Abstracts of the Workshop on
Computational Geometry

(CG’92)

March 12-13, 1992
Utrecht, the Netherlands

Technical Report RUU-CS-92-10

Department of Computer Science
Utrecht University
P.0O.Box 80.089
3508 TB Utrecht
The Netherlands



Abstracts of the Workshop on
Computational Geometry

(CG’92)

March 12-13, 1992
Utrecht, the Netherlands

RUU-CS-92-10

Utrecht University

Wi :

< = Department of Computer Science
o

V@ g Padualaan 14, P.O. Box 80.089,

47'" ’3\» 3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30-531454




ISSN: 0924-3275



Foreword

This document contains abstracts of the papers that were presented at the 8th European
Workshop on Computational Geometry (CG ’92), held in Utrecht (The Netherlands),
March 12-13, 1992, and supported by EURICS, the Eindhoven-Utrecht Research Insti-
tute in Computing Science. It was the first time that this workshop—formerly known
as the German Workshop on Computational Geometry—took place outside Germany or
Switzerland. Moreover, the official language of the workshop has switched from German
to English. We think that the increased interest in the workshop warrants this more
international approach.

The increased interest also led to a problem: the number of submissions was too large
to accomodate all speakers, and we had to disappoint some people. The final program
contains 27 presentations, leading to a diverse and interesting program. We thank every-

one who contributed to the workshop, and we hope that the reader will enjoy reading the
abstracts.

Organizing Committee

Mark de Berg
Annerie Deckers (secr)
Mark Overmars (chair)






Thursday March 12
C. Icking and R. Klein, Path planning under uncertainty (how to look around a corner) 5

S. Stifter, Secure path planning .............oo ittt e 7
J.E. Mebius, ARTIBODIES: a system for modelling articulated bodies ................ 9
F. Bernardini, V. Ferrucci and A. Paoluzzi, Computation of free configuration space by
solid modeling techniques ............ ... ooiiiiiuiiiiiii i, 13
P.G. Franciosa, C. Gaibisso and M. Talamo, An optimal algorithm for the mazima set
problem for data in motion ............. . i e 17
M.J. Golin, Mazima in convez regions .............uuueueeeieuneieeaseiinennenenenn, 23
E. Kranakis and M. Pocchiola, Art gallery problems in integer lattice systems ........ 29
H. Schipper, Determining contractibility of curves .............covvviiiiiniininnnn... 31
M. Worring and A.W.M. Smeulders, Multi-scale analysis of discrete point sets ....... 33

R. Tamassia, A unified approach to dynamic point location, ray shooting, and shortest
paths in planar maps
S. Skyum, A sweepline algorithm for generalized Delaunay triangulations and a simple
method for nearest-neighbour search
O. Devillers, S. Meiser and M. Teillaud, The space of spheres, a geometric tool to unify
duality results on Voronoi diagrams
J.D. Boissonnat, A. Cerezo and J. Duquesne, An algorithm for constructing the conver

hull of a set of spheres in three dimensional space ...................cccovvvinivnnn.. 51
Friday March 13

F. Aurenhammer, F. Hoffmann and B. Aronov, Least-squares partitioning ............ 55
M. Formann, Weighted closest pairs ...............c.vouiiiiniiiiiniiniiininennen. 59
H. Bieri and P.-M. Schmidt, On the orders of finitely many points induced by rotational
SBUWEEPS .« ettt ettt taettss et tte ettt ee e et e et e e 61
C. O’Dinlaing and C. Watt, Miscellaneous topological algorithms .................... 65
M. Pocchiola and G. Vegter, The visibility complez ...............ccoviviiiiiniia.. 67
R.C. Veltkamp, The flinstones: hierarchical approzimation and localization . .......... 69
S. Schuierer, Computing the L,-diameter and center of a simple polygon ............. 73
R. Fleischer, A simple balanced search tree with O(1) worst-case update time ........ (i
H. Baumgarten, H. Jung and K. Mehlhorn, Dynamic point location in general subdivi-
T £ 81
N. Hitschfeld, W. Fichtner and P. Conti, Mized element trees: a generalization of modified
octrees for the generation of 3-D delaunay meshes ...............c.cccciviiiiiiiinin. 85
P. Widmayer, Guard data structures for fat spatial objects ........................... 89
F. Bartling and K. Hinrichs, A plane-sweep algorithm for finding a closest pair among
convez planar objects . ... ... ... e 91
H. Miiller, Contour triangulation .............c..oeiiuiiiiiiie i iiiiiennnnnenns 93
W. Preilowski, Parallel triangulation of nonconvez polytopes ......................... 97
Author’s IndeX ...t i i i e e e e et e 101
List of Participants ..........oiiiiiiiiiiiiii ittt aieei e ratenaneraneeanss 103






Path Planning Under Uncertainty
(How to Look Around a Corner)

Christian Icking Rolf Klein

Praktische Informatik VI
FernUniversitat Hagen
Elberfelder Strafie 95
5800 Hagen 1, Germany

Abstract

Let I;, Iz be two halflines in the plane meeting at vertex », and let ¢ < 7 be the
counterclockwise angle from /; to [, around v. Let s be the point on /; that has unit
distance to v. Suppose that the wedge (/;.l;) is opaque, like the corner of a building, so
that a robot standing at s cannot see any point of I; (exept v). In particular, the robot
does not have any clue as to the size of o.

The robot’s task is to “look around corner v”, i. e. to move in such a way that [y
becomes visible as efficiently as possible. We are interested in a competitive strategy
where the worst case ratio of the length of the path the robot walks before it can see Iy
and the length of the shortest path from s to a point from which I, is visible is as small
as possible.

With naive methods, one can show that 1.15 is a lower bound for the competitive
factor of this problem. Also, one can give a simple strategy that always achieves a factor
less than 1.57.

In this talk we present an optimal competitive strategy for the corner problem. It
involves the unique solution of a differential equation of Abel type. Approximately, its
competitve factor is 1.212.

[ ]






Secure Path Planning

Sabine Stifter
RISC-Linz
Johannes Kepler University
A-4040 Linz, Austria

Our investigations have been motivated by an industrial project on the automated
control of tunneling: For the lining of tunnels by concrete rings an erector (a robot in its
nature) is used. The erector consists of a body, an arm and a gripper. The body can move
along the axis of the tunnel, the arm can rotate around this axis and can be extended.

The gripper has three joints and a gripping mechanism. The gripper joints are only used
for the final assembly of the ring elements.

The task of the erector is to grip the ring elements from a conveyor, bring them to the
“insertion position” and install them. Typical obstacles in the region where the erector is
moving are conveyor belts and cables. The critical motion ~ with respect to collisions — is
the path form the gripping position to the insertion position.

There are several criteria with respect to which the path should be optimized: The
path should be

e short with respect to time,

e secure in the sense that, in case several joints are moving simultaneously, no collision
occurs even if syncronizations of the joints are not implemented,

e the angle or stroke each joint is moved should be minimal.

Although the motivation comes from a very concrete example, the formulation of the
problem is applicable in many areas of path planning: Consider a robot with n joints. For

a start position p and a goal position ¢, find a path from p to ¢ that is secure and short
with respect to time and/or length.

Shortest paths with respect to time or length have already been extensively considered
in the literature. However, it is usually assumed that any path can be followed by the
robot, not going into details how the syncronization of the joints can be done. So we
mainly stick to the problem of finding secure paths that are “short” with resepct to time
(not necessarily shortest). Stopping the motion of a joint and starting it again needs a
not neglectable amount of time. So there has to be a balance between shortest paths and
the number of interrupts for the motion.

Formally, we define a secure path to be a sequence(¢;,...,#:) of monotone (w.r.t.
each coordinate) curve in configuration space such that with each monotone segment ¢;
from p to g all curves (paths) in the box having p and ¢ as diametral vertices are collision
free, i.e. contained in free space.



Compare the following figure:

a sefure
path
™ free

space

This already implies that secure paths can be constructed by partitioning (an approxi-
mation of ) free space into boxes that only contain secure paths. The final path is contained
in a sequence of such boxes. Moving from one box to a second one is only secure if the
motion is stopped at the boundary of the box (i.e. one waits till all joints have reached
the specified position) and only then all joints start a new motion.

So one is interested in having a minimal number of boxes in the sequence in order
to minimize the number of times the joints have to be stopped. On the other hand, a
minimal number of boxes in the sequence does not necessarily yield a shortest path with
respect to time or length. The two requirements are often contradictory.

We study the complexity of finding secure paths and how to construct secure paths
that are also short with respect to time or length.



ARTIBODIES: A SYSTEM FOR MODELLING
ARTICULATED BODIES

J.E.Mebius
TU Delft
Vakgroep Technische Informatica
2600 AJ Delft
the Netherlands

1 Extended Abstract

1.1 Introduction

Articulated bodies consist of rigid links connected by joints. The ARTIBODIES system
is restricted to articulated bodies in which 1) each joint connects exactly two links and
2) there are no kinematic loops. Restriction 1) allows a graph representation: joints
correspond to edges and links to vertices. Restriction 2) amounts to allowing only free
trees as articulated-body graphs. This idea is not new: see [LIEG 1985, Ch. 4.4.3] or
[WITT 1977], but the present elaboration is, to the best knowledge of the author.

By assigning an arbitrary link as the primary link the articulated body becomes
hierarchically organised, and its graph becomes a rooted tree. Each Joint connects a
predecessor link and a successor link. The lowest level of this hierarchy consists of
the primary link, the next- higher level consists of the links connected to the primary
link, if any, etc, until on each highest level one meets links without successor (end links).
Each link except the primary link has a predecessor link, and the joint between them
really exists; the primary link has no predecessor by nature, but it is convenient to think
of the primary link as being connected to the outside world by a fictitious joint, its so-
called OSW joint, the outside world playing the role of predecessor link (OSW link).
Articulated-body trees have a finite variable unrestricted branching degree.

1.2 Coordinate systems

To each link a Cartesian coordinate system is attached: its Link Coordinate System LCS.
The OSW link carries the Absolute Coordinate System (A CS).

A link is said to be in standard position and orientation if its LCS coincides with
the ACS. A complete specification of a link in general position and orientation consists of
a fixed part: its specification relative to its LCS, and a variable part: the displacement
D from the ACS to its LCS. In computer graphics this displacement is known as the
modelling transformation.

D is uniquely represented by a rotation followed by a translation, in formula: D(r) =
R(r) + T. The rotation R introduced above is called the absolute orientation of the
link and its coordinate system; the relative orientation of a coordinate system LCS'

with respect to a coordinate system LCS is the rotation part of the displacement from
LCS to LCS'.



1.3 Design of the ARTIBODIES software

Tree data structure: there are link nodes and joint nodes. A link node has a name and
contains the absolute position and orientation of the link: the position as the vector T, the
orientation as the Euler-Rodrigues parameters of the rotation R. The link node contains
also data to draw a picture on the CRT screen. A joint node has a name and contains
the relative position and orientation of the successor link with respect to the predecessor
link, also as a vector and a set of Euler-Rodrigues parameters.

At the root we have the OSW link node. It points to a linked list of joint nodes, which
represent the fictitious OSW joints of several articulated bodies. Each of these joint nodes
points to a link node for the primary link. Each primary-link node points to a linked
list of joint nodes which may have any length, including zero, depending upon the graph
structure of the body. In general each joint node carries exactly one link node, and each
link node carries zero or more joint nodes. For convenience each joint node also points
back to the node of the predecessor link.

Procedures: all ARTIBODIES tree procedures perform conventional tree and list
traversals. They pertain to operations on a single articulated body (single-body proce-
dures) or on the entire forest of articulated bodies (multiple-body procedures).

Single-body procedures have the OSW joint node as a parameter, directly access the
primary link, do their work and terminate. Multiple-body procedures conceptually have
the OSW link node as a parameter, but are conveniently implemented with the first QSW
joint node as a parameter instead of the OSW link node. They operate like single-body
procedures, but instead of terminating after the first joint node, they process the entire
list of joint nodes.

The single-body procedures operate depth-first: they access the successor link node
and iterate through its joint node list, calling themselves recursively for each node in the
list. Iterations stop when the list is exhausted, recursions stop when end link nodes are
reached. The multiple-body procedures call their single-body counterparts iteratively until
the joint node list is exhausted.

1.4 ARTIBODIES specification language

ASL (ARTIBODIES Specification Language) is a language for specifying the position,
orientation and configuration of articulated bodies. In accordance with the hierarchical
nature of the data structure to be described, ASL is a context-free non-regular language,
which is interpreted by a finite-state automaton with stack.

The idea of ASL is best explained with the help of an example: the male human body.
Due to lack of space only the graph structure is given.

JL JLJLJLZZZ JLJLJLZZZ JLZ JLJILJILZZZ JLJLJLZZZ IJLZ YA
JL (Centre and Torso) Z
JL Z (Hip and Thigh; Shoulder and Upper Arm)

JL Z (Knee and Lower leg; Elbow and Forearm)
JLZ  (Ankle and Foot; Wrist and Hand: end links)

10



Torso, hands and feet are here modelled as non-articulated parts of the body. Primary
link is the torso.

The primary link is specified by the outermost J and L clauses and Z token. A J
clause is always followed by an L clause; together they act like an opening parenthesis.
The corresponding closing parenthesis is represented by the Z token. All joints and links
at the next-higher level are specified by J and L clauses and Z tokens within the JLZ for
the primary link. In our example they are the neck and head, the shoulders and upper
arms, the hips and thighs, and the pubic area and penis. For the limbs we must ascend
two more levels to get at the extremities.

2 Literature

LIEG 1985 Alain Liegeois, Performance and computer-aided design
Robot Technology - Volume 7
London: Kogan Paige, 1985, ISBN 0-85038-652-7

MEBI 1990  J.E.Mebius, On the rotation interpolation and animation problems
in computer graphics
Delft University of Technology, Faculty of Technical Mathematics
and Informatics, P.O.Box 356, 2628 AJ DELFT, The Netherlands,
ISSN 0922-5641, Report 90-08, 1990

MEBI 1991 J.E.Mebius, ARTIBODIES: A system for modelling articulated bodies
Delft University of Technology, Faculty of Technical Mathematics
and Informatics, P.O.Box 356, 2628 AJ DELFT, The Netherlands,
ISSN 0922-5641, Report 91-57, 1991

STAN 1980 Thomas A. Standish, Data structure techniques
Addison-Wesley, 1980, ISBN 0-201-07256-4

WHIT 1924  E.T.Whittaker, Analytische Dynamik der Punkte und starren
Korper. Berlin: Verlag von Justus Springer, 1924

WIRT 1987  N. Wirth, Compilerbouw. Schoonhoven: Academic Service, 1987,
ISBN 90-6233-234-X

WITT 1977  J. Wittenberg, Dynamics of systems of rigid bodies
Stuttgart: B. G. Teubner, 1977, ISBN 3-519-02337-7

11



12



Computation of Free Configuration Space
by Solid Modeling Techniques

Fausto Bernardini Vincenzo Ferrucci Alberto Paoluzzi

Dip. di Informatica e Sistemistica
Universita “La Sapienza”
Via Buonarroti 12, 00185 Roma

We present a new method for approximate computation of the free configuration space
of mobile systems. The geometrical methodology, introduced in [2], makes use of mul-
tidimensional solid modeling techniques. A mor e detailed discussion of the approach
presented here can be found in [1].

Modeling degrees of freedom Consider a rigid body B which is free to translate in
the plane along a given direction. Then, its position is uniquely determined by a single
scalar parameter. The set of all pos sible positions that the object may assume can be
represented by extruding it in 3D space. Any position of B is obtained by sectioning the
extruded volume with a plane, and projecting the section back onto the original 2D space.
Now, consider a system of several d-dimensional rigid bodies. For sake of concreteness,
suppose we deal with two bodies embedded in %", B; with one rotatjonal degree of free-
dom a, and B, with one translational degree of freedom ¢,. A representation of all possible
instances the system may assume accordingly to the variation of o and #; is obtained with
two extrusio n steps, where each step encodes one degree of freedom. First, B is screw
extruded because of the dependency of its position from a, resulting in B} C ®7+1; since
B; exhibits no dependency from a, a suitable linear extrusion is applied to it. Actually,
sectioning Bj, the sol id obtained by extruding B,, with a hyperplane a = cost and pro-
Jecting back onto R" must yield B, itself. Such an extrusion is calle d a straight extrusion.
The second extrusion step reflects dependency from ¢;. By a simmetric argument, since
B, does not exhibit dependence from ¢, 1 is straight extruded yielding By C ®nt2,
to guarantee sections with a hyperplane perpendicular to the Tnp4+2 axis to be constant.
Conversely, the body B, varies its position with ¢;, so an appropriate linear extrusion is
performed.

The whole system composed of two rigid bodies is now represented as a (d+2)-dimensional
object in ®"+2, with the implicit assumption that degrees of freedom are mutually inde-
pendent, i.e. the system is holonomic. The discussion generalizes easily to any number of
bodies and to any mix of degrees of freedom.

Extended Configuration Space Let the moving system R U E C R4 be composed
of a set of rigid parts R = {R;} and a set of rigid obstacles E = {E:}. The mobile
system a nd the obstacles are usually bidimensional or threedimensional, so that d =
2,3. I the obstacles move along known trajectories, the whole system can be statically
modeled taking into account time as an additional dimension, thereby obtaining a 3D or
4D spacetime, respectively.

The workspace WS C 9, a subset of the geometrical space embedding the moving
system, identifies the region of interest. A convenient choice is an enclosing hypercube —

13



Solid model of the moving system

!
Extrusion in ECS

l

Computation of the intersection sets C;

|

Projection of each intersection set from ECS onto CS

!

Union of the projected sets in CS

|

Difference between CS and the union set

Figure: Conceptual skeleton of the ECS method

in 2, 3 or 4 dimensions. The configuration space CS = I x --- x I;, C R* is the product
space of range intervals I; of configuration parameters, where k is the total number of
degrees of freedom of R. If range intervals of configuration parameters are normalized CS
is the standard k-dimensional hypercube.

Extended Configuration Space method: The Extended Configuration Space ECS
is defined as WS x CS, and therefore is a (d + k)-dimensio nal hypercube.

1.

Modeling Step. A suitable (simplicial or convex decomposition) solid model of
both R and E is given within their geometrical embedding space.

- Extrusion Step. Both the robot and the obstacles are extruded in Extended

Configuration Space, so obtaining a set S of higher dimensional convex objects .

- Intersection Step. Both auto-intersections of the robot and intersections of the

latter with obstacles are checked and computed. The result is a set of quasi-disjoint
convex sets, {C;}.

. Projection Step. Each convex set C; in ECS is projected onto CS. This process

can be thought of as a sequence of d elementary projections, where an elementary
projection is a projection along a coordinate direction. The result is the set

{Ilcs (Ci)},

which is still a collection of convex sets, now in configuration space, but these are
unfortunately no longer quasi-disjoint.

- Union Step. The set of points in configuration space which correspond to prohib-

ited configurations (configuration space obstacles) for the moving system is obtained
as

Uﬂcs (Ci).

14



6. Difference Step. The difference between the configuration space CS and the set
obtained as in Step 5 coincides with FP, the free configuration space of the moving
system RU F.

The key issue to be solved in order to obtain a practical method from the general ECS
method is mainly a representational one. How do w e represent the entities which have to
be manipulated in the different steps of th e method? How do we perform the operations
(intersection, projection, union, difference) in the higher dimensional spaces ECS and CS?

Originally [2], the technique was presented and analyzed by using a representation
based on simplicial decompositions throughout Steps 1-6. A first disadvantage is the
exponential growth in the size of the representation while building the ECS representation
of the moving system, whereas a second weak point is the difficulty of performing in an
efficient way the projection Ilcg (C;), as w ell as of computing the result of the required
union and difference operations.

Preliminary discussion We discuss a different instance of the method, which solves
many of the previous difficulties, while using the same high-level conceptual scheme. The
idea is to push back the computation of all geometric details to the very last minute,
using an implicit representation scheme IR as long as possible and moving to an ezplicit
representation scheme R only when strictly necessary. A further keypoint is that R must
exploit as well as possible the peculiarity of the projection operation and the simplicity of
the geometry o f the intersections in ECS — a set of quasi-disjoint convex sets {C;}.

It is necessary to switch to an explicit representation scheme R when t he projection
step has to be performed. The following operations must be performed with reasonable
computational effort:

(a) given the implicit representation IR of the convex set C;, compute its explicit rep-
resentation R(C;).

(b) given R(C;), compute R(Ilcs (C;)), the represent ation of the projection of C; onto
CS.

(c) given the representation of the projections of the C;’s onto CS, compute the repre-
sentation of their union

R (U Mes (Ci)) ,

and of FP as the difference between CS and the former.

The choice of both TR and R is critical for the practicability and effectiveness of the
resulting algorithm. Moreover, since the necessity of conversion arises, the two schemes
can not be selected independently from each other. In the combination we propose IR is
given by a set of linear inequalities and R by a bintree, a dimension-independent gener-
alization of quadtrees and octrees. The representation conversion (a) is performed by its
reformulation as a CSG to bintree conversion problem. Th e projection (b) of a bintree
and the computation of union (c) deserve no addition al difficulties.

