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A Unified Algorithm for Adaptive Spacetime Meshing
with Nonlocal Cone Constraints

Shripad Thite∗

1 Introduction

Motivation Wave propagation is modeled by hyper-
bolic partial differential equations (PDEs) in both
space and time variables, e.g., the wave equation
utt−ω2uxx = 0 in 1D space × time. A solution to the
PDE is a function u(x, t) that satisfies the equation
and the given initial and boundary conditions. The
wave velocity ω, the velocity at which changes in phys-
ical parameters at a point (x, t) propagate to other
points in the domain, may be a function of x and t as
well as of u and its derivatives. The spacetime discon-
tinuous Galerkin (SDG) finite element method is a nu-
merical method to approximate the exact solution to
the PDE. The SDGmethod approximates the solution
within each spacetime element of a mesh of the space-
time domain as a linear combination of simple basis
functions. The SDG method allows basis functions
to be discontinuous across adjacent elements, which
means that the mesh can even be nonconforming. A
mesh constructed by standard techniques, such as a
Delaunay triangulation, cannot be solved efficiently in
general. Points in spacetime, and spacetime elements,
are partially ordered by causal dependence—a point
P influences another point Q if and only if changing
the solution at P could possibly change the solution
at Q. Spacetime elements must be solved in an order
that respects this partial order. The efficiency of the
solution technique depends on the number of elements
that must be solved together because they depend on
each other and are therefore coupled. In a Delaunay
mesh, there is no guarantee on the size of a coupled
system; we, on the other hand, construct an efficient
mesh where this size is bounded.

Previous work Üngör and Sheffer [6] gave the first
advancing front algorithm, TentPitcher, for meshing
directly in 2D×Time given an initial acute triangu-
lation of the space domain M . TentPitcher advances
the solution over a piecewise linear triangulated front,
a terrain overM ; the initial front corresponds to t = 0
everywhere in space. The front at any step is causal
which means that points on the front depend only
on points in the past. At each step, the algorithm
greedily advances in time a local neighborhood of a
causal front τ to get a new causal front τ ′ and a set

∗Department of Computer Science, University of Illinois at
Urbana-Champaign; thite@cs.uiuc.edu

of new spacetime tetrahedra; causality of τ and τ ′

implies that the solution over the spacetime volume
between τ and τ ′ can be computed immediately. Dif-
ferent parts of the front advance at different rates,
depending on the local geometry, unlike with uniform
time-stepping schemes. The result is a tetrahedral un-
structured mesh Ω of M × [0, T ] for any target time
T . Erickson et al. [2] extended this algorithm to arbi-
trary spatial domains and higher dimensions, by im-
posing additional gradient constraints called progress
constraints on each front.
Abedi et al. [1] gave an algorithm to adapt the

size and—because of the causality constraint—also
the duration of future spacetime elements to a pos-
teriori estimates of numerical error. If the elements
created at any step are too coarse, they are rejected
and the front is refined by repeated bisection; the re-
sulting smaller triangles lead to smaller spacetime ele-
ments. Coarsening or derefinement is performed when
allowed by the error indicator.
Previous algorithms assumed a fixed upper bound

on the wavespeed everywhere in spacetime or that the
wavespeed function was Lipschitz. When the PDE
is nonlinear, the wavespeed is not constant and also
depends on the solution; the wavespeed at a given
point in space can change discontinuously with time.
Anisotropy of the medium means that waves propa-
gate asymmetrically, with different speeds in different
directions. This author [4] gave an algorithm that
works even when the wavespeed increases discontin-
uously and in the presence of anisotropy. However,
this algorithm did not adapt the spatial diameter of
spacetime elements to numerical error estimates.

New results In this paper, we prove bounds on the
worst-case temporal aspect ratio of spacetime tetrahe-
dra constructed by TentPitcher; this ratio, together
with the spatial aspect ratio, is likely to be correlated
with the quality of the numerical solution. We also
prove bounds on the size of the final mesh relative to
a size optimal mesh.
Additionally, we give a unified algorithm that

adapts the size of spacetime elements to error esti-
mates while simultaneously adapting their duration
to changing wavespeeds. This new algorithm meshes
a given spacetime volume with many fewer tetrahe-
dra in general than either of the previous two algo-
rithms [1, 4].

1
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2 Temporal aspect ratio and mesh size

The initial front corresponds to time t = 0 every-
where in the space domain M ⊂ E2. Imagine time
increasing upwards. At each step, TentPitcher lifts
up a local minimum vertex P of a causal front τ to
the vertex P ′ on a new causal front τ ′. For every
front triangle PQR incident on P , this creates a new
spacetime tetrahedron P ′PQR in the volume between
τ and τ ′, with a causal inflow facet PQR on τ and
a causal outflow facet P ′QR on τ ′. The volume be-
tween τ and τ ′ is called a tent and PP ′ is the tentpole.
Causality implies that the solution everywhere in the
tent can be computed immediately. The number of
new spacetime tetrahedra is equal to the degree of
P ; these tetrahedra are coupled because they share
non-causal facets. Only elements in a single tent are
coupled; tents pitched at different local minima of τ
are independent and are solved in parallel.
Suppose the wavespeed everywhere in spacetime

is constant, equal to ω; let σ denote the slope, i.e.,
σ = 1/ω. Causality means that the slope of PQR and
of P ′QR must be less than σ. To guarantee nondegen-
eracy of tetrahedra, the front at each step must also
satisfy so-called progress constraints. The causality
and progress constraints limit the amount of progress
made by the front at each step of the algorithm, i.e.,
the height of each tentpole; these constraints are func-
tions of the slope σ and the shape of the local trian-
gulation. The progress constraint that each front τ
must satisfy depends on the causal slope encountered
by the new front τ ′ in the next step which, in this
case, is the same slope σ.
The duration of a spacetime element is the length of

the shortest time interval that contains it. The height
of a spacetime element is the length of the longest
time interval contained in it. Our algorithms max-
imize the height of each spacetime element subject
to causality and progress constraints. The progress
guarantee of Erickson et al. [2] can be rephrased as
follows: the height of each spacetime tetrahedra in
the tent pitched at P is at least εσwp where ε ∈ (0, 1

2 ]
is a fixed parameter and wp denotes the distance of
p from the boundary of the kernel of link(p) in the
spatial projection. Thus, the height of the tentpole at
P is bounded from below by a positive function of ε,
the slope σ, and the shape of the triangles in star(p).

Temporal aspect ratio The temporal aspect ratio of a
spacetime element is the ratio of the height of the ele-
ment to its duration; this ratio is always in the range
(0, 1] with a larger value corresponding to a “better”
element. The duration of the tetrahedron P ′PQR
can be at most 2σwp because both facets PQR and
P ′QR are causal. Together with the lower bound on
the height of the tetrahedron, this implies the follow-
ing theorem.

Theorem 1 The temporal aspect ratio of any tetra-
hedron in Ω is at least ε/2.

On size optimality TentPitcher constructs groups of
coupled tetrahedra inside each tent such that the
boundary of the tent is causal. This guarantees con-
vergence of the DG solution [3]. Each tetrahedron
constructed by TentPitcher has both a causal inflow
facet and a causal outflow facet; additionally, the spa-
tial projection of each tetrahedron P ′PQR is the tri-
angle pqr in the original space mesh. Given a triangu-
lationM of the space domain and a target time T , we
say that a tetrahedral spacetime mesh ofM × [0, T ] is
valid if (i) each tetrahedron has both a causal inflow
facet and a causal outflow facet; and (ii) for every
point x in the spatial projection ∆ of each tetrahe-
dron, the diameter of ∆ does not exceed the diameter
of the triangle of M containing x.
Fix an arbitrary point x in space. The size of a

spacetime mesh ofM×[0, T ] is the maximum over x ∈
M of the number of spacetime elements that intersect
the temporal segment x× [0, T ].

Theorem 2 The size of the mesh constructed by
TentPitcher is Õ(1/ε2) times the minimum size of any
valid mesh of the spacetime volume M × [0, T ].

Proof. LetD and ρ denote the diameter and inradius
respectively of the triangle pqr of M containing x.
By causality, any temporal segment of duration 2σD
must intersect at least two distinct tetrahedra in a
valid mesh; therefore, the number of spacetime tetra-
hedra in a valid mesh that intersect x × [0, T ] is at
least �T/(2σD)�.
Consider a minimal sequence of tent pitching steps,

called a superstep, in which each vertex of �pqr is
lifted at least once. When p is pitched, the amount
of progress made by x is proportional to dist(x,←→qr ).
Since dist(x,←→qr ) + dist(x,←→rp ) + dist(x,←→pqr) ≥ ρ, the
amount of progress made by x during a superstep is
at least εσγρ, where γ ∈ (0, 1] denotes the minimum
of wp/dist(p,←→qr ), wq/dist(q,←→rp ), and wr/dist(r,←→pq ).
Hence, after at most �T/(εσγρ) supersteps, the point
x achieves or exceeds the target time T .
By causality, any two vertices of �pqr can advance

in fewer than 4σD consecutive steps without also ad-
vancing the third vertex. Therefore, the number of
steps in each superstep is at most �(4σD)/(εσw)�
where w = min{wp, wq, wr}. It follows that the num-
ber of tetrahedra in the spacetime mesh constructed
by TentPitcher intersected by x × [0, T ] is at most
�T/(εσγρ) · �(4σD)/(εσw)�.
The ratio of the upper bound to the lower bound

on the size is O
(

1
ε2

1
γ

D2

ρw

)
. �

2
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3 Nonlocal cone constraints

The cone of influence of a point P is the set of points
that depend on P . This cone has its apex at P and
its slope in any spatial direction is the reciprocal of
the wavespeed at P in that direction; fast waves cor-
respond to cones with smaller slope. A front τ is
causal if and only if τ lies below the cone of influ-
ence of every point P on τ ; each such cone is a causal
cone constraint. When the medium is anisotropic,
the cones are asymmetric, e.g., with elliptical cross-
sections. When the PDE is nonlinear or when the
medium is anisotropic, a distant but fast wave, i.e., a
nonlocal cone, can overtake a slower wave and hence
limit the duration of new elements. Therefore, max-
imizing the progress of P , and thus the duration of
new tetrahedra, requires querying the lower hull of
the cones of influence. After the solution is computed
on the new front, we obtain a new set of cone con-
straints. Maintaining the entire arrangement of cones
of influence is expensive and unnecessary for our pur-
pose; it suffices to obtain a cone that bounds (tightly)
the actual cone of influence at P , i.e., to estimate a
lower bound σ̃(P ) on the actual slope σ(P ). We as-
sume the absence of focusing, which means that the
cone of influence of any point P is contained in the
cone of influence of every other point Q such that P
depends on Q. Thus, the slope σ(P ) at P is bounded
so that 0 < σmin ≤ σ(P ) ≤ σmax <∞.
When the wavespeed at a point in space can in-

crease discontinuously, cone constraints must be en-
forced on the front at every step that depend on the
front in the next step. We give an algorithm that looks
ahead k steps of the algorithm to estimate the slope
on future fronts. The lookahead parameter k can be
fixed or chosen adaptively. When k = 0, we assume
that the minimum slope σmin occurs on the front in
the next step, so our estimate of future wavespeed is
σ̃ = σmin. When k > 0, we can use the current esti-
mate to compute the next front and the actual slope
on this new front to refine our previous estimate. We
repeat this process either until subsequent iterations
fail to improve the estimate σ̃ of future slope or un-
til sufficient progress has already been ensured by the
current estimate. (See [4] for the case k = 1.) To effi-
ciently query the arrangement of cones, we use a dis-
crete bounding cone hierarchy induced by a balanced
partition of the triangular front, similar to a bounding
volume hierarchy used in collision detection.
We will prove a minimum progress guarantee of

Tmin > 0, a function of the local shape of the trian-
gulation and the global minimum slope σmin, similar
to that proved by Abedi et al. [1].

Definition 1 (k-progressive) Let �ABC be a
given triangle with A as its lowest vertex. We in-
ductively define �ABC as k-progressive if

(1) �ABC is causal;
(2) Let �A′BC denote the triangle after lifting A by
Tmin to A′. Then, �ABC must satisfy progress con-
straint σ(A′BC) and �A′BC must be max{0, k−1}-
progressive.

Base case k = 0: �ABC is 0-progressive iff it
satisfies progress constraint σmin.

4 Adaptive refinement and coarsening

Abedi et al. [1] gave an adaptive algorithm by
strengthening the progress constraints due to Erick-
son et al. [2]. (This author later [5] corrected an
oversight in their proofs, also slightly improving Tent-
Pitcher.) The adaptive algorithm refines a triangle
on the front using newest-vertex bisection; repeated
bisection of a single triangle gives rise to at most 8
predictable homothetic shapes of front triangles. The
front is coarsened by undoing previous refinement.
The adaptive algorithm enforces a progress constraint
on �PQR at every step that anticipates all the dif-
ferent shapes that can be obtained from �pqr by re-
finement. However, the algorithm of Abedi et al. [1]
does not anticipate changes in the slope and assumes
the minimum slope at every step.
The crucial observation we make here is that a cone

of influence that limits the progress of �PQR may
not limit the progress of a smaller triangle �ABC,
a descendant of �PQR by refinement. (The con-
verse is also true.) Specifically, we observe that
σ̃(ABC) ≥ σ̃(PQR). We obtain a unified algorithm
by relaxing the progress constraints of Abedi et al.
to allow a child triangle after by newest-vertex bisec-
tion to satisfy a potentially weaker progress constraint
than its larger parent triangle. A potential drawback
is that coarsening two sibling triangles coplanar on a
front may require both triangles to satisfy a progress
constraint stricter than their individual progress con-
straints. This can make coarsening requests harder to
satisfy in practice; however, refinement can always be
performed when necessary.
A key property we use in deriving the new progress

constraint is that the boundary of a cone is a ruled
surface; if any triangle �ABC intersects a given cone
this intersection is a line segment in the plane of
�ABC. Therefore, if the bisector edge AD inter-
sects a cone of influence then so do at least two of the
edges of �ABC (Figure 1). Therefore, if a fast wave-
speed in the future intersects AD but not an edge of
�ABC, then it can do so only if �ABC has been
bisected at least once.
Fix ε, ϕ such that 0 < ε < ϕ < (1 + ε)/2 < 1. For

any triangle �abc with newest-vertex a, we define the
diminished width of �abc, denoted by w̃(abc), as the
minimum of (1−ε) dist(a,←→bc ), (1−ϕ) dist(b,←→ac ), and
(1− ϕ) dist(c,←→ab ).

3
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a

b cd

ef

Figure 1: �abc after newest-vertex bisection.

Definition 2 (Progress constraint σ) A triangle
�ABC (Figure 1) satisfies progress constraint σ
if and only if the applicable constraint from the
following list is satisfied:
If a is the lowest vertex: |t(b)− t(c)| ≤ 4w̃(fda)σ
If b is the lowest vertex: |t(a)− t(c)| ≤ 2w̃(dab)σ
If c is the lowest vertex: |t(a)− t(b)| ≤ 2w̃(dca)σ

Definition 3 ((k, l)-progressive) We inductively
define a triangle �PQR as (k, l)-progressive if
it is k-progressive (Definition 1) and any child
�ABC obtained by newest-vertex bisection is
(k,max{0, l − 1})-progressive.

Base case l = 0: �PQR is (k, 0)-progressive
if an arbitrary descendant �ABC obtained by
newest-vertex bisections satisfies progress constraint
σ̃(PQR).

A front is progressive if every triangle on the front
is (k, l)-progressive for some k, l ≥ 0. Our unified
algorithm greedily maximizes the progress such that
each front is (k, l)-progressive for some choice of k and
l. The algorithm can be as complicated as desired.
Definition 3 stresses the fact that our algorithm can
optimize the choice of k and l, likely doing better than
the theoretical guarantee; however, a simple choice of
k = l = 1 may suffice in practice.

Lemma 3 (1) If a front τ is progressive, then the
front after bisecting a triangle of τ is also progressive.
(2) If a front τ is progressive, then for any local min-
imum vertex P the front τ ′, obtained from τ by ad-
vancing P in time by Tmin, is progressive.

Proof. (1) By Definition 3, if a triangle PQR of
the front τ is (k, l)-progressive, then either of the
two smaller triangles after bisecting �PQR is (k, l′)-
progressive for l′ = max{l − 1, 0}.
(2) This part was essentially proven by Abedi et

al. (see [5]) when each triangle PQR on the front τ
satisfies progress constraint σ(P ′QR). Our algorithm
ensures �PQR satisfies progress constraint σ̃(PQR),
where σ̃(PQR) ≤ σ(P ′QR). Because the progress
constraint is monotonic in the slope σ, �PQR auto-
matically satisfies progress constraint σ(P ′QR). The
algebraic details are straightforward [5] and are omit-
ted here for lack of space, to appear in a forthcoming
paper. �

By induction on the number of tent pitching and
refinement steps, we have the following theorem.

Theorem 4 Given a triangular mesh M ∈ E2 and
a target time value T , our algorithm builds a finite
tetrahedral mesh of the spacetime domain M × [0, T ],
provided each triangle is refined only a finite number
of times.

5 Conclusion and open problems

We gave an advancing front spacetime meshing algo-
rithm that unifies previous algorithms [1, 5, 4] which
tackled nonlinearity and adaptivity separately. The
unified algorithm constructs a 2D×Time mesh with
provable guarantees, for the efficient solution of non-
linear and anisotropic problems. We will report ex-
perimental results in the near future.
We would like to extend adaptivity to 3D and

higher dimensions. The space domain often changes
with time; for instance, in the simulation of rocket
fuel combustion, the shape of the residual fuel changes
with time. We propose to include other front modi-
fication operations, such as edge flips, in addition to
pitching inclined tentpoles, into a new meshing al-
gorithm. The new algorithm will track features in
spacetime, such as phase and domain boundaries and
shock fronts, by aligning mesh facets along such fea-
tures. The SDG method accurately captures the dis-
continuous solution when mesh facets align exactly
with such singular surfaces.

Acknowledgments The author thanks the other
members of the CPSD spacetime group, especially Jeff
Erickson and Robert Haber.
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Quality Triangulations Made Smaller

Alper Üngör∗

Abstract

We study alternative types of Steiner points (to circum-

centers) for computing quality guaranteed Delaunay tri-

angulations in three dimensions. We show through exper-

iments that their effective use results in smaller (in the

number of tetrahedra) triangulations than the output of

the traditional circumcenter refinement methods.

1 Introduction

We consider the following optimization problem:
Compute the smallest size triangulation of a given do-
main such that all the simplices in the triangulation
are of good quality. Quality constraint is motivated
by the numerical methods used in many engineering
applications. A simplex is said to be good if its radius-
edge ratio (circumradius over shortest edge length) is
bounded from above. Under the quality constraint,
our objective is to make the triangulation size as small
as possible for their efficient use in the applications.
There has been quite a few solutions for this problem
[1, 2, 6, 8, 9]. Earliest algorithms that provide both
size optimality (within a constant factor) and quality
guarantee used balanced quadtrees to generate first
a nicely spread point set and then the Delaunay tri-
angulation of these points [1]. Subsequently, Delau-
nay refinement techniques are developed based on an
incremental point insertion strategy and provide the
same theoretical guarantees [8]. Delaunay refinement
has become much more popular than the quadtree-
based algorithms mostly due to its superior perfor-
mance in generating smaller triangulations. Due to
its importance in a wide range of applications, this
problem is frequently revisited and several versions of
the Delaunay refinement is suggested [2, 6, 8, 9].
Delaunay refinement method involves first com-

puting an initial Delaunay triangulation of the in-
put domain, and then iteratively adding points called
Steiner points to improve the quality of the triangula-
tion. Traditionally, circumcenters of bad simplices are
used as Steiner points [8, 9]. We recently introduced a
new type of Steiner points, called off-centers, as an al-
ternative to circumcenters and propose a new variant
of the Delaunay refinement algorithm in two dimen-
sions [11]. We showed that the off-center insertion al-

∗Dept. of Computer & Information Science & Engineering,
University of Florida, ungor@cise.ufl.edu

gorithm generates size-optimal quality-guaranteed tri-
angulations. Moreover, experimental study indicates
that our refinement algorithm with off-centers inserts
fewer Steiner points than the circumcenter insertion
algorithms and results in smaller triangulations. This
implies substantial reduction not only in triangulation
time, but also in the running time of the subsequent
application algorithms. In this extended abstract, we
present recent research progress on off-center based
Delaunay refinement. We extend the off-center def-
inition to three dimensions and present preliminary
experimental results.

2 Quality Triangulations in 2D

Replacing the circumcenters with off-centers enabled
us to make progress both on theoretical and practical
fronts. In theory, using off-centers, we first improved
the earlier parallel complexity results [10], then de-
signed the first time-optimal Delanuay refinement al-
gorithm [5]. In practice, off-center insertion algorithm
results in significant reduction in the output size (see
Figure 1). It is now used in the popular Delaunay
refinement software Triangle1.

Figure 1: Airfoil mesh. Smallest angle in both output trian-
gulations is 31◦. Circumcenter insertion introduces 624 Steiner
points resulting a mesh with 1222 triangles (left). Off-center
insertion introduces only 359 Steiner points resulting a mesh
with 699 triangles (right).

Off-center, c, of a bad triangle pqr is defined as the
closest point to the circumcenter of pqr on the bisector
of the shortest edge, say pq, such that pqc is (barely)
a good triangle [11]. In our experiments we observed
that, a perturbation from this theoretical definition
gives the best results. We control the amount of per-
turbation by a parameter called α1, which rescales the
distance between the off-center and the shortest edge.
While α1 = 1 means that there is no perturbation,

1Available at http://www-2.cs.cmu.edu/∼quake/triangle.html
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Figure 2: Impact of α1 on the output size for random point
(top) and airfoil (bottom) data sets.

α1 < 1 perturb the off-center on the bisector towards
the shortest edge, and α1 > 1 move it away.
While the best choice for α1 varies as we change the

radius-edge ratio threshold and the data set, there is
a clear pattern in the performance behavior. There
is a sudden large shift in the output size from small
to large as α1 becomes larger than 1 (Figure 2). Best
performance is usually observed when α1 is in the
interval (0.95, 1). Note that with a perturbation we
not only make sure that the new triangle formed by
the shortest edge points and the off-center is of good
quality but also potentially fix more bad triangles at
the same iteration.

3 Quality Triangulations in 3D

An extension of the circumcenter insertion algorithm
to three dimensions is given by Shewchuk [9]. We
briefly review this algorithm below and refer to [3, 9]
for details.

3.1 Delaunay Refinement with Circumcenters

In three dimensions, a collection Ω of vertices, seg-
ments, and facets is called a piecewise linear complex
(PLC) if (i) all lower dimensional elements on the
boundary of an element in Ω also belong to Ω, and
(ii) if any two elements intersect, then their intersec-
tion is a lower dimensional element in Ω [7]. We first

compute the Delaunay triangulation of the set of ver-
tices of the input PLC Ω. Then, we add new points
(i) to recover the edges and facets that are not con-
formed by the Delaunay triangulation and (ii) to im-
prove the quality of the triangulation. A point is said
to encroach upon a simplex if it is inside the smallest
sphere that contains the simplex. A tetrahedron is
considered bad if its radius-edge ratio is larger than
a pre-specified constant β ≥ 2. We maintain the De-
launay triangulation as we add new points using the
following rules.

1. If a segment is encroached upon, we add its mid-
point.

2. If a facet is encroached upon, we add its circum-
center unless Rule 1 applies.

3. If a tetrahedron is of bad quality, we add its cir-
cumcenter unless Rule 1 or 2 applies.

3.2 Delaunay Refinement with Off-centers

Here, we describe two new types of off-centers as
Steiner points for three dimensional refinement.

3.2.1 Off-center on triangle bisector

Let pqr be the face of pqrs with the smallest circum-
radius. Let a be the circumcenter of the triangle pqr,
and c be the circumcenter of the tetrahedron pqrs.
We call the ray that starts from a and goes through
c, the bisector of the triangle pqr. We define the
Type I off-center to be the circumcenter of pqrs if
the radius-edge-ratio of pqrc is smaller than or equal
to β. Otherwise, the Type I off-center is the point
on the bisector of pqr, which makes the radius-edge
ratio of the triangle based on p, q, r and the off-center
itself exactly β (shown as b in Figure 3 (a)).

s

r

q

p

b c
a

s

p
a
q

b c

r

(a) (b)
Figure 3: Off-center on triangle and edge bisectors.

Let pq be the shortest edge of pqr and t be the
circumradius of pqr. We compute the location of b by
rescaling the length of the vector c− a to |ab|:

|ab| = α2

√
2β2|pq|2 − t2 + 2

√
β2|pq|2 (β2|pq|2 − t2)

‖c− a‖2
,
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where α2 ≤ 1 is the perturbation factor, similar to
the one described in Section 2 for two dimensional
off-center insertion. The choice of α2 = 1 means that
the tetrahedron pqrb is just good. Our experiments
show that a good choice for α2 is 0.9.
Note that we use this type of off-centers only if

β2|pq|2 > t2. Otherwise, the radius-edge ratio β can-
not be satisfied with the location of b.

3.2.2 Off-center on edge bisector

The line that goes through the midpoint of an edge of
a tetrahedron and its circumcenter is called the bisec-
tor of the edge. Given a bad tetrahedron pqrs, sup-
pose that its shortest edge is pq. Let c denote the cir-
cumcenter of pqrs. We define the Type II off-center
to be the circumcenter of pqrs if the radius-edge-ratio
of pqc is smaller than or equal to β. Otherwise, the
Type II off-center is the point on the bisector (and in-
side the circumsphere), which makes the radius-edge
ratio of the triangle based on p, q and the off-center
itself exactly β (shown as b in Figure 3 (b)). We com-
pute the length of ab as follows:

|ab| = α3

(
β +

√
β2 − 1/4

)
|pq|,

where α3 is the perturbation factor.
When α3 ≤ 1, diametral sphere of pqb has radius

β|pq|, hence tetrahedra formed by p, q, b, and a fourth
point x can be a good tetrahedron. As the value of
α3 approaches to 1, the chances of pqbx being a good
tetrahedron converges to 0. Experimentally, we found
that a good choice for α3 is 0.6. Note that the factor
multiplying |pq| above can be precomputed.

3.2.3 Algorithm

The structure of the Delaunay refinement algorithm
as presented in Section 3.1, remains the same. We
just replace the type of Steiner points used. The two
types of off-centers give us the opportunity to explore
several versions of the algorithm. We can use a single
(either) type of off-center, or both. We give a com-
parison of these three approaches in the next section.
When facets on the boundary are to be split, we use
the two-dimensional off-center insertion algorithm.

3.2.4 Experiments

We implemented the Delaunay refinement with off-
centers by replacing the circumcenter procedure in
the Pyramid software. Computing off-centers and cir-
cumcenters are very similar and take roughly the same
time. Hence, savings in the number of Steiner points
reflects the amount of savings in triangulation time.
It is known that the insertion order of the Steiner

points has an impact on the output mesh size. In this
study, for fairness of comparison, we use the same or-
dering strategy (larger radius-edge ratio first) for both
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Figure 4: Output size ratio with respect to radius-edge ratio
constraint for the tiny feature in the middle of a box (top) and
ten thousand points on an ellipsoid (bottom) data sets..

the circumcenter and the off-center insertion schemes.
We shall note that there is room for further improve-
ment by using a more appropriate ordering strategy
for the off-center insertion method.
Figure 4 presents a summary of our experiments on

two data sets. First data set consists of a tiny feature
(two vertices within a distance of 10−4) located at
the center of a unit box. Second data set consists of
10,000 points randomly located on the surface of an
ellipsoid, which is contained inside a bounding box.
We report the ratio of the output size Mc/Mo, where
Mc and Mo are the number of elements generated by
the circumcenter and the off-center insertion methods,
respectively. We ran experiments on various data sets.
In most cases, the difference in the output is visible
(see Figure 5). We summarize our observations as
follows:

• We get significant size improvements with the use
of off-centers, especially when there is grading in
the mesh (due to relatively small input features
with respect to the domain size).

• Use of both type of off-centers or the use of Type

II off-centers alone outperforms the use of Type

I off-centers alone, which in turn outperforms the
use of circumcenters.
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Using circumcenters Using off-centers

Figure 5: Input consists of 20 points and 6 facets. Largest
radius-edge ratio in both triangulations is 15. The Pyramid soft-
ware inserted 785 circumcenters resulting 1343 edges and 392
tetrahedra (left). Our algorithm inserted only 322 off-centers
resulting 797 edges and 219 tetrahedra (right).

• Output size ratio Mc/Mo varies largely (more so
than in two dimensions) as we change data sets.

• Performance behavior with respect to radius-
edge ratio constraint (Figure 4) is somewhat dif-
ferent than that pattern in two dimensions [11],
where we got the best size improvements for the
smallest radius-edge ratio values.

4 Discussions

Our experimental study of the off-center insertion al-
gorithm in three dimensions is by no means complete.
Here, we described two types of off-centers as Steiner
points and present how effective off-center insertion
can be for computing small size quality-guaranteed
triangulations. We should note that, off-center in-

sertion do not always output smaller triangulations
than the output of circumcenter insertion, especially
when the perturbation factors α1, and α2 are not care-
fully chosen. We believe that it is worth to explore a
perturbation strategy based on the local point distri-
bution. In fact, our goal is to combine the off-center
insertion algorithm with the perturbation based sliver
removal approach presented in [4] to compute small
size sliver-free triangulations in three dimensions.
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The Relative Neighbourhood Graph is a part of every 30◦–Triangulation

J. Mark Keil∗ Tzvetalin S. Vassilev†

Abstract

We study sets of points in the two-dimensional Eu-
clidean plane. The relative neighbourhood graph
(RNG) of a point set is a straight line graph that
connects two points from the point set if and only
if there is no other point in the set that is closer to
both points than they are to each other. A triangu-
lation of a point set is a maximal set of nonintersect-
ing line segments (called edges) with vertices in the
point set. We introduce angular rectrictions in the
triangulations. Using the well-known method of ex-
clusion regions, we show that the relative neighbour-
hood graph is a part of every triangulation all of the
angles of which are greater than or equal to 30◦.
Keywords: triangulation, relative neighbourhood
graph, angular restriction, exclusion region

1 Introduction and basic definitions

Definition 1 For a given planar set of points S, the
relative neighbourhood graph of S, denoted by
RNG(S) consists of all edges AB, where A,B ∈ S,
such that there is no point from S that is closer to
both A and B than the distance AB.

This definition is equivalent to saying that the region
formed by the intersection of the circles with radii
|AB| centered at A and B is empty of points of S.
This region is known in the literature as a lune of the
edge AB. The lune is illustrated in Figure 1.
The relative neighbourhood graph has been exten-
sively studied with relation to optimal triangulations.
The RNG is a subsgraph of the Delaunay triangu-
lation and the Gabriel graph of a point set, and it
is a supergraph of the Minimum Spanning Tree of
the point set [1]. The RNG is therefore a connected
graph, with linear number of edges in n – the size of
the point set S. The RNG is a subgraph of the Min-
Max Length triangulation as shown in [5]. Another
interesting result there is that the RNG subdivides
the convex hull of the point set into simple polygons,
and each of these polygons contains at most one con-
vex hull edge. The connectivity is a very important
property of RNG as it automatically implies a polyno-
mial time computability of any optimal triangulation

∗Department of Computer Science, University of
Saskatchewan, keil@cs.usask.ca

†Department of Computer Science, University of
Saskatchewan, tsv552@mail.usask.ca

of which it is a part. To be more exact, this can be
done in O(n3) time and O(n2) space by Klincesk’s
algorithm (dynamic programming) [4].

Figure 1: The lune of the edge AB

Definition 2 (α-triangulation) Given a planar
point set S and an angle α such that 0◦ < α ≤ 60◦,
a triangulation T of S is called α-triangulation if and
only if all the angles in the triangles of T are greater
than or equal to α.

Angular constraints are sometimes dicated by the ap-
plication. In general it is considered that ”fat” trian-
gulations, i.e. triangulation with no small angles are
more suitable for specific purposes as mesh genera-
tion, for example. Interesting experimental results on
angle-constrained triangulations are presented in [2].
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Definition 3 (Exclusion region) Given a planar
point set S and two points A and B of S, the exclu-
sion region of the edge AB is a closed planar region
with the property that its interior is empty of other
points of S when the edge AB is a part of a specific
(optimal) triangulation.

Thus, the exclusion region is defined with reference
to some quality measure or a specific property of the
triangulation. The boundary of the exclusion region
is usually a chain of line segments, circular arcs, etc.
One classical example is the diamond-shaped exclu-
sion region for the MinimumWeight Triangulation [3].
Conversely, we are interested in the property (which
originally gave the name) that if the named region for
an edge contains point(s) from the point set, the edge
can be excluded from consideration as it will not be
a part of any triangulation with the desired property.
Next we discuss the exclusion region that results from
introducing angular constraints, we call it a forbid-
den zone.

2 Angular constraints and forbidden zones

Figure 2: Construction of the i-th (for i ≤ 4) order
triangles for α = 20◦

Definition 4 (Forbidden zone) Given a planar
point set S and an angle α such that 0◦ < α ≤ 60◦ we
call an edge AB, A,B ∈ S internal if there are points
from S on both sides of the line AB. For an inter-
nal edge AB we define the isosceles triangle �AV1B
with angles ∠V1AB = ∠ABV1 = α as a first order
triangle with respect to the edge AB. We call the
point V1 a first order vertex with respect to the
edge AB. Similarly, we call the edges AV1 and V1B
first order edges with respect to the edge AB. Note
that the point V1 might not be, and generally is not
a point from the set S. It is just a part of an aux-
iliary construction. Recursively, on each i-th order
edge we can build an isosceles triangle with base an-
gles of α and it will be (i + 1)-th order triangle with
respect to the original edge AB. As it is clear from
the construction method, for i > 1 there are multiple
i-th order triangles, edges and vertices. The vertices
in particular can be enumerated by double indexing
Vik meaning that Vik is the k-th vertex of i-th order,
where i = 2, 3, . . . , k = 1, 2, . . . , 2i−1. The construc-
tion is illustrated in Figure 2. For each triangle of i-th

order we can define its free wedge as the interior of
the angle opposite of its internal angle of 180◦ − 2α.
The union over all values of i, i = 1, 2, . . . of all free
wedges for all i-th order triangles of the edge AB is
the free zone of the edge AB. Note that some of
the i-th order triangles lie entirely in the free wedges
of triangles of lower order, thus not contributing to
the free zone. Also some of the wedges overlap. The
complement of the free zone of the edge AB is the
forbidden zone of the edge AB.

Lemma 1 If there is a point of the set S in the for-
bidden zone of the edge AB, then this edge is not a
part of any α-triangulation of S.

Figure 3: The forbidden zone of the edge AB, the
boundary line (red) up to 3rd order

Proof. In fact the forbidden zone was built so as to
ensure this property. To see that it is valid, consider
the location of a point X ∈ S inside the forbidden
zone. Remember that by our assumption the edge
AB is in some α-triangulation of S. By construction
X is in the closure of some i-th order triangle of the
edge AB. Suppose i = 1, i.e. the pointX is in the first
order triangle �AV1B. Then X is either connected
directly to the edge AB, which forms an illegal tri-
angle (both angles at A and B will be less than α),
or there is another edge of the α-triangulation that
intersects the interior of the triangle �AXB. In the
latter case, consider the ”closest” to AB edge with
this property, one of the points A or B has to be con-
nected to an endpoint of this edge, thus violating the
angular constraint. Therefore the first order trian-
gle �AV1B is empty of points of S. Let now i = 2
and assume that X is inside �V1V22B. X cannot be
connected directly to A as this will immediately vi-
olate the angular constraint. Thus there is an edge
intersecting the interior of �V1V22B. Similarly to the
previous case there will be an edge emanating form
B that either connects to X or to an endpoint of the
”closest” edge. However the edge AB is connected to
some point in the triangulation. Therefore we have
two edges emanating from B inside an angle of less
than 2α, and this violates the angular constraint. In-
ductively, by considering the edges of some triangu-
lation emanating from the points A and B, and their
intersection with the interiors of the triangles of order
up to i we will be able to show that any triangulation
containing the edge AB contains angle(s) smaller than

10
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α which shows the validity of the argument.
In Figure 3 the boundary line of the forbidden zone
is shown in red (bold). The forbidden zone extends
on both sides of the edge AB, although in the con-
struction we implicitly referred only to one of the half-
planes defined by the line AB. �

Corollary 2 Suppose that the edge AB has length
2a, and that α = 30◦. The forbidden zone of the edge
AB includes a rectangle with base AB and height
a√
3
. On top of this rectangle the forbidden zone in-

cludes two right triangles �V21VLV1 and �V1VRV22

with bases of 2a
3 and angles of 30◦ at V1. Refer to

Figure 4.

Figure 4: Parameters of the forbidden zone of the
edge AB = 2a for α = 30◦

3 Main result

We are going to show that the RNG is a part of
every 30◦–triangulation by showing that the forbid-
den zones of all possible edges that could intersect a
given edge AB of the RNG contain at least one of
the points A or B in their interior. Thus, in an 30◦–
triangulation, if such exists, the RNG edges cannot
be intersected by other legal edges.
Keeping the assumptions of the previous section, let
us denote the midpoint of the considered edge AB by
O. Further, let us place the edge AB on the x–axis
of a coordinate system with an origin in its midpoint
O. The points A and B have coordinates (−a, 0) and
(a, 0), respectively, where a is a positive real number.

Lemma 3 Let PQ be a segment that goes through
O and the points P and Q are on the boundary of
the lune of AB. Then the point B is in the forbidden
zone of the segment PQ.

Proof. Without loss of generality we can assume that
the point P lies in the I quadrant. Let P (x, y), denote
the orthogonal projection of the point B onto the seg-
ment PQ by HB . The idea is to compute the distance
BHB and the depth of the forbidden zone of PQ at
HB and show that the first is less than or equal to the
second quantity, thus establishing the claim. It is easy
to see that HB is a point that lies in the segment OP :

the angles of triangle �OBP are all acute and BHB

is an altitude in this triangle. Using the fact that P
lies on a circle centered at A with a radius of 2a, and
the law of sines we obtain OHB =

√
a

3a−2x · x and

BHB =
√

a(a−x)(3a+x)
3a−2x . Denote the distance between

O and P by p, and the distance between O and HB

by d. We can write the depth of the forbidden zone
B(d) as a function of d and p as follows:

B(d) =


(p+ d)/

√
3 for 0 ≤ d ≤ p/2√

3(p− d) for p/2 ≤ d ≤ 2p/3
p/
√
3 for 2p/3 ≤ d ≤ p

(1)

We have to verify, therefore, that BHB ≤ B(d) for
all values of x and a. This is rather lengthy, but only
involves basic mathematics and is omitted here. The
result of this lemma was suggested by computational
experiments done by the first author using the soft-
ware package Cinderella c©. �

Figure 5: Edges PQ and P ′Q′ intersecting the RNG
edge AB in Lemmas 3 and 5
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Corollary 4 If a segment P ′Q′ properly contains an-
other segment P ′′Q′′ then the forbidden zone of P ′Q′

properly contains the forbidden zone of P ′′Q′′.

Proof. From the analytical geometry approach taken
in the proof of Lemma 3, we can use Equation 1 which
is valid in general, i.e. it describes the (left) part of
the forbidden zone of a segment of length 2p with
respect to a point that is at a distance d from the
midpoint of that segment. Now, consider extension of
the segment to the left by a length of 2h. In analytical
form it corresponds to the substitution:

{p← p− h, d← d− h}

It is now easily verified by Equation 1 that each point
that was in the forbidden zone of the original segment
is also in the forbidden zone of the extended segment.
Similarly, an extension of the segment to the right by
a length of 2h is equivalent to the substitution:

{p← p+ h, d← d+ h}

Again, Equation 1 verifies that any point that was in
the forbidden zone of the segment before its exten-
sion is still in the forbidden zone after the extension.
Figure 6 presents an illustration. �

Figure 6: Edges P ′Q′ and P ′′Q′′ and their respective
forbidden zone boundaries

Further, we have to consider possible edges that cross
AB outside of its midpoint.

Lemma 5 Let P ′Q′ be a segment such that the
points P ′ and Q′ are on the boundary of the lune
of AB. Let P ′Q′ intersect AB at a point R such that
R is between O and B. Then the point B is in the
forbidden zone of the segment P ′Q′.

Proof. As in the proof of Lemma 3, assume that the
point P ′ is in the I quadrant, further assume that
the edge PQ through O is parallel to the edge P ′Q′.
The situation is illustrated in Figure 5. Construct
the segment BP , by construction and the properties
of the lune/circles, BP intersects P ′Q′ in an internal
point, which we denote by P ′′. Similarly, if we con-
struct the segment BQ it will intersect P ′Q′ at an
internal point which we denote by Q′′. By construc-
tion �PBQ ∼ �P ′′BQ′′ because of the fact that PQ

and P ′′Q′′ are parallel. Because of the similarity of
the two triangles and the scaling property the fact
that B is in the forbidden zone of PQ, established
in Lemma 3, implies that B is also in the forbidden
zone of P ′′Q′′. Thus, we have two segments, namely
P ′′Q′′ and P ′Q′ that satisfy the premises of Corollary
4. We conclude that B is in the forbidden zone of the
edge P ′Q′. Since any edge crossing AB is parallel to
an edge crossing AB and going through its midpoint,
the claim of this lemma is established. �

Theorem 6 The relative neighbourhood graph of a
planar set of points is part of every 30◦–triangulation
of this set (if such a triangulation exists).

Proof. It is evident form Lemmas 3 and 5 that the
edges of the relative neighbourhood graph of a planar
point set S cannot be intersected by any other edge
in a 30◦–triangulation, if such a triangulation exists.
Therefore, they must be in every 30◦–triangulation, if
such a triangulation exists. �

4 Conclusion

The result presented in this paper is tight. In other
words, there is no guarantee that for an angle α < 30◦

the relative neighbourhood graph will be part of every
(or any) α–triangulation. A four-point example can
be constructed that shows this. Consider a pair of
points A and B as per the notation used throughout
this paper, and two other points C and D ”slightly”
outside the lune of AB, placed on the right side of
the perpendicular bisector of AB infinitesimally close
to it. Analysis shows that we can make the angles
∠DCB and ∠CDB as close to 30◦ as we want, while
keeping the point B outside of the forbidden zone of
the edge CD.
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Bounds on Optimally Triangulating Connected Subsets
of the Minimum Weight Convex Partition

Magdalene Grantson Christos Lecvopoulos ∗

Abstract

Given a set S of n points, we show that the length of
1) the minimum weight triangulation (MWT ) of the
minimum weight convex partition (MWCP ) of S
(TMWCP ) is at most Θ(n) longer than the MWT
of S if collinearity of two or more edges is allowed
and Θ(log n) otherwise,

2) the MWT of the minimum spanning tree (MST )
of theMWCP of S (Tmst(MWCP )) is at most Θ(n)
longer than theMWT of S if collinearity of two or
more edges is allowed and Θ(log n) otherwise,

3) the MWT of any connected subset G of the
MWCP of S (TMWCP (G)) is at most Θ(n) longer
than the MWT of S if collinearity of two or more
edges is allowed.

1 Introduction

A triangulation of a set S of n points in the plane
is a maximal set of non-intersecting edges connect-
ing the points in S. The minimum weight triangula-
tion MWT of S is a triangulation of minimum total
edge length. It is unknown whether the MWT prob-
lem is NP-complete or solvable in polynomial time [2].
However, since the MWT of a simple polygon can

be found in O(n3) time [3], it sounds reasonable to
approximate the MWT of a point set by first con-
necting the set of points into a single component (a
polygon). If the polygon is convex and no three ver-
tices are collinear, a triangulation of weight O(log n)
times the polygon’s perimeter can be found by the
ring heuristic of repeatedly connecting every second
vertex [8]. Using this heuristic and a complicated
method to partition the input into convex polygons,
it was shown in [9] that a triangulation of O(log n)
times the MWT length can be achieved.

Notation: We use the following abbreviations:
MWCP : minimum weight convex partition
TMWCP : MWT of the MWCP
mst(MWCP ): minimum spanning tree (MST )

of the MWCP
Tmst(MWCP ): MWT of mst(MWCP )
MWCP (G): a connected subset of the MWCP
TMWCP (G): MWT of the MWCP (G)

∗Dept. of Computer Science, Lund University, Box 118, 221
Lund, Sweden {magdalene,christos}@cs.lth.se

New Results:
1) The length of the TMWCP of S is at most Θ(n)
greater than the MWT of S if collinearity of two
or more edges is allowed and Θ(log n) otherwise.

2) The length of the Tmst(MWCP ) of S is at most Θ(n)
greater than the MWT of S if collinearity of two
or more edges is allowed and Θ(log n) otherwise.

3) The length of the TMWCP (G) of S is at most Θ(n)
greater than the MWT of S if collinearity of two
or more edges is allowed.

2 Tight Bounds on TMWCP and MWT of S

Theorem 1 For any n ≥ 9, there is a set S of n
points in the plane, such that the TMWCP of S can
be Θ(n) longer than the MWT of S if collinearity of
three or more vertices is allowed.

Proof. For the lower bound we consider the set S of
n points in Figure 1. S is symmetric and compressed
w.r.t. the y-axis by a larger factor than shown in Fig-
ure 1 s.t. each diagonal between the convex hull pieces
from v7 to v∗ and from v∗+1 to vn is of length at most
1

n2 . The length of the diagonal connecting v3 to v4

is 1 and the length of the diagonals between (v1, v3),
(v2, v3), (v4, v5), (v4, v6) are 1

n . Consequently, the di-
agonals between (v3, v7), (v3, v∗+1), (v∗, v4), (v4, vn)
have a length of about 1

2 each for larger n.
The only single diagonal that can eliminate con-

cavity at v3 and v4 after the insertion of diagonals
between (v1, v3), (v2, v3), (v4, v5), (v4, v6) is the diag-
onal from v3 to v4. Let C be the convex hull piece
from v7 to v∗, and C ′ be the convex hull piece from
v∗+1 to vn. (C and C ′ are straight lines.) An alterna-
tive elimination of the concavity at v3 (resp. v4) after
the insertion of the diagonals (v1, v3), (v2, v3) (resp.
(v4, v5), (v4, v6)) is to insert two diagonals, one from
v3 (resp. v4) to a vertex on C, and the other from v3

(resp. v4) to a vertex on C ′.
An MWCP algorithm will always choose the di-

agonal between (v3, v4) of length 1 and the diagonals
between (v1, v3), (v2, v3), (v4, v5), (v4, v6), since they
give the minimum edge length convex partition. In-
cluding the convex hull CH of length about 2. This
the total length of this convex partition is approxi-
mately 3+ 4

n . Any alternative convex partition which
inserts two edges incident to v3 and to v4 results in
an edge length of (4± ε) + 4

n .
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v1

v2
v3 v4

v5

v6

v7 v∗

v∗+1 vn

Figure 1: An approximate illustration of the set of
points which shows the lower bound.

v7

v∗+1

v∗

vn Figure 2: Approximate illustra-
tion of an optimal triangulation
of area bounded by C and C ′.

The TMWCP of S includes the optimal triangu-
lation of the sub-polygon q containing the vertices
(v1, v3, v4, v5, v∗, . . . , v7) and its symmetric counter-
part q′ containing vertices (v2, v3, v4, v6, vn, . . . , v∗+1).
The sub-polygon q is triangulated by adding edges be-
tween v3 and vertices on C and/or edges between v4

and vertices on C. Each of these edges has a length of
approximately 1

2 . For larger n there are about
n
2 ver-

tices on C (there are at least 2n
9 vertices on C, since

n ≥ 9). Thus the total length of the edges needed to
triangulate q is 1

2 ·
n
2 =

n
4 , and since q

′ is symmetric
to q, the total length of the edges needed to triangu-
late both q and q′ is 2n

4 =
n
2 . Adding the total edge

length 3+ 4
n for the MWCP of S obtained above, we

have that the TMWCP of S has a total edge length of
approximately n

2 , for larger n.
The MWT of S, however, includes the diago-

nals between the convex hull CH, (v1, v3), (v2, v3),
(v4, v5), (v4, v6), (v3, v7), (v3, v∗+1), (v∗, v4), (v4, vn)
and diagonals going between C and C ′. The optimal
triangulation T of the area bounded by C and C ′ ap-
proaches zero for larger n, because each edge going
between C and C ′ in T has length at most 1

n2 and
there are O(n) edges (see Figure 2). The MWT of S
thus has a total edge length of about 4 for larger n.
Hence |TMWCP |

|MWT | ≈
n
8 .

For the upper bound, we draw on a result in [4],
where it was shown that for a point set S any trian-
gulation achieves a total edge length O(n) times the
MWT of P . Therefore the Θ(n) bound is tight. �

Theorem 2 For any n, there is a set S of n points in
the plane, such that the TMWCP of S can be Θ(log n)
longer than the MWT of S if collinearity of three or
more vertices is disallowed.

Proof. To show the lower bound, we modify the set S
of points in Figure 1 such that (1) on the convex hull
piece C from v7 to v∗ the vertices lie on a circular arc
so that no three vertices are collinear, likewise on the
convex hull piece C ′ from v∗+1 to vn; (2) each edge
between adjacent vertices on C and C ′ has length 1

n .
C and C ′ are both of length about 0.3; (3) the dis-
tance from each v on C (resp. C ′) to the closest vertex

v4

vn

v3 v2 v1

Figure 3: An approximate illustration of a point set
S of points showing the lower bound.

on C ′ (resp. C) is at most 1
n2 ; (4) the diagonals be-

tween (v3, v7), (v3, v∗+1), (v∗, v4), (v4, vn) have length
of about 0.35 each.
An MWCP algorithm always chooses the diagonal

between (v3, v4) of length 1 and the diagonals between
(v1, v3), (v1, v3), (v4, v5), (v4, v6), since they give the
minimum edge length convex partition (similar expla-
nation as in the proof of Theorem 1).
The TMWCP of S includes the triangulation

of the convex sub-polygon q containing vertices
(v1, v3, v4, v5, v∗, . . . , v7) and its symmetric counter-
part q′ containing vertices (v2, v3, v4, v6, vn, . . . , v∗+1).
From [5, 6] we know that the greedy triangulation1 of
a convex polygon P is an O(1) approximation of the
MWT of P . The greedy triangulation of theMWCP
of S adds the diagonals between (v7, v∗) and (v∗+1, vn)
before the diagonals (v3, v7) and (v3, v∗+1) (resp.
(v∗, v4) and (v4, vn)) in q (resp. q′). The sub-polygon
containing the circular arc C (resp. C ′) and the di-
agonal between (v∗, v7) (resp. (v∗+1, vn)) is referred
to as a semi-circular polygon in [7]. [7] showed that
the MWT of such semi-circular polygons has length
Θ(log n) times its perimeter. Thus the triangulations
of such resulting sub-polygons have length Θ(logn)
plus the length of the perimeters of the sub-polygons.
The length of theMWT of the two semi-circular poly-
gons of S is Θ(log n) (since the greedy triangulation
of P is O(1) of the MWT of P ). Thus the total edge
length of the TMWCP of S is Ω(log n).
A much shorter triangulation of S includes the diag-

onals between the vertices stated for theMWT in the
proof of Theorem 1, giving a total edge length of at
most O(1). Using results from [9, 8] it can be deduced
that given a set S (disallowing collinearity) partition-
ing the region of the plane enclosed by the CH of S
into convex polygons one can achieve an O(log n) ap-
proximation to theMWT by triangulating the convex
polygons. Therefore the Θ(logn) bound is tight. �

3 Tight Bounds on Tmst(MWCP ) and MWT of S

Theorem 3 For any n > 0, there exists a set S of
n points for which the length of the Tmst(MWCP ) of
S can be Θ(n) times the length of the MWT of P if
collinearity of three or more vertices is allowed.

1The greedy triangulation is obtained by repeatedly adding
the shortest edge that does not lead to an intersection.
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Figure 4: An approximate illustration showing the
lower bound for the Tmst(MWCP ) and MWT ratio.

Proof. Consider the set S of n ≥ 10 points in Fig-
ure 3 and let the distances between pairs of ver-
tices be d(v1, v2) = 1.2, d(v2, vn) = 1.2, d(v1, vn) =
2.4, d(v2, v4) = 1, d(v1, v3) = 2.3, d(v2, v3) > 1,
d(v3, v4) ≤ 1

n+2 , d(vn, v4) ≤ 1
n+1 , d(vn, v3) ≤ 1

n . We
observe that the MWCP includes the convex hull of
S and the edges (v1, v2), (v2, v4), since the total edge
length of this partition is minimum (concavity at v2

is removed, since v1, v2, v4 are collinear).
The mst(MWCP ) includes all edges in the

MWCP of S except (v1, vn) and (v1, v3). There are
at most n − 5 vertices between vn and v4, and each
(including vn) is connected to the vertex v2 by an edge
of length about 1.2 in the Tmst(MWCP ).
However, theMWT includes edges (v2, vn), (v2, v3)

and edges from v3 to each of the vertices from v5

and vn. Each of the n − 5 edges from v3 to vertices
(v5, v6, . . . , vn) has length at most 1

n . The total length
of the MWT of S is O(1). Thus the ratio of the
lengths of the Tmst(MWCP ) and the MWT is Ω(n).
This proves a lower bound for the above problem.
For the upper bound we know that every triangula-

tion has length O(n) times the optimum (MWT ) [4,
1]. Therefore the Θ(n) bound is tight. �

Theorem 4 For any n > 0, there exists a set S of
n points for which the length of the Tmst(MWCP ) of S
can be Θ(log n) times the length of the MWT of S if
collinearity of three or more vertices is disallowed.

Proof. We construct a set S of n points, n ≥ 15,
which is sketched in Figure 4. We assume that S
is compressed w.r.t. the y-axis s.t. the y-coordinate of
each point is multiplied by 1

n2 and S has the following
properties: (1) All vertices except v3 and vm+2 (which
lie on the x-axis) lie on the convex hull CH. (2) On
the CH the vertices vm+4, vm+5, . . . , vn lie on a cir-
cular arc. (3) Let δ(u, v) denote the vertical distance
between any two given vertices u and v, and d(u, v)
the distance between u and v. Then d(v1, v2) = 1

2n ,
d(v1, v3) = 2

n , δ(v3, vn) = 0.2, δ(vn, vm+4) = 0.1
δ(vm+4, vm+2) = 0.7, d(v3, vm+2) = δ(v3, vm+2) = 1
δ(vm+2, vm+3) > 1, d(vm+3, vm+1) = 2. The short-
est diagonal from any vertex on the convex hull piece
(vn, vm+4) to any vertex on the convex hull piece

(v4, vm) is no longer than 1. (4) Let L1 (see Figure 4)
be the half-line extension of vm+1 to vm+2 and L2

the half-line extension of vm+3 to vm+4. The vertices
vm+4 to vn lie above the intersection of L1 and L2.
In any convex partition of S: The two diagonals

(vm+2, vm+1) and (vm+2, vm+3) must both be present
to remove the concavity at vm+2, because even adding
all remaining diagonals incident to vm+2 does not re-
move the concavity at vm+2 (this follows from prop-
erty 4 above). To remove the concavity at v3, if the
diagonal (v3, vm+2) is added, at least two other diag-
onals incident to v3 are needed. However, if the diag-
onal (v3, vm+2) is not added, either (v1, v3) or (v2, v3)
together with at least two other diagonals are needed,
namely one incident to v3 and going to the left of v3

and one incident to v3 and going to the right of v3.
To find the MWCP of S, inserting the diagonal

(v3, vm+2) removes the concavity at vm+2 and requires
inserting either (v1, v3) and (v2, v3) to remove the con-
cavity at v3 giving a total edge length of 1 + 4

n . If we
do not, however, add the diagonal (v3, vm+2), a pos-
sible solution is the insertion of either (vm+2, vm+4)
or (vm+2, vm) at vm+2 and (vn, v3), (v3, v4) and either
(v1, v3) or (v2, v3) to remove the concavity at v3 giving
a total edge length of 0.7+0.2+0.2+ 2

n . We conclude
that the MWCP of S includes the convex hull of S
and edges (v1, v3), (v2, v3), (v3, vm+2), (vm+2, vm+3)
and (vm+2, vm+1).
An mst(MWCP ) of S includes the edges in the

MWCP of S with the exception of (vm+4, vm+3),
(vm, vm+1) and either (vm+2, vm+1) or (vm+2, vm+3).
The greedy triangulation of any mst(MWCP ) of S

includes the triangulation of the so-called semi-cir-
cular polygon [7] bounded by the convex hull piece C
from vn to vm+4 and the edge (vn, vm+4), as well as its
symmetric counterpart the convex hull piece C ′ from
v4 to vm and the edge (v4, vm). In [7] it was shown
that theMWT of such regular semi-circular polygons
has length Θ(log n) times its perimeter. Since the
greedy triangulation is an O(1) approximation of the
MWT for any convex polygon [5, 6], the total edge
length of the Tmsp of S must be also Ω(log n).
A shorter triangulation T of S includes the con-

vex hull of S, the edges (v1, v3), (v2, v3), (v3, v4),
(v3, vn), (vm+2, vm+4), (vm+2, vm), (vm+2, vm+4),
(vm+2, vm+1), and edges from the triangulation of the
area bounded by C, C ′, (v4, vn), (vm+4, vm) (see Fig-
ure 2 for a similar triangulation). In all there is a lin-
ear number of edges going between the area bounded
by edges (v4, vn), (vm+4, vm), C and C ′, each of which
has length at most O( 1

n2 ) giving a total edge length
of O( 1

n ). Thus the total edge length in T is O(1).
The set S considered above has an even number of

points. For the case when n is odd we add a dummy
vertex vd in the area bounded by the triangle with cor-
ners v1, v2, and v3 to maintain the symmetric nature
of S. The introduction of the dummy vertex gives the
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v4
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v3 v2 v′
3

v′
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n

Figure 5: An sketch showing a modification of the
point set S in Figure 3. The point sets are symmetric
along the x-axis.The figure is not to scale.

same lower bound as shown for the even case since
the concavity at vd can be removed by inserting edges
from vd to v1, v2, and v3.
The Θ(log n) bound is tight. We can show this

by starting with polygonal regions formed by combin-
ing the convex hull with the MST of the point set,
and then computing the MWT of these regions us-
ing the ring heuristics proposed by Lingas [8]. The
ring heuristics achieves a O(log n) approximation to
the MWT of polygons. �

Generalization

Theorem 5 For any n, there exists a point set S for

which
|TMWCP (G)|
|MWT | = Ω(n).

Proof. We show that Theorem 5 holds by modifying
the point set S in Figure 3 to be symmetric w.r.t. the
y-axis: the point v2 lies on the y-axis, the points v3

to vn are at the same positions relative to v2, and
we add corresponding points v′3 to v

′
n at symmetric

positions (see Figure 5). Any connected subset G in
the MWCP of S includes either the edge (v′3, v2) or
(v2, v3). Any of these two edges prevents us from get-
ting triangulation edges having length of at most 1

n
as shown in the proof of Theorem 3. �

Observations

Definition 1 A vertex of a polygon is strictly con-
vex if its internal angle is strictly less than 180 de-
grees. Every vertex of a strictly convex polygon is also
strictly convex. Similarly every polygon of a strictly
convex partition is also strictly convex.

Observation 1 For the case where strictly convex
partitions are required, the Tmst(MWCP ) of S is of
length Θ(log n) times the length of the MWT of S
if collinearity of three or more vertices is allowed.
We can prove the Ω(log n) lower bound part of the
Θ(log n) bound using the same proof as for Theorem 4
(for the non collinear case), since a strictly convex
partition means a strictly convex polygon, collinear-
ity of three or more vertices is not allowed in the con-
vex polygons formed from the strictly convex parti-
tions. To show the O(log n) upper bound part of the
Θ(log n) bound, the ring heuristics [9] can be used to
optimally triangulate all the strictly convex polygons
derived from the strict MWCP of S.
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Incremental Construction along Space-Filling Curves

Kevin Buchin∗

Abstract

For the incremental construction of a Delaunay tri-
angulation, we prove that inserting points in rounds
and walking along a space-filling curve in each round
yields an algorithm running in linear expected time
for uniformly distributed points. We complement this
result by a simpler incremental construction running
in linear expected time in any dimension.

1 Introduction

Motivation When devising an insertion order for the
incremental construction of the Delaunay triangula-
tion there are two seemingly conflicting goals: Insert-
ing points randomly from the data avoids creating ar-
tificial triangles during the construction. In contrast,
inserting points nearby allows taking advantage of ge-
ometric locality and locality of reference.
Randomized incremental construction follows the

first approach. It is asymptotically optimal but per-
forms poorly with modern memory hierarchies when
used for large data sets as observed by Amenta, Choi
and Rote [1]. They showed how randomness can be re-
duced without changing the asymptotic performance
by a biased randomized insertion order : Points are
randomly assigned to rounds of insertion of increas-
ing sizes, and within a round the order of insertion
can be chosen freely.
This allows us to use locality within the rounds by

traversing the points of a round in an order along a
space-filling curve [11]. We chose a space-filling curve
order because it combines locality of reference with
geometric locality by linearizing space, adapts well
to irregularities of the point distribution, is fast to
compute, is applicable in higher dimensions, and gives
a good bound on the length of the resulting tour.

Related Algorithms Some linear expected time al-
gorithms for constructing the Delaunay triangulation
of uniformly distributed points from a bounded con-
vex area in the plane are known [2, 6, 8]. Dwyer [6]
gives an algorithm running in linear expected time for
points from a sphere in any fixed dimension.

∗Freie Universität Berlin, Institut für Informatik,
buchin@inf.fu-berlin.de. This research was supported by
the Deutsche Forschungsgemeinschaft within the European
graduate program ‘Combinatorics, Geometry, and Computa-
tion’ (No. GRK 588/2).

Two incremental constructions running in linear
time in practice on uniformly distributed points are
known [9, 12]. In both cases, the analysis does
not treat the irregularities near the boundary. The
boundary case can be avoided by considering points
from a Poisson point process.

Inserting near the Boundary For algorithms based
on incremental construction, points near the bound-
ary seem difficult to handle, because long and thin tri-
angles slow down the point location. Figure 1 shows
a typical case of this: Near the boundary, triangles
with a large circumcircle are likely to occur in the tri-
angulation, because a large part of the circumcircle
may lie outside the region with points.

Figure 1: Delaunay triangulation of points in a square

Our main effort is to prove that the boundary case
does not change overall linearity. While the analysis
is done for our algorithm it seems possible to adapt
the analysis to treat the algorithms mentioned above.
Surprisingly, we found another simple incremental

construction which has no problems near the bound-
ary and constructs the Delaunay triangulation in lin-
ear expected time in any fixed dimension. We include
an analysis of this algorithm.

Contributions Our main contribution is to prove
that a biased randomized insertion order together
with a local insertion scheme runs in linear expected
time on uniform points in a bounded convex region.
This result complements the good practical perfor-
mance of biased randomized insertion orders and re-
solves an open problem posed by Amenta et al. [1]
This algorithm is the first completely analyzed linear
expected time incremental construction algorithm for
Delaunay triangulations.
The main technical contribution is the explicit anal-

ysis of point location near the boundary. Further-
more, we present an incremental construction running
in linear expected time in any fixed dimension.
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Figure 2: Assigning points to rounds

2 Walking along a Space-Filling Curve

Incremental Construction The basic concept of in-
cremental construction is simple to state: Insert the
points into the Delaunay triangulation one by one,
updating the data structure after each insertion step.
The time needed to insert a point consists of the time
needed for locating the point in the current triangu-
lation and the time for updating the triangulation. If
the points are inserted in random order the expected
total time needed for updating is in O(n) and for point
location is in O(n log n).

Biased Randomized Insertion Orders The order of
insertion is allowed to deviate from a random order as
long as randomness dominates. Sufficient randomness
can be introduced to the insertion order by assigning
the points independently at random to rounds as illus-
trated in Figure 2: A point is independently assigned
to the last round with the probability of 1/2. Each
of the remaining points is assigned to the next to last
round with the probability of 1/2, and so on [1].
After a logarithmic number of rounds an expected

constant number of points remain, and we can stop
sampling and assign the remaining points to the first
round. The points are inserted round by round. In a
round points can be inserted in an arbitrary order.
Biased randomized insertion orders were originally

introduced to reduce random memory access. We
make use of the fact that they do not change the up-
date cost, which, in our case, is linear. Therefore we
can focus on the point location time.

Space-Filling Curves Within a round we construct
a short tour through the points by the space-filling
curve heuristic for the traveling salesman [10]. To see
how the tour is constructed, consider the first steps of
the geometric construction of the Hilbert Curve shown
in Figure 3. The space is successively subdivided. The
cells are ordered in such a way that consecutive cells
in the order are adjacent.
The limit of this process yields a space-filling curve,

i. e. a surjective mapping from the unit interval to the
unit square or, more generally, to the d–dimensional
unit cube. Formally, the space-filling curve heuristic
sorts the points by selecting a preimage for every point
and by sorting the points according to the preimages.

Figure 3: First steps in the construction of the Hilbert
curve and a space-filling curve tour

In practice, the process can be stopped after a fi-
nite number of subdivisions. The maximal number of
subdivisions necessary is the number of bits of pre-
cision. In order to achieve an O(

√
n) bound on the

tour length a subdivision with as many cells as points
is sufficient. Points within a cell can then be ordered
in an arbitrary order.

Walking We traverse the tour and insert the points
along the way. The next point is located by walk-
ing [5], i. e. by a local search starting at the current
point and traversing the triangles stabbed by the line
segment between the two points. This point location
scheme does not need a point location data structure.
The heuristic can be used not only for points in the

unit square but also in an arbitrary rectangle. The
bound on the tour length changes by a factor of the
length of the longer side. For points in a bounded
convex region a bounding rectangle is used.

3 Analysis

Space-Filling Curve Heuristic The heuristic con-
structs a tour through a given set of points in the unit
square by visiting them in the order of their preimages
under a space-filling curve ψ. The order of preimages
is not unique since ψ cannot be injective [11]. For the
heuristic to be effective the images of nearby points on
the side of the preimages should be near to each other
in space. For space-filling curves this follows from
their Lipschitz continuity of order 1/2, i. e. that for
any s, t in the unit interval |ψ(s)−ψ(t)| ≤ cψ|s−t|1/2.
The space-filling curve heuristic was popularized

by Platzman and Bartholdi [10]. A general treat-
ment and probabilistic analysis is given by Gao and
Steele [7]. We summarize the result we need in the
following lemma:

Lemma 1 For a space-filling curve that is Lipschitz
of order 1/2 and can be generated by subdivision, an
order on the points can be computed in linear time in
such a way that for any k-subset of points the length
of the tour through these points along the order is
bounded by O(k1/2).

For this lemma no assumption on the point distri-
bution is used. A stronger bound holds for points
distributed uniformly in the unit square [7]. In d di-
mensions the bound generalizes to O(n(d−1)/d).
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Counting Intersections To analyze the running time
it is sufficient to analyze the time required in the last
round using an induction. Assume m+ n points dis-
tributed independently and uniformly at random in a
bounded convex region C of area 1, where n points are
already inserted in the Delaunay triangulation. To in-
sert them remaining points, a tour through the points
is constructed using the space-filling curve heuristic.
The points are located by traversing the triangula-

tion along the tour. Therefore, the time needed for
locating the points is proportional to the number of
intersections between the tour and the triangulation.
A bound on the expected number of intersections is

obtained by considering exclusion regions for possible
edges of the triangulations, i. e. if the region contains
points on both sides of the possible edges the edge
cannot be in the triangulation. For Delaunay trian-
gulations the disc with the edge as diameter is an ex-
clusion region. For uniformly distributed points the
edges of a triangulation with exclusion regions typi-
cally are expected to be either short or near to the
boundary. This can be strengthened to the following:

Lemma 2 (Devroye, Mücke and Zhu [5]) The
expected number of intersections between a Delaunay
triangulation of points distributed independently and
uniformly in a compact convex area C and a fixed
line segment L that is at least distance c0

√
log n/n

from the boundary of C is bounded by

c1 + c2|L|
√
n,

where c0 is a constant, and c1 and c2 depend only on
the geometrical properties of C.

The bound on the tour length and the bound on the
number of intersections together give a linear bound
for all line segments that have a distance of at least
c0
√
log n/n from the boundary ∂C. The expected

number of points near the boundary is bounded by
m′ := c0|∂C|m

√
log n/n and the number of line seg-

ments by 2m′, and therefore, by Jensen’s inequality
and Lemma 1, the total length of these line segments
by c
√
2m′ for suitable c.

To treat these segments we quantify what it means
that the edges of the triangulation are likely to be
short or near to the boundary:

Lemma 3 Let T be the Delaunay triangulation of
n points distributed independently and uniformly in
a convex area C. Denote by Dw,l the event that a
Delaunay edge with an endpoint with a distance of at
least w to the boundary of C is longer than l.
For c > 1 and l ≥ cw

Pr (Dw,l) ≤ n2e−(n−2)wl
√

1−1/c2/2.

In particular, if l ≥ 3w and wl ≥ 6
√
2 log n/n, then

Pr (Dw,l) ∈ o(1/n).

w

l’

boundary of C

Figure 4: Exclusion re-
gion for a Delaunay edge
that is contained in C

w

L l

boundary of C

Figure 5: Area for end-
points of Delaunay edges
intersecting L

Proof. Consider the edge in Figure 4 with length
l′ ≥ l and a vertex with a distance of more than
w to the boundary of C. The two rectangular tri-
angles form an exclusion region for the edge that is
contained in C. The area of a triangle is bounded
by 1/2 · w

√
l2 − w2 ≥ wl

√
1− 1/c2/2. There are

(
n
2

)
possible edges and therefore

Pr (Dw,l) ≤
(
n

2

)
2(1− wl

√
1− 1/c2)n−2

≤ n2e−(n−2)wl
√

1−1/c2/2

�

This gives us a bound on the number of Delaunay
edges that can intersect the line segments of the tour:

Lemma 4 The expected number of intersections of a
Delaunay triangulation and a tour along a Lipschitz-
1/2 space-filling curve with a total number ofN points
which are distributed independently and uniformly in
a convex area is linear in N .

Proof. Assume l ≥ 3w and wl ≥ 6
√
2 log n/n. With

high probability only edges with endpoints with dis-
tance of at most l to one of the line segments, or with
distance at most w from the boundary can intersect.
For a single line segment this area is shown in Fig-
ure 5. The expected number of endpoints of edges
that intersect a line segment L is therefore bounded
by n(|∂C|w+πl2+2l|L|)+o(1). Because of planarity
there are at most three times that many edges inter-
secting L.
For k line segments of total length λ this yields

a 3n(|∂C|kw + πl2k + 2lλ) + o(k) bound on the
number of intersecting edges. In our case, we have
k = c0|∂C|m

√
log n/n and λ =

√
k. Choosing

w := max (k−1/4
√
log n/n, (log n/n)2/3) and l :=

6
√
2 log n/(nw) the number of intersections can be

bounded by O(n1/8m3/4 log7/8 n + n−1/6m log7/6 n).
Adding up the bound for segments near the bound-
ary and far away from the boundary yields a linear
bound on the expected number of intersections. �
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Inserting Points We now extend the analysis to the
case where the triangulation changes during a tour
because points are inserted. The points of the trian-
gulation occur in two different roles in the analysis:
They may contribute to the number of intersections
as an endpoint of an intersecting edge but they may
also block other edges because they lie in their exclu-
sion region. The analysis can be extended by taking
all points as possible endpoints but only the points of
the original triangulation as blocking points.
For a fixed line segment of the tour the remaining

points of the tour are not independent of this seg-
ment but their density can be bounded if we use a
bi-measure preserving curve, which allows us to work
on uniform distributions on the preimage and the im-
age exchangeably [7]. The cost resulting from the fact
that the starting point of a line segment is a vertex of
the triangulation can be bounded by the update cost.
In total this yields the following theorem:

Theorem 5 Using a biased randomized insertion or-
der and, in each round, walking along a Lipschitz-
1/2, bi-measure preserving space-filling curve, the in-
cremental construction algorithm runs in linear ex-
pected time for points distributed independently and
uniformly in a bounded, convex area.

4 Seeking a Conflict with the Neighbor

The main problem in the average case analysis of in-
cremental constructions seems to be the boundary.
Here we give an algorithm for which this is not so.
The points are inserted in random order. The algo-

rithm maintains a dynamic bucketing scheme. This
allows us to find the nearest neighbor in the trian-
gulation for a new point in constant expected time
using spiral search [2]. Now a d–simplex incident to
the nearest neighbor is found which conflicts with this
point. From this triangle all conflicting d–simplices
are found as in the Bowyer-Watson algorithm.

Theorem 6 Seeking a Conflict with the Neighbor
constructs the Delaunay triangulation in linear ex-
pected time when the points are distributed inde-
pendently and uniformly in a d–dimensional bounded
convex open region for which the expected complexity
of the Delaunay triangulation is linear. In particular,
this is the case for the unit d–ball.

Proof. The expected time required for searching the
nearest neighbor and for updating the triangulation
is linear [2]. It remains to bound the expected num-
ber of d–simplices of the triangulation containing the
nearest neighbor of a new point. The difficulty is that
the nearest neighbor is not a random point of the tri-
angulation but a constant bound can be obtained by
using that the in-degree of the nearest neighbor graph
is bounded in any fixed dimension.

The special case of the d–ball follows directly from
the linear expected complexity [6]. �

5 Discussion

We presented two incremental construction algo-
rithms for the Delaunay triangulation. The first algo-
rithm constructs a spatial order of the points. Ideally,
the Delaunay triangulation should be stored in the
same order to make use of the locality of reference. A
possible way to achieve this is presented by Blandford
et al. [3]. For this, it is important to use one ordering
for all points.
Two advantages of the first algorithm which we

have not addressed in the analysis are its good perfor-
mance on surface points and on large data sets. Fur-
thermore, the algorithm runs in higher dimensions.
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Region Counting Graphs

Jean Cardinal∗ Sébastien Collette† Stefan Langerman‡§

Abstract

A new family of proximity graphs, called region count-
ing graphs (RCG) is presented. The RCG for a finite
set of points in the plane uses the notion of region
counting distance introduced by Demaine et al. to
characterize the proximity between two points p and
q: the edge pq is in the RCG if and only if there
is less than or exactly k vertices in a given geomet-
ric neighborhood defined by a region. These graphs
generalize many common proximity graphs, such as
k-nearest neighbor graphs, β-skeletons or Θ-graphs.
This paper concentrates on RCGs that are invariant
under translations, rotations and uniform scaling. For
k = 0, we give conditions on regions R that define an
RCG to ensure a number of properties including pla-
narity, connectivity, triangle freeness, cycle freeness,
bipartiteness, and bounded degree. These conditions
take form of what we call tight regions: maximal or
minimal regions that a region R must contain or be
contained in to satisfy a given monotone property.

1 Introduction

We consider here proximity graphs [12], also called
neighborhood graphs. Those graphs are defined on a
finite set V of vertices in the plane and there exists
an edge between any two vertices if they are ”close”
in some sense. The proximity can be measured for
instance by the Euclidean distance between those ver-
tices, the distance to other vertices of the graph, or
the number of other vertices in a given neighbor-
hood. Those graphs are well-studied and have nu-
merous applications in computer graphics and classi-
fication; a survey of Jaromczyk and Toussaint [7] dis-
cusses many of them, such as Relative Neighborhood
Graphs [7, 11], Gabriel Graphs [5, 10], β-skeletons [9],
Rectangular Influence graph [6], and Θ-graphs [8, 14].
Previous work on proximity graphs traditionally

consisted in the introduction of one or more graphs,
followed by different contributions analyzing their
properties. Surprisingly, the natural opposite ap-
proach does not seem to have been considered: to
start from a set of desired graph properties to con-
struct the definition of the proximity graph. For this,
we have to define a class of proximity graphs general
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†Aspirant du F.N.R.S., sebastien.collette@ulb.ac.be
‡Chercheur qualifié du F.N.R.S.,
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enough to encompass many useful graphs, but simple
enough to be analyzed.
The simplest form of proximity graph is a distance

graph that connects a point p ∈ V to every point in
V whose distance to p is at most some specified value
D. Our class of graphs is a variant on this definition
using the discrete region counting distances defined by
Demaine, Iacono and Langerman [2]. These distance
functions are parameterized by the finite point set V
and the distance between two points is the count of
items of V inside a region surrounding those points.
In a k-region counting graph or k-RCG (respectively
(≤ k)-RCG), two vertices are adjacent if and only if
the region counting distance between them is equal to
k (respectively at most k).
One of the motivations of our work was to design

proximity graphs that are invariant under transla-
tions, rotations and uniform scaling. It can be shown
that this property is satisfied if and only if the re-
gion defining the region counting distance between
two points is obtained by translating, rotating and
uniformly scaling a template region. In this paper,
we concentrate on the case k = 0, where two vertices
are adjacent if the region does not contain any other
point of the set. We further focus on symmetric and
convex regions and symmetric distances (undirected
graphs).
The properties of those graphs are determined by

the choice of the template region. More specifically,
we say that a given template region satisfies a prop-
erty when for all point sets V the graph generated
using that region satisfies the property.
Graph properties that are monotone with respect

to either edge removal or addition are good candi-
dates for investigation, because monotone properties
that are satisfied by a template region are satisfied by
all template regions included in it in the case of edge
addition, or containing it in the case of edge removal.
This naturally raises the issue of template regions that
are extremal with respect to the inclusion partial or-
der. We show for instance that the lune, defined as
the intersection of two disks of radius ||pq|| and re-
spective centers p and q, is the unique maximal region
ensuring the connectivity of the graph. We call these
extremal regions tight regions. However, because the
inclusion relation is not a total order, tight regions
need not be unique. Tight regions can somehow be
seen as a deterministic geometric analogue to thresh-
olds for monotone properties studied in random graph
theory [4]. Table 1 summarizes our findings related to
tight regions and their uniqueness for various graph
properties.
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Region Name Property

R2 Plane no edge >
(unless |V | < 3)

p q Mastercard no chain >,
no cycle (Thm 10)

p q Lune no 3-cycle > (Thm 9),
connected > (Thm 12)

p q Pacman P4π/3
no 3-star > (Thm 8:
P4π/k for no k-star >)

p q Pacman P6π/5 no 5-cycle (Thm 9)

p q Pacman Pπ
no 4-star > (Thm 8),
no 4-cycle > (Thm 9)

p q Slab no cycle (Thm 10),
bipartite (Thm 13)

p q Ball planar (Thm 11)

qp Truncated Slab no 5-cycle (Thm 9)

Table 1: Regions which are tight for various proper-
ties. Unique tight regions are marked with a >.

In Section 2, we define the k- and (≤ k)-RCG and
prove several facts, including how to combine tight re-
gions for conjunction of properties. Section 3 is about
geometric properties, which depend on the position of
the vertices. We consider the planarity of the embed-
ding and prove that no region counting graph invari-
ant under translation, rotation and uniform scaling
can guarantee a constant spanning ratio. This is in-
teresting in light of known bounds on the spanning
ratio of Θ-graphs [8], which are not rotation invari-
ant. In section 4 we study the property of not having
a given graph as subgraph, and how sets of tight re-
gions can be constructed for forbidden combinations
of graphs. Then we specifically consider the proper-
ties of not having a k-star or a k-cycle as subgraph.
Finally, section 5 presents tightness results for pla-
narity, cycle-freeness, connectivity and bipartiteness.

2 Region Counting Graphs

Definition 1 An influence region R is a function
mapping a pair (p, q) of points in R2 to a subset of
R2 such that inclusion in R(p, q) can be computed in
O(1) time.

Definition 2 An anchored region R is an influence
region parameterized by a triple (a, b,D), where a and

b are points in R2 and D is a subset of R2 such that
inclusion in D can be computed in O(1) time. The
set R(p, q) is the subset of R2 obtained by translating,
rotating and uniformly scaling D so that a maps to p
and b maps to q.

Definition 3 A region counting distance [2] dR =
dS

R(p, q) parameterized by a finite point set S ⊆ R2

and an influence region R, is defined by dR(p, q) =
|(S \ {p, q}) ∩R(p, q)|.

Definition 4 A symmetric region counting distance
is a region counting distance satisfying dR(p, q) =
dR(q, p).

For the region counting distances using an anchored
region as influence region, the symmetry of the re-
gion counting distance implies that the region R(p, q)
is symmetric with respect to the center of the line
segment pq.

Definition 5 A k-region counting graph
RCGk

R(V ) = (V,E) (respectively (≤ k)-region
counting graph RCG≤k

R (V )) parameterized by an
influence region R and an integer k is a graph where
V is a finite subset of R2 and

∀p, q ∈ V : pq ∈ E ⇔ dR(p, q) = k (respectively ≤ k).

If the region counting distance is not symmetric, then
the graph is defined as a directed graph, and as an
undirected graph otherwise.

We denote by RCGR(V ) the 0-RCG using the in-
fluence region R, which is the region counting graph
where the edge pq exists if no other point is included
in the region R(p, q). Many previously known prox-
imity graphs such as nearest neighbor graphs [3], β-
skeletons [9] and Θ-graphs [8] can be defined as 0-
RCG.

2.1 Assumptions

In what follows, we are mainly concerned with 0-RCG,
and refer to them as region counting graphs or simply
RCG. We restrict ourselves to using anchored regions
parameterized by triples (a, b,D) where D is closed,
convex and symmetric with respect to segment ab.
Using only anchored regions is necessary and sufficient
to guarantee the invariance of the graph structure un-
der translation, rotation and uniform scaling of the set
of points. We further restrict ourselves to symmetric
region counting distances, hence undirected graphs.
The regions presented in Table 1 are of particular

interest. The pacman PΘ(p, q) is bounded by the con-
vex hull of two pie-wedges of angle Θ, with apex in p
and in q facing each other, such that P0(p, q) is the
segment pq. The lune L(p, q) is defined as P2π/3(p, q),
while the mastercard M(p, q) is P2π(p, q). The slab
S(p, q) is the infinite strip perpendicular to the line
segment pq.
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2.2 Properties

Lemma 1 ∀k,G = RCG≤k
R (V ), G′ = RCG≤k

R′ (V ) :
R(p, q) ⊆ R′(p, q)⇒ G′ ⊆ G.

Definition 6 A graph property P on a family of
graphs G is a subset P ⊆ G. A graph G has prop-
erty P if G ∈ P.

Definition 7 A graph property P is monotone with
respect to edge addition (respectively to edge re-
moval) if and only if ∀G = (V,E), G′ = (V,E′), E ⊆
E′ (respectively E ⊇ E′): G ∈ P ⇒ G′ ∈ P.

Our definition of monotonicity is slightly different
from the one commonly used in graph theory. Usu-
ally, this is stated as follows: a property is monotone
if and only if it is closed upon taking subgraphs. We
add the symmetrical definition with properties mono-
tone upon taking supergraphs.

Definition 8 An anchored region R satisfies a graph
property P if and only if for all V ∈ R2 finite,
RCGR(V ) ∈ P.

Definition 9 An anchored region R is tight for a
graph property P monotone with respect to edge ad-
dition (respectively to edge removal) if and only if R
satisfies P and for all anchored region R′ ⊃ R (re-
spectively R′ ⊂ R), R′ does not satisfy P.

Note that the monotonicity of the property with re-
spect to edge removal implies that any region contain-
ing a tight region as subset satisfies the property as
well. On the other hand, for regions that are strictly
contained in a tight region, one can always find a set
of points generating a graph that does not have the
property. A similar observation holds the other way
around for properties that are monotone with respect
to edge addition. Another definition of a tight region
for a monotone property is a region that satisfies the
property and is extremal for the inclusion partial or-
der.
Knowing tight regions for useful properties is im-

portant in practice, because it allows to check quickly
if the properties we wish to obtain are satisfied or not.
The uniqueness of a tight region is even more impor-
tant, because knowing a single tight region R does
not, in general, give any information on the proper-
ties guaranteed by regions that simultaneously do not
contain R and are not contained in R. If the tight re-
gion R is unique, any region that does not contain R
does not satisfy the property, even if it is not strictly
included in R.

Lemma 2 Let P be a monotone property with re-
spect to edge removal and R be the unique tight re-
gion satisfying that property. Every region R′ %⊇ R
does not satisfy P.

The same lemma holds for edge addition, where every
region R′ %⊆ R does not satisfy P.
Now given a set of compatible properties we wish

to have on the graph, we can easily construct a region
guaranteeing these properties. In the case of convex
and symmetric regions and properties that are mono-
tone with respect to edge removal, this is achieved by
taking the convex hull of the union of the tight regions
for each property. In some cases, this region can be
proved to be extremal with respect to the inclusion
ordering among the considered type of regions.

Lemma 3 Let P and P ′ be two monotone properties
with respect to edge removal, and R and R′ two re-
gions satisfying P and P ′ respectively. Then R ∪ R′
satisfies P ∩ P ′. Furthermore, if R and R′ are the
unique tight regions for P and P ′, then the convex
hull of R ∪R′ is tight and unique for P ∩ P ′.

A similar Lemma holds for properties that are mono-
tone with respect to edge addition as well.
In the class of all possible properties, we can iden-

tify various families. For instance the class of prop-
erties corresponding to graphs not containing any of
the graphs in a given set as subgraph. Another way
used to describe properties is to express them as a set
of forbidden minors.
Our study showed that there is not always a unique

tight region satisfying a property expressed as a set of
forbidden subgraphs, or as a set of forbidden minors.
However, we do not know whether every monotone
property can be expressed as a finite set of symmetric,
convex and closed tight regions.

3 Geometric Properties

Here we consider geometric properties, which are
properties depending on the position of the vertices.
The following theorem shows that the graph embed-

ding obtained by linking adjacent points by straight
line segments is planar if and only if the region con-
tains the ball of diameter pq.

Theorem 4 The ball B is the unique tight region
ensuring a planar embedding.

In the following, dG(u, v) is the minimum Euclidean
length of a path between u and v.

Definition 10 A graph G in the plane is a t-spanner
for t ∈ [1,∞), if and only if ∀u, v ∈ V :
dG(u, v)/||uv|| ≤ t, where t is called the spanning
ratio.

The spanning ratio is also called the dilation. We
say that the spanning ratio is unbounded whenever
it cannot be bounded by a constant independent of
n, i.e. it can be made arbitrarily large for sufficiently
large n.
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Theorem 5 For every convex anchored region R
with non-empty interior, there exists a real number
α > 0 such that we can find a set S of n vertices for
any n for which the spanning ratio of RCGR(S) is
Ω(nα).

The proof uses recent results on the spanning ratio
of β-skeletons [1, 13]. When we introduced the region
counting distances, one of our motivations was to find
an anchored region such that the corresponding graph
would be a t-spanner not affected by rotations of the
set of points. The well-known Θ-graph, which is not
invariant to rotations, exhibits a constant spanning
ratio. The theorem above shows that it is not possible
to find an anchored region corresponding to a constant
spanning ratio other than the segment or the empty
region if the anchored region is convex.

4 Forbidden Subgraphs

A property P defined by a forbidden subgraph F is
a set of graphs not having any subgraph isomorphic
to F . We denote by F ⊆ F ′ the fact that F ′ has a
subgraph isomorphic to F . The union F ∪ F ′ of two
graphs F = (V,E) and F ′ = (V ′, E′) with V ∩V ′ = ∅
is (V ∪ V ′, E ∪ E′).

Lemma 6 If the region R is tight for a forbidden
subgraph F and for a forbidden subgraph F ′ ⊇ F ,
then it is tight for all forbidden subgraph G which
satisfies F ⊆ G ⊆ F ′.

Theorem 7 If R is the set of tight regions for a for-
bidden subgraph F and if R′ is the set of tight re-
gions for a forbidden subgraph F ′, then the set of
tight regions for the forbidden subgraph F ∪ F ′ is
{R ∈ R ∪R′|∀R′ ∈ R ∪R′ : R %⊇ R′}.
We will now study properties which can be explained
as forbidden subgraphs.

Theorem 8 The pacman P4π/k is the unique tight
region forbidding a k-Star, which is equivalent to
bounding the maximum degree by k − 1.
There are many regions corresponding forbidding a
k-cycle, depending on the parameter k. The tight
regions for 3-cycle and 4-cycle are unique, while there
are at least two regions for k ≥ 5.

Theorem 9 1. The Lune L is the unique tight re-
gion forbidding a 3-cycle.

2. The pacman Pπ is the unique tight region forbid-
ding a 4-cycle.

3. There are at least two tight regions forbidding a
5-cycle: the truncated slab and P6π/5(p, q).

We show in the next sections that cycle freeness,
which corresponds to forbidding a k-cycle for every
k, has also two tight regions, and that the tight re-
gions for the 5-cycle are subregions of those for cycle
freeness.

5 Other Properties

Properties discussed in theorems 10 and 11 corre-
spond to forbidding graph minors: cycle freeness cor-
responds to forbidding a triangle as minor; Kura-
towski’s theorem says that planarity corresponds to
forbidden minors K3,3 and K5.

Theorem 10 There are at least two tight regions for
cycle freeness: the slab S and the mastercard M .

Theorem 11 The ball B is a tight region for pla-
narity.

Theorem 12 The lune L is the unique tight region
for connectivity.

Theorem 13 There are at least two tight regions for
bipartiteness: the slab S and the mastercard M .
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Homotopic Spanners∗

Sergio Cabello† Bojan Mohar‡ Arjana Žitnik§

Abstract

We introduce the concept of homotopic spanners in
the plane with obstacles and show lower bounds on
the number of edges that they require. We also pro-
vide a construction based on Θ-graphs for construct-
ing homotopic spanners.

1 Introduction

Spanners have become a basic tool for the design of
networks: they are graphs connecting a given set of
sites with the property that the distances between
sites along the graph is similar to the straight-line
distance between the sites. As a basic requirement,
spanners have to be sparse, that is, they need to have
few edges. Typically, we are interested on spanners
that have additional properties, such as bounded de-
gree, small total length, small spanning diameter, etc.
In applications like robot motion planning, we often

deal with the scenario where the sites are in the plane
and we also have a set of obstacles to be avoided. This
naturally leads to the problem of computing spanners
under the influence of polyhedral obstacles, already
considered by Clarkson [6] and Das [7].
We consider here the construction of spanners in

the plane with point-obstacles, but with the addi-
tional condition that between each pair of sites there
is a short path in the spanner which is homotopically
equivalent to the straight-line segment that joins the
sites. Although much work has been done on span-
ners with additional properties, we are not aware of
any research on constructing spanners with topologi-
cal properties.
In the next section we introduce the basic notation

and topological background; we also define precisely
the concept of homotopic spanners. In Section 3 we
show a modification of Θ-graphs that can be used to
construct homotopic spanners. In Section 4 we discuss
the computational issues related to the construction.
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In Section 5 we present lower bounds on the number
of edges that any homotopic spanner needs.

2 Notions and problem statement

Topological background. A finite set of points K ⊂
R2 will be called point-obstacles. If x, y ∈ R2 \ K, a
path from x to y is a continuous mapping α : [0, 1]→
R2\K such that α(0) = x and α(1) = y. If β is a path
from y to z, then the concatenation α+ β of paths α
and β is a path from x to z defined as (α + β)(u) =
α(2u) if 0 ≤ u ≤ 1

2 and (α + β)(u) = β(2u − 1) if
1
2 ≤ u ≤ 1. Two paths α, β joining the same pair of
points in R2 \ K are said to be homotopic, denoted
α ∼R2\K β if the loop α − β (α concatenated with
the reverse of β) is a contractible curve in R2 \ K.
The reader is referred to [8], where also the following
standard results can be found:

Lemma 1 Homotopy of paths has the following
properties:

1. The relation α ∼R2\K β is an equivalence rela-
tion.

2. If α ∼R2\K β, α′ ∼R2\K β′, and α(1) = β(1) =
α′(0) = β′(0), then (α+ α′) ∼R2\K (β + β′).

3. If the paths α, β share endpoints and are contai-
ned in a convex subset of R2\K, then α ∼R2\K β.

Homotopic Spanners. Let S be a point set in R2,
and let G = (S,E) be a graph on S. The graph is rep-
resented in the plane with each vertex represented by
the point itself and with straight-line edges. We use
ss′ to denote both, the edge of G and the straight-line
segment joining s and s′. We associate with each edge
ss′ ∈ E the length |ss′| of the straight-line segment
joining its vertices. The length of a path α in G is the
sum of the lengths of its edges; we denote it by |α|G.
For t ∈ R, t ≥ 1, a path in G from s ∈ S to s′ ∈ S

is a t-path if its length, is at most t |ss′|. A graph G is
a t-spanner if, for each pair of points s, s′ ∈ S, there
exists a t-path in G from s to s′. We consider the
following generalization.

Definition 1 Given a set of points S ⊂ R2 and a set
of point-obstacles K, a K-homotopic t-spanner of S is
a graph G = (S,E) such that, for any s, s′ ∈ S, there
is a t-path α in G such that α and the segment ss′

are homotopic in R2 \ K.
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We consider the following problem: given a fixed
number t > 1, construct homotopic t-spanners as a
function of S and K such that the number of edges
is the spanner is not too large. We let n = |S| and
k = |K|. We assume that no obstacle in K is aligned
with two points of S, as otherwise it may be that the
desired spanner does not exist.

3 Construction of homotopic spanners

The idea is to modify the construction of Θ-spanners
introduced by Keil and Gutwin [9]. We use a nota-
tion similar to Arya, Mount, and Smid [2] and Bose,
Gudmundsson, and Morin [3]. Consider an angle
θ = 2π

T for some integer T > 8 such that it holds
tθ = 1

cos θ−sin θ ≤ t. For a point s in S, consider the
set of rays Rs,θ = {rayj(s) | j ∈ {0, . . . , T − 1}} ,
where rayj(s) is the straight ray from s with angle jθ
with a horizontal line, andRs,K = {ray(s, o) | o ∈ K},
where ray(s, o) is the straight ray starting at s with
direction towards o. Let Rs = Rs,θ ∪Rs,K.
All the rays in Rs have s as starting point, and

therefore they divide the plane into a set of cones,
which we denote by Cs. Since t is a fixed constant,
also T is a constant. Hence, Cs consists of O(1 + k)
cones. Any cone C ∈ Cs has angle at most θ and it
contains no obstacles in its interior. For a cone C ∈
Cs, consider any ray r from s contained in C and let
j be the largest value such that jθ is smaller than the
angle of r; we use ray(C) for the ray rayj(s) ∈ Rs,θ.
Observe that the angle between r and ray(C) is at
most θ.
Let the graph Θ(S,K, T ) be defined as follows:

• The set of vertices of Θ(S,K, T ) is S;

• For each point s ∈ S, for each cone C ∈ Cs such
that C∩(S \{s}) %= ∅, we put an edge connecting
s and a point sC in C ∩ S \ {s} that has the
orthogonal projection onto ray(C) closest to s.
If there are more than one candidate for sC , we
select one which is closest to ray(C).

Observe that Θ(S,K, T ) has O(nk) edges.

Theorem 2 The graph Θ(S,K, T ) is a K-homotopic
tθ-spanner of S with O(nk) edges.

Proof. Consider two points s, s′ ∈ S, and let C be
the cone of Cs that contains s′. By construction, we
know that there is a point sc ∈ C such that ssc

is an edge in Θ(S,K, T ). Using that ray(s, s′) and
ray(s, sc) form an angle at most θ, the same argument
that is used for the standard Θ-graph [2] implies

tθ |scs
′| ≤ tθ |ss′| − |ssc|. (1)

We show by induction on the rank of the interpoint
distances that for any pair of points s, s′ ∈ S there is a

tθ-path in Θ(S,K, T ) that is homotopic to ss′. If the
pair s, s′ is a closest pair, then it holds that sc = s′

and therefore the segment ss′ is in Θ(S,K, T ).
Consider a pair of points s, s′ ∈ S. If s′ = sc, then

the segment ss′ is in Θ(S,K, T ) and there is nothing
to show. Otherwise, s′ %= sc. Because of (1), we have
|scs

′| < |ss′|, and by induction hypothesis there is a
tθ-path α in Θ(S,K, T ) from sc to s′ that is homotopic
to the segment scs

′ in R2 \ K, that is α ∼R2\K scs
′.

Let β = ssc + α. We have

|β|G = |ssc|+ |α|G ≤ |ssc|+ tθ |scs
′| ≤ tθ |ss′|,

where the last inequality follows from equation (1).
This means that β is a tθ-path from s to s′.
We next show that β ∼R2\K ss

′, which finishes the
proof. Since β = ssc + α and α ∼R2\K scs, we have
β ∼R2\K ssc+ scs because of property 2 in Lemma 1.
Because the triangle �ss′sc is contained in the cone
C ∈ Cs we have K∩�ss′sc = ∅, and by property 3 in
Lemma 1 we conclude that ssc+scs

′ ∼R2\K ss
′. Since

∼ is an equivalence relation we get β ∼R2\K ss
′. �

For any value t > 1 we can take a constant T ∈ N

large enough such that t ≥ 1
cos(2π/T )−sin(2π/T ) , and

we conclude that for any fixed t we can construct a
K-homotopic t-spanner with O(nk) edges.

4 Efficient construction

Consider a set of n sites S and k obstacles K. We
assume that k ≤ n, as otherwise we can just consider
the complete graph as a spanner and we are within
the bound of O(nk) edges for a spanner that we are
aiming to. For a fixed value T , the graph Θ(S,K, T )
can be constructed in O(n2 log k) time as follows:

1. for each site s ∈ S

(a) split the sites S \ {s} into the cones of
Cs. This can be done by making a tree-like
structure for the boundary rays Rs of Cs in
O(k log k) and locating each point of S \{s}
in the appropriate cone in O(log k) time per
point. This takes O(k log k + n log k) =
O(n log k) time.

