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Abstract
We prove a number of new conditional lower bounds on the time complexity of the discrete k-center
problem and related (exact) geometric set cover problems when k or the size of the cover is small.
Our lower bounds include the following (under certain popular hypotheses in fine-grained complexity
such as the APSP Hypothesis and the Sparse Triangle Hypothesis, for an arbitrarily small δ > 0):

Ω(n3/2−δ) for weighted size-3 set cover for axis-aligned unit squares in 2D;
Ω(n4/3−δ) for unweighted size-3 set cover for boxes in 3D;
Ω(n4/3−δ) for rectilinear discrete 3-center in 4D and unweighted size-3 set cover for unit hyper-
cubes in 4D.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geometric set cover, discrete k-center, conditional lower bounds

Related Version A full version of the paper is available at https://arxiv.org/abs/2305.01892
and is also accepted to ICALP’23.

Funding Timothy M. Chan: Work supported by NSF Grant CCF-2224271.

1 Introduction

The rectilinear discrete k-center problem for small k. Various versions of the k-center
problem have been extensively studied in the computational geometry literature. In this
presentation, we consider specifically the rectilinear discrete k-center problem: given a set
P of n points in Rd and a number k, we want to find k congruent hypercubes covering P ,
while minimizing the side length, with the extra constraint that the centers of the chosen
hypercubes are from P .

The rectilinear discrete 2-center problem can be solved in Õ(n) time in any constant
dimension d, by a straightforward application of orthogonal range searching, as reported in
several papers [3, 4, 10]. The approach does not seem to work for the rectilinear discrete
3-center problem. Naively, rectilinear discrete 3-center can be reduced to n instances of (some
version of) rectilinear discrete 2-center, and solved in Õ(n2) time. However, no better results
have been published. In contrast, the continuous version of the rectilinear 3-center problem,
where the the centers are unrestricted, admits an O(n log n)-time algorithm by Cabello et
al. [5] in any constant dimension. We would like to address the following question:

This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Small-Size Geometric Set Cover and Discrete k-Center for Small k

Main Question. Are there conditional lower bounds to show that the rectilinear
discrete 3-center problem does not have near-linear-time algorithm (and is thus strictly
harder than rectilinear discrete 2-center, or rectilinear continuous 3-center)?

Similar questions may be asked about rectilinear discrete k-center for k ≥ 4. As k gets
larger compared to d, an upper bound of nO(dk1−1/d) is known for both the continuous and
discrete k-center problem under the Euclidean and rectilinear metric [1, 8, 9]. Recently,
in SoCG’22, Chitnis and Saurabh [7] (extending earlier work by Marx [11] in the R2 case)
proved a nearly matching conditional lower bound for discrete k-center in Rd, ruling out
no(k1−1/d)-time algorithms under ETH. However, these bounds do not answer our questions
concerning very small k’s. On the other hand, in SODA’08, Cabello et al. [5] proved a
conditional lower bound for rectilinear continuous 4-center in Rd, ruling out no(

√
d)-time

algorithms under ETH, but this does not apply to the discrete version of the problem.

The geometric set cover problem with small size k. The decision version of the discrete
k-center problem reduces to a geometric set cover problem: given a set P of n points and
a set R of n objects, find the smallest subset of objects in R that cover all points of P .
Geometric set cover has been extensively studied in the literature, particularly from the
perspective of approximation algorithms, but here we are interested in exact algorithms
for the case when the optimal size k is a small constant. For the application to rectilinear
k-center, the objects are congruent hypercubes, or by rescaling, unit hypercubes, but other
types of objects may be considered, such as arbitrary rectangles or boxes.

We can also consider the weighted version of the problem: here, given a set P of n points,
a set R of n weighted objects, and a small constant k, we want to find a subset of k objects
in R that cover all points of P , while minimizing the total weight of the chosen objects.

For rectangles in R2 or boxes in Rd, size-2 geometric set cover (unweighted or weighted)
can be solved in Õ(n) time, like discrete rectilinear 2-center [3, 4, 10], by orthogonal range
searching. Analogs to our Main Question may be asked for size-3 geometric set cover for
rectangles/boxes.

Surprisingly, the complexity of exact geometric set cover of small size k has not received
as much attention, but very recently in SODA’23, Chan [6] initiated the study of similar
questions for geometric independent set with small size k, for example, providing subquadratic
algorithms and conditional lower bounds for size-4 independent set for boxes.

2 New results

We prove the first nontrivial conditional lower bounds on the time complexity of rectilinear
discrete 3-center and related size-3 geometric set cover problems:1

Ω(n3/2−δ) for weighted size-3 set cover for unit squares in R2, assuming the APSP
Hypothesis [12];
Ω(n4/3−δ) for rectilinear discrete 3-center in R4 and unweighted size-3 set cover for unit
hypercubes in R4, assuming the Sparse Triangle Hypothesis [2];
Ω(n4/3−δ) for unweighted size-3 set cover for boxes in R3, assuming the Sparse Triangle
Hypothesis [2].

1 Here, δ denotes an arbitrarily small positive constant.
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Figure 1 Reduction from the minimum-weight triangle problem (known to be equivalent to the
APSP Hypothesis [13]) to weighted size-3 set cover for orthants in R2. Create O(n) points of 3
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The first bullet contrasts with some new subquadratic algorithms that we have obtained
in R2 (which will not be covered in the presentation due to time constraints). The second
bullet answers our Main Question, at least when the dimension is 4 or higher.

Techniques. Our conditional lower bounds for rectilinear discrete 3-center and the corre-
sponding set cover problem for unit hypercubes are proved by reduction from unweighted or
weighted triangle finding in graphs. It turns out there is a simple reduction that works in R2

if we exploit weights (see Fig. 1 for an example). However, lower bounds in the unweighted
case (and thus the original rectilinear discrete 3-center problem) are trickier. We are able to
find a simple reduction that works in R6 by hand, but reducing the dimension further to 4 is
more challenging (because the number of choices is much larger), and we end up employing
a computer-assisted search, interestingly. (The final construction is still simple, and so is
easy to verify by hand.)
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Geodesic complexity of convex polyhedra
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Abstract
Geodesic complexity of the d-dimensional boundary S of a convex polytope of dimension d + 1 is
intimately related to the combinatorics of nonoverlapping unfolding of S into a Euclidean space Rd

following Miller and Pak (2008). This combinatorics is based on facet sequences, which are lists of
adjacent facets traversed by geodesics in S. Our main result bounds the geodesic complexity of S

from above by the number of distinct maximal facet sequences traversed by shortest paths in S. For
d = 2, results from the literature on nonoverlapping unfolding imply that this bound is polynomial
in the number of facets. In arbitrary dimension d, a reinterpretation of conjectures by Miller and
Pak (2008) leads to the conjecture that the geodesic complexity of S is polynomial in the number of
facets. The theory and results developed here hold more generally for convex polyhedral complexes.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geodesic complexity, convex polyhedron, facet sequence, unfolding

1 Introduction

Recio-Mitter [11] introduced the concept of geodesic complexity, an extension of Farber’s
topological complexity [6]. The geodesic complexity GC(X) of a metric space (X, d) measures
the complexity of optimal motion planning on X, in the sense of decomposing the product
X × X as a union X × X =

⋃
i Ei such that on each subset Ei there is a map that assigns

to each pair of endpoints a shortest path that varies continuously with the endpoints.
No known upper bounds exist for the geodesic complexity of a convex polyhedral boundary

in general. This paper establishes the first such upper bound by making a heretofore unrealized
connection between geodesic complexity and polyhedral nonoverlapping unfolding. Our
approach enables theorems and conjectures concerning polyhedral nonoverlapping unfolding
to translate well into bounds for geodesic complexity. Based on [9, Conjecture 9.3], we
conjecture our upper bound to be polynomial; we prove it in dimension d = 2.

1.1 Geodesic complexity
▶ Definition 1.1. For a metric space (X, d), a path γ ⊆ X with endpoints a and b is a
geodesic if it locally minimizes length. A geodesic is a shortest path if its length equals the
distance between its endpoint.

▶ Definition 1.2 ([11, Definition 1.7]). The geodesic complexity GC(X) of a metric space
(X, d) is the smallest k for which there exists a partition X × X =

⋃k
i=0 Ei into pairwise

disjoint locally compact sets each of which has a local continuous section si : Ei → GX of π,
where GX is the shortest path space of X equipped with the compact-open topology by
considering paths as continuous maps γ : [0, 1] → X.

This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Geodesic complexity of convex polyhedra

1.2 Polytope boundaries and convex polyhedral complexes
This extended abstract focuses on the boundary S = ∂P of a convex polytope P of dimension
d + 1 in Rd+1. But the proofs hold verbatim for convex polyhedral complexes in general.

1.3 Main results
The main result of the paper, Theorem 1.3, establishes a combinatorial upper bound on the
geodesic complexity of a convex polyhedral boundary S in terms of the number of maximal
facet sequences (Definitions 2.5, 2.8) of shortest paths in S. Such a sequence ϕ = (F1, . . . , Fℓ)
is the ordered list of facets visited by a shortest path (Corollary 2.4).

▶ Theorem 1.3. GC(S) ≤ 1
2 |ΦS | − 1, where ΦS is the set of maximal facet sequences in S.

▶ Remark 1.4. We expect our bound to approximate the actual value of GC(S). Our
reasoning: almost all endpoint pairs are connected by a unique shortest path [9, Theorem 2.9].
So for any pair with nonunique shortest paths, there is a neighborhood of pairs whose facet
sequences do not vary continuously through the given pair. This means maximal facet
sequences cannot be easily patched together to yield a section of the endpoint map.

▶ Example 1.5. Let S be the boundary of a 3-cube. Theorem 1.3 yields that GC(S) ≤ 35 as
S has 72 maximal facet sequences. Indeed, count as follows. Any shortest path in S starts in
some facet, by symmetry say the Top facet of S. Every maximal facet sequence that starts
with Top ends with Bottom, because Top–Front–Left–Bottom, Top–Front–Right–Bottom,
Top–Front–Bottom are all realized by shortest paths, but Top–Left–Front–Right is not:
Top–Right shortcuts it. The count of 72 is factored as 6 × 4 × 3, where 6 = #initial facets,
4 = #second facets, 3 = #ways to complete the sequence once the second facet is fixed.

▶ Theorem 1.6. If d = 2, then GC(S) is polynomial in the number of facets of S.

2 Definitions and other background

▶ Definition 2.1. As S has dimension d, a face of dimension d − 1 is a ridge. A point x is
warped if x lies in the union Sd−2 of all faces of dimension at most d − 2; otherwise, x is flat.

▶ Proposition 2.2. If γ is a geodesic in S, then γ has no warped points in its relative interior
unless both endpoints are warped and lie in a single face.

2.1 Facet sequences
▶ Definition 2.3. A geodesic γ of positive length in S visits a facet F if the relative interior
of γ has a point in F .

▶ Proposition 2.4 (cf. [9, Corollary 1.4]). Fix a compact geodesic γ ⊆ S not contained in a
single face. Then γ visits (in order) a well defined sequence of facets.

▶ Definition 2.5. Fix a compact geodesic γ ⊆ S. If γ is not contained in a single facet then
it has facet sequence ϕγ = (F1, . . . , Fℓ), where F1, . . . , Fℓ are, in order, all of the facets that
γ visits. If γ is contained in a facet F then ϕγ = (F ) is a facet sequence for γ.

▶ Definition 2.6 ([9, Definition 1.5]). Suppose two facets F and F ′ share a ridge R = F ∩ F ′.
For each facet F of S, let TF be the affine span of F in Rd+1. The folding map fF,F ′ : TF →
TF ′ is the isometry that identifies the copy of R in TF with the one in TF ′ in such a way
that the image of F does not intersect the interior of F ′.

6



E. Miller and J. Zhang 3

▶ Definition 2.7 ([9, Definition 1.6]). Given a facet sequence ϕ = (F1, . . . , Fℓ) such that Fi

shares a (unique) ridge with Fi+1 whenever 1 ≤ i < ℓ, write

f−1
ϕ = f−1

F1,F2
◦ · · · ◦ f−1

Fℓ−1,Fℓ

for the unfolding of TFℓ
onto TF1 . Setting ϕi = (F1, . . . , Fi), the sequential unfolding of a

subset Γ ⊆ F1 ∪ · · · ∪ Fℓ along ϕ is the set

Υϕ(Γ) = (Γ ∩ F1) ∪ f−1
ϕ2

(Γ ∩ F2) ∪ · · · ∪ f−1
ϕℓ

(Γ ∩ Fℓ) ⊂ TF1 .

2.2 Maximal facet sequences and type
▶ Definition 2.8. A facet sequence ϕ is maximal if it is not a contiguous proper subsequence
of any longer facet sequence. A shortest path γ has type ϕ if some facet sequence ϕγ of γ is
a contiguous subsequence of the maximal facet sequence ϕ.

▶ Proposition 2.9. Given a facet sequence ϕ and two endpoints x and y, there is at most
one shortest path between them with type ϕ.

3 Sketch of the proof of Theorem 1.3

Sketch of proof. Define Eϕ ⊆ S × S for ϕ ∈ ΦS to be Eϕ = {π(γ) | γ has type ϕ}.

▶ Claim 3.1. The endpoint map π : GS → S ×S has local sections sϕ : Eϕ → GS for ϕ ∈ ΦS.

By Proposition 2.9, every pair (a, b) ∈ Eϕ is joined by a unique shortest path of type ϕ. Let
sϕ map (a, b) to this path. Continuity is trivial after sequentially unfolding along ϕ.

▶ Claim 3.2. Fix ϕ ∈ ΦS and the reverse facet sequence ϕ′. Any two continuous sections
sϕ : Eϕ → GS and sϕ′ : Eϕ′ → GS glue to a continuous section sϕ ∪ sϕ′ : Eϕ ∪ Eϕ′ → GS.

Conclusion. Thus Eϕ ∪ Eϕ′ is a domain of continuity for ϕ ∈ ΦS . ◀
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Abstract
We propose new techniques for solving geometric optimization problems involving interpoint distances
of a point set in the plane. Given a set P of n points in the plane and an integer 1 ≤ k ≤

(
n
2

)
, the

distance selection problem is to find the k-th smallest interpoint distance among all pairs of points of
P . The previously best deterministic algorithm solves the problem in O(n4/3 log2 n) time [Katz and
Sharir, SIAM J. Comput. 1997]. We improve their algorithm to O(n4/3 log n) time. Using similar
techniques, we also give improved algorithms for several other problems.

2012 ACM Subject Classification Theory of computation → Computational geometry
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1 Introduction

We propose new techniques for solving geometric optimization problems involving interpoint
distances in a point set in the plane. More specifically, the optimal objective value of these
problems is equal to the (Euclidean) distance of two points in the set. Our techniques usually
yield improvements over the previous work by at least a logarithmic factor (and sometimes a
polynomial factor).

The main problem we consider is the distance selection problem: Given a set P of n

points in the plane and an integer 1 ≤ k ≤
(

n
2
)
, the problem asks for the k-th smallest

interpoint distance among all pairs of points of P . The problem can be easily solved in O(n2)
time. The first subquadratic time algorithm was given by Chazelle [5]; the algorithm runs in
O(n9/5 log4/5 n) time and is based on Yao’s technique [13]. Later, Agarwal, Aronov, Sharir,
and Suri [1] gave a better algorithm of O(n3/2 log5/2 n) time and subsequently Goodrich [6]
solved the problem in O(n4/3 log8/3 n) time. Katz and Sharir [7] finally presented an
O(n4/3 log2 n) time algorithm. All above are deterministic algorithms. Several randomized
algorithms have also been proposed for the problem. The randomized algorithm of [1]
runs in O(n4/3 log8/3 n) expected time. Matousek [9] gave another randomized algorithm
of O(n4/3 log2/3 n) expected time. Very recently, Chan and Zheng proposed a randomized
algorithm of O(n4/3) expected time (see the arXiv version of [4]). Also, the time complexity
can be made as a function of k. In particular, Chan’s randomized techniques [3] solved the
problem in O(n log n + n2/3k1/3 log5/3 n) expected time and Wang [10] recently improved
the algorithm to O(n log n + n2/3k1/3 log n) expected time; these algorithms are particularly
interesting when k is relatively small.