15



Potential for Parallelization A peculiarity of the method proposed in the previous
sections is a high degree of data independence. Starting from the modeling step, consider
a convex cell of the decomposition of R U E as the basic data unit to be manipulated.
Such convex cells can be distributed to different processors, and the extrusion step can be
performed in parallel with no interprocessor communication. At this point, each processor
owns a set of convex cells in ECS. Due to the properties of the extrusion operator, cells
belonging to such a set are quasi-disjoint, so that only cells belonging to distinct sets need
to be checked for intersection. However, the intersection step requires intensive interpro-
cessor communication. After that, conversion to bintree representation and projection of
each convex cell can be executed in parallel, whereas resincronization is required for the
union operation in CS.

Assuming a distributed memory parallel machine, we observe that the bintree repre-
senting a convex cell might not fit entirely in local memory. An alternati ve is to subdivide
the ECS space and assign a region to each processor, in an attem pt to balance the amount
of geometric data to be held in their own memory by different processors. When the ECS
space is subdivided in cubic cells, the same technique as before can be applied, since the
conversion algorithm from ZR to R does handle the case of non-convex objects.

References

[1] BErRNARDINI, F., FERRUCCI, V., AND PaoLuzzI, A. Computation of free config-
uration space with solid modeling techniques. Tech. rep., Dip. di Informatica e Sis-
temistica, Universita di Roma “La Sapienza”, Rome, Italy, 1992. In preparation.

[2] PaoLuzzi, A. Motion planning+solid modeling=motion modeling. Tech. Rep. 17-89,
Dip. di Informatica e Sistemistica, Universitd di Roma “La Sapienza”, Rome, Italy,
Nov. 1989. Submitted.

16



An Optimal Algorithm for the Maxima Set Problem

for Data in Motion*
(Extended Abstract)

Paolo Giulio Franciosa

Universita “La Sapienza”, Dipartimento di Informatica e Sistemistica, via Salaria
113, 1-00198 Roma, Italia.

and Carlo Gaibisso

Istituto di Analisi dei Sistemi ed Informatica, viale Manzoni 30, I-00185 Roma,
Italia.

and Maurizio Talamo

Universita “La Sapienza”, Dipartimento di Informatica e Sistemistica, via Salaria
113, I-00198 Roma, Italia.

1 Introduction

In this paper we consider a quite new context, in which algorithms are designed in order
to on-line process a sequence of queries concerning a set of moving objects with bounded
speeds.

The fact that objects are moving instead of changing (i.e. appearing and /or disappear-
ing) makes exploitable the knowledge about the positions they assumed.

If a classical dynamic approach is followed in the solution of data motion problems, a
change in a piece of data will always imply some delete/insert operation, while, according
to the data motion approach, if an object moves without modifying its relationship with
other objects, as far as the query answer is concerned, this move could actually result in
no action at all.

The paper refers to the computational model introduced by Kahan [2] for problems
involving moving data. In the same paper results concerning the data motion version of
some basic problems in 1-dimension are derived, such as determining maximum, median,
and minimum gap of a set.

We face the well known problem of determining the maxima. of a set of points, but in
this context points represent the position of moving objects in ®¢, for any d, each having a
known speed bound. We consider the problem in 2 dimensions in the case of both uniform
and non-uniform speed bounds.

In both cases we give a 3-lucky algorithm and prove that 3 is the optimal lucky ratio.
Unformally speaking, the lucky ratio of an algorithm D is the worst case ratio between
the number of objects D and the best non-deterministic algorithm, they must investigate
for their actual position ( Update operations) in order to answer the same query (see [2]
for a formal definition of lucky ratio).

*Work partially supported by the ESPRIT II Basic Research Actions Program of the European Com-
munity under contract No. 3075 (project ALCOM) and by the Italian MPI National Project “Algoritmi e
Strutture di Calcolo”.

17



The algorithm dealing with uniform speed bounds processes a single query ¢ in O (min (k-
log?n,n -logn)) worst case computation time, where k is the number of maximal objects
in the solution plus the number of Update operations performed answering q.

In the non-uniform case an O(n-log n) worst case computation time algorithm is given.

Both algorithms require O(n) worst case space.

As far as the d-dimensional problem is concerned, we prove that for any k, not any
k-lucky algorithm exists in 3 or more dimensions. This means that for any deterministic
algorithm D there are instances that could be solved by performing only one Update
operation, while D must investigate the actual position of all objects.

2 Problem

We are given a set M = {py,pq,...,pn} of point-shaped objects assuming positions in R4
and a set R = {ry,rs,...,7,} of ratesin R such that, if P(p;,t) denotes the position of Pi
at time ¢, dist!(P(p;,t), P(p;;t+ A)) < A -r;, for any 1, A > 0 and p; € M. The problem
consists in on-line processing a sequence of queries M axz(t1), Maz(ts), ..., Maz(ty,), where
Maz(t;) denotes the set of all mazimal objects, i.e. objects whose position at time ¢; is
maximal [4] with respect to those of all other objects, and t; is assumed to be less than
or equal to t;;1,4=1,2,...,m — 1. Furthermore, since the sequence has to be processed
on-line, t; will not be available until Maz(;_;) has not been answered.

3 Model and Basic Definitions

The model introduced by [2], which we will refer to in the paper, can be considered as a
RAM with uniform costs [1] having an open window on the world, which consists of a set
M = {p1,...,pn} of point-shaped moving objects assuming positions in Rd.

The RAM set of primitives is extended by the Update(p) operation, which, if invoked
while processing query ¢(t), returns the position P(p,t) of object p at that time.

A data motion algorithm A on-line processes sequences of queries Q = a(t1),. ., q(tm),
with ¢; < t;41,i=1,2,...,m — 1, and involves both RAM and Update operations.

The worst case computation time of A is defined as supg maxeeq C%(g), where C7T(q)
is the number of RAM operations performed by A to process query q.

The performance of A in terms of Update operations is compared with that of an
hypothetical lucky algorithm.

In this respect, let us assume that, for some p; € M, the last Update(p;) operation
has been performed while processing query ¢(t): at time ¢ = ¢t + A all is known about
the position of p; is the free range [fi1, fn1] X ... X [figs faq] in which it could lie, where
[fik> fak] is the projection of { z | dist(z, P(p,t)) < A - r;} on dimension k.

The set of all the free ranges of objects in M at a certain time will be referred to as
the state of knowledge at that time.

In order to process query ¢(t) the state of knowledge at time ¢ could be too vague, thus
requiring some Update operations. The lucky algorithm selects in a non-deterministic way
which objects to update in order to perform the minimum number of such operations, as
if it already knew the actual position of objects within the corresponding free ranges and
just wants to prove the correctness of its solution.

! dist(a,b) denotes the L® distance between a and b.

18



Algorithm A is said to be k-lucky if for all queries ¢ and with respect to any state
of knowledge, C{(q) < k- CY(q) + O(1), where CY(q) and C¥(q) denote the number of
Update operations performed respectively by A and the lucky algorithm to process query
q.

Algorithm A has optimal lucky ratio k if A is k-lucky and no algorithms k’-lucky exist,
with ¥/ < k.

Given two free ranges a = [an,an1] X [a12,ah2) X ... X [a1d, apg) and b = [byy, bpy] X
[bi2, bh2] X . . . X [bi, bra), we say a dominates (resp., potentially dominates) b if and only if
(a1, ...a1q) (resp., (apy,- .., ang)) dominates (bp, ..., bha)-

A free range is said ezternal if and only if is not potentially dominated by any other
free range in the current state of knowledge.

A free range a is in conflict with b if and only if a not empty set D of indices of
coordinate exists such that (Vi € D) [aii, ani] N [bii, bai] # @ and either (Vi € {1,...,d} —
D) api < by, or (Vi € {1,...,d} = D) a; > bp;.

It is worth noting that if a is in conflict with b it is not possible to decide about the
dominance relation between object,. i.e. the object of M corresponding to a, and objecty
without performing at least one Update operation.

A set C of free ranges is a crucial set if and only if either

1. C = {a,b}, a and b are external and « is in conflict with b, or
2. C = C'U {b}, where:

- C' = {a},d?,...,a*} is the set of all external free ranges that potentially dom-
inates b;

- C' does not contain any couple of in conflict free ranges;

b is not potentially dominated by any other free range;

b is not dominated by any free range.

A free range a is said mazimal if and only if for any free range b in the current state

of knowledge (bp1, ..., brqs) does not dominate (g1, .. .,ayq), i.e. object, is guaranteed to
be maximal.

4 Lower Bounds
The following lemma is crucial in proving our lower bounds:

Lemma 4.1 Let ST be any update strategy for the data motion mazima problem and K

any state of knowledge containing a crucial set C, then ST must Update at least one free
range in C.

Concerning the 2-dimensional version of the problem, it is possible to prove that:

Lemma 4.2 Let ST be any deterministic strategy for the data motion mazima problem in
2 dimensions: it is possible to generate a configuration C of 3 free ranges and to locate the
corresponding objects in such a way that ST must perform 8 Update operations in order
to determine which among the objects are mazimal, while the lucky strategy Lucky needs
only one Update to solve the same problem.

19



Lemma 4.2 immediately leads to:

Theorem 4.3 There is no update strategy for the data motion mazima problem in 2
dimensions that can lead to a k-lucky algorithm with k < 3.

Let us now consider the d-dimensional case, d > 3. Lemma 4.2 becomes:

Lemma 4.4 Let ST be any deterministic strategy for the data motion mazima problem in
d dimensions, d > 3: for any integer n > 0 it is possible to generate a configuration C of n
free ranges and to locate the corresponding objects in such a way that ST must perform n
Update operations in order to determine which among the objects have mazimal position,
while Lucky needs only one Update to solve the same problem.

Leading to the following lower bound:

Theorem 4.5 There is no update strategy for the data motion version of the mazima
problem in d dimensions, d > 3, that can lead to a k-lucky algorithm, for any k.

This means that even an optimal algorithm in the worst case has very poor perfor-
mances with respect to the lucky ratio.

5 Update Strategy

The update strategy S7™* we adopt in solving the data motion maxima problem is the
following;:

update all the non point-shaped free ranges belonging to some crucial set in the
current state of knowledge, if any. Stop. otherwise.

It is possible to prove that ST* always terminates and generates a state of knowledge
from which the set of maximal objects can be determined without performing any Update
operation.

The strategy performance in terms of lucky ratio are fixed by the following theorem:

Theorem 5.1 The above introduced strategy for the data motion mazima problem, in 2
dimensions has optimal lucky ratio 3.

6 3-lucky algorithms in 2 dimensions

Both the algorithms we describe, which solve the 2-dimensional version of the problem for
uniform and non-uniform rates, implement strategy ST*.

In the case of non-uniform rates crucial sets are found by sweeping the plane from top
to bottom. The event point schedule coincides with the order in which the sweep-line I
enters free ranges in the current state of knowledge K.

In order to answer a new query, a priority queue containing the event points is built
from scratch.

While sweeping the plane, the algorithm maintains the left-to-right sequence of the
external free ranges in A" whose north-west vertex lies above I. When a crucial set is

20



detected all involved free ranges are updated in such a way that there will be no crucial
sets above /.

When the whole plane has been swept, the set of maximal objects corresponds to the
set of external free ranges.

Obviously, since it strictly implements strategy ST,

Theorem 6.1 The proposed algorithm has optimal lucky ratio 3.

In addition it is possible to prove that:

Theorem 6.2 the algorithm has O(n-logn) worst case computation time and needs O(n)
worst case space to answer a single query.

Concerning the uniform rates version of the problem, instead of organizing from scratch
the information related to the current state of knowledge each time a new query has to be
answered, such an information is on-line maintained while processing the whole sequence
of queries.

This approach is made possible by the data structure proposed by Overmars and van
Leeuwen in [3]. The current set of external free ranges is scanned, updating the data
structure each time a set of Update operations is trigged by the detection of a crucial set.

It is possible to prove that:

Theorem 6.8 the proposed algorithm requires O(min(k -log? n,n -log n)) worst case com-
putation time to process a query, where k is the number of mazimal objects in the solution
plus the number of Update operations, and needs O(n) worst case space.

7 References

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithm. Addison Wesley Publ. Co., Reading, Massachussetts, 1974.

2. 5. Kahan. A model for data in motion. In Twentythird ACM SIGACT Symp. on
Theory of Computing, pages 267-277, 1991.

3. M.H. Overmars and J. van Leeuwen. Maintainance of configurations in the plane.
Journal of Comp. and System Sc., 23:166-204, 1981.

4. F.P. Preparata and M.I. Shamos. Computational Geometry, an Introduction. Springer-
Verlag, New York, 1985.

21



22



Maxima in Convex Regions
(Short Abstract)

Mordecai J. Golin *
INRIA Rocquencourt
7815 Le Chesnay Cedex — France
email: golin@margauz.inria.fr

Suppose that C is a bounded convex planar region. Let Pi, --., pp be drawn II.D.
from the uniform distribution over C and let MS be the number of the points which
are maximal. In this note we present results showing how the asymptotic behavior of
E (MS) depends on the geometry of C.

1 Introduction

In this note we discuss E (Mf) , the expected number of maximal points in a set of n

Independently Identically Distributed (I.L.D.) points drawn from the uniform distribution
over some bounded convex planar region C.

The corresponding question for convex hulls has been well studied. Renyi and Sulanke
(5] [6] proved that if n points are chosen L.ID. from C then, if C is a convex polygon, the
expected number of convex hull points is #(logn) while if C is convex and has a doubly
continuously differentiable boundary the answer is 8 (n1/3) . Dwyer [3] provides a survey
of more recent results. ’

The expected number of maxima has not been examined nearly as closely. It has been

known for many years [1] that if C is the unit square then E (M,? ) = 6(log n). Recently
Dwyer [3] proved that E (M,? ) = 6(y/n) when C is a circle and also proved a general upper

bound E (M,? ) = O(4/n) that is valid for any bounded convex planar C (this result can
also be found in Devroye [2]).

In this paper we study the asymptotics of E (M,f' ) in detail. Note that the condition
that C be convex is important. If it is abandoned then it can be shown that, for all
functions f, f(n) < n/log?n, and f slowly varying at infinity, there is some C such that
E (M) = 6(f(n)) (see [4]) for details). If C is constrained to be convex the situation

is very different. We show in this paper that for convex C either E (M,,C ) = 0(y/n)
or E (M,? ) = O (log n) ; nothing between these two functions is possible. We also give

sufficient conditions for E (Mnc ) =6(1) and E (M,? ) = 6(log n).

The rest of the paper will use the following notation: if p = (p.z,p.y) and ¢ = (¢.z,q.%)
are planar points we say that p dominates ¢ if p.x > q.z and p.y > ¢q.y. If § = {p1, ..., pn}
is a set of points we say that P is mazimal in S if there is no ¢ € S, ¢ # p, such that ¢
dominates p. We set

MAX(S) = {p : p is maximal in S}.

*This work was supported by a Chateaubriand fellowship from the French Ministére des Affaires
Etrangeres and by the European Community, Esprit II Basic Research Action Program Number 3075
(ALCOM).

23



See Figures 1 (a), (b) and (c). Suppose C is a bounded planar region. Let § = {p1, ..., Pn}
be a set of n points drawn LLD. from the uniform distribution over C. Set MS = [MAX(S |

to be the number of maximal points in S. We will study E (Mnc ) , the expected number
of maximal points.

We will also look at the outer layer of S, the set of all p € S such that one of the
four quadrants of the Cartesian axes centered at p contains no point in S (see [2] for more
details). A set’s outer layer always contains the set’s convex hull. We define OL(S) to be
the outer layer points of § and O LS = |OL(S)| to be the number of such points.

2 Results

In what follows we will always assume that C is a closed region. We do this to ensure that
C contains its boundary, 8C : this assumption makes our proofs slightly simpler. Notice
though that the assumption is not restrictive. I C is any bounded convex region then

E (Mf ) =F (M? ) because a point chosen from the uniform distribution over C is in 8C
with probability zero. It thus suffices to analyze E (M,?) for closed C. Our first theorem
is

Theorem 1 (The Gap Theorem) Let C be a planar conver region. We say that a
point p € C is an upper-right-hand-corner of C if p dominates every point ¢ € C. The
ezpected number of mazima among n points chosen LI D. uniformly from C is qualitatively
dependant upon whether C has an upper-right-hand-corner:

o If C does not have such a corner then E (MS) = 6(/n).
e If C does have such a corner then E (M,f') = O(logn).

Note that for all convex C E (M,f" ) can not behave like a function asymptotically between

log n and /7. Hence the name Gap Theorem, alluding to the gap between the two possible
behaviors.

Example 1 Figures 1(b), (c), (d), (f), and (h) all have upper-right-hand-corners and thus
have E (Mf) = O(logn) : figures 1 (a), (e), and (g) don’t and so have E (Mnc) = 6(/n).

Recall that OLS is the number of outer-layer points among n points chosen 1.I.D.
uniformly from C. Theorem 1 can be shown to say quite a lot about the expected number
of outer layer points.

Corollary 1 Let C be a planar convez region. If C is a rectangle with sides parallel to
the Cartesian azes then E (OLS) = O(log n). Otherwise E (OLS) = 0(/n).

Example 2 In Figure 1, (a) has OL = 6(log N) while all of the other regions have
OLS = 6(/n).

Theorem 1 tells us that when C does not have an upper-right-hand-corner then E (M,? ) =
6(+/n). When C does have such a corner then all that we know is that E (Mnc ) = O(log n).

24



To derive tighter bounds it is necessary to have better information about the tangents to
the boundary of C at the corner. We digress momentarily to introduce notation describing
these tangents.

Let C be a convex region. We say that C' has an upper-right-hand-corner p if p € C
dominates every point ¢ € C. If C has such a corner then the boundary curve of C as it
leaves p can be divided into two parts: one curve that goes down and the other that goes
to the left. We define two functions d(«) and /(a) :

d(a) = [ such that (p.2 — B,p.y — a) is on the down curve,

l(a)

See Figure 2. While these functions are not defined for all real a the convexity of C
ensures that there is always some € > 0 such that both of the functions are well defined,
convex and nondecreasing in [0, €] with d(0) = /(0) = 0. Since the functions are convex
their left and right derivatives exist everywhere in the interval except for the undefined
left derivative at 0 and the undefined right one at e. :

The down tangent to C at p is the tangent to the down curve at p. The slope of this
tangent line is totally determined by the value of the right derivative d,(0). If d, (0)=0
the tangent line is vertical. Similarly, if I (0) = 0 the left tangent line, the tangent to the
left curve, is horizontal. This is illustrated in Figure 2.

The next two theorems discuss the behavior of E (Mnc) when C has an upper-right-
hand-corner .

B such that (p.z — a, p.y — 3) is on the left curve.

Theorem 2 Let C be a convez planar region with upper-right-hand-corner p. If the down
tangent at p is not vertical and the left tangent at p is not horizontal then E (Mnc) = 6(1).

Otherwise E (MS) = Q(1).
Example 3 Figures 1 (b) and (f) have E (Mf) = 6(1); figures 1 (c), (d), and (h) have
E (Mg) = Q(1).

We now present a tight lower bound for many of the cases in which the left tangent is
horizontal and/or the down tangent is vertical.

Theorem 8 Let C be a convex planar region with upper-right-hand-corner p. Suppose

Jurther that at least one of the two tangents to C at p fulfills the following (Lipschitz-like)
conditions:

1. The down tangent is not vertical and there are positive constants § and ¢ such that
l(a) < calts.

2. The left tangent is not horizontal and there are positive constants § and ¢ such that
d(a) < caltd.

3. There are positive constants é and ¢ such that d(a) < ca*S and I(a) < cal*S.

Then E (M) = 6(log n).

25



Condition (1) forces the left tangent to be horizontal and condition (2) forces the down
tangent to be vertical. The conditions of the theorem can be thought of as requiring not
only the left (down) tangent to be horizontal (vertical) but the curve leaving C itself to
be “almost” horizontal (vertical) near p. These conditions might seem artificial but in
practice are satisfied quite often. For example:

Example 4 As an application of Theorem 3 we find that if C is a convex polygon with
an upper-right-hand-corner and a vertical down tangent and/or a horizontal left tangent
at the corner then E (M,?) = f(log n), e.g. Figures 1 (c), (d), and (h) have E (M,(;') =
6(log n). Combining this with Theorems 1 and 2 we find that if C is a convex polygon
then E (Mf) can have only one of three possible behaviors: 8(1/n), 8(logn), or o(1).

Acknowledgements: The author thanks Luc Devroye and Rex Dwyer for their emailed comments
concerning the expected number of maxima. He also thanks Jon Bentley for the idea which led to
the proof of Theorem 1 part (i).

References

[1] 3. L. Bentley, H.T. Kung, M. Schkolnick, and C.D. Thompson, “On the Aver-
age Number of Maxima in a Set of Vectors and Applications,” Journal of the Asso-
ciation for Computing Machinery, 25(4) October 1978, 536-543.

[2] Luc Devroye, Lecture Notes on Bucket Algorithms, Birkhauser Verlag, Boston, 1986.

