,
which can be seen as a set of O(n) functions defined
on possibly smaller intervals, each pair of which in-
tersects in at most 4 points. Consequently, the com-
plexity of the lower envelope is at most λ6(n) =
O(n·2O(α2(n))) [10], where λs(k) denotes the maximal
complexity of the upper or lower envelope of a set of
k curves which pairwise intersect at most s times and
α(n) is the functional inverse of Ackermann’s func-
tion. We have proved:

Theorem 7 The angle ϕ0 can be computed in
O(λ6(n) log n) time.

If aj(ϕ0) is this smallest portion, µ4(P) =
naj(ϕ0)/area (P) is a regularity measure satisfying
conditions i), iii) and iv). The next result, which can
be checked by studying da1(ϕ)/dϕ ensures that it also
fulfills ii).

Proposition 8 The function a1(ϕ) is constant if,
and only if, P is regular.

Observation 2 Other angles that give rise to related
coefficients are the angle that maximizes the area of
the largest portion and the angle that maximizes the
difference between the areas of the largest and the
smallest part. Notice that they can similarly be ob-
tained from the arrangement of the functions ai(ϕ).

3

Some Regularity Measures for Convex Polygons

127

4.2 Area center

In this subsection we continue investigating whether
the area of P can easily be divided into similar
size pieces (see Fig. 3b). More precisely, we want
to find a point q in P minimizing the parameter
maxi{ area (4 qpipi+1)}.

This problem can be solved by means of Voronoi
diagrams. Given a point (x, y) and a segment e, we
define the distance d̃((x, y), e) as the area of the tri-
angle which base is e and which third vertex is (x, y).
If we define the further Voronoi diagram (FVD(P)) of
the edges of P for the distance d̃, then is not difficult
to prove that

p
1

p
2

p
3

p
4

p
5

p
6

t1

2t

t3

t4

t5
t6

t7

a) b)

Figure 3: Divisions of convex polygons into pieces.

Theorem 9 The center q is either a vertex of
FVD(P) or the intersection point of an edge of
FVD(P) and the boundary of P.

Therefore we can solve our problem if we are able
to compute FVD(P). This construction can be done
by a divide-and-conquer algorithm in which the main
difficulty lies in proving the merge step to be linear.
Then it holds:

Theorem 10 Given P, its FVD(P) can be computed
in O(n log n) time.

This problem can be solved more efficiently by im-
mersion in R3. Place the polygon P in z = 0 and, for
each edge ei of P, consider a plane Πi through ei and
such that the distance d̃ between a point p of P and
ei equals the vertical distance between p and Πi. The
center q is the orthogonal projection onto z = 0 of the
point of minimum z-coordinate in the intersection of
the upper half-spaces defined by the planes Πi. As this
is a linear programming problem, we have (see [4]):

Theorem 11 The problem of finding the center q can
be solved in O(n) time.

Now let d(·, ·) denote the Euclidean distance
in R2 and let i1, i2 and i3 be such that
Ti1 = area (4 qpi1pi1+1) = maxi{ area (4 qpipi+1)},
di2 = d(q, pi2) = maxi{d(q, pi)} and di3 =
d(q, pi3) = mini{d(q, pi)}. Then µ5(P) = di3/di2 ·
area (P)/(nTi1) is a regularity measure that satisfies
i)-iv).

Observation 3 The point that maximizes the area
of the smallest triangle and the point that minimizes
the difference between the areas of the largest triangle
and the smallest one are useful alternatives for this
type of measures. Optimal algorithms to compute
them are given in [9].

5 Conclusions and further work

We have presented several measures of regularity for
convex polygons that satisfy the requirements de-
scribed in the introduction, that are efficiently com-
putable, and that cover a wide range of approaches
to evaluate how far a convex polygon is from being
regular.

While we have focused on a theoretical perspective,
it would be interesting in the future to have some
experimental results at our disposal to check which
(combinations of) measures give regularity descrip-
tions that are the closer to our intuition about the
topic.

References

[1] P. K. Agarwal, N. Amenta and M. Sharir. Largest
Placement of One Convex Polygon inside Another.
Discrete Comput. Geom., 19:95–104, 1998.

[2] N. Barnes, G. Loy, D. Shaw and A. Robles-Kelly.
Regular Polygon Detection. Proc. ICCV’05, China,
2005.

[3] L. Boxer. Computing Deviations from Convexity in
Polygons. Pattern Recog. Lett., 14:163–167, 1993.

[4] N. Megiddo. Linear Programming in Linear Time
When the Dimension Is Fixed. J. ACM, 31:114–127,
1984.

[5] G. Piccioli, E. D. Micheli, P. Parodi and M. Campani.
Robust Method for Road Sign Detection and Recog-
nition. Image Vision Comput., 14:209–223, 1996.

[6] I. Pinelis. Cyclic Polygons with Given Edge Lengths:
Existence and Uniqueness. J. Geom., 82:156–171,
2005.

[7] I. Pinelis. A Characterization of the Convexity of
Cyclic Polygons in Terms of the Central Angles. J.
Geom., 87:106–119, 2007.

[8] F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag, 1985.

[9] M. Saumell. Mesures de regularitat per a poĺıgons
convexos. Master Thesis. Universitat Politècnica de
Catalunya, 2008.

[10] M. Sharir and P. K. Agarwal. Davenport-Schinzel
Sequences and Their Geometric Applications. Cam-
bridge University Press, 1995.

[11] J. Žunić and P. L. Rosin. A Convexity Measure-
ment for Polygons. Proc. BMVC’02, United King-
dom, 2002.

4

EuroCG’09 - Brussels, Belgium

128

Inducing n-gon of an arrangement of lines

Ludmila Scharf∗ Marc Scherfenberg∗

Abstract

We show that an arrangement A of n lines in general
position in the plane with n ≥ 3 has an inducing
polygon of size n. The proof is constructive, that is
we describe an algorithm that constructs a simple n-
gon inducing A.

1 Introduction

Every simple polygon induces an arrangement of lines,
simply by extending its edges. We consider the ques-
tion whether every arrangement of lines in the plane
has an inducing polygon, namely, a simple polygon
P such that every line l of the arrangement A is
collinear with one edge of P and that every edge of
P is collinear with some line of A, see Fig. 1 for an
example. There are arrangements that cannot be in-
duced by a simple polygon. Lines that all intersect
in one point and lines that form a 3× 2 parallel grid
serve as examples of such arrangements. However, we
will show that when the lines of an arrangement are
in general position, i.e., no three lines intersect in one
point, and no two lines are parallel, an inducing poly-
gon with n edges exists and can be found in O(n2)
time. From now on we consider only arrangements of
lines in general position in the plane.

A

P

Figure 1: Line arrangement A and a simple polygon
P inducing A.

This problem has been addressed by Bose et al.
in [1]. It is known that a simple inducing polygonal
path with n edges always exists, and for some classes
of arrangements an inducing n-gon exists, see [1, 4, 6].
Also, for a weaker variant of the problem, namely, if
the polygon is allowed to have collinear edges, i.e.,
more than one edge on one line, we proved in [6] that
an inducing polygon of size O(n) always exists.

In this paper we describe an incremental algorithm
that constructs for an arrangement A of n lines in
general position in the plane a simple n-gon induc-
ing A.

∗Institute of Computer Science, Freie Universität Berlin,
{scharf,scherfen}@mi.fu-berlin.de

2 The Algorithm

LetA be an arrangement of n lines in the plane, where
n ≥ 3. Our algorithm constructs an inducing polygon
P of size n for the arrangement A incrementally.

2.1 Initialization

For the initialization take two arbitrary lines g1, g2
such that their intersection point p is the first in-
tersection point on both lines, e.g., choose p as the
intersection point of the arrangement with the max-
imum x-coordinate. Define the orientation of these
two lines in direction from p towards the remaining
intersection points. Without loss of generality we can
assume that all intersection points of g2 lie in the pos-
itive half-plane of g1, denoted by H+(g1), see Fig. 2.

p

g1 = b

g2

P0

H+

e0 e1
e2

e3

Figure 2: Initialisation and edge labeling.

Let P0 be the convex polygon consisting of the
boundary of the bounded cell in A which is incident
to g1, g2, and p. Let Pi denote the polygon construct-
ted in step i, I(·) the lines induced by a polygon or
a polygonal chain, and Ai = A \ I(Pi) the arrange-
ment without the lines induced by Pi. Note that P0 is
completely contained in an unbounded cell of A0. It
is an invariant that is maintained in every extension
step of the algorithm. Let R(i) denote the boundary
of the unbounded cell C(i) in Ai which contains Pi.
We also maintain a so called base line b(i). For P0 the
base line is b(0) = g1.

2.2 Incremental Construction

We first introduce some notation, which is used in
the description of incremental steps. The edges of
Pi are enumerated in the following way: the edge
contained in the base line b(i) is the edge e

(i)
0 . In

counter-clockwise order we enumerate with negative
indices the edges contained in the previous base lines
e
(i)
−1, . . . , e

(i)
−m, where e(i)−m is contained in the first base

1

Inducing n-gon of an arrangement of lines

129

line b(0). Note that m ≤ i, since the base line is
not necessarily changed in every step. The remaining
edges are enumerated in clockwise order with positive
indices e(i)1 , . . . , e

(i)
k , where e(i)1 is incident to e(i)0 and

e
(i)
k is incident to e(i)−m. We call the edges contained in

base lines base edges and other edges non-base edges.
A line containing an edge e(i)j is denoted by l(i)j , and

the intersection point of two lines l(i)j , l
(i)
m by x(i)

j,m. We
define the orientation of base edges in clockwise direc-
tion, and the orientation of non-base edges in counter
clockwise direction with respect to the polygon Pi.
For each line l(i)j its orientation is defined by the ori-

entation of the edge e(i)j . The part of l(i)j \ e(i)j ori-

ented in positive (negative) direction of l(i)j is called

positive (negative) half-line and is denoted by l
(i)+
j

(l(i)−j). The intersection point of the positive or neg-

ative half-line of a line l(i)j with the boundary R(i) is

denoted by x
(i)+
R,j or x(i)−

R,j , respectively, and the part
of R(i) between the intersection points with the lines
l
(i)
j , l

(i)
k is denoted by R(i)

j,k.

Note that for the base line b(i) we maintain the
property that all intersection points of b(i) with Ai

lie in b(i)+. Thus, the intersection point b(i) ∩ R(i) is
always the point x(i)+

R,0 , which will be denoted by x(i)
R,0.

Finally, for simplicity we will omit the index (i) if all
identifiers refer to the same step i, and will use the
index in order to distinguish between the notation in
different steps.

The algorithm performs one of the extension con-
structions described below until after some i-th ex-
tension step all lines of A are induced by Pi. The
inducing polygon for A is then P = Pi.

We consider three non-base edges e1, e2, e3, the con-
cave chain of base edges, and the convex chain R(i) –
the boundary of the cell containing Pi. All possible
combinatorial configurations of this finite set of ob-
jects are partitioned into seven cases. For each of the
cases we specify the incremental construction of Pi+1

from Pi. Observe that after every extension step the
constructed polygon Pi lies completely on one side of
the line l1, i.e., the edge e1 is an edge of the convex
hull of Pi.

The first case distinction is whether the negative
half-line of l1 intersects the boundary R. If it does,
Case 1 applies.

Case 1: [l(i)−1 ∩ R(i) 6= ∅] The edge e1 is removed
from Pi and is substituted by the chain x0,1, xR,0,
R0,1, x−R,1, x1,2. The base line for Pi+1 remains un-

changed b(i+1) = b(i), and the edge e(i+1)
1 is the edge

of R(i)
0,1 incident to b(i), see Fig. 3.

If l−1 does not intersect R, then l+1 has to. There-
fore, for the remaining cases the condition (C1) is ful-

b

l1

l2

Pi

e1

Pi+1

R(i)

xR,0
x0,1

xR,1

x1,2

Figure 3: Extension Case 1: The polygon Pi is the
shaded area. The identifiers refer to Pi, and the new
polygon Pi+1 is outlined by the bold black line.

filled:

l
(i)−
1 ∩R(i) = ∅ . (C1)

The next distinction is whether l+2 intersects R:
Case 2: [(C1) and l+2 ∩ R 6= ∅] The edge e1 is
removed from Pi and is substituted by the chain x0,1,
x+

R,1, R1,2, x+
R,2, x1,2, see Fig. 4. The base line for the

polygon Pi+1 is now b(i+1) = l
(i)
1 , and the edge e(i+1)

1

is the edge of R(i)
12 incident to l(i)1 .

b

Pi

e1
R

x+
R,1

x0,1

x+
R,2

x1,2

l2

Pi+1

b(i+1) = l
(i)
1

Figure 4: Extension Case 2.

For the remaining cases condition (C2) holds:

l
(i)+
2 ∩R(i) = ∅ . (C2)

It can be shown that then the intersection of l(i)−2

with the polygon Pi is exactly one point xj,2, j ≤ 0,
on a base edge. One of the next two cases applies if

l
(i)−
2 ∩ Pi ∈ e(i)0 . (C3)

The difference between the two cases is whether the
point x1,3 lies inside or outside the cell C.
Case 3: [(C1) and (C2) and (C3) and x1,3 ∈ CR]
The edges e1, e2, e3 and the part x0,2x0,1 of the edge
e0 are removed from Pi. The new added chain is x0,2,
R2,1, x1,3, x3,4, see Fig. 5. The base line for the poly-
gon Pi+1 is now b(i+1) = l

(i)
2 .

Case 4: [(C1) and (C2) and (C3) and x1,3 /∈ CR]
If Ai is induced by R1,3, Pi induces the complete
arrangement up to the lines in R1,3, we call it a
finishing case (see below). For now assume that

2

EuroCG’09 - Brussels, Belgium

130

b

l1

Pi

R
x+

R,1

x0,1

x−R,2

x1,2

l
(i)
2 = b(i+1)

l3

x1,3

x2,3

x0,2

e0

x3,4

Figure 5: Extension Case 3.

A′i = Ai \ I (R1,3) is not empty. Let the boundary
of the unbounded face of A′i which contains Pi be de-
noted by R′, the intersection points of l+1 and l−2 with
R′ by x′R,1 and x′R,2, respectively, and the part of R′

between x′R,2, x
′
R,1 by R′2,1.

For the extension of the polygon we again re-
move the part x0,2x0,1x1,2x2,3 and substitute it by
x0,2, R

′
2,1, R1,3, x2,3, see Fig. 6. The base line for the

polygon Pi+1 is now b(i+1) = l
(i)
2 .

b

l1

Pi

Pi+1

x+
R,1

x0,1

x′
R,2

l
(i)
2 = b(i+1)l3

x2,3

x0,2

x+
R,3 R′

R

x′
R,1

x1,3

Figure 6: Extension Case 4.

The next case applies if the intersection point l−2 ∩Pi

lies on a base edge ej with j ≤ −2.
Case 5: [(C1) and (C2) and l−2 ∩ Pi ∈ ej , j ≤ −2]
We remove the edge ej+1 by extending its adjacent
edges ej and ej+2 up to the point xj,j+2. Additionally,
the segment xj+1,1x0,1 of e1 is replaced by xj+1,1,
Rj+1,0, x0,1, see Fig. 7. The base line for the polygon
Pi+1 remains unchanged, i.e. b(i+1) = b(i). Note that
the new edge on the line l(i)j+1 is not considered to be
a base edge in all subsequent steps.

b

l1Pi

Pi+1x0,1

xR,0

x−2,0

l2

xR,−1

x−1,1

R

l−1

l−2e−1

e−2

e0

Figure 7: Extension Case 5.
Finally, if the condition

l−2 ∩ Pi ∈ e−1 (C4)

is fulfilled, we distinguish whether at least one of the
points x0,3, x1,3 lies inside the cell C or not. We can
show that in the last two cases the point x2,3 lies in
the segment x−1,2x0,2.

Case 6: [(C1), (C2), (C4), {x0,3, x1,3} ∩CR 6= ∅] If
both x0,3 and x1,3 lie inside the cell C, let y denote the
one that is closer to e3, otherwise, y = {x0,3, x1,3}∩C.
Let g be the line intersecting l3 at y, and h the other
one of the two lines l0, l1. We cut the polygon Pi

at the points x−1,2 and x3,4 and discard the chunk
containing e0. Instead, the edge e3 is replaced by
the segment x3,4y. Further, we add yx0,1 of line g,
x0,1xR,h of line h, Rh,2 and the segment xR,2x−1,2,
see Fig. 8. The base line for the polygon Pi+1 is now
b(i+1) = l

(i)
2 .

b = g
l1 = h

Pi

x0,1

x3,4

l2

xR,2 R

l−1

l3

e0

e−1

xR,h

Pi+1

x0,3

= y

Figure 8: Extension Case 6 illustrated for g = l0.

Case 7: [(C1), (C2), (C4) and {x0,3, x1,3}∩CR = ∅]
If A′i = Ai \I(R13) is empty we have a finishing case.
Otherwise, we proceed similar to Case 4. Let R′ de-
note the boundary of the unbounded face in A′ con-
taining Pi, and let R′2,0 denote the part of R′ between
the intersection points x′R,2, x

′
R,0 with the half-lines

b+ and l−2 respectively. The polygon Pi is cut at the
points x−1,2 and x2,3 and the chunk containing e0 is
discarded. Instead, the polygon is completed by the
following chain: x−1,2, R′2,0, x0,1, R1,3, x2,3, see Fig. 9.

The base line of the polygon Pi+1 is b(i+1) = l
(i)
2 .

b l1

Pi

x+
R,1

x0,1

x′R,2

l
(i)
2 = b(i+1)

l3

x2,3

x−1,2

x+
R,3 R′

R

l−1

x′R,0

Pi+1

Figure 9: Extension Case 7.

Finishing cases: The finishing configurations for
Case 4 and 7 extensions are almost identical and in-
volve six further case distinctions where we addition-
ally consider the position of lines l4 and l5. Full de-
scription of the extension cases and the complete cor-
rectness proof can be found in [5].

3

Inducing n-gon of an arrangement of lines

131

2.3 Correctness

For the correctness of the algorithm we need to show
that the constructed polygon P is simple, every line
in A is collinear to exactly one edge in P and every
edge in P is collinear to some line in A.

The extension steps are repeated as long as lines ex-
ist that are not induced by P . After every extension
step Pi+1 induces at least one line that is not induced
by Pi. Every line induced by Pi is also induced by
Pi+1. Thus, the algorithm terminates after at most n
extensions, and every line of A is induced by the con-
structed polygon. Furthermore, in every construction
step the modification chain contains exactly one seg-
ment on each affected line.

For the simplicity of the polygon we show that, as-
suming Pi is simple, for every extension case the con-
structed polygon Pi+1 is also simple. The initial poly-
gon P0 is clearly simple. The new added chain in every
extension step is simple by construction. Then if the
new edges do not intersect the unmodified edges, the
resulting polygon is simple. In the following we only
sketch the idea without proving the claims made.

Considering the general structure of the con-
structed polygon we observe that the base edges form
a concave chain and the non-base edges are contained
in the union of the positive half-plains of the base
lines.

The line l1 has no intersection with the polygon
except for the edge e1 and there are no edges of the
polygon in the positive half-plane of l1. Thus, Case 1
and 2 extensions are simple.

If the Conditions (C1) and (C2) are fulfilled, then
the only intersections of the line l2 with the polygon
are the edge e2 and exactly one point on the chain of
base edges. Thus, the described cases cover all pos-
sible configurations. Additionally, the negative half-
plane of l2, H−(l2), contains only the edge e1 and the
part of the chain of base edges between the point x0,1

and the intersection point with l2. In Case 4, 5, and
7 these are exactly the edges that are removed. The
new added chain lies completely in H−(l2), therefore,
Case 4, 5, and 7 extensions are simple.

Furthermore, if the Conditions (C1) and (C2) are
fulfilled, then the last executed extension step was
Case 1 with exactly one new line added. If addition-
ally l2 ∩ Pi ∈ e−1, then the extension preceding Case
1 was a Case 2 extension with exactly one new line.
Finally, if the conditions of Case 5 apply, the last ex-
tension steps were a sequence of Case 2 followed by a
Case 1 extension, where in each step exactly one new
line was added.

For every non-base line lm it holds that either lm
was a base line at some step and was changed to a
non-base line in a Case 5 extension, or the intersec-
tion of lm with every non-base edge ek with k > m is
empty. Combining this fact with the above case back-

tracking we can show that the line l3 in Case 3 and 6
cannot be a former base line. Then in Case 3 and 6
the positive half-plane of l3 does not contain any un-
modified edge. The new added chain lies completely
in H−(l2) ∪ H+(l3). Thus, Case 3 and 6 extensions
are simple.

Applying the above fact to line l4 in the finishing
cases we can show that the finishing cases are also
simple.

The running time is dominated by computing the
intersection of at most n lines with an unbounded face
of a semi-dynamic arrangement. Using the point set
dual to the arrangement (see [2]) and a data struc-
ture for maintaining the semi-dynamic convex hull of
that point set (see [3]) these intersection points can
be computed in O(log n) time each. See [5] for a de-
tailed description of this technique. This concludes
the proof of the following theorem:

Theorem 1 For every arrangement of n, n ≥ 3, lines
in general position in the plane there exists an induc-
ing polygon P with n edges. P can be constructed in
O(n log n) time.

3 Conclusions

We presented an algorithm for the construction of an
inducing polygon of size n for an arrangement of n
straight lines in general position in the plane. Since
we only used the fact that every line intersects ev-
ery other line exactly once, the result also holds for
arrangements of pseudo-lines.

We conjecture that in general there are many in-
ducing n-gons for an arrangement of n lines.

Acknowledgments

We thank Helmut Alt for fruitful discussions.

References

[1] P. Bose, H. Everett, and S. Wismath. Properties of ar-
rangement graphs. Int. J. of Computational Geometry
and Applications, 13(6):447–462, 2003.

[2] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry. Springer, Berlin, 3rd
ed., 2008.

[3] J. Hershberger and S. Suri. Applications of a semi-
dynamic convex hull algorithm. BIT, 32(2):249–267,
1992.

[4] E. Mumford, L. Scharf, and M. Scherfenberg. Inducing
polygons of line arrangements. In Proc. 24th European
Workshop on Computational Geometry, 2008.

[5] L. Scharf and M. Scherfenberg. Inducing n-gon of a
line arrangement. Technical Report B 08-14, Freie Uni-
versität Berlin, 2008.

[6] L. Scharf and M. Scherfenberg. Inducing polygons of
line arrangements. In Proc. 19th Int. Symp. on Algo-
rithms and Computation, LNCS 5369: 508–520, 2008.

4

EuroCG’09 - Brussels, Belgium

132

Large bichromatic point sets admit empty monochromatic 4-gons∗

O. Aichholzer† T. Hackl‡ C. Huemer§ F. Hurtado¶ B. Vogtenhuber‖

Abstract

We consider a variation of a problem stated by Erdős
and Szekeres in 1935 about the existence of a number
fES(k) such that any set S of at least fES(k) points in
general position in the plane has a subset of k points
that are the vertices of a convex k-gon. In our setting
the points of S are colored, and we say that a (not nec-
essarily convex) spanned polygon is monochromatic if
all its vertices have the same color. Moreover, a poly-
gon is called empty if it does not contain any points of
S in its interior. We show that any bichromatic set of
n ≥ 5044 points in R2 in general position determines
at least one empty, monochromatic quadrilateral (and
thus linearly many).

1 Introduction

Throughout this paper all point sets in the plane are
assumed to be in general position, i.e., no three points
in the set are collinear. When a subset T of a point
set S is the vertex set of a polygon P , we say that S
contains P , that T determines P , or that P is spanned
by points in S.

Erdős and Szekeres [6] asked the following ques-
tion. “What is the smallest integer fES(k) such that
any set of fES(k) points contains at least one con-
vex k-gon?” In the mathematical history this prob-
lem is also known as the ”Happy End Problem”, see
e.g. [3, 11]. Exact values have been known for k ≤ 5
and only very recently the case k = 6 has been settled
by Szekeres and Peters [17] by an exhaustive computer
search. For k ≥ 7 upper bounds exist, but exact val-
ues are unknown. See also Erdős and Guy [5] for the
related problem on the smallest number of convex k-
gons determined by any set of n points in the plane.

∗Research was partially carried out during the visit of
Clemens Huemer and Ferran Hurtado at the Institute for Soft-
ware Technology, Graz University of Technology, Austria.

†Institute for Software Technology, University of Technol-
ogy, Graz, Austria, oaich@ist.tugraz.at

‡Institute for Software Technology, University of Technol-
ogy, Graz, Austria, thackl@ist.tugraz.at

§Departament de Matemàtica Aplicada IV, Universi-
tat Politècnica de Catalunya (UPC), Barcelona, Spain,
clemens.huemer@upc.edu

¶Departament de Matemàtica Aplicada II, Universi-
tat Politècnica de Catalunya (UPC), Barcelona, Spain,
Ferran.Hurtado@upc.edu

‖Institute for Software Technology, University of Technol-
ogy, Graz, Austria, bvogt@ist.tugraz.at

In a variation raised by Erdős the k-gons are re-
quired to be empty, i.e., to not contain any point of
the point set in its interior. For k ≤ 5 exact lower
bounds on the number of points to guarantee the ex-
istence of an empty k-gon are known: As already ob-
served by Esther Klein, every set of 5 points deter-
mines an empty convex 4-gon, and 10 points always
contain an empty convex pentagon, a fact proved by
Harborth [10]. However, Horton showed that there
exist arbitrarily large sets of points which do not con-
tain any empty heptagon [12]. Until recently the exis-
tence of empty hexagons remained open, but in 2005
Gerken [9] and independently Nicolás [15] proved that
every sufficiently large point set contains a convex
empty hexagon. Valtr [20] gives a simpler version of
Gerken’s proof, but requires more points. As for a
lower bound it is known that at least 30 points are
needed, that is, there exists a set of 29 points without
empty convex hexagons [16].

Several variations on the preceding problems when
the points in S belong to different classes – that are
usually described as colors – were introduced by Dev-
illers et al. [4]. In particular, a polygon spanned by
points in S is called monochromatic if all its vertices
have the same color, and it was proved in [4] that any
bichromatic set of n points in the plane determines at
least ⌈n

4 ⌉ − 2 monochromatic triangles with pairwise
disjoint interiors, which is tight. Later it was shown
in [1] that any bichromatic set of n points contains at
least Ω(n5/4) empty monochromatic triangles (no dis-
jointness is required), and they conjectured that any
bichromatic set of n points in R2 in general position
spans a quadratic number of empty monochromatic
triangles. For values of k larger than 3, Devillers et
al. showed that for k ≥ 5 and any n there are bichro-
matic sets of n points where no empty monochromatic
convex k-gon exists (Theorem 3.4 in [4]).

It is natural to wonder whether similar results are
possible when there are more than two colors. In [4]
(Theorem 3.3) this question has been settled by show-
ing that already for three colors there are sets not even
spanning any empty monochromatic triangle.

Hence, the interesting remaining case is the exis-
tence of empty monochromatic (convex) quadrilat-
erals in bichromatic point sets. Figure 1 shows a
set with 18 points which does not contain an empty
monochromatic quadrilateral, and larger examples
with 20 [2], 30 [7], 32 [21] and most recently 36 [13]
points have been found. However, all these examples

1

Large bichromatic point sets admit empty monochromatic 4-gons

133

Figure 1: Example without empty monochromatic 4-
gons

do contain non-convex empty monochromatic quadri-
laterals, while the one in Figure 1 does not.

Notice that every point set that admits an empty
convex heptagon will contain an empty monochro-
matic convex quadrilateral for any bicoloration, be-
cause at least four of the vertices of the heptagon will
have the same color; however, it is known that for
n ≥ 64 any bichromatic Horton set contains empty
monochromatic convex quadrilaterals. These facts led
to Conjecture 3.1 in [4], which states that for suffi-
ciently large n any bichromatic set contains at least
one empty monochromatic convex quadrilateral.

To date this conjecture has not even been settled
for quadrilaterals which are not required to be con-
vex, a weaker conjecture that arose later [8, 14], as
no progress in the original formulation had been ob-
tained. In this paper we show that this relaxed ver-
sion of the conjecture is true: if the cardinality of
the bichromatic point set S is sufficiently large, there
is always an empty (possibly non-convex) monochro-
matic quadrilateral spanned by S. To this goal, we
prove several sufficient conditions and then show that
for large point sets at least one of them must hold.

As already mentioned, throughout this paper we
assume S to be a set of n points in the plane in general
position, that is, no three points of S lie on a common
line. Also, for the sake for brevity, we will use the
term 4-gon instead of quadrilateral for the rest of this
paper. If S = R∪̇B is a two-color partition of a point
set, then we also write S = (R, B), where R is the set
of red, and B the set of blue points, respectively, with
r = |R|, b = |B|, r, b ≥ 0 and n = r + b.

With CH(S) we denote the set of points of S on
the boundary of the convex hull of S (the extreme
points of S), with h = |CH(S)| their number and
with i = n − h the number of points in the interior
of S. Similarly we define CH(R), hr = |CH(R)|, and
ir = r − hr.

2 Preliminaries on uncolored point sets

Let us start with a result on triangulations for (un-
colored) point sets which is of interest on its own.

Lemma 1 Let S be a set of n points in general po-
sition in the plane and let π be a fixed parity (even
or odd). Then there exists a triangulation T (S) of S
such that the parity of the degrees in T (S) of at least
2⌊n−1

4 ⌋ points from S is π.

Proof. Omitted. �

For odd parity the preceding result can be slightly
strengthened to a lower bound of n−1

2 . As the im-
provement is marginal and we believe that a much
better result is possible, we skip the details and for-
mulate the following problem instead:

Open problem 1 Which is the maximum value of
a constant c such that for any set S of n points in
general position there exists a triangulation T (S) in
which at least cn− o(n) points of S have odd degree?

Next we consider a fixed triangulation T (S) of S
and give lower bounds of how many triangles of T (S)
have to be “pierced” (by placing an obstacle in the
interior) so that T (S) does not contain any unpierced
(that is, empty) 4-gon. The number #odd of points of
S with odd degree in T (S) plays a central role, as for
each interior point with degree δ we need to pierce at
least

⌈
δ
2

⌉
incident triangles. Summing over all points

leads to the following lemma.

Lemma 2 If for a triangulation T (S) the number of
pierced triangles is less than n+ #odd−4h−6

6 , then there
exists an unpierced 4-gon in T (S).

Proof. Omitted. �

3 Bichromatic sets with small convex hulls

Now let S = (R, B) be a bichromatic set. We will tri-
angulate R and use the results of the previous section
to get bounds for piercing the resulting red quadri-
laterals with blue points from B. From Lemma 2 we
immediately get:

Lemma 3 Let S = (R, B) be a bichromatic point
set and T (R) a triangulation of R. With #odd(R) we
denote the number of points of R with odd edge degree

in T (R). If b < r + #odd(R)−4hr−6

6 then there exists at
least one red empty 4-gon consisting of two adjacent
triangles in T (R).

A consequence of Lemma 3 is a relation between the
number of points in R of odd degree in T (R) and the
size of the convex hull of R, namely that if #odd(R) >
4hr +6−6(r− b) then there exists at least one empty
red 4-gon in the triangulation T (R). We can now
combine this fact with the choice of an appropriate
triangulation T (R), with #odd(R) ≥ 2

⌊
r−1
4

⌋
, whose

existence has been proved in Lemma 1, and we get:

2

EuroCG’09 - Brussels, Belgium

134

Proposition 4 Let S = (R, B) be a bichromatic

point set. If hr <
⌊ r−1

4 ⌋−3

2 + 3
2 (r− b), then S contains

at least one red empty 4-gon.

Note that for this result the role of R and B can
of course be switched. Proposition 4 also shows that
the worst case occurs if R and B have the same car-
dinality. In this case, or more generally for r ≥ b, we
can simplify the bound to hr < r

8 − 2. In particular,
this proves that if the convex hull of the larger sub-
set has sub-linear size, we immediately get an empty
monochromatic 4-gon.

4 Bichromatic sets with large discrepancy

In this section we consider the case that the cardi-
nalities of the red and the blue set differ significantly.
As a first step we generalize a result of Sakai and Ur-
rutia [18] on convex empty, monochromatic 4-gons to
simple, but not necessarily convex, 4-gons.

Lemma 5 If in a bichromatic point set r ≥ 3
2b + 4

then there exists at least one empty red 4-gon in R.

Proof. The proof is based on induction over b and
follows the lines given in [18]. Details are omitted. �

Let us recall that for a point set with an even num-
ber of extreme points, a quadrangulation is a maximal
planar bipartite graph. If the size of the convex hull is
odd, we allow one triangle. The number of 4-gons in
a quadrangulation of a point set is given in the next
observation in terms of n and h, a fact that will be
used in Lemma 6.

Observation 1 A quadrangulation Q(S) on a point
set S with n points and h extreme points contains
n− ⌈

h
2

⌉ − 1 empty 4-gons.

Notice that Lemma 5 can be rephrased in the form
that b

r−4 > 2
3 is a necessary condition for S to not

contain any empty monochromatic 4-gons. In combi-
nation with Observation 1 this leads to an interesting
iterative relation between the size of a set S = (R, B)
not containing an empty monochromatic 4-gon and
the maximum discrepancy between R and B.

Lemma 6 Let k ≥ 4 be a constant, f(k) = 4
3k(2k −

1), and g(k) = k
k+2 . If for every set S′ = (R′, B′) with

|R′| = r′ ≥ f(k), |B′| = b′ the inequality

b′

r′ − 4
> g(k) (1)

is a necessary condition for S′ to not contain an empty
monochromatic 4-gon, then for every set S = (R, B)
with r ≥ f(k + 1) the inequality

b

r − 4
> g(k + 1) (2)

is a necessary condition for S to not contain an empty
monochromatic 4-gon.

S

R

B
R

i
i

Figure 2: Proof of Lemma 6: red and blue layers.

Proof. The proof is based on the cardinality of
nested red and blue convex layers as depicted in Fig-
ure 2. Details are omitted. �

We are now ready to show that for sets with suf-
ficiently large cardinality the factor of discrepancy
has to be arbitrary small in order to avoid empty
monochromatic 4-gons.

Proposition 7 For l ∈ N, l ≥ 4, a set S = (R, B)
with r ≥ 4

3 l(2l − 1) and b ≤ l
l+2 (r − 4) contains an

empty monochromatic 4-gon.

Proof. For l = 4 the statement follows directly from
Lemma 5. For l > 4 we iteratively apply Lemma 6
for k = 4 . . . l− 1, where the precondition for the first
iteration is given by Lemma 5. Proposition 7 then
follows from the result of the last step. �

5 Putting things together

As a consequence of Proposition 7 we derive a lower
bound on the number of extreme points of the red set,
which guarantees the existence of empty 4-gons.

Lemma 8 For l ∈ N, l ≥ 4 let S = (R, B) be a set

with r ≥ 4
3 (l+1)(2l+1). Then hr ≥ r 2(2l+3)

(l+2)(l+3) + 8l
l+3

implies that S contains an empty monochromatic 4-
gon.

Proof. The proof is based on Proposition 7 and on
the cardinality of nested convex layers, similar to the
proof of Lemma 6. Details are omitted. �

By combining the results of Proposition 4 and
Lemma 8 we finally obtain our main result.

Theorem 9 Every bichromatic set S = (R, B) with
n ≥ 5044 contains an empty monochromatic 4-gon.

3

Large bichromatic point sets admit empty monochromatic 4-gons

135

Proof. Without loss of generality, assume that r ≥ b.

From Proposition 4 we know that hr <
⌊ r−1

4 ⌋−3

2 +
3
2 (r − b) is a sufficient condition to obtain an empty
monochromatic 4-gon. This can be simplified to hr <
r
8 − 2. On the other hand, Lemma 8 provides hr ≥
r 2(2l+3)

(l+2)(l+3) + 8l
l+3 for l ≥ 4 and r ≥ 4

3 (l + 1)(2l + 1) as
a second sufficient condition. So if

r

8
− 2 ≥ r

2(2l + 3)
(l + 2)(l + 3)

+
8l

l + 3
(3)

holds, then Theorem 9 follows. Using the inequality
r ≥ (4/3)(l+1)(2l+1) it follows that inequality (3) is
fulfilled for l ≥ 30, and thus for any set with r ≥ 2522;
in other words, for any set with n ≥ 5044 points. �

6 Open problems

The existence of convex empty monochromatic 4-gons
in sufficiently large bichromatic point sets is still open.
It seems that the techniques used in our approach
cannot be generalized to the convex case, as convexity
invalidates several of our lemmas and intermediate
results. Another interesting open question are non-
convex empty monochromatic k-gons for k > 4.

It would also be interesting to establish a 3D version
of these results for hexahedra consisting of two tetra-
hedra sharing a face. Let us recall in this respect that
Urrutia [19] proved that in any 4-colored point set
in R3 in general position there is at least one empty
monochromatic tetrahedron (in fact, a linear number
of them).

Let us finally mention again Open Problem 1, which
asks which is the maximum constant c such that for
any point set there always exists a triangulation where
cn− o(n) points have odd degree.

Acknowledgments

We thank Wolfgang Aigner, Franz Aurenhammer, Bern-

hard Kornberger, Günter Rote, and Ludmila Scharf

for helpful discussions. Research of Oswin Aichholzer,

Thomas Hackl, and Birgit Vogtenhuber supported by

the FWF [Austrian Fonds zur Förderung der Wis-

senschaftlichen Forschung] under grant S9205-N12, NFN

Industrial Geometry. Research of Clemens Huemer and

Ferran Hurtado partially supported by projects MEC

MTM2006-01267 and DURSI 2005SGR00692.

References

[1] O. Aichholzer, R. Fabila-Monroy, D. Flores-Peñaloza,
T. Hackl, C. Huemer, J. Urrutia, Empty monochro-
matic triangles. Proc. 20th Canadian Conference on
Computational Geometry, 20:75–78, Montreal, Que-
bec, Canada, 2008.

[2] P. Brass, Empty monochromatic fourgons in two-
colored points sets. Geombinatorics, XIV(1):5–7,
2004.

[3] P. Brass, W. Moser, J. Pach, Research Problems in
Discrete Geometry, Springer, 2005.

[4] O. Devillers, F. Hurtado, G. Károlyi, C. Seara,
Chromatic variants of the Erdős-Szekeres Theorem.
Computational Geometry, Theory and Applications,
26(3):193–208, 2003.

[5] P. Erdős, R.K. Guy, Crossing number problems.
Amer. Math. Monthly, 88:52–58, 1973.

[6] P. Erdős, G. Szekeres, A combinatorial problem in
geometry. Compositio Math. 2, 463–470, 1935.

[7] E. Friedmann, 30 two-colored points with no en-
mpty monochromatic convex fourgons. Geombina-
torics, XIV,(2):53–54, 2004.

[8] F. Hurtado, Open Problem Session. European Work-
shop on Computational Geometry, Eindhoven, The
Netherlands, 2005.

[9] T. Gerken, Empty convex hexagons in planar point
sets. Discrete and Computational Geometry, 39(1-
3):239–272, 2008.

[10] H. Harborth, Konvexe Fünfecke in ebenen Punkt-
mengen. Elem. Math., 33:116–118, 1978.

[11] P. Hoffmann, The man who loved only numbers. Hy-
perion, New York, 1998.

[12] J.D. Horton, Sets with no empty convex 7-gons.
Canad. Math. Bull., 26(4):482–484, 1983.

[13] C. Huemer, C. Seara, 36 two-colored points with no
empty monochromatic convex fourgons. (Submitted)

[14] J. Pach, On simplices embracing a point (in-
vited talk). Topological & Geometric Graph Theory
(TGGT), Paris, France, 2008.

[15] C.M. Nicolás, The empty hexagon theorem. Discrete
and Computational Geometry, 38(2):389–397, 2007.

[16] M.H. Overmars, Finding sets of points without empty
convex 6-gons. Discrete and Computational Geome-
try, 29:153–158, 2003.

[17] G. Szekeres, L. Peters, Computer solution to the 17-
point Erdős-Szekeres problem. The Anziam Journal,
48(2):151–164, 2006.

[18] T.Sakai, J.Urrutia, Covering the convex quadrilater-
als of point sets. Graphs and Combinatorics, 23:343–
358, 2007.

[19] J. Urrutia, Coloraciones, tetraedralizaciones, y
tetraedros vacios en coloraciones de conjuntos de pun-
tos en R3. Proc. X Encuentros de geometria Com-
putacional, Sevilla, 95–100, 2003.

[20] P. Valtr, On empty hexagons. in: J. E. Goodman,
J. Pach, and R. Pollack, Surveys on Discrete and
Computational Geometry, Twenty Years Later, AMS,
433–441, 2008.

[21] R. Van Gulik, 32 two-colored points with no empty
monochromatic convex fourgons. Geombinatorics,
XV,(1):32–33, 2005.

4

EuroCG’09 - Brussels, Belgium

136

On Plane Geometric Spanners

Prosenjit K. Bose∗

Abstract

A geometric graph G is a graph whose vertices are points in plane and whose edges are
line segments weighted by the Euclidean distance between their endpoints. In this setting,
a t-spanner of G is a spanning subgraph G′ with the property that for every pair of vertices
x, y, the shortest path from x to y in G′ has weight at most t ≥ 1 times the shortest path
from x to y in G. The parameter t is commonly referred to as the spanning ratio, the
dilation or the stretch factor. In addition to having bounded spanning ratio, it is desireable
to build t-spanners that possess other properties, such as bounded degree, low weight, or
fault-tolerance to name a few. In this talk, we are particularly interested in planarity. We
review various results in the literature on how to build spanners that are planar.

∗School of Computer Science, Carleton University, Ottawa, Ontario, Canada jit@scs.carleton.ca

1

On Plane Geometric Spanners

137

EuroCG’09 - Brussels, Belgium

138

Lower and upper bounds on the number of empty cylinders and ellipsoids

O. Aichholzer∗ F. Aurenhammer† O. Devillers‡ T. Hackl∗ M. Teillaud‡ B. Vogtenhuber∗

Abstract

Given a set S of n points in three dimensions, we study
the maximum numbers of quadrics spanned by subsets
of points in S in several ways. Among various results
we prove that the number of empty circular cylinders is
between Ω(n3) and O(n4) while we have a tight bound
Θ(n4) for empty ellipsoids. We also take interest in pairs
of empty homothetic ellipsoids, with application to the
number of combinatorially distinct Delaunay triangula-
tions obtained by orthogonal projections of S on a two-
dimensional plane, which is Ω(n4) and O(n5).

A side result is that the convex hull in d dimensions

of a set of n points, where one half lies in a subspace of

odd dimension δ > d
2
, and the second half is the (multi-

dimensional) projection of the first half on another sub-

space of dimension δ, has complexity only O
“
n

d
2−1

”
.

1 Introduction

Counting incidences between geometric objects, and
analyzing the number of objects spanned by a finite
set of points, are topics of frequent interest in com-
putational and combinatorial geometry. Prominent
examples are counting the number of faces of many
cells in an arrangement of curves [13], determining
the number of straight lines touching a given set of
spheres [14], bounding the number of empty spheres
defined by a finite set of points (i.e., the number of
vertices of the Voronoi diagram), and counting the
number of plane graphs spanned by a planar set of
points [5].

In this paper, we provide combinatorial bounds on
the maximum number of ‘combinatorially different’
quadrics of various types in R3. Given a set S of n
points in R3, we consider quadrics having all points of
S on the same side. For ellipsoids or cylinders, inside
and outside are clearly defined, and such a quadric will
be called enclosing or empty. We also prove bounds
concerning pairs of homothetic quadrics. Our origi-
nal motivation for studying such pairs was the case
of circular cylinders, in order to count the number
of combinatorially different 2D Delaunay triangula-
tions obtainable by orthogonal projection of S. Such

∗IST, Graz University of Technology, oaich@ist.tugraz.at
†ITCS, Graz University of Technology, auren@igi.tugraz.at
‡INRIA, Sophia Antipolis — Méditerranée. www.inria.fr/

Full version is available [4]. The authors acknowledge
support of the Partenariat Hubert Curien Amadeus No
13792TD | FR01/2007 “Geometric concepts and CGAL”
http://www.inria.fr/sophia/geometrica/collaborations/Amadeus/.

projections are commonly used in 3D surface recon-
struction, e.g., for recovering terrains.

Naturally, our bounds depend on the number of de-
grees of freedom of the considered object class, which
is the dimension of a manifold describing the class in
any representation, or, in other words, the minimum
number of independent real parameters needed to (lo-
cally) specify an object of the class. Before describing
our results in more detail, let us briefly recall some
facts about quadrics.

Types of quadrics

A general quadric is defined by its equation that con-
tains 9 coefficients plus a constant factor, that is, a
quadric has 9 degrees of freedom. Given a subset of
k points from S and a family of quadrics having d
degrees of freedom, there exists a family of quadrics
with d−k degrees of freedom that are passing through
these points. Consequently, a quadric (and also an
ellipsoid) can be defined by constraining it to pass
through 9 given points. We will call two quadrics
combinatorially different if they have different sub-
sets of S on their boundaries. Combinatorially differ-
ent quadrics spanned by S are the objects of interest
in our complexity bounds.

Circular cylinders, which have only 5 degrees of
freedom, can be locally specified by 5 points. (In
fact, up to six cylinders through these points may
exist [8]). It turns out that finding bounds for empty
circular cylinders is more involved than for general
quadrics. We also study the somehow intermediate
case of general (elliptic) cylinders, which have 7 de-
grees of freedom. A complete classification of quadrics
can be found in Dupont et al. [10]. Observe that two
quadrics are homothetic if their equations share the
same quadratic part. Thus, a second quadric homo-
thetic to a given one has 4 degrees of freedom (3 for
translation and one for the homothety factor). For
the particular case of cylinders, translations along the
cylinder axis are irrelevant, and thus the second cylin-
der has 3 degrees of freedom. For circular cylinders,
being homothetic is the same as being parallel. From
this discussion we deduce that the
- number of circular cylinders (not necessarily empty)
defined by a set of n points is Θ(n5),
- number of pairs of parallel circ. cylinders is Θ(n8),
- number of general cylinders is Θ(n7),
- number of pairs of homothetic cylinders is Θ(n10),

1

Lower and upper bounds on the number of empty cylinders and ellipsoids

139

- number of quadrics is Θ(n9), and
- number of pairs of homothetic quadrics is Θ(n13).

Results and related work

This paper provides improved asymptotic upper and
lower bounds on the number of combinatorially dif-
ferent quadrics defined by a set of n points in R3.
Upper and lower bounds match in the case of general
quadrics, Θ(n4), and pairs of them, Θ(n6). Surpris-
ingly, both bounds are also valid for general cylinders.
Thus, despite the fact that general cylinders have 2
degrees of freedom less than quadrics, the intrinsic
complexity does not decrease. Gaps remain in our re-
sults for circular cylinders, Ω(n3) and O(n4), and for
pairs of parallel circular cylinders, Ω(n4) and O(n5).

The last mentioned result carries over to the num-
ber of combinatorially different 2D Delaunay trian-
gulations obtainable by projecting a given point set
in R3. To our knowledge, no nontrivial bounds have
been known on this problem, which can be viewed as
a three-dimensional generalization of the problem of
finding the different orderings of the projection of a
set of points. The latter problem is well known as
finding circular sequences [11] and has a complexity
of Θ(n2).

Lower bounds for maximizing the number of certain
types of quadrics are derived from a generic construc-
tion and its variants. Upper bounds are obtained by
applying tailored linearization schemes, introducing
a space of quadrics in 9 dimensions, and a space of
homothetic quadrics in 13 dimensions (that can be
reduced to dimension 12 for cylinders). These spaces
are similar to well-known notions such as the spaces
of circles, spheres, or conics [11].

Our second linearization scheme becomes powerful
in combination with a new theorem (of separate in-
terest) that reduces the complexity of the convex hull
of a set of n points in d dimensions for certain spe-
cial configurations. Namely, if n

2 of the points lie in
a subspace of dimension δ > d

2 , and the second half is
the (multi-dimensional) projection of the first half on
another subspace of dimension δ, then the complexity
is O

(
nb δ

2c+b d−δ
2 c

)
. This reduces the general upper

bound of O
(
nb d

2 c
)

to O
(
n

d
2−1

)
if d is even and δ

is odd. The particular case δ = d − 1 was already
proven [7].

Related work mostly concerns circular cylinders, a
kind of quadric useful, for example, in metrology [2, 9]
for quality measure of mechanical devices, or in 3D
modeling in order to fit special surfaces in a given data
set (e.g., trying to model pipes in a factory). Agarwal
et al. [3] compute the set of empty unit radius cylin-
ders in O(n3+ε) time and show an Ω(n2) complexity
bound. Devillers [7] gives O(n4) and Ω(n3) bounds

for the number of coaxial circular cylinders defined
by 6 points with all points between the two cylinders.
There is special interest in smallest enclosing cylin-
ders. Agarwal et al. [3] propose a construction algo-
rithm with near cubic time complexity. Chan [6] pro-
poses a faster approximation algorithm, and Schömer
et al. [12] give an algorithm with bit-complexity anal-
ysis.

2 Upper bounds

2.1 Empty and enclosing ellipsoids or cylinders

Lemma 1 The number of combinatorially different
empty (or enclosing) ellipsoids or cylinders defined
by a set S of n points in R3 is O(n4).

Proof. We use a classical linearization scheme similar
to the one used in the next section, �

2.2 Pairs of empty homothetic ellipsoids

Lemma 2 The number of combinatorially different
pairs of empty homothetic ellipsoids or cylinders de-
fined by a set S of n points in R3 is O(n6).

Proof. The linearization scheme here is similar to the
one used in [1, 7]. To a given point p = (xp, yp, zp) ∈
R3 we associate not one but two points in R13:

p? = (x2
p, y2

p, z2
p, xpyp, xpzp, ypzp, xp, yp, zp, 0, 0, 0, 0) ∈ R13

p† = (x2
p, y2

p, z2
p, xpyp, xpzp, ypzp, 0, 0, 0, xp, yp, zp, 1) ∈ R13.

Given two homothetic quadrics Qφ and Q′
φ with

equations

φ1x
2+φ2y

2+φ3z
2+φ4xy+φ5xz+φ6yz+φ7x+φ8y+φ9z = φ0

φ1x
2+φ2y

2+φ3z
2+φ4xy+φ5xz+φ6yz+φ′

7x+φ′
8y+φ′

9z = φ′
0,

we define a hyperplane

Hφ,φ′ : φ1χ1+φ2χ2+φ3χ3+φ4χ4+φ5χ5+φ6χ6+φ7χ7+φ8χ8

+φ9χ9 + φ′
7χ10 + φ′

8χ11 + φ′
9χ12 + (φ0 − φ′

0)χ13 = φ0

in dimension 13 (where χi are the coordinates in R13).
Now we have

p ∈ Qφ ⇐⇒ p? ∈ Hφ,φ′

and p ∈ Qφ′ ⇐⇒ p† ∈ Hφ,φ′ .

The following two statements are equiva-
lent: (1) An ellipsoid Qφ passes through points
p1, p2, . . . , pj ∈ S, and a ellipsoid Qφ′ homothetic to
Qφ passes through pj+1, pj+2, . . . , pk ∈ S, and both
Qφ and Qφ′ are empty of other points of S. (2) The
corresponding hyperplane Hφ,φ′ passes through
p?
1, p

?
2, . . . , p

?
j , p

†
j+1, . . . , p

†
k ∈ S?† = {p?, p† | p ∈ S}

and all other points of S?† are above Hφ,φ′ .
Thus pairs of empty ellipsoids correspond to sup-

porting hyperplanes of the convex hull of S?†, which
has a complexity of O

(
nb d

2 c
)
, where d = 13 is the di-

mension of the underlying space, that is, a complexity
of O(n6). �

2

EuroCG’09 - Brussels, Belgium

140

2.3 Pairs of empty homothetic cylinders

Lemma 3 The number of combinatorially different
pairs of empty homothetic cylinders defined by a set
S of n points in R3 is O(n5).

Proof. Assume, without loss of generality, that there
is no horizontal cylinder. The second cylinder can
be defined from the first one by a homothety and a
horizontal translation. It yields to two homothetic
cylinders Qφ and Q′

φ whose equations verify φ9 = φ′
9

which allows to reduce the dimension of the lineariza-
tion space by one, going down to R12.

Now we are dealing with the convex hulls of points
p? belonging to a 9 dimensional space and points p†

which are the projection of the points p? on another
9 dimensional space parallel to a 3 dimensional vec-
tor space. Thus we can apply our general projection
theorem (Theorem 4 in the following section) and get
an upper bound of O

(
nb 9

2c+b 3
2c

)
= O(n5). �

3 General projection theorem

For special configurations of points in d dimensions,
the complexity of the convex hull cannot reach the
worst case of Θ

(
nb d

2 c
)
. For example, the projec-

tion theorem in [7] proves that for a point set V of
size 2n, constructed by taking n points in a hyper-
plane and their parallel projections on another hy-
perplane, the complexity of its convex hull CH(V)
reduces to O

(
nb d−1

2 c
)
. This is of interest if d is even.

A multi-dimensional projection is defined by a vec-
tor space ~V of dimension d − δ. Given a point p, its
projection p′ on Π′ is the intersection of Π′ and the
affine subspace parallel to ~V passing through p; this
projection is a unique point if ~V is supplementary to
the direction of Π′ (no ~v ∈ ~V is parallel to Π′).

We generalize the projection theorem to the case
where the points in Rd live in two δ-dimensional affine
subspaces, with d

2 < δ ≤ d − 1. If d is even and δ is
odd, we save a linear factor like in the original version
of the projection theorem. More precisely, we have:

Theorem 4 (General projection theorem)
For any constant dimension d, let Π, Π′ be two
δ-dimensional affine subspaces in Rd, with δ > d

2 ,

and let ~V be a (d − δ)-dimensional vector space
of Rd supplementary to the directions of both Π
and Π′. Let U ⊂ Π be a set of n points, such that
CH(U) ∩ Π′ = ∅, and let U ′ ⊂ Π′ be the projection

parallel to ~V of U on Π′. Let V = U ∪ U ′. The
convex hull CH(V) of V has asymptotic complexity

O
(
nb δ

2c+b d−δ
2 c

)
. If d is even and δ is odd, the

complexity becomes O
(
n

d
2−1

)
.

Proof. (Sketch) (see [4] for details). A full dimen-
sional face of CH(V) combines a face of CH(U) with
a face of CH(U ′). The proof then goes in two steps:
first a facet of CH(V) contains a (δ − 1)-dimensional
face that projects on a facet of CH(U) (and there
is a constant number of such faces for each facet of
CH(U)); second the number of facets of CH(V) con-
taining a given (δ − 1)-dimensional face has the com-
plexity of a convex hull in dimension d−δ. Combining
these two points gives the claimed complexity. �

4 Lower bounds

We now turn our attention to lower bound construc-
tions. We exhibit families of points lying on a few
straight lines that allow for a large number of empty
(or enclosing) quadrics of several types. By slightly
perturbing these sets we can achieve general position
without altering the number of objects counted.

4.1 Empty circular cylinders

Lemma 5 There exists a set S of n points in R3 such
that the number of combinatorially different empty
circular cylinders defined by S is Ω(n3).

Proof. Consider the points p0 = (1, 0, 0) and q0 =
(0, 1, 0). Then the ellipses in the plane z = 0 and
tangent to the x axis at p0 and to the y axis at q0

form a continuous family that can be parameterized
by λ ∈ [1,∞[, the ratio of the long axis to the small
axis (Figure 1a). Denote with Eλ one of these ellipses
and consider the ellipses E1+ k

n
for 0 ≤ k < N for

N = n
3 .

Through each of these ellipses, we can fit one circu-
lar cylinder such that the vector of the direction of the
cylinder axis is positive in all three coordinates (there
is another one with only x and y values negative).

Now, since the slopes of those cylinders are dif-
ferent, we get disjoint ellipses if we consider a cross
section of the cylinders by a plane z = h for large
enough h. Thus we can add points rk on the line
x − y = z − h = 0 that separate these ellipses as in-
dicated in Figure 1b. By slightly tilting the cylinders
until for every k the cylinder corresponding to E1+ k

n

touches rk, we create a linear size family of cylinders
through p0, q0 and rk which are tangent to the x and
y axes.

Considering points pi = (1 + iε
n , 0, 0) and qj =

(0, 1+ jε
n , 0), 0 ≤ i, j < N , for small enough ε performs

a small perturbation on the ellipses and so does nei-
ther change the existence of the cylinders nor the fact
that they are empty, since all cylinders are tangent to
the x and y axes which contain the pi and qj points
(Figure 1cd). This construction produces empty cir-
cular cylinders through pi, qj , rk for all i, j, k. �

3

Lower and upper bounds on the number of empty cylinders and ellipsoids

141

p0

q0

r1

r0

rN−1

pN−1

qN−1

p0

q0

r0

r1

rN−1plane z = 0

plane z = h

(a)

(b)

(c)

(d)

Figure 1: (ab) Cross sections of cylinders through p0 and
q0 and tangent to x and y axes. (cd) Cross sections of
cylinders through pi and qj and tangent to x and y axes.

4.2 Empty pairs of parallel circular cylinders

Lemma 6 There exists a set S of n points in R3 such
that the number of combinatorially different pairs
of empty parallel circular cylinders defined by S is
Ω(n4).

Proof. Let now N = n
4 . We add a family of points

to the construction in the proof of Lemma 5, namely
sl = (L + lε

n , 0, 0), 0 ≤ l < N , and a single point u =
(L−1, 1, 0), for L large enough. For each of the Ω(n3)
cylinders through pi, qj , rk for all 0 ≤ i, j, k < N we
can place a disjoint parallel circular cylinder through
u and any of the points sl and tangent to the x axis,
avoiding all the points pi, qj , rk. �

4.3 Empty general cylinders (and pairs of them)

Lemma 7 There exists a set S of n points in R3 such
that the number of combinatorially different empty
general cylinders defined by S is Ω(n4). Moreover,
the number of combinatorially different pairs of empty
homothetic general cylinders defined by S is Ω(n5).

Proof. Omitted [4] �

4.4 Empty ellipsoids (and pairs of them)

Lemma 8 There exists a set S of n points in R3 such
that the number of combinatorially different empty el-
lipsoids defined by S is Ω(n4). Moreover, the number
of combinatorially different pairs of empty homothetic
ellipsoids defined by S is Ω(n6).

Proof. Omitted [4] �

4.5 Enclosing ellipsoids or cylinders

Lemma 9 There exists a set S of n points in R3 such
that the number of combinatorially different enclos-
ing ellipsoids defined by S is Ω(n4), and a set such
that the number of combinatorially different enclos-
ing cylinders defined by S is Ω(n3).

Proof. Omitted [4] �

5 2D Delaunay triangulations from projection

Corollary 10 Given a set of n points in R3, the num-
ber of combinatorially different 2D Delaunay trian-
gulations obtainable by projecting these points on a
plane is O(n5). Moreover, there exist sets of n points
in R3 such that this number is Ω(n4).

Proof. (Sketch) If a direction of projection is rep-
resented by a point on S2, there exists a map on S2

whose cells contain directions, giving the same Delau-
nay triangulation. Vertices of this map correspond to
pairs of parallel empty circular cylinders. �

References

[1] Agarwal, Aronov, Koltun, & Sharir. Lines avoiding unit
balls in three dimensions. DCG, 34:231–250, 2005.

[2] Agarwal, Aronov, & Sharir. Line traversals of balls and
smallest enclosing cylinders in three dimensions. In SODA,
483–492, 1997.

[3] Agarwal, Aronov, & Sharir. Line traversals of balls and
smallest enclosing cylinders in three dimensions. DCG,
21:373–388, 1999.

[4] Aichholzer, Aurenhammer, Devillers, Hackl, Teillaud, &
Vogtenhuber. Counting quadrics and Delaunay triangula-
tions and a new convex hull theorem. Report 6748, INRIA,
2008. http://hal.inria.fr/inria-00343651

[5] Aichholzer, Hackl, Huemer, Hurtado, Krasser, & Vogten-
huber. On the number of plane geometric graphs. Graphs
and Combinatorics, 23:67–84, 2007.

[6] Chan. Approximating the diameter, width, smallest en-
closing cylinder, and minimum-width annulus. In SoCG,
300–309, 2000.

[7] Devillers. The number of cylindrical shells. DCG, 30:453–
458, 2003.

[8] Devillers, Mourrain, Preparata, & Trebuchet. Circular
cylinders by four or five points in space. DCG, 29:83–104,
2003.

[9] Devillers & Preparata. Evaluating the cylindricity of a
nominally cylindrical point set. In SODA, 518–527, 2000.

[10] Dupont, Lazard, Lazard, & Petitjean. Near-optimal pa-
rameterization of the intersection of quadrics: I. The
generic algorithm. JoSC, 168–191, 2008.

[11] Edelsbrunner. Algorithms in Combinatorial Geometry,
Springer, 1987.

[12] Schömer, Sellen, Teichmann, & Yap. Smallest enclosing
cylinders. Algorithmica, 27(2):170–186, 2000.

[13] Sharir & Agarwal. Davenport-Schinzel Sequences and
Their Geometric Applications. Cambridge University
Press, 1995.

[14] Sottile & Theobald. Lines tangent to 2n− 2 spheres in
Rn. Trans. Amer. Math. Soc., 354:4815–4829, 2002.

4

EuroCG’09 - Brussels, Belgium

142

Efficient Enumeration of All Pseudoline Arrangements

Katsuhisa Yamanaka∗ Shin-ichi Nakano† Yasuko Matsui‡ Ryuhei Uehara§ Kento Nakada¶

Abstract

In this paper we give an algorithm to enumerate all
arrangements of n pseudolines. After O(n2) time pre-
processing, our algorithm enumerates each arrange-
ment in O(1) time for each and uses O(n2) space.

1 Introduction

Arrangements of lines and pseudolines are one of im-
portant and appealing objects in the area of geometry
and combinatorics.

Felsner [2] worked on the number of arrangements
of pseudolines and showed that the number of arange-
ments of n pseudolines is bounded by 20.6974n2

. Ar-
rangements of pseudolines are strongly related to ori-
ented matroids, and there is a bijection between ar-
rangements and oriented matroids of rank 3. Sev-
eral results on enumeration of oriented matroids are
known [3, 4].

In this paper we give an efficient algorithm to enu-
merate all arrangements of n pseudolines.

In [8, 9] we have designed an algorithm to enumer-
ate every “ladder lottery,” which is a network of swaps
as depicted in Figure 1(c), for a given permutation.
For the fixed permutation π = (n, n − 1, . . . , 1) we
can observe that each ladder lottery for π can be re-
garded as an arrangement of n pseudolines. See Fig-
ure 1(a) and (c). In this paper by simplifying the
algorithm in [8, 9] to only work for the fixed permu-
tation π = (n, n − 1, . . . , 1) we design a simple but
efficient algorithm to enumerate all arrangements of
n pseudolines. After O(n2) time preprocessing, our
algorithm computes each arrangement in O(1) time
for each.

The idea of our enumeration algorithm is as follows.
Let Sn be the set of all combinatorial stuctures of ar-
rangements of n pseudolines. We first define a tree
structure Tn, called the family tree, among Sn, (see
Figure 2) in which each vertex of Tn corresponds to a

∗Graduate School of Information Systems, The University
of Electro-Communications, yamanaka@is.uec.ac.jp

†Graduate School of Computer Science, Gunma University,
nakano@cs.gunma-u.ac.jp

‡Department of Mathematical Sciences, Tokai University,
yasuko@ss.u-tokai.ac.jp

§School of Information Science, Japan Advanced Institute
of Science and Technology, uehara@jaist.ac.jp

¶Research Institute for Mathematical Sciences, Kyoto Uni-
versity, Partially supported by GCOE, Kyoto University,
nakada@kurims.kyoto-u.ac.jp

1

2

3

4

5 4

5

1

4 2 1

5 2
4 2

5 3

3 1

3 2

43

51
4 1

5 4

1

2

2

5

1

3

3

5

2

4

1

5

3

4

2

3

1

2

3

4

5

1 2 3 4 5

12345
(a) (b) (c)

4

5

1

4

1

2

2

5

1

3

3

5

2

4

1

5

3

4 2 3

1

2

3

4

5 1

2

3

4

5

Figure 1: (a) An arrangement of 5 pseudolines, (b)
its wiring diagram and (b) the corresponding optimal
ladder lottery.

combinatorial structure of an arrangement in Sn and
each edge of Tn corresponds to a relation between two
combinatorial structures of arrangements which can
be transformed to the other by one local swap opera-
tion, as shown in Figure 3. Then we design an efficient
algorithm to generate all child vertices of a given ver-
tex in Tn. Applying the algorithm recursively from
the root of Tn, we can generate all vertices in Tn, and
also corresponding all combinatorial structures of ar-
rangements in Sn. Based on such a tree structure but
with some other ideas a lot of efficient enumeration
algorithms are designed [1, 6].

2 Preliminary

A pseudoline is an x-monotone curve in the Euclidean
plane. An arrangement of pseudolines is a set of pseu-
dolines in which every pair intersects exactly once.
See Figure 1(a). An arrangement is simple if no three
pseudolines share a common point. Throughout this
paper, the term arrangement always denotes a simple
arrangement of pseudolines.

A wiring diagram, introduced in [5], of an arrange-
ment of n pseudolines is a network with n lines and(
n
2

)
intersections. See Figure 1(b). The left ends cor-

respond to the reverse permutation (n, n−1, . . . , 1) in
top to bottom order. The right ends correspond to the
identical permutation (1, 2, . . . , n) in top to bottom
order. Each line i starts at the i-th left end from the
bottom, then goes right, however at every intersec-
tion the line goes up or down to cross other line, then
finally line i reaches the i-th right end from the top.
Each such path corresponds to a pseudoline. Note
that each path has exactly n− 1 intersections.

The combinatorial structure of each pseudoline ar-
rangement can be modeled as a wiring diagram, and
each wiring diagram models the combinatorial struc-
ture of a set of pseudolines arrangements. Note that
applying some perturbation to a pseudoline arrange-

1

Efficient Enumeration of All Pseudoline Arrangements

143

Figure 2: The family tree T5.

swap

swap

upper

lower
1

2

3

4

1
2

2
4

1
3

3
4

2
3

1
4

1

2

3

4

(a)
1

2

3

4

1
2

2
4

1
3

1
4

2
3

3
4

1

2

3

4

(b)

cu

cl

Figure 3: A local swap operation.

ment still results in the same corresponding wiring
diagram. We say two pseudoline arrangements are
isomorphic if there is a bijection between their faces of
corresponding wiring diagrams preserving their neigh-
bor relation. In this paper we enumerate all combina-
torial structures of pseudoline arrangements by enu-
merating all distinct wiring diagrams.

A local swap operation is a local modification of
a wiring diagram, as shown in Figure 3. Note that
the dashed circle contains exactly three intersections.
Also note that applying this modification to a wiring
diagram of a pseudline arrangement results in other
wiring diagram of other pseudoline arrangement, since
only the “location” of the three intersections has
changed. A local swap operation (a) to (b) in Fig-
ure 3 is called an upper swap operation to intersection
cu. Similarly, a local swap operation (b) to (a) in Fig-
ure 3 is called a lower swap operation to intersection
cl.

3 The Family Tree

In this section we design a tree structure Tn among
wiring diagrams. See Figure 2.

Let Sn be the set of all wiring diagrams correspond-
ing to the set of all combinatorial structures of ar-
rangements of n pseudolines, and A = An be an ar-
rangement of n pseudolines. The line in the wiring
diagram starting at the i-th left end from the bottom
is called line i. The line n starts the uppermost left
end, then crosses each of other lines exactly once, fi-
nally reaches the lowermost right end. Thus the line n
contains exactly n − 1 “downward” intersection, and
line n is y-monotone in the wiring diagram. Note that
this property does not hold for other line i ̸= n. See
Figure 1(b).

The pseudoline of n partitions An into the left part
AL

n and the right part AR
n . Removing the pseudoline

of n from An results in an arrangement An−1 of the
remaining n − 1 pseudolines. We say the wiring dia-
gram of An is n-clean if AL

n has no intersection. If the
wiring diagram of An is n-clean then the line n− 1 is
also y-monotone in the wiring diagram of An−1, and
we can define An−2 similarly, and we say the wiring
diagram of An−1 is (n−1)-clean if AL

n−1 has no inter-
section. We repeat this process until some non-clean
wiring diagram appears or the arrangement becomes

2

EuroCG’09 - Brussels, Belgium

144

k

k

c

k-1

k-1

Figure 4: An active region.

empty. If the wiring diagram of Ak is k-clean for each
k = n, n − 1, . . . , 1, then the wiring diagram of A is
called the root, denoted by R. See the rightmost di-
agram in Figure 5. Otherwise, there exists some k
such that the wiring diagram of Ai is i-clean for each
i = n, n− 1, . . . , k, and the wiring diagram of Ak−1 is
not (k− 1)-clean. We say the clean level of the wiring
diagram of A is k. Especially if AL

n has an intersec-
tion, then the wiring diagram of A has the clean level
n+1, and the root R has the clean level 1. Note that
if the clean level is k then the lines n, n−1, . . . , k form
so called “brick structure” in the wiring diagram, in
which each line i ≥ k − 1 first goes up n − i times,
crossing the lines n, n−1, . . . , i+1, in this order, then
pass through an uppermost horizontal segment, then
go down i − 1 times. Note that “the region” below
line i ≥ k contains no intersection of two lines both
less than k. Also the region above the line k and be-
low the line k− 1 contains at least one intersection of
two lines both less than k. See Figure 4. The region
is called the active region of the wiring diagram of A.
Especially, we define the active region of R is ϕ for
convenience (in the proof of Lemma 2).

Now we assign a wiring diagram in Sn for each
wiring diagram W in Sn \ {R} as follows. Assume
that W has the clean level k. Thus the active region
of W has at least one intersection. We say an inter-
section c in the active region is visible from line k− 1
if the two lines, say i and j, crossing at c, both next
cross to line k − 1. Among the visible intersections
from line k − 1, the lowermost intersection is called
the active intersection of W . In Figure 4, intersection
c is the active intersection. Applying an upper swap
operation to the active intersection of W ∈ Sn \ {R}
results in other wiring diagram, denoted by P (W), in
Sn. We say P (W) is the parent of W , and W is a
child of P (W). Note that the parent of W is unique,
while P (W) may have many children. Also note that
the clean level of P (W) is smaller or equal to W , and
P (W) has less intersections in the active region of W .

We have the following lemma.

Lemma 1 For any W ∈ Sn \{R}, P (W) ∈ Sn holds.

Given a wiring diagram W in Sn \ {R},
by repeatedly finding the parent of the derived
wiring diagram, we can have the unique sequence
W,P (W), P (P (W)), . . . of wiring diagrams in Sn,

W P(W) P(P(W)) R=P(P(P(W)))
1

2

3

4 1

2

3

41

2

3

4 1

2

3

41

2

3

4 1

2

3

41

2

3

4 1

2

3

4

clean level = 5 clean level = 5 clean level = 4 clean level = 1

Figure 5: The sequence of a wiring diagram W .

which eventually ends up with the root R in Sn. See
Figure 5. The active intersections are depicted by
thick lines.

We have the following lemma.

Lemma 2 The sequence W,P (W), P (P (W)), . . . of
W ∈ Sn \ {R} ends with R ∈ Sn.

Proof. For each W ∈ Sn we define the clean poten-
tial C(W) = (s, t), where s is the clean level of W
and t is the number of intersections in the active re-
gion of W . For W1,W2 ∈ Sn with C(W1) = (s1, t1)
and C(W2) = (s2, t2), we say W1 is cleaner than W2

if (1) s1 < s2 or (2) s1 = s2 and t1 < t2. For any
W ∈ Sπ we can observe P (W) is cleaner than W .
Now R is the cleanest among Sn since C(R) = (1, 0).
Thus for any W ∈ Sn the sequence of clean poten-
tials C(W), C(P (W)), C(P (P (W))), . . . always ends
at C(R). ¤

By merging all these sequences we can have the fam-
ily tree of Sn, denoted by Tn, in which the root of Tn

corresponds to R, the vertices of Tn correspond to
the wiring diagrams in Sn and each edge corresponds
to a relation between a wiring diagram in Sn and its
parent. See Figure 2.

4 Enumerating

In this section we give an efficient algorithm to enu-
merate all wiring diagrams in Sn.

If we have an algorithm to enumerate all children of
a given wiring diagram in Sn, then by recursively ap-
plying the algorithm starting at the root R of Sn, we
can enumerate all wiring diagrams in Sn, and all cor-
responding combinatorial structures of arrangements
of n pseudolines. Now we design such an algorithm.

We need some definitions. Let W ̸= R be a wiring
diagram in Sn. Assume W has the clean level k. So
each intersection below line i ≥ k contains no inter-
section of two lines both less than k, but in the active
region (see Figure 4) there is at least one intersec-
tion of two lines, say x and y, with x, y < k − 1.
Each line i ≥ k − 1 goes up n − i times, “turns” at
the top, then goes down i − 1 times. For each line
i = n − 1, n − 2, . . . , k − 1, if c is the first intersec-
tion to go down after intersections to go up, then c is
called the turn intersection of line i. Note that line n
contains only intersections to go down, so has no turn
intersection. Also note that the turn intersection is
defined only for line i = n − 1, n − 2, . . . , k − 1 since
otherwise it may have many “turns.”

3

Efficient Enumeration of All Pseudoline Arrangements

145

i-1

i

i+1

i-1

i

i+1 i-1

i

i+1

i-1

i

i+1

c

(a) In W

c

(b) In W[c]

Figure 6: Illustration for Type 1.

Lemma 3 Let W be a wiring diagram with the clean
level k. Every turn intersection of line i = n− 1, n−
2, . . . , k can be lower swapped, however any other in-
tersection on line i = n− 1, n− 2, . . . , k cannot.

Proof. An intersection cl can be lower swapped only
if the dashed circle in Figure 3(b) contains exactly
three intersections. Because of the brick structure,
other lower swaps are interfered by a fourth intersec-
tion. ¤

Let W [c] be the wiring diagram derived from W by
applying a lower swap operation to an intersection c.
Every child of W is W [c] for some c, but not all W [c]
are children of W . W [c] is a child of W only if c is
the active intersection of W [c]. Now we classify each
W [c] as a child of W or not as follows. Remember the
clean level of W is k. Let U(i) be the region above
line i, and L(i) be the region below line i.

Type 1: c is a turn intersection.
Assume the local structure of W is as shown in

Figure 6(a) and c is the turn intersection of line i. If
n−1 ≥ i ≥ k then c can be lower swapped by Lemma
3, and the clean level of W [c] is i+2 since W [c] is not
(i + 1)-clear. Thus c is the only intersection in the
active region of W [c], so c is the active intersection of
W [c]. Thus W [c] is a child of W . If i = k − 1, W [c]
is a child of W only when c can be lower swapped.

Type 2: c is not a turn intersection.
We need to consider only intersections which can

be lower swapped. Such intersections exist only in
U(k). If c is “rightward” visible from neither line k
nor k−1, then c is not the active intersection in W [c],
thus W [c] is not a child of W . So assume otherwise.

If the lower swap operation moves c to L(k), cross-
ing the line k, then the clean level of W [c] is k+1 and
c is the only intersection in the new active region, so
c is the active intersection of W [c]. Thus W [c] is a
child of W .

If the lower swap operation moves c to L(k − 1),
crossing the line k − 1, then the clean level of W [c]
remains k, and c is appended to the active region.
W [c] is a child of W if c is the active intersection of
W [c]. Otherwise, W [c] is not a child of W .

By maintaining (i) the clean level k (the clean level
of W [c] is always larger than or equal to the clean level
of W) and (ii) the list of rightward visible intersections
from line k or k− 1, (those are candidate to be lower
swapped, crossing the line k or k − 1), and (iii) the

list of the turn intersections, we can enumerate all
children of W in O(1) time for each on average.

Lemma 4 All children of W can be enumerated in
O(1) time for each on average.

The root R in Sn can be generated in O(n2) time
because of its complete brick structure.

Theorem 5 After generating and outputting the
root R in Sn in O(n2) time, our algorithm enumer-
ates all combinatorial structures of arrangements of
n pseudolines in O(1) time for each on average. The
algorithm uses O(n2) working space.

By the theorem above, our algorithm generates
each wiring diagram in Sn in O(1) time “on average.”
Using the technique of “prepostordering” [6], one can
improve the running time to O(1) time for each in
worst case. See [6] for further details of this method:
in [6] the method was not explicitly named, and the
name “prepostorder” is given by Knuth [7].

Theorem 6 After O(n2) time preprocessing, we can
enumerate all combinatorial structures of arrange-
ments of n pseudolines in O(1) time for each.

References

[1] D. Avis and K. Fukuda. Reverse search for enumera-
tion. Discrete Appl. Math., 65(1-3):21–46, 1996.

[2] S. Felsner. On the number of arrangements of pseudo-
lines. Proc. The 12th annual Symposium on Compu-
tational geometry, (SCG 1996), 33–37, 1996.

[3] J. Ferté, V. Pilaud, and M. Pocchiola. On the num-
ber of simple arrangements of five double pseudolines.
In Proc. Fall Workshop on Computational Geometry,
(FWCG 2008), 45–46, 2008.

[4] L. Finschi and K. Fukuda. Generation of oriented ma-
troids – a graph theoretical approach. Discrete Com-
put. Geom., 27:117–136, 2002.

[5] J.E. Goodman. Proof of a conjecture of burr,
grünbaum and sloane. Discrete Math., 32:27–35, 1980.

[6] S. Nakano and T. Uno. Constant time generation of
trees with specified diameter. Proc. the 30th Work-
shop on Graph-Theoretic Concepts in Computer Sci-
ence, (WG 2004), LNCS 3353:33–45, 2004.

[7] S. Nakano and T. Uno. Personal communication. 2004.

[8] K. Yamanaka, S. Nakano, Y. Matsui, R. Uehara, and
K. Nakada. Efficient enumeration of all ladder lotter-
ies. In Proc. The 20th Workshop on Topological Graph
Theory, (TGT20), 150–151, 2008.

[9] K. Yamanaka, S. Nakano, Y. Matsui, R. Uehara,
and K. Nakada. Efficient enumeration of all ladder
lotteries. Technical Report UEC-IS-09-01, 2009.
http://home.hol.is.uec.ac.jp/yamanaka/Tech/UEC-
IS-09-01.pdf, submitted to a journal.

4

EuroCG’09 - Brussels, Belgium

146

On the Number of Crossing-Free Partitions in the Plane

Andreas Razen∗ Emo Welzl∗

Abstract

We show that convex position of a planar set of n
points in general position minimizes the number of
crossing-free partitions into 1, 2, 3, and n− 3, n− 2,
n−1, n partition classes. A partition of a point set in
the plane is called crossing-free, if the convex hulls of
the individual parts do not intersect. In this context
we also mention a property of point sets in convex
position that does not even closely hold in general.

1 Introduction

Let P be a set of n points in the plane. In the follow-
ing we always assume that P is in general position,
i.e. no three points are collinear. A partition of P
is called crossing-free if the convex hulls of the in-
dividual parts do not intersect. Note that one may
uniquely identify such a crossing-free partition with
a plane straight-line embedded graph defined on the
vertex set P whose edges are the segments constitut-
ing the boundaries of the convex hulls.

We denote by cfp(P) the number of crossing-free
partitions of P , and accordingly write cfpk(P) for the
number of crossing-free partitions of P into k classes,
1 ≤ k ≤ n. Let Γn denote a set of n points in convex
position, i.e. Γn is the vertex set of a convex n-gon.

It is well-known that for any n ∈ N

cfp(Γn) = Cn =
1

n + 1

(
2n

n

)
≈ 4n,

the n-th Catalan number. In this paper we show that
Γn minimizes cfpk(P) for certain values of k among
point sets P with n = |P |, while we conjecture that
to be true for all k, in particular cfp(P) ≥ cfp(Γn).
Kreweras [3] calculated

cfpk(Γn) =
(n− 1)! n!

(k − 1)! k! · (n− k)! (n− k + 1)!
. (1)

Note that this term is symmetric in the sense that

cfpk(Γn) = cfpn−k+1(Γn),

for all 1 ≤ k ≤ n. We will see that this is not neces-
sarily the case if the points are not in convex position.
More precisely we mention a set P of n points with

cfp3(P)
cfpn−2(P)

= Θ(n2).

∗Institute of Theoretical Computer Science, ETH Zurich.
Authors supported by SNF project number 200021-116741.
{razen, emo}@inf.ethz.ch

Garćıa et al. [2] proved that Γn minimizes the num-
ber of crossing-free perfect matchings and spanning
trees among all sets of n points in general position.
Aichholzer et al. [1] extended these results by show-
ing that similar statements also hold for several other
graph classes like spanning paths, (pointed) pseudo-
triangulations, forests, connected graphs, or all plane
graphs. However, it is well-known that triangulations
are a prominent counter-example to this pattern. It
is open whether Γn minimizes the number of crossing-
free partitions. Concerning upper and lower bounds
it is known [4] that cfp(P) = O(12.24n) for any set P ,
and the double-chain allows for Ω(5.23n) partitions.

Given a convex polygon S we write ∂S for its
boundary and S◦ for its interior. For a point set P and
Q ⊆ P the points from P contained inside the convex
hull of Q are denoted by IP (Q) := P ∩ conv◦(Q), and
by E(Q) := Q ∩ ∂conv(Q) we refer to the extreme
points of Q. For k ∈ N we employ the common notion
of

(
P
k

)
for the k-element subsets of P . Finally, given a

predicate A we denote by 11[A] the indicator function,
i.e. 11[A] = 1 if A holds and 11[A] = 0 otherwise.

2 Partitioning into many classes

As a warm-up observe that the number of crossing-
free partitions into n−1 and n classes does not depend
on the relative position of the points, as long as they
are in general position. A partition into n− 1 classes
corresponds to a planar graph with exactly one edge.

Proposition 1 For a set P of n points in the plane
in general position cfpn(P) = 1 and cfpn−1(P) =

(
n
2

)
.

Let us turn to partitioning P into n − 2 classes.
Before stating a claim about cfpn−2(P) for arbitrary
point sets we will derive that

cfpn−2(Γn) = 2
(

n

4

)
+

(
n

3

)
.

To see this, besides substituting in Identity (1), note
that there are only two ways for obtaining a partition
of n points into n− 2 classes, as shown in Figure 1.

Figure 1: Configurations for n− 2 partition classes

1

On the Number of Crossing-Free Partitions in the Plane

147

We have to count the number of pairs of crossing-
free matching edges and the (empty) triangles in Γn.
Every choice of four points allows for two pairs of
matching edges, and every set of three points yields a
triangle. Hence, the identity from above follows.

In general, however, not every choice of three points
in P will result in an empty triangle. Somehow we
have to account for the lack of such partitions.

Theorem 2 Let P be a set of n points in the plane
in general position. Then

cfpn−2(P) = 2
(

n

4

)
+

(
n

3

)
+

∑
Q∈(P

3) : |IP (Q)|≥2

(|IP (Q)|−1).

In particular we have cfpn−2(P) ≥ cfpn−2(Γn).

Proof. Let R ∈ (
P
4

)
then either |E(R)| = 4 and R

has exactly two perfect matchings, or |E(R)| = 3 and
R has three perfect matchings. Hence, the number of
pairs of crossing-free matching edges in P is∑

R∈(P
4)

2 · 11[|E(R)|=4] + 3 · 11[|E(R)|=3].

We count the sets R ∈ (
P
4

)
with |E(R)| = 3 by iterat-

ing over the extreme points and summing the number
of interior points. Then the term above simplifies to

2
(

n

4

)
+

∑
R∈(P

4)
11[|E(R)|=3] = 2

(
n

4

)
+

∑
Q∈(P

3)
|IP (Q)|.

Finally, adding the number of empty triangles in P
yields that cfpn−2(P) equals

2
(

n

4

)
+

∑
Q∈(P

3)
|IP (Q)|+

∑
Q∈(P

3)
11[IP (Q)=∅]

= 2
(

n

4

)
+

∑
Q∈(P

3)

(
1 + (|IP (Q)| − 1) · 11[|IP (Q)|≥2]

)

= 2
(

n

4

)
+

(
n

3

)
+

∑
Q∈(P

3)
(|IP (Q)| − 1) · 11[|IP (Q)|≥2].

Clearly, (|IP (Q)|−1)·11[|IP (Q)|≥2|] ≥ 0, ∀ Q ∈ (
P
3

)
. �

Similarly to this proof we can show that the convex
position also minimizes cfpn−3(P). Note that there
are four possibilities to obtain n−3 partitions classes,
as shown in Figure 2. We have to count the number
of empty convex quadrangles, the triangles containing
exactly one point, the empty triangles together with
a disjoint edge, and finally the number of triples of
crossing-free matching edges.

Figure 2: Configurations for n− 3 partition classes

Clearly, in Γn only three of these configurations are
possible and hence it is easily seen that

cfpn−3(Γn) =
(

n

4

)
+ 5

(
n

5

)
+ 5

(
n

6

)
,

which may also be verified by evaluating Equation (1)
with k = n− 3. Convex position uniquely maximizes
the number of empty quadrangles (there are exactly(
n
4

)
), while at the same time it minimizes the number

of triangles containing a single point and the triples of
crossing-free matching edges (any six points in convex
position have exactly five perfect matchings).

The detailed analysis is very technical and rather
lengthy so we just state the result without proof. The
idea for the argument is to consider the 5-element sub-
sets of P and count the corresponding empty triangles
together with a disjoint edge. Whenever the triangle
contains another point from P we amortize the result-
ing deficiency by showing that these six points allow
for more than five triples of crossing-free matching
edges. In order to do this we have to consider all point
configurations of six points in the plane of which there
are 16. This is also the reason why our arguments so
far do not extend to the case of n−4 partition classes
where we would have to investigate all configurations
of eight points (there are several thousands).

Theorem 3 Let P be a set of n points in the plane
in general position. Then cfpn−3(P) ≥ cfpn−3(Γn).

Note that in any set P of n points in general position
cfpn−3(P) = Θ(n6). Indeed from Figure 2 we find
that cfpn−3(P) is at most

(
n
6

)
times the maximum

number of perfect matchings a set of six points can
have (which is 12) plus terms of lower order O(n5).

3 Partitioning into few classes

We introduce a notion similar to halving edges (or
k-edges) in order to identify a crossing-free partition
with certain 2-element subsets of P . The benefit is
that only a small number of such subsets is needed
for describing crossing-free partitions into few classes.

Let A and B be two disjoint convex polygons in the
plane. Then there is a line g separating the two sets,
i.e. ∀ a ∈ A, b ∈ B the segment with endpoints a and
b intersects g. Now rotate g counter-clockwise until
it becomes tangent to both polygons simultaneously,
see Figure 3.

A B A B

a

b

g

Figure 3: Construction of a separating segment

2

EuroCG’09 - Brussels, Belgium

148

Suppose that no three extreme points of the poly-
gons are collinear then we obtain a unique (extreme)
point a ∈ A and a unique (extreme) point b ∈ B.
The segment given by these endpoints a and b is the
separating segment of the polygons A and B.

Proposition 4 For P a set of n points in the plane
in general position cfp1(P) = 1 and cfp2(P) =

(
n
2

)
.

Proof. To partition P into two crossing-free parts
pick a segment defined by two points p, q ∈ P . Then
slightly rotate the line through pq clockwise around a
point between p and q in order to obtain a partition.

p

q

Figure 4: Crossing-free partition into 2 classes

Observe that the separating segment for two given
polygons is unique because of general position. Thus,
for any point set P we have cfp2(P) =

(
n
2

)
, regardless

of the relative position of the points. �

When partitioning P into more parts it becomes
quite handy to use colors for the classes. Consider
the set of surjective maps χ : P → {1, . . . , k}. Two
such k-colorings χ1, χ2 are equivalent if there is a per-
mutation π of the colors such that χ1 = π ◦χ2. There
is a bijection between the set of equivalence classes of
these colorings and the partitions of P into k parts.

If the partition induced by a coloring is crossing-
free then for each pair of distinct colors i and j there
is a separating segment associated with it. We will
indicate the halfspace containing the points of color i
(and j, respectively) by drawing i (and j) next to the
segment’s endpoint in the corresponding halfspace.

In case of k = 3 partition classes any two separating
segments share a color, in particular they cannot cross
in an interior point as can be seen from Figure 5.

1

2
3

1
1

2

1

2
1

3

Figure 5: Separating segments cannot cross

Consider two disjoint segments that w.l.o.g. both
contain color 1. Their convex hull is either a quad-
rangle or a triangle, and the only possibilities for the
corresponding colorings are shown in Figure 6.

1
1

1 1

Figure 6: Disjoint segments with a common color

There are two ways to partition Γn into three parts.
Either every class can be separated from both other
classes simultaneously by exactly one line or there is
a class that needs two lines; see Figure 7 (partition
classes are drawn as dotted lines whereas the separat-
ing segments are solid).

1

2

3

1

2

2

3

1

1

2

3

Figure 7: Partitions and separating segments

The crucial observation here is that we only need
the endpoints of the separating segments and their
color in order to reconstruct the underlying partition.
Clearly, every three points in Γn yield a crossing-free
partition into three classes where the corresponding
separating segments build an (empty) triangle. Fur-
thermore, every choice of four points in Γn allows for
two different ways of obtaining a partition into three
crossing-free parts. This shows cfp3(Γn) = 2

(
n
4

)
+

(
n
3

)
.

For general P we will have to account for non-empty
triangles. A set Q ∈ (

P
3

)
with empty interior certainly

contributes 1 to cfp3(P), see Figure 8. Note that there
is only one way to assign the colors, then the regions
for the partition classes are uniquely determined.

3 3

∅
2

1 1
2

Figure 8: Construction from an empty triangle

Now consider four points in convex position. There
are two ways to obtain a pair of disjoint segments from
such points which we call parallel segments (even if the
lines intersect). The color of the points is determined
as described above. Figure 9 shows how to obtain a
partition into three classes from such segments.

1

1
3

2

1

1
3

2

1

1
3

2

Figure 9: Construction from parallel segments

Finally, we consider configurations not appearing in
Γn which will compensate for triangles with points in
their interior and pairs of segments whose convex hulls
is a triangle. The latter we call spearing segments.

There are three ways to obtain a pair of disjoint
segments from four points with triangular convex hull.
Fix a pair then there is exactly one coloring of their
endpoints, see Figure 10. It remains to to determine
the partition of the plane which the segments induce.

3

On the Number of Crossing-Free Partitions in the Plane

149

1
1 3

2

1
1 3

2

Figure 10: Construction from spearing segments

It turns out that in general we cannot color the
gray region with a single color so that distinct pairs
of spearing segments induce distinct partitions. We
need to use the third segment which will determine the
mixed coloring of the gray region as seen in Figure 11.

1
1

3

2 y

z

x ∆

y
x p

z

3

2

1 3
1

Figure 11: Constructing the third separating segment

For this purpose consider the segments containing
color 1 and let y, z be the endpoints with color 2 and
3. Let x be the intersection of the lines through these
segments and ∆ the triangle given by x, y and z.
Now rotate the line through x and y counter-clockwise
around y. Let p ∈ P ∩ (∆◦ ∪ {z}) be the first point of
P that gets hit during this rotation. We color p with
3 and define the third separating segment by its end-
points y and p. This results in a partition of the plane
into four convex regions where the unbounded areas
each contain exactly one crossing-free partition class
and the bounded triangle is empty by construction.

Theorem 5 Let P be a set of n points in the plane
in general position. Then cfp3(P) ≥ cfp3(Γn).

Proof. An empty triangle contributes 1 to cfp3(P),
four points either two pairs of parallel or three pairs of
spearing segments. Note that the induced partitions
are pairwise distinct. Hence, cfp3(P) is at least∑
Q∈(P

3) : IP (Q)=∅
1 +

∑
Q∈(P

4) : |E(Q)|=4

2 +
∑

Q∈(P
4) : |E(Q)|=3

3

= 2
(

n

4

)
+

(
n

3

)
+

∑
Q∈(P

3)
(|IP (Q)| − 1) · 11[|IP (Q)|≥2].

The identity follows as in the proof of Theorem 2. The
last expression is exactly cfpn−2(P), therefore we get
cfp3(P) ≥ cfpn−2(P) ≥ cfpn−2(Γn) = cfp3(Γn). �

Many partitions into three classes

Recall that cfpk(Γn) = cfpn−k+1(Γn) and Theorem 2
implies that cfpn−2(P) = Θ(n4), since |IP (Q)| ≤ n.
We consider a point set that is also known for having
a large number of halving edges. For its construc-
tion start with the following set P (1) of six points, a
triangle with a smaller similar triangle inscribed and
slightly perturbed, see Figure 12.

1
1

2
3

3

2
P (1)

Figure 12: Three parallel separating segments

Note that P (1) has a triple of separating segments
we did not account for in Theorem 5. If a point set
P contains P (1) (or an affine copy) as a subset, then
these three parallel segments additionally contribute
to cfp3(P) if and only if the bounded region that the
lines define is empty. In this case the triple is valid.

Assuming a proper underlying coordinate system,
we call a point set ε-flattened copy of P if it is obtained
by multiplying the y-coordinates of all points in P by
ε. The construction starts with P (1) and for ℓ ≥ 1
recursively builds P (ℓ + 1) by arranging three copies
of εℓ-flattened point sets of P (ℓ) (denoted by P i

εℓ
(ℓ),

for i = 1, 2, 3) in a tripod, as shown in Figure 13.

P (ℓ) P (ℓ + 1)

Pεℓ
(ℓ)

P 1
εℓ
(ℓ)

P 2
εℓ
(ℓ)

P 3
εℓ
(ℓ)

Figure 13: Recursive construction of P (ℓ)

By choosing εℓ > 0 small enough we can guarantee
that for any choice of six points, two from each P i

εℓ
(ℓ)

with i = 1, 2, 3, we obtain a valid triple of parallel seg-
ments. Indeed we can always avoid two points having
the same x-coordinate by applying a small perturba-
tion, and therefore the slope of any line through two
points can be made arbitrarily small by flattening.
For estimating cfp3(P (ℓ)) write |P (ℓ)| = 2 · 3ℓ = n(ℓ)
and count the valid triples of parallel segments that
can be obtained from P (ℓ). This results in

cfp3(P (ℓ)) ≥
ℓ∑

k=1

3k−1 ·
(n(ℓ)

3k

2

)3

=
n(ℓ)6

5808
+ O(n(ℓ)5),

which is up to a constant the maximum attainable.

References

[1] O. Aichholzer, T. Hackl, C. Huemer, F. Hurtado,
H. Krasser, and B. Vogtenhuber, On the number of
plane graphs, Proc. 17th Ann. ACM-SIAM Symp. on
Discrete Algorithms (2006), 504–513.

[2] A. Garćıa, M. Noy, and J. Tejel, Lower bounds on
the number of crossing-free subgraphs of KN, Com-
put. Geom. Theory Appl. 16(4), (2000), 211–221.

[3] G. Kreweras, Sur les partitions non croisées d’un
cycle, Discrete Math. 1(4), (1972), 333–350.

[4] M. Sharir and E. Welzl, On the Number of Crossing-
Free Matchings, Cycles, and Partitions, SIAM
J. Comput. 36(3), (2006), 695–720.

4

EuroCG’09 - Brussels, Belgium

150

Counting the Number of Embeddings of Minimally Rigid Graphs

Ioannis Z. Emiris∗ Antonios Varvitsiotis†

Abstract

We exploit the Hennenberg constructions of Laman
graphs and of the 1-skeleta of simplicial polyhedra in
order to study their respective number of Euclidean
embeddings. This leads to the general upper bounds
of 2k4n−k−4 for planar and 2k+18n−k−5 for spatial
graphs, where k is the number of degree-2 and degree-
3 vertices, respectively, and n denotes the number of
vertices. These improve the known bounds only when
k is large. For the planar case we also give a new
general lower bound of about (2.37)n, which improves
upon the existing ones. Our approach yields tight
bounds for all cases up to n = 8 in the plane, and
up to n = 6 in space. As a corollary, we present a
simple proof of the Hirsch conjecture for simplicial
3-polytopes.

1 Introduction

In this paper we deal with the computation of the
number of distinct planar and spatial Euclidean em-
beddings of minimally rigid graphs up to rigid mo-
tions.

For the planar and spatial case, the best known
general upper bounds are

(
2n−4
n−2

) ≈ 4n−2/
√
π(n− 2)

and 2n−3

n−2

(
2n−6
n−3

) ≈ 8n−3/
(
(n − 2)

√
π(n− 3)

)
respec-

tively, where n denotes the number of vertices. These
bounds were obtained in [2] by distance matrix theory,
complex algebraic geometry, and determinantal vari-
eties. The same paper gave some lower bounds, the
strongest being obtained by the Desargues fan con-
struction, namely 2 · 12n/3−1 ' 2.29n/6. 1

The approach of [8] was to define a square polyno-
mial system, obtained by the edge length constraints,
whose real solutions correspond precisely to the differ-
ent embeddings (see systems f, f ′ in section 3). Mixed
volume bounds the number of complex roots of an ar-
bitrary polynomial system; by exploiting the sparse-
∗Dept. of Informatics and Telecommunications, National

and Kapodistrian University of Athens, Greece. The au-
thor is supported through PENED 2003 program, contract nr.
70/03/8473. The program is co-funded by the EU – European
Social Fund (75% of public funding), national resources – Gen-
eral Secretariat of Research and Technology of Greece (25% of
public funding) as well as the private sector, in the framework
of Measure 8.3 of the Community Support Framework.
†MPLA, Graduate Program in Logic, Algorithms and Com-

putation, National and Kapodistrian University of Athens,
Greece.

1This corrects the exponent of the original statement.

ness of the equations, it often yields tighter bounds
than the classic Bézout bound. By suitably writing
the equations expressing rigid graphs, a structure be-
comes manifest, thus leading to the bound of 4n−2.

Our approach is mainly constructive and uses
bounds on the number of embeddings induced by each
Hennenberg step. In the next section, we provide
an alternative proof than the one in [8], for the ex-
act number of embeddings when n = 6. We estab-
lish tight bounds for n = 7, 8 equal to 64 and 128,
respectively. By extending the caterpillar of [2] to
K3,3, we obtain a better lower bound of about (2.37)n,
for n ≥ 10. Lastly, we establish an upper bound of
2k4n−k−4, where k is the number of vertices of degree
2. This becomes 4n−4 as a function of n.

We also study the number of spatial embeddings
of the 1-skeleton (or edge graph) of (convex) simpli-
cial polyhedra. These polyhedral graphs are known
to be generically minimally rigid in R3 [4]. In Sec. 3,
we produce all such graphs by generalized Hennen-
berg steps. We obtain tight bounds on the number of
spatial embeddings for graphs of 4, 5 and 6 vertices
respectively, and we present a general upper bound of
2 · 8n−5 for graphs of n vertices. Our bound is much
easier to demonstrate by relying on simple facts con-
cerning the construction of these graphs. We also ob-
tain a general bound of 2k+18n−k−5, where k denotes
the number of vertices of degree 3. Lastly, we offer
a simple proof of the Hirsch conjecture in d = 3, for
simplicial polytopes, in Sec. 4.

2 Planar embeddings of Laman graphs

Every Laman graph, or minimally rigid planar graph,
is characterized by having 2n− 3 edges and all of its
subgraphs on k < n vertices having ≤ 2k − 3 edges.
Equivalently a graph is Laman iff it has a Hennenberg
construction starting from a triangle followed by a
succession of Hennenberg-1 (orH1) and Hennenberg-2
(or H2) steps. Since two circles intersect generically in
2 points, a H1 step at most doubles the number of em-
beddings. A H2 step adds 2 new quadratic equations
to the corresponding polynomial system and thus at
most quadruples the number of embeddings.

We write 4s1 . . . , sn, si ∈ {1, 2} for the class of
Laman graphs whose Hennenberg step sequence is
s1, . . . , sn. A graph is of type H1 if it can be con-
structed using only H1 steps, but it is of type H2 if
its construction includes at least one H2 step. Now,

1

Counting the Number of Embeddings of Minimally Rigid Graphs

151

it is not difficult to verify that:

Lemma 1 Every 42 graph is isomorphic to a 41
graph. Every 412 graph is isomorphic to a 411
graph. The only H2 graph for n = 6 is of type 4112.

Hence, for n = 5 there is a tight bound of 8 em-
beddings. Since a H2 step at most quadruples the
number of embeddings, for n = 6 there are at most
32 embeddings. This upper bound is also obtained
by mixed volumes [8]. Based on the existence of 32
Euclidean embeddings for K3,3 [7], we have:

Proposition 2 The number of embeddings of Laman
graphs for n = 6 is 32 and this is tight.

By case analysis one proves that every 4112 graph
is isomorphic to K3,3 or the Desargues graph, which
leads to the following:

Lemma 3 Every graph obtained by K3,3 or the De-
sargues graph through a H2 step is isomorphic to one
of the following 3 graphs.

Theorem 4 The number of embeddings of Laman
graphs on 7 vertices is 64 and this bound is tight.

Proof. Let us first establish the upper bound. Any
Laman graph G on 7 vertices corresponds to G6si,
where G6 is a Laman graph on 6 vertices and si ∈
{1, 2}. Now, if si = 1 then, by Proposition 2, we
are done. If si = 2, there are two cases for G6: If
G6 is of type H1, then G has at most 24 · 4 = 64
embeddings. Otherwise, G6 is isomorphic to K3,3 or
the Desargues graph and we refer to Lemma 3; for all
graphs of Lemma 3, the mixed volume of the corre-
sponding polynomial system was computed using the
PHCpack2 and was found to be 64.

Since K3,3 may actually have 32 embeddings, and
since we can choose edge lengths such that a H1 step
exactly doubles the number of embeddings, we also
obtain a lower bound of 64. �

Theorem 5 The number of embeddings of Laman
graphs for n = 8 is 128 and this bound is tight.

Proof. We have a lower bound of 128 from Theo-
rem 4. E. Tsigaridas has implemented in SAGE3,
using the module for graph theoretic operations, a
routine which constructs all Laman graphs for up to
n = 8, where isomorphic graphs are identified at every

2http://www.math.uic.edu/∼jan/
3http://www.sagemath.org/

stage. We keep one representative, whose Hennenberg
sequence contains the least number of H2 steps. We
observe that all graphs for n = 8 are either of H1

type or of type 411112 [6], hence the upper bound of
25 · 4 = 128. �

We pass to general bounds. We establish a new
lower bound by constructing a K3,3 caterpillar, thus
extending the Desargues caterpillar [2].

Theorem 6 There exist edge lengths for which the
K3,3 caterpillar construction has 32

n
4− 1

2 ≈ (2.37)n

embeddings, for n ≥ 10.

Proof. We glue copies of K3,3. Each new copy has
exactly one edge in common with the previous one;
see an example with 3 copies:

The resulting graph has the Laman property and,
since each K3,3 copy adds 4 vertices and has 32 em-
beddings, the statement follows. �

We summarize the known results and their impli-
cations up to n = 10. The Desargues fan [2] yields
the lower bound for n = 9, and Theorem 6 yields the
lower bound for n = 10.

n 5 6 7 8 9 10
8 32 64 128 [288, 512] [1024, 2048]

Theorem 7 Let G be a Laman graph with n ≥ 7
vertices, and k denote the number of vertices of degree
2. Then, the number of planar embeddings of G is
bounded above by 2k4n−k−4.

Proof. Let G7 denote a Laman graph on 7 vertices
with 64 embeddings. We construct a Hennenberg se-
quence for G as follows: if there exists a vertex of
degree 2, perform a H1 step in reverse i.e. remove the
vertex and its two edges. This does not affect any of
the existing degree-2 vertices (because the subgraph
is also Laman), although it may create new ones. In
the worst case, the removal of k degree-2 vertices re-
sults to every vertex having degree ≥ 3. It is easy to
show that there exists a vertex v of degree 3; let x, y, z
be its neighbours. These cannot form a triangle be-
cause the Laman condition would be violated for the
subgraph of v, x, y, z. So we perform a H2 step in re-
verse i.e. remove v and add an edge between two of
its neighbours which are not connected. The removal
of v may create one new vertex of degree 2 but, in the
worst case, no such vertex is created, so G has the
following Hennenberg sequence:

G7, s8, . . . , sn−k−7, 11 . . . 11︸ ︷︷ ︸
k

, si ∈ {1, 2}.

2

EuroCG’09 - Brussels, Belgium

152

Thus, the number of embeddings is ≤ 2k4n−k−4. �

Corollary 8 The number of planar embeddings of a
Laman graph on n ≥ 7 vertices is bounded by 4n−4.

3 1-skeleta of simplicial polyhedra

This section extends the planar Hennenberg steps for
constructing all 1-skeleta of simplicial polyhedra, thus
bounding the number of embeddings of such graphs.

Since 3 spheres intersect generically in two points,
a H1 step at most doubles the number of spatial em-
beddings. The latter can also be proven by mixed
volumes, extending the proof in [8] for the planar
H1. Since a H2 and a H3 step add 3 new quadratic
equations to the polynomial system obtained by edge
lengths, its Bézout bound is multiplied by 8, hence
each such step, at worst, multiplies the number of
embeddings by 8.

Recall that the 1-skeleton of a (convex) polyhedron
P is minimally rigid in R3 iff P is simplicial, e.g. [4].

Consider any k + 2 vertices forming a cycle, which
contains at least k − 1 diagonals. The extended
Hennenberg-k (Hk) step, for k = 1, 2, 3, corresponds
to adding a vertex, connecting it to the k+2 vertices,
and removing k − 1 diagonals among them:

H1

H2

H3

Proposition 9 [3] Graph G is the 1-skeleton of a
simplicial polyhedron in R3 iff it has a construction
that begins with the 1-skeleton of the 3-simplex fol-
lowed by any sequence of H1, H2, H3 steps.

In R3, to discard translations and rotations, we fix
a facet of the polytope. The only simplicial polytope
on 4 vertices is the 3-simplex and its 1-skeleton has
exactly two embeddings.

Theorem 10 The 1-skeleton of a simplicial polyhe-
dron with n = 5 has at most 4 embeddings and this
bound is tight.

Proof. It is known (e.g. [3]) that all 1-skeleta of sim-
plicial polyhedra with n = 5 are isomorphic to the
following:

This graph is obtained by the 1-skeleton of the 3-
simplex through a H1 step. �

In order to establish an upper bound on the number
of embeddings we compute the mixed volume of the
polynomial system f(x) obtained by the edge length
constraints. To discard translations and rotations, we
fix the facet of vertices v1, v2, v3 and obtain the sys-
tem:

f(x) =


xi = ai, i = 1, 2, 3
yi = bi, i = 1, 2, 3
zi = ci, i = 1, 2, 3
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 − l2ij = 0,
∀(i, j) ∈ E − {(v1, v2), (v2, v3), (v3, v1)}

Let v = (0, 0, 0, 0, 0, 0, 0, 0, 0,−1, . . . ,−1), the corre-
sponding face system is:

∂vf(x) =



xi = ai, i = 1, 2, 3
yi = bi, i = 1, 2, 3
zi = ci, i = 1, 2, 3
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 = 0,
∀(vi, vj) ∈ E with i, j 6= 1, 2, 3
x2

i + y2
i + z2

i = 0,
∀(vi, vk) ∈ E with k = 1, 2, 3

This system has

(a1, b1, c1︸ ︷︷ ︸
v1

, . . . , a3, b3, c3︸ ︷︷ ︸
v3

, 1, 1, i
√

2︸ ︷︷ ︸
v4

, 1, 1, i
√

2, . . . , 1, 1, i
√

2︸ ︷︷ ︸
v|V |

)

as a solution in (C∗)n. Hence, by the Second Theorem
in [1], the mixed volume is not a tight bound on the
number of solutions in (C∗)n. This was also observed
about the corresponding system in the planar case
[8]. To remove spurious solutions (at toric infinity),
for each i = 1, . . . , |V |, we introduce variable si =
x2

i + y2
i + z2

i , just as in the planar case. This yields
the equivalent system:

f ′(x) =



xi = ai, i = 1, 2, 3
yi = bi, i = 1, 2, 3
zi = ci, i = 1, 2, 3
si − x2

i − y2
i − z2

i = 0, i = 1, . . . , |V |
si + sj − 2xixj − 2yiyj − 2zizj − l2ij = 0,
∀(i, j) ∈ E − {(v1, v2), (v2, v3), (v3, v1)}

Theorem 11 The 1-skeleton of a simplicial polyhe-
dron on 6 vertices has at most 16 embeddings and this
bound is tight.

Proof. There are only two non-isomorphic polyhe-
dral graphs G1, G2 (e.g. [3]) corresponding to a 1-
skeleton of a simplicial polyhedron for n = 6:

3

Counting the Number of Embeddings of Minimally Rigid Graphs

153

G1 G2

Since all facets of G2 are symmetric, we fix one and
compute a mixed volume of 16 for f ′(x). Fixing one
of the facets of G1 we compute a mixed volume of 8.
So the upper bound is 16.

Now G2 is the graph of the Cyclohexane molecule,
which has 16 different real spatial embeddings, e.g.
[5]. �

Theorem 12 Let G be the 1-skeleton of a simplicial
polyhedron with n ≥ 6 vertices and let k denote the
number of vertices of degree 3. Then the number of
embeddings of G is bounded by 2k+18n−k−5.

Proof. Let G6 denote a graph with 6 vertices and
16 embeddings. To construct a Hennenberg sequence
for G we first remove all existing degree-3 vertices
by performing k H1 steps in reverse. In the worst
case, the new graph contains no degree-3 vertex, and
it can be shown that it contains one of degree 4 or
5 [3]. Hence, in the worst case, G has the following
Hennenberg sequence:

G6, s7, . . . , sn−k−6, 11 . . . 11︸ ︷︷ ︸
k

, si ∈ {2, 3}.

Thus the number of embeddings is ≤ 2k+18n−k−5. �

Corollary 13 The number of spatial embeddings of
any 1-skeleton of a simplicial polyhedron on n vertices
where n ≥ 6 is bounded above by 2 · 8n−5.

4 The Hirsch conjecture

The diameter of a graph, denoted by δ(G), is the
longest path between any two vertices of the graph.
Let d(u, v) be the distance between vertices u, v and
let ∆(d, f) denote the maximal diameter of the 1-
skeletons of d-dimensional polyhedra P with f facets.
In 1957, Hirsch conjectured that ∆(d, f) ≤ f −d; this
is known to be true for d < 4 and for various special
cases but the general status of the problem is open.

The 1-skeleta of simplicial polyhedra correspond to
triangulations and, since each Hennenberg step in-
creases the number of triangles by 2, we obtain:

Lemma 14 A simplicial polyhedron has an even
number of facets.

Theorem 15 The Hirsch conjecture is true for the
1-skeleta of simplicial polyhedra.

Proof. By induction on the number 2k of facets of
a simplicial polyhedron. For k = 2, ∆(3, 4) ≤ 1.
Let P be a polyhedron with 2k + 2 facets and
let S, P1, . . . , Pk−2, Pk−1 = P be its Hennenberg
sequence, where S denotes the 1-skeleton of the
tetrahedron. By hypothesis δ(Pk−2) ≤ 2k − 3. Let n
be the new vertex, u, v old vertices, and a a neighbour
of n. There are 3 cases:
(i) Pk−1 is obtained by Pk−2 through an H1 step.
A H1 step removes no edges so d(u, v) ≤ 2k − 3 in
Pk−1, thus d(u, n) = d(u, a) + 1 < 2n− 1.
(ii) Pk−1 is obtained by Pk−2 through a H2

step and let ac be the removed edge. By hy-
pothesis d(u, v) ≤ 2k − 3 in Pk−2. If (ac) /∈ P
then the claim follows; if (ac) ∈ P then, for
P
′

= (P − (ac)) ∪ (c, n) ∪ (n, a), we have
length(P

′
) = length(P) + 1 ≤ 2k − 2. Finally,

d(u, n) = d(u, a) + 1 ≤ 2k − 1.
(iii) Pk−1 is obtained by Pk−2 through a H3 step.
Let (a, c), (b, d) be the edges removed, and P a path
between u, v in Pk−2 with length(P) ≤ 2k− 3. There
are 2 case two consider: Edges (a, c), (b, d) either
share a common vertex or not. In both of these
cases we can show that for any pair of old vertices
u, v we have d(u, v) ≤ 2k − 2 in Pk−1, so again
d(u, n) = d(u, a) + 1 ≤ 2k − 1.

�

References

[1] D.N. Bernstein. The number of roots of a system of
equations, Funkc. Anal.i Prilozen, 9(3), 1975.

[2] C. Borcea and I. Streinu. On the number of embed-
dings of minimally rigid graphs, Discrete Computat.
Geom., 31(2), 287–303, 2004.

[3] R. Bowen and S. Fisk. Generation of triangulations
of the sphere, Math. Comput., 21(98), 250–252, 1967.

[4] H. Gluck. Almost all simply connected closed sur-
faces are rigid, Geometric Topology, Lecture Notes in
Math., Volume 438, 225–239, Springer, Berlin, 1975.

[5] I.Z. Emiris and B. Mourrain. Computer algebra
methods for studying and computing molecular con-
formations, Algorithmica, 372–402, 1999.

[6] E. Tsigaridas. Personal communication, 2009.

[7] D. Walter and M.L. Husty. On a nine-bar mecha-
nism, its possible configurations and conditions for
flexibility, In J.-P. Merlet and M. Dahan, eds., Proc.
IFFToMM, Besançon, France, 2007.

[8] R. Steffens and T. Theobald. Mixed volume tech-

niques for embeddings of Laman graphs, Euro-CG

2008, Collection of Abstracts, 25–28, Nancy, France.

4

EuroCG’09 - Brussels, Belgium

154

Reconstructing Points on a Circle from Labeled Distances

David Bremner∗ Erik D. Demaine† Perouz Taslakian‡ Godfried Toussaint‡

Abstract

In the labeled beltway problem, we are given a set of
points with unknown coordinates, their clockwise or-
dering around the circumference of a circle, and a col-
oring of the edges between pairs of points. The goal is
to embed the points around a unit circle while satis-
fying the constraint that two incident edges have the
same geodesic length on the circle if and only if they
have the same color. We give a polynomial-time algo-
rithm to find such an embedding or to determine that
no such embedding exists.

1 Introduction

In this paper we study a reconstruction problem
where we are required to embed a set of points along
the circumference of a circle that satisfy some con-
straints on the pairwise interpoint intervals.

Reconstruction problems have connections with
many areas such as music theory, crystallography, and
DNA sequencing [3, 8]. One variation, called the turn-
pike problem, dates back to the 1930’s in the area of
X-ray crystallography, where the objective was to re-
construct the coordinates of the atoms in a crystal.
More recently, reconstruction problems have become
important in the field of DNA sequencing — deter-
mining the pattern of the amino acids that constitute
a strand of DNA. Given a DNA molecule, exposing
it to a special kind of enzyme (called restriction en-
zyme) divides it into pieces of different lengths. The
lengths of these fragments can be measured with stan-
dard techniques, and the challenge is to reconstruct
the original ordering of these fragments in the DNA
molecule. In molecular biology, this reconstruction
problem is called the partial digest problem and is
equivalent to the turnpike problem in crystallography.

In the context of music, the geodesic distances
(along the circumference) between the points on a cir-
cle correspond to duration (time) intervals between
onsets, in the case of rhythm, and pitch intervals for
chords, scales, and melodies [9]. Questions concern-
ing the existence and constructibility of melodies and
rhythms from partial information is a well-studied
problem in music theory, music perception, and mu-
sic information retrieval. One popular method of en-

∗University of New Brunswick, bremner@unb.ca
†Massachusetts Institute of Technology, edemaine@mit.edu
‡McGill University, {perouz,godfried}@cs.mcgill.ca

coding rhythms and melodies with only partial infor-
mation is via rhythmic and melodic contours. The
rhythmic contour is defined as the pattern of succes-
sive relative changes of durations in a rhythm. A pitch
(or melodic contour) is defined in the same way [7].
Two types of contours have received a great deal of
attention in the music literature: the adjacent con-
tours that use the matrix of distances between pairs
of consecutive points on the circle, and the full con-
tours that use the entire matrix of distances between
all pairs of points on the circle. An interesting compo-
sition problem in music theory is whether a given set
of intervals (adjacent or full) admits a realization as a
melody or rhythm [6]. Demaine et al. [1] give efficient
algorithms for determining whether a rhythm may be
reconstructed. In [2], Demaine et al. characterize
all rhythms where each distance defined by pairs of
points appears a unique number of times. Their char-
acterization also provides an algorithm for generating
such pointsets. In this paper we are concerned with
a further reduction of information compared to that
contained in the contours explored in the music litera-
ture to date. Rather than specifying whether interval
lengths increase, decrease, or stay the same, we only
use one bit of information for comparing two inter-
vals: either they have the same duration or they do
not. In what follows, we describe a reconstruction
problem we call the labeled beltway problem, and pro-
vide a polynomial-time solution.

From a theoretical perspective, problems related
to reconstructing sets from interpoint distances are,
in general, computationally challenging. Even when
the points are restricted to a line (turnpike or partial
digest problem), the complexity of the problem re-
mains unknown. One of the main difficulties of these
problems lies in the fact that while a given pointset
uniquely defines a multiset of distances, the inverse is
not always true: there may be many pointsets defining
a given multiset of distances; such pointsets are known
as homometric sets. Lemke et al. [3] study the compu-
tational and combinatorial complexity of reconstruc-
tion problems. For a given set of

(
n
2

)
distances, they

give upper and lower bounds on the number of mutu-
ally noncongruent and homometric n-point sets that
realize these distances in Rd. They also show that
the decision problem of whether a multiset of

(
n
2

)
dis-

tances is realized by n points in Rd (for arbitrary di-
mensions d) is NP-complete.

Lemke et al. [3] call the version of the reconstruction

1

Reconstructing Points on a Circle from Labeled Distances

155

problem where the points lie on a circle the beltway
problem. Here we consider a variation of the beltway
problem, the labeled beltway, where the edges defined
by the points along the circle are assigned labels. The
problem can be stated as follows: given a set of points
and their clockwise order around a circle, we want to
find an embedding of the points on the circumference
of a unit circle subject to some constraints. The con-
straints involve the geodesic distance between pairs
of points, that is, the length of the shortest path be-
tween two points along the circumference of the cir-
cle. The distance constraints are given by a labeling
of the edges defined by pairs of points such that, if
two distinct edges sharing a common endpoint have
the same label, then their geodesic distances must be
equal. Moreover, if two distinct edges sharing a com-
mon endpoint have distinct labels, then their geodesic
distances must be distinct. We give a polynomial-time
solution to the labeled beltway problem by reducing it
to solving a set of linear equations and nonequations.

Note that if, together with the ordering, we were
given all the distances between pairs of points, the
problem becomes easy in the plane, as well as on the
circle. If the points are embedded on a circle, then
we have two cases: if the lengths of the convex-hull
edges sum to 1, then the given edge lengths measure
the clockwise distance between pairs of points consec-
utive around the circumference, and we can embed.
Otherwise, the longest edge of the convex hull equals
the sum of the lengths of the remaining edges; in this
case, invert the length of the longest edge around 1;
all the edges now have clockwise distances and we can
again embed.

