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Abstract

Let G be a graph containing N disjoint t-spanners that are inter-connected with M edges. We present an algorithm
that constructs a data structure of size O(M2 + n log n) that answers (1 + ε)-approximate shortest path queries
in G in constant time, where n is the number of vertices of G.

1. Introduction

The shortest-path (SP) problem for weighted
graphs with n vertices and m edges is a funda-
mental problem for which efficient solutions can
now be found in any standard algorithms text, see
also [6,8,12–14].

Lately the approximation version of this prob-
lem has also been studied extensively [1,5,7]. In
numerous algorithms, the query version of the SP-
problem frequently appears as a subroutine. In
such a query, we are given two vertices and have to
compute or approximate the shortest path between
them. Thorup and Zwick [15] presented an algo-
rithm for undirected weighted graphs that com-
putes approximate solutions using a pre-computed
data structure (the time of pre-processing was re-
cently improved by Baswana and Sen [3]). Since
the query time is essentially bounded by a con-
stant, Thorup and Zwick refer to their queries as
approximate distance oracles.

We focus on the geometric version of this prob-
lem. A geometric graph G = (V , E) has vertices cor-
responding to points in R

d and edge weights from
a Euclidean metric, and is said to be a t-spanner
for V , if for any two points p and q in V , there ex-
ists a path of length at most t times the Euclidean
distance between p and q. Again considerable pre-
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vious work exists on the shortest path and related
problems for t-spanners. The geometric query ver-
sion was recently studied by Gudmundsson et al.
[9,10] and they presented the first data structure
that answers approximate shortest-path queries in
constant time, provided that the input graph is a
t-spanner for some known constant t > 1. Their
data structure uses O(n log n) space and can be
constructed in time O(m log n).

In this paper we extend this result to hold
also for “islands” of t-spanners, i.e., a set of dis-
joint t-spanners G1, . . . ,GN inter-connected by
M edges. We construct a data structure that
can answer (1 + ε)-approximate shortest path
queries in constant time. The data structure uses
O(M2 + n log n) space and can be constructed in
time O((m + M2) log n), hence for M = O(

√
n)

the bound is essentially the same as in [9] and [10].
We claim that this generalization is natural in

many applications. Consider for example the rail-
way network in Europe where each country has a
railway network which usually is a t-spanner for
some small value t. The railway networks of the
countries are then sparsely connected. Typically
the number of inter-connecting edges is very small
compared to the total number of edges in the net-
work, see Fig. 1.

In [9] it was shown that an approximate shortest-
path distance oracle can be applied to a large
number of problems, for example, finding shortest
obstacle-avoiding path between two vertices in a
planar polygonal domain with obstacles and inter-
esting query versions of closest pair problems. The
extension presented in this paper also generalises
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Fig. 1. (a) Many geometric networks consists of a set of
“dense” graphs that are sparsely connected.(b) Example
of an instance where the dashed edges are inter-connecting
edges.

the results for the above mentioned problems.
We will use the following notation. For points p

and q in Rd, |pq| denotes the Euclidean distance
between p and q. If G is a geometric graph, then
δG(p, q) denotes the Euclidean length of a shortest
path in G between p and q. If P is a path in G
between p and q having length ∆ with δG(p, q) ≤
∆ ≤ (1+ε)·δG(p, q), then P is a (1+ε)-approximate
shortest path for p and q.

The main result of this paper is stated in the
following theorem:

Theorem 1 Let G be a geometric graph, with n
vertices and m edges, consisting of a set of dis-

joint t-spanners G1=(V1, E1), . . . ,GN=(VN , EN )
inter-connected by M edges, and let ε be a positive

constant. One can construct a data structure in

time O((m + M2) log n) using O(M2 + n log n)
space that can answer (1+ ε)-approximate shortest

path queries in constant time.

The set of pairwise disjoint t-spanners G1 =
(V1, E1), . . . ,GN = (VN , EN ) will be called the
“islands” of G and, an edge (u, v) ∈ E is said to
be an inter-connecting edge if u ∈ Vi and v ∈ Vj ,
where i 6= j. A vertex v ∈ Vi incident to an inter-
connecting edge is called an harbor and, the set of
all harbors of Vi is denoted Ci. Note that the total
number of harbors is O(M) since the number of
inter-connecting edges is M .

2. Tools

In the construction of the distance oracle we will
need several tools, among them the well-separated
pair decomposition (WSPD) by Callahan and
Kosaraju [4], a graph pruning tool by Gudmunds-
son et al. [9] and well-separated clusters by Krz-
naric and Levcopoulos [11].

Fig. 2. An example cell partition, with respect to V ′, made
by the algorithm. Doughnuts are drawn with solid lines,
while inner cells are drawn with dotted ones.

In this section, given a set V of n points in R
d,

and a subset V ′ ⊆ V , we show how to associate a
representative point r ∈ V to each point p ∈ V ,
such that the distance |pr| + |rq|, for any point
q ∈ V ′, is a good approximation of the distance
|pq|. The total number of representative points is
O(|V ′|). The idea is to partition space into cells,
such that all points included in a cell may share a
common representative point.

We will use the fact that, given a set S of n
points in R

d, an approximate nearest neighbor data
structure can be efficiently computed (Mount et
al. [2]).

Next the algorithm for computing representa-
tive points is presented. As a pre-processing step
we compute the b-cluster tree T ([11]) of V ′ with
b = 10/ε2. For a level i in T let ν(D1), . . . , ν(Dℓi

)
be the nodes at that level, where D1, . . . ,Dℓi

are
the associated clusters. Let Dj,1 . . . ,Dj,ℓi+1

be the
cluster associated with the children of ν(Dj). For
each cluster Dj pick an arbitrary vertex dj as the
center point of Dj . The set of the ℓi center points
is denoted D(i). Perform the following four steps
for each level i of T .

(i) Compute an approximate nearest neighbor
structure with D(i) as input, as described by
Mount et al. [2].

(ii) For each center point dj in D(i) compute the
(1 + ε)-approximate nearest neighbor of dj .
The point returned by the structure is de-
noted vj .
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(iii) For each cluster Dj construct two squares;
is(Dj) and os(Dj) with centers at dj and
side length 2α = 2(1 + 1/ε) · rd(cl(Dj)) and
2β = 2ε|dj , vj |/(1 + ε) respectively, where
α < β. The two squares are called the inner
and outer shells of Dj , and the set theoretical
difference between the inner and the outer
shell is denoted the doughnut of Dj .

(iv) The inner shell of Dj is recursively parti-
tioned into four equally sized squares, un-
til each square s either (a) is completely in-
cluded in

⋃
1≤k≤ℓi+1

os(Dj,k) (the union of

the outer shells of the children of ν(Dj)). In
this case the square is deleted and, hence, not
further partitioned. Or, (b) has diameter at
most ε

1+ε
· K, where K is the smallest dis-

tance between a point within s and a point
in Dj . A (1 + ε)-approximation of K can be
computed in time O(log |Dj |). This implies
that the diameter of s is bounded by ε · K.

The resulting cells are denoted inner cells.
Note that, due to step 4a, every inner cell is
empty of points from Dj . An illustration of
the partition is shown in Fig. 2.

Finally, after all levels of T has been processed,
we assign a representative point to each point p in
V . Preprocess all the produced cells and perform
a point-location query for each point. If p belongs
to a doughnut cell then the center point of the
associated cluster (see step 1) is the representative
point of p. Otherwise, if p belongs to an inner cell
C and p is the first point within C processed in
this step then rep(C) is set to p. If p is not the first
point then rep(p) = rep(C). Further, note that an
inner cell may overlap with the union of the outer
shells of the children of v(Dj). If a point is included
in both an inner cell and an outer shell, we treat
it as if it belonged to the inner cell, and assign a
representative point as above.

For the above algorithm we can show the fol-
lowing theorem:

Theorem 2 Given a set V of n points in R
d, a

subset V ′ ⊆ V and a positive real value τ1 < 1, one

can for each point p ∈ V associate a representative

point r(p) such that for any point h ∈ V ′, it holds

that

min{|p, r(p)|, |r(p), h|} ≤ τ1|p, h|.
The number of representative points is O(|V ′|) and

they can be computed in time O(n log n).

3. Constructing the Oracle

In this section we consider the main result of the
paper, Theorem 1. The section is divided into two
subsections: first we present the construction of the
structure and then how queries are answered. Note
that the correctness analysis has been omitted.

3.1. Constructing the basic structures

In this section we show how to pre-process G
in time O((M2 + m) log n) such that we obtain
three structures that will help us answer (1 + ε)-
approximate distance queries in constant time. We
will assume that the number of edges in each sub-
graph is linear with respect to the number of ver-
tices in Vi, if not the subgraph is pruned. This is
done in time O(m log n) [9]. Hence, we can from
now on assume that #Ei = O(Vi).

Let V ′ be the set of vertices in V incident on
an inter-connecting edge. Now we can apply Theo-
rem 2 with parameters V , V ′ = Γ′ and τ1 to obtain
a representative point for each point in V .

Now we are ready to present the three structures:
Oracle A: An oracle that given two points p and

q answers ‘yes’ if p and q belongs to the same
island, otherwise it will return the representative
points (to be defined below) for p and q.

Oracle B: An (1 + ε)-approximate distance ora-
cle for any pair of points belonging to the same
island.

Matrix D: An O(M) × O(M) matrix. For each
pair of representative points, p and q, D con-
tains the (1 + ε)-approximate shortest distance
between p and q.
The representative point of a point p is denoted

r(p), and the set of all representative points of Vi

and V is denoted Γi and Γ, respectively. Note that
Ci ⊆ Γi. Now we turn our attention to the con-
struction of the oracles and the matrix.

The construction of Oracles A and B are rather
straightforward, with construction details omit-
ted. However, Oracle A can be constructed in lin-
ear time, using linear space, and Oracle B can be
constructed in O(m log n) time, using O(n log n)
space.

Matrix D is constructed as follows. For each i,
1 ≤ i ≤ N , compute the WSPD of Γi with sep-
aration constant s = (1+τ2+τ3

τ3−τ2
) (the constants τ2

and τ3 are necessary for the correctness analy-
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p
q

Fig. 3. Illustrating the approximate shortest path between
p and q. The boxes illustrate the “harbors” along the path.

sis). As output we obtain a set of well-separated
pairs {{(A1, B1}, . . . , {Awi

, Bwi
}}, such that wi =

O(#Ci). Next, construct the non-Euclidean graph
F = (Γ, E ′) as follows. For each Γi and each well-
separated pair {Aj , Bj} of the WSPD of Γi select
two (arbitrary) representative points aj ∈ Aj and
bj ∈ Bj . Add the edge (aj , bj) to E ′ with weight
Bi(aj , bj), where Bi(p, q) denotes a call to oracle
Bi for Gi with parameters p and q. Note that the
graph F will have O(M) vertices and edges.

Let D be an O(M) × O(M) matrix. For each
representative point p ∈ Γ compute the single-
source shortest path in F to every point q in Γ
and store the distance of each path in D[p, q]. The
total time for this step is O(M2 log M), and it can
be obtained by running Dijkstra’s algorithm M
times.

Lemma 3 The oracles A and B, and the matrix

D can be built in time O((M2 + m) log n) and the

total complexity of A, B and M is O(M2+n log n).

3.2. Answer a query

Given the two oracles and the matrices pre-
sented above the query algorithm is very simple.
Let r(p) denote the representative point of p ∈ V .
Now assume that we are given two points p and
q. If p and q belong to the same islands then we
query Oracle B with input p, q and return the
value obtained from the oracle. If p and q does
not belong to the same island we return the sum
of B(p, r(p)), D(r(p), r(q)) and B(r(q), q). Obvi-
ously this is done in constant time.

Using Lemma 3 and analysing the correctness
of the query algorithm above, we can finally show
Theorem 1.

References

[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani.
Fast estimation of diameter and shortest paths
(without matrix multiplication). SIAM Journal on

Computing, 28(4):1167–1181, 1999.

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching. Journal of the ACM,
45(6):891-923, 1998.

[3] S. Baswana and S. Sen. Approximate Distance Oracles
for Unweighted Graphs in O(n2 log n) Time. In Proc.
15th Annual ACM-SIAM Symposium on Discrete

Algorithms, 2004.

[4] P. B. Callahan and S. R. Kosaraju. A decomposition
of multidimensional point sets with applications to k-
nearest-neighbors and n-body potential fields. Journal

of the ACM, 42(1):67–90, 1995.

[5] E. Cohen. Fast algorithms for constructing t-spanners
and paths with stretch t. SIAM Journal on Computing,
28(1):210–236, 1998.

[6] E. W. Dijkstra. A Note on Two Problems in Connexion
with Graphs. In Numerische Mathmatik vol. 1, 1959.

[7] D. Dor, S. Halperin, and U. Zwick. All-pairs
almost shortest paths. SIAM Journal on Computing,
29(5):1740–1759, 2000.

[8] M. L. Fredman, R. E. Tarjan Fibonacci heaps and their
uses in improved network optimization algorithms.
Journal of the ACM, 34(3):596-615, 1987.

[9] J. Gudmundsson, C. Levcopoulos, G. Narasimhan and
M. Smid. Approximate Distance Oracles for Geometric
graphs. In Proc. 13th ACM-SIAM Symposium on

Discrete Algorithms, 2002.

[10] J. Gudmundsson, C. Levcopoulos, G. Narasimhan and
M. Smid. Approximate Distance Oracles Revisited.

In Proc. 13th International Symposium on Algorithms

and Computation, 2002.

[11] D. Krznaric and C. Levcopoulos. Computing
hierarchies of clusters from the Euclidean minimum
spanning tree in linear time. In Proc. 15th Annual

Conference on Foundations of Software Technology

and Theoretical Computer Science, 1995.

[12] R. Raman. Recent results on the single-source shortest
paths problem. SIGACT News 28:81-87,1997.

[13] M. Thorup. Floats, Integers, and Single Source
Shortest Paths. Journal of Algorithms, 35(2):189-201,
2000.

[14] M. Thorup Undirected Single-Source Shortest Paths
with Positive Integer Weights in Linear Time. Journal

of the ACM, 46(3):362-394, 1999.

[15] M. Thorup and U. Zwick. Approximate distance
oracles. In Proc. 33rd ACM Symposium on Theory of

Computing, 2001.



Geometric dilation of closed planar curves: A new lower bound
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aDept. of Computer Science I, University of Bonn, D - 53117 Bonn, Germany

Abstract

Given any simple closed curve C in the Euclidean plane, let w and D denote the minimal and the maximal
caliper distances of C, correspondingly. We show that any such curve C has a geometric dilation of at least
arcsin( w

D
) +

√

( w

D
)2 − 1.

Key words: computational geometry, convex geometry, convex curves, dilation, detour, lower bound

1. Introduction

Let C be a simple closed curve C in the Eu-
clidean plane. For any two points, p and q, on C
let π(p, q) denote the shorter of the two curve seg-
ments of C that connects p with q. Then the geo-
metric dilation, δ(C), of C is defined as

δ(C) := sup
p,q∈C,p6=q

|π(p, q)|
|pq| (1)

The computation of the geometric dilation (then
called detour) was first studied in [5], where an
O(n log n) approximation algorithm for polygonal
chains in the plane was given. Further efficient al-
gorithms to compute the geometric dilation of cer-
tain classes of curves and networks were presented
in [1], [11], and [9].

The question of embedding a finite point set in
the plane into a network with low geometric dila-
tion was recently studied in [4]. There it has been
shown that any simple closed planar curve has di-
lation δ(C) ≥ π/2, using Cauchy’s surface area
formula.

Note, that the analogue concept on graphs,
where only the point set of the vertices is taken
into account for computing the dilation, was ex-
tensively studied under the notion of spanners
and low dilation graphs, see e.g. [7] for a survey
and [3], [2] for recent results. However, there are

Email addresses: ebbers@cs.uni-bonn.de (Annette
Ebbers-Baumann), gruene@cs.uni-bonn.de (Ansgar
Grüne), rolf.klein@uni-bonn.de (Rolf Klein).

structural differences between the two concepts,
as already mentioned e.g. in [5].

In this paper we prove a powerful generalization
of the lower bound from [4]. Namely, let w and D
denote the width and the diameter of the convex
hull of C, correspondingly, that is, the minimal
and the maximal distances of a rotating caliper
measuring C; see Figure 1.

C

D

w

Fig. 1. Diameter D and width w of ch(C).

Then,

δ(C) ≥ arcsin
( w

D

)

+

√

( w

D

)2

− 1 (2)

holds for the geometric dilation of C. This lower
bound has a minimum value of π/2 if and only if
w = D holds. (Note, however, that the circle is not
the only closed curve satisfying w = D.)

The proof of formula (2) uses a well-known trans-
formation of convex curves called the central sym-
metrization, see e.g. [6] and [10].

The rest of this paper is organized as follows. In
Section 2 we give some necessary definitions and
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basic lemmata. Then, in Section 3 we cite the sym-
metrization transformation. Finally, Section 4 con-
tains the proof of our lower bound.

2. Definitions and basic properties

Throughout this paper we consider simple pla-
nar cycles C, i.e. closed curves in the Euclidean
plane without self-intersections. A simple cycle C
is convex iff it always turns into the same direction,
that is, iff C has a convex interior domain.
Definition 1 (Dilation) Let C be a simple cycle,
and let p, q ∈ C be two points on C.

(i) Cq
p denotes one of the two possible sub-paths

of C connecting p and q, characterized by its
turning direction: If one moves from p to q on
Cq

p , one turns anti-clockwise (C = Cq
p ∪Cp

q ).
(ii) The dilation of a pair of points (p, q) ∈

C × C is the length of a shortest sub-path
πC(p, q) of C connecting p and q, |πC(p, q)| =
min(

∣

∣Cq
p

∣

∣ ,
∣

∣Cp
q

∣

∣), divided by its Euclidean

distance, i.e. δC(p, q) := |πC(p,q)|
|pq| .

(iii) The geometric dilation of C is the supremum
of the dilation values of all pairs of points of
C, i.e. δ(C) := supp,q∈C,p6=q δC(p, q).

By continuity and compactness arguments one
can show that every finite convex curve has a pair
of points attaining maximum dilation.
Definition 2 (Partition Pair) Let p ∈ C be a
point on a cycle C. Then the unique partition part-
ner p̂ of p is characterized by |πC(p, p̂)| = |C| /2.
We say that (p, p̂) is a partition pair of C.

By continuity arguments it is easy to show that
for every direction v ∈ S

1 there exists a partition
pair (p, p̂), i.e. p̂ − p = |p̂ − p| v.
Definition 3 (Breadths) Let C be a simple cycle,
and let v ∈ S

1 be an arbitrary direction.
(i) The v-length of C is the maximum distance of

a pair of points with direction v , i.e. lC(v) :=
max {|pq| | p, q ∈ C, q − p = |q − p| v}.

(ii) The v-width (v-breadth) of C is the distance
of the two supporting lines of C perpendicular
to v, i.e. wC(v) := maxp∈C p·v−minp∈C p·v.

(iii) The v-partition pair distance, hC(v), of C is
the distance of the partition pair with direc-
tion v.

(iv) The diameter, D(C), of C is the maximal
v-length, i.e. D(C) := maxv∈S1 lC(v). The
width, w(C), of C is the minimal v-length,

i.e. w(C) := minv∈S1 lC(v).
(v) The maximal partition pair distance is de-

noted by H(C) := maxv∈S1 hC(v) and the
minimal partition pair distance by h(C) :=
minv∈S1 hC(v).

l(v)

w(v)

v

h(v)

C

Fig. 2. Three different breadth measures.

As used in the introduction, width and diameter
can also be defined using the v-width values which
is proved in [8], [12] respectively:
Lemma 4 Let C be a simple cycle, then D(C) =
maxv∈S1 wC(v). If C is convex, then w(C) =
minv∈S1 wC(v).

The next statement follows immediately from
the definitions; see Figure 2.
Lemma 5 Let C be a simple convex cycle, and let
v ∈ S

1 be an arbitrary direction. Then the following
inequalities hold: hC(v) ≤ lC(v) ≤ wC(v).

3. Central symmetrization

The central symmetrization (see e.g. [6], [8], [10])
is a well-known transformation which maps any
convex cycle to a convex point-symmetric cycle.
In our notion, the central symmetrization is based
on the length values lC(v), introduced in Defini-
tion 3(i).

Amazingly, it preserves all the width values
wC(v). And Cauchy’s surface area formula implies
that the perimeter is not changed either.
Definition 6 Let C be a convex cycle. The central
symmetrization of C is the cycle C′ given by the

parametrization c′ : S
1 → R

2, c′(v) := lC(v)
2 v.

As depicted in Figure 3, we can construct the
central symmetrization by translating all the cen-
ters of the segments of maximal length connecting
pairs of points on C to the origin.

However, there is an easier and more helpful con-
struction, described in the following lemma.
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C

C’

Fig. 3. The central symmetrization of an isosceles
right-angled triangle.

Lemma 7 Let X := f(C)∪C be the face bounded
by C including C itself. Then define a set X ′ to be
the arithmetic mean of X and −X; see [10]. It is
the Minkowski sum X ⊕−X scaled by 1/2. Then,
the central symmetrization C′ is the boundary of
this arithmetic mean X ′:

X := f(C) ∪ C

X ′ :=
1

2
(X ⊕−X)) =

{

1

2
(u − v)

∣

∣

∣

∣

u, v ∈ X

}

⇒ C′ = ∂X ′

PROOF. The proof that this second way of con-
structing C′ is also correct is straightforward.
Let v ∈ S

1 be an arbitrary direction. Define l :=
sup{c ∈ R

>0 | cv ∈ X ′}. Then due to X ′ being
closed, lv is an element of X ′. And for k > l the
point kv is not in X ′. Thus, lv ∈ ∂X ′.

It also follows that there are p, q ∈ X such that
lv = (1/2)(q−p). On the other hand, the definition
of l yields that k > l implies there are no p, q ∈ X
satisfying kv = (1/2)(q−p). Thus, l = (1/2)lC(v).

Hence, our analysis results in the following
parametrization of ∂X ′: c′(v) = (1/2)lC(v)v. And
this is exactly the parametrization we used to
define C′.

The following lemma, stated here without proof,
lists the most important properties of the central
symmetrization. The fact that the width values are
preserved is mentioned without proof in [6]. Gritz-
mann and Klee [8] prove the width-preserving and
length-preserving property. The statement that
the perimeter is preserved is also proved in [10].
Lemma 8 Let C be a simple convex cycle, and let
C′ be its central symmetrization. Then, the cycle
C′ has the following properties:

(i) Cycle C′ is convex.
(ii) Cycle C′ is point-symmetric with respect to

the origin.
(iii) For every direction v ∈ S

1, hC′(v) = lC′(v) =
lC(v) ≥ hC(v), and wC′(v) = wC(v).

(iv) Width, diameter and perimeter are preserved
by central symmetrization, i.e. w(C′) =
w(C), D(C′) = D(C) and |C′| = |C|.

Because we can show that the dilation of a con-
vex cycle is always attained by a partition pair, it
follows easily from those properties that the dila-
tion of the transformed cycle cannot be larger then
the original one:
Lemma 9 The dilation of C′ is not larger than the
original dilation, i.e. δ(C′) ≤ δ(C).

4. The lower bound

To apply the transformation described in Sec-
tion 3, we need the fact that the dilation of the
boundary of the convex hull of any planar cycle
C is at most the dilation of C itself. Due to space
limitations we state this here without proof.
Theorem 10 Let C ⊂ R

2 be a simple closed
curve. Let ∂ch(C) denote the boundary of the con-
vex hull of C. Then holds

δ(C) ≥ δ(∂ch(C)).

Now we prove our result on the lower bound,
using the central symmetrization transformation.
Theorem 11 Let C ⊂ R

2 be a simple closed
curve. Let w be the width and let D be the diameter
of ch(C), the convex hull of C. Then the dilation
of C is bounded from below by

δ(C) ≥ arcsin
( w

D

)

+

√

(

D

w

)2

− 1.

 q cR

αr
x

 p 
B (c)r

Fig. 4. The shortest cycle not intersecting the disk Br(c).

PROOF. Because of Theorem 10 we can assume
w.l.o.g. that C is convex. To show the main idea
of the proof we first consider a point-symmetric
cycle C̃ ⊂ R

2 with center-point c, see Figure 4.
Then, obviously, the partition pairs are also point-
symmetric with respect to c. Let (p, q) be a parti-
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tion pair having maximum distance |pq| = H(C̃).
We define R := H(C̃)/2.

Let Br(c) be the open disc with center point c
and radius r := h(C̃)/2, that is Br(c) := {b ∈
R

2| |b − c| < r}. Then C̃ cannot intersect with
Br(c), otherwise there would exist a partition pair
having a distance smaller than h(C̃) = 2r.

By using the shortest possible cyclic path con-
necting p and q in the Euclidean plane, not inter-
secting Br(c) but enclosing it, we obtain a curve
C̃minPer , as shown in Figure 4. By construction
C̃minPer is the point-symmetric curve of smallest
perimeter that has minimum partition pair dis-
tance h(C̃) and maximum partition pair distance
H(C̃). Due to symmetry reasons this perimeter is
P = 4x + 4rα, with x denoting the lengths of the
straight path segments from p and q to the tan-
gent points on Br(c), correspondingly, and rα the
lengths of the path segments on ∂Br(c).

Using Pythagoras we get x =
√

R2 − r2. And by
considering the angles in the rectangular triangle,
we obtain sinα = cos(π

2 − α) = r
R

. Because the

maximum dilation of the convex cycle C̃ is attained
by a partition pair having shortest path distance
P̃
2 ≥ P

2 , it holds:

δ(C̃)≥
P
2

2r
=

4x + 4rα

4r
=

√
R2 − r2

r
+ arcsin

( r

R

)

=

√

(

R

r

)2

− 1 + arcsin
( r

R

)

(3)

Now, let C be an arbitrary convex cycle, and let
C′ be its central symmetrization. Then, Lemma 9
yields that δ(C) ≥ δ(C′). And by Lemma 8(iv)
we know that width and diameter are preserved,
i.e. w(C′) = w(C) and D(C′) = D(C). However,
in a point-symmetric convex cycle v-length and v-
partition pair distance are equal, implying w(C′) =
h(C′) and D(C′) = H(C′).

Thus, if we apply formula (3) to C′ keeping in
mind that r = h(C′)/2 = w(C′)/2 = w(C)/2 =
w/2 and R = H(C′)/2 = D(C′)/2 = D(C)/2 =
D/2, we get:

δ(C) ≥

√

(

D

w

)2

− 1 + arcsin
( w

D

)

This lower bound equals the global lower bound
of π

2 shown in [4] only for curves of constant width
(w = D). Further arguments show that the in-

equality gets strict if C is not point-symmetric or
not convex. Hence, only circles have dilation π

2 .
Remark 12 By replacing lC(v) by hC(v) in Defi-
nition 3 we get a new transformation, the partition
pair transformation. Ideas analogous to the ones
presented here show that

δ(C) ≥

√

(

H

h

)2

− 1 + arcsin

(

h

H

)

where H = H(ch(C)) and h = h(ch(C)) for every
simple cycle C.
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Abstract

We consider the problem of finding a door in a wall with a blind robot, that does not know the distance to the

door or whether the door is located left hand or right hand to its start point. This problem can be solved with

the well-known doubling strategy yielding an optimal competitive factor of 9 with the assumption, that the robot

does not make any errors during its movements. We study the case, that the robots movement is errorneous. We

give upper bounds for the movement error, such that reaching the door is guaranteed. More precisely the error

range δ has to be smaller than 1

3
. Additionally, the corresponding competitive factor is given by 1 + 8 1+δ

1−3δ
.

Keywords: Online algorithm, Online motion planning, searching, competitive ratio, errors.

1. Introduction

Online motion planning in unknown environ-
ments is theoretically well-understood and prac-
tically solved in many settings. During the last
decade many different objectives where discussed
under several robot models. For a general overview
of theoretical online motion planning problems and
its analysis see the surveys [3,9,10,7].

Theoretical correctness results and performance
guarantees often suffer from idealistic assump-
tions, therefore in the worst case a correct im-
plementation is impossible. On the other hand
practioners analyze correctness results and perfor-
mance guarantees mainly statistically. Therefore
it is useful to investigate, how online algorithms
with idealistic assumptions behave, if those as-
sumptions cannot be fulfilled. More precisely, can
we incorporate assumptions of errors in sensors
and motion directly into the theoretical analysis?
We already successfully considered the behaviour
of the well-known pledge algorithm, see Abelson

Email addresses: kamphans@cs.uni-bonn.de (Tom
Kamphans), langetep@cs.uni-bonn.de (Elmar
Langetepe).

and diSessa [1] and Hemmerling [6], in the pres-
ence of errors [8].

The task of finding a point on a line without
knowing the direction or the distance to the start
point was considered by Baeza-Yates et. al. [2] and
independently by Gal [5] and lead to the so called
doubling strategy, which gives a basic paradigma
for other searching algorithms, i.e., searching for
a point on m rays or approximating the optimal
search path, see [4].

Under the competitive framework doubling with
a factor of two is the optimal strategy for search-
ing a point on the line. The competitive analysis
compares the cost of the strategy with the cost of a
solution which is computed under full information,
see [2].

In this paper we investigate how the doubling
strategy behaves in the presence of errors and how
the error influences the correctness and the corre-
sponding competitive factor of the strategy.

We assume that an error range for a single step
is known in advance but the agent gets no further
information about the cummulated error. There-
fore for the agent it makes no sense not to use the
doubling heuristic.
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2. The lost cow problem

The task is to find a door in a wall, respectively
a point, t, on a line. The robot does not know
whether t is located left hand or right hand to its
start position, s, nor does it know the distance from
s to t. Baeza-Yates et. al. [2] describe the strategy
to solve this problem using a function f . f(i) is
the distance the robot walks in the ith step. If i is
odd, the robot moves f(i) steps from the start to
the right and f(i) steps back; if i is even, the robot
moves to the left. It is assumed, that the movement
is correct, so after moving f(i) steps from the start
point to the right and moving f(i) steps to the left,
the robot has reached its start point. Baeza-Yates
et. al. showed, that a strategy with f(i) = 2i is 9-
competitive and this is optimal.

An online strategy that produces a path of
length |πonl| is called C-competitive if for all scenes

|πonl| ≤ C · |πopt| + A

holds, where |πopt| denotes the path length of the
optimal strategy which makes use of full informa-
tion.

3. Modelling the error

The robot moves straight line segments of a cer-
tain length from the start point alternately to the
left and to the right. Every movement can be af-
flicted with an error, that causes the robot to move
more or less far than expected. However, we require
the robots error in every step is within a certain er-
ror bound, δ. More precisely if the strategy moves
the robot a distance ℓ we require that the covered
distance is in the range [ℓ · (1− δ), ℓ · (1 + δ)] with
δ ∈ [0, 1[.

4. Reaching the door

How large can the error bound δ become under
the restiction, that the robot should be able to
reach the door? W. l. o. g. we consider the case, that
the door is located on the same side as the first step
of the agent. We assume that the door is located
at d = 22j − ε, so an error-free robot hits the door
during the iteration with step width f(j) = 22j .

s′

s

∆2j+2k−1
d

22j+2k

4 − δ

2 − δ

2 + δ

1 + δ

1 − δ

Fig. 1. In the worst case, the start point of every iteration
drifts away from the door. The vertical path segments
are to highlight the single iterations, the robot moves on
horizontal segments only.

In the worst case, every step to the right of the
error afflicted robot is too short and every step to
the left is too long, so start point of the iterations
drifts to the left, see Fig. 1. Let ∆k denote the drift
after k iterations.

∆k =
k∑

i=0

(

2i · (1 + δ)
︸ ︷︷ ︸

Steps, that are too long

− 2i · (1 − δ)
︸ ︷︷ ︸

Steps, that are too short

)

= 2δ ·

k∑

i=0

2i = 2δ(2k+1 − 1).

Let the error afflicted robot miss the door dur-
ing the iteration with step width f(j) = 22j due
to the drift to the left. Now we are interested in
the number of additional steps, and whether the
robot is able to reach the door at all. Obviously the
reachability and the number of additional steps de-
pends on the error δ. If the robot hits the door, it
will hit in the iteration with a step with of 22j+2k,
k ∈ N

>0, because the door is located right hand to
the start point. To ensure, that the robot hits the
door, the length of the last straight path must be
at least as large as the distance to door plus the
overall drift to the left. The last straight path may
be error afflicted again, but its length is a least
the lower bound of the error range in the iteration
22j+2k. This yields
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∆2j+2k−1 + d ≤ 22j+2k · (1 − δ)

⇔ 2δ · 22j+2k − 2δ + 22j − ε ≤ 22j+2k − 22j+2kδ

⇒ 22j
[
2δ22k + 1 − 22k + δ22k

]
− 2δ

< 22j
[
3δ22k + 1 − 22k

]
≤ ε

⇔ δ ≤
1

3

22k − 1

22k
+

ε

3 · 22j+2k

⇒ δ ≤
1

3

22k − 1

22k

The last term converges for k → ∞ to 1
3
. Thus

Corollary 1 If the error δ is not greater than 1
3

the robot will hit the door.

With the given analysis it is also possible to present
relations between the error range and the number
of additional iterations. For example:

Corollary 2 If the error δ is not greater than 1
4

the robot will hit the door with only one iteration

step more than the error-free robot.

5. Analyzing the performance

W. l. o. g. for the competitive setting it would be
the worst, if the door is hit during the iteration
with step width 22j+2, but located just a litte bit
further away than the rightmost point that was
reached during the iteration with step width 22j,
i. e.

d = 22j(1− δ)−∆2j−1 + ε = 22j(1− 3δ) + 2δ + ε.

This yields a factor of

|πonl|

d
=

1

d

(

2

2j+1
∑

i=1

2i + ∆2j+1 + d

)

=
1

d

(
2 · (22j+2 − 1) + 2δ(22j+2 − 1) + d

)

=
22j
(
8(1 + δ) − 1+δ+ε

22j

)

22j
(
1 − 3δ + 2δ+ε

22j

) + 1

< 8
1 + δ

1 − 3δ
+ 1

To show that this is the worst case, we show
that the robots errors in the left and in the right
direction are different. Furthermore the error in
each step may be a different one. Let δ+

i be length
of the movement to the right in the i-th step and
δ−i be the length of the movement to the left. Now

2j−1
∑

i=1

(δ−i − δ+
i )

denotes the deviation from the start point before
the 2j-th step and

2j−1
∑

i=1

(δ−i + δ+
i )

is the path length up to this point.
As above the door is hit during the step 2j + 2,

therefore its distance is

d = δ+
2j − ∆2j−1 + ε

= δ+
2j −

2j−1
∑

i=1

(δ−i − δ+
i ) + ε

For the corresponding path length we have

|πonl| =

2j+1
∑

i=1

(δ−i + δ+
i ) +

2j+1
∑

i=1

(δ−i − δ+
i ) + d

due to the fact that we will finally stop at distance
d, we add the deviation to d.

With this we get

|πonl|

d
= 1 +

∑2j+1

i=1 (2δ−i )

δ+
2j −

∑2j−1

i=1 (δ−i − δ+
i ) + ε

We can conclude that the ratio achieves its maxi-
mum if we exceed every δ−i to the greatest extend,
which is 2i(1 + δ). Now we only have to fix δ+

i in
order to maximize the ratio. Obviously the nom-
inator gets its smallest value if every δ+

i is very
small, therefore we use δ+

i = 2i(1 − δ).

Theorem 3 If the error δ is not greater than 1
3

the

robot will hit the door with the doubling strategy.

The generated path is not longer than 8 1+δ
1−3δ

+ 1
times the shortest path to the door.

6. Summary

We have analyzed a simple doubling strategy to
find a door in a wall respectively a point on a line
in the presence of errors in movements. We showed
that the robot is still able to reach the door if the
error is less than 1

3
. Moreover, if the error is less

than 1
4

the robot will need at most two iteration
steps more than the error-free robot. If the error in
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the movement is bound by δ < 1
3
, the competitive

ratio is

8
1 + δ

1 − 3δ
+ 1.

Both error bounds are rather big, so it can be
expected, that real robots will meet this error
bounds.

The problem for m rays is a little bit different
because the robot may detect the starting point if
it changes from one corridor to another. Here, one
may be interested in the probability of entering
correctly the next corridor.
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Abstra
t

It is an open problem to determined whether a polygonal 
hain 
an be straightened inside a 
on�ning region if its

links are not allowed to 
ross. In this paper we propose a spe
ial 
ase: whether a polygonal 
hain 
an be straightened

inside a 
ir
le without allowing its links to 
ross. We prove that this is possible if the straightened 
on�guration


an �t within 
ir
le. Then we show that these simple 
hains have just one equivalen
e 
lass of 
on�gurations.

Key words: folding, polygonal 
hain, re
on�guration

1. Introdu
tion

A 
hain is a sequen
e of rigid rods or links


onse
utively 
onne
ted at their endpoints, about

whi
h they may rotate freely. The link between

A

i�1

and A

i

(1 � i � n) is denoted by L

i

and the

length of L

i

is denoted by l

i

. The angle at inter-

mediate joint A

i

, �

i

2 [0; 2�), is that determined

by rotating L

i

about A

i


ounter
lo
kwise to bring

L

i

to L

i+1

. The 
hain � is simple if it is non-self-


rossing and non-self-tou
hing. The sub
hain of �

with joints A

i

; :::; A

j

is denoted by �[i; j℄.

We say a bend operation is performed at joint

A

i

, when the joint angle �

i

is 
hanged between �

i

and �. Throughout this paper, we assume that the

only bend operations allowed are single-joint bend

operations, in whi
h only one joint angle is altered

at a time. A bend operation is 
omplete if, at the

end of the operation the joint angle is �. We then

say that the joint has been straightened. A bend

Operation that is not 
omplete is 
alled a partial

bend. A sequen
e of bend operations is said to be

monotoni
 if no operation in
reases the absolute

deviation from straightness, j�

i

��j, for a joint A

i

.

Let � = (i

1

; i

2

; :::; i

n�1

) be a permutation of the

indi
es f1; 2; :::; n � 1g. For a simple 
hain �, we

say that a sequen
e (A

i

1

; A

i

2

; :::; A

i

n�1

) of joints is

unfoldable, if � 
an be straightened into a straight

line segment L using the joints in the sequen
e in

Email address: mohades�aut.a
.ir (Ali Mohades).

turn, su
h that � remains simple and all of the

bend operations are 
omplete. A simple 
hain � is


alled unfoldable 
hain, if it has a unfoldable se-

quen
e of joints. An intermediate joint A

i

is 
alled

unfoldable joint, if a 
omplete bend operation 
an

be performed at A

i

su
h that during the perform-

ing bend operation, � remains simple.

The union 
hain, �

U

, of a 
hain � is a 
hain

whi
h is obtained from � in the following way: if

none of the joints of � is straight joint, �

U

= �; if

� has at least one straight joint, for any straight

joints A

i

, we delete joint A

i

and put A

i�1

A

i+1

as

a single link.

Re
on�guration problem and in parti
ular, fold-

ing problem, been raised independently by several

resear
hers. [3℄ has 
onsidered re
on�guration of

robot arms inside a 
ir
le, with allowing its links

to 
ross. In [4℄, Pei has proved that for a 
hain �

inside a 
ir
le whose radius is suÆ
iently big, there

is just one equivalen
e 
lass when its links are al-

lowed to 
ross. In [5℄ and [2℄, straightening a simple


hain in the plane is studied and is proved that any

simple 
hain 
an be straightened in the plane. And

in [1℄ Arkin, Fekete and Mit
hell have given an ef-

�
ient algorithm to determined if a simple 
hain


an be straightened by performing 
omplete bend

operations. In this paper, we study straightening a

simple 
hain within a 
ir
le. we give a quadrati
-

time algorithm to straighten a simple unfoldable


hain within a 
ir
le whose radius is suÆ
iently

big. Then we prove that all of simple 
hains 
an
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be straightened within a 
ir
le, if and only if their

straightened 
on�guration 
an �t in the 
ir
le. Fi-

nally we show that any two 
on�guration of these

simple 
hains are equivalent.

2. Preliminaries

Let � be a simple 
hain inside 
ir
leC(O; r) with

joints A

0

:::A

n

. For �tting straightened 
on�gura-

tion of � in C, we must have

P

n

i=1

l

i

� 2r. From

now on, we suppose � is a simple 
hain inside C

su
h that

P

n

i=1

l

i

< 2r.

For a 
ir
le C(O; r) and two points x; y 2 �C,

we use

_

xy to denote the 
lo
kwise ar
 from x to y.

For a point A

i

2 �C we denote the other endpoint

of the diameter of C whi
h is 
ontainingA

i

, byM

i

.

De�nition 1 A joint A

r

i

is 
alled rim joint

if it lies on boundary of 
ir
le C. We denote

the set of all rim joints of 
hain � by A

Rim

=

fA

r

0

; A

r

1

; :::; A

r

s

g.

De�nition 2 For any rim joint A

i

of 
hain �, the

ve
tor

��!

OM

i

is 
alled radius ve
tor of A

i

and is de-

noted by r

i

.

Lemma 3 There is a diameter s = ab of 
ir
le C

su
h that all of rim joints of 
hain � belong to one

of the ar
s

_

ab or

_

ba.

PROOF. If A

Rim

= ;, there is nothing to prove.

Let A

i

be a rim joint of � and X be a moving

obje
t whi
h is walking along ar


_

A

i

M

i


lo
kwise,

starting at the point A

i

. Suppose A

r

is the last rim

joint of � that is visited byX . Diameter s = A

r

M

r

is a solution. Be
ause ar


_

A

r

M

r


ontains no rim

joint of �, ex
ept A

r

. 2

De�nition 4 Suppose A

Rim

has at least two point

and rim joints of � belong to

_

ab. The nearest rim

joints to points a and b are denoted by A

f

and A

e

,

respe
tively. These joints are 
alled limit-joints.

It is 
lear that all of the other rim joints of � are

on ar


_

A

f

A

e

.

De�nition 5 Let A

e

and A

f

be limit-joints of �.

Ve
tors r

e

and r

f

are 
alled dire
tion ve
tors.

De�nition 6 The sum of dire
tion ve
tors, r

e

and

r

f

, is 
alled 
entral dire
tion and denoted by d, i.e.,

d = r

e

+ r

f

.

Central Translation:We draw n ve
tors parallel

to d from any joint A

i

until hit 
ir
le at points

N

i

, then put "

i

= jj

���!

A

i

N

i

jj and " = minf"

i

j 0 �

i � ng. Translation of � inside C along the ve
tor

d

"

=

"

jjdjj

d, is 
alled 
entral translation of �. New

positions of � and any joint A

i

, after the 
entral

translation, are denoted by �

0

and A

0

i

. It is 
lear

that "

e

= "

f

.

3. Unfoldable Simple Chains

Suppose � = (A

i

1

; A

i

2

; :::; A

i

n�1

) is an unfold-

able sequen
e of joints of �. For straightening �

inside 
ir
le C(O; r), we propose the following al-

gorithm whi
h 
ontains three steps:

Algorithm 1 Unfolding Simple Chain �:

step 1. �

0

= �; j = 0.

step 2. �

0

= �

0

U

; j = j + 1. If j = n , stop. else

k = i

j

;

step 3. Straighten A

k

. Go to step 2.

Now for step 3, straightening joint A

k

within 
ir-


le C, we propose the following algorithm whi
h


ontains four steps:

Algorithm 2 Straightening joint A

k

:

step 1. �

0

= �[0; k℄; �

n

= �[k; n℄;

step 2. Rotate �

0

about A

k

until A

k

straightens or

one of joints of �

0

hitsC and �

0


an not rotate more

about A

k

. If A

k

straightens, stop; else go to step 3.

step 3. Rotate �

n

about A

k

until A

k

straightens

or one of joints of �

n

hits C and �

n


an not rotate

more about A

k

. If A

k

straightens, stop; else go to

step 4.

step 4. Cal
ulate d

"

and transmit � by d

"

. Go to

step 2.

4. Corre
tness of Algorithm 2

Any repeat of algorithm 2 is 
alled a phase and

the joint angle at A

k

, at the end of phase i, is

denoted by �

i

. For showing 
orre
tness of algo-

rithm 2, we show that during the algorithm, � re-

mains simple and it remains insideC. And we prove

that by using algorithm 2, after a �nite number

of repeats, A

k

straightens. Furthermore, this �nite

number is independent of n.

Chain � remains simple, be
ause A

k

is an unfold-
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able joint in the plane. Now for showing that � re-

mains inside C, we �rst prove that 
entral transla-

tion always 
an be done.

Lemma 7 d

"

6= 0.

PROOF. If d = 0, we have r

f

= �r

e

. That is

implies A

f

= M

e

and A

e

=M

f

, i.e., A

f

A

e

= 2r.

Therefore

P

n

i=1

l

i

�

P

l

i

2�[e;f ℄

l

i

� A

f

A

e

= 2r.

That is a 
ontradi
tion. Thus d 6= 0.

Be
ause the angles between d and its 
ompo-

nents are less than �=2 and all of radius ve
tors

lie between ve
tors r

e

and r

f

, the angle between

d and radius ve
tors are less than �=2, too. Thus

any rim joint 
an transmit in dire
tion d inside C.

Any interior points of C also 
an transmit in all di-

re
tions inside C. Therefore " 6= 0. Consequently

d

"

6= 0. 2

It is 
lear that during the step 1 and step 2, all of

the joints remain inside 
ir
le. At step 3, be
ause

" = minf"

i

j 0 � i � ng and the angle between

radius ve
tors and d are less than �=2, � remains

inside C.

Now to show that after a �nite number of repeats,

algorithm 2 is terminated, we �rst show that at

the end of any phase of algorithm 2, �

i

be
omes

strongly 
lose to �, i.e., j� � �

i+1

j < j� � �

i

j. So

we have to prove at the end of 
entral translation

of �, at least one of the sub
hains �

0

or �

n

, 
an

rotate about A

k

su
h that joint angle at A

k

has

be
ame 
lose to �. Note that at the end of step 1

and step 2, if A

k

does not straighten, A

Rim

has at

least two points, one point from �

0

and the other

point from �

n

.

Lemma 8 Let A

e

and A

f

be the limit-joints of �

at phase i. If both of A

e

and A

f

belong to one of the

sub
hains �

0

or �

n

, then at the end of translation,

none of the joints of the other sub
hain lie on �C.

Furthermore, this sub
hain 
an rotate about A

k

at

phase i+ 1.

PROOF. Assume without loss of generality that

A

f

; A

e

2 �

0

. Suppose for a 
ontradi
tion, A

t

is a

joint of �

n

su
h that A

0

t

2 �C. At the beginning

of translation, �

n

has at least one rim joint, A

m

,

whi
h lies on ar


_

A

f

A

e

. If A

k

is in the exterior

of 
losed 
urve Æ =

_

A

f

A

e

[�

0

[e; f ℄, �

n

[m; k℄ and

�

0

[e; f ℄ will be interse
ting. Thus A

k

is in the in-

terior of Æ. See �gure 1. Therefore A

0

k

is in the in-

terior of the 
losed 
urve Æ

0

= � [ �

0

0

[f; e℄ where

A
f

A
f

-

Ae

Ae

-A
k

-

A
k

A
m d

G
-

A
0

G

b

Fig. 1. If �

n


ontains no limit-joints, �

0

n

has no rim joint.

� is the translation of ar


_

A

f

A

e

by the ve
tor d

"

.

But A

0

t

is in the exterior of Æ

0

. So �

0

n

[k; t℄ interse
ts

boundary of Æ

0

. That is a 
ontradi
tion. Be
ause

�

n

[k; t℄ does not interse
t boundary of Æ. 2

By lemma 8, we suppose A

e

and A

f

don't belong

to the same sub
hain. From now on, the sub
hain

whi
h 
ontains A

e

is denoted by �

e

and the other

sub
hain whi
h 
ontains A

f

is denoted by �

f

. We

have the following theorem.

Theorem 9 At the end of translation, at least one

of the sub
hains �

e

and �

f


an rotate about A

k

.

PROOF. Refer to full paper. 2

Corollary 10 j�

i

� �j > j�

i+1

� �j.

By 
orollary 10, the 
on�guration of � in two 
on-

se
utive phase is di�erent. Thus during the algo-

rithm 2, straightening A

k

is strongly progressed

and 
y
ling is not possible. Now for showing that

after a �nite number of repeats, algorithm 2 is ter-

minated, we use simpli
ity of �. Assume without

loss of generality that �

k

< �. Thus a

ording to

de�nition of joint angle, �

0

must rotate about A

k


lo
kwise. First suppose there is no 
on�ning re-

gion. So A

k


an be straightened and then �

0


an

rotate about A

k


lo
kwise more, until �rst self-

tou
hing is o

urred. This operation is 
alled �-

passage motion and the joint angle atA

k

is denoted

by � + �

k

, that �

k

> 0. Now suppose � is inside

C(O; r). We 
hange the stopping 
riteria of algo-

rithm 2, from a
hieving � to a
hieving � + �

k

and

use this new algorithm on A

k

. All of above proofs

also hold for this new algorithm. So by 
orollary

10 we also have:

j�

i+1

� � � �

k

j < j�

i

� � � �

k

j (�)
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Assumption �

k

< � yields: for every i � 0, �

i

�

�+�

k

. So (�) yields �+�

k

��

i+1

< �+�

k

��

i

. In the

other words, f�

i

g

i�0

is a bounded and monotone

sequen
e. Therefore it 
onverges to its suprimum,

� + �

k

. Thus for every " > 0 exists a �nite natural

number N > 0 su
h that for every i � N we have

j�

i

����

k

j < ", i.e., for every i � N , �+�

k

��

i

<

". Thus for " = �

k

, there is a �nite number N

�

su
h that for all i � N

�

, � + �

k

� �

i

< �

k

. So for

i = N

�

, we have � + �

k

� �

N

�

< �

k

, i.e., �

N

�

> �.

Be
ause N

�

is the smallest natural number that

�+�

k

��

i

< �

k

, we have �+�

k

��

N

�

�1

� �

k

, i.e.,

�

N

�

�1

� �. Therefore A

k


an straighten in phase

N

�

or N

�

� 1. Be
ause �

N

�

�1

� � and �

N

�

> �.

It is 
lear that N

�

is independent of n.

Therefore proof of 
orre
tness of algorithm 2 is

terminated. Complexity of algorithm 1 is O(n

2

),

be
ause 
omplexity of ea
h step is O(n) and the

number of repeats is n� 1.

5. Arbitrary Simple Chains

Now we prove that an arbitrary simple 
hain 
an

be straightened inside a 
ir
le. First we have the

following theorem.

Theorem 11 Any simple 
hain � 
an be straight-

ened using a �nite number of monotoni
 single-

joint bend operations.

PROOF. See [1℄ and [2℄. 2

Theorem 11 is true, if 
hain is inside a 
ir
le as a


on�ning region.

Theorem 12 A simple 
hain � 
an be straight-

ened inside a 
ir
le using a �nite number of mono-

toni
 single-joint bend operations, if

n

X

i=0

l

i

< 2r.

PROOF. By theorem 11, � 
an be straightened

in the plane using a �nite number of monotoni


single-joint bend operations. If all of these bend

operations are 
omplete, � 
an be straightened by

using algorithm 1. But if at least one of the bend

operations is not 
omplete, these bend operations

will be in a

ordan
e with a sequen
e of motions,

M = fM

j

g

k

j=1

, su
h that M

j

is a partial bend

operation and � 
an be straightened by using M .

Any operation M

j

is single-joint, so it is in a

or-

dan
e with a joint A

i

j

and this a

ordan
e is not

one to one, be
ause M

j

s are not 
omplete. Sup-

pose any bend operationM

j

is 
hanged joint angle

at A

i

j

by �(A

i

j

; j). Now note that any operation

M

j

is monotone; so if we 
hange the stopping 
ri-

teria of algorithm 2, from a
hieving � to a
hieving

�

i

j

+�(A

i

j

; j), this new algorithm 
an be used to

perform any bend operation M

j

inside C. There-

fore � 
an be straightened inside C by performing

M

j

s in turn, be
ause k is �nite. 2

6. Con
lusion

Assume that � is a simple 
hain su
h that

P

n

i=1

l

i

< 2r and �

1

and �

2

are two 
on�guration

of � inside 
ir
le C(O; r). We denote their straight


on�gurations by L

1

and L

2

, respe
tively. Let M

be a sequen
e of bend operations for straighten-

ing �

2

inside C and M

R

be the reverse of Motion

M . It is 
lear that by performing M

R

, L

2


an be

re
on�gured to �

2

. Now by theorem 11, we 
an

re
on�gure �

1

to L

1

, then we 
an re
on�gure L

1

to L

2

by translation and rotation operations and

�nally we 
an re
on�gure L

2

to �

2

by M

R

. So �

1


an be re
on�gured to �

2

inside C, i.e., for a simple


hain �, if

n

X

i=1

l

i

< 2r, then any two 
on�gurations

of �, inside 
ir
le C(O; r) are equivalent.

Referen
es

[1℄ E.M. Arkin, S.P. Fekete and J.S.B. Mit
helle, An

algorithmi
 study of manufa
turing paper
lips and

other folded stru
tures. Computational Geometry:

Theory and Appli
ations 25, 117-138, (2003).

[2℄ R. Connelly, E.Demaine and G. Rote, Every polygon


an be untangled. In Pro
. 41st Annu. IEEE Sympos.

Found. Comput. S
i., pp. 432-442, (2000).

[3℄ J. Hop
roft, D. Josehp, and S. Whitesides, On the

movement of robot arms in 2-dimensional bounded

regions. SIAM J. Compt. 14, 315-333, (1985).

[4℄ N. Pei, On the re
on�guration and rea
hability of


hains. Ph.D. Thesis, S
hool of Computer S
ien
e,

M
Gill University, November, 1996.

[5℄ I. Streinu, A 
ombinatorial approa
h to planar non-


olliding robot arm motion planning. In Pro
. 41st

Annu. IEEE Sympos. Found. Comput. S
i., pp. 443-

453, (2000).



On Rectangular Cartograms

Marc van Kreveld a and Bettina Speckmann b

aInst. of Information & Computing Sciences, Utrecht University
bDep. of Mathematics & Computer Science, TU Eindhoven

Abstract

A rectangular cartogram is a type of map where every region is a rectangle. The size of the rectangles is chosen
such that their areas represent a geographic variable (for example population). Rectangular cartograms are a useful
tool to visualize statistical data. However, good cartograms are generally hard to generate: The area specifications
for each rectangle may make it impossible to realize correct adjacencies between the regions and so hamper the
intuitive understanding of the map.

Here we present the first fully automated algorithms for rectangular cartograms. Our algorithms depend on a
precise formalization of region adjacencies and are building upon existing VLSI layout algorithms. Furthermore,
we characterize a non-trivial class of rectangular subdivisions for which exact cartograms can be efficiently com-
puted. An implementation of our algorithms and various tests show that in practice, visually pleasing rectangular
cartograms with small cartographic error can be effectively generated.

1. Introduction

Cartograms. Cartograms are a useful and intu-
itive tool to visualize statistical data about a set of
regions like countries, states or counties. The size
of a region in a cartogram corresponds to a partic-
ular geographic variable [1,6]. Since the sizes of the
regions are not their true sizes they generally can-
not keep both their shape and their adjacencies. A
good cartogram, however, preserves the recogniz-
ability in some way. Globally speaking, there are
three types of cartogram. The standard type (the
contiguous area cartogram) has deformed regions so
that the desired sizes can be obtained and the ad-
jacencies kept. Algorithms for such cartograms are
described in [10,2,3]. The second type of cartogram
is the non-contiguous area cartogram [7]. The re-
gions have the true shape, but are scaled down and
generally do not touch anymore. The third type
of cartogram is the rectangular cartogram intro-
duced by Raisz in 1934 [8] where each region is
represented by a single rectangle.
Quality criteria. Whether a rectangular car-
togram is good is determined by several factors.
One of these is the cartographic error of the car-
togram [2,3], which is defined for each region as
|Ac − As| /As, where Ac is the area of the region
in the cartogram and As is the area of that region
as specified by the geographic variable to be dis-
played. The following list shows all quality criteria:
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Fig. 1. A cartogram depicting the native
population of the United States.

– Average cartographic error.
– Maximum cartographic error.
– Correct adjacencies of the rectangles.
– Maximum aspect ratio.
– Suitable relative positions.
For a purely rectangular cartogram we cannot ex-
pect to simultaneously satisfy all criteria well.
Related work. Rectangular cartograms are
closely related to floor plans for electronic chips.
Floor planning aims to represent a planar graph
by its rectangular dual, defined as follows. A rect-
angular partition of a rectangle R is a partition of
R into a set R of non-overlapping rectangles such
no four rectangles in R meet at the same point.
A rectangular dual of a planar graph (G,V ) is a

20th EWCG Seville, Spain (2004)
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rectangular partition R, such that (i) there is a
one-to-one correspondence between the rectangles
in R and the nodes in G, and (ii) two rectangles
in R share a common boundary if and only if
the corresponding nodes in G are connected. The
following theorem was proven in [5]:
Theorem 1 A planar graph G has a rectangular
dual R with four rectangles on the boundary of R if
and only if

(i) every interior face is a triangle and the exte-
rior face is a quadrangle

(ii) G has no separating triangles.
Note that although every triangulated planar

graph without separating triangles has a rectan-
gular dual this does not imply that an error free
cartogram for this graph exists.
Results. We present the first fully automated
algorithms for the computation of rectangular
cartograms. We formalize the region adjacencies
based on their geographic location and are so able
to enumerate and process all feasible rectangular
layouts for a particular subdivision (i.e., map).
The precise steps that lead us from the input
data to an algorithmically processable rectangular
subdivision are sketched in Section 2.

We describe three algorithms that compute a
cartogram from a rectangular layout. The first is an
easy and efficient (segment moving) heuristic which
we evaluated experimentally. The visually pleas-
ing results of our implementation can be found in
Section 3. Secondly, we show how to formulate the
computation of a cartogram as a bilinear program-
ming problem. The details concerning these two
methods can be found in the full paper.

For our third, exact, algorithm we introduce an
effective generalization of sliceable layouts, namely
L-shape destructible layouts. We show that:
Theorem 2 An L-shape destructible layout with
a given set of area values has exactly one or no
realization as a cartogram.

The proof of Theorem 2 (which is given in the full
paper) immediately implies an efficient algorithm
to compute an exact (up to an arbitrarily small
error) cartogram for subdivisions that arise from
actual maps.

Finally we also establish the following theorem:
Theorem 3 A subdivision S with n vertices whose
face graph is outerplanar can be represented by a
rectangular cartogram with the correct adjacencies
and any pre-specified area values. This cartogram
can be computed in linear time.

2. Algorithmic Outline

Assume that we are given an administrative sub-
division into a set of regions. The adjacencies of
the regions can be represented in a graph F , which
is the face graph of the subdivision.
1. Preprocessing: The face graph F is in most
cases already triangulated (except for its outer
face). In order to construct a rectangular dual of F
we first have to process internal vertices of degree
less than four and then triangulate any remaining
non-triangular faces.
2. Directed edge labels: Any two nodes in the
face graph have at least one direction of adjacency
which follows naturally from their geographic lo-
cation. While in theory there are four different di-
rections of adjacency any two nodes can have, in
practice only one or two directions are reasonable.

Our algorithms go through all possible combina-
tions of direction assignments and determine which
one gives a correct or the best result. While in the-
ory there can be an exponential number of options,
in practice there is often only one natural choice
for the direction of adjacency between two regions.
We call a particular choice of adjacency directions
a directed edge labeling.
Definition 4 (Realizable directed edge la-
beling)

A face graph F with a directed edge labeling can
be represented by a rectangular dual if and only if

(i) every internal region has at least one North,
one South, one East, and one West neighbor.

(ii) when traversing the neighbors of a node in
clockwise order starting at the western most
North neighbor we first encounter all North
neighbors, then all East neighbors, then all
South neighbors and finally all West neigh-
bors.

3. Rectangular layout: A realizable directed
edge labeling constitutes a regular edge labeling for
F as defined in [4]. Therefore we can employ the
algorithm by He and Kant [4] to construct a rect-
angular layout, i.e., the unique rectangular dual
of a realizable directed edge labeling. The output
of our implementation of the algorithm by He and
Kant is shown in Figure 2.
4. Area assignment: For a given set of area val-
ues and a given rectangular layout we would like
to decide if an exact assignment of the area val-
ues to the regions is possible without destroying
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Fig. 2. One of 4608 possible rectangular layouts of the US.

the correct adjacencies. Should the answer be neg-
ative or should the question be undecidable, then
we still want to compute a cartogram that has a
small amount of cartographic error while maintain-
ing reasonable aspect ratios and relative positions.
Exact algorithm. For certain types of rectangu-
lar layouts we can compute an exact cartogram.
We first determine for a given rectangular layout a
maximal rectangle hierarchy. The maximal rectan-
gle hierarchy groups rectangles that together form
a larger rectangle, as illustrated in Figure 3. It can
be computed in linear time [9]. All groups in the
hierarchy are independent and we will determine
areas separately for each group.

A node of degree 2 in the hierarchy corresponds
to a sliceable group of rectangles. If the maximal
rectangle hierarchy consists of slicing cuts only,
then we can (in a top-down manner) compute the
unique position of each slicing cut.

Nodes of a degree higher than 2 require more
complex cuts (see for example the four thick seg-
ments in Fig. 3). Here we introduce a type of non-
sliceable layout for which the coordinates are still
uniquely determined by the specified areas. We say
a rectangular layout R is irreducible if no proper
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Fig. 3. Rectangular layout of the 12 provinces of the
Netherlands and a corresponding

maximal rectangle hierarchy.

subset of R (of size greater than one) forms a rect-
angle. Furthermore, we call a rectilinear simple
polygon with at most 6 vertices L-shaped. We say
that an L-shaped polygon is rooted at a vertex p if
one of its convex vertices is p.
Definition 5 (L-shape destructible) An ir-
reducible rectangular layout R of a rectangle R is
L-shape destructible if there is a sequence starting
at a corner s of R in which the rectangles of R can
be removed from R such that the remainder forms
an L-shaped polygon rooted at the corner t of R op-
posite to s after each removal.
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Fig. 4. An L-shape destructible layout of the Eastern US.

The shaded area shows the L-shaped polygon after the
removal of rectangles 1 − 4.

3. Implementation and experiments

We have implemented the segment moving
heuristic and tested it on some data sets. The
main objective was to discover whether rectangu-
lar cartograms with reasonably small cartographic
error exist, given that they are rather restrictive
in the possibilities to represent all rectangle areas
correctly. Secondary objectives were to determine
how the cartographic error depends on maximum
aspect ratio and correct or false adjacencies.

Our layout data sets consist of the 12 provinces
of the Netherlands and the 48 contiguous states
of the USA. Here we present only some of the re-
sults pertaining to the US data sets, all other re-
sults can be found in the full paper. We allowed 13
pairs of adjacent states of the USA to be in differ-
ent relative positions leading to 8192 possible lay-
outs. Only 4608 of these correspond to a realizable
directed edge labeling. We considered all 4608 lay-
outs and chose the one giving the lowest average
error as the cartogram.
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Fig. 5. The population of the US.

Data set Adjacency Aspect ratio Av. error Max.

US pop. false 8 0.104 0.278

US pop. false 9 0.085 0.193

US pop. false 10 0.052 0.295

US pop. false 11 0.030 0.091

US pop. false 12 0.022 0.056

US pop. correct 12 0.327 0.618

US pop. correct 13 0.319 0.608

US pop. correct 14 0.317 0.612

US pop. correct 15 0.314 0.569

US pop. correct 16 0.308 0.612

US hw. correct 6 0.073 0.188

US hw. correct 7 0.059 0.111

US hw. correct 8 0.058 0.101

US hw. correct 9 0.058 0.101

US hw. correct 10 0.058 0.101

Table 1. Errors for different aspect ratios, and

correct/false adjacencies. Sea 20%.

As numeric data we considered population, na-
tive population, number of farms, number of elec-
torial college votes, and total length of highways.

Table 1 shows errors for various settings for two
US data sets. Only the average error is significant
in the table, since the rectangular layout chosen for
the table is the one with lowest average error. The
corresponding maximum error is shown only for
completeness. Since cartograms are interpreted vi-
sually and show a global picture, errors of a few per-
cent on the average are acceptable. Such errors are
also present in standard contiguous cartograms.

The error decreases with a larger aspect ratio,
as expected. For the native population data set an
aspect ratio of 7 combined with false adjacency
results in a cartogram with average error below
0.04 (see Fig. 1). Figures 5 and 6 show rectangular
cartograms for two of the five US data sets. The
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Fig. 6. The highway kilometers of the US.

data sets allowed an aspect ratio of 10 or lower to
yield an average error between 0.03 and 0.06.
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1. Introduction

In this paper we discuss farthest-point problems,
in which a sequence S = (p1, p2, . . . , pn) of n points
in the plane is given in advance and can be prepro-
cessed to answer various queries efficiently. We first
consider the general setting where query points can
be arbitrary, then we investigate a special setting
where each point in S is queried exactly once.

To describe our problems, we use the following
notation. Given two points p 6= q, let pq denote
the line through the points p and q, let pq denote
the line segment joining p and q, and let |pq| be
the Euclidean distance of p and q. We will use ε to
denote a fixed arbitrarily small positive number.

FarthestPointAboveLine (FPAL): Given a
pair (q, lq), where q is a point and lq is a line
through q, decide whether there is a point in S

above lq, and if yes report the one farthest from q.
Our solution to this problem is a data structure

based on [6] that takes O(n log n) space, O(n1+ε)
preprocessing time and O(n1/2+ε) query time. We
can do better if S is in convex position:

FPALinConvexPolygon (FPALCP): Given
a convex n-gon C and a pair (q, lq), where q is a
point and lq is a line through q, decide whether
there is a point in C above lq, and if yes report the
one farthest from q.

Our solution takes O(n log n) space, O(n log2 n)
preprocessing time and O(log2 n) query time.

FarthestPointSameSide (FPSS): Given a
triplet (q,Lq,∆), where q is a point and Lq is a
line through q such that all points in S are within
distance ∆ from Lq, decide whether there is a

Email addresses: daescu@utdallas.edu (Ovidiu

Daescu), nxm024100@utdallas.edu (Ningfang Mi),
cssin@hufs.ac.kr (Chan-Su Shin).

point p ∈ S such that (i) |qp| > ∆, and (ii) p is
above the line lq orthogonal to Lq at q. If yes,
report the point p farthest from q that fulfills (ii).

Our data structure for this problem has the same
time and space bounds as that for FPALCP.

FarthestIndexedPointOtherSide (FIPOS):
Given a triplet (i, j,∆), such that 1 ≤ i < j ≤ n

and all points pk ∈ S with i < k < j are within dis-
tance ∆ from pipj , decide whether there is a point
pk with i < k < j such that (i) |pipk| > ∆, and (ii)
pk and pj lie on different sides of the line that goes
through pi and is orthogonal to pipj . If yes, report
the point pk farthest from pi that fulfills (ii).

Our time and space bounds for this problem are
by a log-factor above those for FPALCP.

In the special setting where each point in S is
queried exactly once we investigate the following
problem. We assume the existence of a point p 6∈ S.

BatchedFarthestIndexedPointSameSide

(BFIPSS): For each point pi ∈ S decide whether
there is a point pf ∈ {p1, . . . , pi} that lies on the
same side as p with respect to the perpendicular
bisector of p and pi. If yes report the point pf

farthest from p that has the above property.
Our algorithm for this problem runs in O(n log2 n)

time and uses O(n log n) space.
The problems we study are related to the

nearest-point query problem, to the all-pairs far-
thest and closest neighbors problem, and to the
closest-point-to-line query problem. Although
these problems are well understood, we are not
aware of work on the problems we consider.

Applications of our data structures are polyg-
onal chain approximation [2], approximate solu-
tions for the one-cylinder problem [1], and geomet-
ric spanning trees [5].

20th EWCG Seville, Spain (2004)



20th European Workshop on Computational Geometry

2. Farthest-Point Queries

We first tackle FPALCP, since it is part of the
solutions for the problems FPSS and FIPOS.

In the preprocessing phase, we construct a bal-
anced binary tree T in O(n log2 n) time as follows.
The vertices of the convex polygon C, in counter-
clockwise order from the rightmost vertex, are as-
sociated with the leaves of T . At each internal node
u, we compute and store the convex hull and the
farthest-point Voronoi diagram Vu of the leaf de-
scendants of u from the information available at
the children of u. We then preprocess Vu for pla-
nar point-location queries, which takes a total of
O(n log n) time for each level of T . Thus, the over-
all computation of T takes O(n log2 n) time.

Given a query pair (q, lq), we find in O(log n)
time the intersection points of lq with the boundary
∂C of C by binary search. We assume that lq has
non-empty intersection with the interior of C (the
four other cases are trivial). The sought point is
either one of the two intersection points of lq with
∂C or a vertex of C that is above lq. Without loss
of generality, we assume that no vertex of C lies on
lq and that lq has positive slope.

We query T as follows. We select the two end-
points of the segments intersected by lq that are
above lq. Let s be the first and t the second end-
point in counter-clockwise order on ∂C. We walk
in T from s to t and collect a set V of O(log n)
farthest-point Voronoi diagrams in two phases. In
the ascending phase we go upwards from s. When-
ever we get to a node u from its left child, we add
to V the Voronoi diagram stored at the right child
of u. In the descending phase we go down towards
t. Whenever we go to the right child of a node u,
we add to V the Voronoi diagram stored at the left
child of u. Clearly, all points associated with these
Voronoi diagrams are above lq and thus the sought
vertex is either s, t or one of these points. We lo-
cate q in O(log n) time in each Voronoi diagram in
V and keep track of the point farthest from q. Thus
we can answer the query in O(log2 n) time.

Theorem 1 There is a data structure for
FPALCP that takes O(n log n) space, O(n log2 n)
preprocessing time and O(log2 n) query time.

One can answer queries for FPSS using the
same approach as for FPAL: construct a partition
tree based on a fine simplicial partition in O(n1+ε)
time [6] and enhance it with a second-level data

lq

q

ℓ

pj

pj+1

Lq

∆

C
D∆

Db

b

a

t′

t′′

pi

pi+1

Fig. 1. The point p farthest from q must be a vertex of the
convex hull C of S if |qp| > ∆.

structure consisting of the farthest-point Voronoi
diagram (of the points at each internal node)
preprocessed for planar point location. This data
structure can be used to obtain a collection of
disjoint subsets of points representing all points
in S which are above the line lq, and then query
the farthest-point Voronoi diagrams for the points
in each subset in order to answer the query. Note
that the point farthest from the query point q may
lie inside the convex hull C of S, so it seems our
solution of FPALCP cannot be applied here. The
following lemma, however, does give us a way to
use the FPALCP data structures to solve FPSS.

Lemma 2 Given S ⊂ R
2 and a triplet (q,Lq,∆),

where q is a point and Lq is a line through q such
that all points in S are within distance ∆ from Lq,
if there is a point p ∈ S such that (i) |qp| > ∆,
and (ii) p is above the line lq orthogonal to Lq at
q, then the point in S farthest from q is a vertex of
the convex hull C of S.

PROOF. Wlog. we assume that lq intersects ∂C

in two line segments pipi+1 and pjpj+1 with 1 ≤
i < j < n and that pi+1, . . . , pj all lie above lq.
Let a and b be the intersection points. Clearly for
each triangle qpkpk+1 above lq either pk or pk+1 is
farthest from q. We now consider the triangle t =
qpjb, the triangle qapi+1 is analogous.

Let ℓ be the line through q that is orthogonal
to pjpj+1. Consider the right-angled triangle t′

(shaded dark in Figure 1) that is defined by ℓ,
pjpj+1 and qb. Due to Thales’ theorem t′ is con-
tained in the disk Db whose diameter is qb. Since
|qb| ≤ ∆, Db (and thus t′) is contained in the
radius-∆ disk D∆ centered at q.

Now if qj ∈ t′ then t ⊆ t′ ⊆ D∆. Otherwise ℓ

splits t into t′ and another right-angled triangle t′′

(shaded lightly in Figure 1) that is defined by qpj ,
pjpj+1 and ℓ. Since qpj is the hypothenuse of t′′,
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pj is farthest from q in t′′. Thus the point farthest
from q either lies in D∆ or is a vertex of C. ✷

Theorem 3 There is a data structure for FPSS
that takes O(n log n) space, O(n log2 n) preprocess-
ing time and O(log2 n) query time.

To solve FIPOS, the indexed version of FPSS,
in the preprocessing phase we construct an
O(n log2 n)-size balanced binary tree T as follows.
Each leaf of T is associated with a point in S such
that the point pi ∈ S is stored at the i-th leaf of
T . We go up the tree T and, at each internal node
v, we compute and store the convex hull Cv of the
leaf descendants of v. We also compute and store
at v a secondary level data structure in the form
of a balanced binary tree Tv of the farthest-point
Voronoi diagrams on the vertices of Cv, enhanced
with a planar point-location data structure, sim-
ilar to the one used in solving FPSS. Then, the
overall computation of T takes O(n log3 n) time
and requires O(n log2 n) space. For a query pair
(i, j), let πij be the path in T from pi to pj . We
use this path to obtain a set C of O(log n) convex
hulls whose union contains only the points pk with
i < k < j as follows. In the ascending phase we
add to C the convex hull stored at the right child
of v if πij gets to v from its left child. In the de-
scending phase we add to C the convex hull stored
at the left child of v if πij goes from v to its right
child. For each convex hull C ∈ C, querying the
secondary data structure reduces to FPSS. Let
t be the number of vertices on C. Then we can
determine in O(log2 t) time whether there is a k,
i < k < j, such that the point pk ∈ S associated
with C satisfies the two FIPOS conditions. Since
the size of the set C is O(log n), the overall query
time is O(log3 n).

Theorem 4 There is a data structure for FIPOS
that takes O(n log2 n) space, O(n log3 n) prepro-
cessing time and O(log3 n) query time.

Building on our solutions of FPALCP, FPSS,
and FIPOS, we extend a recent result in [3].

Theorem 5 Given a polygonal chain P = (p1, p2,
. . ., pn) in the plane, the min-# problem with the
tolerance zone criterion and L2 distance metric can
be solved in O(F (m) n log3 n) time with O(n log2 n)
space, where F (m) is the number of vertices of the
path approximation graph reachable from p1 with at
most m − 2 edges and m is the number of vertices
of an optimal approximating path.

A version of BFIPSS without the index restric-
tion has been considered in [5]. There the problem
was to report for each point pi ∈ S a point far-
thest from the fixed point p 6∈ S that lies on the
same side as p with respect to the perpendicular
bisector of p and pi. In [5] the problem is reduced
to the problem of finding for each pi ∈ S the first
disk in a sequence of disks that does not contain
pi. This problem has been addressed in [2] under
the name off-line ball exclusion search (OLBES).
The authors set up a tree data structure with a
space requirement of O(n log n) and then query
this structure with each point in S. This results in
a total running time of O(n log n) for OLBES in
dimension d = 2. For d > 2 the problem is solved
differently in O(n2−2/(⌊d/2⌋)+1) time. In [5], a ver-
sion of OLBES where all disks intersect a common
point has been solved for d = 2 in O(n log n) time
and O(n) space by sweeping an arrangement of
circular arcs. To solve BFIPSS in dimension 2 we
set up a tree data structure similar to [4, proof of
Lemma 2]. Here, however, we must solve a differ-
ent OLBES problem in each query and thus need
to modify our tree successively.

Theorem 6 BFIPSS can be solved in O(n log2 n)
time and O(n log n) space for a sequence S of n

points and a point p 6∈ S in the plane.

PROOF. Let Dn+1 = ∅ and let D1, . . . ,Dn be
the sequence of disks in order of non-increasing
radius that are centered on the points in S and
touch p. We build a binary tree B that we query
with the points in S, and the answer of a query
will correspond to the index of the first disk in the
sequence D1, . . . ,Dn+1 that does not contain the
query point. The leaves of B correspond to these
answers from left to right. Each inner node v stores
the intersection Iv of all disks (except Dn+1) that
correspond to the leaves in the subtree rooted at v.
We label each node v with a pair [av, bv] encoding
the set Sv = {av, . . . , bv} of consecutive indices
that correspond to these disks. In Figure 2 a tree
with n = 13 is depicted. We build B in a bottom-
up fashion. Each inner node has two children in the
previous level, except possibly a level’s rightmost
node that can have a right child in an earlier level,
see the node with label [9, 13] in Figure 2.

Querying B with a query point q means to follow
a path from the root to a leaf. In each inner node v

with left child ℓ the test q ∈ Iℓ is performed. If q ∈
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Fig. 2. The tree data structure B for n = 13.

Iℓ, the query continues with the right, otherwise
with the left child of v.

Other than in [2,4], we start with an empty skele-
ton ofB, i.e. all inner nodes v are labeled by [av, bv],
but all intersections Iv are set to R

2. Also other
than in [4], the order in which we query becomes
crucial. We go through the points p1, . . . , pn ∈ S in
order of increasing index. Before querying B with
pi we update B by adding the new disk Dk centered
on pi (note that usually k 6= i) to the intersection
Iv for each node v on the path from the root to the
leaf that corresponds to Dk.

The result of a query with pi is the disk Dj that
corresponds to the leaf at the end of the query path
π. If j = n + 1 then π is the rightmost root–leaf
path. Consider the left children of the nodes on π.
The sets Sℓ that belong to these left children par-
tition {1, . . . , n}. In other words, the intersection
of Iℓ over these children is D1 ∩ · · · ∩ Dn. Since π

is the rightmost root–leaf path, the containment
queries in all nodes on π were answered positively.
Thus qi is contained in all disks currently in B, i.e.
qi ∈ D(q1, p) ∩ · · · ∩ D(qi, p), where D(a, b) is the
disk centered at a that touches b. This means that
none of q1, . . . , qi lies in the halfplane h(p, qi) that
contains p and whose boundary is the perpendic-
ular bisector of p and qi. Otherwise [5, Lemma 1]
would guarantee that qi 6∈ D(qk, p) for the point
qk in {q1, . . . , qi} farthest from p in h(p, qi).

If j ≤ n we again consider the left children of the
nodes on the query path π of qi. The sets Sℓ par-
tition {1, . . . , j − 1} if we take only those left chil-
dren ℓ into account that do not themselves lie on π.
Similarly to above, the intersection of Iℓ over these
children is D1 ∩ · · · ∩Dj−1. Thus qi is contained in
all Dk with k < j that are currently in B. On the
other hand, since π is not the rightmost root–leaf
path, there must be left children that lie on π. The
last such left child v is the root of the subtree whose
rightmost leaf corresponds to Dj . Thus v is asso-

ciated with some set Sv = {iv, . . . , j}, where 1 ≤
iv ≤ j. Since we have already observed that qi is
contained in all Dk with k < j that are currently in
B, but π came to v via a “no”-branch, we now know
that qi 6∈ Dj . Let m be such that Dj = D(qm, p).
Note that qi 6∈ D(qm, p) means that D(qm, p) was
inserted in B before querying with qi, and thus
m ≤ i. Since qi 6∈ D(qm, p), and qi ∈ D(qr, p) for
all r ≤ i with |pqr| > |pqm|, [5, Lemma 1] yields
that qm is farthest from p in {q1, . . . , qi}∩h(p, qi).

The running time is as follows. Querying B takes
O(log2 n) time since the height of B is O(log n) and
in each node of the query path the query point has
to be located in the intersection Iv of some disks,
which can be done in O(log n) time.

When we update B by adding a new disk Dj ,
we have to go from the root to the leaf that corre-
sponds to Dj . In each node on this path we must
compute Iv ∩ Dj and update our data structure
for Iv. This can be done in O(log n) time per node
by a procedure detailed in [5, proof of Lemma 4].
Thus each update also takes O(log2 n) time.

Now the running time of O(n log2 n) is obvious.
The space consumption is O(n log n) since a) each
disk contributes only to intersections stored on the
path from the root to “its” leaf, and b) a disk that
contributes to some intersection Iv adds at most
one arc to the boundary of Iv [5, Fact 2]. ✷
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Universität Tübingen, Germany

Abstract

Let S be a set of n points in the plane and let TS be the set of all crossing-free spanning trees of S. We show that
any two trees in TS can be transformed into each other by O(n2) local and constant-size edge slide operations. No
polynomial upper bound for this task has been known, but in [1] a bound of O(n2 log n) operations was conjectured.

Key words: crossing-free spanning tree, local transformation, edge slide

1. Introduction

Let S be a set of n points in the Euclidean plane.
W.l.o.g. we assume that no two points of S have the
same x-coordinate, otherwise we rotate the coor-
dinate system appropriately. A crossing-free span-
ning tree of S is a tree whose edges connect all
points in S (and no others) with straight line seg-
ments that pairwise do not cross. With TS we de-
note the set of all crossing-free spanning trees of S.

An interesting question is whether, and how
fast, two members of TS can be transformed into
each other by means of predefined rules, often
called flips. A common operation is what is called
an edge move, which relates two trees in the set
TS iff they have all but one edge in common (one
edge is ‘flipped’). For this general setting Avis and
Fukuda [2] showed that the corresponding tree
graph is connected and has a diameter bounded
by 2n − 4. If we restrict the set of allowed flips to
planar, length-improving edge moves then in [1] a
way to transform any tree T ∈ TS into the mini-

Email addresses: oaich@ist.tugraz.at (Oswin
Aichholzer), reinhard@informatik.uni-tuebingen.de
(Klaus Reinhardt).
1 Research supported by Acciones Integradas 2003-2004,
Proj.Nr.1/2003

mum spanning tree of S in only O(n log n) steps
was given. For a more detailed discussion and
some historical background see [1].

Our interest is focused on a local edge move that
keeps one endpoint of the moved edge fixed and
moves the other one along an adjacent tree edge.
Following [3], we will call this constant-size opera-
tion an edge slide. More formally the central oper-
ation we consider is defined as follows [1]: Consider
a tree T ′ ∈ TS . A (planar) edge slide on T ′ takes
some edge e ∈ T ′ and moves one of its endpoints
along some edge adjacent to e in T ′, without gen-
erating any edge crossings. This gives a new edge
f and a new tree T ′′ = T ′ ∪ {f} \ {e} such that
T ′′ ∈ TS . An edge slide is a special kind of planar
edge move: T ′′ is obtained by closing with f a 3-
cycle C in T ′ and by removing e from C, in a way
such that T ′ avoids the interior of the triangle C.
Intuitively speaking, an edge slide is an edge oper-
ation as local as it can be.

In this paper we investigate the questions of
how fast two crossing-free spanning trees of TS

can be transformed into each other by means of
the edge slide operation. To this end consider the
tree graph T G(S) which is an undirected graph
that has TS as its set of nodes. It realizes an arc
between two nodes (trees) T ′ and T ′′ if and only

20th EWCG Seville, Spain (2004)
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if T ′ can be transformed into T ′′ by an edge slide
(and vice versa). In [1] it was shown that T G(S)
is connected. The length of a shortest path in
T G(S) corresponds to the distance between the
two respective trees. However, for the edge slide
operation no polynomial upper bound on this
length has been known. It was conjectured that
‘if two trees are part of the same triangulation of
S then they can be transformed into each other
by O(n2) edge slides’. By results in [1], this would
give a diameter of O(n2 log n) for the correspond-
ing tree graph T G(S). We are able to prove the
following, stronger result:

Theorem 1 Let T ′ and T ′′ be any two crossing-
free spanning trees of S. Then T ′ can be trans-
formed into T ′′ by O(n2) edge slides.

As mentioned in [1] the edge slide operation
could also prove useful in enumerating all simple
polygons on a point set S via constant-size local
transformations. This question is still unsettled;
see e.g. Hernando et al. [5]. Our upper bound on
the diameter of T G(S) might be useful in this
respect.

2. Upper Bound Construction

Let S and T ∈ TS be as defined in Section 1.
We call a pair (e, pj), where e = pipk is an edge of
T and pi, pj, pk ∈ S are sorted in x-order, a slide
triangle if the open triangle ∆ = pipjpk is free of
points from S and edges from T , that is, the inte-
rior of ∆ is empty.

q

e’

e’’

p

p’

p’’

(e’,p)

Fig. 1. A slide triangle (e′, p), see Lemma 2.

Lemma 2 Let P be a simple polygon with vertex
set S, and let δP be the boundary of P with one
marked edge e∗. If δP \ {e∗} is no x-monotonous

path then in the interior of P there always exists a
slide triangle (e, p) ⊂ P , e 6= e∗.

Proof Since δP \ {e∗} is not x-monotonous
there exists a vertex q ∈ S with two edges from
δP \ {e∗} both emanating to the same side, i.e.,
both to the left or right of q. Let e′ and e′′, re-
spectively, be these edges. W.l.o.g. we assume that
they emanate from q to the left, e′ lies below e′′

and the left endpoint p′ of e′ lies to the left of the
left endpoint p′′of e′′, see Figure 1 (all other cases
are symmetric). If the open triangle ∆ = qp′p′′ is
empty we have a slide triangle (e′, p′′). Otherwise
consider the point p which among all points of P

in the interior of ∆ minimizes the angle ∠pp′q at
p′. Note that there are no edges (partially) inside
∆ that have q as an endpoint or intersect e′ or e′′.
Therefore p provides a slide triangle (e′, p). ✷

(a) (b) (c)

Fig. 2. Cutting a tree polygon (a) along interior edges (b)
to obtain a simple polygon (c).

A tree polygon P is a simple polygon with inte-
rior points, each point connected to the boundary
δP via a unique (simple) path such that the result-
ing graph is planar, see Figure 2(a). In other words,
the graph without the edges of δP is a forest. We
claim that we can handle this more general situa-
tion like a simple polygon: Cut along interior edges
and move them apart at the cuts infinitesimally,
i.e., duplicate the related vertices, see Figure 2(b)
and (c). Observe that the proof of Lemma 2 still
holds for this setting by considering edges e′ and e′′

that are neighboring in the cyclic order around q.
We call the x-monotonous path connecting all

vertices of S in their x-sorted order the canonical
spanning tree Tc ∈ TS of S.