[3] Rex Dwyer, “Kinder, Gentler, Average-Case Analysis for Convex Hulls and Maximal
Vectors,” SIGACT NEWS, 21(2), Spring 1990, 64-71.

[4] M. Golin, “Notes on Maxima in Non-Convex Regions (Extended Version),” INRIA
Rapport de recherche 1535 (1991).

[5] A. Renyi and R. Sulanke, “Ueber die konvexe hulle von n zufallig gewahlten punk-
ten, I,” Z. Wahrschien, 2 (1963) 75-84.

[6] A. Renyi and R. Sulanke, “Ueber die konvexe hulle von n zufallig gewahlten punk-
ten, I1,” Z. Wahrschien, 3 (1964) 138-147.

26



g .
* &
®) © @
© ® ® )

Figure 1: Figures (a), (b), and (c) each contain 10 points the maxima of which are marked
by x-s; (a) contains 5 maximal points, (b) 1 maximal point and (c¢) 3 maximal points.
Figures (b), (c), (d), (f) and (h) all have upper-right-hand-corners (marked with a large
point); the other figures don’t have a corner. Figures (c) and (d) have horizontal left
tangents; figures (c) and (h) have vertical down ones.

1(a)

Figure 2: C has an upper-right-hand-corner p with a vertical down tangent at p and a
non-horizontal left one. The middle figure portrays d(a), the displacement of the down
boundary curve from the vertical line through p and the rightmost figure portrays I(a),
the displacement between the left boundary curve and the horizontal line through p.

27




28



Art Gallery Problems in Integer Lattice Systems

Evangelos Kranakis!
Michel Pocchiola?

Abstract

The camera placement problem concerns the placement of a fixed number of point-
cameras on the integer lattice of d-tuples of integers in order to maximize their visi-
bility. We survey some of the combinatorial optimization and algorithmic techniques
which have been developed in order to study this and other similar problems in the
context of lattices and more generally, in combinations of lattice systems and tilings.

Figure 1: Optimal Configuration of 27 cameras in dimension 3

References
(1] E. Kranakis and M. Pocchiola. Enumeration and visibility problems in integer lattices. In
Proceedings of the 6th Annual ACM Symposium on Computational Geometry, 1990.

[2] E. Kranakis and M. Pocchiola. A brief survey of art gallery problems in integer lattice systems.
CWI Quaterly, 4(4), December 1991.

[3] M. Pocchiola. Trois thémes sur la visibilité : énumération, optimisation et graphique 2D. PhD
thesis, Université de Paris Sud, centre d’Orsay, Octobre 1990.

!Carleton  University, School of Computer Science Ottawa, Canada, K1S 5Bs.
{(kranakis@scs.carleton.ca)

2Laboratoire d’Informatique de I’Ecole normale supérieure, ura 1327 du cnrs, 45 rue d’Ulm, 75230 Paris
Cédex 05, France. (pocchiol@dmi.ens.fr)

29



30



Determining contractibility of curves

Haijo Schipper
Department of Computing Science,
Groningen University,

P. O. Box 800,

9700 AV GRONINGEN,

The Netherlands.

Abstract

In the last few years a new branch of computational geometry computational topology
has developed. It studies complexity of and algorithms on topological structures just as
computational geometry studies geometrical structures. Topology, sometimes informally
called rubber sheet geometry, is closely related to geometry: however, it deals more with
relations than with realizations. That is one is i.e more interested in incidence relations
of triangles than in the actual coordinates of the vertices.

When studying curves on topological surfaces, one of the basic questions is whether
a curve contracts to a point. Stillwell calls this problem the contractibility problem. The
problem was solved from a mathematical point of view more than a century ago, in the
1880s. The solution uses the universal covering space of the surface, and the following
theorem :

Theorem 0.1 A curve ¢ on a 2-manifold M can be contracted to a point if and only if
the lifted curve ¢ in the universal covering space U ( M) is closed.

The algorithm will use the theorem above and constructs a part of the universal cover-
ing space to determine if a lifted part is closed and hence will answer the question whether
a given curve on a 2-manifold is contractable to a point or not.

The algorithm will work in O ( g%k + gn) time, using O ( g2k + gn) storage, where g is
the genus of the surface, n the number of triangles of the surfaces, and k the number of
edges of the curve. :

31



32



Multi-scale analysis of discrete point sets.
Marcel Worring* | Arnold W.M. Smeulders

Department of Computer Science
University of Amsterdam

Abstract

The computational aspects of the a-shape and the a-hull [2] [3] are well studied.
In the reference, little attention is paid to the potential of the a-shape as a descriptor
of the shape of a discrete point set. We pose a set of general criteria a shape descriptor
for discrete point sets should statisfy and prove that the directed a-shape, which we
call the a-graph, statisfies the posed criteria. It yields a multi-scale description of
the point set, which is proved to be closely related to both the opening scale space
known from mathematical morphology [1] as well as the pseudo-convex hull [5]. As
an application we show the use of the a-graph in the multi-scale analysis of industrial
objects.

1 Shape criteria.

Any geometrical structure to capture the shape of a point set should:

¢ define a boundary: The geometrical structure should define the contour of S.
Such a contour in fact is an ordered subset of S and hence is a directional graphon §
indicating a relation among the elements of S. The contour thus defined provides a
local definition of the form of S, and permits derivation of contour parameters such
as length, orientation and local curvature. We concentrate on a proper definition of
the boundary of S.

The geometrical structure should have the following properties:

e scale: Any shape structure meant for general use should have a parameter regulat-
ing the scale. Such a parameter is indispensable when there is no a priori knowledge
about the amount of detail of interest. To be precise, shape structures at different
scales should be part of an one parameter family. In this one parameter family, the

shape structure at a lower scale should be computable from a shape structure at
higher scale [4].

e minimal: At every scale the shape description should contain the necessary bound-
ary information of S, but not more than that.

o increasing interior: Any shape descriptor associates an area with the point
set where additional points can be inserted not leading to a change in the shape
structure. We define this area as the interior of S. The interior of S is a function of
scale as defined above. As a consequence, the interior at lower scale should contain
any interior at higher scale.

e consistency with the continuous case: For the case where the point set S is
the result of a sampling from a continuous object S, the boundary as defined on §
should approach the boundary of § when the sampling is infinitely dense on S.

*This work was supported by the SPIN projects "3D Computer Vision” and ”3D Image Analysis.”

33



2 Properties of the a-graph.

The following properties of the a-graph, unless otherwise stated, are proved in [6].

o scale: The number of a-extreme elements decreases with increasing a [2]. We
express the amount of detail of the a-graph as the number of a-extreme elements.
Then the a-graph defines a family depending on the single parameter a. In this
family we have that if o’ > o' then the a-graph for « = o can be computed from
the a-extreme elements found for o = «'.

e minimal: The a-extreme of S are a necessary and sufficient point set for computing
the a-graph of S. Therefore, the description is minimal. This immediately gives the
clue to the observation in [2] that "Different values of a give rise to hulls that have
only in some sense essential points on their boundary”.

e increasing interior: The interior corresponding to the a-graph (as defined in
section 1), is the a-hull. The area enclosed by the a-hull increases with increasing
a. This was observed in [2] but not proved.

e consistency with the continuous case: The boundary of a continuous set S is
for sufficiently small a equal to the a-hull. As a consequence, all elements of the
boundary are elements of the a-extreme set of S. Therefore, in the limit case of
infinitely dense sampling, the a-graph of any sampling S converges to the boundary
of S.

e relation with mathematical morphology: The a-hull is equivalent to the
opening scale space as defined in [1]. In fact, the a-hull is the closing of X with a
disc of radius —1/a. However, the a-hull is a more general notion, as it is defined for
both negative and positive values of . The scale space in the reference is equivalent
to the case of negative a only. The case of positive a is equivalent to the pseudo-
convex hull as defined in [5]. So, the a-hull combines the openings scale space and
the pseudo-convex hull into an one parameter family.

34



The preceding properties show that the a-graph satisfies all the shape criteria raised
in section 1.

Figure 1: This shows the original image of an ob ject taken from the Granfield benchmark.

3 Applications.

A task for which the a-graph is particularly suited is the recognition of industrial ob jects.
The recognition is clearly multi-scale in character.

To demonstrate the performance of the method, we selected an image of one of the
objects from the Granfield benchmark (see figure 1).

This image was thresholded, using an automatic thresholding algorithm, resulting in a
binary image. For clarity the binary image was sampled at reduced resolution (see figure
2(a)). From there the a-graph was computed for different values of a. The ones showing
detail of interest are selected (see figure 2(a-f)) for display in this paper.

In this case we used a regular grid, but this is not essential for the method. In fact,
one can choose the sampling such that in highly detailed areas, sampling is more dense
than in homogeneous areas.

In the first figure, the image is available in full detail as a collection of individual
points. With increasing o smallest holes disappear first, related to the size of the hole
with respect to the radius of the generalized disc. The larger holes also disappear and for
o = 0 the convex hull is reached. Finally elements are revealed, which define the global

35



shape of the whole object.

(2) @ = dasiaity ®) a=-1/S ) a=-i/10

T T @a=o M amsm

Figure 2: The a-graph is shown for increasing a. The direction of the edges is used to
define an enclosed area. It is important to note that this area is not the interior of the
point set, because that is the a-hull. Further note that the extreme elements are the
elements on the boundary of this enclosed region.

For o sufficiently small the a-graph is equal to the point set S (a). In (b) the two largest
holes in the objects are visible. Only one of these holes remains at a larger scale (c). An
area containing no holes remains in (d). For @ = 0 the enclosed region is equal to the
convex hull of S and at this specific scale the region is equal to the interior of the point
set.

When o > 0 a small set of extreme elements remain, sufficient for computation of features
as global orientation etc.

4 Conclusions.

For the shape analysis of a sparse point set it is important to have a proper definition of
the boundary of the point set. This definition of the boundary is not unique and must
be a function of scale. At every scale it should give a minimal description. Further,
the boundary should have an interior increasing with scale and its definition should be
consistent with the continuous case. The a-graph satisfies all these criteria.

On the a-graph boundary features like length and curvature can be defined. A proper

36



definition of boundary features such that they are consistent with the continuous case is
subject of further study.

Applications of the a-graph are found in areas where solid ob jects are studied which
have a multi-scale character. Using an example from industrial vision it was shown that
the a-graph has great potential in the multi-scale analysis of industrial objects.

References

[1] M Chen and P Yan. A multiscaling approach based on morphological filtering. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(7):694~670, 1989.

(2] H. Edelsbrunner, D.G.Kirkpatrick, and R. Seidel. On the shape of a set of points in
the plane. IEEE Transanctions on Information Theory, 29(4):551-559, 1983.

[3] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.
[4] J.J. Koenderink. The structure of images. Biological Cybernetics, 50:363-370, 1984.

[5] P.W. Verbeek and F.C.A. Groen. Convex pseudo-hull algorithm for two and more di-

mensions. In Proceedings of the Helsinki Converence on Image Processing and Pattern
Recognition, 1981.

[6] M. Worring and A.W.M. Smeulders. The shape of a discrete point set. Submitted for
publication in "IEEE Transactions on Pattern Analysis and Machine Intelligence”.

37



38



A Unified Approach to Dynamic Point Location, Ray
Shooting, and Shortest Paths in Planar Maps

Roberto Tamassia
Brown University
Dept. of Computer Science
Providence, RI 02912-1910
USA

We describe a new technique for dynamically maintaining the trapezoidal decompo-
sition of a planar map M with n vertices, and apply it to the development of a uni-
fied dynamic data structure that supports point-location, ray-shooting, and shortest-path
queries in M. The space requirement is O(nlogn). Point-location queries take time
O(log n). Ray-shooting and shortest-path queries take time O(log®n) (plus O(k) time if
the k edges of the shortest path are reported in addition to its length). Updates consist
of insertions and deletions of vertices and edges, and take O(log®n) time (amortized for
vertex updates). (Joint work with Y.-J. Chiang and F.P. Preparata.)

39



40



A Sweepline Algorithm for Generalized Delaunay
Triangulations and a Simple Method for
Nearest-Neighbour Search !

(Extended abstract)

Sven Skyum
Computer Science Department, Aarhus University, Denmark

We give a deterministic O(n logn) sweepline algorithm to construct the generalized De-
launay triangulation. The algorithm uses no transformations and it is developed solely
from the sweepline paradigm together with greediness. A generalized Delaunay triangula-
tion can be based on an arbitrary, strictly convex Minkowski distance function (including
all L, distance functions for 1 < p < oc) in contrast to ordinary Delaunay triangulations
which are based on the Euclidean distance function.

A direct application of the algorithm is a construction, in one phase only, of a structure
for nearest-neighbour search.

Definitions and notation

The coordinates of a point p € ®2 are denoted (z(p), y(p)).

For three points p,q,r € ®2, LT(p,q,7), (RT(p,q,7)) is true if p,q and r form a left
(right) turn.

For a set M in ®2, 9M denotes the boundary of M.
Finally g denotes the line segment between two points p and ¢ in R?.

A pseudo unit disk with centre (0,0) is a compact strictly convex set U with smooth
boundary such that (0,0) is an internal point of U. The family of pseudo disks given by
a pseudo unit disk Uis {c+ R-U|ce R, R ¢ R}. The pseudo disk ¢ + R - U is said to
have centre ¢ and radius R.

The Minkowski distance between p and ¢ (d(p,q)) is the radius of the pseudo disk with
centre p and ¢ on its boundary. That is, ¢ € d(p+ d(p,q)U). Note that d(-,-) is not
necessarily symmetric.

Let a family of pseudo disks be fixed in the following. When we among other things refer
to distance, disk, cocircular, they will always refer to the given set of pseudo disks.

For three different non-colinear points p:¢,7 € R?, D, denotes the unique disk with
P, q,7 on its boundary, Cpgr denotes the centre of Dpyr, Rpgr denotes the radius, and tpgr
denotes the unique point in Dy, with maximal y-coordinate.

Let S = {p1,p2,- -+, pn} be a set of sites in N2. We assume that y(p1) < y(p2) < -+ <
y(pn)-

For a subset M of S and a disk D, Empty(D, M, s) denotes that M is a subset of aD,
D\ 8D contains no points from S, and no points in D have y-coordinate greather than s.

' This research was (partially) supported by the ESPRIT II Basic Research Actions Program of the EC
under contract No. 3075 (project ALCOM).

41



Formally

Empty(D,M,s) = (M COD)A((D\AD)n S = @) A (D C Below,),

where Below, denotes the closed half plane {(z,y) | y < s}.
All graphs involved in this paper will be planar. Hence the notion graph will be used to
mean both an undirected graph in the normal sense and a straight line embedding of it.

A generalized Delaunay triangulation can be defined as follows:

For a set of sites $ = {py,ps, -, Pn} in N2, the generalized Delaunay triangulation of S is
the graph G = (S, E), where E = {{p;, p;} | there is a disk D where Empty(D, {pi, p,},0)}.

Sketch of the method

The paradigm on which the algorithm is based is, apart from the sweepline paradigm, that
it is greedy.

A sweepline /, = {(z,y) | y = s} will be moved upwards (increasing s). At any time a
part of the Delaunay triangulation below the sweepline will have been constructed. It will
be given by G, = (S,, E,) where S, = Sn Below, and E, = {{pi,p;} | there is a disk D
where Empty(D, {p;, Pj}>8)}. It turns out that G, is allways connected.

Let p1 = q1,92, ", qx = p; be the sites on the boundary of the outer region of G, in
clockwise order. Note that there can be several instances of sites from S in the sequence.

When a new site p; is added (a site event), that is s = y(p;), we can identify a site Pj
(j < 1) such that {p;, p;} is the edge to be added to Ey(p.')—c to obtain Ey(p')‘ If, for

3
¥(p) > y(q), we define the v-distance between p and ¢, v—d(p, q) to be the radius of the
disk with top point p and g on its boundary, p; will be the site minimizing v—d(pi, q) over
{P1,p2,-+-,pi—1}. A key observation for the method to work is that p; can be found by
binary search in {g, g2}, {02, 43}, -, {g—1, G} using the test LO({qr,gs1},p;) which it
true iff p; is to be found among {¢, ¢z, - - “a}- LO{q,qer1},pi) =

[(y(a) < ¥(qre1) A LT (g quens pi) A (v—d(pir @) < v—d(pi, qr41))}V
[(y(@) > y(q41)) A (RT (g1, que, i) V (v=d(p;, q1) < v—d(pi, gi+1)))]

New edges will be added to G, (top point events) during the sweep without new sites
encountered if a disk with three sites on its boundary that intersects the I,_, becomes
situated entirely below /,. The other key observation for the method to work is that the
only disks to examine for this to happen are those given by consecutive sites (g;_1, ¢;, gi+1)
on the outer region of G,_, where LT(gi-1,4i> Git1)-

Data structures for G,, the sites on the boundary in clockwise order, and top points for
disks through three consecutive sites on the boundary forming a left turn, are not difficult
to construct so that they support an O(nlogn) running time for the algorithm. It is
assumed that y(t,,,) and v—d(p, ¢) can be computed in constant time.

42



Nearest-neighbour search

The described method is also applicable for pseudo disks which are not strictly convex.
Then three points do not uniquely determine a disk. It might happen that no such disk
exists or more than one exist. In the former case we can think of the disk having infinite
radius and infinite y-coordinate of the top point. In the latter case we can use a limit
argument to define a canonical one which will do.

Therefore the method can be applied to "half” disks. A (lower) "half” disk with centre ¢
and radius r is the set of points p in ®2 with distance at most r to ¢ and where y(p) < y(c).
The corresponding v-distance, v—d(p, ), then becomes the original distance between p and
g. Thus when we determine the site with minimal v-distance during the sweep, we in fact
just determine the site of minimal distance situated below the new site added. By doing
the same once more for the set of sites turned upside down, we get an analogous structure
for search for the nearest neighbour above the query point. Thereby the all-neariest-
neighbour problem can be solved. This special use of the algorithm gives an analogous
method to the method presented in [2]. Here it is just generalized to arbitrary distance
functions. By doing the search structures persistent, a structure (of linear size) supporting
search for the nearest neighbour in time O(log n) is obtained.

References
(1] J.R. DriscoLL, N. SARNAK, D.D. SLEATOR, R.E. TARJAN Making Data Structures Per-
sistent Journal of Computer and System Sciences (1989) 38, 86 - 124

[2] K. HiNRIcHS, J. NIEVERGELT, P. SCHORN A sweep algorithm for the all-nearest-neighbors
problem Computational Geometri and its applications, LNCS (1988) 333, 43 - 54

[3] S. SKYUM A sweepline Algorithm for Generalized Delaunay Triangulations Tech. Rep. DAIMI
Pb-373 (1991)

43



44



The Space of Spheres,

a Geometric Tool to Unify Duality Results
on Voronoi Diagrams *
Abstract

Olivier Devillerst ~ Stefan Meisert ~Monique Teillaud?

Abstract

We show how duality results for generalized Voronoi diagrams can be proven by
only using purely geometric interpretations, without any analytic calculations.

1 Introduction

[Bro79, ES86] presented the first results of duality for Voronoi diagrams. Many geomet-
ric transforms for generalized diagrams are now known (see [Aur91] for a very complete
survey) and they have found many applications.

We do not claim to give new results, but we introduce a too] allowing to have a global
view and, above all, a better understanding of a very large number of duality results.

For example, F. Aurenhammer [Aur87] introduces the same duality as ours, between
spheres and points, for power diagrams, but he gives no geometric interpretation to this,
and his justifications are only by analytic computations. We can give new proofs, avoiding
all analytic calculations, with only geometric reasoning,.

We use here a geometric interpretation of spheres as points in the space of spheres, which is
a very powerful tool, and will probably find many applications in the future, since it allows
to deal with some very general problems in a simple way (see the full paper [DMT92] for
example for the case of weighted order k& power diagrams, or Voronoi diagrams of general
manifolds). We can also deduce algorithmic application in some cases.

We can apply our framework to different types of Voronoi diagrams, for example the
hyperbolic metric (see [BCDT91] for the planar case).

It can also be used to solve problems on circles or spheres : for example, the determination
of the ring with minimal surface, defined by two cocircular circles, containing a given set
of points transforms in the space of spheres into a linear programming problem.

The necessary mathematical background is summarized in the full paper.

tINRIA, 2004 Route des Lucioles, B.P.109, 06561 Valbonne cedex (France), Phone : +33 93 65 77 62,
E-mail : odevil or teillaud@alcor.inria.fr. This work was partly done while these authors were visiting Max
Planck Institut

tMax Planck Institut fiir Informatik, D-6600 Saarbriicken, Phone : +49 681 302-5356, E-mail :
meiser@mpi-sb.mpg.de

* This work has been supported in part by the ESPRIT Basic Research Action Nr. 8075 (ALCOM).