(b) for each cone C ∈ Cs, scan the points and
choose the one that s gets connected to, ac-
cording to the criteria in Section 3. This
takes O(n) time overall because each point
appears at most in two cones of Cs.

We discuss how the graph Θ(S,K, T ) can be con-
structed in a more efficient way. The idea is to con-
sider all the cones as range spaces and use the stan-
dard trade-offs for simplex range queries; see Ma-
toušek [10] or the survey by Agarwal and Erickson [1].
The main result to be used is the following (we use the
notation Õ(f(n)) = O(f(n)nε) for any ε > 0, where
the constant in Õ(f(n)) may depend on ε).
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Lemma 3 For any set S of n points in the plane
and any value n ≤ m ≤ n2 there is a family F(S) =
{F1, . . . , Fp} of subsets of S and a data structure D(S)
such that

• p = O(m), that is, F(S) has O(m) members;

•
∑p

i=1 |Fi| = Õ(m);

• for any triangle ∆ in the plane, there is a group
F(∆) of Õ(n/√m) elements of F(S) such that
∆ ∩ S =

⋃
F∈F(∆) F ;

• D(S) has size O(m) and can be constructed in
Õ(m) time;

• for a query triangle ∆, the data structure D pro-
vides F(∆) ⊂ F in Õ(n/

√
m) time.

For a point set S and an angle α let Point(S, α)
denote a point in S such that the line passing through
it with angle α + π/2 has all the points of S to its
right; that is, Point(S, α) is a point with minimum
x-coordinate after rotating S with angle −α.
We extend the data structure of the previous lemma

as follows: for each set F ∈ F and each value j =
0, . . . , T − 1 we store Point(F, j 2π

T ). For any triangle
∆ we have

Point(S ∩∆, j 2π
T ) ∈ {Point(F, j

2π
T ) | F ∈ F(∆)},

and using the previous lemma we conclude that we
can find the point Point(S ∩ ∆, j 2π

T ) in Õ(n/
√
m)

time per triangle ∆.
The augmented data structure can be constructed

by considering each j = 0, . . . , T − 1 and scanning
each F ∈ F . Since we regard T as a constant,
and each F ∈ F is considered T times, we need
O(T

∑
F∈F |F |) = Õ(m) time to construct the aug-

mented data structure.
Consider the construction of Θ(S,K, T ) given in

Section 3. For a cone C with apex s, we have to
find a point in C with the orthogonal projection onto
ray(C) closest to s. Since ray(C) has an angle of the
form jC

2π
T for some jC , it follows that this point is

Point(C ∩ S, jC 2π
T ). Since a cone is a special case

of a triangle, we can use the previous discussion to
conclude that we can find the edge that the cone C
contributes to Θ(S,K, T ) in Õ(n/√m) time.
By setting m = n4/3k2/3 we can find the edge

corresponding to a cone in Õ(n/
√
n4/3k2/3) =

Õ(n1/3k−1/3) time. This makes sense since we are
assuming k ≤ n. The preprocessing of the data
structure for this case takes Õ(n4/3k2/3) time. Since
we have to consider O(nk) cones for the construc-
tion of Θ(S,K, T ), we can find all the edges in time
O(nk) · Õ(n1/3k−1/3) = Õ(n4/3k2/3) time. We sum-
marize.

Theorem 4 If k ≤ n, we can construct Θ(S,K, T ) in
O(n4/3+εk2/3) time, for any fixed ε > 0.

...
...

1
ε/4

ε

ε

ε
(n − 1)ε

Figure 1: Lower bound for homotopic spanners when
k = Θ(n). The dots are sites and the squares are
obstacles.

This result improves the O(n2 log k) time construc-
tion given above whenever k = O(n1−ε) for any fixed
ε > 0.

5 Lower bounds

The homotopic spanner that we have constructed
above has O(nk) edges, where n is the number of
points and k is the number of point-obstacles. In con-
trast, the standard spanners have only O(n) edges. It
is natural to wonder if Ω(nk) edges are indeed neces-
sary for constructing a homotopic spanner. We have
the following construction for the case k = Θ(n).

Lemma 5 For any value of t, 1 < t < 3, and any
value of n, there is a set S of O(n) points and a set
K of O(n) point obstacles such that any K-homotopic
t-spanner of S needs Ω(n2) edges.

Proof. Take ε = 3−t
3n and consider the configuration

in Figure 1; we have sites

L = {(0, jε) | j ∈ [n]}, R = {(1, jε) | j ∈ [n]},

and obstacles

KL = {( ε
4 ,

1
2 + jε) | j ∈ [n− 1]}, (2)

KR = {(1− ε
4 ,

1
2 + jε) | j ∈ [n− 1]}, (3)

where we use the notation [n] = {1, . . . , n}. This
configuration has 2n points and 2n − 2 obstacles. It
remains to argue that any homotopic t-spanner has
Ω(n2) edges.
The key observation is that any homotopic t-path

from a site l ∈ L to a site r ∈ R has to use the segment
lr. Note that if a path α from l to r is homotopic to
lr in R2 \ (KL ∪ KR) and only “crosses” from L to R
once, then the segment lr has to be part of α.
Assume for the contrary that there is a (KL ∪KR)-

homotopic t-spanner G of L∪R that does not contain
the edge lr for some l ∈ L, r ∈ R. Let α be the
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t-path in G from l to r that is homotopic to lr in
R2 \ (KL∪KR). Since α does not contain the segment
lr, it has to “cross” from L to R (or vice versa) at
least three times. We conclude that |α|G ≥ 3. Using
that |lr| ≤ 1 + nε it follows that |α|G/|lr| > t, and G
cannot be a (KL ∪ KR)-homotopic t-spanner.
Since each segment from L to R has to be in a

homotopic t-spanner, then any homotopic t-spanner
has at least n2 = Ω(n2) edges. �

The above construction for the lower bound gener-
alizes for general values of n, k as Ω(n+min{n2, k2}).
Given n and k, if k ≥ n then we can take the con-
struction of the previous result and add k − n extra
obstacles; we need Ω(n2) = Ω(n+min{n2, k2}) edges
in any homotopic t-spanner. If k < n then take the
construction above with n = k and add the extra
n − k sites far enough not to influence the construc-
tion; we need Ω(k2) edges to make a t-spanner of
the first part, and we need n − k − 1 edges to con-
nect all the sites added afterwards, which adds to
Ω(k2 + n − k) = Ω(k2 + n) = Ω(n + min{n2, k2})
because k < n. We summarize:

Theorem 6 For any value t, 1 < t < 3, and any
values of n, k, there is a set S of O(n) points and a set
K of O(k) point obstacles such that any K-homotopic
t-spanner of S needs Ω(n+min{n2, k2}) edges.

6 Discussion

We have introduced the concept of homotopic span-
ners in the plane with point-obstacles. It is not clear
how this concept generalizes to higher dimensions,
where all paths are homotopic with respect to point-
obstacles, neither how it generalizes to polyhedral ob-
stacles, where a straight-line segment connecting two
sites may intersect obstacles.
For n sites and k point-obstacles, we have pre-

sented a construction for homotopic spanners that
uses O(nk) edges. However, we can only provide an
example showing that a homotopic spanner may need
Ω(n+min{n2, k2}) edges. Our construction is based
on Θ-graphs. The most natural alternative to con-
sider is the Well Separated Pairs Decomposition of
Callahan and Kosaraju [5, 4], but it does not seems
easy to handle the homotopy classes induced by the
obstacles in a better way than with Θ-graphs.
As with normal spanners, we can also be inter-

ested on homotopic spanners with additional prop-
erties, such as small maximum degree, small spanner
diameter, small total weight, etc. As for the maximum
degree D, the construction given above shows that in
the worst case D = Ω(k), and so we cannot aim to get
bounded degree. Adapting the ordered Θ-spanners of
Bose, Gudmundsson, and Morin [3] to handle point-
obstacles, it is possible to construct spanners with

O(nk) edges and maximum degree O(k log n). As for
the spanner diameter, a randomized construction sim-
ilar to Arya, Mount, and Smid [2], where we keep all
the obstacles at each stage, will lead to randomized
algorithms for constructing homotopic spanners with
O(nk) edges and O(log n) spanner diameter.
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Finding the Best Shortcut in a Geometric Network ∗

Mohammad Farshi† Panos Giannopoulos‡ Joachim Gudmundsson§

Abstract

Given a Euclidean graph G in Rd with n vertices
and m edges we consider the problem of adding a
shortcut such that the stretch factor of the resulting
graph is minimized. Currently, the fastest algorithm
for computing the stretch factor of a Euclidean graph
runs in O(mn + n2 log n) time, resulting in a trivial
O(mn3 + n4 log n) time algorithm for computing the
optimal shortcut. First, we show that a simple modifi-
cation yields the optimal solution in O(n4) time using
O(n2) space. To reduce the running times we consider
several approximation algorithms. Our main result is
a (2 + ε)-approximation algorithm with running time
O(nm+ n2(log n+ 1/ε3d)) using O(n2) space.

1 Introduction

Consider a set V of n points in Rd. A network on V
can be modeled as an undirected graph G with vertex
set V and an edge set E of size m where every edge
e = (u, v) has a weight wt(e). A Euclidean network
is a geometric network where the weight of the edge
e = (u, v) is equal to the Euclidean distance between
its two endpoints u and v. Let t > 1 be a real number.
We say that G is a t-spanner for V , if for each pair of
points u, v ∈ V , there exists a path in G of weight at
most t times the Euclidean distance between u and v.
The minimum t such that G is a t-spanner for V is
called the stretch factor, or dilation, of G.
Complete graphs represent ideal communication

networks, but they are expensive to build; sparse
spanners represent low-cost alternatives. The weight
of the spanner network is a measure of its sparse-
ness; other sparseness measures include the num-
ber of edges, the maximum degree, and the number
of Steiner points. Spanners for complete Euclidean
graphs as well as for arbitrary weighted graphs find
applications in robotics, network topology design, dis-
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†Department of Mathematics and Computing Science,
TU Eindhoven, 5600 MB, Eindhoven, the Netherlands.
m.farshi@tue.nl
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§NICTA, Sydney, Australia. National ICT Australia is
funded by the Australian Government’s Backing Australia’s
Ability initiative, in part through the Australian Research
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Apx. factor Time complexity Space Sec.

1 O(n3m + n4 log n) O(n) 2

1 O(n4) O(n2) 2

3 O(nm + n2 log n) O(n) 3

2 + ε O(nm + n2(log n + 1/ε3d)) O(n2) 4

Table 1: Complexity bounds for the algorithms pre-
sented in the paper.

tributed systems, design of parallel machines, and
many other areas and have been a subject of consid-
erable research. Recently spanners found interesting
practical applications in areas such as metric space
searching [6] and broadcasting in communication net-
works [1]. The problem of constructing spanners has
received considerable attention from a theoretical per-
spective, see the surveys [3, 7].
Most known algorithms either construct a spanner

given a point set or prunes a given graph, but in many
applications the geometric network is already given,
and the problem at hand is to extend the network
with an additional edge, or edges, while minimizing
the stretch factor of the resulting graph. Surprisingly
this problem has not been studied previously, to the
best of the authors’ knowledge. In this paper we study
the following problem:
Problem. Given a Euclidean graph G construct a
graph G′ by adding an edge to G such that the stretch
factor of G′ is minimized.
We present one exact algorithm and several approx-

imation algorithms. The results presented in this pa-
per are summarized in Table 1.
We will denote by |uv| the Euclidean distance be-

tween u and v, and δG(u, v) denotes the shortest path
between u and v in G with length dG(u, v). Finally,
GP will denote the optimal solution, while tP and t
denotes the stretch factor of GP and G respectively.

2 Finding an optimal solution

We consider the problem of computing an optimal
solution GP . That is, we are given a t-spanner G =
(V,E), and the aim is to compute a tP -spanner GP =
(V,E ∪ {e}).
A näıve approach to decide which edge to add is

to test every possible candidate edge. The number of
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such edges is obviously
(n(n−1)

2 −m
)
= O(n2). Test-

ing a candidate edge e entails computing the stretch
factor of the graph G′ = (V,E ∪ {e}), therefore we
briefly consider the problem of computing the stretch
factor of a given Euclidean graph.
A trivial upper bound is obtained by computing

the All-Pairs-Shortest-Path for the given graph G.
Running Dijkstra’s algorithm – implemented using Fi-
bonacci heaps – gives the stretch factor of G in time
O(mn + n2 log n) using linear space. This algorithm
is quite slow and we would like to be able to compute
the stretch factor more efficiently, but no faster algo-
rithm is known for any graphs except planar graphs,
paths, cycles and trees [4, 5].
Applying the above bounds for computing the exact

stretch factor of a Euclidean graph gives us that GP
can be computed in time O(n3(m + n log n))) using
linear space.
An improvement can be obtained by observing that

when an edge (u, v) is about to be tested we do not
have to check all possible shortest paths between two
vertices x, y ∈ V again, it suffices to check if there
is a shorter path using the edge (u, v). That is, we
only have to check the length of the paths δG(x, u) +
|uv|+δG(v, y) and δG(x, v)+|vu|+δG(u, y), which can
be done in constant time since δG(x, u) and δG(v, y)
already have been computed (provided that we store
this information). Hence by first computing all-pair-
shortest paths of G we obtain:

Lemma 1 Given a Euclidean graph G, an optimal
solution GP can be computed in time O(n4) using
O(n2) space.

3 Adding the bottleneck edge

In this section we study the approach of adding an
edge between a pair of vertices in G that decides the
stretch factor of G.
Consider an optimal solution GP and denote by x

and y the two endpoints of the edge added to G to
obtain GP . Assume that a pair of vertices deciding
the stretch factor of G is (u, v), i.e., the length of the
path between u and v in G is exactly t · |uv|. We call
this edge a bottleneck edge of G. Let GB be the graph
obtained from G by adding the bottleneck edge, and
let tB be the stretch factor of GB.

Lemma 2 Given a Euclidean graph G in Rd it holds
that tB < 3tP .

The main result of this section is:

Theorem 3 Given a Euclidean graph G = (V,E)
one can in O(mn+ n2 log n) time, using O(n) space,
compute a tB-spanner G

′ = (V,E ∪ {e}) where tB <
3tP .

We end this section by giving a lower bound for the
bottleneck approach.

4

δ

1 3

(a) (b) (c)

p1 p2 p3 p4 p5

p6 p7 p8 p9 p10

Figure 1: (a) The input graph G. (b) The bottleneck
solution compared to (c) the optimal solution.

Observation 1 There exists a Euclidean graph G
such that, (2− ε) · tP ≤ tB, for any ε > 0.

Proof. Consider the graph G, as in Fig. 1(a). More
specifically, G is a graph with ten vertices pi = ((i−1)
mod 5, �i/5� · δ), 1 ≤ i ≤ 10, and nine edges (p5, p10)
and (pj , pj+1), for 1 ≤ j ≤ 4 and 6 ≤ j ≤ 9. If
we assume that δ is a very small positive real value
then (p1, p6) is the bottleneck in G and tB = 4+δ

δ , see
Fig. 1(b).
In the case when edge (p2, p7) is added to G, as

shown in Fig. 1(c), the resulting graph has stretch fac-
tor (2+δ)/δ. Combining the upper and lower bounds
gives tB

tP
≥ 4+δ

2+δ = (2 − ε), where the last inequality
follows if we set δ = 2ε

1−ε . �

Hence, we have an upper bound of 3 and a lower
bound of (2− ε) when adding the bottleneck edge to
the input graph.

4 A (2 + ε)-approximation

In this section we will present a fast approximation al-
gorithm which guarantees an approximation factor of
(2+ε). The algorithm is similar to the algorithm pre-
sented in Section 2 in the sense that it tests candidate
edges. Testing a candidate edge entails computing
the stretch factor of the graph. The main difference
is that we will show, in Section 4.1, that only a lin-
ear number of candidate edges needs to be tested to
obtain a solution that gives a (2 + ε)-approximation,
instead of a quadratic number of edges.
Moreover, Section 4.2 shows that the same approx-

imation bound can be achieved by performing only a
linear number of shortest path queries for each can-
didate edge. The candidate edges are selected by us-
ing the well-separated pair decomposition (WSPD)
defined by Callahan and Kosaraju (see [2]). They
showed that a WSPD of size m = O(sdn) can be
computed in O(sdn + n log n) time (s is called the
separation constant of the WSPD).

4.1 Linear number of candidate edges

In this section we show how to obtain a (2 + ε)-
approximation in cubic time.
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The approach is straight-forward. First the algo-
rithm computes the length of the shortest path in G
between every pair of points in V . The distances are
saved in a matrix M . Next, the well-separated pair
decomposition is computed. Note that, in Step 5,
the candidate edges will be chosen using the well-
separated pair decomposition. Finally, steps 4–9, each
candidate edge is tested by computing the stretch fac-
tor of the candidate graph.

Algorithm ExpandGraph(G, ε)
Input: Euclidean graph G = (V,E) and a real con-

stant ε > 0.
Output: Euclidean graph G′ = (V,E ∪ {e}).
1. M ←All-Pairs-Shortest-Path dist. matrix of G.
2. {(Ai, Bi)}ki=1 ←WSPD of V with s = 256

ε2 .
3. t′ ←∞.
4. for i←1 to k
5. Select a point ai ∈ Ai and a point bi ∈ Bi.
6. Gi←G = (V,E ∪ (ai, bi)).
7. ti←StretchFactor(Gi,M).
8. if ti < t′

9. then t′ ← ti and e← (ai, bi)
10. return G′ = (V,E ∪ {e}).

Lemma 4 Algorithm ExpandGraph requires
O(n3/ε2d) time and O(n2) space.

It remains to analyze the quality of the solu-
tion obtained from algorithm ExpandGraph. Let
∆(p, q) denote the set of point pairs in V such that
u, v ∈ V belongs to ∆(p, q) if and only if (p, q) ∈
δG∪{(p,q)}(u, v). That is, the set of point pairs for
which the shortest path between them in G∪ {(p, q)}
passes through (p, q).

Lemma 5 For any given constant 0 < λ ≤ 1, there
exists a point pair p, q ∈ V such that for every pair
(u, v) ∈ ∆(p, q) it holds that |uv| ≥ λ

2 |pq|, and the
stretch factor of G∪{(p, q)} is bounded by (2+λ) ·tP .

Note that algorithm ExpandGraph might not test
(p, q) stated in Lemma 5. However, in the follow-
ing lemma it will be shown that algorithm Expand-

Graph will test an edge (a, b) that is almost as good
as (p, q).

Lemma 6 For any given constant 0 < ε ≤ 1 it holds
that the graph G′ returned by algorithm Expand-

Graph has stretch factor at most (2 + ε) · tP .

Proof. According to Lemma 5 there exists an edge
(p, q) such that for every pair (u, v) ∈ ∆(p, q) it holds
that |uv| ≥ λ

2 |pq|, and the stretch factor tH of H =
G ∪ {(p, q)} is bounded by (2 + λ) · tP . Let {Ai, Bi}
be the well-separated pair computed in step 2 of the
algorithm such that p ∈ Ai and q ∈ Bi. Next consider
the candidate edge (ai, bi) tested by the algorithm,

such that ai, p ∈ Ai and bi, q ∈ Bi. For simplicity
of writing we will use a and b to denote ai and bi
respectively.
Our claim is that the stretch factor t′ of G′ = G ∪

{(a, b)} is bounded by (1+ε/4) · tH . Thus setting λ =
ε/4 would then prove the lemma since (2 + ε/4)(1 +
ε/4) < (2 + ε), for ε ≤ 1.

p

q

a

b

x

y

Figure 2: Illustrating the proof of Lemma 6.

Now we are ready to prove the claim. If for all pairs
x, y, (x, y) /∈ ∆(p, q) then the claim is obviously true,
thus we only have to consider the pairs x, y for which
it holds that (x, y) ∈ ∆(p, q), see Fig 2. It holds that:

dG(a, p) = dH(a, p) and dG(b, q) = dH(b, q). (1)

This follows from the fact that the closest pair x′, y′

for which it holds that (x′, y′) ∈ ∆(p, q) has inter point
distance at least |x′y′| ≥ ε

8 |pq|, according to Lemma 5.
It holds that |ap| and |bq| are bounded by 2

s |pq| ≤
ε2

128 |pq| which is less than
ε
8 |pq| since ε < 1. As a

consequence (p, q) /∈ δH(a, p) and (p, q) /∈ δH(b, q).
Hence, claim (1) holds, which we will need below.
Next, we consider the length of the path in G′ be-

tween x and y as illustrated in Fig. 2. Recall that x
and y are two arbitrary points of V for which it holds
that (x, y) ∈ ∆(p, q).

dG′(x, y) ≤ dG(x, p) + dG(p, a) + |ab|+ dG(b, q)
+dG(q, y)

≤ dG(x, p) + dH(p, a) + |ab|+ dH(b, q)
+dG(q, y) (from (7))

< dG(x, p) + (1 + 4/s) · |pq|+ dG(q, y)

+
4tH
s
· |pq| (WSPD property)

≤ dH(x, y) +
64tH
εs
· |xy| (Lemma 5)

= dH(x, y) +
ε

4
· tH · |xy|

The stretch factor of the path in G′ between x and y
is:

dG′(x, y)
|xy| ≤ dH(x, y)

|xy| +
ε
4 tH |xy|
|xy| ≤

(
1 +

ε

4

)
· tH .

�
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We may now conclude this section with the follow-
ing theorem.

Theorem 7 Given a Euclidean graph G = (V,E) in
Rd one can in time O(n3/ε2d), using O(n2) space,
compute a t′-spanner G′ = (V,E ∪ {e}), where t′ ≤
(2 + ε) · tP .

4.2 Speed-up the algorithm

In the previous section we showed that a (2 + ε)-
approximate solution can be obtained by testing a
linear number of candidate edges. Testing each can-
didate edge entails O(n2) shortest path queries. One
way to speed up the computation is to compute the
approximate stretch factor. The problem of comput-
ing the approximate stretch factor was considered by
Narasimhan and Smid in [5]. They showed the fol-
lowing fact:

Fact 1 ([5]) Given a Euclidean graph G and a real
value ε > 0, a (1 + ε)2-approximative stretch factor
of G can be computed by performing O(n/εd) many
(1 + γ)-approximate distance queries, where γ is a
positive constant smaller than ε.

Their idea is to compute a well-separated pair de-
composition of size s = 4(1 + ε)/ε, and then for each
well-separated pair {Ai, Bi} select an arbitrary pair
ai ∈ Ai and bi ∈ Bi. They prove that these are the
only pairs for which the stretch factor needs to be
computed.
We will use their idea to speed up step 7 of the

algorithm from O(n2) to O(n/εd). There will be
two changes in the ExpandGraph algorithm. First,
between steps 2 and 3, the following four lines are
inserted:

- {(Cj ,Dj)}+j=1 ←WSPD of V with s′ = 4(1 + ε)/ε.
- for j ←1 to E
Select a point cj ∈ Cj and a point dj ∈ Dj .

- S = {(c1, d1), . . . , (c+, d+)}

Then, in step 7 of ExpandGraph we will instead
of computing the exact stretch factor of Gi make a
call to ApproximateStretchFactor, or ASF for
short, with parameters Gi, (ai, bi), M , and S. Note
that the number of point pairs in S is bounded by
O(n/εd).

Algorithm ASF(Gi, e,M,S)

Input: Euclidean graphG(V,E), edge e = (a, b) ∈ E,
distance matrix M and a set of point pairs S.

Output: A real value Di.
1. Di ←1
2. for each point pair (cj , dj) in S
3. dist ←min{M [cj , dj ],M [cj , a] + |ab| +

M [b, dj ],M [cj , b] + |ba|+M [a, dj ]}

4. Di ←max{Di, dist/|cjdj |}
5. return Di.

We denote the modified algorithm Expand-

Graph2.

Theorem 8 Given a Euclidean graph G = (V,E)
and a real constant ε > 0 one can inO(nm+n2(log n+
1/ε3d)) time, using O(n2) space, compute a t′-spanner
G′ = (V,E ∪ {e}) such t′ ≤ (2 + ε) · tP .

5 Open problems and Acknowledgements

Several problems remain open.
1. Is there an exact algorithm with running time
o(n4) using linear space?

2. Can we achieve a (1 + ε)-approximation within
the same time bound as in Theorem 8?

3. A natural extension is to allow more than one
edge to be added. Can we generalize our results
to this case?

The authors would like to thank René van Oostrum
for fruitful discussions during the early stages of this
work.
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An Exclusion Region for Minimum Dilation Triangulations

Christian Knauer∗ Wolfgang Mulzer∗

Abstract

Given a planar graph G, the graph theoretic dilation
of G is defined as the maximum ratio of the shortest-
path distance and the Euclidean distance between any
two vertices of G. Given a planar point set S, a tri-
angulation of S that achieves minimum graph theo-
retic dilation is called a minimum dilation triangu-
lation of S. In this paper, we show that a simple
exclusion region for an edge e of the minimum dila-
tion triangulation is given by the disk of radius α|e|
centered at the midpoint of e, where α is any constant
< 3 cos(π/6)/(4π) ≈ 0.2067.

1 Introduction

In this paper, we are going to consider minimum dila-
tion triangulations. The problem is as follows: Given
a set S of points in the Euclidean plane, find a trian-
gulation T of S such that the maximum dilation be-
tween any pair of these points in T is minimal, where
the dilation between a pair of points (u, v) in S is de-
fined as the ratio between the shortest path distance
of u and v in T and the Euclidean distance |uv| (see
Section 2 for formal definitions of these terms). In
Figure 1, we can see an example of a planar point set
and two triangulations, one of which achieves a very
low maximum dilation, while the other triangulation
has a very high maximum dilation.
The maximum dilation between any pair of points

in S with respect to a triangulation T of S is called
the graph theoretic dilation of T , and the minimum
graph theoretic dilation that any triangulation of S
can achieve is called the graph theoretic dilation of S.
When considering optimal triangulations, it is in-

structive to look at local properties of the edges of
these triangulations, since local properties improve
our understanding of the structure of optimal trian-
gulations and sometimes lead to efficient algorithms
to compute them. One important class of local prop-
erties that has been studied for minimum weight tri-
angulations and greedy triangulations is constituted
by exclusion regions. Exclusion regions give us a nec-
essary condition for the inclusion of an edge into an
optimal triangulation: If u and v are two points in
a given planar point set S, then the edge e := uv
can only be contained in an optimal triangulation of

∗Institut für Informatik, Freie Universität Berlin, Germany,
{knauer, mulzer}@inf.fu-berlin.de
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b

c

a

d

(b)

(a)

d

c

b

Figure 1: Two triangulations of point set {a, b, c, d}.
In triangulation (a), the dilation between points a and
c is very high, whereas triangulation (b) achieves a
very low dilation. The bold dashed lines represent a
shortest path between a and c in the respective trian-
gulation.

S if no other points of S lie in certain parts of the
exclusion region of S. For example, Das and Joseph
[3] proved that e can only be included in the mini-
mum weight triangulation of a point set S, if at least
one of the two equilateral triangles with base e and
base angle π

8 is empty (see Figure 2). This result was
improved by Drysdale et al. [5], who proved that the
base angle can be increased to π/4.6 and that also
the disk of diameter |e|/

√
2 centered at the midpoint

of e is an exclusion region for the minimum weight
triangulation. A similar result with slightly different
parameters also holds for the greedy triangulation [6].
In this paper, we are going to show that an analogous
result applies to the minimum dilation triangulation.
More specifically, we show that an edge e can only
be included in the minimum dilation triangulation
of S, if at least one of the two half circles with ra-
dius α|e| whose center is the center of e is empty (see
Figure 2). Here α denotes any constant such that
0 < α < 3 cos (π/6) /(4π) ≈ 0.2067.

Previous Work. Up to now, very little research
has been done on minimum dilation triangulations,
but there has been some work on estimating the di-
lation of certain types of triangulations that had al-
ready been studied in other contexts. Chew [2] shows
that the rectilinear Delaunay triangulation has dila-
tion at most

√
10. A similar result for the Euclidean

Delaunay triangulation is given by Dobkin et al. [4].
They show that the dilation of the Euclidean De-
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(b)

u(a)

vu

v

Figure 2: (a) shows the standard exclusion region for
the minimum weight triangulation. (b) shows our ex-
clusion region for the minimum dilation triangulation.

launay triangulation can be bounded from above by(
1 +
√
5
)
π/2 ≈ 5.08. This bound was further im-

proved to 2π/(3 cos (π/6)) ≈ 2.42 by Keil and Gutwin
[8], and we are going to use this bound as an essential
ingredient in our proof.
Das and Joseph [3] generalize these results by iden-

tifying two properties of planar graphs such that if A
is an algorithm that computes a planar graph from a
given set of points and if all the graphs constructed by
A meet these properties, then the dilation of all the
graphs constructed by A is bounded by a constant.
A more comprehensive survey of results on the

graph theoretic dilation of planar and general graphs
can be found in Eppstein’s survey [7].
Surprisingly, very few results are known about

the triangulations which actually achieve the opti-
mum graph theoretic dilation. In his master’s thesis,
Mulzer [9] investigates the structure of minimum dila-
tion triangulations for the regular n-gon, but beyond
that not much is known.

2 Preliminaries

Let S be a finite set of points in the Euclidean plane,
and let T be a triangulation of S. For any two points
u, v ∈ S, the ratio between the shortest path distance
πT (u, v) and the Euclidean distance |uv| is called the
(relative) dilation between u and v with respect to
T , which we shall denote by δT (u, v). Formally, the
dilation is defined as follows:

δT (u, v)
def=

{
1, if u = v,

πT (u,v)
|uv| , if u %= v.

The convention to define δT (v, v) = 1 for any v ∈ S
is very natural, since from the definition it is imme-
diate that δT (u, v) ≥ 1 for every u, v ∈ S, as clearly
we have πT (u, v) ≥ |uv| for all u, v ∈ S.

Intuitively, the dilation is a measure for the quality
of the connection between u and v in T . If the dilation
is large, this means that we have to travel a long way
along the edges in T in order to reach v from u even
though the direct route would be much shorter.
In order to get a measure for the quality of the

connection between any two vertices of T , it is natural
to take the maximum over all the dilations between
pairs of vertices in T . This quantity is called the graph
theoretic dilation of T . We will denote it by δ (T ).
The formal definition is this:

δ (T ) def= max
u,v∈S

δT (u, v) .

If T has the property that its graph theoretic dila-
tion is minimal among all triangulations of S, we call
T a minimum dilation triangulation of S.

3 An Exclusion Region

Let 0 < α < 3 cos (π/6) /(4π) be a constant, S a
planar point set, u, v ∈ S two points in the plane,
and let D be the disk of radius α|uv| centered at the
midpoint of line segment e = uv. We are going to
show that D is an exclusion region for e.
The basic idea is very simple: Even though we do

not know much about the actual minimum dilation
triangulation of a planar point set S, we know that the
graph theoretic dilation of the Delaunay triangulation
of S is bounded by the constant γ = 2π/(3 cos (π/6))
[8]. Furthermore, it is obvious that if we have an edge
e and two points that are quite close to the center of
e and that lie on opposite sides of e, then the dilation
between these two points is very large, because the
line segment e constitutes an obstacle that any path
between these two points needs to circumvent (see
Figure 1(a) for an example). Thus, all we need to
check is that the dilation between any pair of points in
the disk that lie on opposing sides of e is larger than γ,
and then we know that if such a pair of points exists,
then e cannot be contained in the minimum dilation
triangulation of S, since the Delaunay triangulation
would give us a better graph theoretic dilation than
any triangulation containing e.
Thus, we assume that there exist two points a, b ∈ S

in D on opposite sides of e (see Figure 3). We need
to show that δT (a, b) > γ for any triangulation T of
S that contains line segment e. For this we need to
know the shortest path distance between a and b in
T , πT (a, b). Since the only thing we know about T
is that T contains e, the best thing we can do is to
lowerbound πT (a, b) by min(|au|+ |ub|, |av|+ |vb|).
The first thing we observe is that we can assume

that the two points lie on the boundary of D, since
the dilation between the intersection points of the line
through a and b with the boundary of D is smaller
than the dilation between a and b.
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D

e
x

a′

b

b′

a

vu

Figure 3: The situation described in Observation 1.
The dilation between a′ and b′ is smaller than the
dilation between a and b. x is the intersection point
of ab and e.

Observation 1 Let a be a point in D to the right of
line segment e = uv, and let x be a point on e and in
D. For d > 0, let b(d) be the point to the left of line
segment e on the half line ax such that |xb(d)| = d.
Then the dilation δ(d) between a and b(d) decreases
as d increases.

Proof. Due to the triangle inequality, the shortest
path between a and b cannot include e, and hence
δ(d) is given by

δ(d) =
min (|ua|+ |ub(d)|, |va|+ |vb(d)|)

|ax|+ d .

First, we are going to check that E(d) := (|ua| +
|ub(d)|)/(|ax| + d) is monotonically decreasing. By
the law of cosines, the numerator can be written as
num(d) = |ua| +

√
|ux|2 + d2 − 2|ux| cos δ, where δ

denotes the angle between ux and xb(d). An easy
calculation shows num′(d) ≤ 1. The derivative of
the denominator is 1. Therefore, by the mean value
theorem, it follows that E(d) is monotonically de-
creasing (note that the numerator is never smaller
than the denominator), and the observation follows,
since by a similar argument we can check that also
d 0→ (|va| + |vb(d)|)/(|ax| + d) decreases monotoni-
cally, and hence δ(d) decreases. �

Now we are left with the task of bounding the dila-
tion between two points on the boundary of D. First
of all, it is clear that dilation (2α)−1 can be achieved
when a and b are infinitesimally close to the two inter-
section points of D and e, respectively. We are going
to show that this is already an optimal configuration.
For our calculations we need a propitious parameter-
ization. We proceed as follows: Let z be the center of
D. By symmetry, we may assume that ab lies to the
right of z. We describe the line segment ab by looking
at the angle β = ∠bza and the angle x = ∠bzv−β/2.
The angle x describes the rotation of ab with respect
to the position in which ab is perpendicular to e (see
Figure 4). By our assumptions, we have β ∈ (0, π]
and x ∈ (−β/2, β/2). Our parameterization is cho-
sen in such a way that the following equations can be

x

β
z

u v

a

b

e

D

Figure 4: Our parameterization. The angle ∠azb is
called β. The offset x denotes the rotation of ab with
respect to the vertical position (dashed lines).

written in a symmetric manner, which simplifies some
of the calculations.
The angle ∠bza is at most π, and hence the shortest

path between a and b passes v. Thus, the dilation
between a and b is given by

δ(x, β) :=
f(x) + f(−x)
2α sin(β/2)

,

where

f(x, β) =
√
0.25 + α2 − α cos(β/2 + x).

Here, f(x) and f(−x) denote the length of line seg-
ment |vb| and |va|, respectively.
First, we fix β ∈ (0, π] and optimize x 0→ δ(x, β).

An elementary yet tedious calculation yields the fol-
lowing observation:

Observation 2 Let β ∈ (0, π] be fixed. If we have
cos(β/2) ≤ 2α, the function x 0→ δ(x, β) is minimal
for cos(x) = (2α)−1 cos(β/2). Otherwise, x 0→ δ(x, β)
is minimal for x = 0.

Now there are two cases to consider. If cos(β/2) ≥
2α, we need to look at δ(0, β) = f(0)/(α sin(β/2)).
Again, it turns out that this function is minimal if
cos(β/2) = 2α, for this value of β we get that the dila-
tion between a and b is exactly (2α)−1. What happens
if cos(β/2) < 2α? In this case, we need to consider
the value of δ(x, β), where x has the property that
cosx = (2α)−1 cos(β/2). By using this property and
by some trigonometric manipulations, we find that
δ(x, β) = (2α)−1. It follows that the dilation between
a and b exhibits quite a remarkable behavior. If a and
b are diametrically opposed, the minimum configura-
tion with minimum dilation occurs when a and b are
infinitesimally close to the two intersection points be-
tween D and e. As the chord ab gets shorter, the
angle between e and ab in the optimal configuration
becomes larger, until e and ab are perpendicular. As
soon as this configuration is reached, the dilation be-
tween a and b increases as ab gets shorter.
Consequently, the minimum dilation between any

points a and b in the two halves of D is (2α)−1, and
by our choice of α and the upper bound on the graph
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theoretic dilation of the Delaunay triangulation [8],
we can conclude with the following theorem:

Theorem 1 Let 0 < α < 3 cos (π/6) /(4π) be a con-
stant, and let a and b be two points in the plane. Then
the circle of radius α|ab| centered at the midpoint of
ab is an exclusion region for the minimum dilation
triangulation.

Note that this exclusion region can be enlarged a
little bit on the upper and lower boundary. For exam-
ple, the dilation between the north- and south-pole of
D is strictly less than γ. However, this would give us
some curve of order 4 that is more difficult to handle
than a simple circle.

4 Conclusion

We have made some progress in the field of min-
imum dilation triangulations and have shown that
the concept of exclusion regions also makes sense for
the minimum dilation triangulation. Usually, exclu-
sion regions are applied as an initial filter of algo-
rithms that compute minimum weight triangulations
or greedy triangulations [1, 6]. It is easy to see that if
the point set S is drawn independently and uniformly
from a convex set C, then only an expected number of
O(n) edges pass the exclusion region test, so a large
amount of edges can be discarded. In the algorithms
for the other optimal triangulations, the remaining
edges are processed using the greedy property (for
the greedy triangulation) or some other local proper-
ties that give sufficient conditions for the inclusion of
an edge (for the minimum weight triangulation). For
the minimum dilation triangulation, however, it is not
yet clear what to do with the remaining edges, since
no other useful local properties are known that could
be used in further processing steps. Finding such local
properties remains an open problem.
It may also be interesting to look for configurations

of points that show how tight our exclusion region is
and whether it can be enlarged. At least it is clear
that the exclusion region cannot come arbitrarily close
to the endpoints of the edge, since otherwise the di-
lation between two points in the exclusion region can
be arbitrarily close to 1.
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Improved Lower Bound on the Geometric Dilation of Point Sets∗

Adrian Dumitrescu† Ansgar Grüne‡ Günter Rote§

Abstract

Let G be an embedded planar graph whose edges are
curves. The detour between two points p and q (on
edges or vertices) of G is the length of a shortest path
connecting p and q in G divided by their Euclidean
distance |pq|. The maximum detour over all pairs of
points is called the geometric dilation δ(G). Ebbers-
Baumann, Grüne and Klein have shown that every
finite point set is contained in a planar graph whose
geometric dilation is at most 1.678, and some point
sets require graphs with dilation δ ≥ π/2 ≈ 1.57.
They conjectured that the lower bound is not tight.
We use new ideas, a disk packing result and arguments
from convex geometry, to prove this conjecture. The
lower bound is improved to (1 + 10−11)π/2.

1 Introduction

Consider a planar graph G embedded in R2, whose
edges are curves1 that do not intersect. Such graphs
arise naturally in the study of transportation net-
works, like waterways, railroads or streets. For two
points, p and q (on edges or vertices) of G, the detour
between p and q in G is defined as

δG(p, q) =
dG(p, q)
|pq|

where dG(p, q) is the shortest path length in G be-
tween p and q and |pq| denotes the Euclidean distance,
see Figure 1 for an example.
Good transportation networks should have small

detour values. In a railroad system, access is only
possible at stations, the vertices of the graph. Hence,
to measure its quality we can take the maximum de-
tour over all pairs of vertices. This results in the well-
known concept of graph-theoretic dilation studied ex-
tensively in the literature on spanners, see [7] for a
survey.

∗There is a full version [3] of this paper available.
†Computer Science, University of Wisconsin–Milwaukee,

3200 N. Cramer Street, Milwaukee, WI 53211, USA;
ad@cs.uwm.edu

‡Universität Bonn, Institut für Informatik I, D-53117 Bonn,
Germany; gruene@cs.uni-bonn.de; partially supported by a
DAAD PhD-grant

§Freie Universität Berlin, Institut für Informatik, Taku-
straße 9, D-14195 Berlin, Germany; rote@inf.fu-berlin.de

1For simplicity we assume here that the curves are piecewise
continuously differentiable, but think that the proofs can be
extended to a broader class of curves.

p q|pq|

dG(p, q)

Figure 1: A grid G of small dilation δ(G) = δG(p, q) =
dG(p, q)/|pq| < 1.678 introduced in [5]

However, if we consider a system of urban streets,
houses are usually spread everywhere along the
streets. Hence, we have to take into account not only
the vertices of the graph but all the points on its edges.
The resulting supremum value is the geometric dila-
tion

δ(G) := sup
p,q∈G

δG(p, q) = sup
p,q∈G

dG(p, q)
|pq|

on which we concentrate in this article. Several pa-
pers [6, 13, 2] have shown how to efficiently compute
the geometric dilation of polygonal curves. Besides
this the geometric dilation was studied in differential
geometry and knot theory under the notion of distor-
tion, see e.g. [9, 12].
Ebbers-Baumann et al. [5] recently considered the

problem of constructing a graph of lowest possible ge-
ometric dilation containing a given finite point set on
its edges. Even for three given points this is a difficult
task. Therefore they started by providing an upper
and a lower bound on the dilation necessary to embed
any finite point set, i.e. on the value

∆ := sup
P⊂R2, P finite

inf
G⊃P, G finite

δ(G) .

They showed that a slightly perturbed version of the
grid in Figure 1 can be used to embed any finite point
set. Thereby they proved ∆ < 1.678.
They also derived that ∆ ≥ π/2, by showing that

a graph G has to contain a cycle to embed a cer-
tain point set P5 with low dilation, and by using that
the dilation of every closed curve2 C is bounded by
δ(C) ≥ π/2.

2In this paper we use the notions “cycle” and “closed curve”
synonymously.
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They conjectured that this lower bound is not tight.
It is known that circles are the only cycles of dilation
π/2, see [4, Corollary 23], [1, Corollary 3.3], [12], [9].
And intuition suggests that one cannot embed com-
plicated point sets with small dilation if every face of
the graph has to be a circular disk. This idea would
have to be formalized and still does not rule out that
every point set could be embedded with dilation ar-
bitrarily close to π/2. New ideas are needed to prove
∆ > π/2.
In Section 2 we show that cycles with dilation

close to π/2 are close to circles, in some well-defined
sense (Lemma 4). The lemma can be seen as an in-
stance of a stability result for the geometric inequality
δ(C) ≥ π/2, see [8] for a survey. Such results com-
plement geometric inequalities (like the isoperimetric
inequality between the area and the perimeter of a
planar region) with statements of the following kind:
When the inequality is fulfilled “almost” as an equa-
tion, the object under investigation is “close” to the
object or class of objects for which the inequality is
tight. An important idea in the proof of this stability
result is a decomposition of any closed curve C into
the two cycles C∗ and M .
In Section 3 we use Lemma 4 to relate the dilation

problem to a certain problem of packing and covering
the plane by disks. By this we prove our main result
∆ ≥ (1 + 10−11)π/2.

2 Result for Closed Curves

We want to prove that a simple closed curve C of
low dilation is close to being a circle. We assume
that C is given by an arc-length parameterization c(t),
0 ≤ t ≤ |C|, where |C| denotes the length of C. Two
points p = c(t) and p̂ = c(t ± |C|

2 ) on C that divide
the length of C in two equal parts form a halving
pair of C. The segment which connects them is a
halving chord, and its length is the halving distance.
We write h = h(C) and H = H(C) for the minimum
and maximum halving distance of C.

C

M

C∗

h

H

p

p̂

Figure 2: An equilateral triangle C, a halving pair
(p, p̂) and the derived curves C∗ and M

To show that C is close to a circle, we consider
a decomposition into two curves, see Figure 2 for an
illustration. Themidpoint cycle M is the cycle formed
by the midpoints of the halving chords of C, and is

given by the parameterization

m(t) :=
1
2

(
c(t) + c(t+ |C|

2 )
)
.

The curve C∗ defined by

c∗(t) :=
1
2

(
c(t)− c(t+ |C|

2 )
)

is the result of the halving pair transformation defined
in [4]. We get it by moving the midpoint of every
halving chord to the origin. By definition, c∗(t) =
−c∗(t + |C|

2 ), hence C
∗ is centrally symmetric. On

the other hand, we have m(t) = m(t+ |C|
2 ), and thus,

M is traversed twice when C and C∗ are traversed
once. We define |M | as the length of the curve M
corresponding to one traversal.
The curve C∗ has the same set of halving distances

as C; thus, h(C∗) = h(C) = h and H(C∗) = H(C) =
H.
We have decomposed C into two components, from

which it can be reconstructed:

c(t) = m(t) + c∗(t), c
(
t+ |C|

2

)
= m(t)− c∗(t) (1)

To show that C is close to a circle, we first show
that H/h is close to 1, i.e. C∗ is close to a circle.
Then, we prove that the length of the midpoint cycle
is small. Combining both statements will deliver the
desired result.
We use the following lemma to find an upper bound

on the ratio H/h. Ebbers-Baumann et al. [4] have
proved it for convex cycles using arguments from con-
vex geometry similar to the ones in [10] but it can
easily be extended to the non-convex case.

Lemma 1 The geometric dilation δ(C) of any closed
curve C satisfies

δ(C) ≥ arcsin
(
h

H

)
+

√(
H

h

)2

− 1.

Note that the function g(x) = arcsin 1/x +
√
x2 − 1

appearing on the right-hand side starts from g(1) =
π/2 and is increasing on [1,∞). Approximating it
by its Taylor expansion, we can show that H/h ≤
1 +O(ε

2
3 ) if δ(C) ≤ (1 + ε)π

2 .
We still need an upper bound on the length |M |

of the midpoint cycle. We use the following lemma,
which we think is of independent interest.

Lemma 2

4|M |2 + |C∗|2 ≤ |C|2.

Proof. Using the linearity of the scalar product and
|ċ(t)| = 1, we obtain from (1)

〈ṁ(t), ċ∗(t)〉 = 1
4

〈
ċ(t) + ċ(t+ |C|

2 ), ċ(t)− ċ(t+
|C|
2 )

〉
=
1
4

(
|ċ(t)|2 − |ċ(t+ |C|

2 )|
2
)
=
1
4
(1− 1) = 0 .
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This means that the derivative vectors ċ∗(t) and
ṁ(t) are always orthogonal, thus |ṁ(t)|2 + |ċ∗(t)|2 =
|ċ(t)|2 = 1. This implies

|C| =
∫ |C|

0

√
|ṁ(t)|2 + |ċ∗(t)|2 dt

≥

√√√√(∫ |C|

0

|ṁ(t)| dt
)2

+

(∫ |C|

0

|ċ∗(t)| dt
)2

=
√
4|M |2 + |C∗|2

The above inequality can be seen by a geometric
argument. The left integral is the length of the
curve γ(s) :=

(∫ s

0
|ṁ(t)| dt,

∫ s

0
|ċ∗(t)| dt

)
, while the

right expression equals the distance of its end-points
γ(0) = (0, 0) and γ (|C|). �

Lemma 3 If δ(C) ≤ (1 + ε)π
2 , then |M | ≤

πh
2

√
2ε+ ε2.

Proof. Because the dilation of C is at least the de-
tour of a halving pair attaining minimum distance h,
we get (1 + ε)π/2 ≥ δ(C) ≥ |C|/2h, implying

|C| ≤ (1 + ε)πh. (2)

If |c∗(t)| < h/2 held for any t, then, due to the central
symmetry of C∗, the points c∗(t) and −c∗(t) would
form a halving pair of distance < h, a contradic-
tion. Hence, C∗ encircles but does not enter the open
disk Bh/2(0) of radius h/2 centered at the origin 0. It
follows

|C∗| ≥ πh. (3)

By plugging everything together, we get

|M |
Lemma 2
≤ 1

2

√
|C|2 − |C∗|2

(2),(3)

≤ 1
2
πh

√
(1 + ε)2 − 1 = πh

2

√
2ε+ ε2 ,

which concludes the proof of Lemma 3. �

It should be intuitively clear (remember Figure 2)
that the upper bound on H/h from Lemma 1 and
the upper bound on |M | of Lemma 3 imply that the
curve C is contained in a thin ring if its dilation is
close to π

2 . This is the idea behind the omitted proof
of the following lemma. We say that a cycle C is
enclosed in an (1 + ε)-ring if there is a radius r > 0
and a center c ∈ R2 such that the open region R
bounded by C satisfies Br(c) ⊆ R ⊆ B(1+ε)r(c).

Lemma 4 Let C ⊂ R2 be any simple closed curve
with dilation δ(C) ≤ (1 + ε)π/2 for ε ≤ 0.0001. Then
C can be enclosed in a (1 + 3

√
ε)-ring.

By a special cycle C we can also show that this result
cannot be improved apart from the coefficient of

√
ε.

The lemma can be extended to a larger, more practi-
cal range of ε, by increasing the coefficient of

√
ε.

3 New Lower Bound

We will combine Lemma 4 with a disk packing result.
A (finite or infinite) set C of disks in the plane with
disjoint interiors is called a packing.

Theorem 5 (Kuperberg, Kuperberg, Matoušek and
Valtr [11]) Let C be a packing in the plane with circu-
lar disks of radius at most 1. Consider the set of disks
C′ in which each disk C ∈ C is enlarged by a factor
of 1.00001 from its center. Then C′ covers no square
with side length 4.

From Lemma 4 and Theorem 5 we deduce our main
result:

Theorem 6 The minimum geometric dilation∆ nec-
essary to embed any finite set of points in the plane
satisfies ∆ ≥ (1 + 10−11)π/2.

Proof. (Sketch) Consider the set P :=
{ (x, y) | x, y ∈ {−9,−8, . . . , 9} } of grid points with
integer coordinates in the square Q1 := [−9, 9]2 ⊂ R2,
see Figure 3. We use a proof by contradiction and
assume that there exists a planar connected graph G
that contains P (as vertices or on its edges) and sat-
isfies δ(G) ≤ (1+10−11)π/2 < 2. In the full paper we

P

Q1

Q2

(−9,−9) (9,−9)

(9, 9)(−9, 9)

Figure 3: The point set P := {−9,−8, . . . , 9}2 and
the squares Q1 := [−9, 9]2 and Q2 := [−8, 8]2

show that if G attains such a low dilation, G contains
a collectionM of cycles with disjoint interiors which
cover the smaller square Q2 := [−8, 8]2. The length
of each cycle C ∈ M is bounded by 8π implying
that every disk encircled by C has a radius r ≤ 4.
Additionally, the dilation of every C ∈ M is at most
δ(G) ≤ (1 + 10−11)π/2. Hence, Lemma 4 shows
that every C has to be contained in an 1.00001-ring.
It follows that the inner disks of these rings are
disjoint and their 1.00001-enlargements cover Q2 in
contradiction to Theorem 5 (situation scaled by 4).
We would like to use the cycles bounding the faces

of G for M. Indeed, δ(G) < 2 implies that they
cover Q2 (analogous to Figure 4b). However, their
dilation could be bigger than the dilation δ(G) of the
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ξ

p

q

C

R

(a) (b)

x
S

p
q

1

1

ζ

Figure 4: (a) The path ξ is a shortcut for some points
of C. (b) Every x ∈ Q2 is encircled by a cycle of
length ≤ 12 · δ(G).

graph, see Figure 4a. G can offer shortcuts in the
exterior of C, i.e., the shortest path between p, q ∈ C
does not necessarily use C.
Therefore, we have to find a different class of dis-

joint cycles covering Q2 which do not allow shortcuts.
The idea is to consider for every point x in Q2 the
shortest cycle ofG such that x is contained in the open
region bounded by the cycle. The regions of these cy-
cles cannot intersect partly, we have R1 ∩ R2 = ∅ or
R1 ⊆ R2 or R2 ⊆ R1. If we defineM to contain only
the cycles maximal with respect to inclusion of their
regions, it provides all the properties we need. Due to
space limitations we can not prove all of them here.
However, one argument is displayed in Figure 4b.

Every x ∈ Q2 is contained in a square S of the integer
grid. A shortest path ζ of G connecting neighbor
points p, q of P next to S cannot enter S because |ζ| ≤
δ(G)|pq| < 2. Hence, the concatenation of 12 such
shortest paths contains a cycle of length ≤ 12δ(G) ≤
12(1 + 10−11)π/2 ≤ 8π encircling x. This shows that
the regions ofM coverQ2 and that the length of every
C ∈M is bounded by |C| < 8π. �

4 Conclusion

Our result looks like a very minor improvement over
the easier bound ∆ ≥ π/2, but it settles the question
whether ∆ > π/2 and has required the introduction of
new techniques. Our approximations are not very far
from optimal, and we believe that new ideas are re-
quired to improve the lower bound to, say, π/2+0.01.
An improvement of the constant 1.00001 in the disk
packing result of [11] (Theorem 5) would of course
immediately imply a better bound for the dilation.
We do not know whether the link between disk

packing and dilation that we have established works
in the opposite direction as well: Can one construct a
graph of small dilation from a “good” circle packing
(whose enlargement by a “small” factor covers a large
area)? If this were true (in some meaningful sense
which would have to be made precise) it would mean
that a substantial improvement of the lower bound
on dilation cannot be obtained without proving, at

the same time, a strengthening of Theorem 5 with a
larger constant than 1.00001.
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On Computing Fréchet Distance of Two Paths on a Convex Polyhedron ∗

Anil Maheshwari Jiehua Yi

Abstract

We present a polynomial time algorithm for comput-
ing Fréchet distance between two simple paths on the
surface of a convex polyhedron.

1 Introduction

Distance measures used to match geometric patterns
include: Hausdorff-distance, Fréchet-distance, uni-
form distance, etc. Alt and Godau [1, 2] proposed that
Fréchet distance is one of the most fundamental mea-
sures to compute the similarity between two polyg-
onal curves. Fréchet distance is often referred to as
the dog-leash distance [1]. The unique property is its
sensitivity to the order along the two curves. Fréchet
distance is the minimum leash distance that can keep
the person and the dog walking on their own tracks
from the beginning to the end (without retracting).
Some issues on similarity related to Fréchet distance
have been considered, for example, find a curve that
is similar to a given curve [3, 4], and the application
of Fréchet distance on protein backbone matching.
This paper focuses on the following problem: Given

a convex polyhedron P consisting of n triangular
faces, and two simple paths Z and Z ′ on the surface
of P , how can we use Fréchet distance to measure the
similarity of Z and Z ′? For the sake of simplicity,
assume that each segment in these paths is an edge
of P , and Z consists of z segments and Z ′ consists
of z′ segments. Referring to the dog-leash distance,
the person is walking on the path Z and the dog is
walking on the path Z ′. The leash defines a geodesic
path on the surface of P . Here, Fréchet distance is
measured using Euclidean shortest path distance on
the surface of P .
In this paper, we present a polynomial time algo-

rithm to compute Fréchet distance between the paths
Z and Z ′ on the surface of a convex polyhedron P .
To accomplish this we make use of two data struc-
tures: (i) a data structure of the visibility diagram
that encodes shortest path information for any pair
of points on a pair of edges (es, et), where es ∈ Z and
et ∈ Z ′ and (ii) the data structure of the free space di-
agram proposed in [1] for paths in plane. The novelty
is in adapting the free space diagram with the aid of

∗Research supported by NSERC. School of Computer
Science, Carleton University, Ottawa, Canada K1S 5B6,
{anil,jyi}@scs.carleton.ca

visibility diagrams for the problem discussed in this
paper. In the next section we discuss the visibility
diagram data structure and in Section 3 we present
an algorithm to compute Frèchet distance for paths
on a convex polyhedron.

2 Visibility Diagram

The visibility diagram of a pair of edges, say es and
et, lying on the surface of P is a data structure that
concisely represents geodesic distances between any
pair of points p and q, where p ∈ es and q ∈ et.
(Due to the lack of space we cannot discuss the liter-
ature regarding the computation of geodesic paths on
a convex polyhedron. For detailed discussion on this
we refer the reader to [5, 6, 10].) We make use of the
algorithm of [6], and that in turn makes calls to the
algorithm of [5].

Algorithm 1 Visibility-Diagram
(1) Construct the edge sequence tree T of edge es us-

ing the algorithm of [5].
(2) Identify those edge sequences in tree T which start

at es and end at the edge et. Let the set of these
edge sequences be E .

(3) Unfold each of the edge sequence in E and con-
struct the visibility polygon for each unfolding.

(4) Compute the overlay of the visibility polygons to
obtain the visibility diagram. Label each area in
the overlay with the corresponding edge sequence.

(5) Output the final visibility diagram.

Details of this algorithm are provided in [9]. This
algorithm uses the concept of edge sequence. Ac-
cording to the shortest path properties in [7, 8], a
shortest path Π(p ∈ es, q ∈ et) on P is identified
uniquely by its endpoints and the sequence of edges
{es, e1, e2, ..., ek, et} that it crosses. This sequence of
edges is called an edge sequence of P (ξ(Π(p, q))). The
faces {f1, f2, ..., fk+1} that the shortest path traversed
can be unfolded to a plane, by rotating the face f1 into
the coordinate system of f2 around the common edge
e1 of f1 and f2, and then rotate f1 and f2 to the coor-
dinate system of f3, and so on. Following these steps,
all of the faces can be located in the coordinate sys-
tem of fk+1, and this forms a planar graph. Geodesic
paths in the unfolding map to straight line segments.
Refer to Figure 1(b).
Define the domain z = es × et as a unit square

and it is an affine mapping of the edges es and et on
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Figure 1: (a): A sequence of edges and faces that a
shortest path from p ∈ es to q ∈ et passes through;
(b): The planar unfolding relative to the edge se-
quence; (c): The visibility diagram of es and et. P ′ξ1
corresponds to the outer boundary of the unfolded
edge sequence in (b), which is a polygon. P ′ξ2 corre-
sponds to another unfolded edge sequence.

[0, 1], see Figure 1(c). The visibility diagram is de-
fined as the partition of the domain z, each partition
corresponds to an unfolded edge sequence starting at
es and ending at et. (Mount [8] has shown that the
number of such edge sequences is O(n2).) In a par-
tition the pair of points are visible to one another in
their corresponding unfolded edge sequence. During
the construction of the visibility diagram, if the pair of
points in a partition can see each other in more than
one unfolded edge sequence, then this partition is fur-
ther subdivided, until each partition corresponds to
one unfolded edge sequence. It can be shown that the
boundary between each pair of partition in the visibil-
ity diagram is a hyperbolic curve, and each partition
is a polygon. Observe that geodesic path for any pair
of points in es and et can be computed from their
corresponding unfolded edge sequence in the visibil-
ity diagram. Thus, the visibility diagram for a pair
of edges can be computed by simultaneously overlay-
ing O(n2) visibility polygons corresponding to each
of the unfolded edge sequence; it can be computed in
O(n3 log n) time.

3 Algorithm to compute Fréchet Distance

First we briefly outline Fréchet Diagram for two
polygonal curves Z and Z ′ in plane as described in
[1]. They used affine mapping to represent a continu-
ous and piecewise linear curve. If the curve Z is a line
segment and similarly the curve Z ′ is a line segment
then the set

Fε = {(s, t) ∈ [0, 1]2 | d(Z(s), Z ′(t)) ≤ ε} (1)

(a) (b)

ε
ε

ZZ ′

Z

Z ′

Z

Z ′ (z, z′)

(0, 0) Z

Z ′

Figure 2: (a): Two segments Z and Z ′ and their
free space diagram for a given ε. (b): Two polygo-
nal curves Z and Z ′ and their free space diagram for
a given ε. A monotone path from (0, 0) to (z, z′) in
the free space diagram.

d

Figure 3: The boundary values of a unit cell in the
free space diagram that must be calculated

describes all of the pairs of points in the affine map-
ping of Z and Z ′, whose Euclidean distance is at most
ε. Figure 2(a) shows line segments Z and Z ′, and a
distance ε > 0; Fε is the white area within the unit
square, which is an ellipse [1], subsequently called as
the free space diagram. Figure 2(b) shows polygonal
curves Z and Z ′ with z and z′ segments, respectively,
and their free space diagram Fε. This is obtained by
combining the free space diagrams for each pair of
segments of Z and Z ′.

Lemma 1 [1] For polygonal curves Z and Z ′ in
plane, their Fréchet distance, δF (Z,Z ′) ≤ ε, only
if there exists a curve within the corresponding free
space diagram Fε from (0, 0) to (z, z′) that is mono-
tone in both coordinates.

In order to ensure that there is a passage for the
path between neighboring cells in the diagram, Fig-
ure 3 illustrates certain boundary values that needs
to be calculated. These values correspond to the in-
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free space
(a) (b)

freespace dj
icj

i

cj
i+1 dj

i+1

Figure 4: The trapezoidation of a free space after
union. (a) : The free space (white areas). (b) :
After trapezoidation and executing BFS (the dashed
line is one of the paths), the upper boundary value is
cji+1d

j
i+1.

tersections of the ellipse with the boundary of the
cell. Above lemma provides a mechanism to check
whether Fréchet distance is at most ε. In [1] it is
shown that the exact value of the distance is deter-
mined by an ε corresponding to one of the following
cases: (i) (0, 0) ∈ Fε and (z, z′) ∈ Fε, (ii) LF

i,j or
BF

i,j becoming nonempty for some pair (i, j), or (iii)
ai,j = bk,j or ci,j = di,k for some i, j, k. Therefore,
to determine the exact distance, one needs to apply
Lemma 1 for only the set of critical values of ε as de-
termined by the above cases. It turns out that the
total number of critical values is O(z2z′ + zz′2), and
hence Fréchet distance between two paths Z and Z ′

in the plane can be computed in O(zz′ log(zz′)) time.
In the rest of this paper we sketch how we can adapt

the free space diagram with the aid of the visibil-
ity diagrams for the case of convex polyhedron. Let
Z : [0..z] and Z ′ : [0..z′] be the two paths on the
boundary of convex polyhedron consisting of z and z′

segments, respectively. Moreover, Z(i − 1)Z(i) and
Z ′(j − 1)Z ′(j), for 1 ≤ i ≤ z, 1 ≤ j ≤ z′, repre-
sents those segments. For a fixed ε, we construct a
free space cell for a pair of edges Z(i − 1)Z(i) and
Z ′(j − 1)Z ′(j). The outer boundary of the free space
cell is a unit square and it is exactly the same square
as the boundary of the visibility diagram of those two
edges. But the main difficulty arises due to the fact
that the polygons in the visibility diagram belong to
different unfolded edge sequences, and each unfolded
edge sequence has its own coordinate system in the
plane. Because of this, the free spaces of Z(i− 1)Z(i)
and Z ′(j−1)Z ′(j) in the unfolded edge sequences are
different from one another. Thus, we compute the
intersection of the free space cell with the visibility
polygon, where both the cell and the polygon corre-
spond to the same unfolded edge sequence. For each
pair of points in the intersection area, their shortest
path distance is at most ε. The free space diagram of
the unit cell of Z(i− 1)Z(i) and Z ′(j − 1)Z ′(j) is ob-
tained by taking the union of the free spaces for all the

Pstart

Pgoal

(a) (b)

(c) (d)

Figure 5: (a)Placing boundary nodes in the trape-
zoidal map. (b)(c): Illustration of placing interior
nodes in the trapezoidal map. (d): Adding arcs be-
tween the nodes to form a directed graph. For sim-
plifying the figures, boundaries of the polygons are
drawn as straight line segments.

corresponding edge sequences. Refer to Figure 4(a).
The free space diagram for Z and Z ′ for a fixed ε is
obtained by applying the above computation steps on
each pair of segments.
Once we have the free space diagram for a specific

value of ε, we need to test whether we have a mono-
tone path from (0, 0) to (z, z′). Observe that if there
is a monotone path then each part of the path in
the corresponding cells must be monotone. The al-
gorithm starts from the first pair of edges including
(0, 0), ends at the last pair of edges including (z, z′),
and computes the boundary values for each unit cell
in the free space diagram subject to the monotone
path restrictions. If (z, z′) can be reached, then this
particular choice of ε results in a valid monotone path
in the corresponding free space diagram. The bound-
ary values for each cell are obtained by performing
breadth first search on a modified dual map of the
trapezoidal decomposition of each cell, refer to Fig-
ure 5. The computation of the boundary values for
a unit cell proceeds in three steps. First, we place
candidate nodes in the trapezoidal map from where a
monotone path could pass through. The nodes placed
on the boundary of the unit cell are candidates for
the boundary values, we use Pstart and Pgoal to mark
them (marked as “ ◦ ” in Figure 5(a)), respectively.
The nodes placed in the interior of the free space cell
(marked as “ × ” in Figure 5(b)(c)) can be reached
monotonically from the neighboring nodes placed ear-
lier. Second, connect the neighboring nodes with the
directed arcs, the arcs must also be in the free space
area. Thus, a directed graph is formed in the free
space area of the unit cell. Third, by applying the
breadth first search in this directed graph, a mono-
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tone path (if it exists) from a starting point Pstart to
a point Pgoal is identified (see Figure 4(b)). There is
a technical detail involved here, and this arises due
to the fact that the edges of the polygons in a unit
cell can be hyperbolic curves or elliptical arcs, refer to
Figure 4(a). Therefore, trapezoidation needs to take
this in account, as well as care must be taken while
placing the nodes to ensure that the directed arcs re-
side in the free space. We omit the details of this part
here.
Suppose that we have already computed the visi-

bility diagram for a pair of edges in O(n3 log n) time.
For a fixed ε, we can show that the union of the free
spaces in the unit cell for the pair of edges can be
computed in O(n2 log n) time, since there are O(n2)
polygons in the visibility diagram; Computing the
boundary value of a unit cell takes O(n2 log n) time,
which includes the trapezoidal map and the directed
acyclic graph construction, and performing breadth
first search. Therefore, in O(zz′n3 log n) time, we
can determine whether Fréchet distance between the
paths Z and Z ′ is at most ε. This is summarized
in the following lemma, and it can be viewed as the
analog of Lemma 1 for the case of convex polyhedron.

Lemma 2 For simple paths Z and Z ′ on the sur-
face of convex polyhedron, their Fréchet distance,
δF (Z,Z ′) ≤ ε, only if there exists a curve within the
corresponding free space diagram Fε from (0, 0) to
(z, z′) that is monotone in both coordinates. More-
over this can be determined in O(zz′n3 log n) time
where z and z′ are the number of the segments in Z
and Z ′, and n is the number of faces on P .

Next we need to determine what are the critical
values of ε, and then we can search among them to
determine Fréchet distance between the paths. The
three kinds of critical values of ε, as in the planar
case, are also suitable for the convex polyhedron case.
But due to the complex nature of cells in this case,
we need to extend the third case; the main idea is
captured in the following observation. Assume that
the minimum value of ε is not determined by the first
two cases. Then we claim that the minimum value of
ε that ensures that there is a monotone path in the
free space diagram will consists of a segment that is
parallel to one of the coordinate axes.
Recall that in the two dimensional case, the third

case corresponds to either ai,j = bk,j or ci,j = di,k for
some i, j, k. In the light of the above observation, for
the convex polyhedron case this needs to be extended
to the case when ai,j and bk,j are located inside the
cells, if we use the same labels for the points inside
the cells as the labels for the boundary values; see Fig-
ure 3. Imagine that the black areas, corresponding to
non feasible regions, where ai,j and bi+1,j are located,
are moved inside the unit cell. These critical values

can be computed from the free space diagrams, and
will require solving a degree four equation in ε since
the boundaries of the corresponding polygons (elliptic
or hyperbolic) are defined by degree two equations.
We claim that there is an upper bound of O((z2z′+

zz′2)n4) on the number of critical values of ε, since
each cell has O(n2) polygons and every two of them
need to be tested in the computation of the third kind
of critical values. In addition to this there are poten-
tially O(zz′n2) critical values for ε as determined in
the first two cases. Sorting the critical values first,
then using the binary search, for each value of ε, we
test whether we can obtain a monotone path in the
free space diagram. The smallest ε, that results in
a monotone path located in the free space diagram,
is Fréchet distance between the paths Z and Z ′. We
summarize the result in the following theorem.

Theorem 3 Fréchet-distance between two simple
paths Z and Z ′ on the surface of a convex polyhedron,
consisting of n triangular faces, can be computed in
O((z2z′+zz′2)n4 log(zz′n)) time, where Z consists of
z segments and Z ′ consists of z′ segments.
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Semi-Computability of the Fréchet Distance Between Surfaces

Helmut Alt Maike Buchin ∗

Abstract

The Fréchet distance is a distance measure for pa-
rameterized curves or surfaces. Using a discrete ap-
proximation, we show that for triangulated surfaces it
is upper semi-computable, i.e., there is a non-halting
Turing machine which produces a monotone decreas-
ing sequence of rationals converging to the result. It
follows that the decision problem, whether the Fréchet
distance of two given surfaces lies below some speci-
fied value, is recursively enumerable.

1 Introduction

The Fréchet distance was first introduced by Fréchet
for curves [Fré06] and later for surfaces [Fré24]. The
idea of the Fréchet distance is to take into account
the “flow” of the curve or surface given by its param-
eterization. In some cases, the Fréchet distance is a
more suitable distance measure than the commonly
used Hausdorff distance (see [AG95]).
Formally the Fréchet distance is defined as follows.

Definition 1 Let f, g be parameterizations of k–
dimensional surfaces, i.e., continuous functions

f, g : [0, 1]k → Rd, k ≤ d.

Then their Fréchet distance is

δF (f, g) := inf
σ:[0,1]k→[0,1]k

max
t∈[0,1]k

||f(t)− g(σ(t))||.

where the reparameterization σ ranges over all orien-
tation preserving homeomorphisms.

The norm ||.|| underlying the definition in this paper
can be the L1-, L2-, or L∞-norm as long as it can be
computed or approximated by rational arithmetic.
For dimension k = 1 of the parameter space, in

particular for polygonal curves, δF is known to be
computable in polynomial time [AG95]. For two–
dimensional surfaces, however, the computation of
the Fréchet distance surprisingly seems to be much
harder. In fact, Godau showed [God98] that com-
puting the Fréchet distance between triangulated sur-
faces even in two–dimensional space is NP-hard. It
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remained open, how hard the problem really is, not
even its computability could be shown.
In this paper, we present a partial result concern-

ing the computability. More specifically, we will show
that the Fréchet distance between triangulated sur-
faces is upper semi-computable, i.e., there is a non-
halting Turing machine which produces a monotone
decreasing sequence of rationals converging to the re-
sult. It follows that the decision problem whether the
Fréchet distance of two given surfaces lies below some
specified value is recursively enumerable.
The computationally hard part of computing the

Fréchet distance for dimensions k > 1 seems to be,
that according to the definition, the infimum over all
homeomorphisms of the parameter space has to be
taken. For dimension k = 1 the orientation-preserving
homeomorphisms on [0, 1] are the continuous, onto,
monotone increasing functions on [0, 1]. For higher di-
mensions the homeomorphisms can be much “wilder”.
We tackle this problem by approximating the home-

omorphisms by discrete maps which are easier to
handle. We do this by first approximating arbi-
trary homeomorphisms by piecewise linear homeo-
morphisms which is a known result from topology.
The piecewise linear homeomorphisms are then ap-
proximated by mesh homeomorphisms, i.e., homeo-
morphisms that are compatible with certain subdivi-
sions of the original triangulations of the parameter
spaces. Finally, for mesh homeomorphisms on fine
subdivisions the distance between the surfaces can be
approximated by the distances at only a finite number
of points.
It remains open, whether the Fréchet distance be-

tween triangulated surfaces is a computable function
in the strong sense.

2 Model of computation, main results

We assume that the input to our algorithm are two tri-
angulated surfaces in space Rd, d ≥ 2, which are rep-
resented as piecewise linear parameterizations f, g :
[0, 1]2 → Rd. For simplicity, we will denote the sur-
faces themselves by f and g, as well.
Piecewise linear means that the parameter spaces

of f and g are triangulated and on each triangle f
and g are linear maps in the sense that for a triangle
∆ = 〈u, v, w〉 we have f(λ1u+λ2v+λ3w) = λ1f(u)+
λ2f(v)+λ3f(w) for all λ1, λ2, λ3 with λ1+λ2+λ3 = 1
and g has an analogous property.
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We denote the triangulated parameter spaces of f
and g by K and L. The vertices of the individual tri-
angles have rational coordinates, and the coefficients
describing the linear maps are rational, as well. Thus,
a problem instance has a canonical finite representa-
tion which can be given as input to a Turing machine.
We will show that the Fréchet distance between tri-

angulated surfaces is computable in a weak sense ac-
cording to the following definition which has been con-
sidered in the complexity-of-real-functions community
(see, e.g., [WZ00]).

Definition 2 A function ϕ : N → R is called up-
per (lower) semi-computable if there is a Turing ma-
chine which on input x outputs an infinite, monotone
decreasing (increasing) sequence of rational numbers
converging to ϕ(x).

Now we can formulate our main result:

Theorem 1 The Fréchet distance between two tri-
angulated surfaces in space Rd, d ≥ 2, is upper semi-
computable.

Theorem 1 immediately implies the following corol-
lary, where 〈f, g, a〉 denotes some standard encoding
of a triple consisting of two triangulated surfaces f
and g, and some rational a > 0.

Corollary 2 The set {〈f, g, a〉 | δF (f, g) < a}, i.e.,
the decision problem for the Fréchet distance between
triangulated surfaces, is recursively enumerable.

In fact, consider the Turing machine producing a
monotone decreasing sequence converging to δF (f, g)
which exists by Theorem 1. Stop this Turing machine
as soon as it produces a value less than a. This algo-
rithm will eventually halt for all triples 〈f, g, a〉 in the
language and else will run forever.
The computability of δF in the strong sense of com-

putability theory of real functions (see, e.g., [Wei00])
remains open, since the sequence produced by the al-
gorithm in the proof of Theorem 1 is not shown to
effectively converge to δF (f, g), i.e., we cannot give
any estimate on the rate of convergence.
Our proof can be modified to show a weaker form of

Theorem 1 for more general surfaces. More precisely,
if we just assume that the parameterizations f and g
are computable real functions, it is still correct that
there is an algorithm producing on input f, g (repre-
sented, say, by the Turing machines computing f and
g) an infinite sequence of rational numbers converging
to δF (f, g). However, this sequence is not necessar-
ily monotone decreasing, and the corollary cannot be
deduced anymore.

3 Approximating the homeomorphisms

In this section, we approximate homeomorphisms ar-
bitrarily closely by mesh homeomorphisms.
Let us first recall some standard definitions and no-

tations from topology. For a simplicial complex K,
a triangulation in our case, let Km denote its mth

barycentric subdivision, where in one subdivision step
the barycenters of the previous simplices are taken
as vertices. Mesh(K) denotes the maximal diameter
of simplices in K, again triangles in our case. The
underlying space of K, denoted by |K|, is the set of
all points lying in simplices of K. In our case |K| is
always the unit square [0, 1]2.
We now define mesh homeomorphisms.

Definition 3 Given two triangulations K and L, a
piecewise linear homeomorphism h : |Km| → |Ln| is
called a mesh homeomorphism if it maps the edges of
Km to edge chains of Ln, i.e., polygonal chains made
up of edges of Ln.

For approximating homeomorphisms arbitrarily
closely by mesh homeomorphisms, we need only a
weak form of closeness which is defined as follows.

Definition 4 Given two homeomorphisms
h, h′ : |K| → |L| on triangulations K and L, let

dK(h, h′) := max
∆∈K

δH(h(∆), h′(∆))

where ∆ ∈ K ranges over all triangles in K and δH
denotes the Hausdorff distance.

Now we can approximate homeomorphisms by
mesh homeomorphisms.

Lemma 3 Let K and L be triangulations, σ : |K| →
|L| a homeomorphism, m ∈ N, and ε > 0. Then there
exist n ∈ N and a mesh homeomorphism h : |Km| →
|Ln| such that dKm(σ, h) < ε.

Proof. We omit the details of this proof in this ex-
tended abstract but sketch the main idea.
By a theorem from topology (see, e.g., chapter 6

in [Moi77]), a homeomorphism can be approximated
arbitrarily closely by a piecewise linear homeomor-
phism. We use this as a first step, because piece-
wise linear homeomorphisms are easier to handle than
arbitrary homeomorphisms. For a piecewise linear
homeomorphism, we see that it can be approximated
arbitrarily closely (in the sense of Definition 4) by
a mesh homeomorphism. Together this proves the
lemma.
The idea of approximating piecewise linear home-

omorphisms by mesh homeomorphisms, is to subdi-
vide sufficiently using, e.g., barycentric subdivision.
Because of growing degrees of vertices and grow-
ing fineness of the triangulations, we can find mesh
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homeomorphisms arbitrarily close to a piecewise lin-
ear homeomorphism. A simple example is shown in
Figure 1.

h’

homeom.
pwl

h

homeom.
mesh

2

GG’

K0

Figure 1: Approximating a piecewise linear homeo-
morphism by a mesh homeomorphism.

�

4 Discrete Fréchet distance

In this section we define a discrete Fréchet distance
for surfaces and show that it is equal in value to the
Fréchet distance.
We define the discrete Fréchet distance of two sur-

faces by taking the infimum over all mesh homeomor-
phisms and for each mesh homeomorphism taking the
maximum over distances at vertices.
More formally, we define

Definition 5 Let f, g be parametrized, triangulated
two–dimensional surfaces in Rd, d ≥ 2, with underly-
ing triangulations K,L respectively, of the parameter
space, i.e.,

f : |K| → Rd, g : |L| → Rd

are piecewise linear maps. Then their discrete Fréchet
distance is defined as

δdF (f, g) := inf
m,n

h:|Km|→|Ln|

max
∆∈Km

T

max
v∈V∆

w∈Mn
h(∆)

||f(v)−g(w)||

where h ranges over all orientation preserving mesh
homeomorphisms, Km

T is the set of triangles in Km,
V∆ are the vertices of ∆, and Mn

h(∆) is the set of

vertices of Ln that lie in h(∆).

First we show that this definition yields a discrete
Fréchet distance not smaller than the Fréchet dis-
tance.

Lemma 4 δF ≤ δdF

Proof. Any mesh homeomorphism is, in particular,
a homeomorphism. Therefore, it suffices to show
that for a mesh homeomorphism h : |Km| → |Ln| we
can bound the pointwise maximum by the maximum
taken at vertices, i.e.,

max
t∈[0,1]2

||f(t)−g(h(t))|| ≤ max
∆∈Km

T

max
v∈V∆

w∈Mn
h(∆)

||f(v)−g(w)||.

(1)

To see this, let t ∈ [0, 1]2 be arbitrary. Then t
lies in a triangle ∆ of Km and h(t) lies in a triangle
∆′ of h(∆) ⊂ Ln. Since f and g are piecewise lin-
ear and Km and Ln are refinements of the underly-
ing triangulations of the parameter spaces, f(∆) and
g(∆′) are triangles, as well. Since the maximum dis-
tance between points of two triangles is attained be-
tween two corners, we have that ||f(t)− g(h(t))|| ≤
||f(v) − g(w)|| for some v ∈ ∆, w ∈ ∆′. Taking the
maximum on both sides yields equation (1). �

Now we show that also the discrete Fréchet distance
is not larger than the Fréchet distance.

Lemma 5 For all ε > 0, δdF ≤ δF + ε.

Proof. The idea is that for any homeomorphism
there is a mesh homeomorphism arbitrarily close and
for the mesh homeomorphism the distance computa-
tion at vertices comes arbitrarily close to the distance
computation on all parameter values by sufficient sub-
division of the domain complex.
Let σ be a homeomorphism close to realizing δF ,

i.e., max
t∈[0,1]2

||f(t) − g(σ(t))|| ≤ δF + ε1 for a small

ε1 > 0.
By Lemma 1, for any ε2 > 0 and any m ∈ N there

is a mesh homeomorphism h : |Km| → |Ln| such that
dKm(σ, h) ≤ ε2 .
Let ∆ be some triangle in |Km| and v one of its

vertices. Since dKm(σ, h) ≤ ε2, for any w ∈ h(∆) ⊂
Ln there is an x ∈ σ(∆) with ||w − x|| < ε2. Using
t = σ−1(x) and the Lipschitz-continuity of g we get
||g(w) − g(σ(t))|| < cg · ε2 for some t ∈ ∆ where cg
denotes the Lipschitz constant of g.
Since t and v lie in the same triangle ∆ ∈ Km,

we have ||v − t|| ≤ mesh(Km) and ||f(v) − f(t)|| ≤
cf ·mesh(Km) with cf the Lipschitz constant of f .
Putting everything together and using the triangle

inequality repeatedly we get

δdF ≤ max
∆∈Km

T

max
v∈V∆

w∈Mn
h(∆)

||f(v)− g(w)||

≤ max
∆∈Km

T

max
v∈V∆

x∈σ(∆)

||f(v)− g(x)||+ cg · ε2

≤ max
∆∈Km

T

max
t∈∆

||f(t)− g(σ(t))||+ cg · ε2

+cf ·mesh(Km)
≤ δF + ε1 + cg · ε2 + cf ·mesh(Km).

Since ε1, ε2, and mesh(Km) can be made arbitrarily
small, this concludes the proof. �

Lemmas 2 and 3 yield the following corollary.

Corollary 6 δF = δdF
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5 Semi-Computability of the Fréchet distance

We can now give an algorithm showing the upper
semi-computability of the Fréchet distance between
triangulated surfaces as claimed in Theorem 1. This
algorithm will, on input f, g, run forever and produce
a monotone decreasing sequence of rational numbers
converging to δF (f, g).

Algorithm CompFrec(f,g)

Input: Triangulated surfaces f, g, including triangu-
lations K,L of the parameter spaces, in a finite de-
scription as explained in Section 2.

1 D := ∞;

2 for all (m,n) ∈ N× N do

2.1 generate the barycentric subdivisionsKm of
K and Ln of L, let E = {e1, ..., ek} be the
set of edges in Km;

2.2 for all k-tuples (π1, ..., πk) of simple polygo-
nal chains in Ln do

2.2.1 assign the polygonal chain πi to the
edge ei for i = 1, ..., k and check
whether this assignment results in an
orientation preserving homeomorphic
image of Km, i.e., whether

2.2.1.1 the edges on the boundary of |K|
are mapped onto the boundary of
|L| preserving the orientation; and

2.2.1.2 if a set of edges inKm share an end-
point, the corresponding chains do,
as well; and

2.2.1.3 other than that, there are no inter-
section points between two chains;

2.3 If the test in step 2.2.1 is passed, the chains
form a subdivision of |L| such that each tri-
angle ∆ of Km has a corresponding area
H∆ ⊂ |L|.
2.3.1 for each triangle ∆ of Km do
2.3.1.1 for all vertices v of ∆ and all ver-

tices w of Ln lying in H∆ do com-
pute ||f(v)− g(w)||;

2.3.2 M := the maximum of all the values
found in step 2.3.1.1;

2.3.3 D := min(D,M); output D;

In essence, algorithm CompFrec approximates the
discrete Fréchet distance which is, by Section 4 the
same as the Fréchet distance. Line 2 can be realized
by some standard enumeration method for pairs of
integers.
Observe, that the number of k-tuples of polygonal

chains of Ln checked in step 2.2 is finite. In fact, it

is bounded by (l!)k where l is the number of edges
in Ln, which itself is exponential in n, whereas k is
exponential in m. But efficiency is not the issue here.
In step 2.3.1.1 we assume that the norm ||.|| under-

lying the Fréchet distance can be evaluated by ratio-
nal operations. This is correct for, e.g., the L1- or
L∞-norm but not directly for L2. In that case, one
should rather operate with the square of the distance
in line 2.3.1.1 and output some suitable rational ap-
proximation of

√
D (which is possible) in line 2.3.3.

Note that checking that the boundary of |K| is
mapped orientation preserving onto the boundary of
|L| in step 2.2.1.1, entails that the mesh homeomor-
phism is orientation preserving also on the interior.
For each pair (m,n) ∈ N × N all mesh homeomor-

phisms h : Km → Ln are evaluated, i.e.,

δh,m,n = max
∆∈Km

T

max
v∈V∆

w∈Mn
h(∆)

||f(v)− g(w)||

(see Definition 5) is computed1.
To see that the algorithm produces values arbitrar-

ily close to δdF (f, g), observe that any neighborhood
of δdF (f, g) must, by Definition 5, contain some value
of the form δh,m,n. The algorithm will eventually en-
counter that pair (m,n) and the subdivision corre-
sponding to h and output δh,m,n.
By line 2.3.3 the output sequence is monotone de-

creasing. Since for all triples (h,m, n) by Definition 5,
δh,m,n ≥ δdF (f, g), line 2.3.3 is justified.
Since by Corollary 6 δF = δdF , algorithm CompFrec

arbitrarily closely approximates δF (f, g) which proves
Theorem 1.
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Matching Surfaces with Characteristic Points

Darko Dimitrov, Christian Knauer, Klaus Kriegel∗

Abstract

We study approximation algorithms for a matching
problem that is motivated by medical applications.
Given a small set of points P ⊂ R3 and a surface S,
the optimal matching of P with S is represented by a
rigid transformation which maps P as ‘close as possi-
ble’ to S. Previous solutions either require polynomial
runtime of high degree [2] or they make use of heuris-
tic techniques which could be trapped in some local
minimum. We propose a modification of the problem
setting by introducing subsets of characteristic points
Pc ⊆ P and Sc ⊆ S, and assuming that points from
Pc must be matched with points from Sc. We will
show that especially in the case |Pc| ≥ 2 this restric-
tion results in new fast and reliable algorithms for the
matching problem.

1 Introduction

Today an increasing number of surgeries is supported
by medical navigation systems. The basic task of such
a system is to transform real world data (positions in
the operating field) into a 3-dimensional model (CT
or MR) and to display the transformed position in the
model. Real world data are gaged by optical, electro-
magnetic or mechanical tracking systems. A common
technique for computing the transformation is based
on markers which are fixed on bones. The markers
have to be fixed already during the model acquisition.
Their positions in the model are computed using ap-
propriate image processing methods. Later, at the
beginning of the surgery, at least three markers must
be gaged with the tracking system. Since the total
number of markers is small, one could compute the
correct matching transformation even by brute force
techniques. A more advanced approach making use
of geometric hashing techniques is presented in [3].
There is strong need to develop algorithmic methods
for computing a transformation without using mark-
ers. The main reason for that is an anatomical one: in
many cases (e.g. spinal surgery) it would be very hard
or even impossible to fix markers before the surgery.
One solution is to gage a few points on the surface of
a bone and to compute the corresponding points in
the model. This point registration is a hard algorith-
mic problem, which cannot be solved by the following

∗Institut für Informatik, Freie Universität Berlin,
darko/knauer/kriegel@inf.fu-berlin.de

standard approaches:
1) The gaged points could be anywhere on the model
surface and hence, a combinatorial search does not
work.
2) The number of gaged points is too small to ap-
ply surface reconstruction and surface matching algo-
rithms.
Moreover, the registration is part of the surgery and
thus real time algorithms are required. In contrast to
that, it is possible to spend more time for preprocess-
ing the model. Here, we try to retrieve some ideas of
the landmark approach to that new setting. The role
of markers could be played by so-called characteristic
points. Such points can be determined by the sur-
geon, based only on their anatomic properties, e.g.,
the root of the nose or of the thorn of a vertebra. If a
set of characteristic points is known in the model and
the surgeon can track at least three of them, the old
landmark registration algorithms can be applied. Our
main goal is to solve the registration problem if only
two characteristic points can be tracked. To compute
the transformation in that case, one must track some
more (non-characteristic) points on the surface.
In this paper we present our approach for solving

this problem and sketch some first results. In the next
section we introduce some notations and give a formal
definition of the problem. In section 3 we present the
basic algorithm and show how to use this method for
the approximation of the optimal matching.

2 Problem description

We consider two point sets P and S in R3. Usually we
assume that S is the (infinite) set of points on a trian-
gulated surface. The corresponding triangulation will
be denoted by S. However, this assumption is not
crucial. If S is a finite, dense sample of points on a
surface, the algorithms presented in the next sections,
can be applied with small changes.
Our main goal is to register P into a model S. The

quality of the registration will be evaluated by the
directed Hausdorff distance. The distance between a
point a and a compact point set B in d-dimensional
space Rd is defined as

dist(a,B) = min
b∈B
||a− b||
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where || · || is the Euclidean norm in Rd. For two
compact sets A,B in the one-sided Hausdorff distance
from A to B is defined as
−→
H (A,B) = max

a∈A
dist(a,B) = max

a∈A
min
b∈B
||a− b||.

The size of a problem instance (P, S) depends on two
parameters: k, the number of points in P, and n, the
number of triangles in S. We remark that in our ap-
plications k << n can be assumed. Moreover, we as-
sume that two subsets of characteristic points Sc ⊆ S
and Pc ⊆ P are given. In order to prepare a precise
analysis of our algorithms we introduce additional pa-
rameters kc = |Pc| and nc = |Sc|. Both parameters
should be seen as some reasonable constants. The
special role of characteristic points is expressed by
the additional requirement, that each p ∈ Pc must
be mapped onto (or close to) a characteristic point
q ∈ Sc.
To proceed to algorithmic solutions we have to clas-

sify several types of matchings.

Definition 1 Given two parameters µ, η ≥ 0 a rigid
transformation t : R3 → R3 is called (µ, η)-matching
if the following two conditions hold:

1. µ(t) :=
−→
H (t(P \ Pc), S) ≤ µ, and

2. η(t) :=
−→
H (t(Pc), Sc) ≤ η.

If ε is an upper bound for µ(t) and η(t) we denote
t as an ε-matching. In line with the notations above,
we have ε(t) = max(µ(t), η(t)). The minimal ε(t) is
denoted by εopt, and a corresponding matching is an
optimal matching. For a given λ > 1, a matching t is
a λ-approximate matching, if ε(t) ≤ λεopt.
Furthermore, we introduce the notion of semiop-

timal matchings. To this end we fix a set S =
{s̄1, s̄2, . . . , s̄kc} of predefined matching positions for
the characteristic points Pc = {p1, p2, . . . , pkc}. Now
we restrict our attention to matchings t with t(pi) = s̄i

for i = 1, . . . , kc. Let us denote this set of matchings
by MS . We assume that Pc and S are congruent,
because otherwiseMS = ∅.
A matching t ∈MS is a (µ(t), η0)-matching, where

η0 =
−→
H (S, Sc) is a common value for all matchings

in MS . A matching t ∈ MS is called semioptimal
matching (with respect to S) if µ(t) is minimal.
A trivial case with |MS | ≤ 6 occurs, if Pc con-

tains three or more non-collinear points. If addition-
ally the side lengths of the triangle spanned by the
three points are pairwise different, there is only one
matching in MS . Thus, we will focus our attention
to matchings with two characteristic points. In a first
step we design an algorithm to compute semiopti-
mal matchings for a given set S. Then, based on
the semioptimal solution, we show how to compute a
λ-approximate matching for any λ > 1.

3 The 2 point case

3.1 Semioptimal matching

Now, let us assume that the matching positions s1, s2

for the two characteristic points p1, p2 are already
given (see figure 1). First, we present an algorithm
which reports (for any µ) all transformations t with
the given matching positions for p1 and p2 and with
µ(t) ≤ µ.

Basic Algorithm (outline)

1. Fix a rigid transformation t0 : R3 → R3 such that
t0(p1) = s1, t0(p2) = s2. For all pi ∈ P\{p1, p2}
let Ci = C(pi) be the circle with the following
properties (see figure 1):

i) the center of Ci is on the line defined by
p1 and p2,

ii) Ci is lying in a hyperplane perpendicular
to p1, p2, and

iii) pi is on Ci.

2. Consider the transformed circle t0(Ci) and let
the point p′i(α) rotate along this circle starting
from t0(pi), i.e., p′i(0) = t0(pi). Compute sets
of intervals Ii = {α | dist(p′i(α), S) ≤ µ}, for
i = 3, . . . , k.

3. Compute I = ∩k
i=3Ii. For each α ∈ I, rα(s, s′) ◦

t0 is a rigid transformation mapping P onto S,
where rα(s, s′) is the rotation around axis s, s′
with angle α.

p ´

ci

s2 1s

P S

s s´x

d

ci´x

d

pi

1p p2

Figure 1: Corresponding points and the rotation of
the point p′i

A straightforward analysis shows that the algo-
rithm runs in O(kn log n) time.
We remark that this time bound can be improved by a
refined analysis under some assumption about the sur-
face representation. The main idea is a subdivision of
the bounding box of the surface S into

√
n×√n×√n

subboxes. The assumptions on the surface represen-
tation imply that each subbox intersects only a con-
stant number of surface triangles. Since each cycle
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intersects at most O(
√
n) subboxes, one can compute

an interval set Ii considering only O(
√
n) triangles (if

µ is not larger than the minimal subbox side length).
We will leave the details of this analysis to a full pa-
per.
The algorithm above can be used as a decision al-

gorithm answering the question whether for a given µ
there is some matching t with t(p1) = s, t(p2) = s′ and
µ(t) ≤ µ for all other points of P . Thus, using binary
search one can approximate a semioptimal matching.
However, it is also possible to compute the precise
value µ of a semioptimal matching by the following
modification of the basic algorithm. Instead of com-
puting the interval sets Ii = {α | dist(p′i(α), S) ≤ µ}
we compute the functions fi(α) := dist(p′i(α), S).
This function is the lower envelope of the distance
functions of a rotating point to the surface triangles.
Thus, the description complexity of fi is O(n log n),
see [5]. Then, instead of computing I = ∩k

i=3Ii, we
compute the upper envelope f of all functions fi. The
minimum of f is the µ-value of a semioptimal match-
ing.

3.2 The approximation problem

There are two groups of standard approaches to this
Problem. The first group consists of simulated an-
nealing [6] and ICP variants [1], [4]. These meth-
ods have proved to be useful in many practical situa-
tions, but, they have the disadvantage that they could
be trapped in a local minimum, and thus it is hard
to prove something about the approximation ratio.
The second group consists of discretization patterns,
inducing the repeated computation of the semiopti-
mal solution for a dense discrete set of transforma-
tions. We will exploit this approach to compute a λ-
approximation of the optimal matching, where λ > 1
is an arbitrary constant.
A common key problem of many approximation prob-
lems focusses on the fact the the value of an opti-
mal solution is unknown. Here we are able to derive
upper and lower bounds for εopt from the results of
some semioptimal matchings. Since each pair (s, s′)
of characteristic points on S could constitute the ap-
proximated destination of (p1, p2) we apply this pro-
cedure for each such pair. More precisely, we com-
pute the semioptimal matching ts,s′ mapping (p1, p2)
onto the point pair (s1, s2), where (s1, s2) forms the
same line and has the same center as (s, s′), but
||s1 − s2|| = ||p1 − p2||. We denote the best value
obtained in this way by δ = mins,s′∈Sc

{ε(ts,s′)}.
Furthermore, we introduce the radius rP and the rel-
ative radius RP of the point set P with respect to the
center of the characteristic points as follows:

rP = max
p∈P
||p1 + p2

2
−p||, RP =

rP
||p1−p2||

2

=
2 rP

||p1 − p2||
.

Proposition 1 δ ≥ εopt ≥ δ
RP+2 .

Given an approximation factor λ > 1 we try to
improve the best value δ obtained so far by small
changes of the predefined matching positions s1, s2.
The bounds above can be used to design a grid based
set of pertubed matching positions which is dense
enough to include a λ-approximation of an optimal
matching.
Let us set two grids around points s and s′ in the

following manner. First, a 2-dimensional squared
grid, centered at the point s′, normal to segment
(s, s′), with size 2

√
3δ and with size of the subsquares

(λ−1)δ
8(RP+1)RP

. Second, a 3 dimensional grid centered at
the point s, parallel to the 2-dimensional grid, with
size 2δ and size of subcubes

√
3(λ−1)δ

6(RP+1) . Using these
grids for fixing a dense set of matching positions
(s1, s2), at least one of the semioptimal matchings
ts1,s2 is a λ-approximation of the optimal matching.
The number of the grid combinations, defin-
ing possible matching positions (s1, s2), is

( 16
√

3RP (RP+1)
λ−1 + 1)

2

(
√

3(RP+1)
λ−1 + 1)

3

. This im-
plies the following estimation of the total run
time:

Lemma 2 The run time complexity of
the λ-approximation presented above is

O(n2
c k n log n

R5
P

(λ−1)5 ).

We remark that the factor n in this formula can be
improved in the same way as discussed in the anal-
ysis of the semioptimal matching. Moreover, in the
applications the ratio RP can be regarded as a small
constant.
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Approximation Algorithms for the Earth Mover’s Distance Under
Transformations Using Reference Points

Oliver Klein∗ Remco C. Veltkamp†

1 Introduction

Reference points have been introduced in [2] and [1]
to construct approximation algorithms for matching
compact subsets of Rd under a given class of transfor-
mations. Also a general discussion of reference point
methods for matching according to the Hausdorff-
distance has been given in [1]. Another distance mea-
sure used for shape matching is the Earth Mover’s
Distance (EMD) for weighted point sets ([7]). Here
we will extend the definition of reference points to
weighted point sets and get fast constant factor ap-
proximation algorithms for matching weighted point
sets under translations, rigid motions and similar-
ity operations with respect to the Earth Mover’s
Distance. A first iterative algorithm to solve this
problem has been given by Cohen ([3]). Thus we
want to find algorithms where EMDapx(A,B) ≤
εEMDopt(A,B). Under this assumption ε is called
the loss factor of the approximation algorithm. Unless
stated otherwise, the results given in this paper are
independent of the distance measure on the ground
set, therefore the results are widely applicable. Addi-
tionally, all theorems hold in arbitrary dimension d.
For a full version of this extended abstract see [5].