2 Definition and Notation

Let {p0, p1, . . . , pn−1} be a set of points embedded on
a unit circumference circle such that p(i+1) mod n is the
closest point to pi in the clockwise traversal along the
circumference starting from pi for i = 0, 1, . . . , n− 1.1

The clockwise distance between pi and pj , denoted
by ñ

d(pi, pj), is the length of the clockwise traversal
along the circumference of the circle from pi to pj .
The geodesic distance between pi and pj , denoted by
d(pi, pj), is the length of the minimum clockwise and
counterclockwise traversals along the circumference of
the circle between pi and pj . We say that an edge
pipj is oriented clockwise if its geodesic distance is the
length of the traversal from pi to pj along the circum-
ference of the circle; it is oriented counterclockwise if
its geodesic distance is the length of the traversal from
pj to pi along the circumference. If the length of an
edge is 1

2 , then the edge can be oriented either way;
but otherwise, its orientation is forced. We specify the
constraints on the geodesic distances between pairs of

1Henceforth, all index arithmetic is modulo n.

points by associating these distances with edges of the
complete graph on the n points.

3 Reduction to Linear Equations and Nonequa-
tions

We first state the constraints on the edges of the la-
beled complete graph more formally as follows: for ev-
ery three distinct points pi, pj , pk on the circle, if the
edge pipj has the same label as pjpk, then the geodesic
distance between pi and pj is equal to the distance be-
tween pj and pk, that is, d(pi, pj) = d(pj , pk) (isom-
etry constraints); moreover, two edges with different
labels must have different geodesic lengths (anisome-
try constraints).

We show how to reconstruct the points given isome-
try and anisometry constraints between pairs of edges
that do not cross (that is, edges whose endpoints ap-
pear together in the cyclic order). In particular, such
constraints capture all constraints, solving the prob-
lem. Our solution is based on representing the con-
straints by linear equations (

∑
i aixi = b1), linear in-

equalities (
∑

i aixi ≤ bi and
∑

i aixi < bi), and linear
nonequations (

∑
i aixi 6= bi) on n variables. We then

solve this system by reducing to a sequence of linear
programs with only linear equations and inequalities.

We parameterize the desired embedding of the n
points on the circle by variables x0, x1, . . . , xn−1,
where xi = ñ

d(pi, pi+1), the clockwise distance from pi

to pi+1. These n variables determine an embedding
up to rotation provided that they satisfy the following
constraints (defining an open (n− 1)-simplex):

n∑
i=0

xi = 1,

xi > 0 for i = 0, 1, . . . , n− 1.

The positivity constraints force the points to embed
to distinct locations in the correct cyclic order.

The challenge in representing an isometry or ani-
sometry constraint among geodesic distances is that
a geodesic distance between two points pi and pj

may be realized by either the clockwise distance
xi + xi+1 + · · · + xj−1 or the counterclockwise dis-
tance xj + xj+1 + · · · + xi−1. If we knew the orien-
tation of every edge, then we could write the isome-
try or anisometry constraint as a linear equation or
nonequation. There are n choices for the orientations
of the n − 1 edges incident to a vertex pi, depending
on which wedge between consecutive edges contains
the center of the circle. Considering all vertices, there
are at most nn choices for the orientations, each lead-
ing to a system of linear equations and nonequations.
On the other hand, consider the n pairwise crossing
edges pipi+n/2; the orientation of each can be chosen
independently. Hence, there are at least 2n possible
orientations.

EuroCG’09 - Brussels, Belgium

156

For the edges that do not cross, the isometry and
anisometry constraints can be reconstructed easily.
Two edges pipj and pkpl do not cross if their end-
points appear in the order pi, pj , pk, pl along the cir-
cumference. Fortunately, for constraints between such
noncrossing edges, we can effectively determine the
orientations of the edges to obtain a single system of
linear equations and nonequations. To describe these
constraints we first need the following lemma:

Lemma 1 If the points pi, pj , pk, pl appear in clock-
wise order around the circle (with the possibility that
j = k or l = i but not both) then we cannot have
both edges pipj and pkpl oriented counterclockwise.

Proof. Suppose both edges are oriented counter-
clockwise. This implies that ñ

d(pi, pj) ≥ 1
2 and

ñ

d(pk, pl) ≥ 1
2 . Because of the ordering of the points

around the circle, both pk and pl lie on the clockwise
arc from pj to pi. Thus,

ñ

d(pj , pi) = ñ

d(pj , pk) + ñ

d(pk, pl) + ñ

d(pl, pi).

This equality cannot hold because ñd(pj , pi) ≤ 1
2 while

the right-hand-side is strictly greater than half. Thus,
at least one of the edges must be oriented clock-
wise. �

We start with the isometry constraints, for which
we need the following lemma:

Lemma 2 If the points pi, pj , pk, pl appear in clock-
wise order around the circle (with the possibility that
j = k or l = i but not both) such that d(pk, pl) =
d(pi, pj), then both edges pipj and pkpl must be ori-
ented clockwise.

Proof. By Lemma 1 we know that we cannot orient
both edges counterclockwise. Suppose only pkpl is
oriented counterclockwise; this means that d(pk, pl) =
ñ

d(pl, pk) ≤ 1
2 and d(pi, pj) = ñ

d(pi, pj). Because of the
ordering of the points pi, pj , pk, pl around the circle,
we have

ñ

d(pl, pk) = ñ

d(pl, pi) + ñ

d(pi, pj) + ñ

d(pj , pk) ≤ 1
2
.

Because at least one of the distances ñd(pl, pi) and
ñ

d(pj , pk) is greater than zero, ñd(pl, pk) >
ñ

d(pi, pj)
which implies that d(pk, pl) > d(pi, pj); contradic-
tion. Similarly, if only pipj is oriented counterclock-
wise, then this would imply that d(pi, pj) > d(pk, pl).
Therefore, if d(pi, pj) = d(pk, pl) then both edges
must be oriented clockwise. �

Thus, if two edges pipj and pkpl are noncrossing and
their edge lengths must be equal, then by Lemma 2
we can assume that the edges are oriented clockwise
and we force this by adding two linear inequalities:∑

i≤r<j

xr ≤ 1
2
,

∑
k≤s<l

xs ≤ 1
2
.

Now that we have forced the edges to be oriented
clockwise, we can force the equality of their lengths
with a linear equation:∑

i≤r<j

xr =
∑

k≤s<l

xs.

For the anisometry constraints, we first show the
following lemma:

Lemma 3 If the points pi, pj , pk, pl appear in clock-
wise order around the circle (with the possibility that
j = k or l = i but not both) such that at least one
of the edges pipj and pkpl must be oriented counter-
clockwise, then

ñ

d(pi, pj) 6= ñ

d(pk, pl).

Proof. Assume that pkpl is oriented counterclock-
wise; then, ñd(pl, pk) ≤ 1

2 . By Lemma 1, pipj must
be oriented clockwise. Then, we have ñ

d(pl, pk) =
ñ

d(pl, pi) + ñ

d(pi, pj) + ñ

d(pj , pk) ≤ 1
2 . Because at least

one of ñd(pl, pi) or ñd(pj , pk) is strictly positive, then
ñ

d(pk, pl) >
ñ

d(pi, pj). Thus, the two edges have dis-
tinct clockwise lengths. �

Now consider an anisometry constraint between two
noncrossing edges pipj and pkpl. We represent this
constraint by a linear nonequation:∑

i≤r<j

xr 6=
∑

k≤s<l

xs.

To show that the above nonequation holds inde-
pendent of the orientation of each of the edges, we
need to show that it holds if and only if the desired
geodesic distances are distinct. First, if both edges
can be oriented clockwise, then this constraint on the
clockwise distances is equivalent to the distinctness of
the geodesic lengths. Second, if one of the edges must
be oriented counterclockwise, then by Lemma 2, the
geodesic lengths must be different; and by Lemma 3,
the linear nonequation must be satisfied.

4 Solving Systems of Linear Equations and
Nonequations

The previous section yields a linear system of the fol-
lowing form:

Ax ≤ 1
2 (1)

Mx = f (2)
Nx 6= g (3)
xi > 0 (4)

Geometrically, (1), (2) and (4) define a (partly
open) convex polyhedron P , while each row of (3) de-
fines a forbidden hyperplane. To solve this system, we
will use the following idea: initially we ignore the for-
bidden hyperplanes and find a relative interior point

Reconstructing Points on a Circle from Labeled Distances

157

in the feasible region P . Then we check if this point
lies on a forbidden hyperplane; if it does not lie on any
forbidden hyperplane, we have a solution. Otherwise,
if the point lies on hi, then we recurse on one side
of hi ∩ P . Recursing on one side of hi ensures that
we never pick a point on the same hyperplane more
than once. Thus, in the worst case we will eventually
run out of forbidden hyperplanes and one side of the
last eliminated hyperplane will be a region with no
forbidden points. We can now find a feasible point in
this region.

After a suitable (and polynomial time computable)
change of coordinates, we may assume that P has
interior points. Let h(a, µ) denote the hyperplane {x |
〈a, x〉 = µ}.

Proposition 4 If h(a, µ) ∩ P has relative interior
points, then for any sufficiently small ε > 0, h(a, µ+ε)
and h(a, µ− ε) both have relative interior points.

The idea is that given a point q in the relative in-
terior of P ∩ h(a, µ) (if such a q does not exist, then
h(a, µ) is redundant and can be discarded), choose ε
sufficiently small so that h(a, µ + ε) ∩ P has relative
interior, and does not collide with any possible par-
allel forbidden hyperplanes. If a solution exists, then
there is one on the hyperplane h(a, µ + ε). To avoid
calculation of ε, we add the inequality aTx > µ to our
system, replacing the nonequation aTx 6= µ. If this
new system is infeasible, it means that P ⊂ h(a, µ),
and the original problem is infeasible.

Our basic computational step is thus to find a rel-
ative interior point of a polyhedron defined by strict
and nonstrict inequalities. This is equivalent to feasi-
bility testing for systems of strict linear inequalities,
which can be solved by linear programming.

The inequalities and (non)equations of our system
describe the constraints for pairs of noncrossing edges.
We have added a constant number of constraints per
pair of noncrossing edges having the same or different
labels. Because we have a total of

(
n
2

)
edges, pairing

them gives us Θ(n4) constraints. The linear programs
required can be solved in time polynomial in n and
the number of bits required of the output. In our case,
Θ(n) bits suffice to disambiguate all the distinct dis-
tances, at which point the solution will be correct; so
we can solve the linear programs in time polynomial
in n. The number of times we solve such a system
is at most equal to the number of forbidden hyper-
planes, which is a polynomial function of n. Thus we
have a polynomial-time solution to the labeled belt-
way problem.

5 Open Problem

A natural variation on the labeled beltway problem
treats the coloring as global instead of local: instead

of just constraining the equality or inequality of the
geodesic lengths of incident edges, it constrains the
relative lengths of all edge pairs. This problem seems
substantially more difficult because it becomes possi-
ble to construct specific numbers (less than 1) with
Θ(n) bits. After some effort, it is not clear to us
whether this global version of the labeled beltway
problem is polynomially solvable or NP-complete.

Acknowledgments

This work was initiated at the 21st Bellairs Winter
Workshop on Computational Geometry held January
27–February 3, 2005 at Bellairs Research Institute.
We thank the other participants of that workshop for
helpful discussions and contributing to a fun and cre-
ative atmosphere. Perouz also thanks Victor Campos
for useful and entertaining discussions on the topic of
this paper.

References

[1] E. D. Demaine, J. Erickson, D. Krizanc, H. Mei-
jer, P. Morin, M. Overmars, and S. Whitesides.
Realizing partitions respecting full and partial or-
der information. Journal of Discrete Algorithms,
6:51–58, 2008.

[2] E. D. Demaine, F. Gomez-Martin, H. Meijer,
D. Rappaport, P. Taslakian, G. T. Toussaint,
T. Winograd, and D. R. Wood. The distance ge-
ometry of music. Computational Geometry: The-
ory and Application, 2008. To appear.

[3] P. Lemke, S. S. Skiena, and W. D. Smith. Recon-
structing sets from interpoint distances. Technical
Report 37, DIMACS Technical Report, 2002.

[4] R. D. Morris. New directions in the theory and
analysis of musical contour. Music Theory Spec-
trum, 15(2):205–228, 1993.

[5] I. Quinn. Fuzzy extensions to the theory of con-
tour. Music Theory Spectrum, 19(2):232–263,
1997.

[6] J. Rahn. Possible and impossible melodies: Some
formal aspects of contour. Journal of Music The-
ory, 36(2):259–279, 1994.

[7] I. Shmulevich. A note on the pitch contour sim-
ilarity index. Journal of New Music Research,
33(1):17–18, March 2004.

[8] S. S. Skiena and G. Sundaram. A partial digest
approach to restriction site mapping. Bulletin of
Mathematical Biology, 56:275–294, 1994.

[9] G. T. Toussaint. A mathematical analysis of
African, Brazilian, and Cuban clave rhythms. In
Proceedings of BRIDGES: Mathematical Connec-
tions in Art, Music and Science, pages 157–168,
Towson University, Towson, Maryland, U.S.A.,
July 27-29 2002.

EuroCG’09 - Brussels, Belgium

158

Guarding Orthogonal Art Galleries with Sliding Cameras

Matthew J. Katz ∗ Gila Morgenstern∗

Abstract

We study the problem of guarding a simple orthogo-
nal art gallery P with security cameras sliding back
and forth along straight tracks. We show that if only
vertical (alternatively, horizontal) tracks are allowed,
then a solution minimizing the number of tracks can
be found in polynomial time. If both orientations are
allowed, then a 3-approximation can be found in poly-
nomial time, when a certain graph induced by P is per-
fect. In particular, if P is x-monotone (alternatively,
y-monotone), then this graph is perfect and one can
reduce the approximation factor to 2.

1 Introduction

A classical problem in computational geometry is the
“art-gallery” problem, in which the goal is to deter-
mine how many points (“guards”) are needed in order
to see all parts of a geometric domain D (e.g., a sim-
ple polygon). During the years, many variants of the
art-gallery problem have been studied. These variants
differ in their assumptions concerning the underlying
domain, the type of guards that may be employed,
and the visibility model. Most of them are known to
be NP-hard, including, e.g., the variant where the un-
derlying domain is a simple orthogonal polygon and
guards must lie at vertices; see, e.g., [7, 8].

Some of the variants, however, and especially those
assuming a restricted model of visibility are solvable
in polynomial time. In [5], Motwani et al. presented
the “perfect graph approach,” to solve an art-gallery
problem under s-visibility. In this model, a guard lo-
cated at a point p (of an orthogonal polygon P) sees
all points that are connected to p by an orthogonal
staircase path (contained in P). This approach was
used later by Worman and Keil [9] to solve a simi-
lar problem under r-visibility. In this model, a guard
located at a point p sees all points q for which the
axis-parallel rectangle with diagonal pq is contained
in P . In the perfect graph approach, first a graph G
is associated with the given polygon P , and then the
following two main claims are proven: (i) there is a
one to one correspondence between a minimum guard
cover of P and a minimum clique cover of G, and (ii) G
is perfect. Note that the second claim is crucial, since,
in general, minimum clique cover is NP-complete, but

∗Department of Computer Science, Ben-Gurion University,
Beer-Sheva, Israel; {matya, gilamor}@cs.bgu.ac.il. G. Mor-
genstern was partially supported by the Lynn and William
Frankel Center for Computer Sciences.

is polynomial for chordal or perfect graphs [2].
Many of the more recent variants involve mobile

guards, where the requirement is that every point of
the gallery is visible by some guard at some point along
his path. Kay and Guay [3] gave an O(n log n) algo-
rithm for the problem of determining whether a given
polygon can be guarded by a single guard patrolling
along a single line segment.

In this paper we consider the following problem. Let
P be a simple orthogonal polygon. An orthogonal line
segment s ⊆ P is called a segment guard or a seguard.
A seguard s sees a point p ∈ P if there exists a point
q ∈ s, such that the line segment pq is orthogonal and
contained in P . We denote by v(s) the region of P
that is seen by a seguard s, and say that a seguard set
S guards P if

⋃ {v(s)| s ∈ S} = P . In the minimum
seguard cover problem the goal is to find such a set of
minimum cardinality. One can think of a (e.g., hori-
zontal) seguard s as a security camera sliding back and
forth along a horizontal track and viewing, at every
point along the track, directly upwards and directly
downwards.

A histogram polygon is a simple polygon whose
boundary consists of a base edge e and a chain that is
monotone with respect to e. A double-sided histogram
polygon is the union of two histogram polygons sharing
the same base edge e and located on opposite sides of
e. Fekete and Mitchell [1] proved that the histogram-
decomposition problem, i.e., partitioning an orthogo-
nal polygon P (with holes) into a minimum number of
non-intersecting histogram polygons is NP-hard. For
an orthogonal line segment s ⊆ P , denote by H(s) the
double-sided histogram polygon obtained by the infi-
nite union of all maximal normals to s. The minimum
seguard cover problem is equivalent to the problem of
covering P with a minimum number of double-sided
histogram polygons.

2 Preliminaries

We may assume that the endpoints of a seguard lie on
P ’s boundary. Let p ∈ P and let lvp (resp. lhp) denote
the maximal vertical (resp. horizontal) line segment
through p. Then, a seguard s sees p if and only if s
crosses at least one of lvp and lhp .

Let p, q ∈ P . If one can draw a seguard that sees
both p and q, we write pZq. Otherwise, we write p∧q.
Clearly, pZq if and only if one can draw a seguard s,
such that both p and q belong to H(s).

For each reflex vertex of P , extend the two edges

1

Guarding Orthogonal Art Galleries with Sliding Cameras

159

adjacent to it until they hit P ’s boundary. (Thus, an
edge between two reflex vertices is extended in both
directions.) Let S(P) denote the resulting set of ex-
tended edges together with the edges of P that were
not extended. S(P) induces a partition of P into rect-
angular regions; we denote these regions by R(P).

It is easy to see that for any seguard s, there exists
s′ ∈ S(P), such that v(s) ⊆ v(s′). Therefore, we will
restrict ourselves to segments in S(P).

It is also easy to see that if p ∈ v(s), where s ∈ S(P)
and p is an internal point of a region r of R(P), then
r ⊆ v(s). Therefore, if S is a set of seguards (i.e., a
subset of S(P)), such that for each region r of R(P),
r’s center point is seen by one or more of the seguards
in S, then S is a guarding set of P .

Let Rc(P) denote the set of center points of regions
of R(P). We conclude, that it is enough to find a sub-
set of S(P) of minimum cardinality, that collectively
sees all points in Rc(P).

3 Vertical Segment Cover

In this section we consider the minimum vertical se-
guard cover problem. Let P be a simple orthogonal
polygon, find a set S of vertical seguards of minimum
cardinality, such that

⋃
s∈S v(s) = P .

In this section, the notation Z and ∧ refers only
to vertical seguards. We associate with P the graph
Gv = 〈V,E〉, where V = Rc(P) and (p, q) ∈ E if pZq.
The major part of this section is devoted to proving
Theorems 3 and 4 below, stating that (i) a minimum
clique cover of Gv corresponds to a minimum vertical
seguard cover of P , and (ii) Gv is chordal.

Let p ∈ P and consider the double-sided histogram
polygon H(lhp). Notice that any maximal vertical seg-
ment contained in H(lhp) sees p, and any vertical se-
guard that sees p is contained in H(lhp). When think-
ing of H(lhp) as the union of all maximal vertical se-
guards guarding p, we denote it by ṽ(p).

We shall need the following simple lemma.

Lemma 1 Let r ∈ P and let p, q ∈ ṽ(r) such that pq
is horizontal and contained in P . Then pq ⊆ ṽ(r).
Proof. Assume, e.g., that px < qx, and let t ∈ pq.
We show that t ∈ ṽ(r). Let p′, q′ and t′ be the x-
projections of p, q and t on lhr , and consider the rect-
angleR whose corners are at p, q, p′, q′. Clearly, R ⊆ P
and in particular tt′ ⊆ P . The vertical line segment lvt
intersects p′q′ at t′, that is, lvt intersects lhr at t′, thus
lvt ⊆ ṽ(r) and in particular t ∈ ṽ(r). �

We would like to prove that for any clique C of
Gv, a single seguard is sufficient to guard all regions
associated with the vertices of C. We use the following
Helly-type theorem [4].

Theorem 2 [4] If C is a family of simply-connected
compact sets in the plane, such that any two members

of C have a connected non-empty intersection and any
three members of C have a non-empty intersection,
then

⋂ {c ∈ C} is non-empty and simply connected.

Theorem 3 A minimum clique cover of Gv corre-
sponds to a minimum vertical seguard cover of P .

Proof. Consider a vertical seguard cover of P . Then,
clearly v(s) is a clique of Gv, for each seguard s
in the cover. Now, let C be a clique cover of Gv

and let C ∈ C. Below, we apply Theorem 2 to
show that

⋂ {ṽ(r)|r ∈ C} is non-empty. Now, let
x ∈ ⋂ {ṽ(r)|r ∈ C}, then, by our observation just
above Lemma 1, lvx ⊆

⋂ {ṽ(r)| r ∈ C}, that is, lvx is
a vertical seguard guarding all regions associated with
vertices of C.

It remains to show that
⋂ {ṽ(r)|r ∈ C} is non-

empty. Let p, q ∈ C, then by definition ṽ(p)∩ṽ(q) 6= ∅.
Now, let x, y ∈ ṽ(p)∩ ṽ(q). We show that there exists
a simple path π ⊆ ṽ(p) ∩ ṽ(q) connecting x and y.
Consider the line segments lvx and lvy . By our obser-
vation just above Lemma 1, lvx, l

v
y ⊆ ṽ(p) ∩ ṽ(q) (and

both intersect lhp and lhq).
Denote by π1 ⊆ lvx (resp., π2 ⊆ lvy) the vertical line

segment between x and lvx ∩ lhp (resp., y and lvy ∩ lhp).
Finally, denote by π3 the line segment between the
points π1 ∩ lhp and π2 ∩ lhp . By Lemma 1, π3 ⊆ ṽ(p) ∩
ṽ(q). Now put π = π1π3π2, then π ⊆ ṽ(p) ∩ ṽ(q) and
connects x and y.

Let p, q, r ∈ C and consider the line segments lhp , lhq
and lhr . Let spq be a vertical seguard guarding both
p and q, and thus intersecting both lhp and lhq . Simi-
larly, spr intersects both lhp and lhr , and sqr intersects
both lhq and lhr . Therefore, at least one of the three
guards must intersect all three segments lhp , l

h
q , l

h
r , and

is therefore contained in ṽ(p) ∩ ṽ(q) ∩ ṽ(r). �

Theorem 3 guarantees that finding a minimum
clique cover of Gv is sufficient. Our next goal is to
prove Theorem 4 that states that Gv is chordal. Be-
fore then, note that the border(s) between ṽ(p) and
P \ ṽ(p), assuming ṽ(p) 6= P , are vertical line seg-
ments. This implies Observation 1 below.

Observation 1 Let p, q ∈ P , such that ṽ(p)∩ ṽ(q) 6=
∅ and neither ṽ(p) ⊆ ṽ(q) nor ṽ(q) ⊆ ṽ(p). Then,
(i) the region P \ (ṽ(p) ∩ ṽ(q)) is not connected, and
(ii) any connected component of ṽ(p) \ ṽ(q) and any
connected component of ṽ(q) \ ṽ(p) are contained in
two different connected components of P \(ṽ(p)∩ṽ(q)).

Theorem 4 Gv is chordal.

Proof. We have to show that there is no hole of size
k ≥ 4 in Gv. Let H be a cycle in Gv of size k ≥ 4.
We show that there must exist a chord in H. If there
exist p, q, r ∈ H, such that ṽ(p)∩ ṽ(q)∩ ṽ(r) 6= ∅, then

2

EuroCG’09 - Brussels, Belgium

160

we are done. Otherwise, each adjacent pair p, q ∈ H
satisfies the conditions of Observation 1. Therefore,
there exists a vertex in H with only one neighbor in
H, a contradiction. �

Theorem 5 Let P be an orthogonal n-gon. Then,
an exact minimum vertical seguard cover of P can be
found in time polynomial in n. �

4 Orthogonal Segment Cover

In the orthogonal version of segment cover, we may
employ horizontal as well as vertical seguards. We
associate with P the graph G = 〈V,E〉, where
V = Rc(P) and (p, q) ∈ E if pZq. (Note that unlike
Gv, two regions in Rc(P) are adjacent in G if there ex-
ists a vertical or horizontal segment that guards both
regions.) Unfortunately, Theorem 3 does not hold in
the orthogonal version. Figure 1(a) shows a clique
polygon (in which any two regions can be guarded by
a single seguard), that cannot be guarded by a single
seguard. However, three seguards are sufficient in this
case, as is proven in Lemma 7 below.

(a)

3
4 5

1

2

(b)

Figure 1: (a) Any two regions can be guarded by a
single seguard, but there is no seguard that guards all
regions. (b) Regions 1,2,3,4,5 form a chordless cycle
of size 5.

For p, q ∈ P and s ∈ S(P), let δ(p, q) denote the
number of links in a minimum-link orthogonal path
between p and q (that is contained in P), and let
δ(p, s) = minq∈s δ(p, q). If s sees p, then clearly
δ(p, s) ≤ 1, moreover if pZq then δ(p, q) ≤ 3. Thus, if
C is a subpolygon of P corresponding to a clique of
G, then for each p, q ∈ C we have that δ(p, q) ≤ 3.

Lemma 6 [6] Let P be an orthogonal polygon, such
that for any p, q ∈ P , δ(p, q) ≤ k. Then, there exists
an orthogonal line segment s ⊆ P , such that for any
p ∈ P ,

⌊
k
2

⌋ ≤ δ(p, s) ≤ ⌊
k
2

⌋
+ 1.

Lemma 7 Let C be a subpolygon of P corresponding
to a clique of G, then three seguards are sufficient to
guard C.

Proof. By Lemma 6, there exists a line segment s ⊆
C, such that for any p ∈ C, δ(p, s) ≤ 2. Assume,
e.g., that s is vertical. If for any p ∈ P , δ(p, s) ≤
1, then we are done. Assume therefore that v(s) (
C, and let p ∈ C be a point for which δ(p, s) = 2.

Notice that any 2-link orthogonal path connecting p
and s must start with a vertical line segment. We
claim that there cannot exist two such paths where in
one the vertical link is y-increasing and in the other
the vertical link is y-decreasing. Assume there exist
such paths π↑ which is y-increasing and π↓ which is
y-decreasing, and consider the rectangle R bounded
by π↑ , π↓ and s. Clearly, R ⊆ C and s sees p through
R, thus δ(p, s) = 1, a contradiction.

Let P↑ ⊆ C (resp. P↓ ⊆ C) be the set of all points
p ∈ C, for which δ(p, s) = 2 and the 2-link paths to
s are y-increasing (resp. y-decreasing). For p ∈ P↑ ,
let p↑ be the highest point on s at which a 2-link path
from p can end. Let q ∈ P↑ such that for any p ∈ P↑ ,
q↑ is not above p↑ . We denote by s↑ ⊆ C the horizontal
line segment through q↑ . The horizontal line segment
s↓ is defined analogously. Note that P↑ (resp. P↓)
might be empty, in which case s↑ (resp. s↓) is not
defined.

We now claim that for any p ∈ P↑ , p is seen from
s↑ , and, similarly, for any p ∈ P↓ , p is seen from s↓ .
This will imply that the three seguards s, s↑ and s↓
together guard C.

Indeed, let p ∈ P↑ . s↑ divides C into two subpoly-
gons. We call the subpolygon containing the points
directly below s↑ the lower subpolygon, and the sub-
polygon containing the points directly above s↑ the
upper subpolygon. Assume first that p lies in the lower
subpolygon. Since p↑ lies in the upper subpolygon, the
vertical link of the 2-link path from p to p↑ must cross
s↑ , implying that s↑ sees p.

Now assume that p lies in the upper subpolygon.
We show that this is impossible. Notice that since
p ∈ P↑ , the minimum-link path from p to s↑ in this
case consists of exactly three links. We show that this
implies δ(p, q) > 3. Let q′ be q’s projection onto s↑ .
If δ(p, q′) = 3, then there exists a 2-link y-increasing
path connecting q and l that meets l at a point above
q↑ , which is impossible by our construction. Other-
wise, δ(p, q) = δ(p, s↑)+1+δ(q′, q) = 3+1+1 = 5 > 3,
a contradiction.

Similarly, we show that for any p ∈ P↓ , p is seen
from s↓ . �

Theorem 4 does not hold as well in the orthogonal
version. Figure 1(b) shows that, in general, G is not
even perfect. However, for some important families of
polygons, G is perfect. One such family is the family
of x-monotone (alternatively, y-monotone) polygons
(see Theorem 10). If P is x-monotone, then it is not
difficult to see that two guards are sufficient in order
to guard a subpolygon corresponding to a clique of
G. Actually, we believe that two guards are always
sufficient to guard such subpolygons.

Let P be a x-monotone polygon. Before proving
Theorem 10 that states that G in this case is perfect,
we make a few observations.

3

Guarding Orthogonal Art Galleries with Sliding Cameras

161

Lemma 8 Let u, v, w ∈ P be points, such that uZv,
w∧u and w∧v, then either wx < ux, vx or ux, vx < wx.

Proof. Assume, e.g., that ux ≤ vx, and assume to
the contrary that ux ≤ wx ≤ vx. Let suv be a seguard
guarding both u and v. If suv is horizontal, then it
clearly also sees w. Let w′ be the x-projection of w
onto suv. Since P is x-monotone, ww′ ⊆ P , and suv

sees w from w′, implying that wZv (as well as wZu),
a contradiction.

Otherwise, suv is vertical and assume, e.g., that w
is to the right of suv (if w is on suv, then clearly w is
seen by suv). vv′ ⊆ P , where v′ is the y-projection of
v onto suv, since suv sees v. Note that v′x < wx ≤ vx

and let w′ be the x-projection of w onto vv′. Again,
since P is x-monotone, ww′ ⊆ P . Moreover vw′ ⊆ P ,
therefore lvw (as well as lhv) see both v and w, implying
that wZv, a contradiction. �

Let H be a hole or anti-hole in G, and let πH de-
note some permutation of the vertices of H in which
πH(u) ≤ πH(v) if and only if ux ≤ vx, where u, v are
any two vertices in H. The following observations on
πH follow from Lemma 8.

Observation 2 Let H = 〈1, 2, 3, · · · , k〉 be an anti-
hole of length k ≥ 5. Then, for any three consecutive
vertices u,w, v of H, we have uZv, w∧u and w∧v.
Therefore, by Lemma 8, w cannot appear between u
and v in πH . In other words, the following subse-
quences and their reverse subsequences cannot appear
in πH : 〈1,2,3〉, 〈2,3,4〉, · · · , 〈k−1,k,1〉, 〈k,1,2〉.

Observation 3 Let H = 〈1, 2, 3, · · · , k〉 be a hole
of length k ≥ 5. Then the following subsequences
and their reverse subsequences cannot appear in πH :
〈1,4,2〉, 〈1,5,2〉, · · · , 〈1,k−1,2〉, 〈2,5,3〉, 〈2,6,3〉, · · · , 〈2,k,3〉,
· · · · · · , 〈k,3,1〉, 〈k,4,1〉, · · · , 〈k,k−2,1〉.

Lemma 9 Let n ≥ 4 and let 3 ≤ k ≤ n. Let πn be a
permutation of {1, 2, . . . , n}, such that (i) πn(1) = 1
(i.e., the number at place 1 of πn is 1), and (ii) for
each 1 ≤ i ≤ k − 2, 〈i,i+1,i+2〉 and 〈i+2,i+1,i〉 are no
subsequences of πn. Then: π-1

n (k) < π-1
n (k− 1) if k is

odd, and π-1
n (k − 1) < π-1

n (k) otherwise.

Proof. We prove the lemma by induction on k.
k=3: As πn(1) = 1, we have π-1

n (2) > 1. Now, since
〈1,2,3〉 is not a subsequence of πn, we conclude that
π-1

n (3) < π-1
n (2).

k=4: As above, πn(1) = 1 and π-1
n (3) < π-1

n (2). Now,
since 〈4,3,2〉 is not a subsequence of πn, we conclude
that π-1

n (3) < π-1
n (4).

Assume the lemma is true for k−1 < n. If k is odd,
then k − 1 is even and, by the induction hypothesis,
we have that π-1

n (k − 2) < π-1
n (k − 1). Now, since

〈k−2,k−1,k〉 is not a subsequence of πn, we conclude
that π-1

n (k) < π-1
n (k − 1).

If k is even, then k − 1 is odd and, by the induc-
tion hypothesis, we have that π-1

n (k− 1) < π-1
n (k− 2).

Now, since 〈k,k−1,k−2〉 is not a subsequence of πn, we
conclude that π-1

n (k − 1) < π-1
n (k). �

Theorem 10 G is perfect.

Proof. We need to show that G does not contain an
odd hole or an odd anti-hole of size 5 or greater.

Assume to the contrary that G contains an odd hole
H = 〈1, 2, 3, · · · , k〉, where k ≥ 5. Consider πH and
assume w.l.o.g. that πH(1) = 1. Clearly π-1

H(2) > 1.
By Observation 3, 〈1,k−1,2〉 is not a subsequence of πH ,
and therefore 2 must precede k−1 in πH , i.e., π-1

H(2) <
π-1

H(k− 1). By the same observation, 〈k,2,k−1〉 is not a
subsequence of πH , implying that π-1

c (2) < π-1
c (k), and

〈1,3,k〉 is also not a subsequence of πH , implying that
π-1

c (k) < π-1
c (3). We get that 〈2,k,3〉 is a subsequence

of πH , a contradiction.
Now, assume to the contrary that G contains an odd

anti-hole H of size k ≥ 5. Consider πH and assume
w.l.o.g. that πH(1) = 1. By Observation 2, neither
〈i,i+1,i+2〉 nor 〈i+2,i+1,i〉 is a subsequence of πH , for
i = 1, . . . , k− 2, and therefore, by Lemma 9, π-1

H(k) <
π-1

H(k − 1). We get that 〈1,k,k−1〉 is a subsequence of
πH , a contradiction. �

Theorem 11 Let P be an orthogonal n-gon. Then, a
2-approximation for orthogonal seguard cover of P can
be found in time polynomial in n, if P is x-monotone,
and a 3-approximation can be found, if P belongs to
another family of polygons for which G is perfect. �

References

[1] S. P. Fekete and J. S. B. Mitchell. Terrain decomposition
and layered manufacturing. Int. J. Comput. Geom. Appl.,
11:647–668, 2001.

[2] M. Grötschel, L. Lovász, and A. Schrijver. Polynomial al-
gorithms for perfect graphs. In C. Berge and V. Chvátal,
editors, Topics on perfect graphs, volume 21 of Annals of
Discrete Mathematics, pages 325–356. North-Holland, 1984.

[3] D. Kay and M. Guay. Convexity and a certain property pm.
Israel Journal of Mathematics, 8:39–52, 1970.

[4] J. Molnár. Über den zweidimensionalen topologischen satz
von Helly. Mat. Lapok, 8:108–114, 1957.

[5] R. Motwani, A. Raghunathan, and H. Saran. Covering or-
thogonal polygons with star polygons: The perfect graph
approach. In Proc. 4th Sympos. Comput. Geom., pages 211–
223, 1988.

[6] B. J. Nilsson and S. Schuierer. An optimal algorithm for
the rectilinear link center of a rectilinear polygon. Comput.
Geom. Theory Appl., 6(3):169–194, 1996.

[7] J. O’Rourke. Art Gallery Theorems and Algorithms. The
International Series of Monographs on Computer Science.
Oxford University Press, New York, NY, 1987.

[8] D. Schuchardt and H.-D. Hecker. Two NP-hard art-
gallery problems for ortho-polygons. Mathematical Logic
Q., 41:261–267, 1995.

[9] C. Worman and J. M. Keil. Polygon decomposition and
the orthogonal art gallery problem. Int. J. Comput. Geom.
Appl., 17(2):105–138, 2007.

4

EuroCG’09 - Brussels, Belgium

162

Inspecting a Set of Strips Optimally

Tom Kamphans∗ Elmar Langetepe∗∗

Abstract

We consider a set of axis-parallel nonintersecting
strips in the plane. An observer starts to the left of
all strips and ends to the right, thus visiting all strips
in the given order. A strip is inspected as long as the
observer is inside the strip. How should the observer
move to inspect the set of strips?

Keywords: Motion planning, watchman routes

1 Introduction

In the last decades, routes from which an agent can
see every point in a given environment have drawn a
lot of attention (e.g., [3, 4, 5, 6]). Usually, the objec-
tive is to find a short route; either the shortest pos-
sible route (the optimum) or an approximation. In
this paper, we focus on another criterion for routes:
We want to minimize the time that a certain area
of the environment is not seen. Imagine a guard in
an art gallery whose objective is to be as vigilant as
possible and to minimize the time an object is un-
guarded. We restrict ourselves to a very simple kind
of environments—parallel strips in the plane. More
complicated environments are the subject of ongoing
research. In Section 2 we present notational conven-
tions and define an objective function which has to
be minimized. Then, in Section 3 we first prove some
structural properties of an optimal solution for the
Euclidean case. At the end we present an efficient
algorithm. The ideas can be adapted to the L1-case
which is mentioned in Section 4.

2 Preliminaries

P2

S2 S3

S

last(P)

P

T

P1

P3

S1

Figure 1: Visiting three strips in a given order.

∗Braunschweig University of Technology, Computer Science,
Algorithms Group, 38106 Braunschweig, Germany
∗∗University of Bonn, Institute of Computer Science I, 53117

Bonn, Germany

Let {S1, . . . , Sn} be a set of nonintersecting vertical
strips and S = (sx, sy) be a start point to the left of
all strips and T = (tx, ty) be an end point to the right
of all strips. W.l.o.g. we can assume that S is below
T (i.e., sy ≤ ty). Strip Si has width wi.

An inspection path, P , from S to T visits the strips
successively from left to right, see Fig. 1. For a given
path P let Pi denote the part of P within strip Si.
Let |Pi| denote the corresponding path length, and
last(P) the last segment of P (i.e., from Sn to T).

While P visits Si, the strip is entirely visible. The
performance of P for a single strip Si therefore is
given by Perf(P, Pi) := |P | − |Pi|. The performance
of the path P for all strips is given by the worst
performance achieved for a single strip. That is
Perf(P) := maxi Perf(P, Pi). Finally, the task is to
find among all inspection paths the path that gives
the best performance for the given situation; that is,
an inspection path with minimal performance:
Perf := minP maxi Perf(P, Pi) .

This problem belongs to the class of LP-type prob-
lems [7], but the basis could have size n. Therefore,
we solve the problem directly. It may also be seen as
a Time and Space Problem (see, e.g., [2, 1]).

3 The Euclidean Case

In this section we first collect some properties of the
optimal solution and design an efficient algorithm.

3.1 Structural Properties

We can assume that the optimal inspection path is a
polygonal chain with straight line segments inside and
between the strips: If there are kinks or arcs inside or
outside the strips, we can optimize the inspection path
by straightening the corresponding parts.

Let us further assume that we have an inspection
path as depicted in Fig. 2. The first simple obser-
vation is that we can rearrange the set of strips in
any nonintersecting order and combine the elements
of the given path adequately by shifting the segments
horizontally without changing the path length.

Now, it is easy to see that an optimal solution has
the same slope between all strips. We rearrange the
strips such that they stick together and start from the
X-coordinate of the start point. The last part of the
solution should have no kinks as mentioned earlier.

1

Inspecting a Set of Strips Optimally

163

T

S

P3

P2

P1

S1 S2

P

S2S1S3

S
P3

P2

P1

(i)

(ii)

T

S3

Figure 2: Rearranging strips and path yields the same
objective value. Thus, the optimal solution has the
same slope between all strips.

P2

P1

S

T

S1S2 S3 S4 S5

P4
P5

P3

last(P)

Figure 3: An optimal solution: The first strips are
visited with |Pi| = d, every other strip with |Pi| > d.

Lemma 1 The optimal solution is a polygonal chain
without kinks between the strips or inside the strips.
The path has the same slope between all strips.

In the following, we assume that the strips are or-
dered by widths w1 ≤ w2 ≤ · · · ≤ wn, starting at
the X-coordinate of the start point sx, and lie side by
side (i.e., without overlaps or gaps), see Fig. 2(ii). For
ty = sy the optimal path is the horizontal connection
between S and T . Thus, we assume ty > sy.

Now, we show some structural properties of an opti-
mal solution. The optimal solution visits some strips
with the same value d = |Pi| until it finally moves
directly to the end point, see Fig. 3 for an example.

Lemma 2 In a setting as described earlier, the op-
timal path P visits the first k ≤ n strips with the
same distance d and then moves directly to the end-
point. That is, for i = 1, . . . , k we have |Pi| = d and
for i = k + 1, . . . , n we have |Pi| > d. The path is
monotonically increasing and convex with respect to
the segment ST .

Proof. Let P denote an optimal path for n strips.
First, we show that the path is monotonically in-

creasing. There is at least one segment, Pi, with
positive slope, because ty > sy. Let us assume—for
contradiction—that there is also a segment, Pj , with
negative slope. We rearrange the strips and the path
such that Pi immediately succeeds Pj , see Fig. 4(i).
Now, we can move the common point of Pj and Pi up-
wards. Both segments decrease and the performance
of P gets better. Thus, there is no segment with neg-
ative slope and P is monotonically increasing.

The performance of P is given by |Pk| := minj |Pj |.
Let k be the biggest index such that Pk is responsible
for the performance. By contradiction, we show that
for i < k there is no Pi with |Pi| > |Pk|. So let us as-
sume that |Pi| > |Pk| holds for i < k. We can assume
|Pk| = |Pi+1|. From wi ≤ wi+1 we conclude that the
path PiPi+1 makes a right turn. Because |Pi| > |Pk|
we can globally optimize the solution by moving the
connection point downward, see Fig. 4(ii). Although
Pi increases, the total path length decreases. Thus,
|Pi| = |Pk| for i = 1, . . . , k − 1. For i = k + 1, . . . , n
we have |Pi| > |Pk| by assumption.

Now, we show that there is no kink in the path
Pk+1Pk+2 · · ·Pn. As |Pj | > |Pk| and |Pj+1| > |Pk| we
can globally optimize the solution by moving the con-
nection point downwards or upwards, see Fig. 4(iii).
The path length decreases. Thus, Pk+1Pk+2 · · ·Pn is
a straight line segment.

Altogether, for i = k + 1, . . . , n we have |Pi| >
d. For i = 1, . . . , k we have |Pi| = d and the
part Pk+1Pk+2 · · ·Pnlast(P) is a straight line segment.
Path P is monotonically increasing. The first part
of P makes only right turns as already seen. The
last part is a line segment. The concatenation of Pk

and Pk+1Pk+2 · · ·Pn also makes a right turn; other-
wise, we can again improve the performance because
Pk+1 > Pk. Altogether, P is convex w.r.t. ST . �

In the following, we show that we can compute
the optimal solution incrementally; that is, we succes-
sively add new strips and consider the corresponding
optimal solutions.

Let S1, S2, . . . , Sn be a set of strips and let S and
T be fixed. Let P i denote the optimal solution for
the first i strips. For increasing i the parameter k of
Lemma 2 is strictly increasing until it remains fixed:

(iii)(i) (ii)

Pi Pi

Pk+1

Pk+2

Pk+3

Pk

Pi

Pj Pj

Figure 4: Global optimization by local changes: The
connection point can be moved (i) upwards, (ii) down-
wards or (iii) upwards or downwards.

2

EuroCG’09 - Brussels, Belgium

164

Q

Si

S

Si+1

T

d

R
wi+1

|Rj | = wi+1

(j ∈ {1, . . . , i+ 1})

|Qj | = d

last(Q)

Figure 5: An optimal solution for k = i+1 strips can
be found between the extremes R and Q. |Rj | = wi+1

holds and d fulfills |Qj | = d with horizontal last(Q).

Lemma 3 For P i either the index k is equal to i or
P i is already given by P i−1. If P i is identical to P i−1,
also P j is identical to P i−1 for j = i+ 1, . . . , n.

We postpone the complete proof of Lemma 3 and
first show how to adapt a solution P i to a solution
P i+1. Let us assume that we have a solution P i and
that k in the sense of Lemma 2 is equal to i. That is,
the first i strips are visited with the same distance d.
If |P i

i+1| < d holds, the solution P i is not optimal for
i+1 strips. Therefore we want to adapt P i. Lemma 3
states that it migth be useful to search for a solution
with identical path length in k = i+ 1 strips.

We will now show that this solution can be com-
puted efficiently. The task is to compute the path
P i+1 between two extreme solutions, R and Q, as fol-
lows: Let R be the path with path lengths |Rj | = wi+1

for j = 1, . . . , i+1 and let Q be the path with |Qj | = d
for j = 1, . . . , i + 1, where the last segment, last(Q),
is horizontal. Starting from d = wi+1, let P i+1(d) de-
note the unique path that starts with |P i+1

j | = d for
j = 1, . . . , i+1 and ends with a straight line segment.

The performance of P i+1(d) is given by the func-
tion fi+1(d) := di+|last(P i+1(d))|. Note that we can
express |last(P j(d))| in terms of d: |last(P i+1(d))| =√
X2+

(
ty−

∑i+1
j=1

√
d2 − w2

j

)2

with X := tx−
i+1∑
j=1

wj .

By simple analysis, we can show that fi+1(d) has a
unique minimum in d:

Lemma 4 The function fi+1(d) has exactly one min-
imum for d ∈ [wi+1, δ], where δ is the solution of

ty −
∑i+1

j=1

√
δ2 − w2

j = 0 (i.e., the last segment is

horizontal).

Now, it is easy to successively compute the mini-
mum of fi+1(d) for i = 0, . . . , n− 1. For example, we
can apply numerical methods for getting a solution of
f ′i+1(d) = 0. In the following we assume that we can
compute this minimum in time O(i).

Using Lemma 4 we can now prove Lemma 3.

Sj

P j

S

T

P i+1

|P (d)j+1| = d

Si+1

P (d)

|P j
j+1| < |P j

j |

|P i+1
j+1 | < |P i+1

j |

d

SjSj−1

Figure 6: Between P i+1 and P j there has to be a
solution with P (d) which is better than P i+1.

Proof of Lemma 3. Let us assume that we have
a solution P i and let |P i

k| = d, where k denotes the
index in the sense of Lemma 2. We use this solution
for the first i + 1 strips. If |P i

i+1| ≥ d holds, the
given solution is also optimal for i+ 1 strips because
the overall performance remains the same: The last
segment, last(P i), of P i is a line segment with positive
slope. Further, wj ≥ wj−1 holds. Thus, P i is the
overall optimum; that is, we can apply P i to all n
strips and |P i

j | ≥ d holds for j = i+ 1, i+ 2, n.
This means that, if we have found a solution P i

with |P i
i+1| ≥ |P i

k| where k denotes the index from
Lemma 2, then we are done for all strips.

It remains to show that the index k is strictly in-
creasing until it is finally fixed. From the considera-
tion above we already conclude that there is only one
strip, where k does not increase. If k does not increase
from i to i+1 we have k < i+1 and |P i+1

k | < |P i+1
i+1 |.

Thus, P i+1 is the overall optimum and k is fixed.
Finally, we show that indeed k can never decrease.

Let us assume from ` = 1 to ` = i we have a solution
P ` for ` strips and k = ` for every P `. Let us further
assume that for i + 1 strips the solution P i+1 comes
along with k = j < i. We compare the two solutions
P i+1 (with k = j < i and |P i+1

j | =: di+1) and P j

(with k = j and |P j
j | =: dj), see Fig. 6.

As P j is optimal for j strips but not for j + 1, we
have |P j

j+1| < dj . On the other hand P i+1 is optimal
for i+1 strips; thus |P i+1

j+1 | > di+1 holds; see Lemma 2.
Now for a parameter d consider a monotone path

P (d) that starts from S, has equal path length d in
the first j strips and then moves toward T . While
d increases, the slope of the last segment strictly
decreases. Therefore, the path length |P (d)j+1| is
strictly decreasing in d. This means that dj > di+1

and P j runs above P i+1. The path P (d) changes con-
tinuously, therefore in [di+1, dj] there has to be a value
d′ such that |P (d′)j+1| is equal to d′. The path P (d′)
runs between P i+1 and P j . Obviously, d′ < P (d′)l

for l = j + 1, . . . , n holds.
We show that P (d′) is better than P i+1. This is

a direct consequence of Lemma 4. The value of P (d)
strictly decreases from d = di+1 to the unique mini-

3

Inspecting a Set of Strips Optimally

165

mum d = dj . Altogether, P i+1 is not optimal. �
The result of Lemma 3 now suggests a method for

computing the optimal path efficiently. Starting from
j = 1 we compute an optimal path for the first j
strips. Let P j denote this path. If |P j

j+1| > |P j
j |

holds we are done. Otherwise, we have to compute
P j+1 for j + 1 strips and so on.

3.2 Algorithm and its Analysis

Theorem 5 For a set of n axis-aligned strips the op-
timal inspection path can be computed in O(n log n)
time and linear space.

Proof. First, we sort the strips by width which takes
O(n log n) time. Then we apply binary search. That
is, in a first step we compute a solution with respect
to j = bn

2 c strips. This can be done by computing the
best value for fj(d) starting from wj = d until the last
segment is horizontal, see Lemma 4. Let dj denote the
optimal value for j strips and P j the optimal path.

Now, we have to determine whether the optimal
path visits i ≤ j or i > j strips with the same distance
di. If dj > wj+1, we have to take into account at least
the strip Sj+1. Therefore, i > j holds and we proceed
recursively with the interval [j, n]. If dj ≤ xj+1 we
proceed with the interval [1, j]. Therefore we will find
the optimum in log n steps. Computing the minimum
of fj(d) for index j takes O(j) time. �

For a lower bound construction we can simply as-
sume that the input of an algorithm is given by an un-
sorted set of strips. The X-coordinates of the strip’s
left boundaries and their widths describe the setting.
The solution is given by a polygonal chain from left
to right representing the order of the left boundaries.
Thus, sorting a set of n elements can be reduced to
the given problem.

Theorem 6 For a set of n axis-aligned unsorted
strips the optimal inspection path is computed in
Θ(n log n) time and Θ(n) space.

4 The L1-Case

Fortunately, if we measure the distance by the L1 met-
ric the structural properties are equivalent. Comput-
ing the optimal path becomes much easier.

Note that the path segments between the strips
have to be horizontal. We have to distribute the verti-
cal distance from S to T among a subset of the strips.
Again we sort the strips by their widths and rearrange
the scenario. Fig. 7 shows an example of an optimal
L1-path after rearrangement.

Theorem 7 The optimal L1-path P visits the first
k ≤ n strips with the same L1-distance d and then
moves horizontally to the end point T . For i =

P5

P2

P3

S5S4S3S2S1

T

S

P4

P1

Figure 7: An optimal solution in the L1-case after
rearrangement. The first three strips are visited with
the same value d, for all other strips |Pi| > d holds.
The path is horizontal between strips.

1, . . . , k we have |Pi| = d and for i = k + 1, . . . , n
we have wi > d. Additionally,

∑k
i=1 |Pi| = ty holds.

If the number of strips, n, increases, the index k in-
creases until it remains fixed. The optimal path can
be computed in Θ(n log n) time and Θ(n) space.

An algorithm for the L1 problem is given as follows.
First, we sort the strips by their widths. Then starting
from i = 1 we distribute ty +

∑i
j=1 wj among i strips.

For an optimal path, P i, for i strips we have |P i
j | =

1
i (ty +

∑i
j=1 wj) for j = 1, . . . , i. If |P i

i | < wi+1 this
path is also optimal for i+1 (and n) strips. For |P i

i | >
wi+1 we distribute ty +

∑i+1
j=1 wj among i + 1 strips;

that is, |P i+1
j | = 1

i+1 (ty+
∑i+1

j=1 wj) for j = 1, . . . , i+1.
Altogether, if the strips are given by ordered

widths, the algorithm runs in Θ(n) time and space.

References

[1] M. Benkert, B. Djordjevic, J. Gudmundsson, and T. Wolle.
Finding popular places. In Proc. 18th Internat. Sympos.
Algorithms Comput., volume 4835 of Lecture Notes Com-
put. Sci., pages 776–787, 2007.

[2] F. Berger, A. Grüne, and R. Klein. How many lions
can one man avoid? Technical Report 006, Depart-
ment of Computer Science I, University of Bonn, 2007.
http://web.informatik.uni-bonn.de/I/publications/bgk-
hmlcm-07.pdf.

[3] W. Chin and S. Ntafos. Optimum watchman routes. In
Proc. 2nd Annu. ACM Sympos. Comput. Geom., pages 24–
33, 1986.

[4] M. Dror, A. Efrat, A. Lubiw, and J. S. B. Mitchell. Touring
a sequence of polygons. In Proc. 35th Annu. ACM Sympos.
Theory Comput., pages 473–482, 2003.

[5] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel. The
polygon exploration problem. SIAM J. Comput., 31:577–
600, 2001.

[6] C. Icking, T. Kamphans, R. Klein, and E. Langetepe.
On the competitive complexity of navigation tasks. In
H. Bunke, H. I. Christensen, G. D. Hager, and R. Klein,
editors, Sensor Based Intelligent Robots, volume 2238 of
Lecture Notes Comput. Sci., pages 245–258, Berlin, 2002.
Springer.

[7] M. Sharir and E. Welzl. A combinatorial bound for linear
programming and related problems. In Proc. 9th Sympos.
Theoret. Aspects Comput. Sci., volume 577 of Lecture Notes
Comput. Sci., pages 569–579. Springer-Verlag, 1992.

4

EuroCG’09 - Brussels, Belgium

166

Modem Illumination of Monotone Polygons

Oswin Aichholzer∗§ Ruy Fabila-Monroy† David Flores-Peñaloza† Thomas Hackl∗

Clemens Huemer ‡ Jorge Urrutia†¶ Birgit Vogtenhuber∗

Abstract

We study a generalization of the classical problem of
illumination of polygons. Instead of modeling a light
source we model a wireless device whose radio sig-
nal can penetrate a given number k of walls. We call
these objects k-modems and study the minimum num-
ber of k-modems necessary to illuminate monotone
and monotone orthogonal polygons. We show that
every monotone polygon on n vertices can be illumi-
nated with

⌈
n
2k

⌉
k-modems and exhibit examples of

monotone polygons requiring
⌈

n
2k+2

⌉
k-modems. For

monotone orthogonal polygons, we show that every
such polygon on n vertices can be illuminated with⌈

n
2k+4

⌉
k-modems and give examples which require⌈

n
2k+4

⌉
k-modems for k even and

⌈
n

2k+6

⌉
for k odd.

1 Introduction

New technologies inspire new research problems, and
wireless networking is a clear example of this. One
such new problem is what we call here modem illu-
mination of polygonal regions. Our problem arises in
the following setting. It is well known that while try-
ing to connect a laptop to a wireless modem, there are
two factors that have to be considered, the distance
to the wireless modem and, perhaps more important
in most buildings, the number of walls separating our
laptop from the wireless modem. (From now on, the
term modem will be used to refer to a wireless mo-
dem.) We call a modem a k-modem if it is strong
enough to transmit a stable signal through at most k
walls along a straight line. Thus we say that a point
p in a polygon P is covered by a k-modem m in P
if the line segment joining p to m crosses at most k
walls (edges) of P .

∗Institute for Software Technology, Graz University of Tech-
nology, {oaich,thackl,bvogt}@ist.tugraz.at

†Instituto de Matemáticas, Universidad Na-
cional Autónoma de México, ruy@ciencias.unam.mx,
{dflores,urrutia}@math.unam.mx

‡Departament de Matemàtica Aplicada IV, Uni-
versitat Politècnica de Catalunya, Barcelona, Spain
clemens@ma4.upc.edu

§Research supported by the Austrian FWF Joint Research
Project ’Industrial Geometry’ S9205-N12.

¶Research supported in part by MTM2006-03909 (Spain)
and CONACYT of México, Proyecto SEP-2004-Co1-45876.

We point out that we allow a modem to be located
at a point q on an edge e of P ; In this case, if p is an
interior point of P , the line segment connecting p to q
may cross an odd number of edges of P . This follows
from the fact, that the line segment connecting p to
q does not cross the edge e of P containing q. In this
paper we consider the following problem:

Modem Illumination Problem: Let P be an art
gallery modeled by a polygon P with n vertices. How
many k-modems located at points of P are always
sufficient, and sometimes necessary, to cover all points
in P?

For k = 0 our problem corresponds to Chvátal’s
Art Gallery Theorem [2] which states that

⌊
n
3

⌋
watch-

men are always sufficient and sometimes necessary to
guard an art gallery with n walls. Many generaliza-
tions of the original Art Gallery problem have been
studied, see [4] for a comprehensive survey.

Illumination of polygons with wireless devices has
been studied recently in [3, 1] in a slightly differ-
ent context, the so-called sculpture garden problem.
There, each device only broadcasts a signal within a
given angle of the polygon and has unbounded range.
The task is to describe the polygon (distinguish it
from the exterior) by a combination of the devices,
meaning that for each point p in the interior of the
polygon no point outside the polygon receives signals
from the same devices as p. See also [5] for related
problems on wireless guarding.

In this paper we provide lower and upper bounds
for the Modem Illumination Problem for monotone
polygons and monotone orthogonal polygons, which
perfectly model most real life buildings.

For technical reasons we make the following as-
sumptions: for a non-orthogonal monotone polygon,
we assume that no two of its edges are parallel; when
we speak of a polygon we refer to both the boundary
and the interior of the polygon.

2 Modem Illumination of Monotone and Mono-
tone Orthogonal Polygons

2.1 Monotone Polygons

The next lemma provides our main tool for proving
upper bounds on the number of modems required to
illuminate monotone polygons. It allows us to split

1

Modem Illumination of Monotone Polygons

167

pm−1

pm−1 pm

x x

xx

L

L

R

R

ll

l

l

ll

Le

Le

Le

Lf

f

f

e

e

Figure 1: Illustrating the proof of Lemma 1.

monotone polygons into smaller ones, in such a way
that we can illuminate these sub-polygons indepen-
dently of each other.

Lemma 1 (Splitting Lemma) Let P be a monotone
polygon with vertices p1, p2, . . . , pn, ordered from left
to right. For every positive integer m < n, there exist
a vertical line segment l and two monotone polygons
L and R, such that:

• L has m vertices and R has n − m + 2 vertices.

• Either l is chord of L and an edge of R, or l is an
edge of L and a chord of R.

• pm or pm+1 is an end point of l.

• Denote as L′ the subset of L to the left of l, and
denote as R′ the subset of R to the right of l;
then P = L′ ∪ l ∪R′.

Proof. Without loss of generality we assume that
pm−1 lies on the upper polygonal chain of P . Let
f be the edge of P directly below pm−1 and let e be
the edge of P having pm−1 as its left endpoint. Also
let el = pm−1 and er be the left and right endpoints
of e, respectively. Likewise let fl and fr denote the
left and right endpoints of f , respectively.

We extend both e and f to straight lines, so that Le

is the straight line containing e and Lf is the straight
line containing f .

Since we are assuming non-parallel edges, Le and
Lf intersect at a point x. There are two cases (see
Figure 1):

1. x is to the left of pm−1.
Draw a vertical line through pm−1 and let l be
its intersection with P . Let P− be the subset of
P to the left of l and set L = P− ∪ l. We define
R as the polygon enclosed by:

• the upper polygonal chain of P from er to
pn,

• the lower polygonal chain of P from fr to
pn,

• the line segment from x to er and the line
segment from x to fr.

2. x is to the right of pm−1.
Draw a vertical line through pm and let l be its
intersection with P . Let P+ be the subset of P
to the right of l and set R = P+ ∪ l. We define
L as the polygon enclosed by:

• the upper polygonal chain of P from p1 to
pm−1,

• the lower polygonal chain of P from p1 to
fl,

• the line segment from el = pm−1 to x and
the line segment from fl to x.

Note that in both cases the three stated properties
between L, R, l and P hold. �

Before stating our main theorem for monotone
polygons, we remark two useful lemmas.

Lemma 2 Every (k+2)-gon can be illuminated with
a k-modem placed anywhere in the interior or on the
boundary of the polygon.

Proof. A (k + 2)-gon P contains k + 2 edges. Note
that any line segment joining points of the boundary
of P intersects at most k edges of P in its interior.
Therefore a k-modem placed anywhere in the interior
or on the boundary of P illuminates the whole poly-
gon. �

Lemma 3 Every (2k + 2)-gon can be illuminated
with a k-modem placed either at its (k + 2)-th or
(k + 1)-th vertex.

Proof. We apply Lemma 1 to P and obtain a line
segment l and two monotone polygons L and R of
k + 2 vertices each; all of them satisfying the proper-
ties given by Lemma 1. We place a k-modem at an
endpoint of l. By Lemma 2 this k-modem illuminates
both L and R. Since in particular it also illuminates
L′ and R′, by Lemma 1 all of P is illuminated. �

We remark that for the particular cases of k =
1, 2, 3, Lemma 3 can be strengthened as follows (for
lack of space, we omit the proofs):

Lemma 4 For every monotone heptagon there ex-
ists a point inside the polygon, between its second
and sixth vertex, where a 1-modem can be placed to
illuminate the whole polygon.

Proof. Omitted. �

Lemma 5 Every monotone 8-gon can be illuminated
with one 2-modem, placed either at its fourth or fifth
vertex.

Proof. Omitted. �

2

EuroCG’09 - Brussels, Belgium

168

Figure 2: A monotone n-gon requiring ⌈ n
2k+2⌉ k-

modems.

Lemma 6 Every monotone 9-gon can be illuminated
with one 3-modem placed at its fifth vertex.

Proof. Omitted. �

We are now ready to state our main theorem.

Theorem 7 Every monotone n-gon can be illumi-
nated with ⌈ n

2k ⌉ k-modems, and there exist monotone
n-gons that require at least ⌈ n

2k+2⌉ k-modems to be
illuminated.

Proof. An example achieving the lower bound is
given in Figure 2. So it remains to prove the up-
per bound. Using Lemma 1 recursively, we split the
n-gon into m = ⌈ n

2k ⌉ (2k + 2)-gons as follows: apply
Lemma 1 to P and obtain a line segment l1, a mono-
tone polygon L1 of 2k + 2 vertices and a monotone
polygon R1 of n− 2k vertices; all satisfying the prop-
erties of Lemma 1. Apply now Lemma 1 to R1 to
obtain a line segment l2, a monotone polygon L2 of
2k + 2 vertices and monotone polygon R2 of n − 4k
vertices.

Continue this process and obtain the
⌈

n
2k

⌉
mono-

tone (2k + 2)-gons L1, L2, . . . , Lm and the line seg-
ments l1, . . . , lm−1; all satisfying the properties of
Lemma 1.

For each Li (1 < i < m), let Qi be the subset of Li

to the left of li and to the right of li−1. For L1 and
Lm, let Q1 be the subset of L1 to the left of l1 and
Qm the subset of Lm to the right of lm−1.

By Lemma 3, each Li can be illuminated with a
k-modem placed in Qi. Note that since P = (

⋃
Qi)∪

(
⋃

li), this
⌈

n
2k

⌉
modems of power k illuminate all

of P . �

The proof of the upper bound in Theorem 7 uses
Lemma 3, however for k = 1, 2, 3 the corresponding
strengthened version of Lemma 3 can be used instead
to obtain the following (better) upper bound:

Theorem 8 For k = 1, 2, 3, any monotone n-gon can

be illuminated using
⌈

n
k+4

⌉
k-modems.

Proof. Omitted. �

We remark that for the particular case of 1-
modems, Theorem 8 gives an upper bound of

⌈
n
5

⌉
1-modems, and that there exist monotone n-gons (see
Figure 3) that achieve this as a lower bound.

Figure 3: A monotone n-gon requiring
⌈

n
5

⌉
1-modems.

2.2 Monotone Orthogonal Polygons

In this section we give lower and upper bounds on the
number of k-modems needed to illuminate orthogo-
nal and monotone orthogonal polygons. Recall that
for the main motivation of our research, namely to
place modems inside buildings in order to cover the
interior of the building with wireless reception, often
orthogonal polygons are a quite realistic scenario.

Proposition 9 Every orthogonal at most (k+4)-gon
P is illuminated by a k-modem placed anywhere in the
interior or on the boundary of P .

Proof. Any line segment l with endpoints inside or
on the boundary of the polygon P cannot properly
(i.e., in the interior of l) intersect any of the left-
most vertical, topmost horizontal, rightmost vertical
or bottom-most horizontal edge of P . Therefore, be-
ing at most k +4 edges in total, at most k+4−4 = k
edges are intersected by l. Thus, a k-modem placed
anywhere inside or on the boundary of P illuminates
the whole polygon. �

Proposition 10 For any x-monotone orthogonal
(k + 5)-gon there is a point on its leftmost (or right-
most) edge where a k-modem can be placed to illumi-
nate the polygon.

Proof. If (at least) one of the two horizontal edges
adjacent to the leftmost vertical edge, say e, is not the
topmost or bottom-most horizontal edge, respectively,
then placing the modem at the common vertex of e
and the leftmost vertical edge illuminates the polygon.
This follows from the proof of Proposition 9 and the
fact that e does not block the rays of the modem.

Otherwise consider the two horizontal edges adja-
cent to the rightmost vertical edge. At least one of
them is not the topmost or bottom-most horizontal
edge. Let e′ be this edge and w.l.o.g. assume that
the interior of the polygon lies below e′. The horizon-
tal line supporting e′ intersects the leftmost vertical
edge in its interior. Placing the modem on the left-
most vertical edge and below this intersection point
illuminates the whole polygon by arguments similar
to the previous case. Note that this is where we need
the x-monotonicity of the polygon to guarantee that
e′ cannot block the rays of the modem. �

Using the previous observations we now can prove
the following.

3

Modem Illumination of Monotone Polygons

169

Proposition 11 Every x-monotone orthogonal (2k+
6)-gon can be illuminated with a k-modem.

Proof. If k is even, we split the polygon vertically
into two (k + 4)-gons and place a k-modem in their
common intersection; Proposition 9 ensures that the
whole polygon is illuminated.

For odd k, split the polygon into one (k + 3)-gon
and one (k+5)-gon. By Proposition 10, there exists a
point in their common intersection where a k-modem
can be placed to illuminate the (k + 5)-gon; Propo-
sition 9 ensures that the (k + 3)-gon is also illumi-
nated. �

Our main result for monotone orthogonal polygons
is thus:

Theorem 12 Every x-monotone orthogonal polygon
on n vertices can be illuminated with ⌈ n−2

2k+4⌉ k-
modems.

Proof. Split the n-gon into (2k + 6)-gons and apply
Proposition 11. �

For the case when k is even, the bound of Theo-
rem 12 is tight, as shown by Figure 4 (right), where
a monotone orthogonal n-gon requiring ⌈ n−2

2k+4⌉ k-
modems to be illuminated is shown. For odd k, the
same example gives a lower bound of ⌈ n−2

2k+6⌉.
However, for 1-modems, an example of a monotone

orthogonal n-gon requiring ⌈n−2
6 ⌉ 1-modems to be il-

luminated is shown in Figure 4 (left). Thus in this
case the bound is also tight.

Figure 4: Lower bound constructions for monotone
orthogonal polygons.

3 Conclusions

Inspired by current wireless networks, we studied a
new variant of the classic polygon-illumination prob-
lem. To model the way wireless devices communicate
within a building, we now allow light to cross a vari-
able number of walls.

Using as a main tool the Splitting Lemma that al-
lows us to divide a polygon into simpler, overlapping

polygons, we give an upper bound on the number of
k-modems needed to illuminate any given monotone
polygon. We also presented a family of monotone
polygons that need at least a number of k-modems
close to that of our upper bound.

Moreover we studied the particular case when the
monotone polygons are orthogonal, where we have
been able to give, in most cases, tight bounds.

The natural open problem remaining is to close the
gap between lower and upper bounds for both types
of polygons, monotone and monotone orthogonal.

The modem illumination problem for general poly-
gons, has proved to be rather challenging. We be-
lieve that obtaining tight bounds for this case is a
non-trivial problem. At the moment the best lower
bounds we have, are those we have for monotone poly-
gons, and no significant upper bounds are known to
us. Noteworthy, we might not be surprised if the lower
bounds for general polygons happen to be realized by
monotone polygons also; note that this happens for
the ⌊n/3⌋ lower bound for the classical polygon illu-
mination problem.

4 Acknowledgments

We would like to thank Wolfgang Aigner, Franz Au-
renhammer and Bernhard Kornberger, for helpful dis-
cussions.

References

[1] D. Christ, M. Hoffmann, Y. Okamoto, T. Uno,
Improved Bounds for Wireless Localization. Proc.
11th Scandinavian Workshop on Algorithm Theory,
pp. 77–89, 2008.

[2] V. Chvátal, A combinatorial theorem in plane ge-
ometry. Journal of Combinatorial Theory, Series
B, 18:39–41, 1975.

[3] D. Eppstein, M.T. Goodrich, N. Sitchinava,
Guard Placement for Efficient Point-in-Polygon
Proofs. Proc. 23rd Symposium on Computational
Geometry, pp. 27–36, 2007.

[4] J. Urrutia, Art Gallery and Illumination Prob-
lems. In: J.R. Sack, J. Urrutia (eds.) Handbook
of Computational Geometry, pp. 973–1027, Elsevier
Science Publishers B.V., 2000.

[5] Y. Wang, C. Hu, Y. Tseng, Efficient Placement
and Dispatch of Sensors in a Wireless Sensor Net-
work. IEEE Transactions on Mobile Computing,
7:262–274, 2008.

4

EuroCG’09 - Brussels, Belgium

170

Low-Cost Tours for Nearsighted Watchmen with Discrete Vision

Sándor P. Fekete∗ Christiane Schmidt* †

Abstract

Computing an optimal watchman tour, a minimum
guard cover, or a minimum length milling tour (i.e.,
a closed path for a tool such that every point in the
polygon is touched by the tool) are natural and clas-
sical geometric optimization problems. We consider
a generalization of all three problems, motivated by
applications from robotics: Given a (simple) polygon
and a visibility range, find a closed path P and a set
of scan points S ⊂ P , such that (i) every point of the
polygon is within visibility range of a scan point; and
(ii) path length plus weighted sum of scan number
along the tour is minimized.

We demonstrate that this problem is NP-hard,
even for the special cases of rectilinear polygons and
L∞ scan range 1, and negligible small travel cost
or negligible travel cost. Our main result is a 2.5-
approximation for any linear combination of travel
cost and scan cost.

1 Introduction

In recent years, the development of real-world au-
tonomous robots has progressed to the point where
actual visibility-based guarding, searching, and ex-
ploring become very serious practical challenges, offer-
ing new perspectives for the application of algorith-
mic solutions. However, some of the technical con-
straints that are present in real life have been ignored
in theory; taking them into account gives rise to new
algorithmic challenges, necessitating further research
on the theoretical side, and also triggering closer in-
teraction between theory and practice. Two of these
constraints are (a) limited visibility range; and (b)
requirement to stop when scanning the environment.
These constraints give rise to the Myopic Watchman
Problem with Discrete Vision (MWPDV), which is the
subject of this paper.

Related Work. Closely related to practical prob-
lems of searching with an autonomous robot is the
classical theoretical problem of finding a shortest
watchman tour; e.g., see [5, 6]. Planning an optimal
set of scan points (with unlimited visibility) is the art
gallery problem [12]. Finally, visiting all grid points of

∗Algorithms Group, Braunschweig Institute of Tech-
nology, Germany. Email: {s.fekete,c.schmidt}@tu-bs.de,
http://www.ibr.cs.tu-bs.de/alg

†Supported by DFG Focus Program “Algorithm Engineer-
ing” (SPP 1307) project “RoboRithmics” (Fe 407/14-1).

a given set is a special case of the classical Traveling
Salesman Problem (TSP), see [10]. Two generaliza-
tions of the TSP are the so-called lawnmowing and
milling problems: Given a cutter of a certain shape,
e.g., an axis-aligned square, the milling problem asks
for a shortest tour along which the (center of the)
cutter moves, such that the entire region is covered
and the cutter stays inside the region all the time.
Clearly, this takes care of the constraint of limited vis-
ibility, but it fails to account for discrete visibility. At
this point, the best known approximation method for
milling yields a 2.5-approximation [2]. Other results
for TSP with neighborhoods include [7]; further vari-
ations arise from considering online scenarios, either
with limited vision [4] or with discrete vision [8, 9], but
not both. Finally, [1] consider covering a set of points
by a number of scans, and touring all scan points,
with objective cost being a linear combination of scan
cost and travel cost; however, the set to be scanned is
discrete, and scan cost is a function of the scan radius,
which may be small or large.

Our Results. We point our that even extreme
cases of the MWPDV are NP-hard. Our main result
is a 2.5-approximation for the case of grid polygons,
based on the 2.5-approximation by Arkin, Fekete, and
Mitchell [2].

2 Notation and Preliminaries

We are given a rectilinear polygon P with integer co-
ordinates, i.e., a polygon that can be described as the
union of axis-parallel unit grid squares (pixels); these
polygons are called polynominoes. Our robot, R, has
discrete vision, i.e., it can perceive its environment
when it stops at a point and performs a scan, which
takes c time units. Moreover, the visibility range is
limited: The points where R stops are called scan
points; from a scan point p, only the unit sphere in
L∞-norm around p is visible to R, i.e., the four pixels
incident to p. A set S of scan points covers the poly-
gon P , iff every point in P is visible from and within
visibility range of a point p ∈ S.

We search for a tour T and a set of scan points S
that covers P , such that the total travel and scan time
is optimal, i.e.,

t(T) = c · |S|+ L(T) (1)

is minimized. The following lemma allows us to focus
on visiting and scanning at grid points.

1

Low-Cost Tours for Nearsighted Watchmen with Discrete Vision

171

Lemma 1 For a rectilinear pixel polygon P there ex-
ists an optimum myopic watchman tour T ∗ such that
all scan points are located on grid points:

∃T ∗∀(xs, ys) ∈ S(T ∗) : xs ∈ Z ∧ ys ∈ Z. (2)

Proof. Let T be an optimal tour, with scan points
not located on grid points. Consider the vertical and
horizontal strips of pixels in P of maximal length.
W.l.o.g., we start with the horizontal strips. For every
strip, we shift the scans, such that the x-coordinates
are integers (starting from the boundary, i.e., with
distance 1 to the boundary if possible, and away from
non-reflex corners). The tour will not be longer, we
cover not less; in case we are able to reduce the num-
ber of scans per strip by one we have a contradiction
to t being optimal. After applying this to all hori-
zontal stripes we proceed analogously for the vertical
strips. Hence, we have an optimal tour, with all scan
points located on grid points. ¤

3 NP-Hardness

We point out that even extreme cases of the MWPDV
are NP-hard:

Theorem 2 (1) The MWPDV is NP-hard, even for
polynominoes and small or no scan cost, i.e., c ¿ 1
or c = 0.

(2) The MWPDV is NP-hard, even for polynomi-
noes and small travel cost, i.e., cÀ 1.

(3) The MWPDV is NP-hard, even for polynomi-
noes and no travel cost.

Proof Sketch. The first claim is a result of the
hardness of minimum cost milling, see [2]. The second
claim is an easy consequence of the NP-hardness of
Hamiltonicity of Grid Graphs (HGG) [10]: Given
an instance G of HGG with n vertices, turn it into
an instance of MWPDV by scaling the grid graph G
by a factor of two, and replacing each grid point of
G by a 2x2-square. This yields a canonical set of n
scan points that is contained in any optimal WMPDV
tour; traveling these with a tour length 2n is possible
if and only the graph G is Hamiltonian.

The third claim is closely related to a minimum
cover problem by visibility discs; however, the MW-
PDV requires that the scan points must be inside of
the polygonal region. We give a proof sketch along the
lines of [3], based on a reduction of the NP-hard prob-
lem Planar 3SAT, a special case of 3SAT in which the
variable-clause incidence graph H is planar. As a first
step, we construct an appropriate planar layout of the
graph H, e.g., by using the method of Rosenstiehl and
Tarjan [13]. This layout is turned into a grid poly-
gon by representing the variables, the clauses and the
edges of G. An example for the variable component
is given in Figure 1.

Figure 1: Top row: The polygonal piece for a variable
and the connection of an edge corridor. Bottom row: a
placement corresponding to “true” (left), and a placement
corresponding to “false” (right). The light gray scan is
used in both cases.

The variable gadgets allow two ways for locating a
minimum number of scan points. The first (the black
points in Figure 1) relates to a setting of “true”, the
other (the circles in Figure 1) to a setting of “false”.
For the variable setting “true” the scan squares are
pushed further into the edge corridor. These edge
corridors are similar to the variable-circles—bendings
are done accordingly. In order to have the same num-
ber of points and circles, edge corridors may be added,
that do not end in another polygonal piece, but assure
this parity (with circles at the edge corridor).

A clause component is given in Figure 2. Edge cor-
ridors of the three associated variables (each with the
appropriate truth setting) meet in the polygonal piece
for the clause (dark gray in Figure 2). If and only if
the clause is satisfied, i.e., if at least in one edge cor-
ridor a scan square is placed at a black point, three
additional scans suffice to cover this polygonal piece.
Otherwise, four scans are necessary.

Given the components defined above we can com-
pute the parameter k, the number of scan squares nec-
essary to cover the entire resulting polygon P . k is
polynomial in the number of vertices of G and part of
the input. All vertices of the resulting P have integer
coordinates of small size, their number is polynomial
in the number of vertices of G. This shows that the
problem is NP-hard.

4 Approximation

Our approximation proceeds in two steps:

(I) Construct a set of scan points that is not larger
than 2.5 times a minimum cardinality scan set.

(II) Construct a tour that contains all constructed
scan points and that does not exceed 2.5 times
the cost of an optimum milling tour.

The main idea for the second step is based on
the O(n logn)-time 2.5-approximation algorithm for

2

EuroCG’09 - Brussels, Belgium

172

(a)

(b) (c)

Figure 2: A clause component with the polygonal
piece (dark gray) and the three according edge corridors
(blue)(a). A placement corresponding to “true” (b), and a
placement corresponding to “false” (c). The green squares
are the scans necessary inside the clause.

milling from Arkin et al. [2]. The resulting tour con-
sists of three parts, see Figure 3 for an example, LOPT

being the optimal milling tour length:

(1) a ”boundary” part: B ⊂ P is the inward off-
set region of all points within P that are feasible
placements for the center of the milling cutter.
For a milling problem, B is connected. Tracing
the boundary δB of B, let PδB denote the region
milled by this route. (δB may not be connected
(if P features holes), the pieces are δBi.) The
length of δB, LδB is a lower bound on LOPT .

(2) a ”strip” part: Pint := P\PδB—if nonempty—
can be covered by a set of k horizontal strips Σi.
The y-coordinates of two strips differ by multiples
of 2. Then, let Lstr =

∑k
i=1 LΣi and this is again

a lower bound on the length of an optimal milling
tour: LOPT ≥ Lstr.

(3) a ”matching” part: the strips and the bound-
ary tour have to be combined for a tour. For
that purpose, consider the endpoints of strips on
δBi: every δBi contains an even number of such
endpoints. Hence, every δBi is partitioned into
two disjoint portions, M1(δBi) andM2(δBi). Us-
ing the shorter of these two (M∗(δBi)) for ev-
ery δBi we obtain for the combined length, LM :
LM ≤ Lstr/2 ≤ LOPT /2.

The graph with endpoints of strip lines plus the
points where strip line touches a δBi as vertices
is connected by three types of edges—the center
lines of the strips, the δBis and the M∗(δBi)s.
Every vertex has degree 4, hence, an Eulerian
tour gives a feasible solution.

Now we describe how to construct a covering set of
scan points:

Figure 3: A polygon P , consisting of pixels. The parts
for the approximative milling tour are indicated: PδBi in
light blue, δBi in gray.

1. Let S4e be the “even quadruple” centers of all
2x2-squares that are fully contained in P , and
which have two even coordinates.

2. Remove all 2x2-squares corresponding to S4e

from P ; in the remaining polyomino P4e, greedily
pick a maximum disjoint set S4o of “odd quadru-
ple” 2x2-squares.

3. Remove all 2x2-squares corresponding to S4o

from P4e; greedily pick a maximum disjoint set
S3 of “triple” 2x2-squares that cover 3 pixels each
in the remaining polyomino P4e,4o,

4. Remove all 2x2-squares corresponding to S3 from
P4e,4o; in the remaining set P4e,4o,3 of pixels, no
three can be covered by the same scan. Consid-
ering edges between pixels that can be covered
by the same scan, pick a minimum set of (“dou-
ble” S2 and “single” S1) scans by computing a
maximum matching.

Claim 1. The total number of scans is at most 2.5
times the size of a minimum cardinality scan set.

Claim 2. All scan points lie on a 2.5-approximative
milling tour.

For the first claim, let smin be the size of a cardi-
nality scan set. Observe that S4e∪S4o corresponds to
a set of disjoint 2x2-squares that are fully contained
in P ; hence, it follows from a simple area argument
that |S4e ∪ S4o| ≤ smin.

When considering the set of pixels in P4e,4o, not
more than three can be covered by the same scan; in
P4e,4o,3 we compute an optimal solution. This implies
that the only way to get a smaller cover in P4e,4o is to
change the choice of triple scans; this means that the
pixels covered by a triple scan have to be allocated
differently. Taking into account that P4e,4o does not
contain any 2x2-squares, a simple case analysis shows
that the only possible improvement replaces a triple,
a double and a single by two triples (as shown in the

3

Low-Cost Tours for Nearsighted Watchmen with Discrete Vision

173

left part of Figure 4). With s4min being the minimum
number of scans required for covering P4e,4o, we get
|S3 ∪ S2 ∪ S1| ≤ 3

2s
4
min ≤ 3

2smin. In total we get a
solution with not more than 3

2smin scans.

Figure 4: An example for our approximation method:
The set of “even quadruple”scans is shown in grey; the
“odd quadruple” scans are green. A possible (greedy!)
set of “triple” scan is shown in blue, leaving the maximum
matching (and the corresponding “double scans”) shown
in red. The leftover single pixels are yellow. The ellipse
indicates a part that is covered by three scans instead of
two: the triple scan with adjacent single and double scans
could be covered by two triple scans.

For the second claim, we use a milling tour con-
structed as in [2] and described above: Choosing the
strips to be centered on even y-coordinates allows us
to visit all scan points in S4e. Clearly, all pixels in
P4e are adjacent to the boundary of other scans in-
volve boundary pixels, allowing them to be visited
along the “boundary” part. (One minor technical de-
tail is shown in Figure 3: In order to visit the center
of a triple scan, we need to reroute the boundary part
of the tour to run through a reflex vertex; this does
not change the tour length.)

Figure 5: Modifying the boundary part of W (t): at a
reflex vertex, the gray path is used instead of δBi.

This concludes the proof. We summarize:

Theorem 3 A polyomino P allows a MWPDV so-
lution that contains at most 2.5 times the minimum
number of scans necessary to scan the polygon, and
has tour length at most 2.5 times the length of an
optimum milling tour.

5 Conclusion

We have introduced the NP-hard Myopic Watch-
man Problem with Discrete Vision. For the case
of L∞ range in rectilinear polygons, we gave a 2.5-
approximation for both tour length and number of
scans. Open questions include the following:

• Can we give an approximation in the case of L2

visibility range, i.e., for circles instead of squares?

• Can we improve the approximation factor?

For large visibility range and large scan cost, the
problem turns into minimum guard cover, for which
no constant-factor approximation is known; however,
we hope to achieve positive results for polygons that
are “fat” in terms of scan range vs. feature size. Im-
proving the approximation factor requires improving
the factor for milling; there is some indication that
there may even be a PTAS for the latter [11], so we
are somewhat optimistic.

References

[1] H. Alt, E. M. Arkin, H. Brönnimann, J. Erick-
son, S. P. Fekete, C. Knauer, J. Lenchner, J. S. B.
Mitchell, and K. Whittlesey. Minimum-cost coverage
of point sets by disks. In Symposium on Computa-
tional Geometry, pages 449–458, 2006.

[2] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell. Ap-
proximation algorithms for lawn mowing and milling.
Comput. Geom. Theory Appl., 17(1-2):25–50, 2000.

[3] C. Baur and S. P. Fekete. Approximation of geomet-
ric dispersion problems. Algorithmica, 30(3):451–470,
2001.

[4] A. Bhattacharya, S. K. Ghosh, and S. Sarkar. Ex-
ploring an unknown polygonal environment with
bounded visibility. In International Conference on
Computational Science (1), volume 2073 of LNCS,
pages 640–648. Springer, 2001.

[5] W.-P. Chin and S. Ntafos. Optimum watchman
routes. Proc. 2nd ACM Symposium on Computa-
tional Geometry, 28(1):39–44, 1988.

[6] W.-P. Chin and S. C. Ntafos. Shortest watchman
routes in simple polygons. Discrete & Computational
Geometry, 6:9–31, 1991.

[7] A. Dumitrescu and J. S. B. Mitchell. Approximation
algorithms for tsp with neighborhoods in the plane.
J. Algorithms, 48(1):135–159, 2003.

[8] S. P. Fekete and C. Schmidt. Polygon exploration
with discrete vision. In 23rd European Workshop
Comput. Geom., pages 86–89. Universität Graz, 2007.

[9] S. P. Fekete and C. Schmidt. Polygon exploration
with discrete vision. CoRR, abs/0807.2358, 2008.

[10] A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter.
Hamilton paths in grid graphs. SIAM Journal on
Computing, 11(4):676–686, 1982.

[11] J. S. B. Mitchell. Personal communication, 2009.

[12] J. O’Rourke. Art Gallery Theorems and Algorithms.
Internat. Series of Monographs on Computer Science.
Oxford University Press, New York, NY, 1987.

[13] P. Rosenstiehl and R. E. Tarjan. Rectilinear
planar layouts and bipolar orientations of planar
graphs. Discrete & Computational Geometry, 1:343–
353, 1986.

4

EuroCG’09 - Brussels, Belgium

174

Natural Wireless Localization is NP-hard

Tobias Christ1 Michael Hoffmann1 Yoshio Okamoto2

1 Institute for Theoretical Computer Science, ETH Zürich, {christt,hoffmann}@inf.ethz.ch
2 Tokyo Institute of Technology, okamoto@is.titech.ac.jp

Abstract

We consider a special class of art gallery problems
inspired by wireless localization. Given a polyg-
onal region P, place and orient guards each of
which broadcasts a unique key within a fixed an-
gular range. In contrast to the classical art gallery
setting, broadcasts are not blocked by the bound-
ary of P. At any point in the plane one must be
able to tell whether or not one is located inside
P only by looking at the set of keys received. We
prove NP-hardness of one variant of the problem,
namely the natural setting where guards may be
placed aligned to a boundary edge or two consec-
utive boundary edges of P only.

Introduction. Art gallery problems are a clas-
sic topic in discrete and computational geome-
try. A new direction has recently been introduced
by Eppstein, Goodrich, and Sitchinava [1]. They
propose to modify the concept of visibility by not
considering the edges of the polygon/gallery as
blocking. This changes the problem quite drasti-
cally because it breaks up a certain locality where
the shape of the polygon dictates the possible
placement of guards. A basic ingredient in hard-
ness proofs for the classical setting is a small
pocket/spike of the polygon which can only be
guarded from a nearby point because the bound-
ing polygon edges shield it away from the rest
of the world. This argument breaks down if the
edges do not block visibility. The motivation for
this model stems from communication in wire-
less networks where the signals are not blocked
by walls, either. For illustration, suppose you run
a café (modeled, say, as a simple polygon P) and
you want to provide wireless Internet access to
your customers. But you do not want the whole
neighborhood to use your infrastructure. Instead,
Internet access should be limited to those people
who are located within the café. To achieve this,
you can install a certain number of devices, let
us call them guards, each of which broadcasts a
unique (secret) key in an arbitrary but fixed angu-
lar range. The goal is to place guards and adjust

their angles in such a way that everybody who is
inside the café can prove this fact just by nam-
ing the keys received and nobody who is outside
the café can provide such a proof. Formally this
means that P can be described by a monotone
Boolean formula over the keys, that is, a formula
using the operators And and Or only, negation
is not allowed. (See [1, 2, 3].)

a b

cd
P = ∩ (a ∪ b)

d ∩ c

Notation. A guard g is a closed subset of the
plane, whose boundary ∂g is described by a ver-
tex v and two rays emanating from v. The ray
that has the interior of the guard to its right is
called the left ray `g, the other one is called the
right ray rg. The angle of a guard is the interior
angle formed by its bounding rays. For a guard
with angle π, the vertex is not unique. A guarding
G(P) for a polygonal region P is a set of guards
such that there is a formula composed of this set
and the operators union and intersection that de-
fines P. Natural locations for guards are the ver-
tices and edges of the polygonal region. A guard
which is placed at a vertex of P is called a vertex
guard. A vertex guard is natural if it covers ex-
actly the interior angle of its vertex [1]. A guard
placed anywhere on the line given by an edge of P
and broadcasting within an angle of π to the inner
side of the edge is called a natural edge guard. A
natural guarding is a guarding consisting of natu-
ral vertex and natural edge guards only [3]. From
now on we consider natural guardings only.

The Natural Wireless Localization Problem.
Given a finite union of simple polygons P and an
integer k, is there a natural guarding for P using
k guards?

Theorem 1 The Natural Wireless Localization
Problem is NP-complete.

1

Natural Wireless Localization is NP-hard

175

The problem is in NP. Given a set of nat-
ural guards we can check in polynomial time
whether they can describe P. To show the NP-
completeness we reduce the Vertex Cover Prob-
lem to the Wireless Localization Problem. It is
sufficient to consider 3-connected 3-regular pla-
nar graphs (see [4]). Let G = (V,E) be such a
graph of order n. Embed the vertices V into the
plane, that is, think of G as a geometric graph.
Denote the line defined by an edge e ∈ E by e.
The set of edges incident to a vertex v ∈ V is
denoted by E(v). Consider the line arrangement
L = { e | e ∈ E} defined by G. Add all perpen-
dicular bisectors of edges, resulting in an extended
line arrangement L′. We want L′ to be in gen-
eral position in the following weak sense: only
the three lines defined by the edges incident to a
vertex v meet in v and only e and its perpendic-
ular bisector meet in the midpoint of e denoted
by M(e). Furthermore, we want the embedding
to be strictly convex.

Lemma 2 Given a 3-regular and 3-connected
planar graph G = (V,E) it is possible to embed
V into an O(n5)×O(n5) grid in time polynomial
in n such that the extended line arrangement L′

of G is in general position in the weak sense and
every face is strictly convex.

Proof. A drawing of G on an O(n2)×O(n2) grid
in which all faces are strictly convex polygons can
be obtained in linear time [5]. Let G be such
a geometric graph on a K × K grid with K ∈
O(n2). The vertices and the midpoints of edges
are called points of interest. Perturb the vertices
locally one by one to finally get a new drawing
which is in general position in the weak sense, that
is, no lines of L′ intersect the points of interest
except those who have to. (We still denote the
drawing after perturbation by G and the extended
line arrangement by L′.)

An easy calculation reveals that on a K × K
square grid the distance between any grid point
v and any line l disjoint from v that is defined
by two grid points is at least 1/(

√
2K). Define

ε := 1/(2
√

2K). If we perturb the vertices by less
than ε, then the drawing remains strictly convex.
(Destroying a convex face corresponds to mov-
ing a vertex v of the face and a line l defined by
two other vertices of the face such that after the
perturbation v lies on the other side of l. The
distance of v and l is at least 2ε, therefore after
having perturbed every vertex by less than ε, v
cannot have changed sides.) In the same way one
might argue that the drawing remains crossing-
free, but this is not essential for our purposes.

Consider a small k×k grid around every vertex
v inside an ε-ball around v and choose a new loca-
tion for v in this grid as follows: Assume that we
already have perturbed the first m vertices and
that the extended line arrangement of the sub-
graph induced by the first m vertices is in general
position in our weak sense. Perturbing the next
vertex v we want to ensure that neither v or one
of the midpoints of its incident edges come to lie
on a line of L′ nor it induces a new line in L′ that
intersects a point of interest.

The extended line arrangement L′ is built on
3n lines. (There are 3n/2 edges giving rise to two
lines each.) Therefore, we have n + 3n/2 points
of interest. It is forbidden to put v

• on any of the lines from L′, except for those
lines e that are defined by an edge e ∈ E(v)
(less than 3n forbidden lines),
• on any line such that placing v there would

result in one of the midpoints M(e) of an
edge e ∈ E(v) lying on a forbidden line (less
than 3 · 3n = 9n forbidden lines),
• on any line defined by one of the neighbors

of v and an arbitrary other point of interest
(less than (15/2)n) forbidden lines),
• on any circle C centered at a point q of inter-

est and passing through one of the neighbors
of v (less than (15/2)n forbidden circles), as
placing v on C would cause the perpendicu-
lar bisector of the corresponding edge to pass
through q.

All of these less than 27n forbidden loci are ei-
ther lines or circles, each of which hits at most
k of the k2 grid points of the small grid around
v. Choosing k larger than 27n we can always be
sure to find an appropriate placement for v. Re-
call that this small grid is placed within an ε-
ball around v. As k = O(n) and ε = Ω(n−2),
the distance between any two distinct points on
a small grid is Ω(n−3). Overall, we refine the
K ×K grid by a factor of O(n3), which results in
an O(n5)×O(n5) grid. �

Let δ denote the minimum distance between
any point q of interest and a line of L′ disjoint
from q. After perturbation the vertices lie on an
O(n5) × O(n5) grid. Refining it by a factor of 2
ensures that all midpoints of edges are grid points,
too. As on a K ×K grid any grid point has dis-
tance at least 1/(

√
2K) to any disjoint line defined

by two grid points, δ = Ω(n−5).
The main steps of the reduction are the fol-

lowing. We successively replace every vertex by
a small convex hexagon. There are exactly two

2

EuroCG’09 - Brussels, Belgium

176

ways to guard such a polygon optimally: if the
vertices are numbered in order, either put guards
on all even vertices or put guards on all odd ver-
tices. The idea is that one way of guarding this
vertex gadget corresponds to the vertex being in
the vertex cover and the other way of guarding it
corresponds to the vertex not being in the cover.

Then, successively replace every edge by an
edge gadget, that is, a simple polygon having the
property that it needs at least 4 natural guards
unless there is a ray of some other guard pass-
ing through the gadget, in which case it needs 3
guards only. Thus, the edge gadget “asks” one of
its incident vertex gadgets to help out with such a
ray, which corresponds to the edge asking for one
of its incident vertices to be in the cover.

Finally, we will add a “punishment gadget” to
every vertex, to ensure that every vertex put into
the cover is paid for.

Vertex gadget. Every vertex v ∈ V is replaced
by a convex hexagon centered at v. Let E(v) =
{e1, e2, e3} be the edges incident to v. Let P (v)
be a polygon that has two edges collinear to e1,
two edges collinear to e2 and two edges collinear
to e3, all of them having length λ. We can avoid
creating edges that are on the same line as edges
already defined in other vertex gadgets by varying
the edge length 0 < λ < δ. Observe that every
line defined by the edges of P (v) is parallel to one
of the lines in the extended line arrangement L′

with distance at most δ.

P (w)

P (v)

Figure 1: The two ways to guard P (v) for a
vertex v and P (w) for a pointed vertex w.

Observation 1 There are exactly two ways to
guard the vertex gadget P (v) of an vertex v using
3 guards only: Either the rays of the guards go
into the same direction as the edges of v, which
we call the first way to guard it, or they go into
the other direction, which we call the second way.

In the special case of a pointed vertex, that is, a
vertex for which all incident edges lie within an
angle of less than π, the rays parallel to the middle
edge go into the other direction. See Figure 1.

δ e

a
b

rg

c

λ

`g′

Figure 2: An edge gadget Q(e).

Edge gadget. For every edge e ∈ E we insert a
polygon Q(e) such that no line through any edge
defined in some other gadget intersects Q(e), ex-
cept for the lines parallel to e that are defined by
the two vertex gadgets corresponding to the end-
points of e. Furthermore, we have to ensure that
no line defined by an edge of Q(e) intersects any
other edge gadget already created. If λ is chosen
to be sufficiently small, the lines defined by Q(e)
remain inside a δ-strip around the perpendicu-
lar bisector of e within our area of interest (up to
outermost intersection of the perpendicular bisec-
tor with other lines of the extended line arrange-
ment). Hence the lines defined by Q(e) do not
intersect any other edge gadget, as these gadgets
are located at an intersection of other lines of L′.
Note that choosing a very small λ and therefore
a “very flat” Q(e) does not change the properties
of Q(e) as far as guardings are concerned.

For an edge e that is the middle edge of a
pointed vertex on the outer face, do not place
Q(e) on the midpoint M(e) but somewhere within
the outer face along e. Note that at this point we
use that G forms a strictly convex embedding:
As all pointed vertices lie on the outer face, two
pointed vertices can only be connected by an edge
of the outer face, which cannot be a middle edge.
In other words, at most one endpoint of e can be
pointed.

If Q(e) is hit by a ray rg of a guard g or a
left ray `g′ of a guard g′ from the incident vertex
gadgets, then there Q(e) can be guarded using 3
guards only. (See Figure 2, Q(e) = a ∩ b ∩ (c ∪ g)
or Q(e) = a∩b∩(c∪g′), respectively.) If there are
no such rays crossing Q(e), then at least 4 guards
are needed to guard Q(e), see Figure 3. (If there
was a guarding using 3 guards only, then there
would have to be a natural vertex guard on every
second vertex. In either case there would be a
pair of points (depicted by crosses in Figure 3),
one inside Q(e) the other outside of Q(e), that
could not be distinguished by the guards.)

3

Natural Wireless Localization is NP-hard

177

Figure 3: An edge gadget hit by no ray.

Observation 2 At least 4 guards are needed for
Q(e) unless one of the incident vertex gadgets is
guarded in the first way, in which case 3 guards
suffice.

The punishment gadget. For every vertex v we
add a punishment gadget similar to the edge gad-
gets. Choose an edge e ∈ E(v) and place a poly-
gon R(v) as shown in Figure 2 somewhere along
e, (seen from v) on the side opposite to where the
edge gadget is. (For a pointed vertex, pick one of
the two edges incident to the reflex angle.) Again
make sure not to create any kind of interference
with other gadgets. We can always find an ap-
propriate placement for the gadgets by putting
them somewhere far away from everything else
and choosing λ small enough. For lack of space,
we have to defer details to the full paper.

Observation 3 Every punishment gadget needs
at least 4 guards if there are no rays of other
guards intersecting it. If its corresponding vertex
gadget is guarded in the second way, then there
is a guarding using only 3 guards.

All in all we get a finite union of simple poly-
gons P(G) composed of all vertex gadgets, all
edge gadgets and all punishment gadgets. It is
possible to construct P(G) in polynomial time.
Let n = |V | be the number of vertices and m =
|E| = 3n/2 the number of edges. The following
lemma completes the proof of Theorem 1.

Lemma 3 There is a vertex cover of G using k
vertices if and only if there is a natural guarding
for P(G) using at most 3m+ 6n+ k guards.

Proof. If there is a vertex cover of G of size k
we can find a guarding of P(G) as follows. Guard
every vertex that is in the cover in the first way,
every vertex that is not in the cover in the second
way. For every vertex guarded the first way we
have to put 4 guards on the corresponding pun-
ishment gadget, for every vertex we covered the
second way only 3. For all edge gadgets 3 guards
are sufficient, because since we started from a ver-
tex cover there will be the necessary rays around
to do it with 3 for all of them. So all in all we need

3m + 3n + 4k + 3(n − k) = 3m + 6n + k guards.
This proves the first direction of the lemma.

Suppose we are given a natural guarding of
P(G) using at most 3m+6n+k guards. We say a
guard belongs to a gadget, if it is a natural vertex
guard or a natural edge guard on this gadget. We
can find a vertex cover of G as follows. Take all
vertices whose punishment gadget has more than
3 guards belonging to it and put them into the
cover. Furthermore, add one of the endpoints of
all edges whose gadget has more than 3 guards
belonging to it. So far we have not put more
than k vertices into the cover since there cannot
be more than k edge or punishment gadgets with
more than 3 guards. (See the observations above.
At least 3 guards belong to every vertex gadget
and at least 3 guards belong to each of the other
m+ n gadgets, so there remain at most k guards
that can create such edge– or punishment gadgets
with 4 or more guards.) Indeed, this set forms a
cover of G because every edge that has no end-
point whose gadget is guarded in the first way
needs at least 4 guards. Therefore one of its end-
points got added to the cover. �

Outlook. The reduction sketched above shows
that it is hard to find an optimal guarding for a
collection of polygons or equivalently—looking at
the complement—for a polygon with holes. Cur-
rently we are working to extend the result to the
case where the input consists of a single simple
polygon. We also plan to investigate the com-
plexity of finding general, not necessarily natural,
guardings.

References

[1] D. Eppstein, M. Goodrich, N. Sitchinava. Guard
placement for efficient point-in-polygon proofs.
Proc. 23rd SoCG (2007), pp. 27–36.

[2] M. Damian, R. Flatland, J. O’Rourke, S. Ra-
maswami. A new lower bound on guard place-
ment for wireless localization. 17th FWCG
(2007). http://arxiv.org/abs/0709.3554

[3] T. Christ, M. Hoffmann, Y. Okamoto, T. Uno.
Improved bounds for the wireless localization
problem. Proc. 11th SWAT (2008), pp. 77–89.

[4] R. Uehara. NP-complete problems on a
3-connected cubic planar graph and their ap-
plications. Technical Report TWCU-M-0004,
Tokyo Woman’s Christian University, 1996.
http://www.jaist.ac.jp/˜uehara/ps/triangle.ps.gz

[5] I. Bárány, G. Rote. Strictly convex drawings
of planar graphs. Documenta Mathematica 11
(2006), pp. 369–391.

4

EuroCG’09 - Brussels, Belgium

178

Shortest Path Problems on a Polyhedral Surface∗

Atlas F. Cook IV † Carola Wenk †

Abstract

We develop algorithms to compute shortest path edge
sequences, Voronoi diagrams, the Fréchet distance,
and the diameter for a polyhedral surface.

1 Introduction

Two questions are invariably encountered when deal-
ing with shortest path problems. The first question
is how to represent the combinatorial structure of a
shortest path. In the plane with polygonal obstacles,
all shortest path vertices occur at obstacle vertices,
so a shortest path can be combinatorially described
as a sequence of obstacle vertices [8]. On a polyhe-
dral surface, a shortest path need not turn at vertices
[11], so a shortest path is often described combinatori-
ally by an edge sequence that represents the sequence
of edges encountered by the path [1].

The second commonly encountered shortest path
question is how to compute shortest paths. Let M
be the complexity of a polyhedral surface. On a
convex polyhedral surface, Mount [12] shows that
Θ(M4) combinatorially distinct shortest paths exist,
and Schevon and O’Rourke [13] show that only Θ(M3)
of these shortest paths are maximal (such paths can-
not be extended at either end without creating a sub-
optimal path). Agarwal et al. [1] use these properties
to compute Θ(M4) shortest path edge sequences in
O(M62α(M) log M) time, where α(M) is the inverse
Ackermann function. They also compute the diam-
eter of a convex polyhedral surface in O(M8 log M)
time.

We improve the diameter and edge sequence al-
gorithms of Agarwal et al. [1] on a convex poly-
hedral surface by a linear factor. Our improvement
combines star unfolding and kinetic Voronoi diagram
techniques. In addition, we achieve a linear factor
improvement over the Fréchet distance algorithm of
Maheshwari and Yi [10] for polygonal curves on a
convex polyhedral surface, and we present the first
algorithm to compute the Fréchet distance between
polygonal curves on a non-convex polyhedral surface.
Our motivation for studying the Fréchet distance on a
polyhedral surface is that teaming up two people for

∗This work has been supported by the National Science
Foundation grant NSF CAREER CCF-0643597.

†Department of Computer Science, University of Texas at
San Antonio, One UTSA Circle, San Antonio, TX 78249-0667,
USA, acook@cs.utsa.edu, carola@cs.utsa.edu

safety reasons is common practice in many real-life
situations, ranging from scouts in summer camp, to
fire fighters and police officers, and even to astronauts
exploring the moon. In all of these applications, two
team members need to coordinate their movement in
order to stay within “walking distance” so that fast
assistance can be offered in case of an emergency. The
Fréchet distance is an ideal model for this scenario.
We summarize our results in Table 1. The following
notation is used throughout this paper. Let M be
the total complexity of a polyhedral surface and two
polygonal curves A and B that lie on the surface. Let
π(s, t) denote a shortest path on a surface between
points s and t, and let d(s, t) be the Euclidean length
of π(s, t).

2 Shortest Path Problems on a Polyhedral Surface

2.1 Shortest Path Edge Sequences

This section contains superset and exact algorithms
for computing the Θ(M4) shortest path edge se-
quences on a convex polyhedral surface P. Both of our
algorithms are linear factor improvements over related
results of Agarwal et al. [1]. Let v1, ..., vM be the cor-
ner vertices of P, and let Π = {π(s, v1), ..., π(s, vM)}
be an angularly ordered set of non-crossing shortest
paths from a source point s ∈ P to each corner vertex
vj ∈ P. The star unfolding S is a simple polygon [4]
defined by cutting P along each of the shortest paths
in Π and unfolding the resulting shape into the plane.
Since the source point s touches all M cuts, s ∈ P
maps to M image points s1, ..., sM on the (two di-
mensional) boundary of the unfolded simple polygon
S (see Figure 1).

An equator [5] in the star unfolding is a closed
polygonal curve through the points v1, ..., vM , v1. The
region inside the equator contains no source image
and is called the core [7]. The disconnected regions
outside the core each contain a source image and are
collectively referred to as the anti-core [7]. A core
edge is an image of an edge of P that was never cut
during the unfolding process. Each of the O(M) core
edges has both of its endpoints at vertices of S and is
entirely contained in the core (see Figure 1b). Each
of the Θ(M2) anti-core edges is an image of an edge
of P that was cut during the unfolding process.

The star unfolding of s can be used to compute
π(s, t) for points s, t ∈ P as follows. The shortest

1

Shortest Path Problems on a Polyhedral Surface

179

Time Space

Star Unfolding O(M4)* O(M4)

maintained over all edges

Kinetic Voronoi Diagram O(M52α(M) log M) O(M52α(M))

maintained over all edges

Edge Sequences (superset) O(M5) O(M5)

Edge Sequences (exact) O(M52α(M) log M) O(M42α(M))

Diameter O(M7 log M) O(M4)

Fréchet O(M6 log2 M) O(M2)

Distance O(M7 log2 M)* O(M3)

Table 1: Summary of our contributions. An asterisk indicates a result for a non-convex polyhedral surface.

path π(s, t) always originates from one of the source
images s1, ..., sM . If the image of t lies in an anti-core
region containing si, then the optimal shortest path
must originate from si (i.e., the shortest paths from
t to the remaining source images are suboptimal). If
the image of t lies in the core, then the nearest source
image is determined with Voronoi diagram techniques.

Agarwal et al. [1] partition the M edges of the con-
vex polyhedral surface P into O(M3) line segment
edgelets such that all source points on an edgelet can
be associated with the same combinatorial star un-
folding. For each edgelet, a star unfolding is com-
puted, and O(M3) edge sequences are extracted from
it. This yields an O(M6) superset of the Θ(M4)
shortest path edge sequences for P in O(M6) time
and space [1]. Agarwal et al. [1] also show how to
compute the exact set of Θ(M4) shortest path edge
sequences in O(M62α(M) log M) time. We speed up
both of these algorithms by a linear factor.

Theorem 1 A star unfolding can be maintained as a
source point s varies continuously over all M edges of
a (possibly non-convex) polyhedral surface in O(M4)
time and space.

Proof Sketch. The set Π of shortest paths to each
corner vertex defines a combinatorial star unfolding.
These paths can only change at edgelet endpoints, so
Π can be maintained over a discrete set of events. For
each change to Π, we update O(1) anti-core regions
and possibly all O(M) core edges in the star unfold-
ing. �

Theorem 2 A superset of the Θ(M4) shortest path
edge sequences for a convex polyhedral surface P can
be constructed in O(M5) time and space.

Proof. Each edgelet defines a star unfolding with
source images s1, ..., sM . For each si, construct an
edge sequence from si to each of the O(M) anti-core
edges in the anti-core region for si and to each of

the O(M) core edges. This yields O(M2) edge se-
quences per edgelet, and O(M5) edge sequences over
all edgelets. This is sufficient to determine the desired
superset because only core edges have shortest path
edge sequences to multiple sites, and this approach
considers all possibilities. �

The exact set of Θ(M4) shortest path edge se-
quences can be determined with kinetic Voronoi dia-
gram techniques. Albers et al. [2] show that for point
sites moving along line segments at constant speeds,
each pair of sites defines O(M2α(M)) events, and each
event is handled in O(log M) time.

Theorem 3 A kinetic Voronoi diagram of source im-
ages can be maintained in O(M42α(M) log M) time
and O(M42α(M)) space as a source point varies con-
tinuously over one edge e of a convex polyhedral sur-
face P.

Proof. A kinetic Voronoi diagram for the first
edgelet on e has O(M2 · M2α(M)) events [2] due to
the linear motion of O(M2) pairs of source images
in the star unfolding. Each of the O(M2) subsequent
edgelets on e can be handled by removing one site (i.e.,
a source image) and adding a new site. All other sites
continue to be parameterized along the same line seg-
ments as in the previous edgelet. Thus, each of the
O(M2) edgelets contributes M − 1 new pairs of sites
and adds O(M · M2α(M)) new events to the event
queue. �

We construct the exact set of shortest path edge se-
quences for an edgelet α as follows. Maintaining a ki-
netic Voronoi diagram for α yields a two-dimensional
parameterized Voronoi cell ϕi for each source image
si. The unique edge sequence in the star unfolding’s
dual graph from si to a core edge e represents a short-
est path if and only if e intersects ϕi for some s ∈ α.

To decide in logarithmic time whether e intersects
ϕi, Agarwal et al.[1] represent each parameterized

2

EuroCG’09 - Brussels, Belgium

180

Voronoi vertex as an algebraic curve. For a vertex
vi ∈ S that touches the anti-core region for the source
image si, they triangulate the region of the core that
is directly visible to vi such that every triangle ∆ has
apex vi. Using polar coordinates centered at vi, they
compute an upper envelope µ of the algebraic curves
defining ϕi and partition these curves such that each
curve segment is fully contained in one of these tri-
angles. Inside each triangle ∆, the dual graph of the
core has at most one degree three vertex because each
core edge is a chord of ∆. Agarwal et al. [1] compute
a dual graph tree D∆ for each triangle in O(M) time.

Lemma 4 D∆ can be constructed implicitly in
O(log M) time.

Proof Sketch. Determine the portion of the core’s
dual graph D that lies inside ∆ by point locating the
three vertices of ∆ in D. �

For each constant complexity algebraic curve on the
upper envelope µ ∩ ∆, Agarwal et al. [1] perform a
binary search on the two paths in D∆. The deepest
edge on each of these two paths that intersects some
arc of µ ∩ ∆ defines a maximal shortest path edge
sequence. The set of all prefixes of these maximal se-
quences defines Θ(M4) shortest path edge sequences.

Theorem 5 The Θ(M4) shortest path edge se-
quences for a convex polyhedral surface P with M
edges can be constructed in O(M52α(M) log M) time
and O(M42α(M)) space.

Proof. Let ni be the total number of parameterized
Voronoi vertices over all edgelets, and let t∆ be the
time to process each triangle ∆. The technique of
Agarwal et al. [1] requires O(ni log M + M5t∆) time.
Since they assume ni ∈ O(M62α(M)) and t∆ ∈ O(M),
they obtain O(M62α(M) log M) time. By Theorem 3,
ni ∈ O(M52α(M)) over all O(M) edges of P, and by
Lemma 4, t∆ ∈ O(log M) time. �

2.2 Diameter

The diameter of a convex polyhedral surface is the
largest shortest path distance between any pair of
points on the surface. Agarwal et al. [1] compute
the diameter in O(M8 log M) time by defining O(M4)
ridge-free regions on the surface such that all source
points in a ridge-free region have the same combina-
torial star unfolding.

Theorem 6 The diameter of a convex polyhedral
surface P with M edges can be constructed in
O(M7 log M) time and O(M4) space.

Proof Sketch. Maintain a kinetic Voronoi diagram
over all ridge-free regions. Each of the O(M4) ridge

(a) (b) (c)

v1 v2
v3

v4

v5

s

s1 s2 s3
s4s5

v2
v3

v4

v5
v1

s

l1

l2

l3

l4l5

v1
v5

v2
v3

v4

s1

s2

s3

s4s5

v1
v5

v2
v3

v4

l1

l2

l3

l4l5

ε

Figure 1: The star unfolding of a polyhedral surface.

free regions defines O(M3) new events, for a total of
O(M7) parameterized Voronoi vertices. Each vertex
can be associated with a function that defines the dis-
tance from this vertex to its defining source image.
The maximum value defined by these functions is the
diameter. �

2.3 Fréchet Distance

The Fréchet distance [3] is a similarity metric for
continuous shapes that is defined for two polygonal
curves A,B : [0, 1] → Rd as

δF (A,B) = inf
α,β:[0,1]→[0,1]

sup
t∈[0,1]

d(A(α(t)), B(β(t)))

where α and β range over continuous non-decreasing
reparameterizations, and d is a distance metric for
points. For a given constant ε ≥ 0, free space is de-
fined as {(s, t) | s ∈ A, t ∈ B, d(s, t) ≤ ε}. Let
δC(A,B) (resp. δN (A,B)) denote the Fréchet dis-
tance between polygonal curves A and B on a con-
vex (resp. non-convex) polyhedral surface. Mahesh-
wari and Yi [10] have previously shown how to com-
pute δC(A,B) in O(M7 log M) time by enumerating
all edge sequences. However, their approach relies on
[9] whose key claim “has yet to be convincingly estab-
lished” [1]. We compute δC(A,B) without enumerat-
ing edge sequences in O(M6 log2 M) time and O(M2)
space.

We first describe all free space for a given constant
ε ≥ 0. The star unfolding S maps a fixed source point
s ∈ A to a set of source image points s1, ..., sM and
maps B to a set of core and anti-core edges. Free space
is defined by the union of a set of disks d1, ..., dM ,
where each disk di has radius ε and is centered at
si. As the source point s varies continuously on an
edgelet, the core is fixed, and each si is parameter-
ized along a line segment li in the star unfolding (see
Figure 1b).

Theorem 7 δC(A,B) can be computed in
O(M6 log2 M) time and O(M2) space.

3

Shortest Path Problems on a Polyhedral Surface

181

Proof Sketch. A star unfolding is maintained over
all edgelets by Theorem 1. The free space for an anti-
core edge is defined by the intersection of this edge
with one nearest disk di. The free space for each core
edge is defined by the intersection of this edge with
d1∪...∪dM . After computing all free space, reachabil-
ity information [3] can be propagated through the free
space via plane sweep [6], and parametric search [3]
can be applied to a set of algebraic free space vertex
curves. �

For a non-convex polyhedral surface, the star un-
folding can overlap itself [5] but is still defined by a
set of shortest paths from the source to every cor-
ner vertex [5, 11]. Thus, a core can still be defined
by a polygonal equator with O(M) complexity. Since
shortest paths only turn at vertices in the star unfold-
ing [11], an anti-core region containing si must have
an hourglass shape [8, 6] because it is bounded by two
line segments and two shortest paths in the plane.

Theorem 8 δN (A,B) can be computed in
O(M7 log2 M) time and O(M3) space.

Proof Sketch. Maintain a star unfolding over all
edgelets. One hourglass defines the free space to an
anti-core edge, and O(M) hourglasses define the free
space to a core edge. After computing all free space,
a combination of plane sweep and parametric search
techniques yields δN (A,B). �

3 Conclusion

We develop algorithms to compute edge sequences,
Voronoi diagrams, the Fréchet distance, and the diam-
eter for a polyhedral surface. Our work speeds up the
edge sequence and diameter approaches of Agarwal et
al. [1] by a linear factor and introduces many algo-
rithms that apply to convex and non-convex polyhe-
dral surfaces. Future work could attempt to compute
the Θ(M4) shortest path edge sequences in Θ(M4)
time. Additional shortest path map and link distance
results were omitted from this version due to space
concerns.

References

[1] P. K. Agarwal, B. Aronov, J. O’Rourke, and
C. A. Schevon. Star unfolding of a polytope
with applications. SIAM Journal on Computing,
26(6):1689–1713, 1997.

[2] G. Albers, J. S. B. Mitchell, L. J. Guibas, and
T. Roos. Voronoi diagrams of moving points.
Journal of Computational Geometry and Appli-
cations, 8:365–380, 1998.

[3] H. Alt and M. Godau. Computing the Fréchet
distance between two polygonal curves. Journal
of Computational Geometry and Applications,
5:75–91, 1995.

[4] B. Aronov and J. O’Rourke. Nonoverlap of the
star unfolding. 7th Symposium on Computational
Geometry (SoCG), pages 105–114, 1991.

[5] J. Chen and Y. Han. Shortest paths on a poly-
hedron. Journal of Computational Geometry and
Applications, 6(2):127–144, 1996.

[6] A. F. Cook IV and C. Wenk. Geodesic Fréchet
distance inside a simple polygon. 25th Sympo-
sium on Theoretical Aspects of Computer Science
(STACS), 2008.

[7] E. D. Demaine and J. O’Rourke. Geometric
Folding Algorithms: Linkages, Origami, Polyhe-
dra. Cambridge University Press, New York, NY,
USA, 2007.

[8] L. J. Guibas, J. Hershberger, D. Leven,
M. Sharir, and R. E. Tarjan. Linear-time al-
gorithms for visibility and shortest path prob-
lems inside triangulated simple polygons. Algo-
rithmica, 2:209–233, 1987.

[9] Y.-H. Hwang, R.-C. Chang, and H.-Y. Tu. Find-
ing all shortest path edge sequences on a convex
polyhedron. Workshop on Algorithms and Data
Structures (WADS), 1989.

[10] A. Maheshwari and J. Yi. On computing Fréchet
distance of two paths on a convex polyhedron.
21st European Workshop on Computational Ge-
ometry (EuroCG), 2005.

[11] J. S. B. Mitchell, D. M. Mount, and C. H.
Papadimitriou. The discrete geodesic problem.
SIAM Journal on Computing, 16(4):647–668,
1987.

[12] D. M. Mount. The number of shortest paths on
the surface of a polyhedron. SIAM Journal on
Computing, 19(4):593–611, 1990.

[13] C. Schevon and J. O’Rourke. The number of
maximal edge sequences on a convex polytope.
26th Allerton Conference on Communication,
Control, and Computing, pages 49–57, 1988.

4

EuroCG’09 - Brussels, Belgium

182

Conflict-Free Coloring Made Stronger

Elad Horev∗ Roi Krakovski† Shakhar Smorodinsky‡

Abstract

In this paper we prove the following:
(i) Any set of n discs in the plane can be colored

with a total of at most O(k log n) colors such that for
any point p that is covered by at least k discs, there
are at least k distinct discs each of which is colored by
a color distinct from all other discs containing p and
for any point p covered by at most k discs, all discs
covering p are colored distinctively. We call such a
coloring a k-Strong Conflict-Free coloring. We extend
this result to pseudo-discs and arbitrary regions with
linear union-complexity.

(ii) More generally, for families of n simple closed
Jordan regions with union-complexity bounded by
O(n1+α), we prove that there exists a k-strong
conflict-free coloring with at most O(knα) colors.