This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

1 Corresponding author.
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b1 b2
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β

Figure 1 An example of Problem 1 with Γ = {{a1, a2} × {b1}, {a4, a5} × {b1, b2}} and Π =
{{a3, a6, a7} × {b2}}. Note that the uncertain pair (a3, b2) has a distance ∥a3b2∥ /∈ (α, β].

2 Our result

We present a new deterministic algorithm that solves the distance selection problem in
O(n4/3 log n) time. Albeit slower than the randomized algorithm of Chan and Zheng [4],
our algorithm is the first progress on the deterministic solution since the work of Katz and
Sharir [7]. One technique we introduce is an algorithm for solving the following partial
batched range searching problem.

▶ Problem 1. (Partial batched range searching) Given a set A of m points and a set
B of n points in the plane and an interval (α, β], one needs to construct two collections
of edge-disjoint complete bipartite graphs Γ(A, B, α, β) = {At × Bt | At ⊆ A, Bt ⊆ B} and
Π(A, B, α, β) = {A′

s ×B′
s | A′

s ⊆ A, B′
s ⊆ B} so that the following two conditions are satisfied

(see Fig. 1 for an example):
1. For each pair (a, b) ∈ At × Bt ⊆ Γ(A, B, α, β), the (Euclidean) distance ∥ab∥ between

points a ∈ A and b ∈ B is in (α, β].
2. For any two points a ∈ A and b ∈ B with ∥ab∥ ∈ (α, β], either Γ(A, B, α, β) has a unique

graph At × Bt that contains (a, b) or Π(A, B, α, β) has a unique graph A′
s × B′

s that
contains (a, b).

In other words, the two collections Γ and Π together record all pairs (a, b) of points a ∈ A

and b ∈ B whose distances are in (α, β]. While all pairs of points recorded in Γ have their
distances in (α, β], this may not be true for Π. For this reason, we sometimes call the point
pairs recorded in Π uncertain pairs.

In the traditional BRS, which has been studied with many applications, e.g.,[11, 8, 2], the
collection Π is ∅ (and thus Γ itself satisfies the two conditions in Problem 1); for differentiation,
we refer to this case as the complete BRS. The advantage of the partial problem over the
complete problem is that the partial problem can usually be solved faster, with a sacrifice that
some uncertain pairs (i.e., those recorded in Π) are left unresolved. In typical applications
the number of those uncertain pairs can be made small enough so that they can be handled
easily without affecting the overall runtime of the algorithm. More specifically, we derive
an algorithm to compute a solution for the partial BRS, whose runtime is controlled by
a parameter (roughly speaking, the runtime increases as the graph sizes of Π decreases).
Previously, Katz and Sharir [7] gave an algorithm for the complete problem. Our solution,
albeit for the more general partial problem, even improves their algorithm by roughly a
logarithmic factor when applied to the complete case.
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On the one hand, our partial BRS solution helps achieve our new result for the distance
selection problem. On the other hand, combining some techniques for the latter problem, we
propose a general algorithmic framework that can be used to solve any geometric optimization
problem that involves interpoint distances of a set of points in the plane. Consider such a
problem whose optimal objective value (denoted by δ∗) is equal to the distance of two points
of a set P of n points in the plane. Assume that the decision problem (i.e., given δ, decide
whether δ ≥ δ∗) can be solved in TD time. A straightforward algorithm for computing δ∗ is to
use the distance selection algorithm and the decision algorithm to perform binary search on
interpoint distances of all pairs of points of P ; the algorithm runs in O(log n) iterations and
each iteration takes O(n4/3 log n + TD) time (if we use our new distance selection algorithm).
As such, the total runtime is O((n4/3 log n + TD) log n). Using our new framework, the
runtime can be bounded by O((n4/3 + TD) log n), which is faster when TD = o(n4/3 log n).

Our new techniques lead to improved results on several geometric optimization problems,
including discrete Fréchet distance with shortcuts [2] (both the one-sided and the two-sided
versions) and reverse shortest paths in unit-disk graphs [8, 12] (both the weighted and the
unweighted cases). Our techniques are quite general and we believe they will find many other
applications in future.
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Abstract
The Hausdorff distance is a metric commonly used to compute set similarity. We present an algorithm
to compute (1 + ε)-approximate directed Hausdorff distance in

( 1+ε
ε

)O(d)
n time after preprocessing

the n input points into a metric tree data structure, where the space has doubling dimension d. The
preprocessing step takes

( 1
ε

)O(d)
n log ∆ time, for input with spread ∆.
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1 Introduction

The Hausdorff distance is a metric on compact subsets of a metric space. Let (X, d) be a metric
space and let A and B be compact subsets of X. The distance from a point x ∈ X to the set B

is d(x, B) := minb∈B d(x, b). The directed Hausdorff distance is dh(A, B) := maxa∈A d(a, B),
and the (undirected) Hausdorff distance is dH(A, B) := max{dh(A, B), dh(B, A)}. This
definition leads directly to a quadratic time algorithm for finite sets.

We focus on general metrics spaces that have finite doubling dimension. The doubling
dimension of X is the smallest real number d such that any metric ball in X can be covered by
at most 2d balls of half the radius. In the general setting, one may not expect a subquadratic
algorithm for computing the Hausdorff distance, however, there are classes of metric spaces
for which the Hausdorff distance can be computed more quickly. For example, given point
sets in the plane, it is possible to use fast nearest neighbor search data structures [1] to
give an O(n log n) time algorithm. If one allows for approximate answers, O(n log n) time
algorithms are possible in low-dimensional Euclidean spaces [2]. In practice, speed-ups to
the naïve algorithm use heuristics [3, 10, 11] or geometric data structures [7, 12]. We use
linear-size greedy trees [4].

Given a permutation (p0, . . . , pn−1) of a set P ⊆ X, let Pi := {p0, . . . , pi−1} denote the
ith prefix of the permutation. A permutation of P is a greedy permutation if for all i, the ith

This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Approximate Hausdorff Distance in Doubling Metrics

point is the farthest point in the set from the ith prefix of the permutation. That is, for all i,

d(pi, Pi) = max
p∈P

d(p, Pi).

A greedy tree on set A is a ball tree [8] with packing guarantees on the nodes. A ball tree on
A is a binary tree formed by recursively partitioning A. A ball tree node a has center a ∈ A,
and radius ra. A greedy tree uses the greedy permutation on A and a mapping from points
of A to their predecessors in the greedy permutation to guide the partition. To construct a
greedy tree, start with a node for the seed and incrementally construct the tree topology
first. Create nodes for every point in the permutation and its predecessor, and attach them
as the right and left child respectively, of the predecessor’s node in the tree (see Figure 1).
Once the tree is constructed, compute the radii for all nodes. The points of A are stored as
the leaves of the greedy tree. The radius of a node is the distance from the center to the
farthest leaf in its subtree. The radius of a child is never greater than the radius of its parent
in a greedy tree. A subset of greedy tree nodes such that every point of A is contained as a
leaf in exactly one node can be used to approximate A.

a b c d e f

(a) The permutation (a, b, c, d, e, f) is depicted with arrows representing a predecessor mapping.

a a

a b

a

a b

b c

a

a

a d

b

b c

a

a

a d

b

b c

c e

(b) The tree is constructed incrementally. Each new point creates two new nodes.

a

a

a d

b

b

b f

c

c e

(c) The completed greedy tree.

Figure 1 A ball tree is computed for a given permutation and predecessor pairing.

Given two greedy trees, our algorithm maintains approximations for either set and tracks
which nodes of B are close to nodes of A. Approximating all the leaves in a subtree by the node
center batches the searches and results in fewer distance computations. Nutanong et al. [7]
take a similar dual-tree approach, studied more in the machine learning literature[5, 6, 9].

Our algorithm computes a (1 + ε)-approximation of the Hausdorff distance between two
sets with a total of n points in

( 1+ε
ε

)O(d)
n time after preprocessing the input sets individually

into greedy trees [4]. The preprocessing takes
( 1

ε

)O(d)
n log ∆ time. Here ∆ is the spread,
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defined as the ratio of the largest to smallest pairwise distances, of the input sets, and d is
the doubling dimension of the metric space. The preprocessing is especially useful when the
same sets are involved in multiple distance computations.

2 Approximate Hausdorff Distance Algorithm

The input to Hausdorff is a list of the nodes of greedy trees GA and GB sorted by non-
increasing radii such that no child precedes its parent, and a parameter ε > 0. The output
is a (1 + ε)-approximation of dh(A, B). The main data structure is a bipartite graph on
the nodes of GA and GB, called the neighbor graph N . The neighbor graph satisfies the
following invariants:
1. Every point of A ∪B is a leaf in some vertex of N .
2. If d(a, B) = d(a, b) then there is an edge between the nodes containing a and b.
Let N(a) denote the set of neighbors of a in N . If for some a ∈ N we have a ∈ GA, then
the neighbor graph also maintains l(a), a lower bound on d(a, B) defined as,

l(a) := min
b∈N(a)

{d(a, b)− rb}.

Initialize N to contain the roots of GA and GB connected by an edge and then iterate over
the input list. For every node, p, replace it in N by its children and connect them to the
same vertices that were adjacent to p.

We prevent N from becoming complex by pruning edges that are too long. Let the vertex
set of N be A′ tB′ at the start of some iteration. An edge between a and b can be safely
pruned if d(a, b′) + ra < d(a, b)− ra − rb for some b′ ∈ B′, without violating the neighbor
invariant (see Figure 3). In Hausdorff, if p ∈ GA, then prune long edges adjacent to the
newly added vertices and update their lower bounds. Otherwise, p ∈ GB and so, prune edges
adjacent to a for all a ∈ N(p) and update l(a). A lower bound update is shown in Figure 2.

l(a)
b0

b1

b2

a

l(a)

b0

b1

b2

b3

a

Figure 2 This figure depicts an update of l(a) after replacing a node b0 with its children.

We stop once the unprocessed nodes have radii too small to significantly affect the lower
bounds. Hausdorff maintains L as the greatest local lower bound. Figure 4 depicts how L

is updated when local lower bounds change. If the radius r of the largest node yet to process
satisfies r ≤ ε

2 L, then the algorithm returns L as a (1 + ε)-approximation of dh(A, B).
If the radius of every vertex in the neighbor graph is non-zero, then this fact, along with

pruning and some properties of the greedy tree, allows one to bound the degree of a vertex
by a packing argument. This leads to constant time graph updates and so, we have linear
running time. We conclude the following theorem.

I Theorem 1. Given two greedy trees for sets A and B of total cardinality n, Hausdorff
computes a (1 + ε)-approximation of dh(A, B) in

( 1+ε
ε

)O(d)
n time.
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b2

b3

b0

b1

b4

a

b′′
b

a′

a

b′

Figure 3 This figure shows the role of the pruning condition. On the left, the nodes b2 and b3
are too far away to contain the nearest neighbor of any point in a, so edges (a, b2) and (a, b3) can
be pruned from the neighbor graph. The pruning condition respects the neighbor invariant and
does not prune edge (a, b4). In the right image let a′ ∈ A′. For any point a in a′, by the triangle
inequality, d(a, B) ≤ ra′ + d(a′, b′). If edge (a, b′′) has been pruned, then no point b in b′′ can be
the nearest neighbor of a, because d(a, b′) ≤ d(a, b) for any such b.

L

b0

b1

b2
a0

a1

a2

L

b0

b1

b2

b3

a0
a1

a2

Figure 4 This figure depicts an update of L after replacing the node b0 with its children.
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We report work in progress on generalizing Kd-trees to a broad family of Bregman divergences.
Our focus is on separable Bregman divergences, which include practical divergences such as the
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1 Introduction

Many techniques in computational geometry were developed with the Euclidean distance – or
a more general metric distance – in mind. However, in many applied settings – particularly
modern machine learning – non-metric distances play an important role. One example
is the Kullback–Leibler divergence (KL), commonly used to compare discrete probability
distributions [8]. In practice, it often serves as a loss to be minimized [15, 9, 10] – often
under the name of relative entropy or the related cross entropy. KL is one member of the
family of Bregman divergences – on which we center our attention.

A range of computational geometry techniques have been extended to the setting of
Bregman divergences. This includes vantage-point trees [12], ball-trees [13], k-means cluster-
ing [1], Voronoi diagrams and Delaunay triangulations [3], Čech complexes [6]. We show that
Kd-trees work for a class of Bregman divergences called separable Bregman divergences [11].

2 Background

We begin by setting up the definitions for Bregman divergences [4], which will serve as
measures of distance. We note that they are usually not symmetric and never satisfy the
triangle inequality – and as such do not define a proper metric.

A function of Legendre type [14] is a function F : Ω → R where Ω ⊆ Rn is a convex set
and F is differentiable, strictly convex, and satisfies lim

x→∂ Ω
∥∇F (x)∥ = ∞ if ∂ Ω is nonempty.

Given a function F of Legendre type, the Bregman divergence is the difference between F

and the best linear approximation of F at y, both evaluated at x:

DF (x∥y) = F (x) − (F (y) + ⟨∇F (y), x − y⟩).

This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1 Left: primal generalized Kullback–Leibler balls. Right: Itakura–Saito balls

Separable Bregman divergences. In particular, a separable Bregman divergence can
be decomposed into univariate divergences, i.e., DF (x∥y) =

∑n
i=1 Dfi

(xi∥yi) [11]. These
divergences have seen many uses in machine learning. One popular example of separable
Bregman divergences is the Kullback–Leibler (KL) divergence, DKL(x∥y) =

∑n
i=1 xi log

(
xi

yi

)
,

which is a standard distance between probability distributions [8] and is commonly used as a
loss function in algorithms such as t-SNE [15], UMAP [9] and in deep learning [10]. We work
with the generalized KL divergence DGKL(x∥y) =

∑n
i=1(xi log

(
xi

yi

)
+ xi − yi) defined on Rn

+

(which reduces to the usual KL for points on the open standard simplex). Another example
is the Itakura–Saito (IS) divergence [7], DIS(x∥y) =

∑n
i=1

(
xi

yi
− log

(
xi

yi

)
− 1

)
defined on

Rn
+, which is useful for speech and sound data [5].

We define the primal Bregman ball of radius r ≥ 0 and center q as

BF (q; r) = {y ∈ Ω : DF (q∥y) ≤ r}.

Namely, it is the collection of points in the domain with Bregman divergence measured from
the center not exceeding r. See Figure 1 for an illustration. Primal Bregman balls have
a particularly nice geometric interpretation: given a light at point (q, F (q) − r), the ball
BF (q; r) is the illuminated part of the graph of F projected onto Ω. Due to the asymmetry
we could define dual Bregman balls, but we limit our attention to the primal ones.
Kd-trees. We briefly overview a simple version of the Kd-tree [2], which is a useful data-
structure for nearest neighbor queries. We construct it as a binary tree encoding repeated
partitions of Ω with axis-aligned hyperplanes. In finding the nearest neighbor of q ∈ Ω among
X ⊂ Ω, the crucial step is checking if the points on the other side of a hyperplane can be
safely pruned. This reduces to checking if the hyperplane intersects the ball centered at q of
radius equal to the distance to the current nearest neighbor candidate. With the Euclidean
metric, this check is trivial. We now consider a version of this problem for separable Bregman
divergences. We focus on finding argminx∈X DF (q∥x); the other case is analogous.

3 Hyperplane Intersection Problem

Given an axis-aligned hyperplane P ⊂ Rn and a point q ∈ Ω ⊂ Rn, we check if the hyperplane
intersects a Bregman ball of radius r ≥ 0 centered at q. This can be solved by finding the
Bregman projection of q onto P , namely the point qP = arginfp∈P ∩Ω DF (q∥p).
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Figure 2 Left: A GKL ball intersects the hyperplane and contains the ball of radius
infp∈P DGKL(q∥p). Right: An IS ball intersects the hyperplane while the Euclidean ball does
not, resulting in different nearest neighbors.

▶ Lemma 1 (Hyperplane projection lemma). Let P ⊂ Rn be an axis-aligned hyperplane such
that P ∩ Ω ̸= ∅, and let DF be a separable Bregman divergence. Given q ∈ Ω, the Bregman
projection of q onto P is well-defined and coincides with the Euclidean projection of q onto
P .