2 Basic Definitions

In this chapter we provide all definitions required.

Definition 1 (Weighted Point Set) ([4]) Let A =
{a1, a2, ..., an} be a weighted point set such that ai =
(pi, αi) for i = 1, ..., n, where pi is a point in Rd and
αi ∈ R+ ∪ {0} its corresponding weight. Let WA =∑n

i=1 αi be the total weight of A. Let Wd be the
set of all weighted point sets in Rd and Wd,G be the
set of all weighted point sets in Rd with total weight
G ∈ R+.

In the following we will use transformations on
weighted point sets. By this we mean to transform
the point set and leave the weights unchanged.
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A point related to each weighted point set is the
center of mass. This point will play an important role
in our approximation algorithms. Note that this point
can be computed in linear time and therefore does not
affect the runtime of the presented algorithms.

Definition 2 (Center of Mass) The center of
mass of a weighted point set A = {(pi, αi)i=1,...,n} ∈
Wd is defined as

C(A) =
1
WA

n∑
i=1

αipi.

Definition 3 (Reference Point) ([1]) Let K be a
subset of Wd and δ : K → R be a distance measure
on K. A mapping r : K → Rd is called a δ-reference
point for K with respect to a set of transformations
T on K, if the following two conditions hold:

1. Equivariance with respect to T : For all A ∈ K
and T ∈ T we have

r(T (A)) = T (r(A)).

2. Lipschitz-continuity: There is a constant c ≥ 0,
such that for all A,B ∈ K,

||r(A)− r(B)|| ≤ c · δ(A,B).

We call c the quality of the reference point r.

Later, when we want to construct an approximation
algorithm for similarities, we will have to rescale at
least one of the weighted point sets. Unfortunately,
rescaling in a way that the diameters of the underlying
point sets are equal, does not work. Please note again
that we will keep the weights of the points unchanged.
The key for a working algorithm is to rescale in a

way that the normalized first moments with respect to
their reference points coincide. Here we give the def-
inition of the normalized first moment of a weighted
point set with respect to an arbitrary point p ∈ Rd.
Note that this point can be computed in linear time.

Definition 4 (Normalized First Moment) The
normalized first moment of a weighted point set
A = {(pi, αi)i=1,...,n} ∈ Wd with respect to a point
p ∈ Rd is defined as

mp(A) =
1
WA

n∑
i=1

αi||pi − p||.

53



21st European Workshop on Computational Geometry, 2005

Next we will introduce the Earth Mover’s Distance
(EMD,[7]), a commonly known distance measure on
weighted point sets.

Definition 5 (Earth Mover’s Distance) Let A =
{(pi, αi)i=1,...,n}, B = {(qi, βi)i=1,...,m} ∈ Wd be
weighted point sets with total weights WA, WB . Let
D : Rd×Rd → R be a distance measure on the ground
set Rd. The Earth Mover’s Distance between A and
B is defined as

EMD(A,B) =
minF∈F

∑n
i=1

∑m
j=1 fijD(pi, qj)

min{WA,WB}

where F = {fij} is a feasible flow, i.e.

1. fij ≥ 0, i = 1, ..., n, j = 1, ...,m
2.

∑m
j=1 fij ≤ αi, i = 1, ..., n

3.
∑n

i=1 fij ≤ βj , j = 1, ...,m
4.

∑n
i=1

∑m
j=1 fij = min{WA,WB}

For a detailed discussion of the EMD see [7], [3] and
[4]. In the following, the distance measure D used in
the definition of the EMD should be the same as the
one used in the defintion of the reference point. If D
is the Euclidean Distance, we will also use EEMD as
a notation for the Earth Mover’s Distance.

3 Approximation Algorithms Using Reference
Points

In this chapter we present approximation algorithms
using reference points. Since this would be useless if
there was no reference point, we provide the following
theorem:

Theorem 1 The center of mass is an EMD-reference
point for weighted point sets with equal total weights
with respect to affine transformations. Its quality is 1.

The proof of the Lipschitz-continuity was already
given in [7] as a proof for a lower bound for the EMD.
The equivariance of the center of mass is commonly
known.
The following three sections are organized as fol-

lows: In each section we consider a class of trans-
formations, construct an approximation algorithm for
matching under these transformations for general ref-
erence points and finally use the center of mass to get
a concrete algorithm.
For the whole chapter let A = {(pi, αi)i=1,...,n},

B = {(qi, βi)i=1,...,m} ∈ Wd,G be two weighted point
sets in dimension d with positive equal total weight
G ∈ R+. Please note that the following results do
not hold for weighted point sets with unequal to-
tal weights. For simplicity let m be O(n). Fur-
ther let r : Wd,G → Rd be an EMD-reference point
for weighted point sets with respect to the consid-
ered class of transformations with quality c. Let

T ref (n) be the time to compute the reference point,
TEMD(n) and TEEMD(n) be the time to compute
the EMD and EEMD between two weighted point
sets and T rot(n) be the time needed to find the opti-
mal rotation around a fixed point. An upper bound
on TEMD(n) and TEEMD(n) is O(n4 log n) using a
strongly polynomial minimum cost flow algorithm by
Orlin ([6]). A in practice faster algorithm can be de-
veloped by solving the linear programming problem
using the simplex method.

3.1 Translations

Consider the following algorithm to get an approx-
imation on the problem of finding a translation
minimizing the EMD under translations:

Algorithm TranslationApx:
1. Compute r(A) and r(B) and move B by r(A)−
r(B). Let B′ be the image of B.

2. Output B′ as an approximately optimal solution
and the approximate distance EMD(A,B′).

Extending the proof in [1] to weighted point sets we
can prove the following:

Theorem 2 Algorithm TranslationApx finds an ap-
proximately optimal matching for translations with
loss factor c+ 1 in time O(T ref (n) + TEMD(n)).

Corollary 3 Algorithm TranslationApx using the
center of mass as EMD-reference point induces an
approximation algorithm with approximation ratio 2.
Its runtime is O(TEMD(n)).

3.2 Rigid Motions

The following algorithm gives a first approximation
on the EMD under rigid motions, i.e. combinations
of translations and rotations:

Algorithm RigidMotionApx:
1. Compute r(A) and r(B) and move B by r(A)−
r(B). Let B′ be the image of B.

2. Find an optimal matching of A and B′ under
rotations of B′ around r(A) = r(B′). Let B′′ be
the image of B′ under this rotation.

3. Output B′′ as an approximately optimal so-
lution together with the approximate distance
EMD(A,B′′).

Theorem 4 Algorithm RigidMotionApx finds an ap-
proximately optimal matching for rigid motions with
loss factor c+1 in O(T ref (n)+TEMD(n)+T rot(n)).

Since the position of the reference point as rota-
tion center is fixed, several degrees of freedom have
been eliminated and the problem is easier than the one
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finding the optimal rigid motion itself. Unfortunately,
even for this problem no efficient algorithm is known
so far. Therefore it would be nice to have at least an
approximation algorithm for this problem. We will
show one based on the following lemma. Please note
that this lemma is only proven if we take the Eu-
clidean distance on the ground set.

Lemma 5 Let p ∈ Rd be some point. Let Rot(p)
be the set of all rotations around p. Then there is a
rotation R′ ∈ Rot(p) such that

EEMD(A,R′(B)) ≤ 2 · min
R∈Rot(p)

EEMD(A,R(B)),

where R′ aligns p and at least one point of each set A
and B.

Therefore, given a fixed point p ∈ Rd we get a
2-approximation on the problem of finding an opti-
mal rotation of B around p by the following algorithm:

Algorithm RotationApx
1. Compute the minimum EEMD over all possible
alignments of p and at least one point of each set
A and B.

The runtime of this algorithm is O(n2TEEMD(n)).
Using this algorithm combined with reference points
we now get an easy to implement and fast approxi-
mation algorithm for rigid motions. Unfortunately,
the increased efficiency must be paid by the increased
approximation ratio (2c+ 2).

Algorithm RigidMotionApxUsingRotationApx
1. Compute r(A) and r(B) and move B by r(A)−
r(B). Let B′ be the image of B.

2. Find a best matching of A and B′ under rotations
of B′ around r(A) = r(B′) where r(A) and at
least one point in A and B′ are aligned. Let B′′

be the image of B′ under this rotation.
3. Output B′′ as an approximately optimal so-
lution together with the approximate distance
EEMD(A,B′′).

Theorem 6 RigidMotionApxUsingRotationApx
finds an approximately optimal matching for
rigid motions with loss factor 2c + 2 in time
O(T ref (n) + n2TEEMD(n)). This holds for the
Euclidean distance on the ground set.

In the next two corollaries we apply the center of
mass to the last two theorems:

Corollary 7 RigidMotionApx using the center of
mass as EMD-reference point induces an approxima-
tion algorithm with approximation ratio 2 in time
O(T rot(n) + TEMD(n)).

Corollary 8 RigidMotionApxUsingRotationApx us-
ing the center of mass as EMD-reference point induces
an approximation algorithm with approximation ra-
tio 4. Its runtime is O(n2TEEMD(n)). This holds for
the Euclidean distance on the ground set.

3.3 Similarities

In this section we present approximation algorithms
for matching two given weighted point sets under
similarity transformations, i.e. combinations of
translations, rotations and scalings. More precisely,
we want to compute minS EMD(A,S(B)), where the
minimum is taken over all similarity operations S.
Note that exchanging A and B makes a difference.

Algorithm SimilarityApx:
1. Compute r(A) and r(B) and move B by r(A)−
r(B). Let B′ be the image of B.

2. Determine the normalized first moments
mr(A)(A) and mr(B′)(B′) and scale B′ by
mr(A)(A)

mr(B′)(B
′) around the center r(A) = r(B′). Let

B′′ be the image of B′ under this scaling.
3. Find an optimal matching of A and B′′ under
rotations of B′′ around r(A) = r(B′′). Let B′′′

be the image of B′′ under this rotation.
4. Output B′′′ as an approximately optimal so-
lution together with the approximate distance
EMD(A,B′′′).

To show the correctness of this algorithm we use
the following two lemmata:

Lemma 9 Let A ∈Wd be a weighted point set with
normalized first moment mp(A) with respect to a
point p ∈ Rd. Let τ1, τ2 be scalings with center p
and ratios γ1 and γ2, respectively. Then

EMD(τ1(A), τ2(A)) ≤ |(γ1 − γ2)mp(A)|.

The next lemma gives a new lower bound for the
EMD of two weighted point sets:

Lemma 10 Let A,B ∈ Wd,G and r : Wd,G → Rd a
reference point with quality c. Then

|mr(A)(A)−mr(B)(B)| ≤ (1 + c)EMD(A,B).

Using these lemmata we can prove the following:

Theorem 11 SimilarityApx finds an approximately
optimal matching for similarities with loss factor 2c+2
in time O(T ref (n) + TEMD(n) + T rot(n)).

As for RigidMotionApx, SimilarityApx depends on
finding the optimal rotation, which is impractical.
Again, we make this algorithm practical and efficient
by using RotationApx and again we have to pay by a
worse approximation ratio:
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Algorithm SimilarityApxUsingRotationApx
1. Compute r(A) and r(B) and move B by r(A)−
r(B). Let B′ be the image of B.

2. Determine the normalized first moments
mr(A)(A) and mr(B′)(B′) and scale B′ by
mr(A)(A)

mr(B′)(B
′) around the center r(A) = r(B′). Let

B′′ be the image of B′ under this scaling.
3. Find a best matching of A and B′′ under rota-
tions of B′′ around r(A) = r(B′′) where r(A)
and at least one point in each set A and B′′ are
aligned. Let B′′′ be the image of B′′ under this
rotation.

4. Output B′′′ as an approximately optimal solution
and the approximate distance EEMD(A,B′′′).

Theorem 12 Algorithm SimilarityApxUsingRota-
tionApx finds an approximately optimal matching
for similarities with loss factor 4c + 4 in time
O(T ref (n) + n2TEEMD(n)). This holds for the
Euclidean distance on the ground set.

Corollary 13 Algorithm SimilarityApx using the
center of mass as EMD-reference point induces an
approximation algorithm with approximation ratio 4.
Its runtime is O(TEMD(n) + T rot(n)).

Corollary 14 Algorithm SimilarityApxUsingRota-
tionApx using the center of mass as EMD-reference
point induces an approximation algorithm with loss
factor 8. Its runtime is O(n2TEEMD(n)). This holds
for the Euclidean distance on the ground set.

3.4 Lower Bound for Algorithm TranslationApx

In Section 3.1 we presented the center of mass as an
EMD-reference point with quality 1, and thus induc-
ing an approximation algorithm for translations with
ratio 2. We now show that this bound is tight:

Theorem 15 There are sets where the upper bound
for algorithm TranslationApx is assumed.

Proof. Let A := {((0, 0), 1), ((1, 0),K)} and B :=
{((0, 0), 1), ((0, 1),K)}, where K ∈ R+ is some con-
stant. Let EMDC(A,B) be the Earth Mover’s
Distance, where the center of masses coincide and
EMDopt(A,B) be the optimal distance under trans-
lation. Then EMDC(A,B)

EMDOPT (A,B)
→ 2 as K → ∞. This

can be seen easily by using an upper bound for
EMDopt(A,B) by matching the two thick points.

�

4 Conclusion

In this paper we introduced EMD-reference points for
weighted point sets and constructed efficient approxi-
mation algorithms for matching under various classes
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Figure 1: Matching according to center of mass

of transformations. Additionally, we presented the
center of mass as an EMD-reference point for weighted
point sets with equal total weights. Unfortunately,
the center of mass is no EMD-reference point if you
consider the set of all weighted point sets, including
those with different total weights. Even worse, we
show in [5] that there is no EMD-reference point for
all weighted point sets. A variation of the EMD is
the Proportional Transportation Distance (PTD), see
[4]. In [5] we also show, that the center of mass is a
PTD-reference point even for weighted point sets with
different total weight and all theorems and corollaries
mentioned in this paper carry over. But the PTD has
a couple of disadvantages against the EMD, for exam-
ple it is not suitable for partial matching applications.

References

[1] H. Alt, O. Aichholzer, G. Rote. Matching Shapes
with a Reference Point. In Proc. 10th Annual Sympo-
sium on Computational Geometry, pages 85–92, 1994.

[2] H. Alt, B. Behrends, J. Blömer. Approximate
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Matching Point Sets with respect to the Earth Mover’s Distance

Sergio Cabello∗ Panos Giannopoulos† Christian Knauer† Günter Rote†

Abstract

Let A and B be two sets of m resp. n weighted points
in the plane, with m ≤ n. We present (1 + ε) and
(2+ε)-approximation algorithms for the minimum Eu-
clidean Earth Mover’s Distance between A and B un-
der translations and rigid motions respectively. In the
general case where the sets have unequal total weights
the algorithms run in O((n3m/ε4) log2(n/ε)) time
for translations and O((n4m2/ε4) log2(n/ε)) time for
rigid motions. When the sets have equal total
weights, the respective running times decrease to
O((n2/ε4) log2(n/ε)) and O((n3m/ε4) log2(n/ε)). We
also show how to compute a (1 + ε) and (2 + ε)-
approximation of the minimum cost Euclidean bipar-
tite matching under translations and rigid motions in
O((n3/2/ε7/2) log5 n) and O((n/ε)7/2 log5 n) time re-
spectively.

1 Introduction

Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two
planar weighted point sets with m ≤ n. A weighted
point ai ∈ A is defined as ai = {(xai , yai), wi}, i =
1, ..,m, where (xai , yai) ∈ R2 and wi ∈ R+ ∪ {0}
is its weight. A weighted point bj ∈ B is defined
similarly as bj = {(xbj , ybj ), uj}, j = 1, .., n. Let W =∑m

i=1 wi and U =
∑n

j=1 uj be the total weight, or
simply weight, of A and B respectively.
The Earth Mover’s Distance (EMD) is a similar-

ity measure for weighted point sets with applications
in colour-based image retrieval [7], shape matching
[7, 2, 1] and music score matching [9]. In a typi-
cal scenario, a pattern is reduced to a set of feature
weighted points; the larger the weight, the more im-
portant the point for the whole pattern. Informally,
a weighted point ai can be seen as an amount (sup-
ply) of earth or mass, equal to wi units, positioned at
(xai , yai); alternatively it can be taken as an empty
hole (demand) of wi units of earth capacity. We as-
sign arbitrarily the role of the supplier to A and that
of the receiver/demander to B, setting, in this way, a
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direction of earth transportation. The Earth Mover’s
Distance (EMD) of A to B measures the minimum
amount of work needed to fill the holes with earth. A
formal definition of the EMD will be given shortly.
In order to measure the similarity of two sets A

and B independently of transformations, one wants
to find a transformed version of, say, A that attains
the minimum possible distance to B. In this paper
we are interested in transformations that change only
the position of the points, not their weights; in par-
ticular, we focus on translations and rigid motions –
sometimes referred to as isometries. We consider B
to be fixed, while A can be translated and/or rotated
relative to B. We assume some initial positions for
both sets, denoted simply by A and B. Let I be
the set of all possible rigid motions in the plane. We
denote by Rθ a rotation about the origin by some
angle θ ∈ [0, 2π) and by T:t a translation by some
Nt ∈ R2. Any rigid motion I ∈ I can be uniquely de-
fined as a translation followed by a rotation, that is,
I = I:t,θ = Rθ ◦ T:t, for some θ ∈ [0, 2π) and Nt ∈ R2.
In general, transformed versions of A are denoted by
A(Nt, θ) = {a1(Nt, θ), . . . , am(Nt, θ)} for some I:t,θ ∈ I.
For simplicity, translated only versions of A are de-
noted by A(Nt) = {a1(Nt), . . . , am(Nt)}.
The EMD between A(Nt, θ) and B, is a function

EMD : I → R+ ∪ {0} defined as

EMD(Nt, θ) = min
F∈F(A,B)

∑m
i=1

∑n
j=1 fijdij(Nt, θ)

min{W,U} ,

where dij(Nt, θ) is the distance of ai(Nt, θ) to bj , and
F = {fij} ∈ F(A,B) with F(A,B) being the set
of all feasible flows between A and B defined by
the constraints: (i)fij ≥ 0, i = 1, ...,m, j = 1, ..., n,
(ii)

∑n
j=1 fij ≤ wi, i = 1, ...,m, (iii)

∑m
i=1 fij ≤ uj , j =

1, ..., n, and (iv)
∑m

i=1

∑n
j=1 fij = min{W,U}. In case

that Nt or θ or both are constant, we simply write
EMD(θ), EMD(Nt) and EMD respectively. The EMD
is a metric when dij is a metric and W = U [7].
When W %= U the EMD inherently performs partial
matching since a portion of the weight of the ‘heavier’
set remains unmatched. We deal with the Euclidean
EMD where dij is given by the L2-norm. For sim-
plicity, and without loss of generality, we assume that
min{W,U} = 1. We study the following problem:
Given two weighted point sets A,B compute a rigid

motion I:topt,θopt
that minimizes EMD(Nt, θ).

This problem was first studied by Cohen [7] who

57



21st European Workshop on Computational Geometry, 2005

presented a Flow–Transformation iteration which al-
ternates between finding the optimum flow for a given
transformation, and the optimum transformation for
a given flow. They showed that this iterative pro-
cedure converges, but not neccessarily to the global
optimum. Computing the EMD for a given trans-
formation is actually the transportation problem, a
special minimum cost network flow problem for the
solution of which there is a variety of polynomial time
algorithms [3, 4]. However, as we discuss later on, the
task of finding the optimal transformation for a given
flow is not trivial. Cohen also gave simple algorithms
that compute the optimum translation for the special
case where W = U and dij is the squared Euclidean
distance. This case is quite restrictive since, in gen-
eral, the sets need not have the same weight, and the
use of squared Euclidean distance is statistically less
robust than Euclidean distance [5]. Currently, no al-
gorithm that computes the optimal translation and/or
rotation is known for the Euclidean EMD.
Observe that the objective function is not linear in

Nt and θ but it is still linear in F . Thus, the minimum
EMD occurs at some vertex of the convex polytope
F(A,B). This suggests the following straightforward
algorithm: for every vertex F = {fij} of F(A,B)
compute the optimal rigid motion, i.e., the one that
minimizes

∑m
i=1

∑n
j=1 fijdij(Nt, θ). For translations,

the latter problem reduces to the Fermat − Weber
problem where one wants to find a point that mini-
mizes the sum of weighted distances to a set of given
points. No exact solution to this problem is known
even in the real RAM model of computation [5]. How-
ever, Bose et al. [5] gave a O(n log n)-time (1 + ε)-
approximation algorithm for any fixed dimension. Us-
ing their algorithm for every vertex of F(A,B) gives
only a (1 + ε)-approximation of the minimum EMD
under translations in exponential time.
In this paper, we give simple polynomial-time algo-

rithms that achieve a (1+ε) and (2+ε)-approximation
for translations and rigid motions respectively.

2 Lower bounds and approximations of the EMD

First, we give two simple lower bounds on the EMD
that are vital for the approximation algorithms given
in the next sections. In these algorithms we need to
compute the EMD for a given transformation. Com-
puting the EMD exactly is expensive, and unecessary
since we opt for approximations of the minimum EMD
under transformations. We show how to get a (1+ ε)-
approximation of the EMD in almost quadratic time.
The following lower bound comes directly from the

definition of the EMD.

Observation 1 Given two weighted point sets A and
B, EMD ≥ mini,j dij .

The next lower bound is due to Cohen [7]. The
center of mass C(A) of a planar weighted point set
A = {(xai , yai), wi}, i = 1, . . . ,m is defined as C(A) =(∑m

i=1 wi(xai , yai)
)
/
∑m

i=1 wi.

Theorem 1 [7, Theorem 6] Let A and B be two
weighted point sets with equal weights. Then EMD ≥
|C(A)− C(B)|.

Currently, the fastest strongly polynomial-time al-
gorithm for the minimum cost flow problem on a
graph G(V,E) is due to Orlin [3], and runs in
O((|E| log |V |)(|E| + |V | log |V |)) time. Using the al-
gorithm of Callahan and Kosaraju [6], we can con-
struct, in O(n log n + (n/ε2) log 1/ε) time, a linear
size (1 + ε)-spanner Gs, i.e., a graph Gs(V,E′) with
|E′| = O(n/ε) such that the shortest path between
any two points in Gs is at most (1 + ε) times the
Euclidean distance of the points. Running the algo-
rithm of Orlin on Gs produces an approximate value
EMDs such that EMD ≤ EMDs ≤ (1 + ε)EMD in
O((n2/ε2) log2(n/ε)) time; we refer to this procedure
as ApxEMD(A,B, ε).

Lemma 2 For any given ε > 0, a value EMDs with
EMD ≤ EMDs ≤ (1 + ε)EMD can be computed in
O((n2/ε2) log2(n/ε)) time.

Next, consider the case where |A| = |B| = n and wi =
uj = 1, i = 1, ..., n, j = 1, ..., n. The integer solutions
property of the minimum cost flow problem and the
fact that 0 ≤ fij ≤ 1 imply that there is a minimum
cost flow on G that results in a (perfect) matching
between A and B. Hence, we can restrict ourselves to
finding a minimum cost matching–usually called the
assignment problem. Varadarajan and Agarwal [8]
presented an algorithm that finds a matching with
cost at most (1+ε) times that of an optimal matching
in O((n/ε)3/2 log5 n) time; we refer to this algorithm
as ApxMATCH(A,B, ε).

3 Approximation algorithms for translations

We denote by Nti→j the translation which matches ai

and bj ; we call such a translation a point-to-point
translation. Observation 1 implies that the point-
to-point translation that is closest to Ntopt gives a 2-
approximation of EMD(Ntopt). Hence, we have the fol-
lowing:

Lemma 3 Given two weighted point sets A and B,
EMD(Ntopt) ≤ mini,j EMD(Nti→j) ≤ 2EMD(Ntopt).

According to Observation 1, the point-to-point
translation which is closest to Ntopt can be at most
EMD(Ntopt) away from Ntopt. This bound is crucial
for the (1 + ε)-approximation algorithm given in Fig-
ure 1. Using a uniform square grid of suitable size
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we compute the EMD for a limited number of grid
translations within a small neighborhood – of size
EMD(Ntopt) – of every point-to-point translation. Note
that we do not know EMD(Ntopt) but we can compute
mini,j EMD(Nti→j) which, according to Lemma 3, ap-
proximates EMD(Ntopt) well-enough. In order to save
time, rather than computing EMD exactly, we will
approximate it using the procedure ApxEMD.

Translation(A, B, ε):

1. Let α = mini,jApxEMD(A(ti→j), B, 1) and let G
be a uniform square grid of spacing cεα, where
c = 1/

√
72.

2. For each pair of points ai ∈ A and bj ∈ B do:

(a) Place a disk D of radius α around ti→j .

(b) For every grid point tg ∈ D ∩ G compute a

value ẼMD(tg) = ApxEMD(A(tg), B, ε/3).

3. Report the grid point tapx that minimizes

ẼMD(tg).

Figure 1: Algorithm Translation(A,B, ε).

Theorem 4 For any given ε > 0, a translation Ntapx

such that EMD(Ntapx) ≤ (1+ε)EMD(Ntopt) can be com-
puted in O((n3m/ε4) log2(n/ε)) time.

Next, consider the case of equal weight sets. Let
NtC(A)→C(B) be the translation that matches the cen-
ters of mass C(A) and C(B). Theorem 1 sug-
gests the following trivial 2-approximation algorithm:
compute EMD(NtC(A)→C(B)). According to Theo-
rem 1, Ntopt is at most EMD(Ntopt) far away from
NtC(A)→C(B). Hence, we need to search for Ntopt

only within a small neighborhood of NtC(A)→C(B).
We modify algorithm Translation(A,B, ε) as
follows: First we compute C(A) and C(B).
Then, we run ApxEMD(A(NtC(A)→C(B)), B, 1) and
set α to the value returned. Next, we run
ApxEMD(A(Ntg), B, ε/3) for all the grid points Ntg
which are at most α away from NtC(A)→C(B). The min-
imum over all these approximations gives the desired
approximation bound. Hence, we have managed to
save an nm term from the time bound of Theorem 4.

Theorem 5 If A and B have equal total weights
then, for any given ε > 0, a translation Ntapx such that
EMD(Ntapx) ≤ (1 + ε)EMD(Ntopt) can be computed in
O((n2/ε4) log2(n/ε)) time.

For the assigment problem under translations, we can
use the above algorithm for equal weight sets , running
ApxMATCH instead of ApxEMD. This reduces the
running time further.

Theorem 6 For any given ε > 0, a (1 + ε)-
approximation of the minimum cost assignment under
translations can be computed in O((n3/2/ε7/2) log5 n)
time.

Note that, the latter algorithm can be also applied to
equal weight sets with bounded integer point weights
by replacing each point by as many points as its
weight.

4 Approximation algorithms for rigid motions

We first give a (2+ε)-approximation algorithm for ro-
tations. Then, we combine this (2+ ε)-approximation
algorithm with the (1 + ε)-approximation algorithms
for translations to get (2 + ε)-approximation algo-
rithms for rigid motions.

Rotations. Let aiô bj be the angle between the seg-
ments oai and obj such that 0 ≤ aiô bj ≤ π. Also,
let θi→j be the rotation of ai by aiô bj that aligns the
origin o and points ai and bj such that both ai and
bj are on the same side of o. Note that this is the ro-
tation that minimizes dij(θ); we call such a rotation
an alignment rotation. We have the following simple
lemma.

Lemma 7 Let ai and bj be two points in the plane
with aiô bj = φ. If ai is rotated by an angle θ ≤ φ,
then dij(θ) < 2dij .

Similarly to Lemma 3, and using Lemma 7, we can
prove that the alignment rotation that is closest to
θopt gives a 2-approximation of EMD(θopt). Hence,
we have the following:

Lemma 8 Given two weighted point sets A and B,
EMD(θopt) ≤ mini,j EMD(θi→j) ≤ 2EMD(θopt).

By approximating EMD(θi→j) with Apx-

EMD or ApxMATCH we can get a (2 + ε)-
approximation of EMD(θopt). We call this algorithm
Rotation(A,B, ε); from the context it will be always
clear whether ApxEMD or ApxMATCH is used.
Apart from the cost value, Rotation returns the
corresponing rotation θi→j as well.

Lemma 9 For any given ε > 0, a rotation θapx such
that EMD(θapx) ≤ (2+ε)EMD(θopt) can be computed
in O((n3m/ε2) log2(n/ε)) time. For the minimum
cost assignment problem under rotations the same ap-
proximation can be computed in O((n7/2/ε3/2) log5 n)
time.

Rigid Motions. We can combine the algorithms im-
plied by Lemma 3 and Lemma 9 to get a (4 + ε)-
approximation of the minimum EMD under rigid mo-
tions in the following way: for each point-to-point
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translation Nti→j , compute a (2 + ε)-approximation
of the optimum EMD between A(Nti→j) and B un-
der rotations about bj . The minimum over all these
approximations gives a 2(2 + ε)-approximation of
EMD(Ntopt, θopt).

Lemma 10 For any given ε > 0, a (4 + ε)-
approximation of the minimum EMD under rigid
motions can be computed in O((n4m2/ε2) log2(n/ε))
time.

The (2 + ε)-approximation algorithm for rigid mo-
tions is based on similar ideas. Accoring to Obser-
vation 1, there exist two points ai, bj whose distance
at I:topt,θopt is at most EMD(Ntopt, θopt). We place a
grid of suitable size around each Nti→j . For each grid
point Ntg that is at most EMD(Ntopt, θopt) away from
Nti→j we compute a (2 + ε)-approximation of the op-
timum EMD betwenn A(Ntg) and B under rotations
about bj . The minimum over all these approximations
is within a factor of (2 + ε) of EMD(Ntopt, θopt). Since
we do not know EMD(Ntopt, θopt), we first compute a
(4+ε)-approximation of it as shown above. Algorithm
RigidMotion(A,B, ε) is shown in Figure 2.

RigidMotion(A, B, ε):

1. For each pair of points ai ∈ A and bj ∈ B do:

(a) Set the center of rotation, i.e. the origin, to
be bj by translating B appropriately.

(b) Run Rotation(A(ti→j), B, 1) and let αij

the cost value returned.

Let α = minij αij .

2. Let G be a uniform grid of spacing cαε, where c is
a suitable constant. For each pair of points ai ∈ A
and bj ∈ B do:

(a) Set the center of rotation, i.e. the origin, to
be bj by translating B appropriately.

(b) Place a disk D of radius α around ti→j .

(c) For every grid point tg ∈ D ∩ G run

Rotation(A(tg), B, ε/3) Let ẼMD(tg) and
θg
apx be the cost value and angle returned

respectively.

3. Report the grid point tapx that minimizes

ẼMD(tg), and the corresponding angle θapx.

Figure 2: Algorithm RigidMotion(A,B, ε).

Theorem 11 For any given ε > 0, a rigid
motion I:tapx,θapx

such that EMD(Ntapx, θapx) ≤
(2 + ε)EMD(Ntopt, θopt) can be computed in
O((n4m2/ε4) log2(n/ε)) time.

As in the case of translations, for equal weight sets
we need to search for the optimal translation only
around NtC(A)→C(B). We set the center of rota-
tion to be C(B). Computing the 6-approximation
of EMD(Ntopt, θopt) can be done simply by running
Rotation(A(NtC(A)→C(B)), B, 1). Similarly, we need
to run Rotation(A(Ntg), B, ε/3) only for grid points
Ntg that are close to NtC(A)→C(B).

Theorem 12 If A and B have equal total weights,
then, for any given ε > 0, a rigid motion I:tapx,θapx

such that EMD(Ntapx, θapx) ≤ (2 + ε)EMD(Ntopt, θopt)
can be computed in O((n3m/ε4) log2(n/ε)) time. For
the minimum cost assignment problem under rigid
motions the same approximation can be computed in
O((n/ε)7/2 log5 n) time.
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Abstract Order Type Extension and New Results
on the Rectilinear Crossing Number - Extended Abstract

Oswin Aichholzer∗ Hannes Krasser†

Abstract

We provide a complete data base of all realizable order
types of 11 points in general position in the plane.
Moreover, we develop a novel and efficient method for
complete extension to (abstract) order types of size 12
and more. With our approach we have been able to
determine the exact rectilinear crossing number for
up to n = 17, and slightly improved the asymptotic
upper bound. We briefly discuss further applications
of this approach.

1 Introduction

A finite point set in the plane belongs to the most
common ingredients for computational and combi-
natorial geometry problems. For quite many, espe-
cially combinatorial problems, the exact metric prop-
erties are not relevant, but the combinatorial prop-
erties of the underlying point set play the main role.
More precisely, the crossing properties of the line seg-
ments spanned by the point set already determine
the problem. Triangulations, crossing numbers, con-
vexity problems are among other famous examples.
Order types provide a means to encode the combina-
torial properties of finite point sets. The order type
of a point set S = {p1, .., pn} is a mapping that as-
signs to each ordered triple (pi, pj , pk) an orientation.
Throughout this work we assume that S is in general
position, that is, the orientation of each point triple is
either clockwise or counter-clockwise. Two point sets
S1, S2 are of the same order type if and only if there is
a bijection between S1 and S2 such that either all (or
none) corresponding triples are of equal orientation.
To achieve results for point sets of fixed size for the

problems mentioned above, it is sufficient to check one
instance of each order type instead of looking at all
(infinitely many) point sets. A data base containing
all order types of size up to 10 already exists [2] and
has been applied fruitfully to many problems in com-
putational and combinatorial geometry [6].
Order types have played a crucial role in gather-

ing knowledge about crossing numbers. The cross-
ing number of a graph G is the least number of edge
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nology, Graz, Austria, oaich@ist.tugraz.at

†Institute for Theoretical Computer Science, Graz Univer-
sity of Technology, Graz, Austria, hkrasser@igi.tugraz.at

crossings attained by a drawing of G in the plane. We
consider the problem of finding the rectilinear (edges
are required to be straight line segments) crossing
number cr(Kn) of the complete graph Kn on n ver-
tices [12]. Determining cr(Kn) is commonly agreed to
be a difficult task, see [3] for references and details.
So far the exact values of cr(Kn) have been known
for n ≤ 12 [2, 3]. In Section 4 we extend this range to
n ≤ 17. Moreover, we also present an improvement
on the asymptotic upper bound of cr(Kn). Our re-
sults are available on-line [1]. We close with a brief
discussion of further applications of our approach.

2 Order type data base for n=11

A complete data base of order types for sets with up
to 10 points has already been established [2]. We
present an extension to this data base for point sets
of size 11. Our approach is strongly related to [2] and
uses improved techniques to cover the following three
steps, cf. [2] for the necessary concepts and definitions.

1. Generating a complete candidate list of abstract
order types

2. Grouping abstract order types into projective
classes and deciding realizability

3. Realizing all realizable order types by point sets
with ”nice” coordinate representation

For the first step, we acquired 2 343 203 071 in-
equivalent abstract order types. We only stored one
representative of each projective class explicitly at
this time. This evaluates to 41 848 591 abstract pro-
jective order types of size n = 11, see Table 1.
The second step - deciding realizability - is the hard-

est part of the construction. The trouble is, that this
decision problem is known to be NP-hard [13] and
no practical algorithms are known, not even for small
sets, say of size 10 or 11. We tried to find realizations
and started by applying refined versions of the heuris-
tic methods from [2] for each projective order type
class. These worked for most of the abstract order
types in question. For classifying non-realizable order
types, we used a well-known practical algorithm for
a non-realizability proof developed by Bokowski and
Richter [9]. To our benefit, the heuristics for finding
realizations and proving non-realizability were suffi-
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cient to completely settle the case for n = 11, see
Table 1.
The main goal of the third step is to store the data

base in an application friendly way. To this end, we
provide two representations of the data base. An
explicit version of the data base contains one point
set for each planar order type, all in 16-bit integer
representation.

projective abstract o.t. 41 848 591

− thereof non-realizable 155 214

= projective order types 41 693 377

abstract order types 2 343 203 071

− thereof non-realizable 8 690 164

= order types 2 334 512 907

Table 1: Number of order types of cardinality n = 11.

Supporting the reliability in the construction of our
data base, all algorithms to generate the complete
data base of abstract order types are of purely com-
binatorial nature. The applied methods for deciding
realizability are heuristics, but the acquired results
can be checked in a deterministic way.
The vast storage and the lack of applicability are

the two main reasons - apart from calculation time
- that we do not have a complete data base of order
types with 12 or more points.

3 Complete abstract point extension

For several problems and conjectures the complete
order type data base of sets of up to 11 points has
been sufficient to give a final answer, cf. [3]. How-
ever, many problems tend to be harder and cannot
be settled just by checking all cases for size up to
11. Still it looks highly plausible to gain significantly
more insight with a few additional points, say 12 or
13 points. To evade these obstacles we make use of
well-known theoretical results. For many problems on
point sets there exist inductive restrictions, so-called
subset properties.

Definition 1 (Subset property) Let Sn be an or-
der type consisting of n elements, n ≥ 4, and consider
some property that is valid for Sn. Then this property
is called a subset property if and only if there exists
some Sn−1 ⊂ Sn of n− 1 elements such that a similar
property holds for Sn−1.

Our general idea is to exploit subset properties for
order type based problems to obtain results beyond
point sets of size 11. First, we are applying the order
type data base to completely determine the problem
for point sets of small size, that is, up to n = 11.
This gives a set of result order types of cardinality

11, all realized by point sets. Next, we enumerate
all order types of size 12 that contain one of the 11-
point result order types as a subset. Applying the
subset property, we are able to filter these 12-point
order types. Only order types that fulfill the subset
property are kept. Then we repeat this procedure,
theoretically extending the set of result order types
to arbitrary n.
For this technique, we require an algorithm that

calculates for a given order type of cardinality n all
(n+1)-point order types that contain the input order
type as a sub-order type. We call this step complete
point extension. It is well known that an extension
technique relying only on the geometric realizations
of the data base cannot guarantee completeness of
the extension, see Figure 1. For a specific n-point
realization of an order type we cannot derive all
required n+1 order types just by adding a new point
to this realization. To achieve completeness of the
extension, we use an abstract extension method, that
is, applying a combinatorial extension technique. We
provide a one-element extension to an abstract order
type by adding a pseudoline to the dual pseudoline
arrangement in all combinatorially possible ways.

Figure 1: Two realizations of the order type of five
points in convex position. Only the right point set
can be extended in a way such that the resulting point
set has three points on its convex hull.

For specific applications with a subset property, we
define an order type extension graph. In this graph
each order type is represented by a node. For each
order type of size n + 1 (son), there is exactly one
connection by an edge to a predecessor sub-order type
of size n (father). By this definition we have that each
order type corresponds to a unique predecessor order
type by removal of a single point. On the other hand,
an extension process that only extends corresponding
to the edges of an order type extension graph (from
father to son) enumerates each extended order type
exactly once.
In general, the algorithm of complete abstract

point extension extends one input order type point
by point, then continuing on the remaining set of
order types. After extension with one abstract point,
we check if the created order type of size n+ 1 (son)
has the initial order type of size n as its predecessor
order type (father) in the order type extension graph.
Only if this is the case we keep it as a candidate

62



EWCG 2005, Eindhoven, March 9–11, 2005

for the output. The very general approach with
the order type extension graph guarantees to avoid
duplicates in the construction process, thus it can
be used for recursive enumeration techniques, known
as reverse search, cf. Avis and Fukuda [7]. An
additional benefit of this technique is that it can be
applied iteratively, i.e., extending from n points to
n+ 1, n+ 2, and so on, without storing intermediate
results. In fact, only the order types corresponding
to a single path of the order type extension graph
have to be kept in memory, that is, the edges
describing the father-son relationship between order
types of size n, n + 1, n + 2, and so on. This allows
calculations which otherwise would not be possible
because of enormous storage requirements for inter-
mediate steps. In addition, applications based on
the order type extension graph are easily executed in
parallel. Thus, highly time intensive problems may
be settled through distributed computing approaches.

4 New Rectilinear Crossing Numbers

4.1 Subset Property for cr(Kn)

The next two well-known lemmas (see e.g. Guy [11]
for references) provide the necessary relations to ob-
tain a subset property for cr(Kn).

Lemma 1 cr(Kn) ≥ � n
n−4 cr(Kn−1)

Corollary 2 (Crossing number subset prop-
erty) For any drawing of Kn with c crossings there
exists at least one sub-drawing Kn−1 with at most
�n−4

n c� crossings.

Lemma 3 Let n ∈ N be odd. Consider a straight-
line drawing of Kn with c crossings. Then: c ≡(
n
4

)
(mod 2).

A drawing of K13 with 229 (or fewer) crossings con-
tains at least one sub-drawing K12 with � 9

13 229� =
158 (or fewer) crossings. Recursive application shows
that there exists a sub-drawing of size 11 with
� 8

12 158� = 105 crossings. By the parity property we
can further reduce the number of crossings for the 11-
point subset to at most 104. Thus to achieve a data
base of all order types of size 13 with 229 (or fewer)
crossings, one can start with a complete data base of
order types of size 11 defining drawings of Kn with at
most 104 crossings, i.e., either 102 or 104 crossings.

4.2 Results on cr(Kn) for n ≥ 12

Using the crossing number subset property, we were
able to calculate the rectilinear crossing numbers for
n = 12, ..., 17, see Table 2.

n 12 13 14 15 16 17

cr(Kn) 153 229 324 447 603 798

dn 1 4 534 20 16 001 36 ≥ 37269

Table 2: cr(Kn) for n = 12, ..., 17.

The numbers dn of inequivalent drawings of Kn

minimizing the number of crossings are given in the
last row of Table 2. To obtain these numbers we
had to perform the more challenging task of decid-
ing the realizability of the calculated abstract order
types. Our heuristics - see Section 2 - found realizing
point coordinates for all optimal abstract drawings for
n ≤ 16. Thus, the calculated values are exact. Note
that the numbers of inequivalent optimal drawings
of Kn follow a parity pattern. There are relatively
few drawings of Kn with cr(Kn) crossings for even n
compared to the case of odd n. This property is the
main reason that allows complete abstract extension
to work so well, as the problem itself cuts down on
the number of interesting sets periodically.
In addition to new results on cr(Kn) for constant n,

we also achieved an improvement on the asymptotic
upper bound. We constructed a set of 54 points with
115999 crossings such that with the strategy of lens re-
placement [3] we were able to prove the next theorem.
The previously best known bound was ν∗ < 0.38074,
whereas ν∗ > 0.37533 still holds as a lower bound [8].

Theorem 4 ν∗ = limn→∞ cr(Kn)/
(
n
4

)
< 0.38058

5 Further Applications

5.1 Happy End Problem

Erdös and Szekeres asked in 1935 for the smallest
number g(k), such that each point set in the plane
with at least g(k) points contains a convex k-gon [10].
For k > 5 this problem is still unsolved, where it is
known that g(6) ≤ 37. The conjecture is that the
true value for g(6) is 17. To answer this conjecture
our plan is to apply our abstract extension technique
in order to obtain all sets without empty convex
hexagons for n ≤ 17. If we cannot find a set for
n = 17 this will prove the conjecture to be true. The
subset property for this problem is obvious: any n−1
point subset of a set of n points to be considered
must not contain a convex hexagon.

5.2 Decomposition

Similar to the convex-decomposition problem of
decomposing a point set into convex polygons one
might allow the resulting faces to be either convex
polygons or pseudo-triangles [4]. When investigating
this problem it turned out to be important to know
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optimal decompositions of small sets. In this context
we asked for independent (disjoint) empty convex
polygons spanned by the set. Let us briefly mention
two results we got from the data base, see [4] for
details. First: Any set of 8 points contains either an
empty convex pentagon or two independent empty
convex quadrilaterals. And with a similar flavor:
Any set of 11 points contains either an empty convex
hexagon or an independent empty convex pentagon
and an empty convex quadrilateral. The mentioned
results directly lead to an upper bound of 7n/10 for
the number of convex or pseudotriangular faces used
to decompose a set of n points.

5.3 Counting Triangulations

Counting the number of triangulations of a set of
points in the plane is another interesting geometric
problem. Exact numbers, using our data base, are
known for all sets with n ≤ 11 points. The best gen-
eral asymptotic lower bound for this problem is based
on these results for small sets [5]. To improve the
bound it will be useful to obtain a tight lower bound
for n = 12, 13, .... As a subset property for this task
we can use the fact that adding an interior point to
a given set increases the number of triangulations by
some constant factor.

6 Open Problems

The next steps of our investigation will be to com-
pute cr(K18). The possible range for cr(K18)
is {1026, 1027, 1028, 1029}, where our conjecture is
cr(K18) = 1029. Using heavy distributed comput-
ing we consider this task to be realistic in the near
future.
An interesting open problem is whether there al-

ways exists at least one optimal drawing of Kn which
contains an optimal sub-drawing of Kn−1. A poten-
tial counter-example is n = 18, as all 17-point subsets
of the only known drawing of K18 with 1029 crossings
determine more than cr(K17) = 798 crossings.
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Quadrangulations and 2-Colorations

Carmen Cortés∗¶ Alberto Márquez†¶ Atsuhiro Nakamoto‡ Jesús Valenzuela§¶

Abstract

Any metric quadrangulation (made by segments of
straight line) of a point set in the plane determines a
2-coloration of the set, such that edges of the quadran-
gulation can only join points with different colors. In
this work we focus in 2-colorations and study whether
they admit a quadrangulation or not, and whether,
given two quadrangulations of the same 2-coloration,
it is possible to carry one into the other using some
local operations, called diagonal slides and diagonal
rotation. Although the answer is negative in gen-
eral, we can show a very wide family of 2-colorations,
called onions 2-coloration, that are quadrangulable
and which graph of quadrangulations is always con-
nected.

1 Introduction

Given a set S, either a polygon or a point set, a quad-
rangulation of S is a partition of the interior of S, if
S is a polygon, or of the convex hull of S, if S is a
point set, into quadrangles (quadrilaterals) obtained
by inserting edges between pairs of points (diagonals
between vertices of the polygon) such that the edges
intersect each other only at their end points. Not all
polygons or point sets admit quadrangulations, even
when the quadrangles are not required to be convex.
In the study of finite element methods and scattered
data interpolation, it has recently been shown that
quadrangulations of point sets may be more desirable
objects than triangulations [2]. The quadrangulations
of polygons have been also investigated in Computa-
tional Geometry, mostly in the context of guarding or
illumination problems.
From now on we call a polygon or point set quadran-

gulable if it admits a quadrangulation without adding
any additional point (Steiner point).
There are two different characterizations of quad-

rangulable point sets:
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• if and only if there exists a triangulation of the
set such that its dual graph contains a perfect
matching [5].

• if and only if it has an even number of points in
its convex hull [1].

A quadrangulation is constructed (with the addition
of a Steiner point to obtain an even number of points
in the convex hull, if necessary) in Θ(n log n).
For a more complete vision on quadrangulations we

recommend Toussaint’s survey [6].
Given a quadrangulation of a point set in the plane,

it determines a 2-coloration of the set, such that edges
of the quadrangulation can only join points with dif-
ferent colors. In this work we focus on 2-colorations
and study whether they admits a quadrangulation
or not (Section 2), and whether, given two quad-
rangulations of the same 2-coloration, it is possible
to carry one into the other using some local opera-
tions (Section 3). Finally, in Section 4 we present
a very wide family of 2-colorations, called onions 2-
coloration, that are quadrangulable and which graph
of quadrangulations is always connected.

2 2-colorations and quadrangulations

Suppose we have a 2-colorated point set S in the plane
and we want to know if it is possible to construct a
quadrangulation of its convex hull. A similar condi-
tion to the one given by [1] is, in this context, evident:

Lemma 1 A necessary condition for a 2-coloration
of a point set S to admit a quadrangulation (to be
quadrangulable) is that

1. the number of points of the convex hull of S is
even; and

2. consecutive points of the hull have different color.

But even when the conditions of Lemma 1 are
fulfilled, it is easy to find non-quadrangulable 2-
colorations, as the one at the left of Figure 1. In
order to construct a quadrangulation, point 1 cannot
be joined with c because then b can be joined with
no black point but 1. So we draw an edge from 1 to
b. Now b cannot be joined either with 3 or with 4,
because then c or 2, respectively, would be isolated,
and cannot be part of any quadrangulation. But if
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we join b with 2 the only way to complete a quadri-
lateral is to match 2 and d, that leaves 3 isolated.
It is important to remark that we are talking about
2-colorations instead sets of points. Thus, while the
2-coloration at the left of Figure 1 is not quadrangula-
ble, the underlying point set is, as we see in the right
picture.

a

b

c

d1

2
3

4 a

b

c

d1

2

3

4

Figure 1: The set is either quadrangulable or not de-
pending on the coloration.

Notice that in the right picture we have inter-
changed the colors of 2 and b, obtaining a set with
two convex layers, both of them made by points with
alternate colors. This is a interesting configuration
since, as we will see in Section 4, it is always quad-
rangulable.

3 Diagonal transformation in quadrangulations

Nakamoto [4], working with topological quadrangu-
lations on surfaces, defines two diagonal transforma-
tions; the diagonal slide and the diagonal rotation,
that are shown in Figure 2. Note that, while the di-
agonal slide does not modify the coloration of the set,
the diagonal rotation changes the color of the center
of rotation (because, in other case, points with the
same color are joined).
Since the same point set can have different col-

orations, it is not always possible to change any two
quadrangulations one into each other using only di-
agonal slides. In Figure 3 two colorations of the
same point set are shown; one with four black and
four white points, and another with five white and
three black points. Since diagonal slides preserve col-
orations, it is not possible to use them to transform
one quadrangulation into the other. However, it is
easy to see that this can be done using also diagonal
rotations.
Nakamoto [4] proved that in any closed surface it is

always possible to carry one topological quadrangula-
tion of a set into any other if

1. both diagonal slides and rotations are allowed; or

2. both quadrangulations have the same number of
points of each color by using only diagonal slides.

diagonal slide

diagonal rotation

Figure 2: Diagonal transformations on quadrangula-
tions.

Figure 3: Quadrangulations of the same set with dif-
ferent colorations.

This can be seen in terms of the connectivity of
the graph of quadrangulations. The graph of quad-
rangulations of a point set is the graph having all the
quadrangulations of the set as nodes, and with adja-
centcies corresponding to diagonal slides or diagonal
rotations. Similarly, the graph of quadrangulations of
a 2-coloration has as nodes the quadrangulations of
a given 2-coloration. Since diagonal rotations change
the 2-coloration, the adjacentcies are determined only
by diagonal slides.
Both graph of quadrangulations are, in general, not

connected. In Figure 4, it is shown a 2-coloration that
admits only two quadrangulations, being not possible
to perform any diagonal slide. If we also allow diago-
nal rotations it can be shown that it is not possible to
transform one quadrangulation into the other. This
gives rise to the following theorems:

Theorem 2 There are 2-colorations with discon-
nected graph of quadrangulations.

Theorem 3 There are point sets with disconnected
graph of quadrangulations.
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Figure 4: A set with disconnected graph of quadran-
gulations.

Our example has disconnected graph of quadran-
gulations both as a 2-coloration and as a point set.
An open problem is to determine if both things al-
ways come together, or if there exit point sets with
connected graph of quadrangulations that admit 2-
colorations which graph of quadrangulations is not.
In spite of the graph of quadrangulations of an arbi-

trary 2-coloration is, in general, not connected, in the
next section we present a wide family of 2-colorations
having this property.

4 Onion 2-colorations

If a set of sites have an even number of vertices in its
convex hull, then it is quadrangulable, and vice-versa
[1]. This is rewritten for 2-colorations in Lemma 1,
but only as a necessary condition, since we find non-
quadrangulable 2-colorations that fulfill it, as the one
we saw in Figure 1. But, what about if we extend
Lemma 1 to the interior of the set? If the convex hull
of the 2-coloration fulfill the lemma, we remove it and
examine the convex hull of the remaining points, and
so on. A 2-coloration with this property is quadrangu-
lable and its graph of quadrangulations is connected.
We call onion 2-coloration to a 2-coloration of a

point set such that all its convex layers have an even
number of points with alternate colors. An onion
layer of an onion 2-coloration is the set of edges that
are part of a convex layers of the set. We call Oi,
with i = 0, . . . , l, to the onion layers of the onion
2-coloration, such that Oi is inside the polygon de-
fined by Oj if i > j (Figure 5). Note that the poly-
gon defined by Ol does not contain any point of the
onion 2-coloration and that O0, the convex hull, is al-
ways included in every quadrangulation of the onion
2-coloration. By definition, the points on every onion
layer satisfy Lemma 1, that implies the following re-
sult.

Proposition 4 Onion 2-colorations are quadrangu-
lable.

The main idea of the proof is to draw a triangula-
tion joining points between two consecutive onion lay-
ers. By deleting the edges matching points with the

O0
O1

Ol

Figure 5: An onion 2-coloration and its onion layers.

same color (Figure 6) we obtain a quadrangulation of
the onion 2-coloration. It should be note that we are
drawing quadrangulations of convex polygons with a
convex hole, being the general case, decide whether
a polygon with holes admits a quadrangulation, an
NP-complete problem [3].

Figure 6: By deleting the diagonals between points
with the same color we obtain quadrilaterals.

But onion 2-colorations are not the only quadran-
gulable 2-colorations, since there are quadrangulable
2-colorations with non alternate colors in some of its
convex layer (Figure 7) or with a odd number of points
on them.

Figure 7: The colors of the inner convex layer are not
alternate.

In addition to be quadrangulable, onion 2-
colorations have connected graph of quadrangula-
tions. The proof is based in the following lemmas:
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Lemma 5 Given two quadrangulations of an onion
2-coloration containing all their onion layers, we can
transform one into the other by only using diagonal
slides.

Lemma 6 Any quadrangulation of an onion 2-
coloration can be carried into another containing its
onion layers using diagonal slides.

From these lemmas it can be easily proved the
connectivity of the graph of quadrangulations of any
onion 2-coloration.

Theorem 7 The graph of quadrangulations of an
onion 2-coloration is non-empty and connected.

In particular, if the onion 2-coloration have only
one layer, we obtain the following result:

Corollary 8 The graph of quadrangulations of any
quadrangulable 2-coloration in convex position is con-
nected.

5 Conclusions and open problems

Two main ideas can be extracted from this work: to
be quadrangulable depends on the 2-coloration of the
set, and the graph of quadrangulations of both a 2-
coloration and a point set is, in general, not con-
nected. However, there exits a wide family of 2-
colorations, the onion 2-colorations, that are quad-
rangulable and which graph of quadrangulations is
connected.
There are several questions that appear all along

the present work. One is to explore new conditions
for a 2-coloration to be quadrangulable, searching for
new families of quadrangulable 2-colorations. Related
to the graph of quadrangulations, an interesting ap-
proach is to study the relationship, if it exits, between
the connectivity of the graph and the coloration of
the set. And, since the example presented (Figure 4)
of a set with disconnected graph of quadrangulations
have rows with until four collinear points, it would
be convenient to construct a new example in gen-
eral position. Probably this implies to work with sets
with greater cardinal and complexity. Finally, an-
other line for future works is, since they also admit
2-colorations, to extend this study from quadrangula-
tions to 2n-lations of point sets.
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Discrete Curvatures and Gauss Maps for Polyhedral Surfaces

Lyuba Alboul∗ Gilberto Echeverria† Marcos Rodrigues‡

Abstract

The paper concerns the problem of correct curvatures
estimates directly from polygonal meshes. We present
a new algorithm that allows the construction of un-
ambiguous Gauss maps for a large class of polyhedral
surfaces, including surfaces of non-convex objects and
even non-manifold surfaces. The resulting Gauss map
provides shape recognition and curvature characteri-
sation of the polyhedral surface (polygonal mesh) and
can be used further for optimising the mesh or for de-
veloping subdivision schemes.

1 Introduction

In many applications a physical object is represented
by discrete data, obtained by some measurement sys-
tem. A polyhedral model (a triangular mesh, piece-
wise linear surface) is the easiest way to obtain a
preliminary sketch of the given object. A solid ob-
ject is represented by its boundary, i.e. by the sur-
face that bounds the object. Triangular or polygo-
nal meshes are commonly used in modern computer-
related applications to represent surfaces in three-
dimensional space. Therefore, there is a substantial
need for accurate estimates of geometric attributes
such as surface area, normal vectors, and curva-
tures directly from a mesh. A smooth surface S is
uniquely characterised and quantified by the metric
tensor and by the Weingarten map or the shape op-
erator [Kuhn02]. The shape operator is the second-
order invariant (in other words, curvature) that com-
pletely determines the shape of the surface S. In re-
cent years significant efforts have been made to de-
fine the analogues of differential geometry concepts
on meshes that imitate those of a smooth surface
([Alb96, Bor03, Dyn01, Malt02, Mey03]). Among
those concepts surface curvatures are most important.
Surface curvatures are basic measures to describe the
local shape of a smooth surface. However, a mesh
(a polyhedral surface) is not smooth, and there is
still no consensus about the most appropriate way
of estimating such geometric quantities as curvatures.
On the other hand, methods are being developed to
capture curvature information without referring to
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higher-order formulas of differential geometry. These
methods are based on the discrete curvature concepts
and are of growing interest for geometric modelling
[Malt02, Alb03, Dyn01, Mey03]. Discrete curvatures
can be computed directly from the polygonal mesh.
The principal difference to smooth surfaces is that
the curvatures in polyhedral surfaces are concentrated
around the vertices and along the edges.
If we think of a polyhedral surface as an approxima-
tion of a smooth surface, then, informally speaking,
curvatures of a domain of the underlying smooth sur-
face are ‘glued’ together in the corresponding domain
of a polyhedral surface.
Therefore, analogue measures of curvature in a piece-
wise linear setting should be analogues of integral for-
mulae for curvature in a ‘smooth’ setting and should
preserve integral relations for curvature, such as
the Gauss-Bonnet theorem ([Br79, Banch70, Alb96].
Such analogues exist and were introduced long ago
in the frames of the theory of non-regular surfaces
(see an overview in [Alb96]). These analogues were
discussed in detail in [Br79], where the authors also
compare discrete curvatures with their smooth coun-
terparts.
In the last five-six years the amount of papers that ex-
plore discrete curvatures in one or another context has
increased significantly. Much attention is paid to the
discrete Gaussian curvature, known also as the angle
deficit. The angle deficit is used to estimate the Gauss
curvature of smooth surfaces. In [Bor03] the problem
of the correct estimation of the Gauss curvature is in-
vestigated in detail, and they show that approaches
based on the use of normalized angular deficits are
often erroneous, and can be applied correctly only if
the geometry of meshes is precisely controlled. We
agree with them, and in this paper we highlight why
the angular deficit is neither sufficient to estimate the
Gaussian curvature of the underlying smooth surface
nor to capture the curvature information of a poly-
hedral surface. Loosely speaking, the reason is that
there are more curvatures for polyhedral surfaces than
for smooth ones [Br79, Alb96, Alb03]. This fact is still
not fully acknowledged in geometric applications, but
without addressing it, it is impossible to develop cor-
rect curvature estimates.
Besides the need to derive correct curvature estimates
directly from polygonal meshes, there is also a need
for visualisation of an object in order to explore com-
plex shapes and emphasize hidden details. We pro-
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pose an approach that addresses both needs, and
that empowers us to correctly and consistently de-
scribe and visualise complex 3D shapes based on cur-
vature properties. Our method to characterise sur-
face shape is based on constructing the Gauss map
directly from the polygonal mesh, an area of research
with still scarce and ambiguous results for non-convex
objects [Low02]. The resulting Gauss map provides a
description of the surface by determining its domains
with respect to incorporated curvatures. Each domain
can be split up into uniquely determined sub-domains;
therefore each surface can be associated with the in-
troduced Gauss map signature, abbreviated as GMS.
The GMS extracts convex, concave and saddle regions
in the underlying surface. These regions are often only
implicitly present in a polyhedral surface, and cannot
be determined by the sign of the angle deficit only.
The GMS method besides shape recognition and de-
scription can be used for optimisation of the underly-
ing model or for developing subdivision schemes. The
method provides also a better insight into the geomet-
ric structure of complex triangle meshes, by describing
various vertex types, some of them with a very com-
plex GMS. A good understanding of the geometry of
meshes is a step towards more robust mesh manipula-
tion algorithms. Finally, the proposed GMS method
is simple to compute, easy to view dynamically and
effective in visualising complex polyhedral surfaces.

2 Polyhedral Surfaces: Discrete curvatures and
Gauss map

By a polyhedral surface we understand a triangu-
lated polyhedral surface. Designating V as a finite
point set in three-dimensional space, V = {Vi, i =
1, . . . , n}, we denote by P(V) a polyhedral surface
with the vertex set V. The term polyhedron refers
to a closed polyhedral surface. In such a setting a
polyhedron is bounded, but might be non-simple, i.e.
non-homeomorphic to a sphere, as well as being multi-
connected and self-intersecting, and its interior vol-
ume is not necessarily part of the polyhedron. There-
fore, a polyhedron is not necessarily a solid body.
Given a polyhedron P(V), the set of its vertices is
denoted by V , the edges by E, and the faces by F .

Definition 1 The star Str(ν) of a vertex ν is the
union of all the faces and edges that contain the ver-
tex, and the link Lnk(ν) of the star (the boundary of
the star) is the union of all those edges of the faces of
the star Str(ν) that are not incident to ν.

2.1 Discrete Curvatures

In this paper we are interested only in discrete curva-
tures related to the integral Gaussian curvature, i.e.
those that are supported on the vertices. The common

expression for the integral Gaussian curvature of a do-
main U of a smooth surface S is

∫
U
KdA [Kuhn02].

Curvature ω around vertex ν is defined as:

ω = 2π − θ (1)

where θ =
∑
αi is the total angle around vertex ν,

and αi are those angles of the faces in the Str(ν) that
are incident to ν. Sometimes one refers to ω simply as
the Gaussian curvature around the vertex, or discrete
Gaussian curvature. Obviously, expression 1 is valid
for any point x ∈ P . For a domain U ⊆ P the total
curvature ΩU is determined as ΩU =

∑
ν∈U ων . For

an oriented closed polyhedral surface P of genus g ΩU

is equal to (1 − g)4π, so the discrete analogue of the
Gauss-Bonnet theorem is preserved.
Positive (extrinsic) curvature ω+: The following
measure which we determine is an analogue of the to-
tal absolute curvature of a polyhedral domain. How-
ever, in Figure 1 we can see that in both polyhedra
all curvatures ων are positive and actually are equal
for every corresponding vertex.

V1

V2 V3

V4

V5

V6 V7

V8

V9

V1

V2 V3

V4

V5

V6 V7

V8

V9

Figure 1: Two polyhedra

Therefore, we have:

Ω(P1) = Ω(P2) =
∑
ν∈P1

|ων | =
∑
ν∈P2

|ων | = 4π. (2)

The left polyhedron is non-convex, but the above
equation does not reflect this fact. For a closed non-
convex smooth surface S the total absolute curva-
ture Kabs =

∫
S
|K|dA is greater than 4π; therefore,∑

ν∈P |ων | is not an appropriate analogue of Kabs.
The problem is that the curvature ω around a vertex
may consist of positive and negative ‘parts’ that are
‘glued’ together; and the task is to separate them. If
vertex ν belongs to the boundary of the convex hull
of its star (i.e. the convex hull of ν and all vertices in
its star), then we can single out another star Str+(ν)
with ν as the vertex and those edges of Str(ν) that
belong to the boundary of the convex hull. The edges
of Str+(ν) will determine the faces of Str+(ν). We
refer to Str+(ν) as the convex cone of vertex ν. Then

ω+ = 2π − θ+ (3)

where θ+ is the total angle around ν in Str+(ν). ω+

is equal to zero, if the vertex and all the vertices in its
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star lie in the same plane. If the convex cone around
ν doesn’t exist, i.e. ν lies inside the convex hull of
Str(ν), then ω+ is, by definition, equal to zero.
Negative (extrinsic) curvature ω−: We can now
’extract’ the negative part of ω as follows

ω− = ω+ − ω (4)

Absolute (extrinsic) curvature ωabs:

ωabs = ω+ + ω− (5)

On the basis of the types of curvatures around a
vertex one distinguishes three basic types of vertices
for an embedded polyhedral surface ([Br79, Alb96]):
convex vertices (ω+ = ω), saddle vertices (ω− = −ω)
and mixed vertices (ω+ > 0, ω+ %= ω) (see Figure 2).

(i) (ii) (iii)

Figure 2: Examples of convex (i), saddle (ii), and
mixed (iii) vertices

A mixed vertex, however, possesses always the convex
cone around its star. A mixed vertex and its corre-
spondent convex cone are shown in Figure 3.

(i) (ii)

Figure 3: Mixed vertex (i) and its convex cone (ii)

Total absolute extrinsic curvature Ωabs: is de-
fined as the sum of absolute extrinsic curvatures of
all the vertices of a polyhedral surface P :

Ωabs =
∑

i

ωabs(νi) =
∑[

ω+(νi) + ω−(νi)
]

(6)

Ωabs takes different values on the polyhedra that are
depicted in Figure 1. It is equal to 4π on the right
polyhedron, as it represents a convex body, and is
greater than 4π on the left polyhedron.

2.2 Gauss map

Separation of the positive and negative parts of the
curvature for a mixed vertex can also be carried out
using the Gauss map. For a domain U of smooth
surface S the Gauss map N(U) may be thought of as

the map assigning to each point p ∈ U the point on
the unit 2-sphere S2 ∈ R3, by ‘translating’ the unit
normal vector N(p) to the origin [Kuhn02]. The end-
points of normals, therefore, will cover a certain region
on S2. If a neigbourhood U(p) is small such that the
mapN(U(p)) is one-to-one and orientation-preserving
(outward normals at corresponding points on S and
S2 correspond), then the area N(U(p)) is considered
positive, and the corresponding region U(p) is said to
be strictly convex and the Gaussian curvature at p
defined as |K(p)| = limU(p)↓p

AreaN(U(p))
AreaU(p) , is positive,

i.e. K(p) > 0. If the map N(U(p)) is one-to-one
but orientation reversing, then the area N(U(p)) is
considered to be negative, p is a saddle point and
K(p) < 0. Of course, different regions of S can be
mapped to the same region on the unit sphere, which
results in multiplicities of the Gauss map.
To compute directly the image of the Gauss map of a
given vertex, we need to construct the outward vec-
tor normal for each of the facets around a vertex and
then draw geodesics arcs between the images of neigh-
bouring faces to obtain a graphic image. The union
of the Gauss maps for all vertices is the Gauss map
of a polyhedral surface.
An orientation of the contour around the vertex on
a polyhedral surface induces the orientation on the
boundary of the spherical polygon. Thus we can eval-
uate the curvature around the vertex by computing
the area of the spherical image with the sign + (plus)
in the case that the orientation is preserved, and with
the sign − (minus) otherwise.

3 Results

To characterise a polyhedral model we have developed
algorithms that have the following functionalities:

1. Determination of the Gauss Map for each of the
vertices in V; and

2. Curvature Visualisation, which displays a graph-
ical representation of the Gauss map.

We are able to divide the Gauss Map for a vertex into
different spherical polygons, determine the orienta-
tion of each polygon and thus its sign. Therefore, we
are able not only to separate ω(v) for a vertex v into
positive and negative parts ω+(v) and ω−(v), but to
separate into subparts of the same sign. The number
of subparts together with their signs represents the
Gauss map signature of a vertex. Each subpart of the
negative sign represents a potential (hidden) saddle
region.
The main advantage of our method is that it al-
lows the determination of incorporated curvatures of
various types of vertices, including all the above-
mentioned ones and much more complex such as
the monkey saddle, or vertices with self-intersections,
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Figure 4: Pinch vertex and a reverse pinch vertex with
corresponding Gauss maps

which don’t fit exactly in the category ‘mixed’, de-
scribed in the previous section. Eventually, we can
determine the curvatures of a vertex of any type (of
an oriented polyhedral surface P ). It is also possible
to display the Gauss Map for all the vertices of the ob-
ject simultaneously, or select only one of the vertices
for its Gauss Map to be shown exclusively (or, corre-
spondingly, to visualise the Gauss map of a region on
the surface). The method is interactive, and we can
visualise the regions of positive curvature separately
from the regions of negative curvature.

Examples of Gauss map visualisations are given be-
low. The display of the Gauss Map is done in two
different views, or scenes, and is implemented using
OpenGl. The left scene shows the model of the orig-
inal object and, in the right scene, the areas for the
Gauss Map are drawn on top of a sphere. Positive
areas are shown in red, while negative areas are dis-
played in blue (lighter and darker grey in the black-
white print). The corresponding areas on the object
are coloured in green and red respectively (dark and
light grey in the black-white print).

Figure 4 shows the Gauss map visualisation of two
complex vertices with self-intersections, which we call
a pinch vertex and a reverse pinch vertex. In order to
understand the difference between a pinch vertex and
a reverse pinch vertex, imagine a walk along the link
of the star of a vertex ν. In the case of the pinch ver-
tex the walk makes two full turns around the vertex,
both turns have the same orientation (for example,
counter clockwise). In the case of the reverse pinch
point, the walk makes also two full turns, one is, for
example, in the counter clockwise direction, and the
second one - in the ‘reverse’ direction (i.e. clockwise).
The Gauss map of the pinch vertex has two overlap-
ping areas, each of positive sign. One area is equal to
the curvature of the convex star of the pinch vertex.
The Gauss map of the reverse pinch vertex has also
two areas of positive curvature, separated by the area
of negative curvature.

A more complex object and its Gauss map visualisa-
tion are presented in Figure 5.

Figure 5: Torso and its Gauss map visualisations

4 Future work

Current on-going research includes the visualisation of
the processes of mesh simplification and optimisation
by using the GMS method, as well as to use it for
developing subdivisions schemes based on curvature
estimations.
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On the Number of Facets of Three-Dimensional Dirichlet Stereohedra III:
Cubic Group

Pilar Sabariego ∗ Francisco Santos †

Abstract

We prove that Dirichlet stereohedra for cubic crystal-
lographic groups cannot have more than 105 facets.
This improves a previous bound of 162 [3].

1 Introduction

A stereohedron is any bounded convex polyhedron
which tiles the space by the action of a crystallo-
graphic group. A particular case is the Voronoi region
of a point P in the Voronoi diagram of its orbit GP
under the action of a crystallographic group. These
stereohedra are called Dirichlet stereohedra and are
the object of study in this paper.
The study of the possible combinatorial types of

stereohedra and, in particular, of their maximum
number of facets, is related to Hilbert’s 18th prob-
lem [9]. The two main previous results are:

• The fundamental theorem of stereohedra (Delone,
1961 [5]) asserts that a stereohedron of dimen-
sion d for a crystallographic group G with a as-
pects cannot have more than 2d(a+1)−2 facets,
where the number of aspects of G is the number
of translational lattices in which a generic orbit
of G decomposes. 3D crystallographic groups can
have a maximum of 48 aspects, so 3D stereohedra
cannot have more than 390 facets.

• P. Engel (see [6] and [7, p. 964]), using a
computer search, found in 1980 a 3-dimensional
Dirichlet stereohedron with 38 facets, for a cubic
group with 24 aspects. This is the stereohedron
with the maximum number of facets known.

In previous papers, the second author together with
D. Bochiş has initiated an exhaustive study of the
number of facets of Dirichlet stereohedra for the dif-
ferent 3D crystallographic groups. They divided the
219 affine conjugacy clases of 3-dimensional crystallo-
graphic groups in three blocks, and gave upper bounds
for the number of facets of Dirichlet stereohedra in
them:
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• Within the 100 crystallographic groups which
contain reflection planes, the exact maximum
number of facets is 18 [1].

• Within the 97 non-cubic crystallographic groups
without reflection planes, there are Dirichlet
stereohedra with 32 facets and no Dirichlet stere-
ohedron can have more than 80 [2].

For cubic groups without reflection planes (there
are 22 of them), Bochiş and Santos were only able to
prove an upper bound of 162 facets [3]. Here we im-
prove this bound, and hence the general upper bound
for the number of facets of 3D Dirichlet stereohedra,
to 105. More precisely, our bound goes “group by
group” and it lies below 38 except in the eight so-
called “quarter groups” [4]. Our bounds for these
eight groups are respectively 42, 43, 53, 66, 73, 74, 73
and 105. Curiously enough, the last (and biggest) one
is precisely for the crystallographic group that pro-
duces Engel’s Dirichlet stereohedron with 38 facets.

2 Outline of the method

The sketch of the method is as follows:

1. We choose a tessellation of the 3-dimensional
Euclidean space “adapted” to the group G under
study. We call the tiles fundamental subdomains. By
“adapted” we mean that the tiles are in a finite (and
small) number of classes modulo the normalizer of G.
We choose one fundamental subdomain of each class,
and call them basic fundamental subdomains. If two
points lie in the same orbit of the normalizer of G then
the Dirichlet stereohedra based on them are affinely
equivalent. Hence, every Dirichlet stereohedra for G
is affinely equivalent to one with basis point in a basic
fundamental subdomain.

2. For each basic fundamental subdomain, say D0,
we compute an extended Voronoi region, i.e., a region
that is guaranteed to contain the union of the Dirich-
let stereohedra generated by all the points in D0. We
do this cutting out parts of space that are guaranteed
not to belong to any Voronoi region with basis in D0

because of the presence of certain rotations or trans-
lations in G. The precise method is the same used
in 2D in [2], except here we do it on the computer
because of the extra complexity of the problem.
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Of course, the extended Voronoi region is not
uniquely defined, and the smaller the one we get is,
the better the final bound will result.

3. The extended Voronoi region of a non-basic fun-
damental subdomain D is now trivial to compute:
Find the basic fundamental subdomain D0 related to
D = ρD0 by a motion ρ in the normalizer of G, and
apply ρ to the extended Voronoi region of D0. We call
influence region of a basic subdomain D0 the union of
all the subdomains whose extended Voronoi regions
intersect the extended Voronoi region of D0.

Theorem 1 For every p ∈ D0, the neighbors of p in
the Voronoi diagram of the orbit of p are contained in
the influence region of D0.

Corollary 2 The number of facets of Dirichlet stere-
ohedra with base point in D0 is bounded above by the
number of fundamental subdomains in the influence
region of D0 “counted with multiplicity” (i.e., each
one counted as many times as the number, perhaps
zero, of transformations in G that send it to D0. In
particular only those in the same class of D0 modulo
the action of G are counted).

All of the above actually follows the [Bochiş-
Santos]’s approach, but with two new ingredients:

• [Bochiş-Santos] compute 2-dimensional influence
regions for certain planar subgroups of G, and
take as 3D influence region the intersection of the
rectangular prisms over the 2D influence regions.
We bound directly in dimension 3, with the aid of
a computer program,resulting in a smaller region.

• Our understanding of cubic groups is greatly sim-
plified by a new classification of 3D crystallo-
graphic groups given by Thurston et al. [4].

Let us briefly describe this classification. Thurston
et al. first divide crystallographic groups into re-
ducible and irreducible, were irreducible groups are
those that do not have any invariant direction. They
coincide with the cubic groups.
For an irreducible subgroup G, they define its odd

subgroup as the one generated by the rotations of or-
der three, and they observe that there are only two
possible odd subgroups, that they denote T1 and T2.
The odd subgroup T of a group G is normal, and so
G lies between T and its normalizer N(T ). This is a
powerful property, because it reduces the enumeration
of irreducible space groups to the enumeration, up to
conjugacy, of subgroups of two finite groupsN(T1)/T1

and N(T2)/T2.
Hence, we study the cubic groups in two blocks.

The 27 groups with odd subgroup T1 are called “full
groups” in [4], and they include all the cubic groups
with reflections. The 8 groups with odd subgroup T2

are called “quarter groups”.

3 The 27 “full groups”

These are the groups between T1 and N(T1). N(T1) is
the automorphism group I 4

m3
2
m of the body centered

cubic lattice (here and elsewhere we use the Interna-
tional Crystallographic Notation for crystallographic
groups, see [8]). T1 is the crystallographic group F23,
generated by the triad rotations whose axes are the
diagonals of the unit cube and by the translations of
length 2 in the three edge directions of the cube. T1

coincides the crystallographic group F23.
We take as fundamental subdomains of any group

between T1 and N(T1) the Delaunay tetrahedra of a
body centered cubic lattice. They have two opposite
perpendicular edges with length 1/2 (in relation to the
fundamental translations of T1) and four edges paral-
lel to the four diagonals of the cube, with length

√
3

4 .
N(T1) has diad rotations over the first type of edges,
and triad rotations over the second type of edges. The
extended Voronoi region consists of five fundamental
subdomains: a central one and its four neighbors. The
influence region is made up of these tetrahedra plus
their 10 neighbors. These 15 tetrahedra fall into two
classes modulo T1, with 11 and 4 elements.
Now let G be one of the full groups. Let s be the

number of elements of G that preserve a fundamen-
tal subdomain. Then, the bound for G derived from
the influence region we have calculated is 15s − 1 or
11s − 1 depending on whether G contains elements
that exchange the two classes of subdomains or not.
Since the order of N(T1)/T1 is 16, the values of s for
groups other than N(T1) (which has reflections) are
1, 2, 4 and 8. This, in principle, gives a bound of 119
facets for these groups.
But we can do better. The worse this bound is the

more motions we have in G, not present in T1, that
can be used to cut the extended Voronoi region further
and produce better influence regions. Doing this, we
get the upper bounds of the following table for the 14
full crystallographic groups without reflections.

Group Our bound Previous bound
F23 10 102
F432 5 21
F43c 14 44
F 2

d3 14 69
P23 21 102
F4132 21 72
P432 12 15
I23 29 102
P 2

n3 24 79
F 41

d 3
2
n 29 89

P43n 29 72
P4232 33 79
P 4

n3
2
n 26 30

I432 26 33
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4 The 8 “quarter groups”

The normalizer N(T2) of the second odd group con-
sists of the automorphisms of the following arrange-
ment of lines: the lines x = y = z, 1 + y = z = −x,
1+z = x = −y, and 1+x = y = −z, together with all
their translates by vectors with integer even coordi-
nates. The odd subgroup T2 itself is generated by the
triad rotations on all these lines. The index of T2 in
its normalizer is eight. In crystallographic notation,
N(T2) is I 41

g 3
2
d and T2 is P213. There are 8 groups

between (and including N(T2) and T2. We can see
their graphic representations [8] in Figures 1 to 8.
For quarter groups we choose a more complicated

tesselation of space into fundamental subdomains.
They are of two types, with different volumes. In type
A the basic subdomain is the convex hull of the fol-
lowing five points: (0, 0, 0), (1/4, 0, 0), (1/4, 1/4, 1/4),
(1/4, 1/8, 0) and (1/4, 0, 1/8). For type B we
use the convex hull of (0, 0, 0), (1/4, 1/4,−1/4),
(1/4, 0, 0), (1/4, 0,−1/4), (1/4, 1/4, 0), (1/8, 0,−1/4)
and (1/8, 1/4, 0). Replicating these two bodies by the
motions in N(T2) (Figure 1), tesselates space.
To calculate the extended Voronoi region we cut us-

ing the translations (1/2, 0, 0), (−1/2, 0, 0), (0, 1/2, 0),
(0,−1/2, 0), (0, 0, 1/2) and (0, 0,−1/2), and the fol-
lowing list of triad rotations, which belong to T2,
hence to all the groups. The two entries in each row
of the list are a point and the direction of the rotation
axis:

Triad rotations
Point Vector

(0, 0, 0) (1, 1, 1)
(0, 1/2, 0) (−1, 1, 1)

(−1/2, 0, 0) (−1,−1, 1)
(−1/2, 1/2, 0) (1,−1, 1)

(1/2, 0, 0) (−1,−1, 1)
(1/2, 1/2, 0) (1,−1, 1)

(1/2,−1/2, 0) (1,−1, 1)
(1/2, 1, 0) (−1,−1, 1)

(0,−1/2, 0) (−1, 1, 1)
(−1, 3/2, 0) (−1, 1, 1)

(1, 1, 0) (1, 1, 1)
(−3/2,−1, 0) (−1,−1, 1)
(−1/2,−1, 0) (−1,−1, 1)
(3/2,−1/2, 0) (1,−1, 1)

(−1,−1, 0) (1, 1, 1)
(−1, 0, 0) (1, 1, 1)
(0,−1, 0) (1, 1, 1)
(0, 1, 0) (1, 1, 1)
(1, 0, 0) (1, 1, 1)

(1,−1/2, 0) (−1, 1, 1)
(1, 1/2, 0) (−1, 1, 1)

(−1, 1/2, 0) (−1, 1, 1)

The resulting bounds with these extended Voronoi re-
gions are in the first column of Table 1. They are not very
good, the biggest being above 500. But, as in the case of
full groups, the worse bounds are in groups where addi-
tional motions can be used to cut the extended Voronoi
region. In particular, some of the groups have diad rota-

tions parallel to the coordinate axes or to the diagonals of
the faces of the unit cube, which we use too where we can.
The list of rotations is the following, and the resulting
bounds are in columns 2 and 3 of Table 1:

Diad rotations parallel to the coordinate axes
Point Vector

(1/2, 0, 1/4) (0, 1, 0)
(0, 1/4, 0) (1, 0, 0)

(1/4, 1/2, 0) (0, 0, 1)
(0, 0, 1/4) (0, 1, 0)

(−1/4, 1/2, 0) (0, 0, 1)
(0,−1/4, 0) (1, 0, 0)
(1/4, 0, 0) (0, 0, 1)

(1/2, 0,−1/4) (0, 1, 0)
(0, 1/4,−1/2) (1, 0, 0)
(−1/4, 0, 0) (0, 0, 1)
(0, 0,−1/4) (0, 1, 0)

(0,−1/4,−1/2) (1, 0, 0)
(0, 1/4, 1/2) (1, 0, 0)

(0,−1/4, 1/2) (1, 0, 0)
(0, 3/4, 0) (1, 0, 0)

(0, 3/4, 1/2) (1, 0, 0)
(0, 3/4,−1/2) (1, 0, 0)
(−1/2, 0, 1/4) (0, 1, 0)

(−1/2, 0,−1/4) (0, 1, 0)
(−1/2, 0,−3/4) (0, 1, 0)
(1/2, 0,−3/4) (0, 1, 0)
(0, 0,−3/4) (0, 1, 0)

(−1/4,−1/2, 0) (0, 0, 1)
(1/4,−1/2, 0) (0, 0, 1)
(3/4, 1/2, 0) (0, 0, 1)
(3/4, 0, 0) (0, 0, 1)

(3/4,−1/2, 0) (0, 0, 1)
(−1/2, 0, 3/4) (0, 1, 0)

(0, 0, 3/4) (0, 1, 0)
(1/2, 0, 3/4) (0, 1, 0)

Point Vector

(3/4, 0, 3/8) (−1, 1, 0)
(1/4, 0, 1/8) (1, 1, 0)
(1/4, 0, 5/8) (1, 1, 0)

(−3/4, 0, 1/8) (1, 1, 0)
(−3/4, 0, 5/8) (1, 1, 0)
(7/4, 0, 3/8) (−1, 1, 0)
(3/8, 3/4, 0) (0,−1, 1)
(1/8, 1/4, 0) (0, 1, 1)
(5/8, 1/4, 0) (0, 1, 1)

(1/8,−3/4, 0) (0, 1, 1)
(5/8,−3/4, 0) (0, 1, 1)
(3/8, 7/4, 0) (0,−1, 1)
(0, 3/8, 3/4) (1, 0,−1)
(0, 1/8, 1/4) (1, 0, 1)
(0, 5/8, 1/4) (1, 0, 1)

(0, 1/8,−3/4) (1, 0, 1)
(0, 5/8,−3/4) (1, 0, 1)
(0, 3/8, 7/4) (1, 0,−1)

Finally, in order to get better bounds in some of
the groups, we intersect the final influence region
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that we obtain with the one obtained in [3] with the
method of intersecting prisms over 2-dimensional re-
gions. Our final bounds are in column four, compared
tothe bounds in [3] in the last column.
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A Pointed Delaunay Pseudo-Triangulation of a Simple Polygon

Günter Rote∗ André Schulz†‡

Abstract

We present a definition of a pointed Delaunay pseudo-
triangulation of a simple polygon. We discuss why our
definition is reasonable. Our approach will be mo-
tivated from maximal locally convex functions, and
extends the work of Aichholzer et al.[1]. Connec-
tions between the polytope of the pointed pseudo-
triangulations and the Delaunay pseudo-triangulation
will be given.

1 Introduction

Since the Delaunay triangulation is an important con-
cept in computational geometry it is natural to ask
for an equivalent in the pseudo-triangulation world.
More precisely we are interested in a pointed pseudo-
triangulation which is Delaunay-like. A pseudo-
triangulation is pointed if every point is incident to
an angle greater than π. Without the restriction to
pointedness the Delaunay triangulation itself would
be the most Delaunay-like pseudo-triangulation. In
the following we skip the term pointed for the pointed
Delaunay pseudo-triangulation.

As a simple case we consider the pseudo-
triangulations of a simple polygon. For simple poly-
gons the Delaunay triangulation must contain the
boundary edges. Thus we are interested in generaliz-
ing the constrained Delaunay triangulation (CDT)[2]
for simple polygons.

Delaunay-like is a quite soft expression. What we
are looking for is a pseudo-triangulation which shares
many of the properties of the CDT. For a survey for
properties of the Delaunay triangulation see [4]. As
the most important criterion we demand that for a
convex polygon Delaunay triangulation and Delaunay
pseudo-triangulation must coincide.

For the rest of the paper we assume that the points
are given in general position.
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2 A reasonable definition of the Delaunay pseudo-
triangulations of a simple polygon

Constrained regularity is a concept which can be ap-
plied on triangulations and pseudo-triangulations. A
triangulation or pseudo-triangulation is said to be reg-
ular if it can be represented by a downward projec-
tion of a convex lifting. Since the Delaunay triangu-
lation is the projection of the lower convex hull of the
paraboloid lifting the Delaunay triangulation is regu-
lar [3]. Moreover the constrained Delaunay triangula-
tion is constrained regular. In [1] constrained regular
pseudo-triangulations were introduced. We use this
approach to find a lifting map which is similar to the
paraboloid lifting.
From now on we are considering a polygon P . The

n vertices of P are given in a clockwise order and
named p1, p2, . . . , pn. A vertex is called corner if its
internal angle is smaller than π. It is called a reflex
vertex otherwise.
Our goal is to define the Delaunay pseudo-

triangulation with help of a certain maximal locally
convex function. These functions were studied in [1]
and we are using the optimality theorem of this pa-
per for our definition. A function is locally convex
on P , if it is convex on every line segment in P .
Let hi be a given height for every vertex pi. f∗ is
the maximal locally convex function which satisfies
f∗(pi) ≤ hi. The lifting induced by f∗ is piecewise
linear and projects down to a pseudo-triangulation
PT (h) . f∗ and PT (h) are unique. If we set hi = |pi|2
the CDT of P is PT (h) .
The pseudo-triangulation PT (h) is not necessaryly

pointed. Since we require pointedness we have to
choose the heights in such a way that f∗ will in-
duce a pointed pseudo-triangulation. The corners of
P are pointed because their outer angle is greater than
π. The reflex vertices must contain the big angle in-
side. Thus they must part of a reflex chain of some
pseudo-triangle (in [1] these vertices are called incom-
plete). The optimality theorem says that in this case
f∗(pi) > hi. Their height is defined by the 3 corners
of the pseudo-triangle which contains the reflex angle
of the reflex vertex.
To assure that the reflex vertices are part of a reflex

chain, we let their hi be very high. With such a lift-
ing it is not possible to obtain local convexity when
f∗(pi) = hi for any reflex vertex. Hence they will be
pointed.
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Now we discuss how an appropriate lifting will look
like. We define

hd :=
{
f1(pi) if pi is corner in P
f2(pi) otherwise

For f1 we choose f1(pi) = |pi|2. This guarantees that
for convex polygons the Delaunay triangulation and
the Delaunay pseudo-triangulation coincide. f2 can
be any strictly concave function with minP (f2(pi)) >
maxP (f1(pi)).

Lemma 1 The maximal locally convex function in
the domain of P defined by hd projects down to a
pointed pseudo-triangulation.

Proof. Let pc be a reflex vertex of P and let l be a
line in P that crosses the neighborhood of pc. The line
l ends at the boundary of P . We name its endpoints
e1 and e2. The point e1 lies on the boundary segment
(b1, b2) of P ; the point e2 on the segment (b3, b4).
Figure 1 illustartes the situation.
We know that for i ∈ {1, 2, 3, 4}f∗(bi) ≤ f2(bi) by

the definition of f∗. Since f2 is concave and f∗ convex
we know that f∗(e1) ≤ f2(e1) and f∗(e2) ≤ f2(e2).
Thus we have f∗(e1) < f2(pc) and f∗(e2) < f2(pc) (f2

is strictly concave). But since f∗ must be convex on
l we deduce that f∗(pc) < f2(pc). Thus f∗(pc) < hc

for all reflex vertices and as discussed above PT (hd) is
pointed. �

pc

e2

b4

b3

e1

b2

b1

l

Figure 1: Illustration of the proof of Lemma 1

Since we have defined a unique pointed pseudo-
triangulation by a maximal locally convex func-
tion, we are able to define the Delaunay pseudo-
triangulation with help of hd. It turns out that the
height of the reflex vertices are not relevant.

Definition 1 Let P be a simple polygon and hd the
lifting defined above. We name PT (hd) the Delaunay
pseudo-triangulation of P .

Figure 2.a shows an easy example. We have a poly-
gon with 10 vertices, 3 of them are reflex. The locally
convex surface induced by the paraboloid lifting of the
complete vertices is shown in Figure 3.

(a) (b)

Figure 2: A Delaunay pseudo-triangulation of a poly-
gon (a) and the CDT of the same polygon (b)
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Figure 3: The lifted polygon from Figure 2

The PT (hd) can be constructed by flipping to op-
timality [1]: We start with any triangulation of P
and then flip away all reflex edges by convexifying
and edge removing flips. After at most O(n2) flips we
will reach the optimum. For every flip a linear sys-
tem of equations must be solved. This can be done in
O(n + i3) time, where i is the number of incomplete
vertices. By flipping to optimality the PT (hd) can be
computed in O(n5).

3 Relations to the PPT Polytope

This section presents some evidence why our choice
of definition is reasonable. The Delaunay triangula-
tion can be expressed as an optimal vertex of a high-
dimensional polytope. We will show a similar inter-
pretation for the Delaunay pseudo-triangulation.
The secondary polytope of a point set S repre-

sents every regular triangulation of S as a vertex in
R|S|. Moreover flips corresponds to edges in this poly-
tope. The scalar product of a vertex of the secondary
polytope and a height vector gives the volume under
the lifted triangulation. If the height vector lifts the
points to the paraboloid the minimization of the vol-
ume will give us the Delaunay triangulation. Recently
a polytope for regular pseudo-triangulations of sim-
ple polygons was introduced [1, Lemma 9.2]. Again
we can represent the volume under the lifted surface
as a scalar product with some height vector. Thus
PT (hd) can be defined as an optimal vertex in this
polytope. For practical computation this approach is
not useful, because the polytope is not given by a set
of inequalities.
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Even more interesting is the connection be-
tween PT (hd) and the polytope of pointed pseudo-
triangulations (PPT Polytope) defined in [6]. For a
class of simple polygons we present a formulation of
PT (hd) as an objective function of the PPT polytope.
This gives us a completely independent way to define
PT (hd) as a generalization of a Delaunay triangula-
tion for this class.
Our starting point is the objective function for the

Delaunay triangulation in the PPT polytope. Of
course this can only be done for points in convex posi-
tion. Fortunately, for points in convex position, there
is a connections between the secondary polytope and
the PPT polytope (in this case the two polytopes are
combinatorially equivalent)[6].
We abbreviate the the signed area of the triangle

pi, pj , pk with [pi, pj , pk] and the point (0, 0) with 0.
A possible formulation of the PPT polytope is the fol-
lowing:

∀(pi, pj) 〈pi − pj , vi − vj〉+ dij = [pi, pj , 0]2

dij ≤ 0

The PPT polytope is originally expressed by the vari-
ables vi and lives inR2n. We added the slack variables
dij to simplify further calculations.
A vertex is represented by a maximal set of inequal-

ities which hold with equality, i.e. dij = 0. The edges
of a pointed pseudo-triangulation of a vertex can be
expressed as the set {(i, j) | dij = 0}.
Let a ∈ Rn a point of the secondary polytope. As

discussed above, the minimization of
∑

i ai|pi|2 leads
to the Delaunay triangulation. We can express ai in
terms of dij , i.e.

ai = −
di−1,i+1

[pi−1, pi, pi+1]
+ [pi−1, pi, pi+1]

Let us abbreviate the signed area [pi−1, pi, pi+1] with
Ei and let

ck := −
|pk|2
Ek

This gives us for a minimization problem the objective
function

minimize
∑

i∈{1,...,n}
cidi−1,i+1 (1)

over the PPT polytope.
We will now perturb the convex polygon. Convexity

is not necessary anymore, but we forbid heavy defor-
mations. More precisely we demand the following:

Definition 2 We call a polygon P neighborly visible,
if the two neighbors of any corner of P can see each
other.

Figure 4.a shows a neighborly visible polygon, Figure
4.b a polygon which is not neighborly visible.

(a) (b)

Figure 4: Examples of neighborly and not neighborly
visible polygons

Theorem 2 Let P be a neighborly visible polygon.
Furthermore let all corners of P lie on its convex hull.
Then minimizing the objective function (1) over the
PPT polytope will induce PT (hd) as solution of the
linear program.

Proof. Due to the limited space we will only sketch
the proof of the theorem. We construct a pointed
pseudo-triangulation of the point set P as the exten-
sion of the polygon P . For this we set all dij be-
longing to the boundary of P to 0. Furthermore we
triangulate the concave chains of P and set the used
dij to 0 if necessary. If we would allow corners which
are not part of the convex hull of P , we have to add
pseudo-triangles. This would immediately lead to de-
pendencies which result in a different solution of the
LP. To give an idea of the proof we first observe the

F

Figure 5: The construction of an equilibrium stress
used in the proof

case where P is a convex polygon. The dual of the
LP leads to the an stressed framework which is not
in equilibrium condition. The stress for each edge is
given by ω∗ij . It holds

∀i
∑

j

ω∗ij(pi−pj) = −ci+1(pi−pi+2)−ci−1(pi−pi−2)

We can adjust this stress by introducing additional
arcs between every pair (pi, pi+2) (see Figure 5). Then

ωij :=
{
ω∗ij + ci+1 if (i+ 2) mod n = j
ω∗ij otherwise

79



21st European Workshop on Computational Geometry, 2005

forms an equilibrium stress. With help of the tech-
nique used in [5] we can turn the constructed graph
into a planar one. Now we are able to apply the re-
verse of the Maxwell-Cremona theorem [8]. This leads
to a lifting of the stressed graph. The heights of all
points induced by the lifting can be calculated with
help of the newly added edges and without knowing
the Delaunay triangulation of P . First we fix the lo-
cation of the central face F ; then we tilt the points
upwards. The stress ωi,i+2 gives us the information
how high the point pi will be tilted. Figure 6 gives
an idea how the tilting process looks like. After some
calculation it turns out that the height is exactly |pi|2.
Furthermore the sign of the stress guarantees that the
edges of the Delaunay triangulation span a convex
surface.

���
���
���
���

���
���
���
���

pi

Figure 6: The tilting process

For a general neighborly visible polygon P we can
now deduce the following. Since P is neighborly visi-
ble, there exists a single central face F . All corners of
P will lifted to the paraboloid, because the arguments
for the convex case still hold. The reflex vertices cor-
responds to 2 vertices in the lifting. The first one has
height 0 and the second one is shifted vertically. The
second vertex is the result of a tilting process outside
P and belongs to the lifted pseudo-trinagulation sur-
face. Again the pseudo-triangulation surface is convex
due to the signs of the stress. Therefore the solution
of the LP coincides with PT (hd) . �

4 Future work

Defining a Delaunay pseudo-triangulation for a sim-
ple polygon is just a first step towards a pointed De-
launay pseudo-triangulation of a general augmented
polygon. Since we give a number of arguments why
the definition of the Delaunay pseudo-triangulation is
reasonable we are convinced that our approach can be
generalized in a natural way.
One can think of using the concept of complete and

incomplete vertices introduced in [1] for non-pointed

Delaunay pseudo-triangulation of point sets. If we
define which vertices of a point set are complete and
incomplete in advance, we can define a maximal lo-
cally convex function which preserves the state of the
vertices. Lifting all pointed vertices to the paraboloid
would give us a Delaunay-like pseudo-triangulation.
This approach needs further investigation and seems
to be promising.
Since pointed pseudo-triangulations have no lift-

ing it is completely unclear how to define a pointed
Delaunay-like pseudo-triangulations. In [6] a “canoni-
cal” pseudo-triangulation has been defined as optimal
vertex of the PPT polytope with the help a certain
canonical objective function. This canonical pseudo-
triangulation has several nice properties like an inter-
esting lifting function for the convex case (see[7]). But
it turned out that it is not a good candidate for the
pointed Delaunay pseudo-triangulation. It has sev-
eral properties which are not characteristic for the De-
launay Triangulation. One possible way to overcome
the “non regularity” of pointed pseudo-triangulations
could be to find a different objective function over the
PPT polytope.
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Transforming Spanning Trees and Pseudo-Triangulations

Oswin Aichholzer∗ Franz Aurenhammer† Clemens Huemer‡ Hannes Krasser§

Abstract

Let TS be the set of all crossing-free straight line span-
ning trees of a planar n-point set S. Consider the
graph TS where two members T and T ′ of TS are
adjacent if T intersects T ′ only in points of S or in
common edges. We prove that the diameter of TS is
O(log k), where k denotes the number of convex lay-
ers of S. Based on this result, we show that the flip
graph PS of pseudo-triangulations of S (where two
pseudo-triangulations are adjacent if they differ in ex-
actly one edge – either by replacement or by removal)
has a diameter of O(n log k). This sharpens a known
O(n log n) bound. Let P̂S be the induced subgraph of
pointed pseudo-triangulations of PS . We present an
example showing that the distance between two nodes
in P̂S is strictly larger than the distance between the
corresponding nodes in PS .