(iii) We prove that any set of n axis-parallel rectan-
gles can be k-strong conflict-free colored with at most
O(k log2 n) colors.

(iv) For the case of discs and axis-parallel rectan-
gles, we provide a lower bound of Ω(k

log k log n) on
the maximum number of colors needed in k-strong
conflict-free coloring in the worst case.

(v) We provide a general framework for k-strong
conflict-free coloring arbitrary hypergraphs. This
framework relates the notion of k-strong conflict-free
coloring and the recently studied notion of k-colorful
coloring.

All of our proofs are constructive. That is, there
exist polynomial time algorithms for computing such
colorings.

1 Introduction and Preliminaries

Motivated by modeling frequency assignment to cellu-
lar antennae, Even et al. [14] introduced the notion of
Conflict-Free colorings. A Conflict-Free coloring (CF
in short) of a hypergraph H = (V, E) is a coloring of
the vertices V such that for any non-empty hyperedge
e ∈ E there is some vertex v ∈ e whose color is distinct
from all other colors of vertices in e. For a hypergraph
H, one seeks the least number of colors l such that

∗Computer Science department, Ben-Gurion University,
Beer Sheva, Israel; horevel@cs.bgu.ac.il.
†Computer Science department, Ben-Gurion University,

Beer Sheva, Israel; roikr@cs.bgu.ac.il.
‡Mathematics department, Ben-Gurion University, Beer

Sheva, Israel; http://www.math.bgu.ac.il/∼shakhar/ ;

shakhar@math.bgu.ac.il.

there exists an l-coloring of H which is conflict-free.
Let R be a finite collection of regions in Rd, d ≥ 1.
For a point p ∈ Rd, define r(p) = {R ∈ R : p ∈ R}.
The hypergraph (R, {r(p)}p∈Rd), denoted H(R), is
called the hypergraph induced by R. Such hyper-
graphs are referred to as geometrically induced hy-
pergraphs. The paper [14] focused on hypergraphs
that are induced by geometric objects such as discs,
squares etc. Their motivation was a modeling of fre-
quency assignment to cellular antennae in a manner
that reduces the spectrum of frequencies used by a
network of antennae. The notion of CF-coloring has
caught much scientific attention in recent years both
from the algorithmic and combinatorial point of view
[2, 3, 5, 6, 7, 9, 10, 15, 18].

Our Contribution: We study the notion of k-strong-
conflict-free (abbreviated, kSCF) colorings of hy-
pergraphs. This notion extends the notion of CF -
colorings of hypergraphs.

Definition 1 (k-strong conflict-free coloring:)
Let H = (V, E) be a hypergraph and let k ∈ N
be some fixed integer. A coloring of V is called
k-strong-conflict-free for H if for every hyperedge
e ∈ E with |e| ≥ k there exists at least k vertices in
e, whose colors are unique among the colors assigned
to the vertices of e and for each hyperedge e ∈ E
with |e| < k all vertices in e get distinct colors . Let
fH(k) denote the least integer l such that H admits
a kSCF -coloring with l colors.

Abellanas et al. [1] were the first to study kSCF-
coloring1. They focused on the special case where V
is a finite set of points in the plane and E consist of all
subsets of V which can be realized as an intersection
of V with a disc. They showed that in this case the
hypergraph admits a kSCF-coloring with O(logn

log ck
ck−1

)

(= O(k log n)) colors, for some absolute constant c.

k-colorful coloring The following notion was re-
cently introduced and studied by Aloupis et al. [4]
for the special case of hypergraphs induced by discs:

Definition 2 Let H = (V, E) be a hypergraph, and
let ϕ be a coloring of H. A hyperedge e ∈ E is said
to be k-colorful with respect to ϕ if there exist k ver-
tices in e that are colored distinctively under ϕ. The

1They referred to such a coloring as k-conflict-free coloring.

1

Conflict-Free Coloring Made Stronger

183

coloring ϕ is called k-colorful if every hyperedge e ∈ E
is min{|e|, k}-colorful. Let cH(k) denote the least in-
teger l such that H admits a k-colorful coloring with
l colors.

Aloupis et al. were motivated by a problem related
to battery lifetime in sensor networks. See [4, 8, 17]
for additional details on the motivation and related
problems.
Remark: Every kSCF -coloring of a hypergraph H
is a k-colorful coloring of H. However, the opposite
claim is not necessarily true.

We study a connection between k-colorful color-
ing and strong-conflict-free coloring of hypergraphs.
We show that if a hypergraph H admits a k-colorful
coloring with a “small” number of colors (hereditar-
ily) then it also admits a (k − 1)SCF-coloring with a
“small” number of colors. The interrelation between
the quoted terms is provided in theorems 1 and 2 be-
low:

Let H = (V, E) be a hypergraph and let V ′ ⊂ V .
We write H[V ′] to denote the sub-hypergraph of H
induced by V ′, i.e., H[V ′] = (V ′, E ′) and E ′ = {e ∩
V ′|e ∈ E}. We write n(H) to denote the number of
vertices of H.

Theorem 1 Let H = (V, E) be a hypergraph with
n vertices, and let k, ` ∈ N be fixed integers, k ≥
2. If every induced sub-hypergraph H ′ ⊆ H satisfies
cH′(k) ≤ `, then fH(k− 1) ≤ log1+ 1

`−1
n = O(l log n).

Theorem 2 Let H = (V, E) be a hypergraph with n
vertices, and let k ≥ 2 be a fixed integer. let 0 < α ≤ 1
be a fixed real. If every induced sub-hypergraph H ′ ⊆
H satisfies cH′(k) = O(kn(H ′)α), then fH(k − 1) =
O(knα).

We provide an upper bound on the number of colors
required by kSCF -coloring of geometrically induced
hypergraphs as a function of the union-complexity of
the regions that induce the hypergraphs. Below we
describe the relations between the union-complexity
of the regions, k-colorful and (k − 1)SCF coloring of
the underlying hypergraph. First, we need to define
the notion of union-complexity.

Definition 3 For a family R of n simple closed Jor-
dan regions in the plane, let ∂R denote the bound-
ary of the union of the regions in R. The union-
complexity of R is the number of intersection points,
of a pair of boundaries of regions in R, that belong to
∂R.

For a set R of n simple closed planar Jordan re-
gions, let UR : N→ N be a function such that UR(m)
is the maximum union-complexity of any subset of k
regions in R over all k ≤ m, for 1 ≤ m ≤ n. We abuse

the definition slightly and assume that the union-
complexity of any set of n regions is at least n. When
dealing with geometrically induced hypergraphs, we
consider k-colorful coloring and kSCF -coloring of hy-
pergraphs that are induced by simple closed Jordan
regions having union-complexity at most O(n1+α), for
some fixed parameter 0 ≤ α ≤ 1. The value α = 0
corresponds to regions with linear union-complexity
such as discs or pseudo-discs (see, e.g., [16]). The
value α = 1 corresponds to regions with quadratic
union-complexity. See [12, 13] for additional families
with sub-quadratic union-complexity.

Theorem 3 Let k ≥ 2, let 0 ≤ α ≤ 1, and let c be
a fixed constant. Let R be a set of n simple closed
Jordan regions such that UR(m) ≤ cm1+α, for 1 ≤
m ≤ n, and let H = H(R). Then cH(k) = O(knα).

Combining Theorem 1 with Theorem 3 (for α = 0)
and Theorem 2 with Theorem 3 (for 0 < α < 1) yields
the following result:

Theorem 4 Let k ≥ 2, let 0 ≤ α ≤ 1, and let c be
a constant. Let R be a set of n simple closed Jordan
regions such that UR(m) = cm1+α, for 1 ≤ m ≤ n.
Let H = H(R). Then:

fH(k − 1) =
{
O(k log n), α = 0,
O(knα), 0 < α ≤ 1.

We consider kSCF -colorings of hypergraphs in-
duced by axis-parallel rectangles in the plane. Ob-
viously, axis-parallel rectangles might have quadratic
union-complexity, for example, by considering a grid-
like construction of n/2 disjoint (horizontally nar-
row) rectangles and n/2 disjoint (vertically narrow)
rectangles. For a hypergraph H induced by axis-
parallel rectangles, Theorem 4 states that fH(k−1) =
O(kn). This bound is meaningless, since the bound
fH(k − 1) ≤ n is trivial. Nevertheless, we provide a
near-optimal upper bound for this case in the follow-
ing theorem:

Theorem 5 Let k ≥ 2. Let R be a set of n axis-
parallel rectangles, and let H = H(R). Then fH(k −
1) = O(k log2 n).

In order to obtain Theorem 5 we prove the following
theorem:

Theorem 6 Let H = H(R), be the hypergraph in-
duced by a family R of n axis-parallel rectangles in
the plane, and let k ∈ N be an integer, k ≥ 2.
For every induced sub-hypergraph H ′ ⊆ H we have:
cH′(k) ≤ k log n.

The proof of Theorem 5 is therefore an easy conse-
quence of Theorem 6 combined with Theorem 1

2

EuroCG’09 - Brussels, Belgium

184

Har-Peled and Smorodinsky [15] proved that any
family R of n axis-parallel rectangles admit a CF-
coloring with O(log2 n) colors. Their proof uses the
probabilistic method. They also provide a random-
ized algorithm for obtaining CF-coloring with at most
O(log2 n) colors. Later, Smorodinsky [18] provided
a deterministic polynomial-time algorithm that pro-
duces a CF-coloring for n axis-parallel rectangles with
O(log2 n) colors. Theorem 5 thus generalizes the re-
sults of [15] and [18].

Finally, it is shown that the upper bounds provided
in Theorem 4 for α = 0 and Theorem 5 are near
optimal. Specifically, we provide lower bounds on the
number of colors required by any kSCF -coloring of
hypergraphs induced by (unit) discs and axis-parallel
squares in the plane:

Theorem 7 (i) There exist families R of n (unit)
discs for which fH(R)(k) = Ω(k

log k log n)
(ii) There exist families R of n axis-parallel squares

for which fH(R)(k) = Ω(k
log k log n).

All of our proofs are constructive. In other
words, there exist deterministic polynomial-time al-
gorithms to obtain the required kSCF coloring with
the promised bounds. In this abstract, we omit the
technical details of all the underlying proofs and al-
gorithms due to space limitations.

2 A Framework For Strong-Conflict-Free Coloring

In this section we prove that if there exist fixed
integers k and l such that an n-vertex hypergraph
H admits the hereditary property that every vertex-
induced sub-hypergraph H ′ of H admits a k-colorful
coloring with at most l colors, then H admits a
(k − 1)SCF -coloring with O(l log n) colors. For the
case when l is replaced with the function kn(H ′)α

we get a better bound without the log n factor. The-
orems 1 and 2 establish the mentioned framework.
The proof is constructive. The following framework
produces a valid (k−1)SCF coloring for a hypergraph
H satisfying the conditions of Theorems 1 and 2.
Framework A:
Input: A hypergraph H satisfying the conditions of
Theorems 1 and 2.
Output: A (k − 1)SCF -coloring of H.

1: i← 1 {i denotes an unused color.}
2: while V 6= ∅ do
3: Auxiliary Coloring: Let ϕ : V → [`] be a k-

colorful coloring of H[V] with at most ` colors.
4: Let V ′ be a color class of ϕ of maximum cardi-

nality.
5: Color: Set χ(u) = i for every vertex u ∈ V ′.
6: Discard: V ← V \ V ′.
7: Increment: i← i+ 1.

8: end while
9: Return χ.

Let χ denote the coloring obtained by appllying the
framework A on H. The number of colors used by χ
is the number of iterations performed by A. By the
pigeon-hole principle, at least |V |/` vertices are re-
moved in each iteration (where V is the set of vertices
remained after the last iteration). Therefore, the to-
tal number of iterations performed by A is bounded
by log1+ 1

`−1
n. Thus, the coloring χ uses at most

log1+ 1
`−1

n colors. If in step 3 of the framework, l
is replaced with the function k|V |α (for a fixed pa-
rameter 0 < α < 1), then by the pigeon-hole principle
at least |V |

1−α

k vertices of H are discarded in step 6 of
that iteration. It is easily seen that the number of it-
erations performed in this case is bounded by O(knα)
where n = n(H).

Next, we prove that the coloring χ is indeed a (k−
1)SCF -coloring of H. The colors of χ are the indices
of iterations of A. Let e ∈ E be a hyperedge of H. If
|e| ≤ k then it is easily seen that all colors of vertices of
e are distinct. Indeed, by the property of the auxiliary
coloring ϕ in step 3 of the framework, every vertex of
e is colored distinctively and in each such iteration,
at most one vertex from e is colored by χ so χ colors
all vertices of e in distinct iterations. Next, assume
that |e| > k. We prove that e contains at least k − 1
vertices that are assigned unique colors in χ. For an
integer r, let {α1, . . . , αr} denote the r largest colors
in decreasing order that are assigned to some vertices
of e. That is, the color α1 is the largest color assigned
to a vertex of e, the color α2 is the second largest
color and so on. In what follows, we prove a stronger
assertion that for every 1 ≤ j ≤ k − 1 the color αj
exists and is unique in e. The proof is by induction
on j. α1 exists in e by definition. For the base of the
induction we prove that α1 is unique in e. Suppose
that the color α1 is assigned to at least two vertices
u, v ∈ e, and consider iteration α1 of A. Let H ′ =
H[{x ∈ V : χ(x) ≥ α1}], and let ϕ be the k-colorful
coloring obtained for H ′ in step 3 of iteration α1. Put
e′ = {x ∈ e : χ(x) ≥ α1}. e′ ⊂ e is a hyperedge in
H ′. Since u, v ∈ e′ then |e| ≥ 2. ϕ is k-colorful for
H ′ so e′ contains at least two vertices that are colored
distinctively in ϕ. In iteration α1, the vertices of one
color class of ϕ are removed from e′. Since e′ contains
vertices from two color classes of ϕ, it follows that
after iteration α1 at least one vertex of e′ remains.
Thus, at least one vertex of e′ is colored in a later
iteration than α1, a contradiction to the maximality
of α1. The induction hypothesis is that in χ the colors
α1, . . . , αj−1, 1 < j ≤ k−1, all exist and are unique in
the hyperedge e. Consider the color αj . There exists
a vertex u ∈ e such that χ(u) = αj ; for otherwise it
follows from the induction hypothesis that |e| < k− 1
since the colors α1, . . . , αj−1 are all unique in e and

3

Conflict-Free Coloring Made Stronger

185

j − 1 < k − 1. We prove that the color αj is unique
in e. Assume to the contrary that αj is not unique at
e, and that in χ the color αj is assigned to at least
two vertices u, v ∈ e. Put H ′′ = H[{u ∈ V : χ(u) ≥
αj}], and let ϕ′′ be the k-colorful coloring obtained
for H ′′ in step 3 of iteration αj . Put e′′ = {u ∈
e : χ(u) ≥ αj}. e′′ is a hyperedge of H ′′. By the
induction hypothesis and the definition of the colors
α1, . . . , αj−1, after iteration αj a set U ⊂ e′′ of exactly
j−1 vertices of e′′ remains. In addition, u, v ∈ e′′ and
U∩{u, v} = ∅. Consequently, |e′′| ≥ j+1. Since ϕ′′ is
k-colorful then e′′ contains vertices from min{k, j+1}
color classes of ϕ′′. j ≤ k − 1 so min{k, j + 1} =
j + 1. Since in iteration αj the vertices of one color
class of ϕ′′ are removed from e′′, it follows that after
iteration αj at least j vertices of e′′ remain. This
is a contradiction to the induction hypothesis. This
completes the proof of the theorem.

Theorems 1 and 2 asserts that in order to attain up-
per bounds on fH(k), for a hypergraph H, one may
concentrate on attaining a bound on cH(k). Given
a k-colorful coloring of H, the framework A obtains
a strong-conflict-free coloring of H in a constructive
manner. In this paper, computational efficiency is
not of main interest. However, it can be seen that
for certain families of geometrically induced hyper-
graphs, framework A produces an efficient algorithm.
In particular, for hypergraphs induced by discs or
axis-parallel rectangles, framework A produces an al-
gorithm with a low degree polynomial running time.
Colorful-colorings of such hypergraphs can be com-
puted once the arrangement of the discs is computed
together with the depth of every face.

References

[1] M. Abellanas, P. Bose, J. Garcia, F. Hurtado,
M. Nicolas, and P. A. Ramos. On properties of higher
order delaunay graphs with applications. In EWCG,
2005.

[2] D. Ajwani, K. Elbassioni, S. Govindarajan, and
S. Ray. Confict-free coloring for rectangle ranges
using Õ(n.382+ε) colors. In SPAA ’07: Proc. 19th
ACM Symp. on Parallelism in Algorithms and Ar-
chitectures, pages 181–187, 2007.

[3] N. Alon and S. Smorodinsky. Conflict-free colorings
of shallow discs. In SoCG ’06: Proc. 22nd Annual
ACM Symposium on Computational Geometry, pages
41–43, 2006.

[4] G. Aloupis, J. Cardinal, S. Collette, S. Langer-
man, and S. Smorodinsky. Coloring geometric range
spaces. In Proc. of the 8th Latin American Sympo-
sium on Theoretical Informatics (LATIN’08), pages
146–157, Búzios, Brazil, 2008.

[5] A. Bar-Noy, P. Cheilaris, S. Olonetsky, and
S. Smorodinsky. Online conflict-free colorings for hy-
pergraphs. In ICALP, pages 219–230, 2007.

[6] A. Bar-Noy, P. Cheilaris, S. Olonetsky, and
S. Smorodinsky. Weakening the online adversary just
enough to get optimal conflict-free colorings for inter-
vals. In SPAA, pages 194–195, 2007.

[7] A. Bar-Noy, P. Cheilaris, and S. Smorodinsky.
Conflict-free coloring for intervals: from offline to on-
line. In SPAA ’06: Proceedings of The Eighteenth An-
nual ACM Symposium on Parallelism in Algorithms
and Architectures, pages 128–137, New York, NY,
USA, 2006. ACM Press.

[8] A. L. Buchsbaum, A. Efrat, S. Jain, S. Venkatasubra-
manian, and K. Yi. Restricted strip covering and the
sensor cover problem. In SODA, pages 1056–1063,
2007.

[9] K. Chen, A. Fiat, M. Levy, J. Matoušek, E. Mos-
sel, J. Pach, M. Sharir, S. Smorodinsky, U. Wagner,
and E. Welzl. Online conflict-free coloring for inter-
vals. SIAM J. Comput., 36:545–554, 2006, (See also in
Proc. 16th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 2005).

[10] K. Chen, H. Kaplan, and M. Sharir. Online conflict-
free coloring for halfplanes, congruent disks, and axis-
parallel rectangles, (manuscript), 2005.

[11] X. Chen, J. Pach, M. Szegedy, and G. Tardos. De-
launay graphs of point sets in the plane with respect
to axis-parallel rectangles. In SODA, pages 94–101,
2008.

[12] A. Efrat. The complexity of the union of (α, β)-
covered objects. In ”Proc. 15th Annu. ACM Sympos.
Comput. Geom.”, pages 134–142, 1999.

[13] A. Efrat and M. Sharir. On the complexity of the
union of fat convex objects in the plane. Discrete
and Comput.Geom., 23:171–189, 2000.

[14] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky.
Conflict-free colorings of simple geometric regions
with applications to frequency assignment in cellu-
lar networks. SIAM J. Comput., 33:94–136, 2003,
(See also in Proc. 43rd Annual Symposium on Foun-
dations of Computer Science, 2002).

[15] S. Har-Peled and S. Smorodinsky. On conflict-free
coloring of points and simple regions in the plane.
Discrete and Comput.Geom., pages 47–70, 2005, (See
also in 19th Annual Symposium on Computational
Geometry, 2003).

[16] K. Kedem, R. Livne, J. Pach, and M. Sharir. On
the union of Jordan regions and collision-free trans-
lational motion amidst polygonal obstacles. Discrete
Comput. Geom., 1:59–71, 1986.

[17] J. Pach and G. Tóth. Decomposition of multiple cov-
erings into many parts. In Symposium on Computa-
tional Geometry, pages 133–137, 2007.

[18] S. Smorodinsky. On the chromatic number of some
geometric hypergraphs. SIAM Journal on Discrete
Mathematics, 21:676–687, 2007, (See also in Proc.
17th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 2006).

4

EuroCG’09 - Brussels, Belgium

186

Two Applications of Point Matching

Günter Rote∗

Abstract

The two following problems can be solved by a reduc-
tion to a minimum-weight bipartite matching problem
(or a related network flow problem):

a) Floodlight illumination: We are given n infinite
wedges (sectors, spotlights) that can cover the whole
plane when placed at the origin. They are to be as-
signed to n given locations (in arbitrary order, but
without rotation) such that they still cover the whole
plane. (This extends results of Bose et al. [4] from
1997.)

b) Convex partition: Partition a convex m-gon into
m convex parts, each part containing one of the edges
and a given number of points from a given point set.
(Garćıa and Tejel 1995 [5], Aurenhammer 2008 [3])

1 The Semi-Assignment Problem

We are given an m× n cost matrix (cij) and an inte-
ger demand vector (n1, . . . , nm) with

∑
nj = n. The

semi-assignment problem is the following optimiza-
tion problem:

minimize
m∑

i=1

n∑
j=1

cijxij (1)

subject to
∑n

j=1
xij = 1, for i = 1, . . . , n (2)∑m

i=1
xij = nj , for j = 1, . . . ,m (3)

0 ≤ xij ≤ 1 (4)

By network flow theory, there is an optimal solution
with xij ∈ {0, 1}, and it represents an assignment
where each row is assigned to exactly one column,
and each column j has nj rows assigned to it. The
special case where m = n and all nj = 1 is the usual
assignment problem.

Kennington and Wang [6] showed that it can be
solved in O(mn2) time by the shortest augmenting
path method.

By linear programming duality (in particular, net-
work flow duality), we get the following characteriza-
tion of optimal semi-assignments.

Lemma 1 A feasible 0-1-solution (xij) is an optimal
solution of the problem (1–4) if and only if any of the
following two (equivalent) conditions holds.

∗Institut für Informatik, Freie Universität Berlin, Taku-
straße 9, 14195 Berlin, Germany, rote@inf.fu-berlin.de

Figure 1: The illumination problem

(i) There are dual variables ui and vj for which com-
plementary slackness holds:

cij ≥ ui + vj , for all i, j, (5)

and xij = 1 implies cij = ui + vj .

(ii) There are variables vj , such that each row i is as-
signed to some row j for which cij−vj is smallest.

Proof. Part (i) is the complementary slackness con-
dition of linear programming duality. For part (ii), ob-
serve that for given vj , we must have ui ≤ minj(cij −
vj) in order to fulfill (5). It is no loss of generality to
set ui to this maximal possible value minj(cij − vj),
and then cij = ui+vj is fulfilled precisely for those col-
umn indices j for which the minimum is achieved. �

We will now give two geometric applications of this
lemma. In each case, we have a lower envelope of
planes in three dimensions. We want to adjust the
planes such that each cell in the projection of the lower
envelope contains a prescribed number of points from
a given set S.

2 Illumination

We are given n floodlights W1, . . . ,Wn, each cover-
ing an (infinite) wedge of the plane, and n locations
p1, . . . ,pn for the floodlights, as shown in the upper

1

Two Applications of Point Matching

187

(a) (b)

P

Figure 2: Weighted Voronoi diagrams

part of Figure 1. The task is to find a one-to-one as-
signment from the floodlights to the locations so that
the floodlights collectively illuminate the whole plane,
as shown in the lower part.

Bose et al. [4] have shown that this is always pos-
sible if the floodlights can be freely rotated, provided
that the total angle is at least 2π. We strengthen this
result to the case when rotation is not allowed.

Theorem 2 Any set of n wedges, each of opening
angle < π, which collectively cover the plane when
placed at the origin, can be assigned to n given loca-
tions such that they still cover the plane.

The condition that the floodlights must cover the
whole range of directions is clearly necessary.

Proof. We place the wedges at the origin and form
a convex polygon P with one vertex on every ray, see
Figure 2a. Now we lift P to the plane z = 1 in three
dimensions and form a convex cone through P with
vertex at the origin. Figure 2a can be seen as the
vertical projection of this cone. Each wedge Wj is
represented by a plane πj with equation z = aj · x,
where aj and x =

(
x
y

)
are vectors in the plane, and

“·” denotes the scalar product. The cone is the upper
envelope of the planes.

If we shift the planes vertically by adding a constant
vj to each equation:

πj : z = aj · x + vj ,

the upper envelope becomes a convex polyhedral sur-
face, whose projection on the x-y-plane is a weighted
Voronoi diagram (or power diagram) of the weighted
points aj with weights vj , see Figure 2b for an exam-
ple. We denote the regions in this diagram by Rj .

Lemma 3 If the weighted Voronoi diagram for some
appropriate set of weights vj contains one point pi in
each Voronoi cell, then, placing each wedge at the cor-
responding point will make all wedges disjoint. The
opposite wedges (rotated by 180◦) will cover the whole
plane.

Rj

R̄j

(a) (b)

Figure 3: (a) Disjoint wedges in the weighted Voronoi
diagram. (b) The furthest-point weighted Voronoi
diagram (highlighted) is overlaid over the weighted
Voronoi diagram, showing why the whole plane is cov-
ered.

Proof. The first statement is obvious, since each
wedge Wj is contained in its cell Rj , see Figure 3a.

To prove the second statement, we look at the lower
envelope of the planes (the furthest-point weighted
Voronoi diagram), see Figure 3b. One can see that
placing the rotated wedge on any point in the region
Rj is sufficient to cover the corresponding region R̄j in
the furthest-point weighted Voronoi diagram. In fact,
Rj and R̄j share the lines through their unbounded
edges, but they lie on opposite sides of them. Since
each cell R̄j is covered, it follows that the whole plane
is covered by all rotated wedges. �

We remark that the condition that the opposite
wedges are disjoint is neither necessary for a cover-
ing, as witnessed by the example in Figure 1, nor is it
in itself sufficient to guarantee a covering.

The lemma will thus solve our problem, except that
all wedges are rotated by 180◦. So we only have to
start the procedure with the opposite (rotated) set of
wedges, in order to get the desired result in the end.

To conclude the proof of the theorem, we have
to show that there exists a weighted Voronoi dia-
gram with one point pi in each region, as required
by Lemma 3.

This follows from a result of Aurenhammer et al. [2],
of which we cite a special case:

Theorem 4 Given n points pi and n “slopes” aj ,
there is a set of weights vj such that the weighted
Voronoi diagram contains one point per region.

The connection between Theorem 4 and matchings
was noted by Aurenhammer et al. [2]. We use it
to give a self-contained proof of Theorem 4 from
Lemma 1.

Proof. We solve the assignment problem with cij :=
−ai · pj . According to Lemma 1, we get weights vj

such that each point pi is assigned to the plane j for

2

EuroCG’09 - Brussels, Belgium

188

which cij − vj = −aj · pi − vj is smallest, or equiva-
lently, for which aj · pi + vj is largest. This is indeed
the plane forming the upper envelope at the point ai,
and thus ai lies in region j. �

The running time of the algorithm implied by the
previous result is dominated by the running time of
computing the assignment. The classical network flow
methods takeO(n3) time. However, as observed in [2],
the objective function cij = −ai · pj is equivalent to
the objective function cij = ‖ai − pj‖2, apart from
an additive constant. Thus, our problem is equivalent
to least-squares bipartite point matching. For point
matching with Euclidean lengths as distances (with-
out squaring), Agarwal et al. [1] gave an algorithm of
running time O(n2+ε), for any ε > 0. It is likely that
this algorithm can be extended to our situation.

Theorem 2 can be generalized to higher dimensions,
provided that the floodlights come from a polytope
in the same way as the polygon P of Figure 2a is
associated to the wedges in the plane.

One can give a three-dimensional example showing
that the generalization is not true without any addi-
tional condition.

It is an open question to decide whether a given
three-dimensional polyhedral fan (a set of floodlights)
can be assigned to a given set of locations, forming a
covering of the plane. It is another open question
to characterize the three-dimensional polyhedral fans
which can be assigned to an arbitrary set of location.

In higher dimensions, there is no known geometric
algorithm that would beat the O(n3) bound.

3 Convex Partitioning

We are given n points S in a convex m-gon P with
sides e1, . . . , em, and m integers bi with b1+· · ·+bm =
n. The task is to partition the points into subsets
S = S1∪ · · ·∪Sm such that |Sj | = mj and the convex
hulls of Sj ∪ ej are disjoint, see Figure 4a. Garćıa
and Tejel [5] showed that such a partition always ex-
ists, and they gave an O(n log n) divide-and-conquer
algorithm for constructing it.

A particular type of convex partition was recently
introduced by Aurenhammer [3]: Consider the poly-
gon P in the x-y-plane of three-dimensional space,
and pass a plane πj through each side ej , rising above
the polygon. The lower envelope of these planes is
projected on the x-y-plane and induces a convex par-
tition, which is called a weighted skeleton, see Fig-
ure 4b. Aurenhammer [3] has shown that there exists
always such a partition for which the parts contain the
required number of points, and the resulting partition
of S is unique (apart from degenerate cases).

We give a different proof by a straightforward re-
duction to the semi-assignment problem: Let dij be
the distance between point i and the line through

(a) (b)

Figure 4: Partitioning points in a convex polygon. (a)
an arbitrary convex partition; (b) a weighted skeleton.
The dotted lines indicate an instance of the geometric
restrictions which hold for weighted skeleta.

ej . We then solve the semi-assignment problem with
cij := log dij . By Lemma 1 there are numbers vj such
that each point i is assigned to the side j for which
cij − vj is smallest. If we take aj := exp vj as the
slope of the plane πj , we get that each point i is as-
signed to the plane for which dij/aj is smallest; this
is indeed the plane which forms the lower envelope at
point i.

Aurenhammer sketched an algorithm which takes
O(mn log n(m + log n)) time and O(m + n) space,
whereas the semi-assignment algorithm of [6], with-
out taking into account the geometric structure of the
problem and the special structure of the cost matrix
(cij), takes O(mn2) time and O(m+ n) space. It re-
mains to be seen whether this matching problem fits
into the framework of the matching problems consid-
ered in [1], which might lead to an algorithm of run-
ning time O(n7/3+ε), for any ε > 0.

References

[1] Pankaj K. Agarwal, Alon Efrat, and Micha Sharir,
Vertical decomposition of shallow levels in 3-
dimensional arrangements and its applications. SIAM
J. Comput. 29(3): 912–953 (1999).

[2] Franz Aurenhammer, Friedrich Hoffmann, and Boris
Aronov, Minkowski-type theorems and least-squares
clustering. Algorithmica 20: 61–76 (1998)

[3] Franz Aurenhammer. Weighted skeletons and fixed-
share decomposition. Int. J. Comput. Geometry Appl.
40: 93–101 (2008)

[4] Prosenjit Bose, Leonidas J. Guibas, Anna Lubiw,
Mark H. Overmars, Diane L. Souvaine, Jorge Urru-
tia. The floodlight problem. Int. J. Comput. Geometry
Appl. 7(1/2): 153–163 (1997)

[5] A. Garćıa and J. Tejel. Dividiendo una nube de pun-
tos en regiones convexas. In: Actas VI Encuentros de
Geometŕıa Computational, Barcelona, Spain, 1995,
pp. 169–174.

[6] J. Kennington and Z. Wang. A shortest augment-
ing path algorithm for the semi-assignment problem.
Operations Research 40(1), 178–187 (1992).

3

Two Applications of Point Matching

189

EuroCG’09 - Brussels, Belgium

190

Distance k-Sectors and Zone Diagrams

Keiko Imai∗ Akitoshi Kawamura† Jǐŕı Matoušek‡ Yu Muramatsu§ Takeshi Tokuyama¶

Abstract

We prove the existence and uniqueness of the zone
diagram of a given set of sites in Euclidean space.
This was known for point sites in the plane, but our
proof is simpler even for this specific case. We also
show the existence of a distance k-sector between two
sites. Both proofs rely on the Knaster–Tarski theorem
on fixed points of monotone functions.

1 Introduction

Geometric bisection is a fundamental concept. The
points equidistant from given two points lie on a line,
and the points equidistant from a point and a line lie
on a parabola. The Voronoi diagram, an important
structure in computational geometry, can be consid-
ered as bisectors generalized to n points [3, 5].

What happens if bisection is replaced by trisection,
or more? Asano et al. [2] introduced the distance
k-sector (henceforth just k-sector) by extending the
equidistance condition for bisection: the k-sector of
two disjoint closed sets P and Q in the Euclidean
space Rd is a series of k − 1 nonempty sets C1, . . . ,
Ck−1 ⊆ Rd such that each Ci is the bisector of Ci−1

and Ci+1, where we regard C0 = P and Ck = Q.
Consider the most basic case where P and Q are

points in the plane. In this case, the trisector (3-
sector) exists and is unique [2]. The existence of a
4-sector of two points is easy: let C2 be the perpen-
dicular bisector of P and Q, and let C1 and C3 be the
bisecting parabolas. We do not know whether this is
the unique solution. Chun et al. [4] have shown that
the trisector of a point and a line exists and is unique,
and thus a 6-sector of two points exists; see Figure 1.
We remark that C1 and C5 of this 6-sector are closed
curves. Reem and Reich [6] proved that a trisector of
given two sets always exists in any metric space. It
was conjectured that a k-sector exists for any k, but
has not been proved even for two points in the plane.

∗Department of Information and System Engineering, Fac-
ulty of Science and Engineering, Chuo University

†Department of Computer Science, University of Toronto.
Supported in part by the Natural Sciences and Engineering
Research Council of Canada and the Nakajima Foundation.

‡Department of Applied Mathematics, Charles University
§Graduate School of Science and Engineering, Chuo Univer-

sity
¶Graduate School of Information Sciences, Tohoku Univer-

sity

Combining the ideas of Voronoi diagrams and the
trisector, we obtain the notion of zone diagrams [1].
A zone diagram of nonempty sets (called sites) P1,
. . . , Pn ⊆ Rd is an n-tuple (R1, . . . , Rn) of subsets of
Rd satisfying

Ri = dom
(
Pi,

∪
j 6=i

Rj

)
, i = 1, . . . , n, (1)

where, for sets A, B ⊆ Rd (not both empty),
dom(A,B) = {x ∈ Rd : d(x,A) ≤ d(x, B)} is
the dominance region of A over B, with d(X,Y) =
infx∈X,y∈Y |x − y| ∈ [0, +∞] denoting the Euclidean
distance of sets X and Y . Figure 2 shows the zone
diagram (and the Voronoi diagram) of line segments

p

x

x′
y y′

`

C1

C2

p

q

C1

C2

C3

C4

C5

Figure 1: The trisector of line l and point p (top) and
a 6-sector of points p, q (bottom).

1

Distance k-Sectors and Zone Diagrams

191

Figure 2: The Voronoi diagram (left) and the zone
diagram (right) of points and line segments.

and points in the plane. A zone diagram of two dis-
joint closed sites gives their trisector. Asano et al. [1]
proved the existence and uniqueness of the zone di-
agram of point sites in the plane, and conjectured
that the same is true for general sites and general
dimensions. Unfortunately, their proof involves case
analysis specific to R2 that seems hard to generalize.

The concept of a zone diagram can be immediately
generalized to any metric space. Reem and Reich [6]
proved the existence of what they call double zone di-
agrams, which are candidates for zone diagrams (see
Section 3), in an arbitrary metric space (and even in a
still more general setting, which they call m-spaces).
The existence of a zone diagram is not known in gen-
eral, and there are counterexamples to uniqueness in
some artificial metric spaces [6].

We settle two of the conjectures mentioned above
for Euclidean space:

Theorem 1 Let P1, . . . , Pn be nonempty subsets of
Rd such that d(Pi, Pj) > 0 for every i 6= j. Then the
zone diagram of (P1, . . . , Pn) exists and is unique.

Theorem 2 For any disjoint nonempty closed sets P
and Q ⊆ Rd, there exists a k-sector of P and Q.

These will be proved in Sections 3 and 4.1, respec-
tively. The Knaster–Tarski fixed point theorem (Sec-
tion 2), used already in [6], will play an essential role.

Theorem 1 is new even for the case n = 2, since
uniqueness was known only when the sites are points.
The proof is simpler than the ones in [2, 1] even for
the case of point sites in the plane.

Given a set R ⊆ Rd, we write R, ∂R and Rc for its
closure, boundary and complement.

2 The Knaster–Tarski fixed point theorem

Fix n ∈ N and let L be the set of all ordered n-tuples
of subsets of Rd. Given A = (A1, . . . , An) ∈ L and
B = (B1, . . . , Bn) ∈ L, define A ≤ B if Ai ⊆ Bi for
each i. This gives a partial ordering on L. A function
g from S ⊆ L to S is monotone (resp. anti-monotone)

if g(A) ≤ g(B) (resp. g(B) ≤ g(A)) for any A ≤ B.
An n-tuple D ∈ L is an upper (resp. a lower) bound of
Z ⊆ L if X ≤ D (resp. D ≤ X) for any X ∈ Z. A set
S ⊆ L is called a complete lattice if any subset Z ⊆ S
has the least upper bound

∨Z and the greatest lower
bound

∧Z in S. Following Reem and Reich [6], we
will use the Knaster–Tarski Theorem:

Theorem 3 ([7]) If S is a complete lattice and
g : S → S is monotone, then R =

∧{Y ∈ S : g(Y) ≤
Y } and S =

∨{Y ∈ S : g(Y) ≥ Y } are fixed points
of g. Moreover, R ≤ X ≤ S for any fixed point X.

In our applications, the monotonicity required in
the theorem is based on the following simple observa-
tion [1, 6].

Lemma 4 For X ⊆ X ′, we have dom(X,B) ⊆
dom(X ′, B) and dom(A,X) ⊇ dom(A,X ′).

3 Existence and uniqueness of zone diagrams

Let S be the complete lattice consisting of all n-
tuples of subsets of Rd. Let us fix an n-tuple P =
(P1, . . . , Pn) ∈ S of nonempty sets (the sites). Let
Dom : S → S be given by Dom(D) = E, where
D = (D1, . . . , Dn) and E = (E1, . . . , En) with

Ei = dom
(
Pi,

∪
j 6=i

Dj

)
, i = 1, . . . , n. (2)

A zone diagram of P is exactly a fixed point of
Dom [1].

The function Dom is anti-monotone (Lemma 4),
hence Dom2 = Dom ◦Dom is monotone. Reem and
Reich [6] call a fixed point of Dom2 a double zone
diagram of P. From Theorem 3 one obtains the fol-
lowing:

Theorem 5 ([6, Theorem 5.5]) The function
Dom2 has fixed points R and S such that
R = DomS, S = DomR and R ≤ D ≤ S
for any fixed point D of Dom2.

Using this, we will now prove Theorem 1. We re-
mark that the same proof works also for infinitely
many sites, every two of them at distance at least
ε, for some fixed ε > 0.

We may assume that the sites P1, . . . , Pn are closed
(since a zone diagram of their closures is also a zone
diagram of the Pi).

Lemma 6 Let P1, . . . , Pn be closed and let ε be as
above. Suppose that n-tuples D and E of subsets
of Rd satisfy D = DomE and E = DomD. Let
i ∈ {1, . . . , n} and suppose that p is the closest point
to a ∈ Di in Pi. Then the convex hull of K ∪ {a}
is contained in Di, where K is the closed ball with
centre p and radius ε/4. (Proof omitted.)

2

EuroCG’09 - Brussels, Belgium

192

To prove Theorem 1, it suffices to show that the
fixed points R = (R1, . . . , Rn) and S = (S1, . . . , Sn)
in Theorem 5 coincide. Suppose, for contradiction,
that there are i0 and b0 ∈ Si0 \ Ri0 . We define index
it and points bt, pt, at for each t ∈ N inductively as
follows (Figure 3). Suppose that it and bt have been
defined. Let pt be one of the closest points in Pit to bt,
and let at be the unique point (by Lemma 6) where
the line segment btpt meets ∂Rit . Since at ∈ ∂Rit

and R = DomS, there are it+1 6= it and bt+1 ∈ Sit+1

with |at − bt+1| = |at − pt|; choose any such.
For each t ∈ N, let rt = |at − pt|, st = |bt − pt| and

θt = ∠ptatbt+1. Since |at+1−bt| ≥ st by at+1 ∈ Rit+1 ,
bt ∈ Sit and S = DomR, we have

st+1 − rt+1 = |at+1 − bt+1| ≥ |at+1 − bt| − |bt − bt+1|

= |at+1 − bt| −
√
|at − bt|2 + |at − bt+1|2

+ 2|at − bt| · |at − bt+1| cos θt

≥ st −
√

(st − rt)2 + rt
2 + 2(st − rt)rt cos θt

≥ rt(st − rt)
st

(1− cos θt). (3)

Let h be the distance from bt+1 to the convex hull of
Lemma 6 with i = it and a = at. Since S = DomR
and bt+1 ∈ Sit+1 , we have

st+1 ≤ h = rt sinmin
{π

2
, θt − arcsin

ε

4rt

}
≤ rt sinmin

{π

2
, θt − γ

}
, (4)

where γ = arcsin(ε/4r0) ≤ θt. The last inequality is
because the rt are decreasing.

Let λ ∈ (0, 1) be small enough that (1 − cos γ)λ >
cos(γ/2). By (3) and (4), we have

(st+1 − rt+1)λ

st+1
≥ (st − rt)λ

r1−λ
t sλ

t

B ≥ (st − rt)λ

st
B, (5)

where

B =
(1− cos θt)λ

sinmin{π/2, θt − γ}

≥


(1− cos γ)λ

cos(γ/2)
if θt <

π

2
+

γ

2
,(

1 + sin(γ/2)
)λ

sin(π/2)
otherwise

≥ min
{

(1− cos γ)λ

cos(γ/2)
,
(
1 + sin(γ/2)

)λ
}

> 1. (6)

Thus, B is bounded from below by a constant exceed-
ing 1 independently of t. Therefore, (5) implies that
(st − rt)λ/st is unbounded as t ∈ ∞, contradicting
(st − rt)λ/st ≤ s−1+λ

t ≤ (ε/4)−1+λ. We have proved
Theorem 1.

ε

pt at
bt

pt+1

at+1

bt+1

θ

rt

rt+1

rt

≥ st

h

st

st+1

Figure 3: The shaded region is in Rit by Lemma 6.

4 Distance k-sectors

The bisector of nonempty subsets A and B of Rd is
defined by

bisect(A, B) = { z ∈ Rd : d(z,A) = d(z,B) }. (7)

It is not hard to see that

bisect(A,B) = ∂ dom(A,B) = ∂ dom(B,A) (8)

if the closures of A and B are disjoint. Let P and Q
be disjoint nonempty closed subsets of Rd. A k-sector
of P and Q is a sequence (C1, . . . , Ck−1) of nonempty
subsets of Rd satisfying

Ci = bisect(Ci−1, Ci+1), i = 1, . . . , k − 1, (9)

where C0 = P and Ck = Q.

4.1 Existence

Similarly to Section 2, let L be the complete lattice of
all (k− 1)-tuples of subsets of Rd (ordered by compo-
nentwise inclusion). For D = (D1, . . . Dk−1) ∈ L we
define F (D) = (E1, . . . Ek−1) by

Ei = dom(Di−1∪P,Dc
i+1∪Q), i = 1, . . . , k−1, (10)

where D0 = P and Dk = Qc. Since F is monotone
by Lemma 4, it has a fixed point (R1, . . . , Rk−1) by
Theorem 3. The following lemma says that a fixed
point consists of a hierarchy of sets P = R0 ⊆ R1 ⊆
· · · ⊆ Rn = Q with separated boundaries.

Lemma 7 If (R1, . . . , Rk−1) is a fixed point of the
function F above, then Ri ∩ Rc

j = ∅ for each i and j
with 0 ≤ i < j ≤ k. (Proof omitted.)

We are now ready to prove Theorem 2. Let
(R1, . . . , Rk−1) be a fixed point as above. Let Ci =
∂Ri for each i. Then (9) is proved as follows:

Ci = ∂ dom(Ri−1 ∪ P,Rc
i+1 ∪Q)

= ∂ dom(Ri−1, R
c
i+1)

= bisect(Ri−1, R
c
i+1) = bisect(Ci−1, Ci+1). (11)

The third equality is by (8) using Lemma 7. The last
equality is because d(a,X) = d(a, ∂X) for a /∈ X.

3

Distance k-Sectors and Zone Diagrams

193

4.2 The least and the greatest solutions

We conjecture that the k-sector of two disjoint closed
sites P,Q ⊂ Rd is always unique. Here we present
some supporting evidence.

Let L and F be as above. Let ⊥ = (∅, . . . , ∅) be
the least element of L. For D ∈ L satisfying D ≤
F (D), denote by F∞(D) the componentwise closure
of

∨{Fn(D) : n ∈ N }.

Lemma 8 F∞(⊥) is a fixed point of F . (Proof omit-
ted.)

In fact, F∞(⊥) is the least fixed point, because by
monotonicity, F∞(⊥) ≤ F∞(D) = D for any fixed
point D. We can prove similarly that F∞(>) =∧{Fn(>) : n ∈ N } is the greatest fixed point, where
> = (Rd, . . . , Rd). This gives, in this particular set-
ting, a “constructive” description of the smallest and
largest fixed points from Theorem 3. Thus the fixed
point of F is unique if F∞(⊥) = F∞(>).

Using this, we computed, for point sites P =
{(0, 1)} and Q = {(0,−1)}, a lower bound of F∞(⊥)
for each k ≤ 11 by iteratively applying F on the
pixel grid, each time underestimating the sets. We
did this experiment with several different pixel sizes,
and it seemed that the picture always eventually be-
comes symmetric with respect to the x-axis up to a
few pixels, except near the edges of the grid. Thus,
even a lower bound of the least fixed point F∞(⊥)
is nearly symmetric; this implies that F∞(⊥) and
F∞(>) (which must be symmetric to each other) are
very close, although we do not have a proof that they
coincide.

5 Layered zone diagrams

Zone diagrams and k-sectors were defined by simple
equations involving the dom operator. We can con-
sider various similar systems of equations. For exam-
ple, given sites P1, . . . , Pn, consider the equations

Ri = dom
(
Ti,

∪
j 6=i

Tj

)
, Ti = dom(Pi, R

c
i) (12)

for i = 1, . . . , n. These equations specify the re-
lation that the layered zones Ri ⊇ Ti ⊇ Pi should
satisfy. They imply that, between sets Pi and Pj

that are located close to each other, there are four
regions bounded by their 4-sector. Thus, a solution
to (12) can be regarded as a generalization to k = 4
of Voronoi diagrams (which correspond to k = 2) and
of zone diagrams (which correspond to k = 3). We
thus call a solution to (12) a layered zone diagram of
the Pi (with four layers in this case).

The whole space is divided into R1, . . . , Rn. One
might perhaps expect that Ri is the Voronoi region of
Pi among the sites (which is true for the case of two

Figure 4: A layered zone diagram on three point sites.
The shaded regions are the Ti.

point sites, where we deal with a 4-sector), but it is
not: For P1 = {(−1, 0)}, P2 = {(0, 0)}, P3 = {(1, 0)},
the Voronoi region of P2 is a vertical strip, but it can
be proved that R2 is bounded (Figure 4).

Currently we do not have a proof of existence of
such layered zone diagrams. But it is easy to show,
using Theorem 3 as usual, that an appropriate “dou-
ble layered zone diagram” exists, and this is a natural
candidate for a layered zone diagram.

References

[1] T. Asano, J. Matoušek, and T. Tokuyama. Zone di-
agrams: Existence, uniqueness, and algorithmic chal-
lenge. SIAM Journal on Computing, 37(4):1182–1198,
2007. Short version in Proc. SODA 2007, 756–765.

[2] ———. The distance trisector curve. Advances in
Mathematics, 212(1):338–360, 2007. Short version in
Proc. STOC 2006, 336–343.

[3] F. Aurenhammer. Voronoi diagrams—a survey of a
fundamental geometric data structure. ACM Compu-
tuing Surveys, 23(3):345–405, 1991.

[4] J. Chun, Y. Okada, and T. Tokuyama. Distance tri-
sector of segments and zone diagram of segments in a
plane. In Proc. ISVD 2007, 66–73.

[5] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu.
Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. Probability and Statistics. Wiley,
second edition, 2000.

[6] D. Reem and S. Reich. Zone and double zone diagrams
in abstract spaces. arXiv:0708.2668v1, 2007.

[7] A. Tarski. A lattice-theoretical fixpoint theorem and
its applications. Pacific Journal of Mathematics,
5:285–309, 1955.

4

EuroCG’09 - Brussels, Belgium

194

Finding a Minimum Stretch of a Function∗

Kevin Buchin† Maike Buchin∗ Marc van Kreveld∗ Jun Luo‡

Abstract

Given a piecewise monotone function f : R→ R and a
real value Tmin, we develop an algorithm that finds an
interval of length at least Tmin for which the average
value of f is minimized. The run-time of the algo-
rithm is linear in the number of monotone pieces of f
if certain operations are available in constant time for
f . We use this algorithm to solve a basic problem aris-
ing in the analysis of trajectories: Finding the most
similar subtrajectories of two given trajectories, pro-
vided that the duration is at least Tmin. Since the
precise solution requires complex operations, we also
give a simple (1+ε)-approximation algorithm in which
these operations are not needed.

1 Introduction

Where does a function f have its extremes? If we
look at f at a larger scale, a more useful answer to
this question than the singular extrema of f may be
high and low “plateaus” of f . Therefore, we con-
sider the problem of finding an interval of the domain
of f for which the average of f is minimum. The
interval should have at least a given length, other-
wise its length would always be zero. We develop
an algorithm for this problem for functions which are
piecewise monotone. The run-time of the algorithm
is linear in the number of monotone pieces of f . The
straightforward algorithm of iterating over all possible
start and end pieces, using some precomputed values,
and optimizing, would have quadratic run-time.

Our study of this problem is motivated by geomet-
ric problems occurring in geographic data analysis, in
particular, the problem of finding similar subtrajecto-
ries of moving objects [6]. Given two trajectories, we
wish to determine a time interval of at least a certain
length such that the trajectories are close during that
time interval. By “close” we mean that the average
distance during the time interval is as small as possi-
ble. This application, however, is an instance of the

∗This research has been funded by the Netherlands’ Organ-
isation for Scientific Research (NWO) under BRICKS/FOCUS
project no. 642.065.503 and by the German Research Founda-
tion (DFG) under grant BU 2419/1-1.
†Department of Information and Computing Sciences,

Utrecht University, 3584CH Utrecht, The Netherlands,
{buchin, maike, marc}@cs.uu.nl
‡Shenzhen Institute of Advanced Technology, Chinese

Academy of Sciences, China, jun.luo@sub.siat.ac.cn

more general problem we are solving in this paper.
Another geographic application we are interested in
is the following. Assume a moving object measuring
some quantity while it moves, for instance, the height.
We want to find high (or low) plateaus of this quan-
tity. There are more ways to measure the similarity
of trajectories, see for example the references given
in [6].

The discrete version of the minimum stretch prob-
lem occurs in biological sequences alignment and has
been studied there. Several similar linear-time algo-
rithms have been given [2, 4, 5], which provide the ba-
sis of the ideas used in our algorithm. Our algorithm
is considerably more complex, however, due to allow-
ing any start and end point of the interval, and al-
lowing any type of piecewise monotone function. For
the discrete sequence version there is also a geometric
algorithm using very different ideas [1].

2 Algorithm

In this section, we develop an algorithm that mini-
mizes the average height over intervals of a piecewise
monotone function f , where the interval has a non-
fixed duration T ≥ Tmin. The run-time of the algo-
rithm is linear in the number of pieces of f .

Fixed length. Before we give the algorithm, we con-
sider a simple version of the problem where the length
of the interval is fixed to be T̂ . For this problem, a
trivial linear-time algorithm exists by scanning the
function and maintaining its average. The solution
with T̂ = Tmin is a 2-approximation for the problem
with non-fixed length, assuming f is nonnegative. To
see this, note that always an optimal length T with
Tmin ≤ T < 2Tmin exists (for larger T , split in the
middle and choose a half with smaller or equal aver-
age). If the interval Iopt, with smallest average, has
a duration T ′ with Tmin ≤ T ′ ≤ 2Tmin, then the dis-
similarity for any subinterval of length Tmin is larger
by at most a factor T ′/Tmin ≤ 2.

Furthermore, the factor two can be obtained in the
limit, as demonstrated in Figure 1: the total duration
is 2Tmin− ε and the distance between the trajectories
is 0 except for a duration of ε in the middle (for illus-
tration purposes, they are shown with a small vertical
offset). In this example, fixed and non-fixed duration
differ by a factor of (2Tmin − ε)/Tmin which is 2 − ε
for Tmin = 1.

1

Finding a Minimum Stretch of a Function

195

ε
Tmin

Tmin
2Tmin − ε

Figure 1: Worst-case ratio example.

If we run the fixed duration algorithm with dura-
tions Tmin, (1 + ε) · Tmin, (1 + 2ε) · Tmin, . . ., 2 · Tmin,
and take the overall optimum, then we have a (1+ε)-
approximation algorithm for the general problem (as-
suming f is nonnegative) that runs in O(n/ε) time.

Concept. We first illustrate the idea of the algo-
rithm. We solve the problem by a sweep over the
domain of f . At any time tend we include at least
a window of the minimum length Tmin to the left of
tend. Additionally it may lower the average to include
a part even further to the left. To decide efficiently
how much of this part to include, we decompose and
store this part in a data structure.

Let tend be the end of some time interval, and we
are interested in a minimum average value of f over
an interval of length at least Tmin that ends at tend.
Let tpre = tend − Tmin be the last moment where the
interval can start. We may want to start the interval
earlier, to lower the average value of f over the chosen
interval (see Figure 2). We need a careful analysis of
the situation before tpre to decide what the optimal
starting time is for an interval that ends at tend. We
will store this situation in a data structure that will
be updated when tend and tpre move simultaneously
further in time. There will be events when tend or
tpre pass a break point of the function f , but there
will also be events if the situation before tpre changes
in a structural way.

For any interval I = [t, t′] we define f̄(t′, t′′) as

f̄(I) := f̄(t′, t′′) =

∫ t′′

t′ f(t)dt
t′′ − t′ .

If t′ = t′′, we let f̄(t′, t′′) = f̄(t′, t′) := f(t′). We also
define f̄(t′) := f̄(t′, tend), which is valid if tend is fixed.

For description purposes, we fix tend and therefore
tpre for the moment. Then interval [tpre, tend] gives an
average of

f̄(tpre) = f̄(tpre, tend) =

∫ tend

tpre
f(t)dt

tend − tpre
.

It is clear that if the function value of f is smaller than
f̄(tpre) just before tpre, then extending the interval to
a starting time before tpre will give a lower average
f̄(.). Even if the function value of f just before tpre

is greater than f̄(tpre), then extending the interval to

tpre tend

f̄(tpre, tend)

topt

f

f̄(topt, tend)
Tmin

Figure 2: Averages of f over [tpre, tend] and [topt, tend].

a starting time (sufficiently far) before tpre may still
give a lower average. In Figure 2 we observe that the
optimal starting time topt ≤ tpre, given tend as the
end of the interval, is such that f̄(topt) = f(topt), or
topt = tpre.

If tend is fixed, then the value of f̄(tpre) only deter-
mines where topt is. The time topt is monotonically
decreasing in the value of f̄(tpre) (if the average of f
over [tpre, tend] were larger, we may have to go further
back with topt, but never forward).

Assumptions. To compute the minimum stretch in
linear time we need to assume that the following op-
erations can be performed in constant time:

1. Evaluate the integral of f over a monotone piece.

2. Solve equations of the form F (a, s) = as + b,
where F (a, s) =

∫ s

a
f(t)dt.

3. Find a stretch of minimum average value, if the
monotone pieces for the left and the right end-
point of the stretch are given and the integral of
f for the intervals in between has been evaluated.

For simplicity, we will assume that f is continuous.
We can extend the ideas to handle non-continuous
functions, but the definitions and description of the
method become more tedious.

Data structure. Let f be a piecewise monotone
function with break points t1, . . . , tn, that is, f is
monotone in between each pair ti and ti+1 for 1 ≤
i < n. At all times our data structure consists of
the interval I0 = [tpre, tend] and a set of intervals
I1, . . . , Im, where Ii = [si, si−1], for i = 1, . . . ,m,
m ≥ 0, and sm < sm−1 < . . . < s1 < s0 = tpre.
To define s1, . . . , sm and m, we first define a function
l(s) which, intuitively, tells how far to the left we can
always extend an interval if we extend at least a frac-
tion to the left of s, and still lower the average f̄ . We
define l on the domain of f by

l(s) := min(s′ ≤ s | ∀ 0 ≤ t′ ≤ s : f̄(s′, s) ≤ f̄(t, s))

Note that if for no s′ < s we have f̄(s′, s) < f(s), then
l(s) = s. This can only happen if f is a decreasing
function at s (to its left).

2

EuroCG’09 - Brussels, Belgium

196

We can now define the si, 1 ≤ i ≤ m, by

si :=


l(si−1) if l(si−1) < si−1

max({tj < si−1 | 1 ≤ j ≤ n }
∪ {s′ < si−1 | l(s′) < s′ }) else.

Thus, if l(si−1) = si−1, then we set si either to the
next breakpoint tj of f left of si−1, or to the largest
s′ < si−1 such that l(s′) < s′. If si = l(si−1), then f
must be decreasing just left of si.

There are two types of intervals in I1, . . . , Im: those
where si = l(si−1) and those where si < l(si−1). We
will call the first type of intervals complete and the
other type decreasing. These intervals have the fol-
lowing properties:

1. If Ii is complete and i > 1, then for all s′ ∈
[si, si−1] we have f(si−1) = f(si) = f̄(Ii).

2. If Ii is complete, then for all s′ ∈ (si, si−1) we
have f̄(si) < f̄(s′), and also Ii+1 is decreasing if
i ≥ 1.

3. f̄(Ii) < f̄(Ij) if and only if i < j.

Note that the first property does not hold for I1 be-
cause it is not preceded by a decreasing interval. The
last property states that the average gets higher to the
left. Any complete interval contains a break point of
f , and consecutive decreasing intervals are separated
by a break point of f . Together with the second prop-
erty, this implies m = O(n).

The integer m, representing the last interval to the
left that we need to consider, depends on the average
height of f over intervals in the data structure. We
will not need to consider intervals at the left end of
our data structure if their (partial) inclusion would
increase the average height. It follows that the last
interval Im that we need is a decreasing interval. Also,
we do not need intervals further to the left if their
inclusion would result in an average height which is
larger than a previously found average height. Hence,
we will have:

f(sm) ≥ min
t′+Tmin≤t≤tend

f̄(t′, t) ≥ f(sm−1) .

Our data structure maintains the sequence of break
points tend, s0, s1, . . . , sm, the pieces of f that con-
tains each, and the sequence F (I0), . . . , F (Im), where
F (Ii) =

∫ si

si−1
f(t)dt. The sequences can simply be

stored in a list or an array. During the algorithm, we
only change information at the ends of the sequences.
We also maintain F (Im−1 ∪ · · · ∪ I1).

Algorithm. We can find the interval with minimum
average height as follows. We scan with the interval
[tpre, tend] from start to end along the domain of the
function f , and maintain the information we just de-
scribed. Most of this information can only change at

certain discrete event points that we handle during
the scan. The positions of tend, s0, and possibly s1
change continuously, but we will use the maintained
information and their notation as it was valid at the
last event. We use t′end, s′0, s′1, I ′0, etc., to denote the
corresponding values that are valid at the next event,
and t̃end, t̃pre = s̃0, s̃1, Ĩ0, etc., to denote values in
between events tend and t′end.

In between two consecutive event points tend ≤
t̃ ≤ t′end, we need to minimize f̄(t, t̃) over the choices
of t and t̃ with t ≤ t̃ − Tmin, where we know on
which pieces of f the interval endpoints t and t̃
lie. To minimize f̄(t, t̃), we find the expressions for
F (t, s̃m−1) = F (t, sm−1) and F (Ĩm−1 ∪ · · · ∪ Ĩ0) =
F (Im−1∪· · ·∪ I3∪ Ĩ2∪ Ĩ1∪ Ĩ0) in the unknowns t and
t̃, and minimize. Since t ∈ Im, and Im is a decreasing
interval, we have one piece of f over Im. Hence, the
expression for F (t, sm−1) is easy to obtain in constant
time. Furthermore, we maintained F (Im−1 ∪ · · · ∪ I1)
and the F (Ii) at the previous event point tend, and t̃
does not pass any vertex of f before the next event,
so we can derive the expression F (Ĩm−1 ∪ · · · ∪ Ĩ0)
in constant time as well. If m = 0, we simply take
the expression f̄(t̃ − Tmin, t̃). By the third assump-
tion, we can minimize such expressions in constant
time. Summarizing, we can find the optimal interval
between two consecutive events in constant time.

It remains to describe how we update the data
structure in constant time. Instead of precomputing
all event points, we will compute them dynamically.

Event points. Recall that tend denotes the time of
the previous event and t′end denotes the time of the
next event. We have four types of events.

1. Ĩ0 moves to the next break point of f , that is,
either s′0 = ti or t′end = ti for 1 ≤ i ≤ n. If
s′0 = ti and I1 is decreasing, then we create a new
interval I ′1 that may be decreasing or complete.

2. I1 is complete, and f̄(Ĩ1) increases until Ĩ2 dis-
appears. If I3 is decreasing, then I ′1 = [s2, s′0];
otherwise, I ′1 = [s3, s′0] (two adjacent complete
intervals merge immediately).

3. I1 is complete, f̄(Ĩ1) increases and f(s̃0) de-
creases until f̄(Ĩ1) = f(s̃0). We create a new
decreasing interval I ′1.

4. The leftmost interval becomes irrelevant because
its average height is too large, that is, f̄(sm−1) ≥
mint≤t′end−Tmin f̄(t, t′end). Then we discard Im. If
Im−1 is complete, we discard it as well.

Note that instead of stopping at events of type 4, we
can also check if they happened at the next event of
type 1, 2, or 3.

3

Finding a Minimum Stretch of a Function

197

Computing the event points. The event points of
type 1 are the break points of f , and they are known
beforehand. We cannot precompute the event points
of types 2, 3, and 4, but we can compute the next
such event point if it is before the next type 1 event.
The event points of types 2, 3, and 4 are detected as
follows. Let tend be the most recent event point, and
let s0, s1, . . . be the interval endpoints with respect to
tend. Let t′end be the next event point of type 1. An
event point t of type 2 occurs for tend < t < t′end if
f(s2) = f̄(s2, t− Tmin). To detect this, we observe

f̄(s2, t−Tmin) =
F (s2, s1) + F (s1, s0) + F (s0, t− Tmin)

t− Tmin − s2
and make an expression in t. This takes constant
time using the values F (I2), F (I1), and F (I0). Then
we find t by setting it equal to f(s2) (using the sec-
ond assumption). Events of type 3 are detected in a
similar manner.

An event point t of type 4 occurs for tend < t < t′end

if f̄(sm−1, t) = f(sm−1). To detect this we solve

f̄(sm−1, t) =
F (sm−1, tend) + F (tend, t)

t− sm−1
= f(sm−1)

which we can compute in constant time as before.

Updating the data structure. At all types of event
points we update the interval endpoints tend, s0, and
s1 in constant time. At an event of type 2 we discard
s1 and possibly s2. At an event of type 4 we discard
Im and sm, and if Im−1 is complete, we discard it and
sm−1 as well. In all cases we update F (I0), F (I1),
F (I2), and F (Im−1∪· · ·∪I1), and the pieces of f that
contain tend, s0, s1, and sm. Each of these updates
can be done in constant time.

Correctness and run-time. The optimal solution is
the minimal value f̄(t, t̃) for t ≤ t̃ − Tmin. Assume
(t, t̃) is such an optimal pair where t̃ is minimal such
that it is the second part of an optimal pair and t is
maximal such that it is the first part of an optimal
pair with t̃. Let tend < t̃ < t′end be the event points
left and right of t̃. We need to prove that t ∈ Im.

Suppose t < sm. Then t lies in an interval previ-
ously discarded. Let t′′ be the right endpoint of this
interval before it was discarded. Since the interval
was discarded there are t̂′, t̂ with t̂′ ≤ t̂ − Tmin and
t̂ ≤ t̃ such that f̄(t, t′′) ≥ f̄(t̂′, t̂). Because of optimal-
ity of (t, t̃), f̄(t, t′′) ≥ f̄(t, t̃). Therefore, discarding
the interval from t to t′′ will not increase the average.
This contradicts the maximality of t.

Next, suppose si−1 ≥ t > si for some i ≤ m−1. But
then including the interval from si to t to (t, t̃) would
decrease the average because Im was not discarded,
contradicting the optimality of (t, t̃).

It is not hard to see that the number of events is
linear, and the running time is O(n).

3 On trajectory similarity

A (time-dependent) trajectory is a continuous func-
tion from [0, 1] to the plane. We use the algorithm
above to solve: Given two piecewise linear trajecto-
ries τ1, τ2 and Tmin > 0, find a time interval [t1, t2]
of length ≥ Tmin that minimizes the average distance∫ t2

t1
d(τ1(t), τ2(t))dt, where d is the Euclidean distance.

On an interval on which both τ1 and τ2 are linear,
d(τ1(t), τ2(t)) =

√
At2 +Bt+ c, which corresponds to

a hyperbolic arc. It has no local maxima and possi-
bly one local minimum interior to the interval. We
split the intervals at such minima, so the distance be-
tween the trajectories is a piecewise monotone func-
tion and we can apply the algorithm above. It re-
mains to see whether the operations needed for the
algorithm above are available for d(τ1(t), τ2(t)). For
a continuous function f(t) (such as d(τ1(t), τ2(t))), a
minimizing stretch [t1, t2] with t2 − t1 ≥ Tmin falls in
one of the following cases: t2 − t1 = Tmin or t1 = 0
or t2 = 1 or f(t1) = f(t2) = f̄(t1, t2). This gives an
equation in, say, t1 such that any left endpoint of a
minimizing interval is a solution to the equation. This
improves a quadratic time solution in [6].

The precise solution for d(τ1(t), τ2(t)) requires fairly
complicated operations. A (1 + ε)-approximation can
be obtained by replacing the Euclidean distance by
a polyhedral distance function. We use a regular k-
gon with k = O(

√
1/ε) vertices [3] to define it. In

an interval in which both τ1(t) and τ2(t) are linear,
this results in a piecewise linear distance function with
O(

√
1/ε) pieces. The total run-time is then O(n/

√
ε).

We note that with polyhedral distance functions we
can find approximate solutions for trajectory similar-
ity with time shifts [6].

References

[1] T. Bernholt, F. Eisenbrand, and T. Hofmeister. A geo-
metric framework for solving subsequence problems in
computational biology efficiently. In Proc. 23rd ACM
Symp. on Comput. Geom., pages 310–318, 2007.

[2] K.-M. Chung and H.-I. Lu. An optimal algorithm
for the maximum-density segment problem. SIAM J.
Comput., 34(2):373–387, 2005.

[3] R. M. Dudley. Metric entropy of some classes of sets
with differentiable boundaries. J. Approximation The-
ory, 10:227–236, 1974.

[4] M. H. Goldwasser, M.-Y. Kao, and H.-I. Lu. Linear-
time algorithms for computing maximum-density se-
quence segments with bioinformatics applications. J.
Comput. Syst. Sci., 70(2):128–144, 2005.

[5] Y.-L. Lin, T. Jiang, and K.-M. Chao. Efficient al-
gorithms for locating the length-constrained heaviest
segments with applications to biomolecular sequence
analysis. J. Comput. Syst. Sci., 65(3):570–586, 2002.

[6] M. van Kreveld and J. Luo. The definition and com-
putation of trajectory and subtrajectory similarity. In
Proc. 15th ACM Symp. on Advances in GIS, pages
44–47. ACM, 2007.

4

EuroCG’09 - Brussels, Belgium

198

Visibility Maps of Realistic Terrains have
Linear Smoothed Complexity

Mark de Berg Herman Haverkort Constantinos P. Tsirogiannis∗

Abstract

We study the complexity of the visibility map of
so-called realistic terrains: terrains whose trian-
gles are fat, not too steep and have roughly the
same size. It is known that the complexity of the
visibility map of such a terrain with n triangles
is Θ(n2) in the worst case. We prove that if the
elevations of the vertices of the terrain are subject
to uniform noise which is proportional to the edge
lengths, then the worst-case expected (smoothed)
complexity is only Θ(n). This provides an ex-
planation why visibility maps of superlinear com-
plexity are unlikely to be encountered in practice.

1 Introduction

Motivation. A (triangulated) terrain is a poly-
hedral surface obtained by assigning elevations to
the vertices of a planar triangulation. In geo-
graphic information science such terrain models
are known as triangulated irregular networks, or
tins for short. Terrains can be used to model
mountainous regions, as well as to approximate
any scalar function defined over a planar region.

Often it is desirable to compute which parts
of a terrain T are visible from a given viewing
point pview. The projections of the visible triangle
parts onto a viewing plane form the visibility map
of T with respect to pview. Computing visibility
maps is useful for visualization purposes (hidden-
surface removal or shadow generation), for plan-
ning buildings under visibility constraints and for
other tasks involving visibility analysis. There are
several algorithms for computing visibility maps
of terrains, the most efficient of which runs in time
O((nα(n) + k) log n) [6] where α(·) is the inverse
Ackermann function. Here n is the number of
triangles in T and k is the complexity of the visi-
bility map, which can be defined1 as the number

∗Dept. of Mathematics and Computer Science, Eind-
hoven University of Technology, mdberg@win.tue.nl,

cs.herman@haverkort.net, ctsirogi@win.tue.nl
1Formally, the complexity would be defined as the total

number of vertices, edges, and faces of the map. In our
setting this is always linear in the number of vertices, so
we restrict ourselves to this quantity.

Figure 1: Two views of the same terrain defined by a
regular grid. The latter view has Θ(n

√
n) complexity.

of vertices of the map. Each vertex of the map
either corresponds to a triangle vertex, or to two
edges whose projections onto the viewing plane
intersect. In the worst case, Θ(n2) pairs of edges
have visible intersecting projections. In most ap-
plications a quadratic complexity would make an
explicit computation of the visibility map infeasi-
ble. Fortunately such high complexity is seldom
encountered. In fact, in practice it seems that the
complexity of visibility maps is closer to linear.
Our goal is to understand why visibility maps of
terrains in practice often have low complexity.

Realistic input models. One possible approach
to explain the low complexity is using a so-called
realistic input model [5]. Here one assumes that
the input has certain properties that are hope-
fully satisfied by inputs encountered in practice,
and that rule out contrived worst-case inputs.
This approach works well for many problems, and
Moet et al. [9] have applied it to visibility maps of
terrains. Moet et al. make the following assump-
tions on the terrain: the triangles of the planar tri-
angulation defining the terrain are fat (as defined
below), the triangle edges have constant length ra-
tio, and the domain of the triangulation is a rect-
angle of constant aspect ratio. Unfortunately, the
assumptions do not explain why visibility maps
of terrains would have near-linear complexity in
practice: Moet et al. showed that the worst-case
complexity of the visibility map of a terrain that

1

Visibility Maps of Realistic Terrains have Linear Smoothed Complexity

199

satisfies their assumptions is Θ(n
√
n). In fact,

one can even assign elevations to the vertices of
a triangulated grid in such a way that the tri-
angles do not become steep while the visibility
map has complexity Θ(n

√
n) for certain viewing

directions—see Fig. 1. To explain the linear be-
havior, an alternative approach is needed.

Smoothed analysis. For some problems, a small
perturbation of a worst-case instance can re-
duce the complexity of the instance significantly.
This may support the fact that such construc-
tions are highly improbable to appear in practice.
Smoothed analysis formalizes this idea.

Let I(n) be the set of all possible input in-
stances (in our case: terrains) of size n. For an
input I ∈ I(n), let C(I) denote the quantity we
want to analyze (the complexity of the visibility
map). Furthermore, for any input I ∈ I(n) we
define a neighbourhood N (I) ⊂ I(n) of input in-
stances, and we define a probability distribution
over N (I) that indicates for every I ′ ∈ N (I) the
probability that applying noise to the input I will
result in the input I ′.The smoothed (that is worst-
case expected) complexity is then defined as

Csmooth(n) = sup
I∈I(n)

EI′∈N (I)[C(I ′)]

where the expectation is according to the given
probability distribution on N (I). Smoothed anal-
ysis was introduced by Spielman and Teng [10].
So far there have only been a few applications in
computational geometry (see e.g. [2, 3, 4]), none
of which deals with terrains. An up-to-date collec-
tion of the published works related to smoothed
analysis is maintained online by Spielman [11].

Our result. We study the smoothed complexity
of visibility maps of terrains under the following
model:

• To each vertex’s elevation noise is added that
follows a uniform distribution in an interval
[−c, c], where c is a fixed constant fraction of
the minimum edge length of the triangulation
underlying the terrain.2

Our noise model defines for each input terrain T a
neighbourhood N (T) consisting of those terrain
instances that can be obtained by changing the

2Terrain data is usually acquired using techniques such
as LIDAR. Typically, the vertical accuracy of the measure-
ments is in the range 3–15cm while the horizontal resolu-
tion is in the range 10–100cm [8].

elevation of each vertex by at most c, and a prob-
ability distribution on N (T). Yet, by applying a
small perturbation one does not get rid of peaks
that are unrealistically skinny and high, and so
the smoothed visibility map complexity of arbi-
trary terrains is still quadratic.

Hence, we combine the power of smoothed anal-
ysis with the ideas of realistic input models. We
define the following parameters of terrains:

• Fatness: the smallest angle of any triangle’s
projection onto the horizontal plane;

• Steepness: the largest dihedral angle be-
tween any triangle and the horizontal plane;

• Scale factor: the length of the longest edge
divided by the length of the shortest edge of
the triangulation.

We assume that the fatness φ, steepness θ, and
scale factor σ of the unperturbed terrain are con-
stants φ > 0, θ < π/2, σ > 1 that are in-
dependent of the number of triangles n. Some
of these assumptions are also used in other pa-
pers on realistic terrains [1, 9]. In itself, our
assumptions do not lead to the desired result:
there are terrains satisfying these assumptions
with quadratic-complexity visibility maps. For
example, we can take the same construction as
in Fig. 1, but with the aspect ratio of the domain
being Θ(n). Our main result is that the smoothed
complexity of any visibility map of a terrain sat-
isfying the abovementioned assumptions is only
Θ(n). This result holds for orthographic as well
as perspective views.

2 Visibility maps resulting from perspective
projection

Let T be a terrain with n triangles, and let E be
the set of edges of T . Let the coordinates of the
vertices be specified by three coordinates x, y and
z, where the z-axis is the vertical axis on which
the elevation is specified. Let T denote the trian-
gulation in the xy-plane defining T . Without loss
of generality we assume that the minimum edge
length in T is 1. We study the smoothed com-
plexity of the visibility map of T for perspective
views, that is, the map as it appears in the pro-
jection on a viewing plane hview as seen from a
viewing point pview. We assume that pview is lo-
cated above the terrain. Our results can be shown
to hold also for orthographic views.

We denote the projection of an object o onto
hview by pr(o). For an edge e ∈ E we use halign(e)
to denote the plane containing e and pview. The

2

EuroCG’09 - Brussels, Belgium

200

steepness θ(t) of a triangle t is defined as the di-
hedral angle of the plane containing t with the
xy-plane, and the steepness θ(s) of a segment s is
defined as the angle of the line containing s with
the xy-plane. Observe that the steepness of a tri-
angle is the maximum steepness of any segment
contained in it. Recall that θ is the maximum
steepness of any triangle in T .

Lemma 1 After perturbing the elevation of each
terrain vertex independently by a distance of at
most c, no terrain triangle is steeper than θmax =
arctan(tan(θ) + 2c

sinφ).

As φ > 0, and θ < π/2, and c are constants,
θmax is also a constant strictly smaller than π/2.

The perceived steepness θview(e) of an edge e
is the steepness of pr(e) in the plane hview. In
other words, θview(e) is the smallest angle between
the line containing pr(e) and a horizontal line on
hview. Even though θ(e) 6 θmax by Lemma 1, an
edge that is almost horizontal can appear vertical
when projected onto hview. We say that an edge
e appears steep when θview(e) is not a single point
and θview(e) > θmax, otherwise e appears flat.

We say that an edge e lies in front of an edge e′,
if there is a ray from pview that, in the projection
on the xy-plane, hits e before hitting e′.

A silhouette edge is an edge e such that the two
triangles of T that share e are on the same side
of halign(e). Thus one can see past e on the other
side of halign(e). This means one of the incident
triangles is front-facing while the other is back-
facing. We say that two edges e and e′ create a
visible intersection if pr(e) ∩ pr(e′) is a vertex of
the visibility map. For this to be possible, the
edge hit first by a ray from pview—say this edge
is e—must be a silhouette edge.

We observed above that even though the terrain
edges are not steeper than θmax, they can still
appear steep on hview. Yet, we can show that this
cannot happen for silhouette edges.

Lemma 2 Let T be a terrain whose triangles
have steepness at most θmax. Then the perceived
steepness (on any viewing plane) of any silhouette
edge of T is at most θmax.

Counting intersections. We will charge each
visible intersection to the edge furthest from the
viewer (of the two edges creating it). We denote
with K(e) the number of visible intersections an
edge e creates with edges in front of it.

Suppose that we have already perturbed the
edges in front of e, and we wish to analyze the

Figure 2: The shaded cone shows all the possible
positions of e that may give an intersection between
e and f for a fixed position of v1.

effect of perturbing e. Let Efr(e) be the set of sil-
houette edges lying in front of e in the projection
onto the xy-plane, excluding the edges sharing a
vertex with e; the latter cannot create a visible
intersection with e. Then the visible intersections
charged to e are intersections of pr(e) with the
upper envelope of {pr(e′) : e′ ∈ Efr(e)}. Consider
a fragment f of an edge e′ ∈ Efr(e) that appears
on this upper envelope. We wish to bound the
probability that after perturbation of e, pr(e) in-
tersects pr(f).

Define spane(o) to be the projection of an ob-
ject o onto a horizontal line in the vertical plane
containing e, and define widthe(o) to be the
length of spane(o).

Lemma 3 Consider a viewing plane hview that
is vertical and parallel to e. Let f be a fragment
in front of e such that spane(f) ⊂ spane(e) and
widthe(f) 6 widthe(e)/3. Suppose we indepen-
dently perturb the elevations of the vertices of e,
with perturbations chosen uniformly at random
from [−c, c]. Then the probability that e creates
a visible intersection with f is at most

3 widthe(f) · tan θmax

c

Proof. Assume w.l.o.g that the projection of e
on the xy-plane is parallel to the x-axis. Let
v1 and v2 be the vertices of e such that v2 is
the vertex closest to f in the projection onto
the x-axis, with ties broken arbitrarily. Since
widthe(f) 6 widthe(e)/3, the distance from v1’s
projection to spane(f) is at least widthe(e)/3.

Let ` be the vertical line on hview through pr(v2)
and consider a fixed position of v1. The set of all

3

Visibility Maps of Realistic Terrains have Linear Smoothed Complexity

201

possible positions of the perturbed v2 that induce
an intersection between pr(f) and pr(e) is a seg-
ment qr on `; —see Fig. 2. The probability that
pr(e) intersects pr(f) is at most |qr|/(2c).

The triangle 4(v1qr) may not contain f com-
pletely: there may be parts of f where e cannot
create an intersection (for this position of v1), be-
cause v2 could not be perturbed that far. Let
f ′ = v3v4 be the part of f inside 4(v1qr), with
v3 being the endpoint closest to `. Let s be the
point such that 4(v1v3s) and 4(v1qr) are similar
triangles. θview(rv1) 6 θmax since e is projected
onto a vertical viewing plane parallel to e; f ′ has
steepness at most θmax by Lemma 2, so:

|v3s| 6 2 widthe(f ′) · tan θmax.

Moreover, we have |v1v3| > |v1q|/3. Now

|qr| = |v3s| · |v1q||v1v3| 6 6 widthe(f) · tan θmax

Hence, the probability of intersection between e
and f for any fixed position of v1 is at most

|qr|
2c
6 3 widthe(f) · tan θmax

c

�

Using lemma 3 it is easy to show that K(e), the
number of visible intersections of an edge e of T
with edges in front of it, is expected to be small.

Lemma 4

E[K(e)] 6 3 widthe(e) · tan θmax

c
+ 2.

Using that widthe(e) 6 σ and tan θmax 6
tan(θ) + 2c

sinφ (by Lemma 1) we obtain our final
result:

Theorem 5 Let T be a terrain of n triangles
with fatness φ, steepness θ, and scale factor σ.
Then a visibility map of T under perspective pro-
jection has smoothed complexity

O

((
tan θ
c

+
1

sinφ

)
σn

)
when adding noise to each vertex’s elevation that
is uniformly distributed in an interval [−c, c], with
c a fixed constant fraction of the minimum edge
length of the underlying triangulation.

3 Concluding remarks

We proved that the smoothed complexity of the
visibility map of not-too-steep terrains with fat
triangles of similar size is O(n). This is the
first time that realistic input models are com-
bined with smoothed analysis. Such an approach
could also shed light on the complexity of other
terrain structures. For example, the complexity
of the river network on real-world terrains seems
to be linear, while the worst-case complexity of
the river network on a terrain with the above-
mentioned properties is still Θ(n2) [7]. Combin-
ing these properties with smoothed analysis may
lead to better bounds.

References

[1] B. Aronov, M. de Berg, S. Thite. The Complexity
of Bisectors and Voronoi Diagrams on Realistic
Terrains. In ESA 2008, pp 100-111.

[2] S. Chauduri, V. Koltun. Smoothed analysis of
probabilistic roadmaps. Computational Geome-
try: Theory and Applications, to appear.

[3] V. Damerow, F. Meyer auf der Heide, H. Räcke,
C. Scheideler, C. Sohler. Smoothed Motion Com-
plexity. In ESA 2003, pp 161-171.

[4] V. Damerow, C. Sohler. Extreme Points Under
Random Noise. In ESA 2004, 264-274.

[5] M. de Berg, A.F. van der Stappen,
J. Vleugels,M.J. Katz. Realistic Input Mod-
els for Geometric Algorithms. Algorithmica,
34(1):81-97,2002.

[6] M.J. Katz, M.H. Overmars, M. Sharir. Efficient
Hidden Surface Removal for Objects with Small
Union Size. Comput. Geom., 2:223-234,1992.

[7] M. de Berg, O. Cheong, H. Haverkort, J.G. Lim,
L. Toma. I/O-efficient flow modeling on fat ter-
rains. In WADS, pp 239-250, 2007.

[8] G.Mandlburger, C. Briese. Using Airborne Laser
Scanning for Improved Hydraulic Models. In In-
ternational Congress on Modelling and Simula-
tion 2007, pp 731-738.

[9] E. Moet, M. van Kreveld, A.F. van der Stappen.
On realistic terrains. In SoCG 2006, pp 177-186.

[10] D.A. Spielman, Shang-Hua Teng. Smoothed
analysis of algorithms: Why the simplex algo-
rithm usually takes polynomial time. J. ACM,
51(3):385-463, 2004.

[11] D.A. Spielman. http://www.cs.yale.edu/homes/
spielman/SmoothedAnalysis/index.html

4

EuroCG’09 - Brussels, Belgium

202

Planar Visibility Counting�

M. Fischer M. Hilbig C. J�ahn F. Meyer auf der Heide M. Ziegler,
Heinz Nixdorf Institute and University of Paderborn, GERMANY

Abstract

For a �xed virtual scene (=collection of simplices) S
and given observer position ~p, how many elements of
S are weakly visible (i.e. not fully occluded by oth-
ers) from ~p? The present work explores the trade-o�
between query time and preprocessing space for these
quantities in 2D: exactly, in the approximate deter-
ministic, and in the probabilistic sense. We deduce
the existence of an O(m2=n2) space data structure for
S that, given ~p and time O(log n), allows to approx-
imate the ratio of occluded segments up to arbitrary
constant absolute error; herem denotes the size of the
Visibility Graph|which may be quadratic, but typi-
cally is just linear in the size n of the scene S. On the
other hand, we present a data structure constructible

in O�
n � log(n)+m2 �polylog(n)=`� preprocessing time

and space with similar approximation properties and
query time O(` � polylog n), where 1 � ` � n is an
arbitrary parameter.

1 Motivation, Introduction, Overview

In computer graphics, occlusion culling algorithms ex-
hibit both a) the potential of drastically accelerating
the rendering of virtual scenes (namely in case when
most objects are occluded and therefore need not be
drawn) as well as b) an overhead for selecting those
objects which are at least partially visible and thus
have to be sent to the graphics hardware (conservative
approach). Particularly for scenes and observer view-
points where `most' is visible, the bene�t of a) may be
rather low and due to b) result in a net performance
loss. One would like to estimate in advance whether
occlusion culling actually is going to pay o�, and if
not, turn it o�. More generally our goal is to devise
algorithms that automatically and optimally adapt,
on a per-scene and per-frame basis, to the trade-o�
between spending more/less computational e�ort in
�ltering occluded objects on the one hand and the
gain/loss in reduced rendering time on the other hand.
We propose the number of drawing primitives at

�Supported by DFG projects Me872/12-1 within SPP
1307, by Zi1009/1-2, and by DFG Research Training Group
GK-693 of the Paderborn Institute for Scienti�c Computation

(PaSCo). The last author is grateful to 정지원 (n�e Otfried
Schwarzkopf) for the opportunity to visit KAIST. A full ver-
sion of this extended abstract including proofs and �gures is
available at arxiv.org/abs/0810.0052.

least partly visible from a given observer position as
a quantitative measure for estimating, in comparison
with the total number of primitives (i.e. the visibility

ratio), how much conservative occlusion culling can
reduce the rendering complexity.

De�nition 1 (visibility count) For a scene S =
fS1; : : : ; Sng of `geometric primitives' Si � R

d, a
subset of `targets' T � S, and an observer posi-
tion ~p 2 R

d, let V(S; ~p; T) :=
�
T 2 T ��9~q 2 T :

8S 2 S n fTg : [~p; ~q]� \ S = ;	 and denote by
V(S; ~p; T) := CardV(S; ~p; T) the number of objects
in T visible (i.e. not fully occluded) from ~p through
S. Here [~p; ~q]� := f�~p + (1 � �)~q : 0<�< 1g means
the relatively open straight line segment from ~p to ~q.

The present work describes a new randomized algo-
rithm for approximating the visibility count V(S; ~p;S)
for 2D scenes of non-intersecting line segments. We
presume S to be arbitrary but �xed, whereas the ob-
server position ~p is given as input. In view of the size
N = Card(S) of the virtual scenes and the frame rates
aimed at, running times must be sublinear O(N�),
� < 1; after preprocessing S into data structures
of almost linear space O(N1+�), � � 1. Here (time
and) space complexity refers to the number of (oper-
ations on) unit-size real coordinates used (performed)
by an algorithm|as opposed to e.g. rationals of vary-
ing bitlength. Our algorithm features a parameter
1�`<n to trade preprocessing space for query time.

2 Exact Visibility Counting

Visibility comprises a highly active �eld of research,
both heuristically and in the sound framework of com-
putational geometry [CCSD03]. Particularly the lat-
ter has proven combinatorially and algorithmically
non-trivial already in the plane [ORou87, Ghos07].
Here the case of (simple) polygons is well studied
[CAF07]; and so is point{point, point{segment, and
segment{segment visibility for scenes S of n non-
crossing line segments, captured e.g. in the Visibil-
ity Graph data structure. Our observer positions ~p,
however, are not restricted to segments in S.

Fact 2 Given a collection S of n non-crossing line
segments in the plane and an observer position ~x,
V(S; ~x;S) can be calculated in time O(n � log n) and
space O(n).

1

Planar Visibility Counting

203

Also visibility reporting algorithms have to be ruled
out for cases of linear output size. Our goal is count-

ing in sublinear time. Even logarithmic time does
become easily feasible based on the locus approach of
storing all visibility counts in a Visibility Space Parti-

tion (VSP) [Schi01].

Fact 3 a) For a collection S of n non-crossing line
segments in the plane, there exists a partition
of R2 into O(n4) convex cells such that, for all
observer positions ~x 2 C within one cell C,
V(S; �;S) is the same.

b) The data structure indicated in a) and includ-
ing for each cell its corresponding visibility count
V(S; C;S) uses storage O(n4 � log n) and can be
computed in time O(n4 � log2 n). Then, given an
observer position ~x, its corresponding cell C 3 ~x
can be located, and the associated visibility count
identi�ed, in time O(log n).

Proof. of Claim a): Draw lines through all
�
2n
2

�
pairs

of the 2n segment endpoints. It is easy to see that, in
order for a near segment to appear in sight, the ob-
server has to cross one of these O(n2) lines; compare
Lemma 7 below. Hence, within each of the O(n4) cells
they induce, the subset of segments weakly visible re-
mains the same. �

2.1 Size of Visibility Space Partitions

The quartic size bound of Fact 3a) is of course
prohibitive|and sharp in the worst case. In order
to avoid trivialities, we restrict to nondegenerate seg-
ment con�gurations S where i) any two segments meet
only in their common endpoints, ii) no three endpoints
share a common line, and iii) any two lines, de�ned
by pairs of endpoints, do meet.
We have already referred to (and implicitly em-

ployed in Fact 3 a re�nement of) the Visibility Space
Partition; so here �nally comes the formal

De�nition 4 For two non-degenerate collections S
and T of segments in the plane, partition all view-
points ~p 2 R

2 into classes having equal visibility
V(S; ~p; T). Moreover let VSP(S; T) denote the col-
lection of connected components of these equivalence
classes. The size of VSP is the number of line seg-
ments forming the boundaries of these components.

Observe that VSP(S; T) indeed constitutes a planar
subdivision: a coarsening of the O(n4) convex poly-
gons induced by the arrangement of O(n2) lines from
the proof of Fact 3a). In fact a class of viewpoints
of equal visibility can be disconnected and delimited
by very many segments, hence merely counting the
number of classes or cells does not re
ect the com-
binatorial complexity. Fact 3a) and Proposition 5a)
correspond to [Mato02, Exercise 6.1.7].

Proposition 5 a) Even for a singleton target T ,
there exist a nondegenerate line segment con�gu-
rations S such that VSP(S; fTg) has
(n4) sep-
arate connected components.

b) To each n, there exists a nondegenerate con�gu-
ration S of at least n segments admitting a con-
vex planar subdivision of complexity O(n) such
that, from within each cell, the view to S is con-
stant; i.e. VSP(S;S) has linear size.

c) The size of VSP(S;S) is at most quadratic in the
size m of the Visibility Graph of S.

d) A data structure as in Fact 3 can be calculated in
time O(n � log n+m2 � log2 n) and space O(m2).

Since the Visibility Graph itself can have at most
quadratically more edges than vertices, Item c)
strengthens Fact 3a). Empirically we have found that
a `random' scene typically induces a VSP of roughly
quadratic size. This agrees with a `typical' scene
to have a linear size Visibility Graph according to
[ELPZ07].

2.2 Single Target Visibility: Time versus Space

Intuitively it should be possible to reduce the memory
consumption of Fact 3 at the expense of increasing
the time bound. We achieve this for the case of one
target, that is the decision version of visibility ~x 7!
V(S; ~x; fTg) 2 f0; 1g:
Theorem 6 For each 2D scene S, and line segment
T , and 1 � ` � n, an O(n4=`) size data structure can
be computed in time O(n4 � log2 n=`) that allows to
decide, given ~p, whether T is weakly visible from ~p
through S, in query time O(` � log n).
Note that Fact 3 is included as ` = 1; whereas for
` := n1�� we get arbitrarily close to cubic space while
maintaining sublinear query time. On the other end,
no value of ` recovers Fact 2.

Lemma 7 Fix a collection S] fTg of n + 1 non-
crossing segments in the plane. Let L1; : : : ; Lk denote
the k =

�
2n+2
2

�
lines induced by the pairs of endpoints

of segments in S [fTg. For an observer moving in
the plane, the weak visibility of T can change only as
she crosses

� either one of the lines Li intersecting T

� or someline supporting a segment S 2 S.
Proof. Standard continuity argument: Let ~p denote
the observer's position and suppose point ~x 2 T is
visible, i.e. the segment [~p; ~x] does not intersect S 2
S. Now move ~p until ~x is just about to become hidden
behind S 2 S. Then start moving ~x on T such as to
remain visible. Keep moving ~p and adjusting ~x: this
is possible (at least) as long as the line through ~p and
~x avoids all endpoints of S [fTg. �

2

EuroCG’09 - Brussels, Belgium

204

Proof. [Theorem 6] Consider, as in the proof of
Fact 3, the O(n2) lines induced by pairs of segment
endpoints of S. Consider the intersections of these
lines with T (if any). Partition T into O(`) sub-
segments T1; : : : ; T`, each intersecting O(n2=`) of the
above lines. For each piece Ti, take the arrangement
Ai of size O

�
(n2=` + n)2

�
induced by those lines in-

tersecting Ti, and all O(n) lines through one endpoint
of Ti and one of some S 2 S, and all O(n) lines sup-
porting segments from S. By Lemma 7, within each
cell C of Ai, the weak visibility of Ti is constant (ei-
ther yes or no) and can be stored with C: Doing
so for each Ai (1 � i � ` � n) and each of the
O(n4=`2 + n3=` + n2) cells C of Ai uses memory of
order O(n4=`+ n3 + n2`) = O(n4=`) as claimed; and
corresponding time according to Fact 3b).
Then, given a query point ~p 2 R

2, locating ~p in
each arrangement Ai takes total time O(` � log n); and
yields the answer to whether Ti is weakly visible from
~p or not. Now T itself is of course visible i� some Ti is:
a disjunction computable in another O(`) steps. �

Similar to Proposition 5d), we can improve Theorem 6
to O(n � log n+m2 � log2 n=`) preprocessing time and
O(m2=`) space and query time O(` � log n), where m
denotes the size (number of edges) of the Visibility
Graph of S.

3 Approximate Visibility Counting

Lacking deterministic exact algorithms for calcu-
lating visibility counts satisfying both time and
space requirements, we now resort to approxima-
tions: of V(S; ~x;S) up to prescribable absolute er-
ror k 2 N or, equivalently, of the visibility ra-

tio V(S; ~x;S)=Card(S) up to absolute error � =
k=Card(S). Our main result presents a randomized
approximation within sublinear query time using al-
most cubic preprocessing space and time in the worst-
case; almost linear space and quadratic preprocessing
time in the `typical' case.

3.1 Deterministic Approach: Relaxed VSPs

Visibility space partitions, and the algorithms based
upon them, are so memory expensive because they
distinguish (i.e. introduces separate arrangement cells
for) observer positions whose visibility di�ers by as
little as one; recall De�nition 4. Considerably more
space e�cient algorithms are feasible by partitioning
observer space into (or merely covering it by) more
coarse classes:

De�nition 8 Fix k 2 N and collections S and T of
non-intersecting segments in the plane. Some covering
fC1; : : : ; CIg of R2 is a k-relaxed VSP of (S; T) if
81 � i � I 8~p; ~q 2 Ci : V(S; ~p; T)�V(S; ~q; T) � k:

In the sequel we shall restrict to k-relaxed VSPs which
constitute planar subdivisions (i.e. each Ci being a
simple polygon); and refer to their size in the sense of
De�nition 4. Indeed, such VSPs allow for locating a
given observer position ~x in logarithmic time to yield
a cell Ci 3 ~x which, during preprocessing, had been
assigned a value V(S; ~q; T) approximating V(S; ~x; T)
up to absolute error at most k.
Observe that, for Card T � k, the trivial planar

subdivision fR2g is a k-relaxed VSP of (S; T). In par-
ticular the quartic lower size bound of Proposition 5b)
applies only to 0-relaxed VSPs but breaks down for
k � 1. This indicates that much smaller sizes be-
come feasible when considering k-relaxed VSPs for,
say, k � p

n or even k � n= log n.

Proposition 9 a) To k < n� 1 there exists a non-
degenerate family S of n segments in the plane
such that any k-relaxed VSP has size
(n2=k).

b) There also exist such families such that any k-
relaxed VSP has size at least
(n4=k4).

c) Let S be a non-degenerate family of n segments
in the plane andN the size of its VSP. Then there
exists a k-relaxed VSP of size bN=(k + 1)c.

d) There also exists a k-relaxed VSP of size
O(m2=k2), where m denotes the size of the Visi-
bility Graph of S.

Recall that N � m2 � n4, thus leaving quadratic gap
between a) and d) for k small; and between b) and d)
for k large. Item c) succeeds over d) in cases where
N asymptotically does not exceed m2=k.
Proposition 9d) is an application of the Cut-

ting Lemma of Chazelle, Friedman, and Matou�sek
[Mato02, Lemma 4.5.3]. Notice that we only claim
the existence of such small data structures. In order
to construct them, our proofs of Proposition 9c+d)
both proceed by �rst calculating the 0-relaxed VSP
and then coarsening it. Speci�cally, although a Tri-

angular Cutting can be found in asymptotically nearly
optimal time [Agar90], `�lling' it with visibility counts
seems to incur quartic preprocessing time, again|not
to mention the impractically large constants hidden in
asymptotic big-Oh notation.

3.2 Random Sampling

We now proceed to the simple, generic, randomized

Algorithm 10

i) Guess a sample target T � S of size m.

ii) Calculate the count V(S; ~x; T) of objects in T
visible through S.

iii) Return the ratio V(S; ~x; T)=Card(T);
iv) and hope that it does not deviate too much from

the `true' ratio V(S; ~x;S)=Card(S).

3

Planar Visibility Counting

205

Item iv) is justi�ed for instance by the following ap-
plication of the Cherno�{Hoe�ding Bound [AlSp00]:

Lemma 11 Fix ~x 2 Rd and � > 0, then choose T �
S as m independent identically distributed random
draws from S. It holds
ProbT

h��V(S;~x;T)
m

� V(S;~x;S)
n

�� � �
i
� 2 � e�2m��2

In other words: In Algorithm 10 taking m (quadratic
in the aimed absolute accuracy � but) constant

with respect to the scene size n su�ces to achieve
the desired approximation with constant probability;
slightly increasing it further ampli�es exponentially
the chance for success.

3.3 The VC-Dimension of Visibility

Note that the random experiment T and the proba-
bility analysis of its properties in Lemma 11 holds for
each ~x but not uniformly in ~x. This means for our
purpose to re-sample T � S at every frame. On the
other hand, Lemma 11 does not exploit any geome-
try. An important connection between combinatorial
sampling and geometric properties is captured by the
Vapnik{Chervonenkis Dimension [AlSp00]:

Fact 12 Let X be a set and R a collection of subsets
R � X. Denote d := VCdim(X;R) :=
max

�
CardY

��Y � X; fY \R : R 2 Rg = 2Y
	
: (1)

Let Y � X be randomly distributed at uniform of
Card(Y) �

�
(d � log d

�
+ log 1

p
)=�2

�
. Then with

probability at least 1 � p it holds for each R 2 R:��Card(X\R)=Card(X)�Card(Y \R)=Card(Y)�� � �.

Lemma 13 Fix a collection S of n noncrossing (d�
1){dimensional simplices in Rd.

a) De�ne X := S and R := fV(S; ~x;S) : ~x 2 Rdg.
Then VCdim(X;R) � d2 � � log n+O(1)�.

b) In R2 there exist non-degenerate collections S =
X of n line segments such that VCdim(X;R) �
log n�O(loglog n).

Proof. [Claim a] Fact 3a) straight forwardly gener-

alizes to yield CardR � O(n)d2 . Hence, in Equa-
tion (1), 2Y = fY \ R : R 2 Rg requires 2CardY �
CardR and therefore CardY � d2�� log n+O(1)�. �

3.4 Main Result

Lemma 13a), together with Fact 12, enhances
Lemma 11: For d := 2, a sample T of size m :=
O(polylog n) has visibility ratio V(S; ~x; T)=m close to
the `true' on V(S; ~x;S)=n with high probability with
respect to all viewpoints ~x! In particular we may
preprocess the visibility of each T 2 T separately ac-
cording to Theorem 6 and conclude in combination
with Proposition 5d):

Theorem 14 Given 0 < � < 1, a collection S of
n non-crossing segments in the plane (d = 2), and
1 � ` � n � m where m denotes the size of the Visi-
bility Graph of S. Then a randomized algorithm can
preprocess S within time O�

n � log n+m2 � polylog n �
log 1

�
=(`��2)� and space O�

m2 �polylog n�log 1
�
=(`��2)�

into a data structure having with high probability the
following property: Given ~x 2 R2, one can approxi-
mate the visibility ratio V(S; ~x;S)=Card(S) up to ab-
solute error at most � in timeO�

`�polylog n�log 1
�
=�2

�
.

Recall the trade-o� between space and time gauged
by parameter `; and m being `typically' linear in n.

4 Conclusion and Perspective: Dimension > 2

For constant �, k := � � n in Proposition 9d) yields
logarithmic query time in worst-case quadratic (`typ-
ical' case even linear) preprocessing space: this beats
Theorem 14. On the other hand, the simplicity of Al-
gorithm 10 makes it very practical; and preprocessing
according to Theorem 6 is reasonable as well. In fact
we have implemented the algorithm underlying Theo-
rem 14 and are currently evaluating it for the purpose
of adaptive culling as mentioned in the introduction.
The present work restricts to the planar case of line

segments. Many virtual scenes are 2 12 -dimensional:
objects of various heights rooted on a common plane.
In 3D scenes of triangles, however, visibility imme-
diately becomes 3SUM-complete and thus unlikely
tractable in time o(n2), see [GaOv95, Section 6.1].

References

[Agar90] P. Agarwal: \Partitioning Arrangements of Lines I:
An E�cient Deterministic Algorithm", pp.449{483 in Dis-

crete Comput. Geom. vol.5 (1990).

[AlSp00] N. Alon, J.H. Spencer: \The Probabilistic

Method", 2nd Edition, Wiley (2000).

[CAF07] S. Charneau, L. Aveneau, L. Fuchs: \Exact, Ro-
bust and E�cient Full Visibility Computation in Pl�ucker
Space", pp.773{782 in Visual Comput. vol.23 (2007).

[CCSD03] D. Cohen-Or, Y.L. Chrysanthou, C.T. Silva,

F. Durand: \A Survey of Visibility for Walkthrough Appli-
cations", pp.412{431 in IEEE Transactions on Visualization

and Computer Graphics vol.9:3 (2003).

[ELPZ07] H. Everett, S. Lazard, S. Petitjean, L. Zhang:
\On the Expected Size of the 2D Visibility Complex",
pp.361{381 in Int. J. Comput. Geom. vol.17:4 (2007).

[GaOv95] A. Gajentaan, M. Overmars: \On a Class of
O(n2) Problems in Computational Geometry", pp.165{185
in Computat. Geom.: Theory & Applications vol.5:3 (1995).

[Ghos07] S.K. Ghosh: \Visibility Algorithms in the Plane",
Cambridge University Press (2007).

[Mato02] J. Matou�sek: \Lectures on Discrete Geometry",
Springer Graduate Texts in Mathematics vol.212 (2002).

[ORou87] J. O'Rourke: \Art Gallery Theorems and Algo-

rithms", Oxford University Press (1987).

[Schi01] R.D. Schiffenbauer: \A Survey of Aspect Graphs",
TR-CIS-2001-01 Brooklyn University (2001).

4

EuroCG’09 - Brussels, Belgium

206

On the Limitations of Combinatorial Visibilities

Y. Disser∗ D. Bilò∗ M. Mihalák∗ S. Suri† E. Vicari∗ P. Widmayer∗

Abstract

We consider combinatorial visibilities of vertices of a
polygon P, a local view of P from its vertices, and ask
how much global combinatorial information they pro-
vide about P. We study three related questions about
the connection of visibility graphs and combinatorial
visibilities, and show that in no case the combinatorial
visibilities carry enough information.

1 Introduction, Model, and Contribution

In microrobotics, there is a strong tendency to de-
ploy lots of cheap and simple microrobots (instead of
few complex, expensive ones) to perform robotic tasks
such as the exploration of an unknown environment.
This gives rise to studies about the sensory and mo-
tor capabilities that microrobots need for carrying out
such tasks [4, 1]. One particular model [3] assumes
that robots (modeled as points) in a polygonal envi-
ronment have no notion of (or no way of measuring)
coordinates or distances. Instead, these robots are
limited to seeing vertices of the polygon that are visi-
ble from their location when polygon edges are treated
as opaque walls, and seeing whether visible vertices
are connected with a polygon edge. This concept is
usually referred to as ”combinatorial visibility”. In a
convex polygon, for instance, a robot on any of the
vertices ”sees” all other vertices and edges (and this
is not true in any other polygon). We add that in
this model the robots can only move from a vertex to
any visible vertex. Since this combinatorial visibility
appears to be quite powerful [3], there was hope that
the combinatorial visibilities of all vertices together
might be enough to derive all the combinatorial (i.e.,
non-geometric) information about the polygon – the
“map”. The map (also called “visibility graph” [2]) of
the polygon is defined as follows: The map (visibility
graph) consists of a vertex for each polygon vertex,
and has an edge between any two mutually visible
vertices. For a convex polygon, for instance, the vis-
ibility graph is the complete graph and can easily be
inferred from all combinatorial visibilities together.

In this paper, we show that all combinatorial visi-
bilities of a simple polygon are in fact not enough to

∗Institute of Theoretical Computer Science, ETH Zurich,
{ydisser|dbilo|mmihalak|vicariel|widmayer}@inf.ethz.ch
†Department of Computer Science, University of California,

Santa Barbara, suri@cs.ucsb.edu

infer the map (Theorem 1). For certain robotic tasks,
such as the meeting of two robots in an unknown poly-
gon, a map might not be needed, for instance if the
simple polygon looks nonperiodic to the robot(s). For
periodic-looking polygons, there was hope that the
vertices seen from a given vertex and those seen from a
”periodic partner” of the given vertex (details follow)
would themselves be periodic partners; this property
would have allowed a variety of tasks to be solved. We
show that this is, unfortunately, not the case (Theo-
rem 2). For map computation, the question arises
what to add to the abilities of microrobots to make it
possible. We show that adding the ”local” ability for a
robot to measure the polygon angle at its current ver-
tex is not enough (Theorem 3). The common theme
behind these results is the relation between combina-
torial visibilities and the well-studied visibility graph
concept.

In this work we only consider simple polygons.
We denote the n vertices of a simple polygon P by
V={v0, v1, · · · , vn−1}, ordered along the boundary in
counterclockwise (ccw) order. The polygon has n
edges E = {e0, e1, . . . , en−1}, where ei = (vi, vi+1),
i = 0, . . . , n − 1.1 The combinatorial visibility of a
vertex v is given by a binary vector who’s j-th com-
ponent encodes whether the j-th visible vertex and
the (j+ 1)-th visible vertex form an edge of P or not,
we call this a combinatorial visibility vector cvv(v).
The following definitions capture this more formally.
Consult Fig. 1 along with the definitions.

Definition 1 Two vertices vi, vj ∈ V form a visible
pair in P, if the line segment vivj lies entirely within
P (in particular, vi forms a visible pair with itself for
any i). We say vi and vj see each other and write
vi ↔P vj . We drop the index P and simply write
’↔’, if the corresponding polygon P is clear from the
context.

Definition 2 We define view(vi) of vertex vi in P,
the view of vertex vi, to be the set of vertices that vi

sees in P. Formally,

view(vi) := {vj ∈ V | vi ↔ vj} .

We write viewj(vi) to denote the j-th vertex, j ≥ 0,
that vi sees in ccw order, starting at vi itself, both
view0(vi) and view|view(vi)|(vi) denoting vi.

1We consider all operations on indices modulo n.

1

On the Limitations of Combinatorial Visibilities

207

v

view1(v)

view2(v)
view3(v)

view4(v)

1 0

1

0
1

cvv(v) = 10101

view0(v)

Figure 1: Illustration of a combinatorial visibility vec-
tor.

Definition 3 The combinatorial visibility vector
cvv(vi) ∈ {0, 1}|view(vi)| of vertex vi ∈ V is a binary
vector with the j-th element, j ≥ 0, given by

cvvj(vi) =

{
1, if (viewj(vi) , viewj+1(vi)) ∈ E,
0, else.

Note that view1(vi) = vi+1 and
view|view(vi)|−1(vi) = vi−1 as every vertex sees
its neighboring vertices on the polygon boundary.
Therefore cvv0(vi) = cvv|view(vi)|−1(vi) = 1 for all
vi ∈ V .

Definition 4 The combinatorial visibility sequence
cvs of P lists all combinatorial visibility vectors of
the individual vertices of P in ccw order:

cvs := (cvv(v0) , . . . , cvv(vn−1)) .

In the next section we first show that the cvs of a
polygon P is not enough to determine the map of P.
Based on this, we then show a similar result about
visibility in “periodical” polygons. Finally, we show
that additionally knowing the angles at the vertices
of P does not determine the visibility graph either.

2 Combinatorial Visibility and Visibility Graphs

Theorem 1 The cvs of a polygon P does not
uniquely define its map.

Proof. In Fig. 2 we present two polygons PA and
PB that share the same cvs, yet they have different
maps. The proof is by an inspection of the polygons
assisted by a list of the cvv’s and view sequences of
the needed vertices.

The idea behind the construction of the polygons
is to use multiple copies of a “pocket” of vertices (cf.
Fig. 2 for an illustration). Each pocket forms a convex
curve, but the vertices connecting the pockets form
reflex angles, resulting in a non-convex polygon P.
The vertices inside a pocket thus do not see all vertices
of P, they see (apart from their own pocket) only
parts of exactly two pockets. We use the fact that
the vertices have no way to distinguish what pockets
they are “looking into” and we modify the polygon
PA by shifting the vertex c (cf. Fig. 2) so that in PB

the shifted vertex c̃ looks into different pockets, while
not changing the cvv of any vertex. �

ed

a

bc

d ec

b

a

vert cvv vision sequence

a
ã

1111101111011111
abcdeadeabcabcde

ãb̃c̃d̃ẽãc̃d̃ẽãb̃ãb̃c̃d̃ẽ
b

b̃
11110111101

bcdeadeabca

b̃c̃d̃ẽãc̃d̃ẽãb̃ã

c
c̃

11101111011
cdeadeabcab

c̃d̃ẽãc̃d̃ẽãb̃ãb̃
d

d̃
11011110111

deadeabcabc

d̃ẽãc̃d̃ẽãb̃ãb̃c̃

e
ẽ

10111101111
eadeabcabcd

ẽãc̃d̃ẽãb̃ãb̃c̃d̃

Figure 2: Top: Two polygons PA and PB with
n = 20, identical cvs and different visibility graphs.
Bottom: cvv and vision sequence of every vertex
within a pocket.

Definition 5 We say that a cvs C is periodical with
a period p ≥ 2, if Ci = Ci+k·np for all 0 ≤ i < n
and for all 1 ≤ k < p. For each 0 ≤ i < n we say{
vi+k·np

∣∣∣ 0 ≤ k < p
}

are periodical partners.

Theorem 1 shows that the cvs is not enough to de-
termine the visibility graph of a polygon. In the fol-
lowing we are interested in a similar question:2 As-
sume vertex vi sees a vertex vi+j as its k-th visible
vertex (in ccw order), does vertex v(i+n/2) see vertex
v(i+n/2)+j as its k-th visible vertex? The following
theorem implies that this is not the case.

Theorem 2 There is a polygon P with a periodical
cvs of period p ≥ 2 for which we have

∃vi ∈ V ∃j : cvv(viewj(vi)) 6= cvv
(

viewj

(
vi+ n

p

))
.

Proof. We construct a polygon P with the aforemen-
tioned property from the two polygons PA and PB in
Fig. 2. The polygon will have period p = 2. At the
end of the proof we show how to generalize the con-
struction to arbitrary periods.

The idea of the construction is to “glue” PA and
PB together at vertices v and ṽ of PA and PB , re-
spectively, where v and ṽ are as depicted in Fig. 2. We

2A positive answer to this question would have an impact
on various interesting problems in the field of simple robots;
for example, on the weak version of the rendezvous problem in
symmetric polygons.

2

EuroCG’09 - Brussels, Belgium

208

Figure 3: The concept of inserting spikes at vertices.

want to glue the polygons such that every two corre-
sponding vertices w and w̃ of the two polygons form
periodical partners in P. Thus, we need to glue the
polygons such that the cvv’s of corresponding vertices
w and w̃ are the same. We can then use the result of
Theorem 1 which guarantees the existence of vertices
w and w̃ with the same cvv but different views. For-
mally, if w from PA is a vertex vi in P and w̃ from PB

is a vertex vi+n/2 in P (where n is the number of ver-
tices of P), there is a position j in their visions such
that viewj(vi) = vk and viewj

(
vi+ n

2

)
= vl 6= vk+ n

2
.

Because of the structure of the two polygons, we will
see that cvv(vk) 6= cvv(vl) which proves the theorem.

We glue both polygons together at a vertex v ∈
VPA and the corresponding vertex ṽ ∈ VPB with the
same cvv by splitting these vertices into v, v′ and ṽ, ṽ′

respectively and merging v with ṽ′ and v′ with ṽ.3

Because we perform the splitting on both v and ṽ, the
altered cvv’s of the new vertices will still be pairwise
equal. Similarly we do not change the cvv of vertices
which did not see the split vertices. The problem
however is the change in the cvv’s of all vertices that
see v or ṽ in PA or PB respectively. Such a vertex
now, instead of seeing the original vertex, sees two
unconnected vertices (zero in the cvv). Thus, vertices
would be able to distinguish between split and non-
split vertices in their fields of vision and therefore they
would be able to distinguish into which pocket they
are “looking”.

In order to maintain equal cvs’ in both polygons
we split all vertices in a similar way. Fig. 3 shows
how to split vertices by inserting spikes. A spike sub-
stitutes a vertex s by three new vertices s1, s2, and
s3 as illustrated. It is important that the new vertex
s2 at the tip of the spike does not see any other ver-
tices except for s1 and s3. That way, other vertices
will have the impression to see two vertices s1 and s3
that are not connected by an edge. This is exactly
how the spikes resulting from splitting v and ṽ look
from outside, so that they are indistinguishable from
other spikes. Fig. 4 shows PA and PB after inserting
spikes.4 Fig. 5 gives a listing of the cvv of each vertex
within a pocket. For the sake of brevity we do not
give the visibility graph explicitly.

3We place the newly created vertices very close together so
that if vertices v and x saw each other originally, then after the
splitting x sees both v and v′.

4Note that we do not assume general position for our con-
struction. However it is easy to modify the spiked versions of
our polygons accordingly.

Figure 4: The two polygons from Fig. 2 equipped with
spikes and still with identical cvs. The areas visible
from different tips are indicated.

vert cvv
a1 1100101010100101010101

a2 101

a3 10101010100010101010010101010111

b1 1110101010001010101001

b2 101

b3 1010101000101010100111

c1 1110101000101010100101

c2 101

c3 1010100010101010010111

d1 1110100010101010010101

d2 101

d3 1010001010101001010111

e1 1110001010101001010101

e2 101

e3 1000101010100101010111

Figure 5: The combinatorial visibilities of each vertex
in a pocket of PA after adding spikes (the same cvv’s
arise for PB). We write v1−3 to denote the group of
vertices v1, v2, v3.

3

On the Limitations of Combinatorial Visibilities

209

Figure 6: Illustration of how the spikes are inserted at
reflex vertices. We chose our modification such that
the right neighbor of the spike tip retains the visibility
of the original vertex.

Figure 7: A polygon with n = 120 that proves Theo-
rem 2.

For each convex vertex s we are able to insert a
spike such that the two new vertices s1 and s3 that
lie at each side of s2 have the same vision as s had
(apart from seeing s2 and seeing “gaps” instead of sin-
gle vertices everywhere else). We do this by splitting
the convex vertex along its tangential direction. It is
always possible to position the spike tip such that it
is seen by its two neighbors only. Because we are able
to insert the spike without qualitatively changing the
vision of s1 and s3, it is obvious that the cvv’s of all
convex vertices remain equal in PA and PB . For re-
flex vertices r, however, we cannot introduce a spike
such that r1 and r3 share the same vision apart from
seeing r2 on different sides. In general we need to
split reflex vertices “manually” and make sure that
the resulting cvs’ of both polygons are equal. Fig. 6
shows how to do this with the four reflex vertices in
our case.

Once we have spiked versions of PA and PB , we
can glue them together in a straightforward way by
simply splitting the spike tip of v and ṽ and attaching
the open ends. This modification only affects the cvv
of v1, ṽ3 and v3, ṽ1 in a similar manner as well as the
cvv of the duplicated spike tips v2, ṽ2 each of which
are periodical partners in P. The resulting cvs is still
periodical with period 2. Fig. 7 shows the resulting
polygon P.

The extension to p > 2 is easily made, as we can at-
tach more than two copies of the two spiked polygons

Figure 8: Two polygons with identical cvs and iden-
tical interior angles but different GV . The visibilities
are similar to those of PA and PB .

around a common center. �

Theorem 1 shows that the cvs is not sufficient to
reconstruct the visibility graph of a polygon. A nat-
ural question is to determine a “minimal” structural
information we need to add to the cvs for reconstruct-
ing the visibility graph. In the following we show that
knowing the precise inner angle of every vertex of a
polygon in addition to its cvs is still not enough for
reconstructing GV . We show the following theorem.

Theorem 3 The cvs and precise inner angles of a
polygon P do not uniquely determine the map of P.

Proof. Fig. 8 shows a modified version of the poly-
gons PA and PB of Fig. 2. As one can easily check,
these polygons still have the same cvs and different
visibility graphs. In addition, they also have the same
set of inner angles at the vertices. The existence of
such polygons proves the theorem. �

References

[1] A. Ganguli, J. Cortés, and F. Bullo. Distributed
deployment of asynchronous guards in art galleries.
In Proceedings of the American Control Conference,
pages 1416–1421, June 2006.

[2] S. K. Ghosh. Visibility Algorithms in the Plane. Cam-
bridge University Press, 1st edition, April 2007.

[3] S. Suri, E. Vicari, and P. Widmayer. Simple robots
with minimal sensing: From local visibility to global
geometry. International Journal of Robotics Re-
search, 27(9):1055–1067, September 2008.

[4] A. Yershova, B. Tovar, R. Ghrist, and S. LaValle.
Bitbots: Simple robots solving complex tasks. In
Proceedings of the Twentieth National Conference on
Artificial Intelligence and the Seventeenth Innova-
tive Applications of Artificial Intelligence Conference,
pages 1336–1341, 2005.

4

EuroCG’09 - Brussels, Belgium

210

Dynamic Segment Visibility

Mojtaba Nouri Bygi∗ Mohammad Ghodsi†

Abstract

In this paper we define topological segment visibility,
and show how to compute and maintain it as the ob-
server moves in the plane. There are n line segment
objects in the plane, and we have a segment observer
among them. We first consider static case of the prob-
lem, in which the observer and objects are motionless,
and then we study dynamic case of the problem, in
which the observer can move among obstacles.

1 Introduction

Visibility is an important topic in computer graph-
ics, motion planning, and computational geometry.
To deal with the increasing complexity of the scenes
considered, some research has been performed in vis-
ibility processing in order to accelerate the visibility
determination.