Proof. Without loss of generality, we consider P with fixed p1 = c for each p ∈ P . Let
q = (q1, q2, . . . , qn) and DF (x∥y) =

∑n
i=1 Dfi

(xi∥yi). Since each Dfi
is a Bregman divergence,

Dfi(x∥y) ≥ 0 with Dfi(xi∥yi) = 0 if and only if xi = yi. As q is fixed and p1 = c for
each p ∈ P , minp∈P ∩Ω DF (q∥p) ≥ Df1(q1∥p1), with equality if and only if pi = qi for
i = 2, 3, . . . , n. With fi : ωi → R being a function of Legendre type, DF is well-defined on
Ω2 where Ω =

∏n
i=1 ωi and so qP = (p1, q2, q3, . . . , qn) ∈ Ω and DF (q∥qP ) is well defined.

Thus the Bregman projection of q onto an arbitrary axis-aligned hyperplane P with the
ith coordinate fixed at pi is given by qP = (q0, q1, . . . , qi−1, pi, qi+1, . . . , qn). ◀

With this projection, we simply compare DF (q∥qP ) with r to determine if the hyperplane
intersects the Bregman ball BF (q; r). Despite the lack of the triangle inequality, this allows
us to decide if the points on the side of the hyperplane opposite to q can be safely pruned.
Indeed, these points are in the complement of the Bregman ball and thus have greater
Bregman divergence. See Figure 2 for an illustration.

4 Summary

We showed that Kd-trees work with separable Bregman divergences. In particular, this result
allows for efficient queries of probability distributions measured with the Kullback–Leibler
divergence. We intend to sharpen this result for the important special case of points living
on the simplex, which differs significantly from the Euclidean case.

We plan to test the efficiency of Kd-trees for various divergences and compare it to the
alternatives mentioned in the introduction. We stress that, unlike most other methods,
Kd-trees allow the divergence to be chosen after the data-structure is constructed. It makes
the method an interesting choice for situations in which queries with respect to multiple
divergences are performed or when the divergence changes over time.
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Abstract
We propose a data structure in d-dimensional hyperbolic space that can be considered a natural
counterpart to quadtrees in Euclidean spaces. Based on this data structure we propose a so-called
L-order for hyperbolic point sets, which is an extension of the Z-order defined in Euclidean spaces.
We demonstrate the usefulness of our hyperbolic quadtree data structure by giving an algorithm
for constant-approximate closest pair and dynamic constant-approximate nearest neighbours in
hyperbolic space of constant dimension d.
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1 Introduction

Hyperbolic geometry has applications in several fields, including special relativity, topology,
visualisation, machine learning, complex network modelling, etc. [8–12]. With the growing
interest in the larger scientific community, there are growing computational and graphic-
al/visualisation needs. It is becoming increasingly important to develop basic data structures
and algorithms for hyperbolic spaces.

Quadtrees in Euclidean spaces [4] are among the few geometric data structures that have
proven to be useful both in practical algorithms and in theory [1,3,5]. They form the basis of
various data structures by being able to ‘zoom in’ efficiently. Quadtrees provide a hierarchical
structure, as well as a way to think of ordering points of the plane (or higher-dimensional
spaces) using the so-called Z-order curve. They can be used as a basis for nearest neighbour
algorithms [5]. The central question addressed by this article is as follows.

Is there a natural hyperbolic equivalent to Euclidean quadtrees?

Given a point set P in the Euclidean plane (henceforth denoted by R2), a quadtree of
P can be defined as follows. Let σ0 be a minimal axis-parallel square containing P , and
let T be a tree graph whose root corresponds to σ0. Then consider a square σ and the
corresponding vertex vσ of T where |σ ∩ P | ≥ 2 (starting with σ = σ0). We subdivide σ

into four squares of half the side length of σ. Each smaller square is associated with a new
vertex that is connected to vσ. This procedure is repeated for each square σ where σ ∩ P ≥ 2
exhaustively, until all leaves of T correspond to squares that contain at most one point from
P . The squares are called the cells of the quadtree, and we can speak of parent/child and
ancestor/descendant relationships of cells by applying the terms of the corresponding vertices
in T . The level of a cell or vertex is its distance to the root of T along the shortest path in
T (i.e., the root has level 0).

This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

23



2 A Quadtree for Hyperbolic Space

Some crucial properties of Euclidean quadtrees are used by several algorithms.
1. If C ′ is a child cell of C, then c1 < diam(C ′)/diam(C) < c2 where 0 < c1 < c2 < 1 are

fixed constants, and diam(C) denotes the diameter of the cell C.
2. Each cell C contains a ball that has diameter at least constant times the diameter of C.

Thus cells are so-called fat objects in R2.
3. Each cell has at most k children cells for some fixed constant k.
4. Cells of the same level are isometric, that is, any cell can be obtained from any other cell

of the same level by using a distance-preserving transformation.

Could the above four properties be replicated by a quadtree in the hyperbolic plane?
Unfortunately this is not possible: the volume of a ball in hyperbolic space grows exponentially
with its radius (thus hyperbolic spaces are not doubling spaces). Consequently, for large
cells, a cell of constant times smaller diameter than its parent will only cover a vanishingly
small volume of its parent. This rules out having properties 1, 2, and 3 together. Property 4
also poses a unique challenge: while the hyperbolic plane provides many types of tilings one
could start with, there is no transformation that would be equivalent to scaling in Euclidean
spaces. This is unlike the scaling-invariance exhibited by Euclidean quadtrees. Moreover, in
small neighbourhoods hyperbolic spaces are locally Euclidean, meaning that a small ball in
hyperbolic space can be embedded into a Euclidean ball of the same radius with distortion
infinitesimally close to 1. Thus a hyperbolic quadtree needs to operate at two different scales:
at small distances we need to work with an almost-Euclidean metric, while at larger distances
we need to work on a non-doubling metric.

2 Our contribution

In the full version of the paper, we propose a hyperbolic quadtree that satisfies properties 1,
2, as well as property 4 in case of cells of super-constant diameter. Moreover, our hyperbolic
quadtree resembles a Euclidean quadtree for cells of sub-constant diameter. Based on the
quadtree we are able to construct a new order and space-filling curve, named the L-order,
which serves as a hyperbolic extension of the Euclidean Z-order. We show that a few
hyperbolic quadtrees (and corresponding L-orders) can create a useful cover of Hd in the
following sense.

▶ Theorem 1. For any ∆ ∈ R+, there is a set of at most 3d + 3 infinite hyperbolic quadtrees
such that any two points p, q ∈ Hd with distHd(p, q) ≤ ∆ are contained in a cell with diameter
O

(
d
√

d
)

· distHd(p, q) in one of the quadtrees.

The above theorem matches the Euclidean result given by Chan, Har-Peled and Jones [2,
Lemma 3.7]. We demonstrate the usefulness of our new data structure by presenting two
applications related to approximate nearest neighbours. A pair p, p′ ∈ P of distinct points is
a c-approximate closest pair in P if dist(p, p′) ≤ c ·mina,a′∈P, a̸=a′ dist(a, a′). Given the point
set P and some query point q in the ambient space, we say that p ∈ P is a c-approximate
nearest neighbour of q if dist(q, p) ≤ c · mina∈P dist(q, a).

▶ Theorem 2. Let P ⊂ Hd be a given set of n points.
We can find an O

(
d
√

d
)

-approximate closest pair of P in O
(
d2n log n

)
time.

We can construct a data structure in O
(
d2n log n

)
time that uses O

(
d2n

)
space and can

answer queries for an O
(

d
√

d
)

-approximate nearest neighbour in P in O
(
d2 log n

)
time,

and perform updates (point insertions and removals) in O
(
d2 log n

)
time.
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A natural next step is to extend the above to (1 + ε)-approximate nearest neighbours
as in [2]. Unfortunately this fails to give o(n) query times when diam(P ) = log n, so the
problem is left for future work.

3 Related work

Approximate nearest neighbour search in hyperbolic spaces has been studied by Krauthgamer
and Lee [7] and by Wu and Charikar [13]. Krauthgamer and Lee describe a data structure of
size O

(
n2)

that allows queries for a O(1)-additive approximation of the nearest neighbour
in O

(
log2 n

)
time. They note that this can be further improved to a (1 + ε)-approximation

using [6]. Wu and Charikar describe various practical methods of using black-box algorithms
for Euclidean nearest neighbour search to find exact and (1 + ε)-approximate nearest
neighbours.
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Abstract
Blank, in his Ph.D. thesis on determining whether a planar closed curve γ is self-overlapping,

constructed a combinatorial word geometrically over the faces of γ by drawing cuts from each face to
a point at infinity and tracing their intersection points with γ. Independently, Nie, in an unpublished
manuscript, gave an algorithm to determine the minimum area swept out by any homotopy from a
closed curve γ to a point. Nie constructed a combinatorial word algebraically over the faces of γ
inspired by ideas from geometric group theory, followed by dynamic programming over the subwords.
In this paper, we examine the definitions of the two words and prove the equivalence between Blank’s
word and Nie’s word under the right assumptions.
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1 Introduction

A closed curve in the plane is a continuous map γ from the circle S1 to the plane R2. In
this paper, we are given a generic planar curve meaning there are finitely many self-crossing
points in the curve, and each of them is a transverse intersection.

In order to work with planar curves, one must choose a representation. Blank [1]
determines if a curve is self-overlapping—boundary of an immersed disk—by checking
whether a property holds on a combinatorial word, constructed by drawing cables from each
face to infinity then traversing the curve and recording the signed intersection sequence of
the curve and the cables. Nie [5] computes the minimum null homotopy area by performing
dynamic programming on a combinatorial word. Nie represents a curve algebraically as a
word in π1(γ). Motivated by simplifying Nie’s proof of correctness, we show that Blank and
Nie’s word constructions are equivalent under modest assumptions.

This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 From Curves to Words

2 Curves and Words

We now describe Blank’s word construction [1, page 5]. Let γ be a generic closed curve in
the plane. Pick a point in the unbounded face of γ and call it the basepoint p0. From each
bounded face fi, pick a representative point pi. Now connect each pi to p0 by a simple path
in such a way that no two paths intersect each other. We call the collection of such simple
paths a cable system, denoted as Π, and each individual path πi from pi to p0 as a cable.

Orient each πi from pi to p0. Now traverse γ from an arbitrary starting point of γ and
construct a cyclic word by writing down the indices of γ crossing the cables πi in the order
they appear on γ; each index i has a positive sign if we cross πi from right to left and a
negative sign if from left to right. We denote negative crossing with an overline i. We call
the resulting combinatorial word over the faces a Blank word of γ with respect to Π, denoted
as [γ]B(Π). Figure 1 provides an example. Note that changing the starting point corresponds
to a cyclic permutation of the word. Words with this property are called cyclic words. We
make additional assumptions to organize the cable system onto a tree, an organized cable
system is said to be managed.

Figure 1 A curve γ with labeled faces and edges, Πa is drawn in blue. The Blank word of γ
corresponding to Πa is [γ]B(Πa) = [2314234].

We next describe Nie’s word construction [5]. Choose a point pi for each bounded face fi

of γ; denote the collection of points as P . Consider the punctured plane X := R2 \ P and
its fundamental group π1(X). Choose a basepoint x0 in X and a set of generators Σ for
π1(X), where each xi in Σ represents the generator of π1(R2 \ {pi}, x0) ∼= Z. These choices,
along with a choice of a path from x0 to each pi, determine a map from each generator
of π1(R2 \ {pi}) into π1(X) [6]. The fundamental group π1(X) is a free group over such
generators, and the curve γ can be represented as a word over generators of π1(X). Elements
of π1(X) are free words.

Consider the curve γ as a four-regular plane graph. Decompose γ into a spanning tree T
and the complementary cotree (spanning tree of the dual graph) T ∗, the trees (T, T ∗) are
a tree-cotree pair [4]. There are two natural sets of generators for π1(X): (1) the set of all
cotree edges, and (2) the set of all face boundaries. We describe the change-of-basis between
the two sets of generators in graph-theoretic terms. Traverse γ from some arbitrary starting
point and orient each edge of γ accordingly. For each face fi, define the boundary operator ∂
by mapping face fi to the signed cyclic sequence of edges around face fi, where each edge is
signed positively if it is oriented counter-clockwise and negatively otherwise.

Now, write the curve γ as a cyclic word over the cotree edges T ∗ by traversing γ, ignoring
all tree edges in T . We perform the following procedure inductively on the cotree T ∗ to
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construct another cyclic word, this time as an element in the free group over the faces of γ.
Starting from the leaves f of T ∗, rewrite each edge e bounding the face f as a singleton word,
with positive sign if edge e is oriented counter-clockwise, or with negative sign otherwise.
Next, for any internal node f of T ∗, the boundary ∂f consists of a sequence of (1) tree edges,
(2) cotree edges to children of f in T ∗ denoted as e1, e2, . . . , er, and (3) (a unique) cotree
edge to parent of f denoted as ef : ∂f = [efe1e2 . . . er].

We inductively rewrite each child cotree edge ei as a free word wi over the faces. Such words
are face words. We emphasize that each word for the child cotree edge constructed inductively
is a free word, not a cyclic word. Choose a particular but arbitrary way to break the cyclic
sequence of faces and rewrite the equation: ef = w̄r · · · · · w̄j+1 ·(w̄j)′ ·∂f ·(w̄j)′′ · w̄j−1 · · · · · w̄1,

where w̄j = (w̄j)′(w̄j)′′ is a particular way of breaking the face word w̄j in two.

Figure 2 A curve γ with labeled faces and edges and tree in red. One cycle flattening of the
boundaries gives ∂(f1) = e3ē2e1e4, ∂(f2) = e2, ∂(f3) = ē3 and ∂(f4) = ē4. Write γ = e1e2e3e4 then
use the boundaries to change the basis. The Nie word of γ is [γ]N (Σ) = [2314234].

This gives us a free word over the faces for edge ef , and, by induction, we have rewritten γ
as a free word over the faces. Finally, we can turn the free word back into a cyclic word, by
observing that the cyclic permutation of the constructed free word over the faces does not
affect the element we are getting in π1(X) (but as a side effect of choosing the basepoint p0
of γ). We call the resulting signed sequence of faces the Nie word and denoted as [γ]N (Σ),
where Σ is the choices we made when breaking up the cyclic word at each cotree edge, referred
to as a cycle flattening. Notice that the definition of [γ]N depends on how we choose to break
the cyclic edge sequences, and thus is not well-defined without specifying the choices. The
proof follows by induction.

I Theorem 1 (Word Equivalence). Let γ be any plane curve. For a Nie word [γ]N (Σ) with a
fixed cycle flattening Σ, there is a managed cable system Π such that the Blank word [γ]B(Π)
is equal to [γ]N (Σ). Conversely, any managed cable system Π induces a cycle flattening Σ
such that [γ]B(Π) and [γ]N (Σ) are equal.
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Abstract
Geometric graphs appear in many real world datasets, such as road networks, sensor networks,
and molecules. We investigate the notion of distance between graphs and present a semi-metric to
measure the distance between two geometric graphs via the directional transform combined with the
labeled merge tree distance. Our distance is not only reflective of the information from the input
graphs, but also can be computed in polynomial time. We illustrate its utility by implementation on
a Passiflora leaf dataset.
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1 Introduction

Many real world datasets materialize as geometric graphs, from road networks to consumer
preferences to our dataset of study: outlines of leaves. Our work is motivated by the question
of how we can define and efficiently compute a distance between any two graphs in a way
that encodes information about the embedding itself. We turn to the idea of the directional
transform [2, 4, 7, 8], which encodes a shape X ⊆ Rd as a family of R-valued functions
fω : X → R for each unit vector ω ∈ Sd−1. Because many of the standard tools of Topological
Data Analysis (such as persistent homology, the Euler characteristic transform, merge trees,
and Reeb graphs) all take an R-valued function as input, we can convert this information
into a signature providing our favorite representation for each ω ∈ Sd−1. In this paper, our
contribution is to combine the directional transform and the merge tree, with the goal of
creating a distance to compare the embedded graphs. Due to the intractability of many
available merge tree distances, we focus on the case of labeled merge trees [6, 3] where
computation is possible. We construct an algorithm to determine the merge tree of an
embedded graph for any direction ω while only needing to compute finitely many merge
trees. We show that the resulting distance has potential for use in practical applications by
applying it to a real data set of Passiflora leaves [1].