Theorem 3 For a point set S and a crossing-free
spanning tree T ∈ TS, T 6= Tc, there always exists
a slide triangle (e, p), p ∈ S and e ∈ T such that
the path π ∈ T connecting p to e, say at point q, is
x-monotonous. Moreover π ∪ pq is a simple poly-
gon without interior points.
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Proof We first show that there always exists some
slide triangle (e, p). The union of T and the bound-
ary of the convex hull of S partitions S into k ≥ 1
tree polygons Pi, i = 1, . . . , k. Since T is a con-
nected spanning tree each Pi has a unique edge
which stems from the boundary of the convex hull
of S. We mark these edges. From Lemma 2 and the
discussion afterwards we know that we get a slide
triangle inside some Pi unless for all Pi the remain-
ing (non marked) part is x-monotonous. But in the
latter case T must be x-monotonous, too, that is,
T = Tc, a contradiction.

e

p

q

π

P

Fig. 3. A path π connecting p to q.

Let q be the (first) endpoint of e to which p

is connected. If the edge pq belongs to T we are
done. Thus assume that p is connected to q via
a path π of length greater than 1, see Figure 3.
Since (e, p) is a slide triangle the edge pq does not
cross an edge of T . Thus the ‘pocket’ formed by
π together with the edge pq and possible interior
edges and points is a tree polygon P . If δP \ pq is
an x-monotonous path we are done. Otherwise we
mark the edge pq and apply induction on P . Note
that only one edge of P is marked, since T does
not contain cycles. Moreover, in every induction
step we obtain a smaller instance, since we get rid
of at least one edge of T . ✷

For an edge e its weight is defined as the number
of points from S which lie in the open x-interval
spanned by e, that is, the number of points which
lie between the endpoints of e in the x-sorted or-
der. The weight of a tree T , denoted by w(T ),
is the sum of the weights of its edges. Obviously
Tc has weight zero and is the only tree with this
property. Since each of the n − 1 edges of T has
at most weight n − 2 the weight of a tree with n

points is bounded by (n − 1)(n − 2) < n2. A tight
bound is given by the following lemma, for which
we omit the proof in this extended abstract.

Fig. 4. A tree with maximum weight of 3n
2
−10n+8

4
.

Lemma 4 The weight w(T ) of a crossing-free
spanning tree T ∈ TS is bounded by 0 ≤ w(T ) ≤

⌊ 3n2
−10n+8

4
⌋, n ≥ 2, and these bounds are tight.

Lemma 5 Any crossing-free spanning tree T ∈ TS

can be transformed into Tc by at most 2 ·w(T ) edge
slides.

e

p

p’

e’

q

π

Fig. 5. A slide triangle (e, p) with x-monotonous path π
connecting p to q.

Proof If T = Tc the statement is obviously true,
so let T 6= Tc. Let (e, p) be a slide triangle as pro-
vided by Theorem 3, see Figure 5. Let k ≥ 1 be the
number of edges of the x-monotonous path π con-
necting p to some endpoint q of e. We claim that
we can reduce the weight of e by at least k by per-
forming 2k−1 edge slides. To this end let e′ be the
edge of π incident to q. Our first task is to slide e′

along π to obtain the edge qp.
Assume that k > 1. Then π avoids the interior

of the slide triangle (e, p) and thus contains at least
one vertex p′ pointed away from the edge qp. Since
π is x-monotonous we can slide the edge of π which
has p′ as its left endpoint ‘towards’ p along the
edge of π which has p′ as its right endpoint. We
repeat this process until we obtain the edge qp, i.e.,
k = 1. Since each edge slide reduces the length of
the current path from p to q by one, we carry out
exactly k − 1 steps.

Now we can slide e along qp, reducing its weight
by at least k (the vertices of π different from q).
Finally we slide qp back to e′ by reversing the steps
of the first phase.
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As long as the resulting tree is not Tc we repeat
all above steps. After each iteration the weight of
a single edge has been decreased by at least half of
the number of the involved edge slide operations.
We thus can transform T into Tc with at most
2w(T ) edge slides. ✷

We are now ready to prove our main result as
proposed in Section 1. We give here a more ex-
plicit statement and Theorem 1 then follows as a
corollary.

Theorem 6 For any pair T ′, T ′′ ∈ TS we can
transform T ′ into T ′′ by at most 2(w(T ′) +
w(T ′′)) ≤ 3n2 edge slides.

Proof Lemma 5 shows that we can transform
any tree T ′ ∈ TS into Tc with at most 2w(T ′) edge
slides. By symmetry of the edge slide operation
we can use the reverse transformation for T ′′. To-
gether with the upper bound w(T ′), w(T ′′) ≤ 3n2

4

from Lemma 4, the theorem follows. ✷

p
1

p
n−1

p
n−4

p
n−2

p
n−3

p
n

Fig. 6. To obtain the edge pnpn−2 requires (n−1)(n−2)/2
edge slides for odd n ≥ 3.

Figure 6 shows that there are examples requiring
Ω(n2) edge slides to transform two spanning trees
into each other. Thus the bound of Theorem 1 is
tight. We omit the details on the lower bound con-
struction in this extended abstract.

3. Discussion and Open Problems

One might wonder whether the slide-distance
between two spanning trees which do not intersect
each other is smaller than in the general case. A

similar result holds for triangulations, where the
flip-distance can be bounded by the number of
crossing edges [4]. However, from the example in
Figure 6 it follows that even for two trees differing
in only one edge the slide-distance is quadratic.

Another observation is that the weight of a
spanning-tree is direction-sensitive. So an obvious
question is whether there always exists a ’nice’
direction with sub-quadratic weight? Again a neg-
ative answer is given by the example of Figure 6,
having weight Θ(n2) for any direction of the x-axis.

So far we only obtained results on the number
of necessary slide operations. On the algorithmic
side we are also interested in the time complexity
to compute the O(n2) slide sequence. We plan to
investigate this question in the near future.

A related algorithmic question is how fast we
can compute a direction to minimize the weight of
a given tree. This can be done in time O(n2 log n),
but we omit the details in this extended abstract.
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Abstract

Several geometric criteria to fit a polygonal closed curve to discrete two-dimensional data are considered and

analysed. Most of these criteria are related to the concept of curvature, for example, one criterion is minimisation of

total absolute curvature. On the basis of these criteria algorithms to construct a polygonal curve which is optimal

with respect to a specific criterion, are designed.

Key words: Curve reconstruction, total absolute curvature, polygonisation

1. Introduction

The work presented in this communication is ded-
icated to the following problem: Given discrete

point data set S in 2D, find a curve that spans all

these points and best satisfies a specific criterion.
We call this problem the Curve modelling prob-

lem, and in what follows we abbreviate it as the
Curvmod problem. This problem occurs in partic-
ular forms in various applications. For example,
an important problem in Computer Graphics is to
find a planar curve that is shaped in the way as
you want it to be shaped [8]. A well–known form
of the Curvmod problem is the Curve Reconstruc-

tion Problem which is concerned with finding a
piecewise linear approximation to a curve from a
set of given sample points [6]. An algorithm for
curve reconstruction should preserve the order of
the points sampled from the curve, i.e., the points
are connected only if they are adjacent along the
curve. Applications of this problem can be found in
many areas, for example, detecting boundaries in
Image Processing, determining patterns in Com-
puter Vision, and reconstruction of topographic
objects from aerial images.
Another form of the Curvmod problem is related
to polygonisation of a given planar point set S.
Studying the set of polygonisations of S is an ac-

∗ Corresponding author
Email address: L.Alboul@shu.ac.uk (Lyuba Alboul).

tive area of research in computational geometry.
For example, one of the polygonisation problems is
to determine a polygonisation (or polygonisations)
with the minimum number of reflex vertices, as the
number of reflex vertices quantifies in a combina-
torial sense the degree to which the point set S is
in convex position [5].
We restrict ourselves to polygonal curves. There
are various algorithms for curve reconstructing,
which give good results if the sampling of data
points is dense enough [4,6]. We look at the prob-
lem from another point of view. We omit any addi-
tional information on the data points, and attempt
to determine what ’reasonable’ curves can be con-
structed for the given data and what characteris-
tics these curves possess and how these character-
istics distinguish one curve from another. In this
setting the Curvmod problem can be viewed as an
optimisation problem: a ’reasonable’ curve can be
defined as an optimal curve with respect to a cer-
tain criterion.
We introduce several geometrical criteria, mostly
related to the concept of curvature, as curvatures
truly describe the shape of objects. Research on
discrete curvatures ( i.e., curvatures that can be
computed on a set of points) is of growing interest
in geometric modelling (some overview is given in
[2]). An important measurement of an object is its
size, some criteria related to this measurement are
also considered.

20th EWCG Seville, Spain (2004)
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2. Preliminaries. Notions related to the
concept of curvature

2.1. Problem definition

The definition of the curvature of a curve is in
general given under the assumption that the curve
is of C2–class, and thus posseses two continuous
derivatives. However, the notion of curvature can
be generalised to the class of curves which pos-
sess continuous second derivatives except at a fi-
nite number of points where a jump discontinuity
in the first derivative can occur. We can introduce
the exterior angle α(s) formed by the right and
left tangents at a point of discontinuity s [9]. In
the case of a polygonal curve points of discontinu-
ity are its vertices. In this paper we discuss only
curves, which are continuous images of the circle
S1 into the plane, i.e., closed polygons. Let us de-
note with α(vi) the exterior angle at the vertex vi

of a curve. Then expression

ω =

n∑

i=1

α(vi) (1)

represents the total curvature of a closed polygo-
nal curve. If this curve is the boundary of a closed
simple polygon, ω is always equal to 2π. Its abso-
lute value |ω|, or absolute total curvature is more
informative. An important fact is that |ω| reaches
its minimal value 2π on convex curves (polygons).
With respect to the concept of total absolute cur-

vature we can formulate the following problem:
Problem 1. Given discrete two–dimensional
data.Among all closed polygonal curves that
span these data find a curve (or curves) with
the minimal total absolute curvature.
Motivation to study polygonal curves of minimal

total absolute curvature is related to the concept of
Tight submanifolds [7]. One of the main properties
of one– and two–dimensional tight submanifolds
in R

3 is that they possess the minimal total abso-
lute curvature. For non–regular curves and surfaces
such as polygonal curves and polyhedral surfaces
the concept of curvature is also determined, and
surface triangulations of minimal total absolute
curvature (MTAC) were introduced. MTAC trian-
gulation coincides with the convex triangulation of
the data if the data are in convex position, but the
properties of triangulations with MTAC for non-
convex data are still mostly unknown (see [3] for

a review). As surfaces are much more complex ob-
jects than curves, the study of the one–dimensional
version of the MTAC triangulation provides use-
ful insights for research on triangulations. Besides
this, the study of polygonal curves with respect
to their total absolute curvature is also interesting
for its own sake, as the total absolute curvature is
related to the global properties of the curve and
might be used to characterise diverse curve pro-
files. We are interested to determine to what extent

a polygonal curve is represented by its total absolute

curvature.

2.2. Some simple formulae and examples

The total curvature and total absolute curvature
coincide for a closed convex polygonal curve and
both equal to 2π. Therefore for a non–convex curve
the excess in the total absolute curvature with re-
spect to the curvature of the convex curve can be
used as a measure of deviation from the convex
curve.
Given the data, we take as a convex curve of refer-

ence the boundary of the convex hull of the data,
(referred to as the CB–curve). The statement of
Problem 1 allows self–intersecting curves, but in
this communication we presume that polygonal
curves represent boundaries of simple polygons,
i.e., are not self–intersecting.
A simple polygonal curve L, that spans the data,
is represented by its vertices V1, V2, ..., Vn−1, Vn.
ViVj , where j = i + 1, is a line segment, and its
length is denoted with lij , lij = lji. A star of a
vertex Vi is the union of the vertex and its two
adjacent line segments Vi−1Vi and ViVi+1.
We designate the vertices that lie on CB–curve

with V i
CB , and with γi, i = 1, ..., l the exterior an-

gles at these vertices with respect to the CB–curve.
It is clear that

∑
γi = 2π.

Let us denote with V j
conv convex vertices of L and

with αj , j = 1, ...,m the exterior angles at these
vertices with respect to L, and with V k

reflex – re-
flex vertices of L and with βk, i = 1, ..., p, the cor-
responding exterior angles at these vertices with
respect to L; m + p = n.
For a simple closed polygon the following equality
holds: ∑

αj −
∑

βk = 2π (2)

As |ω| =
∑

αj +
∑

βk, the total absolute curva-
ture of a polygonal closed simple curve can be rep-
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resented as

|ω| = 2π + 2
∑

k

βk (3)

The set of convex vertices V j
conv can be further

split into three disjoint subsets, namely, the sub-
set V j1

conv−CB of vertices that lie on the CB–curve
and such that their stars belong to the CB–curve;
the subset V j2

conv−int of vertices that are convex
but do not belong to the CB–curve; and the subset
V j3

conv−corn of vertices that lie on the CB–curve but
their stars do not belong to the CB–curve. Vertices
of the last type are called corner vertices as at these
vertices the curve is deviated from the CB–curve.
The corresponding exterior angles are denoted as
αj1 , αj2 and αj3 . Obviously, any part of the curve
that is deviated from the CB–curve starts and ends
at the neighbouring vertices of V j3

conv−corn, since
our curve has no self–intersections. Each αj3 is
equal to γj3 + α(CB)j3 ; where by α(CB)j3 we de-
note the angle at a corner vertex of the curve L
with respect to the CB–curve, or in other words,
the angle between the edge of L that has this cor-
ner vertex as one of the end-vertices and the (imag-
inary) edge of the CB-curve, that would have the
same corner vertex as one of the end-vertices. We
call such an angle a deviating angle. After some
computation, we obtain the following expression:

∑
(αj2 + α(CB)j3) =

∑
βk (4)

Therefore, to find the curve (or curves) of minimal
total absolute curvature among all curves that span
the given data, it is sufficient to minimise either the
sum of exterior angles at reflex vertices or the sum
of exterior angles at the internal convex vertices
and the deviating angles.
From formula 4 it follows that if the curve does not
have internal convex vertices then the amount of
deviation of the curve from the convex curve CB
is concentrated in deviating angles. Each deviated
part Ld, d = 1, ..., f contains in its turn some con-

vex internal vertices V
jd

2

convd
(its number may be

equal to zero) and reflex vertices V kd

reflexd

Equality 4 holds for each deviated part:

∑
(αjd

2

+ α(CB)jd

3

) =
∑

βkd (5)

Let us define a convex region Rconv as a part
Vi, Vi+1, ..., Vi+j of a curve L that satisfies the
condition that each vertex that belongs to Rconv

is convex, but vertices Vi−1 and Vi+j+1 are reflex.

A concave region Rconcave is defined analogously.
The following statement is true:
Suppose we construct a curve L1 which has g con-

vex regions and h concave ones. If we manage to

add new vertices in such a way that the obtained

regions are preserved, than a new curve L2 will

possess the same total absolute curvature as L1.

The spherical image of a curve visualises the con-
cept of total absolute curvature. The spherical im-
age for a polygonal curve is constructed by means
of outwards units normals to the line segments of
the curve, all of them are ’translated’ to the same
origin. The ends of the unit normals of a planar
curve will lie on the unit circle. Let us suppose that
we walk around the boundary of a polygon, for ex-
ample, in anticlockwise direction starting from ver-
tex V1, passing through all the vertices according
to their order until we arrive again at the vertex
V1. To this walk a corresponding walk on the circle
is generated, some of its parts are walked several
time for a non–convex curve.
The spherical image provides a vertex classifica-
tion of the curve as for a reflex vertex the direction
will be opposite to the chosen one. The spherical
images can be put in one–to–one correspondence
for two curves of the same data set if the numbers
of concavities/convexities and corresponding ’in-
corporated’ curvatures for the both curves are the
same. We say in this case that two curves are cur-

vature identical. Examples of two curvature iden-

tical curves and their corresponding spherical im-
ages (schematically depicted), are given in Fig. 1,
Fig. 2, Fig. 3 and Fig. 4.

b b

b b

b

b b

b

b b

V1 V2

V3 V4

V5

V6 V7 V8 V9

V10

Fig. 1. Ten–points data set. Curve 1

Fig. 2. A spherical image of Curve one
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b b

b b

b

b b

b

b b

V1 V2

V3 V4

V5

V6 V7 V8 V9

V10

Fig. 3. Ten–points data set. Curve 2

Fig. 4. A spherical image of Curve two

3. Short overview of research

In order to construct ’reasonable’ curves we con-
sider the following criteria:

(i) minimisation of total absolute curvature;
(ii) minimisation of the length of a curve;
(iii) minimisation of the average curvature of a

curve, i.e., |ω|/
∑

lij ;
(iv) minimisation of the total absolute curvature

of a curve with only one ’deviation’;
(v) minimisation of various weighted curva-

tures, such as
∑

i(|α(vi)|(l(i−1)i + li(i+1)),∑
i |α(vi)|l(i−1)ili(i+1) and some other.

Several algorithms are designed in order to obtain
optimal curves with respect to these criteria. The
objective of this research is to study how various
criteria influence the shape of a curve. Therefore,
we experimented with algorithms as well, at this
moment we are not really interested in their costs.
For certain criteria more than one algorithm is de-
signed, using local or global approaches. See Fig. 5
for examples of outputs of two different algorithms
to construct a curve of minimal total absolute cur-
vature. We tested the algorithms on many data
sets, among them data from curves with sharp cor-
ners, and onions with several layers when the min-
imum distance between the layers is greater than
a certain value ǫ. In order to compare curves ob-
tained by different criteria various geometric shape
parameters are computed. The research is still in
its development. One of the goals is to optimise
some of obtained algorithms. All details and illus-
trative examples are given in the full version of the
paper [1].

(i)

(ii)

Fig. 5. Outputs of two different algorithms for the same

input data. The curve in (i) is the curve of minimal total

absolute curvatue
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Abstract

We study the minimum number of different distances defined by a finite number of points in the following cases:
a) we consider metrics different from the euclidean distance in the plane, b) we consider the euclidean distance
but restricted to subsets of the plane of special interest, c) we consider other topological surfaces: the cylinder
and the flat torus. All these results extend those obtained by Erdös and other mathematicians for the euclidean
distance in the plane.

Key words: distances, metrics, integer lattice, flat torus, cylinder

1. Introduction

In 1946 [4] Erdös posed the following problem:
let f(n) denote the minimum number of distinct

distances that can occur among the n(n−1)
2 dis-

tances between n distinct points in the plane; what
can we know about f(n)?

For small values of n it is easy to compute f(n)
and many times the number f(n) is attained for
different configurations. Let us see the first exam-
ples.

............................

...................

..............................

...................

.......
...................

......... ......
...

..............
...............

.....................

......
...

......
......

...

f(3) = 1

.............

...............
.......

f(4) = 2

............
....

.............

.................
....
....
................

f(5) = 2 f(6) = 3

Erdös obtained asymptotic estimates for f(n).
The first asymptotic estimate was

cn1/2 < f(n) < c
n

(lnn)1/2
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Erdös conjectured that f(n) > cn1−ε for each
ε > 0 and offered 500$ for a proof or a disproof.

Erdös conjecture is still open. The last improve-
ment was made by Szemerédi (1992) who proved
that f(n) > cn4/5 ([2]).

f(n) can be investigated in dimension R
d

with d > 2. For d = 3 the best bounds are
cn4/3 log log n < f(n) ([5]) and f(n) < n3/2+o(1)

([3]).

Recently Braß([1]) determined f(n) exactly in
dimension d = 4.

There are also bounds for general dimensions.

The aim of this communication is to extend
Erdös problem to other ambient spaces.

a) First we consider metrics different from the
euclidean distance in the plane.

b) Then we consider also the euclidean distance
but restricted to subsets of the plane of spe-
cial interest (points of the integer lattice and
points of rational coordinates).

c) Finally we consider Erdös problem in other
topological spaces.

20th EWCG Seville, Spain (2004)
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2. Erdös problem considering arbitrary
distances in the plane

In the plane we can define many distances. Let
us recall that a distance in the plane is a map

d : R
2 × R

2 → R

such that
i) d(x, y) ≥ 0, d(x, y) = 0 iff x = y
ii) d(x, y) = d(y, x)
iii) d(x, z) ≤ d(x, y) + d(y, z)

An interesting way to define a metric in the plane
is as follows.

Let us define the gauge function g(K,x) of a
closed, convex set K relative to an origin 0 as

g(K,x) = inf{λ : x ∈ λK, λ > 0}

It is easy to prove that if K is a proper con-
vex body and 0 ∈ intK, the function m(x, y) =
g(K,x− y) almost defines a distance in the plane.
The condition that is violated is the symmetry con-
dition m(x, y) = m(y, x) that holds only if K is
centrally symmetric.

So a closed, centrally symmetric, convex set K
with 0 ∈ intK defines a metric ([7]).

All these metrics generate the euclidean topol-
ogy.

In the particular case that the set K that
induce this metric is a square of the type
〈(p, 0), (0, p), (−p, 0), (0,−p)〉, then we obtain the
famous taxi-cab metric which is also known as
the Manhattan metric. This metric is particularly
relevant for our analysis.

The taxi-cab metric can also be defined as

dT ((x1, y1), (x2, y2)) = |x2 − x1| + |y2 − y1|

We are going first to estimate the minimum num-
ber of distinct distances with the taxi-cab metric.

We begin showing in table 1 that the taxi-cab
metric provides different values for f(n) than those
values attained with the euclidean metric.

f(n) Euclidean metric Taxi-cab metric

3 1 1

4 2 1

5 2 2

6 3 2

7 3 2

Table 1
Some values of f(n) with the taxi-cab metric

...................
........................

.....
.....
....

..

.....
.....

.....
....

..................
.....
.....
.....

f(3) = f(4) = 1 f(5) = ... = f(9) = 3

Now we are going to estimate precisely f(n).

Lemma 1 Considering the taxi-cab metric

f(n) ≤ ⌈
√

n⌉ − 1

PROOF. Let L be the lattice generated by the
vectors (1,1) and (1,-1). Let p be an integer number
and let Kp be the point set determined by Kp =
L∩〈(0, 0), (p−1,−(p−1)), (2(p−1), 0), (p−1, p−
1)〉.

Consider K⌈√n⌉. This set contains at least n

points since ⌈√n⌉ · ⌈√n⌉ ≥ √
n · √n = n, so we

can always choose n points in K⌈√n⌉. As the points

in K⌈√n⌉ determine ⌈√n⌉ − 1 different distances

among them, f(n) ≤ ⌈√n⌉ − 1
�

This estimate is not only an upper bound but a
precise determination of the minimum number of
distinct distances:

Lemma 2 Considering the taxi-cab metric

f(n) ≥ ⌈
√

n⌉ − 1

PROOF. We are going to give a sketch of the
proof:

We consider the “metric circumferences”, which
in our case are square-shaped, as the locus of the
points that are at distance r from a point p ∈ R

2:

S(p, r) = {x ∈ R
2 : dT (p, x) = r}

Now we are going to locate the maximum num-
ber of points who define at most m distances among
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them. As we are always dealing with a finite num-
ber of points, there would be at least two points
a, b such that the distance between them is the
maximum possible. All the others points should
be located in the intersection of m “metric cir-
cumferences” centered at a and m “metric circum-
ferences” centered at b. If we do not want to in-
crease the number of different distances, the radius

of these “metric circumferences” are {id(a,b)
m }m

i=1.
There are two possible situations:

i) All the “metrics circumferences” intersect
properly. In this case as they have the pseudodisc
property (there are at most two proper intersec-
tions for each pair of pseudodiscs), then we obtain
that the maximum number of possible points is
given by (m + 1)2 and they are distributed in a
translated of the square Km+1. From this config-
uration we obtain our lower bound.

ii) There are some pairs of “metric circumfer-
ences” that do not intersect properly but are tan-
gent. In this case they are tangent along a straight
line segment. Considering the ends of this straight
line segment and taking the “metric circumfer-
ences” centered at these ends we conclude that
there are no more than (m+1)2 possible locations.
So we also reach the same lower estimate.

�

It is easy to see that the argument in the proof
of lemma 2 holds for all metrics generated by the
gauge function of a centrally symmetric, convex
set; as the equality sign is attained in the case that
the body which generates the metric is a square,
we can conclude the following corollary:

Corollary 3 Among all metrics generated by a

closed, centrally symmetric, convex set K, the met-

rics that give the smallest values for f(n) are those

in which the metric is generated by the gauge func-

tion corresponding to a square.

For instance the taxi-cab metric or the maximum

metric defined as

d((x1, y1)(x2, y2)) = max{|x2 − x1|, |y2 − y1|}

Corollary 3 does not hold for general metrics. For
example, let us consider the so called post office
metric

d((x1, y1)(x2, y2)) = d2((x1, y1), (0, 0))

+d2((0, 0), (x2, y2))

where d2 stands for the euclidean distance in the
plane. In this case it is easy to see that we can
arrange infinite points so that each pair of them is
at distance one; so f(n) = 1 for all n.

(0, 0)

3. The minimum number of distinct
distances problem with the euclidean
distance in the integer lattice

If we consider Erdös problem restricted to the
integer lattice we obtained different values for f(n)
as the following table shows:

f(n) Plane Integer lattice

3 1 2

4 2 2

5 2 3

6 3 4

7 3 4

Table 2
Some values of f(n) in the integer lattice

In general, we have the following upper bound:
Lemma 4 In the integer lattice

f(n) ≤ (⌈√n⌉ − 2)(⌈√n⌉ + 1)

2

PROOF. Let L be the integer lattice and let
Pn be the point set Pn = L ∩ 〈(0, 0), (0, ⌈√n⌉ −
1), (⌈√n⌉ − 1, 0), (⌈√n⌉ − 1, ⌈√n⌉ − 1)〉. Pn con-
tains at least n points.We can compute the number
of distinct distances by considering only the dis-
tances between (0, 0) and the the rest of the points
below the diagonal of the square. Then we have at
most 2 + 3 + ... + (⌈√n⌉ − 1) distinct distances,
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that is the sum of the terms of an arithmetic pro-
gression, so f(n) ≥ 2 + 3 + ... + (⌈√n⌉ − 1) =
⌈√n⌉(⌈√n⌉−1)

2 − 1 = (⌈√n⌉−2)(⌈√n⌉+1)
2

(0, 0)

�

The values of f(n) if we restrict to the integer
lattice are the same that if we restrict to the points
with rational coordinates because a finite number
of points with rational coordinates are included in
an integer lattice generated by the vectors (q, 0)
,(0, q) where q is the least common denominator of
the coordinates of the points that we are consider-
ing.

This estimate of f(n) can be applied to com-
puters, because the computer screen can be repre-
sented as a finite number of points with rational
coordinates.

4. Erdös problem for other topological
spaces

The first mathematicians to consider this prob-
lem in other topological spaces were Erdös, Hick-
erson and Pach ([6]) who studied the case of the
sphere.

We are going to consider two other particular
topological surfaces: the cylinder and the flat torus.

As we can see in table 3, for small values of n we
obtain the same values for f(n) in both topological
surfaces, but this do not occur for greater values
of n.

f(n) Plane Cylinder Flat torus

3 1 1 1

4 2 1 1

5 2 2 2

6 3 2 2

Table 3
Some values of f(n) in different topological surfaces

Now, we can give upper bounds for both topo-
logical surfaces.

Lemma 5 In the flat torus

f(n) ≤ (⌊⌈√n⌉/2 + 1⌋ + 2)(⌊⌈√n⌉/2 + 1⌋ − 1)

2

Lemma 6 In the cylinder

f(n) ≤ (⌊⌈√n⌉/2 + 1⌋ + 2)(⌊⌈√n⌉/2 + 1⌋ − 1)

2

+(⌊⌈
√

n⌉/2 + 1⌋)(⌈
√

n⌉ − ⌊⌈
√

n⌉/2 + 1⌋)

We omit the proofs because they are similar to
the proof of lemma 3. We have to consider a par-
ticular lattice and intersect it with the topological
surfaces, as the figure shows. Then, by some arith-
metic computations, we obtain the bounds.

Flat Torus Cylinder
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Kutató Intézet Közleményei 7 (1960), 165–169.

[6] Erdös, P. , Hickerson, D. and Pach J.: A problem of Leo
Moser about repeated distances on the sphere, Amer.

Math. Monthly 96 (1989), 569–575.

[7] Guggenheimer, H. W.: Applicable geometry, Robert E.

Krieger Publishing Co., Inc. , Huntington, New York,
1977.



Computing the Hausdor� Distan
e Between CurvedObje
ts

1

Helmut Alt Ludmila S
harf

Institute for Computer S
ien
e, Freie Universit�at Berlin, Takustr.9, D-14195 Berlin

Key words: shape 
omparison, Hausdor� distan
e, parametri
 
urves

1. Introdu
tion

Analysis and 
omparison of geometri
 shapes are

of importan
e in various appli
ation areas within


omputer s
ien
e, su
h as pattern re
ognition and


omputer vision, but also in other dis
iplines 
on-


erned with the form of obje
ts su
h as 
artogra-

phy, mole
ular biology, medi
ine, or biometri
 sig-

nal pro
essing.

The general situation is that we are given two

obje
ts A, B modelled as subsets of 2- or 3-

dimensional spa
e and we want to know how mu
h

they resemble ea
h other [1℄.

For this purpose we need a similarity measure

de�ned on pairs of shapes indi
ating the degree

of resemblan
e of these shapes. A frequently used

similarity measure is the Hausdor� distan
e, whi
h

is de�ned for arbitrary non-empty 
ompa
t sets A

and B. It assigns to ea
h point of one set the dis-

tan
e to its 
losest point in the other and takes the

maximum of all these values. Formally, we de�ne

the one-sided Hausdor� distan
e from A to B as

~

Æ

H

(A;B) = max

a2A

min

b2B

d(a; b); (1)

where d(x; y) denotes a distan
e measure between

points x and y.

Here we will assume the planar 
ase, i.e., that

A;B � R

2

and that d is the Eu
lidean distan
e.

The (bidire
tional) Hausdor� distan
e between

A and B is de�ned as

Æ

H

(A;B) = max(

~

Æ

H

(A;B);

~

Æ

H

(B;A)) (2)

We will only des
ribe the 
omputation of the

one-sidedHausdor� distan
e fromA toB, the 
om-

putation of the bidire
tional Hausdor� distan
e is

then straightforward.

1

This resear
h was supported by the European Union

under 
ontra
t No. IST-2000-26473, Proje
t ECG.

The aim of this paper is to �nd an algorithm for

general shapes whi
h are modelled by two sets of n

algebrai
 
urves. When we speak about the Haus-

dor� distan
e between these two sets we a
tually

mean the Hausdor� distan
e between the two sets

of points lying on these 
urves. We will restri
t

to 
urves that are given by rational parameteriza-

tions, i.e., ea
h 
urve is represented by a parame-

terization


 : I ! R

2

; 
(t) = (x(t); y(t)) (3)

where I � R is a 
losed interval and x(t); y(t) are

rational fun
tions with no poles in I .

Observe that this de�nition in
ludes some im-

portant families of free-form parametri
 
urves, for

example B-splines.

For simpli
ity, we assume a 
ertain general posi-

tion of the input 
urves. In parti
ular, we assume

that any two 
urves interse
t in at most �nitely

many points.

2. Basi
 
ases

In this se
tion we will investigate how the di-

re
ted Hausdor� distan
e between two single ob-

je
ts (
urves or points) 
an be 
omputed.

2.1. Point-
urve and 
urve-point

The Hausdor� distan
e from a point p = (u; v)

to a 
urve 
(t) = (x(t); y(t)); t 2 I is min

t2I

d(p; 
(t)).

The Hausdor� distan
e from a 
urve 
(t) to a

point p is the maximum Eu
lidean distan
e from

any point on 
 to p.

In order to �nd those parameters t where the

minimum or maximum is attained, we 
onsider the

20th EWCG Seville, Spain (2004)
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zeroes of the derivative of the squared distan
e

d

d t

[d

2

(p; 
(t))℄, i.e., the equation

2 � (u� x(t)) � x

0

(t) + 2 � (v � y(t)) � y

0

(t) = 0 (4)

This equation has 
onstantly many solutions if the

degree of 
 is bounded. We 
all a point satisfying

this equation a footpoint of p on 
. In addition to

the points given by the solutions of equation 4 the

minimum or maximum distan
e 
an be attained at

the endpoints of 
 (Fig. 1).

p

c(t)

Q

Fig. 1. Hausdor� distan
e from a 
urve 
(t) to a point p is

the distan
e from p to the farthest point on 
.

2.2. Curve-
urve

We redu
e the problem of determining the Haus-

dor� distan
e from a 
urve a, a(t) = (x

a

(t); y

a

(t)),

t 2 I

a

to a 
urve b, b(s) = (x

b

(s); y

b

(s)), s 2 I

b

to

determining the distan
es of 
onstantly many 
an-

didate points on a to the 
urve b.

There are four di�erent types of 
andidate

points. Firstly, the Hausdor� distan
e 
an be as-

sumed at one of the endpoints of 
urve a (type

EA).

Se
ondly, it 
an happen that the Hausdor� dis-

tan
e is attained between an endpoint Q of b and a

point on a. Therefore, we determine on a all foot-

points of the endpoints of b by equation (4) (type

EB).

For the third type of 
andidate points we 
on-

sider the self-bise
tor (or medial axis) of a 
urve,

whi
h is the set of all points whose minimal dis-

tan
e to the 
urve is attained at more than one

point on the 
urve, 
f. Fig. 2.

The Hausdor� distan
e from a to b 
an be at-

tained at an interse
tion point of a with the self-

bise
tor of b. We will only give a system of equa-

tions des
ribing su
h a point here for the part of

the self-bise
tor where the two 
losest points are

interior points of b, see Fig. 3.

point−point bisector

point−curve bisector

curve−curve bisector

Fig. 2. Self-bise
tor of a parabola segment.

a(t)

Q

b(s)

R

P

Fig. 3. The Hausdor� distan
e from the 
urve a(t) to the


urve b(s) is assumed at the interse
tion point Q of the


urve a with the self-bise
tor of the 
urve b. The point Q

has two di�erent internal foot-points P and R on b.

Suppose Q = a(t) and that P = b(s) and R =

b(r) with r 6= s are the points on b 
losest to Q.

Then we obtain the following system of equations

for t; s; and r:

�

(x

a

(t) � x

b

(s))

2

+ (y

a

(t) � y

b

(s))

2

�

�

�

(x

a

(t) � x

b

(r))

2

+ (y

a

(t) � y

b

(r))

2

�

= 0 (5)

(x

a

(t) � x

b

(s)) � x

0

b

(s) + (y

a

(t) � y

b

(s)) � y

0

b

(s) = 0 (6)

(x

a

(t) � x

b

(r)) � x

0

b

(r) + (y

a

(t) � y

b

(r)) � y

0

b

(r) = 0 (7)

In order to enfor
e the 
ondition r 6= s we intro-

du
e a new variable u and add one more equation

to the system:

1� u(s� r) = 0 (8)

We add all points determined by the �nitely many

solutions of this system to the 
andidate list (type

SB).

For the fourth type of possible 
andidate points

we observe that the Hausdor� distan
e 
an o

ur

between two interior points p 2 a and q 2 b with-
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out one of them lying on the self-bise
tor of the

other 
urve, see Fig. 4.

a(t)
b(s)

p

q

Fig. 4. Hausdor� distan
e at interior points.

Sin
e q is a footpoint on b for point p, the line

segment pq must be perpendi
ular to the tangent

line to 
urve b at point q. In addition it 
an be

shown that the tangent line to the 
urve a at point

pmust be parallel to the tangent line to the 
urve b

at point q and, thus, also perpendi
ular to the line

segment pq. The remaining 
andidate points (type

I) for the Hausdor� distan
e are, therefore, among

the solutions of the following system:

(x

a

(t) � x

b

(s)) � x

0

b

(s) + (y

a

(t) � y

b

(s)) � y

0

b

(s) = 0 (9)

(x

a

(t) � x

b

(s)) � x

0

a

(t) + (y

a

(t) � y

b

(s)) � y

0

a

(t) = 0 (10)

A detailed geometri
 proof for this fa
t is omitted

due to spa
e limitations and 
an be found in [7℄.

3. The general 
ase

As was said before, the general problem we 
on-

sider is to �nd the Hausdor� distan
e between two

point sets given by two sets A;B of rationally pa-

rameterized algebrai
 
urves.

In order to �nd

~

Æ(A;B) we split the 
urves ofA at

their interse
tion points with the Voronoi diagram

ofB. The resulting setA

0

of 
urves has the property

that ea
h 
urve lies in one Voronoi 
ell of B, so its

distan
e to B is the distan
e to one 
urve and 
an

be determined using the te
hniques of se
tion 2.

Computing the 
omplete Voronoi diagram of al-

gebrai
 
urves is a very diÆ
ult task in pra
ti
e and

there are some open questions about the bise
tor

of algebrai
 
urves [3{5℄. In [5℄ an approximation

algorithm for Voronoi diagrams of 
urves is given.

Instead, we just 
ompute the interse
tion points

des
ribed. The splitting of ea
h 
urve a ofA is done

in
rementally. Suppose that we have list of inter-

se
tion points of the Voronoi diagram of a subset

of B with a and we want to add a new 
urve b 2

B. We do this by s
anning the 
urrent segments

of a. Ea
h segment s belongs to some 
urve 
 2 B

whi
h has already been pro
essed. First we deter-

mine all interse
tion points of the bise
tor between

b and 
 with a and �nd out whi
h ones lie inside s.

s is split further with these points and some por-

tions are labelled with b as nearest neighbor, others

with 
. After this has been done it might be ne
-

essary to merge neighboring segments whi
h are

both marked with b but are separated by a split-

point from previous steps.

Similar to the 
ase of self-bise
tors, the interse
-

tion points of with the bise
tor between b and 



an be found as solutions of systems of equations.

We only give this system here for the \interior" bi-

se
tor of two 
urves b and 
, not the ones for the

bise
tor between an endpoint of one 
urve and an-

other 
urve or between two endpoints. These sys-

tems, however have to be 
onsidered, as well.

The system for the \interior" bise
tor uses the

property that if a point a(t) lies on the bise
tor

between b and 
 and the 
orresponding footpoints

are b(s) and 
(r) then the line segment a(t)b(s)

is perpendi
ular to the tangent ve
tor b

0

(s), and

a(t)
(r) is perpendi
ular to 


0

(r).

d(a(t); b(s))� d(a(t); 
(r)) = 0 (11)

h(a(t) � b(s)); b

0

(s)i=0 (12)

h(a(t)� 
(r)); 


0

(r)i=0 (13)

The worst 
ase running time of our algorithm

as stated is O(nm

2

) if A 
onsists of n and B of m


urves, assuming that the degrees of the 
urves are

bounded. It 
an be easily improved toO(nm logm)

by using a divide-and-
onquer approa
h for the

splitting of the 
urves ofA. It should be worthwhile

to further improve the 
ombinatorial 
omplexity of

the algorithm (see also [2℄), but our major intent

was to �nd a simple algorithm that 
an be put into

pra
ti
e with a reasonable amount of e�ort.

4. Implementation

We implemented the algorithm des
ribed in

C++ using the 
omputer algebra software library

SYNAPS (SYmboli
 Numeri
 APpli
ationS), see

[8,6℄, for solving the systems of polynomial equa-

tions.
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For visualization purposes a graphi
al user in-

terfa
e was developed using the GTK library. It

in
ludes visualization of the 
urves, the input and

editing of the parameterization and the intervals

if the parameter values, the 
omputation of the

Hausdor� distan
e and the graphi
al indi
ation of

the 
andidate points 
onsidered for the 
omputa-

tion. Figure 5 shows the interfa
e with an example.

Fig. 5. Result of a Hausdor� distan
e 
omputation with

two B-splines of degree 2. Both one-way distan
es and all


andidate points are shown.
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A certified conflict locator for the incremental maintenance of the

Delaunay graph of semi-algebraic sets

François Anton,
Department of Computer Science, University of British Columbia,

201-2366 Main Mall, Vancouver, B.C., Canada, V6T 1Z4

Abstract

Most of the curves and surfaces encountered in geometric modelling are defined as the set of solutions of a system
of algebraic equations or inequalities (semi-algebraic sets). The Voronoi diagram of a set of sites is a decomposition
of the space into proximal regions (one for each site). Voronoi diagrams have been used to answer proximity
queries. The dual graph of the Voronoi diagram is called the Delaunay graph. Only approximations by conics can
guarantee a proper continuity of the first order derivative at contact points, which is necessary for guaranteeing the
exactness of the Delaunay graph. The central idea of this paper is that a (one time) symbolic preprocessing may
accelerate the certified numerical evaluation of the Delaunay graph conflict locator. The symbolic preprocessing
is the computation of the implicit equation of the generalised offset to conics. The certified computation of the
Delaunay graph conflict locator relies on theorems on the uniqueness of a root in given intervals (Kantorovich,
Moore-Krawczyk). For conics, the computations get much faster by considering only the implicit equations of the
generalised offsets.

Key words: Delaunay graph, semi-algebraic sets, conics, conflict locator

1. Introduction

Most of the curves and surfaces encountered in
geometric modelling are defined as the set of com-
mon zeroes of a set of polynomials (algebraic vari-

eties) or subsets of algebraic varieties defined by
one or more algebraic inequalities (semi-algebraic

sets). Many problems from different fields involve
proximity queries like finding the nearest neigh-
bour, finding all the neighbours, or quantifying
the neighbourliness of two objects. The retraction
planning [ÓY85] problem (that addresses the op-
timal trajectory of a robot around obstacles) in
robotics and spatial analysis and influence zones
in Geographic Information Systems [VC90] are
strongly linked to questions of proximity among
real-world objects in real-world environments.

The Voronoi diagram [Vor08] (see Fig. 1) of a set
of sites is a decomposition of the space into prox-

Email address: anton@medicis.polytechnique.fr

(François Anton).

imal regions (one for each site). The proximal re-
gion (or Voronoi zone) of a site is the locus of points
closer to that site than to any other one. Voronoi
diagrams allow one to answer proximity queries af-
ter a query point has been located in the Voronoi
zone it belongs to. The Voronoi diagram defines a
neighbourhood relationship among sites: two sites
are neighbours if, and only if, their Voronoi regions
are adjacent. The graph of this neighbourhood re-
lationship is called the Delaunay graph. The De-
launay graph of sites in the plane satisfies the fol-
lowing empty circle criterion (see Fig. 2): no site in-
tersects the interior of the circles touching (tangent
to without intersecting the interior of) the sites
that are the vertices of any triangle of the Delau-
nay graph (see Fig. 3). There have been attempts
[OBS92] to compute Voronoi diagrams of curves
by approximating curves by line segments or circu-
lar arcs, but the exactness of the Delaunay graph
is not guaranteed [RF99a]. Indeed, the Voronoi di-
agram is very sensitive to the order of continuity
at contact points (see [RF99a]). Only approxima-
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Fig. 1. The Voronoi diagram (light) of a circle, an ellipse

and a hyperbola (dark)

Fig. 2. The 3 empty circles for the sites of Fig. 1

HYPERBOLA

CIRCLE

ELLIPSE

Fig. 3. The Delaunay graph of the sites of Fig. 1

tions by conics can guarantee a proper continuity
of the first order derivative at contact points, which
is necessary for guaranteeing the exactness of the
Delaunay graph [RF99a]. Other approximation al-
gorithms have used a Newton-Raphson scheme to
compute and classify Voronoi vertices for curves
with a rational parameterisation [RF99a,RF99b].
These do not directly address the exactness of the
Delaunay graph.

2. Preliminaries

We will recall now the formal definitions of the
Voronoi diagram and of the Delaunay graph. For
this purpose, we need to recall some basic defini-
tions.

Definition 1 (Metric) Let M be an arbitrary set.
A metric on M is a mapping d : M × M → R+

such that for any elements a, b, and c of M , the
following conditions are fulfilled: d (a, b) = 0 ⇔

a = b, d (a, b) = d (b, a), and d (a, c) ≤ d (a, b) +
d (b, c). (M,d) is then called a metric space, and
d (a, b) is the distance between a and b.

Let M = R
N , and δ denote the Euclidean dis-

tance between points. Let S = {s1, ..., sm} ⊂

M,m ≥ 2 be a set of m different subsets of M ,
which we call sites. The distance between a point
x and a site si ⊂ M is defined as d (x, si) =
infy∈si

{δ (x, y)}.
Definition 2 (Influence zone) For si, sj ∈ S, si (=
sj, the influence zone D (si, sj) of si with respect
to sj is: D (si, sj) = {x ∈ M |d (x, si) < d (x, sj)}.
Definition 3 (Voronoi region) The Voronoi re-
gion V (si,S) of si ∈ S with respect to the set S is:
V (si,S) =

⋂

sj∈S,sj "=si
D (si, sj).

Definition 4 (Voronoi diagram) The Voronoi di-
agram of S is the union V (S) =

⋃

si∈S
∂V (si,S)

of all region boundaries.
Definition 5 (Delaunay graph) The Delaunay
graph DG (S) of S is the dual graph of V (S)
defined as follows:
– the set of vertices of DG (S) is S,
– for each N − 1−dimensional facet of V (S) that

belongs to the common boundary of V (si,S) and
of V (sj ,S) with si, sj ∈ S and si (= sj, there is
an edge of DG (S) between si and sj and recip-
rocally, and

– for each vertex of V (S) that belongs to the com-
mon boundary of V (si1 ,S),. . . ,V

(

siN+2
,S

)

,
with ∀k ∈ {1, ..., N + 2} , sik

∈ S all distinct,
there exists a complete graph KN+2 between the
sik

, k ∈ {1, ..., N + 2}, and reciprocally. (see
example on Fig. 3).
Let us introduce the generalised offset and the

generalised Voronoi vertex. We place ourselves in
the affine space K2 where K = C for the sake of
introducing those notions in an easier way. While
the R−generalised offset to ν is the locus of the
centres of circles of radius R that are tangent to ν,
the true R−offset to ν is the locus of the centres of
circles of radius R that are tangent to ν and do not
contain any point of ν in its interior (see Fig. 4).
Definition 6 (generalised Voronoi vertex) A gen-
eralised Voronoi vertex of three semi-algebraic sets
S1, S2, and S3 is a point of intersection of the
R−generalised offsets of S1, S2, and S3 (see Exam-
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Fig. 4. The strophoid and its true (left) and generalised

(right) offsets

Fig. 5. A generalised Voronoi vertex (dot) of three conics

(thick lines)

ple on Fig. 5).

3. The Delaunay graph conflict locator for
semi-algebraic sets

Let X1, ..., XN+2, be semi-algebraic sets
[BR90,BCR98]. A semi-algebraic set Xi is de-
fined as:

⋃si

j=1

⋂ri,j

k=1

{

x ∈ R
N |fi,j,k ⋆i,j,k 0

}

, where
fi,j,k is a polynomial with real coefficients in the
variables xi1 , ..., xiN

and ⋆i,j,k is either < or =,
for i = 1, 2, 3, 4, j = 1, ..., si and k = 1, ..., ri,j .
The Delaunay graph conflict locator determines
which ones of the maximal dimensional facets of
the Delaunay graph of N + 1 semi-algebraic sets
X1, ..., XN+1 would be changed by the addition of
the semi-algebraic set XN+2.

Let us assume without loose of generality that
each

⋂ri,j

k=1

{

x ∈ R
N |fi,j,k ⋆i,j,k 0

}

for each Xi is
defined by at least one non-trivial algebraic equa-
tion (i.e. different from the zero polynomial). If
our starting assumption is not valid in the case we
treat, we can make it valid by adding the equa-
tions corresponding to fi,j,k = 0 for each (i, j, k)
such that j is the index of a component that is not
defined as in the assumption and i is the index of
the semi-algebraic set to which the component be-
longs. Let us denote Vi as the intersection of all the
V (fi,j,k) such that ⋆i,j,k is = for each i = 1, 2, 3, 4.
Let Ni be the normal space to Vi at the point xi =
(xi1 , ..., xiN

). Each fi,j,k defining Vi induces N − 1
polynomials ni,j,k,l with l = 1, ..., N − 1 that are

the equations defining the normal to V (fi,j,k) at
xi. A point q = (y1, ..., yN ) belongs to Ni if its co-
ordinates satisfy all the equations of the normal
spaces to V (fi,j,k) at xi such that ⋆i,j,k is =.

For a given q = (y1, ..., yN ), let Mi be the the
set of points mi = (zi1 , ..., ziN

) ∈ Xi such that q

belongs to the normal space to Vi at the point mi.
In the general case, each set Mi is a finite set of
points. However, if Vi contains a portion of hyper-
sphere PHS (q, ρ) centered on q, then Mi contains
that portion of hypersphere. To get in all cases a
finite set of points mi of Vi, we use Si = Mi when
Mi is finite, and Si

⋂

PHS (q, ρ) = {wi} for an
arbitrary point wi of PHS (q, ρ) when Vi contains
a portion of hypersphere PHS (q, ρ) centered on q.

We are now able to write the system of alge-
braic equations and inequalities that define the
outcome of the Delaunay graph conflict locator.
Let us consider the map π : K3N → KN defined
by π (xi, q,mi) = q.

The point q is at the distance r from the point
xi if, and only if, the distance between q and xi is
r. This is expressed algebraically by the equation
di (q, xi) = (y1 − xi1)

2
+ ...+(yN − xiN

)
2
−r2 = 0.

The generalised r-offset Oi to Xi is the image
by π of the points of K3N defined by the following
system of equations and inequalities:






















































∃j ∈ [1, si] ,∀k ∈ [1, ri,j ] ,










































fi,j,k (xi) ⋆i,j,k 0

if ⋆i,j,k is “ = ”,


















di (xi, q) = 0

∀l = 1, .., N − 1, ni,j,k,l (xi, q) = 0

fxi1
(xi) &= 0 or . . . or fxiN

(xi) &= 0

The true r-offset to Xi is obtained as the differ-
ence of the generalised r-offset Oi to Xi and the
union of each one of the images by π of the semi-
algebraic sets defined by the following system of
equations and inequalities for each point mi of Si:






















































∃j ∈ [1, si] ,∀k ∈ [1, ri,j ] ,










































fi,j,k (mi) ⋆i,j,k 0

if ⋆i,j,k is “ = ”,


















f (mi) = 0

∀l = 1, .., N − 1, ni,j,k,l (mi, q) = 0

d (mi, q) < 0

It is obvious that a true Voronoi vertex of
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Running time above systems generalised offsets

General Solve 6 min 38 s 12 min 37 s

Gradient Solve 2 h 56 min 10 s 2 min 26 s

Hessian Solve 20 h 17 min 42 s 3 min 42 s

Table 1
Some running time results for ellipses

X1, ..., XN+1 is a point of intersection of the true
r−offsets to X1, ...,XN+1 respectively. A true
Voronoi vertex of X1, ..., XN+1 is at the distance
R from XN+2, or alternatively, a true Voronoi ver-
tex of X1, ..., XN+1 belongs to the true R−offset
to XN+2. Consider the N + 2−dimensional points
whose first N coordinates are the coordinates of
a true Voronoi vertex of X1, ...,XN+1, and the re-
maining two are the distances r between that true
Voronoi vertex and X1, ...,XN+1, and R between
that true Voronoi vertex and XN+2. The Delau-
nay graph conflict locator should report all the
true Voronoi vertices such as the corresponding
N + 2−dimensional points satisfy R − r < 0.

We have evaluated the Delaunay graph conflict
locator without solving any intermediary system
by using an interval analysis based library (ALIAS
[Mer00]) for solving zero-dimensional systems of
equations and inequalities. The certified computa-
tion of the Delaunay graph conflict locator relies
on theorems on the uniqueness of a root in given in-
tervals (Kantorovich and Moore-Krawczyk). This
computation uses a bisection process on one or
all the variables using either only the equations of
the system, or using the Jacobian of the system
(Moore-Krawczyk test for finding “exactly” the so-
lutions), or using the Jacobian and the Hessian of
the system (with Kantorovich, Moore-Krawczyk
tests). We first used ALIAS on the above system
of algebraic equations and inequalities that spec-
ify the Delaunay graph conflict locator for semi-
algebraic sets. Then for conics, we used ALIAS on
the system simplified by replacing the equations fi,
ni and di of the conics, normals and distances be-
tween the points on the conics and the true Voronoi
vertex by the implicit equations of the generalised
offsets to the conics (see [Ant04]). This induces
much faster computations (see Table 1).

4. Conclusions

We have presented what we believe is the first
certified conflict locator for the incremental main-
tenance of the Delaunay graph for semi-algebraic
sets. Further research will try to improve the run-
ning time of the computations.
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3D realization of two triangulations of a 
onvex polygon.

Sergey Bereg

a

,

a

Department of Computer S
ien
e, University of Texas at Dallas, Box 830688, Ri
hardson, TX 75083, USA.

Abstra
t

We study the problem of 
onstru
tion of a 
onvex 3-polytope whose (i) shadow boundary has n verti
es and (ii)

two hulls, upper and lower, are isomorphi
 to two given triangulations of a 
onvex n-gon. Barnette [1℄ proved the

existen
e of a 
onvex 3-polytope in general 
ase. We show that, in our 
ase, a polytope 
an be 
onstru
ted using

an operation of edge 
reation.

Key words: triangulation, 
onvex polytope, Steinitz theorem

1. Introdu
tion

Let P be a 
onvex polygon in the xy-plane with

n verti
es. Two triangulations of P are 
alled dis-

tin
t if the only edges they share are the edges of

P . Let T

1

and T

2

be two distin
t triangulations of

P . At the First Canadian Conferen
e on Compu-

tational Geometry Leo Guibas 
onje
tured that it

is always possible to perturb the verti
es of P ver-

ti
ally out (i.e., by displa
ements parallel to the

z-axis) so that the polygon P be
omes a spatial

polygon P

0

su
h that the 
onvex hull of P

0

is a


onvex polyhedron 
onsisting ot two triangulated


ups glued along P

0

, and the triangulation of the

upper 
up (i.e., those fa
es oriented toward +z) is

that spe
i�ed as T

1

, and the triangulation of the

lower 
up is that spe
i�ed as T

2

[4℄.

Boris Bekster [2℄ disproved Guibas' 
onje
ture

by showing a 
ounterexample, a 
onvex hexagon

with two triangulations. Marlin and Toussaint [3℄


onsidered the 
omputational problem of de
iding

whether a triple (P; T

1

; T

2

) admits a realization in

R

3

. They redu
ed the problem to a linear program-

ming problem with O(n

2

) inequality 
onstraints

and n variables. The variables are z-
oordinates of

lifted verti
es of P and the 
onstraints 
orrepond

to vertex-fa
e relations: the verti
es must be be-

low/above the planes passing through fa
es of the

Email address: besp�utdallas.edu (Sergey Bereg).

URL: http://utdallas.edu/~sxb027100 (Sergey

Bereg).

upper/lower 
up of P

0

. The number of 
onstraints


an be dropped to 2n�6 = jT

1

j+ jT

2

j by 
onsider-

ing dihedral angles 
orresponding to diagonals of

the triangulations [7℄.

Guibas 
onje
ture is related to Steinitz's theo-

rem [5℄.

Steinitz's Theorem: A graph G is isomorphi


to the edge graph of a 
onvex 3-polytope if and

only if G is 3-
onne
ted and planar.

By Steinitz's theorem the graph (P; T

1

[T

2

) is the

edge graph of a 
onvex 3-polytope [3℄. A

ording

to Barnette's theorem [1℄, every 3-polytope with a

Hamiltonian 
ir
uit has realization su
h that the

Hamiltonian 
ir
uit is a shadow boundary. This

implies that Guibas' 
onje
ture is true up to a 
om-

binatorial deformation [2℄. Formally this 
an be

stated as follows.

Theorem 1 For any two distin
t triangulations

T

1

and T

2

of a 
onvex polygon P

2

in R

2

with n

verti
es, there is a 
onvex polytope P

3

in R

3

with n

verti
es su
h that (i) thexy-shadow S ofP

3


ontains

all its verti
es, and (ii) there is a isomorphism � :

P

2

! S that maps the edges of T

1

(resp. T

2

) to the

edges of the upper hull of P

3

(resp. the lower hull).

Barnette's proof deals with general fa
es (not

just triangles) due to its generality. In this paper

we give a di�erent proof of Theorem 1 that uses

only triangular fa
es of polytopes whi
h 
an be

turned into a more robust algorithm for �nding a


ombinatorial realization of (P; T

1

; T

3

) in R

3

.

Realization questions have been studied in 
om-

20th EWCG Seville, Spain (2004)
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puter graphi
s and s
ene analysis as well. Sugihara

[6℄ established ne
essary and suÆ
ient 
onditions

whether a line drawing in the plane 
an be realized

in R

3

by lifting.

We 
all a triple (P; T

1

; T

2

) a 
on�guration. We


all a map � satisfying the 
onditions of Theorem

1 a realization.

2. Edge 
ontra
tion

(a)

(b)

p1

p2

p3

p1

p2

p3

Fig. 1. (a) Edge 
ontra
tion of a triangulation. (b) Edge


ontra
tion of two triangulations. The diagonals of one tri-

angulation are solid and the diagonals of the other trian-

gulation are dashed.

As in Barnette's proof we use the operation of

edge removal. The di�eren
e is that we will not

apply it for diagonals of P . This prevents the ap-

pearen
e of fa
es with more than three verti
es.

The edge 
ontra
tion in a 
on�guration is de�ned

by idetifying the edge enpoints. If applied to one

triangulation of P , it produ
es a triangulation, see

Fig. 1 (a) for example where the edge p

1

p

2

is 
on-

tra
ted. When applied for two triangulations, we

want the redu
ed triangulations to be distin
t. An

edge e of a 
on�guration (P; T

1

; T

2

) is 
ontra
tible

if the new triangulations T

0

1

and T

00

2

are distin
t.

In general, not all edges are 
ontra
tible. For ex-

ample, the edge p

1

p

2

in the Fig. 2 (a) is not 
on-

tra
tible sin
e two edges p

1

p

6

and p

2

p

6

from di�er-

ent triangulations 
oin
ide after the 
ontra
tion of

p

1

p

2

.

p1

p2

p3

p4

p5

p6

p7

p1

p2

p3

p4

p1 = p4

p2

p3

(a)

(b)

Fig. 2. (a) The edge (p

1

; p

2

) is not 
ontra
tible. (b) The

edge 
ontra
tion for n = 4.

Lemma 2 Let C be a 
on�guration with n � 4

verti
es. There is a 
ontra
tible edge of C among

the edges of the 
onvex polygon.

PROOF. If n = 4 then every edge of the 
onvex

polygon is 
ontra
tible, see Fig. 2 (b). We prove

the lemma for n � 5. Suppose to the 
ontrary that

there is a 
on�guration (P; T

1

; T

2

) su
h that all

edges of P are not 
ontra
tible. Let p

1

; : : : ; p

n

be
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the verti
es of P in 
lo
kwise order. The edge p

1

p

2

is not 
ontra
tible. Then there is a vertex p

k

; 4 �

k � n�1 su
h that p

1

p

k

is an edge of one triangu-

lation, say T

1

, and p

2

p

k

is an edge of T

2

, see Fig. 3

(a).

Consider an edge p

i

p

i+1

; 2 � i � k � 1. Sin
e

p

i

p

i+1

is not 
ontra
tible, there is a vertex p


(i)

su
h that p

i

p


(i)

is a diagonal of T

j

; j = 1; 2 and

p

i+1

p


(i)

is a diagonal of T

3�j

, see Fig. 3 (a). We


all p


(i)

a witness sin
e it indi
ates that p

i

p

i+1

is

not 
ontra
tible. At least one vertex of fp

i

; p

i+1

g,

say p

l

, is di�erent from p

2

and p

k

. Then the edge

p

l

p


(i)

does not 
ross one of the edges p

1

p

k

or p

2

p

k

.

Therefore 
(i) is an index in the range 1; : : : ; k.

p1

p2

pk

P

pi

pi+1

pc(i)

pi

pi+1
pi+2

pc(i+1) pc(i)

p1 pk

(a)

(b)

e1

e2

Fig. 3. Lemma 2.

We 
all p


(i)

a left witness if 
(i) < i. We 
all p


(i)

a right witness if 
(i) > i+1. Ea
h witness is either

left or right sin
e 
(i) 6= i; i + 1. Note that p


(2)

is

a right witness and p


(k�1)

is a left witness. Thus

there is an index i; 2 � i � k � 2 su
h that p


(i)

is

the right index and p


(i+1)

is the left index, see Fig.

3 (b). Then p

i

p


(i)

, a diagonal of a triangulationT

j

,

interse
ts both diagonals e

1

= (p

i+1

; p


(i+1)

) and

e

2

= (p

i+2

; p


(i+1)

). Either e

1

or e

2

is a diagonal of

T

j

. Contradi
tion.

3. Edge 
reation

We de�ne an operation of edge 
reation as the

reverse operation of the edge 
ontra
tion. The fol-

lowing lemma 
hra
terizes the 
hange of the 
on-

�guration when an edge is 
reated. We denote the

sequen
e of indi
es from i to j in 
lo
kwise order

by fi; i+ 1; : : : ; jg.

Lemma 3 (Edge 
reation) Let C = (P; T

1

; T

2

)

be a 
on�guration with n � 3 verti
es where P =

fp

1

; : : : ; p

n

g. Suppose that an edge e = (q

1

; q

2

)

is 
reated in pla
e of a vertex p

i

2 P . Let C

0

=

(P

0

; T

0

1

; T

0

2

) be the 
on�guration obtained by repla
-

ing a vertex p

i

by an edge e = (q

1

; q

2

) in 
lo
kwise

order. Then there are two edges (p

i

; p

j

) 2 T

1

and

(p

i

; p

k

) 2 T

2

su
h that

{ an edge (p

l

; p

i

) 2 T

1

; l 2 fi + 1; i + 2; : : : ; jg is

repla
ed by the edge (p

l

; q

1

) 2 T

0

1

, and

{ an edge (p

l

; p

i

) 2 T

1

; l 2 fj; j + 1; : : : ; i � 1g is

repla
ed by the edge (p

l

; q

2

) 2 T

0

1

, and

{ an edge (p

l

; p

i

) 2 T

2

; l 2 fi+ 1; i+ 2; : : : ; p

k

g is

repla
ed by the edge (p

l

; q

1

) 2 T

0

2

, and

{ an edge (p

l

; p

i

) 2 T

2

; l 2 fk; k + 1; : : : ; i � 1g is

repla
ed by the edge (p

l

; q

2

) 2 T

0

2

.

We show that an edge 
an be always 
reated.

Theorem 4 Let C = (P; T

1

; T

2

) be a 
on�guration

with n � 3 verti
es and let � : P ! R

3

be its re-

alization in R

3

. Let C

0

= (P

0

; T

0

1

; T

0

2

) be the 
on-

�guration obtained by an edge 
reation. There is a

realization of C

0

if there is a realization of C.

Theorem 1 follows from Theorem 4.
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Planar embeddability of the vertices of a graph

using a fixed point set is NP-hard 1

Sergio Cabello
Institute of Information and Computing Sciences

Utrecht University
The Netherlands

Abstract

Let G = (V, E) be a graph with n vertices and let P be a set of n points in the plane. We show that deciding
whether there is a planar straight-line embedding of G such that the vertices V are embedded onto the points P

is NP-complete, even when G is 2-connected and 2-outerplanar. This settles an open problem posed in [2,4,14].

1. Introduction

A geometric graph H is a graph G(H) together
with an injective mapping of its vertices into the
plane. An edge of the graph is drawn as a straight-
line segment joining its vertices. We use V (H) for
the set of points where the vertices of G(H) are
mapped to, and we do not make a distinction be-
tween the edges of G(H) and H . A planar geomet-
ric graph is a geometric graph such that its edges
intersect only at common vertices. In this case,
we say that H is a geometric planar embedding of
G(H). See [15] for a survey on geometric graphs.

Let P be a set of n points in the plane, and let G

be a graph with n vertices. What is the complexity
of deciding if there is a straight-line planar embed-
ding of G such that the vertices of G are mapped
onto P? This question has been posed as open
problem in [2,4,14], and here we show that this de-
cision problem is NP-complete. Let us rephrase the
result in terms of geometric graphs.
Theorem 1 Let P be a set of n points, and let G

be a graph on n vertices. Deciding if there exists

a geometric planar embedding H of G such that

V (H) = P is an NP-complete problem.

The reduction is from 3-partition, a strongly NP-
hard problem to be described below, and it con-
structs a 2-connected graph G. The main ideas of

Email address: sergio@cs.uu.nl (Sergio Cabello).
1 Partially supported by the Cornelis Lely Stichting. A full
version is available as [5].

the proof are given in Section 2, and we use that
the maximal 3-connected blocks of a 2-connected
planar graph can be embedded in different faces. In
a 3-connected planar graph, all planar embeddings
are topologically equivalent due to Whitney’s the-
orem [10, Chapter 6]. Therefore, it does not seem
possible to extend our technique to show the hard-
ness for 3-connected planar graphs.

Related work A few variations of the problem of
embedding a planar graph into a fixed point set
have been considered. The problem of characteriz-
ing what class of graphs can be embedded into any
point set in general position (no three points be-
ing collinear) was posed in [12]. They showed that
the answer is the class of outerplanar graphs, that
is, graphs that admit a straight-line planar embed-
ding with all vertices in the outerface. This result
was rediscovered in [6], and efficient algorithms for
constructing such an embedding for a given graph
and a given point set are described in [2]. The cur-
rently best algorithm runs in O(n log3 n) time, al-
though the best known lower bound is Ω(n log n).

A tree is a special case of outerplanar graph. In
this case, we also can choose to which point the
root should be mapped. See [3,13,16] for the evo-
lution on this problem, also from the algorithmi-
cal point of view. For this setting, there are algo-
rithms running in O(n log n) time, which is worst
case optimal. Bipartite embeddings of trees were
considered in [1].
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Fig. 1. Graph G for the NP-hardness reduction.

If we allow each edge to be represented by a
polygonal path with at most two bends, then it
is always possible to get a planar embedding of a
planar graph that maps the vertices to a fixed point
set [14]. If a bijection between the vertices and the
point set is fixed, then we need O(n2) bends in total
to get a planar embedding of the graph, which is
also asymptotically tight in the worst case [17].

We finish by mentioning a related problem,
which was the initial motivation for this research.
A universal set for graphs with n vertices is a
set of points Sn such that any planar graph with
n vertices has a straight-line planar embedding
whose vertices are a subset of Sn. Asymptotically,
the smallest universal set is known to have size at
least 1.098n [7], and it is bounded by O(n2) [8,18].
Characterizing the asymptotic size of the smallest
universal set is an interesting open problem [9,
Problem 45].

2. Planar embeddability is NP-complete

It is clear that the problem belongs to NP: a ge-
ometric graph H with V (H) = P and G(H) ≡ G

can be described by the bijection between V (G)
and P , and for a given bijection we can test in
polynomial time whether it actually is a planar ge-
ometric graph; therefore, we can take as certificate
the bijection between V (G) and P .

For showing the NP-hardness, the reduction is
from 3-partition.

Problem: 3-partition
Input: A natural number B, and 3n natural num-
bers a1, . . . , a3n with B

4
< ai < B

2
.

Output: n disjoint sets S1, . . . , Sn such that for
all Sj we have Sj ⊂ {a1, . . . , a3n}, |Sj | = 3, and∑

a∈Sj
a = B.

We will use that 3-partition is a strongly NP-hard
problem, that is, it is NP-hard even if B is bounded
by a polynomial in n [11]. Observe that because
B
4

< ai < B
2
, it does not make sense to have sets
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Fig. 2. Point set P for the NP-hardness reduction. K = (B + 2)n.

Sj with fewer or more than 3 elements. That is, it
is equivalent to ask for subdividing all the numbers
into disjoint sets that sum to B. Of course, we
can assume that

∑
3n

i=1
ai = Bn, as otherwise it is

impossible that a solution exists.
In the following, we only give the reduction,

and do not discuss how the solution to the con-
structed problem relates to the original problem.
Details can be found in the full version [5]. Given
a 3-partition instance, we construct the following
graph G (see Figure 1):
– Start with a 4-cycle with vertices v0, . . . , v3, and

edges (vi−1, vi mod 4). The vertices v0 and v2 will
play a special role.

– For each ai in the input, make a path Bi consist-
ing of ai vertices, and put an edge between each
of those vertices and the vertices v0, v2.

– Construct n−1 triangles T1, . . . , Tn−1. For each
triangle Ti, put edges between each of its vertices
and v2, and edges between two of its vertices and
v0. We call each of these structures a separator
(the reason for this will become clear later).

– Make a path C of (B + 3)n vertices, and put
edges between each of the vertices in C and v0.
Furthermore, put an edge between one end of
the path and v1, and another edge between the
other end and v3.
It is easy to see that G is planar; in fact, we are

giving a planar embedding of it in Figure 1. The
idea is to design a point set P such that G \ (B1 ∪
· · · ∪ B3n) can be embedded onto P in essentially
one way. Furthermore, the embedding of G\ (B1 ∪

· · ·∪B3n) will decompose the rest of the points into
n groups, each of B vertices and lying in a different
face. The embedding of the remaining vertices B1∪
· · · ∪ B3n will be possible in a planar way if and
only if the paths Bi can be decomposed into groups
of exactly B vertices, which is equivalent to the
original 3-partition instance. The following point
set P does the work (see Figure 2):
– Let K := (B + 2)n.
– Place (B + 3)n points at the coordinates

(0,−n), (0,−(n − 1)), . . . , (0,−1) and at the
coordinates (0, 1), (0, 2), . . . , (0, K).

– Place points p0 := (1, 0), p1 := (K, K), p2 :=
(2K, 0), p3 := (K,−n). In the figure, these
points are shown as boxes and are labeled.

– For each i ∈ {0, . . . , n − 1}, place the group of
B points (K,−2 + (B + 2)i + 1), (K,−2 + (B +
2)i + 2), . . . , (K,−2 + (B + 2)i + B).

– For each i ∈ {1, . . . , n − 1}, place the group of
three points (K, (B + 2)i − 3), (K, (B + 2)i −
2), . . . , (K +1, (B +2)i− 3). In the figure, these
points are shown as empty circles.

3. Concluding remarks

The point set P that we have constructed has
many collinear points. However, in the proof we do
not use this fact, and so it is easy to modify the
reduction in such a way that no three points of P

are collinear. Probably, the easiest way for keeping
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integer coordinates is replacing each of the points
lying in a vertical line by points lying in a parabola,
and adjusting the value K accordingly. Therefore,
the result remains valid even if P is in general po-
sition, meaning that no 3 points are collinear.

In the proof, the graph G that we constructed
is 2-outerplanar, as shown in Figure 1. k-
outerplanarity is a generalization of outerplanarity
that is defined inductively. A planar embedding of
a graph is k-outerplanar if removing the vertices
of the outer face produces a (k − 1)-outerplanar
embedding, where 1-outerplanar stands for an
outerplanar embedding. A graph is k-outerplanar
if it admits a k-outerplanar embedding. For out-
erplanar graphs, the embedding problem is poly-
nomially solvable [2], but for 2-outerplanar we
showed that it is NP-complete. Therefore, regard-
ing outerplanarity, our result is tight.

The graph G that we constructed in the proof
is 2-connected; removing the vertices v1, v3 discon-
nects the graph. As mentioned in the introduc-
tion, we use this fact in the proof because in a 2-
connected graph the maximal 3-connected blocks
can flip from one face to another one. Therefore, it
would be interesting to find out the complexity of
the problem when the graph G is 3-connected, and
more generally, the complexity when the topology
of the embedding is specified beforehand.
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New Bound for Incremental Constructing Arrangements of Curves

Manuel Abellanas a,1, Aymée Calatayud ∗,b,1, Jesús Garćıa-López c,2,
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Abstract

Let A(Γ) be the arrangement induced by a set Γ of n unbounded Jordan curves in the plane that intersect each
other in at most two points. The upper bound for constructing those arrangements by an incremental method is,
up to now, O(nλ4(n)). In this paper we improve this bound to O(nλ3(n)).

Key words: arrangements of curves, incremental algorithms, zones

1. Introduction

The arrangement of a set Γ of n unbounded Jor-
dan curves, denoted by A(Γ), is the plane subdivi-
sion induced by the curves in Γ. Let γ0 be a curve
not belonging to Γ. The zone of γ0 in A(Γ), denoted
by z(γ0), is the set of faces of A(Γ) intersected by
γ0.

Up to now, the best known upper bound for the
zone of γ0 in A(Γ) is O(λ4(n)) = O(n 2α(n)), ob-
tained from its relation with the complexity of a
face in an arrangement of Jordan arcs: by deleting
small pieces in the curves of Γ just containing the
intersection points with γ0, all faces of z(γ0) be-
come a part of the same face of an arrangement of
Jordan arcs. The total amount of new elements in
the arrangement is a constant factor of the size of
the arrangement ([3], pg. 23). By using an incre-
mental algorithm, in which curves are inserted in
the arrangement one by one, the construction of
A(Γ) takes O(nλ4(n)) time. In this paper we im-
prove this bound to O(nλ3(n)) if the curves inter-
sect each other in at most two points (remember
that λ4(n) = O(n2α(n)) and λ3(n) = O(nα(n)) ).

∗ Corresponding author
Email addresses: mabellanas@fi.upm.es (Manuel

Abellanas), acalatayud@fi.upm.es (Aymée Calatayud),
jglopez@eui.upm.es (Jesús Garćıa-López).
1 Partially supported by MCYT TIC2003-08933-C02-01
2 Partially supported by MCYT TIC2002-01541

The algorithm that computes A(Γ) in O(nλ3(n))
time is based in three lemmas.

The first lemma considers the frontier of a face
in the external zone composed by the edges of the
face not belonging to γ0 and says that if p and q

are the extreme points of the frontier of a face in
the external zone, then the segment pq in γ0 is an
edge of the arrangement. This property allows to
travel through the frontiers of the successive faces
of the external zone thus obtaining the intersection
points of γ0 with the curves in the arrangement just
in the order they appear in γ0. Therefore, the time
complexity for the insertion of γ0 depends on the
complexity of the external zone which is O(λ3(n)).

The second lemma considers the case in which
the infinite extremes of all the curves that intersect
γ0 in two points are in the same side of γ0, and
proves that the complexity of the zone in this side
of γ0 is O(λ3(n)). We call external zone to this part
of the zone.

Last lemma shows that it is always possible to
list the curves of Γ in order γ1, γ2, . . . , γn, such
that each γi with 2 ≤ i ≤ n verifies that the infinite
extremes of every curve in the set {γ1, γ2, . . . , γi−1}
that intersects γi in zero or two points are in the
same side of γi.

20th EWCG Seville, Spain (2004)
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2. Notation and definitions

Every curve in Γ intersecting γ0 is decomposed
by γ0 in two or three connected pieces. The un-
bounded pieces will be called branches. Branches
will be oriented, being the starting point the in-
tersection point with γ0. This point will be called
the base of the branch. Base of a branch r will be
noted by r. Every curve in Γ intersecting γ0 in two
points give rise to two branches.

If all branches of the curves intersecting γ0 in two
points are in the same side of γ0 we will say that
γ0 is a pseudo-convex curve in the arrangement
and the external zone of γ0 will be the half-zone
containing all these branches. From now on γ0 will
be pseudo-convex in the arrangement A(Γ) and we
will only consider the external zone of γ0, noted by
z+(γ0).

We will call external frontier every connected
component obtained by deleting edges contained
in γ0 in the frontier of a face of the external zone.
As a consequence, extreme points of the external
frontiers belong to γ0.

Without lost of generality, we will suppose that
every face of the external zone, but the first and
the last, are bounded. If this where not the case,
one can add a curve to Γ that intersects only the
unbounded faces.

3. The external frontier

Lemma 1 The extreme points of an external fron-
tier are the extreme points of an edge contained in
γ0 in the arrangement A(Γ ∪ {γ0}).

PROOF. Let F∗ be the external frontier of a face
in the external zone. Let p and q be the extreme
points of F∗. If pq, the arc of γ0 with extreme points
p and q, were not an edge in the mentioned ar-
rangement, pq would contain at least one intersec-
tion point c in its interior. As pq is contained in γ0,
then necessarily c is the base of a branch. Because
branches are not bounded, c and F∗ intersect each
other. This is a contradiction with the fact that F∗

is an external frontier of a face.

4. External zone complexity

In this section one proves the O(λ3(n))
complexity of the external zone of γ0 in A(Γ). It is
proved by bounding the number of its edges.

The idea is to visit the external frontiers in the
order they appear along γ0 and write down, for
every edge encountered, the branch or supporting
curve. Let U = 〈u1, u2, . . ., um〉 be the obtained
list of symbols. One realizes that U is a Davenport-
Schinzel sequence.

(n, s) Davenport-Schinzel sequences have to
satisfy the following properties (see [4], pg. 1):

(i) To contain at most n different symbols.
(ii) ui 6= ui+1 for every 1 ≤ i < m.
(iii) there cannot be s + 2 indices 1 ≤ i1 < i2 < . . .

< is+2 ≤ m such that ui1 = ui3 = ui5 . . . = a,
ui2 = ui4 = ui6 . . . = b and a 6= b.
In order to have condition (ii) satisfied one uses

different symbols for each side of the same branch.
In this way, n curves give rise to 4n symbols at
most (two for every of the 2n possible branches).

Proposition 2 U is a (4n, 3) Davenport-Schinzel
sequence.

PROOF.
(i) 4n symbols corresponds to the, at most, 2n

branches.
(ii) In the same face there are not two consecutive

edges from the same branch (nor curve, if it does
not intersect γ0). This is due to the fact that
curves intersect in a transversal way. When pass-
ing from one face to the consecutive one, there
are neither two equal consecutive symbols be-
cause they corresponds to the two sides of the
same branch, marked with different symbols.

(iii) Third condition is due to the fact that two
branches intersect in at most two points. One
can prove that, under this condition, the maxi-
mum length of an alternating sub-chain of two
symbols is 4.

Lemma 3 The external zone of γ0 has O(λ3(n))
complexity.

PROOF. By proposition 2, it suffices to note that
λ3(4n) = O(λ3(n)).
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5. Insertion order

In this section it’s seen how to sort the set of
curves Γ in such a way that, if they are inserted
one by one in this order in the arrangement, curve
γi is pseudo-convex with respect to the previous γj

inserted curves, 2 ≤ j ≤ i − 1.
Without lost of generality one can suppose that

the external zone of every curve is always to its left.
The idea for sorting is the following: a curve γ

is fixed while the others are classified with respect
to γ into two sets that will be recursively sorted:
the set of curves that must be inserted before γ in
the arrangement and the set of curves that have
to be inserted after γ. We insert before γ all the
curves that give rise to unbounded branches to
the left of γ (γ must be oriented before doing this
classification). Let |δ ∩ γ| denote the number of
intersection points between δ and γ.

Procedure for sorting the set Γ;

(1) If Γ = ∅ nothing to do. Return ∅.
(2) Select at random a curve γ ∈ Γ.
(3) If it is still not oriented, select an orientation

for γ.
(4) Classify the rest of curves into two sets C1(γ)

and C2(γ) containing the curves of Γ - {γ} that
have to be inserted in the arrangement before
and after γ respectively:
– Curve δ is included in C1(γ) whenever one of

the three following conditions holds:
|δ ∩ γ| = 0 and δ is to the left of γ.
|δ ∩ γ| = 1.
|δ ∩ γ| = 2 and the branches of δ are to the
left of γ.

– Curve δ is included in C2(γ) if it has not been
included in C1(γ), that is:
|δ ∩ γ| = 0 and δ is to the right of γ or
|δ ∩ γ| = 2 and the branches of δ are to the
right of γ.

(5) Orient the curves in C2(γ) depending on the
orientation of γ in such a way that the infinite
extremes of γ lay to the left of each curve.

(6) Recursively repeat the procedure for C1(γ)
and C2(γ), thus obtaining the sorted lists L1(γ)
and L2(γ) respectively.

(7) The final sorting in Γ is L1(γ) + [γ] + L2(γ),
being “+” the concatenation of lists operation.

Definition 4 Curve γ is called reference curve of
the process. Sets C1(γ) and C2(γ) determined by γ

are called associated sets.

One can proof that the orientation that a refer-
ence curve γ determine in its associated set C2(γ)
do not prevent a future sorting of this set. No care
is necessary with curves in C1(γ) because they
appear in the arrangement before γ.

Observation: Every curve is, at some point dur-
ing the execution of the procedure, a reference
curve having the corresponding associated sets
(may be empty some of them).

In order to facilitate the proof of the pseudo-
convexity of every curve with respect to the pre-
ceding ones, one consider a surrounding pseudo-
circumference containing in its interior all in-
tersection points of the arrangement. This extra
curve represents the infinity and intersects every
curve in two points.

Definition 5 The intersection points between a
curve γ ∈ Γ and the pseudo-circumference are
called the extreme points of γ. They are considered
points at infinity.

Definition 6 Every curve γ divides the pseudo-
circumference in two pieces called vaults. Once the
curve γ is oriented, the corresponding vaults be-
comes left vault and right vault of γ. The left vault
is denoted by γ̂.

Vault concept allow us to define pseudo-
convexity in the following way:

Definition 7 γ is pseudo-convex with respect to a
set of curves if all of them have at least one inter-
section point with γ̂.

Proposition 8 A curve γ and its associated sets
verify the following properties:

(i) γ is pseudo-convex with respect to curves in
C1(γ).

(ii) Curves in C2(γ) are pseudo-convex with respect
to γ.

(iii) Curves in C2(γ) are pseudo-convex with respect
to those in C1(γ).
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PROOF. Items (i) and (ii) are verified by con-
struction. For item (iii), let be γ1 ∈ C1(γ). By
construction, γ1 have at least an intersection
point with γ̂. Let be γ2 ∈ C2(γ). By construction,
γ̂ ⊂ γ̂2. That means that γ1 have at least an in-
tersection point with γ̂2. Therefore, by definition
7, γ2 is pseudo-convex with respect to γ1.

Finally, we can proof the third lemma:

Lemma 9 If γ1, γ2, . . ., γn is the sorted set of
curves given by the sorting procedure, then γi is
pseudo-convex with respect to γ1, γ2, . . ., γi−1 for
every 2 ≤ i ≤ n.

PROOF.
Let be 2 ≤ i ≤ n and let γj be a curve with

j < i. By construction there is a reference curve
γk, j ≤ k ≤ i, separating γi and γj , thus having
one of the three following situations:

(i) γk = γi and γj ∈ C1(γk).

(ii) γk = γj and γi ∈ C2(γk).

(iii) γj ∈ C1(γk) and γi ∈ C2(γk).

Taking into account proposition 8 one verifies in
all three cases that γi is pseudo-convex with re-
spect to γj .

As a consequence of the previous lemmas, one
verifies the main theorem of the paper:

Theorem 10 The arrangement A(Γ) of un-
bounded Jordan curves that intersect each other in
at most two points can be computed incrementally
in O(nλ3(n)) time.

6. Applications

This result can be applied in geometric location
problems. In particular in covering problems with
geometric figures as wedges, circular annulus or
strips.

In these problems one wants to locate the best
position for a geometric figure in the plane in order
to cover as much points of a given set of points as
possible. In the solution of these problems in the
dual space, arrangements as the considered in this
paper have to be managed. (Details can be found
in [1]).

7. Open problems

An open problem is to determine the complexity
of the internal zone of this kind of arrangements.
Internal zone is the half-zone which is not the ex-
ternal zone. It is an open problem for s ≥ 1 for
specific families of curves. For arbitrary curves the
known complexity is O(λs+2(n)) ([4], pág. 125).

Note that for s = 1 one have a known problem
that is open from more than ten years ( as men-
tioned M. Sharir in the Dagstuhl Workshop [2]):

Problem 11 Given a circle and an arrangement
of pseudo-lines determine the complexity of the
half-zone of the circle contained in its interior.
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Abstract

We consider subdivisions of convex bodies G in two subsets E and G\E. We obtain several inequalities comparing
the relative volume 1) with the minimum relative diameter and 2) with the maximum relative diameter. In the
second case we obtain the best upper estimate only for subdivisions determined by straight lines in planar sets.
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1. Introduction

Relative geometric inequalities are inequalities
in which we compare relative geometric measures,
i.e., functionals that give geometric information of
the subsets (E and G\E) determined by the sub-
division of an original set G.

The first relative geometric inequalities that ap-
peared in the literature were the so called relative
isoperimetric inequalities. These inequalities com-
pare the relative area with the relative perimeter:

If G is an open convex set in the Euclidean plane
R

2 and E is a subset of G with non-empty interior
and rectificable boundary such that both E and its
complement G\E are connected, we define:

- the relative boundary of E as ∂E ∩ G.
- the relative perimeter of E, P (E,G), as the

length of the relative boundary, and
- the relative area of E as:

A(E,G) = min{A(E), A(G\E)}.

With the above assumptions we say that a rela-
tive isoperimetric inequality is an inequality of the
type:

A(E,G)

P (E,G)α
≤ C,

where C and α are positive numbers.

Email addresses: aacs@alu.ua.es (Cerdán, A.),

cm4@alu.ua.es (Miori, C.), Salvador.Segura@ua.es
(Segura Gomis, S.).

Many results have been obtained about relative
isoperimetric inequalities (see for instance [2],[7]).

There are also results comparing the relative
perimeter with other geometric magnitudes diffe-
rent from the relative area. For results comparing
the relative perimeter with the relative diameter
and the relative inradius see [4].