Visibility of a point observer has been studied
widely in Computer Geometry literature. In visibil-
ity computations, the object which is seen along rays
(maximal free line segments) is determined. As re-
computing visibility of moving object that can be seen
along a ray is a time consuming task, some solutions
are proposed for this problem. One proposed solution
is to classify rays according to their visibility, that
is, after finding the object along a given ray, we only
need to identify the set of rays that contains the given
ray and read the visibility properties of the specified
rays.

In this paper we define combinatorial (or topologi-
cal) segment visibility, and show how to compute and
maintain it as the segment moves in the plane. Topol-
ogy deals with the classification of spaces that are the
same up to some equivalence relation [5].

We assume that there are n non-intersection line
segment objects in the plane, and we have a line seg-
ment observer among them. We say that the observer
sees an object, if and only if there is a point in the
observer that can see the object.

∗Department of Computer Engineering, Sharif University of
Technology, Tehran, Iran, nouribaygi@ce.sharif.edu

†Department of Computer Engineering, Sharif University
of Technology, and IPM School of Computer Science (No.
CS1382-2-02), Tehran, Iran, ghodsi@sharif.edu

2 Segment Visibility

In this section we will define combinatorial (or topo-
logical) segment visibility, and show how to compute
and maintain it as the segment moves in the plane.
Assume that there are n non-intersection line seg-
ment objects in the plane, and a line segment observer
among them. We say that the observer sees an object,
if and only if there is a point in the observer that can
see the object. This definition differs from other possi-
ble segment-visibility definitions in that here we just
want to know whether an object is visible from the
segment observer, but the exact portion of the object
seen from the observer is not important. This kind of
visibility definition is mainly practical in global vis-
ibility studies. As the topological visibility of a line
segment has not been studied before, we first consider
static case of the problem, in which the observer and
objects are static. Then we study dynamic case of
the problem, in which the observer can move among
obstacles.

2.1 Static Case

First we consider the static case, in which the observer
AB doesn’t move in the scene along the objects (see
Figure 1). First we build the visibility graph for the
given n line segments. The visibility edges, or discon-
tinuity lines, divide the plane to some regions with
constant visibility. Consider a view point p with ini-
tial location at the segment endpoint A. Here we use
the method of [4] that uses visibility complex of the
scene to compute and maintain the visibility from a
viewpoint. Depending on the method used to find the
crossed edges, the view can be computed in O(v log n)
time or O(n logn) time (v is the size of the view). We
move along the segment toward the other endpoint B.
As long as we are on the same region, the visibility
will not change. When we cross a discontinuity line,
the visibility will change and we need to update the
view. So, after the computation of v0, the initial view
around a point p, and a preprocessing step done in
O(v0 log v0) time, the view along a trajectory can be
maintained in O(log v) time at each change of visibil-
ity [4]. So, if the number of discontinuity lines that
intersect the visibility segment is k, the total time
needed to compute the view of visibility segment will
be O((n + k) log n). Considering the time needed to
construct the visibility complex of the scene, we have
the following proposition.

1

Dynamic Segment Visibility

211

Figure 1: A line segment observer among line segment

objects.

Proposition 1 After the computation of the visibil-
ity complex of a scene that composed of n line seg-
ments, and a preprocessing step done inO(m+n log n)
time, where m is the number of discontinuity lines,
the view from a line segment can be computed in
O((n + k) log n), where k is the number of discon-
tinuity lines that intersect the line segment.

2.2 Dynamic Case

Now we consider the dynamic case of the problem: A
line segment observer s is moving among a set S of n
line segment objects. We want to maintain the visi-
bility of the observer as it moves. Our approach is to
compute the initial visibility of the observer, as done
in Section 2.1, and update it whenever it changes.

In order to compute the visibility, we need the de-
scriptions of the set of cells that the observer inter-
sects, and for each cell, the set of lines bounding the
cell in the arrangement of lines in the primal plane.
Since computing the arrangement is too expensive,
we take the following approach, which is similar to
the method of Ghali and Stewart [2]. We compute
the dual of S, the set of discontinuity lines, and the
dual of s, the line segment observer. Let the duals be
S′ = D(S) and ws = D(s). In the dual plane, each
discontinuity line l is mapped to a point pl and the
segment s is mapped to a double wedges ws (see Fig-
ure 2). Notice that segment endpoints A and B are
mapped to two lines lA and lB , which are boundaries
of ws. The double wedge ws divides the dual plane
and the set of points S′ into four sets S′1, S

′
2, S

′
3 and

S′4, the first two sets are lying outside, and the other
two sets are lying inside the wedge. When the dual of
a discontinuity line is outside the wedge, it means that
the line segment observer does not intersects the dis-
continuity line, and if the dual is inside the wedge, the
observer intersects the discontinuity line. This obser-
vation helps us to easily see whether a discontinuity
line crosses the observer or not.

Now let us see what happens when the visibility of
the observer changes. As the observer moves in the
plane, it crosses some visibility regions constructed by
discontinuity lines. As long as the number and the or-

Figure 2: The figure on the left shows the arrangement

of the discontinuity lines. The set of points shown on the

right is the set of dual points of these lines. When the ob-

server AB moves in the primal plane, its dual wedge ws,

also moves in the dual plane. Intersecting a new discon-

tinuity line (respectively, stopping to intersect one) in the

primal plane is signaled in the dual plane by boundaries

of the wedge, lA or lB , intersecting one of the two con-

vex hulls outside (respectively, inside) the wedge in dual

plane.

der of these crossed regions do not change, the visibil-
ity of the observer will not change, and vice versa. So
we need to show the conditions in which the crossed
regions change.

A change in the set of crossed visibility regions is
happening in two conditions: (i) the observer inter-
sects a new discontinuity line, and so it enters a new
region, or an already crossed discontinuity line no
longer intersects the observer, and a visibility region
will disappear (Figure 3), (ii) the order of intersec-
tion of two discontinuity lines will change, and an old
region will disappear and a new one will appear (Fig-
ure 4). It can be easily seen that these two cases are
the only situations that change the crossed regions.
So, we need to consider these cases and update the
visibility in each one.

Figure 3: Events of type 1. In the figure above, the

observer will intersect a new discontinuity line. The figure

on the bottom shows that the observer stops intersecting

a discontinuity line.

2.2.1 Event Type 1

As mentioned before, first type of events occurs in two
cases: when the observer intersects a new discontinu-
ity line, and it enters a new region, or when an already
crossed discontinuity line no longer intersects the ob-
server, and a visibility region will disappear (Figure

2

EuroCG’09 - Brussels, Belgium

212

Figure 4: Event of type 2. The order of intersecting two

discontinuity lines changes. A visibility region disappears

and a new one appears.

3). When the observer intersects a new discontinuity
line, it means that its dual point enters the double
wedge. Similarly, when the observer stops to inter-
sect a discontinuity line, it means that its dual point
leaves the double wedge.

To detect these events, we only need to observe the
dual lines of endpoints A and B. As the endpoints A
(respectively B) gets closer to a line l on the boundary
of a cell and becomes incident to it, the dual line lA =
D(A) (respectively lB = D(B)) becomes incident on
the dual of that line pl = D(l). When A crosses l in
the primal plane, the segment either enters another
cell or leaves an already crossing cell. This is reflected
in the dual plane by the point pl crossing line lA (see
Figure 5). In what follows, we discuss how to update
the structure upon insertion and deletion of points.

Figure 5: The figure on the left (respectively, right) shows

the configuration in the dual plane before (respectively,

after) a discontinuity line is crossed. In both figures, the

solid lines are the duals of the current position of the ob-

server endpoint A and B with the dashed lines showing

the position of the duals after (respectively, before) cross-

ing. As the discontinuity point P is crossed, P is deleted

from one set of points and inserted into another one, while

maintaining the convex hulls of both sets of points.

As long as the set of crossed discontinuity lines do
not change, no event of type 1 will occur. If a new
one is crossed or stops crossing, the data structure
has to be updated. In the dual plane, these events
reflected by a point entering or removing the wedge.
In these cases, the point must be removed from one
convex hull and inserted into anther one (one of the
convex hulls is outside the wedge, and the other one
is inside it). So, we need to maintain the convex hulls
as points are added to or removed from them. To
maintain a dynamic convex hull, a O(log2 n) update

were achieved early on [3], and it was improved to
O(log n) in amortized [1].

The set of visible segments is not always updated
when the segment observer crosses a discontinuity
line, although the convex hulls must be updated to
maintain the description of the current cell.

Consider the two convex hulls outside the wedge.
When inserting a point into a convex hull in the dual
plane, the point will be connected to the two common
tangents between it and the hull. The points from the
previous convex hull boundary that disappear from
the new one correspond to the discontinuities in the
primal plane that no longer bound the current cell in
which an endpoint of observer exists. When deleting
a point from a hull in the dual plane, an arbitrary
number of points can appear on the hull boundary.
These points correspond to the lines in the primal
plane that bound the new cell which the viewpoint
enters [2].

The two convex hulls that we maintain in the dual
plane give us a concise description of the discontinu-
ities in the primal plane which, when crossed, may
require an update of the visibility cycle. The hulls
can be stored in linear space with respect to the num-
ber of discontinuities. For every new positions of the
endpoint A and B, the duals lA and lB are computed
and a test performed to see if any point on either of
the four convex hulls in the dual plane has switched
sides.

In general, we have the following proposition:

Proposition 2 After a preprocessing step in O(m+
n logn) and computing the initial view of a line seg-
ment observer in O((n + k) log n) time, where m is
the number of discontinuity lines and k is the discon-
tinuities that initially intersect the line segment, the
view from the observer among n line segment objects
can be maintained in O(logn) each time a visibility
change of type 1 occurs.

2.2.2 Event Type 2

In the second type of visibility events, the order of
intersection of two discontinuity lines changes, and an
old region will disappear and a new one will appear
(Figure 4). Notice that in this case, the set of crossed
discontinuities will not change, and in dual plane, this
means that the partition of points that the wedge has
been created will not change.

Now let us see what happens in the dual plane upon
occurring an event of type 2 (See Figure 6). As the ob-
server AB come near to the intersection point of two
discontinuity lines l1 and l2, the lines wpl1 and wpl2

in the dual plane come closer to each other, where w
is the center of the wedge. At the event time, when
AB passes through the intersection point of l1 and l2,
wpl1 and wpl2 will lie on each other. After the event,

3

Dynamic Segment Visibility

213

the order of crossing these two discontinuity lines will
change, and wpl1 and wpl2 will switch their polar or-
der according to wedge center. It can be easily shown
that each time two dual points pl1 and pl2 and wedge
center w become collinear, an event of type 2 is oc-
curred, and vice versa.

Figure 6: An event of type 2. As the observer AB ap-

proaches the intersection of discontinuity lines l1 and l2
(top), in dual plane, the lines wpl1 and wpl2 come closer

to each other (bottom). At the event point (center) where

AB passes through the intersection of l1 and l2, wpl1 and

wpl2 will lie on each other. After the event, the order of

crossing these two discontinuity lines will change, and in

dual plane, wpl1 and wpl2 will switch their polar order

according to wedge center (right).

Now we show how to handle this kind of event.
We claim that this event can be handled with the
algorithms for computing visibility of a moving view-
point [4]. Assume that there are m′ = O(m) = O(n2)
points inside the wedge. Consider these m′ points as
endpoint objects and think of wedge center, w, as a
moving viewpoint. When two of these endpoints be-
come collinear with w, we can say that w has crossed
the discontinuity line that passes through these two
points.

With m′ points, there will be m′′ = Θ(m′2) =
O(n4) discontinuity lines (notice that in average, m′,
the number of crossed discontinuities, is very smaller
than O(n2)). Using the algorithm of [4], we can han-
dle events of type 2. As there are m′′ discontinuity
lines, we can compute the visibility complex of the
scene in O(m′′ + m′ logm′) = O(n4 + n2 log n) time
and O(m′) = O(n2) working space. Having the visi-
bility complex of the scene, each visibility event can
be found and handled in O(logn) time. Each visibility
event corresponds to a time that the wedge center w
becomes collinear with two other points in the wedge,
and an event of type 2 is occurred.

Two situations which are not considered yet are
when an event of type 1 occurs, in which a new dual
point will be added to the wedge, or when a point
will remove the wedge. In these cases we must update
the visibility complex of the points inside the wedge.
When a new point enters the wedge, we have to insert
this object in our visibility complex. This is done by
computing a view around the point using the current

visibility complex which can be done in O(m′ logn)
where m′ is the number of points inside the wedge,
using the techniques described by Rivière [4]. Simi-
larly, when a point leaves the wedge, the edges of the
visibility complex corresponding to segments passing
through this point must be removed. This work can
be done in O(m′).

In general, this approach leads to the following
proposition:

Proposition 3 After a preprocessing step in
O(m′2 + (m′ + n) log n) and computing the initial
view of a line segment observer in O((m′ + n) log n),
where m′ is the number of discontinuity lines that in-
tersect the segment observer, we can handle an event
of type 1 in O(log n +m′ log n) time and an event of
type 2 in O(logn) time. In other words, if there are
k1 events of type 1 and k2 events of type 2, we can
update the view in O(k1(logn+m′ logn) + k2 logn).

3 Conclusion

In this paper we defined topological visibility for a
line segment observer among line segment objects in
the plane. We proposed algorithms for computing the
view in both static and dynamic cases.

In this work, we created the complete arrangement
of all discontinuity lines. It would be better if we can
use a local approach for the problem and avoid unnec-
essary computations. Another interesting problem is
to scale upwards and introduce the problem in three
dimensions. In the 3D case, there are some complica-
tions that make this a non-trivial task.

References

[1] G. S. Brodal and R. Jacob. Dynamic planar con-
vex hull. In In Proc. 43rd IEEE Sympos. Found.
Comput. Sci, pages 617–626, 2002.

[2] S. Ghali and A. J. Stewart. Maintenance of the set
of segments visible from a moving viewpoint in two
dimensions. In Proc. 12th Annu. ACM Sympos.
Comput. Geom., pages V3–V4, 1996.

[3] M. H. Overmars and J. van Leeuwen. Maintenance
of configurations in the plane. J. Comput. Syst.
Sci., 23:166–204, 1981.

[4] S. Rivière. Dynamic visibility in polygonal scenes
with the visibility complex. In Proc. 13th Annu.
ACM Sympos. Comput. Geom., pages 421–423,
1997.

[5] G. Vegter. Computational topology. In J. E.
Goodman and J. O’Rourke, editors, Handbook
of Discrete and Computational Geometry, chap-
ter 32. CRC Press LLC, Boca Raton, FL, 2th edi-
tion, 2004.

4

EuroCG’09 - Brussels, Belgium

214

Computing Direct Shadows Cast by Convex Polyhedra

Julien Demouth∗ Xavier Goaoc†

Abstract

We present an exact method to compute the bound-
aries between umbra, penumbra and full-light regions
cast on a plane by a set of disjoint convex polyhedra,
some of which are light sources. This method builds
on a recent characterization of topological visual event
surfaces presented in a companion paper.

1 Introduction

Shadows play an important role in our understand-
ing of three-dimensional shapes from two-dimensional
pictures [18, 23]. As such, their realistic rendering
has been a central problem in Computer Graphics for
the last decades [12]. While illumination simulation
methods such as photon mapping [16] now produce
excellent results, the boundaries of shadows are ob-
tained a posteriori to the illumination simulation. It
is sometimes desirable to determine shadow bound-
aries before that phase, that is, to deduce it from the
geometry of the scene. This is the case, for instance,
when using shadow volumes [1, 5] for real-time ren-
dering or discontinuity mesh [15, 17] to improve ra-
diosity methods [4, 20]. Unlike hard shadows cast by
punctual light sources, whose geometry is well un-
derstood [25], soft shadows cast by extended light
sources still prove elusive. The classical approach
traces shadow boundaries back to visual event sur-
face [22], that is points from which the view of the
scene changes. The classical visual event surfaces [13],
however, capture much more than direct shadows, for
example shadows cast by indirect lighting. As a re-
sult, methods based on them such as the discontinuity
mesh [9, 15, 17, 21] or the visibility skeleton [10, 11]
produce sets of curves that are too large to be used in
practice. In this abstract, we present a method that
computes exactly the shadows cast by a set of disjoint
convex objects, some of which are light sources, ignor-
ing the effects of light reflection which are arguably
less important (see, for example, [4]), and evaluate its
performance on a few types of random scenes.

∗Dept. of Computer Sci. & Eng., POSTECH, Pohang, Ko-
rea, julien@postech.ac.kr

†VEGAS Project, INRIA Grand Est, Nancy, France,
Xavier.Goaoc@loria.fr

2 Characterization of shadow boundaries

In a companion paper [8], we studied visual events
related to changes in the topology of the apparent
contour of a collection of convex sets. Here, we first
show that these events are sufficient to capture direct
shadows. We then associate to each point of a vi-
sual event surface a combinatorial structure, its germ,
which characterizes the type of change occurring at
that point. We show that only points with certain
germs can participate in each type of shadow bound-
ary, and that these germs can be associated with the
arcs of a graph encoding the visual event surfaces, the
visibility skeleton.

Topological visual events. Visual event surfaces are
defined as the locus of points at which the view of the
scene undergoes a qualitative change. The notions of
“view” and “qualitative change” need to be defined
carefully, though, as different definitions capture dif-
ferent phenomena. For polyhedral scenes, the view
is usually defined as the (abstract) graph obtained
by projecting the visible portions of the polyhedra’s
edges, each element of the graph being labelled by its
three-dimensional generators, and two views are qual-
itatively equivalent if they are isomorphic, as labelled
graphs [13]. The corresponding visual event surfaces
are of two types [13]: ev surfaces, consisting of origins
of rays through a vertex and an edge, and eee sur-
faces, formed by origins of rays through three edges
(see Figure 1). Thus, the visual event surfaces of a

ve

e1

e2

e3

Figure 1: Classical visual event surfaces for polyhe-
dra: ev surface (left) and eee surface (right).

scene consisting of a single convex polyhedron are the
planes supporting its faces. Yet, since the polyhedron
is totally visible from anywhere in space, it induces
no shadow boundary at all.

1

Computing Direct Shadows Cast by Convex Polyhedra

215

These choices of “view” and “qualitative change”
are sensitive to the changes in the view not only of
the polyhedra, but also of their meshing: events oc-
cur whenever a facet starts or ceases to be visible. In
a companion paper [8], we studied the visual events
corresponding to the topological changes in the ap-
parent contour of a collection of disjoint convex sets.
Specifically, we define the view from a point as the
set of directions of rays from that point that meet the
scene tangentially and declare two such views equiva-
lent if there exists an homeomorphism from the space
of direction into itself that maps one view into the
other. The associated “topological” visual event sur-
faces suffice to capture direct shadows.

Theorem 1 The boundary of the direct shadow cast
by a collection of disjoint convex objects is contained
in the trace of visual event surfaces corresponding to
topological changes in the apparent contour.

Call a ray tritangent if it sees tangentially three
objects and limiting bitangent if it sees tangentially
two objects and lies in a plane tangent to both of
them. In the case of disjoint convex polyhedra, we
show [8, Theorem 3] that there are two types of such
visual event surfaces: eee surfaces where the three
edges come from distinct polyhedra, that is origins
of tritangent rays, and ev surfaces where the edge
and the vertex come from distinct polyhedra and span
a plane tangent to both, that is, origins of limiting
bitangent rays.

Germ of a ray. Let ρ be a tritangent or limiting bi-
tangent ray. Up to symmetries, the projection of the
the objects seen tangentially by ρ are locally equiv-
alent (that is, homeomorphic) to one of eight basic
situations (see Figure 2) which we call the germ of
ρ; we group the germs into four types, from 1 to 4.
A ray has one germ for each triple (resp. pair) of

1

3

2

4

Figure 2: The germs of ev surfaces (top) and eee
surfaces (bottom). Sectors covered by the projection
of an object are shaded in grey, lighter colors corre-
sponding to objects closer to the origin of the ray.
The numbers 1, . . . , 4 indicate the type of the germ(s)
of the corresponding box.

object to which it is tritangent (resp. limiting bitan-
gent). Points that belong to a umbra/penumbra or a
penumbra/full light boundary are origins of rays with
prescribed germ types:

Theorem 2 A point belongs to the boundary be-
tween the umbra and the penumbra (resp. penumbra
and full light) regions cast by a collection of convex
sets only if it sees a light source tangentially along a
ray with germ of type 1 (resp. 2) or if it sees a light
source along a ray with germ of type 3.

Visibility skeleton. Let C denote a set of convex
polyhedra and A(C) the arrangement, in ray space,
of the sets of tritangent and limiting bitangent rays.
A(C) encodes the visual event surfaces of C in the
sense that these surfaces are the origins of the rays
that make up the faces of A(C). Two rays ρ ⊂ ρ′

such that the segment joining their origin does not
intersect C belong to the same cell in A(C). We can
thus “collapse” A(C) by identifying all such rays. One
way to do that is to consider the quotient space R/ ∼
where R is the space of rays and:

(p+R+~u) ∼ (q+R+~v)⇔ ~u = ~v = ±−→pq and [pq]∩C = ∅.
The origins of all rays in a given equivalence class
make up a maximal free segment : a segment that
does not intersect C and is maximal for this prop-
erty with respect to the inclusion1. There is thus a
natural bijection betweenR/ ∼ and the space of max-
imal free segments2; we call the image of A(C) under
this bijection the visibility skeleton of C relative to
topological changes in the apparent contour (by anal-
ogy to the classical visibility skeleton [11] defined to
encode classical visual event surfaces). For a collec-
tion of disjoint convex polyhedra in generic position3,
this visibility skeleton is a graph whose arcs are maxi-
mal free segments supported by tritangent or limiting
bitangent rays to a given triple/pair of objects, and
whose nodes are maximal free segments supported by
a line through two vertices (vv node), one vertex and
two edges (vee node) or four edges (eeee node).

Lemma 3 Two rays in the same facet of A(C) have
the same germ.

As a consequence, all rays corresponding to a given
arc of the visibility skeleton have the same germ,
which we call the germ of the arc. The characteriza-
tion of Theorem 2 then extend to arcs of the visibility
skeleton, and thus to visual event surfaces.

1Note that this differs from the usual definition in that a
maximal free segment is not allowed to be tangent to an object.

2This bijection is not an homeomorphism as the natural
topologies on these spaces differ, but this has no consequence
for our purposes.

3The same holds for non-generic position but additional care
in the definition is required.

2

EuroCG’09 - Brussels, Belgium

216

3 Algorithm outline

Our algorithm takes as input a set C of disjoint convex
polyhedra and a plane Π, and consists of 3 steps:

1. Compute the visibility skeleton of C and the
germs of its arcs.

2. Compute the arrangements, in the plane Π, of
the curves traced by the surfaces swept by the
relevant arcs of the skeleton. We compute two
arrangements: (a) with arcs of type 1 tangent to
a light source in last position and arcs of type 3
with an endpoint on a light source, and (b) one
with arcs of type 2 tangent to a light source.

3. At each curve crossing, remove the arcs not on
the shadow boundary locally (see Figure 3).

X

X

Figure 3: Two arcs incident to a crossing of two
curves in arrangement (a) do not belong to the shadow
boundary (the shading indicates on which side of the
arc the source becomes locally invisible). A similar
criterion holds for crossings in arrangement (b).

The output consists of two collections of closed non-
crossing loops which, by Theorem 2, contain the
boundaries between, respectively, umbra and penum-
bra – for (a) – and penumbra and full light – for (b).
Testing if a given loop is an actual shadow bound-
ary can be done by computing the view of a single
point. The visibility skeleton of k convex polyhedra
of total complexity n has size Θ(n2k2) [3] and can
be computed in time O(n2k2 log n) by a sweep-plane
algorithm [14, Chapter 8]. The complexity of the ar-
rangements (a) and (b) is O(n3k3) [7], so altogether
the algorithm runs in O(n3k3 log n) time in the worst
case.

4 Implementation and experimental results

Our implementation was done in C++ using exact
number types and geometrical objects from CGAL li-
brary. The implementation assumes the objects are
in general position in the sense that no 3 vertices
are collinear, no 4 vertices (from distinct polyhedra)
coplanar and no 10 vertices on a common quadric
surface. For Step 1, we compute the vv nodes by
brute-force enumeration and use an implementation
by Zhang et al. [26] to compute the vee and eeee
nodes; we retrieve the connectivity using local compu-
tations. For Step 2, we use the 2D arrangement pack-
age from CGAL [24], the arcs of conic curves induced

by eee arcs being described by a rational equation
and two algebraic endpoints4. See [6, Chapter 6] for
a more detailed discussion on the implementation.

We tested three different types of random scenes. In
each case, we chose a random collection of k disjoint
unit spheres, and for each pick p points on its surface
and compute their convex hull. The three types of
distribution of centers of spheres that we consider are:

(i) k centers randomly distributed inside a cube,

(ii) k centers randomly distributed on a constant
number of horizontal slices of a cube,

(iii) k− 1 centers randomly distributed on a constant
number of horizontal slices of a cone with apex
the kth sphere, which is the light source.

We run tests for k = 10, 30 and 50 and p ranging
between 4 and the greatest power of 2 manageable.
Disjointedness is ensured by throwing away centers
that violate it and generating them again. For each
value of k and p we created 10 scenes for type (i) and
a single one for types (ii) and (iii). We analyzed our
method using three indicators:

• gain1 = b−a
b , where a denotes the size (number of

nodes) of our visibility skeleton and b that of the
classical visibility skeleton [11]. It measures the
gain obtained by considering “topological” visual
events rather than the classical visual events.

• gain2 = d−c
d , where d denotes the number of arcs

of our visibility skeleton and c the number of arcs
used in Step 2. It measures the effectiveness of
the filter based on germ conditions.

• gain3 = e−f
e , where e denotes the complexity

of the arrangements (a) and (b) and f that of
the output of Step 3. It measures the reduction
in size obtained by storing only the (candidate)
contours of direct shadows (versus keeping direct
discontinuities in the interior of the penumbra).

Our measures show that all three gains are high,
most of the time. Specifically,

• gain1 increases with p, reaching 50% for p = 16
and 75% for p = 64, independently of k. Since
the visibility skeleton has a rather large size, this
gain is significant; for instance, for k = 30 and
p = 128, a = 290000 and b = 50000.

• gain2 is above 85% for all tested scenes, and in-
creases with k.

• gain3 is below 10% for the limit between penum-
bra and full-light, but above 70% for the limit
between umbra and penumbra.

4Note that a polygonal approximation of these arcs is per-
formed at visualization.

3

Computing Direct Shadows Cast by Convex Polyhedra

217

A comparison of some outputs of our program with
images produced using the PBRT ray-shooting pro-
gram [19] also suggests that the results are visually
convincing. Due to space limitation, we refer to [6,
Chapter 6] for a detailed account of the performances.

5 Conclusion

Our experiments suggest that the method we propose
is simple enough to be put in practice and leads to sig-
nificant gains over the classical approach. Of course,
these experiments are on small-scale (≤ 104 triangles)
non-realistic scenes. The main challenges to overcome
these limitations include the efficient computation of
eeee nodes and the understanding of “topological”
visual events in non-convex settings. A first progress
on the latter was recently made by Batog [2]. Our
results also suggest that the boundary of shadow re-
gions is simple enough to be of interest in Computer
Graphics.

References

[1] U. Assarsson and T. Akenine-Möller. A Geometry-
based Soft Shadow Volume Algorithm using Graph-
ics Hardware. ACM Transactions on Graphics,
22(3):511–520, 2003.

[2] G. Batog. Événements visuels de polyèdres, Master’s
thesis, MPRI, ENS Cachan, 2008.

[3] H. Brönnimann, O. Devillers, V. Dujmović, H. Ev-
erett, M. Glisse, X. Goaoc, S. Lazard, H.-S. Na and
S. Whitesides. Lines and Free Line Segments Tangent
to Arbitrary Three-dimensional Convex Polyhedra.
SIAM Journal of Computing, 37(2):522–551, 2007.

[4] M. F. Cohen and J. R. Wallace. Radiosity and Real-
istic Image Synthesis. Academic Press, 1993.

[5] F. C. Crow. Shadow Algorithms for Computer
Graphics. Computer Graphics, 11(2):242–248, 1977.

[6] J. Demouth. Événements visuels de convexes et lim-
ites d’ombres. PhD thesis, Université Nancy 2, 2008.

[7] J. Demouth, O. Devillers, H. Everett, M. Glisse,
S. Lazard and R. Seidel. On the Complexity of Um-
bra and Penumbra. Computational Geometry: The-
ory and Applications, to appear, 2009.

[8] J. Demouth and X. Goaoc. Topological Changes in
the Apparent Contour of Convex Sets. Manuscript,
2009.

[9] G. Drettakis and E. Fiume. A Fast Shadow Algo-
rithm for Area Light Sources Using Back-projection.
Proceedings of ACM Siggraph 94, pages 223–230,
1994.

[10] F. Duguet and G. Drettakis. Robust Epsilon Visi-
bility. Proceedings of ACM SIGGRAPH 2002, pages
567–575, 2002.

[11] F. Durand, G. Drettakis and C. Puech. The Visibil-
ity Skeleton: a Powerful and Efficient Multi-Purpose
Global Visibility Tool. Proceedings of ACM Sig-
graph 97, pages 89–100, 1997.

[12] P. Dutré and K. Bala and P. Bekaert. Advanced
Global Illumination. A.K. Peters, 2006.

[13] Z. Gigus and J. Malik. Computing the Aspect Graph
for Line Drawings of Polyhedral Objects. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 12(2):113–122, 1990.

[14] X. Goaoc. Structures de visibilité globales : taille, cal-
cul et dégénérescences. PhD thesis, Université Nancy
2, 2004.

[15] P. S. Heckbert. Discontinuity Meshing for Radiosity.
Proceedings of the Eurographics Workshop on Ren-
dering, pages 203–215, 1992.

[16] H. W. Jensen. Global Illumination Using Photon
Maps. Proceedings of the Eurographics Workshop on
Rendering, pages 21–30, 1996.

[17] D. Lischinski, F. Tampieri and D. P. Greenberg. A
Discontinuity Meshing Algorithm for Accurate Ra-
diosity. IEEE Computer Graphics and Applications,
12(6):25–39, 1992.

[18] P. Mamassian, D. C. Knill and D. Kersten. The Per-
ception of Cast Shadows. Trends in Cognitive Sci-
ences, 2(8):288–295, 1998.

[19] M. Pharr and G. Humphreys. Physically Based Ren-
dering: From Theory to Implementation. Morgan
Kaufmann, 2004.

[20] F. Sillion and C. Puech. Radiosity and Global Illumi-
nation. Morgan Kaufmann, 1994.

[21] A. J. Stewart and S. Ghali. Fast Computation of
Shadow Boundaries Using Spatial Coherence and
Backprojections. Proceedings of ACM Siggraph 94,
pages 231–238, 1994.

[22] S. J. Teller. Computing the Antipenumbra of an Area
Light Source. Proceedings of ACM SIGGRAPH 92,
pages 139–148, 1992.

[23] L. R. Wanger. The Effect of Shadow Quality on
the Perception of Spatial Relationships in Computer
Generated Images. Computer Graphics, 25(2):39–42,
1992.

[24] R. Wein, E. Fogel, B. Zukerman and
D. Halperin. 2D Arrangements. CGAL User
and Reference Manual, Release 3.3, 2007.
http://www.cgal.org/Manual/3.3/doc html/
cgal manual/packages.html#Pkg:Arrangement2.

[25] A. Woo, P. Poulin and A. Fournier. A Survey of
Shadow Algorithms. IEEE Computer Graphics and
Applications, 10(6):13–32, 1990.

[26] L. Zhang, H. Everett, S. Lazard, C. Weibel and
S. Whitesides. On the Size of the 3D Visibility Skele-
ton: Experimental Results. Proceedings of the Six-
teenth Annual European Symposium on Algorithms
(ESA 2008), to appear, 2008.

4

EuroCG’09 - Brussels, Belgium

218

Straight Walk Algorithm Modification for Point Location in a
Triangulation ∗

Roman Soukal † Ivana Kolingerová ‡

Abstract

Finding an element in a mesh which contains a query
point is a very frequent task in computational geom-
etry. This paper shows a modification of one planar
technique for point location in triangulation. This
algorithm is based on a modification of the straight
walk location algorithm combined with the visibility
walk algorithm where straight walk brings speedup
and visibility walk reliably finds a target. This modi-
fication does not improve the worst-case running time
although empirical data shows that its performance is
better than previous Straight walk algorithm.

1 Introduction

For a query point q and a given triangulation T of n
vertices in the plane the point location problem usu-
ally means how to find a triangle ω from T which
contains the query point. One of the possibilities how
to solve this problem is to use one of the walking lo-
cation techniques. The name of these algorithms has
arisen from the way of locating the triangle ω which
contains q. For a starting triangle α chosen as one
of the triangles of T and the query point q the walk-
ing strategy makes use of connectivity in the triangle
mesh and it goes through triangles between α and
ω. There are three main types of walking strategies.
First, the visibility walk makes use of an orientation
edge test to determinate which triangle is the next.
Second, the straight walk passes all triangles in the
mesh between α and ω which are intersected by a line
pq where p is a point inside α. Finally, the orthogonal
walk passes all triangles in the mesh between α and
ω in the directions of coordinate axes. The triangle α
may be chosen randomly or as the closest triangle to
q from the set A of randomly chosen triangles from
T , ‖A‖ � ‖T‖ [7]. This choice improves speed of the
algorithm. Walking algorithms are frequently used
despite suboptimal complexity (O(3

√
n) up to O(

√
n)

[3] - depending on how the α was chosen).
Sophisticated data structures such as DAG [1], [6],

∗This work is supported by the Grant Agency of the Czech
Republic - the project GA 201/09/0097
†Department of Computer Science, Faculty of Applied Sci-

ences, University of West Bohemia, soukal@kiv.zcu.cz
‡Department of Computer Science, Faculty of Applied Sci-

ences, University of West Bohemia, kolinger@kiv.zcu.cz

skip list [11], quad tree, buckets [10], uniform grid
[9], [12] and data structures based on random sam-
pling [8], [2] are used in the point location algorithms
with the best known complexity O(log n) per point
query. However, these algorithms have some disad-
vantages. First, these data structures consume gener-
ally O(n) amount of memory which may be a problem
for huge datasets. Second, implementation effort for
most of these structures may be nontrivial (especially
for modifications of these structures). Finally, most
of these structures are hierarchical and the top level
of the hierarchy may be a bottleneck in case of paral-
lelization. Walking algorithms do not need any extra
memory, their implementation is rather simple and
their usability for parallelization is good, thus often
they are a better choice than optimal time complexity
solutions.

This paper shows a straight walk algorithm mod-
ification which is faster than the standard straight
walk algorithm [3]. The paper is organized as follows.
Section 2 and 3 present already existing algorithms
Remembering Stochastic walk and Straight walk. Sec-
tion 4 shows our modification of this algorithm, prob-
lem resulting from the character of this modification
and its solution. Empirical results are presented in
Section 5.

2 Remembering Stochastic Walk

Visibility walk algorithms use orientation test for a
triple of points t, u, v (Equation 1).

orientation(t, u, v) = sgn

(∣∣∣∣ux − tx vx − tx
uy − ty vy − ty

∣∣∣∣) (1)

Decision, whether or not the edge rl of the current
triangle τ (τ = srl) should be crossed to continue
the walk into the next triangle depends on the re-
sult after substitution q, r, l to the Equation 1 where
q is the query point. The walk continues to the
next triangle over the edge rl if orientation(q, r, l) =
−orientation(s, r, l) where s is vertex of τ , r, l 6= s
and q is the query point. Simple visibility walk algo-
rithms use edges of τ for tests in the given order, but
these visibility walks may loop for a non-Delaunay tri-
angulation [4]. For non-Delaunay triangulation it is
necessary to choose the tested edges of τ in a random
order. This modification is called Stochastic. Natu-
rally it is not necessary to test the edge incident with

1

Straight Walk Algorithm Modification for Point Location in a Triangulation

219

the previous triangle in the walk. This improvement
is called Remembering and may save up to one ori-
entation test for each triangle. Therefore, one or two
orientation tests are needed for each triangle (except
the triangle α).

3 Straight Walk

Generally, the straight walk passes all triangles in the
triangulation T intersected by the line pq where q is
the query point and p is a point in the given starting
triangle α. The standard straight walk algorithm [3]
is composed of two steps and point p is chosen as a
vertex of α. In the initialization step (grey color in
Figure 1) a triangle γ incident to p and intersected by
pq must be found. During this step one orientation
test is needed for each visited triangle and the number
of visited triangles is at most the degree of p, thus at
most n.

After the initialization is completed, the straight
walk (black color in Figure 1) may start. For each
triangle τ , τ = srl in the straight walk, the line
pq goes into τ, τ 6= α through edge e = rl (see τ
in Figure 1). Depending on the orientation(s, p, q),
new r (or new l) is selected as s. The singular case
orientation(s, p, q) = 0 is added to one of these situ-
ations. Now the straight walk goes out of τ through
the new edge e = rl. By testing on which side of e
the q lies it is decided whether the τ contains the q or
whether the walk must go on. In the latter case the
walk goes to the neighbor of τ through e. Therefore
the Straight walk evidently needs two orientation tests
per triangle and some orientation tests in the initial-
ization step. Pseudo code of the algorithm is given as
Algorithm 1 [3].

γ

τq
p

ω
e

l
s

r α

Figure 1: Straight walk example

4 The Proposed Modification of Straight Walk

The first idea is to simplify the initialization step of
the algorithm in Section 3 to a constant number of
operations. The second idea is to use a cheaper oper-
ation than the orientation test used in Straight walk
algorithm in Section 3.

// traverses the triangulation T

Input:

• the query point q
• the chosen starting triangle α, α ∈ T

Output:

• the triangle ω which contains q

// following the line segment from p to q
// initialization step

p = vertex of α;
if orientation(r, p, q) < 0 then

while orientation(l, p, q) < 0 do
r = l;
τ = neighbor of τ trough pl;
l = vertex of τ, l 6= p, l 6= r;

end

else
repeat

l = r;
τ = neighbor of τ trough pr;
r = vertex of τ, r 6= p, r 6= l;

until orientation(r, p, q) < 0 ;

end

// end of initialization and start of straight walk

// now pq has r on the right and l on the left side

while orientation(q, r, l) < 0 do
τ = neighbor of τ trough rl;
s = vertex of τ, s 6= r, s 6= l;
if orientation(s, p, q) < 0 then

r = s;
else

l = s;
end

end
// end of Straight walk step

// now τ contains q
return τ;

Algorithm 1: Straight Walk

A fundamental prerequisite for the initialization
step is to suitably choose the point p. In Section 3, p
is chosen as one vertex of the starting triangle α but
it is not necessary. The main idea is to choose p in a
way that no other operations in the initialization step
are needed. First, the point s is chosen as the closest
vertex from α to q. The edge e = rl is the edge of α
and α = srl. Next, p is chosen on e where r, l 6= p and
‖pq‖ > 0. Now the straight walk may start. For each
triangle τ in the straight walk (except α) the edge e
of τ is edge used to cross to τ and s is the vertex of τ
facing e. The line pq goes out of τ through the edge
e that is determined by the means of using the orien-
tation test. If s lies on the left side of pq, e (s ∈ e)
is the edge of τ on the right of s, else e (s ∈ e) is the
edge of τ on the left of s. By testing on which side
of e the q lies it is decided whether τ contains q or
whether the walk must go on.

For each triangle τ the position of s is tested against
the line pq and only s is changing during the walk, it
is therefore possible to use an implicit line equation
test in the place of the orientation test to speed up

2

EuroCG’09 - Brussels, Belgium

220

the process. The implicit line equation of pq is com-
puted in the initialization step (Equations 2, 3, 4)
and the position of s is found by a substitution into
Equation 5.

λ : a · x+ b · y + c = 0 (2)

[a, b, c] = [px, py, 1]× [qx, qy, 1] (3)

a = py − qy, b = qx − px, c = px · qy − py · qx (4)

position(λ, s) = sgn(a · sx + b · sy + c) (5)

The implicit line equation test is subject to higher
numerical imprecision than the orientation test but
the straight walk algorithm is robust enough to resist
it. Now there is one orientation test and one posi-
tion test per triangle. The orientation test is used to
detect whether the triangle ω was found. A direct
replacement of this orientation test is problematic be-
cause two points are changing during the walk, there-
fore the original algorithm must be modified. For this
modification a new line λn, λn ⊥ pq, q ∈ λn must be
computed in the initialization step (Equation 6, 7).

λn : a · x+ b · y + c = 0 (6)

a = λy, b = λx, c = λx · qy − λy · qx (7)

The orientation test for detection, whether the tri-
angle ω was found, is replaced with the position test
of λn and s. If s lays on the other side of λn than p,
the straight walk ends. A situation is possible where
τ 6= ω at the end of the straight walk (see Figure 2).
Because of it, Remembering Stochastic walk algorithm
is used for final location. As a rule, this final loca-
tion is very short, but extreme cases exist where al-
most the whole walk is performed by Remembering
Stochastic walk. However, this situation is not proba-
ble and degradation of Straight walk to Remembering
Stochastic walk is not a problem, because Remem-
bering Stochastic walk is not dramatically worse (see
Section 5). It is possible to a find more detailed de-
scription of this modified variant of Straight walk in
the pseudo code Algorithm 2 and in the example Fig-
ure 2. The straight walk step is coloured black and the
final location by Remembering Stochastic walk is grey.
The triangle γ is the triangle where the straight walk
step ends and Remembering Stochastic walk starts,
the edge eγ is the edge to γ and the point sγ is the
point s for γ, whose position at the other side of λn
than p causes the end of the straight walk.

5 Empirical Results

The following algorithms were tested: Remembering
walk, Remembering Stochastic walk, Straight walk (Al-
gorithm 1) and Modified Straight walk (Algorithm 2).
Tests were performed on Delaunay triangulations
of different sizes of datasets (especially 100000 and

ω

γ
α

p

q

 λn

τ

eτ

sτ

sγ

eγ

 λ

Figure 2: Modified Straight walk example

// traverses the triangulation T

Input:

• the query point q
• the chosen start triangle α, α ∈ T

Output:

• the triangle ω which contains q

// initialization step

τ = α;
s = the vertex of τ closest to q;
e = rl = edge of τ facing s;
choose p: p ∈ e, r, l 6= p,‖pq‖ > 0;
compute the line λ (pq);
compute the line λn;

found = false;

// end of initialization and start of straight walk

repeat
if position(λn, s) > 0 then

found = true;

else
if position(λ, s) > 0 then

e = edge of τ on the left from s, s ∈ e;
else

e = edge of τ on the right from s, s ∈ e;
end
t = neighbor of τ trough e;
s = vertex of τ facing e;

end

until found ;

// end of the straight walk step

// final location

τ = Remembering Stochastic Walk (τ, q);
// now τ contains q
return τ;

Algorithm 2: Modified Straight Walk

1000000 points) and on different types of point dis-
tributions (randomly in square, grid, gauss distribu-
tion, clusters, arcs, real data). First triangle δ was
randomly chosen for each location. 1000000 of ran-
domly generated points were located by each algo-
rithm on each dataset. Selected results are in Ta-
ble 1. The following properties were examined for
each algorithm: the average length of the walk (#∆),
the average number of the orientation tests (#ori),
the average number of position tests (#pos) and the
average time (t[µs])per one location (tested on Intel
Q6600 2,40GHz). The algorithms are coded in Java
with the double precision floating point arithmetic.

3

Straight Walk Algorithm Modification for Point Location in a Triangulation

221

#∆ #ori #pos t[µs]
Algorithm φ per located point

Delaunay triangulation of 100.000 points distributed in a square

Rem. walk 377.80 508.55 0 43.97
Rem. Stoch. walk 360.12 465.11 0 58.04
Straight walk [3] 338.98 677.21 0 57.14
Mod. Straight walk 340.83 3.77 677.23 41.07

Delaunay triangulation of 1.000.000 points distributed in a square

Rem. walk 1185.93 1590.30 0 214.97
Rem. Stoch. walk 1122.87 1443.80 0 255.57
Straight walk [3] 1069.09 2137.46 0 234.16
Mod. Straight walk 1071.11 3.76 2138.37 188.61

Delaunay triangulation of 100.000 points distributed in a clusters

Rem. walk 214.25 290.09 0 16.73
Rem. Stoch. walk 215.06 279.95 0 24.33
Straight walk [3] 173.66 346.68 0 20.87
Mod. Straight walk 174.40 5.21 341.42 12.06

Delaunay triangulation of 70.433 points from real data

Rem. walk 324.00 437.51 0 34.47
Rem. Stoch. walk 324.42 422.14 0 47.76
Straight walk [3] 297.08 593.46 0 46.81
Mod. Straight walk 298.02 5.22 588.59 32.6

Table 1: Comparison of algorithms

With regard to the number of tests, Remember-
ing Stochastic walk with about 1.30 orientation tests
per triangle is the best. Non-Stochastic Remembering
walk is a little worse with about 1.35 orientation tests
per triangle. Both straight walks have about two tests
per triangle (a small difference is due to the initializa-
tion step (the standard Straight walk) or due to the
final location (Modified Straight walk)) but Modified
Straight walk mainly uses faster tests. With regards
to the number of visited triangles, the best are the
Straight walk algorithms. In comparison of time per
one location, Modified Straight walk is the fastest way
because of faster tests. Remembering walk has good
results too but it is only usable for Delaunay triangu-
lations. Remembering Stochastic walk has very good
results regarding the number of tests per triangle but
the cost for the randomization is too high, therefore
the standard Straight walk with two orientation tests
per triangle is a little faster.

φ #∆ max #∆
Dataset per located point

DT of 100.000 random pts 1.77 10
DT of 1.000.000 random pts 1.76 9
DT of 100.000 pts in clusters 3.23 341
DT of 70.433 pts from real data 3.23 186

Table 2: Length of final location by Remembering
Stochastic walk in Modified Straight walk algorithm

Experiments show that the length of the final lo-
cation with Remembering Stochastic walk in Modified
Straight walk is generally short (see Table 2). There
are fluctuations on some types of datasets (e. g. clus-
ters) but they are rare and may be ignored on average.

6 Conclusion

The proposed algorithm was verified to find a point
in a Delaunay triangulations in a better time than
the popular Remembering Stochastic walk. Our algo-
rithm can be used also for non-Delaunay triangula-
tions. Testing on such data is our future work.

Acknowledgments

We would like to thank Mr. Brož and Mr. Hlaváček for

their feedback and inspiring discusion.

References

[1] M. de Berg, M. van Kreveld, M. Overmars, O.
Schwarzkopf. Computational Geometry, Algorithms
and Applications. Berlin Heidelberg: Springer, 1997.

[2] O. Devillers. Improved Incremental Randomized De-
launay Triangulation Proceedings of the 14th Annual
Symposium on Computational Geometry 1998, 106-
115, 2001.

[3] O. Devillers, S. Pion, M. Teillaud. Walking in a Tri-
angulation. Proceedings of the 17th Annual Sym-
posium on Computational Geometry 2001, 106-114,
2001.

[4] L. De Floriani, B. Falcidieno, G. Nagy, C. Pienovi.
On Sorting Triangles in a Delaunay Tesselation. Al-
gorithmica 6, 522-532, 1991.

[5] I. Kolingerová. A Small Improvement in the Walk-
ing Algorithm for Point Location in a Triangulation.
22nd European Workshop on Computational Geom-
etry, 221-224, 2006.

[6] I. Kolingerová, B. Žalik. Improvements to Ran-
domized Incremental Delaunay Insertion. Comput-
ers & Graphics, 26, 477-490, 2002.

[7] E. P. Mücke, I. Saias, B. Zhu. Fast Randomized Point
Location without Preprocessing in Two- and Three-
dimensional Delaunay Triangulations. Proceedings
of the 12th Annual Symposium on Computational
Geometry 1996, 274-283, 1996.

[8] K. Mulmuley. Randomized Multidimensional Search
Trees: Dynamic Sampling. Proceedings of the
7th Annual Symposium on Computational Geometry
1991, 121-131, 1991.

[9] S. W. Sloan. A Fast Algorithm for Constructing De-
launay Triangulations in the Plane. Advanced Engi-
neering Software, 9(1):34-55, 1987.

[10] P. Su, R. L. S. Drysdale. A Comparison of Sequential
Delaunay Triangulation Algorithms. Proceedings of
the 11th Annual Symposium on Computational Ge-
ometry 1995, 61-70, 1995.

[11] M. Zadravec, B. Žalik. An Almost Distribution In-
dependent Incremental Delaunay Triangulation Algo-
rithm. The Visual Computer, 21(6):384-396, 2005.

[12] B. Žalik, I. Kolingerová. An Incremental Construc-
tion Algorithm for Delaunay Triangulation Using the
Nearest-point Paradigm. International Journal of Ge-
ographical Information Science, 17(2):119-138, 2003.

4

EuroCG’09 - Brussels, Belgium

222

Every 4-connected Möbius triangulation is geometrically realizable

Atsuhiro Nakamoto∗ Shoichi Tsuchiya†

Abstract

Let M be a map on a surface F 2. A geometric real-
ization of M is an embedding of F 2 into a Euclidian
3-space R3 with no self-intersection such that each
face of M is a flat polygon. In earlier researches, it
has been proved that every triangulation G on the
projective plane has a face f such that the triangula-
tion G − f on the Möbius band obtained from G by
removing the interior of f has a geometric realization.
In this paper, we shall characterize such a face f in a
triangulation G on the projective plane. This imme-
diately implies that every 4-connected triangulation
on a Möbius band has a geometric realization.

1 Introduction

A map is a fixed embedding of a graph on a surface
F 2. A triangulation on a surface F 2 is a map on F 2

such that each face is bounded by a 3-cycle, where a k-
cycle means a cycle of length k. We suppose that the
graph of a map is always simple, i.e., with no multiple
edges and no loops.

Let M be a map on a surface F 2. A geometric real-
ization of M is an embedding of F 2 into a Euclidian
3-space R3 with no self-intersection such that each
face of M is a flat polygon.

Steinitz’s proved that a spherical map G has a geo-
metric realization if its graph is 3-connected [7]. (He
actually proved that G has a geometric realization
such that no two adjacent faces lie on the same plane
in R3 if and only if G is 3-connected.) Moreover,
Archdeacon et al. proved that every toroidal trian-
gulation has a geometric realization [1]. In general,
Grünbaum conjectured that every triangulation on
any orientable closed surface has a geometric realiza-
tion [6], but Bokowski et al. showed that a triangula-
tion by the complete graph K12 with twelve vertices
on the orientable closed surface of genus 6 has no geo-
metric realization [3]. Hence Grümbaum’s conjecture
is no longer true now but it is still open for the ori-
entable closed surface of genus from 2 to 5.

∗Department of Mathematics, Yokohama National Univer-
sity, 79-2 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
Email: nakamoto@edhs.ynu.ac.jp

†Department of Information Media and Environment Sci-
ences, Graduate School of Environment and Information
Sciences, Yokohama National University, 79-7 Tokiwadai,
Hodogaya-ku, Yokohama 240-8501, Japan

1
2

3

3 1

4

7

5 4

7

5

8

9

6

Figure 1: A Möbius triangulation with no geometric
realization constructed by Brehm

Let us consider nonorientable surfaces, in particu-
lar, the projective plane. Since the projective plane
itself is not embeddable in R3, no map on the projec-
tive plane has a geometric realization. However, the
surface obtained from the projective plane by remov-
ing an open disk (i.e., a Möbius band) is embeddable
in R3, and hence we can expect that a triangulation
on the Möbius band has a geometric realization.

For simple notations, we call a triangulation on the
projective plane and that on the Möbius band a pro-
jective triangulation and a Möbius triangulation, re-
spectively, throughout the paper.

In the current work, we discuss geometric realiza-
tions of Möbius triangulations. However, Brehm [4]
has already found a Möbius triangulation with no ge-
ometric realization, which is shown in Figure 1. (In
Figure 1, identify vertices with the same label.) Can
we get an affirmative result for geometric realizations
of Möbius triangulations?

Let G be a projective triangulation and let f be a
face of G. Let G − f denote the Möbius triangula-
tion obtained from G by removing the interior of f .
Recently, the following has been proved:

Theorem 1 (Bonnington and Nakamoto [2])
Every projective triangulation G has a face f such
that G− f has a geometric realization.

For example, the smallest projective triangulation
has exactly six vertices and the graph is isomorphic
to a complete graph K6 with six vertices. Figure 2
shows it in the left-hand side, and in the right-hand
side, the triangulation minus face 256 has a geometric
realization.

1

Every 4-connected Möbius triangulation is geometrically realizable

223

Figure 2: A geometric realization of K6 −△256

As far as we know, Theorem 1 seems to be the
first affirmative result for geometric realizations of
maps on nonorientable surfaces since Brehm found
the counterexample shown in Figure 1.

Which face f of a projective triangulation G makes
G−f geometrically realizable? Brehm’s counterexam-
ple implicitly assures that a projective triangulation
G has no geometric realization if G has a face f and a
3-cycle C such that the boundary cycle of f and C are
disjoint and bound an annular region. In this case, we
say that C is a nesting 3-cycle of f . (In Figure 1, if
123 is the boundary of f , then 456 is a nesting cycle
C of f .)

In the current work, we shall characterize a face f
in a projective triangulation G such that G− f has a
geometric realization, as follows.

Theorem 2 Let G be a projective triangulation and
let f be a face of G. Then G − f has a geometric
realization if and only if there is no nesting 3-cycle of
f in G.

Theorem 2 asserts that only the structure of
Brehm’s example with a boundary 3-cycle and its
nesting 3-cycle breaks the geometric realizability of
Möbius triangulations. Hence we have the following
corollary which answers a question by Archdeacon et
al. in [1].

Corollary 3 A Möbius triangulation M has a geo-
metric realization unless M has two disjoint 3-cycles
homotopic to the boundary of M .

Moreover, Theorem 2 implies Theorem 1, since we
can easily prove that any projective triangulation has
a face with no nesting 3-cycle. Furthermore, the
following corollary immediately follows, since a 4-
connected projective triangulation has no face with
a nesting 3-cycle.

Corollary 4 Let G be a 4-connected projective tri-
angulation. Then, for any face f of G, G − f has a
geometric realization.

A weaker version of Corollary 4 has already been
known as in the following, but Corollary 4 improved
it with respect to the connectivity of triangulations.

Theorem 5 (Chávez et al. [5]) Let G be a 5-
connected projective triangulation. The, for any face
f of G, G− f has a geometric realization.

Corollary 4 can be strengthened by introducing a
notion of the cyclical k-connectivity. A graph H is
said to be cyclically k-connected if H has no k-cut S
such that each component of H−S has a cycle. Then
we can improve Theorem 5 with a necessary and suf-
ficient condition, as follows. This solved a conjecture
given in [2, 5]

Corollary 6 Let G be a projective triangulation and
let f be a face of G. Then, for any face f of G, G− f
has a geometric realization if and only if G is cyclically
4-connected.

2 Procedures in the proof

In this section, we describe our procedures to prove
Theorem 2. Let G be a projective triangulation, and
let f be any face of G with no nesting 3-cycle of f .
We shall construct a geometric realization of G − f ,
as follows.

Procedure 1. Choose any face, say f ′, neighboring
to f , and let G′ be the map on the Möbius band
obtained from G by removing the 2-cell region f ∪ f ′.

Let G be a map on a surface and let xy be an edge
of G. Contraction of xy is to remove xy and identify
x and y. (If the resulting map has a face bounded by
a 2-cycle, then we replace the multiple edge with a
single edge.) Its inverse operation is called a splitting
of a vertex [xy], where [xy] is the image of the edge
xy by the contraction.

Figure 3: The map K on the Möbius band

Let K be the map on a Möbius band whose graph
is isomorphic to K6 minus two independent edges and
whose boundary has a 4-cycle, as shown in Figure 3.
A split-K is a map obtained from K by splitting some

2

EuroCG’09 - Brussels, Belgium

224

of the vertices of K, and subdividing edges by vertices
of degree 2, but its boundary must have length exactly
four. We call each vertex of K ′ with degree at least
3 a node of K ′. A segment of K ′ means a path of K ′

joining two nodes and containing no node.

Procedure 2. Prove that G′ can be transformed
into K by contracting and deleting edges not on the
boundary. Then we can get a split-K, denoted by K ′,
whose boundary coincides with that of G′. Moreover,
each segment of K ′ can be taken to be induced , i.e.,
without a chord.

Note that if f has a nesting 3-cycle, then Proce-
dure 2 is impossible by the obstruction of the 3-cycle.

Let us introduce a notion called “an exhibition of a
map”, which will play an important role to construct
a geometric realization of a given map.

Let R be a near triangulation, that is, a 2-connected
plane graph with each finite face triangular. Let C be
the boundary of R, that is, the cycle of R bounding the
infinite face. Suppose that we are given an embedding
of C in R3 with each edge a straight-line segment, and
that there exists a plane P ⊂ R3 such that the image
of C in R3 is projected to the plane P as a convex
polygon. Such an embedding of C in R3 is called an
exhibition. The following is an important lemma for
constructing a geometric realization of a map.

Lemma 7 ([1, 2]) Let R be a near triangulation and
let C be the boundary of R. Suppose that an exhi-
bition of C in R3 is given. Then the exhibition of C
extends to a geometric realization in the convex hull
of C in R3.

Let us construct a geometric realization of G − f .
In particular, we shall construct a geometric realiza-
tion of G′ for which we can add the face f ′ with-
out introducing any internal collision of faces. So, by
Lemma 7, it suffices to guarantee the following proce-
dure is possible, since each face of K ′ corresponds to
a near triangulation contained in G.

Let M be a triangulation on a surface F 2 and let H
be a subgraph of M each of whose segment is induced,
where a segment of H means a path of M joining two
vertices of H of degree at least 3 and containing no
inner vertices of H of degree at least 3.) An exhibition
of H is an embedding of F 2 in R3 such that

(i) each segment of H is a straight segment in R3,

(ii) the boundary of each face of H gives an exhibi-
tion in R3,

(iii) for any distinct two faces of H, the convex hulls
of their exhibitions are internally disjoint in R3.

By Lemma 7 and the definition of an exhibition of
a map, in order to construct a geometric realization

of a triangulation M , it suffices to find a subgraph H
of M which has an exhibition in R3.

Procedure 3. Let K ′ be a split-K and let v1v2v3v4

be the boundary 4-cycle of K ′. Prove that K ′ has
an exhibition, and that we can add a triangular disk
v1v2v3 to the geometric realization of G′ without an
internal collision of faces.

3 Construction of geometric realization

The procedures to construct a geometric realization
of a projective triangulation minus a face have been
mentioned in the previous section. In this section, we
describe what is a difficulty in our proof.

Roughly speaking, in the proof of Theorems 1
and 5, a K6-minor (i.e., a map transformed into K6

by contracting and deleting edges) plays the same role
as the map K, and a geometric realization of a K6-
minor can be easily constructed as in Figure 2. In
these two theorems, since the conclusion is to be able
to construct a geometric realization of a map after re-
moving some face of G, or since we can assume the
5-connectedness of graphs, we have been able to de-
tect a K6-minor in G which is a relatively dense map
on the projective plane. Such a graph can easily be
geometrically realized as we expect.

Figure 4: Split-K ′ on the Möbius band

On the other hand, in order to prove Theorem 2, we
can only assume the non-existence of a nesting 3-cycle
of a face f arbitrarily chosen in G. Hence we can only
detect a sparse structure of G, which is a split-K in
Procedure 2. Since a split-K is so sparse, we have to

3

Every 4-connected Möbius triangulation is geometrically realizable

225

consider many cases for constructing an exhibition of
the split-K in Procedure 3.

In Figure 4, we list all possible homeomorphism
types of split-K’s. Each of them must be dealt with
independently, since a minor relation of maps is not
compatible with geometric realizability, that is, even
if a map P is geometrically realizable, a geometric re-
alization of a map Q with Q ≥m P cannot be obtained
from that of P easily.

Let us put an example of a geometric realization of
K ′

1. In order to do so, we have only to construct an
exhibition of K ′

1, as described in Procedure 3. That
is, we give an exhibition of each face of K ′

1 such that
for any distinct faces, the convex hull correspond-
ing to them does not cross internally. In particular,
giving the following 3-dimensional R3-coordinates to
each vertex, we can construct an exhibition: For K ′

1,

v1 = (12,−10, 5), v2 = (−10, 10,−3),
v′
2 = (−9, 10,−2), v3 = (−20,−10, 4),

v4 = (4, 10,−5), v′
4 = (5, 10,−6),

v5 = (0, 0, 0), v6 = (0, 40, 0).

Then we obtain the exhibition shown in Figure 5.

Figure 5: The map K ′
1 on the Möbius band

For K ′
i with i = 2, 3, 4, 5, 6, we have to construct

exhibitions of them independently. As the reader see,
it is too complicated to grasp the complete structure
only by figures, that is, we cannot check whether this
really gives an exhibition. So, in the paper, using a
computer program, we have checked that our coor-
dinates for K ′

i really gives an exhibition of K ′
i, for

i = 1, 2, 3, 4, 5, 6.

4 Conclusion

Historically there are many papers dealing with ge-
ometric realization of orientable maps, but not with
nonorientable maps. We do not know the reason why,

but it might be by the Brehm’s example, or because
a nonorientable closed surface is not embeddable in
R3 and the problem for nonorientable surface is not
so natural as the orientable case.

Theorem 1 asserts that in a given projective trian-
gulation G, if we choose a face f carefully, then G−f
has a geometric realization. However, this theorem
says nothing about a characterization of geometrically
realizable Möbius triangulations.

In order to answer this, Chávez et al.[5] got a result
that a Möbius triangulation is geometrically realizable
if it is a subgraph of a 5-connected projective triangu-
lation (Theorem 5). In proving the result, they used a
skillful argument for finding a K6-minor with a good
property in a projective triangulation G with any face
f specified. However, this did not reach a complete
characterization of a face f with G− f geometrically
realizable.

The current result (Theorem 2) solves the problems
on geometric realization of a projective triangulation
with one face removed and that of a Möbius triangu-
lation which have been considered in the two papers
[2, 5].

References

[1] D. Archdeacon, C.P. Bonnington and J.A. Ellis-
Monanghan, How to exhibit toroidal maps in space,
Discrete Comp. Geom. 38 (2007), 573–594.

[2] P. Bonnington and A. Nakamoto, Geometric realiza-
tion of a projective triangulation with one face re-
moved, Discrete Comp. Geom. 40 (2008), 141–157.

[3] J. Bokowski and A. Guedes de Oliveira, On the gener-
ation of oriented matroids, Discrete Comput. Geom.
24 (2004), 197–208.

[4] U. Brehm, A nonpolyhedral triangulated Möbius
strip, Proc. Amer. Math. Soc. 89 (1983), 519–522.

[5] M. Chávez, G. Fijavž, A. Márquez, A. Nakamoto and
Suárez, Geometric realization of triangulations on the
Möbius band, SIAM J. Discrete Math. 23 (2008),
221–232.

[6] B. Grünbaum, “Convex polytopes”, Pure and Ap-
plied Mathematics Vol. 16, Interscience-Wiley, New
York, 1967.

[7] E. Steinitz, Polyeder und Raumeinteilungen, Enzykl.
Math. Wiss. Vol. 3, Teil 3A612 (1922), 1–139.

4

EuroCG’09 - Brussels, Belgium

226

Multi-pseudotriangulations

Vincent Pilaud∗ Michel Pocchiola∗

Abstract

We introduce a natural generalization of both pseu-
dotriangulations and multitriangulations, that we call
multi-pseudotriangulations. We propose an enumera-
tion algorithm for multi-pseudotriangulations, based
on certain greedy multi-pseudotriangulations that are
closely related with sorting networks.

The proofs of the results of this extended abstract
are skipped for space reasons.

1 Definition

Let M denote the Möbius strip (without boundary),
that is, the quotient set of R2 by the relation (x, y) ∼
(x + π,−y). Let π denote the canonical projection.

A pseudoline is a non-separating simple closed
curve in M. Throughout this paper, a pseudoline
is always assumed to be monotone, and thus can be
seen as the image under the projection π of the graph
{(x, f(x)) |x ∈ R} of a continuous and π-antiperiodic
function f : R → R.

A pseudoline arrangement (see Fig. 1) is a finite set
of pseudolines such that any two of them have exactly
one crossing point and possibly some contact points.
We are only interested in simple arrangements, that
is, where no three pseudolines meet in a common
point. The support of a pseudoline arrangement is the
union of its pseudolines. The first level of a pseudoline
arrangement is its external hull, that is, the bound-
ary of the cell at infinity defined by the support of the
arrangement. Similarly, we define recursively the pth
level of an arrangement to be the external hull of (the
closure of) its support minus its first p− 1 levels.

The main objects with which this paper will be
dealing are the following (see Fig. 1):

Definition 1 Let L be an arrangement of n pseudo-
lines and k be an integer. A k-pseudotriangulation
of L is a set U of vertices of L containing all contact
points of L and obtained as the union of

1. the set of vertices of the first k levels of L, and

2. the set of contact points of an arrangement U ′

of n − 2k pseudolines whose support covers the
support of L minus its first k levels.

In this definition, observe that U ′ is completely de-
termined by U (and vice versa). We denote it Λ(U).

∗Département d’Informatique, École Normale Supérieure,
Paris, France, {vincent.pilaud,michel.pocchiola}@ens.fr

Figure 1: An arrangement of seven pseudolines and a
2-pseudotriangulation of it.

2 Pseudotriangulations and multitriangulations

Duality Remember that the Möbius strip M is the
line space of the plane : we parametrize a line by its
angle with the horizontal axis and its algebraic dis-
tance to the origin. Via this parametrization, the set
of lines passing through a point p of the plane forms
a pseudoline p∗ of M. If P is a point set in general
position, then the set P ∗ = {p∗ | p ∈ P} is a simple
pseudoline arrangement (without contact points).

In this section, we use the following notation: if p
and q are two points of P , e is the edge pq and u
is the crossing point of p∗ and q∗ (i.e., the line pq),
then we denote e� = u and u� = e. We also denote
E� = {e� | e ∈ E} and U� = {u� |u ∈ U}.

Pseudotriangulations Let P be a point set in gen-
eral position. A set E of edges of

(
P
2

)
is pointed if

for any vertex p ∈ P , there exists a line which passes
through p and defines a half-plane containing all the
edges of E incident to p. A pseudotriangulation of
P is a maximal crossing-free pointed set of edges of(
P
2

)
[8, 9, 10, 11]. The following theorem is one of our

main motivations, and justifies the title of this paper:

Theorem 1 1. If T is a pseudotriangulation of P ,
then T � is a 1-pseudotriangulation of P ∗.

2. If U is a 1-pseudotriangulation of P ∗, then U� is
a pseudotriangulation of P .

To make clear the previous theorem, let us interpret
the pseudolines of Λ(T �). Remember that the pseudo-
triangulation T decomposes the convex hull of P into
pseudotriangles (plane polygons with only three con-
vex vertices, joined by three concave polygonal chains;
see Fig. 2). A pseudoline of Λ(T �) is the set of all in-
ner tangents to a pseudotriangle of T .

1

Multi-pseudotriangulations

227

a a
b

c

d
e

e

d

c

b

0

3

7

4

6

1

5

2 0

7

5

6

1

2

3
4

Figure 2: A pseudotriangulation and its dual arrange-
ment. A 2-triangulation and its dual arrangement.

Multitriangulations Let P be a point set in con-
vex position. For ℓ ∈ N, an ℓ-crossing is a set of ℓ
mutually crossing edges. A k-triangulation of P is a
maximal (k + 1)-crossing-free subset of edges of

(
P
2

)
[6, 3, 7]. Again, there is a duality between multi-
pseudotriangulations of P and multitriangulations:

Theorem 2 1. If T is a k-triangulation of P , then
T � is a k-pseudotriangulation of P ∗.

2. If U is a k-pseudotriangulation of P ∗, then U� is
a k-triangulation of P .

The pseudolines of Λ(T �) are easy to interpret with
the following natural generalization of triangles intro-
duced in [7]: a k-star is a set of edges of the form
{sjsj+k | j ∈ Z2k+1}, where s0, . . . , s2k are cyclically
ordered. A pseudoline of Λ(T �) is the set of all bisec-
tors of a k-star of T .

3 Flips and greedy multi-pseudotriangulations

Flips Let L be a pseudoline arrangement without
contact points. Let U be a k-pseudotriangulation of
L. Let u ∈ U be the contact point of two pseudolines
of Λ(U), and v denote their crossing point. Then
that U△{u, v} is a new k-pseudotriangulation of L
(we use the symbol △ for the symmetric difference:
U△{u, v} = U ∪ {v} r {u}). We say that we obtain
U△{u, v} from U by flipping u. The primal notions
of flips (for pseudotriangulations and for multitrian-
gulations) obviously correspond to this dual version.

Let Gk(L) be the graph whose vertices are the k-
pseudotriangulations of L and whose edges are the
pairs of k-pseudotriangulations linked by a flip.

Theorem 3 The graph Gk(L) is connected.

Cuts A cut of L is a pseudoline λ of M̄ = M∪{∞}
passing through the point at infinity and such that
L∪{λ} is a simple pseudoline arrangement of M̄. We
orient all the pseudolines of L in the same arbitrary di-
rection (e.g., the abscisse increasing direction). Then,
a cut λ naturally defines a partial order 4λ on the set
of vertices of L: u 4λ v if there exists an oriented
path on the support of L from u to v and avoiding λ.

Let U be a k-pseudotriangulation of L, u be a flip-
pable contact point of U , and v denote the corre-
sponding crossing point. It is easy to see that u and v
are comparable for 4λ. We say that the flip of u is λ-
increasing if u 4λ v and λ-decreasing otherwise. We
denote Gk

λ(L) the directed graph of λ-increasing flips
on k-pseudotriangulations of L. This directed graph
is acyclic. In the following paragraph, we characterize
its unique sink in terms of sorting networks.

Sorting networks We cut the Möbius strip along the
cut λ, and denote λ− and λ+ the two copies of λ such
that an oriented path on the support of L goes from
λ− to λ+. We orient λ− and λ+ in the same arbitrary
direction.

A sweep of L is a pencil λ0, . . . , λN of cuts of L
such that for all i ≥ 1, λi is obtained from λi−1 by
sweeping a crossing point ui of L, minimal for the or-
der 4λi−1 . We consider a sweep λ0, . . . , λN of L with
λ0 = λ− and λN = λ+ (thus, N =

(|L|
2

)
). We ori-

ent all pseudolines λ1, . . . , λN−1 in the same direction
as λ− and λ+. We denote pi the integer such that
the pseudolines of L that cross at ui are the pith and
(pi + 1)th pseudolines of L on λi.

Let U be a k-pseudotriangulation of L. Since we
have cut M along λ, each of the first k levels of L
is divided into two pieces. Thus, the support of L is
decomposed into n = |L| curves: the 2k pieces of the
first k levels of L and the n− 2k pseudolines of Λ(U).
We denote these curves ℓ1, . . . , ℓn in the order they
reach λ+. With this convention, the order in which
the curves leave λ− is given by the permutation τk of
{1, . . . , n} defined by τk(i) = n−i if i ∈ {k+1, . . . , n−
k}, and τk(i) = i otherwise (see Fig. 3).

To any oriented cut µ of L, we associate the per-
mutation πµ,U of {1, . . . , n} given by the order of
ℓ1, . . . , ℓn on µ. For example, πλ+,U is the identity
permutation, while πλ−,U is the permutation τk. We
consider the sequence of permutations (πλi,U)0≤i≤N .
By definition, this sequence starts with τk, and ends
with the identity permutation. Furthermore, for all i,

1. if ui is in U , then πλi,U = πλi−1,U

2. otherwise, πλi,U is obtained from πλi−1,U by in-
verting its pith and (pi + 1)th entries.

Theorem 4 The directed graph of flips Gk
λ(L) has a

unique sink U characterized by the property that for
all i, the permutation πλi,U is obtained from πλi−1,U

by sorting its pith and (pi + 1)th entries.

2

EuroCG’09 - Brussels, Belgium

228

1
6
5

4
3

2

1
2
5

4
3

6

1
2

3
4

5
6

1
2

3
4

5
6

7 77 7

+– +–

Figure 3: Greedy multi-pseudotriangulations of the pseu-
doline arrangement of Fig. 1.

Let us reformulate Theorem 4 in the context of sort-
ing networks [4, Section 5.3.4]. Let i < j be two in-
tegers. A comparator [i : j] transforms a sequence
of numbers (x1, . . . , xn) by sorting (xi, xj), i.e., re-
placing xi by min(xi, xj) and xj by max(xi, xj). A
comparator [i : j] is primitive if j = i + 1. A sorting
network is a sequence of comparators that sorts any
sequence (x1, . . . , xn).

A pseudoline arrangement L together with a sweep
λ0, . . . , λN define a sequence of primitive comparators
SL = [p1 : p1 + 1], . . . , [pN : pN + 1] [5, Section 8]. In
this setting, Theorem 4 affirms that,

1. given a pseudoline arrangement L, a cut λ of L
and any sweep starting at λ− and ending at λ+,
sorting the permutation τk according to SL pro-
vides a k-pseudotriangulation of L.

2. this k-pseudotriangulation only depends upon L,
k, and λ (not on the total order given by the
sweep).

We call this k-pseudotriangulation the λ-greedy k-
pseudotriangulation of L and denote it Γk

λ(L).
When k = 1, the greedy 1-pseudotriangulation is in

fact the dual of the greedy pseudotriangulation of [1]
(originally [8] for convex bodies). This pseudotrian-
gulation is obtained by a recursive choice of edges: we
start from the empty set and add at each step a max-
imal (for 4λ) remaining edge ei such that the set of
edges {e1, . . . , ei} remains pointed and non-crossing,
until we obtain a pseudotriangulation.

Constrained greedy multi-pseudotriangulation Let
V be a subset of crossing points of L. We denote
by Gk

λ(L |V) the subgraph of Gk
λ(L) induced by the

k-pseudotriangulations of L that contain V .

Theorem 5 The directed graph of flips Gk
λ(L |V) ei-

ther is empty or has a unique sink U characterized by
the property that for all i,

1. if ui ∈ V , then πλi,U = πλi−1,U

2. if ui /∈ V , then πλi,U is obtained from πλi−1,U by
sorting its pith and (pi + 1)th entries.

We denote Γk
λ(L |V) this unique sink.

4 Greedy flip property and enumeration

We are now ready to state the greedy flip prop-
erty, that says how to update the greedy k-
pseudotriangulation of L when the cut λ varies:

Theorem 6 (Greedy Flip Property) Let L be a
pseudoline arrangement. Let λ be a cut of L, and µ be
a cut of L obtained from λ by sweeping a maximal (for
4λ) vertex v of L. Let V be a set of crossing points
of L contained in at least one k-pseudotriangulation
of L. Then,

1. if v is in Γk
λ(L |V), but neither in V , nor in the

first k levels of L, then Γk
µ(L |V) is obtained from

Γk
λ(L |V) by flipping v. Otherwise, Γk

µ(L |V) =
Γk

λ(L |V);
2. if v is in Γk

λ(L |V), then Γk
µ(L |V ∪ {v}) =

Γk
λ(L |V). Otherwise, V ∪{v} is not contained in

a k-pseudotriangulation of L.

From this greedy flip property, we derive an algo-
rithm to enumerate multi-pseudotriangulations, sim-
ilar to the enumeration algorithm of [1].

Let L be a pseudoline arrangement and λ be a cut
of L. We say that a k-pseudotriangulation of L is
colored if its contact points are colored either in blue
or in red. A red contact point is fixed for the end of
the algorithm, while a blue one can be flipped. In the
algorithm, we construct a binary tree T , whose nodes
are colored k-pseudotriangulations of L, as follows:

1. the root of the tree is the λ-greedy k-
pseudotriangulation of L, entirely colored in blue;

2. for any colored k-pseudotriangulation U of L,
if there is no λ-decreasing flippable point (i.e.,
if there only remains red contact points, or if
the flip of any blue contact point of U is λ-
increasing), then U is a leaf of T ;

3. otherwise, we choose a maximal blue point u of
U whose flip is λ-decreasing. The right child of
U is obtained by flipping u and its left child is
obtained by changing the color of u into red.

This algorithm depends upon what maximal
blue point we choose at each step. However,
no matter what this choice is, we obtain all k-
pseudotriangulations of L:

Theorem 7 The set of k-pseudotriangulations of L
is exactly the set of red-colored leafs of T .

Let us briefly discuss the complexity of this algo-
rithm. We assume that the input of the algorithm is
a pseudoline arrangement and we consider a flip as an
elementary operation. Then, this algorithm requires
a polynomial running time per k-pseudotriangulation.
As for many enumeration algorithms, the crucial point
of this algorithm is that its working space is also poly-
nomial (while the number of k-pseudotriangulations
of L is exponential for fixed k).

3

Multi-pseudotriangulations

229

Figure 4: A double pseudoline arrangement and a 2-
pseudotriangulation of it.

5 Further topics and open questions

Double pseudoline arrangements A double pseudo-
line is a non-contractible and non-separating simple
closed curve in M (see Fig. 4). A double pseudoline
arrangement [2] is a finite set of double pseudolines
such that any two of them

1. have exactly four intersection points and cross
transversally at these points; and

2. induce a cell decomposition of the Möbius strip.

The set C∗ of tangents to a convex body C of the
plane is a double pseudoline. If Q is a set of pairwise
disjoint convex bodies, then Q∗ = {C∗ |C ∈ Q} is a
double pseudoline arrangement.

Defining similarly the support and the levels of a
double pseudoline arrangement, we can define multi-
pseudotriangulations of double pseudoline arrange-
ments (see Fig. 4): a k-pseudotriangulation of an ar-
rangement L of n double pseudolines is the set U of
contact points (including the vertices of the first k lev-
els of L) of an arrangement Λ(U) of 2n− 2k pseudo-
lines such that the support of Λ(U) covers the support
of L minus its first k levels (see Fig. 4d).

Multi-pseudotriangulations of double pseudoline ar-
rangements have similar structural properties and can
also be enumerated by the greedy flip algorithm.

The graph of flips Let L be a pseudoline arrange-
ment and k be an integer. Let Θk(L) denote the
partially ordered set of sets of contact points of L
that contain the vertices of the first k levels and the
contact points of L and that are contained in a k-
pseudotriangulation of L, ordered by reverse inclu-
sion. Theorems 3 and 5 ensure that Θk(L) is an
abstract polytope whose 1-skeleton is the graph of
flips Gk(L) (see the discussion in [1, Subsection 2.2]).
When k = 1 and L is the dual pseudoline arrange-
ment of a point set of the Euclidean plane, it turns
out that this abstract polytope can be realized effec-
tively as a polytope of Rd (where d is the number
of flippable edges), known as the polytope of pointed
pseudotriangulations [9]. We naturally would like to
know whether Θk(L) is a polytope in general.

Acknowledgments

We thank Francisco Santos and Micha Sharir for fruit-
ful discussions on the subject.

References

[1] H. Brönnimann, L. Kettner, M. Pocchiola, and
J. Snoeyink. Counting and enumerating pointed
pseudotriangulations with the greedy flip algorithm.
SIAM J. Comput., 36(3):721–739, 2006. Preliminary
version in Proc. 7th Workshop on Algorithm Engi-
neering and Experiments, pages 98–110, 2005.

[2] L. Habert and M. Pocchiola. Arrangements of double
pseudolines in Möbius strips. Submitted to Discrete
Comput. Geom. Abbreviated version in Abstracts
12th European Workshop Comut. Geom., pages 211–
214, 2006. Poster version presented at the Workshop
on Geometric and Topological Combinatorics (satel-
lite conference of ICM 2006).

[3] J. Jonsson. Generalized triangulations and diagonal-
free subsets of stack polominoes. J. Combin. Theory
Ser. A, 112(1):117–142, 2005.

[4] D. E. Knuth. The art of computer programming. Vol-
ume 3. Addison-Wesley Publishing Co., Reading,
Mass.-London-Don Mills, Ont., 1973. Sorting and
searching, Addison-Wesley Series in Computer Sci-
ence and Information Processing.

[5] D. E. Knuth. Axioms and Hulls, volume 606 of Lec-
ture Notes Comput. Sci. Springer-Verlag, Heidelberg,
Germany, 1992.

[6] T. Nakamigawa. A generalization of diagonal flips in
a convex polygon. Theoret. Comput. Sci., 235(2):271–
282, 2000.

[7] V. Pilaud and F. Santos. Multi-triangulations as com-
plexes of star-polygons. to appear in Discrete Com-
put. Geom., 2008.

[8] M. Pocchiola and G. Vegter. Topologically sweeping
visibility complexes via pseudotriangulations. Dis-
crete Comput. Geom., 16(4):419–453, 1996. Special
issue for Proc. 11th Annu. ACM Sympos. Comput.
Geom.

[9] G. Rote, F. Santos, and I. Streinu. Expansive motions
and the polytope of pointed pseudo-triangulations.
In B. Aronov, S. Basu, J. Pach, and M. Sharir, ed-
itors, Discrete and Computational Geometry, The
Goodman-Pollack Festschrift, volume 25 of Algo-
rithms Combin., pages 699–736. Springer, 2003.

[10] G. Rote, F. Santos, and I. Streinu. Pseudo-
triangulations - a survey. In J. E. Goodman, J. Pach,
and R. Pollack, editors, Surveys on Discrete and
Computational Geometry: Twenty Years Later, vol-
ume 453 of Contemporary Mathematics, pages 343–
410. Amer. Math. Soc., 2008.

[11] I. Streinu. Pseudo-triangulations, rigidity and mo-
tion planning. Discrete Comput. Geom., 34:587–635,
2005. Preliminary version in Proc. 41st Annu. IEEE
Symp. Found. Comput. Sci., pages 443–453, 2000.

4

EuroCG’09 - Brussels, Belgium

230

Fast Delaunay Triangulation for Converging Point Relocation
Sequences

Pedro Machado Manhães de Castro* Olivier Devillers∗

Abstract

This paper considers the problem of updating efficiently
a Delaunay triangulation when vertices are moving under
small perturbations. Its main contribution is a set of algo-
rithms based on the concept of vertex tolerance. Experi-
ments show that it is able to outperform the naiverebuild-
ing algorithm in certain conditions. For instance, when
points, in two dimensions, are relocated by Lloyd’s iter-
ations, our algorithm performs several times faster than
rebuilding.

1 Introduction

Delaunay triangulation of a set of points is one of the most
famous data structures produced by computational geom-
etry. Two main reasons explain this success: –1– compu-
tational geometers eventually produce efficient algorithms
to compute it, and –2– it has many practical uses such as
meshing for finite elements methods or surface reconstruc-
tion from point clouds.

For several applications the data are moving and thus
the triangulation evolves with time. It arises for example
when meshing deformable objects [4], or in some algo-
rithms relocating the points by variational methods [1].

We first recall that theDelaunay triangulationDT (S)
of a setS of n points inRd is a simplicial complexsuch
that no point inS is inside the circumsphere of anysimplex
in DT (S). Several algorithms to compute the Delaunay
triangulation are available in the literature. Many of them
work in thestatic setting, where the points are fixed and
known in advance. There are also a variety of so-called
dynamicalgorithms [5], in which the points are fixed but
not known in advance and thus the triangulation is main-
tained under point insertions or deletions. If some of the
points move continuously inRd and we want to keep track
of the modifications of the triangulation, we are dealing
with kineticalgorithms [8]. Finally, an important variation
is when the points move but we are only interested in the
triangulation at some discrete times, we call that context
timestamps relocation.

When we are in the context of timestamps relocation,
a simple and efficient method to consider is the follow-
ing: for each timestamp we simply recompute the Delau-

* Email: First.Lastname@sophia.inria.fr. INRIA, BP93, 06902
Sophia-Antipolis, France, www.inria.fr/sophia/members/First.Lastname.
The authors wish to thank the ANR Triangles, contract number
ANR-07-BLAN-0319, and region PACA for their support.

nay triangulation of the setS(t) at timestampti. We call
this algorithmrebuilding. Note that this algorithm does
not take any previous work into account, thus for times-
tamp ti it does not benefit from any possible correlation
betweenS(tj) andS(ti), with tj < ti. If points are well-
distributed, it could achieve anO(kn log(n)) computation
time, wheren is the number of vertices on the triangula-
tion andk is the number of distinct timestamps.

Although the rebuilding algorithm is naive and has a
poor theoretical complexity, it stands for an algorithm hard
to outperform when most of the points move, as observed
in previous work [8]. In this paper, we propose to com-
pute for each point a safety zone where the point can move
without changing its connectivity in the triangulation. Sev-
eral experiments conducted on synthetic and practical data
show added value of the method, in particular for mesh
smoothing [2] where the points are converging to a final
position.

2 Safe regions

Given any certificateC : Am → {−1, 0, 1} acting on a
m-tuple of pointsζ = (z1, z2, . . . , zm) ∈ Am, whereA
is the space where the input lies in, we define thetolerance
of C with respect toζ, namelyǫC(ζ) or simplyǫ(ζ) when
there is no ambiguity, the largest displacement applicable
to z in ζ without invalidatingC. Hereafter, a certificate is
valid when it is positive. Then, more precisely, the toler-
ance can be stated as follows:

ǫC(ζ) = inf
ζ′

C(ζ′)≤0

distH(ζ, ζ ′), (1)

wheredistH(ζ, ζ ′) is the Hausdorff distance between two
finite sets of points.

By abuse of notation,z ∈ ζ means thatz is one of the
points ofζ. LetX be a finite set ofm-tuples of points in
Am, then thetolerance of an elemente ∈ A with respect
to a given certificateC andX , namelyǫC,X (e) or simply
ǫ(e) when there is no ambiguity, can be defined as follows:

ǫC,X (e) = inf
ζ∋e
ζ∈X

ǫC(ζ). (2)

The tolerance involved in a Delaunay triangulation is
thetolerance of the empty-sphere certificateacting on any
bi-cell of a Delaunay triangulation. From Equation 1, it
corresponds to the size of the smallest perturbation the bi-
cell’s vertices could undergo so as to become cospherical.

1

Fast Delaunay Triangulation for Converging Point Relocation Sequences

231

This is equivalent to compute the hypersphere that min-
imizes the maximum distance to thed + 2 vertices, or to
compute half the width of thed-annulus of minimum width
containing the vertices.

Let T be a triangulation lying inRd andB a bi-cell in
T . Theinterior facetof B is the common facet of the two
cells ofB. Theopposing verticesof B are the remaining
two vertices that do not belong to its interior facet. Two bi-
cellsB,B′ areneighborsif they share a cell. If the interior
facet and opposing vertices ofB are respectively inside
and outside (or on) a common hypersphereS, we say that
B verifies thesafety condition. We callB a safe bi-cell
andS its delimiter. If a vertexz belongs to the interior
facet ofB, then thesafe regionof z with respect toB is
the region inside the delimiter. Otherwise, thesafe region
of z with respect toB is the region outside the delimiter.
The intersection of the safe regions ofz with respect to
each one of its adjacent bi-cells is thesafe regionof z.
Finally, if all the bi-cells ofT are safe bi-cells, then we
call T a safe triangulation. When a triangulation is a safe
triangulation, we say that it verifies thesafety condition.

It is clear that a safe triangulation is equivalent to a De-
launay triangulation, since:

• Each delimiter can be shrunk in such a way that it
touches the vertices of the interior facet, and thus
defining an empty-sphere passing through the interior
facet of its bi-cell.

• Theempty-sphereproperty of Delaunay triangulation
facets defines itself an empty-sphere passing through
the interior facets of the bi-cells. Those empty-
spheres are delimiters.

Proposition 1 Given a Delaunay triangulationT , if its
vertices move arbitrarily yet inside their safe regions, then
T remains Delaunay.

It is a direct consequence of the equivalence between safe
and Delaunay triangulations, since if the vertices remains
inside their safe regions, thenT remains a safe triangula-
tion, and hence a Delaunay triangulation.

Among all possible delimiters of a bi-cell, we define
the standard delimiteras the median hypersphere of the
d-annulus with the inner-hypersphere passing through the
interior facet and the outer-hypersphere passing through
the opposing vertices. Both median hypersphere andd-
annulus are unique. We call thed-annulus, thegenerator
of the standard delimiter.

Let D(B) be the delimiter of a given bi-cellB. Then,
for a given vertexz ∈ T , we define:

ǫ̃(z) = inf
B∋z
B∈T

distH(z,D(B)). (3)

We have that̃ǫ(z) ≤ ǫ(z), since the delimiter generated by
the minimum-widthd-annulus of the vertices of a bi-cell
B maximizes the minimum distance of the vertices to the

delimiter. If we consider the standard delimiter of a bi-cell
as its delimiter, we have thatǫ̃(z) = ǫ(z).

We define thetolerance regionof z as the ball centered
at the location ofz with radiusǫ(z). That is the biggest
ball centered at the location ofz and contained inside its
safe region. We can always extend the tolerance region
to be the entire safe region, but its shape is substantially
more complex as it is defined by the intersection of sev-
eral hyperspheres and complement of hyperspheres. See
Figure 1 for an illustration. Details on the computations of
such objects can be found in the extended version of this
paper [3].

Figure 1:z ∈ R2 the center ofB. The regionA is the safe
region ofz, while B is its tolerance region.

3 Delaunay Maintenance Algorithms

Another naive updating algorithm, significantly different
from rebuilding, is theplacementalgorithm. It consists of,
iterating over all relocated vertices, taking each vertex and
walking to the cell containing its new position, inserting
a vertex at the new position, and, finally removing the old
vertex from the triangulation. Since the cost of deletions is
very high, in practice, rebuilding the whole triangulationis
faster. However, there is a number of algorithms which re-
quire to compute the next location of a vertex one by one,
updating the Delaunay triangulation after each relocation.
Placement algorithm is dynamic, unlike rebuilding, and it
remains suitable for such applications. Another relevant
side effect of the static nature of rebuilding is that some
significant overhead is necessary to preserve a certain or-
der on accessing the vertices after a relocation, which may
be useful for applications that reference the vertices of
the triangulation externally and use the displacement al-
gorithm as a black-box.

We redesigned the placement algorithm so as to take
into account the tolerance region of each relocated vertex.
In practice, the algorithm proposed is capable of correctly
decide whether a vertex displacement requires an update
of the connectivity or not, so as to trigger the trivial update
condition. It will be denoted bytolerance algorithm. It is
dynamic, preserving all benefits from placement compared
to rebuilding.

Data structure. Consider a triangulationT , where for
each vertexz ∈ T we associate two point locations:fz

2

EuroCG’09 - Brussels, Belgium

232

andmz. We will call them thefixed positionand themov-
ing positionof a vertex. The fixed position will be useful
to fix a reference position for a moving point. The mov-
ing position of a given vertex is its actual position, and
will change at any time it is relocated. Initially, the fixed
positions and moving positions are equal. We callTf and
Tm the embedding ofT with respect tofz andmz respec-
tively. For each vertex, we store two numbers:ǫz andDz

(as inDisplacement). These numbers represent the toler-
ance value ofz and the distance betweenfz andmz re-
spectively.

Pre-computations. Compute the Delaunay triangula-
tion T of the initial set of pointsS, and for each vertex, let
ǫz = ǫ(z) andDz = 0. Theupdating algorithmperforms
as follows for each vertex displacement:

Input: A triangulationT after the pre-computations, a vertexz
of T and its new locationp.

Output: T updated after the relocation ofz.
(mz, Dz)← (p, dist(fz,p)) ;
if Dz < ǫz then we are done;
else

insertz on a queueQ;
whileQ is not emptydo

let h be the head ofQ;
(fh, ǫh, Dh)← (mh,∞, 0) ;
moveh with placement algorithm;
foreach new created bi-cellsB do

ǫ′ ← half the width of the standard delimiter
generator ofB ;
foreach vertexw ∈ B do

if ǫw > ǫ′ then
ǫw ← ǫ′;
if ǫw < Dw then insertw intoQ;

end
end

end
end

end

The algorithm is shown to terminate as each processed
vertexz gets a new displacement valueDz equals to0 and
thus smaller or equal toǫz. At the end of this algorithm, all
vertices are guaranteed to have theirDz smaller or equal
to theirǫz. In such a situation, from Property 1,Tm is the
Delaunay triangulation of the moving positions. The toler-
ance algorithm has the same complexity as the placement
algorithm. If all points move, the total number of calls to
the placement algorithm is guaranteed to be smaller than
O(n). Discussion on robustness issues can be found in the
extended version of this paper [3].

4 Experimental Results

A centroidal Voronoi tessellation is a Voronoi tessella-
tion whose generating points are the centroids (centers of
mass) of the corresponding Voronoi regions [6]. Appli-
cations of centroidal Voronoi tessellation include image
compression, quadrature, and cellular biology, to name
a few. There are several approaches to determine cen-
troidal Voronoi tessellations, classified as either proba-
bilistic or deterministic. One deterministic method is the
well-known Lloyd’s iterations[7]. Given a set of points,

Lloyd’s iterations optimize their placement by moving
them to the centroid of their Voronoi region with respect
to a given density function, up to convergence. For each
iteration of Lloyd’s method, we must recompute the De-
launay triangulation of the points. Each iteration can be
considered as a distinct timestamp.

Hereafter, we denote the set of the width of the standard
delimiter generator of the bi-cells byW, the set of the ver-
tex tolerances byǫ(V). The average of a setS of numbers
is denoted byavg(S), and the tolerance algorithm byT.

In two dimensions, we consider four different density
functions: ρ1 = 1, ρ2 = x2 + y2, ρ3 = x2 and
ρ4 = sin2

√
x2 + y2. And we run the Lloyd’s itera-

tions to obtain centroidal Voronoi tessellations according
to them. Our experiments show that during the process,
while the average displacement is going to zero,avg(W)
andavg(ǫ(V)) converge to around33−40% and5−10%
of the average point density respectively. We run the
Lloyd’s iterations during1000 iterations, which is required
to generate satisfactory results (see Figure 2).

(a)ρ3 iteration1. (b) ρ3 iteration1000.

0 200 400 600 800 1000

iteration

0

0.1

0.2

0.3

0.4

s
iz
e

average tolerance

average annuli width

displacement

(c) ρ3 tolerances evolution.

0 0.2 0.4 0.6 0.8 1

size

Iteration 1000

Iteration 100

Iteration 10

Iteration 1

(d) ρ3 distribution ofW.

Figure 2:1.000 points in a circle with densitiesρ1 andρ3.

In three dimensions, we run the Lloyd’s iterations on a
point set of about13.000 points in a ball. This experiment
is referenced to asslloyd. The average tolerance of bi-
cells remains about30% of the point density, but due to the
higher degree of a vertex in three dimensions, the average
tolerance of the vertices converge to a much smaller value
(of about1%).

We also run a dual version of the Lloyd’s algorithm, first
calledoptimal Delaunay triangulation(ODT), which is
shown to generate fewerslivers(flat tetrahedra, which im-
pacts negatively on the stability of computations in simu-
lations) [9]. As this algorithm requires moving the points

3

Fast Delaunay Triangulation for Converging Point Relocation Sequences

233

one by one in sequence, we cannot use the rebuilding
scheme. We run it on a set of about13.000 points in a
sphere (snodt) and on a surface mesh of a human body of
about8.000 points (man). Figure 3 showsmanat different
iterations of the process. Close-ups on the head visually
indicates that100 iterations are clearly not sufficient to get
an high quality mesh (as confirmed by less visual quality
measures).

(a) (b) (c) (d)

Figure 3: In (a)man initially; In (b), (c) and (d)man after
10, 100 and1000 iterations respectively. (c) and (d), show
close-ups on the head.

Experiments show a good convergence of the average
tolerance of bi-cells to a reasonable value and of the aver-
age tolerance of vertices to a smaller value, although these
tolerances converge slower than in two dimensions.

For a random point distribution and random displace-
ments of lengthδ, if displacements are small enough, and
only around25% of the vertices have displacement above
tolerance in two dimensions (55% in three dimensions),
thenT is competitive with rebuilding. In three dimensions,
placement is twice slower and around nine time slower
than rebuilding in two and three dimensions respectively.
In extreme configurations, our algorithm outperforms re-
building by a factor of17 (125 in three dimensions). How-
ever those configurations are artificial and very unlikely to
happen for real data sets.

The performance ofT depends on the amount of dis-
placements remaining inside the tolerance region. An idea
of what this percentage represents in terms of distances
can be shown within the context of random walk. When
displacement magnitudes are around20% of avg(ǫ(V)) of
the input set,T is still able to outperform rebuilding in both
two and three dimensions. In three dimensions, if all dis-
placements magnitudes are lower or equal toavg(ǫ(V)),
T is more than three time faster than placement.

We now discuss the performance of the algorithms for
Lloyd iterations, considering a thousand of iterations. We
implemented in addition a small variation of the tolerance
algorithm, suggested in Section 3, which consists of re-
building for the first few iterations, and, swapping toT.
We denote this algorithm byR+T.

In two dimensions,T andR+T outperform both rebuild-
ing and placement. In three dimensions, they outperform
placement in all configurations. This enhancement is rel-
evant for applications requiring to move vertices one at
a time and for dynamic triangulations, which cannot be
achieved by rebuilding. However, to outperform rebuild-
ing is harder in three dimensions, because the removal op-

eration is even slower and the number of bi-cells contain-
ing a given point is five times larger than in two dimen-
sions. In spite of that,T still outperforms rebuilding in
synthetic and real data sets (snodt andman). T cannot
perform withslloyd, as well as it does with the other in-
puts, because of theslivers produced by running a pure
Lloyd iteration (tolerances are sensitive toslivers). In both
two and three dimensions, when we go further on the num-
ber of iterations,T becomes faster. As shown in Figure 3,
the number of iterations highly impacts the quality of the
final result. This result enables a novel possibility: Going
further on the number of iterations. More details on ex-
perimental results are available in the full version of the
paper [3].

5 Conclusion

This paper deals with the problem of updating Delaunay
triangulations for moving points. We introduce the notion
of the tolerance and safe region of a vertex in this context.
We end up with an algorithm suitable when the magnitude
of the displacement keeps decreasing while the tolerances
keep increasing. Such configurations translate into conver-
gent schemes, e.g. Lloyd’s iterations itself.

References

[1] Alliez P., Cohen-Steiner D., Yvinec M., and Desbrun M.
Variational tetrahedral meshing.ACM Trans. on Graphics,
24:617–625, 2005. SIGGRAPH ’2005 Conf. Proc.

[2] N. Amenta, M. Bern, and D. Eppstein. Optimal point place-
ment for mesh smoothing. InProc. 8th ACM-SIAM Sym-
pos. Disc. Algo., pages 528–537, January 1997.

[3] De Castro P. M. M. and Devillers O. Delaunay triangu-
lations for moving points. Research report, INRIA, 2008,
http://hal.inria.fr/inria-00344053/.

[4] Debard J. B., Balp R., and Chaine R. Dynamic Delau-
nay Tetrahedralisation of a Deforming Surface.The Visual
Computer, page 12 pp, Aug. 2007.

[5] Devillers O. Improved incremental randomized Delaunay
triangulation. InProc. 14th Annu. ACM Sympos. Comput.
Geom., pages 106–115, 1998.

[6] Du Q., Faber V., and Gunzburger M.. Centroidal voronoi
tessellations: Applications and algorithms.SIAM Rev.,
41(4):637–676, 1999.

[7] Ostrovsky R., Rabani Y., Leonard J. Schulman, and
Swamy C. The effectiveness of Lloyd-type methods for the
k-means problem. InFOCS ’06: Proc. of the 47th Annu.
IEEE Sympos. on Found. of Comp. Sci., pages 165–176,
Washington, DC, USA, 2006. IEEE Computer Society.

[8] D. Russel.Kinetic Data Structures in Practice. PhD thesis,
Stanford Univ., 2007.

[9] Tournois J., Alliez P., Wormser C., and Desbrun M. Quality
isotropic tetrahedron meshing with optimal Delaunay trian-
gulations, 2008.

4

EuroCG’09 - Brussels, Belgium

234

Linear-Time Delaunay Triangulations Simplified∗

Kevin Buchin† Wolfgang Mulzer‡

Abstract

Recently it was shown that — under reasonable as-
sumptions — Voronoi diagrams and Delaunay tri-
angulations of planar point sets can be computed
in time o(n log n), beating the classical comparison-
based lower bound. A number of increasingly faster
randomized algorithms have been proposed, most re-
cently a linear-time algorithm based on a randomized
incremental construction that uses a combination of
nearest neighbor graphs and the history structure to
speed up point location. We present a simpler vari-
ant of this approach relying only on nearest neigh-
bor graphs. The algorithm and its analysis gener-
alize to higher dimensions, with an expected perfor-
mance that is proportional to the structural change
of the randomized incremental construction. As a by-
product, we analyze an interesting class of insertion
orders for randomized incremental constructions.

1 Introduction

A classical lower bound asserts that it takes Ω(n log n)
time to construct the Delaunay triangulation (DT) of
a planar point set in the algebraic decision tree model.
However, three years ago Chan and Pǎtraşcu [5]
showed that this lower bound can be broken on a word
RAM, giving a randomized algorithm that runs in
O(n log n/log logn) time, which they later improved
to n2O(

√
log logn) [6]. More recently, a randomized

linear-time algorithm in a different model was pro-
posed [2]. In this paper, we show how to simplify this
approach by using a variant of a randomized incre-
mental construction (RIC) con BRIO.

Our main tool is a reduction from nearest neigh-
bor graphs (NNGs) to Delaunay triangulations: we
show that if the NNG for an m-point set can be com-
puted in time f(m), then the Delaunay triangula-
tion for an n-point set P can be computed in time
O(C(n)+f(n)), where C(n) is the expected structural
change for a RIC. In a recent paper, Chan [4] explains
a linear-time reduction from quadtrees to NNGs and

∗The first author was supported by the Netherlands’ Organ-
isation for Scientific Research (NWO) under BRICKS/FOCUS
project no. 642.065.503. The second author was supported in
part by NSF grant CCF-0634958 and NSF CCF 0832797.
†Dept. of Information and Computing Sciences, Utrecht

University, Netherlands, buchin@cs.uu.nl
‡Department of Computer Science, Princeton University,

wmulzer@cs.princeton.edu

describes two settings in which quadtrees can be con-
structed quickly. The first assumes a real-RAM with
a constant-time restricted floor-function that can be
applied only if the resulting integer has O(log n) bits.
Thus, we avoid issues about creating an unreasonably
powerful model of computation. Furthermore, we as-
sume that the input P has polynomially bounded
spread (defined below). Then, the NNG of P , N(P),
can be computed in linear time [4]. In the second
setting, we have a word RAM which can compute
the shuffle of a point in constant time (if the coordi-
nates of p are (p1w · · · p11, p2w · · · p21, . . . , pdw · · · pd1),
the shuffle is p1wp2w · · · pdw · · · pd1). This is a reason-
able assumption, since the shuffle operation is in AC0.
Here, a NNG can be found in the time needed for in-
teger sorting. We believe that current integer sorting
algorithms can be adapted to the shuffle order and
that therefore the assumption can be dropped.

Our reduction follows the RIC paradigm, choos-
ing a random permutation of the input and inserting
the points into the DT one by one. However, unlike
the previous algorithm [2], the choice is not uniform,
but we use a sampling strategy that can be seen as a
generalization of a biased randomized insertion order
(BRIO) [1]. Compared to the classical approach, RIC
con BRIO achieves an improved locality of reference
as follows: take a gradation P = S0 ⊇ S1 ⊇ · · · ⊇ S`,
where |S`| = O(1) and Si+1 is obtained from Si by
sampling each point independently with probability
1/2. When performing the RIC, first insert all points
in S`, then S`−1, then S`−2, and so on. The order
within the sets Si is arbitrary; eg, it could be opti-
mized for the underlying hardware. This procedure
runs in expected time proportional to what classical
RICs achieve [1, 3].

Owing to the flexibility of RICs, our algorithm
works in any dimension. For the planar case, we can
give a very simple analysis for the reduction. How-
ever, this analysis crucially uses the fact that the
worst-case complexity of planar DTs is linear. Of
course, this is no longer true in higher dimensions,
but even then, “typical” point sets often have linear-
size DTs. Even stronger, it is not uncommon to en-
counter inputs in which the size of the DT for a ran-
dom subset is linear in the subset. For example, this
happens for points that are distributed uniformly in a
d-dimensional ball. For such point sets the structural
change of classical RICs and RICs con BRIO is linear
(but they lose a logarithmic factor for updating the

1

Linear-Time Delaunay Triangulations Simplified

235

conflict information). As for many random distribu-
tions, the expected spread is polynomially bounded,
which suffices to compute the NNG in linear time in
our first model of computation. In a more refined
analysis, we will show that the expected running time
of our reduction is proportional to the expected struc-
tural change of the RIC plus the time for computing
the NNG. Thus, on typical inputs we again achieve
an improvement in running time over classical RICs.

2 Algorithm & First Analysis

We say that an n-point set P ⊆ Rd has polynomially
bounded spread, if the ratio between the maximum
and minimum distance between any two points in P is
O(nc), for some constant c. NNGs for point sets with
bounded spread or for points with integer coordinates
can be computed quickly, as was shown by Chan [4].

Theorem 1 (Chan [4]) Let P ⊆ Rd be an n-point
set. If P has polynomially bounded spread, N(P)
can be computed in time O(n) on a real-RAM with
the restricted floor function. If the coordinates of the
points are b-bit integers and we assume a word RAM
with the shuffle operation, then N(P) can be found in
time O(sort(n)), where sort(n) is the time for sorting
db-bit integers.

We now describe our algorithm BrioDC. Suppose
that NNGs can be computed in f(m) time, such
that f(m)/m is increasing. By Theorem 1, we have
f(n) = O(n) or f(n) = O(sort(n)), depending on the
model. Given a point set P , we first compute N(P) in
O(f(n)) time. Next we compute a sample S ⊆ P such
that S meets every connected component of N(P) and
such that S contains every point in P with probabil-
ity 1/2. This is done as follows: we define a (partial)
matching M(P) on P by pairing up two arbitrary
points in each component of N(P). The sample S is
obtained by picking one random point from each pair
in M(P) and sampling the points in P \M(P) inde-
pendently with probability 1/2 (although they could
also be paired up). We recursively compute the De-
launay triangulation DT(S) of S. To locate P \ S
in DT(S), we traverse the components of N(P) start-
ing in each component at a point of S and inserting
points while we walk through the Delaunay triangu-
lation along the edges of N(P). Since f(m)/m is in-
creasing, it takes O(f(n)) time to compute the NNGs
for all the samples.

Theorem 2 Let P be a planar n-point set. BrioDC

computes DT(P) in expected time O(f(n)+n), where
f(m) is the time to compute a m-point NNG and we
assume that f(m)/m is increasing.

Proof. The cost of a straight-line walk along an edge
pq of N(P) with p in the current DT and q to be in-

serted next can be split into the cost of finding the
triangle at p in which the walk starts and the cost of
the actual traversal. The first part of the cost can be
bounded by the number of triangles at p in the current
DT. Summing over all walking steps, any triangle is
counted for each of its vertices at most as often as the
degree of this vertex in N(P), which is bounded. The
second part of the cost, ie, the cost of the traversal,
can be bounded by the structural change since all tri-
angles traversed are destroyed when the next point is
inserted.

The structural change can be bounded by compar-
ing it to the structural change of the last round of a
RIC con BRIO. Let ps be the probability that a given
triangle with s conflicts appears in the last round of
such a construction. We have ps = c/2s for a suitable
constant c. The probability p′s of this triangle appear-
ing in BrioDC while constructing DT(P) from DT(S)
is also bounded by 1/2s: either the stoppers of the tri-
angle are sampled independently of each other (then
we directly get this bound), or not (then S includes
a stopper and the simplex cannot occur). Thus, the
expected structural change is asymptotically as for
RIC con BRIO and therefore linear [1, 3]. Now, the
expected size of S is |P |/2, and we can apply the ar-
gument above to the construction of DT (S), and so
on. Overall this yields the desired running time. �

3 Dependent Insertion Orders & Second Analysis

Theorem 2 does not apply to higher dimensions, since
it requires that the worst-case complexity of a planar
DT is linear. We now make the analysis sensitive to
the expected structural change of a RIC.

Theorem 3 Let P be a d-dimensional n-point set.
The expected running time of BrioDC is O(C(P) +
f(n)), where C(P) denotes the expected structural
change incurred by a RIC on P and f is as in The-
orem 2. The constant in the O-notation depends ex-
ponentially on d.

Let P = S0 ⊇ · · · ⊇ S` be the sequence of samples
taken by BrioDC. Fix a set u of d+ 1 distinct points
in P . Let ∆ be the simplex spanned by u, and let
Lu ⊆ P denote the points in the circumsphere of ∆.
The set u is the trigger set, Lu the stopper set for ∆.
Consider the event Aα that ∆ occurs in one of the
DTs in the construction of DT(Sα) from DT(Sα+1),
for some α. Clearly, Aα can only happen if u ⊆ Sα
and Lu ∩ Sα+1 = ∅.

We will prove Theorem 3 using Lemma 4 which in
turn follows from Proposition 6.

Lemma 4 We have

Pr[Aα] ≤ e2d+2 2−(d+1)α
(
1− 2−α−1

)|Lu|
.

2

EuroCG’09 - Brussels, Belgium

236

Let us first give some intuition: we think of the sam-
pling as an (α+ 1)-step random walk on a path with
|Lu| nodes: a random step represents a new sam-
ple, and each node represents the current number of
stoppers. The goal is to upperbound the probabil-
ity of reaching state 0 while retaining all triggers.
This model is overly simplistic: the random choices
in a step not only depend on the number of stoppers
in the current sample S, but also on the matching
M(S). Even worse, the probability distribution in
the current state may depend on past states. How-
ever, we will show how to avoid these issues through
appropriate conditioning, and that the random walk
essentially behaves like a Markov process that in each
round eliminates d + 1 stoppers and samples the re-
maining stoppers independently. The elimination is
due to trigger-stopper pairs, since we assume that
all triggers survive. The remaining stoppers are not
necessarily independent, but matching two stoppers
guarantees that one of them survives, which can only
help. Eliminating d+ 1 stoppers in the ith round has
a similar effect as starting with about (d+ 1)2i fewer
stoppers: though a given trigger can be matched with
only one stopper per round, these parings can vary for
different instances of the walk, and since a given stop-
per survives a round with probability roughly 1/2, the
“amount” of stoppers eliminated by one trigger in all
instances roughly doubles per round.

Proof. (of Lemma 4) For a sample S ⊆ P , we de-
fine the matching profile for S as the triple (a, b, c)
that counts the number of trigger-stopper, stopper-
stopper, and trigger-trigger pairs in M(S). In order
to bound Pr[Aα], we consider

ps,k := max
Pk

Pr[Aα | Xs,k,Pk], (1)

where we define

Xs,k := {u ⊆ Sα−k} ∩ {|Lu ∩ Sα−k| = s} ,

ie, the event that the sample Sα−k contains all the
triggers and exactly s stoppers. The maximum
in (1) is taken over all possible sequences Pk =
m0, . . . ,mα−k−1, Y0, . . . , Yα−k−1 of matching profiles
mi for Si and events Yi of the form Xti,α−i for some
ti. Since Pr[Aα] = p|Lu|,α, it suffices to upperbound
ps,k. We define a recursion for ps,k. To do that, let

Tk := {u ⊆ Sα−k} ,

ie, the event that Sα−k contains all the triggers, and
let

Uk,i := {|Lu ∩ Sα−k| = i} ,
denote the event that Sα−k contains exactly i stop-
pers.

Proposition 5 We have

ps,k ≤ max
m

Pr[Tk−1 | Xs,k,m]·
s∑
i=0

pi,k−1 Pr[Uk−1,i | Tk−1, Xs,k,m],

where the maximum is over all possible matching pro-
files m = (a, b, c) for Sα−k.

Proof. Fix a sequence Pk as in (1). Then, by distin-
guishing how many stoppers are present in Sα−k+1,

Pr[Aα | Xs,k,Pk] =
s∑
i=0

Pr[Xi,k−1 | Xs,k,Pk] Pr[Aα | Xi,k−1, Xs,k,Pk].

Now if we condition on a matching profile m for Sα−k,
we get

Pr[Xi,k−1 | Xs,k,Pk,m] =
Pr[Tk−1 | Xs,k,m] Pr[Uk−1,i | Tk−1, Xs,k,m],

since the distribution of triggers and stoppers in
Sα−k+1 becomes independent of Pk once we know the
matching profile and the number of triggers and stop-
pers in Sα−k. Furthermore,

Pr[Aα | Xi,k−1,m, Xs,k,Pk] ≤
max
Pk+1

Pr[Aα | Xi,k−1,Pk+1] = pi,k−1.

The claim follows by taking the maximum over m. �

We use Proposition 5 to bound ps,k: if m = (a, b, c)
pairs up two triggers, we get u 6⊆ Sα−k+1 and
Pr[Tk−1 | Xs,k,m] = 0. Hence we can assume c = 0
and therefore Pr[Tk−1 | Xs,k,m] = 1/2d+1, since all
triggers are sampled independently. Furthermore, we
know that none of the a stoppers paired with a trigger
and half of the 2b stoppers paired with a stopper end
up in Sα−k+1, while the remaining tm := s − a − 2b
stoppers are sampled independently. Thus, Proposi-
tion 5 gives

ps,k ≤ max
m
c=0

s−a−b∑
i=b

pi,k−1

2d+1
Pr
[
Btm1/2 = i− b

]
, (2)

where Btm1/2 denotes a binomial distribution with tm
trials and success probability 1/2.

Proposition 6 We have

ps,k ≤ 2−(d+1)k
(
1− 2−k−1

)s k∏
j=1

(
1− 2−j

)−d−1
.

3

Linear-Time Delaunay Triangulations Simplified

237

Proof. The proof is by induction on k. For k = 0,
we have

ps,0 ≤
(

1− 1
2

)s
,

since we require that none of the s stoppers in Sα be
present in Sα+1, and this can only happen if they are
sampled independently of each other. Furthermore,
by (2),

ps,k+1

≤ max
m
c=0

s−a−b∑
i=b

pi,k
2d+1

Pr
[
Btm1/2 = i− b

]
(3)

= max
m
c=0

1
2d+1+tm

tm∑
i=0

(
tm
i

)
pi+b,k.

Using the inductive hypothesis and the binomial the-
orem, we bound the sum as

tm∑
i=0

(
tm
i

)
pi+b,k

≤
∑tm
i=0

(
tm
i

) (
1− 2−k−1

)i+b
2(d+1)k

k∏
j=1

(
1− 2−j

)−d−1

=

(
2− 2−k−1

)tm
2(d+1)k

(
1− 2−k−1

)b k∏
j=1

(
1− 2−j

)−d−1

=

(
1− 2−k−2

)tm
2(d+1)k−tm

(
1− 2−k−1

)b k∏
j=1

(
1− 2−j

)−d−1
.

Now, since tm = s− a− 2b ≥ s− d− 1− 2b and since(
1− 2−k−1

)b
(1− 2−k−2)2b

=
(

1− 2−k−1

1− 2−k−1 + 2−2k−4

)b
≤ 1,

it follows that

tm∑
i=0

(
tm
i

)
pi+b,k

≤
(
1− 2−k−2

)s
2(d+1)k−tm

k+1∏
j=1

(
1− 2−j

)−d−1
,

and hence (3) gives

ps,k+1 ≤
(
1− 2−k−2

)s
2(d+1)(k+1)

k+1∏
j=1

(
1− 2−j

)−d−1
,

which finishes the induction. �

(Proof of Lemma 4 continued) Now, since (1 − x) >
exp(−x/(1− x)) for x < 1 we have

k∏
j=1

(1− 2−j)−d−1 ≤ e2(d+1)
∑∞

j=1 2−j

= e2(d+1),

so we get as claimed

Pr[Aα] ≤ p|Lu|,α ≤ e2d+22−(d+1)α(1− 2−α−1)|Lu|.

�

Proof. (of Theorem 3) The cost for NNG computa-
tions and walking can be bounded as in the proof of
Theorem 2 (in particular the degree of the NNG is
bounded by a constant for any fixed dimension), ex-
cept that the expected structural change is not neces-
sarily linear. To prove the theorem, it is sufficient to
show that the probability that the simplex ∆ spanned
by u ⊆ P occurs in BrioDC is up to a constant fac-
tor upper bounded by the same probability in a RIC.
In the case of BrioDC, this probability is bounded by∑∞
α=0 Pr[Aα]. Let p denote the corresponding proba-

bility in a RIC and let

pα := 2−(d+1)α(1− 2−α−1)|Lu|(1− 2−d−1).

We have

Pr[Aα] ≤ exp(2d+ 2)(1− 2−d−1)−1pα.

Now, from an analysis of RIC con BRIO [3, Lemma
3.8] we have,

∑∞
α=0 pα ≤ 2d+1p, thus,

∞∑
α=0

Pr[Aα] ≤ 2d+1 exp(2d+ 2)(1− 2−d−1)−1p.

�

References

[1] N. Amenta, S. Choi, and G. Rote. Incremental con-
structions con BRIO. In Proc. 19th Annu. ACM
Sympos. Comput. Geom., pages 211–219. ACM Press,
2003.

[2] K. Buchin. Delaunay triangulations in linear time?
Submitted, see arXiv:0812.0387v1 [cs.CG].

[3] K. Buchin. Organizing Point Sets: Space-
Filling Curves, Delaunay Tessellations of Random
Point Sets, and Flow Complexes. PhD thesis,
Free University Berlin, 2007. http://www.diss.fu-
berlin.de/diss/receive/FUDISS thesis 000000003494.

[4] T. M. Chan. Well-separated pair decomposition in
linear time? Inform. Process. Lett., 107(5):138–141,
2008.

[5] T. M. Chan and M. Pǎtraşcu. Transdichotomous re-
sults in computational geometry, I: Point location in
sublogarithmic time. SIAM J. Comput. To appear.
Preliminary versions in: Proc. 47th IEEE Sympos.
Found. Comput. Sci. (FOCS), 2006, pp. 325–332, 333–
342.

[6] T. M. Chan and M. Pǎtraşcu. Voronoi diagrams in

n ·2O(
√

lg lg n) time. In Proc. 39th Annu. ACM Sympos.
Theory Comput., pages 31–39, 2007.

4

EuroCG’09 - Brussels, Belgium

238

2D Delaunay mesh generation with area/aspect-ratio constraints

Narćıs Coll∗ Marité Guerrieri∗ J. Antoni Sellarès∗

Abstract

In this paper we propose algorithms that combine
Delaunay approaches with control area/aspect-ratio
constraints for generating a refined Delaunay mesh
of a Planar Straight Line Graph domain. We also
present a series of applications which combine area
and aspect-ratio constraints with angle constraint.
This combination is possible because all the designed
algorithms are based on Delaunay triangulation.

1 Introduction

Many works exist on the generation of a quality trian-
gular mesh for a Planar Straight Line Graph (PSLG)
domain. There are several quality criteria, being the
most common that the angles of each triangle are
neither too small nor too large. Delaunay refine-
ment mesh generation algorithms have taken place
in this context (to only cite a few references, see
[5, 4, 3, 7, 1, 8]).

Some problems require a certain granularity (aver-
age triangle area) of the mesh, instead of an angle re-
striction. However, applying area constraints without
taking into account the angles is not ideal for mesh
generation because, in most cases, the resulting mesh
can have many long and skinny triangles. Combin-
ing the application of an area constraint to regions
of the mesh with a later angle refinement allows the
adaptation of a domain to many physics problems.
Moreover, a triangulation with triangles of area close
to equal has the important property that the distri-
bution of its vertices is very uniform [6, 2] and can
help later insertion of new elements of the PSLG. In
this context we devote our efforts to study area based
constraints, having the combination of Delaunay cri-
terion and an improvement process in mind.