2 Methods

Our inputs are two topological graphs G1 and G2, each with a map into R2, fi : Gi → R2.
For a fixed direction ω in circle S1, we define a function on each graph using the inner
product, fi,ω : Gi → R by fi,ω(x) = ⟨fi(x), ω⟩. Based on this, we can construct a merge tree
by encoding the sublevel set components, π0(f−1

i (−∞, a]). Combinatorially, a merge tree is
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2 Merge Tree Distance

Figure 1 A sketch of the distance calculation procedure for two graphs.

a pair (T, f) consisting of a rooted tree T , along with a function f : V → R ∪ {∞}. This
function is finite except for the root, where f(r) = ∞ and every vertex v has exactly one
neighbor u with f(u) ≥ f(v). For a more detailed definition of merge trees, see [5].

We are actually interested in the case of labeled merge trees, where the input data is a
triple (T, f, Π). Letting [k] := {1, 2, · · · , k}, the third entry is the label map Π : [k] → V (T ),
which we require to be surjective on the leaves of T . This labeled merge tree can be stored as a
matrix M(T, f, Π)ij = f(LCA(Π(i), Π(j))), where LCA(v, w) is the lowest common ancestor
of both v and w. Given two labeled merge trees with the same label set [k], we can obtain two
matrices of the same size and then determine the distance between the trees by taking the
pointwise L∞ norm, given by ∥A∥∞ = max |aij |. Specifically, our distance between labeled
merge trees is given by d((T1, f1, Π1), (T2, f2, Π2)) := ∥M(T1, f1, Π1)−M(T2, f2, Π2)∥∞. See
Figure 1 for a sketch of the process.

Given the two input graphs which we equate with their 1-dimensional images in the plane,
we define the following labeling scheme to ensure that we end up with merge trees having
the same label set. Let V1 and V2 denote the set of vertices of G1 and G2. We define the
subsets V ′

1 ⊆ V1 and V ′
2 ⊆ V2 to be the sets of vertices that are not in the convex hull of their

neighbors. These sets contain all vertices which give birth to a leaf in a merge tree for some
direction. For indexing, denote V ′

1 = {v1, · · · , vn} and V ′
2 = {wn+1, · · · , wn+m}. For each

vi ∈ V ′
1 , let p be the closest point in G2 via ∥f1(vi) − f2(wi)∥ (note this might be internal

to an edge), splitting the edge of G2 to create a vertex if needed. Similarly, find the points
q ∈ G1 from wj ∈ V ′

2 , adding a vertex if necessary. This gives a labeling from the set [n + m]
for each graph: Π1(i) = vi ∈ G1 and Π2(j) = wj ∈ G2.

Each choice of direction ω ∈ S1 leads to different merge tree T ω
i for the same graph

Gi, and with each pair (T ω
1 , T ω

2 ) we can project the labels as described above. We define a
finite set of angles from which computing the topological signatures is sufficient to faithfully
represent the data. This set of critical angles is the set of normal vectors to all edges in
the two graphs. While at the moment this involves computing O(n2) labeled merge trees,
our future work will seek to improve this number. We then integrate the distance d(T ω

1 , T ω
2 )

over S1 to obtain the distance between G1 and G2. We conjecture that this distance is
a semi-metric, in other words, it satisfies finiteness, identity, symmetry, and separability
properties, but not the triangle inequality.

3 Application

We use our distance to visualize the structural differences in Passiflora leaves. Our data sets
consists of 3319 leaves across 40 species. Each data point is constructed of 15 Procrustes-
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Figure 2 The shapes of Passiflora leaves measured using landmarks.

aligned (x, y)-coordinate pairs representing 15 landmarks on each leaf. See Figure 2. We
sample one leaf from each of the 216 plants that represents the mature shape of the leaves on
that plant. We then compute pairwise distances, constructing a 216 × 216 distance matrix
with the leaves as both the rows and columns. Finally, we use Multi-Dimensional Scaling
(MDS) to visualize the relationships between the structures of the leaves. Compared to a
traditional method such as Principal Component Analysis, our MDS has a similar global
structure but with clearer separation. See Figure 3.

4 Conclusion and Discussion

Our work displays a potentially useful measurement between two embedded graphs. We
described its theoretical properties and utilized this for optimizing the implementation. We
finally showed its utility by application to a Passiflora leaf data set. Our method comes
with its own strengths and limitations. While it summarizes the outer shape of the graphs,
this distance cannot distinguish internal structures that do not show up in the merge tree.
Moreover, in the current form, our method requires the data to be pre-aligned, which
is a difficult problem in its own right. Further, our computation, though polynomial, is
still relatively expensive; we are looking to further data structures that can provide better
performance. Additionally in future work, we aim to understand more theoretical properties
of the labeling scheme as non-unique closest points can lead to jumps in the distance, resulting
in instability.
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Abstract
In this work, we define an operation on scalar field data which we call the “unsmoothing operator".
This operator is essentially an attempt to formulate an inverse operation to the well studied smoothing
functor. After introducing, we demonstrate this operation on contour trees, and explore the feasibility
of computing it using branch decomposition.
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1 Introduction

An R -space, or a scalar field, is a pair (X, f) in which X is a topological space and f : X → R
is a continuous, scalar-valued function. Such input spaces are seen across many fields, and
hence there is a great need for analysis of their shapes and properties. Reeb graphs are one
commonly used tool in topological data analysis for scalar fields; we refer to a recent survey
for a more exhaustive discussion of their many uses [9]. Essentially, these are one-dimensional
summaries of the connectivity and some of the topology in the input spaces. Given a scalar
field (X, f) where X is simply connected, the resulting Reeb graph Rf is simply connected;
this results in a contour trees. See Figure 1 for an example of a contour tree. We denote
the contour tree defined on (X, f) as Cf . In this paper, we draw upon recent work for
smoothing a Reeb graph or contour tree [3, 1] to explore the inverse operation: unsmoothing
a contour tree. We show that our unsmoothing operation generates a new contour tree
T ′

ϵ(X, f) for every ϵ > 0 and simplifies the tree. We then explore one way to compute such
unsmoothings using branch decompositions [6, 5, 7, 2, 8], which were introduced in prior
work to compute metrics to compare contour trees. Our eventual goal for this investigation
is to better understand the nature of vineyards, and in particular determine what types of
time varying data sets will allow for Reeb flows. As mentioned previously, earlier work [1]
studies this for smoothing, and our work seeks to understand if there is an inverse operation,
unsmoothing.

2 Background and definitions

Formally, a Reeb graph is a pair (X, f) where X is topological space and f : X → R is a
continuous real-valued function. We assume that all Reeb graphs Rf are generic so for that
all vertices have degrees 1 or 3 and occur at distinct heights which can appear in this case,
with their (down-, up-) degrees specified, are local minima (0, 1), up-forks (1, 2), down-forks
(2, 1), and local maxima (1, 0). Note that this assumption is not necessary for correctness, as

∗ This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Unsmoothing of Contour Trees

Figure 1 A contour tree (left) with real valued function (right) defined by height.

degenerate Reeb graphs can symbolically be made generic by perturbation: a (2, 2) vertex
is really a (2, 1) vertex that is identified with a (2, 1) vertex, for example. However, this
assumption greatly simplifies cases and is true in many contexts (generic Morse functions on
manifolds, for example), so we keep it for simplicity.

The smoothing operation on Reeb graphs is defined as follows: For ϵ ≥ 0, let (f + Id) :
X × [−ϵ, ϵ] → R be defined as (x, t) → f(x) + t. We define the ϵ-smoothing Sϵ(X, f) to be
the Reeb graph of (X × [−ϵ, ϵ], f + Id). Note that there this operator was originally defined
and studied through the lens of cosheaves, in the context of defining interleavings for Reeb
graphs and proving functorial properties [3]. Our definition is equivalent, but takes a more
combinatorial and geometric view of the operation. In the space X × [−ϵ, ϵ], fϵ is the induced
height function where fϵ(x, t) = f(x) + t; we abuse notation slightly and also use fϵ to be
the induced height function in Sϵ(X, f).

Recent work [1] completely characterizes the combinatorial effect of smoothing on a graph,
which we briefly describe here. Essentially, there is a natural bijection Φ which takes a
subset of the vertices in Reeb graph Rf to vertices in Sϵ(X, f). First, cycles disappear (or
are “smoothed away") when the length of the cycle is shorter than 2ϵ, where the length of a
cycle is the difference in height between the highest and the lowest vertices. We say a vertex
u in V (X) undergoes a ϵ-shift upwards if f(u) + ϵ = fϵ(Φ(u)), and that u undergoes a ϵ-shift
downwards if f(u) − ϵ = fϵ(Φ(u)). The bijection Φ shifts up forks and maximums up by ϵ,
and down forks and minimums downwards by ϵ.

Define an (ascending) branch in (X, f) to be a path γ : [0, 1] → X so that γ(0) and
γ(1) are vertices and f(γ(t)) is strictly increasing; this is a monotone path in a contour tree
traversing a sequence of nodes with no decreasing or (non-increasing) values of f . Define the
length of a branch as f(γ(1)) − f(γ(0)). A branch decomposition of a contour tree (X, f)
is a hierarchical decomposition of branches into a tree structure which consists of a root
branch b that connects two leaves of X, together with, for each component of X − b, a branch
decomposition whose root branch starts or ends at a (interior) vertex of b. Note that branch
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Figure 2 Top: The contour tree from Figure 1 can be segmented into many different possible
collections of branches. Bottom: Each such segmentation results in a different branch decomposition
tree; every node in the branch decomposition tree corresponds to a path in the original contour tree.

decomposition trees are not unique; for example, if we consider the contour tree in Figure 1,
we can build several different branch decomposition trees, as shown, in Figure 2.

3 Unsmoothing contour trees

Finally, we are ready to consider unsmoothing, in effort to better generalize the study of
flows on Reeb graphs [4].

We say that (Y, g) is an ϵ-unsmoothing of (X, f) if Sϵ(Y, g) = (X, f). We define α(X, f)
to be the minimum of the lengths of all ascending branches γ for which γ(0) is a local
minimum or a down-fork of f , and γ(1) an up-fork or a local minimum of f , respectively.
See Figure 3. Our main results begin an exploration of when unsmoothing is possible:

▶ Proposition 1. Let (X, f) be a contour tree, and let ϵ > 0.
If ϵ ≤ α(X, f)/2 then there exists an ϵ-unsmoothing (Y, g) of (X, f).
If ϵ > α(X, f)/2 then there does not exist an ϵ-unsmoothing of (X, f).

In the remaining space, we briefly sketch the high-level idea of the proof in our remaining
space: we build a branch decomposition that guides how to build a particular unsmoothed
contour tree. Each node in the branch decomposition tree is a monotone path in the
contour tree; this will correspond to a (possibly longer) path in the unsmoothed tree which
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4 Unsmoothing of Contour Trees

Figure 3 The graph has an up fork and down (green edges), and showing that α is difference of
function value.

we construct. By placing vertices for each path at the correct height along their parent
branch’s path, we can guarantee the existence of paths if ϵ < α(X, f)/2, and demonstrate
an obstruction to such a tree’s existence when ϵ > α(X, f)/2, as the unsmoothed tree will
have combinatorial differences with the original. (Note that when the distance is equal to
α(X, f)/2, the tree exists but is degenerate.)

This initial result only begins our exploration of unsmoothing. We are also working
towards using branch decompositions to construct canonical unsmoothings, which ideally
keep functorial properties and hence can be used more broadly for studying the inverse
problem on this type of data.
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Abstract
The weighted Euler curve transform (WECT) was recently introduced as a tool to extract meaningful
information from shape data, when the shape is equipped with a weight function. In this extended
abstract, we provide an experimental investigation on using the WECT for image classification.
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1 Introduction

One of the primary goals of topological shape analysis is to summarize the shape of data
using topological invariants. The Euler Characteristic (EC) is a simple invariant that is easily
computed from data. For a filtered topological space, this can be extended to an Euler Char-
acteristic Curve (ECC). This extended abstract considers a variant of the ECC for a filtered
and weighted simplicial complex, called the Weighted Euler Curve Transform (WECT) [6].

2 Background

Given a simplicial complex K and a filter function f : K → R, the ECC is the func-
tion χf : R → Z that maps x ∈ R to the EC of the sublevel set f−1((−∞, r]). A common
filter function is the directional filter function, which, for K embedded in R2, is the lower-
star filter for a direction s ∈ S1. Using an ensemble of directional filter functions, one for
each direction in S1, we obtain a parameterized collection of ECCs, called the Euler curve
transform (ECT).1 No two distinct shapes have the same ECT [9]. Since its introduction,
the ECT has developed both in theory and in practice [1, 3, 5–7].

The WECT is a generalization of the ECT for weighted complexes [6]. Let K be a
simplicial complex in R2 and let g : K → R be its weight function (g need not be a filter

∗ This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

1 The ECT can be defined more generally; however, for brevity, we restrict the definition here to our
specific problem setting.
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2 Image Shape Classification with the Weighted Euler Curve Transform

Figure 1 Freudenthal Triangulation of 5 × 5 image.

function). The WECT for K assigns to each s ∈ S1 the function ωs,g : R → Z defined by:

ωs,g(t) =
2∑

d=0
(−1)d

∑

σ∈Kd

hs(σ)≤t

g(σ) =
∑

σ∈K
hs(σ)≤t

(−1)dim(σ)g(σ),

where hs : K → R is the lower-star filter in direction s.

3 Experiments

3.1 Data Sets

Synthetic image datasets are generated using the following parameters: shape, pixel intensity,
and function extension. The domain of an image is a 64 × 64 grid, with vertices on an integer
lattice, triangulated using the Freudenthal triangulation [4]; see Figure 1. The shapes are the
domain of the image pixels with positive intensity. Two shapes are considered: the disc (D)
and the square (S). The disc D is centered at (32, 32) with a radius of 20 pixels. The square S

is also centered at (32, 32) and has an edge length of 35, ensuring that both D and S have
approximately the same number of pixels. Let K be the triangulation of either D or S.

Pixel intensities are sampled from Gaussian (G) and uniform (U) density shapes. A
bivariate Gaussian density with a peak at the middle of the image and diagonal covariance
matrix with standard deviations 100 is used. Points are sampled from this distribution and
then assigned to the nearest grid cell to create a 2D histogram. This histogram is rescaled
so that the maximum intensity is 255. In the uniform distribution, each pixel intensity is
sampled from [0, 255]. In what follows, g : K0 → R is the function on the vertices of K.

Together, the shape and distribution define four image classes: square-Gaussian (SG),
square-uniform (SU), disc-Gaussian (DG), and disc-uniform(DU), with 250 sampled images
in each; see Figure 2. Given an image (a function g : K0 → R), we consider two extensions
(functions F : K → R). First, the maximum extension is defined by mapping a simplex to
the maximum value on its vertices. Second, the average extension takes average instead of
the maximum. For each image class, we test both function extensions, creating eight data
sets. We refer to an image, along with its extension to all simplices an extended image.
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(a) SU (b) DU (c) SG (d) DG

Figure 2 Four image classes.

Table 1 Pairwise classification results with maximum weight function extension.

SG SU DG DU
SG 0.500 ± 0.000
SU 1.000 ± 0.000 0.500 ± 0.000
DG 0.902 ± 0.023 0.998 ± 0.006 0.500 ± 0.000
DU 1.000 ± 0.000 1.000 ± 0.000 0.998 ± 0.006 0.500 ± 0.000

3.2 Methods
We evaluate the WECT on the task of binary classification. Given two data sets, we first
compute the WECT for each extended image. To approximate the WECT (a function
over S1), we sample eight equally-spaced directions from S1, which was sufficient given the
simplicity of the image features. To discretize each WECC, 50 threshold values are sampled,
thus each image results in a vectorized WECT of length 400. Next, we train a Support
Vector Classifier (SVC) [2] separately for each binary classification model. The set of WECTs
is partitioned into training and test sets, with an 80/20 train-test split. All SVCs in this
work use a regularization parameter of value 20. This was implemented in Python, using
data structures from the Dionysus 2 library [8]. Experiments were conducted on an Intel
Xeon E5-2680 (128 GB RAM).