45



2 The Space of Spheres

We denote by P the euclidean d dimensional space. (-,.) is the scalar product in P, and
|..] is the euclidean distance between points. A point or a vector (z,...,z;,.. ., xq) of
P will be represented as z. Let us recall the definition of the space of spheres O used in
[BCDTI1]. Let

(S) (z,2) = 2(z,®) +x =0 (1)
be the equation of a sphere S in P. Here ® is a point of P, namely the center of S. This
sphere is represented by the point § = (&, y) in the (d + 1) dimensional space 0. P is
identified to the d-hyperplane x = 0 of 0. Notice that the vertical projection onto P of a
point S = (®, x) € O is the center of the sphere, and the radius rs of S is given by :

power(0,S) =\ = (®,®) — r (2)

spheres of radius 0
d

II — ¥

imaginary spheres

above xpy :
spheres not containing M

real spheres

below w54 :
spheres containing M

Figure 1: The space of spheres

We present in this section a few properties of o.

The paraboloid II. Equation (2) shows that the point-spheres in O (spheres of radius
0) verify :

(IT) (@, )~ x=0 ' (3)
Thus, the set of point-spheres is in 0 the unit d-paraboloid of revolution with vertical axis
(that is, parallel to the x-axis) denoted as II. A point (@, x) on I represents a sphere of P
with center ® and radius 0. Therefore points of P are associated with the corresponding
point-spheres on II in 0. If space P is identified to the d-hyperplane x = 0, the point-
sphere is obtained by raising the point on II. The exterior of II is the set of real spheres,
whereas its interior is the set of imaginary spheres (with negative square radius) (Figure
1). The square radius of a sphere S = (&, X) is the difference of the y-coordinate of the
vertical projection of S on II with y.

Hyperplanes in 0. Two spheres of P are orthogonal if and only if the two corresponding
points of O are conjugate with respect to II. Thus the set of spheres of P orthogonal to

46



a given sphere Sy = (&, xo) of P forms in o exactly the polar d-hyperplane 75, of point
So with respect to II. Its equation is obtained by polarizing the equation of II in S :

(7s,) \ = 2(®0, @) - xo (4)
It is the polar d-hyperplane of the sphere with respect to II.

The intersection of g, and II is precisely the set of point-spheres that are orthogonal to
sphere S, that is the set of points lying on Sy in P. This shows that 7s, N II projects in
P onto Sy (see Figure 1).

As a particular case, the set of spheres passing through a point M € P is also the set of
spheres orthogonal to the point-sphere M. But, as Af belongs to II, the polar d-hyperplane
Ty is nothing else than the tangent d-hyperplane to II at M. Each sphere in the lower
half space limited by 7ps (i.e. the half space which does not contain IT), contains M in its
interior. For a sphere in the upper half space. M is outside (see Figure 1).

3  Duality results

We can apply our framework to different kinds of Voronoi diagrams : (weighted) power
diagrams, affine Voronoi diagrams, (weighted) order k£ power diagrams, Voronoi diagrams
of general manifolds, hyperbolic Voronoi diagrams. The resulting transformation is often
already well known, however, using our framework, the transformation is straightforward
and does not require any calculus. It may also lead to new efficient algorithms (see the
full paper).

S denotes a set of spheres. An element of S is denoted by § or S;. In this abstract, we
only develop the simple case where S is a set of point-spheres. The distance we consider
here is the euclidean distance in P :

6(P.Q) = |PQ|

As noticed in Section 2, the set of spheres which do not contain a given point maps in o
into the upper half space, limited by the polar d-hyperplane of the corresponding point.
Thus, if S is a set of sites in space P, then the set of empty spheres (i.e. the set of
spheres which do not surround any site of S) of space P is in O the intersection of the

corresponding half spaces. Its boundary is a convex polytope Us, whose facets are tangent
to II.

For a given point M € P and asite S € S, the intersection of the vertical line through M
with 7¢ gives the maximum empty sphere centered at M and touching S (see Figure 2).
Since the radius of the spheres on the vertical line increases with falling y, we have :

P 1 The intersection of Us with a vertical line ® = M in o gives the sphere with center
M and whose radius is the distance to the nearest neighbor of M in S.

In other words the projection of Us on P is the Voronoi diagram of §. This can be viewed
as a new presentation of the well known correspondence between intersection of half spaces
tangent to the d-paraboloid and Voronoi diagram [ES86].

Property (P 1) allows to determine the extremal empty spheres of a concentric pencil, but
it can also be used for any kind of pencils : a pencil of spheres in P is represented by a

47



ve

¢,

extremal empty sphere

/ \ 322

‘Pl *

Figure 2: Empty sphere centered on M and touching §
line in 0, and the intersection of Us with a line representing a pencil of spheres, is made
up of the extremal empty spheres of this pencil.
This correspondence has been used in [BCDT91] to compute the 3D Delaunay triangula-

tion of a set of sites lying in k different subspaces, with an output sensitive complexity.

We can generalize this approach to other kinds of sites and distances to handle all cases
of generalized Voronoi diagrams [DMT92].

References

[Aur87]  F. Aurenhammer. Power diagrams : properties, algorithms and applications. SIAM
Journal on Computing, 16:78-96, 1987.

[Aur91]  F. Aurenhammer. Voronoi diagrams — a survey of a fundamental geometric data
structure. ACM Computing Surveys, 23(3), September 1991.

48



[BCDT91] J-D. Boissonnat, A. Cérézo, O. Devillers, and M. Teillaud. Output sensitive construc-

[Bro79]

[DMT92]

[ES86)

tion of 3D Delaunay triangulation of constrained sets of points. In Third Canadian
Conference on Computational Geometry in Vancouver, August 1991. Full paper avail-
able as Technical Report INRIA 1415.

K.Q. Brown. Voronoi diagrams from convex hulls. Information Processing Letters,
9:223-228, 1979.

O. Devillers, S. Meiser, and M. Teillaud. The Space of Spheres, a Geometric Tool to
unify Duality Results on Voronoi Diagrams. Technical Report 1620, Institut National
de Recherche en Informatique et Automatique, (France), February 1992.

H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete and
Computational Geometry, 1:25-44, 1986.

49



50



An algorithm for constructing the convex hull

of a set of spheres
in three dimensional space

J.D. Boissonnat* A.Cérézo! J. Duquesnet

Abstract

Using the ”gift wrapping” approach, the algorithm computes the convex hull of a
set of n spheres in three dimensional space. If h is the size of the output (i.e. of the
convex hull), the algorithm’s worst case running time is O(nh).

1 Introduction

In the plane, the convex hull of a set of n circles can be deduced from the Voronoi diagram
of these circles, which can be computed in O(nlogn) time and O(n) space (see [Ros88]).

In three dimensional space, the only known result is that the complexity of the convex

hull of a set of n spheres is §(n?) in the worst case, even for collections of pairwise disjoint
spheres (see [SS90]).

The convex hull of a set E of spheres is composed of three different kinds of cells (see
Figure 1).

e Planar cells, which are triangles included in planes tangent to three spheres.

e Conical cells, which are parts of cones tangent to two spheres.

o Spherical cells, which are parts of the spheres of E.

To each point P of a cell, we associate the half line issued from P and normal to the
tangent plane of the cell at P. To each cell we associate a three dimensional region which
is the union of these half lines. The union of all the regions partition the space outside
the convex hull.

*INRIA, 2004 Route des Lucioles, B.P.109, 06561 Valbonne cedex (France), Phone : +33 93 65 77 60,
E-mail : boissonn@sophia.inria.{r.

tUniversité de Nice, Parc Valrose, 06034 Nice cedex (France).

{INRIA, 2004 Route des Lucioles, B.P.109, 06561 Valbonne cedex (France), Phone : 433 93 65 77 49,
E-mail : duquesne@sophia.inria.fr.

51



83

S S2

81 § : }

85

—| A planar cell
73 A conical cell

(XN A spherical cell

Figure 1: The convex hull of a set of spheres

2 The Algorithm

Let h be the size of the output (i.e. of the convex hull). & is 6(n?) in the worst case.

Using the gift wrapping approach, we can compute the convex hull of the set E of spheres
in worst case time O(nh).

We associate to the convex hull a three-dimensional graph Goy where a vertex stands for
a spherical cell, an edge for a conical cell, and a face for a planar cell.

Let a disconnecting vertez or edge be a vertex or an edge such that if one cuts the graph
Gcn at this vertex or along this edge, the graph Gy is separated into v disjoint con-
nected components. For example, in Figure 1, the vertices associated with sz and s3 are
disconnecting, and so are the edges associated with the conical cells §1 — 82 and 83 — s3.

Let’s cut Geop along all its disconnecting vertices or edges. We separately compute the
convex hull of each of the resulting connected components.

During the algorithm, we maintain two structures:

o A graph G representing the part of the convex hull which has already been computed.

e A list of free edges, i.e. the set of edges where only one of the two faces bounding
the edge has already been computed.

To compute a connected component of G¢y, we do the following;:

e We first search three spheres (if any) belonging to the convex hull which give us a
face and three free edges.

o We then recurse on the next two steps until the list of free edges is empty.

52



— Take a free edge and compute the face bounding this edge: Let $;5; be the
two spheres associated with the edge and $’S,S; the face (bounding the edge)
which has already been computed. For each sphere § different from $; and S,
we compute the plane tangent to the spheres S, 51, Sz (if it exists). We finally
choose the sphere S such that the angle between the planes $'S;S; and $5,5;
is closest to 7.

— Update the graph G and the list of free edges.

Once we have computed one component of G, each remaining sphere s (i.e. not belong-
ing to the connected component already computed) either is inside the currently computed
convex hull or can be located in only one region (depending of the sphere s) of the convex

hull.

We separate the remaining spheres in different sets, so that all the spheres of a same set
can be located in the same region. We now recursively compute the convex hull of. each
set.

3 Complexity Analysis

Let T(n,h) be the time needed to compute the convex hull of a set of n spheres in the
worst case. h is the size of the output.

If the graph Gcy has no disconnecting vertex or edge, then
T(n,h) = O(nh)
Else, the first connected component is composed of ng spheres and the size of its convex

hull is ho. The n — ny remaining spheres are separated into p sets of n;(1 < 7 < p) spheres
as explained above. The size of the convex hull of each set is h;(1 < i < p). Thus we have:

P
T(n, h) = O(nho) + Y _ T(n;, h;)
i=1

and

The solution of the above recurrence is T(n, h) = O(nh).

Thlis, the whole time needed to compute the convex hull of a set of spheres in three dimen-
sional space is O(nh) in the worst case.

References

[Ros88] H. Rosenberger. Order-k Voronoi Diagrams of Sites with Additive Wieghts in the
Plane . UIUCDCS-R 1431, University of Illinois at Urbana-Champaign, May 1988.
This paper is a shortened version of the Master Thesis with the same title.

[SS90] J.T. Schwartz and M. Sharir. On the two-dimensional Davenport-Schinzel prob-
lem. Journal of Symbolic Computation. 10:371-393, 1990.

53



54



Least-Squares Partitioning

(Abstract)

Franz Aurenhammer Friedrich Hoffmann
Institut fir Informatik Institut fir Informatik
Freie Universitat Berlin Technische Universitat Miinchen

Germany Germany

Boris Aronov
Computer Science Department

Polytechnic University
New York

Consider a set S of n points, called sites, in the Euclidean plane. S induces a partition
of the plane into n polygonal regions in the following natural way. The region of a site
s € S, reg(s), consists of all points & which are closer to s than to the remaining n — 1
sites. This partition is known as the Voronoi diagram of S. If we fix a set X of m points
in the plane, this set is partitioned by the Voronoi diagram of S into subsets X N reg(s),
called clusters.

Given the sets S and X, we would like to be able to change the induced clustering by
varying the distance function that underlies the Voronoi diagram of S. To this end, we
attach a set W = {w(s) | s € S} of real numbers, called weights, to the sites and replace
the Euclidean distance §(z, s) between a point z and a site s by the power function

poww(z,s) = 6%(z.s) — w(s).

The resulting partition of the plane is known as the power diagram of S with weights W.
Each region is still a convex polygon, and has the property of shrinking (expanding) when
the weight of its defining site is decreased (respectively, increased). The corresponding
clustering of X now depends on the particular choice of weights.

The concepts introduced above extend to arbitrary dimensions in a straightforward man-
ner. We can show the following:

Theorem 1: For any set S of n sites there exists a power diagram whose regions partition
a given d-dimensional finite point-set X into n clusters of prescribed sizes.

Note that the power diagram of § with weights W defines an assignment function Ay :
X — S, given by
Aw(z) = s < z € regw(s),

where regw (s) denotes the region of site s in this diagram. For each site s € §, its cluster
is given by Ay;}(s). We may associate each s with an individual number ¢(s) € N, called
its capacity. Theorem 1 tells us that for any choice of site capacities there is a set W of
weights for § such that the induced clusters Aa,l(s) have sizes e(s).

The assignment function Ay has the remarkable property that it minimizes — for all
possible assignments X — S satisfving the same capacity constraints as Ay does — the
sum of the squares of the distances between sites and their assigned points. Such an
assignment will be called a least-squares assignment subject to the capacity function c.
More generally, the following will be shown:



Theorem 2: Let S be a set of n sites in E4. Any assignment induced by a power diagram
of S is a least-squares assignment. subject to the resulting capacities. Conversely,
a least-squares assignment for S subject to any given choice of capacities can be
realized by a power diagram of S.

The second part of Theorem 2 implies Theorem 1. By Theorem 2, a least-squares assign-
ment subject to any given capacity constraints can be computed by finding weights W
such that Ay satisfies these constraints.

To illustrate the usefulness of the concept of a constrained least-squares assignment L :
X — S, we mention some of its properties.

(1) The induced clusters L~1(s), s € S, are pairwise convez-hull disjoint. Had we chosen
to minimize a different function, such as the sum of Euclidean distances to sites, rather
than the sum of squared distances, the optimum assignment would not be guaranteed to
have the disjointness property. Hull-disjointness of clusters is desirable as, for example, it
eases the classification of new points.

(2) It can be shown that solving a certain transportation problem is equivalent to finding
least-squares clusters of prescribed sizes.

(3) L is invariant under translation and scaling of S. This property is useful, for example,
for finding the best least-squares fitting of two n-point sets S and X if translation and
scaling is allowed. It ensures that the least-squares matching between these sets (¢(s) = 1
for all s € §) already coincides with the bijection in the optimal fitting. Given the bijec-
tion, however, it is an easy task to find the optimizing translation vector and scaling factor.

Exploiting the machinery of power diagrams, we propose two algorithms for computing
constrained least-squares assignments. The first algorithm proceeds incrementally. It
starts with the Voronoi diagram of the n sites (all weights are zero) and with no points, and
inserts the points one by one, while adjusting at each phase the weights such that the site
capacities are not exceeded. In the plane, a time complexity of O(n?mlogm + nmlog?m)
and an optimal space complexity O(m) are achieved. (m is the number of points inserted;
we may assume m > n as attention can be restricted to sites with non-zero capacities.)
This is an improvement over the best known deterministic algorithm [1] that achieves time
O(nm?+m?logm) and space O(nm) by transformation into a minimum cost flow problem.
We mention that the randomized algorithm of Tokuyama and Nakano [2] achieves expected
time O(nm +n3,/nm) and space O(nm); their algorithm is more general than ours in that
it finds the optimum constrained assignment for any cost function, not only the square of
the Euclidean distance.

The second algorithm relies on the following interesting fact: Finding a weight vector W
such that Ay satisfies the capacity constraints is equivalent to finding a maximum of a
concave piecewise-linear n-variate function whose domain is the weight space. We propose
a gradient method for iteratively improving the weight vector; it is guaranteed to termi-
nate after a finite number of steps. Experiments have shown that it can be expected to
run quite fast in practice. Its space requirement is optimal, O(m). We are exploring the
possibility of combining the two approaches, in order to obtain a provably fast algorithm
for computing a constrained least-squares assignment for a finite set of points.

We mention finally that a more general, continuous version of Theorem 1 can be proved.

56



Theorem 38: Let S be a set of n sites in E¢, let p be some probability distribution on
E4 which is zero outside [0,1]9, say, and let u(X) = fy o(z)dz denote the measure
of a set X C E9 with respect to g. For any capacity function ¢ : § — [0,1] with
Y .esc(s) =1, there is a set W of weights such that u(regw(s)) = c(s), for all sites
8€S.

By taking, for instance, g as the uniform distribution in {0, 1]¢ we get:

Corollary: For any set of n sites there exists a power diagram that partitions the unit
hypercube into n polyhedral regions of prescribed volume.

This result is related to Minkowski’s theorem for convex polytopes which, for our purposes,
can be stated as follows: Choose any n vectors in E9t1, no two parallel. There exists a
convex polytope in E4+! with n + 1 facets, n of which correspond to the given vectors in
that each face is normal to its corresponding vector and has d-dimensional volume equal
to its length. In fact, such a polytope is unique up to translation. Since power diagrams
in E4 are exactly the projections of unbounded convex polyhedra in E4+! (which can be
viewed as “polytopes” with the (n + 1)-st facet at infinity in the direction of projection),
the corollary implies a generalization of Minkowski’s Theorem for unbounded polyhedra.

The proposed gradient method for iteratively approximating the weight vector also works
for the continuous case. Its convergence rate is superlinear provided the probability dis-
tribution g is continuous. The space requirement is optimal, O(n).

References

[1] Fredman, M., Tarjan, R. Fibonacci heaps and their uses in improved network opti-
mization algorithms. J. ACM 34 (1987), 596 — 615.

[2] Tokuyama, T., Nakano, J. Geometric algorithms for a minimum cost assignment
problem. Proc. 7t* Ann. ACM Symp. Computational Geometry (1991), 262 ~ 271.

3,4
-1



58



Weighted Closest Pairs

Michael Formann

Institut fiir Informatik
Fachbereich Mathematik
Freie Universitit Berlin
Arnimallee 2-6
D-1000 Berlin 33
Germany

Summary

In this talk we study the following weighted closest pair problem: Given a set of planar
objects with centerpoints, determine the mazimal scaling factor 6,44, such that the objects
scaled by 6, are pairwise disjoint. Clearly 6,4, can be computed in O(n?) time, by
taking the minimum of all (3) pairwise maximal scaling factors. (It is assumed, that the
computation of the maximal scaling factor of two objects is a primitive operation that can
be done in O(1) time.) The goal of this article is to beat the O(n?) time bound.

We describe a method to compute the maximal scaling factor in optimal O(nlogn) time
for a wide class of objects. The basic idea is as follows: In a preprocessing step we compute
an over-estimate § > gy fOr gy Clearly, if 8 > 6,,,,, then there are intersections in the
set of é-scaled objects. We insure, that after the preprocessing step only a linear number
of pairs of objects will intersect. We detect these intersections in O(nlogn) time by a
standard sweep-technique and compute the related pairwise maximal scaling factors. The
minimum of § and these O(n) numbers will be the output 6,4, of our algorithm.

If all the objects are unit-disks then we are faced with the ordinary closest pair problem,
that is to determine the closest distance between any pair of points. This is a well-studied
fundamental problem of computational geometry (cf. [HNS90], [HS75), [BS76]). Another
related problem is finding the closest pair among a set of objects (cf. [BH91], [For87],
[Sha85], [Yap87]).

In principle we could determine the maximal scaling factor via a Voronoi-Diagram ap-
proach. For example we are given a set of disks with different radii. From the center p of
a disk we measure the weighted distance from p as

dyz) = P2

Tp

where 7, denotes the radius of the disk around p. The bisector of two disks with centers
p and ¢ will be the set of points in the plane that have equal weighted distance to p and
q- Then we could define a pair p, q as closest pair if it minimizes the shortest weighted
distance to its bisector. Exactly the closest pairs of dmaz-scaled disks will touch. This
approach doesn’t work because the Voronoi-Diagram might have quadratic complexity

(cf. [AE84]).

59



References

[AES4]

[BH91]

[BS76]
[For87]
[HNS90]
[HS75)
[Sha8s)

[Yap87]

Franz Aurenhammer and Herbert Edelsbrunner. An optimal algorithm for con-
structing the weighted Voronoi diagram in the plane. Pattern Recogn., 17:251-
257, 1984.

Frank Bartling and Klaus Hinrichs. A plane-sweep algorithm for finding a closest
pair among convex planar objects. Technical Report 91-03, Gesamthochschule
Siegen, Institut fiir Informatik, 1991.

J. Bentley and M. Shamos. Divide and conquer in multidimensional space. In
Proceedings 8th Annual Symp. Theory Comput., pages 220~230, 1976.

S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica 2, pages
153-174, 1987.

Klaus Hinrichs, J. Nievergelt, and Paul Shorn. Plane-sweep solves the closest
pair problem elegantly. Information Processing Letter.?, pages 337-342, 1990.

D. Hoey and M. Shamos. Closest-point problems. In Proceedings 17th IEEE
Annu. Symp. Found. Comput. Sci., pages 151-162, 1975.

Micha Sharir. Intersection and closest pair problems for a set of planar discs.
SIAM Journal on Computing, 14:448-468, 1985.

Chee Yap. An O(nlogn) algorithm for the Voronoi diagram of a set of simple
curve segments. Discrete Comput. Geom., 2:365-393, 1987.