Following this line of thinking, it is natural to con-
tinue with the study of the behavior of an aspect-ratio
quality measure based on area instead of one devel-
oped for the angle criterion. By using this measure we
avoid triangles with relatively small areas. When us-
ing the aspect-ratio quality measure, a local improve-
ment of the triangulation can be obtained by flipping
a diagonal of a convex quadrilateral. Nevertheless, the

∗Institut d’Informàtica i Aplicacions, Universitat de Girona,
Spain. Email: {coll,mariteg,sellares}@ima.udg.edu. Partially
supported by the Spanish Ministerio de Educación y Ciencia
under grant TIN2007-67982-C02-02.

sequence of local improvements along the whole mesh
does not produce an unique triangulation. To assure
an unique triangulation we use a Delaunay method in
combination with the aspect-ratio constraint.

Our approach is focused in optimizing the position
of new or existing Steiner vertices. The optimal po-
sition is looked for in the star defined by a vertex
of a bad element. The new position can not change
its link. If the link changes all the work carried out
to optimize the position of the point is lost and link
changes can produce very bad triangles. The link is
maintained by the definition of Delaunay zones intro-
duced in the next section.

2 General notations and Delaunay zones

Let T a conforming Delaunay triangulation of a given
PSLG Ω. Being q a vertex of T and e an edge of the
link Lq of q, we use the following notation:
• Hq,e is the open half-plane determined by e and
containing the vertex q.
• tq,e is the triangle with vertices ei, ef and q.
• t′q,e is the adjacent triangle to tq,e by e.
• Aq,e is the area of tq,e.
• cq,e is the circumcircle of t′q,e when e is not con-

strained and it is the diametral lens of 30◦ angle oth-
erwise.
• aq,e is the arc cq,e ∩Hq,e. We will say that cq,e
is the supporting circle of aq,e.
• Sq is the star of a vertex q.
• ker(Lq) is the kernel of Lq.
The Delaunay zone of an edge e ∈ Lq, denoted Dq,e,

is the set of points of Hq,e external to cq,e.
The external Delaunay zone of a vertex q is the set

EDq =
⋂
e∈Lq

Dq,e. The external Delaunay zone of a

vertex is an open non-convex set included in ker(Lq)
and may be constituted by several non-connected
components.

Let CLq
be the convex vertices of Lq. The Delaunay

zone of a vertex u ∈ CLq
, denoted Dq,u, is the interior

of the circle determined by u and its adjacent vertices
in Lq. The internal Delaunay zone of a vertex q is the
convex set IDq =

⋂
u∈CLq

Dq,u .

The Delaunay zone of a vertex q is the set Dq =
EDq ∩ IDq. The boundary of Dq will be denoted by
Dq. If we replace q by a point p ∈ Dq then Lp = Lq

1

2D Delaunay mesh generation with area/aspect-ratio constraints

239

and the set of triangles {tq,e} is substituted by the set
{tp,e}.

3 Finding a point optimizing a Delaunay zone

Consider a vertex q of T . We are interested in replac-
ing the point q by a point p̃ ∈ Dq, to assure Lp = Lq,
such that optimizes diverse criteria related to the tri-
angles of the star Sq. We assume that the triangu-
lation T is located on the XY -plane of R3 and the
edges of any star Sq are ordered counterclockwise.

3.1 Area constraint

Considering the objectives of achieving a triangula-
tion where the maximum area of the triangles is lower
than a certain preestablished bound α, and the num-
ber of vertices added to the triangulation is as low
as possible, we optimize the position of a new or a
existing Steiner vertex in its Delaunay zone.

The area Ap,e of a triangle tp,e is a linear function
of p ∈ Sq, denoted πe(p), whose graph is (a bounded
part) of a plane πe through the segment e. Let Πq be
the the set of all planes πe, e ∈ Lq. Then we have:

min
e∈Lq

{Ap,e} = min
πe∈Πq

{πe(p)} = LEΠq (p) and

max
e∈Lq

{Ap,e} = max
πe∈Πq

{πe(p)} = UEΠq
(p).

3.1.1 Optimization criteria

We want to find p̃ ∈ Dq that satisfies one of the fol-
lowing criteria:

• p̃ maximizes the minimum area among the trian-
gles of Sq:

max
p∈Dq

(min
e∈Lq

{Ap,e}) = max
p∈Dq

LEΠq
(p) = LEΠq

(p̃).

This means to find the highest point of LEΠq (p).

• p̃ minimizes the difference between the maximum
and minimum area among the triangles of Sq:
min
p∈Dq

(max
e∈Lq

Ap,e−min
e∈Lq

Ap,e) = min
p∈Dq

(UEΠq
(p)−LEΠq

(p)) =

= UEΠq
(p̃)− LEΠq

(p̃).

This means finding the lowest point of UEΠq
(p) −

LEΠq (p).
The difference UEΠq (p) − LEΠq (p) can be computed
as the upper envelope of another set of planes in the
following way. For each two different edges e, e′ of Lq
let πe − πe′ be the plane determined by the graph of
the linear function Ap,e−Ap,e′ . Let DΠq be the set of
planes {πe − πe′ / e, e′ ∈ Lq, e 6= e′}. Then, we have:
UEΠq

(p)− LEΠq
(p) = UEDΠq

(p), and, consequently:

min
p∈Dq

(UEΠq (p)−LEΠq (p)) = min
p∈Dq

(UEDΠq (p)) = UEDΠq (p̃) .

3.2 Aspect-Ratio constraint

The aspect-ratio asp(t) of a triangle t is defined as the
ratio between the area of the triangle and the square
of its longest edge. Given a fixed aspect-ratio ε our
goal it to find a conforming Delaunay triangulation T
of Ω satisfying

∀t ∈ T asp(t) ≥ ε .

Given a half-edge h with length ||h|| of T we define
the aspect-ratio of h with respect to a point p as

asp(h, p) =
Ap,h
||h||2 .

Observe that function asp(h, p) is linear with respect
to p. Let vh be the vertex of the triangle of T at
the left and adjacent to h. Since the aspect-ratio of a
triangle t bounded by three half-edges h0, h1, h2 can
be computed by

asp(t) = min{asp(h0, vh0), asp(h1, vh1), asp(h2, vh2)} ,

our goal is equivalent to find a conforming Delaunay
triangulation T of Ω satisfying

∀h ∈ T asp(h, vh) ≥ ε .

Our approach is based on a local maximization of
the aspect-ratios of the link half-edges of the vertices.
Then, a half-edge having an aspect-ratio less than ε
is called a bad half-edge.

3.2.1 Aspect-ratio link maximization

We are interested in replacing a vertex q by a point
p̃ ∈ Dq such that maximizes the aspect ratio of the
half-edges h ∈ Lq. Then, we want to find the point
p̃ ∈ Dq that satisfies:

min
h∈Lq

{asp(h, p̃)} = max
p∈Dq

{min
h∈Lq

{asp(h, p)}} .

The linear function asp(h, p) of p ∈ Dq, denoted
πh(p), has a plane πh through the half-edge h as
graph. Consequently, we have

min
h∈Lq

{asp(h, p)} = LEΠq (p)

where Πq is the the set of all planes πh, h ∈ Lq. Then,
point p̃ corresponds to the highest point of LEΠq

(p).

3.3 Optimization algorithms

Our method first finds the local extremum p∗ that
optimizes the areas/aspect-ratios in Sq. If p∗ ∈ Dq
then p∗ is the optimal solution p̃. Otherwise we find
the point p̃ that optimizes the areas/aspect-ratios re-
stricted to Dq and we take a point inside Dq close to p

2

EuroCG’09 - Brussels, Belgium

240

as the target point p̃. This process needs to compute
the arcs of Dq and the envelopes LEΠq and UEDΠq .

Since the computation depends on the number of
edges of Lq whose average number is six, the time
needed for the overall method is constant.

In the following we describe in more detail the two
steps to find p∗ and, if it is the case, p̃, described in
the previous paragraph.

First step. The first step finds a point p∗ on Sq
satisfying one of the criteria established.
• Finding a point maximizing the minimum

area or the minimum aspect-ratio. The local
extremum p∗ = (x∗, y∗) can be found by computing
the LEΠq

and searching its maximum with a cost of
O(k log k), being k the number of Lq edges. Neverthe-
less, the point p∗ can be optimally computed by ap-
plying linear programming to the optimization prob-
lem that maximizes function Θ(x, y, z) = z subject to
restrictions {z ≤ πe(x, y) | e ∈ Lq} in O(k) time.
• Finding a point minimizing the difference

between areas. The local extremum p∗ = (x∗, y∗)
can be found as the minimum of the UEDΠq with a
cost of O(k2 log k), being k the number of Lq half-
edges. Again, the point p∗ can be optimally computed
by applying linear programming to the optimization
problem that minimizes function Θ(x, y, z, t) = z sub-
ject to restrictions {z ≤ πe(x, y), z+ t ≥ πe(x, y) | e ∈
Lq} in O(k) time.

Second step. The second step finds a point p̃ on
Dq. Let F be the set of the projected faces of the
polyhedral surface considered (LEΠq

or UEDΠq
). The

point p̃ is found by applying the following steps:
1. Compute the arcs ai of Dq.
2. Split each arc ai in subarcs aij according to the
faces of F intersected by ai.
3. For each subarc aij compute the global extremum
point pij of the linear function associated to the face
intersected by aij .
4. Let p be the point pij that optimizes the criterion
considered and p̃ be a point inside Dq close to p.

4 Generating a Delaunay refined mesh using area
or aspect-ratio constraint

The process to generate a refined Delaunay quality
mesh of a PSLG considering area or aspect-ratio con-
straint consists on the following steps. First, a con-
forming Delaunay triangulation of the PSLG is gen-
erated, then the list of bad triangles (area ≥ α) or
bad half-edges (aspect-ratio ≥ ε) to be removed is ob-
tained, and finally our improvement method is applied
to eliminate the bad elements.

Improvement process. The improvement pro-
cess receives as input the list of bad elements to be
removed. The output of the process is a mesh with the
desired quality. The process actualizes this list after

the treatment of each bad triangle or bad half-edge
and finishes when it is empty.
To remove a bad triangle using an area criterion,
first its Steiner vertices are moved to a better po-
sition. This process of movement finishes when all
three points were checked for movement or when the
triangle has a good area. If, after the previous move-
ment process the triangle continues being a bad one,
the midpoint of its longest edge is inserted and moved
to an optimal position.
To remove a bad half-edge using an aspect-ratio cri-
terion, first the opposite vertex to its longest edge is
checked for deletion or movement to optimal position
in order to achieve a triangle with good aspect-ratio.
If this is not possible or the half-edge continues with
a bad aspect-ratio then the midpoint of its LEPP [4]
is inserted and moved to an optimal position. The
deletion operation used is the same basic operation
explained in [1].

Movement of Steiner vertices. We name re-
stricted Steiner vertices those located on any segment
of the PSLG and free Steiner vertices the remaining
Steiner ones. A free vertex q is substituted by the best
point p̃ in Dq such that it optimizes the area/aspect-
ratio criterion. The movement of a restricted vertex
is constrained over their correspondent subsegment.
The optimizing algorithm can easily be adapted in
order to guarantee that the vertex p̃ lies on the sub-
segment.

5 Combining different constraints

Combination of area and aspect-ratio constraints with
the angle criterion exposed in [1] is possible because
all the methods proposed are based on Delaunay tri-
angulation.
Increasing granularity. Combining the application
of an area constraint to regions of the mesh with a
later angle refinement allows the automatic adapta-
tion of the domain to physics problems (see Figure
1).

(a) (b) (c)

Figure 1: Boundary into the red square in (a) must have more

granularity than in the rest of the model. In (b) the resulting mesh

after applying a preprocess in which triangles into the square have

area less than 0.01. In (c) all the angles are greater than 40◦ after

applying the angle criterion.

When the granularity is increased for the whole do-

3

2D Delaunay mesh generation with area/aspect-ratio constraints

241

main better results in the number of final elements are
obtained than if only the angle criterion is applied (see
Table 1 and Figure 2).

Model Area α Triangles Triangles
criterion preprocess angle ≥ 40◦

Superior Lake Maximizing 0.1 1234 4176
Airfoil minimum 4.0 173 706

Superior Lake Minimizing 0.1 1084 4661
Airfoil difference 4.0 150 622

Table 1: Results obtained applying the area criteria as a prepro-

cess to obtain triangles with angles greater o equal to 40◦. Applying

only the angle criterion with 40◦ bound the number of triangles are:

4693 for the Superior Lake model and 773 for the airfoil model.

(a) (b)

Figure 2: Triangulations with all the angles greater or equal to

40◦ after a preprocess using an area constraint with a bound of 0.1.

(a) Superior Lake. (b) Airfoil.

Preprocess for domain changes. The application
of a preprocess, considering area constraints, facili-
tates the posterior insertion of new restrictions to the
domain because of the adequate granularity produced.
In Figure 3 first the Superior Lake without the islands
has been triangulated with an area constrain, second
the islands has been inserted, and third a triangula-
tion with all the angles greater or equal to 40◦ has
been obtained.

(a) (b) (c)

Figure 3: A detail of three islands in the Superior Lake model.

(a) Insertion of the islands. Triangles with minimum angle less

than 40◦ are in blue. (b) Triangulation with all the angles greater

or equal than 40◦. The total number of triangles obtained applying

this strategy is 4109 which is less than 4693 the quantity obtained

applying directly the minimum angle criterion in (c).

Aspect-ratio and angle constraints. Applying
the aspect-ratio quality measure a good distribution
of minimum angles is obtained (see Table 2). The
triangulation of Figure 4(a) has been obtained using

an aspect-ratio constraint of 0.175 bound. It has 624
triangles, 22.27◦ minimum angle, 40.23◦ mean angle
and 35.31◦ first quartile angle. If the angle criterion
with bound 40◦ is applied later, the triangulation of
Figure 4(b) is obtained with 2415 triangles. Applying
only the angle criterion with a bound of 40◦ a triangu-
lation with 2660 triangles would have been obtained.

Mean 1st Minimum
Model angle quartile angle

Superior Lake 40.73 35.25 21.43
Airfoil 39.83 33.35 22.81

Table 2: Mean angle, first quartile, and minimum angle obtained

by applying the aspect-ratio constraint with 0.175 bound.

(a) (b)

Figure 4: (a) Triangulation obtained using an aspect-ratio con-

straint of 0.175. (b) Triangulation with all the angles greater or

equal to 40◦ applying the angle criterion to the triangulation (a).

References

[1] N. Coll, M. Guerrieri, and J.-A. Sellarès. Combining
improvement and refinement techniques: 2d delau-
nay mesh adaptation under domain changes. Applied
Mathematics and Computation, 201:527–546, 2008.

[2] L. Freitag, M. Jones, and P. Plassmann. An efficient
parallel algorithm for mesh smoothing. In Proceed-
ings of the 4th International Meshing Roundtable, 47–
58, 1995.

[3] S.-E. Pav. Delaunay Refinement Algorithms. De-
partment of Mathematical Sciences - Carnegie Mellon
University - PhD thesis, 2003.

[4] M-C. Rivara, N. Hitschfeld, and R-B. Simpson. Ter-
minal edges delaunay (small angle based) algorithm
for the quality triangulation problem. Computer-
Aided Design, 33:263–277, 2001.

[5] J.-R. Shewchuk. Delaunay Refinement Mesh Genera-
tion. School of Computer Science - Carnegie Mellon
University - PhD thesis, 1997.

[6] V. Surazhsky and C. Gotsman. High quality com-
patible triangulations. Engineering with Computers,
20(2):147–156, 2004.

[7] J. Tournois, P. Alliez, and O. Devillers. Interleaving
Delaunay Refinement and Optimization for 2D Tri-
angle Mesh Generation In Proceedings of the 16th
International Meshing Roundtable, 83–101, 2007.

[8] A. Üngör Off-centers: A new type of Steiner points
for computing size-optimal quality-guaranteed Delau-
nay triangulations. Computational Geometry: The-
ory and Applications, 42(2):109–118, 2009.

4

EuroCG’09 - Brussels, Belgium

242

Homotopic Rectilinear Routing with Few Links and Thick Edges∗

Bettina Speckmann† Kevin Verbeek†

Abstract

We study the problem of finding non-crossing thick
minimum-link rectilinear paths homotopic to a set
of input paths in an environment with rectangular
obstacles. This problem occurs in the context of
map schematization under geometric embedding re-
strictions, for example, when schematizing a high-
way network for use as a thematic layer. We present
a 2-approximation algorithm that runs in O(n3 +
kin logn + kout) time, where n is the total number
of input paths and obstacles and kin and kout are the
total complexities of the input and output paths, re-
spectively. Our algorithm not only approximates the
minimum number of links, but also minimizes the to-
tal length of the paths. An approximation factor of 2
is optimal when using smallest paths as lower bound.

1 Introduction

Motivation. Schematic maps are a well-known car-
tographic tool; they visualize a set of nodes and edges
(for example, highway or metro networks) in simpli-
fied form to communicate connectivity information as
effective as possible. Many schematic maps are some-
what removed from the geographic context: while the
locations of nodes are usually close to their actual
geographic location, edges can be routed in any way
that is consistent with the network topology. How-
ever, if one wishes to use a schematized network as a
thematic layer for a thematic map, then additional ge-
ographic and hence geometric restrictions apply. Con-
sider the following example: we want to create a the-
matic map that focuses on traffic flow on highways.
As base map we use a standard geographic map, the
thematic overlay consists of a schematized highway
network. The schematized network has to fulfill var-
ious requirements: (i) edges are drawn thickly, using
few orientations and links, (ii) critical features (cities,
lakes, etc.) of the base map are not obscured and re-
tain their correct topological position with respect to
the network. There has been little algorithmic work
on network schematization under geometric embed-
ding restrictions; in this paper we address one of the
fundamental underlying problems for the first time.

∗Supported by the Netherlands Organisation for Scientific
Research (NWO) under project no. 639.022.707.

†Department of Mathematics and Computer Science,
TU Eindhoven, The Netherlands, speckman@win.tue.nl and
k.a.b.verbeek@tue.nl

Our input is a set of no rectangular obstacles and
np pairs of points (ai, bi) together with non-crossing
paths πi that connect ai to bi. We want to find a set
of np non-crossing rectilinear thick ai-bi paths which
are homotopic to the paths πi. We refer to this prob-
lem as the thick routing problem (correspondingly, the
thin routing problem is the same problem for stan-
dard “thin” paths). Returning to the example above,
the obstacles model the (bounding boxes of) critical
map features and the paths πi correspond to the ac-
tual geographic location of the highways we want to
schematize. Note that the endpoints of the paths—
the cities connected by the highways—necessarily also
constitute obstacles when considering homotopy.

Related Work. The thick routing problem can be
seen as a variation on the thick non-crossing paths
problem studied by Mitchell and Polishchuk [11].
They find shortest non-crossing thick paths in a polyg-
onal domain, that is, the points ai and bi lie on the
boundary of a simple polygon. We consider gen-
eral input paths, albeit with fixed homotopy classes,
and study minimum-link rectilinear instead of short-
est paths. There are several papers [2, 6] that find
shortest paths homotopic to a given collection of input
paths. However, while a set of shortest paths homo-
topic to a set of non-crossing input paths is necessarily
non-crossing, the same does not hold for minimum-
link rectilinear paths. Our problem is also related to
drawing graphs with fat edges [5], and to wire routing
in VLSI design [4, 7, 9, 10], although none of these
papers strives to minimize the number of links.

Many variants of the thick routing problem, even
without obstacles and with thin paths, are proven NP-
hard by Bastert and Fekete [1] if the homotopy classes
of the paths are not specified. Yang et al. [14] con-
sider a very restricted version: they show how to find
a pair of non-crossing minimum-link rectilinear paths
inside a rectilinear polygon. Pach and Wenger [13]
prove that non-crossing paths connecting n pairs of
points might need Ω(n) paths to have Ω(n) links.
Gupta and Wenger [8] present an approximation al-
gorithm (with an approximation factor larger than
120) for finding non-crossing minimum-link paths in-
side a simple polygon; here all endpoints lie on the
boundary of the polygon. Another type of related
work considers map schematization and metro map
construction. For example, Cabello et al. [3] give an
algorithm that schematizes a network using 2 or 3
links per path, if possible. Nöllenburg and Wolff [12]

Homotopic Rectilinear Routing with Few Links and Thick Edges

243

use a method based on mixed-integer programming
to generate metro maps using one edge per path.
Both methods do not incorporate obstacles and are re-
stricted to a small constant number of links per path.
Results. We present a 2-approximation algorithm
for the thick routing problem which runs in O(n3 +
kin log n+ kout) time, where n = no + np is the total
number of obstacles and input paths and kin and kout

are the total complexities of the input and output
paths, respectively. As a lower bound for the mini-
mum number of links any solution must have we use
the total number of links of the smallest paths that
are homotopic to the input paths (a smallest path is
a rectilinear path that is both shortest and minimum-
link). Our algorithm not only approximates the min-
imum number of links, but also minimizes the total
length of the paths. An approximation factor of 2 is
optimal when using smallest paths as lower bound.

Our algorithm is based on a surprisingly simple in-
cremental construction, which we first explain for thin
paths in Section 3, before extending it to thick paths
in Section 4. Intuitively, any incremental approach
to this problem should be doomed due to a cascading
number of links, but we show how to move already in-
serted paths without increasing the number of links or
creating crossings to make room for each new path.
To efficiently move homotopic (sub-)paths we use a
bundling technique as described in [6]. Furthermore,
we “grow” the thick paths by extending the results
of [5] to rectilinear paths and rectangular obstacles.

2 Preliminaries

Every rectilinear path π consists of a sequence of hori-
zontal and vertical links. We can also see a rectilinear
path as a sequence of staircase chains separated by U-
turns. We distinguish two types of staircase chains:
positive staircase chains which go right and down (or
left and up) and negative staircase chains which go
left and down (or right and up). If there is an obsta-
cle on the inside of a U-turn touching the middle link,
then we call this U-turn a tight U-turn.

A smallest path is a rectilinear path that is both
shortest and minimum-link. Every staircase chain be-
tween two points has the same length. Hence a rec-
tilinear path is shortest iff it has only tight U-turns.
Every collection of non-crossing rectilinear paths can
be made shortest by making the U-turns tight one-by-
one. So we can find a solution to the thin (or thick)
routing problem that is also shortest. However, rec-
tilinear shortest paths are not unique and can cross.
Therefore we consider rectilowest paths, which are rec-
tilinear shortest paths of which all staircase chains are
as low as possible. Rectihighest paths are defined sim-
ilarly. We can show that rectilowest paths or recti-
highest paths are always non-crossing. Unfortunately
they can have O(n) times more links than smallest

paths, so we use smallest paths as a starting point for
the algorithm instead. We observe that a positive and
a negative staircase chain of rectilinear shortest paths
can never cross.

Consider a collection of non-crossing rectilinear y-
monotone chains πi and a collection of obstacles ωi.
We can represent the homotopy classes of πi by a total
order O on the paths and obstacles. Use O(πi) for the
position of πi in this order. Let π′i and π′j be paths
homotopic to πi and πj (π′i ∼h πi and π′j ∼h πj). If
O(πi) < O(πj), then an intersection region of π′i and
π′j is a region enclosed by π′i and π′j at y-coordinates
where the paths are out of order, i.e. where π′j is
to the left of π′i. Intersection regions are y-monotone
rectilinear polygons and do not contain obstacles.

3 Thin Paths

We solve the thin routing problem in two steps. First
we compute the smallest paths homotopic to the input
paths πi. Then we untangle these paths.
Computing smallest paths. We compute pushed
smallest paths that are homotopic to the input paths.
A pushed rectilinear shortest path has all horizontal
links pushed down as much as possible (while keeping
it shortest) and all vertical links pushed right (left)
as much as possible for positive (negative) staircase
chains. Pushed smallest paths have only rectangular
intersection regions, which simplifies the untangling
algorithm. To compute them efficiently, we first com-
pute rectilowest and rectihighest paths. For that we
modify the algorithm by Efrat et al. [6], which also
bundles homotopic y-monotone chains. The rectilow-
est and rectihighest paths are represented by O(n)
bundles with at most O(n) links each. From that we
can easily compute a bundled representation of the
pushed smallest paths using a plane sweep algorithm.
In total this step takes O(n2 + kin logn) time.
Untangling smallest paths. To untangle the small-
est paths, we use the fact that positive staircase chains
do not cross negative staircase chains. Hence we can
restrict ourselves to positive staircase chains. As these
chains have a total order, we assume the input paths
to be ordered positive staircase chains πi (1 ≤ i ≤ n).

We untangle the paths incrementally, adding paths
in order from left to right. The first two paths π1

and π2 can have only rectangular intersection re-

π1 π2

reroute box

Figure 1: Untangling the first two paths.

EuroCG’09 - Brussels, Belgium

244

π
′

i
L

Figure 2: The possible shapes of intersection regions of L and a path π′i. Dashed lines denote reroute boxes.

gions. We can add two links to π2 (for each inter-
section region) to remove the crossings. Unfortu-
nately this might make intersection regions with πk

(k > 2) non-rectangular such that rerouting requires
more links. To avoid this we keep track of where paths
are rerouted using reroute boxes (Fig. 1). Reroute
boxes are rectangular and contain no obstacles.

We maintain the following invariants after adding
path πk (rerouted paths are denoted by π′i): (i)
π′1 . . . π

′
k are non-crossing, (ii) π1 . . . πk have at most

one reroute box per lower-left bend, and (iii) all
upper-right bends of a path πj are to the right of π′i
with i < j. A new path πk+1 is added one L-segment
L at a time. L can cross multiple other paths. The
original paths πi have only rectangular intersection re-
gions. L is unchanged and we have added only reroute
boxes to π′1 . . . π

′
k, hence there are only a few shapes

possible for the intersection regions with L (Fig. 2):
one, two, or three upper-right bends.

Now assume that L is crossed by the paths π′a . . . π′b
(a ≤ b). We want to make the intersection region of
L with π′b rectangular such that we can add a reroute
box to L to remove all crossings. We do this incremen-
tally for all intersection regions, starting with π′a and
ending with π′b. Assume an intersection region Ri of
L and π′i ∈ [π′a . . . π

′
b] is rectangular. To make the in-

tersection region Ri+1 rectangular, we move the links
of π′i+1 through Ri+1 (intersection regions contain no
obstacles), but not through Ri (this would introduce
crossings with π′i). By Invariant (i) π′i+1 does not
cross Ri initially. If Ri+1 contains one upper-right
bend, we do nothing as Ri+1 is already rectangular.
If Ri+1 contains two upper-right bends, then we ei-
ther move the first vertical link of π′i+1 to the left
(onto L) or the last horizontal link down. Due to
the rectangular shape of Ri, we can always do one of
the two moves without crossing Ri. If Ri+1 contains
three upper-right bends, then either Ri is in the mid-
dle corner and we move the first vertical link of π′i+1

to the left and the last horizontal link down, or Ri is
not in the middle corner, in which case we can sim-
plify the middle corner and handle this as a case with
two upper-right bends (see Fig. 3 for an example).

Since the algorithm maintains all invariants, the
output paths are non-crossing. They are also homo-
topic to the input paths, because we change paths
only by adding reroute boxes or by moving links
through intersection regions. We add only two links
per reroute box and there is at most one reroute box
per lower-left bend. Because a positive staircase chain
with L links has at most L/2 lower-left bends, the al-
gorithm at most doubles the number of links.

We can easily extend this algorithm to work on the
y-monotone chains of the smallest paths. Because we
can add an L-segment in O(n) time and we have only
O(n) chains with at most O(n) links each, untangling
the chains can be done in O(n3) time. Finally we can
unbundle the paths in O(kout) time. So in total we
can compute a 2-approximation for the thin routing
problem in O(n3 + kin logn+ kout) time.

4 Thick Paths

In this section we extend the algorithm of the previous
section to thick paths. For ∆ > 0 let S∆ be the square
of size ∆ centered at the origin. A thick rectilinear
path with spine πi and thickness ∆i is defined as the
Minkowski sum of πi and S∆i : (πi)∆i = πi⊕S∆i . We
say that two paths πi and πj have the proper distance
if (πi)∆i and (πj)∆j are interior disjoint.

The main difference with thin paths is that fixing a
thick path might make it impossible for another thick
path to be routed. We say that a path π′i ∼h πi is
feasible if there exist paths π′j ∼h πj for 1 ≤ j ≤ np

and i 6= j such that all paths have the proper distance.
In a valid solution of the thick routing problem every
path is feasible. Hence we use feasible smallest paths
as a lower bound.

L L L L L

Figure 3: Making intersection regions rectangular and rerouting L.

Homotopic Rectilinear Routing with Few Links and Thick Edges

245

L

π
′

b

γb(L)
L′

reroute box

Figure 4: Making guarded regions rectangular.

Feasible smallest paths. To compute feasible
smallest paths, we first compute the feasible rectilow-
est and rectihighest paths. For this we use a variant
of the algorithm by Duncan et al. [5]. Like in Sec-
tion 3, we first compute the thin rectilowest and rec-
tihighest paths. Then, using a similar approach as
in [5], we grow the paths until they have the required
thickness. By construction the resulting paths are the
feasible rectilowest and rectihighest paths. After that
it is easy to compute feasible smallest paths. Like for
thin paths, we bundle homotopic y-monotone chains,
so we get O(n) bundles with at most O(n) links each.
This can be computed in O(n3 + kin log n) time.

Untangling thick paths. The thick paths need to
be untangled in such a way that the resulting paths
are feasible and have the proper distance. To achieve
this, we use guards. A guard γi(j) of a path πi with
respect to another path πj is a path representing the
closest position at which the path πj can be with re-
spect to πi while all paths have the proper distance.
A guard ignores all obstacles. In other words, the
guard γi(j) defines the region where πj is feasible, if
we fix the path πi and ignore the obstacles. This way
a guard γi(j) is a shifted version of πi, where the dis-
tance depends on the thickness of the paths between
πi and πj . This distance can differ along the path πi.

To ensure that we do not change the homotopy
classes during untangling, we use the intersection re-
gions between a guard γi(j) and a path πj , which we
call guarded regions. We can show that also guarded
regions contain no obstacles and, if the paths are
pushed, all guarded regions are rectangular as well.

We now untangle the paths as before, changing two
of the invariants: (i’) π′1 . . . π

′
k have the proper dis-

tance and (iii’) upper-right bends of a guard γj(i) are
to the right of paths π′i with i < j. When adding
an L-segment L we now look at the guarded regions
of γL(i) and π′i instead of the ordinary intersection
regions. Computing the guards and guarded regions
is nontrivial and the details can be found in the full
paper. Next, we have to make the guarded regions
rectangular, which can be done similarly as for thin
paths. While doing this, we push the links of a path
π′i onto γL(i) instead of L. This way Invariant (i’) is
maintained by definition of the guards. Finally we can
add a reroute box to L, such that L has the proper
distance to the other paths (see Fig. 4).

Theorem 1 We can compute a 2-approximation for
the thick routing problem that also minimizes the
lengths of the paths in O(n3 + kin logn+ kout) time.

References

[1] O. Bastert and S. P. Fekete. Geometrische Verdrah-
tungsprobleme. Technical Report 247, Mathematis-
ches Institut, Universität zu Köln, 1996.

[2] S. Bespamyatnikh. Computing homotopic shortest
paths in the plane. J. Alg., 49(2):284–303, 2003.

[3] S. Cabello, M. de Berg, and M. van Kreveld. Schema-
tization of networks. Comp. Geom.: Theory and
Appl., 30(3):223–238, 2005.

[4] R. Cole and A. Siegel. River routing every which way,
but loose. In Proc. 25th Symp. Found. Comp. Sci.,
pp. 65–73, 1984.

[5] C. A. Duncan, A. Efrat, S. G. Kobourov, and
C. Wenk. Drawing with fat edges. Intern. J. Found.
Comp. Sci., 17(5):1143–1163, 2006.

[6] A. Efrat, S. G. Kobourov, and A. Lubiw. Computing
homotopic shortest paths efficiently. Comp. Geom.:
Theory and Appl., 35(3):162–172, 2006.

[7] S. Gao, M. Jerrum, M. Kaufmanm, K. Mehlhorn,
and W. Rülling. On continuous homotopic one layer
routing. In Proc. 4th Symp. Comp. Geom., pp. 392–
402, 1988.

[8] H. Gupta and R. Wenger. Constructing pairwise dis-
joint paths with few links. ACM Trans. Alg., 3(3):26,
2007.

[9] C. E. Leiserson and F. M. Maley. Algorithms for
routing and testing routability of planar vlsi layouts.
In Proc. 17th Symp. Theory Comp., pp. 69–78, 1985.

[10] M. Malley. Single-layer wire routing and compaction.
MIT Press, Cambridge, MA, USA, 1990.

[11] J. S. Mitchell and V. Polishchuk. Thick non-crossing
paths and minimum-cost flows in polygonal domains.
In Proc. 23rd Symp. Comp. Geom., pp. 56–65, 2007.

[12] M. Nöllenburg and A. Wolff. A mixed-integer pro-
gram for drawing high-quality metro maps. In Proc.
13th Intern. Symp. Graph Drawing, LNCS 3843, pp.
321–333, 2005.

[13] J. Pach and R. Wenger. Embedding planar graphs
at fixed vertex locations. Graphs and Combinatorics,
17(4):717–728, 2001.

[14] C. D. Yang, D. T. Lee, and C. K. Wong. The small-
est pair of noncrossing paths in a rectilinear polygon.
IEEE Trans. Comp., 46(8):930–941, 1997.

EuroCG’09 - Brussels, Belgium

246

Area-Universal Rectangular Layouts∗

David Eppstein† Elena Mumford‡ Bettina Speckmann‡ Kevin Verbeek‡

Abstract

A rectangular layout is a partition of a rectangle into
a finite set of interior-disjoint rectangles. A layout is
area-universal if any assignment of areas to rectan-
gles can be realized by a combinatorially equivalent
rectangular layout. We identify a simple necessary
and sufficient condition for a rectangular layout to be
area-universal: a rectangular layout is area-universal
if and only if it is one-sided. More generally, given
any rectangular layout L and any assignment of areas
to its regions, we show that there can be at most one
layout (up to horizontal and vertical scaling) which is
combinatorially equivalent to L and achieves a given
area assignment. We also investigate similar ques-
tions for perimeter assignments. The adjacency re-
quirements for the rectangles of a rectangular layout
can be specified in various ways, most commonly via
the dual graph of the layout. We show how to find
an area-universal layout for a given set of adjacency
requirements whenever such a layout exists.

1 Introduction

Motivation. Raisz [7] introduced rectangular car-
tograms in 1934 as a way of visualizing spatial infor-
mation, such as population or economic strength, of a
set of regions like countries or states. Rectangular
cartograms represent geographic regions by rectan-
gles; the positioning and adjacencies of the rectangles
are chosen to suggest their geographic locations, while
their areas are chosen to represent the numeric values
being communicated by the cartogram.

Often more than one numeric quantity should be
displayed as a cartogram for the same set of ge-
ographic regions. To make the visual comparison
of multiple related cartograms easier, it is desirable
that the arrangement of rectangles be combinatori-
ally equivalent in each cartogram, although the rela-
tive sizes of the rectangles will differ. This naturally
raises the question: when is this possible?

∗D.E. is supported in part by NSF grant 0830403 and by the
Office of Naval Research under grant N00014-08-1-1015. B.S.
and K.V. are supported by the Netherlands Organisation for
Scientific Research (NWO) under project no. 639.022.707.

†Department of Computer Science, University of California,
Irvine, USA, eppstein@ics.uci.edu

‡Department of Mathematics and Computer Science,
TU Eindhoven, The Netherlands, e.mumford@tue.nl,
speckman@win.tue.nl, and k.a.b.verbeek@tue.nl

Figure 1: Three area assignments.

Mathematically, a rectangular cartogram is a rec-
tangular layout : a partition of a rectangle into finitely
many interior-disjoint rectangles. We call a layout L
area-universal if, for any area requirement for its re-
gions, some combinatorially equivalent layout L′ has
regions with the specified areas. For instance, the
four-region rectangular layout shown above with three
different area assignments is area-universal: any four
numbers can be used as the areas of the rectangles in
a combinatorially equivalent layout.

Area-universal rectangular layouts are useful not
only for displaying multiple side-by-side cartograms
for different sets of data on the same regions, but
also for dynamically morphing from one cartogram
into another. Additionally, rectangular layouts have
other applications in which being able to choose a lay-
out first and then later assigning varying areas while
keeping the combinatorial type of the layout fixed may
be an advantage: in circuit layout applications of rec-
tangular layouts [10], each component of a circuit may
have differing implementations with differing tradeoffs
between area, energy use, and speed; and in building
design it is desirable to be able to determine the areas
of different rooms according to their function [3].

Results. We identify a simple necessary and suf-
ficient condition for a rectangular layout to be area-
universal: a rectangular layout is area-universal if and
only if it is one-sided. One-sided layouts are charac-
terized via their maximal line segments. A line seg-
ment of a layout L is formed by a sequence of con-
secutive inner edges of L. A segment of L that is not
contained in any other segment is maximal. In a one-
sided layout every maximal line segment smust be the

s

Figure 2: The left layout is one-sided, but the right
one is not: s is not the side of any rectangle.

Area-Universal Rectangular Layouts

247

side of at least one rectangle R; any vertices interior
to s are T-junctions that all have the same orienta-
tion, pointing away from R (Fig. 2). Given an area-
universal layout L and an assignment of areas for its
regions, we describe a numerical algorithm that finds
a combinatorially equivalent layout L′ whose regions
have a close approximation to the specified areas.

More generally, given any rectangular layout L and
any assignment of areas to its regions, we show that
there can be at most one layout (up to horizontal and
vertical scaling) which is combinatorially equivalent
to L and achieves the given area assignment. This re-
sult was previously known only for two special classes
of rectangular layouts, namely sliceable layouts (lay-
outs that can be obtained by recursively partitioning a
rectangle by horizontal and vertical lines) and L-shape
destructable layouts [9] (layouts where the rectangles
can be iteratively removed such that the remaining
rectangles form an L-shaped polygon).

We also investigate perimeter cartograms in which
the perimeter of each rectangle is specified rather than
its area. Again, any rectangular layout can have
at most one combinatorially equivalent layout for a
given perimeter assignment; it is possible in polyno-
mial time to find this equivalent layout, if it exists.

The rectangles of a rectangular cartogram should
have the same adjacencies as the regions of the under-
lying map. Hence, the dual graph of the cartogram
should be the same as the dual graph of the map. The
dual of a rectangular cartogram or layout must be a
triangulated plane graph satisfying certain additional
conditions. We call such graphs proper graphs. Every
proper graph G has at least one rectangular dual : a
rectangular layout L whose dual graph is G. How-
ever, not every proper graph has an area-universal
rectangular dual; Rinsma [8] described an outerpla-
nar proper graph G and an assignment of weights to
the vertices of G such that no rectangular dual of G
can have these weights as the areas of its regions. We
describe algorithms that, given a proper graph G, find
an area-universal rectangular dual of G if it exists.
These algorithms are not fully polynomial, but are
fixed-parameter tractable for a parameter related to
the number of separating four-cycles in G.

In the following we can only sketch our results, a
full version of the paper can be found here [2].

2 Preliminaries

A rectangular layout is a partition of a rectangle into
a finite set of interior-disjoint rectangles, where no
four regions meet in a single point. We denote the
dual graph of a layout L by G(L). A layout L such
that G = G(L) is called a rectangular dual of graph
G. G(L) is a plane triangulated graph and is unique
for any layout L. Not every plane triangulated graph
has a rectangular dual, and if it does, then the rectan-

Figure 3: A proper graph G, an extended graph E(G),
and a rectangular dual L of E(G).

gular dual is not necessarily unique. Kozminski and
Kinnen [6] proved that a plane triangulated graph G
has a rectangular dual if and only if we can augment G
with four external vertices in such a way that the ex-
tended graph E(G) has the following two properties:
(i) every interior face is a triangle and the exterior
face is a quadrangle; (ii) E(G) has no separating tri-
angles. If a plane triangulated graph G allows such an
augmentation, then we say that G is a proper graph.
A rectangular dual of an extended graph of a proper
graph G can be constructed in linear time [5] and it
immediately implies a rectangular dual for G (Fig. 3).

An extended graph E(G) determines uniquely
which vertices of a proper graph G are associated with
the corner rectangles of every rectangular dual of G
that corresponds to E(G). For a given proper graph
there might be several possible extended graphs and
hence several possible corner assignments. In many
cases we assume that a corner assignment, and hence
an extended graph, has already been fixed, but if this
is not the case then it is possible to test all corner
assignments in polynomial time.

A rectangular layout L naturally induces a labeling
of its extended dual graph E(G). If two rectangles of
L share a vertical segment, then we color the corre-
sponding edge in E(G) blue (solid) and direct it from
left to right. Correspondingly, if two rectangles of L
share a horizontal segment, then we color the corre-
sponding edge in E(G) red (dashed) and direct it from
bottom to top (Fig. 4). This labeling has the following
properties: (i) around each inner vertex in clockwise
order we have four contiguous sets of incoming blue
edges, outgoing red edges, outgoing blue edges, and
incoming red edges; (ii) the left exterior vertex has

Figure 4: A rectangular layout and the regular edge
labeling of its extended dual.

EuroCG’09 - Brussels, Belgium

248

Figure 5: Two inequivalent but order-equivalent rec-
tangular layouts.

only blue outgoing edges, the top exterior vertex has
only red incoming edges, the right exterior vertex has
only blue incoming edges, and the bottom exterior
vertex has only red outgoing edges.

Such a labeling is called a regular edge labeling. It
was introduced by Kant and He [5] who showed that
every regular edge labeling of an extended graph E(G)
uniquely defines an equivalence class of rectangular
duals of a proper graph G. Given any extended graph
E(G), a regular edge labeling for E(G) can be found
in linear time and the rectangular dual defined by it
can also be constructed in linear time [5].

Two layouts L and L′ are equivalent, denoted by
L ∼ L′, if they induce the same regular edge labeling
of the same dual graph. We say that a rectangular
layout L with n rectangles R1, ..., Rn realizes a weight
function w : R1, ..., Rn → R, w(i) > 0 as a rectangular
cartogram if there exists a layout L′ ∼ L such that for
any 1 ≤ i ≤ n the area of rectangle Ri equals w(ri).
Correspondingly, we say that a layout L realizes w as
a perimeter cartogram if there exists a layout L′ ∼ L
such that the perimeter of each rectangle of L′ equals
the prescribed weight. A layout L is area-universal if
it realizes every possible weight function.

It is convenient to define a weaker equivalence rela-
tion on layouts than equivalence, which we call order-
equivalence. For a layout L, we define a partial order
on the vertical maximal segments, in which s1 ≤ s2
if there exists an x-monotone curve that has its left
endpoint on s1, its right endpoint on s2, and that does
not cross any horizontal maximal segments. We de-
fine a partial order on the horizontal segments in a
symmetric way. L and L′ are order-equivalent if their
rectangles and maximal segments correspond one-for-
one in a way that preserves these partial orders.

Observation 1 A rectangular layout with n rectan-
gular regions has n− 1 maximal segments.

3 There can be only one

We first show that for any combination of layout and
weight function there can be at most one rectangular
cartogram or perimeter cartogram. More generally, if
two geometrically different but order-equivalent lay-
outs share the same bounding box, there is a rectan-
gle in one of the layouts that is larger in both of its
dimensions than the corresponding rectangle in the
other layout. Thus, let L and L′ be two geometri-
cally different order-equivalent layouts with the same

Figure 6: Two equivalent layouts in which corre-
sponding rectangles have the same perimeter.

bounding box. The push graph H of L and L′ is a
directed graph that has a vertex for each rectangle
in L and an edge from vertex Ri to vertex Rj if the
rectangles Ri and Rj are adjacent and the maximal
segment in L that separates Ri from Rj is shifted in
L′ towards Rj and away from Ri.

Lemma 1 The push graph for L and L′ contains a
node with no incoming or no outgoing edges.

Theorem 2 For any layout L and any weight func-
tion w there is at most one layout L′ (up to affine
transformations) that is order-equivalent to L and
that realizes w as a rectangular cartogram.

For perimeter, such strong uniqueness does not hold:
there are equivalent layouts that are not affine trans-
formations of each other in which the perimeters of
corresponding rectangles are equal (Fig. 6). However,
if we fix the outer bounding box of the layout, the
same proof method works:

Theorem 3 For any layout L and any weight func-
tion w there is at most one layout L′ that is order-
equivalent to L with the same bounding box and that
realizes w as a perimeter cartogram.

More generally the same result holds for any type
of cartogram in which rectangle sizes are measured
by any strictly monotonic function of the height and
width of the rectangles.

4 Area-universality and one-sidedness

All layouts are area-universal in a weak sense involv-
ing order-equivalence in place of equivalence. The
proof of Lemma 4 uses Theorem 2 to invert the map
W from vectors of positions of segments in a layout to
vectors of rectangle areas, along a line segment from
the area vector of L to the desired area vector.

Lemma 4 For any layout L and weight function w,
there exists a layout L′ that has a square outer rec-
tangle, is order-equivalent to L, and realizes w as a
rectangular cartogram.

One may find L′ by hill-climbing to reduce the Euclid-
ean distance between the current weight function
and the desired weight function. No layout L can

Area-Universal Rectangular Layouts

249

be locally but not globally optimal, because within
any neighborhood of L the inverse image of the line
segment connecting its weight vector to the desired
weight vector contains layouts that are closer to w.
Alternatively, one can find L′ by a numerical proce-
dure that follows this inverse image by inverting the
Jacobean matrix of W at each step. We do not know
whether it is always possible to find L′ exactly by
an efficient combinatorial algorithm (as may easily be
done for the subclass of sliceable layouts), or whether
the general solution involves roots of high-degree poly-
nomials that can be found only numerically.

Theorem 5 The following three properties of a lay-
out L are equivalent:

1. L is area-universal.

2. Every layout that is order-equivalent to L is
equivalent to L.

3. L is one-sided.

5 Finding perimeter cartograms

Although our proof of uniqueness for rectangular car-
tograms generalizes to perimeter, our proof that any
layout and weight function have a realization as an
order-equivalent cartogram does not generalize: there
exist one-sided layouts and weight functions that can-
not be realized as a perimeter cartogram (Fig. 7).

2
5

2

2

2

Figure 7: The outer rectangles contribute at most
one unit of shared boundary to the perimeter of the
central rectangle, which is too large to be realized.

Nevertheless, one can test in polynomial time
whether a solution exists for any layout and weight
function. The technique involves describing the con-
straints on the perimeters of rectangles as linear
equalities that reduce the dimension of the space of
layouts to at most two, and forming a low-dimensional
linear program from inequality constraints expressing
the equivalence to L of the other layouts within this
low-dimensional space.

Theorem 6 For any layout L and any weight func-
tion w we can find a layout L′ that is equivalent to L
and that realizes w as a perimeter cartogram, if one
exists.

The same algorithm can be used to find an order-
equivalent layout rather than an equivalent layout,
by restricting the inequality constraints to the subset
that determine order-equivalence.

6 Finding one-sided layouts

Recall that every proper triangulated plane graph has
a rectangular dual, but not necessarily a one-sided
rectangular dual. Since one-sided duals are area-
universal, it is of interest to find a one-sided dual for
a proper graph if one exists. Our overall approach
is, first, to partition the graph on its separating four-
cycles; second, to represent the family of all layouts
for a proper graph as a distributive lattice, following
Fusy [4]; third, to represent elements of the distrib-
utive lattice as partitions of a partial order accord-
ing to Birkhoff’s theorem [1]; fourth, to characterize
the ordered partitions that correspond to one-sided
layouts; and fifth, to search in the partial order for
partitions of this type. This approach does not yield
polynomial time algorithms, but they are polynomial
whenever the number of separating four-cycles in the
given proper graph is bounded by a fixed constant, or
more generally when such a bound can be given sepa-
rately within each of the pieces found in the partition
we find in the first stage of our algorithms.

References

[1] G. Birkhoff. Rings of sets. Duke Mathematical Jour-
nal, 3(3):443–454, 1937.

[2] D. Eppstein, E. Mumford, B. Speckmann, and
K. Verbeek. Area-Universal Rectangular Layouts.
http://arxiv.org/abs/0901.3924v1, 2009.

[3] C. F. Earl and L. J. March. Architectural applica-
tions of graph theory. In R. Wilson and L. Beineke,
editors, Applications of Graph Theory, pp. 327–355.
Academic Press, London, 1979.

[4] É. Fusy. Transversal structures on triangulations: A
combinatorial study and straight-line drawings. Dis-
crete Mathematics, 2009. To appear.

[5] G. Kant and X. He. Regular edge labeling of 4-
connected plane graphs and its applications in graph
drawing problems. Theoretical Computer Science,
172(1–2):175–193, 1997.

[6] K. Koźmiński and E. Kinnen. Rectangular duals of
planar graphs. Networks, 5(2):145–157, 1985.

[7] E. Raisz. The rectangular statistical cartogram. Ge-
ographical Review, 24(2):292–296, 1934.

[8] I. Rinsma. Nonexistence of a certain rectangular
floorplan with specified areas and adjacency. En-
vironment and Planning B: Planning and Design,
14(2):163–166, 1987.

[9] M. van Kreveld and B. Speckmann. On rectangular
cartograms. Comp. Geom.: Theory and Applications,
37(3):175–187, 2007.

[10] G. K. H. Yeap and M. Sarrafzadeh. Sliceable floor-
planning by graph dualization. SIAM J. Discrete
Mathematics, 8(2):258–280, 1995.

EuroCG’09 - Brussels, Belgium

250

Constructability of Trip-lets

Jeroen Keiren∗ Freek van Walderveen† Alexander Wolff∗

Abstract

A trip-let is an object as shown on the cover of Hof-
stadter’s book Gödel, Escher, Bach: a solid, three-
dimensional object that, when viewed from three or-
thogonal directions, shows three different letters. In
this paper we consider two problems related to the
construction of such objects for a given set of three
letters. First, we want to know whether the silhou-
ettes of the object correspond to the letters we used
to make the object. Second, we are interested in the
connectedness of the final object: does it fall apart
during construction? We obtain results on the com-
binatorial complexity of objects and silhouettes for
letters given as general or rectilinear polygons with
holes, and give algorithms to solve the problems effi-
ciently for the rectilinear case.

1 Introduction

The process of making a trip-let can be described
mathematically as intersecting a set of infinite cones,
where each cone has its apex at the position of the
viewer and the shape as its base. In this paper, we
only consider orthogonal projections, thus cones be-
come infinitely long prisms.

Definition 1 The z-prism induced by a polygonal
shape (with holes) Sxy ⊂ R2 is the volume

Pz(Sxy) := {(x, y, z) | (x, y) ∈ Sxy, z ∈ R} ⊂ R3.

We define Py(Sxz) and Px(Syz) analogously.

Definition 2 The trip-let obtained from three given
shapes Sxy, Sxz, and Syz is the intersection of their
prisms: Pz(Sxy) ∩ Py(Sxz) ∩ Px(Syz) ⊂ R3.

In this paper we consider two properties of trip-lets;
validity and connectedness. A connected trip-let is
simply a trip-let consisting of one solid, connected
piece. To define the validity of a trip-let, we need
the notion of silhouette.

Definition 3 The z-silhouette of a volume V is

πxy(V) := {(x, y) | ∃z ∈ R : (x, y, z) ∈ V }.
∗Faculteit Wiskunde en Informatica, Technische Universiteit

Eindhoven, The Netherlands. j.j.a.keiren@student.tue.nl,
www.win.tue.nl/~awolff
†MADALGO, Department of Computer Science, University

of Aarhus, Denmark. freek@vanwal.dk

Again, we define x- and y-silhouette similarly.
We say that a trip-let is valid if each of its silhou-

ettes matches exactly the corresponding input shape
Sxy, Sxz, and Syz. The example shown in Figure 1(a)
illustrates this. Although the intersection of any com-
bination of two of the polygons has correct silhou-
ettes, adding the third polygon yields an invalid trip-
let. Hence, any algorithm solving this problem has to
consider all three shapes together. Figure 1(b) illus-
trates the connectedness problem: in the centre of the
trip-let there is a small cube that is not connected to
the rest of the object.

At the 1998 ACM Symposium on Computational
Geometry, O’Rourke [1] presented the problem of
finding “simple conditions” to determine whether
three letters can form a valid and connected trip-let.
We present a first step into this direction. We analyze
the combinatorial complexity of triplets and silhou-
ettes, and we give algorithms for testing the validity
and connectedness of triplets induced by rectilinear
polygons, that is, polygons whose edges are parallel to
one of the primary axes. We measure the complexity
of our algorithms with respect to the total number n

Unconnected cube

(a)

(b)

Sxy

Syz

Sxz Silhouette does not match Sxy

Figure 1: (a) An invalid trip-let: the z-silhouette does
not match the top shape. (b) A non-connected trip-
let: it consists of two components.

1

Constructability of Trip-lets

251

of vertices of the input polygons.
Apart from their nice visual appearance, under-

standing the class of objects that can be represented
by trip-lets may yield useful insights in our ability to
understand three-dimensional scenes from silhouettes
obtained from different viewpoints [7].

Earlier work Most work related to the construction
of 3D objects from shapes considers the reconstruc-
tion of actual objects from silhouettes obtained from
different viewpoints. Our orthogonal case can be seen
as a variant of this problem with viewpoints at infin-
ity where we are not sure whether the object to be
reconstructed actually exists.

Bottino and Laurentini [4] ask whether it is possi-
ble to find the relative positions of viewpoints parallel
to a plane, given their corresponding silhouettes. If
such positions can be found, they call the silhouettes
compatible. They give sets of inequalities for the rela-
tive positions of the viewpoints for viewing directions
parallel to the plane, but do not provide efficient al-
gorithms to find these positions.

Ohgami and Sugihara [8] propose an algorithm for
finding relative viewing points in the plane for three
given silhouettes. Their algorithm does not guarantee
to find feasible positions even if they exist.

Hachenberger and Kettner [5] describe the imple-
mentation of Boolean operations on 3D Nef polyhe-
dra in CGAL. As a prism can be described by a 3D
Nef polyhedron, trip-lets can be constructed solely
using Boolean operations on Nef polyhedra. Then,
the number of components of the resulting trip-let is
known, solving our first problem. The silhouettes can
be found by projecting the resulting polyhedron back
to planes orthogonal to any of the three axes. By
comparing the silhouettes with the input shapes, our
second problem is also solved.

The expected running time of the intersection im-
plementation described by Hachenberger and Kettner
is dominated by the term O(k 3

√
k log k), where k is the

size of the resulting polyhedron. Hence, the above so-
lution runs in O(n4 log n) expected time if the object
consists of Θ(n3) cubes (see Fig. 2 for an example of
such an object).

Our results First, we investigate (in Section 2) the
combinatorial complexity of our objects: given three
shapes of total complexity n, we show that the result-
ing trip-let and its silhouettes have complexity Θ(n3)
and Θ(n4), respectively. Given rectilinear shapes, we
show that in the worst case a silhouette has complex-
ity Θ(n2).

Second, we give algorithms for testing validity and
connectedness of trip-lets constructed from rectilin-
ear shapes, see Sections 3 and 4. Within the class
of algorithms that actually construct the silhouettes
and trip-lets, our algorithms are near-optimal in the

Θ(n) strips

Θ(n) strips

Θ(n) strips

Figure 2: Three shapes generating Θ(n3) cubes.

worst case, testing validity and connectedness in time
O(n2 log n) and O((n2 + k) log n), respectively. Note
that k, the complexity of the given trip-let, is Ω(n2)∩
O(n3) in the worst case.

2 Complexity of objects and silhouettes

Determining the worst-case complexity of objects and
silhouettes by bounding the respective number of ver-
tices allows us to prove lower bounds on the running
time of any algorithm that, in answering one of the
problems, internally constructs the actual object or
silhouette. Due to lack of space, we only state the re-
sults and give some of the more important examples.

We start with a lemma concerning the complexity
of objects obtained from two or three shapes.

Lemma 1 Given m ∈ {2, 3} shapes with n vertices
in total, the complexity of the intersection of their
orthogonally oriented prisms is Θ(nm) in the worst
case.

An example illustrating the lower bound is given in
Figure 2. The set of three shapes yields an object con-
sisting of Θ(n3) vertices. Dropping one of the shapes
results in an object with Θ(n2) vertices.

Note that the trip-let in Figure 2 is not connected.
We conjecture the following.

Conjecture 1 Connected trip-lets have O(n2) ver-
tices.

It is easy to construct a connected trip-let with Θ(n2)
vertices.

The following lemma shows that silhouettes can
have higher complexity if we allow general polygonal
shapes.

Lemma 2 A silhouette constructed from general
polygonal shapes of total complexity n has complexity
Θ(n4) in the worst case.

2

EuroCG’09 - Brussels, Belgium

252

Sxz Syz

(a) (b)

Top view

Bottom part

Top part

Figure 3: (a) Construction with 3 × 3 = 9 bars that do not overlap in the z-silhouette. (b) Construction with
(9− 1)× (9− 1) = 64 holes in the z-silhouette.

For proving the lower bound, consider one shape
with Θ(n) parallel strips that are slanted but do not
overlap when projected vertically, and one with Θ(n)
parallel, horizontal strips such as in Figure 3(a). The
z-silhouette obtained from these two shapes consists
of Θ(n2) parallel strips. By swapping the two shapes
the silhouette turns 90 degrees. If we stack the origi-
nal and rotated version, the combined silhouette is a
grid pattern with Θ(n4) vertices (see Figure 3(b)).

Hence, any algorithm that internally constructs the
silhouettes to be verified can never be faster than
Ω(n4). Fortunately, if we restrict ourselves to rec-
tilinear shapes, things cannot get that bad.

Lemma 3 A silhouette constructed from rectilinear
shapes of total complexity n has complexity Θ(n2) in
the worst case.

3 Determining validity

The correctness of one of the silhouettes of a trip-let,
say the one for shape Sxy, can be stated by saying that
the intersection of the prisms induced by the other
shapes “overshadows” Sxy:

Sxy ⊆ πxy(Py(Sxz) ∩ Px(Syz)).

We can use this characterization as a general idea for
an algorithm to determine the validity of a trip-let.
If the silhouette of the intersection of two prisms is
known, a simple line-sweep suffices to determine if this
silhouette covers the third shape. As we saw in Sec-
tion 2, general polygonal shapes may yield silhouettes
of complexity Θ(n4). We expect we cannot easily get
better running times than we saw for the approach
outlined in the introduction (at least for the valid-
ity problem). Therefore, from now on, we will only
consider shapes described by rectilinear polygons.

We compute the orthogonal projection of the inter-
section of the prisms formed by two silhouettes using a

z

x

y

Figure 4: Constructing the bottom silhouette; the
dashed area is a new rectangular facet.

sweep-plane algorithm. The orientation of the sweep
plane (effectively consisting of two sweep lines) is il-
lustrated in Figure 4. For each event—that is, a hori-
zontal edge—the new facets of the trip-let introduced
by that event that are parallel to the sweep plane are
computed. This results in a set of rectangles whose
union is exactly the orthogonal projection we were
looking for. As this is a fairly standard procedure, we
will not go into further detail.

The main problem with actually computing the
union of this set of rectangles is that there may for
example be Θ(n2) rectangles whose union again has
a complexity of Θ(n2) (consider for example a rec-
tilinear version of Figure 3), so adding one rectan-
gle at a time will yield a running time of Θ(n3) or
worse. Instead, we determine the union in one go us-
ing a sweep-line algorithm. We maintain the status
of the sweep line in a data structure that can effi-
ciently (i) add a segment when a new rectangle is
encountered, (ii) report the intervals covered by this
new segment that are not currently covered (as they
introduce new edges in the silhouette polygon), and
(iii) remove a segment when the sweep line hits the
bottom of a rectangle. Segment trees [3, Section 10.3]
come close but do not provide an efficient implementa-

3

Constructability of Trip-lets

253

tion of the second operation: reporting k empty inter-
vals within a given range in O((k+ 1) log n) time. We
solve this by augmenting the segment tree with a field
for every node ν that indicates whether the interval
corresponding to ν is completely covered by segments
that end somewhere inside this interval. Combining
this with information about the segments completely
covering this interval that is already present in the
segment tree, we can implement the empty-interval
query in the given time complexity.

Theorem 4 The validity of a trip-let obtained from
three rectilinear shapes of total complexity n can be
determined in O(n2 log n) time.

A formal proof is omitted due to lack of space.

4 Determining connectedness

To check whether the intersection of three orthogonal
prisms is connected, we again use a sweep-plane algo-
rithm. In short, it maintains the intersection of the
sweep plane with the object, which we call a section,
and keeps a data structure representing the connect-
edness of the components of the object already passed
by the sweep plane. Each time a new part of the ob-
ject hits the sweep plane, the algorithm determines
whether this part is connected to any other known
part and perhaps even connects two parts that were
not connected before. Then, using a union-find data
structure, we can determine whether the final object
is connected. Our objective is to make the running
time of the algorithm linearly dependent on the com-
plexity of the object, up to a polylogarithmic factor.

Because our algorithm effectively calculates the in-
tersection of the three prisms, it may be compared to
the algorithm for Boolean operations on orthogonal
polyhedra by Aguilera and Ayala [2]1. The key dif-
ference with this algorithm is in the way new sections
are computed. Instead of doing the same Boolean op-
eration (intersection in our case) on two objects of
lower dimension (the rectilinear polygon forming the
intersection of the sweep plane and two of the three
prism on the one hand, and the third shape on the
other hand), we update our frame incrementally so
that we do not spend time on parts of a section that
will not cause new vertices of the final object.

This way, we can determine whether a trip-let from
rectilinear shapes is connected in O((n2 + k) log n)
time. Combining this result with that from the pre-
vious section, we obtain our last theorem.

Theorem 5 Given three rectilinear shapes with n
vertices in total, we can determine whether the inter-
section of the prisms induced by these shapes forms a

1We do not understand Aguilera and Ayala’s claim that
their algorithm runs in time linear in the number of vertices
of the input polyhedra.

valid and connected trip-let in O((n2 +k) log n) time,
where k is the complexity of the trip-let.

Note that by Lemma 1, k = O(n3) in the worst case; if
Conjecture 1 holds, the algorithms run in O(n2 log n)
time.

5 Open problems

The running times of our algorithms for rectilinear in-
put shapes are almost optimal within the class of al-
gorithms that actually construct the objects or silhou-
ettes. Finding the conditions O’Rourke is looking for,
or the problem of whether it is possible to do better
by somehow finding the answers without construct-
ing the silhouettes or objects first, is still open: we
do not know of any non-trivial lower bounds for this
case yet. Furthermore, does our conjecture hold, that
is, does any connected trip-let have at most quadratic
complexity?

Acknowledgments

We thank Christ van Willegen for bringing these prob-
lems to our attention.

References

[1] P. K. Agarwal and J. O’Rourke. Computational
Geometry Column 34. SIGACT News 29(3):27–
32, 1998. http://www.cs.duke.edu/~pankaj/

scg98-openprobs/.

[2] A. Aguilera and D. Ayala. Orthogonal polyhedra as
geometric bounds in constructive solid geometry. Proc.
4th ACM Symp. Solid Modeling and Applications, pp.
56–67, 1997.

[3] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications. Springer-Verlag, third edition, 2008.

[4] A. Bottino and A. Laurentini. Introducing a new prob-
lem: Shape-from-silhouette when the relative positions
of the viewpoints is unknown. IEEE Trans. Pattern
Analysis and Machine Intel., 25(11):1484–1493, 2003.

[5] P. Hachenberger, L. Kettner, and K. Mehlhorn.
Boolean operations on 3D selective Nef complexes:
Data structure, algorithms, optimized implementation
and experiments. Comput. Geom. Theory Appl., 38(1–
2):64–99, 2007.

[6] D. R. Hofstadter. Gödel, Escher, Bach: An Eternal
Golden Braid. Basic Books, 1979.

[7] A. Laurentini. The visual hull concept for silhouette-
based image understanding. IEEE Trans. Pattern
Analysis and Machine Intel., 16(2):150–162, 1994.

[8] T. Ohgami and K. Sugihara. Realizability of solids
from three silhouettes. In Abstracts 24th European
Workshop Comput. Geom., pp. 233–236, 2008.

4

EuroCG’09 - Brussels, Belgium

254

Finding Perfect Auto-Partitions is NP-hard∗

Mark de Berg† Amirali Khosravi†

Abstract

A perfect bsp for a set S of disjoint line segments
in the plane is a bsp in which none of the objects is
cut. We study a specific class of bsps, called auto-
partitions and we prove that it is np-hard to find if a
perfect auto-partition exists for a set of lines.

1 Introduction

Many problems involving objects in the plane or
higher-dimensional space are solved more efficiently if
a hierarchical partitioning of the space is given. One
of the most popular hierarchical partitioning schemes
is the binary space partition, or bsp for short. In
a bsp the space is recursively partitioned by hyper-
planes until there is at most one object intersecting
the interior of each cell in the final partitioning. Note
that the splitting hyperplanes not only partition the
space, they may also cut the objects into fragments.

The recursive partitioning can be modeled by a tree
structure, called a bsp tree. Nodes in a bsp tree cor-
responds to subspaces of the original space, with the
root node corresponding to the whole space and the
leaves corresponding to the cells in the final parti-
tioning. Each internal node stores the hyperplane
used to split the corresponding subspace, and each
leaf stores the object fragment intersecting the corre-
sponding cell.

bsps have been used in numerous applications. In
most of these applications, the efficiency is deter-
mined by the size of the bsp tree, which is equiva-
lent to the total number of object fragments created
by the partitioning process. As a result, many algo-
rithms have been developed that create small bsps.
For example, Paterson and Yao [6] presented an al-
gorithm that computes for any given set of n dis-
joint segments in the plane a bsp of size O(n log n).
Also for many other settings—axis-parallel objects,
3-dimensional objects, fat objects, etc.—algorithms
have been developed that produce provably small
bsps; for an overview of results and applications on
bsps see the survey paper by Tóth [7].

In all of the above algorithms, bounds are proved
on the worst-case size of the computed bsp over all

∗This research was supported by the Netherlands’ Or-
ganisation for Scientific Research (NWO) under project
no. 639.023.301.

†Department of Computing Science, TU Eindhoven,
mdberg@win.tue.nl, akhosrav@win.tue.nl

sets of n input objects from the class of objects be-
ing considered. For any particular input, one may
be able to do much better than in a worst-case sce-
nario. Ideally, one would like to have an algorithm
that computes a bsp that is optimal for the given in-
put, rather than optimal in the worst-case. For n
axis-parallel segments in the plane one can compute
an optimal rectilinear bsp in O(n5) time [2]. Another
result related to optimal bsps is that for any set of
(not necessarily rectilinear) disjoint segments in the
plane one can compute a perfect bsp in O(n2) time,
if it exists [1]. (A perfect bsp is a bsp in which none
of the objects is cut). If such a bsp does not exist,
then the algorithm only reports this fact.

Thus, it is still unknown if it is possible to compute
(or maybe approximate) an optimal bsp for a set of
segments. We study this problem for a specific type
of bsps, called auto-partitions. Let S denote the set
of n disjoint input segments, R the region which we
want to partition at some point, and S(R) the set of
segment fragments in the interior of R. Then an auto-
partition uses a splitting line that contains a segment
from S(R). Fig. 1 shows a general (unrestricted) bsp
of a set of input segments and an auto-partition of it.

Since autopartitions are a restricted type of bsps,
our hope was that it would be easier to compute op-
timal autopartitions than it is to compute optimal
unrestricted bsps. Unfortunately, this turns out to
be not the case: we show that even the problem of
finding perfect autopartitions—that is, deciding if the
minimum number of cuts is zero—is already np-hard.
This should be contrasted to the result mentioned
above, that deciding whether a set of segments ad-
mits a perfect general (or unrestricted) bsp can be
done in O(n2) time. Hence, optimal auto-partitions
seem more difficult to compute than optimal unre-
stricted bsps.

2 Hardness of computing perfect auto-partitions

We consider the following problem.

Perfect Auto-Partition
Input: A set S of n disjoint line segments in the
plane.
Output: yes if S admits a perfect auto-partition(an
auto-partition without cuts), no otherwise.

We will show that Perfect Auto-Partition is

1

Finding Perfect Auto-partition is NP-hard

255

general (unrestricted) bsp auto-partition

Figure 1: Two types of bsps. Note that, as is usually
done for auto-partitions, we have continued the auto-
partition until the cells are empty.

np-hard. Our proof is by reduction from a special ver-
sion of the satisfiability problem, which we define and
prove np-complete in the next subsection. After that
we prove the hardness of Perfect Auto-Partition.

2.1 Planar monotone 3-SAT

Let U := {x1, . . . , xn} be a set of n boolean variables,
and let C := C1 ∧ · · · ∧ Cm be a cnf formula de-
fined over these variables, where each clause Ci is the
disjunction of at most three variables. 3-sat is the
problem of deciding whether such a boolean formula
is satisfiable. An instance of 3-sat is called mono-
tone if each clause consists only of positive variables
or only of negative variables. 3-sat is np-complete,
even when restricted to monotone instances [3].

For a given (not necessarily monotone) 3-sat in-
stance, consider the bipartite graph G = (U ∪ C, E),
where there is an edge (xi, Cj) ∈ E if and only if xi or
its negation xi is one of the variables in the clause Cj .
Liechtenstein [5] has shown that 3-sat remains np-
complete when G is planar. Moreover, as shown by
Knuth and Raghunatan [4], one can always draw the
graph G of a planar 3-sat instance such that the vari-
ables and clauses are drawn as rectangles with all the
variable-rectangles on a horizontal line, the edges con-
necting the variables to the clauses are vertical seg-
ments, and the drawing is crossing-free. We call such a
drawing of a planar 3-sat instance a rectilinear repre-
sentation. Planar 3-sat remains np-complete when
a rectilinear representation is given.

Next we introduce a new version of 3-sat, which
combines the properties of monotone and planar in-
stances. We call a clause with only positive variables
a positive clause, a clause with only negative variables
a negative clause, and a clause with both positive and
negative variables a mixed clause. Thus a monotone
3-sat instance does not have mixed clauses. Now
consider a 3-sat instance that is both planar and
monotone. A monotone rectilinear representation of
such an instance is a rectilinear representation where
all positive clauses are drawn on the positive side of
(that is, above) the variables and all negative clauses
are drawn on the negative side of (that is, below) the

a ∨ bxi ∨ a

xi ∨ a a ∨ b

Cj

· · · xi · · · · · · a · · ·

xi a bxi

Figure 2: replacing an inconsistent variable-clause.

variables. Our 3-sat variant is defined as follows.

Planar Monotone 3-sat
Input: A monotone rectilinear representation of a pla-
nar monotone 3-sat instance.
Output: yes if it is satisfiable, no otherwise.

Planar Monotone 3-sat is obviously in np. We
will prove that Planar Monotone 3-sat is np-hard
by a reduction from Planar 3-sat.

Let C = C1 ∧ · · · ∧ Cm be a given rectilinear rep-
resentation of a planar 3-sat instance defined over
the variable set U = {x1, . . . , xn}. We call a variable-
clause pair inconsistent if the variable is negative in
that clause while the clause is placed on the positive
side of the variables, or the variable is positive in the
clause while the clause is placed on the negative side.
If a rectilinear representation does not have inconsis-
tent variable-clause pairs, then it must be monotone.
Indeed, any monotone clause must be placed on the
correct side of the variables, and there cannot be any
mixed clauses because any mixed clause must form
an inconsistent pair with at least one of its variables.
We convert the given instance C step by step into an
equivalent instance with a monotone planar represen-
tation, in each step reducing the number of inconsis-
tent variable-clause pairs by one.

Let (xi, Cj) be an inconsistent pair; inconsistent
pairs involving a positive variable in a clause on the
negative side can be handled similarly. We get rid of
this inconsistent pair as follows. We introduce two
new variables, a and b, and modify the set of clauses.

• In clause Cj , replace xi by a.
• Introduce the following four clauses:

(xi ∨ a) ∧ (xi ∨ a) ∧ (a ∨ b) ∧ (a ∨ b).
• In each clause containing xi that is placed on the

positive side of the variables and that connects
to xi to the right of Cj , replace xi by b.

Let C′ be the new set of clauses. The proof of the
following lemma is omitted in this abstract.

Lemma 1 C is satisfiable iff C′ is satisfiable.

Fig. 2 shows how this modification is reflected in the
rectilinear representation.

By applying the above conversion to each of the at
most 3m inconsistent variable-clause pairs, we obtain

2

EuroCG’09 - Brussels, Belgium

256

a 3-sat instance with at most 13m clauses defined
over at most n + 6m variables. This new instance is
satisfiable iff C is satisfiable, and it has a monotone
representation. We get the following theorem.

Theorem 2 Planar Monotone 3-sat is np-
complete.

2.2 From planar monotone 3-SAT to perfect auto-
partitions

Let C = C1 ∧ · · · ∧ Cm be a planar monotone 3-sat
instance defined over a set U = {x1, . . . , xn} of vari-
ables, with a monotone rectilinear representation. We
will show how to construct a set S of line segments
that admits a perfect auto-partition iff C is satisfiable.
The idea behind the reduction is shown in Fig. 3.

The variable gadget. For each variable xi there is a
gadget consisting of two segments, si and si. Setting
xi = true corresponds to extending si before si, and
setting xi = false to extending si before si.

The clause gadget. For each clause Cj there is a
gadget consisting of four segments, tj,0, . . . , tj,3. The
segments in a clause form a cycle, that is, the split-
ting line `(tj,k) cuts the segment tj,(k+1) mod 4. This
means that a clause gadget in isolation, would gen-
erate at least one cut. Now suppose that the gadget
for Cj is crossed by the splitting line `(si) through
the segment si in such a way that `(si) separates the
segments tj,0, tj,3 from tj,1, tj,2, as in Fig. 3. Then the
cycle is broken by `(si) and no cut is needed. This
does not work when `(si) is used before `(si), since
then `(si) is blocked by `(si) before crossing Cj .

The idea is as follows. For each clause (xi∨xj∨xk),
we want to make the splitting lines `(si), `(sj), and
`(sk) all cross the clause gadget. Then by setting one
of these variables to true, the cycle is broken and no
cuts are needed for the clause. We must be careful
that the splitting lines are not blocked in the wrong
way—for example, it could be problematic if `(sk)
would block `(si)—and also that clause gadgets are
only intersected by the splitting lines corresponding
to the variables in that clause. In the remainder of
this section we show how to overcome these problems.

Detailed construction. From now on we assume
that the variables are numbered based on the mono-
tone rectilinear representation, with x1 being the left-
most and xn being the rightmost variable.

xi

`(si)

`(si)
si

si

tj,2

tj,3
tj,0

Cj

tj,1

Figure 3: The idea behind the reduction.

x1

x2

xn

0

0

2n− 1

2n− 1 d0
d1

xi

vertical strip for
negative clauses

horizontal strip
for positive clauses

R0 R1

si

si

Figure 4: Placement of the variable gadgets and the
clause gadgets (not to scale).

The gadget for a variable xi will be placed inside
the unit square [2i−2 : 2i−1]×[2n−2i : 2n−2i+1], as
illustrated in Fig. 4. The segment si is placed with one
endpoint at (2i−2, 2n−2i) and the other endpoint at
(2i− 3

2 , 2n−2i+εi) for some 0 < εi <
1
4 . The segment

si is placed with one endpoint at (2i− 1, 2n− 2i+ 1)
and the other endpoint at (2i−1− εi, 2n−2i+ 1

2) for
some 0 < εi <

1
4 . Next we specify the slopes of the

segments, which determine the values εi and εi.
The gadgets for the positive clauses will be placed

to the right of the variables, in the horizontal strip
[−∞ : ∞] × [0 : 2n − 1]; the gadgets for the negative
clauses will be placed below the variables, in the ver-
tical strip [0 : 2n−1]× [−∞ :∞]. We describe how to
choose the slopes of the segments si and how to place
the positive clauses; the segments si and the negative
clauses are handled in a similar fashion.

Consider the set C+ of all positive clauses in our
3-sat instance, and the way they are placed in the
monotone rectilinear representation. We call the
clause directly enclosing a clause Cj the parent of Cj .
Now let G+ = (C+, E+) be the directed acyclic graph
where each clause Cj has an edge to its parent (if it
exists), and consider a topological order on the nodes
of G+. We define the rank of a clause Cj , denoted
by rank(Cj), to be its rank in this topological order.
If rank(Cj) = k then Cj is placed in a 1 × (2n + 1)
rectangle Rk at distance dk from the line x = 2n− 1
(see Fig. 4), where dk := 2 · (2n)k+1.

Before describing how the clause gadgets are placed
inside these rectangles, we define the slopes of the
segments si. Define rank(xi), the rank of a variable xi

(with respect to the positive clauses), as the maximum
rank of any clause it participates in. Now the slope
of si is 1

2·dk
, where k = rank(xi). Recall that xi is

placed inside the unit square [2i−2 : 2i−1]×[2n−2i :
2n − 2i + 1]. The proof of the following lemma is
omitted in this version.

Lemma 3 Let xi be a variable, and `(si) be the split-
ting line containing si.

3

Finding Perfect Auto-partition is NP-hard

257

`(si)
`(xj)

`(xk)

Rrank(C)

Figure 5: Placement of the segments forming a clause.

(i) For all x-coordinates in the interval [2i − 2 :
2n − 1 + drank(xi) + 1], `(si) has a y-coordinate in
the range [2n− 2i : 2n− 2i+ 1].
(ii) `(si) intersects rectangles Rk(0 ≤ k ≤ rank(xi)).
(iii) `(si) does not intersect any rectangle Rk(k >
rank(xi)).

We can now place the clause gadgets. Consider a
clause C = (xi ∨ xj ∨ xk) ∈ C+, with i < j < k; the
case where C contains only two variables is similar.
By Lemma 3(ii), the splitting lines `(xi), `(xj), `(xk)
all intersect the rectangle Rrank(C). Moreover, by
Lemma 3(i) and since we have placed the variable
gadgets one unit apart, there is a 1 × 1 square in
Rrank(C) just above `(si) that is not intersected by
any splitting line. Similarly, just below `(sk) there is
a square that is not crossed. Hence, if we place the
segments forming the clause gadget as in Fig. 5, then
the segments will not be intersected by any splitting
line. Moreover, the splitting lines of segments in the
clause gadget—these segments either have slope -1 or
are vertical—will not intersect any other clause gad-
get. This finishes the construction. The next lemma,
whose proof is omitted, states the two key properties
of construction. We say that, a splitting line `(si) is
blocked by `(sj) if `(sj) intersects `(si) before `(si)
reaches Rrank(xi). This may prevent us from using
`(si) to resolve the cycle in the gadget of a clause
containing xi and is dangerous.

Lemma 4 The variable and clause gadgets are
placed such that the following holds:
(i) The gadget for clause (xi ∨ xj ∨ xk) is only in-
tersected by the splitting lines `(si), `(sj) and `(sk).
Similarly, the gadget for clause (xi∨xj∨xk) is only in-
tersected by the splitting lines `(si), `(sj) and `(sk).
(ii) A splitting line `(si) can only be blocked by a
splitting line `(sj) or `(sj) when j ≥ i; the same holds
for `(si).

Theorem 5 Perfect Auto-Partition is np-
complete.

Proof. We can verify in polynomial time whether
a given ordering of applying the splitting lines
yields a perfect auto-partition, so Perfect Auto-
Partition is in np.

To prove that Perfect Auto-Partition is np-
hard, take a Planar Monotone 3-sat instance and
apply the above reduction to obtain a set S of 2n +
4m segments forming an instance of Perfect Auto-
Partition. The reduction can be done such that
the segments have endpoints with integer coordinates
of size O(n2m), which means the number of bits for
describing the instance is polynomial in n + m. It
remains to show that C is satisfiable iff S has a perfect
auto-partition.

Suppose S has a perfect auto-partition. Set xi :=
true if si is extended before si , and xi := false
otherwise. Since the auto-partition is perfect, the cy-
cle in the gadget for a clause C must be broken. By
Lemma 4(i) this can only be done by a line of one of
the variables in the clause, say xi. But then si has
been extended before si(xi = true) and C is true.

Now consider a truth assignment to the variables
that satisfies C. A perfect auto-partition for S can
be obtained as follows. When x1 = true we first
take the splitting line `(s1) and then the splitting line
`(s1); if xi = false then we first take `(s1) and then
`(si). Next we treat s2 and s2 in a similar way, and so
on. So far we have not made any cuts. We claim that
after having put all splitting lines `(si) and `(si) in
this manner, we can put the splitting lines containing
the segments in the clause gadgets, without making
any cuts. Indeed, consider the gadget for a positive
clause C. Because the truth assignment is satisfying,
one of its variables, xi, is true. Then `(si) is used
before `(si). Moreover, because we treated the seg-
ments in order, `(si) is used before any other splitting
lines `(sj), `(sj) with j > i are used. By Lemma 4(ii)
these are the only splitting lines that could block `(si).
Hence, `(si) reaches the gadget for C and so we can
resolve the cycle and get a perfect auto-partition. �

References

[1] M. de Berg, M.M. de Groot, M.H. Overmars. Per-
fect binary space partitions. Comput. Geom. Theory
Appl.,1997.

[2] M. de Berg, E. Mumford, B. Speckmann. Optimal
BSPs and rectilinear cartograms. In Proc. 14th Int.
Symp. Advances Geographic Inf. Syst.,2006.

[3] M.R. Garey, D.S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Co.,1979.

[4] D.E. Knuth, A. Raghunathan. The problem of com-
patible representatives. Discr. Comput. Math.,1992.

[5] D. Lichtenstein. Planar formulae and their uses.
SIAM J. Comput.,1982.

[6] M.S. Paterson, F.F. Yao. Efficient binary space parti-
tions for hidden-surface removal and solid modeling.
Discr. Comput. Geom.,1990.

[7] C.D. Tóth, Binary space partitions: recent develop-
ments. Combinat. and Comput. Geom., 2005.

4

EuroCG’09 - Brussels, Belgium

258

Tight Spans and Coarsest Subdivisions of Convex Polytopes

Sven Herrmann∗†

Abstract

Given a convex polytope P we study the coarsest poly-
hedral subdivisions of P. A main tool in this inves-
tigation is the tight span of a subdivision for which
we show that it can be any polytope. The k-splits are
defined as a special class of coarsest subdivisions and
it is shown that they provide a suitable generaliza-
tion of the splits, subdivisions into two parts. In par-
ticular, we show that k-splits are regular, leading to
computable approximations for secondary polytopes.

1 Introduction

A subdivision of a convex polytope P is a collection of
polytopes with union P such that all vertices of these
polytopes are vertices of P and satisfying a certain
intersection property. Subdivisions and especially tri-
angulations (i.e., subdivisions into simplices) occur in
various parts of mathematics; for an overview see the
first chapter of the forthcoming book by de Loera,
Rambau, and Santos [1]. It is an important struc-
tural result of Gel′fand, Kapranov, and Zelevinsky
[2, Chapter 7] that there exists a polytope SecPoly(P)
called the secondary polytope of P, whose vertices are
the regular triangulations of P. Far less studied are
the coarsest subdivisions of P (i.e., those subdivisions
which cannot be refined non-trivially) who – if they
are regular – correspond to the facets of SecPoly(P).

An object that can be used to study subdivisions of
P is the tight span. This is a polyhedral complex dual
to the complex of inner faces of a given subdivision.
It can be used as a measure for the complexness of the
subdivision. In Section 2, we will give the definition of
the tight span and show that each polytope can occur
as the tight span of some other polytope.

The simplest possible subdivisions of a polytope one
can think of are those with exactly two maximal faces.
These are called splits and were studied in detail by
Joswig and the author [4] (see also Hirai [7]). Their
tight spans are line segments. Results on splits were
for example used in the context of the tropical Grass-
mannian (see [4, Section 7] and [3]). A polytope is
called totally splittable if all its subdivisions can be
obtained as common refinements of splits. A com-

∗Fachbereich Mathematik, Technische Univeristät Darm-
stadt, Germany. sherrmann@mathematik.tu-darmstadt.de
†The author is supported by a Graduate Grant of TU Darm-

stadt.

plete classification of these polytopes was given in [5].
The results of [4] and [5] are summarized in Section 3.

Motivated by these results, Section 4 serves as a
starting point to the study of arbitrary coarsest subdi-
visions of P. We will see that such subdivisions can get
quite complicated in general, hence, in Section 5, we
propose a special class of coarsest subdivisions called
k-splits, which share at least some properties of splits.
In particular, we will prove that k-splits are regular
subdivisions and hence facets of SecPoly(P). We con-
clude with some open questions. For the purpose of
this extended abstract all proofs are omited.

2 Tight Spans

Let P ⊂ Rd+1 be a polytope and w : Vert P → R a
function assigning a weight to each vertex of P. If we
lift each vertex according to its weight and project the
lower faces of the resulting polytope down to P, we ob-
tain a subdivision Σw(P) of P. Subdivisions obtained
in that way are called regular.

We now denote by V the matrix whose rows are the
vertices of P and make the assumption that P ⊂ Rd+1

is d-dimensional and that the vector 1 := (1, . . . , 1) is
contained in the linear span of the columns of V. The
unbounded polyhedron

Ew(P) :=
{
x ∈ Rd+1

∣∣∣Vx ≥ −w
}

is called the envelope of P with respect to w. The com-
plex of bounded faces of Ew(P) is the tight span Tw(P)
of P with respect to w. The relation between regular
subdivisions and tight spans is now the following.

Proposition 1 ([4], Prop. 2.3) The face poset of
Tw(P) is anti-isomorphic to the poset of interior faces
of Σw(P).

This statement allows us to give a definition of the
tight span also for non-regular subdivisions: For a
subdivision Σ of P the (abstract) tight span TΣ(P) of Σ
is defined as the (abstract) polyhedral complex that
is dual to the complex of inner faces of Σ. In this
sense, for a weight function w the tight span Tw(P) is
a realization of the abstract tight span TΣw(P)(P).

One might ask which polyhedral complexes can oc-
cur as the tight span of a regular subdivision. Obvi-
ously, the complex has to be connected, and it follows
from Hirai [6, Lemma 4.5] that the tight span of a reg-
ular subdivision is contractible and hence especially

1

Tight Spans and Coarsest Subdivisions of Convex Polytopes

259

simply connected. This can also be generalized to
non-regular subdivisions. For the special case where
the tight span consists of a sole maximal cell, the fol-
lowing theorem says that it can be any polytope.

Theorem 2 Let P be any polytope. Then there ex-
ists a polytope P′ and a lifting function w for P′ such
that Tw(P′) is affinely isomorphic to P.

3 Splits

A split S of a polytope P is a decomposition of P with-
out new vertices which has exactly two maximal cells
denoted by S + and S −. By our technical assumptions
on P, the linear span of S + ∩ S − is a linear hyper-
plane HS . Since S does not induce any new vertices,
HS does not meet any edge of P in its relative inte-
rior. Conversely, each hyperplane which separates P
and which does not separate any edge defines a split
of P. Furthermore, one sees that H defines a split if
and only if it meets all faces (or facets) of P in a face
of P or induces a split on them.

A decomposition of two weight function w1,w2 for a
polytope P is called coherent if the subdivisions Σw1 (P)
and Σw2 (P) have a common refinement. A weight func-
tion w is called split prime if Σw(P) is not coarsened by
any split. We can now formulate the main property of
splits in the following Split Decomposition Theorem.

Theorem 3 ([7], Thm. 2.2; [4], Thm. 3.10)
Each weight function w has a coherent decomposition

w = w0 +
∑

S split of P

λS wS ,

where w0 is split prime, λS ≥ 0, and this is unique
among all coherent decompositions of w.

A polytope P is called totally splittable if all subdi-
visions of P are refinements of splits. Obviously, this
is a severe restriction. However, we have the following
complete characterization of these polytopes.

Theorem 4 ([5], Thm. 6) A polytope is totally
splittable if and only if it has the same oriented ma-
troid as a simplex, a cross polytope, a polygon, a
prism over a simplex, or a (possibly multiple) join
of these polytopes.

4 k-Subdivisions

For a polytope P we call a subdivision Σ of P a
k-subdivision if it has k maximal faces and cannot
be refined non-trivially. So splits are exactly the 2-
subdivisions. By this definition, the set of all regular
k-subdivisions (for all k) corresponds exactly to the
set of facets of the secondary polytope of P.

For 2-subdivisions (i.e., splits) we know how the
tight span looks like: it is a line segment. However,
for k-subdivisions with k ≥ 3 the tight spans get much
more complicated. We will investigate this in this
section. First, we give some general statements about
the tight spans of k-subdivisions.

Proposition 5 Let P be a polytope and Σ a k-
subdivision of P with k > 3. Then the tight span
TΣ(P) is not a k-gon.

Note that this only shows that k-gons with k > 3
cannot be the sole maximal cell of a tight span of a k-
subdivision. It can well be that a polygon occurs as a
maximal cell of a tight span of a k-subdivision if there
are other maximal cells. For the most simple example
see Figure 1; the tight span is depicted in red.

Figure 1: A quadrangle as maximal cell of the tight
span of a 5-subdivisions.

Remark 1 Almost all results of this paper can be
generalized from polytopes to non-convex point con-
figurations. One can also show that any tight span
occurring for a point configuration occurs for some
polytope (and for a coarsest subdivision of a point
configuration if it is the tight span of a coarsest sub-
division of a polytope). We use this to give lower-
dimensional examples as in Figure 1.

For the next condition we call a polyhedral complex
1-connected if it is still connected if one removes any
vertex (i.e., the graph of the complex is 1-connected
in the usual sense).

Proposition 6 Let P be a polytope and Σ a k-
subdivision of P. Then TΣ(P) is 1–connected.

As a further condition for the tight span of a k-
subdivision, we recall from Section 2 that the tight
span has to be simply connected. Additionally, this
leads to the following important corollary.

Corollary 7 Let P be a polytope, k ≥ 3, and Σ a k-
subdivision of P. Then all maximal faces of the poly-
hedral complex TΣ(P) are at least two-dimensional.

No we will examine the tight spans of k-subdivision
for small k. If k = 3 we have to examine simply con-
nected polyhedral complexes with three points. The
only two possibilities are a triangle or two line seg-
ments connected at one point. The latter cannot oc-
cur by Proposition 7. This proves the following.

2

EuroCG’09 - Brussels, Belgium

260

Lemma 8 Let P be a polytope and Σ a 3-subdivision
of P. Then the tight span of Σ is a triangle.

For k = 4 we consider simply connected polyhe-
dral complexes with four vertices. By Corollary 7, we
have the additional condition that all maximal cells
have to be at least two-dimensional. So the candi-
dates are a tetrahedron, two triangles glued together
at one edge, three triangles with a common vertex, or
a quadrangle. Since the quadrangle cannot occur by
Proposition 5, we have the following.

Lemma 9 Let P be a polytope and Σ a 4-subdivision
of P. Then the tight span of Σ is either a tetrahedron,
consists of three triangles with a common vertex, or
consists of two triangles glued together at one edge.

For k ≥ 5 the situation gets much more confusing.
There are six possibilities for planar two-dimensional
tight spans and five for pure three-dimensional tight
spans. However, there exists also non-pure dimen-
sional and non-planar two-dimensional tight spans.
Additionally, we also have the first case where not all
simply connected polyhedral complexes not excluded
by Propositions 5 or 6 can occur as tight spans:

Lemma 10 Let P be a polytope and Σ a 5–sub-
division of P. Then the tight span of Σ cannot consist
of a quadrangle and a triangle glued together at one
edge.

Lemma 10 can be extended to the statement that
the tight span of any k-subdivision cannot be a (k−1)-
gon glued with a triangle.

As we have seen in Lemmas 9 and 10, all three-
dimensional polytopes with up to five vertices can ap-
pear as tight spans of k-subdivisions. Since all poly-
topes can occur as the tight span of some subdivision
by Theorem 2, it seems natural to ask if all polytopes
of dimension three or higher can occur as the tight
span of some k-subdivision. The following proposi-
tion answers this question negatively.

Proposition 11 Not all polytopes with dimension
three or higher can occur as tight spans of k-
subdivisions. Especially, a prism over a triangle can-
not occur as the tight span of a 6-subdivision.

5 k-Splits

As we have seen in the previous section, if k grows
large there exist a lot of different possible tight spans
for k-subdivisions. So an investigation of general k-
subdivisions might be quite complicated. However, in
this section, we will investigate for each k a special
class of k-subdivisions which behave similar to splits:
We call a k-subdivision Σ of P a k-split if Σ has an
inner face of codimension k − 1.

Figure 2: A point configuration with a codimension-
two-face (the interior point) that corresponds to two
different 3-splits.

It is easily seen that Σ is a k-split if and only if
the tight span TΣ(P) is a (k − 1)-dimensional simplex.
By Lemma 8, all k-subdivisions are k-splits for k ≤ 3.
Especially, the splits are the 2-splits.

Example 1 As an example of a k-split, let P be the
bipyramid over a (k − 1)-dimensional simplex S . A
k-subdivision Σ of P is obtained by taking as maximal
faces of Σ the convex hulls of the edge connecting the
two pyramid vertices and a facet of S .

As to each split there corresponds a unique hyper-
plane, to each k-split there corresponds a unique sub-
space of codimension k − 1. However, for splits we
also have the property that if a hyperplane H defines
a split, this split is uniquely determined by H. This
does not hold any more for k-splits with k ≥ 3; see
Figure 2.

In Section 3, we saw that a hyperplane H defines a
split of a polytope if and only if it does not meet any
edge of P in its relative interior. One direction of this
generalizes to k-splits as follows.

Proposition 12 Let U be the unique codimension-
(k − 1)-subspace corresponding to some k-split of a
polytope P. Then U meets all faces F of P in a face
of P or corresponds to an m-split of F for some m ≤ k.
This condition is satisfied for all faces if its satisfied
for all faces with dim F ≤ k − 1 or for all facets.

However, in contrast to the split case, the converse
of Proposition 12 does not hold if k ≥ 3. For an ex-
ample, consider the polytope P depicted in Figure 3.
The codimension-two-subspace spanned by the edge
connecting the top and bottom vertices of P does not
correspond to any 3-split.

Figure 3: A polytope with an inner edge that does
not correspond to a 3-split.

The most important property of splits is shared by
k-splits: They are regular subdivisions.

Theorem 13 All k-splits are regular.

3

Tight Spans and Coarsest Subdivisions of Convex Polytopes

261

The proof of Theorem 13 explicitly constructs a
weight function w inducing a given k-split, and so one
gets an inequality defining the corresponding facet of
the secondary polytope. This can be used to compute
explicit (outer) approximations for SecPoly(P).

We call a polytope P totally k-splittable if all regular
subdivisions of P are common refinements of m-splits
with (possibly different) m ≤ k. We call P totally
semi-splittable if P is totally k-splittable for some k, or,
equivalently, all regular subdivisions of P are common
refinements of k-splits for some k. It is easily seen, that
a d-dimensional polytope is totally semi-splittable if
and only if it is totally d-splittable.

Example 2 The 3-cube C3 is totally 3-splittable,
hence totally semi-splittable. It has 14 splits: Eight
splits corresponds to cutting of one of of the vertices
and six splits are defined by parallel pairs of diagonals
in an opposite pair of cube facets. Furthermore, there
are eight 3-splits: Each diagonal of the cube corre-
sponds to two 3-splits by subdividing C3 into three
square pyramids with one of the vertices of the di-
agonal as apex. By using the facet-inequalities of
SecPoly(C3) for all those k-splits, we obtain a new com-
putation of SecPoly(C3), verifying the results of [9].

Example 3 The 4-cube C4 is not totally semi-
splittable. The secondary polytope of C4 has 80, 876
facets that come in 334 orbits (see [8]). Four of these
orbits are splits, five are 3-splits, and three are 4-
splits.

One might ask whether there exists some general-
ization of the Split Decomposition Theorem 3 to k-
splits. However, it can be easily seen that this is false
even if one fixes some k ≥ 3: The triangulation to the
left of Figure 4 can be obtained as the common re-
finement of the 3-split A and either of the two 3-splits
B1, B2 in Figure 4.

A B1 B2

Figure 4: There is no unique 3-split decomposition.

6 Conclusions and Open Questions

We have discussed some conditions on when poly-
hedral complexes can be the tight span of some k-
subdivision. However, we also gave examples that
these conditions are not sufficient. For complexes with
a sole maximal cell, we showed that the only possibil-
ity in dimension two is a triangle, and that in dimen-
sion three not all polytopes may occur. This naturally
leads to the following question.

Question 1 Which polyhedral complexes, espe-
cially, which polytopes occur as tight spans of k-
subdivisions?

It seams that k-splits are a very natural generaliza-
tion of splits, so in view of Theorem 4 the following
question arises.

Question 2 Which polytopes are totally k-splittable
or totally semi-splittable?

The answer to this question might lead to interest-
ing new classes of polytopes: the class of all totally 3-
splittable polytopes, all totally 4-splittable polytopes,
and so on. This would help to get new insights in the
structure of secondary polytopes. Especially, since
for the class of totally 2-splittable polytopes all sec-
ondary polytopes are known, a classification of totally
k-splittable polytopes for small k ≥ 3 could lead to ex-
plicit computations of some secondary polytopes.

References

[1] Jesús A. De Loera, Jörg Rambau, and Fran-
cisco Santos, Triangulations: Structures and al-
gorithms, Springer, to appear.

[2] Israil M. Gel′fand, Mikhail M. Kapranov, and
Andrey V. Zelevinsky, Discriminants, resultants,
and multidimensional determinants, Mathemat-
ics: Theory & Applications, Birkhäuser Boston
Inc., Boston, MA, 1994.

[3] Sven Herrmann, Anders N. Jensen, Michael
Joswig, and Bernd Sturmfels, How to draw tropi-
cal planes, (2008), preprint arXiv:0808.2383.

[4] Sven Herrmann and Michael Joswig, Splitting
polytopes, Münster J. Math. (2008), no. 1, 109–
142.

[5] Sven Herrmann and Michael Joswig, Totally split-
table polytopes, (2009), preprint arXiv:0901.
0231.

[6] Hiroshi Hirai, Characterization of the distance be-
tween subtrees of a tree by the associated tight
span, Ann. Comb. 10 (2006), no. 1, 111–128.

[7] Hiroshi Hirai, A geometric study of the split de-
composition, Discrete Comput. Geome. 36 (2006),
no. 2, 331–361.

[8] Peter Huggins, Bernd Sturmfels, Josephine Yu,
and Debbie S. Yuster, The hyperdeterminant and
triangulations of the 4-cube, Math. Comp. 77
(2008), 1653–1679.

[9] Julian Pfeifle, The secondary polytope of the 3-
cube, Electronic Geometry Models (2000), www.
eg-models.de/2000.09.031.

4

EuroCG’09 - Brussels, Belgium

262

Practical Algorithms for Path Planning and Crowd Simulation

Mark H. Overmars∗

Abstract

In computer games and other applications of virtual worlds many computer controlled
characters move around. A fundamental challenge for these characters is to plan paths from
their current locations to their desired locations. Such paths must not only be collision
free, they must also be similar to the paths real people would take in such situations. This
requires an adequate model of human navigation and generic algorithms that compute paths
according to such a model. Such algorithms must be very fast as we usually can only use
a fraction of the processing power and must compute paths for hundredths of characters in
complicated environments.

In this talk I will give some insight in the criteria that must be satisfied by such practical
path planning algorithms and I will describe the Indicative Route Method (IRM) that we
developed to provide the required flexibility. This method computes networks of routes and
collision-free corridors, based on Voronoi diagrams. For speed reasons we perform most
computation on the GPU. The routes are only used as an indication of the desired paths,
while the corridor provides local freedom for the characters to avoid each other and create
natural motion. Also I will discuss new local character avoidance techniques that lead to
considerably more natural simulations of large crowds than existing techniques.

∗Institute of Information and Computing Sciences, Utrecht University, The Netherlands, markov@cs.uu.nl

1

Practical Algorithms for Path Planning and Crowd Simulation

263

EuroCG’09 - Brussels, Belgium

264

Stabbers of line segments in the plane

M. Claverol∗ D. Garijo† C. I. Grima‡ A. Márquez§ C. Seara¶

Abstract

The problem of computing a representation of all
the stabbing lines of a set of n line segments in the
plane was solved by Edelsbrunner et al. with an op-
timal Θ(n log n) time and O(n) space algorithm. We
present a complete study of different types of stabbers
such as wedges, double-wedges, 3-polygonal chains
and 2-level trees, providing algorithms whose com-
plexities and spaces depend on the number of different
slopes, and the number hS of combinatorially different
extreme lines or on the number cS of combinatorially
different critical extremes lines that appear in the set
of segments. See Table 1.

1 Introduction

Let S be a set of n line segments in the plane. A line
is said to be a stabbing line or a transversal line of S if
it intersects each segment of the set S. Edelsbrunner
et al. [3] presented an optimal Θ(n logn) time and
O(n) space algorithm for computing and constructing
a representation of all stabbing lines of S. However,
the lower bound did not apply to the decision problem
of determining whether there exists a stabbing line of
S. Avis et al. [1] provided an Ω(n logn) time lower
bound in the fixed order algebraic decision tree model
for studying the existence of a stabbing line.

Following this line of research, we address the pro-
blem of studying different types of simple stabbers,
assuming that the segments of S are not stabbed by
a line. Concretely, we shall consider the following
structures (shown in Figure 1):

1. A wedge is the union of two rays with common
origin, called the apex.

2. A double-wedge is formed by two lines intersec-
ting at a point, called the vertex. As a particular
case, we have two parallel lines.

∗Dept. de Matemàtica Aplicada IV, Universitat Politècnica
de Catalunya, Spain, merce@ma4.upc.edu

†Depto. de Matemática Aplicada I, Universidad de Sevilla,
Sevilla, Spain, dgarijo@us.es

‡Depto. de Matemática Aplicada I, Universidad de Sevilla,
Sevilla, Spain, grima@us.es

§Depto. de Matemática Aplicada I, Universidad de Sevilla,
Sevilla, Spain, almar@us.es
¶Dept. de Matemàtica Aplicada II, Universitat Politècnica

de Catalunya, Spain, carlos.seara@upc.edu

3. A non-convex and simple 3-polygonal chain or
zig-zag is composed by two rays and a segment
joining the origin of both rays.

4. A 2-level tree is defined by one line and two rays
located each on one of the half-planes defined by
the line, and with origins on the line. In particu-
lar, we have the three parallel lines case.

Our main purpose is to design efficient algorithms for
deciding whether there exists any of these structures
stabbing the set S, and computing it in case of exis-
tence. As particular cases, we shall consider sets of
parallel segments with or without the same length.
A stabber can be viewed as a separator structure in

(a) (b) (c)

(d) (e)

...`0

`1

`2

`

`1

`2

`2

`1

`0

`1

`2

Figure 1: (a) Stabbing line, (b) stabbing wedge, (c)
stabbing double-wedge, (d) stabbing zig-zag, (e) stab-
bing 2-level tree.

the sense that it can classify the endpoints of the seg-
ments, i.e., the structure splits the plane into disjoint
monochromatic regions when the endpoints of the seg-
ments are assigned two different colors. Hurtado et
al. [6] classified red and blue points in the plane by
using similar separators to our stabbers. A stabber
satisfy the separability condition when it is a separa-
tor structure. For instance, if a wedge W verify the
separability condition then a segment of S can not be
stabbed by the two rays of W . Otherwise, both rays
can stab any segment of S.
Related works. Claverol [2] as a part of her PhD the-
sis initiated the study developed here in which we im-
prove the complexities she obtained, and we also in-
troduce some other stabbing problems. Edelsbrunner,
Guibas and Sharir [4] showed how to construct a re-
presentation of line stabbers of convex polygons with
a total of n vertices in O(nα(n) log n) time. Later

1

Stabbers of line segments in the plane

265

improved to O(n log n) using an O(n logn) time al-
gorithm from Hershberger for finding the lower en-
velope of a segment set in the plane. O’Rourke [8]
presented an algorithm for finding in case of existence
a stabbing line of vertical line segments. Goodrich
and Snoeyink [5] addressed a natural variant by sol-
ving the problem of computing a transversal convex
polygon for a set of parallel segments in O(n log n)
time. Lyons et al. [7] computed the minimum perime-
ter convex polygon which stabs a set of isothetic line
segments. Rappaport [9] considered the problem of
computing a simple polygon with minimum perime-
ter which stabs or contains a set of line segments.

2 Ideas and tools

Some ideas and tools are shared by most of our results.
In this section we present them in a unified context.
We first recall a standard geometric tool which is used
throughout this paper (and in many other works on
stabbers). This is the concept of duality [3], given by
the geometric transform, denoted by D, which maps
a point into a non-vertical line and vice versa.

The lines containing the segments of S can have
different slopes. Denote by mi the slope of (the line
containing) the segment si ∈ S. The complexity of
many of the algorithms that we present here depends
on the number of different slopes of the lines contain-
ing the segments of S, written as kS . It is due to
the following fact: the endpoints of the segments fall
into two classes determined by a stabbing line `, end-
points above ` and endpoints below `, say red and
blue respectively. The endpoint of a segment on ` is
classified according to its other endpoint. Thus, for
a given slope of ` our problem of stabbing the set S
can be viewed as a red-blue separability problem of
classifying the endpoints of the segments into disjoint
monochromatic regions of the plane determined by
the stabber. In fact, it is not difficult to show that
there exist as many different classifications of the end-
points of S as kS .

A relevant property about our stabbers is that not
all the lines can be candidate to define one of these
structures. For instance, consider a ray ` which is part
of a wedge that stabs S, and its extension denoted by
`′. We have that all the segments that are not inter-
sected by ` must lie on the same half-plane defined by
`′. Thus, we say that a line `′ is an extreme line for S
if `′ stabs a subset of segments S1 ⊆ S, S1 6= ∅, and
the remaining segments S2 = S \S1 are in only one of
the open half-planes defined by `′. Otherwise, the line
`′ is said to be a non-extreme line for S. Thus, as we
have mentioned before, our interest in extreme lines
comes from the following fact: the line containing any
ray of a stabbing wedge for S is extreme line for S.

In this paper, extreme lines are studied from two
different points of view: computational and combina-

torial view. The reason is that our algorithms depend
on the computation of the set of extreme lines for S.
Thus, we say that two non-vertical lines, `1 and `2, are
combinatorially different with respect to S if either:
(1) the subset of segments S1 ⊆ S stabbed by `1 is
different from the subset of segments S2 ⊆ S stabbed
by `2; or (2) if S1 = S2 then either: (i) the subset of
endpoints of segments of S above `1 is different from
the subset of endpoints of segments of S above `2, or
(ii) the subset of endpoints of segments of S below `1
is different from the subset of endpoints of segments
of S below `2. If hS is the number of combinatorially
different extreme lines of S, we compute a represen-
tation of the combinatorially different extreme lines
for S in O(hS + n logn) time and O(hS + n) space.
Observe that the number of combinatorially different
extreme lines for S is at most O(n2), but depending
on the properties of the stabbing problem, we can con-
sider only a subset of them named the critical extreme
lines which size cs is at most linear.

3 Results

3.1 Stabbing wedge

Our first aim is to study the problem of deciding
whether the set S can be stabbed by a wedge, and
computing this structure in case of existence. Obvi-
ously, it is assumed that the set S is not stabbed by
a line. We distinguish two cases: stabbing wedges
W satisfying the separability condition (described in
Section 1) or those that do not satisfy such condition.
In the first case, we provide an O(hSkS logn+n logn)
time and O(hS + n) space algorithm. The range for
hS is from O(1) to O(n2), and the range for kS is
from O(1) to O(n). In the second case, we design
an O(cSkS logn+ n logn) time and O(n) space algo-
rithm, with range for cS in between O(1) and O(n).

We now introduce some useful notation for our pur-
pose. Given a line ` and a segment s, we can classify
the endpoints of s with respect to ` whenever ` and
the line containing s are not parallel. It suffices to
do a parallel sweep with ` until it crosses s, leaving
one endpoint in `+, and the other one in `−. These
endpoints are denoted by e+ and e−, respectively.

Let W be a stabbing wedge for S. The two rays
that form W are denoted by `1 and `2, and W is
written as W = {`1, `2}. The line containing `i for
i = 1, 2 is denoted by `′i. The half-planes defined by
`i are written as `′i

+ and `′i
−. Suppose that `1 stabs

a subset of segments S1 (S, S1 6= ∅, and the set
S2 = S \ S1 is stabbed by `2.

3.1.1 Stabbing wedges satisfying the separability
condition

Since by definition we consider W as a separator
structure, a segment can not be stabbed by both rays.

2

EuroCG’09 - Brussels, Belgium

266

Let S+
1 (S−1) be the set of endpoints of the segments

of S1 classified as e+ (e−) with respect to `′1. Analo-
gously, S+

2 (S−2) is the set of endpoints of the segments
of S2 classified as e+ (e−) with respect to `′2. Thus,
S−1 and S+

2 are contained inside the wedge W , and
S+

1 and S−2 are located outside it. Notice that these
assignments {+,−} depend on the relative position
of the lines `′1 and `′2, i.e., on the slope and the aper-
ture angle of the stabbing wedge. We concentrate in
a particular case but the remaining constant number
of cases can be handle in a similar way.

Lemma 1 If W = {`1, `2} is a stabbing wedge for S,
`′1 and `′2 are extreme lines for S and at least half of
the segments of S are stabbed by either `1 or `2.

The next lemma assumes the following conditions:
(i) let `′1 be an extreme line for S where S1 (S,
S1 6= ∅, is the subset of segments stabbed by `′1. Let
S+

1 and S−1 be the classification of the endpoints of
the segments of S1 given by `′1, and let S2 = S \ S1.
(ii) Let m be a fixed slope and let S+

2 and S−2 be the
classification of the endpoints of the segments of S2

by sweeping a line with slope m.

Lemma 2 There exists a stabbing wedge W =
{`1, `2} for S with `1 contained in `′1 if and only if S−2
is line separable from S−1 ∪S+

2 . The locus of apices of
the stabbing wedges for S respecting this classification
of endpoints is a (possible unbounded and degenerate)
convex quadrilateral Q defined by the following four
lines: the interior supported lines between CH(S+

1)
and CH(S−1 ∪ S+

2) and the interior supported lines
between CH(S−1 ∪ S+

2) and CH(S−2).

Lemmas 1 and 2 are the key tools to design an
algorithm that proves the following result.

Theorem 3 The set of combinatorially different
stabbing wedges for S with the separability condition,
together with a representation of them formed by the
locus of apices of the stabbing wedges can be com-
puted in O(hSkS log n+ n log n) time and O(hS + n)
space. The problem of deciding whether there exists
a stabbing wedge for an arbitrary segment set in the
plane has an Ω(n logn) time lower bound in the fixed
order algebraic decision tree model.

3.1.2 Stabbing wedges not satisfying the separa-
bility condition

LetW = {`1, `2} be a stabbing wedge for S not verify-
ing the separability condition. A property that only
holds for this type of wedges is the following: there
always exists a stabbing wedge W for S (not satisfy-
ing the separability condition) formed by two rays both
anchored on fixed points of S, i.e., both rays are con-
tained in critical extreme lines. This property let us
prove the following result.

Theorem 4 The set of combinatorially different
stabbing wedges for S not satisfying the separability
condition can be computed in O(cSkS log n+ n log n)
time and O(n) space.

3.2 Stabbing wedges for parallel segments with
equal length

Let S = {s1, . . . , sn} be a set of n parallel segments
in the plane with equal length which are not stabbed
by a line. We now consider the problem of computing
a stabbing wedge W for S satisfying the separability
condition.

Up to symmetry with respect to either the x-axis
or the y-axis, we distinguish three types of wedges
according to the relative position of the rays `1 and `2
of the possible stabbing wedgeW = {`1, `2} for S. Let
αW be the aperture angle or interval direction defined
by the rays `1 and `2 of W . The three types are the
following: (a) αW contains the vertical direction; (b)
αW contains the horizontal direction; and (c) both
rays `1 and `2 of W have positive slope.

3.2.1 Type (a)

When αW contains the vertical direction, it is possible
to design the following O(n log n) time algorithm for
computing a stabbing wedge for S. It is based on an
O(n log n) time and O(n) space algorithm for deciding
the wedge separability of a red-blue point set in the
plane [6].

1. In O(n) time, classify the endpoints of the seg-
ments of S as follows. For each segment s, color
red the endpoint of s with bigger y-coordinate
and color blue the other endpoint. Let R and B
be the sets of red and blue endpoints.

2. In O(n log n) time, decide whether there exists a
separating wedge for R and B, and compute it
in case of existence. In the same time, we can
compute the locus of apices of all the separating
wedges formed by convex quadrilaterals.

Theorem 5 Given the set S, a stabbing wedge of
type (a) for S can be computed in O(n log n) time
and O(n) space.

If the slopes of the rays of the wedge are known,
there exists an O(n) time algorithm to compute a
stabbing wedge for S using the median of the x-
coordinates of the endpoints of the segments.

3.2.2 Type (b)

We have also obtained an O(n logn) time algorithm
for computing a stabbing wedge for S when αW

contains the horizontal direction. For each segment
si ∈ S, consider its midpoint ρi. In O(n logn) time,

3

Stabbers of line segments in the plane

267

sort these midpoints by decreasing y-coordinate, and
let ¹y denote this order. Denote by S∗ = {s∗1, . . . , s∗n}
the set of segments of S sorted by the ¹y order of their
midpoints. The key tools to design our algorithm are
given by the following lemma.

Lemma 6 If there exists a stabbing wedge for S,
W = {`1, `2}, such that αW contains the horizontal
direction, then the midpoints of the segments stabbed
by `1 appear before in the ¹y order than the mid-
points of the segments stabbed by `2.

Let `′1 be a line with positive slope that stabs S1 (
S, S1 6= ∅, and let `′2 be a line with negative slope that
stabs S2 = S \ S1. Consider the classification of the
endpoints of S provided by `′1 and `′2. There exists a
stabbing wedge W = {`1, `2} for S if and only if both
S+

1 and S−2 are line separable from S−1 ∪ S+
2 .

Theorem 7 Given the set S, a stabbing wedge of
type (b) for S can be computed in O(n log n) time
and O(n) space.

3.2.3 Type (c)

When both rays `1 and `2 of W have positive slope,
the main problem is to obtain a consistent classifica-
tion of the midpoints of the segments according to the
possible stabbing wedge of type (c). Denote by d the
length of the segments of S, and recall that ρi is the
midpoint of the segment si ∈ S.

Assume that there exists a stabbing wedge of type
(c) for S, denoted by W = {`1, `2}. Suppose also that
αW is known. Let `′i for i = 1, 2, be the line containing
the ray `i. Denote by `′′1 the line below and parallel
to `′1, such that the vertical distance between the two
lines `′′1 and `′1 is exactly d/2. Similarly, `′′2 is the line
above and parallel to `′2 such that the vertical distance
between `′′2 and `′2 is also d/2. Let ` be the bisector
of the angle defined by `′1 and `′2 or any line with
slope between the slopes of `′1 and `′2. Now rotate the
coordinate system such that the line ` becomes the
new x-axis and proceed as in Theorem 7. Thus, if we
know that αW ≥ α, for some given α, we can compute
a constant number 2π/α = t of slope candidates for
line ` and check each one in O(n logn) time and O(n)
space. For stabbing wedges with very small aperture
angle αW , the value t can dominate n.

Theorem 8 Given the set S and a positive value α,
a stabbing wedge of type (c) for S with αW ≥ α can
be computed in O(nt log n) time and O(n) space.

4 Other stabbers

Table 1 summarizes the times and the spaces com-
plexities of the algorithms that we have obtained for
the stabbers we consider in this paper. The notations

Stabber Time Space

Wedge (SC) O(hSkS log n + n log n) O(hS + n)

Wedge (NSC) O(cSkS log n + n log n) O(n)

Zig-zag (SC) O(n2kS log n + n log n) O(hS + n)

Zig-zag (NSC) O(c2
SkS log n + n log n) O(n)

Double-wedge O(n2kS log n) O(n2)

2-level tree O(n2kS
2 log n) O(n2)

Table 1: Summary of results

(SC) and (NSC) mean satisfying and not satisfying
the separability condition. These two possibilities are
only considered for the stabbing wedge and the stab-
bing zig-zag. To conclude, we want to stress that in
case of existence, our algorithms compute all the com-
binatorially different solutions.

References

[1] D. Avis, J.-M. Robert, and R. Wenger. Lower
bounds for line stabbing. Inform. Process. Lett.,
33, (1989), 59–62.

[2] M. Claverol. Problemas geométricos en mor-
foloǵıa computacional. PhD Thesis. Universitat
Politècnica de Catalunya, 2004.

[3] H. Edelsbrunner, H. A. Maurer, F. P. Preparata,
A. L. Rosenberg, E. Welzl, and D. Wood. Stabbing
line segments. BIT, Vol. 22, (1982) pp. 274–281.

[4] H. Edelsbrunner, L. J. Guibas, and M. Sharir. The
upper envelope of piecewise linear functions: algo-
rithms and applications. Report No. UIUCDCS-R-
87-1390, University of Ilinois, (1987).

[5] M. T. Goodrich and J. S. Snoeyink. Stabbing par-
allel segments whit a convex polygon. Workshop
Algorithms Data Struct. Lecture Notes Comput.
Sci., 382 (1989), 231–242.

[6] F. Hurtado, M. Noy, P. A. Ramos, and C. Seara.
Separating objects in the plane by wedges and
strips. Discrete Applied Mathematics, Vol. 109,
(2000), pp. 109–138.

[7] K. A. Lyons, Henk Meijer, and David Rappaport.
Minimum polygon stabbers of isothetic line seg-
ments. Department of Computing and Information
Science, Queen’s University, Canada, (1990).

[8] J. O’Rourke. An online algorithm for fitting
straigt lines between data ranges. CACM, 24,
(1981), 574–578.

[9] D. Rappaport. Minimum polygon transversals of
line segments. International Journal of Compu-
tational Geometry & Applications, Vol. 5, No. 3,
(1995), 243–256.

4

EuroCG’09 - Brussels, Belgium

268

Online Square Packing

Sándor P. Fekete∗ Tom Kamphans∗ Nils Schweer∗

Abstract

We analyze the problem of packing squares in an on-
line fashion: Given an semi-infinite strip of width 1
and an unknown sequence of squares with side lengths
in [0, 1] that arrive from above, one at a time. The
objective is to pack these items as they arrive, mini-
mizing the resulting height. Just like in the classical
game of Tetris, each square must be moved along a
collision-free path to its final destination; in addition,
we may have to account for gravity in both motion
and position (i.e, squares are not allowed to move up
and any final destination has to be supported from
below). This problem has been considered before; the
best previous result is by Azar and Epstein, who gave
a 4-competitive algorithm in a setting without gravity,
based on ideas of shelf-packing, with the possibility
of letting squares “hang in the air” in order to assign
them to different levels, allowing an analysis that is
reminiscent of some bin-packing arguments.

We present an algorithm with competitive factor
34
13 ≈ 2.6154, with or without the presence of gravity.