In this paper we want to study relative isodia-

metric inequalities, in which we compare the rela-
tive volume with the relative diameters of a sub-
set of a convex body. First we need to define these
notions:

Let G ⊂ R
n be a convex body and E ⊂ G a

subset of G such that E as well as G \ E are con-
nected and have non–empty interior. Let D(.) be
the diameter functional.
(i) the relative volume is the minimum between the
volume of E and the volume of its complement,

V (E,G) = min{V (E), V (G \ E)},

(ii) the minimum relative diameter is the minimum
between the diameter of E and the diameter of its
complement,

dm(E,G) = min{D(E),D(G \ E)},

and
(iii) the maximum relative diameter is the maxi-
mum between the diameter of E and the diameter
of its complement,

dM (E,G) = max{D(E),D(G \ E)}.

20th EWCG Seville, Spain (2004)
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Relative isodiametric inequalities are those that
give either an upper or a lower estimate of the ra-
tios:

V (E,G)

dm(E,G)n
or

V (E,G)

dM (E,G)n
.

We compare the relative volume with the n-
power of the relative diameters (n is the dimension
of the ambient space) because as this ratio is in-
variant under dilatations, we obtain geometric in-
formation about the subdivision: the estimates do
not depend on the size of the bodies but only on
their shapes.

We are interested not only in obtaining relative
isodiametric inequalities, but also in determining
those sets (called maximizers or minimizers) for
which the equality sign is attained.

2. Relative isodiametric inequalities
concerning the relative area and the
minimum relative diameter of a subset of a
convex body

The aim of this section is to maximize and mini-
mize the ratio between the relative area and the n-
power of the minimum relative diameter of a sub-
set E of G.

We begin minimizing the given ratio, and in this
case we have to consider two different cases. First,
we are going to study general subdivisions of G and
later we are going to consider the special case in
which the subdivision is obtained by a hyperplane
cut.
Theorem 1 Let G be an open convex body and E
a subset of G such that E and G \E are connected.

Then,
V (E,G)

dm(E,G)n
≥ 0.

PROOF. For any convex body G we can consider
a sequence of hypersurfaces {Si}

∞

i=1
as close as we

want to the boundary of G, such that both ends
of the diameter of G belong to Si ∀i ∈ N, and the
regions Ei bounded by Si have volume decreasing
to zero. Then, we conclude that:

lim
i→∞

V (Ei, G)

dm(Ei, G)n
=

0

D(G)n
= 0.

�

Theorem 2 Let G be an open convex body and E
a subset of G obtained by a hyperplane cut. Then,

V (E,G)

dm(E,G)n
≥ 0. (1)

PROOF. We can distinguish two cases:
Case 1: G is strictly convex:

As G is a strictly convex body, we can choose a
hyperplane Π so that if E is a subset of G obtained
by the intersection with the half-space determined
by Π, in all the points of ∂E \(G∩∂E) there exists
a tangent hyperplane.

Let us consider a straight line t orthogonal to
the hyperplane Π; we can apply the Schwarz sym-
metrization with respect to t to the subset E and
we obtain a new set E′ of revolution which has
the same volume than E and such that the image
of the relative boundary of E under Schwarz sym-
metrization is a (n-1)-dimensional ball with radius
r. Moreover, this symmetrization does not increase
the diameter, so D(E) ≥ D(E′).

The body of revolution E′ is contained in a n-
dimensional cone C with vertex V , which obviously
has greater volume than E′.

.......................... ✲ ........................
✲✛

r
Schwarz

V

2α

Π

symmetrization

Finally, we consider a sequence of parallel hy-
perplanes to Π so that V (E′) decreases to zero and
the half angle at the vertex V goes to π/2. Then,

lim
α→π/2

V (E,G)

dm(E,G)n
≤ lim

α→π/2

V (E′)

(2r)n
≤

lim
α→

π

2

π
(n−1)

2 cotan α

n2nΓ(n−1

2
+ 1)

= 0.

Consequently, the inequality (1) holds.

Case 2: G is not strictly convex:
If G is not strictly convex there exists a straight

line segment t in the boundary of G. We consider
a sequence of hyperplanes Πi parallel to t so that
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the volume of the subsets Ei determined by the
intersections with Πi decreases to zero. Then,

lim
i→∞

V (Ei, G)

dm(Ei, G)n
≤

0

(length(t))n
= 0.

�

The following proposition provides an upper
bound for the ratio between the relative area and
the n-power of the minimum relative diameter.

Theorem 3 Let G be an open convex body and E
a subset of G such that E and G \E are connected.

Then,

V (E,G)

dm(E,G)n
≤

πn/2

Γ(1 + n
2
)2n

PROOF. Let B(r)n be a ball with radius r such
that:

V (B(r)n) ≤
V (G)

2
⇐⇒ r ≤

(

V (G)

2ωn

)1/n

then, as a consequence of the isodiametric inequali-
ty (see [1]):

V (E,G)

dm(E,G)n
≤

πn/2

Γ(1 + n
2
)2n

.

�

3. Relative isodiametric inequalities
concerning the relative area and the
maximum relative diameter of a subset of a
convex body

The aim of this section is to maximize and mini-
mize the ratio between the relative area and the
n-power of the maximum relative diameter of a
subset E of G.

Theorem 4 Let G be an open bounded convex set

in R
n and E a subset of G such that E and G \ E

are connected. Then,

V (E,G)

dM (E,G)n
≥ 0.

PROOF. Let G be an open convex body in the
Euclidean space. We can suppose without lost of
generality that 0 ∈ G. Let us consider the sequence
{Ei}

∞

i=2
where each Ei = 1

i G.

If we compute the ratio between the relative vo-
lume and the n-power of the maximum relative
diameter, the limit of this ratio is 0 when i →
∞. In fact, the relative volume decreases to 0 and
dM (Ei, G) = D(G\Ei) is the diameter of G for all
i:

lim
i→∞

V (Ei, G)

dM (Ei, G)n
=

0

D(G)n
= 0.

�

Theorem 5 Let G be an open convex body and E
a subset of G obtained by a hyperplane cut. Then,

V (E,G)

dM (E,G)n
≥ 0.

It is easy to prove this theorem using the same
argument that in the proof of theorem 2 (when G
is not strictly convex), considering t = D(G).

The problem of maximizing the ratio between
the relative area and the maximum relative diame-
ter is attached to the so called ”fencing problems”.
Such problems consider dividing a region into two
parts of equal volume (area) by a fence. We are go-
ing to use some results about fencing problems for
proving the following theorem (see [5], [6]).

Theorem 6 Let G be a planar bounded convex set

and E a subset of G obtained by a straight line cut,

then:
A(E,G)

dM (E,G)2
≤ 1.2869...

The equality is attained for the optimal body
described in the following figure (see [5]).

dM

PROOF. Let l be the straight line dividing G into
two regions E and G\E, and suppose that A(E) ≤
A(G \ E). Let us consider two different cases:

1) dM (E,G) = D(G \ E) and 2) dM (E,G) =
D(E).
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1) If dM (E,G) = D(G\E) and A(E) < A(G\E),
we translate l till another line l′ determining a new
division of G into two other regions E′ and G\E′ in
such a way that one of the two following situations
hold:

1.1) A(E′) = A(G\E′) and dM (E′, G) = D(G\
E′).

Then A(E′, G) = A(E′) > A(E) = A(E,G)
and dM (E′, G) < dM (E,G) and E′ determines a
fencing problem. Hence,

A(E,G)

dM (E,G)2
≤

A(E′)

dM (E′, G)2
≤ 1.2869...,

(For the last inequality see [5] and [6])

1.2) A(E′) < A(G \ E′) and dM (E′, G) =
D(E′) = D(G \ E′).

In this case we have A(E,G) = A(E) ≤ A(E′) =
A(E′, G) and dM (E,G) ≥ dM (E′, G), so:

A(E,G)

dM (E,G)2
≤

A(E′)

D(E′)2
, (2)

and also,

A(E,G)

dM (E,G)2
≤

A(G \ E′)

D(G \ E′)2
. (3)

Now we consider the intersection points P and
Q of l′ with ∂G.

Let E′′ be either E′ or G \E′ where the suppor-
ting lines at P and Q make internal angles whose
sum is smaller or equal than π. Let us consider the
symmetric set of E′′ with respect to the middle
point O of the segment PQ. Let this set be E′′′.
E′′∪E′′′ is a centrally symmetric convex set where
the area is 2A(E′′). It is easy to see that:

D(E′′′) = D(E′′) = dM (E′, G) =

= D(E′) = D(G \ E′).

Then, from inequalities (2) and (3),

A(E,G)

dM (E,G)2
≤

A(E′′)

D(E′′)2
≤ 1.2869...,

(For the last inequality see [5]).

2) Suppose that dM (E,G) = D(E). Then,

A(E,G)

dM (E,G)2
=

A(E)

D(E)2
,

and also,

A(E,G)

dM (E,G)2
≤

A(G \ E)

D(G \ E)2
.

Let E′ be either E or G\E, where the supporting
lines at P and Q realize internal angles whose sum
is smaller or equal than π. By a similar argument
to that used in the case 1.2 we conclude that

A(E,G)

dM (E,G)2
≤

A(E′′)

D(E′′)2
≤ 1.2869...

�
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Abstract

Three different concepts of depth in a point set are considered and compared: Convex depth, location depth and
Delaunay depth. As a notion of weight is naturally associated to each depth definition, we also present results
on minimum weight structures (like spanning trees, poligonizations and triangulations) with respect to the three
variations.

Key words: Tukey depth, halfspace depth, convex depth, Delaunay depth, minimum weight, layers.

1. Introduction

In bivariate data analysis, different ways of
partitioning data sets as well as peeling methods
(mainly for outlier rejection) have been proposed
by different authors according to several defini-
tions of depth. Every notion of depth of a point
with respect to a point set S gives rise to a parti-
tion of the set S into layers and also to a partition
of the whole plane into levels. The layers are the
subsets of points of S having the same depth. The
level of a point q with respect to S is the depth
of q in S ∪ {q}. The weight of a segment is the
absolute value of the difference of depth between
its vertices. There are also several ways to asso-
ciate weights to geometric structures defined by
the points of S and some set of edges (segments
with endpoints in S), as described in Section 4.

In [10](pg. 363) Okabe et al. mention the interest
in comparing Delaunay depth with respect to other
depths. In this paper we do a comparative study of
properties of layers and levels associated to finite
sets of points in the plane considering three dif-
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Ferran.Hurtado@upc.es (Ferran Hurtado).
1 Partially supported by DURSY 2001SGR00224 and
MCYT BFM2003-0368
2 Partially supported by MCYT TIC2003-08933-C02-01

ferent definitions of depth: convex depth [8], Tukey
depth also know as halfspace depth or location depth
[11] and Delaunay depth introduced by Green in
[7]. A thorough study is presented in [5].

After introducing basic definitions in Section 2,
we study and compare the complexity of layers and
levels in Section 3, and we give in Section 4 proper-
ties of minimum weight structures (spanning trees,
poligonizations and triangulations) related to the
three depths considered.

2. Preliminaries

Let S be a set of n points in the plane, CH(S)
the convex hull of S and p any point of S. Any
generic depth of p with respect to S is denoted by
dS(p).

The convex depth of p, is defined recursively as
follows: if p ∈ CH(S), dS(p) = 1, else dS(p) =
dS\CH(S)(p) + 1. For values of j ≤ ⌊n/2⌋ we say
that the location depth of p is dS(p) = j if and only
if there is a line through p leaving exactly j − 1
points on one side, but no line through p separates
a smaller subset. The Delaunay depth of p is defined
to be d + 1 when the graph theoretical distance
from p to CH(S) in the Delaunay triangulation
DT (S) of S is d. In all three cases we call depth of
S the depth of its deepest point.

20th EWCG Seville, Spain (2004)
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dS(p) (Depth) Layi(S) (Layer i) Levi(S) (Level i)

Convex if p ∈ CH(S), dS(p) = 1 else

dS(p) = dS\CH(S)(p) + 1 Layi(S) = CH(Si)

Location dS(p) = j, j ≤ ⌊|S|/2⌋ ⇔ Si = {x ∈ S/dS(x) = i}

depth some line through p leaves exactly Depth of a point

j − 1 points on one side, none leaves less relative to a set S Levi(S)=

Delaunay if p ∈ CH(S), dS(p) = 1 else Layi(S) =subgraph of d(p, S) = dS∪{p}(p) {x ∈ R
2/d(x, S) = i}

dS(p) = distance from p DT (S) induced by Si

to CH(S) +1, in DT (S) Si = {x ∈ S|dS(x) = i}

Table 1: Definitions

The i-th layer of S, Layi(S), is defined for
convex depth as well as for location depth by
Layi(S) = CH(Si), where Si = {x ∈ S | dS(x) =
i}, (Figures 1 and 2). For the Delaunay depth,
Layi(S) is the subgraph of DT (S) induced by Si,
(Figure 3).

Let p be any point in the plane. For the three
depths considered, the depth of p relative to the set
S is d(p, S) = dS∪{p}(p) and the i-th level for the
set S is defined by Levi(S) = {x ∈ R

2|d(x, S) = i}.
The concept of k-hull introduced by Cole, Sharir
and Yap in [6] corresponds to

⋃
j≥k Levj(S).

Table 1 shows all these definitions together.
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Fig. 1. Convex layers.
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Fig. 2. Location layers.
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Fig. 3. Delaunay layers.

3. Point set stratification

Given a set S of n points in the plane the convex
layers can be constructed with Chazelle’s optimal
O(n log n) algorithm [4]. Convex layers form a se-
quence of nested convex polygons defining a parti-
tion of the plane into regions, which coincide with
the levels, (Figure 1). Therefore layers and levels
have linear complexity in the convex depth case
and can be constructed in optimal O(n log n) time.

As for location depth, a worst case optimal al-
gorithm for computing all Levi(S), (where n/3 ≤
i ≤ n/2) in O(n2) time is obtained by using topo-
logical sweep in the dual arrangement of lines (see
[5], [9]). The boundaries of the levels, in this case,
form a sequence of nested convex polygons. Points
of Layi(S) are in convex position and belong to the
boundary of Levi(S), but this boundary can also
have other vertices not in S, (Figure 4). Some lay-
ers can be empty and different layers can cross each
other. While the complexity of levels may reach
O(n2), the size of the layers is O(n). The layers
in the location depth case can be computed using
the mentioned O(n2) sweep algorithm yet, to our
knowledge, it is an open problem to construct them
in less time or to prove a quadratic lower bound
for the problem.
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Fig. 4. Location levels.

Fig. 5. Delaunay levels.

For Delaunay depth, all the layers Layi(S), i ≤
n/3, can easily be found by visiting DT (S) in linear
time once constructed, which requires O(n log n)
time (Figure 3). Notice that one layer can have
more than one connected component. The maxi-
mum number of connected components is strictly
decreasing on the number of layers, (see [5]). This
maximum number varies between ⌊(n + 2)/3⌋ and
⌊n/2⌋, attained with suitable constructions having
⌊n/3⌋ and 2 layers, respectively.

Delaunay layers are not necessarily polygons,
however they form a structure based in nested cy-
cles of points of the same weight.

The weight of a point relative to a set S de-
pends on the Delaunay circles (circumcircles of De-
launay triangles) that contain the point, therefore
the arrangement of Delaunay circles contains all
the information about Delaunay levels, (Figure 5).
As it has size O(n2) and can be constructed in
O(n2 log n) time, it is possible to obtain the De-
launay levels within this time. Nevertheless, in the
following theorem we prove that in order to obtain
all the Levi(S) it is not necessary to construct the
whole arrangement of circles.
Lemma 1 Let S be a set of points in the plane. If
the Delaunay depth of a point p with respect to S is
j, there is a cycle of Layj−1(S) containing p in its
interior.

As a consequence, the number of levels for De-
launay depth is equal to the number of layers or to
the number of layers plus one.

Observation 2 Let C be a circle having exactly
two points u and v of S on its boundary and contain-
ing no points of S in its interior. Then any circle
crossing the two arcs determined by u and v in the
boundary of C contains some interior point from S.
Theorem 3 Let S be a set of points in the plane
being f its Delaunay depth . The Delaunay levels of
S are nested sets. The boundaries between Levj(S)
and Levj+1(S), for 2 ≤ j ≤ f , are curves com-
posed by arcs of the Delaunay circles determined
by two points u, v of Layj(S) and one point w of
Layj−1(S).

Theorem 3 proves that the overall size of the
Delaunay levels is O(n) and justifies the steps of
the following algorithm.
Algorithm 1 Delaunay levels of S.

1. Compute DT (S).
2. Compute the Delaunay depths for all points

in S.
3. Compute the boundaries of the levels as fol-

lows: Lev1(S) is the convex hull of S; for ev-
ery j ≥ 2, the Delaunay circles Cj, defined by
two points u, v of Layj(S) and one point w of
Layj−1(S), determine the boundary between
Levj(S) and Levj+1(S) which consists of the
inner boundary of the union of Delaunay cir-
cles Cj (Figure 6).

The running time of the algorithm is O(n log2 n):
DT (S) can be computed in O(n log n) time, Step 2
only takes O(n) time, and every boundary in Step
3 can be computed in O(ni log2 ni) time where ni

is the number of Delaunay circles Cj considered in
the corresponding layer (see [12] pg. 97). Taking
into account that the total number of Delaunay
circles is O(n), Step 3 takes O(n log2 n) time. Note
that the expected time for Step 3 is O(n log n) [12],
and therefore, the expected time for the entire al-
gorithm is O(n log n).

4. Minimum weight structures

A notion of weight related to the concept of
depth was associated in [2] to geometric structures
consisting of segments (edges) with endpoints in
S. The weight of a geometric structure admits two
natural definitions.
Definition 4 The total weight, t-weight, of a ge-
ometric structure, is the sum of the weights of its
edges.
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Fig. 6. The shaded region is Levj+1(S).

Definition 5 The worse weight, w-weight, of a ge-
ometric structure, is the weight of its heaviest edge.

In this paper we focus on minimum t-weight
structures.

4.1. Minimum t-weight spanning trees

An algorithm for constructing a minimum t-
weight spanning tree (MWST ), can be easily
obtained by taking for each weight a spanning tree
of the set of points of that weight and connecting
whith an edge every pair of trees whose weight
differs by one.

In [5] the following combinatorial result on the
number of MWST for a set of points is proved
for convex depth. The result extends to Delaunay
weight but does not extend to the case of location
weight, since the vertices of Layk(S) may be points
not in S.
Proposition 6 Let S be a set of n points and let
Ci be the cardinality of layer i. For convex depth
and Delaunay depth, the number of MWST in S is

f(C1, · · · , Ck) =
CC1

1 · CC2

2 · · ·C
Ck−1

k−1 · CCk

k

C1 · Ck

.

The number of MWST is strictly decreasing on the
number of layers. The number of MWST varies
between nn−2, attainable in the case of one layer,
and 3n−2, attainable when the number of layers is
k = (n + 2)/3. For a fixed number of layers, the
maximum number of MWST is attained when the
last layer has one point and all the others have 3
points except possibly one (this layer cannot be the
first except for the case of two layers).

4.2. Minimum t-weight polygonizations

Minimum weight polygonizations in the convex
case are studied in [2], where next proposition
is proved. This result also applies to each of the
weights we are considering, the proof is similar in
all the cases.
Proposition 7 Let S be a set of n points with
depth f . Every polygonization of S has weight
greater or equal to 2f − 2. The value 2f − 2 is
attained if and only if the sequence of depths of the
boundary vertices is (circularly) unimodal.

In [2] and [3] certain polygons are obtained with
good computational properties. In particular, after
the removal of any number of consecutive layers,
the remaining set can be polygonized in constant
time. These polygonizations, called onion polygo-
nizations, achieve the minimum weight and fur-
thermore, thanks to the convexity of the layers,
are always constructible for any set of points. In
the case of the Delaunay weight, we do not always
have polygonizations of weight 2f−2 (see [5]). This
does not depend on the number of connected com-
ponents of the Delaunay layers. Examples can be
found of polygonizations with weight 2f − 2 when
the number of components is as big as possible
(Figure 7).

Fig. 7. A polygonization scheme with Delaunay weight
2f − 2 for f = 5. The layers of the point set have 11

connected components.

Proposition 8 The minimum Delaunay weight of
any polygonization of a set of n points is never
greater than n. There are examples of sets in which
the weight of the minimum weight polygonization is
Ω(n).

4.3. Minimum t-weight triangulations

For the convex depth case we have obtained the
following algorithm, which runs in O(n log n) time
and generates triangulations that contain the con-
vex layers.
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Algorithm 2 [5] Small weight triangula-

tion T of a set S of n points.

1. Include in T all the edges of the convex layers.
2. For every convex layer find a minimal sub-

polygon P that contains the next inner layer;
add to T the edges of P .

3. Complete T in any way by triangulating the
remaining holes.

It is worth noticing that there are other trian-
gulations with the same weight that the triangu-
lations obtained as output of the above algorithm,
as shown in Figure 9.

Fig. 9. Two triangulations with the same weight; the right
one contains the convex layers. Solid edges have weight 1,
light edges have weight 0.

We conjecture that the triangulations obtained
using Algorithm 2 are always minimum weight tri-
angulations. We have proved that this is the case
for sets with two layers and also when all layers are
triangles (except possibly the innermost one), yet
a general proof remains elusive to us.

The study of the minimum t-weight triangula-
tions for location depth and Delaunay depth is on-
going work. One would expect the Delaunay trian-
gulation to have minimum Delaunay t-weight, but
this is not always the case (see figure 10); however
the Delaunay triangulation has minimum Delau-
nay w-weigt.

2 2 1...
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Fig. 10. a) Triangulation of minimum t-weight 8. b) De-
launay triangulation of the same point set as to the left,
with t-weight 10, which is not minimum.
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Abstra
t

We analyze the maximal expe
ted number of extreme points of a point set P in R

d

that is slightly perturbed by

random noise. We assume that ea
h point in P is uniformly distributed in an axis-aligned hyper
ube of side length

2� 
entered in the unit hyper
ube (the 
enter of the hyper
ube 
an be regarded as the point position without

noise). Our model is motivated by the fa
t that in many appli
ations the input data is inherently noisy, e.g. when

the data 
omes from physi
al measurement or impre
ise arithmeti
 is used. For this input distribution we derive

an upper bound of O((n � log n=�)

1�1=(d+1)

) on the number of extreme points of P .

Key words: Randomization, Smoothed Analysis

1. Introdu
tion

The 
onvex hull of a point set in the d-

dimensional Eu
lidean spa
e is one of the funda-

mental 
ombinatorial stru
tures in Computational

Geometry. Many of its properties have been stud-

ied extensively in the last de
ades. In this paper

we are interested in the number of verti
es of the


onvex hull of a random point set, sometimes re-

ferred to as the number of extreme points of the

point set. It is known sin
e nearly 30 years that

the number of extreme points of a point set drawn

uniformly at random from the (unit) hyper
ube is

O(log

d�1

n), 
f. [1℄. The number of extreme points

has also been studied for many other input dis-

tributions, e.g. for Gaussian normal distribution.

In this paper we 
onsider the expe
ted number of

extreme points when ea
h input point is 
hosen

from a (possibly) di�erent small sub
ube of the

unit hyper
ube. We 
an think of this input distri-

bution as resulting from some point set P (de�ned

by the 
enters of the sub
ubes), where ea
h point

is a�i
ted with some small random noise. Our
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model is motivated by the fa
t that in many ap-

pli
ations the input data is inherently noisy, e.g.

when the data 
omes from physi
al measurement

or impre
ise arithmeti
 is used.

1.1. Related Work

Several authors have treated the stru
ture of the


onvex hull of n random points. In 1963/64 R�enyi

and Sulanke, [8℄ and [9℄, were the �rst to present the

mean number of extreme points in the planar 
ase

for di�erent sto
hasti
 models. They showed for n

points uniformly 
hosen from a 
onvex polygone

with r verti
es a bound of r � logn. This work was


ontinued by Efron [4℄, Raynaud [6℄ and [7℄, and

Carnal [2℄ and extended to higher dimensions. For

further information we refer to the ex
ellent book

[10℄ by Santal�o.

In 1978 Bentley, Kung, S
hkolni
k and Thomp-

son [1℄ showed that the expe
ted number of ex-

treme points of n i.i.d. random points in d spa
e is

O(ln

d�1

n) for �xed d for some general probabil-

ity distributions. Har-Peled gave in [5℄ a di�erent

proof of this result. Both results are based on the


omputation of the expe
ted number of maximal

points (
f. Se
tion 3).

The 
on
ept of smoothed analysis was intro-

du
ed in 2001 by Spielman and Teng [11℄. In 2003

20th EWCG Seville, Spain (2004)
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this 
on
ept was applied to the number of 
hanges

to the 
ombinatorial des
ribtion of the smallest

en
losing bounding box of a moving point set [3℄

where di�erent probability distributions for the

random noise were 
onsidered. This work already


overs the two dimensional 
ase of this paper's

problem. By 
onsidering moving points the two

dimensional problem was redu
ed to a one dimen-

sional probelm. The general extension to higher

dimensions holds some non trivial diÆ
ulties even

for the 
ase when uniformle distributed noise is


onsidered.

2. Problem Statement and Uniform Case

Let P := fp

1

; : : : ; p

n

g denote a point set in the

unit hyper
ube [0; 1℄

d

and let V(P ) be the number

of extreme points (i.e., the number of verti
es of the


onvex hull) of P . Furthermore, let r

1

; : : : ; r

n

be

i.i.d. random ve
tors 
hosen uniformly at random

from [��; �℄

d

and let ep

1

:= p

1

+r

1

; : : : ;fp

n

:= p

n

+r

n

be the perturbed points and

e

P the set of perturbed

points. Then we de�ne the smoothed number of

extreme points to be V(

e

P ) := max

P

E[V(

e

P )℄.

Our bounds are based on the following observa-

tion: A point p 2 P is not extreme, if ea
h of the 2

d

orthants 
entered at p 
ontains at least one point.

In this 
ase, we say that p is notmaximal. It follows

immediatly that the number of maximal points is

an upper bound on the number of extreme points.

Therefore, we will from now on 
ount the number

of maximal points.

Fig. 1. 'A point in three dimensional spa
e has eight or-

thants.' and 'Every extreme point is also a maximal point.'

As a warm-up we illustrate our approa
h on the

well-understood 
ase of n points 
hosen uniformly

at random from the d-dimensional unit hyper
ube.

We show how to obtain in this 
ase an upper bound

of O(log

d�1

n) on the number of maximal points

and hen
e on the number of extreme points.

Theorem 1 Let P = fp

1

; : : : p

n

g be a set of n

points 
hosen uniformly at random from the d-

dimensional unit hyper
ube. Then the expe
ted

number of extreme points of P is O(log

d�1

n) for

�xed dimension d.

Proof : To prove the theorem we show that

Pr[p

i

is maximal℄ = O(log

d�1

n=n) : (1)

By linearity of expe
tation it follows immediately

that the number of extreme points is O(log

d�1

n).

To prove (1) we 
onsider the probability that a

�xed orthant �(p

i

) 
entered at p

i

is empty. Using

a standard union bound we get

Pr[p

i

is maximal℄ � 2

d

�Pr[�(p

i

) is empty℄ :

Wlog. we now �x orthant �(p

i

) :=

Q

d

j=1

[�1; p

(j)

i

℄.

We 
an write the probability that �(p

i

) is empty as

an integral in the following way: 
onsider p

i

having

the 
oordinates (x

(1)

; : : : ; x

(d)

). The probability for

any other point p

k

2 P n fp

i

g to be not in �(p

i

) is

then equal to 1�x

(1)

� x

(2)

� � �x

(d)

. Sin
e there are

n� 1 other points in P the probability that �(p

i

)

is empty is exa
tly

Z

1

0

� � �

Z

1

0

(1� x

(1)

� � �x

(d)

)

n�1

dx

(1)

� � � dx

(d)

: (2)

We solve this integral by repeatetd substitution

and demonstrate this on the 2 dimensional integral.

We start with the integral

R

1

0

R

1

0

(1 � xy)

n�1

dxdy

and substitute in a �rst step 1 � xy =: z = z(x)

whi
h gives us dz = �y � dx and z(0) = 1 and

z(1) = 1� y:

Z

1

0

Z

1

0

(1� xy)

n�1

dxdy =

Z

1

0

Z

1

1�y

z

n�1

y

dzdy =

Z

1

0

�

1

n

�

z

n

y

�

1

1�y

dy =

1

n

Z

1

0

1

y

� (1� (1� y

| {z }

=: z

)

n

)dy :

Now we substitute 1 � y =: z = z(y) and we get

dz = �1 � dy and z(0) = 1 and z(1) = 0:

1

n

Z

1

0

1

1� z

� (1� z

n

)dz =

1

n

Z

1

0

n�1

X

i=0

z

i

dz =

1

n

"

n�1

X

i=0

z

i+1

i+ 1

#

1

0

=

1

n

n

X

i=1

1

i

=

logn+O(1)

n

:
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Sin
e there are 4 quadrants and n points it follows

that the expe
ted number of maximal points in the

planar 
ase is O(log n).

The d-dimensional integral (2) boils down to the

sum

1

n

n

X

i

1

=1

1

i

1

i

1

X

i

2

=1

1

i

2

� � �

i

d�2

X

i

d�1

=1

1

i

d�1

= O

 

log

d�1

n

n

!

;

whi
h proves the theorem. 2

3. Smoothed Number of Extreme Points

We now want to apply the same approa
h to

obtain an upper bound on the smoothed number

of extreme points. We 
onsider again a perturbed

point ep

i

= p

i

+ r

i

, where p

i

= (p

(1)

i

; : : : ; p

(d)

i

) 2

[0; 1℄

d

and r

i

a random ve
tor 
hosen uniformly

from [��; �℄

d

. It follows that ep

i

lies in the hyper
ube

Q

d

j=1

[p

(j)

i

� �; p

(j)

i

+ �℄ =: ph
(p

i

) whi
h we want

to 
all the perturbation hyper
ube of point p

i

.

Now we re
all that �(ep

i

) =

Q

d

j=1

[�1; ep

i

(j)

℄. For

any other perturbed point ep

k

= p

k

+ r

k

, i 6= k, the

probability that ep

k

does not lie in �(ep

i

) is

Pr[ ep

k

=2 �(ep

i

)℄ =

Z

I(ep

i

;p

k

)

�

1
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�

d
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where I(ep

i

; p

k

) is the set of all valid positions for ep

k

not lying in �(ep

i

), i.e. I(ep

i

; p

k

) = ph
(p

k

)��(ep

i

).

Note that 1=(2�)

d

is the probability density of ep

k

.

We get

Pr[�(ep

i
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Z
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i
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�
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2�

�

d

�

�

Y

k 6=i

Z
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)

�

1

2�

�

d

dy

�

dx :

The main idea is now to subdivide the unit hy-

per
ube intom = 1=Æ

d

smaller axis-aligned hyper-


ubes of sidelength Æ. Then we subdivide P into

sets C

1

; : : : ; C

m

where C

`

is the subset of P that is

lo
ated (before the perturbation) in the `-th small

hyper
ube (we assume some ordering among the

small hyper
ubes). Now we 
an 
al
ulate the ex-

pe
ted number D(C

`

) of maximal points for the

sets C

`

and use

V(

e

P ) �

m

X

`=1

V(

e

C

`

) �

m

X

`=1

D(

e

C

`

) (3)

to obtain an upper bound on the expe
ted num-

ber of extreme points in

e

P . The advantage of this

approa
h is that for small enough Æ the points in

a single small hyper
ube behave almost as in the

uniform random 
ase.

We now want to 
ompute the expe
ted number

of extreme points for the sets C

`

. We assume wlog.

that C

`

is the hyper
ube [0; Æ℄

d

. Let

�

Æ = (Æ; : : : ; Æ)

and

�

0 = (0; : : : ; 0) et
. We now want to �nd an

upper bound on the probability that �(ep

i

) is empty.

This probability is maximized, if p

i

=

�

0 and p

k

=

�

Æ

for every p

k

2 C

`

, i 6= k. Hen
e, we get

Pr[�(ep

i

) is empty℄ �

Z

ph
(

�

0)

�

1

2�

�

d

�

 

Z

I(x;

�

Æ)

�

1

2�

�

d

dy

!

n�1

dx :

Using I(x;

�

Æ) = [Æ � �; Æ+ �℄

d

�

Q

d

j=1

[�1; x

(j)

℄ =

Q

d

j=1

[maxfÆ � �; x

(j)

g; Æ + �℄ we 
an write the in-

tegral as

Z

[��;�℄

d

�

1
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�

d

�

�

X
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(�1)

jIj+1

�

Z

(Æ+�)

I
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I
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�
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�
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where the subs
ript I for a variable denotes the

jIj dimensional proje
tion of the variable to the


oordinates in I, i.e. x

I

= (x

(j

1

)

; : : : ; x

(j

t

)

) for I =

fj

1

; : : : ; j

t

g, and the maximum is taken 
oordinate

wise. Let

F(x; j) :=

X

I�[d�j℄

(�1)
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Z

(Æ+�)
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(Æ��)

I

�

1
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:

We 
an rewrite the integral (4) now in the form

d

X

j=0

�

d

j

�

�

Z

Æ��

��

� � �

Z

Æ��

��

| {z }

d�j

Z

�

Æ��

� � �

Z

�

Æ��

| {z }

j

�

1

2�

�

d

� F(x; j)

n�1

dx : (5)

Next we want to 
al
ulate this integral. Again

we will use repeated substitution. We obtain the
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following result, whi
h we prove only for the one

dimensional 
ase (the 
omplete proof is deferred to

the full version of this paper).

Lemma 2 Let C

`

� P be a set of 


`

points in the

hyper
ube [0; Æ℄

d

before the perturbation takes pla
e.

The smoothed number of extreme points in

e

C

`

is at

most

V(

e

C

`

) � D(

e

C

`

) � 


`

� 2

d

�

�

d �

Æ

2�

+

log

d�1




`




`

�

:

Proof :(only the 1-dimensional 
ase)

Let us 
onsider the one dimensional integral.

From (5) we have

Z

Æ��
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Z

�

Æ��

1
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�

�

1

2�

� (Æ + �� x

| {z }
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)

�

n�1

dx :

The �rst integral solves to Æ=(2�). In the se
ond

integral we substitute Æ+��x =: z = z(x) and we

get dz = �1 � dx and z(Æ � �) = 2� and z(�) = Æ.

Thus it is

Z

�

Æ��

1

2�

�

�

1
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�
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2�

�

n

�

:

It follows that in the one dimensional 
ase the prob-

ability for a point to be maximal is at most

2 �

�

Æ

2�

+

1

n

�

:

2

We 
an now 
on
lude from (3) and Lemma 2 that

V(

e

P ) �

1=Æ

d

X

`=1




`

� 2

d

�

�

d �

Æ
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+

log
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`




`

�

:

Our main theorem follows 
hoosing

Æ = O

��

� � log

d�1

n

d � n

�

1=d

�

:

Theorem 3 The smoothed number of extreme

points of a set

e

P of n perturbed points in d di-

mensional spa
e with start points from the unit

hyper
ube and under uniform noise from [��; �℄

d

is

V(

e

P ) = O

��

n � logn

�

�

1�

1

d+1

�

:
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Optimizing a 2D Function satisfying Unimodality Properties

Erik D. Demaine∗ Stefan Langerman†

1 Introduction

A general formulation of discrete optimization is to maximize a given function f : D → R over a
discrete (finite) domain D. In general, of course, this problem may require |D| probes to f . One ap-
proach to making optimization more tractable is to be satisfied with finding a local maximum, i.e.,
a point at which f attains a value larger than all “neighboring” points, for some definition of neigh-
borhoods. In particular, for the standard 1D domain D = {1, 2, . . . , n}, Fibonacci search [Kie53]
finds a local maximum using logφ n + O(1) probes, where φ = (1 +

√
5)/2 is the golden ratio.

Surprisingly, even for a square 2D domain D = {1, 2, . . . , n}×{1, 2, . . . , n}, the problem complexity
grows exponentially: Mityagin [Mit03] proved that Θ(n) probes to such an f are sufficient and
sometimes necessary. Thus weakening the problem to finding local maxima does not cause the
exponential speedup from 1D in higher dimensions.

Another approach to making optimization more tractable is to add assumptions about the
function f . For example, if we assume that f is unimodal (denoted “⊙ unimodal”), i.e., it has
exactly one local maximum, then finding local maxima and finding global maxima are equivalent.
One could hope that having this structural information about the function would also help in finding
that maximum. Unfortunately, a careful reading of the construction in [Mit03] of 2D functions f
requiring Θ(n) probes are in fact unimodal.

We study the related condition that the 2D function f is unimodal in every row (↔ unimodal)
and/or in every column (l unimodal). (These properties are satisfied by e.g. convex functions.)
While seemingly weaker than unimodality, these properties are incomparable to unimodality, and
in fact result in exponential speedup for finding local maxima.

Table 1 summarizes all of our results. Our upper bounds all follow from a combination of linear
search and/or Fibonacci search in each dimension. Matching local bounds for global optimization
follow in some cases from independence of the columns. Some bounds are tight only up to logarith-
mic factors, leaving intriguing open questions. In the full paper, we provide the omitted proof and
prove the comforting fact that a natural random probing algorithm makes Ω(lg m lg n) expected
probes even for a convex function, as in our dual Fibonacci search.

2 Lower Bound for l Unimodal

Theorem 1 If n ≥ mε where 0 < ε ≤ 1, there is an adversary that (a) generates l-unimodal
functions each with a unique local optimum, and (b) forces any local or global optimization algorithm
to make (ε2/4) lg m lg n − O(lg m lg lg n) probes.

∗MIT Computer Science and Artificial Intelligence Laboratory, 200 Technology Square, Cambridge, MA 02139,

USA, edemaine@mit.edu
†Chargé de Recherche FNRS, Département d’informatique, Université Libre de Bruxelles, ULB CP212, Bruxelles,

Belgium, Stefan.Langerman@ulb.ac.be
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Assumption Local optimization Global optimization

None ≤ min(lg max

min
+ 4) + O(lg max ) [Mit03] ≤ m · n [lin.×lin.]

≥ min{min,max/2} [Mit03] ≥ m · n [indep.]
⊙ unimodal ≤ min(lg max

min
+ 4) + O(lg max ) [Mit03] same as local

≥ min{min,max/2} [Mit03]
l unimodal ≤ logφ m lg n + O(lg m) [Fib.×Fib.] ≤ n logφ m + O(n) [Fib.×lin.]

≥ (ε2/4) lgm lg n − O(lg m lg lg n) [Thm. 1] ≥ n logφ m + O(n) [indep.]
if n ≥ mε where 0 < ε ≤ 1

l, ↔ ≤ lg m lg n/ lg φ + O(lg min) [Fib.×Fib.] ≤ min logφ max + O(min) [Fib.×lin.]
unimodal ≥ lg m + lg n [info. theo.] Ω(min) [omitted]
⊙, l ≤ logφ m lg n + O(lg m) [Fib.×Fib.] same as local
unimodal ≥ (ε2/4) lgm lg n − O(lg m lg lg n) [Thm. 1]

if n ≥ mε where 0 < ε ≤ 1
⊙, l, ↔ ≤ lg m lg n/ lg φ + O(lg min) [Fib.×Fib.] same as local
unimodal ≥ lg m + lg n [info. theo.]

Table 1: Worst-case bounds on the number of probes required to maximize a function f :
{1, 2, . . . ,m} × {1, 2, . . . , n} → R. In the bounds, max = max{m,n} and min = min{m,n}.

The adversary gives the algorithm extra information, which can only help. Whenever the
algorithm probes the value at a particular point (x, y), the adversary reveals not only that value,
but also the slope of that value in that column, i.e., whether the mode in that column x is above
or below that point (x, y). Furthermore, if the mode of column x is above the probe point (x, y),
then the adversary reveals all values in the column x below the point (x, y); symmetrically, if the
mode is below the probe point, the adversary reveals all values above the point in its column. If the
algorithm discovers the mode of column x, the adversary reveals all values in the column x. Thus
we maintain the invariant that every column that is not totally revealed has some revealed values in
the topmost few rows, some revealed values in the bottommost few rows, and the algorithm knows
that the mode of the column is somewhere in between.

If the unrevealed region ever becomes disconnected, the adversary reveals all values in all con-
nected components except the largest connected component. Thus we maintain the invariant that
the unrevealed region is connected. We also maintain the invariant that the algorithm cannot dis-
cover the unique local optimum until every value has been revealed. Together these two invariants
make the goal of the algorithm to disconnect the unrevealed region; otherwise, the algorithm must
make at least one probe per column, for a total of at least n probes.

The main task of the adversary is to decide whether a probe point is above or below the mode of
that column, and then to choose the revealed values below or above the probe point. The adversary
bases its decision on matching the “nearest” previous decision, according to a particular distance
function. Define the (biased) distance between two points (x1, y1) and (x2, y2) to be

|x1 − x2| + |y1 − y2|/m1−ε/2.

Also define the (biased) distance between a point (x, y) and the top horizontal wall to be y/m1−ε/2,
and similarly define the biased distance to the bottom wall to be (m + 1 − y)/m1−ε/2.

Suppose that the algorithm probes the point (x, y). If point (x, y) is closer to a horizontal wall
than every revealed point, then the adversary reveals all values in column x between (x, y) and the
nearest wall, specifying that the mode is in the other direction. Otherwise, the adversary specifies
(x, y) to be above or below the mode in its column x according to whether the revealed point
(x∗, y∗) nearest to (x, y) is above or below the mode in its column x∗. Then the adversary reveals
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all unrevealed values starting from (x, y) in the opposite direction to the mode in column x. (In the
special case described below that the algorithm discovers the mode among these revealed values,
the specification that the mode is above or below (x, y) is false; in this case the adversary reveals
all values in column x.)

The adversary chooses the revealed values as follows. Suppose that the algorithm probes (x, y)
and say that the adversary decides that probe point (x, y) is above the mode in its column x.
If the to-be-revealed points keep the unrevealed region connected, then the adversary repeatedly
reveals that the bottommost unrevealed value in column x is one more than the largest previously
revealed value, until reaching point (x, y). In this way the revealed values increase in an integer
sequence from the bottommost unrevealed value to (x, y). Equivalently, the adversary reveals
every unrevealed point (x, y′) below (x, y) in column x to have value m − d more than the largest
previously revealed value, where d = y−y′ is the Manhattan distance between the unrevealed point
(x, y′) and the probe point (x, y).

On the other hand, if the to-be-revealed points disconnect the unrevealed region, then we isolate
a point (x, ŷ) in column x that is adjacent to the largest resulting connected component, and assign
that point (x, ŷ) to be the mode of column x. (As mentioned above, this assignment contradicts the
recent decision of the adversary that the mode is above (x, y); this situation is the only one in which
such a contradiction arises.) Then the adversary reveals every unrevealed point (x, y′) in column x
to have value m + n − d more than the largest previously revealed value, where d = |y′ − ŷ| is the
Manhattan distance between unrevealed point (x, y′) and the assigned mode (x, ŷ) of column x.
Simultaneously, we reveal every point (x′, y′) in every connected component except the largest to
have value m + n − d more than the largest previously revealed value, where d is the Manhattan
distance between point (x′, y′) and the assigned mode (x, ŷ) of column x. Thus point (x, ŷ) indeed
becomes the mode of column x, with d = 0.

Lemma 2 The only point to become a local maximum according to the adversary is the mode of
the final column to become completely revealed.

Proof: The key property is that the values revealed by the adversary are strictly larger as we
proceed from one probe to the next, because we always add a positive number to the largest
previously revealed value. Thus, within a column, every point except the mode has an adjacent
point with larger revealed value, and therefore only the mode could be a local maximum. But
in the final phase of a column, the mode is chosen so that it is adjacent to the largest connected
component, and all values to be revealed in that component are strictly larger. Thus even the
mode of the column cannot be a local maximum, unless the largest connected component is in fact
empty, i.e., the last column has been completely revealed. ✷

Lemma 3 Biased distance satisfies the triangle inequality.

Lemma 4 The algorithm must make min{n, (ε/2) lg m} probes before the unrevealed region first
disconnects into multiple connected components.

Proof: To disconnect the unrevealed region horizontally, the algorithm must make at least n
probes. We claim that disconnecting the unrevealed region vertically requires at least (ε/2) lg m
probes. Consider the minimum (biased) distance D between a revealed point above the mode in
its column (or the top wall) and a revealed point below the mode in its column (or the bottom
wall). Initially D is m/m1−ε/2 = mε/2. If the unrevealed region disconnects, D must have become
at most 1 because ε ≤ 1.
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Whenever the algorithm probes a point (x, y) that does not disconnect the unrevealed region,
we claim that D can decrease by at most a factor of 2. Suppose that (x, y) is closest to a previously
revealed point above the mode in its column (or the top wall). Then every newly revealed point
(x, y′) is also closest to a previously revealed point above the mode in its column. By the triangle
inequality (Lemma 3), the sum of the distances from every such point (x, y′) to the nearest point
above the mode in its column (or the top wall) and to the nearest point below the mode in its
column (or the bottom wall) is at least D. The former distance is smaller, so the latter distance is
at least D/2. Therefore the new value of D after this probe is at least D/2.

In conclusion, for D to reduce from mε/2 to at most 1, the algorithm must make at least
lg mε/2 = (ε/2) lg m probes. ✷

Lemma 5 The nearest point or horizontal wall to a point (x, y) is in a column x′ such that |x−x′| ≤
mε/2.

Proof: The distance between (x, y) and either horizontal wall (in the same column x) is always at
most m/m1−ε/2 = mε/2. The distance between (x, y) and any point (x′, y′) is at least |x− x′|, so if
|x−x′| > mε/2, the distance is strictly larger than the distance between (x, y) and either horizontal
wall. ✷

Finally we conclude the proof of Theorem 1. Consider an algorithm that makes fewer than
lg n lg m probes. As mentioned above, the algorithm must disconnect the unrevealed region or
else it is doomed to make at least n probes. Lemma 4 says that the algorithm must make at
least min{n, (ε/2) lg m} probes for the first disconnection. Consider the final probe that caused
the disconnection. By the pigeon-hole principle, the (lg n lg m)mε/2 consecutive columns including
and to the right of this final probe must have a gap of at least mε/2 consecutive empty columns,
because there are at most lg n lg m probes total. We remove columns starting from the final probe
up to but not including this gap of mε/2 consecutive empty columns. Similarly, we remove at most
(lg n lg m)mε/2 columns to the left of the final probe up to but not including a gap of mε/2 consec-
utive empty columns. Thus we obtain two subproblems (one left and one right) that by Lemma 5
act completely independently from each other and from the probes causing the disconnection, as
far as probes made so far. We recursively consider the subproblem corresponding to the larger
connected component that remains. This recursive subproblem is a rectangle with m rows and at
least ⌊n/2⌋ − (lg n lg m)mε/2 columns. The recursive subproblem may have already been probed,
but we can consider such probes as happening after this subproblem, because Thus the recursion
applies until n′/2 < (lg n lg m)mε/2.

Therefore we obtain the lower bound of min{n′, (ε/2) lg m} probes, where n′ ≥ 2(lg n lg m)mε/2,
recursively lg(n/(2(lg n lg m)mε/2)) times. In total we obtain a lower bound of

(ε/2)(lg m)(lg n − 1 − lg lg n − lg lg m − (ε/2) lg m)

≥ (ε/2)(lg m)((ε/2) lg n − O(lg lg n))

≥ (ε2/4) lg m lg n − O(lg m lg lg n).
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Competitive Search Ratio of Graphs and Polygons
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Abstract

We consider the problem of searching for a goal in an unknown environment, which may be a graph or a polygonal
environment. The search ratio is the worst-case ratio before the goal is found while moving along some search
path, over the shortest path from the start point to the goal, minimized over all search paths. We investigate the
problem of finding good approximations to the optimal search path, with or without a priori knowledge of the
environment. In the latter case, we are dealing with an online problem. We must compute a good search path while
exploring the unknown environment. We present a unified framework that allows us to derive competitive search
path algorithms from existing competitive exploration algorithms, if it is possible to modify them in a certain
natural way. Our transformation increases the competitive ratio at most by a factor of eight. This expresses the
relationship between competitive online exploration and online searching more precisely than before. We apply our
framework to searching in trees, (planar) graphs, and in (rectilinear) polygonal environments with or without holes.

Key words: Online motion planning, competitive ratio, searching, exploration, search ratio

1. Introduction

Exploration and searching are fundamental
tasks in online motion planning that have at-
tracted a lot of interest during the last decade, see
for example the survey by Berman [4]. Exploration
means that an agent should detect all objects in-
side an unknown environment whereas in search-
ing one particular goal object has to be detected.

The competitive ratio is an established perfor-
mance measure for online algorithms, see for ex-
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ample [3,7]. In exploration and search problems,
the cost of an algorithm is typically the length of
the path traveled by the agent.

Intuitively, there is a close relationship between
online searching and exploration. Since the goal
could be hidden anywhere, every search strat-
egy must eventually explore the entire scene. On
the other hand, there is a fundamental difference
between searching and exploration. In order to
achieve a small search ratio, a search strategy
should explore the environment in a breadth first
search manner, first exploring all locations close to
the starting point, then iteratively increasing the
search radius. In contrast, an exploration strategy
may decide to first follow some long path. For
example, for unknown undirected graphs depth
first search (DFS) is a 2-competitive online ex-
ploration algorithm, but there is no competitive
online search algorithm, see [9]. This indicates
that online exploration may be an easier problem
than online searching.

Koutsoupias et al. [10] first studied how to com-
pute search path approximations offline. A search
path π explores the entire enviroment. If the goal

20th EWCG Seville, Spain (2004)
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becomes visible for the first time while moving
along π, we can move towards it. The quality of
a search path is determined by a worst-case goal
point v that maximizes the ratio between the
length of the path to v via π and the shortest
path to v, among all goal points v. Koutsoupias et
al. called this worst-case ratio the search ratio of
π. An optimal search path has the minimal search
ratio among all search paths. They only studied
graphs with unit length edges where the goal can
only be located at one of the vertices of the graph,
and they only studied the offline case, i. e., with
full a priori knowledge of the graph. They showed
that computing the optimal search ratio offline is
an NP-complete problem, and they gave a poly-
nomial time 8-approximation algorithm based on
the doubling heuristic, which is also the main in-
gredient of our approach. The doubling heuristic
is a standard technique in online motion planning,
see for example [3,2].

Our goal is to approximate the optimal search
path in an unknown environment by a constant-
competitive online search algorithm. We propose
a general framework how to derive such a compet-
itive online algorithm when there exists a compet-
itive online exploration algorithm for the environ-
ment that can be adapted in a certain natural way.
Our framework can also be applied to offline ex-
ploration approximation algorithms, in which case
it yields offline approximation algorithms for the
optimal search ratio. The competitive ratio of the
search algorithm is only at most four or eight times
the approximation factor of the exploration algo-
rithm, depending on whether goals can only be hid-
den at some finite set of points, like the vertices of
a graph, for example, or whether the goal can be
hidden anywhere in the environment.

In this extended abstract, all proofs are omitted.

2. Definitions

We want to find a good search path in some
given environment E. In a graph environmen, edge
lengths do not necessarily represent Euclidean dis-
tances in some embedding of the graph, even if the
graph is planar. In particular, we do not assume
that the triangle inequality holds.

The goal set G ⊆ E is the set of locations in
the environment where the goal might be hidden.
For example, if E is a graph G = (V, E), then the
goal may either be located anywhere on some edge

(geometric search), i. e. G = V ∪E, or it may only
be located at some vertex (vertex search), i. e., G =
V . To explore E means to move around in E and
eventually see all potential goal positions G. To
search E means to follow some exploration path
in E, the search path, until the goal is detected. A
path π is a search path if every point in G can be
seen from at least one point on π. We assume that
search paths always return to their start point. We
make the usual assumption that goals must be at
least in distance 1 from the start point s. If goals
could be arbitrarily close to s, no algorithm could
be competitive.

For d ≥ 1, let E(d) denote the part of E in dis-
tance at most d from s. A depth-d restricted explo-
ration explores all potential goal positions in G(d).
The search path may move outside E(d) as long
as it stays within E. Depth-d restricted search is
defined similarly.

Agents can either be blind, i. e., they can only
sense their very close neighborhood, or they can
have vision, i. e., they can see objects far away if the
line of view is not blocked by an obstacle. In a graph
environment, an agent with vision can usually see
the endpoints of all adjacent edges at a vertex (even
if the edges have a curved embedding in the plane).
A blind agent standing at a vertex can only sense
the outgoing edges of the vertex; it cannot see the
length or the endpoint of an edge, and it cannot
see the incoming edges [5].

In polygon searching we usually assume the
agents to have vision, whereas in graph searching
we usually assume the agents to be blind. Note
that a blind agent must eventually visit all points
in the goal set, wheras an agent with vision can
afford to skip some potential goal positions as long
as it can see them from somewhere else (maybe
far away). For example, when searching a polygon
it is sufficient to visit all visibility cuts, i. e., cuts
emanating from the edges of reflex vertices.

We assume that agents have perfect memory.
They always know a map of the already explored
part of E, and they can always recognize when they
visit some point for the second time, i. e., they have
perfect localization.

Let π be a path in the environmentE. For a point
p ∈ π let π(p) denote the part of π between s and
p and sp(p) the shortest path from s to p in E. We
denote the length of a path segment π(p) by |π(p)|.
We write |A| for the length of the tour computed
by an algorithm A. For a point p ∈ E let riseπ(p)



March 25-26, 2004 Seville (Spain)

denote the point q ∈ π from which p is seen for the
first time when moving along π starting at s.

The qualitiy of a search path is measured
by its search ratio sr(π), defined as sr(π) :=

max
p∈G

|π(q)|+|qp|
| sp(p)| , where q = riseπ(p). Note that

q = p for blind agents. An optimal search path,
πopt, is a search path with a minimum search

ratio sropt, i. e., sropt = sr(πopt).
Since the optimal search path seems hard to

compute [10], we are interested in finding good ap-
proximations of the optimal search path, in offline
and online scenarios. We say a search path π is
C-competitive (with respect to the optimal search
path πopt) if sr(π) ≤ C · sr(πopt).

3. A General Approximation Framework

In this section we will show how to transform an
exploration algorithm, offline or online, for a cer-
tain environment into a search algorithm, without
losing too much on the approximation factor.

Let E be the given environment and πopt an
optimal search path. We assume that, for any point
p, we can reach s from p on a path of length at most
sp(p). Note that this is not the case for directed
graphs, for example, but it is true for undirected
graphs and polygonal environments.

For d ≥ 1, let Expl(d) be a family of depth-d re-
stricted exploration algorithms for E, either online
or offline. Let OPT and OPT(d) denote the corre-
sponding optimal offline depth-d restricted explo-
ration algorithms.

Definition 1 The family Expl(d) is DREP (depth
restricted exploration property) if there are con-
stants β > 0 and Cβ ≥ 1 such that, for any
d ≥ 1, Expl(d) is Cβ-competitive against the
optimal algorithm OPT(βd), i. e., |Expl(d)| ≤
Cβ · |OPT(βd)|. ✷

In the normal competitive framework, β = 1.
Usually, we cannot just take an exploration al-
gorithm Expl for E and restrict it to points in
distance at most d from s. This way, we might
miss useful shortcuts outside of E(d). Even worse,
it may not be possible to determine in an online
setting which parts of the environment belong to
E(d), making it difficult to explore the right part
of E.

To obtain a search algorithm for E we use the
well-known doubling strategy. For i = 1, 2, 3, · · · ,

we successively run the exploration algorithm
Expl(2i), each time starting at s.

Theorem 2 The doubling strategy based on a
DREP exploration strategy is a 4βCβ-competitive
(plus an additive constant) search algorithm for
blind agents, and a 8βCβ-competitive search algo-
rithm for agents with vision. ✷

In the next two sections we will apply our frame-
work to various types of environments and agents.
The difficult part is always to find good DREP ex-
ploration algorithms.

4. Searching Graphs and Polygons

When searching graphs, we assume agents are
blind. In the vertex search problem, we assume
w.l.o.g. that graphs do not have parallel edges.
Otherwise, there can be no constant-competitive
vertex search algorithm.

Theorem 3 For blind agents, there is no constant-
competitive online vertex search algorithm for non-
planar graphs with unit length edges, directed pla-
nar graphs with unit length edges, and undirected
planar graphs with arbitrary edge lengths. Further,
there is no constant-competitive online geometric
search algorithm for directed graphs with unit length
edges. ✷

Note that non-competitiveness for planar graphs
implies non-competitiveness for general graphs,
non-competitiveness for unit length edges implies
non-competitiveness for arbitrary length edges,
and non-competitiveness for undirected graphs
implies non-competitiveness for directed graphs.

On trees, DFS is a 1-competitive online explo-
ration algorithm for vertex and geometric search
that is DREP; it is still 1-competitive when re-
stricted to search depth d, for any d ≥ 1. Thus,
the doubling strategy gives a polynomial time 4-
competitive search algorithm for trees, online and
offline. On the other hand, it is an open problem
whether the computation of an optimal vertex or
geometric search path in trees with unit length
edges is NP-complete [10].

We will now give competitive search algorithms
for planar graphs with unit length edges and for
general graphs with arbitrary length edges. Both
algorithms are based on an online algorithm for
online tethered graph exploration. In the tethered
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exploration problem the agent is fixed to the start
point by a restricted length rope. An optimal solu-
tion to this problem was given by Duncan et al. [6].
As they pointed out, the algorithm can also be used
for depth restricted exploration. We note that it
can also be adapted to work on graphs with arbi-
trary length edges.

Lemma 4 In planar graphs with unit length edges,
Expl(d) is a DREP online vertex exploration algo-
rithm with β = 1 + α and Cβ = 10 + 16

α
.

Theorem 5 The doubling strategy based on
Expl(d) is a (104 + 40α + 64

α
)-competitive online

vertex search algorithm for blind agents in planar
graphs with unit length edges. ✷

For α =
√

16
10 , the competitive factor is minimal.

Lemma 6 In general graphs with arbitrary length
edges, Expl(d) is a DREP online geometric explo-
ration algorithm with β = 1+α and Cβ = 4+ 8

α
. ✷

Theorem 7 The doubling strategy based on
Expl(d) is a (48 + 16α + 32

α
)-competitive online

geometric search algorithm for blind agents in
general graphs with arbitrary length edges. ✷

When searching polygons, we assume that
agents have vision. The only known algorithm,
PE , for the online exploration of a simple polygon
by Hoffmann et al. [8] achieves a competitive ratio
of 26.5. This algorithm can be adapted for depth
restricted exploration.

Lemma 8 In a simple polygon, PE (d) is a DREP
online exploration algorithm with β = 1 and Cβ =
26.5. ✷

Theorem 9 The doubling strategy based on PE(d)
is a 212-competitive online search algorithm for an
agent with vision in a simple polygon. There is also
a polynomial time 8-competitive offline search al-
gorithm. ✷

The problem of efficiently computing an optimal
search path in a polygon is still open.

Theorem 10 For an agent with vision in a sim-
ple rectilinear polygon there is a 8

√
2-competitive

online search algorithm. There is also a polynomial
time 8-competitive offline search algorithm. ✷

Based on a construction by Albers et al. [1] we
can show the following theorem.

Theorem 11 For an agent with vision in a poly-
gon with rectangular holes there is no constant-
competitive online search algorithm. ✷

The offline exploration problem is NP-hard, and
there is an exponential time 8-approximation algo-
rithm. Thus, we get an approximation factor of 8
for the optimal search ratio. The results of Kout-
soupias et al. [10] imply that the offline problem
of computing an optimal search path in a known
polygon with (rectangular) holes is NP-complete.
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Finding Planar Regions in a Terrain

Stefan Funke

1

, Theo
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Max-Plan
k-Institut f�ur Informatik, Stuhlsatzenhausweg 85, 66123 Saarbr�u
ken, Germany

Abstra
t

We 
onsider the problem of 
omputing large 
onne
ted regions in a triangulated terrain of size n for whi
h

the normals of the triangles deviate by at most some small �xed angle. In previous work an exa
t near-quadrati


algorithm was presented, but only a heuristi
 implementation with no guarantee was pra
ti
able. We present a

new approximation algorithm for the problem whi
h runs in O(n=�

2

) time and|apart from giving a guarantee

on the quality of the produ
ed solution|has been implemented and shows good performan
e on real data sets

representing fra
ture surfa
es with around half a million triangles.

1. Introdu
tion

A terrain is a surfa
e in R

3

de�ned by a fun
-

tion f : R � R ! R. If f is pie
ewise linear and

the surfa
e 
onsists of a 
olle
tion of triangles, the

terrain is 
alled a triangulated irregular network

(TIN). Given a TIN T , the goal is to �nd large,

nearly planar regions in T . We de�ne `near pla-

narity' as follows: for a real parameter Æ > 0, we

say that a subset of triangles T in T is Æ-planar if

(i) the adja
en
y graph of the triangles in T is 
on-

ne
ted, and (ii) there is a ve
tor

�!

r su
h that for

ea
h t 2 T , \(n

t

; r) � Æ, where n

t

denotes the nor-

mal of triangle t. We 
all

�!

r the referen
e normal.

(Throughout the paper \(v; u) denotes the angle

between two ve
tors

�!

v and

�!

u .)

Resear
hers in the material s
ien
es examine

surfa
e topographies of materials as they provide

useful information about the generation pro
ess

and the internal stru
ture of the material. Sur-

fa
es generated by fra
ture, wear, 
orrosion and

ma
hining are of interest. Among many other


riteria, they want to examine feature-related pa-

rameters like fa
ets in brittle fra
ture surfa
es.

This appli
ation motivated our work.
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haris Malamatos),
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Part of this resear
h was 
ondu
ted while the author was

visiting the University of Illinois at Urbana-Champaign,

USA.

Related work. Assume that ea
h triangle in T

is assigned a weight and that any set of trian-

gles has weight equal to the sum of the weights

of its triangles. Smid, Ray, Wendt and Lange [2℄


onsidered the problem of �nding a Æ-planar sub-

set of T of maximum weight. They presented an

O(n

2

logn(log logn)

3

) algorithm, where n is the

number of triangles in T . Sin
e this is impra
ti
al

they proposed a heuristi
 whi
h 
omputes nearly

planar regions quite qui
kly but with no guaran-

tee. Also they suggested that �nding a Æ-planar set

with weight at least a 
onstant fra
tion of the opti-

mum may be equally diÆ
ult as solving the prob-

lem exa
tly, see [2℄.

Our results. In this paper we adopt the following

notion of approximation. Given a real parameter

� > 0, we say that a subset of triangles T of T is

�-approximate Æ-planar if it is Æ(1 + �)-planar and

has weight at least as large as an optimal Æ-planar

set. Under this notion, we present a new approxi-

mation algorithm that runs in O(n=�

2

) time whi
h

is independent of Æ. For n suÆ
iently large, the

algorithm uses optimal O(n) spa
e. Re
ently Har-

Peled andMazumdar [1℄ have used a similar notion

of approximation for the problem of 
omputing the

smallest k-en
losing disk.

We have implemented and empiri
ally evaluated

the algorithm on real test data from the appli
ation

domain 
onsisting of fra
ture surfa
e terrains with

more than 500,000 triangles. It provides very good

quality results in reasonable time.

Submitted paper to 20th EWCG Seville, Spain (2004)
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2. Preliminaries

Let T be a TIN. We asso
iate with T an undi-

re
ted weighted graph G

T

(V;E) as follows. Ea
h

triangle t in T has an asso
iated weight w(t) and


orresponds to a vertex v

t

in V . An edge 
onne
ts

two verti
es of V if and only if the 
orresponding

triangles in T are adja
ent. Note that G

T

is the

dual graph of T , is planar and has degree three.

Ea
h vertex v

t

2 V is assigned the weight of its

asso
iated triangle w(t) whi
h 
an be, for exam-

ple, equal to the area of the triangle t or one (when

we want to maximize the area of the dete
ted re-

gion or the number of triangles, respe
tively). The

weight w(V

0

) of any subset V

0

of V is de�ned as

the sum of the weights of the verti
es in V

0

.

For a point u 2 R

3

we denote by

�!

u the ve
tor

�!

Ou, where O is the origin. Let S

2

denote the unit

sphere, i.e., the boundary of the three-dimensional

ball of radius one 
entered at the origin. For ea
h

triangle t 2 T , we 
an asso
iate a point p

t

2 S

2

whi
h represents the normalized normal of triangle

t. Spe
i�
ally,

�!

p

t

=

�!

n

t

=j

�!

n

t

j. Our goal is to approx-

imate the spa
e S

2

of all possible normals by a �-

nite set of points V � S

2

su
h that for any p 2 S

2

,

there is a point v 2 V nearby.

De�nition 1 A set of point V � S

2

is 
alled

a Æ�-dis
retization of S

2

if 8p 2 S

2

: 9v 2

V with \(v; p) � Æ � �.

Lemma 2 There exists a Æ�-dis
retization of S

2

of

size O(1=(Æ�)

2

) whi
h 
an be 
omputed in the same

time.

The following 
onstru
tion yields a Æ�-dis
retiza-

tion of S

2

as needed in Lemma 2. (We omit its

proof in this abstra
t.) Consider a 
ube L with

sidelength two 
entered at the origin. Note that

S

2

� L. Pla
e a 2-dimensional grid of size k � k

with k = d

p

2=(Æ�)e over ea
h of the six fa
es of

L. This generates k

2

equally sized square grid 
ells

on ea
h fa
e of L, where ea
h 
ell has sidelength at

most (Æ�

p

2), and 6k

2

+ 2 grid points overall. See

Figure 1. Let A be the set 
onsisting of these grid

points. Our Æ�-dis
retization V of S

2

is de�ned as

V =

n
�!

z

j

�!

z j

: z 2 A

o

;

that is, for ea
h gridpoint z we shoot a ray from the

origin through z and we in
lude the point where

the ray leaves S

2

into set V.

k

k

Fig. 1. Cube with sidelength two 
ontaining S

2

and with a

k � k grid on ea
h of its fa
es.

3. Finding Large Planar Regions

3.1. The Basi
 Algorithm

We�rst des
ribe a simple algorithm for the prob-

lem that 
omputes an �-approximate solution in

O(n=(Æ�)

2

) time. The algorithm pro
eeds as fol-

lows:

1. Compute a Æ�-dis
retization V of S

2

.

2. For ea
h p 2 V,

(a) Compute the set V

p

of verti
es v

t

with

\(p; n

t

) � (1 + �) � Æ.

(b) Consider the subgraph of G

T

indu
ed by

set V

p

and determine its heaviest 
onne
ted


omponent C

p

.

3. Report the set of triangles T 
orresponding to

the heaviest 
omponent C

p

found in Step 2 and

the asso
iated referen
e normal

�!

p .

We now dis
uss the running time and 
orre
tness

of the algorithm. Computing the Æ�-dis
retization

takes O(1=(Æ�)

2

) by Lemma 2. For ea
h element

p 2 V we determine the subgraph indu
ed by V

p

and 
ompute its 
onne
ted 
omponents, whi
h 
an

be done in O(n) time. So the total running time

of Step 2 is O(n=(Æ�)

2

) whi
h also dominates the

overall running time.

For 
orre
tness, observe �rst that 
learly the


omputed set T is Æ(1 + �)-planar. It remains to

show that the weight of T is at least that of an

optimal Æ-planar set T

�

. For set T

�

there exists

a ve
tor

�!

r

�

su
h that for all triangles t 2 T

�

,

\(r

�

; n

t

) � Æ. Let p be a point in V for whi
h

\(p; r

�

) = min

u2V

\(u; r

opt

). By the de�nition of

V, the angle \(p; r

�

) must be at most Æ�. Then, for

any triangle t 2 T

�

the angle between

�!

n

t

and

�!

p is

at most Æ+(Æ�) = Æ(1+�). Therefore for all t 2 T

�

,
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v

t

2 V

p

and hen
e, the algorithm will �nd a 
on-

ne
ted 
omponent with at least the same weight.

Lemma 3 Given a triangulated irregular network

T , and two real parameters Æ > 0 and � > 0 we


an 
ompute in O(n=(Æ�)

2

) time an �-approximate

Æ-planar set of triangles in T .

The running time of the basi
 algorithm is opti-

mal in terms of n. But one may ask whether the de-

penden
e on � or Æ 
an be improved. In the follow-

ing we will re�ne the algorithm to a
hieve O(n=�

2

)

running time, whi
h is independent of Æ.

3.2. The Re�ned Algorithm

The improvement in the running time of the

algorithm 
omes from two fa
tors. First we de-

termine a set of referen
e normals V

0

of size at

most O(n=�

2

) that 
ontains all relevant referen
e

normals, avoiding the inspe
tion of 
(1=(Æ�)

2

)

potential referen
e normals. Se
ond by a bu
ket-

ing s
heme, we redu
e signi�
antly the number

of times ea
h triangle is 
onsidered. The re�ned

algorithm pro
eeds as follows:

1. For ea
h triangle t 2 T with normal n

t

,

let p

t

be a point in V for whi
h \(p

t

; n

t

) =

min

u2V

\(u; n

t

); store t in the bu
ket asso
iated

with p

t

.

2. Determine a set V

0

� V of potential referen
e

normals as V

0

= fp 2 V : 9p

t

with non-empty

bu
ket and \(p; p

t

) � (1 + 2�) � Æg.

3. For ea
h v 2 V

0

,

(a) Colle
t the set of triangles N

v

whi
h are


ontained in bu
kets of referen
e normals

r

0

2 V

0

with \(r

0

; v) � (1 + 2�) � Æ.

(b) Prune N

v

keeping only those triangles t

with \(n

t

; v) � (1 + �) � Æ. Let N

0

v

be the

pruned set.

(
) Consider the subgraph of G

T

indu
ed by

the verti
es 
orresponding to triangles in

N

0

v

and determine its heaviest 
onne
ted


omponent C

v

.

4. Output the heaviest 
onne
ted 
omponent C

v

found in Step 3.

Before analysing the algorithm, we state a

small lemma whi
h informally says that in the

Æ�-dis
retization, for any point p there is a small

number of other points nearby.

Lemma 4 Let p be a point in the Æ�-dis
retization

V. Then the number of points p

0

2 V with\(p; p

0

) <

(1 + 2�) � Æ is at most O(1=�

2

).

The proof of this lemma follows easily from our


onstru
tion of V and it is omitted. We note also

that given a triangle normal n

t

we 
an 
ompute

the point p

t

with \(n

t

; p

t

) = min

u2V

\(n

t

; u) in


onstant time by �rst determining whi
h fa
e of

the 
ube L is hit by the ray

�!

n

t

and then lo
ating

the position of the interse
tion point within the

grid on that fa
e. We now state the main result of

this se
tion:

Theorem 5 Given a triangulated irregular net-

work T , and two real parameters Æ > 0 and � > 0

we 
an 
ompute in O(n=�

2

) time an �-approximate

Æ-planar set of triangles in T .

PROOF. We 
laim that the output of the re�ned

algorithm give us su
h a set. To show 
orre
tness,

it suÆ
es to prove that the algorithm 
omputes the

same solution as the basi
 algorithm. We leave this

proof to the reader. We fo
us now on the running

time. Step 1 of the algorithm takes O(n) sin
e for

ea
h t we 
an in 
onstant time determine p

t

and a
-


ess the asso
iated bu
ket using a hashing s
heme.

Step 2, where we form the set V

0

, takes O(n=�

2

)

sin
e there are at most n non-empty bu
kets. For

ea
h of the non-empty bu
kets, we exploreO(1=�

2

)

points in the neighborhood by Lemma 4. Finally,

for the overall running time of Step 3, observe that

again by Lemma 4, ea
h triangle 
an be 
olle
ted

by at most O(1=�

2

) referen
e normals and that the

running time of one iteration of Step 3 is O(jN

v

j).

Therefore Step 3 takes O(n=�

2

) time in total. 2

4. Experimental Results

We have implemented the re�ned algorithm of

Se
tion 3.2 in C++ using the LEDA library [3℄.

Experiments were 
arried out on a 1.8 GHz Pen-

tium 4ma
hine with 256MBof RAM.We used sev-

eral data sets representing fra
ture surfa
es from

the appli
ation domain in material s
ien
es. Input

data were given as 512�512 raster images with the

intensity of ea
h pixel 
orresponding to its height

value. To obtain the TIN, we triangulated the point

set by 
reating triangles (i; j); (i+1; j); (i+1; j+1)

and (i; j); (i; j + 1); (i+ 1; j + 1). See Figure 2.

To speed-up our program (while preserving the

same guarantee), we have 
ome up with the follow-

ing three heuristi
s:
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(i,j+1) (i+1,j+1)

(i+1,j)(i,j)

Fig. 2. Triangulation s
heme for the array of height values.

(i) With ea
h potential referen
e normal we asso-


iate the weight of all triangles in bu
kets at dis-

tan
e at most (1 + 2�) � Æ and examine the ref-

eren
e normals in de
reasing order of weight. If

the 
urrent best solution ex
eeds the asso
iated

weight of the next referen
e normal, we 
an stop

examining further.

(ii) If the normal of a triangle t forms an angle

larger than 2(1 + �)Æ with the normal of ea
h of

the three adja
ent triangles, we 
an prune t out

(at Step 1). It 
an only form a singleton solution.

(iii) In Step 3(b) where we 
ompute the set of

relevant triangles N

0

v

we only 
he
k triangles in

bu
kets at angle distan
e more than Æ, thus sav-

ing some expensive 
oating-point operations.

In our experiments, the three heuristi
s 
om-

bined redu
e the running time by nearly a fa
tor

of two. For our test instan
es 
onsisting of roughly

500; 000 triangles and a 
hoi
e of Æ = 0:2 (about

11.5 degrees) and � = 0:2, the running time varied

between 70 and 110 se
. The best solution was in

all 
ases found within the �rst 20 se
onds due to

the prioritization s
heme. Thus most of the run-

ning time was spent on 
he
king that no better

solution exists. (A heuristi
 
ould just report the

solution 
omputed, for example, after 30 se
onds.)

We also ran experiments to determine the vari-

ations of the running time as a fun
tion of n and

�. The dependen
e graph on � for a �xed data set

is shown in Figure 3. The upper 
urve denotes the

total running time and the lower 
urve denotes the

time when the reported solution was dete
ted. In

Figure 4 we examine the dependen
e on n (number

of triangles). Note that again the reported solution

was found after only few se
onds.

For the heuristi
 implementation in [2℄, running

times reported are in the range of 30{40 se
onds

but as it is mentioned the solution 
omputed may

be far from optimal.
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Fig. 3. CPU time versus � for n = 522K, Æ = 0:2.
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Abstra
t

Let A and B be two sets of n resp. m (m � n) disjoint unit disks in the plane. We 
onsider the problem of

�nding a rigid motion of A that maximizes the total area of its overlap with B. The fun
tion des
ribing the area

of overlap is quite 
omplex, even for 
ombinatorially equivalent translations, and hen
e, we turn our attention to

approximation algorithms. We give deterministi
 (1��)-approximation algorithms for the maximumarea of overlap

under translation and rigid motion that run in O((nm=�

2

) log(m=�)) and O((n

2

m

2

=�

3

) logm)) time respe
tively.

For the later, if � is the diameter of set A, we get an (1� �)-approximation in O(

m

2

n

4=3

�

1=3

log n logm

�

3

) time whi
h

is improvement when � = o(n

2

). Under the 
ondition that the maximum is at least a 
onstant fra
tion of the area

of B, we give a probabilisti
 (1� �)-approximation algorithm for rigid motions that runs in O((
n

2

=�

5

) log

2

(n=�))

time and su

eeds with probability at least 1� e

�


� n

�6

.

Key words: Geometri
 Optimization, Approximation Algorithms, Shape Mat
hing, Area of Overlap, Unions of Disks,

Rigid Motions

1. Introdu
tion

Shape mat
hing is a fundamental problem in


omputer vision: given two shapes A and B and a

distan
e measure, one wants to determine a trans-

formation of A - a translation, for instan
e, or a

rigid motion - that minimizes its distan
e to B.

Typi
al problems in
lude: mat
hing point sets with

respe
t to the Hausdor� distan
e and mat
hing

polygons with respe
t to the Hausdor� or Fr�e
het

�
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distan
e between their boundaries; see Alt et al. [1℄

for a survey. The area of overlap (or the area the

symmetri
 di�eren
e) of two polygons is less sen-

sitive to noise and therefore more appropriate for


ertain appli
ations. The fun
tion of the area of

overlap of two translated simple polygons was �rst

studied by Mount et al. [5℄. They showed that this

fun
tion is a 
ontinuous,O((nm)

2

) pie
ewise poly-

nomial surfa
e of at most degree two with a repre-

sentation that 
an be 
omputed in O((nm)

2

) time

for two polygons with n and m verti
es; eÆ
ient

algorithms for determining the optimal translation

for the 
ase of 
onvex polygons and 
onstant-fa
tor

approximation of the minimum area of symmetri


di�eren
e of two 
onvex shapes under translation


an be also found in the survey by Alt et al. [1℄.

Re
ently, de Berg et al. [3℄ examined the prob-

lem of mat
hing unions of 
onvex homothets or

unions of fat obje
ts and gave a nearly quadrati


deterministi
 (1� �)-approximation algorithm for

the maximum area of overlap under translations;

20th EWCG Seville, Spain (2004)
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we mention part of these results in this abstra
t as

well. Their motivation 
omes from appli
ations in

mat
hing shapes that are `expressed' as unions of


onvex obje
ts and weighted point set mat
hing.

Cheong et al. [2℄ gave a nearly linear time prob-

abilisti
 approximation algorithm for the same

problem.

Let A = fA

1

; : : : ; A

n

g and B = fB

1

; : : : ; B

m

g,

(n � m) be two sets of disjoint unit disks in the

plane. We 
onsider B to be �xed, while A 
an be

translated and rotated relative to B. Let I be the

in�nite set of all possible isometries in the plane;

we 
all I the 
on�guration spa
e. We denote by

R

�

a rotation about the origin by some angle

� 2 [0; 2�) and by T

~

t

a translation by some

~

t 2 R

2

.

Rotated only versions of A are denoted by A(�) =

fA

i

(�); : : : ; A

n

(�)g; translated only versions of

A are denoted by A(

~

t) = fA

i

(

~

t); : : : ; A

n

(

~

t)g.

Any isometry I 2 I 
an be uniquely de�ned as

I = I

~

t;�

= R

�

Æ T

~

t

or I = I

~

t

0

;�

0

= T

~

t

0

Æ R

�

0

,

for some �; �

0

2 [0; 2�) and

~

t;

~

t

0

2 R

2

; trans-

formed versions of A are denoted by A(

~

t; �) =

fA

i

(

~

t; �); : : : ; A

n

(

~

t; �)g for some I

~

t;�

2 I. Let r

i

(

~

t)

be the distan
e of A

i

(

~

t; �)'s 
enter to the origin.

Let V (C) be the area of 
ompa
t set C 2 R

2

and V

ij

(

~

t; �) := V (A

i

(

~

t; �)\B

j

). The area of over-

lap of A(

~

t; �) and B, as

~

t; � vary, is a fun
tion

V : I ! R with V(

~

t; �) = V (A(

~

t; �) \ B) =

P

A

i

2A;B

j

2B

V (A

i

(

~

t; �) \ B

j

). We investigate the

following problem: For two sets A;B, de�ned as

above, 
ompute the optimal isometry I

~

t

opt

;�

opt

that

maximizes V(

~

t; �).

One 
an prove that, the maximum number of


ombinatorially distin
t translations of A with re-

spe
t to B 
an be as high as �(n

2

m) and the fun
-

tion des
ribing the area of overlap is quite 
omplex,

even for 
ombinatorially equivalent translations. If

rotations are allowed as well the 
omplexity of the


on�guration spa
e 
an be as high as �(m

2

n

3

).

Our major 
ontributions are the following: (i) a

lower bound on the area of overlapwhi
h is vital for

almost all our algorithms, (ii) a nearly quadrati


deterministi
 algorithm for translations, (iii) de-

terministi
 and nearly quadrati
 probabilisti
 algo-

rithms for rigid motions. The algorithms are based

on a simple two step framework in whi
h an ap-

proximation of the best translation if followed by

an approximation of the best rotation, whenever

the latter applies. This way we �rst a
hieve an ab-

solute error on V(

~

t

opt

; �

opt

) whi
h we then turn

into a relative one using the lower bound theorem.

In the deterministi
 one we employ a 
lever sam-

pling of 
on�guration spa
e dire
ted by some spe-


ial properties of the fun
tion V

ij

. The probabilis-

ti
 one is a 
ombination of sampling of translation

spa
e, random sampling of both input sets and the

te
hnique by Cheong et al. [2℄.

2. The translational 
ase

First, we present a lower bound on the maximum

area of overlap under translation.

Theorem 1 Let A = fA

1

; : : : ; A

n

g and B =

fB

1

; : : : ; B

m

g, be two sets of disjoint unit disks

in the plane. Let

~

t

opt

be the translation that maxi-

mizes the area of overlap V(

~

t) of A(

~

t) and B over

all possible translations

~

t of set A. If k

opt

is the

number of overlapping pairs A

i

(

~

t

opt

) and B

j

, then

V(

~

t

opt

) is �(k

opt

).

We pro
eed with the (1 � �)-approximation algo-

rithm. The algorithm is based on sampling of trans-

formation spa
e by using a uniform grid. This is

possible due to the following lemma that states

that V(

~

t) is a sum of fun
tions with some Lips
hitz

behaviour.

Lemma 2 Let k

opt

be the number of overlapping

pairs A

i

(

~

t

opt

) and B

j

. For any given Æ > 0 and

any

~

t 2 R

2

for whi
h j

~

t

opt

�

~

tj = O(Æ), we have

V(

~

t

opt

)� V(

~

t) = O(k

opt

Æ).

Figure 1 shows algorithmTranslation(A;B; �).

Translation(A;B; �):

(i) Initialize an empty binary sear
h tree S with entries

of the form (

~

t;V(

~

t)) where

~

t is the key.

(ii) For ea
h pair of disks A

i

2 A and B

j

2 B do:

(a) Impose a uniform grid of spa
ing �(�) on

T

ij

= B

j

	 A

i

.

(b) For ea
h grid point

~

t

g

2 T

ij

do:

{ If

~

t

g

is in S, then V(

~

t

g

) := V(

~

t

g

) +

V

ij

(

~

t

g

) otherwise, insert

~

t

g

in S with

V(

~

t

g

) := V

ij

(

~

t

g

).

(iii) Report the grid point

~

t

apx

that maximizes V(

~

t

g

),

and V(

~

t

apx

).

Fig. 1. Algorithm Translation(A;B; �).

Theorem 3 Let A = fA

1

; : : : ; A

n

g and B =

fB

1

; : : : ; B

m

g be two sets of disjoint unit disks

in the plane. Let

~

t

opt

be the translation that

maximizes V(

~

t). Then, for any given � > 0,

Translation(A;B; �) 
omputes a translation
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~

t

apx

, for whi
h V(

~

t

apx

) � (1 � �)V(

~

t

opt

), in

O((mn=�

2

) log(m=�)) time.

All these results hold for sets of 
onvex homothets

where the ratio of the areas of any two obje
ts is

bounded and any obje
t interse
ts only a 
onstant

number of other obje
ts in its set [3℄.

3. The rotational 
ase

We 
onsider the following restri
ted s
enario: set

B is �xed, and set A 
an be rotated around the

origin. This problem has a one-dimensional 
on-

�guration spa
e: the angle of rotation. Consider

the fun
tion V : [0; 2�) ! R de�ned by V(�) :=

V (A(�)\B). We start with a result that states that

the term V

ij

(�) has some Lips
hitz behaviour.

Lemma 4 LetA

i

; B

j

be any �xed pair of disks. For

any given Æ > 0 and any �

1

; �

2

for whi
h j�

1

��

2

j �

Æ=(2r

i

), we have jV

ij

(�

1

)� V

ij

(�

2

)j � 2Æ.

For a pair A

i

; B

j

, we de�ne the rotational inter-

val R

ij

= f� 2 [0; 2�) : A

i

(�)\B

j

6= ;g. Note that

R

ij

is 
onne
ted under the 
onsidered topology;

we denote its length by jR

ij

j. Instead of 
omputing

V

ij

(�) at ea
h � 2 R

ij

, we would like to sample it at

regular intervals whose length is at most Æ=(2r

i

).

At �rst, it looks as if we would have to take an

in�nite number of sample points as r

i

!1. How-

ever, as the following lemma shows, the number of

samples we need to 
onsider is bounded.

Lemma 5 For any A

i

; B

j

with r

i

> 0, and any

given given Æ > 0, we have jR

ij

j=(Æ=(2r

i

)) =

O(1=Æ).

Algorithm Rotation(A;B; Æ), see Figure 2, max-

imizes V(�) up to an absolute error. By 
omput-

ing a value

~

V(�) that approximates V(�), we save

a linear fa
tor in the running time.

Lemma 6 Let �

opt

be the rotation that maximizes

V(�) and let k

opt

be the number of overlapping pairs

A

i

(�

opt

) and B

j

. For any given Æ > 0, the rota-

tion �

apx

reported by Rotation(A;B; Æ) satis�es

V(�

opt

)�V(�

apx

) = O(k

opt

Æ), and 
an be 
omputed

in O((mn=Æ) logm) time.

4. A (1� �)-approximation algorithm for

rigid motions

A simple algorihtm RigidMotion(A;B; �)

whi
h gives a (1 � �)-approximation of the opti-

mum is des
ribed in Figure 3. It uses the fa
t that

Rotation(A;B; Æ):

(i) For ea
h pair of disks A

i

2 A and B

j

2 B, 
hoose

points �

ij

:= f�

1

ij

; : : : ; �

s

ij

ij

g with an uniform spa
-

ing of Æ=(2r

i

) and su
h that R

ij

� [�

1

ij

; �

s

ij

ij

℄. Make

sure that the midpoint of R

ij

is in �

ij

.

(ii) Sort the values � :=

S

i;j

�

ij

= f�

s

ij

g, keeping

repetitions and solving ties arbitrarily, if appli
able.