1 Introduction

Let S be a set of n points in general position in the
plane (no three points of S are on a common line).
We denote by TS the set of all crossing-free straight
line spanning trees of S. Several authors investigated
the question of whether, and how fast, two members
of TS can be transformed into each other by means of
predefined rules. Avis and Fukuda [5] considered the
graph with node set TS where two spanning trees are
adjacent if they have all but one edge in common (i.e.,
differ by a single edge move). They showed that the
diameter of this graph is at most 2n− 4. The impact
of several more involved transformations, including
length-reducing edge moves and so-called edge slides,
has been studied in Aichholzer, Aurenhammer, and
Hurtado [1]. Recently, Aichholzer and Reinhardt [4]
proved that the edge slide distance between two trees
in TS is O(n2).
Define the graph TS = (TS , A) whose set of arcs A
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consists of pairs of trees in TS that intersect each
other only in points of S or in common edges. In
other words, A contains all pairs (T, T ′) such that no
edge of T crosses any edge of T ′. The arcs of TS cor-
respond to rather powerful transformations, namely,
the replacement of a tree by some ’compatible’ tree.
Not surprisingly, a bound of O(log n) on the diameter
of TS is easily obtained. A core result in [1] states
that TS contains a path of size O(log n) from every
member of TS to the minimum spanning tree of S
such that tree lengths decrease along this path.

In this note we prove that the diameter of TS is
O(log k), where k is the number of convex layers
L1, . . . , Lk of S. That is, L1 is the boundary of the
convex hull of S, and Li is defined recursively as
the boundary of the convex hull of S \

⋃
j<i Lj , for

2 ≤ i ≤ k and k = min{i | Li+1 = ∅}. We do not
know whether this bound is asymptotically tight. In
particular, we do not have any example where the di-
ameter of TS is not a constant.
Interestingly, the diameter of TS is related to flip

distances in pseudo-triangulations. A pseudo-triangle
is a planar polygon with exactly three interior an-
gles less than π. A pseudo-triangulation of S is
a partition of the convex hull of S into pseudo-
triangles whose vertex set is S. The flip graph of
pseudo-triangulations, PS , has as its set of nodes
all possible pseudo-triangulations of S. Two pseudo-
triangulations are connected in PS by an arc if they
differ in exactly in one edge, either by replacement or
removal. In other words, each arc of PS corresponds
to an exchanging or a removing edge flip. Aichholzer,
Aurenhammer, and Krasser [3] (see also [2]) proved
that the diameter of PS is O(n log n). Let P̂S be the
induced subgraph of elements of PS having exactly
2n−3 edges (the minimum number of edges a pseudo-
triangulation of S can have). The elements of P̂S are
called minimum, or pointed, pseudo-triangulations;
each vertex of such a pseudo-triangulation is pointed ,
that is, all its incident edges lie in an angle less than π.
Bereg [6] showed that the diameter of P̂S is still
bounded by O(n log n), and in [2] it is proved that
if the diameter of P̂S is O(n) then the same is true
for PS . On the other hand, the flip distance for trian-
gulations (i.e. pseudo-triangulations having the max-
imum number of edges) is known to be Θ(n2) in the
worst case. In [8], Hurtado, Noy, and Urrutia refined
the bound for triangulations to O(nk).
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For both graphs PS and P̂S it is an open problem
to determine tight asymptotic bounds on the diame-
ter. We prove that the diameter of PS is O(n log k),
using our result for the graph TS . In particular, if the
diameter of TS is constant then the diameter of PS

is Θ(n). We also demonstrate that the distance be-
tween certain nodes in P̂S is strictly larger than the
distance between the corresponding nodes in PS . A
more comprehensive study of the diameters of TS and
PS can be found in Huemer [7].

2 An upper bound on the diameter of TS

We show that the diameter of TS can be related to
the number k of convex layers of the point set S.

Observation 1 Let ∆ be a triangulation of S. Let x
be a point of S which lies on some layer Li of S, for
i ≥ 2. Then ∆ contains an edge xy that does not
cross Li and such that y lies on a layer Lj with j < i.

Proof. If such an edge does not exist then x must be
a pointed vertex of ∆. But a triangulation does not
contain pointed vertices, except on layer L1. �

Theorem 1 Let a point set S be given whose number
of convex layers is k. The diameter of TS is O(log k).

Proof. Define a layer tree to be a non-crossing span-
ning tree of S which contains all but one edge of each
layer Li of S and which connects consecutive layers
(by single edges); Figure 1 gives an example. We show
below that any given spanning tree T ∈ TS can be
transformed into some layer tree using O(log k) trans-
formations, as defined by the arcs of TS . This implies
the theorem, because two layer trees clearly can be
made to coincide by applying at most two transfor-
mations.
Consider some triangulation ∆ that contains T .

Due to Observation 1, for every point x ∈ S \ L1 there
is an edge in ∆ to some layer with lower index. We
select one such edge per point in S \ L1, and in ad-
dition, all edges but one of L1. The selected edges
constitute a new spanning tree, T ′, of S. As T ′ and T
live in the same triangulation, a single transformation
is capable of replacing T by T ′.
For a point x ∈ S, let gk(x) be the shortest path

from x to a point on Lk such that gk(x) does not
cross T ′. As no edge of T ′ crosses any layer twice,
gk(x) visits points on layers with increasing index. On
the other hand, by Observation 1, there is a path g1(x)
from x to L1 that does not cross T ′ and that visits
points on layers with decreasing index. Now, for all
points x on layers L1, . . . , Lk/2 take the path g1(x),
and for all points x on layers Lk/2, . . . , Lk take the
path gk(x). The union of all these paths with L1

is a connected graph, G. By construction, G nei-
ther crosses the tree T ′ nor the layer Lk/2. We select

L
L

L

3

2

1

Figure 1: A layer tree for k = 3

from G a spanning tree, T ′′, which contains L1 minus
one edge. T ′ can be transformed into T ′′ in one step,
and T ′′ can be transformed into a spanning tree T1

that contains, in addition, Lk/2 minus one edge, in
one more step.
In summary, after a constant number of transfor-

mations we arrive at two independent subproblems
of size k/2. Therefore, with the same effort, we can
transform the tree T1 into a tree that contains, in ad-
dition to L1 and Lk/2, from both layers Lk/4 and L3k/4

all edges but one. We conclude that O(log k) tranfor-
mations suffice to generate a layer tree for S. �

3 Bounding the diameter of PS

Next we show that an upper bound on the diameter
of TS also gives an upper bound on the diameter of
the flip graph PS of pseudo-triangulations. We make
use of a lemma from [3] on flip distances in simple
polygons.

Lemma 2 Let Q be a simple polygon with m edges.
The flip distance between any two triangulations of Q
is O(m), if exchanging, removing, and inserting edge
flips are allowed.

Theorem 3 Let a set S of n points be given. If the
diameter of TS is d then the diameter of PS is O(nd).

Proof. Every pseudo-triangulation of S can be com-
pleted to a triangulation by applying O(n) inserting
edge flips. It thus suffices to show that any two tri-
angulations ∆1 and ∆2 are connected in PS by a se-
quence of O(nd) flips. Let ∆1 and ∆2 contain span-
ning trees T1 and T2 of S, respectively. There is a
path of length d in TS which connects T1 and T2. We
show that for consecutive trees T and T ′ on this path,
the distance in PS between any triangulation ∆ con-
taining T and any triangulation ∆′ containing T ′ is
O(n).
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Let us ’cut’ the triangulation ∆ along the edges
of T . This gives several triangulated polygons. Note
that no edge of T ′ crosses any edge of such a polygon,
because T ′ and T are adjacent in TS . By Lemma 2, we
can modify the triangulation within each such poly-
gon Qi so as to contain all the edges of T ′ within Qi

in O(mi) flips, if Qi has mi edges. Thus ∆ can be
transformed into a triangulation ∆′′ that contains T ′

in O(
∑
mi) flips. This sum is bounded by n+2(n−1),

counting the edges of L1 plus two times the edges of T .
Similarly, in a second step, we cut ∆′′ along T ′ and
transform ∆′′ into the desired triangulation ∆′ using
another O(n) flips. �

Corollary 4 The diameter of the flip graph PS is
bounded by O(n log k), where k is the number of con-
vex layers of S.

Lemma 2 also holds for pointed pseudo-triangu-
lations [3]. Thus, we are also interested in the
graph T̂S of pointed spanning trees of S, where two
trees are adjacent if there exists a pointed pseudo-
triangulation which contains them both. If we can
bound the diameter of T̂S by d then the diameter of P̂S

is O(nd), applying the argumentation of Theorem 3.
Moreover, the bound O(nd) carries over to the flip
graph PS by a result in [2].

4 Comparing distances in PS and P̂S

In a pointed pseudo-triangulation the number of edges
is minimum. This suggests that this type of pseudo-
triangulation is most flexible as far as adaption by
flips is concerned. In other words, one might conjec-
ture that the distance between two nodes of PS does
not increase when we are required to stay within the
subgraph P̂S of PS . In the following we present an
example that refutes this conjecture. Assume n > 9
in the following.
The underlying set S of n points is shown in

Figures 2 and 3. It consists of three subsets
P = {p1, .., pn/3}, Q = {q1, .., qn/3}, and R =
{r1, .., rn/3−1} in convex position, and one interior
point m. The last point is chosen to lie to the left
of p1qn/3, of q1rn/3−1, and of r1pn/3. Two pointed
pseudo-triangulations PT1 (Figure 2) and PT2 (Fig-
ure 3) are drawn on S.

Lemma 5 The distance between PT1 and PT2 in P̂S

is at least n− 3.

Proof. Every pointed pseudo-triangulation of S has
exactly 2n− 3 edges. PT1 and PT2 have the n/3− 1
edges rim in common, plus the n − 1 edges of the
convex hull of S. Thus 2n/3 − 1 edges are different.
We will show that to obtain the very first edge of
PT2 that is not in PT1, at least n/3− 1 (exchanging)

1
p

q

q

m

r1

1

n/3

p
n/3

rn/3-1

Figure 2: The pseudo-triangulation PT1

edge flips are required. Then, when the first edge is
present, there still remain at least 2n/3 − 2 different
edges. For each such edge, at least one flip is needed
in addition. This gives a lower bound of n− 3 flips.
PT1 contains edges mqi and q1pi which must be

transformed into edges pn/3qi and mpi of PT2. If the
first edge of PT2 that is created is of type pn/3qi then
this edge crosses n/3 − 1 edges q1pi. All these edges
must be replaced beforehand. If, otherwise, the first
edge of PT2 that is created is of type mpi then either
all edges mqi or all edges mri must be replaced first,
because the point m has to stay pointed. So, in any
case, at least n/3− 1 flips are necessary to obtain the
first edge of PT2. �

Lemma 6 The distance between PT1 and PT2 in PS

is at most 2n/3.

Proof. We construct a sequence of 2n/3 flips that
transforms PT1 into PT2. The edge flip that inserts
the edge mp1 into PT1 is applied first. Now edge q1pi

is flipped into edge mpi+1 by an exchanging flip, for
i = 1, . . . , n/3 − 1. Next, edge mqi is exchanged by
edge pn/3qi+1, for i = 1, . . . , n/3−1. Finally, we apply
the edge flip that removes mqn/3 and gives PT2. �
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n/3
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n/3

rm n/3-1

Figure 3: The pseudo-triangulation PT2
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Corollary 7 There exist pointed pseudo-triangula-
tions PT1 and PT2 whose distance in the graph P̂S

can only be realized by a flip sequence that affects
edges common to PT1 and PT2.

Proof. To see this, let the subset R in Figures 2 and 3
consist of a single point r1. Then the edgemr1 is com-
mon to PT1 and PT2. If flipping mr1 is not allowed
then at least n− 3 flips are needed to transform PT1

into PT2, by the same arguments as in the proof of
Lemma 5. Otherwise, we change mr1 (in PT1) to the
edge mp1 first. Then we apply the same sequence of
2n/3− 2 exchanging flips as in the proof of Lemma 6.
Finally, mqn/3 is changed to mr1 which gives PT2.
This sequence consists of only 2n/3 flips. �

Note that the reduction in flip distance in Lemma 6
and Corollary 7, respectively, stems from creating the
edge mp1. This edge is outruled in Lemma 5 by the
required pointedness ofm, and in Corollary 7 by being
the result of flipping the common edge mr1.

5 Conclusion and open problems

We gave a bound on the diameter of the graph TS of
non-crossing spanning trees and related this result to
transforming pseudo-triangulations. The problem of
bounding the diameter of TS is also of interest on its
own. So far we were not able to find two non-crossing
spanning trees on the same point set S whose distance
in TS is more than constant.

Conjecture 1 The diameter of TS is sublogarithmic.

We also restate the well known problem of deter-
mining the diameter of the flip graph PS of pseudo-
triangulations.

Conjecture 2 The diameter of PS is o(n log n).
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Pseudo-Tetrahedral Complexes

Franz Aurenhammer and Hannes Krasser∗

1 Introduction

A pseudo-triangulation is a cell complex in the plane
whose cells are pseudo-triangles, i.e., simple polygons
with exactly three convex vertices (so-called corners).
Being an interesting and flexible generalization of tri-
angulations, pseudo-triangulations have found their
place in computational geometry; see e.g. [8, 11, 7, 1]
and references therein.
Unlike triangulations, pseudo-triangulations eluded

a meaningful generalization to higher dimensions so
far. In this paper, we define pseudo-simplices and
pseudo-simplicial complexes in d-space in a way con-
sistent to pseudo-triangulations in the plane. Flip op-
erations in pseudo-complexes are specified, as combi-
nations of flips in pseudo-triangulations [11, 1], and
of bistellar flips in simplicial complexes [9, 5, 4]. Our
results are based on the concept of maximal locally
convex functions on polyhedral domains [1], that al-
lows us to unify several well-known structures, namely
pseudo-triangulations, constrained Delaunay triangu-
lations [3, 14], and regular simplicial complexes [2, 5].
Several implications of our results exist, and challeng-
ing open questions arise.

2 Polytopes and Corners

We give some notation concerning polytopes in
d-space Rd. A connected, bounded, and closed sub-
set P of Rd is called a d-polytope if P is a d-manifold,
with piecewise linear boundary bd P that is struc-
tured as a (d− 1)-dimensional cell complex. The com-
ponents of bd P of dimension j are called the j-faces
of P . Faces of dimensions d−1, 1, and 0, respectively,
are also called facets, edges, and vertices. We denote
with vert P the set of vertices of P . P is called simple
if P is homeomorphic to a closed ball in Rd.
A terminal of P is a point x ∈ P such that no line

segment L ⊂ P contains x in its relative interior. All
terminals of P belong to vert P . A terminal v of P
is called a corner of P if there exists a hyperplane
through v that has all edges of P incident to v on a
fixed side. (For d = 2, terminals automatically ful-
fill this requirement and therefore are corners.) All
vertices of the convex hull conv P are corners of P .

∗Institute for Theoretical Computer Science, Graz Univer-
sity of Technology, Graz, Austria. Research supported by the
FWF [Austrian Fonds zur Förderung der Wissenschaftlichen
Forschung] {auren,hkrasser}@igi.tugraz.at

So every d-polytope P has at least d + 1 corners. In
Figure 1, x is a corner, y is a terminal but not a cor-
ner, and z is not a terminal.

y

x

z

Figure 1: 3-polytope with different vertex types

A boundary-connected d-polytope with exactly
d+ 1 corners is termed a pseudo-simplex . Every sim-
plex is a pseudo-simplex. For d = 2 and d = 3, re-
spectively, pseudo-simplices will be also called pseudo-
triangles and pseudohedra. Our definition of a pseudo-
triangle is equivalent to the classical definition, see
e.g. [11, 1], which requires exactly 3 polygon vertices
with an internal angle smaller than π. A pseudo-
complex is a cell complex in Rd all whose cells are
pseudo-simplices of dimension d. For d = 2, pseudo-
complexes are pseudo-triangulations.

3 Local Convexity

The theory of maximal locally convex functions is the
key to a derivation of pseudo-complexes. For d = 2,
the relationship between these two concepts has been
observed in [1]. Consider a real-valued function f
on Rd whose domain is a simple d-polytope D. Func-
tion f is called locally convex if f is convex on each
line segment L ⊂ D.
Let h be a real-valued vector that assigns a

(d+ 1)st coordinate hi (called height) to each vertex
vi ∈ vert D. Our interest is in the maximal locally
convex function f∗ on D which fulfills f∗(vi) ≤ hi

for each vi ∈ vert D. The function f∗ is unique, be-
cause f∗ is the pointwise maximum of all locally
convex functions which satisfy the constraints in h.
Moreover, f∗ is continuous in the interior int D of D,
by its local convexity. For d ≥ 3, f∗ need not be con-
tinuous on bd D, however.
We can show that f∗ is a piecewise linear function

on D. In fact, f∗ induces a face-to-face cell com-
plex in D, whose cells are maximal connected sub-
set of D where f∗ is linear. The continuity of f∗
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on int D implies that the faces of f∗ have piecewise
linear boundaries, and therefore are j-polytopes, for
0 ≤ j ≤ d. As D is a simple d-polytope, the bound-
ary of each cell of f∗ is connected: The existence of
a hole H in a cell contradicts the convexity of f∗ on
each line segment L ⊂ D that crosses the (relative)
boundary of H twice.
Each vertex x of f∗ either belongs to vert D, or x

is the intersection of a j-face of f∗ with a (d− j)-face
of D. Accordingly, x will be termed a primary or
a secondary vertex. We extend this terminology to
the cells of f∗, by distinguishing whether or not all
corners of a cell are primary vertices.

0

0

1

0

01

0

0

0

0

0

0

0

0

0

1

1

Figure 2: Splitting the Schönhardt polytope with f∗

Figure 2 illustrates a three-dimensional cell com-
plex induced by f∗ when D is the Schönhardt poly-
tope [13]. All six vertices of D are corners. Numbers
denote vertex heights. The complex consists of three
non-tetrahedral primary cells. Note the occurrence of
secondary vertices in the relative interior of certain
edges of D.
A vertex vi ∈ vert D is termed complete if

f∗(vi) = hi. A vertex of f∗ that is a corner of all
its incident cells is called an allcorner . For instance,
each corner of D is an allcorner of f∗.

Lemma 1 (a) All terminals of D are complete.
(b) A vertex where f∗ is discontinuous cannot be a
corner of any cell. (c) Allcorners of f∗ are charac-
terized by being vertices of D that are complete and
where f∗ is continuous. (d) No vertex of f∗ lies in
int D, or in the relative interior of a facet of D.

The polytope D in Figure 1 serves as an exam-
ple where f∗ is discontinuous. As heights for D we
choose 1 for vertex y and 0 for the remaining vertices.
Then f∗(p) = 0 for all p ∈ int D. By Lemma 1(a), we
have f∗(y) = 1 because y is a terminal. Thus f∗ is
discontinuous at y.
Maximal locally convex functions constitute a nat-

ural generalization of convex hulls. Let H be the
point set in Rd+1 that results from lifting vert D by its
height vector h. Denote by lowH the (convex) func-
tion whose graph is the lower convex hull of H, i.e.,
the part of bd conv H visible from −∞ on the (d+1)st
coordinate axis.

Theorem 2 If the domain D is convex then we have
f∗ = lowH , for every height vector h.

4 Pseudo-Complexes

For a given simple d-polytope D and a height vec-
tor h for vert D, let PC(D,h) denote the poly-
topal cell complex induced by f∗ in D. We call h
generic (for D) if there exists some ε > 0 such
that PC(D,hε) = PC(D,h) holds for all possible
ε-perturbations hε of h. To ease the exposition, this
property of h will be implicitly assumed henceforth.
We call h convex if lowH(vi) = hi holds for each

vi ∈ vert D. In particular, h is called parabolic if
hi = v2

i for each i. If h is convex then PC(D,h) shows
several nice properties.

Theorem 3 Let h be a convex height vector. Then
all cells of PC(D,h) are primary cells, pseudo-
simplices, and simple d-polytopes. All primary ver-
tices of PC(D,h) are allcorners. Moreover, f∗ is con-
tinuous on the entire domain D.

By Theorem 3, locally convex functions generate
pseudo-complexes if the height vector h is convex. In
fact, this is the case for arbitrary h; see Section 5. IfD
(and with it, h) is convex then all cells are simplices,
and PC(D,h) is a regular simplicial complex [2, 5]
in D, by Theorem 2. If, in addition, h is parabolic
then the well-known Delaunay simplicial complex [6]
for D is obtained. When h is convex but D is not,
then PC(D,h) need not be simplicial; see Figure 2.
The case d = 2 has been treated in [1]. PC(D,h)
then is a constrained regular pseudo-triangulation of
the simple polygon D. In particular, if h is parabolic,
then the constrained Delaunay triangulation [3] of D
is obtained, which is the Delaunay triangulation [6]
provided D is a convex polygon.

5 Bistellar Pseudoflips

We now investigate the properties of PC(D,h) for
arbitrary height vectors h, by defining flip operations
in pseudo-complexes that result from controlled
changes in h. These operations generalize both the
d-dimensional Lawson flip [9, 4] and the flips in
2-dimensional pseudo-triangulations [11, 1]. From
now on, let n = |vert D|.

Moving Heights Let h0 and h1 be two (generic)
height vectors for vert D. Assume that h0 is convex,
and that h0 > h1 (elementwise). We continuously de-
form PC(D,h0) into PC(D,h1) and study the changes
in the structure of cells.
To this end, let hλ = λh1 + (1− λ)h0, for λ in-

creasing from 0 to 1. By Theorem 3, in PC(D,h0)
all primary vertices are complete and are allcorners,
and all cells are primary and are pseudo-simplices.
PC(D,hλ) changes its shape exactly at values λ
where hλ is not generic. Fix such a value λ. Con-
sider a cell U of PC(D,hλ) which is not a cell
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of PC(D,hλ−ε), for sufficiently small ε > 0. Denote
with PCλ−ε the restriction of PC(D,hλ−ε) to U . The
crucial observation is that, for λ− ε, f∗ on int U is
determined by its values at the allcorners of PCλ−ε.
This follows from Lemma 1(b). Therefore PCλ−ε has
exactly d+2 allcorners (apart from special cases which
can be avoided by perturbing h0 slightly). In partic-
ular, U has at most d+ 2 corners.
In PC(D,hλ+ε), the polytope U is restructured

into a cell complex PCλ+ε. The replacement of
PCλ−ε by PCλ+ε is termed a pseudoflip.

Anatomy of Pseudoflips To study the structure
of pseudoflips, let us consider any complex PC(U,h)
with exactly d + 2 allcorners v1, . . . , vd+2. By
Lemma 1(c), full height is assumed at and only at
v1, . . . , vd+2. W.l.o.g., let h contain entries ∞ for
all other vertices of U . Let h− be the vector ob-
tained from h by changing the signs of finite entries.
Then, for any generic choice of heights h1, . . . , hd+2

for v1, . . . , vd+2, one of the complexes PC(U,h) or
PC(U,h−) has to arise, because the relative position
of the d+2 points

(
vi
hi

)
in Rd+1 already determines f∗.

As a consequence, each pseudoflip can be simu-
lated by replacing PC(U,h) by PC(U,h−). Moreover,
as PC(U,h−) has at most d + 2 allcorners, the cells
of PC(U,h−) are pseudo-simplices, provided the same
holds for PC(U,h). (If PC(U,h−) has d+1 allcorners
then its only cell is the pseudo-simplex U .) Recalling
that the original complex PC(D,h0) was a pseudo-
complex, we get an inductive argument showing that
the final complex PC(D,h1) is a pseudo-complex.
We face two different types of pseudoflips. An ex-

changing pseudoflip transforms PC(U,h) into a com-
plex with the same number of allcorners, whereas a
removing pseudoflip transforms PC(U,h) into a sin-
gle cell. (The inverse of a removing pseudoflip is also
considered a valid pseudoflip; we call it an inserting
pseudoflip.) PC(U,h) contains primary cells and, in
general, also secondary cells, because secondary ver-
tices may arise in the relative interior of faces of U .
Unfortunately, neither the number of primary cells
nor the number of secondary cells is bounded by a
function of d. Already for d = 3 there are examples
where Θ(k) primary cells and Θ(k2) secondary cells
occur, for k = |vert U |. An upper bound for primary
cells in this case is O(k2), see Theorem 4.
For general d and arbitrary complexes PC(D,h),

the number of primary cells is bounded by Theorem 2
and the observation that this number is maximal if D
is convex. The number of secondary cells can be
shown to be finite but remains unclear. Concerning
the total number of pseudoflips, we can show that each
(d+ 2)-tuple of vertices of D gives rise to at most one
pseudoflip when heights are moved as above. We con-
clude:

Theorem 4 PC(D,h) is a pseudo-complex for ar-
bitrary (generic) h. The number of primary cells
of PC(D,h) is O(n�d/2�). Given two height vectors h
and h′, the distance between PC(D,h) and PC(D,h′)
by pseudoflips is O(nd+2).

A challenging open question is whether pseudoflip
sequences between simplicial complexes do exists
such that cell sizes are bounded by O(d). The
complexity of pseudoflips does not depend on n in
this case.

Examples We illustrate some pseudoflips for
d = 3. The 3-polytope U where a flip takes place has
at most 5 corners; they are labeled by numbers in
the following figures. The pseudoflips are viewed best
when imagining that the height of vertex 4 is lowered.
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Figure 3: Exchanging pseudoflip

Figure 3 shows an exchanging pseudoflip. Before
the flip, U contains the two tetrahedral cells 1235
and 1345. They are are adjacent in the triangular
facet 135. (The tetrahedron 1245 avoids the interior
of U and yields no cell.) After the flip, which de-
stroys the facet 135 and creates the pseudo-triangular
facet 234x, two pseudohedra arise as cells. Their cor-
ners are 1, 2, 3, 4 and 2, 3, 4, 5, respectively. The sec-
ondary vertex x arises as a noncorner of both cells.
All involved cells are primary cells.
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Figure 4: Pseudoflip generating a secondary cell

The exchanging pseudoflip in Figure 4 is more com-
plicated. Again, U contains only two cells before the
flip, the tetrahedron 1345 and the pseudohedron with
corners 1, 2, 3, 5 and the noncorner a. Both cells are
primary cells. Their common triangular facet 135 is
destroyed in the flip. After the flip, two new pri-
mary cells are present, namely, the pseudohedra with
corners 1, 2, 3, 4 and 2, 3, 4, 5, respectively. In ad-
dition, the tetrahedron 145x arises as a secondary
cell. Its corner x is the secondary vertex where the
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pseudo-triangular facet with corners 2, 3, 4 intersects
the edge 1a.
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Figure 5: Pseudoflip that creates a tunnel

Figure 5 depicts an exchanging pseudoflip that
creates a non-simple cell. Three primary cells are
present before the flip: The tetrahedra 1234 and 1235,
and the pseudohedron with corners 2, 3, 4, 5 and non-
corners a, b, c. These cells are pairwise adjacent in
triangular facets which are destroyed in the flip. A
single facet F with corners 1, 4, 5 and the secondary
vertices x, y, z as noncorners is created. As xyz is
a hole, F is not a valid pseudo-triangle, but rather
a polygonal region with three corners. Two primary
cells are adjacent in F . The cell with corners 1, 2, 4, 5
contains a tunnel, defined by the edges 2x, ay, and bz.

6 Extensions

Several extensions of our results exist. For fixed D,
consider the class of pseudo-complexes

R(D) = {PC | ∃ h with PC = PC(D,h)}.

The existence of a convex n-polytope can be estab-
lished that represents all the members of R(D). This
generalizes the polytope constructions in [10] (the
associahedron) and in [2] (the secondary polytope),
which concern the regular simplicial complexes for
convex domains D, as well as the polytope in [1],
for constrained regular pseudo-triangulations of sim-
ple polygons D. In particular, the subclass

M(D) = {PC | ∃ h convex with PC = PC(D,−h)}

constitutes a generalization to Rd of minimum (or
pointed) pseudo-triangulations [11].
A pseudohedron need not be tetrahedrizable. Still,

pseudo-complexes for convex height vectors provide a
way of decomposing a given nonconvex polytope in
3-space into O(n2) tetrahedra, when secondary ver-
tices are used as Steiner points.
Pseudo-complexes give rise to several burning

questions. A question of major interest in motion
planning applications [8] is whether visible space be-
tween polyhedral objects can be tiled and maintained
with pseudo-simplices and pseudoflips, respectively.
A related important problem is whether any two

simplicial complexes in d-space can be transformed
into each other by pseudoflips. For Lawson flips [9],
the answer is negative for d ≥ 6, and unknown for
3 ≤ d ≤ 5; see [12].

Acknowledgements Thanks go to Günter Rote
and Paco Santos for discussions on this topic.
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On Pseudo-Convex Decompositions, Partitions, and Coverings

Oswin Aichholzer∗ Clemens Huemer† Sarah Renkl‡ Bettina Speckmann§ Csaba D. Tóth¶

Abstract

We introduce pseudo-convex decompositions, parti-
tions, and coverings for planar point sets. They are
natural extensions of their convex counterparts and
use both convex polygons and pseudo-triangles. We
discuss some of their basic combinatorial properties
and establish upper and lower bounds on their com-
plexity.

1 Introduction

Let S be a set of n points in general position in the
plane. The convex cover number of S, κc(S), is the
minimum number of convex polygons spanned by S
and covering all points of S. The study of convex
cover numbers is rooted in the classical work of Erdös
and Szekeres [3, 4] who showed that any set of n points
contains a convex subset of size O(log n). More recent
results include the work by Urabe [9].
Together with convex coverings also convex parti-

tions and convex decompositions have received much
recent attention [9, 7, 5, 8, 10]. Here the convex par-
tition number of S, κp(S), is the minimum number of
disjoint convex polygons spanned by S and covering
all vertices of S; the convex decomposition number of
S, κd(S), is the minimum number of faces in a sub-
division of the convex hull of S into convex polygons
whose vertex set is exactly S.
Whether a chain of points is considered convex or

reflex depends only on the point of view. Therefore,
when studying convex chains and polygons contained
in a set of points one might also consider reflex chains
or polygons. See for example the work by Arkin et
al. [2] who study questions related to convex coverings
and partitions by examining the reflexivity of point
sets. The ’most reflex’ polygon possible is the pseudo-
triangle which has exactly three convex vertices with
internal angles less than π. A pseudo-triangle is the
natural counterpart of convex polygons.
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In this paper we introduce pseudo-convex de-
compositions, partitions, and coverings which use
both convex polygons and pseudo-triangles. Pseudo-
convex decompositions and partitions are significantly
sparser than their convex counterparts while pseudo-
convex and convex coverings have asymptotically the
same complexity.

Definitions. A pseudo-triangulation for S is a par-
tition of the convex hull of S into pseudo-triangles
whose vertex set is exactly S. A vertex is called
pointed if it has an adjacent angle greater than π.
A planar straight line graph is pointed if every vertex
is pointed.
The pseudo-convex cover number ψc(S) of S is the

minimum number of convex polygons and/or pseudo-
triangles spanned by S and covering all points of S.
The pseudo-convex cover number for all sets of fixed
size n is ψc(n) := maxSψc(S).
The pseudo-convex partition number ψp(S) of S

is the minimum number of disjoint convex polygons
and/or pseudo-triangles spanned by S and covering
all vertices of S. The pseudo-convex partition num-
ber for all sets of fixed size n is ψp(n) := maxSψp(S).
Note that disjoint here implies empty (of points): nei-
ther a convex nor a pseudo-convex partition contains
nested polygons.
A pseudo-convex decomposition of S is a parti-

tion of the convex hull of S into convex polygons
and/or pseudo-triangles spanned by S. For instance
every triangulation or pseudo-triangulations of S is a
pseudo-convex decomposition. The minimum number
of polygons needed for a pseudo-convex decomposi-
tion of S is the pseudo-convex decomposition number
ψd(S). The pseudo-convex decomposition number for
all sets of fixed size n is ψd(n) := maxSψd(S).
We denote the convex cover number (and equiva-

lently the convex partition and decomposition num-
ber) for all sets of fixed size n with κc(n) :=
maxSκc(S).

Figure 1: From left to right: Pseudo-convex
decomposition, partition, and covering.
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Previous work and results. The convex decomposi-
tion number κd(n) is bounded by

n− 3 + �
√
2(n− 3)� ≤ κd(n) ≤

10n− 18
7

(left: Garćıa-López et al. [5], right: Neumann-Lara et
al. [8]). We show that the pseudo-convex decomposi-
tion number is bounded by

3
5
n ≤ ψd(n) ≤

7
10
n .

The convex partition number κp(n) is bounded by⌈
n− 1
4

⌉
≤ κp(n) ≤

⌈
5n
18

⌉
(left: Urabe [9], right: Hosono and Urabe [7]). We
show that the pseudo-convex partition number ψp(n)
is bounded by ⌊n

6

⌋
+ 1 ≤ ψp(n) ≤

n

4
.

The convex cover number κc(n) is bounded by

n

log2 n+ 2
< κc(n) <

2n
log2 n− log2 e

,

for n ≥ 3 [9]. There is an easy connection between
the pseudo-convex cover number and the convex cover
number, namely ψc(n) ≤ κc(n) ≤ 3ψc(n) (all points
which can be covered by a pseudo-triangle can be cov-
ered by at most three convex sets). Thus both num-
bers have the same asymptotic behavior, which im-
plies ψc(n) ∈ Θ( n

log n ).
The upper bound construction for ψd(n) depends

on exact results for small point sets. These are re-
lated to a combinatorial geometry problem posed by
Erdös. For n(k) ≥ 3 find the smallest integer n(k)
such that any set S of n(k) points contains the vertex
set of a convex k-gon whose interior does not contain
any points of S. Klein [3] showed that every set of 5
points contains an empty convex quadrilateral, that
is n(4) = 5. Urabe proved in [9] that every set of 7
points can be partitioned into a triangle and a disjoint
convex quadrilateral. Hosono and Urabe [7] showed
that every set of 9 points contains two disjoint empty
convex quadrilaterals. Harborth [6] proved that ev-
ery set of 10 points contains an empty convex pen-
tagon, that is n(5) = 10. We prove the following two
Ramsey-type results:

Theorem 1 Every set of 8 points in general position
contains either an empty convex pentagon or two dis-
joint empty convex quadrilaterals.

Theorem 2 Every set of 11 points in general posi-
tion contains either an empty convex hexagon or an
empty convex pentagon and a disjoint empty convex
quadrilateral.

Both results were established with the help of the or-
der type data base [1]. In the full paper we also pro-
vide a surprisingly intuitive geometric proof of Theo-
rem 1 that requires only a moderate number of case
distinctions.
Furthermore, we establish some basic combinatorial

properties of ψd(n), ψp(n), and ψc(n) and we also
prove that ψd(n) is monotonically increasing.

2 Basic Properties

Our first (trivial) observation is that ψd(n) ≤ κd(n),
ψp(n) ≤ κp(n), and ψc(n) ≤ κc(n). It is well known
that κc(n) ≤ κp(n) ≤ κd(n). For pseudo-convex faces
we trivially have ψc(n) ≤ ψp(n). ψp(n) ≤ ψd(n) fol-
lows from the bounds given in the previous section.
Next we observe that ψd(n+1) ≤ ψd(n)+1, ψp(n+

1) ≤ ψp(n) + 1, and ψc(n + 1) ≤ ψc(n) + 1. This
follows by induction when inserting the points in x-
sorted order. For covering and partitioning the last
inserted vertex is a singleton, for decomposing it forms
a corner of a pseudo-triangle similar to the last step
in a Henneberg construction.
The following lemma establishes an interesting con-

nection between the convex partition number and the
pseudo-convex decomposition number.

Lemma 3 For any point set S we have ψd(S) ≤
3κp(S)− 2 and thus ψd(n) ≤ 3κp(n)− 2.

Table 1 shows the exact values of ψc(n), ψp(n), and
ψd(n) for small sets of points. There is one intriguing
open case: ψp(13) ∈ {3, 4}: ψp(13) = 3 would imply
an improved upper bound of ψp(n) ≤ 3n/13.
The pseudo-convex decomposition, partition, and

covering numbers for a particular point set S are not
necessarily monotone. Consider the examples in Fig-
ure 2: (left) A set S with 9 points and ψd(S) = 3.
Removing the bottom most point of S results in a set
S′ with 8 points and ψd(S′) = 4. (right) A set S with
6 points and ψc(S) = ψp(S) = 1. Removing the top-
most point of S results in a set S′ with 5 points and
ψc(S′) = ψp(S′) = 2.

Figure 2: Sets with non-monotone behavior.

3 Pseudo-Convex Decompositions

We first give a formula for the number of faces in a
pseudo-convex decomposition:
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n 3 4 5 6 7 8 9 10 11 12 13 14 15

ψc(n) 1 1 2 2 2 2 2 2..3 2..3 2..3 2..3 2..3 2..4
ψp(n) 1 1 2 2 2 2 3 3 3 3 3..4 3..4 4
ψd(n) 1 2 2 3 4 4 5 6 6 7 8 8..9 8..9

Table 1: Bounds on the pseudo-convex cover number ψc(n), partition
number ψp(n), and decomposition number ψd(n) for small point sets.

Lemma 4 Let S be a set of n points in general po-
sition. Let P be a pseudo-convex decomposition of
S, nk the number of convex k-gons in P , and p the
number of pointed vertices. Then the number of faces
of P is

|P | = 2n− p− 2−
n∑

k=4

nk(k − 3)

Corollary 5 The number of faces in a pointed
pseudo-convex decomposition is

|P | = n− 2−
n∑

k=4

nk(k − 3)

Although the pseudo-convex decomposition num-
ber for a particular point set S might not be mono-
tone (recall Figure 2), ψd(n) nevertheless increases
monotonically with n.

Theorem 6 The pseudo-convex decomposition num-
ber increases monotonically with the number of
points.

Proof. We have to show that ψd(n) ≤ ψd(n + 1)
which is equivalent to show that for all point sets S,
|S| = n, ψd(S) ≤ ψd(n + 1) holds. So let S be some
point set with n vertices and let q ∈ S be an extreme
point of S. We place a new vertex q+ arbitrarily close
to q to get the set S+ = S ∪ q+ such that both, q and
q+, are extreme vertices of S+. Note that S+ \ q has
the same order type as S, that is, for any two points
p1, p2 ∈ S \ q the triples p1, p2, q and p1, p2, q

+ have
the same orientation.
As S+ has n+1 points it can be pseudo-decomposed

with at most ψd(n+1) faces. LetD+ be such a decom-
position. Note that the face F of D+ which contains
the edge qq+ has to be convex, as otherwise q and q+

would lie on different sides of at least one edge of the
pseudo-triangle F . Now contract the edge qq+ until
q and q+ coincide. By this transformation the face F
loses one edge, but all other faces ofD+ remain combi-
natorially unchanged, that is, either convex polygons
or valid pseudo-triangles. Thus we obtain a pseudo-
decomposition D of S which has either the same num-
ber of faces asD+ or, in the case that F was a triangle,
one less. Therefore ψd(S) ≤ ψd(S+) ≤ ψd(n+1). �

The general lower bound construction as well as a
detailed analysis of upper and lower bounds for small
point sets can be found in the full paper.

3.1 Upper Bound

Our upper bound construction is based on exact
bounds for small point sets. Assume that we are given
a set S with n points and that we know the value of
ψd(k) for some k < n. We choose an extremal point p.
Now we take a line through p that has the whole point
set on one side and perform a circular sweep around
p, splitting off point sets of size k − 1. Together with
p each of these petals contains k points. We have a
total of n

k−1 petals which each can be decomposed
into at most ψd(k) faces. Two adjacent petals can be
combined with a pseudo-triangle into one larger con-
vex set. We apply this method until all of them are
combined and so obtain an upper bound of

ψd(n) ≤
ψd(k) + 1
k − 1 n .

The best current upper bound can be achieved by
combining Theorem 2 with Corollary 5. We con-
struct a decomposition for k = 11 points by pseudo-
triangulating in a pointed way around the convex
polygons guaranteed by Theorem 2. Then Corol-
lary 5 states that ψd(11) = 11 − 2 − 3 = 6 if the
point set contains an empty convex hexagon and
ψd(11) = 11 − 2 − 1 − 2 = 6 if the point set con-
tains an empty convex pentagon and a disjoint empty
convex quadrilateral. This implies

ψd(n) ≤
ψd(11) + 1
11− 1 n =

6 + 1
10

n =
7
10
n .

4 Pseudo-Convex Partitions

An upper bound of ψp(n) ≤ n/4 can be easily estab-
lished: Any four points form either a pseudo-triangle
or a convex quadrilateral and grouping them in x-
sorted order guarantees disjointness.

pp

Figure 5: Petals of size 5.
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Figure 3: A point set S with ψp(S) = n
6 + 1. Figure 4: A partition of S consisting of n

6 +1 faces.

4.1 Lower Bound

Lemma 7 Let S be set of points in convex position
with |S| = 2m, m ≥ 1. We partition S into m pairs of
consecutive points (along the convex hull). Let ψ′p(S)
denote the minimum number of faces in a pseudo-
convex partition of S in which no face contains a pair.
Then ψ′p(S) =

⌈
m
2

⌉
+ 1.

Theorem 8 ψp(n) ≥
⌊

n
6

⌋
+ 1, n ≥ 3.

Proof. We consider the point set S shown in Figure
3. S contains

⌊
n
3

⌋
interior points which are placed

very close to every second convex hull edge. Let P
be a pseudo-convex partition of S using the minimum
number ψp(S) of faces. We say that two consecutive
points p and q of the convex hull form a pair if there
is an interior point close to the edge pq. There are⌊

n
3

⌋
such pairs. We partition the faces of P into two

classes: Class A denotes faces containing at least one
pair. Class B consists of faces of P containing no pair.
Observe that a face of class A contains points of at
most two pairs. Thus, when drawing the faces of A,
there remain at least

⌊
n
3

⌋
− 2|A| unused pairs. There

might also remain additional interior points and other
convex hull points. Since all faces of B are convex re-
moving these additional points from the optimal par-
tition P only can decrease the number of faces of B.
Hence, the number of faces of B is at least the number
of faces needed for the

⌊
n
3

⌋
− 2|A| remainng unused

pairs. By Lemma 7 we need at least (
⌊

n
3

⌋
−2|A|)/2+1

faces for these pairs. Hence, |B| ≥ (
⌊

n
3

⌋
−2|A|)/2+1,

and ψp(S) = |A|+ |B| ≥ |A|+
⌊

n
6

⌋
−|A|+1 ≥

⌊
n
6

⌋
+1.

A partition of S consisting of n
6 + 1 faces is shown in

Figure 4. �

Note: In the proof of Theorem 8 we did not use ceiling
and floor functions to their utmost limit to simplify
the resulting formula. For example with n = 9 we
get from Lemma 7 a lower bound of 2 + |A| and thus
ψp(9) ≥ 3. Similar we get ψp(15) ≥ 4.

Acknowledgements. The first two authors want to
thank Ferran Hurtado and Hannes Krasser for valu-
able discussions on the presented subject.
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Pointed Binary Encompassing Trees: Simple and Optimal

Michael Hoffmann∗ Csaba D. Tóth†

Abstract

For n disjoint line segments in the plane we con-
struct in optimal O(n log n) time an encompassing
tree of maximal degree three such that every vertex is
pointed. Moreover, at every segment endpoint all in-
cident edges lie in a halfplane defined by the incident
input segment.

1 Introduction

Interconnection graphs of disjoint line segments in the
plane are fundamental structures in computational ge-
ometry. Often more complex objects can be modeled
by their boundary segments or polygons. One par-
ticularly well-studied example is a crossing-free span-
ning graph: the encompassing graph for disjoint line
segments in the plane is a connected planar straight
line graph (Pslg) whose vertices are the segment
endpoints and that contains every input segment as
an edge. One well-known example of encompassing
graphs are constrained (Delaunay) triangulations [9].
Bose et al. [4, 3] showed that any finite set of dis-

joint line segments in the plane admits an encompass-
ing tree of maximum degree three. Moreover, they
gave an O(n log n) time algorithm to construct such
an encompassing tree for n given segments. Both the
degree bound and the runtime are best possible (the
latter in the algebraic computation tree model).
Hoffmann, Speckmann, and Tóth [5] extended the

result of Bose et al. by showing that for n disjoint
segments in the plane a pointed binary encompassing
tree can be constructed in O(n4/3 log n) time. A Pslg

is pointed iff for every vertex v all edges incident to v
lie in a halfplane whose boundary contains v.
Here, we improve this result in several aspects: We

construct an encompassing tree in optimal O(n log n)
time and guarantee a stronger sense of pointedness
where all edges incident to a vertex v lie in a half-
plane aligned with the input segment whose endpoint
is v. As an additional benefit, the presented algo-
rithm is also considerably simpler (to understand and
to implement) than the existing approach.

Theorem 1 Let S be a set of n disjoint line segments
in the plane. There exists an encompassing tree T (S)

∗Theoretical Computer Science, ETH Zürich,
hoffmann@inf.ethz.ch

†Department of Mathematics, MIT, Cambridge,
toth@math.mit.edu

of maximum degree three such that for every vertex
v all incident edges lie in a halfplane bounded by the
line through the segment from S that is incident to
v. Moreover, T (S) can be constructed in O(n log n)
time

Motivation Pointed Pslgs are closely related to
minimum pseudo-triangulations, which have numer-
ous applications in motion planning [11], kinetic
data structures [8], collision detection [1], and guard-
ing [10]. Streinu [11] showed that a minimum pseudo-
triangulation of V is a pointed Pslg on the vertex
set V with a maximal number of edges. As opposed
to triangulations, there is always a bounded degree
pseudo-triangulation of a set of points in the plane [7].
A bounded degree pointed encompassing tree for dis-
joint segments leads to a bounded degree pointed en-
compassing pseudo-triangulation, due to a result of
Aichholzer et al. [2].
A simple construction (Figure 1a) shows that not

every set of n disjoint segments in the plane admits an
encompassing path. But there is always a path that
encompasses Θ(log n) segments and does not cross
any other input segment [6].

2 Definitions

Polygons. A polygon P is a sequence (p1, p2, . . . , pk)
of points in the plane. Denote the set of vertices of
P by V (P ) = {p1, p2, . . . , pk}, and the set of edges by
E(P ) = {p1p2, p2p3, . . . , pk−1pk, pkp1}.
A weakly simple polygon is a polygon without self-

crossings. Any weakly simple polygon P partitions
R2 \ P into an interior and exterior.
The boundary of every simply connected polygo-

nal set D can be covered by a weakly simple polygon
∂D. In particular, every planar straight line tree A
can be covered by a weakly simple polygon ∂A. Note,
however, that a vertex of the tree A can occur several
times among the vertices of ∂A. One way to distin-
guish distinct occurrences of the same point along ∂A
is by the angles (three consecutive vertices) along ∂A.

Faces of a PSLG. The complement of a con-
nected Pslg A can have several connected compo-
nents, which we call the faces of A. The boundary of
each face F can be covered by a weakly simple poly-
gon ∂F . We say that a vertex vi of the weakly simple
polygon ∂F is convex (reflex) if the angle ∠vi−1vivi+1
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whose angular domain contains F is less than (more
than) 180◦. This angle is the exterior angle of ∂F
for the outer face, and the interior angle of ∂F for all
bounded faces.

(a) (b)

(c) (d)

Figure 1: Six segments not admitting an encompass-
ing path (a), a connected Pslg with 4 faces including
the outer face (b), disjoint segments (c), and their
convex partition (d).

Convex partition and cells. The free space
around n disjoint line segments in the plane can be
partitioned into n+1 convex cells by the following well
known partitioning algorithm. (For simplicity, we as-
sume that no three segment endpoints are collinear.)
For every segment endpoint p of every input segment
sp, extend sp beyond p until it hits another input
segment, a previously drawn extension, or to infinity.
There may be many different partitions depending of
the order in which we consider the segment endpoints,
but the number of convex cells is always n+ 1.

3 Tunnel Graphs

Consider a set of disjoint segments S in the plane and
a convex partition P (S) obtained by the above algo-
rithm. Let us assign every segment endpoint p to an
incident cell τ(p) of the partition. We define the tun-
nel graph T (S, P (S), τ) for S, a partition P (S), and
an assignment τ as follows: The nodes of T corre-
spond to the convex cells of P (S). Two nodes a and b
are connected by an edge iff there is a segment pq ∈ S
such that τ(p) = a and τ(q) = b. The tunnel graph
is clearly planar; and T has n+ 1 nodes and n edges,
therefore it is connected iff it is a tree.

Theorem 2 For any set S of n disjoint line segments,
we can construct in O(n log n) time a convex partition

P (S) and an assignment τ such that the tunnel graph
T (S, P (S), τ) is a tree.

We note that the choice of the convex partition is
important in Theorem 2: Figure 2(d) shows seven
disjoint line segments and a convex partition such that
there is no assignment for which the tunnel graph is
connected. We obtain Theorem 1 as a corollary of
Theorem 2.

Proof of Theorem 1. Consider a partition P (S)
and an assignment τ provided by Theorem 2. We
construct a binary encompassing tree as follows: In
each cell connect all segment endpoints assigned to it
by a simple path; for example, connect them in the
order in which they appear along the boundary of the
cell.
The resulting graph is clearly a Pslg that en-

compasses the input segments. The maximal degree
is three because we add at most two new edges at
every segment endpoint. It remains to prove con-
nectivity. Let p and r be two segment endpoints.
We know that the tunnel graph is connected, so
there is an alternating sequence of cells and segments
(a1 = τ(p), p1q1, a2, . . . , pk−1qk−1, ak = τ(r)) such
that τ(pi) = ai and τ(qi) = ai+1, for every i. As
all segment endpoints assigned to the same cell are
connected, this path corresponds to a path in the en-
compassing graph. �

4 Constructing the Convex Partition

This section is devoted to the proof of Theorem 2.
Given n disjoint line segments in the plane, we par-
tition the free space around the segments into n + 1
convex cells and we assign an incident cell to every
segment endpoint in O(n log n) time.
Let R be a bounding box of the input segments.

We construct a convex partition of the free space in
two phase line sweep algorithm. In the first phase,
we apply a left-to-right sweep: We extend every in-
put segment beyond its right endpoint until the ex-
tension hits another segment, another extension, or
the boundary of R. If two extensions meet, then an
arbitrary one continues and the other one ends.
The free space of the input segments and their right

extensions is a simply connected set C0 ⊂ R. Or-
der the segments s1, . . . , sn according to the order of
their left endpoint along ∂C0. Let pi (qi) denote the
left (right) endpoint of si. We extend every input
segment si, i = 1, 2, . . . , n, in this order, beyond its
left endpoint pi until the extension hits another seg-
ment, another extension, or the boundary of R. Let
γi denote the left extension of si. Every segment γi

recursively partitions a cell of our cell complex into
two subcells. Notice that all left extensions γi can be
constructed in a single right-to-left sweep which gives
priority to the segment of smaller index whenever two
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(a) Partition. (b) Tunnel Graph. (c) Encompassing Tree.

p

q

a

b

c

(d) Disconnected.

Figure 2: An example for a partition with an assignment (a), the corresponding tunnel graph (b), the resulting
tree (c). A partition for which no assignment gives a connected tunnel graph (d).

extensions meet. Thus we can compute a convex par-
tition P by two line sweeps in O(n log n) time.
For constructing the assignment τ , we assume that

all right extensions are in place, and we insert the
left extensions one by one (even though we have
pre-computed all left extensions in a single sweep).
We define the assignment τ on the endpoints of si,
i = 1, 2, . . . , n, as soon as γi has been inserted. When
the first i − 1 left extensions have been inserted, we
have a partition Pi−1 into i cells and a partial as-
signment τi−1 on the endpoints of the first i− 1 seg-
ments. Pi−1 and τi−1 define a tunnel graph Ti−1 on i
nodes. We choose the assignment at the endpoints of
si inductively such that Ti (a graph with i+1 nodes)
remains connected.
Assume that γi splits a cell Ci of Pi−1 into two cells

C ′i, C
′′
i ∈ Pi. The node v(C) ∈ Ti−1 corresponding to

cell C is split into two nodes C ′ and C ′′, which lie in
different components of the resulting graph T ′i−1. The
left endpoint pi of si is incident to both C ′i and C

′′
i

because pi ∈ γi. The right endpoint qi, however, may
be incident to neither C ′i nor C

′′
i . We always assign

qi to the cell lying above qi. We can always assign p1

to C ′i or C
′′
i , whichever lies in the other component of

T ′i−1 as τ(qi), thus ensuring that Ti is a tree.
We have shown that there exists an assignment τ =

τn for which the tunnel graph T = Tn is connected.
It remains to prove that such an assignment can be
computed in O(n log n) time. That is, we need to
decide efficiently whether two cells are in the same
connected component of the current tunnel graph Ti.
Data structure. For each cell C of Pi−1, we main-
tain a doubly linked list of all segment endpoints and
vertices along ∂C. The assignments τi carries one bit
information for each segment endpoint r: It assigns
r to the cell lying below or above r. We can insert a
splitting segment γi by splitting the doubly connected
list of of Ci into C ′i and C

′′
i in constant time. We also

note an interval g(v) ⊂ [1, n] for each vertex v of the
right extension tree such that the descendants of v

contain every left segment endpoint pj , j ∈ g(v). We
maintain a coloring on the segments and their left and
right extensions: Every input segment and every right
extension is blue. The color of right extensions is de-
fined recursively: γi is blue if its left endpoint hits a
blue segment, otherwise it is red. We also maintain
an index ind(e) for every blue input segment or blue
extension. The index of si or its right extension is i.
If γi hits a segment of index j then ind(γi) = j.

Assignment rule. We assign pi according to the
following rule: If γi is blue and vi %∈ si where vi is the
deepest vertex in the right extension tree such that
[ind(γi), i] ⊆ g(vi), then we assign pi to the cell above
it, otherwise to the cell below it. It takes O(log n)
time to find vi in the right extension tree, and so τ(pi)
can be computed for all i = 1, 2, . . . , n in O(n log n)
time.

Proposition 3 Choosing τ(pi) by the above rule
maintains the connectivity of Ti

Proof. We define an orientation on the input seg-
ments and their extensions. Every segment and every
right extension is directed to the right, every left ex-
tension is directed to the left. Note that there are
no cycles in this orientation. For every i = 1, 2, . . . n,
we define a curve βi through pi: two branches of βi

start out from pi to the left along γi and to the right
along si, they follow the above orientation until the
two branches meet or until both hit the bounding box
R. Curve βi partitions R into two regions Ai and Bi

such that pi lies on their common boundary. Observe
that the curve does not pass through any left seg-
ment endpoint, and recall that every right segment
endpoint qj , is assigned to the region above qj .
By a case analysis, we can verify that si is the only

segment whose left and right endpoints are assigned
to regions Ai and Bi, respectively, and the assignment
rule assigns pi and qi to distinct regions. (1) If γi is
red then βi is x-monotone and its two branches pass
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(a) (b)

2 1

4

3

(c)

5

7

6

2 1

8

4

3

(d) (e)

Figure 3: Constructing the partition: First all right extensions (b), then the left extensions are inserted one by
one (c) and (d), and from the final partition together with the assignment we can construct the encompassing
tree.

through right endpoints only, so pi is the only vertex
that might be assigned to the region below βi. (2)
Suppose that γi is blue: The left branch of βi starts
out x-monotone decreasing, then it hits a segment
or a right extension and turns back in x-monotone
increasing direction. Let Ai be the region not adjacent
to the left side of R. Ai is an x-monotone region. (2a)
If γi hits a segment sj , j > i, or its right extension,
then Ai must be below si. We know that Bi is above
qi and Ai is below pi. (2b) If γi hits a segment sj ,
j < i, or its blue extension, then Ai is above si, so we
know that Ai is above pi. The rightmost point of Ai

is vi. The only case where Ai does not lie above qi is
that vi ∈ si. �
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Approximate Multi-Visibility Map Computation

Narćıs Coll∗ Marta Fort∗ J. Antoni Sellarès∗

Abstract

A multi-visibility map is the subdivision of the do-
main of a terrain into different regions that, according
to different criteria, encode the visibility with respect
to a set of view elements. We present an algorithm
for computing approximate multi-visibility maps for
a terrain, modeled as a TIN, with respect to a set of
view segments. Our approach is based on an algo-
rithm that reconstructs an approximation of an un-
known planar subdivision from information gathered
from linear probes of the subdivision.

1 Introduction

Visibility information of terrain areas is necessary in
many Geographic Information Systems applications,
such as path planning, mobile phone networks design
and environmental modeling.
The visibility map is an structure that encodes the

visibility of a terrain with respect to a view element
(point, segment, triangle, ...) belonging to or above
the terrain. Algorithms for computing the visibility
map of a point on a Triangulated Irregular Network
(TIN) are available in [3, 4]. Visibility structures for
several view elements, that we generically call multi-
visibility maps, can be defined by combining the vis-
ibility map of such elements according to some oper-
ators, for example intersection, union and counting.
When the representation of a terrain is a rough

approximation of the underlying terrain, the approx-
imated computation of a multi-visibility map is often
sufficient.
In this paper we address the problem of computing

approximate multi-visibility maps for a terrain mod-
eled by a TIN with respect to a set of view segments.

2 Preliminaries

2.1 TIN, visibility, multi-visibility map

A terrain can be modeled as the graph of a Triangu-
lated Irregular Network, (T ,F), formed by a triangu-
lation T = {t1, · · · , tn} of the domain D ⊂ R2 and
by a family F = {f1, · · · , fn} of linear functions such
that: a) function fi ∈ F is defined on triangle ti,

∗Institut d’Informàtica i Aplicacions, Universitat de Girona,
Spain, {coll,mfort,sellares}@ima.udg.es. Partially sup-
ported by grant TIN2004-08065-C02-02

i = 1..n; b) for every pair of adjacent triangles ti and
tj , fi(x, y) = fj(x, y) for all points (x, y) ∈ ti ∩ tj .
For any triangle ti ∈ T , ti = fi(ti) is a triangle

in R3 that we will call a face of the TIN, and the
restriction of each function fi to an edge or a vertex
of T is an edge or a vertex of the TIN, respectively.
Given a terrain (T ,F), we will say that a point

Q = (x, y, z) is above the terrain if the domain point
(x, y) belongs to some ti ∈ T and z > fi(x, y). A view
element (point, segment, triangle, ...) is an element
belonging to or above the terrain. A point P on the
terrain is called visible from a view point V if the in-
terior points of the line segment joining V and P lie
above the terrain. A point P belonging to the terrain
is called (weakly) visible from a view segment v if P is
visible at least from a point of v.
Given a set V of r view segments, a multi-visibility

map is a subdivision of the domain D of the terrain
into regions according to different visibility criteria.
Some subdivision criteria examples are: the region
visible from at least one segment and its complement;
the region visible simultaneously from all the seg-
ments and its complement; the regions visible from
exactly 0, 1, · · · , r segments.

2.2 Planar subdivision reconstruction

Given an unknown target bounded planar subdivision
S, in [2] a general purpose online reconstruction algo-
rithm is presented that reconstructs an approximation
of the unknown target based on information gathered
from linear probes of the target. The goal is to recover
the vertices, edges and faces of S based on the infor-
mation acquired from the probes. Online means that
the algorithm maintains an approximation of the pla-
nar subdivision after processing the information from
each line probe. Since the set of line probes does
not provide sufficient information to reconstruct S ex-
actly, the algorithm progressively refines the approxi-
mation which converges to S as the number of probe
lines increases. How the line probes are chosen plays
an important role in how accurate the reconstruction
is and how quickly it converges. The probing lines are
generated uniformly distributed over a bounding box
B of S so that the probability that a line intersects
a piece of the boundary of and edge of S, indepen-
dent of its location and orientation, is proportional to
its length [8]. A line probe L on S partitions L into
a finite set of segments with each segment labelled
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with the face of S that contains it. The reconstruc-
tion algorithm maintains a triangulation of the end-
points of the segments from which the approximation
of the unknown target can be extracted. The mean
computational cost of the algorithm when k lines are
processed is O(k log k), where the hidden constant de-
pends on the quotient between the sum of the length
of all the edges of S and the perimeter of B. The
algorithm is particularly suited for the setting where
computing the intersection of a line with an unknown
target is much simpler than computing the unknown
target itself.

3 Approximate multi-visibility map computation

We have designed an algorithm for computing approx-
imate multi-visibility maps, according to different cri-
teria, based on the planar subdivision reconstruction
algorithm mentioned in previous section.
The input of our algorithm are a TIN (T ,F) and a

set of view segments V . The output is an approximate
multi-visibility map M. For representing T and M
we are going to use a DCEL structure. This structure
allows for all necessary traversal operations efficiently.
Next we give an overview of the major steps of our

algorithm.

• Determine an axis-parallel rectangular bounding
box B containing the domain D of the triangula-
tion T . Triangulate the region of B exterior to D
to extend T to a triangulation T ′ of B. To this
purpose it suffices to add O(n) triangles, where
n is the number of triangles in T , with four of
them having an edge that coincides with an edge
of B. Total cost O(n).

• Generate a set L of k lines uniformly distributed
over B. Each line in L is obtained in constant
time by the following process. Let p be a point
selected uniformly at random from the boundary
of B, and let φ be an angle selected uniformly at
random from the interval [0, π). A line uniformly
distributed over B will be a line l going through
p and such that the angle, interior to B, between
the edge s of B that contains p and l measures
φ. Cost O(k).

• For each line l ∈ L and each segment v ∈ V ,
computeMl,v, the restriction on l of the visibil-
ity map from v. First we compute the intersec-
tion of l with T . Let a1, · · · , am be the resulting
line sections, where aj ∈ tj . Cost O(m) (See
subsection 3.1). Next we determine the visibility
of the segment aj = fj(aj) on the face tj of the
TIN from the view segment v. Cost O(n2 log n)
(See subsection 3.2). FinallyMl,j is obtained as
the subdivision of l in segments according to the
visibility of aj , j = 1..m. Cost O(mn2).

• DenoteMl the restriction of the multi-visibility
map on l with respect to the segments of V .
Ml is obtained by merging the information in
Ml,v, for each v ∈ V . Naturally, the merging
operation depends on the visibility criterion cho-
sen for defining the multi-visibility map. Cost
O(mn2 log r), where r is the number of segments
in V .

• Apply the reconstruction algorithm to the k lines
Ml, l ∈ L. Cost O(k log k).

Consequently, the total cost of the algorithm in the
worst case is O(krmn2 log n) + O(k log k), where we
have supposed that r ≤ n.

3.1 Line-triangulation intersection

The m line sections resulting from the intersection of
l and T can be computed in O(m) time. To facilitate
the task we intersect l with the extended triangulation
T ′. An edge of the first triangle of T ′ intersected by
l is the edge of B containing the origin p of l. Start-
ing from this triangle we can traverse T ′ following
l through adjacent edges in constant time per edge.
The whole intersection process takes O(m) time.
From results of integral geometry we know that the

mean number of triangles of T intersected by a line
l uniformly distributed over B is m =

∑n
i=1 ∂ti/∂B

[8]. Consequently we can considered m as a function
depending on the triangulation and the bounding box.

3.2 Segment-segment visibility

Given a view segment v and a segment s on a face
of the TIN we want to compute the visible parts of
s from v. We will concentrate our attention in the
case in which v and s are non coplanar, so that they
determine a tetrahedron Tv,s. Therefore we will be
just interested in the n′ faces of the TIN intersecting
Tv,s. The study of the most simple case in which v
and s are coplanar and determine a quadrilateral is
omitted in this abstract.
We have adapted to our purpose an algorithm pro-

posed by Bern et al. [1] for computing the visibility
with a moving point of view in 3D polygonal scenes
and we also use ideas given by S. Ghali in [5] to de-
termine shadow points in 2D polygonal scenes. We
will solve the problem by setting a moving point on
v, and looking only what happens to s.
Let v be parameterized by ”time” t from 0 to 1. We

denote vt the point of v with parameter value t. When
points v0, v1 have different height we assume that v0

is located below v1. As well we consider the segment s
parameterized by u from 0 to 1 and we denote su the
point of s with parameter value u. We choose s0 and
s1 in such a way that the orthogonal projections onto
D of the segments v0s0 and v1s1 do not intersect.
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While we are moving vt along v, the triangle Tt de-
termined by vt and s, the vision triangle, sweeps the
tetrahedron Tv,s. During the sweep, for a given time
t, the intersection point between an edge e and the
vision triangle is the pierce point, pe,t (their position
and existence depend on t). At time t, the ordered
list of edges producing pierce points is the transpar-
ent visibility cycle (tvct). The edges are ordered ac-
cording to the angular order around vt of the pierce
points determined by them. The ordered list of edges
producing visible pierce points from vt is the opaque
visibility cycle (ovct). While we move vt, no impor-
tant changes in the visible parts of s are produced
unless in a point where there is a change either in
tvc or ovc. These points are the critical points and we
say that a transparent/opaque topology change occurs,
respectively. It is not difficult to see that a transpar-
ent topology change occurs at time t if and only if
there are two edges e and e′ such that there is a line
segment that intersects vt, e, e′ and s. And it is an
opaque topology change on s if, in addition, the line
segment does not pass through the interior of any face.
We are interested in determining the opaque topol-

ogy changes on s. Using ovc and tvc we are able to
determine all the critical points on v, but we are not
able to decide if the corresponding topology change
is opaque or transparent. With a preprocess we can
update ovc and determine where the opaque topol-
ogy changes occur [1]. To avoid this preprocess we
consider the back face of the edges producing pierce
points. The back face of the edge e at time t, denoted
bfe,t, is the first face intersected by the ray originated
in vt passing through pe,t. The face bfe,t may change
when there is a transparent topology change. We will
store with each edge e in tvct its back face bfe,t. When
moving vt, in order to update the back face of an edge
in O(log n′) time, we use some ”auxiliary” edges and
faces. Let E be the set of segments obtained inter-
secting the TIN edges and Tv,s. We take as auxiliary
edges the vertical segments joining an endpoint of a
segment in E with its orthogonal projection onto D.
We take as auxiliary faces the quadrilaterals deter-
mined by each segment in E and its orthogonal pro-
jection onto D. Observe that for each TIN edge we
introduce at most two new auxiliary edges and a face.
From now on, faces and edges mean both, the ones
from the TIN and the auxiliary ones.
In practice, during the sweep, we have three types of

critical points characterized by the following events:
(1) an endpoint of an edge is reached by Tt; (2) a
non-auxiliary edge intersects the boundary of Tv,s (3)
two edges exchange their order in tvc, what means
that the pierce points they determine exchange their
angular position. As Tv,s intersects with O(n′) edges,
the number of critical points is at most O(n′2).
Let us focus in the algorithm. The input is the TIN

(T ,F), the view segment v and the segment s on a

face of the TIN. The output is the set of the endpoints
of the visible sub-segments of s ordered by u.
The algorithm has two main parts:

1. Opaque topology changes on s: We move vt along
v sweeping the tetrahedron Tv,s with the vi-
sion triangle Tt. During the sweep we determine
the events corresponding to critical points along
v. These points are characterized by 4-tuples
(t, e, e′, u) such that su is the intersection point
between s and the line passing through vt, e and
e′. We only store the 4-tuples of critical points
that corresponds to opaque topology changes on
s, the shadow points, in an ordered list Cs.

2. Visible parts of s: First we obtain the visible
parts of v looking from point s0 ∈ s. Next we
determine the visible parts of s by traversing the
set of 4-tuples (t, e, e′, u) that characterize the
opaque topology changes on s in an ordered way
from u = 0 to u = 1.

3.2.1 Opaque topology changes on s

Events determination. The coordinates t and u
that correspond to the two events of type (1) and (2)
determined by and edge e can be easily computed in
constant time. We will characterize them by a 4-tuple
(t, e, e, u).
To obtain the events of type (3) we can consider all

the pairs of edges intersecting Tv,s and compute the
time were they would exchange their angular position.
In spite of using brute force, we only consider the pairs
of edges which are adjacent in tvct at some time t.
For this reason we will obtain them during the sweep
process. The coordinates t and u for the events of
type (3) are obtained using the skew projection [1].
Events are stored in a priority queue ordered by t.

Different events can occur at the same t, in this case
the last events to handle are the events of type (2)
with e as an auxiliary edge and u %= 1. During all
the process we will only store in the priority queue
events with t and u between 0 and 1.

Obtaining tvc0 and ovc0. Once we have the
priority queue initialized with events of type (1) and
(2), we can obtain tvc0 and ovc0.
We take the set E of edges e corresponding to the

events (0, e, e, u) and we delete these events from the
priority queue. The transparent visibility cycle tvc0
contains the edges of E ordered by increasing u. We
determine ovc0 and the back face bfe,0 of each edge
e ∈ E by an angular sweep around v0 in O(n′ log n′)
time. We store in the list L0 the faces intersecting the
line v0s1 by increasing distance from v0.
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Once tvc0 has been computed we can obtain the
events of type (3) by traversing tvc0. For each
pair of adjacent edges in tvc0 we compute a 4-tuple
(t, e, e′, u) and we store it in the priority queue.

Handle events. Assume that for a critical
point occurred at t′ we have tvct′ , ovct′ , and Lt′ (the
ordered set of faces intersecting the line vt′s0). To
handle the next event (t, e, e′, u), t ≥ t′, found during
the sweep we must proceed as follows:

1) Obtain tvct and ovct. The updating process de-
pends on the type of the event handled, there is one
method for events of type (1) or (2) and another for
events of type (3). We use the auxiliary edges in order
that this update can be done in O(log n′) time. The
details are not given in this abstract.

2) Find new events of type (3). We check for new
adjacencies in tvct and we add the new events in the
priority queue.

3) Select opaque topology changes on s. If there
has been a change in ovc and the face containing
s belongs to {bfe,t′ , bfe′,t′ , bfe,t, bfe′,t} we store the
4-tuple (t, e, e′, u) in the list Cs of shadow points on
s.

Complete the list Cs of shadow points.
Finally we must complete Cs with the shadow points
produced by v0 and v1. These points are obtained
by traversing ovc0 and ovc1. For each edge e such
that s ⊂ bfe,j , j = 0, 1 we store in Cs the 4-tuple
(0, e, vs

j , u) where v
s
j is the vertical segment joining

vj with its orthogonal projection onto D.

3.2.2 Visible parts of s

Visible parts of v from s0. By working in the
triangle defined by v an s0 we partition v in segments
according to the visibility from s0. Each visible
segment of v is determined by a pair of edges (e, e′).
The visibility changes in v are obtained by making a
sweep around s0 similar to the sweep made to obtain
tvc0 and ovc0 but considering v as a face. It takes
at most O(n′ log n′) time (details omitted in this
abstract). At the end of the process the pairs (e, e′)
are stored in the set of visible parts of v from s0,
Vv,0.

Visible parts of s from v. For each 4-tuple
in Cs we update in O(log n′) time Vv,u, the set of
visible parts of v from su, and we obtain the set of
endpoints of the the visible segments of s according
to a process similar to the one given in [5].

4 Visibility from a polygon and inter-regions visi-
bility

If we are interested in a multi-visibility map from a
view polygon placed on or over a terrain we just have
to consider the visibility from the segments forming
the boundary of this polygon [9] and then merge the
visibility information obtained for each single bound-
ary segment to obtain information of the whole view
polygon.
A region on a TIN is the subset of faces of the TIN

determined by a connected subset of triangles of the
domain triangulation. Our algorithm can be easily
adapted to determine the approximate weak visibil-
ity from region R to region R′ [7]. Just consider the
region R as a set of view polygons and use the pro-
jection onto D of the region R′, instead of the whole
D, to take random lines.
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Approximation Schemes for the Generalized Geometric Problems with
Geographic Clustering

Corinne Feremans∗ Alexander Grigoriev†

Abstract

This paper is concerned with polynomial time approx-
imations schemes for the generalized geometric prob-
lems with geographic clustering. We illustrate the
approach on the generalized traveling salesman prob-
lem which is also known as Group-TSP or TSP with
neighborhoods. We prove that under the condition
that all regions are non-intersecting and have compa-
rable sizes and shapes, the problem admits PTAS. To
derive a PTAS we extend the algorithm by Arora [2].
This extension involves the dissection mechanism and
solution of the selection problem. We observe that the
results are applicable to many generalized geometric
problems, to other Minkowski norms, and to other
fixed dimensional spaces.

1 Introduction

Problem Statement. We consider the following
generalization of the classic Euclidean Traveling Sales-
man Problem (TSP). Assume that a salesman has to
visit k customers. Each customer has a set of specified
locations in the plane (referred to as a region) where
the customer is willing to meet the salesman. The ob-
jective is to find a shortest salesman tour that visits
each of these customers. If a region is a single point,
the described problem becomes the classic TSP.
The described generalization of TSP is known as

the Generalized TSP, or the Group-TSP, or the TSP
with neighborhoods. For short we shall refer to this
problem as to GTSP. In the similar way we can de-
fine the generalizations for many other geometric opti-
mization problems, for instance, Minimum Spanning
Tree, Minimum Steiner Tree, Minimum k-Connected
Subgraph, and many others.

Related Work. Traditionally, TSP attracts atten-
tion of many researchers in combinatorial optimiza-
tion. The problem is known to be NP -hard. In the
late nineties it has been shown that TSP and many
other geometric optimization problems admit polyno-
mial time approximation schemes (PTAS), see Arora
[1] and Mitchell [5].
For GTSP it is known that the problem cannot be

efficiently approximated within any constant factor
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unless P = NP , see [6]. Constant factor approxi-
mations were developed for the special cases where
neighborhoods are disjoint convex fat objects [3], and
where the diameter of neighborhoods are comparable
[4]. For the case where the neighborhoods are pairwise
disjoint unit disks Dumitrescu and Mitchell developed
a PTAS [4].

Our results. In this paper we consider the special
case of GTSP where the regions are non-intersecting
and have comparable sizes and shapes. More pre-
cisely, the clustering is defined by a collection of k
simple polygons in the plane satisfying the following
properties. Two polygons may intersect each other
only on the boundaries. Every polygon contain a disk
of diameter q and the perimeter of each polygon is
bounded from above by cq where c is a constant. In
the interiors of these polygons n points are distributed
in such a way that each polygon contains at least one
of the given points. The points belonging to the same
polygon form a region. We associate the polygons
with countries, the points with cities, and we refer to
the regions as to geographic clusters.

We prove that GTSP restricted to the geographic
clustering admits a PTAS. This result generalizes the
PTAS for pairwise disjoint unit disks by Dumitrescu
and Mitchell [4] in two directions. First, we allow
a bigger variety of shapes and sizes of the regions.
Second, we allow regions to be finite sets and for ev-
ery region we solve the selection problem, namely, we
choose the city to be visited.

Furthermore, our results are based on techniques
different from m-guillotine method used in [4]. To de-
rive a PTAS for GTSP with geographic clustering we
extend the randomized dissection method presented in
Arora [2]. We introduce a new dissection technique
which can be used to construct PTAS for many gener-
alized geometric problems with geographic clustering.
In contrast to [2] where the level lines in the dissec-
tion are straight, the new dissection is based on the
curved (piece-wise linear) level lines. We also adopt
the dynamic programming routine from [2] to solve
the selection problems in the regions.

Finally, we observe that our algorithm is applicable
to generalized versions of many geometric optimiza-
tion problems listed in [2]. We also observe that the
methodology is applicable to other Minkowski norms
and to other fixed dimensional spaces which also ex-
tends the results from [4].
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2 PTAS for GTSP with geographic clustering

To obtain a PTAS for GTSP with geographic cluster-
ing we follow the Arora’s PTAS [2] making the follow-
ing changes:

1. Curved dissection. Straight level lines in the
dissection could cut a polygon into parts. This
causes the problem that for a cut polygon we can-
not decide to which node of the dissection tree it
belongs. We fix this problem by curved dissec-
tion. Assume that a horizontal line in the dissec-
tion cuts some polygon into two or more parts,
say “north” and “south”. In this case, we redefine
the level line as follows. Let the level line follow
the boundary of the “south” leaving the entire
polygon in the “north”, see Figure 1. Similarly,
we change the vertical level lines leaving the cut
polygons in the “west”. Doing the curved dissec-
tion we uniquely define the places of cut polygons
in the 4-ary dissection tree.

straight level lines
curved level lines

Figure 1: Curved dissection

2. Early stop. If the curved dissection goes too
deep, two sequential curved level lines may have a
common segment which again can cause the prob-
lem when deciding to which node of the dissection
tree the polygon belongs. To avoid common seg-
ments we stop the dissection when the distance
between two sequential straight level lines is cq.
So, with the early stop and the curved dissection
we uniquely define the places for all polygons in
the 4-ary dissection tree.

3. Reduced random shifts. By early stop in the
randomized dissection it is sufficient to consider
the random horizontal shifts a and random verti-
cal shifts b such that both, a and b, are divisible
by cq.

4. Portals multiplicities. Since we allow curved
level lines, the perimeter of the “squares” in the

dissection increases. To keep the inter-portal dis-
tances unchanged on the curved level lines, we
have to enlarge the number of portals on the
perimeter of the “squares”. From the condition
that perimeter of any polygon is at most cq, we
derive that the perimeter of any “square” in the
curved dissection is at most 4c2/π times bigger
than the perimeter of the corresponding square in
the straight dissection. Therefore, it is sufficient
to multiply the portal parameter by the constant
factor 4c2/π.

5. Solution of the selection problem. From
early stop and condition that each polygon con-
tains a disk of diameter q, we derive that in
the leaves of the revised 4-ary dissection tree the
number of polygons is at most 4c2/π. Since the
number of cities in each polygon is finite and we
have to pick up only one city per polygon, for any
leaf of the dissection tree we can effectively enu-
merate all possible arrangements for the cities to
be visited.

For the revised algorithm we prove the Structure
Theorem as in [2], and consequently we have the fol-
lowing theorem.

Theorem 1 With probability at least 1/2 over the
choice of the shifts a and b, the revised algorithm pro-
vides a portal respecting tour of length (1 + ε)OPT
in time O(nO(c2/ε)), where ε > 0 is a required accu-
racy parameter, and OPT is the optimum GTSP tour
length.

To derandomize the algorithm we can, for instance,
go through all choices for a and b.
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Approximation Algorithm for the L1-Fitting Circle Problem

Sariel Har-Peled∗

Abstract

In this paper, we study the problem of L1-fitting a
circle to a set of points in the plane, where the tar-
get function is the sum of distances of the points to
the circle. We show an (1 + ε)-approximation al-
gorithm, with running time O(n + poly(log n, 1/ε)),
where poly(log n, 1/ε) is a constant degree polynomial
in log n and 1/ε. This is the first subquadratic algo-
rithm for this problem.

1 Introduction

Motivated by a variety of applications, considerable
work has been done on measuring various descriptors
of the extent of a set P of n points in ;d. We refer
to such measures as extent measures of P . Roughly
speaking, an extent measure of P either computes cer-
tain statistics of P itself or it computes certain statis-
tics of a (possibly nonconvex) geometric shape (e.g.
sphere, box, cylinder, etc.) enclosing P . Examples
of the former include computing the kth largest dis-
tance between pairs of points in P , and the examples
of the latter include computing the smallest radius of
a sphere (or cylinder), the minimum volume (or sur-
face area) of a box, and the smallest width of a slab
(or a spherical or cylindrical shell) that contain P .
Shape fitting, a fundamental problem in compu-

tational geometry, computer vision, machine learn-
ing, data mining, and many other areas, is closely
related to computing extent measures. A widely used
shape-fitting problem asks for finding a shape that
best fits P under some “fitting” criterion. A typi-
cal criterion for measuring how well a shape γ fits
P , denoted as µ(P, γ), is the maximum distance be-
tween a point of P and its nearest point on γ, i.e.,
µ(P, γ) = maxp∈P minq∈γ d(p, q). This is the L∞-
fitting problem1. Here, one can define the extent mea-
sure of P to be µ(P ) = minγ µ(P, γ), where the mini-
mum is taken over a family of shapes (such as points,
lines, hyperplanes, spheres, etc.). For example, the
problem of finding the minimum radius sphere (resp.
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1The L∞-fitting comes from considering the distance of ev-
ery point to the shape being a coordinate in a vector, and what
metric we apply to this vector.

cylinder) enclosing P is the same as finding the point
(resp. line) that fits P best, and the problem of finding
the smallest width slab (resp. spherical shell, cylindri-
cal shell) is the same as finding the hyperplane (resp.
sphere, cylinder) that fits P best.
The exact algorithm for computing extent measures

are generally expensive, e.g., the best known algo-
rithms for computing the smallest volume bounding
box containing P in ;3 require O(n3) time. Conse-
quently, attention has shifted to developing approxi-
mation algorithms [BH01, ZS02]. A general appro-
ximation technique was recently developed for such
problems by Agarwal et al. [AHV04]. This implies
among other things that one can (1+ ε)-approximate
the circle best L∞-fit a set of points in the plane
in O(n + 1/εO(1)) time (see [AAHS00] and [Cha02]
and references therein for more information about this
problem).
The main problem of the L∞ measure in shape fit-

ting is that it is very sensitive to outliers. Namely,
a single outlying point can change the price of the
optimal solution dramatically. There are two natural
solutions. The first approach, is to change the target
function to be less sensitive to outliers. For example,
instead of considering the maximum distance, one can
consider the sum of distances (i.e., L1-fitting), or the
sum of squared distance (i.e., L2-fitting). The L2-
fitting in the case of a single linear subspace is well
understood, and is no more than SVD (singular value
decomposition). Fast approximation algorithms are
known for this problem, see [FKV98, RVW04] and
references therein. As for the L1-fitting, this problem
can be solved using linear programming techniques, in
polynomial time in high dimensions, and linear time
in constant dimension [YKII88]. Recently, Clarkson
gave a faster algorithm for this problem [Cla05] which
works via sampling.
The problem seems to be harder once the shape

considered is not a linear subspace. There is consid-
erable work on nonlinear regressions (i.e., extension
of the least squares technique) for various shapes, but
there not seems to be a guaranteed approximation al-
gorithms for the circle case [SW89]. The hardness in
the L1-fitting of a circle seems to rise from the tar-
get function is a sum of terms, each term being an
absolute value of a difference of a square root of a
polynomial and a radius. It seems doubtful that ana-
lytical solution would exist for such a target function,
as it is related to the Fermat-Weber problem [Wes93].
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The second approach, is to specify the number k
of outliers in advance, and find the best shape L∞-
fitting all but k of the input points. Har-Peled and
Wang showed that there is a coreset for this problem
[HW04], and as such it can be (1 + ε)-approximated
in O(n + poly(k, log n, ε)) time, for a large family of
shapes. The work of Har-Peled and Wang was mainly
motivated by trying to solve the problem of L1-fitting
a circle to a set of points.
In this paper, we describe an (1+ε)-approximation

algorithm for the L1-fitting of a circle to a set of
points in the plane. The solution has running time
of O(n + poly(log n, 1/ε)), and the result is correct
with high probability. The only previous algorithm
for this problem we are aware of, is due to Har-Peled
and Koltun [HK04a], and it works in O(n2ε−2 log2 n)
time.
Due to extreme space limitations, we only provide

a sketch of the paper. A full version of this paper is
available from the author’s webpage http://www.uiuc.
edu/~sariel/papers/05/l1_fitting/.

2 Approximate L1 Fitting of a Circle to a Set of
Points

2.1 Solution Outline.

The problem of best L1-fitting a circle to a set of
points in the plane, is equivalent to finding the points
in 3D the minimizes the sum of distances to a set of
cones.
As such, our solution is based on two steps. In the

first step, we compute a small set of levels, and assign
weights to them, such that solving the problem on
those (weighted) levels would be equivalent to solv-
ing the problem on the original arrangement of cones.
Unfortunately, this is by itself insufficient, as those
levels by themselves might be of high complexity, and
computing them would be prohibitly expensive. To
this end, we replace the exact level by approximate
level, using random sampling. This ensures that each
such level is a shallow level (in the appropriate ran-
dom sample).
This still fall short of solving the problem, because

even a shallow level might have high complexity. As
such, we simplify those levels in such a way that pre-
serves the sum of vertical distances. The last step
is done by applying a recent result of Har-Peled and
Wang [HW04] that shows that one can do such a sim-
plification, and it is of small size.
In the end of this process, we have a weighted ar-

rangement of surface patches of small size (say, of
complexity O(poly(1/ε, log n))), such that we need
to solve the problem in this arrangement. We can
now solve the problem by using an reasonably effi-
cient brute force approach. Indeed, we decompose
the arrangement into vertical slabs where a vertical

line intersect the surfaces in the same order. We need
to solve the problem inside this prism. In the original
settings, this corresponds to a (small) weighted set of
points, where we want to best fit them to a circle. We
use a slow (cubic time) approximation algorithm to
do that.

2.2 Warmup Exercise – Slow Approximation

Lemma 1 Let G be a set of n weighted cones in ;3

with total weightW , and ε > 0 a parameter. One can
find a point p ∈ ;3 such that, νG(p) ≤ (1 + ε)νopt(G),
where νopt(G) is the price of the global minimum. The
running time is O(n3poly(logW, ε−1)).

The same running time holds, if the feasible re-
gion is restricted to a region of constant complexity
of space.

2.3 Second Warmup Exercise – the One Dimen-
sional Case

In this section, we consider the one dimensional prob-
lem of approximating the distance function of a point
x to a set of points Z = 〈z1, z2, . . . , zn〉, where z1 ≤
z2 ≤ . . . ≤ zn. Formally, we want to approximate
the function νZ(z) =

∑
zi∈Z |zi − z|. This is no more

than the one median function for those points on the
line. This corresponds to a vertical line in three di-
mensions, where each zi represents the intersection of
the vertical line with the surface γi. The one dimen-
sional problem is well understood, since it is no more
than the 1-median problem, and there exists a coreset
for it, see [HM04, HK04b]. Unfortunately, it is un-
clear how to perform the operations that corresponds
to those coreset construction in a global fashion, so
that the construction would hold for all vertical lines.
Our first step, is to do chunking. Formally, we par-

tition Z symmetrically into subsets, such that the size
of the subsets increase in size as one comes toward the
middle of the set. Formally, the set Li = {zi} con-
tains the ith point on the line, for i = 1, . . . ,M , where
M ≥ 10/ε is a parameter to be determined shortly.
Similarly, Ri = {zn−1+1}, for i = 1, . . . ,M . Next, let
αM = M , and let αi+1 = min(�(1 + ε/10)αi , n/2),
for i = M, . . . , N , where αN is the first number
in this sequence equal to n/2. Now, let Li ={
zαi−1+1, . . . , zαi

}
and Ri =

{
zn−αi−1 , . . . , zn−αi+1

}
,

for i = M + 1, . . . , N . Consider the partition of Z
formed by L1, L2, . . . , LN , RN , . . . , R2, R1. Clearly,
this is a partition of Z into “exponential sets”. The
margin M sets on the boundary are singletons, and
all the other sets grow exponentially in cardinality, till
the cover the whole set Z.
We next pick a point an arbitrary point li ∈ Li and

ri ∈ Ri, and we also assign weight |Ri| = |Li| to each
such point. for i = 1, . . . , N . Let S be the resulting
weighted set of points. We claim that this is a coreset
for the 1-median function.
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Lemma 2 Let A be a set of n real numbers,
and let a be any number of A. We have that
|νA(z)− |A|‖az‖| ≤ νA(a).

Lemma 3 νZ(z) ≈ε/5 νS(z), for any z ∈ ;.

Next, we “slightly” perturb the points of the
coreset S. Formally, assume that we have
points l′1, . . . , l

′
N , r

′
1, . . . , r

′
N such that ‖l′ili‖ ,‖r′iri‖ ≤

(ε/20)‖liri‖, for i = 1, . . . , N . Let S′ =
{l′1, . . . , l′N , r′N , . . . , r′1} be the resulting weighted set.
We claim that S′ is still a good coreset.

Lemma 4 νZ(z) ≈ε/3 νS′(z), for any z ∈ ;.

2.4 Additional Tools

2.4.1 Approximating a Level by a Shallow Level in
a Random Sample

Lemma 5 Let G be a set of n surfaces in ;d, ε > 0,
and let k be a number between 0 and n/2. Let ρ =
min

(
ck−1ε−2 log n, 1

)
, and pick each surface of G into

a random sample R with probability ρ. Then, with
high probability, the L = kρ = O(ε−2 log n) level of
A(R) lies between the (1 − ε)k-level to the (1 + ε)k-
level of A(G). This holds with high probability.

2.4.2 Approximating the Extent of Shallow Levels

We need the result of Har-Peled and Wang [HW04].
It states that for well behaved set of functions, one
can find a small subset of the functions such that the
vertical extent of the subset approximates the extents
of the whole set. This holds only for “shallow” lev-
els ≤ k. In our application k is going to be about
O(ε−2 log n).

3 The approximation algorithm

We are now ready to put everything together. Let the
input be a set P of n points in the plane. We define,
as in Section 2.1, for each point of P a surface in ;3.
Each such surface is a cone. Let G be the resulting
set of cones.
We decompose the arrangement A(G) into lev-

els. Next, we chunk the levels into sets, as
done in Section 2.3, where M = O(ε−2 log n) and
N = M + O(ε−1 log n) = O(ε−2 log n). Let
L1, . . . , LN , RN , . . . , R1 denote the resulting chunks
of levels. Next, let li = LG,i−1 and ri = UG,i−1 for
i = 1, . . . ,M . For i = N + 1, . . . ,M , we generate
a random sample Ri of G, according to Lemma 5,
and levels li = LRi,ki and ri = URi,ki , where ki =
O(ε−2 log n). We are guaranteed, with high probabil-
ity, that li lies between the lowest and highest levels
defined by Li, and similarly that ri lies between the
highest and lowest levels of Ri, for i =M + 1, . . . , N .

Of course, computing the surfaces li and ri ex-
plicitly is going to be prohibitively expensive. How-
ever, li and ri are the bottom/top ki-level in the ar-
rangement A(Ri). Since, ki is relatively small, this
means that those levels are shallow. As such, we
can compute a subset Vi ⊆ Ri, such that Vi|kiki

(x) ≥
(1−ε/10)Ri|kiki

(x), for all x ∈ ;2, using [HW04]. Here,
s = 2 and |Vi| = O(ki/ε

4) = O(poly(1/ε, log n)).
Next, let l′i and r

′
i the ki-bottom/top levels inA(Vi),

respectively, for i = M + 1, . . . , N . Note that for i =
1, . . . , N we can use the same sample. As such, V1 =
· · · = VM . We assign the surfaces l′i and r

′
i the weight

|Li| = |Ri|, for i = 1, . . . , N . Next, consider the set
of the weighted surfaces G′ = {l′1, . . . , l′N , r′1, . . . , r′N}.
It follows by Lemma 4 that

νG′(p) ≈ε νG(p),

where p is any point in ;3. This holds with high
probability. We still remain with the question of find-
ing the global minimum of νG′(p). To this end, we
decompose ;3 into vertical prisms, such that inside
such prism a vertical line intersect exactly the same
surface patches in the same order. It is now straight-
forward to show that the number of such prisms is
O(poly(log n, 1/ε)). Inside each such prism, the ar-
rangement A(G′) has the same surfaces intersecting it
in the same ordering. Namely, we have a portion of
the parametric space we have to find the minimum
for (i.e., the prism), while having a small number of
weighted surfaces we have to consider.
Using the slow algorithm inside every prism, gives

us an (1 + ε)-approximation inside each such prism.
Since the running time inside each such prism
is O(poly(log n, 1/ε)), there are O(poly(logn, 1/ε))
prisms. Thus the overall running time is O(n +
poly(logn, 1/ε)). We summarize:

Theorem 6 Given a set P of n points in the
plane, and parameter ε, one can compute in O(n +
poly(logn, 1/ε)) time the circle minimizing the L1

fitting price to P . The running time is O(n +
poly(logn, 1/ε)). The result is correct with high prob-
ability.

4 Conclusions

We had described in this paper an (1 + ε)-
approximation algorithm for the problem of L1-fitting
of a circle to a set of points in the plane. The running
time of the new algorithm is O(n+ poly(log n, 1/ε)),
which is a linear running time for fixed ε. The con-
stant powers hiding in the polylogarithmic term are
too embarrassing to be explicitly stated, but are prob-
ably somewhere between 20 to 60. As such, this algo-
rithm is only of theoretical interest. As such, the first
open problem raised by this work is to improve this
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constants. A considerably more interesting problem
is to develop a practical algorithm for this problem.
It is the author’s belief that the techniques de-

scribed in this paper, can be also applied to the prob-
lem of L2-fitting of a circle to a set of points (i.e.,
best circle fitting a set of points minimizing the sum
of square distances of the points to the circle). More
importantly, it seems that the technique should be
applicable to any of the fitting problems handled by
the algorithm of Agarwal et al. [AHV04]. This in-
cludes the L1-fitting of a sphere or a cylinder to a set
of points.
A natural question is whether one can use the tech-

niques of Har-Peled and Wang directly, to compute a
coreset for this problem, and solve the problem on the
coreset directly (our solution did a similar thing, by
breaking the parametric space into a small number
regions, and constructing a coreset inside each such
region). There is unfortunately a nasty technicality
that requires that a coreset for the L1-fitting of linear
function, is also coreset if we take the square root of
the functions. It seems doubtful that this claim holds
in general, but maybe a more careful construction of
a coreset for the linear functions case would still work.
The author leaves this as an open problem for further
research.
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Competitive Online Searching for a Ray in the Plane

Andrea Eubeler∗ Rudolf Fleischer† Tom Kamphans∗ Rolf Klein∗ Elmar Langetepe∗

Gerhard Trippen‡

Abstract

We consider the problem of a searcher that looks for
a lost flashlight in a dusty environment. The search
agent finds the flashlight as soon as it crosses the ray
emanating from the flashlight, and in order to pick it
up, the searcher has to move to the origin of the light
beam.
First, we give a search strategy for a special case

of the ray search—the window shopper problem—,
where the ray we are looking for is perpendicular to
a known ray. Our strategy achieves a competitive
factor of ≈1.059, which is optimal. Then, we consider
the search for a ray with an arbitrary position in the
plane. We present an online strategy that achieves a
factor of ≈22.513, and give a lower bound of ≈16.079.
Keywords: Online motion planning, competitive ra-
tio, searching, ray search

1 Introduction

Searching in an unknown environment is a basic task
in robot motion planning and well-studied in many
settings. For example, Gal and independently Baeza-
Yates et. al. [7, 2] considered the task of finding a
point on an infinite line using a searcher, that starts
in the origin and neither knows the distance nor the
direction towards the goal. They introduced the so
called doubling strategy that is, the agent moves al-
ternately to the left and to the right, doubling it’s
exploration depth in every iteration step. Search-
ing on the line was generalized to searching on m
concurrent rays starting from the searcher’s origin,
see [7, 2]. Many other variants were discussed since
then, for example m-ray searching with restricted
distance (Hipke et. al. [9], Langetepe [13], Schuierer
[14]), m-ray searching with additional turn costs (De-
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maine et. al. [4]), parallel m-ray searching (Hammar
et. al. [8]) or randomized searching (Kao et. al. [11]).
The quality of a strategy that deals with incomplete

information —an online strategy—is usually measured
by the cost of the online solution compared to the
optimal solution. More precisely, let |S| denote the
cost of an online strategy, S, and |SOpt| the cost
of the optimal solution, then we call S competitive
with factor C, iff there exists a constant A such that
|S| ≤ C · |SOpt|+A holds for every input to S. In our
case, the costs incurred by a search strategy is given
by the length of the path covered by the searcher, and
the optimal solution is the length of the shortest path
from the searcher’s origin to the goal. The competi-
tive framework was introduced by Sleator and Tarjan
[17] and used for many settings, see e. g. the survey
by Fiat and Woeginger [5]. For a general overview of
online motion planning problems and its analysis see
the surveys [3, 15, 16, 10]. Another measure is the
search ratio, see Koutsoupias et. al. [12] and Fleischer
et. al. [6]

In this paper, we consider the search for the ori-
gin of a ray in the plane. The searcher has no vision,
but recognizes the ray and it’s origin as soon as it en-
ters it. First, we consider a simplified version of this
problem: the origin of the ray, r, we are looking for
is located on another ray, r′, perpendicular to r. The
searcher’s start point and r are located on the same
side of r′. Moreover, r′ is known. We call this problem
the window shopper problem, since we can imagine r′

as a line of shopping windows. A buyer walks along
these windows, looking e. g. for a present, and walks
towards the window as soon as an appropriate item
is spoted. We give a search strategy for this prob-
lem, that achieves an optimal competitive factor of
1.059 . . . Then we consider the general case, and give
a search strategy that achieves a factor of 22.513 . . .
and give a lower bound of 16.079 . . .

2 The window shopper problem

First, we consider the problem of finding a gift along a
line of shopping windows. W. l. o. g. we assume, that
the line of sight, i. e. the ray r we are looking for,
is parallel to the X-axis, starting in (1, yr) for yr ≥
0, and emanating to the left hand side of r′. The
searcher starts in the origin (0, 0), see Figure 1. The
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(0, 0) (1, 0)
X

r

Y

(a, b)

Π

(1, yr)
yr ≥ 0

r′

Figure 1: A strategy for the window shopper problem.

goal is discovered as soon as we reach its height, i. e.
its Y -coordinate yr. In order to reach the goal we
finally have to move towards it (if we haven’t reached
it by coincidence).