3.3 Results and Conclusion
For each pair of image classes, we compute the WECTs for both the maximum and the
average function extensions. Then, we fit SVC models on 10 unique collections of 250 images
of each class and report the average accuracies and the standard errors. Table 1 and Table 2
provide the percentage of correctly classified test images.

In the simple data sets that we considered, we found the WECT to be suitable for the
task of binary classification. The weakest classification result was comparing the SG and DG
classes under the average weight function extension. Because Gaussian density decreases

Table 2 Pairwise classification results with average weight function extension.

SG SU DG DU
SG 0.500 ± 0.000
SU 1.000 ± 0.000 0.500 ± 0.000
DG 0.830 ± 0.048 1.000 ± 0.000 0.500 ± 0.000
DU 1.000 ± 0.000 0.948 ± 0.034 1.000 ± 0.000 0.500 ± 0.000
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4 Image Shape Classification with the Weighted Euler Curve Transform

toward zero in the extremes, the corners of SG have weights that are close to zero making
SG resemble the DG. Why the maximum weight function extension performed better than
the average is not immediately clear. We plan to extend the set of shapes, distributions, and
function extensions in order to explore this observation.
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Abstract
We extend algorithmic tools for the computation of the Fréchet distance for polygonal curves to
that of piecewise smooth curves in Rd. We show that the decision problem can be solved in O(mn)
time, for two curves consisting of m, resp., n smooth algebraic curves, of uniformly bounded degree.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Fréchet distance, Simplification, Smooth curves, Approximation algorithms

1 Introduction

The wealth of work surrounding the analysis of algorithms for computing the Fréchet
distance is centered primarily on polygonal curves. However, more complicated curves and
especially splines have become commonplace in industrial applications for, e.g., computer
graphics, robotics and to represent motion tracking data. In such applications, the number of
dimensions corresponds to the number of tracked parameters, leading to a high-dimensional
ambient space. Devising algorithms for the computation of the Fréchet distance between
smooth curves in Rd is a natural and fundamental task in computational geometry. As far
as we know, there is no known approach to the computation of dF (γ1, γ2) for smooth curves
in Rd. For smooth curves in the plane (d = 2), Rote [3] showed how to do this. However, his
approach does not easily generalize to higher dimensions. We revisit this problem and present
a new, simpler approach with the same time complexity that works for higher dimensions.

Problem definition Throughout the paper, γ1 and γ2 will be used to denote two piecewise
smooth curves in Rd with d fixed, that is, continuous maps γ1, γ2 : [0, 1] → Rd that are
comprised of m and n smooth pieces, each of class C2. Let A[0,1] be the set of continuous
and bijective maps α : [0, 1] → [0, 1] that are increasing. For two continuous curves γ1 and
γ2, the Fréchet distance is defined as dF (γ1, γ2) := inf

α,β∈A[0,1]
max

t∈[0,1]
∥γ1(α(t)) − γ2(β(t))∥.

We consider different choices of ℓp norm for the norm ∥ · ∥.

Results Our main contribution is that we establish a solution to the decision problem
of determining whether dF (γ1, γ2) ≤ δ for a given δ > 0 and a fixed ambient space Rd.
Assuming that the curves are algebraically bounded curves, i.e., piecewise algebraic curves
where the maximal degree of the curves is bounded by a constant, our algorithm runs in
O(mn) time. The solution of the decision problem forms the basis for the framework for
algorithms for computing the Fréchet distance, similarly to the polygonal case.

∗ This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Revisiting the Fréchet distance between piecewise smooth curves

Figure 1 Two smooth curves in R3 and a contour plot of the associated free space diagram.

Methods and difficulties Similarly to the classical polygonal case, to solve the decision
problem, we ascertain the existence of a path from (0, 0) to (1, 1) in the free space Dδ

that is monotone (in both coordinates). Unlike the polygonal case, the free space Dδ can
be very complicated (Figure 1 and 4), so we propose a decomposition of the free space
diagram FSDδ into a controlled number of pieces, for which the existence of a monotone
path connecting two intervals on edges can be read off. Here, monotonicity of the boundary
curves replaces the role of convexity of the free space for polygonal curves. A key technical
result we show is that the boundary of Dδ in FSDδ is smooth (almost everywhere), for most
values of δ and choices of ℓp norm in the definition of the Fréchet distance.

To arrive at an algorithm for the decision problem for smooth planar curves, Rote also
uses a decomposition of FSDδ to obtain pieces that are easier to handle. His approach relies
on analyzing the curves γ1 and γ2 directly, introducing cuts at points with a certain value
for the curvature, and to control the turning angle. In contrast to this, instead of working
with the curves directly, our approach is based on analyzing the free diagram FSDδ.

2 A combinatorial description of the free space diagram

Consider the boundary Bδ of Dδ. We treat Bδ as a set of curves, as opposed to the boundary
of a region and define the three sets Eh, Ev and Is of points on Bδ, as illustrated in Figure 2:

1. The set Eh of points in Bδ that have a horizontal tangent to the free space,
2. The set Ev of points in Bδ that have a vertical tangent to the free space,
3. The set Is of singularities of Bδ, consisting of points where Bδ is non-smooth.

It turns out that Is is empty for most values of δ and ℓp norms with 1 < p <

∞.Furthermore, for algebraically bounded curves, the number of values for δ for which Is is
non-empty is bounded by a constant depending on the maximal degree of the curves.Figure 3
illustrates the effect of a small perturbation of δ on the free space in FSDδ. Assume a δ

and ℓp norm where Is is empty and fix a cell C of FSDδ. For every point x ∈ C in Eh (Ev),
trace the vertical (horizontal) line inside C. The result is a refinement of the partitioning
FSDδ into a collection {Ci,j}i,j of smaller cells. Figure 4 depicts the ensuing decomposition
within a cell of FSDδ. The decomposition {Ci,j} has the property that Bδ is a collection of
monotone arcs within each cell Ci,j and that Bδ is essentially uniquely determined by its
intersections with Ci,j .
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Figure 2 Illustration of points ev ∈ Ev, eh ∈ Eh, and is ∈ Is for a region of FSDδ.

Dδ+ϵDδ−ϵ Dδ

Figure 3 Illustration of singular points and changes of the boundary as δ changes.

Decision problem To answer the decision problem, we examine the reachable space in
FSDδ (or {Ci,j}), which are those points reachable by a monotone path in the free space,
starting from (0, 0). By monotonicity of Bδ in every cell in {Ci,j}, there is at most one
interval on each of the top and right edges of a cell that are reachable by a monotone path
starting from the left (or bottom) edge of that cell, and the points reachable by monotone
paths within each cell can be readily identified. We compute the intervals on the top and
right edges reachable from the left-most (and bottom) point of a reachable interval on the
bottom (and left) edges inductively. The set-up resembles that of Alt and Godau [1] in the
polygonal case, where each cell wall has at most one reachable interval, in contrast to the
situation for smooth curves. Similarly to, e.g., Driemel, Har-Peled and Wenk [2], we use a
BFS on grid cells to compute a representation as a graph of the intervals on edges of cells
reachable by a monotone path. Each node in the graph represents a maximal reachable
interval on the edges of a cell, and these are joined by an edge if they belong to the same cell
and there is a monotone path in the cell from one interval to the other. One can show that
there is at most a constant number of reachable intervals in each reachable cell, so we can
proceed similarly to [2, Lemma 3.1] to obtain the following result.

▶ Proposition 1. Given two algebraically bounded piecewise smooth curves γ1, γ2 in Rd

comprised of m and n pieces, and a value of δ ≥ 0, one can decide if dF (γ1, γ2) ≤ δ. The
running time is bounded by O(mn).

In practice, the performance of the algorithm for the decision problem will depend on the
dimension d of the ambient space of the curves. Note that this dependence stems from
the algebraic complexity of the operations used to execute the algorithm. On the other
hand, the number of cells in our decomposition of FSDdelta depends on the degree of the
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Figure 4 Refinement of a cell of the free space diagram into (sub)cells arising from the horizontal
and vertical lines at extremities of the forbidden region in the coordinate directions.

considered set of algebraically bounded curves, so while the operations themselves become
more complicated, the bound on the time complexity in Proposition 1 is independent of the
dimension.

References
1 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal

curves. International Journal of Computational Geometry and Applications, 05(01n02):75–91,
mar 1995.

2 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete and Computational Geometry, 48(1):94–127, 2012.

3 Günter Rote. Computing the Fréchet distance between piecewise smooth curves. Computational
Geometry: Theory and Applications, 37(3 SPEC. ISS.):162–174, aug 2007.

48



Subtrajectory Clustering for Human Motion Data∗

Jacobus Conradi
Department of Computer Science, University of Bonn, Germany

Anne Driemel
Hausdorff Center for Mathematics, University of Bonn, Germany

Abstract
We extend the subtrajectory clustering approach by Brüning, Conradi and Driemel [3] to center
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Supplementary Material Implementation can be found in [6].

1 Introduction

Advancements in motion tracking technology made it possible to track motion data from many
different areas ranging from human motion data to animal migration to vehicle navigation.
With vast amounts of data one is often interested to find suitable representatives of the given
data reducing the size of the data considerably. We consider the subtrajectory clustering
approach introduced by Akitaya, Brüning, Chambers and Driemel [2], extended upon by
Brüning, Conradi and Driemel [3]. Similar approaches to subtrajectory clustering have been
pursued by Buchin et al. [4], Agarwal et al. [1], Buchin et al. [5], Gudmundsson et al. [7] and
most recently Schaefer et al. [10]. Here, we consider a given polygonal curve P parametrized
over [0, 1] together with a distance threshold ∆ and complexity bound l. The problem is to
find a set of curves C = {C1, . . . , Ck}, each of complexity at most l, such that every point
P (p) for p ∈ [0, 1] is contained in a subcurve Cp of P and there is a curve Ci ∈ C that has
continuous Fréchet distance dF (Cp, Ci) ≤ ∆. The continuous Fréchet distance is defined
on any two parametrized curves P, Q : [0, 1] → Rd as inff,g maxt∈[0,1] ∥P (f(t)) − Q(g(t))∥,
where f and g—refered to as traversals—range over all non-decreasing surjective functions
from [0, 1] to [0, 1]. We denote by P [s, t] the subcurve of P starting at P (s) and ending at
P (t) for 0 ≤ s ≤ t ≤ 1. A curve C that has Fréchet distance ∆ to some such P [s, t] covers
every point p ∈ [s, t]. For any curve C in Rd we define

CovP (C, ∆) =


 ⋃

0≤s≤t≤1, dF (P [s,t],C)≤∆

[s, t]


 ⊂ [0, 1]

as the ∆-coverage of C. This subtrajectory clustering problem is naturally interpreted as a
set-cover problem, where [0, 1] is the ground set and the sets are CovP (C, ∆) for any curve C

in Rd of complexity l. Brüning et al. [3] consider this problem as a bicriteria-approximation
problem. Given an input of a curve P of complexity n and parameters ∆ > 0 and l = 2, they
give an algorithm which—assuming there exists a set of line segments of size k∗ such that
the union of their ∆-coverages is [0, 1]—produces a set of line segments of size O(k∗ log k∗)

∗ This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Subtrajectory Clustering for Human Motion Data

e

b

m

S

P

a

C ′

C

Figure 1 Example of how starting from a traversal—starting in a and ending in b—matching
C to some piece of P (all in red), extending it to some curve C′ matching an inclusion-wise larger
piece of P (all in blue) induced by an extremal point e and a monotonicity point m.

such that the union of their (11∆)-coverages is [0, 1]. They extend this result to arbitrary
l, yielding a set of size O(lk∗ log(lk∗)). A drawback of this approach is that for any l it
exclusively produces line segments as cluster centers, even if more complex centers are sought.

In Section 2 we present a set of candidate curves of size O(n3l) containing a similarly
good set of center curves, but using curves of higher complexity. This greatly improves the
quality of the solution, as we are no longer restricted to line segments as center curves. Our
approach heavily builds upon [3]. In particular, we also use so-called ∆-good simplifications
of P . Omitted proofs can be found in the full version. In Section 3 we demonstrate the
practical viability of our approach in an application to full-body motion trajectories.

2 Our Candidate Set

▶ Lemma 1. Let a polygonal curve P and values ∆ > 0 and l be given. Let S be a ∆-good
simplification of P . Let C be a set of curves of size k each with complexity at most l such
that

⋃
C∈C CovP (C, ∆) = [0, 1]. Then there is a set CS of size 3k of subcurves of S each of

which has complexity at most l with
⋃

C∈CS
CovS(C, 8∆) = [0, 1].

Brüning et al. [3] showed that under the special assumption l = 2 a set CS resulting via
Lemma 1 from any solution C for given polygonal curve P and ∆ > 0 can be transformed to
a set of curves which each start and end in so called extremal or monotonicity points of the
8∆-free space of S with itself. The ∆-free space of two curves P and Q is defined as the
sublevel-set of pointwise distances less than ∆, i.e., D∆(P, Q) = {(x, y) | ∥P (x)−Q(y)∥ ≤ ∆}.
Monotone paths (in x and y) in the ∆-free space correspond to subcurves of P and Q with
Fréchet distance at most ∆. Extremal points are points in the ∆-free space that are local
maxima in the x-direction. Monotonicity points are local minima in the y-direction.

▶ Lemma 2. Let a polygonal curve P and ∆ > 0 together with l be given. Let further a
∆-good simplification S together with a subcurve C of S of complexity l be given. Then there
are four subcurves C1, . . . , C4 of S, each of complexity l, starting and ending in extremal or
monotonicity points of D8∆(S, S) such that CovS(C, 8∆) ⊂ ⋃4

i=1 CovS(Ci, 8∆).
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Our approach

Our approach

Our approach

Our approach

Our approach

Our approach

Our approach

Our approach

Our approach

Our approach

Our approach

Our approach

Our approach

Figure 2 Segmentation result of subtrajectory clustering on CMU data, black indicates ambiguity.

Proof Sketch. We observe in the free-space diagram that a piece of S that is close to C can
be extended by moving the start (resp. end-point) of their traversal to the left (resp. right).
We consider four cases. In each case, we move the startpoint (resp. endpoint) of the traversal
up or down, modifying C until we start in an extremal or monotonicity point (Figure 1). ◀

▶ Theorem 3. For a given polygonal curve P of complexity n and values ∆ > 0 and l there
is a set of curves B of complexity l with |B| = O(n3l) such that for any set of curves C of
complexity at most l with

⋃
C∈C CovP (C, ∆) = [0, 1] there is a set of curves CB ⊂ B of size

12|C| such that
⋃

C∈CB
CovP (C, 11∆) = [0, 1].