Let �

0

; �

1

; : : : be the ordering of �.

(iii) Let

~

V : �! R with

~

V(�

0

) := V(�

0

).

(iv) For ea
h �

l

= �

s

ij

in in
reasing order of l do:

{ If V

ij

is de
reasing at �

s

ij

, or �

s

ij

is the mid-

point of R

ij

, then

~

V(�

l

) :=

~

V(�

l�1

)�V

ij

(�

s�1

ij

)+

V

ij

(�

s+1

ij

)

{ If V

ij

is in
reasing at �

s

ij

, then

~

V(�

l

) :=

~

V(�

l�1

)�

V

ij

(�

s�1

ij

) + V

ij

(�

s

ij

)

(v) Report the �

apx

2 � that maximizes

~

V(�).

Fig. 2. Algorithm Rotation(A;B; Æ).

any isometry 
an be expressed as a translation

followed by a rotation around the origin.

RigidMotion(A;B; �):

(i) For ea
h pair of disks A

i

2 A and B

j

2 B do:

(a) Set the 
enter of rotation, i.e the origin, to be

B

j

's 
enter by translating B appropriately.

Impose a uniform grid of spa
ing �(�) on

T

ij

= B

j

	 A

i

.

(b) For ea
h grid point

~

t

g

2 T

ij

do:

{ run Rotation(A(

~

t

g

); B; 
�), where 


is an appropriate 
onstant; let �

g

apx

be the rotation returned. Compute

V(

~

t

g

; �

g

apx

).

(ii) Report the pair (t

apx

; �

apx

) that maximizes

V(

~

t

g

; �

g

apx

), and V(t

apx

; �

apx

).

Fig. 3. Algorithm RigidMotion(A;B; �).

Theorem 7 Let A = fA

1

; : : : ; A

n

g and B =

fB

1

; : : : ; B

m

g be two sets of disjoint unit disks

in the plane. Let I

~

t

opt

;�

opt

be the isometry that

maximizes V(

~

t; �). Then, for any given � >

0, RigidMotion(A;B; �) 
omputes an isom-

etry I

~

t

apx

;�

apx

, for whi
h V(

~

t

apx

; �

apx

) � (1 �

�)V(

~

t

opt

; �

opt

), in O((n

2

m

2

=�

3

) logm) time.

We 
an modify the algorithm su
h that its running

time depends on the diameter � of the set A. The

main idea is to 
onvert our algorithm into one that

is sensitive to the number of pairs of disks in A

and B that have approximately the same distan
e,

and then use the 
ombinatorial bounds byGavrilov

et al. [4, Theorem 4.1℄. In many appli
ations it
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is reasonable to assume bounds of the type � =

O(n) [4℄, and therefore the result below is relevant.

Theorem 8 Let A = fA

1

; : : : ; A

n

g and B =

fB

1

; : : : ; B

m

g be two sets of disjoint unit disks

in the plane. Let � be the diameter of A, and let

I

~

t

opt

;�

opt

be the isometry that maximizes V(

~

t; �).

Then, for any given � > 0, an isometry I

~

t

apx

;�

apx

su
h that V(

~

t

apx

; �

apx

) � (1 � �)V(

~

t

opt

; �

opt

) 
an

be found in O(

m

2

n

4=3

�

1=3

logn logm

�

3

) time.

5. A Monte Carlo Algorithm

In this se
tion we present a nearly quadrati


Monte Carlo randomized algorithm that 
omputes

a (1 � �)-approximation of the maximum area

of overlap with high probability. The algorithm

works under the assumption that V(

~

t

opt

; �

opt

) �

�V (B) = �m�, for some 0 < � � 1, whi
h implies

that n = �(m) and k

opt

= �(n). As noted by

Cheong et al. [2℄, this is a reasonable assumption

to make in many shape mat
hing appli
ations.

The �rst step is a 
ombination of random sam-

pling of set A and the sampling of the spa
e of

translations. This is based on the observation that

the deterministi
 algorithm of Se
tion 4 will 
om-

pute a (1��)-approximation k

opt

times. Intuitively,

the larger the k

opt

, the less the ne

essary number

of pairs that have to be tried out in this step. The

se
ond step is based on a dire
t appli
ation of a

te
hnique by Cheong et al. [2℄. The te
hnique al-

lows us to maximize, up to an absolute error, the

area of overlap under rotation in linear time, by


omputing a point of maximum depth in a one di-

mensional arrangement. We sumarize it below.

We 
hoose a uniform random sample S of points

in B, and for a rotation � we 
ompute the esti-

mate e

S

(�) =

jA(�)\Sj

S

: For a point s 2 S we de�ne

W (s) = f�js 2 A(�)g. Let �

A

(S) be the arrange-

ment of all regions W (s); it is a one-dimensional

arragement of rotational intervals.

Lemma 9 Let �

opt

be the rotation that maximizes

V(�). For any given Æ > 0, let S be a uniform

random sample of points in B with jSj � 


1

logn

Æ

3

where 


1

is an appropriate 
onstant. The vertex �

apx

of �

A

(S) that maximizes e

S

(�) satis�es V(�

opt

) �

V(�

apx

) � ÆV (B) with probability at least 1�1=n

6

.

Algorithm RandomRigidMotion(A;B; �; 
; �)

is given in Figure 4.

Theorem 10 Let A = fA

1

; : : : ; A

n

g and

B = fB

1

; : : : ; B

m

g, be two sets of disjoint unit

RandomRigidMotion(A;B; �; 
; �):

(i) Choose a uniform random sample R

A

� A, with

jR

A

j = 
(
=�), and a uniform random sample S of

points in B, with jSj = 
(log jAj=�

3

).

(ii) For ea
h pair of disks A

i

2 R

A

and B

j

2 B do:

(a) Impose a uniform grid of spa
ing �(�) on

T

ij

= B

j

	 A

i

.

(b) For ea
h grid point

~

t

g

2 T

ij

do:

{ Compute a vertex �

g

apx

of maximum

depth in �

A(

~

t

g

)

(S), and V(

~

t

g

; �

g

apx

).

(iii) Report the pair (

~

t

apx

; �

apx

) that maximizes

V(

~

t

g

; �

g

apx

), and V(

~

t

apx

; �

apx

).

Fig. 4. Algorithm RandomRigidMotion(A;B;�; 
; �).

disks in the plane. Let I

~

t

opt

;�

opt

be the isome-

try that maximizes V(

~

t; �) with the assumption

that V(

~

t

opt

; thopt) � �V (B), for some 0 <

� � 1. Then, for any given � > 0, 
 � �=6,

RandomRigidMotion(A;B; �; 
; �) 
omputes

an isometry I

~

t

apx

;�

apx

, for whi
h V(

~

t

apx

; �

apx

) �

(1� �)V(

~

t

opt

; �

opt

), in O((
n

2

=�

5

) log

2

(n=�)) time.

The algorithm su

eeds with probability at least

1� �

�


� 1=n

6

.
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Abstract

We consider the problem of computing a minimum weight pseudo-triangulation of a set S of n points in the plane.
We first present an O(n log n)-time algorithm that produces a pseudo-triangulation of weight O(wt(M(S)) · log n)
which is shown to be asymptotically worst-case optimal, i.e., there exists a point set S for which every pseudo-
triangulation has weight Ω(log n ·wt(M(S))), where wt(M(S)) is the weight of a minimum spanning tree of S. We
also present a constant factor approximation algorithm running in cubic time. In the process we give an algorithm
that produces a minimum weight pseudo-triangulation of a simple polygon.

Pseudo-triangulations are planar partitions that
recently received considerable attention mainly
due to their applications in visibility [7], ray-
shooting [3], kinetic collision detection [4], rigidity
[10], and guarding [9].

A pseudo-triangle is a planar polygon that has
exactly three convex vertices, called corners, with
internal angle less than π. A pseudo-triangulation
of a set S of n points in the plane is a partition of
the convex hull of S into pseudo-triangles whose
vertex set is exactly S.

A related problem is the problem of triangu-
lating a point set. Minimizing the total length
has been one of the main optimality criteria for
triangulations and other kinds of partition. The
complexity of computing a minimum weight tri-
angulation is one of the most longstanding open
problems in computational geometry and it is
included in Garey and Johnson’s [1] list of prob-
lems from 1979 that neither are known to be
NP-complete, nor known to be solvable in polyno-
mial time. As a result approximation algorithms
for the MWT-problem have been considered. In
this paper we consider the problem of comput-
ing a pseudo-triangulation of minimum weight
(MWPT) which was posed as an open problem by

Email addresses: h.j.gudmundsson@tue.nl (Joachim

Gudmundsson), christos@cs.lth.se (Christos
Levcopoulos).
1 Supported by the Netherlands Organisation for Scientific
Research (NWO).

Rote et al. in [8]. An interesting observation that
makes the pseudo-triangulation favorable com-
pared to a standard triangulation is the fact that
there exists point sets where any triangulation,
and also any convex partition (without Steiner
points), has weight Ω(n · wt(M(S))), while there
always exists a pseudo-triangulation of weight
O(log n·wt(M(S))), where wt(M(S)) is the weight
of a minimum spanning tree of the point set. We
also present an approximation algorithm that
produces a pseudo-triangulation whose weight is
within a factor 27 times the weight of the MWPT.
In comparison, the best constant approximation
factor for the MWT-problem, Levcopoulos and
Krznaric [6], which is proved to be achievable by
a polynomial-time algorithm [6] is so much larger
that it has not been explicitly calculated.

An edge/segment with endpoints in two points
u and v of S will be denoted by (u, v) and its length
|uv| is equal to the Euclidean distance between u
and v. Given a graph T on S we denote by wt(T )
the sum of all the edge lengths of T . The minimum
spanning tree of S and the convex hull of S, de-
noted M(S) and CH(S) respectively, will be used
frequently throughout the paper. Both structures
can be computed in O(n log n) time.

1. A fast pseudo-triangulation

As mentioned in the introduction there exist
point sets S where any triangulation will have

20th EWCG Seville, Spain (2004)
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(a) (b)

Fig. 1. (a) An example where any triangulation will
have weight Ω(wt(M(S)) · n). (b) An example where any
pseudo-triangulation will have weight Ω(wt(M(S)) · log n).

weight Ω(n · wt(M(S))), an example is given
in Fig. 1a. A natural question is whether there
exists similar worst-case bounds for pseudo-
triangulations. In this section we show that one
can always construct a pseudo-triangulation of
weight O(log n · wt(M(S))), and this is asymp-
totically tight, i.e., there exists a point set S
for which every pseudo-triangulation has weight
Ω(log n · wt(M(S))). We start with the lower
bound.
Observation 1 There exists a point set S in

the plane such that any pseudo-triangulation has

weight Ω(wt(M(S))· log n).
Next we present an algorithm that produces a

pseudo-triangulation whose weight asymptotically
meets the lower bound, that is:
Theorem 1 Given a set S of n points in the

plane one can in time O(n log n) produce a pseudo-

triangulation of S of weight O(wt(M(S)) · log n).
The algorithm performs two main steps: first

a partition of the convex hull of S into sim-
ple polygons P1, . . . , Pm followed by a pseudo-
triangulation of each polygon.

In this section we first show how a visibil-
ity polygon P can be pseudo-triangulated in
time O(n log n) using edges of total weight
O(wt(P ) · log n). We also show how to pseudo-
triangulate a special polygon, called an hourglass
polygon. Finally it is shown how one can construct
a spanning graph of S that partitions the convex
hull of S into empty polygons that either are vis-
ibility polygons, or hourglass polygons by using
segments of small total weight. Combining these
results gives us Theorem 1.

1.1. Pseudo-triangulating a visibility polygon

We will show that a weak visibility polygons
whose visibility edge has two convex vertices eas-
ily can be pseudo-triangulated. This result will be
used in the algorithm that pseudo-triangulates a
visibility polygon. First a simple observation.

Observation 2 The geodesic shortest path be-

tween any pair of points p and q in a weak visibility

polygon P is a concave chain.

Observation 3 A weak visibility polygon P whose

visibility edge (p1, p2) has two convex vertices can be

pseudo-triangulated in time O(n log n) using edges

of total weight O(wt(P ) · log n).
Now we are ready to consider visibility polygons.

Assume that we are given a visibility polygon P
with respect to q with n vertices p1, . . . , pn ordered
clockwise around the perimeter of P starting with
q. Let r1, . . . , rm be the convex vertices of P .

Observation 2 implies that we can partition P
into one pseudo-triangle and a set of weak-visibility
polygons by adding the pseudo-triangle with cor-
ners at p1, ri and rj , where 1 < i < j. The two
convex vertices ri and rj are chosen in such a way
that the two angles ∠p2, p1, ri and ∠pn, p1, rj are
less than π. Note also that p2 and pn are con-
vex vertices since P is a visibility polygon. The
pseudo-triangle will consist of the edges in the con-
cave chain between ri and rj plus the edges (p1, ri)
and (p1, rj). The resulting subpolygons outside the
pseudo-triangle are weak visibility polygons whose
visibility edges have convex vertices. According to
Observation 3 each of these subpolygons can be
pseudo-triangulated in O(n log n) time using edges
of total weight O(wt(P ) · log n). Hence we have
showed the following lemma.
Lemma 2 The algorithm produces a pseudo-

triangulation T of a visibility polygon P in

O(n log n) time whose weight is O(wt(P ) · log n).
We end this section by considering the pseudo-

triangulation of an hourglass polygon. A polygon
P is said to be an hourglass polygon if P consists
of two concave chains connected by two edges.

We will later need the following straight-forward
observation:
Observation 4 An hourglass polygon P can be

pseudo-triangulated in linear time by adding one

edge e such that wt(e) 6 1/2 · wt(P ).

1.2. Partition a point set into simple polygons

As input we are given a set S of n points in the
plane, and as output we will produce a set of poly-
gons that are either hourglass polygons or visibility
polygons. The partition is done in two main steps.
First construct the convex hull and the minimum
spanning tree of S. This is done in O(n log n) time
and it partitions CH(S) into simple (maybe de-
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generate) polygons, denoted P1, . . . , Pm. Secondly,
each polygon Pi is processed independently. The
task at hand is to partition Pi into a set of hour-
glass polygons and “restricted” visibility polygons,
which can be pseudo-triangulated as described in
the previous section.

A restricted visibility polygon rvp(P, q) of a
polygon P with respect to a vertex q is a visibility
polygon of P with respect to q such that every
vertex of P (q) also is a vertex of P .
Definition 3 Every edge e = (u, v) of a restricted

visibility polygon R(q) that short cuts exactly three

edges of the maximal visibility polygon P (q) is said

to be a split edge.

Now, let v1, . . . , vn be the vertices of P in clock-
wise order, starting at q = v1. It remains to show
how we can partition P into visibility polygons and
hourglass polygons in O(n log n) time. The idea is
to recursively partition P into restricted visibil-
ity polygons and hourglass polygons. Consider one
level of the recursion. If P is not a restricted visibil-
ity polygon with respect to q, or an hourglass poly-
gon then the following two steps are performed:

(i) Build a restricted visibility polygon rvp(P, q)
of P .

(ii) For each split edge e in rvp(P, q) construct an
hourglass polygon H such that H∩R(q) = e.

A more precise description on how this can be per-
formed in time O(n log n) can be found in the full
version.

2. A MWPT of a simple polygon

Even though the above algorithm is asymptoti-
cally worst-case optimal with respect to the weight
of the minimum spanning tree it can be very far
from the optimal solution. In the rest of this pa-
per we will focus on developing a constant factor
approximation algorithm for the MWPT-problem.
As a subroutine we will also develop an algorithm
that finds an optimal pseudo-triangulation of a
simple polygon.
Theorem 4 Given a simple polygon P one can

compute the minimum weight pseudo-triangulation

of P in O(n3) time using O(n2) space.

We will use a similar dynamic programming
method as proposed by Gilbert [2] and Klincsek
[5] for finding a minimum weight triangulation of a
simple polygon. The basic observation used is that
once some (pseudo-)triangle of the (pseudo- )tri-

angulation has been fixed the problem splits into
subproblems whose solutions can be found recur-
sively, hence avoiding recomputation of common
subproblems.

Let P be the simple polygon with n vertices
p1, . . . , pn in clockwise order. Let δ(pi, pi+j) be the
shortest geodesic path between pi and pi+j . Define
the order of a pair of points pi, pj to be the value
(i − j − 1) mod n, i.e., the number of vertices on
the path from pi to pj along P in clockwise order.
Sort the pairs with respect on their order, ties are
broken arbitrarily. Note that every pair of points
pi and pj will occur twice; once as (pi, pj) and once
as (pj , pi). Now we process each pair in sorted or-
der as follows.

Assume we are about to process (pi, pi+j) and
that the path δ(pi, pi+j) goes through the vertices
pi = pi+a0

, pi+a1
, . . . , pi+ak

= pi+j . Note that the
path partitions P into k + 1 subpolygons. Let
L[i, i + j] be the total edge length of an optimal
pseudo-triangulation for the subpolygon (or sub-
polygons) containing the chain pi, pi+1, . . . , pi+j of
the perimeter of P . Compute L[i, i+ j] recursively
as follows. If (pi, pi+j) is not a convex or concave
chain then we set L[i, i+ j] = ∞. In the case when
the path is a concave or convex chain we obtain
one polygon P ′ bounded by the path δ(pi, pi+j)
and the path between pi and pi+j , and k polygons
P1, . . . , Pk where each Pl is bounded by the edge
(pi+al

, pi+al−1
) and the edges from pi+al−1

to pi+al

along the perimeter of P . If the path is a concave
or convex chain then we will have three cases.

- If δ(pi, pi+j) contains more than one edge
then we know that L[∗, ∗] already has been com-
puted for every edge along δ(pi, pi+j), hence
we only have to add up the values of L[∗, ∗]
which can be done in linear time, i.e., calculating∑k−1

α=0
L[pi+aα

, pi+aα+1
].

- If δ(pi, pi+j) contains exactly one edge
(pi, pi+j) then an optimal pseudo-triangulation of
P1 can be obtained in linear time as follows. We
will have two cases; either pi and pi+j are corners
of the pseudo-triangle in P1 containing (pi, pi+j)
or not.

In the case when both pi and pi+j are con-
vex vertices within P1 then an optimal pseudo-
triangulation of P1 can be obtained in linear time
as follows. Any optimal pseudo-triangulation of
P1 that contains the edge (pi, pi+j) must have pi

and pi+j as corners thus we can try all possible
vertices pm, i < m < i + j as the third corner.
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Testing a pseudo-triangle with corners at pi, pi+j

and pm takes constant time since the L[∗, ∗]-value
of the paths between pi and pm, and pm and pi+j

already has been computed.
Otherwise, if one or both of the points are not

corners, it holds that there must be a pair of points
px and py along the perimeter of P between pi and
pi+j whose shortest geodesic path between them
contains the edge (pi, pi+j). Hence, in this case the
optimal solution has already been computed for P1.

There are O(n2) pairs of points and each pair
takes O(n) time to process. The space bound fol-
lows from the fact that for every pair of points pi

and pj we store L[pi, pj ]. When all the L[∗, ∗] have
been computed we can easily test every possible
pseudo-triangle in constant time, thus Lemma 4
follows.

3. A better approximation

In this section we will give an approximation
algorithm for the MWPT-problem. It is similar
to the approximation algorithm presented in Sec-
tion 1 in the sense that the two main steps are
the same; first a partition of the convex hull of
the point set into simple polygons followed by
a pseudo-triangulation of each polygon. In the
pseudo-triangulation step we will use the opti-
mal algorithm presented in the previous section.
As input we are given a set S of n points in the
plane, and as output we will produce a pseudo-
triangulation T of S.

Algorithm PseudoTriangulate(S)
(i) Construct the convex hull and the minimum

spanning tree of S. This partitions CH(S)
into simple (maybe degenerate) polygons de-
noted Q1, . . . , Qk.

(ii) Apply Theorem 4 to each of the k polygons.
The pseudo-triangulation obtained together
with the convex hull and the minimum span-
ning tree of S is reported.

The proof of the following theorem can be found
in the full version of the paper.
Theorem 5 Given a set of points S algorithm

PseudoTriangulate computes a pseudo-triang-

ulation T of S in time O(n3) using O(n2) space

such that wt(T ) = 4(1+4
√

2) ·wt(Topt), where Topt

is a minimum weight pseudo-triangulation of S.

4. Open problems and Acknowledgement

An obvious question is whether the minimum
weight pseudo-triangulation problem is as hard as
finding the minimum weight triangulation? The
MWT-problem is one of the few open problems
listed in Garey and Johnson’s 1979 book on NP-
completeness [1] that remain open today.

A second open problem concerning the weight
of a pseudo-triangulation is if there exists a min-
imum pseudo-triangulation of low weight. It was
shown by Streinu [10] that every point set al-
lows a minimum planar pseudo-triangulation
that has 2n − 3 edges. Neither of the two algo-
rithms presented in this paper produces minimum
pseudo-triangulations, although the dynamic pro-
gramming algorithm for simple polygons can be
modified to compute a minimum weight minimum
pseudo-triangulation.

The first author would like to thank Mark de
Berg and Bettina Speckmann for valuable discus-
sions during the work on this paper.

References

[1] M. Garey and D. Johnson. Computers and
Intractability. W. H. Freeman and Company, 1979.

[2] P. D. Gilbert. New results in planar triangulations.

Report R–850, Univ. Illinois Coord. Science Lab, 1979.

[3] M. T. Goodrich and R. Tamassia. Dynamic Ray
Shooting and Shortest Paths in Planar Subdivisions

via Balanced Geodesic Triangulations. Journal of

Algorithms, 23(1):51–73, 1997.

[4] D. Kirkpatrick and B. Speckmann.

Kinetic Maintenance of Context-Sensitive Hierarchical

Representations for Disjoint Simple Polygons. Proc.

18th ACM Symp. on Computational Geometry, 2002.

[5] G. Klincsek. Minimal triangulations of polygonal
domains. Annals of Discrete Math., 9:121-123, 1980.

[6] D. Krznaric and C. Levcopoulos. Quasi-Greedy

Triangulations Approximating the Minimum Weight

Triangulation. J. of Algorithms 27(2): 303-338. 1998.

[7] M. Pocchiola and G. Vegter. Pseudo-triangulations:

Theory and applications. In Proc. 12th ACM

Symposium on Computational Geometry, 1996.

[8] G. Rote, C. A. Wang, L. Wang, and Y. Xu. On

constrained minimum pseudotriangulations. Proc. 9th
Symposium on Computing an Combinatorics, 2003.

[9] B. Speckmann and C. D. Tóth. Allocating Vertex pi-
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Abstract

We show that the convex hull of a collection of n pairwise disjoint disks in the plane is computable in O(n log n)
time using only the chirotope of the collection of disks. The method relies mainly on the development of an
(elementary) theory of convexity in the universal covering space of the punctured plane.

1. Introduction

1.1. Result of the paper.

Throughout the paper we consider a finite fam-
ily oi of n ≥ 2 pairwise disjoint bounded closed 2-
dimensional convex sets in the plane with regular
boundaries (disks for short) and we assume that
the disks are in general position in the sense that
there is no line tangent to three disks. A bitangent
is a closed line-segment tangent to two disks at its
endpoints. The chirotope of the family of disks is
defined as the map χ that associates with each or-
dered triplet (u, v, w) of bitangents tangent to a
same disk o the value +1 if walking counterclock-
wise around the boundary of o we encounter the bi-
tangents u, v, w in cyclic order u, v, w, u, v, . . .; the
value −1, otherwise. The main result of the paper
is the following.
Theorem 1 The convex hull of a collection of n

pairwise disjoint disks in the plane is computable
in O(n log n) time using only the chirotope of the
collection of disks. ✷

1.2. Previous work.

Several algorithms have been developed in the
past to address the convex hull problem for disks
in the plane : the set of hull-bitangents can be com-
puted as the set of breakpoints of the upper en-
velope of the support functions of the oi using a
divide-and-conquer algorithm [6, chap. 6] as de-
scribed in [5], running in O(n log n) time but mak-

ing use of the chirotope of the family of directions of
the set of bitangents of the set of disks augmented
with a point at infinity. More sophisticated tech-
niques – using even more involved predicates like
slicing the disks – have been developped to design
output sensitive convex hull algorithm [4]. (The re-
lated problem of computing the convex hull of a
simple curved polygon is adressed in [1].)

For point obstacles the situation is different :
Graham’s scan [2] and Knuth’s incremental algo-
rithm [3] both compute the convex hull of a set of
points using only its chirotope.

1.3. Motivations.

Applied motivations We have devised an al-
gorithm that computes a pseudo-triangulation
given the convex-hull. This algorithm also runs
in O(n log n) and uses only the chirotope. Now,
pseudotriangulations are useful data structures.

Implementation motivations The chirotope
shows fewer degenerate cases than the more in-
volved predicates used in previous algorithms,
and our algorithms use simpler data-structures.

Theoretical motivations The convex hull de-
pends only on the chirotope, not on the more
involved predicates used in existing algorithms.
Computing these objects by means of the most
basic predicates possible is interesting in its own
right. It can also lead to isolating a family of
axioms satisfied by the chirotopes, in the style
of Knuth’s CC-systems.
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2. Convexity in the universal covering
space of the punctured plane.

2.1. Definitions and notations

Let p : P̃ −→ P be a universal covering of the
punctured plane P = R

2 \ {(0, 0)}. The reader
might have in mind as a model of the map p the ver-
tical projection upon plane z = 0 of the screw sur-
face {(r cos θ, r sin θ, θ) ∈ R

3 | (θ, r) ∈ R × R
+∗}.

θ is called the angle-coordinate of point (θ, r) of
P̃ and r is called its distance-coordinate. As the
reader might suspect we use the geometric struc-
ture on P̃ inherited via the covering map from the
euclidean structure on the punctured plane. Thus
a line (half-line, line segment) of P̃ is a connected
component of the pre-image under the covering
map of a line (half-line, line-segment) of P. A line
will be regarded as oriented towards growing angle-
coordinate. Define the angle (denoted L̂) of a line
L, as the least upper bound of the angle coordi-
nate of its points. A line L is uniquely identified by
L̂ and the distance to the origin of its projection
onto P, denoted δ(L).

Points A and B in P̃ are said visible if there is a
line-segment in P̃ with endpoints A and B. A subset
X of P̃ is called convex if for any pair (A, B) of
visible points in X , line-segment [AB] is included
in X . An intersection of convex sets is a convex set,
which allows to define the convex hull of a set as
the smallest (for the inclusion relation) convex set
containing the set. An half-plane of P̃ is the closure
of a connected component of the complement of a
line of P̃. The projection of an half-plane under p

is either the whole punctured plane P or an half-
plane of P.

A s imple convex of P̃ is a connected component
of the pre-image under p of a closed bounded con-
vex subset of P. A long convex of P̃ is a closed con-
vex that contains a point (θ, r) for any θ and some
r depending on θ, and that is bounded in the r di-
rection for any θ. The pre-image under p of a closed
bounded convex subset of R

2 containing the origin
of the plane in its interior is an example of a long
convex.

A positive supporting line of convex is a directed
line containing boundary points such that the con-
vex lies on the left side of the directed line.

a long convex

φ(θ)
θ

U V

A

B
C

D

Fig. 1. A simple comvex and a long convex share 2 common
exterior tangents. The drawaing is done in the sheet of the
disk = the sheet of the point of the disk that realizes its
distance to the origin.

2.2. Some theorems

Theorem 2 The border of a long convex is a curve
θ → (θ, φ(θ)) that has a left-hand and a right-hand
tangent for every θ, such that if they differ, the
right-hand one has a larger angle than the left-hand
one, and the angle of the left- or right-hand tangent
increases with θ. The tangents to the border are
positive supporting lines (and vice-versa). ✷

Let U be a convex and let x be a point. A bound-
ary point y of U is said visible from x if line segment
[x, y) exists and U are disjoint. The set of bound-
ary points of U visible from y is a closed connected
set.
Theorem 3 Let U be a long convex, and V a sim-
ple convex, such that V ∩U = ∅ or V is not included
in U and ∂U intersects ∂V in exactly two points
that are not angular points of both ∂U and ∂V .
Then U and V share exactly two positive common
supporting lines, and the border of their convex hull
is made of two half-unbounded connected sub-arcs
−∞B and A+∞ of ∂U , a connected sub-arc CD of
∂V and two bitangent segments BC and CA to U

and V where BA (rep. DC) is the set of boundary
points of U (resp. V ) visible from V (resp. U). ✷

3. Our algorithm.

3.1. Notations.

Wlog, assume (0, 0) ∈ o1. Every oi (i > 1) has
infinitely many simple convex lift-up in P̃, while o1

has a single lift-up, õ1, a long convex. Choose one
lift-up of o2 and denote it o2,1. If I and J are lift-
up of oi and oj for some i and j, we define vǫIǫ′J

as the lift-up of vǫiǫ′j whose endpoints belong in
I and J , when such a lift-up actually exists (for
instance this is always the case between õ1 and any
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ℓ

ℓ′′

ℓ′

o1

2′ 3′

4′

5′

6′

7′

8′

Fig. 2. In this example the disks oi′ is la-
belled i′, B(ℓ) = v1′2′v2′3′v3′5′v5′6′v6′2′v2′1′ ,
D(ℓ) = {1′, 2′, 3′, 4′, 5′, 6′}, and Q(ℓ) = [1, 2′, 6′, 5′].

lift-up of any oi with i > 1). Wlog, assume võ1o2,1

has angle 0. Denote oi,k the lift-up of oi such that
võ1oi,k

has angle in [2(k−1)π, 2kπ). Finally, denote
ℓi,k the half-line, supporting võ1oi,k

, with origin its
tangency point upon õ1.

We perform a rotational sweep, with a half-line
ℓ tangent to õ1 at its origin. The sweep starts at
position ℓ = ℓ1,1. During the sweep, we keep track
of a subset of the objects that intersect ℓ, therefore,
we will stop when ℓ reaches every ℓi,k when i > 1
(an “enter event”), and some ℓi,k when i < −1 (a
“leave event”). We define a total order on the set
of half-lines leaving õ1 by setting ℓ ≺ ℓ′ if and only
if ℓ̂ < ℓ̂′. Computationally, if i > 0 and j > 0,
then ℓi,k ≺ ℓj,l if and only if k < l or k = l and
χ(v12, v1i, v1j) (or i = 2), so that we can sort the
events (if, say i < 0 and χ(v1−i, v12, v1i), substitute
k+1 to k). Then for a position ℓ of the sweep half-
line, we define :

(i) the counterclockwise sequence B(ℓ) =
v1v2 . . . vk of bitangents of the convex hull
C(ℓ) of the set D(ℓ) of disks oj,k such that
ℓj,k � ℓ – by convention õ1 is an element
of D(ℓ) –, starting from v1 = võ1o2,1

; the arc
with source vi and sink vi+1 is denoted ai

and its supporting object o′i (a0 and ak are
half-unbounded loops around õ1). In fact,
we sometimes regard B as the list of arcs ai.

(ii) the arc a(ℓ) defined as the arc aj′ where j′

is the minimal element of the subset of in-
dexes j (1 ≤ j ≤ k) such that ℓ pierces the
supporting disks o′i of ai (j ≤ i ≤ k) in
the order o′k, o′k−1, . . . , o

′

j (o′k = o1). The list
o′ko′k−1 . . . o′j′ is denoted Q(ℓ).

See Figure 2 for an illustration. We write ℓ− for
any half-line of the open interval (ℓ′, ℓ) where ℓ′ is

the previous event.
During the sweep, we maintain B(ℓ), Q(ℓ) and

a(ℓ). Initially ℓ = ℓ2,1, D(ℓ) = {õ1, o2,1}, B(ℓ) =
[võ1o2,1

; vo2,1õ1
], a(ℓ) is the arc with source võ1o2,1

and sink vo2,1õ1
, and Q(ℓ) = õ1o2,1. We store Q in a

binary search tree. To that end, we need to be able
to decide given two objects oi,k and oj,l intersecting
ℓ which one is to the right of the other along ℓ. This
can be done with the procedure “if χ(v1j , v1i, v1−j)
then χ(vij , v1i, vi−j) else χ(v1j , vji, vj−i)”.

s

t

r
r

vsr

vrt

vr,−t
vs,−r

vα′α

ℓ

ℓℓ

o

oo

α

α′

Fig. 3. oi is included in the current convex hull.

3.2. Handling enter-events.

Assume we are to process the enter-event for
object o. Let r be the rightmost disk of Q(ℓ−), s

its predecessor along B(ℓ−), and t its successor (if
any, i.e., if r 6= õ1).
Theorem 4 l pierces either a(ℓ−), or vr(ℓ−)t(ℓ−)

or vs(ℓ−)r(ℓ−).
Theorem 5 Assume that o appears along ℓ at the
left of disk r, between, say, disks α and α′. Then
either o is included in C(ℓ−), or o intersects vα′α.
The latter case occurs if and only if p(o) intersects
bitangent vp(α′)p(α), and then the conditions of the-
orem 3 are satisfied. ✷

Theorem 6 Assume that o appears along ℓ at the
right of disk r. Then either arc a(ℓ−) contains a
point visible from o or o is included in C(ℓ−). The
latter case stands if and only if either (non exclusive
this time) p(o) is included in the convex hull of p(r)
and p(t) (in that case, ℓ pierces vsr or vrt), or p(o)
is included in the pseudotriangle bounded by the
bitangents vp(s)p(r) and vp(s),−p(r), and p(s) is not
above p(ℓ) and s + (2π, 0) has not been inserted yet
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(in that case l pierces through vs(ℓ)r(ℓ)). See Figure 3
for an illustration. Also, when o is not included in
C(ℓ−), the conditions of theorem 3 are satisfied. ✷

Now, we explain how to update B and Q. First
we locate o in Q.

Assume first that o is to the left of r. Let α and
α′ be its left-hand and right-hand neighbours in
Q(ℓ−). If p(o) does not intersect vp(α)p(α′) we just
ignore o : B(ℓ) = B(ℓ−), Q(ℓ) = Q(ℓ−), and a(ℓ) =
a(ℓ−). Otherwise we insert o into Q, and update
B : we split B at v, and we regard the two resulting
parts as stacks of arcs whose respective heads are
the arcs contributed by α and α′. Then we pop from
the left-hand stack until an arc β, say supported
by disk o′, is met such that o′ = õ1 or χ(u, v, w)
where u is the source of p(β), w is its sink, and
v = vp(o)p(o′). Similarly we pop from the right-hand
stack until an arc β′, say supported by disk o′′, is
met such that χ(u, v′, w) where u is the source of
p(β′), w is its sink, and v′′ = vp(o′′)p(o). Then, we
shorten β (respectively β′) : its source (respectively
sink) is replaced with voo′ ) (respectively vo′′o).
Then, to build B(ℓ), we concatenate what is left of
the two stacks, with the arc (denoted δ) of ∂o with
source vo′′o and sink voo′ in between. When an arc
that follows a(ℓ−) (included) in B(ℓ−) is popped,
its supporting disk is removed from Q. If a(ℓ−) is
removed from the right-hand stack, denoting u the
object supporting the predecessor of δ along B(ℓ),
we insert u into q if u + (2π, 0) has not undergone
an enter-event yet and p(u) intersects p(ℓ) at the
right of p(o), so that u becomes r(ℓ) instead of o.

Assume now that o is to the right of r. We dis-
card o when one of the two cases stated in theo-
rem 6 holds. Otherwise, we proceed as in the pre-
vious case, with three exceptions : we split B(ℓ−)
through arc a instead of bitangent vα′α (that is,
there is one copy of a at the head of both stacks);
the copy of a at the top of the left-hand stack is
popped if and only if χ(vro, vor, vrt); an object is
removed from Q if only if an arc it supports is
popped from the left-hand stack.

The predicates used to decide whether o should
be discarded can be implemented by means of χ,
we omit the details.

3.3. Handling leave events.

In fact, only leave events for r need to be pro-
cessed. The processing of those events simply con-

sists in removing r from Q.

3.4. Sketch of a proof of correction.

From theorems 5, 6 and 3, if follows that : (1-)
when o is included in C(ℓ−), B is not updated, so
that B(ℓ) is still the border of C(ℓ); (2-) when o is
not included in C(ℓ−), the border of C(ℓ) is made
of two connected arcs of the border of C(ℓ−), one
connected arc of the border of o and two bitan-
gents to o. What our algorithm does is a two-way
walk along the border of C(ℓ−), starting from a
point known to be in the arc of C(ℓ−) that is to be
discarded, until discovery of the two bitangents.

3.5. Extracting the planar convex hull.

We could prove that after only two rounds (that
is, at ℓ−2,3), p(B) contains the convex hull of o1, . . . ,
on as a factor. But we do not know how to identify
efficiently that factor based solely on the chirotope.
Hence the need for a third round. Denote B the
value of B obtained at the end of the third round.
Theorem 7 Let γ be the first arc of B (for
counter-clockwise orientation) supported by some
oi,2. Then γ indeed exists, the bitangent b′ =
b + (2π, 0) appears in B (it is created during the
third round), and the projection of the factor γMb′

of B is the convex hull of the oi. ✷
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1. Introduction

Geometric networks arise frequently in our ev-
eryday life: road networks, telephone networks,
and computer networks are all examples of geo-
metric networks that we use daily. They also play
a role in disciplines such as VLSI design and mo-
tion planning. Almost invariably, the purpose of
the network is to provide a connection between
the nodes in the network. Often it is desirable
that the connection through the network between
any pair of nodes be relatively short. From this
viewpoint, one would ideally have a direct con-
nection between any pair of nodes. This is usually
infeasible due to the costs involved, so one has to
compromise between the quality and the cost of
the connections.

For two given nodes in a graph, the ratio of their
distance in the graph and their ‘direct’ distance is
called the dilation or stretch factor for that pair
of nodes, and the dilation of a graph is the maxi-
mum dilation over all pairs of nodes. For geometric
networks, this is more precisely defined as follows.
Let S be a set of n points (in the plane, say), and
let G be a graph with node set S. Now the dilation
for a pair of points p, q is defined as the ratio of the
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length of the shortest path in G between p and q,
and the length of the segment pq. (The length of a
path is the sum of the lengths of its edges.) Again,
the dilation of G is the maximum dilation over all
pairs of points in S. A graph with dilation t is
called a t-spanner. Ideal networks are t-spanners
for small t with small cost.

Spanners were introduced by Peleg and Schäffer [6]
in the context of distributed computing, and by
Chew [1] in the context of computational geome-
try. They have attracted much attention since—
see for instance the survey by Eppstein [2]. The
cost of spanners can be measured according to var-
ious criteria. For example, it is sometimes defined
as the number of edges (here the goal is to find a
spanner with O(n) edges), or as the total weight
of the edges (here the goal is to find a spanner
whose total weight is a constant times the weight
of a minimum spanning tree). Additional proper-
ties, such as bounding the maximum degree or the
diameter, have been considered as well.

We generalize the notion of spanners to geo-
metric networks whose nodes are rectangles rather
than points. Let S be a set of n non-intersecting,
axis-parallel rectangles and let E be a set of axis-
parallel segments connecting pairs of rectangles.
For any two points p, q in the union of the rect-
angles, the dilation is now the ratio of the length
of the shortest rectilinear path in the network be-
tween p and q and their L1-distance. Here a path in
the network is a path that stays within the union
of the rectangles and the connecting segments. The
dilation of the network is the maximum dilation
over all pairs p, q. Again, our aim is to construct a
network whose dilation is small. To illustrate the
concept, imagine one is given a number of rect-
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angular buildings, which have to be connected by
footbridges. It is quite frustrating if, to walk to a
room opposite ones own room in an adjacent build-
ing, one has to walk all the way to the end of a
long corridor, then along the footbridge, and then
back again along the corridor in the other building.
Hence, one would usually place the footbridge in
the middle between buildings. Following this anal-
ogy, we will call the rectangles in the input build-

ings from now on, and the connecting segments
bridges. We call the underlying graph of the net-
work the bridge graph.

The generalization we study introduces one im-
portant additional difficulty in the construction of
a spanner: for points one only has to decide which

edges to choose in the spanner, but for buildings,
one also has to decide where to place the bridge
between a given pair of buildings. It is the latter
problem we focus on in this paper: we assume the
topology of the network (the bridge graph) is given,
and our only task is to place the bridges so as to
minimize the dilation.

Formally, our problem can be stated as follows:
we are given a set S of axis-parallel disjoint rect-
angles (buildings) in the plane, a graph G with
node set S, and for each arc e of G a bridge re-

gion Λe, an axis-aligned rectangle connecting the
two buildings. Buildings may degenerate to seg-
ments or points. The bridge graph G must only
have arcs between buildings that can be connected
by a horizontal or vertical segment, and may not
have multiple edges or loops. The bridge regions
must be disjoint from each other and the buildings.
Our goal is to find a set of horizontal or vertical
bridges lying in the bridge regions that has mini-
mum dilation.

Figure 1 shows a bridge graph (the bridge re-
gions are shaded) and a set of possible bridges.
Note that the bridge regions Λ2 and Λ3 simply
allow any bridge between the two buildings, but
bridge region Λ1 has been chosen so as to avoid
intersecting s4 or the bridge between s3 and s4.

Our results are as follows.
• In general, the problem is NP-hard.
• If the bridge graph is a tree, then the prob-

lem can be solved by a linear program with
O(n2) variables and constraints.

• If the bridge graph is a path, then the prob-
lem can be solved in O(n3 log n) time.

• If the bridge graph is a path and the build-
ings are sorted vertically along this path, the

problem can be solved in time O(n2). A (1+
ε)-approximation can be computed in linear
time.

s1

s2

s3

s4
Λ1

Λ2

Λ3

Fig. 1. A bridge graph and a bridge configuration

2. The bridge graph is arbitrary

The bridge-placement problem is NP-hard if the
bridge graph is allowed to be arbitrary. We prove
this by a reduction from Partition. The input to
Partition is a set B of n positive integers, and
the task is to decide whether B can be partitioned
into two subsets of equal sum. Partition is NP-
hard [3, Problem SP12].
Theorem 1 It is NP-hard to decide whether the

bridges in a given bridge graph on n rectangular

buildings can be placed such that the dilation is at

most 2.

3. The bridge graph is a tree

In this section we will show that the bridge-
placement problem can be solved by a linear pro-
gram if the bridge graph is a tree. We start by in-
troducing some terminology and notation, and by
proving some basic lemmas. As before, we denote
the bridge graph by G. Any set of bridges realiz-
ing G will be called a configuration.

p

q

π(p, q, B)

‖pq‖

Fig. 2.
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Fig. 3.

Given a configuration B and two points p and q
in the union of all buildings, we use π(p, q, B) to de-
note the family of rectilinear shortest paths from p
to q within the configuration (that is, paths whose
links lie inside buildings or on bridges). The paths
of this family are essentially the same, they dif-
fer only in how they connect two points inside the
same building, and so we will simply speak about
the unique path π(p, q, B). The dilation of the path
π = π(p, q, B) is dil(π) := |π|/‖pq‖, where |π| is
the total length of π and ‖pq‖ is the L1-distance
of p and q. Figure 2 shows a configuration and an
example path.

The dilation dil(B) of a configuration B is de-
fined as the maximum dilation of any path with
respect to B. Our aim is to find a configuration
of minimum dilation. We first characterize pairs
of points that are responsible for the dilation of a
given configuration.
Lemma 2 Let σ be the dilation of a configura-

tion B whose underlying graph is a tree. Then there

are points p and q with dil(π(p, q, B)) = σ such that

the closed bounding box of p and q does not contain

any point of a building other than p and q, and at

least one of the points p and q is a building corner.

A point pair (p, q) as in the lemma—its bounding
box contains no other point of any building and
at least one of p and q is a building corner—will
be called a visible pair—see Figure 3 for examples.
We denote the set of all visible pairs by V .

Given a bridge graph G, our goal is to minimize

max
(p,q)∈V

dil(π(p, q, B))

over all configurations B realizing G. We show that
this problem can be reformulated as a linear pro-
gram.
Theorem 3 If the bridge graph G is a tree, then

a placement of the bridges that minimizes the di-

lation can be computed by solving a linear program

with O(n2) variables and constraints, where n is

the number of bridges in the bridge graph.

4. The bridge graph is a path

In the previous section we have given a linear
program for the bridge-placement problem for the
case where the bridge graph is a tree. Linear pro-
grams can be solved in practice, and for integer
coefficients, interior-point methods can solve them
in time polynomial in the bit-complexity of the in-
put [4]. It is not known, however, if they can be
solved in polynomial time on the real RAM, the
standard model of computational geometry. In this
section, we give polynomial time algorithms for the
case where the bridge graph is a path.

Since the bridge graph G is a path, we can num-
ber the buildings and bridges so that bridge bi con-
nects buildings si−1 and si, for 1 ≤ i ≤ n (so there
are n + 1 buildings and n bridges). Before we con-
tinue, we need to introduce some more terminol-
ogy. We consider a path π = π(p, q, B) to be ori-
ented from p to q. After traversing a bridge b, the
path can continue straight on to traverse the next
bridge b′ if b and b′ are collinear. In all other cases,
it has to turn.

b9b10 b8

b12

b13

pπ

b1

b2

b4

b6

b7

b11

b14

q

s6

b5

b3

s10

s1

Fig. 4. U-turns and their outer sides

Given a path π, a link ℓ of π is a maximal straight
segment of the path. A link can contain more than
one bridge if they are collinear. For example, in
Figure 4 there is a link containing b1 and b2, and
another link containing b8, b9, and b10.

The path π turns at both ends of a link (except
for the first and last link). The link is a right U-

turn if π turns right before and after the link. A
left U-turn is defined symmetrically. In Figure 4,
the links containing bridges (b1, b2), (b4, b5), and
b12 are right U-turns, while the links containing
b7, (b8, b9, b10), b11, and (b13, b14) are left U-turns.
Note that there can be U-turns that do not contain
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any bridges, as the link of π inside building s6 in
Figure 4.

The inner side and outer side of a U-turn
are rectangular regions infinite on one side, and
bounded by the line supporting the link and the
two lines orthogonal to it through the first and
last points of the link. The outer side lies locally
to the left of a right U-turn, or to the right of a
left U-turn, the inner side lies locally to the right
of a right U-turn or to the left of a left U-turn. In
Figure 4, the outer sides of all U-turns are shaded.

U-turns are the links of a path that determine
its dilation, as the following lemma shows.
Lemma 4 Let B and B′ be configurations, (p, q)
a visible pair, and π := π(p, q, B) and π′ :=
π(p, q, B′) the paths between p and q with respect

to the two configurations. If dil(π′) < dil(π) then

there exists a U-turn ℓ containing bi . . . bj of π such

that the corresponding bridges b′i, . . . , b
′
j of B′ lie

strictly on the inner side of ℓ.
We will give an algorithm that takes as input the

set of buildings s0, . . . , sn and a real number σ > 1,
and computes a configuration B with dil(B) ≤ σ,
or determines that no such configuration exists.

The algorithm computes n sets I1, I2, . . . , In,
where Ii is a set of possible bridges between
si−1 and si. The sets are defined recursively
as follows. Assume that I1, . . . , Ii−1 have al-
ready been defined. For each visible pair (p, q)

with p ∈
⋃i−1

j=0 sj and q ∈ si we define I(p, q)
as the set of bridges bi connecting si−1 and si

such that the following holds: there is a set of
bridges b1 ∈ I1, b2 ∈ I2, . . . , bi−1 ∈ Ii−1 such
that dil(π(p, q, (b1, . . . , bi))) ≤ σ. Finally, Ii is the
intersection of all I(p, q).

Note that for each visible pair (p, q) we can
choose the bridges in I1, . . . , Ii−1 independently.
This makes it possible to compute Ii efficiently, as
we will see below. On the other hand, it implies
that not every sequence of bridges chosen from
the sets will be a configuration with dilation at
most σ—our main lemma will be to show that
such a sequence does indeed exist.

Once we know I1, . . . , In, we can recursively
compute a configuration with dilation at most σ:
Choose an arbitrary bridge bn ∈ In. If bridges
bn−1, bn−2, . . . , bi+1 have been computed, choose a
bridge bi ∈ Ii whose distance from bi+1 is minimal.
Since Ii is an “interval of bridges”, this implies
that either bi and bi+1 are collinear, or bi is one of

the extreme bridges in Ii. We now prove that this
approach is correct.
Lemma 5 Let I1, . . . , In be given as defined above.

A configuration B with dilation dil(B) ≤ σ exists

if and only if In 6= ∅. If it exists, it can be computed

in O(n) time from the intervals.

Lemma 6 The intervals I1, . . . , In defined above

can be computed in O(n2) time and O(n) space.

Lemmas 6 and 5 imply the following theorem.
Theorem 7 Given a bridge graph G on a set of

n+1 buildings that is a path and a real number σ >
1, we can in time O(n2) compute a configuration B
realizing G with dil(B) ≤ σ or determine that no

such configuration exists.

It seems hard to improve this result when there
are Θ(n2) visible pairs that could determine the
dilation. In fact, we do not even know how to decide
in o(n2) time whether a given configuration has
dilation ≤ σ. If the number k of visible pairs of the
given set of buildings is o(n2/ log n), the running
time can be improved to O(k log n).

We solve the original optimization problemusing
Megiddo’s parametric search [5].
Theorem 8 Given a bridge graph on a set of n+1
buildings that is a path, we can compute a configu-

ration with the optimal dilation in time O(n3 log n),
or in time O(nk log2 n), where k is the number of

visible pairs.
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Abstract

It is shown that for any set of disjoint line segments in the plane there exists a pointed binary encompassing tree,

that is, a spanning tree on the segment endpoints that contains all input segments, has maximal degree three, and

such that every vertex is incident to an angle greater than π. As a consequence, it follows that every set of disjoint

line segments has a bounded degree pseudo-triangulation.

1. Introduction

Disjoint line segments in the plane are the fun-
damentals of computational geometry. They form
the atomic structure of most planar geometric
data structures and geographic information sys-
tems. Planar objects are typically represented
by a polygonal approximation which, in turn, is
composed of (interior) disjoint line segments. Not
surprisingly, researchers studied many of their
combinatorial properties, such as visibility, com-
pact representation, and ray shooting.

Geometric graphs. We follow one particularly
well-studied trail: that of constrained geometric
graphs. A geometric graph is a graph together
with a planar embedding such that the edges are
straight line segments. We consider crossing-free

geometric graphs, that is, we do not allow two
edges to cross. Observe that crossing-free is not
equivalent to planar, since planar graphs may
have embeddings in the plane with crossing edges.
Given a set of disjoint segments in the plane (that
is, a crossing-free geometric matching), we say
that a graph is encompassing if it is a connected
crossing-free geometric graph that contains all
input segments as edges (without Steiner points).

It is known that there does not always exists a
Hamiltonian circuit (nor path) through a set of dis-

joint segments. In fact, it is NP-complete to decide
if a Hamiltonian circuit exists for a given set of
segments, if the segments are allowed to intersect
at their endpoints [16]. Rappaport et al. [17] gave
a polynomial time algorithm for a set of convexly
independent segments. Among n disjoint segments
in the plane there are always Θ(log n) for which an
encompassing path exists [7], this number amounts
to Θ(

√
n) if all segments are axis-parallel [21].

The maximal degree of an encompassing tree on
the segment endpoints that is constrained to con-
tain all input segments is, therefore, at least three.
After a preliminary upper bound of seven by Bose
and Toussaint [6], Bose et al. [5] proved that an en-
compassing tree with maximal degree three always
exists. Later Hoffmann and Tóth [8] showed that
there is also a Hamiltonian encompassing graph
with maximum degree three.

Pointedness. Pseudo-triangulations are de-
compositions of the plane invented by Pocchi-
ola and Vegter [14]. A pseudo-triangulation is
a partition of the convex hull of input points
or polygonal objects into pseudo-triangles, that
is, simple polygons with exactly three vertices
whose interior angle is less than or equal to π.
They obtained considerable attention recently, as
they have found numerous important applications
in visibility [13,14], rigidity [20], kinetic colli-
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sion detection [1,11], and guarding [19]. Pseudo-
triangulations, just like triangulations, are also
crossing-free geometric graphs. A characteristic
property of minimal pseudo-triangulations is that
for every vertex p all the incident edges are on one
side of a line through p (in other words, every ver-
tex is incident to an angle greater than π). Using
Streinu’s terminology [20], this property is called
pointedness.

By a result of Streinu [20], there is an encom-
passing pointed pseudo-triangulation for any set
of disjoint line segments: We obtain a pseudo-
triangulation by adding edges greedily while
pointedness is maintained. Rote et al. [18] recently
studied the size of minimum pseudo-triangulations
constrained to contain a set of non-crossing seg-
ments. The pointed (or equivalently, minimum)
pseudo-triangulation of n disjoint segments always
has 4n − 3 edges and 2n − 2 faces.

2. Results

On one hand, both the algorithm of Hoffmann
and Tóth [8] and that of Bose et al. [5] are doomed
to violate pointedness due to their proof tech-
niques. In fact, the algorithm in [8] can output
a binary encompassing graph for which no span-
ning subgraph is pointed. On the other hand,
the pointed encompassing tree obtained by the
straightforward method of Streinu [20] has no
guarantee on the degree of the resulting geometric
graph. Here, we show how to construct an encom-
passing tree that respects pointedness and has
maximal vertex degree at most three:

Theorem 1 For any set of disjoint line segments

in the plane there exists a pointed binary encom-

passing tree.

An application. It is known that the trian-
gulation of a planar point set can have arbitrar-
ily high degree. This is also true for triangulations
constrained to contain disjoint line segments. Ket-
tner et al. [10] proved that for any set of points
in the plane there is a pseudo-triangulation with
maximal degree at most five. Bounded vertex de-
gree is a useful property in most applications, as
local operations or kinetic data structures require a
constant amount of updates. Recently, Aichholzer
et al. [2] showed that a bounded degree pseudo-

triangulation constrained to contain a Hamiltonian
circuit (a simple polygon) also exists, with a de-
gree bound of ten. We can extend these results to
pseudo-triangulations constrained to contain dis-
joint line segments (that is, a perfect matching).

Theorem 2 Every set of disjoint line segments

has a pointed pseudo-triangulation with maximum

vertex degree at most ten.

The best lower bound we could generate is a
set of disjoint segments such that in any pointed
pseudo-triangulation there is a vertex of degree at
least six.

3. Proof technique

We define a class of weakly simple polygons that
we call pearl polygons. Every vertex of a pearl poly-
gon has either degree two or degree four. Moreover,
for every degree four vertex we mark one incident
edge such that deleting all marked edges from the
pearl polygon results in a spanning tree. The con-
vex hull of the segments belongs to the class of
pearl polygons. We start out from the convex hull,
and modify it locally using geodesic curves while
maintaining a pearl polygon until certain condi-
tions are satisfied. The proof is completed by ap-
plying induction in each face of a suitable convex
subdivision of the interior of the pearl polygon.

The general scheme of the induction and the use
of geodesic curves are similar to the proof tech-
niques applied in [8]. However, the details are quite
different and there are too many to list them within
the scope of this abstract. Hence, we have to refer
the reader to the full paper at this point.

4. Bounded degree pseudo-triangulations
for disjoint segments

A more careful analysis reveals that the following
form of Theorem 1 also holds:

Theorem 3 For any set S of disjoint line seg-

ments in the plane there exists a pointed binary en-

compassing tree such that the maximal degree is at

most three, and if a convex hull vertex has degree

three then at least one of the incident edges is part

of the convex hull.
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We combine this theorem with an algorithm of
Aichholzer et al. [2], according to which a simple
polygon can be pseudo-triangulated such that the
degree of every convex vertex is at most four and
the degree of every reflex vertex is at most five,
that is, every convex (reflex) vertex has at most
two (three) new incident edges in addition to the
two incident polygon edges. This result also holds
for weakly simple polygons that may have reflex
interior angles of 2π.

Let us consider the union of the binary pointed
encompassing tree T claimed by Theorem 3 and
the convex hull conv(S) of the segments in S.
The tree T partitions the polygonal domain
conv(S) into weakly simple polygons. We obtain a
bounded degree pseudo-triangulation by pseudo-
triangulation each polygon using the algorithm
of Aichholzer et al. [2]. Every interior vertex pint

has degree three, and one of the incident angu-
lar domains is greater than π. So the degree of
pint increases by at most 3 + 2 + 2 to at most
10. Every convex hull vertex phull has degree at
most 4 in T ∪ conv(S) according to Theorem 3,
and the one reflex angular domains lies at the
exterior of conv(S) which does not need to be
pseudo-triangulated. Therefore the degree of phull

increases by at most 2 + 2 + 2 to at most 10. This
proves Theorem 2.

Fig. 1. Lower bound construction.

In the remainder, we describe a set of 14 disjoint
segments whose every pseudo-triangulation has a
vertex of degree at least 6. The segment endpoints
form a regular 28-gon P = (p1, p2, . . . , p28). Place
seven disjoint segments along the sides p4k+2p4k+3,
and along parallel the diagonals p4k+1p4k+4 for k =
1, 2, . . . , 7, see Fig. 1. The pseudo-triangulation of
a convex polygon is also a triangulation. Any tri-
angulation of the inner 14-gon either has a vertex
of degree five, or it has three consecutive vertices,
each of degree four. Taking the seven outer seg-
ments into account adds an additional convex hull
edge to each vertex. Moreover, out of any three

consecutive vertices of the inner 14-gon one gets
another edge, since the outer quadrilaterals have to
be (pseudo-)triangulated by any diagonal. There-
fore, there is a vertex of degree at least six in P .
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Abstract

We improve the best known lower bound for the polygon exploration problem from 1.2071 to 1.2825.

1. Introduction

Exploring an unknown environment is a basic
problem for autonomous mobile systems. Here,
we suppose that a simple polygon in the plane
represents the unknown environment and a point-
shaped robot with a vision system, starting at
some boundary point s, has the task of going
around inside the polygon until the whole en-
vironment has been visible at least once before
returning to s. Seeing all points inside the polygon
is clearly equivalent to seeing its whole boundary,
as long as the polygon is simple (does not contain
holes, as we assume).

The shortest watchman tour starting and ending
in s is the shortest tour that can see the whole
polygon, see figure watchman. This is the perfect
solution in a known environment, and it can be
computed using the algorithms of Chin and Ntafos
or Tan and Hirata [1,3,7,8].

But in an unknown environment the shortest
watchman tour is also not known, so any tour that
explores the polygon online is inevitably longer
than the shortest watchman tour; there are excep-
tions for special cases [2]. So it is an interesting
question to ask for a strategy that produces explo-
ration tours that are not so much longer than the
perfect solution in a known polygon, and Hoffmann
et al. [4] have given such a competitive exploration
strategy. This strategy guarantees a tour that is at
most 26.5 times as long as the shortest watchman
tour.

Although this upper bound is most probably not
tight, it is not really obvious how to prove a shorter

s

Fig. 1. A shortest watchman tour.

factor by enhancing this rather complicated proof
or by giving a better strategy. And the worst case
that is known for this strategy has a factor of just 5.

2. First ideas for lower bounds

In this paper we propose to look at this problem
“from the other side”: what is a lower bound for
this problem, i. e., can we show that no strategy can
guarantee a competitive factor less than this lower
bound? A proof for such a bound can be given by a
concrete polygon for which we have to show that an
arbitrary strategy will necessarily make a certain
detour as compared to the shortest tour. A trivial
lower bound is (

√
2 + 1)/2 ≈ 1.2071, see the left

picture in Fig. 2: we use an isosceles, rectangular
triangle, the start point s is at the right angle and
at the other two corners there are two very small
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ss

Fig. 2. Deriving the lower bounds 1.2071 (left) and 1.2145 (right).

pockets. One of the pockets is formed such that the
corner must be visited while the other is not. The
line segment connecting the two corners is called a
threshold. To trick any strategy to make a detour
we can wait until this threshold is reached: if this
occurs left of the midpoint then the right corner
must be visited, and vice versa. Thus, only when
the robot eventually visits the threshold, it can see
which corner is still to visit. Now it is easy to see
that we have a lower bound of (

√
2 + 1)/2 here.

In fact we can act as the malicious adversary of
a strategy: depending on the decisions of the strat-
egy we decide how the polygon looks like at those
parts that have not been seen yet. For example,
the previous idea can be refined by introducing a
second threshold, see the right picture in Fig. 2.
First, we let the strategy reach the line between
the two corners as before. Here, we reveal one of
the corners, but in contrast to the first example for
the second corner two possibilities remain: either
we have to visit the corner itself or it suffices to
reach the second threshold which is a diagonal line
through the corner. After carefully choosing the
lengths and the angles (the triangle is still isoceles,
but the angle at s is 96.99◦) we obtain a bound of
1.2145, which constitutes a small progress.

3. Using more thresholds

But this idea of several thresholds can be driven
further. In the following, we sketch our approach
with three thresholds. The basic figure is a triangle,
but from one of its corners there are edges to an
inner point, this will be the starting point s, see
Fig. 3. So besides vertex s there are four corners in
the scene with a hidden pocket. The pockets may

be formed such that the corner must be visited or
not, this is the information which is unknown at
the start.

Any tour, also the shortest watchman tour, has
to visit at least all three thresholds. It is also clear
that a reasonable strategy will visit the thresholds
in the same order as they appear along the triangle,
otherwise an even bigger detour will be generated.

Now on each threshold we place a critical point:
if the robot visits the threshold to the right of the
critical point (as seen from s) then we as the ma-
licious adversary decide that the left corner of the
threshold must also be visited. If the visit occurs
to the left of the critical point then the threshold is
done except for the last one where we decide that
in this case the right corner has to be visited.

We as the adversary are free to decide about the
exact shape of the triangle, the placement of s,
and also the placement of the critical points. This
is a challenging optimization exercise with many
degrees of freedom and several interwoven levels of
optimization, which probably can only be solved
numerically.

Due to the lack of space we can only briefly sum-
marize our result obtained with the help of Cabri
Geometry [5,6], see Fig. 4. We use an equilateral
triangle (but it is not clear if this is the best) and
a starting point s as shown in the figure. For each
threshold there is one uncertainty, so we have eight
cases altogether. For each case we take the length
of the shortest watchman tour and compare it to
the tour passing through the critical points and the
corners that have to be visited in that case. The
minimum of these eight ratios which we have de-
termined to be at least 1.2825 is a lower bound for
the exploration problem.
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two more hidden pockets here

s

Fig. 3. A triangle-like polygon with three thresholds and four hidden pockets.

4. Conclusions

The new lower bound of 1.2825 for the polygon
exploration problem represents a certain progress,
but we think that with our technique one can go
some further steps in that direction. Since the op-
timization problem presented here has so many de-
grees of freedom and consists of several levels that
mutually depend on each other, we can not be sure,
yet, to have found the global optimum for the three
thresholds. Furthermore, it looks promising, but
tedious, to introduce four or even more thresholds,
but since the number of cases will be about two
to the power of the number of thresholds, there is
some considerable work to be done. Finally, it is
interesting to note that there is still a great gap
between the lower bound obtained in this way and
the best known upper bound of 26.5.
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Abstra
t

This paper shows an appli
ation of 
omputational geometry methods to the preparation of image-based digital

library editions. We present a formalism for des
ribing non-hierara
hi
al markup of manus
ripts in terms of one-

and two-dimensional geometry. This formalism allows us to use geometri
 data stru
tures and algorithms to pro
ess

marked-up do
uments. With this approa
h we 
an over
ome many well-known and inherently diÆ
ult problems

with non-hierar
hi
al markup. We present algorithms based on segment trees and range-query stru
tures for

performing a number of queries on markup stru
ture. This appli
ation of 
omputational geometry data stru
tures

to a new domain also provides insights into novel types of geometri
 operations and queries. Some of these

te
hniques are 
urrently being used by resear
hers in the Resear
h Computing for Humanities proje
t, whi
h aims

to produ
e ele
troni
 editions of sele
ted manus
ripts from the British Library.

1. Introdu
tion

From a 
omputational geometry point of view,

an old manus
ript, a folio (a sheet of writing mate-

rial) and the s
ript (a text on the manus
ript page)

have interesting features in one, two and three di-

mensions and all of them are important. Spatial

deformations of the folio 
an be studied for restora-

tion purposes in three dimensions. Illuminations,

damages, restorations, and paleographi
 features

of individual letters 
an be studied as two dimen-

sional obje
ts. The s
ript, a sequen
e of lines of

text, 
an be viewed as one dimensional as it follows

visible or invisible rulings that guide the layout of

the text [B94℄. In fa
t, 
onne
ting the image view

of a manus
ript with its trans
ript is typi
ally the

�rst task. In this paper we will dis
uss this linear

aspe
t of folia and we will dis
uss geometri
 stru
-

tures that support its tagging.

Extensive tagging or markup is an often ex
ru
i-

ating task in the preparation of ele
troni
 editions

of manus
ripts. The tagging pro
ess results in a

stru
tured des
ription of the do
ument's 
ontents,

its features and attributes in a form that 
an be

Email addresses: jurek�
s.uky.edu (Jerzy W.

Jarom
zyk), neil�
s.uky.edu (Neil Moore).

1

This resear
h was supported in part by NSF ITR grant

0219924

used to view and e�e
tively query the edition. The

XML (eXtensible Markup Language) is a prevail-

ing format used for des
ribing literary and artisti


work for Digital Libraries. XML �les des
ribe well-

hierar
hi
al stru
tures (e.g., book, volume, se
tion,

page, line, word and 
hara
ter) of the do
ument

and for that reason they 
an be viewed as rooted

trees. Although it seems natural that most do
u-

ments adhere to su
h hierar
hies, it is often not true

in pra
ti
e. Evenworse, this happens in the 
ontext

of 
ultural heritage that urgently requires preser-

vation: old and severely damaged manus
ripts. An

image of a damaged folio from Alfred the Great's

Old English translation of Boethius's Consolation

of Philosophy is demonstrated in Figure 1.

Words 
an span more than one line, damages or

restorations 
an overlap words and parts of them.

A rather simple 
ase is illustrated in Figure 2 where

in the 
onvoluted tagging one word spans two lines;

as su
h, it is not well-formed XML.

It has been long re
ognized that, in spite of its

popularity, XML su�ers from an inability to en-


ode elements that are not in hierar
hi
al relation-

ships [RMD93℄. There are numerous approa
hes

to address this problem 
alled the 
on
urrent hi-

erar
hies problem; see, for example, [B95℄. Mostly

these approa
hes are 
on
erned with tagging tran-

20th EWCG Seville, Spain (2004)
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Fig. 1. An image of a damaged manus
ript page

Fig. 2. Markup that is not hierar
hi
al

s
ripts (text-based do
uments). In our task a

manus
ript or an image of it is the primary sour
e

for preparing an ele
troni
 edition and we need

to handle the 
on
urrent hierar
hies in geometri



ontext of the image. This image-based approa
h

is the most distinguishing aspe
t of our work.

A geometri
 view of the problem allows us to

engage many data stru
tures, in parti
ular multi-

dimensional ones. In this paper, we will fo
us on

two of them: segment trees and a grid based data

stru
ture developed by Overmars for range queries

(we will use it for line segments rather than points,

though). We will analyze how these stru
tures sup-

port a variety of queries that are essential in the


ontext of editing and studying manus
ripts.

There are several 
ontributions of this paper.

The �rst is in applying 
omputational geometry to

a new area.We will present a formalism for 
on
ur-

rent hierar
hies that allows us to 
onne
t geomet-

ri
 stru
tures with XML do
uments. Spe
i�
ally,

we will dis
uss a number of algorithms for querying

the stru
ture of a do
ument, together with their

asymptoti
 
omplexities.

2. De�nitions

In this se
tion we des
ribe a formalism for repre-

senting multihierar
hi
al do
ument markup. This

formalism allows us to 
onne
t the stru
ture of

markup with a geometri
 representation; this al-

lows us to use geometri
 data stru
tures and algo-

rithms to pro
ess tagged do
uments.

2.1. Markup elements

We represent a markup element as a tuple

(N;A; �; !) where N is the element name, A (a

map from strings to strings) the attributes, and �

and ! are integers with 1 � � � !. The interval

of a markup element e, written I(e), is the 
losed

interval [�(e); !(e)℄ � N.

Definition 2.1 Let e

1

and e

2

be two markup ele-

ments. We de�ne the relations:

{ e

1

� e

2

if !(e

1

) < �(e

2

)

{ e

1

� e

2

if �(e

1

) � �(e

2

) and !(e

1

) � !(e

2

)

and I(e

1

) 6= I(e

2

). In this 
ase we say that e

1

is

a des
endant of e

2

, or equivalently that e

2

is an

an
estor of e

1

.

We state without proof the following theorems:

Theorem 2.1 The relations � and � ea
h form a

stri
t partial order.

Theorem 2.2 Let e

1

and e

2

be two markup ele-

ments. Exa
tly one of the following holds: e

1

� e

2

;

e

2

� e

1

; e

1

� e

2

; e

2

� e

1

; e

1

overlaps e

2

; or I(e

1

) =

I(e

2

).

3. Hierar
hies

Definition 3.1 Let E be a �nite set of markup

elements. E is hierar
hi
al if:

{ There is an element r 2 E, 
alled the root, su
h

that, for ea
h element e 2 E, e � r or e = r

{ No two elements of E overlap, and no distin
t

elements of E share the same interval.

Lemma 3.1 Let E be a hierar
hi
al set of markup

elements, and e 2 E. Then either e is the root and

has no parents in E, or e is not the root and has

exa
tly one parent in E.
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Theorem 3.1 Let E be a hierar
hi
al set of

markup elements. Let G be a graph on E su
h that

the edge (e

1

; e

2

) is in G if e

1

is the parent of e

2

. G

is a tree.

This justi�es our use of the term \hierar
hy".

Be
ause 
hildren of the same parent 
annot be de-

s
endants of one another, by Theorem 2.2 they 
an

be ordered by �. The tree is therefore an ordered

tree.

4. Data stru
tures and queries

In this se
tion we des
ribe two geometri
 data

stru
tures and apply them to a number of 
ommon

queries on do
uments.

A segment tree [BW80, PS85℄ is a dynami
 data

stru
ture to represent a set of segments. For inser-

tions and deletions it is assumed that the endpoints

belong to the set of n points known in advan
e.

The underlying stru
ture is a balan
ed binary

tree with leaves representing atomi
 segments.

Ea
h node 
orresponds to the union of the atomi


segments rooted in this nodes. Intervals that be-

long to the 
olle
tion represented in the segment

tree are asso
iated with nodes of the tree and sat-

isfy the following property: a node v stores s if the

union of its atomi
 segments is 
ontained in s but

the union of the atomi
 segments asso
iated with

the parent of v do not. Thanks to this property

ea
h segment is represented in at most O(logn)

nodes.

Insertions and deletions 
an be performed in

O(log n) time. Also, in the same time one 
an 
ount

the number of segments in the 
olle
tion that in-


ludes a given query point.

While segment trees are well-suited for some

types of queries, there are other queries whi
h seg-

ment trees do not perform as eÆ
iently. We use a

range- query stru
ture to support these queries.

We treat a segment S = [�; !℄ in U = [1;M ℄ as

a point p(S) = (�; !) in U

2

. We 
all this represen-

tation of (a 
olle
tion of) segments a segment grid.

Many properties of S then 
orrespond to range

properties of p(S) in the segment grid. For exam-

ple, S � T if and only if p(S) lies to the lower right

of p(T ).

We shall make use of general range queries of the

form: �nd all points lying in the (
losed) re
tangle

bounded by (a; b) and (
; d). There exist a number

of data stru
tures supporting su
h queries in a two-

dimensional grid. A number of these stru
tures are

des
ribed in [O88℄; two are of parti
ular interest

for our purposes.

Theorem 4.1 (Overmars) We 
an represent n

points in U

2

(and thus n segments in U) using

O(n logn) spa
e in su
h a way that range queries

take O(k+log log jU j) time, where k is the number

of results returned by the query.

This data stru
ture makes use of perfe
t hash-

ing, and is therefore slow to build. There is an al-

ternative data stru
ture with slightly worse query

time, but signi�
antly better 
reation time:

Theorem 4.2 (Overmars) We 
an represent n

points in U

2

using O(n logn) spa
e in su
h a way

that range queries take O

�

k +

p

log jU j

�

time,

where k is the number of returned results. This

data stru
ture 
an be built in O(n logn) time.

Neither of the range-query data stru
tures per-

mits eÆ
ient insertion or deletion. For more infor-

mation on these stru
tures, see [O88℄.

4.1. Des
endant queries

A 
ommon query on do
uments is to �nd all el-

ements of a 
ertain type that are des
endants of a

given element e. For example, given a <page> ele-

ment, one may wish to �nd all <damage> elements


ontained within that element, either dire
tly (as


hildren) or indire
tly. We 
an perform this oper-

ation by �nding all des
endants of e and reporting

only those of the requested type.

Re
all from De�nition 2.1 that the des
endants

of e are those elements whi
h begin no earlier than

e, end no later than e, and do not both begin and

end at the same point as e. In terms of the segment

grid, p(I(x)) is a des
endant of e if I(x) 6= I(e)

and p(I(x)) lies in the re
tangle bounded by the

points (�(e); �(e)) and (!(e); !(e)). Using the data

stru
ture from Theorem 4.2, we 
an �nd all su
h

points in O(k +

p

logM) time, where M is the

do
ument's maximum o�set and k is the number

of results.

4.2. Overlap queries

Another useful query is: given an element e, �nd

all elements whi
h overlap e. If e

1

overlaps e

2

, e

1


ontains at least one of the endpoints of e

2

. Con-

versely, if e

1


ontains at least one endpoint of e

2

,

either e

1

overlaps e

2

, e

1

= e

2

, e

1

� e

2

, or e

2

� e

1

.

This suggests the following:

Theorem 4.3 LetD be a do
ument 
ontaining the

element e. Let k be the number of elements over-

lapping e, d the number of des
endants of e, a the

number of an
estors of e, andM the maximum o�-
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set of D. We 
an �nd all elements overlapping e in

O(k + d+ a+ logM) time.

We �rst �nd the sets B(e) and E(e) of all ele-

ments whose intervals 
ontain �(e) and !(e), re-

spe
tively, using stabbing queries in a segment tree.

B(e) 
ontains at most k+ d+ a+1 elements, and

likewise for E(e). The stabbing queries 
an there-

fore be performed in time O(k+d+a+logM). We

then iterate through the results, reporting those

whi
h a
tually overlap e. Testing whether a given

segments overlaps e requires 
onstant time, so this

step does not in
rease the 
omplexity.�

We 
an improve on this bound somewhat by

making use of range queries. If e

1

overlaps e

2

, e

1


ontains exa
tly one endpoint of e

2

. In the seg-

ment grid, segments 
ontaining �(e) but not !(e)

lie in the re
tangle R

�

bounded by the points

(1; �(e)) and (�(e); !(e)). Likewise, segments 
on-

taining !(e) but not �(e) lie in the re
tangle R

!

bounded by (�(e); !(e)) and (!(e);M), where M

is the maximum o�set of the do
ument. While

these re
tangles 
ontain all the elements whi
h

overlap e, they do not 
ontain only su
h elements.

As with the stabbing queries des
ribed above, the

range queries also return e, and may return some

an
estors and des
endants of e, so we must remove

these from the result set. It is 
lear, however, that

the re
tangles do not 
ontain any element x su
h

that x � e or e � x.

Theorem 4.4 LetD be a do
ument 
ontaining the

element e. Let k be the number of elements over-

lapping e, d the number of des
endants of e, a the

number of an
estors of e, andM the maximum o�-

set of D. We 
an �nd all elements overlapping e in

O(k + d+ a+

p

logM) time.

Ea
h range query returns at most k + d+ a+ 1

elements, and 
an therefore be performed in time

O(k+d+a+

p

logM). As with the stabbing query,

we then iterate through the results of the range

query, reporting those elements whi
h overlap e;

again, this does not a�e
t the overall 
omplexity

of the overlap query.�

The running time of overlap queries 
an be im-

proved still further if we impose additional restri
-

tions on the endpoints of elements:

Theorem 4.5 Let D be a do
ument su
h that no

two elements share an endpoint in 
ommon, and let

e be an element inD. If k is the number of elements

overlapping e and M is the maximum o�set of D,

we 
an �nd all elements overlapping e in O(k +

p

logM) time.

5. Con
lusion

We have presented a formalism that 
onne
ts

the realm of 
omputational geometry to algorith-

mi
 problems that we have fa
ed in the marking

up of image-based ele
troni
 editions. As exam-

ples of geometri
 stru
tures we have dis
ussed seg-

ment trees and range query stru
tures and have

applied them to the well-re
ognized and inherently

diÆ
ult problem of non-hierar
hi
al markup. Two-

dimensional aspe
ts of manus
ript marking, su
h

as marginalia, paleographi
 features and damages

will involve additional geometri
 stru
tures.
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Abstract

Let n,m, k, h be positive integers such that 1 ≤ n ≤ m, 1 ≤ k ≤ n and 1 ≤ h ≤ m. Then we give a necessary

and sufficient condition for every configuration with n red points and m blue points on a line or circle to have an

interval containing precisely k red points and h blue points.

Key words: balanced interval, interval, two sets of points, line, circle

1. A balanced interval on a line

In this section we shall prove the following the-
orem.
Theorem 1 Let n, m, k, h be integers such that
1 ≤ n ≤ m, 1 ≤ k ≤ n and 1 ≤ h ≤ m. Then
for any n red points and m blue points on a line
in general position (i.e., no two points lie on the
same position.), there exists an interval that con-
tains precisely k red points and h blue points if and
only if

(⌊ n

k + 1

⌋

+ 1
)

(h − 1) < m <
(⌊ n

k − 1

⌋)

(h + 1),

(1)

where the rightmost term is an infinite number
when k = 1.

We begin with an example of our theorem. Con-
sider a configuration consisting of 10 red points and
20 blue points on a line in general position. Then
by the above theorem, we can easily show that if
k ∈ {1, 2, 3, 5, 10}, then such a configuration has
an interval containing exactly k red points and 2k
blue points; otherwise (i.e., k ∈ {4, 6, 7, 8, 9}) there
exist a configuration that has no such an interval
(Fig. 1). We call an interval that contains given
number of red points and blue points a balanced
interval.

(a): 

(b): 

Red points =

Blue points =

Fig. 1. (a): An interval containing 3 red points and 6 blue
points; (b): A configuration that has no interval containing
exactly 4 red points and 8 blue points.

Theorem 1 is an easy consequence of the follow-
ing five lemmas.

For a configuration with red and blue points on
a line, we denote by R and B the sets of red points
and blue points, respectively. A configuration X

with n red points and m blue points on the line is
expressed as

{x1} ∪ {x2} ∪ · · · ∪ {xn+m},

20th EWCG Seville, Spain (2004)
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where each xi denotes a red point or a blue point
ordered from left to right. The configuration X is
also expressed as

R(1) ∪ B(1) ∪ · · · ∪ R(s) ∪ B(s),

where R(i) and B(i) denote disjoint subsets of R

and B, respectively, and some of them may be
empty sets. For a set Y , we denote by |Y | the car-
dinality of Y .
Lemma 2 If

m ≤
(⌊ n

k + 1

⌋

+ 1
)

(h − 1), (2)

then there exists a configuration with n red points
and m blue points that has no interval containing
exactly k red points and h blue points.

PROOF. Let t = ⌊ n
k−1

⌋. Then n ≤ (t+1)(k−1),
and m ≥ t(h + 1) by (4). Hence we can obtain the
following configuration with n red points and m

blue points:

R(1) ∪ B(1) ∪ · · · ∪ R(t + 1) ∪ B(t + 1),

where |R(i)| ≤ k−1 for every 1 ≤ i ≤ t+1, |R(1)∪
· · ·∪R(t+1)| = n, |B(i)| = h+1 for every 1 ≤ i ≤
t, |B(t + 1)| = m − (h + 1)t ≥ 0 and |B(1) ∪ · · · ∪
B(t + 1)| = m. Then this configuration obviously
has no interval containing exactly k red points and
h blue points since every interval containing k red
points must include B(j) for some 1 ≤ j ≤ t.

Lemma 3 If

m >
(⌊ n

k + 1

⌋

+ 1
)

(h − 1), (3)

then every configuration with n red points and m

blue points on a line has an interval containing ex-
actly k red points and at least h blue points.

PROOF. Let t = ⌊ n
k+1

⌋. Let X be a configuration
with n red points and m blue points. Suppose that
X has no desired interval. Namely, we assume that
every interval containing exactly k red points has
at most h − 1 blue points.

Let r1, r2, · · · , rn be the red points of X or-
dered from left to right. For integers 1 ≤ i <

j ≤ n, let I(i, j) denote an open interval (ri, rj),
and let B(i, j) denote the set of blue points con-
tained in I(i, j). Furthermore, B(−∞, i) denotes
the set of blue points contained in the open interval
(−∞, ri), and B(i,∞) is defined analogously. Then

for any integer 1 ≤ s ≤ t−1, I(s(k+1), (s+1)(k+
1)) contains exactly k red points {rj | s(k+1)+1 ≤
j ≤ (s+1)(k +1)−1)}, and thus |B(s(k +1), (s+
1)(k + 1))| ≤ h − 1 by our assumption. Similarly,
an open interval (−∞, rk+1) contains exactly k red
points, and thus |B(−∞, k + 1)| ≤ h − 1. More-
over, since n < (t+1)(k+1), I(t(k +1),∞) has at
most k red points, and thus B(t(k+1),∞) ≤ h−1.
Therefore

|B| ≤ |B(−∞, k + 1) ∪ B(k + 1, 2(k + 1)) ∪ · · ·

∪B(t(k + 1),∞)|

≤ (t + 1)(h − 1).

This contradicts (3). Consequently the lemma is
proved.

Lemma 4 If 2 ≤ k and

m ≥
⌊ n

k − 1

⌋

(h + 1), (4)

then there exists a configuration with n red points
and m blue points on a line that has no interval
containing exactly k red points and h blue points.

PROOF. Let t = ⌊ n
k−1

⌋. Then n ≤ (t+1)(k−1),
and m ≥ t(h + 1) by (4). Hence we can obtain the
following configuration with n red points and m

blue points:

R(1) ∪ B(1) ∪ · · · ∪ R(t + 1) ∪ B(t + 1),

where |R(i)| ≤ k−1 for every 1 ≤ i ≤ t+1, |R(1)∪
· · ·∪R(t+1)| = n, |B(i)| = h+1 for every 1 ≤ i ≤
t, |B(t + 1)| = m − (h + 1)t ≥ 0 and |B(1) ∪ · · · ∪
B(t + 1)| = m. Then this configuration obviously
has no interval containing exactly k red points and
h blue points since every interval containing k red
points must include B(j) for some 1 ≤ j ≤ t.

Lemma 5 If 2 ≤ k and

m <
⌊ n

k − 1

⌋

(h + 1), (5)

then every configuration with n red points and m

blue points on a line has an interval containing ex-
actly k red points and at most h blue points.

PROOF. Let t = ⌊ n
k−1

⌋. Let X be a configura-
tion with n red points and m blue points. Suppose
that X has no desired interval. Namely, we assume
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that every interval containing exactly k red points
has at least h + 1 blue points.

Let r1, r2, · · · , rn be the red points of X ordered
from left to right. For integers 1 ≤ i < j ≤ n,
let I[i, j], denote a closed interval [ri, rj ], and let
B′(i, j) denote the set of blue points contained in
I[i, j].

Then for any integer 0 ≤ s ≤ t − 2, I[k + s(k −
1), k + (s + 1)(k − 1)] contains exatly k red points
{rj | k + s(k − 1) ≤ j ≤ k + (s + 1)(k − 1))}, and
thus |B′(k + s(k − 1), k + (s + 1)(k − 1))| ≥ h + 1
by our assumption. Similarly, we have |B′(1, k)| ≥
h + 1. Therefore

|B| ≥ |B′(1, k) ∪ B′(k, k + (k − 1)) ∪ · · ·

∪B′(k + (t − 2)(k − 1), k + (t − 1)(k − 1))|

≥ t(h + 1).

This contradicts (5). Consequently the lemma is
proved.

Lemma 6 Consider a configuration with n red
points and m blue points on a line. Suppose that
there exists two intervals I and J such that both I

and J contain exactly k red points respectively, I

contains at most h blue points, and that J contains
at least h blue points. Then there exists an interval
that contains exactly k red points and h blue points.

PROOF. If the sets of red points contained in I

and J , respectively, are the same, then the lemma
immediately follows. Thus we may assume that I∩
R 6= J ∩R, where R denote the set of n red points.
Without loss of generality, we may assume that the
leftmost red point of I lies to the left of J .

We shall show that we can move I to J step by
step in such a way that the number of red points is
a constant k and the number of blue points changes
±1 at each step. We first remove the blue points
left to the leftmost red point of I one by one, and
then add the consecutive blue points lying to the
right of I one by one, and denote the resulting in-
terval by I1 (Fig. 3). We next simultaneously re-
move the leftmost red point of I1 and add the red
point lying to the right of I1, and get an interval I2,
which also contains exactly k red points and whose
blue points are the same as those in I1 (Fig. 3). By
repeating this procedure, we can get an interval
whose red point set is equal to that of J . There-
fore, we can move I to J in the desired way. Con-

sequently, we can find the required interval, which
contains exactly k red points and h blue points.

2. A balanced interval on a circle

(a)

(b)

Red points =

Blue points =

Fig. 2. (a): An interval containing 4 red points and 8 blue
points; (b): A configuration that has no interval containing
exactly 4 red points and 5 blue points.

In this section, we consider the following theo-
rem, and give its example in Figure reffig:2
Theorem 7 Let n, m, k, h be integers such that
1 ≤ n ≤ m, 1 ≤ k ≤ n and 1 ≤ h ≤ m. Then
for any n red points and m blue points on a circle
in general position (i.e., no two points lie on the
same position.), there exists an interval that con-
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tains precisely k red points and h blue points if and
only if

n

k + 1
(h − 1) < m <

n

k − 1
(h + 1), (6)

where the rightmost term is an infinite number
when k = 1.