1 Introduction

Packing problems arise in many different situations,
either concrete (where actual physical objects have to
be packed), or abstract (where the space is virtual,
e.g., in scheduling). Even in a one-dimensional set-
ting, computing an optimal set of positions in a con-
tainer for a known set of objects is a classical, hard
problem. Having to deal with two-dimensional ob-
jects adds a variety of difficulties; one of them is the
more complex structure of feasible placements; see,
for example, Fekete et al. [8]. Another one is actually
moving the objects into their final locations without
causing collisions or overlap along the way.

A different kind of difficulty may arise from a lack
of information: in many settings, objects have to be
assigned to their final locations one by one, without
knowing future items. Obviously, this makes the chal-
lenge even harder.

In this paper, we consider online packing of squares
into a vertical strip of unit width. Squares arrive from
above in an online fashion, one at a time, and have
to be moved to their final positions. On this path,
a square may move only through unoccupied space;

∗Braunschweig University of Technology, Computer Science,
Algorithms Group, 38106 Braunschweig, Germany

in allusion to the well-known computer game, this is
called the Tetris constraint. In addition, an item is
not allowed to move upwards and has to be supported
from below when reaching its final position; these con-
ditions are called gravity constraints. The objective is
to minimize the total height of the occupied part of
the strip.

1.1 Related Work

There is a considerable amount of work of online rect-
angle packing without the Tetris constraint, see Coff-
man et al. [4] for a quick overview. Most notably,
shelf-packing approaches [2] (in which the strip is sub-
divided into shelves of certain heights, and no two
rectangles within the same shelf get placed on top
of each other) cannot do better than an asymptotic
worst-case ratio of 1.691..., which can be achieved by
Harmonic shelf packing, see Csirik and Woeginger [5].

Every reader is certainly familiar with the classical
game of Tetris: Given a strip of fixed width, find on-
line placements for a sequence of objects falling down
from above, such that space is utilized as best as pos-
sible1. In this process, no item can ever move up-
ward or collide with another object. An item will
come to a stop only if it is supported from below,
and each placement has to be fixed before the next
item arrives. Even when disregarding the difficulty
of ever-increasing speed, Tetris is notoriously diffi-
cult: As was shown by Breukelaar et al. [3], Tetris
is PSPACE-hard, even for the original, limited set of
different objects.

Tetris-like online packing has been studied before.
Most notably, Azar and Epstein [1] considered online
packing of rectangles into a strip; just like in Tetris,
they considered the situation with or without rotation
of objects. For the case without rotation, they showed
that no constant competitive ratio is possible, unless
there is a fixed-size lower bound of ε on the size of
the objects, in which case there is an upper bound of
O(log 1

ε). For the case in which rotation is possible,
they showed a 4-competitive strategy, based on shelf-
packing methods, with all rectangles being rotated to
be placed on their narrow sides; until now, this is
also the best deterministic upper bound for squares.

1Obviously, there is a slight difference in the objective func-
tion, because Tetris aims at filling rows. In actual optimization
scenarios, this is less interesting, as it is not critical whether
a row is used to precisely 100%—in particular, as full rows do
not magically disappear in real life.

1

Online Square Packing

269

In this strategy, gravity is not taken into account, as
items are allowed to be placed at appropriate levels,
even if they are unsupported.

More recently, Coffmann, Downey, and Winkler [4]
considered probabilistic aspects of online rectangle
packing with Tetris constraint, without allowing rota-
tions. If n rectangle sizes are chosen uniformly at ran-
dom from the interval [0, 1], they showed that there
is a lower bound of (0.31382733...)n on the expected
height of the strip; using another kind of level-type
strategy, which arises from the bin-packing–inspired
Next Fit Level, they established an upper bound of
(0.36976421...)n on the expected height. Epstein and
van Stee gave an optimal bounded space algorithm
for online hypercube bin-packing for any dimension
d ≥ 2, and unbounded-space, competitive algorithms
for square and cube packing [6, 7].

2 Problem and Definitions

We are given a strip, S, of width 1 which is closed
at the bottom and has infinite height, as well as
a sequence, A1, . . . , An, of squares with side length
|Ai| ∈ [0, 1]. The squares are presented one by one;
the next square always arrives above all previously
placed squares. Our goal is to find a nonoverlapping
placement of squares in the strip that keeps the height
of the occupied area as low as possible. The sides of
the squares in the placement are parallel to the sides
of the strip. A packing has to fulfill two additional
constraints:

Gravity constraint: A square must be packed on top
of a square that has been packed before (i.e., the in-
tersection of the upper square’s bottom and the lower
square’s top must be a line segment); in addition, no
square may ever move up.

Tetris constraint: At the time a square is placed,
there is a collision-free path from the top of the strip
to the square’s final position.

We consider the online problem; that is, the se-
quence A is not known in advance. Our strategy gets
the squares one by one and has to place a square be-
fore it gets the next.

We call a square Aj a bottom neighbor of a square Ai

if the top side of Aj and the bottom side of Ai overlap
in more than one point. For every square Ai we define
the bottom sequence as follows: Ai is the first element
of this sequence and the next element is chosen as an
arbitrary bottom neighbor of the previous element.
The sequence ends if no such neighbor exists.

3 Algorithm

Consider two vertical lines of infinite length going up-
wards from the bottom side of S and parallel to the
left and the right side of S. We call the area between
these lines a slot, the lines the left boundary and the

A1 AS
1

T1

P

AW
1

A3AS
3 AS

3

AW
3

δ2

QR

AS
2

AW
2

δ′2

T2 T3

2−k1

2−k1−1 2−k1−1

2−k1−2 2−k1−2 2−k1−2 2−k1−2

δ′3|A3|−δ′3
A2

Figure 1: Squares Ai with their shadows AS
i and their

widening AW
i . δ′2 is equal to |A2| and δ′3 is equal to

δ3. The points P and Q are charged to A1. R is not
charged to A1, but to A2.

right boundary of the slot, and the distance between
the lines the width of the slot.

Now our algorithm works as follows: We divide the
strip S of width 1 into slots of different widths; for
every j = 0, 1, 2 . . . we create 2j slots of width 1

2j side
by side; that is, we divide S into one slot of width 1,
two slots of width 1

2 , four slots of width 1
4 and so on.

Note that a slot of width 2−i contains 2 slots of width
2−i−1; see Fig. 1.

For every square Ai we round the side length |Ai| to
the smallest number 1

2ki
that is larger than or equal to

|Ai|. We place Ai in the slot of width 2−ki that allows
Ai to be placed as near to the bottom of S as possible
by moving Ai down along the left boundary of the
chosen slot until another square is reached. We call
this algorithm SlotAlgorithm. It clearly satisfies the
Tetris and the Gravity constraints and next we show
that the produced height is at most 2.6154 times the
height of an optimal packing.

4 Analysis

Let Ai be a square placed by the SlotAlgorithm in
a slot Ti of width 2−ki . Let δi be the distance be-
tween the right side of Ai and the right boundary
of the slot of width 2−ki+1 that contains Ai and
δ′i := min{|Ai|, δi}. We call the area obtained by en-
larging Ai by δ′i to the right and by |Ai| − δ′i to the
left the shadow of Ai and denote it by AS

i . Thus, AS
i

is an area of the same size as Ai and lies completely
inside a slot of twice the width of Ai’s slot. Moreover,

2

EuroCG’09 - Brussels, Belgium

270

we define the widening of Ai as AW
i = (Ai ∪AS

i)∩Ti;
see Fig. 1.

Now, consider a point P in Ti that is not inside an
AW

j for any square Aj and that does not lie on the left
or the right boundary of any slot. We charge P to the
square Ai if AW

i is the first widening that intersects
the vertical line going upwards from P . We denote by
FAi

the set of all points charged to Ai and by |FAi
| its

area. The set of points lying on the left or the right
boundary of any slot has area zero and is therefore
neglected in the rest of this section. For the analysis,
we place a closing square, An+1, of side length 1 on
top of the packing.2 Therefore, every point in the
packing that does not lie inside an AW

j is charged to
a square. Because Ai and AS

i have the same area, we
can bound the height, ALG, of the packing produced
by the algorithm as follows:

ALG ≤ 2
n∑

i=1

|Ai|2 +
n+1∑
i=1

|FAi
|

Theorem 1 The SlotAlgorithm is competitive with
factor 2.6154.

Proof. The height of an optimal packing is at least∑n
i=1 |Ai|2 and, therefore, it suffices to show that

|FAi | ≤ 0.6154 · |Ai|2 holds for every square Ai.
We construct for every Ai a sequence of squares
Bi

1, B
i
2, . . . , B

i
m with Bi

1 = Ai (to ease notation, we
omit the superscript i in the following). We denote
by EBj

the extension of the bottom side of Bj to the
left and to the right (Fig. 2). We will show that by
an appropriate choice of the sequence we can bound
the area of the part of FB1 that lies between a con-
secutive pair of extensions, EBj and EBj+1 , in terms
of Bj+1 and the slot widths. From this we will de-
rive the upper bound on the area of FB1 . We assume
throughout the proof that the square Bj , j ≥ 1, is
placed in a slot, Tj , of width 2−kj . Note that FB1 is
completely contained in T1.

A slot is called active (with respect to EBj and B1)
if there is a point in the slot that lies below EBj and
that is charged to B1 and nonactive otherwise. If it
is clear from the context we leave out the B1.

The sequence of squares is chosen as follows: B1 is
the first square and the square Bj+1, j = 1, . . . ,m−1
is chosen as the smallest one that intersects or touches
EBj

in an active slot (w.r.t. EBj
and B1) of width

2−kj and that is not equal to Bj . The sequence ends
if all slots are nonactive w.r.t. to an extension EBm .
We claim the following:

(i) Bj+1 exists for j+1 ≤ m and |Bj+1| ≤ 2−kj−1

for j + 1 ≤ m− 1.

2This does not affect the competitive factor asymptotically.

B1

T1

EB1

B2
EB2

EB3

B3

T2 T3

2−k1

2−k2

2−k3

Figure 2: The first three squares of the sequence. In
this example, B2 is the smallest square that bounds
B1 from below. B3 is the smallest one that intersects
EB2 in an active slot (w.r.t. EB2) of width 1

2k2
. T2 is

nonactive (w.r.t. EB2) and, of course, also w.r.t. all
extension EBj , j ≥ 3

(ii) The number of active slots (w.r.t. EBj) of
width 2−kj is at most{

1 , for j = 1∏j
i=2(

1
2ki−1

2ki − 1) , for j ≥ 2

(iii) The area of the part of FB1 that lies in an
active slot of width 2−kj between EBj and EBj+1

is at most 2−kj |Bj+1| − 2|Bj+1|2.

We prove the claims by induction. If B1 is placed
on the bottom of S, FB1 has size 0 and B1 is the last
element of the sequence. Otherwise, the square B1

has at least one bottom neighbor, which is a candidate
for the choice of B2. If |B2| > 2−k1−1, then B2 is a
bottom neighbor of B1 of side length greater than or
equal to B1 and, thus, all points below are charged
to B2. Hence, slot T1 is nonactive and FB1 is of size
zero.

If (i) is fulfilled T1 is the only slot of width 2−k1 that
is active. Moreover, we conclude that the area of the
part of FB1 that lies between EB1 and EB2 is at most
2−k1 |B2|−2|B2|2 (Fig. 2). Note that we can subtract
the area of B2 twice, because BS

2 was defined to lie
completely inside a strip of width 2−k2+1 ≤ 2−k1 and
is of same area as B2.

Now suppose for a contradiction that the (j + 1)th
element does not exist for j+1 ≤ m. Let T ′ be an ac-
tive slot in T1 (w.r.t. EBj) of width 2−kj where EBj is
not intersected by a square in T ′. If there is an ε such
that for every point P ∈ (T ′ ∩ EBj) there is a point
P ′ at a distance of ε below P that is charged to B1 we

3

Online Square Packing

271

Bj

Tj

EBj

EBj+1

Bj+1 ≤ |Bj+1|
2kj

− 2|Bj+1|2

2−kj2−kj

Tj+1

2−kj+1

Figure 3: The part of FB1 (darkest gray) that lies
between EBj and EBj+1 in an active slot of width 1

2kj

is at most 1

2kj
|Bj+1|−2|Bj+1|2 because points in BW

j+1

are not charged to B1.

conclude that there would have been a better position
for Bj . Hence, there is at least one point, Q, below
EBj that is not charged to B1. Consider the bottom
sequence of the square Q is charged to. This sequence
has to intersect EBj

outside of T ′ (by choice of T ′).
But then one of its elements has to intersect the left
or the right boundary of T ′ and we can conclude that
this square has at least the width of T ′, because (by
the algorithm) a square with rounded side length 2−`

cannot cross a slot’s boundary of width larger than
2−`. In turn, a square larger than T ′ completely cov-
ers T ′ and T ′ cannot be active w.r.t. to EBj and B1.
Thus, all points in T ′ below EBj are charged to this
square; a contradiction. This proves the existence of
Bj+1. Because we chose Bj+1 to be of minimal side
length, |Bj+1| ≥ 2−kj would imply that all slots in-
side T are nonactive (w.r.t. EBj). Therefore, ifBj+1 is
not the last element of the sequence, |Bj+1| ≤ 2−kj−1

holds.
By the induction hypothesis there are at most

(1
2k1

2k2 − 1) · (1
2k2

2k3 − 1) · . . . · (1

2kj−2
2kj−1 − 1) active

slots of width 2−kj−1 (w.r.t. EBj−1). Each of these
slots contains 2kj−kj−1 slots of width 2−kj and in ev-
ery active slot of width 2−kj−1 at least one slot of
width 2−kj is nonactive because we chose Bj to be of
minimum side length. Hence, the number of active
slots (w.r.t. EBj) is a factor of (1

2kj−1
2kj − 1) larger

than the number of active slots (w.r.t. EBj−1).
Again by the choice of Bj+1 and by the fact that

in every active slot of width 2−kj there is at least
one square, B, intersecting EBj

(points below BW

are not charged to B1) we conclude that the area of
FB1 between EBj and EBj+1 is at most 2−kj |Bj+1| −
2|Bj+1|2 in every active slot of width 2−kj (Fig. 3).

Altogether, we get an upper bound on |FB1 | of

|B2|
2k1
−2|B2|2+

m∑
j=2

[(|Bj+1|
2kj
−2|Bj+1|2

) j−1∏
i=1

(
2ki+1

2ki
−1

)]

This expression is maximized if we choose |Bi+1| =
1

2ki+2 for i = 1, . . . ,m. This implies ki = k1 + 2(i− 1)
and we get the upper bound

|FB1 | ≤
∞∑

i=0

3i

22k1+4i+3
.

The fraction |FB1 |
|B1|2 is maximized if we choose |B1|

as small as possible; that is, B1 = 2−(k1+1) + ε. We
conclude:

|FB1 |
|B1|2 ≤

∞∑
i=0

22k1+2 · 3i

22k1+4i+3
=

∞∑
i=0

3i

24i+1

=
1
2
·
∞∑

i=0

(
3
16

)i

=
8
13

= 0.6154...

�

5 Conclusion

We presented an algorithm that is 2.6154-competitive.
We believe that our algorithm can be improved; at
this point, the best known lower bound is 1.25. We
believe that our approach can be extended to higher
dimensions. Rectangles may require a slightly differ-
ent analysis. These topics will be the subject of future
research. It is an open question, whether our analysis
is tight or can be improved. The best lower bound for
SlotAlgorithm known to us is 2.

References

[1] Y. Azar and L. Epstein. On two dimensional packing.
J. Algorithms, 25:290–310, 1997.

[2] B. S. Baker and J. S. Schwarz. Shelf algorithms for
two-dimensional packing problems. SIAM J. Comput.,
12:508–525, 1983.

[3] R. Breukelaar, E. D. Demaine, S. Hohenberger, H. J.
Hoogeboom, W. A. Kosters, and D. Liben-Nowell.
Tetris is hard, even to approximate. Internat. J. Com-
put. Geom. Appl., 14:41–68, 2004.

[4] E. G. Coffman Jr., P. J. Downey, and P. Winkler.
Packing rectangles in a strip. Acta Inform., 38:673–
693, 2002.

[5] J. Csirik and G. J. Woeginger. Shelf algorithms for
online strip packing. Inform. Proc. Let., 63:171–175,
1997.

[6] L. Epstein and R. van Stee. Optimal online bounded
space multidimensional packing. In Proc. 15th ACM-
SIAM Sympos. Discrete Algorithms, pages 214–223,
2004.

[7] L. Epstein and R. van Stee. Online square and cube
packing. Acta Inform., 41:595–606, 2005.

[8] S. P. Fekete, J. Schepers, and J. van der Veen. An ex-
act algorithm for higher-dimensional orthogonal pack-
ing. Operations Research, 55:569–587, 2007.

4

EuroCG’09 - Brussels, Belgium

272

Square and Rectangle Covering with Outliers

Hee-Kap Ahn§ Sang Won Bae† Sang-Sub Kim§ Matias Korman‡ Iris Reinbacher†

Wanbin Son§

Abstract

For a set of n points in the plane, we consider the axis–
aligned (p, k)-Box Covering problem: Find p axis–
aligned, pairwise disjoint boxes that together contain
exactly n−k points, (i.e., there are k outliers that are
not covered by any box). In this paper, we allow the
boxes to be either squares or rectangles, and we want
to minimize the area of the largest box. For squares,
we present algorithms that find the solution in time
O(n + k log k) for p = 1, and in time O(n log n +
kp logp k) for p = 2, 3. For rectangles, the running
times increase by a factor of k2/ log k in the second
term for all cases. In all cases, our algorithms use
O(n) space.

1 Introduction

Given a set P of n points in the plane, we consider
the (p, k)-Box Covering problem: Find p pairwise
disjoint boxes that together contain n − k points of
P , such that the area of the largest box is minimized.
We will refer to the k points that are not contained in
the union of the boxes as outliers, and we will consider
the boxes to be axis parallel squares or rectangles. We
assume that there are no two points with the same
x- or y-coordinates. Previous work on this problem
has mainly focused on the problem without outliers.
The (p, 0)-Box Covering problem is closely related
to the (weighted) rectilinear p-center problem where
p squares may have different sizes and are allowed to
overlap. This problem is of LP–type [10], and thus can
be solved in linear time for p ≤ 3 [5]. Several papers
consider variations of the problem without outliers,
and achieve different running times, see e.g., [6, 8, 9].

There is less work when outliers are allowed, most
of it considers the (1, k)-Box Covering problem.
Agarwal et al. [1] achieved a running time of O((n−
k)2n log n) using O((n−k)n) space for the (1, k)-Box
Covering, where the box is an axis–parallel square
or rectangle. A randomized algorithm that runs in

†Division of Computer Science, KAIST, South Korea.
{swbae, iris}@tclab.kaist.ac.kr

‡Graduate School of Information Sciences, Tohoku Univer-
sity, Japan. mati@dais.is.tohoku.ac.jp

§Department of Computer Science and Engineer-
ing, POSTECH, South Korea. {heekap, helmet1981,

mnbiny}@postech.ac.kr

O(n log n) time was later given for the (1, k)-Square
Covering problem by Chan in [3].

We improve the previous results by giving algo-
rithms that run in O(n + k log k) time for the (1, k)-
Square Covering problem and in O(n + k3) time
for the (1, k)-Rectangle Covering. We use these
algorithms as the base for recursion to compute the
(p, k)-Box Covering for p ≤ 3. The running time
of our algorithms can be seen in Table 1, they all use
O(n) space.

2 Square Covering

2.1 (1, k)-Square Covering

Before focusing on our algorithm, we mention the pre-
viously fastest algorithm for the (1, k)-Square Cov-
ering problem:

Theorem 1 ([3]) Given a set P of n points in the
plane, the (1, k)-Square Covering problem can be
solved in O(n logn) expected time using O(n) space.

There is a deterministic version of the same
algorithm [7] that runs O(n log2 n) time. As we use
the above algorithm as base case for recursion, our
algorithm is randomized (if k is large). However,
our algorithms can be transformed into deterministic
ones at the cost of an additional O(log k) factor in
the second term.

A point p ∈ P is called (k + 1)-extreme if either
its x- or y-coordinate is among the k + 1 smallest or
largest in P . Let E(P) be the set of (k + 1)-extreme
points of P .

Lemma 2 For a given set P of n points in the plane,
we can compute the set E(P) of all (k + 1)-extreme
points of P in O(n) time.

Proof. We first select the point pL (pR, resp.) of P
with (k + 1)-th smallest (largest, resp.) x-coordinate
in linear time using a selection algorithm. We go
through P again to find all points with x-coordinates
smaller (larger, resp.) than pL (pR, resp.). Similarly,
we select points according to their y-coordinates. ¤

It is easy to see that the left side of the optimal so-
lution of the (1, k)-Square Covering problem lies

1

Square and Rectangle Covering with Outliers

273

Table 1: Running times of our (p, k)-Box Covering algorithms

No. of boxes Squares Rectangles
p = 1 O(n+ k log k) O(n+ k3)
p = 2 O(n log n+ k2 log2 k) O(n logn+ k4 log k)
p = 3 O(n log n+ k3 log3 k) O(n logn+ k5 log k)

on or to the left of the vertical line through pL, and
that the right side lies on or to the right of the verti-
cal line through pR (otherwise there are more than k
outliers). A similar observation holds for the top and
bottom sides of the optimal solution, and we get:

Lemma 3 The optimal square B∗ that solves the
(1, k)-Square Covering problem is determined by
the points of E(P) only.

With this observation we can improve the running
time of the algorithm from Theorem 1 as follows:

Theorem 4 Given a set P of n points in the plane,
the (1, k)-Square Covering problem can be solved
in O(n+ k log k) time using O(n) space.

Proof. We first compute the set of extreme points
E(P) using Lemma 2 and then use the algorithm from
Theorem 1 on the set E(P). The time bound follows
from |E(P)| ≤ 4k + 4. ¤

We present a lower bound of the problem:

Lemma 5 If k is part of the input, for any n points
there is an Ω(n logn) lower bound on computing the
minimal enclosing p squares or rectangles in the alge-
braic decision tree model.

Proof. We reduce from the set disjointness problem,
which is to decide whether or not there is a repeated
element in a given sequence of n points in R2. An
Ω(n log n) bound of set disjointness in the algebraic
decision tree model was given in [11] (see Cor. 5.1).
Thus, given any sequence p1, . . . , pn, we compute the
minimal enclosing p squares allowing k = n − p − 1
outliers, i.e., the union of the p squares must cover
exactly p+ 1 points.

Hence, the enclosing squares will have area zero
(i.e., they are degenerate squares of side length zero)
if there is a repeated element in the sequence. Other-
wise, by the pigeonhole principle, one of the squares
must cover two points and will have a positive area.
A similar proof holds for rectangles. ¤

2.2 (2, k)-Square Covering

The following observation is crucial to solve the (2, k)-
Square Covering problem:

m points (k′ outliers) n − m points (k − k′ outliers)

pm

p1

pm+1

pn

Figure 1: For given k′ and m, the optimal m∗ lies on
the side with the larger square (left in this example).

Observation 1 For any two pairwise disjoint axis-
aligned squares in the plane, there exists an axis-
parallel line ` that separates them.

Hence, there is always an axis-parallel line ` that sep-
arates the two optimal squares (B∗1 , B

∗
2) of the (2, k)-

Square Covering problem. Let `+ be the halfplane
defined by ` that contains B∗1 . Let P+ be the set of
points of P that lie in `+ (including points on `),
and let k+ be the number of outliers of the solution
of the (2, k)-Square Covering problem that lie in
`+. Then there is always an optimal solution of the
(1, k+)-Square Covering problem for P+ with size
smaller than or equal to that of B∗1 . The same argu-
ment also holds for the other halfplane `−, B∗2 , and
k−, where k− = k − k+. Thus, the pair of solutions
of the two (1, k′)-Square Covering problems, for
k′ = k+ and k′ = k−, is also an optimal solution of
the original (2, k)-Square Covering problem.

Lemma 6 There exists an axis-parallel line ` and a
positive integer k′ ≤ k such that the pair of optimal
solutions of the (1, k′)-Square Covering problem
restricted to `+ and of the (1, k − k′)-Square Cov-
ering problem restricted to `− is an optimal solution
of the (2, k)-Square Covering problem of `+ ∪ `−.

We assume w.l.o.g. that ` is vertical, and we as-
sociate ` with m, the number of points that lie to
the left of (or on) `. Let p1, p2, . . . , pn be the list of
points in P sorted by x-coordinate. Then ` parti-
tions the points of P into two subsets, a left point
set, PL(m) = {p1, . . . , pm} and a right point set
PR(m) = {pm+1, . . . , pn}, see Figure 1. Then the

2

EuroCG’09 - Brussels, Belgium

274

optimal left square is a solution of the (1, k′)-Square
Covering problem for PL(m) for 0 ≤ k′ ≤ k, and the
optimal right square is a solution of the (1, k − k′)-
Square Covering problem for PR(m).

We can efficiently compute the optimal solutions for
PL(m) and PR(m) on each halfplane of a vertical line `
using the above (1, k)-Square Covering algorithm.
However, as we will consider many partitioning lines,
it is important to find an efficient way to compute the
(k + 1)-extreme points for each PL(m), PR(m) corre-
sponding to a particular line `. In order to do so,
we will use Chazelle’s Segment Dragging Query algo-
rithm [4] to compute the (k + 1)-extreme points.

Lemma 7 ([4]) Given a set P of n points in the
plane, we can preprocess it in O(n log n) time and
O(n) space such that, for any axis–aligned orthogo-
nal range query Q, we can find the point p ∈ P ∩ Q
with highest y-coordinate in O(log n) time.

Using the above algorithm k + 1 times allows us
to find the k + 1 points with highest y coordinate in
any halfplane. Repeating the same process for rotated
versions of P leads to the following corollary.

Corollary 8 After O(n logn) preprocessing time, we
can compute E(PL(m)) and E(PR(m)) in O(k logn)
time for any given m.

Before presenting our algorithm we need the follow-
ing lemma:

Lemma 9 For a fixed k′, the size of the solution of
the (1, k′)-Square Covering problem for PL(m) is
an increasing function of m.

Proof. Consider the set PL(m + 1) and the optimal
square B of the (1, k′)-Square Covering problem
for PL(m + 1). Clearly, PL(m + 1) is a superset of
PL(m), as it contains one more point pm+1. Since k′

is fixed, the square B has k′ outliers in PL(m+ 1). If
the interior of B intersects the vertical line ` through
pm, we translate B horizontally to the left until it
stops intersecting `. Let B′ be the translated copy of
B, then B′ lies in the left halfplane of ` and there are
at most k′ outliers to B′ among the points in PL(m).
Therefore we can shrink or translate B′ and get a
square lying in the left halfplane of ` that has exactly
k′ outliers and a size smaller or equal to that of B.
This implies that the optimal square for PL(m) has a
size smaller or equal to that of B. ¤

Lemma 9 immediately implies the following:

Corollary 10 Let (B1, B2) be the solution of the
(2, k)-Square Covering problem with a separating
line ` with index m and let k′ be the number of out-
liers permitted on the left halfplane of `. Then there

is always an optimal separating line `∗ with index m∗

such that m∗ ≤ m if the left square B1 is larger than
the right square B2, and m∗ ≥ m otherwise.

The algorithm to solve the (2, k)-Square Cover-
ing problem is as follows. We start with the vertical
line ` at the median of the x-coordinates of all points
in P . Let k′ be the number of outliers permitted on
the left halfplane of `. For a given m, we first com-
pute the sets E(PL(m)) and E(PR(m)). Then we use
these sets in the recursive call to the (1, k′)-Square
Covering problem for PL(m) and the (1, k − k′)-
Square Covering problem for PR(m), respectively,
and solve the subproblems independently. The so-
lutions of these subsets give the first candidate for
the solution of the (2, k)-Square Covering prob-
lem, and we now compare the areas of the two ob-
tained squares. Corollary 10 tells us that the optimal
index m∗ ≤ m if the left square has larger area, and
m∗ ≥ m otherwise (see Figure 1). This way, we can
use binary search to find the optimal index m∗ for the
given k′. As the optimal value of k′ is unknown, we
need to do this for every k′. Finally, we also need to
examine horizontal separating lines ` by reversing the
roles of x- and y-coordinates.

Theorem 11 For a set P of n points in the plane,
we can solve the (2, k)-Square Covering problem
in O(n log n+ k2 log2 k) time using O(n) space.

Proof. The above algorithm needs O(n log n) prepro-
cessing time and an additional O(k2 log2 n) time to
obtain the optimal k′ and m∗ (O(k log n) different
queries, each one needing O(k logn) time), giving a
total running time of O(n log n + k2 log2 n). By dis-
tinguishing between k4 ≤ n and k4 > n, we can reduce
the running time to O(n log n + k2 log2 k). We omit
details due to lack of space. ¤

2.3 (p, k)-Square Covering for p ≥ 3

The above solution for the (2, k)-Square Covering
problem suggests a recursive approach for the general
(p, k)-Square Covering case: Find an axis-parallel
line that separates one square from the others and
recursively solve the induced subproblems. We can do
this for p = 3, as Observation 1 can be generalized.

W.l.o.g. we assume that the separating line ` is
vertical and that the left halfplane only contains one
square. Since Corollary 10 can be generalized to
(3, k)-Square Covering, we solve this case as be-
fore: fix the amount of outliers permitted on the left
halfplane to k′ and iterate k′ from 1 to k to obtain the
optimal k∗. For each possible k′, we recursively solve
the two subproblems and use it to obtain the optimal
index m such that the area of the largest square is
minimized. Preprocessing for this case is sorting the

3

Square and Rectangle Covering with Outliers

275

points of S in both x- and y- coordinates and com-
puting the segment dragging query structure.

Each (2, k − k′)-Square Covering algorithm is
executed as described above, except that preprocess-
ing in the recursive steps is no longer needed: The
segment dragging queries can be performed since the
preprocessing has been done in the higher level. Also,
for the binary search, we can use the sorted list of all
points in P , which is a superset of PR(m).

This algorithm leads to a total time complexity of
O(n log n+ k3 log3 n), which can be again reduced by
distinguishing between k6 ≤ n and k6 > n.

Theorem 12 For a set P of n points in the plane,
we can solve the (3, k)-Square Covering problem
in O(n log n+ k3 log3 k) time using O(n) space.

Unfortunately our algorithm does not extend to p ≥
4, as Observation 1 does no longer hold in the general
case.

3 Rectangle Covering

In this section, we look at the (p, k)-Rectangle
Covering problem. As before, we will focus on the
p ≤ 3 case. It is easy to see that Lemma 3 directly
extends to rectangles. However, the best we can do is
testing all possible rectangles that cover exactly n−k
points. Our approach is brute force: We store the
points of E(P) separately in four sorted lists, the top
k+1 points in T (P), the bottom k+1 points in B(P),
and the left and right k+1 points in L(P), and R(P),
resp. Note that some points may belong to more than
one set.

We first create a vertical slab by drawing two ver-
tical lines through one point of L(P) and R(P) each.
All k′ points outside this slab are obviously outliers,
which leads to k − k′ outliers that are still permit-
ted inside the slab. We now choose two horizontal
lines through points in T (P) and B(P) that lie inside
the slab, such that the rectangle that is formed by
all four lines admits exactly k outliers. Inside each of
the O(k2) vertical slabs, there are at most k horizon-
tal line pairs we need to examine, hence we can find
the smallest rectangle covering n− k points in O(k3)
time when the sorted lists of E(P) are given. This
preprocessing takes O(n+ k log k) time.

Note that this approach leads to the same running
time we would get by simply bootstrapping any other
existing rectangle covering algorithms [1, 12] to the
set E(P), which has also been done recently in [2].

The (p, k)-Rectangle Covering problem for p =
2, 3 can be solved with the same recursive approach as
for the squares, as Observation 1 readily generalizes
here. We conclude with the following theorem:

Theorem 13 Given a set P of n points in the plane,
the (1, k)-Rectangle Covering problem can be

solved in O(n + k3) time using O(n) space, the
(2, k)-Rectangle Covering problem in O(n log n+
k4 log k) time and the (3, k)-Rectangle Covering
problem in O(n logn+k5 log2 k) time. In all cases we
use O(n) space.

Acknowledgments

We thank Otfried Cheong, Joachim Gudmundsson, and

Marc Pouget for fruitful discussions on early versions of

this paper, as well as Jean Cardinal and Stefan Langerman

for pointing out useful references.

References

[1] A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding
k points with minimum diameter and related prob-
lems. J. Algorithms, 12:38–56, 1991.

[2] R. Atanassov, P. Bose, M. Couture, A. Maheshwari,
P. Morin, M. Paquette, M. Smid, and S. Wuhrer.
Algorithms for optimal outlier removal. J. Discrete
Alg., to appear.

[3] T. M. Chan. Geometric applications of a randomized
optimization technique. Discrete Comput. Geom.,
22(4):547–567, 1999.

[4] B. Chazelle. An algorithm for segment-dragging and
its implementation. Algorithmica, 3:205–221, 1988.

[5] B. Chazelle and J. Matoušek. On linear-time deter-
ministic algorithms for optimization problems in fixed
dimension. J. Algorithms, 21:579–597, 1996.

[6] S. Das, P. P. Goswamib, and S. C. Nandya. Smallest
k-point enclosing rectangle and square of arbitrary
orientation. Inform. Proc. Lett., 94(6):259–266, 2005.

[7] D. Eppstein and J. Erickson. Iterated nearest neigh-
bors and finding minimal polytopes. Discrete Com-
put. Geom., 11(3):321–350, 1994.

[8] J. W. Jaromczyk and M. Kowaluk. Orientation in-
dependent covering of point sets in R2 with pairs of
rectangles or optimal squares. In Abstracts 12th Eu-
ropean Workshop Comput. Geom., pages 77–84. Uni-
versität Münster, 1996.

[9] M. J. Katz, K. Kedem, and M. Segal. Discrete rec-
tilinear 2-center problems. Comput. Geom. Theory
Appl., 15:203–214, 2000.

[10] J. Matoušek, E. Welzl, and M. Sharir. A subexponen-
tial bound for linear programming and related prob-
lems. Algorithmica, 16:365–384, 1996.

[11] F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag, New
York, NY, 1985.

[12] M. Segal and K. Kedem. Enclosing k points in the
smallest axis parallel rectangle. Inform. Process.
Lett., 65:95–99, 1998.

4

EuroCG’09 - Brussels, Belgium

276

Identifying Well-Covered Minimal Bounding Rectangles in 2D Point Data

Marc van Kreveld∗ Thijs van Lankveld∗ Remco Veltkamp∗

Abstract

Laser range imaging is an upcoming data source for
many fields of research. Although many methods are
proposed for finding surfaces and classifying points,
finding the bounds of these surfaces is still a difficult
problem. We propose a method for finding, in a point
set of size n, a rectangle that contains a predefined
subset of the points and none of the other points in
O(n log n) time. Further, there may not be places in
the rectangle that are too far from all points in the
predefined subset.

1 Introduction

A type of data that has lately seen an increase in use is
the laser range scan, also known as light detection and
ranging (LiDAR) data. This data consists of three-
dimensional points that are scanned from surfaces.
The accuracy and resolution of the measurements is
high. Currently, many scanners also include a pho-
tosensitive sensor that assigns a color value to each
point. A more complete description of the properties
of LiDAR data is given in [9, 10].

When this data is studied interactively it is easy to
form a mental image of the geometry of the scene. The
collection of 3D points gives insight into the surfaces
that were sampled, and many methods have been pro-
posed to automatically detect these surfaces [12, 14].
One influential group of methods is the methods based
on RANSAC [3], which uses a minimal random sam-
ple to define a surface and iterates to find the surface
containing most points. Another group of methods
is based on region growing [14], which initializes a
bounded surface at a certain point and tries to expand
this while maintaining some constraint like maximal
deviation from the surface in location or normal. Fi-
nally, Funke, Malamatos, and Ray [4] give an approx-
imation algorithm for finding a connected component
with comparable normals in a triangulation. In the
last two methods, constraints on local planarity might
not hold globally.

Though surfaces can be found in the data, these are
usually either unbounded or of an arbitrary and overly
complex shape. Computing the correct bounded
shapes from these surfaces is far from trivial. Prob-

∗Department of Information and Computing Sciences,
Utrecht University, marc@cs.uu.nl, thijsvl@cs.uu.nl,

Remco.Veltkamp@cs.uu.nl

lems arise because the measurements are not regu-
larly distributed over the surfaces or not well suited
for detecting edges. In many cases it is possible to
determine which points are on a surface, but it is still
difficult to find the original boundary of this surface.
A similar problem arises when we are not interested in
the whole surface, but in smaller sections that should
be separated from the surface. An example of this is
a known surface of a facade in which we want to find
the regions that make up windows or shutters based
on their color. Comparable work has been done using
LiDAR data when the topology of the original object
is known [11].

Within the remainder of this paper, we assume the
surface has already been extracted using the method
of Schnabel, Wahl, and Klein [12]. This shifts the
problem from 3D to 2D. Schnabel’s method also filters
out the points that are not on the surface. An exam-
ple of LiDAR data after surface detection is shown in
Figure 1. We will assume it is known which points are

Figure 1: The LiDAR data, in which points close to
the same plane have been given the same color. In
the rest of the paper, we will call these points blue.

inside the shape we want to find, for example a win-
dow or shutter, and we will call these the blue points.
All others will be called red points. This distinction
may be made by a so-called superpixel method [2].

Many objects have rectangular shapes and our
method is constrained to finding these. Usually, if
there is one rectangle that is valid because it con-
tains all blue points and no red points, then there are
many of these rectangles with different orientations

1

Identifying Well-Covered Minimal Bounding Rectangles in 2D Point Data

277

and sizes. We constrain the problem to finding the
angles θ ∈ [0, π2) for which there is some blue rectan-
gleRθ whose edges are rotated by θ from axis-aligned.

Definition 1 A rectangle R is blue with respect to
point sets B and R if and only if it contains all points
in B and no points in R.

For our method we use the minimal oriented bounding
box at angle θ to check if there is a blue Rθ. This is
valid because to decide if a blue Rθ exists, we can test
the smallest one.

Generally, we are mostly interested in rectangles
that give a good indication of the distribution of a
point set. To incorporate this, the problem is ex-
tended to finding rectangles that are well covered by
the blue points. For a rectangle R to be well covered,
we require that any point inside R has a blue point
within a pre-specified distance δ.

Definition 2 A rectangle R is δ-covered by point set
B if and only if the union of all disks with radius δ
and center c ∈ B covers R.

Once the angles θ are identified for which there is a
blue rectangle Rθ that is δ-covered by B, these rect-
angles can be searched for the smallest area or diam-
eter rectangle, or for rectangles with a parallel edge
within (other) surfaces. However, these applications
fall outside the scope of this paper.

Problem The problem solved algorithmically in this
paper is as follows. Let R and B be point sets of
combined size n, and let δ be a scalar. Determine all
angles θ ∈ [0, π2) for which there is a blue rectangle
Rθ that is δ-covered by B.

To solve this problem, we assume the data has two
properties. Firstly, we assume the data does not con-
tain noise, unlike the original sensor data. Secondly,
as stated earlier, we assume it is known which points
fall inside and outside the rectangle, that is, which
points are blue and which are red. This distinction
may be determined beforehand based on the color of
each point, or some other property.

Our problem is a red-blue separability problem;
see [1, 5, 7, 8] for other papers. Our problem’s most
distinguishing feature is the extra requirement that
the rectangle that is the separator must be δ-covered
by the points that lie inside.

The algorithm we present for solving the problem
uses ideas of sweep and scan algorithms. The method
most closely related is rotating calipers [13], most no-
tably when rotating calipers is used to find the mini-
mal bounding box.

In the next section an algorithm for solving the
problem without coverage requirements is given. Sec-
tion 3 extends this algorithm to solve the complete

problem. Finally, we discuss the results and future
research.

2 A simple separation algorithm

This section introduces the basic framework for solv-
ing the problem of finding a blue rectangle. The ap-
proach is to rotate a rectangle R around point set B
and handle important events as they occur. There are
two causes for events.

Firstly, because R is minimal, all of its edges con-
tain at least one point of B, and an event occurs when
these points change. These points and the order in
which they change can be determined from the bound-
ary of the convex hull CHB of B. The events are the
same as those used for determining the oriented min-
imal bounding box with rotating calipers.

Secondly, an event occurs when a red point r enters
or exits R. The angle of these events can be deter-
mined from the two lines through r, tangent to CHB .
Note that a red point r will never be inside R if it is
too far from CHB . Let v1, v2 be vertices of CHB on
the tangents through r. Then r can only enter R if
∠v1rv2 ≥ π

2 .
The events are inserted into a queue sorted on an-

gle of rotation at which they occur. After determin-
ing which red points are inside R before rotation, the
events are handled in order. The algorithm keeps
track of the number of red points inside R and when-
ever R becomes or stops being blue, this information
is stored, together with the current angle. When all
events have been handled, all angles θ for which Rθ
is blue are known.

Theorem 1 For point sets B and R with total size n,
all oriented bounding boxes of B that do not contain
any point in R can computed in O(n log n) time.

Proof. Constructing CHB takes O(n log n) time.
This also gives the angles when the points on the edges
of R change. Using a binary search on the vertices of
CHB , all lines through a red point and tangent to
CHB can be computed in O(n log n). Each edge of R
will start containing a vertex of CHB once and there
are two lines tangent to CHB through each red point.
This means that there are O(n) events. Sorting the
events by angle takes O(n log n) time. During rota-
tion, after each event it is checked if the rectangle has
become empty or non-empty. This takes O(1) time
per event. �

3 Requiring δ-coverage

The algorithm of the previous section provides an ef-
fective way to determine the angles for which a rect-
angle is blue. We would also like the rectangles not
to contain large regions void of blue points. In other

2

EuroCG’09 - Brussels, Belgium

278

g(t)

T
∂Uδ

δ

f(t)

C(t)

Figure 2: The stuctures used to find the rectangles
that contain all blue points B (circles) and no red
points R (crosses) when δ-coverage is required. The
boundary ∂Uδ of the permissible region is shown solid,
while the trajectory of the corners T is shown dashed.
The rounded convex hull C and the functions f(t) and
g(t) are also shown.

words, R must be δ-covered by B for some δ, which
we assume is given.

To solve this problem, two additional structures are
used: for the permissible region, and for the trajectory
of the corners of R. These structures are shown in
Figure 2.

The permissible region Uδ is the maximal region
that is δ-covered by B. It is the union of all δ-disks
centered on a point in B. To satisfy the δ-coverage
criterion, R must be completely inside Uδ. It is well-
known that Uδ is bounded by O(n) arcs and can be
computed in O(n log n) time. If part of CHB is not
in Uδ, then no rectangular separator exists that is
δ-covered. In the rest of this paper we will assume
CHB ⊆ Uδ and in this case Uδ will have only one con-
nected component whose boundary we denote by ∂Uδ,
see Figure 2.

The trajectory T is the cycle of circular arcs, shown
in Figure 2, that a corner of R follows as R is rotated
over a full 2π turn. This concept has been previously
used by Hoffmann et al. [6].

Lemma 2 T can be constructed from CHB in O(n)
time and contains O(n) vertices and circular arcs.

Proof. Let c be a corner of R and let b1, b2 ∈ B
be the contact points on the two edges of R inci-
dent to c. It follows from Thales’ theorem that, while
the contact points are unchanged, c follows a circular
arc on the circle whose diameter is b1b2. A new arc
starts only when a contact point changes, and this
happens O(n) times. The sequence of the O(n) arcs
forms T . �

Because the center of each arc in ∂Uδ and T is on
CHB and no arc intersects this cycle, the following
observation can be made.

Observation 1 Any outward ray emanating perpen-
dicular to an edge of CHB intersects ∂Uδ and T ex-
actly once.

The algorithm that solves the problem is based on
the algorithm given in Section 2. The only difference
is the addition of events whenR starts and stops being
δ-covered by B. There are two ways in which this can
happen. Either during rotation an edge of R passes
over a vertex of ∂Uδ, or a corner of R passes over an
arc of ∂Uδ.

The vertices of ∂Uδ are handled exactly like extra
red points. This will add O(n) events.

The events caused by a corner of R passing over
∂Uδ happen exactly at the intersections of ∂Uδ and
T , shown as square markers in Figure 2.

Lemma 3 If Uδ covers CHB , there are O(n) inter-
sections between ∂Uδ and T .

Proof. The proof builds on the property that two
piecewise simple functions with n sections have O(n)
intersections that can be computed in O(n) time. By
simple we mean that two such curves can intersect
each other only a constant number of times.

To use this property, we must define two functions
that have the same value at some argument if and
only if ∂Uδ and T intersect. To create these functions,
an extra structure is introduced to parameterize ∂Uδ
and T , and thereby give the argument to define the
functions. We will show that the functions created
using this structure “detect” all intersections of ∂Uδ
and T , which completes the proof.

Let C, shown in Figure 2, be the boundary of the
morphological opening, the dilation of the erosion, of
the region inside CHB using an ε-disk. The radius
ε > 0 is chosen such that for all vertices of ∂Uδ and
T that are not on a vertex of CHB , the closest point
on CHB is also on C.

Let C(t) be the point reached by following C from
its topmost point for the fraction t of its length, and
let r(C(t)) be the outward ray emanating perpen-
dicularly from C(t). Now ∂Uδ and T define func-
tions by taking f(t) = dist(C(t), r(C(t)) ∩ ∂Uδ) and
g(t) = dist(C(t), r(C(t)) ∩ T). These functions f(t)
and g(t), shown in Figure 2, are well-defined: for each
t, r(C(t)) intersects ∂Uδ and T exactly once. This is
true for each straight part of C because of Observa-
tion 1. Furthermore, for every circular arc of C, all
rays starting in the center of the corresponding ε-disk
and intersecting the arc, intersect the same arcs of
∂Uδ and T ; the only exception to this is when a ver-
tex of T is on a vertex of CHB . But in this case, such
a ray will intersect T once as well.

3

Identifying Well-Covered Minimal Bounding Rectangles in 2D Point Data

279

The properties of f(t) and g(t) ensure that each
point on ∂Uδ and T occurs for some t as the inter-
section of r(C(t)) and ∂Uδ, respectively T , and this is
the only intersection point for that ray. Hence, f(t)
and g(t) have the property that a value of t for which
f(t) = g(t) corresponds one-to-one to an intersection
point of ∂Uδ and T . Since f(t) and g(t) are also piece-
wise simple, the result follows. �

Lemma 3 implies that there are a linear number
of events of the type where a corner of R is at dis-
tance exactly δ from the nearest blue point. These
are additional to the ones of the algorithm presented
in Section 2 and the vertices of ∂Uδ. Handling these
events is trivial. This leads to the following result.

Theorem 4 For point sets R and B with total size
n, and scalar δ, all angles θ ∈ [0, π2) for which there
is a blue rectangle Rθ that is δ-covered by B can be
computed in O(n log n) time.

4 Discussion

We presented an algorithm that computes all rect-
angles that tightly cover the ‘blue’ points in one set
but not the ‘red’ points in another set. An exten-
sion of this algorithm also guarantees that no part of
the rectangle does not have a blue point nearby. The
algorithm is efficient and relatively simple to imple-
ment. To make it more useful for the application of
geometric model reconstruction from LiDAR data, a
number of extensions may be considered.

Firstly, we may need to allow a small number of
red points inside the rectangle, because errors may
have been made in the classification into red and blue
points. It is easy to extend our algorithm to allow up
to some pre-specified number of red points inside.

Secondly, we may want to allow a small number of
blue points to be outside the rectangle. This extension
appears considerably harder, and we do not expect to
achieve the same running time in this case.

Thirdly, we may want to allow a small part of the
area inside the rectangle to be not δ-covered by the
blue points. Due to minor occlusion, it may be that
some blue points are missing in a region. This ex-
tension is also difficult to incorporate, although an
approximation version seems possible.

Fourthly, it would be useful to extend the algorithm
to finding different shapes than rectangles, like L-
shapes, without complicating the algorithm too much.

A final question is whether our algorithm or some
adaptation of it will perform well on data that it
would be given in real applications. Only by experi-
mentation can we discover whether the quality of the
data (density of sampling, limited presence of noise,
proper classification of inliers and outliers) is sufficient
to make our approach work well.

Acknowledgments This research has been supported

by the GATE project, funded by the Netherlands Organi-

zation for Scientific Research (NWO) and the Netherlands

ICT Research and Innovation Authority (ICT Regie).

References

[1] P. K. Agarwal, B. Aronov, and V. Koltun. Efficient
algorithms for bichromatic separability. ACM Trans.
on Alg., 2(2):209–227, 2006.

[2] P. Felzenszwalb and D. P. Huttenlocher. Efficient
graph-based image segmentation. Int. J. of Comp.
Vis., 59(2), 2004.

[3] M. A. Fischler and R. C. Bolles. RANdom SAmple
Consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Graphics and Image Processing, 24(6):381–395, 1981.

[4] S. Funke, T. Malamatos, and R. Ray. Finding pla-
nar regions in a terrain: in practice and with a
guarantree. In SCG ’04: Proc. of the 20th Annual
Symp. on Comp. Geom., pages 96–105, New York,
NY, USA, 2004. ACM.

[5] S. Har-Peled and V. Koltun. Separability with out-
liers. In ISAAC, pages 28–39, 2005.

[6] F. Hoffmann, C. Icking, R. Klein, and K. Klaus. The
polygon exploration problem II: The angle hull. Tech-
nical Report 245, Fernuniversität Hagen, Praktische
Informatik VI,, 1998.

[7] F. Hurtado, M. Mora, P. A. Ramos, and C. Seara.
Separability by two lines and by nearly straight
polygonal chains. Discrete Applied Mathematics,
144(1–2):110–122, 2004.

[8] F. Hurtado, C. Seara, and S. Sethia. Red-blue sepa-
rability problems in 3d. Int. J. Comp. Geom. Appl.,
15(2):167–192, 2005.

[9] John Chance Land Surveys and Fugro. Fli-map spec-
ifications. http://www.flimap.com/site47.php.

[10] H.-G. Maas. Fast determination of parametric house
models from dense airborne laserscanner data. In
ISPRS Workshop on Mobile Technology, Bangkok,
Thailand, April 1999.

[11] S. Pu and G. Vosselman. Automatic extraction of
building features from terrestrial laser scanning. Int.
Arch. of Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, 36(5), September 2006.

[12] R. Schnabel, R. Wahl, and R. Klein. Efficient
RANSAC for point-cloud shape detection. Computer
Graphics Forum, 26(2):214–226, June 2007.

[13] G. Toussaint. Solving geometric problems with the
rotating calipers. In Proc. of the IEEE MELECON
’83, pages A10.02/1–4, 1983.

[14] Y.-H. Tseng, K.-P. Tang, and F.-C. Chou. Surface
reconstruction from LiDAR data with extended snake
theory, volume 4679 of Lecture Notes in Computer
Science, pages 479–492. Springer Berlin / Heidelberg,
August 2007.

4

EuroCG’09 - Brussels, Belgium

280

Fixed-parameter tractability and lower bounds
for stabbing problems

Panos Giannopoulos∗† Christian Knauer∗† Günter Rote∗ Daniel Werner∗

Abstract

In this paper we study the parameterized complexity
of several “stabbing” problems.

For a general class of objects in R2, we show that
the (decision) problem of stabbing a set of translates
of such an object with k axis-parallel lines is W[1]-
hard with respect to k, and thus, not fixed-parameter
tractable, unless W[1]=FPT. When the lines can have
arbitrary directions, it is even W[1]-hard for disjoint
objects. Nevertheless, for some special cases such as
stabbing disjoint unit squares with axis-parallel lines,
we show that the problem is fixed-parameter tractable
by giving an algorithm that runs in O(n log n) time
for every fixed k.

We also show that deciding whether n given unit
balls in Rd can be stabbed by one line (the decision
version of the minimum enclosing cylinder problem)
is W[1]-hard with respect to the dimension d.

1 Introduction

We study several instances of the following general
stabbing problem: Given a set S of n translates of an
object in Rd (e.g., squares or circles in the plane), find
a set of k lines with the property that every object
in S is ”stabbed” (intersected) by at least one line.
All these problems are known to be NP-hard and for
most of them only polynomial time constant-factor
approximation algorithms are known. We study these
problems from a parameterized complexity point of
view: We examine whether algorithms that run in
O(f(k, d) · nc) time on inputs of size n (where c is a
constant independent of k, d, n) do exist; see [2] for an
introduction to parameterized complexity theory.

Results. For a general class of objects in R2, we show
that the problem of stabbing with (even axis-parallel)
lines is W[1]-hard with respect to k, and thus, not
fixed-parameter tractable, unless W[1]=FPT.

Theorem 1 Let O be a connected object in the plane
(which is not a point). (i) The problem of stabbing a

∗Institut für Informatik, Freie Universität Berlin, Takus-
traße 9, D-14195 Berlin, Germany, {panos, knauer, rote,

dwerner}@inf.fu-berlin.de.
†This research was supported by the German Science Foun-

dation (DFG) under grant Kn 591/3-1.

set of translates of O is W[1]–hard with respect to the
parameter k if the stabbing lines are to be parallel to
two different directions u, v, unless O is contained in a
line parallel to u or v. (ii) Stabbing disjoint translates
of O with k lines in arbitrary directions is W[1]–hard
with respect to the parameter k.

Corollary 2 Stabbing a set of disjoint rectangles in
the plane by k axis-parallel lines is W[1]-hard with
respect to k.

Let D be a set of directions. A line with a direction
from D is called a D-line. A set of objects with the
property that the maximum number of objects that
can be simultaneously intersected by two D-lines with
different directions is bounded by c ∈ N is called c–
shallow for D.

Theorem 3 Stabbing sets that are O(1)-shallow for
D with k D-lines can be decided in O(n log n) time
for every fixed k.

Finally, we prove that the minimum enclosing cylin-
der of n points in Rd can probably not be computed
by an algorithm with a running time of the form
O(f(d) · nc), by showing the corresponding decision
problem to be W[1]-hard:

Theorem 4 Stabbing unit balls in Rd with a line is
W[1]-hard with respect to the parameter d.

Our reduction also implies that for this problem
and, consequently, for the problem of computing the
minimum enclosing cylinder of n points in Rd, no
no(d)-time algorithm exists, unless the Exponential
Time Hypothesis (which asserts that n-variable 3SAT
cannot be solved in 2o(n)-time) fails to hold [4].

Related Results. Langerman and Morin [5] showed
that an abstract NP -hard covering problem that
models a number of concrete geometric (as well as
purely combinatorial) covering problems is in FPT.

Stabbing unit balls in unbounded dimension was
shown to be NP-hard by Megiddo [6]. Hasin and
Megiddo [3] developed constant factor approximations
for special instances of the stabbing problem.

In a recent work, and independently of our results,
Dom et al. [1] also show that the problem of stab-
bing (overlapping) rectangles with axis-parallel lines

1

Fixed-parameter tractability and lower bounds for stabbing problems

281

is W[1]-hard (by a different and more complicated re-
duction from the multi-colored k-clique problem) but
in FPT for disjoint unit squares.

2 Stabbing with k lines

2.1 Hardness Results

We first prove that stabbing axis-parallel unit squares
with k axis-parallel lines is W[1]-hard with respect to
k by an fpt-reduction from the W[1]-complete k-clique
problem in directed graphs (c.f. [2]). For proving The-
orem 1, we modify our construction in order to handle
general objects and lines of arbitrary direction. In this
section we consider all objects to be open.

Let [n] = {1, . . . , n} and G = ([n], E) be a simple
directed graph with no self edges. From G we con-
struct a set S of axis-parallel squares in R2 such that
S can be stabbed by 6k axis-parallel lines if and only
if G has a clique of size k.

We first create instances S∗(G, k) with squares of
two different sizes. There will be k horizontal and
k vertical “double strips” S1

h, . . . , S
k
h and S1

v , . . . , S
k
v ,

respectively, to choose lines from (c.f. Fig. 1). Out of
each of those strips, two “consistent” lines will have
to be chosen in order to get a solution of the speci-
fied size. Around every intersection of a vertical and
a horizontal double strip, we place a gadget consist-
ing of a set of squares within a region of suitable size.
The gadgets represent the adjacency relation of the
graph. We will ensure that (P0): Any selection of 2k
such line pairs corresponds to a set C of vertices of
G. (P1): Two orthogonal line pairs in strips Si

h, Sj
v

with i 6= j will intersect all the squares in these strips
iff these line pairs correspond to vertices that are con-
nected in G. (P2): Two orthogonal line pairs in strips
Si

h, Si
v will intersect all the squares in these strips iff

these line pairs correspond to the same vertex. The
2k line pairs intersect all the squares iff C forms a
k–clique. We will need 2k more lines to guarantee the
consistency of such a selection.

Let �l(x, y) denote the axis-parallel square with
side length l and lower left corner (x, y). A gadget
T will consist of a collection of axis-parallel squares.
T (x, y) denotes a copy of T whose squares are placed
relative to (x, y).
The A–gadget (adjacency). A-gadgets represent
the adjacency relation of the graph G. Each consists
of the set A := {�n−1(i, j) | (i, j) /∈ E}. There are
2n v(ertex)–strips strips in each direction to chose
(combinatorially) different axis-parallel lines through
an A–gadget from. If a line l goes through the i-th
v–strip of the gadget we say that it represents the
vertex rep(l) := i mod n of G. If 0 < i < n the
line l is called negative, otherwise it is called positive.
Two lines are called antipodal if one is positive and
the other is negative.

H−

H+

V

(0, 0)

2 lines

2 lines

k · 2n

k · 2n

S1
v

Sk
v

Sk
v

S1
h

A

A

A A

A

A A

A

A

D

D

D

D

D

D

Figure 1: Double strips and a Ch–gadget (n = 4).

The construction ensures that if we have two an-
tipodal horizontal lines that represent vertex i and
two antipodal vertical lines that represent vertex j,
then they intersect all the squares inside A iff i and j
are adjacent in G, which will ensure (P1).
The D–gadget (diagonal). This type of gadget is
an A–gadget for the graph with adjacency defined by
the identity,i.e., D := {�n−1(i, j) | 1 ≤ i 6= j ≤ n}.
The only line pairs allowed are those that correspond
to the same vertex, which will ensure property (P2).
The F–gadget (forcing). This type of gadget will
be used to force the existence of horizontal (or ver-
tical) lines in a specified strip in any solution of size
6k. We define them as Fh := {�n(−i · n, 0) | 1 ≤ i ≤
6k + 1} and Fv := {�n(0,−i · n) | 1 ≤ i ≤ 6k + 1}.

To intersect all squares of an Fh–gadget with only
vertical lines requires at least 6k + 1 such lines, thus
in any solution with ≤ 6k lines there must be a hori-
zontal line intersecting the gadget.
The C–gadget (consistency). This type of gad-
get is used to guarantee a certain distance between
two lines of the same direction corresponding to the
same double–strip of an A–(or D)–gadget. With this
it will be possible to identify such line pairs with the
vertices (P0). It will consist of three F–gadgets and
2(n − 1) additional squares. We describe the Ch–
gadget for horizontal lines only (Cv–gadgets are de-
fined analogously). Ch consists of the union of the
two sets {�n−1(1− i, i− n+ 1) | 1 ≤ i ≤ n− 1} and
{�n−1(n+ 1− i, n+ i− 1) | 2 ≤ i ≤ n} together with
three F–gadgets that force the existence of lines in
the regions H− = R × (0, n), H+ = R × (n, 2n) and
V = (0, n)× R. See Figure 1 for an example.

The next lemma states the main property of the
Ch–gadgets (Cv–gadgets have a symmetric property):

Lemma 5 Given two antipodal horizontal lines
h−, h+, in H−,H+, respectively, then there exists
a vertical line that together with the others inter-
sects all of the squares belonging to a Ch–gadget iff
rep(h+) ≥ rep(h−). In fact, we can always assume
that rep(h+) = rep(h−).

2

EuroCG’09 - Brussels, Belgium

282

Putting it all together. We now describe the place-
ment of the gadgets defined above. The main part,
expressing the adjacency–relation of the graph, will
be a k × k grid of A–gadgets and D–gadgets: A :=
{A(i · 3n, j · 3n) | 1 ≤ i 6= j ≤ k} and D :=
{D(i · 3n, i · 3n) | 1 ≤ i ≤ k}. Around this grid,
we add several C–gadgets to allow only specific so-
lutions: Ch := {Ch(−i · 3n, i · 3n) | 1 ≤ i ≤ k} and
Cv := {Cv(i · 3n,−i · 3n) | 1 ≤ i ≤ k}. The size of the
set S∗(G, k) := A ∪D ∪ Ch ∪ Cv is O (

k2n2
)
.

Lemma 6 S∗(G, k) can be stabbed by 6k axis-
parallel lines iff G has a k–clique.

To yield set S(G, k) of unit squares, we shrink
the squares in the F–gadgets by letting Fh :=
{�n−1(−in, 1/2) | 1 ≤ i ≤ 6k + 1} (similarly for Fv).

Corollary 2 follows by shifting all the squares by a
small amount and replacing all (parallel) diagonals by
very thin pairwise disjoint rectangles.

Arbitrary directions and general objects. First, the
forcing gadgets are modified to contain n2 squares;
this will ensure that the chosen lines have to be “al-
most” parallel. Then, the squares are shrinked by
some small value ε; this ensures that for each almost
parallel line there is a parallel line that intersects the
same squares. Thus, in any solution the lines can ac-
tually be assumed to be axis-parallel, i.e., Lemma 6
holds also for this new set. Again, shifting the squares
a little and replacing the diagonals by rectangles as
above yields a set of disjoint rectangles. This set is
then linearly transformed to yield a combinatorially
equivalent set of disjoint unit squares.

To prove the analogous results for arbitrary, con-
nected objects we simply linearly transform them so
that their axis-parallel bounding box is a unit square.

2.2 Fixed Parameter Tractable Cases

We prove that stabbing disjoint axis-parallel unit
squares in the plane with k axis-parallel lines is fpt
(with respect to k) by combining data reduction with
branching and kernelization techniques. The algo-
rithm can be easily modified to handle the case of
general objects and line directions for Theorem 3. In
this section we consider all sets to be closed.

Let S be a set of n disjoint axis-parallel unit
squares. We want to determine if S can be stabbed by
k axis-parallel lines. It suffices to consider only lines
that support the boundary of a square in S; there are
at most 4n of them. For a line l let I(l) denote the
set of squares that are stabbed by l. We first apply
the following data reduction rule to S:

DR: For all κ > k + 1 squares with the same x–
coordinates, delete all but k + 1 of them, and also for
κ > k + 1 squares with the same y–coordinates.

A set on which DR has been applied is called a DR–
set. The algorithm is based on the following lemma.

Lemma 7 Let l be a horizontal line that intersects
κ > k unit squares I(l) = {�(xi, yi) | 1 ≤ i ≤ κ} ⊆ S.
Then in order to stab the set S with k lines, there has
to be a horizontal line l∗ that intersects at least two
squares from I(l). l∗ can be chosen from B(I(l)) :=
{y = yi | 1 ≤ i ≤ κ} ∪ {y = yi + 1 | 1 ≤ i ≤ κ}.

An analogous lemma holds for vertical lines as well.
Observe that for a DR–set S, if there is an axis-
parallel line l with |I(l)| > 2k+1, then there is also a
line l∗ parallel to l with k + 1 ≤ |I(l∗)| ≤ 2k + 1. For
such a line we use Lemma 7 by branching on all the
|B(I(l))| possible lines. If no such line exists, we end
up with a problem kernel (in each branch): All the
lines now intersect at most k squares, so the SOLVE
function simply rejects if the number of squares left
is more than k2 and otherwise uses brute force.

STAB(S, k)
if S = ∅ “SOLUTION FOUND”
else if k = 0 return
apply DR
if there is a line l with k + 1 ≤ |I(l)| ≤ 2k + 1

for all lines l′ from the set B(I(l))
STAB(S − I(l′), k − 1)

else SOLVE(S, k)

Lemma 8 If there is a solution of size k, the above
algorithm finds a solution of size k′ ≤ k.

The algorithm branches on at most 2(2k + 1) pos-
sibilities at most k times and each call of the STAB
procedure needs O(n log n) steps. In each branch it
ends up with a problem kernel, which can be solved in
time

(
4k2

)k by exhaustive search, so the total running
time is O(n log n) for every fixed k.

3 Stabbing balls with one line

We show that the problem of stabbing unit balls in
Rd with a line is W[1]-hard with respect to d by an
fpt-reduction from the W[1]-complete k-independent
set problem is general graphs [2]. Given an undirected
graph G([n], E) we construct a set B of balls in R2k

such that B can be stabbed by a line if and only if G
has an independent set of size k.

For every ball B ∈ B we will also have −B ∈
B. This allows us to restrict our attention to lines
through the origin. For a line l, let ~l be its unit direc-
tion vector. We view R2k as the product of k orthog-
onal planes E1, . . . , Ek, where each Ei has coordinate
axes Xi, Yi. The component on Xi, Yi of a point p is
denoted by xi(p), yi(p) respectively.

For each plane Ei, we define 2n 2k-dimensional
balls, with centers regularly spaced on the unit circle

3

Fixed-parameter tractability and lower bounds for stabbing problems

283

ci1

ci2

wedge
H+

i1H−
i1

H+
i2

H−
i2

o

~li

λ

apex

π
n

Figure 2: Centers of the balls and their respective
half-planes and wedges on a plane Ei, for n = 4.

on Ei centered at the origin o. Let ciu ∈ Ei be the cen-
ter of the ball Biu, u ∈ [2n], with xi(ciu) = cos(u−1)π

n
and yi(ciu) = sin(u−1)π

n . We define a scaffolding ball
set B0 = {Biu, i = 1, . . . , k and u = 1, . . . , 2n}. We
have |B0| = 2nk. All balls in B0 will have the same
radius r < 1, to be defined later.

Two antipodal balls B, −B are stabbed by the same
set of lines. A line l stabs B0 if and only if it satisfies
the system of nk inequalities: (ciu ·~l)2 ≥ ||ciu||2 − r2,
for i = 1, . . . , k and u = 1, . . . , n.

Geometrically, the inequality asserting that l stabs
Biu says that the projection ~li of ~l on the plane Ei

lies in one of the half-planes H+
iu = {p ∈ Ei|ciu ·

p ≥ √||ciu||2 − r2} or H−
iu = {p ∈ Ei|ciu · p ≤

−√||ciu||2 − r2}. Consider the situation on a plane
Ei. Line l stabs all balls Biu (centered on Ei)
if and and only if ~li lies in one of the 2n wedges
±(H−

i1∩H+
i2), . . . ,±(H−

i(n−1)∩H+
in), and ±(H−

i1∩H−
in);

see Fig 2. The apexes of the wedges are regularly
spaced on a circle of some radius λ. By choosing
r =

√
1− (1− cos π

n)/(2k) we have that λ = 1/(
√
k).

Since ~l ∈ R2k is unit, we have that ||~li|| = 1/(
√
k),

for every i ∈ {1, . . . , k}. Hence, for line l to stab all
balls in B0, every projection ~li must be one of the
apexes in Ai. There are 2n choices for each ~li, and
the total number of lines that stab B0 is nk2k−1.

For a tuple (u1, . . . , uk) ∈ [2n]k, we denote
by l(u1, . . . , uk) the line with vector 1√

k
(cos(2u1 −

1) π
2n , sin(2u1 − 1) π

2n , . . . , cos(2uk − 1) π
2n , sin(2uk −

1) π
2n). Two lines l(u1, u2, ..., uk) and l(v1, v2, ..., vk)

are said to be equivalent if ui ≡ vi(mod n), for all
i. We have nk equivalence classes L(u1, . . . , uk), with
(u1, . . . , uk) ∈ [n]k, where each class consists of 2k−1

lines. There is a bijection between the possible equiv-
alence classes of lines that stab B0 and [n]k.

Constraint balls. For each pair of distinct indices
i 6= j (1 ≤ i, j ≤ k) and for each pair of (possibly
equal) vertices u, v ∈ [n], we define a constraint set

of balls Buv
ij with the property that (all lines in) all

classes L(u1, . . . , uk) stab Buv
ij except those with ui =

u and uj = v. The centers of the balls in Buv
ij lie in

the 4-space Ei×Ej . All lines in a class L(u1, . . . , uk)
project into only two lines on Ei ×Ej . We use a ball
Buv

ij (to be defined shortly) that is stabbed by all lines
l(u1, . . . , uk) except those with ui = u and uj = v.
Similarly, we use a ball Buv̄

ij that is stabbed by all lines
l(u1, . . . , uk) except those with ui = u and uj = v̄,
where v̄ = v + n. We have, Buv

ij = {±Buv
ij ,±Buv̄

ij }.
Consider a line l = l(u1, . . . , uk) with ui = u and

uj = v. The center cuv
ij of Buv

ij will lie on a direction
~z ∈ Ei×Ej orthogonal to ~l, but for which ~l′ ·~z 6= 0 for
any line l′ = l(u1, . . . , uk) with ui 6= u or uj 6= v. Let
ω be the angle between ~l′ and ~z. We choose ~z such
that | cosω| > λ√

k
, where λ < 1 is an appropriate

function of n. This helps us place Buv
ij sufficiently

close to the origin so that it is still intersected by l′.
We can choose any point cuv

ij on z with r < ||cuv
ij || <

r
√
k/(k − λ2).

We add to B0 the 4n
(
k
2

)
balls in BV =

⋃Buu
ij , 1 ≤

u ≤ n, 1 ≤ i < j ≤ k, to ensure that all components
ui in a solution (class of lines L(u1, . . . , uk)) are dis-
tinct. For each edge uv ∈ E we also add the balls
in k(k − 1) sets Buv

ij , with i 6= j. This ensures that
the remaining classes of lines L(u1, . . . , uk) represent
independent sets of size k. In total, the edges are rep-
resented by BE =

⋃Buv
ij , uv ∈ E, 1 ≤ i, j ≤ k, i 6= j.

The final set B = B0∪BV ∪BE has 2nk+4
(
k
2

)
(n+2|E|)

balls. The constraint sets of balls exclude tuples with
two equal indices ui = uj or with indices ui, uj when
uiuj ∈ E, thus, the classes of lines that stab B repre-
sent exactly the independent sets of G.

Lemma 9 Set B can be stabbed by a line if an only
if G has an independent set of size k.

References

[1] M. Dom, M. R. Fellows, and F. A. Rosamond. Param-
eterized complexity of stabbing rectangles and squares
in the plane. In Proc. of the 3rd WALCOM, LNCS,
2009. To appear.

[2] J. Flum and M. Grohe. Parameterized Complexity
Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2006.

[3] R. Hassin and N. Megiddo. Approximation algorithms
for hitting objects with straight lines. Discrete Applied
Mathematics, 30:29–42, 1991.

[4] R. Impagliazzo and R. Paturi. On the complexity of
k-sat. J. Comput. Syst. Sci., 62(2):367–375, 2001.

[5] S. Langerman and P. Morin. Covering things
with things. Discrete & Computational Geometry,
33(4):717–729, 2005.

[6] N. Megiddo. On the complexity of some geometric
problems in unbounded dimension. J. Symb. Comput,
10:327–334, 1990.

4

EuroCG’09 - Brussels, Belgium

284

Robust Voronoi-based Curvature and Feature Estimation

Quentin Mérigot∗ Maks Ovsjanikov† Leonidas Guibas‡

Abstract

In this paper we present a method for extracting prin-
cipal curvature directions from a point cloud sampling
of a piecewise-smooth surface, using convolved covari-
ance matrices of Voronoi cells of the point cloud. The
same method can be used to extract the location and
direction of sharp edges. The convergence and cor-
rectness properties of this method are analyzed both
theoretically and experimentally, under various noise
and sampling conditions.

1 Introduction

Curvature and feature estimation have many appli-
cations in graphics and geometry processing. Prin-
cipal curvatures are rotation-invariant local descrip-
tors, which together with principal curvature direc-
tions have proven useful in symmetry detection, global
matching, modeling and rendering of point-based sur-
faces, among others. The location of sharp edges and
highly curved areas of the surface is a precious piece
of information in settings that include feature-aware
reconstruction or remeshing, clustering and non pho-
torealistic rendering.

Prior work. Recent work on curvature estimation on
meshes includes [5], with which we share a measure-
theoretic approach. Our work is also inspired by
Voronoi-based normal estimators such as [4] and [1].

Contributions. Given a scale parameter R, we asso-
ciate to every compact set K ⊆ Rd a tensor-valued
measure VK,R encoding the covariance of the normal
cones, which we call the Voronoi Covariance Measure

of K. This object, which is a tensor-valued version of
the boundary measure introduced in [3], is a formal-
ized and generalized version of the covariance matrices
of Voronoi cells used for normal estimation in [1].
If K is a point cloud, then VK,R corresponds to

the covariance matrices of the Voronoi cells of K in-
tersected with an o�set of radius R. Convolving the
VCM with a kernel χ then corresponds to simply tak-
ing a weighted sum of the covariance matrices in a
neighborhood.
We prove that if S is a smooth surface, and χr is the

indicator function of a ball of radius r centered at the

∗INRIA Sophia-Antipolis, quentin.merigot@sophia.inria.fr
†Stanford University, maks@stanford.edu
‡Stanford University, guibas@cs.stanford.edu

origin, the three eigenvectors of the convolved VCM
VS,R ∗ χr(p) with p ∈ S are close to the normal and
the two principal curvature direction at p, provided
that R and r are chosen small enough. Similarly, if
p belongs to a sharp edge of a piecewise surface, the
eigenvector corresponding to the smallest eigenvalue
of VS,R ∗χr(p) is close to the tangent direction to that
sharp feature.

We then provide a very general stability result for
VCMs, proving that if the symmetric Hausdor� dis-
tance between K and K ′ is less than ε, then for every
p ∈ Rd, ‖VK,R ∗ χr(p)− VK′,R ∗ χr(p)‖op = O(

√
ε),

where ‖.‖op is the usual operator norm. As a conse-
quence, if C is a good point cloud approximation of
a piecewise smooth surface S, and p ∈ S, then the
eigenvectors of VC,R(p) will be a good approximation
of the eigenvectors of VS,R(p). Note that since the
Hausdor� distance is a purely geometric notion, our
result does not make any assumption on the nature
of the sampling, such as uniform density of the sam-
ple points, and handles strongly anisotropic sampling
gracefully.

Finally, we present two algorithms for computing
the VCM of a point cloud: an easy-to-implement
Monte-Carlo algorithm, and a faster algorithm that
requires tessellating the intersection of a ball with a
Voronoi cell.

2 The Voronoi Covariance Measure

Mathematical background. If K ⊆ Rd is a compact
set, we will denote by dK the distance function to K,
i.e. for any x ∈ Rd, dK(x) = min{d(x, y); y ∈ K}.
The R-o�set of K is the set of points at distance at
most R of K; we will denote it by KR.

The projection of x on K is the set of points
y ∈ K which realize this minimum; the set of points
for which several projections exist is the medial axis
M(K) of K. The distance of K to its medial axis is
called the minimum local feature size, or reach of K.

The projection function maps a point in Rd\M(K)
to its only closest point pK(x) in K ⊆ Rd. Since the
medial axis has zero d-volume, the projection function
is de�ned almost everywhere. Being only interested
in integral properties, we will often abusively consider
pK as de�ned on the whole space Rd.

De�nition 1 The Voronoi covariance measure VK,R

of a compact K ⊆ Rd at scale R > 0 is a tensor-valued

1

Robust Voronoi-based Curvature and Feature estimation

285

measure on Rd, i.e. it maps any subset B ⊆ Rd to

the following covariance matrix:

VK,R(B) =
∫

p−1
K (B∩K)∩KR

(x−pK(x))(x−pK(x))tdx

The VCM VK,R can be convolved by a compactly sup-

ported function χ on Rd, turning it into the tensor-

valued function VK,R ∗ χ de�ned by:

VK,R∗χ(p) =
∫

KR

(x−pK(x))(x−pK(x))tχ(pK(x)−p)dx

The main idea behind these de�nitions is if p is a
point of the compact set K, the set p−1

K ({p}) ∩ KR

intuitively corresponds to the normal cone to K at
that point, at a scale given by R > 0. Indeed, if S is a
smooth hypersurface, and R < reach(S), p−1

S ({p}) ∩
SR is just the segment [p− R~n, p + R~n] where ~n is a
unit normal at p. If however P is a convex polyhedron,
p−1

S ({p}) ∩ SR coincides with the usual normal cone
of convex geometry: it is a (d−k)-dimensional subset
of Rd if p is on a k-facet of the polyhedron.
When the dimension of the set p−1

K ({p}) is less than
d, VK,R({p}) is just the zero matrix. Thus, in order to
get meaningful information from the VCM, we need
to evaluate it on a higher dimensional subset, e.g.

a small ball B(p, r) around p. Then, VK,R(B(p, r))
corresponds to the sum of the (in�nitesimal) covari-
ance matrices of the sets p−1

K ({p′}), with p′ ∈ B(p, r).
Therefore, we can expect that the eigenvalue analysis
of VK,R(B(p, r)), where B(p, r) is a small ball around
p, will provide information's about the shape and di-
mension of the normal cone to K around p.
The function p 7→ VK,R(B(p, r)) is actually a special

case of convolved VCM: if χr denotes the indicator
function of the ball B(0, r), it follows at once that
VK,R(B(p, r)) = VK,R ∗ χr(p).

VCM of a Point Cloud. If C = {p1, . . . , pn} is a
point cloud, the projection on C is the function which
maps a point x to the center of the Voronoi cell x
belongs to, i.e. p−1

C (pi) = Vor(pi). This means that
if B ⊆ Rd,

VC,R(B) =
∑
pi∈B

cov(Vor(pi) ∩ B(pi, R), pi)

where cov(E, p) =
∫

x∈E
(x − p)(x − p)tdx is the co-

variance matrix of the domain E centered at p.
If χr is the indicator function of B(0, r), it follows

from the remarks above that:

VC,R ∗ χr(p) =
∑

pi∈B(p,r)

cov(Vor(pi) ∩ B(pi, R), pi)

VCM of a smooth hypersurface. If S is an ori-
entable smooth surface embedded in R3, ~n a normal

vector �eld on S and RS = reach(S) > R, then for
every B ⊆ S the VCM evaluated on B is equal (up to
a constant) to the covariance matrix of the normals
to S whose base point lie in B. More precisely,

VS,R(B) =
2
3
R3[1 + O(R2/R2

S)]
∫

p∈B∩S

~n(p)~n(p)tdp

The proof of this fact is a simple application
of the change of variable formula, remarking that
SR ∩ p−1

S (B) is the one-to-one image of the map
ϕ : B ∩ S × [−R,R]→ SR, (p, t) 7→ p + t~n(p).
If one evaluates VS,R on a ball B = B(p, r), where r

is a small convolution radius, the resulting covariance
matrix will re�ect the variation of the normals to S
around p, which is known to be related to the second
fundamental form and hence curvature.
Precisely, if κ1(p), κ2(p) denote the two principal

curvatures at p and ~P1(p), ~P2(p) are the corresponding
principal curvature directions, one has the following
Taylor expansion:

VS,E(B(p, r))

' 2π

3
R3r2

[
~n(p)~n(p)t +

r2

4

2∑
i=1

κ2
i (p) ~Pi(p) ~Pi(p)t

]
This proves that the eigenvalues of VS,E ∗ χr(p)
will be (up to a constant) close to 1, κ1(p)r/2 and

κ2(p)r/2, with corresponding eigenvectors ~n(p), ~P1(p)
and ~P1(p).

VCM near a sharp edge. Let now S be an embed-
ded piecewise smooth surface. For p ∈ S, the normal
cone to S at p, denoted by NpS, is the positive cone
generated by {x− p ; pK(x) = p}. The shape and di-
mension of this cone is related to the sharpness of S
at p, as suggested in Figure 2.1.
Suppose that p lies on a sharp edge of S, and let

~t be the tangent to this edge at p, and ~u, ~v be the
projections of the two outward normals to S at p on
the orthogonal plane to ~t. Suppose moreover that for
all v ∈ NpS with ‖v‖ 6 R, then pS(p + v) = p � this
assumption can be seen as a one-sided lower bound
on the local feature size. Then,

VS,SR(B(p0, r)) =
R4r

8
[(α− sin(α)) e1e

t

1

+ (α + sin(α)) e2e
t

2 + O(r/R)]

where ~e1 = ~u−~v
‖~u−~v‖ , ~e2 = ~u+~v

‖~u+~v‖ , and cos(α) = 〈~u|~v〉.
In particular, the eigendirection corresponding to

the smallest eigenvalue is the tangent direction to the
feature, with an eigengap of O(R/r).
3 Stability of the VCM

The analysis of the two previous paragraph shows that
when S is a piecewise smooth hypersurface, the con-
volved VCM VS,R ∗ χr carries information about the

2

EuroCG’09 - Brussels, Belgium

286

Figure 2.1: The shape of NpS for various p ∈ C.

normals, principal curvature directions and sharp fea-
ture directions. The goal of this section is to study
how replacing the surface S by a point cloud approx-
imation C a�ects the VCM.
In order to do that, we will prove a continuity result

for the map K 7→ VK,R ∗ χ, from compact subsets of
Rd to tensor-valued functions. The set of compact
subsets of Rd is endowed with the Hausdor� distance

dH: given two compact K and K ′, dH(K, K ′) is by
de�nition the smallest ε > 0 such that both K ⊆ K ′ε

and K ′ ⊆ Kε. The operator norm of a symmetric
matrix M is ‖M‖op = supV ∈Rd ‖V ‖−2

V tMV ; the
distance between two convolved VCM VK,KR ∗ χ and
VK′,K′R ∗ χ is measured by

‖VK,KR ∗ χ− VK′,K′R ∗ ‖∞
:= sup

p∈Rd

∥∥VK,KR ∗ χ(p)− VK′,K′R ∗ χ(p)
∥∥

op

The main theoretical result we use is the following
Projection Stability Theorem from [3]:

Theorem 1 Let K and K ′ be two compact sets of

Rn, and E an open set with recti�able boundary.

Then there is a constant C(d, K, E) such that:∫
E

‖pK(x)− pK′(x)‖dx 6 C(d, K, E)dH(K, K ′)1/2

As a consequence of this theorem, we will prove the
Hausdor�-robustness of the convolved VCMs when
the convolution kernel χ : Rd → R is k-Lipschitz
and bounded by 1 � this means that there exists
a k > 0 such that ∀(x, y), ‖χ(x)− χ(y)‖ 6 k ‖x− y‖
and ∀x, |f(x)| 6 1.

Theorem 2 If χ : Rd → R is a bounded k-Lipschitz
function, for every compact set K ⊆ Rd and R > 0,
there is a constant C ′(d, K, R) such that for every

other K ′ ⊆ Rd,

‖CK,R ∗ χ− CK′,R ∗ χ‖∞ 6 C ′(d, K, R)dH(K, K ′)1/2

Proof. We let E be the symmetric di�erence between
KR and K ′R. By Corollary II.5 in [3], we know that
the volume KR\E is in O(dH(K, K ′)). Hence, letting
δ(x) = x− pK(x), we can make the approximation,

VK,R ∗ χ(p) '
∫

E

δ(x)δ(x)tχ(pK(x)− p)dx

The goal is now to bound the operator norm of the
di�erence: M =

∫
E

P (x) − P (x)dx, where P (x) =
δ(x)δ(x)tχ(pK(x)− p) and P ′ is de�ned accordingly.

P (x)− P (x)

= χ(pK(x)− p)×
(
δ(x)δ(x)t − δ′(x)δ′(x)t

)
+ (χ(pK(x)− p)− χ(pK′(x)− p)) δ′(x)δ′(x)t

The operator norm of the �rst term of this expres-
sion is bounded by:

‖(2x− pK(x)− pK′(x))(pK′(x)− pK(x))t‖op
6 2R ‖pK′(x)− pK(x)‖

By the k-Lipschitz property of χ, the norm of the
second term can be bounded by

|χ(pK(x)− p)− χ(pK′(x)− p)|R2

6 kR2 ‖pK(x)− pK′(x)‖

Hence,

‖P (x)− P ′(x)‖op 6 (2R + kR2) ‖pK(x)− pK′(x)‖

Integrating and using theorem 1 yields the bound

‖M‖op 6 C(d, K, E)× [2R + kR2]dH(K, K ′)1/2

If S is a piecewise smooth surface, p a point of S
and Cn a sequence of point clouds converging to S in
the Hausdor� sense, the stability theorem says that
VCn,R ∗ χr(p) converges to VS,R ∗ χr(p) w.r.t the op-
erator norm, and quanti�es the speed of convergence.
Using the standard results of matrix perturbation

theory (see e.g. [6]), one then obtains the convergence
of the eigenvalues and eigenvectors of VCn,R ∗ χr(p)
to those of VS,R ∗ χr(p), the speed of convergence de-
pending on the eigengap.
Since at a smooth point p ∈ S, the eigenvalues of

VS,R ∗ χr are 1, κ1(p)r/2 and κ2(p)r/2, one can ex-
pect a faster convergence rate for the estimated nor-
mal, and a faster convergence of the estimated princi-
pal curvature directions at points where the principal
curvatures are very di�erent.

4 Algorithm and experimental results

We propose two algorithms to compute the VCM of
a point cloud in practice: a Monte Carlo algorithm,
which is easy to implement and extends to high di-
mensions, and a deterministic algorithm based on tes-
sellating the intersection between a Voronoi diagram
and an o�set. The second algorithm uses the fact that
covariance matrices of tetrahedra have closed form ex-
pressions, which makes it fast in practice. Its imple-
mentation, however, is a little more intricate, and for
this reason we only present the �rst algorithm.

3

Robust Voronoi-based Curvature and Feature estimation

287

(a) z = sin(3x) + cos(x) (b) Sampling bias

Figure 4.2: (a) Parametric surface with exact (in
blue) and computed (in red) principal curvature di-
rections. (b) Principal directions under heavily biased
sampling.

The Monte Carlo algorithm requires an additional
parameter: N - the number of samples that are
used. In practice, we observed good behavior with
N = 100n, where n is the number of points in the
point cloud. The convergence of the output of this al-

Algorithm 4.1 Monte-Carlo algorithm for VCM

Input: a point cloud C, a scalar R, a number N
Output: an approximation of VC,CR ' 1

N

∑
Ciδpi

while k 6 N do

I. Choose a random pi uniformly in C ;
II. Choose a random point X uniformly dis-

tributed in B(pi, R) ;
II. Find its closest point pj in C; then add the d×d

matrix 1
k (X − pj)(X − pj)t to Ci, where k is the

number of points from C in the ball B(X, R).
end while

gorithm to VC,CR with increasing N follows from the
arguments presented in [3].

4.1 Experiments
We �rst tested our method on a parametric surface
for which principal curvatures and principal curva-
ture directions can be computed exactly. We sampled
the function z = sin(3x) + cos(y) with 100,000 points
that were chosen uniformly at random within the do-
main 0 ≤ x, y ≤ 1. Figure 4.2(a) shows this surface
with the exact and computed principal curvature di-
rections, using R = 1 and r = 0.055. Note that at the
boundary, the computed directions follow the edges of
the surface, making them useful for feature detection.
To illustrate the performance of our algorithm un-
der heavy sampling bias, we added 50,000 points in a
small band along the diagonal in the domain. Figure
4.2(b) shows the results obtained with our method.
The principal curvatures directions estimated by jet
�tting [2] on this data set are strongly biased near
the diagonal line; all methods based on least-square
polynomial �tting will behave likewise.
To illustrate feature detection using our method,

we randomly sampled 100,000 points on a unit icosa-
hedron. We consider a point as a feature if the ratio

(a) no noise (b) 10% noise

Figure 4.3: Features detected on a unit icosahedron
with (a) no noise (b) 10% noise

of the second smallest to the smallest eigenvalue is
greater than some threshold parameter. The results
do not seem to be sensitive to this parameter, if it is
within the range 10�40. Figure 4.3(a) shows the fea-
ture directions obtained by our method. Figure 4.3(a)
shows the features detected after adding a vector cho-
sen uniformly at random within a ball of radius 10%
of the original radius to every point in the point cloud.
The average angular deviation of the estimated fea-
ture directions to the real ones is 1.42◦ and 7.94◦ in
the noiseless and noisy cases respectively.

5 Conclusion

In this paper, we have described a method for com-
puting principal curvatures and principal curvature
directions and detecting sharp features and feature
directions on point cloud data with theoretical guar-
antees. We gave a bound on the deviation of the es-
timated directions from the real ones in terms of the
Hausdor� distance between the point cloud and the
underlying surface. We implemented and tested the
method on multiple surfaces sampled with heavy bias
and noise.

References

[1] P. Alliez, D. Cohen-Steiner, Y. Tong, and M. Desbrun.
Voronoi-based variational reconstruction of unoriented
point sets. Eurographics Symp. on Geom. Proc., 2007.

[2] F. Cazals and M. Pouget. Estimating di�erential quan-
tities using polynomial �tting of osculating jets. Eu-

rographics Symp. on Geom. Proc., 2003.

[3] F. Chazal, D. Cohen-Steiner, and Q. Mérigot. Stability
of boundary measures. Arxiv preprint, 2007.

[4] T. K. Dey and J. Sun. Normal and feature approxi-
mation from noisy point clouds. FST&TCS, 2006.

[5] H. Pottmann, J. Wallner, Y. Yang, Y. Lai, and S. Hu.
Principal curvatures from the integral invariant view-
point. Comp. Aided Geom. Design, 2007.

[6] G. Stewart and J. Sun. Matrix perturbation theory.
Computer Science and Scienti�c Computing, 1990.

4

EuroCG’09 - Brussels, Belgium

288

Inverted Ball as Boundary-constraint for Voronoi Diagrams of 3D Spheres

Martin Maňák∗ Ivana Kolingerová†

Abstract

We show how to avoid infinite cells in Voronoi dia-
grams of three-dimensional spheres. Infinite cells are
unbounded cells at the convex-hull boundary of the
input set. These cells can have Voronoi edges going
to infinity or contain Voronoi vertices that are very
distant from the convex hull. If our interest in parts
of a diagram decreases as the distance from the convex
hull increases or if we do not want to handle infinity, it
might be useful to introduce a boundary constraint.
We propose a constraint of extending the input set
by a single inverted ball. When this ball encloses the
entire input set, it stops any edge that would go to
infinity otherwise. This approach only approximates
the convex hull of the original input set. It is suitable
for tracing-algorithms used for construction of these
diagrams.

1 Introduction

Given a metric space and a finite input set of sites,
Voronoi diagram partitions the space into cells. Each
site gets its own cell. All points inside a cell are closer
to the site owning the cell than to any other site. In-
tersecting cells constitute lower-dimensional elements
of the diagram called Voronoi faces, edges and ver-
tices.

Figure 1 shows an example of Voronoi diagram for a
set of two-dimensional spheres – sites are circles here.
Convex hull of the input set is shown as well. Cells
that belong to the sites constituting the convex hull
are partially unbounded, i.e., they extend themselves
to infinity. However, there are also some cells that are
bounded but their furthest boundary is quite distant
from the convex hull with respect to its size.

If our interest in parts of a diagram decreases as
the distance from the convex hull increases or if we
do not want to handle infinity explicitly, it might be
useful to introduce a boundary constraint.

A common technique is to add an extra site to the
input set that represents infinity. Cells that were un-
bounded before become virtually bounded now. This
introduces Voronoi elements at infinity and still al-
lows elements at any distance from the convex hull.

∗Faculty of Applied Sciences, University of West Bohemia,
Pilsen, Czech Republic, manak@kiv.zcu.cz
†Faculty of Applied Sciences, University of West Bohemia,

Pilsen, Czech Republic, kolingerova@kiv.zcu.cz

Figure 1: Voronoi diagram of spheres in 2D and its
convex hull

This technique is used, e.g., in [1, 4, 6].
Another solution might be extending the input set

by adding several extra sites. For example in 3D,
four sites forming an outer tetrahedron are sufficient.
These extra sites then bound cells that would oth-
erwise extend themselves to infinity. They can also
restrict some cells that are bounded but their bound-
aries are far away from the convex hull.

Another technique might be using the input set pe-
riodically or introducing some application-dependent
constraint such as a cylinder as it is mentioned in [7].

In this paper, we introduce an inverted ball as a
constraint for Voronoi diagrams of spheres which is
nothing more than the complement of the interior of
an ordinary sphere. It does not matter how many
dimensions we are dealing with, only one extra site
is sufficient for bounding all cells like in the case of
the infinite site. Like the outer tetrahedron in 3D,
the inverted ball plays a role of a finite constraint,
i.e., coordinates of diagram elements are limited by
a finite number. This might improve the robustness
of some algorithms for diagram construction since we
do not have to represent the whole domain of real
numbers, just a small finitely bounded subset.

1.1 Euclidean Voronoi diagram for a set of spheres

This section briefly reviews the definition of Voronoi
diagram for a set of spheres from [5]. These diagrams
are often called additively weighted diagrams.

Let B be a finite set of spheres B = {b1, . . . bn}
in Euclidean metric space Ed of finite dimension d.
We will call them as balls. Given an arbitrary point
x ∈ Rd, we measure the signed distance of that point
to a ball b = (c, r) as d(x, b) = ||x − c|| − r where
c ∈ Rd is the center and r ∈ R is the radius of ball b.
The sign of d(x, b) is positive if the point is outside

1

Inverted Ball as Boundary-constraint for Voronoi Diagrams of 3D Spheres

289

the ball, negative if the point is inside the ball and
zero if it is on the boundary. The Voronoi cell for a
ball bi is the set of points

Ci = {x ∈ Rd | ∀bj ∈ B, j 6= i : d(x, bi) ≤ d(x, bj)}.

The Voronoi diagram for set B is the set of cells

VD(B) = {C1, . . . , Cn}.

We will denote Euclidean Voronoi diagrams for
spheres as VDS and for points as VDP. In this paper,
we will often omit the term Voronoi – for example,
we will use only the term diagram instead of Voronoi
diagram.

There are several algorithms for the construction
of VDS. Edge-tracing [5], face-tracing [6] and the al-
gorithm for three-dimensional Voronoi S-network [7]
could be classified as tracing-algorithms. The basic
idea of these algorithms is to treat the diagram as
a graph of Voronoi vertices connected by edges. An
algorithm finds some initial vertex at first. Four edge-
trajectories are defined by this vertex. The algorithm
then traces a trajectory in order to find the second
vertex defining the edge. New vertices produce new
trajectories and the tracing-step repeats.

There is also a region-expansion algorithm [4] which
starts with a VDP constructed from centers of the
input set of balls (it is also a valid VDS). Then it
expands one ball after another, keeping the diagram
to be a valid VDS by processing topological events.

2 Bounding diagrams by an inverted ball

Suppose we are given an input set of ordinary balls
and want to create a constrained diagram from them.
We can compute an approximation of their bound-
ing sphere first, then magnify its radius and create
an inverted ball from it. The inverted ball is just the
complement of its interior. Then we insert the in-
verted ball to the input set and compute the diagram
from this extended set.

A 2D example is shown in Figure 2. There is a
diagram for a set of 2D balls with one inverted ball.
Edges going to infinity were stopped by the inverted
ball and some new edges were created. Note that
unbounded cells as well as some long bounded cells
were constrained by the inverted ball.

2.1 Distance function

We require that all balls from the original input set
have non-negative radii. Then we can distinguish
the inverted ball from them by a negative radius.
This is not the same as negative weights in additively
weighted diagrams! The distance function needs to
be modified slightly for the inverted ball.

Figure 2: Inverted ball in 2D

Definition 1 For ball b = (c, r) and point x let the
signed distance be defined as

sd(b, x) = sgn0+(r)(||c− x|| − |r|)

where sgn0+(r) is +1 for r ≥ 0 and −1 for r < 0,
c ∈ R3 is the center and r ∈ R is the signed radius of
the ball.

Definition 1 extends the signed distance function
from normal balls to inverted balls. It represents the
shortest distance between a point and the boundary
of a ball. Figures 3a and 3b show the signed distance
for a normal ball and for an inverted ball, respectively.
The function is negative for points inside the ball,
positive outside and zero for points on the boundary.
Figure 3c is the case of negative weight in additively
weighted Voronoi diagrams. The meaning is different
than the meaning of the signed distance.

(a) Normal ball (b) Inverted ball (c) Negative weight

Figure 3: Distance function, various configurations

Now we can define the distance between two balls
by reducing one of them to a point. In fact, we will
select the ball with radius closer to zero, subtract the
radius from the ball and add it to the other ball. Then
we define the signed distance as in Definition 1. Re-
duction of an inverted ball implies sign change since
all points (except the center) are considered inside of
such a reduced inverted ball.

Definition 2 For two balls b1 = (c1, r1) and b2 =
(c2, r2) where at least one of them is not inverted, let
the signed distance between them be defined as

sd(b1, b2) = sgn0+(ri)sd(b, c2)

where b = (c1, r1 + r2) is a modified ball, i = 1 if
|r1| < |r2| and i = 2 if |r1| ≥ |r2|.

2

EuroCG’09 - Brussels, Belgium

290

Several cases of signed distance between two balls
according to Definition 2 are shown in Figure 4. The
distance is measured between a big ball and a small
ball. Figure 4a shows several configurations when
only ordinary balls are involved. When a ball in-
tersects another ball, the distance gets the negative
sign and its magnitude represents the amount of pen-
etration of one ball to another. When two balls just
touch each other in their exterior, the distance is zero.
When they do not intersect, the distance is positive.
This is the same case as in ordinary VDS. Things
get more complicated in Figure 4b since there is an
inverted ball involved. This is almost the same con-
figuration as in Figure 4a but the interior and exterior
of the big ball got flipped and it became the inverted
ball. The distance is different but the meaning is the
same. In Figure 4c, there is an interesting configu-
ration when the inverted ball has smaller magnitude
than the ordinary ball. In this case, the distance is
always negative since interiors of these balls always
intersect.

(a) Ordinary balls (b) Inverted ball (c) Small inverted b.

Figure 4: Signed distance among balls

Definition 2 is useful for the definition of nearest
neighbors among balls and for determining if one ball
is fully contained in another ball.

2.2 The geometry of Voronoi faces and edges

It is known that the bisector between two ordinary
balls is a hyperboloid of two sheets. In an ordinary
VDS, a face is the maximal connected subset of such
hyperboloid and edges are maximal connected subsets
of conic sections. For more information to elements of
VDS see [5]. But what if an inverted ball is involved?

Lemma 1 Suppose we are given one inverted and
one ordinary ball. If any of them is not fully con-
tained in another ball, the set of points equidistant to
these balls is an ellipsoid. At most one of its semi-axes
has different length than the other.

Proof. Denote the inverted ball as b1 = (c1, r1) and
the ordinary ball as b2 = (c2, r2). Assume without loss
of generality that r2 = 0 (subtracting r2 from radii
of these balls does not change the set of equidistant
points). Hence b2 can be considered to be a point.
Furthermore, it is sufficient to prove only the two-
dimensional case in an arbitrary plane that contains
both c1 and c2 as it is shown in Figure 5, i.e. that the

set of equidistant points is an ellipse – denoted as f .
This assumption is satisfied thanks to the rotation-
symmetry with the axis defined by c1 and c2. The
rotation-symmetry implies the shape of the ellipsoid,
i.e. that at most one of its semi-axes has different
length than the others – it is the rotation axis. It is
easy to see that f is an ellipse: Consider an arbitrary
point equidistant to both b1 and b2 with respect to
the signed distance from Definition 1. It is the center
of an empty sphere tangent to b1 and b2, denote it as
s = (c, r). Euclidean distance from c to c1 equals to
r1 − r and from c to c2 equals to r. Their sum equals
to r1 which is constant for all points of f , hence f is
an ellipse with foci c1 and c2. �

Figure 5: Elliptic bisector between an inverted ball
and a ball with zero radius (in 2D)

Conjecture 1 Suppose we are given one inverted
and two ordinary balls. If any of them is not fully
contained in another ball, the set of points equidis-
tant to these balls is an ellipse.

2.3 Vertex coordinates

For an ordinary d−dimensional VDS, coordinates of
a vertex are the coordinates of the center of an empty
sphere that is tangent to exactly d+1 balls. A sphere
is empty when it does not intersect the interior of any
ball. Their computation is described in [2, 3]. It leads
to a system of d linear equations in d+1 variables and
one quadratic equation in a free variable chosen from
them. It turns out that almost the same approach can
be used when an inverted ball is involved. We show
this for d = 3.

Suppose we are given four balls bi = (ci, ri) for
i ∈ {1 . . . 4} where ci = (xi, yi, zi) ∈ R3 is the center
and ri ∈ R is the radius of ball bi. These balls are
allowed to intersect each other. We want to find a
sphere that is tangent to all these balls and is empty.
Let b4 be the ball with the minimal positive radius
and only b1 may be the inverted ball (with r1 < 0).

At first, we reduce all radii by r4 and translate the
system so that c4 becomes the origin. Since r4 is the
minimal positive radius, b4 reduces to a point, radii of
b1, b2 and b3 do not change signs. The transformation

3

Inverted Ball as Boundary-constraint for Voronoi Diagrams of 3D Spheres

291

could be written as bi := bi − b4. In the following
text we suppose the system is already transformed, i.e.
b4 = ((0, 0, 0), 0). The problem is reduced to finding
an empty sphere s = (c, r) that touches the origin
(0, 0, 0) and is tangent to three balls b1, b2 and b3.
The sphere has a center c = (x, y, z) ∈ R3 and a
radius r ∈ R – these are the unknowns.

Center c is the point equidistant to b1 . . . b4 in the
sense of our signed distance sd from Definition 1. This
can be written mathematically:

∀i ∈ {1 . . . 4} : sd(c, bi) = r

Expanding sd leads to an equivalent Eq. 1:

||c− ci|| = sign0+(ri)(r + ri) (1)

The right-hand side of Eq. 1 will be non-negative.
Powered by two, we get the same system as in [2]:

(x− x1)2 + (y − y1)2 + (z − z1)2 = (r + r1)2 (2)

(x− x2)2 + (y − y2)2 + (z − z2)2 = (r + r2)2 (3)

(x− x3)2 + (y − y3)2 + (z − z3)2 = (r + r3)2 (4)

x2 + y2 + z2 = r2 (5)

The difference is that we can have r1 < 0 for the
inverted ball. Expanding Eq. 2, 3, 4 and subtracting
Eq. 5 from them leads to the following system of three
linear equations in four variables x, y, z and r. x1 y1 z1 r1 (x2

1 + y2
1 + z2

1 − r21)/2
x2 y2 z2 r2 (x2

2 + y2
2 + z2

2 − r22)/2
x3 y3 z3 r3 (x2

3 + y2
3 + z2

3 − r23)/2

 (6)

When a free variable f ∈ {x, y, z, r} is selected and
the system is solved in terms of f , the result can be
put into Eq. 5 in order to obtain a quadratic equation
in terms of f . We can end up with two real solutions of
s but are only interested in those which satisfy Eq. 1,
i.e. the condition for non-negative right-hand side. If
there were only ordinary balls with ri ≥ 0 then r ≥ 0
would be satisfactory thanks to the choice of b4. But
we need also sign0+(ri)(r + ri) ≥ 0 since b1 can be
inverted.

The last step is to transform s back to the origi-
nal system as s := s + (c4,−r4) where c4 and r4 are
from the original system. Note that this can lead to
s with radius r ∈ [−r4,∞) which can be negative. In
this case it would be better to think about s as about
a weighted point just like in additively weighted dia-
grams rather than it would be a sphere.

3 Results

Figure 6 shows results from the edge-tracing algo-
rithm that has been modified to work with an inverted
ball. First, there is the simplest case of four balls
where one of them is inverted. The empty sphere of
the initial vertex is shown as well. A more complex
example is shown in the next figure (the inverted ball
is hidden).

Figure 6: Inverted ball in three dimension

4 Conclusion

In this paper, we have shown how an inverted ball
can be used as a boundary constraint for Voronoi di-
agrams of 3D spheres. We have proven that the in-
verted ball introduces ellipsoidal faces to this class of
diagrams. This approach works well with edge-tracing
and similar algorithms for construction of these di-
agrams but it might be problematic for other algo-
rithms. We believe that it could simplify the tracing-
based algorithms and make them more robust.

Acknowledgments

This work has been supported by the Grant Agency
of the Czech Republic, project GA 201/09/0097.

References

[1] J.-D. Boissonnat and C. Delage. Convex hull and Voronoi
diagram of additively weighted points. In G. S. Brodal and
S. Leonardi, editors, ESA, volume 3669 of Lecture Notes in
Computer Science, pages 367–378. Springer, 2005.

[2] M. L. Gavrilova. A reliable algorithm for computing the
generalized Voronoi diagram for a set of spheres in the Eu-
clidean d-dimensional space. In CCCG, pages 82–87, 2002.

[3] M. L. Gavrilova and J. Rokne. Updating the topology of
the dynamic Voronoi diagram for spheres in euclidean d-
dimensional space. Comput. Aided Geom. Des., 20(4):231–
242, 2003.

[4] D. Kim and D.-S. Kim. Region-expansion for the Voronoi
diagram of 3D spheres. Computer-Aided Design, 38(5):417–
430, 2006.

[5] D.-S. Kim, Y. Cho, and D. Kim. Euclidean Voronoi di-
agram of 3D balls and its computation via tracing edges.
Computer-Aided Design, 37(13):1412–1424, 2005.

[6] D.-S. Kim, D. Kim, Y. Cho, and K. Sugihara. Quasi-
triangulation and interworld data structure in three dimen-
sions. Computer-Aided Design, 38(7):808–819, 2006.

[7] N. N. Medvedev, V. P. Voloshin, V. A. Luchnikov, and
M. L. Gavrilova. An algorithm for three-dimensional
Voronoi S-network. Journal of Computational Chemistry,
27(14):1676–1692, 2006.

4

EuroCG’09 - Brussels, Belgium

292

Divide-and-Conquer for Voronoi Diagrams Revisited∗

Oswin Aichholzer† Wolfgang Aigner† Franz Aurenhammer‡ Thomas Hackl† Bert Jüttler§

Elisabeth Pilgerstorfer§ Margot Rabl§

Abstract

We propose a simple and practical divide-and-conquer
algorithm for constructing planar Voronoi diagrams.
The novel aspect of the algorithm is its emphasis on
the top-down phase, which makes it applicable to sites
of general shape.

1 Introduction

The divide-and-conquer paradigm gave the first opti-
mal solution for constructing the closest-site Voronoi
diagram in the plane [13]. Though being a classical
example for applying a powerful algorithmic method
in computational geometry, the resulting algorithm
became no favorite for implementation, not even in
the case of point sites.

Literature tells us that divide-and-conquer is in-
volved if emphasis is on the bottom-up phase, even
if the sites are of relatively simple shape; see [10, 15,
5, 11]. The crux is the missing separability condition
for the sites, which would prevent the merge curve
from breaking into several components. Many alter-
native strategies for computing generalized Voronoi
diagrams have been tried, including incremental in-
sertion [3] and the plane-sweep technique [7].

In all these algorithms the bisector curves take part
in the computation. Bisectors are usually composed of
several curve pieces, and may even be two-dimensional
if not defined carefully in the case of shared end-
points (which arise naturally when decomposing com-
plex sites into simpler ones). Consequently, the algo-
rithms are involved and also suffer from numerical
imprecison. Difficulties may be partially eluded when
working in the dual environment: Instead of intersect-
ing two bisectors, the center of a circle tangent to the
three defining sites is calculated. This bears the ad-
vantage of working on the sites directly. For general
sites, however, tangent circles may not be unique, and
are usually difficult to calculate.

The algorithm we propose works directly on the

∗Supported by FWF NRN ‘Industrial Geometry’ S9205-N12
†Institute for Software Technology, Graz University of Tech-

nology, Austria, {oaich,waigner,thackl}@ist.tugraz.at
‡Institute for Theoretical Computer Science, Graz Univer-

sity of Technology, Austria, auren@igi.tugraz.at
§Institute of Applied Geometry, Johannes Kepler

University Linz, Austria, {Bert.Juettler,Margot.Rabl,
Elisabeth.Pilgerstorfer}@jku.at

sites, too, but its atomic operation is much simpler,
namely, an inclusion test of a site in a fixed circle.
We first extract the combinatorial structure of the
Voronoi diagram, and fill in the bisector curves later
on. In contrast to existing Voronoi/Delaunay algo-
rithms, no constructed object is ever discarded. Our
setting is very general, including polygonal sites, cir-
cular disks, and even spline curves. Boundaries of
curved planar objects with holes can be modeled.

Applications are manifold. One is motion plan-
ning in piecewise-circular environments [16] which,
compared to piecewise-linear environments, leads to
shorter and ‘smoother’ robot paths. Another is shape
offsetting where, compared to similar approaches [9,
8, 4], our method is simpler because we compute only
a combinatorial representation of the diagram for this
application.

2 Dividing the Voronoi diagram

Our sites are pairwise disjoint topological disks of di-
mension two, one, or zero in the Euclidean plane R2.
That is, a site is either homeomorphic to a disk or to a
line segment, or is simply a point. This includes poly-
gons, circular disks, and open spline curves as sites.
Here and throughout this note, let S denote the given
set of sites. The distance of a point x to a site s ∈ S
is d(x, s) = miny∈s δ(x, y), where δ denotes the Eu-
clidean distance function. As done e.g. in [3, 15], we
define the Voronoi diagram, V (S), of S via its edge
graph, GS , which is the set of all points having more
than one closest point on the union of all sites. An
edge of GS containing points equidistant from two or
more different points on the same site s is called a
self-edge for s. The regions of V (S) are the maxi-
mal connected subsets of the complement of GS in R2.
They are topologically open sets.

Observation 1 The regions of V (S) bijectively cor-
respond to the sites in S. Each site is contained in its
region, and regions are simply connected.

We thus can talk of the region of a site, s, which we
will denote with R(s) in the sequel. The differences
to a bisector-based definition of the Voronoi diagram
should be noticed. Self-edges are ignored in such a
definition unless the sites are split into suitable pieces.
Such pieces, however, share boundaries—a fact that,

1

Divide-and-Conquer for Voronoi Diagrams Revisited

293

if not treated with care, may give rise to unpleasant
phenomena like two-dimensional bisectors.

To get rid of the unbounded components of the dia-
gram, we include a surrounding circle, Γ, (or any other
desired curve) into the set S of sites. We can always
choose Γ in a way such that each vertex of V (S \ {Γ})
is also a vertex of V (S).

For later purposes, we seek a (minimal) set of points
whose removal from the edge graph GS breaks all its
cycles. Finding such a set is nontrivial, in view of the
possible presence of self-edges. For a site s 6= Γ, let
p(s) be a point on s with smallest ordinate, and denote
with q(s) the closest point on GS vertically below p(s).
By the boundedness of R(s), the point q(s) always
exists, and we define a new geometric graph as

TS = GS \ {q(s) | s ∈ S \ {Γ}}. (1)

Lemma 1 The graph TS is a tree.

Proof. Omitted in this version. �

3 Augmented domains

Our next aim is to interpret the tree TS in Lemma 1
as the medial axis of a generalized planar domain. In
this way, we will be able to construct the Voronoi dia-
gram V (S) by means of a medial axis algorithm, as if a
simply connected domain was the input. Usually, the
similarity between these two structures is exploited
the other way round: Medial axes are constructed as
special cases of Voronoi diagrams.

Define B = B0 \ {s ∈ S | s 6= Γ}, where B0 denotes
the disk bounded by Γ. Then the medial axis, MA(B),
of B is just the closure of the edge graph GS of V (S).
We want to combinatorially disconnect the shape B
at appropriate positions, such that the medial axis of
the resulting domain corresponds to the tree decom-
position TS of V (S).

As observed in [6], a maximal inscribed disk can be
used to split the medial axis of a simply connected
shape into two components which share a point at
the disk’s center. In order to extend this result to
general shapes, we introduce the notion of an aug-
mented domain, which is a set A together with a
projection πA : A → R2. Initially, A is the original
shape B, and the associated projection πB is the iden-
tity. Now, consider a maximal inscribed disk D of an
augmented domain A, which touches the boundary
∂A in exactly two points u and v. Denote with

⌢
uv

and
⌢
vu the two circular arcs which the boundary of D

is split into. The new augmented shape, A′, which is
obtained from A by splitting it with D, is defined as

A′ = A0 ∪D1 ∪D2

where A0 = {(x, 0) | x ∈ A \ D}, D1 = {(x, 1) |
x ∈ D}, and D2 = {(x, 2) | x ∈ D}. The associated

s2

1s

Figure 1: Boundary of an augmented domain.

projection is

πA′ : A′ → R2, (x, i) 7→ πA(x).

We say that the line segment in A between
points (x, i) and (y, j) is contained in A′ if one of
the following conditions is satisfied:

1. i = j and the line segment xy avoids ∂D,

2. {i, j} = {0, 1} and xy intersects the arc
⌢
uv, or

3. {i, j} = {0, 2} and xy intersects the arc
⌢
vu.

For any two points (x, i) and (y, j) in A′, their
distance now can be defined. It equals the distance
of πA(x) and πA(y) in R2, provided the connecting
line segment is contained in A′, and is ∞, otherwise.
An (open) disk in A′ with center (m, i) and radius ̺
is the set of all points in A′ whose distance to (m, i)
is less than ̺. Such a disk is said to be inscribed in A′

if its projection into R2 is again an open disk.
Having specified inscribed disks for A′, the bound-

ary of A′ and the medial axis (transform) of A′ can
be defined as in the case of planar shapes. In partic-
ular, ∂A′ derives from ∂A by disconnecting the latter
boundary at the contact points u and v of the splitting
disk D, and reconnecting it with the circular arcs

⌢
uv

and
⌢
vu. This process is depicted in Figure 1.

Concerning the medial axis, every maximal in-
scribed disk in A different from D corresponds to ex-
actly one maximal inscribed disk in A′, hence there
is a bijection between MAT(A)\ {D} and MAT(A′)\
{D1, D2}. The medial axis of A′ therefore is the
same geometric graph as MA(A), except that the edge
of MA(A) containing the center of D is split into two
disconnected edges in MA(A′) which both have the
center of D as one of their endpoints.

To draw the connection to the edge graph GS

of V (S), the initial shape B is augmented with |S| − 1
maximal inscribed disks, namely, the ones centered at
the points q(s) ∈ GS , where q(s) was the vertical pro-
jection onto GS of a point with smallest ordinate on
the site s. Denote with AS the resulting domain after
these |S| − 1 augmentation steps. We may conclude
the main finding of this section as follows.

Lemma 2 The tree TS in (1) is the medial axis of
the augmented domain AS .

2

EuroCG’09 - Brussels, Belgium

294

4 The algorithm

Using Lemma 2, the Voronoi diagram V (S) can be
obtained by computing the medial axis of the aug-
mented domain AS .

The construction of ∂AS is easy once the augment-
ing disks are available. Their centers lie on the edge
graph GS of V (S) but, of course, the disks need to be
found without knowledge of GS . A simple and efficient
plane-sweep can be applied; we omit the details here.
The construction can be implemented in O(n log n)
time if the sites in S are described by a total of n ob-
jects, each being managable in constant time. Note
that ∂AS then consist of Θ(n) pieces.

Given the fact that ∂AS is highly self-crossing, it
may seem complicated to compute the medial axis
of AS . However, AS has a connected boundary,
and therefore can be split into subdomains with the
same property using maximal inscribed disks. This
suggests a divide-and-conquer algorithm for comput-
ing MA(AS). The domain and its medial axis tree
are split recursively, until directly solvable base cases
remain. For simply connected shapes, a similar ap-
proach has been applied in [2, 1].

Recall that ∂AS consists of pieces that bound in-
scribed disks (called artificial arcs) and pieces that
stem from site boundaries (called site segments). To
calculate a splitting disk, we fix some point p on a
site segment and compute a maximal inscribed disk D
for AS that touches ∂AS at p. Starting with an
(appropriately oriented) disk of large radius, ∂AS is
scanned and the disk is shrunk accordingly whenever
an intersection with a site segment occurs. Intersec-
tions with artificial arcs are, however, ignored. This
works correctly because the set of maximal inscribed
disks is the same for AS and for the original shape B
(except for finitely many augmenting disks). Com-
puting a splitting disk takes O(n) time, if each object
describing the sites can be handled in O(1) time.

5 Practical aspects

In view of keeping the algorithm efficient, disks that
split the domain AS in a balanced way are desired.
Unfortunately, computing such a disk with simple
means turns out to be hard. We can, however, choose
a disk D randomly, by taking a random site seg-
ment on ∂AS as its basis. Objects on ∂AS and edges
of MA(AS) correspond to each other in an (almost)
bijective way, which suffices to convey randomness
from boundary objects to medial axis edges. For the
analysis, we thus may suppose that the center c of D
lies on every edge of MA(AS) with the same proba-
bility. Under the assumption that the graph diameter
of MA(AS) is linear in n, the point c lies on the diam-
eter with constant probability, and MA(AS) is split
at c into two parts of expected size Θ(n). A random-

Figure 2: A mixed set of sites

n atomic steps ratio n log2 n ratio n(log2 n)2

507 6620 1.45 0.16
2070 32892 1.44 0.13
5196 91649 1.43 0.12

10474 199001 1.42 0.11
20488 417839 1.42 0.10

172198 4223178 1.41 0.09

Table 1: Count for complex sites bounded by n arcs

ized runtime of O(n log n) results.
The assumption above is realistic in scenarios where

a small number of sites is represented by a large num-
ber of individual objects. For example, if biarcs [12,
14] are used for approximation, then the number of
leaves (hence also the number of vertices) of MA(AS)
is determined by the original sites and not by the num-
ber of biarcs used. See Table 1, where step counts for
our algorithm are averaged (and rounded) over 40 dif-
ferent equal-sized inputs.

The other extreme is the case of n point sites.
Here, by the way how AS is constructed, the diame-
ter of MA(AS) will be typically much smaller, because
many long ‘vertical’ branches will emanate from the
surrounding circle Γ. As a simple heuristic, we may
choose a small number of splitting disks tangent to Γ
first, and continue with randomly splitting the result-

n atomic steps ratio n log2 n ratio n(log2 n)2

400 7591 2.20 0.25
2000 54662 2.49 0.23
4000 143391 3.00 0.25

20000 1015149 3.55 0.25
40000 2659149 4.35 0.28

200000 19820012 5.63 0.32

Table 2: Count for uniformly distributed point sites

3

Divide-and-Conquer for Voronoi Diagrams Revisited

295

ing augmented subdomains. See Table 2 for a sketch
of the obtained results. We implemented the algo-
rithm to accept circular arc input in its current ver-
sion, including (though not optimizing) the handling
of line segments and points. The Voronoi diagram in
Figure 2 has been produced by this code.

The atomic step needed in the algorithm is an in-
tersection test of a site-describing object and a given
disk. This is among the simplest imaginable tests
when a closest-site Voronoi diagram is to be computed
by means of distance calculations. The structure and
variety of the base cases depend on the type of sites.
For point sites, there are only two of them, if the sur-
rounding circle Γ is handled symbolically. They are
of the simple form shown in Figure 3. (Artificial arcs
are drawn dashed.) For circular arc splines, we get
four generic base cases for C1 continuity and nine ad-
ditional cases for C0 continuity; see [1].

Figure 3: The two base cases for point sites.

6 Applications

We put particular emphasis on circular arcs as sites,
because no practical algorithm for constructing their
Voronoi diagram is available, and our algorithm nat-
urally offers the ability to handle them. Moreover,
biarcs [12, 14] enable a data-inexpensive and Voronoi
diagram preserving approximation of general polyno-
mial spline curves; we omit the details here.