Theorem 1 There exists a strategy with an optimal
competitive factor of 1.059 . . . for searching the ori-
gin of a ray, r, that emanates from a known ray r′

perpendicular to r.

Proof. Apparently a good search path moves simul-
taneously along and towards the wall, i. e. in posi-
tive X- and Y -direction. It is obvious that the com-
petitive factor converges to 1 for goals with very
small Y -coordinate and also for goals with a large
Y -coordinate. Using this properties, we construct the
following search strategy, Π: First, we follow a line
segment. In the second part we follow a curve f(x)
that converges to the wall and maintains the value of
the competitive factor given by the line segment at
the beginning of the search path, see Figure 1.
By specifying the first part of the search path as

the line segment from the origin to a point (a, b) we
can describe the competitive factor as a monotone
increasing function φ(t) with

φ(t) =
t
√
a2 + b2 + 1− ta√

1 + t2b2
,

and φ′(t) ≥ 0 ∀t ∈ [0, 1]. Hence, b ≤
√
1− 2a follows.

From now on we assume b =
√
1− 2a and therefore

a = 1−b2

2 .
Now we are looking for a curve f(x) that maintains

the value

δ =
√
a2 + b2 + 1− a√

1 + b2
=
√
1 + b2

for the competitive factor.
This means that the length of the whole search

path, i. e. the line segment(s) and the curve, is δ times
the Euclidean distance from the origin to the goal.
Solving the resulting differential equation of the

form√
a2 + b2+1−x+

∫ x

a

√
1 + f ′(t)2 dt = δ ·

√
1 + f(x)2

yields the values b = 0.349 . . . and δ = 1.059 . . .
To show the optimality of the given strategy, we

observe an arbitrary curve g(x) starting at the origin.
Then we have to consider two cases.
Case 1: g reaches height b left to a.

If the goal is at height b then g has a competitive fac-
tor which is worse than our competitive factor. This
also holds for goals above b, because the curve f has
already reached its maximum value at (a, b).
Case 2: g reaches height b right to a.

Then the curve g intersects the curve f at some in-
tersection point A; at the latest when the curve f
reaches the wall. In this case the length of the path
on g is longer than the path on f (since f is monotone
increasing and convex), so the competitive factor of g
is again worse than the factor of f in A. �

3 Searching for a ray

Now, we suppose that we are positioned somewhere
in the plane and we want to find an arbitrary ray.
It seems to be a good strategy to search for the ray
by moving on a logarithmic spiral. Since we have no
sight the ray is only found when we cross it. Our aim
is to reach the origin of the ray—simply by following
the ray after we have found it.
We are interested in the worst case. This means

that we want to construct a position of the ray that
maximizes the competitive factor. Since we want to
search the ray by moving on a spiral, we are looking
for a spiral that minimizes the worst case in the plane.
The spiral is given by equation

f(θ) = aebθ , −∞ < θ <∞.

Due to the properties of the spiral, we only have to
consider positions of the ray in one turn (2π).

S

B A

M

t

Figure 2: The tangent t to the spiral in point B.

One can easily see that the competitive factor
reaches a local maximum if the ray is a tangent t
to the spiral: Let B now be the tangent point of t,
see Figure 2. The ray is missed in point B and de-
tected in point S. We examine different positions of
the ray’s origin on the tangent. The starting point
can not be on the left side of B, because otherwise
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the ray would no longer be a tangent. The compet-
itive factor reaches a higher value for A than for B,
see Figure 2, because A is farther away from S than
B and

∣∣MA∣∣ is shorter than ∣∣MB∣∣.
First, we will find the best spiral for a point A, so

that
∣∣MA∣∣ is perpendicular to tangent t.

Lemma 2 The competitive factor δA for the point A,
so that

∣∣MA∣∣ is perpendicular to the tangent t, only
depends on the spiral parameter b and is given by

δA(b) =
eb(2π+β(b))

sinα · cosα +
eb(2π+β(b)) · sin(β(b))

sin2 α
+ b .

Its minimum value is 22.4908 . . . for b = 0.1137 . . .,
where α is the tangent angle and β the angle ∠BMS.

Now we will show, that this b also gives us the
optimal spiral for all tangents and all origins. This
can be shown as follows. The adversary can move
the point A to A′ which gives a factor of δA′(b, γ) =
cos γ ·δA(b)+sin γ by simple geometry (see Figure 3).

B
A

A′

γ

M

Figure 3: The triangle MAA′.

Therefore in general we have to minimize δA(b)
whereas the adversary can choose the worst case γ.
By simple analysis we have:

Theorem 3 The best worst case competitive factor
is 22.5130 . . . This value is reached by point A′ which
is specified by γ = 0.4443 . . . and b = 0.1137 . . .

Due to space limitations we omit the proofs of
Lemma 2 and Theorem 3. See the full version of the
paper.

4 A lower bound for searching a ray

We discuss a subproblem and consider a subset of
rays, such that the extension of every ray goes through
the starting point s.
If we consider the full bundle of lines passing

through s, the given problem is equivalent to the prob-
lem of searching for a point in the plane as presented
by Alpern and Gal [1]. We assume that the goal is
detected, if it is swept by the radius vector of the tra-
jectory. Alpern and Gal [1] showed that among all
monotone and periodic strategies, a logarithmic spi-
ral represented by polar coordinates (γ, ebγ) gives the
best search strategy in this setting. A strategy S rep-
resented by its radius vector X(γ) is called periodic

and monotone, if γ is always increasing and X also
satisfies X(γ + 2π) ≥ X(γ).
The factor of the best monotone and periodic strat-

egy is given by minb e
2πb

√
1 + 1

b2 = 17.289 . . . and
achieves its minimum for b = 0.15540 . . ., see Alpern
and Gal [1]. Note, that the task does not include that
the origin of the ray has to be visited.
Unfortunately, it was not shown that a periodic

and monotone strategy is the best strategy for this
problem. Alpern and Gal state, that it seems to be a
complicated task to show that the spiral optimizes the
competitive factor. Thus, the given factor cannot be
adapted to be a lower bound to our problem.
Therefore we consider a discrete bundle of n rays

that emanate from the the start and which are seper-
ated by an angle α = 2π

n , see Figure 4. We are search-
ing for a goal on one of the n rays. Again the goal
is detected if it is swept by the radius vector of the
trajectory. Note, that if n goes to infinity we are back
to the original problem. But we can neither assume
that we have to visit the rays in a periodic order nor
that the depth of the visit increases in every step.

xk+2 βk+1xk+1

xk+1

xk

βkxk

α

Figure 4: A bundle of n rays and the representation
of a strategy.

Therefore we would like to make an approxima-
tion and represent a strategy as follows. At the k-
th step, we hit a ray, say ray i, at distance xk and
leave the ray at distance βkxk with βk ≥ 1. There-
fore we move a distance βkxk − xk along the ray i
and then we move to the next ray within a distance√
(βkxk)2 − 2 cos(α)βkxkxk+1 + (xk+1)2, see Figure

4. Let us assume that the ray i for xk and βkxk is vis-
ited the next time at index Jk. The worst-case occurs
if we did not see the goal at the ray i up to distance
xk and find the goal at step xJk on i arbitrarily close
behind βkxk. The competitive factor is bigger than

1
βkxk

(
xJk − βkxk +

Jk−1∑
i=1

βixi − xi

+
√
(βixi)2 − 2 cos(α)βixixi+1 + (xi+1)2

)
,

where xJk − βkxk denotes the movement to goal.
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By simple trigonometry the shortest distance from
βkxk to a neighboring ray is given by βkxk sin

(
2π
n

)
.

Fortunately, this distance is smaller than the distance√
(βkxk)2 − 2 cos(α)βkxkxk+1 + (xk+1)2 to any other

ray. Therefore a lower bound on the above worst-case
factor is given by

−1 +
∑Jk−1

i=1 βkxk sin
(

2π
n

)
βkxk

Altogether, we have to find a lower bound for∑Jk−1
i=1 βkxk

βkxk
where Jk always denotes the next visit of

the ray of xk. Fortunately, this problem also repre-
sents the competitive analysis for the m ray problem
where we can only move along the rays. It was shown
by [7] and [2] that for this problem there is an optimal
strategy that visits the rays with increasing depth and
in a periodic order, that is Jk = k+n and i = k. The
best strategy is given by fi = (n/(n−1))i. Altogether,
this results in a function

(n− 1) sin
(
2π
n

)(
n

n− 1

)n

for n rays. We can make n arbitrarily big because
our construction is valid for every n. Note, that we
also have a lower bound for the problem of searching
a point in the plane, the lower bound is close to the
factor of the spiral.

Theorem 4 For the ray search problem there is no
strategy that achieves a better factor than

−1+ lim
n→∞

(n−1) sin
(
2π
n

)(
n

n− 1

)n

= −1+17.079 . . .

Additionally, every strategy for searching a point in
the plane achieves a competitive factor bigger then
17.079 . . . and the optimal spiral achieves a factor of
17.289 . . .

5 Conclusion

We considered the problem of searching a ray and its
origin under the competitive framework.
If the ray starts on a known ray r′ and is also per-

pendicular to r′ we will find the origin within a path
length of 1.059 . . . times the shortest path to the ori-
gin. This factor is optimal.
In general a logarithmic spiral solves the task within

a competitive factor of 22.51 . . . whereas a lower
bound of 16.079 . . . is given.
The lower bound construction can also be used if

it is not necessary to visit the origin and if the corre-
sponding line of every ray goes through the starting
point. For this sub-problem a competitive strategy
with factor 17.289 . . . was already known. We can
proof that there is no strategy with a factor better
than 17.079 . . . in this setting.

There are still some gaps between the lower and
upper bounds of the factors which have to be closed.
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On Optimizing Multi-Sequence Functionals for Competitive Analysis

Tom Kamphans∗ Elmar Langetepe∗

Abstract

The efficiency of an online motion planning algorithm
often is measured by a constant competitive factor
C. Competitivity means, that the cost of an C-
competitive online strategy with incomplete informa-
tion is only C times worse than the optimal offline
solution with full information. If a strategy is rep-
resented by an infinite sequence X = f1, f2, . . ., the
problem of finding a strategy with minimal C often
results in minimizing functionals Fk in X. There are
two main paradigm for finding an optimal sequence
f1, f2, . . . that minimizes Fk for all k. Namely, op-
timality of the exponential function and equality ap-
proach. If the strategy has to be defined by more
than one interacting sequence both approaches may
fail. We show a simple motion planning example with
two interacting sequences and present its solution.

1 Introduction

Search games, i. e. games where two players, a
searcher and a hider, compete with each other, are
studied in many variations in the last 60 years since
the first work by Koopman in 1946. For example,
Bellman [3] introduced the search for an immobile
hider located on the real line with a known probability
distribution, Gal [5] and independently Baeza-Yates
et. al. [2] solve this problem for a uniformly distributed
location of the hider. The book by Gal [5] and the
reissue by Alpern and Gal [1] gives a comprehensive
overview on results on search games.
The length of the searcher’s trajectory is often used

as payoff of a search game. To get a finite value for
the game, we use the competitive framework, that
is, we compare the length of the searcher’s trajectory
to the shortest distance to the hider. Gal [5] calls
this a normalized cost function. More precisely, we
call a search strategy competitive with a factor C, if
|π| ≤ C · |πopt| holds for every location of the hider,
where |π| denotes the length of the searcher’s path and
|πopt| the shortest path. The competitive framework
was introduced by Sleator and Tarjan [15], and used in
many settings since then, see for example the survey
by Fiat and Woeginger [4] or, for the field of online
robot motion planning, see the surveys [12, 8].

∗University of Bonn, Institute of Computer Science I, D-
53117 Bonn, Germany.

In most settings, a search strategy, X, can be given
by a sequence of values f1, f2, f3, . . . denoting e. g.
the exploration depth in the i-th iteration step, and
the competitive factor can be given by a functional
Fk(X), where k denotes the number of iteration steps.
Since we want to minimize the costs, we have to find
a strategy that minimizes Fk. There are two com-
monly used methods to find such a strategy. The
first is, to show that the functionals Fk fulfill certain
conditions—see below. Gal [5] showed, that a strat-
egy with fi = ai minimizes the Fk’s, and we have just
to find an appropriate a using simple analysis. An-
other method is, to show that there is a strategy X ′

that achieves the optimal competitive factor, C, not
only asymptotically, but exactely in every step. With
this we establish a closed form for X ′. Both methods,
however, work well for strategies that can be given by
one sequence fi. If we have search games that rely on
more than one parameter, the theorem by Gal may
not be applicable and the equality approach may fail.

We introduce a variation of the search for a goal
on an infinite line: the goal is located on two rays
emanating from the searcher’s origin, with an angle
γ between the rays. The searcher can move in the
free space between the two rays, and finds the goal
as soon as it reaches the goals position or a position
behind the goal, seen from the origin. A reasonable
strategy to solve this problem can be described by two
sequences, αi and βi, see Figure 1.

βk+1

γ

αk+2

βk

α3

β1
α1

β0

α2

β2

αk+1

s

t

Figure 1: Representation of a strategy with two se-
quences.
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2 Exponential function and equality approach

A strategy for searching an unknown goal on an in-
finite ray can be represented by an infinite sequence
F = f1, f2, . . . of positive values. The agent moves
f1 steps to the left of the start, returns to the goal,
moves f2 steps to the right of the start point, returns
to the goal and so on. The worst-case for the com-
petitive factor occurs, if we miss the goal at step k
by an ε, return to the start, move fk+1 to the other
direction, return to the start and find the goal in the
(k + 2)-th step at distance fk + ε. Thus, the worst-

case factor is given by 2
∑k+1

i=1 fi+fk
fk

= 1 + 2
∑k+1

i=1 fi
fk

,
and it suffices to find a sequence X = f1, f2, . . . that
minimizes Fk(f1, f2, . . .) :=

∑k+1
i=1 fi
fk

for all k. Note,
that we additionally have to take care for the first
movement. We assume that the goal is at least one
step away from the start which gives the additional
inequality 2f1 ≤ C · 1.
Let F (X) := limk→∞ Fk(X) more precisely, we are

searching for a strategy X with

inf
Y
sup

k
Fk(Y ) = C and sup

k
Fk(X) = C .

Two main approaches for solving the given problem
are discussed in the literature. We briefly repeat the
main ideas.

Optimality of the exponential function: The
functional Fk is continous and unimodal. Unimodal-
ity is defined by Fk(A ·X) = Fk(X) and Fk(X+Y ) ≤
max{Fk(X), Fk(Y )} for every constant A and two se-
quences X and Y . Unimodality means that scalar
multiplication and the addition of two sequences does
not increase the value of the functional.
If Fk additionally fulfills some other reasonable

properties, it was shown by [1, 5, 14] that an expo-
nential function minimizes Fk, or more precisely

sup
k
Fk(X) ≥ inf

a
sup

k
Fk(Aa)

where Aa = a0, a1, a2, . . . and a > 0. Altogether, the
problem of searching a point on a line is solved by

inf
a

∑k+1
i=1 a

i−1

ak−1
=

22

2− 1 = 4 .

Equality approach: On the other hand some au-
thors [7, 10, 11, 9, 13] suggest to adjust an optimal
strategy X = f1, f2, . . . with Fk(X) ≤ C to an op-
timal strategy X ′ = f ′1, f

′
2, . . . with Fk(X ′) = C

where C is the (probably unknown) best achievable
factor. It can be shown that for the 2-ray search
problem such a strategy X ′ exists. The main rea-
son is that Fk =

∑k
i=1 fi
fk

increases in fk and Fl de-
crease in fk for all l %= k . Therefore we can induc-
tively adjust a given optimal strategy X. How will
we find the optimal strategy? One will try to retrieve

a recurrence for the values of X ′ from the equation
Fk(X ′) = C = Fk+1(X ′)
For the 2-ray search problem we assume that X =

f1, f2, . . . achieves equality in every step. Thus,
we have

∑k+2
i=1 fi = Cfk+1 and

∑k+1
i=1 fi = Cfk.

Subtracting both sides gives the recurrence fk+2 =
C(fk+1− fk) for k = 1, 2, . . . Obtaining positive solu-
tions for recurrences can be solved by analytic means,
see [6]. It can be shown that for C < 4 there is
no positive sequence that fulfills the given recurrence
fk+2 = C(fk+1− fk). Additionally, for fi := (i+1)2i

we have fk+2 = (k + 3)2k+1 = 4(fk+1 − fk) =
(3k + 4)2k+2 − (k + 1)2k+2 and C = 4 is optimal.
Altogether, we have two optimal solutions stem-

ming from different paradigm. In the following we
will combine both paradigm in order to solve more
sophisticated functionals.

3 A simple online problem

We discuss a variant of the 2-ray search problem. We
are searching for a target on 2-rays r1 and r2, ema-
nating from a single source s and building an angle
γ, Figure 1. It is allowed to move in the plane from
one ray to the other. A target t at distance |st| on
ray ri can be detected, if we visit a point p on ri with
|pt| ≥ |st|. Therefore a search strategy need not visit
all points on the ray. We denote the problem as the
2γ-ray-scan problem. The distance to the goal and
the goal’s ray is not known in advance. The best of-
fline strategy moves directly along the corresponding
ray to the goal.
[2, 1] dicuss a similar variant without looking back,

the goal is detected only if the goal is visited. This
variant can be described by a single sequence and was
solved in [1] with an exponential function.
A strategy for the 2γ-ray-scan problem can be rep-

resented as follows. We start with ray r1 and move
along it for a while up to distance β0. Then we will
move on a straight line to a point at distance α1 on
ray r2 and move along r2 for a while until leaving the
ray at distance β1 and so on. Altogeher, we have a
sequence of leave points and a sequence of hit points
and we denote every hit point by its distance αi and
every leave point by its distance βi, see 1. For conve-
nience, we set α0 = 0. A reasonable strategy fulfills
βi−2 ≤ αi ≤ βi.
The worst-case for the competitive factor occurs, if

we miss the goal by an ε on the first ray, move to the
second ray and find the goal after returning back to
the first ray. Setting α0 = 0 we have to minimize the
following functional

Gk([(α0, α1, . . .), (β0, β1, . . .)] :=∑k+1
i=0 βi−αi+

√
α2

i+1 − 2αi+1βi cos γ+β2
i

βk
.
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One can proof the optimality of a exponential func-
tion for βi by showing the prerequisites in [5, 1, 14].

Theorem 1 If there exists a strategy X =
[(α0, α1, . . .), (β0, β1, . . .)] such that

inf
Y
sup

k
Gk(Y ) = C and sup

k
Gk(X) = C,

then there is always a solution Z =
[(α0, α1, . . .), (1, β1, β2, . . .)] so that

inf
Y
sup

k
Gk(Y ) = C and sup

k
Gk(Z) = C .

Proof. We show that the unimodality condition
holds, the other prerequisites are easily fulfilled.
Scalar multiplication is simply satisfied.
It suffices to show that

√
a2

i+1 − 2ai+1bi cos γ + b2i+√
c2i+1 − 2ci+1di cos γ + d2

i is bigger than√
(ai+1 + ci+1)2 − 2(ai+1 + ci+1)(bi + di) cos γ+
+ (bi + di)2 which is the triangle inequality for
the vectors ((ai+1 − bi) cos(γ/2), (ai+1 + bi) sin(γ/2))
and ((ci+1 − di) cos(γ/2), (ci+1 + di) sin(γ/2)).
Now, let Gk([(a0, . . .), (b0, . . .)]) ≤ D and

Gk([(c0, . . .), (d0, . . .)]) ≤ D then we have∑k+1
i=0 bi − ai +

√
a2

i+1 − 2ai+1bi cos γ + b2i+

+
∑k+1

i=0 ci−di+
√
c2i+1 − 2ci+1di cos γ + d2

i ≤ D(bk+
dk) and the left-hand side of the inequality is
greater than or equal to

∑k+1
i=0 (bi + di) − (ai +

ci)
√
(ai+1 + ci+1)2 − 2(ai+1 + ci+1)(bi + di) cos γ+

+ (bi + di)2 which completes the proof. �

Unfortunately, this result will not give us a strategy
because there is a second sequence. We still have to
optimize
Gk([(α0, α1, . . .), β]) :=∑k+1

i=0 β
i − αi+

√
α2

i+1 − 2αi+1βi cos γ+β2
i

βk

On the other hand if we can show that there is a
strategy with Gk([(α0, α1, . . .), (β0, β1, . . .)]) = C for
all k > l, the subtraction of two equations

k∑
i=0

βi − αi +
√
α2

i+1−2αi+1βi cos γ + β2
i = Cβk−1

and
k+1∑
i=0

βi−αi+
√
α2

i+1−2αi+1βi cos γ+β2
i = Cβk

results in a recurrence

βk+1 − αk+1 +
√
α2

k+2−2αk+2βk+1 cos γ + β2
k+1

= C(βk − βk−1) .
Unfortunately, this is a non-linear recurrence and can-
not be solved easily.

4 Combining two paradigms

We suggest to combine both approaches. First, we
show that at least for γ ≤ π/2 there is indeed a strat-
egy [(α0, α1, . . .), (β0, β1, . . .)] so that

∑k+1
i=0 βi − αi +√

α2
i+1 − 2αi+1βi cos γ + β2

i = Cβk for all k ≥ 1.
Then we make use of the subtraction idea above

and obtain C =
(

1
βk−βk−1

)(
βk+1 − αk+1

+
√
α2

k+2 − αk+2βk+12 cos γ + β2
k+1

)
(1)

which again gives a functional but without a sum in
the denominator. Now, we solve this functionals by
showing that the prerequisites of the exponential so-
lution is again fulfilled.

Lemma 2 For γ ≥ π
2 there is always an optimal so-

lution X = [(α0, α1, . . .), (β0, β1, . . .)] that achieves∑k+1
i=0 βi−αi+

√
α2

i+1 − 2αi+1βi cos γ + β2
i = Cβk for

all k ≥ 0.

Proof. We show the property by induction. We ad-
just a given strategy [(α0, α1, . . .), (β0, β1, . . .)] to a
strategy [(α0, α1, . . .), (β′0, β

′
1, . . .)] such that all β

′
i de-

crease but are still positive.
For k = 0 we may have

∑2
i=0 βi − αi +√

α2
i+1 − 2αi+1βi cos γ + β2

i < Cβ0 for the optimal C.
Thus, we decrease β0 to β′0 := β0 − ε until we obtain
equality. The distance

√
α2

1 − 2α1β0 cos γ + β2
0 de-

creases for γ ≥ π
2 and Gk([(α0, α1, . . .), (β′0, β1, . . .)])

gets smaller for all k > 1. β′0 is positive since we have
to subsume the distance from β1 to α2 > β0.
Now let us assume that the property holds for all

l ≤ k − 1 and let Gk([(α0, α1, . . .), (β′0, β
′
1, . . .)]) < C.

We again can decrease βk to β′k := βk − ε until we
have equality. For αk < βk we decrease the denom-
inator of Gl([(α0, α1, . . .), (β′0, β

′
1, . . .)]) for all l ≥ k

and for k − 1 but not for l ≤ k − 2. Note, that√
α2

k+1 − 2αk+1βk cos(γ) + β2
k decreases for γ ≥ π

2 . If
αk = β′k is reached, we additionally decrease the de-
nominator for l = k− 2. Note, that this is true, since
for γ ≥ π

2 the distances
√
α2

k+1 − 2αk+1β′k cos γ + β
′2
k

and
√
β′2k − 2β′kβk−1 cos γ + β2

k−1 decrease.
Finally we will achieve equality for

Gk([(α0, α1, . . .), (β′0, β
′
1, . . .)]) with β

′
k. β

′
k is positive,

since we have to subsume the distance βk+1 to αk+2.
Unfortunately, Gl([(α0, α1, . . .), (β′0, β

′
1, . . .)]) < C

may hold for l = k − 2 and l = k − 1. By in-
duction hypothesis, we adjust the strategy again
such that Gl([(α0, α1, . . .), (β′0, β

′
1, . . .)]) = C for

all l ≤ k − 1. Now it again may happen that
Gk([(α0, α1, . . .), (β′0, β

′
1, . . .)]) < C holds.
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We repeat the above process, since the vector
(β′0, β

′
1, . . . , β

′
k) always decrease by construction but

still remain positive, the vector (β′0, β
′
1, . . . , β

′
k) finally

has to run into a positive limit that fulfills equal-
ity. �

Note, that for the equality strategy we still have
βk−2 ≤ αk ≤ βk. The functional (1) for k ≥ 1 fulfills
the criterion for the exponential function which can
be proven by the same arguments as in the proof of
Theorem 1.

Lemma 3 Functional (1) can be optimized by an ex-
ponential function, that is, there is an optimal strat-

egy with factor
(

1
βk−βk−1

)(
βk+1 − αk+1+

+
√
α2

k+2 − 2αk+2βk+1 cos γ + β2
k+1

)
.

Now we can set αi = Ciβ
i for Ci ∈ [1, 1

β2 ] and it
remains to optimize

β2
(
1− Ci +

√
(Ci+1β)2 − 2Ci+1β cos γ + 1

)
β − 1

for β and Ci and Ci+1. In the next iteration step Ci+1

takes over the role of Ci. Therefore the best we can
do is that we fix Ci by a constant D which means that
we have to optimize

β2
(
1−D +

√
(Dβ)2 − 2Dβ cos γ + 1

)
β − 1

for β and D ∈ [1, 1/β2].

Theorem 4 The strategy for the 2γ-ray-scan prob-
lem for γ ≥ π/2 can be achieved by minimizing

f(β, γ,D) :=
β2

(
1−D+

√
(Dβ)2 − 2Dβ cos γ+1

)
β − 1

over β and D ∈ [1, 1/β2].

It can be shown that there is a reasonable D(γ, β)
that minimizes f(β, γ,D). IfD(γ, β) is inside [1, 1/β2]
then we have to compare the minima over β forD = 1,
D = 1/β2 and D = D(γ, β). D = 1/β2 represents
a strategy without any gaps. D = 1 represents a
strategy that does not slip along the rays and D =
D(γ, β) represents something in between.
For example for γ = π/2 we can show that

f(γ, β,D(γ, β)) =
β2

(
1− 1√

−1+β2β
+
√

1
−1+β2 + 1

)
β − 1

which is minimal for β = 1.839 . . . and D =
0.352 . . . ∈ [1, 0.295 . . .]. The optimal competitive fac-
tor is given by 7.413 . . . wheras the optimal factor for
D = 1/β2 is 7.472 . . .
For γ = π we obtain the normal doubling strategy,

which is represented by β = 2 and D = 1/4.

5 Conclusion

We have shown that for solving a double sequence
functional it is useful to combine the methods of
equality approach and the optimality of the expo-
nential function. With the help of multi-sequence
functionals more sophisticated strategies can be rep-
resented. We think that the presented method can
be extended to functionals with more than two se-
quences and that it should be possible to iterate the
combination process more than once.
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Minimizing Local Minima in Terrains with Higher-Order Delaunay
Triangulations

Thierry de Kok∗ Marc van Kreveld† Maarten Löffler‡

Abstract

We show that triangulating a set of points with ele-
vations such that the number of local minima of the
resulting terrain is minimized is NP-hard for degener-
ate point sets. The same result applies when there are
no degeneracies for higher-order Delaunay triangula-
tions. Two heuristics are presented to minimize the
number of local minima for higher-order Delaunay tri-
angulations, and they are compared experimentally.

1 Introduction

A fundamental geometric structure in computational
geometry is the triangulation. It is a partitioning of
a point set or region of the plane into triangles. A
triangulation of a point set P partitions the convex
hull of P into triangles whose vertices are exactly the
points of P . There are many different ways in which
one can define the quality of a triangulation of a set
of points. A criterion that is always important for
triangulations is the nice shape of the triangles. This
can be formalized in several ways [2, 3]. In this pa-
per, nice shape is formalized by higher-order Delaunay
triangulations [4]. They provide a class of triangula-
tions that are all reasonably well-shaped, depending
on a parameter k.

Definition 1 A triangle in a point set P is order-k
if its circumcircle contains at most k points of P . A
triangulation of a set P of points is an order-k Delau-
nay triangulation if any triangle of the triangulation
is order-k.

So a Delaunay triangulation is an order-0 Delaunay
triangulation. For any positive integer k, there can be
many different order-k Delaunay triangulations. We
also define the useful order of an edge as the lowest
order of a triangulation that includes this edge.
When using triangulations for terrain modeling, one

should realize that terrains are formed by natural pro-
cesses. This implies that there are linear depressions
(valleys) formed by water flow, and very few local
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†Institute of Information and Computing Sciences, Utrecht
University, marc@cs.uu.nl
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minima occur [7]. Local minima can be caused by er-
roneous triangulation: an edge may stretch from one
side of a valley to the opposite side. Such an edge is
an artificial dam, and upstream from the dam in the
valley, a local minimum appears. It is generally an
artifact of the triangulation. Therefore, minimizing
local minima is an optimization criterion for terrain
modeling.

This paper discusses triangulations of a point set P
of which elevations are given. The objective is to tri-
angulate P with an order-k Delaunay triangulation,
such that there are as few local minima as possible.
In Section 2 we show that over all possible triangula-
tions, minimizing local minima is NP-hard. This re-
sult relies heavily on degenerate point sets. For order-
k Delaunay triangulations, NP-hardness can also be
shown for non-degenerate point sets, for k = Ω(nε)
and k = O(n1/4). (For k = 1, an O(n log n) time algo-
rithm that minimizes local minima was given in [4].)
Then we discuss two heuristics for minimizing local
minima. In Sections 3 and 4 we present the flip and
hull heuristics and their efficiency. The latter was in-
troduced before in [4]; here we give a more efficient
algorithm. In Section 5 we apply the two heuristics on
various terrains to examine the possibilities of higher-
order Delaunay triangulations to reduce local minima,
and to test which of the two heuristics is better.

2 NP-hardness

For a set P of n points in the plane, it is easy to
compute a triangulation that minimizes the number of
local minima if there are no degeneracies. Assume p is
the lowest point. Connect every q ∈ P\{p} with p to
create a star network with p as the center. Complete
this set of edges to a triangulation in any way. Since
every point but p has a lower neighbor, no point but
p can be a local minimum. Hence, this triangulation
is one that minimizes the number of local minima.
When many degeneracies are present, minimizing the
number of local minima is NP-hard.

Theorem 1 Let P be a set of n points in the plane,
and assume that the points have elevations. It is NP-
hard to triangulate P with the objective to minimize
the number of local minima of the polyhedral terrain.
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Figure 1: Left, construction for the NP-hardness proof. Square points are in H, cirular points are in P . Right,
NP-hardness for higher-order Delaunay triangulations. Crosses are points at least 4r from the points in P ∪H.

Proof. By reduction from maximum size non-
intersecting subset in a set of line segments [1]. Let
S be any set of n line segments in the plane, and as-
sume all 2n endpoints are disjoint (this can easily be
enforced by extending segments slightly). Let P be
the set of the 2n endpoints. Let ε be the smallest
distance between two points in P . For every point
p ∈ P , let C(p) be a circle centered at p with radius
ε/3. If p′ is the point in P such that pp′ is a segment
of S, then for every q ∈ P\{p, p′}, place a point at
the intersection of pq and C(p). We call these points
shields, because they prevent p and q from being con-
nected by a line segment in any triangulation. Let H
be the set of shields.
We assign elevations as follows. For every segment

in S, one endpoint isassigned elevation 1 and the other
isassigned elevation 2. Every shield in H isassigned
elevation 3. By the choice of shields, every point with
elevation 1 is a local minimum, and no point with
elevation 3 can be a local minimum. A point with
elevation 2 is a local minimum if and only if the seg-
ment from S that connects p′ to the other endpoint
p is in the triangulation. Hence, the maximum non-
intersecting subset of S corresponds one-to-one with
the points with elevation 2 that are local minimum.
Since the number of shields is quadratic, NP-hardness
follows directly. �

Based on the construction in the proof above, we
can show NP-hardness of minimizing the number of
local minima for higher-order Delaunay triangulations
even when no degeneracies are present.

Corollary 2 Let P be a set of n points in the plane
such that no three points of P lie on a line, and assume
that the points have elevations. For any 0 < ε < 1
and some c > 0, it is NP-hard to compute a k-th order
Delaunay triangulation that minimizes the number of
local minima of the polyhedral terrain for nε ≤ k ≤
c · n1/4.

Proof. Start out with the proof of the theorem
above; |P | = 2n and |H| = 2n(2n − 1). Let r be the
radius of the largest (finite) circle that passes through
three points of P ∪H of the construction. Note that r
is at least half of the diameter of P ∪H. Let δ > 0 be
a value chosen such that if three non-colinear points
from P ∪H move over a distance δ, then their circle
has radius at most 2r. Both r and δ can be computed
in cubic time. For every shield h ∈ H, displace it
over a distance d where 0 < d < δ, and such that the
radius of the circle through h and the two points of
P for which h is a shield has radius at least 4r. Place
|P | + |H| + 1 = 4n2 + 1 points inside this circle and
at distance at least 4r from all points in P ∪H. Since
the diameter of P ∪H is at most 2r, this is possible.
These points make sure that the triangulation edge for
which h was a shield, is still not possible in a 4n2-th
order Delaunay triangulation: the useful order of the
triangulation edge is too high. By construction, other
edges between points in P and H are possible. The
extra points get elevation 3 as well, and the problem
of minimizing the number of local minima in 4n2-th
order Delaunay triangulations is again the same as
maximizing the size of a non-intersecting subset of S.
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The number of points in the construction is O(n8).
This gives the proof for k = c · n1/4 for some c > 0.
For smaller values of k we simply place more points
at distance at least 4r. As long as k = Ω(nε) the
construction is polynomial. �

3 The flip heuristic

Given a value of k, the flip heuristic repeatedly tests
whether the diagonal of a convex quadrilateral in the
triangulation can be flipped. It will be flipped if two
conditions hold simultaneously: (i) The two new tri-
angles are order-k Delaunay triangles. (ii) The new
edge connects the lowest point of the four to the oppo-
site point. A flip does not necessarily remove a local
minimum, but cannot create one, and it can make
possible that a later flip removes a local minimum.
Our algorithm to perform the flips starts with the

Delaunay triangulation and k′ = 1, then does all flips
possible to obtain an order-k′ Delaunay triangulation,
then increments k′ and repeats. This continues until
k′ = k.
We first deal with the maximum number of flips

needed, and then we discuss the efficiency of the
heuristic.

Lemma 3 The flip heuristic terminates after at most
O(n2) flips.

Proof. Normalize the heights of the vertices to be in-
tegers in the range 1, . . . , n. Observe that this does
not influence the flipping criterion. Consider the func-
tion F (T ) for a triangulation T :

F (T ) =
∑

uv∈T

min(u, v) .

Any flip decreases F (.) with at least one, and F (.) is
at most O(n2) to begin with. �

Lemma 4 If an edge ab is in the triangulation, then
the flip heuristic will never have an edge cd later with
min(c, d) ≥ min(a, b) that intersects ab.

Proof. Assume without loss of generality that a < b
and c < d. Assume further that a ≤ c, edge ab is
in the triangulation T , and that cd is the first edge
flipped into T that violates the property of the lemma.
Before the flip, c and d must be in a convex quadrila-
teral where c is the lowest point of the four. The other
two points, f and g, cannot be a because a is lower
by assumption. Possibly, f or g is the same as b. The
quadrilateral has edges cf, cg, df, dg, and two of them
intersect ab. But this contradicts the assumption that
cd is the first edge violating the property. �

An immediate consequence of the lemma above is
that an edge that is flipped out of the triangulation

cannot reappear. There are at most O(nk) pairs of
points in a point set of n points that give order-k
Delaunay edges [4]. Therefore, we conclude:

Lemma 5 The flip heuristic to reduce the number of
local minima performs at most O(nk) flips.

To implement the flip heuristic efficiently, we main-
tain the set of all convex quadrilaterals in the current
triangulation, with the order of the two triangles that
would be created if the diagonal were flipped. The
order of a triangle is the number of points in the cir-
cumcircle of the vertices of the triangle. Whenever a
flip is done, we update the set of convex quadrilater-
als. At most four are deleted and at most four new
ones are created by the flip. We can find the order
of the incident triangles by circular range counting
queries. Since we are only interested in the count if
the number of points in the circle is at most k, we
implement circular range counting queries by point
location in the order-k Voronoi diagram [6], taking
O(log n+ k) time per query. We conclude:

Theorem 6 The flip heuristic to minimize the num-
ber of local minima in k-th order Delaunay triangu-
lations on n points takes O(nk2 + nk log n) time.

4 The hull heuristic

The second heuristic for reducing the number of local
minima is the hull heuristic. It was described in Gud-
mundsson et al. [4], and has an approximation factor
of Θ(k2) of the optimum. The hull heuristic adds a
useful order-k Delaunay edge if it reduces the number
of local minima. This edge may intersect several De-
launay edges, which are removed; the two holes in the
triangulation that appear are retriangulated with the
constrained Delaunay triangulation. No other higher-
order Delaunay edges will be used that intersect the
two holes. This guarantees that the final triangula-
tion is order-k. It is known that two useful order-k
Delaunay edges in general can give an order-(2k − 2)
Delaunay triangulation [5], which is higher than al-
lowed.
Here we give a slightly different implementation

than in [4]. It is more efficient for larger values of
k. Also, we include the adaptation that useful lower-
order Delaunay edges are inserted first.
Assume that a point set P and an order k are given.

We first compute the Delaunay triangulation T of P ,
and then compute the set E of all useful k-th order
Delaunay edges, as in [4], in O(nk log n + nk2) time.
There are O(nk) edges in E, and for each we have the
lowest order k′ ≤ k for which it is a useful order-k′

Delaunay edge.
Next we determine the subset P ′ ⊆ P of points that

are a local minimum in the Delaunay triangulation.
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0 1 2 3 4 5 6 7 8 9 10

Calif. Hot Springs 47/47 43/43 33/31 29/26 25/20 24/19 23/18 21/18 18/16 18/16 17/15
Wren Peak 45/45 37/37 31/31 27/27 24/22 23/21 21/20 19/20 19/20 19/19 19/17
Quinn Peak 53/53 44/44 36/36 31/29 26/25 24/23 23/21 21/20 20/19 20/19 19/17
Sphinx Lakes 33/33 27/27 22/22 20/19 19/18 17/16 15/12 12/9 11/9 9/8 9/8
Split Mountain 24/24 17/17 14/14 9/9 9/9 9/9 8/8 7/8 6/7 6/6 5/4

Table 1: Results of the flip/hull heuristic for orders 0–10.

Then we determine the subset E′ ⊆ E of edges that
connect a point of P ′ to a lower point. These steps
trivially take O(nk) time.
Sort the edges of E′ by non-decreasing order. For

every edge e ∈ E′, traverse T to determine the edges
of T that intersect e. If any one of them is not a De-
launay edge or is a marked Delaunay edge, then we
stop and continue with the next edge of E′. Other-
wise, we remove all intersected Delaunay edges and
mark all Delaunay edges of the polygonal hole that
appears. Then we insert e and retriangulate the two
polygons to the two sides of e using the Delaunay tri-
angulation constrained to the polygons. We also mark
these edges. Finally, we remove some edges from E′.
If the inserted edge e made that a point p ∈ P is
no longer a local minimum, then we remove all other
edges from E′ where p is the highest endpoint.
Due to the marking of edges, no edge e ∈ E′ will be

inserted if it intersects the hull of a previously inserted
edge of E′. Also note that every edge of E′ is treated
in O(k) time. We conclude:

Theorem 7 The hull heuristic to minimize the num-
ber of local minima in k-th order Delaunay triangu-
lations on n points takes O(nk2 + nk log n) time.

5 Experiments

Table 1 shows the number of local minima obtained
after applying the flip and hull heuristics to five differ-
ent terrains. The terrains roughly have 1800 vertices.
The vertices were chosen by random sampling from el-
evation grids with about 100 times more points than
the chosen sets.
The values in the table show that higher-order

Delaunay triangulations indeed can give significantly
fewer local minima than the standard Delaunay tri-
angulation (0-th order). This effect is already clear at
low orders, indicating that indeed, many local min-
ima of Delaunay triangulations are caused by having
chosen the wrong edges for the terrain (interpolation).
The difference in local minima between the flip and

hull heuristics shows that the hull heuristic usually is
a bit better, but there are some exceptions.
To test how good the results are, we also tested how

many local minima of each terrain cannot be removed
simply because there is no useful order-k Delaunay

edge possible to a lower point. It turned out that
the hull heuristic found the optimal order-k Delaunay
triangulation in nearly all cases. Only in six cases we
cannot be sure: there was one local minimum left that
could potentially be removed.

6 Further research

It remains to be discovered whether minimizing the
number of local minima in order-k Delaunay trian-
gulations is already NP-hard for smaller values of k.
This is unknown for k ≥ 2 but significantly less than
nε, for any small constant ε > 0.
Another topic for further investigation is the re-

moval of other artifacts from terrains. For exam-
ple, for drainage applications, it is important to have
the drainage network coincide with the triangulation
edges, and not go over the middle of triangles.
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On Properties of Higher-Order Delaunay Graphs with Applications∗
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Abstract

In this work we study the order-k Delaunay graph,
which is formed by edges pq having a circle through
p and q and containing no more than k sites. We
study the combinatorial structure of the set of trian-
gulations that can be constructed with edges of this
graph and show that it is connected under the flip
operation if k ≤ 1 and for every k if points are in con-
vex position. We also study the hamiltonicity of the
order-k Delaunay graph and give an application to a
coloring problem.

1 Introduction

The Delaunay graph is an ubiquitous structure in the
field of Computational Geometry. It is well known
that this graph is a triangulation when the points are
in general position and that it can be easily completed
to a triangulation in the presence of degenerate config-
urations. An encyclopedic treatment of this structure
can be found in the book by Okabe et al. [7].
The edges of a Delaunay triangulation of a planar

point set P have a simple geometric definition (i.e.
its proximity measure). Two points p, q ∈ P form a
Delaunay edge provided that there exists a circle with
p and q on its boundary with no points of P \ {p, q}
in its interior.
This condition can be generalized in a natural way

by relaxing the requirement that the circle needs to
be empty. In this way, we say that p, q ∈ P form
an edge of the order-k Delaunay graph provided that
there exists a circle with p and q on its boundary with
at most k points of the set P \ {p, q} inside the circle.
Note that the order-0 Delaunay graph is the standard
one.
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pedro.ramos@uah.es

In [3] the authors don’t focus on the order-k Delau-
nay graph yet its edges are defined and called order-k
Delaunay edges; then they deal with the problem of
computing the set of order-k Delaunay edges which
can be completed to a triangulation such that all the
triangles have order at most k, where the order of a
triangle is defined as the number of points contained
inside its circumscribing circle. For the constrained
Delaunay triangulation, related problems are consid-
ered in [4].
It may be surprising that similar questions have

been considered some years ago for graphs related to
the Delaunay graph: In [8], properties of the order-
k Gabriel Graph (GG) are investigated and an al-
gorithm for its construction is proposed, while in [1]
it is shown that the order-20 Relative Neighborhood
Graph (RNG) is Hamiltonian.
In this paper, we concentrate mainly on the study of

some graph theoretic properties of the order-k Delau-
nay graph as well on some applications arising from
these properties.

2 Order-k Delaunay graph

Throughout this paper, unless explicitly stated other-
wise, P will be a set of points in the plane in general
position – no three points are collinear and no four
are on a circle.

Definition 1 Given two points p, q ∈ P , the order
of pq is the smallest integer k such that there exists
a circle through p and q containing in its interior k
points of P . The order-k Delaunay graph of P , de-
noted k −DG(P ), is formed by the edges with order
at most k.

We start by giving an upper bound on the number
of edges of the order-k Delaunay graph which can be
derived taking into account its relation with higher
order Voronoi diagrams [7].

Theorem 1 Let P be a set of points in general po-
sition and let |k−DG(P )| be the number of edges of
the order-k Delaunay graph. Then

|k −DG(P )| ≤ 3(k + 1)n− 3(k + 1)(k + 2)
If P is in convex position, then

|k −DG(P )| ≤ 2(k + 1)n− 3
2
(k + 1)(k + 2)
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Proof. Let bpq be the bisector of points p and q
and let Vk(P ) be the order-k Voronoi diagram of P .
Clearly, if the order of pq is k, an edge of bpq appears
for the first time in Vk+1(P ). In [2], it is shown that
the total number of connected components that ap-
pear in the set of lines {bpq | p, q ∈ P} when all Voronoi
diagrams up to order k are put together is

λk = 3kn−
3
2
k(k + 1)−

k∑
j=1

ej(P ),

where ej(P ) is the number of j-sets of P . If P is
in convex position, then

∑k
j=1 ej(S) = kn, while for

arbitrary P is known that

k∑
j=1

ej(S) ≥ 3
(
k + 1
2

)
(see [2],[6]). Therefore, the result follows from the fact
that |k −DG(P )| ≤ λk+1. �

3 Flip-graph of order-k triangulations

In this section we study the structure of the set of
triangulations that can be constructed using edges of
the order-k Delaunay graph. We say that a triangu-
lation T has order k if all its edges have order at most
k and there is some edge with order exactly k. We
recall that if a triangulation T1 has two triangles pqr
and pqs in convex position, we can get another trian-
gulation T2 by deleting the edge pq and adding the
edge rs. This operation is called a flip. In this situ-
ation, we say that the edge pq is locally Delaunay if
the circle passing through p, q and r does not contain
point s.

Definition 2 The flip-graph of triangulations with
order at most k, denoted by TGk(P ), is defined in
the following way:

1. the vertices are the triangulations of P with order
at most k,

2. two triangulations T1 and T2 are connected with
an edge in TGk(P ) if they differ in a flip.

If k = 0, TG0(P ) is a single vertex (the Delaunay
triangulation) and thus connected. In the following
theorem we answer the question of the connectedness
of these graphs.

Theorem 2

a) TG1(P ) is connected.

b) TGk(P ) can be disconnected if k ≥ 2.

c) If P is in convex position, then TGk(P ) is con-
nected for every k ≥ 0.

p q

r

s

Cpq

Cpqs

Crs

R1 R2u v

Figure 1: Illustration for the proof of Theorem 2

Proof. Let T be a triangulation with order one and
let DT be the Delaunay triangulation of P . We are
going to show that if T %= DT there exists an edge of
T which is not locally Delaunay and can be flipped to
an edge with order at most one.
Let pq be an edge which is not locally Delaunay

(then, it has order one) and let rs be the edge that
we get when pq is flipped (see Figure 1). If rs has
order at most one then we have done, so assume that
rs has order at least two. Because pq is not locally
Delaunay and has order one, there exists a circle Cpq

passing through p and q and containing a single point,
which is necessarily either r or s. In the following, we
assume that Cpq contains r and, therefore, the edges
pr and qr are Delaunay edges.
Let Cpqs be the circle passing through p, q and s and

Crs the circle tangent to Cpqs at s and passing through
r. Let R1 and R2 be the regions inside Crs and outside
both of the circle Cpq and the quadrilateral prqs. It
is easy to see that each of the regions contains exactly
one point, as illustrated in Figure 1).
Let us denote by u and v, respectively, the points

inside the regions R1 and R2, and by Cprs the circle
through p, r and s. The circle Cprs contains at least
two points and no point different from u and v can
be inside it. This shows that the edge pv has order at
most one. In an analogous way, it can be seen that
the edge qu has order at most one. If the edge ps is
not locally Delaunay then we have finished because
the triangle psu is in T and we can flip the edge ps to
qu so we can assume that ps is locally Delaunay.
If triangle psu is not in T , then we can consider

the set of triangles C intersected by segment qu and
show that if p′q′s′ and p′us′ are adjacent triangles in
C then the edge p′s′ is not locally Delaunay while the
edge q′u has order zero and this concludes the proof
of part a).
In Figure 2 we show an example of a triangula-

tion with order two such that every possible flip in-
creases its order to three. Therefore, TG2(P ) is not
connected.
The proof of part c) is omitted in this extended

abstract due to space limitations. �
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a1 b1 c1

a2

b2

c2

b3

c3

a3

Figure 2: An isolated triangulation in TG2(P )

4 Hamiltonicity of Order-k Delaunay Graph

In this section, we show that the order-15 Gabriel
Graph (GG) contains a Hamiltonian cycle. Note that
15-GG is a subgraph of the 15-DG. The key idea be-
hind the proof is the following. Given a particular
Hamiltonian cycle h through a set of n points, define
the distance sequence, ds(h) = δ1, . . . , δn to be the se-
quence of edge lengths in the cycle sorted from longest
to shortest edge. Given any two Hamiltonian cycles
x and y, we can compare lexicographically their edge
length sequences. In the following theorem we prove
that a cycle associated with an edge length sequence
which is minimum with that order has the property
that every edge belongs to 15-GG.

Theorem 3 Given a set P of n points in the plane in
general position, the graph 15-GG contains a Hamil-
tonian cycle (and hence 15-DG too).

Proof. Let H be the set of all Hamiltonian cycles
through the points of P . Let m = a0, a1, . . . , an−1

be a cycle in H with minimal distance sequence. We
will show that all of the edges of m are in 15-GG. We
proceed by contradiction.
Suppose that there are some edges inm that are not

in 15-GG. Let e = [aiai+1] be the longest edge that is
not in 15-GG (all index manipulation is modulo n).
Let B be the circle with ai and ai+1 as diameter.
Claim 1: No edge of m can be completely inside

B. Suppose there was an edge f = [aj , aj+1] inside
B. By deleting e and f from m and adding either
[ai, aj ], [ai+1, aj+1] or [ai, aj+1], [ai+1, aj ], we con-
struct a new cycle m′ whose distance sequence is
strictly smaller than that of m since d(ai, ai+1) >
max{d(ai, aj), d(ai+1, aj+1), d(ai, aj+1), d(ai+1, aj)}.
But this is a contradiction since m is a minimal
distance sequence.
Therefore, we may assume that no edge of m lies

completely inside B. Since e is not 15-GG there
must be at least w ≥ 16 points of P in B. Let
U = u1, u2, . . . , uw represent these points indexed

in the order we would encounter them on the cy-
cle starting from ai. Let S = s1, s2, . . . , sw and
T = t1, t2, . . . , tw represent the vertices where si is
the vertex preceding ui on the cycle and ti is the ver-
tex succeeding ui on the cycle.
Let D be the circle centered at ai+1 with radius 2r.
Claim 2: No point of T can be inside D. Suppose

tj ∈ T is in D, then d(tj , ai+1) < 2r. Construct a
new cycle m′ by removing the edges [uj , tj ], [ai, ai+1]
and adding the edges [ai+1, tj ], [ai, uj ]. Since the
two edges added have length strictly less than 2r,
ds(m′) < ds(m) which is a contradiction.
Let c be the midpoint of the edge [ai, ai+1]. Let C

be the circle centered at c with radius 2r and
Claim 3: There are at most 4 points of T in C.

Suppose that there are 5 points of T in C. Note that
the 5 points are in C∩D by the previous claim. How-
ever, this means that there must be two points tj , tk
such that ∠(tj , c, tk) < π/3. But this implies that
|tjtk| < 2r.
Since |T | ≥ 15, there are at least 11 points of T

outside C. Decompose the plane into 10 cones of
angle π/5 centered at c. By the pigeon-hole princi-
ple, there must be one cone with at least 2 points,
tj and tk. We note that d(tj , tk) is either less than
2r or less than max d(c, tj)− r, d(c, tk)− r (a proof
of this fact can be found in the technical report).
Construct a new cycle m′ from m by first deleting
[tj , uj ], [tk, uk], [ai, ai+1]. This results in three paths.
One of the paths must contain both ai and either tj
or tk. WLOG, suppose that ai and tj are on the
same path. Add the edges [ai, uk], [ai+1, uj ], [tj , tk].
The resulting cycle m′ has a strictly smaller dis-
tance sequence since max [tj , uj ], [tk, uk], [ai, ai+1] >
max [ai, uk], [ai+1, uj ], [tj , tk].

�

5 Coloring with Applications

Given a set of n points in the plane, Har-Peled and
Smorodinsky [5] showed how to assign one of m col-
ors to each of the n points such that every circle C
containing more than one point has at least one point
in C with a unique color. Such a coloring is called a
conflict-free coloring (CF-coloring for short). The De-
launay graph is used both in the coloring algorithm
and to show that m is O(log n). This type of coloring
finds application in the assignment of frequencies in a
cellular network.
In this section, we generalize the result in [5]. We

show that with O(log n/ log(8ck/(8ck − 1)) colors, a
set of n points in the plane can be colored so that ev-
ery circle containing at least k points contains at least
k points with unique color (where the maximum num-
ber of edges in (k − 1)-DG is ckn for some constant
c). We call such a coloring a k-conflict-free coloring.
In the context of cellular networks, this can be viewed
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as ensuring that for every client in range of k or more
towers, there always exists at least k different tow-
ers with which the client can communicate without
interference.
As noted in Theorem 1, the number of edges in

(k − 1)-DG is at most ckn where c = 3 when the
points are in general position and c = 2 when points
are in convex position. This implies that the average
degree of a vertex in (k − 1)-DG is at most 2ck and,
by using a standard argument which is omitted in this
extended abstract, it can be seen that there are always
big independent sets with bounded degree:

Lemma 4 Every (k− 1)-DG has an independent set
of size at least n/8ck where each vertex in the set has
degree at most 4ck.

The coloring algorithm is simple and repeated ap-
plies the above lemma. Find a large independent set
in the (k − 1)-DG of the given point set P . Assign
a unique color to the points in the independent set.
Remove these points from P and repeat as long as
|P | > 0. In the next lemma, we show that this algo-
rithm provides a k-conflict free coloring and the total
number of colors used is log n/ log(8ck/(8ck − 1))

Lemma 5 With log n/ log(8ck/(8ck − 1)) colors, a
set of n points can be colored so that every circle
containing at least k points contains k points whose
color is unique.

Proof. First, at each iteration, we remove an inde-
pendent set of size at least n/8ck. Let C(n) represent
the number of colors used for a (k−1)-DG graph with
n vertices. We can bound C(n) with the following
recurrence: C(n) ≤ C((8ck − 1)n/8ck) + 1. This re-
currence resolves to C(n) ≤ log n/ log(8ck/(8ck − 1))
as required.
Next, we show that the coloring is k-conflict free.

Let C be any circle containing a set P of at least
k points. Consider the k points in C whose colors
have highest value (recall that the first independent
set was given color 0 and an independent set removed
at step i was given color i). If all these k points have
unique colors, the lemma is proved. For sake of a
contradiction, assume that at least 2 of these k points
have the same color. Let i be the largest color whose
value is not unique. Note that there are fewer than k
points in P whose color value is strictly greater than
i. Also note that at iteration i of the algorithm, all
points with color less than i have been removed from
P . Let Pi be the set of points in P receiving color i.
Since C contains Pi, there is a circle C ′ contained in
C that has two points x, y of Pi on its boundary and
no points of Pi in its interior. However, since there
are fewer than k points whose color is larger than i,
this means that C ′ contains fewer than k points in its
interior at iteration i of the algorithm. However, this

contradicts the fact that x and y are in an independent
set selected at iteration i. �

Corollary 6 A set of n points in general position can
be colored with log n/ log(24k/(24k−1)) colors so that
every circle containing at least k points contains k
points whose color is unique. If the set of n points
is in convex position, then log n/(log(16k/(16k − 1))
colors are sufficient

Note that we only used the fact that there are large
numbers of vertices of bounded degree in (k − 1)-DG
in order to show that there is a sufficiently large inde-
pendent set. If one can find a larger independent set
that is guaranteed to exist in all (k − 1)-DG graphs,
then the above bounds can be improved.

6 Conclusion

In this work we have investigated some properties of
higher order Delaunay graphs. There are several ques-
tions that remain open, and we emphasize the follow-
ing:

– give some lower bound on the size of k-DG and
a tight upper bound,

– show that k-DG is Hamiltonian for small k.
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Constructing Higher-Order Voronoi Diagrams in Parallel

Henning Meyerhenke∗

Abstract

We use Lee’s sequential algorithm [17] to create the
first parallel algorithm which constructs the order-k
Voronoi diagram of a planar point set. The algorithm
is developed and analyzed within two parallel mod-
els, the fine-grained PRAM and the coarse-grained
CGM. Its applications include k-nearest neighbor
searches in a parallel context, which are important for
many applications in computational geometry. The
fine-grained algorithm requires O(k log2 n) time and
O(k2n log n) work on a CREW-PRAM, whereas the
coarse-grained version requires the ordinary Voronoi
diagram as input and then takes O(k2(n−k) log n

p ) run-
ning time and O(k) communication rounds on a CGM
with O(k2(n−k)

p ) local memory per processor.

1 Introduction

The Voronoi diagram is one of the most popular geo-
metric structures studied in the field of computational
geometry due to its rich algorithmic application in
placement and motion planning, triangulations, con-
nectivity graphs and closest-site problems [5]. A gen-
eralization of ordinary Voronoi diagrams are those of
order k, whose regions are the locus of points with the
same k nearest neighbors. Given an order-k Voronoi
diagram, one can find the k-nearest point site of a
query point efficiently, which is very important for
generalized closest-site problems and for the closely
related higher order Delaunay triangulations [15].
Since these applications from geometry and geo-

graphic information systems often benefit from par-
allel computing, we develop a simple parallel algo-
rithm to construct all higher order Voronoi diagrams
of some given order k and below. After the descrip-
tion of the sequential algorithm the parallel algorithm
is developed and analyzed both in the fine-grained
PRAM model (section 2) and in the coarse-grained
CGM model (section 3), which is more relevant in
practice.
In an ordinary Voronoi diagram of a planar point

set S of size n each Voronoi region is induced by ex-
actly one point site of S, since it is the locus of points
with the same nearest neighbor in S. The concept
of order k extends this perception by making each
Voronoi region the locus of points which have the

∗Department of Computer Science, University of Paderborn,
henningm@upb.de

same k nearest neighbors (thus, an ordinary Voronoi
diagram has order one). An example of the order-2
diagram of a planar point set is depicted in figure 1.
Previous works on sequential algorithms for con-

structing higher order Voronoi diagrams include the
books of Preparata and Shamos [18] and Edelsbrun-
ner [13]. The latter points out the duality between
k-levels in arrangements and higher order Voronoi di-
agrams, an idea which is used in some of the sequen-
tial algorithms developed for the posed problem by
Agarwal et al. [1], Aurenhammer [4], Aurenhammer
and Schwarzkopf [6], Boissonnat et al. [7], Chan [8],
Chazelle and Edelsbrunner [9], Ramos [19], and Lee
[17].

Figure 1: Voronoi diagram of order 2 of a planar point
set, generated with an applet written by B. Schaudt
[20].

D. T. Lee [17] describes a sequential algorithm for
computing the family of all these diagrams of order
≤ k in O(k2n log n) time. His method is iterative as
it modifies Vi(S), the Voronoi diagram of order i, in
order to obtain the diagram of order i + 1. Its space
complexity for each iteration is O(i2(n− i)), since the
order-i diagram has O(i(n − i)) regions and for each
of which i inducing points are stored. Meanwhile,
the algorithm’s time complexity has been improved
to O(n log n + nk2) by Aggarwal et al. [2], whose
algorithm can delete one point site from a Voronoi di-
agram and recompute the resulting one in linear time.
The iterative approach of Lee’s algorithm (trans-

forming the diagram of order i into the diagram of
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order i + 1) is mainly based on the following idea:
Each Voronoi region r of order i, which is induced
by some H ⊂ S with |H| = i, is partitioned into
subregions which are the respective locus of points
with the same i + 1 neighbors in S. Since all points
of r share the same i nearest neighbors (namely the
points in H), what remains to be done is to partition
r into subregions according to their nearest neighbor
in S\H. This partitioning procedure works by merg-
ing V1(S\H), the ordinary Voronoi diagram of the
remaining n − i + 1 points, appropriately with r (cf.
Lee [17] for details).

2 The PRAM algorithm

As Lee has shown [17, p. 482], two adjacent regions
of a Voronoi diagram of order i share i − 1 of their i
nearest neighbors. When partitioning such a region r
according to V1(S\H), it is split into regions w.r.t. to
the (i + 1)-nearest neighbors of r (i.e. the (possibly)
different (i + 1)-nearest neighbors of different points
in r). The key observation is that only few additional
information is required to do this.

Lemma 1 The i + 1-nearest neighbors of a region r
of Vi(S) all induce adjacent regions of r.

Proof. Points on Voronoi edges of order i share the
same i + 1 nearest neighbors because they have not
only one, but two i-nearest neighbors. If r is induced
by the point set H, then its edges are induced by H
and one additional point each. This point induces the
adjacent region whose boundary the respective edge
is part of. �

Corollary 2 In order to partition a Voronoi region r
of order i into subregions of order i+1, it is sufficient
to know r’s neighboring regions of order i (and their
inducing points).

This locality property is obviously useful for a
parallel version of Lee’s algorithm. Following its
scheme, the problem mainly consists of partitioning
each order-i region into subregions of order i+ 1 and
merging equivalent subregions. To do this for some
region r, one only needs to know the points which
induce the regions adjacent to r.
For the PRAM algorithm we therefore compute for

each order-i region r that part of V1(S\H) (the or-
dinary Voronoi diagram of S without the points that
induce r) which contributes to r. This can be done
using the algorithm developed by Amato et al. [3],
which requires O(log2 n) time and O(n log n) work on
a EREW-PRAM to compute the Voronoi diagram of
n sites in the plane. After that, only some minor up-
date operations have to be performed to complete one
iteration and obtain the order-(i+ 1) diagram.
More formally we state the algorithm as follows:

Input: Planar point set Sn, p ≤ n processors, k
Output: Order-k Voronoi diagram of S

1. Use Amato et al.’s algorithm [3] to compute the
Voronoi diagram of S.

2. FOR i := 1 TO k − 1 DO
/* Transform the diagram of order i into one of
order i+ 1 */

(a) FOR EACH region rj PARDO

i. Partition rj induced by Hj ⊂ S
into subregions according to V1(S\Hj),
which is computed by Amato et al.’s al-
gorithm.

(b) FOR EACH new region rm not updated yet
PARDO

i. Update rm by merging it with equiva-
lent subregions and deleting old edges
within the merged region.

Theorem 3 The family of all order-(≤ k) Voronoi
diagrams can be computed on a CREW-PRAM using
O(k log2 n) time and O(k2n log n) work.

Proof. Recall that an order-i Voronoi diagram has
O(i(n − i)) regions. If an rj of them has sj edges,
we need to compute the ordinary Voronoi diagram of
sj points. The total amount of work per outer iter-
ation is therefore

∑ k(n−k)
j=1 sj log sj = kn log n. (The

parallel merging/deleting loop requires only constant
time and a linear amount of work.) Since one region
can have at most O(k(n − k)) edges, the algorithm
takes O(log2(k(n − k)) = O(log2 n) time for each of
the k − 1 iterations. For this method, no concurrent
write operations are necessary, but concurrent read
operations are. �

Unfortunately, the work complexity does not match
the improved sequential running time. For this, a
parallel algorithm comparable to Aggarwal et al.’s se-
quential one [2] that deletes one site from an existing
Voronoi diagram and can recompute the new one us-
ing a linear amount of work, would be necessary.

3 The CGM algorithm

We use now the locality property explained in the
previous section to develop a coarse-grained parallel
algorithm for the problem within the (slightly modi-
fied) CGM model [11]. The original CGM model con-
sists of p processors connected by some arbitrary net-
work, with each processor having a local memory of
size O(n

p ). Interprocessor communication is realized
by message passing in communication rounds, dur-
ing which no processor can send or receive more data
items than fit into its local memory.

124



EWCG 2005, Eindhoven, March 9–11, 2005

It was shown by Dehne et al. [11] that many collec-
tive communication primitives can be simulated on a
CGM by a constant number of global sort operations.
Moreover, Goodrich proved [14] that coarse-grained
sorting can be performed optimally within a constant
number of communication rounds if n

p ≥ p.
For our algorithm we slightly modify the model by

increasing the local memory bound to O(k2(n−k)
p ),

which is the space complexity of the sequential al-
gorithm divided by the number of processors.
The ordinary Voronoi diagram of the point set S

is part of the input of our algorithm.1 This diagram
of order 1 must have the property to be x-disjoint,
i.e. it is stored in such a way that S is distributed
on the processors within disjoint intervals w.r.t. the
x-coordinate. This enables a processor to determine
efficiently which other processor stores a particular
point site. (If the diagram is not x-disjoint, it can be
made so via a constant number of global sort opera-
tions.)

The algorithm works as follows:
Input: CGM(n, p) with n

p ≥ p and O(
k2(n−k)

p ) local
memory per processor; planar point set S of size n
and its Voronoi diagram, which is distributed on the
p processors in such a way that each processor stores
O(n

p ) Voronoi regions and edges; order k of the desired
output.
Output: Vk(S) distributed on the p processors such

that every processor stores O(k(n−k)
p ) Voronoi edges

and regions.

1. If V1(S) is not x-disjoint, then it is rearranged
by a constant number of global sorting steps to
make it x-disjoint.

2. Every processor sends the locally stored point
with the largest x-coordinate to all the other pro-
cessors.

With this information every processor determines
by binary search for each boundary region (i.e. a
local Voronoi region with at least one non-local
neighbor region), which other processor stores its
non-local neighbor regions (i.e. regions stored on
other processors that share an edge with a locally
stored region).

3. FOR i := 1 TO k − 1 DO

(a) Each processor sends necessary information
about its boundary regions of order i to the

1The best deterministic CGM algorithm for computing the
Voronoi diagram of arbitrary planar point sets is due to Di-
allo et al. [12] and requires O(n log n log p

p
) local computa-

tion steps and O(log p) communication rounds. Moreover, two
rather complicated randomized CGM algorithms exist, which
both compute the planar Voronoi diagram with high probabil-
ity in optimal time of O(n log n

p
) and with O(1) communication

rounds [10, 16].

processors which store their non-local neigh-
bor regions (if present).

(b) Using Lee’s algorithm [17, p. 482] with the
enhancement by Aggarwal et al. [2], each
processor transforms its local part of Vi(S)
into the corresponding order-i Voronoi dia-
gram.

(c) Since some of the new Voronoi regions are
computed on two processors but are to be
used on only one of them, we proceed as
follows: If i is even, a newly created dupli-
cate region is only retained on the processor
with the lower number, otherwise only on
the processor with the higher number.

Lemma 4 A processor creates at most O( i(n−i)
p )

Voronoi regions of order i + 1 during the transition
from Vi(S) to Vi+1(S).

Proof. An ordinary Voronoi diagram can be dis-
tributed on p processors such that each processor
stores O(n

p ) Voronoi regions and edges so that the
claim is true for i = 1. Let us assume now inductively
that it holds for arbitrary i0 ≤ i.
According to our assumption, a processor stores

O( i(n−i)
p ) Voronoi regions and edges of an order-i

Voronoi diagram. These local regions can be seen as
an independent sub-diagram, which can be influenced
by at most O( i(n−i)

p ) non-local Voronoi regions, since
the local regions cannot have more neighbor regions
than edges. The total number of all these regions is
still O( i(n−i)

p ), so that the order-(i + 1) sub-diagram
which is created during the transition, has at most
O( (i+1)(n−(i+1))

p ) = O( i(n−i)
p ) regions. �

Theorem 5 Let a coarse-grained multicomputer
CGM(n, p) with n

p ≥ p and local memory size

O(k2(n − k)) be given and let the Voronoi diagram
of a planar point set S be distributed on CGM(n, p)
such that each processor stores O(n

p ) Voronoi re-
gions and edges. Then one can compute the order-
k Voronoi diagram of S with a time complexity of

O(k2(n−k) log n
p ) for local computation using O(k) su-

persteps and communication rounds, during which ev-
ery processor sends and receives at most O(k2(n−k))
data items.

Proof. Using corollary 2, we conclude that each pro-
cessor can transform its locally stored Voronoi sub-
diagram of order i into the sub-diagram of order i+1
if it knows all neighbors of its locally stored regions.
This is ensured by the communication in step 3a.
Since all duplicate regions are eliminated in step 3c,
the union of all sub-diagrams forms the Voronoi dia-
gram of order i+ 1 after iteration i.
The communication complexity of the algorithm is

clearly dominated by step 3a, during which at most

125



21st European Workshop on Computational Geometry, 2005

O( i(n−i)
p ) Voronoi regions are communicated. (Note

that for each region the number of inducing points
sent/received is not greater than the region’s num-
ber of edges.) This can be accomplished by a total
exchange operation. Hence, no more than O( i(n−i)

p )
points are sent and received during one communica-
tion round.
Furthermore, the local time complexity is domi-

nated by this communication step, too. It requires
in total

∑k−1
i=1 O(

i(n−i) log n
p ) = O(k2(n−k) log n

p ) local
computation. In contrast to this, the other steps re-
quire only O(n log n

p ) (step 1), O(n log p
p ) (step 2), and∑k−1

i=1 O(
i(n−i)

p ) = O(k2(n−k)
p ) (both step 3b and step

3c), respectively.
Clearly, the local memory space bound of

O(k2(n−k)
p ) is necessary, but never exceeded. �

4 Conclusion

In this paper we present and analyze a parallel algo-
rithm for constructing higher order Voronoi diagrams
for two parallel models, PRAM and CGM. For both
models we use Lee’s iterative idea [17] to transform
the diagram of order i into one of order i + 1. Al-
though the algorithm is quite simple, it appears to
be the first parallel one for the construction of higher
order Voronoi diagrams.
Two possible improvements could be the object of

further research: First, a parallel algorithm which
deletes a point site from a Voronoi diagram and can
recompute the new one using a linear amount of work.
This would make our PRAM algorithm work-optimal
when compared to Lee’s sequential algorithm.
Secondly, the CGM algorithm is only efficient for

small k. Although small k seem to be more relevant
in practice, it would nevertheless be of interest to ob-
tain a CGM algorithm which requires significantly less
than O(k) communication rounds.
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Delineating Boundaries for Imprecise Regions∗

Iris Reinbacher† Marc Benkert‡ Marc van Kreveld† Alexander Wolff‡

Abstract

In geographic information retrieval users use names
of geographic regions that do not have a well-defined
boundary, like Southern France. We present two ap-
proaches to compute reasonable boundaries of such
regions, based on evidence of points that are likely to
lie inside or outside this region.

1 Introduction

Geographic information retrieval is concerned with in-
formation retrieval for spatially related data, includ-
ing Web searching. Certain specialized search engines
allow queries that ask for things (hotels, museums) in
the (geographic) neighborhood of some named loca-
tion. Another typical query could specify locations
such as Central Mexico or the British Midlands. The
latter is an example of a named region for which no
exact boundaries exist. The extent of such a region is
in a sense in the minds of the people.
Since geographic queries may ask for Web pages on

castles in the British Midlands, it is still useful to have
a reasonable boundary for this imprecise region. We
would then be able to find Web pages for locations
in the British Midlands that mention castles, even if
they do not contain the words British Midlands. We
would need to store a reasonable boundary for the
British Midlands in the ontology (that stores all ge-
ographic information, including coordinates and geo-
graphic concepts) during preprocessing, and use query
time for searching in the spatial part of the combined
spatial and term index.

To determine a reasonable boundary for an impre-
cise region we can use the Web once again. The enor-
mous amount of text on all Web pages can be used
as a source of data; the idea of using the Web as a
geo-spatial database appeared before in [9, 11]. A
possible approach is using so-called trigger phrases.
For any reasonable size city in the British Midlands,
like Nottingham, it is quite likely that some Web page
contains a sentence fragment like “. . . Nottingham, a
city in the British Midlands, . . . ”, or “Nottingham is
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man Science Foundation (DFG).

†Institute of Information and Computing Sciences, Utrecht
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located in the British Midlands. . . ”. Such fragments
give a location that is most likely in the British Mid-
lands, while other cities like London or Cardiff, that
do not appear in similar sentence fragments, give loca-
tions that are not in the British Midlands. Details of
using trigger phrases to determine locations inside or
outside a region to be delineated can be found in [2].
Obviously, the process is not too reliable and false pos-
itives and false negatives are likely to occur. In the
reliable case, Alani et al. [1] give a Voronoi Diagram
based method to delineate regions.

We have arrived at the following computational
problem: given a set of “inside” points (red) and a
set of “outside” points (blue), determine a reasonable
polygon that separates the two sets well. Possible
criteria for a reasonable polygon are that it is simply-
connected and has small perimeter (but as it must still
contain most red points, it is fat and almost convex).
In computational geometry, red-blue separation al-

gorithms exist of various sorts. Red-blue separation
by a line is simply linear programming and takes
O(n) time for n points. Red-blue separation by a
line with the minimum number of misclassified points
takes O((n+ k2) log k) expected time, where k is the
number of misclassified points [4]. Other fixed separa-
tion shapes like strips, wedges, and sectors can also be
considered [3]. When polygons are the separator, then
the most natural problem is the minimum perimeter
polygon that separates the bichromatic point set. Eu-
clidean travelling salesperson can be reduced to this
problem, which makes it intractable [5]. Gudmunds-
son and Levcopoulos [7] give an O(n log n)-time al-
gorithm that finds a polygon whose perimeter is at
most O(log n) times as long as the minimum perime-
ter one. Separation by minimum link shapes received
attention as well (e.g., [10]).
In this paper we present two approaches to deter-

mine a reasonable polygon for a set of red and blue
points. The first approach, described in Section 2,
starts with a red polygon with blue points inside,
and we try to change the shape of the polygon to
get more blue points outside. The second approach,
which changes the color of points to obtain a better
shape of the polygon is presented in Section 3.

2 Adaptation Method

Let R be the set of red points, B the set of blue points,
and let n be the total number of points. In the adap-
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tation method, we start with some simply-connected
polygon P and adapt it until all blue points inside P
are no longer inside, or the shape has to be changed
too dramatically.
For an appropriate value of α, we choose our initial

polygon P to be the largest simply-connected com-
ponent of the α-hull of the red points. This way, we
can determine a suitable initial shape and possibly
remove red outliers (the red points outside P ) in the
same step. Once we have computed P , the problem
that remains is changing P so that the blue points
are no longer inside. The resulting polygon should be
contained in P and its perimeter should be as small
as possible. In this section we discuss the problem of
making sure that no blue point remains in the inte-
rior, although in practice it may be better for the final
shape to allow some blue points to stay inside. They
would be considered misclassified.

2.1 One blue point inside P

First, we assume that there is only one blue point b
inside the polygon P . We want to determine a poly-
gon P ′ so that b is not inside, P ′ is contained in P ,
all vertices of P are not outside P ′, and the perime-
ter of P ′ is minimal. It is clear that P ′ cannot have
edges that intersect the exterior of P . We consider
two cases: the special case where only point b is in-
side P , and the more general case where P contains b
and a number of red points.

Lemma 1 The optimal polygon P ′ is a possibly de-
generate simple polygon (i.e. vertices and edges may
be repeated) (i) with b on the boundary, and (ii) which
includes all edges of P , with the exception of one edge.

2.1.1 One blue and no red points inside P

Let P be a red polygon with only one blue point b
inside. Let e = p1p2 be the edge of P that does not
appear in P ′. The endpoints p1 and p2 are connected
by a path π via b in P ′. We denote the path that leads
to the smallest perimeter of P ′ by πmin; it consists
of a shortest geodesic path between b and p1, and
between b and p2. The optimal polygon P ′ has the
same boundary as P , except that edge e is replaced
by πmin. In the optimal solution P ′, the edge e and
the shortest path πmin have the following properties:

Lemma 2 1. The path πmin is a simple path.

2. A funnel π with root b and base e can only be
minimal if e is partially visible from b.

For every two adjacent vertices pi and pi+1 of the
polygon, we compute the shortest paths connecting
them to b. The algorithm of Guibas et al. [8] can find
them in O(n) time. For each possible base e = pipi+1

and corresponding funnel, we add the length of the

a) b) c)

b b b

p1 p1 p1p2 p2 p2

Figure 1: Removing one blue point from the red α-
shape. a) The old polygon b) Computing the shortest
path c) The new polygon

two paths and subtract the length of the edge e to get
the additional length of this choice.

Theorem 3 For a simple polygon P with n vertices
and with a single point b inside, we can compute the
shortest perimeter polygon P ′ that is contained in P ,
that contains all vertices of P , and that does not have
b in its interior, in O(n) time.

2.1.2 One blue and several red points inside P

In the general case we may also have red points inside
P . Let R be the set of these red points, and assume
that its size is O(n). We need to adapt the algorithm
given before to take these red points into account. We
at first ignore all red points. We again compute all
funnels from b to every edge e of P . We get a parti-
tioning of P into O(n) funnels with disjoint interiors.
In every funnel F we do the following: If there are no
red points inside F , we store the length of the fun-
nel without its base edge e. Otherwise, we need to
find a shortest path πmin from one endpoint of e to b
and back to the other endpoint of e, such that all red
points in R still lie inside the resulting polygon P ′.
The shortest path πmin inside some funnel F with

respect to a set R ∩ F of red points consists of two
chains which, together with the base edge e, again
forms a funnel F ′. This funnel is not allowed to con-
tain points of R∩F . We need to consider all possible
ways of making such funnels. Using dynamic convex
hulls, we can obtain:

Theorem 4 For a simple polygon P with n vertices,
a single point b inside and set R of O(n) red points in-
side, we can compute the shortest perimeter polygon
P ′ that is contained in P , that contains all vertices of
P and all red points of R, and that does not have b
in its interior, in O(n log n) time.

2.2 Several blue points inside P

2.2.1 Several blue and no red points inside P

For now, we assume that P is convex and has n ver-
tices. With m< n blue points inside the red polygon
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P , we could try to adapt the first algorithm to com-
pute a polygon that has all blue points no longer in-
side. However, as an iterative application of this algo-
rithm may not lead to an optimal, smallest perimeter
solution, we need to find a different approach. First
we will prove some properties of an optimal solution.

Lemma 5 Let P be a convex polygon with a set B
with m blue points inside. In an optimal solution, let
B be partitioned into k subsets. Then we have:

1. Each optimal path π of a subset B′ consists of a
part of the convex hull of B′, and the two outer
tangents of B′ and some edge e of P , such that e
and π form a convex polygon.

2. No two optimal paths intersect.

It follows directly from this lemma that we need only
consider partitionings of the blue points into subsets
with disjoint convex hulls.

Lemma 6 For a set of m points in the plane, there
are O(Cm) different partitionings into subsets with
disjoint convex hulls, for some constant C.

It is easy to see that every subset Bi chooses its opti-
mal edge independently of all other sets. We give the
following algorithm.

Let P = {B1, . . . , Bk} be a partitioning of the m
blue points inside the polygon P into k subsets with
disjoint convex hulls. For each Bi and every edge e
of P we determine their outer tangents and compute
the length of the shortest path. We store the optimal
configuration with the shortest added length for P.
We do this for every possible partitioning P of the
blue points inside P into subsets with disjoint convex
hulls. Finally, we generate the polygon P ′ by replac-
ing the appropriate edges of P with the optimal paths
for the groups in the optimal partitioning.

Theorem 7 For a convex polygon P with n vertices
and m blue points inside, we can compute a minimum
perimeter polygon P ′ that has no blue points in the
interior and no vertices of P in the exterior, in O(Cm ·
n) time, for some constant C.

In the case of a simple polygon P , we generate all pos-
sibleO(Cm log m) partitionings of them blue points in-
side P . However, the properties of an optimal solution
as well as the algorithm to find it, remain essentially
the same. We can state:

Theorem 8 For a simple polygon P with n vertices
and m blue points inside, we can compute a minimum
perimeter polygon P ′ that is contained in P , has no
blue points in the interior and no vertices of P in the
exterior, in O(Cm log m ·n) time, for some constant C.

3 Recoloring methods

In this section we present the recoloring approach.
We are given a set P of n points, each of which is
either red or blue. We first compute the Delaunay
Triangulation DT(P ) of P . In DT(P ), we color edges
red if they connect two red points, blue if they connect
two blue points, and green otherwise. A red point
is incident only to red and green edges, and a blue
point is incident only to blue and green edges. We
will recolor a point if it is surrounded by points of the
other color. We define for each point its green angle:

Definition 1 Let p ∈ P and let the edges of DT(P )
be colored as above. Then the green angle φ of p is

• 360◦, if p is only incident to green edges,

• the maximum turning angle between two or more
radially consecutive incident green edges,

• 0◦, if p has at most one radially consecutive inci-
dent green edge (or no incident green edges).

We recolor points only if their green angle φ is at
least some threshold value Φ ≥ 180◦; a suitable value
can be found empirically. After the algorithm has
terminated, we define the regions as follows. Let M
be the set of midpoints of the green edges. Then, each
Delaunay triangle contains either no or two points of
M . For each triangle that contains two points of M ,
we connect them by a straight line segment. They
define the boundary between the red and the blue
region. Before we present specific recoloring schemes,
we make the following basic observation.

Observation 1 If we can recolor a blue point to be
red, then we do not destroy this option if we first
recolor other blue points to be red. If we can recolor
a red point to be blue, then we do not destroy this
option if we first recolor other red points to be blue.

In the preferential recoloring scheme, we first recolor
all blue points with green angle φ ≥ Φ red, and then
all red points with green angle φ ≥ Φ blue. This
scheme has linear running time, however, it is not fair
and therefore not satisfactory.

3.1 The Angle-and-Perimeter Scheme

In the angle-and-perimeter scheme, we require that
every recoloring decreases the perimeter of the sepa-
rating polygon(s). Also, only points with green angle
≥ Φ (Φ ≥ 180◦) will be recolored. When there are
several choices of recoloring a point, we select the one
that has the largest green angle.

Theorem 9 The number of recolorings in the angle-
and-perimeter recoloring algorithm is at least Ω(n2)
and at most 2n − 1 in the worst case.
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The condition that recoloring is only allowed if it de-
creases the separation perimeter is needed, otherwise
the separation perimeter may increase. Every recolor-
ing implies the recoloring of all edges incident to the
recolored point and updating its green angle as well as
the green angle of all its neighbors and the perimeter
of the polygons. We summarize:

Theorem 10 The running time for the angle-and-
perimeter recoloring algorithm is O(n ·Z), where Z ≤
2n − 1 denotes the maximum number of recolorings.

3.2 The Angle-and-Degree Scheme

In the angle-and-degree scheme we require that a
point p may only be recolored if the number of green
edges incident to it goes down. This requirement is
used in conjuction to the green angle ≥ Φ condition
for p. The degree condition gives a higher impor-
tance to the number of witnesses for the recoloring of
a point. We need the following definition.

Definition 2 A point p is a good neighbor of p′ if p
and p′ are connected and have the same color, other-
wise p is a bad neighbor of p′. Let δ(p), the δ-value of
p, be the difference between the numbers of bad and
good neighbors of p.

We recolor a point p if its green angle φ is at least
some threshold Φ and its δ-value is larger than some
threshold δ0 ≥ 1. This implies the recoloring of all
edges incident to p and updating its green angle as
well as the δ-value of p and all its neighbors. We can
state the following two theorems:

Theorem 11 The number of recolorings done in the
angle-and-degree recoloring algorithm is Θ(n).

Theorem 12 The running time for the angle-and-
degree recoloring algorithm is O(∆ · Z), where Z =
Θ(n) denotes the number of recolorings and ∆ is the
maximum degree in the Delaunay triangulation.

4 Conclusions

This paper discussed algorithmic problems related
to determining a reasonable boundary of a polygon,
based on a set of points assumed to be inside (red),
and a set of points assumed to be outside (blue). We
presented two basic approaches. The first was to for-
mulate the problem as a minimum perimeter polygon
computation, based on an initial red polygon and one
or more blue points that should not be inside. For
the case of one point in the polygon we presented a
linear time algorithm, and also O(n log n) time algo-
rithm if there are also points that must stay inside.
For the case of m points inside the polygon, we pre-
sented fixed-parameter tractable algorithms running

in O(Cm ·n) and O(Cm log m ·n) time, for convex and
simple polygons, respectively.
The second approach involved changing the color,

or inside-outside classification of points if they are sur-
rounded by points of the other color. We proved a few
lower and upper bounds on the number of recolorings
for different criteria of recoloring. A remaining open
problem is whether the angle-only version of this re-
coloring method terminates or not.
Another open problem is computing a minimum

perimeter polygon for m blue points inside and n red
points that must stay inside. Can a fixed-parameter
tractable algorithm be given in this case as well?
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Abstract

In this paper, we present a simple and fast algorithm
for updating labels of a set of points in presence of
a moving point-shaped object. The labels are as-
sumed to be axis parallel, unit length, square shaped,
each attached exclusively to a point on one of its hor-
izontal (vertical) edges, denoted by 2PM model. The
updated labeling should include all labels, avoid the
moving point with largest possible label length. We
allow flip and resize operations on labels for updating
a labeling. The known algorithm for this problem,
where labels may be attached to their corresponding
points on the middle of any edges, the 4PM model,
uses O(n2) preprocessing time and O(n) space to up-
date the labeling in O(lg n + k) time, where k is the
number of update operations (Rostamabadi and Gh-
odsi, CCCG’04). In this paper, we present a simpler
and more efficient algorithm that uses O(n lg n) time
and O(n) space for preprocessing with simplified data
structures and updates the labeling with the same
time bound.

1 Introduction

Automated label placement is an important problem
in map generation, geographical information systems,
and computer graphics. This problem, in its simple
form, is to attach a label (regularly a text) to each
point, line, curve, or a region in the map. Point-label
placement has received good attention. In a valid la-
beling, labels should be pairwise disjoint, and each la-
bel should be attached to its feature point [2]. There
are different variations of point-labeling that are dis-
cussed in [1, 3, 5, 6, 7].
In this paper, we are interested in a simple and effi-

cient algorithm to update labels in a point-labeling
map. We assume that our map is composed of a
number of points each labeled by a unit-length axis-
parallel square label. It is assumed that the point
of each label appears in the middle of only one of
its horizontal (vertical) edges. Hereafter, we denote
this labeling model by 2PM1. Besides, a point-shaped
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†Computer Engineering Department, Sharif University of
Technology, Tehran, Iran. ghodsi@sharif.edu

12P is a known two-position label modeling, and we add an

object moves on the labeling and triggers an event
every time it changes its location. Labels are allowed
to be flipped or resized to avoid the moving object.
The goal is to efficiently generate the updated label-
ing with maximum label length in response to each
event triggered by the moving object.
A more general version of this problem, where each

point can appear at the middle of any of four edges
of its label, is considered in [4]; we refer to this label-
ing model as 4PM. Although, the proposed algorithm
also works for our problem, but we are interested in a
simpler algorithm with more efficient data structures.
Authors of [4] present a weighted and directed

graph, the conflict graph, to convey the effect of all
possible flip and resize operations. Since the conflict
graph may have complex structure, the preprocessing
phase requires O(n2) time in 4PM model.
We use the same definition of flip and resize opera-

tions as in [4], but we simplify the conflict graph defi-
nition by using some properties of the 2PM model,
hence the preprocessing time reduces to O(n lg n).
Besides, the result of the preprocessing phase can
be stored in a more simpler data structures. We
also show that the given labeling can be updated in
O(lg n+k) time in response to each event triggered by
the moving object, where k is the number of update
operations.

2 Definitions

The label updating problem is precisely defined as
follows. We are given a valid labeling L composed
of points P = {p1, p2, . . . , pn} and unit-length axis-
parallel square labels L = {E1, E2, . . . , En}, where Ei
is attached to pi on the mid-point of one of its hor-
izontal (vertical) edges. The moving point generates
an event whenever it changes its current position to
a new location q. The problem is to update L and
obtain a new q-avoiding labeling Lq for all points in
P, such that the moving point q does not intersect
with any label in Lq, while the new labels are as close
as possible to their original length. A label Ei can
be flipped over the edge containing its corresponding
point pi and the flipped position of Ei is denoted by
f(Ei). Ei can also be resized to any length, α ≤ 1 as

M to it to denote that the point should appear at the middle
of one of its horizontal (or vertical) edges of the label.
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long as pi remains on the mid-point of its edge. The
new location of Ei is denoted by r(Ei, α). Such a final
re-labeling is denoted by q-avoiding optimum labeling.
We name the above labeling model as 2PM. To be

more precise, we formally define the 2PM and 4PM
square-labeling models as follows:

Definition 1 In 2PM model, every label is attached
exclusively to a point on the middle of one of its hor-
izontal (vertical) edges.

Definition 2 In 4PM model, every label is attached
exclusively to a point on the middle of one of its edges.

In next section, we formally define the conflict
graph.

2.1 The Conflict Graph

The conflict graph G = (V,E), where V = V + ∪ V −,
is a directed weighted graph encoding all possible flip
and resize operations. The conflict graph is both ver-
tex and edge weighted. Let vi be the representing
vertex for label Ei attached to the point pi. The set
V + (V −) contains all vertices vi where pi is on the
top (bottom) edge of Ei.
The edge set of the conflict graph, E , is composed of

three setsD+, D−, and B as follows. The edge setD+

(D−) contains all directed edges (vi, vj) where both vi

and vj belongs to V + (V −) and f(Ei) intersects Ej . If
f(Ei) intersects Ej but vi and vj are in different vertex
sets, then the undirected edge (vi, vj) belongs to B.
More formally:

E = D+ ∪D− ∪B, where
D+ = {(vi, vj)|vi, vj ∈ V +}, and
D− = {(vi, vj)|vi, vj ∈ V −}, and
B = {(vi, vj)|vi and vj are not in the same vertex set}.

A sample input labeling and the generated conflict
graph are shown in Figure 1. The D+ and D− edges
are solid while the B edges are dashed. Besides, the
vertices of V + have yellow (light gray) labels and the
vertices of V − have green (dark gray) labels. We de-
fine two induced subgraphs over the V + and V − ver-
tices in the following and will prove some important
properties for them in the next section.

G+ = (V +,D+),
G− = (V −,D−).

In G, an edge weight represents the optimal label
length of a single flip (and possibly one resize) opera-
tion on a single label, and a vertex weight represents
the optimal label length if multiple flip and resize op-
erations are allowed over all labels in the map. To
define the weight of an edge, we first introduce the g
function below.

(a) (b)

Figure 1: (a) Initial labeled map. (b) The conflict
graph: D+ and D− (solid) and B edges (dashed).

The resize operation is needed when two (original
or flipped) labels, say Ea and Eb, overlap. There are
many resize values of γa and γb such that the resized
labels r(Ea, γa) and r(Eb, γb) do not overlap. From
the problem definition, we are interested in the values
where min{γa, γb} is maximized. We define this value
as the g(Ea, Eb).
Performing a flip operation on Ei may cause an in-

tersection between f(Ei) and at most two other labels.
Let Ej be one of the intersecting labels with f(Ei). We
define the weight of the edge (vi, vj), for both directed
and undirected edges equal to g(f(Ei), Ej).
The weight assigned to vi, which denoted by w(vi),

represents the label length of a labeling when Ei is as-
sumed to be flipped and other labels may be flipped
or resized to generate the maximum possible label
length. Obviously, the weight of vertex vi has a very
close relation to the optimal labeling when the mov-
ing point is inside Ei. So, we first prove some basic
properties of the optimal labeling and then complete
the definition of vertex weight.

3 Properties of The Optimal Solution

Let the moving point be at position q inside label Ei,
and Lα

i be the optimal q-avoiding labeling with min-
imum number of flip and resize operations. Besides,
assume that all labels in Lα

i have length larger than
α ≤ 1. We define Gα

i = (V
α
i , E

α
i ) as a subgraph of G

where V α
i contains all vertices that their correspond-

ing labels are flipped. Let Eα
i be the induced edges

over V α
i (all edges of E with both ends in V α

i ). The
following lemmas show some basic properties of Gα

i .

Lemma 1 If vi ∈ V + then all vertices of V α
i are in

V +.

Proof. Assume that f(Ei) intersects a label Ej where
vj ∈ V −. Obviously, flipping Ej produces smaller la-
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bels of length g(f(Ei), f(Ej)) than g(f(Ei), Ej). So, in
the optimal solution, the vertex vj ∈ V − can not be-
long to Lα

i . �

From the above lemma, we can conclude that if
vi ∈ V + then Gα

i ⊆ G+. Besides, by the symmetry
of G+ and G−, we can also conclude that if vi ∈ V −
then Gα

i ⊆ G−

Lemma 2 Gα
i is a DAG, rooted at vi.

Proof. Since all vertices of Gα
i belong to either V

+

or V −, then all edges are upward or downward. So,
Gα

i can not contain a loop, and is a DAG. Besides, it
is easy to see that there is a directed path (a sequence
of flips) from vi to any other vertex in Gα

i hence vi is
the root vertex of Gα

i . �

Lemma 3 Let vj be a leaf vertex in Gα
i and (vj , vk)

be an edge attached to vj . Then one of the followings
is true:

1. If (vj , vk) exists then w(vj , vk) ≥ α,

2. vj has zero out-degree and (vj , vk) does not exist.

Proof. Will appear in final version. �

4 Vertex weight definition

In this section, we will provide a bottom-up recursive
definition and algorithm for vertex weights using lem-
mas from previous section. The weight of vi is the
minimum label length in the optimal updated label-
ing when Ei is flipped (equivalently, the query point is
inside Ei) and also corresponds to a subgraph of G+

or G− generating the optimal updated labeling. For
simplicity, we focus on G+, but all the definitions and
the algorithm can also be applied to G−.
First, we define the weight of zero out-degree ver-

tices of G+. Consider vi ∈ G+ where the out-degree
of vertex vi in G+, denoted by d+

out(vi), is zero. If vi is
also a zero out-degree vertex in G, then f(Ei) has no
intersection with other labels hence the optimal up-
dated labeling after flipping Ei has no label of length
less than one. Otherwise, the weight of undirected
edges starting from vi will define the vertex weight.
More precisely, where d+

out(vi) = 0, we have:

w(vi) = min({1} ∪ {w(vi, vj)|(vi, vj) ∈ B}).

Second, for non-zero out-degree vertices, consider
an edge (vi, vj) ∈ D+ and assume that Ei is flipped.
There are two alternatives to remove the intersection
between f(Ei) and Ej : (1) Resize both intersecting la-
bels to some smaller length, and (2) Flip Ej and solve
the problem recursively (if applicable). The minimum
generated label length is g(f(Ei), Ej) in the former case
(according to the definition of edge weight) and w(vj)

i

Figure 2: Gα
i and the optimal generated L

α
i .

in the latter case. We summarise the above descrip-
tion into a function, denoted by h, in the following:

h(vi, vj) =
{
max(w(vi, vj), w(vj)) , vj ∈ V +

w(vi, vj) , vj %∈ V +

Using above function, the vertex weights can pre-
cisely be defined as:

w(vi) =


min{{1} ∪ {w(vi, vj)|(vi, vj) ∈ B}}

, d+
out(vi) = 0

min{h(vi, vj)|(vi, vj) ∈ E}
, d+

out(vi) %= 0

Obviously, using a simple bottom-up algorithm, all
vertex weights can be calculated in O(n) time.
The value of w(vi) defines a DAG subgraph, de-

noted by Gi, rooted at vi and corresponds to the op-
timal labeling obtained by flipping Ei. Gi is generated
implicitly in the bottom-up calculation of w(vi) in
time O(n) for all vertices. But, if the value of w(vi) is
available, it can simply be obtained using a top-down
algorithm in time O(|Gi|).
In figure 2 an optimal labeling Lα

i along with the
corresponding Gi is shown for an arbitrary vertex.
Assume that the query point is inside Ei and we

have to flip Ei. Having w(vi) been calculated in the
preprocessing phase, we build Gi and produce the re-
quired update operations, in time k = O(|Gi|), using
the following transformation:

1. Flip label Em iff vm is not a leaf vertex in Gi,

2. Flip and resize Ej to min{w(vj , vk)|(vj , vk) %∈ Gi}
for all leaf vertices vj .

3. Resize Ek to length min{w(vj , vk)|Ek ∩ Ej %= ∅ ∧
vj ∈ Gi ∧ (vj , vk) %∈ Gi} for all vk %∈ Gi.

According to lemma 3, it is easy to see the following
theorem.

Theorem 4 The vertex subgraph Gi of vertex vi cor-
responds to the optimal labeling with labels of length
at least w(vi), when the query point is inside Ei and
Ei has to be flipped.
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5 The Optimal Algorithm

In this section, we provide the optimal algorithm for
label updating in 2PM model. The algorithm has
a preprocessing and an online phase. In the former
phase, the optimal labeling lengths are computed and
stored for each label (vertex) in overall time O(n lg n).
In the later phase, we compute the operations re-
quired to update the labeling using the optimal label-
ing lengths in time O(lg n+ k) where k is the number
of flip and resize operations.
In the preprocessing phase the following steps

should be taken:

Preprocessing Phase

1. Build the conflict graph and compute edge and
vertices weights.

2. Build a point location data structure on all labels.

In the online phase, for a given point q, the optimal
labeling can be generated with the following steps:

Online Phase

1. Locate Ei containing q.

2. if no such label was found, then the original la-
beling is optimal and exit.

3. Maximize γ where r(Ei, γ) does not contain q.

4. if γ ≥ w(vi) then the resize operation r(Ei, γ)
generate the optimal labeling and exit.

5. Calculate Gi.

6. Transform Gi to the optimal labeling.

It is easy to see the following theorem.

Theorem 5 Given a moving point q on a labeling L,
the time required to generate an updated q-avoiding
labeling is O(lg n+ k) where k is the number of oper-
ation required to update L.

