
Parametric Search Visualization

Ivaylo Ilinkin
Department of Computer Science

Gettysburg College
Gettysburg, PA 17325, USA

iilinkin@gettysburg.edu

ABSTRACT

This video provides a visualization of parametric search us-
ing as the underlying application an algorithm for comput-
ing a tangent to a level in arrangement proposed by Ma-
toušek [2]. The visualization is based on the framework of
van Oostrum and Veltkamp [6], which simplifies consider-
ably the implementation of parametric search algorithms.

Categories and Subject Descriptors

I.3.5 [Computational Geometry and Object Model-

ing]: Geometric algorithms, languages, and systems

Keywords

parametric search; framework; arrangements; tangents

1. INTRODUCTION
Parametric search is an optimization technique that has

been used to provide efficient algorithms for a wide range of
problems [3]. In the parametric search setting one considers
a decision problem, P (λ), that is monotone in a real-valued
parameter λ, i.e. if P (λ′) = T , then P (λ) = T for λ < λ′.
The goal is to find the largest value, λ∗, for which P (λ) = T .

Despite its success, algorithms based on parametric search
are considered difficult to implement, and therefore, the
technique has been primarily of theoretical interest. Indeed,
there have been only two reported implementations of para-
metric search algorithms by Schwerdt [4] and Toledo [5].

The framework of van Oostrum and Veltkamp [6] simpli-
fies considerably implementations of parametric search al-
gorithms. The framework hides the complexity of synchro-
nizing the flow of control and lets the user focus on the
high-level aspects of the problem. Our video provides a vi-
sualization of a parametric search algorithm in the context of
this framework and could inspire further experimental work
to validate the practical aspects of parametric search.

The visualization is based on an algorithm proposed by
Matoušek [2] for computing a tangent to a level in arrange-
ment. This algorithm is, in fact, part of Matoušek’s solu-
tion to a larger problem, namely, computing the center of
a planar point set, and the overall solution uses multiple
applications of parametric search.

Copyright is held by the author/owner(s).
SoCG’13, June 17–20, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2031-3/13/06.

2. ALGORITHM
The video provides a visualization of an algorithm that

solves the following problem [2]: Given a collection, H, of

lines, a point, x, and an integer, k, compute a tangent, τ∗,

through x that touches the k-level in the arrangement of H

to the right of x.1

The algorithm uses parametric search to sort the lines in
H along the unknown tangent τ∗. It is based on the follow-
ing decision problem, P (τ ), that exhibits the monotonicity
property: Does the line through x with slope τ intersect the

k-level? (Figure 1).
The execution of the algorithm depends on the efficient

implementation and synchronization of two sub-routines:

• Comparing two lines at τ∗: Even though τ∗ is not
known, it is possible to decide the order of two lines,
ℓi and ℓj , along τ∗ by considering three critical lines
through x: τi and τj , which are parallel to ℓi and ℓj ,
respectively, and τij , which goes through the intersec-
tion point y = ℓi ∩ ℓj . The order of ℓi and ℓj along
τ∗ can be decided by considering the location of x rel-
ative to ℓi and ℓj and by determining whether τi, τj ,
and τij intersect the k-level (Figure 2). The running
time is O(1) if the answers to the decision problems
P (τi), P (τj), and P (τij) are known.

• Solving the decision problem: The comparison of two
lines along τ∗ depends on knowing if a line τ inter-
sects the k-level, i.e. if the answer to P (τ ) = T . This
can be determined as follows (Figure 3): (1) find the
intersection points between τ and the lines in H ; (2)
sort the intersection points; (3) find the level of the
left-most intersection point; (4) walk along τ updating
(by at most ±1) the level of each intersection point.
The running time is O(n log n) and it is dominated by
the time to sort the intersection points.