Proof. First simplify P resulting in a ∆-good simplification S of P (as in [3]). The complexity
of S is bounded by n. The 8∆-free space of S with itself has n rows. Each row has at most
O(n) extremal or monotonicity points acting as start points of candidates. The l rows above
any row have a total of O(nl) extremal or monotonicity points acting as possible endpoints
defining the set B. Thus the size of B clearly is in O(n3l). The correctness follows by Lemma
1 and Lemma 2 together with the fact that dF (P, S) ≤ 3∆. ◀

3 Human Motion Data

The candidate set of Theorem 3 induces a set cover instance I in the following way. Each
candidate induces a subset of [0, 1] by its coverage, which is a set of I. Applying the greedy
set cover algorithm yields a bicriteral approximation to the subtrajectory clustering problem.
We implemented this algorithm and applied it to the CMU data-set [9] (restricted to subject
86). Each trial is a 93-dimensional curve that tracks the positions of the joints (full-body
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t = 0 1.00.2 0.4 0.6 0.8

t = 0 1.00.2 0.4 0.6 0.8

t = 0 1.00.2 0.4 0.6 0.8

t = 0 1.00.2 0.4 0.6 0.8

Figure 3 Motion data and labeled coverage of first four clusters of CMU 86 trial 01.
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motion). The source code is publicly available at [6]. We compare the resulting segmentations
to ground truth data from [8]. The results are depicted in Figure 2. Colors are chosen by
matching to the ground truth. Overlaps between differently colored sets are shown in black.
Figure 3 visualizes maximal subtrajectories contained in the first four sets chosen by the
greedy set cover algorithm by superimposition of stills.
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Abstract
DTW Barycenter Averaging (DBA) is a widely used algorithm for estimating the mean of a given set
of point sequences. We study DBA in the model of smoothed analysis, upper-bounding the expected
number of iterations in the worst case under random perturbations of the input. We assume the
algorithm is given n sequences of m points in Rd and a parameter k that specifies the length of the
mean sequence. Our smoothed upper bound is polynomial in k, n and d, and for constant n, also
polynomial in m (in contrast to our deterministic lower bound that is exponential in k for n = 2).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Dynamic Time Warping, Smoothed Analysis, Time Series, Clustering

1 Introduction

The DTW Barycenter Averaging (DBA) algorithm [2] was introduced by Petitjean, Ketterlin
and Gançarski in 2011 and has since been used in many applications for clustering time
series data (e.g. [3, 4, 5]). The objective is to find a representative time series that optimally
summarizes a given set of input time series. Here, the optimality is measured using the sum
of dynamic time warping (DTW) distances to the input sequences. In this paper, we study
the number of iterations that DBA performs until convergence. We follow a line of thought
that has proved successful for the closely related k-means algorithm by Stuart Lloyd [1].

Preliminaries We denote with ∥.∥ the standard Euclidean norm. For m1, m2 ∈ N, each
sequence (1, 1) = (i1, j1), (i2, j2), . . . , (iM , jM ) = (m1, m2) such that ik − ik−1 and jk − jk−1
are either 0 or 1 for all k is a warping path from (1, 1) to (m1, m2). We denote with
Wm1,m2 the set of all warping paths from (1, 1) to (m1, m2). For any two point sequences
γ1 = (γ1,1, . . . , γ1,m1) ∈ (Rd)m1 and γ2 = (γ2,1, . . . , γ2,m2) ∈ (Rd)m2 , we also write Wγ1,γ2 =
Wm1,m2 , and call elements of Wγ1,γ2 warping paths between γ1 and γ2. The dynamic time
warping distance between the point sequences γ1 and γ2 is defined as

dDTW(γ1, γ2) = min
w∈Wγ1,γ2

∑

(i,j)∈w

∥γ1,i − γ2,j∥2

A warping path that attains the above minimum is called an optimal warping path between
γ1 and γ2. Let X = {γ1, . . . , γn} ⊂ (Rd)m be a set of n point sequences of length m and
C ∈ (Rd)k be a point sequence of length k. We call a sequence π of tuples (p, c) where p is
an element of some γ ∈ X and c is an element of C an assignment map between X and C.

This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 On the number of iterations of the DBA algorithm

1.1 The DBA Algorithm
Let X be a set of n point sequences γ1, . . . , γn ∈ (Rd)m. Let C ∈ (Rd)k be another point
sequence and w(1), . . . , w(n) ∈ Wm,k be chosen such that w(i) is an optimal warping path
between γi and C. Then w(1), . . . , w(n) define an assignment map π between X and C. The
assignment map π can be represented by sets S1(π), S2(π), . . . , Sk(π), where

Si(π) = ∪n
j=1{γj,t | (i, t) ∈ w(j)}.

By construction, π minimizes the DTW distances between γ1, . . . , γn and C. In the opposite
direction, the following sequence Cπ minimizes the sum of squared distances for fixed π.

Cπ = (c1(π), c2(π), c3(π), . . . , ck(π)) where ci(π) := 1
|Si(π)|

∑

p∈Si(π)

p.

DBA alternately computes such assignment maps and average point sequences as follows.

1. Let π0 be an initial assignment map (e.g. randomly drawn w
(1)
0 , . . . , w

(n)
0 ). Let j ← 0.

2. Let j ← j + 1. Compute the average point sequence Cπj−1 based on πj−1.
3. Compute optimal warping paths w

(i)
j between γi and Cπj−1 for all 1 ≤ i ≤ n. The warping

paths define an assignment map πj between X and Cπj−1 .
4. If sum of DTW distances is lower for πj than for πj−1, go to Step 2. Otherwise, terminate.

2 Upper bound based on geometric assumptions on the input data

We can upper bound the number of iterations of DBA based on the following geometric
assumptions on the input data.
Normalization Assumption: We assume the input data is normalized so that for any
vector y in any input point sequence we have ∥y∥2 ≤ B.
Separation Assumption: For any two different assignment maps α, β ∈ An,m,k we have

∥Cα − Cβ∥2 :=
k∑

i=1
(ci(α)− ci(β))2 ≥ ε

The separation assumption ensures that any two different mean sequences are not too similar.
We get the following upper bound based on a potential function argument that takes the
DTW distance of the computed average sequence to the input sequences as the potential
function and analyses the decrease of the potential in any iteration of DBA.

▶ Theorem 1. If the input data satisfies the normalization assumption for B and separation
assumption for ε, then the number of steps performed by DBA is at most B(m+k)

ε .

3 Smoothed Analysis

Our randomness model is as follows: An adversary specifies an instance X ′ ∈ ([0, 1]d)nm of
n point sequences γ1, . . . , γn of length m in [0, 1]d, where each sequence γi is given by its m

points γi = (γi,1, . . . , γi,m). Then we add to each vertex of X ′ an independent d-dimensional
random vector with independent Gaussian coordinates of mean 0 and standard deviation σ.
The resulting vectors form the input point sequences. We assume without loss of generality
that σ ≤ 1, since the case σ > 1 corresponds to a scaled down instance X ′ ∈ ([0, 1

σ ]d)nm

56



F. Brüning, A. Driemel, A. Ergür and H. Röglin 3

with additive d-dimensional Gaussian random vectors with mean 0 and standard deviation
1. We call this randomness model m-length sequences with N (0, σ) perturbation. For this
randomness model, we obtain the following result.

▶ Theorem 2. Suppose d ≥ 2, then the expected number of iterations until DBA converges
is at most

O

(
n2m8 n

d +6d4k6 ln(nm)4

σ2

)
.

To prove Theorem 2, we first bound the probability that the normalization assumption and
the separation assumption hold for suitable parameters. Using these bounds and Theorem 1
in the calculation of the expected number of iterations then yields the theorem. The bound
for the probability that the normalization assumption holds can be derived with standard
Gaussian tail bounds. The bound for the probability that the separation assumption holds on
the other hand uses the fact that each two different average sequences differ in the position of
at least one center point. Note that the separation between the average sequences is at least
as big as the distance of the two positions of that center point. So, we bound the probability
that this distance is greater than some ε using the perturbation of the input. Then, we apply
a union bound over all possible combinations of input points that determine different center
points.
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1 Introduction

The evolving data framework was first proposed by Anagnostopoulos et al. [2], where an
evolver makes small changes to a structure behind the scenes. Instead of taking a single
input and producing a single output, an algorithm judiciously probes the current state of the
structure and attempts to continuously maintain a sketch of the structure that is as close as
possible to its actual state. There have been a number of problems that have been studied
in the evolving framework [3–6] including our own work on labeled trees [1].

We were motivated by the problem of maintaining a labeling in the plane, where updating
the labels require physically moving them. Applications involve tracking evolving disease
hot-spots via mobile testing units [7], and tracking unmanned aerial vehicles [9].

To be specific, we consider the problem of tracking labeled nodes in the plane, where an
evolver continuously swaps labels of any two nearby nodes in the background unknown to us.
We are tasked with maintaining a hypothesis, an approximate sketch of the locations of these
labels, which we can only update by physically moving them over a sparse graph. We assume
the existence of an Oracle, which when suitably probed, guides us in fixing our hypothesis.

2 Theta Graphs and Routing

Theta graph is a sparse geometric spanner with a spanning ratio: tθ = 1/(1− 2 sin(θk/2))
spanners, where θk = 2π/k is the angle induced by a set of cones around a point [8] (Figure
1(a)). Using a pre-computed theta graph, there is a simple routing scheme: let Cp,q be the
cone around p that contains q. We move from p to its neighbor in Cp,q, and repeat the
process. (See Figure 1(b)). Note we only need information about the neighbors of p, and a
rough location estimate for the target point q.

3 Problem Formulation

Let P ∈ R2, be a point set of size n. Each point is assigned a unique label from the set of
labels L = {l1, . . . , ln}, through a matching M . Every time step, the evolver swaps labels
between points that are less than a unit distance apart.

Let Gθ be the theta graph on P , and Σθ be its embedding. Through H : L → Σθ, we
maintain a mapping as close as possible to the original one. We update H by moving a single
label over Σθ with a finite speed, at any particular moment of time. One of our goals is to
find such a speed, which is sufficient to maintain a reasonable H.

We define the distance Dl, for label l as the Euclidean distance between its hypothesized
location, and its actual location. And the overall distance between the two mappings M ,

This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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Θk pj

pj+1

Cj

(a) (b)

Figure 1 Theta Graph: Construction, and Routing. 1(a) shows the construction of theta graphs.
For a point, consider the set of cones around it. For every cone add an edge between that point, and
the point which is nearest to it when projected along the bisector of the cone. 1(b) shows how to
route using theta graphs. If Cj is the cone at pj containing the destination point (Red pt), then
follow the edge contained inside it. Repeat the same at pj+1 until destination is reached

and H as the sum of all such distances:
∑

l∈LDl = D(M, H). It’s easy to see that, this can
get as large as O(n2) without a competing algorithm.

We assume we have access to an oracle, that we call a Cone Oracle: O, which when
queried on a label l, and its hypothesized location H(l), returns the cone Ck around H(l)
which contains the true location of l.

We assume an additional thing here: for a label l, after an initial startup cost, subsequent
queries on the oracle with the same label, takes o(1) time. This is a valid assumption on
massive point sets, when only a small region around the current point, in our case H(l), is
cached in memory. The expensive step is moving to a completely different, possibly uncached
area of the data set. In other words switching from l1 to l2, on the oracle takes constant
amount of time, what we call the memory overhead.

Our aim is to design an algorithm that physically moves the hypothesized labels over a
sparse graph with a constant speed, and maintains a labeling of distance O(n) at all times.

4 Algorithm

First we precompute the theta graph for our point set P . Then we run the randomized
algorithm 1. (We assume the evolver does not have access to our random bit generator). In
short, our algorithm selects a label at random every iteration, and tracks it down using the
routing scheme on theta graphs (Fig 1(b)). We probe the oracle to find the cone around a
point which contains the actual location of the label.
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Algorithm 1 Randomized algorithm using cone oracle

Require: {H(l1), H(l2), · · · , H(ln)} ▷ Initial hypothesized location of the labels
1: while true do ▷ Continuously run the algorithm
2: for l chosen randomly uniformly from {l1, l2, · · · , ln} do
3: while O(l, H(l)) ̸= NULL do ▷ Keep tracking l until found
4: Let Ck ← O(l, H(l)) ▷ Cone returned by the oracle
5: Let el,k = (H(l), v) be the edge incident on H(l) inside Ck

6: Move l along el,k with speed ctθ ▷ c is a constant
7: Update H(l)← v

8: end while
9: end for

10: end while

5 Analysis

Under a cached memory model, with overhead M , lines 3, 4, 5, and 7 in Algorithm 1 take
o(1) time. Let Di be the overall distance, and Dl,i be the distance for label l at the start
of the ith iteration. Since we are moving at the speed of ctθ over a tθ spanner, we spend
Dl,i/c time in traversing Euclidean distance Dl,i. In that time the evolver could have moved
the label by at most another Dl,i/c distance. So, in the worst case, we spend at most
Dl,i/c +Dl,i/c2 + · · · = Dl,i/(c− 1) time tracking l. In that time, the evolver can increase
Di by at most 2Dl,i/(c− 1). Since we chose l at random, we have E[Dl,i] = Di/n. Therefore,

E [Di+1 | Di] ≤ Di−
Di

n
+ 2

c− 1 ·
Di

n
+ M

=⇒ E [Di+1] ≤
(

1− c− 3
c− 1 ·

1
n

)
E [Di] + M

≤
(

1− z

n

)i

E [D1] + M
i∑

j=1

(
1− z

n

)i
[
z = c− 3

c− 1

]

≤
(

1− z

n

)i

O(n2) + nM

z
[z > 0]

For i = ln n/(ln n−ln(n−z)) ∼ n ln n/z, we have Di+1 ∈ O(n), provided c > 3. Therefore,

▶ Theorem 1. There exists a randomized algorithm using a cone oracle, which moves labels
at any speed greater than 3 tθ, and in expectation maintains a hypothesized labeling with
distance: O(n), in the presence of an adversarial evolver.
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Reconfiguration of 3D Pivoting Modular Robots
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Abstract
We study a new model of 3-dimensional modular self-reconfigurable robots Rhombic Dodecahedral

(RD). By extending results on the 2D analog of this model we characterize the free space requirements
for a pivoting move and investigate the reconfiguration problem, that is, given two configurations s

and t is there a sequence of moves that transforms s into t? We show reconfiguration is PSPACE-
hard for RD modules in a restricted pivoting model. In a more general model, we show that RD
configurations are not universally reconfigurable despite the fact that their 2D analog is [Akitaya et
al., SoCG 2021]. Additionally, we present a new class of RD configurations that we call super-rigid.
Such a configuration remains rigid even as a subset of any larger configuration, which does not exist
in the 2D setting.
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1 Introduction

Programmable matter refers to matter with the ability to change its physical properties, such
as shape, on demand. A popular approach to implement such a system is through modular
self-reconfigurable robotic systems (MSR) where small robotic units called modules can attach
and detach from each other, communicate, and move relative to each other, changing the
shape of the system. We require configurations to be connected, meaning the adjacency
graph of modules is connected (known as the single backbone condition [3]). A move is an
operation that transforms a configuration into another by changing the position of a single
module. We focus on the pivoting model where the moving module rotates around a static
module. This model is similar to many hardware implementations [5, 6] but it is challenging
from an algorithmic perspective as a single pivoting move can collide with several modules.

If certain local configurations are forbidden, there are polynomial-time algorithms for
square, hexagonal, and cube modules that compute a sequence of pivoting moves to transform
a configuration into another [4, 7]. Akitaya et al. [1, 2] classified three sets of pivoting moves
for square modules and two for hexagonal modules and described their required free space,
Fig. 1. The restricted hexagonal model only uses the restricted move while the monkey
hexagonal model uses both restricted and monkey moves. The general problem was shown to
be PSPACE-hard for the restricted hexagonal model [1]. However, [1] also gave a universal
reconfiguration algorithm for the monkey hexagonal model that produces move sequences of
length O(n3), for configurations of n robots.

Not much is known about general reconfiguration in 3D models. A candidate to generalize
hexagonal modules is the rhombic dodecahedron (RD). Implementations of RD-like modules
exist [5], but free space constraints for pivoting moves of these modules have never been

This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.

63



2 Reconfiguration of 3D Pivoting Modular Robots

described as in [1, 2]. We present such free space constraints to facilitate the description
of 3D configurations and moves of such models. We then generalize the PSAPCE-hardness
proofs from [1] to RD pivoting models. Finally, we show there are configurations of RD that
are rigid even if they are a subset of a larger configuration, implying the configuration space
of RD is disconnected.

s
a

(a) Hex Restricted Move (b) Hex Monkey Move

(c) Square Restricted Moves

(d) Square Leapfrog Moves

(e) Square Monkey Moves

Figure 1 2-dimensional (a,c) restricted moves, (d) leapfrog, and (b, e) monkey moves.

2 Free-Space

A RD lattice can be represented as stacked layers of hexagons (Fig. 2), and RD are space-
filling polyhedra and therefore are a logical 3D analog to hexagonal MSR. We define restricted
and monkey moves as in [1]. During a pivoting move, a RD module might collide with
modules that are in layers adjacent to its plane of movement, so three layers of modules are
needed to describe their free-space requirements, presented in Fig. 3. A RD lattice is 3-cyclic
so the bottom and top layer free-space requirements may flip based on a module’s lattice
position or direction of movement, hence Fig. 3 is presented w.l.o.g.
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Figure 2 Equivalency between rhombic dodecahedra and hexagons. Red and blue modules are
drawn small for legibility but are, in reality as large as the central grey modules.