6 Conclusion

In this paper, we introduced the problem of updating
a squared axis-parallel labeled map to avoid a moving
point. We develop a simple and fast algorithm and
improve the previous results from O(n2) preprocess-
ing time to O(n lg n) with the same space and query
time. We modeled the initial labeling and update
operations with a weighted multi-graph with at most
O(n) edges and vertices called conflict graph. We also
showed that given a point q, the optimal q-avoiding la-
beling corresponds to a subgraph of the conflict graph
that can be found in time O(lg n+ k) where k is the
number of update operations.
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Exact Analysis of Optimal Configurations in Radii Computations
(Extended abstract)

René Brandenberg∗ Thorsten Theobald†

Abstract

We propose a novel characterization of (radii-) mini-
mal projections of polytopes onto j-dimensional sub-
spaces. Applied on simplices this characterization al-
lows to reduce the computation of an outer radius
to a computation in the circumscribing case or to the
computation of an outer radius of a lower-dimensional
simplex. This allows to close a gap in the knowledge
on optimal configurations in radii computations, such
as determining the radii of smallest enclosing cylin-
ders of regular simplices in general dimension.

1 Introduction

Radii computations of the following form occur in
many applications in computer vision, robotics, com-
putational biology, and massive data set analysis (see
[7] and the references therein). Let Lj,n be the set of
all j-dimensional linear subspaces (hereafter j-spaces)
in n-dimensional Euclidean space En. The outer j-
radius Rj(C) of a convex body C ⊂ En is the radius
of the smallest enclosing j-ball in an optimal orthog-
onal projection of C onto a j-space J ∈ Lj,n, where
the optimization is performed over Lj,n. The optimal
projections are called Rj-minimal projections. See
[1, 5, 10] for exact algebraic algorithms, [8, 11, 14] for
approximation algorithms, and [3, 7] for the computa-
tional complexity. In this paper we show the following
new characterization of optimal projections:

Theorem 1 Let 1 ≤ j ≤ n < m and P =
conv{v(1), . . . , v(m)} ⊂ En be an n-polytope. Then
one of the following is true.

a) In every Rj-minimal projection of P there exist
n+1 affinely independent vertices of P which are
projected onto the minimal enclosing j-sphere.

b) j ≥ 2 and Rj(P ) = Rj−1(P ∩H) for some hyper-
plane H = aff{v(i) : i ∈ I} with I ⊂ {1, . . . ,m}.

If j = 1 or if P is a regular simplex then always case
a) holds. Moreover, the number ν of affinely indepen-

∗Zentrum Mathematik, Technische Universität München,
Boltzmannstr. 3, D–85747 Garching bei München,
brandenb@ma.tum.de

†Dept. of Computer Science, Yale University, P.O. Box
208285, New Haven, CT 06520–8285, theobald@cs.yale.edu

dent vertices projected onto the minimal enclosing j-
sphere is at least n−j+2 and there exists a (ν−1)-flat
F such that Rj(P ) = Rj+ν−n−1(P ∩ F ). The bound
n− j + 2 is best possible.

Theorem 1 allows to reduce the computation of an
outer radius of a simplex to the computation in the
circumscribing case or to the computation of an outer
radius of a facet of the simplex. Reductions of small-
est enclosing cylinders to circumscribing cylinders are
used in exact algorithms as well as for complexity
proofs (see, e.g., [1] and [7]), and have previously been
given only for j ∈ {1, n} as well as for dimension 3.
Theorem 1 generalizes and unifies these results.
The characterization provides effective means for

the analysis of optimal configurations in radii compu-
tations (for general dimension a known difficult task).
As an example, we reduce the computation of the
outer (n−1)-radius of a regular simplex to the follow-
ing optimization problem of symmetric polynomials in
n variables:

min
n+1∑
i=1

s4
i s.t.

n+1∑
i=1

s3
i = 0 ,

n+1∑
i=1

s2
i = 1 , and

n+1∑
i=1

si = 0 .
(1)

The system is solved by reducing it to an optimiza-
tion problem in six variables with additional integer
constraints, leading to the following result.

Theorem 2 Let n ≥ 2 and Tn
1 be a regular simplex

in En with edge length 1. Then

Rn−1(Tn
1 ) =


√

n−1
2(n+1) if n is odd,
2n−1

2
√

2n(n+1)
if n is even.

The case n odd has already been settled indepen-
dently by Pukhov [9] and Weißbach [12] who both left
open the even case. There also exists a later paper on
Rn−1(Tn

1 ) for even n [13], but as pointed out in [1]
the proof contained a crucial error. Thus Theorem 2
(re-)completes the determination of the sequence of
outer j-radii of regular simplices [9]. 1

1All omitted proofs as well as further analysis of the prob-
lems can be found in the full paper [2].
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2 Preliminaries

Throughout the paper we work in Euclidean space En,
i.e., Rn with the usual scalar product x · y and norm
||x|| = (x·x)1/2. Bn and Sn−1 denote the (closed) unit
ball and unit sphere, respectively. For a set A ⊂ En,
the linear, affine, and convex hull of A are denoted by
lin(A), aff(A), and conv(A), respectively.
A set C ⊂ En is called a body if it is compact,

convex and contains interior points. Accordingly,
we always assume that a polytope P ⊂ En is full-
dimensional (unless otherwise stated). Let 1 ≤ j ≤ n.
A j-flat F (an affine subspace of dimension j) is per-
pendicular to a hyperplane H with normal vector h
if h and F are parallel. For p, p′ ∈ En and subspaces
E ∈ Lj,n, E′ ∈ Lj′,n, a j-flat F = p+ E and a j′-flat
F ′ = p′+E′ are parallel if E ∪E′ = lin(E ∪E′). A j-
cylinder is a set of the form J+ρBn with an (n−j)-flat
J and ρ > 0. Let 1 ≤ j ≤ k ≤ n. If C ′ ⊂ En is a com-
pact, convex set whose affine hull F is a k-flat then
Rj(C ′) denotes the radius of a smallest enclosing j-
cylinder C′ relative to F , i.e., C′ = J ′+Rj(C ′)(Bn∩F )
with a (k − j)-flat J ′ ⊂ F .
A simplex conv{v(1), . . . , v(n+1)} (with affinely in-

dependent v(1), . . . , v(n+1) ∈ En) is regular if all its
vertices are equidistant. Whenever a statement is in-
variant under orthogonal transformations and transla-
tions we denote by Tn the regular simplex in En with
edge length

√
2. Let Hn

α = {x ∈ En+1 :
∑n+1

i=1 xi =
α}. Then the standard embedding Tn of Tn is defined
by Tn = conv

{
e(i) ∈ En+1 : 1 ≤ i ≤ n+ 1

}
⊂ Hn

1 ,
where e(i) denotes the i-th unit vector in En+1. By
Sn−1 := Sn ∩ Hn

0 we denote the set of unit vectors
parallel to Hn

1 . A j-cylinder C containing some sim-
plex S is called a circumscribing j-cylinder of S if all
the vertices of S are contained in the boundary of C.

3 Minimal and circumscribing j-cylinders

The minimal enclosing ball B of a polytope P ⊂ En

may contain only few vertices of P on its boundary,
but in cases where less than n + 1 vertices of P are
contained in the boundary of B, there exists a hyper-
plane H such that P ∩ bd(B) ⊂ H and the center of
B is contained in H. Then the smallest enclosing ball
of P and the smallest enclosing ball of P ∩ H rela-
tive to H have the same radius. In [6] the following
characterization for the minimal enclosing 1-cylinder
(two parallel hyperplanes defining the width of the
polytope) is given:

Proposition 3 Any minimal enclosing 1-cylinder of
a polytope P ⊂ En contains at least n + 1 affinely
independent vertices of P on its boundary.

We provide a characterization of the possible configu-
rations of minimal enclosing j-cylinders of polytopes,
unifying and generalizing the above statements.

Lemma 4 Let P = conv{v(1), . . . , v(m)} be a poly-
tope in En, 1 ≤ j ≤ n − 1, and J be an (n − j)-flat
such that C = J + Rj(P )Bn is a minimal enclosing
j-cylinder of P . Then for every I ⊂ {1, . . . ,m} such
that {i : v(i) ∈ bd(C)} ⊂ I and HI := aff{v(i) : i ∈
I} is of affine dimension n− 1, J is parallel to HI .

Proof. Suppose that there exists a hyperplane H :=
HI of this type with J not parallel to H. Let n̄ :=
|{v(i) ∈ H : 1 ≤ i ≤ m}|. Without loss of generality
H = {x ∈ En : xn = 0} and I = {v(1), . . . , v(n̄)}.
Hence, v(n̄+1), . . . , v(m) %∈ H ∪ bd(C).
It suffices to consider the case that J is not per-

pendicular to H. Let p, s(1), . . . , s(n−j) ∈ En such
that J = p + lin{s(1), . . . , s(n−j)}. Since J is not
parallel to H, we can assume p = 0 ∈ J ∩ H,
s

(1)
n = · · · = s

(n−j−1)
n = 0 and s(n−j)

n > 0. For every
s′n ∈ (0, s

(n−j)
n ) and s′ := (s(n−j)

1 , . . . , s
(n−j)
n−1 , s′n) ∈ En

let J ′ = p+ lin{s(1), . . . , s(n−j−1), s′}. Since J and H
are not perpendicular we obtain J %= J ′, and because
v(1), . . . , v(n̄) ∈ H that

dist(v(i), J ′) ≤ dist(v(i), J) , 1 ≤ i ≤ n̄ , (2)

where dist(·, ·) denotes the Euclidean distance. In (2),
“<” holds whenever v(i) %∈ K := J⊥ ∩ H. Ob-
viously, dim(K) = j − 1. If none of the v(i) lies
in K ∩ bd(C) then, by choosing s′n sufficiently close
to s

(n−j)
n , all vertices of P lie in the interior of

C′ = J ′ + Rj(P )Bn, a contradiction to the minimal-
ity of C. Hence, there must be some vertex of P in
K∩bd(C). Let k̄ := |{v(i) ∈ K∩bd(C) : 1 ≤ i ≤ m}|.
We can assume that v(1), . . . , v(k̄) ∈ K ∩ bd(C). Let
F := conv{v(1), . . . , v(k̄)} and k := dimF . Suppose
F ∩ J = ∅. We have shown above that for suffi-
ciently small s′n the rotation from J to J ′ keeps all
vertices within the j-cylinder C′ and v(1), . . . , v(k̄) are
the only vertices on bd(C′). Let J ′′ be a translate of
J ′ with dist(J ′′, F ) < dist(J ′, F ), and J ′′ sufficiently
close to J ′ to keep v(k̄+1), . . . , v(m) within the interior
of C′′ = J ′′ + Rj(P )Bn. Then all vertices of P lie in
the interior of C′′, again a contradiction.
It follows that F∩J %= ∅, and since F ⊂ K = J⊥∩H

that F ∩ J = p = 0. Since dist(p, v(i)) = Rj(P )
for all i ∈ {1, . . . , k̄} and since p ∈ F , it follows
that p is the unique center of the smallest enclos-
ing k-ball of F . Let J ′′′ result from J ′ by ro-
tating J ′ around the origin towards a direction in
Rn \ (

⋃k̄
i=1(v

(i))⊥). For i ∈ {1, . . . , k̄} the prop-
erty dist(v(i), J) = dist(v(i), J ′) = dist(v(i), p) implies
dist(v(i), J ′′′) < dist(v(i), J ′). By keeping the rotation
sufficiently small, v(k̄+1), . . . , v(m) remain in the inte-
rior of C′′′ = J ′′′ + Rj(P )Bn. Now, all vertices lie in
the interior of C′′′, once more a contradiction. �

Lemma 5 Let P = conv{v(1), . . . , v(m)} be a poly-
tope in En, 1 ≤ j ≤ n, and J be an (n − j)-flat
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such that C = J + Rj(P )Bn is a minimal enclos-
ing j-cylinder of P . If there exists a hyperplane
HI = aff{v(i) : i ∈ I} which is parallel to J , then
one of the following holds:

a) There exists a vertex v(i) %∈ HI that lies on the
boundary of C; or

b) j ≥ 2, J ⊂ HI , and Rj(P ) = Rj−1(P ∩HI).

Proof. By Proposition 3, for j = 1 always a) holds;
so let j ≥ 2, and suppose neither a) nor b) holds.
Since b) does not hold there exist (n−j)-flats parallel
to J and closer to HI , and since a) does not hold, for
any such (n−j)-flat J ′, such that all vertices v(i) %∈ HI

stay within C, the distances from the vertices v(i), i ∈
I, to J ′ are strictly smaller than their distances to J .
Hence C cannot be a minimal enclosing cylinder. �

In the case that P is a simplex, the proof can be
carried out more explicitly: Let P (n+1) be the facet
of P not including the vertex v(n+1). Suppose that J
is parallel to P (n+1), that P (n+1) ⊂ H := {x ∈ En :
xn = 0}, and that v(n+1)

n > 0. Let p ∈ J . Since
v

(n+1)
n > 0 it follows pn ≥ 0 and obviously

Rj(P ) ≥ v(n+1)
n − pn. (3)

On the other hand, since J is parallel to P (n+1),

Rj(P )2 = R2
j−1(P

(n+1)) + p2
n. (4)

Let p∗n = ((v
(n+1)
n )2 − R2

j−1(P
(n+1)))/2v(n+1)

n be the
unique minimal solution for pn to (3) and (4). Due
to pn ≥ 0, we obtain pn = max{0, p∗n}. Now, we see
that case a) holds if pn = p∗n and case b) if pn = 0.

If the number ν of affinely independent vertices of
P lying on the boundary of C is at most n, it follows
from Lemma 4 and 5 that case b) of Theorem 1 must
hold. Moreover, if ν ≤ n− 1 we can apply these lem-
mas on the lower-dimensional polytope P ∩HI with
HI as in Lemma 5. This argument can be iterated. If
during this iteration the outer 1-radius of a polytope
P ′ has to be computed, then by Proposition 3 the min-
imal enclosing 1-cylinder touches at least dim(P ′)+1
affinely independent vertices. From the same iterative
argument it follows that Rj(P ) = Rj+ν−n−1(P ∩ F )
for some (ν − 1)-flat F .
Suppose S = conv{v(1), . . . , v(n+1)} is a simplex in

En, and J̄ an (n− j)-flat, such that

dist(v(1), J) = · · · = dist(v(n−j+2), J)
= R1(conv{v(1), . . . , v(n−j+2)})
> dist(v(n−j+3), J)
≥ · · · ≥ dist(v(n+1), J).

Then Rj(S) = R1(conv{v(1), . . . , v(n−j+2)}) and n −
j + 2 vertices are situated on the boundary of the
minimal enclosing j-cylinder.

The last point which remains to proof Theorem 1 is
that every minimal enclosing j-cylinder of the regular
simplex Tn is circumscribing. Due to Proposition 4 it
suffices to show that p∗n is positive for all 1 ≤ j ≤ n−1,
showing that b) in Lemma 5 never holds for Tn. We
omit the details and refer to the full paper [2].

4 Reduction to an algebraic optimization problem

In this section, we provide an algebraic formulation
for a minimal circumscribing j-cylinder J + ρ(Bn+1 ∩
Hn

0 ) of the regular simplex Tn. Let J = p +
lin{s(1), . . . , s(n−j)} with pairwise orthogonal (p.o.)
s(1), . . . , s(n−j) ∈ Sn−1, and p be contained in the
orthogonal complement of lin{s(1), . . . , s(n−j)}. The
projection P of a vector z ∈ Hn

1 onto the orthogonal
complement of lin{s(1), . . . , s(n−j)} (relative to Hn

1 )
can be written as P (z) = (I −

∑n−j
k=1 s

(k)(s(k))T )z,
where I denotes the identity matrix. Using the con-
vention x2 := x · x, the computation of the square of
Rj for a polytope with vertices v(1), . . . , v(m) (embed-
ded in Hn

1 ) can be expressed as

min ρ2

(i) s.t. (p− Pv(i))2 ≤ ρ2 ,
(ii) p · s(k) = 0 ,
(iii) s(1), . . . , s(n−j) ∈ Sn−1, p.o.,
(iv) p ∈ Hn

1 ,

where i = 1, . . . ,m and k = 1, . . . , n − j. In the case
of Tn, (i) can be replaced by

(i’)

(
p− e(i) +

n−j∑
k=1

s
(k)
i s(k)

)2

= ρ2,

where the equality sign follows from Theorem 1. By
(ii) and s(k) ∈ Sn−1, (i’) can be simplified to

(i”) p2 − ρ2 =
n−j∑
k=1

(s(k)
i )2 + 2pi − 1 .

Summing over all i gives (n+1)(p2−ρ2) = (n−j)+2−
(n+ 1), i.e., p2 − ρ2 = 1−j

n+1 . We substitute this value

into (i”) and obtain pi = 1
2

(
n−j+2

n+1 −
∑n−j

k=1(s
(k)
i )2

)
.

Hence, all the pi can be replaced in terms of the s
(k)
i ,

ρ2 =
(2 + (n− j))(2− (n− j))

4(n+ 1)

+
1
4

n+1∑
i=1

(
n−j∑
k=1

(s(k)
i )2

)2

+
j − 1
n+ 1

, (5)

p · s(k) = −1
2

n+1∑
i=1

n−j∑
k′=1

(s(k′)
i )2s(k)

i .

We arrive at the following characterization of the min-
imal enclosing j-cylinders:

137



21st European Workshop on Computational Geometry, 2005

Theorem 6 Let 1 ≤ j ≤ n. A set of vectors
s(1), . . . , s(n−j) ∈ Sn−1 spans the underlying (n −
j)-dimensional subspace of a minimal enclosing j-
cylinder of Tn ⊂ Hn

1 if and only if it is an optimal
solution of the problem

min
n+1∑
i=1

(
n−j∑
k=1

(s(k)
i )2

)2

s.t.
n+1∑
i=1

n−j∑
k′=1

(s(k′)
i )2s(k)

i = 0 ,

s(1), . . . , s(n−j) ∈ Sn−1, p.o.,

where k = 1, . . . , n− j.

In case j = n − 1 the previous program reduces
to (1). By (5), in order to prove Rn−1(Tn) = (2n −
1)/(2

√
n(n+ 1)) for even n, we have to show that the

optimal value of (1) is 1/n. We apply the following
statement from [1].

Proposition 7 Let n ≥ 2. The direction vector
(s1, . . . , sn+1)T of any extreme circumscribing (n−1)-
cylinder of Tn satisfies |{s1, . . . , sn+1}| ≤ 3.

Using Proposition 7, (1) can be written as the follow-
ing polynomial optimization problem in six variables
with additional integer conditions.

min k1s
4
1 + k2s

4
2 + k3s

4
3

(i) s.t. k1s
3
1 + k2s

3
2 + k3s

3
3 = 0 ,

(ii) k1s
2
1 + k2s

2
2 + k3s

2
3 = 1 ,

(iii) k1s1 + k2s2 + k3s3 = 0 ,
(iv) k1 + k2 + k3 = n+ 1 ,

s1, s2, s3 ∈ R, k1, k2, k3 ∈ N0 .

(6)

Since the odd case of Theorem 2 is well-known [9, 12],
we assume from now on that n is even.
For k3 = 0 the equality constraints in (6) immedi-

ately yield k1 = k2 = (n + 1)/2 %∈ N, and similarly,
for s2 = s3 we obtain k1 = k2 + k3 = (n + 1)/2 %∈ N.
Hence, we can assume that s1, s2, and s3 are distinct
and k1, k2, k3 ≥ 1. Moreover, for s3 = 0 the result-
ing optimal value is 1/n which will turn out to be the
optimal solution. Finally, by (iii), not all of the si

have the same sign. Hence it suffices to show that for
s1 < 0 and s3 > s2 > 0 every admissible solution to
the constraints of (6) has value at least 1/n.
The linear system in k1, k2, k3 defined by (i), (ii),

and (iii) is regular and can be solved for k1, k2, k3:

k1 =
s2 + s3

−s1(s2 − s1)(s3 − s1)
, (7)

k2 =
s1 + s3

s2(s2 − s1)(s3 − s2)
, (8)

k3 =
−(s1 + s2)

s3(s3 − s1)(s3 − s2)
. (9)

Since all factors in the denominators are strictly pos-
itive, (8) and (9) imply in particular s1 + s3 > 0 and
s1 + s2 < 0.

With (iv) in (6) we can express one of the si by the
others, e.g. s2 = − s1+s3

(n+1)s1s3+1 , and using this it can
be successively shown that k1 < (n + 1)/2. Thus by
the integer condition k1 ≤ n/2, and it follows that for
any admissible solution to the constraints of (6) the
objective value is at least 1/n (for details see [2]). By
our remark before Proposition 7 this completes the
proof of Theorem 2.
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[13] B. Weißbach. Über Umkugeln von Projektio-
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Boolean Operations on 3D Selective Nef Complexes:
Optimized Implementation and Experiments∗

Peter Hachenberger Lutz Kettner

Abstract

Nef polyhedra in d-dimensional space are the closure
of half-spaces under boolean set operations. In con-
sequence, they can represent non-manifold situations,
open and closed sets, mixed-dimensional complexes
and they are closed under all boolean and topological
operations.
We implemented a boundary representation of

three-dimensional Nef polyhedra with efficient algo-
rithms for boolean operations. These algorithms were
designed for correctness and can handle all cases, in
particular all degeneracies. The implementation is re-
leased as Open Source in the Cgal release 3.1.
In this paper, we present experiments in order to (i)

evaluate the practical runtime complexity, (ii) illus-
trate the effectiveness of several important optimiza-
tions, and (iii) compare our implementation with the
Acis CAD kernel.

1 Introduction

Data structures for solids and algorithms for boolean
operations on geometric models are among the fun-
damental problems in solid modeling, computer aided
design, and computational geometry. We restrict our-
selves to partitions of three space into cells induced
by planes. A set of planes partition space into cells
of various dimensions. Each cell may carry a label.
We call such a partition together with the labelling
of its cells a Selective Nef Complex (SNC). When the
labels are boolean({in, out}) the complex describes
a set, a so-called Nef polyhedron [3]. Nef polyhedra
can be obtained from halfspaces by boolean opera-
tions intersection and complement. Figure 1 shows a
Nef polyhedron.
We gave a compact and unique representation of

SNCs and algorithms realizing set operations based
on this representation in [2]. The current imple-
mentation supports the construction of Nef polyhe-
dra from manifold solids, boolean operations, topo-
logical operations, and rotations by rational rotation

∗Max-Planck Institut für Informatik, Saarbrücken,
Germany, [hachenberger|kettner]@mpi-sb.mpg.de.

Partially supported by the IST Programme of the
EU as a Shared-cost RTD (FET Open) Project under Con-
tract No IST-2000-26473 (ECG - Effective Computational
Geometry for Curves and Surfaces)

Figure 1: Nef polyhedron with non-manifold edges, a
dangling facet, and two isolated vertices.

matrices. We follow the exact geometric computation
paradigm [6] to achieve robustness.
So far, we focused on the completeness of our al-

gorithms. In this work, we evaluate their perfor-
mance and present optimizations for important com-
mon cases. We evaluate their effectiveness individu-
ally and combined in a series of experiments.
Our current optimized implementation has become

efficient enough to compare it with other systems. We
selectedAcis R13, a common commercial CAD kernel
used in many CAD systems [5].

2 Data Structures

Definition 1 (Nef polyhedron [3]) A Nef-polyhe-
dron in dimension d is a point set P ⊆ Rd generated
from a finite number of open halfspaces by set com-
plement and set intersection operations.

Set union, difference and symmetric difference can
be reduced to intersection and complement. Set com-
plement changes between open and closed halfspaces,
thus the topological operations boundary, interior, ex-
terior, closure, and regularization are also in the mod-
eling space of Nef polyhedra. In what follows, we refer
to Nef polyhedra whenever we say polyhedra and we
restrict ourselves to three dimensions.
In our representation for three-dimensional Nef-

complexes, we use two main data structures:
Sphere Maps represent the local neighborhoods at

each vertex. We conceptually intersect the local
neighborhood of a vertex with a small ε-sphere. We
obtain a planar map on the sphere (Figure 2), which
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Figure 2: An example of a sphere map. The different
colors indicate selected and unselected faces.

forms a two-dimensional Nef polyhedron embedded in
the sphere. Sphere maps were introduced in [1].
The Selective Nef Complex provides a more easily

accessible polyhedron representation. It additionally
stores the connections between the local sphere maps.
In detail it provides halfedges, facet cycles, halffacets,
shells and volumes.
Additionally, we have a kd-tree associated with

each Nef polyhedron. It provides fast point location
and ray shooting needed in binary operations.

3 Binary Boolean Operations

Based on the SNC data structure, we can implement
the binary boolean set operations. We find the sphere
maps of all vertices of the resulting polyhedron and
synthesize the SNC from there; in more detail:

1. Find possible candidate vertices. We take as can-
didates the original vertices of both input poly-
hedra, and we create all intersection points of
edge-edge and edge-face intersections.

2. Given a candidate vertex, we find its local sphere
map in each input polyhedron. If the candidate
vertex is a vertex of one of the input polyhedra,
its sphere map is already known. Otherwise a
new sphere map is constructed on the fly.

3. Given the two sphere maps for a candidate ver-
tex, we apply the boolean operation on sphere
map to obtain the resulting sphere map.

Boolean operations on spheres are an extension of
a planar sweep. Instead of a sweep line in the plane,
the spheres are cut into two hemispheres and a great
arc sweeps around each hemisphere.

4 Experiments

We experimentally evaluate the runtime behavior of
our implementation, in particular the binary boolean
operations. We have several experiments that support
the expected runtime, and we have designed experi-
ments to stress our implementation with worst-case
situations. We report on a subset here.
The tests are performed on a 846 MHz Pentium III

processor and 256MB RAM. We measure the total
runtime and the runtime of the following subroutines:

1. Point location: queries kd-tree of an input
polyhedron to locate a vertex of the other poly-
hedron.

2. Box intersection: intersection finding on the
bounding boxes only, excludes the cost of the
callback function, i.e., the intersection test on the
actual edge and facet geometry.

3. Sphere sweeps: sum of all sphere sweeps
performed during boolean operations on sphere
maps.

4. Synthesizing edges: in the synthesis step, sorts
an edge representation based on Plücker coordi-
nates.

5. Plane sweeps: in the synthesis step, sorts facet
boundary cycles of the result polyhedron.

6. bf Kd-tree construction: in the synthesis step,
initializes the kd-tree for the result polyhedron.

7. Others: all other parts not listed explicitly in
the same graph, i.e. parts which have no critical
worst-case or no interesting practical runtime.

Experiment TetGrid

1. Create a regular N3 grid T of random tetrahedra,
i.e., each tetrahedron is randomly generated in
half-open fixed-size cubical area. Those areas form
a regular N3 grid.

2. Create a regular (N − 1)3 grid C of cubes.

3. Align T and C such that the grid nodes of C are
at the centers of the grid cells of T .

4. Unite T and C. Measure time for experiment.

In our first test series, we want to examine the
generic runtime behavior if the two input objects
and the output object all have similar size. We cap-
ture these properties in the TetGrid experiment and
measure its runtime for values N = 3, . . . , 17.
In Figure 3 we see the runtime distributed over the

main subroutines. The plane sweeps, the kd-tree con-
struction and the point location comprise a major part
of the total runtime.
Two further experiments are performed in order to

find out about the generic runtime behavior of the bi-
nary operations. In the first, we combine two equally
sized polyhedra such that a quadratic sized polyhe-
dron results. The runtime of this experiment is mostly
determined by the kd-tree construction.
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Figure 3: Runtime of the main subroutines in the
TetGrid experiment.

In the other experiment, we subtract a simple poly-
hedron from a complex polyhedron. Here, the point
location is essentially responsible for the runtime.
Furthermore, we perform several experiments in or-

der to stress the worst case runtime behavior of the
main subroutines. By this we confirm the theoreti-
cally evaluated complexity of the sphere sweep, plane
sweep, point location and the ray shooting subroutine.

5 Optimizations of the Sphere Overlays

We have seen in the previous section that certain sub-
routines of the algorithm are very dominant. We im-
plemented several optimizations that prevent the exe-
cution of some complex subroutines for many common
and easy cases. Here, the optimization of the sphere
overlays was most effective.
The sweep-line algorithm is a powerful tool; We use

it in the plane for facet boundary cycles and we use
it on half-spheres for the sphere maps. However, it is
a comparatively costly step, although its asymptotic
complexity is close to optimal.

optimizations number of runtime
(i) (ii) (iii) sweeps sweeps total

- - - 240470 345.12 480.34
+ - - 14858 36.41 189.56
- + - 201227 301.02 437.17
- - + 217484 335.84 478.56
+ + + 12880 27.67 163.65

We evaluate the contribution of the sphere sweeps
to the total runtime of a binary boolean operation
with a TetGrid experiment for N = 16. The table
above lists the number of sphere sweeps performed
during this operation, together with the runtime of
the overlay and the total runtime. The values in the
first row refer to a test run without any optimizations.
The other rows refer to test runs with one or more of
the following optimizations activated:

(i) The sphere sweep algorithm is used only in com-
plex cases. In most cases, the overlay is com-
puted by specialized algorithms.

(ii) Our sphere sweep can process one half-sphere at
once. A lot of extra work has to be done to cut
each sphere map into two halves and to paste the
two resulting half-spheres back together. We try
to get by with sweeping only one half-sphere, if
possible.

(iii) For some vertices of the input polyhedra it is
easy to determine that they will not appear in
the resulting polyhedron. For instance, in a
union operation every vertex of either polyhe-
dron located in the inside of the other polyhe-
dron is absorbed into this volume. We do not
perform an overlay on these vertices.

6 Comparison with ACIS R13

We compare our implementation with Acis R13, a
common commercial CAD kernel used in many CAD
systems [5]. It should be said that we are comparing
apples with oranges here. Acis is handling more gen-
eral geometries and has some overhead in dispatching
function calls to the specialized functions for linear ge-
ometry. On the other hand, our implementation han-
dles Nef polyhedra in their full generality with all the
potentially occurring degeneracies in the algorithms
and it uses exact arithmetic to be reliable and robust.

6.1 Balanced Binary Operations

To get a general impression, we repeat the TetGrid

experiment with Acis. Naturally, both algorithms
perform on the same data sets.

runtime [s]
N result vertices

Acis R13 Nef 3D

3 352 0.29 1.01
4 1135 0.63 3.67
5 2390 1.37 8.43
6 4548 2.79 17.30
7 7383 5.29 29.20
8 11555 10.13 44.29
9 16998 14.27 70.26

10 23883 22.81 102.09
12 43418 35.58 192.12
14 70827 swapping 316.71

The table above shows that Acis is faster by a fac-
tor of 4 to 6. No obvious trend is visible.
We get quite a different result, if we subtract a sim-

ple object from a complex object. Here, the difference
between Acis and our algorithm is quite pronounced
with Acis being a factor of about twenty times faster.
A notable difference might be in the software inter-
face; Acis modifies the first input object to become
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the result, while our implementation creates the result
from scratch.

6.2 Floating-Point versus Exact Arithmetic

One of the major differences between Acis and our
implementation is our use of exact arithmetic instead
of floating point-arithmetic. Floating-point and in-
terval arithmetic are the state-of-the-art in Computer
Aided Design, but we are not aware of any system that
uses exact arithmetic to solve the remaining cases that
floating-point and interval arithmetic cannot solve.
An obvious reason is the runtime cost for exact arith-
metic, but also the difficulties in realizing exact and
efficient solutions for more general curves and surfaces
may play a role.

Experiment RotCylinder

1. Create two identical right cylinder C and C′, such
that the base is a regular polygon with N sides
parallel to the x-y plane.

2. Rotate C′ around its vertical centerline by α.

3. Unite C and C′. Measure time for experiment.

We use the RotCylinder experiment to demon-
strate the effect of exact arithmetic; on one hand, we
gain expressiveness in modeling, because we can com-
pute results where Acis fails very soon, and on the
other hand, it shows the runtime cost for exact arith-
metic, since the input coordinates grow in this series
of experiments.
In this test scenario the endpoints of the intersec-

tion edges are extremely close together. Without an
adequate precision it is not possible to compute an

n α
runtime

Acis R13
runtime
Nef 3D

100

10−1

10−2

10−3

10−4

10−5

1.08s
1.05s
1.08s
1.07s

not executable

4.65s
4.77s
4.85s
4.90s
5.03s

1000

10−1

10−2

10−3

10−4

61s
61s
61s

not executable

93s
95s
97s
98s

2000

10−1

10−2

10−3

10−4

252s
253s
255s

not executable

274s
280s
288s
290s

10000 10−7 not executable 4433 s

intersection point that is on both edges and different
from the endpoints.
The table above shows that Acis’ floating-point op-

erations are insufficient for α smaller than 10−3. On
the other side, Acis is faster, in particular for small
instances. For n = 100 the factor of our runtime and
Acis’ runtime is slightly below 5; for n = 2000 it is
less than 1.2. Additionally, we performed a run with
n = 10000, α = 10−7 to highlight the robustness of
our arithmetic operations.

7 Conclusion

We achieved our goal of a complete, exact, correct
and efficient implementation of boolean operations on
a very general class of polyhedra in space. Useful ex-
tensions with applications in exact motion planning
are Minkowski sums and the subdivision of the solid
into simpler shapes, e.g., a trapezoidal or convex de-
composition in space.
For ease of exposition, we restricted the discussion

to boolean flags. Larger label sets can be treated anal-
ogously.
Nef complexes are defined by planes. It follows

from the work on the Selective Geometric Complexes
(SGC) of Rossignac and O’Connor [4] that our data
structures extend immediately to complexes defined
by curved surfaces. However, some of the algorithmic
steps become difficult and need further work, such as
the synthesis algorithm, where we need unique repre-
sentations of intersection curves and where we need
to sort points on intersection curves.
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Ternary Blending Operations

Galina Pasko∗, Alexander Pasko†, Tosiyasu L. Kunii‡

Abstract

We discuss new analytical formulations for localized
and controllable blending operations in the function-
based solid modeling. The blending set operations
are defined using R-functions and displacement func-
tions with the localized area of influence. The shape
and location of the blend are controlled by an ad-
ditional bounding solid thus turning the operation
into a ternary one. We also describe a new approach
to solving the problem of shape metamorphosis be-
tween k-dimensional shapes by applying space-time
bounded blending to the specially constructed (k+1)-
dimensional half-cylinders and making cross-sections
for getting intermediate shapes under the transforma-
tion.

1 Blending in solid modeling

Blending operations in solid modeling generate
smooth transitions between two or several surfaces.
Blending is also considered a natural property of im-
plicit surfaces, where the basic operation is an al-
gebraic sum (or difference) between skeleton-based
scalar fields. Blending operations are typically used in
computer-aided design for modeling fillets and cham-
fers. These operations are usually smooth versions of
set-theoretic operations on solids (intersection, union,
and difference), which approximate exact results of
these operations by rounding sharp edges and ver-
tices.

The major requirements to blending operations [1]
are tangency of the blend surface with the initial sur-
faces, automatic clipping of unwanted parts of the
blending surface, C1 continuity of the blending func-
tion everywhere in the domain, support of added and
subtracted material blends. Special attention is paid
to the intuitive control of the blend shape and posi-
tion: the construction of the blend and its parameters
should have clear geometric interpretation.
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Figure 1: Components of the definition of the ternary
bounded blending union operation.

2 Bounded blending

To satisfy most of the above requirements for solids
exactly represented by continuous real functions
(with implicit surfaces as boundaries), we intro-
duce bounded blending operations defined using R-
functions [2] and displacement functions with the lo-
calized area of influence. The shape and location of
the blend is defined by an additional bounding solid
thus making the ternary blending operation (having
three solids as arguments).
Let two initial solids be described by the inequali-

ties f1(X) ≥ 0 and f2(X) ≥ 0, and the bounding solid
be described as f3(X) ≥ 0, where fi are continuous
real functions, and X is a vector of point coordinates.
The bounded blending operation can be defined as

Fb(f1, f2, f3) = R(f1, f2) + dispb(f1, f2, f3)

where R stands for an R-function defining one of the
set-theoretic operations, and dispb is a displacement
function. For example, a union operation can be ex-
actly defined by the following R-function:

R(f1, f2) = f1 + f2 +
√
f1

2 + f2
2

The relatioships between the components of the def-
inition of the ternary bounded blending union oper-
ation are shown in Fig. 1. In the upper part of the
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figure two solids to be blended (f1 and f2 ) and a
bounding solid f3 are shown. The lower part illus-
trates the behavior of the functions dispb and r in the
cross-section A of the bounding solid.
It is required that the blending surface exists

only inside the bounding solid, and only initial
surfaces exist outside the bounding solid. There-
fore, the displacement function dispb(r), where
r = r(f1, f2, f3) is a generalized distance from the
initial surfaces, has to satisfy the following conditions:

1) dispb(r) ≥ 0, it takes the maximal value for
r = 0, and the displacement is symmetric in respect
to the initial defining functions;

2) dispb(r) = 0, r ≥ 1, is a condition of the blend
localization inside the bounding solid;

3) ∂dispb/∂r = 0, r = 1, means the curve dispb(r)
tangentially approaches the horizontal axis at r = 1
and accordingly the blend tangentially approaches ini-
tial surfaces.
There are many different functions satisfying the

above requirements. Here, we use the polynomial
function of lowest order:

dispb(r) = 2r3 − 3r2 + 1

A different displacement function and details of the
generalized distance r(f1, f2, f3) function construc-
tion can be found in [3].

Figure 2: Ternary blending operation: two ellipsoids
to be blended and the boundung ellipsoid (transpar-
ent).

Let us illustrate such properties of the proposed
bounded blending operation as its local character and
intuitive control of blend shape and position. In
Fig. 2 the pure union of two ellipsoids is changed to
the bounded blending union using the third ellipsoid
(transparent shape). The resulting blend is located
strictly inside the bounding ellipsoid, which produces
an unusual blending shape localized at the top part of
the initial union of ellipsoids. At the next step (Fig.
3), we increase the size of the bounding ellipsoid and
correspondingly change the shape of the blend, which
stretches out to the lower part of the initial shape.

Figure 3: Control of blending by changing the bound-
ing solid.

Figure 4: Multiple blending controlled by a bounding
solid consisting of four disjoint components.

The definition of the bounding solid by a single
function allows for unusual operations such as mul-
tiple blending. As it is shown in Fig. 4, the bound-
ing solid can be constructed using arbitrary primi-
tives and operations. In this example, the bound-
ing solid controls the blending union of two non-
intersecting tori. The bounding solid is described us-
ing R-functions by a single function f3 as union of four
ellipsoids. The result of the bounded blending opera-
tion is a single connected solid with multiple blending
components located inside the disjoint components of
the bounding solid.
The proposed bounded blending operations can re-

place pure set-theoretic operations in the construction
of a solid without rebuilding the entire construction
tree data structure. Note that the ternary bounded
blending operations have three solids as their argu-
ments and hence require ternary nodes in the con-
struction tree in comparison with binary nodes typ-
ical for the traditional Constructive Solid Geometry
(CSG).

3 Space-time blending

Shape transformation between given objects (meta-
morphosis) is one of typical space-time modeling op-
erations. The existing approaches to metamorphosis
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are based on one or several of the following assump-
tions: equivalent topology (mainly topological disks
or balls are considered), polygonal shape representa-
tion, shape alignment (shapes have common coordi-
nate origin and significantly overlap), possibility of
shape matching (establishing of shape vertex-vertex,
control points or other features correspondence), the
resulting transformation should be close to the motion
of an articulated figure.
Linear interpolation between functionally defined

shapes have proven to solve some of the above prob-
lems for computer animation and artistic applications.
The problem which remains open is a transforma-
tion between non-overlapping shapes, which combines
metamorphosis and non-linear motion. We develop a
new approach to shape metamorphosis using blend-
ing operations in space-time. The key steps of the
metamorphosis algorithm are: dimension increase by
converting two input kD shapes into half-cylinders
in (k + 1)D space-time, applying bounded blending
union to the half-cylinders, and making cross-sections
for getting intermediate shapes [4].
The bounded space-time blending procedure for 2D

shapes consists of the following steps:
1) two initial 2D shapes are given on a 2D plane;
2) each shape is considered as a 2D cross-section of
a half-cylinder (a semi-infinite cylinder bounded by a
plane from one side along the time axis) defined in 3D
space-time;
3) two half-cylinders are placed at some distance along
time axis to provide a time interval for making the
blend;
4) the bounded blending union operation with added
material is applied to the 3D half-cylinders with two
planar half-spaces orthogonal to the time axis forming
a bounding 3D object (a slab between two planes);
5) consecutive cross-sections of the blend along the
time axis are combined into a 2D animation.
As no critical assumptions were made in the pro-

posed approach about the dimensionality of the initial
shapes, we can apply it to 3D objects. In this case,
each shape is considered as a 3D cross-section of a
half-cylinder defined in 4D space-time. Note that in
both 2D and 3D cases topological changes of objects
are handled automatically as shown in Fig. 5.

4 Conclusion

We proposed an original solution for a long-standing
problem of the blend localization and control. The
main idea is to apply localized displacements to the
standard R-functions describing pure set-theoretic op-
erations. This allows for support of several unusual
operations such as multiple blending or partial edge
blending, which hardly can be supported by other
modeling techniques.
We discribed a new approach to shape metamor-

Figure 5: Metamorphosis of a cube into the union of
two tori using space-time bounded blending.

phosis on the basis of the dimension increase, bounded
blending between higher-dimensional space-time ob-
jects, and cross-sectioning the blend area for getting
frames of the animation. The space-time blending op-
eration with such simple bounds as two planes satisfies
the condition of the localization of the shape trans-
formation at some predefined time interval. The pro-
posed approach can handle non-overlapping 2D and
3D shapes with arbitrary topology.
The described bounded blending operations have

three objects as their arguments. This brings a new
requirement for a functionally based modeling system
to support n-ary nodes in the construction tree.
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Algebraic Study of the Apollonius Circle of Three Ellipses

Ioannis Z. Emiris∗ George M. Tzoumas∗

Abstract

We study the external tritangent Apollonius (or
Voronoi) circle to three ellipses. This problem arises
when one wishes to compute the Apollonius (or
Voronoi) diagram of a set of ellipses, but is also of
independent interest in enumerative geometry. This
paper is restricted to non-intersecting ellipses, but the
extension to arbitrary ellipses is possible.
We propose an efficient representation of the dis-

tance between a point and an ellipse by considering a
parametric circle tangent to an ellipse. The distance
of its center to the ellipse is expressed by requiring
that their characteristic polynomial have at least one
multiple real root. We study the complexity of the
tritangent Apollonius circle problem, using the above
representation for the distance, as well as sparse (or
toric) elimination. We offer the first nontrivial upper
bound on the number of tritangent circles, namely
184.

Keywords: Voronoi diagram, ellipse, mixed volume,
Euclidean distance, resultant.

1 Introduction

Voronoi diagrams are interesting constructs with nu-
merous applications and have been studied exten-
sively. However, the bulk of the existing work in
the plane concerns point-sites or linear sites such as
segments and polygons. More recently, some works
have extended Apollonius (or Voronoi) diagrams to
the case of circles, e.g. [8]. For the latter problem,
the implementation of [3] is now part of the CGAL
library. Recent works derive (semi-)algebraic condi-
tions for characterizing the relative position of conics
in the plane or certain quadrics in space, e.g. [12], [5].
Our ultimate goal is to compute efficiently and ex-

actly the Apollonius (or Voronoi) diagram of arbi-
trary sets of ellipses in the plane, under the Euclidean
metric. We assume that the ellipses are given alge-
braically, or implicitly. This is clearly a harder prob-
lem than the diagram of circles or the visibility map
among ellipses, hence the need for higher degree al-
gebraic operations. As a first step, this paper stud-
ies the case of non-intersecting ellipses, although our

∗Department of Informatics and Telecommunica-
tions, National University of Athens, emiris@di.uoa.gr,
g.tzoymas@di.uoa.gr

methods readily extend to arbitrary inputs.
The algorithms for the Apollonius diagram of el-

lipses typically use the following 2 main predicates.
Further predicates are examined in [4].

(1) given two ellipses and a point outside of both,
decide which is the ellipse closest to the point,
under the Euclidean metric

(2) given 4 ellipses, decide the relative position of the
fourth one with respect to the external tritangent
Apollonius circle of the first three

For predicate (1) we consider a circle, centered at the
point, with unknown radius, which corresponds to the
distance to be compared. A tangency point between
the circle and the ellipse exists iff the discriminant
of the corresponding pencil’s determinant vanishes.
Hence we arrive at a method using algebraic numbers
of degree 4, which is optimal. Note that we avoid
expressing the coordinates of the tangency point.
Let us focus on predicate (2). In the case of 3 disks,

the number of tritangent circles is 8 and the corre-
sponding predicate is of algebraic degree 2 [3]. This
problem is also known as The circle of Apollonius, be-
cause it was first addressed by Apollonius of Perga, in
about 250 BC. While this has been known since antiq-
uity, the generalization to ellipses is yet to be solved
efficiently.
Even the number of tritangent circles to 3 ellipses

is not known. The problem involves equations of high
degree and obtaining an exact solution is nontrivial.
[10] attempts to deal with this problem, but exact
computation with the proposed method is not com-
pleted and the author reverts to numerical methods.
No bounds on the complexity are given, nor on the
number of tritangent circles.
We apply the method from predicate (1) and re-

cent advances in sparse (or toric) resultants in order
to project all common roots to those of a univariate
equation. This leads to the first interesting bound on
the number of tritangent circles, namely 184. Mixed
volume also gives this bound as does a real algebraic
geometry argument [11].
The paper is organized as follows. The next section

introduces some of the ellipse’s properties. In section
3 we describe an efficient representation for the Eu-
clidean distance between a point and an ellipse and
we apply this idea to predicate (1). Finally, section 4
deals directly with the external tritangent Apollonius
circle and predicate (2).
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2 The geometry of an ellipse

An ellipse is the locus of points in the plane the sum
of whose distances from the foci is 2α > 0. The foci
lie at distance 2γ. The length of the major and minor
axes are 2α, 2β, resp. where β2 = α2−γ2. Let (xc, yc)
be its center and u the angle between the major and
the x axes. When xc = yc = u = 0 the ellipse is in or-
thogonal position, otherwise, it is in generic position.
The ellipse is a conic section with equation:

E(x, y) := ax2 + 2bxy + cy2 + 2dx+ 2ey + f, (1)

where J2 > 0 %= ac and J2 is defined below. The
ellipse’s parameters (a, b, c, d, e, f) are related to its
center, rotation, axes and focal distance, but we omit
the corresponding equations. The following quantities
are invariants under rotation and translation:

J1 = a+c = α2+β2 > 0, J2 =
∣∣∣∣ a b
b c

∣∣∣∣ = α2β2 > 0,

J3 =

∣∣∣∣∣∣
a b d
b c e
d e f

∣∣∣∣∣∣ = −J2
2 < 0.

The following quantity is invariant under rotation; its
expression uses the lemma below.

J4 = (a+ c)f − d2 − e2 = J2(x2
c + y

2
c − J1).

Let Ly, Lx be the lines connecting the leftmost and
rightmost points, and the highest with the lowest
point, respectively.

Lemma 1 Consider an ellipse of the form (1). Its
center is rational and coincides with the intersection
of Lx, Ly, where xc = (be−dc)/J2, yc = (bd−ae)/J2.

Given a point V outside an ellipse, how many nor-
mals are there to the ellipse? Let us count normal
segments, defined as the segment of a line normal to
the ellipse at some point Q; the segment’s endpoints
are Q,V . The boundary of the regions where the
number of normals changes is the evolute, which is
a stretched astroid (see figure 1). For an ellipse in
orthogonal position, each point (x, y) on the evolute
satisfies: (αx)

2
3 + (βy)

2
3 = γ

4
3 .

Proposition 2 There are 4, 3 or 2 normals of a point
to an ellipse, depending on whether the point lies in-
side the evolute, lies on the evolute but not at a cusp
or, respectively, the point is a cusp or outside the evo-
lute.

This yields a lower bound on the algebraic complex-
ity of computing the distance of an external point to
the ellipse, since any condition on the unknown dis-
tance has degree ≥ 4.

V

Figure 1: Left: an example of a point with 4 normals.
Right: the evolute of an ellipse.

3 Distance between point and ellipse

Consider an ellipse E and a point V = (v1, v2) out-
side E. Let C be a circle centered at V with radius
equal to

√
s, for a real s > 0. We shall express the

Euclidean distance δ(V,E) between V and E by the
smallest positive value of

√
s for which C is tangent to

E. In comparing distances, it is sufficient to consider
squared distance s.
It would be possible to find all tangency points by

solving the system:

E(x, y) = det[∇E(x, y), (x, y)− V ] = 0, (2)

and then choosing the appropriate solution, where the
2nd equation constraints the vector (x, y) − V to be
normal to E at (x, y). Consider system (2) with an
additional equation: ‖(x, y)−V ‖2 = s. The resultant
of the 3 polynomials with respect to x, y is precisely
polynomial ∆(v1, v2, s) to be defined below by an al-
ternative manner. It is the algebraic representation
of the offset curve to E at distance s.
Our goal is to avoid explicit computation of the

tangency points by requiring that system E = C = 0
have a multiple root. To arrive at a simple poly-
nomial we apply the theory of characteristic poly-
nomials and pencils [9, 12]. Let us express a conic
as [x, y, 1]M [x, y, 1]T , for an appropriate matrix M .
Then E,C correspond to

A =

 a b d
b c e
d e f

 , B =
 1 0 −v1

0 1 −v2

−v1 −v2 v2
1 + v

2
2 − s


The pencil of E and C is λA + B, and their charac-
teristic polynomial is

φ(λ) = |λA+B| = J2
2λ

3 + c2λ2 + c1λ+ s,
c2(s) = J2s− T (v1, v2),
c1(s) = J1s− E(v1, v2),

T (v1, v2) = J2[(v1 − xc)2 + (v2 − yc)2 − J1].
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The discriminant ∆(s) of φ(λ) is of degree 4:

∆(s) = J2
2 (J

2
1 − 4J2) s4 +

2J2(9J1J
2
2 − J2

1T + 6J2T − 2J3
1J2 − J1J2E) s3 +

+(−18J3
2E + 4J1J2ET − 27J4

2 + J
2
1T

2 −
−18J1J

2
2T + J

2
2E

2 + 12J2
1J

2
2E − 12J2T

2) s2 +
2(2T 3 − J1ET

2 − 6J1J
2
2E

2 + 9J2
2ET − J2E

2T ) s
+E2(T 2 + 4J2

2E).

The relative position of a circle and an ellipse falls into
one of 9 cases, related to the multiplicity and signs of
the real roots of φ(λ) [12, thm.8]. When φ(λ) has at
least one multiple root, the ellipse and the circle have
at least one tangency point. Note that φ(λ) has at
least one negative root because the product of roots
equals −s < 0.
By picking the smallest positive root of ∆(s) = 0,

we assure that φ(λ) has at least one root with multi-
plicity greater than one. Assume that the circle cen-
tered at V grows until it touches E (and then it might
continue to grow until it fully contains E). Since V
is outside E, the smallest positive root of ∆(s) corre-
sponds to δ(V,E).

Proposition 3 Given an ellipse E and a point V out-
side E, δ(V,E) is the square-root of the smallest posi-
tive zero of ∆(s); the latter is a univariate polynomial
of degree 4. The degree of the coefficients of ∆(s) is
6, 8, 10, 12, and 14, in order of decreasing power in
s, in v1, v2 and the parameters of E. In case (v1, v2)
is the center of another ellipse E′ the degree of the
coefficients of ∆(s) is exactly 22 in the parameters of
E,E′.

Corollary 4 Given ellipses E1, E2 and point V out-
side both of them, we can decide which ellipse is clos-
est to V by comparing two algebraic numbers of de-
gree 4. The previous section implies that this degree
is optimal.

4 External tritangent circle

Given 3 ellipses in the form of equation (1) we want
to find an external tritangent circle, as shown in fig.
2. Eventually, we are interested in deciding on the
relative position of a fourth ellipse and the circle. An
important open question is: what is the maximum
number of real tritangent circles to 3 ellipses? Given
the discussion in section 2, we expect that there are
at least 43 = 64 such circles.
Let
√
s be the radius of the tritangent circle and

(v1, v2) its center. Using the discriminant as above
for each of the 3 ellipses, we get

∆1(v1, v2, s) = ∆2(v1, v2, s) = ∆3(v1, v2, s) = 0. (3)

V

Figure 2: Tritangent circles to 3 ellipses; only one is
externally tangent

Among the solutions of this system, the external
tritangent circle of interest may or may not have the
smallest radius; cf. the respective cases in figure 2.
We apply sparse (or toric) elimination theory, using

the properties of the resultant and the mixed volume.
Given a system of n+1 polynomials fi in n variables,
with coefficients cij , the resultant of these polynomials
is a new polynomial R ∈ Z[cij ] such that when cij
are specialized, R = 0 ⇐⇒ ∃a : ∀i fi(a) = 0. If
the roots a lie in a projective (resp. toric) variety,
then we refer to the projective (resp. toric) resultant.
Given n polynomials in n variables, the mixed volume
of this polynomial system is a function of the support
(Newton polytope) of each polynomial. The mixed
volume provides an upper bound on the roots of the
system in (C∗)n. For more information see [2].
Each ∆i is of total degree 8 in v1, v2, s and 4 in s.

The mixed volume of system (3) is 256, which is too
high. It is known that this bound may not be tight,
as it may count complex roots and roots at “infinity”.
Indeed, it is possible to reduce the mixed volume of

the above system, in order to obtain a better upper
bound. We set

q := v2
1 + v

2
2 − s (4)

In this case, the matrix B defined in the previous
section, contains only linear terms with respect to
v1, v2, q. The discriminant of the characteristic poly-
nomial is of total degree 6 in v1, v2, q and 4 in q; the
coefficients of 1, q, q2, q3, q4 are polynomials in v1, v2

of degree 6,5,4,2,1 respectively. The corresponding
system has mixed volume 184. Note that solving for
v1, v2, s requires the use of equation (4). The mixed
volume of the system of ∆i with this additional equa-
tion, with respect to v1, v2, s, q, is still 184.
Recent advances in matrix formulae for the resul-

tant allow us to compute the resultant of certain sys-
tems of 3 bivariate polynomials as a single determi-
nant. One class of such systems are those with iden-
tical supports [7]. The corresponding matrix is of hy-
brid type, i.e., it contains blocks of Sylvester and of
Bézout type. The matrix construction has been im-
plemented in Maple by A. Khetan. Our system (3)
falls in this class, considered with variables v1, v2, af-
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ter hiding q in the coefficients. Its resultant is a poly-
nomial in q and equals, generically, the determinant
of a 58× 58 matrix. We denote this matrix by K.
To get an idea of the quantities involved, we have

studied a specific example of three ellipses, in random
position as in the left-hand side figure 2. The input
parameters are signed 10-bit integers. The elements
of K are either 0 or polynomials in q of degree 0–10.
The computation of the determinant of K is done by
interpolation. The determinant of K is a polynomial
in q, which we denote by d(q). By substituting differ-
ent values of q into K we eliminate all indeterminates
making the computation of the determinant a trivial
task. By making 200 such replacements (in fact, 185
suffice) we obtain 200 pairs of 〈q, d(q)〉. It turns out
that there is a unique interpolating polynomial of de-
gree 184 in q through these values which is exactly
the resultant of our example. Hence, in this example
the number of complex solutions matches the upper
bound given by the mixed volume.

The coefficients of this resultant are, on average,
1385-digit (4603-bit) integers. We ’ve not yet man-
aged to solve this resultant efficiently and exactly.
However, as a preliminary approach we have applied
the Aberth method (implemented in [1]) to solve the
polynomial numerically. This algorithm yielded 8 real
roots in less than a second.

According to [11], there are 184 complex circles in
the worst case that are tangent to 3 given conics in
the plane. The idea is to consider a manifold (space
of complete conics) whose cohomology ring ([6]) has
two generators:

p := a conic contains a fixed, but general point
l := a conic is tangent to a fixed, but general line

In this ring, conjunction of conditions is multiplica-
tion, and every degree-5 monomial is associated to
an integer. For example p4l 0→ 2 meaning that there
are 2 conics through 4 points and tangent to a line.
The condition of tangency to a conic is 2(p + l) and
a circle contains the two circulars points at infinity
(x1 : x2 : x0) = (i : ±1 : 0). Thus the expression
p2[2(p+ l)]3 maps to 184 which means that there are
at most 184 complex circles tangent to 3 conics in the
plane. An open question is how many of these circles
can be real.

The above computation of the mixed volume, the
resultant, and the upper bound give strong indica-
tion that the system (3) modified with (4) is opti-
mal. Methods on how to solve system (3) efficiently
will be addressed in a future work. In such an ap-
proach, one might consider semi-algebraic constraints
such as those in [4], in order to prune cases in some
subdivision-based algorithm.

Acknowledgements

We acknowledge partial support by PYTHAGORAS,
project 70/3/7392 under the EPEAEK program of the
Greek Ministry of Educational and Religious Affairs,
and IST Program of the EU as a Shared-cost RTD
(FET Open) Project under Contract No. IST–2005
(ACS – Algorithms for Convex Shapes).

References

[1] D.A. Bini and G. Fiorentino. Design, analysis,
and implementation of a multiprecision polyno-
mial rootfinder. Numerical Algorithms, 23:127–
173, 2000.

[2] D. Cox, J. Little, and D. O’Shea. Using Algebraic
Geometry. Number 185 in Graduate Texts in
Mathematics. Springer-Verlag, New York, 1998.

[3] I.Z. Emiris and M.I. Karavelas. The predicates
of the Apollonius diagram: algorithmic analysis
and implementation. Comp. Geom.: Theory &
Appl., Spec. Issue, 2005. To appear.

[4] I.Z. Emiris and G.M. Tzoumas. Distance
predicates among ellipses. Manuscript.
www.di.uoa.gr/∼grad0491/msc/DistPredEll.pdf,
2004.

[5] F. Etayo, L. Gonzalez-Vega, and N. del Rio. A
new approach for characterising the relative po-
sition of two ellipses depending on one or several
parameters. 2004. Submitted.

[6] J. Harris. Algebraic Geometry (A First Course).
Springer-Verlag, Berlin, Germany, 1992.

[7] A. Khetan. The resultant of an unmixed bivariate
system. J. Symb. Comput., 36:425–442, 2003.

[8] D.-S. Kim, D. Kim, and K. Sugihara. Voronoi
diagram of a circle set from Voronoi diagram of
a point set: II. Geometry. CAGD, 18:563–585,
2001.

[9] H. Levy. Projective and Related Geometries.
McMillan Co., 1967.

[10] R. Lewis and S. Bridget. Polynomial equations
arising from apollonius problems in biochemistry
and pharmacology. In Proceedings of Applica-
tions of Computer Algebra, 2001.

[11] F. Sottile. Personal communication. 2004.

[12] W. Wang, J. Wang, and M. Kim. An alge-
braic condition for the separation of two ellip-
soids. Comp. Aided Geom. Design, 18:531–539,
2001.

150



EWCG 2005, Eindhoven, March 9–11, 2005

The Visibility–Voronoi Complex and its Applications∗

Ron Wein† Jur P. van den Berg‡ Dan Halperin§

Abstract

We introduce a new type of diagram called the VV(c)-
diagram (the Visibility–Voronoi diagram for clearance
c), which is a hybrid between the visibility graph and
the Voronoi diagram of polygons in the plane. This di-
agram can be used for planning natural-looking paths
for a robot translating amidst polygonal obstacles in
the plane. We also propose an algorithm that is ca-
pable of preprocessing a scene of configuration-space
polygonal obstacles and constructs a data structure
called the VV-complex. The VV-complex can be used
to efficiently plan motion paths for any start and goal
configuration and any clearance value c, without hav-
ing to explicitly construct the VV(c)-diagram for that
c-value. We have implemented a Cgal-based soft-
ware package for computing the VV(c)-diagram in an
exact manner for a given clearance value, and used it
to plan natural-looking paths in various applications.

1 Introduction

We study the problem of planning a natural-looking
collision-free path for a robot with two degrees of mo-
tion freedom moving in the plane among polygonal
obstacles. By “natural-looking” we mean that (a) the
path should be short — that is, it should not con-
tain long detours when significantly shorter routes are
possible; (b) it should have a guaranteed amount of
clearance — that is, the distance of any point on the
path to the closest obstacle should not be lower than
some prescribed value; and (c) it should be smooth,
not containing any sharp turns. Requirements (b)
and (c) may conflict with requirement (a) in case it
is possible to considerably shorten the path by taking
shortcuts through narrow passages. In such cases we
may prefer a path with less clearance (and perhaps
containing sharp turns).
The visibility graph [2, Chap. 15] is a well-known

data structure for computing the shortest collision-
free path between a start and a goal configuration.
However, shortest paths are in general tangent to ob-
stacles, so a path computed from a visibility graph

∗This work has been supported in part by the IST Programme of the
EU as Shared-cost RTD (FET Open) Project under Contract No IST-2001-
39250 (MOVIE — Motion Planning in Virtual Environments), by The Israel
Science Foundation founded by the Israel Academy of Sciences and Humanities
(Center for Geometric Computing and its Applications), and by the Hermann
Minkowski–Minerva Center for Geometry at Tel Aviv University.

†Tel-Aviv University, wein@tau.ac.il
‡Utrecht University, berg@cs.uu.nl
§Tel-Aviv University, danha@tau.ac.il

P1

P2

P3 P4

Figure 1: The VV(c)-diagram for four convex obstacles
located in a rectangular room. The boundary of the union
of the dilated obstacles is drawn in a solid line, the relevant
portion of the Voronoi diagram is dotted. The visibility
edges are drawn using a dashed line.

usually contains semi-free configurations and there-
fore does not have any clearance. This not only looks
unnatural, it is also unacceptable for many motion-
planning applications. On the other hand, planning
motion paths using the Voronoi diagram of the ob-
stacles [4] yields a path with maximal clearance, but
this path may be significantly longer than the shortest
path possible, and may also contain sharp turns.
We suggest a hybrid of these two approaches,

called the VV(c)-diagram (the Visibility–Voronoi dia-
gram for clearance c), yielding natural-looking motion
paths, meeting all three criteria mentioned above. It
evolves from the visibility graph to the Voronoi dia-
gram as c grows from 0 to∞, where c is the preferred
amount of clearance. Beside the straightforward algo-
rithm for constructing the VV(c)-diagram for a given
clearance value c, we also propose an algorithm for
preprocessing a scene of configuration-space polygo-
nal obstacles and constructing a data structure called
the VV-complex. The VV-complex can be used to
efficiently plan motion paths for any start and goal
configuration and any given clearance value c, with-
out having to explicitly construct the VV(c)-diagram
for that c-value.

2 The VV(c)-Diagram

Let P = {P1, . . . , Pm} be a set of pairwise interior-
disjoint polygons having n vertices in total, rep-
resenting two-dimensional configuration-space obsta-

151



21st European Workshop on Computational Geometry, 2005

cles. Given a start configuration, a goal configura-
tion and a preferred clearance value c > 0, we wish to
find a shortest path between the query configurations,
keeping a clearance of at least c from the obstacles
where possible, but allowing to get closer to the ob-
stacles in narrow passages when it is possible to make
considerable shortcuts.
We begin by dilating each obstacle by c, by com-

puting the Minkowski sum of each polygon with a disc
of radius c. The visibility graph of the dilated obsta-
cles contains all shortest paths with a clearance of at
least c from the obstacles. Moreover, as each con-
vex polygon vertex becomes a circular arc of radius c,
the valid visibility edges are bitangents to two circular
arcs (note that the dilated polygon edges are also valid
visibility edges). This guarantees that a shortest path
extracted from such a visibility graph is C1-smooth,
containing no sharp turns. The only disadvantage in
this approach is that narrow, yet collision-free, pas-
sages can be blocked when we dilate the obstacles (for
example, in Figure 1 there exists such a narrow pas-
sage between P1 and P3). It is clearly not possible
to pass in such passages with a clearance of at least
c, but we still wish to allow a path with the maxi-
mal clearance possible in this region. To do this, we
compute the portions of the free configuration space
that are contained in at least two dilated obstacles,
and add their intersection with the Voronoi diagram
of the original polygons to our diagram. The relevant
portions of the Voronoi diagram are connected to the
reflex vertices in the union of the dilated boundaries,
which we refer to as chain points. The resulting struc-
ture is called the VV(c)-diagram, and it is easy to show
that it can be constructed in O(n2 log n) time.
In case our polygons are not convex, we decompose

them to obtain a set of convex polygons and com-
pute the boundary of the dilated obstacles for this set.
Note that not every reflex vertex of the boundary is
now a chain point, as it can also be induced by a reflex
vertex of the original polygon. Such reflex vertices are
not taken into account in the VV(c)-diagram.
Given a start and a goal configuration we just have

to connect them to our VV(c)-diagram and compute
the shortest path between them using Dijkstra’s algo-
rithm. To this end, we have to associate a weight with
each diagram edge. The weight of a visibility edge can
simply be equal to its length, while for Voronoi edges
we may add some penalty to the edge length, taking
into account its clearance value, which is below the
preferred c-value. It should be noted that if a path
contains a portion of the Voronoi diagram it may not
be smooth any more. This is however acceptable, as
we consider making sharp turns inside narrow pas-
sages to be natural.
We have implemented an extension package of

Cgal [1] that robustly computes the VV(c)-diagram
of a set of rational polygons, utilizing — among other

Cgal packages — the segment Voronoi diagram pack-
age by Karavelas [3]. As we wish to obtain an exact
representation of the VV(c)-diagram, we may spend
some time on the diagram construction, especially if
it contains chain points, which are algebraically more
difficult to handle. For example, the construction of
the VV(c)-diagram depicted in Figure 1 takes about 10
seconds (running a Pentium IV 2 GHz machine with
512 MB of RAM). However, once the VV(c)-diagram
is constructed, it is possible to use a floating-point
approximation of the edge lengths to speed up the
time needed for answering motion-planning queries,
so that the average query time is only a few millisec-
onds.

3 The VV-Complex

The construction of the VV(c)-diagram for a given
c-value is straightforward, yet it requires some non-
trivial geometric and algebraic operations that should
be computed in a robust manner — see the full ver-
sion of this paper [5] for the details. Moreover, if
we wish to plan motion paths for different c-values
and select the best one (according to some criterion),
we must construct the VV(c)-diagram for each c-value
from scratch. In this section we explain how to effi-
ciently preprocess an input set of polygonal obsta-
cles and construct a data structure called the VV-
complex, which can be queried to produce a natural-
looking path for every start and goal configuration
and for any preferred clearance value c.
Let us examine what happens to the VV(c)-diagram

as c continuously changes from zero to infinity. For
simplicity, we consider only convex obstacles in this
section. As we mentioned before, VV(0) is the vis-
ibility graph of the original obstacles, while VV(∞)

is their Voronoi diagram, so as c grows visibility
edges disappear from VV(c) and make way to Voronoi
chains. We start with a set of visibility edges contain-
ing all pairs of the polygonal obstacle vertices that
are mutually visible, regardless whether these edges
are bitangents of the obstacles.1 We also include the
original obstacle edges in this set, and treat them as
visibility edges between two neighboring polygon ver-
tices. Furthermore, we treat our visibility edges as
directed, such that if the vertex u “sees” the vertex v,
we will have two directed visibility edges Nuv and Nvu.
As c grows larger than zero, each of the original vis-

ibility edges potentially spawns as many as four bitan-
gent visibility edges. These edges are the bitangents
to the circles Bc(u) and Bc(v) (where Br(p) denotes
a circle centered at p whose radius is r) that we name
Nuvll, Nuvlr, Nuvrl and Nuvrr, according to the relative po-
sition (left or right) of the bitangent with respect to
u and to v (see Figure 2(a)). The two bitangents Nuvll

1Visibility edges are only valid when they are bitangents,
otherwise they do not contribute to shortest paths in the visibil-
ity graph. However, as c grows larger these edges may become
bitangents, so we need them in our data structure.
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u
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:uvll

:uvrl
:uvrr

:uvlr
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:uvll

:uwlr
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v

w

:uwrl

:uvrl

(a) (b) (c)

Figure 2: (a) The four possible bitangents to the circles Bc(u) and Bc(v) of radius c centered at two obstacle vertices u
and v. Notice that in this specific scenario only the bitangent uvrl is a valid visibility edge.
Visibility events involving u, v and w: (b) The dilated vertex w blocks the visibility of u and v. (c) As uwrl becomes
equally sloped with uvrl (where vw is an obstacle edge), it becomes a valid visibility edge.

and Nuvrr retain the same slope, while the slopes of the
other two bitangents change for increasing c-values.
Note that for a given c-value, it is impossible that

all four edges are valid. Our goal is to compute a
validity range R(e) = [cmin(e), cmax(e)] for each edge
e, such that e is part of the VV(c)-diagram for each
c ∈ R(e). These validity ranges will be stored in an
interval tree, so it is easy to obtain all valid edges for
any given c-value. If an edge is valid, then it must
be tangent to both circular arcs associated with its
end-vertices. There are several reasons for an edge to
change its validity status: (a) The tangency point of e
to either Bc(u) or to Bc(v) leaves one of the respective
circular arcs; (b) The tangency point of e to either
Bc(u) or to Bc(v) enters one of the respective circular
arcs; (c) The visibility edge becomes blocked by the
interior of a dilated obstacle.
The important observation is that at the moment

that a visibility edge Nuv gets blocked, it becomes tan-
gent to another dilated obstacle vertex w, so essen-
tially one of the edges associated with Nuv becomes
equally sloped with one of the edges associated with
Nuw (see Figure 2(b)). The first two cases mentioned
above can be realized as events of the same nature, as
they occur when one of the Nuv edges becomes equally
sloped with Nuwlr (or Nuwrl), when v and w are neigh-
boring vertices in a polygonal obstacle — see Fig-
ure 2(c).
This observation stands at the basis of the algo-

rithm we devise for constructing the VV-complex: We
sweep through increasing c-values, stopping at criti-
cal visibility events, which occur when two edges be-
come equally sloped. We note that the edge Nuvll (or
Nuvlr) can only have events with arcs of the form Nuwll

or Nuwlr, while the edge Nuvrl (or Nuvrr) can only have
events with arcs of the form Nuwrl or Nuwrr. Hence,
we associate two circular lists Ll(u) and Lr(u) of the
left and right edges of the vertex u, respectively, both
sorted by the slopes of the edges. Two edges partici-
pate in an event at some c-value only if they are neigh-
bors in the list for infinitesimally smaller c. At these
event points, we should update the validity range of

the edges involved, and also update the adjacencies in
their appropriate lists, resulting in new events.
As mentioned in Section 2, an endpoint of a visi-

bility edge in the VV(c)-diagram may also be a chain
point, so we must consider chain points in our algo-
rithm as well. We therefore compute the Voronoi di-
agram of the polygonal obstacles, which is comprised
of Voronoi chains that separate between neighboring
Voronoi cells. The chains are sequences of Voronoi
arcs, which are either line segments or circular arcs,
and their endpoints are called Voronoi vertices. As a
Voronoi chain is either monotone or has a single point
with minimal clearance, we can associate at most two
chain points with every Voronoi chain. Our algorithm
will also have to compute the validity range for edges
connecting a chain point with a dilated vertex or with
another chain point. For that purpose, we will have
a list L(p) of the outgoing edges of each chain point
p, sorted by their slopes (notice that we do not have
to separate the “left” edges from the “right” edges in
this case).

3.1 The Preprocessing Stage

Given an input set P1, . . . , Pm of polygonal obstacles
as described above, we start by computing their visi-
bility graph and classifying the visibility edges as valid
(bitangent) or invalid. We examine each bitangent
visibility edge uv: For an infinitesimally small c only
one of the four Nuv edges it spawns is valid — we assign
0 to be the minimal value of the validity range of this
edge (and of the opposite Nvu edge). As our algorithm
is event-driven, we initialize an empty event queue Q,
storing events by their increasing c-order. For each
obstacle vertex u we construct Ll(u) and Lr(u), based
on the visibility edges we have just computed, and ex-
amine each pair of adjacent edges e1, e2 in Ll(u) and
in Lr(u). We compute the c-value at which the ad-
jacent e1 and e2 become equally sloped, if one exists,
and insert the visibility event 〈c, e1, e2〉 to Q. We also
compute the Voronoi diagram of the polygonal ob-
stacles, and for each non-monotone Voronoi chain we
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locate the arc a that contains the minimal clearance
value cmin of the chain in its interior and insert the
chain event 〈cmin, a〉 to Q.
After this initialization step, we proceed to the

event-handling step: While the event queue is not
empty, we proceed by extracting the event in the front
of Q, associated with minimal c-value, and handle it
according to its type.
Visibility events always come in pairs — that is,

if Nuv becomes equally sloped with Nuw, we will either
have an event for the opposite edges Nvu and Nvw, or
for the opposite edges Nwu and Nwv. We therefore han-
dle a pair of visibility events as a single event. Let
us assume that the edges Nuv and Nuw become equally
sloped for a clearance value c′, and at the same time
the edges Nvu and Nvw become equally sloped (see Fig-
ure 2(b) and (c)). As the edges Nuv and Nvu now be-
come blocked, we assign c′ to be the maximal c-value
of the validity range of Nuv and Nvu. We also remove the
other event involving Nuv (based on its other adjacency
in L(u)) from Q, and delete this edge from L(u). We
examine the new adjacency created in L(u) and insert
its visibility event into the event queue Q. We repeat
this procedure for the opposite edge Nvu. If the edge Nuv
was valid before it was deleted and the edges Nuw and
Nvw do not have a minimal validity value yet, assign c′

to it, because these edges have become bitangent for
this c-value (see Figure 2(c) for an illustration).
A chain event occurs when the value c equals the

minimal clearance of a Voronoi chain χa, obtained on
the arc a, which is equidistant from an obstacle vertex
u and another obstacle feature. Let z1 and z2 be a’s
endpoints. We initiate two chain points p1(χa) and
p2(χa) associated with the Voronoi chain χa. As c
grows, p1(χa) moves toward z1 and p2(χa) moves to-
ward z2. For all edges e incident to u, we compute
the c-value c′ for which e becomes incident to one of
the chain points pi(χa), and insert a tangency event
associated with c′ and e to the event queue. If a is
equidistant from u and from another obstacle vertex
v, we do the same for the edges incident to v. We
also insert two endpoint events to the queue, associ-
ated with the clearance values obtained at z1 and z2,
respectively.
When dealing with a chain event, we introduced

two additional types of events: tangency events and
endpoint events. A tangency event occurs when an
edge e = Nux (the endpoint x may either represent
a dilated vertex or a chain point) becomes tangent
to Bc(u) at a chain point p(χa) associated with the
Voronoi arc a, so we have to replace e by Np(χa)x as-
sociated with the chain point p(χa) and update the
relevant adjacency lists and the priority queue accord-
ingly. An endpoint event occurs when a chain point
p(χa) reaches the endpoint z of the Voronoi arc a —
in this case the edges associated with p(χa) should be
transferred to the next arc in the chain (or possibly

to the next chain, if z is a Voronoi vertex). We skip
the fine technical details involved in handling these
events, which can be found in the full version of this
paper [5]. The total number of events is O(n2) and
the time complexity of the algorithm is O(n2 log n).
A proof of correctness is provided in [5] as well.

3.2 The Query Stage

A query on the VV-complex is defined by a triple
〈s, g, ĉ〉, where s and g are the start and goal configu-
rations, respectively, and ĉ is the preferred clearance
value. We assume that s and g themselves have a
clearance larger than ĉ. Given a query, we start by
computing the relevant portion of the Voronoi dia-
gram: For each Voronoi chain we examine the clear-
ance values of its end-vertices, as well as the chain
minimum, and determine which portion of the chain
(if at all) we should consider. This way we also obtain
all the chain points for the given c-value ĉ.
Next we need to find the incident edges of s and g.

This means that we should obtain two lists L(s) and
L(g) containing the visibility edges emanating from s
and g (respectively) to every visible circular arc and
chain point. This is done using a radial sweep-line
algorithm. We now start searching the graph we have
implicitly constructed using a Dijkstra-like search to
find the “shortest” path between s and g. Whenever
we reach a vertex (a dilated polygon vertex or a chain
point) we query the VV-complex with the given c-
value ĉ to obtain a list of its valid incident edges, and
add g to this list if necessary. We proceed until the
goal configuration g is reached.
The query time is dominated by the running time of

Dijkstra’s algorithm, which is O(n log n+ k), where k
is the number of edges encountered during the search.
In practice, Dijkstra’s algorithm turns out to be very
fast, because hardly any geometric operations have to
be performed anymore and we can therefore switch to
machine-precision floating-point arithmetic.
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Constructing the City Voronoi Diagram Faster

Robert Görke∗ Alexander Wolff∗

Abstract

Given a set S of n point sites in the plane, the City
Voronoi diagram partitions the plane into the Voronoi
regions of the sites, with respect to the City metric.
This metric is induced by quickest paths according to
the Manhattan metric and an accelerating transporta-
tion network that consists of c non-intersecting axis-
parallel line segments. We describe an algorithm that
constructs the City Voronoi diagram (including quick-
est path information) in O((c+n)polylog(c+n)) time
using a wavefront expansion. For c ∈ Ω(√nlog3(n))
our algorithm is faster than an algorithm by Aich-
holzer et al. [2], which takes O(n log n+c2 log c) time.

1 Introduction

Let’s assume Manhattan to be void of car traffic by
the year 2050. Only a network of conveyors acceler-
ates the movement of countless busy visitors in this
huge pedestrian zone. As is known streets are ar-
ranged isothetically in Manhattan, so given a general
direction, pedestrians can intuitively find a footpath
to one of the many post offices. But time is precious,
and thus a technique is required, telling an arbitrary
pedestrian the quickest path to the post office that
can be reached most quickly.

2 Concretization

We concretize the situation as follows. The trans-
portation network C = {e1, . . . , ec} consists of c iso-
thetic line segments, that are only allowed to touch
at endpoints. Each segment ei is assigned a speed
gi > 1. We require that the number of different speeds
is constant. A segment can be accessed and left at any
point. The n sites S = {ω1, . . . , ωn} are scattered ar-
bitrarily in the plane. Movement off the network takes
place with unit speed with respect to the Manhattan
metric, while a segment ei can be used (bidirection-
ally) to move with speed gi. We define the distance
d between two points a and b in the plane to be the
temporal length of the quickest path Π between them:
d(a, b) = dManhattan(Π \C)+

∑
ei∈C(

dManhattan(ei∩Π)
gi

).

∗Fakultät für Informatik, Universität Karlsruhe,
http://i11www.ira.uka.de/people. R. G. supported by
the European Commission within FET Open Projects DELIS,
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The definition of quickest paths induces a metric in
the plane that we call City metric. As usual we de-
fine the Voronoi region reg(ωi) of a site ωi as the set
of all points that are not closer to any other site ωj .
If we associate borders between regions in an arbi-
trary manner with one of the involved sites, we get
a partition of the plane called the City Voronoi dia-
gram VC(S). Given a query point q ∈ R2, the site
in S closest to q can be determined by point location
in time logarithmic in the complexity of VC(S). By
virtue of our construction method we obtain a refine-
ment VC(S) [2] of the City Voronoi diagram that can
then also report the quickest path to the closest site
in additional time O(L), with L being the path com-
plexity. We now state our main result. The proof will
be given at the end of this paper.

Theorem 1 (Construction of VC(S)) Given
an isothetic transportation network C with c
edges, a constant number of different speeds
on these edges and a set S of n sites, the re-
fined City Voronoi diagram can be computed in
O((c + n)log5(c + n) log log(c + n)) time using
O((c + n)log5(c + n)) storage. The refined City
Voronoi diagram answers queries asking for the
quickest path to S in O(L + log(c + n)) time, where
L is the complexity of the path.

3 Previous work

The City metric was first introduced by Abellanes et
al. [1] who derived basic results for a single straight
line as transportation network. Aichholzer et al.
[2] presented an algorithm that constructs the City
Voronoi diagram of n sites and c segments given a
uniform network speed in O(n log n + c2 log c) time
using O(c + n) space. The resulting data structure
answers quickest-path queries in O(L + log(c + n))
time. In their algorithm the authors first prepare a
set of time-stamped nodes in the plane using the con-
tinuous Dijkstra method [4]. Then carefully adapted
straight skeleton figures scheduled at these nodes are
computed by employing well known techniques for the
construction of abstract Voronoi diagrams.

4 The wavefront expansion

Our algorithm constructs the City Voronoi diagram
VC(S) by simulating the expansion of a wavefront
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starting at the set S of sites. At time t the wave-
front is the set of all points whose distance from S
is t in the City metric. The key observation is, that
during the course of the expansion each point of the
plane is reached by the quickest possible path starting
from S. In order to tell the quickest path from p to S
we therefore need to note how the wavefront reached
p and invert the path taken by the wavefront. This is
done as follows. By storing where the wavefronts of
different sites merge and by tracing vertices resulting
from such mergings, we immediately obtain the par-
tition VC(S), see Figure 1. We can trace the path of
wavefront vertices in order to obtain a refinement of
VC(S). Since the wavefront consists exclusively of ver-
tices and straight line segments (due to the properties
of the City metric), this refined City Voronoi diagram
VC(S) partitions VC(S) into regions of uniform wave-
front expansion. Thus, if we store for each such region
the direction the wavefront moved in, we can tell for
all points of that region how to reach the youngest ob-
ject of this region. By doing this repeatedly, we reach
S, tracing back the expansion of the wavefront. See
Figure 2 for an example. We discretize the continu-

ω1

ω2

Figure 1: The wave-
fronts of two sites merge,
tracing out a border.

e2

ω1

e1

p

Figure 2: The path of
the wavefront guides the
way from p back to ω1.

ous expansion of the wavefront at the points in time
when an interaction, collision or an interference be-
tween the wavefront and the network or even another
part of the wavefront happens. We call each of these
points in time events. At an event the combinatorial
shape of the wavefront changes.

4.1 Events

We distinguish four types of events, depending on the
situation. A vertex of the wavefront hitting a segment
generates a type-A-event, while an edge of the wave-
front sliding into a network node triggers a type-B-
event. A type-C-event occurs when a wavefront edge
shrinks to zero length and finally, a type-D-event is a
collision of two parts of the wavefront. It is not hard
to see the following:

Observation 1 For any type of event the extent of
changes on the wavefront is constant.

As a consequence of this observation, we need to focus
on the detection of events. An upcoming event can be
detected by comparing for all edges and vertices of the
wavefront the timestamp of their next collision. This
comparison leads us to the notion of virtual events.
A virtual event is an event that seems likely to occur
during the wavefront expansion, but is then prevented
by some other event with a lower timestamp, see Fig-
ures 3 and 4 for an example. We can even detect
events that do happen, but still don’t contribute to
the complexity of VC(S). We call such events redun-
dant, see Figure 5 for an example. Events that are
neither redundant nor virtual are relevant and take
part in shaping VC(S). Next we discuss an important
result about the total number of relevant events.

v1

v2

e1

Figure 3: A type-A-
event is pending.

v1

v2

e1

v3

v4

Figure 4: The event has
been prevented.

4.2 The linear complexity

Adapting a result of Aichholzer et al. [2] to a constant
number of network speeds we get the following result:

Theorem 2 The number of edges, vertices and faces
of the refined City Voronoi diagram VC(S) is linear in
the number c of segments and the number n of sites.

This gives rise to the fact that the number of relevant
events occurring during the wavefront expansion is
also linear in (c + n). Opposed to that, the number
of redundant events can amount to Θ(c(c + n)) (see
Figure 5), and the number of virtual events can even
add up to Θ(c + n)2. While these events are easy
to identify, we cannot treat them explicitly. Thus we
are left with the task of efficiently detecting the next
event while implicitly ignoring irrelevant ones. In the
next subsection we consider a unifying approach for
detection of all four types of events.

4.3 The wavefront in space

We now add a third dimension (z-axis) to our situ-
ation, such that a positive z-component is added to
the wavefront expansion which starts in the x-y-plane.
Consequently wavefront vertices and edges trace out
rays and polygons, respectively. Accordingly all net-
work segments are extended to vertical unbounded
rectangles and network nodes are extended to half-
lines, both being unbounded in positive z-direction. If
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ω1

Figure 5: Cascade of re-
dundant type-A-events
(marked by disks).

x

y

z

e1

e1

e2

e2

vW ωi

vW

Figure 6: A type-A-
event in space involving
vW and e1 is imminent.

the z-component of the wavefront expansion has unit
speed we can easily tell the timestamp of an event by
its z-coordinate in space. Figure 6 shows how the z-
axis is added. Now, reconceiving the nature of each
event in space, we can observe the following:

Observation 2 In space any event can be described
as a collision between a ray and a surface.

Such collisions can be computed using ray-shooting
techniques, but general methods for ray-shooting have
unsatisfactory time bounds and we still need to take
care of irrelevant events. The next section describes
how we can efficiently detect upcoming events.

5 Maintaining the next event

Since each event is a collision of a ray and a polygon
we can always determine the next event by maintain-
ing the closest pair between these two changing sets
of objects (polygons and rays).

5.1 The global prediction

Eppstein and Erickson [3] proposed a method of main-
taining the closest pair among two changing sets R
and B of objects according to a given distance mea-
sure d that can be computed in constant time. As a
prerequisite the sets R and B need to support mini-
mization queries, i.e. for any object b ∈ B an object
r ∈ R minimizing d(r, b) can be determined and vice
versa. In our application R and B will be the foot
points of rays and partially unbounded polygons, re-
spectively. We use the following result:

Theorem 3 ([3]) Suppose that after P (n) prepro-
cessing time, we can maintain a data structure of size
S(n) that supports insertions, deletions, and mini-
mization queries, each in amortized time T (n). Then
after O(P (n) + nT (n)) preprocessing time, we can
maintain the closest pair between R and B in O(S(n))
space, O(T (n) log(n)) amortized insertion time, and
O(T (n)log2(n)) amortized deletion time.

Note that we can neglect the linear preprocessing time
of the starting wavefront in our situation. Employing
this theorem we are left with the lesser problem of
efficiently performing both ray-shooting queries and
their inverse, called lowest-intersection queries. Let
us call the results of such queries local predictions and
the result of the above theorem the global prediction.
We now face the challenge of simplifying our data as
to speed up minimization queries while taking implicit
care of irrelevant events.

5.2 Simplification of wavefront data

The data we deal with for the purpose of local pre-
dictions comprises arbitrarily shaped, partially un-
bounded polygons in space. If we split these surfaces
at each event along the current wavefront as depicted
in Figure 7, we obtain slabs that are either triangles
or quadrilaterals. We distinguish four types of slabs
depending on the number of bounded edges and the
presence of parallel edges. As long as a slab has not
yet been involved in an event (except for the one that
created the slab) we call it active. Analogously we
define active rays. Inactive slabs can’t take part in a
relevant event. By Theorem 2 this augmentation of
VC(S) retains the linear complexity. We are now left
with answering minimization queries for a linear num-
ber of triangles and unbounded quadrilaterals. Note
that active slabs cover areas beyond the current wave-
front. The key observation is, that we do not need
to know exactly how far any slab has actually been
traced out by the wavefront at any given time. The
slabs have been designed to cover only those points
of the plane that they would cover in the finished di-
agram, if they are not made inactive prematurely by
some event involving them. The same holds for rays.

5.3 Orthogonalized sublocal queries

We now define slabs to be similar if their sides pair-
wise have the same angular position. For an example
see Figure 8. Rays are similar if they merely point in
the same direction and move at the same speed.

Lemma 4 The number of classes of similarity of
slabs and of rays is constant.

Let us now consider an arbitrary combination of one
class of slabs with one class of rays. We call the re-
sult of a minimization query involving all objects of
exactly these two classes a sublocal prediction. Since
by Lemma 4 the number of ray and slab classes is con-
stant, the number of pairs of ray and slab classes is
constant, too. Clearly, any local prediction can easily
be computed out of sublocal predictions in constant
time. Within a sublocal data structure considerable
simplifications are possible. For each such data struc-
ture we can define a coordinate transformation f con-
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Figure 7: Division into
slabs (dashed lines).
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Figure 8: Only slabs s1

and s2 are similar.

sisting of at most one rotation and four concatenated
shearings. First the rotation aligns the rays with the
z-axis and one side of the slabs with the x-axis. Then
step by step each side of the slabs is orthogonalized to
two of the three axes. As shown in Figure 9, we end
up with simple orthogonal range queries instead of
ray-shooting or lowest-intersection queries. Note that
in order to handle type-3 slabs (bounded triangles)
we need to introduce the additional Ψ-axis (see Fig-
ure 10), adding one more level to the data structure.

side

floor

x

y

z

ray rf

slab sf

Figure 9: A transformed
slab-ray pair.

x

y Ψ

Figure 10: The addi-
tional Ψ-axis.

5.4 Feeding the global prediction

As stated earlier the global prediction relies on lo-
cal predictions. Local predictions in turn are based
on a constant number of sublocal queries, each being
answered with a multidimensional orthogonal range
query. Making use of Theorem 2 and of well-known
results about multi level range trees and fractional
cascading we can state the following:

Observation 3 Sublocal data structures can each
handle insertions, deletions and queries in O(log3(c+
n) log log(c+n)) time usingO((c+n)log3(c+n)) space.
The same holds for local data structures.

Comparing slabs with rays we observe that while slabs
are static, rays are not and thus they cannot simply
be represented by their static foot points pfoot. In
order to do justice to the dynamic nature of rays we
should in fact regard the (moving) tip of the rays. But
instead of repeatedly advancing the tips of all rays we

can simply apply a time corrected insertion: pnew
foot :=

pfoot− (0, 0, t)|Nv|, with t being the elapsed time and Nv
being the direction of the ray. They key observation is
that these modified foot points represent at all times
the relative position of the tips of their rays, after the
transformation f has been applied.

5.5 Ignoring irrelevant events

While the statement of Observation 3 is crucial to
relevant events, we can show that due to the care-
ful design of our slabs we don’t need to add up any
time for irrelevant events. As indicated in Figure 5, a
redundant event is due to a wavefront vertex hitting
a segment with equal or lower speed than segments
hit by the same wavefront vertex earlier. If we sim-
ply refrain from forwarding local queries to sublocal
data structures designed for segments with equal or
lower speed, we implicitly ignore all redundant events.
Due to the fact that slabs comprise only points they
would actually reach if unhindered by events it is not
hard to see that no virtual event will ever be globally
predicted. Thus by Theorem 2 we get:

Lemma 5 The total number of globally predicted
events is O(c+ n).

6 Proof of main result

Now we can put things together to prove Theo-
rem 1. According to Lemma 5, O(c + n) events are
treated. Using Observation 3, Theorem 3 lets us pre-
dict each event in O(log5(c + n) log log(c + n)) time.
Hence, the total time used for the global prediction is
O((c+ n)log5(c+ n) log log(c+ n)), which dominates
the time needed to handle events (see Observation 1
and Lemma 5). Observation 3 and thus Theorem 3
require O((c+ n)log3(c+ n)) space.
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Computing Transportation Voronoi Diagrams in Optimal Time

Yaron Ostrovsky-Berman ∗

Abstract

We present the first time-optimal algorithm for com-
puting the Voronoi Diagram under the metric induced
by a transportation network with discrete entry and
exit points. For input with n sites, k stations, and
e transportation lines, the algorithm computes the
Voronoi Diagram in O

(
(n+ k) log(n+ k) + e

)
time.

1 Introduction and related work

Shortest Path Maps (SPM) and Voronoi Diagrams are
well known geometric tools for answering distance re-
lated queries. The SPM is a subdivision of space,
which allows finding the shortest path from a source
point to a query point. The Voronoi Diagram is a sub-
division of space which allows finding the site closest
to a query point (multiple sources). These tools are
useful in Geographic Information Systems, where the
realism of the results depends on the underlying ter-
rain model.
There have been many attempts to model the com-

plexity of real world terrain with a simple mathemat-
ical model. The most general of these is the weighted
region model [6] in which the plane is divided into
regions with weights corresponding to the difficulty
of crossing the terrain. There is no efficient algo-
rithm for finding shortest paths in this general model
without approximating the solution. One important
special case is shortest paths amidst polygonal obsta-
cles in the plane, in which the obstacles have infinite
weight and the free space has unit weight. Mitchell
[5] gave the first sub-quadratic solution, which runs
in O(n) space and O(n3/2+ε) time. Hershberger and
Suri [4] presented the first optimal time algorithm,
with O(n log n) space and time complexity. Both em-
ploy the continuous Dijkstra paradigm. Abellanas et
al. [1] survey recent results obtained for models of
urban environments.
In this paper, we model public transportation net-

works which provide time saving routes with discrete
entry and exit points. We describe the network by an
undirected graph with positive edge weights propor-
tional to travel time, and assume the entire plane is
accessible by foot. This type of transportation net-
work cannot be modelled with weighted regions be-
cause it allows crossing the transportation line at no

∗School of Engineering and Computer Science, The Hebrew
University of Jerusalem, yaronber@cs.huji.ac.il

time cost, but restricts entrance to and exit from the
network to the fixed stations. The proposed model
was introduced by Münch in his PhD thesis [7], which
studies a network of airlifts over the Euclidean plane.
The algorithm for computing the Voronoi Diagram in
the induced airlift metric was briefly discussed in Ai-
cholzer et al. [2] and later expanded by Palop in her
PhD thesis [9]. The algorithm completes the network
graph by assigning Euclidean weights to disconnected
stations, and applies the discrete Dijkstra algorithm
to compute the station weights. The station weights
are used as input to the Additively Weighted Voronoi
Diagram (AWVD) algorithm, from which the desired
subdivision is obtained. The complexity of the algo-
rithm is O(k2+n) space and O

(
k2+(n+k) log(n+k)

)
time, where n is the number of sites and k is the num-
ber of stations. The authors also raised the question
of whether there exists a matching lower bound for
the time complexity.
Our previous work [8] improves upon this result by

computing the station weights with an input sensitive
algorithm having the same worst case time complexity
and O(n+k log k+e) space complexity, where e is the
number of transportation lines. The algorithm has
provably better time bounds under realistic regularity
assumptions on the input.
In this paper, we describe the properties of the met-

ric induced by the transportation network, and set-
tle the question of the time complexity by combin-
ing the continuous Dijkstra method with the reduc-
tion to AWVD to obtain optimal O(k log k + e) and
O((n+k) log(n+k)+e) time algorithms for the SPM
and the Voronoi Diagram, respectively.

2 Definitions and properties

Let T ⊂ R2 denote a set of station positions in the
plane, and let E denote the connection relation be-
tween the stations, such that (t1, t2) ∈ E if and only
if t1, t2 ∈ T and the stations are connected by a line.
Denote the positive weight of a transportation line
(t1, t2) ∈ E by w(t1, t2) and define it to be infin-
ity when the points are not connected stations. The
graph 〈T,E,w〉 describes the transportation network.
For the Voronoi diagram problem, the set S ⊂ R2

denotes the sites. Let d(p, q) denote the Euclidean
distance between two points in the plane. The trans-
portation distance between two points is defined re-
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Figure 1: The unit disc. Stations t1, t2, t3, t4 are con-
nected by solid transportation lines. The hatched disc
is the unit disc of p, and the shaded discs comprise
the unit disc of q.

p

q

t1

t2

t3

t4

star-shaped
region

bisector

Figure 2: The bisector of two points. Solid circles
are stations, the thin solid lines connecting them are
transportation lines. The weight of the transportation
lines is tenth of the Euclidean distance between the
stations. The thick curve is the bisector of p and
q. The shaded region is part of the bisector because
dT (p, t4) = dT (q, t4).

cursively as follows:

dT (p, q) =
min

{
d(p, q), w(p, q), mint∈T {dT (p, t) + dT (t, q)}

}
The unit disc of a point p in the metric induced by

the transportation distance, BT (p) = {x|dT (p, x) ≤
1}, depends on the proximity of p to the network (Fig-
ure 1). This leads to the following properties:

1. The Voronoi cell of a site can have several con-
nected components.

2. The transportation distance bisector of two
points p and q, bT (p, q) = {x|dT (p, x) =
dT (q, x)}, consists of line segments (points whose
shortest path to p and q is a straight line), hy-
perbolic arcs (points whose shortest path to p
or q uses the transportation network), and star
shaped regions bounded by line and hyperbolic
segments (points whose shortest paths to p and
q begins with a shared network station). Figure
2 illustrates these cases.

As shown in [8, 9], the shortest path map is con-
structed by computing the transportation distance

from the source to all the stations, then using this
distance as a negative weight in the AWVD of the
source and the stations. In the AWVD, the dis-
tance between a point p and a site s with weight ws

is dAWV D(p, s) = d(p, s) − ws. Fortune [3] showed
how to construct the AWVD in O(n log n) time. The
transportation Voronoi diagram is constructed simi-
larly to the SPM, only now the weights are assigned
according to the closest site in transportation dis-
tance.