Theorem 8 can be proved by showing similar
lemmas as in the case of line. We conclude the
paper by the next conjecture.
Conjecture 8 Let n, m, k, h be integers such that
1 ≤ n ≤ m, 1 ≤ k ≤ n and 1 ≤ h ≤ m. Then
for any n red points and m blue points in the plane
in general position (i.e., no three points lie on the
same.), there exists a wedge that contains precisely
k red points and h blue points if and only if

n

k + 2
(h − 1) < m <

n

k − 2
(h + 1), (7)

where the rightmost term is an infinite number
when k = 1.

Pr1

r2

P

(a)

(b)

r1

r2

Fig. 3. Wedges containing 4 red points and 8 blue points.
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Abstract

We describe a general technique to construct data structures for similarity search in semialgebraic pattern spaces.
These spaces capture most known combinations of geometric patterns (e.g., point sets, polygons, polygonal curves)
and geometric distance measures for them (e.g. Hausdorff-distance, area of overlap, Fréchet-distance) together
with their quotients under various transformation classes (e.g., translations, rigid motions) and they provide the
first non-trivial exact search structures in these settings.

Key words: Computational geometry, Shape matching, Similarity queries, Data structures

1. Introduction

Similarity search is a much-studied and practi-
cally important type of problem: Given a set D
of n patterns from a suitable class of valid geo-
metric patterns (e.g., polygonal curves), preprocess
them in such a way that we can determine quickly
for a query pattern Q, which of the n preprocessed
patterns is most similar to the query object (this
is called a similarity query). We assume that we
have an appropriate distance measure δ (e.g., the
smallest Fréchet distance that can be achieved un-
der translations) to asses the similarity of two pat-
terns.

Satisfactory algorithmic results exist only in the
case that the patterns can be encoded in a Eu-
clidean space, or an L1- or L∞-space such that
δ is the corresponding metric [9], or in the case
that they can be embedded in such spaces with
a low distortion [7,6]. Then we have available the
very powerful techniques of Voronoi decomposi-
tions. Some algorithms were formulated with ‘van-
tage points’ or similar devices [2,3,5,10], but then
there are no general performance bounds: only un-
der additional assumptions that enforce in some
way that the distance measure is a metric that is

Email address: Christian.Knauer@inf.fu-berlin.de

(Christian Knauer).

‘similar’ to a Euclidean metric it is possible to ob-
tain nontrivial bound on the performance of these
algorithms [9].

In this paper, we study the case where the size
of the individual patterns is small, compared to n.
To be more precise, we assume that |I| = O(1)
for all I ∈ D. In that case the distances δ(Q, I),
can be computed in O(1) time (for reasonable δ).
So the query can be answered in O(n) time with-
out additional storage and preprocessing, but up
to now there are no algorithms and data structures
that allow such queries with a nontrivial query
time among preprocessed pattern sets. We de-
scribe a general technique to construct data struc-
tures for similarity queries for many combinations
of geometric patterns (e.g., point sets, polygons,
polygonal curves) and geometric distance measures
(e.g. Hausdorff-distance, area of overlap, Fréchet-
distance) together with their quotients under vari-
ous transformation classes (e.g., translations, rigid
motions). The solution achieves sublinear query
time with quadratic preprocessing time and stor-
age and provides the first non-trivial search struc-
tures in these settings.

A pattern space Π = (Ω, δ) of dimension d is
a set of geometric objects Ω, where each object
can be described by exactly d real parameters, to-
gether with a distance measure δ that maps pairs
of objects to non-negative real numbers. Usually

20th EWCG Seville, Spain (2004)
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we identify Ω with R
d, the parameter space of Π.

The objects in Ω are called patterns. Intuitively,
when δ(P, I) is small, we consider the patterns P
and I to be similar. Note that we do not demand
that δ has some special properties (like being a
metric, etc.). As an example consider polygonal
chains in the plane with at most r vertices and the
Fréchet-distance as a distance measure. Each such
chain can be encoded by a sequence of at most 2r
real numbers, the coordinates of the vertices of the
chain. If a chain has less than r vertices we can
simply pad this description by repeating the last
vertex; note that this padding does not interfere
with the distance function.

A pattern space Π = (Rd, δ) is called semialge-
braic, if the set FΠ := {(P, I, ǫ) ∈ R

d × R
d × R |

δ(P, I) ≤ ǫ} is semialgebraic, i.e., there is a boolean
formula B in s boolean variables z1, . . . , zs, and
there are s polynomials g1, . . . , gs in (2d + 1) real
variables xP , xI , xǫ (xP and xI are actually se-
quences of d variables each), such that

δ(P, I) ≤ ǫ ⇐⇒

B(z1 ← [g1(xP ← P, xI ← I, xǫ ← ǫ) ≥ 0],

. . .

zs ← [gs(xP ← P, xI ← I, xǫ ← ǫ) ≥ 0])

is true

(← denotes variable substitution and [X ] is the
truth value of the predicate X).

As an example consider the set of all point sets
in the plane with at most r points each and the di-
rected Hausdorff-distance as a distance measure.
Recall that for compact sets P, I ⊆ R

d the di-
rected Hausdorff distance from P to I, is defined as
h(P, I) := maxx∈P miny∈I ||x− y||.

This is a pattern space of dimension 2r, since
each pattern P can be encoded by a sequence of at
most 2r real numbers, the coordinates of the points
in P . If P has less than r points we can simply pad
this description by repeating some point; note that
this padding does not interfere with the distance
function. To see that it is actually a semialgebraic
pattern space, note that for two finite point sets P ,
I and ǫ > 0 we have that

h(P, I) ≤ ǫ ⇐⇒ ∀p ∈ P∃i ∈ I : ||p− i||2 − ǫ2 ≤ 0

⇐⇒
∧

p∈P

∃i ∈ I : ||p− i||2 − ǫ2 ≤ 0

⇐⇒
∧

p∈P

∨

i∈I

||p− i||2 − ǫ2 ≤ 0.

We will see in Section 3 that the notion of a
semialgebraic pattern space captures most known
combinations of geometric patterns (e.g., point
sets, polygons, polygonal curves) and geometric
distance measures (e.g. Hausdorff-distance, area of
overlap, Fréchet-distance) together with their quo-
tients under various transformation classes.

In this paper, we study the problem of similarity
search among patterns from a semialgebraic pat-
tern space where the size of the individual pat-
terns is small, compared to their number: Given a
data set D that consists of n patterns from a semi-
algebraic pattern space Π = (Ω, δ) of dimension
d, where d is constant, preprocess D into a data
structure to answer the following kind of similarity
queries: For a query pattern Q ∈ Ω, determine
– ∆(Q,D) := minargI∈D δ(Q, I), the set of pat-

terns in D to which Q has the smallest possible
distance, and

– ∆(D, Q) := minargI∈D δ(I, Q), the set of pat-
terns inD that have the smallest possible distance
to Q.
Since d is constant, the distances δ(Q, I), can be

computed in O(1) time (for reasonable δ). So these
queries can be answered in O(n+k) time (where k
is the size of the answer) without additional stor-
age and preprocessing, but up to now there are
no algorithms and data structures that allow such
queries with a nontrivial query time among prepro-
cessed pattern sets.

We will also consider the decision version of
the similarity queries, called ǫ-similarity queries,
where we are given an additional parameter ǫ > 0,
and we want to determine
– ∆(Q,D, ǫ) := {I ∈ D | δ(Q, I) ≤ ǫ}, the set of

patterns in D to which Q has distance at most
ǫ, and

– ∆(D, Q, ǫ) := {I ∈ D | δ(I, Q) ≤ ǫ}, the set of
patterns in D that have distance at most ǫ to Q.
Again the brute-force approach can answer these

queries in O(n + k) time, but there are no data
structures that allow such queries with a nontrivial
query time among preprocessed pattern sets.

2. Similaritiy queries in pattern spaces

In this abstract we only consider the decision
version of the similarity queries. We describe a data
structure that answers ∆(Q,D, ǫ)-queries (the case
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of ∆(D, Q, ǫ)-queries is completely symmetric).
The same techniques apply to similarity queries as
well and yield similar results. Our main result is
the following
Theorem 1 Suppose we are given a set D that
consists of n patterns from a semialgebraic pattern
space Π of dimension d = O(1). Then we can build
in O(n2) time a data structure of size O(n2) that
answers ǫ-similarity queries in O(n1−1/(2d−3) + k)
time, where k is the size of the answer.

PROOF. The construction works in two steps.
We first describe a data structure that can be built
in O(n2d−2) time (and requires the same amount
of space) and can answer a query in O(log n + k)
time, where k is the size of the answer. Then we
use a simple partitioning approach to yield the de-
sired result (in fact we prove a somewhat stronger
tradeoff that implies the Theorem).

Since Π = (Ω, δ) is a semialgebraic pattern space
of dimension d = O(1), there is a boolean formula
B in s = O(1) boolean variables z1, . . . , zs, and
there are s polynomials g1, . . . , gs in (2d + 1) real
variables xP , xI , xǫ, such that

δ(Q, I) ≤ ǫ ⇐⇒

B(z1 ← [g1(xQ ← Q, xI ← I, xǫ ← ǫ) ≥ 0],

. . .

zt ← [gt(xQ ← Q, xI ← I, xǫ ← ǫ) ≥ 0]).

For j = 1, . . . , s and for all I ∈ D, we compute the
(d + 1)-variate polynomials

gj,I(xQ, xǫ) := gj(xQ, xI ← I, xǫ).

This is done by substituting I for xI in gj and
therefore takes time O(1). The total time to com-
pute all these polynomials is O(n).

For the gj,I we compute a subdivision Ξ of R
d+1

with the property that the sign of each gj,I remains
constant on each cell of the subdivision. Such a
subdivsion of size O(n2d−3) can be computed in
O(n2d−3) time, along with a point-location data-
structure L(Ξ) for the subdivision with O(log n)
query-time, c.f., [8]; the computation also yields for
each cell χ ∈ Ξ a point (Qχ, ǫχ) ∈ χ.

In a next step we process each cell χ ∈ Ξ in
turn and compute a set Dχ ⊂ D, which is initially
empty. For all I ∈ D we do the following: First
compute for j = 1, . . . , s the numbers

γi,I,χ := gj,I(xQ ← Qχ, xǫ ← ǫχ).

Next, we compute the truth-value

BI,χ := B(z1 ← [γ1,I,χ ≥ 0], . . . , zs ← [γs,I,χ ≥ 0]).

If BI,χ is true, we have that δ(Qχ, I) ≤ ǫχ and
we add I to Dχ. We augment the data-structure
L(Ξ) by storing the set Dχ for each cell χ ∈ Ξ. The
total time needed to compute it is O(n2d−2), and
it needs O(n2d−2) space.

To answer a query (Q, ǫ) ∈ Ω×R, we proceed as
follows: Using L(Ξ) we locate the cell χ ∈ Ξ with
(Q, ǫ) ∈ χ in O(log n) time. Since the sign of the
gj,I ’s is constant on each cell of Ξ, we have that
δ(Qχ, I) ≤ ǫχ iff δ(Q, I) ≤ ǫ, so we can report Dχ

as the answer to the query. The total time required
is O(log n + k), where k = |Dχ| is the size of the
answer.

Now we use a simple partitioning approach to
yield the desired result: We split D into g =
Θ(n/m) groups D1, . . . ,Dg , each of size Θ(m),
where 1 ≤ m ≤ n is a suitable parameter (see
below). Then we build the aforementioned data-
structure for eachDi separately. To answer a query
(Q, ǫ) ∈ Ω × R, we query each data-structure
separately and combine the individual answers.
The total time needed to compute all the struc-
tures is O(gm2d−2) = O(nm2d−3) (this is also
the total space requirement), and the query time
is O(g log n) = O((n/m) log n). Setting m =
n1/(2d−3) proves the claimed result. ✷

3. More semialgebraic pattern spaces

In the following we show that the notion of a
semialgebraic pattern space captures many com-
binations of geometric patterns (e.g., point sets,
polygons, polygonal curves) and geometric dis-
tance measures (e.g., Hausdorff-distance, area of
overlap, Fréchet-distance) together with their quo-
tients under various transformation classes (e.g.,
translations, rigid motions).

Since the set accepted by an algebraic decision
tree is semialgebraic we get the following
Lemma 2 Let Π be a pattern space. If FΠ can be
decided by an algorithm in the algebraic decision
tree model, then Π is semialgebraic.

It is straightforward to verify that many of the
algorithms for deciding the most prominent dis-
tance measures can be implemented in the alge-
braic decision tree model, c.f., [1]. This shows for
example that polygonal curves on k vertices in R

d
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wrt. the Fréchet-distance constitute a semialge-
braic pattern space.

Let Π = (Rd, δ) be a semialgebraic pattern
space, and let t : R

d×R
d×R

f → R
d×R

d be a func-
tion. This function induces a new distance mea-
sure and thus a new pattern space Πt := (Rd, δt)
as follows:

δt(P, I) := min
v∈Rf

δ(t(P, I, v)).

We call δt the quotient of δ under t and f the num-
ber of degrees of freedom of t.

As an example consider again the pattern space
of all point sets in the plane with at most r points
each and the directed Hausdorff-distance h(, ) as a
distance measure. The function t(P, I, v) := (P +
v, I) has two degrees of freedom and we have that
ht(P, I) = minv∈R2 h(P + v, I) is the smallest di-
rected Hausdorff distance that a translate of P has
to I.
Theorem 3 If t is rational, then Πt is semialge-
braic. In that case a semialgebraic description of
FΠt

can effectilvey be computed from such a de-
scription of FΠ.

PROOF. First, observe that

δt(Q, I) ≤ ǫ ⇐⇒ ∃v ∈ R
f : δ(t(Q, I, v)) ≤ ǫ.

Since Π = (Ω, δ) is a semialgebraic pattern space
and t is rational, there is a boolean formula B
in s boolean variables z1, . . . , zs, and there are s
polynomials g1, . . . , gs in (2d + 1) real variables
xP , xI , xǫ, such that

δt(Q, I) ≤ ǫ ⇐⇒

∃vB(z1 ← [g1(t(xQ ← Q, xI ← I, xv ← v),

xǫ ← ǫ) ≥ 0],

. . .

zs ← [gs(t(xQ ← Q, xI ← I, xv ← v),

xǫ ← ǫ) ≥ 0]

(xv is a sequence of f new variables).
In general gi(t(), ) is not a polynomial. However,

since t is rational, the conditions ’gi(t(), ) ≥ 0’ can
be rewritten as equivalent polynomial inequalities.
This shows that FΠt

is a Tarski-set, and therefore
semialgebraic. Using standard quantifier elimina-
tion techniques [4], a semialgebraic description of
FΠt

can effectilvey be computed. ✷

If the dimension d of Π is O(1) (relative to n =
|D|), then the dimension d′ of Πt is also O(1) (un-

fortunately, in general, d′ is doubly exponential in
d) and a semialgebraic description of FΠt

can be
computed in O(1) time.

This shows for example that polygonal curves on
k vertices in R

d wrt. the smallest Fréchet-distance
that can be attained under rigid motions constitute
a semialgebraic pattern space of dimension O(1) if
k, d = O(1).
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Abstract

Problem 50 in the Open Problems Project [2] asks whether any triangulation on a point set in the plane contains
a pointed spanning tree as a subgraph. We provide a counterexample. As a consequence we show that there exist
triangulations which require a linear number of edge flips to become Hamiltonian.

Key words: triangulation, spanning tree, pointed pseudo-triangulation, Hamiltonian cycle, edge flip

1. Introduction

Let S be a finite set of points in the plane in
general position (no three points are on a common
line), and let G be a straight-line graph (drawing
in the plane) with vertex set S and edges E. A
point p ∈ S is pointed in G if there exists an angle
less than π that contains all edges incident to p

in G. The graph G is pointed if all its vertices are
pointed.

A triangulation of S is a maximal planar
straight-line graph on top of S. A spanning tree
on S is a connected, acyclic graph with vertex set
S. Several interesting relations between triangu-
lations and spanning trees exist. For example it is
well known that the Delaunay triangulation of S

contains a minimum spanning tree of S as a sub-
graph. Another example is a result of Schnyder [3]
who shows that every triangulation of a point set
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with three extreme vertices allows a partition of
its interior edges into three trees.

In this note we disprove the following conjecture
which was posed as Problem 10 at the First Gremo
Workshop on Open Problems (Stels, Switzer-
land) in July 2003 (by Bettina Speckmann) and
at the CCCG 2003 open-problem session (Hali-
fax, Canada) in August 2003. It later on became
Problem 50 in the Open Problems Project of the
computational geometry community [2].

Conjecture 1 Every triangulation of a set of
points in the plane (in general position) contains a
pointed spanning tree as a subgraph.

This conjecture arose while proving sub-
structure properties when investigating flips in
pointed and non-pointed pseudo-triangulations [1].
Pseudo-triangulations are a generalization of tri-
angulations. A pseudo-triangle is a planar polygon
with exactly three interior angles less than π. A
pseudo-triangulation of S is a partition of the con-
vex hull of S into pseudo-triangles whose vertex
set is S. Pseudo-triangulations have become a ver-
satile data structure. Beside several applications

20th EWCG Seville, Spain (2004)
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in computational geometry, the rich combinatorial
properties of pseudo-triangulations stimulated re-
search, see e.g. [1] and references therein.

Obviously Conjecture 1 would be true if a trian-
gulation always contained a Hamiltonian path or a
pointed pseudo-triangulation as a subgraph. Sev-
eral triangulations not containing these structures
are known, but for each example it is still easy to
find a pointed spanning tree as a subgraph. This
observation supported the general belief that the
conjecture should be true. However, in the next
section we provide a (non-trivial) counterexample.
In Section 3 we discuss some implications of this
result, like a lower bound for the number of neces-
sary edge flips to transform a given triangulation
such that it contains a Hamiltonian cycle.

2. A Counterexample

Figure 1(a) shows the simplest example of a
connected straight-line graph not containing a
pointed spanning tree as a subgraph. We call this
graph a 3-star and it is a spanning tree which is
not pointed at it’s central point.

a4

a2

a5

a3

a1

a6 (b)(a)

Fig. 1. Small connected straight-line graphs that do not
contain a pointed spanning tree as a subgraph: (a) the
3-star (b) the bird graph

The graph on top of the points a1, .., a6 in Fig-
ure 1(b) is called the bird graph. It can be seen as
a triangulated composition of two 3-stars. In the
next lemma we show that the bird graph does not
contain a pointed spanning tree either.

Lemma 2 The bird graph does not contain a
pointed spanning tree as a subgraph.

Proof Assume that the bird graph contains a
pointed spanning tree T as a subgraph. Because
of connectivity, the edges a1a2 and a5a6 are in T .

The edge a2a5 cannot be in T , as otherwise any
edge incident to a3 would violate the pointedness
condition in either a2 or a5. Thus, either a3 or
a4 has to be connected to both, a2 and a5. This
prevents the other vertex, a4 resp. a3, to be con-
nected anyhow. ✷

In a next step, we extend the bird graph by two
additional points b1, b2, see Figure 2. Intuitively
speaking b1 and b2, respectively, are connected
by edges to each visible point of the bird graph.
Moreover we add the edge b1, b2. We call the re-
sulting full triangulation of the triangle b1, b2, a1

with interior points a2, .., a6 the bird cage graph.
The following lemma shows that it will play a cru-
cial role in the construction of a triangulation not
containing a pointed spanning tree.

b2b1

a1

Fig. 2. The bird cage graph: any connected, pointed, span-
ning subgraph contains at least one interior edge incident
to b1 or b2, respectively.

Lemma 3 Any connected, pointed, spanning sub-
graph of the bird cage graph contains at least one
interior edge incident to b1 or b2, respectively.

Proof Let A be a connected, pointed, spanning
subgraph of the bird cage graph. By Lemma 2, the
subgraph B of A induced by the points a1, .., a6

does not contain a pointed spanning tree. That is,
B consists of at least two components. Because of
connectivity, A has to include edges that connect
these components. For this, at least one interior
edge incident to b1 or b2, respectively, has to be in
A. ✷

We are now ready to prove the main theorem of
this note.

Theorem 4 There exist triangulations on top of
a point set in the plane in general position that do
not contain a pointed spanning tree as a subgraph.

Proof As indicated in Figure 3 we connect three
points a, b, c pairwise by bird cage graphs (shaded
triangles), such that for each bird cage graph the
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c

ba

Fig. 3. A bird wing graph containing five bird cage graphs.

connected vertices correspond to b1 and b2, re-
spectively. Furthermore, we add four points near
point c. This four points form a three star and are
connected to a, b and c as shown in the figure.
Next the whole construction, except the bird cage
graph connecting a to b, is mirrored along the
line a,b. We call the resulting graph a bird wing
graph, cf. Figure 3. Note that all edges incident
to c form three wedges in an obvious way. If we
group the edges of a wedge togehter the resulting
graph corresponds to a 3-star with c as its center.
The same holds for b and its incident edges. To
complete our construction we finally form another
3-star like graph with center a′ by joining three
bird wing graphs at their a-vertices, see Figure 4.
Let us denote the resulting graph by G and its
vertex set by S.

Let G be any planar straight-line graph draw-
ing on top of S which contains G as a subgraph.
Note that G might be a complete triangulation of
S. Assume that there exists a pointed spanning
tree PST as a subgraph of G. By similar argu-
mentation as for the 3-star, PST does not contain
any edge incident to a′ in at least one of the three
bird wing graphs. W.l.o.g. let b be a vertex of this
bird wing graph. Applying Lemma 3, PST has to
contain at least one edge in the interior of the bird
cage graph between a′ and b incident to b. From
the property of the 3-star we can find a bird cage
graph B incident to b such that PST does not
contain any edge incident to b in B. W.l.o.g. let c

be the vertex at the other end of B. By Lemma 3,
PST contains at least one edge incident to c in B.
The same holds for the bird cage graph between a′

and c. Moreover, the four additional points near

b

c

a’

Fig. 4. A graph consisting of three bird wing graphs.

point c cannot be connected by any edge to either
a′, b, or c without destroying pointedness at one
of these points. Since PST is connected, the three
bold edges in Figure 3 have to be in PST . How-
ever, the resulting graph is not pointed any more,
as the three bold edges form a 3-star. Thus, there
exists no pointed spanning tree as a subgraph for
G. Note that all arguments work for any planar
straight-line graph containing G as a subgraph,
because our argumentation is solely based on the
interior of fully triangulated areas. ✷

3. Some Implications

The example in the proof of Theorem 4 is con-
structed on top of a point set S with 124 points.
Adding more points to S in the outer face of G and
completing the extended graph with edges to a full
triangulation still gives a triangulation that does
not contain a pointed spanning tree. Thus, Theo-
rem 4 also holds if we put additional restrictions on
the size of the convex hull of the underlying point
set.

As a more interesting consequence we get a
lower bound on the minimum number of edge flips
that might be necessary to transform a triangula-
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tion such that it contains a pointed spanning tree
as a subgraph. To this end, we combine a linear
number of disjoint copies of the 124-point exam-
ple. After completing the graph on the resulting
point set to a full triangulation, at least one flip
has to be executed in each copy.

Corollary 5 There exist triangulations on top of
an n-point set in the plane in general position that
require Ω(n) edge flips to contain a pointed span-
ning tree as a subgraph.

From the Delaunay flip algorithm it follows that
a quadratic number of flips is always sufficient to
obtain a pointed spanning tree as a subgraph. So
far no better upper bound on this flip distance is
known.

Of particular interest is the investigation of
Hamiltonicity of triangulations. A triangulation
is called Hamiltonian if it contains a Hamiltonian
cycle. Let T be a non-Hamiltonian triangulation.
What is the minimum number of edge flips that is
always sufficient to come from T to a Hamiltonian
triangulation T ′? Note that Hamiltonicity implies
the existence of a pointed spanning tree, whereas
the reverse is not true in general. Therefore, we
conclude from Corollary 5:

Corollary 6 There exist non-Hamiltonian trian-
gulations on top of an n-point set in the plane in
general position that require Ω(n) edge flips to be-
come Hamiltonian.

The last statement can also be shown in a more
direct way. Let a point set S with |S| = n be given
such that the convex hull of S contains 3 points.
Then a triangulation on top of S has 2n − 5 tri-
angles. We place one additional point into each
of these triangles and connect it by edges to the
corners of the triangle. The set A of inserted
points is independent, meaning that there is no
edge between any two points of A in the resulting
triangulation T on top of S ∪ A. Assume there
exists a sequence δ of vertices forming a Hamil-
tonian cycle. Between any two vertices of A in δ

there must be at least one vertex of S because A is
an independent set. Since |A| > |S|, T cannot be
Hamiltonian, i.e., δ cannot exist. If we want T to
become Hamiltonian we must perform a sequence
of flips which reduces |A|. Any flip connects at
most two elements of A and therefore reduces |A|

by at most 1. Hence, a linear number of flips is
necessary because |A| is about twice the cardinal-
ity of S. ✷

4. Open Problems

There are several related open questions. First,
is there a smaller (in the number of points) coun-
terexample to Conjecture 1? Moreover, how fast
can we decide whether a given triangulation con-
tains a pointed spanning tree as a subgraph? And
if the answer is positive, how fast can we com-
pute this tree? Regarding flipping, what are tight
bounds on the required number of edge flips to
transform a triangulation such that it contains a
pointed spanning tree or a Hamiltonian cycle, re-
spectively?
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Abstract

Geographic Information Retrieval is concerned with retrieving documents that are related to some location. This

paper addresses the ranking of documents by both textual relevance and spatial relevance. To this end, we introduce

distributed ranking, where similar documents are ranked spreaded in the list instead of sequentially. The effect

of this is that documents close together in the ranked list have less redundant information. We present various

ranking methods and efficient algorithms for them.

1. Introduction

The most common way to return a set of docu-
ments obtained from a Web query is by a ranked
list. The search engine attempts to determine
which document seems to be the most relevant to
the user and will put it first in the list. In short,
every document receives a score, or distance to the

query, and the returned documents are sorted by
this score or distance.

There are situations where the sorting by score
may not be the most useful one. When a more com-
plex query is done, composed of more than one
query term or aspect, documents can also be re-
turned with two or more scores instead of one. This
is particularly useful in geographic information re-

trieval [5,6,8]. For example, the Web search could
be for castles in the neighborhood of Koblenz, and
the documents returned ideally have a score for the
query term “castle” and a score for the closeness
to Koblenz. This implies that a Web document re-
sulting from this query can be mapped to a point
in the 2-dimensional plane.

A cluster of points in this plane could be several
documents about the same castle. If this castle is in
the immediate vicinity of Koblenz, all of these doc-
uments would be ranked high in the sorted list, pro-
vided that they also have a high score on the term

“castle”. However, the user probably also wants
documents about other castles that may be a bit
further away, especially when these documents are
more relevant for the term “castle”. To incorporate
this idea in the ranking, we introduce distributed

ranking in this paper. We present various models
that generate ranked lists that also have diversity.
We also present efficient algorithms that compute
the distributed rankings. To keep server load low,
it is important to have efficient algorithms.

There are other situations where ranking based
on two scores shows up: scores of two textual terms,
or of a textual term and metadata information. A
common example of metadata is the number of hy-
perlinks that link to a document. Standard in infor-
mation retrieval is to combine the two scores into
a single score (e.g., by a weighted sum), which pro-
duces the ranked list by sorting. Besides the prob-
lem that it is unclear how the two scores should
be combined, it also makes distributed ranking im-
possible. Two documents with the same combined
score could be similar documents or quite differ-
ent. If two documents have two scores that are the
same, one has more reason to suspect that the doc-
uments themselves are similar.

The topic of geographic information retrieval is
studied in the SPIRIT project [5]. The idea is to
build a search engine that has spatial intelligence
because it will understand spatial relationships like
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close to, to the North of, adjacent to, and inside, for
example. The core search engine will process a user
query in such a way that both the term relevance
and the spatial relevance of a document is obtained
in a score. This is possible because the search en-
gine will not only have a term index, but also a spa-
tial index. These two indices provide the two scores
that are needed to obtain a distributed ranking.
The ranking study presented here will form part of
the geographic search engine to be developed for
the SPIRIT project.

Related research has been conducted in various
papers [1,3,6]. They address geographic informa-
tion retrieval or text document analysis, and use
more than one score to rank results. The scores are
combined into one score by a weighting formula.
In some papers, the additional relevance is deter-
mined, which depends on documents ranked ear-
lier. This is quite similar to our approach. How-
ever, we have a different starting point because we
assume that we have two scores of one document
based on two aspects. Furthermore, other papers
do not give algorithms and efficiency analyses.

2. Distributed Ranking Methods

In this section we will present specific ranking
methods. We will focus on the two dimensional
case only. So we assume that a Web query has
been done, and a number of relevant documents
were found. Each document is associated with two
scores, for example a term score and a spatial score.
The relevant documents are mapped to points in
the plane, and the query is also mapped to a point.
We perform the mapping in such a way that the
query is a point Q at the origin, and the documents
are mapped to points p1, . . . , pn in the upper right
quadrant of Q where documents with high scores
are points close to Q. The point with the small-
est Euclidean distance to the query is considered
the most relevant document and is always first in
any ranking. The remaining points are ranked with
respect to already ranked points. At any moment
during the ranking, we have a subset R ⊂ P of
points that have already been ranked, and a subset
U ⊂ P of points that are not ranked yet. We choose
from U the “best” point to rank next, where “best”
is determined by a scoring function that depends
both on the distance to the query Q and on the set

Q

y

x

p1

p2

p3

p

pi
‖p‖

‖p − pi‖

φ

Fig. 1. An unranked point p and ranked points p1, p2, p3, pi,
where p is closest to pi by distance and by angle.

R of ranked points. Intuitively, an unranked point
p has a higher added value or relevance if it is not
close to any ranked points in R.

For every unranked point p, we consider only the
closest point pi ∈ R, where closeness is measured
either in the Euclidean sense, or by angle with re-
spect to the query point Q. This is illustrated by
‖p−pi‖ and φ, respectively, in Figure 1. Using the
angle to evaluate the similarity of p and pi seems
less precise than using the Euclidean distance, but
it allows for more efficient algorithms, and certain
extensions of angle-based ranking methods give
well-distributed results.

2.1. Distance to query and angle to ranked

Our first ranking method uses the angle mea-
sure to obtain the similarity between an unranked
point and a ranked point. In Figure 1, consider the
angle φ = φ(p, pi) and rank according to the score
S(p, R) ∈ [0, 1], which can be derived from the fol-
lowing normalized equation:

S(p, R) = min
pi∈R

(

2(φ(p, pi) + c)

π + 2c
· (

1

1 + ‖p‖
)k

)

(1)
Here, k denotes a constant; if k < 1, the empha-
sis lies on the distribution, if k > 1, we assign a
bigger weight to the proximity to the query. The
additive constant 0 < c ≪ 1 ensures that all un-
ranked points p ∈ U are assigned a positive score.
During the ranking algorithm, we always choose
the unranked point p that has the highest S(p, R)
score and rank it next. This implies an addition to
the set R, and hence, recomputation of the scores
of unranked points may be necessary. We first give
a generic, quadratic time algorithm.
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Algorithm 1:

(i) Rank the point p closest to the query Q first.
Delete it from the point set P .

(ii) For every unranked point p ∈ P do
(a) Store with p the point pi ∈ R with the

smallest angle to p.
(b) Compute the score S(p, R) = S(p, pi) .

(iii) Choose the point with the highest score
S(p, R) as next in the ranking; add it to R

and delete it from P .
(iv) Compute for every point p′ ∈ P the angle to

the last ranked point p. If it is smaller than
the angle of the point stored with p′, then
store p with p′ and update the score S(p′, R).
Continue with step (iii).

This simple, quadratic time algorithm can easily
be modified to work for different score functions.
Theorem 1 A set of n points in the plane can

be ranked according to the distance-to-query and

angle-to-ranked model in O(n2) time.

2.2. Distance to query and distance to ranked

We next study a model based the distance to the
closest ranked point. In Figure 1, consider the dis-
tance ‖p−pi‖ from p to the closest ranked point pi

and rank according to the outcome of the following
equation:

S(p, R) = min
pi∈R

(

‖p − pi‖

‖p‖2

)

(2)

A normalized equation such that S(p, R) ∈ [0, 1] is
the following:

S(p, R) = min
pi∈R

(

(1 − e−λ·‖p−pi‖) ·
1

1 + ‖p‖

)

(3)

Here, λ is a constant that defines the slope of the
exponential function. Algorithm 1 can be modified
to work here as well with the same running time.
Theorem 2 A set of n points in the plane can

be ranked according to the distance-to-query and

distance-to-ranked model in O(n2) time.

2.3. Addition models

So far, our distributed methods were all based
on a formula that divided angle or distance to the
closest ranked point by the distance to the query.
In this way, points closer to the query get a higher
relevance. We can obtain a similar effect but a dif-
ferent ranking by adding up these values. It is not

ℓ1

ℓ2

ℓ3

p1

p2 p3

ℓ2

Tcw

Tccw

T ′
ccw

T ′′
ccw

T ′
cw

T ′′
cw

ℓ12

ℓ32

ℓ13

ℓ12

ℓ32ℓ32

ℓ1

Fig. 2. The split and concatenate of trees in Algorithm 2.

clear beforehand which model will be more satis-
factory for users, so we analyze these models as
well.

S(p, R) = min
pi∈R

(

α · (1 − e−λ·(‖p‖/‖pmax‖))+

(1 − α) · φ(p, pi) ·
2

π

)

(4)

In this equation, pmax is the point with maximum
distance to the query, α ∈ [0, 1] denotes a variable
which is used to put an emphasis on either distance
or angle, and λ is a constant that defines the slope
of the exponential function. Algorithm 1 can be
modified for this addition model, but because of
the fact that the angle is now only an additive and
not a multiplicative part of the score equation, we
can give algorithms with better running time.

The point set is initially stored in the leaves of
a binary tree T , sorted by counterclockwise (ccw)
angle to the y-axis. In every leaf of the tree we also
store: (i) ccw and clockwise (cw) angle to y and
x-axis respectively; (ii) the distance to the query;
(iii) ccw and cw score. We augment T as follows
(see e.g. (Cormen et al. 1990) for augmenting data
structures): In every internal node we store the
best cw and ccw score per subtree. In the root we
additionally store the angle of the closest ccw and
cw ranked point and whether the closest ranked
point is in cw or ccw direction. Additionally we
store the best score per tree in a heap for quicker
localization. As shown left in Figure 2, between
two already ranked points p1 and p2, indicated by
ℓ1 and ℓ2, there are two binary trees, cw and ccw
of the bisecting barrier line ℓ12. All the points in
Tccw are closer in angle to p2 and all the points in
Tcw are closer in angle to p1. If we insert a new
point p3 to the ranking, this means we insert a
new imaginary line ℓ3 through p3 and we need to
perform the following operations on the trees:

(i) Split Tcw and Tccw at the angle-bisectors ℓ32

and ℓ13, creating the new trees T ′
cw and T ′

ccw
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and two intermediate trees T cw and T ccw

(ii) Concatenate the intermediate trees from (i),
creating one tree T .

(iii) Split T at the newly ranked point p3, creating
T ′′

cw and T ′′
ccw.

Figure 2 right, shows the outcome of these op-
erations. Whenever we split or concatenate the bi-
nary trees we need to make sure that the augmen-
tation remains correct, which is standard. We also
need to update the information in the root of each
tree about the closest cw and ccw ranked point and
the best scores. As the scores are additive, and all
scores for points in the same tree are calculated
with respect to the same ranked point, we simply
subtract the cw (ccw) angle of the closest ranked
point from the cw (ccw) best score to get the new
best score for the tree. Furthermore we need to up-
date the score information in the heap. Now we
can formulate an algorithm for the addition-model
that runs in optimal O(n log n) time.
Algorithm 2:

(i) Create T with all points of P , the augmenta-
tion and a heap that contains only the point
p closest to the query Q.

(ii) Choose the point p with the highest score
S(p, R) as next in the ranking by deleting the
best one from the heap.

(iii) For every last ranked point p do:
(a) Split and concatenate the binary trees

as described above and update the in-
formation in their roots.

(b) Update the best-score information in
the heap: delete the remaining best
score of the old tree that did not con-
tain p and insert the four best scores of
the new trees.

Theorem 3 A set of n points in the plane can

be ranked according to the angle-distance addition

model in O(n log n) time.

Another, similar, addition model adds up the
distance to the query and the distance to the clos-
est ranked point. Algorithm 2 is not applicable for
this addition model, because the distance to the
closest ranked point does not change by the same
amount for a group of points as the angle. This im-
plies that the score for every unranked point needs
to be adjusted individually when adding a point
to R. We can modify Algorithm 1 for this addi-
tion model. Alternatively, we can use an algorithm
that has O(n2) running time in the worst case, but
a typical running time of O(n log n), as in [4,7].

The idea is to maintain the Voronoi diagram of the
ranked points, and with each Voronoi cell, main-
tain the unranked points in it. This practically fast
algorithm can be applied to all ranking methods
described thus far.

3. Conclusions

This paper introduced distributed relevance
ranking for documents that have two scores. In
the full paper we present more models and also
several extensions of the models. We have im-
plemented the rankings to inspect how well they
spread, while not sacrificing distance to the query
too much. It seems that certain extensions of the
models presented here perform best. However,
user evaluation is needed (and is planned) to test
this properly.
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Abstract

The k-Centrum problem consists in finding a point that minimises the sum of the distances to the k farthest points

out of a set of given points. It encloses as particular cases to two of the most known problems in Location Analysis:

the center, also named as the minimum enclosing circle, and the median. In this paper the k-Centrum criteria is

applied to obtaining a straight line-shaped facility. A reduced finite dominant set is determined and an algorithm

with lower complexity than the previous one obtained.

Key words: Location, Duality

1. Introduction

Given a set of n demand points, the median
straight line problem consists in finding the
straight line that minimises the sum of the dis-
tances to the points. The center straight line
problem looks for the straight line that minimises
the distance to the farthest point. A k-Centrum
straight line minimises the sum of the distances
to the k farthest demand points. If k = 1 then the
corresponding problem is that of the center and
for k = n the median, thus enclosing both prob-
lems. However, last is not the only reason for the
relevancy of this problem: it provides the decision
maker a more flexible tool.

The k-Centrum criteria has been applied in point
location facility in different contexts. When the
underlying structure is a graph, Tamir [9] has de-
vised efficient algorithms for different cases (chain
graph, tree, general graphs, multiple case). The
corresponding repulsive problem, that of maximis-
ing the sum of the distances to the k nearest points
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has also been studied both in graphs [5] and in the
Euclidean plane [4]. Some of the classic location
problems have been extended to extensive facili-
ties (i.e. those that can not be represented as iso-
lated points). In particular, the center and the me-
dian line location problem have been intensively re-
searched (e.g. Lee and Wu [3], Morris and Norback
[7], Schöebel [8].) The only work on the k-Centrum
straight line problem is [6] in which a finite dom-
inating set is determined and an O(n4 log n) time
algorithm described.

2. Finite Dominating Set

Given a set of points P = {p1, p2, . . . , pn} ⊂ R
2

and the weight set associated W = {w1, w2, . . . , wn}
the straight line k-Centrum problem consists in
finding a line such that it minimises the function:

f(l) = max
Q⊂P,|Q|=k

∑

p∈Q

wpd(p, l)

where d(·, ·) is the Euclidean point-line distance.
The problem can be stated in the dual plane as

finding the point l∗ such that it minimises the dual
objective function:
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f∗(l∗) = max
Q∗⊂P∗,|Q∗|=k

∑

p∗∈Q∗

wpdv(l∗, p∗)
√

1 + l∗x
2

where dv(·, ·) is the vertical point-line distance and
l∗x is the x-coordinate of the point l∗.

In the dual plane let us consider the Vertical
Distance Completely Ordered Line Voronoi
Diagram: VDCOLVD(P ∗). The set

Bv(P ∗) = {bisv(p∗i , p
∗
j ); 1 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j}

induces that diagram. The Voronoi regions are the
union of (convex) polygonal regions neither neces-
sarily bounded nor simply connected.

Lemma 1 The VDCOLVD(P ∗) induces a par-
tition in the set of non-vertical straight lines of the
Euclidean plane such that the collection of ordered
distances to the points of P remains constant in
each class.

PROOF. For each region R of the Voronoi dia-
gram VDCOLVD(P ∗) there exists a permutation
σ of the set {1, 2, · · · , n} such that

wσ(1)dv(l∗, p∗σ(1)) ≤ · · · ≤ wσ(n)dv(l∗, p∗σ(n))

Dividing by
√

1 + l∗x
2 it follows

wσ(1)d(pσ(1), l) ≤ · · · ≤ wσ(n)d(pσ(n), l)

Lemma 2 The objective function in the dual plane
f∗ is quasiconcave in each connected component of
each Voronoi region.

PROOF. In each such a region CR the order of
distances from lines p∗i to points in it, remains con-
stant, i.e. ∀ l∗ ∈ CR

wσ(1)dv(l∗, p∗σ(1)) ≤ · · · ≤ wσ(n)dv(l∗, pσ(n))

Thus the k largest weighted vertical distances re-
mains constant in CR and, therefore, the function

f∗(l∗) =

∑n

i=n−k+1 dv(l∗, p∗
σ(i))

√

1 + l∗x
2

is the ratio between a sum of linear functions and
a positive convex function, therefore becoming a
quasiconcave function.

Let us note that each extreme point of the
Voronoi regions could be either

(i) a vertex of a bisector of two elements of P ∗,
(ii) an intersection of two edges corresponding

to the bisectors of two pairs of P ∗ with a
common element,

(iii) an intersection of two edges corresponding
to the bisectors of two disjoined pairs of ele-
ments.

However, not all of these extreme points are im-
ages of candidates for the problem in the primal
space.

Theorem 3 A finite dominant set for the straight
line k-Centrum problem is composed by the ele-
ments of the set of straight lines passing through
two points of P and those of the set of straight lines
at equal weighted distances from three points of P .

PROOF. Candidate straight lines correspond
under the geometrical dual map to candidate
points for the dual objective function. Points (i)
are images of straight lines passing through two
points. Points (ii) correspond to straight lines at
equal distances from three points.

However, points (iii) cannot be optimal points.
In effect,let l∗ be such a point; then there exists two
pairs {p∗i , p

∗
j} and {p∗s , p

∗
t } such that l∗ is the inter-

section of the corresponding bisectors. Therefore,
widv(l∗, p∗i ) = wjdv(l∗, p∗j ) and wsdv(l∗, p∗s) =
wtdv(l∗, p∗t ). Ruling out the degenerate case in
which coincide the four weighted distances, we
may assume that widv(l∗, p∗i ) < wsdv(l∗, p∗s).
Then, the only relevant case to be consider is when
one of the two weighted distances, say widv(l∗, p∗i ),
is k-rank at l∗, but in this case in each halfplane
above and below the widv(l∗, p∗i ) = wjdv(l∗, p∗j )
line and within a small enough neighbourhood of
l∗ the set of k-closest points does not change, so
the formula for f∗ remains exactly the same in
each of these half-neighbourhoods of l∗, so is qua-
siconcave in this half-neighbourhood, in which l∗

is not a vertex, so cannot be optimal.
Finally, unbounded extreme points of regions in

the dual space correspond to vertical lines in the
primal. A small rotation argument shows that ver-
tical straight lines not holding one of the two above
conditions cannot be optimal.
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3. Algorithm

In order to examine the candidates we will con-
sider each pair {pi, pj} of points and the bisector
bisv(p∗i , p

∗
j ) of their dual points. For the sake of sim-

plicity the reasoning will be done on one of the two
lines of the bisector. If C∗

ij is the set of candidate
points on this line, then Cij is a family of straight
lines with a common point Oij = (bisv(p∗i , p

∗
j ))

∗.
In order to compute the objective function, the
outer hull of the given points will be used. With
this purpose the problem will be transformed in a
equivalent non weighted one, with given point set

P ′ = {p′t = Oij + wt +
−−−→
Oijpt /pt ∈ P}.

Let us note that under this transformation the
weighted distance from a point p of P to a straight
line r of Cij is equal to the unweighted distance
from p′ to r. Furthermore, for each straight line
r ∈ Cij their k farthest points in P ′ can be found
in the k outer convex hulls of P ′.

A short description of the algorithm follows:
– Step 1: Compute the best vertical line.
– Step 2: For each pair {pi, pj} ∈ P,
· Obtain the sets Cij and P ′.
· Compute the k outer convex hulls for P ′.
· For each r ∈ Cij compute its objective value

by obtaining their k farthest point.
– Step 3: Select the best candidate from Steps 1

and 2.

Let us note that by means of this algorithm the
i-centrum (1 ≤ i ≤ k) straight lines can be com-
puted in O(n3 log n) time, when k is fixed.

4. Prospects

The finite dominant set given in Section 2 could
be too large when it is desired to find the k-
Centrum straight line only for a fixed k. In this
case an alternative set would result from consid-
ering the k-1 level of a plane arrangement. Each
weighted straight line of the dual plane could be
substituted by two planes such that the compu-
tation of the k farthest straight lines to a point
is equivalent to finding the k highest planes to
a point. Then by using the results in [2] and [1]
the time complexity of the finite dominant set we
expect would be O(n log n + n1+ǫ).
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Matemática Discreta 43–46, Almeŕıa, 2003.
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aDepartamento de Análisis Matemático, Universidad de Alicante, Campus de San Vicente del Raspeig, E-03080-Alicante,
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Abstract

Fencing problems deal with the bisection of a convex body in a way that some geometric measures are optimized.
We study bisections of planar bounded convex sets by straight line cuts and also bisections by hyperplane cuts for
convex bodies in higher dimensions.

Key words: fencing problems, optimization, relative diameter.

1. Introduction

Fencing problems regard the division of a given
set into two subsets of equal area in a way that some
geometric measure is maximized or minimized.

Last year we pointed out results on centrally
symmetric convex sets in two dimension. Now we
present a statement in the general planar case,
where K is a general convex body. Moreover we
study fencing problems in higher dimension.

First we need to recall definitions and some re-
sults.
Definition Let K be a planar, bounded, convex
set and let K1,K2 ⊂ K. We say that {K1,K2} is
a bisection of K if the following conditions hold:

(i) K = K1 ∪K2.
(ii) int(K1) ∩ int(K2) = ∅.
(iii) V (K1) = V (K2) = 1

2V (K), where V (.) is the
area functional.

(iv) K1 and K2 are connected subsets such that
γ = ∂K1∩∂K2 is an arc of continuous curve
joining two points in ∂K.

We say that γ bisects K.

Email addresses: cm4@alu.ua.es (C. Miori),
carla.peri@unicatt.it (C. Peri),
Salvador.Segura@ua.es (S. Segura Gomis).

In the planar case we replace the volume func-
tional V (.) by the area functional A(.).

We define the relative diameter d(K1; K) as fol-
lows:

d(K1;K) = max{D(K1), D(K \K1)},

where D(·) is the diameter functional, and
{K1, K2} is a bisection of K.

The following propositions give us properties re-
garding subdivisions 1) by straight lines, 2) by gen-
eral curves.

Theorem 1 Let {K1,K2} be a bisection of a pla-
nar, centrally symmetric, and bounded convex set
K by a straight line l. Then

(i) One of the ends of the diameter of K1 is one of
the intersection points of l with ∂K. Denote
this point by M .

(ii) The other end of the diameter of K1 is the
intersection of ∂K with the smallest circle
centered at M and containing K1; the radius
of this circle is obviously d(K1;K).

Theorem 2 Let K be a planar, centrally symmet-
ric, and bounded convex set. Let γ be a continuous
curve bisecting K into two connected subsets E1 and
E2. Suppose that d(E1;K) realizes the minimum of
the relative diameter for all the curves bisecting K.
Then there exist a straight line, passing through the

20th EWCG Seville, Spain (2004)
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center of K, bisecting K into two subsets {F1, F2}
such that d(F1; K) = d(E1; K).

Moreover we obtained a global estimate for the
ratio between the area and the relative diameter:

Theorem 3 Let K be a planar, bounded, and
centrally-symmetric convex set with area A. For
every bisection {K1,K2} of K the relative diame-
ter satisfies the following inequality

d(K1; K) ≥ C
√

A

where

C ∼= 0.8815....

Equality holds if K is the body Kϕ0 described in
the figure:

dM

M N

2. Minimizing the relative diameter for
planar convex sets

Now we shall consider bisections of a general
convex set by straight line cuts. We prove that cen-
trally symmetric convex sets minimize the relative
diameter.

First of all we need to introduce the following
notations. Let us consider a general convex set K,
and let l be the straight line bisecting K; let l+ and
l− be the half-planes defined by such a line. Let us
define:

d(K) = minl∩K 6=∅dl(K),

where dl(K) = max{D(K ∩ l+), D(K ∩ l−)}.

Theorem 4 In the class of convex sets K with area
A the minimum of the relative diameter, with re-
spect to straight line cuts, is attained on a centrally
symmetric convex set.

PROOF. Let the area A of K be fixed, and let l0
be the line such that

dl0(K) = d(K).

Let us choose the origin to be the midpoint of the
chord K ∩ l0. Let us apply Steiner symmetrization
with respect to l⊥0 . Then we obtain a new body K

′

such that A(K
′ ∩ l+) = A(K

′ ∩ l−) = 1
2A and

D(K
′ ∩ l+0 ) ≤ D(K ∩ l+0 ),

D(K
′ ∩ l−0 ) ≤ D(K ∩ l−0 ),

so that

dl0(K
′
) = max{D(K

′ ∩ l+0 ), D(K
′ ∩ l−0 )} ≤

≤ max{D(K ∩ l+0 ), D(K ∩ l−0 )} = dl0(K).

In order to minimize the relative diameter for
fixed area it is enough to consider bodies which are
symmetric with respect to l⊥0 , where l0 realize the
minimal cut. Let K

′
be such a body.

Let now K
′∩l+0 the part of K

′
such that d(K

′
) =

D(K
′ ∩ l+0 ). We consider two cases.

1) First case: the support lines of K
′
at a, b (end-

points of K
′ ∩ l0) meet at a point p ∈ l+ or are

parallel. Then we have the following situation.

K
′ ∩ l+0

a b

l0

Applying the symmetrization with respect to the
line l0 we obtain a new body which is centrally
symmetric and has the same relative diameter as
K
′
. We apply then the argument for centrally sym-

metric bodies in order to get the best constant.

2) Second case: let us suppose that the support
lines of K

′
at a, and b meet at a point p ∈ l−.
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a b
l0

K
′ ∩ l+0

Since

d(K
′
) = D(K

′ ∩ l+0 ) ≥ D(K
′ ∩ l−0 )

then
∀x ∈ K

′ ∩ l+0 : dist(a, x) ≤ d(K
′
)

∀x ∈ K
′ ∩ l−0 : dist(b, x) ≤ d(K

′
)

Thus K
′

is contained in the intersection of the
two disks with centers a, b respectively and radius
d(K

′
). Moreover K

′ ∩ l−0 ∈ T where T is the in-
tersection of the previous lens with the triangle in
the half-plane l−0 determined by the support lines
passing trough a and b. So if we take as new body
K̃ given by the union of T and its symmetric with
respect to l0 we have a centrally symmetric convex
body where l0 realizes a bisection having d(K̃) =
d(K

′
) and area of K̃ greater then the area of K

′
.

3. Fencing problems on higher dimension

We now consider fencing problems on higher di-
mension determined by hyperplane cuts. We say
that a convex body K on Ed is a minimizer for such
a fencing problem if the relative diameter of a bi-
section {K1,K2} of K attain the minimum value.

We give a necessary condition for a convex body
K to be the minimizer. We also describe geometric
properties of best bisections of centrally symmetric
convex bodies and obtain a lower bound for the
ratio

d(K1; K)
V (K)1/d

.

Theorem 5 In the class of convex bodies in Ed

with volume V the minimum of d(K1; K), with re-
spect to hyperplane cuts, is attained on a centrally
symmetric convex body of revolution.

PROOF. Let K ⊂ Ed be a body for which
d(K1; K) attains its minimum, and let H be the
hyperplane cutting K into two parts K1,K2 such
that d(K1;K) = D(K1). By applying Schwarz
rounding symmetrization (see [2] and [12]) with
respect to a line l perpendicular to H, we obtain
a body of revolution K ′, with same volume V ,
which is bisected by H into two parts K

′
1, K

′
2 such

that V (K
′
1) = V (K

′
2) = V/2. As the Schwarz

symmetrization does not increase the diameter,
the value of d(K1; K) does not increase, so that
by the minimality of K, the body K ′ also realizes
the minimum of d(K1; K).

...................................................

...............................................

6K
l

Ht

K ′

-

Let us consider the tangent cone Γ of K ′ along
the (d−1)-sphere K ′∩H. We distinguish two cases.

(i) Suppose that Γ is a right cylinder and de-
note by K ′′

2 the image of K ′
1 by the orthogo-

nal reflection with respect to the hyperplane
H. Then the convex body K ′′ = K ′′

2 ∪K ′
1 is

a centrally symmetric convex body of revo-
lution with a bisection {K ′′

2 ,K ′
1} for which

d(K1;K) attains its minimum.
(ii) Suppose that Γ is a cone with apex v ∈ l.

Denote by H+ the half-space bounded by H
which contains v. Let K ′′

1 = K ′∩H+ and let
K ′′

2 denote the image of K ′′
1 by the orthogo-

nal reflection with respect to the hyperplane
H. Then the convex body K ′′ = K ′′

2 ∪K
′′
1 is

a centrally symmetric convex body of revo-
lution with a bisection

{
K ′′

2 ,K
′′
1

}
for which

d(K1;K) = D(K ′′
2 ) = D(K

′′
1 ) = D(K ′ ∩

H+) ≤ D(K1). Thus d(K1;K) attains its
minimum on K ′′ as well.

Therefore, in order to minimize the ratio

d(K1; K)
V (K)1/d
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it is enough to find for fixed d(K1; K) the body
with maximum volume within the class of centrally
symmetric bodies of revolution. To this end we first
extend Proposition 1 on the planar centrally sym-
metric case.

Theorem 6 Let {K1,K2} be a bisection of a cen-
trally symmetric convex body K by a hyperplane H,
and let D(K1) = max {D(K1), D(K2)}. Then
– one of the end points of the diameter of K1 be-

longs to H ∩ ∂K. Let M be such a point.
– The other endpoint of the diameter is the inter-

section of ∂K with the sphere centered at M with
radius D(K1).

PROOF. Let A,B denote the endpoints of the
diameter of K1. We can assume that the center of
K is the origin O. Suppose by contradiction that
A,B /∈ H∩∂K. By construction the points A,B,O
are not collinear. Let us consider the plane π pass-
ing through A,B, O. We define K ′ = K ∩ π, K ′

1 =
K1 ∩π, K ′

2 = K2 ∩π. We obtain a bisection of the
centrally symmetric planar convex body K ′ such
that max {D(K ′

1), D(K ′
2)} is attained on the seg-

ment with endpoints A,B. This contradicts Propo-
sition 1 on the planar centrally symmetric case.
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Abstract

We present an approach to simulate divide-and-conquer algorithms in a space-efficient way, and illustrate it by

giving space-efficient algorithms for the closest-pair, bichromatic closest-pair, all-nearest-neighbors, and orthogonal

line segment intersection problems.

Key words: Computational geometry, space-efficient algorithms, all-nearest-neighbors, orthogonal line segment intersection

Researchers have studied space-efficient algo-
rithms since the early 70’s. Examples include merg-
ing, (multiset) sorting, and partitioning problems;
see [3,7,6]. Brönnimann et al. [2] were the first to
consider space-efficient geometric algorithms and
showed how to compute the convex hull of a planar
set of n points in O(n log h) time using O(1) extra
space, where h denotes the size of the output.

In this paper, we present a space-efficient
scheme for performing divide-and-conquer algo-
rithms without using recursion. We apply this
scheme to several problems.

1. Space-efficient divide-and-conquer
In this section, we describe a simple scheme for

space-efficiently performing divide-and-conquer.
Using the standard recursive approach requires
Ω(log n) pointers for maintaining a recursion stack
as noted in the context of space-efficiently imple-
menting the Quicksort algorithm [5,8]. Our tech-
nique traverses the recursion tree in the same man-
ner without requiring the extra pointers. In many
cases, the same type of result can be obtained us-
ing bottom-up merge, however, it is well known
that bottom-up merge has poor performance in the
presence of caches.

The main idea (which is probably folklore, even
though we have not seen it in the literature) is

1 These authors were supported by NSERC.
2 Part of this work was done while visiting Carleton Uni-
versity. Supported in part by DAAD grant D/0104616.

to simulate a post-order traversal of the recursion
tree. We assume for simplicity that the data to
be processed is stored in an array A of size n =
2k for some positive integer k. The recursion tree
corresponding to a divide-and-conquer scheme is a
perfectly balanced binary tree, in which each node
at depth 0 ≤ i < k corresponds to a subarray of
the form A[j · 2k−i . . . (j + 1) · 2k−i − 1] for some
integer 0 ≤ j ≤ i.

Our scheme is presented in Algorithm 1. We
maintain two indices b and e that indicate the sub-
array A[b . . . e−1] currently processed. We will use
the binary representation of the index e to im-
plicitly store the current status of the post-order
traversal, i.e., the node of the simulated recursion
tree currently visited.

Algorithm 1 Stackless simulation of a post-order
traversal.
1: Let b = 0 and e = 1.
2: while b 6= 0 or e ≤ n do
3: Let i be the index of the least significant bit

of e (note the lowest index is 1).
4: for c := 1 to i − 1 do
5: Set b := e − 2c.
6: Merge the two subarrays in A[b . . . e − 1]
7: end for
8: Let e := e + 1.
9: end while

Determining the value of i (Step 3) can be done
in O(1) amortized time without extra space us-
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ing a straightforward implementation of a binary
counter.

2. Nearest Neighbor Problems
2.1. Closest Pair

Given a set P of n points in the plane stored in
an array A[0 . . . n − 1], the closest pair is the pair
of points in P whose Euclidean distance is smallest
among all pairs of points. The above scheme can
be used to modify an algorithm by Bentley and
Shamos [1] to compute the closest pair in space
efficient manner using only O(1) extra space.

We first outline Bentley and Shamos’ algorithm.

Algorithm 2 Divide-and-Conquer algorithm for
finding a closest pair [1].

Require: All points in the input array A are
sorted according to x-coordinate.

Ensure: All points in the array A are sorted ac-
cording to <y, and two points realizing a clos-
est pair in A are known.

1: If A has a constant number of points, sort the
points according to <y, compute a closest pair
using a brute-force algorithm, and return.

2: Subdivide the array based upon the median x-
coordinate and recurse on both parts.

3: Determine the minimal distance δ given by the
two (locally) closest pairs of the subarrays to
be merged. Set the closest pair for the current
subarray to be the closer of those two points.

4: For both subarrays, extract the points that fall
within a strip of width 2δ centered at the me-
dian x-coordinate.

5: Simultaneously scan through both sets con-
taining the extracted points (backing up at
most a constant number of steps for each point
examined) and determine whether there is a
pair of points with distance smaller than δ. Up-
date δ and the closest pair as necessary.

6: Merge both subarrays such that all points are
sorted according to <y.

7: Return the closest pair.

To make this algorithm in-place, we require
that for each “recursive” call on a subarray
A[b . . . e], e > b, the following invariants are ful-
filled as a postcondition:
Invariant 1: The first two entries A[b] and A[b+1]

of the subarray contain two points p and q that
form a closest pair in A[b . . . e].

Invariant 2: A[b] <y A[b + 1].

Invariant 3: If e > b + 1, then A[b + 2 . . . e] is
sorted according to <y.
These invariants can be enforced trivially in-

place in Step 1 of the above algorithm. After re-
turning from the “recursive” call on A[0 . . . n− 1],
i.e., at the end of the algorithm, the first two en-
tries A[0] and A[1] contain two points that realize
a closest pair.

We can transform the above algorithm into an
in-place space-efficient variant as follows: The pre-
condition of the algorithm can be met by running
any in-place sorting algorithm, e.g., heapsort, to
sort the points according to their x-coordinate.

The merge step of the divide-and-conquer
scheme can be realized in-place as well. We parti-
tion each of the subarrays into two parts where the
front part contains the points within the 2δ strip
in sorted order by y-coordinate and the back part
contains the points outside the strip in sorted or-
der by y-coordinate. We use a stable in-place par-
titioning algorithm, e.g. [6], to partition each sub-
array.

Upon completion of the scan in step 5, to com-
pute the sorted order of the subarrays, we sim-
ply need to perform a merge of four sorted parts
(two parts are points in the strip and two parts are
points outside the strip). This merging can be done
in-place using the algorithm by Geffert et al. [3].
Theorem 1 Given a set P of n points in the plane

stored in an array A[0 . . . n−1], the closest pair in P

can be computed in O(n log n) time using O(log n)
extra bits of storage.

2.2. Bichromatic Closest Pair

In the Bichromatic Closest Pair Problem, we are
given a set R of red points and a set B of blue
points in the plane. The problem is to return the
pair of points, one red and one blue, whose distance
is minimum over all red-blue pairs. For simplicity
of exposition, we assume that |R| = |B| = n with
the red set stored in an array R[0 . . . n−1] and blue
set in an array B[0 . . . m − 1].

We first consider solving the problem when the
red and blue sets are separated by a vertical line,
with red points on the left of the line and blue
points on the right of the line. The approach is
similar to the merge step in the previous section,
except that we no longer have the luxury of the
value δ. To circumvent this problem we proceed in
the following way.

The above algorithm runs in linear-expected
time since each time through the loop, with con-
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Algorithm3 Bichromatic closest pair when R and
B are separated by a vertical line.

Require: All points in R and B are sorted by x-
coordinate.

Ensure: All points R and B are sorted by y-
coordinate, and the pair R[0], B[0] realize the
bichromatic closest pair.

1: If both R and B store only a constant number
of points, sort the points according to <y, com-
pute a bichromatic closest pair using a brute-
force algorithm, and return.

2: Assume |R| ≥ |B|, otherwise reverse the roles
of R and B

3: Pick a random element r from R.
4: Find the closest element of b ∈ B to r.
5: Compute the left envelope of disks having ra-

dius |rb| centered at each of the points in B.
6: Remove all elements of R that are outside the

envelope

stant probability, we reduce the size of R or B by
a constant fraction.

To implement this algorithm in-place, we ob-
serve all steps except Steps 5 and 6 are trivial to
implement in-place.

Step 5, computing the left-envelope (portions of
the disks visible from the point (+∞, 0)), is very
similar to the convex hull problem and can be
solved in O(n) time with an algorithm identical to
Graham’s scan since the points are sorted by <y.
The implementation of Graham’s scan given by
Brönnimann et al.[2] does this in-place and results
in an array that contains the elements that con-
tribute to the left envelope in the first part of the
array and the elements that do not contribute in
the second part of the array. Also, we observe that
it is not particulary difficult to run Graham’s scan
“in reverse” to restore the <y sorted order of the
elements in O(n) time once we are done with the
left envelope. Details are included in the full ver-
sion of the paper.

To perform Step 6 in-place we simultaneously
scan the left envelope and the red points from top
to bottom and move the discarded points, using
swaps to the end of the array. Again the details
are exactly like the implementation of Graham’s
scan given by Bronnimann et al. and the algorithm
can be run in reverse to recover the <y sorted or-
der of the points. Unfortunately, the algorithm is
run recursively on the sorted prefix of the array, so

we need O(log2 n) extra bits to remember the sub-
problem sizes at the O(log n) levels of recursion.
Note, it may be possible to apply the algorithm by
Katajainen and Pasanen [6] to remove a log n fac-
tor from the space requirement.
Theorem 2 Given sets R and B of n points in the

plane, the closest bichromatic pair can be computed

in O(n log n) time using O(log2) extra bits of stor-

age.

2.3. The all-nearest-neighbors problem

In this section, we apply the divide-and-conquer
scheme of Section 1 to solve the all-nearest-
neighbors problem space-efficiently. Again, we
present a modification of Bentley and Shamos’ al-
gorithm.

Algorithm 4 Computing all nearest neighbors [1].

Require: All points in the input array A are
sorted according to x-coordinate.

Ensure: All points in A are sorted according
to <y, and for each point, its nearest neighbor
in A is known.

1: If A stores only a constant number of points,
sort the points according to <y, compute all
nearest neighbors using a brute-force algo-
rithm, and return.

2: Subdivide the array based upon the median x-
coordinate x = ℓ and recurse on both subar-
rays A0 and A1.

3: Simultaneously scan through both subarrays
A0 and A1, and for each point p ∈ Ai check
all points in A1−i whose nearest-neighbor ball
contains the projection of p onto the line x =
ℓ. Update the nearest neighbor information as
necessary.

4: Merge the points according to <y.

We can make this algorithm space-efficient using
the framework of Section 1. One detail, however,
needs special attention. Bentley and Shamos argue
that for each of the points in the sets to be merged,
only a constant number of other points needs be
examined [1, p. 229]. More specifically, this num-
ber is four for points in two dimensions under the
Euclidean metric [1, p. 228].

Note that when processing a point p, the four
points above and below p’s y-coordinate whose
nearest neighbor balls intersect the vertical line
may be interspersed (with respect to the <y or-
der) by linearly many points. In order to provide
constant-time access to these points, we proceed
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as follows. We use 2n · log
2
n bits of extra space to

maintain the following invariants that have to be
fulfilled as a postcondition after each “recursive”
call on a subarray A[b . . . e], e > b:
Invariant 1: A[b . . . e] is sorted according to <y.
Invariant 2: Any point p ∈ A[b . . . e] stores an

index i ∈ [b . . . e] such that A[i] is the nearest
neighbor of p with respect to A[b . . . e].
If these invariants are maintained throughout

the algorithm, each point will store the index of
its global nearest neighbor at the end of the algo-
rithm. The main problem in performing the merge
step is that while simultaneously scanning the two
sorted arrays of points, i.e., before merging them,
for each point we need to compute the index of its
nearest neighbor with respect to the merged ar-
ray. This is done in two phases. First, we do a lin-
ear scan to compute the index of each element in
the merged array and store this index with the el-
ement (this is where we use n · log

2
n extra bits).

Next, we perform the merge step, and maintain a
look-ahead queue of length 8 for each point set. In
this queue, we maintain the indicies of the next 4
and the last 4 points seen whose nearest neighbor
balls intersect the vertical line at the median x-
coordinate. It is easy to see that these queues can
be maintained space-efficiently while not increas-
ing (asymptotically) the running time.
Theorem 3 All nearest neighbors in a set of n

points in the plane can be computed in O(n log n)
time using 2n log

2
n + O(log n) extra bits of space.

3. Orthogonal line segment intersection
In this section, we present a space-efficient algo-

rithm for the orthogonal line segment intersection
problem. Our algorithm can be seen as a variant of
the (external-memory) distribution sweeping ap-
proach taken by Goodrich et al. [4].

The (internal memory) version of this algorithm
is a top-down divide-and-conquer algorithm, that
is, the (algorithmic) work is done prior to recur-
sion. As a precondition, assume that all vertical
segments are sorted according to the y-coordinate
of their lower endpoint and that all horizontal seg-
ments are sorted according to their y-coordinate.
In each step of the recursion, the set of verti-
cal segments is split according to the median x-
coordinate. These sets define two slabs that are
swept top-down. All horizontal segments that com-
pletely span a slab are pushed onto a stack corre-
sponding to their slab. Whenever (the lower end-

point of) a vertical segment is encountered, the
stack corresponding to the slab containing the seg-
ment is scanned and all intersecting segments are
reported. After this sweep all horizontal segments
(or fragments thereof) not completely spanning
a slab are distributed to the corresponding slab
which in turn is processed recursively.

The first observation that helps making this al-
gorithm space-efficient is that the “stack” used in
the top-down sweep is never accessed using push-
operations. Instead, all horizontal segments are
pushed onto this stack in sorted order. This means
that any sorted (part of an) array in connection
with a single pointer indicating the current “top”
of the “stack” can be used to implement this part
of the algorithm.

A much more challenging problem is that the re-
cursion tree corresponding to the algorithm is tra-
versed in an inorder fashion, i.e., the general frame-
work of Section 1 cannot be used. In the full paper,
we will show how this algorithm can nevertheless
be made space-efficient.
Theorem 4 All k intersections in a set of n hor-

izontal and vertical line segments can be computed

in O(n log n + k) time using O(log n) bits of extra

space.
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Abstra
t

A polyhedral terrain is the image of a pie
ewise linear 
ontinuous fun
tion de�ned over the triangles of a triangula-

tion in the xy- plane. Given a terrain with n verti
es, two simply-
onne
ted regions (subsets of the triangles), and

any 
onstant � > 0, we 
an determine in O(n

2+�

) time and storage whether or not the two regions are 
ompletely

inter-visible, whi
h improves the O(n

3

) time 
omplexity of a brute-for
e algorithm.

Key words: Terrains, visibility, GIS, data stru
tures

1. Introdu
tion

A terrain T is a triangulated polyhedral surfa
e

with n verti
es V (T ) = fv

1

; v

2

; :::; v

n

g. Ea
h ver-

tex v

i

is spe
i�ed by three real numbers (x

i

; y

i

; z

i

),

whi
h are its 
artesian 
oordinates. Every verti-


al line interse
ts the terrain at most on
e, whi
h

means it 
an also be viewed as a pie
ewise linear

fun
tion on R

2

.

Every triangle t on a terrain T has a normal

ve
tor asso
iated with it. The terrain divides spa
e

into two parts; the outward normal on a triangle


orresponds to the part above T , above(T ) and

the inward normal to the part below T , below (T ).

Be
ause of the natural meaning, visibility between

two points only makes sense if both points are on

or above the terrain.

Given a terrain T in 3D and two points p and

q on T , we say that p sees q if the line segment

pq does not interse
t below (T ), that is, visibility is

not blo
ked by grazing 
onta
t with the terrain. A

triangle t in T is weakly visible from a point p 2 R

3

if there exists at least one point on t that is visible

from p. A triangle t is strongly visible from p if every

point on t is visible from p.

A region is a 
onne
ted subset of triangles in

T . We develop an algorithm to de
ide whether

two given regions R

1

and R

2

are 
ompletely inter-

visible, whi
h is equivalent to region R

1

being

strongly visible from every point in region R

2

(if

so, it automati
ally holds the other way around).

2. Related Work

Visibility 
omputations in terrains have their

main appli
ation in geographi
 information sys-

tems (GIS), for example 
omputations regarding

horizon pollution and signal transmission (e.g. mo-

bile phone networks). Most of the early resear
h


onsidering visibility in terrains dealt with grid-

basedDigital Elevation Models (DEM), as opposed

to Triangular Irregular Networks (TIN) whi
h are


ommon in re
ent GIS resear
h. In algorithms re-

sear
h, TINs are 
alled (polyhedral) terrains.

Algorithmi
 explorations of visibility in terrains

were des
ribed in [4℄ and [10{12℄, for example the

shortest wat
htower problem. Later, more 
omplex

visibility problems were dis
ussed: visibility 
om-

putations from a moving point of view are dis-


ussed in [2℄, and an eÆ
ient and dynami
 algo-

rithm to maintain a visibility map for a 
ertain

viewpoint is introdu
ed in [8℄.
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Agarwal and Sharir [1℄ obtained tight bounds on

the maximum number of 
ombinatorially di�erent

views of a terrain. Finally, [6℄ is a re
ent overview of

various problems 
on
erning visbility in terrains.

3. Strong region inter-visibility

First, we look at the orientations of R

1

and R

2

in spa
e. For the time being, we suppose no other

part of T 
an blo
k visibility between R

1

and R

2

than the regions themselves.

We denote the plane in 3D that 
ontains a given

triangle t as P(t). The half-spa
e indu
ed by P(t)

that 
orresponds to the spa
e aboveP(t) is denoted

by HS(t). Visibility is only de�ned above the ter-

rain, so if a triangle t sees a point p, then p lies in

HS(t). If two 
onne
ted sets of triangles in 3D, R

1

and R

2

, 
an see ea
h other, it implies that all ver-

ti
es of R

1

lie in the interse
tion of the half-spa
es

indu
ed by the triangles of R

2

, and vi
e versa:

8v

1

2 R

1

: v

1

2

\

t

2

2R

2

HS (t

2

) ^

8v

2

2 R

2

: v

2

2

\

t

1

2R

1

HS(t

1

) (1)

If a vertex from one region does not lie in the

half-spa
e interse
tion of the other region, it is not

seen by at least one of the triangles in that region.

Thus, 
ondition (1) is ne
essary (but not suÆ
ient)

for strong visibility between two regions in a ter-

rain. We say regions R

1

and R

2

are fa
ing ea
h

other if 
ondition (1) is satis�ed.

When two regions R

1

and R

2

on a terrain T are

fa
ing ea
h other, we 
an start to take the rest of

the terrain into a

ount. Visibility between points

from di�erent regions now depends on the terrain

not blo
king the view.

We limit the number of points from R

1

and R

2

we have to 
he
k for inter-visibility.

Lemma 1 Two 
onne
ted sets of triangles on a

terrain R

1

and R

2

are strongly inter-visibile, if and

only if

(i) R

1

and R

2

are fa
ing ea
h other, and

(ii) �R

1

and �R

2

are strongly inter-visible

PROOF. The ne
essity of the �rst 
ondition fol-

lows from the dis
ussion above.

The ne
essity of the se
ond 
ondition follows eas-

ily. Be
ause a region R = int(R)[ �R, the bound-

aries of two regions must see ea
h other if the entire

regions see ea
h other.

For the suÆ
ien
y of the two 
onditions, assume

that p 2 int(R

1

) and q 2 int(R

2

) do not see ea
h

other. We assume that R

1

and R

2

are fa
ing ea
h

other, and prove that there exist two points on �R

1

and �R

2

that 
annot see ea
h other.

Consider the verti
al plane � 
ontaining p and q.

Let T

�

= �\ T be the 
ross-se
tion of the terrain,

whi
h is a lower-dimensional terrain itself. The set

� \ R

1


onsists of one or more 
onne
ted 
ompo-

nents, and p lies in the interior of one of them. The

same statement holds for R

2

and q. We only have

to 
onsider visibility of p and q in �. Be
ause p and

q are fa
ing ea
h other, the line segment pq does

not interse
t below (T

�

) in a neighborhood of p, nor

in a neighborhood of q. Let r be the point on T

�


losest to p that is in the 
losure of pq\ below (T

�

).

If p and r are in the same 
omponent of � \ R

1

,

then the triangle 
ontaining r is not fa
ing the tri-

angle 
ontaining q. If p and r are not in the same


omponent, then between p and r in T

�

there is a

point p

0

2 �R

1

than 
annot see q either. We re-

peat the argument with q and p

0

to �nd a point

q

0

2 �R

2

that 
annot see p

0

. Hen
e, if two points

interior to R

1

and R

2


annot see ea
h other, then

there exist two boundary points of R

1

and R

2

that


annot see ea
h other. 2

Che
king only strong inter-visibility of the ver-

ti
es on the boundary of the two regions is not

suÆ
ient, be
ause a small peak of the terrain 
an

blo
k two boundary edges from being strongly

inter-visible, while their endpoints 
an indeed see

ea
h other.

We de�ne S to be the set 
ontaining all triangles

that are de�ned by either a vertex of �R

1

and an

edge of �R

2

, or by an edge of �R

1

and a vertex of

�R

2

. Be
ause grazing 
onta
t with the terrain is

permitted, inter-visibility is blo
ked if and only if

there is a triangle t 2 S for whi
h t\below(T ) 6= ;.

The proof of the following lemma is straightfor-

ward and is therefore omitted.

Lemma 2 Given a terrain T and an arbitrary tri-

angle t with verti
es in V (T ). The interse
tion t \

below(T ) is non-empty if and only if one of the fol-

lowing two situations o

urs:

(i) a vertex of T lies stri
tly above t, or

(ii) an edge of T lies stri
tly above an edge of t.
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4. Algorithm and data stru
tures

Now that we know what to 
ompute, how


an we 
ompute it eÆ
iently? The terrain has

O(n) verti
es and triangles. The regions R

1

and

R

2

are generally smaller, so we say they have

O(m) 
omplexity. In the remainder of this paper

we use O

�

(f(n;m)) as a shorthand for a bound

O(f(n;m) �n

�

), where � > 0 is an arbitrarily small


onstant. The O

�

(::)-notation supresses polyloga-

rithmi
 fa
tors of n, and fa
tors n

�

.

4.1. Fa
ing the 
orre
t way

For ea
h region R

i

, i = 1; 2, we 
ompute

T

t2R

i

HS (t), whi
h is the interse
tion of O(m)

half-spa
es. Be
ause half-spa
es are 
onvex, this

interse
tion 
an be 
omputed in O(m log m) time

[5℄. Next, we 
he
k for all O(m) verti
es of the

other region whether they are 
ontained in this

interse
tion. We prepro
ess the 
onvex volume for

point lo
ation in O(m log m) time and then query

with O(m) points in O(log m) time per query.

Con
luding, we 
an 
he
k if two O(m) regions on

the terrain are fa
ing ea
h other in O(m log m)

time using O(m) storage.

4.2. Visibility blo
ked by the terrain

We have to 
he
k for interse
tions between a set

of O(n) terrain triangles, and the elements of S,

a set of O(m

2

) triangles between the edges and

verti
es of �R

1

and �R

2

. We 
he
k all triangles in

S for interse
tion with the terrain. In a brute-for
e

algorithm, this leads to O(nm

2

) time. But 
an we

do better?

By Lemma 2, we have to 
he
k two things to

de
ide whether a triangle t from S interse
ts T :

either a vertex of T lies above t, or an edge of T lies

above an edge of t. We dis
uss these two situations

next.

4.2.1. Terrain verti
es

To redu
e the time 
omplexity, it is ne
essary to

take a di�erent look at the geometry. For a given

vertex v of the terrain, we want to 
he
k whether

there is any triangle in S that lies stri
tly below v.

Obviously, we want to limit the number of triangles

to 
he
k in height against v.

If v lies above a triangle t in S, then the proje
-

tion of v on the xy-plane lies in the proje
tion of t.

S 
ontains O(m

2

) triangles that possibly overlap

ea
h other; we want to retrieve exa
tly those tri-

angles S(v) � S that 
ontain the proje
tion of v

in their proje
tions. Then the remaining question

is: does v lie on or below all triangles of S(v)?

This question 
an also be simpli�ed by look-

ing at the geometry. If a point p in 3D lies above

a set of triangles S(v), it lies in the polyhedron

S

t2S(v)

HS(t). These geometri
 observations lead

us to the data stru
ture des
ribed next.

To �nd the triangles from S that 
ontain a given

point in their proje
tions on the xy-plane, we 
on-

stru
t a partition tree of O(m

2

) size [5℄. Given a

query point p, it returns O

�

(m) 
anoni
al subsets

of triangles from S that 
ontain p in their proje
-

tion. We give every node � in the partition tree an

asso
iated data stru
ture of linear 
omplexity in

the 
ardinality of the 
anoni
al subset 
(�). This

stru
ture is used to determine whether the query

point lies in the interse
tion of the half-spa
es in-

du
ed by all triangles in 
(�). This query 
an be

answered in O(log m) time after O(m log m) pre-

pro
essing time and with linear storage, by using

the Dobkin-Kirkpatri
k hierar
hy [7,9℄.

The 
onstru
tion time for a partition tree of size

O(m

2

) is O(m

2+�

) for any 
onstant � > 0 [5℄.

Fortunately, the spa
e required for the partition

tree's asso
iated stru
ture does not in
rease the

total storage spa
e mu
h, in parti
ular, nothing at

all in O

�

(::)-notation. The total data stru
ture re-

quiresO(m

2

logm) spa
e. The 
onstru
tion time is

O

�

(m

2

) and the total query time is n timesO

�

(m),

whi
h is O

�

(mn) [5℄.

4.2.2. Terrain edges

The se
ond situation that must be tested to dis-


over whether the terrain blo
ks visibility is if a

terrain edge lies above an edge of a triangle from S.

We proje
t the terrain edges onto the xy-plane and

for every edge from S, we want to �nd the terrain

edges whose proje
tions interse
t the proje
tion of

the query edge. We 
an treat these terrain edges as

full lines in 3D, and the same is true for the query

edge. The obje
tive is to �nd out whether the line

supporting the query edge lies above all lines sup-

porting the sele
ted terrain edges.

The data stru
ture we use stores the proje
tions

of the terrain edges in a 
utting tree of size O(n

2

)
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[5℄. We perform m

2

queries on this tree with edges

fromS, ea
h takingO(log n) query time. The query

returns all interse
ting terrain edges in O(log n)


anoni
al subsets. We give ea
h node � in the 
ut-

ting tree an asso
iated stru
ture of size O(n

2+�

)

for the 
anoni
al subset 
(�) of edges as the sup-

porting lines in spa
e [3℄. Consequently, we 
an de-


ide whether a query line lies above all lines in the


anoni
al subset in O(log n) query time.

Be
ause the storage required for the 
utting tree

dominates the storage of the asso
iated stru
ture,

the total data stru
ture requires O(n

2+�

) storage

and 
an be 
onstru
ted in O

�

(n

2

) time. The total

query time isO(m

2

logn), orO

�

(m

2

), and thus the

total time 
omplexity to determine if any terrain

edge is above any edge of S is O

�

(n

2

+m

2

).

4.3. Total time and spa
e 
omplexity

In the previous se
tion, we investigated the run-

ning times and storage spa
e needed to determine

whether two regions in a terrain 
ompletely see

ea
h other. We now summarize the time and stor-

age 
omplexities for the partition tree with its as-

so
iated stru
tures (PT) and the 
utting tree with

its asso
iated stru
tures (CT).

Prepro
essing Total queries Storage

PT O

�

(m

2

) O

�

(mn) O(m

2

)

CT O

�

(n

2

) O

�

(m

2

) O

�

(n

2

)

Be
ausem is in the worst 
aseO(n), we have a total

time 
omplexity of O

�

(n

2

) whi
h is a 
onsiderable

improvement over the O(n

3

) time of a brute-for
e

algorithm.

5. Con
luding remarks

We developed an algorithm to determine in

O

�

(n

2

) time whether two regions in a terrain are

strongly inter-visible. The algorithm uses as data

stru
tures a partition tree and a 
utting tree, both

with asso
iated stru
tures, leading to a total of

O

�

(n

2

) storage.

Another natural problem would be determining

weak inter-visibility between two regions, whi
h

means that every point in one region sees at least

one point in the other region. Be
ause weak vis-

ibility has less 
onstraints than strong visibility,

it is more diÆ
ult to 
ompute. We are 
urrently

working on algorithms and data stru
tures for this

problem.
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Abstra
t

Let P be a simple polygon. We de�ne a witness set W to be a set of points su
h that if any (prospe
tive) guard

set G guards W , then it is guaranteed that G guards P . We show that not all polygons admit a �nite witness set.

If a �nite minimal witness set exists, then it 
annot 
ontain any witness in the interior of P ; all witnesses must lie

on the boundary of P , and there 
an be at most one witness in the interior of any edge. We give an algorithm to


ompute a minimal witness set for P in O(n

2

log n) time, if su
h a set exists, or to report the non-existen
e within

the same time bounds. We also outline an algorithm that uses a witness set for P to test whether a (prospe
tive)

guard set sees all points in P .

1. Introdu
tion

Approximately seven years ago, Joseph Mit
hell

posed the Witness Problem to Tae-Cheon Yang

during a resear
h visit of the latter: "Given a poly-

gon P , does it admit a witness set, i.e., a set of

obje
ts in P su
h that any (prospe
tive) guard set

that guards the witnesses is guaranteed to guard

the whole polygon?"

In this paper we 
onsider point witnesses that

are allowed to lie anywhere in the interior or on the

boundary of the polygon. We want to determine

for a given polygon P whether a �nite witness set

exists, and if this is the 
ase, to 
ompute aminimal

witness set.

A preliminary full version of this paper is avail-

able as te
hni
al report [3℄. Due to spa
e limita-

tions, we omitted several lemmas of minor impor-

tan
e and the proofs of the remaining lemmas in

this abstra
t.

2. Preliminaries

Throughout this paper, P denotes a simple poly-

gon with n verti
es V (P ) = fv

0

; v

1

; : : : ; v

n�1

g;

we assume that the verti
es are ordered in 
oun-

ter
lo
kwise dire
tion. The edges of P are de-

noted with E(P ) = fe

0

; e

1

; : : : ; e

n�1

g, with e

i

=

(v

i

; v

i+1 mod n

). We 
onsider an edge e

i

to be the


losed line segment between its in
ident verti
es,

and P to be a 
losed subset of E

2

.

A point p in P sees a point q in P if the line

segment pq is 
ontained in P . Sin
e polygons are


losed regions, the line-of-sight pq is not blo
ked

by grazing 
onta
t with the boundary of P ; this

de�nition of visibility is 
ommonly used in the Art

Gallery literature [7℄.

We say that a point p in P sees past a re
ex

vertex v of P if p sees v, and the edges in
ident to

v do not lie on di�erent sides of the line through p

and v (i.e., one of the edges may lie on this line).

Let p be a point in P . The visibility polygon of

p is the set of points in P that are visible to p. We

denote the visibility polygon by VP(p). The visi-

bility kernel of a point p is the kernel of its visibility

polygon and is denoted by VK(p).
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De�nition 1 A witness set for a polygon P is a

point set W in P for whi
h the following holds: if,

for any arbitrary set of points G in P , ea
h element

of W is visible from at least one point in G, then

every point in P is visible from at least one point

in G.

The following theorem states the ne
essary and

suÆ
ient 
onditions on witness sets:

Theorem 2 A point set W is a witness set for a

polygon P if and only if the union of the visibility

kernels of the elements of W 
overs P 
ompletely.