60



On the Orders of Finitely Many Points
Induced by Rotational Sweeps

Hanspeter Bieri
Universitit Bern, Institut fir Informatik und angewandte Mathematik
Langgassstrasse 51, CH ~ 3012 Bern, bieri@iam.unibe.ch
and Peter-Michael Schmidt

Friedrich-Schiller-Universitat, Sektion Mathematik, Universitatshochhaus, 17. 0G,
D - O - 6900 Jena,
PETER-MICHAEL.SCHMIDT@MATHEMATIK.uni—jena.dtp.de

Extended Abstract

9

Let P = {p1,...,pn} C IR’ and H(P) the set of all lines joining two points of P. We
assume P to be in general position in the following sense: Two lines of H(P) are never
parallel, three lines of H(P) never meet in one point. H(P) partitions IR? into relatively
open cells of dimensions 0,1, and 2 which form an arrangement A(P).

Let ¢ = (z,y) be a point within any one of the 2-dimensional cells i.e. not lying on any
of the lines of H(P), 7 a real number and R(¢;7)={a=(z+rcost,y+rsint);re R}
a straight line passing through ¢. Running r through all real numbers causes R(q,7) to
"sweep” IR? \ {q}, i.e. we get a rotational sweep in IR with g as the center of rotation.
The parameter 7 expresses the time in the course of which the sweep takes place. Since g
does not belong to any of the lines of H(P) a circular ordering on P arises (cf. [P55]).

We now choose 7 in the interval [r,, 1, + ) satisfying the condition p, € R(q,7,), in
other words, the sweep starts by passing the point p,. The rotational sweep with center
q induces a linear ordering on the set P* := P\ {p.} as follows: Let 7; and 7; satisfy the
conditions p; € R(q,7;) and p; € R(q, 7j), respectively. Then the order induced on P* is
defined by p; < p; iff t; < t;. As the points py, ..., p,_1 are associated uniquely with the
indices 1,...,n — 1, the rotational sweep with center ¢ induces also a permutation 79 of

the set {1,...,n~1}. The number of all these permutations 79 or orders <, respectively,
shall be denoted by N(P).

Let E be any 2-dimensional cell of A(P) and ¢1,¢; € E. Obviously the rotational sweeps
with centers ¢; and ¢ induce the same order on P* or the same permutation of {1, ...,n—1},
respectively, i.e. 79 = 79. Furthermore let D denote the union of all 2-dimensional cells
E € A(P). P induces an equivalence relation on D by means of ¢; ~ g, iff 7% = ro,
Of course the number of equivalence classes of ~ equals N(P). The figure shows the
arrangement A(P) and the equivalence classes of ~ for a set P = {P1,p2, 3.4} C IR
In the figure a permutation 79 of {1,2,3} is indicated by (m9(1) 79(2) 9(3)).

We are interested in the following two questions:

A: Given P = {py,...,p,} C IR? in general position. Which of the (n — 1)! orders of
P1,.-sPn—1 — Or of the corresponding permutations of {1,....n — 1}, respectively -

61



(213) m P2 (321)

(123) (312)
(231) (231)

can be induced by a rotational sweep in JR? i.e. by choosing a convenient center of
rotation ¢ and performing the corresponding rotational sweep ?

B: What are lower and upper bounds on the maximal number of N(P) for point sets
P in general position with card(P)=n?

Problem A can be solved by an algorithm ORDERS which makes use of a translational
sweep in a similar way as the algorithm CELLS in [BN82] which finds all cells of an
arrangement in IR:

1. All points of intersection of the lines of H(P) are determined, sorted with respect
to their z—coordinates and put into a convenient data structure Q. For the sake of
simplicity it is assumed that all points in Q have distinct z—coordinates, which can
be ensured by a suitable coordinate transformation (see [NS90]).

2. The sweep line is chosen to be vertical and its initial position on the left of all points
contained in Q.

3. For each 2-dimensional cell E € A(P) which is cut by the initial sweep line, a point
q € E is determined. For each center of rotation ¢ the sweep is performed and the
resulting permutation 79 is included in a list ORDS.

4. Only the points in Q which are not in P must be regarded as event points (cf.
the figure). They are traversed in ascending order. Each such event point p is a
vertex of exactly one 2-dimensional cell E € A(P) completely to the right of p.
Accordingly for each such p a point ¢ € E is determined, and the sweep with center
q is performed. The resulting permutation 79 is included in ORDS.

5. At the end of the translational sweep. not all elements in ORDS are unique, in
general. Duplicates are removed.

62



To solve problem B the arrangement A(P) is closely examined. According to what we
have stated above the number of 2-dimensional cells of A(P) is an upper bound on N(P).
In the paper it will be shown that this number is (3) + 1+ n-(n—2)+3- () = O(n?).

In order to obtain a lower bound on N(P) it shall be assumed furthermore that the convex
hull conv(P) of the n—point set P is a polygon with n vertices. Now centers of rotation
lying in different 2-dimensional cells which are contained in conv(P) lead to different
permutations and orders, respectively. Therefore the number of 2-dimensional cells lying
inside conv(P) is a lower bound on N(P). This numberis (}) + (";?) = Q(n?).

Finally, our results are summarized as follows:

Result 1: Given P, ORDERS finds exactly those permutations which can be induced by
a rotational sweep.

Result 2: O(n%log n) is an upper bound for the time complexity of the algorithm
ORDERS.

Result 3: Max {N(P); P C IR?, card(P) = n} = 8(n?).

References
[BN82] Bieri, H., Nef, W.: A Recursive Sweep-Plane Algorithm Determing all Cells of a
Finite Division of IRY. Computing 28 (1982), 189-198.

[E87)  Edelsbrunner, H.: Algorithms in Combinatorial Geometry. EATCS Monographs
on Theoretical Computer Science, Vol. 10, Springer Verlag 1987.

[GP82] Goodman, J.E., Pollack, R.: A Theorem of Ordered Duality. Geometriae Dedi-
cada 12 (1982), 63-74.

[H68)  Hadwiger, H.: Eine Schnittrekursion fiir die Eulersche Charakteristik euklidischer
Polyeder mit Anwendungen innerhalb der kombinatorischen Geometrie. Elem.
Math. 23 (1968), 121-132.

[NS90] Nef, W., Schmidt, P.-M.: Computing a Sweeping-Plane in Regular (”General”)
Position: A Numerical and a Symbolic Solution. J. of Symbolic Computation
10 (1990), 633-646.

[P55]  Pickert, G.: Projektive Ebenen. Springer Verlag Berlin 1955.

63



64



Miscellaneous topological algorithms!

Colm O Dinlaing
Colum Watt
Mathematics, Trinity College, Dublin 2, Irish Republic.

Abstract

With the advent of high-resolution workstations, it becomes more desirable than
ever to develop computational geometry in 3 dimensions. This development should
gain from a study of various topological questions in low dimensions. These notes
review a (random) assortment of algorithms relevant to such a study.

1 In-groups, out-groups, and embeddings.

In [5] Neuwirth associates with an embedding of an n-complex K in an oriented (n + 1)-
manifold M a group called the in-group and written G(K, M).

Specifically, suppose that M is an oriented compact triangulated (n + 1)-manifold, so its
structure is defined by an (n+1)-complex. Let i be an n-subcomplex of its n-skeleton. Fix
an orientation of M and apply arbitrary orientations to each n- and (n — 1)-dimensional
face in K. Let 7; and o; respectively denote these oriented faces. Each face o; has
codimension 2 in M, so one can form a small oriented loop £; going around it. Then ¢;
intersects some of the faces 7; in cyclic order (7j1),...,Ti(m)), 52y, and the orientations
of 7,y and {; define associated intersection numbers ¢;,) = £1. In the group F freely
generated by the n-faces m,..., 7, of M, let w; be the word

€i(1) __Ci(m)
Tia) "~ Tim) -

The in-group G(K, M) is defined as the group with generators 7; and relators w;.

Figure 1: Oriented loop around an (n — 1)-face.

Suppose that M\ K has components C ...C,. Form an arc-connected topological space Y
by joining these components by arcs to a centre point v (this is a formal construction: the
arcs only join to Y at their endpoints). Form X by gluing K back onto Y. Let G = m1(X)
be the fundamental group of X with basepoint v, and let H be the normal subgroup of G
generated by all loops disjoint from A’

!Supported by the EEC under Esprit BRA 3075 (ALCOM). Electronic mail addresses: odun-
lain@maths.tcd.ie, colum@maths.tcd.ie

65



Theorem 1.1 G(K, M) is isomorphic to the quotient group G/H. |}

Each in-group G(K, M) is defined uniquely by the cyclic ordering of n-faces 7; around
(n — 1)-faces 0;. Each cyclic ordering determines a group, called an out-group of K. This
provides a necessary condition for embeddability in an oriented (n + 1)-manifold M:

Proposition 1.2 A necessary condition for embeddability of K in M where the comple-
ment of K has (r+ 1) components is that at least one out-group of K should be a quotient
of mi(M) * F(r) (free product of fundamental group with free group on r generators). [ |

Proposition 1.8 A 1-complez (i.e., graph) K is planar iff one of its out-groups is free. |}

2 References.

1. J. Bokowski and U. Brehm (1985). A new polyhedron of genus 3 with 10 vertices.
Colloquia Math. Soc. Jdnos Bolyai, Siofok.

2. J. Bokowski and A. Eggert (1986). All realizations of Mobius’ torus with 7 vertices.
Preprint 1009, FB Mathematik, Technische Hochschule Darmstadt.

3. J. Bokowski and B. Sturmfels (1989). Computational Synthetic Geometry. Springer
Lecture notes in Mathematics 1355.

4. S. Lefschetz (1949). Introduction to T opology. Princeton University Press.

5. L. Neuwirth (1965). In-groups, coverings, and embeddings. Proc. Cambridge Phil.
Soc 61, 647-656.

6. L. Neuwirth (1968). An algorithm for the construction of 3-manifolds from 2-
complexes. Proc. Camb. Phil. Soc 64, 603-613.

7. E. Whittlesey (1960). Finite surfaces: a study of finite 2-complexes, I: local structure,
II: the canonical form. Mathematics Magazine 34,1: 11-22, 2: 67-80.

66



The Visibility Complex

Michel Pocchiola

LIENS, Ecole Normale Supérieure,
45 rue d’Ulm 75230 Paris Cédex 05,
France (pocchiol@dmi.ens.fr)

and Gert Vegter

Dept. of Math. and Comp. Sc,
University of Groningen
P.0.Box 800, 9700 AV Groningen,
The Netherlands (gert@cs.rug.nl)

Consider a collection of pairwise disjoint objects in the plane. We are interested in prob-
lems in which these objects arise as obstacles, either in connection with visibility problems
where they can block the view from an other geometric ob ject, or in motion planning,
where these objects may prevent a moving object from moving along a straight line path.

These problems have many common features. In the solution of both the visibility graph
often plays an important réle. For polygonal obstacles the vertices of these polygons are the
nodes of the visibility graph, and two nodes are connected by an arc if the corresponding
vertices can see each other.

It is well known that a shortest path for a point moving from a given initial situation to
a given final situation can be found by computing a shortest path in the visibility graph
of the set of obstacles extended with the initial and final position of the point.

Another important geometric object is the wisibility polygon of a point with respect to
the set of obstacles, viz. the clockwise sequence of ob jects that are visible from this point.
Computing the visibility polygon in time proportional to its size—possibly up to a factor
that is logarithnmic in the number of obstacles—requires studying a more complicated
mathematical object, the so called visibility complez.

The set of lines intersecting a fixed object is endowed with an equivalence relation defined in
terms of the visibility from the object along these lines. The equivalence classes correspond
to cells of the visibility complex. A line intersecting the visible ob ject transversally belongs
to a 2-dimensional face; if the line is a tangent of the visible object it either belongs to'an
edge or to a vertex of the visibility complex.

The visibility polygon of a point can be computed by maintaining the view along a line
that performs a rotational sweep around the point. This rotational sweep corresponds
to a one-parameter family of lines, i.e. to a curve I in the visibility complex. Obviously
during the roational sweep the view changes if the line is in a position tangent to the
. visible object. In terms of the visibility complex this corresponds to an intersection of the
curve I' with an edge or a vertex, viz. with the boundary of a face.

The number of faces intersected by the curve T is equal to the size of the visibility polygon.
To determine the intersection of this curve with a certain face efficiently we first study the
geometry of the faces, and obtain a kind of Zone Theorem for the curve T. Subsequently
we show how the succesive intersections of this curve with the boundaries of the faces can
be determined in ouput-sensitive time.

67



Finally we show how the visibility complex can be constructed in time proportional to its
size—again up to a factor logarithmic in the number of obstacles. Since there is a natural
correspondence between the set of vertices of the visibility complex and the set of arcs
of the tangent visibility graph of the set of objects, this construction can also be used to
compute the latter graph in time proportional to the size of the output.

We should remark here that our method bears some resemblance to the optimal algorithm
of Ghosh and Mount for the construction of the visibility graph of a set of polygonal
obstacles—essentially considered as a collection of line segments—although it seems hard
to generalize the latter algorithm to the context of more general convex objects. The
richer structure of the visibility complex seems to guarantee a more natural approach to
visibility problems.

We also expect that our methods can be used in various other geometric problems, e.g.in
planning the motion of a rod amidst polygonal obstacles, in ray shooting (this will require
a persistent data structure for the visibility complez and in the computation of a sector of
the visibility polygon.

68



The Flintstones: Hierarchical Approximation

and Localization
(extended abstract)

Remco C. Veltkamp

CWI, Department of Interactive Systems
Kruislaan 413, 1098 SJ Amsterdam, the Netherlands
e-mail: remco@cwi.nl

Abstract

This paper presents a new representation scheme for closed polygonal and triangular
polyhedral objects without holes. The scheme represents a hierarchical approxima-
tion to support object manipulation at various levels of detail, as well as hierarchical
bounding volume information to support efficient search and intersection operations.
The bounding volumes (flintstones) consist of circles in 2D and spheres in 3D, which
make the representation storage efficient, and operations computationally efficient.

1 Introduction

Two facilities are often used for the manipulation of complex polygonal or polyhedral
objects: approximation, and localization, or bounding volume representation. An approx-
imation of the object can be used if it is not necessary to deal with the object in full detail.
Bounding volumes can be used to support search and intersection operations. This paper

presents a new representation scheme for closed polygonal and polyhedral objects without
holes.

Approximation algorithms that are optimal in some sense, see e.g. [Imai and Iri, 88}, are
usually not hierarchical. There seem to be no efficient algorithms for optimal approxima-
tion in 3D, so that we are dependent on heuristics. Some methods are only approximation
schemes, such as presented by [Duda and Hart, 73] and [Faugeras et al., 84], and some
are only localization schemes, such as presented by [Ponce and Faugeras, 87]. Still others
are both, but not naturally or satisfactory generalizable from 2D to 3D, for example the
schemes of [Ballard, 81] and [Giinther, 88].

The Flintstones scheme is hierarchical, is both an approximation and a localization scheme,
is naturally generalized from 2D to 3D, and computationally efficient in hierarchical op-
erations such as point location and object intersection.

2 Flintstones scheme — 2D

2.1 Localization

Definition 1 (Circle with signed radius) Let a;,a; and b be points not lying on one
line. The radius of the circle C(ay,az;b) through these points is positive if the center of
the circle and b lie at the same side of the line through a; and az, and negative if they lie
at opposite sides.

69



Definition 2 (f-operator) Let R and S be two circles with signed radii rg and rs re-
spectively. Then
RUS ifrg,rg >0,

RES= { RNS otherwise.

Let H(ai1,a2;b) be the half-plane containing b whose boundary passes through a; and a,.
We now consider an open polyline P having consecutive vertices vpvpt1,...,05, p+1 < s.

Definition 3 (Flintstone) Let v, be a verter of P such that C(vp, v,; vy) contains all ver-
tices lying in H(vp, v,;vg). If P C H(vp, v,; ), then the flintstone F(P) = C(vp,v,;v4) N
H(vp, v5;,), otherwise F(P) = C(vp, vs;vq) £ C(vp, vs; vy ), where v, is a vertex of P not
in H(vp, vy; vq) such that C(vy, vy;v,) contains all vertices in H(vp, vs; vy).

It is easily verified that P C F(P), so that F(P) is a bounding area for P.

2.2 Approximation

Let N be the number vertices in the approximated boundary.

The hierarchical approximation of a closed polygon vg...vn_1 starts with the determi-
nation of the smallest circle containing all vertices, which passes through at least two
vertices, say v; and v;, i < j. Line segment v;v; is the zero-order approximation of the
polygon, dividing it into two open polylines v;v;41 ...v; and v;v;41...v; (here and in the
rest of this section the indices are taken modulo N).

The next level in the hierarchy of approximations of an open polyline v, ..., v, depends on
F(vp,...,v,). K F(vp,...,v,) = C(vp, vy;v9) N H(vp, vs; vg), then v, ... v, is approximated
by vpvy and vyv,. If F(vp,...,0,) = C(vp,vs;9¢) £ C(vp, vs;v,) and if the radius of
C(vp, vs;v,) is larger than the radius of C(vp,v,;v,), then v,...v, is approximated by
vpvg and v,v,, otherwise by v,v, and v, v,.

If there exists a circle through v, and v, containing v41,...,v,-1, then the ‘t’ in Def-
inition 3 is a ‘n’. By construction of the approximation, each approximated polyline is
contained in a circle. So, all flintstones are the intersection of two circles or a circle and a
half-plane. The shape of the intersection of two circles gave rise to the name ‘flintstone’.

Theorem 2.1 1[Time complezity] The best case time complezity to construct the full
flintstones hierarchy in 2D is O(N log N). The worst case complezity is O(N?2).

3 Flintstones scheme — 3D

3.1 Localization

S(a1, az,as3;b) is a sphere through ay, a2, as, b, with a signed radius, defined analogously
to Definition 1. The +-operator is defined analogously to Definition 2. H(a;,as,as3;b) is
the half-space containing b whose boundary passes through a1, az, as.

Let P be an open polyhedron, and vy, v,, and v, three distinct vertices on the closed
boundary polygon.



Definition 4 (Flintstone) Let v, be a vertez of P such that S(vp, vs, 45 vy) contains
all vertices lying in H(vp, vy, vs;v,). If P C H(vp, v5,v45v,), then the flintstone F(P) =
5(Vp, Vs, V43 v5) N H (0p, vy, vy vq), otherwise F(P) = S(Vpy Vs V13 vg) £ S(Vp, vs, V5 v;), where
vy i5 a vertez of P not in H(vy, v,, v; vg) such that S(vy,,v,,vy;v,) contains all vertices in
H(vp, v, v45 v, ).

It is easily verified that P C F(P), so F(P) is a bounding volume for P.

3.2 Approximation

The hierarchical approximation of a closed polyhedron starts with the determination of
the smallest sphere that passes through at least three vertices, say v;, v;, and vg, and
contains all vertices. Such a sphere always exists, but need not be the smallest enclosing
sphere, which may pass through only two vertices.

The three shortest paths of edges in the polyhedron running from v; to v, v; to v, and vy
to v;, divide the closed polyhedron into two open polyhedra. Triangle v;v;vy, is the zero-th
order approximation of the closed polyhedron.

At the next levels of the hierarchical approximation we consider an open polyhedron P
and three distinct vertices vy, v,, and v, on the boundary of P. If F(P) = S(vp, vy, v4;v4)N
H(vp, v,, 4 v,), then P is approximated by the three triangles v,v,v,, Vs V¢, and v,
If F(P) = S(vp, Vs, V43 V) £ S(vp, Vs, 03 v,) and if the radius of S(vp, vy, v4; vg) Is larger
than the radius of §( VUps Vs, Vg3 Ur ), P is approximated by UpVqUs, VqUsVt, Uplq¥, Otherwise
by vpv,v,, v,v,v;, and VpUp V4.

If the triangles are always split into three new ones, the new triangles get more and more
elongated, and edges remain present in all next levels of approximation. To avoid this,
Yp¥,0; can be split into two triangles. The place to split is at a vertex on one of the three
paths between v,, v,, and v;. In that case the neighboring triangle must also be split at
the same vertex. Since a triangle has three neighbors, it may have to be split at zero to
three sides.

If there exists a sphere through Vp¥,v; containing P, then ‘+’ in Definition 4 is a ‘n’. If
no sides of this triangle are split, the new triangles are also contained in a single sphere.
However, if one or more sides are split, the new triangles need not be contained in a single
sphere. So, unlike the 2D case, flintstones in 3D are not always the intersection of two
spheres or a sphere and a half-space, but may also be the union of two spheres.

Theorem 3.1 2[Time Complezity] The best case time complezity to construct the full
flintstones hierarchy in 3D is O(N(log N)?). The worst case complezity is O(NZ%log N).

4 Hierarchical operations

In this section the term sphere denotes both a circle and a 3D sphere, and the term
segment denotes a line segment in 2D, and a triangle in 3D.

A point-in-polygon or -tetrahedron test can be performed efficiently if we can use an
approximation of P, that yields the same result as P itself. The next lemma tells when
this can be done:



Lemma 4.1 1 Let B be a part of P, A an approzimation of B having the same bound-
ary, and F the flintstone containing B. If a point X is external to F, then X is inter-
nal/erternal to P if and only if X is internal/external to P with B replaced by A.