3 The continuous Dijkstra method

We now show how to modify the continuous Dijkstra
method [4, 5] to handle the transportation distance
metric instead of the geodesic distance induced by
polygonal obstacles. For simplicity of presentation,
we address the single source problem only. The ex-
tension to multiple sources is straightforward.
The continuous Dijkstra method simulates the

propagation of a wavefront from the source point. At
simulation time δ, the wavefront is the locus of points
with transportation distance δ from the source. The
wavefront is comprised of wavelets, which are points
having the same predecessor in the shortest path to
the source. In its purest form, the simulation ad-
vances between discrete events of the following type:
1. A wavelet collides with a station; 2. A wavelet col-
lides with another wavelet; 3. A wavelet is engulfed
by neighboring wavelets and disappears. In practice,
identifying these events as they occur is difficult, and
the method of [5] does not attempt to do so. Instead
it ensures that when the events are discovered, there
is only local work to do to fix the discrepancy. The
method of [4] uses a clever subdivision of the plane
that guides the wavefront propagation, and computes
“approximate wavefronts” at the edges of this subdi-
vision, which are used in the final stage to construct
the shortest path map.
In the geodesic problem, an event of type 1 is a

collision of the wavelet with an obstacle vertex. This
vertex becomes the generator of a new wavelet. In the
transportation metric, the station encountered is not
a new generator, but its neighbors in the transporta-
tion network possibly become generators in the future
(after a time equal to the connection time, which is
the edge weight). We call the station that schedules
new generators a transporter. For each station t we
store the time g(t) in which t becomes a generator (ini-
tialized to infinity), and the set p(t) of predecessors
of t in the shortest path to the source s (the cardinal-
ity of p(t) is greater than one when the path is not
unique). Suppose a wavelet hits station t at time δ.
The simulation algorithm performs the update oper-
ations required by an obstacle vertex collision event,
but instead of creating a new generator at t, it first
checks if δ ≤ g(t), and if so proceeds as described
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Procedure propagate-transporter(t, δ)
1. set g(t) = δ
2. for-each r with (t, r) ∈ E:
2a if δ + w(t, r) < g(r) then

- set g(r) = δ + w(t, r) and set p(r) = t
- insert new-generator-event(r) into event
queue at time g(r)

2b else-if δ + w(t, r) = g(r) then
- set p(r) = p(r) ∪ t
end for-each

Table 1: Wavefront propagation through the network.

in Table 1, possibly scheduling new generators at the
neighboring stations.
When the simulation time reaches a new-generator-

event(r), a new wavelet with generator r is created
(since the algorithm does not clear future events for
the same r in step 2a, the simulation simply continues
if r was already processed). The new wavelet auto-
matically triggers an event of type 1 for a collision
with r. Events of type 2 and 3 are handled as in the
geodesic problem.

Observation 1 The wavefront propagation algo-
rithms of [4, 5] both detect collisions with an obstacle
vertex t and set g(t) correctly before the vertex is used
as a generator, and this property holds when network
stations are treated as obstacle vertices.

We now prove that this observation holds after the
modification made in propagate-transporter.

Lemma 1 For every station t in the transportation
graph, the propagation algorithm sets g(t) = dT (s, t)
before t is used as a generator or a transporter.

Proof. By induction on the number of links in the
shortest transportation distance path from s to t.
If there is one link, then the shortest path is Eu-
clidean, and according to Observation 1 a wavelet
leaving s will encounter t and set g(t) correctly. If
the path is longer, then by induction, the predeces-
sor p of t has g(p) = dT (s, p) set before it is used
as a generator or a transporter. If (p, t) /∈ E then
part of the shortest path uses the transportation net-
work, and p is the terminating station. Thus p was
scheduled to be a generator by its predecessor in
the path (step 2 of propagate-transporter). Since
dT (s, p) < dT (s, t), a wavelet is generated by p which,
according to Observation 1, will collide with t and
set g(t) correctly. If (p, t) ∈ E then p is a trans-
porter and step 2 of propagate-transporter correctly
sets g(t) = g(p) + w(p, t) = dT (s, t). �

Lemma 1 proves the correctness of the modification to
the wavefront simulation. The rest of the algorithm
is unchanged, thus when it terminates, the values of
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Figure 3: The transportation Voronoi diagram of the
Paris Metro and churches. Solid discs are Metro sta-
tions, the number inside is the value of dT (s, t) for the
closest church. Solid thin lines are the Metro lines,
and numbers near their middle denote their weights.
Solid squares are churches. A dashed line from a
church to a station means that the church is closest
to the station. Solid curves are the boundaries of the
AWVD cells of the stations and the churches.

g(t) equal dT (s, t) for all t ∈ T . As noted above, the
AWVD of the source and the stations, with weights
equal to the negative value of the transportation dis-
tance, gives the shortest path map of s. The predeces-
sor information p(t) is used backwards to determine
the tree of shortest paths from s.
Figure 3 shows the transportation Voronoi diagram

of part of the Paris Metro and nearby churches. The
station weights were computed with our implementa-
tion of the reduction to AWVD in [8]. The AWVD
was computed with the CGAL Apollonius graph class.
Note that the Madeleine church controls more area be-
cause of its proximity to a Metro station. Its Voronoi
cell has two connected components and consists of the
the church’s cell plus the cells of five nearby stations.

4 Complexity analysis

We now analyze the complexity of the algorithm,
starting with the modification described in Section
3. In what follows n, k, and e stand for the num-
ber of sites, stations and transportation lines, respec-
tively. We assume the event queue is implemented
with a Fibonacci heap, which supports insertions and
minimum extractions in amortized O(1) and O(log n)
time, respectively. Assuming the wavefronts are ef-
ficiently pruned (as is the case in [5, 4]), there are
O(1) events of type 1 per station. The modification

161



21st European Workshop on Computational Geometry, 2005

to the event handler performs O(1) comparison oper-
ations and O(1) insertions to the queue per neighbor
of t in the graph. Because each edge is visited O(1)
times, the total added complexity of the modification
is O(e).
The complexity of the entire algorithm depends on

the continuous Dijkstra method used. The algorithm
of Mitchell [5] results in optimal O(n + k + e) space
complexity and O

(
(n+ k)3/2+ε + e

)
time complexity,

while the algorithm of Hershberger and Suri [4] results
in O

(
(n+k) log(n+k)+e

)
space and time complexity,

which is time-optimal.
From a practical standpoint, we note that the al-

gorithms presented in [4, 5] are complicated and have
not been implemented. Our previous algorithm [8] ig-
nores events of types 2 and 3 altogether, and instead
prunes the propagation of wavelets by bounding the
radius of their effect on the transportation distance.
The bound equals the difference between the maximal
and minimal transportation distance from a station to
a site, and thus decreases monotonically as the algo-
rithm advances, lowering the cost of each iteration.
On classes of transportation networks such as clus-
ters or uniform distribution of stations and sites, the
complexity of this method is provably lower than the
quadratic worst case, and experiments show that this
is true of most networks, including random networks
and sites.

5 Conclusion

We have presented the first time-optimal algorithm
for computing the transportation Voronoi Diagram.
The existence of an optimal space and time algo-
rithm is an open problem related to geodesic distance
Voronoi Diagram.
To make the transportation network more realistic,

the model can be augmented by access, connection,
and waiting times of the stations and lines. See [8]
for details. Furthermore, the combination of the al-
gorithm proposed here with the original algorithm for
the geodesic problem can be used for solving shortest
path problems in the presence of polygonal obstacles
as well as a transportation network, enriching the ur-
ban environment model.
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Approximations of 3D Generalized Voronoi Diagrams
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Abstract

We introduce a new approach to approximate gener-
alized 3D Voronoi diagrams for different site shapes
(points, spheres, segments, lines, polyhedra, etc) and
different distance functions (Euclidean metrics, con-
vex distance functions, etc). The approach is based
on an octree data structure denoted Voronoi-Octree
(VO) that encodes the information required to gen-
erate a polyhedral approximation of the Voronoi di-
agram. Since the medial axis of a polyhedron is a
subset of a generalized Voronoi diagram the VO can
also be used to encode it. Using the information of
the VO we generate and visualize a polyhedral app-
roximation of a generalized Voronoi diagram, and we
also solve proximity problems that do not require an
explicit representation of the Voronoi diagram such as
nearest neighbor queries.

1 Introduction

Given a set of primitives, called Voronoi sites, the gen-
eralized Voronoi diagram partitions the space into re-
gions, one per site, such that all points in a region have
the same closest site according to some given distance
function. Many variants of these diagrams can be con-
sidered: by taking sites of different shape or nature,
associating weights to the sites, changing the underly-
ing metrics, or using individualized distance functions
for the sites [1, 2, 9]. Generalized Voronoi diagrams
are widely used in many scientific fields such as com-
puter graphics, geometric modelling, shape analysis,
robot motion planning or scientific visualization [6].
Computing a generalized 3D Voronoi diagram in-

volves the manipulation of high-degree algebraic sur-
faces and their intersections. The exact computation
of the diagram poses many problems in terms of ro-
bustness and CPU time due to the high number of
precision calculations that have to be made [9]. Since
the exact computation is known to be hard, in most of
the applications approximations of the real diagram
within a predetermined precision are used.
There are few methods to approximate generalized

3D Voronoi diagrams and most of them are restricted
to Euclidian distance. Lavender at al [8] proposed
a hierarchical approach to compute an approximate

∗Institut d’Informàtica i Aplicacions, Universitat de Girona,
Spain, {imma,coll,nmadern,sellares}@ima.udg.es. Partially
supported by grant TIN2004-08065-C02-02

Voronoi diagram of a set of general sites in arbitrary
dimension. They represent the sites by an octree and
the cells of the approximate diagram are obtained by
considering the distance to the sites. The continuity
of the boundary of the approximate diagram is not
guaranteed by any theoretical study. Vleugels et al.
[13] also proposed a hierarchical approach restricted
to convex sites that adaptively subdivides the space
into regular cells and computes the Voronoi diagram
up to a given precision. Teichmann et al. [12] pro-
posed a technique restricted to triangle sites that sub-
divides the space into tetrahedral cells. Sites are in-
serted into a standard octree and a polygonal approxi-
mation of the Voronoi diagram is computed by a wave-
front propagation strategy. None of these mentioned
works gives properties about the convergence to the
exact diagram and the computational cost. Some re-
cent papers, driven by applications and using differ-
ent approaches, investigate the approximate and the
exact practical computation of the medial axis of a
polyhedron [3, 4, 5].

2 Our Approach

We aim to define a general approach to obtain poly-
hedral approximations of generalized Voronoi dia-
grams that simultaneously support approximate near-
est neighbor queries in an efficient way. To reach our
objective we consider that the octree is the most suit-
able data structure since it allows to encode informa-
tion at different levels of detail. A straightforward
way to built this octree is by subdividing recursively
the region containing all the Voronoi sites and stor-
ing at each vertex of the node the information of its
nearest site. Despite the simplicity of this strategy,
it is costly to implement since it requires an evalua-
tion of all sites against all sites at each step of the
octree construction process. On the other hand, since
we know that rarely a Voronoi region is adjacent to
all the other Voronoi regions, it has no sense to take
into account all the sites when computing the near-
est site of a vertex node. To avoid processing all the
sites at each step of the process we have designed a
propagation strategy that detects when new informa-
tion of the sites is known and also where it has to be
stored to guarantee the correctness of the final codi-
fication. Although this strategy forces us to restrict
our proposal to diagrams with connected Voronoi re-
gions the cost of the method is reduced considerably.
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The new main idea of our approach is the combina-
tion of the subdivision and the propagation processes.
Such a combination also provides an efficient way of
dynamically maintaining the VO under the insertion
or deletion of sites.
In the next sections we describe the VO construc-

tion and its dynamic maintenance.

2.1 Basic Definitions

The set of input sites is denoted as S = {s1, · · · , sn}
and R is the cubic region where the approximation
of the generalized Voronoi diagram must be com-
puted. Each site s is represented by a tuple s =<
Gs,Ds, Ps >, where Gs defines the geometry of the
site s, Ds is the function that gives the distance from
any point p to s and Ps, called the base point of s,
is a point such that Ds(Ps) = 0 and Ps ∈ R. Each
site si ∈ S has an associated Voronoi region V R(si).
The generalized Voronoi diagram of S, denoted V, is
defined as the partition of the plane induced by the
Voronoi regions.
Let N be a node of a octree and s a site. We say

that s is an I-site with respect to N when Ps ∈ N , a
V-site with respect to N when a vertex v of N satisfies
v ∈ V R(s) and a F-site with respect to N when it is
not a V-site and a face f of N satisfies f ∩V R(s) %= ∅.
The sites of N are the set of sites that are I-site, V-site
or F-site with respect to N . A node N is a terminal
node if it is completely contained in a Voronoi region,
i.e. the total number of V-sites, I-sites and F-sites is
one.

2.2 The VO Construction Algorithm.

The VO construction algorithm is based on a breadth
first strategy using a priority queue sorted by the level
of the node in the octree. This allows us to introduce
and update the information of the sites stored in the
VO when it is required in order to guarantee the com-
pleteness and correctness of the encoded information.
Let R be a cubical region containing S, Q the prior-
ity queue and LM the maximal subdivision level of
the VO fixed by the user. The pseudo-code of the al-
gorithm is reported below (see Algorithm 1). In the
pseudo-code the following primitives are used:
Initialize(R,S). Creates the root node from the ver-
tices of R and assigns all the sites as I-sites. It com-
putes the V-sites of the root node (i.e. the nearest
I-site of each root vertex) and initializes Q with the
root node.
Update(N). Updates the V-site of each vertex of a
node N with the nearest of its sites. The distance
from the vertex v to a site s is computed using Ds(v).
Leaf(N ,LM). Checks if node N is a leaf or not.
Subdivide(N). Creates the eight son nodes of a node
N , properly distributes the I-sites and F-sites of N to

them and computes the V-sites of the sons taking into
account the sites of N .
Propagate(N , Q). Checks the coherence between
a node N and its adjacent nodes. For each vertex
v of N with V-site s1 locates the set of its adjacent
nodes. Let N ′ be one of these nodes. If v is a vertex
of N ′ with a different V-site s2 at v, this procedure
updates this V-site with s1 and sends N ′ to Q. On
the contrary, if v is not a vertex of N ′ (i.e. it is on a
face) and s1 is different to the V-site s2 of this face,
the procedure assigns s1 to N ′ as an F-site and sends
N ′ to Q.
Compact(N). Checks if all the sons of the node N
are terminal. If they are, it prunes the son nodes.

Algorithm 1 OctreeConstruction(R, S, LM )
octree VO;
node N ;
queue Q;
VO.Initialize(R, S);
Push(Q,VO.Root());
while No Empty(Q) do
N= Pop(Q);
VO.Update(N);
if VO.Leaf(N , LM) then

VO.Propagate(N , Q);
VO.Compact(N .Parent());

else
VO.Subdivide(N);
for i = 1 to 8 do

VO.Propagate(N .Son(i), Q);
if No VO.Leaf(N .Son(i), LM) then
Push(Q, N .Son(i));

end if
end for

end if
end while

2.3 Polyhedral Approximation of the Voronoi dia-
gram

To generate a polyhedral approximation of the
Voronoi diagram we use an strategy based on the cu-
berille iso-surface extraction algorithm proposed by
Herman and Liu [7] and enhanced and optimized by
many others. Our algorithm proceeds in two steps.
First, we select leaf nodes intersected by the bound-
aries of the Voronoi diagram. Nodes whose corner val-
ues are all inside the same Voronoi region are ruled
out since no boundaries are contained within and
thus they have no effect on the final approximation.
Second, for each selected node we approximate the
boundaries of the Voronoi diagram contained in it.
To perform this approximation each selected node is
subdivided in 2×2×2 cells, one for each vertex of the
node. For each one of these vertices we evaluate the
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three edges incident to it. We assume that an edge
is intersected by a boundary of the Voronoi diagram
when it has different sites in its extremes. Accord-
ing to the number of intersected edges incident to the
vertex we approximate the boundary contained in the
node by none, one, two or three of the internal faces
of the cell assigned to such vertex.
Figure 1 shows some of the results obtained with

the proposed approach.

Figure 1: Voronoi diagrams of different scenes ob-
tained with our method: spheres with Euclidean dis-
tance, points with L1 distance and lines with Eu-
clidean distance.

2.4 Computational Cost

To evaluate the VO construction algorithm some con-
siderations have to be taken into account: (i) The
mean number of intersection points between a surface
of area A and a cubic grid of lines of size u (distance
between two consecutive parallel lines of the grid) is
3A
2u2 [11]. (ii) If n is the number of sites, for each level
we distribute the n sites to some nodes as I-sites. (iii)
For each node we need to locate its neighbor nodes.
This can be done in LM worst time, but the expected
time for locating neighbors is constant [10]. (iv) The
proposed algorithm subdivides nodes that contain a
piece of a bisector. We are going to assume that there
exist a level LT such that if LM > LT all the sites are
a V-site of some node and all the pieces of the bisec-
tors are contained in the Voronoi diagram V. (v) Let
l ≤ LM be a level of the octree, V the boundary of
the Voronoi diagram and V (l) the boundary of the
Voronoi diagram of the sites that are V-site in some
node of level l. Let UV (l) =

⋃l
i=1 V (i). From the last

consideration we have that if l > LT then the piece of

the bisector contained in a node of level l is contained
in V , otherwise is contained in UV (l).
Let A be the area of V , A(l) the area of UV (l),

N(LM ) the mean number of nodes generated by the
construction algorithm of a VO of a maximum level
LM and T (LM ) the mean running time of this algo-
rithm. According to the previous considerations we
obtain the following results.
If LM ≤ LT then N(LM ) = O

(
4LM+1

a2 A(LM )
)

and T (LM ) = O

(
nLM +

LM∑
l=1

4l

a2A(l)

)
. Otherwise,

if LM > LT then N(LM ) = O
(

4LM+1

a2 A
)
and

T (LM ) = O

(
nLM +

LT∑
l=1

4l

a2A(l) +
4LM+1−4LT+1

a2 A

)
.

2.5 Dynamic Maintenance

The potential of the proposed VO has led us to con-
sider the dynamic maintenance of this data structure
as an essential operation. Given a VO of a Voronoi
diagram approximation and a site s to be inserted the
insertion algorithm applies an expansion process that
goes from the leaf node containing the base point Ps

to all the nodes containing a piece of the boundary of
its associated Voronoi region. The algorithm proceeds
as follows. First, it applies a top-down VO traversal
to identify the leaf node N that contains Ps, enters
s as an I-site of N and initializes with N a queue Q
used to maintain the nodes to be processed. Then,
Q is processed as in the VO construction process (see
Algorithm 1). Given a VO of a Voronoi diagram app-
roximation and a site s to be deleted, the deletion al-
gorithm applies a contraction process. It starts with a
node containing part of the boundary of the Voronoi
region of s, and processes all the nodes containing
part of this region. The deletion algorithm performs
a top-down VO traversal to identify the leaf node N
that contains Ps and erases s as I-site of N . Starting
from N , it traverses the nodes that have s as a V-site
until a node N ′ that contains part of the boundary
of V R(s) is reached. Next, it initializes with N ′ a
queue Q which is processed as in the VO construc-
tion process but applying a new update procedure: a
V-site is updated using the sites of the node and the
sites of all adjacent nodes and excluding s (see Figure
2). The cost of both algorithms is proportional to the
nodes intersected by the Voronoi region associated to
the site to be inserted or deleted.

3 Medial Axis

To codify the medial axis in a VO we modify the VO
construction algorithm in order to avoid the subdivi-
sion of the exterior nodes of the polyhedron and the
nodes containing pieces of bisectors between adjacent
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Figure 2: Results obtained by applying to scene of
Figure 1(a) the deletion algorithm. Only the Voronoi
region of the central sphere before and after the dele-
tion is visualized.

sites. Such a modification implies the definition of
two new terminal node criteria.
The first new criterion aims to avoid the subdivision

of the exterior nodes. We associate a unitary vector
ns to each site s as follows. If s is a face then ns is
the normal vector to the face oriented outwards the
polyhedron, if s is an edge then ns is the sum of the
vectors associated to its adjacent faces and if s is a
point then ns is the sum of the vectors associated
to its adjacent faces. Let v be a vertex of a node
and s its V-site with base point ps. The vertex v is
exterior to the polyhedron if (v−ps) ·ns > 0. A node
N is a terminal node if all its vertices are exterior
and any I-site is contained in it. The second new
terminal criterion avoids the subdivision of the nodes
containing pieces of bisectors between adjacent sites.
A node N is a terminal node if all its edges have two
V-sites adjacent in the polyhedron.
In Figure 3 we show the medial axis of a polyhe-

dron. Note that what we obtain is a simplified medial
axis [5].

Figure 3: Polyhedron and its medial axis.

4 Nearest Neighbor Queries

The large variety of Generalized Voronoi diagrams
that can be encoded by a VO and its hierarchical na-

ture allows us to solve the nearest neighbor problem in
many cases. Let S = {s1, · · · , sn} be a set of sites and
R a region containing S. Given a query point q ∈ R,
we want to find the site s such thatDs(q) ≤ Ds′(q) for
all s′ ∈ S; s′ %= s. To approximately solve the problem
it suffices to construct the VO of S in R, next deter-
mine in O(LM ) time the VO leaf node containing the
point q and select the nearest site between the set of
V-sites of the node.
In a similar way we can solve other kind of queries

such as the set of nearest sites of a given site and the
closest pair of sites.
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Abstract

We consider the expected number of Voronoi vertices
(or number of Delaunay cells for the dual structure)
for a set of n i.i.d. random point sites chosen uniformly
from the unit d-hypercube [0, 1]d. We show an upper
bound for this number which is linear in n, the number
of random point sites, where d is assumed to be a
constant. This result matches the trivial lower bound
of n.
This is an open problem since several years. In

1991, Dwyer [2] showed that for a uniform distribution
from the unit d-ball the average number of Voronoi
vertices is linear in n and it is commonly assumed that
this holds for any reasonable probability distribution.

1 Introduction

Voronoi diagrams are a fundamental structure in sev-
eral fields of science besides mathematics and com-
puter science such as physics, geology, agriculture,
geography, etc. Named after the Russian mathemati-
cian Voronoi [10] they have been ‘reinvented’ by other
researchers, e.g., by the physicists Wigner and Seits
[11] or the meteorologist Thiessen [9].
The Voronoi diagram of a set S of n points – called

sites – partitions space into n regions, one per site.
The region of a site s consists of all points that are
closer to s than to any other site. The straight-line
dual of the Voronoi diagram in the plane and its ex-
tension to higher dimensions is called the Delaunay
triangulation. A triangulation of a set S of sites is a
complete partition of the convex hull of S into fully di-
mensional simplices having the sites as vertices. The
Delaunay triangulation is the unique triangulation of
the set of sites such that the circumsphere of every
simplex contains no other site in its interior. The
Voronoi diagram can be computed in linear time from
the Delaunay triangulation, using the one-to-one cor-
respondence between their faces.
Voronoi diagrams have the great advantage to be a

rather simple but quite elegant structure with many

∗Research is partially supported by DFG grant 872/8-2 and
by the DFG Research Training Group GK-693 of the Paderborn
Institute for Scientific Computation (PaSCo) and the International
Graduate School of Dynamic Intelligent Systems.

†Heinz Nixdorf Institute, Computer Science Department,
University of Paderborn, 33102 Paderborn, Germany

extensions obtained by varying metric, sites, environ-
ment, and constraints. In computer science they are
widely used in clustering, mesh generation, graphics,
curve and surface reconstruction, and other applica-
tions.
A vast variety of basic and (relatively) simple algo-

rithms exists for their construction such as the plane
sweep, the divide-and-conquer, the incremental, and
the gift-wrapping algorithm, see also Chapter 20 in
the Handbook of Discrete and Computational Geom-
etry [5]. In fact most of these algorithms are ac-
tually specialized convex hull algorithms since there
is a close connection with convexity. Any (d + 1)-
dimensional convex hull algorithm can be used to
compute a d-dimensional Delaunay triangulation. All
these algorithms depend in their run time on the num-
ber of faces of the Delaunay triangulation. Unfortu-
nately, in d dimensions this number is Θ(n�d/2�) in
the worst case [7, 8] (for the usual diagram with the
Euclidean metric).
Recent research attempts to quantify situations

when the complexity of the Voronoi diagram is low
or when it is high [4]. The average case complex-
ity was considered by Dwyer [2] who showed that for
n i.i.d. random point sites chosen uniformly from the
unit d-ball the expected number of Delaunay simplices
is Θ(n). It has been conjectured that this bound also
holds for any uniform distribution in a convex domain
but until now no explicit proofs were given [2, 6].
For further reading on Voronoi diagrams and De-

launay triangulations we refer to the survey by Franz
Aurenhammer [1], the book by Herbert Edelsbrunner
[3] and Chapter 20 in the Handbook of Discrete and
Computational Geometry [5].

2 Average case

In this section we will present an average case analysis
for the number of Delaunay cells. Let P be a set
of n i.i.d. random points chosen uniformly from the
unit d-hypercube [0, 1]d. Let D(P) be the Delaunay
triangulation of P. Generally, we will use that

E
[
number of Delaunay simplices of D(P)

]
=(

n

d+ 1

)
·Pr

[
c-ball(∆) is empty

]
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where ∆ is a random d-simplex, i.e., it is the convex
hull of d+1 random point sites chosen uniformly from
[0, 1]d and c-ball(∆) is the smallest d-ball enclosing ∆.
Unfortunately, in general it is

Pr
[
c-ball(∆) is empty

]
%=
(
1− vol(c-ball(∆))

)n−(d+1)

for the following reason. All random point sites are
from inside [0, 1]d while some part of c-ball(∆) might
lie outside of [0, 1]d. Of course, the probability
for a random point site to be in the outer part of
c-ball(∆) is equal to 0 and therefore we must not
consider the outer part. This causes the main dif-
ficulty in our analysis namely to bound the volume of
c-ball(∆) ∩ [0, 1]d.
Fortunately, we can show the following crucial

lemma though we postpone the proof to Section 3.

Lemma 1 Let ∆ be a random d-simplex, i.e., its d+
1 vertices are i.i.d. random points chosen uniformly
from [0, 1]d. Then for any constant a ∈ [0, 1] it is

Pr
[
vol

(
c-ball(∆) ∩ [0, 1]d

)
≤ a

]
≤ constd · ad

where constd is a constant depending only on d.

Based on this lemma we will now establish the main
theorem of this section.

Theorem 2 For n i.i.d. random points sites chosen
uniformly from [0, 1]d it holds that

E
[
number of Delaunay simplices

]
= O(n) .

Proof. The main idea of the proof is to consider
(classes of) simplices with a ‘large’ circumball that are
very likely to have another point site in their circum-
ball, i.e., these simplices are not Delaunay simplices.
Then we show that the remaining simplices with a
‘small’ circumball are very few.
Let us assume w.l.o.g. that n is a power of 2. Let us

consider the
(

n
d+1

)
possible simplices that have d + 1

of the given n random point sites as vertices. For
the simplices with ‘large’ circumball we define classes
S0, . . . ,Slog n−1 s.t. for a simplex ∆ we have that

∆ ∈ Si ⇔
1
2i+1

< vol
(
c-ball(∆) ∩ [0, 1]d

)
≤ 1
2i

.

From Lemma 1 it follows immediately that

Pr
[
∆ ∈ Si

]
≤ Pr

[
vol

(
c-ball(∆) ∩ [0, 1]d

)
≤ 1
2i

]
≤ constd ·

(
1
2i

)d

.

The probability for a simplex ∆ ∈ Si to be a Delaunay
simplex is

Pr
[
c-ball(∆) is empty |∆ ∈ Si

]
≤

(
1− 1

2i+1

)n−(d+1)

≤
(
1
e

)n−(d+1)
2i+1

≤
(
1
2

)n−(d+1)
2i+1

.

Now we can bound the expected number of Delaunay
simplices for each class Si.
For 0 ≤ i ≤ log n− 1 it is

E
[
number of Delaunay simplices ∈ Si

]
ABSTANDABSTANDABS

≤
(

n

d+ 1

)
·Pr

[
∆ ∈ Si

]
ABSTA ·Pr

[
c-ball(∆) is empty |∆ ∈ Si

]
≤

(
n

d+ 1

)
· constd ·

(
1
2i

)d

·
(
1
2

)n−(d+1)
2i+1

.

The expected number of Delaunay simplices for all
classes S0, . . . ,Slog n−1 is

log n−1∑
i=0

E
[
number of Delaunay simplices ∈ Si

]
ABSTANDABSTAN

≤
(

n

d+ 1

)
· constd

log n−1∑
i=0

(
1
2

)i·d+
n−(d+1)
2i+1

=
(

n

d+ 1

)
· constd

log n−1∑
i=0

(
1
2

)(log n−(i+1))·d+
n−(d+1)

2logn−(i+1)+1

=
(

n

d+ 1

)
· constd ·

1
nd

log n−1∑
i=0

(
1
2

)2i·(1− d+1
n )−(i+1)·d

≤ n · constd ·
(
(d+ 2) · 2(d+3)·d + 1

)
= O(n) .

The last step follows immediately if d+ 2 ≥ log n− 1
since

d+2∑
i=0

(
1
2

)2i·(1− d+1
n )−(i+1)·d

≤
d+2∑
i=0

2(i+1)·d

≤ (d+ 2) · 2(d+3)·d .

In the other case it is

log n−1∑
i=d+3

(
1
2

)2i·(1− d+1
n )−(i+1)·d

≤
log n−1∑
i=d+3

(
1
2

)i

≤ 1 ,

where we assume that n ≥ 2 · (d+ 1).

The expected number of remaining simplices with
‘small’ circumball can be bounded using lemma 1, too.
Let Sre denote the set of simplices s.t. for a simplex
∆ we have

∆ ∈ Sre ⇔ vol
(
c-ball(∆) ∩ [0, 1]d

)
≤ 1

n
.

Then it is

E
[
number of simplices ∈ Sre

]
ABSTANDABSTAND

≤
(

n

d+ 1

)
·Pr

[
vol

(
c-ball(∆) ∩ [0, 1]d

)
≤ 1
n

]
≤ nd+1 · constd ·

1
nd

≤ n · constd .
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Now we can combine everything and by linearity of
expectation we get that

E
[
number of Delaunay cells

]
ABSTANDABSTAND

≤
log n−1∑

i=0

E
[
number of Delaunay simplices ∈ Si

]
+ E

[
number of simplices ∈ Sre

]
≤ n · constd ·

(
(d+ 2)(d+3)·d + 2

)
= O(n) ,

which concludes the proof of Theorem 2. �

3 Proof of Lemma 1

Let p1, . . . , pd+1 ∈ [0, 1]d be the vertices of simplex
∆ = ∆(p1, . . . , pd+1), i.e., ∆ is the convex hull of
p1, . . . , pd+1. The volume of c-ball(∆) is given by Vd ·
rd where r = r(∆) is the radius of the circumball of
∆ and Vd = πd/2

Γ(1+d/2) is the volume of the unit d-ball.
We can approximate the radius r(∆) and the volume
of c-ball(∆) by the following observation:

Observation 1 It holds that

2 · r(∆) ≥ max
1≤i<j≤d+1

‖pi − pj‖2

≥ max
1≤i<j≤d+1

‖pi − pj‖∞

=: maxwidth(∆)

and therefore it is

vol
(
c-ball(∆)

)
≥ Vd ·

1
2d
·maxwidth(∆)d .

In other words we approximate the volume of
c-ball(∆) by a fraction of the volume of a smallest
hypercube containing all the point sites p1, . . . , pd+1,
cf. Figure 1.
In a next step we will reformulate our random pro-

cess. Instead of considering d+1 many d-dimensional
random variables (= point sites) we will combine the
random variables coordinate-wise leading to d sets of
d + 1 random numbers each. In more detail, let us
again consider the point sites p1, . . . , pd+1 ∈ [0, 1]d
where pi = (p(1)

i , . . . , p
(d)
i ) for 1 ≤ i ≤ d + 1. Let

P1, . . . ,Pd be the sets s.t. Pj = {p(j)
1 , . . . , p

(j)
d+1} for

1 ≤ j ≤ d and let

width(Pj) := maxPj −minPj

denote the maximal distance between two elements
in Pj . We can now define the variable maxwidth in
another way as

maxwidth(P1, . . . ,Pd) := max
1≤j≤d

width(Pj) ,

which is consistent with the earlier definition, i.e., it
is maxwidth(∆) = maxwidth(P1, . . . ,Pd). (Therefore
we sometimes write only maxwidth.)

Figure 1: The 2 dimensional case: 3 point sites and
their circumcircles in the unit square. Generally, the
position of the smallest hypercube containing all point
sites is not uniquely defined. When intersected by
[0, 1]d consider the hypercube that has smallest inter-
section volume.

Since we actually want to bound the volume of
c-ball(∆) ∩ [0, 1]d, we consider the (smallest) hyper-
cube containing all point sites that has minimal vol-
ume when intersected by [0, 1]d. Therefore, we intro-
duce the variable value that indicates how much each
dimension contributes to the volume of the minimal
intersection between a smallest hypercube containing
all the point sites and [0, 1]d. If for a fixed dimension
the coordinates of all point sites lie close to 0 (or 1)
then the dimension contributes less than maxwidth to
the volume, namely only the distance of the maximal
coordinate to 0 (or the minimal coordinate to 1), cf.
also figure 1. In other words, the hypercube then
sticks out of [0, 1]d in this dimension.
We define now the value of set Pj to be

value(Pj) :=


maxwidth(P1, . . . ,Pd)

ABST if maxPj −maxwidth ≥ 0
ABSTand minPj +maxwidth ≤ 1

min {maxPj , 1−minPj} else .

With these definitions we can formulate the following
lemma.

Lemma 3 It holds that

vol
(
c-ball(∆) ∩ [0, 1]d

)
ABSTANDABSTAND

≥ min

{
Vd ·

(
1
2

)2d

,
1
d!

}
·

d∏
j=1

value(Pj) .

Due to space limitations we defer the proof of
Lemma 3 to a later full version of this paper.
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From now on we will consider the following ran-
dom process: we have d sets P1, . . . ,Pd of d+ 1 i.i.d.
random numbers chosen uniformly from the interval
[0, 1]. From Lemma 3 it follows that if we show that

Pr
[ d∏

j=1

value(Pj) ≤ a
]
= O

(
ad
)
, (1)

Lemma 1 is also shown.
In order to show (1) we will now establish two lem-

mas. The first one covers the case that maxwidth is
smaller than d

√
a, then it follows immediately that∏d

j=1 value(Pj) ≤ a. The second lemma covers the
case that maxwidth is larger than d

√
a and we have to

spend some more effort to show (1).

Lemma 4 For any value a ∈ [0, 1] it holds that

Pr
[
maxwidth(P1, . . . ,Pd) ≤ d

√
a
]
≤ O

(
ad
)
.

Proof. It suffices to bound the probability that
width(Pj) ≤ d

√
a for 1 ≤ j ≤ d. For set Pj we fix the

two elements with the maximal distance, i.e., we fix
maxPj and minPj where the distance between both
mustn’t exceed d

√
a. The remaining d − 1 elements

in Pj must have values between maxPj and minPj .
Now we can write

Pr
[
width(Pj) ≤ d

√
a
]
≤ ABSTANDAB

(d+ 1) · d ·
∫ 1

0

∫ Y

max{0,Y− d
√

a}
(Y −X)d−1 dX dY (2)

where the outer intergral denotes the range of element
maxPj(= Y ) and the inner integral the range of el-
ement minPj(= X). The integration boundaries as-
sure that their distance is at most d

√
a. The integrand

(Y −X)d−1 denotes exactly the probability that all
remaining d − 1 elements of Pj are between Y and
X. The factor before the integral is due to fixing the
maximal and minimal element in Pj .
In order to solve this integral we will split it up in

the following way to remove the maximum expression
from the integration boundary of the inner integral.∫ 1

0

∫ Y

max{0,Y− d
√

a}
(Y −X)d−1 dX dY

=
∫ d

√
a

0

∫ Y

0

(Y −X)d−1 dX dY

+
∫ 1

d
√

a

∫ Y

Y− d
√

a

(Y −X)d−1 dX dY

=
1
d
·
(∫ d

√
a

0

Y d dY +
∫ 1

d
√

a

a dY

)

=
1
d
·
(

1
d+ 1

· a d+1
d + a− a d+1

d

)
≤ 1

d
· a

It follows that

Pr
[
width(Pj) ≤ d

√
a
]
≤ (d+ 1) · a ⇒

Pr
[
maxwidth ≤ d

√
a
]
≤ O

(
ad
)
.AB

�

Lemma 5 For any value of a ∈ [0, 1] it holds that

Pr
[
maxwidth(P1, . . . ,Pd) > d

√
a and

d∏
j=1

value(Pj) ≤ a
]
≤ O

(
ad
)
.

The proof of Lemma 5 is very involved and rather
lengthy. We defer it also to a full version of this paper.
From Lemma 4 and Lemma 5 it follows that Equa-

tion (1) holds and thus Lemma 1 is shown.
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Lower Bounds for Kinetic Sorting

Mohammad Ali Abam∗ Mark de Berg†

Abstract

Let S be a set of n points moving on the real line. The
kinetic sorting problem is to maintain a data structure
on the set S that makes it possible to quickly generate
a sorted list of the points in S, at any given time.
We prove tight lower bounds for this problem, which
show the following: with a subquadratic maintenance
cost one cannot obtain any significant speed-up on the
time needed to generate the sorted list (compared to
the trivial O(n log n) time), even for linear motions.

1 Introduction

Background. In many areas of computer science one
has to store, analyze and manipulate geometric data.
More and more often this involves objects in mo-
tion. Hence, the study of geometric data structures
for moving objects has recently attracted a lot of at-
tention in computational geometry, especially since
Basch et al. [6] introduced the kinetic-data-structure
(KDS, for short) framework [3, 4, 6, 8, 9].
A KDS is a structure that maintains a certain at-

tribute of a set of continuously moving objects—the
convex hull of moving objects, for instance, or the
closest distance among moving objects. It consists of
two parts: a combinatorial description of the attribute
and a set of certificates with the property that as long
as the outcomes of the certificates do not change, the
attribute does not change. It is assumed that each ob-
ject follows a known trajectory so that one can com-
pute the failure time of each certificate. Whenever
a certificate fails—we call this an event—the KDS
must be updated. The KDS remains valid until the
next event. See the excellent survey by Guibas [8] for
more background on KDSs and their analysis.
Computing the convex hull of a set of points in

the plane is a classic problem in computational ge-
ometry. It is therefore not surprising that the kinetic
maintenance of the convex hull of a set of n moving
points in the plane was already studied by Basch et
al. [6]. They designed a KDS that needs to be up-
dated O(n2+ε) times and each time takes O(log2 n)
time.

∗Department of Computing Science, TU Eindhoven,
m.a.abam@tue.nl

†Department of Computing Science, TU Eindhoven,
mdberg@win.tue.nl

In some applications it may be necessary to main-
tain the attribute of interest explicitly. If one uses a
KDS for collision detection, for instance, any external
event—a collision in this case— must be reported. In
such cases, the number of changes to the attribute is a
lower bound on the number of events to be processed.
Since the convex hull of n linearly moving points can
change Ω(n2) times [5], this means that any KDS that
maintains an explicit representatie of the convex hull
must process Ω(n2) events in the worst case. Hence,
the convex-hull KDS of Basch et al. [6], which indeed
maintains the convex hull explicitly, is close to opti-
mal in the worst case.
In other applications, however, explicitly maintain-

ing the attribute at all times may not be necessary;
the attribute is only needed at certain times. This is
for instance the case when a KDS is used as an auxil-
iary structure in another KDS. The auxiliary KDS is
then used to update the main KDS efficiently when a
certificate of the main KDS fails. In this case, even
though the main KDS may have to be maintained
explicitly, the attribute maintained by the auxiliary
KDS only needs to be available at certain times. This
leads us to view a KDS as a query structure: we want
to maintain a set S of moving objects in such a way
that we can reconstruct the attribute of interest ef-
ficiently whenever this is called for. This makes it
possible to reduce the maintenance cost, as it is no
longer necessary to update the KDS whenever the at-
tribute changes. On the other hand, a reduction in
maintenance cost will have an impact on the query
time, that is, the time needed to reconstruct the at-
tribute. Thus there is a trade-off between mainte-
nance cost and query time. Our main goal is to study
such trade-offs for kinetic convex hulls.

Our results. As stated above, our main interest lies
in trade-offs between the maintenance cost of a kinetic
convex-hull structure and the time to reconstruct the
convex hull at any given time. In this short abstract,
however, we restrict our attention to the simpler ki-
netic sorting problem: maintain a KDS on a set of n
points moving on the real line such that at any time
we can quickly reconstruct a sorted list of the points.
We prove in Section 2 that already for the kinetic
sorting problem one cannot get good trade-offs: even
for linear motions, the worst-case maintenance cost is
Ω(n2) if one wants to be able to do the reconstruction
in o(n) time. Note that with Ω(n2) maintenance cost,
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we can explicitly maintain the sorted list at all times,
so that the reconstruction cost is zero. Thus interest-
ing trade-offs are only possible in a very limited range
of the spectrum, namely for reconstruction costs be-
tween Ω(n) and O(n log n). For this range we also
prove lower bounds: we show that one needs Ω(n2/m)
maintenance cost if one wants to achieve o(n logm) re-
construction cost, for any m with 2 ≤ m ≤ n. (See
Section 2.1 for a definition of our lower-bound model.)
We also give a matching upper bound.

Related work. Some existing KDSs—the kinetic
variants of various range-searching data structures [2,
3, 4, 9], for instance—do not maintain a uniquely de-
fined attribute such as the convex hull, but they main-
tain a query data structure. In this setting the KDS
is, of course, a query structure as well. Our setting
is different because we are studying the maintenance
of a single, uniquely defined, attribute such as the
convex hull.
One of the main results of our paper is a lower

bound on the trade-offs between reconstruction time
and maintenance cost for the kinetic sorting problem.
Lower bounds for trade-offs between query time and
maintenance cost were also given by De Berg [7], but
he studied the kinetic dictionary problem, where one
wants to maintain a dictionary on a set S of n points
moving on the real line. He showed that any kinetic
dictionary with worst-case query time O(Q) must
have a worst-case total maintenance cost of Ω(n2/Q2),
even if the points move linearly.

2 The kinetic sorting problem

Let S = {x1, · · · , xn} be a set of n point objects1 mov-
ing continuously on the real line. In other words, the
value of xi is a continuous function of time, which we
denote by xi(t). We define S(t) = {x1(t), · · · , xn(t)}.
For simplicity, we write S and xi instead of S(t) and
xi(t), respectively, provided that no confusion arises.
The kinetic sorting problem asks to maintain a struc-
ture on S such that at any given time t we can quickly
generate a sorted list for S(t). We call such a struc-
ture a sorting KDS.
We focus on trade-offs between the sorting cost and

the maintenance cost: what is the worst-case mainte-
nance cost if we want to guarantee a sorting cost of
O(Q), where Q is some parameter, under the assump-
tion that the point objects follow trajectories that can
be described by bounded-degree polynomials.

2.1 The lower-bound model

We shall prove our lower bounds for the kinetic sorting
problem in the comparison-graph model introduced

1We use the term ”point objects” for the points in S to dis-
tinguish them from other points that play a role in our proofs.

by De Berg [7], which is defined as follows. A com-
parison graph for a set S of numbers is defined as a
directed graph G(S,A) such that if (xi, xj) ∈ A, then
xi < xj . The reverse is not true: the fact that xi < xj

does not mean there must be an arc in G. The idea
is that the comparison graph represents the ordering
information encoded in a sorting KDS on the set S: if
(xi, xj) ∈ A, then the fact that xi < xj can be derived
from the information stored in the KDS, without do-
ing any additional comparisons.

Maintenance cost. The operations we allow on the
comparison graph are insertions and deletions of arcs.
For the maintenance cost, we only charge the algo-
rithm for insertions of arcs; deletions are free. Follow-
ing De Berg [7], we therefore define the maintenance
cost as the total number of such arcs ever inserted
into the comparison graph, either at initialization or
during maintenance operations.
We say that the arc (xi, xj) ∈ A fails at time t if

xi(t) = xj(t).The arcs in the comparison graph es-
sentially act as certificates, and their failures trigger
events at which the KDS needs to be updated.

Query cost. A query at time t asks to construct a
sorted list on the points in the current set S (that is,
S(t)). We shall consider two different measures for
the query cost.
The comparison-graph sorting model. The first

measure is in a very weak model, where we only charge
for the minimum number of comparisons needed to
obtain a sorted list, assuming we have an oracle at our
disposal telling us exactly which comparisons to do.
This is similar to the query cost used by De Berg when
he proved lower bounds for the kinetic dictionary. For
the sorting problem this simply means that the query
cost is equal to the number of pairs xi, xj ∈ S that
are adjacent in the ordering and for which there is no
arc in the comparison graph.
The algebraic decision-tree model. In this model we

also count the number of comparisons needed to sort
the set S, but this time we not have an oracle telling us
which comparisons to do. We shall use the following
basic fact: Suppose the number of different orderings
of S that are compatible with the comparison graph
at some given time is N . Then the cost to sort S in
the algebraic decision-tree model is at least logN .

2.2 A lower bound in the comparison-graph sort-
ing model

The point objects in our lower-bound instance will
move with constant (but different) velocities on the
real line. Hence, if we view the line on which the point
objects move as the x-axis and time as the t-axis, then
the trajectories of the point objects are straight lines
in the tx-plane. We use ξi to denote the line in the
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tx-plane that is the trajectory of xi. It is somewhat
easier to describe the lower-bound instance in the dual
plane. We shall call the two axes in the dual plane
the u-axis and the v-axis. We use the standard duality
transform, where a line ξ : x = at+ b in the tx-plane
is mapped to the point ξ∗ : (a,−b) in the dual plane,
and a point p : (a, b) in the primal plane is mapped
to the line p∗ : v = au− b in the dual plane.
Now let p1, . . . , pn be the vertices of a regular n-

gon in the dual plane that is oriented such that the
diagonal pl−1pl+1 connecting the two neighbors of
the leftmost vertex pl is almost parallel to the v-axis
and has negative slope. The trajectories ξ1, · · · , ξn in
our lower-bound instance are the primals of the ver-
tices pi, that is, ξ∗i = pi. In the remainder of this
section we will prove a lower bound on the mainte-
nance cost of any comparison graph for this instance
whose sorting cost (in the comparison-graph sorting
model) is bounded by Q, where Q is a parameter with
0 ≤ Q < n.
For any pair of vertices pi, pj , let Eij denote the

line passing through pi and pj . Since the pi are the
vertices of a regular n-gon, the lines Eij have only n
distinct slopes. Note that Eij corresponds to the in-
tersection of ξi and ξj in the tx-plane, with the slope
of Eij being equal to t-coordinate of the intersection.
This implies that the intersection points of the tra-
jectories in the tx-plane have only n distinct t-values.
Let t1, · · · , tn be the sorted sequence of these t-values.
The times t1, . . . , tn define n + 1 open time intervals
(−∞, t1), (t1, t2), · · · , (tn,+∞). Since no two trajec-
tories intersect inside any of these intervals, the order
of the point objects is the same throughout any in-
terval. We say that xi is directly below xj in such an
interval if xi(t) < xj(t) for times t in the interval and
there is no other point object xk in between them in
that interval. Furthermore, we call a vertex pi a lower
vertex if it lies on the lower part of the boundary of
the n-gon, and we call pi an upper vertex if it lies
on the upper part of the boundary of the n-gon; the
leftmost and rightmost vertices are neither upper nor
lower vertices.

Lemma 1 (i) If pi is a lower vertex or the leftmost
vertex, then the object xi is below any other object
xj in exactly one time interval. If n is odd, this also
holds for the rightmost vertex.
(ii) If pi is an upper vertex, then xi is directly below
any other point object xj in at least one interval. If
n is even, this also holds for the rightmost vertex.

We can now prove the lower bound. Suppose that
we have a comparison graph on the point objects
whose sorting cost is Q during each of the time in-
tervals defined above. This implies that during each
such time interval, there must be at least n − Q − 1
arcs (xi, xj) in the comparison graph such that xi is

directly below xj . In total, (n + 1)(n − Q − 1) arcs
are needed over all n + 1 time interval. Some arcs,
however, can be used in more than one interval. For
xi, let ki be the number of arcs of the form (xi, xj)
that are used. For any of the �n/2 objects xi for
which case (i) of Lemma 1 applies, all these arcs are
distinct. For the remaining �n/2� objects case (ii) ap-
plies and so at least ki − 2 arcs are distinct. Hence,
the total number of arcs inserted over time is at least
(n+ 1)(n−Q− 1)− 2�n/2� ≥ n(n−Q− 2). We get
the following theorem.

Theorem 2 There is an instance of n point objects
moving with constant velocities on the real line, such
that any comparison graph whose worst-case sorting
cost in the comparison-graph cost model is Q, must
have maintenance cost at least n(n−Q− 2), for any
parameter Q with 0 ≤ Q < n.

2.3 A lower bound in the algebraic decision-tree
model

In the previous section we gave a lower bound for
the maintenance cost for a given sorting cost Q in
comparison-graph sorting model. Obviously, this is
also a lower bound for the algebraic decision-tree
model. Hence, the results of the previous section im-
ply that for any sorting cost Q = o(n) in the alge-
braic decision-tree model, the worst-case maintenance
cost is Ω(n2). Since with O(n2) maintenance cost we
can process all swaps—assuming the trajectories are
bounded-degree algebraic, so that any pair swaps at
most O(1) times—this bound is tight: with O(n2)
maintenance cost we can achieve sorting cost zero.
What remains is to investigate the range where the
sorting cost is o(n logm), where 1 < m ≤ n.

Lemma 3 There is a constant c such that if the sort-
ing cost of a comparison graph is at most cn logm,
then there is a path in the comparison graph whose
length is at least n/m1/3.

Next we describe the lower bound construction.
As before, it will be convenient to describe the con-
struction in the dual plane. To this end, let Ga :=
{0, 1, · · · , a − 1}2 be the a × a grid. The trajectories
of the point objects in our lower-bound instance will
be straight lines in the tx-plane, such that the duals
of these lines are the grid points of G√n. (We assume
for simplicity that n is a square number.) Before we
proceed, we need the following lemma.

Lemma 4 Let p = (px, py) be a grid point of G√n

and px, py ≤ a, where a ≤ √n/2. Let Ep be the line
through the origin and p. The number of different
lines passing through at least one point of G√n and
being parallel to Ep is at most 4a

√
n.
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Theorem 5 There is an instance of n point objects
moving with constant velocities on the real line such
that, for any m with 1 < m ≤ n, any compari-
son graph whose worst-case sorting cost in the al-
gebraic decision-tree model is Q = o(n logm), must
have maintenance cost Ω(n2/m).

Proof. Let a :=
√
n/(8m1/3). Consider the compar-

ison graph at some time s+ ε with s = px/py, where
px, py ≤ a and ε > 0 is sufficiently small. Suppose the
sorting cost at time s is o(n logm). Then the sorting
cost will be at most cn logm for any constant c, so
by Lemma 3 there must be a path in the comparison
graph of length at least n/m1/3. We claim (and will
prove below) that at least half of the arcs in this path
are between point objects xi, xj such that ξ∗i and ξ

∗
j lie

on a common line of slope s. The number of distinct
values for s is equal to the number of pairs (px, py)
where px and py are integer numbers between 0 and
a − 1 (including 0 and a − 1) and GCD(px, py) = 1.
Because of symmetry, we count the number of pairs
(px, py) with the property px ≤ py. For a nonnega-
tive integer i, let ϕ(i) be the number of nonnegative
integers that are less than i and relatively prime to
i. Then the number of pairs (px, py) with the de-
sired properties is

∑a−1
i=1 ϕ(i). It is known [10] that

this summation is Θ(a2). Then, the total number of
arcs needed over all times of the form px/py + ε with
px, py ≤ a is at least n/(2m1/3) ·Θ(a2) = Ω(n2/m),
which proves the theorem.
It remains to prove the claim that at least half of

the arcs in the path are between point objects xi, xj

such that ξ∗i and ξ
∗
j lie on a common line of slope s.

Note that the sorted order of the point objects xi(s+
ε) corresponds to the sorted order of the orthogonal
projections of the points ξ∗i onto a line with slope
−1/(s + ε). If ε > 0 is sufficiently small, then the
projections of all the points lying on a common line of
slope s will be adjacent in this order. Let’s group the
point objects xi into subsets such that any two point
objects xi, xj for which ξ∗i and ξ

∗
j lie on a common line

of slope s are in the same subset. Then, at time s+ε,
any path in the comparison graph can enter and leave
a subset at most once. By Lemma 4 the number of
subsets is at most 4a

√
n. Hence, the number of arcs

connecting point objects in the same subset is at least

n/m1/3 − 4a
√
n = n/(2m1/3),

as claimed. �

2.4 Upper bounds for the kinetic sorting problem

It is straightforward to obtain a KDS that matches the
lower bounds of the previous section: Partition the set
S into m subsets of size at most n/m in an arbitrary
manner, and maintain each subset in a sorted array.
This gives the following result.

Theorem 6 Let S be a set of n point objects moving
on the line, where any pair of points swaps O(1) times.
For any m with 1 < m ≤ n, there is a data structure
with maintenance cost O(n2/m) such that at any time
a sorted list of the points in S can be constructed in
O(n logm) time.

3 Conclusions

We have studied trade-offs for the kinetic sorting
problem, which is to maintain a KDS on a set of points
moving on the real line such that one can quickly gen-
erate a sorted list of the points, at any given time.
We have proved a lower bound for this problem show-
ing the following: with a subquadratic maintenance
cost one cannot obtain any significant speed-up on
the time needed to generate the sorted list (compared
to the trivial O(n log n) time), even for linear motions.
This negative result gives a strong indication that

good trade-offs are not possible for a large number of
geometric problems—Voronoi diagrams and Delaunay
triangulations, for example, or convex hulls—as the
sorting problem can often be reduced to such prob-
lems. In [1], we show that the convex hull can be
maintained more efficiently if it has only few vertices.
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Uncertainty Envelopes ∗

Yaron Ostrovsky-Berman Leo Joskowicz

Abstract

We introduce a new class of problems: computing the
set of all the convex combinations of sites when their
position is uncertain and depends linearly on shared
parameters which vary according to a uniform dis-
tribution. The boundary of the set, called the un-
certainty envelope, is useful in optimizing processes
where there is uncertainty on the site positions and
the objective functions. We provide upper bounds on
the combinatorial complexity of the uncertainty en-
velope, and present the first efficient algorithm for its
computation in the general case.

1 Introduction

Suppose an investor wishes to spend his budget on im-
porting several products with fixed attributes (mar-
ket value, import tax, maintenance, transportation
costs, . . .). Choosing a combination of products which
maximizes his profit function is a standard optimiza-
tion problem. However, when the product attributes
are subject to change due to variation in market pa-
rameters (currency exchange rates, fuel and insurance
costs, . . . ), there is uncertainty involved in any invest-
ment. The problem then becomes that of finding the
best tradeoff between profit and risk.
This scenario is common to many fields involving

uncertainty or change with the following model prop-
erties:
• proportionality - the attributes of the products
are proportional to their portion of the budget.
• divisibility - the portion of the budget for each
product is allowed to assume any fractional value.
• linearity - the attributes depend linearly on the
market parameters.
• independency - the market parameters vary inde-
pendently.

For optimization problems, the following additional
properties hold:

• uniformity - the parameters vary according to a
uniform distribution with fixed intervals.
• multiple fuzzy objective functions - there are mul-
tiple choices of the objective function form, where
function coefficients have uncertainty that varies
in a range.

∗School of Engineering and Computer Science, The Hebrew
University of Jerusalem, {yaronber,josko}@cs.huji.ac.il

We formalize the problem as follows. Let S =
{s1, s2, . . . , sn} be a set of sites (products, materi-
als, components), and let p = (p1, p2, . . . , pm)T be
the market parameters uncertainty vector, which is
limited to the domain ∆ = [−δ1, δ1]× [−δ2, δ2]× . . .×
[−δm, δm]. Each site si is associated with a nominal
(current) value bi ∈ Rd and anm×d sensitivity matrix
Ai describing the attribute sensitivity to variations in
p. The position of site si is given by vi(p) = Aip+ bi.
We define the uncertainty envelope as the boundary
of the union of the convex hulls of the sites when the
uncertainty vector spans its domain:

E = ∂{
n∑

i=1

λivi(p)|λi ≥ 0,
n∑

i=1

λi = 1, p ∈ ∆}

The uncertainty envelope provides a global view of
the problem domain which is most useful in analyzing
worst case variation of unknown or uncertain combi-
nation of the sites. Since there are possibly several ob-
jective functions for optimization, and each function
may have uncertainty, the envelope allows sensitivity
analysis on each of the solutions.
The class of problems we study depends on two

key parameters: the number of sites n and the di-
mension d. In the following special cases, the prob-
lem has known solutions. When there is no uncer-
tainty (∆ = {0}), the envelope bounds the convex
hull of {bi}ni=1, the domain of the standard optimiza-
tion problem. In one dimension (d = 1, any n), the
envelope is a segment whose endpoints are determined
by the maximum and minimum of {bi ± ai

jδj}, where
ai

j is the j
th entry of Ai. When there is only one site

(n = 1, any d), the envelope bounds the d-zonotope
defined by the sensitivity matrix A and the uncer-
tainty domain ∆. Zonotopes play a crucial role in an-
alyzing and computing uncertainty envelopes. When
the sensitivity matrices of the sites are independent,
that is the indices of their non-zero column vectors
are mutually exclusive, the uncertainty envelope is
the boundary of the convex hull of the uncertainty
zonotopes of the sites. In the general case (n, d ≥ 2),
the envelope is the boundary of the volume swept by
the zonotope as it spans the convex combinations of
all the sites. For a solution to the special case d = 2,
n = 2 see [4].
In this extended abstract, we provide upper bounds

on the combinatorial complexity of uncertainty en-
velopes and present the first algorithm for their com-
putation in the general case. The results are sum-
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dim\#sites 1 2 3 n > 3
1 comb O(1) O(1)

time O(m) O(nm)
2 comb Θ(m) O(λ6(m2)) O(n2λ6(n2m2))

time O(m logm) O(λ6(m2) log(m)) O(n2λ6(n2m2))
3 comb Θ(m2) O(m6+ε) O(m8+ε) O((n3m4)2+ε)

time Θ(m2) O(m6+ε) O(m8+ε) O((n3m4)2+ε)

d > 3 comb Θ(md−1) n ≤ d : O(ddmd+n−2)d−1+ε n > d : O(
(n

d

)
ddm2d−2)d−1+ε

time Θ(md−1) n ≤ d : O(ddmd+n−2)2d−4+ε n > d : O(
(n

d

)
ddm2d−2)2d−4+ε

Table 1: Combinatorial complexity of uncertainty envelopes and run time complexity of our algorithm. Except
for d > 3, the algorithm’s storage requirement is identical to the combinatorial complexity. The function λs(m)
is the upper bound on the complexity of a Davenport-Schnitzel sequence of order s on m symbols (nearly linear).

marized in Table 1. The algorithm identifies all the
topologies assumed by the zonotope as it sweeps along
the convex combinations of the sites, and then it
sweeps individual facets that participate in topolog-
ical changes. This is significantly better than the
straightforward approach of sweeping the convex hull
of the sites along trajectories determined by the faces
of the uncertainty domain hyperbox ∆, which has ex-
ponential complexity in the number of parameters m.
This abstract is organized as follows. Section 2 re-

views zonotope topology and computation. In Section
3, we describe an arrangement of surfaces which en-
codes the topology of the zonotope over all convex
combinations of the sites. In Section 4 we use the ar-
rangement to compute a small subset of the faces of
hyperbox ∆ which contribute to the uncertainty enve-
lope. The general algorithm is described in Section 5.
Section 6 described future work and open problems.
Throughout this abstract we assume that the input is
in general position, that is the the sensitivity matrix
columns of the sites are pairwise linearly independent.

2 Zonotope topology

We now describe uncertainty envelopes for one site
(n = 1). As the jth parameter spans the interval
[−δj , δj ], the site moves along a translate of the line
segment conv{−ajδj , ajδj}, where aj is the jth col-
umn of the sensitivity matrix A. Since the parame-
ters affect the site independently, the envelope is the
boundary of the Minkowsky sum of the m line seg-
ments, translated by the nominal value b. This is the
definition of a zonotope, a convex centrally symmetric
polytope [1]. We review relevant zonotope properties
below.
There is a geometric correspondence between zono-

topes in Rd and hyperplane arrangements in Rd−1.
The correspondence is realized by the following trans-
form: let Hj = {x|〈x, aj〉 = 0}, the hyperplane nor-
mal to aj and passing through the origin, and let
H0 = {x|xd = 1}. Transform each column vector
aj = (aj1, aj2, . . . , ajd)⊥ to the (d − 2)-dimensional
hyperplane hj = Hj ∩H0 whose equation is:

aj1x1 + aj2x2 + . . .+ aj(d−1)xd−1 + ajd = 0 (1)

1 23

4

-+-+

-+++

--++

-++- --+- +-+-

++-+

+--+

---+

+---
----

x1

x2

Figure 1: The 3D zonotope (right) and its topology
arrangement (left) corresponding to the sensitivity
matrix A =

(
1 −2 1 −1
0 2 1 3

−1 −1 2 5

)
. The jth line equa-

tion is determined by substituting aj into Eqn. 1. The
marked neighboring 2-cells correspond to the neigh-
boring zonotope vertices.

Eqn. 1 transforms the generators of the zonotope,
aj ∈ Rd, to a hyperplane arrangement in Rd−1 which
has the same topology as the zonotope in the following
sense. The sign vector σ = (σ1, . . . , σm) ∈ {−1, 0, 1}m
of an arrangement cell containing a point x is deter-
mined according to the signs of 〈x, aj〉 for 1 ≤ j ≤ m.
Each k-cell of the arrangement corresponds to two
symmetric (antipodal) (d − k − 1)-cells of the zono-
tope. Specifically, the (d − 1)-cells of the arrange-
ment with sign vector σ correspond to the vertices
v+ = b +

∑m
j=1 ajδjσj and v− = b −

∑m
j=1 ajδjσj ,

which achieve the maximum of 〈x, v〉 over x (equiva-
lent to a direction) in the cell and v in the zonotope.
The sign vectors of neighboring (d − 1)-cells differ in
one entry only, and they correspond to neighboring
vertices on the zonotope. Thus it is possible to com-
pute the vertex representation of the zonotope in op-
timal Θ(md−1) time. Figure 1 shows an example in
3D.

3 Swept zonotope topology

We now describe the topology of the zonotope as it is
swept between the n sites. For clarity of explanation,
we focus on the case n = d. In Section 5 we show how
to solve for the general case.
When n = d, the uncertainty envelope bounds the
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Figure 2: Dynamic topology arrangement of A1 =(
0.7 0.1 −0.4 −1
0.5 −0.7 0.1 −2

)
, A2 =

(
0 0.7 0.8 1

−0.6 1 −0.7 2

)
.

Each of the curves is obtained by substituting the cor-
responding matrix columns into Eqn. 2. The curves
corresponding to columns 3 and 4 demonstrate degen-
eracies which occur when a subset of the coefficients
of x in Eqn. 2 are zero for some value of λ ∈ Λ.

union of (d− 1)-simplices which are the convex hulls
of sites whose positions vary within their respective
zonotopes. Consider a convex combination of the
sites defined by the coefficients λ = (λ1, λ2, . . . , λn).
The domain of the coefficients is Λ = [0, 1]n ∩ {(λ ∈
Rn|

∑n
i=1 λi = 1}. The position of a combina-

tion of sites is given by w(p, λ) =
∑n

i=1 λivi(p) =∑n
i=1(λiAip+λibi). Let the combined sensitivity ma-

trix be Ã(λ) =
∑n

i=1 λiAi. Then the topology of the
combined sites zonotope, defined by Ã(λ) and denoted
Z(λ), changes as λ varies. Replacing aji in Eqn. 1
with the entries of Ã(λ), we obtain:

n∑
i=1

λia
i
j1x1 + . . .

n∑
i=1

λia
i
j(d−1)xd−1 +

n∑
i=1

λia
i
jd = 0 (2)

where ai
jk denotes the k

th entry in the jth column
of matrix Ai. Since λn = 1 −

∑n−1
i=1 λi, this is

an algebraic surface of degree two in the variables
(x1, x2, . . . , xd−1, λ1, λ2, . . . , λn−1). We denote the di-
mension of the embedding space by D = 2(d− 1).
The arrangement of the m surfaces is called the

dynamic topology arrangement (DTA), because it en-
codes the topology of the zonotope of the combined
site as its center moves along conv{bi}. Every D-cell
of the DTA represents values of x for which the sign
vector is the same, defining two antipodal vertices of
the zonotope Z(λ) for λ within the cell. The inter-
section of two D-cells corresponds to two antipodal
edges of the zonotope. With the general position as-
sumption, an intersection of k D-cells which is also
the intersection of exactly k − 1 surfaces corresponds
to two antipodal (k − 1)-cells of the zonotope. The
complexity of the entire DTA is Θ(mD). Figure 2
shows a two dimensional DTA.

sweep boundary

Z(0.67) Z(1)

Figure 3: Sweeping the line segment correspond-
ing to the edge e in Figure 2 through the subspace
PC = (−δ1, δ2, 0, δ4) + conv{−e3, e3}. Note that only
a subset of Λ needs to be swept (from 0.67 to 1).
The solid polygons are the zonotopes at λ = 0.67 and
λ = 1. The segment is shown at 20 intermediate val-
ues of p3. The closed curve bounds the swept area.

4 The sweep subspace

The uncertainty envelope is the boundary of the union
of all the instances of the simplex determined by
p ∈ ∆. Although it is sufficient to include only in-
stances with p ∈ ∂∆, the boundary has an exponen-
tial number of cells m.
We now show how the DTA reduces this number

to a polynomial in m. When λ traces a path in its
domain Λ, the zonotope undergoes a general sweep in
Euclidean space. Weld and Leu [5] show that the vol-
ume swept by a compact d-manifold in Rd undergoing
a general sweep is equal to the union of the volumes
swept by its boundary and one location of the com-
pact d-manifold in the sweep. The boundary facets of
the zonotope generally correspond to the intersection
of d D-cells of the DTA, i.e. (d − 1)-cells of the ar-
rangement. Points incident on the facet differ only in
the value of d − 1 out of m parameters in the uncer-
tainty vector p. The indices of these parameters are
exactly those with zero sign in the (d− 1)-cell of the
DTA corresponding to the facet.
Let F be a facet of the zonotope and let C be the

DTA cell it corresponds to. Let σC = (σ1, . . . , σm)
be the sign vector of C, and let IC be the set of
indices with zero sign in σC . We define the sweep
subspace of the cell as PC = (σ1δ1, . . . σmδm) +∑

i∈IC
conv{−eiδi, eiδi}, where {ei} are the standard

basis vectors, and the plus and summation signs are
Minkowski additions of sets. Since a point in F is
attained by some value of λ ∈ Λ and p ∈ PC , the
sweeping of the facet through all values of Λ is equiv-
alent to sweeping the simplex through all the values
of PC . Therefore, to obtain the uncertainty envelope,
it suffices to sweep the simplex through the values of
PC defined by all the (d−1)-cells of the DTA. For the
computation and approximation of swept volumes see
e.g. [3, 5]. Figure 3 shows an example in 2D.
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1. Construct the dynamic topology arrangement A.
2. Compute sign vector of an arbitrary (d − 1)-cell Cinit ∈ A.
3. Traverse the (d − 1)-cells of A in BFS order, starting from Cinit:

a. Update the sign vector of current cell C: σC = (σ1, . . . , σm).
b. Find indices IC of zero signs in σC , defining sweep subspace PC .
c. Initialize swept volume V with simplex corresponding to arbitrary vertex p ∈ PC .
d. For each i ∈ IC :

- Sweep V from current p = (p1, . . . , pi, . . . , pm) to p−i = (p1, . . . ,−pi, . . . , pm).
- Set V to new swept volume, set p = p−i.

e. Insert the boundary of V into arrangement of surfaces H.
4. Compute uncertainty envelope as inner boundary of the outer d-cell of H.

Table 2: Algorithm for computing uncertainty envelopes

Figure 4: The arrangement H of swept boundaries of
the input of Figure 2 with b1 = (0, 0), b2 = (1, 0), δ1 =
δ2 = 0.1. The uncertainty envelope is the thick closed
curve bounding H. Notice that many of the curves do
not contribute to the outer cell of the arrangement.

5 Algorithm

Table 2 presents the algorithm for computing the un-
certainty envelope, based on the properties described
in the previous sections. The algorithm starts by com-
puting the DTA defined by Eqn. 2. It then traverses
the DTA, iterating on the (d− 1)-cells. For each cell
C, it computes its sign vector, which defines the sweep
subspace PC . It then computes the volume swept by
the simplex when p spans PC . The collection of sur-
faces which bound the swept volumes of all the sim-
plices form an arrangementH, whose outer cell defines
the uncertainty envelope.
The complexity of the algorithm, shown in Table

1, depends predominantly on the combinatorial and
computational complexity of arrangements and their
substructures. For d > 3, the current best algorithm
for arrangement traversal and single cell computation
is not optimal. For the most recent survey of arrange-
ments, see [2].
Planar envelopes: The curves bounding the swept

areas of line segments consist of line segments and
sections of parabolas (Figure 3). Figure 4 shows an
example.
3D envelopes: The swept volume of a line segment

in space is a hyperbolic paraboloid. The envelope of a
swept plane in space is a ruled and developable surface
[5]. Thus, the sweep boundary of a triangle consists
of both types of surfaces, which are swept again in the
second iteration of step 3d to produce surfaces of H.

Cases of n %= d: When n < d the DTA has di-
mension d+ n− 2, and the algorithm sweeps (n− 1)-
simplices. For n > d, the uncertainty envelope is the
boundary of the volume swept by the convex hull of
the n sites when p spans ∆. Since the facets of the
convex hull change during the sweep, we must con-
sider all

(
n
d

)
possible facets, and apply steps 1 − 3 of

the algorithm for each facet before applying step 4.

6 Conclusion

While the number of swept volumes depends on the
complexity of the DTA, not all the N sweep bound-
aries inserted in step 3e contribute to the outer cell.
Constructing an example in which O(N) surfaces par-
ticipate in the envelope, or proving a better bound, is
an open problem. Furthermore, the properties of the
outer cell of H suggest that the worst case bound on
its complexity may be lower.
For efficiency of computation, the swept volumes

in 3D can be approximated by polyhedrons [3]. Fi-
nally, the use of spatial data structures may reduce
the number of facets considered when n > d.
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Covering Point Sets with Two Convex Objects

J. Miguel Dı́az-Báñez∗ Carlos Seara† J. Antoni Sellarès‡ Jorge Urrutia§ Inma Ventura¶

Abstract

Let P2n be a point set in the plane with n red and
n blue points. Let CR and CB (SR and SB) respec-
tively be red and blue colored and disjoint disks (axis-
parallel squares). In this paper we prove the follow-
ing results. Finding the positions for CR and CB that
maximizes the number of red points covered by CR

plus the number of blue points covered by CB can be
done in O(n3 log n) time. Finding two axis-parallel
unit-squares with disjoint interiors that maximizes the
sum of the red points covered by SR plus the number
of blue points covered by SB can be done in O(n2)
time.

1 Introduction

Consider a point set P2n with n red and n blue points,
and a red and a blue coin (not necessarily of the same
size) denoted by CB and CR respectively. In this pa-
per we study the following problem. Place CR and
CB on the plane such that the number of red points
covered by CR plus the number of blue points cov-
ered by CB is maximized. We allow CB and CR to
cover some red (resp. blue) points, but require them
to have disjoint interiors. We also consider the prob-
lem of finding two isothetic squares SB and SR of
given sizes with disjoint interiors such that the num-
ber of red points covered by SR plus the number of
blue points covered by SB is maximized. We consider
also a similar problem of finding two isothetic squares
SB and SR of given sizes with disjoint interiors such
that the number of red points covered by SR plus the
number of blue points covered by SB is maximized.
In what follows, and to avoid repetitions, a bi-colored
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point set is a point set such that all its elements are
colored red or blue.

In [10] the following problem is considered: given
a bi-colored point set Pn on the plane, find an axis-
parallel box that does not contain blue points and
maximizes the number of red points it covers. An
O(n2 log n) time algorithm is presented for solving
this problem.

In [1] a similar problem is studied: given a bi-
colored point set Pn in Rd, find a ball that maximizes
the number of red points it contains without contain-
ing any blue point in its interior. For d = 2, this
problem is solved in O(n2 log n) time. Monochromatic
variants of these problems were studied in [5, 8].

In Pattern Recognition and Classification problems,
a natural method to select prototypes to represent a
class is to performer cluster analysis on the training
data [7]. The clustering can be obtained by using sim-
ple geometric shapes such as circles or boxes. Recent
papers deal with the maximum bi-chromatic cover-
ing problem. The problem is the following: given a
bi-chromatic point set, the goal is to maximize the
number of points of a given color, say red, covered
by a given object while avoiding points of the second
color. In [1] and [13] circles and boxes respectively
are considered for the classification.

In some cases, requiring that the red (resp. blue)
covering ball avoid blue (resp. red) points may is
some cases lead to invalid classifications and make the
results obtained useless. This scenario can arise when
facilities interfere with each other, but their possible
users are scattered randomly on the plane. A possible
solution to this problem is to allow blue points in a
red ball and red points in a blue ball. In this paper we
introduce this criterion with fixed sizes for the circles
or boxes.

A central problem in facility location is to find the
best location for a facility to serve a set of users. Max-
imal covering disk problems are often the main crite-
ria used in facility location where in a natural way
a point is served by a facility if it is within a given
distance from it. In some cases the metric used is the
Euclidean distance, and in others the l∞ (box) met-
ric. Many of these problems also arise in operations
research [11]. The problem for locating a maximum
covering circle of a given size in a monochromatic set
was studied in [6].
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2 Two disjoint disks

Let P2n be a planar bi-colored point set with n blue
and n red points. In this section we study the problem
of placing two disks, one red disk CR and one blue disk
CB in such a way that their interiors are disjoint, and
the number of red points covered by the red disk plus
the number of blue points covered by the blue disk is
maximized. In this section we prove:

Theorem 1 Finding the positions for CR and CB

such that the number of red points covered by CR

plus the number of blue points covered by CB is max-
imized can be done in O(n3 log n) time.

To facilitate our presentation we will assume that
the disks are the same size, i.e., equal radii, say r.
Assume first that CR and CB are placed on the plane
such that CR (resp. CB) covers a subset R1 (resp.
B1) of red (resp. blue) points of P2n.
In what follows, when we say that a disk CR or

CB has some points on its boundary, we shall assume
that those points have the same color as the disk.
With this in mind, we state the following result (see
Figure 1):

Lemma 2 The disks CR and CB can be moved to a
new position in the plane such that either: i) one of
the disks has at least two points on its boundary and
the other one has at least one point on its boundary,
or ii) each disk has only one point on its boundary
and these points are collinear with the centers of the
disks.

.....................
h

.....................

....................

✻

❄

p1

p2

p1

p2

a) b)

.....................

CR

CB CB

CR

Figure 1: Points in the boundaries of the disks.

Constructing an arrangement of red and blue circles

Let Pn be a bi-colored point set on the plane. For
each red point ri (resp. blue point bj) we consider

the red (resp. blue) circle with center in ri (resp. bj)
and radius r. Let A be the arrangement of the 2n
red and blue circles. As the circles are closed Jor-
dan curves such that any of them intersect in at most
two points, the following results can be applied to the
arrangement A.

Theorem 3 [12, 4, 5] The following statements hold
for A: 1) The combinatorial complexity of a single
face in A is at most λ2(n) = O(n). 2) The combinato-
rial complexity of the zone of a circle inA isO(nα(n)).
3) A can be computed in O(n2) time or using the
sweep-line algorithm of Bentley and Ottmann [3] in
O(n2 log n) time.

Notice that a circle can contribute more than one
arc to a cell of A. Associate in A the pair of numbers
(nrj , nbj) to each cell j such that nrj (resp. nbj) is the
number of red (resp. blue) convex arcs which belong
to the boundary of j. Clearly a circle of radius r with
center at any point x in a cell j covers exactly nrj red
points and nbj blue points (Figure 2). Using a line-
sweep algorithm, we can compute the pair (nrj , nbj)
associated to each cell j in O(n2 log n) time.

(2, 1)

x ✴

Figure 2: Arrangement A.

Pre-processing a circle-arrangement

For each point pk ∈ P2n, the locus ak of centers of
circles passing through pk with radius r defines a circle
with center at pk and radius r.
By Theorem 3, each ak is split into at most O(n)

arcs, each associated to a cell j of A. We label each
of these sub-arcs with the pair (nrj , nbj) of its as-
sociated cell. We store this information for ak in a
segment tree [2] so that we can obtain for any sub-
arc SC of ak the sub-arc of A contained in ak that
intersects SC and maximizes the number nri or nbj ,
which is the maximum number of red or blue points
covered by a circle of radius r with center in ak, in
O(log n) time. For each circle ak, the segment tree
uses O(n log n) space and can be built in O(n log n)
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time. Doing this at a pre-process stage and storing the
information for all the circles of A takes O(n2 log n)
time and O(n2 log n) space.

The algorithm

We now show how to compute the centers of the two
disks CB and CR such that the sum of the number
of red points and blue points covered respectively by
CB and CR is maximized.

two-disks-equal-radii-algorithm

1. Compute A. For each cell j of A compute the
pair (nrj , nbj) and the segment trees for the cir-
cles ak above.

2. By Lemma 2 we can find CB and CR as follows:

(a) For any red point pi and any blue point pj

compute the circles CR(i) and CB(j) (having
pi and pj respectively on their boundaries)
of radius r with centers on the line joining
pi to pj , and at distance |pi − pj | + 2r. In
O(n) time, compute the number or red and
blue points contained in CR(i) and CB(j) re-
spectively. Keep the pair that maximizes
the number of red points in CRi

plus the
number of blue points in CB(j).

(b) For any circle CR(i,j) of radius r and cen-
ter c(i, j) that passes through a pair of red
points pi, pj in P2n, do the following: for
any blue point pk at distance greater than
or equal to r from c(i, j), compute in con-
stant time, the sub-arc a′k of the circle ak

consisting of all the points of ak at distance
greater than or equal to r from c(i, j). Us-
ing the information stored in the segment
tree of ak in O(log n) time, get the sub-arc
of ak in A that intersects a′k with the largest
nbi, which corresponds to a disk CB with ra-
dius r and center on a′k that maximizes the
number of blue points it contains. Compute
the numbers of red and blue points covered
by CR(i,j) and CB respectively, keeping the
best solution, see Figure 3. Do the same for
circles of radius r that pass through two blue
points, and keep the best overall solution.

Clearly the best of the solutions obtained in 2(a)
and 2(b) solves our problem.

Analysis of the algorithm. Step 1 of the algorithm can
be done in O(n2 log n) time, step 2(a) can be done
in O(n3) time. Finally, step 2(b) takes O(n log n)
time per pair of points, i.e., O(n3 log n) total time,
assuming a pre-process of O(n2 log n) time for com-
puting the segment trees. Thus the algorithm runs

CR(i,j)

....
....
....
.

r

.........................

r

ak

pk

pi c(i, j)

pj

Figure 3: Locus ak of centers of circles C2.

in O(n3 log n) time. It is easy to see that with some
slight modifications we can drop the condition that
the two circles have the same size. This concludes the
proof of Theorem 1.

3 Two disjoint axis-parallel squares

In this section we study a similar problem in which in-
stead of finding two circles CR and CB , we now want
two isothetic squares SB and SR of given sizes with
disjoint interiors such that the number of red points
covered by SR plus the number of blue points covered
by SB is maximized. As in the previous section, we
restrict ourselves to squares of the same size, i.e. unit
squares. This condition can be lifted easily, leaving
the results unchanged. It is easy to see that a simi-
lar result is valid for two disjoint quadrilaterals with
pairwise parallel sides with given directions. Assume
that the red points of P2n are labeled r1, . . . , rn such
that for i < j the x-coordinate xi of ri is smaller than
the x-coordinate of rj . Assume a similar labeling for
the blue points b1, . . . , bn of P2n.

3.1 Two disjoint axis-parallel unit squares

Let SR and SB be the elements of an optimal solution.
Observe first that since SR and SB are isothetic, there
is a horizontal or vertical line l that separates them.
Assume that l is vertical, and that SR is to the left
and SB to the right of l. Slide SR to the left until its
right side meets a red point. Observe that since SR

is in an optimal solution, the number of red points
it covers does not change. Thus we can assume that
SR contains a red point on its right side. Similarly
we can assume that SB contains a blue point on its
left edge. Using these observations, we now outline a
process to find an optimal pair SR and SB in O(n2)
time. First order the red and the blue points of P2n

according to its y-coordinate.
For each red point ri ∈ P2n, find the unit square

containing ri on its right side which contains the max-
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imum number of red points in P2n. This can be done
in linear time as follows.
First find the set Ri of red points to the left of ri

within the vertical strip ST of unit width bounded
to its right by l. Find the unit square S contained
in ST such that ri is on its top side, and count the
number of red points it contains. Now slide S from
bottom to top (keeping it within ST ) until it reaches
a position in which ri lies on its bottom edge. While
sliding S, keep track of the number of red points it
contains as they enter or leave S. This can be done
easily in linear time using the order of the red points
of P2n according to its y-coordinate. At the end of
this process, we have identified the square containing
ri on its right side that contains the maximum number
mri of red points.
In a similar way we can process the blue points of

P2n such that for each blue point bj we find a square
containing bj on its left edge, and containing the max-
imum number mbj of blue points.
For each ri let mr(i) = max{mrk ; k ≤ i}. The set
{mr(i) : i = 1, . . . , n} can be found in linear time
with a single scan of the set of red points from left to
right. In a similar way, we can find the set of values
{mb(j) : j = 1, . . . , n} such that mb(j) = max{mbk :
k ≥ j}.
Using the lists mr(1), . . . ,mr(n), mb(1), . . . ,mb(n)

and traversing all the points (blue and red) of P2n

from left to right we can find an optimal pair of
squares SR and SB in linear time. For brevity, the
details are left to the reader. Full details appear in a
longer version of this paper. Proceeding in a similar
way when SB is to the left of l and SR to its right, or
when a horizontal line separates SR and SB we obtain
the following theorem.

Theorem 4 Finding two axis-parallel unit-squares
with disjoint interiors such that the sum of the red
points covered by SR plus the number of blue points
covered by SB is maximized can be done in O(n2)
time.

Theorem 5 The two axis-parallel unit-squares with
disjoint interiors such that the sum of the the red
points covered by SR plus the number of blue points
covered by SB is maximized requires Ω(n log n) time
under the algebraic computation tree model.

The lower bound can be proved by a reduction to
the uniform gap problem [9].
To close we would like to mention that using similar

techniques as those in this section, we can obtain the
following result:

Theorem 6 Let Pn be a set of n points in the plane.
The problem of finding three axis-parallel rectangles

(not necessarily of the same size) with disjoint interi-
ors such that the number of points of Pn covered by
them is maximized can be solved in O(n3) time.
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Maximum Line-Pair Stabbing Problem and its Variations∗

Sebastian Böcker Veli Mäkinen†

Abstract

We study the Maximum Line-Pair Stabbing Problem:
Given a planar point set S, find a pair of parallel lines
within distance ε from each others such that the num-
ber of points of S that intersect (stab) the area in be-
tween the two lines is maximized. There exists an al-
gorithm that computes maximum stabbing in O(|S|2)
time and space. We give a more space-efficient solu-
tion; the time complexity increases to O(|S|2 log |S|),
but the space reduces to O(|S|). Our algorithm also
extends to a dual problem where one searches for a
line stabbing maximum number of variable size cir-
cles; as far as we know, this problem has previously
been studied only on fixed size circles.
A variant of the stabbing problem equals a one-

dimensional point set matching problem under trans-
lations, scalings, and errors. We study a version of
this problem, where the matching has to be a one-
to-one mapping. Existing techniques based on incre-
mental maintenance of maximum matching using aug-
menting paths yield O((mn)3) time solution, wherem
and n are the sizes of the point sets to be matched.
Our new algorithm achieves O((mn)2(m + n)) time.
The improvement is based on an observation that in
our case the match-graph has a regular shape, and the
maximum matching can be updated more efficiently.

1 Introduction

There are three dual ways to describe the Maximum
Line-Pair Stabbing Problem (see Fig. 1):

• Given a set of points, find a pair of parallel lines
within distance ε from each others such that the
number of points in between the lines (including
them) is maximum. For short, the resulting line-
pair is said to stab maximum number of points.

• Given a set of circles with diameter ε, find a line
that goes through maximum number of them.

• Given a set of lines, find a vertical line segment
starting at point (x, y) of length δ(x) that crosses
maximum number of lines. (Function δ will be
defined later.)

∗Technische Fakultät, Universität Bielefeld, Germany,
{boecker,veli}@cebitec.uni-bielefeld.de. Supported by
the ‘‘Deutsche Forschungsgemeinschaft’’ (BO 1910/1-3)
within the Computer Science Action Program.

†Also partially supported by the Academy of Finland.

Figure 1: Stabbing points with a line-pair (left) and
stabbing circles with a line (right).

Our motivation to study the problem comes from
the calibration of Mass Spectrometry data [4]. There
we basically have two sets of real values, one corre-
sponding to the theoretical reference spectrum, and
one for measured spectrum. We know that there is a
linear function mapping the measured values close to
the reference values. One way to find such transfor-
mation is to map each pair (reference value, measured
value) into a plane, and find a line-pair stabbing max-
imum number of points.
The maximum stabbing problem has been studied

earlier by Chin, Wang, and Wang [6]. They gave a
quadratic time and space algorithm that is based on
the third dual interpretation given above.
We use the same dual mapping in our algorithm as

[6], but in a different way. The consequence is that
we are able to manage with linear space, but the time
complexity increases by a logarithm factor.
There is also an indirect way to solve the problem

using geometric range query data structures. This
solution is conceptually easiest to understand, but it
also uses nearly quadratic space.
Returning back to the motivation [4] on two sets of

real values, we note that the maximum stabbing prob-
lem is an over-generalization of that problem; instead
of restricting by ε the Euclidean distance between the
two lines, one can restrict the distance in the one-
dimensional projection. As such the problem is not
well-defined as it has a degenerate optimum solution.
We study a robust variant of this problem, where we
require that the linear function mapping one set to the
other maximizes the number of one-to-one matches.
This problem can be solved using existing techniques
for incremental bipartite matching. We give a new,
one order of magnitude faster, solution to the prob-
lem.
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2 Maximum Stabbing using Half-Space Range
Counting Queries

Let S ⊂ R2 be a point set and ε > 0 a given param-
eter defining an instance of the maximum line-pair
stabbing problem throughout this paper. In the fol-
lowing, we derive an O(|S|2 log |S|) time solution to
the problem using data structures for half-space range
searching [1].
Let us denote by L the set of feasible line-pairs,

i.e. those pairs of parallel lines within distance ε from
each others. The solution is as follows:

(i) Build the data structure of Chazelle [5] as pointed
out in [1, Theorem 4.4, p. 24] for half-space range
counting queries on S. The data structure can
be constructed in O(|S|2) time and it occupies
O(|S|2/ log2 |S|) space. For any line, it gives the
number of points on either side of it in O(log |S|)
time.

(ii) Construct the set L ⊂ L of representative line-
pairs as follows. On each pair of points of S, pair
the line going through these points with the two
parallel lines at ε distance from it. Add these two
line-pairs to L. Also, on each pair (p, s) of points
of S having distance greater or equal to ε, add
the (two) line-pair(s) to L formed by the parallel
lines at ε distance from each others such that one
line goes through p and one through s.

(iii) Make two queries on the data structure on each
line-pair in L, to compute how many points of S
intersect the area in between the lines.

(iv) Choose the line-pair that obtains the maximum
count.

The correctness of the method follows using a shifting
argument to show that it is enough to consider the set
of representative line-pairs.
The algorithm makes O(|S|2) queries each tak-

ing O(log |S|) time, giving overall running time
O(|S|2 log |S|). The space usage is O(|S|2/ log2 |S|).

3 Direct Solution to Maximum Stabbing Problem

We solve the problem using the third dual inter-
pretation mentioned in the introduction. We map
each point p = (px, py) ∈ S into a line p∗ : y =
pxx − py. A line E : y = mx + b is mapped
into a point E∗ = (m,−b). Consider another line
κ : y = mx + (b + δ(m)) parallel to E, where δ(m)
is defined so that the distance of κ and E is ε. That
is, δ(m) = ε

√
12 +m2. This line is mapped into a

point κ∗ = (m,−b − δ(m)). One easily notices, that
the parallel lines in between κ and E, are mapped into
a line segment m× [−b− δ(m),−b]. Hence, our orig-
inal problem equals that of finding a line segment

m × [−b − δ(m),−b] such that the number of lines
it intersects is maximal, over all choices of m and −b.
We are ignoring vertical line-pairs for the moment.
Let us now derive the algorithm that finds the opti-

mum values for m and −b in time O(|S|2 log |S|) and
space O(|S|). Using again a shifting argument we no-
tice that (m,−b) can be chosen so that −b = pxm−py

for some (px, py) ∈ S. Still our space of choices for m
and −b is infinite. To make it finite, we notice that
fixing two lines partitions the range of m along one
line into constant number of relevant ranges.
To be more precise, let us denote by S∗ the set of

lines that are images of points in S. Consider two
lines p∗ : pxx − py and q∗ : qxx − qy of S∗, and the
case where (m,−b) is chosen so that −b = pxm− py.
Equation

pxm− py − δ(m) = qxm− qy (1)

has only constant number of solutions (if any), which
means that there are only constant number of ranges
R ⊆ R such that m ∈ R if and only if point
(m, qxm − qy) is included in the line segment m ×
[pxm− py − δ(m), pxm− py]. Furthermore, the solu-
tions to (1) can be found in constant time. Now, let
R(p∗) be the multiset of ranges of line p∗ formed by
repeating the above process for each q∗ ∈ S∗. After
sorting the endpoints (y-coordinates) of the ranges in
R(p∗) into ascending order, attaching to each end-
point value +1 or −1 depending on whether the end-
point is a start or end of a range, one can scan
through the endpoints keeping a counter how many
ranges are active at each phase. Endpoints with the
same coordinates are sorted so that those associated
with +1 precede those associated with −1. The end-
point associated with the largest count gives the op-
timal choice for (m,−b) restricted to values such that
−b = pxm − py. The same process can be repeated
constructing R(p∗), sorting it, and computing the
largest count, for each p∗ ∈ S. The optimum choice
for (m,−b) corresponds then to the overall largest
count.
We have now found the optimum line segment

m×[−b−δ(m),−b] for the dual problem and hence we
have found the line-pair stabbing the maximum num-
ber of points of S for the primal problem. The space
requirement is that needed for storing set of ranges
R(p∗) at each phase, i.e. O(|S∗|) = O(|S|). The time
requirement is that of sorting R(p∗) on each p∗ ∈ S∗,
i.e. O(|S| · |S| log |S|) = O(|S|2 log |S|). Finally, we
note that if the solution is a vertical line-pair, our
algorithm does not find it because the mapping to
the dual plane does not apply for such lines. How-
ever, in this case, a simple vertical sweep is enough to
compute the maximum stabbing over the linear num-
ber of relevant vertical line-pairs. This will only take
O(|S| log |S|) time, which is negligible.
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In the full version, we show how to handle variable
size circles in the second dual interpretation, giving:

Theorem 1 Given a set C of variable size circles on
the plane, one can find the line going through max-
imum number of them in time O(|C|2 log |C|) and
space O(|C|). The maximum line-pair stabbing prob-
lem is a special case, and can be solved within the
same time and space bounds.

4 One-Dimensional Point Set Matching under
Translations, Scalings, and Errors

As explained in the introduction, when restricting to ε
distances measured in the one-dimensional projection,
the stabbing problem has a simpler interpretation as
a point set matching problem: Given two sets of real
values, i.e. one-dimensional point sets, A,B ⊂ R, find
a linear function f : R→ R such that |Mf (A,B, ε)| is
maximum, where Mf is a matching of A and B such
that for each (a, b) ∈ Mf holds |f(a) − b| ≤ ε. We
call this variant of the stabbing problem the linear
one-dimensional point set matching problem.
To solve the problem, consider a set F of repre-

sentative linear functions constructed as follows: Let
B(ε) = {p − ε, p + ε | p ∈ B}. For each quadru-
ple (a′, a, b′, b) such that a′, a ∈ A with a′ < a
and b′, b ∈ B(ε) with b′ < b, add function f(x) =
b−b′

a−a′ (x − a′) + b′ to F . Each function in F defines
a translation and scaling that maps two points of A
into ε distance from some points of B. Conditions
a′ < a and b′ < b prevent reflections. Again us-
ing the shifting argument, one observes that this is
the sufficient set of transformations to be examined.
The size of this set is O((mn)2), where m = |A|
and n = |B|. To find the optimum transforma-
tion f , we construct all Mf for f ∈ F incremen-
tally, and choose the f that corresponds to the largest
Mf : For each representative translation b′−a′, where
a′ ∈ A and b′ ∈ B(ε), construct the set of scale ranges
R(a′, b′) = {[ b−ε−b′

a−a′ ,
b+ε−b′

a−a′ ] | a ∈ A, b ∈ B}. Sort the
endpoints of ranges in R(a′, b′) into increasing order,
and scan through them incrementing and decrement-
ing a counter analogously as explained before. This
gives the optimum scale for the fixed translation. Re-
peating the process for all representative translations
gives the overall optimum transformation. Noticing
that the scale ranges corresponding to a fixed a ∈ A
can be obtained in sorted order by scanning through
sorted B, the algorithm can be implemented to run
in O((mn)2 logm) time by merging the m sorted lists
at each phase.

4.1 One-to-one Mapping Case

The solution Mf obtained with the above algorithm
does not necessarily define a proper mapping between

A and B; a point of A may be mapped into ε distance
from several points of B, and vice versa. In fact, on
most instances there is a degenerate optimum solution
mapping all points of A into ε-distance from one point
of B. In applications, such degenerated cases can be
avoided by restricting the search space. However, a
more rigorous way to define the problem is to search
for Mf that contains the largest one-to-one mapping.
A brute-force algorithm to solve the one-to-one

mapping case is as follows: At each phase of the previ-
ous algorithm that constructs sets Mf incrementally,
construct a bipartite graph Gf having edges between
a ∈ A and b ∈ B if and only if (a, b) ∈ Mf . Solve
the maximum matching problem on each Gf , and
choose f corresponding to the overall largest maxi-
mum matching.
Notice that the graphs Gf change only by one edge

at each incremental step. Alt et al. [3, p. 246] describe
a solution to a similar geometric problem exploiting
this fact: As the maximum matching can only change
by one at each phase, it is enough to check whether
the new graph has an augmenting path. If so, use it to
produce the new maximum matching. Otherwise the
maximum matching does not change. Checking for an
augmenting path takes |Mf | time. In the worst case
each Mf is of size O(mn), and the whole algorithm
takes O((mn)3) time.
The above technique yields the best known upper

bound for the problem studied in [3]. Many conse-
quent papers have studied different variations of the
problem to avoid the costly maximum matching com-
putation, like assuming disjoint error regions, trans-
formations minimizing the Hausdorff distance, etc.
For references, see survey [2].
Our problem, however, has an extra property that

allows a more efficient way to find the maximum
matchings. We will next show how to find the max-
imum matching in O(m + n) time using a greedy
method. To describe this solution, we first introduce
some helpful notions to characterize our problem.
We say that a binary matrix B(1 . . .m, 1 . . . n) con-

taining values 0 and 1 is a staircase matrix if the
following conditions hold:

(i) Each row of the matrix contains at most one run
of 1s, i.e. a maximal range of consecutive cells
each containing value 1.

(ii) Let i′ and i, i′ < i be two rows containing a
run of 1s. Let the run at row i′ cover indexes
ci′ , ci′ + 1, . . . , di′ and the run at row i cover in-
dexes ci, ci+1, . . . , di. Then ci′ ≤ ci and di′ ≤ di.

Notice that from (i) and (ii) follows identical condi-
tions on columns, i.e. B is a staircase matrix if and
only if BT is staircase matrix.
Let A = a1a2 · · · am and B = b1b2 · · · bn be the two

point sets to be matched. We assume that the point
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sets are given sorted in ascending order. Let us con-
sider a fixed Mf such that f(x) = s(x − a′) + b′,
where s = b−b′

a−a′ ≥ 0. Consider a match matrix
M(1 . . .m, 1 . . . n) havingM(i, j) = 1 if (ai, bj) ∈Mf ,
otherwise M(i, j) = 0. It follows easily from defini-
tions (proof omitted):

Lemma 2 The match matrix M is a staircase ma-
trix.

On fixed translation and scale, our problem reduces
to finding a maximum size one-to-one matching R of
rows and columns of M such that for each (i, j) ∈ R
holds M(i, j) = 1. Let R∗ be one such maximum
matching. We next show that one can obtain in
O(m + n) time a matching R that is as good as any
R∗. To show this, we first prove (in Lemma 3) that
there is always an order-preserving matching R̂ that
is as good as R∗; matching R is order-preserving if, for
every pair (i′, j′), (i, j) ∈ R, we have i′ ≤ i if and only
if j′ ≤ j. Then Lemma 4 constructs the algorithm.

Lemma 3 There is a maximum matching R̂ that is
order-preserving.

Proof. We show that there is an algorithm to con-
vert any maximum matching R∗ into an equally good
order-preserving matching in finite number of steps:
Let Ř be the set of all pairs in R∗ that have at least
one conflict with a pair in R∗: (i′, j′) ∈ Ř if and
only if there is (i, j) ∈ R∗ such that pairs (i′, j′)
and (i, j) conflict the order-preserving condition. Let
(imin, j

′) ∈ Ř be the pair having the smallest index
imin, and (i, jmin) the conflicting pair for (imin, j

′)
having the smallest index jmin. Since M(imin, j

′) =
M(i, jmin) = 1, we infer M(imin, jmin) = M(i, j′) =
1 from the staircase property. Hence, we can ex-
change the pairs to remove the conflict, i.e. R∗ ←
(R∗\{(imin, j

′), (i, jmin)})∪{(imin, jmin), (i, j′)}. Af-
ter the exchange, R∗ is still a maximummatching, and
contains one more pair, namely (imin, jmin), that is
not conflicting with any other pair. Moreover, when
the process is repeated with the new R∗, the new set
Ř contains only pairs (i, j) such that i > imin, where
(imin, j

′) is the pair selected in the previous step. This
follows from the fact that R∗ is a one-to-one match-
ing. Thus, after at most |A| rounds, set Ř is empty,
and R∗ is order-preserving and has the same matching
score as the original one. �

Lemma 4 A maximum matching R can be obtained
greedily in O(m+ n) time.