We also apply the 
on
ept of witnesses to indi-

vidual points. For two points p and q in a polygon

P , we say that p is a witness for q (or alternatively,

that pwitnesses q), if any point that sees p also sees

q. The following lemma is analogous to Theorem 2:

Lemma 3 If p and q are points in a polygon P ,

then p witnesses q if and only if q lies in VK(p).

The following lemma shows that witnessing is

transitive:

Lemma 4 Let P be a polygon, and let p, q, and r

be points in P . If p witnesses q and q witnesses r,

then p witnesses r.

This leads to the notion ofminimal witness sets :

De�nition 5 Let P be a polygon and let W be a

witness set for P .W is 
alled a minimal witness set

for P if, for any w 2W , W n fwg is not a witness

set for P .

Lemma 6 Let P be a polygon, and let W be a wit-

ness set for P . W is a minimal witness set for P

if and only if for any w 2 W , w does not lie in

VK(w

0

) for any w

0

2 W;w

0

6= w.

Lemma 7 Let P be a polygon. If W is a witness

set for P , then (i) there exists a subset W

0

� W

su
h that W

0

is a minimal witness set for P , and

(ii) for any supersetW

00

�W , W

00

is a witness set

for P .

Observe that not all polygons are witnessable

with a �nite witness set; see Figure 1. The polygon

on the left is witnessable by three witnesses (the

bla
k dots), but the polygon on the right needs an

in�nite number of witnesses. The visibility kernels

of the witnesses indi
ated at four of the verti
es

of the polygon do not 
over the 
omplete polygon.

(a) (b)

Fig. 1. The polygon on the left is witnessable with three

witnesses, while the polygon on the right needs an in�nite

number of witnesses.

Adding witnesses to the remaining verti
es does

not help, as these verti
es are already witnessed

and witnessing is transitive. It turns out that we

would need to 
over both unwitnessed segments

on the boundary of the polygon 
ompletely with

witnesses to get an (in�nite) witness set for this

polygon.

3. Visibility kernels

In this se
tion we study several properties of vis-

ibility kernels, that are used in the next se
tion to

establish our main results on �nite witness sets.

Let P be a polygon with n verti
es and edges,

as de�ned in Se
tion 2. It is well-known that the

kernel of a polygon P is the interse
tion of the

positive halfspa
es of its edges; when this kernel is

non-empty, the polygon is said to be star-shaped.

The visibility polygon VP(p) of a point p in P is

star-shaped by de�nition (the kernel 
ontains at

least p). However, there is an alternative way of

des
ribing VK(p) that turns out to be useful.

The edges of the visibility polygon VP(p) 
an be


lassi�ed into two groups (see Figure 2):

(i) An edge e of VP(p) 
oin
ides with the part

of an edge e

0

of P that is visible from p.

(ii) An edge e of VP(p) is indu
ed by the dire
ted

line `(p; v) through p and a re
ex vertex v of

P su
h that p sees past v.

The visibility kernel VK(p) is the interse
tion of

the 
losure of the positive half-spa
es indu
ed by

the lines through all edges of VP(p). The reader

may wonder why we introdu
e this seemingly 
om-

pli
ated alternative representation of the edges of

VP(p). The reason is that for any p, there may be

many edges in group (ii), but at most two of these


ontribute to VK(p). This helps us to redu
e the


omplexity of the data stru
tures involved in 
om-
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p
v

ℓ(p, v)

e

e′

Fig. 2. Two types of edges of VP(P ).

puting the union of a set of visibility kernels; see

Se
tion 5.

We 
on
lude this se
tion with a property of visi-

bility kernels that is of use in the remainder of this

paper.

Lemma 8 If a point p in a polygon P sees past a

re
ex vertex v 2 V (P ), then p lies on the boundary

of VK(p).

4. Finite witness sets

We would like to determine for a given simple

polygon P whether a �nite witness set for P exists,

and if so, to 
ompute su
h a set.

We have seen that a point p witnesses a point q

if q lies in VK(p). This means that for a witness set

W , the union

S

w2W

VK(w) must 
over the whole

polygon p.

For a polygon P and a set W of points in P ,

let A(W ) be the arrangement in P indu
ed by the

supporting lines of the line segments of type (i) and

of those of type (ii) that 
ontribute to VK(w), for

every witness w 2W .

For any 
ell 
 of A(W ) and any point w 2 W , 


lies either 
ompletely inside or 
ompletely outside

VK(w). This means that W is a witness set for P

if and only if every 
ell of A(W ) is 
ontained in

VK(w) for at least one w 2W .

We denote the 
ardinality of W by m. Be
ause

for every w 2 W , there are at most two verti
es

in group (ii) that 
ontribute to VK(w), there are

in total at most n + 2m line segments that de�ne

A(W ), and therefore the 
omplexity of A(W ) is

O((n + m)

2

). We dis
uss how to test the 
ells of

A(W ) on 
ontainment in visibility kernels in Se
-

tion 5.

Via several lemmas that are derived from Lem-

mas 4 and 8, we arrive at the following lemma:

Fig. 3. For any n there is a polygon with n verti
es that

is witnessable with no less than n� 2 witnesses. Witnesses

in the example are indi
ated with bla
k dots.

Lemma 9 Let P be a simple polygon. If W is a

�nite minimal witness set for P , then no element

of W lies in int(P ).

Note that a 
onvex polygon 
an be witnessed by

a single point in its interior. However, su
h a one-

element witness set is not minimal, as the empty

set is also a witness set for any 
onvex polygon.

Given the above lemma, we only need to 
on-


entrate on witnesses that lie on the boundary of

P . Analyzing the possible 
on�gurations of witness

sets, we arrive at the following theorem:

Theorem 10 Let P be a simple polygon with n

edges. If a �niteminimal witness setW for P exists,

then all witnesses w 2 W lie on the boundary of P .

Ea
h edge has at most one witness w 2 W in its

interior. If an edge has one or two witnesses on its

in
ident verti
es, then there 
annot be any witness

in the interior of the edge. Finally, for ea
h n �

4 there is a polygon that needs no less than n � 2

witnesses to be witnessed.

The lowerbound 
onstru
tion is given in Fig-

ure 3.

5. Algorithms

In this se
tion we outline an algorithm that 
om-

putes a minimal �nite witness set W for a simple

polygon P , if su
h a set exists, or reports the non-

existen
e of su
h a set otherwise. We also outline

an algorithm that uses a witness setW for P to test

whether a set of points G in P guards the whole

polygon.

The algorithm to 
ompute a minimal witness set

W for a given simple polygon P with n verti
es

works as follows:
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{ First, we pla
e witnesses at 
andidate positions.

We pla
e a witness at every vertex of P , and one

halfway ea
h edge of P . This step runs in O(n)

time.

{ Next, using A(W ), we test whetherW

0

is a wit-

ness set for P with a sweepline approa
h. If it

is, we extra
t a minimal witness set W fromW

0

in the next step; otherwise, we report that no

�nite witness set for P exists. This step takes

O(n

2

logn) time.

{ We extra
t a minimal witness set W by repeat-

edly removing an unne
essary witness, i.e. wit-

nesses that are witnessed by another witness in

W

0

. This step takes O(n

2

logn) time.

This leads to the following theorem:

Theorem 11 Let P be a simple polygon with n

verti
es. If a �nite witness set for P exists, a �nite

minimal su
h setW 
an be 
omputed inO(n

2

logn)

time. Otherwise, if no �nite witness set for P exists,

than this 
an be reported in the same running time.

Next, we need an algorithm for testing whether

a set G of g guards in a polygon P together see

the whole polygon. A straightforward 
he
k, with-

out using witnesses, 
an be performed in O((g

2

+

gn log g) log(g + n)) time [2,4℄.

Can we do better if a witness set W of size m

for P is given? We test for ea
h witness whether it


an be seen by a guard by performing (at most) g

ray shooting queries, or O(gm) queries in total. P


an be prepro
essed for ray shooting in O(n), after

whi
h a query takes O(log n) time [5℄. So the total

prepro
essing time, in
luding the 
omputation of

W , be
omes O(n

2

logn) time, and the query time

is O(gm logn). Note that in the worst 
ase m =

�(n). This query time is faster then the straight-

forward approa
h des
ribed above, but not ne
es-

sarily very mu
h (how mu
h pre
isely depends on

the parameters g andm). If m (the number of wit-

nesses) is small and g (the number of guards) is

large, then the gain is big.

6. Con
luding remarks

We showed that if a polygon P admits a �nite

witness set, then any minimal witness set W for

P has no witnesses in the interior of P , there is

at most one witness in the interior of ea
h edge of

P . If an edge has one or two witnesses on its in
i-

dent verti
es, then there 
annot be a witness in the

interior of this edge. It follows that any minimal

witness set for P has at most n elements. Further-

more, for any n � 4, there is a polygon for whi
h

the minimum size witness set has n� 2 witnesses.

Aminimal �nite witness set for P 
an be 
omputed

in O(n

2

logn) time, if it exists.

It remains open whether the problem of �nd-

ing a minimum size witness set for a given poly-

gon is 
omputable. It is well-known that the prob-

lem of �nding a minimum size guard set is NP-


omplete [1,6℄. We 
onje
ture, however, that �nd-

ing a minimum size witness set is 
omputable in

polynomial time, and we are 
urrently working to-

wards turning our 
onje
ture into a theorem.

Another interesting dire
tion for further re-

sear
h is to 
onsider other types of witnesses, su
h

as (a subset of) the edges of the polygon. We

believe that we 
an extend our 
urrent lemmas,

theorems, and algorithms to test whether a poly-

gon is witnessable by an minimal in�nite witness

set, where all the witnesses lie on the boundary of

the polygon.
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Abstract

We consider the problems of deciding whether a given collection of polygons (polyhedra resp.) forms (i) a partition
or (ii) a cell complex decomposition of a given polygon (polyhedron resp.). We describe simple O(n log n)-time
and O(n)-space algorithms for these problems, where n is the total description size of the input. If, in the input,
vertices are referenced by means of indices to an array of distinct vertices, then our cell complex decomposition
verification algorithms run in O(n) time.

1. Introduction

In recent years, there has been growing interest
in algorithms that enable us to check the output
of a program. This issue has been considered from
different viewpoints, and the research yielded re-
sults ranging from characterizations of problems
that are checkable [2] to special-purpose checkers.
In particular, in computational geometry, this is-
sue proves to be crucial as the newer and more ef-
ficient algorithms are more and more complicated.
Usually, the authors of an algorithm for computing
some geometric object describe properties of the
object which can be used to verify the correctness
of the computation (see e.g. [1] and [4] for 2d and
3d triangulations of point sets). Often, however,
more machinery is needed.

The first verification algorithms (“checkers”)
were provided by Mehlhorn et al. who defined the
properties that a checker should have (correct-
ness, simplicity, efficiency) and described check-
ers for convex polyhedra and convex hulls [5];
they have also studied checkers for trapezoidal
decompositions, planar point location structures
for trapezoidal decompositions, and Voronoi and
Delaunay diagrams. Devillers et al. extended the
notion of checkers and provided checkers for con-
vex polytopes in two and higher dimensions, and
for various types of planar subdivisions [3]. Their
algorithms run in linear time, assuming that the
input is a 2d or a 3d ordered geometric graph.

Email address: palios@cs.uoi.gr (Leonidas Palios).

In this paper, we present simple and efficient
verification algorithms for partitions and cell
complex decompositions of simple polygons and
polyhedra. The algorithms rely on appropriately
matching the edges of the 2d decompositions and
the facets of the 3d decompositions, and run in
O(n log n) time using O(n) space, where n is the
total size of the input. If, in the input, vertices are
referenced by means of indices to an array of dis-
tinct vertices, then our cell complex decomposition
verification algorithms run in optimal O(n) time.

Note: In the following, a polygon or a polyhedron
is understood to be a simple one.

2. The Two-dimensional Case

We assume that each polygon in the input is
described by the sequence of its vertices along its
boundary, where each vertex is given by its coor-
dinates.

2.1. Verification of a partition of a polygon

Lemma 1 Let P and C be a polygon and a collec-
tion of polygons respectively. Additionally, let EI =
{e− ∂P | e is an edge of a polygon in C} and EB =
{e∩∂P | e is an edge of a polygon in C}. Then, the
collection C forms a partition of P if and only if

(i) the set EI of (parts of) edges of the polygons in
C can be partitioned into sets S and S′ such that
•

⋃
s∈S

closure(s) =
⋃

s∈S′ closure(s),

20th EWCG Seville, Spain (2004)
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• the closures of the segments in S and S′ define
a partition of

⋃
s∈S

closure(s), and
• for each (part of) edge e in S (resp. S′), if S′[e]

(resp. S[e]) is the set of segments of S′ (resp. S)
that are collinear with and intersect e, then,
locally around e, the interior of the polygon in
C with edge e and the interiors of the polygons
in C whose edges contributed the elements of
S′[e] (resp. S[e]) lie on opposite sides of the
line supporting e;

(ii) the closures of the segments in EB form a parti-
tion of the boundary ∂P of P , and for each (part
of) edge e in EB, locally around e, the interior of
the polygon in C with e as an edge and the inte-
rior of P lie on the same side with respect to the
line supporting e.

The partition verification algorithm applies
Lemma 1. It uses an (initially empty) array A

of size equal to the total number of edges of the
polygons in C and of the polygon P .

2d Partition Verification Algorithm
1. Orient the boundary of polygon P and the

boundaries of the polygons in C in a compat-
ible fashion (e.g., the boundary is traversed
in a ccw fashion).

2. For each polygon Q in C do
for each edge

−→

uv of Q do
if u is lex-smaller than v

then add the entry (u, v, +1) in A;
else add the entry (v, u,−1) in A;

3. For each edge
−→

uv of P do
if u is lex-smaller than v

then add the entry (u, v,−1) in A;
else add the entry (v, u, +1) in A;

4. Sort the entries (ui, vi,±1) of the array A by
slope of the line uivi and, in case of ties, lex-
icographically taking into account the coor-
dinates of the vertices ui and vi.

5. For each slope separately, traverse the related
entries of A verifying that those with “+1”
and those with “−1” partition the same set
of segments. If this terminates successfully,
then the collection C of polygons defines a
partition of the polygon P , otherwise it does
not.

Time complexity. Steps 1, 2, and 3 can be com-
pleted in time linear in the total description size n

of the input, while Step 4 takes O(n log n) time.
Step 5 takes O(n) time: for each slope, the sort-

ing of the entries implies that each new entry with
“+1” either is the extension of the latest entry with
“+1” or starts a new segment in the union of the
“+1”-entries (if not, C does not form a partition of
P ), and similarly for the “−1”-entries. The algo-
rithm uses O(n) space.

2.2. Verification of a cell complex decomposition
of a polygon

Lemma 2 Let P and C be a polygon and a collec-
tion of polygons respectively. Then, the collection C
forms a cell complex decomposition of P if and only
if the set of edges of the polygons in C can be parti-
tioned into two sets EI and EB such that

(i) for each edge e in EI there exists exactly one
other edge, say d, in EI such that e = d and,
locally around e, the interiors of the polygons in
C with edges e and d lie on opposite sides of the
line supporting e;

(ii) the edges in EB form a partition of the bound-
ary ∂P of P and for each edge e in EB, locally
around e, the interior of the polygon in C with
edge e and the interior of P lie on the same side
with respect to the line supporting e.

The cell complex verification algorithm applies
Lemma 2; it too uses an (initially empty) array A

of size equal to the total number of edges of the
polygons in C.

2d Cell Complex Verification Algorithm
1. Collect all the vertices and assign to each one

of them a distinct positive integer id( ).
2. Orient the boundary of polygon P and the

boundaries of the polygons in C in a compa-
tible fashion.

3. For each polygon Q in C do
for each edge

−→

uv of Q do
if u is lex-smaller than v

then add (id(u), id(v), +1) in A;
else add (id(v), id(u),−1) in A;

4. Sort the array A lexicographically.
5. Traverse the sorted array A deleting match-

ing entries (i.e., (k, k′,−1) and (k, k′, +1)),
which now appear next to each other.

6. Collect the unmatched entries and by ap-
plying a depth-first traversal construct the
graph that these entries form. If this graph
is a closed path identical to the boundary of
the polygon P , then the collection C of poly-
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gons defines a cell complex decomposition of
P , otherwise it does not.

Time complexity. If n is the total description size
of the input, Step 1 can be executed in O(n log n)
time by means of a balanced binary search tree
to determine identical vertices. Steps 2 and 3 take
O(n) time; so does Step 4 (by using radix sorting),
and Steps 5 and 6. Thus, the algorithm takes a
total of O(n log n) time. The space required by the
algorithm is O(n).

Observe that all the steps of the above algorithm
but Step 1 take O(n) time. Moreover, if the input
consists of the list V of distinct vertices of the poly-
gon P and of the polygons in the collection C, fol-
lowed by the vertices of each polygon, where each
vertex is referenced by its index to the list V , then
we do not need to execute Step 1. Such a represen-
tation is commonly used, and is easily produced by
partitioning programs. Then, it can be determined
whether the collection C forms a cell complex de-
composition of P in O(n) time using O(n) space.

3. The Three-dimensional Case

We assume that each polyhedron in the input is
described by a list of its facets, each represented
by the sequence of its vertices along its boundary,
where each vertex is given by its coordinates.

Our verification algorithms rely on two lemmata
similar to Lemma 1 and Lemma 2.

3.1. Verification of a partition of a polyhedron

Lemma 3 Let P and C be a polyhedron and a col-
lection of polyhedra respectively. Additionally, let
FI = {f − ∂P | f is a facet of a polyhedron in C}
and FB = {f ∩ ∂P | f is a facet of a polyhedron in
C}. Then, the collection C forms a partition of P if
and only if

(i) the set FI of (parts of) facets of the polyhedra in
C can be partitioned into two sets S and S′ such
that the closures of the polygons in each of these
sets defines a partition of

⋃
s∈S

closure(s), and
for each (part of) facet f in S (S′ resp.), the
interior of the polyhedron of C with facet f and
the interiors of the polyhedra of C with facets the
polygons of S′ (S resp.) which intersect with f lie

(locally around f) on opposite sides of the plane
supporting f ;

(ii) the closures of the polygons in FB form a parti-
tion of the boundary ∂P of P , and for each (part
of) facet f in FB, locally around f , the interior
of the polyhedron of C with facet f and the inte-
rior of P lie on the same side with respect to the
plane supporting f .

In light of Lemma 3, we have:

3d Partition Verification Algorithm
1. Orient the facets of the polyhedron P and of

the polyhedra in C in a compatible fashion
(i.e., in counterclockwise order as seen from
outside the polyhedron).

2. For each polyhedron Q in C do
for each facet f of Q do

u← the lex-smallest vertex of f ;
if f ’s boundary forms a left turn at u

then add the entry (f, +1) in A;
else add the entry (f,−1) in A;

3. For each facet f of P do
u← the lex-smallest vertex of f ;
if f ’s boundary forms a left turn at u

then add the entry (f,−1) in A;
else add the entry (f, +1) in A;

4. Sort the entries (fi,±1) of the array A by
slope of the plane supporting fi and, in case
of ties, lexicographically on the second field
of the entry.

5. For each slope separately, verify that the re-
lated facet records with “+1” and those with
“−1” partition the same polygonal regions.
If this matching terminates successfully, then
the collection C defines a partition of the
polyhedron P , otherwise it does not.

Time complexity. Steps 1, 2, and 3 can be com-
pleted in time linear in the total description size n

of the input. Step 4 takes O(n log n) time. Step 5
can also be completed in O(n log n) time: for each
different plane slope, collect the entries with “+1”
as second field, and apply on the associated facets
Steps 2 and 4 of the 2d partition verification algo-
rithm (see Section 2.1); Step 5 of that algorithm
is applied next, except that the difference of the
union of the “+1” and the “−1” entries is com-
puted and used to form a graph; the same pro-
cedure is applied to the entries of the array A

with “−1” as second field; finally, the two resulting
graphs are checked to see whether they are identi-
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cal. Thus, the algorithm takes a total of O(n log n)
time. The algorithm uses O(n) space.

3.2. Verification of a cell complex decomposition
of a polyhedron

Lemma 4 Let P and C be a polyhedron and a col-
lection of polyhedra respectively. Then, the collec-
tion C forms a cell complex decomposition of P if
and only if the set of facets of the polyhedra in C can
be partitioned into two sets FI and FB such that

(i) for each facet f in FI there exists exactly one
other facet, say f ′, in FI such that f = f ′ and,
locally around f , the interiors of the polyhedra in
C with edges f and f ′ lie on opposite sides of the
plane supporting f ;

(ii) the edges in FB form a partition of the bound-
ary ∂P of P and for each facet f in FB, locally
around f , the interior of the polyhedron of C with
facet f and the interior of P lie on the same side
with respect to the plane supporting f .

The cell complex verification algorithm applies
Lemma 4. It uses two auxiliary arrays A and B,
which are initially empty; it works as follows:

3d Cell Complex Verification Algorithm
1. Collect all the vertices and assign to each one

of them a distinct positive integer id( ).
2. Orient the facets of the polyhedron P and of

the polyhedra in C in a compatible fashion.
3. For each polyhedron Q in C do

for each facet f of Q do
a← the lex-smallest vertex of f ;
b← the lex-largest vertex of f ;
c← f ’s vertex farthest away from the

line ab (and lex-smallest, if ties);
if f ’s boundary is directed a c b

then add ((id(a), id(b), id(c)), +1) in A;
else add ((id(a), id(b), id(c)),−1) in A;

4. Sort the array A lexicographically.
5. Traverse the sorted array A, verify that

matched entries (which now appear next to
each other) correspond to matching facets
and delete them.

6. For each facet f whose entry in A has not
been matched do

for each edge
−→

uv of f do
if u is lex-smaller than v

then add (id(u), id(v), +1, f) in B;
else add (id(v), id(u),−1, f) in B;

7. Sort the array B lexicographically.
8. If the entries in B do not appear in matching

pairs (i.e., (k, k′,−1, f) and (k, k′, +1, f ′)),
then the collection C of polyhedra does not
define a cell complex decomposition of the
given polyhedron P .

9. For each matching pair (id(u), id(v),−1, f)
and (id(u), id(v), +1, f ′) in B do

if the two facets f, f ′ are not coplanar
then make u and v adjacent;

10. Apply a depth-first traversal and check that
the graph formed matches the edge skeleton
of the polyhedron P . If it does, then the col-
lection C of polyhedra defines a cell complex
decomposition of P , otherwise it does not.

Time complexity. Step 1 takes O(n log n) time,
as described in Section 2.2. Steps 2, 3, 5, and 6
take O(n) time. Steps 4 and 7 can be completed in
linear time as well by using radix sorting. Finally,
Steps 8, 9, and 10 also take linear time. Thus, the
algorithm requires a total of O(n log n) time. The
space required by the algorithm is O(n).

Similarly to the two-dimensional case, if the
polyhedron P and the polyhedra in the collection C
are represented by a list of facets, each described
by a sequence of indices to an array of distinct
vertices which indicates the order of the vertices
around the boundary of the facet, then it can be
determined whether the collection C forms a cell
complex decomposition of P in time and space
linear in the total description size of P and C.
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Abstra
t

A method that automates hypotheses 
ompletion in 3D-Geometry is presented. It 
onsists of three pro
esses:

de�ning the geometri
 obje
ts in the 
on�guration; determining the hypothesis 
onditions of the 
on�guration

(through a point-on-obje
t de
laration method); and applying an algebrai
 automati
 theorem proving method

to obtain and prove the suÆ
ien
y of 
omplementary hypothesis 
onditions. To avoid as mu
h as possible the

appearan
e of rational expressions, proje
tive 
oordinates are used (although aÆne and Eu
lidean problems 
an

also be treated). A Maple implementation of the method has been used to extend to 3D 
lassi
 2D geometri


theorems like Ceva's and Menelaus'.

Key words: 3D-Geometry, Simboly
 Computation, Automati
 Theorem Proving

1. Brief Des
ription of the Method

Hypotheses 
ompletion was already treated by

Re
io and V�elez [6℄. The method presented in this

paper automates hypotheses 
ompletion in 3D-

Geometry. Let us give a brief des
ription of its

three pro
esses.

1.1. De�ning the Geometri
 Obje
ts in the

Con�guration

Among the geometri
 obje
ts in a 
on�guration,

some 
an be de�ned dire
tly and others are de-

termined through geometri
 operations (see Table

1). Other usual geometri
 obje
ts in
luded in the

pa
kage (segment, midpoint, sphere, quadri
,...)

are omitted for the sake of spa
e.

The desired 
on�guration 
an be 
onstru
ted

through the adequate 
on
atenation of these el-

ementary 
ommands. Note that in this Geome-

�

Corresponding author

Email addresses: roanes�mat.u
m.es (E. Roanes-

Ma
��as), eroanes�mat.u
m.es (E. Roanes-Lozano).

1

Partially supported by the resear
h proje
t TIC-2000-

1368-C03-03 (MCyT, Spain).

try not only the rule-and-
ompass globally 
on-

stru
tible obje
ts 
an be treated: those geomet-

ri
 obje
ts su
h that any of their points 
an be


onstru
ted with rule-and-
ompass, 
an be treated

too.

Proje
tive 
oordinates are used. Command

intCoor allows to substitute 
oordinates where

rational expressions appear by the 
orresponding

integer quaternions.

1.2. Determining the hypothesis 
onditions of the


on�guration

Hypothesis 
onditions are de
lared as member-

ship relations between points and higher dimension

geometri
 obje
ts. To de
lare P = [p

0

; p

1

; p

2

; p

3

℄

as a point on the obje
t � (being the equations

of �: �

i

(x

0

; x

1

; x

2

; x

3

) = 0 ; i = 1; :::; n) is equiv-

alent to impose that the hypothesis 
onditions

�

i

(P

0

; P

1

; P

2

; P

3

) = 0 ; i = 1; :::; n are veri�ed.

Command pointOnObje
t takes 
are of adding

these polynomials to a 
ertain list, denoted LREL,

where the hypothesis polynomials are stored, and

to add the 
orresponding variables to the list V AR.
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Obje
t Input Command Output

initial point four proje
tive point list of 4

(free point) 
oordinates parameters

plane three non-
ollinear plane equation of

points the plane

line two di�erent line list of equations

points of the line

point on line AB two points (A;B) rateOnLine list of 
oords.

(

��!

PB = r �

�!

PA) and a real number r of point P

plane/line parallel one linear obje
t parallel equation(s) of

to a given plane/line and one point the plane/line

plane/line perpendi
ular one linear obje
t perpendi
ular equation(s) of

to a given line/plane and one point the plane/line

interse
tion of two two already interse
tion 
oords. of point(s)

obje
ts (not de�ned obje
ts or equation(s) of

ne
essarily linear) linear obje
ts or

redu
ed list of eqs.

(in GB sense)

Table 1

Geometri
 obje
ts' de�nition

1.3. Obtaining and Proving the SuÆ
ien
y of

Complementary Hypothesis Conditions

In most 
on�guration geometri
 problems, the

thesis is (or 
an be redu
ed to) a P 2 � member-

ship 
ondition (where P is a point and � is a geo-

metri
 obje
t) or to a geometri
 relation among ge-

ometri
 obje
ts in the 
on�guration. In both 
ases

the thesis polynomial admits a �(P ) form.

In 
ase list LREL is empty, to 
he
k that the

thesis holds is equivalent to 
he
k that � vanishes

in P (i.e., that �(P ) = 0). Command isPla
ed

applied to the pair (P; �) takes 
are of performing

all the 
orresponding 
omputations.

In 
ase list LREL is not empty, to 
he
k that

the thesis holds it is suÆ
ient to 
he
k that � 
an

be expressed as an algebrai
 linear 
ombination

of the polynomials in list LREL, what 
an be ef-

fe
tively 
omputed using Wu's te
hniques. A brief

des
ription of these automati
 proving te
hniques


an be found in [1℄, meanwhile a detailed des
rip-

tion 
an be found, e.g., in [2,9℄. These te
hniques

were adapted to hypotheses 
ompletion in [5℄ and

to geometri
 lo
i determining in [7℄. The te
hnique

des
ribed in this paper is essentially that of [7℄, but

has been adapted to the way hypothesis and thesis


onditions are usually de
lared.

This pro
ess basi
ally 
onsists of two steps:

{ to triangularize system LREL w.r.t. the vari-

ables in list V AR, to obtain system TRIP

{ to 
ompute, starting with �(P ), the su

essive

pseudo-remainders of dividing by the polynomi-

als in TRIP w.r.t. the variables in V AR, until

the last pseudo-remainder (polynomial !) is ob-

tained.

That ! = 0 is a ne
essary 
ondition for the the-

sis to hold. Command newHypot of our pa
kage,

applied to (P; �), automati
ally 
omputes !.

But we would still have to 
he
k that ! = 0 is a

suÆ
ient 
ondition for the thesis �(P ) = 0 to hold.

If a parametrization of ! = 0 
an be obtained,

then we substitute in �(x

0

; x

1

; x

2

; x

3

) the x

i

by

their 
orresponding parametri
 expressions. If the

resulting polynomial vanishes, then 
ondition ! =

0 is also suÆ
ient. Command isPla
ed 
an take


are of these 
omputations.

If a parametrization of ! = 0 
an't be obtained,

then ! is be added to list LREL, and the new vari-

able appearing in ! but not in list V AR, is added

to list V AR. The same pro
ess 
an be applied now,
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and, if the last pseudo-remainder is 0, then 
ondi-

tion ! = 0 is also suÆ
ient. Command autProve


an take 
are of these 
omputations.

2. 3D-Extension of Ceva and Menelaus

Theorems

An appli
ation of the automati
 theorem prov-

ing method des
ribed above is in
luded as illustra-

tion afterwards. The goal is to determine 
ondi-

tions that make four points, lying on 
onse
utive

edge-lines of a tetrahedron, 
oplanary (see Figure

1). This problem was re
ently solved using syn-

theti
 te
hniques by H. Davis [3℄.

Fig. 1. Extending to 3D Ceva and Menelaus theorems

We 
an assume that the verti
es areA(1; 0; 0; 0),

B(1; 1; 0; 0), C(1; 


1

; 


2

; 0), D(1; Æ

1

; Æ

2

; Æ

3

) with-

out any la
k of generality (these points 
an be

de�ned using 
ommand point). Given m;n; p; q 2

R[f1g, letM;N;P;Q be the points lying on the

edge-lines AB;BC;CD;DA (respe
tively), and

satisfying

��!

MB = m �

��!

MA ;

��!

NC = n �

��!

NB

��!

PD = p �

��!

PC ;

�!

QA = q �

��!

QD

(they 
an be de�ned using 
ommand rateOnLine).

Then planeMNP 
an be de�ned (using 
ommand

plane).

As detailed above, applying 
ommand newHypot

to the pair (Q;MNP ), a ne
essary 
ondition for

Q to lie on plane MNP (i.e., forM;N;P;Q to be


oplanary): �


2

� Æ

3

� (�1 + m � n � p � q) = 0, is

obtained. As A;B;C;D are non-
oplanary points,

and 
onsequently, 


2

6= 0 6= Æ

3

, what implies:m �n �

p � q = 1. To verify that is a suÆ
ient 
ondition, Q

is parti
ularized for q = 1=(m �n � p), and applying


ommand isPla
ed to the pair (Q;MNP ), 0 is

obtained, what 
on�rms that Q belongs to plane

MNP . This leads to the following:

Theorem 1 Points M;N;P;Q, lying on the ori-

ented 
onse
utive edge-lines AB; BC; CD; DA of

tetrahedronABCD (respe
tively), are 
oplanary, if

and only if:

(MB=MA)�(NC=NB)�(PD=PC)�(QA=QD) = 1

Observe that the points M;N;P;Q do lie on the


onse
utive oriented edge-lines AB; BC; CD; DA,

but they 
an lie outside the edge-segments, and

therefore this result doesn't only generalizes Ceva

theorem, but also Menelaus theorem.

3. Comparison with Other Methods

As the automati
 theorem proving te
hnique

used in this work is based on Wu's algorithm, it

is of a lower 
omputational 
omplexity than those

te
hniques based on the use of Groebner bases.

Comparing this method with others based on

Wu's te
hniques, the main di�eren
e is the way

the geometri
 obje
ts of the 
on�guration are de-

�ned and the way the hypotheses 
onditions are

de
lared. In the method presented here the geo-

metri
 obje
ts and the hypotheses 
onditions are

obtained in a natural way, following the geomet-

ri
 algorithm that generates the 
on�guration, in-

stead of translating into algebrai
 expressions the

geometri
 relations that determine them (what is

usually the 
ase).

That happens, for instan
e, in Simson-Steiner-

Guzm�an theorem 3D-extension [4℄. The goal is to

determine the 
onditions so that the proje
tions

(in pre�xed dire
tions) of a point on the fa
es of a

tetrahedron are 
oplanary. This problem was de-

veloped in [7℄, translating into algebrai
 expres-

sions the geometri
 relations. Now it has been de-

veloped using the method detailed in se
tion 1, in

a more 
omfortable and faster way.
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Other advantage of the method proposed in Se
-

tion 1 is the simple way in whi
h parameters and

variables are distinguished (what is not straight-

forward in other approa
hes). With this method

the parameters are the non-numeri
 
oordinates of

the initial points (that are preserved along all sub-

sequent 
al
ulations), meanwhile the variables are

the 
oordinates of the point-on-obje
t obje
ts de-

�ned using pointOnObje
t 
ommand.

Another advantage of the method proposed in

Se
tion 1 is the possibility to develop the geomet-

ri
 algorithm of the 
on�guration using a Dynami


Geometry System, and to translate it to a Com-

puter Algebra System syntax (interpreting it using

the pa
kage 
onsidered here), as already done in

2D [8℄. We plan to implement it in the near future.

4. Con
lusions

The hypotheses 
ompletion in 3D-Geometry

method des
ribed is 
onvenient and eÆ
ient. It

allows the user to obtain automati
ally the equa-

tions in the 
on�guration, the hypothesis 
ondi-

tions obtained dire
tly in the 
on�guration and

the 
omplementary hypothesis 
onditions that

have to be added for the thesis 
ondition to hold.
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Abstra
t

We 
onsider the Fr�e
het distan
e between two 
urves whi
h are given as a sequen
e of m+n 
urved pie
es. If these

pie
es are suÆ
iently well-behaved, we 
an 
ompute the Fr�e
het distan
e in O(mn log(mn)) time. The de
ision

version of the problem 
an be solved in O(mn) time.

1. Introdu
tion

The Fr�e
het distan
e is a distan
e measure be-

tween 
urves.

De�nition 1 (Fr�e
het distan
e)

Let f : I = [l

I

; r

I

℄ ! R

2

and g : J = [l

J

; r

J

℄ ! R

2

be two planar 
urves, and let k � k denote the Eu-


lidean norm. Then the Fr�e
het distan
e Æ

F

(f; g)

is de�ned as

Æ

F

(f; g) := inf

� : [0;1℄!I

� : [0;1℄!J

max

t2[0;1℄

kf(�(t))� g(�(t))k:

where � and � range over 
ontinuous and non-

de
reasing reparameterizations with �(0) = l

I

,

�(1) = r

I

, �(0) = l

J

, �(1) = r

J

.

In 
ontrast to other 
ommon distan
e measures

like the Hausdor� distan
e, the Fr�e
het distan
e re-

spe
ts the one-dimensional stru
ture of the 
urves

and doesn't just treat them as a point set.

The study of the Fr�e
het distan
e from a 
om-

putational point of view has been initiated by Alt

and Godau [2℄. The de
ision problem is the prob-

lem to de
ide, for a given ", whether the Fr�e
het

distan
e between two 
urves is at most ".

Alt and Godau [2℄ treated the 
ase of two polyg-

onal 
urves. For two 
urves of m and n pie
es, re-

spe
tively, they showed how to solve the de
ision

problem inO(mn) time and the optimization prob-

?

Partially supported by the IST Programme of the EU

as a Shared-
ost RTD (FET Open) Proje
t under Con-

tra
t No IST-2000-26473 (ECG|E�e
tive Computational

Geometry for Curves and Surfa
es).

lem in O(mn log(mn)) time. Some related prob-

lems have also been 
onsidered, like minimizing

the Fr�e
het distan
e under translations [3℄, or a

generalized Fr�e
het distan
e between a 
urve and

a graph [1℄. In all 
ases, however, the obje
ts are

pie
ewise linear.

In this paper, we explore the Fr�e
het distan
e

between more general 
urves.We assume that ea
h

input 
urve is given as a sequen
e of smooth 
urve

pie
es that are\suÆ
iently well-behaved", su
h as


ir
ular ar
s, paraboli
 ar
s, or some 
lass of spline


urves. Our algorithm will perform 
ertain opera-

tions on these 
urves, like interse
ting them with

a 
ir
le.

We will show that the 
ombinatorial 
omplexity,

i. e., the number of steps, for solving the de
ision

problem is not larger than for polygonal paths,

O(mn). The 
omplexity of the individual opera-

tions (the algebrai
 
omplexity) depends of 
ourse

on the nature of the 
urves. Under the stronger as-

sumption that the 
urves 
onsist of algebrai
 pie
es

whose degree is bounded by a 
onstant, we 
an

solve the optimization problem in O(mn log(mn)),

thus mat
hing the running time for the polygonal


ase. The elementary operations, however, are al-

gebrai
 operations of higher degree.

We assume that ea
h 
urve is given as a sequen
e

of pie
es whi
h are 
onne
ted at their endpoints.

Every pie
e is a smooth 
urve of 
lass C

2

, i. e., the


urvature is de�ned everywhere and varies 
ontin-

uously within a pie
e. We will not make any as-

sumptions how the 
urves are given; it is only im-

portant that the ne
essary geometri
 operations
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an be 
arried out.

We need 
urves whose turning angle is bounded

by �. Curves of larger bounding angle must be

subdivided. For solving the de
ision problem with

parameter ", we subdivide the 
urve at all points

where the 
urvature is 1=", in order to ensure that

in ea
h pie
e of the 
urve, the 
urvature is either

uniformly smaller or bigger than 1=".

We have omitted most proofs, but we state one

auxiliary lemma in order to illustrate the elemen-

tary arguments on whi
h the results are based.

Lemma 2 Let f be a smooth 
urve of turning angle

at most �, and let 
 by a 
ir
le of radius r.

(a) If the 
urvature of f is at most 1=r every-

where, the 
urve 
an interse
t 
 at most twi
e.

If it interse
ts 
 twi
e, then its endpoints lie

outside 
 or on the boundary, and the mid-

dle pie
e between the two interse
tions lies

inside 
.

(b) If the 
urvature of f is at least 1=r every-

where, the 
urve 
an interse
t 
 at most twi
e.

The full version of this paper is available as a

te
hni
al report [5℄.

2. The Free Spa
e Diagram

The main tool of the algorithm is the free spa
e

diagram whi
h was introdu
ed in [2℄. It is a two-

dimensional representation of all pairs of points on

the two 
urves, together with the identi�
ation of

those pairs whi
h are 
loser than ".

De�nition 3 Let f : I ! R

2

, g : J ! R

2

be two


urves, I; J � R. The set

F

"

(f; g) := f (s; t) 2 I � J : kf(s)� g(t)k � " g

denotes the free spa
e of f and g. the partition of

I�J into the free spa
e and its 
omplement is 
alled

the free spa
e diagram.

Points in F

"

are 
alled feasible or free, and they

are usually drawn in white. The other points are


alled forbidden points or obsta
les, see Figure 1.

The following simple observation from [2℄ is 
ru
ial.

Lemma 4 Let f : I = [l

I

; r

I

℄ ! R

2

, g : J =

[l

J

; r

J

℄ ! R

2

be two 
urves. Then Æ

F

(f; g) � "

if and only if there exists a 
urve within F

"

(f; g)

from (l

I

; l

J

) to (r

I

; r

J

) whi
h is monotone in both


oordinates. 2

As f and g 
onsist of several pie
es, the free

spa
e diagram de
omposes naturally into a grid of

re
tangular 
ells.

ε

f

g

Fig. 1. Two polygonal 
urves and their free spa
e diagram.

The s
ale of the free spa
e diagram is 50% redu
ed with

respe
t to the 
urves.

3. Criti
al points

We regards as 
riti
al points on the boundary of

F

"

those points whi
h are lo
al extrema in the hor-

izontal or verti
al dire
tion. There are eight 
lasses

of 
riti
al points, shown in Figure 2.

W+

N+

S+

E+

N−

E−

S−

W−

Fig. 2. The eight types of 
riti
al points. N , S, E, W

refers to the dire
tion in whi
h the point is extreme, and

the supers
ript tells whether the area in this dire
tion is

feasible (+) or forbidden (�).

In terms of the 
urves f and g, these points 
or-

respond to situations where a 
ir
le 
 of radius "

around a point of one 
urve is tangent to the other


urve. For example, a 
riti
al point of typeW

+

o
-


urs in the situation where g tou
hes the 
ir
le 
 of

radius " around a point x on f from inside. As x

pro
eeds further away from g, a portion of g begins

to sti
k out from 
.
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4. The stru
ture of a single 
ell

The free spa
e may be arbitrarily 
ompli
ated

even inside a 
ell. For example, if " is very small,

F

"

will 
ontain isolated islands of free spa
e for all

interse
tions between f and g. However, we will

show that the rea
hable points 
an be 
omputed

in a 
onstant number of elementary geometri
 op-

erations.

We have subdivided the 
urves, and 
onse-

quently, the parameter intervals I and J into m

and n pie
es, respe
tively. Correspondingly, we 
ut

the re
tangle I � J into mn 
ells. On the bound-

aries of these 
ells, we 
ompute all points whi
h are

rea
hable from the lower left 
orner (l

I

; l

J

) of the

re
tangle by a path in free spa
e whi
h is mono-

tone in both dire
tions. We do this in
rementally

from the lower left 
ell to the uppermost right 
ell.

A verti
al line in the free-spa
e diagram 
orre-

sponds to a �xed point f(s) on f . The points in

F

"

on this line 
orrespond to the points of g whi
h

lie inside a 
ir
le 
 of radius " around f(s). The

boundary of F

"


orresponds to the interse
tions of


 with g, and hen
e we 
an apply Lemma 2.

Lemma 5 Inside a 
ell, a verti
al or horizontal

line interse
ts the boundary of F

"

at most twi
e.

A verti
al tangent line trough a 
riti
al point of

type E or W or a horizontal tangent line trough

a 
riti
al point of type N or S does not 
ross the

boundary of F

"

in any other point. 2

Lemma 6 A 
urve forming a 
omponent of the

boundary of the free spa
e inside a 
ell 
an 
ontain

at most four 
riti
al points. 2

This lemma implies that there is a limited num-

ber of possibilities for su
h a boundary, the most


ompli
ated being an \s-shaped" path between be-

tween the left edge and the right edge of the re
t-

angle, 
ontaining two 
riti
al points S

+

and N

�

.

5. Pro
essing a 
ell

We are given the rea
hable points on the left and

bottom edge, and we 
ompute the points on the

right edge and on the top edge whi
h are rea
hable

from there.

On ea
h edge of the re
tangle there are at most

two intervals of free points, by Lemma 5. Inside

ea
h interval of free points, there is only a single

interval of rea
hable points be
ause from every free

point, everything whi
h is to the right or to the top

in the same free interval is rea
hable dire
tly.

We will illustrate how to 
ompute the leftmost

rea
hable point in ea
h free interval on the top edge

from a given interval X on left edge. Other 
ases

are similar.

We are given the lowest rea
hable point B in

X . The upper end of X may be the upper left


orner of the re
tangle, or it may be a forbidden

point whi
h belongs to a 
omponentO of forbidden

points. Similarly, the left endpoint F of Y may

be part of a 
omponent of forbidden points, whi
h

we denote by O

2

. (O and O

2

are not ne
essarily

di�erent, see Figure 3a.)

Lemma 7 The leftmost point U in Y rea
hable

from X depends only on the presen
e and the rela-

tive lo
ations of O and O

2

and the horizontal line

through B.

PROOF. We have to show that any other \ob-

sta
les" of forbidden points do not play any role in

this question. We show this by giving an algorithm

for 
onstru
ting U in all 
ases.

If the horizontal line through B interse
ts O or

O

2

, it is 
lear that one 
annot rea
h Y , see for ex-

ample the interval X

1

in Figure 3a or the inter-

val X

2

in 
onne
tion with Y

2

in Figure 3b. Other-

wise, we 
laim that the desired point U lies dire
tly

above the rightmost point of O or of O

2

, whi
hever

is further to the right.

The monotone path from X to Y has to pass

to the right of O and O

2

. Thus, no point in Y

left of U is rea
hable from X . To see that U is

rea
hable, 
onsider �rst the 
ase that O exists, see

the example of the interval X

1

in Figure 3b. Let A

be the rightmost point of O. A 
an lie on the upper

edge, or it 
an be a 
riti
al point of type E

+

.

Assume �rst that A is a 
riti
al point of type

E

+

. The verti
al line a through A lies 
ompletely

in the free spa
e, by Lemma 5, and O is the only

obsta
le left of a. By assumption, the horizontal

line b from the lowest rea
hable point B in X does

not interse
t O before rea
hing a, and there are no

other obsta
les in this range. Thus, A is rea
hable

from B, and the upper end A

0

of a is the leftmost

rea
hable point on the top edge. If it lies in Y , we


an take it as our pointU , and we are done. (This is

the 
ase for the intervals X

1

and Y

1

in Figure 3b.)

If Y lies left of a, we are done as well, as no points

in Y are rea
hable from X . So let us deal with the
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B

O

F

A
B

B2

a

A′

AO

b

O2

F C ′

C

(a) (b)

D

Y1 Y2 Y1 Y2

X2

X1

X2

X1

Fig. 3. Determining the rea
hable points on the top edge

only remaining 
ase that Y lies to the right of a,

and a is separated from Y by the obsta
le O

2

.

The lowest point D of O

2

must lie above O, and

the horizontal line through D interse
ts a, whi
h

is rea
hable. Therefore D is rea
hable. From D we


an rea
h the rightmost point C of O

2

, whi
h is

either a 
riti
al point of type E

+

or the point F .

In either 
ase, we 
an indeed rea
h the point C

0

verti
ally above C as the leftmost point U .

The 
ases when O does not exist, or when the

rightmost point A of O lies on the upper edge, 
an

be treated similarly. 2

Will have des
ribed our pro
edure in terms of

geometri
 operations in the free spa
e diagram,

like �nding the right-most point in a 
omponent of

forbidden points. By working out what these op-

erations mean in terms of the 
urves f and g, we

obtain the following theorems.

Theorem 8 Given the rea
hable points on the bot-

tom edge and the left edge of a 
ell, the rea
hable

points on the top edge and the right edge of the 
ell


an be 
omputed in a 
onstant number of the fol-

lowing operations:

{ Interse
ting a 
ir
le of radius " with one of the


urves

{ Finding the �rst interse
tion of one 
urve with

an o�set 
urve of the other 
urve at distan
e ".

In both 
ases, we must be able to �nd the parameter

values on the respe
tive 
urves, 
orresponding to

the points that we have 
omputed. 2

Theorem 9 Given two 
urves 
onsisting ofm and

n pie
es, respe
tively, where ea
h pie
e has a turn-

ing angle at most � and has 
urvature � " or � "

throughout, we 
an de
ide O(m + n) spa
e and in

O(mn) primitive operations of the type des
ribed

in Theorem 8 whether their Fr�e
het distan
e is at

most ", for a given parameter ". 2

6. The Minimization Problem

The minimization problem of 
omputing the

Fr�e
het distan
e 
an be solved by Megiddo's para-

metri
 sear
h te
hnique [4℄, 
losely following the

approa
h of [2℄ for polygonal 
urves. The te
hni
al

details are more involved, and we have to make

some stronger assumptions on the 
urves.

Theorem 10 Given two 
urves 
onsisting of m

and n pie
es, respe
tively, of smooth algebrai



urves of �xed maximum degree we 
an 
ompute

their Fr�e
het distan
e in O(nm) spa
e and in

O(mn log(mn)) algebrai
 operations, i.e., degree


omparison between two real solutions of algebrai


equations of bounded degree. 2
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On the Number of Pseudo-Triangulations of Certain Point Sets 1

Oswin Aichholzer a,2, David Orden ∗,b,3, Francisco Santos c,3and Bettina Speckmann d

aInstitute for Software Technology, Graz University of Technology, Austria.
bMathematics Department, University of Alcalá, Spain.
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Abstract

We compute the exact number of pseudo-triangulations for two prominent point sets, namely the so-called double

circle and the double chain. We also derive a new asymptotic lower bound for the maximal number of pseudo-

triangulations which lies significantly above the related bound for triangulations.

Key words: Counting, Pseudo-triangulations, Triangulations, Double circle, Double chain.

1. Introduction

Pseudo-triangulations, a.k.a. geodesic triangu-
lations, generalize triangulations and have found
multiple applications in Computational Geome-
try in the last years. They were originally studied
in the context of visibility [10,11] and ray shoot-
ing [5,6], but have been used in kinetic collision
detection [1,8], rigidity [16], and guarding [15].

A pseudo-triangle is a polygon with exactly three
vertices, called corners, with internal angles less
than π. A pseudo-triangulation of a set S of points
in the plane is a partition of the convex hull of S
into pseudo-triangles whose vertex set is exactly S.
A vertex is called pointed if it has an adjacent angle
greater than π. Pointed pseudo-triangulations, are
the ones with all vertices pointed.

The set of all pseudo-triangulations of a point set
has somewhat nicer properties than that of all tri-

∗ Corresponding author
Email addresses: oaich@ist.tugraz.at (Oswin

Aichholzer), david.orden@uah.es (David Orden),
santosf@unican.es (Francisco Santos),
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2003-2 004, Proj.Nr.1/2003
3 Research partially supported by Acción Integrada
España-Austria HU2002-0010 and grant BFM2001-1123 of
Spanish Dirección General de Investigación Cient́ıfica

angulations. For example, pseudo-triangulations of
a point set with n elements form the vertex set
of a certain polyhedron of dimension 3n − 3 [9].
The diameter of the graph of pseudo-triangulations
is O(n log n) [3] versus the Θ(n2) diameter of the
graph of triangulations of certain point sets. For
standard triangulations it is not know which sets
of points have the fewest or the most triangula-
tions, but it was shown in [2] that sets of points in
convex position minimize the number of pointed
pseudo-triangulations.

Let A be a point set and let AI be its subset of
interior points. The pseudo-triangulations of A can
naturally be stratified into 2AI sets. More precisely,
for each subset W ⊆ AI we denote by PTW (A)
the set of pseudo-triangulations of A in which the
points of W are pointed and those of AI \ W are
non-pointed. For example, PT ∅(A) is the set of tri-
angulations of A and PTAI

(A) is the set of pointed
pseudo-triangulations of A. The following conjec-
ture is implicit in previous work:
Conjecture 1 For every point set A in general
position in the plane, the cardinalities of PTW (A)
are monotone with respect to W . That is to say, for
any W ⊆ AI and for every v ∈ W , one has

|PTW (A)| ≥ |PTW\{v}(A)|.
Note that [12] proves the following inequality in
the other direction:

3 |PTW\{v}(A)| ≥ |PTW (A)|.
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In this paper we compute the number of pseudo-
triangulations, and so check Conjecture 1, for
two prominent point sets, namely those with the
asymptotically maximal and minimal number of
triangulations known so far:

1.1. Points in almost convex position.

For any given pair of numbers (v, i), 3 ≤ i ≤ v,
a point set in almost convex position with param-
eters (v, i) consists of the v vertices of a convex v-
gon and a set of i interior points, placed sufficiently
close to i different edges of the v-gon.

This is a special case of the “almost-convex poly-
gons” studied in [7]. There it is shown that the
number of triangulations of such a point set does
not depend on the choice of the i edges of the v-
gon. Indeed, if we call this number n(v, i) one has

n(v, i) = n(v + 1, i − 1) − n(v, i − 1)

and from this n(v, i) can be computed recur-
sively, starting with n(v, 0) = Cv−2 (the Catalan
number). The array obtained by this recursion
(difference array of Catalan numbers) appears in
Sloane’s Online Encyclopedia of Integer Sequences
[14] with ID number A059346 (note that there
n(v, i) appears for every i ≥ 0 and v ≥ 2, although
only the cases v ≥ max{i, 3} have an interpreta-
tion as counting triangulations). Asymptotically,
n(v, i) equals 4v3i, modulo a polynomial factor.

The extremal case with v = i = n/2 (re-
ferred to as double circle), has asymptotically

Θ(
√

12
n
n−3/2) triangulations. It is conjectured in

[4] that this is the smallest number of triangula-
tions that a point set with n points can have.

1.2. Double chain.

For any two numbers l, m ≥ 0, a double chain is
a convex 4-gon with l and m points, respectively,
placed forming concave chains next to opposite
edges of the 4-gon in a way that the they do not
cross the two diagonals of the convex 4-gon (see
Fig. 1). The double chain decomposes into a con-
vex l+2-gon, a convex m+2-gon, and a non-convex
l+m+4-gon, which have Cl, Cm, and

(

l+m+2

l+1

)

tri-
angulations respectively. Hence, the double chain
has

ClCm

(

l + m + 2

l + 1

)

triangulations. In the extremal case l = m = (n −
4)/2 this gives Θ(8nn−7/2). This is (asymptoti-
cally) the point set with the largest number of tri-
angulations known so far.

Fig. 1. A double chain: l = 5 and m = 4.

2. The double circle and its relatives

Fix two integers i, v, 3 ≤ i ≤ v, and let A be a
point set in almost convex position with parame-
ters (v, i). Let p be a specific interior point of A
and let qr be the convex hull edge which has p next
to it. Let B and C be the point sets obtained re-
spectively by deleting p from A and by moving p
to convex position across the convex hull edge qr:

p

r

q

A

r

q

B

p

r

q

C

Fig. 2. The point sets A, B and C. Here v = 9 and i = 4.

Lemma 2 Let W be a set of interior points of A
not containing p (so that W is also a set of interior
points of B and C). Then:

(i) |PTW (A)| = |PTW (C)| − |PTW (B)|.
(ii) |PTW∪{p}(A)| = 2 |PTW (C)| − |PTW (B)|.

Corollary 3 (i) A satisfies Conjecture 1.
(ii) The numbers |PTW (A)| depend only on v, i

and k := |W |.
We omit the proofs of these and other results

due to the limited space available for this abstract.
Let n(v, i, k) denote the numbers referred to in

part 2 of the corollary. Since n(v, i, 0) = 4v3i (mod-
ulo a polynomial factor) and since

n(v, i, k) = 2(v +1, i− 1, k− 1)−n(v, i− 1, k− 1),

we conclude that n(v, i, k) ∼ 4v3i−k7k, modulo a
polynomial factor. Adding the numbers over all the
possible subsets of interior points gives

i
∑

k=0

(

i

k

)

4v3i−k7k = 4v10i.

Hence, a double circle (the case i = v = n/2)

has
√

28
n

pointed pseudo-triangulations and
√

40
n

pseudo-triangulations in total, modulo a polyno-
mial factor.
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3. The single chain

As a step towards the study of the double chain,
let us start with a single chain. By this we mean
a point set A with three extremal vertices and a
concave chain of l points next to an edge. Equiva-
lently, a convex l + 2-gon together with a point in
its exterior and which sees all but one of its edges.
We call this special point the top point and denote
it by p. Let p0, . . . , pl+1 be the rest of the points,
numbered from left to right, so that the interior
points are p1, . . . , pl. We define AI = {p1, . . . , pl}.

We are particularly interested in the pointed
pseudo-triangulations of the single chain. We clas-
sify them according to which interior points are
joined to the top. For any subset W ⊂ AI we
denote by PPTW (A) the set of pointed pseudo-
triangulations of A in which p is joined to pi if and
only if pi ∈ W . Clearly, PPT ∅(A) is in bijection to
the set of triangulations of the convex l + 2-gon,
hence its cardinality is the Catalan number Cl.

Lemma 4 For every W :

|PTW (A)| =
∑

W ′⊂W

|PPTW ′(A)|.

Hence, Conjecture 1 holds for A.

As a special case of this lemma, |PT ∅(A)| =
|PPT ∅(A)|. That is to say, triangulations of A are
in bijection to triangulations of the convex l + 2-
gon. Curiously enough, PPTAI

(A) (that is, the
pointed pseudo-triangulations in which the top
point p is joined to everything), have the cardi-
nality of the next Catalan number Cl+1, and flips
between them form the graph of the correspond-
ing associahedron (see [13], Section 5.3 and the
remark and picture on pp. 728–729). The following
is a 1-dimensional analog of Conjecture 1.

Conjecture 5 For every W ⊂ AI and p ∈ AI\W ,

|PPTW∪{v}(A)| ≥ |PPT W (A)|.
Unfortunately, we do not know how to compute
the numbers PPTW (A), or even recursive formulae
for them. But we can compute the sum of all the
PPTW (A)’s for each cardinality of W .

Theorem 6 Let a(l, i) :=
∑

|W |=i |PPTW (A)|.
(i) a(l, 0) = Cl, and a(l, 1) = (l + 1)Cl.
(ii) For every i ≥ 2,

a(l, i) =

(

l + 1

i

)

Cl − a(l − 1, i − 2).

Part 2 of Theorem 6 allows to compute all the
values of a(l, i) recursively, starting from those

stated in part 1. The following table shows the
first few values:

l \
i 0 1 2 3 4 5

∑

l

i=0
a(l, i)

0 1 1

1 1 2 3

2 2 6 5 13

3 5 20 28 14 67

4 14 70 135 120 42 381

5 42 252 616 770 495 132 2307

The recursion also tells us that the array a(l, i)
coincides with the sequence with ID A062991 in
[14]. There, we learn that the row sums, that
is, the numbers |PTAI

(A)| of pointed pseudo-
triangulations of these point sets, form the se-
quence A062992 and satisfy:

|PTAI
(A)| = 2

l
∑

j=0

(−1)l−jCj2
j − (−1)l.

Corollary 7 The following inequalities hold for
the number of pointed pseudo-triangulations of a
single chain of l interior points, l ≥ 2 :

2lCl < 2l+1Cl − 2lCl−1 < |PTAI
(A)| < 2l+1Cl.

In particular, the number is in Θ(8ll−3/2).

4. The double chain

Let A be a double chain with l and m interior
points in the two chains, resp. (so A has l + m +
4 points in total). We call the l + 2 and m + 2
vertices in the two chains the “top” and “bottom”
parts. We show how to count the number of pointed
pseudo-triangulations of A.

Let us call B and C single chains with l and m
interior points each. B can be considered the subset
of A consisting of the top part plus a bottom vertex,
and analogously for C. Every pseudo-triangulation
TA of A induces pseudo-triangulations TB and TC

of B and C as follows: consider on the one hand
all the pseudo-triangles of TA that use at most one
vertex of the bottom, and contract these vertices
to a single one. Do the same for pseudo-triangles
with at most one vertex in the top (see Fig. 3).

Conversely, given a pair of pseudo-triangulations
of B and C, if i (resp. j) denotes the number of
interior edges incident to the bottom (resp. top)
point, there are exactly

(

i+j+2

i+1

)

ways to recover a
pseudo-triangulation of A from that data, by shuf-
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Fig. 3. Decomposing double chain pseudo-triangulations.

fling the i + 1 pseudo-triangles of TB incident to
the bottom and the j +1 of TC incident to the top.

Theorem 8 Let V and W be subsets of the top and
bottom interior points. For each V ′ ⊂ V and W ′ ⊂
W let tV,W

V ′,W ′ =
(

l−|V \V ′|+m−|W\W ′|+2

l−|V \V ′|+1

)

. Then:

|PTV ∪W (A)| =
∑

V ′⊂V

W ′⊂W

tV,W
V ′,W ′ |PPTV ′(B)||PPT W ′(C)|.

Corollary 9 If Conjecture 5 holds, then the double
chain satisfies Conjecture 1.

For pointed pseudo-triangulations of the double
chain, Theorem 8 says that:

|PTAI
(A)| =

l
∑

i=0

m
∑

j=0

(

i + j + 2

i + 1

)

a(l, i)a(m, j),

where a(·, ·) is as in the previous section. The se-
quence for l = m is

2, 38, 1476, 81310, 5495276, 424398044, . . .

In order to analyze the asymptotics of this se-
quence we need the following lemma on the num-
bers a(l, i):
Lemma 10

1 − i(i − 1)

(4l − 2)(l − i + 2)
≤ a(l, i)

(

l+1

i

)

Cl

≤ 1

Corollary 11 Let A be a double chain with n
points and with equal numbers on both sides (that
is to say, l = m = (n − 4)/2). Then:

Ω(12nn−9/2) ≤ |PTAI
(A)| ≤ O(12nn−3/2).
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1. Introduction

Presently, the robotics domain is increasing its
performance possibilities mainly by using all kind
of recent sensor based technology, jointly with very
efficient software and hardware to process the in-
formation in a suitable manner. In particular, new
robotic applications in service context are starting
to be available now (e.g. space and underwater ac-
tivities, telesurgery, etc.), as can be observed in all
the most important conferences around the world
and in the real life scenarios. These emergent ac-
tivities in robotics, outside the well structured and
predictable industrial domains, would be impossi-
ble without the appropriate use of sensory infor-
mation.

In our case, after some years of previous research
in the robotic manipulation area, by using com-
puter vision to guide the grasping actions of 2D
objects [Sanz et al., 98], we have discovered the im-
portance of implement some algorithms that make
easier the underlying geometric reasoning neces-
sary to improve the final robotic manipulation per-
formance. In particular, the knowledge about sym-
metry of planar shapes (i.e. 2D images of the ob-
jects are available) has been successfully used by
the authors [Sanz et al., 99], and some other re-
searchers before [Blake, 95], within the grasping
determination domain.

2. Problem Description and Previous
Results

As it has been commented beforehand, in previ-
ous works the geometric reasoning necessary to de-

termine suitable regions of one object, in order to
be grasped, was supported by the symmetry knowl-
edge associated to the contour of this object. With
the aim to quantify this symmetry degree a new
concept was introduced by the authors [Sanz et al.,
99] the .normalized global symmetric deficiency..
In the following we clarify this concept. For a pla-
nar shape two privileged directions exist related to
its mass distribution (inertia), these directions are
Imin and Imax, and they represent the eigenvectors
of the moment of inertia covariance matrix. If mir-
ror symmetry exists, these directions are the first
candidates for that. As a result of that the next
objective is evaluate the symmetry degree associ-
ated with these two directions. From the curvature
description Kki, the symmetry degree is computed
with respect to the Imin associated with the con-
tour, using the intersection points { C

⋂
Imin },

computing ∆i, such as:

∆i = Kk,P3−i − Kk,P3+i; i = 1,K, N
2

,

where P3 ∈ {C
⋂

Imin } traversing the contour
clockwise from the initial point, PI, between P 0

1

and P 0
2 . That is to say, ∆i is computed as indicated,

for each couple of points equidistant to P3, covering
all the contour. Using these quantities, we define
the normalized global symmetric deficiency as:

Φ = 1

N

∑i= N

2

i=1
∆i

where N is the total number of points in the con-
tour. The same process is utilized to compute Φ
for the Imax direction, but now, instead of P3, we
compute ∆i with P 0

1 ∈ {C
⋂

Imax }, as introduced
above. Note that Φ = 0, i.e. perfect mirror symme-
try with respect to the considered axis, exists only
for an ideal mirror symmetric object. Some results
in relation with the usefulness of Φ are shown in
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Table 1

Normalized global symmetric deficiency Φ computed for
different images in both directions Imin and Imax. It shows

the mean,νΦ, and the standard deviation, ρΦ, for each one.

Table 1.
The data shown in Table 1 are the mean and

standard deviation computed from four digitiza-
tions for each object at different locations (position
and orientation) over the work area. From that ta-
ble some empirical results can be observed:

Imin direction. Looking at the table a gap be-
tween ”pliers” and ”pincers” is observed, Φ =≤ 3.
After many trials we have followed a mirror sym-
metry approach for those images that present Φ <

5, named Φc = 5 to this critical value.
Imax direction. In this case the gap appear just

between ”nut” and the rest of shapes. So a value
Φc = 3 represents a good critical value.

A primary classification of the objects present
in Table 1 would be the following: ”mirror symme-
try for Imin and Imax directions” {nut}; ”mirror
symmetry in Imin direction” {nut..pincers}; and
”without symmetry” {Allen wrench}. Note that
only ”nut” has mirror symmetry in both directions
in correspondence with its inherent radial symme-
try.

These results were applied successfully to the
grasping determination domain [Sanz et al., 99],
where the input were contours extracted from 2D
images.

Nevertheless, as it has been remarked above, a
problem was detected with some shapes, for in-
stance, the pincers. The differences observed be-
tween the hopped (i.e. mirror symmetry along the
Imin direction) and real results has been the start-
ing point for the present research contribution. To

Fig. 1. The performance analysis in the case of pincers.

Marked with a circle is observed the bad situation between
the Imin axis and the external contour of this shape (i.e.

P3).

clarify this situation is convenient to observe the
Fig 1, in which an image of pincers is processed.
When the curvature-symmetry fusion [Sanz et al.,
99] diagram is used to analyze the performance, we
found that the intersection between one of the ex-
tremes of the Imin axis, and the external contour
(i.e.P3), is not well situated (i.e. see the circle in
this Fig.1). And when the computation to evalu-
ate Φ is carried out, the final result is that shown
in Table1, namely a higher value that the theoreti-
cally hopped for this kind of shape, that as we can
observe it is symmetric in that direction.

3. How to solve this problem?

Well, looking at literature we find the Ley-
ton’s Theorem [Leyton, 87], about ”symmetry-
curvature duality”, were a local correspondence
between a symmetry axis and a curvature point
contour is established. Thus, if a symmetry axis
exists in a shape, this axis intersect the shape al-
ways in a local extreme of curvature. Our present
contribution has been to implement this Theo-
rem in our algorithms in order to solve the initial
problems found.

And, as work in progress, we are now testing
the use of this new Φ, incorporating the Leyton.s
Theorem, as a new descriptor in automatic object
recognition.

Finally, it is noticeable that with this improve-
ment we have got a very robust solution to evaluate
the symmetry degree associated to a planar shape
in a predefined direction, and in a very fast way,
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making feasible real applications in the robotics
domain.
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Abstract

In this paper we deal with two types of graph convexities, which are the most natural path convexities in a graph
and which are defined by a system P of paths in a connected graph G: the geodesic convexity (also called metric
convexity) which arises when we consider shortest paths, and the monophonic convexity (also called minimal path
convexity) when we consider chordless paths. First, we present a realization theorem proving, that there is no
general relationship between monophonic and geodetic hull sets. Second, we study the contour of a graph, showing
that the contour must be monophonic. Finally, we consider the so-called edge Steiner sets. We prove that every
edge Steiner set is edge monophonic.

1. Introduction

A convexity on a finite set V is a family C of
subsets of V , to be regarded as convex sets, which is
closed under intersection and which contains both
V and the empty set. The pair (V, C) is called a
convexity space. A finite graph-convexity space is
a pair (G, C), formed by a finite connected graph
G = (V,E) and a convexity C on V such that (V, C)
is a convexity space satisfying that every member
of C induces a connected subgraph of G [4,5]. Thus,
classical convexity can be extended to graphs in a
natural way. We know that a set X of R

n is convex
if every segment joining two points of X is entirely
contained in it. Similarly, a vertex set W of a finite
connected graph G is said to be a convex set of G
if it contains all the vertices lying in a certain kind
of path connecting vertices of W .

In this paper we deal with two types of graph
convexities, which are the most natural path con-
vexities in a graph and which are defined by a
system P of paths in G: the geodesic convexity
(also called metric convexity) [5,6,7,11] which
arises when we consider shortest paths, and the
monophonic convexity (also called minimal path
convexity) [4,5] when we consider chordless paths.

1 Partially supported by projects MCYT-FEDER TIC-

2001-2171, MCYT-FEDER BFM 2002-0557, Gen Cat
2001SGR00224, MCYT BFM2000-1052-C02-01.

In what follows, G = (V,E) denotes a finite con-
nected graph with no loops or multiple edges. The
distance d(u, v) between two vertices u and v is the
length of a shortest u − v path in G. A chord of a
path u0u1 . . . uh is an edge uiuj , with j ≥ i + 2. A
u − v path ρ is called monophonic if it is a chord-
less path, and geodesic if it is a shortest u−v path,
that is, if |E(ρ)| = d(u, v).

The geodesic closed interval I[u, v] is the set of
vertices of all u−v geodesics. Similarly, the mono-
phonic closed interval J [u, v] is the set of vertices
of all monophonic u − v paths. For W ⊆ V , the
geodesic closure I[W ] of W is defined as the union
of all geodesic closed intervals I[u, v] over all pairs
u, v ∈ W . The monophonic closure J [W ] is the set
formed by the union of all monophonic closed in-
tervals J [u, v].

A vertex set W ⊆ V is called geodesically convex
(or simply g-convex ) if I[W ] = W , while it is said
to be geodetic if I[W ] = V . Likewise, W is called
monophonically convex (or simply m-convex ) if
J [W ] = W , and is called monophonic if J [W ] =
V . The smallest g-convex set containing W is de-
noted [W ]g and is called the g-convex hull of W .
Similarly, the m-convex hull [W ]m of W is defined
as the minimum m-convex set containing W . Ob-
serve that J [W ] ⊆ [W ]m, I[W ] ⊆ [W ]g and [W ]g ⊆
[W ]m. A g-hull (m-hull) set of G is a vertex set W
satisfying [W ]g = V ([W ]m = V ).
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For a nonempty set W ⊆ V , a connected sub-
graph of G with the minimum number of edges
that contains all of W must be clearly a tree. Such
a tree is called a Steiner W -tree. The Steiner in-
terval S(W ) of W consists of all vertices that lie
on some Steiner W -tree. If S(W ) = V , then W is
called a Steiner set for G [3].

The monophonic (m-hull, geodetic, g-hull, Stei-
ner, respectively) number of G, denoted by mn(G)
(mhn(G), gn(G), ghn(G), st(G), respectively) is
the minimum cardinality of a monophonic (m-hull,
geodetic, g-hull, Steiner, respectively) set in G.
Clearly, ghn(G) ≤ gn(G), since every geodetic set
is a g-hull set. In [7] the authors showed that, apart
from the previous one, no other general relation-
ship among the parameters ghn(G), gn(G) and
st(G) exists. In Section 2, we approach the same
problem by replacing the parameter st(G) by both
mhn(G) and mn(G).

In Section 3, we examine a number of mono-
phonic convexity issues involving three types of
vertices: contour, peripheral and extreme ver-
tices [2]. We prove, among other facts, that the
contour of a graph is monophonic. It is interest-
ing to notice that this kind of results are closely
related to the graph reconstruction problem, in
the sense that we want to obtain all the vertices
of a graph by considering a certain kind of paths
joining vertices of a fixed set W .

In [3], it was shown that every Steiner set in G
is also geodetic. Unfortunately, this particular re-
sult turned out to be wrong and was disproved by
Pelayo [10]. In [7], the authors proved that every
Steiner set is monophonic. As a consequence, they
immediately derived that, in the class of distance-
hereditary graphs (i.e., those graphs for which
every monophonic path is a geodesic [8]), every
Steiner set is geodetic. They also approached the
problem of determining for which classes of chordal
graphs (i.e., without induced cycles of length
greater than 3) every Steiner set is geodetic, prov-
ing this statement to be true both for Ptolemaic
graphs (i.e, distance-hereditary chordal graphs [5])
and interval graphs (i.e., chordal graphs without
induced asteroid triples [9]). In Section 4, we focus
our attention on the edges of geodesic and mono-
phonic paths, approaching the same problems and
obtaining similar results.

2. Monophonic and geodetic parameters

Let us review the main definitions involved in
this section. A vertex set W ⊆ V is a g-hull set
if its g-convex hull [W ]g covers all the graph, i.e.,
if [W ]g = V . Moreover, W is called geodetic if
I[W ] = V . The g-hull number ghn(G) of G is de-
fined as the minimum cardinality of a hull set. The
geodetic number gn(G) of G is the minimum car-
dinality of a geodetic set [6]. Certainly, ghn(G) ≤
gn(G).

Although it has been shown that determining
the geodetic number and the hull number of a
graph is a NP -hard problem [6], it is rather simple
to obtain these two parameters for a wide range of
classes of graphs as paths, cycles, trees, (bipartite)
complete graphs, wheels and hypercubes.

A vertex set W ⊆ V is a m-hull set if [W ]m = V .
Moreover, W is called monophonic if J [W ] = V .
The m-hull number mhn(G) of G is the minimum
cardinality of a m-hull set. The monophonic num-
ber mn(G) of G is the minimum cardinality of a
monophonic set. Certainly, mhn(G) ≤ mn(G) ≤
gn(G) and mhn(G) ≤ ghn(G), since every mono-
phonic set is a m-hull set, every geodetic set is
monophonic, and every g-hull set is a m-hull set.
Nevertheless, it is not true that every g-hull set be
monophonic. For example, if we consider the com-
plete bipartite graph K3,3, with V1 = {a, b, c} and
V2 = {e, f, g}, it is easy to see that the set W =
{a, b} satisfies [W ]g = V and J [W ] = V r {c}.

At this point, what remains to be done is to
ask the following question: Is there any other gen-
eral relationship among the parameters mhn(G),
mn(G), ghn(G) and gn(G), apart from the previ-
ous known inequalities?

The next realization theorem shows that, unless
we restrict ourselves to a specific class of graphs,
the answer is negative.

Theorem 1 For any integers a, b, c, d such that
3 ≤ a ≤ b ≤ c ≤ d, there exists a connected graph
G = (V,E) satisfying one of the following condi-
tions:

(i) a = mhn(G), b = mn(G), c = ghn(G) and
d = gn(G),

(ii) a = mnh(G), b = ghn(G), c = mn(G) and
d = gn(G).
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3. Contour, peripheral and extreme
vertices

Given a connected graph G = (V,E), the eccen-
tricity of a vertex u ∈ V is defined as ecc

G
(u) =

ecc(u) = max{d(u, v)|v ∈ V }. Hence, the diameter
D of G can be defined as the maximum eccentricity
of the vertices in G. The periphery of G, denoted
Per(G), is the set of vertices that have maximum
eccentricity, i.e., the set of the so-called peripheral
vertices. A vertex v is said to be simplicial in G if
the subgraph induced by its neighborhood N(v) is
a clique. The extreme set of G, denoted Ext(G), is
the set of all its simplicial vertices. With the aim
of generalizing these two definitions, the so-called
contour of G was introduced in [2] as follows. A
vertex u ∈ W is said to be a contour vertex of W
if ecc

W
(u) ≥ ecc

W
(v), for all v ∈ N(u) ∩ W . The

contour Ct(W ) of W is the set formed by all the
contour vertices of W . If W = V , this set is called
the contour of G and it is denoted Ct(G). Notice
that Per(G) ∪ Ext(G) ⊆ Ct(G).

Remark. We have examples of graphs showing
that there is no general relationship between pe-
ripheral and extreme vertices.

Let W ⊆ V be a m-convex (g-convex) set and
let F = 〈W 〉

G
be the subgraph of G induced by W .

A vertex v ∈ W is called an m-extreme vertex (g-
extreme vertex ) of W if W r {v} is a m-convex (g-
convex) set. A vertex v of a m-convex (g-convex)
set W is a m-extreme (g-extreme) vertex of W if
and only if v is simplicial in F [5].

A convexity space (V, C) is a convex geometry if
it satisfies the so-called Minkowsky-Krein-Milman
property: Every convex set is the convex hull of its
extreme vertices. Notice that this condition allows
us to rebuild every convex set from its extreme ver-
tices, by using the convex hull operator. Farber and
Jamison [5] proved that the monophonic (geodesic)
convexity of a graph G is a convex geometry if and
only if G is chordal (Ptolemaic). Cáceres et al. [2]
obtained a similar property to the previous one,
valid for every graph, by considering, instead of the
extreme vertices, the contour vertices.

Theorem 2 [2] Let G = (V,E) be a connected
graph and W ⊆ V a g-convex set. Then, W is the
g-convex hull of its contour vertices.

As was pointed out in [2], the contour of a graph
needs not to be geodetic. Nevertheless, we prove
this assertion to be true in the following case.

Proposition 3 If Ct(G) = Per(G), then Ct(G)
is a geodetic set.

PROOF. Let x be a vertex of V (G) r Ct(G).
Since the eccentricities of two adjacent vertices dif-
fer by at most one unit, if x is not a contour ver-
tex, then there exists a vertex y ∈ V , adjacent
to x, such that its eccentricity satisfies ecc(y) =
ecc(x)+1. This fact implies the existence of a path
ρ(x)= x0x1x2 . . . xr, such that x = x0, xi /∈ Ct(G)
for i ∈ {0, . . . , r − 1}, xr ∈ Ct(G), and ecc(xi) =
ecc(xi−1) + 1 = l + i for i ∈ {1, . . . , r}, where l =
ecc(x). Moreover, ρ(x) is a shortest x − xr path,
since otherwise, the eccentricity of xr would be less
than l + r. But xr ∈ Ct(G) = Per(G) implies that
ecc(xr) = D and D = l + r. Thus, there exists
a vertex z ∈ Per(G) such that D = d(z, xr) ≤
d(z, x)+d(x, xr) ≤ ecc(x)+r = l+r = D, that is,
d(z, xr) = d(z, x)+d(x, xr). Hence, x is on a short-
est path between the vertices z, xr ∈ Per(G) =
Ct(G).

As a consequence of this result, we have the fol-
lowing corollary.

Corollary 4 If Ct(G) has exactly two vertices,
Ct(G) is a geodetic set.

Now, we approach the same issues by considering
the monophonic convexity.

Theorem 5 The contour of any connected graph
G is a monophonic set.

Corollary 6 Let G be a connected graph and let
W ⊆ V be a m-convex set. Then, every vertex of W
lies on a monophonic path joining contour vertices
of W .

PROOF. Let F = 〈W 〉
G

be the subgraph of G
induced by W , and let Ω be the set of contour
vertices of W . Certainly, Ω = Ct(F ). Hence, the
previous statement is equivalent to saying that the
contour of F is a monophonic set.

Corollary 7 Let G be a connected graph and let
W ⊆ V be a m-convex set. Then, W is the m-
convex hull of its contour vertices.

Finally, we show another consequence of Theo-
rem 5, which was directly proved in [2].

Corollary 8 The contour of a distance-hereditary
graph is a geodetic set.
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4. The edge Steiner problem

In this section, we focus our attention on the
edges that lie in paths joining two vertices of G =
(V,E). We define the edge intervals of a graph as
follows. The edge geodetic closed interval Ie[u, v] is
the set of edges of all u − v geodesics. Similarly,
the edge monophonic closed interval Je[u, v] is the
set of vertices of all monophonic u − v paths. For
W ⊆ V , the edge geodetic closure Ie[W ] of W is
the union of all edge closed intervals Ie[u, v] over
all pairs u, v ∈ W . The edge monophonic closure,
Je[W ], is defined as the union of all edge closed
monophonic intervals over all pairs u, v ∈ W . In
other words, we have

Ie[W ] =
⋃

u,v∈W

Ie[u, v], Je[W ] =
⋃

u,v∈W

Je[u, v].

A vertex set W for which Je[W ] = E is called
an edge monophonic set. Similarly, W is an edge
geodetic set if Ie[W ] = E [1]. A set W ⊆ V is an
edge Steiner set if the edges lying in some Steiner
W -tree cover E. Notice that: (1) every edge Steiner
set is a Steiner set, (2) every edge geodetic set is
geodetic, (3) every edge monophonic set is mono-
phonic, and (4) every edge geodetic set is an edge
monophonic set. It is easy to find examples where
the converses of these statements are not true. We
have obtained the following results.

Theorem 9 Every edge Steiner set of a connected
graph is an edge monophonic set.

Corollary 10 In the class of connected distance-
hereditary graph, every edge Steiner set is an edge
geodetic set.

Analogously to the vertex case, this last result
also holds for interval graphs. First, we need to
prove the following lemma.

Lemma 11 (i) If P is a x−y walk in G, any vertex
of W is adjacent to at least a vertex of V (P ). (ii) If
TW is a Steiner W -tree, for any u ∈ V (TW ) r W ,
u lies in the unique x − y path of TW . Moreover,
there exists a Steiner W -tree, T ∗

W , formed by the
unique x−y path of TW and vertices of W adjacent
to vertices of that path.

Theorem 12 In the class of connected interval
graphs, every edge Steiner set is an edge geodetic
set.

In the preceding section we have seen that the
contour of a graph is a monophonic set. Neverthe-

less, it is quite easy to find graphs whose contour
is not an edge monophonic set.

It remains an open question the problem of char-
acterizing those classes of chordal graphs for which
every edge Steiner set is edge geodetic. We know
this statement to be true for interval and Ptolemaic
graphs, and false for split graphs (i.e., those chordal
graphs whose complementary is also chordal).
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Abstra
t

We present new lower bounds on the number of straight-edge triangulations that every set of n points in plane

must have. These bounds are better than previous bounds in 
ase of sets with either many or few extreme points.

1. Introdu
tion

For a �nite set S of points in the plane let T (S)

denote the number of straight-edge triangulations

of S. Let t(h;m) and T (h;m) denote the minimum

and the maximum of T (S) with S ranging over

all sets with h extreme and m non-extreme (\inte-

rior") points. It is known that [4℄

T (h;m) �

59

m

� 7

h

�

m+h+6

6

�

and [1℄ that for h+m � 1212

t(h;m) � 0:092 � 2:33

h+m

= 
(2:33

h+m

) :

We prove the following new bounds for t(h;m):

Theorem 1 For 
onstant 
 = 4829=116640 >

0:0414 we have for all h+m � 11

t(h;m) � 


�

30

11

�

h

�

�

11

5

�

m

= 
 � 2:7272

h

� 2:2

m

:

Theorem 2 For every �xed h we have

t(h;m) � 
(2:63

m

) :
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2. Proof Outline for Theorem 1

Let S be a �nite planar set (in non-degenerate

position), let p be an extreme point of S, and let

S

p

= S n fpg. We 
all p of type (k; 
) if the follow-

ing holds: 1) The 
hain C

p

of 
onvex hull edges of

S

p

that are visible from p 
onsists of exa
tly k+1

edges. 2) The 
hain C

p

admits at most 
 simulta-

neous non-interse
ting 
hords.

What is a 
hord? This is an edge e 
onne
ting

verti
es of C

p

so that the polygon bounded by e

and the relevant portion of C

p


ontains no point of

S

p

in its interior.

Note that if p is of type (k; 
) then the di�eren
e

of the number of extreme points of S � p and the

number of extreme points of S is k � 1.

Theorem 1 is a 
onsequen
e of the following two

Lemmas:

Lemma 3 Assume p is of type (k; 
) and let I

p

be

the k interior verti
es of the 
hainC

p

. The following


an be done 
 times, starting with U = S

p

:

Find a vertex u 2 I

p

\U that is of type (0; 0) with

respe
t to U and remove it from U .

Lemma 4 Let p be an extreme point of S of type

(k; 
) so that S

p

n C

p


ontains at least 4 points:

T (S) � �(k; 
) � T (S

p

) ;

where �(0; 0) = 3, �(1; 0) = 11=5, and for all other

pairs 
 � k

�(k; 
) =

�

2




2


+1

� 1

�

�(k; 
) + 1

20th EWCG Seville, Spain (2004)



20th European Workshop on Computational Geometry

�(k; 
) =

8

>

<

>

:

2C

k+1

� 1

2C

k+1

� 2

if 
 = k

2C

k+2

� 1

2C

k+2

� 2

if 
 < k,

and C

j

=

�

2j

j

�

=(j+1) is the j-the Catalan number.

Chasing through the de�nitions in Lemma 4 one

�nds that extreme points of type (k; 0) yield a ni
e

in
rease in triangulation 
ount from S

p

to S, with

the worst being type (1; 0). If on the other hand

p has type (k; 
) with 
 > 0, whi
h does not lead

to su
h a large triangulation 
ount in
rease, then

Lemma 3 guarantees the existen
e of 
 other ni
e

verti
es of type (0; 0) that provide suÆ
ient in-


rease if S is built up by adding extreme points.

3. Proof Outline for Theorem 2

This proofs expands an initial idea of Fran
is
o

Santos [3℄. It suÆ
es to 
onsider the 
ase of t(3;m),

in other words the 
ase ofm points inside a triangle

�.

Consider ea
h of the m interior points in turn.

Conne
t it to the three 
orners of �. This parti-

tions � into three triangles, ea
h of whi
h 
an be

triangulated re
ursively. This leads to the follow-

ing re
ursive relation:

t(3;m) � m� min

m

1

+m

2

+m

3

=m�1

ft(3;m

1

)�t(3;m

2

)�t(3;m

2

)g

Now we would like to set t(3;m) � 2


m�a

for

appropriate 
onstants a and 
 and use indu
tion

based on the above re
ursive relation. The problem

now is to make sure that this indu
tion has a good

base. For this purpose we 
onstru
t using various


omputationalmethods expli
it lower bounds b(m)

for t(3;m) for m from 0 to some N (we used N =

300). Then we 
hoose a and 
 so that 2


m�a

� b(m)

for allm � N and so that with t(3;m) � 2


m�a

the

above re
ursive relation is satis�ed for all m > N .

This amounts to the 
onstraint that 2


+2a

� N+1.

Values for 
 and a 
an then be found using lin-

ear programming, sin
e the 
onstraints for 
 and a

after taking logarithms are linear. By optimizing 


we then got that

t(3;m) � 0:093 � 2:63

m

:
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Abstra
t

We present a simple dynami
 programming based method for 
ounting straight-edge triangulations of planar

point sets. This method 
an be adapted to solve related problems su
h as �nding the best triangulation of a point

set a

ording to 
ertain optimality 
riteria, or generating a triangulation of a point set uniformly at random.

We have implemented our 
ounting method. It appears to be substantially less slow than previous methods:

instan
es with 20 points, whi
h used to take minutes, 
an now be handled in less than a se
ond, and instan
es

with 30 points, whi
h used to be solvable only by employing several workstations in parallel over a substantial

amount of time, 
an now be solved in about one minute on a single standard workstation.