The Voronoi diagram V (S) of a set S of circu-
larly approximated sites can be used as a tool for
planning a robot motion in a piecewise-circular (PC)-
environment [16]. Compared to piecewise-linear (PL)-
environments, this offers several advantages. Not only
can an approximation of V (S) be computed more
quickly now, but it also will consist of significantly
fewer edges, namely, Θ(n

2
3) instead of n. This leads

to a more compact description of the paths the robot
is supposed to move on. Another feature not shared
by PL-environments is that the paths are locally C1

between any two sites with C1 boundaries, except for
junctions with self-edges.

Several algorithms for shape offsetting are based on
the Voronoi diagram or the medial axis [9, 8, 4]. Once
more, a PC-representation of the input shape is ad-
vantageous, because the class of such shapes is closed
under offsetting operations. Our Voronoi diagram al-
gorithm is particularly well suited to the offsetting
task, because it delivers the combinatorial structure

without computing the edge graph explicitly.

References

[1] O. Aichholzer, W. Aigner, F. Aurenhammer,
T. Hackl, B. Jüttler, and M. Rabl. Medial axis
computation for planar free-form shapes. Computer-
Aided Design. To appear.

[2] O. Aichholzer, F. Aurenhammer, T. Hackl,
B. Jüttler, M.Oberneder, and Z. Śır. Compu-
tational and structural advantages of circular
boundary representation. In Springer Lecture Notes
in Computer Science, volume 4619, pages 374–385,
2007.

[3] H. Alt, O. Cheong, and A. Vigneron. The Voronoi
diagram of curved objects. Discrete & Computational
Geometry, 34:439–453, 2005.

[4] L. Cao and J. Liu. Computation of medial axis and
offset curves of curved boundaries in planar domain.
Comput. Aided Des., 40(4):465–475, 2008.

[5] L. Chew and R. Drysdale. Voronoi diagrams based
on convex distance functions. In Proc. 1st Ann. ACM
Symposium on Computational Geometry, pages 235–
244, 1985.

[6] H. Choi, S. Choi, and H. Moon. Mathematical theory
of medial axis transform. Pacific Journal of Mathe-
matics, 181:57–88, 1997.

[7] S. Fortune. A sweep line algorithm for Voronoi dia-
grams. Algorithmica, 2:153–174, 1987.

[8] M. Held. Voronoi diagrams and offset curves of curvi-
linear polygons. Computer-Aided Design, 30(4):287–
300, 1998.

[9] M. Held, G. Lukacs, and L. Andor. Pocket machin-
ing based on contour-parallel tool paths generated by
means of proximity maps. Computer-Aided Design,
pages 189–203, 1994.

[10] D. Kirkpatrick. Efficient computation of continuous
skeletons. In Proc. 20th Ann. Symp. Foundations of
Computer Science, pages 18–27, 1979.

[11] R. Klein, K. Mehlhorn, and S. Meiser. Random-
ized incremental construction of abstract Voronoi di-
agrams. Computational Geometry: Theory and Ap-
plications, 3:157–184, 1993.

[12] D. S. Meek and D. J. Walton. Spiral arc spline ap-
proximation to a planar spiral. J. Comput. Appl.
Math., 107:21–30, 1999.

[13] M. Shamos and D. Hoey. Closest-point problems.
In Proc. 16th Ann. Symp. Foundations of Computer
Science, pages 151–162, 1975.

[14] Z. Š́ır, R. Feichtinger, and B. Jüttler. Approximating
curves and their offsets using biarcs and Pythagorean
hodograph quintics. Comp.–Aided Design, 38:608–
618, 2006.

[15] C.-K. Yap. An O(n log n) algorithm for the Voronoi
diagram of a set of simple curve segments. Discrete
& Computational Geometry, 2:365–393, 1987.

[16] C.-K. Yap and H. Alt. Motion planning in the CL-
environment. In Lecture Notes In Computer Science
382, pages 373–380, 1989.

4

EuroCG’09 - Brussels, Belgium

296

The Voronoi diagram of three arbitrary lines in R3

Hazel Everett† Christian Gillot† Daniel Lazard‡ Sylvain Lazard† Marc Pouget†

Abstract

In this paper we study the Voronoi diagram of
lines in R3. The Voronoi diagram of three lines
in general position was studied in [8]. In this
paper we complete this work by presenting a
complete characterization of the Voronoi dia-
gram of three arbitrary lines in R3. As in the
general case, we prove that the arcs of trisec-
tors are always monotonic in some direction
and we show how to separate the connected
components and to sort points along each arc
of a trisector using only rational linear semi-
algebraic tests. These results are important
for the robust computation of the Voronoi di-
agram of polyhedra.

1 Introduction

Voronoi diagrams are ubiquitous objects of
computational geometry. The most famil-
iar and intuitive example is the Voronoi dia-
gram of points in the plane with the Euclidean
metric. Many extensions have been studied
with higher dimension spaces, different metrics
and/or other sites than points. For point sites
in any dimension, the complexity of Voronoi
diagrams is well understood. Optimal algo-
rithms for their construction are known and
robust efficient implementations are available
(see for instance [1]). Still some important
problems remain and are addressed in recent
papers. For linear objects (segments and poly-
gons) in two dimensions, the theory and imple-
mentations are also well studied [10].

In contrast, for lines, segments, and polyhe-
dra in three dimensions much less is known.
Even the combinatorial complexity of the
Voronoi diagram of n lines or line segments
in R3 is not yet settled. The best known
lower (resp. upper) bound is Ω(n2) (resp.
O(n3+ε)) [15]. From an algorithmic point of
view, most of the previous work focused on
computing the medial axis of a polyhedron,

†LORIA - INRIA Lorraine - University Nancy 2,
Firstname.Name@loria.fr

‡LIP6 - INRIA Rocquencourt - University Pierre et
Marie Curie, Firstname.Name@lip6.fr

i.e., a subset of the Voronoi diagram of the
faces of the polyhedron [4, 12]. There have
been many papers reporting algorithms for
computing approximations of the Voronoi di-
agram (see for instance [5, 7]). On the other
hand, as far as we know, only one algorithm
has been proposed, following the paradigm of
exact geometric computing [4]. This algorithm
is nevertheless incomplete since it does not
handle the case of singular one-dimensional
Voronoi cells. Recently, some progress has
been made on the related problem of comput-
ing arrangements of quadrics (each cell of the
Voronoi diagram is a cell of such an arrange-
ment) [2, 13, 14].

In this paper, we study the Voronoi diagram
of three lines in R3 with the Euclidean metric.
This is the first mandatory step on the way to
design a robust and effective implementation
of Voronoi diagrams of three-dimensional lin-
ear objects. We provide here a complete char-
acterization of the Voronoi diagram of three
arbitrary lines in R3. This completes the study
of three lines, the case of three lines in general
position having been studied in [8]. In partic-
ular, we identify those configurations having
a singular one-dimensional Voronoi cell, infor-
mation required to overcome the shortcoming
of Culver’s algorithm for the exact computa-
tion of the medial axis of a polyhedron [4].
Definitions and notations. The Voronoi di-
agram of a set of lines S is a partition of R3 into
regions called cells associated with subsets s of
S. The cell V (s) consists of the set of points
equidistant to the lines of s and strictly closer
to those lines than to any other line. The dis-
tance between a point p and a line s, is defined
as the minimum Euclidean distance between
the point and any point on the line.

The Voronoi diagram of pairwise skew lines
consists of cells of dimension k determined by
4 − k lines, 0 6 k 6 3. When the lines are no
longer skew, a cell determined by 4 − k lines
may have dimension strictly smaller than k.
For convenience, in the following a cell of di-
mension k (or kD cell) denotes a cell deter-
mined by 4 − k lines, even if its dimension
is smaller than k. In addition, we call bisec-

1

The Voronoi diagram of three arbitrary lines in R3

297

tor (resp. trisector) the dimension two (resp.
one) cell of the Voronoi diagram of two (resp.
three) lines. The cells are not necessarily con-
nected even in the generic case [8] and when
the lines intersect, the number of connected
components, as we shall see, may increase.
One way of handling intersecting objects is
to subdivide them into non-intersecting pieces;
for example, in the case of line segments in
2D, intersecting segments are partitioned into
points and open segments [9]. Following this
approach, one could handle intersecting lines
by subdividing them into points, open rays and
open segments. Since the bisector of two open
segments is typically computed by first com-
puting the bisector of their supporting lines,
this approach also requires understanding the
nature of the cells in the case of intersecting
lines.

2 Results

Our main results are summarized in the fol-
lowing theorems which describe the cells of di-
mension one and two of the Voronoi diagram
of three lines, see Table 1 for a more precise
description.

Theorem 1 The trisector of three lines is
(i) a non-singular quartic if the three lines

are pairwise skew but not all parallel to
a common plane nor on the surface of a
hyperboloid of revolution, (see fig. 1)

(ii) a cubic and a line if the three lines are
pairwise skew and lie on the surface of a
hyperboloid of revolution,

(iii) a nodal quartic if the three lines are pair-
wise skew and are all parallel to a common
plane,

(iv) one or two parabolas or hyperbolas if there
is exactly one pair of coplanar lines,

(v) between 0 and 4 lines if there are two pairs
of coplanar lines.

In all cases, each branch of the trisector is
monotonic in some direction.

Theorem 2 A cell of dimension two of a
Voronoi diagram of three lines consists of up
to four connected components of hyperbolic
paraboloids or planes.

This characterization yields some fundamen-
tal properties of the Voronoi diagram of three
lines which are likely to be critical for the anal-
ysis of the complexity and the development of
efficient algorithms for computing Voronoi di-
agrams and medial axis of lines or polyhedra.
In particular, we obtain the following:

Theorem 3 There are rational linear semi-
algebraic tests for
(i) given a point on a 2D cell, deciding on

which of the connected components of the
cell it lies,

(ii) given a point on the trisector, deciding on
which of the branches of the trisector it
lies,

(iii) ordering points on each branch of the tri-
sector, knowing that they lie on the trisec-
tor.

While the proofs primarily use basic notions
from geometry and algebra, such as the clas-
sification of conics, it also relies on two recent
results, the classification of quadric intersec-
tions [6], and a characterization of the common
tangents to spheres [3].

3 Concluding remarks

We’ve given here a complete characterization
of the Voronoi diagram of three lines. The re-
sults are necessary for the robust, exact com-
putation of the Voronoi diagram of lines and
the medial axis of polyhedra.

References

[1] F. Aurenhammer and R. Klein. Voronoi di-
agrams. In J. R. Sack and J. Urrutia, ed-
itors, Handbook of computational geometry,
chapter 5, pages 201–290. Elsevier Publishing
House, December 1999.

[2] E. Berberich, M. Hemmer, L. Kettner,
E. Schömer, and N. Wolpert. An exact, com-
plete and efficient implementation for com-
puting planar maps of quadric intersection
curves. In SoCG’05, pages 99–115, 2005.

[3] C. Borcea, X. Goaoc, S. Lazard, and S. Pe-
titjean. Common tangents to spheres in R3.
DCG, 35(2):287–300, 2006.

[4] T. Culver. Computing the Medial Axis of a
Polyhedron Reliably and Efficiently. PhD the-
sis, University of North Carolina at Chapel
Hill, 2000.

[5] T. K. Dey and W. Zhao. Approximate medial
axis as a voronoi subcomplex. In SMA ’02,
pages 356–366, New York, NY, USA, 2002.
ACM Press.

[6] L. Dupont, D. Lazard, S. Lazard, and S. Pe-
titjean. Near-optimal parameterization of the
intersection of quadrics: II. A classification
of pencils. Journal of Symbolic Computation,
2007. In press (24 pages).

[7] M. Etzion and A. Rappoport. Comput-
ing Voronoi skeletons of a 3-d polyhedron

2

EuroCG’09 - Brussels, Belgium

298

X

Y

Z

O `2 :

 y = −ax

z = −1

`1 :

 y = ax

z = 1

(a) (b)

X

Y

(c)

Figure 1: (a) The standard configuration of two skew lines. (b) The trisector of three skew lines, which is
the intersection of two hyperbolic paraboloids, is a non-singular quartic. (c) Orthogonal projection of a 2D
cell on a plane P with coordinate system (X, Y); the plane’s normal is parallel to the common perpendicular
of `1 and `2 and the X and Y -axes are parallel to the two bisector lines (in P) of the projection of `1 and
`2 on P. The 2D cell is bounded by four branches of the trisector.

Configuration of lines Trisector Bisector type No. CC
H1,2 H1,3 H2,3 V1,2 V1,3 V2,3

Three pairwise skew lines

Fig. 2(a) Not all parallel to a common plane non-singular
nor on a hyperboloid of revolution quartic HP HP HP 2 2 2

Fig. 2(b) On a hyperboloid of revolution cubic and a line HP HP HP 2 2 2
Fig. 2(c) All parallel to a common plane nodal quartic HP HP HP 1 1 2

One pair of coplanar lines

Fig. 2(d) One pair intersecting,
third skew, not in a parallel plane two hyperbolass HP HP 2P 3 3 2

Fig. 2(e) One pair intersecting,
third in a parallel plane two parabolass HP HP 2P 2 2 1

Fig. 2(f) One pair parallel,
third skew, not in a parallel plane one hyperbola HP HP P 2(1) 1 1(2)∗

Fig. 2(g) One pair parallel,
third in a parallel plane one parabola HP HP P 1 1 1

Two pairs of coplanar lines

Fig. 2(h) Two intersecting pairs four liness HP 2P 2P 4 3 3
Fig. 2(i) One pair parallel,
one pair intersecting two liness HP 2P P 2 1 2

Three pairs of coplanar lines
in three distinct planes

Fig. 2(j) Three pairwise parallel lines one line P P P 1 1 1
Fig. 2(k) Three concurrent lines four liness 2P 2P 2P 4 4 4

Three coplanar lines

Fig. 2(l) Three parallel lines empty set P P ∅ 1 1 0
Fig. 2(m) Two parallel lines,
the third one intersects them two lines P 2P 2P 2 1 1

Fig. 2(n) Three concurrent lines one line 2P 2P 2P 2 2 2
Fig. 2(o) Three pairwise intersecting lines
(not in a point) four lines 2P 2P 2P 2 2 2

Table 1: Classification of the trisectors and 2D cells of three lines. Whenever there are two skew
lines amongst the three lines, we assume they are labeled l1 and l2. In each case the bisectors
are either hyperbolic paraboloids (HP), pairs of planes (2P), or single planes (P). The superscript
symbol s indicates singular trisectors. *The number of connected components for cells V1,2 and
V2,3 depends on whether the third skew line intersects the plane containing the parallel lines in
between them or not.

3

The Voronoi diagram of three arbitrary lines in R3

299

l1

l2

l3

(a) Three pairwise skew
lines: most generic case.

l1

l2

l3

(b) Three pairwise skew
lines on a hyerboloid of rev-
olution.

`2

`3

`1

(c) Three pairwise skew
lines all parallel to a
common plane.

`2

`3

`1

(d) One pair of coplanar
lines: one pair intersecting,
third skew but not in a par-
allel plane.

`2

`3
`1

(e) One pair of coplanar
lines: one pair intersecting,
third in a parallel plane.

`2

`3

`1

(f) One pair of coplanar
lines: one pair parallel, the
third skew but not in a par-
allel plane.

`2

`3

`1

(g) One pair of coplanar
lines: one pair parallel,
third in a parallel plane.

`2

`3

`1

(h) Two pairs of copla-
nar lines: two intersecting
pairs.

`2

`3

`1

(i) Two pairs of coplanar
lines: one pair parallel, one
pair intersecting.

`2
`3

`1

(j) Three pairwise paral-
lel lines in three distinct
planes.

`2

`3

`1

(k) Three concurrent lines
in three distinct planes.

`2 `3`1

(l) Three coplanar parallel
lines.

`2 `3`1

(m) Three coplanar lines:
two are parallel, the third
intersects them.

`2 `3
`1

(n) Three coplanar concur-
rent lines.

`2

`3

`1

(o) Three coplanar pair-
wise intersecting lines (not
concurrent).

Figure 2: Classification of the degenerate cases.

by space subdivision. CGTA, 21(3):87–120,
2002.

[8] H. Everett, D. Lazard, S. Lazard, and M. S. E.
Din. The Voronoi diagram of three lines in R3.
In SoCG’07, pages 255–264, S. Korea, 2007.

[9] M. . Karavelas. A robust and efficient im-
plementation for the segment voronoi dia-
gram. In Proc. Internat. Symp. on Voronoi
diagrams in Science and Engineering, pages
51–62, 2004.

[10] M. I. Karavelas.‘ A robust and efficient imple-
mentation for the segment Voronoi diagram.
In International Symposium on Voronoi Dia-
grams in Science and Engineering, pages 51–
62, 2004.

[11] V. Koltun and M. Sharir. Three dimensional
euclidean Voronoi diagrams of lines with a

fixed number of orientations. SIAM Journal
on Computing, 32(3):616–642, 2003.

[12] V. J. Milenkovic. Robust construction of
the Voronoi diagram of a polyhedron. In
CCCG’93, pages 473–478, 1993.

[13] B. Mourrain, J.-P. Técourt, and M. Teillaud.
On the computation of an arrangement of
quadrics in 3D. CGTA, 30(2):145–164, 2005.

[14] E. Schömer and N. Wolpert. An exact and
efficient approach for computing a cell in an
arrangement of quadrics. CGTA, 33(1-2):65–
97, 2006.

[15] M. Sharir. Almost tight upper bounds for
lower envelopes in higher dimensions. DCG,
12:327–345, 1994.

4

EuroCG’09 - Brussels, Belgium

300

Voronoi Diagram in the Klein model using Finsler Geometry

A. Laleh A. Mohades Z. Nilforoushan M. M. Rezaii∗

Abstract

In this paper in order to compute the Voronoi dia-
gram in Finslerian spaces, we consider a Finsler space
with the Funk metric and exhibit the hyperbolic Klein
model. Since in this space the geodesics are straight
lines, our computations of Voronoi diagrams are done
in the Klein model rather than Finslerian space.

1 Introduction

Given a set of sites and a distance function from a
point to a site, a Voronoi diagram can be roughly
described as the partition of the space into cells that
are the locus of points closer to a given site than to
any other site.

Voronoi diagrams belong to the computational
geometry’s favorite structures. They arise in nature
and have applications in many fields of science [4].
Excellent surveys on the background, construction
and applications of Voronoi diagrams can be found
in Aurenhammer’s survey [2] or the book by Okabe
et al. [9]. In 1995, Onishi and Takayama proposed
the construction of Voronoi diagram on the Upper
half-plane, one of the 2-dimensional hyperbolic space
models [10]. In addition, the second and third authors
studied this idea on the other 2-dimensional hyper-
bolic model called Poincaré disk [8] and generalized 3-
dimensional hyperbolic Voronoi diagrams [7]. In [10]
the authors have mentioned to study the Voronoi di-
agram in Finsler space and this motivated us to do
some research in this direction.

Finsler geometry in a sense could be interpreted as
a generalization of the Riemannian geometry. In this
geometry, the distance of two points will depend on
two factors, location of points and direction. That
is, the distance function is not necessarily symmet-
ric. In this paper we will study a convex space with a
certain Finslerian metric whose geodesics are straight
lines (such metrics are very important to be studied,
since they relate to Hilbert’s fourth problem). This
approach will lead to having the benefit of doing sim-
pler computations to construct the Voronoi diagram
in special Finslerian spaces.

∗Faculty of Mathematics and Computer Science, Amirkabir
University of Technology, Tehran, Iran. {aglaleh, mohades,

nilforoushan, mmreza}@aut.ac.ir

2 The Finsler geometry

In this section we present some facts on the Finsler
geometry.

Observation 1 We use here the Einstein summation
convention, i.e., vi∂/∂xi represents

∑n
i=1 v

i∂/∂xi and
so forth.

Definition 1 Let V be a finite dimensional vector
space. A Minkowski function on V is a function L :
V −→ [0,∞) which has the following properties:
1. L is C∞ on V \{0}
2. L is positively homogeneous of degree two, i.e.,
L(λy) = λ2L(y), ∀λ > 0, ∀y ∈ V.
3. For every 0 6= y ∈ V , the fundamental form gy is
non-degenerate, where
gy : V × V −→ R,
gy(u, v) = 1

2
∂2

∂s∂t [L(y + su+ tv)] |s=t=0.
A Minkowski space is such a pair (V,L).

Let M be a n-dimensional manifold with a local
coordinates system x = (x1, ..., xn). Suppose TM is
the tangent bundle of M with the natural projection
π : TM −→ M. Let (x, y) = (x1, ..., xn, y1, ..., yn) be
a local coordinates system on TM . We denote a point
x ∈ M with its coordinates system (xi) and a vector
y ∈ TM with its coordinates (xi, yi), if no confusion
is occurred .

Definition 2 Let M be an n-dimensional manifold.
a Finsler metric onM is a function L : TM −→ [0,∞)
which has the following two properties:
1. L is C∞ on TM\{0}
2. For any x ∈ M , the restriction function Lx :=
L |TxM is a Minkowski function on TxM . A Finsler
space is such a pair (M,L).

Let C be an oriented smooth curve in M given by
the equations xi = xi(t), t ∈ [a, b], i = 1, ..., n, with
A = (xi(a)) and B = (xi(b)). Suppose AB is non-
degenerate, that is, L(x(t), ẋ(t)) 6= 0, ∀t ∈ [a, b],
where x(t) = (xi(t)), and ẋ(t) = (dxi

dt). The curve
C := (xi(t)) is called a geodesic of the Finsler mani-
fold (M,L), if for any coordinate system (x, y) there
exist a parameter s on C such that xi = xi(s) is a
solution of

d2xi

ds2
+
∂Gi

∂yk
(x(s), x′(s))

dxk

ds
= 0 i = 1, 2, (1)

1

Voronoi Diagram in the Klein model using Finsler Geometry

301

Now let B2 be the unit disc in R2 with the Euclidean
norm |.| . For any two points p, q ∈ B2, let zpq ∈ ∂B2

be the intersection point of the line passing through
p and q with ∂B2. Define d(p, q) := ln | zpq−p

zpq−q |, then
d is a non-reversible distance on B2, i.e., d(p, q) ≤
d(p, r)+d(r, q), and d(p, q) 6= d(q, p). Here d is called
the Funk distance.

Definition 3 Let d stand for the Funk distance on
B2. Define d : B2 × B2 −→ [0,∞) by d(p, q) =
d(p,q)+d(q,p)

2 . d is a distance which is called the Klein
distance.

Note that we have d(p, q) = d(q, p), but d(p, q) 6=
d(q, p).

Let d and d be the Funk and the Klein distances
on B2, if X = (x, y) ∈ B2 and Y = (u, v) ∈ TB2 −
{0} = R2 − {0}, let FX(y) = limε−→0+

d(X,X+εY)
ε

and FX(y) = limε−→0+
d(X,X+εY)

ε . Then by direct
calculation we obtain that

F =

√
(xu+ yv)2 + (u2 + v2)(1− x2 − y2) + xu+ yv

1− x2 − y2
,

F =

√
(xu+ yv)2 + (u2 + v2)(1− x2 − y2)

1− x2 − y2
,

moreover we have, Fx = FFu, Fy = FFv.
Let (S, F) be a Finsler surface. For a curve C on

S issuing from p to q, the length of C is given by
L(C) =

∫ b

a
F (α̇(t))dt, where α : [a, b] −→ S is the

coordinate map of C with α(a) = p and α(b) = q.
Assume that C is covered by a coordinate map ϕ :

D −→ S. We can express α(t) by α(t) = ϕ(x(t), y(t)).
Put L(x, y, u, v) := 1

2F
2(Y), Y = uϕx+vϕy. By the

methods in the calculus of variation we know that the
functions x(t) and y(t) satisfy the following second
order differential equations:

x′′(t) + 2G(x(t), y(t), x′(t), y′(t)) = 0, (2)

y′′(t) + 2H(x(t), y(t), x′(t), y′(t)) = 0, (3)

where G = G(x, y, u, v) and H = H(x, y, u, v) are
given by

G :=
(LxLvv − LyLuv)− (Lxv − Lyu)Lv

2(LuuLvv − LuvLuv)
,

H :=
(−LxLuv − LyLuu) + (Lxv − Lyu)Lu

2(LuuLvv − LuvLuv)
.

We call G and H the geodesic coefficients of F .

Lemma 1 Let (S, F) be a Finsler surface and ϕ :
D −→ S a coordinate map such that the geo-
desic coefficients G and H are in the forms G =
P (x, y, u, v)u, H = P (x, y, u, v)v. Then any path
on the surface must be the image of a straight line
under ϕ.

Proof. We provide a proof in the full paper. ¤

Definition 4 Let (S, F) be a Finsler surface. The
Gaussian curvature of S is defined by

K(Y) =
1

F 2(Y)
{2Gx + 2Hy + 2GuHv − 2HuGv −Q2

−Qxu−Qyv + 2GQu + 2HQv},

where Q := Gu +Hv.

Now by direct calculation and using Lemma 1, we
have K = −1 (we provide a proof in the full paper).
Thus geodesics of F are straight lines.

Hence by considering the Funk metric for the
Finsler space, one can reach to the Klein model as
one of the hyperbolic space models. The curvature of
this model is −1 and its geodesics are straight lines.
In the next section we study this model in detail.

3 Geometric structures in the Klein model

In this section we will investigate one of the hyper-
bolic geometry models which built within Euclidean
geometry, that maintains just the Euclidean notion
of lines but not angles. In this model, points are the
set of points inside the unit circle B2 and lines will
be any chord of the boundary of B2 minus the end
points. The points which lie on the boundary of B2

are treated as the points-at-infinity. In the following
we listed some required notions of the Klein model.

3.1 Line

For any two points A and B inside B2, the Euclidean
chord passing through A and B is the line connecting
A and B.

3.2 Distance

To compute the distance between two points A and
B, construct the Euclidean chord connecting A and
B and assume that it intersects ∂B2 at the points P
and Q. Using the Euclidean length of AP , AQ, BP
and BQ we define the Klein distance between A and
B by dK(A,B) = 1

2 ln AP.BQ

AQ.BP
.

3.3 The pole of a Klein line

Let l be a line and assume that l intersects the bound-
ary of B2 at two points Q and R. Then the intersec-
tion of the tangent lines at Q and R to the boundary
of B2 which will be stood for P (l), is a point and is
called the pole of line l.

2

EuroCG’09 - Brussels, Belgium

302

3.4 The construction of a Klein line perpendicular
to the given Klein line AB through a given
point C lying on AB

Using the pole of line AB, say P , draw the Euclidean
line connecting C and P . PC intersects the boundary
of B2 at two points, say M and N . Then the chord
MN will be perpendicular to the given line AB at the
points of intersection.

3.5 Midpoint of a Klein segment

Let A, B be two points inside the B2 and P be the
pole of Klein line AB. The Euclidean lines PA and
PB intersect the boundary of B2 at four points, say S,
S′, T and T ′. Therefore the intersection point of two
chords ST ′ and S′T is the midpoint of the segment
AB.

3.6 Perpendicular bisector

By combining 7 and 9, we can construct the perpen-
dicular bisector of the given segment.

3.7 Circle

There is an isomorphism between the Klein model
and Poincaré disk1 model that takes the basic ob-
jects of the Klein model in to the basic objects in the
Poincaré disk, which preserves the basic relationships
(e.g., incidence congruence, betweenness, etc.) and
vice versa:

φ : B2 −→ D, φ(z) =
2z

1 + |z|2 (4)

In order to construct the Klein circle centered at point
O with radius OP (for a given point P in B2), let O′ =
φ(O) and P ′ = φ(P) be the corresponding points in
D. Then construct the Poincaré circle centered at O′

with radius O′P ′, say C ′. Hence, our desired Klein
circle is φ−1(C ′).

Now if O is the center of a Klein circle and P is a
point on it, we use the isomorphism φ and find the
images O′ = φ(O) and P ′ = φ(P), which O′ and
P ′ are in the Poincaré disk D. Next, construct the
Poincaré circle centered at O′ with radius O′P ′, say
C1. Therefore, if X ′ is an arbitrary point on C1, by
using φ−1, we have X = φ−1(X ′) in the Klein model
B2. Hence the Klein circle C2 centered at O with
radius OP , is the locus of points X as the point X ′

moves around circle C1.
For more details on the mentioned notions of the

Klein model, see [5].

1The Poincaré disk model is another two-dimensional model
for hyperbolic geometry which is defined as the disk D =
{(x, y) ∈ R2|x2 + y2 < 1}, with hyperbolic metric ds2 =

dx2+dy2

(1−x2−y2)2
; see [1] for more details.

Observation 2 We notice that B2 and D are the
same sets, but we choose two different symbols to
emphasize that we have two different models (with
different metrics).

4 Basics of Voronoi diagrams in the Klein model

Most of the material and terminology contained in
this section has been presented in [6]. We include it
here for the convenience of the reader and study in
the Klein model.

The definition of the Voronoi diagram, that is some-
times called the metric fundamental polygon, is rather
simple. Think of a metric space (B2, dK) and some
sites S = {p1, ..., pn} ⊂M .

Definition 5 Given two sites p, q ∈ B2, the bisector
B(p, q) consists of all points x ∈ B2 that have the
same Klein distance to p as to q, i.e.

B(p, q) = {x ∈ B2 | dK(p, x) = dK(q, x)}. (5)

When S = {p1, p2}, the bisector gives the Voronoi
diagrams of S. In general, any Voronoi edge is the
part of a bisector. A bisector in B2 has the following
impressive property.

Lemma 2 For any two points p1, p2 ∈ B2, there exist
a bisector for them in B2 and it would be a geodesic
of B2

Proof. Using Subsection 3.6 and the fact that any
chord of the boundary of B2 is a geodesic of B2, the
proof is immediate. ¤

In addition, the metric dK makes it possible to define
half-spaces as in the Euclidean case.

Definition 6 Let p, q ∈ B2. D(p, q) is the set of all
points that are closer to p than to q:

D(p, q) = {x ∈ B2 | dK(p, x) < dK(q, x)}. (6)

An analogue characterization can be made for q:

D(q, p) = {x ∈ B2 | dK(p, x) > dK(q, x)}. (7)

Hence for any bisector B(p, q), each of the two con-
nected components D(p, q) and D(q, p) of B2\B(p, q)
is called half-space.

Lemma 3 Half-space is a convex set.

Proof. We provide a proof in the full paper. ¤

Now it is possible to declare Voronoi regions and
the Voronoi Diagram:

3

Voronoi Diagram in the Klein model using Finsler Geometry

303

Definition 7 V R(p, S) =
⋂

q∈S\{p}D(p, q) is called
Voronoi region of p with respect to S. Furthermore
V R(S) =

⋃
p∈S ∂V R(p, S), is titled Voronoi diagram

of the reference point set S.

Lemma 4 For any point O(x, y) ∈ B2, the set of
points with constant Klein distance from the point O
is a circle.

Proof. Using Subsection 3.7 and [8], the proof is im-
mediate. ¤

Lemma 5 For given three distinct points in B2, the
set of points which has the same Klein distance from
three points, if exists, is a point.

Proof. Using Subsection 3.7 and [8], the proof is im-
mediate. ¤

Definition 8 A set C ⊂ B2 is called strongly star
shaped if and only if there exists a center point p ∈ C
such that for every point q ∈ C every shortest geodesic
between p and q belongs to C.

This yields the following

Theorem 6 Consider the Klein model B2 with its
intrinsic distance function dK . Every Voronoi region
V R(p, S) is strong star shaped with center p.

Proof. We bring the proof it in the full paper. ¤

A direct consequence of this theorem is stated in the
next result.

Corollary 7 Let B2 be the Klein model and dK the
Klein distance function. Every Voronoi region is con-
nected.

Theorem 8 Let (B2, dK) be the Klein metric space
and S the set of sites. Then every Voronoi region
V R(pi, S) is open and V (S) is closed.

Proof. We provide a proof in the full paper. ¤

5 Construction of the Voronoi diagrams in the
Klein model using plane sweep algorithm

In this paper we will use the plane sweep algorithm.
In [3], Dehne and Klein gave the first determinis-
tic algorithm for computing the Voroni diagram of n
points in an arbitrary nice metric in the plane within
O(n log n) time and linear space and among the effi-
cient deterministic algorithms, they chose the plane
sweep algorithm which might be the easiest one to
implement.

Since the Klein model B2 is a subset of the plane, it
is sufficient to show that dK enjoys all the conditions
of nice metric.

Definition 9 A metric d on R2 is called nice if:
1. each d-circle contains a standard circle, and vice
versa,
2. each d-circle is contained in a standard circle,
3. for any two points a and c there exists a point
b /∈ {a, c} such that d(a, c) = d(a, b) + d(b, c) holds,
4. if p, r are two points, or a point and a line, then
the boundary of B(p, r) consists of two curves each
of which is homeomorphic to a line. The intersection
of two such curves consists of finitely many connected
components..

Lemma 9 The Klein metric dK is a nice metric.

Proof. We provide a proof in the full paper. ¤

Now by Theorem 16 of [3] and Lemma 9, the following
Corollary will be attained.

Corollary 10 The Voronoi diagram of n points in
B2 can be computed by the plane sweep algorithm in
optimal time O(n log n), using linear space.

References

[1] J. W. Anderson. Hyperbolic Geometry. New York.
Springer-Verlag, 1999.

[2] F. Aurenhammer and R. Klein. Voronoi Diagrams.
In: J. R. Sack and G. Urrutia (Eds.), Handbook
on Computational Geometry, Elsevier, pp. 201–290,
1999.

[3] F. Dehne and R. Klein. ”The Big Sweep”:On the
Power of the Wavefront Approach to Voronoi Dia-
grams. Algorithmica, 17(1), pp. 19–32, 1997.

[4] S. Drysdale. Voronoi diagrams: Applications from
Archaology to Zoology. Regional Geometry Institute,
Smith College, July 19, 1993.

[5] M. Greenberg. Euclidean and Non-Euclidean Geome-
tries: Development and History. W. H. Freeman and
Company, Newyork, 3rd Edition, 1993.

[6] R. Klein. Concrete and abstract Voronoi diagrams.
LNCS 400, Springer-Verlag, Berlin, 1989.

[7] Z. Nilforoushan, A. Laleh, M. M. Rezaii and A. Mo-
hades. 3-D Hyperbolic Voronoi Diagrams. Submitted
to Computer-Aided Design, 2006.

[8] Z. Nilforoushan and A. Mohades. Hyperbolic Voronoi
Diagram. ICCSA 2006, LNCS 3984, pp. 735–742,
2006.

[9] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu.
Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. Wiley Series in Probability and
Statistics, 2000.

[10] K. Onishi and N. Takayama. Construction of Voronoi
diagram on the Upper half-plane. In IEICE TRANS.
Fundamentals. Vol. E79-A, 2, pp. 533–539, 1995.

4

EuroCG’09 - Brussels, Belgium

304

A Practice-Minded Approach to Computing Motorcycle Graphs∗

Stefan Huber† Martin Held‡

Abstract

We study the computation of motorcycle graphs and
give the first formal definition of the motorcycle graph
as a set of constraints rather than as the result of some
process. A constructive proof that the constraints can
be fulfilled is cast into a simple algorithm for comput-
ing motorcycle graphs, with geometric hashing used
for speeding up the algorithm. Extensive practical
tests of the C++ implementation of our algorithm on
over 22 000 data sets provide the surprising practical
evidence that it processes n motorcycles in O(n log n)
time on average. This observation is backed by a
stochastic analysis which reveals that our hash-based
algorithm can be expected to run in O(n

√
n log n)

time, provided that the motorcycles are sufficiently
uniformly distributed in the plane.

1 Introduction

1.1 Motivation

Consider n motorcycles in the plane, each starting at
some point and driving with a constant speed along
a straight path. As a motorcycle proceeds it leaves
a trace behind it on the plane. Every motorcycle
crashes when it reaches the trace left behind by an-
other motorcycle: it stops moving, but its own trace
remains. Roughly speaking, the motorcycle graph is
the union of the resulting motorcycle traces.

Motorcycle graphs were introduced by Eppstein
and Erickson [3], who also presented an algorithm
which runs in O(n17/11+ε) time. Motorcycle graphs
are known to be related to straight skeletons: Cheng
and Vigneron [1] studied a straight-skeleton algorithm
for simple polygons that computes the motorcycle
graph in a preprocessing step in O(n

√
n log n) worst-

case time. Motorcycle graphs are also related to other
problems like visibility and art gallery problems, see
[2, 3]. Recently, Eppstein et al. [4] introduced mo-
torcycle graphs on quad literal meshes for extract-
ing canonical partitions of those. However, despite
of their practical usefulness no implementation of a
sub-quadratic algorithm is known.1

∗Work supported by Austrian FWF Grant L367-N15.
†Universität Salzburg, FB Computerwissenschaften, A-5020

Salzburg, Austria, shuber@cosy.sbg.ac.at
‡Universität Salzburg, FB Computerwissenschaften, A-5020

Salzburg, Austria, held@cosy.sbg.ac.at
1In personal communication with David Eppstein and Siu-

1.2 Our contribution

We suggest an algorithm for computing motorcycle
graphs that is both easy to implement and fast. We
start with a formal definition of the motorcycle graph
which does not define the motorcycle graph as the out-
come of some process, and argue that our definition
conforms to the one given by Eppstein and Erickson.
Subsequently, we show how to apply geometric hash-
ing in order to get a simple and easy-to-implement
algorithm for computing motorcycle graphs.

Even though the motorcycles might move across
large portions of the hash grid during the course
of computation, our C++ implementation exhibits a
surprisingly good performance in over 22 000 practical
tests, involving tests with more than a million motor-
cycles. More precisely, in the vast majority of our
tests we achieve an O(n log n) behavior. The prac-
tical speed of our algorithm prompted us to analyze
the expected time complexity of our hash-based al-
gorithm: investigating stochastic questions given by
random rays on a rectangular grid allows us to pre-
dict an O(n

√
n log n) expected complexity of our al-

gorithm for n random motorcycles.
Our implementation can handle a set of motorcy-

cles and a set of rigid walls formed by straight-line
segments. (If a motorcycle crashes into a wall then
it stops, too.) Furthermore, our implementation can
cope with simultaneous crashes of motorcycles at the
same place, and new motorcycles can be launched at
arbitrary points in the course of computation. Thus,
our motorcycle-graph algorithm could be used to com-
pute the straight skeleton by means of an approach
similar to the one by Cheng and Vigneron [1].

1.3 Definitions

We regard a triple m = (p, s, t∗) ∈ R2 × R2 × [0,∞)
as a motorcycle, where p denotes the start point, s
denotes the speed vector, and t∗ denotes the start
time. We denote by Rm(t) := {p+ t′s : t∗ ≤ t′ ≤ t}
the supporting ray of m until time t and define and
Rm(∞) := {p+ t′s : t∗ ≤ t′}. The time Tm(q) when
m reaches a point q ∈ Rm(∞) is given by Tm(q) :=
(q−p)·s
||s||2 .
Let mi = (pi, si, t

∗
i), with i ∈ {1, . . . , n}, be n mo-

torcycles and assume that their start points p1, . . . , pn

Wing Cheng we learned that they also are not aware of imple-
mentations of their algorithms.

1

A Practice-Minded Approach to Computing Motorcycle Graphs

305

are pairwise distinct. We consider the following sys-
tem of conditions for the times t†1, . . . , t

†
n ∈ [0,∞]:

∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . , n} \ {i} :

∀p ∈ Rmi
(t†i) ∩Rmj

(t†j) :

Tmi(p) ≥ Tmj (p) ⇒ t†i ≤ Tmi(p) (1)

Lemma 1 There always exists a solution vector
(t†1, . . . , t

†
n) that fulfills Conditions (1). The solution

vector is unique if it is requested to be maximal ac-
cording to lexicographical order, after rearranging all
solutions t†i in sorted order.

Proof. If the supporting rays Rm1(∞), . . . , Rmn
(∞)

do not cross, then we can set t†1 = · · · = t†n :=
∞. So suppose that there are intersections among
the supporting rays. We choose an intersection
point q ∈ ⋃

i,j 6=iRmi
(∞) ∩ Rmj

(∞) such that
max(Tmi(q), Tmj (q)) is minimized over all intersec-
tions. W.l.o.g., we assume that Tmi(q) ≥ Tmj (q) and
let t := Tmi

(q). We can regard mi as the first motor-
cycle which crashes; it crashes against mj at point q
in time t. Obviously, setting t†1 = · · · = t†n := t allows
us to fulfill Conditions (1). On the other hand, if we
choose t†i > t then at least one of the conditions of
(1) is violated. Hence, we set t†i := t. Now we repeat
our considerations for intersections among supporting
rays of motorcycles in {m1, . . . ,mn} \ {mi}, and in-
terpret the result as the second crash of a motorcycle.
We keep going until no intersections among the sup-
porting rays of the remaining motorcycles exist. We
set t†k :=∞ for all remaining motorcycles mk.

By construction, t†1, . . . , t
†
n fulfill Conditions (1).

Also due to the construction, the solutions are ob-
tained in sorted order and, thus, are maximal and
unique. �

Definition 1 We call t†k (of Conditions (1)) the
crashing time of the k-th motorcycle mk, and we de-
note by Sk := Rmk

(t†k) the trace of mk.

Definition 2 We call
⋃n

k=1 Sk the motorcycle graph
of the n motorcycles m1, . . . ,mn.

Corollary 2 Motorcycle traces do not intersect in
their relative interiors.

Algorithm 1 A simple algorithm for computing mo-
torcycle graphs is obtained by converting the proof of
Lem. 1 into an algorithm: we find the crashes of the
motorcycles iteratively in chronological order.

We are not aware of an prior formal definition of a
motorcycle graph. However, our definition fits to the
considerations of prior work. This can be seen by fig-
uring out that Algorithm 1 exactly computes what is
described as “motorcycle graph” in prior publications.

In practice it may be requested to consider straight-
line segments as rigid walls such that motorcycles
crash when they run into a wall. We can easily ex-
tend our definition to satisfy this request: in Def. 2,
we do not choose t†k ∈ [0,∞], but t†k ∈ [0, t‡k], where
t‡i denotes the minimal time Tmk

(q) for intersection
points q of Rmk

(∞) with a wall. If no such intersec-
tion exists for mk then we resort to the old definition
by setting t‡k :=∞.

2 Computing Motorcycle Graphs

2.1 Algorithm

We first discuss the algorithm by Cheng and Vigneron
[1], as our algorithm can be interpreted as a practice-
minded simplification of their algorithm. Since there
are O(n2) many intersections of the supporting rays of
the motorcycle traces, but only O(n) of them realize
a crash, Cheng and Vigneron try to reduce the com-
plexity of interactions among the motorcycles. This is
done by using so-called 1/

√
n-cuttings, which can be

interpreted as a very special kind of geometric hash-
ing. A 1/

√
n-cutting is a partition of R2 into a set of

simplices; it has the powerful property that no more
than O(

√
n) rays intersect a single simplex.

Basically, the algorithm of Cheng and Vigneron is
a discrete simulation of the movement of the motor-
cycles on the cutting. The simulation consists of two
types of events: crash events and switch events. The
former one indicates a crash of a motorcycle; the later
one indicates a switch of a motorcycle from one sim-
plex of the cutting to a neighboring one. In the course
of simulation, events are put into a priority-queue,
and the algorithm iteratively fetches the earliest event
and processes it. However, we are not aware of any im-
plementation of Cheng and Vigneron’s algorithm. In
any case, implementing the algorithm for the 1/

√
n-

cutting does not seem to be easy. In our approach, we
replace the 1/

√
n-cutting of Cheng and Vigneron by

a simple regular rectangular hash grid and drop their
arrangements.

The input for our algorithm is a set of motorcy-
cles M = {m1, . . . ,mn}, as defined in Sec. 1.3, and a
set W of line segments representing the walls. We as-
sume that all motorcycles start at distinct points that
lie within a unit bounding box. We restrict our com-
putation to a larger copy of the bounding box, which
can be imposed easily by adding four walls represent-
ing the boundary. We maintain a priority queue2 Q of
pending crash and switch events and a list C of (bal-
anced) binary search trees C[m] for each motorcycle
m. As already mentioned, we simulate the movement
of the motorcycles, as Cheng and Vigneron do: we
use a geometric hash H (consisting of uniform rect-

2We may use some sort of minimizing heap, where the pri-
ority is the occurrence time of an event.

2

EuroCG’09 - Brussels, Belgium

306

angular cells) for tracking the motorcycle traces and
a geometric hash G for the wall-segments. We use the
same h× h uniform rectangular grid for both H and
G, with h ∈ Θ(

√
n).

Algorithm 2 The basic algorithm first fills G with
all walls from W and invokes insertMc(m) for ev-
ery motorcycle m ∈ M . Then, the main loop of the
algorithm successively fetches the minimal element e
from Q and invokes handle(e) on it, depending on
the type of the event e. The procedures insertMc()
and handle() are described in the sequel.

insertMc(motorcycle m): We first add to C an
empty binary search tree C[m]. Then we insert
a switch event e for m to Q, with the time of e
set to the start time of m.

handle(switch event): We denote by t,m, c the
occurrence time, the motorcycle affected, and the
cell that is being entered. At first, we add the
next switch event of m to Q, if m leaves c at
some point in the future.

Then we get all walls from G that are in cells
that intersect c and denote them by walls. If m
crashes into elements of walls then we determine
the wall with minimal crashing time and add a
respective crash event to Q.

Now we reconstruct the search tree of potential
future crash events. First, we clear C[m] and de-
note by mcs all other motorcycles currently as-
sociated with c. For every m′ ∈ mcs, we check
whether the supporting rays of m and m′ inter-
sect within c. If they intersect then we denote by
q′ the potential crash point. If m′ reaches q′ be-
fore m then we add a corresponding crash event
of m into m′ to C[m]. If, on the other hand, m
reaches q′ before m′ does then we denote by e′ a
potential crash event of m′ into m. If e′ is not
earlier than the earliest event in C[m′] then we
insert e′ into C[m′]. Otherwise, we update Q: we
remove all possibly remaining crash events of m′

from Q and re-add them to C[m′], and also add
e′ to Q.

Finally, we add the minimal element of C[m] to
Q, if one exists, and associate m with the cell c
of H.

handle(crash event): Let t,m, c denote the occur-
rence time, the motorcycle affected, and the cell
of H in which the crash event occurs. First, we
markm as being crashed, clear C[m], and remove
the possibly remaining switch event of m in Q.
Note that the trace of m ends at the crash point.

Then we clean up the interactions with other
motorcycles: let mcs be the other motorcycles
that are associated with the cell c. For every

m′ ∈ mcs, we remove from Q the crash event
of m′ against m, if the crash event has become
invalid since it occurs outside of the trace of m.
Further, if C[m′] contains an invalid crash against
m then it is also removed from C[m′].

Obviously, Alg. 2 determines the crash events in
chronological order. Furthermore, we note that Q
contains at no time t a crash event against a mo-
torcycle m at place q, if m already crashed and never
reached q. Thus, there are no “stale” crash events in
Q.

Let k be the number of motorcycles in a hash
cell. Then a crash event is handled in O(k log n)
time3. Same holds for switch events. Since there are
O(n) crash events and O(n

√
n) switch events, and

k ∈ O(n), we get O(nkh log n) ⊆ O(n2
√
n log n) as

the worst-case complexity. Obviously, the worst case
would take place if Ω(n) motorcycles would cross Ω(h)
hash-cells before crashing. For big data sets this ba-
sically means that most motorcycles move parallel to
each other in a strip with the thickness of a few hash-
cells and no other motorcycles cross the strip before
them.

2.2 Expected run-time

As witnessed by our experiments, our implementa-
tion achieves an “almost linear” run-time on the vast
majority of our data sets. This experimental result
motivates a formal analysis of the expected run-time
of our algorithm. Studying questions related to ran-
dom rays within a hash grid allows us to substantiate
claims for a good average-case complexity of our al-
gorithm. We summarize our results in the following
two theorems.

Theorem 3 Let S be a unit square covered by a h×
h grid. We distribute n random4 rays in S. The
expectation of the number of rays intersecting any
cell of the grid is in Θ(n

h).

Theorem 4 Consider n random motorcycles within
the unit square S. The expected number of cells in-
tersected by a motorcycle trace is in Θ(4

√
n).

Proofs related to our stochastic analysis are omitted
due to lack of space. However, experimental evidence
for the second theorem is provided by our tests: see
the plot of the mean trace lengths in Fig. 1. As an
immediate consequence, we get that the mean num-
ber of switch events per motorcycle is in Θ(4

√
n). Vice

versa, in a hash cell there are Θ(4
√
n) motorcycles on

average. A combination of these results yields an ex-
pected run-time of O(n

√
n log n), as claimed.

3We can remove an arbitrary element of Q in O(log n) time,
if we maintain a pointer in Q.

4Start point and direction angle of each ray are distributed
uniformly on S × [0, 2π).

3

A Practice-Minded Approach to Computing Motorcycle Graphs

307

10-1

100

101

102

103 104 105 106

number n of motorcycles

Figure 1: This plot shows for every data set the mean
trace length of the motorcycles, multiplied by

√
n, i.e.,

by the square root of the number of motorcycles.

3 Experimental Results

Our code is called MOCA 5. It was implemented in
C++, based on standard IEEE 754 double-precision
floating-point arithmetic. To the best of our knowl-
edge, this is the first implementation of a sub-
quadratic motorcycle-graph algorithm. For this rea-
son, we do not compare our code with other imple-
mentations, but content ourselves with a discussion
of the performance of MOCA. The tests presented
were run on a 32-bit Debian Linux machine, with a
2.66 GHz Core Duo Intel processor, using 4 GB of
RAM. For time measurement, we used the C function
getrusage() and sum up user and system time.

For our tests we obtained motorcycles from
straight-line polygonal chains6: We generate motor-
cycles by considering three consecutive vertices v′, v′′

and v′′′ in a chain. A motorcycle starts at time 0 and
place v′′, in direction v′′−v′

||v′′−v′|| + v′′−v′′′
||v′′−v′′′||| , and with

speed 1
sin α/2 , where α is the angle between the ver-

tices v′, v′′ and v′′′. This corresponds to the set-up
used by Cheng and Vigneron [1]. We ran MOCA on
more than 22 000 polygonal data sets, consisting of
synthetic and real-world data. Our real-world data
sets — obtained from companies, colleagues, and the
web — include polygonal cross-sections of human or-
gans, GIS maps of roads and river networks, polyg-
onal outlines of fonts, and boundaries of work-pieces
for NC machining or stereo-lithography, and the like.
The synthetic data also contains contrived data, like
extremely smooth polygons or highly irregularly dis-
tributed vertices.

Figure 2 illustrates the actual run-time on every
single data set in a double-logarithmic run-time plot,
with the time given in seconds on the y-axis. For a
better illustration, the run-times are divided by the
number n of motorcycles processed. (To avoid unre-
liable timings and other idiosyncrasies of small data
sets, we only plot results for test runs with at least

5MOtorcycle CrAsher.
6The polygonal chains may be open or closed and need not

be simple. Several chains per test can be handled.

10-5

10-4

10-3

10-2

103 104 105 106

number n of motorcycles

Figure 2: This plot shows the actual run time in sec-
onds on about 22 000 data sets. Depicted are the run-
times divided by the number n of motorcycles.

1000 motorcycles.) A least-squares fit reveals that
MOCA processes nmotorcycles in 5.05489·10−6n log n
milliseconds on average on our computer. In our
experiments, the polygonal chains were inserted as
walls. Anyhow, additional tests demonstrated that
inserting or disregarding the polygonal chains has
hardly any impact on the run-time.

4 Conclusion

We introduce an easy-to-implement algorithm for
computing motorcycle graphs and obtain the surpris-
ing result that the combination with geometric hash-
ing makes it very competitive in practice. Exten-
sive practical tests of our C++ on over 22 000 data
sets clearly demonstrate the reliability and speed of
the C++ implementation of our algorithm, based on
standard IEEE 754 floating-point arithmetic: Our
implementation processes n motorcycles in 5.05489 ·
10−6n log n ms on average on our computer. This ex-
perimental result is backed by a stochastic analysis,
which leads toO(n

√
n log n) as the expected run-time.

References

[1] S.-W. Cheng and A. Vigneron. Motorcycle Graphs and
Straight Skeletons. In Proc. 13th ACM-SIAM Sympos.
Discrete Algorithms, pages 156–165, Philadelphia, PA,
USA, 2002. Society for Industrial and Applied Math-
ematics.

[2] J. Czyzowicz, I. Rival, and J. Urrutia. Galleries, Light
Matchings and Visibility Graphs. In WADS ’89: Proc.
of the Workshop on Algorithms and Data Structures,
pages 316–324, London, UK, 1989. Springer-Verlag.

[3] D. Eppstein and J. Erickson. Raising Roofs, Crash-
ing Cycles, and Playing Pool: Applications of a Data
Structure for Finding Pairwise Interactions. Discrete
Comput. Geom., 22(4):569–592, Dec 1999.

[4] D. Eppstein, M. T. Goodrich, E. Kim, and R. Tam-
storf. Motorcycle Graphs: Canonical Quad Mesh
Partitioning. Computer Graphics Forum, 27(5):1477–
1486, Sep 2008.

4

EuroCG’09 - Brussels, Belgium

308

Robust Extraction of the Medial Axes of 3D Objects

Kazutoshi Kan∗ Kokichi Sugihara†

Abstract

In this paper, we propose a robust algorithm to sim-
plify the medial axes of 3D objects. This method
first assigns weights to points on the medial axis in
such a way that important points get larger weights,
and next simplifies the medial axis by removing points
whose weights are smaller than threshold. The re-
sulting simplified medial axis is guaranteed to be ho-
motopically equivalent to the original object for any
value of the threshold. This method works well even
for constricted objects like hourglasses.

1 Introduction

The Medial Axis (MA) is a basic representation of a
geometric shape and provides many useful tools for
shape description, image analysis, and shape recog-
nition. However, the MA has an inherent instability
that the perturbation of the boundary shape induces
large modification in its MA. This is the reason for
the difficulty of approximating the MA in a stable
manner.

Various methods to simplify the MA are pro-
posed [1, 3, 5]. However for constricted objects like
hourglasses, these methods sometimes evaluate the
centers of the objects quite lower than their actual
importance. In addition to this, their method does
not necessarily preserve homotopy or need compli-
cated processes to preserve the homotopy equivalence.

We take a new approach to prune the MA of 3D ob-
jects. Our method has the following good properties.
• It prunes branches generated by perturbation of

the boundary shape
• It works well for constricted shapes
• It preserves homotopy with a simple process
• As the threshold increases, the simplified MA be-

comes smaller monotonously
We first focus on the research of Sakai & Sugi-

hara [4]. They proposed a robust method to prune
the MAs of 2D objects. It satisfies these properties.
In our research, we try to extend their method to 3D
objects.

In their method, each point on the MA is associ-
ated with a segment of the boundary of the original
object, and is assigned the length of the segment as

∗Department of Mathematical Informatics, University of
Tokyo, kazutoshi kan@mist.i.u-tokyo.ac.jp

†Department of Mathematical Informatics, University of
Tokyo, sugihara@mist.i.u-tokyo.ac.jp

the weight. These weights evaluate the centers of con-
stricted object higher and branches generated by per-
turbation lower. The weights have a monotone prop-
erty: as the threshold increases, the simplified MA
becomes smaller monotonously. At the same time ho-
motopy is preserved. These excellent properties allow
us to prune unnecessary branches effectively.

Our objective is to construct similar monotone
weights to the MA of a 3D object. For an analogy
to the two dimensional case, we try to define weights
using areas of parts of the boundary of a 3D object.

To accomplish our purpose, we use the concept
of the Curve Skeleton (CS) [2]. It is a one dimen-
sional object and is homotopy equivalent to its origi-
nal shape. Our basic idea is as follows: first, we map
the shape X to the MA using homotopic function.
Next we map the MA to the CS. Then we construct
monotone weights for points on the CS; that is easy
because it is one dimensional. Then we construct
monotone weights for the MA using these weights
with desired properties.

2 Instability of the Medial Axis

The MA is expected to be a figure centered in a shape.
Especially we call the MA medial surface for a 3D
object because it consists of 2-dimensional surfaces.
Mathematical definition of the MA is as follows.

Let shape X ⊂ Rn be an open set．For any x ∈
X, Γ(x) denotes the set of all the nearest points on
boundary ∂X from x ∈ X:

Γ(x) = {y ∈ Xc : d(x, y) = d(x,Xc)},
where Xc represents the compliment of X, and d rep-
resents the Euclidian distance. Then the MA of the
shape X is defined as the set of points in X that have
at least two closest points on the boundary ∂X. That
is,

MA[X] = {x ∈ X : |Γ(x)| ≥ 2}.
The MA has instability in the sense that perturba-

tion of the boundary of the shape induces large mod-
ification of the MA. For example, Figure 2 shows the
MA of a 2D shape in panel (a) and that of a perturbed
shape in panel (b). We can observe that small changes
of the boundary generate nonessential branches in the
MA. In the case of 3D objects, nonessential two di-
mensional branches are generated.

In applications, input data of a shape has obser-
vational and numerical errors as perturbations. Thus
the MA obtained directly from the input data includes

1

Robust Extraction of the Medial Axes of 3D Objects

309

(a) the MA of a 2D
shape

(b) the MA of the per-
turbed shape

Figure 1: instability of the MA
many unnecessary parts and is quite different from the
ideal MA which we want to get. This motivates us to
prune the MA computed from the scanned data.

3 Curve Skeleton

In this section, we briefly explain the Curve Skeleton
(CS) proposed by Dey & Sun [2], and extend it for our
purpose. The CS is the one dimensional axis in a 3D
object X ⊂ R3. In what follows, we assume that the
shape X is bounded and its boundary ∂X is smooth
and connected.

We first introduce the Medial Geodesic Function
(MGF). This function is defined in MA2, where MA2

is the set of points which satisfy |Γ(x)| = 2.

Definition 1 (Medial Geodesic Function) For a
point x ∈ MA2, let Γ(x) = {ax, bx}. Then, we define
f(x) as the geodesic distance on the boundary ∂X
between ax and bx, and call it the Medial Geodesic
Function (MGF).

We want to define the CS as the set of singular
points of MGF on MA2. This definition is adequate
if the MA is 2-manifold, but the MA is non-manifold
in general and this definition is not sufficient. Hence
we extend this definition. In what following, we call
a maximum 2-manifold part of the MA as a sheet.

We define a divergence of ∇f to extend the def-
inition of the CS. The domain of this definition is
cl(MA2).

Definition 2 (Divergence) For any point x ∈
cl(MA2), we define div(x)|S by

div(x)|S = lim
|B|→0

1
|B|

∫
∂B

f · n ds,

where S is the sheet containing x, B is an open neigh-
borhood of x constrained in S, and n is the normal
vector on the boundary towards outside of B.

We call div(x)|S the divergence of ∇f at x on the
sheet S. S can be omitted when x ∈ MA2 because
the sheet containing x is unique.

We now define the CS using this divergence.

Definition 3 (Curve Skeleton) Let A be the set of
points x belonging to the boundaries of two or more
sheets in the MA such that the divergence of ∇f at

x is negative for all sheets containing x. Let B be
the set of points that are not contained in any sheet.
Then the CS is defined as the closure of A ∪B.

The reason for requiring the closure is to prevent for
the CS to become disconnected because of singular
points.

Conjecture 1 The CS is homotopy equivalent to X.

4 Global and Local Weights of the Curve Skeleton
and Medial Axis

In this section, we give global weights to points in the
MA and the CS. At first, we define a local weight of
a subset of the MA as the ratio of the area of the cor-
responding region to the total area of the boundary.
That is, for any subset A of the MA,

w(A) = 2 · S(
∪

x∈A

Γ(x))/S(∂X),

where S(Y) means the area of surface Y .
Next, we construct a global weight of the CS. We

assume the shape X is homotopy equivalent to a single
point and the CS is one dimensional object. Hence the
CS is a tree.

If we split the CS at a point x ∈ CS, the CS is
divided into two or more subtrees T1, . . . , Tk (k ≥ 2).
The weight of each subtree is defined as the local
weight of the union of the associated surface points:
that is

w

 ∪
y∈Ti

p(y)

 ,

where for a point y ∈ CS, p(y) means the set of points
that the flow of ∇f starting at the point arrives at
y. We define the global weight of a point x ∈ CS
as the second largest value of the weights of these
subtrees T1, . . . , Tk. Suppose that the flow starting
from x ∈ MA reaches a point y ∈ CS. Then we define
a global weight of a point x as the weight of y.

This weight gets larger values at main part of the
axis, and smaller values at perturbation-originated
branches, because it represents the area of the sur-
face part that generates the associated axis point.

Conjecture 2 For almost every x ∈ MA, the flow of
∇f starting from x reaches a point in the CS and the
arrival point is unique.

Conjecture 3 The global weight of the MA has
monotone property at almost everywhere: for any
threshold, the part of the MA that the weight of its
point is larger than the threshold is homotopy equiv-
alent to the original MA or is empty.

2

EuroCG’09 - Brussels, Belgium

310

Conjectures 1, 2 and 3 turn out to be true if we
restrict to objects bounded by triangular meshes, and
consequently the algorithm proposed in this paper is
valid, as will be seen in the next section.

5 Algorithms

Our algorithm takes the 2-manifold surface mesh P as
an input shape. It outputs the global weights of the
MA and the CS. Our algorithm consists of four steps.
In the first step, we find a collection of Voronoi facets
as the MA. In the second step, we use the method
proposed by Dey & Sun [2] with some modifications
to extract the CS. In the third step we assign the ∇f
vectors as labels for the facets in MA. In the last step,
we give the local and global weights for vertices and
facets in the MA and vertices and edges in the CS
using labels. We will describe those steps in more
details.

5.1 Finding the Medial Axis and Curve Skeleton

Step 1: At first, we generate a Voronoi diagram
from the vertices of P and then extract Voronoi facets
contained in P . We regard them to be the MA. If
they are not homotopy equivalent to a single point,
we refine the surface mesh of P by dividing triangles
into four subtriangles using new vertices inserted at
middle points and try again.

Step 2: We choose edges in the MA as the candi-
dates of CS and calculate ∇f vector for each facet of
the MA.

Let aF and bF be the two endpoints of the Delaunay
edge dual to a facet F in the MA. We find the shortest
path {aF , u1, . . . , uk, bF } on the boundary from aF to
bF . Then we focus on two vectors that come towards
the endpoints, i.e., vaF

= aF −u1 and vbF
= bF −uk.

We project the two vectors to the plane containing F
and sum them. At last we normalize the vector and
regard it as the ∇f vector of the facet F .

Next we find the CS. Let div|F (e) be the divergence
at an edge e for the facet F , and let n be the normal
vector of e towards inside of F on the plane containing
F . Then div|F (e) is defined as the inner product of
the normal vector n and the ∇f vector at F :

div|F (e) = n · ∇f(F).

We introduce a parameter θ and initialize it to 1.
We extract edges in the MA such that the divergence
is less than θ for all facets containing the edge. If the
set of extracted edges does not contain any loop, we
regard it to be a subset of the CS, else decrease the
value of θ and try extraction again.

After that, we prune the facets and the edges from
the boundary of the MA as long as the remaining part
of the MA preserves its homotopy until all the facets
are removed. We regard the set of remaining edges to
be the CS.

5.2 Label Assignment

Step 3: Suppose that the flow of ∇f starting at
a facet F reaches an edge e in the CS. Then we label
the facet F with the edge e.

Precisely, consider the flow on the facet F and select
an edge e that the divergence is minimum among all
the edges of F . Then we choose the next facet of
the flow as the facet on the other side of e. If there
are more than three facets containing the edge e, we
choose the facet that has the largest divergence and
regard it to be the next facet Fnext:

Fnext = argmax
F ′∈N(e)\F

(div|F ′(e)),

where N(e) is the set of facets containing the edge e.

5.3 Calculation of the Global Weights

Step 4: For each vertex v of the MA, we find
a Delaunay tetrahedron dual to v, and calculate the
ratio of the area of the facet on the boundary of P
to the total area of the boundary and double it. We
consider it as the local weight of v and denote it as
LVW(v). If any facet of the Delaunay tetrahedron is
not on the boundary, the local weight of the vertex is
set to be zero.

Next we translate the local weights of vertices to the
weights of facets. We equally divide the local weight of
a vertex v to facets containing v and accumulate them
for all vertices contained in a facet F . Then regard
it as the local weight of the facet F and denote it as
LFW(F). This translation preserves the total amount
of the local weights.

We now calculate the local weight for the CS edges.
We denote the local weight of an edge e of the CS as
LEW(e). Then LEW(e) is the summation of the local
weights of facets labeled with e:

LEW(e) =
∑

F∈MA, label(F)=e

LFW(F),

where label(F) is an edge name labeled to F .
For any vertex v of the CS when we split the CS

at v, we get subtrees T1, . . . , Tk (k ≥ 2). Then we
accumulate the LEW(e) in each subtree and select
the second largest value of them as the global weight
of v. This is a global weight of a vertex of the CS
and we denote it as GVW(v). Then GEW(e), the
global weight of an edge e of the CS, is defined as the
average of GVW of the both endpoints. After that,
we assign facets of the MA with the global weights
of the associated edges of the CS, and regard it as
the global weight of the facet of MA. We denote it as
GFW.

The outputs of our algorithm are the global weights
of the facets GEW of the MA and the edges of the CS
GFW. It is easy to confirm the following proposition
from the procedure for computing the global weight.

3

Robust Extraction of the Medial Axes of 3D Objects

311

Proposition 1 The global weights of the CS has a
monotone property.

5.4 Hole Filling

Let the set of edges of the CS and facets of the MA
be Y . It is desirable to preserve homotopy of Y while
we delete from Y the part of the MA and the CS that
the global weight is less than the threshold.

However it can occur that a hole is generated and
hence the homotopy changes. In that case, we fill the
hole as post-processing to guarantee the homotopy
equivalence. For this purpose, we find the loop as the
boundary of the hole. The loop cuts out a part from
the 2-manifold sheets of the MA or divide them into
some parts. Therefore we recover facets inside hole.
This operation is rarely necessary in practice.

6 Example

Figure 2 shows an example of the behavior of our al-
gorithm. An input shape “Homer” is shown in Figure
2(a). Figure 2(b) is the initial CS, and Figures 2(c)
and 2(d) are pruned ones with the threshold values
0.01 and 0.1, respectively. We can see that the CS
shrinks gradually as the threshold increases. Figure
2(e) is the initial MA∪CS, that is, the MA associated
with Figure 2(b) and the CS in Figure 2(b). Figures
2(f) and 2(g) are the pruned MA∪CSs associated with
Figures 2(c) and 2(d), respectively. We can see that
as the threshold increases, the MA ∪ CS also shrinks
and thus insignificant branches are pruned.

7 Conclusion

We proposed a robust method to simplify the MA of
3D objects. This method prunes the MA by weights
which reflect the global significance of the objects, and
preserves its homotopy. Especially it works well even
for constricted objects.

The basic properties of the CS and MA defined
mathematically are still conjectures (i.e., Conjec-
tures 1, 2 and 3), but we could construct our algo-
rithm in such a way that those basic properties are
guaranteed for the digital approximation of the CS
and MA extracted in the procedure of the algorithm.
That is, the output CS and MA are guaranteed to
be homotopy equivalent to the input object no mat-
ter what value is chosen as threshold for pruning. To
prove the conjectures in a mathematical framework is
one of the problems for future.

We can extend our method for the object that are
not homotopy equivalent to a single point. However
we omit details because of the space limitation.

Acknowledgments

We would like to acknowledge CGAL library we used
for our program. We thank AIM@SHAPE for pro-

(a)

(b) (c) (d)

(e) (f) (g)

Figure 2: Results of our algorithm
viding 3D models and Tamal. K. Dey [2] of Ohio
State University for making his software available. We
are deeply grateful to Shinji Imahori of University of
Tokyo for his valuable advices. This work is supposed
by the Grant-in-Aid for Scientific Research (B), No.
20360044 of the Japanese Society for Promotion of
Science.

References

[1] D. Attali and A. Montanvert: Computing and sim-
plifying 2D and 3D continuous skeletons. Computer
Vision and Image Understanding, 1997, Vol. 67, 261–
273.

[2] T. K. Dey and J. Sun: Defining and computing curve-
skeletons with medial geodesic function. In Proceed-
ings of the 4th Eurographics Symposium on Geometry
Processing, 2006, 143–152.

[3] T. K. Dey and W. Zhao: Approximating the medial
axis from the Voronoi diagram with a convergence
guarantee. Algorithmica, 2003, Vol. 38(1), 179–200.

[4] H. Sakai and K. Sugihara: Stable and topology-
preserving extraction of medial axes. In Proceedings
of the 3rd International Symposium on Voronoi Dia-
grams in science and engineering, 2006, 40–47.

[5] A. Sud, M. Foskey and D. Monocha: Homotopy-
preserving medial axis simplification. In Proceedings
of the 2005 ACM Symposium on Solid and Physical
Modeling, 2005, 39–50.

4

EuroCG’09 - Brussels, Belgium

312

Continued Work on the Computation of an Exact Arrangement of
Quadrics

Michael Hemmer∗ Sebastian Limbach∗ Elmar Schömer†

Abstract

We present an exact and complete algorithm for the
computation of all edge cycles bounding the faces of
a three-dimensional arrangement of algebraic surfaces
of degree two (quadrics). The algorithm is based on
the implementation by Hemmer et al. [9] which com-
putes the adjacency graph of the arrangement. How-
ever, this graph is just the set of vertices and their
connectivity along the edges. We enhance each vertex
of the graph by a description of its local neighborhood
in a so-called environment map, which finally enables
the initialization of all edge cycles in the arrangement.
This is a major step towards the computation of the
full arrangement. The implementation is complete up
to a few special cases, and covers several variants in
order to compute the environment map.

1 Introduction

We aim for the computation of the three-dimensional
arrangement A(Q) induced by a given set Q of
quadric surfaces, or quadrics for short. A quadric Qf

is given by a trivariate polynomial f ∈ Q[x, y, z] of de-
gree 2. Quadrics cover a couple of common surfaces
such as spheres, ellipsoids, cones, cylinders, hyper-
boloids, planes, and double planes. The set of input
surfaces may also cover simple rational planes. The
arrangement A(Q) is the decomposition of R3 by the
surfaces into cells of dimension 0 (vertices), 1 (edges),
2 (faces) and 3 (volumes) [8]. Arrangements are ubiq-
uitous in computational geometry and can be applied
to many problems, for instance, they can serve as
a fundamental first step for CSG operations. How-
ever, existing inexact, floating point based implemen-
tations suffer from rounding errors which can lead to
ruinous effects. In contrast, existing exact and com-
plete methods are often not efficient enough for actual
application (e.g. [3]). Our goal is to close this gap by
following an approach that is exact and complete by
design, on the one hand, and efficient enough to be
used in practice, on the other hand.

On this way a major goal was recently reached:
Hemmer et al. [4, 9] presented an implementation for

∗Max-Planck-Institut für Informatik, 66123 Saarbrücken,
{hemmer,slimbach}@mpi-inf.mpg.de

†Institut für Informatik, Johannes Gutenberg-Universität
Mainz, schoemer@uni-mainz.de

Figure 1: Four environment sphere maps and the cor-
responding edges of the 3-dimensional arrangement.

the computation of the adjacency graph G(Q). The
approach is based on Dupont et al. [5, 10], which
provides an exact parameterization of the appear-
ing intersection curves. With these parameteriza-
tions, the approach represents the intersection points
of quadrics by the exact parameter values with respect
to the intersection curves they lie on. Therefore, it is
possible to sort the points along the curve, which en-
ables the initialization of the adjacency graph.

Obviously, the adjacency graph G(Q) does not con-
tain enough information in order to represent the full
arrangement as it just stores all vertices and edges
of the arrangement A(Q). The missing parts are the
two and three dimensional cells, that is, the faces and
volumes of the arrangement and, in particular, their
incidences at each vertex. Therefore, we investigate
the local neighborhood of each vertex. It is repre-
sented by a two dimensional arrangement which is
conceptually embedded on a sphere. We call this the
environment map1 of a vertex.

A vertex on the sphere corresponds to an incom-
ing edge of G(Q) and a halfedge on the sphere corre-
sponds to an incident halfface of A(Q). That is, each
face of A(Q) is bounded by a sequence of halfedges
whereas each of these halfedges can be identified with
a halfedge of an environment map. This is similar to
the existing approach for the arrangement of planes
in [6, 7].

1Here, the term “environment map” is not related to its
usage in the context of computer graphics.

1

Continued Work on the Computation of an Exact Arrangement of Quadrics

313

A more detailed discussion of the environment map
is given in Section 2. With these details, Section 3
shows how the edge-cycles in the three dimensional ar-
rangement are initialized. Section 4 presents the avail-
able implementations, which are compared in Sec-
tion 5.

The algorithm is implemented within the context
of the Exacus2 project.

2 The environment map

Let v be a vertex of A(Q) and Qv ⊆ Q be the set
of quadrics v lies on. Obviously, the quadrics in Qv

are the only quadrics that influence the local neigh-
borhood. In order to obtain a representation of this
local neighborhood the idea is to intersect Qv with a
sufficiently small sphere S centered at v. This results
in a two-dimensional arrangement A(C) induced by
the intersection curves C = {Ci = Qi ∩ S | Qi ∈ Qv}.
The arrangement A(C) consists of cells of dimension
0, 1 and 2 on the surface of S.

Obviously, there exists an r0 such that every ar-
rangement on a sphere Sr with radius r ≤ r0 has the
same topology as the arrangement on Sr0 . The fun-
damental question is how to detect that the sphere
is actually small enough. Obviously, the arrangement
does not change once the sphere is small enough with
respect to every single quadric, every pair of quadrics
and every triple of quadrics out of Qv. The following
three constrains ensure this.

1. If v is the apex of a cone, or v lies in the common
line of intersecting planes, the topology of the
intersection of this surface with S will not change
at all. For any other quadric, the intersection
with the interior of S must be homeomorphic to
a disk, that is, the quadric induces exactly one
intersection curve homeomorphic to a circle on
the sphere.

2. The intersection of every pair of quadrics (inter-
section curves) of Qv intersected with the interior
of S must be homeomorphic to a line segment (or
two intersecting line segments, in case of a nodal
quartic with v at its nodal point).

3. The intersection of triples of quadrics (vertices)
of Qv intersected with the interior of S of correct
size must be v itself.

Note that the bounding object does not need to
be a sphere, for instance, it could be replaced by
a box or an even simpler bounding object. There-
fore, we decided to follow the generic programming
paradigm [1] using the C++ template mechanism and

2“Efficient and exact algorithms for curves and surfaces”,
http://www.mpi-inf.mpg.de/projects/EXACUS/.

kept the code generic in the way the local neighbor-
hood is constructed and represented. We can instan-
tiate the code by any type that fulfills a certain set of
requirements. Such a set of of requirements is called
a concept. A type that fulfills all these requirements
is called a model of the concept. More precisely, we
introduced the concept EnvironmentMap 2, which we
briefly discuss next.

Given a vertex v a model of EnvironmentMap 2 is
supposed to represent the local neighborhood of v by
a two dimension arrangement that is conceptually em-
bedded on a sphere. The arrangement is stored in a
Dcel data structure consisting of halfedges, vertices
and faces. Since a vertex on the sphere corresponds
to an incoming edge of G(Q), the model must iden-
tify each vertex with the corresponding outgoing edge
of G(Q). Similarly, every halfedge must be identi-
fied with the corresponding quadric. This is comple-
mented by the so-called alignment flag, which is used
to associate each halfedge with either the inside or
the outside of the corresponding quadric. These in-
formations are needed later on, since they allow the
identification of the next edge in an 3D-edge cycle.
For more details, which are in particular relevant in
case of degenerated quadrics (e.g. two intersection
planes), we refer to [11].

Note that we actually do not enforce that the lo-
cal neighborhood is constructed via the intersection
with a concrete bounding object. We will use this
fact in Section 4, which provides a model that com-
putes the local neighborhood based on the tangent
planes of all quadrics in Qv at v. This will turn
out to be very efficient but it is not applicable in
all cases. Therefore, we defined the additional con-
cept EnvironmentMapFilter 2. It has the same re-
quirements as EnvironmentMap 2 and in addition it
requires a static function that takes the vertex as in-
put and returns a boolean flag indicating whether the
filter is applicable or not.

3 Initializing the edge cycles

The environment maps provide us with all informa-
tion the algorithm needs for traversing an edge cycle
bounding a halfface3.

We start at an arbitrary halfedge of the environ-
ment map of any vertex. The associated surface and
the indication whether the halfedge belongs to the in-
side or the outside of the surface (the alignment flag)
correspond uniquely to one of the halffaces adjacent
to the halfedge. From the endpoint of our halfedge
we travel along the associated edge of G(Q), reaching
a new vertex on the next environment map. We then
pick the next outgoing halfedge by comparing the as-
sociated surface and the alignment flag and continue

3In analogy to the Dcel of our environment maps, we divide
each face into two halffaces.

2

EuroCG’09 - Brussels, Belgium

314

until we reach our starting edge again. The creation
of all edge cycles is implemented accordingly.

4 Environment map models

Our implementation consists of two different ap-
proaches for the computation of an environment map:

Sphere map model: The first intuitive idea for
constructing the environment map of a vertex v is the
actual computation of an arrangement on a spherical
surface. This results in an arrangement A(C) of inter-
section curves of degree up to four. Berberich et al. [2]
developed a general framework for sweeping a set of
curves embedded on a 2D-parametric surface. An
implementation is available in the Arrangement on
surface 2 package of Cgal4. The sphere map model
uses the Arrangement on surface with history 2
(AoS) class of this Arrangement on surface 2 pack-
age for the computation of the two-dimensional ar-
rangement A(C) together with a construction history.
It is a model of the EnvironmentMap 2 concept.

The AoS class is capable of constructing the ar-
rangement of intersection curves induced by quadric
surfaces on a given base surface. So it remains to con-
struct and to initialize a sphere of the correct size as
a base surface, to convert the arrangement obtained
from the AoS class into our own Dcel representation,
to connect all vertices and halfedges of A(C) with the
corresponding edges and surfaces from the adjacency
graph and finally to initialize the alignment flag.

For the matching of the vertices of A(C) with the
outgoing edges at v, we intersect the edges with S
to obtain a set of intersection points on each edge.
We then use a matching algorithm based on so-called
bigfloat interval (BFI) arithmetic for matching ap-
proximations of the positions of the vertices with
approximations of the positions of the intersection
points. A bigfloat is a multi precision floating point
number, that is, the bitsize of its representation is
only limited by the available memory. A BFI is an
interval number type which uses bigfloats as interval
borders. See [9, 11] for more details about the appli-
cation of BFIs in our algorithms.

For the matching of the halfedges with the corre-
sponding quadrics we only have to look at the con-
struction history of the AoS class. It remains to ini-
tialize the alignment flag on each halfedge. For this
flag we usually take the midpoint of the successor of
the halfedge and check if the point is inside or out-
side the quadric. Alternatively, if the next halfedge
belongs to the quadric we want to check, we take the
midpoint of the successor of the twin halfedge and
negate the result. If we are in the rare situation that
both successors are part of the quadric, we go the
other way around: We take any point on S that is

4“Computational Geometry Algorithms Library”,http://
www.cgal.org.

not part of the quadric, compute whether it is at the
inside or the outside of it, and check if the point is
inside the face bounded by the halfedge, or in any
face which is a hole inside the face bounded by the
halfedge.

Nef filter model: The computation of an arrange-
ment on a concrete sphere can be a very costly and
complex task. At the same time, such arrangements
can get simpler if we consider an infinitesimally small
sphere. In such a case, the surfaces of all general
quadrics are equivalent to their tangential planes at
the position of v. To avoid the high algebraic degrees
occurring in an exact representation of the normal
vectors of these tangential planes, we approximate all
vectors using sufficiently precise BFI approximations.
The arrangement A(C) exists and is unambiguous as
long as all tangential planes exist and all triples of
normal vectors of the involved tangential planes are
linearly independent. Therefore, the drawback of this
approach is that it can not be applied in general. But
the overall performance benefits from the application
of such a model as a filter.

The Nef filter model is implemented using the
Nef polyhedron S2 class from the Nef S2 package
of Cgal. This class is capable of representing two-
dimensional Nef polyhedrons (arrangements of half-
spaces bounded by lines in the plane), embedded on
a sphere [6, 7]. Our implementation is a model of the
EnvironmentMapFilter 2 concept.

We first construct the sufficiently precise BFI ap-
proximations of all normal vectors of the tangen-
tial planes. Afterwards, we can computed the two-
dimensional arrangement A(C) on S using the Nef
polyhedron S2 class. Next, we convert the arrange-
ment into our own Dcel representation. For each new
halfedge, we determine the corresponding surface, as
well as the value of the alignment flag. We obtain the
corresponding surface the halfedge is embedded in by
matching the normal vector of the plane induced by
the origin and the halfedge with the normal vectors
of all tangential planes of the surfaces. Whether the
normal vectors have the same or opposite direction
indicates the belonging of the halfedge to the inside
or the outside of the corresponding surface.

For each vertex of A(C), we identify the intersection
curve the vertex is associated with, and we determine
the corresponding edge of G(Q). We obtain the sup-
porting curve by looking at the two associated sur-
faces of the halfedges adjacent to the vertex of A(C).
Finally, we determine the corresponding edge we as-
sociate with each vertex by matching the direction
from v to the vertex with the tangent vector of the
supporting curve at v.

3

Continued Work on the Computation of an Exact Arrangement of Quadrics

315

5 Benchmarks

We compared the runtime of our models by a series
of benchmarks. First, we directly compared the per-
formance of our sphere map implementation to the
implementation of the Nef filter model on a set of
quadrics with random coefficients. The results of this
benchmark are presented in table 1.

|Q| sphere map [s] filter [s] adja. graph [s]
3 1.3986 0.204885 0.099786
4 18.2372 0.786321 0.244173
5 86.3439 1.68017 0.512816
6 237.234 1.74667 0.337523
7 352.006 2.91448 0.535007
8 580.153 4.79391 0.797845
9 853.958 7.06226 1.14679
10 1168.73 8.6739 1.50417

Table 1: Comparison of the sphere map model and
the Nef filter model on random quadrics.

In such a random situation, the probability of hav-
ing degenerated environments at vertices is practically
zero. Therefore, we can always apply the faster Nef
filter implementation. One observes that the gain in
runtime for the Nef filter potentiates with respect to
the increasing number of vertices of the three dimen-
sional arrangement.

|Q| sphere map [s] filter [s] adja. graph [s]
3 60.2265 5.62893 1.3789
4 165.422 19.6249 5.02124
5 404.945 38.7777 12.8201
6 971.758 73.1718 25.1551

Table 2: Comparison of the sphere map model and the
filter model on an arrangement with one degenerated
vertex environment.

For the second benchmark, we compared the per-
formance of the general sphere map model implemen-
tation with a filtered model implementation, that de-
cides whether to apply the sphere map or the Nef fil-
tered implementation for each vertex. We tested the
implementation on an increasing number of quadrics
that all intersect tangentially in one vertex. At this
vertex, the filter cannot apply the Nef filter and has
to fall back to the slower general model. Table 2
shows the results of the second benchmark. As in
the previous benchmark, the sphere map implemen-
tation performs worse than the filtered version. The
time to take the decision whether or not to apply the
filter and the overhead of initializing the edge cycles is
negligible compared to the runtimes of the adjacency
graph and the environment map computation.

6 Conclusion and outlook

We presented an algorithm, a concept and two differ-
ent implementations for the computation of all edge
cycles bounding the faces of the three-dimensional ar-
rangement of a set of quadrics. For the complete ini-
tialization of the faces, however, we still have to detect
the holes of each face, that is, information about the
nesting of the faces. For that, the idea is to construct
intersection curves on the quadrics and to intersect
them with the other quadrics of the arrangement. The
order of the intersections provides the required infor-
mation about the nesting of the faces.

References

[1] M. H. Austern. Generic Programming and the STL.
Addison-Wesley, 1998.

[2] E. Berberich, E. Fogel, D. Halperin, K. Mehlhorn,
and R. Wein. Sweeping and maintaining two-
dimensional arrangements on surfaces: A first step.
In Proc. ESA 2007, LNCS, pages 645–656, Eilat, Is-
rael, 2007. Springer.

[3] G. E. Collins. Quantifier elimination for real closed
fields by cylindrical algebraic decomposition. In Sec-
ond GI Conference on Automata Theory and Formal
Languages, volume 33 of LNCS, pages 134–183, 1975.

[4] L. Dupont, M. Hemmer, S. Petitjean, and
E. Schömer. Complete, exact and efficient implemen-
tation for computing the adjacency graph of an ar-
rangment of quadrics. In Proc. ESA 2007, LNCS,
pages 633–644, Eilat, Israel, 2007. Springer.

[5] L. Dupont, D. Lazard, S. Lazard, and S. Petitjean.
Near-optimal parameterization of the intersection of
quadrics: I+II+III. Journal of Symbolic Computa-
tion, 2008.

[6] M. Granados, P. Hachenberger, S. Hert, L. Kettner,
K. Mehlhorn, and M. Seel. Boolean operations on 3D
selective Nef complexes. In Proc. ESA 2003, LNCS,
pages 654–666, Budapest, Hungary, 2003. Springer.

[7] P. Hachenberger. Boolean Operations on 3D Selective
Nef Complexes. PhD thesis, Universität des Saarlan-
des, Saarbrücken, Germany, 2006.

[8] D. Halperin. Arrangements. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, chapter 24, pages 529–562.
Chapman & Hall/CRC, 2nd edition, 2004.

[9] M. Hemmer. Exact Computation of the Adjacency
Graph of an Arrangement of Quadrics. PhD thesis,
Johannes Gutenberg-Universität, Mainz, Germany,
2008.

[10] S. Lazard, L. M. Peñaranda, and S. Petitjean. Inter-
secting quadrics : An efficient and exact implemen-
tation. In Proc. 20th ACM Symposium on Computa-
tional Geometry, Brooklyn, NY, 2004.

[11] S. Limbach. Continued Work on the Computation of
an Exact Arrangement of Quadrics. Master’s thesis,
Universität des Saarlandes, Saarbrücken, Germany,
2008.

4

EuroCG’09 - Brussels, Belgium

316

Exact Construction of Minimum-Width Annulus of Disks in the Plane∗

Ophir Setter† Dan Halperin†

Abstract

The construction of a minimum-width annulus of a set
of objects in the plane has useful applications in di-
verse fields, such as tolerancing metrology and facility
location. We present a novel implementation of an al-
gorithm for obtaining a minimum-width annulus con-
taining a given set of disks in the plane, in case one ex-
ists. The algorithm extends previously known meth-
ods for constructing minimum-width annuli of sets
of points. The algorithm for disks requires the con-
struction of two Voronoi diagrams of different types,
one of which we call the “farthest-point farthest-site”
Voronoi diagram and appears not to have been inves-
tigated before. The vertices of the overlay of these
two diagrams are candidates for the annulus’ center.
The implementation employs an asymptotically near-
optimal randomized divide-and-conquer algorithm for
constructing two-dimensional Voronoi diagrams. Our
software utilizes components from Cgal, the Com-
putational Geometry Algorithms Library, and follows
the exact computation paradigm. We do not assume
general position. Namely, we handle degenerate input
and produce exact results.

1 Introduction

An annulus is the bounded area between two concen-
tric circles. The width of an annulus is the difference
between the radii of its outer and inner bounding cir-
cles. Given a set of objects in the plane, the objec-
tive is to find a minimum-width annulus containing
those objects. Figure 1(c) shows such an annulus for a
set of disks. Constructing a minimum-width annulus
has applications in various fields including tolerancing
metrology and facility location [11, 19].

A minimum-width annulus does not always exist.
If the width of the set of objects1 is smaller than
the width of any containing annulus, then there is
no minimum-width annulus.

In the case of point sets, a minimum-width annu-
lus must have (at least) two points on each of its

∗This work has been supported in part by the Israel Science
Foundation (grant no. 236/06), by the German-Israeli Foundation
(grant no. 969/07), and by the Hermann Minkowski–Minerva Cen-
ter for Geometry at Tel Aviv University.

†School of Computer Science, Tel-Aviv University, 69978,
Israel. {ophirset,danha}@post.tau.ac.il

1The width of a set is defined to be the width of the thinest
strip (i.e., the area bounded between two parallel lines) con-
taining it.

outer and inner circles [15]. Hence, the center of
a minimum-width annulus must lie on an intersec-
tion point of the nearest-neighbor and the farthest-
neighbor Voronoi diagrams of the points. Using this
observation, an algorithm for finding a minimum-
width annulus of planar points was developed [5, 16].

Similar methods were used to solve different vari-
ations of the problem, such as finding a minimum-
width annulus of point sets with different constraints
on its radii (e.g., fixed inner radius) [3], and finding
a minimum-width annulus bounding a polygon [10].
For some special cases there are specific deterministic
sub-quadratic algorithms [4, 8, 17].

Agarwal and Sharir introduced the most efficient
(randomized) algorithm to date for constructing a
minimum-width annulus of planar points, which
achieves an expected running time of O(n3/2+ε) [1].

2 Solving the Problem for Disks

Given a set of objects O in the plane (also called
Voronoi sites) and a distance function ρ, the nearest-
neighbor Voronoi diagram of O with respect to ρ is
the partition of the plane into maximally connected
cells, where each cell consists of points that are closer
to one particular site (or a set of sites) than to any
other site. The bisector of two Voronoi sites is the
locus of all points that have an equal distance to
both sites. A similar definition is used to define the
farthest-neighbor Voronoi diagram.

Recall that in the case of point sets, a minimum-
width annulus can be found by overlaying the nearest-
neighbor and farthest-neighbor Voronoi diagrams of
the points. We show that a similar approach applies
to the case of sets of disks, but the relevant diagrams
require more careful definitions.

Instead of constructing the nearest-neighbor
Voronoi diagram of the points we construct the
additively-weighted Voronoi diagram of the disks, also
known as the Apollonius diagram [14].

The Apollonius diagram is the Voronoi diagram de-
fined for disks with respect to the following distance
function ρ. For a point p and a disk D with a center
c and radius r, we define ρ(p, D) = ||p− c|| − r. The
distance between a point outside a disk and the disk
is the Euclidean distance. Apollonius bisectors, which
compose the diagram, are branches of hyperbolas.

Instead of constructing a farthest-neighbor Voronoi
diagram of points we construct a different diagram,

1

Exact Construction of Minimum-Width Annulus of Disks in the Plane

317

which requires the definition of another distance func-
tion. Consider the following farthest-point distance
function from a point p ∈ R2 to a set of points S ⊂ R2:

ρ(p, S) = sup
x∈S

||p− x||,

which measures the farthest distance from the point p
to the set S. Consider the farthest-neighbor Voronoi
diagram with respect to this distance function. We
call this diagram the “farthest-point farthest-site”
(FPFS) Voronoi diagram. The distance function ρ
becomes the Euclidean distance when the set S con-
sists of a single point. However, this is not the case
when the set S is, say, a disk in the plane.

The following lemma characterizes the FPFS
Voronoi diagram of disks in the plane, showing that
the bisectors induced by its sites are hyperbolic arcs.

Lemma 1 The bisector of two disks in the plane in-
duced by the farthest-point distance function is one
branch of a hyperbola, and is identical to the Apollo-
nius bisector of the disks with swapped radii.

Proof. Let (cA, rA), (cB, rB) be two disks in the
plane with respective centers cA, cB and radii rA, rB.
Their farthest-point distance bisector is the zero set
of the equation ||x − cA|| + rA = ||x − cB|| + rB,
which is the same as the zero set of ||x− cA|| − rB =
||x−cB||−rA. The latter equation describes the Apol-
lonius bisector of (cA, rB), (cB , rA). �

We now prove that there is a minimum-width an-
nulus (in case one exists) whose center is a vertex of
the overlay of the Apollonius diagram and the FPFS
Voronoi diagram of the disks.

Let D = {d1, . . . , dn} be a collection of disks in the
plane, such that for all i, di 6⊆

⋃
j 6=i dj . For simplicity

of exposition, we assume here that n ≥ 3; the case of
n < 3 is simple to handle. Let IN ,ON ⊆ D denote
the set of disks that touch the inner and outer cir-
cles of a bounding annulus N, respectively. We show
that there is a minimum-width annulus whose circles
intersect the disks of D in at least 4 points.

Theorem 2 If there is a minimum-width annulus
containing D, then there is a minimum-width annulus
N such that |IN |+ |ON | ≥ 4.

We omit the detailed proof in this extended abstract.
Each minimum-width annulus must touch the disks
of D in at least two points, as we can shrink ON and
expand IN until each of them touches a disk. In the
case where N does not touch the disks of D in at least
4 points, we can move N and obtain a smaller width
annulus.

Applying Theorem 2, we distinguish between three
cases for a possible location of the center of a
minimum-width annulus:

1. |IN | ≥ 3 and |ON | = 1 – the center coincides
with a vertex of the Apollonius diagram.

2. |IN | = 1 and |ON | ≥ 3 – the center coincides
with a vertex of the FPFS Voronoi diagram.

3. |IN | ≥ 2 and |ON | ≥ 2 – the center lies on an
intersection point of the Apollonius diagram and
the FPFS Voronoi diagram.

We therefore construct each of the diagrams and over-
lay them. For each vertex of the overlay, we retrieve
four relevant disks (either three touching the inner cir-
cle and the one touching the outer circle, in case 1, or
three touching the outer circle and the one touching
the inner circle, in case 2, or two pairs of disks touch-
ing respectively the inner and outer circles), and com-
pute the width of the resulting annulus. We output
the annulus of the smallest width. Figure 1 illustrates
the algorithm for computing a minimum-width annu-
lus of a set of disks and a highly degenerate input,
which is handled properly by our implementation.

The FPFS Voronoi diagram can be defined as a
farthest site abstract Voronoi diagram [12]. Hence,
FPFS Voronoi diagrams are of linear complexity in
the size of the input (as are Apollonius diagrams).

3 Constructing General Voronoi Diagrams with
CGAL

As described in Section 2 above, the process of con-
structing a minimum-width annulus bounding a set
of disks mainly comprises three geometric operations:
(i) construction of the Apollonius diagram, (ii) con-
struction of the FPFS Voronoi diagram, and (iii) over-
lay of the two diagrams. This section describes some
of the software components which our implementa-
tion is based on, their various ramifications on the
algorithm, and how they work in synergy to yield an
exact and robust implementation, which can handle
input that is not necessarily in general position and
produce results of arbitrary precision.

The connection between Voronoi diagrams and en-
velopes is long-known [6], and yields a useful approach
for constructing various types of Voronoi diagrams.
Cgal,2 the Computational Geometry Algorithms Li-
brary, contains a robust and efficient implementation
of a divide-and-conquer algorithm for constructing en-
velopes of general surfaces in 3-space [13]. This im-
plementation was employed to yield a general frame-
work for constructing two-dimensional Voronoi dia-
grams [9].

Like most algorithms and data-structures in Cgal,
the framework follows the generic programming
paradigm, and is independent of the type of input
sites. The generic implementation is parameterized
with a traits class that must provide all required types
and methods to construct and handle bisector curves

2http://www.cgal.org

2

EuroCG’09 - Brussels, Belgium

318

(a) (b) (c) (d)

Figure 1: Constructing a minimum-width annulus of a set of disks. (a) The Apollonius diagram of the set of disks. (b) The
FPFS Voronoi diagram of the set of disks. (c) A minimum-width annulus of the set of disks. The center of the annulus is a
vertex in the overlay of the Apollonius and the FPFS Voronoi diagrams. (d) A highly degenerate scenario for constructing a
minimum-width annulus of a set of disks.

(e.g., intersecting bisector curves, comparing the y-
coordinates of a point and its vertical projection on
a curve), and to answer proximity queries (see Sec-
tion 4).

The decision to use the aforementioned framework
to construct both Voronoi diagrams required in the
minimum-width annulus algorithm has two major ad-
vantages. First, the framework is bisector-based;
namely, the main basic operation it requires is the
construction of bisectors of Voronoi sites. This sim-
plifies the implementation of the diagrams as both
have the same bisector type (Lemma 1). Second, the
resulting diagrams are represented as Cgal arrange-
ments, which can be passed as input to consecutive
operations supported by Cgal. One of those oper-
ations is a sweep-based overlay [18] that is used to
carry out the next step of our algorithm.

A straightforward application of the divide-and-
conquer approach for Voronoi diagrams yields algo-
rithms with worst-case running time of O(n2+ε) even
for diagrams of linear complexity. Through random-
ization, it has been shown that the expected running
time is lower:

Theorem 3 [9] For a specific type of two-
dimensional Voronoi diagrams, so that the worst-case
complexity of the diagram of any set of at most n
sites is O(n), the divide-and-conquer envelope algo-
rithm computes it in expected O(n log2 n) time.

In our case, applying Theorem 3 yields an expected
construction time of O(n log2 n) for both the Apollo-
nius and the FPFS Voronoi diagrams using the divide-
and-conquer algorithm. Overlaying the two diagrams
with the sweep-based algorithm has O((n + k) log n)
worst-case time complexity where k is the number
of intersections between the diagrams. The total
expected running time of the algorithm is therefore
O(n log2 n + k log n), where k can be Θ(n2).

Though the worst-case complexity of the algorithm
is super-quadratic, it is reasonable to assume that the

expected time complexity is, in many cases, smaller.
Indeed, we may have Θ(n2) intersections between the
two diagrams, but, though not proven for disks, for
random point sets it is known that the expected num-
ber of intersections between the farthest and the near-
est Voronoi diagrams is linear [2].

4 Implementation Details

Following the description of the framework for
Voronoi diagrams, we have implemented two
traits classes for constructing Apollonius diagrams
and FPFS Voronoi diagrams named Algebraic -

apollonius traits 2 and Algebraic farthest point -

farthest site traits 2, respectively.
Both traits classes are based on the algebraic plane

curves traits for the arrangement package [7], which
provides all the algebraic functionality needed to han-
dle algebraic bisector curves in a robust and exact
manner. The remaining functors required by the
framework are functors for constructing the bisectors
of two disks (which consist of selecting the correct
branch of a hyperbola) and functors to answer differ-
ent proximity queries.

Each required proximity predicate is given a set of
points P in the plane (e.g., an edge) and two Voronoi
sites, and should indicate which of the sites is closer
to P . All required proximity predicates are imple-
mented similarly as follows: we construct a point p
inside P using the algebraic infrastructure, and then
answer the proximity query by comparing the Apol-
lonius (or the farthest-point) distances from p to the
sites. We expedite the comparisons here, as well as
the comparisons of widths of annuli later, by using ra-
tional interval arithmetic, alleviating the need for the
heavier exact algebraic machinery wherever possible.

As both the Apollonius and the FPFS Voronoi
diagrams have the same bisectors type and simi-
lar distance functions (Lemma 1), both Algebraic -

apollonius traits 2 and Algebraic farthest point -

farthest site traits 2 inherit from the same base

3

Exact Construction of Minimum-Width Annulus of Disks in the Plane

319

class, and define only a distance function and a func-
tor for bisectors’ construction (Algebraic farthest -

point farthest site traits 2 swaps the radii of the
disks and then calls the same function as Algebraic -

apollonius traits 2), maximizing code reuse.
We use the generic overlay function from Cgal’s

arrangement package to overlay the Apollonius di-
agram and the FPFS Voronoi diagram. The over-
lay function is parameterized with an overlay-traits
class, which updates the resulting arrangement’s fea-
tures based on data associated with the input arrange-
ments’ features [18]. We have created a specially-
tailored overlay-traits class for updating the features
of the overlay with sites from both diagrams.

Disks Time V E F
50 10.741 126 213 88

100 26.994 238 395 158
200 62.968 416 659 244
500 185.244 775 1174 400

1000 405.405 1242 1894 653

On the left you
can see the time
consumption (in
seconds) of the
algorithm execu-
tion on different
input sizes, as

well as the size of the final overlay (the vertices of
which are the candidates for the center of the annu-
lus). The experiments were carried out on an Intel R©
CoreTM2 Duo 2.00GHz processor with 1GB memory.

5 Future Work

It would be interesting to further investigate the
farthest-point farthest-site Voronoi diagram, pre-
sented above, for disk sites in particular and for other
objects in general, and find additional applications for
this type of diagrams.

Another direction to pursue is the application of
this approach to objects other than points [5, 16],
polygons [10], or disks, as described in this paper.

Acknowledgments

The authors are grateful to all those who have supported

this work by advice, discussion, or fruitful cooperation.

Special thanks are given to Efi Fogel, Eric Berberich, and

Barak Raveh.

References

[1] P. K. Agarwal and M. Sharir. Efficient randomized al-
gorithms for some geometric optimization problems.
Disc. Comput. Geom., 16:317–337, 1996.

[2] P. Bose and L. Devroye. Intersections with random
geometric objects. Comput. Geom. Theory Appl.,
10(3):139–154, June 1998.

[3] M. de Berg, P. Bose, D. Bremner, S. Ramaswami, and
G. T. Wilfong. Computing constrained minimum-
width annuli of point sets. Computer-Aided Design,
30(4):267–275, 1998.

[4] O. Devillers and P. A. Ramos. Computing roundness
is easy if the set is almost round. Int. J. Comput.
Geom. Appl., 12:229–248, 2002.

[5] H. Ebara, N. Fukuyama, H. Nakano, and Y. Nakan-
ishi. Roundness algorithms using the Voronoi dia-
grams. In Proc. 16th The Canadian Conf. on Com-
put. Geom., volume 41, 1989.

[6] H. Edelsbrunner and R. Seidel. Voronoi diagrams and
arrangements. Disc. Comput. Geom., 1:25–44, 1986.

[7] A. Eigenwillig and M. Kerber. Exact and efficient 2D-
arrangements of arbitrary algebraic curves. In Proc.
19th Annu. ACM-SIAM Symp. Disc. Alg., pages 122–
131. Soc. for Industrial and Applied Math., 2008.

[8] J. Garcia-Lopez, P. A. Ramos, and J. Snoeyink. Fit-
ting a set of points by a circle. Disc. Comput. Geom.,
20(3):389–402, 1998.

[9] D. Halperin, O. Setter, and M. Sharir. Construct-
ing two-dimensional voronoi diagrams via divide-and-
conquer of envelopes in space. ACS technical report
ACS-TR-361601-01, TAU, 2008.

[10] V.-B. Le and D.-T. Lee. Out-of-roundness problem
revisited. IEEE Trans. Pattern Anal. Mach. Intell.,
13(3):217–223, 1991.

[11] M. T. Marsh and D. A. Schilling. Equity mea-
surement in facility location analysis: A review and
framework. European Journal of Operational Re-
search, 74(1):1–17, April 1994.

[12] K. Mehlhorn, S. Meiser, and R. Rasch. Furthest site
abstract Voronoi diagrams. Int. J. of Comput. Geom.
Appl., 11(6):583–616, 2001.

[13] M. Meyerovitch. Robust, generic and efficient con-
struction of envelopes of surfaces in three-dimensional
space. In Proc. 14th Annu. Eur. Symp. Alg., pages
792–803, 2006.

[14] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu.
Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. Wiley, NYC, 2nd edition, 2000.

[15] T. J. Rivlin. Approximating by circles. Computing,
21:93–104, 1979.

[16] U. Roy and X. Zhang. Establishment of a pair of
concentric circles with the minimum radial separa-
tion for assessing roundness error. Computer-Aided
Design, 24(3):161–168, 1992.

[17] K. Swanson, D.-T. Lee, and V. L. Wu. An optimal al-
gorithm for roundness determination on convex poly-
gons. In Comput. Geom. Theory Appl., pages 601–
609, 1993.

[18] R. Wein, E. Fogel, B. Zukerman, and D. Halperin.
Advanced programming techniques applied to Cgal’s
arrangement package. Comput. Geom. Theory Appl.,
38(1–2):37–63, 2007. Special issue on Cgal.

[19] C. K. Yap. Exact computational geometry and tol-
erancing metrology. Technical Report SOCS-94.50,
McGill School of Computer Science, 1994.

4

EuroCG’09 - Brussels, Belgium

320

Generic implementation of a modular gcd over Algebraic Extension Fields

Michael Hemmer ∗ Dominik Hülse †

Abstract

We report on several generic implementations for uni-
variate polynomial gcd computation over the integers
and, in particular, over algebraic extensions. Our
benchmarks show that the generic implementation
compares favorably to well established libraries. Even
for the integer case our implementation is competitive
to the one provided by the NTL, which does not sup-
port algebraic extensions. Our software is part of the
new Polynomial package of Cgal release 3.4.

1 Introduction

For exact computation with non-linear geometric ob-
jects, such as semi-algebraic curves and surfaces, it
is evident that the computation of the gcd of poly-
nomials is one of the fundamental tools. This is the
case for polynomials defined over rational coefficients
as well as over algebraic extensions [6, 2]. It is known
that methods based on modular arithmetic are indis-
pensable for an efficient implementation [7, 5]. To
the best of our knowledge there was no generic open
source code available that supports algebraic exten-
sions. Our software is generic in the sense that it uses
C++’s template techniques [1] such as traits classes,
and function objects. In particular, our code is in-
dependent from the coefficient type, even though we
only report on algebraic extensions of degree 2 here.
The presented implementation is part of the new Poly-
nomial package of Cgal1 release 3.4.

The paper is structured as follows: Section 2 pro-
vides an overview of the investigated algorithms. Sec-
tion 3 presents the comparison of the different imple-
mentations including a comparison with the NTL2 for
integer polynomials and a comparison with Singular3

for algebraic extensions of degree 2. Section 4 con-
cludes the paper.

2 The Modular Methods

We now recall the principal ideas of modular gcd algo-
rithms and the most fundamental modular methods of
interest. In particular, we refer to Brown [3], who gave

∗MPII Saarbrücken, hemmer@mpi-inf.mpg.de
†JoGU Mainz, dominik.huelse@gmx.de
1http://www.cgal.org/
2http://www.shoup.net/ntl/
3http://www.singular.uni-kl.de/

a solution for polynomials in Z[x1, . . . , xn]. This was
extended by Langemyr and McCallum [9] to polyno-
mials over algebraic extensions using results from [14]
in order to bound appearing denominators. Encar-
nacion [4] proposed a variant which uses rational re-
construction by Wang [12] in order to deal with de-
nominators. We also present a hybrid approach that
combines the ideas of both algorithms. All implemen-
tations are output sensitive, that is, the number of
primes used within the computation depends on the
size of the coefficients of the computed gcd and not
on bounds based on the input polynomials.

2.1 Fundamentals

We restrict the presentation to univariate polynomi-
als with integer coefficients. For more details study
[3, sec. 4.3]. The principal idea is to compute the
gcd with respect to several primes and to recover the
original gcd in Z[x] or Z(α)[x] using the Chinese Re-
mainder theorem, e.g. see Knuth [7]. This avoids
the exponential growth of coefficients in intermediate
steps, whereas the actual gcd in practice has moder-
ate coefficient size. Of course, it is important that
the modular methods are output sensitive and do not
rely on worst case bounds for the coefficient size in
the final gcd, which is exponential [3].

For a given prime p ∈ Z, let Fp = Z/pZ be the
Galois field with p elements and φp : Z → Fp the
field homomorphism defined by φp : x 7→ (x mod p).
The homomorphism from Z[x] to Fp[x] induced by φp

will also be denoted by φp. The image of φp will also
be denoted as the modular image of some entity.

Let F be some polynomial in Z[x], we will use
the following notation: deg(F) - the degree of F ;
lc(F) - the leading coefficient of F ; cont(F) - the
content of F , that is, the gcd of all coefficients;
pp(F) = F/cont(F) ∈ Z[x] - the primitive part of F ;
monic(F) = F/lc(F) ∈ Q[x] - the monic associate
to F ; disc(F) - the discriminant of F .

2.2 GCD over the Integers

In this section we outline Brown’s algorithm for poly-
nomials with integer coefficients. Given F ′

1, F
′
2 ∈ Z[x],

the algorithm computes G′ = gcd(F ′
1, F

′
2) ∈ Z[x].

The core part of the algorithm is a while loop
(step 5-13) that computes the gcd with respect to sev-
eral primes until it is possible to recover the gcd using
the Chinese Remainder Theorem.

1

Generic implementation of a modular GCD over Algebraic Extension Fields

321

Algorithm 1: (Brown’s algorithm)
Given the polynomials F ′

1, F ′
2 ∈ Z[x] with

deg(F1), deg(F2) ≥ 1. Compute G′ ∈ Z[x] the
greatest common divisor of F ′

1 and F ′
2.

(1) Set c1 = cont(F ′
1), c2 = cont(F ′

2), c = gcd(c1, c2).
(2) Set F1 = F ′

1/c1, F2 = F ′
2/c2.

(3) Set f1 = lc(F1), f2 = lc(F2), g = gcd(f1, f2).
(4) Set n = 0, e = min(deg(F1),deg(F2)).
(5) Let p be a new odd prime not dividing g

(6) Set g̃ = φp(g), F̃1 = φp(F1), F̃2 = φp(F2).
(7) Invoke the Euclidean algorithm to compute

G̃ = g̃ · gcd(F̃1, F̃2), over Fp[x].

(8) If deg(G̃) = 0: set G = 1 and goto (15).

If deg(G̃) > e: (p is an unlucky prime) goto (5).

If deg(G̃) < e: (the former primes were unlucky)

Set n = 0, e = deg(G̃).
(9) Set n = n+1.

(10) If n = 1: set (q, G?) = (p, G̃) and goto (5).
(11) Use Chinese Remainder to update (q, G?):

(q, G?) := chinese remainder((q, G?), (p, G̃)).
(12) If the coefficients of G? have changed goto (5).
(13) If G? - g · F1 or G? - g · F2 goto (5).
(14) Set G = pp(G?).
(15) Output G’ := cG;

For some (unlucky) primes it happens that the
gcd loses a non trivial factor, which implies that the
prime divides lc(F1) and lc(F2). The algorithm dis-
cards such primes in step 5. For other (unlucky)
primes it happens that the gcd in Fp[x] contains ad-
ditional factors. Therefore, the algorithm keeps track
of deg(G̃), that is, it incorporates only those primes
for which deg(G̃) is minimal (step 8).

Algorithm 1 deviates from the one of Brown [3] in
the sense that it is output sensitive. Instead of com-
puting as many primes as needed to guarantee a cor-
rect recovery of the gcd, it checks whether the recov-
ered polynomial G? becomes stable (step 12). If this
is the case, G? is in all probability the desired polyno-
mial, which is verified in step 13. An idea which can,
for instance, be found in Langemyr and McCallum [9].

Note that the Chinese Remainder can only re-
cover polynomials in Z[x], that is, the algorithm
must ensure that G? is the image of a polyno-
mial in Z[x]. Therefore, G̃ is multiplied by g̃ =
φp(gcd(lc(F1), lc(F2))) (step 7). Otherwise, G̃ as well
as G? would represent monic(G) which is (in general)
a polynomial in Q[x].

2.3 GCD over Algebraic Extension Fields

Given an algebraic number α and two polynomi-
als F1, F2 ∈ Z(α)[x], the following algorithms com-
pute the greatest common divisor G ∈ Z(α)[x] of F1

and F2 up to some constant factor. Note that it makes
no sense to care about constant factors since Z(α)

does not support a gcd [5]
In principal, all algorithms have the same layout

as Algorithm 1. However, a first fundamental dif-
ference is that the gcd in step 7 is computed over
Rp = Fp[t]/Mp, where Mp ∈ Fp[x] is the modular
image of the minimal polynomial M of α. In general
Mp is not irreducible, thus in general Rp is not a field.
Therefore, the computation in step 7 can fail, namely
in that case that it needs to invert a zero divisor. If
this happens, p is also considered as an unlucky prime
and discarded.

We continue with details about the algorithm by
Langemyr and McCallum [9], Encarnacion [4], and
our hybrid approach combining the advantages of
both algorithms.

The Algorithm of Langemyr and McCallum:
In contrast to Algorithm 1, the main point is that
the algorithm must take additional steps in order to
ensure that the polynomial which is supposed to be
recovered by the Chinese Remainder contains no de-
nominators. In a first step, the input polynomials are
normalized which removes superfluous constant fac-
tors and ensures that the leading coefficients are in Z.
This allows the computation of g̃ as in Algorithm 1
(step 7). However, in the presence of algebraic exten-
sions, the multiplication with g̃ may not be enough
to remove all denominators [14]. Therefore, G̃ is also
multiplied by a multiplicative bound for these remain-
ing denominators, namely D = disc(M), the discrim-
inant of the minimal polynomial of α. This finally
ensures that G̃ is the modular image of a polynomial
in Z(α)[x], which can be recovered by the Chinese
Remainder. For more details we refer to [11, 14, 8].

The Algorithm of Encarnacion: The algo-
rithm does not multiply G̃ by any constant at
all and the Chinese Remainder indeed tries to re-
cover monic(G) ∈ Q(α)[x] which is not possible. In-
stead, G? is a polynomial in Z(α)[x], where each co-
efficient is just in the same residue class as the cor-
responding coefficient of monic(G). Therefore, the
algorithm has an additional step that applies Wang’s
rational reconstruction [12, 13] to each coefficient in
order to obtain monic(G) ∈ Q[x]. Once the polyno-
mial obtained in this step is stable, the verification
(step 13) is applied.

The hybrid approach: For Langemyr and Mc-
Callum the weak point is that gcd(f1, f2)D can be a
very loose upper bound for the denominator of the
gcd which causes the use of additional superfluous
primes. Encarnacion’s algorithm tries to avoid this,
but has the overhead due to the additional rational re-
construction step which is performed in each round.
In our benchmarks, see also Section 3, we observed
that gcd(f1, f2) is a good denominator bound in prac-
tice. Indeed, within all our examples the additional
factor D was needed only once.

Our hybrid approach incorporates these observa-

2

EuroCG’09 - Brussels, Belgium

322

tions in the sense that it modifies the algorithm by
Langemyr and McCallum by using gcd(f1, f2) as the
denominator bound. This has the effect that the al-
gorithm saves O(log(D)) rounds in almost all cases.
However, for the unlucky case thatD is indeed needed
the algorithm would not terminate. Therefore, it uses
the rational reconstruction as a fall back. More pre-
cisely, it calls Wang’s algorithm if the fiftieth part of
the accumulated time spent within the Chinese Re-
mainder exceeds the time spent in the last call of
Wang’s algorithm. Hence, in practice our hybrid is
as output sensitive as Encarnacion’s algorithm but,
de facto, without the extra costs of the rational re-
construction.

3 Benchmarks

Since our code is implemented within Cgal, we fol-
low the generic programming paradigm using C++
templates and programming concepts such as traits
classes and iterators. We introduced several traits
classes to provide the functionality needed by the
algorithms, for instance, providing the denominator
bound required by Langemyr-McCallum. This ab-
stracts from the actual coefficient type in use.

For the benchmarks we generated various families
of 50 pairs of polynomials with fixed degree. Each
pair is composed of three factors, the gcd and the two
cofactors. All polynomials are random in the sense
that their diced scalar coefficients have the desired
bitsize. Within each family we always varied only one
parameter, for instance, the bitsize of coefficients, or
the degree of the gcd.

The benchmarks were measured on a Pentium(R)
M processor 1.7 GHz with 512 KB cache under Linux
and the GNU C++ compiler v3.4.6 with optimiza-
tions (-O3) and disabled assertions (-DNDEBUG). The
used number type was CORE::BigInt.

3.1 Polynomials over the Integers

First we study the impact of a modification of the gcd
and cofactor bitsize. For this purpose we generated
polynomial pairs of degree 25 with gcd degree 1 and
increasing bitsize of gcd and cofactors.

Generally we can say that Brown’s algorithm per-
forms far better than the old, non-modular implemen-
tation, hence we don’t compare these two approaches.
For a better quantification of the results we mea-
sured the same polynomials with the Computer Al-
gebra Systems Ntl and Singular. Figure 1 shows,
that the Ntl implementation performs about twice as
well as our generic implementation of Brown. Note,
that there is another curve that also covers the time
to convert our polynomials (i.e. the coefficients) to
NTL polynomials and back. This curve is included
for comparison with Singular, which uses Ntl as well,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim
e

in
 s

ec

 gcd and cofactor bits

Singular
NTL (with conversion)

NTL
Brown

Figure 1: Growing bit size of gcd and cofactors, polynomial
degree 25, gcd degree 1.

but who’s conversion costs are apparently more ex-
pensive.

Furthermore, we generated polynomial pairs of de-
gree 50 with 500 gcd bits and 5000 cofactor bits. The
gcd degree ranges from 1 to 49. Figure 2 reveals a
strange discontinuous behavior of the Ntl: The first
and the last 8 gcd degrees are computed faster than
the others. Other test series show the same behavior.
It seems that Ntl uses two different approaches for
the gcd computation. This has the consequence that
our approach is even faster for moderate gcd degrees.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 5 10 15 20 25 30 35 40 45 50

tim
e

in
 s

ec

 gcd degree

NTL
Brown

Figure 2: Growing gcd degree; scalar coefficients gcd 500 bit;
cofactors 5000 bit; polynomial degree 50.

The behavior of Brown’s algorithm can be ex-
plained as follows. Since degree and bit size of the
polynomials are fixed, the time for the modular im-
age is constant. With increasing degree of the gcd,
the time spent in the Euclidean Algorithm decreases
as it needs less steps whereas the Chinese Remainder
has to recover more coefficients. These effects cancel
out. The bow like form is due to the trial-division
which is most expensive for moderate gcd degree.

3.2 Polynomials over Algebraic Extension Fields

To study the impact of a modification of the gcd bit-
size we generated polynomial pairs of degree 10 with
gcd degree 1 and 2000 cofactor bits. The Polynomials
were defined over an algebraic extension of degree 2.

First of all, we can say that the hybrid approach
performed far better than the non-modular implemen-

3

Generic implementation of a modular GCD over Algebraic Extension Fields

323

 0

 0.5

 1

 1.5

 2

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

tim
e

in
 s

ec

gcd bits

Encarnacion
Langemyr-McCallum

Hybrid

Figure 3: Growing bitsize gcd; polynomial-degree 10; gcd-
degree 1; scalar coefficients cofactors 2000 bit.

tation. Hence, we don’t consider the non-modular im-
plementation.

Figure 3 shows that our hybrid approach performs
better than the algorithms of Langemyr-McCallum
(LM) and Encarnacion. Encarnacion’s algorithm is
not competitive, and for a sufficiently large bit size
even slower than the old, non-modular implemen-
tation. This is due to the considerable runtime
of Wang’s rational reconstruction algorithm. For a
higher bit size, the disadvantage of the LM approach
due to the multiplication with the superfluous denom-
inator bound becomes evident as well. The Singular
algorithm is the least successful, for a 500 bit gcd it
needs already 128 sec. Hence, we refrained from in-
cluding it in Figure 3.

A detailed decomposition of the total time spent
in the hybrid algorithm is given in Figure 4. With
growing gcd bits the algorithm needs more primes to
reconstruct the coefficients. Additionally every call of
the modular image, the Chinese remainder and the
test division gets more expensive. The time for nor-
malization and computing the denominator bound is
slightly increasing, too.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

tim
e

in
 s

ec

gcd bits

total time
normalization & dfai

modular image
euclid. algo.

chin. remainder
Wang

test division

Figure 4: Decomposition of total time for hybrid approach:
Growing bitsize gcd; polynomial-degree 10; gcd-degree 1; scalar
coefficients cofactors 2000 bit.