The intersection of two objects P and Q can be computed efficiently if the computation
of the intersection of two non-intersecting segments is avoided: testing for absence of
intersection is easier than solving the intersection. A part of P and a part of Q do not
intersect if the corresponding flintstones do not intersect. If the flintstones do intersect,
testing is performed at a level of more detail.

Testing whether X is internal to a flintstone involves the calculation of the distances from
X to the centers of the spheres. Testing whether two spheres intersect amounts to compar-
ing the distance between their centers with the sum of the radii. Both tests are computa-
tionally cheap compared to tests with bounding rectangles (four lines), as in [Ballard, 81],

and bounding truncated pyramids (five planes), as in [Ponce and Faugeras, 87).

5 Conclusions

The flintstones representation is boundary based: the approximation is intrinsic to the
object boundary, and the bounding volumes contain the boundary segments of the object.
The scheme is hierarchical, is both an approximation and a localization scheme, is naturally
generalized from 2D to 3D, and computationally efficient in hierarchical operations such
as point location and object intersection.

References

[Ballard, 81} D. H. Ballard. Strip trees: A hierarchical representation for curves. Com-
munications of the ACM, 24(5), 1981, 310 - 321.

[Duda and Hart, 73] R. O. Duda and P. E. Hart. Pattern Classification and Scene Anal-
ysis. John Wiley & Sons, New York, 1973.

[Faugeras et al., 84] O. D. Faugeras, M. Hebert, P. Mussi, and J. D. Boissonnat. Poly-
hedral approximation of 3-D objects without holes. Computer Vision, Graphics, and
Image Processing, 25, 1984, 169 - 183.

[Giinther, 88] O. Giinther. Efficient Structures for Geometric Data Management, volume
337 of Lecture Notes in Computer Sciences. Springer-Verlag, Berlin, 1988.

[Imai and Iri, 88] H. Imai and M. Iri. Polygonal approximations of a curve — formulations
and algorithms. In G. T. Toussaint (editor), Computational Morphology - A Computa-
tional Geometric Approach to the Analysis of Form, volume 6 of Machine Intelligence
and Pattern Recognition. North-Holland, Amsterdam, 1988, 71 - 86.

[Ponce and Faugeras, 87] J. Ponce and O. Faugeras. An ob Ject centered hierarchical rep-
resentation for 3D objects: the prism tree. Computer Vision, Graphics, and Image
Processing, 38(1), 1987, 1 - 28.



Computing the L;-Diameter and
Center of a Simple Polygon*

Sven Schuierer
Institut fir Informatik
Universitat Freiburg, Rheinstr. 10-12
D-7800 Freiburg, FRG

1 Introduction

Rectilinear paths and rectilinear obstacles play an important role in many applications.
VLSI design [Wid90] is one of the most prominent examples. A natural metric to measure
the distance between two points in such a setting is the L;-metric since it corresponds to
the length of a shortest rectilinear path. In this abstract we address the problem of locating
the set of points inside a simple rectilinear polygon whose maximal L;-distance, i.e., the
length of a shortest rectilinear path, to any other point in the polygon is minimized. This
set is known as the center of the polygon. A closely related problem is that of finding
the maximal distance between two points inside a polygon, also known as the diameter
problem. Note that we always measure the distance between two points according to the
length of a shortest rectilinear path inside the polygon.

Center and diameter problems have been considered in various other contexts and a num-
ber of results have been obtained. Pollack latex master et al. [PSR89] give an O(nlogn)
algorithm to compute the geodesic center of a polygon if the Euclidean metric is used.
The Euclidean diameter of a simple polygon can be computed within the same time bound
by a result of Suri [Sur86]. It is not known up to date if the time complexities of these
algorithms are optimal or whether they can be improved upon.

2 Definitions

In the following let P be a simple rectilinear polygon with n edges. A (rectilinear) path
P is a curve that consists of a finite number of (axis parallel) line segments inside P. The
line segments of P will be called links. The L;-length of P, denoted by A(P), is defined
as the sum of the lengths of its links. The L; distance between two points pand ¢gin P
is the L;-length of the shortest rectilinear path between p and g.

We now give precise definitions of the L;-diameter and -center of a polygon P. The L-
diameter of P, denoted by D(P), is defined as the maximum distance between two points
in P. Closely related is the notion of the radius R(P) of P which is defined as the smallest
value r such that there exists a point p in P with L;(p, q) < r, for all points ¢ of P. The
set of points p in P that satisfy Li(p,q) < R(P), for all ¢ € P, is called the L;-center of
P.

*This work was supported by the Deutsche Forschungsgemeinschaft under Grant No. Ot 64/5-4.

73



2.1 Chords and the L,-distance in Polygons

Lemma 2.1 For each point p in P and any azis-parallel chord ¢, there is one unique point
on ¢ that minimizes the distance from p to c.

In the following we call the unique point on ¢ that is closest to p the projection of p on ¢
and denote it by 7 (p).

Lemma 2.2 If ¢ is an azis-parallel chord in P and p a point in P, then we have, for
every point g on ¢, Li(p, q) = Li(p, 7e(p)) + La(7c(p), q).

As an immediate consequence we obtain

Corollary 2.3 For each point p in P, all of its furthest neighbours are convez vertices of
P. In particular, there is a pair of convez vertices that spans the diameter of P.

It can be shown that the set of projections of all vertices of P can be computed in linear
time.

3 A Simple Algorithm for the L,-Diameter of a
Polygon

We start off with a simple divide and conquer algorithm that takes O(nlogn) time. In
order to do so we choose an axis-parallel chord ¢ that splits P into two parts P; and P, of
almost equal size. In [dB91] it is shown that an axis-parallel chord can be found in linear
time such that the number of edges in both P; and and P, is less or equal to 3/4n + 2.
The algorithm works as follows. .

Algorithm L;-Diameter
1. If P is a rectangle, then D(P) is given by the I, length of the diagonal.

2. Compute a chord ¢ of P that cuts P into two subpolygons P; and P, such that Py,
|P.| <3/4n+2.

3. Compute M = max{Li(v1,v2) | v1 € P}, vz € P,} and remember the vertices vy, v,
with Li(vi,v) = M

4. Compute D(P;) and D(P,) recursively.
5. Let D(P) := max(M, D(P;), D(P,)).
The bottleneck of the above algorithm is Step 3. By projecting the vertices of P; and P,

onto ¢ we are able to compute M in linear time which leads to a run time of O(nlogn) of
the overall algorithm.

The algorithm can be further improved by avoiding recursion on one side of ¢. If (say) P,
is the part of P such that the furthest neighbour of ¢ of P, is closer to ¢ than the furthest

!The notation || is used to denote the number of edges a polygon consists of.

74



neighbour of Py, then we can disregard some parts of P, since they can be shown to have
a diameter of less than M. The remaining parts of P, can then be processed in linear
time which leads to an overall linear time algorithm.

4 Computing the L;-center

The main tool for computing the L;-center is the close relationship between the radius
and the diameter of a simple polygon. More precisely, we have the following lemma.

Lemma 4.1 If P is a simple polygon, then
R(P)= D(P)/2.

So once we have computed the diameter of the polygon, we immediately know its radius.
But the above lemma also turns out to be very helpful in computing the center of Pas the
following lemms shows.

Lemma 4.2 Let v; and v, be a pair of diametral vertices and a shortest path P between
them. If p is the point in the middle of P. then there is a square S containing p with the
following properties

1. S is contained in P,
2. p is contained in one diagonal d of S,
3. d contains the L,-center of P, and

4. S can be computed in linear time.

This observation gives rise to the following algorithm to compute the L;-center. Given a
diametrical pair v;, vy by the diameter algorithm, we compute S in linear time. Let the
four sides of S be s,..., s, and the maximal line segments in P through s; be denoted
by ¢;. Furthermore, let T; be the set of all the vertices that are on the opposite side of
t; as is the square S. We now compute the projections of T} onto s;. Note that s; is the
closest of the four sides of S to the vertices in 7; and that we consider all the vertices of
P in this way. For each projection p; on the boundary of S, we then compute the interval
on the diagonal of S that has distance R(P) to p;. The intersection of all these intervals
then yields the L,-center.

References

[Cha90] Bernard Chazelle. Triangulating a simple polygon in linear time. In Proc. 31th Symposium
on Foundations of Computer Science, pages 220-230, IEEE, 1990.

[dB91] M. de Berg. On rectilinear link distance. Computational Geometry: Theory and Appli-
cations, 1(1):13-34, 1991.

[Lev87] Christos Levcopoulos. Heuristics for Minimum Decompositions of Polygons. PhD thesis,
University of Linkoping, Linkoping, Sweden, 1987.

[PSR89] R. Pollack, M. Sharir, and G. Rote. Computing the geodesic center of a simple polygon.
Discrete and Computational Geometry, 4(6):611-626, 1989.

[Sur86] S. Suri. Computing the Geodesic Diameter of a Simple Polygon. Technical Re-
port JHU/EECS-86/08, Johns Hopkins Univesity, Department of Electrical Engeneering
and Computer Science, 1986.

75



[Wid90] P. Widmayer. On Shoriest Paths in VLSI design. Technical Report 19, Institut fir

Informatik, Universitat Freiburg, Germany, 1990. Also to appear in: Annals of Operations
Research, 1991.



A Simple Balanced Search Tree
With O(1) Worst-case Update Time!
(Extended Abstract)

Rudolf Fleischer
Max-Planck-Institut fiir Informatik
W-6600 Saarbriicken
Germany

Abstract

In this paper we show how a slight modification of (2,4)-trees, called (2,4,8)-trees,
allows us to perform member and neighbor queries in O(logn) time and updates in
O(1) worst-case time (once the position of the inserted or deleted element is known).
Our data structure is quite natural and much simpler than previous worst-case optimal
solutions. It is based on two techniques : 1) bucketing, i.e. storing an ordered list of
2logn elements in each leaf of a (2,4,8) tree, and 2) lazy splitling, i.e. postponing
necessary splits of big nodes until we have time to handle them.

1 Introduction

One of the most common (and most important) data structures used in efficient algorithms
is the balanced search tree. Hence there exists a great variety of them in the literature.
Basically, they all store a set of n keys such that location, insertion and deletion of keys
can be accomplished in O(logn) worst case time.

In general, updates (insertions or deletions) are done in the following way : First, locate
the place in the tree where the change has to be made; Second, perform the actual update;
And third, rebalance the tree to guarantee that future query times are in O(logn). The
second step usually takes only O(1) time, whereas steps 1 and 3 both need O(logn) time.
But there are applications which don’t need the first step because it is already known
where the key has to be inserted or deleted in the tree. In these cases we would like to
have a data structure which can do the rebalancing step as fast as the actual update, i.e. in
constant time.

It has been well known for a long time that some of the standard balanced search trees can
achieve O(1) amortized update time once the position of the key is known ([082]). But
for the worst case update time the best known method had been a complicated O(log* n)
algorithm by Harel ([H79]). Only recently Levcopoulos and Overmars came up with an
algorithm achieving optimal O(1) update time ([LO]). They use the bucketing technique of
[082] : Rather than storing single keys in the leaves of the search tree, each leaf (bucket)
can store up to O(logn) keys. In fact, the buckets in [LO] have size O(log? n); so [LO]
also need a 2-level hierarchy of lists to guarantee O(log n) query time within the buckets.
They show that buckets cannnot grow too big if after every logn insertions the biggest
bucket is split into two halves; rebalancing the search tree can then be distributed over
the next logn insertions for which no split occurs.

!This work was supported by the ESPRIT II program of the EC under contract No. 3075 (project
ALCOM)

-1
~1



Our paper simplifies this approach considerably : We, too, distribute the rebalancing over
the next logn insertions into the bucket which was split, but allow many buckets to be
split at consecutive insertions (into different buckets). This seems fatal for internal nodes
of the search tree : they may grow arbitrarily big because of postponed (but necessary)
splits. But we show that internal nodes never have more than twice the allowed number
of children. This reduces bucket size to 21log n, which means that we need only an ordered
list to store the elements of a bucket. Also the analysis of our algorithm seems simpler
and more natural than in [LO].

2 The Data Structure

Since we can handle deletions using the global rebuilding technique of Overmars ([083]) we
can w.lo.g. assume from now that the only updates to the data structure are insertions.
Queries are the so-called neighbor queries : given a key K, if it is in the current set S
report it, otherwise, report one of the two neighbors in § according to the given order.

Assume that we start with a set Sy of ng keys. These keys are stored in an ordinary (2,4)-
tree Ty of height log ng. The number of children of a node v will be denoted by size(v).
Nodes v with size(v) > 4 will be called big, otherwise small (Tp has only small nodes).
Later the leaves of the tree will grow to buckets of size at most 2logn where n denotes
the current size of the set S which is stored in the tree. Each bucket is represented as a
doubly-linked ordered list. After some insertions, the tree 7" will loose its (2,4)-property
but the size of nodes will always be bounded by 8. Since big nodes are still considered to
be candidates for splitting, we call this kind of tree a (2,4,8)-tree.

Insertions into a bucket can be done in constant time if the neighbor of the inserted key
is given. For rebalancing, each bucket b has an additional pointer 7, to an internal node
of T; in T, or directly after a split, it points to the parent of the leaf which contains b.
Whenever we insert a new key into b we also test whether r; points to a big node; if so, this
node is split into nodes of size at most 4; otherwise nothing happens. Then r, is moved
upwards one level towards the root, if this parent node exists, and otherwise (i.e. ry, is the
root) b is split into two halves. Queries will never change the tree 7.

3 The Analysis

The first Lemma can be proved easily by induction.

Lemma 3.1 height(T) <logn and size(bucket) < 2logn where n is the current number
of keys stored in T.

We now show that the nodes of T have bounded size. If a node is split, the edge to its
parent node (the parent edge) is split, too; we call these edges doubled (we will show that
nodes have size at most 8; hence they can always be split into 2 small nodes). Other
edges are called simple. After some time doubled edges can again become simple edges
(see below).

For an internal node v, let d,, be the number of pairs of split children and e, be the number
of unsplit children, i.e. size(v) = 2d, + €,. v is called small if 2d, + e, < 4, big otherwise.

v is called normal if it is not incident to a doubled edge, i.e. d, = 0; otherwise, it is a

-1
[od]



b-node (see below the definition of b-trees). v is called ezxtended if d, > 1, and blocking if
d, +e, <2.

For the leaves w of T' we define d, = 1 and e, = 0, i.e. leaves are small, extended and
blocking b-nodes. The parent edge of the root is defined to be simple.

If a node v is small and its parent edge is simple then it can be normalized, i.e. all doubled
edges (to split children) become simple. Thus v becomes normal.

It is easy to prove the following relations between these definitions : Extended nodes are
b-nodes, blocking nodes are small, normal nodes are small, and big nodes are extended.

At any time, the doubled edges induce a forest of subtrees of T'; these subtrees are called
b-trees (blocking trees). Since a b-tree consists only of doubled edges all its nodes are
b-nodes.

We still have to say at which time b-nodes are normalized in the algorithm. If 7y is the
root of a b-tree and is discovered - during the rebalancing step of an insertion - to be
small, then 7, and, recursively, the whole b-tree are normalized (this can be done because
the following Lemma guarantees that all non-root nodes of a b-tree are small).

Lemma 8.2 For each b-tree T}, :

(1) The parent edge of root(T}) is simple.
(2) root(Ty) may be big, but dyooy(7,) + €roor(y) < 4-
(3) All other nodes of T, are blocking (and hence small).

(4) Ty contains at least one leaf w of T. For each such leaf w, r,, points to root(T})
or below.

Proof : (1) is always true by the definition of b-trees. (2)-(4) are proved by induction on
the number of nodes split. From (4), it follows that a leaf (bucket) whose parent edge is
doubled is not filled yet and hence can not be split. Hence splits can occur only at the
root of a b-tree. From (2) we know that this root has only a few children; these children
always can be distributed over the two new nodes in such a way that both new nodes
are blocking afterwards. Since we created a new doubled edge, the b-tree has grown. If
the father of the root was part of another b-tree previously, these two b-trees are fused
together to become a big b-tree. In any case, it is easy to verify (2)-(4). o

From these two Lemmas follows immediately

Theorem 3.3 T is always a (2,4,8)-tree. Hence, it supports neighbor queries in time
Slogn and insertions in time O(1), once the position where the key is to be inserted in
the tree is known. Also, deletions can be done in time O(1) using the global rebuilding
technigque.

79



4 Conclusions

We have seen how to implement a simple (2,4,8)-tree which supports neighbour queries
in time O(logn) and updates in time O(1). In a real implementation one could change
the rebalancing step in such a way that a bucket which normalized its b-tree before being
filled, afterwards helps splitting other big nodes (which could be stored in a seperate list

to guarantee quick access).

As in [LO), our data structure can not be used as a finger tree. Hence, it remains an open

problem to obtain a finger tree with only O(1) worst-case update time.

References

[F92)

[H79)

[LO]

[082]

(083)]

R. Fleischer

” A simple balanced search tree with O(1) worst-case update time”
Technical Report MPI-1-92-101, Max-Planck-Institut fiir Informatik,
W-6600 Saarbriicken, Germany, January 1992

D. Harel

"Fast updates with a guaranteed time bound per update”

Technical Report, Dept. of ICS, University of California at Irvine, 1979
C. Levcopoulos, M.H. Overmars

” A balanced search tree with O(1) worst-case update time”

Acta Informatica26 (1988), 269-277

M.H. Overmars

”A O(1) average time update scheme for balanced search trees”
Bull. EATCS18 (1982), 27-29

M.H. Overmars

”The design of dynamic data structures”

Lecture Notes in Computer Science, Vol. 156, Springer 1983



Dynamic Point Location in General Subdivisions!

Hanna Baumgarten

Graduiertenkolleg Algorithmische Diskrete Mathematik, Institut fiir Informatik,
Freie Universitat Berlin
Arnimallee 2-6, W 1000 Berlin 33, Germany

Hermann Jung

Fachbereich Informatik, Humboldt-Universitit Berlin,
PSF 1297, O 1086 Berlin, Germany

Kurt Mehlhorn

Max-Plank-Institut fiir Informatik and Fachbereich Informatik der Universitit des
Saarlandes, '
W 6600 Saarbriicken, Germany

Planar point location is a fundamental geometric searching problem and has been ex-
tensively studied in recent years. In this work we consider the problem of dynamically
maintaining a set S of n non-intersecting (except possibly at endpoints) line segments in
the plane under the following operations:

o Locate(q: point): Report the segment immediately above g, i.e. the first segment
intersected by an upward vertical ray starting at ¢;

e Insert(s: segment): Add segment s to the collection $ of segments;

e Delete(s: segment): Remove segment s from the collection S of segments.

A connected subdivision is defined as the graph induced by the set of line segments §
(i.e. its vertices are the endpoints of the segments, the edges are the segments) if that
graph is connected. Connected sudivisions include the monotone subdivisions defined by
Preparata and Tamassia [PT89] as a special case.

The locate operation in connected subdivisions is usually required to return the name of
the region containing the query point (and not only the segment immediately above the
query point) and some papers reserve the term “dynamic planar point location problem”
for this problem. However, Overmars [Ove85] has shown how to reduce the point location
problem in connected subdivisions to the dynamic planar point location problem (as we
defined it above) with only O(logn) additional cost per operation. Furthermore, there
are applications of the dynamic point location problem, e.g. when ‘using space sweep
techniques, where the connectedness assumption is unnatural.

Table 1 summarizes our results and compares them to previous work. We achieve O(log nloglog n)
locate and insertion time and O(log? n) deletion time, the bounds for insertions and dele-

tions being amortized. The space bound is O(nlog n) for our first solution, and O(n) for

our second solution. This second solution is a refinement of the first one.

Previously, a query time below O(log? ) was only known for the special cases of monotone
subdivisions [CT91] and horizontal line segments [MN90], respectively. In both cases non-
linear space was needed.

'H.B. acknowledges support by the Deutsche Forschungsgemeinschaft under Grant WE 1265/2-1.

31



Subdivision Space Locate Insert Delete Reference

hor. seg. nlogn lognloglogn Tognloglogn lognloglogn Mehlhorn-Naher [MN90]
monotone n log’ n log” n logn Preparata-Tamassia [PT89]
monotone nlogn logn log’n log?n Chiang-Tamassia [CT91]
monotone n log® n logn logn Goodrich-Tamassia [GT91]
connected n log’n log® n - Fries-Mehlhorn [Meh84]
connected n log® n log*n log*n Fries [Fri90]

general nlogn log’n log” n log® n Bentley [Ben77]

general n log® n logn logn Cheng-Janardan [CJ90]
general nlogn lognloglogn lognloglogn logn here

general n lognloglogn lognloglogn log®n here

Figure 1: Running Times of Dynamic Point Location Structures

In the course of deriving our results, we obtain new data structures, which combine well
known structures like segment and interval trees and the method of fractional cascading
introduced by Chazelle and Guibas [CG86] and dynamized in [MN90]

Let us have a look at the general philosophy of fractional cascading. Fractional cascading
is a very powerful data structuring technique to improve the search and update times for
structures consisting of a basic undirected frame graph and many linear lists at its nodes.
The main idea of fractional cascading is based on the exploitation of the inherent structure
of linear orderings. In order to speed up searches, it introduces bridges between lists of
adjacent nodes, i.e. it stores the same element in several lists, such that the position of
the query element in one list and a nearby bridge guide the search into the vicinity of the
position of the query element in the next list. The search time depends on the number of
searched nodes, the cost for an initial search part and essentially on the distance between
bridges. In this way, the search time can be reduced if the distance between neighboring
bridges can be kept small. In [MN90] it was shown that distance O(1) between bridges
can be maintained if all lists are drawn from a linearly ordered universe. In the case of
general line segments we only have a partial order, the natural "above”-relation between
segments. Therefore the standard fractional cascading method can not be applied directly.
With respect to the partial order among the line segments we only copy segments (bridges)
in root to leaf fashion. In this way, the distance between bridges can be controlled in the
parent nodes but not in the children nodes. For searches this does not cause a problem,
since they can be performed in leaf to root fashion.