1. Introdu
tion

In re
ent years there has been some interest in

studying the set T (S) of straight-edge triangula-

tions asso
iated with a �nite planar point set S.

Typi
al problems are 
ounting, i.e. given S deter-

mine jT (S)j, random generation, i.e. given S ran-

domly generate a triangulation in T (S) with uni-

form probability, or optimization, i.e. given S �nd

the triangulation in T (S) that satis�es some opti-

mality 
riterion.

The 
ounting problem is at this point not known

to be in P . It is known that jT (S)j is exponential

in n = jSj with the best 
urrently known lower [4℄

and upper [14℄ bounds of roughly 2:33

n

and 59

n

.

Some previous work on the 
ounting problem ad-

dressed 
ases where S has some spe
ial stru
ture

[13,10,11,6℄. An algorithm for the general 
ase was

given by Avis and Fukuda [5℄ whi
h was based on

their reverse-sear
hparadigm and hen
e 
ounts via

enumeration. For another enumerative method see

Rambau's TOPCOM page [12℄. The so far best al-

Email addresses: saurabh�mpi-sb.mpg.de (Saurabh

Ray), rseidel�
s.uni-sb.de (Raimund Seidel).

1

The �rst author is supported by the International-Max-

Plan
k-Resear
h-S
hool in Saarbr�u
ken.

gorithm was given by Ai
hholzer [2℄. It is a divide-

and-
onquer type algorithm based on the notion of

so-
alled paths of a triangulation. Erkinger [8℄ im-

plemented a prototype of this algorithm and sub-

sequently Gimpl [9℄ wrote a \produ
tion type" im-

plementation that even in
ludes parallelization in

the sense of distributing work to several ma
hines.

For usage see \The Triangulation Homepage" [3℄.

The random generation and the optimization

problem 
an 
learly be solved, though expensively,

using the enumeration based method of Avis and

Fukuda [5℄. Ai
hholzer's method 
an as well be

adapted to solve the random generation problem

and also 
ertain versions of the optimization prob-

lem, namely those that are \de
omposable" in the

following sense: Suppose one wishes to �nd the op-

timum triangulation of a polygon P with interior

points and subje
t to the 
onstraint that some set

E of edges must be in
luded in the triangulation.

Suppose that E is su
h that it indu
es a partition

of P into two polygons P

1

and P

2

. Then the op-

timum triangulation of P subje
t ot E must be


omputable from the optimum triangulations of P

i

subje
t to E \ P

i

, with i = 1; 2. Examples of opti-

mization problems that satisfy this de
omposabil-

ity 
ondition are MinMax-Area [7℄[p. 142℄ or min-

imum total edge-length (a.k.a. minimum weight).

20th EWCG Seville, Spain (2004)
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We present a simple dynami
-programming

based algorithm for the 
ounting problem. It


an be viewed as a divide-and-
onquer algorithm

that in addition stores 
omputed results of sub-

problems for later reuse. The algorithm 
an be

naturally adapted to solve the random generation

problem and to solve optimization problems that

are de
omposable in the sense des
ribed above.

We report on a prototype implementation of the


ounting algorithm.

2. The Algorithm

We 
onsider the slightly more general problem

of 
omputing the number T (P ) of triangulations

of a simple polygon P that 
ontains the point set

S and whose 
orners are all in S. In the original

problem polygon P is just the 
onvex hull of S.

In 
ourses on algorithm design the 
ase that P

has no \interior points" (i.e. the 
orners of P are

pre
isely S) is a 
ommon homework problem for

pra
ti
ing the appli
ation of dynami
 program-

ming: Choose an arbitrary edge e = [a; b℄ of P as

\base edge." Let C(e) be the set of all \
andidate"

verti
es 
 of P so that the triangle spanned by

a; b; 
 is 
ontained in P . Consider some 
 2 C(e).

The diagonals [a; 
℄ and [b; 
℄ partition polygon P

into three parts: the trianlge (a; b; 
) and two sub-

polygons P

a


and P


b

(whi
h may be trivial, i.e. an

edge). The number of triangulations of P that in-


lude triangle (a; b; 
) is then given by the produ
t

T (P

a


)T (P


b

). Sin
e in any triangulation of P the

base edge [a; b℄ has to be part of some triangle we

get

T (P ) =

X


2C(e)

T (P

a


)T (P


b

) :

Of 
ourse the subproblems like T (P

a


) are solved

re
ursively using the same method and using [a; 
℄

as base edge. This 
hoi
e of base edge ensures that

all subproblems ever 
onsidered only involve sub-

polygons of P formed by 
utting P along just one

diagonal. Sin
e there are only O(n

2

) su
h sub-

polygons, only O(n

2

) many subproblems need to

be solved in total and 
omputed results 
an be

stored and reused. This leads to an O(n

3

) \time"

and O(n

2

) \spa
e" algorithm, where the quotation

marks are to remind the reader that the stated

bounds only hold in a model where the 
ost of stor-

ing of and operating on arbitrarily large integers is


onstant. In our 
ase we will be dealing with inte-

gers not larger than 59

n

, i.e. representable by O(n)

many bits. This leads to anO(n

4

logn) time bound

and anO(n

3

) spa
e bound in the more appropriate

word model of 
omputation.

Let us now 
onsider the general 
ase where there

are \interior point," i.e. S 
onsists of more than

just the 
orners of P . We will pro
eed as in the

method outlined above: Choose some base edge

e = [a; b℄ from the boundary of P . The 
andidate

set C(e) now must 
ontain all points 
 2 S that

together with e 
an span a triangle in some tri-

angulation of P . Thus C(e) 
onsists of all 
 2 S

so that the triangle D




spanned by a; b; 
 is 
on-

tained in P and no point of S lies in the interior

of triangle D




. (In this abstra
t we assume non-

degenera
y.) If a 
andidate point 
 is a 
orner of P

we 
an pro
eed exa
tly as in the simple 
ase out-

lined above and 
ompute the number of triangu-

lations of P 
ontaining the triangle D




by solving

two re
ursive subproblems. If 
 lies in the interior

of P the number of triangulations of P 
ontaining

D




is given by the number of triangulations of the

polygon P




= P nD




, i.e. the polygon P with edge

[a; b℄ repla
ed by the 
hain of two edges [a; 
℄; [
; b℄.

Thus we only need to solve one re
ursive subprob-

lem, namely �nding the number of triangulations

of P




. Note that this problem is easier than the

original problem in the sense that there are one

fewer interior points (and if there are no interior

points we know how to solve the problem). Thus

our algorithm pro
eeds as follows:

(i) Choose some base edge e = [a; b℄.

(ii) Determine the 
andidate set C(e).

(iii) For ea
h 
 2 C(e) that is not a 
orner of P


ompute T (P




) re
ursively.

(iv) For ea
h 
 2 C(e) that is a 
orner of P

solve two re
ursive subproblems and 
om-

pute T (P

a


)T (P


b

).

(v) Return the sum of the 
omputed numbers.

In this pro
edure some subpolygon Q of P may

be 
onsidered many times. In the usual top-down

dynami
 programming fashion we will 
ompute

T (Q) only on
e and store the result for later reuse.

Unfortunately the arising subpolygons do not have

in general su
h a ni
e form as they do in the sim-

ple 
ase without interior points. Thus we 
annot

use an array for storage but need to resort to a

hash table with a 
anoni
 sequen
e of vertex names

around polygon Q serving as the key for Q.
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n h m avg. #triangulations avg. time(se
onds) avg. time(se
onds)

Dynami
 Programming Path Method

13 3 10 117017.2 0.009 0.250

18 3 15 434650561.2 0.064 43.512

23 3 20 2175541362109.0 0.982 �

28 3 25 17295702671778911.6 24.973 �

33 3 30 9064438879955990031.2 537.890 �

18 15 3 61156327.0 0.030 1.570

23 15 8 148363536731.6 0.178 262.232

28 15 13 596631344845165.6 2.569 �

33 15 18 2615696070967273559.2 55.623 �

23 20 3 49106130174.0 0.077 69.634

28 20 8 124263097179506.8 0.480 �

33 20 13 1303793620633224385.4 10.793 �

Table 1: Results for n = h+m points, withm points randomly 
hosen in a 
onvex h-gon; average taken over 5

runs. An asterisk indi
ates that the program did not 
omplete a single instan
e of that size within 90 minutes.

3. Heuristi
s

The algorithm outlined above makes no restri-


ions on the 
hoi
e of the base edge. We have

found the following two heuristi
s pro�table for

this 
hoi
e.

If P has an edge e with jC(e)j � 2, then 
hoose

e as base edge.

Otherwise �x a line ` that has approximately one

half of the points of S on ea
h side and as long as

interior points are 
onsidered as 
andidate points


hoose as base edge always a boundary edge of the


urrent polygon that interse
ts `. For dividing lines

of subproblems always 
hoose lines parallel to the

initial `.

The reasonability of the �rst heuristi
 is obvi-

ous. The se
ond heuristi
 is reminis
ent of the path

method of Ai
hholzer [2℄. It aims to steer the al-

gorithm towards a rapid breakup of the polygons


onsidered.

4. Preliminary Experimental Results

We have implemented our dynami
 program-

ming algorithm in C++ using the g++ Compiler

and STL libraries. Oswin Ai
hholzer [1℄ kindly pro-

vided us with Gimpl's C-implentation [9℄ of his

path-based method. Thus dire
t runtime 
ompar-

isons were possible.

Our experiments were run on a single ma
hine

with a 2.40 GHz Intel Pentium 4 Pro
essor, with

512MBmemory and 512KBCa
he, running under

Linux 2.4.21.4.p4. We did not attempt to use the

parallel feature of Gimpl's program that allows to

spread work over several ma
hines.

We 
ompared the two implemtations in a set

of experiments where we 
onsidered m points dis-

tributed uniformly at random in a 
onvex h-gon.

We report here the results for pairs (h;m) with

h 2 f3; 15; 20g and h+m 2 f13; 18; 23; 28; 33g. For

ea
h pair of parameters Table 1 reports the aver-

age over 5 runs of the 
omputed number of trian-

gulations and the average time (in se
onds) taken

for the 
omputation by ea
h program. An asterisk

indi
ates that the program did not solve a single

instan
e of that size within 90 minutes.
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We also tried our method on the largest exam-

ples that Gimpl reported on, namely a set of 32

points representing European 
apitals and a set of

30 random points [3℄. Gimpl ran these examples

on 
lusters of ma
hines with a 1GHz Athlon Thun-

derbird Pro
essor and with 256 MB memory run-

ning under Linux. He did not report any expli
it

running times for these example but stated that

these was the largest he 
ould solve in \reasonable

time" employing parallelism and several ma
hines.

We have been told that \reasonable time" in this


ontext is to mean \several weeks."

Our implementation solved the 32 point problem

in 70.6 se
onds and the 30 point problem in 42.9

se
onds.

The largest example we tried was a set of 35

points, with 32 points distributed randomly in a

triangle. On our standard ma
hine this example

led to ex
essive paging due to the large size of the

required hash table. However on a SPARC 
om-

pute server we 
ould 
omplete this example in 15

minutes 32 se
onds using one pro
essor and 4 GB

of main memory. Adjusting hash table size to avail-

able main memory may lead to a more gra
eful

degradation of performan
e of our algorithm when

the input size in
reases.

5. Dis
ussion

We will not dis
uss in this abstra
t how our

method 
an be applied to the random generation

problem and to the optimization problem. The

adaptions that need to bemade are fairly standard.

Our method does not parallelize as easily as

Ai
hholzer's method sin
e reusing already 
om-

puted results may require non-trivial 
ommuni
a-

tion between pro
essors.

We are in the pro
ess of analyzing the running

time of our method. Empiri
ally we noti
ed that

the number of re
ursive 
alls when 
omputing T (S)

is always about

p

T (S). So far we have been unable

to prove this or any other non-trivial statement

about the running time.

Of 
ourse determining the true 
omputational


omplexity of plane triangulation 
ounting still re-

mains an open problem.

6. A
knowledgments

We would like to thank Oswin Ai
hholzer for

providing valuable information about the existing

implementations and also for kindly providing the

implementations themselves.

Referen
es

[1℄ O. Ai
holzer, Private Communi
ation.

[2℄ O. Ai
holzer, The path of a triangulation, in Pro
.

15th Symp. on Comp. Geometry 1999, pp. 14{23.

[3℄ http://www.
is.tugraz.at/igi/oai
h/tri-

angulations/
ounting/
ounting.html

[4℄ O. Ai
hholzer, F. Hurtado and M. Noy, On the

Number of Triangulations Every Planar Point Set

Must Have, in Pro
. 13th Annual Canadian Conferen
e

on Computational Geometry CCCG 2001, Waterloo,

Canada, 2001, pp. 13{16. An improved version is to

appear in CGTA.

[5℄ D. Avis and K. Fukuda, Reverse Sear
h for

Enumeration. Dis
rete Appl. Math. 65, 1996, pp. 21{

46.

[6℄ R. Ba
her, Counting triangulations of 
on�gurations.

Manuns
ript,

http://arxiv.org/abs/math.CO/0310206.

[7℄ H. Edelsbrunner, Geometry and Topology for

Mesh Generation. Cambridge University Press,

2001.

[8℄ B. Erkinger, Struktureigens
haften von

Triangulierungen. Master's Thesis, TU-Graz, 1998.

[9℄ J. Gimpl, Enumeration von Triangulierungen.

Master's Thesis, TU-Graz, 2002.

[10℄ F. Hurtado and M. Noy, Counting triangulations of

almost 
onvex polygons. Ars Combinatori
a 45, 1997,

pp. 169{179.

[11℄ V. Kaibel and G.M. Ziegler, Counting Latti
e

Triangulations. To appear in: \British Combinatorial

Surveys" (C. D. Wensley, ed.), Cambridge University

Press.

[12℄ http://www.zib.de/rambau/TOPCOM/

[13℄ D. Randall, G. Rote, F. Santos, and J. Snoeyink,

Counting triangulations and pseudo-triangulations of

wheels, in Pro
. 13th Annual Canadian Conferen
e

on Computational Geometry CCCG 2001, Waterloo,

Canada, 2001, pp. 149{152.

[14℄ F. Santos and R. Seidel, A better upper bound on

the number of triangulations of a planar point set.

Journal of Combinatorial Theory, Series A 102(1),

2003, pp. 186{193.



Finding a widest empty 1-corner corridor
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Abstract

Given a set of n points in the plane, we consider the problem of computing a widest empty 1-corner corridor.
We star giving a characterization of the 1-corner corridors that we call locally widest. Our approach to finding a
widest empty 1-corner corridor consists of identifying a set of 1-corner corridors locally widest, that is guaranteed
to contain a solution. We describe an algorithm that solves the problem in O(n4 log n) time and O(n) space.

1. Introduction

A corridor c = (ℓ, ℓ′) is the open region of the
plane bounded by two parallel straight lines ℓ and
ℓ′. The width of c is the Euclidean distance d(ℓ, ℓ′)
between its two parallel bounding lines. A link L is
an open region defined by two parallel rays r(L) =
p + vt and r′(L) = p′ + vt, and a line segment
s(L) = pp′, forming an unbounded trapezoid. We
consider the points of s(L), but not those of r(L)
and r′(L), as part of the link. The width of a
link L, denoted by ω(L), is the Euclidean distance
d(r(L), r′(L)) between its bounding parallel rays.

A 1-corner corridor C = (L, L′) is the union of
two links L and L′ sharing only the segment s(L) =
s(L′). Thus, C is an open region bounded by an
outer boundary that contains a convex corner with
respect to the interior of the corridor, and an in-
ner boundary that contains a concave corner. Each
boundary consists of two rays which we call the
boundary legs. We adopt the convention of using
r(L) and r(L′) (resp. r′(L) and r′(L′)) to denote
the legs of the outer (resp. inner) boundary. The
width of a 1-corner corridor C, denoted by ω(C),
is the smaller of the widths of its two links. The
angle α(C), 0 < α(C) ≤ π, of the 1-corner corridor
C = (L, L′) is the angle determined by the rays
r(L) and r(L′).

∗ Corresponding author
Email addresses: dbanez@us.es (J.M. Dı́az-Báñez),

mlopez@cs.du.edu (M. A. López), sellares@ima.udg.es
(J.A. Sellarès).

Let S be a set of n points in the Euclidean plane.
A corridor c intersecting the convex hull, CH(S),
of S is empty if it does not contain any points of S.
Note that an empty corridor must intersect CH(S),
as otherwise the widest empty corridor is not well-
defined. A 1-corner corridor C is empty if it does
not contain any points of S and its removal parti-
tions the plane into two unbounded regions, each
containing at least one point of S. Note that, as
suggested in [Che96] (for the case α(C) = π/2), it
no longer suffices to require that candidate corri-
dors intersect CH(S), as this would allow such cor-
ridors to ”scratch the exterior” of S without really
”passing through” it. Widest empty corridor prob-
lems have applications in robot manipulation and
spatial planning.

The problem of computing a widest empty cor-
ridor can be solved in O(n2) time and O(n) space
[HM88,JP94]. Cheng shows how to compute a
widest empty 1-corner corridor for the case of
fixed α(C) = π/2, in O(n3) time and O(n3) space
[Che96]. In this paper we allow α(C) to assume
arbitrary values and describe an algorithm to
compute a widest empty 1-corridor in O(n4 log n)
time and O(n) space. It is clear that the solution
to this problem might be not unique. In this paper
we just look for one optimal corridor.

In the sequel, unless otherwise specified, when-
ever we talk about a 1-corner corridor, we assume
that this corridor is empty.

Due to space constraint, in this extend abstract
most proofs have been omitted.

20th EWCG Seville, Spain (2004)
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(21, 12)(21, 21) (21, 11) (12, 11) (12, 12) (11, 11)

.........
..........

.....

.............

Fig. 1. Six types of locally widest corridors. The interior
segments are perpendicular to the incident boundary legs.

2. Locally Widest Corridors

Since an empty corridor C can always be con-
sidered a 1-corner corridor with α(C) = π, our op-
timal 1-corner corridor is at least as wide as the
widest empty corridor. Thus, we can dismiss this
case in O(n2) time and concentrate our attention
on 1-corner corridors with α(C) < π.

We begin with the obvious observation that
there exists an optimal solution C that contains
at least one point of S in each leg, otherwise the
width of one or both links of C can be increased.

We say that a 1-corner corridor is locally widest
if each leg contains at least one point of S and it is
not possible to increase the width of either link by
performing rotations of the legs around the points
from S incident on the leg boundaries.
Lemma 1 Each link L of a locally widest corridor
satisfies one of the following conditions:

21: There are points p1 and p2 of S that lie on the
outer leg r(L) and a point p′ of S that lies on
the inner leg r′(L), such that both ∠p′p1p2 and
∠p′p2p1 are acute.

12: There are points p′1 and p′2 of S that lie on the
inner leg r′(L) and a point p of S that lies on the
outer leg r(L), such that both ∠pp′1p

′

2 and ∠pp′2p
′

1

are acute.
11: There are points p and p′ of S that lie on the

outer and inner legs of L, respectively, such that
pp′ is orthogonal to both r(L) and r′(L).
From the characterization given in Lemma 1

it results six classes of locally widest corridors,
which we label (21, 21), (21, 11), (21, 12), (12, 11),
(12, 12), (11, 11), depending on the types of the
participating links. The six types of corridors are
illustrated in Figure 1.
Lemma 2 There always exists an optimal 1-
corner corridor that is locally widest.

Our approach to finding a widest empty 1-
corner corridor consists of identifying a set C of
locally widest 1-corner corridors that, by Lemma
2, is guaranteed to contain a solution. Our algo-
rithm operates by systematically generating C.
Since there are members of C with six points on

S++

ℓm (p, q)

S−−

ℓm (p, q)

r

p q

sS+−

ℓm (p, q) S−+

ℓm (p, q)

u v

ℓ = ℓqsm = ℓpr

Fig. 2. Partition of the plane by boundary legs. The points
u and v of S

++

ℓm
(p, q), closest to the outer boundary legs,

help define the links of the corridor.

the boundary, a brute force algorithm would run in
O(n7) time. Instead, our algorithm generates one
boundary for each link, and computes the remain-
ing boundaries by translating and appropriately
adjusting a copy of a boundary ray until a point
of S is encountered. This allows us to compute the
optimal 1-corner corridor in O(n4 log n) time.

3. Preliminaries

For any two points p and q we denote by ℓpq

the line through p and q and for any point t and
line ℓ we denote by H+

ℓ (t) (resp. H−

ℓ (t)) the open
halfplane bounded by ℓ that contains (resp. does
not contain) t. When ℓ = ℓpq, we simply write
H+

pq(t) (resp. H−

pq(t)). Also for any two non-parallel

lines ℓ and m and points p and q, we let S++

ℓm (p, q)
denote the subset of S in the interior of H+

ℓ (p) ∩
H+

m(q). Again, when ℓ = ℓqs and m = ℓpr, we may
write S++

qspr(p, q) to denote the same set of points.
The other three regions determined by ℓ and m
are labelled S−−

ℓm (p, q), S−+

ℓm (p, q), and S+−

ℓm (p, q),
as illustrated in Figure 2.

Our algorithms depend on finding efficiently a
point of a subset P of S closest to a line ℓ that
bounds a halfplane containing P . To this end, we
take advantage of the following observation.
Observation 1 Let H be an open halfplane
bounded by a line ℓ and let P be a set of m points
in H.
– The point of P closest to ℓ is a vertex of the

convex hull CH(P ) of P .
– Once CH(P ) has been computed, the point of P

closest to ℓ can be computed in O(log m) time.
In the example of Figure 2, if P is the set of

points in S++

ℓm (p, q) , then u and v are the points
of P closest to ℓpr and ℓqs, respectively. Points u,
p and r (resp. v, q and s), define the boundaries of
one of the links of a 1-corner corridor.
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4. The algorithm

We describe an algorithm to compute a widest 1-
corner corridor by processing each of the six cases
described in Section 2. To simplify the description
we assume that no three points of S are collinear. In
practice, collinear degeneracies can be coped by us-
ing the simulation of simplicity technique [EM90].

Case (21,21).
Consider first an optimal corridor of type

(21, 21). Such a corridor contains points (p1, p2) on
one outer leg and points (q1, q2) on the other. We
do not discard the possibility that q2 = p2, which
means that the convex corner of the corridor is a
point from S that lies on both outer legs. We will
compute all candidate corridors of type (21, 21)
for each triple (q1, p1, p2) of points from S.

For each point q1 ∈ S, we start by computing
the radial ordering of S \ {q1} as a line ℓ through
q1 rotates around q1. The initial orientation of the
rotating line is arbitrary and rotation angles in the
range [0, π) suffice so that each input point is vis-
ited exactly once by one of the two rays making up
the rotating line. In practice, and depending on the
type of corridor sought, only a sublist of the entire
sorted list will be needed, but this sublist depends
of the choice of p1 and p2.

For each ordered pair (p1, p2) of points from S \
{q1}, let m = ℓp1p2

and S′ = S ∩ H+
m(q1). The

idea is to consider all corridors of type (21, 21) that
contain p1 and p2 on one outer leg, and q1 on the
other, and keep track of the widest. The points of
S′ are examined in radial order and each allowed
to take on the role of q2, i.e., the other point on
the same outer leg as q1. Initially, we set q2 = p2,
as ℓq1p2

is the position of the rotating line ℓ at
the start of the sweep. The sweep then proceeds in
the direction that causes the intersection of ℓp1p2

and ℓ to move farther away from p1. (This may be
clockwise or counter-clockwise, depending on the
relative position of q1, p1, p2.) See Figure 3 for an
example. The numeric labels indicate the order in
which the points of S′ are visited by the sweep.

As the sweep proceeds, starting from q2 = p2,
and up to angle ∠q1p2p1 from this position, the
set P = S++

ℓm (p1, q1) changes dynamically. We
keep track of CH(P ), and update it via insertions
or deletions, depending on whether the points of
S′ enter or exit H+

ℓ (p1). For each point visited,
we compute a tentative inner boundary by finding

q1

p1

1
2

3

4

56

7

9
S′

8

✍ ℓp1p2

p2

ℓq1p2

Fig. 3. Computing corridors of type (21, 21) based on points
q1, p1 and p2. Solid line ℓq1p2

defines the start of the
sweep. Dashed linesillustrate different events of the sweep.

Numeric labels indicate the order in which the points of
S′ are visited by the sweep.

the points p′ and q′ of P nearest to m = ℓp1p2

and ℓ = ℓq1q2
, respectively. This can be done

in O(log n) time, as indicated in Observation 1.
Points p′ and q′ define the inner boundary of a lo-
cally widest corridor if ∠p′p1, p2, ∠p′p2p1, ∠q′q1q2,
and ∠q′q2q1 are all acute. In the example of Fig-
ure 3, when the sweepline reaches 1, i.e., when
q2 = 1, CH(P ) = 〈3, 5, 8, 9〉, p′ = 9, and q′ = 3.
Since ∠3q11 is obtuse, these points do not define a
locally widest corridor (a small counter-clockwise
rotation around q1 and 3, increases the width of
the link through q1). When the sweepline reaches
4, CH(P ) = 〈1, 2, 5, 8, 9〉, p′ = 9, and q′ = 2 and
we have a valid 1-corner corridor of type (21, 21).

The time to perform a radial sort is O(n log n).
Since CH(P ) can be updated dynamically at an
amortized cost of O(log n) per insertion or deletion
[BJ02], the cost of one radial sweep is O(n log n).
Since, there are O(n3) triples (q1, p1, p2), the
best candidate of type (21, 21) can be found in
O(n4 log n) time and O(n) space.

The remaining five cases can be solved in a sim-
ilar way. We briefly describe how to process.

Case (21,11).
This case is handled by a simple modification to

the ideas discussed above. As before, p1 and p2 lie
on one outer leg, and q1 lies on the other. Let ℓ
denote the rotating line, and ℓ⊥ the line through q1,
perpendicular to ℓ. We handle an event every time
ℓ goes through a point of S′. Unlike the previous
case, these events serve only the purpose of keeping
CH(P ) up to date and no candidate corridors are
generated. Additionally, we handle an event every
time ℓ⊥ goes through a point q. When this happens,
the points p′ and q′ of P closest to ℓp1p2

and ℓ
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are computed, and a corridor of type (12,11) is
generated if q′ = q and angles ∠p′p1p2 and ∠p′p2p1

are both acute. The complexity of both time and
space remains the same as before.

Case (11,11).
This case is similar to (21, 11) except for the in-

terpretation of p1 and p2. Without lost of gener-
ality we could suppose that points p1 and q1 lie
on the outer legs of the 1-corner corridor. For each
pair p1 and p2 of points from S, if p2 is the point of
S′ closest to the line m orthogonal to p1p2 through
p1 then a sweep similar to that used for (21, 11) is
performed. The complexity remains the same.

Case (21,12).
The rotating line starts out parallel to m =

ℓp1p2
. We keep track of two convex hulls, one built

on P = S++

ℓm (p1, q1), and another built on P ′ =
S−+

ℓm (p1, q1). For every point q2 of S visited by the
rotating ℓ, we find the point p′ of P closest to m,
and the point q′ of P ′ closest to ℓ. The corridor
is valid if the line parallel to ℓ through q′ inter-
sects with line m in such a way that points p1, p2

lie on the outer leg determined by m, and if an-
gles ∠p′p1p2, ∠p′p2p1, ∠q′q1q2 and ∠q′q2q1 are all
acute. Again the complexity remains the same.

Case (12,12).
We keep track of three convex hulls, built on

P = S++

ℓm (p1, q1), P ′ = S−+

ℓm (p1, q1) and P ′′ =
S−−

ℓm (p1, q1). Find the point p′ of S+−

ℓm (p1, q1) clos-
est to m and the point q′ of S−+

ℓm (p1, q1) closest to
ℓ. Let m′ be the line through p′ parallel to m, ℓ′

be the line through q′ parallel to ℓ and denote R =
H+

m′(p1) ∩ H+

ℓ′ (q1). If no point of S−−

ℓm (p1, q1) lies
inside R (condition that can be tested in O(log n)
time by checking that ℓ′ and m′ do not intersect
CH(P ′′) and that any vertex v of CH(P ′′) is out-
side R) then we are done. Otherwise we want to
find the points of S−−

ℓm (p1, q1) interiors to R closest
to m and to ℓ, respectively. Find the points p′′ and
q′′ of S−−

ℓm (p1, q1) closest to m and ℓ, respectively.
If q′′ (p′′) lies outside the region R, then find the
edge s (t) of CH(P ′′) intersected by ℓ′ (m′) that is
interior in part to R and, abusing of language, de-
note by q′′ (p′′) the endpoint of s (t) that lies inside
R. Observe that point q′′ (p′′) can be computed
in O(log n) time. Compute a smaller corridor from
the points p′, p′′, q′, q′′ found. If we denote p∗ and
q∗ the points that define such a corridor, then the
corridor is valid if the line parallel to ℓ through q∗

intersects with line m in such a way that points

points p1, p2 lie on the outer leg determined by
m, and if angles ∠p∗p1p2, ∠p∗p2p1, ∠q∗q1q2 and
∠q∗q2q1 are all acute. The best candidate of type
(12,12) can be found in O(n4 log n) time and O(n)
space.

Case (12,11).
This case may be handled by combining the ideas

used to solve cases (21,11) and (12,12). Now q1q∗

is orthogonal to ℓ. Again the complexity remains
the same.

In summary, we have established the following.
Theorem 1 Let S be a set of n points. A widest
1-square corridor through S can be computed in
O(n4 log n) time and O(n) space.

5. Future work

We are presently working on other variants of
the problem, which include finding a widest empty
k-dense 1-corner corridor, dynamic updates, and
approximation algorithms.
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Two Optimization Problems with Floodlights
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1. Introduction

The area of visibility and illumination problems
is a very attractive field inside computational ge-
ometry. We refer the interested reader to [8] for an
overview of recent results. In this paper we study
two illumination problems involving floodlights.
Loosely spoken a floodlight is a light source that
illuminates a region in the plane which is bounded
by two rays emanating from a common point, the
apex of the floodlight. The size of a floodlight is
the angle between its bounding rays.

In the first problem we are given a segment S of
a straight line L in the plane and a finite set P of n

points. P is contained in one of the open halfplanes
bounded by L. We want to find a set F of floodlights
such that each point of S is contained in at least
one floodlight, (ie the floodlights in F illuminate
S), such that the apex of each floodlight in F is a
point from P , and such that the sum of the sizes of
the floodlights in F is minimum. Furthermore we
require that no two floodlights in F share a common
apex.

Variants of this problem have been studied be-
fore. In [1] the authors formulate a related decision
problem and outline the difficulties in finding an
efficient algorithm for it: We are given a segment
S, called the stage, a set of points P and |P | an-
gles. Can floodlights whose sizes equal the given
angles be placed at the given points to illuminate
S? Please note that here it is not forbidden to place
two or more floodlights at the same point.

A partial answer to the question about the com-
putational complexity of the last mentioned vari-
ant was given in [6]. The variant considered there
is stated as follows: We are given a segment S, a

Email address: spillner@minet.uni-jena.de (Andreas
Spillner).

set of points P and a set of angles A. Every angle
α ∈ A is mapped to a point p(α) ∈ P . Can we find
floodlights Fα, α ∈ A, that together illuminate S,
such that the apex of Fα is placed at p(α) and the
size of Fα is α? It is shown that this problem is
NP-complete.

The problem of illuminating a given segment S

from a given set P of points such that the sum of
the sizes of the floodlights used is minimized was
studied in [4] and [3]. But there it was not required
that the apices of the floodlights have to be pair-
wise distinct. The authors give an O(nlogn) time
and O(n) space algorithm to solve this problem.
Since it may happen that more than one floodlight
is placed at a point from P , it could be interest-
ing to study the problem with such placement ex-
plicitly ruled out. This was also posed as an open
question in [8] and [2].

In the second problem that we consider in this
paper we are given a convex polygon P with n

vertices and a positive integer k. We want to illu-
minate P with k floodlights such that the sum of
their sizes is minimum. Such a set of k floodlights is
called optimal. The apices of the floodlights must
be located in P .

For k = 1 the problem is easy: We have to find
a vertex v of the convex polygon P such that the
interior angle at v is minimum. This can trivially be
done in O(n) time. For k = 2 in [5] an algorithm is
given that solves this problem in O(n2) time using
O(n) space. The algorithm exploits the fact that
in an optimal set with two floodlights the apices of
these two floodlights must be located at vertices of
P . For k ≥ 3 the problem was open [7]. We consider
the case k = 3.

This paper is structured as follows. After this
introduction we give some formal definitions. In
the third section we present an O(nlogn) time and
O(n) space algorithm for the first problem (illu-
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mination of a stage). In the fourth section we give
an O(n2) time and O(n) space algorithm for the
second problem (illumination of a convex polygon
with three floodlights). We end with some conclud-
ing remarks.

2. Preliminaries

Our setting will be the plane R
2. For M ⊆ R

2 we
denote by int(M) the interior of M , by relint(M)
the relative interior of M , by bd(M) the boundary
of M , and by cl(M) the closure of M .
Definition 1 Let p and q be points in the plane.
By pq we denote the straight line segment with end-
points p and q.
Definition 2 Let M ⊆ R

2. M is called convex iff
for every p, q ∈ M the straight line segment pq is
contained in M .
Definition 3 Let Rl and Rr be two distinct rays
with common starting point p. Let R be a ray rotat-
ing around p in clockwise direction starting at the
position where R = Rl and stopping at the position
where R = Rr. Every point touched by R during
its rotation belongs to the floodlight F with bound-
ing rays l(F ) = Rl and r(F ) = Rr. The point p

is called the apex of F and denoted by a(F ). The
angle from Rl to Rr in clockwise direction is called
the size of F and denoted by s(F ).
Definition 4 Let v1, . . . , vn be pairwise distinct
points in the plane and n ∈ N, n ≥ 3. The set
of points S = vnv1 ∪

⋃n−1
i=1 vivi+1 is called a sim-

ple closed polygonal curve iff it is a homeomorph of
the boundary of an open disk and no two consecu-
tive line segments on S are collinear. The points in
v(S) = {v1, . . . , vn} are called the vertices of S. The
line segments in e(S) = {vnv1, v1v2, . . . , vn−1vn}
are called the edges of S.
Definition 5 A set P of points is called a sim-
ple polygon iff P is closed, bounded, and connected,
int(P ) 6= ∅ and bd(P ) is a simple closed polygo-
nal curve. We set v(P ) = v(bd(P )) and e(P ) =
e(bd(P )). A simple polygon P is called a convex
polygon iff P is convex.
Definition 6 Let P be a simple polygon, p and q

points, F a floodlight. We say that p and q can see
each other and write this p ↔ q iff pq ⊆ P . The
region visible from point p is vis(p, P ) = {x ∈ R

2 :
p ↔ x}. The region illuminated by F is ill(F, P ) =
F ∩ vis(a(F ), P ).

3. Illumination of a stage

Now we can state our stage illumination problem

or SIP for short more formally: An instance (S, P )
consists of a segment S of a straight line L and a
finite set of points P such that P is contained in
one of the open halfplanes bounded by L. We want
to find a set F of floodlights with the following
properties:

(i) S ⊆ ∪F∈FF

(ii) ∀F ∈ F (a(F ) ∈ P )
(iii) ∀F1, F2 ∈ F (F1 6= F2 ⇒ a(F1) 6= a(F2))
(iv) s(F) =

∑
F∈F s(F ) is minimum

Now it is clear that without loss of generality we
can assume that L is the x-axis and all points in P

have a positive y-coordinate, ie the points in P lie
above the x-axis.
Definition 7 Let (S, P ) be an instance, p ∈ P and
z be a point on L. By Cp(z) we denote the circle
through the point p such that L is tangent to Cp(z)
at the point z.

If we drop property (iii) in SIP we will obtain the
problem considered in [4] and denote it by SIP∗.
From [4] we know that in a solution F∗ to an in-
stance (S, P ) for SIP∗ a point z ∈ S is contained
in a floodlight F ∈ F∗ if and only if no point of P

lies outside Ca(F )(z). Hence for SIP∗ to every in-
stance there exists a unique solution. Please note
that SIP∗ is meaningful even in the limiting case,
ie if S = L.
Observation 8 Consider the solution to an in-
stance (S, P ) for SIP∗.

(i) There are at most two floodlights placed at
each point of P .

(ii) There is at most one point p ∈ P such that
there are two floodlights placed at p.

(iii) If there are two floodlights placed at p ∈ P

then p has a smaller y-coordinate than every
other point in P .

If we have an instance (S, P ) and solutions F and
F∗ to this instance for SIP and SIP∗ respectively
then it is clear that s(F) ≥ s(F∗).
Observation 9 Consider a solution F to an in-
stance (S, P ) for SIP.

(i) ∀F ∈ F (F ∩ L = F ∩ S)
(ii) ∀F1, F2 ∈ F (F1 6= F2 ⇒ relint(F1 ∩ S) ∩

relint(F2 ∩ S) = ∅).
Definition 10 Let p and q be two points on the x-
axis. Then [p, q] = pq and the x-coordinate of q is
not smaller than the x-coordinate of p.



March 25-26, 2004 Seville (Spain)

Definition 11 Let F be a solution to an instance
(S, P ) for SIP and k = |F|. According to observa-
tion 9 the segment S is partitioned into k internally
disjoined subsegments, each of which is the inter-
section of a floodlight from F with S.

(i) Let S1, S2, . . . , Sk denote these subsegments
in order they appear on S from left to right.

(ii) Let zi−1 and zi denote the endpoints of Si,
that is Si = [zi−1, zi], i ∈ {1, . . . , k}.

(iii) Let Fi denote the floodlight from F that con-
tains Si, i ∈ {1, . . . , k}.

The next three lemmas we give without proof.
Lemma 12 Let F be a solution to an instance
(S, P ) for SIP, k = |F| and i ∈ {1, . . . , k − 1}.
Then the point ai+1 = a(Fi+1) lies in clockwise
direction between zi and ai = a(Fi) on the circle
C = Cai

(zi).
Lemma 13 Let I = (S, P ) be an instance such
that in the solution F∗ to I for SIP∗ there are two
floodlights placed at the point p ∈ P . Then in every
solution F to I for SIP there exists a floodlight F ∈
F such that a(F ) = p.
Lemma 14 Let I = (S, P ) be an instance such
that in the solution F∗ to I for SIP∗ there are two
floodlights placed at the point p ∈ P . Let F be a so-
lution to I for SIP and k = |F|. Then it is a(F1) =
p or a(Fk) = p again using the notation from defi-
nition 11.

Now it is not hard to see that the problem SIP
can be solved in polynomial time employing the
dynamic programming technique. We found an al-
gorithm running in O(nlogn) time and O(n) space
which first sorts the points in P according to their
y-coordinates and then processes these points in
the order obtained from sorting. We omit the de-
tails and summarize our results.
Theorem 15 Let I = ([a, b], P ) be an instance
and n = |P |. A solution to instance I for SIP can
be computed in O(nlogn) time using O(n) space in
the real RAM model of computation. In the worst
case we need Ω(nlogn) time to find a solution.
Remark 16 The lower bound follows from the re-
duction of SORTING to SIP∗ presented in [4] and
[2].

4. Illumination of a convex polygon

First we state our illumination problem more
formally. Fix a positive integer k. Given a convex

polygon P we want to find a set of floodlights F

such that:
(i) P =

⋃
F∈F ill(F, P )

(ii) |F| = k

(iii) s(F) =
∑

F∈F s(F ) is minimum
(iv) ∀k∗ ∈ {1, . . . , k−1}∀F∗ (F∗ is a solution to P

of Πk∗ ⇒ s(F∗) > s(F))
We will refer to this problem as Πk and call a set
F satisfying (i)-(iv) a solution to instance P of Πk.
Remark 17 An instance P of Πk need not have a
solution (consider for example an instance P of Π2

such that P is a triangle). But for such an instance
P there exists k∗ < k such that P has a solution for
problem Πk∗ and using more than k∗ (but at most k)
floodlights does not help to decrease the total size.
Observation 18 Let P be an instance of Πk and
F a solution to P . Then for every F ∈ F holds
a(F ) ∈ bd(P ).

But are there polygons where three floodlights
are better than two? The answer is yes. Consider
for example the convex polygon with vertices (0,0),
(0,2), (10,2), (15,1), (10,0).
Definition 19 Let P be a convex polygon and
p, q ∈ bd(P ) such that p 6= q. By [p, q] we denote the
closed segment of the boundary of P that consists of
those points in bd(P ) which we meet by traversing
the boundary of P from p to q in clockwise direction.
Furthermore we introduce ]p, q[= [p, q] \ {p, q}.
Definition 20 Let P be a convex polygon and F

a finite set of floodlights such that ∀F ∈ F (a(F ) ∈
bd(P )). Then cl(P \ (∪F∈FF )) = ∪Q∈QQ where
Q is a finite set of convex polygons such that
∀Q1, Q2 ∈ Q (Q1 6= Q2 ⇒ Q1 ∩ Q2 ⊆ bd(P )).
We set v(cl(P \ (∪F∈FF ))) = ∪Q∈Qv(Q).

The next lemmas tell us something about the
structure of solutions. We give them without proof.
Lemma 21 Let P be a convex polygon, F =
{F1, F2, F3} a solution to P of Π3, Ri, i ∈ {1, 2, 3},
a bounding ray of Fi such that R1, R2, R3 are pair-
wise nonparallel. Then there is no point s ∈ int(P )
sucht that s ∈ R1 ∩ R2 ∩ R3.
Lemma 22 Let P be a convex polygon and F a
solution to P of Π3. Then v(cl(P \ (∪F∈FF ))) ∩
int(P ) = ∅.
Lemma 23 Let P be a convex polygon and F a
solution to P of Π3. Then ∀F1, F2 ∈ F (F1 6= F2 ⇒
int(F1) ∩ int(F2) = ∅).



20th European Workshop on Computational Geometry

Lemma 24 Let P be a convex polygon and F a so-
lution to P of Π3. Then we can number the elements
of F with elements of {1, 2, 3} such that a(F1) ∈
l(F2), a(F2) ∈ l(F1), a(F2) ∈ r(F3) and a(F3) ∈
r(F2).
Lemma 25 Let P be a convex polygon and F a
solution to P of Π3. Then {a(F ) : F ∈ F} ⊆ v(P ).
Lemma 26 Let P be a convex polygon and F =
{F1, F2, F3} a solution to P of Π3. Let the elements
of F be numbered as in lemma 24 and let D denote
the disk bounded by the circle through the points
a(F1), a(F2) and a(F3). Then [a(F3), a(F1)] ⊆ D.

Now we are ready to sketch an algorithm for
problem Π3. Given a convex polygon P if there
exists a solution {F1, F2, F3} to P of Π3 then from
lemma 24 we know the way the floodlights in this
solution are arranged. In connection with lemma
26 this suggests the following strategy: For every
pair of distinct vertices u and w of P try to find a
vertex v ∈]u, w[ such that [u, w] is contained in the
disk bounded by the circle through the points u, v

and w. That is we fix a position for a(F3) (vertex
u) and a position for a(F1) (vertex w) and try to
find a position for a(F2) (vertex v). It should be
clear that by pursueing this strategy if there is a
solution to P of Π3 then we will find it. Since we
may suppose that solutions to P of Π1 and Π2 are
available (or we know that there is no solution to
P of Π2), it is also easy to detect those polygons
that admit no solution of Π3.

The question that remains is about an efficient
implementation of the above sketched algorithm.
We can achieve a running time in O(n2). But we
omit the details and summarize our results.
Theorem 27 Given a convex polygon P with n

vertices we can compute in O(n2) time and O(n)
space a solution to P of Π3 or find out that there
is no such solution using the real RAM model of
computation.

5. Concluding remarks

In our view there are at least two interesting
open questions regarding the illumination problem
of convex polygons: Are there algorithms for prob-
lems Π2 and Π3 with running time in o(n2)? Can
our results be extended to problems Πk with k ≥
4?
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1. Introdu
tion

Multi-fun
tional data stru
tures and BSP trees.

In 
omputational geometry, eÆ
ient data stru
-

tures have been developed for a variety of ge-

ometri
 query problems: range sear
hing, point

lo
ation, nearest-neighbor sear
hing, et
. The the-

oreti
al performan
e of these stru
tures is often


lose to the theoreti
al lower bounds. In order

to a
hieve 
lose to optimal performan
e, most

stru
tures are dedi
ated to very spe
i�
 settings.

It would be preferable, however, to have a single

multi-fun
tional geometri
 data stru
ture: a data

stru
ture that 
an store di�erent types of data

and answer various types of queries. Indeed, this

is what is often done in pra
ti
e.

Another potential problem with the stru
tures

developed in 
omputational geometry is that they

are sometimes rather involved, and that it is un-


lear how large the 
onstant fa
tors in the query

time and storage 
osts are. Moreover, they may

fail to take advantage of the 
ases where the input

obje
ts and/or the query have some ni
e proper-

ties. Hen
e, the ideal would be to have a multi-

fun
tional data stru
ture that is simple and takes

advantage of any favorable properties of the input

and/or query.

A binary spa
e partition tree, or BSP tree, is a

spa
e-partitioning stru
ture where the subdivision

of the underlying spa
e is done in a hierar
hi
al

fashion using hyperplanes (that is, lines in 
ase

the spa
e is 2D, planes in 3D, et
.) The hierar
hi-


al subdivision pro
ess usually 
ontinues until ea
h


ell 
ontains at most one (or maybe a small number

of) input obje
t(s). BSP trees are used for many

purposes; among these are range sear
hing [1℄ and
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hidden surfa
e removal with the painter's algo-

rithm [11℄.

In some appli
ations|hidden-surfa
e removal is

a typi
al example|the eÆ
ien
y is determined by

the size of the BSP tree. Hen
e, several resear
hers

have proposed algorithms to 
onstru
t small BSP

trees in various di�erent settings [2,5,13,15℄. In this

paper we fo
us on the query 
omplexity of BSP

trees.

Approximate range sear
hing. Developing a

multi-fun
tional geometri
 data stru
ture|one

that 
an store any type of obje
t and 
an do range

sear
hing with any type of query range|that

provably has good performan
e seems quite hard,

if not impossible. As it turns out, however, su
h

results 
an be a
hieved if one is willing to settle

for "-approximate range sear
hing, as introdu
ed

by Arya and Mount [3℄.

Here one 
onsiders, for a parameter " > 0, the "-

extended query rangeQ

"

, whi
h is the set of points

lying at distan
e at most �·diam(Q) fromQ, where

diam(Q) is the diameter of Q. Obje
ts interse
ting

Q must be reported, while obje
ts interse
ting Q

"

(but not Q) may or may not be reported; obje
ts

outside Q

"

are not allowed to be reported. In pra
-

ti
e, one would expe
t that for small values of ",

not too many extra obje
ts are reported.

Our results. In this paper we show that it is pos-

sible to 
onstru
t BSP trees for sets of disjoint seg-

ments in the plane, and for low-density s
enes in

any dimension, whose query time for approximate

range sear
hing is as good, or almost as good, as

the best known bounds for point data [3,8,9℄. More

pre
isely, our results are as follows.

In Se
tion 3 we study BSP trees for a set S of

n disjoint line segments in the plane. We give a

general te
hnique to 
onvert a BSP tree T

p

for a set

of points to a BSP tree T

S

for S, su
h that the size

of T

S

is O(n · depth(T
p

)), and the time for range

sear
hing remains almost the same.

In Se
tion 4 we then 
onsider low-density s
enes.
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We prove that any s
ene of 
onstant density in

R
d

admits a BSP of linear size, su
h that range-

sear
hing queries with arbitrary 
onvex ranges 
an

be answered in O(log n+min

">0

{(1="d−1)+ k

"

}),
where k

"

is the number of obje
ts interse
ting Q

"

.

2. Preliminaries

In this se
tion we brie
y introdu
e some termi-

nology and notation that we will use throughout

the paper.

A BSP tree for a set S of n obje
ts in R
d

is a

binary tree T with the following properties.

{ Every (internal or leaf) node � 
orresponds to

a subset region(�) of R
d

, whi
h we 
all the re-

gion of �. These regions are not stored with the

nodes. When � is a leaf node, we sometimes re-

fer to region(�) as a 
ell. The root node root(T )


orresponds to R
d

.

{ Every internal node � stores a hyperplane

h(�). The left 
hild of � then 
orresponds to

region(�) ∩ h(�)

−
, where h(�)

−
denotes the

half-spa
e below h(�), and the right 
hild 
orre-

sponds to region(�)∩ h(�)

+

, where h(�)

+

is the

half-spa
e above h(�).

A node � stores, besides the splitting hyper-

plane h(�), a list L(�) with all obje
ts 
ontained

in h(�) that interse
t region(�).

{ Every leaf node � stores a list L(�) of all obje
ts

in S interse
ting the interior of region(�). In our


ase the lists have a 
onstant length.

The size of a BSP tree is de�ned as the total

number of nodes plus the total size of the lists L(�)

over all nodes � in T . Finally, for a node � in a tree

T , we use T (�) to denote the subtree of T rooted at

�, and we use depth(T ) to denote the depth of T .

3. BSPs for segments in the plane

Let S be a set of n disjoint line segments in the

plane. In this se
tion we des
ribe a general te
h-

nique to 
onstru
t a BSP for S, based on a BSP on

the endpoints of S. The te
hnique uses a segment-

tree like approa
h similar to, but more general

than, the deterministi
 BSP 
onstru
tion of Pater-

son and Yao [13℄. The range-sear
hing stru
ture of

Overmars et al.[12℄ uses similar ideas, ex
ept that

they store so-
alled long segments|see below|in

h(ν) h(ν)

a) b)

h(µ)

Figure 1. Illustration of the pruning strategy. The bla
k

squares indi
ate input segments. a) There is a T-jun
tion

on h(�): a splitting line in the subtree ends on h(�). Pruning

h(�) would partition the empty part of the region, whi
h

might have a negative e�e
t on the query time. b) There

is no T-jun
tion on h(�) and h(�) 
an be pruned.

an asso
iated stru
ture, so they do not 
onstru
t

a BSP for the segments. The main extra 
ompli
a-

tion we fa
e is that we must ensure that we only

work with the relevant portions of the given tree

during the re
ursive 
onstru
tion, and prune away

irrelevant portions. The pruning has to be done


arefully, however, be
ause too mu
h pruning 
an

have a negative e�e
t on the query time. Next we

des
ribe the 
onstru
tion in more detail.

Let P be the set of 2n endpoints of the segments

in S, and let T

P

be a BSP tree for P . We assume

that T

P

has size O(n), and that the leaves of T

P

store at most one point from P . Below we des
ribe

the global 
onstru
tion of the BSP tree for S. Some

details of the 
onstru
tion will be omitted here.

The BSP tree T

S

for S is 
onstru
ted re
ursively

from T

P

, as follows. Let � be a node in T

P

. We 
all

a segment s ∈ S short at � if region(�) 
ontains

an endpoint of s. A segment s is 
alled long at �

if (i) s interse
ts the interior of region(�), and (ii)

s is short at parent(�) but not at �. In a re
ursive


all there are two parameters: a node � ∈ T

P

and

a subset S

∗ ⊂ S, 
lipped to lie within region(�).

The re
ursive 
all will 
onstru
t a BSP tree T

S

∗

for S

∗
based on T

P

(�). Initially, � = root(T

P

) and

S

∗
= S. The re
ursion stops when S

∗
is empty, in

whi
h 
ase T

S

∗
is a single leaf.

Let L ⊂ S

∗
be the set of segments from S

∗
that

are long at �. The re
ursive 
all is handled as fol-

lows.

(i) If L is empty, we 
ompute S

l

= S

∗ ∩ h(�)

−

and S

r

= S

∗ ∩ h(�)

+

.

If both S

l

and S

r

are non-empty, we 
re-

ate a root node for T

S

∗
whi
h stores h(�) as
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its splitting line. We then re
urse on the left


hild of � with S

l

and on the right 
hild of �

with S

r

to 
onstru
t respe
tively the left and

the right subtree of the root.

If one of S

l

and S

r

is empty, it seems the

splitting line h(�) is useless in T

S

∗
. We have

to be 
areful, however, that we do not in-


rease the query time: the removal of h(�) 
an


ause other splitting lines, whi
h used to end

on h(�), to extend further. Hen
e, we pro-


eed as follows. De�ne a T-jun
tion, see Fig.

1, to be a vertex of the original BSP subdi-

vision indu
ed by T

P

. To de
ide whether or

not to use h(�), we 
he
k if h(�)∩R 
ontains

a T-jun
tion in its interior, where R is the

region that 
orresponds to the root of T

S

∗
. If

this is the 
ase, we do not prune.

(ii) The se
ond 
ase is when L is not empty. Now

the long segments partition region(�) into

m := |L| + 1 regions, R

1

; : : : ; R

m

. We take

the following steps.

(i) We split S

∗ \ L into m subsets

S

∗

1

; : : : ; S

∗

m

, where S

∗

i


ontains the seg-

ments from S

∗
lying inside R

i

.

(ii) We 
onstru
t a binary tree T withm−1

internal nodes whose splitting lines are

the lines 
ontaining the long segments.

The leaves of T 
orrespond to the re-

gions R

i

, and will be
ome the roots of

the subtrees to be 
reated for the sets

S

∗

i

. T is balan
ed by the sizes of the sets

S

∗

i

, as in the trapezoid method for point

lo
ation [14℄.

The tree T

S

∗
then 
onsists of the tree

T , with, for every 1 6 i 6 m, the leaf

of T 
orresponding to R

i

repla
ed by a

subtree for S

∗

i

. More pre
isely, ea
h sub-

tree T

i

is 
onstru
ted using a re
ursive


all with node � and S

∗

i

as parameters.

The following theorem states the performan
e

of the BSP. Its proof is omitted in this extended

abstra
t.

Theorem 1 Let R be a family of 
onstant-


omplexity query ranges in R
2

. Suppose that for

any set P of n points in R
2

, there is a BSP tree

T

P

of linear size, where ea
h leaf stores at most

one point from P , with the following property:

any query with a range from R interse
ts at most

v(n; k) 
ells in the BSP subdivision, where k is the

number of points in the query range. Then for any

set S of n disjoint segments in R
2

, there is a BSP

tree T

S

su
h that

(i) the depth of T

S

is O(depth(T

P

))

(ii) the size of T

S

is O(n · depth(T
P

))

(iii) any query with a range from R visits at most

O((v(n; k) + k) · depth(T
P

)) nodes from T

S

,

where k is the number of segments interse
t-

ing the range.

The BSP tree T

S


an be 
onstru
ted in O(n ·
(depth(T

P

))

2

) time.

Several of the known data stru
tures for range

sear
hing in point sets are a
tually BSP trees. Ex-

amples are ham-sandwi
h trees [10℄, kd-trees [7℄,

and BAR-trees [8,9℄. Here we fo
us on the appli
a-

tion using BAR-trees, as it gives good bounds for

approximate range sear
hing for line segments in

the plane.

One 
an 
onstru
t BAR-trees with logarithmi


depth, su
h that the number of leaves visited by

a query with a 
onvex query range Q is bounded

by O((1=")+k

"

), where k

"

is the number of points

inside the extended query range Q

"

.

Combining this with theorem 1 (and a spe
ial-

ized 
onstru
tion algorithm that speeds up the 
on-

stru
tion time by a logarithmi
 fa
tor) we get the

following results.

Corollary 2 Let S be a set of n disjoint seg-

ments in R
2

. In O(n logn) time one 
an 
onstru
t

a BSP tree for S of size O(n logn) and depth

O(log n) su
h that a range query with a 
onstant-


omplexity 
onvex range 
an be answered in time

O(min

">0

{(1=") logn+ k

"

logn}), where k
"

is the

number of segments interse
ting Q

"

.

4. BSPs for low-density s
enes

Let S be a set of n obje
ts R
d

. For an obje
t

o, we use �(o) to denote the radius of the smallest

en
losing ball of o. The density of a set S is the

smallest number � su
h that the following holds:

any ball B is interse
ted by at most � obje
ts o ∈
S with �(o) > �(B) [6℄. If S has density �, we 
all

S a �-low-density s
ene. In this se
tion we show

how to 
onstru
t a BSP tree for S that has linear

size and very good performan
e for approximate

range sear
hing if the density of S is 
onstant. Our

method 
ombines ideas from de Berg [5℄ with the

BAR-tree of Dun
an et al.[9℄ Our overall strategy,

also used by de Berg [5℄, is to 
ompute a suitable
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set of points that will guide the 
onstru
tion of the

BSP tree. Unlike in [5℄, however, we 
annot use the

bounding-box verti
es of the obje
ts in S for this,

be
ause that does not work in 
ombination with a

BAR-tree. What we need is a set G of points with

the following property: any 
ell in a BAR-tree that

does not 
ontain a point from G in its interior is

interse
ted by at most � obje
ts from S, for some


onstant �. We 
all su
h a setG a �-guarding set [4℄

against BAR-tree 
ells, and we 
all the points in G

guards.

The algorithm is as follows.

(i) Constru
t a �-guarding set G for S, as

explained below. The 
onstru
tion of the

guarding set is done by generating O(1)

guards for ea
h obje
t o ∈ S, so that the

guards 
reated for any subset of the obje
ts

will form a �-guarding set for that subset.

Using the results of [4℄ it 
an be shown that

there exists a guarding set for �-low-density

s
enes against BAR-tree 
ells. Using spe
ial

properties of (
orner-
ut) BAR-tree 
ells a

guarding set of size 12n 
an be given for the

planar 
ase. We will use obje
t(g) to denote

the obje
t for whi
h a guard g ∈ G was


reated.

(ii) Create a BAR-tree T on the set G using the

algorithmof Dun
an et al.[9℄, with the follow-

ing adaptation: whenever a re
ursively 
all

is made with a subset G

∗ ⊂ G in a region

R, we delete all guards g from G

∗
for whi
h

obje
t(g) does not interse
t R. This pruning

step, whi
h was not needed in [5℄, is essen-

tial to guarantee a bound on the query time.

This leads to a BSP tree whose 
ells 
an only


ontain guards whose 
orresponding obje
ts

do not interse
t the 
ell.

(iii) Sear
h with ea
h obje
t o ∈ S in T to de-

termine whi
h leaf 
ells are interse
ted by o.

Store with ea
h leaf the set of all interse
ted

obje
ts. Let T

S

be the resulting BSP tree.

The following theorem states the performan
e

of the BSP. Its proof is omitted in this extended

abstra
t.

Theorem 3 Let S be a �-low-density s
ene 
on-

sisting of n obje
ts in R
d

. There exists a BSP tree

T

S

for S su
h that

(i) the depth of T

S

is O(log n)

(ii) the size is O(�n)

(iii) a query range with a 
onvex range Q visits

takes O(log n+� ·min

">0

{(1=")+k

"

}) time,

where k

"

is the number of obje
ts interse
ting

the extended query range Q

"

.

The BSP tree 
an be 
onstru
ted in O(�n logn)

time.
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1. Introdu
tion

Skeletons have long been re
ognized as an im-

portant tool in 
omputer graphi
s, 
omputer vision

and medi
al imaging. The most known and widely

used skeleton is the medial axis [1℄. However, the

presen
e of paraboli
 ar
s may be a disadvantage

for the medial axis. The straight line skeleton [2℄,

on the other hand, is 
omposed only of line seg-

ments. In [3℄ a polygon de
omposition based on

the straight line skeleton was presented. The re-

sults obtained from the implementation indi
ated

that this te
hnique provides plausible de
omposi-

tions for a variety of shapes. However, sharp re
ex

angles have a big impa
t on the form of the straight

line skeleton, whi
h in turn has a large e�e
t on

the de
omposition (see �gure 1).

This paper presents the linear axis, a new skele-

ton for polygons. It is related to the medial axis

and the straight line skeleton, being the result of

a wavefront propagation pro
ess. The wavefront is

linear and propagates by translating edges at 
on-

stant speed. The initial wavefront is an altered ver-

sion of the original polygon: zero-length edges are

added at re
ex verti
es. The linear axis is a sub-

set of the straight line skeleton of the altered poly-

gon. In this way, the 
ounter-intuitive e�e
ts in the

straight line skeleton 
aused by sharp re
ex ver-

ti
es are alleviated. We introdu
e the notion of "-

equivalen
e between two skeletons, and give an al-

gorithm that 
omputes the number of hidden edges

for ea
h re
ex vertex whi
h yield a linear axis "-

equivalent to the medial axis. This linear axis and

thus the straight line skeleton 
an then be 
om-

puted from the medial axis in linear time for non-

degenerate polygons, i.e. polygons with a 
onstant

number of \nearly 
o-
ir
ular" sites.

Fig. 1. A de
omposition [3℄ based on split events of the

straight line skeleton gives 
ounter-intuitive results if the

polygon 
ontains sharp re
ex verti
es.

2. Linear axis

Let P be a simple, 
losed polygon. The set of sites

de�ning the Voronoi diagram V D(P ) of P is the

set of line segments and re
ex verti
es of P . The set

of points U(d) inside P , having some �xed distan
e

d to the polygon is 
alled a uniform wavefront. As

the distan
e d in
reases, the wavefront points move

at equal, 
onstant velo
ity along the normal dire
-

tion. This pro
ess is 
alled uniform wavefront prop-

agation. During the propagation, the breakpoints

between the line segments and 
ir
ular ar
s in U(d)

tra
e theVoronoi diagramV D(P ). Themedial axis

M(P ) is a subset of V D(P ); the Voronoi edges in-


ident to the re
ex verti
es are not part of the me-

dial axis (see �gure 2(a)).

The straight line skeleton is also de�ned as the

tra
e of adja
ent 
omponents of a propagating

wavefront. The wavefront is linear and is obtained

by translating the edges of the polygon in a self-

parallel manner, keeping sharp 
orners at re
ex

verti
es (edges in
ident to a re
ex vertex will grow

in length, see �gure 2(b)). This also means that

points in the wavefront move at di�erent speeds:

wavefront points originating from re
ex verti
es

move faster than points originating from the edges

in
ident to those verti
es. In fa
t, the speed of the

wavefront points originating from a re
ex vertex

gets arbitrary large when the internal angle of the

20th EWCG Seville, Spain (2004)
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(a) (b)

Fig. 2. Medial Axis (a) vs. Straight Line Skeleton (b). In-

stan
es of the propagating wavefront generating the skele-

tons are drawn with dotted line style in both 
ases. In (a)

the Voronoi edges that are not part of the medial axis are

drawn with dashed line style.

vertex gets arbitrary 
lose to 2�. And that is why

sharp re
ex verti
es have su
h a big impa
t on

the form of the straight line skeleton. The straight

line skeleton SLS(P ) of P is the tra
e in the

propagation of the verti
es of the wavefront.

Let fv

1

; v

2

; : : : ; v

n

g denote the verti
es of a sim-

ple polygon P and let � = (k

1

; k

2

; : : : ; k

n

) be a se-

quen
e of natural numbers. If v

i

is a 
onvex vertex

of P , k

i

= 0, and if it is re
ex vertex, k

i

� 0. Let

P

�

(0) be the polygon obtained fromP by repla
ing

ea
h re
ex vertex v

i

with k

i

+1 identi
al verti
es.

We assume that these verti
es are the endpoints of

k

i

zero-length edges, whi
h will be referred to as

the hidden edges asso
iated with v

i

. The dire
tions

of the hidden edges are 
hosen su
h that the re
ex

vertex v

i

of P is repla
ed in P

�

(0) by k

i

+ 1 \re-


ex verti
es" of equal internal angle. The polygon

P

�

(t) represents the linear wavefront, 
orrespond-

ing to a sequen
e � of hidden edges, at moment

t. The propagation 
onsists of translating edges at


onstant unit speed, in a self-parallel manner.

De�nition 1 The linear axis L

�

(P ) of P , 
or-

responding to a sequen
e � of hidden edges, is the

tra
e of the 
onvex verti
es of the linear wavefront

P

�

in the above propagation pro
ess.

Obviously, L

�

(P ) is a subset of SLS(P

�

(0)); we

only have to remove the bise
tors tra
ed by the

re
ex verti
es of the wavefront (see �gure 2 (a)).

Lemma 1 If any re
ex vertex v

j

of internal angle

�

j

� 3�=2 has at least one asso
iated hidden edge,

then no new re
ex verti
es are introdu
ed to the

wavefront during the propagation of P

�

.

For the rest of this paper, we will assume that

ea
h sele
tion � of hidden edges that is 
onsidered,

satis�es the 
ondition in lemma 1. This ensures

that L

�

(P ) is a 
onne
ted graph.

A site of P is a line segment or a re
ex vertex. If

S is an arbitrary site of P , we denote by P

�

S

(t) the

points in P

�

(t) originating from S. We 
all P

�

S

(t)

v

j

w

h

�

j

(a) (b)

Fig. 3. (a) The linear axis in the 
ase when one hidden

edge is inserted at ea
h re
ex vertex. A linear wavefront is

drawn in dotted line style; the dashed lines are the bise
tors

that are not part of the linear axis. (b) The linear o�set

(solid line) of a re
ex vertex with 3 asso
iated edges.

the (linear) o�set of S at moment t.

Individual points in P

�

move at di�erent speeds.

The fastest moving points in P

�

are its re
ex ver-

ti
es. The slowest moving points have unit speed.

Let v

j

be a re
ex vertex of P , of internal angle �

j

,

and with k

j

asso
iated hidden edges. Let P

�

v

j

(t) be

the o�set of v

j

at some moment t.

Lemma 2 Points in P

�

v

j

(t) move at speed at most

s

j

= 1= 
os ((�

j

� �)=(2 � (k

j

+ 1))) :

Ea
h 
onvex vertex of P

�

(t) is a breakpoint be-

tween two linear o�sets. Lemmas 3 and 4 des
ribe

the tra
e of the interse
tion of two adja
ent o�sets

in the linear wavefront propagation. If v is a ver-

tex and e is an edge non-in
ident with v, we denote

by P (v; e) the parabola with fo
us v and dire
trix

the line supporting e. For any real value r > 1, we

denote by H

r

(v; e) the lo
us of points whose dis-

tan
es to v and the line supporting e are in 
on-

stant ratio r. This lo
us is a hyperbola bran
h. If u

and v are re
ex verti
es, we denote by C

r

(u; v) the

Apollonius 
ir
le asso
iated with u, v and ratio r 6=

1. C

r

(u; v) is the lo
us of points whose distan
es

to u and v, respe
tively, are in 
onstant ratio r.

Let e be an edge and v

j

a re
ex vertex of P .

The points in the o�set P

�

e

move at unit speed, the

points in the o�set P

�

v

j

move at speeds varying in

the interval [1; s

j

℄, where s

j

is given by lemma 2.

Lemma 3 If the linear o�sets of v

j

and e be
ome

adja
ent, the tra
e of their interse
tion is a polyg-

onal 
hain that satis�es:

1) it lies in the region between P (v

j

; e) and

H

s

j

(v

j

; e);

2) the lines supporting its segments are tangent to

P (v

j

; e); the tangent points lie on the tra
es of the

unit speed points in P

�

v

j

;

3) H

s

j

(v

j

; e) passes through those verti
es whi
h

lie on the tra
e of a re
ex vertex of P

�

v

j

.

Let v

i

and v

j

be re
ex verti
es of P . The points
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in the o�set P

�

v

i

move at speeds varying in the

interval [1; s

i

℄ while the points in the o�set P

�

v

j

move at speeds varying in the interval [1; s

j

℄.

Lemma 4 If the linear o�sets of v

i

and v

j

be
ome

adja
ent, the tra
e of their interse
tion is a polyg-

onal 
hain that lies outside the Apollonius 
ir
les

C

s

i

(v

i

; v

j

) and C

s

j

(v

j

; v

i

).

3. Linear Axis vs. Medial Axis

Obviously, the larger the number of hidden edges

asso
iated with the re
ex verti
es, the 
loser the


orresponding linear axis approximates the medial

axis. For many appli
ations of the medial axis, an

approximation that preserves the main visual 
ues

of the shape, though non-isomorphi
 with the me-

dial axis, is perfe
tly adequate. The way we now

de�ne the "-equivalen
e between the medial axis

and the linear axis, will allow us to 
ompute a lin-

ear axis that 
losely approximates the medial axis

using only a small number of hidden edges.

Let " � 0; an "-edge is a Voronoi edge gener-

ated by four almost 
o-
ir
ular sites. Let b

i

b

j

be a

Voronoi edge, with b

i

equally distan
ed to sites S

k

,

S

i

, S

l

, and b

j

equally distan
ed to S

k

, S

j

, S

l

.

De�nition 2 The edge b

i

b

j

is an "-edge if

d(b

i

; S

j

) < (1 + ")d(b

i

; S

i

) or d(b

j

; S

i

) <

(1 + ")d(b

j

; S

j

).

A path between two nodes ofM(P ) is an "-path

if it is made only of "-edges. For any node b of M ,

a node b

0

su
h that the path between b and b

0

is an

"-path, is 
alled an "-neighbour of b. Let N

"

(b) be

the set of "-neighbours of b. The set fbg [N

"

(b) is


alled an "-
luster.

Let (V

M

; E

M

) be the graph indu
ed by M(P )

on the set of verti
es V

M


omposed of the 
onvex

verti
es ofP and the nodes of degree 3 ofM(P ). Let

(V

L

�

; E

L

�

) be the graph indu
ed by L

�

(P ) on the

set of verti
es V

L

�


omposed of the 
onvex verti
es

of P and the nodes of degree 3 of L

�

(P ).

De�nition 3 M(P ) and L

�

(P ) are "-equivalent

if there exists a surje
tion f : V

M

! V

L

�

so that:

i) f (p) = p, for all 
onvex p of P ;

ii) 8 b

i

; b

j

2 V

M

with b

j

=2 N

"

(b

i

), 9 an ar
 in E

M


onne
ting b

i

and b

j

, 9 an ar
 in E

L

�


onne
ting

f(b

0

i

) and f(b

0

j

) where b

0

i

2 fb

i

g [N

"

(b

i

) and b

0

j

2

fb

j

g [N

"

(b

j

).

The following lemma gives a suÆ
ient 
ondi-

tion for the "-equivalen
e of the two skeletons. The

path between two disjoint Voronoi 
ells V C(S

i

)

and V C(S

j

) is the shortest path inM(P ) between

a point of V C(S

i

)\M(P ) and a point of V C(S

j

)\

M(P ).

Lemma 5 If the only sites whose linear o�sets be-


ome adja
ent in the propagation, are sites with

adja
ent Voronoi 
ells or sites whose path between

their Voronoi 
ells is an "-path, then the linear axis

and the medial axis are "-equivalent.

We now present an algorithm for 
omputing a

sequen
e � of hidden edges su
h that the resulting

linear axis is "-equivalent to the medial axis. The

algorithm handles pairs of sites whose linear o�sets

must be at any moment disjoint in order to ensure

the "-equivalen
e of the two skeletons. These are

sites with disjoint Voronoi 
ells and whose path

between these Voronoi 
ells is not an "-path (see

lemma 5). However, we do not have to 
onsider

ea
h su
h pair. The algorithm a
tually handles the

pairs of 
on
i
ting sites, where two sites S

i

and S

j

(at least one being a re
ex vertex) are said to be


on
i
ting if the path between their Voronoi 
ells


ontains exa
tly one non-" edge. When handling

the pair S

i

, S

j

we 
he
k and, if ne
essary, adjust

the maximal speeds s

i

and s

j

of the o�sets of S

i

and S

j

, respe
tively, so that these o�sets remain

disjoint in the propagation. This is done in the sub-

routine HandleCon
i
tingPair by looking lo
ally

at the 
on�guration of the uniform wavefront and

using the lo
alization 
onstraints for the edges of

the linear axis given by lemmas 3 and 4.

The algorithm for 
omputing a sequen
e � of

hidden edges 
an be summarized as follows.

Algorithm ComputeHiddenEdges

Input A simple polygon P and its medial axis.

Output A number of hidden edges for ea
h re
ex

vertex.

1. For ea
h re
ex vertex S

j

of P

if �

j

� 3�=2 then s

j

 1= 
os((�

j

� �)=4)

else s

j

 1= 
os((�

j

� �)=2)

2. Compute all pairs of 
on
i
ting sites

3. For ea
h pair of 
on
i
ting sites S

i

, S

j

HandleCon
i
tingPair(S

i

,S

j

)

4. For ea
h re
ex vertex S

j

of P

k

j

 

�

(�

j

� �)=(2 
os

�1

(1=s

j

))

�

.

Theorem 6 Algorithm ComputeHiddenEdges


omputes a sequen
e of hidden edges that leads to

a linear axis "-equivalent to the medial axis.

The performan
e of this algorithm depends on

the number of 
on
i
ting pairs. This in turn de-

pends on the number of nodes in the "-
lusters of

M(P ). If any "-
luster of M has a 
onstant num-

ber of nodes, there are only a linear number of 
on-
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Fig. 4. A 
omparison of the linear axis (right) with the

medial axis (middle) and the straight line skeleton (left).

The skeletons are drawn in solid line style.


i
ting pairs. Ea
h 
on
i
ting pair is handled in


onstant time [4℄, thus in this 
ase, ComputeHid-

denEdges 
omputes the sequen
e � in linear time.

There is only a limited 
lass of shapes with a 
on-

stant number of 
lusters, su
h that ea
h has a lin-

ear number of nodes.

On
e we have a sequen
e � that ensures the "-

equivalen
e between the 
orresponding linear axis

and the medial axis, we 
an 
onstru
t this linear

axis. The medial axis 
an be 
omputed in linear

time [5℄. Despite its similarity to the medial axis,

the fastest known algorithms [6℄ [7℄ for the straight

line skeleton are slower. Any of these algorithms


an be used to 
ompute the straight line skeleton

of P

�

(0). The linear axis L

�

(P ) 
orresponding to

the sequen
e � is then obtained from SLS(P

�

(0))

by removing the bise
tors in
ident to the re
ex

verti
es of P .

However, if M has only "-
lusters of 
onstant

size, L

�

(P ) 
an be 
omputed from the medial axis

in linear time by adjusting the medial axis. In 
om-

puting the linear axis, we adjust ea
h non-"-edge

of the medial axis to its 
ounterpart in the linear

axis. When adjusting an edge b

i

b

j

we �rst adjust

the lo
ation of its endpoints to the lo
ation of the

endpoints of its 
ounterpart. If node b

i

is part of

an "-
luster, we 
ompute �rst the 
ounterparts of

the nodes in this 
luster based on a lo
al re
on-

stru
tion of the linear wavefront. The adjustment

of a node's lo
ation is done in 
onstant time, if its

"-
luster has 
onstant size, i.e. when the polygon

is non-degenerate. Finally, we use lemmas 3-4 to

repla
e the paraboli
 ar
 or the perpendi
ular bi-

Fig. 5. A de
omposition based on split events of the linear

axis gives natural results even if the polygon 
ontains sharp

re
ex verti
es.

se
tor with the 
orresponding 
hain of segments.

Theorem 7 For a non-degenerate polygon P , the

straight line skeleton of P

�

(0) 
an be 
omputed in

linear time.

We have implemented the algorithm Compute-

HiddenEdges and the algorithm that 
onstru
ts

the linear axis from the medial axis. Figure 4 illus-

trates the straight line skeleton (left 
olumn), me-

dial axis (middle 
olumn) and the linear axis (right


olumn) of three 
ontours. We also used the linear

axis instead of the straight line skeleton to de
om-

pose the 
ontours in �gure 1 based on wavefront

split events [3℄. The results are presented in �gure

5; we see that the unwanted e�e
ts of the sharp re-


ex verti
es are eliminated and the results of this

�rst step in the de
omposition look more natural.
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Abstract

Given an orthogonal polygon P , let |Π(P )| be the number of rectangles that result when we partition P by
extending the edges incident to reflex vertices towards INT(P ). In [4] we showed that |Π(P )| ≤ 1 + r + r

2, where
r is the number of reflex vertices of P . We shall now give sharper bounds both for maxP |Π(P )| and minP |Π(P )|.
Moreover, we characterize the structure of orthogonal polygons in general position for which these new bounds
are exact.

Key words: Orthogonal Polygons, Decomposition, Rectilinear Cut, Square Grid.

1. Introduction

We shall call simple polygon P a region of a plane
enclosed by a finite collection of straight line seg-
ments forming a simple cycle. This paper deals only
with simple polygons, so that we call them just
polygons, in the sequel. We will denote the interior
of the polygon P by INT(P ) and the boundary by
BND(P ). The boundary shall be considered part
of the polygon, that is P = INT(P ) ∪ BND(P ). A
vertex is called convex if the interior angle between
its two incident edges is at most π; otherwise it is
called reflex (or concave). We use r to represent the
number of reflex vertices of P . A polygon is called
orthogonal (or rectilinear) iff its edges meet at right
angles. O’Rourke [2] has shown that n = 2r + 4
for every n-vertex orthogonal polygon (n-ogon, for
short).

⋆ (Extended abstract) Partially funded by LIACC through
Programa de Financiamento Plurianual, Fundação para a
Ciência e Tecnologia (FCT) and Programa POSI, and by
CEOC (Univ. of Aveiro) through Programa POCTI, FCT,
co-financed by EC fund FEDER.
∗ Corresponding author

Email addresses: leslie@mat.ua.pt (António Leslie
Bajuelos ), apt@ncc.up.pt (Ana Paula Tomás ),
fabio@estga.ua.pt (Fábio Marques ).

Definition 1 A rectilinear cut of an n-ogon P is
obtained by extending each edge incident to a reflex
vertex of P towards INT(P ) until it hits BND(P ).
We denote this partition by Π(P ) and the number
of its elements (pieces) by |Π(P )|. Each piece is a
rectangle, so that we call it r-piece.

Generic n-ogons may be obtained from a partic-
ular kind of n-ogons – the so-called grid orthogonal
polygons [3], as illustrated in Fig. 1 (The reader
may skip Definition 2 and Lemmas 3 and 4 if he/she
has already read [3].)

Fig. 1. Three 12-ogons mapped to the same grid 12-ogon.

Definition 2 An n-ogon P is in general position
iff P has no collinear edges. We call “grid n-ogon”
each n-ogon in general position defined in a n

2 × n

2
square grid.
Lemma 3 follows immediately from this definition.
Lemma 3 Each grid n-ogon has exactly one edge
in every line of the grid.

20th EWCG Seville, Spain (2004)
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Each n-ogon not in general position may be
mapped to an n-ogon in general position by
ǫ-perturbations, for a sufficiently small constant
ǫ > 0. Consequently, we shall first address n-ogons
in general position.
Lemma 4 Each n-ogon in general position is
mapped to a unique grid n-ogon through top-to-
bottom and left-to-right sweeping. And, recipro-
cally, given a grid n-ogon we may create an n-ogon
that is an instance of its class by randomly spacing
the grid lines in such a way that their relative order
is kept.

The number of classes may be further reduced
if we group grid n-ogons that are symmetrically
equivalent. In this way, the grid n-ogons in Fig. 2
represent the same class.

Fig. 2. Eight grid n-ogons that are symmetrically equiva-
lent. From left to right, we see images by clockwise rota-
tions of 90◦, 180◦ and 270◦, by flips wrt horizontal and
vertical axes and flips wrt positive and negative diagonals.

Definition 5 Given an n-ogon P in general posi-
tion, GRID(P ) denotes any grid n-ogon in the class
that contains the grid n-ogon to which P is mapped
by the sweep procedure described in Lemma 4

The following result is a trivial consequence of
the definition of GRID(P ).
Lemma 6 For all n-ogons P in general position,
|Π(P )| = |Π(GRID(P ))|.

2. Lower and Upper bounds on |Π(P )|

In [4] we showed that Π(P ) has at most 1+r+r2

pieces. Later we noted that this upper bound is
not sufficiently tightened. Actually, for small va-
lues of r, namely r = 3, 4, 5, 6, 7, we experimentally
found that the difference between 1 + r + r2 and
max |Π(P )| was 1, 2, 4, 6 and 9, respectively.
Definition 7 A grid n-ogon Q is called FAT iff
|Π(Q)| ≥ |Π(P )|, for all grid n-ogons P . Similarly,
a grid n-ogon Q is called THIN iff |Π(Q)| ≤ |Π(P )|,
for all grid n-ogons P .

The experimental results supported our conjec-
ture that there was a single FAT n-ogon (except for
symmetries of the grid) and that it had the form
illustrated in Fig. 3.

Fig. 3. The unique FAT n-ogons (symmetries excluded),
for n = 4, 6, 8, 10, 12.

Clearly, each piece r-piece is defined by four ver-
tices. Each vertex is either in INT(P ) (internal ver-
tex) or is in BND(P ) (boundary vertex). Similar
definitions hold for edges. An edge e of r-piece R

is called an internal edge if e∩ INT(P ) 6= ∅, and it
is called boundary edge otherwise.
Lemma 8 The total number |Vi| of internal ver-
tices in Π(P ), when the grid n-ogon P is as illus-
trated in Fig. 3 is given by (1)

|Vi|=











3r2 − 2r

4
, for r even

(3r + 1)(r − 1)

4
, for r odd

(1)

where r is the number of reflex vertices of P .

PROOF. In case r is even,

|Vi| = 2

r

2
∑

k=1

(r − k)

and in case r is odd

|Vi| = (r −
r + 1

2
) + 2

r−1

2
∑

k=1

(r − k)

✷

Proposition 9 Every n-vertex orthogonal poly-
gon P such that the number of internal vertices of
Π(P ) is given by (1) has at most a single reflex
vertex in each horizontal and vertical line.

PROOF. We shall suppose first that P is a grid
n-ogon. Then, let vL1

= (xL1
, yL1

) and vR1
=

(xR1
, yR1

) be leftmost and rightmost reflex vertices
of P , respectively. The horizontal chord with ori-
gin at vL1

can intersect at most xR1
− xL1

vertical
chords, since we shall not count the intersection
with the vertical chord defined by vL1

. The same
may be said about the the horizontal chord with
origin at vR1

. There are exactly r vertical and r

horizontal chords, and thus xR1
− xL1

≤ r − 1. If
there were c vertical edges such that both extreme
points are reflex vertices then xR1

−xL1
≤ r−1−c.
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This would imply that the number of internal ver-
tices of Π(P ) would be strictly smaller than the
value defined by (1). Indeed, we could proceed to
consider the second leftmost vertex (for x > xL1

),
say vL2

, then the second rightmost vertex (with
x < xR1

) and so forth. The horizontal chord that
vL2

defines either intersects only the vertical chord
defined by vL1

or it does not intersect it at all. So, it
intersects at most r−2−c vertical chords. In sum,
c should be null, and by symmetry, we would con-
clude that there is exactly a reflex vertex in each
vertical grid line (for x > 1 and x < n

2 = r + 2).
Now, if P is not a grid n-ogon but is in general

position, then Π(P ) has the same combinatorial
structure as Π(GRID(P )), so that we do not have
to prove anything more.

If P is not in general position, then let we ren-
der it in general position by a sufficiently small
ǫ-perturbation, so that the partition of this lat-
ter polygon would not have less internal vertices
than Π(P ). ✷

Corollary 10 For all grid n-ogons P , the number
of internal vertices of Π(P ) is less than or equal to
the value established by (1).

PROOF. It results from the proof of Proposi-
tion 9. ✷

Theorem 11 Let P be a grid n-ogon, r = n−4
2 the

number of its reflex vertices. If P is FAT then

|Π(P )| =











3r2 + 6r + 4

4
, for r even

3(r + 1)2

4
, for r odd

and if P is THIN then |Π(P )| = 2r + 1.

PROOF. Suppose that P is a grid n-ogon. Let
V , E and F be the sets of all vertices, edges and
faces of Π(P ), respectively. Let us denote by Vi and
Vb the sets of all internal and boundary vertices
of the pieces of Π(P ). Similarly, Ei and Eb repre-
sent the sets of all internal and boundary edges of
such pieces. Then, V = Vi ∪ Vb and E = Ei ∪ Eb.
Being P in general position, each chord we draw
to form Π(P ) hits BND(P ) in the interior of an
edge and no two chords hit BND(P ) in the same
point. Hence, using O’Rourke’s formula [2] we ob-
tain |Eb| = |Vb| = (2r + 4) + 2r = 4r + 4. It is

easily seen that to obtain a FAT n-ogon we must
maximize the number of internal vertices.

By Corollary 10,

max
P

|Vi| =











3r2 − 2r

4
, for r even

(3r + 1)(r − 1)

4
, for r odd

and, therefore, maxP |V | = maxP (|Vi| + |Vb|) is
given by

max
P

|V | =











3r2 + 14r + 16

4
, for r even

3r2 + 14r + 15

4
, for r odd

From Graph Theory [1] we know that the sum of
the degrees of vertices in a graph is twice the num-
ber of its edges, that is,

∑

v∈V
δ(v) = 2|E|. Using

the definitions of grid n-ogon and of Π(P ), we may
partition V as

V = Vc ∪ Vr ∪ (Vb \ (Vc ∪ Vr)) ∪ Vi

Vr and Vc representing the sets of reflex and of
convex vertices of P , respectively. Moreover, we
may conclude that δ(v) = 4 for all v ∈ Vr ∪ Vi,
δ(v) = 3 for all v ∈ Vb \ (Vc ∪ Vr) and δ(v) = 2 for
all v ∈ Vc. Hence,

2|E|=
∑

v∈Vr∪Vi

δ(v) +
∑

v∈Vc

δ(v) +
∑

v∈Vb\(Vc∪Vr)

δ(v)

= 4|Vi| + 4|Vr| + 2|Vc| + 3(|Vb| − |Vr| − |Vc|)

= 4|Vi| + 12r + 8

and, consequently, |E| = 2|Vi| + 6r + 4.
Similarly, to obtain THIN n-ogonswe must mini-

mize the number of internal vertices of the arrange-
ment. For all n, there are grid n-ogons such that
|Vi| = 0. Thus, for THIN n-ogons |V | = 4r + 4.