(a) In-layer restricted move                                         (b) Out-of-layer restricted move

(c) Restricted move across the face of a base module

(d) In-Layer monkey move

(e) Out-of-layer monkey move 

m
m

m

m
m

m

m

m
m

m

Figure 3 3-dimensional RD Moves. The moving module m is pink, and the modules and the
edges that m pivots around are highlighted in yellow. The required free lattice positions (resp. top,
resp. bottom) are marked with a grey (blue, red) asterisk.

3 Reconfiguration is Hard

▶ Theorem 1. General Reconfiguration of RD with Restricted moves is PSPACE-hard.

We use the configurations in Fig. 4 to extend the gadgets used by Akitaya et al. [1] from
2D to 3D. A roof configuration is a gadget contained in a single layer formed by a cycle
of modules, the boundary, and all positions that are enclosed by the boundary. A cap
configuration takes a path of modules and makes one end rigid. We use the cap to make
our roof rigid by attaching a path of modules to each module in the boundary of a roof and
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4 Reconfiguration of 3D Pivoting Modular Robots

terminating it with a cap. By placing instances of the roof configurations two layers above
and below the gadgets, no module can move up or down a layer, essentially restricting the
gadgets to two dimensions. A similar approach can extend the square results from [1] to
prove reconfiguration of cubes under restricted, leapfrog, and monkey moves is PSPACE-hard
as well. Details will be in an upcoming full version.

(a) RD Roof Configuration (b) RD Cap Configuration

Figure 4 Roof and Cap configurations for rhombic dodecahedron.

4 Rhombic Dodechahedra Are Super Rigid

In this section, we define a new class of configuration we call super-rigid.

▶ Definition 2. A configuration G is super rigid if given any configuration C where G is a
subconfiguration, the modules in G cannot be moved.

AB

C

WX

Y U

VZ
1

2 3

Figure 5 A super rigid configuration, positions U, V, W, X, Y, and Z are empty

Where a subconfiguration of a configuration C is any connected configuration that can
be obtained by removing any number of modules from C. To our knowledge, super-rigid
configurations are novel, and likely only possible in MSR models where moving modules
can have collisions outside their plane of movement. Previously known rigid configurations
(including all 2D rigid configurations) are like configuration (a) in Fig. 6, where adding just
one new module (in blue) the configuration becomes mobile (b).

▶ Theorem 3. The configuration in Fig. 5 is super rigid under restricted and monkey moves.
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(a) Rigid Configuration                          (b) Mobile Configuration

Figure 6 In (b) the addition of the blue module makes configuration (a) mobile

The proof uses the free-space requirements in Fig. 3 to verify no module in G is mobile
and none can be made mobile by adding any modules to G. Refer to the full version of this
paper for a detailed proof. A surprising consequence of this is a solid “cube” containing Fig.
5 cannot be reconfigured into a single row of modules in a line.

▶ Corollary 4. The Rhombic Dodechadral MSR model is not universally reconfigurable under
Restricted or Monkey moves.
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Abstract
We introduce decorated mapper graphs as a generalization of mapper graphs capable of capturing
more topological information of a data set. A decorated mapper graph can be viewed as a discrete
approximation of the cellular Leray cosheaf over the Reeb graph. We establish a theoretical
foundation for this construction by showing that the cellular Leray cosheaf with respect to a sequence
of covers converges to the actual Leray cosheaf as the resolution of the covers goes to zero.
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1 Introduction

Reeb graphs and their discrete analogs—mapper graphs—are important tools in compu-
tational topology [2, 3, 8, 14]. They are used for data visualization [10, 12], for comparing
scalar fields via distances between Reeb graphs [1, 6, 7], and data skeletonization [9], among
other things. Given a continuous map f : X → R, the Reeb graph Rf summarizes the zero-
dimensional connectedness of X. In practice, we deal with maps f : P → R on discrete data
sets P , where Reeb graphs are replaced by mapper graphs. A mapper graph is constructed
by choosing a cover U = (Ui)i∈I of f(X) or f(P ), taking the components or clustering the
data points of f91(Ui), collapsing each of the obtained components to a single vertex and
connecting two vertices if their corresponding components have common points. In [6,11] it is
shown that Reeb graphs can be viewed as cosheaves and that the cellular Reeb cosheaf w.r.t.
a cover converges to the Reeb cosheaf if the resolution of the cover goes to zero, establishing

1 Corresponding Author
* This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of

the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Convergence of Leray Cosheaves for Decorated Mapper Graphs

Figure 1 Pulling back the cover U of f(X) along the induced map f̂ on the Reeb graph and
refining it into components yields a cover Û of Rf . The decorated mapper graph is the nerve complex
of this cover decorated by the homology H•

(
π91

f (−)
)

of the preimages of intersections in Û under
the quotient map πf . Since f = f̂ ◦ πf , this is analogous to using components of preimages under f .

a theoretical justification for working with finite covers. A limitation of this approach is that
Reeb/mapper graphs fail to capture higher-dimensional topological features. To overcome
these limitations we introduce decorated mapper graphs. A decorated mapper graph collects
the homology (possibly inferred from a point sample) in all degrees H•(−) :=

⊕
n≥0 Hn(−)

of the components of f91(Ui) and f91(Ui ∩ Uj) on the corresponding vertices and edges of
the mapper graph; see Figure 1. It can be viewed as a discrete approximation of the Leray
cosheaf over the Reeb graph. In this abstract we show that the cellular Leray cosheaf w.r.t.
a cover converges to the actual Leray cosheaf for any finite 1D cover U as the resolution of
the cover goes to zero.

2 Leray Cosheaves

The Leray (pre)cosheaf [4,5,15] parameterizes the homology of a space X when viewed along a
continuous map f : X → Y . It does this by recording for each pair of open subsets V ⊆ W ⊆ Y

their homology and the induced map H•
(
f91(V )

) H•(f91(V )⊆f91(W ))−−−−−−−−−−−−−→ H•
(
f91(W )

)
. We

further assume that X is compact and H•
(
f91(V )

)
is finite-dimensional for every V ⊆ Y .
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▶ Definition 1 (Leray (pre)cosheaf). We define the graded Leray (pre)cosheaf Lf of a
continuous map f : X → Y by the following assignments: For all V ⊆ W ⊆ Y open

Lf (V ) =
⊕

n∈N0

Lf
n(V ) :=

⊕

n∈N0

Hn

(
f91(V )

)

Lf (V ⊆ W ) =
⊕

n∈N0

Lf
n(V ⊆ W ) :=

⊕

n∈N0

Hn

(
f91(V ) ⊆ f91(W )

)
.

In practice, we can not access the whole Leray cosheaf. We can only get a cellular version [4,
4.1.6] given by its values on a finite cover of f(X). An open cover U = (Ui)i∈I of f(X)
defines a simplicial complex NU := {σ = (i0, . . . , ik)| Uσ := Ui0 ∩ . . . ∩ Uik

̸= ∅}, called the
nerve complex of U . We call U a finite 1D cover if it is finite and has a one-dimensional
nerve complex and denote by ≤ the face-relation of NU , i.e. σ ≤ τ ⇐⇒ σ is a face of τ .

▶ Definition 2 (Cellular Leray cosheaf). We define the cellular Leray cosheaf DU Lf w.r.t. a
cover U as the cosheaf on NU given by the following assignments: For all σ ≤ τ ∈ NU

DU Lf (σ) := Lf (Uσ)
DU Lf (σ ≤ τ) := Lf (Uτ ⊆ Uσ) .

If πf : X → Rf is the quotient map from X to the Reeb graph and Û a cover of Rf , then we
define a decorated mapper graph as DÛ Lπf ; see Figure 1.

3 Convergence

It is obvious that this process of discretization can lose information. This raises the question:
How well is Lf represented by DU Lf ? To compare Lf and DU Lf , we define a process of
transforming DU Lf into a (pre)cosheaf on Y . We want to approximate the value of Lf on any
open set V ⊆ Y given only the information in DU Lf . To this end, we define the subcomplex
KV := {σ ∈ NU | Uσ ∩ V ̸= ∅} ≤ NU , which can be viewed as a simplicial approximation of
V ⊆ ⋃

σ∈KV

Uσ; see Figure 2. Moreover, if V ⊆ W , we obtain an inclusion ι : KV ↪−→ KW .

▶ Definition 3 (Continuous extension). Let U be a finite 1D cover of Y . We define the
continuous extension CU DU Lf of DU Lf as a (pre)cosheaf on Y via the following assignments:
For all V ⊆ W ⊆ Y open

CU DU Lf (V ) :=
⊕

n∈N0

(
H0

(
KV ; DU Lf

n|KV

)
⊕ H1

(
KV ; DU Lf

n91|KV

))

CU DU Lf (V ⊆ W ) :=
⊕

n∈N0

(
H0

(
ι
)

n
⊕ H1

(
ι
)

n91

)

where Hi

(
KV ; DU Lf

n|KV

)
is the degree i homology [4, 6.2.2] of the cosheaf DU Lf

n restricted
to KV and Hi(ι)n is the map induced on cosheaf homology by ι : KV ↪−→ KW cf. [13, A.17].

As shown in [4, 5, 15], if U is a finite 1D cover of f(X) the continuous extension yields
CU DU Lf (V ) ∼=

⊕
n∈N0

Hn

(
f91( ⋃

σ∈KV

Uσ

))
approximating H•

(
f91(V )

)
; see Figure 2. The

following proposition shows that CU DU Lf (V ⊆ W ) also gives us the correct induced map.
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4 Convergence of Leray Cosheaves for Decorated Mapper Graphs

Figure 2 The figure shows DU Lf
0

∼= DU Lf on NU w.r.t. two covers with different resolution as
well as the restriction DU Lf

0 |KV to KV (in orange). Homology is taken with coefficients in a field
k and unlabeled arrows represent identity maps. For the coarse cover we get CU DU Lf (V ) ∼= k ≇
H0

(
f91(V )

)
but for the finer one we get CU DU Lf (V ) ∼= k2 ∼= H0

(
f91(V )

)
.

▶ Proposition 4. Let U be a finite 1D cover of f(X). Then, for all V ⊆ W ⊆ Y open, the
following diagram commutes and the horizontal arrows are isomorphisms:

H0
(
KV ; DU Lf

n|KV

)
⊕ H1

(
KV ; DU Lf

n91|KV

)
Hn

(
f91( ⋃

σ∈KV

Uσ

))

H0
(
KW ; DU Lf

n|KW

)
⊕ H1

(
KW ; DU Lf

n91|KW

)
Hn

(
f91( ⋃

σ∈KW

Uσ

))

∼=

H0(ι)⊕H1(ι) Hn

(
f91

( ⋃
σ∈KV

Uσ

)
⊆f91

( ⋃
σ∈KW

Uσ

))

∼=

.

To talk about convergence, we have to define a distance on (pre)cosheaves. Assume Y is
a metric space and that all the involved (pre)cosheaves are constructible [4, 11.0.10]. For
every ϵ > 0 define V ϵ := {y ∈ Y | d(y, V ) < ϵ}. To a (pre)cosheaf F on Y we now associate
F • := {(F ϵ)ϵ≥0 , (F δ

ϵ : F ϵ → F δ)ϵ≤δ}, a parameterized family of (pre)cosheaves on Y , by
setting F ϵ(V ) := F (V ϵ). This allows us to define the distance of two (pre)cosheaves F

and G as the interleaving distance of F • and G•, i.e. d(F, G) := dI(F •, G•). Denote by
res(U) := sup

U∈U
sup

x,y∈U
d(x, y) the resolution of an open cover U . We are now able to show that

if the resolution of the cover U goes to zero, CU DU Lf converges to Lf .
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▶ Theorem 5. If f : X → Y is continuous and U is a finite 1D cover of f(X), then

d
(
CU DU Lf , Lf

)
≤ res(U) .

If we only consider Lf
0 , the degree-zero part of Lf , the construction in Definition 3 and

Theorem 5 specializes to an abelianization of the convergence result in [11].

4 Future Work

Theorem 5 guarantees that, if we choose a cover of resolution ≤ δ, the cellular Leray cosheaf
is a δ-approximation of the continuous one. This result establishes a theoretical justification
for working with finite covers. Since we have to deal with maps from finite point sets in
practice, in future work we plan to investigate under what conditions we can infer the cellular
Leray cosheaf of a map f : X → Y from a finite sample of X; cf. [2].
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Abstract
In this paper, we propose an algorithm that approximates the persistent homology of the Čech
complex of a given point set by creating an adaptive subsample and calculating the persistent
homology of specific filtrations on that sample. We assess the quality of our approach empirically
and theoretically: we give topological guarantees for the approximation quality on a global scale as
well as locally, keeping a high precision in areas of the initial point sample where it is needed.
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1 Introduction and Related Work

Persistent homology (PH) is an important tool in Topological Data Analysis to infer the
topology of an object using a discrete point sample. In this paper, we propose an algorithm
that approximates persistence diagrams which capture the PH of a filtered space. In particular,
we reduce the input sample and build two exemplary filtrations on the resulting set whose
PH can be calculated using state-of-the-art software [3, 17, 4]. As a motivating example,
we consider point samples of manifolds: We aim at achieving high precision in areas of
the manifold with high curvature; this motivates the use of the local feature size (lfs). We
contribute a definition of a new dissimilarity measure on adaptive point samples and a
localized analysis of persistence modules built on filtrations using this measure. Reducing
the sample size has been studied [2, 7, 9, 10, 11, 12, 15, 16, 18, 20], but we explicitly consider
local properties and give adaptive guarantees. Dey et al. [13] use a similar approach, but
impose stronger limitations on the input to exactly infer the manifold’s topology.

2 Algorithm and Theoretical Guarantees

Let X be the input point sample. We initially motivated our approach using the lfs, which
is a point’s distance to the medial axis of the manifold. However, our descriptions and
analyses do not rely on specifics of the lfs, thus we will model it using a generic function
f : X → R instead. We coarsen X iteratively by discarding, for each x ∈ X, all points in the
ball B(x, f(x)) of radius f(x) centered at x and adding only x to the resulting set Y . This
is similar to [14] with the exception that we process the points in decreasing f -order and
keep track of the set Lx of points that were removed while adding x to Y . To construct a
filtration we look at Čech complexes which can be illustrated by centering growing balls on
all points and adding edges whenever two balls meet, or – equivalently – when the balls’ radii

This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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equal some value α, in this case half the points’ distance. We improve this notion in our case
by defining a dissimilarity measure that considers the discarded points: instead of centering
the balls only on the points in Y , we place them on all points of X and add an edge between
points x, y ∈ Y whenever a path x → x′ → y′ → y with x′ ∈ Lx, y′ ∈ Ly exists, see Figure 1.

▶ Definition 1. Let dY : Y × Y → R be defined as

dY (x, y) := min
x′∈Lx,y′∈Ly

max {∥x′ − y′∥2, ∥x − x′∥2, ∥y − y′∥2} .

We define a Čech-like filtration S and a Vietoris-Rips-like filtration T whose index sets
are formed by the points in Y . Let L̃y(α) := {y′ ∈ Ly | ∥y − y′∥2 ≤ 2α} for α ∈ R≥0.

▶ Definition 2. Let S be a filtration with simplicial complex S(α) for α ≥ 0 defined as

S(α) :=
{

σ ⊆ Y

∣∣∣∣∣

(⋂

y∈σ

⋃

x∈L̃y(α)
B(x, α)

)
̸= ∅
}

.

x

x′ ∈ Lx

y
y′ ∈ Ly

α

e

α

α
α

Figure 1 Here, α := 1
2 dY (x, y) is the value at which e appears between x and y in the filtration S

using dY : this models the existence of a path between x and y in the Čech filtration of X (dashed).

▶ Definition 3. Let T be a filtration with simplicial complex T (α) for α ≥ 0 defined as

T (α) := {{v0, ..., vn} ⊆ Y | n ∈ N, dY (vi, vj) ≤ 2α for all 0 ≤ i, j ≤ n} .