However insertions and deletions become considerably more complex.

(1) An insertion of a segment s into a segment tree forms an insertion sequence for
subsegments of s into segment lists of at most O(logn) nodes nearby the search
path for the two endpoint of s. Thus binary search seems to be needed in each node
resulting in O(log? n)insertion time. We show that information about previously
inserted segments can be efficiently used to achieve an amortized insertion time of
O(log n loglog n).

(2) For deletions the following problem appears. Fractional cascading copies elements
from lists to neighboring lists, i.e. it creates bridges between lists. In this way an
element may have copies in several lists. Suppose now that a segment with many
copies is deleted from the collection S of segments. In standard dynamic fractional

82



cascading ([MN90]), it is possible to leave the copies as ghost elements in the data
structure. In the case of segments, the difficulty arises that ghost segments may
intersect with segments inserted later. We allow intersections, but in a carefully
controlled way, e.g., we guarantee that bridges never intersect and that no segment
intersects more than one bridge.

For the second solution we combine the interval-priority-search tree of Cheng and Janardan
([CJ90]) with segment trees and dynamic fractional cascading. The search algorithm
proposed in [CJ90] is more complex than binary search and hence the searches in several
such data structures interact in a more complex way than binary searches do. We use
our previous results and obtain the same time bounds as before for insertion, deletion and
query operations, but a space requirement of O(n).

References

[Ben77] J. Bentley. A solution to Klee’s rectangle problems. unpublished, 1977.

[CG86] B. Chazelle and L. Guibas. Fractional cascading. Algorithmica, 1:133-196, 1986.

[CJ90] S.W. Cheng and R. Janardan. New results on dynamic planar point location.
IEEFE FOCS, pages 96-105, 1990.

[CT91] Y.-J. Chiang and R. Tamassia. Dynamization of the trapezoid method for planar
point location. ACM Symposium on Computational Geoemtry, 1991.

[Fri90] O. Fries. Suchen in dynamischen planaren Unterteilungen. PhD thesis, Univ. des
Saarlandes, 1990.

[GT91] M.T. Goodrich and R. Tamassia. Dynamic trees and dynamic point location.
STOC, 91.

[Meh84] K. Mehthorn. Data Structures and Algorithms. Springer Verlag, 1984.

[MN90] K. Mehlhorn and St. Niher. Dynamic fractional cascading. Algorithmica, 5:215-
241, 1990.

[Ove85] M. Overmars. Range searching in a set of line segments. Ist ACM Symp. on
Comp.Geometry, pages 177-185, 1985.

[PT89] F. Preparata and R. Tamassia. Fully dynamic point location in a monotone
subdivision. SIAM J. of Computing, 18:811 - 830, 1989.



84



Mixed Element Trees: A Generalization of Modified
Octrees for the Generation of 3-D Delaunay Meshes

Nancy Hitschfeld and Wolfgang Fichtner

Integrated Systems Laboratory, ETH-Zentrum,
8092 Zurich, Switzerland

Paolo Conti
NTT LSI Laboratories, Atsugi, Kanagawa, Japan

Abstract

We have develop an automatic grid generator for three-dimensional (3-D) devices.
We have characterized the class of meshes suitable for the integration of the device
equations with the usual numerical schemes as being a subclass of the class of Delaunay
meshes. The generated meshes permit an exact geometrical modeling of rather general
domain boundaries of modern silicon devices avoiding the “obtuse angle problem” by
construction.

Software packages for the numerical solution of partial differential equations (PDEs) are
important prototyping tools in several engineering disciplines. Results from numerical
simulations are used to design and to optimize parts ranging from large aircraft wings
to microscopic semiconductor devices and integrated circuits. The spatial discretization
of the structure to be simulated, i.e. its subdivision in cells, is key to the accuracy of
the computed solution. An appropriate mesh should fulfill several requirements: first, it
must provide a reasonable approximation of the geometry to be modeled, in particular
of its boundary and internal material interfaces. Second, it is extremely important to
accurately approximate all internal quantities relevant to the solution of the PDEs, such
as the doping profile in a semiconductor device. Third, the single cells must fulfill certain
geometric constraints imposed by the numerical integration method: if the PDEs are solved
with the finite element method, no angle must be smaller than some bound supplied a
priori. However, if the equations are solved using a control volume discretization or box
method(BM), the surfaces defining the volume discretization have perpendicular bisectors
of the edges of the tessellation. It can be shown that particular Delaunay tessellations
satisfy this requirement [1].

The grid generator §2 presented here has been developed for the simulation of semiconduc-
tor devices in 3-D. Several aspects must be considered when tessellating semiconductor
devices. As these devices generally feature rather complex geometries the grid generator
must be capable of dealing with quite general domain boundaries and material interfaces.
In the simulation of mechanical parts similar problems arise. As classical finite element
schemes seem inappropriate, PDEs are usually solved using the control volume or box
method [2]. This leads to the requirement that the underlying mesh should be a Delaunay
grid [1]. In addition in a semiconductor device featuring sizes of several ym, relevant
internal quantities may vary over several orders of magnitude within 100 A, i.e. within a
few thousandths of the overall size. Hence, mesh density must vary over several orders of
magnitude in the whole device.

The first version of the grid generator, Q,.,(§ octree), as presented in [3], was based on a
conventional modified octree approach. It was shown that the octants of an octree could be

85



completed with additional edges on the surface or in the interior of each octant. However,
in order to obtain an appropriate mesh, modified octrees suffer three serious drawbacks
when used for discretizing semiconductor devices:

1. All octants are almost cubic; therefore the point density is locally constant along all
three coordinate axes. However, relevant quantities in a semiconductor device may
strongly vary along one axis, while remaining constant in the plane perpendicular
to the axis. In these cases, isotropic cells, as those resulting from modified octrees,
lead to a large number of redundant mesh points.

2. The algorithm used to obtain Delaunay meshes requires that material interfaces
intersect an octant in the center of its edges. As a result, several refinements and a
huge number of mesh points were required along material interfaces.

3. There may be inaccuracies in computing the volume discretization for interface ele-
ments.

In order to overcome these problems, the current version Dme(2 with mixed elements)
generalizes the modified octree approach in several aspects[4]. The whole device is no
lor ger encapsulated in a single octree, but partitioned in a set of macro-elements consisting
of cubes, rectangular prisms and rectangular pyramids (Figure 1). We use this set of

Figure 1: Macro-grid for the ECL bipolar transistor. The number of macro-elements is
2,069: 28 pyramids, 369 prisms and 1,672 cuboids.

elements because they allow the discretization of the device volume using the box method.
Furthermore, they are closed under the refinement process, that is, each element obtained
after a partition belongs to the same set!.

'A very simple element, the rectangular tetrahedron, cannot be used as macro-element because it is
not possible to integrate its volume using the box discretization method.

36



This approach permits the representation of plane-faced geometries using a reasonable
number of mesh points. No refinement along material interfaces is required to fit the
geometry of the device. Subsequently, the desired mesh density in the interior of the
device is obtained through the recursive refinement of prisms, pyramids and cuboids. If
a finer mesh is required along one, two, or three coordinate axes, cubes, for example,
are subdivided into two halves, four quadrants, and eight octants, respectively. Then, the
elements with additional edge mid-points are subdivided into tetrahedra, pyramids, prisms
or bricks in order to get a proper finite element mesh. Figure 2 shows a zoomed view of a
trench-isolated bipolar transistor as used in state-of-the-art high-speed ECL designs.

Figure 2: ECL bipolar transistor: A final grid at the left and a zoomed view at the emitter
and p-channel at the right

References

[1] P. Conti, Grid Generation for Three-dimensional Device Simulation. PhD thesis, ETH
Ziirich, 1991. published by Hartung-Gorre Verlag, Konstanz, Germany.

[2] R. E. Bank, D. J. Rose, and W. Fichtner, “Numerical methods for semiconductor
device simulation,” IEEE Trans. on El. Dev., vol. ED-30, no. 9, pp. 1031-1041, 1983.

[3] P. Conti, N. Hitschfeld, and W. Fichtner, “Q - an octree-based mixed element grid
allocator for adaptive 3d device simulation,” IEEE Trans. on CAD/ICAS, vol. 10,
pp. 1231-1241, 1991.

[4] N. Hitschfeld, P. Conti, and W. Fichtner, “Grid generation for 3-d nonplanar semi-
conductor device structures,” in Proceedings of the fth International Conference on
simulation of Semiconductor Devices and Processes (W. Fichtner and A. Aemmer,
eds.), pp. 165-172, Hartung-Gorre Konstanz, 1991.

@®
-1






Guard data structures for fat spatial objects

Peter Widmayer
Institut fiir Informatik
Universitat Freiburg, Rheinstr. 10-12
D-7800 Freiburg, FRG

The variety of spatial data structures and retrieval algorithms developed in recent years
suggests that it is difficult or impossible to design general purpose structures that perform
well across the entire spectrum of objects to be stored and queries to be processed -
generality comes at the cost of performance and increased algorithm complexity. Thus
simple algorithms that perform well on a restricted class of problems are clearly of interest.

Guard algorithms answer stabbing and intersection queries on a dynamic collection of
spatial objects embedded in space that satisfy a shape constraint. The objects stored
must be fat in a technical sense that can be made precise in several ways, but always
implies object convexity and a width-to-length-ratio of at least f, where the fatness f is
characteristic of the class of objects to be stored.

Guard algorithms partition space in a hierarchical grid of cells and guard points. Objects
are attached to cells and guard points in such a way that a stabbing query is answered in
a single path from the root to a leaf of the radix tree that represents the hierarchical grid.



90



A plane-sweep algorithm for finding a closest pair
among convex planar objects

Frank Bartling
FB 12, Informatik, Universitaet - GH - Siegen
Postfach 10 12 40, D - 5900 Siegen, Germany

Klaus Hinrichs
FB 15, Informatik, Westfaelische Wilhelms-Universitaet,
Einsteinstr. 62, D - 4400 Muenster, Germany

Given a set of geometric objects a closest pair is a pair of ob jects whose mutual distance
is smallest. We present a plane-sweep algorithm which finds a closest pair with respect to
any Lp-metric, 1 < p < oo, for planar configurations consisting of n (possibly intersecting)
compact convex objects such as line segments, circular discs and convex polygons. For
configurations of line segments or discs the algorithm runs in asymptotically optimal time
O(nlogn). For a configuration of n convex polygons with a total of m vertices given in
a suitable representation the algorithm finds a closest pair with respect to the Euclidean
metric in time O(nlog m).

91



92



Contour Triangulation
(Extended Abstract)

Heinrich Miiller,
Institut fiir Informatik,
Universitat Freiburg
Rheinstrafie 10, W-7800 Freiburg, Germany

The input of the problem of calculating surfaces from cross sectional contours (SFCSC)
consists of a sequence of parallel planes in space which are decomposed into disjoint polyg-
onal cells. The output asked for is a spatial decomposition into polytopes whose cross
sections along the given planes induce the given cell decompositions of the planes.

The SFCSC problem has found considerable interest in relation with catching data by
techniques of tomography. The purpose of this contribution is to present an approach of
solution for this problem, which summarizes several other suggestions made in literature
in the past. For a more comprehensive survey of this topic cf. [11].

The approach presented here divides the SFCSC into two major subproblems, the recon-
struction of the topology and the reconstruction of geometry.

Reconstruction of topology means mutually assigning the different contours from slice to
slice. This problem is of particular difficulty if there are several contours on each plane and
if it is known that the corresponding solid can have branchings. The assignment of contours
can be formally described by an assignment graph. The vertices of the assignment graph
correspond to contours. Its edges connect vertices which belong to contours of consecutive
slices forming a connected subsolid. An assignment graph is called wvalid if there exists a
solid which induces the assignment described by that graph.

For a sequence of contours usually more than one valid assignment graph does exist. On
the other hand not every graph which assigns contours between slices is in fact valid.
One type of restriction is of topological nature. In general, a planar slice is composed
of nested contours. Nested contours occur if the sliced solid has holes, like for instance
a torus. A valid assignment of contours has to preserve the nesting. The nesting of
contours can be formally described by a nesting tree. Each vertex of the nesting tree
corresponds to a contour. The root of the nesting tree corresponds to a virtual outer
contour which envelops all other contours. The successors of a vertex correspond to the
contours immediately contained into its corresponding contour.

We will present an algorithm which enumerates all assignment graphs valid from the view
of topology. It is based on an analysis of the nesting trees of the given contours which is
related to the Morse theory of mathematics (Milnor [9], Morse, Cairns [10], Shinagawa,
Kunii, Kergosien [13], Kergosien [8]).

The task of geometric reconstruction is deriving the surface of a solid so that its slices
coincide with the given contours and which corresponds with a given assignment graph.
The surface results from piecewise composition of surface segments which are interpolated
from assigned contours in two neighboring cutting planes. The following cases can be
distinguished:

93



Cylindric interpolation. One simply closed polygonal curve in each of two parallel
planes which are mutually assigned.

Saddle point interpolation with disconnected saddle. Two disjoint nested polyg-
onal contours in one plane and one contour in the other. The two contours are
assigned to the single contour.

Saddle point interpolation with connected saddle. Two disjoint polygonal contours
in one plane which are not nested, and one contour in the other plane. The two con-
tours are assigned to the single contour.

Extremal point interpolation. One contour in the first plane, to which no contour in
the second plane is assigned.

There are two possibilities of interpolating polyhedrons. One is to allow the polyhedron
to have additional vertices besides those given on the contour, and the other to have not.
The usefulness of additional vertices can be seen in the saddle case where the saddle point
is’usually to be expected to lie between the given planes.

An immediate approach when not using additional points is to interconnect the given
contours by surfaces of triangles. The case of cylindric interpolation leads to cylindric
triangulation. The input of cylindric interpolation consists of two disjoint closed polygonal
chains pg,...,pm and qo,-..,q, in space, Po = Pm> 90 = q,. The output is a set of
triangles with vertices p;, q;, so that each triangle has vertices on both polygonal chains,
each edge of the polygonal chains occurs on exactly one triangle, and each edge p,q;
but poqo and p,,q,, which belongs to a triangle does belong to exa,ctlly two triangles.
The number of different cylindric triangulations is N(m,n) = n - (Mino1). We are only

. . . 3 nl—l
interested in those of them which are not penetrating.

By Keppel 7] a description of cylindric triangulations by directed graphs was introduced.
The toroidal graph can be graphically represented by a two-dimensional grid. It has m - n
nodes n; ;,t=0,...,m,j=0,...,n, Ng,; = N j, Nio = n;,. Each node n;; corresponds
to a line segment p;q; between the two given polygonal chains. The arcs of the toroidal
graph have the form n, ;jn, ;;; and n;;n;yq;. Arcs of the first sort represent triangles
q;P;+1Pi, Whereas those of the second form correspond to triangles PiPi+14;- A cylindric
triangulation is expressed by a directed closed path in the toroidal graph which visits each
row and column at least once.

The trouble with the triangulation of saddle points is that the saddle point cannot be
modeled between the two given planes as it would be natural if no additional points are
allowed. A way out we suggest for triangulations without additional points is to model
the saddle point on one of the given cutting planes. This can be done according to the
following two alternatives:

Contour merging. The two contours on the common cutting plane are transferred into
one by introducing two nonintersecting line segments. In the disconnected case both
line segments totally lie in the exterior of both contours. In the connected case the
line segments lie in the ring between the inner and outer contour. A special case is
that both edges are identical (Shantz [12]). In the disconnected case the resulting
surface consists of a cylindric triangulation an a planar polygon. In the connected
case the surface is formed by two cylindric triangulations and a planar polygon. The
polygon has to be triangulated.

94



Contour splitting. The single contour is divided by two nonintersecting line segments
into two contours. In the connected case both line segments lie totally in the ex-
terior of the contour, in the disconnected case in the inner of the contour. Both
line segments are introduced so that the resulting contours are nonintersecting. In
the connected case, the resulting surface consists of a cylindric triangulation and a
planar polygon. In the disconnected case the surface is composed by two cylindric
triangulations and a planar polygon. Again the polygon is triangulated.

The third case are the eziremal points. They appear if on one of the neighboring cut-
ting planes no continuing contour is assigned to a given contour. The only possibility of
triangulation without additional points is to triangulate the inner of the polygon. This
triangulation closes the surface as required at an extremal point.

The preceding discussion of geometric reconstruction is sufficient for a special restricted
class of assignment graphs. For the talk, a treatment of the general case is envisaged.

It is not difficult to give an algorithm for enumerating all possible triangulations of these
types. However, among the large number of triangulations only a considerably reduced
subset will usually be acceptable for an area of application. For the case of contour trian-
gulation, different criterions for acceptable triangulations were proposed. These criterions
can be distinguished in weight criterions and shape criterions. The last part of the talk is
devoted to their discussion which can be summarized as follows.

Weight criterions can be often easily expressed formally by using the toroidal graph.
For this purpose, weights w(e) respectively w(n) are assigned to its edges e and nodes n
(Ganapathy, Dennehy [4]). Typical weight criterions are minimum area of the total surface
(Fuchs, Kedem, Uselton [3]), minimum biggest area of a triangle, minimum total length of
the edges of the triangulation, minimum longest edge, minimum biggest angle of a triangle,
maximum smallest angle of a triangle, maximum smallest slope of a triangle relative to
the planes of the polygonal chains, and maximum volume of the polyhedron induced by
the triangulated surface. Some of these criterions can be satisfied very efficiently since
they lead to the problem of finding a shortest path in the toroidal graph.

Kaneda, Harada, Nakamae, Yasuda, Sato [6] have proposed to connect each vertex on
a contour with its nearest neighbor on the other contour. However, it is not always
possible to obtain a triangulation containing all these interconnecting line segments as
edges. The alternative is considering those triangulations containing a maximum number
of such edges. Until now, no algorithm more efficient than exhaustive search seems to be
known. Shinagawa, Kunii, Nomura, Okuno, Hara [14] give an approximate solution for
the maximum number of shortest edges.

Further types of triangulation were obtained by greedy approaches. Starting with an initial
node in the toroidal graph, the greedy algorithm of Christiansen, Sederberg [1] successively
constructs a path by adding that neighbor of the currently last node of the path which
has the smallest weight. The weight used is the length of the connecting line segment
represented by the node. Ganapathy, Dennehy [4] choose the next node in such a way
that that the absolute difference between the length of the piece of the upper contour and
the piece of the lower contour processed yet is minimized all the time.

Finally, Cook, Batnitsky [2] suggest to construct the triangles in such a way that their
orientation is a s close as possible to the orientation of the line joining the centroids of the
two contours.



Shape criterions take into consideration the shape properties of the given polygonal chains
known from the area of image processing (cf. e.g. Gonzalez, Wintz [5]). An example is
shape analysis based on curvature. Curvature allows to identify changes between left and
right windings, and regions of extremal curvature. The shape of the polygonal chains is
transferred onto the shape of the triangulation by inserting edges between both contours
which connect points with the same property in suitable order. By the new edges, the

given stripe is subdivided into substripes which are triangulated according to some further
criterion.

References

[1] H.N. Christiansen, T.W. Sederberg (1978). Conversion of complezx contour line defi-
nition into polygonal element mosaics. Computer Graphics, 12(3):187-192.

[2] P.N. Cook, S. Batnitsky (1981). Three-dimensional reconstruction from serial sections
for medical applications. Proceedings of the 14th Hawaii International Conference on
System Sciences, 2:358-389.

[3] H. Fuchs, Z. Kedem, S.P. Uselton (1977). Optimal surface reconstruction from planar
contours. CACM, 20:693-702.

[4] S. Ganapathy, T.G. Dennehy (1982). A new general triangulation method for planar
contours. Computer Graphics, 16(3):69-75.

[5] R.C. Gonzalez, P. Wintz (1987). Digital image processing, 2nd ed. Addison-Wesley,
Reading, Mass.

[6] K. Kaneda, K. Harada, E. Nakamae, M. Yasuda, A.G. Sato (1987). Reconstruc-
tion and semi-transparent display method for observing inner structure of an object
consisting of multiple surfaces. In T.L. Kunii, editor, Computer Graphics 1987, pp.
367-380. Springer-Verlag, New York.

(7] E. Keppel (1975). Approzimating complex surfaces by triangulation of contour lines.
IBM J. Res. Devel., 19:2-22.