3. SORTING-BASED SEARCH
During the sorting each comparison of lines ℓi and ℓj

along τ∗ is potentially expensive since it depends on an-
swering the decision problem for the critical lines τi, τj ,
and τij . In a parametric search implementation expensive
comparisons are batched together and resolved efficiently in
a binary search fashion exploiting the monotonicity prop-
erty. Throughout its execution a parametric search algo-
rithm maintains a progressively smaller interval where τ∗

1The level of a point, p, is defined as the number of lines in
H that lie below or go through p.

343



lies, so that the expensive computation for solving the deci-
sion problem is run only for lines τ that lie in this interval.

For sorting-based parametric search the framework offers
an implementation of quick sort based on the observation
that it allows for convenient batching of comparisons.2 To
achieve this, quick sort is modified so that during the par-
tition step it first computes for each comparison of lines ℓi
and ℓj the critical lines τi, τj , and τij , but does not evalu-
ate the decision problem, yet. Next, the decision problem is
answered for the critical line with the median slope and this
single expensive comparison makes it possible to deduce the
answer for half of the critical lines. Therefore, all of the O(n)
comparisons during the partition step can be answered using
only O(log n) expensive evaluations of the decision problem.
Thus, the running time per level in quick sort is O(n log2 n)
and O(n log3 n) for the entire algorithm over the O(log n)
expected levels.

4. IMPLEMENTATION
The framework of van Oostrum and Veltkamp [6] simpli-

fies the task of implementing parametric search algorithms
by requiring that the user provide only a small number of
classes (Figure 4):

• Polynomials class: This is a representation of the ob-
jects that are compared during the search. In our im-
plementation we use Cgal lines [1].

• Comparison class: This compares two polynomials at
the unknown value τ∗. The framework collects inde-
pendent comparisons in a single batch to be resolved
efficiently once the answers for the associated decision
problems are known.

• Solver class: This solves the decision problem, P (τ ),
which effectively answers, for any given value τ , whether
τ < τ∗, τ = τ∗, or τ > τ∗. This is an expensive com-
putation and the framework ensures that a number
of decision questions are answered together in binary
search fashion exploiting the monotonicity property.

5. REFERENCES
[1] Cgal, Computational Geometry Algorithms Library.

http://www.cgal.org.

[2] J. Matoušek. Computing the center of planar point
sets. Comput. Geom.: Papers from the DIMACS

Special Year, pages 221–230, 1991.

[3] N. Megiddo. Applying parallel computation algorithms
in the design of serial algorithms. J. ACM,
30(4):852–865, Oct. 1983.

[4] J. Schwerdt, M. Smid, and S. Schirra. Computing the
minimum diameter for moving points: an exact
implementation using parametric search. In Proc. 13th

Annu. ACM Symp. Comput. Geom., SCG ’97, pages
466–468, New York, NY, USA, 1997. ACM.

[5] S. Toledo. Extremal polygon containment problems and
other issues in parametric searching. Master’s thesis,
Tel Aviv Univ., 1991.

[6] R. van Oostrum and R. Veltkamp. Parametric search
made practical. Comput. Geom. Theory Appl.,
28(2-3):75–88, June 2004.

2An implementation of bitonic sort is also provided.

x

τ ′′

τ∗

τ ′

P (τ ′′) = F

P (τ ′) = T

Figure 1: Monotonicity of the decision problem:

P (τ ) = T iff τ ≤ τ∗, i.e. line τ intersects the k-level if

it lies in the darker shaded region.

ℓi

ℓj

x

y

τi

τj

τij τ∗

x

ℓi ≷ ℓj

Comp

Figure 2: Comparing lines ℓi and ℓj along τ∗ when

x lies above ℓi and ℓj and left of y, and P (τi) = F ,

P (τj) = F , and P (τij) = T . In this case, ℓi < ℓj.

τ

k

τ T τ
∗

Solver

6
6 5 4

3
3

4
4

4

Figure 3: Solving the decision problem for a given

line τ — find if an intersection point has level ≤ k.

k

τ T τ
∗

Solver

x

ℓi ≷ ℓj

Comp

Quick Sort

Figure 4: The parametric search framework of

van Oostrum and Veltkamp.

344