Proof. Let R̂ be any a order-preserving maximum
matching. Such R̂ exists by Lemma 3. Let (i′, j′)
be the first pair in R̂, having the smallest index i′.
We can replace it by (i′, ci′) where cx denotes the
first column having M(x, cx) = 1 at row x. Let

(i, j) be the second pair in R̂. We can replace it
by (i,max(ci′ + 1, ci)). Such replacement is always
possible due to the staircase property. The same
replacement can be applied inductively, obtaining
a new order-preserving maximum matching, where
the matching column for each row in the originat-
ing matching R̂ is picked greedily. To complete the
argument, we note that one can pick the rows also
greedily due to the staircase property without chang-
ing the cardinality of the matching: We can traverse
row by row choosing the first available matching col-
umn, comparing three values: previous matched col-
umn, start of the run of 1s at the row, and end of
the run of 1s at the row. This takes overall O(m+n)
time, and we obtain a maximum matching R. �

Recall the incremental algorithm that updates the
graph Gf scanning scales from left to right for a fixed
translation. We can instead represent the graph Gf as
a match matrixM . As proven before,M is a staircase
matrix in each scale. Deleting or inserting an edge in
Gf corresponds to updating the value of a cell in M .
Each update extends or reduces a run of 1s at some
row, and hence we can maintain for each row pointers
to the start and end of the run in constant time. We
can repeat the greedy algorithm of Lemma 4 at each
scale. We conclude:

Theorem 5 The linear one-dimensional one-to-one
point set matching problem on two point sets A and
B of sizes m and n, respectively, can be solved in
O((mn)2(m+ n)) time.
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The Fastest Way to View a Query Point in Simple Polygons

Ramtin Khosravi∗ Mohammad Ghodsi†

Abstract

In this paper, we study the problem of finding the
shortest path from a given source point in a sim-
ple polygon to some point visible from a given query
point. We will present an algorithm based on the
notion of funnels in simple polygons. The algorithm
preprocesses the input containing a simple polygon
and a source point to produce a data structure to an-
swer the queries in logarithmic time. The time and
space required for preprocessing is quadratic in size of
the simple polygon.

1 Introduction

The shortest path problem is a well-known problem
for the domain of simple polygons. The problem is
studied with several variations. One of the these vari-
ations is to constrain the shortest path to view a query
point from at least one point on the path [6, 5]. An-
other similar constraint is studied in [4] where the
path is required to meet a target polygon where an
O(n) algorithm is given for the problem. In this pa-
per, we study the problem of finding the shortest path
must be taken from a given source point in a simple
polygon to view a query point.
To define the problem more precisely, let P be a

simple polygon with n vertices. Suppose a source
point s is given in P . The goal is to preprocess the
input to answer queries of this type: given a query
point q ∈ P , find the shortest distance one needs to
travel from s to see q. More precisely, we want to find
a point c visible from q that has the shortest distance
from s. Note that if the query point q is visible from
s, the point c is the s itself, so throughout the pa-
per, we assume the query point q is given somewhere
outside the visibility polygon of s.
The query can be answered in O(n) time without

preprocessing [4], so our goal is to find a logarithmic
query time. Since the complexity of the path may
be O(n), we define two types of queries: one to find
out the shortest distance, and another to report the
shortest path. Our goal is to answer the first type
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of queries in logarithmic time, and the second type
in O(k + log n), where k is the length of the optimal
path. In this paper, we consider the first type of query
and will provide comments on the second type when
necessary.
The algorithm relies on the notion of funnel defined

in [1]. In section 2 we study some properties of the
funnel related to the problem under considerations.
Our algorithm, presented in section 3, is based on the
fact that the desired path always ends on a window
of the visibility polygon of q. So, during the prepro-
cessing phase, we compute a partition of all possible
windows of visibility polygons in P into sets such that
knowing the set a window belongs to, we can answer
the ending point of the path efficiently.

2 Basic Properties

We use the notation Vp for the visibility of a point p ∈
P , π(x, y) for the shortest path between two points x
and y inside P , SPT(s) for the shortest path tree from
s, and SPM(s) for the shortest path map of P with
respect to s. Removing Vq from P results in a number
of disconnected regions we call invisible regions. Each
invisible region has exactly one edge in common with
Vq called a window. Since s is invisible from q, it lies
in an invisible region. It is easy to see that the point
c lies on the window w separating s from Vq. More
precisely, c is the point on w that has the shortest
distance to s (Fig. 1). From now on, we refer to such
a point c as the optimal point c(w) to show explicitly
the window it belongs to.
We use the notion of funnel as defined in [1]. As-

sume a and b be the endpoints of w. Define the funnel
F (w) as π(r, a)∪π(r, b) where r is the deepest common
ancestor of a and b in the last common vertex between
the two paths π(s, a) and π(s, b) when considered from
s to a and b (Fig. 2). We assume the vertices on
the funnel are named a = v0, v1, . . . , vk, vk+1 = b in
the ordered traversal from a to b. The region en-
closed between F (w) and w can be decomposed into
triangular regions by extending the edges of F (w)
to intersect w. Assume the extension of the edge
vivi+1(0 ≤ i ≤ k) intersects w in xi (hence, x0 = a
and xk = b). The shortest path from s to points on
the segment xixi+1 passes through vi as the last ver-
tex. Denote the sequence of angles between the exten-
sion edges and the window w by (θ0, θ1, . . . , θk), such
that θi = ∠bxivi(0 ≤ i ≤ k−1) and θk is 180◦−∠abvk.
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q

a

s

b
c

Figure 1: The shaded part is Vq. The window ab
separates s and Vq. The shortest path between s and
q is shown with heavy dashed segments. c is the point
with shortest distance to s that is visible from q.

Outward convexity of the paths from the cusp of the
funnel to its endpoints leads to the following observa-
tion:

Observation 1 The sequence of angles between the
extension edges and the window w (θ0, θ1, . . . , θk) is
an increasing sequence.

We can characterize the optimal contact point c(w)
in the following way. For the sequence of angles men-
tioned in the above observation, one of the following
cases holds:

1. There exists an angle θi = 90◦. In this case,
c(w) = xi.

2. There exists a pair of adjacent angles θi < 90◦

and θi+1 > 90◦. In this case, c(w) is the foot of
the perpendicular from vi+1 to w.

3. All angles in the sequence are greater than 90◦.
In this case, c(w) = a.

4. All angles in the sequence are less than 90◦. In
this case, c(w) = b.

3 The Algorithm

When receiving a query point q, we take the following
two steps:

1. Compute the window w that separates s from Vq.

2. Compute the optimal point c(w).

Both steps must be done in logarithmic time to have
an efficient query-time. To find the window in the
first step, observe that the window separating s from
Vq is specified by the last vertex of P of the shortest
path from s to q (Fig. 1). Thus, having computed

a b

v1

v2

r = v3

v4

v5

x1 x2 x3 x4

Figure 2: The funnel F (w) over the window w = ab.
The optimal point c(w) is the foot of the perpendicu-
lar from v2 to ab.

SPM(s) during the preprocessing phase, we can find
the window w in O(log n) time using a standard point-
location algorithm. For the second step, we must pre-
compute the optimal contact point on all segments in
P that can be a window of a query point. We re-
fer to such a segment of P as a separating window.
Informally, a separating window is a window of the
visibility polygon of an arbitrary point x that sepa-
rates from Vx.
To specify the set of all windows separating s from

possible query points, we consider each reflex vertex
of P and find the set of separating windows having
that vertex as an endpoint. Assume a is a reflex ver-
tex of P . Considering all possible query points inside
P , we may have a set of windows associated with a
which are defined by the rays emanating from a in two
angular intervals between the extension of each edge
incident to a and the other edge (Fig. 3(a)). Not all
the windows defined by the two intervals mentioned
are separating. To restrict the set to separating win-
dows, consider x as the last vertex the shortest path
π(s, a) passes through. If x lies outside both angular
intervals, then there is no separating window around
a. Otherwise, assume that it lies inside the interval
defined by the extension of e1 and e2 where e1 and e2

are the edges incident to a (Fig. 3(b)). The angular
interval defining the set of separating windows around
a is bounded by the extension of e1 and the ray ema-
nating from a passing through the x. We denote this
set of separating windows by Sep(a).
For a reflex vertex a, our goal is to partition Sep(a)

into a number of sets such that knowing the set w
belongs to, we can find the optimal point c(w) effi-
ciently. To do this, we use a radial sweep around a.
There are two kinds of events in the sweep process:
angles at which the last vertex of π(s, c) changes (in-
terval events), and angles at which the structure of
the funnel changes (funnel events). These events de-
fines the desired partition. We consider the two types
of events subsequently.
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a

(a)

a

x
s

e1 e2

(b)

Figure 3: (a) Two angular intervals defining windows
around a reflex vertex a. (b) The single interval defin-
ing separating windows around a. x is the last vertex
on π(s, a).

a b

u1

u2

u3

u4

u5

E0

E1

E2

E3

Figure 4: Partition of the separating windows around
a. The angular interval between E0 and E3 defines the
set of all separating windows. E1 and E2 are perpen-
diculars to v3v2 and v3v4 extensions respectively.

3.1 Interval Events

Suppose Sep(a) is defined by the angular interval
[α, α′]. For α ≤ ϕ ≤ α′, let wϕ denote the window
with endpoint a and angel ϕ. Consider the perpen-
diculars from a to two adjacent extension edges vixi

and vi+1xi+1. For a window wφ that lies between
these two perpendiculars, we can say θi < 90◦ and
θi+1 > 90◦. So, the optimal point c(wφ) is the foot
of the perpendicular from vi+1 to wφ. For example,
in Figure 4, E1 and E2 are perpendiculars to the ex-
tensions of v3v2 and v3v4 respectively. Hence, for an
arbitrary window between E1 and E2, the optimal point
is the foot of the perpendicular from v3 to the win-
dow. This way, the set of perpendiculars to the ex-
tension edges defines the interval events in which the
last vertex of π(s, c) changes. Since rotating a win-
dow towards the cusp of the funnel reduces the angles
made between the extension edges and the window,
the number of interval events is bounded by O(n).

a

x1
x2 x3

x4

x5

Figure 5: Funnel events for a reflex vertex a. The
angular interval between ax1 and ax5 defines the set
of all separating windows. The sweep starts from ax1.
Thick solid lines are the edges of P , thin solid lines are
the extension segments, dotted lines show the swap
window in different positions, and the dashed line is
an extension segment added after visiting ax4.

3.2 Funnel Events

Observe that the set of separating windows (Sep(a))
is a subset of the visibility polygon of a, Va bounded
to wα and wα′ . It is easy to see that the moments
at which the sweep window passes through the ver-
tices of Va, the structure of the funnel changes. So,
for any reflex vertex, there are at most O(n) funnel
events. The problem is to update the funnel efficiently
at these moments. We assume SPT(s) is computed
priory as well as SPM(s) and Va such that we may
traverse the vertices of Va in order. The key to ef-
ficient update is to start the sweep process from the
separating window closest to s. According to our no-
tation, either wα or wα′ has this property. Here, we
assume wα is the one.
Initially, we compute the funnel over wα. As the

sweep window rotates around a, we may encounter a
new vertex from Va, such as p. If p is not a reflex
vertex of P , the effect of this event is only the change
in the edge of P on which the non-fixed endpoint of
the sweep window moves. Otherwise, we have encoun-
tered a new node in SPT(s) and this may cause a ver-
tex added to the funnel. It is possible that the newly
added vertex deletes parts of the funnel too. This
happens when the parent of the added vertex was not
a leaf before adding the new vertex. For example,
in Figure 5, the initial funnel is built over ax1. New
vertices are added to the funnel as the sweep window
meets the points x2 and x3. At x4, a new vertex is
added with the dashed extension segment introduced
and some vertices are deleted from the funnel.
Note that we must keep track of the last reflex ver-

tex of Va visited. Having this, we can compute the
change that should be made to the funnel in constant
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time. Also, we must have the vertices of the initial
funnel in sorted order. This is possible if we make
the recursive calls made during the DFS traversal in
the shortest path algorithm sorted in some fixed di-
rection (e.g. clockwise). Since the funnel structure
used in the algorithm is stored in a finger search tree
[2], the list of vertices in the funnel can be arranged
in sorted order in linear time.
For a vertex a, we have a set of O(n) angular in-

tervals in sorted order so that upon receiving a query
window, we can find the interval it belongs to using bi-
nary search. Finding the interval the window belongs
to, we can compute its optimal point in constant time.
Summarizing the above discussions, we take the fol-

lowing steps during the preprecessing phase:

1. Compute SPT(s) and SPM(s)

2. For each reflex vertex a do the following:

(a) Compute Sep(a).

(b) Compute the portion of Va bounded by
Sep(a).

(c) Compute the initial funnels and the exten-
sion edges

(d) Perform the radial sweep starting from the
closest separating window to s.

The first step can be done in O(n) time using the
algorithm of [1]. Step (a) involves finding the last
vertex on π(s, a) and π(t, a) which can be done in
O(log n). The visibility computation in step (b) can
be done using the linear time algorithm of [7, 3]. The
funnel and the extension edges in step (c) are derived
directly from the SPMs in O(n) time. Step (d) in-
volves computing and handling both types of events
which are O(n) in total and needs constant time per
event. This leads to O(n) preprocess for each reflex
vertex. The partition for the reflex vertex is of size
O(n). As there are O(n) reflex vertices, the total pre-
processing time is O(n2) and O(n2) space is needed
to store the partitions.
Upon receiving a query, we find the window (w =

ab) separating s from the query point q in O(log n)
time (by finding q in SPM(s)). We perform a binary
search on the partition associated with the reflex ver-
tex a. Finding the optimal point c(w) takes constant
time. So we have our main result as the following:

Theorem 1 Given a simple polygon P and a source
point s inside P , we can preprocess the input in O(n2)
time and the same space to answer the queries of this
type in O(log n) time: given a query point q invisible
from s, find the point c with minimum distance to s
that is visible from q. The path from s to c can be
reported in additional time proportional to the length
of the path.

4 Conclusion

We presented an algorithm to preprocess the input
polygon in O(n2) time and space to answer the queries
to find the shortest distance to a point visible from a
query point in logarithmic time. Possible extensions
to this problem involves studying the problem when
the path is required to end to a given target point (t)
and the query point must be seen from a point during
the path. This makes us study the behavior of the op-
timal point based on two the funnels related to s and
t made over the window which is not a direct exten-
sion of the behavior regarding one funnel. Another
extension is to consider the query not just a point,
but another geometric object like a segment. For a
segment, the algorithm can still work considering the
appropriate window from the weak visibility polygon
of the segment. For more complex objects like a poly-
gon, the challenge is to find the appropriate window
from the visibility polygon. Once the window is com-
puted, the rest of the algorithm is similar to that of a
point.
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The Minimum Area Spanning Tree Problem

Paz Carmi∗ Matthew J. Katz†

Abstract

We define and study the Minimum Area Spanning
Tree (mast) problem. Given a set P of n points in
the plane, find a spanning tree T of P of minimum
area, where the area of a spanning tree is the area
of the union of the n − 1 disks whose diameters are
the edges in T . We prove that the minimum span-
ning tree of P is a constant-factor approximation for
mast. We then apply this result to obtain a constant-
factor approximation for the Minimum Area Range
Assignment (mara) problem and for the Minimum
Area Connected Disk Graph (macdg) problem. The
former problem is a variant of the power assignment
problem in radio networks, and the latter problem is
a related natural problem.

1 Introduction

We introduce and study the Minimum Area Spanning
Tree (mast) problem. Given a set P of n points in
the plane, find a spanning tree of P of minimum area,
where the area of a spanning tree T of P is defined
as follows. For each edge e in T draw the disk whose
diameter is e. The area of T is then the area of the
union of these n − 1 disks. Although this problem
seems natural (see also applications below), we are
not aware of any previous work on this problem.
One of the main results of this paper (presented in

Section 2) is that the minimum spanning tree of P is
a constant-factor approximation for mast. This is an
important property of the minimum spanning tree as
is shown below. (See, e.g., [3, 5] for background on
the minimum spanning tree.)
We apply the result above to two problems from a

class of problems that has received considerable at-
tention. The first problem is a variant of the power
assignment problem (also called the range assignment
problem). Let P be a set of n points in the plane,
representing n transmitters-receivers (or transmitters
for short). In the standard version of the power as-
signment problem one needs to assign transmission
ranges to the transmitters in P, so that (i) the result-
ing communication graph is strongly connected (that
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is, the graph in which there exists a directed edge
from pi ∈ P to pj ∈ P if and only if pj lies in the disk
Dpi is strongly connected, where the radius of Dpi is
the transmission range, ri, assigned to pi), and (ii)
the total power consumption (i.e., the cost of the as-
signment of ranges) is minimal, where the total power
consumption is

∑
pi∈P area(Dpi).

The power assignment problem is known to be NP-
hard (see Kirousis et al. [6] and Clementi et al. [2]).
Kirousis et al. [6] also obtain a 2-approximation for
this problem, based on the minimum spanning tree of
P, and this is the best approximation known.
Consider now the variant of the power assignment

problem where the second requirement above is re-
placed by (ii’) the area of the union of the disks
Dp1 , . . . , Dpn is minimal. We refer to this problem
as the Minimum Area Range Assignment (mara)
problem. In general, the presence of a foreign re-
ceiver (whether friendly or hostile) in the region
Dp1∪· · ·∪Dpn is undesirable, and the smaller the area
of this region, the lower the probability that such a
foreign receiver is present. In Section 3 we prove that
the range assignment of Kirousis et al. (that is based
on the minimum spanning tree) is also a constant-
factor approximation for mara.
Another related and natural problem for which we

obtain a constant-factor approximation (in the full
version of this paper) is the following. Let P be a
set of n points in the plane. For each point p ∈ P,
draw a disk Dpi of radius 0 or more, such that, (i) the
resulting disk graph is connected (that is, the graph
in which there exists an edge between pi ∈ P and
pj ∈ P if and only if Dpi ∩Dpj %= ∅ is connected), and
(ii) the area of the union of the disks Dp1 , . . . , Dpn is
minimal. We refer to this problem as the Minimum
Area Connected Disk Graph (macdg) problem. (See,
e.g., [4, 7] for background on intersection graphs and
disk graphs in particular.)
A potentially interesting property concerning the

area of the minimum spanning tree that is obtained
as an intermediate result in Section 2 is that the depth
of the arrangement of the disks corresponding to the
edges of the minimum spanning tree is bounded by
some constant. Notice that this property does not
follow immediately from the fact that the degree of
the minimum spanning tree is at most 6, as is shown
in Figure 2.
Finally, all the above results hold in any fixed di-

mension d (with obvious modifications).
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Figure 1: A minimum spanning tree is not necessarily
a minimum area spanning tree. (a) The minimum
spanning tree. (b) A minimum area spanning tree.

2 mst is a constant-factor approximation for mast

Let T be any spanning tree of P. For an edge e
in T , let D(e) denote the disk whose diameter is
e. Put D(T ) = {D(e) | e is an edge in T },

⋃
T =⋃

e∈T D(e), and σT =
∑

e∈T area(D(e)). Let mst

be a minimum spanning tree of P. mst is not nec-
essarily a solution for the Minimum Area Spanning
Tree (mast) problem; see Figure 1. In this section we
prove that mst is a constant-factor approximation for
mast, that is, area(

⋃
mst

) = O(area(
⋃

opt
)), where

opt is an optimal spanning tree, i.e., a solution to
mast.

q

Figure 2: A spanning tree T of degree 3, and a point
q (in the interior of a cell of the arrangement of the
disks in D(T )) of depth O(n).

We begin by showing another interesting property
of mst, namely, that the depth of any point p in the
interior of a cell of the arrangement of the disks in
D(mst) is bounded by a small constant. This prop-
erty does not follow directly from the fact that the
degree of mst is bounded by 6; see Figure 2. Let
mstp be a minimum spanning tree for P ∪ {p}. We
need the following known and easy claim.

Claim 1 We may assume that there is no edge (a, b)
in mstp, such that, (a, b) is not in mst and both a
and b are points of P.

Proof. Assume there is such an edge (a, b) in mstp.
Consider the path in mst between a and b. At least
one of the edges along this path is not in mstp. Let
e be such an edge. |e| ≤ |(a, b)|, since otherwise (a, b)
would have been chosen by the algorithm that com-
puted mst (e.g., Kruskal’s minimum spanning tree al-
gorithm [1]). Therefore, we may replace the edge (a, b)
in mstp by e, without increasing the total weight of
the tree. �

An immediate corollary of this claim is that we may
assume that if e is an edge in mstp but not in mst,
then one of e’s endpoints is p.
The proof of the following lemma appears in the

full version of this paper.

Lemma 1 σmst ≤ 5 area(
⋃

mst
).

Remark. A more careful analysis allows one to re-
place the 5 in the statement of the lemma above by 4
or perhaps even by 3. However, for our purpose 5 is
good enough.
Let opt be an optimal spanning tree of P, i.e., a

solution to mast. We use opt to construct another
spanning tree, st, of P. Initially st is empty. Let
e1 be the longest edge in opt. Draw two concentric
disks C1 and C3

1 around the mid point of e1 of diame-
ters |e1| and 3|e1|, respectively. Compute a minimum
spanning tree of the points of P lying in C3

1 , using
Kruskal’s algorithm [1]. Whenever an edge is chosen
by Kruskal’s algorithm, it is immediately added to st.
See Figure 3. Let S1 denote the set of edges that have
been added to st in this (first) iteration.
Next, let e2 be the longest edge in opt, such that

at least one of its endpoints lies outside C3
1 . As for

e1, draw two concentric disks C2 and C3
2 around the

mid point of e2 of diameters |e2| and 3|e2|, respec-
tively. Apply Kruskal’s minimum spanning algorithm
to the points of P lying in C3

2 with the following mod-
ification. The next edge in the sorted list of potential
edges is chosen by the algorithm if and only if it is
not in st and its addition to st does not create a cy-
cle in st. Moreover, when an edge is chosen by the
algorithm it is immediately added to st; see Figure 4
(a) and (b). Let S2 denote the set of edges that have
been added to st in this iteration.

C1

C3
1

e1

Figure 3: st after choosing e1.
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C1

C3
1C3

2

C2

e1e2

(a)

C1

C3
1

C3
2

C2

e1
e2

(b)

Figure 4: st after choosing e1 and e2. (a) One of the
end points of e2 is in C3

1 . (b) Both endpoints of e2

are not in C3
1 .

In the i’th iteration, let ei be the longest edge in
opt, such that there is no path yet in st between
its endpoints. Draw two concentric circles Ci and C3

i

around the mid point of ei, and apply Kruskal’s min-
imum spanning tree algorithm with the modification
above to the points of P lying in C3

i . Let Si denote
the set of edges that have been added to st in this
iteration. The process ends when for each edge e in
opt there already exists a path in st between the
endpoints of e.

Claim 2 For each i, Si is a subset of the edge set of
the minimum spanning tree msti that is obtained by
applying Kruskal’s algorithm, without the modifica-
tion above, to the points in C3

i .

Proof. Let e be an edge that was added to st dur-
ing the i’th iteration. If e is not chosen by Kruskal’s
algorithm (without the modification above), it is only
because, when considering e, a path between its two
endpoints already exists in msti. But this implies
that e could not have been added to st, since, any
edge already in msti was either also added to st or
was not added since there already existed a path in
st between its two endpoints. Thus, when e was con-
sidered by the modified algorithm it should have been
rejected. We conclude that e must be in msti. �

Claim 3 st is a spanning tree of P.

Proof. Since only edges that do not create a cycle
in st were added to st, there are no cycles in st.

Also st is connected, since otherwise there still exists
an edge in opt that forces another iteration of the
construction algorithm. �

Let C denote the set of the disks C1, . . . , Ck, and
let C3 denote the set of the disks C3

1 , . . . , C
3
k , where k

is the number of iterations in the construction of st.

Claim 4 For any pair of disks Ci, Cj in C, i %= j, it
holds that Ci ∩ Cj = ∅.

Proof. Let Ci be any disk in C. We show that for
any disk Cj ∈ C such that j > i, Ci ∩ Cj = ∅. From
the construction of st it follows that |ej |, the diam-
eter of Cj , is smaller or equal to |ei|, the diameter
of Ci. Moreover, at least one of the endpoints of ej

lies outside C3
i (since if both endpoints of ej lie in

C3
i , then, by the end of the i’th iteration, a path con-
necting between these endpoints must already exist
in st). Therefore, Cj whose center coincides with the
mid point of ej , cannot intersect Ci. �

Claim 5 σst = O(area(
⋃

opt
)).

Proof. Recall that σst = ΣiσSi
, where σSi

=
Σe∈Si

area(D(e)). We first show by the sequence of
inequalities below that σSi

= O(area(Ci)).

σSi
≤1 σmsti

≤2 5 area(
⋃

msti

) =3 O(area(C3
i ))

=4 O(area(Ci)) .

The first inequality follows immediately from Claim 2.
The second inequality is true by Lemma 1. Consider
Equality 3. Since all edges in msti are contained in
C3

i , it holds that
⋃

msti
is contained in a disk that

is obtained by expanding C3
i by some constant fac-

tor. It follows that area(
⋃

msti
) = O(area(C3

i )) =
O(area(Ci)).
Therefore,

σst = ΣiσSi
= ΣiO(area(Ci)) .

But according to Claim 4, the latter expres-
sion is equal to O(area(

⋃
C)), and, since C is

a subset of D(opt), we conclude that σst =
O(area(

⋃
opt

)). �

We are now ready to prove the main result of this
section.

Theorem 2 mst is a constant-factor approximation
for mast, that is, area(

⋃
mst

) ≤ c · area(
⋃

opt
), for

some constant c.

Proof.

area(
⋃

mst

) ≤1 σmst ≤2 σst ≤3 c · area(
⋃

opt

) .
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pk

pj

D(pi, pj)

Dpi (pi, pj)

D3(pi, pj)

Dpj (pj , pk)

pi

Figure 5: (pi, pj) ∈ mst; D(pi, pj) ∈ D(mst);
Dpi(pi, pj),Dpj (pj , pk) ∈ ra; D3(pi, pj) ∈ D3(mst).

The first inequality is trivial. The second inequal-
ity holds for any spanning tree of P; that is, for any
spanning tree T , σmst ≤ σT . (Since if the lengths
|e| of the edges are replaced with weights π|e|2/2, we
remain with the same minimum spanning tree.) The
third inequality is proven in Claim 5. �

3 A constant-factor approximation for mara

mst induces an assignment of ranges to the points of
P. Let pi ∈ P and let ri be the length of the longest
edge in mst that is connected to pi, then the range
that is assigned to pi is ri. Put ra = {Dp1 , . . . , Dpn},
where Dpi is the disk of radius ri centered at pi. In
this section we apply the main result of the previous
section (i.e., mst is a constant-factor approximation
for mast), in order to prove that the range assign-
ment that is induced by mst is a constant-factor app-
roximation for the Minimum Area Range Assignment
(mara) problem. That is, (i) the corresponding (di-
rected) communication graph is strongly connected,
and (ii) the area of the union of the disks in ra is
bounded by some constant times the area of the union
of the transmission disks in an optimal range assign-
ment, i.e., a solution to mara.
The first requirement above was already proven by

Kirousis et al. [6], who showed that the range assign-
ment induced by mst is a 2-approximation for the
standard range assignment problem. Let opt

R de-
note an optimal range assignment, i.e., a solution to
mara. It remains to prove the second requirement
above.

Claim 6 area(
⋃

RA) ≤ 9 area(
⋃

mst
).

Proof. We define an auxiliary set of disks. For each
edge e in mst, draw a disk of diameter |3e| centered
at the mid point of e. Let D3(mst) denote the set
of these n − 1 disks; see Figure 5. We now observe
that area(

⋃
RA) ≤ area(

⋃
D3(mst)). This is true since

for each pi ∈ P, Dpi = Dpi(pi, pj) for some point

pj ∈ P that is connected to pi (in mst) by an edge,
and Dpi(pi, pj) is contained in the disk of D3(mst)
corresponding to the edge (pi, pj). Finally, clearly
area(

⋃
D3(mst)) ≤ 9 area(

⋃
mst

). �

Theorem 3 ra is a constant-factor approximation
for mara, that is, area(

⋃
ra
) ≤ c′ · area(

⋃
optR), for

some constant c′.

Proof. The proof is based on the observation that
the (directed) communication graph corresponding to
opt

R contains a spanning tree, and on the main result
of Section 2. Let p be any point in P. We construct
a spanning tree T of P as follows. For each point
q ∈ P, q %= p, compute a shortest (in terms of num-
ber of hops) directed path from q to p, and add the
edges in this path to T . Now make all edges in T
undirected. T is a spanning tree of P. For each edge
(pi, pj) in T , the disk D(pi, pj) is contained either in
the transmission disk of pi (in opt

R), or in the trans-
mission disk of pj (in opt

R). Hence,
⋃
T ⊆

⋃
optR .

The following sequence of inequalities completes the
proof. (opt denotes a solution to mast.)

area(
⋃
ra

) ≤1 9 area(
⋃

mst

) ≤2 9c · area(
⋃

opt

)

≤3 9c · area(
⋃
T
) ≤4 9c · area(

⋃
optR

) .

The first inequality follows from Claim 6; the second
inequality follows from Theorem 2; the third inequal-
ity follows from the definition of opt; the fourth in-
equality was shown above. �
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Spanning Trees with Few Crossings in Geometric and Topological Graphs

Christian Knauer∗ Étienne Schramm† Andreas Spillner‡ Alexander Wolff†

Abstract

We study the problem of computing a spanning tree
in a connected topological graph such that the num-
ber of crossings in the spanning tree is minimum. We
show it is NP-hard to find a good approximation of
the minimum number of crossings even in geometric
graphs. On the other hand we show that the prob-
lem is fixed-parameter tractable and present a mixed-
integer linear program formulation.

1 Introduction

Let G(V,E) be an undirected graph that is embedded
in the plane, so that no two edges share an unbounded
number of points. We call G a topological graph. If
all edges are straight-line embedded, then G is called
a geometric graph.
A crossing {e, e′} is a pair of edges such that

e ∩ e′ %⊆ V . We call µee′ = |(e ∩ e′) \ V | the multiplic-
ity of the crossing {e, e′}. Let X ⊆

(
E
2

)
be the set of

pairs of crossings in E. Note that c edges intersect-
ing in a single non-endpoint give rise to

(
c
2

)
crossings.

We will use n, m, and k as shorthand for the car-
dinalities of V , E, and X, respectively. We will use
the notation G(V,E,X) if we want to emphasize the
connection between G and X. We define the weighted
number of crossings of a subgraph G(V,E′,X ′) of G
as

∑
{e,e′}∈X′ µee′ .

In this paper we study the problem of computing a
spanning tree of a given connected topological graph
such that the weigted number of crossings in the tree
is minimum.
Kratochvil et al. [2] have shown that for topologi-

cal graphs it is NP-hard to decide whether they con-
tain crossing-free subgraphs of certain types, such as
cycles, u–v paths, maximum matchings, or spanning
trees. Jansen and Woeginger [1] have strengthened
the last result by showing that it is even NP-hard
to decide whether or not a geometric graph has a
crossing-free spanning tree.

∗Institute of Computer Science, Freie Universität Berlin,
Germany, christian.knauer@inf.fu-berlin.de

†Fakultät für Informatik Universität Karlsruhe, Germany,
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x2x1 x3 x4

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4

x1 ∨ x3 ∨ x4

Figure 1: Overall structure of GF .

That result does not rule out the existance of
efficient constant-factor approximation algorithms.
However, as we will show in Section 2, such algorithms
do not exist unless P = NP. So we turned our atten-
tion to other possible ways to attack the problem: in
Section 3 we show that the problem under considera-
tion is fixed-parameter tractable with k being the pa-
rameter and in Section 4 we present a mixed-integer
linear program (MIP) formulation. We conclude in
Section 5.

2 Hardness of approximation

Let φ(G) be 1 plus the minimum number of crossings
in a spanning tree of a geometric graph G. The main
result of this section is the following theorem.

Theorem 1 Given geometric graph G, it is NP-hard
to approximate φ(G) within a factor of k1−ε for any
ε > 0.

Note that it is trivial to give a factor-(k + 1)-
approximation and since a geometric graph is also a
topological graph, theorem 1 obviously remains valid
for topological graphs.
We obtain this result by a reduction from planar

3SAT [3]. Our reduction maps a given planar 3SAT
formula F to a geometric graph GF such that GF

has a plane spanning tree iff F has a fulfilling truth
assignment. The overall structure of GF is indicated
in Figure 1 for F = (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧
(x1 ∨ x3 ∨ x4).
We have a gadget for every variable occuring in F .

These gadgets are arranged along a horizontal line E.
We further have a gadget for every clause in F which is
connected with every variable occuring in the clause.
This gadget looks like a three-legged comb.
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Figure 2: Part of a variable gadget.

true false

x x x x

x x x x

Figure 3: Spanning trees encoding true and false.

Now let’s have a closer look at the gadgets. The
leftmost part of the gadget for a variable x is shown
in Figure 2. The gadget for x consists of at most
twice as many boxes as there are clauses in F that
contain x. Three of these boxes are drawn with solid
edges in Figure 2. The dotted edges that emanate
from the boxes fulfill three tasks. First they connect
consecutive boxes within one variable gadget. Second
they connect the first and last box of variable gadgets
that are consecutive on the line E. Third they con-
nect boxes to clause gadgets. Each dotted edge that
connects a variable gadget to a clause gadget is asso-
ciated with a literal. This literal will be true if the
dotted edge is part of the spanning tree of GF .
The intended way of simulating the truth assign-

ment of the variable x is indicated in Figure 3. The
Boolean values of x correspond to the two ways in
which a crossing-free spanning tree can be chosen
among the edges of the gadget of x. Note that only
every other box can be connected to a clause gadget
above (below) E. This way we ensure that according to
the value of x either only the dotted edges associated
to positive literals or only the dotted edges associated
to negative literals can connect x to clause gadgets.
Not all points of type ci or c′i in Figure 2 are used—
only those where the variable is in fact connected to
a clause gadget in GF . For example, the gadget for
x2 in Figure 1 consists of three boxes, but only the
points c1 and c3 are used.
A clause gadget is shown in Figure 4(a). The three

boxes in the lower part of the figure belong to the
gadgets of those variables that form the clause. Note
that the clause gadget is connected to the rest of GF

only via the dotted edges that go into these three

(b)

x x

xx

(a)

clause

Figure 4: Clause gadget and modified variable gadget.

boxes. Thus GF has a crossing-free spanning tree only
if at least one of the three literals in the clause is true.
Up to this point our construction only proves that

deciding whether or not a geometric graph has a
crossing-free spanning tree is NP-hard. However, our
construction is designed to allow us to apply a simple
trick that yields the desired hardness of approxima-
tion. We substitute certain solid edges in every box
in every variable gadget with z new edges. This is
indicated for z = 3 in Figure 4(b).
If we set z to a polynomial in the length of F with

large enough degree, our reduction remains polyno-
mial and Theorem 1 is an immediate consequence of
the following lemma.

Lemma 2 If F has a satisfying truth assignment
then φ(GF ) = 1, else φ(GF ) ≥ z.

Proof. First suppose F has a satisfying truth assign-
ment. Then we select edges for a spanning tree of GF

in every variable gadget as indicated in Figure 3 ac-
cording to the satisfying truth assignment. Since in
every clause of F at least one literal is true under the
satisfying truth assignment it is possible to connect
every clause gadget in a spanning tree without any
crossings. Thus φ(GF ) = 1.
Now suppose F does not have a satisfying truth

assignment. Consider a box B after substitution of
edges as in Figure 4(b). Then B has z solid horizontal
edges above (below) E and at most four dotted vertical
edges above (below) E that intersect the former. Let T
be a spanning tree of GF with the minimum number
of crossings. Let vtop (vbot) be the number of vertical
edges in T that are above (below) E and intersect B.
Similarly, let htop (hbot) be the number of horizontal
edges in T that are above (below) E and belong to B.
Since the vertices on the right of the box can only be
connected to the rest of the graph via the solid top or
bottom edges, we have htop + hbot ≥ z. Now suppose
vtop ≤ vbot. Then there are vtophtop + vbothbot ≥
vtopz crossings. If we remove all solid bottom edges
of B from T and instead use all solid top edges and
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all solid vertical edges of B, we get a spanning tree
T ′ which does not have more crossings than T . So
we may suppose that in every box of GF all the solid
top edges or all the solid bottom edges are in T . We
distinguish two cases.
Case 1: There are two consecutive boxes in a vari-

able gadget such that from both boxes all the solid
top edges (all the solid bottom edges) are in T . Then
there are at least z crossings in T between the solid
top edges in the two boxes and the dotted edges that
connect these two boxes. Thus φ(GF ) ≥ z.
Case 2: There are no two consecutive boxes in a

variable gadget such that from both boxes all the solid
top edges (all the solid bottom edges) are in T . Then
according to Figure 3 we derive a truth assignment
β from the structure of T inside every variable gad-
get. Since F does not have a satisfying truth assign-
ment there is a clause C in F which is false under β.
Consider the clause gadget associated with C. This
clause gadget must be connected in T with the rest
of GF which leads to at least z crossings. Thus again
φ(GF ) ≥ z. �

Instead of searching for a spanning tree with a min-
imum number of crossings one could also ask for a
crossing-free spanning forest of a geometric graph G
with the minimum number φ′(G) of trees. But using a
similar reduction as the one sketched above we obtain
the following theorem.

Theorem 3 It is NP-hard to approximate φ′(G)
within a factor of n1−ε for any ε > 0.

3 Fixed-parameter tractability

We first show that deciding whether or not a topolog-
ical graph G has a crossing-free spanning tree is fixed-
parameter tractable where we use the total number of
crossings k as fixed parameter. We set EX =

⋃
X.

Thus EX contains exactly those edges that partici-
pate in a crossing. Note that |EX | ≤ 2k and observe
that G has a crossing-free spanning tree iff G has a
crossing-free connected spanning subgraph. Thus it
is sufficient to examine all maximal crossing-free sub-
graphs of G and check whether one of them is con-
nected. To this end we proceed as follows:

1. Remove all edges in EX from G. The resulting
graph G′ = (V,E′) is crossing-free.

2. For all maximal crossing-free subsets H ⊆ EX

check whether the graph G′ ∪H = (V,E′ ∪H) is
connected.

Note that in the second step we can actually shrink
each connected component of G′ to a single vertex. If
G′ has more than k+1 connected components, adding
the at most k edges in H cannot make G′ connected.

Therefore we only have to consider a graph with O(k)
vertices.
It can easily be shown by induction on k that there

are at most 2k maximal crossing-free subsetsH. Since
detecting all the crossings in G can be done in O(k+
m logm) time and generating and checking a subset
H can be done in O(k) time, we have the following
theorem.

Theorem 4 We can decide in O(m logm+k2k) time
whether a topological graph has a crossing-free span-
ning tree.

Checking not only the crossing-free subsets of EX

but all subsets we obtain an algorithm that finds a
spanning tree with the minimum weighted number of
crossings.

Theorem 5 Given a topological graph we can com-
pute in O(m logm + k4k) time a spanning tree with
the minimum weighted number of crossings.

In the remainder of this section we sketch how to
speed up the decision algorithm in the special case
that the crossings in X are pairwise disjoint.
Suppose G′ has at most k+1 connected components

and we have shrunken each to a single vertex. Our
new algorithm distinguishes two cases. Let α = 4

5
and r be the number of connected components of G′.

Case 1: r ≤ αk. If G has a connected crossing-
free spanning subgraph at all, then there are at least
2(1−α)k crossing-free subsetsH ⊆ EX such thatG′∪H
is connected. This can be seen as follows: Suppose
there is a crossing-free subset F ⊆ EX that makes
G′ connected. Then we can choose such an F with
|F | ≤ r − 1 < αk. Let XF = {c ∈ X | c ∩ F = ∅}.
Since the elements of X are pairwise disjoint we have
|XF | > (1 − α)k. If we select one edge from each
crossing in XF and add these edges to F the resulting
set of edges is still crossing-free. There are at least
2(1−α)k possible ways to select edges. Thus there are
at least 2(1−α)k crossing-free subsets H ⊆ EX such
that G′ ∪H is connected.
This suggests the following randomized algorithm:

From each element of X we randomly select one edge
and check if the resulting crossing-free graph is con-
nected. If the given geometric graph G has a crossing-
free connected spanning subgraph, the probability of
success is at least 2(1−α)k/2k = 2−αk. Thus O(2αk)
iterations suffice with high probability and the ex-
pected running time is O(m logm + k2αk) with high
probability.
Case 2: r > αk. We define the degree of a con-

nected component C of G′ as the number of edges in
EX that are incident to a vertex that belongs to C.
We observe that for each component of degree one

there is exactly one edge in EX to connect this com-
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ponent to the rest of G′. Thus this edge must be
selected for any connected spanning subgraph of G.
Furthermore we can assume that for every crossing

c ∈ X none of the two edges in c connects vertices in
the same component ofG′, since such an edge could be
deleted which would also make the crossing c vanish.
Next we argue that if r > αk there is always at

least one component of G′ that has degree at most 4.
For if all components had degree at least 5, we would
get 4k ≥ 2|EX | ≥ 5r > 5αk = 4k.
Thus our algorithm selects a component C of G′

such that the degree d of C is at most 4. The key
observation is that one of the d edges in EX incident
to a vertex of C must be chosen to connect C to the
rest of G′. This means that we do not have to try
all 2d subsets of those d edges but only 2d − 1. This
observation can be made more precise by a detailed
case analysis which we omit in this abstract. The
case analysis yields the following recurrence for the
running time T (k) of our algorithm:

T (k) ≤ 15T (k − 4) +O(1)

This solves to T (k) ∈ O(15k/4). To summerize we
state the following theorem.

Theorem 6 There is a Monte Carlo algorithm with
one sided error and expected running time in
O(m logm + k1.968k) which decides whether a given
geometric graph with pairwise disjoint crossings has
a crossing-free spanning tree.

4 A Mixed-Integer Linear Program

In this section we give a MIP formulation for the prob-
lem of computing a connected spanning subgraph G′

with the minimum weigted number of crossings for a
given topological graph G(V,E). We introduce a vari-
able xee′ that is designed to punish a crossing between
the edges e and e′.
Our objective function is

min
∑

{e,e′}∈X

µee′ xee′ . (1)

We have the following constraints. We introduce a
variable ye for each edge e ∈ E that is 1 iff e will be
part of G′. For each pair {e, e′} ∈ X we require:

xee′ ≥ 0 and xee′ ≥ ye + ye′ − 1 (2)

Given our objective function (1) and the fact that
ye will be forced to lie in {0, 1}, Constraint (2) is
equivalent to xee′ = min{ye, ye′}. In other words if we
manage to make sure that the graph G′ = (V,E′) with
E′ = {e ∈ E | ye = 1} is connected, then the variables
of type xee′ in fact count the number of crossings in
G′.

We model connectivity by fixing an arbitrary vertex
s ∈ V as sink and then introducing flow between s and
each other vertex t ∈ V \ {s}. The flow is modeled
by a 0–1 variable f t

e for each edge e ∈ E. First we
make sure that for each choice of t, the source s and
the sink t have exactly one edge with flow:∑

e incident to s

f t
e =

∑
e incident to t

f t
e = 1 (3)

Note that if a graph contains an s–t path, then that
graph also contains an s–t path that visits each vertex
at most once. So we simply ensure that each vertex
v ∈ V \{s, t} has either zero or two incident edges with
flow. To do this we need an auxiliary 0–1 variable ht

v

for each v. Now we can model our special kind of flow
conservation in each vertex v ∈ V \ {s, t}.∑

e incident to v

f t
e = 2ht

v (4)

Finally, for each edge e ∈ E we lower-bound the
“global” decision variable ye (that decides whether
e goes into the spanning subgraph G′) by the “local”
flow f t

e (that goes through e from s to t):

ye ≥ f t
e (5)

Given our objective function and Constraint (2), this
is equivalent to setting ye = max{f t

e | t ∈ V \ {s}}.
This completes our MIP formulation. It consists of
O(nm+ k) variables and constraints.

5 Conclusion

We have shown that attacking the problem of finding
a spanning tree with few crossings in a given topolog-
ical graph by approximation algorithms is probably
not a good idea, even though it could be an interesting
theoretical problem to find approximation algorithms
with approximation factor in o(k).
On the other hand we have presented a fixed-

parameter algorithm where we used the total num-
ber of crossings as fixed parameter. There might be
other quantities associated with a geometric graph
that could be used as fixed parameter. We are cur-
rently investigating this.
Finally we have given a MIP formulation, which we

plan to implement in order to evaluate several heuris-
tics.
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Bi-Chromatic Minimum Spanning Trees

Magdalene Grantson Henk Meijer David Rappaport∗

Abstract

Let G be a set of disjoint bi-chromatic straight line
segments and H be a set of red and blue points in
the plane, no three points are collinear. We give tight
upper bounds on the maximum degree of a node in
the color conforming minimum weight spanning tree
(MST) formed by G and H. We also consider bounds
on the total length of the edges of 1) the planar MST
and the unrestricted MST, 2) the greedy planar span-
ning tree and the unrestricted MST, 3) the greedy
planar spanning tree and the planar MST.

1 Introduction

Let G be a set of disjoint bi-chromatic straight line
segments, and H a set of red and blue points in the
plane, no three points are collinear. We obtain a span-
ning tree T of G (resp. H) by finding a set of |G| − 1
(resp. |H| − 1) edges, which connect vertices of differ-
ent colors (“color conforming”) and form an acyclic
connected component. (For the spanning tree of G,
input edges and non-input edges alternate, non-input
edges may intersect, but are not allowed to intersect
input edges.) If T must not contain intersections we
call it a planar spanning tree,1 otherwise we simply
call T an (unrestricted) spanning tree.
A color conforming minimum weight spanning tree

(MST) of G or H is a spanning tree of minimum total
length of the added edges. Variants of this problem
include finding the MST of a set of (mono-chromatic)
points or line segments in the plane [2, 3, 1]. For
these variants a greedy algorithm like Kruskal’s [8] is
known to yield the optimal solution [4, 3]. In [2, 3, 9]
it is shown that in these cases the maximum degree
of a node in the MST is bounded by five and seven,
respectively.
Little is known about the MSTs of G or H. [6]

gives a survey on geometry graphs of H. Recently, it
was shown that a color conforming spanning tree of
G or H is always obtainable [5]. It was also shown
by illustration that the MST of a given G may con-
tain intersections if one uses a greedy algorithm like
Kruskal’s [4]. (Kruskal’s algorithm adds edges in in-

∗Dept. of Computer Science, Queens University, Kingston,
Ontario, Canada {grantson,devor,henk}@cs.queensu.ca

1Note that the MST of the set of points or line segments in
the plane can not contain intersections [3, 5]. For bi-chromatic
straight line segments, however, intersections may occur.

sup
H

[
Pgp

Pop

]
≥ 2

sup
H

[
Pgp

Puo

]
≥ 2

sup
H

[
Pop

Puo

]
≥ 2

sup
G

[
Lgp

Lop

]
=∞

sup
G

[
Lgp

Luo

]
=∞

sup
G

[
Lop

Luo

]
=∞

sup
G

[
Lgp − Ls

Lop − Ls

]
≥ 2

sup
G

[
Lgp − Ls

Luo − Ls

]
≥ 2

sup
G

[
Lop − Ls

Luo − Ls

]
≥ 3

2

Table 1: An overview of some of our results.

creasing length order, and discards edges creating a
cycle in the graph built so far [8].) We show by illus-
tration that Kruskal’s algorithm may also introduce
intersections, when H is given as input. Modifying
Kruskal’s algorithm to check for such intersections
and eliminating them, leads to a greedy algorithm
which we will refer to as greedy planar algorithm.
See [1, 7] for different flavors on non-crossing span-
ning trees.

Definition 1 Given a set G (resp. H) as defined
above, we denote by: Ls the total length of the in-
put straight line edges/segments, Lou (resp. Pou) the
total length of the edges of the unrestricted MST,
Lop (resp. Pop) the total length of the edges of the
MST and Lgp (resp. Pgp) the total length of the edges
of the greedy planar spanning tree.

Summary of our results:
1) We show a bound for the maximum node degree in
a color conforming MST.
2) We show the given bounds in Table 1.

2 Maximum Node Degree

Lemma 1 The maximum degree of a node in a color
conforming MST of a set G of n bi-chromatic disjoint
line segments is not upper bounded by a fixed number,
but only by the size of the input.

Proof. Trivially the maximum degree of a node of the
MST of a set of bi-chromatic disjoint line segments is
bounded by n, because every vertex of one color can
be connected to at most n vertices of the other color.
This upper bound is tight, because an example achiev-
ing this bound is shown in Figure 1. For the set G
of line segments in Figure 1, suppose the vertex v is
red in color and the vertices {a, b, c, d, e, f, w} are all
blue in color and are at a distance r1 from v. We
refer to these vertices as lying on an inner circle Ci
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e f
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k l

Figure 1: Any spanning tree
where the vertex v has a
smaller degree than the num-
ber of line segments does not
have minimum total length.

of radius r1 with v as its center. Suppose the vertices
{g, h, i, j, k, l} are red in color and are each at a dis-
tance r2 = 2r1 from v. We refer to these vertices as
lying on an outer circle Co of radius r2 = 2r1 s.t. v is
its center. We make the following observations:
1) There are exactly n − 1 color conforming
edges, each of which has length r1, namely
{(v, a), (v, b), (v, c), (v, d), (v, e), (v, f)}. Selecting
these n− 1 edges gives a spanning tree.
2) All red vertices visible from an arbitrary blue ver-
tex on the inner circle are r1+ε away from this vertex,
with the exception of v, which is r1 away.
3) All blue vertices visible from an arbitrary red ver-
tex on the outer circle are r1+ε away from this vertex.
4) All vertices on the inner circle (outer circle) have
the same color, hence it is impossible for an edge to be
placed between any pair, since the color conforming
characteristics would be violated if we did so.
From the above listed observations, selecting any

subset of n−1 edges other than the edges from v to the
vertices on the inner circle must include at least one
edge with a length greater than r1. Therefore no such
subset of edges can be a minimum weight spanning
tree. Consequently, the spanning tree formed by the
above edges in Figure 1 is of minimum length. �

Lemma 2 The maximum degree of a node in a color
conforming MST of a set of n red and n blue points is
not upper bounded by a fixed number, but only by n.

Proof. Let the set H contain all the vertices in Fig-
ure 1, but none of the line segments. Using similar
arguments as in the proof of Lemma 1, we observe
that there are exactly 2n − 1 color conforming edges
having length r1. Selecting these 2n − 1 edges gives
a MST, since all other edges apart from those has
length r1 + ε, ε > 0. �

3 Bounds on Variants of the MST Problem

In [5] it was shown by illustration that the MST of bi-
chromatic line segments may introduce intersections
using a greedy algorithm like Kruskal’s [4]. We show
by illustration in Figure 2 (second diagram) that such
intersections may occur when given a set of red and
blue points in the plane. Such intersections can how-
ever be avoided by modifying, for example, Kruskal’s
greedy algorithm, so that at each step we rather add
the non-crossing edge with the least weight, which

am

a0

am−1

b0
bm−1

bm

am

a0

am−1

b0
bm−1

bm

am

a0

am−1

b0
bm−1

bm

am

a0

am−1

b0
bm−1

bm

Figure 2: A set of
bi-chromatic points for
which the greedy span-
ning tree is by a factor
of 2 worse than the pla-
nar MST and the unre-
stricted MST (top: set
of points; second: un-
restricted MST; third:
planar MST; bottom:
greedy planar spanning
tree).

does not introduce cycles. Examples in this section
clearly show that the modified algorithm may not give
the optimal solution. The question then is whether
there is a bound on the greedy planar solution in the
worst case. We investigate such questions and more.
Our results are collected in Table 1.

Observation 1 If the solution may contain edge in-
tersections, then a greedy approach (e.g. Kruskal’s al-
gorithm) always yields the optimal solution.

Given is a graph G = (V,E) (resp. H = (V,E)), such
that V is the set of bi-chromatic line segment end-
points (resp. red and blue points) and E is the set of
lines of sight between red and blue points. The proof
that Kruskal’s algorithm finds a minimum spanning
tree of G (resp. H) follows from the proof [4] that
Kruskal’s algorithm finds a minimum spanning tree
of any weighted, connected, undirected graph.

3.1 Input is a Set of Red and Blue Points

Theorem 3 Let H be any set of red and blue points

in the plane. Then supH

[
Pgp

Pop

]
≥2 and supH

[
Pgp

Pou

]
≥2.

Proof. Choose m ∈ IN, m≥ 1, and let φ= arctan 1
m2 .

Then define the points (see Figure 2):

red blue
am = (0, 0), bm = (m2, 1),
ak =

(
k2

m2 −m2, 1 + k
m

)
, bk =

(
cos(kφ

m ),− sin(
kφ
m )

)
.

∀k; 0 ≤ k < m. To show the ratios, let m→∞. Then

lim
m→∞

Pgp

Pop
≥ lim

m→∞

6m2 +m
3m2 + 6m

= 2 and

lim
m→∞

Pgp

Pou
≥ lim

m→∞

6m2 +m
3m2 + 4m

= 2. �

200



EWCG 2005, Eindhoven, March 9–11, 2005
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b1 b2
c1
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Figure 3: Left: set of bi-chromatic line segments; mid-
dle: planar MST; right: greedy planar spanning tree.

Theorem 4 Let H be any set of red and blue points

in the plane. Then supH

[
Pop

Pou

]
≥ 3

2 .

Proof. We consider the set of points

red blue
a11 = (0, 0), a12 = (ε, 0),
b11 = (−1, ε), b12 = (1, ε).

Then

lim
ε→0

Pop

Pou
= lim

ε→0

ε+
√
1 + ε2 + 2

ε+
√
1 + ε2 +

√
ε2 + (1 + ε)2

=
3
2
.

�

3.2 Input is a Set of Bi-chromatic Line Edges

Theorem 5 Let G be any set of bi-chromatic
straight line segments in the plane. Then

supG

[
Lgp−Ls

Lop−Ls

]
=∞ and supG

[
Lgp−Ls

Lou−Ls

]
=∞.

Proof. We consider the set of bi-chromatic line seg-
ments in Figure 3 left: a1 = (−2,−2), a2 = (−5,−2),
b1 = (−5, 2), b2 = (−2, 1), c1 = (0, 0), c2 = (3, x),
d1 = (3, 0), and d2 = (x, 1) with x ≥ 10. The pla-
nar MST consists of the edges (a2, b1), (b2, c1), and
(a2, d1) and has a total length of ≈ 13.98, indepen-
dent of the value of x (see Figure 3 middle).
The modified Kruskal algorithm, however, consid-

ers the edge (a1, b2) before the edge (a2, d1). As
a consequence it finds the spanning tree shown in
Figure 3 right, which consists of the edges (a1, b2),
(c1, b2), and (d1, c2) and thus has a total length of
3 +
√
3 + x > 14.73 for x ≥ 10. Therefore we have

Lgp−Ls

Lop−Ls
= 3+

√
3+x

4+
√

3+
√

68
, which goes to infinity as x goes

to infinity. Trivially it follows that supG

[
Lgp

Lou

]
= ∞,

since Lop ≥ Lou. �

Theorem 6 Let G be any set of bi-chromatic
straight line segments in the plane. Then

supG

[
Lop−Ls

Lou−Ls

]
=∞.

Proof. We consider the set of bi-chromatic line seg-
ments in Figure 4 left. It is a1 = (4, 1), a2 = (x, 1),
b1 = (x, x), b2 = (1, 3), c1 = (0, x), c2 = (0, 5),
d1 = (−x, 0), d2 = (−4, 0), e1 = (−x,−x), e2 =
(−1,−2), f1 = (2,−6), f2 = (2,−x) with x ≥ 15. The
MST consists of the edges (b2, a1), (e2, f1), (e2, a1),

a1 a2

b1

b2

c1

c2
d1 d2

e1

e2
f1

f2

a1 a2

b1

b2

c1

c2
d1 d2

e1

e2
f1

f2

a1 a2

b1

b2

c1

c2
d1 d2

e1

e2
f1

f2

Figure 4: Left: set of bi-chromatic line segments; mid-
dle: unrestricted MST; right: planar MST.

(d2, a1) and (c2, f1) and has a total length of ≈ 33.67,
independent of the value of x (see Figure 4 mid-
dle). The planar MST, however, consist of the edges
(b2, a1), (e2, f1), (e2, a1), (d2, a1) and (c1, b2), since
any other connection leads to an intersection (see Fig-
ure 4 right). As a consequence the planar MST has a
total length ≥ 34.54 for x ≥ 15. The ratio of the two
total lengths goes to infinity as x goes to infinity. �

Theorem 7 Let G be any set of bi-chromatic
straight line segments in the plane. Then,

supG

[
Lgp

Lou

]
≥ 2 and supG

[
Lop

Lou

]
≥ 2.

Proof. Choose m ∈ IN, m ≥ 3, s ∈ IR, s > 3, and

r ∈ [ 34 , 1) and let t(k) =
√
1− ( rk

m )
2. Then define the

line segments (see Figure 5):

red blue
a11 =

(
1

3m , 0
)
, a12 = ( s+ 1,−1) ,

a21 =
(
− 1

3m , 0
)
, a22 = (−s− 1, 1) ,

bk1 =
(

rk
m , t(k)

)
, bk2 =

(
rk
m , s+ t(k)

)
,

ck1 =
(
− rk

m ,−1− t(k)
)
, ck2 =

(
− rk

m , − t(k)
)
.

∀k; 1 ≤ k ≤ m. To show the above ratios, we let
m → ∞ and s → ∞. To simplify the double limit
m→∞ and s→∞, choose s = m2. This yields

lim
m→∞

Lgp

Lou
= lim

m→∞

Lop

Lou
≥ lim

m→∞

2m3

m3 + 13m2
= 2. �

Theorem 8 Let G be any set of bi-chromatic
straight line segments in the plane. Then

supG

[
Lgp

Lop

]
≥ 2.

Proof. Choose m ∈ IN, m ≥ 3, s ∈ IR, s ≥ 6, and let
t(k) =

√
5− ( k

m )
2. Then define the line segments

red blue
a11 = ( 1, 1) , a12 = (1 + s, 1) ,
a21 = ( 0, 3) , a22 = ( − s, 3) ,
b11 = ( 2, 0) , b12 = ( 0, 0) ,
b21 = (−3, 2) , b22 = ( − 1, 2) ,
ck1 =

(
k
m , t(k)

)
, ck2 =

(
k
m , s+ t(k)

)
,
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Figure 5: Left: set of bi-chromatic line segments; mid-
dle: unrestricted MST; right: planar MST.
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Figure 6: Left: set of bi-chromatic line segments; mid-
dle: planar MST; right: greedy planar spanning tree.

∀k; 1 ≤ k ≤ m. To show the above ratios, we let
m → ∞ and s → ∞. To simplify the double limit
m→∞ and s→∞, choose s = m2. This yields

lim
m→∞

Lgp

Lop
= lim

m→∞

Lgp

Lop
≥ lim

m→∞

2m3 + 2m2

m3 + 2m2 + 40
= 2.

�

3.3 Lower Bounds

Trivially the lower bounds of all the ratios in Table 1
is 1, because the numerator in each ratio is never less
than the denominator. Moreover, instances, where
the numerator in each ratio equal to the denominator,
can be constructed.

3.4 Upper Bounds

Lemma 9 The upper bound of the ratios
Pgp

Pop
,

Pgp

Pou
,

Pop

Pou
,

Lgp

Lop
,

Lgp

Lou
, and

Lop

Lou
is n.

Proof. Let d denote the length of the diagonal of
the box bounding a given set G of bi-chromatic line
segments or H of red and blue points in the plane.
Trivially, Lou ≥ d and Pou ≥ d. The total length of
edges TG of any tree of G is ≤ (2n−1)d. Similarly, the
total length of edges TH of any tree of H is ≤ (n−1)d
(see Figure 7). Hence we have Pgp

Pop
≤ n, Pgp

Pou
≤ n,

Pop

Pou
≤ n, Lgp

Lop
≤ n, Lgp

Lou
≤ n, and Lop

Lou
≤ n. �

Figure 7: Set of bi-chromatic points for the upper
bounds of the ratios.

4 Open Problem

An algorithm to determine a color conforming planar
MST of a set of bi-chromatic line segments or red
and blue points within a factor k still remains open.
Moreover upper bounds other than n on the ratios:
Pgp

Pop
, Pgp

Pou
, Pop

Pou
, Lgp

Lop
, Lgp

Lou
, Lop

Lou
, also remains open.
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Constructing Interference-Minimal Networks∗

Marc Benkert Joachim Gudmundsson† Herman Haverkort‡ Alexander Wolff§

Abstract

We consider the problem of producing interference-
minimal graphs with additional properties such as
connectivity, bounded stretch factor or bounded link
diameter. We compute exact interference-minimal
graphs and estimated interference-minimal graphs.
The latter can be computed faster.

1 Introduction

A wireless communication network is commonly mod-
elled by a graph G = (V,E) that consists of a set of
points V in the plane and a set of edges E. The nodes
represent hosts, while edges represent communication
links between nodes. We will assume that the links
are undirected. This is a reasonable assumption as a
one-way communication becomes unacceptably prob-
lematic. It should be noted however, that the algo-
rithms presented in Section 3 can be extended to work
for the directed model.
Burkhart et al. [2] propose a definition of in-

terference in a wireless network, and describe two
polynomial-time algorithms to construct an optimal
spanning tree and a t-spanner in terms of this defi-
nition. Their running times are O(n2 log n) for span-
ning trees and O(n4) for t-spanners, however they as-
sume that all interferences are known in advance. We
improve and extend these results. Particularly, our
algorithms are output-sensitive.
We investigate three different graph classes and

show how to compute interference-minimal graphs in
each class. First we consider the problem of com-
puting an interference-minimal connected graph, i.e.
a spanning tree. The expected running time of our
algorithm is O(nk(log2 k+log n)), where k is the min-
imum interference for which there is a spanning tree.
In addition to connectivity it is often desired that

the resulting topology is a t-spanner for some given
constant t > 1. Given two vertices u and v of a graph
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man Science Foundation (DFG) and the European Commission
within FET Open Projects DELIS.

†Department of Mathematics and Computer Science, TU
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G, we will denote by dG(u, v) the length of the short-
est path between u and v in G, and we use |uv| to
denote the Euclidean distance between u and v. A
network G is said to be a t-spanner if for every pair of
vertices u and v it holds that dG(u, v) ≤ t · |uv|. We
show that an interference-minimal t-spanner can be
computed in O(n log kt(kt

2 + n log n)) expected time,
where kt is the minimum interference for which there
exists a t-spanner.
The third graph class that we consider is the class

of d-hop networks. A graph G is said to be a d-hop
network if for every pair of vertices u and v, there is
a path using at most d links between u and v. The
expected running time of our algorithm for the d-hop
network is O(n log kd(kd

2 + n log n)), where kd is the
minimum interference for which there exists a d-hop
network.
It will turn out that our results are only faster

than a method that uses circular range searching if
k = O(n5/8). For dense graphs we argue in Section 4
that it is not realistic to assume exact data. Hosts on
the perimeter of the transmission radius may or may
not experience interference. Therefore we propose a
model based on realistically accurate data, that is, we
treat the sphere of an edge as a fuzzy object. This
means that hosts lying close to the boundary of the
transmission radius either may or may not be counted.
Using this cost model we propose algorithms for the
tree and the spanner with running times that beat
the circular range searching method for all values of
k and kt. However, the running times depend on how
fine the approximation should be.

2 Definitions

We start with the definition of interference. For a
point p ∈ R2 and a real r ≥ 0 let D(p, r) be the
closed disk that has center p and radius r. Given a
communication network G = (V,E) with V ⊂ R2, for
an edge {u, v} ∈ G and u, the range of u must be at
least |uv|. Thus, all points in D(u, |uv|) experience
interferences. As we consider undirected edges, the
following definition follows:

Definition 1 ([2]) The sphere of an edge e = {u, v}
is S(e) := D(u, |uv|) ∪ D(v, |uv|). We define the
cost function Cov (coverage) on the edge set

(
V
2

)
by

Cov(e) :=
∣∣V ∩ S(e) \ {u, v}∣∣.

203



21st European Workshop on Computational Geometry, 2005

We define the interference Int(G) of a graph G =
(V,E) by Int(G) := maxe∈E Cov(e).

For givenm ≥ 0 letGm = (V,Em) denote the graph
where Em includes all edges e with Cov(e) ≤ m.

e

Figure 1: The sphere of e. Here Cov(e) = 9.

3 Computing exact interference graphs

The main idea for computing interference-minimal
trees, spanners and d-hop networks is the same. By
combining exponential and binary search we deter-
mine the minimum graph that has the desired prop-
erty P, see Algorithm 1.

Algorithm 1: InterferenceNetwork(V,P)
E0 = ComputeEdgeSet(V, 0), G0 = (V,E0)
if FulfillsProperty(G0,P) then

return G0

m = 1/2
repeat
m = 2 ·m {exponential search}
Em = ComputeEdgeSet(V,m), Gm = (V,Em)

until FulfillsProperty(Gm,P)
E = �m/2�, r = m
repeat
m = E+ �(r − E)/2 {binary search}
Em = ComputeEdgeSet(V,m), Gm = (V,Em)
if FulfillsProperty(Gm,P) then
r = m

else
E = m

until r = E+ 1
return Gr

The only non-trivial steps are the subroutines Com-
puteEdgeSet and FulfillsProperty. We first detail how
to implement ComputeEdgeSet efficiently. We will
use the order-m Delaunay graph and the order-m
Voronoi diagram. An edge {u, v} is an order-m De-
launay edge if there exists a circle through u and v
that has at most m points of V inside.

Lemma 1 All edges Em are order-mDelaunay edges.

Proof. Let e be an edge with Cov(e) ≤ m. By def-
inition 1 the sphere S(e) contains at most m points.
Then, the disk that has e as diameter contains at most
m points as it is contained in S(e). �

We use the duality between Voronoi diagrams and
Delaunay edges. We need precisely that {u, v} is an
order-m Delaunay edge if and only if there are two
incident faces F1 and F2 in the order-(m+1) Voronoi
diagram such that u is in the set of points that deter-
mine F1 and v is in the set of points that determine
F2. Details can be found in [4]. We need:

Theorem 2 ([4]) Form ≤ n/2−2, the order-(m+1)
Voronoi diagram can be computed in O(nm logm +
n log n) expected time. There are O(nm) order-m De-
launay edges.

Hence, by Lemma 1 we obtain the edge set Em by
testing all O(nm) order-m Delaunay edges. To do this
we first compute in O(nm logm + n log n) total time
for each point p ∈ V the m + 1 nearest neighbors of
p. Then, one edge test requires O(m) time: we have
to check how many of the m+ 1 nearest neighbors of
u lie in D(u, |uv|) and in D(u, |uv|) ∩ D(v, |uv|) and
analogously for v. With these numbers we can decide
whether Cov({u, v}) is at most m. Thus, we have:

Theorem 3 Given n points in the plane, the edge set
Em can be computed in O(nm2 + n log n) expected
time for any m ≤ n/2− 2.

Next, we describe how to implement FulfillsProp-
erty for each of the three graph classes.

3.1 Spanning trees

To obtain an interference-minimal spanning tree we
first run Algorithm 1 with the property connectiv-
ity. Let k be the minimum value for which Gk is
connected. The exponential and binary search to
determine k require O(log k) steps in total. As the
size of the edge set of each graph Gm is bounded by
O(nk), the answer to FulfillsProperty(Gm,P) can by
given in O(nk) time by running a breadth-first search
on Gm. Hence, we can find the interference-minimal
connected graph Gk in O(nk2 log k+n log n log k) ex-
pected time. If we only want to find a spanning tree T
that minimizes Int(T ), it is enough to run a breadth-
first search on Gk. We can also run Prim’s algorithm
using the values Cov(e) as edge weights. This requires
O(nk + n log n) time.

Theorem 4 We can find an interference-minimal
spanning tree T that minimizes Int(T ) and∑

e∈T Cov(e) in O(nk2 log k + n log n log k) expected
time, if k ≤ n/2− 2.

3.2 Spanners

Here, FulfillsProperty(Gm,P) must decide whether
the current graph Gm is a t-spanner. We do this by
computing shortest paths between all pairs of vertices
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and by checking for each pair {u, v} ∈
(
V
2

)
whether

dGm
(u, v) ≤ t · |uv|. Only if the answer is yes for each

query, Gm is a t-spanner of V .
For the all-pairs-shortest-path computation we use

an algorithm with expected running time O(n2 log n),
described by Moffat and Takaoka in [5], i.e.,
FulfillsProperty(Gm,P) can be implemented in time
O(n2 log n) if P is the graph property “t-spanner”.
Combining this result with Theorem 3 gives:

Theorem 5 Given t > 1, we can find an interference-
minimal t-spanner in O(n log kt(kt

2 + n log n)) ex-
pected time, if kt ≤ n/2− 2.

3.3 d-hop networks

For testing the d-hop property in Gm we set the
weights of all edges in Em to 1 and run again the all-
pairs-shortest-path algorithm. If every shortest path
has weight at most d, then Gm is a d-hop network. We
obtain time bounds analogous to those in Theorem 5.

Theorem 6 Given an integer d > 1, we can
find an interference-minimal d-hop network in
O(n log kd(kd

2 + n log n)) exp. time, if kd ≤ n/2− 2.

4 Computing estimated interference graphs

We now assume that exact data is not realistic. Hosts
on the perimeter of the transmission radius may or
may not experience interference. Therefore we treat
the sphere of an edge as a fuzzy object. This means
that hosts lying very close to the boundary of the
transmission radius either may or may not be counted.
We define the estimated interference cost model:

Definition 2 For fixed ε > 0 the maximum esti-
mated sphere of an edge e = {u, v} is defined as
Smax(e, ε) := D(u, (1 + ε) · |uv|) ∪D(v, (1 + ε) · |uv|),
the minimum estimated sphere of e is defined as
Smin(e, ε) := D(u, (1− ε) · |uv|) ∪D(v, (1− ε) · |uv|).
Following this notation we define Covmax(e, ε) and
Covmin(e, ε) correspondingly. We say that c ∈ N is an
ε-valid interference estimation of e if Covmin(e, ε) ≤
c ≤ Covmax(e, ε).

We will present algorithms for finding sparse net-
works with minimum estimated interference. Here,
’minimum’ is meant with respect to a fixed assignment
Cov(·) :

(
V
2

)
→ N of ε-valid estimations for all edges,

which we will determine later. Let Gm now denote
the graph that contains exactly the edges that have
estimated interferences of at most m, w.r.t. Cov(·).
The algorithms follow Algorithm 1, only the subrou-
tines ComputeEdgeSet and FulfillsProperty are imple-
mented differently. The basic idea to speed them up
is to perform all computations on a sparse graph G−m

u
vx y

(1 ± ε
4 )|uv|

(1 ± ε)|xy|

Figure 2: Illustration for Lemma 7.

which closely approximates Gm. We obtain G−m us-
ing the well-separated pair decomposition (WSPD) of
Callahan and Kosaraju. G−n will contain only one
edge for each well-separated pair and G−m will sim-
ply be the corresponding subgraph of G−n . For de-
tails about the WSPD see [3]. We briefly recall the
basic terminology. Two subsets A,B ⊂ V are well-
separated w.r.t. a separation constant s, if there are
two closed disks DA and DB that have the same ra-
dius r and it holds that A ⊂ DA, B ⊂ DB and the
distance of DA and DB is at least sr. A WSPD of V
is a sequence of subsets {A1, B1}, . . . , {Am, Bm} such
that each pair {Ai, Bi} is well-separated and for any
two points u, v ∈ V there is exactly one pair {Aj , Bj}
with u ∈ Aj and v ∈ Bj or v ∈ Aj and u ∈ Bj .
Callahan and Kosaraju [3] showed that a WSPD of
size m = O(s2n) can be computed in O(s2n+n log n)
time.
For an well-separated pair {Ai, Bi} let Ei denote

the set Ei = {{u, v} | u ∈ Ai, v ∈ Bi}. We obtain G−n
by computing the WSPD and adding one edge of each
Ei. We then compute an (ε/4)-valid interference es-
timation for the choosen edge of Ei. The next lemma
shows that the resulting value is an ε-valid interfer-
ence estimation for ell edges of Ei. This approach
also yields the fixed assignment Cov(·) of ε-valid in-
terference estimations with respect to which we will
compute the estimated interference-minimal graphs.

Lemma 7 Let {Ai, Bi} be a well-separated pair. Let
e1 = {u, v} and e2 = {x, y} be two edges of Ei. It
holds that an (ε/4)-valid interference estimation for e1

is an ε-valid interference estimation for e2, assuming
s ≥ (8 + 5ε)/ε.

If we set the separation constant s to O(1/ε), the
graph G−n has O(n/ε2) edges, and so has G−m. The
dilation of a graph G is the infimum of the set {t |
G is a t-spanner}. We can show that:

Theorem 8 (i) Gm is connected if and only if G−m
is connected,

(ii) if G−m has dilation t then Gm has dilation in the
range [t/(1 + ε), t].
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Next, we describe how to compute the valid estima-
tions of edge costs efficiently. The idea is to use ex-
tended query ranges. For a given ε and a query range
Q, the extended query range Qε is the set of points
lying at L∞-distance at most εw from Q, where w
is the diameter of Q. In our application, the query
range will be the union of two disks of radius r, thus
we can easily set the values such that Qε is the set of
points lying at L∞-distance at most εr from Q.
We will perform ε-approximate counting queries.

A simple modification of the BBD-tree by Arya and
Mount [1] gives the following theorem:

Theorem 9 Given a set V of n points in the plane, a
constant-complexity query rangeQ and some ε > 0, ε-
approximate range counting queries can be answered
in O(1/ε+ log n) time using O(n log n) preprocessing
and O(n) space.

Proposition 10 Given a real value ε > 0 and a
constant-complexity range Q, it holds that an ε-
approximate range counting query returns an integer
N such that |{V ∩Q}| ≤ N ≤ |{V ∩Qε}|.

Given an edge e it is straight-forward to see that
performing an ε-approximate counting query will give
an ε-valid interference estimation for e.
In summary, the graph G−n can be computed in
O(n/ε2(1/ε + log n)) deterministic time. Note that
we compute G−n in a preprocessing step and the
graphs G−m needed in the exponential and binary
search of the algorithms are obtained as subgraphs
from G−n in O(n/ε2) time. We now show how the
sparse graphs G−m help to implement the subroutine
FulfillsProperty(Gm, V ) efficiently.

4.1 Spanning trees

According to Theorem 8 (i), we can perform the
testing whether Gm is connected by simply testing
G−m. A breadth-first search in G

−
m requires O(n/ε2)

time. Thus, we require O(n/ε2 log k) time in total for
connectivity testing (exponential and binary search),
where k is the minimum value for which there is a con-
nected graph. This means that Gk can be computed
in O(n/ε2(1/ε + log n)) time. We then simply run
a breadth-first search in G−k to obtain an estimated
interference-minimal spanning tree.

Theorem 11 We can find an estimated interference-
minimal spanning tree T in O(n/ε2(log n+1/ε)) time.

By running Prim’s algorithm in Gk we could find an
interference-minimal spanning tree T that also min-
imizes

∑
e∈T Cov(e, ε). However, this could require

Θ(n2) time since Gk can have up to Θ(n2) edges.

4.2 Spanners

Let t∗ > 0 be the given constant for which we want
to compute a t∗-spanner. To decide whether Gm has
dilation at most t∗ one needs to perform a shortest-
path query for every pair of points in V . How-
ever, since we are only looking for an approximate
solution we can use an approximation of t∗. We
call t a (c1, c2)-approximate stretch factor of a graph
with dilation t∗, if it holds that t/c1 ≤ t∗ ≤ c2t.
We apply a result of Narasimhan and Smid [6] that
says that a (1 + ε, 1 + δ)-approximate stretch factor
can be computed in O(nδ−2(log n + T (n))) time for
any δ > 0, where T (n) is the time required for a
(1 + ε)-approximate shortest path query. From The-
orem 8 (ii) it follows that dGm

(u, v) ≤ dG−
m
(u, v) ≤

(1 + ε) · dGm
(u, v) for any two points u, v ∈ V . Thus,

performing an exact shortest path query in G−m yields
a (1+ε)-approximate shortest path for Gm. The run-
ning time of such a query is T (n) = O(nε−2 log n) if
we use Dijkstra’s algorithm on the linear-size graph
G−m. This means computing an approximate stretch
factor t of Gm requires O(n2ε−2δ−2 log n) time in to-
tal. The subroutine FulfillsProperty(Gm, V ) will an-
swer yes if t/(1 + ε) ≤ t∗. We then know that the
output is a graph Gkt for which kt is at most Int∗,
the minimum estimated interference value for any t∗-
spanner of V . Setting δ = ε and summing up the
running times yields the following theorem.

Theorem 12 Given two real numbers t∗ > 1
and ε > 0, we can find a (1 + ε)t∗-spanner in
time O(n2ε−4 log n log kt∗) with estimated interfer-
ence value at most Int∗.
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A Note on Simultaneous Embedding of Planar Graphs
(Abstract)∗

Emilio Di Giacomo† Giuseppe Liotta†

1 Introduction

Let G1 and G2 be a pair of planar graphs such that
V (G1) = V (G2) = V . A simultaneous embedding [6]
Ψ = (Γ1,Γ2) of G1 and G2 is a pair of crossing-free
drawings Γ1 and Γ2 of G1 and G2, respectively, such
that for every vertex v ∈ V we have Γ1(v) = Γ2(v).
If every edge e ∈ E(G1) ∩ E(G2) is represented with
the same simple open Jordan curve both in Γ1 and in
Γ2 we say that Ψ is a simultaneous embedding with
fixed edges. If the edges of G1 and G2 are repre-
sented with straight-line segments in Γ1 and Γ2 we
say that Ψ is a simultaneous geometric embedding.
The existence of simultaneous geometric embeddings
for pairs of paths, cycles, and caterpillars is shown
in [2], where also counter-examples for pairs of gen-
eral planar graphs, pairs of outerplanar graphs, and
triples of paths are presented.
Concerning the the computation of (non-geometric)

simultaneous embeddings, Erten and Kobourov [6]
presented an O(n)-time algorithm to simultaneously
embed any pair of planar graphs on the O(n2)×O(n2)
grid with at most three bends per edge, where n is the
number of vertices of G1 and G2. If the two graphs
are trees then the number of bends per edge can be
reduced to one. Furthermore, in [6] an O(n)-time al-
gorithm to compute a simultaneous embedding with
fixed edges of a tree and a path on the O(n)×O(n2)
grid with no bends on the path-edges and at most one
bend per edge on the tree-edges is described.
In this note we revisit the elegant technique of Erten

and Kobourov [6] to present some new results on si-
multaneous embeddings with fixed edges. We prove
that the pairs outerplanar graph - path and outer-
planar graph - cycle admit a simultaneous embedding
with fixed edges and at most one bend per edge. For
the pair outerplanar graph - path, the edges of the
path are straight-line segments. We also present some
extensions of the results in [6] about simultaneous em-
beddings of planar graphs that are immediate conse-
quence of existing literature. For reasons of space
some proof are sketched or omitted.

∗Research partially supported by MIUR, under Project
“ALGO-NEXT(Algorithms for the Next Generation Internet
and Web: Methodologies, Design and Experiments)”.

†Dipartimento di Ingegneria Elettronica e dell’Informazione,
Università degli Studi di Perugia, {digiacomo,
liotta}@diei.unipg.it

2 Preliminaries

The algorithms to compute a simultaneous embedding
of a pair of planar graphs and of a pair of trees pre-
sented in [6] are an elegant combination of the tech-
nique by Kaufmann and Wiese [7] for point-set em-
bedding and of the simultaneous embedding strategy
for two paths by Brass et al. [2]. In this section, we
first recall the main ideas of Erten and Kobourov for
simultaneous embedding of two planar graphs G1 and
G2 and then make a couple of observations on how to
combine these ideas with known literature in order to
extend some of the results in [6].
Suppose first that both G1 and G2 are Hamilto-

nian. Let C1 and C2 be two Hamiltonian cycles of
G1 and G2, respectively. For each cycle, one arbi-
trarily chosen edge (called closing edge in the follow-
ing) is removed in order to obtain two Hamiltonian
paths P1 and P2 for G1 and G2, respectively. Paths
P1 and P2 are simultaneously embedded by the algo-
rithm of Brass et al. [2]. Erten and Kobourov add
the remaining edges of G1 and of G2 to the drawing
by using the technique of Kaufmann and Wiese [7].
Namely, let δ be the maximum slope of a segment of
the path defined by P1. The closing edge for cycle C1

is drawn as a polyline with two segments whose slopes
are δ′ and −δ′, where δ′ = δ+ ε for an arbitrary small
epsilon > 0. The remaining edges of G1 are divided
into edges that are inside C1 and edges that are out-
side C1. The edges that are inside (outside) C1 are
drawn inside (outside) C1 as polylines each consisting
of two segments having slopes δ′ and −δ′, respectively.
Possible overlaps between segments corresponding to
different edges can be removed by a simple rotation
technique described in [7]. The drawing of G2 is com-
puted with an analogous procedure starting form the
drawing of path P2. Erten and Kobourov show that
the overall time complexity of the procedure is O(n)
where n is the number of vertices in G1 and in G2;
also, if the bends may not be at integer grid points,
the size of the grid is O(n2)×O(n2) (O(n3)×O(n3)
else).
If G1 and G2 are not sub-Hamiltonian, then Erten

and Kobourov use the O(n) algorithm by Chiba and
Nishizeki [3] to augment the graphs in order to make
them Hamiltonian. The augmentation is done by
adding dummy edges and by splitting each edge with
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at most one dummy vertex. A simultaneous embed-
ding of the augmented graphs can now be computed
in linear time be the technique described above. After
such an embedding is computed the dummy edges are
removed and the dummy vertices are treated as bend
points. As a result, every edge (u, v) that is split by a
dummy vertex w ends up having at most three bends,
one between u and w, one at w and one between w
and v. Observe that the bend at w can be avoided if
the two segments of (u,w) and (w, v) incident on w
have the same slope. In [7] it is described how to ro-
tate the segments incident on w so to avoid the third
bend. However this rotation increases the area of the
drawing, and Erten and Kobourov do not apply the
rotation. As a result, they prove the existence of a
simultaneous embedding of two planar graphs in an
integer grid of size O(n2) × O(n2) and with at most
three bends per edge (or O(n3)×O(n3) if bends are
at integer grid points). In [5] it is showed a variant of
the point-set embedding algorithm of Kaufmann and
Wiese [7] that makes it possible to never have a third
bend on the split edges and thus it does not require
any rotation of the edges. A combination of the re-
sults in [5] and of the technique in [6] leads therefore
to the following improvement of the result by Erten
and Kobourov.

Theorem 1 Let G1 and G2 be two planar graphs
such that V (G1) = V (G2) = V . G1 and G2 can
be simultaneously embedded in O(n) time, using at
most two bend per edge, on an integer grid of size
O(n2)×O(n2), where n = |V |.

The approach of Erten and Kobourov is such that
if the two graphs can be augmented without adding
dummy vertices, then we have a simultaneous embed-
ding with at most one bend per edge. In the spe-
cial case of trees, they augment the graphs to become
Hamiltonian without using dummy vertices. We re-
call that every sub-Hamiltonian graph has the prop-
erty that it can be augmented with only edge addi-
tion to become Hamiltonian. Although it is NP-hard
to recognize the sub-Hamiltonian graphs, there are
some families of graphs that are known to be sub-
Hamiltonian and for which the edge augmentation can
be found in time proportional to the number of the
vertices. Among such families, we mention here out-
erplanar graphs and series-parallel graphs (see, e.g.,
[1, 4]). We can therefore extend Theorem 3 of [6] to
families of graphs other than trees.

Theorem 2 Let G1 and G2 be two graphs such that
V (G1) = V (G2) = V and Gi (i = 1, 2) is either a
series-parallel graph or an outerplanar graph. G1 and
G2 can be simultaneously embedded in O(n) time,
using at most one bend per edge, on an integer grid
of size O(n2)×O(n2), where n = |V |.

3 Simultaneous Embedding with Fixed Edges

In [6] the following result is proved.

Theorem 3 [6] Let T be a tree and let P be a simple
path such that V (T ) = V (P ) = V . T and P can be
simultaneously embedded with fixed edges in O(n)
time, using at most one bend for each edge of T and
zero bends for each edge of P , on an integer grid of
size O(n)×O(n2), where n = |V |.

The proof of Erten and Kobourov behind Theo-
rem 3 exploits the technique described in Section 2.
Namely, they present a linear-time recursive strategy
for computing a Hamiltonian path PT of the tree that
contains all edges shared by P and T and then use
such a Hamiltonian path and path P itself to compute
a simultaneous embedding by the technique described
Section 1. Since P and PT are drawn with straight-
line segments and the remaining edges of T have at
most one bend, the theorem follows. It is worth re-
marking that the key idea in the proof of Erten and
Kobourov for Theorem 3 is reducing the tree-path si-
multaneous embedding problem with fixed edges to
the combinatorial question of finding an augmented
Hamiltonian cycle in the tree with the additional con-
straint that the cycle must contain all edges of P . In
this section we use the same approach of Erten and
Kobourov to extend Theorem 3.
We need some more definitions. A k-pages book

embedding φ(G) of a graph G is a crossing-free draw-
ing of G such that the vertices of G are drawn
as points along a straight line l called spine, and
each edge is drawn as a simple Jordan curve on one
among k half-planes, called pages, having l as com-
mon boundary. The minimum number of pages over
all book embeddings of a graph G is called the page
number of G. A graph has page number one if and
only if it is outerplanar and that a graph has page
number two if and only if it is sub-Hamiltonian [1].
Let v0, v1, . . . , vn−1 be the vertices of G in the order

they are encountered along the spine from left to right.
We say that v0, v1, . . . , vn−1 is the linear ordering in-
duced by φ(G). An edge e1 = (vi, vj) ∈ E(G) is said to
be nested inside another edge e2 = (uh, vl) ∈ E(G) in
φ(G) if e1 and e2 are drawn on the same page and
h < i < j < l. A r-rainbow is a set of r edges
e0, e1, . . . , er−1 ∈ E(G) such that ei+1 is nested in-
side ei (0 ≤ i < r − 1). Edges e0 and e1 are called
the top edge and the second edge of the r-rainbow,
respectively.
In what follows we are interested in book embed-

dings on at most two pages. In this case the book
embedding is a planar drawing and the two pages
are the two half-planes defined by the straight line
representing the spine. We assume that the spine is
drawn as an horizontal straight line and we refer to
the two pages as the top page and as the bottom page.
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Also, when we consider a 1-page book embedding we
shall assume that the only page is the top page. The
next two lemmas use 1-page book embeddings to show
some combinatorial properties of outerplanar graphs.

Lemma 4 Let G be an outerplanar graph, let
φ(G) be a 1-page book embedding of G, and let
v0, v1, . . . , vn−1 the linear ordering induced by φ(G).
Let E′ ⊆ E(G) be a set of disjoint edges and let
e∗ = (vi, vj), 0 < i < j < n − 1 be an edge of E′.
It is possible to add edges to G in such a way that the
augmented graph G′ is planar and contains a path π
with the following properties: (i) π starts at vi and
ends at vj+1; (ii) π contains e∗, all the edges of E′

nested inside e∗, and all vertices vl with i < l < j+1.

Sketch of Proof. Let φ′ be the 1-page book embed-
ding obtained by deleting from φ(G) all edges of E(G)
that do not belong to E′. For each edge e ∈ E′, the
weight of e is the maximum r such that there exists
a r-rainbow in φ′ having e as its top edge; if e is not
the top edge of any rainbow, the weight of e is 0.
We prove the statement by induction on the weight

w of e∗. If w = 0, i.e. no edge of E′ is nested inside
e∗, we proceed as illustrated in Figure 1: if there is no
vertex between vi and vj along the spine, we choose
π = vi, vj , vj+1; otherwise, π is obtained by concate-
nating the path vi, vj with the path vj , vj−1, . . . , vi+1,
and with edge (vi+1, vj+1). The edges of π that are
not in φ(G) are augmenting edges. We draw all the
augmenting edges on the bottom page. Let φ(G′) be
the augmented drawing and let G′ be the correspond-
ing augmented graph. We prove that φ(G′) is a 2-
page book embedding and therefore G′ is planar. The
edges in the top page do not cross each other because
they are all edges of G and do not cross in φ(G). All
edges in the bottom page connect pairs of consecutive
vertices except, possibly, edge (vi+1, vj+1). It follows
that there cannot be any crossing in the bottom page
and hence G′ is planar.

e*

vi vi+1 vj−1vj vj+1

Figure 1: The base case of Lemma 4

Suppose now that w = k ≥ 1 and that the
statement is true for w < k. Let φ′ be the 1-
page book embedding obtained by deleting from φ(G)
all edges of E(G) that do not belong to E′. Let
e0 = (vi0 , vj0), e1 = (vi1 , vj1), . . . eh = (vih−1 , vjh−1)
(i0 < i1 < · · · < ih−1) be the second edges of the
rainbows that have e as their top edge. The weight
of each edge em (0 ≤ m ≤ h − 1) is at most k − 1

and by inductive hypothesis there exists a path πm

from vim to vjm+1 that contains em, all edges of E′

that are nested inside em, and all vertices between vim

and vjm+1. Also, since the edges of E′ are disjoint we
have that i0 < j0 < i1 < j1 < · · · < ih−1 < jh−1.
Denote as πm the path with the same edges as πm

that starts at vjm+1 and ends at vim (that is, πm is
the “reverse” of πm). We choose π as depicted in
Figure 2, i.e. π = vi,vj ,vj−1,. . . ,πh−1,. . . ,πh−2,. . . ,
π0,. . . ,vi+1,vj+1, where the edges of π that are not in
G are augmenting edges. Path π starts at vi, ends
at vj+1, it contains e∗, and by induction it contains
all vertices between vi and vj+1 and all edges of E′

nested inside e.
Let φ(G′) be the augmented drawing and let G′ be

the corresponding augmented graph. We prove that
φ(G′) is a 2-page book embedding and therefore G′

is planar. The edges in the top page do not cross
each other because they are all edges of G and do
not cross in φ(G). Let d1 and d2 be two edges in
the bottom page both connecting two vertices that
are non-consecutive along the spine. If d1 and d2 are
both edges of a path πm (0 ≤ m ≤ h−1), then they do
not cross by induction. If d1 and d2 are edges of two
different paths πm1 and πm2 (0 ≤ m1 < m2 ≤ h− 1),
then the vertices of πm1 are before those of πm2 and
d1 and d2 do not cross. The only edge in the bottom
page that connects vertices that are non-consecutive
along the spine and that does not belong to ∪h−1

m=0πm

is (vi+1, vj+1). Let d1 be the edge (vi+1, vj+1) and let
d2 be an edge of a path πm (0 ≤ m ≤ h− 1); we have
vi+1 < vim < vjm < vj+1, which implies that the two
edges do not cross and hence G′ is planar. �

e*

vi vi+1 vj−1vj vj+1
π 0 π h−1

...

Figure 2: The inductive case of Lemma 4

Lemma 5 Let G be an outerplanar graph and let
E′ ⊆ E(G) be a set of disjoint edges. It is possible
to add edges to G in such a way that the augmented
graph G′ is planar and has a Hamiltonian cycle con-
taining all edges of E′.

Sketch of Proof. Since G is outerplanar it admits a
1-page book embedding φ(G). Let v0, v1, . . . , vn−1 the
linear ordering induced by φ(G). It can be proved [1]
that one can always compute φ(G) such that v0

and vn−1 are not connected by an edge of E(G) ∩
E(P ). Let e0 = (vi0 , vj0), e1 = (vi1 , vj1), . . . eh−1 =
(vih−1 , vjh−1) (0 < i0 < i1 < · · · < ih−1 < n − 1)
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be the edges of E′ not nested inside any other edge
of E′. Since the edges of E′ are disjoint then i0 <
j0 < i1 < j1 < · · · < ih−1 < jh−1. Also, by
Lemma 4 for each edge em (0 ≤ m ≤ h − 1) there
exists a path πm from vim to vjm+1 that contains
edge em, all edges of E′ nested inside em, and all
vertices between vim and vjm+1. We choose a cycle
C = v0, v1, . . . , π0, . . . , π1, . . . , πh−1, vn−2, vn−1, v0,
where the edges of C that are not in G are augment-
ing edges. By Lemma 4, C contains all vertices of G
and all edges of E′. �

Lemma 6 Let G be an outerplanar graph and let P
be a simple path such that V (G) = V (P ) = V . It
is possible to add edges to G in such a way that the
augmented graph G′ is planar and has a Hamiltonian
cycle containing all edges of E(G) ∩ E(P ).

Sketch of Proof. The subgraph of G induced by the
edges of E(G)∩E(P ) is a forest of paths; we denote by
π0, π1, . . . πh−1 the paths of this forest. Let φ(G) be a
1-page book embedding of G and let v0, v1, . . . , vn−1

the linear ordering induced by φ(G). As in Lemma 5,
we can assume that v0 and vn−1 are not connected by
an edge of E(G)∩E(P ). LetH be the graph defined as
follows. The vertices of H are all vertices of G except
those having two edges of E(G) ∩ E(P ) incident on
them; for each path πm with endvertices vi and vj , H
has the edge em = (vi, vj) (0 ≤ m ≤ h− 1).
Graph H is a set of disjoint edges and we can apply

Lemma 5 to H with E′ = E(H). We obtain an aug-
mented graphH ′ that is planar and has a Hamiltonian
cycle D containing all edges of H (actually, cycle D
coincides with H ′ since E′ coincides with E(H)). The
technique in the proof of Lemma 5 defines H ′ by com-
puting a 2-page book embedding φ(H ′) of H ′. φ(H ′)
is computed by adding edges to a given 1-page book
embedding φ(H) of H; we assume here that φ(H) is
obtained from φ(G) by deleting the vertices and edges
of G that are not in H and by adding in the top page
the edges of H that replace each πm (0 ≤ m ≤ h−1).
Let G′ be the graph obtained by adding to G the aug-
menting edges of H ′ and let C be the cycle obtained
by replacing each edge em of H in H ′ with the cor-
responding path πm (0 ≤ m ≤ h − 1). Cycle C is a
simple cycle of G′ and by construction it contains all
vertices of G and all edges of E(G) ∩E(P ).
Consider the drawing φ(G′) of G′ defined as follows.

The vertices of G′ are drawn as in φ(G); the edges of
E(G′) ∩ E(G) are drawn as in φ(G), i.e. they are
drawn on the top page; the edges of E(G′) ∩ E(H ′)
are drawn as in φ(H ′), i.e. they are drawn on the
bottom page. We have that the edges above the spine
do not cross since they do not cross in φ(G) and the
edges below the spine do not cross since they do not
cross in φ(H ′). It follows that φ(G′) is a 2-page book
embedding and therefore G′ is planar. �

Theorem 7 Let G be an outerplanar graph and let
P be a simple path such that V (G) = V (P ) = V .
G and P can be simultaneously embedded with fixed
edges in O(n) time, using at most one bend for each
edge of G and zero bends for each edge of P , on an
integer grid of size O(n)×O(n2), where n = |V |.

Theorem 7 can be extended to the pair outerplanar
graph - cycle.

Theorem 8 LetG be an outerplanar graph and let C
be a simple cycle such that V (G) = V (C) = V . G and
C can be simultaneously embedded with fixed edges
in O(n) time, using at most one bend per edge, on an
integer grid of size O(n2)×O(n2), where n = |V |.

Theorems 7 and 8 can be extended to the more gen-
eral case in which the two graphs have only a subset
of their vertices in common. Let G1 and G2 be a pair
of planar graphs such that V (G1) ∩ V (G2) = V . A
simultaneous embedding with fixed edges of G1 and of
G2 is a a pair of crossing-free drawings Γ1 and Γ2

of G1 and G2, respectively, such that for every ver-
tex v ∈ V we have Γ1(v) = Γ2(v) and for every edge
e ∈ E(G1) ∩ E(G2) we have Γ1(e) = Γ2(e).

Theorem 9 Let G1 be an outerplanar graph and let
G2 be either a simple path or a simple cycle such that
V (G1) ∩ V (G2) = V . G1 and G2 can be simultane-
ously embedded with fixed edges in O(n) time, using
at most one bend per edge, on an integer grid of size
O(n2) × O(n2), where n = |V (G1) ∪ V (G2)|. If G2

is a simple path its edges are drawn as straight-line
segments and the grid size is O(n)×O(n2).
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Schulz, André . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Seara, Carlos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Sellarès, J. Antoni . . . . . . . . . . . . . . . . . . . . . 97, 163, 179
Sohler, Christian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

211



21st European Workshop on Computational Geometry, 2005

Speckmann, Bettina. . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
Spillner, Andreas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Theobald, Thorsten . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Thite, Shripad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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