Finally, to conclude the proof, we have to de-
duce the expression of the upper and lower bound
of the number of faces of Π(P ), that is of |Π(P )|.
Using Euler’s formula |F | = 1+ |E| − |V |, and the
expressions deduced above, we have maxP |F | =
1 + 2(maxP |Vi|) + 6r + 4 − maxP |V |. That is,
maxP |F | = maxP |Vi| + 6r + 5, so that

max
P

|F | =











3r2 + 6r + 4

4
, for r even

3(r + 1)2

4
, for r odd

and
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min
P

|F | = 1 + 2(min
P

|Vi|) + 6r + 4 − min
P

|V |

= 1 + 6r + 4 − 4r − 4 = 2r + 1

The existence of FAT grid n-ogons and THIN
grid n-ogons for all n (such that n is even and
n ≥ 4) follows from Lemma 8 and the construction
indicated in Fig. 5, respectively. ✷

Figs. 4 and 5 show some THIN n-ogons.

Fig. 4. Some grid n-gons with |Vi| = 0.

Fig. 5. Constructing the grid ogons of the smallest area,
for r = 0, 1, 2, 3, 4,. . . . The area is 2r + 1.

Based on the proof of Proposition 9, we may
prove the uniqueness of FATs and fully characte-
rize them.
Proposition 12 There is a single FAT n-ogon
(except for symmetries of the grid) and its form is
illustrated in Fig. 3.

PROOF. We saw that FAT n-ogons must have
a single reflex vertex in each vertical grid-line, for
x > 1 and x < n

2 . Also, the horizontal chords with
origins at the reflex vertices that have x = 2 and
x = n

2−1 = r+1, determine 2(r−1) internal points
(by intersections with vertical chords). To achieve
this value, they must be positioned as illustrated
below on the left.

 1

 2

r+1

r+2

 1

 2

r+1

r+2r

3

Moreover, the reflex vertices on the vertical grid-
lines x = 3 and x = r add 2(r− 2) internal points.
To achieve that, we may conclude by some simple
case reasoning, that vL2

must be below vL1
and vR2

must be above vR1
, as shown above on the right.

And, so forth. . . ✷

The area A(P ) of a grid n-ogon P is the number
of grid cells in its interior. FATs are not the grid
n-ogons that have the largest area, except for small
values of n, as we may see in Fig 6.

Fig. 6. On the left we see the FAT grid 14-ogon. It has
area 27, whereas the grid 14-ogon on the right has area 28,
which is the maximum.

Proposition 13 Let P be any grid n-ogon with
n ≥ 8 and r reflex vertices (r = n−4

2 , for all P ).
Then

2r + 1 ≤ A(P ) ≤ r2 + 3

and there exist grid n-ogons having area 2r+1 (in-
deed, a single one except for symmetries) and grid
n-ogons having area r2 + 3.

PROOF. Our proof is strongly based on the
Inflate-Paste method for generating grid ogons,
that will be presented also at this workshop [3]. ✷
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1. Introduction

This work focus on simple polygons without
holes. Therefore, we call them just polygons. More-
over, “polygon” will sometimes mean a polygon
together with its interior. P denotes a polygon and
r the number of its reflex vertices. A polygon is
orthogonal (or rectilinear) if its edges meet at right
angles. O’Rourke [4] has shown that n = 2r + 4
for every n-vertex orthogonal polygon (n-ogon,
for short). Generic n-ogons may be obtained from
a particular kind of n-ogons, that we called grid
orthogonal polygons, as illustrated in Fig. 1.

Fig. 1. Three 12-ogons mapped to the same grid 12-ogon.

Definition 1 An n-ogon P is in general position
iff every horizontal and vertical line contains at

most one edge of P , i.e., iff P has no collinear

edges. We call “grid n-ogon” each n-ogon in general

position defined in a n
2
×

n
2

square grid.

We assume that the grid is defined by hori-
zontal lines y = 1, . . . , y = n

2
and vertical lines

x = 1, . . . , x = n
2

and that its northwest corner has

⋆ (Extended abstract) Partially funded by LIACC through
Programa de Financiamento Plurianual, Fundação para a
Ciência e Tecnologia (FCT) and Programa POSI, and by
CEOC (Univ. of Aveiro) through Programa POCTI, FCT,
co-financed by EC fund FEDER.
∗ Corresponding author

Email addresses: apt@ncc.up.pt (Ana Paula Tomás ),
leslie@mat.ua.pt (António Leslie Bajuelos ).

coordinates (1,1). Each grid n-ogon has exactly
one edge in every line of the grid.

Each n-ogon not in general position may be
mapped to an n-ogon in general position by
ǫ-perturbations, for a sufficiently small constant
ǫ > 0. Hence, we restrict generation to n-ogons
in general position. Each n-ogon in general posi-
tion is mapped to a unique grid n-ogon through
top-to-bottom and left-to-right sweeping. And,
reciprocally, given a grid n-ogon we may create an
n-ogon that is an instance of its class by randomly
spacing the grid lines in such a way that their
relative order is kept.

1.1. The paper’s contribution

We propose two methods that generate grid
n-ogons in polynomial time – Inflate-Cut and
Inflate-Paste. The former was published in [7],
where we also gave implementation details, show-
ing that it requires linear space in n and runs
in quadratic time in average. Two programs
for generating random orthogonal polygons, by
O’Rourke (developed for the evaluation of [5]) and
by Filgueiras 1 are mentioned there. The main
idea of O’Rourke is to construct such a polygon
via growth from a seed cell (i.e., unit square) in
a board, gluing together a given number of cells
that are selected randomly using some heuristics.
Filgueiras’ method shares a similar idea though it
glues rectangles of larger areas and allows them to
overlap. Neither of these methods allows to con-
trol the final number of vertices of the polygon.
A major idea in Inflate-Paste is also to glue

1 personal communication, DCC-LIACC, 2003.
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rectangles. Nevertheless, it restricts the positions
where rectangles may be glued, which renders the
algorithm simpler and provides control on the fi-
nal number of vertices. For the latter purpose, the
Inflate transformation is crucial. It is possible
to implement Inflate-Paste so that it requires
quadratic-time in the worst-case and linear-space.
Our methods may be also adapted to generate
simple orthogonal polygons with holes. Indeed,
each hole is an orthogonal polygon without holes.

2. Inflate, Cut and Paste transformations

Let vi = (xi, yi), for i = 1, . . . , n, be the vertices
of a grid n-ogon P , in CCW order.

Inflate takes a grid n-ogon P and a pair of
integers (p, q) with p, q ∈ [0, n

2
], and yields a new

n-vertex orthogonal polygon P̃ with vertices ṽi =
(x̃i, ỹi) given by x̃i = xi if xi ≤ p and x̃i = xi + 1
if xi > p, and ỹi = yi if yi ≤ q and ỹi = yi + 1 if
yi > q, for i = 1, . . . , n. Thus, it augments the grid,
creating two free lines, x = p + 1 and y = q + 1.

Inflate-Cut: Let C be a unit cell in the interior
of P , with center c and northwest vertex (p, q).
When we apply Inflate to P using (p, q), c is
mapped to c̃ = (p + 1, q + 1), that is the center of
inflated C. The goal of Cut is to introduce c̃ as
reflex vertex of the polygon. To do that, it cuts one
rectangle (defined by c̃ and a vertex ṽm belonging
to one of the four edges shot by the horizontal and
vertical rays that emanate from c̃). We allow such
a rectangle to be cut iff it contains no vertex of P̃

except ṽm. If no rectangle may be cut, we say that
Cut fails for C.

So, suppose that s̃ is the point where one of these
rays first intersects the boundary of P̃ , that ṽm

is one of the two vertices on the edge of P̃ that
contains s̃ and that the rectangle defined by c̃ and
ṽm may be cut. Cut cuts this rectangle from P̃

replacing ṽm by s̃, c̃, s̃′ if this sequence is in CCW
order (or s̃′, c̃, s̃, otherwise), with s̃′ = c̃+(ṽm− s̃).
We may conclude that s̃, c̃, s̃′ is in CCW order iff s̃

belongs to the edge ṽm−1ṽm and in CW order iff it
belongs to ṽmṽm+1. Cut always removes a single
vertex of the grid ogon and introduces three new
ones. Fig. 2 illustrates this technique. Because Cut

never fails if C has an edge that is part of an edge
of P , Inflate-Cut may be always applied to P .

4

Inflate Cell

Cut 1 Cut 2 Cut 3 Cut 4

3
21

C C

Fig. 2. The two rectangles defined by the center of C

and the vertices of the leftmost vertical edge ((1, 1), (1, 7))
cannot be cut. There remain the four possibilities shown.

Inflate-Paste: We first imagine the grid
n-ogon merged in a (n

2
+ 2)× (n

2
+ 2) square grid,

with the top, bottom, leftmost and rightmost grid
lines free. The top line is x = 0 and the leftmost
one y = 0, so that (0, 0) is now the northwest cor-
ner of this extended grid. Let eH(vi) represent the
horizontal edge of P to which vi belongs.
Definition 2 Given a grid n-ogon P merged into

a (n
2

+ 2)× (n
2

+ 2) square grid, and a convex ver-

tex vi of P , the free staircase neighbourhood of vi,

denoted by FSN(vi), is the largest staircase polygon

in this grid that has vi as vertex, does not intersect

the interior of P and its base edge contains eH(vi).
An example is given in Fig. 3.

1011

12
14 1

2

4
6

3

Fig. 3. A grid n-ogon merged into a (n

2
+ 2) × (n

2
+ 2)

square grid and the free staircase neighbourhood for each
of its convex vertices, with n = 14.

Now, to transform P by Inflate-Paste we
first take a convex vertex vi of P , select a cell C

in FSN(vi), and apply Inflate to P using the
nortwest corner (p, q) of C. As before, the center
of cell C is mapped to c̃ = (p + 1, q + 1), which
will now be a convex vertex of the new polygon.
Paste glues the rectangle defined by ṽi and c̃

to P̃ , increasing the number of vertices by two. If
eH(vi) ≡ vivi+1 then Paste removes ṽi = (x̃i, ỹi)
and inserts the chain (x̃i, q + 1), c̃, (p +1, ỹi) in its
place. If eH(vi) ≡ vi−1vi, Paste replaces ṽi by the
sequence (p +1, ỹi), c̃, (x̃i, q + 1). Fig. 4 illustrates
this transformation. Clearly, Paste never fails, in
contrast to Cut.
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10

Fig. 4. The four grid 14-ogons that we may construct if we
apply Inflate-Paste to the given 12-ogon, to extend the
vertical edge that ends in vertex 10.

3. Inflate-Cut and Inflate-Paste Methods

We showed in [7] that every grid n-ogon may be
created from a unit square (i.e., the grid 4-ogon) by
applying r Inflate-Cut transformations. Now,
we may show the same result for Inflate-Paste.
At iteration k, both methods construct a grid
(2k + 4)-ogon from the grid (2(k − 1) + 4)-ogon
obtained in the previous iteration, for 1 ≤ k ≤ r.
The Inflate-Cut method yields a random grid
n-ogon, if cells and rectangles are chosen at ran-
dom. This is also true for Inflate-Paste, though
now for the selections of vi and of C in FSN(vi).
It is not difficult to see that both Inflate-Cut

and Inflate-Paste yield grid ogons. In contrast,
the proof of their completeness is not immediate,
as suggested by the example given in Fig. 5.

Fig. 5. The rightmost polygon is the unique grid 16-ogon
that gives rise to this 18-ogon, if we apply Inflate-Cut.

Before we go through the proof, we need to in-
troduce some definitions and results.
Definition 3 Given a simple orthogonal polygon

P without holes, let ΠH(P ) be the horizontal decom-

position of P into rectangles obtained by extending

the horizontal edges incident to reflex vertices to-

wards the interior of P until they hit its boundary.

Each chord (i.e., edge extension) separates exactly
two adjacent pieces (faces), since it makes an hori-

zontal cut (see e.g. [9]). The dual graph of ΠH(P )
captures the adjacency relation between pieces of
ΠH(P ). Its nodes are the pieces of ΠH(P ) and its
non-oriented edges connect adjacent pieces.
Lemma 4 The dual graph of ΠH(P ) is a tree for

all simple orthogonal polygons P without holes.

PROOF. This result follows from the well-known
Jordan Curve Theorem. Suppose the graph con-
tains a simple cycle F0, F1, . . . , Fd, F0, with d ≥ 2.
Let γ = (γ0,1γ1,2 . . . γd,0) be a simple closed curve
in the interior of P that links the centroids of the
faces F0, F1, . . . , Fd. Denote by v the reflex vertex
that defines the chord v sv that separates F0 from
F1. Here, sv is the point where this edge’s exten-
sion intersects the boundary of P . Either v or sv

would be in the interior of γ, because γ needs to
cross the horizontal line supporting v sv at least
twice and just γ0,1 crosses v sv. But the interior of
γ is contained in the interior of P , and there exist
points in the exterior of P in the neighbourhood of
v and of sv, so that we achieve a contradiction. ✷

It is worth noting that the vertical decomposi-
tion ΠV(P ) of P would have identical properties.
We shall now prove Proposition 5 that asserts the
completeness of Inflate-Paste.
Proposition 5 For each grid (n + 2)-ogon, with

n ≥ 4, there is a grid n-ogon that yields it by

Inflate-Paste.

PROOF. Given a grid (n + 2)-ogon P , we use
Lemma 4 to conclude that the dual graph of ΠH(P )
is a tree. Each leaf of this tree corresponds to a
rectangle that could have been glued by Paste to
yield P . Indeed, suppose that v sv is the chord that
separates a leaf F from the rest of P . Because grid
ogons are in general position, sv is not a vertex of
P . It belongs to the relative interior of an edge of
P . The vertex of rectangle F that is not adjacent
to sv would be c̃ in Inflate-Paste. If we cut F ,
we would obtain an inflated n-ogon, that we may
deflate to get a grid n-ogon that yields P . The
two grid lines y = yc̃ and x = xc̃ are free. Clearly
sv is the vertex we called vi in the description of
Inflate-Paste (more accurately, sv is ṽi) and c =
(xc̃ − 1, yc̃ − 1) ∈ FSN(vi). ✷

For this paper to be self-contained, we recall now
a proof of the completeness of Inflate-Cut, al-
ready sketched in [7]. It was inspired by work about
convexification of simple polygons [2,6,8], in parti-
cular, by a recent paper by O. Aichholzer et al. [1].
It also shares ideas of a proof of Meisters’ Two-

Ears Theorem [3] by O’Rourke, though we were not
aware of this when we wrote it. Fig. 6 illustrates
the fundamental ideas.
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pocket

pocket

A

Fig. 6. The two leftmost grids show a grid 18-ogon and its
pockets. The shaded rectangle A is a leaf of the tree associ-
ated to the vertical partitioning of the largest pocket. The
rightmost polygon is an inflated grid 16-ogon that yields
the represented grid 18-ogon, if Cut removes rectangle A.

We need some additional definitions and results.
Definition 6 A pocket of a nonconvex polygon P

is a maximal sequence of edges of P disjoint from

its convex hull except at the endpoints. The lid is

the line segment joining its two endpoints.

Any nonconvex polygon P has at least one
pocket. Each pocket of an n-ogon, together with
its lid, defines a simple polygon without holes,
that is almost orthogonal except for an edge (lid).
It is possible to slightly transform it to obtain an
orthogonal polygon, as illustrated in Fig. 6. We
shall refer to this polygon as an orthogonalized

pocket. For every orthogonalized pocket Q, it is
easy to see that the pocket’s lid is contained in a
single rectangle of either ΠH(Q) or ΠV(Q). Let
Π(Q) represent the one where the lid is contained
in a single piece.
Proposition 7 For each grid (n + 2)-ogon, there

is a grid n-ogon that yields it by Inflate-Cut.

PROOF. Given a grid (n + 2)-ogon P , let Q be
an orthogonalized pocket of P . Necessarily, Q is in
general position. By Lemma 4 the dual graph of
Π(Q) is a tree. We claim that at least one of its
leaves contains or is itself a rectangle that might
have been removed by Cut to yield P . Indeed, the
leaves are of the two following forms.

c~

~vmc~

~vm

The shaded rectangles are the ones that might
have been cut. We have also represented the points
that would be ṽm and c̃ in Inflate-Cut. Here, we
must be careful about the leaf that has the pocket’s
lid. Only if the tree consists of a single node (c.f. the
smallest pocket in Fig. 6), may this leaf be filled.
But, every non-degenerated tree has at least two
leaves. Then, in this case the tree has a leaf other
than the one that contains the lid. ✷

The concept of mouth [8] was crucial to reach the
current formulation of Cut. Actually, Inflate-

Cut is somehow doing the reverse of an algorithm
given by Toussaint in [8] that computes the convex
hull of a polygon globbing-up mouths to succes-
sively remove its concavities. For orthogonal poly-
gons, we would rather define rectangular mouths.
Definition 8 A reflex vertex vi of an ogon P is a

rectangular mouth of P iff the interior of the rect-

angle defined by vi−1 and vi+1 is contained in the

exterior of P and neither this rectangle nor its inte-

rior contain vertices of P , except vi−1, vi and vi+1.

To justify the correction of our technique, we
observe that when we apply Cut to obtain a grid
(n + 2)-ogon, the vertex c̃ is always a rectangular
mouth of the resulting (n + 2)-ogon. In sum, the
proof of Proposition 7 given above justifies Corol-
lary 9, which rephrases the One-Mouth Theorem

by Toussaint.
Corollary 9 Each grid n-ogon has at least one

rectangular mouth, for n ≥ 6.
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1. Introduction

The Marching Cubes algorithm [6] for extract-
ing a triangulation of an isosurface of a function
defined over a three-dimensional space is famous
throughout graphics. However, the triangles cre-
ated by Marching Cubes are often quite skinny.
These thin triangles can create artifacts in com-
puter rendering, and make the surface triangu-
lation unsuitable for volume rendering. To avoid
these artifacts in rendering, thin triangles need to
be eliminated from the triangulation created by
the Marching Cubes algorithm.

The most basic form of Marching Cubes places a
grid over the region containing the function whose
isosurface we wish to extract. The function is eval-
uated at the vertices of this grid (I will call these
the “corners” of the cubes to avoid confusion with
the vertices of the resulting triangulation), and
each corner is labelled as being positive or nega-
tive. Based on the pattern of labels, each cube is
triangulated via a lookup table (for speed). The
result is a triangulation that has vertices on the
edges of the cubes where the isosurface intersects
the edge. [8]

2. Warping and Collapsing

My algorithm modifies Marching Cubes by
adding a “warping” phase to the original algo-
rithm. This phase might better be called the
“collapsing” phase, as will become clear shortly
(though it could be described as “warping” the

Email address: ltzeng@cs.dartmouth.edu (LeeAnn
Tzeng).
1 Supported on a National Science Foundation Graduate
Fellowship.

triangulation). The warping here should not be
confused with Oct-tree Warping, which is visually
similar but actually very different [7]. This process
of warping or collapsing is based on the observa-
tion that skinny triangles take one of two forms.
The first kind of skinny triangle is very tall, with a
tiny base. This kind has one sharp angle at the top.
The other kind of skinny triangle has an extremely
short altitude and a very long base. (Fig. 1) My
approach attacks each of these problems directly.

Fig. 1. Two kinds of skinny triangles.

2.1. Short edges

A short edge occurs when the isosurface inter-
sects a cube very close to the cube’s corner. Each
endpoint of the short edge lies on one of the cube’s
edges close to that corner. A naive first thought is
to pull the corner away from the short edge, creat-
ing a distorted cube that lengthens the short edge.
However, even in 2D, it is easy to see how this
might cause additional problems in adjacent cubes.
(Fig. 2)

Fig. 2. In 2D, pulling the corners can create more short
edges in neighboring cubes.

Instead, I choose to move the corner onto the
short edge. This removes the short edge altogether

20th EWCG Seville, Spain (2004)
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by replacing its two endpoints, each a vertex in
the triangulation, with a single vertex. This warps

the cubes in a more unilaterally beneficial way: I
eliminate a short edge but do not shorten any other
edges. In fact, more often than not, the remaining
edges are actually lengthened. One can easily see
how this technique might also be seen as collapsing

the short edge into a single vertex. (Fig. 3 and 4)

Fig. 3. Warping onto the short edge in 2D. This can also
be seen as collapsing the short edge into a vertex.

Fig. 4. Collapsing the short edge in 3D. The two long edges
merge together into one edge. The top endpoint stays the
same, and the bottom endpoint is the new collapsed vertex.

A quick mental experiment shows that the best
place to which to move the corner is the midpoint
of the short edge. Ideally, the warped triangulation
stays as close to the known isosurface as possible.
The midpoint of the short edge avoids ever getting
too far away from the known isosurface, since it
minimizes how far each endpoint has to move to
achieve a collapsed edge. (Fig. 5)

Fig. 5. Collapsing to the short edge’s midpoint minimizes
the distance from the known points of the isosurface.

One obvious question is what to do if there are
two or more short edges at the same corner. If there
are two short edges at the same corner, but not a
third, then the two short edges must be in neigh-
boring cubes. I choose to collapse the two edges
into their shared vertex. This is better than col-
lapsing first one and then the other short edge both

because it keeps the resulting vertex on the known
isosurface, and because it minimizes how far each
of the neighboring non-short edges has to move.
(Fig. 6)

Fig. 6. Collapsing two adjacent short edges into their com-
mon vertex.

If there are three short edges at the same corner,
then we have a small triangle that is likely to be
well-shaped (by Delaunay standards). In this case,
all three edges are collapsed into a single vertex.
This looks like shrinking the small triangle into
a vertex. Since the triangle is so small, any point
within the triangle is a reasonable candidate for the
final vertex, so I am currently using the incenter
simply because it is guaranteed to be inside the
triangle. (Fig. 7)

Fig. 7. Collapsing a small triangle into its incenter.

This concept is extended as edges are added.
There can be a total of twelve short edges at one
corner, which implies a “bubble” in the triangula-
tion. If this bubble is completely disconnected from
the rest of the triangulation, then all of its trian-
gles will be nicely shaped, so there will not be any
rendering artifacts. If the bubble is internal, then
for the purposes of rendering, we can ignore the
bubble completely. If the bubble has other edges
extending from its vertices, one can collapse all of
its edges collectively into the incenter of the octa-
hedron defined by the twelve edges. This leaves a
vertex with any outside edges now coming into it.

For any given number of short edges at one cor-
ner, I always choose to collapse the centermost
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piece at that corner first. Four edges forces the fifth,
which is two adjacent triangles sharing a common
edge. I collapse the common edge first, leaving two
short edges meeting at the new collapes vertex. I
then treat it as a two-edge adjacent pair. A sixth
edge forces eight edges, and the centermost piece
is a vertex at the “peak” of the resulting pyramid.
Since the centermost piece is already a vertex, I col-
lapse all of the edges directly into the peak vertex.
A ninth edge forces a total of twelve edges which
has already been mentioned above.

2.2. Short altitudes

The other kind of thin triangle is in some
ways much more insidious. The wide-base, short-
altitude triangle does not necessarily have an
obvious short edge to collapse, and the collapsing
procedure has more potentially dangerous conse-
quences. In isolation, it seems rather innocuous.
The triangle can simply be collapsed along its
short altitude, resulting in an edge. (Fig. 8) This
altitude is the shortest distance that this triangle
can be flattened, thus again minimizing how far
the collapsed triangulation strays from the known
isosurface.

Fig. 8. The triangle is flattened onto its longest edge.

Within a triangulation, however, this collapse
creates an extra vertex and requires the addition of
a new edge to the triangulation. (Fig. 9) Whereas
the short-edge collapse avoids ever shortening a
remaining edge, the short-altitude collapse cuts a
longer edge in two. This new edge has the potential
to create a new thin triangle where there was not
one before.

Fig. 9. The collapsed altitude results in a new vertex along
the long edge and a new edge on the opposite side.

It is worth noting that there is only one way
to get a short-altitude triangle from the original
Marching Cubes. In particular, every triangle gen-
erated by Marching Cubes is contained within a
cube, so the possible triangle configurations come

from the Marching Cubes list. To get a short-
altitude triangle, the two shorter edges must lie
“across an edge of the cube”, meaning that each
edge lies in a face of the cube, and the two faces
have an edge in common. (See Fig. 10) The vertex
of the triangle that is an endpoint of the short
altitude lies on the edge that is shared by the two
faces of the cube. The two shorter edges of the
triangle each extend to an adjacent edge of the
cube respectively, and the distance along each of
the cube edges where the triangle’s edge ends is
very small.

Fig. 10. A short-altitude triangle and the five edges where
the opposite vertx may lie.

This means that the triangle on the other side of
the short-altitude triangle’s long edge can only take
on a specific range of shapes. The opposite vertex
can be in one of two relative locations. Consider the
two faces across which the two shorter edges of the
triangle lie. All seven of the edges bounding those
two faces are not possible locations for the oppo-
site vertex. This leaves five edges on which the op-
posite vertex may lie. Of these five, four give very
similar triangle possibilities, and then there is the
fifth. The fifth edge is the edge that shares both
endpoints with other edges in this collection. All
five of these possible edges yield the same worst-
case triangle. This triangle can yield one short-
altitude triangle, but that triangle can then be re-
solved by collapsing that triangle’s shortest edge
in the manner described in the previous section.
This works because the only way to get another
bad short-altitude triangle is to have a very short
edge resulting from the first altitude-collapse. Fur-
ther, the collapse of short edges can not generate
a short-altitude triangle, so this ends the process.

There is one situation from the Marching Cubes
33 set of possible triangulations that allows for the
short-altitude triangle to lie completely within one
face of the cube [3]. In the cases where this occurs,
there is always a fourth vertex on the remaining
edge of that cube face, and this fourth vertex com-
pletes the triangle on the other side of the short-
altitude triangle’s longest edge. This opposite-side
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triangle is, at worst, better than the worst-case tri-
angle from the regular Marching Cubes triangula-
tion. This triangle can thus be handled the same
way as described above.

2.3. Short edges before short altitudes

It is important to collapse the short edges first,
before collapsing the altitudes. Once the altitudes
have been collapsed, another (much smaller) pass
of short-edge-collapsing removes any new short
edges left behind by the altitude collapses. The
reason for this order is to avoid creating an un-
necessary new short edge when the short altitude
is collapsed onto the longest edge. The longest
edge is broken into two, and a short edge in the
starting triangle will cause the long edge to be
broken into one very short edge and one reason-
ably long edge. This new short edge is unwanted.
If the short edges are not collapsed first, this kind
of short-edge creation has the potential to turn
into a series of such short edges appearing. By
collapsing the short edges first, the probability of
these series arising during the altitude collapse is
greatly reduced, and the few newly created short
edges can be handled quickly afterwards.

3. Results and Conclusions

Without loss of generality, I treat the grid size
as 1, and define ε to be the minimum acceptable
edge length as a fraction of the grid size. I define
η to be the minimum acceptable altitude, also as
a fraction of the grid size. On the first pass, edges
that are shorter than ε are collapsed. Once the
short edges have been addressed, I find all triangles
with altitude smaller than η and collapse those.
Another quick pass through gets rid of any newly
created short edges. Let B be the circumradius-to-
shortest-edge ratio for a triangle. Then if I choose
ε = 0.4 and η = 0.35, then B ≤ 1.5.

The fourteen cube configurations defined by the
Marching Cubes algorithm can be reduced to six
based on combinations, and each of these has a
worst-case triangle. For about half of these cases,
it is sufficient to have η = 0.25, but there are a
few cases that have particularly unwieldy potential
triangles, and these require that η = 0.35. Since
the shortest edge length is set by ε, the resulting

bound on B directly implies a nice upper bound
on the circumradius of the triangles.

Quality bounds on triangulations in isosurface
extraction are still relatively rare. While a great
deal of quality analysis has been done on mesh-
generation and triangulation algorithms for known
surfaces and point-sets, there has been remarkably
little analysis on the quality of the triangulations
generated by isosurface-extraction algorithms,
where the surface is not known a priori . Attali and
Lachaud give an algorithm that locally constructs
an isosurface that is Delaunay conforming [2] [1],
thus giving some sense of triangulation quality,
but even Delaunay triangulations often still con-
tain the skinny triangles that can cause havoc in
rendering contexts. I have presented an isosurface
extraction algorithm that respects a guarantee of
quality in terms of circumradius-to-shortest-edge
ratio, an increasingly popular measure of mesh
and triangulation quality.
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Abstract

An α-siphon is the locus of points in the plane that are at the same distance ǫ from a polygonal chain consisting
of two half-lines emanating from a common point such that α is the interior angle of the half-lines. Given a set
S of n points in the plane and a fixed angle α, we want to compute an α-siphon of largest width ǫ such that no
points of S lies in its interior. We present an efficient O(n2)-time algorithm for computing an orthogonal siphon.
The approach can be handled to solve the problem of the oriented α-siphon for which the orientation of a half-line
is known. We also propose an O(n3 log n)-time algorithm for the arbitrarily oriented version.

1. Introduction

A corridor through a planar point set S is the
open region of the plane that is bounded by two
parallel lines intersecting the convex hull of S,
CH(S). A corridor is empty if it does not con-
tain any point of S. The problem of computing
the widest empty corridor through a set S of n
points in the plane has been solved by Houle and
Maciel [3] in O(n2) time (Figure 1a).

One of the possible motivations of the widest
empty corridor problem is to find a collision-free
route to transport objects through a set of point
obstacles. However, even the widest empty corri-
dor may not be wide enough sometimes. This moti-
vates to consider allowing right-angle turns. Chen
in [1] studied this generalization considering an
L-shaped corridor, which is the concatenation of
two perpendicular links (a link is composed by two
parallel rays and one line segment forming an un-
bounded trapezoid).
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In this paper we consider a kind of corridor prob-
lem which we call the siphon problem. More pre-
cisely, we define a siphon as the locus of points in
the plane that are at the same distance ǫ from a
polygonal chain P consisting of two half-lines ema-
nating from a common point (a 1-corner polygonal
chain). Let α be the interior angle of the half-lines.
An α-siphon is defined similarly but with the con-
straint that the interior angle of the two half-lines
emanating from a common point is α.

An α-siphon is determined by P and ǫ, where ǫ
is called the siphon width. Possible values for the
siphon angle α are 0◦ ≤ α ≤ 180◦. The α-siphon
problem can be stated as follows.
α-Siphon problem. Given a set S of n points in
the plane and a fixed angle α, compute the α-siphon
of largest width such that no points p ∈ S lies in its
interior (Figure 1b).

The α-siphon has to intersect the convex hull
of S producing a non-trivial partition S1, S2 of S;
otherwise we will allow the α-siphon “to scratch
the exterior” of S without actually passing through
S and, therefore, the α-siphon can be arbitrarily
wide (Figure 1c).

Notice that a 180◦-siphon is just a corridor [3]. A
0◦-siphon is a silo emanating from a point (the end-
point of a half-line) (Figure 1d) and it has been par-
tially studied in [2] by giving an optimal Θ(n log n)-
time algorithm in the case that the endpoint of the
half-line is anchored on a given point.

20th EWCG Seville, Spain (2004)
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Fig. 1. a) Widest corridor, b) α-siphon c) unbounded width

siphon, c) silo

Notice also that our α-siphon is a kind of corri-
dor which is a “better” solution than Cheng’s cor-
ridor in the following sense: suppose that we are
interesting in transporting a circular object in be-
tween a set of points, Cheng’s algorithm can gives
a negative answer while our algorithm produces an
affirmative answer; this is so because the width of
the widest α-siphon is always larger than or equal
to the width of the widest L-shaped corridor; in
fact a siphon is the area swept by a disk whose
center describes the route.

In this paper two variants for the α-siphon prob-
lem are consider: i) the oriented α-siphon problem,
where we know the angle α and the direction of one
of the half-lines of P ; ii) the arbitrarily oriented α-
siphon problem, where only the angle α is known.
Most proofs are omitted in this extended abstract.

Let S = {p1, p2, . . . , pn} be a planar point set.
The points are in general position, this assumption
is not essential for our algorithms to work, but han-
dling degeneracies would require the description of
many details and would hide the crucial ideas. We
denote the Euclidean distance between two points
p and q by d(p, q). If p is a point and P is a closed
subset in the plane, the distance between p and P
is defined as d(p, P ) = min{d(p, q) : q ∈ P}.

An α-siphon is bounded by an outer bound-
ary and an inner boundary; the outer boundary is
formed by a circular arc joined to two half-lines,
the exterior boundary legs; and the inner boundary
is formed by two half-lines, the interior boundary
legs. By orthogonal siphon we denote an oriented
90◦-siphon such that its boundary legs are vertical
and horizontal.

2. Oriented α-siphon

In this section we study the problem of comput-
ing an oriented α-siphon. First we consider the or-
thogonal siphon and next we will consider the gen-

eral case. There are four possibilities for P in an
orthogonal siphon according to the north, south,
east and west directions. We only consider the case
S-E, other cases can be handle analogously.

First notice that for any 1-corner polygonal
chain P which does not contain points from S
and produces a non-trivial partition of S, always
exists a siphon defined by P . We call a siphon
non-expansive if its interior boundary contains
two points of S (one per each leg or only one point
if this point is on the vertex of that boundary) and
its exterior boundary contains one point of S.
Lemma 1 For any fixed vertical and horizontal
lines crossing the convex hull of S producing a non
trivial partition of S, there exists a non-expansive
siphon.

Next we describe the algorithm which solves the
S-E orthogonal siphon problem in O(n2) time. By
Lemma 1 we know that an orthogonal siphon is de-
fined by at most three points. First, the algorithm
sorts the points in S by decreasing y-coordinate
and by increasing x-coordinate in O(n log n) time.
Let O = {p1, . . . , pn} and A = {q1, . . . , qn} be
the respective lists of the sorted points. From a
vertical-horizontal grid we construct a S-E stair-
case E which is updated each time we insert a new
point, and in this case either the number of the
steps of E increase by one or it decrease because
the new point dominates some points of the cur-
rent E.

Let p1 and q1 be the points of S with maxi-
mum y-coordinate and minimum x-coordinate, re-
spectively. These two points determine the start-
ing point of the algorithm. The staircase E in the
initial stage is formed by the horizontal and ver-
tical half-lines of the grid passing through p1 and
q1. The algorithm compute all the possible orthog-
onal siphons which horizontal boundary leg is sup-
ported by pi ∈ O, for i = 2, . . . , n. If a point
pi = (xpi, ypi) is on the horizontal-interior bound-
ary leg of a siphon then, there only exist siphons
such that its “entries” are in-between points hav-
ing x-coordinates and y-coordinates smaller than
or equal to xpi and ypi, respectively; because the
rest of points either are dominated by either the
current staircase or the point pi. The dominance
relation between points of S is establish as in [4,5].
In [5] the maxima problem for a set of points is con-
sidered. The maxima problem consists of finding
all the maxima of S under dominance and they can
be computed in θ(n log n) time. We are interested
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in the maxima problem with the following domi-
nance relation: pj ≺ pi ⇐⇒ xpj ≤ xpi and ypj ≥
ypi. The corresponding set of maxima forms a four
quadrant staircase.

We construct the staircase E in an incremen-
tal way with a cost of O(log n) time per point in-
sertion. In the worst case the number of different
siphons to be checked can be O(n2). Assume that
O and A have been computed and also for each
point pi we have a pointer to ql such that pi = ql.

ORTOGONAL-SIPHON-ALGORITHM
Input: S, O, A,
Output: Widest orthogonal siphon,
(i) Initial stage: O, A, E := staircase formed

by the horizontal and vertical half-lines de-
fined by q1 and p1. Compute the Voronoi di-
agram for S, V D(S), and store it in a data
structure such that a query point can be an-
swered in O(log n) time.

(ii) For i = 2 to n, do “Compute the widest
orthogonal siphon supported by pi and qj ,
such that xqj

< xpi
, yqj

< ypi
”,

Let ǫ1 be the distance between y = ypi

and the horizontal line containing the seg-
ment of the current E which is intersected
by x = xqj . Compute ǫ2 = xqj − xq(j−1) and
ǫ0 = min{ǫ1, ǫ2}. The orthogonal siphon sup-
ported by pi and qj has width smaller than
or equal to ǫ0/2. Compute the part Eij of E
in-between the x-coordinates xqj−ǫ0 and xqj

and the y-coordinates ypi and ypi +ǫ0. Check
that Eij is empty and compute the orthogo-
nal siphon of width ǫ0/2 supported by pi and
qj . Otherwise, we analyze each point of Eij

determining (if it exists) the corresponding
orthogonal siphon as follows:

The vertex of the 1-corner polygonal line
of the siphon will be located in the bisec-
tor of the second quadrant passing through
(xqj , ypi). This vertex is the center of the cir-
cle which contains the arc of the siphon. By
using E and V D(S), we consider each of the
three possible locations for the point belong-
ing to the exterior boundary.

(iii) Updating stage: Insert pi in E and update
E in time O(log n) per insertion and in to-
tal time O(n log n) for the deletion of points
from E (a point is deleted only once). Delete
pi from O, delete ql = pi from A, update the
widest width and the current siphon.

Lemma 2 Each vertex ci of the staircase E is an-
alyzed at most once.

Analysis of the algorithm: The number of stages is
O(n2). At the stage (i, j) we check all the vertices
in Eij in O(log n) time. By Lemma 2 a vertex in E
is analyzed only once, then the total time cost in
the analysis of points in E is O(n log n). Therefore
the running time of the algorithm is O(n log n) +
O(n2) = O(n2).

Theorem 3 The widest orthogonal siphon can be
computed in O(n2) time.

The techniques above can be adapted for com-
puting the widest oriented α-siphon, i.e., a α-
siphon with a given angle α, 0 < α < 180◦ and a
fixed direction of one of its half-lines.
Corollary 4 The widest oriented α-siphon can be
computed in O(n2) time.
Theorem 5 The problem of computing the widest
oriented α-siphon has an Ω(n log n) time lower
bound in the algebraic decision tree model.

Notice that the complexity of the algorithm
above match the complexity of the algorithm for
computing the widest corridor of a set of points.
A small variation of the algorithm above can be
used to compute the widest L-shaped orthogonal
corridor (as defined by Chen [1]) with the same
O(n2) running time.
Corollary 6 The widest L-shaped orthogonal cor-
ridor can be computed in O(n2) time.

A similar algorithm can be used if we want to
compute a corridor of the same kind but with an
angle different from 90◦ and knowing the direction
of one of the links.

3. The arbitrarily-oriented α-siphon

In this section we deal with the computation of
a widest-empty arbitrarily-oriented α-siphon, i.e.,
we only fix the siphon angle α. Assume that α is π

2 .
Lemma 7 There always exists an optimal π

2 -
siphon such that the interior boundary contains
two points of S (one per each leg) or only one point
if this point is on the corner of that boundary.

The points in S that determine a tentative place-
ment of an optimal α-siphon are called the critical
points. Therefore we can classify the cases for crit-
ical points according to their location on the parts
of the siphon, as it is shown in Figure 2.
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(1)

(3) (4)

(5) (6)

(2)

Fig. 2. Types of candidate siphons.

We sketch the idea of our approach without de-
tails. We only consider siphons that are bounded
by a point of each its interior half-lines (according
to Lemma 7). The orientation θ of our siphon is the
smaller of the two angles given by the ortogonal
lines supporting the interior boundary legs. Given
two points pi, pj (xpi

> xpj
), we consider the ro-

tation of the two perpendicular lines ri(θ) (around
pi) and sj(θ) (around pj), say counterclockwise, to
obtain all possible empty siphon supported at pi

and pj . The essence of our algorithm is to generate
a discrete set of subintervals in such rotation and
compute a siphon of maximum width for each.

We begin the rotation in θ = 0. A pair of orthog-
onal lines through pi and pj partitions the point set
into four disjoint subsets which we label I, II, III
and IV (corresponding to the four quadrants). As
we change the orientation continuously, the parti-
tion survive till some two points become collinear.
In fact, by insertion and deletion of the points,
we can maintain dynamically each one of the cor-
responding partition. This spend O(n2) time and
space. This produces a partition of the rotation in-
terval. Taking into account the intervals of such
partitions for each point pk ∈ S, we define the fol-
lowing functions:
– uk(θ) = d(pk, ri(θ)), for pk ∈ I,
– uk(θ) = d(pk, ri(θ)), lk(θ) = d(pk, sj(θ)) and

ck(θ) = d(pk, cijk(θ)), for pk ∈ II,
– lk(θ) = d(pk, sj(θ)), for pk ∈ III,

where cijk(θ) is the center of the circle passing
through pk tangent to the lines ri(θ) and sj(θ).

Lemma 8 Let pk and pl be two distinct points of
S. Then, the graphs of two functions corresponding
to pk and pl intersect at most twice.

Let L be the lower envelope of the graphs of
the functions uk, lk and ck. Lemma 8 implies that
the labels of the points corresponding to the edges
of L, when we traverse L from left to right, form
a Davenport-Schinzel sequence of order two [6].
Therefore, the number of intervals in the partition
is O(n) [6], and by using a standard divide-and-
conquer approach we can compute L in O(n log n)
time. Thus, by traversing L, from left to right, we
can identify the highest vertex, which corresponds
to the optimal direction for the π

2 -siphon. In sum-
mary, working over all pair of points in S, we have
proven the following result.
Theorem 9 Given a set S of n points in the plane,
the widest empty arbitrarily-oriented π

2 -siphon can
be computed in O(n3 log n) time.

An adaptation of above approach permits to
solve the problem for a fixed angle α, 0◦ ≤ α ≤
180◦ in the same time bound.

A constrained version of this problem consists
into anchoring the vertex of the 1-corner polygonal
chain. In this case we obtain the following result.
Theorem 10 Given a set S of n points in the
plane, the widest-empty arbitrarily-oriented an-
chored α-siphon can be computed in optimal
Ω(n log n) time.
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Abstract

We present an algorithm which defines a discrete Morse function in Forman’s sense on an infinite surface

including a study of the minimality of this function.

Key words: discrete Morse function, infinite surface, critical point, Morse inequalities

1. Introduction

Under a classical or smooth point of view, Morse
theory looks for links between global properties of
a smooth manifold and critical points of a function
defined on it. In [2], Forman introduced the no-
tion of discrete Morse function defined on a finite
cw-complex and, in this combinatorial context, he
developed a discrete Morse theory as a tool for
studying the homotopy type and homology groups
of these complexes.

Once a Morse function has been defined on a
complex, then its topological information can be
deduced from the critical simplices of this func-
tion. Since we studied the problem concerning the
definition of discrete Morse functions on infinite 1-
complexes in other works [1,4], the goal of this pa-
per is to continue with the following natural step:
to develop a way of constructing discrete Morse
functions on infinite 2-complexes, in particular on
connected and non compact surfaces. Our methods
are based on algorithms developed by T. Lewiner
[3] for the finite case.

Given a simplicial complex M , R. Forman [2]
introduces the notion of discrete Morse function

as a function f : M −→ R such that, for any p-
simplex σ ∈ M :
(M1) card{τ (p+1) > σ/f(τ) ≤ f(σ)} ≤ 1.

Email addresses: lmfer@us.es (L.M. Fernández ),
vilches@us.es (J.A. Vilches ).
1 This work is partially supported by P.A.I.

(M2) card{υ(p−1) < σ/f(υ) ≥ f(σ)} ≤ 1.
A p-simplex σ ∈ M is said to be critical with

respect to f if:
(C1) card{τ (p+1) > σ/f(τ) ≤ f(σ)} = 0.
(C2) card{υ(p−1) < σ/f(υ) ≥ f(σ)} = 0.

2. Constructing discrete Morse functions

In order to define a discrete Morse function on
an infinite surface S we recall that it can be ex-
pressed as a countable union of finite subcomplexes
S = ∪n∈NKn, with Kn ⊆ Kn+1 for any n ∈ N .
Indeed, let v0 be any vertex of a triangulation of
S and let K1 be the closed star of v0, that is, the
smallest closed subcomplex of S which contains all
edges and triangles including v0. The following fi-
gure shows the closed star of v0 in continous lines.

v0

Fig. 1. Star of v0.
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To define the rest of subcomplexes Kn, we can
do a successive thickening of K1: K2 will be the
closed star of K1 and, in the general case, Kn will
be the closed star of Kn−1, where the closed star of
a subcomplex means the smallest closed subcom-
plex that contains all edges and triangles which
contain some simplex of the given subcomplex.

Next, we shall use a special graph which contains
information of part of any Kn, in which all trian-
gles and some edges of K are represented. If T1

is a spanning tree in K1, then the complementary

graph of T1 in K1, denoted by D1, is the graph con-
structed as follows: each vertex of D1 corresponds
to a triangle of K1 or to a bounding edge of K1

(that is, an edge which is in a unique triangle of K1

and not in T1) and there is an edge between two
vertices of D1 if these ones correspond to two trian-
gles sharing an edge or to a triangle and a bounding
edge which is in this triangle but not in T1. Consi-
dering the preceding figure, D1 is the graph drawed
with discontinous lines in the following figure:

v0

1

Fig. 2. D1.

Now we enlarge the spanning tree T1 until we
get a spanning tree T2 in K2. Then, we obtain
D2 as an enlargement of D1 and it is the com-
plementary graph of T2 in K2. We can continue
this process in successive steps. It is interesting to
point out that this construction is only possible
for 2-dimensional complexes because the union of
Tn and Dn covers whole Kn, for any n ∈ N .

The definition of a discrete Morse function f
on S starts with the definition of f in K1. This
process is divided in two steps: first, we define f
on a spanning tree T1 in K1 starting at v0. This
assignment is made by an increasing way and such
that we do not introduce any critical vertex or

edge but the vertex v0, which is a global minimum
and hence it is a critical vertex [4].

On the other hand, in order to complete the def-
inition of f on the whole K1, we shall need to de-
fine f on D1. To this end, we define the degree of
a vertex corresponding to a triangle as the num-
ber of edges which are in this triangle such that
we have not assigned them any value. Since S is a
surface, the degree of any vertex is a number be-
tween 0 and 3. Now we start the definition of f
on vertices of degree 1 assigning them the greatest
value of f on T1 plus one unit. This means that
we have assigned that value to the triangles of K1

corresponding to such vertices of degree one. Next,
we assign the same value to the free (no values as-
signed) edges of such triangles. Then, we re-write
the degrees of the vertices of D1 because they could
have changed and continue assigning values to ver-
tices of degree one by increasing in one unit until
finishing with all vertices of D1. See the following
figure as an example.

0

1

1

2

2

3

3

4

4

5

5

66
7

7

8

8

Fig. 3. f on K1.

Now, to extend f to the subcomplex K2, we re-
peat the increasing procedure to assign values of f
on T2−T1 and on D2−D1. Since this procedure is
well defined for any n ∈ N , it gives us a function f
defined on whole surface S. It’s important to point
out that in this process may appear situations in
which there are no degree one vertices in a Dn. It
implies that the corresponding edges are in a cycle
of non assigned edges.

3. Study of f

The following result states that the above de-
fined function f is a discrete Morse function in
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Forman’s sense and give us information about its
critical elements.

Proposition. The function f given by the prece-

ding procedure is a discrete Morse function defined

on the infinite surface S and has a unique critical

vertex, the initial vertex v0, as many critical edges

as many independent cycles of non assigned edges

are found and do not have any critical triangle.
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of Axis-Parallel Rectangles 1
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Abstract

We show that for any set of non-overlapping axis-parallel rectangles in the plane, there exists a sloping enumeration,
such that the numbers of rectangles intersected by any line with a non-negative slope increase along this line.
Such enumeration can be computed in the optimal time Θ(n log n) using linear space. The notion of a sloping
enumeration can be generalized to higher dimensions; however, already in three-dimensional space it may not
exist. We also consider a strip packing problem for a set of rectangles with a fixed enumeration, which is required
to be sloping for the resulting packing. This problem is proved to be NP-hard in any dimension d ≥ 2.

Key words: rectangles, enumeration, orthogonal packing, NP-hardness

1. Introduction

A Young diagram is a collection of boxes, ar-
ranged in left-justified rows, with a (weakly) de-
crasing number of boxes in each row (Fig. 1a). A
standard Young tableau is obtained by placing the
numbers 1, 2, . . . , n in the n boxes of the diagram
in such way that the numbers increase across each
row and down each colomn (Fig. 1b).

a) b)

1 3 7 10 12

2 5 9

4 8

6 11

Fig. 1. a) A Young diagram; b) a standard Young tableau.

Young diagrams were introduced by Alfred
Young in 1900 as a combinatorial tool (see [9]);

Email address: kira@meta.math.spbu.ru (Kira
Vyatkina).
1 This work is partially supported by Russian Foundation
for Basic Research (grant 04-01-00173).

at present combinatorics of Young tableaux has a
wide range of applications in algebraic geometry
and representation theory (see for example [6]).

Sometimes Young diagrams are written upside
down (Fig. 2a).

Instead of considering a Young tableau as a com-
binatorial structure, let us look at its geometric
representation: consider a standard Young tableau
written upside down as a set of enumerated unit
squares drawn in the plane, touching their bound-
aries. It is easy to see that for any line l with a non-
negative slope, the numbers of squares intersected
by l increase along l (Fig. 2a).

We generalize this observation in the following
way: for any set of non-overlapping axis-parallel
rectangles in the plane, there exists a sloping

enumeration, such that for any line l with a non-
negative slope, the numbers of rectangles inter-
sected by l increase along l (Fig. 2b). Such enu-
meration can be efficiently computed in Θ(n log n)
time and O(n) space. These results can be viewed
as a new interpretation of our recent results [3].

All standard Young tableaux corresponding to
a given Young diagram can be obtained as a topo-
logical ordering of vertices of a particular graph
associated with the diagram (see [9]). All sloping
enumerations for a set R of rectangles can be ob-

20th EWCG Seville, Spain (2004)
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a)

1 3 7 10 12

2 5 9

4 8

6 11

b)

4

1

3

2

5

6

7

l1 l2

Fig. 2. a) A Young tableau written upside down; line l1 con-
sequently intersects squares 1, 2, 4, 6, 11. b) An enumerated

set of rectangles; line l2 consequently intersects rectangles
1, 3, 5, 6. For both a) and b), numbers of squares/rectangles

intersected by any line with a non-negative slope increase

along this line.

tained in the same way from a placement graph as-
sociated with R.

It is straightforward to generalize the notion of
a sloping enumeration to higher dimensions; how-
ever, we provide an example showing that even
in three-dimensional space, a sloping enumeration
may not exist.

A strip packing problem is a special type of or-
thogonal packing problems (see the classification
schemes introduced in [5,11]); much research has
been recently carried out on problems of this kind
(see the references in [5]). We consider the strip
packing problem in the following form: given a set
of enumerated rectangles and a horizontal strip
of height H, we have to pack all rectangles into
the strip, in such way that the given enumeration
would be sloping for the resulting packing. As a
matter of fact, we usually follow these restrictions
when packing our luggage – since, for example, we
do not want heavy objects to press down fragile
ones. Asking for the minimal length of the strip,
sufficient to store all rectangles, is shown to be NP-
hard. This result can be generalized to an arbitrary
dimension.

2. Preliminaries

Further we shall assume that all rectangles are
axis-parallel, and no two of them overlap. We bor-
row terminology from [1,2,4].

For a rectangle p, let us denote its lower left, up-
per left, upper right and lower right vertices by Ap,
Bp, Cp, and Dp, respectively. A zone Z(p) of rect-
angle p is an open lower left quadrant built from

point Cp (Fig. 3a). Given a set R of rectangles, its
placement graph GR has a vertex for each rectan-
gle p ∈ R; for two vertices p and q, GR contains an
arc (p, q) iff p ∩ Z(q) 6= ∅ (Fig. 3b).

Z(p)

p

Dp

CpBp

Ap

a) b)

Fig. 3. a) Rectangle p and its zone Z(p); b) a set of rect-
angles and the corresponding placement graph.

The following properties were observed in [2,10]:
Lemma 1 Let p, q ∈ R. If p ∩ Z(q) 6= ∅, then

q ∩ Z(p) = ∅.
Theorem 2 GR is acyclic.

3. Sloping Enumerations

Theorem 2 implies that the vertices of GR can be
topologically sorted; it follows (see [2,10,1]) that:
Theorem 3 For any set R, there exists an enu-

meration IR : R ↔ {1, 2, . . . , N}, where N = |R|,
such that ∀p ∈ R: ∪{Z(q)|IR(q) < IR(p)} ∩ p = ∅.

It is easy to prove that enumeration IP satisfies
our requirements.
Theorem 4 IR is sloping.

PROOF. Consider a line l with a non-negative
slope; let us assume that l intersects at least two
rectangles. Denote the intersected rectangles by
pk1

, . . . , pkm
, according to the order, in which they

are intersected by l (Fig. 4).

pk1

pk2

pkm

l

Fig. 4. Line l consequently intersects rectangles pk1
, pk2

,
. . . , pkm

. For 1 ≤ i < j ≤ m, we have pki
∩ Z(pkj

) 6= ∅.
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Obviously, 1 ≤ i < j ≤ m implies pki
∩Z(pkj

) 6=
∅, and thus, IR(pki

) < IR(pkj
) must hold. It can

be easily proved by induction that IR(pk1
) < · · · <

IR(pkh
) for any 1 ≤ h ≤ m; this completes our

proof.

A sloping enumeration need not be unique. To
build some sloping enumeration, one may con-
struct the placement graph GR and sort topologi-
cally its vertices.

Graph GR can be constructed with a plane
sweep algorithm in O(n log n+|ER|) time and O(n)
space, where |ER| is the number of its edges. This
algorithm is optimal in the comparison tree model.
The sorting can then be performed in O(n+ |ER|)
time; thus, computing a sloping enumeration in
this way would take us O(n log n + |ER|) time.

The method described above is not optimal;
however, a sloping enumeration can be obtained in
the optimal Θ(n log n) time and in linear space us-
ing a plane sweep algorithm; the reader is referred
to [3] for details.

4. Strip Packing Problem

Let us consider a two-dimensional strip pack-
ing problem with respect to a given enumeration
(SPPE-2).

The optimization problem is:
SPPE-2: Given a set of enumerated rectangles

and a horizontal strip of height H, we ask for the
minimal length L of the strip, sufficient to pack all
rectangles in such way that the given enumeration
is sloping for the resulting packing.

The corresponding decision problem is:
SPPE-2*: For a given a set of enumerated rect-

angles and a horizontal strip of height H and length
L, is there a feasible packing, for which the given
enumeration is sloping?
Theorem 5 SPPE-2 is NP-hard.

PROOF. Clearly, SPPE-2*∈NP. Let us reduce
to SPPE-2* the PARTITION problem, which is
known to be NP-complete [8,7]. In PARTITION,
we are given a finite set A and a size s(A) ∈ Z+

for each a ∈ A, and we ask if there exists a subset
A′ ⊆ A, such that

∑
a∈A′ s(a) =

∑
a∈A\A′ s(a).

For set A = {ai}
n
i=1, let H = 5, and L =

2
∑n

i=1
s(ai). For each ai ∈ A, we construct rect-

angle r(ai) of size 2s(ai) × 2. In addition, we
construct two rectangles r0 and rn+1, each of size∑n

i=1
s(ai) × 2. We enumerate rectangles as fol-

lows: IR(r0) = 1, IR(rn+1) = n + 2, IR(r(ai)) =
i + 1, for 1 ≤ i ≤ n.

Obviously, the length of the strip needed to pack
all rectangles is at least L. It is precisely L iff the
answer for the PARTITION decision problem is
“yes”.

1

63

5

4

2

Fig. 5.

Fig. 5 illustrates the reduction described above
for set A = {a1, a2, a3, a4}, with sizes s(a1) = 2,
s(a2) = 1, s(a3) = 3, s(a4) = 2. Thus, L = 16;
H = 5. Choosing A′ = {a1, a4} gives us a partition,
and the packing shown on Fig. 5 fits into a strip of
size H ×L. Clearly, our enumeration is sloping for
this packing.

5. Higher-Dimensional Case

The notion of a sloping enumeration can be
easily generalized to higher dimensions. In d-
dimensional space, we shall consider d-dimensional
boxes instead of rectangles.

Let us consider a set of vectors V = {v|v =
∑d

i=1
aiei, ai ≥ 0, 1 ≤ i ≤ d}, where ei are unit

vectors pointing along coordinate axes. Enumera-
tion IR of a set R of boxes is sloping, if for any line
l, such that ∃v ∈ V : l||v, the numbers of boxes
intersected by l increase along l.

For d = 2, this definition is equivalent to the one
given before.

In the three-dimensional case, a sloping enumer-
ation may not exist. A construction from [2], shown
on Fig. 6, illustrates such situation. Notice that if
we set in the definition a1 ≤ 0, a2, a3 ≥ 0, there
will be a sloping enumeration. However, in [3] we
introduce a construction, for which no sloping enu-
meration exists for any choice of signs for a1, a2,
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a3. (In [3], it serves as an example of a set of par-
allelepipeds admitting no right-angled cut parti-
tion.)

.

p

q

x

y

z

s

Fig. 6. For the set {p, q, s}, there exists no sloping enumer-

ation. However, there will be a sloping enumeration, if we
set a1 ≤ 0, a2, a3 ≥ 0: IR(q) = 1, IR(s) = 2, IR(p) = 3.

Let us generalize to higher dimensions the strip
packing problem.

SPPE-d: Given a set of enumerated boxes in d-
dimensional space, we ask for the minimal length
W1 of a container, sufficient to pack all boxes in
such way that the given enumeration is sloping for
the resulting packing, where the sizes in the other
d − 1 dimensions W2, . . . , Wd are fixed.

SPPE-d*: For a given a set of enumerated
boxes in d-dimensional space and a container of
size W d, is there a feasible packing, for which the
given enumeration is sloping?
Theorem 6 SPPE-d is NP-hard.

To prove this theorem, we apply reduction sim-
ilar to the one described above, setting W2 = 5,
W3 = · · · = Wd = 1, and requiring box r(ai) to
have size 2s(ai)×2×1 · · ·×1, 1 ≤ i ≤ n, and boxes
r0 and rn+1 – to have size

∑n

i=1
s(ai)×2×1 · · ·×1.

6. Conclusion

For an arbitrary set of non-overlapping axis-
parallel rectangles in the plane, we have proved
existence of a sloping enumeration, and proposed
methods for computing it efficiently. We have also
considered a strip packing problem for an enumer-
ated set of rectangles; an additional requirement
concerned with the enumeration is the following:
the given enumeration must be sloping for the
resulting packing. This problem is shown to be
NP-hard.

We have generalized the notion of a sloping enu-
meration to the case of d-dimensional space. For
the three-dimensional case, we gave an example of
a set of parallelepipeds, which admits no sloping
enumeration. However, the strip packing problem
may be stated for any dimension d; we have proved
it to be NP-hard in arbitrary dimension.

All valid enumerations arise as a topological or-
dering of vertices of a placement graph. This graph
is known to be acyclic [2,10]; however, we suppose
that much more could be derived on its structure.
We are going to consider this question, along with
the opposite one: what kind of dags can appear as
placement graphs?

References

[1] V. Bukhvalova, and L. Faina, Rectangular Cutting
Layout Problem,
http://loris.dipmat.unipg.it/usa/index.html. (1998).

[2] V. Bukhvalova, Rectangular Cutting Problem: Zone

Method and Other Algorithms (Saint Petersburg State
Univ. Press, St Petersburg, 2001). (in Russian)

[3] V. Bukhvalova, and K. Vyatkina, An Optimal
Algorithm for Partitioning a Set of Axis-Parallel
Rectangles with Right-Angled Cuts, in: M. Neamtu
and M. Lucian, eds., Proceedings SIAM Conference
on Geometric Design and Computing (Seattle, USA,

2003). (to be submitted)

[4] L. Faina, An application of simulated annealing to
the cutting stock problem, European Journal on
Operational Research, 114(3) (1999) 542–556.

[5] S. Fekete, and J. Schepers, A Combinatorial
Characterization of Higher-Dimensional Orthogonal
Packing, http://arxiv.org/abs/cs.DS/0310032. (2003).

[6] W. Fulton, Young Tableaux with Applications to

Representation Theory and Geometry (New York:
Cambridge University Press, 1997).

[7] M.R. Garey, and D.S. Johnson, Computers and

Intractability: A Guide to the Theory of NP-
completeness (San Francisco: Freeman, 1979).

[8] R.M. Karp, Reductibility among combinatorial
problems, in: R.E. Miller and J.W. Thatcher, eds.,
Complexity of Computer Computations (Plenum
Press, New York, 1972) 85–103.

[9] D. Knuth, The Art of Computer Programming, Volume
3: Sorting and Searching, Second Edition (Reading,

Massachusetts: Addison-Wesley, 1998).

[10] A.I. Lipovetsky, Properties of Rectangular Packings,
manuscript (1988). (in Russian)

[11] M. Wottawa, Struktur und algorithmische Behandlung

von praxisorientiren dreidimensionalen Packungs-
problemen (Ph.D. thesis, Universität zu Köln, 1996).



Maximum Weight Triangulation of A Spe
ial Convex

Polygon

1

Jianbo Qian

2

and Cao An Wang

3

.

Abstra
t

In this paper, we investigate the maximum weight triangulation of a spe
ial 
onvex

polygon, 
alled `semi-
ir
led 
onvex polygon'. We prove that the maximum weight

triangulation of su
h a polygon 
an be found in O(n

2

) time.

1 Introdu
tion

Triangulation of a set of points is a fundamental stru
ture in 
omputational geometry.

Among di�erent triangulations, the minimum weight triangulation (MWT for short) of

a set of points in the plane attra
ts spe
ial attention [1,2,3℄. The 
onstru
tion of the

MWT of a point set is still an outstanding open problem. When the given point set is the

set of verti
es of a 
onvex polygon (so-
alled 
onvex point set), then the 
orresponding

MWT 
an be found in O(n

3

) time by dynami
 programming [1,2℄.

On the 
ontrast, there is not mu
h resear
h done on maximum weight triangulation

(MAT for short). From the theoreti
al viewpoint, the maximum weight triangulation

problem and the minimum weight triangulation problem attra
ts equally interest, and

one seems not to be easier than the other. The study of maximum weight triangulation

will help us to understand the nature of optimal triangulations.

The �rst work in the MAT [4℄ showed that if an n-sided polygon P ins
ribed on a


ir
le, then MAT (P ) 
an be found in O(n

2

) time.

In this paper, we study the MAT of the following spe
ial 
onvex polygon: let P be

a 
onvex n�sided polygon su
h that the entire polygon P is 
ontained inside the 
ir
le

with an edge of P as diameter. We 
all su
h a polygon as semi-
ir
led. We propose an

O(n

2

) algorithm for 
omputing the MAT (P ) of a semi-
ir
led 
onvex polygon P . Re
all

that a straightforward dynami
 programming method will take O(n

3

) to �nd MAT (P ).
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2 Preliminaries

Let S be a set of points in the plane. A triangulation of S, denoted by T (S), is a

maximal set of non-
rossing line segments with their endpoints in S. It follows that the

interior of the 
onvex hull of S is partitioned into non-overlapping triangles. The weight

of a triangulation T (S) is given by

!(T (S)) =

X

s

i

s

j

�T (S)

!(i; j);

where !(i; j) is the Eu
lidean length of line segment s

i

s

j

.

A maximum weight triangulation of S (MAT (S)) is de�ned as for all possible T (S),

!(MAT (S)) = maxf!(T (S))g.

p
1

p
n

p
k

p
i

Figure 1: An illustration of semi-
ir
led 
onvex polygon.

Let P be a 
onvex polygon (whose verti
es form a 
onvex point set) and T (P ) be its

triangulation. A semi-
ir
led 
onvex polygon P is a spe
ial 
onvex polygon su
h that its

longest edge is the diameter and all the edges of P lie inside the semi-
ir
le with this

longest edge as diameter. (Refer to Figure 1).

The following two properties are easy to verify for a semi-
ir
led 
onvex polygon

P = (p

1

; p

2

; :::; p

k

; :::; p

n�1

; p

n

).

Property 1: Let p

i

p

k

for 1 � i < k � n be an edge in P . Then the area bounded by

p

i

p

k

and 
hain (p

i

; :::; p

k

) is a semi-
ir
led 
onvex polygon.

Property 2: In P , edge p

i

p

j

for 1 � i < j < n or 1 < i < j � n is shorter than p

1

p

n

.

3 Finding an MAT of a semi-
ir
led 
onvex polygon

Lemma 1 Let P = (p

1

; p

2

; :::; p

k

; :::; p

n�1

; p

n

) be a semi-
ir
led 
onvex polygon. Then,

one of the edges: p

1

p

n�1

and p

n

p

2

must belong to its maximum weight triangulation

MAT (P ).

proof: Suppose for 
ontradi
tion that none of the two extreme edges: p

1

p

n�1

and p

n

p

2

belongs to MAT (P ). Then, there must exist a vertex p

k

for 2 < k < n � 1 su
h that

both p

1

p

k

and p

n

p

k

belong toMAT (P ). Without loss of generality, let p

k

lie on one side

2



p
1

p
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p
k

p
n−1

p
2

p
n

p
k

p
n−1

p
2

p
n

L R
C

(a) (b)

R

Figure 2: For the proof of Lemma 1.

of the perpendi
ular bise
tor of edge p

1

p

n

, say the lefthand side (if p

k

is on the bise
tor,

the following argument is still appli
able), The two edges p

1

p

k

and p

n

p

k

partition P into

three areas, denoted by R;L; and C. Both L and R are semi-
ir
led 
onvex polygons

by Property 1. (Refer to part (a) of Figure 2.)

Let the edges of MAT (P ) lying inside area L be (e

1

; e

2

; :::; e

k�3

) and let E

L

=

(e

1

; e

2

; :::; e

k�3

; p

1

p

k

). Let E

�

L

denote the edges: (p

n

p

2

; p

n

p

3

; :::; p

n

p

k�1

). Then, there is a

perfe
t mat
hing between E

L

and E

�

L

. This is be
ause E

L

and E

�

L

respe
tively triangulate

the same area L[C, hen
e the number of internal edges of the two triangulations must

be equal. Let us 
onsider a pair in the mat
hing (e

i

; p

n

p

j

) for 1 < i; j < k. It is not hard

to see that !(e

i

) < !(n; j) be
ause any edge in E

L

is shorter than p

1

p

k

by Property

2, any edge in E

�

L

is longer than p

n

p

k

, and p

n

p

k

is longer than p

1

p

k

(due to p

k

lying

on the lefthand side of the perpendi
ular bise
tor of p

1

p

n

). Therefore, !(E

L

) is less

than !(E

�

L

). Now, we shall 
onstru
t a new triangulation, say T (P ), whi
h 
onsists

of all the edges in MAT (P ) ex
ept repla
ing the edges of E

L

by E

�

L

. We have that

!(T (P )) > !(MAT (P )), whi
h 
ontradi
ts the MAT (P ) assumption. Then, su
h a p

k


annot exist and one of p

1

p

n�1

and p

n

p

2

must belong to MAT (P ). 2

By Lemma 1 and by Property 1, we have a re
uren
e for the weight of a MAT (P ).

Let !(i; j) denote the weight of the MAT (P

i;j

) of a semi-
ir
led 
onvex polygon P

i;j

=

(p

i

; p

i+1

; :::; p

j

). Let !(i; j) denote the length of edge p

i

p

j

.

!(i; j) =

8

<

:

!(i; i+ 1) j = (i + 1)

maxf!(i; j � 1) + !(j � 1; j); !(i+ 1; j) + !(i; i+ 1)g+ !(i; j) otherwise

It is a straight-forward matter to design a dynami
 programming algorithm for �nding

the MAT (P ).

ALGORITHM MAT � FIND(P )

Input: a semi
ir
led 
onvex n�sided polygon: (p

1

; :::; p

n

).

Output: MAT (P ).

Method:

1. for i = 1 to n� 1 do

!(i; i+ 1) = !(i; i+ 1)

3



2. for l = 2 to n� 1 do

3. for i = 1 to n� l do

!(i; i+ l) = maxf!(i; i+ l�1)+!(i+ l � 1; i+ l); !(i+1; i+ l)+!(i; i+ 1)g

+!(i; i+ l)

4. Identify the edges of MAT (P ) by 
he
king the !'s.

5. end.

Sin
e the loop indi
es i and l range roughly from 1 to n and ea
h evaluation of !(i; j)

takes 
onstant time, all !(i; j) for 1 � i; j � n 
an be evaluated in O(n

2

) time. If we

re
ord these !'s, we 
an �nd the edges in MAT (P ) by an extra O(n) time to examine

the re
ord.

Therefore, we have the following theorem.

Theorem 1 The maximum weight triangulation of a semi-
ir
led 
onvex n�gon P ,

MAT (P ), 
an be found in O(n

2

) time.

Proof: The 
orre
tness is due to Property 1. It is 
lear that the number of exe
utions

of Step 3 dominates the time 
omplexity. The number of exe
utions is (n � 3) + (n �

4) + :::+ 2 + 1)�O(n

2

). 2

4 Con
lusion

In this paper, we proposed an O(n

2

) dynami
 programming algorithm for 
onstru
ting

the MAT (P ) of a semi-
ir
led 
onvex n�sided polygon.

It is still an open problem whether one 
an design an o(n

3

) algorithm for �nding the

MAT (P ) for a general 
onvex n�sided polygon P .
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1. Introduction

A Manhattan p–q path is a geodesic in the Man-
hattan (or L1-) metric that connects p and q, i.e.
a staircase path between p and q. Given a set of
points P in the plane, a Manhattan network is a set
of axis-parallel line segments that contains a Man-
hattan p–q path for each pair {p, q} of points in P .

In this paper we consider the minimum Man-
hattan network problem which consists of finding
a Manhattan network of minimum total length, an
MMN in short, i.e. a 1-spanner for the Manhattan
metric. The problem is likely to have applications
in VLSI layout. Its complexity status is unknown.

The problem has been considered before. Gud-
mundsson et al. [1] have proposed a factor-8
O(n log n)-time and a factor-4 O(n3)-time approx-
imation algorithm, where n is the number of input
points. Later Kato et al. [2] have given a factor-2
O(n3)-time approximation algorithm. However,
their correctness proof is incomplete.

In this paper we give a geometric factor-3 ap-
proximation algorithm that runs in O(n log n) time
and the first mixed-integer programming (MIP)
formulation for the MMN problem. We have im-
plemented and evaluated both approaches.

2. Preliminaries

We will use the notion of a generating set that
has been introduced in [2]. A generating set is a
subset Z of

(

P
2

)

with the property that a network
containing Manhattan paths for all pairs in Z is a
Manhattan network of P .

The authors of [2] defined a generating set Z
with the nice property that Z consists only of a
linear number of point pairs. Here we use the same
generating set Z, but more intuitive names for the
subsets of Z. In [2] Z = Zh ∪ Zv ∪ Zx ∪ Zy ∪ Z2.

Here we define Z = Zhor ∪ Zver ∪ Zquad, where
Zhor = Zh ∪ Zy, Zver = Zv ∪ Zx, and Zquad = Z2.
We consider Zquad a set of ordered pairs.

Now let Rhor = {BBox(p, q) | {p, q} ∈ Zhor},
where BBox(p, q) is the smallest axis-parallel
closed rectangle that contains p and q. Note that
BBox(p, q) is just the line segment pq if p and q lie
on the same horizontal or vertical line. In this case
we consider BBox(p, q) a degenerate rectangle. De-
fine Rver and Rquad analogously. Let Ahor, Aver,
and Aquad be the subsets of the plane that are de-
fined by the union of the rectangles in Rhor, Rver,
and Rquad, respectively. As Kato et al. we start
with some basic, yet incomplete network whose
length is bounded by the length of an MMN.

Definition 1 [2] A set of vertical line segments V
covers Rver, if for any horizontal line ℓ and any
R ∈ Rver with R∩ ℓ 6= ∅ there is a V ∈ V with V ∩
ℓ 6= ∅. We say that V is a minimum vertical cover
(MVC) if V has minimum length among all covers
of Rver. The definition of a minimum horizontal
cover (MHC) is analogous.

Kato et al. have observed the following.

Lemma 2 [2] The union of an MVC and an MHC
has length bounded by the length of an MMN.

In general such a union does not satisfy, i.e. con-
nect by Manhattan paths, all pairs in Zver and
Zhor. Additional segments must be added to the
union to achieve this. To ensure that the total
length of these segments can be bounded, we need
covers with a special property. Obviously the seg-
ments in an MVC can be moved such that each seg-
ment is contained in a vertical edge of a rectangle
in Rver. We say that an MVC is nice if addition-
ally each cover segment is incident to a point in P .
Note that each vertical rectangle edge contains at
most one segment of a nice MVC, since degenerate
rectangles do not share edges with other rectangles

20th EWCG Seville, Spain (2004)
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and must therefore be covered completely. In or-
der to show that every point set has in fact a nice
MVC, we need the following definitions.

For a horizontal line ℓ consider the graph
Gℓ(Vℓ, Eℓ), where Vℓ is the intersection of ℓ with
the vertical edges of rectangles in Rver, and there
is an edge in Eℓ if two intersection points belong
to the same rectangle. We say that a point v in
Vℓ is odd if the number of points to the left of v
that belong to the same connected component of
Gℓ is odd, otherwise v is even. For a vertical edge
e of a rectangle in Rver, let an odd segment be an
inclusion-maximal connected set of odd points on
e. Define even segments accordingly. For example,
the segment s (drawn bold in Figure 1) of the
edge f is an even segment, while f \ s is odd. We
say that the parity of an edge changes where two
segments of different parity touch.

Theorem 3 Every point set P has a nice MVC
and a nice MHC.

PROOF. We only show the statement for the ver-
tical case, the horizontal case is analogous. Our
proof is constructive. Let V be the union of all odd
segments and all degenerate rectangles in Rver.
Clearly V covers Rver. Let ℓ be a horizontal that
intersects Aver. Consider a connected component
C of Gℓ and let k be the number of vertices in C. If
k is even then any cover must contain at least k/2
vertices of C, and V contains exactly k/2. On the
other hand, if k > 1 is odd then any cover must
contain at least (k−1)/2 vertices of C, and V con-
tains exactly (k − 1)/2. Thus V is an MVC.

To see that V is nice, we consider a vertical edge
e of a rectangle in Rver and the input point p0 on
e. We show that either e is even or p0 lies on the
only odd segment of e. In both cases V contains
only cover segments that touch an input point.

Wlog. let p0 be the

e

s

f
Lpk

pk

p0

p1

p2

p2

p3

p4

Fig. 1. Proof of Theorem 3.

topmost point of e. Let
p0, p1, . . . , pk be the in-
put points in order of
decreasing x-coordinate
that span the rectangles
in Rver that are rele-
vant for the parity of
e. Let pi = (xi, yi) and
y0 = y0, y1 = y1. For
2 ≤ i ≤ k define recursively yi = min{yi, yi−2} if
i is even, and yi = max{yi, yi−2} if i is odd. Let
pi = (xi, yi), and let L be the polygonal chain

through p0, p1, p2, p3, . . . , pk) in this order, see
Figure 1. Note that the parity of a point v on e is
determined by the number of segments of L that
intersect the horizontal h through v.

If h is below pk, then it intersects a descending
segment for each ascending segment of L, hence v
is even. If on the other hand h goes through or is
above pk, then it intersects an ascending segment
for each descending segment—plus p1p0, hence v
is odd. So e can change parity only in (x0, yk). ✷

A simple sweep-line algorithm yields the following.

Lemma 4 A nice MVC and a nice MHC can be
computed in O(n log n) time using linear space.

3. An Approximation Algorithm

Our algorithm ApproxMMN proceeds in three
phases, see Algorithm 1. In phase I we compute
the generating set Zver ∪ Zhor ∪ Zquad. In phase II
we satisfy all pairs in Zver ∪ Zhor by computing
a nice MVC Cver and a nice MHC Chor, and by
then adding at most one additional line segment
for each rectangle Rver ∪ Rhor. Since each rect-
angle R = BBox(p, q) ∈ Rver (Rhor) is covered
nicely, it suffices to add a horizontal (vertical) seg-
ment whose length is the width (height) of R in
order satisfy {p, q}. Let S be the set of these ad-
ditional segments. Consider the vertical strip that
is defined by a rectangle R ∈ Rver. By definition
of Rver, R is the only rectangle in Rver that inter-
sects the interior of the strip. Thus the total length
of the additional horizontal (vertical) segments is
the width W (height H) of BBox(P ). By Lemma 2
the network N1 = Cver ∪ Chor ∪ S has length ≤
|Nopt| + H + W , where Nopt is a fixed MMN and
|M | is the total length of a set M of line segments.

In phase III we satisfy the pairs in Zquad. Let
Q(r, 1) = {s ∈ R

2 | xr < xs and yr < ys} be the
first quadrant of the Cartesian coordinate system
with origin r. Define Q(r, 2), Q(r, 3), Q(r, 4) anal-
ogously and in the usual order. Let P (q, t) = {p ∈
P ∩ Q(q, t) | (p, q) ∈ Zquad} for t = 1, 2, 3, 4. Let
∆(q, t) =

⋃

p∈P (q,t) BBox(p, q) \ int(Ahor ∪ Aver),

where int(M) denotes the interior of a set M ⊆ R
2.

Let δ(q, t) be the union of those connected com-
ponents of ∆(q, t) that are incident to some p ∈
P (q, t). Note that each connected component A
of δ(q, t) is a staircase polygon—by definition of
Zquad there is a strictly x- and y-monotone order-
ing of the points in P (q, t). The C-hull of A is the
union of A and the bounding boxes of neighboring
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Algorithm 1 ApproxMMN

Phase I: Compute Z = Zver ∪ Zhor ∪ Zquad.
Phase II: Satisfy Zver ∪ Zhor:

compute a nice MVC Cver and a nice MHC Chor

compute set S of additional horizontal (vertical)
segments for rectangles in Rver (Rhor)

N1 ← Cver ∪ Chor ∪ S, N2 ← ∅, N3 ← ∅
Phase III: Satisfy Zquad:

for each region δ of type δ(q, t) do
for each connected component A of δ do

compute rectangulation RA′ of A′

N2 ← N2 ∪ ∂A′ ∪ {sA′}
N3 ← N3 ∪ (RA′ \ ∂A′)

end for
end for

return N = N1 ∪N2 ∪N3

input points on the boundary ∂A of A. It is known
that any MMN rectangulates the C-hull of A [1,
Lemma 4]. The same holds for a slightly smaller re-
gion A′ that can be connected to N1 via at most one
segment sA′ . There is a simple O(n)-time factor-
2 approximation algorithm B for rectangulating
staircase polygons [1]. We use B to compute the
rectangulation RA′ of each A′. Let N2 be the union
of all ∂A′ and all sA′ . Let N3 be the union of the
rectangulations RA′ without ∂A′. Our algorithm
returns the line segments in N = N1 ∪N2 ∪N3.

To bound the length of N we partition the plane
into two regions and compare N to Nopt in each
region separately. RegionA3 is the union of int(A′)
over all areas of type A′, while A12 = R

2 \A3. We
have N1∪N2 ⊆ A12 and N3 ⊆ A3, and the interiors
of different regions of type A do not intersect. On
the one hand the approximation factor of B yields
that |N ∩ A3| ≤ 2|Nopt ∩ A3|. On the other hand
we can show that |N2| ≤ 2|Nopt| − (H +W ). Thus
|N ∩ A12| = |(N1 ∪ N2) ∩ A12| ≤ 3|Nopt ∩ A12|,
which in turn yields |N | ≤ 3|Nopt|.

Theorem 5 A 3-approximation of an MMN can
be computed in O(n log n) time and O(n) space.

4. A MIP Formulation

In this section we give the first MIP formulation
of the MMN problem. This formulation gives us
the possibility to implement an exact solver for the
MMN problem that can solve small examples in
a bearable amount of time. Those will be used as
benchmarks for our approximation algorithm.

We need some notation: For a set P of n input

points p1(x1, y1), . . . , pn(xn, yn) let x1 < · · · < xu

and y1 < · · · < yw be the ascending sequences of
x- respectively y-coordinates of the input points.
The grid Γ induced by P consists of the grid points
(xi, yj) with i = 1, . . . , u and j = 1, . . . , w. In
this section we will only consider pairs {p, q} ∈ Z
with xp ≤ xq. This is no restriction since we
can flip the names of p and q. For each such
pair let V (p, q) = Γ ∩ BBox(p, q) and let A(p, q)
be the set of arcs between horizontally or verti-
cally adjacent grid points in V (p, q). Horizontal
arcs are always directed from left to right, ver-
tical arcs point upwards (downwards) if yp < yq

(yp > yq). Our formulation is based on the grid
graph GP (V,A), where V =

⋃

{p,q}∈Z V (p, q) and

A =
⋃

{p,q}∈Z A(p, q). Let E = {{g, g′} | (g, g′) ∈

A or (g′, g) ∈ A} be the set of undirected edges.
For each pair {p, q} ∈ Z we enforce the exis-

tence of a p–q Manhattan path by a flow model as
follows. We introduce one 0–1 variable f(p, q, g, g′)
for each arc (g, g′) in A(p, q), which encodes the
size of the flow along arc (g, g′). For each grid point
g in V (p, q) we introduce the flow constraint

∑

(g,g′)∈A(p,q)

f(p, q, g, g′)

−
∑

(g′,g)∈A(p,q)

f(p, q, g′, g)



















=











+1 if g = p,

−1 if g = q,

0 else.

(1)

Next we introduce a continuous variable F (g, g′)
for each edge {g, g′} in E. This variable will in
fact be forced to take a 0–1 value by the objective
function and the following constraints. The MMN
that we want to compute will consist of all grid
edges {g, g′} with F (g, g′) = 1. We now add one
or two constraints for each {g, g′} in E and each
{p, q} ∈ Z with gg′ ⊆ BBox(p, q):

F (g, g′) ≥

{

f(p, q, g, g′) if (g, g′) ∈ A,

f(p, q, g′, g) if (g′, g) ∈ A.
(2)

Note that the two conditions are not mutually
exclusive. Our objective function expresses the to-
tal length of the selected grid edges:

min!
∑

{g,g′}∈E

|gg′| · F (g, g′), (3)

where |gg′| is the Euclidean distance of g and g′.
This MIP formulation uses O(n3) variables and

constraints. By treating pairs in Zquad more care-
fully, a reduction to O(n2) is possible, see full pa-
per. It is not hard to see that our formulation al-
ways yields an MMN:
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Theorem 6 Let P be a set of points and let Z, A,
and E be defined as above. Let F : E → R

+
0 and

f : Z×A→ {0, 1} be functions that fulfill (1) & (2)
and minimize (3). Then the set of line segments
{gg′ | {g, g′} ∈ E, F (g, g′) ≥ 1} is an MMN of P .

Due to our objective function (3), Equation (1)
can be replaced by an inequality (with direction
≥). If the resulting constraint matrix was totally
unimodular (every square submatrix has determi-
nant in {−1, 0,+1}), every vertex of the solution
polyhedron would be integral and the MMN prob-
lem would in fact correspond to an LP. Unfortu-
nately it turned out that this is not the case and
that there are instances with fractional vertices
that minimize our objective function.

5. Experiments

We used two different types of random instances.
Squarek instances were generated by drawing

n different points with uniform distribution from a
kn× kn integer grid. We wanted to see the effects
of having more (k small) or less (k large) points
with the same x- or y-coordinate. If a pair of points
shares a coordinate, the manhattan path connect-
ing them is uniquely determined.

Circlek instances consist of a point p1 at the
origin and n − 1 points on the upper half of the
unit circle. The points are distributed as follows.
The interval I = [0, π/4] is split into k subintervals
I1, . . . , Ik of equal length. We used k ∈ {1, 2, 5, 10}.
Then n− 1 random numbers r2, . . . , rn are drawn
from I. If the number ri falls into a subinterval
of even index, it is mapped to the point pi =
(cos ri, sin ri) otherwise to pi = (− cos ri, sin ri).
The resulting points pi (except for the topmost
point in each quadrant and the “bottommost”
point in each subinterval) all form pairs {pi, p1}
that are in Zquad. This makes Circle instances
very different from Square instances where only
few point pairs belong to Zquad.

We generated instances of the above types and
solved them with ApproxMMN and with Cplex
using the MIP formulation of Section 4. We imple-
mented ApproxMMN in C++ using the compiler
gcc-3.3. The asymptotic runtime of our implemen-
tation is Θ(n2), the real runtime was measured on
an AMD Athlon 1800+ with 512 MB RAM under
Linux-2.4.20. To compute exact solutions we used
the LP Barrier Solver of ILOG Cplex-9.0 on an
IBM RS/6000. The results of our experiments can

be found in the diagram below. The sample size,
i.e. the number of points per instance, is shown on
the x-axis. For each sample size we generated 30
instances and averaged the results over those. The
y-axis shows the performance ratio of Approx-

MMN, i.e. the ratio of the length of the network
computed by ApproxMMN over the length of the
MMN computed by Cplex.

Cplex ran out of memory on Circle01 instances
of more than 45 points and on Square10 instances
of more than 110 points. Below these thresholds
ApproxMMN always had a performance ratio be-
low 1.55, which is much better than what the ap-
proximation factor of 3 suggests. While the ratio
seems to approach 1 on Square instances of in-
creasing size, the picture is not so clear for Circle

instances:
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The runtime of ApproxMMN was practically
independent of the type of instance. The CPU
times we measured reflected the quadratic asymp-
totic runtime. 500 points took roughly 0.3 seconds.

The exact solver depended much more on the
type of instance than the approximation algorithm.
It solved Square instances much faster than Cir-

cle instances. This is due to the fact that pairs in
Zquad require a quadratic number of variables and
constraints in our MIP formulation, while pairs in
Zver and Zhor need only a linear number. 100 points
of type Squarek took 0.6–1.6 seconds and 6–13
seconds for k = 1 and 10, respectively, while 40
points of type Circlek took 61–480 seconds and
1.2–2.4 seconds for k = 1 and 10, respectively.
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