4 Conclusions and Further Work

We have presented an open source implementation
and comparison of several variants of gcd algorithms

for algebraic extensions. Our benchmarks indicate
that the hybrid approach has considerable advantages
compared to the other implementations.

It is obvious that we should aim for a multivariate
gcd in the spirit of [3]. As this is independent from
the coefficient type, this should be straight forward.

We also expect some minor improvements for En-
carnacion’s algorithm, since the current implementa-
tion of Wang’s algorithm does not take advantage of
the known multiplicative denominator bound, as it is
indicated in [10]. The algorithms are implement in
CGAL, and part of the new Polynomial package of
CGAL release 3.4.

References

[1] M. H. Austern. Generic Programming and the STL:
Using and Extending the C++ Standard Template Li-
brary. Addison-Wesley, 1998.

[2] E. Berberich, M. Caroli, and N. Wolpert. Exact
computation of arrangements of rotated conics. In
Proc. EWCG’07, pages 231–234. Technische Univer-
sität Graz, 2007.

[3] W. S. Brown. On euclid’s algorithm and the com-
putation of polynomial greatest common divisors. J.
ACM, 18(4):478–504, 1971.

[4] M. J. Encarnacin. Computing gcds of polynomials
over algebraic number fields. J. on Symbolic Compu-
tation, 20(3):299–313, 1995.

[5] J. Gathen and J. Gerhard. Modern Computer Alge-
bra. Cambridge University Press, 1999.

[6] M. Hemmer. Exact Computation of the Adjacency
Graph of an Arrangement of Quadrics. Ph.D. thesis,
Johannes Gutenberg-Universität Mainz, 2007.

[7] D. E. Knuth. Seminumerical Algorithms, volume 2 of
The Art of Computer Programming. Addison-Wesley,
Reading, MA, 2nd edition, 1981.

[8] S. Landau. Factoring polynomials over algebraic
number fields. J. on Computing, 14:184–195, 1985.

[9] L. Langemyr and S. McCallum. The computation
of polynomial greatest common divisors over an al-
gebraic number field. J. on Symbolic Computation,
8(5):429–448, 1989.

[10] M. Monagan. An almost optimal algorithm for ra-
tional reconstruction. In Proc. ISSAC’04, pages 243–
249. ACM Press, 2004.

[11] P. S. Wang. Factoring multivariate polynomials over
algebraic number fields. Math. Comb., 30:1215–1231,
1978.

[12] P. S. Wang. A p-adic algorithm for univariate partial
fractions. Proc. SYMSAC ’81, pages 212–217, 1981.

[13] P. S. Wang, M. Guy, and J. Davenport. P-adic re-
construction of rational numbers. SIGSAM Bulletin,
pages 2–3, 1982.

[14] P. J. Weinberger and L. P. Rothschild. Factoring
polynomials over algebraic number fields. J. Transac-
tions on Mathematical Software, 2(4):335–350, 1976.

4

EuroCG’09 - Brussels, Belgium

324

Exact Delaunay graph of smooth convex pseudo-circles

Ioannis Z. Emiris∗ Elias P. Tsigaridas† George M. Tzoumas∗

Abstract

We examine the problem of computing exactly the De-
launay graph of a set of possibly intersecting smooth
convex pseudo-circles in the Euclidean plane given in
parametric form. The diagram is constructed incre-
mentally. We focus on InCircle, under the exact
computation paradigm, and express it by a simple
polynomial system, which allows for an efficient im-
plementation by means of iterated resultants and a
factorization lemma. Finally, we present examples
with certain types of curves.

1 Introduction

Computing the Delaunay graph and its dual Voronoi
diagram of a set of input sites in the plane has been
studied extensively due to its numerous applications.
However, few works have studied exact Voronoi di-
agrams1 for curved objects. These can be critical in
applications such as assembly, and surface reconstruc-
tion. In the case of circles, the exact and efficient im-
plementation of [2] is now part of cgal [1]. There
is also vroni, a very efficient and robust implemen-
tation, which relies on floating-point computations; a
more recent implementation of which can treat (non
intersecting) line segments and circular arcs [7].

Our own previous work [4] started with the study
of non-intersecting ellipses, and proposed exact alge-
braic algorithms for all predicates required by the in-
cremental algorithm of [8]. The resultant required
had been implemented in maple, and used a different
polynomial system than the one in this paper. More-
over, some factorization properties had been observed
without proof; this is settled below to yield an optimal
method for resultant computation. In [5], the authors
proposed a certified method for InCircle, relying on
a Newton-like numerical subdivision, which exploits
the geometry of the problem and exhibits quadratic
convergence for non-intersecting ellipses.

∗National Kapodistrian University of Athens, Hellas.
{emiris, geotz} (AT) di.uoa.gr. Both authors are partially
supported by Marie-Curie Network “SAGA”, FP7 contract
PITN-GA-2008-214584. G. Tzoumas is partially supported by
State Scholarship Foundation of Greece, Grant No. 4631.
†INRIA Méditerranée, Sophia-Antipolis, France,

elias.tsigaridas (AT) sophia.inria.fr. Partially sup-
ported by contract ANR-06-BLAN-0074 “Decotes”.

1The Voronoi diagram cannot be represented “exactly”,
since it involves algebraic numbers. On the other hand, the
dual Delaunay graph is represented exactly.

Fig. 1.1: The
Bean curve t 7→
(1+t2

t4+t2+1
,

t(1+t2)

t4+t2+1
).

Ct

Cr

Cs

Fig. 1.2: Demonstration of Dis-
tanceFromBitangent.

In this paper, we extend previous results that con-
sidered only non-intersecting ellipses. We study the
case of smooth convex, possibly intersecting, pseudo-
circles. In this case, the bisector of two sites is a
single curve homeomorphic to the open interval (0,1)
[8, Thm.1]. We first model the definition of conflict
from [8] as a circle inclusion test. Then, we examine
the algebraic operations required for an efficient ex-
act implementation of InCircle which shows high al-
gebraic complexity dominating the overall algorithm.
Proofs are omitted for lack of space, but can be found
in [3].

Notation and preliminaries. Our input is
smooth convex closed curves given in parametric
form. An example of such a curve, the famous bean
curve is in Fig 1.1. Smoothness allows the tangent
(and normal) line at any point of the curve to be
well-defined. We denote by Ct a smooth closed con-
vex curve parametrized by t. We refer to a point
p on Ct with parameter value t̂ by pt̂, or simply by
t̂ when it is clear from context. By Ct

◦ we denote
the interior of curve Ct. Ct is a smooth convex ob-
ject (site), so that if p denotes a point in the plane,
p ∈ Ct ⇐⇒ p ∈ Ct ∪ Ct

◦. When we say that
two sites intersect, we assume that their boundaries
have at most two intersections, i.e. they form pseudo-
circles. A curve Ct is given by the map

Ct : [a, b] 3 t 7→ (Xt(t), Yt(t)) =

„
Ft(t)

Ht(t)
,
Gt(t)

Ht(t)

«
, (1)

where Ft, Gt and Ht are polynomials in Z[t], with
degrees bounded by d, and a, b ∈ Q ∪ {±∞}. All
algorithms, predicates and the corresponding anal-
ysis are valid for any parametric curve, even when
the polynomials have different degrees, including the

1

Exact Delaunay graph of smooth convex pseudo-circles

325

case of different denominators. We assume equa-
tions (1) for simplicity. Moreover, we assume that
Ht(t) 6= 0, t ∈ [a, b]. For simplicity we write Ft in-
stead of Ft(t) and denote its derivative with respect
to t as F ′t . When d = 2 the curves defined are conics:
ellipses and circles are the only closed convex curves
represented.

Basic predicates. Inserting a new site in the
Voronoi diagram consists of the following: (i) Find a
conflict between an edge of the current diagram and
the new site, or detect that the latter is internal (hid-
den) in another site, in which case it does not affect
the diagram. (ii) Find the entire conflict region (the
part of the Voronoi diagram that changes due to the
insertion of the new site) and update the dual Delau-
nay graph. It should be noted here that our main task
is to compute an exact Delaunay graph of the input
sites (which maintains exact topology information).
Having computed an exact Delaunay graph, allows
us to approximate the edges (bisectors) and vertices
of the Voronoi diagram (the coordinates of which are
algebraic numbers) within an arbitrary precision in
order to be drawn on the screen. The exact graph
allows us to mark correctly the degenerate cases, i.e.,
Voronoi vertices of degree > 3.

The above steps require the following predicates.
(a) SideOfBisector: given two sites Ct and Cr

and point q, determine the site closest to the point,
under the Euclidean metric, (b) DistanceFromBi-
tangent: given two sites, Ct and Cr, decide the po-
sition of a third site, Cs, with respect to the external
bitangent line of the first two, that leaves both sites on
the right, as we move from the tangency point of Ct to
the tangency point of Cr. The result of Distance-
FromBitangent is either 1 if Cs lies on the same
hyperplane as the sites Cr,Cr w.r.t. their external bi-
tangent, 0 if it is tangent to that line, but on the same
hyperplane, and -1 otherwise (cf. fig. 1.2), (c) InCir-
cle, and (d) EdgeConflictType. Some operations
require two additional primitives: (i) computing a ra-
tional point inside the convex site and (ii) determin-
ing the position between two sites, i.e., whether they
are separated. A detailed presentation of SideOf-
Bisector, DistanceFromBitangent, EdgeCon-
flictType and the primitives can be found in [3].
Predicate InCircle is presented in the next section.

Normal line. A point on the curve is denoted by
pt = (Xt, Yt). The equation of the line that supports
the normal at pt is (Nt) : (x−Xt)X ′t +(y−Yt)Y ′t = 0.
After substitutions and elimination of the denomina-
tors, we derive a polynomial Nt(x, y, t) ∈ Z[x, y, t];
which is linear in x and y, of degree ≤ 3d− 2 in t.

2 InCircle

We first formalize the notion of conflict, caused by the
addition of a new site [8], (see also fig. 2.1 and 2.2):

Ct

Cr

Cs

Ch

t̂

r̂

ŝ

ĥ

Fig. 2.1: Lem. 2: conflict of query site Ch with ex-
ternal Voronoi disk.

Ct

Cr Cs

Ch
t̂

r̂

ŝ

ĥ

Fig. 2.2: Lem. 3: conflict of Ch with internal Voronoi
disk; the Voronoi edges are solid, the conflict region
(edge) is dotted.

Definition 1 Given sites Ct, Cr, Cs, let Vtrs be
their Voronoi disk and Ch be a query site. If Vtrs is
an external Voronoi disk, then Ch is in conflict with
Vtrs, iff Vtrs is intersecting Ch

◦. If Vtrs is an internal
Voronoi disk, then Ch is in conflict with Vtrs, iff Vtrs

is included Ch
◦.

Since the Voronoi circle in expressed algebraically,
we cannot easily decide its relative position w.r.t. the
query site i.e., by counting bitangent lines. Therefore,
we model the above disk-site inclusion test as a circle-
circle inclusion test.

Lemma 2 Given convex sites Ct, Cr, Cs, let Vtrs be
an external Voronoi disk of theirs and t̂ its tangency
point on Ct. Let Ch be a query site and Bth an
external bitangent disk of Ct and Ch, tangent at t̂
(and ĥ resp.). Then Ch is in conflict with Vtrs if and
only if Bth is strictly contained in Vtrs.

It remains to compute the external bitangent circle
Bth. There exist up to 6 bitangent circles, tangent at
a given t̂, for the case of ellipses, and up to a constant
number for arbitrary convex sites. In [4], simple geo-
metric tests are given to isolate the external bitangent
circle among all bitangent circles to non-intersecting
ellipses. Now, consider two intersecting sites Ct, Cr

and an external bitangent circle tangent at t̂ of Ct,

2

EuroCG’09 - Brussels, Belgium

326

then: (i) t̂ 6∈ Ct ∩ Cr since it is the tangency point
of an externally tangent circle, (ii) t̂ lies on the arc of
Ct bounded by the convex hull of Ct and Cr (iii) the
tangent line of Ct at t̂ intersects Cr.

These conditions were used to compute an external
bitangent circle to non-intersecting ellipses [4], when
the tangent line at the given tangency point intersects
the other ellipse; this is always the case when the two
sites intersect. Therefore, the geometric tests of [4]
can be applied to pseudo-circles. These tests yield an
arc on Cr, which contains the tangency point of the
externally tangent circle.

Intersecting sites may also admit an internally tri-
tangent Voronoi circle. In this case InCircle can be
answered by the following lemma:

Lemma 3 Given sites Ct, Cr, Cs, let Vtrs be their
internal Voronoi disk, and t̂ its tangency point on Ct.
Let Ch be a query site and Bth an internal bitangent
disk of Ct and Ch, tangent at t̂ (and ĥ resp.). Then
Ch is in conflict with Vtrs if and only if Vtrs is strictly
contained in Bth.

Note that if t̂ 6∈ Ch, then Ch is not in conflict with
Vtrs which can be used as an additional test in the
implementation to quickly answer some cases.

Let us now identify an internal bitangent circle
(among all bitangent circles). First, we observe that
if an internal bitangent circle at point t̂ of Ct exists,
then t̂ ∈ Ct ∩Cr and r̂ ∈ Ct ∩Cr (the converse may
not necessarily be true).

Lemma 4 Given intersecting sites Ct and Cr, con-
sider their bitangent circle Btr at points t̂ and r̂ re-
spectively with t̂, r̂ ∈ Ct ∩Cr. Then Btr is an inter-
nal bitangent circle if and only if Btr has the smallest
radius among all bitangent circles of Ct and Cr tan-
gent at t̂, and the radius of Btr is bounded by the
radius of curvature of Ct at t̂ and the radius of the
self-bitangent circle of Ct at t̂.

In an implementation, the curvature constraint can be
forced by comparing with the evolute point [6]. The
self-bitangent circles can be computed by considering
the bisector of a curve and itself, then by comput-
ing the (self-)bitangent circles and finally choosing the
one with the smallest radius (in case of identical self-
bitangent circle we can consider the evolute point).

Expressing the Voronoi circle. First, we con-
sider the question of choosing, among all solutions of
the polynomial system, the one corresponding to the
Voronoi circle. The polynomial system expressing all
circles tangent to Ct, Cr, Cs is:

Nt(x, y, t) = Nr(x, y, r) = Ns(x, y, s) = 0
Mtr(x, y, t, r) = Mts(x, y, t, s) = 0. (2)

The first 3 equations correspond to normals at points
t, r, s on the 3 given sites. All normals go through the

Voronoi vertex (x, y). The last two equations force
(x, y) to be equidistant from the sites: each corre-
sponds to the bisector of the segment between two
footpoints. This system was also used in [9]. Notice
that elimination of x, y from Mtr, Nt, Nr yields the
bisector of two sites with respect to t, r.

A Voronoi circle is either externally or internally
tritangent and its tangency points on Ct, Cr, Cs re-
spectively have a CW or CCW orientation. Given a
CCW orientation of the sites, either (t, r, s) or (t, s, r),
we wish to identify the solution of the system that
corresponds to that circle. First, we check if such a
Voronoi circle exists. This is a generalization of the
Existence sub-predicate of [2] to pseudo-circles. It
can be performed for an external Voronoi circle with-
out solving system (2) as follows: Sites Ct, Cr, Cs ad-
mit an external CCW Voronoi circle, iff there are at
least two negative results of DistanceFromBitan-
gent evaluated at triplets (Ct, Cr, Cs), (Cr, Cs, Ct)
and (Cs, Ct, Cr) in this cyclic order (proof by enu-
meration). Checking that Ct, Cr, Cs admit an inter-
nal CCW Voronoi circle is more complex: First, we
compute their intersection, which must be nonempty.
Then, their intersection must have a CCW sequence
of arcs on its boundary. Finally, we have to verify
that system (2) has a solution corresponding to the
Voronoi circle.

Solving system (2) over the reals, yields a set of
solution vectors in R5. Only one solution vector con-
tains the Voronoi vertex and the corresponding tan-
gency points. There exist solution vectors with CW
orientation, but also with CCW orientation which do
not correspond to the Voronoi circle we are looking
for, but to some other tritangent circle. At this point,
we already know that an external Voronoi circle (with
CCW orientation) exists, or that an internal Voronoi
circle might exist. To eliminate irrelevant solutions,
consider the tangency points pt̂, pr̂, pŝ for a solution
triplet t̂, r̂, ŝ. The tangency points corresponding to
the Voronoi circle satisfy CCW(pt̂, pr̂, pŝ).

Now we distinguish an external and an internal tri-
tangent circle from the rest of the tritangent circles.
The tangency points define the former iff the tangent
line of the Voronoi circle at each tangency point sep-
arates its adjacent site from the other two tangency
points. Even if the tangent line intersects the other
sites, the tangency points are still separated. Check-
ing that the tangency points correspond to an internal
circle can be performed by applying lemma 4. Finally,
before proceeding with algebraic analysis, it has to be
noted that in an implementation, the certified algo-
rithm of [5] can be adapted in order to speed up the
operations.

We examine system (2) targeting an efficient algo-
rithm for its solution. In general, the resultant of n+1

3

Exact Delaunay graph of smooth convex pseudo-circles

327

polynomials in n variables is an irreducible2 polyno-
mial in the coefficients of the polynomials which van-
ishes precisely when the system has a complex solu-
tion. Since it is impossible to compute the resultant
of 5 general polynomials as a determinant, we com-
pute it by successive Sylvester determinants, which
are optimal formulae for the resultant when n = 1.
This method typically produces extraneous factors
but, by exploiting the fact that some of the polyno-
mials are linear, and that none contains all variables,
we shall be able to predict all such factors. The fol-
lowing theorem, whose proof is in [3], provides the
factorization of the resultant, in the case of conics.

Theorem 5 We assume the resultant of
(2) is nonzero and denote it by Π. Then,
Resxy(R1, R2, Nt) = Π(t)H40

t (GtH
′
t − G′tHt)36,

where, R1 = Resr(Mtr, Nr), R2 = Ress(Mts, Ns), and
Π is of degree 184.

Corollary 6 We are given R0, R1, R2 ∈ K[x, y],
where the total degree of R1 and R2 is n in x, in y,
and in x and y together, and R0 = Dy+Ax+C, where
AD 6= 0, then Resx(Resy(R0, R1),Resy(R0, R2)) =
Dn2

Resxy(R0, R1, R2).

It follows that the degree of the resultant of (2) for
general parametric curves, as in (1), is bounded by
(3d− 2)(5d− 2)(9d− 2), after dividing out the factor
of (Ht(GtH

′
t−G′tHt))(5d−2)2 . A more careful analysis

may exploit cancellations to yield a tighter bound.

3 Conclusion

We conclude this paper by applying the proposed al-
gorithms for the resultant on various types of curves.
Results are summarized in table 1. The first column
shows the type of curve, the second its degree, the
third the time in sec, the fourth the degree of the
resultant and the last column shows the (non-tight)
bound of our general formula. All experiments were
run on a P4 2.4GHz.

First, we took the bean curve of fig. 1.1 and applied
simple affine transformations yielding very small (5-
bit) coefficients. Then, we computed the resultant of
such triplets. The long runtimes indicate that work-
ing with high-degree curves might be non-practical.
We additionally considered the case of three random
conics with small (10-bit) coefficients. Note that in
this case (d = 2) we have a tight bound of 184, while
the general formula yields 512.

As a future work we may extend this approach
to working with piecewise smooth polynomial curves.
The critical part is to determine the “piece” of the

2Irreducibility occurs for generic coefficients. Below, certain
resultants are factorized, because the given polynomials do not
have generic coefficients.

Curves d time resultant d bound

Beans 4 570.0 2632 6120
Conics 2 8.5 184 512
B-splines 3 9.9 404 2275
B-splines 2 0.7 93 512

Table 1: Examples with various curves

function where one applies the algebraic predicate.
This may be achieved by a numeric technique, as the
one in [5], which determines the involved pieces in
the case of InCircle. We need similar methods for
the other predicates too. The tangency points of the
Voronoi circle lie on such polynomial pieces and the
resultant formulation is simpler because there are no
denominators. We have applied the resultant com-
putation on polynomial branches of degree two and
three (B-splines), with small 5-bit coefficients. The
runtime is less than 1 sec for d = 2 and less than 10
sec when d = 3. Therefore, an efficient exact imple-
mentation is still possible and we can benefit from the
increased flexibility that piecewise functions offer.

References

[1] CGAL: Computational geometry algorithms library.
http://www.cgal.org.

[2] I.Z. Emiris and M.I. Karavelas. The predicates of
the Apollonius diagram: algorithmic analysis and im-
plementation. Comp. Geom.: Theory & Appl., 33(1-
2):18–57, 2006. Spec. Issue robust geom. algorithms &
implementations.

[3] I.Z. Emiris, E.P. Tsigaridas, and G.M. Tzoumas. Ex-
act Delaunay graph of smooth convex pseudo-circles:
General predicates, and implementation for ellipses.
Available from http://www.di.uoa.gr/∼geotz/, 2008.

[4] I.Z. Emiris, E.P. Tsigaridas, and G.M. Tzoumas. Pred-
icates for the Exact Voronoi Diagram of Ellipses under
the Euclidean Metric. Int. J. Comp. Geom. & Apps,
18(6):567–597, 2008. Spec. Issue SoCG’06.

[5] I.Z. Emiris and G.M. Tzoumas. Exact and efficient
evaluation of the InCircle predicate for parametric el-
lipses and smooth convex objects. Comput. Aided
Des., 40(6):691–700, 2008.

[6] I. Hanniel, R. Muthuganapathy, G. Elber, and M.-S.
Kim. Precise Voronoi cell extraction of free-form ra-
tional planar closed curves. In Proc. 2005 ACM Symp.
Solid and phys. modeling, pages 51–59, 2005.

[7] M. Held and S. Huber. Topology-Oriented Incremental
Computation of Voronoi Diagrams of Circular Arcs
and Straight Line-Segments. Computer Aided Design,
(to appear), 2008. Spec. Issue on Voronoi diagrams.

[8] M. I. Karavelas and M. Yvinec. Voronoi diagram of
convex objects in the plane. In Proc. Europ. Symp.
Algorithms, LNCS, pages 337–348. Springer, 2003.

[9] R. Ramamurthy and R. Farouki. Voronoi diagram
and medial axis algorithm for planar domains with
curved boundaries - II: detailed algorithm description.
J. Comput. Appl. Math., 102(2):253–277, 1999.

4

EuroCG’09 - Brussels, Belgium

328

On the Optimality of Spiral Search

Elmar Langetepe∗

Abstract

Searching for a point in the plane is a well-known
search game problem introduced in the early eigth-
ies. The best known search strategy is given by a
spiral and achieves a competitive ratio of 17.289. . . It
was shown by Gal [7] that this strategy is the best
strategy among all monotone and periodic strategies.
Since then it was unknown whether the given strat-
egy is optimal in general. This paper settles this old
open problem and shows that spiral search is indeed
optimal.

Keywords: Search games, motion planning, spiral
search, competitive analysis, lower bound

1 Introduction

Search games (i. e., games where two players, a
searcher and a hider, compete with each other) are
studied in many variations in the last 60 years since
the first work by Koopman in 1946. For example,
Bellman [3] introduced the search for an immobile
hider located on the real line with a known probability
distribution, Gal [7] and independently Baeza-Yates
et al. [2] solve this problem for a uniformly distributed
location of the hider. The book by Gal [7] and the
reissue by Alpern and Gal [1] gives a comprehensive
overview on results on search games.

For analysing the efficiency of a search startegy we
use the competitive framework which was introduced
by Sleator and Tarjan [10], and used in many settings
since then, see for example the survey by Fiat and
Woeginger [6] or, for the field of online robot motion
planning, see the surveys [9, 8].

We consider a special search game problem intro-
duced by Gal [7], namely searching for a point in the
plane. Starting from a fixed origin O we move along a
path Π through the plane. Let us assume that there is
an unknown target point t and let pt denote the first
point on Π so that t lies on the line segment between
O and pt. We detect t at point pt. This means, that
we sweep the plane until finally the unknown target
t is found, see Figure 1. We assume that the target
point is at least one step away from the start.

The efficiency of the search path Π is given by the
worst-case target, C := supt

|Πpt
O |

|Ot| , the constant C is

∗University of Bonn, Institute of Computer Science I, 53117
Bonn, Germany

t
pt

O

Π

|Πpt
O |
|Ot| ≤ C

Figure 1: Searching for a point in the plane.

called the competitive ratio of Π. It was shown by Gal
[7] that a spiral strategy is the best strategy among
all monotone and periodic strategies. A strategy S
represented by its radius vector X(θ) is called periodic
and monotone, if θ is always increasing and X also
satisfies X(θ+2π) ≥ X(θ). Gal states that it might be
a complicated task to show that there is a periodic and
monotone optimal strategy, a lower bound remains
open.

2 Spiral search

We consider a logarithmic spiral, Π, which is given in
polar coordinates by (ϕ, ·eϕ cot(α)) for −∞ < ϕ < ∞,
see Figure 2 for an example with α ≤ π/2. The angle
α ≤ π/2 expresses the excentricity of the spiral. The
length of the spiral from the center O to some point
q is given by 1

cos α |Oq|, for details see [4].

O

α

t q

pt

Tq

Figure 2: A logarithmic spiral and the worst-case sit-
uation.

The spiral expands successively and for every target
point t there will be a first point pt on the spiral so
that the segment ptO will hit the target t for the first
time. Obviously, the worst case for the competitive
ratio is given, if we miss the target t arbitrary close to

1

On the Optimality of Spiral Search

329

(ϕ, eϕ cot α) and detect t at pt = (ϕ+2π, e(ϕ+2π) cot α),
see Figure 2. Altogether, the worst-case ratio for the
spiral is given by

|Πpt

O |

|Ot|
=

1
cosα

e2π cot α .

Optimization on α gives a competitive ratio of
17.289 . . . for cot α = 0.15540 . . . This strategy is the
best strategy among all periodic and monotone strate-
gies, see Alpern and Gal [1].

Theorem 1 The optimal spiral for searching a point
in the plane achieves a competitive ratio of 17.289 . . .

3 Lower bound construction

The maximal lower bound known so far is 17.079 . . .
and was presented in [5] in the context of searching
for rays in the plane. The lower bound construction
here consists of the following steps.

1. We consider a discrete version of the problem us-
ing a bundle of m rays that emanate from the
origin, this was also used in [5].

2. We simplify the problem for m rays in some steps
which results in a ratio not greater than the con-
tinous version of the problem.

3. We show that the optimal solution of the simpli-
fied problem has to be monotone and periodic for
every m.

4. For every m we compute the optimal strategy us-
ing the framework of Gal. The optimal competi-
tive ratio goes to 17.289. . . if m goes to infinity.

Let us first consider a discrete version of the prob-
lem using a bundle of m rays that emanate from the
origin and which are separated by an angle α = 2π

m ,
see Figure 3. The target will be on one of the rays.
Again, the goal is detected, if it is swept by the radius
vector of the trajectory, i.e., t is hit by a segment ptO
and pt is visited on the corresponding ray. Note that
if m goes to infinity we are back to the continous ver-
sion of the problem. But we can neither assume that
we have to visit the rays in a periodic order nor that
the depth of the visits increases in every step.

We represent a search strategy, S, as follows: In the
ith step, the searcher hits a ray—say ray l—at dis-
tance xi from the origin, moves a distance βixi − xi

along the ray l, and leaves the ray at distance βixi

with βi ≥ 1. Then, it moves to the next ray within dis-
tance

√
(βixi)2 − 2βixixi+1 cos γi,i+1 + x2

i+1, see Fig-
ure 3. Note that any search strategy for our problem
can be described in this way. Let us assume that the
ray l was visited up to distance βkxk and is visited
the next time at index Jk. The worst case occurs if
the searcher slightly misses the goal while visiting ray
l up to distance βkxk . Instead, it finds the goal at

γi,i+1

xi+2

xi+1

xi

βixi

α = 2π
m

βi+2xi+2

βi+1xi+1

βi+1xi+1

Figure 3: A bundle of rays, a reasonable strategy and
a shortcut.

step xJk
on ray l arbitrarily close to βkxk . Either we

have xJk
> βkxk; that is, the searcher discovers the

goal in distance xJk
on ray l, or we have xJk

< βkxk.
In the latter case, the searcher moves βkxk−xJk

from
xJk

and finds the goal by accident. Altogether, the
competitive ratio, C(S), is greater than

Jk−1∑
i=1

βixi − xi +
√

(βixi)2 − 2βixixi+1 cos γi,i+1 + x2
i+1

βkxk
.

(1)
We simplify the problem for m rays in some steps.

We do not change the movement of the strategy but
we will improve the ratio. Instead of the distance√

(βixi)2 − 2βixixi+1 cos γi,i+1 + x2
i+1+βi+1xi+1−xi+1

from βixi to xi+1 and then to βi+1xi+1 between two
arbitrary successive rays we let this distance shrink to√

(βixi)2 − 2βixiβi+1xi+1 cos 2π
m + (βi+1xi+1)2. This

would be the distance between two neighboring rays
without slipping along the second ray, see the dashed
line in Figure 3. The new distance is obviously not
greater than the original one, of course it might be the
same for βi+1 = 1 and two neighboring rays, which
means γi,i+1 = 2π

m . We change only the path length
for the ratio but we do not change the movements of
the given strategy. Therefore, the ratio (1) cannot
increase, because the numerator will not increase.

There is only one problem in this reformulation con-
cerning the last value of the sum in the numerator of
ratio (1). The last step of the strategy (before de-
tecting the goal at βkxk) goes from βJk−1xJk−1 to
xJk

and not directly to βJk
xJk

and this step might
indeed be smaller than the distance from βJk−1xJk−1

to βJk
xJk

. Therefore, we allow—only for the com-
putation of the ratio—that the last value in the nu-
merator of (1) is given by the distance of the shortest
path from βJk−1xJk−1 to a neighboring ray, which
is βJk−1xJk−1 sin 2π

m . One can imagine that this last
step will have no influence if we let m go to infinity

2

EuroCG’09 - Brussels, Belgium

330

at the end. Again, we do not change the movement
of the strategy, we only improve the ratio.

For convenience, from now on we denote βixi by yi.
Altogether, we would like to minimize

yJk−1 sin 2π
m +

Jk−2∑
i=1

√
y2

i − 2yiyi+1 cos 2π
m + y2

i+1

yk
.

(2)
Obviously, the ratio (2) is never greater than ratio

(1), only the numerator might be smaller.
The simplification above results in the following

much more simple interpretation of the problem. We
can assume that there are only two rays with angle
2π
m between them and the agent moves successively
from one to the other, see an example (bold line) in
Figure 4 for m = 5 up to 11 steps. For every visit the
agent only decides which ray, l, of the original m rays
it would visit in the m-ray setting. Note that this also
means that the important indices Jk are fixed in that
way. Remember that the ray visited with depth xk is
still visited the next time at index Jk.

y0 = 1

y3
y5

y1

y8

y9
y4

y3 y5 y8
y4

y11

y11 y7 y10

y10
y6

y7

y2

y1 y2 y9

y6

y0 = 1

Figure 4: The problem for m = 5 rays interpreted by
successive visits on two rays. The Strategy S (bold
line) can be replaced by the sequence S ′ (dashed line).

Let us now assume that we have an optimal strat-
egy S = (y1, y2, y3, y4, . . .) and given values Jk for this
problem. The worst-case ratio of S is the worst-case
ratio of (2). The target is at least one step away from
the origin. The starting depth on every ray is 1. At
every step yi the rays are visited up to a certain depth.
For the optimal sequence S we can now choose a vis-
iting order (i.e., we improve the indices Jk) in such
a way that at every step yi the ray with the small-
est current depth is visited next. Obviously, this will
keep the ratio (2) as small as possible regardless how
the original visiting order was. If a ray with smallest
current depth is visited later, some more steps were
made and the ratio (2) will increase. Note that we do
not change the movements of the strategy.

For example, in Figure 4 in the optimal visiting or-
der the first five steps y1, . . . , y5 visits the five imagi-
nary rays successively since the starting depth on ev-
ery ray was 1. For distance y6 we set J3 = 6 since y3

is the smallest current depth on all rays. This means
that y6 visits the same ray as y3. Further on we obtain
J5 = 7 since y5 is the smallest current depth at step
y7, then we have J1 = 8, J8 = 9, J2 = 10, J9 = 11
and so on. This is the best visiting order for S.

If two rays have exactly the same current depth, we
choose the one which was visited earlier. Note that
we do not change the movements of the strategy and
it might still happen that yi+1 is smaller than yi. But
we know that at step yi+1 there is at least one ray that
has current depth smaller than yi+1, otherwise with
distance yi+1 we would not detect more goals and step
yi+1 was needless, we can skip such a step. Of course,
after a step with yi+1 < yi the value yi+1 might be the
smallest current depth on all rays. Then its ray should
be visited again in the next step yi+2. We simply allow
to visit the same ray in two successive steps which
is not possible in the original m-ray version. This
additional freedom can only improve the ratio (2).

Since Jk is the index where the ray of yk is visited
next, for Jl < Jj we now have yl ≤ yj . The next
idea is that we really visit the two rays in an increas-
ing order. In the example of Figure 4 the strategy
S = (y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11 . . .) gives
J3 = 6, J5 = 7, J1 = 8, J8 = 9, J2 = 10, J9 = 11 and
so on. Note that the first 5 = m elements of S visit
the 5 rays successively. Thus, the sequence S now will
be reordered to S′ = (y′1, y

′
2, y

′
3, y

′
4 . . .) with y′1 = y3,

y′2 = y5, y′3 = y1, y′4 = y8, y′5 = y2 y′6 = y9, y′7 = y4,
y′8 = y11, y′9 = y7 and so on.

For S′ we can again use a visiting order induced
by the smallest current depth, this can not increase
the ratio for S′ as mentioned before. This means that
the rays are now visited in successive order and with
increasing distance. For index n in S ′, the index J ′

n

is exactly n + m. Thus, S ′ is monotone and periodic
and the ratio is given by

y′n+m−1 sin 2π
m +

n+m−2∑
i=1

√
y′i

2 − 2y′iyi+1 cos 2π
m + y′i+1

2

y′n
.

(3)
We still have to show that S ′ is not worse than S

with respect to the competitive ratio. The worst case
for depth yk on S is attained for the next visit at index
Jk. In S′ the distance yk might be visited in an earlier
step than in S, that is y′n = yk and n ≤ k. For index
n in S′, the index J ′

n equals exactly n + m as already
seen. We would like to compare the ratios for yk in
S and y′n = yk in S′. It is easy to see that for the
sequence S also Jk = n + m has to be fulfilled, since
the visit order in S was induced by current smallest
depth. For example, in the sequence S ′ in Figure 4,

3

On the Optimality of Spiral Search

331

the ray of y′2 = y5 was visited at index 7 again and in
the sequence S the ray of y5 was also visited again at
index 7. Thus, for comparing the ratios for y′2 = y5

we have to use the sums in the ratios of S and S ′ up
to the same index 7 but with some different elements.

This holds in general. We consider the sequence S.
Since in the beginning the m rays were visited suc-
cessively by the depths y1, . . . , ym one of the rays is
visited with depth ym+1 in the next step and ym+1 is
one of the new current depths of the rays. Generally
at every step yk, the element yk will be used on one of
the rays and therefore one current depth is exchanged
by yk. In the sorted order of y1, . . . , yk−1 the k − m
greatest element will be exchanged, which is element
y′k−m. Moreover, up to index k the sequences S and
S′ will have at most m− 1 different entries and these
entries are greater in S than in S ′.

Altogether, this means that the number of visits for
the worst case at yk or y′n = yk is the same (namely
Jk = n + m = J ′

n) and only at most m − 1 elements
in S are greater than that of S ′ up to index n + m.

We consider a simple shortest path problem. Let a
sequence of elements S = (y0, y1, y2, y3, . . . , yn+m) be
given. We use images of the corresponding points on
both rays as already depicted in Figure 4. The task is,
to compute a shortest path that starts at the small-
est element yj in S and visits exactly one of the two
images for every element yi but changes sucessively
from one ray to the other.

We would like to show that the shortest path has
to visit the rays in an increasing order, see the dashed
path in Figure 4. This can be shown by induction on
the length of S. For two elements in S this is trivial.
So we consider a sequence S with n + 1 elements and
assume that the statement holds for all sequences with
less than n elements. By triangle inequality we can
show that the shortest path always starts with the
segment of smallest slope. Now we delete the smallest
element yj out of S and the corresponding shortest
path visits the remaining elements in increasing order
starting at the second smallest value yi. The image
of yj is closer to yi than to any other part of the
shortest path for S \ {yj}, therefore we can combine
the segment yjyi with the shortest path starting at
yi. We obtain an overall shortest path that visits the
images in increasing order.

Unfortunately, S and S′ might have m−1 different
elements. All these elements in S are greater than
the corresponding elements in S ′. The correspond-
ing shortest path problem for S will result in a path
of smaller length, if we move a couple of points with
greatest distance closer to the origin. Therefore, we
substitute the differing elements of S by the corre-
sponding elements of S′.

Altogether, we conclude that yn+m−1 sin 2π
m +∑n+m−2

i=1

√
y2

i − 2yiyi+1 cos 2π
m + y2

i+1 is greater than

or equal to

y′n+m−1 sin
2π

m
+

n+m−2∑
i=1

√
y′i

2 − 2y′iyi+1 cos
2π

m
+ y′i+1

2

and the sequence S′ is optimal because for every y′n =
yk the ratio (3) is not greater than the ratio (2).

In principle, we are already done, because as m goes
to infinity we get arbitrarily close to the searching-
for-a-point-in-the-plane problem and there is always
an optimal solution that is periodic and monotone.
Thus, together with the previous result of Gal, spiral
search is optimal.

But we can also proceed more directly as follows:
We compute an optimal sequence S ′ for ratio (3).
Fortunately, S′ is periodic and monotone and fulfills
some other nice properties (for example unimodal-
ity) so that a general framework of Gal is applica-
ble, see [7, 1]. This means that (3) is minimized
by an exponential sequence y′i = ai. Simple arith-
metic shows that the ratio is given by f(a, m) =

am−1 sin 2π
m + am−1

a−1

√
1− 2a cos 2π

m + a2. Thus, we
can analytically find the value amin that minimizes
f(a, m). For increasing m the corresponding value
f(amin, m) converges to 17.289... For example, for
m = 5000 we compute amin = 1.000195303 . . . and
f(amin, 5000) = 17.289 . . .

Theorem 2 Spiral search is optimal.

References

[1] S. Alpern and S. Gal. The Theory of Search Games and
Rendezvous. Kluwer Academic Publications, 2003.

[2] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching
in the plane. Inform. Comput., 106:234–252, 1993.

[3] R. Bellman. An optimal search problem. SIAM Rev.,
274(5), 1963.

[4] I. N. Bronstein, K. A. Semendjajew, G. Musiol, and
H. Mühlig. Taschenbuch der Mathematik. Verlag Harry
Deutsch, Frankfurt am Main, 5th edition, 2000.

[5] A. Eubeler, R. Fleischer, T. Kamphans, R. Klein,
E. Langetepe, and G. Trippen. Competitive online search-
ing for a ray in the plane. In Robot Navigation, Dagstuhl
Seminar Proceedings, 2006.

[6] A. Fiat and G. Woeginger, editors. On-line Algorithms:
The State of the Art, volume 1442 of Lecture Notes Com-
put. Sci. Springer-Verlag, 1998.

[7] S. Gal. Search Games, volume 149 of Mathematics in
Science and Engeneering. Academic Press, New York,
1980.

[8] C. Icking, T. Kamphans, R. Klein, and E. Langetepe. On
the competitive complexity of navigation tasks. In Sensor
Based Intelligent Robots, volume 2238 of Lecture Notes
Comput. Sci., pages 245–258, Berlin, 2002. Springer.

[9] N. S. V. Rao, S. Kareti, W. Shi, and S. S. Iyengar. Robot
navigation in unknown terrains: introductory survey of
non-heuristic algorithms. Technical Report ORNL/TM-
12410, Oak Ridge National Laboratory, 1993.

[10] D. D. Sleator and R. E. Tarjan. Amortized efficiency of
list update and paging rules. Commun. ACM, 28:202–208,
1985.

4

EuroCG’09 - Brussels, Belgium

332

Computing Maximal Islands

C. Bautista-Santiago∗ J.M. Dı́az-Báñez† D. Lara‡ P. Pérez-Lantero § J. Urrutia¶ I. Ventura‖

Abstract

Given a set S of red and blue points on the plane in
general position, an island I(S, C) ⊆ S is the inter-
section of S and a convex region C. We study the
problem of finding a maximal island according to cer-
tain criterium. For instance, a largest monochromatic
island I(S, C) is a maximum cardinality subset of S,
such that every point of I(S, C) belongs to the same
chromatic class. An O(n3)-time and O(n2)-space al-
gorithm is proposed to find one such subset. Our
approach can be adapted to find monochromatic is-
lands which maximize parameters such as the area,
perimeter.

1 Introduction

In this paper, S will always denote a set of n points on
the plane in general position such that its elements are
classified into two classes or colors, say red and blue.
A subset I of S is called an island of S if there is a
convex set C such that I = S ∩ C. We say that an
island of S is a blue (resp. red) island of S if all of its
elements are blue (resp. red).

In this paper we study the problem of finding is-
lands of S that are optimal according to some pa-
rameters, e.g. find a blue island of S with maximum
cardinality.

The problem of finding the largest monochromatic
island of a point set S (LMIP) was studied in [17],
where an O(n3 log n) time and O(n2)-space algorithm
to solve this problem is given. We present here an
O(n3) time and O(n2)-space algorithm to solve the
LMIP problem which also solves all the problems
studied in [17]. Our algorithms can also handle the
weighted version of our main problem in which the

∗Instituto de Matemáticas, Universidad Nacional Autónoma
de México, crevel@uxmcc2.iimas.unam.mx

†Departamento Matemática Aplicada II, Universidad de
Sevilla, dbanez@us.es, partially supported by grant FEDER-
MTM2006-03909.

‡Instituto de Matemáticas, Universidad Nacional Autónoma
de México, dlara@uxmcc2.iimas.unam.mx

§Departamento de Computación, Universidad de La Ha-
bana, pablo@matcom.uh.cu, supported by MAEC-AECI

¶Instituto de Matemáticas, Universidad Nacional Autónoma
de México, urrutia@matem.unam.mx, partially supported by
grant FEDER-MTM2006-03909.

‖Departamento Matemática Aplicada II, Universidad de
Sevilla, iventura@us.es, partially supported by grant FEDER-
MTM2006-03909.

elements of S are assigned weights (usually integral
values).

We observe that when the labels of the elements
of S are chosen carefully, we can solve problems ap-
parently unrelated. For instance, if we label all the
blue points of S with 1, and the red points with −1,
a maximum weight island is an island with maximum
discrepancy (absolute difference between blue and red
points) [11]. If we label the blue points of S with
1, and the red points of S with −∞, the maximum
weight island is the largest monochromatic island.
Our algorithm can also be easily adapted to solve the
following problems: Find the monochromatic island I
of S maximizing the number of vertices on the convex
hull of I; find a monochromatic island I of S that
maximizes the area, or the perimeter of the convex
hull Conv(I) of I, discrepancy and others.

An outline of the paper is as follows. In Section 2
we present the algorithm in detail. A generalization
for solving other optimization problems is stated in
Section 3. Finally, in Section 4 we show an application
of our algorithm to give an heuristic method for a red-
blue set covering problem.

1.1 Related work

A key problem in computational geometry is the iden-
tification of subsets of a point set having particular
properties. Erdös and Szekeres [16] asked whether
there was a value f(k) such that all sets of at least
f(k) points in general position in the plane determine
a convex k-gon. They give upper and lower bounds
for f(k).

Several papers have also studied the algorithmic as-
pects of problems of this kind, e.g. see [4, 10]. Algo-
rithms are also known for finding subsets of points
with k elements that minimize parameters such as di-
ameter, or perimeter of the convex hull of these sub-
sets [2, 15].

Our motivation to study the LMIP problem arises
from applications in data mining, statistical cluster-
ing, pattern recognition or data compression. In data
mining and classification problems, a natural method
for analyzing data is to select prototypes represent-
ing different data classes. A standard technique for
achieving this is to perform cluster analysis on the
training data [12]. The clusters can be obtained using
simple geometric shapes. Aronov and Har-Peled [3]
and Eckstein et al. [13] considered circles and axis-

1

Computing Maximal Islands

333

aligned boxes. In this paper we consider a convex set
for the selection problem.

2 The largest monochromatic island

In this section we present an O(n3) time algorithm
to solve the LMIP problem. Our algorithm is based
on Fisher’s O(n3 log n) algorithm to solve the LMIP
problem [17]. We improve Fisher’s running time al-
gorithm by using efficient data structures.

We proceed now to give some definitions that will
be needed in the rest of this paper. △(p, e) will denote
the triangle having a line segment e as one of its sides
and the point p as the vertex opposite to e; pi → pj

will denote the directed line segment starting at pi

and ending at pj .
Let p0 be a blue point in S, and S0 the set of blue

points in S below p0. From now on we will assume
that the elements of S0 are labeled {p1, . . . , pk} in the
counterclockwise order with respect to p0.

Let B be a blue island of S, and p0 the point of
B with the largest y-coordinate (w.l.o.g. we will as-
sume that such a point is unique). The point p0 will
be called the anchor of B. The weight of B is the
cardinality of B.

Our approach to solve the LMIP is the following:
For each blue point p0 ∈ S, find the largest monochro-
matic island anchored in p0.

Let B be a blue island anchored at p0, and
p0, pσ1 , . . . , pσk

be the vertices of the convex hull of
B labeled in the counterclockwise order around the
boundary of the convex hull of B, starting at p0. We
call the edge pσk−1 − pσk

joining pσk−1 to pσk
the last

edge of the convex hull of B, and sometimes we will
say that B ends at pσk−1−pσk

. We denote as Blue(P)
the number of blue points contained in the convex set
P . We will also assign a weight w(pσk−1 − pσk

) to the
edge pσk−1−pσk

equal to the weight of the largest blue
island of S anchored at p0 that ends at pσk−1 − pσk

.
If the triangle △(p0, pσk−1−pσk

) contains at least one
red point, w(pσk−1 − pσk

) = 0.
Let Blue(pσi) denote the number of blue points

inside or on the convex polygon with vertices
p0, pσ1 , . . . , pσi , (1 ≤ i ≤ k).

Our algorithm is based on the following crucial ob-
servation that suggests a dynamic programming ap-
proach to solve the problem:

Observation 1. Blue(pσi+1) = Blue(pσi) +
Blue(△(p0, pσi − pσi+1))− 2.

The additive property in Observation 1, allows us
to solve the problem of finding the largest monochro-
matic island anchored at a point p0 by performing a
radial sweep of the blue points below p0 in the coun-
terclockwise order around p0 by joining sets of so-
called good triangles with respect to p0 [17]; that is
sets of triangles with blue vertices (one of which is p0),
such that they have disjoint interiors, do not contain

p0

Figure 1: We add good triangles from left to right.

red points, and their union forms a convex polygon
anchored at p0, see Figure 1. The bottleneck of the
sweeping approach proposed in [17] is the joining pro-
cess. In the next section, we will show how to com-
pute the LMIP for an anchored island in O(n2) time
and space, thus obtaining an O(n3)-time algorithm to
solve the LMIP.

2.1 The algorithm

The algorithm does a preprocessing stage: First, we
calculate for all blue points p ∈ S the radial ordering
of the blue points in S below p in overall O(n2) time
and space [14] . Second, we preprocess S such that
for each triangle with vertices in S, the number of
red and the number of blue points in the triangle can
be determined in constant time. We use a simple
modification of the algorithm proposed in [15]. The
preprocessing phase takes O(n2)-time and space.

Let p0 be a blue point in S, and relabel the blue
points in S below p0 by {p1, . . . , pk} such that the
line segment joining p0 to pi+1 is to the right of that
joining p0 to pi. This labeling can be obtained in O(n)
time during the preprocessing stage. The algorithm
scans {p1, . . . , pk} from p1 to pk such that for each
two points pi and pj (1 ≤ i < j ≤ k) we calculate the
weight w(pi − pj) to the edge joining pi to pj equal
to the size of the largest blue island B (if any) of S
anchored at p0, and ending at the edge pi− pj. If the
triangle △(p, pi − pj) contains at least one red point
of S, w(pi − pj) equals 0, see Figure 2. For the sake
of clarity if i < j, we will orient the edge pi − pj with
the orientation pi → pj, thus obtaining an oriented
acyclic graph G(p0) with vertex set {p1, . . . , pk}.

Observation 1 will allow us to calculate the weights
w(pi → pj) = w(pi − pj) of the edges of G(p0) induc-
tively as follows:

In the initial stage, when i = 1, we assign to all
edges p1 → pj the weight Blue(∆(p0, p1 − pj)), and
prev(p1 → pj) = null. Suppose that we have assigned
w(·) and prev(·) to all edges pi → pj (1 ≤ j < k). We
now show how to set the weights of all edges pj → pl

(j < l ≤ k).
Assume that all incoming and outgoing edges to

pj are labelled La = a1, . . . , aq and Lb = b1, . . . , br

2

EuroCG’09 - Brussels, Belgium

334

p0

pi−1

pi

pi+1

pi+2
w(pi − pi+1) = 0

Figure 2: The weight of edge pi → pi+1 is 0 because
△(p0, pi → pj) contains a red point.

respectively such that La (resp. Lb) is sorted with
respect to pj , see Figure 3. During the preprocessing
stage both La and Lb can be obtained in linear time.
Given an edge ar in La and an edge bs in Lb, we say
that ar is compatible with bs if the union of ∆(p0, ar)
and ∆(p0, bs) is a convex polygon.

p0

pj

b1
b2

br

a1

a2

aq

Figure 3: Ordering of the edges of pj

Now, for every edge bs in Lb such that triangle
△(p0, bs) contains no red points in S, we want to find
the edge ar in La such that ar is compatible with bs

and has maximum weight (if △(p0, bs) contains red
points, then w(bs) = 0). It is easy to see that if ar

exists then w(bs) = w(ar) + Blue(∆(p0, bs))− 2. The
index r will be prev(bs)

To obtain r we proceed as follows: We label each
ai (1 ≤ i ≤ q) with max(ai) which is a pointer to
the edge ah (1 ≤ h ≤ i) such that w(ah) is maxi-
mum among w(a1), . . . , w(ai). This can be done in
O(q) time by doing max(a1) = a1 and for i = 2 . . . q
applying the following formula:

max(ai) =
{

ai if w(ai) ≥ w(max(ai−1))
max(ai−1) if w(ai) < w(max(ai−1))

The following procedure computes w(·) and prev(·)
for all b in Lb:

Start by setting i = q. For m = 1, . . . , r find
the first index t from i to 1 such that at is compat-
ible with bm. If such position t exists set w(bm) =

w(max(at)) + Blue(∆(p0, bm))− 2 and prev(bm) = t,
otherwise set t = 0, w(bm) = Blue(∆(p0, bm)) and
prev(bm) = null. After this make i = t and continue
the iteration of m.

Clearly above procedure runs in O(n) time thus the
complete assignment of w(·) and prev(·) is done in
O(n2) time. Therefore we have proved:

Lemma 1 Assigning w(.) and prev(.) to all edge of
G(p0) can be done in O(n2) time.

The largest blue island B anchored at p0 corre-
sponds to the edge e of G(p0) with maximum weight.
Said in another way, B ends at e. The convex hull,
and thus B, can now be computed by using the point-
ers prev(e) recursively.

By repeating the same procedure with the red
points of S, we obtain the following result:

Theorem 2 Let S be a bichromatic point set in gen-
eral position on the plane. The largest monochro-
matic island can be found in O(n3) time, by using a
preprocessing of O(n2) time and space.

3 Generalizations

The algorithm presented in the previous section can
be used to solve a collection of optimization problems.
Suppose we have a function f : P → IR, where P is a
set of convex polygons.

Definition 1 We say that a function f on P [15] is
decomposable iff for any polygon P = {p1, p2, . . . , pk}
and any index 2 < i < k,

f(P) = g(f({p1, . . . , pi}), f({p1, pi, . . . , pk}), p1, pi)

where g can be calculated in constant time.

Notice that if f counts the number of points of S
contained within or on the boundary of a convex poly-
gon P , then g(x, y, p, q) = x + y − 2.

Other decomposable functions are the perimeter,
area, number of points in the convex hull, discrepancy,
sum of weights of the points, etc. It is easy to see
that our main algorithm can b e easily modified to
minimizing or maximizing these functions. We can
also modify the method for solving the problem of
finding maximal or minimal empty polygons. Another
interesting variant is the following:

The empty ordered heterochromatic island
problem: Given n points in the plane colored with
colors 1, . . . , k, compute the largest empty convex poly-
gon P with k vertices such that the colors on the ver-
tices of P appear in the order 1, . . . , k.

See [9] for a related paper. Note that the modifica-
tion we have to do to our main algorithm is to build
the graph G(p0) following colors in order 1, . . . , k. The
next result follows.

3

Computing Maximal Islands

335

Theorem 3 Let S be a set of points in the plane
colored with k colors and let f be a monotone decom-
posable function. The ordered heterochromatic island
that minimizes or maximizes f can be computed in
O(n3) time and O(n2) space.

4 The Class Cover Problem with Convex Sets

Given a set S of red and blue points, a classical prob-
lem is that known as the Class Cover Problem [7]. It
consists in finding a set of circles with minimum car-
dinality such that every blue point in S is contained
in at least one of the circles, and no circle contains a
red point. We consider a variant of this problem in
which we want to cover the blue points by using (non-
necessarily) disjoint convex polygons. In [1] the prob-
lem of covering a point set with the smallest number
of pairwise disjoint triangles is studied. It is proved
by using a reduction from planar 3SAT-problem that
this problem is NP-hard . We can use the same con-
struction as in [1] to reduce any instance of the planar
3SAT to an instance of the Class Cover Problem with
convex sets in which the only possible solutions are
formed by sets of pairwise disjoint triangles. Hence
our problem is also NP-hard.

The O(log n)-approximation greedy approach for
the more general Set Cover Problem [18] can easily
be applied to our problem. It works as follows: re-
cursively compute the maximum blue island I of S,
remove it and repeat until there are no more blue
points left in S. This approach produces a O(n4)-
time O(log n)-approximation algorithm.

The techniques of [6] to obtain o(log n)-
approximation algorithms work for systems with
constant VC-dimension. Notice that the VC-
dimension of our system is not constant, specifically
it can be Ω(n) (take a set of n points in convex
position).

References

[1] P. K. Agarwal and S. Suri. Surface Approximation
and Geometric Partitions Proc. 5th annual ACM-
SIAM Symp. on Discrete Algorithms. ACM Press,
24-33.

[2] A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Find-
ing k points with minimum diameter and related prob-
lems. Proc. 5th ACM Symp. on Computational Ge-
ometry, 283-291, 1989.

[3] B. Aronov and S. Har-Peled. On approximating the
depth and related problems. Proceedings 16th An-
nual ACM-SIAM Symposium on Discrete Algorithms,
2005.

[4] D. Avis and D. Rappaport. Computing the largest
empty convex subset of a set of points. In SCG 85:
Proceedings of the first annual symposium on Com-
putational geometry, 161167, ACM, 1985.

[5] J.E. Boyce, D.P. Dobkin, I. Robert L.(Scot) Drys-
dale, and L.J. Guibas. Finding extremal polygons.
In STOC 82: Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, 282289,
ACM, 1982.

[6] H. Brönnimann, M.T. Goodrich. Almost optimal set
covers in finite VC-dimension. Discrete and Compu-
tational Geometry, 14, 463-479, 1995.

[7] A.H. Cannon and L.J. Cowen. Approximation algo-
rithms for the class cover problem. Annals of Math-
ematics and Artificial Intelligence, 40(3-4):215-223,
2004.

[8] T. H. Cormen, C. E. Leiserson, and R.L. Rivest. In-
troduction to Algorithms. Second Edition. MIT Press,
McGraw-Hill, 2001.

[9] J.M. Dı́az-Báñez, G. Hernandez, D. Oliveros, A.
Ramirez-Vigueras, J.A. Sellarès, J. Urrutia, I. Ven-
tura, Computing Shortest Heterochromatic Mono-
tone Routes Operational Research Letters, Volume
36, 684-687, 2008.

[10] D.P. Dobkin, H. Edelsbrunner, and M.H. Overmars.
Searching for empty convex polygons In SCG 88: Pro-
ceedings of the fourth annual symposium on Compu-
tational geometry, 224228, ACM, 1988.

[11] D. P. Dobkin, D. Gunopulos, and W. Maass. Com-
puting the maximum bichromatic discrepancy, with
applications to computer graphics and machine learn-
ing. J. Computer and Systems Sciences, 52(3) (1996)
453470.

[12] R. Duda, P. Hart, and D. Stork. Pattern classifica-
tion. John Wiley and Sons, Inc., 2001.

[13] J. Eckstein, P. L. Hammer, Y. Liu, M. Nediak, and
B. Simeone. The maximum box problem and its ap-
plications to data analysis. Comput. Optim. Appl. 23
(2002) 285–298.

[14] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Con-
structing arrangements of lines and hyperplanes with
applications. SIAM J. Comput. 15, 341-363, 1986.

[15] D. Eppstein, M. Overmars, G. Rote, and G. Woeg-
inger. Finding minimum area k-gons. Discrete and
Computational Geometry, 7, 4558, 1992.

[16] P. Erdös and G. Szekeres. On some extremum prob-
lems in elementary geometry. Ann. Univ. Sci. Bu-
dapest, (3-4), 5362, 1960/1.

[17] P. Fischer. Sequential and parallel algorithms for find-
ing a maximum convex polygon. Computational Ge-
ometry: Theory and Applications, 7, 187200, 1997.

[18] M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness. Freeman, New York, NY. 1979.

4

EuroCG’09 - Brussels, Belgium

336

On complexity of the mixed volume of parallelograms

Leonid Gurvits ∗

Abstract

Let K = (K1...Kn) be a n-tuple of convex compact
subsets in the Euclidean space Rn, and let V (Cdot)
be the Euclidean volume in Rn. The Minkowski poly-
nomial VK is defined as VK(λ1, ..., λn) = V (λ1K1 +
...+ λnKn) and the mixed volume V (K1, ...,Kn) as

V (K1, ...,Kn) =
∂n

∂λ1...∂λn
VK(λ1K1 + · · ·+ λnKn).

We study in this paper the seemingly simple case
when each convex set Ki is a parallelogram, i.e. Ki =
{aXi + bYi : 0 ≤ a, b ≤ 1;Xi, Yi ∈ Rn. If the number
of distinct vectors in the set |{ Xi

||Xi|| ,
Yi

||Yi|| : 1 ≤ i ≤ n}|
is equal to n then the mixed volume V (K1...Kn) can
be computed as the permanent of n×n matrix having
at most two nonzero entry in each column. Such per-
manent can be computed in deterministic polynomial
time.
We prove that in general the mixed volume of paral-
lelograms is #P −Complete. On the positive side, we
prove that any integer k there exists a deterministic
poly-time algorithm approximating V (K1...Kn) with
the relative accuracy 2n

nk .

1 Introduction

Let K = (K1...Kn) be a n-tuple of convex com-
pact subsets in the Euclidean space Rn, and let
V (Cdot) be the Euclidean volume in Rn. It is well
known Herman Minkowski result that the value of
the VK(λ1K1 + · · · + λnKn) is a homogeneous poly-
nomial of degree n, called the Minkowski polynomial,
in nonnegative variables λ1...λn, where ′′+′′ denotes
Minkowski sum, and λK denotes the dilatation of K
with coefficient λ. The coefficient V (K1...Kn) of the
monomial

∏
1≤i≤n λi is called the mixed volume of

K1, ...,Kn. Alternatively,

V (K1, ...,Kn) =
∂n

∂λ1...∂λn
VK(λ1K1 + · · ·+ λnKn).

The problem of computing the mixed volume of con-
vex bodies is also important for combinatorics and
algebraic geometry [2]. For instance, the number of
toric solutions to a generic system of n polynomial
equations on Cn is equal (and in a general case is

∗gurvits@lanl.gov. Los Alamos National Laboratory, Los
Alamos, NM.

upper bounded by) to the mixed volume of the New-
ton polytopes of the the corresponding polynomials
(see,for instance, [11]).

1.1 Previous Work

This remarkable connection, called BKK Theorem,
created an ”industry” of computing (exactly) the
mixed volume of integer polytopes and its various
generalizations, and most of algorithms in the area
are of exponential runing time ([3], [4] and many
more). Altough there was a substantial algorithmic
activity on the mixed volume of polytopes prior to [2],
the paper [2] was first, to our knowledge, systematic
complexity-theoretic study in the area. It followed
(naturally) famous FPRAS algorithms [1] for volumes
of convex bodies , solved several natural problems and
posed many important hard questions.The existence
of FPRAS for the mixed volume even for polytopes
or ellipsoids is still very open problem.
Efficient polynomial-time probabilistic algorithms
that approximate the mixed volume extremely tightly
((1+ε)-factor) were developed for some classes of well-
presented convex bodies [2]. The algorithms in [2] are
based on the multivariate polynomial interpolation
and work if and only if the number k of distinct con-
vex sets in the tuple K is ”small”, i.e. k = O(log(n)).
It was proved in the recent paper [8] that there ex-
ists a randomized poly-time algorithm approximating
the mixed volume of n well-presented compact con-
vex sets in Rn with relative accuracy nn

n! ≈ en. If the
convex sets are presented by oracles, then, because of
Barany-Furedi bound, even such accuracy can not
be achieved by a deterministic poly-time algorithm.
In the case of small affine dimension of the convex
sets the algorithm from [8] gives a better exponent.
For instance, if the affine dimensions aff(Ki) ≤ 2 :
3 ≤ i ≤ n then the corresponding relative accuracy is
bounded by (1 +

√
2)n.

2 The mixed volume of parallelograms in Rn

Let X = {X1, ..., Xk} ⊂ Rn be a finite subset of real
n-dimensional vectors. A zonotope ZonX is defined
as

ZonX = {
∑

1≤i≤k
aiXi : 0 ≤ ai ≤ 1, 1 ≤ i ≤ k}

A zonotope Zon(X1, X2) =: {aX1+bX2 : 0 ≤ a, b ≤

1

On complexity of the mixed volume of parallelograms

337

1} is called parallelogram. If the mixed volume

MV =: V (K1, ...,Kn) 6= 0,Ki = Zon(Xi,0, Xi,1),

then we can assume, modulo poly-time preprocessing,
that {Xi,0 = ei, i ≤ i ≤ n} is the standard basis in
Rn. Define a n × n matrix A = [Y1|...|Yn], Yi = Xi,1

and PSD rank two matrices Qi = eie
T
i + YiY

T
i .

Then the mixed volume

MV =: MV (A) =
∑

S⊂{1,...,n}
|det(AS,S)|

and the mixed discriminant

D(Q1, ..., Qn) =: D(A) =
∑

S⊂{1,...,n}
|det(AS,S)|2,

where AS,S is the corresponding principal submatrix
of A. If the matrix A is principally unimodular, i.e.
|det(AS,S)| ∈ {0, 1}, then MV (A) = D(A).
Note that

D
1
2 ≤MV ≤ 2

n
2D

1
2 (1)

3 #P-Completeness

3.1 Universality of the mixed volume of (special)
parallelograms and the mixed discriminant of
(special) rank two PSD matrices

Given k pairs of vectors (Xi, Yi) ∈ Rn : 1 ≤ i ≤ k we
define the generalized mixed discriminant

GD((X1, Y1), ..., (Xk, Yk)) =

=
∑

1≤j1<...<jn≤k
|det[Xj1 |...|Xjn]|2|det[yj1 |...|Yjn]|2

(2)

and the generalized mixed volume

GV ((X1, Y1), ..., (Xk, Yk)) =

=
∑

1≤j1<...<jn≤k
|det[Xj1 |...|Xjn]||det[yj1 |...|Yjn]|

(3)

The formula (3) generalizes the mixed volume of
zonotopes V (ZonX1 , ..., ZonXn), the formula (2) gen-
eralizes the mixed discriminant of positive semidef-
inite tuples D(PSDX1 , ..., PSDXn

). In these both
cases the corresponding pairs of vectors are {ei, Yi) :
Yi ∈ Xi; 1 ≤ i ≤ n} and {e1, ..., en} is the standard
basis in Cn.

Definition 1 Consider k vectors V1, ..., Vk ∈ Rn, n ≤
k and k vectors Z1, ..., Zk ∈ Rk−n. We define Xi =
Vi ⊕ 0 ∈ Rk,Wi = 0⊕ Zi ∈ Rk and correspondingly

Ai = XiX
∗
i +WiW

∗
i = ViV

∗
i ⊕ZiZ∗i , Pi = Zon(Xi,Wi).

The tuples of block-diagonal rank two PSD matrices
(A1, ..., Ak) and parallelograms (P1, ..., Pk) are called
direct sum rank two tuples.

3.2 Dual Geometric Matroids

Consider n× k matrix
{M(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ k} = M = [A|B]
over an arbitrary commutative field. We assume that
k ≥ n, and n×n matrix A is nonsingular. Notice that
[A|B] = A[I|A−1B].
Let C be an k−n× k−n matrix such that det(C) =
det(A). Define the following k−n×k matrix over the
same field:

Dual(M) = C[BT (A−1)T |I] (4)

Proposition 1 Consider a subset S = {1 ≤ ii <
... < in ≤ k} ⊂ {1, ..., k}. Define the following n × n
(sub)matrix MS = {M(i, j) : 1 ≤ i ≤ n, j ∈ S}
and the n − k × n − k (sub)matrix Dual(M)S′ =
{Dual(M)(k, l) : 1 ≤ k ≤ n − k, l ∈ S′. Here the
subset S′ = {1, ..., k} − S is the compliment of S.
Then

det(MS) = ±det(Dual(M)S′) (5)

For a proof, consider WLOG the case A = I, C = I.

3.3 The reduction to direct sum rank two case

Theorem 2 1. Let k pairs of vectors (Xi, Yi) ∈
Rn : 1 ≤ i ≤ k be given. Then there is a deter-
ministic polynomial time algorithm (preprocess-
ing) which outputs a direct sum rank two matrix
tuple A = (A1, ..., Ak) such that

GD((X1, Y1), ..., (Xk, Yk)) = D(A1, ..., Ak) (6)

The Generalized Mixed Discriminant can
be represented as the Mixed Discriminant
of a direct sum rank two tuple.

2. Let k pairs of vectors (Xi, Yi) ∈ Rn : 1 ≤ i ≤ k
be given. Then there is a deterministic polyno-
mial time algorithm (preprocessing) which out-
puts aspecial rank two parallelogram tuple P =
(P1, ..., Pk) such that

GV ((X1, Y1), ..., (Xk, Yk)) = V (P1, ..., Pk) (7)

The Generalized Mixed Volume can be
represented as the Mixed Volume of a direct
sum rank two tuple of parallelograms.

Proof. Define the following n × k matrix
M = [Y1|...|Yk]. If Rank(M) < n then
GD((X1, Y1), ..., (Xk, Yk)) =
GV ((X1, Y1), ..., (Xk, Yk)) = V (P1, ..., Pk) = 0.
If Rank(M) = n then, up to some permutations
π ∈ Sk of columns, M = [A|B] : A is n × n nonsin-
gular matrix. Obviously, such block-representation
can be found in poly-time; also the (k − n) × k
matrix Dual(M), defined in (4), can be constructed
in poly-time. Let Z1, ..., Zk ∈ Rk−n be the ordered

2

EuroCG’09 - Brussels, Belgium

338

columns of Dual(M). Define, as in Definition (1),
direct sum rank two parallelogram tuple
Pi = Zon(Xi,Wi) ⊂ Rk : Xi = Vi ⊕ 0 ∈ Rk,Wi =
0⊕ Zi ∈ Rk; 1 ≤ i ≤ k.
It follows now from (5) that
GV ((X1, Y1), ..., (Xk, Yk)) = V (P1, ..., Pk). The
mixed discriminant statement (6) follows in the
similar way. �

Let A = I+M(π1)+M(π2) be n×n boolean matrix
with exactly three ones in each row and column. Here
π1, π2 are two non-overlaping permutations without
fixed points, M(πi), i = 1, 2 are the corresponding
permutation matrices. The next Lemma(3) is a rather
direct corollary of Theorem (2), it corresponds to the
following 3n pairs of vectors:
{(ei, eσ(i)) : 1 ≤ i ≤ n;σ ∈ {Id, π1, π2}}.

Lemma 3 Consider the following 3n× 3n matrix:

NPM =

 0 I I
(M(π1))T 0 0
(M(π2))T 0 0


Then the matrix NPM is principally unimodular ; the
permanent

Per(A) = MV (NPM) = D(NPM).

The permanent Perm(I+M(π1)+M(π2)) is equal
to the number of perfect matchings in the correspond-
ing 3-regular bipartite graph. Therefore (see, for in-
stance, [10]) computing Per(G) is #P − Complete.
The next result follows now directly.

Theorem 4 As the mixed volume of parallelograms
MV (A) as well the mixed discriminant of rank two
PSD matrices are #P−Complete even for very sparse
(at most two ones in each row and column) boolean
principally unimodular matrices.

(The #P-Completeness of the (mixed discriminant
of rank two PSD matrices) MD(A) was proved in [6].
The proof in [6] is much more complicated comparing
with the present paper, more importantly it does not
apply to the principally unimodular matrices.)

4 Deterministic poly-time approximation algo-
rithms

4.1 A few words on randomized algorithm from
[8]

A randomized algorithm from [8] based on the next
inequality:

Theorem 5 Let K = (K1...Kn) be a n-tuple con-
vex compact subsets in the Euclidean space Rn and
aff(i) be the affine dimension of Ki , 1 ≤ i ≤ n.

Devine the capacity of a Minkowski volume polyno-
mial VK as

Cap(VK) = inf
xi>0:1≤i≤n

VK(x1, ..., xn)∏
1≤i≤n xi

.

Define the next function λ(n, k):
λ(n, k) = (minx>0(svn,k(x)

x))−1,
svn,k(x) = 1 +

∑
1≤i≤k(xn)inChoosei;n, k ≥ 1.

Then the following inequality holds:
Cap(VK) ≥ V (K1, ...,Kn) ≥
≥∏

1≤i≤n λ(i,min(i, aff(i)))Cap(VK)

As the affine dimension of parallelograms is at most
2, we get for tuples of parallelograms that

Cap(VK) ≥ V (K1, ...,Kn) ≥ 1
2

(1 +
√

2)2−nCap(VK)

(8)
So, in order to get (1 +

√
2)n relative accuracy it is

sufficient to approximate log(Cap(VK)) with an ad-
dtive error O(1). log(Cap(VK)) is a solution of the
next convex minimization problem:

log(Cap(VK)) = inf
y1+...+yn=0

log(VK(ey1 , ..., eyn)).

(9)
To solve this convex problem we need an oracle eval-

uating log(VK(ey1 , ..., eyn)) with small additive error.
Unfortunatelly, it was proved in [2] that computing
the volume of a Minkowski sum of parallelograms is
#P-Complete. Therefore it is not clear whether a
randomized algorithm from [8] can be derandomized.

4.2 Another failed approach

In order to get a 2n-approximation algorithm it would
be sufficient to compute maxS |det(AS,S |. It was
proved in [6] that this maximization problem is NP-
Complete.

4.3 H-Stable polynomials

A homogeneous polynomial p(x1, ..., xn) with nonneg-
ative coefficients is called H-Stable if p(z1, ..., zn) 6= 0
provided that the real parts Re(zi) > 0, 1 ≤ i ≤ n.

Let A = (A1, ..., An) be an n-tuple of n×n complex
hermitian PSD matrices; the corresponding determi-
nantal polynomial is defined as DetA(λ1, ..., λn) =
det(

∑
1≤i≤n λiAi). We benefit in this paper from the

fact that the polynomial DetA is H-Stable if it is
not zero, i.e. if the sum

∑
1≤i≤nAi � 0 (is positive

definite). It is easy to see that the degree degDetA(i)
of the variable λi in the polynomial DetA is equal
degDetA(i) = Rank(Ai).

We need the next general result from [9]:

Theorem 6 Let p be H-Stable polynomial with
nonnegative coefficients in n variables and of degree

3

On complexity of the mixed volume of parallelograms

339

n. Define G(k) =: (k−1
k)k−1, k ≥ 1. Then the follow-

ing inequalitities hold:
Cap(p) ≥ ∂n

∂x1...∂xn
p(0, ..., 0) ≥

≥∏
2≤i≤nG (min(i, degp(i)))Cap(p).

Theorem 7 Let A = (A1, ..., An) be an n-tuple of
n×n complex hermitian PSD matrices. Assume that
Rank(Ai) ≤ 2 : 1 ≤ i ≤ n − [k log(n)], where k is a
fixed integer. Then there exists a deterministic poly-
time algorithm approximating the mixed discriminant
D(A1, ..., An) with the relative accuracy 2n

nk .

Proof. [Sketch] Assume WLOG that the mixed dis-
criminant D(A1, ..., An) > 0 and the tuple A =
(A1, ..., An) is indecomposable as defined in [5], [7].

Define the next polynomial in l =: n − [k log(n)]
variables and of degree l:

q(x1, ..., xl) =
∂n−l

∂xl+1...∂xn
DetA(x1, ..., xl, 0, ..., 0).

Then q is also H-Stable(see [9]) and degq(i) ≤ 2, 1 ≤
i ≤ l. Note that

D(A1, ..., An) =
∂l

∂x1...∂xl
q(0, ..., 0).

It follows from Theorem(6) that

1 ≤ Cap(q)
D(A1, ..., An)

≤ 2l−1 ≈ 2n

nk
.

We need to compute now log(Cap(q)) with an addi-
tive error O(1). Since the tuple A = (A1, ..., An) is
indecomposable hence the polynomial q is indecom-
posable as defined in [7]:

∂l

∂xi∂xj
∏
m 6=(i,j) ∂xm

q(0, ..., 0) > 0 : 1 ≤ i 6= j ≤ l.
(10)

The condition (10) guaranties that convex mini-
mization problem

min
y1+...+yn=0

log(q(ey1 , ..., eyn))

has unique solution and the minimum value can be
approximated with an additive error O(1) using poly-
nomial number of evaluations of the polynomial q. Fi-
nally, we remark that to exactly evaluate q(x1, ..., xl)
one needs to compute just O(nk+1) determinants of
some effectively computable n×n matrices. Therefore
there exists a number F (k) = exp(log(Cap(q)+O(1)),
computable in deterministic poly-time, such that

1 ≤ D(A1, ..., An)
F (k)

≤ 2n

nk
. (11)

�

Theorem 8 Given a tuple of parallelograms

(K1, ...,Kn);Ki = {aXi+bYi : 0 ≤ a, b ≤ 1;Xi, Yi ∈ Rn}, 1 ≤ i ≤ n

and integer number k, there exists a number H(k),
computable in deterministic poly-time, such that

1 ≤ MV

H(k)
≤ 2n

n
k
2
.

Proof. Consider rank 2 PSD matrices Ai = XiX
T
i +

YiY
T
i and the number F (k) from (11). It follows from

the inequality (1) that 1 ≤ MV

F (k)
1
2
≤ 2n

n
k
2

. Therefore,

we get for the number H(k) = F (k)
1
2 that 1 ≤ MV

H(k) ≤
2n

n
k
2

.
�

References

[1] M. Dyer and A. Frieze, The complexity of computing
the volume of a polyhedron, SIAM J. Comput., 17,
967-994, 1988.

[2] M. Dyer, P. Gritzmann and A. Hufnagel, On the com-
plexity of computing mixed volumes, SIAM J. Com-
put., 27(2), 356-400, 1998.

[3] I.Z. Emiris and J.F. Canny, Efficient incremental al-
gorithms for sparse resultant and the mixed volume,
Journal of Symbolic Computation, 20, 117-149, 1995.

[4] T. Gao, T.Y. Li and M. Wu, MixedVol: A software
package for Mixed Volume computation, ACM Trans-
actions on Math. Software 31(4), 2005.

[5] L.Gurvits and A. Samorodnitsky, A deterministic al-
gorithm approximating the mixed discriminant and
mixed volume, and a combinatorial corollary, Dis-
crete Comput. Geom. 27: 531 -550, 2002.

[6] L. Gurvits, On the Complexity of Mixed Discrimi-
nants and Related Problems. MFCS 2005: 447-458.

[7] L. Gurvits, Hyperbolic Polynomials Approach to
Van der Waerden/Schrijver-Valiant like Conjectures
: Sharper Bounds , Simpler Proofs and Algorithmic
Applications , in Proc. of STOC-2006 , 2006.

[8] L. Gurvits, A polynomial time algorithm to approxi-
mate the mixed volume within a simply exponential
factor, available at http://arxiv.org/abs/cs/0702013.

[9] L. Gurvits, Van der Waerden/Schrijver-Valiant like
Conjectures and Stable (aka Hyperbolic) Homoge-
neous Polynomials : One Theorem for all, Electron.
J. Combin. 15 (2008), no. 1, Research Paper 66, 26
pp.

[10] P. Dagum and M. Luby, Approximating the perma-
nent of graphs with large factors. Theoretical Com-
puter Science, 102:283– 305, 1992.

[11] Bernd Sturmfels, Polynomial equations and convex
polytopes. Amer. Math. Monthly 105 (1998), no. 10,
907–922

4

EuroCG’09 - Brussels, Belgium

340

Cache-Oblivious Construction of a Well-Separated Pair Decomposition

Fabian Gieseke∗ Jan Vahrenhold†

Abstract

We present a cache-oblivious algorithm for computing
a well-separated pair decomposition of a finite point
set S ⊂ Rd using O(sort(|S|)) memory transfers.

1 Preliminaries

Given two point sets A,B ⊂ Rd with bounding hyper-
rectangles R(A) and R(B) and a real constant s > 0,
we say that A and B are well-separated with respect
to s if there are two disjoint balls B(a,r) and B(b,r)

with radius r ≥ 0 and centers a, b ∈ Rd such that
R(A) ⊂ B(a,r), R(B) ⊂ B(b,r) and the distance be-
tween B(a,r) and B(b,r) is at least sr. We refer to s
as the separation ratio. Callahan and Kosaraju [7]
defined a well-separated pair decomposition (WSPD)
for the point set S with separation ratio s > 0 as a
sequence {{A1, B1}, . . . , {Am, Bm}} of pairs of non-
empty subsets of S such that

1. Ai ∩Bi = ∅ for all i = 1, . . . ,m,
2. for each pair {p, q} of distinct points of S, there

is exactly one pair {Ai, Bi} in the sequence, such
that p ∈ Ai and q ∈ Bi or vice versa,

3. Ai and Bi are well-separated with respect to s
for all i = 1, . . . ,m.

The integer m is called the size of the WSPD.

Observation 1 ([7]) Let S be a set of points in Rd
and let s > 0 be a real number. A WSPD for S with
respect to s having size O(sd|S|) can be computed in
O(|S| log |S|+ sd|S|) time.

For the analysis in this paper we use the cache-
oblivious model [8], which is a variant of the standard
two-level I/O model introduced by Aggarwal and Vit-
ter [1]. Their model defines N to denote the number
of objects in the problem instance, M � N to de-
note the number of objects fitting into internal mem-
ory, and 2 ≤ B ≤ M/2 to denote the number of ob-
jects per disk block. In the cache-oblivious model of
Frigo et al. [8], we also have the parameters N , M ,
and B for the analysis of an algorithm, but in the
design-phase of an algorithm, the parameters of M
and B must not be used. This allows us to model
∗Faculty of Computer Science, LS XI, TU Dortmund, 44227

Dortmund, Germany, fabian.gieseke@cs.tu-dortmund.de.
†Faculty of Computer Science, LS XI, TU Dortmund, 44227

Dortmund, Germany, jan.vahrenhold@cs.tu-dortmund.de

a multi-level hierarchical memory, where memory is
transferred in blocks between any two adjacent lay-
ers of memory (and not only between memory and
disk). Frigo et al. [8] showed that sorting N items re-
quires Θ(NB logM/B

N
B) memory transfers while scan-

ning N items can obviously be done in Θ(NB) memory
transfers; both bounds match the I/O-bounds in the
I/O-model. We will use the shorthands O(sort(X)) =
O(XB logM/B

X
B) and O(scan(X)) = O(XB).

2 Cache-Oblivious WSPD

We show that we can efficiently construct a WSPD in
the cache-oblivious model of computation using only
O(sort(|S|)) memory transfers. The algorithm follows
the I/O-efficient approach of Govindarajan et al. [10]:

Observation 2 ([10]) Given a set S of points in Rd
and a real constant s > 0, a WSPD for S with sepa-
ration ratio s and size O(sd|S|) can be computed in
O(sort(|S|)) I/Os using O(|S|/B) disk blocks.

Most of their algorithm is based on scanning and
sorting or on other techniques which have a cache-
oblivious counterpart. However, some parts of their
algorithm use the values of M and B (which are un-
known to a cache-oblivious algorithm) or take advan-
tage of data structures with no (direct) cache-oblivi-
ous counterpart. In particular, Govindarajan et al.
use two such data structures, namely buffer trees [2]
and topology buffer trees [12]. Replacing them by ef-
ficient cache-oblivious computation steps constitutes
a major part of our modifications. We describe our
cache-oblivious method by outlining the I/O-efficient
algorithm along with the necessary modifications.1

In a nutshell, Govindarajan et al. [10] compute a
WSPD for S as follows: They start by constructing a
special binary tree T , called fair split tree of S, whose
nodes are used to represent the pairs of the WSPD
and whose leaves are in a one-to-one correspondence
with the points in S. The idea is to build T recur-
sively. First, a “partial” fair split tree T ′ with leaves
of bounded sizes, i.e., whose leaves correspond to at
most |S|α points for some constant 1 − 1

2d ≤ α < 1,
is constructed. They then recursively build the split
trees for the leaves, proceeding with the optimal inter-
nal memory algorithm for every leaf whose size is at
most M . After the computation of the split tree they

1See the thesis of Gieseke [9] for all details.

1

Cache-Oblivious Construction of a Well-Separated Pair Decomposition

341

Algorithm 1 Construction of a fair split tree.
Function FairSplitTree(S, R0)

Require: A point set S ⊂ Rd and a box R0 with S ⊂ R0

Ensure: A fair split tree T of S
1: if |S| = 1 then
2: Construct a single-node fair split tree.
3: else
4: T ′ := PartialFairSplitTree(S, R0).

(Note: For each leaf S1, . . . , Sk of T ′: |Si| ≤ |S|α)
5: for i = 1 to k do
6: Ti := FairSplitTree(Si, R̂(Si)).

(Note: R̂(Si) denotes an outer rectangle, which
is box fulfilling certain properties)

7: return T := T ′ ∪ T1 ∪ · · · ∪ Tk

simulate the internal memory algorithm of Callahan
and Kosaraju [7] for constructing the pairs {Ai, Bi}
in external memory using time-forward processing [2].

2.1 Construction of a Fair Split Tree

To compute T , we invoke FairSplitTree with the
point set S and a centered minimal bounding cube R0

containing S. The structure and the analysis of func-
tion FairSplitTree are close to those of the original
I/O-efficient algorithm. However, we do not stop the
recursion at leaves of size M (which are unknown to a
cache-oblivious algorithm). Also, we set the constant
α to α ∈ [1 − 1

4d , 1), thus effectively slowing down
the recursion. In Lemma 2 it will be shown that the
function PartialFairSplitTree computes a valid
partial fair split tree T ′ of S. Thus, the overall algo-
rithm correctly computes the desired split tree T of
S performing I(|S|) ≤ c · sort(|S|) +

∑k
i=1 I(|Si|) =

O(sort(|S|)) memory transfers. The linear bound
for the space consumption follows from the fact that
the function PartialFairSplitTree uses O(|S|/B)
space and from the fact that

∑k
i=1 |Si| = |S|.

Lemma 1 Given a set S of points in Rd, function
FairSplitTree (Algorithm 1) computes a fair split
tree of S in O(sort(|S|)) memory transfers using
O(|S|/B) blocks of external memory.

2.2 Construction of a Partial Fair Split Tree

It remains to show that PartialFairSplitTree (Al-
gorithm 2) causes O(sort(|S|)) memory transfers and
uses O(|S|/B) blocks of memory. The framework of
this function is identical to that of the original I/O-
efficient algorithm for computing the partial fair split
tree T ′. In the first step, a binary tree Tc, called com-
pressed pseudo split tree, is computed whose nodes
correspond to boxes, i.e. hyperrectangles R that fulfill
the inequality lmax(R) ≤ 3 · lmin(R), where the latter
notations denote the maximum and minimum length
of R, respectively. In the second step, the tree Tc is
expanded to a tree T ′′, called a pseudo split tree. In

Algorithm 2 Construction of a partial fair split tree.
Function PartialFairSplitTree(S, R0)

Require: A point set S ⊂ Rd and a box R0 with S ⊂ R0

Ensure: A partial fair split tree T ′ of S whose leaves have
size at most |S|α

1: Compute a compressed pseudo split tree Tc of S, where
every node represents a box.

2: Expand Tc to the pseudo split tree T ′′.
3: Remove every node of T ′′ that does not contain any

points of S and compress every path of nodes having
one child into a single edge to obtain T ′.

4: return T ′

the last step, leaves which do not contain any points
of S are removed and paths consisting of nodes having
one child are compressed to single edges. The result-
ing tree is the desired partial fair split tree T ′ of S.

Govindarajan et al. first partition every dimension
of the starting hyperrectangle R0 into slabs each con-
taining at most |S|α points. For each dimension, these
slabs are bounded by

⌈
|S|1−α

⌉
+1 axis-parallel hyper-

planes, called the slab boundaries. The two extreme
slab boundaries in each dimension are positioned in
such a way that they contain the two sides of the
starting hyperrectangle R0 in this dimension. The
construction of the tree Tc is only based on the in-
formation provided by these slab boundaries and pro-
ceeds by splitting a hyperrectangle R fulfilling specific
invariants into one or two smaller hyperrectangles ful-
filling these invariants as well.

These invariants guarantee that each hyperrectan-
gle side obtained by this splitting process can be
described uniquely using a constant number of slab
boundaries and a constant amount of additional in-
formation. As this is also true for the starting hyper-
rectangle R0 (each of its sides is contained in a slab
boundary), any hyperrectangle that can be obtained
from R0 through a sequence of splits can be described
using a constant number of slab boundaries and a con-
stant amount of extra information. The main idea of
the I/O-efficient algorithm of Govindarajan et al. is
to construct the set of all hyperrectangles that can be
described this way. Callahan [5] calls these hyperrect-
angles constructible and bounds theirs total number:

Observation 3 ([5, 10]) There are O(|S|2d(1−α))
constructible hyperrectangles.

Hence, by setting the value for the constant α ∈ [1−
1
2d , 1), Govindarajan et al. get O(|S|) constructible
hyperrectangles. Note that, due to our minor, yet
crucial modification of the value of α, we can bound
the number of all constructible hyperrectangles by
O(

√|S|). Ultimately, this will allow us to replace
both the use of buffer trees as well as the use of topol-
ogy buffer trees by efficient cache-oblivious compu-
tation steps. Govindarajan et al. then construct a

2

EuroCG’09 - Brussels, Belgium

342

graph Γ with nodes corresponding to the set of con-
structible hyperrectangles and with an edge set orig-
inating from the splitting process mentioned above.
The tree Tc consists of all nodes of Γ that are acces-
sible from R0 along with their outgoing edges. The
two main steps of the I/O-efficient construction of Tc
are (a) building the graph Γ in a preprocessing step
and (b) extracting the tree Tc afterwards.

Step 1a: Building Γ Constructing the slab bound-
aries is based on sorting and scanning, and a cache-
oblivious implementation uses O(d · sort(|S|)) =
O(sort(|S|)) memory transfers. The vertex set of Γ,
i.e. the set of all constructible hyperrectangles, can
be constructed based on the information given by the
slab boundaries. Govindarajan et al. do this by per-
forming O(d) nested scans using O(scan(|Γ|)) I/Os
each. They then use buffer trees [2] over the appro-
priate list of slab boundaries and answer I/O-efficient
search queries on the constructed trees to augment
every vertex R with a description of the largest hy-
perrectangle R′ contained in R and bounded by slab
boundaries as well as with a description of the slab
boundary that comes closest to the “middle” of R
in each dimension. They use this information to con-
struct the edge set of Γ by a single scan of Γ’s vertices.
Thus, the construction of Γ uses O(sort(|S|)) I/Os.

The vertex set of Γ can be constructed in a cache-
oblivious manner using O(d) nested scans as well. In-
stead of using buffer trees, we apply a brute-force ap-
proach for augmenting the nodes of Γ with the ap-
propriate information. This approach simply scans
the (sorted) list of slab boundaries in the i-th dimen-
sion to find the appropriate slab boundaries in each
dimension. Due to our choice of α, each vertex of Γ
can be processed this way using an overall number of
O(d · scan(|S|1−α)) = O(scan(

√|S|)) memory trans-
fers. Thus, the overall process for all O(

√|S|) vertices
of Γ requires O(scan(|S|)) memory transfers.

The final step, to construct the edge set of Γ, can be
done analogously by a single scan over the vertex set
of Γ taking O(scan(|Γ|)) = O(scan(

√|S|)) memory
transfers. This completes the construction of Γ.

Step 1b: Extracting Tc from Γ The I/O-efficient
extraction of Tc from Γ can be implemented us-
ing time-forward processing and topological sorting.
These steps can be performed efficiently in the cache-
oblivious model [3, 4], and thus the extraction of Tc
can be done the same way by spending O(sort(|Γ|))
memory transfers. With our choice of α, this step
takes O(sort(

√|S|)) memory transfers.

Step 2: Constructing T′′ Given the compressed
pseudo split tree Tc for S, Govindarajan et al. con-
struct the pseudo split tree T ′′ in three phases: In
the first phase, they attach some leaves to Tc which

were discarded during the construction of Tc. As at
most one child is attached to each node of Tc, the
resulting graph, called T+

c , has size O(|Tc|) as well.
This step can be implemented cache-obliviously in a
straightforward manner (see [9] for the details) and
takes O(scan(

√|S|)) memory transfers.
To distribute the points of S to the proper boxes

and regions, Govindarajan et al. answer so-called
deepest containment queries on T+

c for all points in
S using a topology buffer tree [12]. The distribution
of all points takes O(sort(|S|)) I/Os.

Instead of using a topology buffer tree, we apply
the following brute-force approach for distributing the
points : Subdivide the space into cells bounded by the
hyperplanes which occur as boundaries for the con-
structible hyperrectangles. Using the same argument
as for bounding the number of constructible hyper-
rectangles ensures that there are only O(|S|2d(1−α)) =
O(

√|S|) cells of this type [5, 10]. Furthermore, a list
of these cells can be constructed using O(d) nested
scanning and sorting steps using O(sort(

√|S|)) mem-
ory transfers. By sorting the points and the list of hy-
perplanes with respect to the ith coordinate and by
subsequently scanning both sorted lists, we can label
each point with the pair of adjacent hyperplanes in
this dimension, which determines the slab that con-
tains it. Processing all points and all d dimensions this
way takes O(sort(|S|)) memory transfers and labels
each point with a description of the cell that contains
it. After computing this correspondence between the
points in S and the cells, we compute an appropriate
correspondence between the cells and the hyperrect-
angles and regions. By construction, each cell is either
contained in a hyperrectangle being a leaf of T+

c or in
a region R\C, where (R,C) is a so-called compressed
edge of T+

c [10]. As the number of cells and the num-
ber of hyperrectangles and regions are bounded by
O(

√|S|), this correspondence can be obtained by a
brute-force approach performing O(scan(|S|)) mem-
ory transfers. To compute the desired correspondence
between the points in S and the hyperrectangles and
regions, we first sort both lists lexicographically ac-
cording to the cell entries. By scanning both sorted
lists, we can subsequently augment each point with
a representation of the hyperrectangle rather or re-
gion which contains the point. Both steps can be
performed in O(sort(|S|)) memory transfers.

Finally, in the third phase, Govindarajan et al. re-
place every compressed edge by a sequence of splits
which results in the desired tree T ′′. They prove that
the resulting tree T ′′ has sizeO(|S|). As all techniques
in this step are only based on scanning and sorting,
the expansion of all edges can be performed cache-
obliviously using O(sort(|S|)) memory transfers.

Step 3: Construction of T′ Given the pseudo split
tree T ′′ of S, Govindarajan et al. apply time-forward

3

Cache-Oblivious Construction of a Well-Separated Pair Decomposition

343

processing to remove every box R with R∩S = ∅ from
T ′′ and to compress all paths consisting of nodes hav-
ing one child to a single edge in the resulting tree.
The overall process is only based on scanning, sort-
ing and time-forward processing and can therefore be
implemented efficiently in the cache-oblivious model
using O(sort(|S|)) memory transfers. The obtained
tree is the desired fair split tree of S. As the bound
for the space consumption follows from the layout of
the algorithm, this completes the proof of the follow-
ing lemma and, hence, also the proof of Lemma 1:

Lemma 2 Given a set S of points in Rd and a con-
stant α ∈ [1 − 1

4d , 1), function PartialFairSplit-
Tree (Algorithm 2) computes a partial fair split
tree T ′ of S in O(sort(|S|)) memory transfers using
O(|S|/B) blocks of external memory. Each leaf of T ′

represents a subset of S with at most |S|α points.

2.3 Construction of the Well-Separated Pairs

Once a fair split tree for the point set S is computed,
Govindarajan et al. simulate the internal memory al-
gorithm for constructing the pairs {Ai, Bi} of the
designated WSPD in external memory by applying
the time-forward processing technique performing an
overall number of O(sort(|S|)) I/Os. Besides time-
forward processing, the I/O-efficient algorithm is only
based on scanning and sorting. Thus, the complete
procedure can be implemented in a cache-oblivious
manner in O(sort(|S|)) memory transfers as well.

Theorem 3 Given a set S of points in Rd and a real
constant s > 0, a well-separated pair decomposition
for S with separation ratio s having size O(sd|S|) can
be computed in O(sort(|S|)) memory transfers using
linear space.

3 Applications

Constructing t-spanners with a linear number of edges
can be performed easily in a cache-oblivious manner
using the WSPD. Given a set S of points in Rd and a
real constant t > 1, construct a WSPD for S with sep-
aration ratio 4 t+1

t−1 having sizeO(|S|) and add, for each
pair {Ai, Bi} of the WSPD, exactly one (arbitrary)
pair {x, y} of points with x ∈ Ai and y ∈ Bi to an ini-
tially empty edge set E. Callahan and Kosaraju [6]
proved that the resulting graph G = (S,E) is a t-
spanner for S with a linear number of edges.

Corollary 4 Given a point set S ⊂ Rd and some con-
stant t > 1, we can compute a t-spanner G = (S,E)
of linear size using O(sort(|S|)) memory transfers.

Using Theorem 3, it is straightforward to restate
[10, Theorem 4] in a cache-oblivious version:

Corollary 5 Given a point set S ⊂ Rd and some
constant t > 1, we can compute a t-spanner G =
(S,E) of linear size and diameter at most 2 log |S|
using O(sort(|S|)) memory transfers.

In combination with our previous results for I/O-
efficiently pruning dense spanners [11] we can prove:

Lemma 6 ([9, Theorem 6.4.8]) Given a geomet-
ric graph G = (S,E) which is a t-spanner for S for
some constant t > 1 and given a constant ε > 0, we
can compute a (1 + ε)-spanner G′ = (S,E′) of G with
E′ ⊆ E and |E′| ∈ O(|S|) using O(sort(|E|)) memory
transfers.

Acknowledgments

We thank Norbert Zeh for helpful discussions regarding

the I/O-efficient WSPD algorithm [10].

References

[1] A. Aggarwal and J. S. Vitter. The input/output complex-
ity of sorting and related problems. Communications of
the ACM, 31(9):1116–1127, 1988.

[2] L. Arge. The buffer tree: A technique for designing
batched external data structures. Algorithmica, 37(1):1–
24, 2003.

[3] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-
Minkley, and J. I. Munro. An optimal cache-oblivious pri-
ority queue and its application to graph algorithms. SIAM
J.Computing, 36(6):1672–1695, 2007.

[4] G. S. Brodal and R. Fagerberg. Funnel heap - a cache
oblivious priority queue. In Proc. 13th Intl. Symp. Al-
gorithms and Computation, volume 2518 of LNCS, pages
219–228. Springer, 2002.

[5] P. B. Callahan. Dealing with higher dimensions: the well-
separated pair decomposition and its applications. Ph.D.
thesis, Department of Computer Science, Johns Hopkins
University, Baltimore, Maryland, 1995.

[6] P. B. Callahan and S. R. Kosaraju. Faster algorithms
for some geometric graph problems in higher dimensions.
In Proc. 4th Symp. Discrete Algorithms, pages 291–300,
1993.

[7] P. B. Callahan and S. R. Kosaraju. A decomposition of
multidimensional point sets with applications to k-nearest-
neighbors and n-body potential fields. Journal of the
ACM, 42(1):67–90, 1995.

[8] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachan-
dran. Cache-oblivious algorithms. In Proc. 40th Symp.
Foundations of Computer Science, pages 285–299, 1999.

[9] F. Gieseke. Algorithmen zur Konstruktion und
Ausdünnung von Spanner-Graphen im Cache-Oblivious-
Modell. Technical Report TR07-3-005, Universität Dort-
mund, Fachbereich Informatik, July 2007. In German.

[10] S. Govindarajan, T. Lukovszki, A. Maheshwari, and
N. Zeh. I/O-efficient well-separated pair decomposition
and its applications. Algorithmica, 45(4):585–614, 2006.

[11] J. Gudmundsson and J. Vahrenhold. I/O-efficiently prun-
ing dense spanners. In Revised Selected Papers Japanese
Conf. Discrete and Computational Geometry, volume
3742 of LNCS, pages 106–116. Springer, 2005.

[12] N. Zeh. I/O-Efficient Algorithms for Shortest Path Re-
lated Problems. PhD thesis, School of Computer Science,
Carleton University, 2002.

4

EuroCG’09 - Brussels, Belgium

344

Computer Aided Design System for Escher-Like Tilings

Hiroshi Koizumi ∗ Kokichi Sugihara †

Abstract

This paper proposes an efficient method for ”Escher-
ization”, that is, for generating a tile which is close to
a given shape and whose copies cover the plane with-
out gap or overlap except at their boundaries. In this
method the ”Escherization” is reduced to finding the
maximal eigenvalue of a matrix. Hence it is very ef-
ficient when compared with the previous method, in
which simulated annealing is used. This method is
implemented as a computer-aided system, in which a
user gives an arbitrary non-intersecting closed curve,
and the system automatically finds a placement rule
and an associated tile whose boundary is the closest
to the given curve.

1 Introduction

A tiling of the plane is a collection of figures, called
tiles, that cover the plane without gaps or overlaps ex-
cept at their boundaries. Tilings have been used for
various purposes such as ornament for construction
and design of clothes. The patterns made by tilings
range from those made by simple geometrical figures
to those made by intricate figures, and they attract a
great deal of interest of both artists and mathemati-
cians. From a mathematical point of view, the place-
ment rules, incidence types, and other properties of
tilings have been deeply considered [1].

Dutch woodblock artist M. C. Escher is one of the
greatest artists who created artistic tilings. His works
include many artistic tilings made of animal form tiles
based on his own try-and-error approaches.

Kaplan and Salesin [3] first introduced the problem
of finding tilings automatically whose tiles are simi-
lar to a given goal shape. This problem is called the
Escherization problem named after Escher and his el-
egant work. More precisely the Escherization problem
is as follows:

Escherization problem Given a closed
plane figure S (the ”goal shape”), find a
closed figure T such that:

1. T is as close as possible to S; and
∗Department of Mathematical Informatics, Graduate School

of Information Science and Technology, The University of
Tokyo, hiroshi koizumi@mist.i.u-tokyo.ac.jp

†Department of Mathematical Informatics, Graduate School
of Information Science and Technology, The University of
Tokyo, sugihara@mist.i.u-tokyo.ac.jp

2. copies of T fit together to form a tiling
of the plane.

Kaplan and Salesin proposed a solution to this
problem using simulated annealing and concluded
that their system performs well on convex or nearly
convex shapes but it does not work well on intri-
cate shapes. In addition, it seems that their system
requires much time in computation because of the
property of simulated annealing. Kaplan and Salesin
also published the paper about Dihedral Escherization
that deal with a tiling made from two tiles [2].

In this paper, we consider the Escherization prob-
lem with a different approach. By reformulating the
Escherization problem as a more tractable optimiza-
tion problem, we propose a new method that is effi-
cient and is able to deal with intricate figures to some
extent.

In Section 2 we describe a mathematical basis of
tilings, leading into a description of the isohedral
tilings, on which this work is based. Then in Sec-
tion 3 we introduce a measure of closeness between
two figures, formulate the Escherization problem as
an optimization problem, and reduce it to an eigen-
value problem. Section 4 presents examples of the
behavior of our system. Finally, section 5 discusses
further refinements and directions of future work.

2 Basis of Tilings

In this section, we review a mathematical basis of
tilings, in particular, of the isohedral tilings.

2.1 Definitions

A plane tiling T is defined as a countable family of
closed sets, called tiles, T = {T1, T2, . . .} which fulfills
the next two conditions:⋃

i Ti = R2,

T o
i ∩ T o

j = ∅ (∀i, j, i 6= j),

where T o
i is the interior of tile Ti and R2 means the

Euclidean plane. Here we additionally require that
each tile in a tiling is a topological disk. From the
above definition, the intersection of any set of tiles
are either empty, points or curves. A point shared by
three or more tiles is called a tiling vertex and a curve
shared by two tiles is called a tiling edge.

A symmetry of a figure in the plane is an isometry
which leaves the figure unchanged. It is easy to see

1

Computer Aided Design System for Escher-Like Tilings

345

that the set of symmetries of a figure has a natural
group structure under composition of isometries as
the operation. Therefore, the set of symmetries of a
figure is called the symmetry group of that figure.

Let S(T) be the symmetry group of the tiling T .
Two tiles T1, T2 of a tiling T are said to be transitively
equivalent if T2 = sT1 for some s ∈ S(T). Transitive
equivalence is an equivalence relation and partitions
the tiles into equivalence classes. The collection of
all tiles of T that are transitively equivalent to T1 is
called the transitivity class of T1. If all tiles of T form
one transitivity class, we say that T is isohedral.

It is known that isohedral tilings are classified into
only 93 types according to the valences of the tiling
vertices and the incidence symbols whose definition is
given later [1]. Each type is denoted as IH01, IH02,
. . ., IH93. In addition, the isohedral tilings are so reg-
ular that it is easy to deal with them mathematically.
At the same time they have enough flexibility to ex-
press the tilings made of various shapes of tiles. It is
also known that almost all of the Escher’s tilings are
isohedral [3]. Thus in this paper, we concentrate on
the isohedral tilings as a mathematical basis for solv-
ing the Escherization problem as Kaplan and Salesin
did.

2.2 Properties of the isohedral tilings

In isohedral tiling, the shapes of tiling edges are sub-
ject to certain constraints. These constraints are sum-
marized by incidence symbols. Incidence symbols are
labeled arrows which are constructed as follows.

Figure 1: incidence sym-
bols

Figure 2: incidence sym-
bols for self-symmetric
tiles

Given a tiling, first we take a tile in the tiling and
assign a labeled arrow a to an arbitrary chosen tiling
edge of the tile. We then proceed along the boundary
of this tile in the direction of the arrow and assign
labeled arrows b, c, . . . to tiling edges one by one (see
Figure 1). If the symmetry group of the tiling con-
tains an element that maps a tile onto itself as shown
in the Figure 2, we assign the same labeled arrows
to the associated pair of tiling edges. If an edge is
assigned double headed arrow we assume it is unori-
ented. Next, we copy the labeling of the tile to all the

other tiles in the tiling according to the placement
rule defined by the symmetry group.

Here, we consider the allowed deformation of the
shape of a tile in a isohedral tiling. We can not move
all tiling vertices and tiling edges independently. The
constraints are obtained from the incidence symbols.
See [3] for details.

3 Formulation of the Escherization Problem

In this section we formulate the Escherization problem
as a new optimization problem. First we introduce the
shape metric which is used as the criterion as to how
much two shapes are alike and, we use the metric as
objective function of our optimization problem. Next
we consider the constraints that should be satisfied by
the tiles. Finally we optimize the objective function
under the constraints. Then we get the optimal figure
that fulfills the two conditions of the Escherization
problem.

3.1 The shape metric

Suppose that a figure is represented by a clockwise
sequence of points on the boundary. That is, a figure
is represented as the 2× n matrix U , whose i-th col-
umn is the coordinates of the i-th vertex. Then we
use the metric proposed by Werman and Weinshall [4]
for comparing two shapes.

Given two figures, we first transform them so that
the centroids are at the origin. Let the resulting fig-
ures are represented by the matrices U and W . We
define the metric Dsim as

D2
sim(U,W) = min

s,µ

∣∣∣∣∣∣∣∣sR(µ)
U

||U || −
W

||W ||
∣∣∣∣∣∣∣∣2

= 1− ||UW
>||2 + 2 det(UW>)
||U ||2||W ||2 ,(1)

where ||X|| is Frobenius norm of the matrix X, s is a
scalar and R(µ) is the matrix of rotation of µ radian.
This metric is invariant under rotation, scaling and
translation.

3.2 Formulation as an optimization problem

Here, we consider solving the Escherization problem
as an optimization problem. To accomplish this, we
find a figure that is the closest to a given figure in the
metric Dsim under the condition that the figure can
tile the plane. We formulate this in the following.

Suppose that the goal shape is represented by the
matrix W , and the optimal tile which we want to find
is represented by the matrix U , where their centroids
are already adjusted so that they coincide with the
origin of coordinate system. Hence, the elements of U
are variables whereas the elements ofW are constants.
To get the figure U close to the goal shape W , we

2

EuroCG’09 - Brussels, Belgium

346

should minimize the metric Dsim(U,W). From the
form of the equation (1), to minimize the distance
Dsim(U,W) is equivalent to maximize

||UW>||2 + 2 det(UW>)
||U ||2 . (2)

Let ux,uy,wx,wy be n-dimensional vectors. We rep-
resent U,W and u as

U =
(

ux
>

uy
>

)
, W =

(
wx

>

wy
>

)
, u =

(
ux

uy

)
.

Moreover, we represent UW> as

UW> =
(

ux
>

uy
>

) (
wx wy

)
=

(
ux

>wx ux
>wy

uy
>wx uy

>wy

)
=

(
a b
c d

)
.

Then, we get

||U ||2 = ux
>ux + uy

>uy = u>u,

||UW>||2 + 2 det(UW>)
= (a2 + b2 + c2 + d2) + 2(ad− bc)
= (a+ d)2 + (b− c)2 (3)
= (ux

>wx + uy
>wy)2 + (ux

>wy − uy
>wx)2

=
(
u>

(
wx

wy

))2

+
(
u>

(
wy

−wx

))2

= u>
(

wxwx
> + wywy

> wxwy
> −wywx

>

wywx
> −wxwy

> wxwx
> + wywy

>

)
u.

Then, the expression (2) turns out to be

u>V u

u>u
, (4)

where V is

V =
(

wxwx
> + wywy

> wxwy
> −wywx

>

wywx
> −wxwy

> wxwx
> + wywy

>

)
.

Note that V is a symmetrical matrix. In addition,
from the form of equation (3), V is nonnegative defi-
nite.

Next we consider constraint conditions. They vary
with types of isohedral tilings. Here we explain the
case of IH07 (the tiling type associated with the sym-
metry group generated by the rotation at the origin
by 120 degrees and a translation in an arbitrarily fixed
direction and distance) as an example. The basic tile
and the associated incidence symbols of this type are
as shown in Figure 3.

We place n points on the boundary of a tile as
shown in Figure 4. That is, the figure is represented
as U = (PN , PN−1, . . . , R

′
N−1), where, though each

Figure 3: Incidence sym-
bol of IH07

Figure 4: Points on the
boundary (IH07)

Pi, Qi, Ri represents a point, we equally deal with it
as a column vector whose elements are its coordinates.
In this case, n is equal to 6N .

The symmetry group of IH07 is generated by the
rotation of 120 degrees and a translation. From con-
straints of the incidence symbol (See Figure 3), each
pair of tiling edges whose included angle is ∠P0 or
∠Q0 or ∠R0 must coincide with each other under the
rotation of 120 degrees around P0, Q0, or R0, respec-
tively. Then we get the conditions of tiling edges S(P ′i − P0) = Pi − P0 (i = 1, . . . , N − 1),

S(Q′i −Q0) = Qi −Q0 (i = 1, . . . , N − 1),
S(R′i −R0) = Ri −R0 (i = 1, . . . , N − 1),

where S is the matrix which represents the rotation
of 120 degrees. We also write down the conditions of
tiling vertices in a similar way: S(QN − P0) = PN − P0,

S(RN −Q0) = QN −Q0,
S(PN −R0) = RN −R0.

Moreover, the conditions that the centroid of the tile
has to coincide with the origin of the plane can be
written as {

ux
>1 = 0,

uy
>1 = 0,

where 1 is the n-dimensional vector whose elements
are all 1’s.

The above conditions contain no constant terms
and are expressed as linear combination of variables.
By using a matrix A, the conditions can be written
as

Au = 0. (5)

Considering in a similar way, we can get the con-
straint conditions for other types of isohedral tilings
as the form of equation (5). We only have to con-
sider the constraints for other transformations such
as translation or glide reflection.

Summarizing the above observation, we can repre-
sent the Escherization problem as the following opti-
mization problem:

3

Computer Aided Design System for Escher-Like Tilings

347

max
u>V u

u>u
,

s.t. Au = 0. (6)

Let B be the matrix whose columns are the or-
thonormal basis of KerA. Then, the equation (5) is
equivalent to u = Bξ. Therefore, the optimization
problem (6) is reduced to the next optimization prob-
lem:

max
ξ>B>V Bξ

ξ>ξ
.

This problem is equivalent to the problem of finding
the maximum eigenvalue of B>V B and is solved effi-
ciently.

4 Examples

We implemented our method as a computer-aided sys-
tem for Escherization. Here we show examples of the
behavior of our system. Figure 5 shows the Escher-
ization of a ”lizard”. Panel (a) shows the pair of the
input and output; the larger figure is the goal shape
representing a lizard, and the smaller shape is the
tile obtained as the optimized shape. Panel (b) is the
result of tiling generated by this tile. In this exam-
ple, the system chose the tiling type associated by
the symmetry group generated by the rotation by 90
degrees and a translation.

Another example is shown in Figure 6, where panel
(a) represents the goal shape representing an octopus
(the larger figure) and the tile obtained by the opti-
mization (the smaller figure), and panel (b) shows the
resulting tiling. The chosen tiling type is the same as
that in Figure 5.

These examples show that our system can deal with
complicated figures such as animals with many hands
and legs.

In our current system, 10 types of tiling patterns
are implemented. Hence for each input figure, the
system solves 10 optimization problems and chooses
best one according to the shape metric (1). The total
time for the computation is about 30s by an ordinary
notebook PC with 2.0 GHz cpu and 2 GB RAM.

5 Conclusion and future work

In this paper, we reformulate the Escherization prob-
lem as an optimization problem being different from
the previous work [3]. This approach works well on
even somewhat intricate shapes. Additionally, be-
cause we don’t have to anneal to find the optimal
solution, our method is very efficient.

So far, we manually input the vertices of the poly-
gon corresponding to the goal shape. One of our next

(a)
(b)

Figure 5: Escherization of a lizard

(a) (b)

Figure 6: Escherization of an octopus

goals is automatic sampling of vertices from a line
drawing of the goal shape. There are many degrees
of freedom on how to take the vertices from the line
drawing. Thus we have to consider optimal sampling
from the viewpoint of the Escherization.

Acknowledgments

We would like to express our sincere appreciation to

Dr. Imahori for his valuable discussions. This work

is supported by the Grant-in-Aid for Scientific Research

(B) (No. 20360044) and for Exploratory Research (No.

19650003) of the Japanese Society for Promotion of Sci-

ence.

References

[1] B. Grunbaum and G. C. Shephard. Tilings and Pat-
terns. W. H. Freeman, New York, 1987.

[2] C. S. Kaplan and D. H. Salesin. Dihedral Escher-
ization. Proceedings of Graphics Interface, London,
May 2004, pp. 255-262.

[3] C. S. Kaplan and D. H. Salesin. Escherization. Pro-
ceedings of SIGGRAPH, New Orleans, July 2000, pp.
499-510.

[4] M. Werman and D. Weinshall. Similarity and Affine
Invariant Distances Between 2D Points Sets. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, Vol. 17 (1995), pp. 810-814.

4

EuroCG’09 - Brussels, Belgium

348

Index

A
Abellanas, Manuel 85
Agarwal, Pankaj 109
Ahn, Hee-Kap 273
Aichholzer, Oswin 117, 133, 139, 167, 293
Aigner, Wolfgang 293
Aronov, Boris 13, 109
Aurenhammer, Franz 117, 139, 293

B
Büyükbayrak, Elvir 33
Bajuelos, Antonio Leslie 85
Barlaud, Michel 29
Barra, Vincent 105, 113
Bautista-Santiago, Crevel 333
Becker, Paul-Georg 33
Bereg, Sergey 41
Bilò, Davide 207
Bose, Prosenjit K. 137
Bremner, David 155
Buchin, Kevin 195, 235
Buchin, Maike 195

C
Chattopadhyay, Amit 101
Cheong, Otfried 17
Cheung, Yam Ki 81, 89
Christ, Tobias 175
Claverol, Merce 265
Coll, Narcís 239
Cook IV, Atlas F. 179

D
Daescu, Ovidiu 81, 89
Damian, Mirela 21
de Berg, Mark 49, 199, 255
de Castro, Pedro M. M. 231
Demaine, Erik D. 65, 155
Demaine, Martin L. 65
Demouth, Julien 215
Devillers, Olivier 139, 231
Devroye, Luc 11
Disser, Yann 207

Dulieu, Muriel 13
Díaz-Báñez, José-Miguel 41, 69, 333

E
Emiris, Ioannis Z. 151, 325
Eppstein, David 247
Everett, Hazel 297

F
Fabila-Monroy, Ruy 167
Favreau, Jean-Marie 105, 113
Fekete, Sandor 171, 269
Fischer, Matthias 203
Flores-Peñaloza, David 167

G
Garijo, Delia 265
Gerrits, Dirk H. P. 49
Ghodsi, Mohammad 211
Giannopoulos, Panos 281
Giard, Joachim 97
Gieseke, Fabian 341
Gillot, Christian 297
Goaoc, Xavier 215
Grima, Clara 265
Gudmundsson, Joachim 17
Guerrieri, Marité 239
Guibas, Leonidas 285
Gurvits, Leonid 337

H
Hülse, Dominik 321
Hackl, Thomas 133, 139, 167, 293
Halperin, Dan 317
Haverkort, Herman 199
Held, Martin 305
Hellweg, Frank 37
Hemmer, Michael 313, 321
Herrmann, Sven 259
Hilbig, Matthias 203
Hoffmann, Michael 175
Horev, Elad 183

Huber, Stefan 305
Huemer, Clemens 133, 167
Hurtado, Ferran 13, 117, 125, 133

I
Imahori, Shinji 53, 93
Imai, Keiko 191
Ito, Tsuyoshi 53
Itoh, Jin-ichi 61

J
Joskowicz, Leo 73
Juettler, Bert 293
Jähn, Claudius 203

K
Kamphans, Tom 163, 269
Kan, Kazutoshi 309
Katz, Matthew J. 159
Kawamura, Akitoshi 191
Keiren, Jeroen 251
Khosravi, AmirAli 255
Kim, Hyo-Sil 17
Kim, Sang-Sub 273
Kiyomi, Masashi 53
Knauer, Christian 45, 281
Koizumi, Hiroshi 345
Kolingerová, Ivana 219, 289
Korman, Matias 77, 273
Krakovski, Roi 183
Kriegel, Klaus 45
Kruger, Heinrich 121

L
Laleh, Abolghasem 301
Langerman, Stefan 65
Langetepe, Elmar 163, 329
Lara, Dolores 333
Lazard, Daniel 297
Lazard, Sylvain 297
Limbach, Sebastian 313
Luo, Jun 195
López, Mario A. 69
Löffler, Maarten 109, 121

M
Macq, Benoît 97
Manák, Martin 289
Marquez, Alberto 265

Matos, Ines 85
Matousek, Jirí 191
Matsui, Yasuko 143
Merigot, Quentin 285
Meyer auf der Heide, Friedhelm 203
Mihalak, Matus 207
Mohades, Ali 301
Molla, Nawar 21
Morgenstern, Gila 159
Mulzer, Wolfgang 235
Mumford, Elena 247
Muramatsu, Yu 191
Myers, Yonatan 73

N
Nakada, Kento 143
Nakamoto, Atsuhiro 223
Nakano, Shin-ichi 143
Nielsen, Frank 29
Nilforoushan, Zahra 301
Nouri Bygi, Mojtaba 211

O
O’Rourke, Joseph 61
Okabe, Minori 93
Okamoto, Yoshio 175
Overmars, Mark H. 263
Ovsjanikov, Maks 285

P
Pilaud, Vincent 227
Pilgerstorfer, Elisabeth 293
Pinciu, Val 21
Piro, Paolo 29
Plantinga, Simon 101
Pocchiola, Michel 227
Pouget, Marc 297
Pérez-Lantero, Pablo 41, 333

R
Rabl, Margot 293
Ramos, Pedro 117
Razen, Andreas 147
Reinbacher, Iris 273
Rezaii, Morteza Mir Mohammad 301
Rote, Günter 187, 281

S
Sacristán, Vera 125

Saumell, Maria 125
Schömer, Elmar 313
Scharf, Ludmila 129
Scherfenberg, Marc 129
Schmidt, Christiane 171
Schweer, Nils 269
Schymura, Daria 17
Seara, Carlos 69, 265
Sellarès, J. Antoni 239
Setter, Ophir 317
Silveira, Rodrigo 109
Smorodinsky, Shakhar 183
Sohler, Christian 37
Son, Wanbin 273
Soukal, Roman 219
Speckmann, Bettina 243, 247
Stehn, Fabian 17, 45
Sugihara, Kokichi 93, 309, 345
Suri, Subhash 207

T
Taslakian, Perouz 155
Teillaud, Monique 139
Tokuyama, Takeshi 77, 191
Toussaint, Godfried 155
Tsigaridas, Elias 325
Tsirogiannis, Constantinos P. 199
Tsuchiya, Shoichi 223
Tzoumas, George M. 325

U
Uehara, Ryuhei 53, 143
Urrutia, Jorge 117, 167, 333

V
Vahrenhold, Jan 341
van Kreveld, Marc 109, 195, 277
van Lankveld, Thijs 277
van Walderveen, Freek 251
Varvitsiotis, Antonios 151
Vegter, Gert 101
Veltkamp, Remco 277
Ventura, Inmaculada 41, 69, 333
Verbeek, Kevin 243, 247
Vervier, Jérôme 65
Vicari, Elias 207
Vilcu, Costin 61
Vogtenhuber, Birgit 133, 139, 167

W
Welzl, Emo 147

Wenk, Carola 179
Werner, Daniel 281
Widmayer, Peter 207
Wolff, Alexander 251
Wolpert, Nicola 33
Won Bae, Sang 273
Wu, Weina 57
Wulff-Nilsen, Christian 25

Y
Yamanaka, Katsuhisa 143
You, Zhong 57

Z
Ziegler, Martin 203