[8] Y. L. Kergosien (1991). Generic sign systems in medical imaging. IEEE CG & Appl.,
11(9):46-65.

[9] J. Milnor (1963). Morse Theory. Princeton University Press, New Jersey.

[10] M. Morse, S.S. Cairns (1969). Critical point theory and differential topology. Academic
Press, San Diego.

[11] H. Miiller . Surface interpolation from cross sections. In H. Hagen, H. Miiller, G. Niel-
son, editors, Scientific Visualization Seminar Book. Springer-Verlag, Berlin, to ap-
pear.

[12] M. Shantz (1981). Surface definition for branching contour-defined objects. Computer
Graphics, 15(2):242-270.

[13] Y. Shinagawa, T.L. Kunii, Y.L. Kergosien (1991). Surface coding based on Morse
theory. IEEE CG & Appl., 11(9):66-78.

[14] Y. Shinagawa, T.L. Kunii, Y. Nomura, T. Okuno, M. Hara (1989). Reconstructing
smooth surfaces from a series of contour lines using a homotopy. In R.A. Earnshaw,
B. Wyvill, editors, New Advances in Computer Graphics, pp. 147-161. Springer-
Verlag, Berlin.

96



Parallel Triangulation of Nonconvex Polytopes

W. Preilowski
Department of Mathematics and Computer Science,
University of Paderborn

Abstract

A new parallel algorithm for the triangulation of a nonconvex polytop P is pre-
sented. It will be shown that P can be decomposed into O(n + r?) tetrahedra within
time O(log(n) - maz{log*(n), log()}) with O(n + r2) processors, where r is denoting
the number of reflex edges of P.

Introduction

Look at the following problem: given a nondegenerated simple nonconvex polytope P C
IR? with r reflex edges, we have to partition the interior of P into a small set of tetrahedra.
The partition of geometric objects into a small number of convex pieces is an important
problems in computational geometry, as can been seen in many applications in computer
graphics and pattern recognition.

In the plane the parallel triangulation-problem for nonconvex polygones is optimally solved
by Goodrich [Go 89] in time O(log(n)) with O(m) processors. For triangulation of
3-dimensional nonconvex objects only sequential aﬁgorithms and complexity results by
Chazelle [Ch 84],[Ch 90], Ruppert and Seidel [RuSe 89] and Lingas [Li 82] are publicated.
In [RuSe 89] it is shown that if no Steiner points are allowed in the decomposition, the
problem of deciding whether a given polytope is decomposible into tetrahedra is N P-
complete. From Lingas we have learned that the problem of finding a decomposition with
a minimum number of tetrahedra is N P-hard.

Chazelle has given an O(n?) lower bound for the number of tetrahedra used in the tri-
angulation by using Steiner points in [Ch 84]. In [Ch 90] he gave a sequential algorithm
running in time O((n + r2) - log(7)) for a nondegenerated simple nonconvex polytope P
containing O(r) reflex edges.

In this paper a parallel algorithm based on Chazelle’s result is given. Because of Ruppert’s
and Seidel’s result it is not always possible to triangulate in a way that all extrempoints
of the tetrahedra used for the triangulation are also endpoints of P. So it is possible that
the algorithm presented here could use up to O(r?) Steiner points for the triangulation.
It will be shown that a simple nondegenerated nonconvex polytope P of genus 0 with
n vertices and 7 reflex edges can be decomposed into O(n + r2) tetrahedra within time
O(log(n) - maz{log*(n),log(r)}) using O(n + r?) processors.

The Triangulation Algorithm:

The algorithm is based on Chazelle’s sequential approach, which uses time O((n +r?)-

log(r)).
It consists of two phases the Pull-Off- and the Fence-Off-Phase. In the Pull-Off-Phase
one has to search many vertices on the boundary of P whose cups are unhindered. These

97



cups can be replaced by their domes. Triangulation of the unhindered cups is easy by
drawing straight lines from the apex of the cup to all vertices of the crown, as they are
all star-shaped polytopes. Mark, that in this phase no Steiner-points are needed for the
triangulation. Arbitrary replacing of unhindered cups by their domes could lead to a large
number of tetrahedra, namely O(n - r) in the triangulation. So the order of replacing
must be determined very carefully.(See figure 1) After the Pull-Off-Phase the number of
nodes of the polytope P is O(r). In the Fence-Off-Phase the resulting polytope will be
triangulated into a partition of tetrahedra. Therefore vertical walls called fences are placed
through all reflex edges.(See figure 2) This leads to a partition of the interior into 0o(r?)
cylindric polytopes. These polytopes are not all necessarily convex. They can be made
convex by triangulating their horizontal base polygon and set up vertical walls onto the
new edges, too. Each of the resulting pieces can be triangulated with a constant number
of tetrahedra. The Fence-Off-Phase can be done in time O(log(r)) with O(r?) processors.!

References

[Ch 84] B. Chazelle. Convez Partition of Polyhedra: A Lower Bound and Worst-Case
Optimal Algorithm. SIAM J. Comput., Vol. 13, No. 3, 488-507, 198/.

[Ch 89] B. Chazelle. An Optimal Algorithm for Intersecting Three-Dimensional Con-
vez Polyhedra. IEEE, pages 586-591, 1989.

[Ch 90] B. Chazelle, L. Palios. Triangulating « Nonconvez Polytope. Discrete Comput.
Geometry 5, 505-526,1990.

[CoZa 90]  R. Cole, O. Zajicek. An optimal Parallel Algorithm for Building a Data Struc-
ture for Planar Point Location. Journal of Parallel and Distributed Comput-
ing, no.8, pages 280-285, 1990.

[GoPISh 87] A. V. Goldberg, S. A. Plotkin, G. E. Shannon. Parallel Symmetry-Breaking
in Sparse Graphs. Journal Discrete Mathematics, No. 1. pages 434-446, 1988.

[Go 89] M. T. Goodrich. Triangulating a Polygon in Parallel. Journal of Algorithms,
No. 10, pages 327-351, 1989.

[Li 82] A. Lingas. The Power of Non-Rectingular Holes. Proc. 9th Collog. Automata,
Languages and Programming, 369-383, 1982.

[RuSe 89]  J. Ruppert, R. Seidel. On the Difficulty of Tetrahedralizing 3-Dimensional
Non-Convexr Polyhedra. Proceedings of the fifth annual Symposium on ACM
- Computational Geometry, pages 380-392, 1989.

'The main time O(log(r)) is used for the triangulation of the base poygons.

98



Figures

The removement-~order N-(N-1)-...-3-2-1 of unhindered cups leads to a
number of O(n- r) tetrahedra, whereas the reverse order guarantee O(n)
pleces for the triangulation.

figure 2:

The Fence of the edge (A,B):

99



100



B. Aronov .................. 55
F. Aurenhammer ............ 55
F. Bartling .................. 91
H. Baumgarten ............. 81
F. Bernardini ............... 13
H.Bieri ..................... 61
J.D. Boissonnat ............. 51
A.Cerezo ........covevvvnnn.. 51
P.Conti .................... 85
O. Devillers ................. 45
J. Duquesne ................. 51
V. Ferrucci ...l 13
W. Fichtner ................. 85
R. Fleischer ................. 77
M. Formann ................ 59
P.G. Franciosa, .............. 17
C. Gaibisso ................. 17
M.Golin .......covvvunnnn.. 23
K. Hinrichs ................. 91
N. Hitschfeld ................ 85
F. Hoffmann ................ 55
C.Icking .........oooeintt 5
HoJung ..........ooooiiiil 81
R.Klein ..................... 5

Author’s index

E. Kranakis
J.E. Mebius
K. Mehthorn
S. Meiser
H. Miiller

M. Pocchiola
W. Preilowski
H. Schipper
P.-M. Schmidt
S. Schuierer
S. Skyum
A W .M. Smeulders
S. Stifter

G. Vegter
R.C. Veltkamp
C. Watt
P. Widmayer
M. Worring

101

.................

...............

.................

..............

.................

..................

.................

.................

...................

..............

.....................

................



102



List of Participants

Manuel Abellanas Hanna Baumgarten

Facultad de Informatica Freie Universitat Berlin

Buadilla del Monte Institut fiir Informatik

28660 Madrid Graduiertenkolleg Algorithmische Diskrete
Spain Mathematik

tel: +34-1-336-7426 Arnimallee 2-6

fax: +34-1-352-4645 D-1000 Berlin 33

mavellanas@fi.upm.es Germany

tel: +49-30-838-6649
fax: +49-30-838-5913
baumgart@tcs.fu-berlin.de

Helmut Alt

Freie Universitat Berlin Mark de Berg

FB Mathematik Utrecht University

Arnimallee 2-6 Dept. of Computer Science

D-1000 Berlin 33 P.O. Box 80.089

Germany 3508 TB Utrecht

tel: +49-30-838-5911 the Netherlands

fax: +49-30-838-5913 tel: +31-30-533922

alt@tcs.fu-berlin.de fax: +31-30-513791
markdb@cs.ruu.nl
Hanspeter Bieri

Franz Aurenhammer Universitat Bern

Freie Universitat Berlin Institut fiir Informatik

Institut fiir Informatik Langgassstrasse 51

Arnimallee 2-6 CH-3012 Bern

D-1000 Berlin 33 Switzerland

Germany tel: +31-658681

tel: +49-30-838-3775 fax: +31-653965

fax: 449-30-838-5913 bieri@iam.unibe.ch

aurenham@tcs.fu-berlin.de

Ton Dammers
Katholieke Universiteit Nijmegen
Fac. Natuurwetenschappen

Frank Bartling Experimentele Vaste Stof Fysica 2
Universitat-GH Siegen Toernooiveld 1

FB 12 / Informatik 6525 ED Nijmegen

Holderlinstr 3 the Netherlands

5900 Siegen tel: +31-80-653094

Germany fax: +31-80-553450

tel: +49-271-7402304 dammers@sci.kun.nl

103



Ir. Victor J. Dielissen

Technische Universiteit Eindhoven
Faculteit Wiskunde en Informatica
Vakgroep Informatica

Postbus 513

Den Dolech 2

5600 MB EINDHOVEN

the Netherlands

tel: +31-40-474317

fax: 4+31-40-436685

Jacqueline Duquesne
INRIA-Sophia Antipolis
BP 109

2004 Route des Lucioles
06561 Valbonne

France

tel: +33-93657749

fax: +33-93657643
duquesne@alcor.inria.fr

Vincenzo Ferrucci

University of Rome “La Sapienza”
Dept. of Computer Science

Via Buonarroti 12

00185 Roma

Italy

tel: +39-6-4873676

fax: 439-6-4873628
ferrucci@iasi.rm.cnr.it

Rudolf Fleischer
Max-Planck-Institut fiir Informatik
Im Stadtwald

W-6600 Saarbriicken

Germany

tel: +49-681-3025359

fax: 4-49-681-3024421
rudolf@mpi-sb.mpg.de

Michael Formann

Freie Universitat Berlin
Institut fir Informatik
FB Mathematik
Arnimallee 2-6

W-1000 Berlin 33
Germany

tel: 4+49-30-838-6589
fax: +49-30-838-5913
formann@tcs.fu-berlin.de

Paolo Giulio Franciosa
Universita di Roma “La Sapienza”

Dipartimento di Informatica e Sistemistica

Via Salaria, 113

00198 Roma

Italy

tel: +39-6-8841820

fax: +39-6-8442383
franciosa@vaxrma.infn.it

Carlo Gaibisso
IASI-CNR

Viale Manzoni 30
00185 Rome

Italy

tel: +39-6-770031
fax: +39-6-770031
gaibisso@iasi.rm.cnr.it

Michael Godau

Freie Universitat Berlin
Institut fir Informatik
Arnimallee 2-6

‘W-1000 Berlin 33
Germany

tel: +49-30-838-5924
fax: +49-30-838-5913
godau@tcs.fu-berlin.de

Mordecai Golin

INRIA

Domaine de Voluceau-Rocquencourt
B.P. 105

F-78153 Le Chesnay Cédex

France

tel: +33-1-39635658

fax: +33-1-39635330
golin@margaux.inria.fr

Mark de Groot
P.J. Blokstraat 29
2313 ES Leiden
the Netherlands
tel: +31-71-126271

104



Johann Hagauer

Technische Universitat Graz
IICM

Klosterwiesg. 32/II

8010 Graz

Austria

tel: 316-810063

fax: 316-8100655

JHAGAUERQ@IICM.TU-GRAZ.AC.AT

Klaus Hinrichs

Westfalische Wilhelms Universitat
FB-15 / Informatik
Einsteinstrafle 62

D-4400 Miinster

Germany

tel: +251-833752

hinrichs@ti.e-technik.uni-siegen.dbp.de

Nancy Hitschfeld

ETH Zurich

Integrated Systems Labs.
Gloriastr. 35

CH-8092 Zurich
Switzerland

tel: +41-1-256-5746

fax: +41-1-256-0994
nancy@iis.ethz.ch

Dr. Ulrich Huckenbeck
Universitit Wiirzburg

Lehrstuhl I fiir Informatik

Am Hubland

8700 Wiirzburg

Germany

tel: +49-931-8885025

fax: +49-931-8884600
hu@informatik.uni-wuerzburg.de

Ferran Hurtado

Universitat Politecnica Catalunya
Dept. Matem. Applicada II

Pau Gargallo 5

08028 Barcelona

Spain

tel: +34-3-4017280

fax: +34-3-4017040
hurtado@ma2.upc.es

Goos Kant

Utrecht University

Dept. of Computer Science
P.O. Box 80.089

3508 TB Utrecht

the Netherlands

tel: +31-30-534092

fax: +31-30-513791
goos@cs.ruu.nl

Prof.Dr. Rolf Klein

Fernuniversitat Hagen-Gesamthochschule
FB Inform, Prakt. Inform. VI

Postfach 940
Elberfelderstrale 95
D-5800 Hagen 1
Germany

tel: +49-2331-804-8365
fax: +49-2331-332904
klein@fernuni-hagen.de

Marc van Kreveld

Utrecht Unievrsity

Dept. of Computer Science
P.O. Box 80.089

3508 TB Utrecht

the Netherlands

tel: +31-30-533922

fax: +31-30-513791
marc@cs.ruu.nl

P.W.H. Lemmens
Rijksuniversiteit Utrecht
Vakgroep Wiskunde
Postbus 80.010
Budapestlaan 6

3508 TA Utrecht

the Netherlands

tel: 030-531426

fax: 030-518394
lemmens@math.ruu.nl

Marisa Mazén
Universidad de Cantabria
Facultad de Ciencias
Avde. Los Castros s/n
39071 Santander

Spain

tel: 34-42-201522

fax: 34-42-201402
recio@ccucvx.unican.es

105



J.E. Mebius

Technische Universiteit Delft
Vakgroep Technische Informatica
Postbus 356

2600 AJ Delft

the Netherlands

tel: +31-15-783072

fax: 4+31-15-787141

H. Miiller

Universitat Freiburg

Institut fiir Informatik
Rheinstrafe 10-12

D-7800 Freiburg

Germany

tel: +49-761-203-3892/3891

fax: +49-761-203-3889
mueller@informatik.uni-freiburg.de

Prof.Dr. Hartmut Noltemeier
Universitat Wiirzburg

FB Informatik

Am Hubland

8700 Wiirzburg

Germany

tel: 449-931-8885055

fax: +49-931-8884600
noltemei@informatik.uni-wuerzburg.de

Dr. C. O’Dunlaing

Dublin University

Trinity College, School of Mathematics
Dublin 2

Irish Republic

tel: +353-1-702-1948 / 1949(messages)
fax: +353-1-702-2694
odunlain@maths.tcd.ie

Mark H. Overmars
Utrecht Unievrsity

Dept. of Computer Science
P.O. Box 80.089

3508 TB UTRECHT

the Netherlands

tel: +31-30-533736

fax: +31-30-513791
markov@cs.ruu.nl

Alberto Paoluzzi

University of Rome “La Sapienza”
Dept. of Computer Science

Via Buonarroti 12

00185 Roma

Italy

tel: +39-6-4873676

fax: +39-6-4873628
paoluzzi@ijasi.rm.cnr.it

T. Pistorius
Universiteit Twente
Faculteit Informatica
Postbus 217

7500 AE Enschede

the Netherlands

tel: +31-53-893763
fax: +31-53-339605
pistorius@cs.utwente.nl

Michel Pocchiola
LIENS, Laboratoire
I’ENS

45, rue d’Ulm

75230 Paris

France

tel: +33-1-43266158
fax: +33-1-46340531
pocchiol@dmi.ens.fr

d’Informatique

E.J. Pol

Philips Natuurkundig Laboratorium
WAY 1.69

Postbus 80.000

5600 JA EINDHOVEN

the Netherlands

tel: +31-40-742174

fax: +31-40-744004
evert@prl.philips.nl

Waldemar Preilowski
Universitat-GH Paderborn
FB 10 - Informatik
Warburgerstrafie 100
D-4790 Paderborn
Germany

tel: +49-5251-603326

fax: +49-5251603342
waldi@uni-paderborn.de

106

de



Haijo Schipper
Rijksuniversiteit Groningen
Vakgroep Informatica
Postbus 800

9700 AV Groningen

the Netherlands

tel: +31-50-633957 / 3939
fax: +31-50-633800
haijo@cs.rug.nl

Stefan Schirra
Max-Planck-Institut fiir Informatik
Im Stadtwald

W-6600 Saarbriicken

Germany

tel: +49-681-302-5359

fax: +49-681-302-5401
stschirr@mpi-sb.mpg.de

Dr. Peter-Michael Schmidt
Mathem. Fakultit der FSU-Jena
Universitiatshochhaus 17.0G
0-6900 Jena

Germany

tel: 8224765

Sven Schuierer

Universitat Freiburg

Institut fiir Informatik

Rheinstrafle 10-12

D-7800 Freiburg

Germany

tel: +49-761-203-389%4

fax: +49-761-203-3889
schuierer@informatik.uni-freiburg.de

B.C. Schultheiss
Universiteit Twente
Faculteit Informatica
Postbus 217

7500 AE Enschede
the Netherlands

tel: +31-53-893763
fax: 4+31-53-339605

Christian Schwarz
Max-Planck-Institut fiir Informatik
Im Stadtwald

D-6600 Saarbriicken

Germany

tel: +49-681-3025355

fax: +49-681-3025401
schwarz@mpi-sb.mpg.de

Otfried Schwarzkopf
Utrecht University

Dept. of Computer Science
P.P. Box 80.089

3508 TB Utrecht

the Netherlands

tel: +31-30-533977

fax: +31-30-513791
otfried@cs.ruu.nl

Sven Skyum

Aarhus University

Dept. of Computer Science
Ny Munkegade, Building 540
DK-8000 Aarhus C

Denmark

tel: +45-86202711/5227

fax: +45-86135725
sskyum@daimi.aak.dk

A.W .M. Smeulders

Universiteit van Amsterdam
Faculteit Wiskunde en Informatica
Kruislaan 403

1098 SJ Amsterdam

the Netherlands

tel: +31-20-5257563

fax: +31-20-5257490
smeulder@fwi.uva.nl

Michiel Smid

Max-Planck-Institut fiir Informatik
Im Stadtwald

D-6600 Saarbriicken

Germany

tel: +49-681-302-5354

fax: +49-681-3025401
michiel@cs.uni-sb.de

107



Frank van der Stappen
Utrecht University

Dept. of Computer Science
P.O. Box 80.089

3508 TB Utrecht

the Netherlands

tel: +31-30-534095

fax: +31-30-513791
frankst@cs.ruu.nl

Sabine Stifter

Johannes Kepler Universitat
RISC-Linz

A-4040 Linz-Auhof

Austria

tel: +7236-323160

fax: +7236-333830
stifter@risc.uni-linz.ac.at

Roberto Tamassia

Brown University

Dept. of Computer Science
P.0.Box 1910

Providence, RI 02912-1910
USA

fax: 401-863-7657
rt@cs.brown.edu

Monique Teillaud
INRIA-Sophia Antipolis
BP 109

2004 Route des Lucioles
06561 Valbonne

France

tel: 433-93657762

fax: +33-93657643
teillaud@alcor.inria.fr

Gert Vegter
Rijksuniversiteit Groningen
Vakgroep Informatica
Postbus 800

9700 AV Groningen

the Netherlands

tel: +31-50-633930

fax: +31-50-633800
gert@cs.rug.nl

Remco Veltkamp

CWI

Afdeling Interactieve Systemen
Kruislaan 413

1098 SJ AMSTERDAM

the Netherlands

tel: +31-20-5924128

fax: +31-20-5924199
Remco.Veltkamp@cwi.nl

Emo Welzl

Freie Universitat Berlin
Institut fiir Informatik
Arnimallee 2-6

W-1000 Berlin 33
Germany

tel: +49-30-838-6635
fax: +49-30-838-5913
emo@tcs.fu-berlin.de

Peter Widmayer

Universitat Freiburg

Institut fiir Informatik
Rheinstrafe 10-12

D-7800 Freiburg

Germany

tel: +49-761-203-3885 / 3886
fax: +49-761-203-3889

widmayer@informatik.uni-freiburg.de

108