We can prove overall and adaptive bounds on the bottleneck distance between the
persistence diagram of the Čech module of X and the persistence modules of S and T for
each dimension as seen in Figure 2: Let V be the Čech persistence module on X. First,

Čech
persistence
module (V)

Čech-like
approx.
(VS)

inter-
mediate

module (V′)

Vietoris-
Rips-like
approx.
(VT )

mult.
3-approx.

additive(
1
2 ·max f

)
-approx.

adaptive
(local)
bound

add. 3
√
2-

approx.

Figure 2 Visual representation of the bounds on approximation quality.
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Figure 3 Point sample/adaptive sample (left) and (approximated) persistence diagrams (right).

we define an intermediate persistence module V′, similar to [6]. V′ can be shown to be a
multiplicative 3-approximation of V. Using [8] we show that VS , the persistence module built
on S, is an additive

( 1
2 · max f

)
-approximation of V′ and that the persistence module on T ,

VT , 3
√

2-approximates VS . Unfortunately, as seen in Figure 3, a bound on the bottleneck
distance that depends on the highest lfs might lead to an approximation in which smaller
features do not exist. Instead, our construction will yield an adaptive bound (shown in red in
Figures 2 and 3): For each feature in V′ we can choose a subset of Y , whose highest f -value
determines this feature’s approximation quality. This is shown using induced matchings [5].

3 Experimental results

For simplicity of computation we calculated VT . We implemented our algorithm in C++
and compared our approximations to the Vietoris-Rips persistence module on X. We report
the results of running Ripser [3] on a Dell XPS 13 (16 GB RAM, Ubuntu 20.04) on different
samples – see the table in Figure 4.

Stanford Dragon Some results for the Stanford Dragon [21, 19] are shown in Figure 5.
Figure 4 shows that our approach outperforms its competitors on all subsamples. However,
there is a limit to how many points we can lose while keeping a low bottleneck distance.

Klein Bottle The second data set is sampled from an immersion of the Klein Bottle in R3

[19]. Since our method works for general functions f , we can apply it to point sets sampled
from other objects than smooth manifolds. The function we used here is similar to the lfs
approximation by [14]. Figure 6 shows that our approach results in persistence diagrams
close to the ground truth even on smaller samples. Again, our approach outperforms its
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Approach Mark Sampling Filtration
(a) × uniform Vietoris Rips
(b) ◦ (approx.) local feature size [1] Vietoris Rips
(c) • (approx.) local feature size [1] our method (T ) [this paper]
(d) □ lean feature size [13] our method (T )

Figure 4 Bottleneck distance to ground truth for 1-dim. PH (top left: Klein Bottle, dB ∈ [0, 4];
top right: Stanford Dragon, dB ∈ [0, 0.004]). The runtime of Ripser (dashed, shown for calibration)
depends on the size of the subsample and internal heuristics and thus is similar for all methods.

competitors. In all cases, the running time for Ripser dominates the overall runtime.
Using the lean feature size [13] in our algorithm deteriorates the results, likely because

the benchmark data set did not conform to Dey et al.’s strong requirements. We conclude
that our approach stably outperforms its competitors with respect to the bottleneck distance.
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Figure 5 Stanford Dragon [19] with persistence diagrams for 0-, 1-, and 2-dim. PH: Ground truth
(framed, 1000 points), our approach (799, 667, and 489 points).
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Figure 6 Klein Bottle [19] with persistence diagrams for 0-, 1-, and 2-dim. PH: Ground truth
(framed, 900 points), our approach (second row: 743 points; third row: 408 points).
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Abstract
Persistent homology is a method in topological data analysis that computes topological invariants
with respect to a function f : X → R. The output is encoded by a set of intervals called the barcode.
This work introduces methods of factorization that produce portions of the barcode, which we
call a sub-barcode. We show that when only a sample of the data is provided we can obtain a
sub-barcode of a c-Lipschitz function by bounding the unknown function by the Lipschitz extensions
of the sample. Remarkably, the sub-barcodes computed from these factorization methods are not
approximate, they are guaranteed to be contained within the barcode of the unknown function.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology

Keywords and phrases sub-barcodes, factorizations, Lipschitz extensions, persistence modules,
persistent homology, TDA

1 Introduction and Background

We introduce sub-barcodes as a new tool for topological inference. The crux of topological
data analysis is to characterize a dataset by topological invariants, which are represented as
vector spaces. The methods in this work analyze unknown scalar fields. That is, functions
X

f−→ R, where X is an unknown space. The sublevel sets are the sets f−1(−∞, α] for
α ∈ R. The nested sequence of sublevel sets for increasing α is referred to as a filtration. We
characterize f topologically by its persistence module, which is a parameterization of the
topological invariants of the filtration. A persistence module is stored as a barcode, which is
a collection of intervals that encode the persistence module. In some works the intervals of
the barcode are referred to as topological features.

Denoting the collection of all finite dimensional vector spaces by vec, more explicitly,
a persistence module is a function M : R → vec sending each t ∈ R to a space Mt ∈ vec,
paired with linear mapsMs≤t : Ms →Mt for each s ≤ t such thatMs≤t ◦Mr≤s = Mr≤t. The
barcode of a persistence module M is denoted bar(M). A persistence module homomorphism,
A

ϕ−→ B, is a collection of maps (ϕt : At → Bt) such that ϕt ◦As≤t = Bs≤t ◦ ϕs for all s ≤ t.
The goal then, traditionally, given a sample of S ⊂ X and values of f on S, is to

approximate the barcode of the filtration of f . Existing techniques allow one to approximate
this barcode such that the quality of the approximation is guaranteed by the quality of the
sample [10, 1, 5, 15, 8]. We only require function values on a subsample P ⊂ S. The methods
that we introduce do not aim to approximate, but rather extract the portions of the barcode
that are known for certain. By constructing a Lipschitz extension of the input sample we
induce a factorization of persistence modules, which we show guarantees a sub-barcode.

0 This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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A

B

Figure 1 The barcode A is a sub-barcode of B. The dashed lines indicate an injective mapping
from the bars of A to the bars of B.

2 Sub-barcodes

Given persistence modules A and B, bar(A) is a sub-barcode of bar(B) if there exists an
injective mapping bar(A) m−→ bar(B) such that α ⊆ m(α) for all α ∈ bar(A). We denote this
relation as A v B. Note that in general m does not correspond to a persistence module
homomorphism, however, sub-barcodes do appear naturally in the form of factorizations. A
map f factors through g if there exist maps φ1 and φ2 such that f = φ2 ◦ g ◦ φ1.

I Theorem 1. If f and g are persistence module homomorphisms such that f factors through
g then imf v img. In particular when g is the identity on a persistence module M , we have
imf vM [21, Theorem 3.7].

As a corollary, if we have a map A
f−→ B, then imf v A and imf v B. This result

is powerful in the sense that any factorization of a homomorphism with non-zero image
guarantees a portion of the sub-barcode for the images as well as the spaces within the
factorization.

3 Sub-barcodes in TDA

The persistent homology of a function f : X → R is the persistence module of the filtration
of f that uses homology as the topological invariant, denoted PH(f). Thus PH(f) is a
persistence module, PH(f) : R → vec. Let there be functions l, g : X → R such that g is
pointwise greater than l, denoted g ≥ l. Then there is an inclusion of the α-sublevel sets
g−1(−∞, α] ⊆ l−1(−∞, α] for each α. This induces a persistence module homomorphism
PH(g)→ PH(l). We abbreviate this map to PH(g ↪→ l).

I Theorem 2. If g, f, l : X → R such that g ≥ f ≥ l, then imPH(g ↪→ l) v PH(f) [21,
Corollary 4.2].

Thus if one obtains lower and upper bounds to an unknown function one may infer part
of the barcode using the bounding functions. Although, if the bounding functions are not
sufficiently close, it is possible that imPH(g ↪→ l) may be empty. Notably, if l and g are
sufficiently close on part of the domain yet arbitrarily far in another part, the portion of the
sub-barcode associated to the relevant features will be captured. When the input is a sample
we can apply this result by using Lipschitz extensions.

Let f : X → R be an unknown c-Lipschitz function, and P ⊆ X a finite sample of a
metric space (X,d). The minimum Lipschitz extension is f̂P := maxp∈P {f(p)− cd(x, p)}.

84



O.A. Chubet, K. P. Gardener, D. R. Sheehy 3

Figure 2 Lipschitz extensions on the line.

The maximum Lipschitz extension is f̌P := minp∈P {f(p) + cd(x, p)}. We conclude with the
following corollary.

I Corollary 3. Given f : X → R and P ⊆ X is finite, then imPH(f̂P ↪→ f̌P ) v PH(f).

The minimum and maximum Lipschitz extensions bound the unknown function, so
there is a factorization of persistence modules induced by the inclusions of their filtrations.
Factorizations guarantee sub-barcodes, which allow us to uncover intervals that are guaranteed
to be contained within the unknown barcode.

Figure 3 On the left, two functions are depicted, one is an upper bound and the other is a lower
bound on an unknown function f . There is a corresponding barcode associated with the pair that
matches minima in the upper bound to maxima in the lower bound. On the right is a candidate
function f that lies between the upper and lower bounds and its barcode Bf . The barcode of the
inclusion of the upper and lower bounds is a sub-barcode of Bf .
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Abstract
Given an Nn-filtration X• = (Xq)q∈Q of simplicial complexes, we consider the problem of explicitly
constructing generators of the persistent homology group H1(X•) with integer coefficients. We
propose the consideration of spanning trees as a tool to identify such generators by introducing a
condition for persistent spanning trees, which is accompanied by an existence result for a global,
canonical choice of spanning trees.
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1 Introduction

A problem that has recently emerged in topological data analysis (TDA) is the efficient
computation of multiparameter persistent homology modules [3, 6, 11]. Recall that a
simplicial complex X is a set of finite sets such that σ ∈ X implies τ ∈ X for every subset
τ ⊆ σ. Denote by Xn the set of n-simplices of X. For a partially ordered set (Q, ≤),
a (multi-)filtration X• of a complex X over Q is a family (Xq)q∈Q of subcomplexes of X
satisfying Xq ⊆ Xq′ whenever q ≤ q′ ∈ Q.

Given such filtration X• = (Xq)q∈Q of simplicial complexes, one typically seeks a
description of the persistent homology module Hn(X•) = (Hn(Xq))q∈Q, n ∈ N, in terms of
a free resolution or, equivalently, generators and relations, which are represented as syzygies
[2, 4, 5, 8, 9]. For practical reasons, both representations should be minimized.

In our work, we propose to determine the generators for the multiparameter persistent
homology group H1(X•) = H1(X•;Z) by using spanning trees. Spanning trees are known to
provide minimal generators for Z1(X) = Ker(∂1 : C1(X) → C0(X)) in the static case, as the
following theorem, which we shall extend to the persistent setting, asserts.

I Theorem 1 ([7, Theorem 2.33]). Recall that the relative chain group C1(X, T ) is the
quotient C1(X)/C1(T ). If X is a simplicial complex and T ⊆ X a corresponding spanning
tree of X, then j : Z1(X) → C1(X, T ), z 7→ z + C1(T ) is an isomorphism.

2 Persistence of spanning trees

Spanning trees are subcomplexes of a complex that reflect the connectivity properties of the
original complex while retaining acyclicity in higher dimensions. We begin with a generalized
notion of spanning trees, also known as spanning forests or maximal spanning forests [1, 7].

This is an abstract of a presentation given at CG:YRF 2023. It has been made public for the benefit of
the community and should be considered a preprint rather than a formally reviewed paper. Thus, this
work is expected to appear in a conference with formal proceedings and/or in a journal.
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2 Persistence of complements of spanning trees

I Definition 2. Let X be a simplicial complex. A 1-dimensional simplicial subcomplex T ⊆ X

is a spanning tree of X if T0 = X0 and if it satisfies the maximal acyclicity condition: The
simplicial complex T is acyclic, and whenever e is an edge in the complement of T , then the
simplicial complex T ∪ {e} is not acyclic.

An important consequence of Theorem 1 is the possibility to explicitly construct a minimal
set of generators of Z1(X) from a spanning tree T of X. A basis B of C1(X, T ) is given by a
choice of (oriented) simplices in X that are not in T [10]. Thus, a basis of Z1(X) is given by
j−1(B), where j : Z1(X) → C1(X, T ) is the isomorphism from Theorem 1, which consists of
fundamental cycles in X.

One might hope that given a filtration (Xq)q∈Q there exists a subfiltration (T q)q∈Q of
degreewise spanning trees, i.e. T q ⊆ Xq and T q ⊆ T q′ for all q ≤ q′ ∈ Q. In this case,
Theorem 1 extends to persistence.

I Proposition 3. Given a filtration (T q)q∈Q of degreewise spanning trees of a filtration
(Xq)q∈Q, there is an isomorphism of persistence modules (Z1(Xq))q∈Q

∼= (C1(Xq, T q))q∈Q,
which is degreewisely given by jq : Z1(Xq) → C1(Xq, T q), z 7→ z + C1(T q).

However, existence of a subfiltration (T q)q∈Q fails spectacularly if Q is not totally ordered,
and simple counterexamples exist for Q = N2 [4, Example 5.1]. Therefore, we loosen the
condition (T q)q∈Q being a filtration to something weaker.

To do so, we impose a well-ordering � on X and restrict it to well-orderings �q on
each Xq, for q ∈ Q. Then in each degree q ∈ Q consider the family T q of spanning trees of
Xq. If Xq is finite, the set T q is well-ordered by the lexicographic order �q

lex induced by �q,
given by T �q

lex T ′ whenever the minimum of the symmetric difference of T1 and T ′
1 lies in

A, and we may choose the minimal T q
∗ ∈ T q, called the order-minimal spanning tree.

If every Xq is finite, the family (T q
∗ )q∈Q of degreewise order-minimal spanning trees of a

filtration (Xq)q∈Q satisfies the following property and weakened condition as required.

I Theorem 4. If (T q
∗ )q∈Q is the family of degreewise order-minimal spanning trees of (Xq)q∈Q,

then it holds Xq \ T q
∗ ⊆ Xq′ \ T q′

∗ for all q ≤ q′ ∈ Q.

3 Generators of persistent homology in dimension one

Given a family (T q
∗ )q∈Q of degreewise order-minimal spanning trees of (Xq)q∈Q and an

accompanying family (jq : C1(Xq, T q
∗ ) → Z1(Xq) | q ∈ Q) of isomorphisms defined as in

Theorem 1, we can construct a generating morphism of the persistent homology module
H1(X•) = (H1(Xq))q∈Q as follows.

First note that there is the epimorphism (Z1(Xq))q∈Q =: Z1(X•) → (H1(X•), defined in
each q ∈ Q by z 7→ z + B1(Xq). Thus, for a calculation of generators of H1(X•), it suffices
to construct them for the persistent cycle module Z1(X•).

For every q ∈ Q choose a basis Bq of C1(Xq, T q
∗ ) and consider the filtration of sets

(B̄q)q∈Q, defined for each q ∈ Q as B̄q :=
⋃{jq′(Bq′) | q′ ∈ Q, q′ ≤ q}. Taking the

degreewise Z-span of (B̄q)q∈Q and the inclusion maps B̄q ↪→ B̄q′ induces a persistence
module U• together with an epimorphism of persistence modules f : U• → Z1(X•).

I Theorem 5. Denote the indicator persistence module of an upper set U ⊆ Q by Z[U ].
The persistence module U• as constructed above is upper set decomposable, i.e. there is a
family (Ui) of upper sets of Q such that U• =

⊕
i Z[Ui]. In particular, if Q = Nn, then U•

is finitely generated whenever it decomposes into a finite upper set decomposition.
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4 Conclusion

It is important to note that an arbitrary choice of well-ordering � on X does not guarantee
the minimality of generators for Z1(X•). However, for Q = N there is a natural choice of �
such that the constructed generators for Z1(X•) from Section 3 are minimal. Further, the
described method to construct generators does not depend on the boundaries B1(X•), and
thus it cannot provide minimal generators for H1(X•).

We further conjecture that the computation of the degreewise spanning trees T q
∗ can be

reduced to the computation of minimum spanning trees of Xq with respect to an appropriate
edge weight. This would result in an upper bound for complexity of computing T q

∗ .
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