


determines four polygonal chains bounding the sub trian-
gulation: left, right, bottom, top. For each sub, we con-
sider the chains in (α, θ) space. In this space, the chains are
straight sides of the trapezoid. We triangulate the interior
in a standard manner respecting the boundary vertices and
then transform back into 3D. There is no duplications of
vertex points: triangulation vertices that are shared by two
subs are actually indices into a common point array. This
way, the set of triangles from all subs forms a triangulation
of the 3D free space boundary with no gaps.

θ

x y

Figure 1: A triangulated approximation to a free
space boundary viewed from outside. Each sub is
drawn in a unique color, and a black wireframe is
overlaid to show the triangles. The two vertical
shafts indicate larger spaces the robot can translate
and rotate within; the narrow tube connecting the
shafts illustrates that the robot can move between
these areas with restricted translation and rotation.

3. VIDEO OVERVIEW
Our video begins by introducing the 2D scene with the

robot and obstacle, and demonstrates how the robot can
be translated and rotated by the user. We then describe
the parts that make up the complete representation used to
model the configuration space. The 3D visualization follows,
and a side-by-side comparison illustrates the relation of the
2D and 3D geometry.

We highlight how the user can configure the robot and
see its corresponding 3D point in the configuration space.
A brief summary of the triangulation algorithm is provided,
and we conclude by showing path planning in the configu-
ration space. Some additional scenes demonstrate the ro-
bustness of the software with narrow configuration space
channels. We also show how linear robot and obstacle edges
can be approximated in practice using arcs with very large
radii (106).

Free Space

Robot

Obstacle (outside grey)

Figure 2: Visualization of the cross section of the
free space for a fixed orientation of the robot. Since
the robot (red) is at the junction of two sub edges
(green), it has two contacts with the obstacle (gray).

4. SOFTWARE DETAILS
The software in this video was written in Java using the

OpenGL graphics API through JOGL3. GLSL shaders are
used for rendering effects, and YAML is used for config-
uration files. The visualization software4 can be experi-
mented with and is bundled with some sample scenes; the
software that produces the input, described in [2], can be
downloaded5 as well.

5. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grant No. 0904707. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation.

6. REFERENCES
[1] D. Atariah and G. Rote. Configuration space

visualization. In Proceedings of the 2012 Symposium on
Computational Geometry, pages 415–416, 2012.

[2] Victor Milenkovic, Elisha Sacks, and Steven Trac.
Robust complete path planning in the plane. In
Proceedings of the Workshop on the Algorithmic
Foundations of Robotics. WAFR, 2012. Invited version
to appear in IEEE T-ASE.

3http://jogamp.org/jogl/www/
4http://jstoecker.github.com/cspace
5http://www.cs.miami.edu/~vjm/robust/

342




